Prepared for: The BNSF Railway Company Seattle, Washington

Levee Zone Interim Action for Cleanup 2007 and 2008 – As-Built Completion Report

Former Maintenance and Fueling Facility Skykomish, Washington

AECOM, Inc. February 2009 Document No.: 01140-144-230

AECOM

Prepared for: The BNSF Railway Company Seattle, Washington

Levee Zone Interim Action for Cleanup 2007 and 2008 – As-Built Completion Report Former Maintenance and Fueling Facility Skykomish, Washington

Prepared by Sarah Albano, P.E.

Reviewed by Michael G. Byers, P.E., Project Manager

AECOM, Inc. February 2009 Document No.: 01140-144-230

AECOM

Contents

1.0	Intro	oduction	1-1
	1.1	Report Organization	1-1
2.0	Proj	ect Management and Organization	2-1
3.0	Des	cription of Remedial Action	3-1
	3.1	Levee Removal and Uplands Excavation	3-1
	3.2	Reconstruction and Restoration	3-1
4.0	Peri	nitting	4-1
	4.1	NPDES Waste Discharge	4-1
	4.2	Substantive Requirements for Town of Skykomish	4-1
	4.3	Permit to Discharge Industrial Wastewater to Groundwater – Exhibit J of Agreed Order DE-2379	4-1
	4.4	King County Special Use Permit S-64-06	4-1
5.0	Remediation Activities		5-1
	5.1	Water Treatment and Discharge	5-1
	5.2	Waste Disposal	5-1
	5.3	Soil Loading Pad Decontamination	5-1
6.0	Res	toration	6-3
	6.1	Levee Restoration	6-3
		6.1.1 Levee Design Process	6-3
		6.1.2 Overlook and Walkway	6-3
		6.1.3 Landscaping	6-3
		6.1.4 Railing	6-3
	6.2	Residential Restoration	6-3
		6.2.1 Utilities	6-3
		6.2.2 Flatwork	6-3
		6.2.3 Landscaping	6-3
	6.3	School Restoration	6-3
		6.3.1 Fencing	6-3
		6.3.2 FIATWORK	6-3
		0.3.3 Sheu Lucalion	10-3 ເລ
		6.3.5 School Structural Survey	0-3 6_2
			0-3

i

9.0	Refe	erences	}- 3
8.0	Sun	nmary and Conclusions	3-3
	7.2	Groundwater Monitoring	7-3
	7.1	Groundwater Monitoring Wells	7-3
7.0	Con	npliance Monitoring	7-3
	6.5	Quality Assurance	3-3
	6.4	Public Infrastructure	3-3
		6.3.6 Landscaping	3-3

List of Appendices

Please note: Appendices A through E are provided on the attached CD-ROM

- Appendix A Agreed Order and Consent Decree Extensions
- Appendix B RETEC Weekly Reports
- Appendix C Construction Daily Reports
- Appendix D Construction Photographs
- Appendix E Discharge Monitoring Reports
- Appendix F January 25, 2008 Skykomish Levee Memo
- Appendix G Levee Retaining Wall Design/Viewing Platforms Design
- Appendix H Levee Erosion Protection and Planting Plan
- Appendix I Skykomish Levee Remediation Project Plant Installation As-Built Report
- Appendix J Levee Railing Drawings
- Appendix K Topsoil Specification and Approval
- Appendix L School Structural Survey Memo
- Appendix M Levee Remediation Sidewalk Stamp
- Appendix N Well Completion Logs

List of Tables

Table 5-1 Waste Streams and Disposal	sposal
--------------------------------------	--------

List of Figures

- Figure 1-1 Site Location Map
- Figure 3-1 Construction Layout Plan
- Figure 6-1 Final Site Utility Layout with Surface Features
- Figure 7-1 Monitoring Well Locations

Professional Certification

Construction Completion Report Levee Zone Interim Action for Cleanup Skykomish Washington

Based on direct observation made by AECOM Environment (previously ENSR Corporation [dba The RETEC Group, Inc. {RETEC}]), of personnel, materials testing, laboratory testing and other construction documentation described in this report, it is the opinion of the undersigned that the portion of the Levee Zone cleanup action for the Skykomish Site that was completed in 2007 and 2008 and described in this report has been constructed in substantial compliance with the scope of work presented in the Agreed Order No. DE3279 and the intended design presented in the *Engineering Design Report – Levee Zone Interim Action for Cleanup* (RETEC, 2006a) and *Plans and Specifications for Skykomish Levee Remediation* (RETEC, 2006b). The 2007 and 2008 portion of the cleanup described herein was completed, and the material and data in this report were prepared, under supervision and direction of the undersigned.

AECOM Environment

Michael G. Byers, P.E. Project Manager

1.0 Introduction

This document presents the 2007 and 2008 As-Built Report for the Levee Zone Interim Action for Cleanup for the BNSF Railway Company's Former Maintenance and Fueling Facility located in Skykomish, Washington. The Levee Zone includes parts of the South Fork Skykomish River, the levee, and a portion of the uplands "Northwest Developed Zone." These areas encompass the "Project Area" used throughout this document. Figure 1-1 shows the project area location.

This work was performed by the BNSF Railway Company (BNSF) at Washington State Department of Ecology's (Ecology) direction pursuant to Agreed Order No. DE3279 (AO). On October 19, 2007, BNSF and Ecology entered into a Consent Decree (CD; State of Washington v. BNSF Railway Company, King County Case No. 07-2-33672-9SEA) to complete the cleanup action site-wide. Section VIA of the CD incorporated all outstanding obligations under the AO by reference. Once the CD was entered, the AO no longer had any force or effect. The Agreed Order and CD deadlines were modified several times by Ecology to accommodate field conditions and construction delays encountered by BNSF's contractors (Appendix A).

The purpose of this as-built report is to document cleanup activities completed as part of the Interim Action for Cleanup in 2007 and 2008. The construction activities described herein were performed from January 1, 2007 through December 31, 2008.

Work completed in 2007 and 2008 was a continuation of work initiated in 2006 for the remedial actions described in the 2006 Levee Zone Interim Action for 2006 – As-Built Completion Report (2006 As-Built Report; RETEC, 2007). The 2006 work included temporary relocation of five residences, excavation of the levee, underlying soils and sediments along the south bank of the South Fork Skykomish River, reconstruction of the levee, and partial restoration of natural resources, private property and public infrastructure that were disturbed by the remedial action. The majority of restoration work was completed in 2007 and included residential sidewalks and driveways, sidewalks, curbs, and final paving of streets, irrigation along the planters on the levee, topsoil placement on the levee and residential properties, and installation of the retaining wall, railing, ramps, overlook, and steps at the levee. Work completed in 2008 included the landscaping, installation of the lights, and the installation of the permanent handrail on the levee.

1.1 Report Organization

This report is organized into nine sections and eighteen appendices as follows:

- Section 1 Introduction
- Section 2 Project Management and Organization
- Section 3 Description of the Remedial Action
- Section 4 Permitting
- Section 5 Remediation Activities
- Section 6 Restoration
- Section 7 Compliance Monitoring
- Section 8 Summary and Conclusions
- Section 9 References.

Appendices to this completion report include the following:

- Appendix A Agreed Order and Consent Decree Extensions
- Appendix B RETEC Weekly Reports
- Appendix C Construction Daily Reports
- Appendix D Construction Photographs
- Appendix E Discharge Monitoring Reports
- Appendix F Levee Erosion Protection and Planting Plan
- Appendix G Levee Railing Drawings
- Appendix H Topsoil Specification and Approval
- Appendix I School Structural Survey Memo
- Appendix J Well Completion Logs
- Appendix K Levee Retaining Wall/Viewing Platform Design.

2.0 Project Management and Organization

AECOM Environment (previously ENSR Corporation and The RETEC Group, Inc.[RETEC]) was retained by BNSF as the Engineer for the project. RETEC prepared the construction documents, oversaw the remediation activities, and served as a liaison between BNSF, subcontractors, the Town, and local stakeholders. Ecology provided regulatory oversight. A brief description of each contractor's role is described below.

- Granite Construction (previously Wilder Construction Company; Wilder) General contractor completing excavation, backfill and grading of excavation and topsoil, loading of excavated materials for disposal, water treatment, and infrastructure reconstruction
- D.B. Davis, LLC House moving, residential restoration, and septic system reconstruction
- AAA Drainfield Designs Replacement septic system and drainfield design and permitting
- Rabanco/Allied Waste Waste disposal
- **KPG** Civil engineering and landscape architecture firm assisted the Town in levee feature selection
- Glasswater Media Videography of school structural survey
- Envirolssues Public outreach for overall project
- Test America Water analytical testing using fixed base laboratory
- Bush Roed and Hitchings, Inc. (BRH) Surveying
- **Grette and Associates** Biological consultants assisting with permitting, fish recovery, levee habitat design, and landscaping oversight.
- Dr. Saad Moustafa, P.E. Structural engineer for school structural survey
- Securitas 24-hour security for house storage
- Shelterbelt Levee landscaping maintenance.

In addition, BNSF transported excavation spoils to Rabanco via rail for disposal.

As the general contractor, Wilder retained the following subcontractors:

- **Best Parking Lot Cleaning –** Periodic sweeping services
- CCI Analytical Laboratories Water analytical testing
- Conoco Pumping Subcontractor for telebelt used to place topsoil on the levee
- Mayes Testing Engineers Compaction testing of backfilled material
- Milba-Pita Geotechnical engineering and retaining wall design
- Marine Vacuum Waste fluid disposal
- **SAPA** Design and construction of hand railing on levee.
- True Green Landscaping.

3.0 Description of Remedial Action

The remedial design was implemented in accordance with the Washington Administration Code (WAC) 173-340-430 – Interim Actions. The remedial action consisted of relocating several residences, excavating soil and sediment from the Levee Zone within the South Fork Skykomish River and a portion of the uplands in the Northwest Developed Zone, and restoring public and private property in accordance with access agreements and the *Engineering Design Report* (EDR, RETEC, 2006a). Excavation included the removal of soil and sediment exceeding site-specific cleanup levels and remediation levels, at the locations for which they apply as detailed in the 2006 As-Built Report (RETEC, 2007). Figure 3-1 shows the construction layout plans.

In accordance with the Agreed Order and CD, BNSF provided weekly reports to Ecology (Appendix B). When RETEC field staff members were on-site, daily construction reports were completed (Appendix C). Construction photographs document the site activities (Appendix D).

3.1 Levee Removal and Uplands Excavation

The excavation area extended west from the 5th Street Bridge by approximately 750 feet, and included the levee and sediments along the levee, and soils approximately 135 feet landward of the levee. This excavation removed parts of the existing stormwater sewer system of West River Road, 5th Street and 6th Street as well as the existing septic systems serving four of the residences in the cleanup area. The excavation extended up to 16 feet below the pre-excavation ground surface. Details of the excavation can be found in the 2006 As-Built Report (RETEC, 2007). Five buildings were relocated prior to the excavation activities and subsequently replaced upon completion of the cleanup. The affected residents were relocated while cleanup was ongoing. In addition to the septic systems and stormwater system, the area also contains utilities, roads, and sidewalks. The entire afore-mentioned infrastructure was removed or relocated during excavation and was restored following completion of cleanup activities.

3.2 Reconstruction and Restoration

Upon completion of excavation, reconstruction and restoration included backfilling excavation areas, reconstructing the levee, replacing the stormwater system, rebuilding foundations, garages, outbuildings, septic systems and drainfields, moving the buildings back to their original locations and restoring and reconnecting the utilities. Additional enhancements were made to West River Road so that it meets King County Road Standards, which have been adopted by the Town of Skykomish.

Restoration activities completed in 2007 and 2008 included:

- Residential sidewalks and driveways
- Sidewalks, curbs, and final paving of streets
- Topsoil placement and landscaping on the levee
- Topsoil placement on residential properties
- Installation of the retaining wall, railing, ramps, overlook, planters, irrigation, sitting areas and steps at the levee.

4.0 Permitting

Permits required for the interim action are detailed in the 2006 As-Built Report. This section discusses the substantive requirements for the Town of Skykomish, Permit to Discharge Industrial Wastewater to Groundwater – Exhibit J of Agreed Order DE-2379, and King County Special Use Permit S-64-06 which pertained to the 2007 work.

4.1 NPDES Waste Discharge

Ecology issued a permit under the National Pollutant Discharge Elimination System (NPDES) program on May 4, 2006 to regulate the discharge of potential pollutants into the state's surface waters. As detailed in the EDR (RETEC, 2006a), the levee interim action required discharge of treated wastewater into the South Fork Skykomish River and, therefore, required an Individual NPDES permit. Ecology issued NPDES Permit No. WA-003212-3 to BNSF on May 4, 2006 after public comment and amended it on August 15, 2006. A second amendment was issued as part of the 2008 cleanup. A copy of the permit, which expires in May 2011, is included in Appendix D of the 2006 As-Built Report.

No water was discharged into the South Fork Skykomish River in 2007. BNSF submitted monthly Discharge Monitoring Reports to Ecology (Appendix E) in compliance with the permit.

4.2 Substantive Requirements for Town of Skykomish

The Town of Skykomish provided a list of substantive requirements that were required to be met by the project per the AO and CD to comply with their Land Clearing permit, Right of Way Use permit, and grading permit. Roadways were designed using King County, Washington Road Standards, which were adopted by the Town. New residential structure work was completed in accordance with the International Residential Building Code.

4.3 Permit to Discharge Industrial Wastewater to Groundwater – Exhibit J of Agreed Order DE-2379

BNSF submitted an informational permit application to Ecology on October 24, 2006 to discharge industrial wastewater to groundwater on some portions of the rail yard. This permit allowed for the NPDES permitted wastewater treatment system used at the South Fork Skykomish River to be moved to the railyard and used specifically for treating stormwater runoff from contaminated soil stockpiles. On November 22, 2006, Ecology issued the substantive requirements of this permit as a minor modification (Exhibit J) to the AO.

4.4 King County Special Use Permit S-64-06

BNSF submitted an informational permit application to King County on April 5, 2006 to satisfy the substantive requirements for a Special Use Permit for the Levee Cleanup Project. King County issued a draft Special Use Permit S-64-06 to perform contamination cleanup activities on July 18, 2006. A copy of this draft permit is included in Appendix C of the 2006 As-Built Report. BNSF met with the county on October 10, 2007 and believes that we have satisfied all substantive and/or procedural requirements of a special use permit as discussed in our January 25, 2008 memo (Appendix F).

5.0 Remediation Activities

Remediation activities were substantially complete on December 31, 2006. Two remediation activities continued into 2007: water treatment and discharge and waste disposal.

5.1 Water Treatment and Discharge

A treatment system was operated during 2007 at the soil stockpile area on the railyard to control stormwater runoff. The treatment train for this 300-gpm system consisted of gravity separation, chitosan-enhanced sand filtration, activated carbon adsorption, and pH adjustment. Activated bentonite and chitosan-enhanced bag filters were later added to remove fines. After treatment, storm-water was discharged to the ground as authorized by Exhibit J of the AO.

Discharge monitoring results were submitted each month to Ecology Water Quality Program in the form of Discharge Monitoring Reports (DMRs). Discharge under Exhibit J of the AO occurred through April 4, 2007. DMRs for water treatment facility operations beginning in January 2007 through April 2007 are included in Appendix E.

BNSF notified Ecology of noncompliance with Exhibit J on January 3 and January 8, 2007 in a letter dated January 25, 2007. Discharge sample data collected on January 3 and 8, 2007 indicated that Total Petroleum Hydrocarbons (TPH) and individual polynuclear aromatic hydrocarbons (PAH) exceeded effluent limitations for stockpile runoff and pH may have exceeded the effluent limit on January 3, 2007. The poor treatment system performance was related to extremely cold weather experienced in Skykomish in January. Cold air and water temperatures caused ice to form inside the steel carbon vessels and sand filters resulting in "rat-holing" of water through a small diameter of the vessels.

As detailed in a follow-up letter from RETEC to Ecology dated February 7, 2007, approximately 190,000 gallons of treated stormwater were discharged over four days, from January 3 through 9, 2007. Surface soil sampling is planned as part of the next phase of cleanup for the stormwater discharge area to confirm that this area does not exceed remediation levels or other applicable standards.

The water treatment system was shut down on January 10, 2007 and Wilder implemented winterization measures by adding heated containment around the carbon vessels and sand filters. Water treatment operations were changed from continuous flow/discharge to batch treatment where water was tested and analytical results were provided to Ecology for approval prior to discharge. Water treatment was resumed in March 2007 and final discharge of all stormwater was performed on April 4, 2007.

The treatment system was demobilized in April, 2007. Final cleanup of the system included removal of all remaining water and sludge using a vacuum truck, and transport of the material to Marine Vac Services.

5.2 Waste Disposal

There were numerous waste streams resulting from site remediation activities. Sources of waste and final disposition of the waste for 2007 are detailed in Table 5-1. Impacted soil and sediment continued to be removed from the site by rail through mid-January.

5.3 Soil Loading Pad Decontamination

Original plans called for total removal of the soil handling area asphalt pad and underlying liner. However, once the impacted material had been removed, it was determined that the pad and handling area could be utilized in a future phase of the work. Decontamination of the pad included fully scraping the pad with the

bucket of a loader to remove as much soil as possible. The pad was then cleaned with a pressure sprayer using clean, heated water. Water and sediment that was generated during cleaning of the pad was collected, and treated in the water collection and treatment system. Decontamination of the cleaned pad was documented with pictures, and a visual observation was completed. This information was sent to DOE, and the pad decontamination was approved by DOE on March 29, 2007. The berms that surround the northern edge of the stockpile area were breached in a couple of areas in order to allow stormwater to drain off the pad.

Table 5-1 Waste Streams and Disposal

Waste Stream	Source	Disposal Methods
Excavated soils and sediments	Excavation of Skykomish levee, river bed, and upland soil 135 feet up- gradient of Skykomish levee	Material was taken to Rabanco disposal facility
Granular activated carbon	Water treatment system	Material was taken to Rabanco disposal facility
Sand from sand filters	Water treatment system	Material was taken to Rabanco disposal facility
Construction debris including building foundations, well casings, well tubing	Excavation in residential areas, well decommissioning	Impacted material was taken to Rabanco disposal facility; unimpacted material to a construction debris landfill
Booms and sorbent pads	Sheen control	Material was taken to Rabanco disposal facility
Personal protective equipment including Tyvek suits, chemical- resistant gloves.	Worker protection	Impacted material was taken to Rabanco disposal facility
Sampling equipment including resealable bags	Soil, sediment, and water sampling	Impacted material was taken to Rabanco disposal facility
HDPE and PVC liner	Coffer dam liner, liner for stockpile area	Impacted material was taken to Rabanco disposal facility
Polyethylene sheeting	Stockpile covers, dust control	Impacted material was taken to Rabanco disposal facility
Asphalt	Current and temporary road demolition	Asphalt recycling
Tank sludge and solids	Water treatment facility	Material was taken to Rabanco disposal facility
Flexible Intermediate Bulk Container Bags	Cofferdam	Material was taken to Rabanco disposal facility
Silt fencing, orange safety fence, catch basin socks	Temporary Erosion and Sediment Control Measures	Impacted material was taken to Rabanco disposal facility, unimpacted material to a licensed solid waste facility
Non-aqueous Phase Liquid (NAPL)	Skimming operations	Recovered NAPL was taken to an off-site licensed disposal or recycling facility
Septic Tank and Septage	Septic tank abandonment	Septage was removed by a county-approved pumper and treated in accordance with applicable regulations; empty tanks were taken to Rabanco disposal facility

6.0 Restoration

Restoration activities during 2007 and 2008 included restoration of the levee, residential areas, the school property, and public property as detailed in the following sections.

6.1 Levee Restoration

6.1.1 Levee Design Process

The levee was originally specified in the plans and specifications (RETEC, 2006b) with a mechanically stabilized earth retaining wall. It was understood that the town would have substantial input on the aesthetics of the wall and the design elements such as stairways, access ramps and lighting. The mayor of the Town selected a group of individuals to work with KPG (a civil engineering and landscape architectural firm provided by BNSF) to evaluate different wall types and choose how the overlook, walkways, plantings on the top and the south side of the levee would ultimately look. The committee detailed the type of wall, and decided to add lighting, irrigation on the top of the levee, a kayak access on the west side of the levee, and sitting rocks along the top of the levee.

6.1.2 Overlook and Walkway

The overlook was designed to provide pedestrians with a place to look out over the levee at the South Fork of the Skykomish River (Appendix G). The overlook is located at the north end of 6th Street and is made of reinforced concrete that was cast in place.

The overlook is accessed either by steps on either side of 6th Street, or by the walkway that runs along the top of the levee (see Figure 6-1). The walkway is accessed at either end of the levee by ramps. The ramp on the eastern end of the levee is paved, and has a railing to aid wheelchair users. The ramp on the western end of the levee is a continuation of the walkway along the top of the levee. Groups of sitting rocks were placed at the City's request at intervals along the top of the levee. Planters with an irrigation system were placed on the south side of the walkway at the request of the Town. These planters will be planted and maintained by the Town. Pedestals for street lights have been placed along the south side of the walkway. The Town is working with PSE to install lights along the top of the levee.

6.1.3 Landscaping

Landscaping activities on the Levee in 2007 and 2008 included placement of topsoil, erosion control matting, hydroseeding, planting, and maintenance.

Topsoil placed on the levee met the criteria specified in the specifications (RETEC, 2006b). Material was placed using a telebelt and was then blown using a forced air wand into interstitial spaces in the armor rocks. Material was placed approximately 1 foot thick as specified in the specifications. Topsoil was placed starting on June 5, 2007 and was inspected by RETEC field personnel to ensure that material was being placed to the correct thickness.

Erosion control matting was installed to prevent erosion of the soil prior to planting. Planting was delayed until the fall based on recommendations from Grette and Associates.

Planting on the levee followed the Levee Planting Plan and Monitoring Program (Grette and Associates, 2005, Appendix H) which was submitted to the United States Army Corps of Engineers as part of the Biological Evaluation addendum. A biologist from Grette and Associates inspected the plant stock and confirmed the plant placement with the planting subcontractor.

Planting on the levee took place October 22-24, 2007 (levee zone), June 5, 2008 (salmonberry in the shoreline zone), July 17, 2008 (Pacific ninebark in the shoreline zone) and October 10, 2008 (live stakes) as detailed in Appendix I (Skykomish Levee Remediation Project Plant Inspection As-Built Report, Grette, 2008).

6.1.4 Railing

The Town chose aluminum railing designed by SAPA. Shop drawings of the railing are included in Appendix J. In addition to the railing, hand holds along the ADA ramp were manufactured. The Town elected not to install the handholds at this time. Wilder installed a temporary wooden railing that was in place from June 2007through the installation of the permanent railing. The majority of the railing was installed in October 2008 with the last panel of the railing being installed on December 9, 2008.

6.2 Residential Restoration

Residential buildings were returned to their specified locations in December 2006. Buildings were prepared for residents to return to their homes in January with all residents moved into their homes by January 31, 2007. Electrical boxes were upgraded to meet current building codes, replacement flatwork was completed, and topsoil was placed.

6.2.1 Utilities

Utilities in the interim action area were replaced underground. Underground utilities require utility pedestals to allow hook-up and maintenance. These pedestals resulted in easements between residential owners and the Town. Electrical power boxes at each of the residential buildings were upgraded to comply with current building codes.

6.2.2 Flatwork

Flatwork on residential property included walkways from the sidewalk to the residences, driveways, and, in the case of the Mitchell East residence, replacement steps. Walkways were replaced in-kind with poured concrete walkways. The Moore driveway was finished with an acid wash to mimic the finish on the pre-existing driveway.

6.2.3 Landscaping

6.2.3.1 Topsoil

Topsoil in residential areas met the criteria specified by Ecology (Appendix K) and was approved for use by Ecology (Appendix K). Topsoil was placed approximately 1 foot thick and was hand rolled for compaction. Topsoil was placed around residences and was graded to blend with sidewalk grades and house foundations. The final grades at the site are smoother than the pre-existing grades.

6.2.3.2 Vegetation and Landscaping

BNSF prepared landscaping plans and cost estimates for each property. Property owners were then offered the option of accepting monetary compensation in lieu of BNSF completing the landscape plans in 2007. Each property owner agreed to accept the monetary compensation and they will be completing all of the landscaping on their respective properties.

6.3 School Restoration

6.3.1 Fencing

Fencing along the edge of the school playfield which was in the excavation area was replaced with 6-foot tall chain-link fence (along the northern edge of the school field), 5-foot tall chain-link fence along the northeastern edge of the playfield, and 15-foot tall fence on wooden posts along the north-western edge of the playfield.

The School Board opted to accept monetary compensation and replacement fencing in lieu of a replacement backstop. Fencing was placed to maximize school playfield space. A vacuum truck was used to evacuate the fence post holes since the fence was placed above the joint utility trench. At the request of the School, additional posts for a gate on the northern edge of the play field were placed.

6.3.2 Flatwork

In addition to the replacement concrete front walkway at the Teacherage, the School Board paid to have an asphalt parking slab and driveway installed west of the Teacherage.

6.3.3 Shed Location

The school shed located west of the Teacherage was relocated to an area specified by the School.

6.3.4 Playground Equipment

Playground equipment was removed during the installation of the temporary school access road west of the School. During removal the playground equipment was damaged. The School and the contractor reached an agreement on the value of the equipment. The School selected a replacement piece of equipment that was installed by the contractor.

6.3.5 School Structural Survey

Two school structural surveys were completed by Dr. Saad Moustafa, P.E. (Appendix L). The first survey, completed on August 23, 2006 was conducted to determine the existing condition of the school. The second survey was completed on June 27, 2007 after all construction in the area to determine if the removal and replacement of contaminated soil adjacent to the school had any effects on the school's structural condition. A comparison of the school before and after excavation indicates that the construction activities that took place between August 23, 2006 and June 27, 2007 did not cause any structural distress to the school building.

6.3.6 Landscaping

BNSF prepared landscaping plans and cost estimates for the School property. The School Board was then offered the option of accepting monetary compensation in lieu of BNSF completing the landscape plans in 2007. The School board opted to accept monetary compensation and will be completing all of the landscaping on their property. Topsoil was placed in the Teacherage yard, along the north end of the school yard in the excavation area, and in the school park.

The temporary school access road west of the school and the emergency pathway between 5th and 6th Streets were removed. Topsoil was placed on the pathways and the areas will be hydroseeded when the levee hydroseeding takes place.

6.4 Public Infrastructure

Public infrastructure restoration included sidewalks, curbs, and improvements to West River Road to comply with King County Road Standards (Figure 6-1). The Town chose to stamp the replacement sidewalks (Appendix M) and to place sidewalks around the Teacherage where no sidewalk had previously existed. Curbs complying with King County Road Standards were poured and wheelchair ramps for sidewalk access were placed at the corner of 6th Street. The roads in the interim action area were paved in June 2007. Figure 6-1 shows the locations of the water system, storm sewer conveyance system, electrical system, and telecommunications system. It should be noted that the as-built utility plans shown on Figure 6-1 are as accurate as possible. However, they should be considered approximate from the standpoint of future excavations in the area. Any future underground excavation work in the area should follow Washington State regulations, including performing a utility locate prior to excavation.

6.5 Quality Assurance

Quality assurance included compliance with health and safety requirements and performance standards outlined in the Skykomish Levee EDR and general contractor specifications. All aspects of construction were performed under the oversight of a RETEC professional engineer registered in the State of Washington.

7.0 Compliance Monitoring

Compliance monitoring is required under Section VII.5 of the Agreed Order. As outlined in WAC 173-340-410, compliance monitoring consists of protection, performance, and confirmational monitoring. Confirmational monitoring is conducted to "confirm the long-term effectiveness of the interim action or cleanup action once cleanup standards and, if appropriate, remediation levels or other performance standards have been attained."

7.1 Groundwater Monitoring Wells

Seven groundwater monitoring wells were installed in the 2006 Interim Action Area (Figure 7-1). Holt Drilling/Boart Longyear installed the wells in accordance with WAC 173-160. All of the wells are 2-inch diameter schedule 40 PV screen and casing. The well screens are 15-foot sections with 0.020-inch slots. The filter pack is 10-20 grade sand that was placed in the annular space around the screen. The sand extends one foot below the base of the screen and one foot above the top of the screen. A two feet bentonite seal was placed above the sand filter. Wells were finished with either a flush-mount water poof cap or a 4-inch diameter, 5-foot long steel guard pipe. All wells were fitted with lockable caps or tamper proof covers. Completion logs for these wells are in Appendix N.

7.2 Groundwater Monitoring

Groundwater monitoring is being conducted under the *Groundwater Monitoring Plan* (RETEC, 2007b) approved by Ecology. The first round of monitoring was completed the week of July 30, 2007. Groundwater monitoring results are being reported under separate cover.

8.0 Summary and Conclusions

From the period starting January 1, 2007 and ending December 31, 2008, The RETEC Group, Inc. oversaw remediation activities in the Levee Zone and part of the Northwest Developed Zone of the Former BNSF Maintenance and Fueling Facility on behalf of BNSF. The project was substantially complete in 2006, as described in the 2006 As-Built Report. Restoration activities were completed in 2008. All work originally required by the AO is complete except for groundwater monitoring which continues in accordance with the CD.

9.0 References

- Grette and Associates, 2005. *Levee Planting Plan and Monitoring Program.* Prepared for the BNSF Railway Company, by Grette and Associates. Wenatchee, Washington. December, 2005.
- RETEC, 2006a. *Final Engineering Design Report, Levee Remedial Action; Former Maintenance and Fueling Facility, Skykomish, Washington*. Prepared for the BNSF Railway Company by The RETEC Group, Inc. Seattle, Washington. May 3, 2006.
- RETEC, 2006b. *Plans and Specifications for Skykomish Levee Remediation*. Prepared for the BNSF Railway Company by The RETEC Group, Inc. Seattle, Washington. March 30, 2006. Addenda added on April 18 and 20, 2006.
- RETEC, 2007. 2006 Levee Zone Interim Action for 2006 As-Built Completion Report. Prepared for the BNSF Railway Company by the RETEC Group, Inc. Seattle, Washington. July 2, 2007.

AECOM Environment

Figures

File: L:\BNSF-Skykomish\BN050-19390-CON-T001.dwg Layout: FIG 1-1 User: MarshallE Plotted: Feb 10, 2009 - 4:02pm Xref's:

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Avenue SE • Bellevue, Washington 98008-5452 • (425) 649-7000

December 21, 2006

Mr. Bruce Sheppard BNSF Railway Company 2454 Occidental Avenue South, Suite 1A Seattle, Washington 98134-1451

Dear Mr. Sheppard:

Re: Approval of Extension of Schedule/Minor Modification to Agreed Order DE-2379 (Exhibit E - Schedule) BNSF Former Maintenance and Fueling Facility, Skykomish, WA

This letter documents Ecology's approval of BNSF Railway Company's (BNSF's) request for an extension of schedule under Section VIII.K of Agreed Order DE-2379 (Order), for work being performed by BNSF under the Order. Your letters of December 8 and December 18, 2006 requested another extension due to adverse weather and related power outages and road closures. You stated that Potelco would not guarantee to have power connections made by the end of the year. Due to this, you believe the houses would be ready for occupancy by January 6, 2007 and residents moved back by January 12, 2007.

Since the delays were due to circumstances outside of BNSF's control, Ecology believes the schedule extension is reasonable and considers this to be a minor modification to the Agreed Order. Ecology understands that BNSF either has already, or will expeditiously, notify all affected residents of this schedule extension. Ecology expects that BNSF will coordinate in good faith with residents to ensure continued and undisputed access to their properties in order to finish work according to this extended schedule.

Please see the enclosed modified Exhibit E Construction Schedule reflecting the revised dates.

Thank you for all your efforts to move the residents back into their homes as soon as possible. If you have any questions, please contact me at 426-649-7209 or libar461@ecy.wa.gov.

2000

Mr. Bruce Sheppard December 21, 2006 Page 2

Sincerely,

ouise Dard

Louise Bardy Toxics Cleanup Program

Enclosure: 1

cc:

Tim Nord/Ron Timm/Dave South/Susan Lee, Ecology Kristie Carevich, Assistant Attorney General Halah Voges, The Retec Group Craig Trueblood, Preston Gates Ellis Mayor Charlotte Mackner, Town of Skykomish David Carson, Bell & Ingram Clint Stanovsky, Town of Skykomish Michael Moore, Skykomish Environmental Coalition Daryl Petrarca, ADapt Engineering Dick and Roberta Mitchell Allan Bakalian, Hanson Baker Ludlow Drumheller Bill and Desiree Gould

Exhibit E Construction Schedule

April 15, 2006	Notify Ecology whether all relocation/access agreements signed
May 1, 2006	Submit revised work plan for Ecology review and approval if all relocation/access agreements have not been obtained
May 15, 2006	Begin temporarily relocating houses
September 15, 2006	Work completed to a point and site conditions such that school can start on this date
January 6, 2007	Temporarily relocated homes ready for occupancy
January 12, 2007	Complete moving residents back into houses
December 31, 2006	All material to be sent off-site for disposal has been sent off-site OR a contingency plan is to be presented to Ecology for review and approval which provides for all material to be sent offsite for disposal by March 30, 2007.
March 30, 2007	All material to be sent off-site for disposal has been sent off-site.
March 30, 2007	Submit Draft As-Built Report to Ecology for all work completed prior to December 31, 2007. This report will note work which remains to be completed.
June 30, 2007	All work completed, including infrastructure replacement; all construction equipment demobilized
July 31, 2007	Submit Draft As-built Report to Ecology for all work completed between January 1, 2007 and June 30, 2007.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Avenue SE • Bellevue, Washington 98008-5452 • (425) 649-7000

January 9, 2007

Mr. Bruce Sheppard BNSF Railway Company 2454 Occidental Avenue South Suite 1A Seattle, WA 98134-1451

Dear Mr. Sheppard:

Re: Approval of Extension of Schedule/Minor Modification to Agreed Order DE-2379 (Exhibit E – Schedule) BNSF Former Maintenance and Fueling Facility, Skykomish, Washington

This letter documents the Department of Ecology's (Ecology) approval of BNSF Railway Company's (BNSF) request for an extension of schedule under Section VIII.K of Agreed Order DE-2379 (Order), for work being performed by BNSF under the Order. Your letter of January 5, 2007, received by facsimile on January 5, 2007, requested another extension due to power connection delays by Potelco which were due to adverse weather conditions. The last schedule required "Temporarily relocated homes ready for occupancy" by January 6, 2007 and "Complete moving residents back into houses" by January 12, 2007.

Since the delays were due to circumstances outside of BNSF's control, Ecology believes the schedule extension is reasonable and considers this to be a minor modification to the Order. Ecology understands that BNSF has already, or will expeditiously, notify all affected residents of this schedule extension. Ecology expects that BNSF will coordinate in good faith with residents to ensure continued and undisputed access to their properties in order to finish work according to this extended schedule. The revised schedule will allow an extension to January 31, 2007 for both date requirements.

Please see the enclosed modified Exhibit E Construction Schedule reflecting the revised dates.

Thank you for your efforts to move residents back into their homes as soon as possible. If you have any questions, please contact me at 425-649-7209 or <u>lbar461@ecy.wa.gov</u>.

Exhibit E Construction Schedule

April 15, 2006	Notify Ecology whether all relocation/access agreements signed
May 1, 2006	Submit revised work plan for Ecology review and approval if all relocation/access agreements have not been obtained
May 15, 2006	Begin temporarily relocating houses
September 15, 2006	Work completed to a point and site conditions such that school can start on this date
January 31, 2007	Temporarily relocated homes ready for occupancy
January 31, 2007	Complete moving residents back into houses
December 31, 2006	All material to be sent off-site for disposal has been sent off-site OR a contingency plan is to be presented to Ecology for review and approval which provides for all material to be sent offsite for disposal by March 30, 2007.
March 30, 2007	All material to be sent off-site for disposal has been sent off-site.
March 30, 2007	Submit Draft As-Built Report to Ecology for all work completed prior to December 31, 2007. This report will note work which remains to be completed.
June 30, 2007	All work completed, including infrastructure replacement; all construction equipment demobilized
July 31, 2007	Submit Draft As-built Report to Ecology for all work completed between January 1, 2007 and June 30, 2007.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Avenue SE • Bellevue, Washington 98008-5452 • (425) 649-7000

April 2, 2007

Mr. Bruce Sheppard BNSF Railway Company 2454 Occidental Avenue South Suite 1A Seattle, WA 98134-1451

Dear Mr. Sheppard:

Re: Approval of Extension of Schedule/Minor Modification to Agreed Order DE-2379 (Exhibit E – Schedule) BNSF Former Maintenance and Fueling Facility, Skykomish, Washington

This letter documents the Department of Ecology's (Ecology) approval of BNSF Railway Company's (BNSF) request for an extension of schedule under Section VIII.K of Agreed Order DE-2379 (Order), for work being performed by BNSF under the Order. Your letter of March 30, 2007, requested an extension of the deliverable date of March 30, 2007 to April 6, 2007 for the Draft As-Built Report for all work completed prior to December 31, 2006 in Exhibit E Construction Schedule. You described the rationale for requesting the extension was based on project staff involvement in other project priorities.

Since the delay is reasonable and project work continues according to the overall schedule, Ecology believes the one-week extension is reasonable and considers this to be a minor modification to the Order. The modified Exhibit E Construction Schedule is enclosed and notes the extension from March 30, 2007 to April 6, 2007.

Thank you for your efforts to complete the levee zone remediation. If you have any questions, please contact me at 425-649-7209 or lbar461@ecy.wa.gov.

Sincerely,

Louise Bardy Toxics Cleanup Program

Mr. Bruce Sheppard April 2, 2007 Page 2

Enclosure: 1

cc:

Tim Nord/Ron Timm/Dave South/Susan Lee, Ecology Kristie Carevich, AAG Halah Voges, Retec Craig Trueblood, Preston Gates Ellis Mayor Charlotte Mackner, Town of Skykomish David Carlson, Bell & Ingram Clint Stanovsky, Town of Skykomish Michael Moore, Skykomish Environmental Coalition Daryl Petrarca, ADapt Engineering Dick and Roberta Mitchell Allan Bakalian, Hanson Baker Ludlow Drumheller Bill and Desiree Gould

Exhibit E Construction Schedule

April 15, 2006	Notify Ecology whether all relocation/access agreements signed
May 1, 2006	Submit revised work plan for Ecology review and approval if all relocation/access agreements have not been obtained
May 15, 2006	Begin temporarily relocating houses
September 15, 2006	Work completed to a point and site conditions such that school can start on this date
January 31, 2007	Temporarily relocated homes ready for occupancy
January 31, 2007	Complete moving residents back into houses
December 31, 2006	All material to be sent off-site for disposal has been sent off-site OR a contingency plan is to be presented to Ecology for review and approval which provides for all material to be sent offsite for disposal by March 30, 2007.
March 30, 2007	All material to be sent off-site for disposal has been sent off-site.
April 6, 2007	Submit Draft As-Built Report to Ecology for all work completed prior to December 31, 2006. This report will note work which remains to be completed.
June 30, 2007	All work completed, including infrastructure replacement; all construction equipment demobilized
July 31, 2007	Submit Draft As-built Report to Ecology for all work completed between January 1, 2007 and June 30, 2007.

.

STATE OF WASHINGTON

Northwest Regional Office • 3190 160th Avenue SE • Bellevue, Washington 98008-5452 • (425) 649-7000

March 5, 2008

Mr. Bruce Sheppard BNSF Railway Company 2454 Occidental Avenue South Suite 1A Seattle, WA 98134-1451

Dear Mr. Sheppard:

Re: Approval of Extension of Schedule/Minor Modification to Consent Decree 07-2-33672-9 for outstanding work under former Agreed Order No. DE 3279, BNSF Former Maintenance and Fueling Facility, Skykomish, Washington

This letter documents the Department of Ecology's (Ecology) approval of BNSF Railway Company's (BNSF) request for an extension of schedule under Section VI.1.a. and b. of Consent Decree 07-2-33672-9. Your letter of February 25, 2008 requested an extension of the March 31, 2008 deadline for the completion of restoration activities on the levee including planting the remaining trees and shrubs, installation of the levee lighting and railing, and submittal of the final As-Built Report for the work between January 1 though July 31, 2008.

The rationale for requesting the extension was based on the planting of trees and shrubs along the toe of the levee needs to occur when the river level is low in June or July. Since restoration activities will be delayed, the As-Built Report documenting the completed project will not be completed until these activities are completed.

Because the delay is reasonable and the project work continues according to the overall schedule, Ecology agrees to extend the deadline to August 31, 2008. This extension is considered to be a minor modification to the original schedule. The modified schedule (Exhibit C List and Schedule of Deliverables) is enclosed.

Thank you for your efforts to complete the levee zone remediation. If you have any questions, please contact me at 425-649-7265 or bsat461@ecy.wa.gov.

Sincerely,

Brian S. Sato, P.E. Project Coordinator Toxics Cleanup Program

Mr. Bruce Sheppard March 4, 2008 Page 2

Enclosure: 1

cc: Bob Warren/Louise Bardy/Ron Timm/Dave South/Brad Petrovich, Ecology Kristie Carevich, AAG Halah Voges, ENSR Craig Trueblood, K & L Gates Mayor Charlotte Mackner, Town of Skykomish David Carlson, Carson Law Group Clint Stanovsky, Town of Skykomish Michael Moore, Skykomish Environmental Coalition Daryl Petrarca, ADapt Engineering

1	EXHIBIT C		
2	LIST AND SCHEDULE OF DELIVERABLES		
3 4 5	CMP – Compliance Monitoring Plan CPS – Construction Plans and Specifications EDR – Engineering Design Report O&M – Operations and Maintenance PPP – Public Participation Plan		
6	Date	Deliverable	
7	2007		
8	September 15, 2007	Draft Hydraulic Control and Containment System Special Design Report Work Plan	
9	September 30, 2007	Draft School Alternatives Evaluation Work Plan	
10 11	October 5, 2007 or 14 days after receipt of Ecology's final comments	Final Hydraulic Control and Containment System Special Design Report Work Plan	
12	October 22, 2007	Draft Master EDR for all work years	
13	November 16, 2007	Draft Annual EDR for Work Year 2008 (Annual EDR will be the 30% design)	
14	Within 60 days of effective date of consent decree	Financial Assurance Documentation per §XXII(1)	
15 16	November 30, 2007 or 45 days after receipt of Ecology's final comments	Final School Alternatives Evaluation Work Plan	
17	December 5, 2007	Draft Hydraulic Control and Containment System Special Design Report	
10	November/December 2007	Public Scoping Meeting for 2008 work.	
19 20	December 31, 2007	Documentation that access agreements necessary for Work Year 2008 have been obtained	
21	2008		
21	January 2008	Annual schedule review and update	
22 23	January 15, 2008 or 30 days after receipt of Ecology comments	Final Hydraulic Control and Containment System Special Design Report	
24	January 31, 2008	Draft School Technology Review Report	
25			
26			

Date	Deliverable
Feb. 4, 2008 or 60 days after receipt of Ecology's final comments on Draft EDR	Final Master and Annual EDR, Draft CPS, Draft CMP, and updated PPP for Work Year 2008
February 29, 2008	Draft Comparative Physical Testing Study Work Plan
March 15, 2008 or 30 days after receipt of Ecology's final comments on Draft CPS, CMP and PPP	Final CPS, CMP and PPP for Year 2008
March 31, 2008 or 30 days after receipt of Ecology's final comments	Final School Technology Review Report
March 31, 2008 (due annually)	Institutional Control Documentation
March 31, 2008 (Extended to Aug. 31, 2008)	Restoration activities for 2006/2007 Levee Zone Interim Action for cleanup complete
March 31, 2008	Final As-Built Report for 2007 Work
March 31, 2008	Draft FMC Wetlands Special Design Report
April 30, 2008	Final Comparative Physical Testing Study Work Plan
June 30, 2008 or 60 days after receipt of Ecology's final comments	Final FMC Wetlands Special Design Report
Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
August 31, 2008	Restoration activities for 2006/2007 Levee Zone Interim Action for cleanup complete
October 6, 2008	Draft Annual EDR for Work Year 2009 (EDR will be 30% design)
October 2008	Public Scoping Meeting for Work Year 2009.
December 31, 2008	Documentation access agreements necessary for Work Year 2009 have been obtained
December 31, 2008	O&M Plans for systems installed in 2008
2009	
January 2009	Annual schedule review and update
January 2, 2009	Draft Annual Hydraulic Control and Containment System Report

.

Date	Deliverable
January 2, 2009	Draft Annual Air-Sparging System Report
Feb. 2, 2009 or 60 days after receipt of Ecology's final comments	Final Annual EDR, Draft CPS, updated CMP, and updated PPI for Work Year 2009
March 15, 2009 or 30 days after receipt of Ecology's final comments	Final CPS, CMP and PPP for Work Year 2009
March 31, 2009 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report
March 31, 2009	Draft Bridge Coordination Report
March 31, 2009 or 20 days after receipt of Ecology's final comments	Final Air-Sparging System Report
March 31, 2009	Draft As-Built Report for 2008 work
March 31, 2009	Institutional Control Documentation
Within 30 days of anniversary date (Oct.19, 2007) of consent decree	Annual Financial Assurance Report, per § XXII.B(1)
April 1, 2009	Draft School Comparative Physical Testing Study Report
May 1, 2009	Final School Comparative Physical Testing Study Report
June 1, 2009	Draft School Alternatives Evaluation Report
June 30, 2009 or 30 days after receipt of Ecology's final comments	Final Bridge Coordination Report
June 30, 2009 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2008 work
July 1, 2009	Final School Alternatives Evaluation Report
October 5, 2009	Draft Annual EDR for Work Year 2010 (EDR will be 30% design)
October 30, 2009	Draft Hotel Structural Survey Report
October 2009	Public Scoping Meeting for 2010 Work
December 31, 2009 or 14 days after receipt of Ecology's comments	Final Hotel Structural Survey Report

Date	Deliverable
December 31, 2009	Documentation access agreements necessary for Work Year 2010 have been obtained
December 31, 2009	O&M Plans for systems installed in 2009
2010	
January 2010	Annual schedule review and update
January 2, 2010	Draft Annual Hydraulic Control and Containment System Report
January 2, 2010	Draft Annual Air-Sparging System Report
Feb. 1, 2010 or 60 days after receipt of Ecology's final comments	Final Annual EDR, Draft CPS, updated CMP and updated PPI for Work Year 2010
March 31, 2010 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report
March 31, 2010 or 30 days after receipt of Ecology's final comments	Final Annual Air-Sparging System Report
March 31, 2010	Draft As-Built Report for 2009 work
March 31, 2010 or 30 days after receipt of Ecology's final comments	Final CPS, CMP, and PPP for Work Year 2010
March 31, 2010	Institutional Control Documentation
Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
June 30, 2010 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2009 Work
October 4, 2010	Draft Annual EDR for Work Year 2011 (EDR will be 30% design)
October 2010	Public Scoping Meeting for 2011 Work
December 31, 2010	Documentation access agreements necessary for Work Year 2011 have been obtained
December 31, 2010	O&M Plans for systems installed in 2010
2011	
January 2011	Annual schedule review and update

Date	Deliverable
January 2, 2011	Draft Annual Hydraulic Control and Containment System Report
January 2, 2011	Draft Annual Air-Sparging System Report
January 31, 2011 or 60 days after receipt of Ecology's final comments	Final EDR, Draft CPS, updated CMP, and updated PPP for Work Year 2011
March 30, 2011 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report
March 30, 2011 or 30 days after receipt of Ecology's final comments	Final Annual Air-Sparging System Report
March 30, 2011	Draft As-Built Report for 2010 work
March 31, 2011 or 30 days after receipt of Ecology's final comments	Final CPS, CMP and PPP for Work Year 2011
March 31, 2011	Institutional Control Documentation
Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
June 30, 2011 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2010 Work
October 2011	Public construction completion meeting
December 31, 2011	O&M Plans for systems installed in 2011
December 31, 2011	Draft Long-Term Confirmational Monitoring Plan
2012 and following	
January 2012	Annual schedule review and update
March 30, 2012 or 30 days after receipt of Ecology's final comments	Final Long-Term Confirmational Monitoring Plan
March 30, 2012	Draft As-Built Report for 2011 work
March 31, 2012	Institutional Control Documentation
June 30, 2012 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2011 work
final comments	

1	Date	Deliverable
2	Annually, by January 2	Draft Annual Hydraulic Control and Containment System Report
3	Annually, by January 2	Draft Annual Air-Sparging System Report
4 5	Annually, by March 30 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report
6 7	Annually, by March 30 or 30 days after receipt of Ecology's final comments	Final Annual Air-Sparging System Report
8 9	Annually, Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
10	At least every 5 years beginning March 2013	Draft Periodic Review Report
12	60 Days after receipt of Ecology Comments	Final Periodic Review Report
13 14	Within 20 years of effective date of consent decree	Excavation of all soil required to be excavated from BNSF's railyard facility property completed.
15		
16		
17		
18		
19		, ,
20		
21		
22		
23		
24		
25		
26		

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Avenue SE • Bellevue, Washington 98008-5452 • (425) 649-7000

October 1, 2008

Mr. Bruce Sheppard BNSF Railway Company 2454 Occidental Avenue South Suite 1A Seattle, WA 98134-1451

Dear Mr. Sheppard:

Re: Approval of Extension of Schedule/Minor Modification to Consent Decree 07-2-33672-9 SEA for outstanding work under former Agreed Order No. DE 3279, BNSF Former Maintenance and Fueling Facility, Skykomish, Washington

This letter documents the Department of Ecology's (Ecology) approval of BNSF Railway Company's (BNSF) request for an extension of schedule under Section VI.1.a. and b. of Consent Decree 07-2-33672-9 SEA. Your letter of July 8, 2008 requested an extension of the August 31, 2008 deadline for the completion of restoration activities for the 2006/2007 Levee Zone Interim Action and submittal of the final As-Built Report.

The rationale for requesting the extension was based on the (lack of) availability of certain plant stock. Since restoration activities will be delayed, the As-Built Report documenting the completed project will not be completed until these activities are completed.

Because the delay is reasonable and the project work continues according to the overall schedule, Ecology agreed to extend the restoration activities deadline to November 30, 2008 and the final As-Built Report deadline to December 31, 2008. In addition, deadlines for the Annual Hydraulic Control and Containment System Report, Annual Air-Sparging System Report, Annual Engineering Design Report, Construction Plans and Specifications, and Compliance Monitoring Plans have been revised, as agreed, to improve the overall project schedule. These revisions are considered to be a minor modification to the original schedule. The revised schedule (Exhibit C List and Schedule of Deliverables) is enclosed.

Thank you for your efforts to complete the levee zone remediation. If you have any questions, please contact me at 425-649-7265 or bsat461@ecy.wa.gov.

Mr. Bruce Sheppard October 1, 2008 Page 2

Sincerely,

Brian S. Sato, P.E. Project Coordinator Toxics Cleanup Program

Enclosure: 1

cc:

Bob Warren/Louise Bardy/Ron Timm/Dave South/Brad Petrovich, Ecology Kristie Carevich, AAG
Halah Voges, ENSR
Craig Trueblood, K & L Gates
Mayor Charlotte Mackner, Town of Skykomish
David Carson, Carson Law Group
Clint Stanovsky, Town of Skykomish
Michael Moore, Skykomish Environmental Coalition
Daryl Petrarca, ADapt Engineering

1	EXHIBIT C	
2	LIST AND SCHEDULE OF DELIVERABLES	
3	CMP – Compliance Monitoring Plan	
4	CPS – Construction Plans and Specifications EDR – Engineering Design Report	
5	O&M – Operations and Maintenance PPP – Public Participation Plan	
6	Date	Deliverable
7	2007	
8	September 15, 2007	Draft Hydraulic Control and Containment System Special Design Report Work Plan
9	September 30, 2007	Draft School Alternatives Evaluation Work Plan
10 11	October 5, 2007 or 14 days after receipt of Ecology's final comments	Final Hydraulic Control and Containment System Special Design Report Work Plan
12	October 22, 2007	Draft Master EDR for all work years
13	November 16, 2007	Draft Annual EDR for Work Year 2008 (Annual EDR will be the 30% design)
14	Within 60 days of effective date of consent decree	Financial Assurance Documentation per §XXII(1)
15 16	November 30, 2007 or 45 days after receipt of Ecology's final comments	Final School Alternatives Evaluation Work Plan
17	December 5, 2007	Draft Hydraulic Control and Containment System Special Design Report
18	November/December 2007	Public Scoping Meeting for 2008 work.
19 20	December 31, 2007	Documentation that access agreements necessary for Work Year 2008 have been obtained
21	2008	
21	January 2008	Annual schedule review and update
22 23	January 15, 2008 or 30 days after receipt of Ecology comments	Final Hydraulic Control and Containment System Special Design Report
24	January 31, 2008	Draft School Technology Review Report
25		
26		

Date	Deliverable
Feb. 4, 2008 or 60 days after receipt of Ecology's final comments on Draft EDR	Final Master and Annual EDR, Draft CPS, Draft CMP, and updated PPP for Work Year 2008
February 29, 2008	Draft Comparative Physical Testing Study Work Plan
March 15, 2008 or 30 days after receipt of Ecology's final comments on Draft CPS, CMP and PPP	Final CPS, CMP and PPP for Year 2008
March 31, 2008 or 30 days after receipt of Ecology's final comments	Final School Technology Review Report
March 31, 2008 (due annually)	Institutional Control Documentation
March 31, 2008 (Extended to August 31, 2008)	Restoration activities for 2006/2007 Levee Zone Interim Action for cleanup complete
March 31, 2008 (extended to August 31, 2008)	Final As-Built Report for 2007 Work
March 31, 2008	Draft FMC East Wetland Special Design Report
April 30, 2008	Final Comparative Physical Testing Study Work Plan
June 30, 2008 or 60 days after receipt of Ecology's final comments	Final FMC East Wetland Special Design Report
August 31, 2008 (extended to November 30, 2008)	Restoration activities for 2006/2007 Levee Zone Interim Action for cleanup complete
August 31, 2008 (extended to December 31, 2008)	Final As-Built Report for 2007 Work
October 6, 2008	Draft Annual EDR for Work Year 2009 (EDR will be 30% design)
October 2008	Public Scoping Meeting for Work Year 2009.
Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
November 30, 2008	Restoration activities for 2006-2007 Levee Zone Interim Action for cleanup complete (Levee plantings)
December 19, 2008 or 30 days after receipt of Ecology's final comments	Final Annual EDR

Date	Deliverable
December 31, 2008	Final As-Built Report for 2007 Work
December 31, 2008	Documentation access agreements necessary for Work Year 2009 have been obtained
December 31, 2008	O&M Plans for systems installed in 2008
2009	
January 2009	Annual schedule review and update
January 2, 2009 (Extended to February 20, 2009)	Draft Annual Hydraulic Control and Containment System Report
January 2, 2009 (Extended to February 6, 2009)	Draft Annual Air-Sparging System Report
January 16, 2009	Draft CPS
Feb. 2, 2009 or 60 days after receipt of Ecology's final comments	Final Annual EDR (moved to December 19, 2008), Draft CPS (moved to January 16, 2009), updated CMP (extended to February 27, 2009), and updated PPP for Work Year 2009
February 6, 2009	Draft Annual Air-Sparging System Report
February 20, 2009	Draft Annual Hydraulic Control and Containment System Report
February 27, 2009	Draft updated CMP
March 15, 2009 or 30 days after receipt of Ecology's final comments	Final CPS, CMP (extended to May 22, 2009) and PPP for Work Year 2009
March 31, 2009 or 30 days after receipt of Ecology's final comments (Extended to May 15, 2009)	Final Annual Hydraulic Control and Containment System Report
March 31, 2009	Draft Bridge Coordination Report
March 31, 2009 or 20 days after receipt of Ecology's final comments (Extended to May 1, 2009)	Final Air-Sparging System Report
March 31, 2009	Draft As-Built Report for 2008 work
March 31, 2009	Institutional Control Documentation
March 31, 2009	Draft FMC West Wetland Special Design Report
April 1, 2009	Draft School Comparative Physical Testing Study Report
May 1, 2009	Final School Comparative Physical Testing Study Report

Date	Deliverable
May 1, 2009 or 30 days after receipt of Ecology's final comments	Final Annual Air-Sparging System Report
May 15, 2009 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report
May 22, 2009 or 30 days after receipt of Ecology's final comments	Final updated CMP
June 1, 2009	Draft School Alternatives Evaluation Report
June 30, 2009 or 30 days after receipt of Ecology's final comments	Final Bridge Coordination Report
June 30, 2009 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2008 work
June 30, 2009 or 60 days after receipt of Ecology's final comments	Final FMC West Wetland Special Design Report
July 1, 2009	Final School Alternatives Evaluation Report
October 5, 2009	Draft Annual EDR for Work Year 2010 (EDR will be 30% design)
October 30, 2009	Draft Hotel Structural Survey Report
October 2009	Public Scoping Meeting for 2010 Work
Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
December 18, 2009 or 30 days after receipt of Ecology's final comments	Final Annual EDR
December 31, 2009 or 14 days after receipt of Ecology's comments	Final Hotel Structural Survey Report
December 31, 2009	Documentation access agreements necessary for Work Year 2010 have been obtained
December 31, 2009	O&M Plans for systems installed in 2009
2010	

1	Date	Deliverable
2 3	January 2010	Annual schedule review and update
4	January 2, 2010 (moved to February 19, 2010)	Draft Annual Hydraulic Control and Containment System Report
5	January 2, 2010 (moved to February 5, 2010)	Draft Annual Air-Sparging System Report
7	January 15, 2010	Draft CPS
8 9	Feb. 1, 2010 or 60 days after receipt of Ecology's final comments	Final Annual EDR (moved to December 18, 2009), Draft CPS (moved to January 15, 2010), updated CMP (extended to February 26, 2010) and updated PPP for Work Year 2010
10	February 5, 2010	Draft Annual Air-Sparging System Report
11	February 19, 2010	Draft Annual Hydraulic Control and Containment System Report
12	February 26, 2010	Updated CMP
14 15	March 31, 2010 or 30 days after receipt of Ecology's final comments (extended to May 14, 2010)	Final Annual Hydraulic Control and Containment System Report
16 17	March 31, 2010 or 30 days after receipt of Ecology's final comments (extended to April 30, 2010)	Final Annual Air-Sparging System Report
18	March 31, 2010	Draft As-Built Report for 2009 work
19 20	March 31, 2010 or 30 days after receipt of Ecology's final comments	Final CPS, CMP (extended to May 21, 2010), and PPP for Work Year 2010
21	March 31, 2010	Institutional Control Documentation
22 23	April 30, 2010 or 30 days after receipt of Ecology's final comments	Final Annual Air-Sparging System Report
24 25	May 14, 2010 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report
26		

1	Date	Deliverable
2 3	May 21, 2010 or 30 days after receipt of Ecology's final comments	Final updated CMP
4 5	June 30, 2010 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2009 Work
6	October 4, 2010	Draft Annual EDR for Work Year 2011 (EDR will be 30% design)
7	October 2010	Public Scoping Meeting for 2011 Work
8 9	Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
10	December 31, 2010	Documentation access agreements necessary for Work Year 2011 have been obtained
11	December 31, 2010	O&M Plans for systems installed in 2010
12	December 17, 2010	Final EDR
13	2011	
14	January 2011	Annual schedule review and update
15	January 2, 2011 (moved to February 18, 2011)	Draft Annual Hydraulic Control and Containment System Report
16	January 2, 2011 (moved to February 4, 2011)	Draft Annual Air-Sparging System Report
17	January 14, 2011	Draft CPS
18 19	January 31, 2011 or 60 days after receipt of Ecology's final comments	Final EDR (moved to December 17, 2010), Draft CPS (moved to January 14, 2011), updated CMP (moved to February 25, 2011), and updated PPP for Work Year 2011
20	February 4, 2011	Draft Annual Air-Sparging System Report
21	February 18, 2011	Draft Annual Hydraulic Control and Containment System Report
22	February 25, 2011	Updated CMP
232425	March 30, 2011 or 30 days after receipt of Ecology's final comments (moved to May 13, 2011)	Final Annual Hydraulic Control and Containment System Report
26		

Date	Deliverable	
March 30, 2011 or 30 days after receipt of Ecology's final comments (moved to April 29, 2011)	Final Annual Air-Sparging System Report	
March 30, 2011	Draft As-Built Report for 2010 work	
March 31, 2011 or 30 days after receipt of Ecology's final comments	Final CPS, CMP (extended to May 20, 2011) and PPP for Work Year 2011	
March 31, 2011	Institutional Control Documentation	
April 28, 2011 or 30 days after receipt of Ecology's final comments	Final Annual Air-Sparging System Report	
May 13, 2011 or 30 days after receipt of Ecology's final comments	Final Annual Hydraulic Control and Containment System Report	
May 20, 2011 or 30 days after receipt of Ecology's final comments	Final Updated CMP	
June 30, 2011 or 60 days after receipt of Ecology's final comments	Final As-Built Report for 2010 Work	
October 2011	Public construction completion meeting	
Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)	
December 31, 2011	O&M Plans for systems installed in 2011	
December 31, 2011	Draft Long-Term Confirmational Monitoring Plan	
2012 and following		
January 2012	Annual schedule review and update	
March 30, 2012 or 30 days after receipt of Ecology's final comments	Final Long-Term Confirmational Monitoring Plan	
March 30, 2012	Draft As-Built Report for 2011 work	
March 31, 2012	Institutional Control Documentation	
June 30, 2012 or 60 days after receipt of Ecology's final comments	ne 30, 2012 or 60 days er receipt of Ecology's Final As-Built Report for 2011 work al comments	

1	Date	Deliverable
2	Annually, by January 2 (moved to February 15)	Draft Annual Hydraulic Control and Containment System Report
3 4	Annually, by January 2 (moved to February 1)	Draft Annual Air-Sparging System Report
5 6	Annually, by March 30 or 30 days after receipt of Ecology's final comments (moved to May 15)	Final Annual Hydraulic Control and Containment System Report
7 8	Annually, by March 30 or 30 days after receipt of Ecology's final comments (moved to May 1)	Final Annual Air-Sparging System Report
9 10	At least every 5 years beginning March 2013	Draft Periodic Review Report
11	60 Days after receipt of Ecology Comments	Final Periodic Review Report
12 13	Within 30 days of anniversary date (Oct. 19, 2007) of consent decree	Annual Financial Assurance Report, per §XXII.B(1)
14 15	Within 20 years of effective date of consent decree (Oct. 19, 2007)	Excavation of all soil required to be excavated from BNSF's railyard facility property completed.
16		
17		
18		
20		
21		
22		
23		
24		
25 26		
20		

ī

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Avenue SE • Bellevue, Washington 98008-5452 • (425) 649-7000

January 5, 2009

Mr. Bruce Sheppard BNSF Railway Company 2454 Occidental Avenue South Suite 1A Seattle, WA 98134-1451

Dear Mr. Sheppard:

Re: Approval of Extension to Section VI.Ia. and b., Work To Be Preformed, of Consent Decree 07-2-33672-9 SEA for the BNSF Former Maintenance and Fueling Facility, Skykomish, Washington.

This letter documents the Department of Ecology's (Ecology) approval of BNSF Railway Company's (BNSF) request for an extension of the November 30, 2008 deadline for completion of the levee restoration activities and the December 31, 2008 deadline to submit the final As-Built Report for 2007. Your letter dated November 21, 2008 requested the final As-Built Report deadline be extended to one month from completion of restoration, i.e., until January 31, 2009.

Ecology agrees to extend the final As-Built Report deadline to January 31, 2009.

If you have any questions, please contact me at 425-649-7265 or bsat461@ecy.wa.gov.

Sincerely,

Brian S. Sato, P.E. Project Coordinator Toxics Cleanup Program

bs/kp

cc:

Bob Warren, Ecology Kristie Carevich, AAG Halah Voges, AECOM Craig Trueblood, K & L Gates Mayor Charlotte Mackner, Town of Skykomish David Carson, Carson Law Group Clint Stanovsky, Town of Skykomish Michael Moore, Skykomish Environmental Coalition Daryl Petrarca, Adapt Engineering

Bally Report		
Date:	01/05/07	The BNSF Skykomish, Washington
Temp:	U-20's to U-30's	Project No. BN050-19390
Weather:	Snowing and cold	1011 SW Klickitat Way, Suite 207, Seattle WA 98134
Rainfall:		Suite 207, Seattle WA 30134
Summary of	Field Activities	
 Septic testing a DB Davis strip WCC crew is p 	and inspection- Moore septic system passed ping concrete forms off the garage pours placing and compacting for the Mackners sidew	alk and driveway
Upcoming W	ork	
Michell sGrading	eptic system inspection. work for Mackner driveway	
Personnel or	Site:	
RETEC: D	. Mentz	
Subcontra	actor(s): DB Davis, WCC	
Visitor(s):	None	
Other Site Ac	ctivity	
SAFETY/ISSUES MEETINGS Safety topic: DELIVERIES/SHIPMENTS		
MEETINGS HELD None		
MONITORING None	B PERFORMED	
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL RI	EMARKS	

Date:	01/06/07	The BNSF Skykomish, Washington Levee Remediation Proiect
Temp:	20- 40	Project No. BN050-19390
Weather:	High winds, snow rain	1011 SW Klickitat Way, Suite 207, Seattle WA 98134
Rainfall:		
Summary of	Field Activities	
Septic testingDB Davis rest	and inspection- Moore septic system passed oring the teacherage and checked the house	heaters
Upcoming W	/ork	
-		
Personnel o	n Site:	
RETEC:	D. Mentz	
Subcontr	ractor(s): DB Davis, WCC	
Visitor(s)	: None	
Other Site A	ctivity	
SAFETY/ISSUES MEETINGS Safety topic: DELIVERIES/SHIPMENTS None		
MEETINGS I None	IELD	
MONITORIN None	G PERFORMED	
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL REMARKS		
Date: 8/23	/07	

Completed by: Daniel Arcieri

Date:	01/08/07	The BNSF Skykomish, Washington
Temp:	20- 40	Project No. BN050-19390
Weather:	High winds, snow rain	1011 SW Klickitat Way, Suite 207, Seattle WA 98134
Rainfall:		Suite 207, Seattle WA 90134
Summary of	Field Activities	
 Septic testing and inspection- Moore septic system passed DB Davis consulted on placement of propane tanks and worked on Teacherage repairs 		
Upcoming W	ork	
 Handrail and back step concrete pour for Mackner Sidewalk stamping work was discussed 		
Personnel or	n Site:	
RETEC: D	. Mentz	
Subcontractor(s): DB Davis, WCC		
Visitor(s):	None	
Other Site Ac	ctivity	
SAFETY/ISS		
DELIVERIES/SHIPMENTS None		
MEETINGS HELD None		
MONITORING PERFORMED None		
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL REMARKS		

Daily Repo	rt	
Date:	01/09/07	The BNSF Skykomish, Washington
Temp:	20- 40	Project No. BN050-19390
Weather:	High winds, snow rain	1011 SW Klickitat Way,
Rainfall:		Suite 207, Seattle WA 90154
Summary c	of Field Activities	
Concrete stateDB Davis workWTP shutdom	amping completed. orked on Teacherage repairs wn and drained.	
Upcoming	Work	
- Concr - Sidew	ete pads for propane tanks and Shot-cl alk stamping work was discussed	rete technician to visit houses.
Personnel	on Site:	
RETEC:	D. Mentz	
Subcon	tractor(s): DB Davis, WCC	
Visitor(s): None	
Other Site	Activity	
SAFETY/IS Safety	SUES MEETINGS topic:	
DELIVERIE None	S/SHIPMENTS	
MEETINGS None	HELD	
MONITORII None	NG PERFORMED	
STAKEHOL None	DER/MEDIA ISSUES	
SUBMITTA None	LS/TRANSMITTAL RECEIVED	AND/OR SENT
VERBAL IN None	ISTRUCTIONS GIVEN/RECEIVI	ED
OUT OF SC	OPE WORK – SCHEDULE IMP	PACTS

None

GENERAL REMARKS

Temp:

Weather:

The BNSF Skykomish, Washington Levee Remediation Project Project No. BN050-19390

Snow and cold

1011 SW Klickitat Way, Suite 207, Seattle WA 98134

Rainfall:

Summary of Field Activities

01/10/07

DB Davis dug snow out of Moore garage. Concrete forms were set up for upcoming pour -WCC crew setting up tents around 5th Street corner

Upcoming Work

Concrete pour

Personnel on Site:

RETEC: D. Mentz

Subcontractor(s): DB Davis, WCC

Visitor(s): None

Other Site Activity

SAFETY/ISSUES MEETINGS

Safety topic:

DELIVERIES/SHIPMENTS

None

MEETINGS HELD

None

MONITORING PERFORMED

None

STAKEHOLDER/MEDIA ISSUES

None

SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None

VERBAL INSTRUCTIONS GIVEN/RECEIVED None

OUT OF SCOPE WORK – SCHEDULE IMPACTS

None

GENERAL REMARKS

Date: 8/23/07 Completed by: Daniel Arcieri

Taman

Temp:

Weather: Snow and cold

The BNSF Skykomish, Washington Levee Remediation Project Project No. BN050-19390

1011 SW Klickitat Way, Suite 207, Seattle WA 98134

Rainfall:

Summary of Field Activities

01/11/07

- Loaded 2 sets of Rail cars

Upcoming Work

- Concrete pour

Personnel on Site:

RETEC: D. Mentz

Subcontractor(s): DB Davis, WCC

Visitor(s): None

Other Site Activity

SAFETY/ISSUES MEETINGS

Safety topic:

DELIVERIES/SHIPMENTS

None

MEETINGS HELD

None

MONITORING PERFORMED

None

STAKEHOLDER/MEDIA ISSUES

None

SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT

None

VERBAL INSTRUCTIONS GIVEN/RECEIVED

None

OUT OF SCOPE WORK – SCHEDULE IMPACTS

GENERAL REMARKS

Date:

Temp:

Weather: Snow and cold

The BNSF Skykomish, Washington Levee Remediation Project Project No. BN050-19390

1011 SW Klickitat Way, Suite 207, Seattle WA 98134

Rainfall:

Summary of Field Activities

- Backfill, grade and compact sidewalk area
- Dropped off boxes to BN house

01/12/07

Upcoming Work

- Concrete pour (preparing for Monday)

Personnel on Site:

RETEC: D. Mentz

Subcontractor(s): DB Davis, WCC

Visitor(s): None

Other Site Activity

SAFETY/ISSUES MEETINGS

Safety topic:

DELIVERIES/SHIPMENTS

None

MEETINGS HELD

None

MONITORING PERFORMED

None

STAKEHOLDER/MEDIA ISSUES

None

SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None

none

VERBAL INSTRUCTIONS GIVEN/RECEIVED

None

OUT OF SCOPE WORK – SCHEDULE IMPACTS

None

GENERAL REMARKS

Date: 8/23/07

Completed by: Daniel Arcieri

Date:	01/03/07	The BNSF Skykomish, Washington
Temp:	U-20's to U-30's	Project No. BN050-19390
Weather:	Raining and mildly cool	1011 SW Klickitat Way,
Rainfall:		Suite 207, Seattle WA 98134
Summary o	f Field Activities	·
 Loaded train Painter onsite 	, demolish the levee WTP pad and haul to R e for Teacherage kitchen, backwashing sand	ailyard d filters
Upcoming \	Nork	
- Prepar - Mitche	ing to excavate small trench to 6 th St. Il basement ready for cement pour	
Personnel o	on Site:	
RETEC:	D. Mentz	
Subcont	tractor(s): DB Davis	
Visitor(s): None	
Other Site A	Activity	
SAFETY/ISS Safety	SUES MEETINGS topic:	
DELIVERIES/SHIPMENTS Concrete truck		
MEETINGS Constr	HELD uction Meeting.	
MONITORIN None	IG PERFORMED	
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL F	REMARKS	

Date:	01/04/07
Date.	• ., • ., • .

U-20's to U-30's

The BNSF Skykomish, Washington Levee Remediation Project Project No. BN050-19390

Weather: Snowing and cold

1011 SW Klickitat Way, Suite 207, Seattle WA 98134

Rainfall:

Temp:

Summary of Field Activities

- Identified repairs for houses including Mitchell east, WTP CoC completed
- Filled Mackner and Moore septic tanks with water
- WCC crew setting up tents over the two driveway areas at Mackner and Moore properties

Upcoming Work

- Straw incoming tomorrow to cover drain field
- Septic testing and inspection

Personnel on Site:

RETEC: D. Mentz

Subcontractor(s): DB Davis

Visitor(s): None

Other Site Activity

SAFETY/ISSUES MEETINGS

Safety topic:

DELIVERIES/SHIPMENTS

None

MEETINGS HELD

None

MONITORING PERFORMED

None

STAKEHOLDER/MEDIA ISSUES

None

SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT

None

VERBAL INSTRUCTIONS GIVEN/RECEIVED

None

OUT OF SCOPE WORK – SCHEDULE IMPACTS None

GENERAL REMARKS

Date: 8/23/07 Completed by: Daniel Arcieri

Date: 05/02/07 (Wednesday)	The BNSF Skykomish, Washington	
Temp: U-20's to M-40's	Project No. BN050-19390	
Weather: Rain	1011 SW Klickitat Way,	
Rainfall: 0.48 in.	Suite 207, Seattle WA 98134	
Summary of Field Activities		
-Discussed Mackner front steps with Del and Chad (DB Davis -Concrete forms built; sidewalks and curbs poured)	
Upcoming Work		
 DB Davis repairing Mackner steps, septic access port Overhang to be partially poured on Friday 5/4/07 	s to be adjusted	
Personnel on Site:		
RETEC: Sarah Albano		
Subcontractor(s): None		
Visitor(s): None		
Other Site Activity		
SAFETY/ISSUES MEETINGS Safety topic: DELIVERIES/SHIPMENTS		
MEETINGS HELD None.		
None.		
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL REMARKS		
Date: 7/11/07		

Completed by: Sarah Albano

	05/03/07 (Thursday)	The BNSF Skykomish, Washington
Temp:	U-20's to U-30's	Project No. BN050-19390
Weather:	Mostly cloudy with drizzle at times.	1011 SW Klickitat Way,
Rainfall:	0.08 in.	Suite 207, Seattle VVA 98134
Summary of	of Field Activities	
-Discussed M -Concrete form	ackner front steps with Jackie and Dan (DB Dav ms built; sidewalks and curbs poured	<i>r</i> is)
Upcoming	Work	
- DB Da - Walky - Temp - Mond -	avis repairing Mackner steps, septic access por ways and driveways scheduled for concrete on s porary railing needed on levee lay 5/7/07 Wilder to place large seating rocks on	ts to be adjusted 5/8/07 (Tuesday) I levee
Personnel	on Site:	
RETEC	: Sarah Albano	
Subcor	htractor(s): None	
Visitor(s): None	
CAEETV/IC		
SAFETTIS		
DELIVERIE Concr	rete truck	
DELIVERIE Conci MEETINGS None	topic: ES/SHIPMENTS rete truck SHELD	
DELIVERIE Conci MEETINGS None. MONITORI	Topic: ES/SHIPMENTS rete truck CHELD NG PERFORMED	
MEETINGS None. MONITORI None. STAKEHOI	A topic: ES/SHIPMENTS rete truck G HELD NG PERFORMED LDER/MEDIA ISSUES	
SAFETTING Safety DELIVERIE Conci MEETINGS None MONITORI None STAKEHOI None	topic: ES/SHIPMENTS rete truck SHELD MG PERFORMED LDER/MEDIA ISSUES LS/TRANSMITTAL RECEIVED AND/O	R SENT
SAFETTAS Safety DELIVERIE Concr MEETINGS None MONITORI None STAKEHOI None SUBMITTA None	SOLS MEETINGS (topic: SSSHIPMENTS rete truck HELD MG PERFORMED LDER/MEDIA ISSUES LS/TRANSMITTAL RECEIVED AND/O NSTRUCTIONS GIVEN/RECEIVED	R SENT
SAFETTAS Safety DELIVERIE Conci MEETINGS None MONITORI None STAKEHOI None SUBMITTA None VERBAL IN None	SOLS MEETINGS (topic: S/SHIPMENTS rete truck HELD MG PERFORMED LUER/MEDIA ISSUES LOER/MEDIA ISSUES LS/TRANSMITTAL RECEIVED AND/O NSTRUCTIONS GIVEN/RECEIVED COPE WORK – SCHEDULE IMPACTS	R SENT

Date: 7/11/07 Completed by: Sarah Albano

Date: 05/0	08/07 (Tuesday)	The BNSF Skykomish, Washington		
Temp: M-3	00's to M-60's	Project No. BN050-19390		
Weather: Par	tly cloudy to sunny.	1011 SW Klickitat Way, Suite 207, Seattle WA 98134		
Rainfall: 0.00) in.	Sulle 207, Seallie WA 90134		
Summary of Fiel	d Activities			
-Residential walkway -Placing blocks on lev -Telebelting material -Demo curb by levee	s and driveways poured vee wall onto levee walkway path and Mitchell sept (due to concrete form contractor error)	ic drainfield		
Upcoming Work				
 Temporary ra Concrete sch 	ailing on levee neduled for May 10 th or 11th			
Personnel on Sit	e:			
RETEC: Sarah	Albano			
Subcontractor	r (s): None			
Visitor(s): Non	e			
Other Site Activi	ty			
SAFETY/ISSUES Safety topic:	MEETINGS			
DELIVERIES/SHI Concrete truc	DELIVERIES/SHIPMENTS Concrete truck, rock for levee walkway and sub-grade			
MEETINGS HELD None.				
MONITORING PERFORMED None.				
STAKEHOLDER/MEDIA ISSUES None				
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None				
VERBAL INSTRUCTIONS GIVEN/RECEIVED None				
OUT OF SCOPE WORK – SCHEDULE IMPACTS None				
GENERAL REMA	ARKS			

Date: 7/11/07 Completed by: Sarah Albano

Date:	05/16/07 (Wednesday)	The BNSF Skykomish, Washington
Temp:	M-30's to M-50's	Project No. BN050-19390
Weather:	Partly cloudy to sunny.	1011 SW Klickitat Way,
Rainfall:	0.00 in.	Suite 207, Seattle WA 98134
Summary of	Field Activities	
-Railing subcont	ractor and fence subcontractors for Wilder on-si	te to prepare estimates
Upcoming W	ork	
-		
Personnel or	n Site:	
RETEC: S	arah Albano	
Subcontra	actor(s): None	
Visitor(s):	None	
Other Site Ac	ctivity	
SAFETY/ISS		
Salety to	μις.	
DELIVERIES/SHIPMENTS None.		
MEETINGS HELD None.		
MONITORING PERFORMED None.		
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL REMARKS		
Date: 7/11/	07	

Completed by: Sarah Albano

Date:	05/24/07 (Thursday)	The BNSF Skykomish, Washington
Temp:	M-30's to U-50's	Project No. BN050-19390
Weather:	Partly cloudy to sunny.	1011 SW Klickitat Way,
Rainfall:	0.00 in.	Suite 207, Seattle VVA 96134
Summary o	f Field Activities	
-Painters touch	ning up Teacherage	
Upcoming \	Nork	
FenceTopsoiConcret	along school yard: 5 feet tall to backstop, a il next week ete to be placed around sonotubes on leve	along W. River Road, 6 feet tall with 3 feet bury e on Tuesday
Personnel o	on Site:	
RETEC:	Sarah Albano	
Subcont	tractor(s): None	
Visitor(s	s): None	
Other Site A	Activity	
Safety DELIVERIES None. MEETINGS None.	topic: S/SHIPMENTS HELD	
MONITORIN None.	IG PERFORMED	
STAKEHOL None	DER/MEDIA ISSUES	
SUBMITTAL None	_S/TRANSMITTAL RECEIVED AN	D/OR SENT
VERBAL IN None	STRUCTIONS GIVEN/RECEIVED	
OUT OF SC None	OPE WORK – SCHEDULE IMPAC	STS
GENERAL F	REMARKS	

Completed by: Sarah Albano

Date: 05/29/07 (Tuesday)	The BNSF Skykomish, Washington		
Temp: M-30's to U-50's	Project No. BN050-19390		
Weather: Partly cloudy to sunny.	1011 SW Klickitat Way,		
Rainfall: 0.00 in.	Sulle 207, Seallie WA 98154		
Summary of Field Activities			
-Concrete being placed in sonotubes to stiffen hand railing a	long levee		
Upcoming Work			
 Topsoil to arrive this week. Placement next week Asphalt paving week of June 11th weather permitting 			
Personnel on Site:			
RETEC: Sarah Albano			
Subcontractor(s): None			
Visitor(s): None			
Other Site Activity			
SAFETY/ISSUES MEETINGS Safety topic:			
DELIVERIES/SHIPMENTS None.			
MEETINGS HELD None.			
MONITORING PERFORMED None.			
STAKEHOLDER/MEDIA ISSUES None			
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None			
VERBAL INSTRUCTIONS GIVEN/RECEIVED None			
OUT OF SCOPE WORK – SCHEDULE IMPACTS None			
GENERAL REMARKS			

Date: 7/11/07

Completed by: Sarah Albano

Date: 06/14/07 (Thursday)	The BNSF Skykomish, Washington	
Temp: U-30's to M-50's	Project No. BN050-19390	
Weather: Partly cloudy.	1011 SW Klickitat Way, Suite 207, Seattle WA 98134	
Rainfall: 0.00 in.	Sulle 207, Seallie WA 90134	
Summary of Field Activities		
-Topsoil placement on levee using telebelt -Placing polymer on levee walkway		
Upcoming Work		
 Asphalt paving scheduled for next week Remove temporary fence on school yard Install fence along school yard 		
Personnel on Site:		
RETEC: Sarah Albano		
Subcontractor(s): None		
Visitor(s): None		
Other Site Activity		
SAFETY/ISSUES MEETINGS Safety topic:		
DELIVERIES/SHIPMENTS Topsoil.		
MEETINGS HELD None.		
MONITORING PERFORMED None.		
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL REMARKS		

Date: 7/11/07 Completed by: Sarah Albano

Date:	06/18/07 (Monday)	The BNSF Skykomish, Washington
Temp:	U-30's to L-50's	Project No. BN050-19390
Weather:	Partly cloudy.	1011 SW Klickitat Way,
Rainfall:	0.02 in.	Suite 207, Seattle WA 90134
Summary of	Field Activities	
-Length of fence	in lieu of backstop= 36 feet per measurement	nt made with M. Moore (Skykomish School)
Upcoming W	ork	
- Asphalt - Remove - Install fe	paving e temporary fence on school yard ence along school yard	
Personnel or	n Site:	
RETEC: S	Sarah Albano	
Subcontr	actor(s): None	
Visitor(s)	None	
Other Site A	ctivity	
Safety to DELIVERIES Topsoil. MEETINGS H None.	opic: /SHIPMENTS IELD	
MONITORING PERFORMED None.		
STAKEHOLDER/MEDIA ISSUES None		
SUBMITTALS/TRANSMITTAL RECEIVED AND/OR SENT None		
VERBAL INSTRUCTIONS GIVEN/RECEIVED None		
OUT OF SCOPE WORK – SCHEDULE IMPACTS None		
GENERAL R	EMARKS	

Date: 7/11/07 Completed by: Sarah Albano

Date:	06/27/07 (Wednesday)	The BNSF Skykomish, Washington
Temp:	U-30's to L-50's	Project No. BN050-19390
Weather:	Partly cloudy.	1011 SW Klickitat Way,
Rainfall:	0.02 in.	Suite 207, Seattle WA 90134
Summary o	f Field Activities	
-Video structur - Site-walk to d	al survey of school by Saad and Mark levelop punch list	
	Work	
- Cleanı	up of miscellaneous construction signs and	d cones
Personnel o	on Site:	
RETEC:	Sarah Albano, Mike Byers, Saad Moustaf	fa
Subcon	tractor(s): Mark Anderson/Glasswater Me	edia
Visitor(s Stanovsl	s): Ron Timm/Ecology, Louise Bardy/Ecolo ky/Town of Skykomish, Amy Essig Dessai	ogy, Angie Thomson/EnviroIssues, Bruce Sheppard/BNSF, Clint /Farallon, Rich McMannis/Farallon
Other Site A	Activity	
Safety DELIVERIES Topsoi	topic: S/SHIPMENTS il.	
MEETINGS None.		
None.		
STAKEHOL None	DER/MEDIA ISSUES	
SUBMITTAL None	LS/TRANSMITTAL RECEIVED AN	ID/OR SENT
VERBAL IN None	STRUCTIONS GIVEN/RECEIVED	
OUT OF SC None	OPE WORK – SCHEDULE IMPAC	CTS
GENERAL F	REMARKS	

Completed by: Sarah Albano

Daily Repo	ort	
Date:	06/06/07 (Wednesday)	The BNSF Skykomish, Washington Levee Remediation Project
Temp:	M-30's to U-30's	Project No. BN050-19390
Weather:	Rain.	1011 SW Klickitat Way,
Rainfall:	0.44 in.	Sulte 207, Seattle WA 98134
Summary	of Field Activities	
-Topsoil place	ement on levee using telebelt	
Upcoming	Work	
- Sprin - Scho	kler installation this week ol emergency gravel path between 5 th and	d 6th
Personnel	on Site:	
RETEC	: Sarah Albano	
Subcor	ntractor(s): None	
Visitor	(s): None	
Other Site	Activity	
SAFETY/IS Safety your f	SUES MEETINGS / topic: Walking on levee- some soft spots oot	s are present, move slowly and test surface before putting full weight on
	S/SHIPMENTS	
Tops	oil.	
MEETINGS None	S HELD	
MONITORI None	NG PERFORMED	
STAKEHO None	LDER/MEDIA ISSUES	
SUBMITTA None	LS/TRANSMITTAL RECEIVED A	ND/OR SENT
VERBAL IN None	NSTRUCTIONS GIVEN/RECEIVE	D

OUT OF SCOPE WORK – SCHEDULE IMPACTS

None

GENERAL REMARKS

Date: 7/11/07 Completed by: Sarah Albano

01-07 01

01-07 03

01-07 05

04-07 01

04-07 03

04-07 07

th ENGR in 2007

05-07 15

05-07 01

05-07 03

05-07 05

05-07 07

06-07 01

06-07 03

06-07 05

06-07 07

06-07 08

06-07 09

BNSF Railway Company 2454 Occidental Avenue S, Suite 1A Seattle, WA 98134-1451

Phone (206) 625-6035 Fax (206) 625-6007

September 14, 2006

Louise Bardy, Project Manager Washington State Department of Ecology, Toxics Cleanup Program 3190 160th Ave. SE Bellevue, WA 98008

RE: BNSF Railway Company Former Maintenance and Fueling Facility, Skykomish, WA NPDES Permit No. WA-003212-3

Dear Louise:

This letter is to provide notification of possible noncompliance with National Pollutant Discharge Elimination System Waste Discharge Permit No. WA-003212-3. In accordance with Section S3.E - Noncompliance Notification - this report contains a description of the facts and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the events which may not have been in compliance with the Permit.

On September 11, 2006 from 13:00 - 19:00 turbidity of discharge water may have exceeded the permit limit. Data was recorded from the Chitosan Control Box, and not the actual discharge for the majority of this duration. In addition to reading data from the Chitosan Control boxes, several samples were pulled from the discharge and analyzed in our on-site laboratory to ensure that our in-line readings were consistent. You will note that the Chitosan box in-line meter is slightly higher than that from the lab instrument.

Time	Chitosan Box (NTU)	Discharge (NTU)
13:00	15.0	
14:00	85.0	
15:00		38
17:30	100	
18:00	30	
19:00	10	
19:30	< 5	
21:00		3.36
24:00		3.36

We believe that the turbidity observed was caused by extremely small rock particles passing through the water treatment facility system components. These particles were non-reactive to ionic charge with Chitosan because they have no ionic charge. Additionally, the particles have a low density which prevents them from settling out in the clarifiers.

Wilder rectified the problem by dramatically reducing the flow through the system (from ~750 gpm to ~400 gpm), adjusting Chitosan dosage (both up and down); back flushing both sand filters and carbon cells, and repositioning the intake from the excavation/backfill area so that water was not being drawn from a location that contained a high concentration of extremely small rock particles. Subsequent sampling showed that these actions achieved compliance with the permit limit for turbidity. Wilder has noted that turbid water from both rock fines and soil fines appears to be more receptive to treatment, while water with turbidity primarily from rock fines is problematic. Wilder has also noticed that during periods of back flush, permit parameter levels have typically increased, but not to the point of exceedance that was observed on Sept. 11.

Wilder is also in the process of evaluating the sand filter media bed depth. On September 12, 2006 Wilder noted that sand filter media bed depth has been reduced as a result of frequent back flushing. Consistent with the terms of the Permit, Wilder will conduct an aggressive back flush to clean the remaining media and add additional media as make-up. If this is ineffective, we will replace the media in all sand filter pods. On Monday, Wilder ordered activated carbon to service each of the lead cells. The granular activated carbon cells have not only removed dissolved organics, but also the rock fines. It is anticipated that the replenished sand filters and replaced granular activated carbon will prevent turbidity exceedances in the future.

Sincerely,

Bruce A. Sheppard Manager Environmental Remediation

Cc: J Tran, Dept. of Ecology H. Voges, Retec C. Trueblood, Preston Gates & Ellis K Yost, Wilder Construction

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134-1162

Letter of Transmittal

206.624. 9349 Phone 206.624. 2839 Fax www.retec.com

TO:	Louise B	ardy, Washington Dept	of Ecology DA	TE:	February 15, 2007
RE:	BNSF Sk Monitorii	ykomish Cleanup Site I ng Report	Discharge PRO	OJECT NO	BN050-19390-210
PLEAS	SE FIND:	Attached	Under separate	e cover via:	
		Copy of Letter	Change Order	🗖 Drawi	ngs/Figures 🔲 Plans/Specs
		Samples	Other:		
	Copies	Date	No.		Description
1		February 15, 2007			BNSF Skykomish Cleanup Site Discharge Monitoring Report (per AO DE-2379, Exhibit J)
For A	pproval	🗖 Арргс	oved as Submitted	🗖 Res	ubmit Copies for Approval
🗹 For Y	our Use	🗖 Appro	ved as Noted	🗖 Subr	Copies for Distribution nit
Remark	s:	NIDDEC Distance	Marillan D		1 I

Attached is the NPDES Discharge Monitoring Report for the January 2007 monitoring period in accordance with Agreed Order DE-2379, Exhibit J.

Should you have any questions, please feel free to call me.

Sincerely,

The RETEC Group, Inc.

Halah M. Voges, P.E. Senior Program Manager

Jeanne Tran, Ecology cc: Bruce Sheppard, BNSF RETEC file

Permittee Name/Address Include Name/Location (if d	s 'ifferent)			JANHOSI					NOTE: Re	ad instruction:	s before
NAME BNSF RAILW	AY COMPANY	~ .	ן נ	AGREED OR	DER DE-2379,			[in mondation		
ADDRESS 2454 OCCIDI	ENTAL AVE	S, STE 17		EXH	IBIT J		+ >>>		Dischar	ge Location	
SEATTLE, Wi	A 98134]	PERMI	T NUMBER	DISCI	HARGE NUMBI	R	Lat ,	17°42'33'	N
FACILITY BNSF SKYKON	MTSH CLEAN	UTP STTE	1		INOW	TORING PERIC	D	[Long	121°21'30	5" W
INTER TANK				YEAR	MO DA	Y YEA	R MO DP	X		SCHARGE	
UCTION NOT TOOT	A.M.		H	ROM 200	4 0 0	10 202	1013		DISCHARC	E TO GROUN	DWATER*
		QUALI	TY OR LOAD	ING	QUAI	LITY OR CON	NCENTRATION		No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed-	of Analvsis	Туре
HYDRAULIC LOADING RATE-	Sample Measurement	* * * * * *	٥	GPD	****	*****	* * * * *	* * *	0	CONT.	Meter
PRIMARY APPLICATION RATE	Permit Requirement	*****	30,900		*****	*****	*****		>	CONT.	METER
HYDRAULIC LOADING RATE-	Sample Measurement	*****	50,100	GPD	*****	*****	* * * * *	* * *	0	CONT.	METER
SECONDARY APPLIC. RATE	Permit Requirement	*****	91,000		****	*****	*****			CONT.	METER
TPH	Sample Measurement	*****	* * * * *	* * *	* * * * *	*****	3,210	uq/L	٥	214	GEAR
(BEFORE GAC)	Permit Requirement	*****	* * * * *		****	*****	REPORT)		01/07	GRAB
HQT	Sample Measurement	*****	* * * * *	* * *	*****	*****	1,695	uq/L	2	2/4	GLAR
(AFTER GAC)	Permit Requirement	*****	* * * * *		****	****	208	1		01/07	GRAB
Hd	Sample Measurement	*****	****	* *	8.48	* * * * * *	9.36	STD.	-	1/1	GLAB
	Permit Requirement	*****	*****		6.5	*****	8.5	UNIT		01/07	GRAB
BENZENE	Sample Measurement	*****	* * * * *	* * *	* * * * *	*****	CIN	ug/L	٥	2/4	GRAB
	Permit Requirement	*****	****		* * * * * *	*****	1.0			01/07	GRAB
втех	Sample Measurement	*****	*****	* * *	*****	* * * * * *	(IN	ug/L	0	214	GRAB
	Permit Requirement	*****	****		*****	*****	100			01/07	GRAB
NAME/TITLE PRINCIPAL	EXECUTIVE	I CERTIFY UNDER	R PENALTY OF LAW 1	THAT THIS DOCUM	TENT AND ALL				TELEPHC	NE	DATE
OFFICER		ATTACHMENTS WEI IN ACCORDANCE W	RE PREPARED UNDER WITH A SYSTEM DESI	MY DIRECTION C	DR SUPERVISION E THAT	6	\sim	~			
Bruce sheppard	/BNSF	UNALIFIED PERSO INFORMATION SUN PERSONS WHO MAN	ONNEL PROPERLY GAT BMITTED, BASED ON VAGE THE SYSTEM, C	THER AND EVALUA MY INQUIRY OF NR THOSE PERSON	NTE THE THE PERSON OR IS DIRECTLY	1 All				<u>с</u>	
Manager, Envir Demodiation	on mental	RESPONSIBLE FOR SUBMITTED IS, 7	A GATHERING THE IN TO THE BEST OF MY	FORMATION, THE KNOWLEDGE AND	ELIEF, TRUE,	ALLANDING	UN DU TUCT		-529 (n Q	6035 0	H1-101
TYPED OR PRINT	TED	SIGNIFICANT PER	VALTIES FOR SUBMIT	TTING FALSE INF TING FALSE INF TE AND IMPRISON	ARE FORMATION, MENT FOR	EXECUTIV	E OFFICER		REA NU	MBER TEAR	IEU DEI V
COMMENTE TONE DIKE TONE		KNOWING VIOLATI	lons ,			AUTHOR	IZED AGENT				
COMMENT AND EXPLANATION	OF ANY VIOLZ	ATTONS (ROF)	<pre>* [[s operate</pre>	++	(pose o						

LUNS (Reference all attachments here)

*LEGAL DESCRIPTION: NE SECTION 26, TOWNSHIP 26N, RANGE 1E. ND- Not detected

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

PAGE 1 OF 2

Permittee Name/Addres Include Name/Location (if (s different)				CE MONITC				NOTE: Re	ad instruction	s before
NAME BNSF RAILW	VAY COMPANY	K	ا	AGREED OR	DER DE-2379			_[comprehend	j unis rorm.	
ADDRESS 2454 OCCIE	DENTAL AVE	S, STE L	A	EXH	IBIT J		100	-	Dischar	ge Location	
SEATTLE, W	VA 98134]	PERMI	T NUMBER	DISC	HARGE NUMB	ER	Lat 4	7°42'33	N -
FACILITY BNSF SKYKC	MISH CLEAN	NUP SITE			INOM	TORING PERI	DD.		Long 1	21°21'3	5" W
LOCATION SKYKOMISH,	WA		ίμ I	ROM ZAC		YEA TO	MO VI VI VI VI VI VI VI VI VI VI VI VI VI	AY -	NO DI	SCHARGE	
					-	<u>§</u>]			DISCHARG	E TO GROUN	DWATER*
			TY OR LOAD	ING	QUAI	LITY OR CON	NCENTRATION	7	No. of	Frequency	Sample
rarameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
TOTAL CHROMIUM	Sample Measurement	* * * * *	*****	* *	*****	. *****	12.7	ng/L	٥	2/4	GRAB
	Permit Requirement	*****	*****		*****	*****	REPORT			01/14	GRAB
TOTAL COPPER	Sample Measurement	*****	* * * * * *	* * *	*****	*****	12.4	uq/L	0	2/4	5 R AB
	Permit Requirement	*****	*****		* * * * * *	*****	REPORT	1		01/14	GRAB
TOTAL LEAD	Sample Measurement	*****	****	* * *	*****	*****	14.4	ug/L	0	2/4	GRAB
	Permit Requirement	*****	*****		* * * * *	*****	17.5	1		01/07	GRAB
POLYNUCLEAR AROMATIC	Sample Measurement	*****	*****	* * *	*****	*****	0.56'	ua/L	2	214	5 P.A.P
HYDROCARBONS (PAH)	Permit Requirement	*****	*****		** ** *	*****	0.01)		01/07	GRAB
TOTAL ARSENIC	Sample Measurement	*****	*****	***	*****	*****	70.7	uq/L	٥	24	GLAS
	Permit Requirement	****	*****		*****	****	REPORT	3		01/14	GRAB
NAME/TITLE PRINCIPAL	EXECUTIVE	T CERTEY INDE	T PENALTY OF LAN								
OFFICER		ATTACHMENTS WEI	RE PREPARED UNDER WITH A SYSTEM DESI	MY DIRECTION C	AENT AND ALL DR SUPERVISION E THAT	J.	7	-	TELEPHO	E N	DATE
Bruce Sheppard	/ BNSF	QUALIFIED PERSO INFORMATION SUB	DNNEL PROPERLY GAT BMITTED, BASED ON VAGE THE SVETEM O	THER AND EVALUA MY INQUIRY OF ND THOSE DEPSON	THE THE THE PERSON OR	J.					
Manager Envin	nnental	RESPONSIBLE FOR SUBMITTED IS, 7	R GATHERING THE IN TO THE BEST OF MY	FORMATION, THE KNOWLEDGE AND	E INFORMATION	KI A	morthon	<u>(3</u>	-529(1)0	6035 01	102,14
TYPED OR PRIN	TED	ACCURATE, AND C SIGNIFICANT PEN INCLUDING THE P	COMPLETE. I AM AWA NALTIES FOR SUBMIT POSSIBILITY OF FIN	RE THAT THERE TING FALSE INF TE AND IMPRISON	ARE FORMATION, MENT FOR	SIGNATURE EXECUTIV	E FICER	PAL A OR C	REA NUI ODE	MBER YEAF	MO DAY
COMMENT AND EXPLANATION	OF ANY UTOT	KNOWING VIOLATI	IONS,			AUTUR	LZED AGENT				
*LEGAL DESCRIPTION: 1	UE SECTION	26, TOWNSH	erence all a HIP 26N, RA	ttachment NGE 1E.	s here)						
Reported Valu	e is Sun	2 7 7 7 7 7	AH,	-							

Keported value 15 Jum 65 FAHS detected substitute for EPA Form 3320-1 (Rev. 8-96 by WADDE)

PAGE 2 OF 2

January 22, 2007

Stephen Howard The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish AOJ

Enclosed are the results of analyses for samples received by the laboratory on 01/04/07 14:10. The following list is a summary of the Work Orders contained in this report, generated on 01/22/07 16:59.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
BQA0050	BNSF-Skykomish AOJ	BN050-19390-220

TestAmerica - Seattle, WA

w Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 15

01/03/07 16:45

01/03/07 17:00

The RETEC Group, Inc.

SKY-MID-010307

SKY-TB-010307

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ BN050-19390-220 Stephen Howard

Water

Water

Report Created: 01/22/07 16:59

01/04/07 14:10

01/04/07 14:10

	ANALYTICAL REPO	RT FOR SAM	PLES	an a
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SKY-EFF-010307	BQA0050-01	Water	01/03/07 16:50	01/04/07 14:10
SKY-EFF-010307	BQA0050-02	Water	01/03/07 16:55	01/04/07 14:10
SKY-INF-010307	BQA0050-03	Water	01/03/07 16:40	01/04/07 14:10

BQA0050-04

BQA0050-05

TestAmerica - Seattle, WA

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 15

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 01/22/07 16:59

Analytical Case Narrative TestAmerica - Seattle, WA

BQA0050

SAMPLE RECEIPT

The samples were received January 4th, 2006 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.6 degrees Celsius. The pH for sample -01 was cancelled and added to -02 per The RETEC Group, Inc. The AOJ from the sample IDs were removed per Jennifer Wald of The RETEC Group due to EDD sample length requirements.

PREPARATIONS AND ANALYSIS

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up): No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Total Metals by EPA 200 Series Methods: No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Volatile Organic Compounds by EPA Method 8260B: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Polynuclear Aromatic Hydrocarbons by GC/MS with High Volume Injection: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Conventional Chemistry Parameters by APHA/EPA Methods: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

TestAmerica - Seattle, WA

Kato Duin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 15

ite Haney, Project Manager

Lube Oil Range Hydrocarbons

Surrogate(s): 2-FBP

Diesel Range Hydrocarbons

Surrogate(s):

Lube Oil Range Hydrocarbons

BQA0050-03

BQA0050-04

Diesel

Lube (

Octacosane

2-FBP

Octacosane

(SKY-INF-010307)

(SKY-MID-010307)

n

NWTPH-Dx

"

0.982

1.54

1.67

0.0849

104%

114%

0.0377

0.0849

110%

114%

Water

Water

Ħ

01/08/07 10:34

Ħ

Ħ

"

,

01/10/07 08:07

.

"

Q4

Q4

Q4

Q4

Q4

The RETE 1011 SW KI Seattle, WA	C Group, Inc. lickitat Way, Suite 207 98134	,		Project Na Project Nu Project Ma	ame: umber: anager:	BNSF- BN050- Stephen	Skykom 19390-22 Howard	ish AOJ 0		Re 01/	port Created: 22/07 16:59
	Semi	volatile Petrol	eum Produ	I cts by N FestAmeric	WTPH a - Seatt	- Dx (w le, WA	/o Acid	/Silica G	el Clean-up)	
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0050-01	(SKY-EFF-010307)		W	ater		Sam	pled: 01/(3/07 16:50			······
Diesel Range Hyd	rocarbons	NWTPH-Dx	0.713	0.0377	0.236	mg/l	lx	7A08026	01/08/07 10:34	01/10/07 07:41	Q

0.472

0.236

0.472

19

53 - 125 %

68 - 125 %

mg/l

,

53 - 125 %

68 - 125 %

Ħ

N

"

lx

"

"

*

Sampled: 01/03/07 16:45

Sampled: 01/03/07 16:40

Ħ

7A08026

.

el Range Hydr e Oil Range Hj	rocarbons ydrocarbons	NWTPH-Dx "	1.08 1.72	0.0385 0.0865	0.240 0.481	mg/l	lx "	7A08026 "	01/08/07 10:34	01/10/07 08:33
Surrogate(s):	2-FBP	·····		86.2%		53 - 125 %	"			"
	Octacosane			123%		68 - 125 %	"			"

TestAmerica - Seattle, WA

w

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 15

Kate Haney, Project Manager

·			
The RETEC Group, Inc.	Project Name:	BNSF-Skykomish AOJ	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	01/22/07 16:59

			Total Met:	als by El	PA 200 ca - Seatt	Series 1 le, WA	Method	s			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared ·	Analyzed	Notes
BQA0050-01	(SKY-EFF-010307)		. Wa	ater		Samj	pled: 01/0	3/07 16:50			
Arsenic		EPA 200.8	0.0207	0.000430	0.00100	mg/l	lx	7A05002	01/05/07 06:56	01/08/07 10:49	
Chromium			0.0127	0.000260	0.00100	р			**	n	
Copper		*	0.0124	0.000150	0.00100			tr	n	n	
Lead			0.0144	0.000140	0.00100	H	n	Ħ	"	n	

TestAmerica - Seattle, WA

Katobung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

4-BFB

Project Name: Project Number: Project Manager:

Number: BN050-19390-220 Manager: Stephen Howard

75 - 125 %

n

BNSF-Skykomish AOJ

Report Created: 01/22/07 16:59

		Volat	ile Organio	c Compo FestAmeric	unds b :a - Seat	y EPA N tle, WA	lethoo	1 8260B			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0050-01	(SKY-EFF-010307)		W	ater		Samp	led: 01/(3/07 16:50			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	1x	7A04027	01/04/07 11:10	01/04/07 17:18	
Ethylbenzene		n	ND	0.125	0.500	"	н	11	**	•	
Toluene		n	ND	0.127	0.500	"			**	*	
Total Xylenes			ND	0.298	3.00	*	n	n	n	n	
Surrogate(s):	1,2-DCA-d4			102%		70 - 130 %	"			11	
	Toluene-d8			98.0%		75 - 125 %				"	
	4-BFB			104%		75 - 125 %	"			"	
BQA0050-05	(SKY-TB-010307)		W٤	iter [.]		Sampl	ed: 01/0	3/07 17:00			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	lx	7A04027	01/04/07 11:10	01/04/07 16:53	
Ethylbenzene		n	ND	0.125	0.500	"	•	"		'n	
Toluene		*	ND	0.127	0.500	۳		*	"	м	
Total Xylenes			0.430	0.298	3.00	м	n		"	-	J
Surrogate(s):	1,2-DCA-d4		******	100%		70 - 130 %	Ħ			м	
	Toluene-d8			99.5%		75 - 125 %	-			"	

105%

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 15

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 01/22/07 16:59

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0050-01	(SKY-EFF-010307)		W	ater		Samp	led: 01/(3/07 16:50			
Acenaphthene		EPA 8270C-HVI	ND	0.00279	0.103	ug/l	İx	7A10024	01/10/07 11:05	01/17/07 17:53	
Acenaphthylene		n	ND	0.00260	0.103	н		*	п	· •	
Anthracene		n	ND	0.00293	0.103			Ħ	Ħ	n	
Benzo (a) anthracer	ne		ND	0.00163	0.0103	Ħ				*	
Benzo (a) pyrene		n	ND	0.00325	0.0103			"	*	n	
Benzo (b) fluoranth	nene	H	ND	0.00212	0.0103	n		H		n	
Benzo (k) fluoranth	iene	۳	ND	0.00192	0.0103	n		"	*	"	
Benzo (ghi) perylen	ne	۳	ND	0.00305	0.103		н	"		π	
Chrysene		"	ND	0.00194	0.0103					-	
Dibenz (a,h) anthra	cene		ND	0.00258	0.0103	*	*	Ħ	"		
Fluoranthene			0.0873	0.00202	0.103	н	п		**		J
Fluorene		۳	0.0738	0.00368	0.103				•		J
Indeno (1,2,3-cd) py	yrene		ND	0.00254	0.0103	n		۳	"	n	
1-Methylnaphthale	ene	n	0.0259	0.00230	0.103	"	•	n	"	"	J
2-Methylnaphthale	ene		0.0478	0.00235	0.103	"		н	h	n	I
Naphthalene			ND	0.00432	0.103	н				٣	
Phenanthrene		n	0.138	0.00267	0.103	H				n	
Pyrene			0.193	0.00252	0.103	n	n	n	u	*	
Surrogate(s):	Benzo (a) pyrene-d12			59.8%		20 - 125 %	"			<i>p</i> .	
	1-Methylnaphthalene-d10)		77.3%		39 - 125 %	"			"	

TestAmerica - Seattle, WA

hun

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

The RETEC Group, Inc.	Project Name:	BNSF-Skykomish AOJ	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	01/22/07 16:59

		Conventio		FestAmeric	a - Seatt	le, WA		AMeth			
Analyte	· · · · · · · · · · · · · · · · · · ·	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0050-02	(SKY-EFF-010307)		Wa	ater		Samı	oled: 01/(3/07 16:55			
pH		EPA 150.1	9,36			pH Units	1x	7A05028	01/04/07 16:30	01/04/07 16:30	

TestAmerica - Seattle, WA

ILA Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

The RETE	C Group, Inc.	•			Project Na	me:	BNSF-	Skykom	ish AC)J					
1011 SW K	lickitat Way, Su	ite 207			Project Nu	mber:	BN050-	19390-22	0					Report Crea	ated:
Seattle, WA	98134				Project Ma	nager:	Stephen	Howard						01/22/07 1	6:59
	Semivolatil	e Petroleum Pro	ducts by I	WTPH-D	(w/o Áci	d/Silica (Gel Clea	n-up) -	Labo	ratory	Qualit	y Con	trol Re	sults	
				Te	stAmerica	- Seattle, V	VA		e di S						
QC Bate	h: 7A08026	Water I	reparation	Method:	EPA 3520C	2									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	°% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7A080	26-BLK1)								Ext	racted:	01/08/07 1	0:34			
Diesel Range Hydro	carbons	NWTPH-Dx	0.0748	0.0400	0.250	mg/l	lx							01/10/07 05:58	
Lube Oil Range Hyd	rocarbons	п	0,176	0.0900	0.500	"		••	-					*	1
Surrogate(s):	2-FBP Octacosane		Recovery:	104% 113%	Lir	nits: 53-1259 68-125	% " % "							01/10/07 05:50	8
LCS (7A0802	5-BS1)								Ext	acted:	01/08/07 10	;34			
Diesel Range Hydro	carbons	NWTPH-Dx	1.85	0.0400	0.250	mg/l	İx		2.00	92.5%	(61-132)			01/10/07 06:50	·····
Surrogate(s):	2-FBP Octacosane		Recovery:	106% 110%	Lin	nits: 53-1259 68-125	6 " % "							01/10/07 06:50	9
LCS Dup (7A	08026-BSD1)								Extr	acted:	01/08/07 10	:34			
Diesel Range Hydrod	arbons	NWTPH-Dx	2.04	0.0400	0.250	mg/l	lx		2.00	102%	(61-132)	9.77%	(40)	01/10/07 07:15	
Surrogate(s):	2-FBP Octacosane		Recovery:	113% 108%	Lin	nits: 53-1259 68-1259	6 " 6 "							01/10/07 07:15	5

TestAmerica - Seattle, WA

king Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

.

Page 9 of 15

The RETEC Group, Inc.	
-----------------------	--

1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ

BN050-19390-220 Stephen Howard

Report Created: 01/22/07 16:59

Total N	letals by F	PA 200 Ser	ies Metho	ds - La	horato	ry Anali	v Conf	rol D	osulte			·····	
i otar it	ictuis oy L	Te Te	stAmerica	- Seattle,	WA	iy Quan	y com	101.1	courto				
Water	Preparation	Method:	EPA 200 Se	eries									
Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	°∕. REC	(Limits)	•⁄^ RPD	(Limi	ts) Analyzed	Notes
							Ext	racted:	01/05/07 06	:56			
EPA 200.8	ND	0.000430	0.00100	mg/l	İx				••			01/08/07 09:08	
	ND	0.000150	0.00100				••					*	
"	0.000460	0.000260	0.00100	n	n								J
н	ND	0.000140	0.00100	v	"				-			Ħ	
							Exti	acted:	01/05/07 06	;56			
EPA 200.8	0.0839	0.000150	0.00100	mg/l	lx		0.0800	105%	(85-115)			01/08/07 09:14	
n	0.0830	0.000430	0.00100	"	•			104%	м				
0	0.0827	0.000260	0.00100	н	۳		n	103%	71				
"	0.0807	0.000140	0.00100	P			"	101%	"				
			QC Source:	BQA0014	-01		Extr	acted:	01/05/07 06	:56			
EPA 200.8	0.00320	0.000150	0.00100	mg/l	lx	0.00306		••		4.47%	(20)	01/08/07 09:32	
н	0.000270	0.000140	0.00100	u	*	0.000180				40.0%	н	"	R4, J
	0.00272	0.000430	0.00100	n		0.00247				9.63%	*	n	
n	0.000660	0.000260	0.00100		*	0.000650			 ·	1.53%		n	R4, J
			QC Source:	BQA0014-	-01		Extr	acted:	01/05/07 06:	56			
EPA 200.8	0.0885	0.000150	0.00100-	mg/l	lx	0.00306	0.0800	107%	(75-125)			01/08/07 09:20	
P	0.0844	0.000140	0.00100			0.000180		105%					
•	0.0892	0.000430	0.00100	"	n	0.00247	R	108%	۳		••		
u	0.0863	0.000260	0.00100	17	н	0.000650	"	107%				"	
u	0.0863	0.000260	0.00100 QC Source:	" BQA0031-	" 09	0.000650	" Extra	107%	" 01/05/07 06:	 56		11 ,	
" EPA 200.8	0.0863	0.000260	0.00100 QC Source: 0.00100	" BQA0031- mg/l	" 09 1x	0.000650	" Extr: 0.0800	107% acted: 4	" 01/05/07 06: (75-125)	 56 	-	01/08/07 09:26	·
" EPA 200.8 "	0.0863	0.000260 0.000140 0.000430	0.00100 QC Source: 0.00100 0.00100	" BQA0031- mg/l	" 09 1x "	0.000650 0.000720 0.00118	" Extr: 0.0800	107% acted: 4 108% 110%	" 01/05/07 06: (75-125) "	 56 		" 01/08/07 09:26	
" EPA 200.8 "	0.0863 0.0872 0.0889 0.0926	0.000260 0.000140 0.000430 0.000150	0.00100 QC Source: 0.00100 0.00100 0.00100	" BQA0031- mg/l "	" 09 1x "	0.000650 0.000720 0.00118 0.00555	" Extr: 0.0800	107% acted: 4 108% 110% 109%	" 01/05/07 06: (75-125) "	 56 		" 01/08/07 09:26 "	,
	Total N Water Method EPA 200.8 " " " EPA 200.8 " " " " " " " " "	EPA 200.8 0.0839 " 0.0839 " 0.0830 " 0.0830 " 0.0830 " 0.0830 " 0.0830 " 0.0827 " 0.0827 " 0.0827 " 0.0807 " 0.00270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000270 " 0.000460	Total Metals by EPA 200 Ser Te Te Water Preparation Method: Method Result MDL.* EPA 200.8 ND 0.000430 " 0.000460 0.000260 " 0.000460 0.000260 " 0.000460 0.000150 " 0.0839 0.000140 " 0.0827 0.000260 " 0.0827 0.000260 " 0.0827 0.000140 " 0.00270 0.000140 " 0.000270 0.000140 " 0.000270 0.000430 " 0.000272 0.000430 " 0.000272 0.000430 " 0.000660 0.000260 " 0.000855 0.000150 " 0.0885 0.000150 " 0.0885 0.000150 " 0.0885 0.000150	Total Metals by EPA 200 Series Methor TestAmerica Water Preparation Method: EPA 200 Series Method Result MDL* MRL EPA 200.8 ND 0.000430 0.00100 " ND 0.000150 0.00100 " 0.000460 0.000260 0.00100 " 0.000460 0.000260 0.00100 " 0.0839 0.000150 0.00100 " 0.08327 0.000260 0.00100 " 0.0807 0.000140 0.00100 " 0.0807 0.000140 0.00100 " 0.00270 0.000140 0.00100 " 0.00272 0.000430 0.00100 " 0.000270 0.000140 0.00100 " 0.000270 0.000140 0.00100 " 0.000260 0.00100 0.00100 " 0.000260 0.00100 0.00100 " 0.000260 0.00100 0.00100<	Total Metals by EPA 200 Series Methods - La TestAmerica - Seattle, Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units EPA 200.8 ND 0.000430 0.00100 mg/l "ND 0.000150 0.00100 " "ND 0.000260 0.00100 " "ND 0.000140 0.00100 " "ND 0.000430 0.00100 " "ND 0.000140 0.00100 " "ND 0.00260 0.00100 " "ND 0.000140 0.00100 " "ND 0.00270 0.000140 0.00100 " "0.0807 0.000140 0.00100 " " "0.000270 0.000140 0.00100 " " "0.000270 0.000140 0.00100 " " "0.000270 0.000140 0.00100 " " "0.000270 0.000140 0.00100 " " </td <td>Total Metals by EPA 200 Series Methods - Laborato TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil EPA 200.8 ND 0.000430 0.00100 mg/l 1x " ND 0.000150 0.00100 " " " 0.000460 0.000260 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.0837 0.000160 0.00100 " " " 0.0827 0.000260 0.00100 " " " 0.00270 0.000140 0.00100 " " " 0.000270 0.000140 0.00100 " "</td> <td>Total Metals by EPA 200 Series Methods - Laboratory Quality TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result EPA 200.8 ND 0.000430 0.00100 mg/l 1x "ND 0.000150 0.00100 " " "0.000460 0.000260 0.00100 " "0.000460 0.000100 0.0100 " "0.000460 0.000260 0.00100 " "ND 0.000140 0.00100 " "ND 0.000150 0.00100 " "ND 0.000140 0.00100 " "0.0837 0.000160 0.00100 " "0.0807 0.000140 0.00100 " "0.000270 0.000140 0.00100<!--</td--><td>Total Metals by EPA 200 Series Methods - Laboratory Quality Cont TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike Ant EPA 200.8 ND 0.000430 0.00100 mg/l 1x "ND 0.000150 0.00100 " "0.000460 0.000260 0.00100 " "ND 0.000140 0.00100 " </td><td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control R TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike %/ EPA 200.8 ND 0.000430 0.00100 mg/ 1x "ND 0.000460 0.00100 " " </td><td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike REC % (Limits) PA 200.8 ND 0.000430 0.00100 mg/l 1x </td><td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results</td><td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results</td><td>Total Metals by EPA 200 Series Laboratory Quality Control Results TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike Ant Climits % RPD (Limits) % RPD (Limits) % RPD Analyzed Method Result MDL* MRL Units Dil Source Result Spike Ant % REC (Limits) % RPD (Limits) % Analyzed EPA 200.8 ND 0.000100 mg/l 1x 0.1/08/07 09:14 "ND 0.000140 0.00100 mg/l 1x 0.06000 0.005/05 </td></td>	Total Metals by EPA 200 Series Methods - Laborato TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil EPA 200.8 ND 0.000430 0.00100 mg/l 1x " ND 0.000150 0.00100 " " " 0.000460 0.000260 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.000460 0.000160 0.00100 " " " 0.0837 0.000160 0.00100 " " " 0.0827 0.000260 0.00100 " " " 0.00270 0.000140 0.00100 " " " 0.000270 0.000140 0.00100 " "	Total Metals by EPA 200 Series Methods - Laboratory Quality TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result EPA 200.8 ND 0.000430 0.00100 mg/l 1x "ND 0.000150 0.00100 " " "0.000460 0.000260 0.00100 " "0.000460 0.000100 0.0100 " "0.000460 0.000260 0.00100 " "ND 0.000140 0.00100 " "ND 0.000150 0.00100 " "ND 0.000140 0.00100 " "0.0837 0.000160 0.00100 " "0.0807 0.000140 0.00100 " "0.000270 0.000140 0.00100 </td <td>Total Metals by EPA 200 Series Methods - Laboratory Quality Cont TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike Ant EPA 200.8 ND 0.000430 0.00100 mg/l 1x "ND 0.000150 0.00100 " "0.000460 0.000260 0.00100 " "ND 0.000140 0.00100 " </td> <td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control R TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike %/ EPA 200.8 ND 0.000430 0.00100 mg/ 1x "ND 0.000460 0.00100 " " </td> <td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike REC % (Limits) PA 200.8 ND 0.000430 0.00100 mg/l 1x </td> <td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results</td> <td>Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results</td> <td>Total Metals by EPA 200 Series Laboratory Quality Control Results TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike Ant Climits % RPD (Limits) % RPD (Limits) % RPD Analyzed Method Result MDL* MRL Units Dil Source Result Spike Ant % REC (Limits) % RPD (Limits) % Analyzed EPA 200.8 ND 0.000100 mg/l 1x 0.1/08/07 09:14 "ND 0.000140 0.00100 mg/l 1x 0.06000 0.005/05 </td>	Total Metals by EPA 200 Series Methods - Laboratory Quality Cont TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike Ant EPA 200.8 ND 0.000430 0.00100 mg/l 1x "ND 0.000150 0.00100 " "0.000460 0.000260 0.00100 " "ND 0.000140 0.00100 "	Total Metals by EPA 200 Series Methods - Laboratory Quality Control R TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike %/ EPA 200.8 ND 0.000430 0.00100 mg/ 1x "ND 0.000460 0.00100 " "	Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike REC % (Limits) PA 200.8 ND 0.000430 0.00100 mg/l 1x	Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results	Total Metals by EPA 200 Series Methods - Laboratory Quality Control Results	Total Metals by EPA 200 Series Laboratory Quality Control Results TestAmerica - Seattle, WA Water Preparation Method: EPA 200 Series Method Result MDL* MRL Units Dil Source Result Spike Ant Climits % RPD (Limits) % RPD (Limits) % RPD Analyzed Method Result MDL* MRL Units Dil Source Result Spike Ant % REC (Limits) % RPD (Limits) % Analyzed EPA 200.8 ND 0.000100 mg/l 1x 0.1/08/07 09:14 "ND 0.000140 0.00100 mg/l 1x 0.06000 0.005/05

TestAmerica - Seattle, WA

hund Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 15

The RET 1011 SW	EC Group, Inc. Klickitat Way, Suite	e 207			Project Na Project Nu	ame: amber:	BNSF	-Skykom -19390-22	iish AC	ЭJ				Report Creat	ted:
Seattle, W	A 98134				Project Ma	anager:	Stepher	n Howard						01/22/07 16	5:59
	• 4	Volatile Org	unic Comp	pounds by EI	PA Metho stAmerica	o d 8260B - Seattle, V	- Lab VA	oratory	Qualit	y Con	itrol Res	ults			
QC Bat	ch: 7A04027	Water	Preparatio	on Method: H	EPA 50301	B									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spik Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7A04	027-BLK1)								Ext	racted:	01/04/07 0	9:10			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	lx	••					••	01/04/07 11:30	
Ethylbenzene		**	ND	0.125	0.500	n									
Toluene		"	ND	0.127	0.500	"					-				
Total Xylenes		н	ND	0.298	1.00	۳							-		
Surrogate(s):	1,2-DCA-d4		Recovery:	104%	Li	mits: 70-130%	<i>6 "</i>							01/04/07 11:30	
	Toluene-d8			102%		75-1259	6 "							"	
	4-BFB			104%		75-1259	6 "							"	
LCS (7A0402	27-BS1)								Ext	acted:	01/04/07 09	:10			
Benzene		EPA 8260B	18.8	0.114	0.500	ug/l	1x		20.0	94.0%	(80-120)			01/04/07 10:27	
Ethylbenzene			19.5	0.125	0.500	w	"			97.5%	(75-125)			n	
Toluene			18.7	0.127	0.500					93.5%				"	
Total Xylenes			60.8	0.298	1.00	"			60.0	101%				**	
Surrogate(s):	1,2-DCA-d4		Recovery:	103%	Lin	nits: 70-130%	n							01/04/07 10-27	
	Toluene-d8			99. 5 %		75-125%	<i>"</i> "							"	
	4-BFB			97.0%		75-125%	<i>.</i> "							n	
LCS Dup (7A	04027-BSD1)								Extr	acted:	01/04/07 09	:10			
Benzene		EPA 8260B	19.6	0.114	0.500	ug/l	lx		20.0	98.0%	(80-120)	417%	(20)	01/04/07 10:58	
Ethylbenzene			20,4	0.125	0.500	"				102%	(75-125)	4 51%	H (20)	"	
Toluene		n	19.6	0.127	0.500	н	ŧ			98.0%	"	4.70%	n	'n	
Total Xylenes		"	63.9	0.298	1.00	"	"		60.0	106%	п	4.97%	n		
Surrogate(s):	1,2-DCA-d4		Recovery:	104%	Lim	nits: 70-130%	"							01/04/07 10-58	
	Toluene-d8			100%		75-125%	"							#	
	4-BFB			98.5%		75-125%	"							"	

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 15

--

...

••

••

_. ...

---....

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

....

--

--

-

••

...

--

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

BNSF-Skykomish AOJ Project Name: Project Number: Project Manager: Stephen Howard

BN050-19390-220

Report Created: 01/22/07 16:59

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7A10024 Water Preparation Method: EPA 3520C REC (Limits) Spike Method Source Analyte Result MDL* MRL Units Dil RPD (Limits) Analyzed Notes Result Amt Blank (7A10024-BLK3) Extracted: 01/10/07 11:05 Acenaphthene EPA ND 0.00271 0.100 ug/l 1 x 01/19/07 10:03 -----•• •-----8270C-HVI Acenaphthylene ND 0.00252 0.100 •• •• •• •• ---. Anthracene ND 0.00284 0.100 -----. --•• 11 Benzo (a) anthracene ND 0.00158 0.0100 ... --•• ••• ------Benzo (a) pyrene ND 0.00315 0.0100 -н --------Benzo (b) fluoranthene ND 0.00206 0.0100 . -----------Benzo (k) fluoranthene ND 0.00186 0.0100 н -----------Benzo (ghi) perylene ND 0.00296 0.100 . ---•• -----Chrysene ND 0.00188 0.0100 -------Dibenz (a,h) anthracene ND 0.00250 0.0100 ... --. Fluoranthene ND 0.00196 0.100 ... ---.... _ Fluorene ND 0.00357 0.100 ----

2-Methyinaphthalene ND 0.00228 0.100 Naphthalene ND 0.00419 0.100 Phenanthrene 0.00259 ND 0.100 ,, Ругеве ND 0.00244 0.100 •• Benzo (a) pyrene-d12 Surrogate(s): 80.1% ,, Recovery: Limits: 20-125% 1-Methylnaphthalene-d10 79.0% 39-125% "

ND

ND

0.00246

0.00223

0.0100

0.100

01/19/07 10:03

.

LCS (7A10024-BS3)

Indeno (1,2,3-cd) pyrene

1-Methylnaphthalene

LCS (7A10024-BS3)								Ext	racted:	01/10/07 11:0	95			
Acenaphthene	EPA 8270C-HVI	15.9	0.0271	1.00	ug/l	10x		20.0	79.5%	(44-125)		-	01/16/07 16:23	
Acenaphthylene		15.9	0.0252	1.00		"		"	79.5%	(51-125)	•••			
Anthracene	н	15.3	0.0284	1.00	N	n		н	76.5%	(50-125)			n	
Benzo (a) anthracene	n	14.7	0.0158	0.100				"	73:5%	11				
Benzo (a) pyrene	**	15.3	0.0315	0.100		"		n	76.5%	(47-125)			11	
Benzo (b) fluoranthene	n	15.5	0.0206	0.100	*	•		"	77.5%	(50-125)				
Benzo (k) fluoranthene	n	15.6	0.0186	0.100		**		Ħ	78.0%	(46-125)			n	
Benzo (ghi) perylene	*	14.0	0.0296	1.00	*			n	70.0%	(49-125)		••	n	
Chrysene	n	14.7	0.0188	0.100	u	*			73.5%	(53-125)				
Dibenz (a,h) anthracene		15.6	0.0250	0.100		H			78.0%	(47-125)		-	7	
Fluoranthene	"	16.3	0.0196	1.00	*				81.5%	(55-125)			11	
Fluorene	n	15.6	0.0357	1.00	н.			*	78.0%	(52-125)			n	
Indeno (1,2,3-cd) pyrene		15.6	0.0246	0.100		۳			78.0%	(49-125)			n .	
I-Methylnaphthalene	n	13.3	0.0223	1.00		Ħ		"	66.5%	(37-125)				
2-Methylnaphthalene	n	14.9	0.0228	1.00		*	••	۳	74.5%	(40-125)			**	
Naphthalene	и	14.7	0.0419	1.00		•	••		73.5%	(42-125)			н	

TestAmerica - Seattle, WA

UW

Kate Haney, Project Manager

without the written approval of the laboratory.

The RETEC	Group, Inc.				Project Nan	ne:	BNSF-	Skykomi	ish A()J					
1011 SW Klic	ckitat Way, Suite 20	7			Project Nun	nber:	BN050-	19390-22	0					Report Crea	ted:
Seattle, WA	98134				Project Mar	hager:	Stephen	Howard				_		01/22/07 10	6:59
r	Dolymuoloon	mometia		L. CCAR	2.141. TT 1			· · · · · ·							
	rolynuciear A		ompound	s by GC/MS Tes	stAmerica -	Seattle,	WA	ion - La	idora	ory Q		ontro	Resul	ts	
QC Batch:	7A10024	Water	Preparatio	n Method: E	EPA 3520C										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spik Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
LCS (7A10024-1	BS3)				·····				Ext	racted:	01/10/07 11	:05			
Phenanthrene		EPA	16.7	0.0259	1.00	ug/l	10x		20.0	83.5%	(47-125)			01/16/07 16:23	
Pyrene		8270C-AVI	15.0	0.0244	1.00	11	۲		۳	75.0%				n	
Surrogate(s): B	lenzo (a) pyrene-d12 -Methylnaphthalene-d10		Recovery:	78.1% 82.1%	Lim	nits: 20-12. 39-12	5% " 5% "	***=*						01/16/07 16:23 "	
LCS Dup (7A10	024-BSD3)								Ext	racted:	01/10/07 11	:05			
Acenaphthene		EPA 8270C-HVI	15.3	0.0271	1.00	ug/i	10x		20.0	76.5%	(44-125)	3.85%	(35)	01/16/07 16:57	
Acenaphthylene			15.3	0.0252	1.00		"			76.5%	(51-125)	3.85%	n	-	
Anthracene		*	14.8	0.0284	1.00	"	•		H	74.0%	(50-125)	3.32%	*		
Benzo (a) anthracene		n	13.7	0.0158	0.100	ы	n			68.5%		7.04%		n	
Benzo (a) pyrene			14.5	0.0315	0.100	n			м	72.5%	(47-125)	5.37%	11	"	
Benzo (b) fluoranthene			15.5	0.0206	0.100		٠			77.5%	(50-125)	0.00%	4		
Benzo (k) fluoranthene		**	14.4	0.0186	0.100	"	*		"	72.0%	(46-125)	8,00%	н	"	
Benzo (ghi) perylene		H	13.8	0.0296	1.00	"			*	69.0%	(49-125)	1.44%	n		
Chrysene			14.1	0.0188	0.100	н	۳		tr	70,5%	(53-125)	4.17%		"	
Dibenz (a,h) anthracene		n	14.9	0.0250	0.100		n			74.5%	(47-125)	4.59%	n		
Fluoranthene		n	15.7	0.0196	1.00					78.5%	(55-125)	3.75%	н	P	
Fluorene		n	15,8	0.0357	1.00	**			۳	79.0%	(52-125)	1.27%	, n	n	
Indeno (1,2,3-cd) pyrene		"	14.7	0.0246	0.100	"	H		.,	73.5%	(49-125)	5.94%	۳		
1-Methylnaphthalene		н	13.1	0.0223	1.00		н			65.5%	(37-125)	1.52%			
2-Methylnaphthalene			14.7	0.0228	1.00	H	8			73.5%	(40-125)	1.35%		n .	
Naphthalene		n	14.4	0.0419	1.00 .				۳	72.0%	(42-125)	2.06%	Ħ	n	
Phenanthrene		n	15.8	0.0259	1.00	n	"		n	79.0%	(47-125)	5.54%	"		
Ругепе		н	14.3	0.0244	1.00		"		n	71.5%	"	4.78%		*1	
Surrogate(s): Be	nzo (a) pyrene-d12	****	Recovery:	68.9%	Limi	ts: 20-125	% *							01/16/07 16:57	

ogale(s): Benzo (a) pyrene-a12 1-Methylnaphthalene-d10 Recovery: 68.9% 80.2% mits: 20-125% * 39-125% * 01/16/07 16:57 "

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 15

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ BN050-19390-220 : Stephen Howard

Report Created: 01/22/07 16:59

C	Conventional Che	mistry Parai	meters by A Test	APHA/EPA America - Sea	Methods attle, WA	- Laborat	ory Qu	ality	Control	Resu	lts	,* >	
QC Batch: 7A05028	Water I	Preparation N	lethod: Ge	eneral Prepa	ation								
Analyte	Method	Result	MDL*	MRL U	nits Di	l Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (7A05028-DUP1)				QC Source: BQ	A0050-02		Extr	acted:	01/04/07 1	5:30			
рН	EPA 150.1	9.36		рН (Juits 1x.	9.36				0.00%	6 (10)	01/04/07 16:30	

TestAmerica - Seattle, WA

wind Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 15

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish AOJ

BN050-19390-220 Stephen Howard Report Created: 01/22/07 16:59

Notes and Definitions S. Stan 7 Report Specific Notes: J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. 04 The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics. R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. _ *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution Dil found on the analytical raw data. Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.

 Electronic
 - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

www

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

January 23, 2007

Stephen Howard The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish AOJ

Enclosed are the results of analyses for samples received by the laboratory on 01/09/07 13:20. The following list is a summary of the Work Orders contained in this report, generated on 01/23/07 15:04.

If you have any questions concerning this report, please feel free to contact me.

		•
Work Order	Project	ProjectNumber
<u>Hone of the second sec</u>	110,000	<u>1 Tojoon (amber</u>
BOA0122	BNSF-Skykomish AOI	BN050-19390-220
	Diver expression new	DI(050-17570-220

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

'3 .

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 01/23/07 15:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SKY-EFF-010807	BQA0122-01	Water	01/08/07 14:15	01/09/07 13:20
SKY-EFF-010807	BQA0122-02	Water	01/08/07 14:10	01/09/07 13:20
SKY-INF-010807	BQA0122-03	Water	01/08/07 14:00	01/09/07 13:20
SKY-MID-010807	BQA0122-04	Water	01/08/07 14:05	01/09/07 13:20
SKY-TB-010807	BQA0122-05	Water	01/08/07 17:00	01/09/07 13:20

TestAmerica - Seattle, WA

hund Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 15

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish AOJ BN050-19390-220

Stephen Howard

Report Created: 01/23/07 15:04

Analytical Case Narrative TestAmerica - Seattle, WA

BQA0122

SAMPLE RECEIPT

The samples were received January 9th, 2007 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 4.6 degrees Celsius. The AOJ from the sample IDs were removed per Jennifer Wald of The RETEC Group due to EDD sample length requirements.

PREPARATIONS AND ANALYSIS

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up): No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Total Metals by EPA 200 Series Methods: No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Volatile Organic Compounds by EPA Method 8260B: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Polynuclear Aromatic Hydrocarbons by GC/MS with High Volume Injection: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Conventional Chemistry Parameters by APHA/EPA Methods: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

The RETEC Group, Inc.	Project Name:	BNSF-Skykomish AOJ	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	01/23/07 15:04

	Semi	volatile Petrol	eum Produ	icts by N TestAmeric	WTPH a - Seatt	[-Dx (w/c le, WA) Acid	/Silica G	el Clean-up)	
Analyte	······	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0122-01 (SKY-EFF-010807)		w	ater		Sampl	ed: 01/()8/07 14:15			
Diesel Range Hydro	carbons	NWTPH-Dx	0.613	0.0385	0:240	mg/l	lx	7A10026	01/10/07 11:09	01/13/07 19:04	Q4
Lube Oil Range Hyd	lrocarbons	n	0.878	0.0865	0.481	-	Ħ	-	n	n	Q4
Surrogate(s):	2-FBP			92.1%		53 - 125 %	"			н	
2	Octacosane			100%		68 - 125 %	"			"	
BQA0122-03RE1 (SKY-INF-010807)			Water			Sampl	ed: 01/0	8/07 14:00			
Diesel Range Hydroc	carbons	NWTPH-Dx	0.733	0.0385	0.240	mg/l	1x	7A10026	01/10/07 11:09	01/16/07 18:01	Q4
Lube Oil Range Hyd	irocarbons	n	0.902	0.0865	0.481			•	n	n	Q4
Surrogate(s):	2-FBP			83.8%		53 - 125 %	"			"	
0	Octacosane			92.1%		68 - 125 %	W			*	
BQA0122-04 (S	SKY-MID-010807)	I	W	ater		Sampl	ed: 01/0	8/07 14:05			
Diesel Range Hydroc	carbons	NWTPH-Dx	0.627	0.0377	0.236	mg/l	lx	7A10026	01/10/07 11:09	01/13/07 19:55	Q4
Lube Oil Range Hyd	rocarbons	H.	0.876	0.0849	0.472			"	m	"	Q4
Surrogate(s):	2-FBP			93.6%		53 - 125 %	"			N	
	Octacosane			106%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Kato Dung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 15

www.testamericainc.com

3

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

mber: BN050-19390-220 nager: Stephen Howard

BNSF-Skykomish AOJ

Report Created: 01/23/07 15:04

Total Metals by EPA 200 Series Methods TestAmerica - Seattle, WA											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0122-01	(SKY-EFF-010807)		W	ater		Sampled: 01/08/07 14:15					
Arsenic		EPA 200.8	0.00892	0.000430	0.00100	mg/l	łx	7A11016	01/11/07 12:58	01/12/07 15:35	
Chromium		n	0.00842	0.000260	0.00100	"	n	"	n	н	
Copper		*	0.00983	0.000150	0.00100	"			"	n	
Lead		"	0.0117	0.000140	0.00100	"		N			

TestAmerica - Seattle, WA

un

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

The RETEC Group, Inc.	Project Name:	BNSF-Skykomish AOJ	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	01/23/07 15:04

Volatile Organic Compounds by EPA Method 8260B TestAmerica - Seattle, WA											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0122-01	(SKY-EFF-010807)		W	ater		Sampl	ed: 01/(8/07 14:15			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	1x	7A12007	01/10/07 09:09	01/10/07 15:42	
Ethylbenzene			ND	0.125	0.500		*	n	n	"	
Toluene			ND	0.127	0.500	· n	۳		"	H	
Total Xylenes		n	ND	0.298	3.00	*	•	H ·	H	n	
Surrogate(s):	1,2-DCA-d4			102%		70 - 130 %	H			"	
2	Toluene-d8			101%		75 - 125 %	"			"	
	4-BFB			102%		75 - 125 %	-			"	
BQA0122-05	(SKY-TB-010807)		Wa	Water			Sampled: 01/08/07 17:00				
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	1x	7A12007	01/10/07 09:09	01/10/07 15:19	
Ethylbenzene		н	ND	0.125	0.500	"	n	"	n	*	

Toluene		*	ND	0.127	0.500	н	*		n	"	
Total Xylenes		*	ND	0.298	3.00	"		ri	۳	м	
Surrogate(s):	I,2-DCA-d4			102%		70 - 130 %	"			"	
	Toluene-d8	· .		99.0%		75 - 125 %	*			"	
	4-BFB			100%		75 - 125 %	H			п	

TestAmerica - Seattle, WA

Katobung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 15

The DETEC Crown Inc.		
The RETEC Group, Inc.	Project Name: BNSF-SKykomish AOJ	
1011 SW Klickitat Way, Suite 207	Project Number: BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager: Stephen Howard	01/23/07 15:04

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0122-01	(SKY-EFF-010807)		Water			Sampl	led: 01/0	8/07 14:15			
Acenaphthene	EF	°A 8270C-HVI	ND	0.00261	0.0962	ug/l	lx	7A10024	01/10/07 11:05	01/17/07 16:36	
Acenaphthylene		*	ND	0.00242	0.0962				н —	н	
Anthracene		n	ND	0.00273	0.0962		Ħ	н		11	
Benzo (a) anthracene	e	н	ND	0.00152	0.00962	H				н	
Benzo (a) pyrene			ND	0.00303	0.00962	*	•	н	-	n	
Benzo (b) fluoranthe	ene	"	ND	0.00198	0.00962		"	n		. "	
Benzo (k) fluoranthe	ne	н	ND	0.00179	0.00962			۳	"	*	
Benzo (ghi) perylene	\$		ND	0.00285	0.0962		Ħ	٣		"	
Chrysene			ND	0.00181	0.00962	м				n	
Dibenz (a,h) anthrace	ene	•	ND	0.00240	0.00962	Ħ	H		*	"	
Fluoranthene		Ħ	0.0617	0.00188	0.0962			н		19	I
Fluorene			ND	0.00343	0.0962				H		
Indeno (1,2,3-cd) pyr	rene	n	ND	0.00237	0.00962	н	n				
1-Methylnaphthalen	1e	. n	0.0225	0.00214	0.0962	м	Ħ	*		n	J
2-Methylnaphthalen	10		0.0449	0.00219	0.0962	n	۳		*		, T
Naphthalene		n	ND	0.00403	0.0962			н	*		
Phenanthrene			0.113	0.00249	0.0962	"		п		и	
Pyrene		н	0.128	0.00235	0.0962	n	н		*	n	
Surrogate(s):	Benzo (a) pyrene-d12			47.7%		20 - 125 %	#			"	
	1-Methylnaphthalene-d10			86.8%		39 - 125 %	"			п	

TestAmerica - Seattle, WA

Kato Dung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 7 of 15

The RETEC Group, Inc.	Project Name:	BNSF-Skykomish AOJ	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	01/23/07 15:04

		Conventio	onal Chemi ר	stry Para FestAmeric	ameter :a - Seat	's by AP tle, WA	HA/EI	PA Meth	ods		
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQA0122-02	(SKY-EFF-010807)		Wa	ater		Sam	oled: 01/(8/07 14:10			
рН		EPA 150.1	8.48			pH Units	İx	7A10018	01/09/07 13:55	01/09/07 13:55	

TestAmerica - Seattle, WA

hund Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 8 of 15

www.testamericainc.com

.

In 1011 SW Klickitat Way, Suite 207 Project Number: BN050-19390-220 Report Created: 01/23/07 15:04 Sentile, WA 98134 Project Number: BN050-19390-220 Report Created: 01/23/07 15:04 Sentivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica - Sentile, WA QC Batch: 7A10026 Water Preparation Method: EPA 3520C Laboratory Quality Control Results TestAmerica - Sentile, WA QC Batch: 7A10026 Water Preparation Method: EPA 3520C Analyte Method Result MREC Climits Size Climi					Project Na:	me:	BNSE-	Skykom	ish AC)]					
Seattle, WA 98134 Project Manager: Stephen Howard 01/23/07 15:04 Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results QC Batch: 7A10026 Water Preparation Method: EPA 3520C Analyte Method Result MDL* MRL Units Dil Source Result Spike % Amt (Limits) % RPD (Limits) Analyzed Notes Blank (7A10026-BLK1) Extracted: 01/10/07 11:09 Extracted: 01/10/07 16:30 Notes Diesel Range Hydrocarbons NWTPH-Dx ND 0.0400 0.250 mg/l 1x - - - - 01/13/07 16:30 Lube Oil Range Hydrocarbons NWTPH-Dx ND 0.0400 0.500 " - - - - 01/13/07 16:30 Surrogate(s): 2-FBP Recovery: 82.8% Elimits: 53-125% " 01/13/07 16:30 Surrogate(s): 2-FBP Recovery: 90.8% Limits: 53-125% " 01/13/07 16:36 <t< th=""><th>1011 SW Klickitat Way, Suite</th><th>207</th><th></th><th></th><th>Project Nu</th><th>mber:]</th><th>BN050-</th><th>19390-22</th><th>0</th><th></th><th></th><th></th><th></th><th>Report Create</th><th>ed:</th></t<>	1011 SW Klickitat Way, Suite	207			Project Nu	mber:]	BN050-	19390-22	0					Report Create	ed:
Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica - Scattle, WA QC Batch: 7A10026 Water Preparation Method: EPA 3520C Analyte Method Result MDL* MRL Units Dil Source Result Splke %/ Ant (Limits) $\frac{94}{RPD}$ (Limits) Analyzed Notes Blank (7A10026-BLK1) Extracted: 01/1007 11:09 Diesel Range Hydrocarbons NWTPH-Dx ND 0.0900 0.250 mg/l ix - - - - 01/13/07 16:30 Surrogate(s): 2-FBP Recovery: 82.8% Limits: 53-125% * 01/13/07 16:30 - 01/13/07 16:30 - - - - - - - - 01/13/07 16:30 - 01/13/07 16:30 - 01/13/07 16:30 - 01/13/07	Seattle, WA 98134				Project Ma	nager:	Stephen	Howard						01/23/07 15	:04
Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7A10026 Water Preparation Method: EPA 3520C Analyte Method Result MDL* MRL Units Dit Source Result Spike % (Limits) % Proposition Motes Blank (7A10026-BLK1) Extracted: 01/10/07 11:09 Extracted: 01/13/07 16:30 Analyzed Notes Blank (7A10026-BLK1) ND 0.0400 0.250 mgl 1x - 01/13/07 16:30 Lube Oil Range Hydrocarbons NWTPH-Dx 1.75 0.0400 0.250 mgl 1x - 2.00 87.5% (61-132) - - 01/13/07 16:56 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>															
QC Batch: 7A10026 Water Preparation Method: EPA 3520C Analyte Method Result MDL* MRL Units Dil Source Result Splike % Ant (Limits) % PPD (Limits) Analyzed Notes Blank (7A10026-BLK1) Extracted: 01/1007 11:09 Extracted: 01/1007 16:30 Analyzed Notes Diesel Range Hydrocarbons NWTPH-Dx ND 0.0400 0.250 mg/l 1x - - - - - - 01/13/07 16:30 Notes Lube Oil Range Hydrocarbons " ND 0.0400 0.250 mg/l 1x - - - - - - - - - - - - - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:56 - - <th< th=""><th>Semivolatile F</th><th>Petroleum Pro</th><th>ducts by i</th><th>NWTPH-Dx Tes</th><th>(w/o Aci tAmerica</th><th>d/Silica G - Seattle, W</th><th>el Cles A</th><th>an-up) -</th><th>Labo</th><th>rator</th><th>' Quality</th><th>Con</th><th>rol Re</th><th>esults</th><th>n e y l</th></th<>	Semivolatile F	Petroleum Pro	ducts by i	NWTPH-Dx Tes	(w/o Aci tAmerica	d/Silica G - Seattle, W	el Cles A	an-up) -	Labo	rator	' Quality	Con	rol Re	esults	n e y l
Analyte Method Result MDL* MRL Units Dil Source Result Spike MRC (Limits) RPD (Limits) Analyzed Notes Blank (7A10026-BLK1) Extracted: 01/13/07 11:09 Extracted: 01/13/07 16:30 - - - - - - 01/13/07 16:30 01/13/07 16:30 - - - - - - - - - - - - 01/13/07 16:30 - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:30 - - 01/13/07 16:36 - -	QC Batch: 7A10026	Water	Preparatio	n Method: E	PA 3520C	<u> </u>							<u> </u>		
Blank (7A10026-BLK1) Disesl Range Hydrocarbons NWTPH-Dx ND 0.0400 0.250 mg/l 1x - 0////////////////////////////////////	Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spik Amt	e % REC	(Limits)	% RPD	(Limit:	s) Analyzed	Notes
Diesel Range Hydrocarbons NWTPH-Dx ND 0.0400 0.250 mg/l 1x 01/13/07 16:30 01/13/07 16:30 01/13/07 16:30 01/13/07 16:56 01/13/07 16:56 01/13/07 16:56 01/13/07 16:56 01/13/07 16:56 01/13/07 16:56 <	Blank (7A10026-BLK1)								Ext	racted:	01/10/07 11	:09			
Lube Oil Range Hydrocarbons " ND 0.0900 0.500 " " - 0///3/07 16:30 ''' - 0///3/07 16:36 0///3/07 16:36 ''' - 0///3/07 16:36 ''' - 0///3/07 10:105 '''' - 0///3/07 10:105 <t< td=""><td>Diesel Range Hydrocarbons</td><td>NWTPH-Dx</td><td>ND</td><td>0.0400</td><td>0.250</td><td>mg/l</td><td>lx</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>01/13/07 16:30</td><td></td></t<>	Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	lx				-			01/13/07 16:30	
Surrogate(s): 2-FBP Octacosane Recovery: 82.8% 90.8% Limits: 53-125% " 01//3/07 16:30 LCS (7A10026-BS1) Extracted: 01//07 11:09 " " 01//3/07 16:56 Diesel Range Hydrocarbons NWTPH-Dx 1.75 0.0400 0.250 mg/l 1x 2.00 87.5% (61-132) 01//3/07 16:56 Surrogate(s): 2-FBP Recovery: 90.8% Limits: 53-125% " 01//3/07 16:56 Surrogate(s): 2-FBP Recovery: 90.8% Limits: 53-125% " 01//3/07 16:56 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x 2.00 87.5% (61-132) 01//13/07 16:56 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x 2.00 93.5% (61-132) 6.63% (40) 01//13/07 17:21 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132	Lube Oil Range Hydrocarbons		ND	0.0900	0.500	н					-			н	
Octacosane 90.8% 68-125% " " LCS (7A10026-BS1) Extracted: 01/10/07 11:09 Diesel Range Hydrocarbons NWTPH-Dx 1.75 0.0400 0.250 mg/l 1x - 2.00 87.5% (61-132) - - 01/13/07 16:56 Surrogate(s): 2.FBP Recovery: 90.8% Limits: 53-125% " " 01/13/07 16:56 LCS Dup (7A10026-BSD1) Extracted: 01/10/07 11:09 " " 01/13/07 16:56 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132) 6.63% (40) 01/13/07 17:21 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132) 6.63% (40) 01/13/07 17:21 Surrogate(s): 2-FBP Recovery: 99.2% Limits: 53-125% " ' 01/13/07 17:21 Octacosane 91.2% 68-125% " ' 01/13/07 17:21 ' ' <	Surrogate(s): 2-FBP		Recovery:	82.8%	Lii	mits: 53-125%	, "				<u> </u>			01/13/07 16:30	
LCS (7A10026-BS1) Extracted: 01/10/07 11:09 Diesel Range Hydrocarbons NWTPH-Dx 1.75 0.0400 0.250 mg/l 1x 2.00 87.5% (61-132) 01/13/07 16:56 Surrogate(s): 2-FBP Recovery: 90.8% Limits: 53-125% " 01/13/07 16:56 " LCS Dup (7A10026-BSD1) Kecovery: 90.8% Limits: 53-125% " Extracted: 01/10/07 11:09 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x 2.00 93.5% (61-132) 6.63% 40) 01/13/07 17:21 Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x 2.00 93.5% (61-132) 6.63% 40) 01/13/07 17:21 Surrogate(s): 2-FBP Recovery: 99.2% Limits: 53-125% " - 01/13/07 17:21 Octacosane 91.2% 68-125% " - - 01/13/07 17:21 "	Octacosane			90.8%		68-1259	6 *							n	
Diesel Range Hydrocarbons NWTPH-Dx 1.75 0.0400 0.250 mg/l 1x 2.00 87.5% (61-132) 01/13/07 16:56 Surrogate(s): 2-FBP Recovery: 90.8% Limits: 53-125% " 01/13/07 16:56 " " 01/13/07 16:56 " " " 01/13/07 16:56 " " " 01/13/07 16:56 " " " 01/13/07 16:56 " " " " " 01/13/07 16:56 " " " " " " 01/13/07 16:56 " " " " " " 01/13/07 16:56 " " " " " " 01/13/07 16:56 " " " " " " 01/13/07 17:21 " " " " 01/13/07 17:21 " " 01/13/07 17:21 " 01/13/07 17:21 " " 01/13/07 17:21 " " 01/13/07 17:21 " " 0	LCS (7A10026-BS1)								Ext	racted:	01/10/07 11	:09			
Surrogale(s): 2-FBP Octacosane Recovery: 90.8% Limits: 53-125% " 01/13/07 16:56 LCS Dup (7A10026-BSD1) Extracted: 01/10/07 11:09 " " Diesel Range Hydrocarbons NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132) 6.63% (40) 01/13/07 17:21 Surrogate(s): 2-FBP Octacosane Recovery: 99.2% Limits: 53-125% " " Surrogate(s): 2-FBP Octacosane Recovery: 99.2% Limits: 53-125% " " Octacosane 91.2% 68-125% " " "	Diesel Range Hydrocarbons	NWTPH-Dx	1.75	0.0400	0.250	mg/l	lx		2.00	87.5%	(61-132)	-		01/13/07 16:56	
Octacosane 88.8% 68-125% " " LCS Dup (7A10026-BSD1) Extracted: 01/10/07 11:09 Diesel Range Hydrocarbous NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132) 6.63% (40) 01/13/07 17:21 Surrogate(s): 2-FBP Octacosane Recovery: 99.2% Limits: 53-125% " 01/13/07 17:21	Surrogate(s): 2-FBP		Recovery:	90.8%	Lin	nits: 53-125%	н							01/13/07 16:56	
LCS Dup (7A10026-BSD1) Extracted: 01/10/07 11:09 Diesel Range Hydrocarbous NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132) 6.63% (40) 01/13/07 17:21 Surrogate(s): 2-FBP Recovery: 99.2% Limits: 53-125% " 01/13/07 17:21 Octacosane 91.2% 68-125% " " " "	Octacosane			88.8%		68-125%	6 "							H	
Diesel Range Hydrocarbous NWTPH-Dx 1.87 0.0400 0.250 mg/l 1x - 2.00 93.5% (61-132) 6.63% (40) 01/13/07 17:21 Surrogate(s): 2-FBP Recovery: 99.2% Limits: 53-125% " 01/13/07 17:21 Octacosane 91.2% 68-125% " " "	LCS Dup (7A10026-BSD1)								Ext	racted:	01/10/07 11	:09			
Surrogate(s): 2-FBP Recovery: 99.2% Limits: 53-125% " 01/13/07 17:21 Octacosane 91.2% 68-125% " "	Diesel Range Hydrocarbous	NWTPH-Dx	1.87	0.0400	0.250	mg/l	lx		2.00	93.5%	(61-132)	6.63%	(40)	01/13/07 17:21	
Octacosane 91.2% 68-125% " "	Surrogate(s): 2-FBP		Recovery:	99.2%	Lin	nits: 53-125%	n			· •				01/13/07 17:21	
	Octacosane			91.2%		68-125%	; "							"	

TestAmerica - Seattle, WA

Hund (atox

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish AOJ BN050-19390-220

Stephen Howard

Report Created: 01/23/07 15:04

	Total N	letals by E	PA 200 Ser Te	ies Metho stAmerica	ds - La - Seattle, V	borato WA	ry Quali	ty Con	trol R	esults			*	•
QC Batch: 7A11016	Water	Preparation	Method: 1	EPA 200 S	eries									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spik Amt	e % REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (7A11016-BLK1)								Ext	racted:	01/11/07 12	2:58			
Lead	EPA 200.8	ND	0.000140	0.00100	mg/l	lx							01/12/07 15:06	
Arsenic		ND	0.000430	0.00100	P	۳			••				D.	
Chromium	"	0.000460	0.000260	0.00100		-							H	J
Copper		ND	0.000150	0.00100	U							-		
LCS (7A11016-BS1)								Ext	racted:	01/11/07 12	:58			
Lead	EPA 200.8	0.0750	0.000140	0.00100	mg/l	lx		0.0800	93.8%	(85-115)			01/12/07 15:12	
Arsenic		0.0766	0.000430	0.00100	"	R		n	95.8%	n			n	
Copper	n	0.0798	0.000150	0.00100	"				99.8%	"				
Chromium	u	0.0781	0.000260	0.00100	•			"	97.6%	"			"	
Duplicate (7A11016-DUP1)				QC Source:	BQA0115-	·01		Ext	acted:	01/11/07 12	:58			
Arsenic	EPA 200.8	0.000800	0.000430	0.00100	mg/l	lx	0.000830	-			3.68%	(20)	01/12/07 15:23	R4, J
Lead		0.000820	0.000140	0.00100	"	n	0.000830	••			1.21%	н	11	R4, J
Copper		0.00669	0.000150	0.00100	"		0.00668			-	0.150%		"	
Chromium	**	0.00140	0.000260	0.00100	"		0.00150		••	-	6.90%	q	מ	
Matrix Spike (7A11016-MS1)				QC Source:	BQA0115-	01		Ext	acted:	01/11/07 12	:58			
Lead	EPA 200.8	0.0778	0,000140	0.00100	mg/l	1x	0.000830	0.0800	96.2%	(75-125)			01/12/07 15:18	
Arsenic		0.0792	0.000430	0.00100		n	0.000830		98.0%	#			н	
Chromium	"	0.0801	0.000260	0.00100	**		0.00150	r	98.2%				*	
Copper	Π	0.0864	0.000150	0.00100		"	0.00668	"	99.6%	n				

TestAmerica - Seattle, WA

hund Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 15

1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

Project Name: Project Number: Project Manager:

ne: BNSF-Skykomish AOJ nber: BN050-19390-220 nager: Stephen Howard

Report Created: 01/23/07 15:04

	· · · · · · · · · · · · · · · · · · ·	Volatile Orga	inic Comp	oounds by H T	EPA Metho TestAmerica	od 8260B - Seattle, W	- Lab 'A	oratory	Quality	y Con	trol Res	ults	• .		
QC Bat	ch: 7A12007	Water	Preparatio	n Method:	EPA 50301	3									
Analyte		Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	°% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7A12	007-BLK1)								Ext	racted:	01/10/07 0	9:09			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	lx							01/10/07 12:32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ethylbenzene		"	ND	0.125	0.500		n							"	
Toluene		4	ND	0.127	0.500									"	
Total Xylenes			ND	0.298	3.00	n	"								
Surrogate(s):	1,2-DCA-d4	····	Recovery:	104%	Li	mits: 70-130%	7					··		01/10/07 12:32	
	Toluene-d8			102%		75-125%	5 "							"	
	4-BFB			104%		75-125%	; "							"	
LCS (7A1200	7-BS1)								Extr	acted:	01/10/07 09	:09			
Benzene		EPA 8260B	18.2	0.114	0.500	ug/l	ix		20.0	91.0%	(80-120)			01/10/07 11:27	
Ethylbenzene		н	18.6	0.125	0.500	"				93.0%	(75-125)			n	
Toluene		n	18.7	0.127	0.500	n	n		۳	93.5%				n	
Total Xylenes			57.2	0.298	3.00		n		60.0	95.3%	"				
Surrogate(s):	1,2-DCA-d4		Recovery:	102%	Lin	nits: 70-130%								01/10/07 11:27	
	Toluene-d8			100%		75-125%	n							n	
	4-BFB			104%		75-125%	*							п	
LCS Dup (7A	12007-BSD1)								Extr	acted:	01/10/07 09	:09			·
Benzene		EPA 8260B	18.5	0.114	0.500	ug/l	1x		20.0	92.5%	(80-120)	1.63%	໌ (20)	01/10/07 11:58	
Ethylbenzene		n	19.4	0.125	0.500		•		۳	97.0%	(75-125)	4.21%	. "	n	
Toluene			19.5	0.127	0.500	"	۳		•	97.5%	м	4.19%		n	
Total Xylenes		"	60.3	0.298	3.00	"	n		60.0	100%		5.28%			
Surrogate(s):	1,2-DCA-d4		Recovery:	102%	Lin	nits: 70-130%	,,							01/10/07 11:58	
	Toluene-d8			102%		75-125%	"							"	
	4-BFB			103%		75-125%								*	

TestAmerica - Seattle, WA

hund Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 15

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 01/23/07 15:04

]	Polynuclear Aromatic C	ompounds	s by GC/MS Tes	with Hig tAmerica	h Volum - Seattle, V	e Inject WA	ion - L:	aborato	ory Q	uality C	ontro	l Result	S	
QC Batch: 7A	10024 Water	Preparatio	n Method: E	CPA 35200	2									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7A10024-BL	K3)							Extr	acted:	01/10/07 11	:05			
Acenaphthene	EPA 8270C-HVI	ND	0.00271	0.100	ug/l	lx		-		••	••		01/19/07 10:03	
Acenaphthylene	. "	ND	0.00252	0.100				-				••	n	
Anthracene	"	ND	0.00284	0.100	"	n		••					*	
Benzo (a) anthracene	"	ND	0.00158	0.0100		*	- '		••	-			"	
Benzo (a) pyrene	н	ND	0.00315	0.0100	*	"				-			"	
Benzo (b) fluoranthene	D.	ND	0.00206	0.0100	"								н	
Benzo (k) fluoranthene	n	ND	0.00186	0.0100	N	н		·				••	"	
Benzo (ghi) perylene	"	ND	0.00296	0.100		*				-			n	
Chrysene	"	ND	0.00188	0.0100	•								0	
Dibenz (a,h) anthracene	n	ND	0.00250	0.0100						-	•••	••	Ħ	
Fluoranthene	n	ND	0.00196	0.100	н	*		••				-	n	
Fluorene	'n	ND	0.00357	0.100	•								n	
Indeno (1,2,3-cd) pyrene	"	ND	0.00246	0.0100	u	н					•		н	
1-Methylnaphthalene	"	ND	0.00223	0.100		n							n	
2-Methylnaphthalene		ND	0.00228	0.100	*				••	-				
Naphthalene	"	ND	0.00419	0.100						-				
Phenanthrene	п	ND	0.00259	0.100	"									
Pyrene		ND	0.00244	0.100		"								
Sumaaata(a); Bauaa (-1		90.10/		10. 20 1250								01/10/07 10 00	
Surroguie(s): Denzo (i	u) pyrene-u12 vlnanhthalene-d10	Recovery:	80.1% 70.0%	Lim	115: 20-1237 30.175	6 " % "							01/19/07 10:03 "	
1 110119	indprintatione are				55-125	70								
LCS (7A10024-BS3)								Extra	cted:	01/10/07 11:	05			
Acenaphthene	EPA 8270C HIVI	15.9	0.0271	1.00	ug/l	10x		20.0	79.5%	(44-125)		0	1/16/07 16:23	
Acenaphthylene	02/00-1111	15.9	0.0252	1.00		н		-	79.5%	(51-125)				
Anthracene	n	15.3	0.0284	1.00	н				76.5%	(50-125)	-		н	
Benzo (a) anthracene	**	14.7	0.0158	0.100	"	"			73 5%	"		_	P	
Benzo (a) pyrene	**	15.3	0.0315	0.100	n	π			76 5%	(47-125)			n	
Benzo (b) fluoranthene	"	15.5	0.0206	0 100	٣				77 50%	(50 125)				
Benzo (k) fluoranthene		15.6	0.0186	0.100		н			79 06/	(36-125)				
Benzo (ghi) pervlene	n	13.0	0,0100	1.00		H	••		0.0%	(40-125)				
Thrutene	n	14.0	0.0270	0.100	"		••		0.0%	(49-125)		-		
		14./	0.0260	0.100					3.5%	(53-125)	••	-		
Shoenz (a,n) an(nracene		15.0	0.0250	0.100					8.0%	(47-125)				
luoranmene		16.3	0.0196	1.00				. 8	1.5%	(55-125)	-		n .	
luorene		15.6	0.0357	1.00				. 7	8.0%	(52-125)				
ndeno (1,2,3-cd) pyrene	"	15.6	0.0246	0.100		n		• 7	8.0%	(49-125)			н	
-Methylnaphthalene	n	13.3	0.0223	1.00	н			" 6	6.5%	(37-125)		••	"	
-Methylnaphthalene	n	14.9	0.0228	1.00	n			" 7	4.5%	(40-125)		-	H	
Japhthalene	· •	14.7	0.0419	1.00	Ħ	n		"7	3.5%	(42-125)			"	

TestAmerica - Seattle, WA

Hund

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Kate Haney, Project Manager

www.testamericainc.com

Page 12 of 15

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite Seattle, WA 98134	207			Project Nar Project Nur Project Ma	me: mber: nager:	BNSF- BN050- Stephen	Skykom 19390-22 Howard	ish A(0) D	· • · · ·			Report Creat 01/23/07 15	ted: 5:04
Polynuclear	r Aromatic (Compounds	s by GC/MS Te	with Hig	h Volun - Seattle,	ne Inject WA	ion - La	aborat	tory Q	Quality C	Contro	l Resu	lts	
QC Batch: 7A10024	Water	Preparatio	n Method: H	EPA 3520C)	,								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spik Amt	e % REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
LCS (7A10024-BS3)								Ext	racted:	01/10/07 11	:05			
Phenanthrene	EPA	16.7	0.0259	1.00	ug/i	10x		20.0	83.5%	(47-125)			01/16/07 16:23	
Pyrene	8270C-HVI	15.0	0.0244	1.00	"	-		۳	75.0%				n	
Surrogate(s): Benzo (a) pyrene-d12 1-Methylnaphthalene-d	10	Recovery:	78.1% 82.1%	Lin	nits: 20-12: 39-12	5% " 5% "							01/16/07 16:23	
LCS Dup (7A10024-BSD3)								Ext	racted:	01/10/07 11	:05			
Acenaphthene	EPA 8270C-HVI	15.3	0.0271	1.00	ug/l	10x		20.0	76.5%	(44-125)	3.85%	(35)	01/16/07 16:57	
Acenaphthylene	"	15.3	0.0252	1.00	"	•		"	76.5%	(51-125)	3.85%	n	н	
Anthracene	11	14.8	0.0284	1.00	*	n		н	74.0%	(50-125)	3.32%	*		
Benzo (a) anthracene	10	13.7	0.0158	0.100		"			68.5%	N	7.04%	n		
Benzo (a) pyrene	n	14.5	0.0315	0.100	"				72.5%	(47-125)	5.37%	۳	n	
Benzo (b) fluoranthene	n	15.5	0.0206	0.100	Ħ	۳			77.5%	(50-125)	0.00%	n	"	
Benzo (k) fluoranthene	**	14.4	0.0186	0.100	n	*			72.0%	(46-125)	8,00%	н		
Benzo (ghi) perylene	10	13.8	0.0296	1.00	"	n		-	69.0%	(49-125)	1.44%	н		
Chrysene	"	14.1	0.0188	0.100	۳		••	'n	70.5%	(53-125)	4.17%			
Dibenz (a,h) anthracene	"	14.9	0.0250	0.100		Ħ			74.5%	(47-125)	4.59%	н	ъ	
Fluoranthene	"	15.7	0.0196	1.00		۳			78.5%	(55-125)	3.75%		н	
Fluorene	"	15.8	0.0357	1.00			••	н	79.0%	(52-125)	1.27%		ħ	
ndeno (1,2,3-cd) pyrene	"	14.7	0.0246	0.100	"			Ħ	73.5%	(49-125)	5.94%		N	
l-Methylnaphthalene		13.1	0.0223	1.00		n		Ħ	65.5%	(37-125)	1.52%	n		
P-Methylnaphthalene	p	14.7	0.0228	1.00					73.5%	(40-125)	1.35%	*	'n	
Naphthalene		14.4	0.0419	1.00	n	*			72.0%	(42-125)	2.06%	n	м	
Phenanthrene	"	15,8	0.0259	1.00	"	*			79.0%	(47-125)	5.54%	"	"	
Pyrene	ŧ	14.3	0.0244	1.00	n	n			71.5%	, ·)	4.78%	n	Ħ	
Surrogate(s): Benzo (a) pyrene-d12 I-Methylnaphthalene-d10)	Recovery:	68.9% 80.2%	Limi	ts: 20-1259 39-1259	% "							01/16/07 16:57	

TestAmerica - Seattle, WA

hund at Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 15

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

BNSF-Skykomish AOJ Project Name: Project Number:

BN050-19390-220 Project Manager: Stephen Howard

Report Created: 01/23/07 15:04

Со	nventional Che	mistry Para	meters by A Test	APHA/E America	PA Meth - Seattle, V	iods - VA	Laborat	ory Qi	iality	Contro	l Resu	lts	,	
QC Batch: 7A10018	Water P	reparation N	lethod: Ge	eneral Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (7A10018-DUP1)				QC Source:	BQA0122-	02		Ext	racted:	01/09/07 1	3:55			
pH	EPA 150.1	8.48			pH Units	1x	8.48				0.00%	6 (10)	01/09/07 13:55	

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 01/23/07 15:04

Notes and Definitions Report Specific Notes: I Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. 04 The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics. R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA Not Reported / Not Available dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD -METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data. Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle WA

ww

The results in this report apply to the samples analyzed in accordance with the chair of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 15

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134-1162

Letter of Transmittal

206.624. 9349 Phone 206.624. 2839 Fax www.retec.com

TO:	Louise B	ardy, Washington Dept	of Ecology DAT	E:	March 13, 2007
RE:	BNSF Sk Monitorii	ykomish Cleanup Site I 1g Report	Discharge PRC	JECT NO:	BN050-19390-210
PLEAS	SE FIND:	✓ Attached	Under separate	cover via:	
		Copy of Letter	Change Order	🗖 Drawir	ngs/Figures 🔲 Plans/Specs
		Samples	Other:		
	Copies	Date	No.		Description
1		March 13, 2007			BNSF Skykomish Cleanup Site Discharge Monitoring Report (per AO DE-2379, Exhibit J)
For <i>i</i>	Approval	🗖 Аррг	oved as Submitted	🗖 Rest	ubmit Copies for Approval
For `	Your Use	Appro	oved as Noted	🗖 Subr	Copies for Distribution nit
Remar	ks:				

Attached is the NPDES Discharge Monitoring Report for the February 2007 monitoring period in accordance with Agreed Order DE-2379, Exhibit J.

Should you have any questions, please feel free to call me.

Sincerely,

The RETEC Group, Inc.

(

Halah M. Voges, P.E. Senior Program Manager

cc: Jeanne Tran, Ecology Bruce Sheppard, BNSF RETEC file

Permittee Name/Address Include Name/Location (if d	S different)			ISCHARG	E MONITO	DRING REP	ORT(DMR)	Г	NOTE: Res completing	ad instructio this form.	ns before
NAME BNSF RAILW.	AY COMPANY FNTAL AVF	С С СПР 12		AGREED ORI EXHJ	DER DE-2379, IBIT J		100		Discharg	le Location	
SEATTLE, W	A 98134		· · · ·	PERMIT	NUMBER	DISC	HARGE NUMBER		Lat 4	7° 42' 3	0" N
NCTITIV BNSE SKVKO	MTCH OTEAN	מוום כדשם	1		INOM	TORING PERI	D]	Long 1.	21°21'	36" W
OVING JENG ITTTTOUS	ALON CLEAR		ŕ	YEAR	MO DA	Y YEP	R MO DAY		NO DIS	CHARGE	\times
LOCATION SKYOMISH,	WA		Γ.	ROM 2007	070	1 TO 200	7 02 28		DISCHARGE	E TO GROU	NDWATER *
		QUALI	TY OR LOAD	ING	QUA	LITY OR CO	VCENTRATION		No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
HYDRAULIC LOADING RATE-	Sample Measurement	* * * * * *		GPD	* * * * *	* * * * *	* * * * *	* *			
PRIMARY APPLICATION RATE	Permit Requirement	* * * * *	30,900		* * * * * *	* * * * *	* * * *			CONT.	METER
HYDRAULIC LOADING RATE-	Sample Measurement	* * * * *		GPD	* * * * *	* * * * * *	* * * * *	* * *			
SECONDARY APPLIC. RATE	Permit Requirement	* * * * *	91,000		* * * * *	*****	* * * * *			CONT.	METER
ТРН	Sample Measurement	* * * * *	* * * * *	* * *	* * * * *	* * * * *		ng/L			
(BEFORE GAC)	Permit Requirement	* * * * *	* * * * * *		*****	* * * * * *	REPORT			01/02	GRAB
НДТ	Sample Measurement	* * * * *	* * * * *	* * *	*****	* * * * * *		ng/I			
(AFTER GAC)	Permit Requirement	* * * * *	* * * * *		* * * * *	* * * * *	208			01/07	GRAB
Hd	Sample Measurement	* * * * *	* * * * *	* * *		* * * * *		STD.			
	Permit Requirement	* * * * *	* * * * *		6.5	* * * * * *	8.5	UNIT		01/07	GRAB
BENZENE	Sample Measurement	* * * * *	* * * * *	* *	* * * * * *	* * * * *		ng/L			
	Permit Requirement	* * * * *	* * * * *		****	* * * * * *	1.0			01/02	GRAB
BTEX	Sample Measurement	* * * * *	* * * * *	* * *	* * * * * *	* * * * *		ng/L			
	Permit Requirement	* * * * * *	*****		*****	* * * * *	100			01/02	GRAB
								- - - -			
NAME/TITLE PRINCIPAL OFFICER	EXECUTIVE	I CERTIFY UNDE ATTACHMENTS WEI IN ACCORDANCE 1	R PENALTY OF LAW ' RE PREPARED UNDER WITH A SYSTEM DES'	THAT THIS DOCUM MY DIRECTION O IGNED TO ASSURE	RENT AND ALL R SUPERVISION THAT		``		TELEPHON	<u> </u>	DATE
Bruce Sheppan	rd/BNSF	QUALIFIED PERSO INFORMATION SU	DNNEL PROPERLY GA BMITTED, BASED ON NAGE THE SYSTEM, (THER AND EVALUA MY INQUIRY OF DR THOSE PERSON	TE THE THE PERSON OR IS DIRECTLY	At 10	Alth				, , (
Manager, Envi	ronmenta	RESPONSIBLE FO	R GATHERING THE II TO THE REST OF MV	VFORMATION, THE KNOWLFDGF AND	INFORMATION	AU U UN		$\overline{\mathcal{G}}$.06)625-	6035 <u></u>	1103112
Remediation	**	ACCURATE, AND A	COMPLETE, I AM AWI	ARE THAT THERE	ARE ORMATION.	SIGNATU H E	DE PRINCIPA		REA NUN	ABER YE	YAC OM AA
TYPED OR PRIN	TED	INCLUDING THE	POSSIBILITY OF FIL	VE AND IMPRISON	MENT FOR	AUTHOF	L VELICUT VILLE) 	200		

COMMENT AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

*LEGAL DESCRIPTION: NE SECTION 26, TOWNSHIP 26N, RANGE 1E.

Permittee Name/Addres: Include Name/Location (if a	5 lífferent)			ISCHARG	E MONITC	RING REP	ORT(<i>DMR</i>)		NOTE: Re completing	ead instructi g this form.	ons before	
NAME BNSF RAILW	AY COMPANY	с стр 17		AGREED ORI EXHJ	DER DE-2379, [BIT J		001		Dischal	rge Locatio	C	
AUUKESS 2434 UUUIU	ENIAL AVE	1 DIC 10		PERMIT	NUMBER	DISC	HARGE NUMBI	R	Lat	47° 42' 3	33" N	
SEATTLE, W	A 78134		1		,I NOM	FORING PERIG	. DC		Long	121°21'	36" W	
FACILITY BNSF SKYKO	MISH CLEAN	JUP SITE		YEAR	MO DA	Y YEA	R MO DF	YY		SCHARG		
LOCATION SKYKOMISH,	WA		μ.	ROM ZOO7	02 01	T0 200	07 02 Z	6	DISCHARC	SE TO GROU	UNDWATER*	
		QUALI	TY OR LOAD	ING	QUAI	ITY OR CON	VCENTRATION		No. of	Frequency	/ Sample	
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type	ĺ
TOTAL CHROMIUM	Sample Measurement	* * * * *	* * * * *	* * *	*****	* * * * * *		ng∕L				1
	Permit Requirement	*****	* * * * * *		* * * * * *	* * * * * *	REPORT			01/14	GRAB	
TOTAL COPPER	Sample Measurement	* * * * *	* * * * *	* *	* * * * * *	* * * * * *		∏/ɓn				
	Permit Requirement	* * * * * *	* * * * *		* * * * *	* * * * * *	REPORT			01/14	GRAB	
TOTAL LEAD	Sample Measurement	* * * * *	* * * * * *	* * *	* * * * *	*****		ng/L				
	Permit Requirement	* * * * *	* * * * *		* * * * * *	* * * * *	17.5			01/02	GRAB	1
POLYNUCLEAR AROMATIC	Sample Measurement	* * * * *	* * * * * *	* * *	* * * * * *	* * * * *		ng∕⊥				1
HYDROCARBONS (PAH)	Permit Requirement	* * * * *	* * * * *		* * * * *	*****	0.01			01/02	GRAB	
TOTAL ARSENIC	Sample Measurement	* * * * *	* * * * *	* * *	* * * * * *	*****		ng/L			-	1
	Permit Requirement	*****	* * * * *		****	* * * * *	REPORT			01/14	GRAB	
				1								
										·····		
NAME/TITLE PRINCIPAL OFFICER	EXECUTIVE	I CERTIFY UNDER ATTACHMENTS WEI IN ACCORDANCE 1	R PENALTY OF LAW RE PREPARED UNDER WITH A SYSTEM DES	THAT THIS DOCUM MY DIRECTION C IGNED TO ASSURE	FENT AND ALL DR SUPERVISION C THAT				TELEPH(ONE	DATE	
Bruce Sheppart	-IBNSF	QUALIFIED PERS INFORMATION SUI	ONNEL PROPERLY GA BMITTED. BASED ON NAGE THE SYSTEM,	THER AND EVALUA MY INQUIRY OF OR THOSE PERSON	ATE THE THE PERSON OR IS DIRECTLY	The second secon	L'ally .				i r C	٢
Manager, Enviror	imental	RESPONSIBLE FO	R GATHERING THE I TO THE BEST OF MY	NFORMATION, THE KNOWLEDGE AND	E INFORMATION BELIEF, TRUE,	STGNATIRE	OF BRINCT		206)625-	-6035 Q	TUUULA	
Remediation TYPED OR PRIN	TED	ACCURATE, AND O SIGNIFICANT PEI INCLUDING THE	COMPLETE. I AM AW NALTIES FOR SUBMI POSSIBILITY OF FI	ARE THAT THERE TTING FALSE INF NE AND IMPRISON	ARE FORMATION, MENT FOR	EXECUTIV	E GEFICER	OR	CODE N			
		KNOWING VIOLAT	L UNS .	++-	- +	JOUTON	TNIJON NOTI					

COMMENT AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here) *LEGAL DESCRIPTION: NE SECTION 26, TOWNSHIP 26N, RANGE 1E.

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207, Seattle, WA 98134-1162 T 206.624.9349 F 206.624.2839 www.ensr.aecom.com

Letter of Transmittal

Attention: Chris Sr	nith, WA Dept of Ecology	Date: April 13,	2007
Project reference: _	BNSF Skykomish	Project number:	BN050-19390-210
We are sending you	the following:		
Number of originals:	Number of copies:	Description:	
1		BNSF Skykomish (Discharge Monitorir	Cleanup Site (WA 0032123) ng Report

Attached is the NPDES Discharge Monitoring Report for the March 2007 monitoring period.

Should you have any questions, please feel free to call me. Sincerely,

1600 A

Halah M. Voges, P.E. Snr Program Manager

Cc: Louise Bardy, Ecology Jeanne Tran, Ecology Bruce Sheppard, BNSF RETEC file

A Trusted Global Environmental, Health and Safety Partner

U:\SHoward\PROJECT\SKYKOMISH\0 PERMITS RODS AGREEMENTS\06 NPDES\070413 DMR Transmitall Chris Smith.doc

Permittee Name/Addres: Include Name/Location (if d	s lifferent)		ŻQ	ATIONAL PO	LLUTANT DISC	RING REP	INATION SYST	ĒM	NOTE: Re completing	ad instructi this form.	ons before
NAME BNSF RAILW.	AY COMPANY		6374	WA-0	032123		001	[-		
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 1P		PERMIT	r NUMBER	DISC	HARGE NUMBI	L) L	UISCNAR		
SEATTLE, W.	A 98134]		LINOM	ORING PERIC	00][Lat 4	1 - 42.	N I
FACILITY BNSF SKYKO	MISH CLEAN	UP SITE		YEAR	MO DA	(YEA	R MO DP	X			
LOCATION SKYKOMISH,	WA			ROM ZOOT	F 03 01	TO 2.00	7 03 31			D D D D D D D D D D D D D D D D D D D	
		QUALI	TY OR LOAD	ING	QUAI	ITY OR CON	NCENTRATION		No. of	Frequenc	/ Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
FLOW (TREATMENT	Sample Measurement	* * * * *		GPM	* * * * *	* * * * *	* * * * * *	* *			
TRAIL NO. 1)	Permit Requirement	*****	500		****	*****	* * * * *			CONT.	METER
FLOW (TREATMENT	Sample Measurement	*****		GPM	*****	* * * * *	*****	* * *			
TRAIL NO. 2)	Permit Requirement	*****	500		*****	* * * * *	* * * * * *			CONT.	METER
CHITOSAN ACETATE	Sample Measurement	*****	*****	***	*****	****		mg/L			
	Permit Requirement	*****	*****		****	*****	0.1			07/07	GRAB
OILY SHEEN	Sample Measurement	*****	* * * * *	* * *	****	* * * * * *		YES/			
	Permit Requirement	*****	* * * * *		****	*****	REPORT	ON		70/70	VISUAL
Hd	Sample Measurement	*****	* * * * * *	* * *		*****		STD.			
	Permit Requirement	*****	*****		6.5	*****	8.5	UNLT		01/02	GRAB
DISSOLVED	Sample Measurement	*****	*****	***		*****	*****	mg/L			
OXYGEN*	Permit Requirement	*****	*****		8	*****	*****			01/02	GRAB
BACKGROUND	Sample Measurement	****		NTU	****	* * * * *	*****	* * *			-
TURBIDITY (1)	Permit Requirement	*****	REPORT		* * * * * *	*****	*****			01/07	GRAB
NAME/TITLE PRINCIPAL OFFICER	EXECUTIVE	I CERTIFY UNDER ATTACHMENTS WER IN ACCORDANCE W	K PENALTY OF LAW KE PREPARED UNDER WITH A SYSTEM DES	THAT THIS DOCUM MY DIRECTION C IGNED TO ASSURE	TENT AND ALL DR SUPERVISION S THAT	1010			OHATTAL	E ST	DATE
Bruce Sheppar	L/BNSF	QUALLFIEU FERSC INFORMATION SUE PERSONS WHO MAN	NNEL FROFERLY GA MITTED, BASED ON MGE THE SYSTEM, CATHERING THE T	THER AND EVALUA MY INQUIRY OF OR THOSE PERSON NEORMETION: THE	THE THE THE PERSON OR VS DIRECTLY	CO Sola	pourd		101 101		11000
Ranager, Envir	2	SUBMITTED IS, T ACCURATE, AND C	O THE BEST OF MY COMPLETE. I AM AW	KNOWLEDGE AND ARE THAT THERE	BELIEF, TRUE, ARE	SIGNATURE	DE PRINCI	PAL	AREA NU	MBER	TAR MO DAY
TYPED OR PRIN	TED	INCLUDING THE F	HALTIES FOR SUBMI POSSIBILITY OF FI	TTING FALSE INI NE AND IMPRISON	FORMATION, MENT FOR	EXECUTIV	TE OFFICER RIZED AGENT	OK	CODE		

COMMENT AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here) *DISSOLVED OXYGEN SHALL BE MONITORED FOR A PERIOD OF 5 WEEKS.

PAGE 1 OF 4

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

Permittee Name/Addres: Include Name/Location (if c	s different)		ΖD				ORT(DMR)	N I	וא∪ ו ⊏. הש completing	au msuucuo this form.	ה ניטוב
NAME BNSF RAILW	AY COMPANY	Z .	6374	WA-0	032123		001		- - -	-	
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 1A		PERMI'	T NUMBER	DISC	HARGE NUMBE	R		Je Location	2
SEATTLE, W	A 98134				INOM	TORING PERIC	D			V 1 1 C 0 L C	N 11
FACILITY BNSF SKYKO	MISH CLEAN	NUP SITE		YEAR	MO DA	Y YEA	R MO DA	Ы			ľ
LOCATION SKYKOMISH,	WA			ROM 200.	70301	TO 200	7 03 3			UDARCD	
		QUALI	TY OR LOAL	DNI	QUAI	LITY OR CON	VCENTRATION		No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
EFFLUENT	Sample Measurement	* * * * *		NTU	*****	*****	* * * * * *	* * *			
TURBIDITY (2)	Permit Requirement	* * * * *	REPORT		*****	* * * * *	* * * * *			01/02	GRAB
INCREASE OVER	Sample Measurement	* * * * *		NTU	* * * * *	* * * * *	*****	* * *			
BACKGROUND (2-1)	Permit Requirement	* * * * *	£*		* * * * *	*****	****	-		01/02	GRAB
BENZENE	Sample Measurement	*****	* * * * *	* * *	*****	* * * * *		ug/L			
	Permit Requirement	*****	****		*****	* * * * *	1.2			01/07	GRAB
BTEX	Sample Measurement	* * * * *	****	* * *	*****	*****		ug/L			
	Permit Requirement	*****	****		*****	*****	100			01/07	GRAB
ТРН	Sample Measurement	* * * * *	* * * * *	* * *	* * * * *	*****		ng/L			
(BEFORE GAC)	Permit Requirement	*****	*****		****	*****	REPORT			01/07	GRAB
НДТ	Sample Measurement	* * * * * *	* * * * * *	* * *	*****	*****		ng/L			
(AFTER GAC)	Permit Requirement	* * * * *	* * * * *		*****	*****	208			01/07	GRAB
LEAD (TR)	Sample Measurement	*****	*****	* * *	*****	*****		ng/L			
	Permit Requirement	* * * * *	* * * * * *		****	* * * * * *	12.5			01/02	GRAB
IRGIDNIGG GIMTU/ GMAN	aventeria aventeria									NE I	DATE DATE
NAME/IIILE FRINCIFAL OFFICER		I CENTIFY UNDER ATTACHMENTS WER IN ACCORDANCE W	FENALTI UF LAW E PREPARED UNDER ITH A SYSTEM DES	THAT THIS DOCUL MY DIRECTION	MENT AND. ALL OR SUPERVISION E THAT		<	<u> </u>	Tenerno		DALE
RIVICE Shopparde/	BNS F	QUALIFIED PERSO INFORMATION SUB	NNEL PROPERLY G? MITTED. BASED ON	THER AND EVALU MY INQUIRY OF	ATE THE THE PERSON OR	1810	~ _				
manager, Envin	ownental	PERSONS WHO MAN RESPONSIBLE FOR	AGE THE SYSTEM, GATHERING THE I	OR THOSE PERSON NFORMATION, TH	NS DIRECTLY E INFORMATION	A A	mon		a.)625-	61350	1,04,19
Remetiction		SUBMITTED IS, T ACCURATE, AND C SIGNIFICANT PEN	O THE BEST OF MY OMPLETE. I AM AM ALTIFS FOR SURMI	KNOWLEDGE AND ARE THAT THERE TTING FALSE IN	BELIEF, TRUE, ARE FORMATION	SIGNATURE	E PRINCI	PAL A	REA NUI	MBER YEA	R MO DAY
TYPED OR PRIN	TED	INCLUDING THE P	OSSIBILITY OF FI	NE AND IMPRISO	NMENT FOR	AUTHOF	LIZED AGENT		200		
COMMENT AND EXPLANATION *WHEN BACKGROUND TURB	OF ANY VIOL	ATIONS (Refe REATER THAN	srence all 50 NTU,	attachment TURBIDITY	s here) IS LIMITE	D TO A 10%	INCREASE C	VER BAC	KGROUND.	_	

TR - MEANS TOTAL RECOVERABLE

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

PAGE 2 OF 4

Permittee Name/Addres: Include Name/Location (if c	s different)		2 🖬	INTIONAL PC	DILLUTANT DISC	RING REPOR	ION SYSTEM T(DMR)	NOTE: comple	Read instru- ting this form	ctions bet 1.	ore
NAME BNSF RAILW	AY COMPAN'	Y	6374	WA-0	032123	0	01	Dico		tion	
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 1A		PERMI	T NUMBER	DISCHAR	SE NUMBER		100 100	11011 2.7 II N	
SEATTLE, W	A 98134		J		INOW	FORING PERIOD		TON	4 1 42	N 10	2
FACILITY BNSF SKYKO	MISH CLEA	NUP SITE		YEAR	MO DA	Y YEAR	MO DAY		DISCHAR	L u	. >
LOCATION SKYKOMISH,	WA			FROM 2007	- 03 0	FOOZ OT	03 31	2		21	7
		QUALI'	TY OR LOA	DNIC	QUAI	LITY OR CONCEN	ITRATION	No. of	Frequei	ncy S	ample
Parameter		Average	Maximum	Units	Minimum	Average Ma	.ximum Un:	tts Excee	1- of Analys	tis	Type
ARSENIC (TR)	Sample Measurement	* * * * *	*****	* * *	*****	* * * * * *	δn	/L			
	Permit Requirement	* * * * * *	*****		*****	*******	360	2 201	0/10	1. S. L	GRAB
ANTHRACENE	Sample Measurement	*****	* * * * * *	* * *	*****	* * * * * *	6n	/L			
	Permit Requirement	* * * * * *	*****		* * * * *	****	2400	1	0/10	2. 4	GRAB
FLUORENE	Sample Measurement	* * * * *	* * * * *	* * *	* * * * * *	* * * * *	δn	/L			
-	Permit Requirement	*****	*****	•	*****	****	640		01/0		GRAB
NAPHTHALENE	Sample Measurement	*****	* * * * *	* * *	*****	* * * * *	ôn	/1			
	Permit Requirement	*****	* * * * *		*****	****	160		01/0	· · · · · · · · · · · · · · · · · · ·	GRAB
PYRENE	Sample Measurement	*****	*****	* * *	*****	*****	6n	./L			
	Permit Requirement	*****	*****		*****	*****	480	2 - 34 - 2 - 2	01/0	े जेन्द्र 2	GRAB
BENZO (a) ANTHRACENE	Sample Measurement	*****	* * * * *	* * *	* * * * *	*****	ôn	/L			
	Permit Requirement	*****	*****		*****	*****	0.01		01/0	17	GRAB
BENZO (b) FLUORANTHENE	Sample Measurement	*****	*****	* *	*****	****	'n	//L			
	Permit Requirement	*****	*****	100	*****	***	0.01		01/0	7	GRAB
									1		
NAME/TITLE PRINCIPAL OFFICER	- EXECUTIVE	I CERTIFY UNDER ATTACHMENTS WER IN ACCORDANCE W	L PENALTY OF LAW LE PREPARED UNDE 11TH A SYSTEM DE	THAT THIS DOCU R MY DIRECTION SIGNED TO ASSUR	MENT AND ALL OR SUPERVISION E THAT	V V	7	ALA T	PHONE	70	
Bruce Shoppard	1BNSF	QUALIFIED PERSO INFORMATION SUB PERSONS WHO MAN	NNEL PROPERLY G MITTED. BASED C NAGE THE SYSTEM,	ATHER AND EVALU N MY INQUIRY OF OR THOSE PERSO	ATE THE THE PERSON OR NS DIRECTLY	AN GAD	0 2. 2.			Ç	51 13
MANDERI ENVIR	nmental	RESPONSIBLE FOR SUBMITTED IS, T ACCURATE, AND C	t GATHERING THE 10 THE BEST OF N 10 MPLETE. I AM P	INFORMATION, TH Y KNOWLEDGE AND WARE THAT THERE	E INFORMATION BELIEF, TRUE, ARE	SIGNATURE DE	PRINCIPAL	- (206) (6	L S-603S	<u>VEAR</u>	YAU ON
TYPED OR PRIN	TED	SIGNIFICANT PEN INCLUDING THE P UNCLUDING THE P	NALTIES FOR SUBM OSSIBILITY OF F OMS	ITTING FALSE IN INE AND IMPRISO	FORMATION, NMENT FOR	EXECUT Y VE C AUTHORIZE	FFICER OR D AGENT	CODE			
		TINTA SATAONY	, GNO,								

COMMENT AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here) TR - MEANS TOTAL RECOVERABLE

PAGE 3 OF 4

Substitute for RDA Form 3320-1 (Rev. 8-96 by WADOE)

Permittee Name/Addres. Include Name/Location (if c	s different)		Ż C	ALIONAL PU				LIVI	и∪т⊏. ке completing	au msuucuo this form.	י מנוטוב י
NAME BNSF RAILW	IAY COMPANY	к	6374	WA-0	032123		001	–			
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 1P		PERMIT	r NUMBER	DISC	HARGE NUMBE	2R	Dischar	ge Location	
SEATTLE, W	IA 98134]		INOM	TORING PERI	OD		Lat 4	7° 42' 37	N
FACILITY BNSF SKYKC	MISH CLEAN	NUP SITE	1	YEAR	MO DA	YEP YEP	LR MO DA	X	T buor		
LOCATION SKYKOMISH,	WA		ш 	ROM ZOOJ	-03 0	1 TO 200	7 03 3			DULARGE	ł
		QUALI'	TY OR LOAD	ING	QUA	LITY OR COI	NCENTRATION		No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
BENZO (K) FLUORANTHENE	Sample Measurement	*****	* * * * *	* * *	* * * * *	*****		ng/L			
	Permit Requirement	* * * * *	*****	r	*****	*****	0.01	1		01/02	GRAB
BENZO (a) PYRENE	Sample Measurement	*****	*****	***	*****	*****		ug/L			
	Permit Requirement	*****	*****	L	*****	*****	0.01	1		01/02	GRAB
CHRYSENE	Sample Measurement	* * * * *	* * * * *	* *	*****	*****		ug/L			
	Permit Requirement	* * * * *	*****		*****	*****	0.01		A. [58]	01/02	GRAB
DIBENZO (a,h) -	Sample Measurement	*****	*****	* *	****	*****		ug/L			
ANTHRACENE	Permit Requirement	* * * * *	*****	, ,	*****	*****	0.01	1		01/02	GRAB
INDENO (1,2,3-	Sample Measurement	* * * * *	* * * * *	* * *	*****	*****		ug/L			
cd) PYRENE	Permit Requirement	*****	*****		*****	*****	0.01			01/02	GRAB
ACENAPHTHENE	Sample Measurement	* * * * *	*****	* * *	*****	*****		ug/I			
	Permit Requirement	*****	****		*****	*****	643			01/02	GRAB
FLUORANTHENE	Sample Measurement	* * * * *	* * * * *	* * *	*****	*****		ug/L			
	Permit Requirement	*****	*****	<u>.</u>	*****	****	90.2			01/01	GRAB
NAME /TTTI E DDINCTONI	RVE/UT TWE							1			
OFFICER		I CENTRENTS UNDER ATTACHMENTS WER IN ACCORDANCE W	E PREPARED UNDER ITH A SYSTEM DES	MY DIRECTION O GNED TO ASSURE	ENT AND ALL R SUPERVISION THAT	(5		IOUA ATT T	2	DATE
Bruce Sheppard	/BNSF	QUALIFIED PERSO INFORMATION SUB	NNEL PROPERLY GAT MITTED. BASED ON AGF THF SYSTEM	THER AND EVALUA MY INQUIRY OF DE THOSE DEPECT	TE THE THE PERSON OR S DIDECTIV	1 APC	//				
Manager, Envir	umental	RESPONSIBLE FOR SUBMITTED IS, T ACCURATE AND C	CATHERING THE IN O THE BEST OF MY	VEORMATION, THE KNOWLEDGE AND	INFORMATION BELIEF, TRUE,	SIGNATURE	OF PRINCI	PAI,	-529 (90	LOSS OV	104 1/3
TYPED OR PRIN	TED	SIGNIFICANT PEN INCLUDING THE P	ALTIES FOR SUBMIT OSSIBILITY OF FIN	TING FALSE INF	ORMATION, MENT FOR	EXECUTIV AUTHOF	E OFFICER (IZED AGENT	OR 	ODE		
COMMENT AND FXPLANATION	OF DNY VIOL	DUTIONS (DOF)	ons. Te ence	++	<u> </u>						

attachments here all (kererence CNOT IS ł 2 ANI 4 ŝ i 2 Ś

PAGE 4 OF 4

 The RETEC Group, Inc.

 1011 SW Klickitat Way, Suite 207, Seattle, WA 98134-1162

 T 206.624.9349
 F 206.624.2839

 www.ensr.aecom.com

Letter of Transmittal

Attention: Louise	Bardy	Date: May 15	, 2007
Project reference:	BNSF Skykomish	Project number:	BN050-19390-210
We are sending you	I the following:	anna an an an an an an an an an an an an	······································
Number of originals:	Number of copies:	Description:	
1		BNSF Skykomish (Monitoring Report	Cleanup Site, Discharge (per AO DE-2379, Exhibit J)

Attached is the Discharge Monitoring Report for the April 2007 monitoring period in accordance with Agreed Order DE-2379, Exhibit J. Please note this is the <u>final</u> discharge monitoring report under AO DE-2379, as this discharge was permitted to occur from November 1, 2006 through March 30, 2007. Although discharge of this final batch of stormwater and water generated through decontamination of the soil stockpile pad on the RY occurred on April 3 and 4, 2007, water treatment was completed in March and the water was not discharged pending receipt of compliance sample analytical results confirming that the treated batch of water met the discharge limits.

Should you have any questions, please feel free to call me.

Best Regards,

Halah M. Voges, P.E., Senior Program Manager

cc:

Jeanne Tran, Ecology Bruce Sheppard, BNSF

RETEC/ENSR file

Merged with ENSR in 2007

A Trusted Global Environmental, Health and Safety Partner

C:\Documents and Settings\hvoges\My Documents\Projects\Skykomish\AO Exhibit J Discharge Sample Results\Letter of Transmitta_April 2007 DMR.doc

Permittee Name/Addres	SS different)		C						NOTE: Re	ad instruction	is before
NAME BNSF RAILV	WAY COMPAN	K	ב]נ	AGREED ORI	DER DE-2379.				Simaidiiinoo		
ADDRESS 2454 OCCII	DENTAL AVE	S, STE 11		EXHJ	IBIT J		+ >		Dischar	ge Location	
SEATTLE, V	WA 98134]	PERMIT	r NUMBER	DISC	HARGE NUMB	ER	Lat 4	17° 42' 33	N
FACILITY BNSF SKYKC	OMTSH CLEAN	VIIP STTE	1		LINOM	FORING PERI	OD		Long 1	121° 21' 3	6" W
LOCATION SKYOMTSH	MD	1		YEAR	MO DA	YEA THE	AR MO DI	AY	NO DI	SCHARGE	
	₩7		1	LOAZ MON	- 010	TO 200	4043	0	DISCHARG	SE TO GROUN	DWATER*
		QUALI	TY OR LOAD	ING	QUAI	ITY OR COL	NCENTRATION	2	No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
HYDRAULIC LOADING RATE-	Sample Measurement	*****	21,300	GPD	* * * * *	*****	*****	* * *	0	CONT.	METER
PRIMARY APPLICATION RATE	Permit Requirement	*****	30,900	1 <u>111111</u>	*****	*****	*****			CONT.	METER
HYDRAULIC LOADING RATE-	Sample Measurement	*****	0	GPD	*****	* * * * *	*****	* * *	0	CeNT.	METER
SECONDARY APPLIC. RATE	Permit Requirement	*****	91,000	1997 - 127	*****	*****	*****			CONT.	METER
НАТ	Sample Measurement	* * * * * *	*****	***	*****	* * * * * *	NU*	ug/L	0	CUNT.	METE
(BEFORE GAC)	Permit Requirement	*****	*****		*****	*****	REPORT			01/07	GRAB
нат	Sample Measurement	*****	*****	* * *	*****	*****	NU	ug/L	0	1/2	GLAG
(AFTER GAC)	Permit Requirement	* * * * *	*****		*****	*****	208	1		01/07	GRAB
Hq	Sample Measurement	*****	*****	* * *	7.65	*****	4.8	STD.	0	1/1	GRAB
	Permit Requirement	*****	*****		6.5	*****	8.5	TINU		01/07	GRAB
BENZENE	Sample Measurement	* * * * * *	*****	* *	****	*****	< <u>N</u>	ug/L	0	1/2	Q LAB
	Permit Requirement	****	*****		*****	*****	1.0	1		01/07	GRAB
BTEX	Sample Measurement	* * * * * *	*****	* * *	****	*****	ND	ua/L	0	1/2-	GRAR
	Permit Requirement	*****	****		*****	*****	100	- -		/01/07	GRAB
NAME/TTTT F DETNOTENI								-			
OFFICER		ATTACHMENTS WER	REPARED UNDER	MY DIRECTION OF	ENT AND ALL R SUPERVISION		, ,		OHA AT A.L		DATE
Roser Shooned	/BNCF	IN ACCURLANCE W QUALIFIED PERSC INFORMATION SUB	VITH A SISTEM DESI DNNEL PROPERLY GAT BMITTED, BASED ON	GNED TO ASSURE HER AND EVALUAT MY INQUIRY OF 7	THAT TE THE THE PERSON OR	100					
Managar Brand	V V V V	PERSONS WHO MAN RESPONSIBLE FOR	AGE THE SYSTEM, O A GATHERING THE IN	R THOSE PERSONS FORMATION, THE	S DIRECTLY INFORMATION	A XO	plant		2027		19 25, 14
Pemediation		SUBMITTED IS, T ACCURATE, AND C	TO THE BEST OF MY COMPLETE. I AM AWA	KNOWLEDGE AND R	BELIEF, TRUE, -	SIGNATUR	OF PRINCI	PAL A	REA NUT	MRF.R YEAU	A MO DAY
TYPED OR PRIN	NTED	INCLUDING THE P	WALTIES FOR SUBMIT POSSIBILITY OF FIN	TING FALSE INFO	ORMATION, MENT FOR	EXECUTI V AUTHOR	E ⁴ OFFICER IZED AGENT	OR OR	ODE		
COMMENT AND EXPLANATION	I OF ANY VIOLA	ATIONS (Refe	erence all a	ttachments	s here)						
*LEGAL DESCRIPTION:	NE SECTION	26, TOWNSH	HIP 26N. RA	NGE 1E.							
Nores ND-	Not de	te cted	svedro	methou	d report	UN IN	AT CW	でし.			
Substitute for EPA Form 33	20-1 (Rev. 8-9	(PADOE) P	ased of	r perto,	r mann cr	Sampl	e resul	R CAH	achme	Mr K).	د ۲۰
Attachments: A.Co	mpliance	2 Sample	2 Analy	hind R	esults.	B-Pe	rtorma	wce L)ater	1)(1	4 2 4
	,	5	•	•)	;			1 3 7 3 7 3		

Permíttee N	Jame/Addres	S 2: fformet)		1						NOTE: Re	ad instructio	ns before
NAME	BNSF RAILW	IAY COMPANY	X	בב	AGREED ORI	DER DE-2379		ORT(DMR)	Γ	completing	this form.	
ADDRESS	2454 OCCID	ENTAL AVE	S, STE 17		EXHJ	CBIT J		1 0 0		Discharg	ge Locatior	
1 01	SEATTLE, W	IA 98134]	PERMIT	NUMBER	DISC	HARGE NUMBH	2R	Lat 4	7° 42' 3.	3" N
FACILITY F	BNSF SKYKO	MTSH CLEAN	VIID STTE			INOM	TORING PERI	OD		Long 1	21°21'	36" W
LOCATION S	SKYKOMTSH	WP		6	YEAR	MO DA		R MO DA	X	NO DIS	SCHARGE	
		Y2M		- ч		104 0	PT 20	<u>37 04 32</u>	_	DISCHARG	E TO GROU	NDWATER *
			QUALI	TY OR LOAD	ING	QUA	LITY OR COI	NCENTRATION		No. of	Frequency	Sample
Paran	neter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
TOTAL CHRO	MUIM	Sample Measurement	*****	* * * * * *	* * *	* * * * *	*****	0,6	ng/L	0	1/2	GRAB
		Permit Requirement	*****	*****		*****	*****	REPORT	,		01/14	GRAB
TOTAL COPP.	ER	Sample Measurement	*****	* * * * *	* * *	*****	*****	11.3	ng/L	0	1/2	GRAB
		Permit Requirement	*****	*****	<u>- 1999) 1</u>	*****	*****	REPORT	L		01/14	GRAB
TOTAL LEAD		Sample Measurement	* * * * * *	*****	* * *	*****	*****	0.14	ug/L	0	1/2	GRAR
		Permit Requirement	*****	*****		*****	*****	17.5	<u>ہ</u> ۔۔۔		01/01	GRAB
POLYNUCLEAR	AROMATIC	Sample Measurement	*****	*****	***	*****	*****	dN	ng/L	0	1/2	SEAS
HYDROCARBON.	S (PAH)	Permit Requirement	****	*****		*****	*****	0.01	1		01/07	GRAR
TOTAL ARSE	NIC	Sample Measurement	*****	*****	* * *	*****	****	3.18	uq/L	0	1/2	GRAB
		Permit Requirement	* * * * * *	*****		*****	*****	REPORT	1		01/14	GRAB
									- J - 000			
NAME/TITLE	PRINCIPAL	EXECUTIVE	I CERTIFY UNDER	PENALTY OF LAW TI	HAT THIS DOCUM	ITT AND ALL				TELEPHON	E	DATE
	OFFICER		ATTACHMENTS WER IN ACCORDANCE W	E PREPARED UNDER N ITH A SYSTEM DESIG NWET DECDEDIV CAME	AY DIRECTION OF	R SUPERVISION THAT	•	2	~			
Bree	Sheppar	J BNSP	INFORMATION SUB PERSONS WHO MAN	MITTED. BASED ON N AGE THE SYSTEM, OF	AY INQUIRY OF 1	THE PERSON OR	1 AC					I
Manage	LY ENVI	n'n ment.	RESPONSIBLE FOR SUBMITTED IS, T	GATHERING THE INN O THE BEST OF MY N	FORMATION, THE KNOWLEDGE AND I	INFORMATION BELIEF, TRUE,	CLUMMUN	LAPER C	2 X	220) (98	60350	105114
L L	ED OR PRINT	TED	ACCURATE, AND C SIGNIFICANT PEN INCLUDING THE P	OMPLETE. I AM AWAL ALTIES FOR SUBMIT' OSSIBILITY OF FINE	KE THAT THERE / TING FALSE INFO E AND IMPRISON	ARE DRMATION, MENT FOR	EXECUTIVE STGUTIVE	CE FEICER	CC AL	REA NUM DDE	IBER YEA	R MO DAY
COMMENT AND E	EXPLANATION	OF ANY VIOLA	ATIONS (Refe	ons. arence all a	ttachment.	hara)	YOU FOR	TNIDA UITT				
*LEGAL DESC	RIPTION: N.+	NE SECTION	26, TOWNSH	IP 26N, RAI	NGE 1E.		(raw) +					
Attachment	K: A. Co	ond lanc	e Some	ole And		Con Ct), <u> </u>				
0:1:4:4:40 0:1:4:4:40					Juner			LATON WIR	MCK 1	1		
substitute ror	EPA FORM 332	0-1 (Rev. 8-9	6 by WADOE)								PAGI	2 OF 2

ATTACHMENT A

Compliance Sample Analytical Results

April 04, 2007

Mike Byers The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: Skykomish AOJ

Enclosed are the results of analyses for samples received by the laboratory on 03/27/07 08:58. The following list is a summary of the Work Orders contained in this report, generated on 04/04/07 17:06.

If you have any questions concerning this report, please feel free to contact me.

Work Order BQC0605 <u>Project</u> Skykomish AOJ ProjectNumber BN050-19390-220

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

	ANALYTICAL REPO	ORT FOR SAMI	PLES	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FTT-2	BQC0605-01	Water	03/26/07 13:15	03/27/07 08:58

TestAmerica - Seattle, WA

Kato Dung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 15

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

Analytical Case Narrative TestAmerica - Seattle, WA

BQC0605

SAMPLE RECEIPT

The samples were received March 27th, 2007 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 5.9 degrees Celsius. The analysis for sample FB was cancelled 03/29/07 per Karl Yost.

PREPARATIONS AND ANALYSIS

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up): No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Total Metals by EPA 6000/7000 Series Methods: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Conventional Chemistry Parameters by APHA/EPA Methods: No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica - Seattle, WA

11100 Haney, Project Manag

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 15

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 r: Mike Byers

Report Created: 04/04/07 17:06

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica - Seattle, WA

				can merre	a - Scan	10, 1171					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQC0605-01	(FTT-2)		W	ater		Sampl	led: 03/2	26/07 13:15		-	
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x	7C27027	03/27/07 14:08	03/27/07 22:36	
Lube Oil Range Hy	drocarbons	в	ND	0.0900	0.500	п.	́н	и		п	
Surrogate(s):	2-FBP			71.2%		53 - 125 %	a			17	
	Octacosane			91.2%		68 - 125 %	н			<i>a</i> · .	

TestAmerica - Seattle, WA

Kate Haney, Project Manager

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

		Total Met	als by El TestAmeri	PA 200 ca - Seatt	Series I le, WA	Method	s			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQC0605-01 (FTT-2)		W	'ater		Sam	pled: 03/2	6/07 13:15			
Arsenic	EPA 200.8	0.00318	0.000430	0.00100	mg/l	1 x	7C29042	03/29/07 12:55	04/02/07 09:05	
Chromium	17	0.000600	0.000260	0.00100	"	"		"	n	J
Copper	н	0.0113	0.000150	0.00100		*	n	- n	1r	
Lead	u	0.00591	0.000140	0.00100		н	н	13		

TestAmerica - Seattle, WA

Kato Dung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

he: Skykomish AOJ bber: BN050-19390-220 ager: Mike Byers

Report Created: 04/04/07 17:06

		Volati	ile Organic	Compou estAmeric	ands b	y EPA M le, WA	lethod	8260B			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQC0605-01	(FTT-2)		W	ater		Sampl	ed: 03/2	6/07 13:15			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	lx	7C28042	03/28/07 10:42	03/28/07 20:14	
Ethylbenzene		н	ND	0.125	0.500		n	н	"	11	
Toluene		10	ND	0.127	0.500	w		n	"	n	
Total Xylenes		11	ND	0.298	3.00	n	н	n		15	
Surrogate(s):	1,2-DCA-d4			96.0%		70 - 130 %	п			tř	
0	Toluene-d8			102%		75 - 125 %	п			n	
	4-BFB			108%		75 - 125 %				"	

TestAmerica - Seattle, WA

Kato Dung

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 : Mike Byers

Report Created: 04/04/07 17:06

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQC0605-01 (FTT-2)		W	ater		Samp	led: 03/2	6/07 13:15			
Acenaphthene	EPA 8270C-HVI	ND	0.00271	0.100	ug/l	lx	7C27028	03/27/07 14:11	03/28/07 12:19	
Acenaphthylene	u.	ND	0.00252	0.100	u		"	"	R	
Anthracene	u	ND	0.00284	0.100			U	н	32	
Benzo (a) anthracene	и	ND	0.00158	0.0100			11		н	
Benzo (a) pyrene	u	ND	0.00315	0.0100		н	"	"		
Benzo (b) fluoranthene	11	ND	0.00206	0.0100	n		n	*1		
Benzo (k) fluoranthene	и	ND	0.00186	0.0100	ю	"	n		п	
Benzo (ghi) perylene	и	ND	0.00296	0.100		н	"	**		
Chrysene	n	ND	0.00188	0.0100	"	н.	"	"		
Dibenz (a,h) anthracene	"	ND	0.00250	0.0100		n	"			
Fluoranthene	n	ND	0.00196	0.100	н	"		14	. "	
Fluorene	n	ND	0.00357	0.100		и				
Indeno (1,2,3-cd) pyrene	n	ND	0.00246	0.0100	н		"	н	11	
1-Methylnaphthalene	17	ND	0.00223	0.100	н	н	"	n	"	
2-Methylnaphthalene		ND	0.00228	0.100	н	19	н	8	и	
Naphthalene		ND	0.00419	0.100	н		"		н	
Phenanthrene	н	ND	0.00259	0.100	11	п	"		11	
Pyrene .	п	ND	0.00244	0.100	۳.			v	"	
Surrogate(s): Benzo (a) pyrene-d12		68.5%		20 - 125 %	"			u	
I-Methyl	Inaphthalene-d10		66.4%		39 - 125 %	"				

TestAmerica - Seattle, WA

Kato Duurg Kate Haney, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

he: Skykomish AOJ hber: BN050-19390-220 ager: Mike Byers

Report Created: 04/04/07 17:06

	Conventio	nal Chemi	stry Para FestAmeric	a meters a - Seattle	by AF , WA	PHA/E	PA Meth	nods	. <u></u>	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQC0605-01 (FTT-2)		W	ater		Sam	pled: 03/2	26/07 13:15			
PH Note: Fiel PH resul	Performa Id, data ts sinc	s.94 - are e ho	nse oldin	d 1 g +	H Units	Ix DM e l	7C28044 R- (NQS	03/27/07 13:	00 03/27/07 13:00 eportina epodod,	A-01

TestAmerica - Seattle, WA

lund Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

The RETE 1011 SW K Seattle, WA	C Group, Inc. lickitat Way, Suite 20 \ 98134	7			Project Nar Project Nur Project Mar	ne: S mber: J nager: N	Skyko 3N050- Aike B	mish AO. -19390-220 yers))					Report Create 04/04/07 17	ed: :06
	Semivolatile Petr	roleum Pro	ducts by l	NWTPH-Dx Te:	(w/o Acio stAmerica -	d/Silica G - Seattle, W	el Clea	an-up) -	Labo	ratory	' Quality	' Con	trol Re	sults	
QC Batc	h: 7C27027	Water	Preparatio	n Method: H	EPA 3510C	2							<u> </u>	······	
Analyte	· ·	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7C270	27-BLK1)								Ext	racted:	03/27/07 14	:08			
Diesel Range Hydro	carbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	lx							03/27/07 21:18	
Lubc Oil Range Hyd	irocarbons	u	ND	0.0900	0.500	"	a							u.	
Surrogate(s):	2-FBP Octacosane		Recovery:	76.4% 94.4%	Lin	nits: 53-125% 68-125%	" , "							03/27/07 21:18 "	
LCS (7C2702'	7-BS1)								Ext	racted:	03/27/07 14	:08			
Diesel Range Hydro	carbons	NWTPH-Dx	1.96	0.0400	0.250	mg/l	1 x		2.00	98.0%	(61-132)			03/27/07 21:44	
Surrogate(s):	2-FBP Octacosane		Recovery:	87.2% 101%	Lin	nits: 53-125% 68-125%	и , и							03/27/07 21:44 "	
LCS Dup (7C	27027-BSD1)								Ext	racted:	03/27/07 14	:08			
Diesel Range Hydro	carbons	NWTPH-Dx	1.76	0.0400	0.250	mg/l	1 x		2.00	88.0%	(61-132)	10.8%	5 (40)	03/27/07 22:10	
Surrogate(s):	2-FBP Octacosane		Recovery:	82.8% 96.0%	Lin	nits: 53-125% 68-125%	"						· · · · · ·	03/27/07 22:10 "	

TestAmerica - Seattle, WA

Hund ated Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 15

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

	Total N	letals by E	PA 200 Ser Te	ies Metho stAmerica -	ds - La Seattle,	borato WA	ry Qualit	ty Cont	rol R	esults		_		
QC Batch: 7C29042	Water	Preparation	Method: I	EPA 200 Se	eries									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7C29042-BLK1)								Ext	racted:	03/29/07 12	2:55			
Arsenic	EPA 200.8	ND	0.000430	0.00100	mg/l	lx							03/31/07 04:00	
Chromium		ND	0.000260	0.00100	u	"							н	
Copper	"	ND	0.000150	0.00100	16									
Lead	**	ND	0.000140	0.00100	17	"							н	
LCS (7C29042-BS1)								Ext	racted:	03/29/07 12	:55			
Lead	EPA 200.8	0.0764	0.000140	0.00100	mg/l	lx		0.0800	95.5%	(85-115)			03/31/07 04:18	
Copper	10	0.0822	0.000150	0.00100	ы			n	103%	"				
Arsenic		0.0832	0.000430	0.00100	"	п		в	104%	"			"	
Chromium		0.0828	0.000260	0.00100	п	"			104%				н	
Duplicate (7C29042-DUP1)				QC Source:	BQC0651	-01		Exte	acted:	03/29/07 12	:55			
Arsenic	EPA 200.8	0.000930	0.000430	0.00100	mg/l	lx	0.000970				4.21%	(20)	03/31/07 04:35	R4, .
Copper	и	0.0495	0.000150	0.00100		"	0.0496				0.202%	, "	**	
Lead		0.000240	0.000140	0.00100			0.000180				28.6%		в	R4, .
Chromium		0.000810	0.000260	0.00100		"	0.000900				10.5%	н	n	R4, .
Matrix Spike (7C29042-MS1)				QC Source:	BQC0651-	-01		Extr	acted:	03/29/07 12	:55			
Lead	EPA 200.8	0.0826	0.000140	0.00100 -	mg/l	1x	0.000180	0.0800	103%	(75-125)			03/31/07 04:24	
Copper		0.136	0.000150	0.00100		u	0.0496		108%	п			11	
Chromium	и	0.0862	0.000260	0.00100		"	0.000900	и	107%	н			n	
Arsenic		0.0876	0.000430	0.00100		"	0.000970	"	108%	"			в	
Matrix Spike (7C29042-MS2)				QC Source:	BQC0653-	-01		Extr	acted:	03/29/07 12	:55			
Chromium	EPA 200.8	0.0826	0.000260	0.00100	mg/l	1x	0.000400	0.0800	103%	(75-125)			03/31/07 04:30	
Lead	n	0.0782	0.000140	0.00100	н	'n	ND		97.8%					
Соррег	u	0.0839	0.000150	0.00100	н		0.00394	н	100%	н			"	
Arsenic	*1	0.0837	0.000430	0.00100	"		0.000640	41	104%				n	

TestAmerica - Seattle, WA

ung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

		Volatile Orga	nic Comp	ounds by EP Tes	A Methoo tAmerica -	d 8260B - Seattle, WA	Lab A	oratory (Quality	y Con	trol Res	ults			
QC Bate	ch: 7C28042	Water	Preparatio	n Method: E	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	°∽ REC	(Limits)	°% RPD	(Limits)) Analyzed	Notes
Blank (7C28))42-BLK1)	,							Ext	racted:	03/28/07 1):00			
Benzene		EPA 8260B	ND	0.114	0.500	ug/l	Ix							03/28/07 12:33	
Ethylbenzene			ND	0.125	0.500		14							"	
Tolucne		"	ND	0.127	0.500		ч								
Total Xylenes		· •	ND	0.298	3.00	"	в							"	
Surrogate(s):	I,2-DCA-d4 Toluene-d8 4-BFB		Recovery:	98.0% 102% 114%	Lim	nits: 70-130% 75-125% 75-125%	n 11 11							()3/28/07 12:33 " "	
LCS (7C2804	2-BS1)								Ext	acted:	03/28/07 10	00:00			
Benzene		EPA 8260B	16.9	0.114	0.500	ug/l	lx		20.0	84.5%	(80-120)			03/28/07 11:12	
Ethylbenzene			18.3	0.125	0.500	n				91.5%	(75-125)			11	
Tolucne		п	18.8	0.127	0.500					94.0%				н	
Total Xylenes		"	52.2	0.298	3.00	n			60.0	87.0%					
Surrogate(s):	I,2-DCA-d4		Recovery:	96.0%	Lim	its: 70-130%	"							03/28/07 11:12	
	Toluene-d8 4-BFB			102% 112%		75-125% 75-125%	0 11							"	
LCS Dup (7C	28042-BSD1)								Extr	acted:	03/28/07 10	:00			
Benzene		EPA 8260B	18.1	0.114	0.500	ug/l	lx .		20.0	90.5%	(80-120)	6.86%	(20)	03/28/07 11:53	
Ethylbenzene		н	19.3	0.125	0.500	н				96.5%	(75-125)	5.32%		я .	
Toluene		19	19.9	0.127	0.500		**			99.5%	н	5.68%	n	и	
Total Xylenes			54.3	0.298	3.00				60.0	90.5%	р	3.94%	n	11	
Surrogate(s):	1,2-DCA-d4 Toluene-d8 4-BFB		Recovery:	97.0% 102% 112%	Limi	its: 70-130% 75-125% 75-125%	1) 11 11							03/28/07 11:53 "	

TestAmerica - Seattle, WA

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

Polynuclear	Aromatic C	ompounds	s by GC/MS Te	5 with Hig l estAmerica -	h Volum · Seattle,	ie Inject WA	ion - La	aborate	ory Q	uality C	ontro	l Result	ts	
QC Batch: 7C27028	Water 1	Preparation	n Method:	EPA 3510C	:									
Analyte	Method	Result	MDL'	* MRL	Units	Đil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7C27028-BLK1)								Extr	acted:	03/27/07 14	:11			
Acenaphthene	EPA 8270C-HVI	ND	0.00271	0.100	ug/l	lx							03/28/07 10:42	
Acenaphthylene		ND	0.00252	0.100	D	11							н	
Anthracene	н	ND	0.00284	0.100	**	n							"	
Benzo (a) anthracene	U.	ND	0.00158	0.0100		*1							н.	
Benzo (a) pyrene		ND	0.00315	0.0100		11					••		н	
Benzo (b) fluoranthene	н	ND	0.00206	0.0100	н								14	
Benzo (k) fluoranthene		ND	0.00186	0.0100	u									
Benzo (ghi) perylene	"	ND	0.00296	0.100	0	н							н	
Chrysene	п	ND	0.00188	0.0100	"									
Dibenz (a,h) anthracene		ND	0.00250	0.0100	u								"	
Fluoranthene	9	ND	0.00196	0.100									н	
Fluorene	n	ND	0.00357	0.100		н			••				n	
Indeno (1,2,3-cd) pyrene	n	ND	0.00246	0.0100	"								н	
1-Methylnaphthalene	18	ND	0.00223	0.100	н	н								
2-Methylnaphthalene		ND	0.00228	0.100									u	
Naphthalene	19	ND	0.00419	0.100	0									
Phenanthrene	"	ND	0.00259	0.100		n							n	
Pyrene		ND	0.00244	0.100		u.		••,					μ	
Surrogate(s): Benzo (a) pyrene-d12		Recovery:	74.2%	Lim	nits: 20-125	% "							03/28/07 10:42	• • • • • • • • • • • • • • • • • • •
1-Methylnaphthalene-d10			67.1%		39-125	5% "							"	
LCS (7C27028-BS1)								Extra	acted:	03/27/07 14:	11			
Acenaphthene	EPA	14.3	0.0271	1.00	ne/l	10x		20.0	71.5%	(44-125)		(3/28/07 11-14	
	8270C-HVI				8					()				
Accnaphthylene		16.3	0.0252	1.00	**			н	81.5%	(51-125)				
Anthracene		17.2	0.0284	1.00	"				86.0%	(50-125)				
Benzo (a) anthracene		14.5	0.0158	0.100	"	، ۳			72.5%				н	
Benzo (a) pyrene	н	16.1	0.0315	0.100		н		10	80.5%	(47-125)			u	
Benzo (b) fluoranthene		12.5	0.0206	0.100				Ð	62.5%	(50-125)			**	
Benzo (k) fluoranthene		17.9	0.0186	0.100	39			u	89.5%	(46-125)				
Benzo (ghi) perylene		18.4	0.0296	1.00	n	n		11	92.0%	(49-125)			D	
Chrysene		16.2	0.0188	0.100					81.0%	(53-125)				
Dibenz (a,h) anthracene		18.7	0.0250	0.100				"	93.5%	(47-125)			н	
Fluoranthene		17.9	0.0196	1.00	"	"		н	89.5%	(55-125)			н	
Fluorene	п	14.7	0.0357	1.00		n		n	73.5%	(52-125)			u	
Indeno (1,2,3-cd) pyrene	n	18.9	0.0246	0.100		11		н	94.5%	(49-125)			и	
1-Methylnaphthalene	11	9.76	0.0223	1.00		"		н	48.8%	(37-125)			и	
2-Methylnaphthalene	"	10.5	0.0228	1.00	. 11	"		u	52.5%	(40-125)			11	
Naphthalene	n	11.4	0.0419	+ 1.00		n		"	57.0%	(42-125)			51	

TestAmerica - Seattle, WA

Kate Haney, Project Manager

www

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

The RETE	C Group, Inc. lickitat Way, Suite 20	17			Project Nan Project Nur	ne: ober:	Skykor BN050-	nish AO	J n					Report Creat	-d-
Seattle WA	0813 <i>1</i>	,,			Project Mar	ager	Mike Br	19390-22	0					04/04/07 17	.06
Seattle, WA	90194						MIKE Dy	y CI S							.00
[Polynuclear	Aromatia C	omnounds	hy CC/MS	with High	Volum	o Inicat	ion I	horat			ontro	Doguli		
	1 Olynucical 2	Momane C	ompounds	Te	stAmerica -	Seattle,	WA	ion - L.	aborati	луQ		UHTIU	I Kesuit		
QC Bate	h: 7C27028	Water	Preparatior	n Method:	EPA 3510C										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (7C27028	8-BS1)								Extr	acted:	03/27/07 14	1:11			
Phenanthrene		EPA	15.5	0.0259	1.00	ug/l	10x		20.0	77.5%	(47-125)			03/28/07 11:14	
Pyrene		8270C-HVI "	14.3	0.0244	1.00		н			71.5%	в			n	
Surrogate(s):	Benzo (a) pyrene-d12		Recovery:	75.9%	Lin	nits: 20-125	% "							03/28/07 11:14	
	1-Methylnaphthalene-d10			53.1%		39-12	5% "								
LCS Dup (7C)				Extracted: 03/27/07 14:11											
Acenaphthene		EPA 8270C-HVI	13.1	0.0271	1.00	ug/l	10x		20.0	65.5%	(44-125)	8.76%	ii (35)	03/28/07 11:46	
Acenaphthylene		"	14.8	0.0252	1.00				v	74.0%	(51-125)	9.65%	, n B	и	
Anthracenc		"	16.6	0.0284	1.00				н	83.0%	(50-125)	3.55%	, n	"	
Benzo (a) anthracene			13.7	0.0158	0.100	н	ч		"	68.5%		5.67%	5 11	"	
Benzo (a) pyrene		u	15.4	0.0315	0.100					77.0%	(47-125)	4.44%	, "	1+	
Benzo (b) fluoranther	ne	u.	12.1	0.0206	0.100	н				60.5%	(50-125)	3.25%	, п	u	
Benzo (k) fluoranther	ne	в	17.3	0.0186	0.100	"			п	86.5%	(46-125)	3.41%	, "	8	
Benzo (ghi) perylene		н	17.6	0.0296	1.00		11		۳	88.0%	(49-125)	4.44%	1 10		
Chrysene		"	15.4	0.0188	0.100	н	"		**	77.0%	(53-125)	5.06%	, "		
Dibenz (a,h) anthrace	ene	н	17.7	0.0250	0.100		"		n	88.5%	(47-125)	5.49%	, "	н	
Fluoranthene			16.9	0.0196	1.00		n		'n	84.5%	(55-125)	5.75%	, "	14	
Fluorene			14.0	0.0357	1.00	*	н		"	70.0%	(52-125)	4.88%	, "		
Indeno (1,2,3-cd) pyr	ene	н	17.9	0.0246	0.100					89.5%	(49-125)	5.43%	, "	13	
I-Methylnaphthalene		n	9.28	0.0223	1.00				н	46.4%	(37-125)	5.04%	11	u	
2-Methylnaphthalene		н	9.89	0.0228	1.00	11			n	49.4%	(40-125)	5.98%	, и	н	
Naphthalene		н	10.7	0.0419	1.00		11		ю	53.5%	(42-125)	6.33%	н	13	
Phenanthrene			14,4	0.0259	1.00		н			72.0%	(47-125)	7.36%	и		
Pyrcne		н	13.3	0.0244	1.00	P	"		н	66.5%	"	7.25%	"	n	
Surrogate(s):	Benzo (a) pyrene-d12		Recovery:	63.0%	Limi	ts: 20-125	% "							03/28/07 11:46	
	1-Methylnaphthalene-d10			50.2%		39-125	% "							"	

TestAmerica - Seattle, WA

to Dung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 15

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Mike Byers

Report Created: 04/04/07 17:06

Con	ventional Cher	mistry Parai	meters by A Test	APHA/E America -	PA Meth · Seattle, W	ods - 'A	Laborat	ory Quality Control Results
QC Batch: 7C28044	Water F	Preparation N	lethod: G	eneral Pr	eparation			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Notes Amt REC
Duplicate (7C28044-DUP1)				QC Source:	BQC0605-0)1		Extracted: 03/27/07 13:00
pH	EPA 150.1	5.94			pH Units	lx	5.94	0.00% (10) 03/27/07 13:00

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: Skykomish AOJ BN050-19390-220

Mike Byers

Report Created: 04/04/07 17:06

Notes and Definitions Report Specific Notes: A-01 pH in water by EPA Method 150.1 is a field parameter with a holding time of 15 minutes per 40CFR Part 136. Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit J (MDL). The user of this data should be aware that this data is of limited reliability. Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. R4 Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA Not Reported / Not Available dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). -METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution Dil found on the analytical raw data. Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.

 Electronic
 - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 15

ATTACHMENT B

Performance Data including Field pH measurements (laboratory analytical results for operational purposes <u>only</u> except for TPH results for *GAC In* results – these data were collected prior to complete treatment of batch that was discharged)

BNSF Skykomish Levee Remediation Project Containment Pad Batch Treatment System Operations and Discharge Report for April 2007

This report is excerpted from the FINAL WTF System Operations and Discharge Report for the batch processing of water obtained from the contaminated containment pad for the Skykomish Levee Remediation Project. The Final WTF System Operations and Discharge Report that summarizes water treatment for the entire project will be provided to ReTec during the month of May 2007.

In summary for the month of April 2007, Wilder Construction Company treated and batch discharged a total of 28,400 gallons of water by means of ground surface application to the western infiltration area. This volume of water was treated and discharged as Batch 2. All water was treated during the month of March, but was not discharged until April 3rd and 4th, pending receipt of compliance analytical data from Test America that confirmed that all parameters were within the discharge permit limits. All water has been treated and no further water will be treated onsite for this phase of the project.

Wilder had originally treated the water of Batch 2 immediately after the first treatment of Batch 1 in March 2007. However, performance samples collected by Wilder indicated that several individual PAH constituents were identified with concentrations in excess of permit limits.

In efforts to achieve treatment compliance with the modified discharge permit for both Batch 1 and Batch 2 water volumes, Wilder performed waste treatability studies at bench-scale in the onsite field laboratory. Results of this study were used to modify the treatment system and processing chemistry to accommodate the non-reactive soil/rock fine particles, and the elevated TPH/PAH constituents adhereing to the particle fines. Because Batch 2 water consisted of waste water generated from the tail-end of the pad decontamination and tank cleaning efforts, substantial amounts of oil sheen, fuel oil odor, and suspended solid fines were evident in the waste water. The treatment regime used to process water to meet compliance for Batch1 water was again modified for Batch 2 water to consist of the following sequential process adjustments:

- pH adjustment to 3.0-3.5 SU with HCl and thorough mixing,
- mixing in a specifically activated bentonite pre-shurried onsite,
- pH adjustment to the weak acidic range and thorough mixing,
- 12 ppm Chitosan dosing,
- batch settling/clarification for a period of at least 24 hours,
- supernatant decanting

Wilder Construction Company 1525 East Marine View Drive Everett, Washington 98201-1927 (425) 551-3100 FAX (425) 551-3116

- supernatant filtration by sand, 1 um, and 0.5 um filters, respectively,
- activated carbon adsorption of filtrate with a contact time of nearly 120 minutes (~35-37 gpm through 15,000 lbs. GAC), and
- a final pH adjustment with carbon dioxide to within permit range.

Wilder resampled and analyzed the water prior to, between, and after carbon cells (GAC-Out from holding tanks) for performance control purposes. RUSH results reported verbally by CCI to Wilder suggested all parameters were within permit limits, triggered the analyses of final compliance sampling and testing. Water discharged on April 3 and 4 was in accordance with all permit limits. This water was sampled on 3/26/2007 and analyzed by Test America with the "Partial" Results reported to Wilder on 3/29/2007. Results of the sampling event for sample FTT -2 (Final Treated Tanks – Batch 2) were as follows:

Parameter	Result	Units	Comments
Total flow 4/3 4/4	28,400 7,100 21,300	gallons gallons gallons	total for the period total for day total for day
pН	7.65 - 7.80	S.U.	field data, TA results exceeded holding time
Turbidity TPH-Dx (diesel) TPH-Dx (lube oil) As Cr Cu Pb	0.91 - 1.12 ND ND * * *	NTU	field data
PO BETX	ND	ug/L	
PAH'S	NU	ug/L	

Batch 1 (April Discharge)

* Not reported to Wilder in Test America "PARTIAL" data of 3/29/2007.

All water was discharged to the western discharge infiltration area in batch. A copy of Wilder's field data tracking form is attached, along with Wilder's performance sample data and the "Partial" compliance sample results from Test America.

Wilder Construction Company 1525 East Marine View Drive Everett, Washington 98201-1927 (425) 551-3100 PAX (425) 551-3116 Sludges, precipitated solids, other highly contaminated treatment system and pad residuals, and final decon fluids were removed from the site by vacuum truck and disposed offsite at a licensed disposal facility. The water treatment system was fully deactivated, decontaminated and demobilized during the month of April, including the removal and disposal of activated carbon. The carbon cells (clean) and a few ancillary system components (some pumps and hose, field lab, etc.) will be demobilized upon Wilder's final departure from the site.

Wilder Construction Company 1325 East Marine View Drive Everett, Washington 98201-1927 (425) 551-3100 FAX (425) 551-3116

3118	30,900 gpd	91,600 gpd	Flowrate for the Day (gallons/min * 1440)	37,1009925	27,400	9 500432	100 201	21300942						I DAC 1				K-		
Lafe	Primary Application Area Discharge Limit Secondary	Pipercation Area Discharge Limit	Flowrate (Gallons/Min)	6 Og pm	6 Ciqum	570000	lo Carron	(504,202							XX	77	 Б			
w kalu			Total Time Discharged	Anoner Sher	7.4 1125	3 OX2 >	2. Ours	6 B 1423												
			Total Galloris Discharged	15, 500	27,400	27 000	_10C	21.300	の工業											
Stockpile Test		\mathcal{P}	Ending Meter Are (Gallons)	4840	18 743 00	~ 19071 w	414330.W	N1960320	E S											
Skykomish	A C	5	ing tr tr tr tr tr tr tr	10 10m	80 3.20	20 × 100	verne ac	10 1 36° ×		-										
	J-E	-	Beginn Mete (gallor	418310	1418969	14.816	193191	1000	140							-	 	-		
			Begin dity Time	C SAM	13 10.V	4 540	12	71, 136				-								
	1 Kot		st he n 6.5 Turbi Z Z.2		0~	7		1424								-				-
	The state	2	pH (mu betwee on and 8.5	6.1		17.7		ين 1.1						-						
	24		Col broat	1.07 7 CH	3.61 7 CA	5.67 2 CA	-61 104 C				÷.					-				
			S. Date		2-E	2.2	270 277 277	NH N					1	3200					1	
				The second)		4	r yht z V	P.S.	Y.					-					

1 of 1

Condiunal

March 29, 2007

Stephen Howard The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: Skykomish AOJ

Enclosed are the results of analyses for samples received by the laboratory on 03/27/07 08:58. The following list is a summary of the Work Orders contained in this report, generated on 03/29/07 08:55.

If you have any questions concerning this report, please feel free to contact me.

		-		
Work Order	Proj	ect	ProjectNu	mber
BQC0605	Skyl	comish AOJ	BN050-19	390-220
				1 100 million and an

TestAmerica - Seattle, WA

wind

Kate Haney, Project Manager

The results in this report upply to the samples inalised in pecendones with the shown of custody document. This analytical report shall not be repredeneed accept in full, without the written uppergul of the laboratory.

www.testamericainc.com

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Partial Report

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 03/29/07 08:55

	ANALYTICAL REPO	RT FOR SAM	PLES	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FTT-2	BQC0605-01	Water	03/26/07 13:15	03/27/07 08:58

TestAmerica - Scattle, WA

hung

Kate Haney, Project Manager

The results in this report apply in the samples analyzed in accordance with the chain of custory document. This analytical report shall not be reproduced except in full, without the written opproval of the lobaratory.

www.testamericainc.com

ı.

Partial Report

•••••	Project Name:	SKYNUMSH (100	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	03/29/07 08:55

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica - Seattle, WA MRL Units Dil Batch Prepared Analyzed Notes MDL* Analyte Method Result Sampled: 03/26/07 13:15 Water BQC0605-01 (FTT-2) 03/27/07 22:36 0.0400 0.250 mg/l 1x 7027027 03/27/07 14:08 NWTPH-Dx NÐ Diesel Range Hydrocarbons н 14 • 0.0900 0.500 н ND • Lube Oil Range Hydrocarbons ... n 53 - 125 % Surrogate(s): 2-FBP 71.2% м 68 - 125 % н 91.2% ()ctacosane

TestAmerica - Scattle, WA

w

Kate Haney, Project Manager

without the written approval of the laboratory.

The results in this report opply to the samples analyzed in accordance with the chain of custody dimension. This analytical report shall not be reproduced except in full.

www.testamericainc.com

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Partial Report

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

Project Name: Project Number: Project Manager:

BN050-19390-220 Stephen Howard

Skykomish AOJ

Report Created: 03/29/07 08:55

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQC0605-01 (F	TT-2)		Wa	iter		Sample	ed: 03/2	6/07 13:15			
Acenaplithere	EPA 8	270C-HVI	ND	0.00271	0 100	ug/l	Ix	7027028	03/27/07 14 11	03/28/07 12:19	
Acenaphthylene	•	•	ND	0,00252	0,100	н	н	**	•	и	
Anthracene		•	ND	0.00284	0.100	n		-	*	21	
Benzo (a) anthracene		•	ND	0.001\$8	0.0100	н	*	-	•	n	
Benzo (a) pyrene	•	•	ND	0.00315	0.0100	n	-		-	н	
Benzo (b) fluoranthene	•	•	ND	0.00206	0.0100	**	*	*1	Π	n	
Benzo (k) fluoranthene		1	ND	0,00186	0.0100	•	*	•		-	
Benzo (ghi) perylene		٩	ND	8,00296	0.100	-	-	#	r.	*	
Chrysene	-	•	ND	0.00188	0,0100	•	۳		н	-	
Dibenz (a,h) anthracen	e "	•	NÐ	0.00250	0.0100	•	"	*	· n	4	
Fluoranthene	-	-	ND	0.00196	0 1 0 0			*	**	•	
Fluorene	•	•	ND	0.00357	0.100	al.	*	**		-	
Indeno (1,2,3-cd) pyrei	10		ND	0.00246	0,0100	*	"	-	*	*	
1-Methylnaphthalene			ND	0.00223	0.100		н	•	**	•	
2-Methylnaphthalene	,		ND	0.00228	0100			•	-	**	
Naphthalenc		,	ND	0.00419	0.100	•	*	-	•	n	
Phenanthrene	14	•	ND	0.00259	0.100	•	-4	N	-	*	
Pyrene		,	ND	0.00244	0.100	•	-	•	n	и	
Surrogate(s): B	enzo (a) pyrene-dl2			68.5%		20 - 125 %	*			~	
1.	-Methylnaphthalene-d10			66.4%		39 - 125 %	"			"	

TestAmerica - Scattle, WA

www

Kate Haney, Project Manager

The results in this report apply to the samplex analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

Page 4 of 8

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

The RETEC Group, Inc. Skykomish AOJ Project Name: 1011 SW Klickitat Way, Suite 207 BN050-19390-220 Project Number: Report Created: Seattle, WA 98134 Project Manager: Stephen Howard 03/29/07 08:55 Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7C27027 Water Preparation Method: EPA 3510C e % (Limits) REC Spike Analyte Method Result MDL^ MRL Units Dil Source RPD (Limits) Analyzed Notes Result Amt Extracted: 03/27/07 14:08 Blank (7C27027-BLK1) Diesel Range Hydrocarbons NWTPH-Dx ND 0.0400 0,250 i x •• •• 03/27/07 21:18 mg/l ••• ••• --Lube Oil Range Hydrocarbons 51 ND 0.0900 0.500 . •• • ------------03 27 07 21:18 ** Surrogate(s). 24/BP Recovery: 76.1% Linuts: 53-135% 68-125% 4 n 94.4% Octacovane LCS (7C27027-BS1) Extracted: 03/27/07 14:08 NWTPH-Dx 1.96 0.0400 0.250 2.00 98.0% (61-132) 03/27/07 21-44 Diesel Range Hydrocarbons mg/l 1x ... --... 03 27 07 21 44 Limits: 33-125% 2-FBP 87.2% Surrogate(s) Recovery: Ocucosane 101% 68-12594 я н LCS Dup (7C27027-BSD1) Extracted: 03/27/07 14:08 2.00 88.0% (61-132) Diesel Range Hydrocarbons NWTPH-Dx 1.76 0,0400 0.250 mg/l 1x 10.8% (40) 03/27/07 22,10 ---03 27 07 22:10 Surragate(s) 2-1-BP \$2.8% Limits. 53-125% Recover Octacosam 96,0% 68-125%

Partial Report

TestAmerica - Scattle, WA

und

Kate Haney. Project Manager

The residis in this report apply to the samples analyzed in occordance with the chain of custody document. This analytical report shall not be reproduced except in full. without the written approval of the laboratory.

www.testamericainc.com

Partial Report

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

Skykomish AOJ Project Name: Project Number: BN050-19390-220 Project Manager: Stephen Howard

Report Created: 03/29/07 08:55

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection - Laboratory Quality Control Results

			Test	America -	Seattle, W.	A								
QC Batch: 7C27028	Water I	Preparation	Method: E	PA 3510C										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	™ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7C27028-BLK1)								Extr	acted:	03/27/07 14	:11			
Acenaphthene	EPA 8270C-HVI	ND	0.00271	0.100	ug/l	İx		••				(03/28/07 10-42	
Acenaphthylene	,	ND	0,00252	0,100	٣	4		**			**		и	
Anthracene	"	ND	0.00284	0.100	"								•	
Benzo (a) anthracene	"	ND	0.00158	0.0100	4	-	••		-		••		"	
Benzo (a) pyrene		ND	0.00315	0.0100	*	•						-	*	
Benzo (b) Auoranthene		ND	0.00206	0.0100	-	н		••					. *	
Benzo (k) fluoranthene	"	ND	0.00186	0.0100	ø	-				-		••	•	
Benzo (ghi) perylene	n	ND	0.00296	0.100			~~						p	
Chrysene	в	ND	0.00188	0.0100	*	n		••					n	
Dibenz (a,h) anthracene	-	ND	0,00250	0.0100	n	н		••	•••				n	
Fluoranthene	-	ND	0.00196	0 100		•1			••	-+			*	
Fluorene	-	ND	0.00357	0 100	"								H	
Indeno (1,2,3-cd) pyrene		ND	0.00246	0.0100		7	••	**					n	
1-Methylnaphthalene		ND	0.00223	0,100	"	*	**						-	
2-Methylnaphthalcoe	*1	ND	0.00228	0.100		-		**		••			*	
Naphthalene	н	ND	0.00419	0.100	n	•							ų	
Phenandurene	×	ND	0.00259	0.100	н	н		••				-+	n	
Pyrene	-	ND	0.00244	0.100		•		•-					*	
Surrogate(s) Benzo (a) pyrene-d12	m	Recovery	74.2%	Lim	ins: 20-125%	,,			~		*****		03 28 07 10.42	
I-Methylnaphthalcne-dl	0		67.1%		39-125%	"							"	

LCC (7C37039 081)

LCS (7C27028-BS1)								Ext	racted: (03/27/07 14:1	1		
Acenaphthene	EPA 8270C-HVI	34.3	0.0271	1.00	ug/ł	l0x	**	20.0	71.5%	(44-125)		••	03/28/07 11 14
Acenaphthylene	17	16.3	0.0252	1 00	н	ĸ			81.5%	(51-125)	••		n
Anthracene	n	17.2	0.0284	1.00	•	•			86,0%	(50-125)		••	*
Benzo (a) anthracene	и	14.5	0.0158	0,100	"	a		•	72.5%	h	••		*
Benzo (a) pyrene	n	16.1	0.0315	0,100	•	+		-	80.5%	(47-125)			-
Benzo (b) fluoranthene	м	12.5	0.0206	0.100	-	*		4	62.5%	(50-125)		~•	•
Benzo (k) Auoranthene	n	179	0.0186	0 1 0 0	u	-	-•	n	89.5%	(46-125)			•
Benzo (ghi) perylenc	*	18 4	0.0296	1.00	н	•		n	92.0%	(49-125)	••	••	*
Chrysene		16.2	0.0188	0.100	*	•		*	81 0%	(53-125)	••		н
Dibenz (a.h) anthracenc	-	18.7	0.0250	0.100	"	*			93.5%	(47-125)	~~		*
Fluoranthene	~	17.9	0.0196	1 00		*			89.5%	(55-125)	••		म
Fluoreno	u	14.7	0.0357	1.00				-	73.5%	(52-125)		••	*
Indeno (1,2,3-cd) pyrene	*	18.9	0.0246	0.100	*	*		n	94,5%	(49-125)	•	**	*
1-Methylnaphthalene	n	9.76	0.0223	1.00		•	~	n	48.8%	(37-125)			0
2-Methylnaphthalene	-	10.5	0.0228	1.00	ч	•		4	52.5%	(40-125)			п
Naphthalene	**	114	0.0419	1.00	*	н			57.0%	(42-125)	••		•

TestAmerica - Seattle, WA

Kate Haney, Project Manager

KUNZ

The results in this report apply to the samplex analyzed in accordance with the cluan or resonant in instrument opping to the comparison stand that he reproduced except in full, of custody document. This molytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 8

Skykomish AOJ The RETEC Group, Inc. Project Name: Report Created: BN050-19390-220 1011 SW Klickitat Way, Suite 207 Project Number: 03/29/07 08:55 Seattle, WA 98134 Project Manager: Stephen Howard Polynuclear Aromatic Compounds by GC/MS with High Volume Injection - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7C27028 Water Preparation Method: EPA 3510C REC (Limits) % RPD Spike Source Method Result MÐL* MRL Units Đil (Limits) Analyzed Notes Analyte Result Amt Extracted: 03/27/07 14:11 LCS (7C27028-BSI) 03/28/07 11:14 77 5% (47-125) 15.5 0.0259 1.00 10x ... 20.0 •• ΈΡΑ ug/ł ••• Phenanthrene 8270C-HVI * ... 71.5% ------14,3 0.0244 1.00 ... Pyrene " 03 28 07 11.14 Surrogate(s) Limits: 20-125% Benzo (a) pyrene-d12 Recovery. 75.9% 1-Methylnaphthalene-d10 39-125% , 53.1% Extracted: 03/27/07 [4:1] LCS Dup (7C27028-BSD1) 8.76% (35) 03/28/07 11:46 10x 20.0 65 5% (44-125) ЕРА 13.1 0.0271 1.00 ug/l ••• Acenaphthene 8270C-HVI 0.0252 1.00 74.0% (51-125) 9.65% 14,8 ---Acenaphthylene \$3.0% (50-125) 3 55% 0.0284 1.00 --16.6 Anthracene 13 7 0.0158 0,100 •• 68.5% 5.67% Benzo (a) anthracene 77 0% (47-125) 4 4 4 % 154 0,0315 0.100 ... Benzo (a) pyrene 60.5% (50-125) 3.25% 12.1 0.100 ... 0.0206 Benzo (b) fluoranthene 17.3 86,5% (46-125) 341% 0.01\$6 0100 •--Benzo (k) fluoranthene 88.0% (49-125) 4.44% 176 1.00 0.0296 Benzo (ghi) pervlene 0 100 77 0% (53-125) 5.06% 15.4 0.0188 Chrysene 177 0 100 ... 88.5% (47-125) 5 49% 0.0250 Dibenz (a,h) anthracene 1.00 ... 84.5% (55-125) 5 75% Fluoranthene 169 0.0196 ••• (52-125) 14.0 0.0357 E.00 70.0% 4.88% Fluorene (49-125) 17.9 0.100 ... 89.5% 5 43% Indeno (1.2.3-cd) pyrene 0.0246 (37-125) 1-Methylnaphthalene 9.28 0 0 2 2 3 1.00 --46.4% 5.04% 5.98% 49.4% (40-125) 2-Methylnaphthalene 989 0.0228 1.00 --53.5% (42-125) 6.33% Naphthalene 107 0,0419 1.00 ---(47-125) 7 36% 14 4 0.0259 1.00 ••• 72.0% Phenanthrene ... ۲ . 7 25% 13,3 0.0244 1.00 66.5% Pyrene 03 28 07 11.46 Lunits: 20-125% Benzo (a) pyrene-d12 Recovery: 63.024 Surrogate(s) 39-125% 50.2% "

Partial Report

I-Methylnaphthalene-d10

TestAmerica - Scattle, WA

ww

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

Page 7 of 8

Partial Report

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

Skykomish AOJ BN050-19390-220 Stephen Howard

Report Created: 03/29/07 08:55

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

	DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
	ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
	NR/NA	-	Not Reported / Not Available
	dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
	wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
	RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
	MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
	MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
	Dil	-	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
R L	eporting imits	-	Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
E Si	lectronic ignature	-	Electronic Signature added in accordance with TestAmerica's <i>Electronic Reporting and Electronic Signatures Policy</i> . Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Kato Dung

Kate Haney, Project Manager

The results in this report opply in the samples analyzed in occordance with the chain of custody document. This analytical report shall not be reproduced except in full. without the written approval of the lobaratory.

www.testamericainc.com

					έNC	ЭШGI	сои	doc	n ec	VI C	EIVE	BEC		,	ſ	M	4	>								s	r	-1/1	-	?
	.~					S	NER	IATNO	00	HO I	IBEH	NON	5	1	<u>``</u>	N	\uparrow									lition		-	2	ush Cl
	(0)		:																		-					ы В С С С				our R
	ð					•••••			*****	·										1	-				1	and	р А.	4		mev ir
				:	*****	····						<u> </u>	 	+						+	+				-	Su c	Ϋ́́	1		ndard
	CA	ĬŽ.										;	 			-{-									-	e ter				itis ni
	ľΥ	bed											 	 		_				ļ				. 		thes	2	7		sthe set
	-90	3 (S											 		_	4										epts	Ξ.	V ۲	'	uest (
	Ра	H				,							<u> </u>	ļ						ļ,		2				acce	;	oecif		nd rea
		d												ľ												mer	Ś	ର୍ଜ	I	narou
	A] echs!	at 🗆 H	9 	oV-im	192 🔲	AOV	□ sj	stəM-	TCLP					Π							1		usto arrO	5			* TUR
	30							(٨)	peci	er (S	ui0 si	stəM		1			1				1				1	U U	<u>.</u>	ซา		
1 A	ate			ירם	AT 🗆 k	pq irq	□ 8	-ARDR		9-¥0.	TM-s	619M				\dagger							-	1	1	ierec	alse [****	ល	
EP				 Z	808/1	808 A			səpic)nsə,	1 []	804		-			+									ure f NAF	۲. ۲.	-		
in,	/	а.	<u>е</u> пі	NIS 0221	9-A93 y	d (HA9) suoq	hecond/	(H oil	euior	A oiloy	Polyc	***				÷		· · · ·	<u> </u>	<u></u>		<u> ·</u>	<u></u>		ignat TI IF	ganic		₹ 5/	
to to			- HHZ	(D)Z	8 843	λα spi	unodi	ມດວ່າ	ineg	IU ai	U.S.O.N	mec	A	7	T	#	-	\neg						 	1	its s	l			
Č Č			(4) * (/					on (zoi	79 ¥		้ำก่าว	เสก้า	10	<u> </u>					1	•			1 : :	<u> </u>	- - 23	B. BY	8	0	ე ლ	
्रह			1977) 1977)	<u>.</u>		1	DPAN)		20 1	by cc			A .5				-		<u></u>		<u>.</u>		1			side	etal			2
<u>3</u> č	- • • •		Nierowa Nierowa		0070	<u> </u>	a on	modu		ua ~~				÷	4	4	1-			·		<u> . :</u>	1			Sian Si	Σ[n o		
<u>3</u> .2		a	XŦ	19	0968	Vd3 /	id shr	11000	<u> </u>	nueo	10 ali	elo/I	40	. (- Ø;	1	<u>¥</u> :	<u> </u>				<u> </u>	:. <u>.</u> .	ļ	ar A	ere	anic	د تا لا ر یس	ž	
л S		STE			<u></u>	93580	S AGE	vd 29	litelo	W ba	tenao	oleH	57 [<i>]</i>		-		-									onth	ŏ			
2 @		E E E	بشيغ بستين	1111		097	78-¥3		208	-A93	Eph	8TM	2 yr				1		94 (1						orth				
2 A		E	13 - 874 940 <u>-175</u>) 		anta Altaria	9 : [: 	Line	1208	3-A9:	y pà g	918	8 83. A. Araba												2013 内日	set fo	· .			I
		SIS		<u>.</u>		76.0	<u>; </u>			X	9-H91	MN											na National	a di sa Mari	i di si	ons				
		ALX				:	444		•	X	0-H41	MN			-		•						1 - 1		. ÷.	uditi Suditi				
) er		A	.(* ;	es et	֥ ;	·			in ș	CIDI	1-Hdl	MN			ŀ	1					din di			·:::		о р	A	\mathcal{M}		
ğ	l		AH 🖓	1				4		1	10. 10.	*			ŀ	Î	ŀ						2	: .		ាន ឧរ	4	\approx		
Ľ		,										AB₃	56	ď.	\mathbf{N}											tern	P	8		
		. /					14			-14 -	:C	new!					ļ			. •						n the		12		
				1.5			733. 		9 e	120		Щ		11	14	1				•. . *						ast o		N N		
· .	.						~					Σ	9	t.	2	Ŷ		, it	ч., уч.,	ist Anda	11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	a a			en en en ser se Sen en ser se	edrif	1	. (
•				い。 研究に			144 (44			Ĵ		52.	- 			\mathbf{x}			7 7 200							this	5	17		
		4										<u>M</u>	A	4	2	H						. *		sai fi		Ses	4	1-1		
•												1	g	Ċ	Ľ)	Ę	1									e):	Ø	2		
	, B		34). 1			×	MAIL:					ш	G	5	a	5										д р Ц	2	2		
Sec.]	200			FA	ů		1	1. j	14 , 28	DAT	म	<u>.</u>		10		:		• •	·	<u>, т</u>	- 1920			ts ar late,		and i		
000 000 000	205 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$3.5 F		• • • · ·	: :		Ú()	443		58. S	<u>11</u>	er	G		Ż				· :.		·		- <u>) (</u> -	Alessia L		Æ	Zerb		
11 ve 9820 356-2020	MM 320	Ž													ý.,				; ;			·		· · · · .			Ø	X		
	115) 1150	2	Ľ.	5				شلا جزر : م	3	2 H	449 9				2					1						Con Con	-	1		
ine (~	17	51						-			9	7		3										NO	ator.	6			
988 Ph		a	10	- ∼					Z			E E	FI	Ş	9	古								2.55	5	Nabo Na	ע.'. ה≦			l
	, K	Ner!		Z			ċċ	1				SAN	Ú	1	1	9									ISTR	cal L RES	hed	1 BY:	hed	Ж
		0 5		SS:			MBE	0 NX NX	ö	SS:			4		1	2	بر ا		1.11						AL IN		siupr	sived	iduis	eivec
		Щ ОГ	NONPA SOLIE	DRE		UNE PNE	л С	DION	EN	DRE			Y	Ũ	ク	Ċ	ļ								2ECU	G N	Reilr	Rec	Reli	Rec
	Ļ	ď.	EO E:	<u>×</u>	I	古	ŭ	Zŏ	¥	¥				ا مىسىم	~	<u></u>	•	4	ي. ما	Ó	~	<u>م</u>	<u>ග්</u>	÷ É	ر بر	50	,		ci'	
				·* •.	· ·				• •		RF	POR	रा ८ढें	ýΡγ	,															

and the second se	and the second se	and the second second second second second second second second second second second second second second second
	A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A	LATER STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET
the second second second second second second second second second second second second second second second se	2 X 9 V Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	SAME SCALE OF COMPANY STATES AND STATES
	110 STO N U T THE COMPANY STOLEN TO 10 YO STOLEN TO 10 YO M TO 10 YO M TO 10 YO M TO 10 YO M TO 10 YO M TO 10 Y	A COMPANY STORES IN DRIVER 27 10 2000 (10) COMPANY STORES
THE PROPERTY AND A PROPERTY OF A DESCRIPTION OF A DESCRIPA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF	THE REPORT OF THE PARTY OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF T	the second second second in the second second second second second second second second second second second se
the second state of the se	where the law the two where the second state of the	A PERSON AND A REPORT OF A PERSON AND A PE
The second state of the se	the second second second second second second second second second second second second second second second s	

PLICHT, MILDER CONSTRUCTION CO	DATE:	4/2/2007
1675 EAST MARINE VIEW DRIVE	CCIL JOB #	0703145
EVERETT, WA 98201	DATE RECEIVED: WDOE ACCREDITATION #	3/27/2007 C142

KARL YOST CLIENT CONTACT: CLIENT PROJECT ID: BNSF/SKYKOMISH CLIENT SAMPLE ID: 3/26/2007 13:20 GAC-OUT -01 CCIL SAMPLE #: .

	PARSA A DATA RE	SULTSA AUSKU		ede si parrite se	75 1 0 1 1
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range TPH-Oil Range	NWTPH-DX NWTPH-DX	ND(<130) ND(<250)	UG/L UG/L	3/27/2007 3/27/2007	DLC DLC
Naphthalene 1-Methylnaphthalene	EPA-8270 SIM EPA-8270 SIM EDA-8270 SIM	0.03 ND(<0.02) ND(<0.02)	UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL
2-Methylnaphthalene Acenaphthylene Acenaphthene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02)	UG/L UG/L	3/27/2007 3/27/2007 2/27/2007	RAL RAL
Exprene Phenanthrene Anthracene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02)	UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007	RAL
Fluoranthene Pyretie Responsivitatione	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02)	UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL
Benzo[A]Anunacene Chrysene Benzo[B]Fluoranthene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02)	UG/L UG/L	3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL
Benzo[K]Fluoranthene Benzo(A)Pyrene Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02)	UGAL UGAL	3/27/2007 3/27/2007 3/27/2007	RAL RAL
Dibenz(A,H)Anthrasene Benzo(G,H,I)Perylane	EPA-8270 SIM EPA-8270 SIM	ND(<0.02)	UG/L	3/27/2007	RAL

"NO INDIGATES ANALYTE ANALYZER FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING UNIT, REFORTING UNIT IS GIVEN IN PARENTHESES,

" UNITS FOR ALL NON LIQUED SAMPLES ARE REPORTED ON A DRY WHIGHT BASIS

APPROVED BY:

Al Bayon

8620 Holly Drive Suite 100

Everett, WA 98208

Page 1 425 356-2600

FAX 425 356-2626

Seattle 206 292-9059

Pestornune Oh "Retreat",

CERTIFICATE C	FANALYSIS	
CLIENT: WILDER CONSTRUCTION CO. 1525 EAST MARINE VIEW DRIVE EVERETT, WA 98201	DATE: CGIL JOB #: DATE RECEIVED: WDOE ACCREDITATION #:	4/2/2007 0703145 3/27/2007 C142

CLIENT CONTACT: KARL YOST CLIENT PROJECT ID: BNSF/SKYKOMISH CLIENT SAMPLE ID: 3/26/2007 13:30 GAC-IN CCIL SAMPLE # -02

	A DE DE DE DE DE DE DE DE DE DE DE DE DE	STILLING & STATE			B. Gerten
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range TPH-OII Range	NWTPH-DX NWTPH-DX	ND(<130) ND(<250)	UG/L UG/L	3/28/2007 3/28/2007	DLC
Benzené Toluene Ethylbenzene M+P Xylene O-Xylene	EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260	ND(<2) ND(<2) ND(<2) ND(<4) ND(<2)	UG/L UG/L UG/L UG/L UG/L	3/29/2007 3/29/2007 3/29/2007 3/29/2007 3/29/2007	MLC MLC MLC MLC MLC
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	0.10 0.13 0.15 0.02 ND(<0.02) 0.03 0.03	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL RAL RAL RAL RAL
Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene Benzo[B]Fluoranthene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02)	UG/L UG/L UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL RAL RAL RAL
Benzo[K]Fluoranthene Benzo(A)Pyrene Indeno[1,2,3-Cd]Pyrene Dibenz[A,H]Anthracene Benzo[G,H,I]Perylene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0,02) ND(<0,02) ND(<0,02) ND(<0,02) ND(<0,02)	UG/L UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL RAL

"NOTINDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT REPORTING LIMIT IS GIVEN IN FARENTHESES.

- UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Everett, WA 98208

Page 2 425 356-2600

FAX 425 356-2626

_

CERTIFICATE OF ANALYSIS

وأستأد أشترك فيتركب والمستحد

CLIENT: WILDER CONSTRUCTION CO. 1525 EAST MARINE VIEW DRIVE EVERETT, WA 98201

DATE:	4/2/2007
CCIL JOB #:	0703145
DATE RECEIVED:	3/27/2007
WDOE ACCREDITATION #:	C142

CLIENT CONTACT: KARL YOST CLIENT PROJECT ID: BNSF/SKYKOMISH CLIENT SAMPLE ID: 3/26/2007 13:35 GAC-BTWN CCIL SAMPLE #: -03

	DATA RE	SULTS			
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range TPH-Oil Range	NWTPH-DX NWTPH-DX	ND(<130) ND(<250)	UG/L UG/L	3/27/2007 3/27/2007	DLC DLC
Benzene Toluene Ethylbenzene M+P Xylene	EPA-8260 EPA-8260 EPA-8260 EPA-8260	ND(<2) ND(<2) ND(<2) ND(<4) ND(<2)	UG/L UG/L UG/L UG/L	3/29/2007 3/29/2007 3/29/2007 3/29/2007 3/29/2007	MLC MLC MLC MLC MLC
O-Xylene Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	0.03 ND(<0.02) ND(<0.02) 0.02	UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL RAL
Acenaphthene Fluorene Phenanthrene Anthracene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02)	UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL RAL
Fluoranthene Pyrene Benzo[A]Anthracene Chrysene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02)	UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007 2/27/2007	RAL RAL RAL RAL
Benzo[B]Fluoranthene Benzo[K]Fluoranthene Benzo(A)Pyrene Indeno[1,2,3-Cd]Pyrene Dibenz[A,H]Anthracene Benzo[G,H I]Pervlene	EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM EPA-8270 SIM	ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02)	UG/L UG/L UG/L UG/L UG/L	3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007 3/27/2007	RAL RAL RAL RAL RAL

* "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT REPORTING LIMIT IS GIVEN IN PARENTHESES.

" UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Everett, WA 98208

425 356-2600

Page 3

FAX 425 356-2626

CERTIFICATE OF ANALYSIS

CLIENT⁻ WILDER CONSTRUCTION CO. 1525 EAST MARINE VIEW DRIVE EVERETT, WA 98201

DATE: 4/2/2007 CCIL JOB #: 0703145 DATE RECEIVED: 3/27/2007 WDOE ACCREDITATION #: C142

CLIENT CONTACT: KARL YOST CLIENT PROJECT ID: BNSF/SKYKOMISH

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

CON CAMPLE 10	METHOD	SUR ID	% RECV
0703145-01	NWTPH-DX	C25	84
0703145-01	EPA-8270 SIM	Terphenyl-d14	117
0703145-02	NWTPH-DX	C25	94
0703145-02	EPA-8260	Toluene-d8	92
0703145-02	EPA-8270 SIM	Terphenyl-d14	99
0703145-03	NWTPH-DX	C25	85
0703145-03	EPA-8260	Toluene-d8	97
0703145-03	EPA-8270 SIM	Terphenyl-d14	103

APPROVED BY

8620 Holly Drive Suite 100

Everett, WA 98208

Page 4 425 356-2600

FAX 425 356-2626

					SNO	ШON	COI	000	D NI	\ED	JECEN		<u> </u>				-			ļ	<u> </u>	-	Suc.	ty	Chame
	0	ĺ				St	Jani	ATNO	OF C) AE	NUMBI		*									-	nditic	19) Fresh
	ŭ T			<u>`</u>			•	· · · ·				- 										-	vs *		N hou
			-								• •					·						4	ms al s Day		X B
	300000	ify)	· · ·										 									4	te ter ines: OTH	副并	
v.		Spec											.	-				 		 	<u> </u>		: thes Bus	1 N	12 200
· .	age	EH (Cepts D in V	A	塘
		HE																<u> </u>					ler ac ESTI Spec	4	P
	5	Ĕ	· · · ·	Jedał	[_]]]S9	d El 10)V-ime	₽S□¥	0۸ []	I SIBJO	W-d10						1						EQU		* Tuma
2.	3							city)	eds))ther) sigted												n, C. V.D. R. B. R. C.		
2	ate, ,			אר 🖸	100	i 141 6	3-	АЯЭЯ		1011	n-sigisiy	1		+		1			<u> </u>					sis Sis	
ŝ.	<u>ц</u>			Z	808/19	108 Ve	pλ Ei	□ s(pioite	899	bCB 🗆					1	†						PNAF PNAF	-] ĝ v	"ma
nj:			0	IIS 0/28	1-A93 Xd	I (HVJ)	snòð	łydrocai	1 other	101A C	bolycyclic	10					1						TUF gani	न हैंनि	
St			ing set	0/28	3 A93 V	iq spu	inodu	nic Con	isgij)	ətite	lovima2		<u> </u>	1		1		<u>†</u>					y its Inor		
ň				it in	. 33	0	()	ćs) 092	8 ¥43	C pÀ	09 / 80		 -			1				• • •			a de de de		
žě			fwelse Lester	<u>.</u>		61)	iem) į	NIS 097	8 A93	C pÀ	CE 7 803	12 1	•. • .		1					;			Se si Met		
3 5	•	0	1.174	<u> </u>	8560	À∃Â	i spu	nodwo	0 șiu	egiO	Siliselov												reve unic,		-
ZSI S	· ·)TEI	Ay Ca		di i	8560	EPA	yd salt	isiov	bəlsi	Halogen	1903 -											orge Ithe	Standard	
		ШЭ				<u>.</u> 1092	8-A9	SI D E	08-V	y EP	WIBE P		• •									;	outro		
۶ <u>۲</u>		REG						Ľ	508- <i>1</i>	/ Eb/	BIEX P	1974 - 1974 January	 			1							set te	AL	ľ
Ĩ Ž		SIS		: :	<u> </u>			<u>;</u>		X9-	Hálmn		. <u>.</u>		9					i			tions		
atc		ALY	· · · ·		80	,.	· · .			XQ-	Hqtwv	1		1	[sondi	() }	
, jo		<u>ج</u>			():: T				D	I-HCI	Hatwu	9 4		¥ 									and (121	
ä	<i>2</i>						2			•	B#											ŕ		*	
.									-	•	<u>د این</u>			1									the t		
		• :		2							u u		-	· ·		···· ·						е	at ou	[-	
		ł									۲	じ				· .;									
			4. L.			n Ng	ЦĔ					5											n the		
					- 64	: 7	44 244 244				TIME	ă	• • • •					jur d	· :::		14		Ssee		
<i>d</i> i	Ę		•				ت					9											proce		
Seattle	ax Ss.col					FAX:	E-MAI	4			ATE	2		. 13	WA								Part of the second	\leq	
020	626 F ccilat	NW.				• .				;	<u>à</u>	n	11	т. П.		91. 191	140			* 13			Da	Ŷ	
rive 8208 356-2 292-9	356-2 WWW.	7	-	· · .								***			4 74 1 - 1	:		143 j.	7 g	·.			ic ac		
206) 206) 206) 206) 206) 206) 206) 206)	425) ittp://	X	LE	2	· . ·			CZ.										- 21. ¹ 2						Y	
20 Hc erett, one	 ,	云	27			.ż.	1	7			E D	15	sis	1.1				•		:		NOL	The state		
<u>ጽ</u> ምር		Ż	:36:	3				Š	-		MPL	\dot{Q}	``									RUC			
	ľ	معر ف	0.	Ž			Ë	0	ż		SA	ÿ										INST	/tical URE: uishec	ed By lisher	
		LECT		RESS		Ü	MUM	E SS	ENTIC	RESS	,	65		2 								CIAL	Anal NAT INAT	eceiv	Acces
		PRO		<u>A</u>		OHA	õ	ž8	Ę	ADD	<u> </u>	-	ો		4	ю.	<u>ن</u>	~	Ø	റ്	10 10	SPE	SIG T	ດ: ດີ. ດີ ເຈົ	r /
	, : :							•		ŗ	REPOF	T CO	ΡΥ				ı				•			نير	ener.

 The RETEC Group, Inc.

 1011 SW Klickitat Way, Suite 207, Seattle, WA 98134-1162

 T 206.624.9349
 F 206.624.2839

 www.ensr.aecom.com

Letter of Transmittal

Attention: Chris S	mith, WA Dept of Ecology	Date: July 5, 2	007
Project reference: _	BNSF Skykomish	Project number:	BN050-19390-210
We are sending you	the following:		
Number of originals:	Number of copies:	Description:	
1		BNSF Skykomish C WA 0032123 Discha 2007	leanup Site NPDES Permit No. arge Monitoring Report for June

Attached is the NPDES Discharge Monitoring Report for the June 2007 monitoring period.

Should you have any questions, please feel free to call me.

Best Regards,

Halah M. Voges, P.E., Senior Program Manager

cc: Louise Bardy, Ecology Jeanne Tran, Ecology Bruce Sheppard, BNSF RETEC/ENSR file

Merged with ENSR in 2007

A Trusted Global Environmental, Health and Safety Partner

Permittee Name/Addres: Include Name/Location (if c	S different)	·	žŌ	ISCHAR PO	LLUTANT DISC	CHARGE ELIM	INATION SYST	EM	NOTE: Rea completing th	d instruction his form.	s before
NAME BNSF RAILW	AY COMPAN	к	6374	WA-0	032123		100	[
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 1A		PERMIT	r NUMBER	DISC	HARGE NUMBF	R	Discharge	e Location	17
SEATTLE, W	A 98134				INOM	TORING PERI	OD	[Таг 4 /	10 24	
TACTI, TTY RNSF SKYKO	MTSH CLED	NIIP STTE	I	YEAR	MO DA	Y YEZ	AR MO DP	м	TOUD 12	T- 77 - 7	M
LOCATION SKYKOMISH,	MA WA		ш Ч	ROM 200	1060	TO 202	04 30		NO DISC	CHARGE	×
		QUALIT	LOAD:	ING	QUAI	LITY OR CO	NCENTRATION		No. of I	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
FLOW (TREATMENT	Sample Measurement	*****		GРМ	*****	*****	*****	* * *			
TRAIL NO. 1)	Requirement	*****	500		*****	****	*****			CONT.	METER
FLOW (TREATMENT	Sample Measurement	*****		GPM	* * * * *	*****	*****	* * *)		
TRAIL NO. 2)	Permit Requirement	*****	500		****	*****	*****			CONT.	METER
CHITOSAN ACETATE	Sample Measurement	* * * * *	* * * * * *	***	*****	*****		mg/L	1		
-	Requirement	*****	****		****	*****	0. 1			L0/L0	GRAB
OILY SHEEN	Sample Measurement	*****	* * * * *	* *	* * * * * *	*****		YES/			
	Permit Requirement	*****	****	-	*****	*****	REPORT	NO		01/07	VISUAL
Hď	Sample Measurement	****	*****	* * *		*****		STD.			
	Permit Requirement	*****	*****		6.5	2644444 *****	8.5	UNLT		0 <u>1</u> /07	GRAB
DISSOLVED	Sample Measurement	* * * * * *	*****	***		* * * * * *	*****	mg/L			
OXYGEN*	Requirement	*****	****		8	*****	****			0.1/07	GRAB
BACKGROUND	Sample Measurement	*****		NTU	*****	*****	* * * * *	***			
TURBIDITY (1)	Permit Requirement	*****	REPORT		*****	*****	*****			07/D2	GRAB
NAME/TITLE PRINCIPAL	EXECUTIVE	I CERTIFY UNDER	PENALTY OF LAW T	HAT THIS DOCUM	TIT AND ALL				TELEPHONE		DATE
OFFICER		ATTACHMENTS WERE IN ACCORDANCE WI	E PREPARED UNDER UTH A SYSTEM DESI	MY DIRECTION O GNED TO ASSURE	DR SUPERVISION						
Bruce Sheppard	-/ Mana-	QUALIFIED PERSON INFORMATION SUBM PERSONS WHO MANA	NEL PROPERLY GAT AITTED. BASED ON AGE THE SYSTEM, O	HER AND EVALUA MY INQUIRY OF A THOSE PERSON	ATE THE THE PERSON OR IS DIRECTLY	All I	Main N			Ę	
Ser ENVIVONNE	N Tal	RESPONSIBLE FOR SUBMITTED IS, TO	GATHERING THE IN) THE BEST OF MY	FORMATION, THE KNOWLEDGE AND	I INFORMATION BELIEF, TRUE,	CT CAN MILL		<u>a</u>	06)625-61	035 <u>20</u>	1014
Kentchial	Nol	ACCURATE, AND CC SIGNIFICANT PENA	MPLETE. I AM AWA ALTIES FOR SUBMIT	RE THAT THERE	ARE FORMATION,	EXECUTIV	TE OFFICER (C AL C	REA NUME ODE	BER ILLA	MU DAY
TYPED OR PRIN	TED	INCLUDING THE PC KNOWING VIOLATIC	DSSIBILITY OF FINDNS.	IE AND IMPRISON	MENT FOR	AUTHOF	KIZED AGENT				
*DISSOLVED OXYGEN SHA	OF ANY VIOL LL BE MONIT	ATIONS (Refe FORED FOR A	rence all a PERIOD OF	ttachment 5 WEEKS	s here)						

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

PAGE 1 OF 4

· • ·

Permittee Name/Addres Include Name/Location (if (S different)		ŻΟ	ISCHARG	CILUTANT DISC	CHARGE ELIMI	NATION SYSTE	M	NOTE: Read completing th	l instructions is form.	before
NAME BNSF RAILW	VAY COMPAN	Х	6374	WA-0	032123		001				
ADDRESS 2454 OCCID	DENTAL AVE	S, STE 12		PERMIT	T NUMBER	DISCI	HARGE NUMBE	Гсс Г	Discharge	Location	:
SEATTLE, W	VA 98134]		INOM	TORING PERIC	D][Lat 4/	42 3/	Z
FACILITY BNSF SKYKC	DMISH CLEA	NUP SITE		YEAR	MO DA	Y YEA	R MO DA	ы			
LOCATION SKYKOMISH,	WA		ы Г	ROM 2007	P060	T0 200	7 06 30]		IDUARD	\leq
		QUALI	TY OR LOAD	ING	QUA	LITY OR CON	ICENTRATION		No. of F	requency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- $ _{I}$	of Analysis	Type
EFFLUENT	Sample Measurement	*****		NTU	*****	*****	* * * * * *	* *			
TURBIDITY (2)	Requirement	*****	REPORT		*****	*****	*****			01/07	GRAB
INCREASE OVER	Sample Measurement	*****	- - -	NTU	* * * * * *	* * * * * *	*****	* * *.			
BACKGROUND (2-1)	Requirement	*****	5*		*****	*****	*****			01/02	GRAB
BENZENE	Sample Measurement	*****	* * * * *	***	*****	*****		ug/L			
	Requirement	****	*****		****	*****	1.2			01/07	GRAB
BTEX	Sample Measurement	*****	*****	***	*****	*****		ug/L			
	Permit Requirement	*****	*****		*****	****	100			01/07	GRAB
ТРН	Sample Measurement	*****	****	***	****	* * * * * *		ug/L			
(BEFORE GAC)	Permit Requirement	*****	*****		*****	* * * * * *	REPORT			07/02	GRAB
НДТ	Sample Measurement	* * * * * *	*****	***	*****	* * * * * *		ug/L			
(AFTER GAC)	Permit Requirement	*****	*****	-	*****	*****	208			01/07	GRAB
LEAD (TR)	Sample Measurement	*****	*****	* * *	*****	*****		ug/L			
	Permit Requirement	****	*****		*****	*****	12.5			01/07	GRAB
NAME/TITLE PRINCIPAL	. EXECUTIVE	I CERTIFY UNDER	PENALTY OF LAW 7	HAT THIS DOCUM	AENT AND ALL				TELEPHONE		DATE
OFFICER		ATTACHMENTS WER IN ACCORDANCE W	E PREPARED UNDER	MY DIRECTION C	DR SUPERVISION		с С	$\left(\right)$			
Bruce Sheppard	- Mana-	QUALIFIED PERSO INFORMATION SUB	MITTED. BASED ON	HER AND EVALUA MY INQUIRY OF	THE THE THE PERSON OR	120		<u> </u>			
Ger Envinnmen) - +	RESPONSIBLE FOR	GATHERING THE IN	IFORMATION, THE	E INFORMATION	phr 1	yofewall	<i>G</i> r	0-570,00	035 07	614
2 Penediat	Ч С С С	ACCURATE, AND C STONTETCANT DEN	U THE BEST OF MY OMPLETE. I AM AWP ALTIES FOR SHEMIT	KNOWLEUGE ANU LE THAT THERE "TING FALSE INF	BELLEF, IRUE, ARE PORMATION	SIGNATURE	OF PRINCIP	AL	REA NUMB	ER YEAR	MO DAY
TYPED OR PRIN	ITED	INCLUDING THE P	ONS. ONS.	IE AND IMPRISON	MENT FOR	AUTHOR	IZED AGENT	5	- TUE		
* COMMENT AND EXPLANATION *WHEN BACKGROUND TURB	OF ANY VIOL	ATIONS (Refe REATER THAN	rence all a 50 NTU, T	ttachment URBIDITY	s here) IS LIMITE	0 TO A 10%	INCREASE 0'	VER BAC	KGROUND.		

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

TR - MEANS TOTAL RECOVERABLE

PAGE 2 OF 4

Permittee Name/Addres Include Name/Location (if	sS, different)		N C	SCHAR PO	LLUTANT DISC	CHARGE ELIM	INATION SYST	ĒM	NOTE: Read	d instruction: nis form.	s before
NAME BNSF RAILV	WAY COMPAN	х	6374	WA-0	032123		001	Γ			
ADDRESS 2454 OCCII	DENTAL AVE	S, STE 1A	 I I	PERMIT	r NUMBER	DISC	HARGE NUMBI	R	Discharge	e Location	
SEATTLE, 1	WA 98134				INOM	FORING PERI	OD		Tove 10	10 24 10 110 01	II EI
FACILITY BNSF SKYK	OMISH CLEA	NUP SITE	1	YEAR	MO DA	Y YEZ	AR MO DI	YY		њ Т7 Т	3
LOCATION SKYKOMISH,	, WA		FP	LOOZ MON	H D6 0	T0 201	07 06 3	۵	NO DISC	CHARGE	₹
		QUALIT	LOR LOADI	.NG	QUA	LITY OR CO	NCENTRATION	1	No. of I	requency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
ARSENIC (TR)	Sample Measurement	* * * * *	*****	* * *	*****	* * * * * *		ug/L			
	Fermit Requirement	****	*****		*****	*****	360			01/07	GRAB
ANTHRACENE	Sample Measurement	*****	* * * * * *	* * *	*****	*****		ng/L			-
	Permit Requirement	****	*****		*****	*****	2400			01/07	GRAB
FLUORENE	Sample Measurement	*****	*****	***	*****	*****		ng/L			
	Requirement	****	****			*****	64.0			L0/.L0	GRAB
NAPHTHALENE	Sample Measurement	* * * * * *	*****	* * *	* * * * *	* * * * *		ug/L	-		
	Permit Requirement	*****	*****		*****	*****	160.			0.1 / 0.7	GRAB
PYRENE	Sample Measurement	* * * * * *	* * * * * *	* * *	*****	*****		ug/L			
	Requirement	*****	*****		*****	*****	480			01/07	GRAB
BENZO (a) ANTHRACENE	Sample Measurement	* * * * *	* * * * * *	* * *	* * * * *	*****		ng/L			
-	Permit Requirement	****	*****		****	*****	0.01			01/07	GRAB
BENZO (b) FLUORANTHENE	Sample Measurement	* * * * * *	*****	* * *	*****	*****		ug/L			
	Permit	*****	*****		*****	*****	F0.0			01/07	GRAB
NAME/TITLE PRINCIPAN	L EXECUTIVE	I CERTIFY UNDER	PENALTY OF LAW TH	HAT THIS DOCUM	TENT AND ALL				TELEPHONE		DATE
OFFICER		IN ACCORDANCE WERE	: PREPARED UNDER M TH A SYSTEM DESIG	IY DIRECTION C	R SUPERVISION						
Bruce Sheppa	ich/Man.	QUALLIFIED PERSON INFORMATION SUBA	NEL PROPERLY GATH MITTED. BASED ON M MGE THE SYSTEM, OR	HER AND EVALUP IY INQUIRY OF X THOSE PERSON	THE THE THE PERSON OR IS DIRECTLY	and the second second	De all			(
ager Envirohin	are stad	RESPONSIBLE FOR	GATHERING THE INF THE BEST OF MY &	FORMATION, THE	ELITEE TRUE		march	9	しょしょう	035 Zw	1 614
U Remediat	ν¢,	ACCURATE, AND CC	MPLETE. I AM AWAR	LE THAT THERE	ARE	SIGNATURE	JUOF PRINCI	PAL PAL	REA NUME	3ER YEAI	K MO DAY
TYPED OR PRIN	NTED	INCLUDING THE PO	SSIBILITY OF FINE	AND IMPRISON	MENT FOR	AUTHOF	XIZED AGENT		- CUE		
COMMENT AND EXPLANATION TR - MEANS TOTAL RECC	I OF ANY VIOL DVERABLE	ATIONS (Refe	rence all at	ttachment	s here)						

Substitute for RPA Form 3320-1 (Rev. 8-96 bv WADOE)

.

PAGE 3 OF 4

Permittee Name/Adv Include Name/Location	dress (if different)	·	ŻΟ	ATIONAL PO	LLUTANT DIS	CHARGE ELIMIN/ DRING REPO	ATION SYSTEI RT(DMR)	5	NOTE: Read	instructions is form.	before .
NAME BNSF RI	AILWAY COMPAN	Х	6374	WA-0	032123		001	[
ADDRESS 2454 O(CCIDENTAL AVE	S, STE 1		PERMI	r NUMBER	DISCHA	RGE NUMBER		Discharge	Location	
SEATTLI	E, WA 98134]		INOM	TORING PERIOD			Lat 47°	421 37"	Z B
FACILITY BNSF SI	KYKOMISH CLEA	NUP SITE		YEAR	MO DA	Y YEAR	MO DAY	1-1	COLON		× ~
LOCATION SKYKOM.	ISH, WA		Eu	ROM 200	7 06 0	TO 2007	06 30]		HARGE	
		QUALI	TY OR LOAD	ING	QUA	LITY OR CONCI	ENTRATION		No. of F	requency	Sample
Parameter		Average	Maximum	Units	Minimum	Average 1	Maximum [Jnits	Exceed- P	of Analysis	Type
BENZO (K) FLUORANTHE	NE Measurement	*****	****	* *	*****	* * * * * *		ug/L			
	Requirement	*****	*****		*****		0.01			01/07	GRAB
BENZO (a) PYRENE	Sample Measurement	*****	*****	* * *	*****	*****		ug/L			
	Permit Requirement	*****	*****		* * * * *	*****	T0.0	1		01/07	GRAB
CHRYSENE	Sample Measurement	*****	* * * * *	* * *	*****	* * * * *		ug/L			
	Requirement	*****	*****		*****	*****	0.01			0.1/07	GRAB
DIBENZO (a, h) -	Sample Measurement	*****	*****	* * *	*****	* * * * *		ug/L			
ANTHRACENE	Permit Requirement	*****	*****		*****		10.0			01/07	GRAB
INDENO (1,2,3-	Sample Measurement	****	* * * * * *	* * *	* * * * *	* * * * * *		ng/L			
cd) PYRENE	Requirement		*****		*****	*****	0.01			01/07	GRAB
ACENAPHTHENE	Sample Measurement	*****	*****	* * *	*****	*****		ng/L			
	Permit Requirement	*****	*****		*****	*****	643			01/01	GRAB
FLUORANTHENE	Sample Measurement	*****	*****	*	*****	*****		ng/L			
	Permit Requirement	*****	*****		*****	* * * * *	90.2			01/07	GRAB
NAME/TITLE PRINC: OFFIC	IPAL EXECUTIVE ER	I CERTIFY UNDER ATTACHMENTS WER IN ACCORDANCE N	k PENALTY OF LAW T E PREPARED UNDER 11TH A SYSTEM DESI	HAT THIS DOCUM MY DIRECTION O GNED TO ASSURE	ENT AND ALL R SUPERVISION THAT				TELEPHONE		DATE
Bruce Sheppe	rd/ Mana-	QUALIFIED PERSC INFORMATION SUE PERSONS WHO MAN RESPONSIBLE FOF	MNEL PROPERLY GAT MMITTED. BASED ON AGE THE SYSTEM, O C GATHERING THE IN	HER AND EVALUA MY INQUIRY OF R THOSE PERSON FORMATION, THE KNOMLETCE AND	TE THE THE PERSON OR S DIRECTLY INFORMATION	A Charles	stand	20	6)625-60	35 07	619
TYPED OR 1	RINTED	ACCURATE, AND C SIGNIFICANT PEN INCLUDING THE F KNOWING VIOLATI	COMPLETE. I AM AWA ALTIES FOR SUBMIT OSSIBILITY OF FIN ONS.	RE THAT THERE TING FALSE INF E AND IMPRISON	ARE ORMATION, MENT FOR	SIGNATURE D EXECUTIVE AUTHORIZ	E PRINCIÈP DFFICER OR ED AGENT		kea numbi de	ER YEAR	MO ĎA
COMMENT AND EXPLANA	LION OF ANY VIOL	ATIONS (Ref	erence all a	ttachment	s here)						

PAGE 4 OF 4

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207, Seattle, WA 98134-1162 T 206.624.9349 F 206.624.2839 www.ensr.aecom.com

Letter of Transmittal

Attention: Chris S	Smith, WA Dept of Ecology	Date: August	14, 2007
Project reference:	BNSF Skykomish	Project number:	01140-144-210
We are sending you	u the following:		
Number of originals:	Number of copies:	Description:	
1		BNSF Skykomish C WA 0032123 Disch 2007	Cleanup Site NPDES Permit NO. arge Monitoring Report for July

Attached is the NPDES Discharge Monitoring Report for the July 2007 monitoring period. Should you have any questions, please feel free to call me.

Best Regards,

Halah M. Voges, P.E., Senior Program Manager

cc: Louise Bardy, Ecology Jeanne Tran, Ecology Bruce Sheppard, BNSF

RETEC/ENSR File 01140-144-210

A Trusted Global Environmental, Health and Safety Partner

DMR_July 2007_Letter of Transmittal.doc

Permittee Name/Addres. Include Name/Location (if c	S different)		Ż C	ATIONAL PC	CLUTANT DISC	CHARGE ELIM	INATION SYST	EM	NOTE: R completin	ead instruc a this form	tions before	a)
NAME BNSF RAILW	IAY COMPAN	X	6374	WA-C	032123		001	Γ	-			ſ
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 17		PERMI	T NUMBER	DISC	HARGE NUMBI	ER ER	Discha	rge Locati	on D	
SEATTLE, W	IA 98134		J		INOM	TORING PERT	OD][rat ,	4 / 42	3/" N	Т
FACILITY BNSF SKYKC	MISH CLEA	NUP SITE	,	YEAR	MO DA	Y YEZ	AR MO DZ	AY	Tong		44" W	Г
LOCATION SKYKOMISH,	WA		ы 	ROM 200	1070	TO 20	3-07-3			SCHARG	Ë T	
		QUALI	TY OR LOAD	ING	QUAI	LITY OR CO	NCENTRATION	Р	No. of	Frequenc	cy Sam	ple
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed-	of Analysi	s - 1	be
FLOW (TREATMENT	Sample Measurement	*****		GPM	*****	*****	*****	* * *				
TRAIL NO. 1)	Permit Requirement	*****	500		*****	*****	*****			CONT.	MET	ER
FLOW (TREATMENT	Sample Measurement	*****		GPM	* * * * *	*****	*****	* * *				
TRAIL NO. 2)	Permit Requirement	*****	500		* * * * * *	*****	*****			CONT.	MET	ER
CHITOSAN ACETATE	Sample Measurement	******	*****	* * *	*****	*****		mg/L				
	Permit Requirement	*****	* * * * * *		*****	*****	0.1	ŀ		01/01	GR	AB
OILY SHEEN	Sample Measurement	*****	* * * * * *	* * *	* * * * * *	*****		YES/				
	Permit Requirement	*****	*****		*****	*****	REPORT	ON		20/20	SIA	UAL
Hd	Sample Measurement	*****	*****	* * *		* * * * * *		STD.				
	Permit Requirement	*****	*****		6.5	*****	8.5	LINU		01/01	GR	AB
DISSOLVED	Sample Measurement	*****	*****	***		*****	*****	mg/L				
OXYGEN*	Permit Requirement	*****	*****		8	*****	*****	1		01/07	GR	AB
BACKGROUND	Sample Measurement	*****		NTU	*****	*****	*****	* * *				
TURBIDITY (1)	Permit Requirement	*****	REPORT		*****	*****	*****			01/07	GR	AB
NAME/TITLE PRINCIPAL	EXECUTIVE	I CERTIFY UNDER	PENALTY OF LAW T	HAT THIS DOCUN	ENT AND ALL				TELEPHC	NE	DATE	
OFFICER		ATTACHMENTS WER IN ACCORDANCE W	E PREPARED UNDER ITH A SYSTEM DESI	MY DIRECTION C GNED TO ASSURE	R SUPERVISION THAT		٩					
Bruce Sheppar	-d./BNSF	QUALLIFIED PERSO INFORMATION SUB PERSONS WHO MAN	NNEL PROPERLY GAT MITTED. BASED ON AGE THE SYSTEM, C	HER AND EVALUP MY INQUIRY OF R THOSE PERSON	TE THE THE PERSON OR IS DIRECTLY	R.C.						
Manager, Envir	physicial	RESPONSIBLE FOR SUBMITTED IS, T	GATHERING THE IN 0 THE BEST OF MY	FORMATION, THE KNOWLEDGE AND	INFORMATION BELIEF, TRUE,	AN IM	Maria		206,625	-6035 <u>6</u>	17/09	31
Kennedi a Tio	2	ACCURATE, AND C SIGNIFICANT PEN	OMPLETE. I AM AWA ALTIES FOR SUBMIT	RE THAT THERE TING FALSE INF	ARE ORMATION.	SIGNATURE	UOF PRINCI	PAL DP	AREA NU	MBER Y	EAR MO	DAY
TYPED OR PRIN'	TED	INCLUDING THE P	OSSIBILITY OF FIN ONS.	E AND IMPRISON	MENT FOR	AUTHOR	IZED AGENT		CODE			

COMMENT AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here) *DISSOLVED OXYGEN SHALL BE MONITORED FOR A PERIOD OF 5 WEEKS.

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

PAGE 1 OF 4

Permittee Name/Addres Include Name/Location (if	SS different)		26	ATIONAL PC	DLLUTANT DIS	CHARGE ELIN	INATION SYSTEN	Z	NOTE: Rea	instructions	before
NAME BNSF RAILV	WAY COMPAN	Х	6374 F		1032123			с С	ompiening r	uis ioim.	
ADDRESS 2454 OCCII	DENTAL AVE	S, STE 1A		PERMT	T NIIMBER	DISC	TOO TOO	·	Discharg	e Location	
SEATTLE, V	VA 98134						UTITION TONICITY		Lat 47	7° 421 37"	N
FACILITY BNSF SKYKC	DMTSH CIFAI	NUP STTE]	YEAR		VURING PERI	OD De l mo l pav		Long 12	21°21'44	. W
LOCATION SKYKOMISH,	WA	1		FOON ZOON	070	1 10 Zoc	7 07 31		NO DIS(CHARGE	\times
		QUALI	LOAL OAL	DNI	QUA	LITY OR CO	NCENTRATION		No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum U	nits	Exceed-	of Analvsis	Type
EFELUENT	Sample Measurement	*****		NTU	*****	* * * * * *	* * * * *	***	antro		
TURBIDITY (2)	Permit Requirement	*****	REPORT		*****	*****	*****	Tote		01 /07	GRAR
INCREASE OVER	Sample Measurement	* * * * * *		NTU	*****	* * * * * *	* * * * * *	* *			
BACKGROUND (2-1)	Permit Requirement	*****	5*		*****	*****	*****	<u>l ettiir</u>		01/07	GRAB
BENZENE	Sample Measurement	*****	*****	* * *	****	* * * * * *		ld/L			
	Permit Requirement	*****	*****	·	*****	*****	1.2))		101/07	CRAR
BTEX	Sample Measurement	*****	*****	* * *	*****	*****		10 / I,			
	Permit Requirement	*****	*****		*****	*****	100	<u>,</u>		01/07	GRAB
ТРН	Sample Measurement	*****	*****	* * *	*****	*****		lq/L			
(BEFORE GAC)	Permit Requirement	*****	*****		*****	*****	REPORT			01/07	GRAB
ТРН	Sample Measurement	*****	*****	* * *	*****	*****		la/L			
(AFTER GAC)	Permit Requirement	*****	*****		*****	*****	208	<u> 200</u>		01 /07	СВДВ
LEAD (TR)	Sample Measurement	*****	*****	* * *	*****	*****		Id/L			
	Permit Requirement	*****	*****		*****	*****	12.5	<u> 248</u>		01/07	GRAB
NAME/TITLE PRINCIPAL	EXECUTIVE	I CERTIFY UNDER	PENALTY OF LAW 1	THAT THIS DOCUM	ENT AND ALL				TELEPHONE		DATE
OFFICER		IN ACCORDANCE WI	TH A SYSTEM DESI	MY DIRECTION O GUED TO ASSURE	R SUPERVISION THAT						
Bruce Sheppari	L BNSF	QUALIFIED PERSON INFORMATION SUBM PERSONS WHO MANA	NEL PROPERLY GAT ITTED, BASED ON GF THF SYSTEM (THER AND EVALUA MY INQUIRY OF ND THOSE DEPSON	TE THE THE PERSON OR S DIPECTIV	app					
Manager, Env	-Nomen-	RESPONSIBLE FOR SUBMITTED IS. TO	GATHERING THE IN THE REST OF MV	FORMATION, THE KNOWLEDGE AND	INFORMATION BEITEE TERE	AN AND	bard	200	2-52 h (2	055 07	12/00
tal Kemediat	òn	ACCURATE, AND CO	MPLETE, I AM AWP LTTFS FOR SUBMIT	LE THAT THERE	ARE ARE	SIGNATUKE	OF PRINCIPAL	ARE	EA NUME	3ER YEAR	MO DAY
TYPED OR PRIN	TED	INCLUDING THE PO KNOWING VIOLATIO	SSIBILITY OF FINNS.	IE AND IMPRISON	MENT FOR	AUTHOR	E UFFICER UR IZED AGENT		E		
COMMENT AND EXPLANATION	OF ANY VIOLZ	HTIONS (Refe) FATER THAN	rence all a 50 NTH T	ITRAChment:	s here) TS LIMITH		TW/C TO A D D M T				
			· · · · · · · · · · · · · · · · · · ·			っ い て い い	TN/PEAGE JONE				

TR - MEANS TOTAL RECOVERABLE

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

PAGE 2 OF 4

Permittee Name/Addres	S 4: fforcart)		Ż (ATIONAL PO	ULLUTANT DIS	CHARGE ELIMINAT	TION SYSTEM	NOTE:	Read instruction	tions before
NAME BNSF RAILW	AY COMPANY	ŕ	6374	MA-0	JE WUNIL					
ADDRESS 2454 OCCID	ENTAL AVE	S, STE 17		PERMI	T NUMBER	DISCHAR	GE NUMBER	Disch	arge Locat	lon
SEATTLE, W	IA 98134]		TNOM	PORTNG PERTOD		Lat	47° 42'	37" N
FACILITY BNSF SKYKO	MISH CLEAN	NUP SITE		YEAR	MO DA	Y YEAR	MO DAY	rong	TZ _TZT	44" W
LOCATION SKYKOMISH,	WA		ш 	ROM 200	7 c7 01	TO 2007	18 FO	NOL	DISCHAR	it ۲
		QUALI	TY OR LOAD	ING	QUAI	ITY OR CONCEN	NTRATION	No. of	Erequen	cy Sample
Parameter		Average	Maximum	Units	Minimum	Average Ma	aximum Un	its Exceed	. Analys.	Type
ARSENIC (TR)	Sample Measurement	* * * * * *	* * * * *	* * *	*****	*****	'n	J/L		
	Permit Requirement	*****	*****		*****	*****	360		0/T0	/ GRAB
ANTHRACENE	Sample Measurement	* * * * * *	* * * * *	* * *	*****	* * * * * *	n	J/L		
	Permit Requirement	*****	*****		*****	*****	2400		.0/T0	/ GRAB
FLUORENE	Sample Measurement	*****	* * * * *	* * *	*****	* * * * *	'n	J/L		
	Permit Requirement	*****	*****		*****	*****	640		0/10	/ GRAB
NAPHTHALENE	Sample Measurement	*****	* * * * *	* * *	* * * * *	* * * * *	'n	J/L		
	Permit Requirement	*****	*****		*****	*****	160		.0/T0	7 GRAB
PYRENE	Sample Measurement	* * * * * *	* * * * *	* * *	* * * * * *	* * * * *	'n	J/L		
	Permit Requirement	*****	*****		*****	*****	480		0/10	/ GRAB
BENZO (a) ANTHRACENE	Sample Measurement	* * * * * *	* * * * *	* * *	*****	* * * * *	n	J/L		
	Permit Requirement	*****	*****		*****	*****	0.01		.0/10	7 GRAB
BENZO (Þ) FLUORANTHENE	Sample Measurement	*****	*****	* * *	*****	* * * * *	'n	J/L		
	Permit Requirement	*****	*****		*****	*****	0.01		.0/10	/ GRAB
NAME/TITLE PRINCIPAL OFFICER	EXECUTIVE	I CERTIFY UNDER ATTACHMENTS WER	L PENALTY OF LAW	THAT THIS DOCUM MY DIRECTION C	MENT AND ALL DR SUPERVISION			TELEP	HONE	DATE
- - -		QUALIFIED PERSC INFORMATION SUB	NNEL PROPERLY GA	THER AND EVALUP	ATE THE THE THE OR	low				
Brue Sheppard	/ BNSF	PERSONS WHO MAN RESPONSIBLE FOR	AGE THE SYSTEM, GATHERING THE IN	JR THOSE PERSON JFORMATION, THE	INFORMATION	and the	pand	20()62	2-6.035	07,31,07
Warner Remediat	(or)	SUBMITTED IS, T ACCURATE, AND C STGNIFICANT PEN	O THE BEST OF MY OMPLETE. I AM AWI ALTIES FOR STRMT	KNOWLEDGE AND ARE THAT THERE FTIME FALSE INF	BELIEF, TRUE, ARE CORMETTON	SIGNATURE DE	PRINCIPAL	AREA	NUMBER	TEAR MO DAY
TYPED OR PRIN	TED	INCLUDING THE P	OSSIBILITY OF FIL	THE AND IMPRISON	MENT FOR	AUTHORIZE	T AGENT	สกกา		

TR - MEANS TOTAL RECOVERABLE

Substitute for EPA Form 3320-1 (Rev. 8-96 bv WADOE)

PAGE 3 OF 4

Permittee Name/Addres Include Name/Location (if	s different)		ZL	ATIONAL PO	LLUTANT DIS	CHARGE ELIN	INATION SYSTEM	W	NOTE: Rea	d instruction his form	s before
NAME BNSF RAILW	VAY COMPAN	к	6374	MA-0	032123		001		- Runoiduico		
ADDRESS 2454 OCCIL	DENTAL AVE	S, STE 1A		PERMI	r NUMBER	DISC	HARGE NUMBER		Discharge	e Location	
SEATTLE, W	VA 98134]		INOM	TORING PERT	OD		Lat 47	° 42° 37	N
FACILITY BNSF SKYKC	MISH CLEAN	NUP SITE		YEAR	MO DP	Y YE2	AR MO DAY	1.	T buor	5 TZ ^T	4 M
LOCATION SKYKOMISH,	WA		1	FROM 2257	- 07 0	1 TO 201	19731		NO DISC	CHARGE	\mathbf{A}
		QUALI	TY OR LOAI	DNIC	QUA	LITY OR CO	NCENTRATION		No. of	Frequency	Sample
Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
BENZO (k) FLUORANTHENE	Sample Measurement	*****	****	* * *	*****	*****		ug/L		8	
	Permit Requirement	*****	*****		*****	*****	0.01	1		01/02	GRAB
BENZO (a) PYRENE	Sample Measurement	*****	* * * * * *	* * *	*****	* * * * * *		uq/L			
	Permit Requirement	*****	****		*****	*****	0.01	1		01/07	GRAB
CHRYSENE	Sample Measurement	*****	****	* * *	*****	*****		ng/L	-		
	Permit Requirement	*****	*****		*****	*****	0.01			01/07	GRAB
DIBENZO (a , h) -	Sample Measurement	*****	****	***	*****	*****		ug/L			
ANTHRACENE	Permit Requirement	*****	*****		*****	*****	0.01	i		01/07	GRAB
INDENO (1,2,3-	Sample Measurement	*****	*****	* *	*****	*****		ug/L			
cd) PYRENE	Permit Requirement	*****	*****		*****	*****	0.01	,		01/02	GRAB
ACENAPHTHENE	Sample Measurement	* * * * * *	* * * * * *	* * *	*****	*****		ug/L			
	Permit Requirement	*****	*****		*****	*****	643			01/07	GRAB
FLUORANTHENE	Sample Measurement	*****	* * * * * *	* * *	*****	*****		ug/L			
	Permit Requirement	*****	*****		*****	*****	90.2			01/07	GRAB
NAME/TITLE PRINCIPAL OFFICER	EXECUTIVE	I CERTIFY UNDER ATTACHMENTS WERE	PENALTY OF LAW 3 PREPARED UNDER	THAT THIS DOCUM MY DIRECTION O	ENT AND ALL R SUPERVISION				TELEPHONE		DATE
Bruce Sheppain	d/BNSf	IN ACCORDANCE WI QUALIFIED PERSON INFORMATION SUBM PERSONS WHO MANE	LTH A SYSTEM DES NNEL PROPERLY GA AITTED, BASED ON AGE THE SYSTEM,	IGNED TO ASSURE THER AND EVALUA MY INQUIRY OF OR THOSE PERSON	THAT TE THE THE PERSON OR S DIRECTLY	All a	Janua	(F	
Manager, ENVILL Remediation	とんとの日本	SUBMITTED IS, TC ACCURATE, AND CC	OTHE BEST OF MY OMPLETE. I AM AW	KNOWLEDGE AND RE THAT THERE	INFORMALION BELIEF, TRUE, ARE	SIGNATUR	OF PRINCIPA		EEA NUME	SER YEA	R MO DAY
TYPED OR PRIN	TED	INCLUDING THE PC	DISSIBILITY OF FU	NE AND IMPRISON	MENT FOR	EAECUT Y V AUTHOR	E UFFICER UF IZED AGENT	й к	DDE		
COMMENT AND EXPLANATION	OF ANY VIOLA	ATIONS (Refe	rence all a	attachment:	s here)					-	

PAGE 4 OF 4

Substitute for EPA Form 3320-1 (Rev. 8-96 by WADOE)

Memorandum

Date:	Janua	ry 25, 2008			
To:	Ron Ti	imm, Department of Ec	cology		
From:	Mike E	Byers, P.E., ENSR			
Subject	ject: <u>Skykomish Levee</u>				
Distribu	tion:	Tom Bean KC	Louise Bardy	Bruce Sheppard	Clint Stanovsky
Halah V	/oges	Sarah Albano	Brian Sato		

This memo is a follow-up to our meeting at the Skykomish Levee on Wednesday, October 10, 2007 with Ron Timm from the Washington State Department of Ecology and Clint Stanovsky for the Town of Skykomish. This memo addresses the issues which arose at that meeting and attempts to resolve them to enable the County to agree that BNSF has satisfied the substantive requirements of the draft Special Use Permit No. S-64-06 associated with levee cleanup activities.

- 1. **Topsoil and Coir Matting-** During our meeting we discussed methods of anchoring the coir matting to prevent topsoil erosion. After discussions with Grette and Associates (who developed the planting plan and oversaw the landscaping activities), the matting was staked every linear foot along the perimeter of the matting to secure it. Trenching was not feasible due to the proximity of the rip rap.
- 2. Water flowing into the Levee at the east end- The water flowing into the levee at the east end is likely due to the 4-5 foot thick rip rap that was placed to armor the levee. The large voids between the rip rap were not filled during construction which allows water to enter the voids. Water then flows through the large voids within the rip rap and filters out at different points along the Levee. In particular, there is some out watering just east of the outfall. In our opinion, this does not have any effect on the stability of the levee and we anticipate that overtime, sand and sediment will fill the voids and water will stop entering the voids in the rip rap at the east end of the levee. As a general note, the levee was never designed or constructed to be an impermeable barrier. The pre-existing levee was a permeable levee and the new levee was designed to be permeable.
- 3. Large Woody Debris- During our meeting we discussed the fact that the large woody debris that was lost in the November 2006 flood has not yet been reported to the Army Corps of Engineers. The large woody debris placement was a requirement of the Army Corps of Engineers Nationwide 38 Permit. Some of the large woody debris was washed downstream during the November 2006 flood. Our assessment of the remaining debris is that it provides good habitat as intended by the Nationwide 38 Permit. Reporting of the remaining large woody

debris will be completed when the Levee planting is completed in the spring of 2008. In our opinion, the loss of the large woody debris does not compromise the stability of the levee,

4. Hydraulic Pressure and Stability Calculations. Calculations (attached) indicate the levee is stable.

- 5. Final Elevations of the Levee Crest- Please refer to the previously transmitted 2006 Levee Zone Interim Action for Cleanup 2006 As-Built Completion Report (2006 As-Built, July 2, 2007) and a copy of the Draft Levee Zone Interim Action for Cleanup 2007- As-Built Completion Report (Draft 2007 As-Built, August 31, 2007). The elevation of the Levee walk way varies from approximately 932 NAVD 88 at the eastern end to 930 NAVD 88 at the western end of the Levee as shown in Figure 6-1 of the Draft 2007 As-Built. A final 2007 as built report will be issued once final levee improvements (lighting, railing and vegetation) are completed.
- 6. Levee Path Width- During our meeting you stated that the path along the crest of the levee is of sufficient width for emergency access, if necessary.
- 7. Levee Elevation at Western End- During our meeting you questioned the final elevation of the Levee at the location of the new park property (where the water treatment system was located last year). This area is generally outside of the levee replacement work conducted during the cleanup, but the area was cleared of vegetation during the 2006 work, and topsoil was placed in the area at the completion of construction. Since this area was outside of the active construction, a final survey was not completed in that area. The question from Mr. Bean related to placing additional fill in that single area within the floodplain. However, when taking a project wide view of fill in the floodplain, the project is very likely a net increase in floodplain capacity since a new retaining wall was constructed on the south face of the levee. Prior to cleanup activities, the levee consisted of a sloped embankment in that area.
- 8. **Check Valve-** During our meeting Clint Stanovsky asked what river water elevations would be necessary to completely close the check valve to prevent back-flow. The check valve cut sheets are provided as Submittal 7 in Appendix K (Contractor Submittals) of the *2006 As-Built*. This indicates that the maximum back pressure is 10 feet. The invert elevation of the culvert, shown in Figure 6-1 of the *Draft 2007 As-Built* is 918.37'. This means that the river water elevation must be at 928.37' to close the check valve to prevent back-flow.
- 9. Levee Vegetation- During our meeting you requested a copy of the as-built planting survey. This survey will be completed in the spring once planting on the levee is completed. Due to high river levels during planting, plants were not placed at the Levee benches. This planting survey will be included in the final 2007 As-Built report which is anticipated to be completed on March 31, 2008.
- 10. **Stormwater Outfall** The Town had previously indicated that they would like more rip rap placed around the outfall for protection. After looking into this issue and receiving your feedback, the Town no longer wants this work to be completed.

A Trusted Global Environmental, Health and Safety Partner

Skykomish Levee Stability Calculations January 25, 2008

- 1. Engineering manual EM 1110-2-1913, Design and Construction of Levees general statements:
 - a. "For levees of significant height or when there is a concern about adequacy of available embankment materials or foundation conditions embankment design requires detailed analysis. Low levees or levees to be built of good materials resting on proven foundation material may not require extensive stability analysis."
 - b. "Minimum levee widths of 10 to 12 feet are recommended."
- 2. Characteristics of the Skykomish Levee include:
 - a. Levee geometry same as preexisting levee, 2H:1V slope, 5 ft high, 15 ft crest width. The pre-existing levee was stable under these conditions.
 - b. Compacted foundation and compacted levee body controlled and compacted to at least 95% of ASTM D-1557, modified proctor
 - c. Granular compacted foundation material
 - d. Meets the minimum levee configuration stated
 - e. Levee and foundation were constructed to be homogeneous, and therefore circular analysis is considered to be suitable no inherent planes of weakness (like weak foundation material etc).
 - f. Levee retaining wall constructed of geogrid reinforced backfill and block facing. Soil placed in the geogrid section was 3/4 inch to 1-1/4 inch crushed gravel. This material was compacted to at least 95% ASTM D-1557, modified proctor.
- 3. Levee and foundation strength parameters Reference from Naval Facilities Design Manual 7-01 (Figure 7 is attached). Note that this levee is considered to be a low levee constructed of very good material and constructed on a very good foundation. It is nearly the same geometry as the pre-existing levee which was stable on the site for many years. Therefore, more detailed analyses of strength parameters is not considered warranted.
 - a. The foundation and levee material was SW-GW compacted to at least 95% ASTM D-1557 (conservatively estimated to be 75% relative density). A friction angle between 37 degrees and 40 degrees is appropriate and a unit weight of between 118 and 135 pounds per cubic foot is appropriate. Calculations use a friction angle of 35 degrees to be conservative and a unit weight of 125 pounds per cubic foot.
 - b. Retaining wall backfill was crushed rock that was ³/₄-inch to 1-1/4 inch and compacted to at least 95% ASTM D-1557, modified proctor (conservatively estimated to be 75% relative density). This material was modeled using a friction angle of 38 degrees and a unit weight of 125 pounds per cubic foot.

Skykomish Levee Stability Study January 25, 2008 Page 2

- c. Levee rip rap was sound, hard angular large rock. It was modeled using a unit weight of 135 pounds per cubic foot and a strength of 38 degrees.
- d. The rip rap and topsoil mixed layer was modeled as a granular soil using a unit weight of 135 pounds per cubic foot and a strength of 35 degrees.

Correlations of Strength Characteristics for Granular Soils

- 4. Analyses cases:
 - a. Post construction no need to do since it is constructed
 - b. Sudden drawdown can be done, but levee is extremely granular and the levee will drain as quickly as the flood water receeds.
 - c. Steady state seepage from full flood applicable. This scenario was modeled using a phreatic water surface at full flood stage (elevation 930). The phreatic surface was modeled as remaining at elevation 930 through the rip rap, and then decreasing generally constantly through the body of the levee until it was at the street level (about 925) on the south side of the levee retaining wall. The geogrid reinforced retaining wall fill was modeled using a geotextile fabric reinforcement in the stability program with the failure surface generally extending outside of the limits of the reinforcement.

Analyses method	Factor of Safety
Spencer	1.6
Janbu	1.4

- d. Earthquake not considered applicable since there is a very low probability of an earthquake during a flood event and the foundation material drains quickly enough and is dense enough to resist liquefaction.
- e. Required factors of safety from EM 1110-2-1913:

Minimum Factors of Safety - Leve	ee Slope Stability			
	Appl	icable Stability Conditions an	nd Required Factors of Safety	
Type of Slope	End-of- Construction	Long-Term (Steady Seepage)	Rapid Drawdown ^a	Earthquake⁵
New Levees	1.3	1.4	1.0 to 1.2	(see below)
Existing Levees		1.4 ^c	1.0 to 1.2	(see below)
Other Embankments and dikes ^d	1.3 ^{e,f}	1.4°,r	1.0 to 1.2 ^r	(see below)

^a Sudden drawdown analyses. F. S. = 1.0 applies to pool levels prior to drawdown for conditions where these water levels are unlikely to persist for long periods preceding drawdown. F. S. = 1.2 applies to pool level, likely to persist for long periods prior to drawdown.

^b See ER 1110-2-1806 for guidance. An EM for seismic stability analysis is under preparation.

^e For existing slopes where either sliding or large deformation have occurred previously and back analyses have been performed to establish design shear strengths lower factors of safety may be used. In such cases probabilistic analyses may be useful in supporting the use of lower factors of safety for design.

 ^e Includes slopes which are part of cofferdams, retention dikes, stockpiles, navigation channels, breakwater, river banks, and excavation slopes.
 ^e Temporary excavated slopes are sometimes designed for only short-term stability with the knowledge that long-term stability is

Temporary excavated slopes are sometimes designed for only short-term stability with the knowledge that long-term stability is not adequate. In such cases higher factors of safety may be required for end-of-construction to ensure stability during the time the excavation is to remain open. Special care is required in design of temporary slopes, which do not have adequate stability for the long-term (steady seepage) condition.

^f Lower factors of safety may be appropriate when the consequences of failure in terms of safety, environmental damage and economic losses are small.

- 5. Settlement analysis Guidance suggests that detailed settlement analyses should be completed when significant consolidation is anticipated. Conditions such as high embankment loads, embankments of highly compressible soil, embankments on compressible foundations, and beneath steel and concrete structures in levees founded on compressible foundations. None of these conditions exist for the Skykomish levee. The soil comprising the levee and the foundation is granular and has been compacted to at least 95% ASTM D-1557, modified proctor. Given these conditions, any settlement that was to occur should have occurred during construction of the levee itself.
- 6. Computation of seepage exit gradient to evaluate foundation piping and instability due to seepage. This levee is composed of a consistent ganular material for both the foundation and for the levee itself. In fact, the foundation of the levee below any excavations is highly granular although not as homogeneous as the newly placed fill. The maximum allowable exit gradient state in EM-1110-2-1913 is 0.5. The calculated exit gradient is 0.33.

Skykomish Levee Stability Study January 25, 2008 Page 4

Conclusion

The levee in Skykomish is considered to be stable under analyses carried out generally as specified in EM 1110-2-1913, Design and Construction of Levees. Calculated factors of safety were greater than or equal to required factors of safety for embankment stability and stability against foundation piping.

Skykomish Levee Stability Study January 25, 2008 Page 5
Skykomish Levee Stability Study January 25, 2008 Page 6

Attachment A Slope Stability Analyses for Steady State Seepage Under Flood Conditions

Includes analyses completed using Slope/W computer analyses package for both Spencer and Janbu analyses methods.

post construction levee stabilty

Report generated using GeoStudio 2007, version 7.01. Copyright © 1991-2007 GEO-SLOPE International Ltd.

File Information

Title: Skykomish levee stability - post construction Created By: Mike Byers Revision Number: 15 Last Edited By: Mike Byers Date: 1/25/2008 Time: 10:56:43 AM File Name: sky levee stability.gsz Directory: C:\Documents and Settings\mbyers\My Documents\MBYERS\Projects\Active\Skykomish\levee remediation\Stability analyses\

post construction levee stabilty

Kind: SLOPE/W Method: Spencer Convergence Minimum Slice Thickness: 0.1 Ignore seismic load in strength: No Number of Slices: 30 Optimization Tolerance: 0.01 Direction of movement: Right to Left Allow Passive Mode: 0 Slip Surface Option: Entry and Exit PhreaticCorrection: No FOS Distribution Calculation: Constant Optimize Critical Slip Surface Location: No Cap Suction: No Rapid Drawdown: No IncludeAirFlow: No **PWP Conditions Source: Piezometric Line** ConsolSatOnly: No MovingBoundary: No NumCritialSlipSurfaces: 1

Materials

Material 1: structural fill

Model: Mohr-Coulomb Weight: 125 pcf Cohesion: 0 psf Phi: 38 ° Phi-B: 0 °

Material 2: crushed drainage gravel

Model: Mohr-Coulomb Weight: 125 pcf Cohesion: 0 psf Phi: 38 ° Phi-B: 0 °

Material 3: rip rap

Model: Mohr-Coulomb Weight: 135 pcf Cohesion: 0 psf Phi: 38 ° Phi-B: 0 °

Material 4: riprap/topsoil layer

Model: Mohr-Coulomb Weight: 120 pcf Cohesion: 0 psf Phi: 30 ° Phi-B: 0 °

Material 5: water

Model: No strength (e.g. Water) Weight: 62.4 pcf

Regions

	Material	Points
Region 1	structural fill	1,2,12,11,5,9,7,10,13
Region 2	crushed drainage gravel	3,11,12,2
Region 3	rip rap	5,6,8,9
Region 4	riprap/topsoil layer	6,4,7,8
Region 5	water	4,14,7

Points

	X	Y
Point 1	91	924
Point 2	120	924
Point 3	120	930
Point 4	136	930

Point 5	128	930
Point 6	133	930
Point 7	160	918
Point 8	157	918
Point 9	152	918
Point 10	160	916
Point 11	127	930
Point 12	127	924
Point 13	91	916
Point 14	160	930

Tension Crack

Tension Crack Option: (none)

Slip Surface Entry and Exit

Left-Zone Increment: 4 Left Projection: Range Left-Zone Left Coordinate: (108, 924) Left-Zone Right Coordinate: (118, 924) Right-Zone Increment: 4 Right Projection: Range Right-Zone Left Coordinate: (132, 930) Right-Zone Right Coordinate: (134, 930) Radius Increments: 4

Slip Surface Limits

Left Coordinate: (91, 924) Right Coordinate: (160, 918)

Piezometric Lines

Piezometric Line 1

Coordinates Coordinate: (91, 923)

Coordinate: (95, 923) Coordinate: (115, 923) Coordinate: (120, 924) Coordinate: (125, 928) Coordinate: (128, 930) Coordinate: (136, 930) Adjust Piez Line By: 0 ft Bound by Surface Layer: Yes Materials Considered Material: structural fill Material: crushed drainage gravel Material: rip rap Material: riprap/topsoil layer Material: water

Reinforcements

Reinforcement 1

Type: Fabric Outside Point: (120, 925) Inside Point: (127, 925) Slip Surface Intersection: (126.88, 925) Total Length: 7 ft Reinforcement Direction: 180 ° Applied Load Option: Variable F of S Dependent: No Contact Cohesion: 0 psf Contact Phi: 38 ° Interface Factor: 1 Bond Safety Factor: 1 Bond Resistance: 0 lbs/ft Fabric Capacity: 0 lbs Fabric Safety Factor: 1 Fabric Load: 0 lbs Load Distribution: Conc. in 1 slice Load Orientation: 1 Applied Load: 0 lbs Fabric Load Used: 0 lbs Resisting Force Used: 294.26 lbs/ft Available Bond Length: 0.11688 ft Required Bond Length: 0 ft Governing Component: Fabric

Reinforcement 2

Type: Fabric Outside Point: (120, 926) Inside Point: (127, 926) Slip Surface Intersection: (128.35, 926) Total Length: 7 ft Reinforcement Direction: 180 ° Applied Load Option: Variable F of S Dependent: No Contact Cohesion: 0 psf Contact Phi: 38 ° Interface Factor: 1 Bond Safety Factor: 1 Bond Resistance: 0 lbs/ft Fabric Capacity: 0 lbs Fabric Safety Factor: 1 Fabric Load: 0 lbs Load Distribution: Conc. in 1 slice Load Orientation: 1 Applied Load: 0 lbs Fabric Load Used: 0 lbs Resisting Force Used: 199.1 lbs/ft Available Bond Length: 0 ft Required Bond Length: 0 ft Governing Component: Bond

Reinforcement 3

Type: Fabric Outside Point: (120, 928) Inside Point: (127, 928) Slip Surface Intersection: (130.49, 928) Total Length: 7 ft Reinforcement Direction: 180° Applied Load Option: Variable F of S Dependent: No Contact Cohesion: 0 psf Contact Phi: 38 ° Interface Factor: 1 Bond Safety Factor: 1 Bond Resistance: 0 lbs/ft Fabric Capacity: 0 lbs Fabric Safety Factor: 1 Fabric Load: 0 lbs Load Distribution: Conc. in 1 slice Load Orientation: 1 Applied Load: 0 lbs Fabric Load Used: 0 lbs Resisting Force Used: 99.679 lbs/ft Available Bond Length: 0 ft Required Bond Length: 0 ft Governing Component: Bond

Critical Slip Surfaces

	Number	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	53	1.601	(118.956, 938.222)	15.419	(132, 930)	(113, 924)

Slices of Slip Surface: 53

X (ft) Y (ft) PorewaterPressure Base Frictional Conesive		X (ft)	Y (ft)	PoreWaterPressure	Base	Frictional	Cohesive
--	--	--------	--------	-------------------	------	------------	----------

			(psf)	Normal Stress (psf)	Strength (psf)	Strength (psf)
1	113.33335	923.8694	-53.972513	33.143491	25.894533	0
2	114	923.6256	-38.775026	85.629721	66.901271	0
3	114.66665	923.41585	-25.696508	123.77312	96.702163	0
4	115.36305	923.23225	-9.6719253	151.91681	118.69042	0
5	116.0314	923.0862	7.6902903	167.08794	124.53509	0
6	116.64195	922.98085	21.880187	172.97864	118.05105	0
7	117.2525	922.90055	34.507758	175.48497	110.14347	0
8	117.86305	922.8449	45.59639	174.92965	101.04622	0
9	118.4736	922.81365	55.167051	171.58572	90.956232	0
10	119.08415	922.80665	63.225144	165.65361	80.025889	0
11	119.6947	922.82385	69.773483	157.30443	68.386667	0
12	120.30705	922.8655	86.314418	972.03683	692.00219	0
13	120.9211	922.93195	112.82424	927.40509	636.4203	0
14	121.53515	923.0235	137.76988	883.43543	582.57777	0
15	122.14925	923.1406	161.12233	839.83064	530.26504	0
16	122.7633	923.28385	182.83526	796.3835	479.35642	0
17	123.37735	923.454	202.88899	752.9013	429.71671	0
18	123.99145	923.652	221.19263	709.24158	381.30563	0
19	124.6055	923.87905	237.68527	665.22482	334.03051	0
20	124.95625	924.01845	246.26433	639.95235	307.58279	0
21	125.33335	924.1884	252.00037	612.27009	281.47356	0
22	126	924.51115	259.6284	562.69497	236.78155	0
23	126.66665	924.87495	264.67711	512.00346	193.23252	0
24	127.25	925.22705	266.84316	466.65944	156.11359	0
25	127.75	925.56025	266.86886	426.88833	125.02092	0
26	128.2946	925.9582	252.55205	381.87966	101.0418	0
27	128.88375	926.43055	223.12103	330.44918	83.85394	0
28	129.4729	926.9535	190.54938	276.44425	67.108425	0
29	130.0621	927.53455	154.36866	219.64408	50.998747	0
30	130.65125	928.1839	113.95744	159.77254	35.794673	0
31	131.20935	928.8725	70.986956	97.532556	20.739696	0
32	131.73645	929.60895	25.207353	33.258906	6.2905632	0

post construction levee stabilty

Report generated using GeoStudio 2007, version 7.01. Copyright © 1991-2007 GEO-SLOPE International Ltd.

File Information

Title: Skykomish levee stability - post construction Created By: Mike Byers Revision Number: 15 Last Edited By: Mike Byers Date: 1/25/2008 Time: 10:56:43 AM File Name: sky levee stability.gsz Directory: C:\Documents and Settings\mbyers\My Documents\MBYERS\Projects\Active\Skykomish\levee remediation\Stability analyses\

post construction levee stabilty

Kind: SLOPE/W Method: Spencer Convergence Minimum Slice Thickness: 0.1 Ignore seismic load in strength: No Number of Slices: 30 Optimization Tolerance: 0.01 Direction of movement: Right to Left Allow Passive Mode: 0 Slip Surface Option: Entry and Exit PhreaticCorrection: No FOS Distribution Calculation: Constant Optimize Critical Slip Surface Location: No Cap Suction: No Rapid Drawdown: No IncludeAirFlow: No **PWP Conditions Source: Piezometric Line** ConsolSatOnly: No MovingBoundary: No NumCritialSlipSurfaces: 1

Materials

Material 1: structural fill

Model: Mohr-Coulomb Weight: 125 pcf Cohesion: 0 psf Phi: 38 ° Phi-B: 0 °

Material 2: crushed drainage gravel

Model: Mohr-Coulomb Weight: 125 pcf Cohesion: 0 psf Phi: 38 ° Phi-B: 0 °

Material 3: rip rap

Model: Mohr-Coulomb Weight: 135 pcf Cohesion: 0 psf Phi: 38 ° Phi-B: 0 °

Material 4: riprap/topsoil layer

Model: Mohr-Coulomb Weight: 120 pcf Cohesion: 0 psf Phi: 30 ° Phi-B: 0 °

Material 5: water

Model: No strength (e.g. Water) Weight: 62.4 pcf

Regions

	Material	Points
Region 1	structural fill	1,2,12,11,5,9,7,10,13
Region 2	crushed drainage gravel	3,11,12,2
Region 3	rip rap	5,6,8,9
Region 4	riprap/topsoil layer	6,4,7,8
Region 5	water	4,14,7

Points

	X	Y
Point 1	91	924
Point 2	120	924
Point 3	120	930
Point 4	136	930

Point 5	128	930
Point 6	133	930
Point 7	160	918
Point 8	157	918
Point 9	152	918
Point 10	160	916
Point 11	127	930
Point 12	127	924
Point 13	91	916
Point 14	160	930

Tension Crack

Tension Crack Option: (none)

Slip Surface Entry and Exit

Left-Zone Increment: 4 Left Projection: Range Left-Zone Left Coordinate: (108, 924) Left-Zone Right Coordinate: (118, 924) Right-Zone Increment: 4 Right Projection: Range Right-Zone Left Coordinate: (132, 930) Right-Zone Right Coordinate: (134, 930) Radius Increments: 4

Slip Surface Limits

Left Coordinate: (91, 924) Right Coordinate: (160, 918)

Piezometric Lines

Piezometric Line 1

Coordinates Coordinate: (91, 923)

Coordinate: (95, 923) Coordinate: (115, 923) Coordinate: (120, 924) Coordinate: (125, 928) Coordinate: (128, 930) Coordinate: (136, 930) Adjust Piez Line By: 0 ft Bound by Surface Layer: Yes Materials Considered Material: structural fill Material: crushed drainage gravel Material: rip rap Material: riprap/topsoil layer Material: water

Reinforcements

Reinforcement 1

Type: Fabric Outside Point: (120, 925) Inside Point: (127, 925) Slip Surface Intersection: (126.88, 925) Total Length: 7 ft Reinforcement Direction: 180 ° Applied Load Option: Variable F of S Dependent: No Contact Cohesion: 0 psf Contact Phi: 38 ° Interface Factor: 1 Bond Safety Factor: 1 Bond Resistance: 0 lbs/ft Fabric Capacity: 0 lbs Fabric Safety Factor: 1 Fabric Load: 0 lbs Load Distribution: Conc. in 1 slice Load Orientation: 1 Applied Load: 0 lbs Fabric Load Used: 0 lbs Resisting Force Used: 294.26 lbs/ft Available Bond Length: 0.11688 ft Required Bond Length: 0 ft Governing Component: Fabric

Reinforcement 2

Type: Fabric Outside Point: (120, 926) Inside Point: (127, 926) Slip Surface Intersection: (128.35, 926) Total Length: 7 ft Reinforcement Direction: 180 ° Applied Load Option: Variable F of S Dependent: No Contact Cohesion: 0 psf Contact Phi: 38 ° Interface Factor: 1 Bond Safety Factor: 1 Bond Resistance: 0 lbs/ft Fabric Capacity: 0 lbs Fabric Safety Factor: 1 Fabric Load: 0 lbs Load Distribution: Conc. in 1 slice Load Orientation: 1 Applied Load: 0 lbs Fabric Load Used: 0 lbs Resisting Force Used: 199.1 lbs/ft Available Bond Length: 0 ft Required Bond Length: 0 ft Governing Component: Bond

Reinforcement 3

Type: Fabric Outside Point: (120, 928) Inside Point: (127, 928) Slip Surface Intersection: (130.49, 928) Total Length: 7 ft Reinforcement Direction: 180° Applied Load Option: Variable F of S Dependent: No Contact Cohesion: 0 psf Contact Phi: 38 ° Interface Factor: 1 Bond Safety Factor: 1 Bond Resistance: 0 lbs/ft Fabric Capacity: 0 lbs Fabric Safety Factor: 1 Fabric Load: 0 lbs Load Distribution: Conc. in 1 slice Load Orientation: 1 Applied Load: 0 lbs Fabric Load Used: 0 lbs Resisting Force Used: 99.679 lbs/ft Available Bond Length: 0 ft Required Bond Length: 0 ft Governing Component: Bond

Critical Slip Surfaces

	Number	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	53	1.429	(118.956, 938.222)	15.419	(132, 930)	(113, 924)

Slices of Slip Surface: 53

X (ft) Y (ft) PoreWaterPressure Base Frictional Cohesive
--

			(psf)	Normal Stress (psf)	Strength (psf)	Strength (psf)
1	113.33335	923.8694	-53.972513	21.489573	16.789495	0
2	114	923.6256	-38.775026	58.128454	45.414925	0
3	114.66665	923.41585	-25.696508	87.378501	68.267567	0
4	115.36305	923.23225	-9.6719253	111.12223	86.818197	0
5	116.0314	923.0862	7.6902903	127.26244	93.420006	0
6	116.64195	922.98085	21.880187	137.37253	90.232511	0
7	117.2525	922.90055	34.507758	144.49798	85.933781	0
8	117.86305	922.8449	45.59639	148.77025	80.608253	0
9	118.4736	922.81365	55.167051	150.29056	74.31863	0
10	119.08415	922.80665	63.225144	149.14721	67.129673	0
11	119.6947	922.82385	69.773483	145.40668	59.091132	0
12	120.30705	922.8655	86.314418	855.1147	600.65261	0
13	120.9211	922.93195	112.82424	833.16415	562.79122	0
14	121.53515	923.0235	137.76988	809.95494	525.16853	0
15	122.14925	923.1406	161.12233	785.41163	487.74825	0
16	122.7633	923.28385	182.83526	759.42828	450.48384	0
17	123.37735	923.454	202.88899	731.91978	413.32415	0
18	123.99145	923.652	221.19263	702.77756	376.25538	0
19	124.6055	923.87905	237.68527	671.90631	339.25066	0
20	124.95625	924.01845	246.26433	653.51726	318.18086	0
21	125.33335	924.1884	252.00037	632.35638	297.16669	0
22	126	924.51115	259.6284	592.93892	260.41072	0
23	126.66665	924.87495	264.67711	550.76995	223.52022	0
24	127.25	925.22705	266.84316	511.50136	191.14794	0
25	127.75	925.56025	266.86886	475.90271	163.31515	0
26	128.2946	925.9582	252.55205	432.37927	140.49642	0
27	128.88375	926.43055	223.12103	379.3421	122.05328	0
28	129.4729	926.9535	190.54938	321.91654	102.63527	0
29	130.0621	927.53455	154.36866	259.63071	82.239731	0
30	130.65125	928.1839	113.95744	191.83757	60.846627	0
31	131.20935	928.8725	70.986956	119.06339	37.561424	0
32	131.73645	929.60895	25.207353	41.384668	12.639104	0

Letter of Submittal

Wilder Construction Company 1525 E. Marine View Dr Everett, WA 98201

Project	Skykom	ish Levee R	emediation	Date Submittal Number Return By	1/18/2007 17
То:	The RET Mike Bye Project M 1011 SW Seattle, V	EC Group, I ers fanager / Klickitat Wa NA 98134	nc. ay, Suite 207		
From:	Wilder Co Quinn Go Project E 1525 E. N Everett, V	onstruction C olden ngineer Marine View VA 98201	Company Dr	·	
Bid Item	Spec Reference	Copies	Submittal Description	Dra	wing Number
27	N/A	1	Levee Wall/Veiwing Platfo	orm Design	

Remarks by Contractor Attached is a preliminary design for the levee wall, stairs and viewing platform. Please review and comment. A final design will incorporate all comments and be resubmitted at a later date for approval.

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134-1162

Letter of Transmittal

206.624. 9349 Phone 206.624. 2839 Fax www.retec.com

TO: Louise Ba	ardy, Department of Ed	cologyDATE	:	April 3, 2007
RE: Skykomis	h Levee project	PROJ	ECT NO:	BN050-19390-220
PLEASE FIND:	 ✓ Attached ☐ Copy of Letter ☐ Samples 	Under separate co	over via:	gs/Figures 🔲 Plans/Specs
Copies	Date	No.		Description
3				WCC submittal 17, retaining wall
3				Response to comments on original submittal
For Approval	Apr	proved as Submitted	🗖 Resu	IbmitCopies for Approval
For Your Use		proved as Noted	🔲 Subn	nitCopies for Distribution
As Requested		turned for Corrections	🗖 Retu	rn Corrected Prints
For Review & C	Comment		🗖 Othe	r:
Remarks:				

Should you have any questions, please feel free to call me.

Sincerely,

The RETEC Group, Inc.

仍 Michael Byers

cc: RETEC File

PHONE NO. : 520 579 8706 Dec. 10 2006 06:57PM P9 FROM : LES BAKAR 5Ky Romish Walk 0 #4@18" #" 2- #4 continuous #4 fies @12". # fies@12" 3- 45 continuous t2" clear all around 3 - #5 continuous 60 X 2 EA 122 EA # 4 TIES @ 12" OC # 5 BAR 3EA XZ = 6 X 60 + SPLICE 4 BAR 22A+2 = 4 × 60 +SPLICE equella Estava el

FROM : LES BAKAR PHONE NO. : 520 579 8706 Feb. 07 2007 05:20PM P2 217/07 City of Skykomish Levce Enhancement Project Light Pole For Design From Lighting Group Northwest Working moment - 2000 Flas shear = 200 lbs Forsian load = 300 ft the Bolts = 4 - 3/4 \$\$ A307 13.43 (Ø) A307-3/4 & bolt in single shear good for 4.46 7 200/hs Check tension in bolt due to uplift Assume lever arm of 19" = 9.5" T= 12×2000 /9.5 = 2526 / bolt Torsimal shear = 300×12 = 94.7 # /bold boll good for 8 gl inten

FROM : LES BAKAR PHONE NO. : 520 579 8706 Feb. 07 2007 05:21PM P4 2/7/07 Skykomish Pole Aln Design Assume min allow Bry Press = 2000 actual toe press = 487.5 = 487.5ps anchor bolk nlong Grade 10 #6C12 by vistan 1-0 Pole Foundation ADDING 18" OF 24" RADIUS 24 SEE ADDITIONAL DRAWING

Steve Chambers

From:Frisbee, Greg [greg.frisbee@pse.com]Sent:Tuesday, March 06, 2007 2:20 PMTo:Steve ChambersCc:Haydon, DelSubject:FW: Skykomish Renovation

Attachments:

scan.pdf

scan.pdf (30 KB)

<<scan.pdf>> Steve,

Attached is a drawing of the spread footing you described this morning. I hope it meets your needs. This footing will support the Victorian II poles with one or two luminaires as specified when installed adjacent to the wall you are constructing alongside the levee in Skykomish.

If you have any questions or desire a change to the drawing please email or call.

Regards, Greg

Greg Frisbee Manager Engineering & Construction INTOLIGHT--Lighting Services from PSE 355 110th Ave. NE PSE-9W Bellevue, WA 98004 425-456-2915 Cell 206-604-3347 Fax 425-462-3149 email greg.frisbee@pse.com

----Original Message----From: Robins, Rawley B Sent: Tuesday, March 06, 2007 11:29 AM To: Frisbee, Greg Subject: Skykomish Renovation

'n

Here it is.

Rawley

Traditional Series

Victorian

Style II

The fluted Victorian pole features neoclassical detailing that complements many period architectural styles, yet blends easily with more modern surroundings. The slightly tapered shaft lends a graceful look to this elegant Victorian.

Ameron's Traditional Series spun-cast, prestressed concrete lighting poles combine the charm of yesterday with today's technology. Available in a variety of configurations, colors and finishes, these poles provide architects and designers many creative options. All Ameron spun-cast concrete poles have our exclusive ten-year warranty. Durability with a classic touch.

General Information

Ameron's Traditional Series poles are available in a variety of standard and custom configurations. Constructed with the highest quality prestressed concrete, these centrifugally cast, low-maintenance poles are strong, durable, and vibration resistant. Ameron poles conform to applicable sections of ACI, AASHTO, ASTM and UBC standards.

Surface Treatment

The concrete shafts are lightly blasted to expose the texture and beauty of the natural aggregates while maintaining sharp definition of details and patterns.

Colors and Finishes

Standard, pre-formulated and custom aggregate colors are available. See separate aggregate sheet for details. Ameron offers AmershieldTM, a premium graffiti-resistant coating, plus an assortment of durable sealers and protectants that further enhance colors, protect the concrete surface and aid in the removal of graffiti.

Traditional Series Victorian II Pole

		5-1/8" TOP O.D. SHAF	T CROSS S		> PC WIRES	15" BELL	VBF ELE See recon "capping	VATION mended detail"	SQ	Ø BASE F) // ATE	8		
				DA										
		04741.00		BACE	SE PLATE ST	LE - UR				:> 84	A VINAL IN			
DL"	A"	CATALOG NUMBER VBF-3.1 VBF-3.7*** VBF-4.1 VBF-4.7*** VBF-5.6 VBF-6.2**	POLE* HEIGHT- "A" 10'-2" 12'-2" 13'-5" 15'-5" 15'-5" 18'-4" 20'-4"	BASE O.D. 13" 13" 13" 13" 16" 16"	ANCHOR BOLT 3/4" × 24" × 4" 3/4" × 24" × 4"	BOLT CIRCLE 16" 16" 16" 16" 19" 19"	BASE PLATE (SQ) 14" 14" 14" 14" 14" 17" 17"	ULTIMATE G.L. MOMENT (FT. LBS.) 12,000 12,000 15,000 15,500 17,000	WEIGHT (LBS.) 350 375 400 500 700 800	 M/ EPA/M 80 15.0 15.0 13.0 13.0 13.0 13.0 	XIMUN PH (SQ 90 12.5 12.5 12.5 13.0 11.0 9.0	1	Ć	1. ·
			BO/ 5	EN	ABEDDED STY	LE - ORL	ERING I	NFORMATION	WEIGHT			_		
		VEF-3	POLE HEIGHT "A" 9'-10" 11'-10"	0.D. 13"	EMBEDDED DEPTH 3'-3" 3'-3"	LEN "C 13	GTH 9L" '-1" '-1"	G.L. MOMENT (FT. LBS.) 12,000 12.000	475 500	EPA/M 80 15.0 15.0	PH (SQ 90 12.5 12.5	FT)* 100 11.0 11.0		
		VEF-4	13'-0"	13"	4'-3"	17	'-3"	12,000	575	15.0	12.5	11.0		
		VEF-4.6**	15'-0"	13"	4'-3"	19	-3"	15,000	725	13.0	11.0	9.5		
		VEF-5.5 VEF-6.1**	18'-0" 20'-0"	16" 16"	4'-11" 4'-11"	22 ⁵ 24 ⁷	-11″ -11″	15,500 17,000	760 860	13.0 13.0	11.0 9.0	8.0 6.0 🜌		
		*EF atta **To	A based on p chment meth op 28" of pol tes:	ost top mo ods and in e is 5-1/8"	unting. Consult you creased load capac non-fluted round	ur represen city require	tative for o ments.	ther						
			SPE	CIFICATI Use (ONS <u>Centrecon</u> Spec	ifications								
"] 3"		LUM	NAIRE N See	IOUNTING Fechnical-Mount	ting Optic	ns Sectio	on for more info	rmation.					
			COL	ORS & Fl See (INISHES Color Selection	Guide.							{	~.
ļ ,	·		ANTI	-GRAFFI Optio	TI & SEALER nal Coatings av	ailable fo	r added p	protection.					X	

1/02

Letter of Submittal

Wilder Construction Company 1525 E. Marine View Dr Everett, WA 98201

Project	Skykomish Levee Remediation	Date Submittal Nu Return By	3/6/2007 mber 17a
To:	The RETEC Group, Inc. Mike Byers Project Manager 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134		
From:	Wilder Construction Company Quinn Golden Project Engineer 1525 E. Marine View Dr Everett, WA 98201		
,		-	

Bid Item Spec	Reference	Copies	Submittal Description	Drawing Number
27			Levee Design	
	n an an American American American American American American American American American American American Amer			
marks by	Attached is No. 17.	s a letter the	it addresses the questions you had re	egarding Submittal

3/6/2007

Mike Byers Project Manager The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Subject: Submittal 17a

Mike,

In your response to Submittal 17, you posed several questions. This letter addresses those questions as follows:

Questions #1: "Although MPA indicates that they are not the "designer of record", it is our understanding that, although the layout may have been completed by others, MPA completed the internal design of the wall, walkways and overlook and are responsible for adequate performance of the wall and the other features designed under the constraints indicated in the closure section of the submittal. Please clarify the statement "MPA is not the designer of record" as it applies to the features that MPA designed."

Response: MPA indicated in a meeting that this is a levee and it could be overtopped and the water moving over and around the designed elements was and is of concern. In that meeting I was told that the City was accepting that risk and I was told that the water would NOT overtop the levee and do not design for that condition. Therefore, the design does not take that into account. The light pole foundations, the hand railing, the stairs, the concrete walkway, the overlook, the geogrid & blocks are NOT designed to withstand an overtopping or a log/stump being moved by the water and hit them. That was the reason for the comment.

If the levee is considered an earthen mound made of large rock on one side and smaller rock on the inside, then MPA will stand behind the design. The lateral earth pressure for the block wall that resulted in the geogrid length and spacing was chosen for that condition. It was not designed for water flowing over the top. The pole foundations were also designed for being in the small rock type of material. So if the elements of the project are built as MPA designed and the conditions stay as they are during construction with the river water, then we stand behind our design.

Wilder Construction Company 1525 E. Marine View Dr Everett, WA 98201 Question #2: "Walkway design - Will the walkway withstand the occasional light duty truck traffic? The expected load is the town's maintenance truck (F-450)?"

Response: Yes, the slab with support a pickup truck weight. The concrete transfers the load to the underlying soil so the levee must be intact, compacted and the concrete placed so no voids are beneath....

Please contact me if you have any additional questions regarding these responses.

Sincerely,

WILDER CONSTRUCTION_COMPANY

Quinn Golden

Project Engineer

cc: Project File

Wilder Construction Company 1525 E. Marine View Dr Everett, WA 98201

CONSTRUCTION MEMO	MPA Project # 1600			
Project Name: Levee Wall	Date: 30Mar07			
Location: Skykomish Levee by School	Report #2			
Client: Wilder Construction				

Comments:

Per the sketch you sent me & calculations that are attached, MPA is providing you with the remaining details for construction of the CIP wall & footing. The stair portion are already provided and the deck was provided in the plan for the overhang and should be extended to the south to connect to the top of the wall. Specifically:

- The wall, to be placed approximately where shown on Photo #2 below, is to be constructed per the attached detail sheet.
- The deck section that is to be located where the yellow line is in photo #1 is to be connected to the two footings shown in the photo and it should extend to the new retaining wall. The top of the retaining wall should be like the top of the footings shown in Photo #1 show there is a positive connection.
- The stairs should be constructed on the backfilled material per the detail shown in Appendix E in our earlier submittal.
- All the CIP slabs and walls are to be continuous and the rebar extends from one element and pour to the next, so leave then sticking out to they are incorporated in the next element or pour.

Photo Log:

- 1. Looking east at footings for overhang & the top of nearly completed block wall. Arrow points where back to back stairs are to be placed & yellow line is where deck is to extend. On the right side, a fill is required to support it.
- 2. Looking west; the temporary steps are sort of like the proposed ones in that they are parallel to the levee axis like shown but there is another block wall w/ geogrids along roadway & concrete steps behind. Yellow line is where wall is to be.

Attached are the wall calculations.

Please call if questions.

Frank Pita

17270 Woodinville-Redmond Rd, Ste 703 Woodinville, WA 98072 Geotechnical and Tunnel Consultants www.milbor-pita.com Page 1

Phone (425) 486-6561 Fax (425) 488-2660

Sky Lomish Retaining Wall @ Stairway. 10 Equiv Aund Press 20.3(125)2 37.500 Surcharge pedestrian load 2100 Equir fater il pres = 0 3 × 60 = 18/05 P= 12 (37.5) (6) = (47575 /4 = 188 plf P = 18 × 6 where wall = 6x \$ x 150 = 4 Soli why fty = 2× = × 150 = 200 lhi Wty sail on Hg= 1.5×6×125 Chick overhirming $M_{0T} = (P_{1} \times \frac{6}{3}) + P_{1}(\frac{b}{3}) = 1674/h$

3ky Kemish Overturning Contra u col Mp = 11275+200+1406.25 2: 17/9: FS 2 1719 2 1.02 NG 1674 Needs to be at least 1.2 Increase the width to 30 wt & wall = 450 16/17 wt & flg * 31 = 150 = 300 THE wt & flg * 31 = 150 = 1875 wt & Suil 2 2.5 × 6 × 125 = 1875 Revised MRI = (450 × 372) + (300 × 32) + 1875 × 2/075 2112.75 + 450 + 3281.25 7 3844 2 2129 Oh 2 3844 Check Sliding L= P1+P2 = 675 + 108 = 783 # tessume ne org Fr (450+300+1875) 2 2 10 50 th FSZ 1050 = 1.34 DAC

Skyko marc Check pressure under heel M= 1674 16 P = (450+300+1875)= 2625 T. Ag = 1-3 = 2.25 /f PZ E ME 10 2 2 2623 E 1674 × 1.5 3×1 2025 2000 98 875± 1116 eccentricités e « 1674 modelle that try 31-69 base (13-eres) 3 Vertical bad = 3x 6x125 12 3.5 x & x 150 Wt Atty -480+22150+350 3050 BAP de. S = 305 = 2004 11 3050 1674× 5 3.5 2.04 A = 35 x1 = 35 = 871± 820 = 1691 = 51 ole

5ky Komish 45c 3-6" faoting Wall Design M2 1674 16R Eachred M = 1.4 × 1674 = 2343.61 Honz Shear = P. + P. = 783 lbs V2 = 783×1.4 = 1096-2 Assume file 3000 psi A = 0.85 2 60 000 pri 0.85 fe Bil $\frac{15700}{8700 + f_{y}} = 0.8214$ 200 = 0.0033 Fu man $R_N = \frac{m_n}{p \, b \, d^2} = \frac{2343 \cdot 6 \times 12}{0.9 \times 12 \times 3^2}$ 23.53 ty = 60 €\$fc' = 0.85(3) = 1 (0 - 1/1 - 2m Rn = - 23.53 (1-1)-2(23.53 × 289.3 = 0.005/ 60000 = 0.005/

5ky Komish AS = 0.005/×12×3 = 01/8 12/12 The #4 012 As 3 0.002 x 12 y 6 = 01/44 the # 4 @ 12 each way AS= 0+20 12 x Vn = 1096.2 Vn = Vn = 1096.2 n = 0.85 = 1289.61 Vn 2 1289.6 = 35.8 psi Id 12 × 3 V = ffc bel = 1676 pri > 1289.6 for froting use \$ = 0.002 × 12 × 8 = 0.192127/4 4@12 = 0.20 m/p

Dec. 10 2006 06:57PM P9 FROM : LES BAKAR PHONE NO. : 520 579 8706 Sky komish Walk 160 Q) 2- #4 Continuous #4 ties @12" 2-6 4. fies@12" 3- 45 continuous T2" dear 3 - #5 continuous all around NOT REQUIRE STATRS TO BE 1)055 Asi And HOR
Additional Design Input of Details & Calculation Backup for The Levee Enhancement Project in The Town of Skykomish, WA

for Wilder Construction Company Everett, WA

December 2006

Milbor – Pita & Associates, Inc. Geotechnical & Tunnel Consultants Job #1600

26Dec06 #1600

Milbor-P

To: Quinn Golden/Wilder Construction From: Frank Pita, PE

RE: Final Design Input of Details & Calculation Backup for Levee Inside Wall, Overlook & Walkway, BNSF Cleanup, Skykomish, WA

Background

The following submittal is a partial design of a larger project, and mainly covers details of the block wall, the geogrid, the external stairs at the east end, the concrete walkway and overlook, the concrete stairs, and the backfill material. MPA is not the designer of record.

As the attached drawing logos indicate, the project conceptual layout and horizontal/vertical control was prepared by KPG and RETEC, respectively. MPA has not changed these designs but has used these data for the generation of typical details for the construction. These details are either from published standard designs by suppliers and/or Highway departments or generated by MPA. These are presented in the following seven (7) appendices.

Explanation of Attached Figures & Details w/ Comment

Attached Figures by Others

Figures 1 through 6 (hand labeled) present the project conceptual layout and the horizontal/vertical control. They are as follows (number below is the figure number):

- 1. Overall site plan with stationing for layout.
- 2. Vertical and horizontal control for wall construction and walkway etc.
- 3. Remainder of #2 with elevation table.
- 4. Walkway stairs, planter and fence 'look' in center portion of the project.
- 5. Fence details included base plate details for anchoring into concrete, which is suitable where the fence with be founded on cast in place concrete. This is not to be used where fence is located on the block wall.
- 6. Typical sketch section of the walkway, a luminary, the planter and the block wall with fence on top. <u>This detail MUST be modified so that fence is located just inside the planter area and behind the wall.</u> Details in figure 2 in Appendix B should be followed.

Appendices

<u>Appendix A</u> contains details on block stair way construction and layout; corners and how the block alternate along the face. The pattern repeats but it is not every block. The blocks should be placed in a horizontal plane and not paralleling the river's slope. Details are shown on stepping the block system up and down. MPA is of the opinion that the two sets of stairs could be constructed by either blocks or cast in place concrete after forming. Both will work. Details are shown for both. If concrete is used, the owner desires the block look on the exposed side. This can be done by building the geogrid wall in the soil beneath the cast in place stairs. The blocks that 'face' the concrete should be either:

- Glued together per the manufacturer's recommendations, or
- Casted into a grout that holds the backs. A tie should be placed in the concrete for attachment if it is constructed first. If not, pour the stairs against the blocks.

<u>Appendix B</u> contains details on the fence/railing construction. As can be seen, all posts are set in concrete behind and below the wall blocks. The glued on cap block can not support a railing alone.

<u>Appendix C</u> contains the computation for the geogrid size, length and vertical spacing. Also commented on was the proposed backfill material; MPA recommends a clean (less then 3% fines) angular (crushed) material that both drains and locks up with minimal compaction.

<u>Appendix D</u> contains the sketch & details for the walkway in all locations other than the overlook. To reduce the possibility of undermining during high water events, both sides of the walkway should have vertical or side elements. The rebar should be continuous but the sides and horizontal portion could be placed at different times.

<u>Appendix E</u> contains the details for the cast in place overlook walkway. Also shown are the two foundations or deadman. Calculations for the sizing of the members are included as well. <u>Please note that this element of the project needs to be tied to the other deck slabs by overlapping rebar extending from the one element to the next.</u> Entire walkway slab should be tied together.

<u>Appendix F</u> contains details for a concrete stairway, which should also be tied to the other slabs via rebar.

<u>Appendix G</u> contains details for the footing base for the luminaries. The pages are from WSDOT's standard plans. Your electrical subcontractor should follow these details.

<u>Closure</u>

At an all inclusive meeting held in Wilder's office on 4Dec06, where MPA questioned some of the design assumptions, it was made clear that the design parameters that MPA should use are as follows:

- The levee will NOT be overtopped so the design should NOT design for water flowing down the stairs or ramps. The luminaries and fence should not be designed to withstand impact of moving river debris.
- The overlook should only extend 4 feet out over the river. The bottom elevation of the overlook should be above the high water elevation.
- Wilder will make every attempt to strengthen the design by adding extra concrete to fill voids etc.

Call if questions.

Fig. 1

			· · · · · · · · · · · · · · · · · · ·		
	8		T	9	
		and the second	- 7017 -23		
7 00000000000 17:		TAR	SCOCOCK	0000000000	21
	Kooboo	<u> Cocoo</u>		=====	
-924		编三王			
925	=====		- 926		台
	La - 522		(F) - (6)	27928]
	- <u>-</u>	(3) ⁻	S-F-F-	75	42 Fe
4100 61			5+00-1		
	ຶ Λ	1			IS
	A	/		· · · · ·	+50
=~		<u>i</u>	TRE		7
	— — i		β		E B
N.	í	~ /	4		
	/	H H		TEMA	
V7		HS H	~ /i	TE ME	
*25 A.		ēn II.	EGARA		-
	÷	0	Contract I	1	
3 //1 .	1 7	Th	\sim	1	
"HAL		11 ~	_ /		c
	925-				Ĭ
JIII / 1	LI	>>	ビヨフ		
	174	LE,MC	ORE 7		
		I'LE "	00		
HI	i // /	\sim		~	-
M I	1		\square	SHED	
' [! !	H			~1	
1 1	1H				
///////////////////////////////////////					D
				·	
_			_ (7)		
<u>(8</u>)	1 2	(3)	<u>ه</u> ۲		
		==/			1
	1) 1)	እ 👁			
Ð		ռ ՝, /՟՟	(5)		
	<u>_</u> Y	<u> </u>			
	(U)				
			·····		-
	4. 55				
	4+50		5+00	5+5	60
OT FOR	CONS	TRUC	TION		
		KYKOMIS		MEDIATION	
TON			· · • • • • • • • • • • • • • • • • • •		
	LEVE	E WALKWA	Y PLAN AND	PROFILE WE	ST
	URAWING ND.	LW-01		REVIS	IONA
				Field	2
				1 4 7 8	

··· ··					******		
L	L	L	AYO	UT C	:00	RDIN	ATES

	Top of Levee Elev.	Top of Wall Elev.	Top of Lev. Pad Elev.	Stair/Ramp Elev.	Top of Planter Elev
s	(feet msl)	(feet msl)	West	(feet msl)	(feet msl)
0.18	925.00	926.14	924.50	-	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	926.10	926.97	924.50		
	926.80	927 80	924.50	•	
	927 70	928.60	924.50		
	928.47	920.00	924.50	-	
	020.47	G20.41	925 33		
	929.00	931 14	925.33		
	930.50	931.14	925.33	-	
	030.85	031.14	025.33		-
0.02	930.05	021 14	025.33		
0.03	930.85	931.14	925.33		
	930.85	931.14	025.33	-	
	930.90	. 021 14	920.00	-	
	930.93	021.14	025.33	•	
	930.93	931.14	920.00		•
	931.00	931.14	923.33	-	
	931.00	931.14	925.33		-
	931.05	931.97	925.33		-
	932.00	932.81	925.33		-
3.61	932.15	932.61	926.17	-	-
	932.50	927.81	926.17	•	-
	932.55	928.64	926.17	-	-
	932.60	929.47	926.17		-
	932.65	929.47	926.17		-
	932.70	929.47	926.17	-	
	932.75	930.31	926.17	-	-
	932.80	930.31	926.17		-
	932.85	931.14	926.17	-	
	932.90	931.97	926.17		-
	932.95	931.97	926.17		-
	933.00	931.97	926.17		
	933.05	932.81	926.17	-	T .
.02	933.05	933.64	927.00		-
	933.10	933.64	927.00	-	-
	933.20	933.64	927.00		
1.34	933.40	933.64	927.83		
1.37	933.42	933.64	928.67	-	•
.39	933.45	933.64	929.50		~
.43	933.50	933.64	930.33	•	-
2.45	933.52	933.64	931.17	-	
.49	933.53	933.64	932.00	-	
	933.53	933.64	932.00	-	-

DRAFT - NOT FOR CONSTRUCTION

MPANY STON	SKYKOMISH LEVEE REMEDIATION									
	LEVEE WALKWAY PLAN AND PRO	OFILE EAST								
	DRAWING NO. LW-02	REVISION	Α							

Fig 3

.

Typical Section Through Walkway | IX PC

F.a 6

APPENDIX A

Versa-Lok Details on Stairs, Corners & Block Wall Construction

Geotechnical & Tunnel Consultants

INSTALLING THE BASE PEDESTAL

For all types of VERSA-LOK[®] stairs, the "base pedestal" installation method is suggested for ease of construction. Using this method, the base courses beneath the step risers are all built at the same level. Then a pedestal of units is stacked to create subsequent step risers (Figure 1). While this method requires more units than simply cutting in a base for each riser, it can save substantial labor costs. This method also creates more accurate, level, and stable stairs.

Careful preparation at the bottom of the pedestal is critical to the stability and levelness of the stairs. The leveling pad material should consist of crushed gravel, at least six inches thick. After placing and compacting the gravel, carefully check and adjust the level. A layer of fine sand may be used for final leveling. Place base course units on the leveling pad and check the level of the units front-to-back, side-to-side, and diagonally with a four-foot-long level. For more information regarding leveling pads and base installation, see Technical Bulletin No. 5—Base Installation.

The base course for stairs is usually buried 3-1/2 inches below the planned grade, leaving 2-1/2 inches of the unit exposed above grade. When a cap unit (about 3-1/2 inches high) is later placed on an embedded unit, it will create a six-inch-high step up from the grade (Figure 1).

Often, stairs are built into retaining walls, inset between sidewalls.

Create the remaining six-inch-high by 12-inch-deep risers by stacking courses of units in a pedestal. Shift each subsequent course of units forward about 3/4-inch, so they slightly overlap the row below (Figure 1). This will create an attractive overhang of the caps units when they are installed as treads.

If plans call for more than six risers, build the stairs in separate pedestals, each no more than five risers high (Figure 2). Building pedestals of more than five risers would bury more units than necessary.

Units placed in the stair pedestal are not pinned. The weight of the pedestal generally provides enough friction to keep stair units in place. If desired, use VERSA-LOK Concrete Adhesive to adhere each course to the one below. Be sure this completely cures before stairs are used, so the units do not shift (this can take several days).

With VERSA-LOK[®] units, the exposed sides of stair pedestals can have textured split faces.

STAIRS EXPOSED ON BOTH SIDES

Rather than being inset, sometimes stairs extend out from a wall. In these cases, the sides of the stair pedestal will be visible. For aesthetics, these exposed sides can be built with textured split faces that match the front of VERSA-LOK Standard walls.

Place half-units at both edges of each riser. Similar to a 90-degree outside corner, the half-units provide a textured split face for the side of each riser. For the remaining portions of the sidewalls, place whole units with the front, textured face of the units facing out (Figure 5).

To minimize special fitting, build the exposed sidewalls vertical. This keeps the risers at the same width throughout the height of the stairs. If the exposed stairs extend out from a VERSA-LOK Standard wall, interlock each course of the sidewalls into the main retaining wall, similar to installing an inside 90-degree corner.

Level the base units of the stairs and the retaining wall at the same time. Figure 6 shows a suggested installation sequence for exposed stairs (four feet wide and two feet high) extending from a VERSA-LOK Standard retaining wall.

The units inside the pedestal are not visible and do not have to fit tightly. However, they should be arranged to provide proper support for the units above.

Base course

Second course.

Third course

Top course

FIGURE 6

Outside 90° Corner

For the first ten-inch high corner panel, split a Standard unit and an Accent[®] unit into halves. Next, cut off the backs of two of the split half units as shown (Figure A and B). Also cut or split off the rear corner of a whole Standard unit (Figure A). For the lower portion of the corner panel, place the modified half-Standard unit at the corner. Place the corner-cut Standard unit and a Cobble[®] unit at its sides (Figure A). For the upper portion, place the modified half-Accent unit at the corner, with whole Accent units at both sides (Figure B). Complete this ten-inch-high course by building out from the corner panel with Mosaic[®] panels. On the next course, install another ten-inch-high corner panel that is basically the mirror image of the first course corner panel (Figures C & D). For the remaining courses, repeat these corner panels until reaching desired wall height.

For each course, always build a ten-inch high corner panel first, then work out from this corner panel.

VERSA-LOK® Retaining Wall Systems Solid Solutions:

VERSA-LOK MOSAIC DESIGN AND INSTALLATION GUIDELINES

Outside 90° Corner at Stairs

For corners at stairs, the front wall sets back but the side wall is vertical. When building an outside corner at stairs, the side wall abutting the stairs should be vertical *(see page 29)*. For the first ten-inch-high corner panel, split a Standard and an Accent[®] unit into halves and cut off the back of the Standard half unit as shown (Figure A). Also cut or split off the rear corner of a whole Standard unit (Figure A). Place the half-Standard unit at the corner, with a corner-cut Standard unit and a Cobble[®] unit at its side (Figure A). Above this, place the half-Accent unit at the corner, with whole Accent units at both sides (Figure B). On the next course, install another ten-inch-high corner panel similar to the first course panel (Figures C & D). For the remaining courses, repeat these corner panels until reaching desired wall height.

Inside 90° Corners

For the first ten-inch-high course of a 90-degree inside corner, butt the left side panel into the right side panel (Figures A & B). This hides part of the right side panel that runs "wild" past the corner. Upper and lower portions of both panels meeting at the corner should have units of the same height. In the illustrations below, lower units of the first-course corner panels are all four inches high. Modify the left side panel to fit snugly against the setback in the right side panel face by saw cutting 3/4 inch off the lower unit (Figure A). Build regular Mosaic[®] panels out from the corner panels to complete the first course. On the second course, butt the right side panel into the left side panel and saw cut the lower right side unit (Figures C & D). For remaining courses, repeat these corner panels until reaching desired wall height.

For inside corners, saw-cut units in the abutting panels to fit snuggly against the setback within the adjacent panels.

Create attractive step-downs by splitting sides of caps and Standard units.

Stepping Top of Wall

Wall tops should step to match grade changes. If a Mosaic[®] wall steps down six inches, use a modified Standard unit at the transition. Split a Standard unit in half so the textured wall end will match the wall face. When a step is four inches, splitting the Accent[®] unit is not necessary. The sides of two cap units should also be split to maintain texture on wall ends.

Stepping Base of Wall

If the planned grade along the front of a Mosaic wall changes elevation, the leveling pad should be stepped in ten-inch increments to match the grade change. Always start wall construction at its lowest level and work upward. Step the leveling pad only often enough to avoid burying extra units while maintaining required minimum unit embedment. With the Mosaic pattern, always build with full ten-inch-high panels after base course installation.

Some of the base course of VERSA-LOK[®] Standard units can show above grade without changing the random look of the wall face pattern.

27

APPENDIX B

Versa-Lok Details on Fence/Railing Construction

Geotechnical & Tunnel Consultants

Fences, Railings, & Traffic Barriers

Often fences, stair rails, guide rails, or concrete traffic barriers are needed behind a VERSA-LOK wall. With proper design and installation, a variety of structural and aesthetic features can be placed at the top of a VERSA-LOK wall.

This bulletin provides a general discussion regarding the design and installation of fences and railings. However, conditions and loadings vary with each project and these guidelines are not intended as construction drawings for any specific project. The user is responsible for complying with all applicable building codes and obtaining a final, project-specific design prepared by a qualified professional engineer for a wall and any appurtenant structures.

FENCES

When there is sufficient space, the easiest and most cost-effective way to install fences above VERSA-LOK walls is to place them several feet behind walls. With sufficient fence post depth and setback, the soil can provide a stable foundation. Separating fence posts from a wall also keeps wall movement from affecting the fence. While a minimum post depth of 30 inches is suggested, the embedment and distance behind the wall needed to create a stable post foundation varies and depends on the soil conditions.

When a fence is set back behind a wall, installers can dig or drill post holes after the wall is completed or they can install posts during wall construction. One option is to create post holes during wall construction by placing cylindrical tube forms at planned post locations and backfilling soil around them. After completing the wall, the tubes are filled with concrete and the fence posts set in the concrete (Figure 1).

TECHNICAL BULLETIN

This Technical Bulletin is the eighth in a series of informational papers that provide specific application ideas and installation tips for VERSA-LOK* Retaining Wall Systems. Additional information is available in our Design & Installation Guidelines.

The information, including technical and engineering data, figures, tables, designs, drawings, details, suggested procedures, and suggested specifications, presented in this publication is for general information only. While every effort has been made to ensure its accuracy, this information should not be used or relied upon for any application without verification of accuracy, suitability, and applicability for the use contemplated, which is the sole responsibility of the user. A final, project-specific design should be prepared by a qualified, licensed, professional engineer based on actual site conditions. VERSA-LOK Retaining Wall Systems disclaims any and all express or implied warranties of merchantability fitness for any general or particular purpose, trademark, or copyright in regard to information or products contained or referred to herein.

6348 Hwy. 36, Suite 1 Oakdale, Minnesota 55128 (651) 770-3166 (800) 770-4525 (651) 770-4089 *fax* www.versa-lok.com

FIGURE 1 Post Detail — Typical Section Handrail or Fence Post (Set back from wall)

When there is not enough room to set fence posts behind walls, they can be installed within top wall units prior to backfilling behind the wall. Break off the backs of the top few units to create room for the post. Cut or core the cap units to neatly receive posts (Figure 2 and 3). The fence should be flexible enough to accommodate differential movement between the units and the fence.

Placing posts near the front of a wall decreases the fence's foundation support. To improve stability to the post, the concrete foundation should be enlarged, extended behind the wall, and reinforced with steel rebar (Figures 2 and 3). The needed depth, extension length, and rebar placement will vary depending on conditions and loading.

FIGURE 3 Post Detail — Typical Plan Handrail or Fence Post (No Setback)

GUIDE RAILS

With proper design, guide rails can be used behind VERSA-LOK walls. For proper support, place guide rails several feet behind the wall units (Figure 4). The setback and embedment depth of the guide rail will vary with conditions and loading. For highway loading, AASHTO recommends an embedment depth of 5 feet. Like fence posts, guide rails can be placed in cylindrical concrete tube forms placed during wall backfill.

POSTS PENETRATING GEOGRID

For walls requiring soil reinforcement, fence and guide rail posts will often extend below the top layer or two of geogrid. Often the geogrid can be cut to fit around the planned post locations. Usually the top layers of geogrid can accommodate small intrusions while still maintaining overall tensile strength. However, the area cut from the geogrid should be no more than the minimum needed to fit the post. The wall design engineer must evaluate any planned post intrusions into geogrid layers to ensure they do not reduce strengths below needed minimums. Augering or driving through backfilled geogrid after wall construction is generally not suggested because it may excessively disturb or pull geogrid from the soil or the wall units.

When space allows, fences and railings should be placed several feet behind VERSA-LOK walls.

APPENDIX C

Material Analysis, Sizing Geogrid Calculations & Suitability of Onsite Geogrid

Geotechnical & Tunnel Consultants

3080 125th Ave N.E. Bellevue, WA 98005

www.milbor-pita.com

Phone (425) 869-5778 Fax (425) 861-0677

Table A.

VERSA-GRID® Estimation Charts

These tables are provided for estimating purposes only. They should not be used or relied upon for any application without verification of accuracy, suitability, and applicability for the use contemplated, which is the sole responsibility of the user. A final, project specific design should be prepared by a qualified, licensed, professional Civil Engineer (P.E.) based on actual site conditions. Preparation of these tables did not include consideration or analysis of global slope stability or allowable bearing capacity of foundation soils. These must be reviewed for each project by a qualified Geotechnical Engineer.

There are three tables provided in this guide to help estimate geogrid for different wall loading situations - level backfill, sloping backfill, and surcharges. To estimate geogrid quantities, first look under the column appropriate for project soils, determine the height (H) of the proposed wall and read across the row (under appropriate soil column) to approximate geogrid type, number of layers, and lengths of each layer.

These des	sign cha	ants as	sume
the follo	wing c	onditio	ns:

- Uniform soil conditions
- Stable foundation soils - Level grade in front of the wall
- No groundwater/water loads
- Slopes and loads behind
- the wall as shown - No additional loading behind
- wall (such as tiered walls,
 - building loads, etc.)

Design standards and properties used to develop these charts were:

- Design methodology in general accordance with NCMA Design Manual for SRWs
- Unit weight of soil (y) 120 pcf
- Internal friction angle of soil (\$) as shown on charts
- Long term design strength of the geogrid (LTDS) • VERSA-Grid VG 3.0 - 1250 lb/ft
- VERSA-Grid VG 5.0 1875 lb/ft

Level Backfill	Grave	(34°)			Sand	(ø = 3	0°)			Clay	(\$ = 28	°)		
	H (feet)	D (feet)	L (feet)	layers	VERSA-Grid	H (feet)	D (feet)	L (feet)	layers	VERSA-Grid	H (feet)	D (feet)	L (feet)	layers	VERSA-Grid
	4	0.5	0	0	n/a	4	0.5	4.0	1	VG 3.0	4	0.5	4.0	1	VG 3.0
20° Max	5	0.5	3.5	2	VG 3.0	5	0.5	4.0	2	VG 3.0	5	0.5	4.5	2	VG 3.0
	6	0.5	4.0	2	VG 3.0	6	0.5	4.5	2	VG 3.0	6	0.5	5.0	2	VG 3.0
	7	1.0	5.0	3	VG 3.0	7	1.0	5.5	3	VG 3.0	7	1.0	5.5	3	VG 3.0
	8	1.0	5.5	4	VG 3.0	8	1.0	6.0	4	VG 3.0	8	1.0	6.0	4	VG 3.0
/	9	1.0	6.0	4	VG 3.0	9	1.0	6.5	5	VG 3.0	9	1.0	6.5	5	VG 3.0
D -1	10	1.0	6.5	5	VG 3.0	10	1.0	7.0	5	VG 3.0	10	1.0	7.0	6	VG 3.0
	12	1.0	8.0	6	¥G 3.0	12	1.0	8.5	7	VG 3.0	12	1.0	8.5	7	VG 3.0

Sloping Backfill Sand ($\phi = 30^\circ$) Gravel ($\phi = 34^\circ$) Clay $(\phi = 28^\circ)$ layers VERSA-Grid layers VERSA-Grid layers VERSA-Grid H (feet) D (feet) L (feet) H (feet) D (feet) L (feet) H (feet) D (feet) L (feet) VG 3.0 VG 3.0 4 0.5 4.5 2 0.5 4.5 1 4 0.5 4.0 1 VG 3.0 4 VG 3.0 0.5 4.5 2 VG 3.0 5 0.5 5.5 2 VG 3.0 5 0.5 5 4.0 2 VG 3.0 40.5 5.5 3 VG 3.0 6 0.5 6.0 3 0.5 4.5 3 VG 3.0 6 6 VG 3.0 1.0 8.0 4 VG 3.0 7 1.0 6.5 4 VG 3.0 7 1.0 5,5 4 7 5 VG 3.0 8 1.0 9,5 5 VG 3.0 1.0 4 VG 3.0 8 1.0 7.0 8 6.0 VG 3.0 9 1.0 11.0 6 1.0 6.5 5 VG 3.0 9 10 8.0 6 VG 3.0 9 1.0 12.0 6 VG 5.0 8.5 6 VG 3.0 10 10 1.0 10 1.0 7.5 6 VG 3.0 12 1.0 15.0 7 VG 5.0 12 1.0 10.0 7 VG 5.0 1.0 VG 3.0 12 8.5 7

	Office Dealer	Grave	(φ = :	34°)			Sand	(¢ = 3	D°)			Clay ((\$ = 28	°)		
بمحيد	Surcharge Backini	H (feet)-	D (feet)	L'(feet)	layers	VERSA-Grid	H (feet)	D (feet)	L (feet)	fayers	VERSA-Grid	H (feet)	D (feet)	L (feet)	layers	VERSA-Grie
and the second s	250 psf	4 A	0.5	4.0	2	VG 3.0	4	0.5	4.5	2	VG 3.0	4	0.5	5.5	2	VG 3.0
2	★4%3331	5	0.5	4.5	2	VG.3.0	5	0.5	5.5	2	VG 3.0	5	0.5	6.0	2	VG 3.0
		6	0.5	5.0	3	VG 3.0	6	0.5	6.0	3	VG 3.0	6	0.5	6.5	3	VG 3.0
		7	1.0	6.0	4	VG 3.0	7	1.0	7.0	4	VG 3.0	7	1.0	7.5	4	VG 3.0
	- 20" Max	8	1.0	6.5	4	VG 3.0	8	1.0	7.5	5	VG 3.0	8	1.0	8.0	5	VG 3.0
		9	1.0	7.0	5	VG 3.0	9	1.0	8.5	5	VG 3.0	9	1.0	9.0	5	VG 3.0
		10	1.0	7.5	5	VG 3.0	10	1.0	9.0	6	VG 3.0	10	1.0	9.5	6	VG 3.0
		12	1.0	9.0	7	VG 3.0	12	1.0	10.0	7	VG 5.0	12	1.0	11.0	7	VG 5.0

Geogrids with similar LTDS and connection strengths to VERSA-LOK units can also be estimated using these charts. With some variations, the VERSA-Grid VG 3.0 charts also generally estimate quantities for Miragrid 3XT, Stratagrid 300,

and Raugrid 4/2. The charts for VERSA-Grid VG 5.0 generally estimate quantities for Miragrid 5XT, Stratagrid 500, and Raugrid 6/3.

Miragrid is a registered trademark of Nicolon Corporation. • Stratagrid is a registered trademark of Strata Systems, Inc. Raugrid is a trademark of Lückenhaus Technische Textilien GmbH and Lückenhaus North America, Inc.

VERSA-LOK MOSAIC DESIGN AND INSTALLATION GUIDELINES

30

Table B

NORTHWEST LININGS & GEOTEXTILE PRODUCTS, Inc.

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 • (800) 729-6954 FAX: (253) 872-0245 www.northwestlinings.com info@northwestlinings.com

PermeaGrid[™] 55 Soil Reinforcement Geogrid Bi Axial

PermeaGrid[™] 55 is composed of high molecular weight, high tenacity multifilament polyester yarns that are woven into a stable network placed under tension. The high strength polyester yarns are coated with a PVC material. PermeaGrid[™] is inert to biological degradation and is resistant to naturally encountered chemicals, alkalis, and acids. PermeaGrid[™] is typically used for soil reinforcement applications such as retaining walls, steepened slopes, embankments, sub grade stabilization, and embankments over soft soils and waste containment applications.

TENSILE PROPERTIES	TEST METHOD	MARY VALUES (LBS/FT)
Ultimate Strength-MD Ultimate Strength-CD	ASTM D4595	4200 4200
Creep Reduced-MD	ASTM D5262	2727
T al = Long Term Design Strength MD T al = Long Term Design Strength	NCMA 97	2361
CD		2361
Aperture Size	Measured	0.75 x 0.75

RF Creep-1.54 RF Durability-1.10 RF Installation Damage (soil type 3)-1.05

Northwest Linings Warranty: Northwest Linings warrants our products to be free from defects in material and workmanship when delivered to our customers and that our products meet our published specifications. If a product is found to be defective, and our customer gives notice to Northwest Linings before installing the product, Northwest Linings will replace the product without charge to our customer or refund the purchase price at Northwest Linings election. Replacing the product or obtaining a refund is the buyer's sole remedy for a breach and Northwest Linings will not be liable for any consequential damage attributed to a defective product. This warranty is given in lieu of all other warranties, express or implied, including the implied warranty of merchantability of fitness for a particular purpose. There are no warranties, which extend beyond the description provided herein.

APPENDIX D

[

Walkway XS Sketch & Rebar Mesh Details

Geotechnical & Tunnel Consultants

17270 Woodinville-Redmond Road, Suite 703 Woodinville, WA 98072

www.milbor-nita.com

Phone (425) 486-6561 Fax (425) 488-2660

Milbor-Pita

APPENDIX E

Walkway Overhang XS and Sizing Calculation Backup

Geotechnical & Tunnel Consultants

Dec. 10 2006 06:57PM P9 PHONE NO. : 520 579 8706 FROM : LES BAKAR Sky Romish Walk Note #2 # 4@13 #4@,12" Note #1 nueras # ties@ 12" "4 hesep" 45 contracors 3 - #5 continuous "clear all around . ean ice t Note: 1) Connect deck portion To Walkway by continuous overlapping reban! 2) Connect to deck shab at top of stairs by Continuous overlapping rebar

FAX

То:	Frank Pita	Fax No.: 425.486.6561
From:	Les Bakar	Fax No.: 520-579-8706
Subject:	Skykomish Walkway	
Date:	12/10/06	No. of Pages: 9

Frank

Attached are the calculation sheets for the design of the Skykomish walkway cantilever and walkway slab. The last page shows a sketch of the rebar details. I have assumed that the soil under the slab on grade could settle .causing the slab to span across the two grade beams. I have also made the beams 2 ft. deep in order to get below the frost time especially since the dike slopes down from the base of the cantilever.

· · .

I haven't done anything with the stairway. I am not sure how that ties in with the walkway. We can discuss that tomorrow.

Les Bakar

1999 - A.

Dec. 10 2006 06:53PM P2 PHONE NO. : 520 579 8706 FROM : LES BAKAR 106 Skylomish Walk 4-0 8-0 C. 2'0 1-0 110 Assume 6" thick slab $DL = \frac{6}{12} \times 150 = 75 \text{ ps}f$ 14 = 100 psf Snow - 25 psf condition to LL on cantilever only B RB - 66 0 100 -01 = 75Mo OL = 75×4×4 = 600 B/F/A width MB LL = 100× 4× 4 = 800 BA, 80L = 75×4 = 300/6/12 VBU = 100×4 = 400/6/12 $\frac{R_{BBL}}{R_{ABL}} = \frac{2M_{A}}{8} = \frac{75 \times 12 \times 6}{8} = \frac{675 \text{lbs}}{225 \text{lbs}}$ $\frac{R_{ABL}}{R_{ABL}} = \frac{75 \times 12}{75 \times 12} = 675 = 225 \text{lbs}$ = 100×4×10 = 500 kg R54 = 21/4/8 1 Am - 500-

Dec. 10 2006 06:54PM P3

Sky Komish Walk Condition II IL across entire section = 100 pst 11 DL= 75 / 5% Leecert. Á = 600 16 F/F MB DL = 800 16 F/ A Mall 300 101 VOL 400 16 Vie 675 16/1 5MA REDE = 22516/ RATE RB11 = = HA = 100 × 12×6 = 900 1/4 = 300 /65/ ALL = 1200 - 900 th Menter span = 75 x 8 - 600 = 300 16/2/A Mu = 100 x 8 = 800 = 400 6/4/2. Condition III Live load on main welking -12 = 100 pst uncontres = OC = 75 p 11Mmetelet = 600 16F/H

FROM : LES BAKAR

PHONE NO. : 520 579 8706

Dec. 10 2006 06:54PM P

Skykomish Walk 12/19/06 andition III contraded center spor = 300 16/2 /12 MDL Mil 100 × 82 800 /0 centerspan = 675 16/ P R_B = 675 16/14 101 - 275 16/1 RADL = 275 16/1 RB12 = 100 x 8 = 400 14/12 = 400 lbs / fl Pall. Check Worst Condition At Cantolever Foctored M DIDI = 600 × 1.4 = 840 16F1 MU = 800 × 1.7 = 1360 $\frac{1}{1000} = \frac{300 \times 1.4}{100 \times 1.7} = \frac{420}{108} \frac{11}{108} \frac{11}{100} = \frac{400 \times 1.7}{1.7} = \frac{4200}{108} \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{108} \frac{11}{108} = \frac{11}{108} \frac{11}{$ Cantileurs Vor = 300 x 1.4 Interior. Mpt1 = 2200 16/4/14 + 1375 los/12

FROM : LES BAKAR 10 2006 06 Skykomish Walk Worst Condition at Center Span (Assume soil settle 400 A/F/A Factored Mor = 300 × 1.4 Mu = 800 × 1.7 = 1360 10/1/ More = 1760.16R/14 Design For Genter Span M= 1760 #/4/ antitever Al=2200 th 1375 Hz Vmax 3000 psi Concrete Ssime nebars fy=60,000 psi 2 = 6/2 = = 3"4" $\phi V_c = 2\phi \int p' bd$ = 2 (0.85) / SUD? 12×3 3352 168/12 > 1375

Dec. 10 2006 06:55PM P6 FROM : LES BAKAR PHONE NO. : 520 579 8706 Skykomish 1e M = 2200 16/4 Check -1 Cantile 0.85 fz B; = 0.0214 h = 3000 fs. 60,000 65 1n = 1271.6 min fy P= 1 m 2mRn 1-2(23.53)(271.6) = 0.0048 As pogo = 0.0078(12×3) = 0.17 m Use "4@12" As previded
FROM : LES BAKAR PHONE NO. : 520 579 8706 Dec. 10 2006 06:56 Sky Komish Walk 106 Check + 1/2 Moment @ Center Span 0.0214 _= 217-3 Rn = 1760 x 12 d= 6-2-2 $f_{max} = \frac{0.0033}{f_{y}} = 23.53$ $m = \frac{f_{y}}{0.85f_{c}} = 23.53$ P= 1 (1- VI- 2m Ron m (1- VI- Fy) 23:53 (1-11-2(23-53) 2 0.0038 × mm As = 0.0038 (12 (3.0) = 0.14 n// lie # 4 @ 12 As provided = 0.201 Temp steel Asy = 0.002 (12)(6) 11se # 4 @ 18 -As provided = 0.15 A

PHONE NO. : 520 579 8706 Dec. 10 2006 06:56PM FROM : LES BAKAR Skykomish Walk 12/9/06 Check bearing under Support B. = 675+900 = 1575 145/17 Condit II Mar RB D+L wt of concrete support Block = 300 16/1 = 1.0×2.0×150 = 1875/bs total R = 1575 + 300 brg pressure = 1875 1875 ps f 3000 jag Cond 11 RA 5+6 = 225+400 = 62516 Wt of suffort block = 10 x 2 x 150 = 300 16/1 total PA = 925 B/A brg pressure = 925 = 925/05//34 Use min steel for support beam on grade p = 0,002 mu As = 0.002 (12) (24) = 0.576 12 =5 a bottom use #4 ties @ 12 그그의 집문 문

Dec. 10 2006 06:57PM P9 PHONE NO. : 520 579 8706 FROM : LES BAKAR ð 514 Romish Walk 0 4-0 #410 @1Z 4 hes Cpl 2-6 fies @ 12" & continuous 3 - #5 continuous Clear all around eam oreal nii. :: {

APPENDIX F

Concrete Stairway Sketches & Details

Geotechnical & Tunnel Consultants

17270 Woodinville-Redmond Road, Suite 703 Woodinville, WA 98072

Woodinville, WA 98072 www.milbor pita.com Phone (425) 486-6561 Fax (425) 488-2660

Milbor-Pita

APPENDIX G

Light Base Sketches & Details

Geotechnical & Tunnel Consultants

Milbor-Pita

APPENDIX G

1

. 1

Light Base Sketches & Details

Geotechnical & Tunnel Consultants

And the state of the second

1

States and states

Concernation

ŝ

100

tore second

Ċ,

SKYKOMISH LEVEE REMEDIATION PROJECT

LEVEE PLANTING PLAN AND MONITORING PROGRAM

PREPARED FOR:

THE RETEC GROUP, INC., ON BEHALF OF THE BNSF RAILWAY COMPANY 1011 SW KLICKITAT WAY, SUITE 207 SEATTLE, WA 98134-1162

PREPARED BY:

GRETTE ASSOCIATES, LLC 151 South Worthen Street, Suite 101 Wenatchee, WA 98801

2111 North 30th Street Tacoma, WA 98403

REFERENCE NUMBER: 200500328

DECEMBER 2005

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
	1.1 Background1.2 Project Description	. 1 . 1
2.0	PLANTING PLAN	.1
	2.1 Goals and Objectives	.1
	2.2 Levee Design	2
	2.3 Plant Schedule and Zones	2
	2.2.1 Shoreline Zone	3
	2.2.2 Levee Zone	3
	2.2.3 Planting Approach	4
	2.4 Plant Installation	4
3.0	MONITORING PROGRAM	5
	3.1 Installation Monitoring	5
	3.2 Post-construction Inspection	5
	3.3 Long-term Monitoring.	5
	3.3.1 Monitoring Methods	6
	3.4 Performance Standards	6
	3.5 Contingency Plan	7
	3.6 Reporting	7
4.0	REFERENCES	8

LIST OF FIGURES

Figure 1.	Existing	and	Final	Levee	Contours
0	0				

- Figure 2. Skykomish Levee Remediation Final Sections
- Figure 3. LWD Cluster Plan View
- Figure 4. LWD Cluster Section
- Figure 5. Landscape details/plant placement

LIST OF APPENDICES

Appendix A Plant Installation Specifications

i

1.0 INTRODUCTION

This Planting Plan and Monitoring Program (Plan) describes the revegetation measures that will be implemented as part of the Skykomish Levee Remediation Project (Project). The Plan describes the specific elements of replanting the remediated levee, as well as the post-construction and long-term monitoring of the completed project.

1.1 Background

The Skykomish Levee Remediation Project is part of a MTCA interim action to stop seepage of diesel and bunker C fuel oil into the South Fork of the Skykomish River that will be performed pursuant to an Agreed Order between BNSF and Washington State Department of Ecology (Ecology) (RETEC 2005).

1.2 Project Description

The Project will entail removing and then replacing the existing levee with a new flood control levee, which will address petroleum product seeps that currently enter the South Fork of the Skykomish River. The existing levee material and adjacent river sediments will be excavated down to design depth, with all contaminated material loaded onto trucks and removed off site for disposal at a suitable disposal facility. The excavation area will then be filled with both stockpiled and imported clean material, and the face of the levee will be reconstructed. The reconstructed levee will be replanted using native vegetation. Further project description details are presented in the JARPA prepared for the Project (RETEC 2005).

2.0 PLANTING PLAN

2.1 Goals and Objectives

The primary goal of levee revegetation is to provide a level of habitat function at or above that which existed prior to levee remediation. Planting of vegetation along the toe of the levee and along the waterward edge of the levee benches will provide cover for a variety of fish and wildlife species. This overhanging vegetation will also provide shade that will protect lower water temperatures within the river. Planting vegetation along the face of the levee will provide nesting and foraging habitat for songbirds. The trees and shrubs along the levee face will also screen portions of the shoreline from human activity south of the levee. Levee benching and placement of LWD clusters along the levee face will also provide habitat complexity for both terrestrial and aquatic species.

1

2.2 Levee Design

During reconstruction, benches will be constructed along the waterward base of the levee (Figure 1). These benches will be more or less level, and will be located at the toe of the reconstructed levee. The waterward edge of the levee benches will provide a vertical drop of approximately 2 feet down to the river channel. This edge will be formed by large riprap or boulder substrates (Figure 2). The benches will also provide a convoluted shoreline edge, contributing to habitat complexity along the reconstructed levee.

The benches will be distributed in areas where the slope of the reconstructed levee allows the benches to remain within the footprint of the existing levee (Figure 1).

In addition to the large substrate along the shoreline edge, five large woody debris (LWD) clusters will be buried/anchored beneath the toe of the levee in areas where levee benching is not present (Figure 1). Each LWD cluster will consist of six pieces, and will be composed of Douglas fir (*Pseudotsuga menziesii*) or western red cedar (*Thuja plicata*) (King County 1993). The LWD pieces within each cluster will be oriented at different angles, with the upstream LWD piece oriented at an upstream angle (Figure 3). Each LWD piece will be embedded approximately 15 feet into the levee such that the root end of the log protrudes 5 to 10 feet from the shoreline edge (Figure 4). Further detailed guidance on installation of LWD can be found in King County's *Guidelines for Bank Stabilization Projects in the Riverine Environments of King County* (1993).

Several design considerations were evaluated for placement of the LWD clusters. A recreational kayak launch is planned immediately upstream of the levee near the 5th Street bridge. To direct kayakers around the upstream LWD cluster after launching, the cluster will be placed approximately 160 feet downstream of the bridge (Figure 1). Immediately upstream of this cluster boulders will be placed within the river channel and arranged such that river flows along the south bank are directed north of and around the LWD cluster (Figure 5).

Another design consideration is the location of the viewing platform, which is located in an area where levee benches will not be present (Figure 1). Therefore, a LWD cluster will be placed in this area, allowing for an open view corridor above the LWD. Additionally, portions of the levee without benches will likely contain less overhanging riparian vegetation than areas containing benches. LWD placed in these areas will provide additional overhanging cover.

2.3 Plant Schedule and Zones

The remediated levee will be replanted with a mix of native trees and shrubs. Guidance on plant species selection and planting location was referenced from King County's *Guidelines for Bank Stabilization Projects in the Riverine Environments of King County* (1993). Table 1 below lists the proposed species to be used for levee revegetation.

Species	USFWS Indicator Status ¹	Condition	Spacing ^{2,3}
Shoreline Zone			
Cornus stolonifera, Red-osier dogwood	FACW	cuttings	8 ft OC
Physocarpus capitatus, Pacific ninebark	FACW	cuttings	8 ft OC
Rubus spectabilis, Salmonberry	FAC+	cuttings	5 ft OC
Salix lucida var. lucida, Pacific willow	FACW+	cuttings	8 ft OC
Salix sitchensis, Sitka willow	FACW	cuttings	8 ft OC
Levee Zone ⁴		-	
Acer macrophyllum, Bigleaf maple	FACU	2-gal	10 ft OC
Cornus nuttallii, Pacific dogwood	NL	2-gal	8 ft OC
<i>Mahonia nervosa</i> , Oregon grape	UPL	1-gal	5 ft OC
Polystichum munitum var. munitum, Sword		U U	
fern	FACU	1-gal	5 ft OC
Symphoricarpos albus, Snowberry	FACU	1-gal	5 ft OC
Tsuga heterophylla, Western hemlock	FACU+	2-gal	10 ft OC

Table 1. Proposed species for levee revegetation

Species indicator status expresses the range in which plants may occur in wetlands and non-wetlands (uplands). Under this system, vegetation is considered hydrophytic when there is an indicator status of facultative (FAC), facultative wetland (FACW) or obligate wetland (OBL). Vegetation is considered non-hydrophytic when there is an indicator status of facultative upland (FACU) or obligate upland (UPL). A positive (+) sign indicates plants are more frequently found in wetlands than the category indicates. An indicator of NL represents insufficient information to determine status.

² Plant spacing is based on specific planting locations within each zone, not over the entire site.

 3 OC = On Center

⁴ Condition of Levee Zone plantings will be refined based on discussions with The RETEC Group, Inc.

2.2.1 Shoreline Zone

Vegetation planting areas on the levee will be separated into two zones: the Shoreline Zone and the Levee Zone (Figure 2). The Shoreline Zone will occupy the levee benches along the toe of the reconstructed levee up to an elevation 2 ft above the levee bench. The Shoreline Zone will consist of native tree and shrub species typically adapted to wet conditions. Vegetation planted near the shoreline edge will be planted such that, when mature, woody material will overhang the shoreline edge. Species to be planted within this zone include red-osier dogwood, Pacific ninebark, salmonberry, Pacific willow, and Sitka willow.

2.2.2 Levee Zone

The Levee Zone will occupy the face of the new levee immediately above the Shoreline Zone to the top of the levee, and will consist of native trees and shrubs adapted to dry conditions (Figure 2). As it is expected that the face of the new levee will consist of coarse material, species were chosen based on their ability to thrive in coarse soil textures. Species to be planted within this zone include bigleaf maple, Pacific dogwood, Oregon grape, sword fern, snowberry, and western hemlock.

2.2.3 Planting Approach

Red-osier dogwood and Pacific ninebark will be planted in the areas closest to the shoreline edge, as these species are particularly hydrophytic and are typically found overhanging river banks throughout the region (Figure 5). These species will be planted on 8-foot centers. Pacific willow and Sitka willow will be planted throughout the Shoreline Zone, and will also be planted on 8-foot centers. These species are also typically hydrophytic, yet would also be expected to survive further away from the shoreline. Salmonberry will also be planted on 5-foot centers throughout the Shoreline Zone and will provide a layered understory. It is expected that some areas along the levee will contain different concentrations of the varying species depending on site-specific constraints.

The dogwood and ninebark will provide cover and foraging opportunities for a variety of small birds and mammals, while also providing cover over the river bank for fish. The taller willow species will provide nesting and perching opportunities for songbirds, while also providing screening of the shoreline from human activities south of the levee.

Within the Levee Zone, bigleaf maple and western hemlock will be planted on 10-foot centers (Figure 5). These species will be planted throughout the upper portions of the Levee Zone except directly beneath or adjacent to the proposed viewing platform. Pacific dogwood will be planted on 8-foot centers throughout the lower portions of this zone, while Oregon Grape, snowberry, and sword fern are planted on 5-foot centers throughout the zone.

The larger maple and hemlock will provide perching and roosting habitat for raptors, while the snowberry and Oregon grape provide foraging opportunities for small mammals and songbirds.

2.4 Plant Installation

Plant installation will be performed in accordance with the specifications outlined in Appendix A. Any alterations to the planting plan due to site conditions will require prior approval from the project biologist or landscape architect. Planting should occur as soon as possible upon completion of levee construction to provide erosion protection. However, it is recommended that plant installation occur during the late fall (October to mid-December) or early spring (mid-February to April) to ensure plants do not dry out upon planting (King County 1993). Plant installation during the summer months may require artificial irrigation to ensure plant survival.

All plant materials to be used on the site will be nursery grown stock from a reputable, local dealer. Only native species are to be used; no hybrids will be allowed. All plant material shall be inspected by the project biologist or landscape architect upon delivery. Plant material not conforming to specifications will be rejected and replaced by the planting contractor. Rejected plant materials shall be immediately removed from the site. No fertilizers or organic mulches are to be used, as these may be washed downstream in the event of high flows shortly after planting.

Cuttings will be installed to a minimum depth of four-fifths of the length of the cutting. The cuttings will be installed at a right angle to the planting surface.

3.0 MONITORING PROGRAM

3.1 Installation Monitoring

Installation monitoring will involve coordination between the project biologist, landscape architect, and landscaping personnel in order to ensure that the plantings are installed in an appropriate manner. A project biologist or landscape architect will be present on site during installation to ensure that the plantings are conducted as outlined in the planting plan. The biologist or landscape architect will inspect and approve the planting stock, and review the plans with the field crew to ensure they both recognize the species selected for installation and understand the planting design. The biologist or landscape architect will assist the planting contractor in making any final adjustments in the planting schedule, as needed, in response to field conditions.

3.2 Post-construction Inspection

Compliance monitoring will consist of evaluating the levee immediately after plant installation to confirm the plan was followed and plants were installed appropriately. Surveyors will conduct an "as-built survey", including planted woody vegetation and measurements of final grade and elevation, to verify that all design features have been correctly and fully implemented, and that any changes made in the field are consistent with the overall objective of the levee design. Several fixed points will be established within each planting zone to be used for photo-point documentation during long-term monitoring. The fixed points will be permanently staked in the field.

Following completion of the post-construction compliance monitoring, a summary technical memorandum will be prepared by the project biologist verifying that all design features have been correctly implemented. Any changes to the planting plan will also be discussed in the compliance memorandum. The memorandum will be submitted to the U.S. Army Corps of Engineers (Corps) within 30 days following installation of the plants and final survey. The Corps will be the agency responsible for inspecting and approving the as-built reports.

3.3 Long-term Monitoring

Long-term monitoring will be conducted over a five-year period with observations conducted each year during the month of August. The purpose of the long-term monitoring program will be to evaluate the establishment and maintenance of the plant communities within the planting zones. Photographs will be taken at each fixed point during each monitoring year to document the status of the plantings. Photographs will be taken facing the same direction each year to document plant growth and development.

Monitoring will be conducted using the procedures described below to document the survival and relative health and growth of plant material. A technical memorandum will be submitted to the Corps within 60 days following each monitoring visit, and will describe the status of plant survival, growth and development. The Corps will be the agency responsible for inspecting and approving the monitoring reports.

3.3.1 Monitoring Methods

Vegetation surveys will be conducted in accordance with the monitoring schedule to compare results against the performance standards. Inspection of the planted material to determine health and vigor of the installation will occur during each monitoring visit. A walk-through inspection will be conducted during each visit and notes regarding plant health and vigor, presence of seed or flowers, and signs of vandalism will be recorded.

In addition to vegetation monitoring, visual observations of all fish and wildlife species and wildlife sign observed during the monitoring will be recorded. Birds, mammals, fish, amphibians, and reptiles observed on-site will be identified, and observations of any breeding or nesting activity within the revegetation area will be recorded. Observations will be limited to the annual monitoring inspections.

Permanent photo-points will be established during the post-construction compliance monitoring in order to obtain representative photographs of the project. Photographs will be taken to document vegetation survival and growth, and will be taken facing the same direction from year to year.

3.4 Performance Standards

Short-term success of the planting plan in terms of species richness and enhancement of wildlife habitat will be based upon a 100% survival rate for each planted tree and shrub at the end of Year 3. Volunteer native, non-invasive species will be included as acceptable components of the planting plan, upon approval by the Corps. Success of the overall planting plan will be demonstrated by an 80% survival rate of each planted tree and shrub at the end of the monitoring period (Year 5).

Dead plantings observed during each walk-through survey will be counted. That number will be compared to the total number of original plantings to determine the percent survival of the original plantings.

Cover within both planting zones will consist of less than 15% cover of undesirable vegetation, including non-native blackberry varieties (*Rubus* sp.), reed canary grass (*Phalaris arundinacea*), knotweed (*Polygonum* sp.), etc.

6

3.5 **Contingency Plan**

A contingency plan may be implemented if necessary. Contingency plans can include additional plant installation, erosion control, and plant substitutions including type, size, and location. Coverage of greater than 15% of invasive or non-native species may also require implementation of a contingency plan.

If the monitoring results of Year 3 and Year 5 indicate that the performance standards are not being met, it may be necessary to implement all or part of the contingency plan. Careful attention to maintenance is essential in ensuring that problems do not arise. Should any portion of the site fail to meet the success criteria (100% survival for 3 years; 80% survival after 5 years; less than 15% cover by invasive species), a contingency plan will be developed and implemented with Corps approval. Such plans are prepared on a case-by-case basis to reflect the failed site characteristics.

Contingency/maintenance activities may include, but are not limited to:

- 1. Replacing all plants lost to vandalism, drought, or disease, as necessary.
- 2. Replacing any plant species with a 20% or greater mortality rate after five growing seasons with the same species or similar species approved by the Corps.
- 3. Irrigating the planting zones only as necessary during dry weather if plants appear to be too dry, with a minimal quantity of water.
- 4. Hydroseeding exposed soil as necessary if erosion or sedimentation occurs.
- 5. Removing all trash or undesirable debris from the planting areas as necessary.
- 6. Removal of invasive or non-native vegetation.

3.6 Reporting

Technical memoranda will be prepared for each site visit conducted, and will summarize the results of each monitoring visit. The memoranda will be submitted to the Corps within 60 days following completion of each monitoring effort. The technical memoranda will document the percent survival within the planted zones and make recommendations for improvements and/or corrective measures for any problems noted during the monitoring visits.

4.0 **REFERENCES**

- Johnson, A.W. and J.M. Stypula. eds. 1993. Guidelines for Bank Stabilization Projects in the Riverine Environments of King County. King County Department of Public Works, Surface Water Management Division, Seattle, Washington.
- The RETEC Group, Inc. (RETEC). 2005. Joint Aquatic Resources Permit Application for the Skykomish Levee Remediation Project. Resubmitted December, 2005.

.

Appendix A Plant Installation Specifications

Plant Materials

All plant materials to be used on the site will be nursery grown stock from a reputable, local dealer. Only native species are to be used; no hybrids will be allowed.

Plant material provided will be typical of their species or variety; if not cuttings they will exhibit normal, densely-developed branches and vigorous, fibrous root systems. Plants will be sound, healthy, vigorous plants free from defects, disfiguring knots, sun scald injuries, frost cracks, abrasions of the bark, plant diseases, insect eggs, borers, and all forms of infestation. Plants held in storage will be rejected if they show signs of growth.

Container stock shall have been grown in its delivery container for not less than six months but not more than two years. Plants shall not exhibit rootbound conditions. Under no circumstances shall container stock be handled by their trunks, stems, or tops.

Willow cuttings must be alive with any side branches cleanly removed and bark intact. The butt ends should be cleanly cut at an angle for easy insertion into the soil. The top should be cut square or blunt. The cuttings should be 1/2 inch to 1-1/2 inch in diameter and 24 inches to 42 inches long. Cuttings must be fresh and must be kept moist after they have been cut to the appropriate lengths. They must be prepared and installed within a 48-hour period.

The seed mixture used for Hydroseeding shall contain fresh, clean, and new crop seed mixed by an approved method. The mixture is to be mixed to the specified proportions indicated above in Table 1 by weight and tested to minimum percentages of purity and germination.

All plant material shall be inspected by the project biologist or landscape architect upon delivery. Plant material not conforming to the specifications above will be rejected and replaced by the planting contractor. Rejected plant materials shall be immediately removed from the site.

Fertilizer will be in the form of Agroform plant tabs or an approved like form. Mulch will consist of sterile wheat straw or clean recycled wood chips approximately 1/2 inch to 1 inch in size and 1/2 inch thick, and will be applied around the base of the plantings to prevent them from drying out.

Product Handling, Delivery and Storage

Fertilizer should be delivered in original, unopened, and undamaged containers showing weight, analysis, and name of manufacturer. They should be stored in a manner to prevent wetting and deterioration. All precautions customary in good trade practice shall be taken in preparing plants for moving. Workmanship that fails to meet industry standards will be rejected. Plants will be packed, transported, and handled with care to ensure protection against injury and from drying out. If plants cannot be planted

immediately upon delivery they should be protected with soil, wet peat moss, or in a manner acceptable to the project biologist or landscape architect. Plants, fertilizer, and mulch not installed immediately upon delivery shall be secured on the site to prevent theft or tampering. No plant shall be bound with rope or wire in a manner that could damage or break the branches. Plants transported on open vehicles should be secured with a protective covering to prevent wind burn.

Preparation and Installation of Plant Materials

The planting contractor shall verify the location of all elements of the landscape plan prior to installation. The project biologist or landscape architect shall reserve the right to adjust the locations of landscape elements during the installation period as appropriate. If obstructions are encountered that are not shown on the drawings, planting operations will cease until alternate plant locations have been selected by and/or approved by the project biologist or landscape architect.

Circular plant pits with vertical sides will be excavated for all container stock (salmonberry and crabapple). The pits should be at least 12 inches in diameter, and the depth of the pit should accommodate the entire root system. The bottom of each pit will be scarified to a depth of 4 inches.

Broken roots should be pruned with a sharp instrument and rootballs should be thoroughly soaked prior to installation. Set plant material upright in the planting pit to proper grade and alignment. Water plant pits thoroughly midway through backfilling and add Agroform tablets. Water again upon completion of backfilling. No filling should occur around trunks or stems. Do not use frozen or muddy mixtures for backfilling. Form a ring of soil around the edge of each planting pit to retain water, and install a 2-1/2 inch layer of mulch around the base of each container plant.

Willow cuttings will be installed to a minimum depth of 32 inches, ensuring that four-fifths of the length of the cutting is tamped into the soil. The cuttings will be installed at a right angle to the planting surface. Tamping the cutting is best accomplished with a dead blow hammer. Do not split the cuttings during tamping; cuttings that split shall be removed and replaced.

MEMORANDUM

To: The RETEC Group, Inc. From: Grette Associates LLC, Glenn Grette Re: Skykomish Levee

June 29, 2007 File No.: 300.009

Recommendations

The purpose of this memorandum is to recommend measures to improve erosion-resistance on portions of the riprap/topsoil slope at the Skykomish Levee. For that purpose, it is recommended that coir matting be used as a slope/soil stabilization method. This matting should be installed as soon as possible. Hydroseeding should then occur over the top of the coir matting immediately after placement of the matting to promote substantial root development before high flows in the fall and winter. Planting could then occur through the coir matting in the fall. Materials and installation details are presented below.

Materials

- A. Material would consist of coir matting. Coir matting would be made of 100 percent natural coir fiber twine woven into high strength mats.
- B. Two different weights of coir matting should be used on the slope. Type 1 is a lower weight mat that would be used in the upper portion of the slope, and Type 2 is a higher weight mat would be used in the lower portion of the slope. See Table 1 for specifications.
- C. Wood stakes would be used to secure the coir matting. Wood stakes should be a minimum of 18 inches long and tapered.

Table 1. Coir Matting	specifications by type
-----------------------	------------------------

		Values	Values		
Property	Test Method	Type 1	Type 2		
Weight (grams/sq/m)	ASTM D3776	400	900		
Thickness (mils)	ASTM D1777	290	300		
Tensile Strength (lbs/ft)		420 x 130	1,560 x 650		
Flow Velocity (ft/sec)		9	16		

Skykomish Levee Memorandum

June 29, 2007

1

Installation

- A. Roll out Type 2 coir matting over the soil surface from the bottom of topsoil placement up to 1 ft above the Ordinary High Water Mark (OHWM). It is expected that the greater soil protection offered by heavier matting is necessary in this lower portion due to higher stream energy. Type 1 coir matting would then overlap the Type 2 matting 1 ft and extend up to the top of the bank, at 5 ft above OHWM. Roll ends and sides would be overlapped a minimum of 1 ft.
- B. Secure matting with wooden stakes driven at a minimum rate of two stakes per square yard. At the ends of rolls (top, bottom, sides), one stake would be placed per lineal foot.

CANON

200-130-4060

🛙 001/001 p.1

Att Join Moood

.

1406 East F Street Moscow, ID 83843

October 3, 2007

JB Instantlawn 14020 NE 124th Street Redmond, WA 98052

Re: Skykomish, Erosion Protection-TruGreen Lawn Care

With this letter, we are certifying the seed listed below meets the specifications and quality standards specified for the order.

% Requested	Species or Seed Tyme
2	Cow Parsnin
1	Salal
5	Big-leaf Lunine
2	Tapered Rush
3	Slender Rush
10	Western Mannagrass
15	Western Fescue
20	Meadow Barley
20	Blue Wildrye
2	Inflated sedge
20	Sterile wheatgrass

We further certify that this seed will meet all requirements of the Federal Seed Act and comply with the State Seed laws for the State of Washington. Purity and germination information for each species will be listed on the analysis tags, which will be attached to each bag at the time seed is delivered.

Thank you for your business.

Sincerely,

John Hollingsworth

Account Executive Frontier Seeds

> Corporate: 208-883-7611 Office: 208-798-4683 Fax: 208-798-4683

NORTHWEST LININGS & GEOTEXTILE PRODUCTS, Inc.

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 • (800) 729-6954 FAX: (253) 872-0245 www.northwestlinings.com

PermeaTex™ Coir

PRODUCT DESCRIPTION

The **PermeaTex**TM Coir is made from 100% coir fiber twine woven into high strength mats for extreme slope stabilization, protection of high velocity stream banks and high velocity intermittent flow channels.

2564-164-164-16-16-16-16-16-16-16-16-16-16-16-16-16-		Coir 400	Coir 700	Coir 900
PROPERTY	METHOD	UNITS	UNITS	UNITS
Roll Width		9.84', 13.12'	9.84', 13.12'	9.84', 13.12'
Roll Length		165'	165'	165'
Roll Square Feet		1623/2160	1623/2160	1623/2160
Roll Square Yards		180/240	180/240	180/240
Weight grams/sq/m(oz/SY)	ASTM D 3776	400(11.85)	700(20.70)	900(26.62)
Thickness Mils (mm)	ASTM D 1777	297.80 (7.45)	300 (7.5)	338.30 (8.46)
Open Area (%)		65	50	38
Recommend Flow Velocity		8.2 fl/sec	10 ft/sec	15.5 fl/sec
Recommended Shear Stress		3.12 lbs/ft2	4.50 lbs/ft2	4.91 lbs/ft2
"C" Factor, 1.5:1 slope		.003	.003	.002
Warp Ends/Per 10cm	· · ·	4.60	11.00	13.00
Weft Picks/Per 10cm		4.00	7.00	7,00
DRY-Ultimate Strength Ibs/in RD(Roll Machine Direction) XD(Cross Machine Direction)	ASTM D 4595	58.8 55.3	115.8 64.1	164.9 66.4
DRY-Ultimate Strain % RD XD	ASTM D 4595	37.2 30.6	52.9 37.9	68.6 38.0
WET-Ultimate Strength Ibs/in RD(Roll Machine Direction) XD(Cross Machine Direction)	ASTM D 4595	45.10 42.30	104.70 58.40	124.40 60.30
WET-Ultimate Strain % RD XD	A\$TM D 4595	35.00 34.20	64.30 49.20	83.00 49.60

PermeaTexTM is a trade name of Nonhwest Linings and any use of this name without the express written consent of Northwest Linings is strictly prohibited.

The information and data contained herein are believed to be accurate and reliable. Northwest Linings makes no warranty of any kind, Northwest Linings accepts no responsibility or liability for the results obtained through application of this information.

TECHNICAL MEMORANDUM

To: Sarah Albano, AECOM

November 10, 2008 File No.: 300.009

From: Grette Associates LLC; Jay Dirkse

Re: Skykomish Levee Remediation Project Plant Installation As-Built Report

This memorandum has been prepared to describe planting activities completed as part of the Levee Zone Interim Action for Cleanup as required initially under Agreed Order No. DE3279 between the BNSF Railway Company at the direction of the Washington State Department of Ecology. On October 19, 2007, the BNSF Railway Company and the Washington State Department of Ecology entered into a Consent Decree, State of Washington v. BNSF Railway Company, King County Case No. 07-2-33672-9SEA, that incorporated the outstanding obligations under the Agreed Order. The Skykomish Levee Remediation Project Levee Planting Plan and Monitoring Program (Plan; Attachment A) was prepared as part of the Joint Aquatic Resources Permit Application submitted to the U.S. Army Corps of Engineers in application for a Nationwide #38 Section 404 Permit (200500328). Per the Plan, the levee was revegetated after remediation measures were performed at the site. Revegetation was to occur October 22-24, 2007. The upper portion of the levee zone was planted at this time, but due to rising river levels the lower levee zone (shoreline zone) could not be planted. These species were planted during the 2008 growing season, as described below.

This memo is intended to satisfy the requirements in the Planting Plan that a biologist monitor revegetation activities. Per the Plan, monitoring entailed plant material inspection, plant installation monitoring, and post-installation inspection. Additionally, photo points were established to monitor vegetation development over the monitoring program (Attachments B and C). Monitoring activities are described in detail below.

Plant Material Inspection

Upon arrival of all plant material to the site in Skykomish, a Grette Associates biologist inspected the plant material and verified that the material met the requirements of the Plan. Specifically, plant material was inspected to ensure that all material appeared healthy and free from defect, exhibited no rootbound conditions, were transported appropriately and were of appropriate sizes and planting forms (e.g. container stock, live stakes, etc.; see Appendix A: Plant Installation Specifications, for specifications of planted material). Grette Associates verified that all specimens conformed with these specifications. The following exceptions should be noted:

• Pacific willow, Sitka willow, and red-osier dogwood live stake cuttings were initially rejected due to the diameter of cuttings being too narrow. The Planting Plan calls for cuttings to be between ¹/₂- and 1¹/₂-inches in diameter, and the majority of cuttings of each of these species that arrived on site were less than ¹/₂- inch diameter. Live stakes that were actually installed were of the specified diameter.

• Pacific ninebark and salmonberry, though specified in the Plan as live stakes, were installed as container stock. Container stock is the typical planting form for these species, and live stakes were unavailable.

Installation Monitoring

Per the Planting Plan, a Grette Associates biologist was on site for plant installation to ensure that planting personnel install the plants in an appropriate manner, recognize the species to be planted and understand the planting design.

Prior to plant installation, per the Planting Plan (p. 5), Grette Associates staff consulted with a Town of Skykomish representative and the planting contractor to mark locations for planted trees (Pacific dogwood, western hemlock, and big leaf maple). Trees were located to preserve view corridors associated with the view platforms/stations installed on the top of the levee. Some trees were moved from their location as marked on the planting figure (Attachment B). If moved, the distance the trees were moved was minimized. Trees remained in the general location depicted on Figure 1 and remained in their appropriate planting zones. Generally, if tree locations were moved, they were moved up-slope. The number of trees installed did not change.

Upon arrival of plant material, species were identified and counted. The Plan was discussed with the planting contractor and personnel to ensure understanding of the planting design so that plants were installed in the appropriate zones. Grette Associates staff also ensured that plants were installed appropriately so as to maximize survival, with proper installation techniques such as appropriate watering, dispersal of roots, live stake installation and care in handling material.

The Plan specified two planting zones: the levee zone and the shoreline zone. Plants scheduled to be planted in the levee zone were those typically found in upland locations (e.g. snowberry, swordfern), and plants scheduled to be planted in the shoreline zone were those typically found near water (e.g. Pacific ninebark, willows). See Table 1 for a list of species planted by zone.

The levee zone was planted on October 22-24, 2007 (Photographs 1-11), including all levee species listed in Table 1. During the planting, the South Fork Skykomish River rose and inundated the levee benches. Installation of shoreline zone plants (Pacific willow, Sitka willow, red-osier dogwood, salmonberry, and ninebark) did not occur at this time, as it was determined that planting would likely result in poor survival of these plants due to the high water level. Installation of these species was delayed until the 2008 growing season.

By June 5, 2008, after the river level had dropped low enough to allow shoreline zone plantings to occur, salmonberry were installed (Photographs 12-15). Due to the water level, they were installed in the upper edge of the shoreline zone, in patches of soil or sand between riprap at or below the levee toe. Also, due to contractor error, Pacific ninebark, which were expected to be installed at the same time as salmonberry, were not installed at this time. On July 17, 2008, Pacific ninebark was installed in the shoreline zone (Photographs 16-19). The river had dropped further by this time, and Pacific ninebark were planted further waterward on the levee benches than salmonberry. On October 10, 2008, Pacific willow, Sitka willow, and red-osier dogwood were installed as

live stakes (Photographs 20-23). Live stakes could not be installed until fall 2008 because live stakes must be harvested during the plant's dormancy period (late fall through winter) and either installed immediately or kept in cold storage until installation. They were not harvested during the dormancy of 2007-2008 and were thus not available until fall 2008.

Planting Zone	Common Name	Scientific Name	Installed As	Installed On
	Pacific dogwood	Cornus nuttallii	Container	10-22-07
	Western hemlock	Tsuga heterophylla	Container	10-22-07
Lavaa	Big-leaf maple	Acer macrophyllum	Container	10-22-07
Levee	Snowberry	Symphoricarpos albus	Container	10-22-07
	Oregon grape	Mahonia nervosa	Container	10-22-07
	Sword fern	Polystichum munitum	Container	10-22-07
	Salmonberry	Rubus spectabilis	Container	6-5-08
	Pacific ninebark	Physocarpus capitatus	Container	7-15-08
Shoreline	Red-osier dogwood	Cornus sericea	Live Stake	10-10-08
	Pacific willow	Salix lucida var. lasiandra	Live Stake	10-10-08
	Sitka willow	Salix sitchensis	Live Stake	10-10-08

Table 1. Plant species installed by zone, date

Post-Installation Inspection

At the conclusion of each planting effort, Grette Associates staff was on-site to confirm that the Planting Plan was followed and all plants were installed properly and in the proper location. The locations of some species were adjusted slightly based on field conditions. For example, the planting figure calls for willow and dogwood live stakes to be installed throughout the shoreline benches, from the toe of the levee out to the waterward extent of the benches. However, the biologist determined that the live stakes would not likely survive if installed at the waterward extent of the benches. This was determined based on the fact that several volunteer willows have taken root near the toe of the levee, but no volunteers had taken root out on the benches where live stakes were scheduled. Additionally, the levee benches are underwater approximately 10 months of the year. Thus, live stakes were planted mostly in the upper shoreline zone, where volunteers have rooted and demonstrated the high potential of success.

Salmonberry was mis-labeled in the planting figure (Attachment A). It is shown in the upper levee zone, though the text of the report calls for it to be installed in the shoreline zone. Salmonberry typically grows near water rather than in upland conditions. Thus, salmonberry was installed in the shoreline zone, according to Table 1 of the Planting Plan.

Photo Points

As part of post-installation monitoring, Grette Associates staff established eight photo points at representative locations along the levee and one on the Skykomish Bridge for on-going monitoring vegetation development on the levee. These photo points were selected to show both vegetation and large woody debris structures at the site. Due to the success of hydroseeding and the small size of the majority of levee plants (e.g. sword fern, Oregon grape), they are difficult to see in the photographs. The Planting Plan called for these locations to be permanently staked; however, due to the public access of the new levee features, permanent photo point stakes were not practicable. Instead, photo points were established at readily identifiable landmarks on the levee that will remain in place in perpetuity as part of maintenance of the public access features (e.g. sitting rocks). See Attachment B for the locations of photo points, and see Attachment C for the photos.

Final as-built photographs were taken from these locations on October 31, 2008, facing in the direction indicated in the photograph footnote. Additional photographs documenting planting efforts as they occurred are also included in Attachment C.
ATTACHMENT A.

LEVEE PLANTING PLAN AND MONITORING PROGRAM

SKYKOMISH LEVEE REMEDIATION PROJECT

LEVEE PLANTING PLAN AND MONITORING PROGRAM

PREPARED FOR:

THE RETEC GROUP, INC., ON BEHALF OF THE BNSF RAILWAY COMPANY 1011 SW KLICKITAT WAY, SUITE 207 SEATTLE, WA 98134-1162

PREPARED BY:

GRETTE ASSOCIATES, LLC 151 South Worthen Street, Suite 101 Wenatchee, WA 98801

2111 North 30th Street Tacoma, WA 98403

REFERENCE NUMBER: 200500328

DECEMBER 2005

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Background1.2 Project Description	1
2.0	PLANTING PLAN	1
	2.1 Goals and Objectives	1
	2.2 Levee Design	2
	2.3 Plant Schedule and Zones	2
	2.2.1 Shoreline Zone	3
	2.2.2 Levee Zone	3
	2.2.3 Planting Approach	4
	2.4 Plant Installation.	4
3.0	MONITORING PROGRAM	5
	3.1 Installation Monitoring	.5
	3.2 Post-construction Inspection	5
	3.3 Long-term Monitoring	5
	3.3.1 Monitoring Methods	.6
	3.4 Performance Standards	.6
	3.5 Contingency Plan	7
	3.6 Reporting	7
4.0	REFERENCES	8

LIST OF FIGURES

- Figure 2. Skykomish Levee Remediation Final Sections
- Figure 3. LWD Cluster Plan View
- Figure 4. LWD Cluster Section
- Figure 5. Landscape details/plant placement

LIST OF APPENDICES

Appendix A Plant Installation Specifications

1.0 INTRODUCTION

This Planting Plan and Monitoring Program (Plan) describes the revegetation measures that will be implemented as part of the Skykomish Levee Remediation Project (Project). The Plan describes the specific elements of replanting the remediated levee, as well as the post-construction and long-term monitoring of the completed project.

1.1 Background

The Skykomish Levee Remediation Project is part of a MTCA interim action to stop seepage of diesel and bunker C fuel oil into the South Fork of the Skykomish River that will be performed pursuant to an Agreed Order between BNSF and Washington State Department of Ecology (Ecology) (RETEC 2005).

1.2 Project Description

The Project will entail removing and then replacing the existing levee with a new flood control levee, which will address petroleum product seeps that currently enter the South Fork of the Skykomish River. The existing levee material and adjacent river sediments will be excavated down to design depth, with all contaminated material loaded onto trucks and removed off site for disposal at a suitable disposal facility. The excavation area will then be filled with both stockpiled and imported clean material, and the face of the levee will be reconstructed. The reconstructed levee will be replanted using native vegetation. Further project description details are presented in the JARPA prepared for the Project (RETEC 2005).

2.0 PLANTING PLAN

2.1 Goals and Objectives

The primary goal of levee revegetation is to provide a level of habitat function at or above that which existed prior to levee remediation. Planting of vegetation along the toe of the levee and along the waterward edge of the levee benches will provide cover for a variety of fish and wildlife species. This overhanging vegetation will also provide shade that will protect lower water temperatures within the river. Planting vegetation along the face of the levee will provide nesting and foraging habitat for songbirds. The trees and shrubs along the levee face will also screen portions of the shoreline from human activity south of the levee. Levee benching and placement of LWD clusters along the levee face will also provide habitat complexity for both terrestrial and aquatic species.

2.2 Levee Design

During reconstruction, benches will be constructed along the waterward base of the levee (Figure 1). These benches will be more or less level, and will be located at the toe of the reconstructed levee. The waterward edge of the levee benches will provide a vertical drop of approximately 2 feet down to the river channel. This edge will be formed by large riprap or boulder substrates (Figure 2). The benches will also provide a convoluted shoreline edge, contributing to habitat complexity along the reconstructed levee.

The benches will be distributed in areas where the slope of the reconstructed levee allows the benches to remain within the footprint of the existing levee (Figure 1).

In addition to the large substrate along the shoreline edge, five large woody debris (LWD) clusters will be buried/anchored beneath the toe of the levee in areas where levee benching is not present (Figure 1). Each LWD cluster will consist of six pieces, and will be composed of Douglas fir (*Pseudotsuga menziesii*) or western red cedar (*Thuja plicata*) (King County 1993). The LWD pieces within each cluster will be oriented at different angles, with the upstream LWD piece oriented at an upstream angle (Figure 3). Each LWD piece will be embedded approximately 15 feet into the levee such that the root end of the log protrudes 5 to 10 feet from the shoreline edge (Figure 4). Further detailed guidance on installation of LWD can be found in King County's *Guidelines for Bank Stabilization Projects in the Riverine Environments of King County* (1993).

Several design considerations were evaluated for placement of the LWD clusters. A recreational kayak launch is planned immediately upstream of the levee near the 5th Street bridge. To direct kayakers around the upstream LWD cluster after launching, the cluster will be placed approximately 160 feet downstream of the bridge (Figure 1). Immediately upstream of this cluster boulders will be placed within the river channel and arranged such that river flows along the south bank are directed north of and around the LWD cluster (Figure 5).

Another design consideration is the location of the viewing platform, which is located in an area where levee benches will not be present (Figure 1). Therefore, a LWD cluster will be placed in this area, allowing for an open view corridor above the LWD. Additionally, portions of the levee without benches will likely contain less overhanging riparian vegetation than areas containing benches. LWD placed in these areas will provide additional overhanging cover.

2.3 Plant Schedule and Zones

The remediated levee will be replanted with a mix of native trees and shrubs. Guidance on plant species selection and planting location was referenced from King County's *Guidelines for Bank Stabilization Projects in the Riverine Environments of King County* (1993). Table 1 below lists the proposed species to be used for levee revegetation.

Species	USFWS Indicator Status ¹	Condition	Spacing ^{2,3}
Shoreline Zone	Status	Condition	Opacing
Cornus stolonifera, Red-osier dogwood	FACW	cuttings	8 ft OC
Physocarpus capitatus, Pacific ninebark	FACW	cuttings	8 ft OC
Rubus spectabilis, Salmonberry	FAC+	cuttings	5 ft OC
Salix lucida var. lucida, Pacific willow	FACW+	cuttings	8 ft OC
Salix sitchensis, Sitka willow	FACW	cuttings	8 ft OC
Levee Zone ⁴			
Acer macrophyllum, Bigleaf maple	FACU	2-gal	10 ft OC
Cornus nuttallii, Pacific dogwood	NL	2-gal	8 ft OC
<i>Mahonia nervosa</i> , Oregon grape	UPL	1-gal	5 ft OC
Polystichum munitum var. munitum, Sword			
fern	FACU	1-gal	5 ft OC
Symphoricarpos albus, Snowberry	FACU	1-gal	5 ft OC
Tsuga heterophylla, Western hemlock	FACU+	2-gal	10 ft OC

 Table 1. Proposed species for levee revegetation

¹ Species indicator status expresses the range in which plants may occur in wetlands and non-wetlands (uplands). Under this system, vegetation is considered hydrophytic when there is an indicator status of facultative (FAC), facultative wetland (FACW) or obligate wetland (OBL). Vegetation is considered non-hydrophytic when there is an indicator status of facultative upland (FACU) or obligate upland (UPL). A positive (+) sign indicates plants are more frequently found in wetlands than the category indicates. An indicator of NL represents insufficient information to determine status.

² Plant spacing is based on specific planting locations within each zone, not over the entire site.

 3 OC = On Center

⁴ Condition of Levee Zone plantings will be refined based on discussions with The RETEC Group, Inc.

2.2.1 Shoreline Zone

Vegetation planting areas on the levee will be separated into two zones: the Shoreline Zone and the Levee Zone (Figure 2). The Shoreline Zone will occupy the levee benches along the toe of the reconstructed levee up to an elevation 2 ft above the levee bench. The Shoreline Zone will consist of native tree and shrub species typically adapted to wet conditions. Vegetation planted near the shoreline edge will be planted such that, when mature, woody material will overhang the shoreline edge. Species to be planted within this zone include red-osier dogwood, Pacific ninebark, salmonberry, Pacific willow, and Sitka willow.

2.2.2 Levee Zone

The Levee Zone will occupy the face of the new levee immediately above the Shoreline Zone to the top of the levee, and will consist of native trees and shrubs adapted to dry conditions (Figure 2). As it is expected that the face of the new levee will consist of coarse material, species were chosen based on their ability to thrive in coarse soil textures. Species to be planted within this zone include bigleaf maple, Pacific dogwood, Oregon grape, sword fern, snowberry, and western hemlock.

2.2.3 Planting Approach

Red-osier dogwood and Pacific ninebark will be planted in the areas closest to the shoreline edge, as these species are particularly hydrophytic and are typically found overhanging river banks throughout the region (Figure 5). These species will be planted on 8-foot centers. Pacific willow and Sitka willow will be planted throughout the Shoreline Zone, and will also be planted on 8-foot centers. These species are also typically hydrophytic, yet would also be expected to survive further away from the shoreline. Salmonberry will also be planted on 5-foot centers throughout the Shoreline Zone and will provide a layered understory. It is expected that some areas along the levee will contain different concentrations of the varying species depending on site-specific constraints.

The dogwood and ninebark will provide cover and foraging opportunities for a variety of small birds and mammals, while also providing cover over the river bank for fish. The taller willow species will provide nesting and perching opportunities for songbirds, while also providing screening of the shoreline from human activities south of the levee.

Within the Levee Zone, bigleaf maple and western hemlock will be planted on 10-foot centers (Figure 5). These species will be planted throughout the upper portions of the Levee Zone except directly beneath or adjacent to the proposed viewing platform. Pacific dogwood will be planted on 8-foot centers throughout the lower portions of this zone, while Oregon Grape, snowberry, and sword fern are planted on 5-foot centers throughout the zone.

The larger maple and hemlock will provide perching and roosting habitat for raptors, while the snowberry and Oregon grape provide foraging opportunities for small mammals and songbirds.

2.4 Plant Installation

Plant installation will be performed in accordance with the specifications outlined in Appendix A. Any alterations to the planting plan due to site conditions will require prior approval from the project biologist or landscape architect. Planting should occur as soon as possible upon completion of levee construction to provide erosion protection. However, it is recommended that plant installation occur during the late fall (October to mid-December) or early spring (mid-February to April) to ensure plants do not dry out upon planting (King County 1993). Plant installation during the summer months may require artificial irrigation to ensure plant survival.

All plant materials to be used on the site will be nursery grown stock from a reputable, local dealer. Only native species are to be used; no hybrids will be allowed. All plant material shall be inspected by the project biologist or landscape architect upon delivery. Plant material not conforming to specifications will be rejected and replaced by the planting contractor. Rejected plant materials shall be immediately removed from the site. No fertilizers or organic mulches are to be used, as these may be washed downstream in the event of high flows shortly after planting.

Cuttings will be installed to a minimum depth of four-fifths of the length of the cutting. The cuttings will be installed at a right angle to the planting surface.

3.0 MONITORING PROGRAM

3.1 Installation Monitoring

Installation monitoring will involve coordination between the project biologist, landscape architect, and landscaping personnel in order to ensure that the plantings are installed in an appropriate manner. A project biologist or landscape architect will be present on site during installation to ensure that the plantings are conducted as outlined in the planting plan. The biologist or landscape architect will inspect and approve the planting stock, and review the plans with the field crew to ensure they both recognize the species selected for installation and understand the planting design. The biologist or landscape architect will assist the planting contractor in making any final adjustments in the planting schedule, as needed, in response to field conditions.

3.2 Post-construction Inspection

Compliance monitoring will consist of evaluating the levee immediately after plant installation to confirm the plan was followed and plants were installed appropriately. Surveyors will conduct an "as-built survey", including planted woody vegetation and measurements of final grade and elevation, to verify that all design features have been correctly and fully implemented, and that any changes made in the field are consistent with the overall objective of the levee design. Several fixed points will be established within each planting zone to be used for photo-point documentation during long-term monitoring. The fixed points will be permanently staked in the field.

Following completion of the post-construction compliance monitoring, a summary technical memorandum will be prepared by the project biologist verifying that all design features have been correctly implemented. Any changes to the planting plan will also be discussed in the compliance memorandum. The memorandum will be submitted to the U.S. Army Corps of Engineers (Corps) within 30 days following installation of the plants and final survey. The Corps will be the agency responsible for inspecting and approving the as-built reports.

3.3 Long-term Monitoring

Long-term monitoring will be conducted over a five-year period with observations conducted each year during the month of August. The purpose of the long-term monitoring program will be to evaluate the establishment and maintenance of the plant communities within the planting zones. Photographs will be taken at each fixed point during each monitoring year to document the status of the plantings. Photographs will be taken facing the same direction each year to document plant growth and development.

Monitoring will be conducted using the procedures described below to document the survival and relative health and growth of plant material. A technical memorandum will be submitted to the Corps within 60 days following each monitoring visit, and will describe the status of plant survival, growth and development. The Corps will be the agency responsible for inspecting and approving the monitoring reports.

3.3.1 Monitoring Methods

Vegetation surveys will be conducted in accordance with the monitoring schedule to compare results against the performance standards. Inspection of the planted material to determine health and vigor of the installation will occur during each monitoring visit. A walk-through inspection will be conducted during each visit and notes regarding plant health and vigor, presence of seed or flowers, and signs of vandalism will be recorded.

In addition to vegetation monitoring, visual observations of all fish and wildlife species and wildlife sign observed during the monitoring will be recorded. Birds, mammals, fish, amphibians, and reptiles observed on-site will be identified, and observations of any breeding or nesting activity within the revegetation area will be recorded. Observations will be limited to the annual monitoring inspections.

Permanent photo-points will be established during the post-construction compliance monitoring in order to obtain representative photographs of the project. Photographs will be taken to document vegetation survival and growth, and will be taken facing the same direction from year to year.

3.4 Performance Standards

Short-term success of the planting plan in terms of species richness and enhancement of wildlife habitat will be based upon a 100% survival rate for each planted tree and shrub at the end of Year 3. Volunteer native, non-invasive species will be included as acceptable components of the planting plan, upon approval by the Corps. Success of the overall planting plan will be demonstrated by an 80% survival rate of each planted tree and shrub at the end of the monitoring period (Year 5).

Dead plantings observed during each walk-through survey will be counted. That number will be compared to the total number of original plantings to determine the percent survival of the original plantings.

Cover within both planting zones will consist of less than 15% cover of undesirable vegetation, including non-native blackberry varieties (*Rubus* sp.), reed canary grass (*Phalaris arundinacea*), knotweed (*Polygonum* sp.), etc.

3.5 Contingency Plan

A contingency plan may be implemented if necessary. Contingency plans can include additional plant installation, erosion control, and plant substitutions including type, size, and location. Coverage of greater than 15% of invasive or non-native species may also require implementation of a contingency plan.

If the monitoring results of Year 3 and Year 5 indicate that the performance standards are not being met, it may be necessary to implement all or part of the contingency plan. Careful attention to maintenance is essential in ensuring that problems do not arise. Should any portion of the site fail to meet the success criteria (100% survival for 3 years; 80% survival after 5 years; less than 15% cover by invasive species), a contingency plan will be developed and implemented with Corps approval. Such plans are prepared on a case-by-case basis to reflect the failed site characteristics.

Contingency/maintenance activities may include, but are not limited to:

- 1. Replacing all plants lost to vandalism, drought, or disease, as necessary.
- 2. Replacing any plant species with a 20% or greater mortality rate after five growing seasons with the same species or similar species approved by the Corps.
- 3. Irrigating the planting zones only as necessary during dry weather if plants appear to be too dry, with a minimal quantity of water.
- 4. Hydroseeding exposed soil as necessary if erosion or sedimentation occurs.
- 5. Removing all trash or undesirable debris from the planting areas as necessary.
- 6. Removal of invasive or non-native vegetation.

3.6 Reporting

Technical memoranda will be prepared for each site visit conducted, and will summarize the results of each monitoring visit. The memoranda will be submitted to the Corps within 60 days following completion of each monitoring effort. The technical memoranda will document the percent survival within the planted zones and make recommendations for improvements and/or corrective measures for any problems noted during the monitoring visits.

4.0 **REFERENCES**

- Johnson, A.W. and J.M. Stypula. eds. 1993. Guidelines for Bank Stabilization Projects in the Riverine Environments of King County. King County Department of Public Works, Surface Water Management Division, Seattle, Washington.
- The RETEC Group, Inc. (RETEC). 2005. Joint Aquatic Resources Permit Application for the Skykomish Levee Remediation Project. Resubmitted December, 2005.

Appendix A Plant Installation Specifications

Plant Materials

All plant materials to be used on the site will be nursery grown stock from a reputable, local dealer. Only native species are to be used; no hybrids will be allowed.

Plant material provided will be typical of their species or variety; if not cuttings they will exhibit normal, densely-developed branches and vigorous, fibrous root systems. Plants will be sound, healthy, vigorous plants free from defects, disfiguring knots, sun scald injuries, frost cracks, abrasions of the bark, plant diseases, insect eggs, borers, and all forms of infestation. Plants held in storage will be rejected if they show signs of growth.

Container stock shall have been grown in its delivery container for not less than six months but not more than two years. Plants shall not exhibit rootbound conditions. Under no circumstances shall container stock be handled by their trunks, stems, or tops.

Willow cuttings must be alive with any side branches cleanly removed and bark intact. The butt ends should be cleanly cut at an angle for easy insertion into the soil. The top should be cut square or blunt. The cuttings should be 1/2 inch to 1-1/2 inch in diameter and 24 inches to 42 inches long. Cuttings must be fresh and must be kept moist after they have been cut to the appropriate lengths. They must be prepared and installed within a 48-hour period.

The seed mixture used for Hydroseeding shall contain fresh, clean, and new crop seed mixed by an approved method. The mixture is to be mixed to the specified proportions indicated above in Table 1 by weight and tested to minimum percentages of purity and germination.

All plant material shall be inspected by the project biologist or landscape architect upon delivery. Plant material not conforming to the specifications above will be rejected and replaced by the planting contractor. Rejected plant materials shall be immediately removed from the site.

Fertilizer will be in the form of Agroform plant tabs or an approved like form. Mulch will consist of sterile wheat straw or clean recycled wood chips approximately 1/2 inch to 1 inch in size and 1/2 inch thick, and will be applied around the base of the plantings to prevent them from drying out.

Product Handling, Delivery and Storage

Fertilizer should be delivered in original, unopened, and undamaged containers showing weight, analysis, and name of manufacturer. They should be stored in a manner to prevent wetting and deterioration. All precautions customary in good trade practice shall be taken in preparing plants for moving. Workmanship that fails to meet industry standards will be rejected. Plants will be packed, transported, and handled with care to ensure protection against injury and from drying out. If plants cannot be planted

immediately upon delivery they should be protected with soil, wet peat moss, or in a manner acceptable to the project biologist or landscape architect. Plants, fertilizer, and mulch not installed immediately upon delivery shall be secured on the site to prevent theft or tampering. No plant shall be bound with rope or wire in a manner that could damage or break the branches. Plants transported on open vehicles should be secured with a protective covering to prevent wind burn.

Preparation and Installation of Plant Materials

The planting contractor shall verify the location of all elements of the landscape plan prior to installation. The project biologist or landscape architect shall reserve the right to adjust the locations of landscape elements during the installation period as appropriate. If obstructions are encountered that are not shown on the drawings, planting operations will cease until alternate plant locations have been selected by and/or approved by the project biologist or landscape architect.

Circular plant pits with vertical sides will be excavated for all container stock (salmonberry and crabapple). The pits should be at least 12 inches in diameter, and the depth of the pit should accommodate the entire root system. The bottom of each pit will be scarified to a depth of 4 inches.

Broken roots should be pruned with a sharp instrument and rootballs should be thoroughly soaked prior to installation. Set plant material upright in the planting pit to proper grade and alignment. Water plant pits thoroughly midway through backfilling and add Agroform tablets. Water again upon completion of backfilling. No filling should occur around trunks or stems. Do not use frozen or muddy mixtures for backfilling. Form a ring of soil around the edge of each planting pit to retain water, and install a 2-1/2 inch layer of mulch around the base of each container plant.

Willow cuttings will be installed to a minimum depth of 32 inches, ensuring that four-fifths of the length of the cutting is tamped into the soil. The cuttings will be installed at a right angle to the planting surface. Tamping the cutting is best accomplished with a dead blow hammer. Do not split the cuttings during tamping; cuttings that split shall be removed and replaced.

ATTACHMENT B.

AS-BUILT PLANTING FIGURE, PHOTO POINTS

ATTACHMENT C.

PHOTO LOG

OCTOBER 31, 2008 - FINAL LEVEE PLANTING

Photograph 1. Photo Point 1, top of levee, facing upstream.

Photograph 2. Photo Point 2, bottom of levee, facing upstream.

Photograph 3. Photo Point 3, top of levee, facing downstream.

Photograph 4. Photo Point 3, top of levee, facing LWD structures below view platform.

Photograph 5. Photo Point 4, facing upstream.

Photograph 6. Photo Point 5, facing downstream toward LWD structures below view platform.

Photograph 7. Photo Point 5, facing upstream.

Photograph 8. Photo Point 6, facing downstream.

Photograph 9. Photo Point 7, facing downstream.

Photograph 10. Photo Point 8, facing downstream.

Photograph 11. Photo Point 9, on Skykomish River Bridge, facing downstream.

JUNE 5, 2008 - SALMONBERRY INSTALLATION

Photograph 12. Salmonberry installation on June 5, 2008; facing west/downstream.

Photograph 13. Salmonberry installation on June 5, 2008; facing northeast/upstream.

Photograph 14. Salmonberry installation on June 5, 2008; facing east/upstream.

Photograph 15. Salmonberry installation on June 5, 2008; facing west/downstream.

JULY 17, 2008 – PACIFIC NINEBARK INSTALLATION

Photograph 16. Ninebark installation on July 17, 2008; facing west/downstream.

Photograph 17. Ninebark installation on July 17, 2008; facing west/downstream.

Photograph 18. Ninebark installation on July 17, 2008; facing levee bench.

Photograph 19. Ninebark installation on July 17, 2008; facing west/downstream.

OCTOBER 10, 2008 – PACIFIC WILLOW, SITKA WILLOW, AND RED OSIER DOGWOOD LIVE STAKE INSTALLATION

Photograph 20. Typical live stakes installed 10-10-08

Photograph 21. Live stakes installed 10-10-08, facing upstream/east

Photograph 22. Typical live stakes (foreground) installed 10-10-08, facing downstream/west

Photograph 23. Typical live stakes.
GENERAL NOTES:

- 1. MATERIAL TYPE: 6005-T5 ALUMINUM
- 2. FINISH: BRONZE ANNODIZED
- FABRICATION.

MAT'L	PARTS	MATERIAL SPECIFICATIONS		
	Extruded PIPE	ASTM B221, 6005-T5		
ALUMINUM	EXTRUDED CHANNELS	ASTM B221, 6005-T5		
	COVER PLATES	ASTM B221, 6005-T5		
STEEL	ANCHOR BOLTS NUTS & WASHERS	ASSHTO M164, GALVANIZED or ZINC PLATED IN ACCORDANCE WITH SPECIFICATIONS M232		
SIEEL	PLATES	ASSHTO M183		
STAINLESS STEEL	EXPANSION PINS	ASTM A-276, TYPE 302 STAINLESS STEEL		

ARCHITECT AND CONTRACTOR NOTES:

TO THE APPROVAL OF SAPA.

SHOP DRAWINGS NOT TO BE SCALED FOR CRITICAL DIMENSIONS. ALL DIMENSIONS AND BUILDING MATERIALS ARE TO BE VERIFIED AND COORDINATED BY THE GC WITH APPLICABLE ARCHITECTURAL AND STRUCTURAL DRAWINGS.

ALL MATERIALS PROVIDED BY OTHERS TO WHICH SAPA'S RAILS ARE TO BE ANCHORED MUST BE STRUCTURALLY SOUND AND CAPABLE OF SUPPORTING THE WEIGHTS AND REACTIONS OF THE BALCONY RAILING SYSTEM UNDER MAXIMUM DESIGN LOADS.

nese drawings are the property of Sapa, Inc. and are not to be reproduced in any manner, except with the permission of Sapa, Inc.									
sana	ß				DATE: 10/05/07	PHR (PED) RAIL			
apa.	\triangle			SKTKUMISH LEVEL					
FABRICATED COMPONENTS 7320 NE 55TH AVE PORTLAND OR 97218	\triangle	CHANGE NOTES & FINISH, SHOW GRABRAIL	TIM C - 10/24/07		SCALL: AS NOTED	w.o. NO. 17465			
PHONE FAX (800) 540-7090 ° (503) 288-0528	REV.#	ACTION	BY / DATE	WILDER CONSTRUCTION	drawn by: TJC	SHEET NO. 1 OF 8			

sapa:

PRESENTS:

SKYKOMISH LEVEE WILDER CONSTRUCTION

RAILING SUBMITTAL PACKAGE INITIAL RELEASE

3. ALL DIMENSIONS SHOWN TO OTHER WORK TO BE VERIFIED IN FIELD PRIOR TO

4. NO BACK CHARGES WILL BE ACCEPTED WITHOUT PRIOR AUTHORIZATION IN WRITING.

5. BALUSTER PANELS FOR AREAS WHERE RAILING POSTS SIT IN EXISTING SLEEVES WILL BE MANUFACTURED ASSUMING 6'-0" CENTER TO CENTER OF POSTS. DUE TO ALIGNMENT OF EXISTING SLEEVES, BALUSTER PANEL TOP AND BOTTOM RAIL SPLICE GAPS MAY VARY FROM 1/8" TO 1 1/2"

THESE SHOP DRAWINGS, WHEN APPROVED, SHALL BE DEEMED AS AN ACCURATE INTERPRETATION OF THE PROJECT REQUIREMENTS, AND SUCH APPROVAL SHALL CONSTITUTE AUTHORIZATION TO PROCEED WITH THE SHOP FABRICATION. ANY CHANGES REQUESTED SUBSEQUENT TO THE APPROVAL DATE MUST BE SUBMITTED IN WRITING AND ARE SUBJECT

SAPA ASSUMES NO RESPONSIBILITY FOR WORK AND/OR ERRORS INCURRED BY OTHER TRADES THROUGH THE USE OF THESE SHOP DRAWINGS.

T	se drawings are the property of Sapa, Inc. and are not to be reproduced in any manner, except with the permission of Sapa, Inc.									
sana		ß				DATE: 10/05/07	PHR (PED) RAIL			
	aaha.				SKTKUMISH LEVEE					
	FABRICATED COMPONENTS 7320 NE 55TH AVE PORTLAND OR 97218		CHANGE NOTES & FINISH, SHOW GRABRAIL	TIM C - 10/24/07		SCALE: AS NUTED	W.O. NO. 17465			
	PHONE FAX (800) 540-7090 ° (503) 288-0528	REV.#	ACTION	BY / DATE	WILDER CONSTRUCTION	drawn by: TJC	SHEET NO. 2 OF 8			

BY / DATE

REV.#

ACTION

PHR (PED) RAIL		
W.O. NO. 17465		
SHEET NO. 4 OF	8	
	PHR (PED) RAIL W.O. NO. 17465 SHEET NO. 4	PHR (PED) RAIL W.O. NO. 17465 SHEET NO. 4 OF 8

	PART	MARK	MK2				
			5'–3"	RILL C	ト	MAIE	RIALS
	QUA	VTITY	97		L	ENGTH	
	ITEM	QTY	DESCI	RIPTION	FT	INCH	REMARKS
	$\langle 1 \rangle$	2	2" SCH	40 PIPE	5	3	-
	2	13	1" SCH	1" SCH 40 PIPE		7 7/8	-
	$\overline{}$	3	SPLICE SLEEV	'E (DIE 16015)	0	7 1/4	SHIP 1 LOOSE
	$\overline{\bigcirc}$	-		_	-	-	_
	$\langle - \rangle$	-		_	-	-	_
	$\langle - \rangle$	-		_	-	-	-
	$\langle - \rangle$	-		_	-	-	_
	$\langle - \rangle$	-		_	-	-	_
	$\overline{\bigcirc}$	-		-	-	-	-
	$\overline{}$	-			-	-	-
	$\langle - \rangle$	-		-	-	-	-
	\ominus	-		_	-	-	-
	$\overline{\bigcirc}$	-		-		-	_
				BUY OUT ITEM	s		
	$\langle A \rangle$	12	3/8"ø SS	ROLL PIN	-	-	A-276 TYPE 302
	$\overline{}$	-		_	-	-	-
	$\langle - \rangle$	-		_	-	-	_
	$\langle - \rangle$	_		_	-	-	_
	$\langle - \rangle$	_		_	-	-	-
			FINIS	SH TO BE BRONZ	E AN	INO	
	- <i>1</i> -	_ /					
1	0/05	5/07		(PED)	RA	AL	
A	S NO	OTED	W.O. NO.	1	74	65	

7

SHEET NO.

8

OF

B	Y	:	

TJC

	PART	MARK	P2	BILL)F	MATE	RIALS
	LENGTH		5'-10"				
	QUA		84		l	ENGTH	
			DESCI				REMARKS
		۱ ۵	4X4 PUSI	X4 POST (DIE 13394)			
			Z SCH		-		
		_		_	+-	_	_
		_		_	-	-	
	$\overline{\bigcirc}$	_		_	-	_	_
	Ā	_		_	-	_	_
	$\langle - \rangle$	_		_	-	_	-
	Ō	-		_	-	-	_
	$\overline{\bigcirc}$	-		_	-	-	_
	$\overline{\bigcirc}$	_			-	_	
	$\overline{\bigcirc}$	_			-	_	
	\bigcirc	-		_	-	-	_
				BUY OUT ITE	٨S		
	$\langle A \rangle$	1	WAGNER POS	ST CAP #5121	-	-	
	$\overline{\bigcirc}$	-			-	-	_
	$\overline{\bigcirc}$	_		_	-	-	-
		-		_	-	-	_
		-		-		-	_
			FINIC	SH TO BE BRON	INU		
1	0/05	5/07	PHR	(PED)	RA		
ŀ	AS NO	OTED	W.O. NO.	1	74	65	
:	TJ	С	SHEET NO.	8	0	F (3

BY:	

V.O. NO.	1	7465	I	
GHEET NO.	8	OF	8	

ANALYTICAL CHEMISTS

BACTERIOLOGISTS Approved by State of California.

Tel: 831 724-5422 FAX: 831 724-3188

·····

· · · · ·

Account No.: 7030002 3/4 2192 Group: Mar.07.A No.21

Soil Control Lab 42 Hangar Way Watsonville CA 95076 www.compostlab.com

Cedar Grove Compost Inc. 17825 Cedar Grove Rd. SE Maple Valley, WA 98038 Attn: Leslie Credgington

DATE RECEIVED:	01 Mar. 07
SAMPLE ID:	ESC07.10
SAMPLE ID. No.:	3/4 7030002

• • • •	Result	Specs.	
pH value (pH units)	7.46	6.0-8.5	Pass
Moisture (% wet wt)	36.1	····	
Organic Matter (% dry wt)	19.9	∺ >40	Fail
Ash (% dry wt)	80.1	<60	Fail
Respiration Rate (mg CO2-C/g OM/day)	2.5	<7	Pass
Cucumber Bioassay			•
Germination (% of control)	100	> 80	Pass
Vigor (% of control)	100	> 80	Pass
Inerts by % dry wt (sum of foreign material)	<0.5	<1.0	Pass
Inerts by % volume (sum of foreign material)	<0.5	<1.0	Pass
Soluble saits (mmhos/cm)	1.720	< 4mmhos/cm	Pass
Size distribution	% Passing	% Passing I	Limits

_AB

Size distribution		% Passing	% Passing Limits		
	Inches	MM	(dry wt. basis)	Coarse	Fine
	- 3"	76.2	100.0	100	100
	2"	50.8	100.0		100
	1"	25.4	100.0	90-100	99-100
	3/4"	19.0	97.1	70-100	
	1/2"	12.7	93.9		90-100
	1/4"	6.3	86.5	40-60	75-100
	> 6"	152.4	100.0	100	100

Analyst: Kate Kurtz

A Division of Control Laboratories Inc.

Sarah Albano/Seattle/RETEC 05/23/2007 01:40 PM

- To "Bardy, Louise (ECY)" <LBAR461@ECY.WA.GOV>
- cc "Halah Voges" <HVoges@retec.com>, "Mike Byers" <mbyers@retec.com>, "Timm, Ronald W. (ECY)" <rtim461@ECY.WA.GOV>, Winston

bcc

Subject RE: Skykomish, Topsoil, Please Respond

Louise and Ron,

Here are the physical parameters for the Cedar Grove Top Soil. Please let us know if you have any questions.

EV Topsoil Mix Handout 2007.doc Topsoil Lab.pdf Everett Solid Waste Permit.pdf

Sarah Albano Environmental Engineer The RETEC Group, Inc.- Merged with ENSR in 2007 1011 S.W. Klickitat Way, Suite 207 Seattle, WA 98134

phone: (206) 624-9349 x207 fax: (206) 624-2839 "Bardy, Louise (ECY)" <LBAR461@ECY.WA.GOV>

"Bardy, Louise (ECY)" <LBAR461@ECY.WA.GOV> 05/23/2007 07:58 AM

- To "Sarah Albano" <SAlbano@retec.com>
- CC "Mike Byers" <mbyers@retec.com>, "Halah Voges" <HVoges@retec.com>, "Timm, Ronald W. (ECY)" <rtim461@ECY.WA.GOV> Subject RE: Skykomish, Topsoil, Please Respond

Good Morning Sarah,

Ecology approves this material only for the chemical analyses described in the data package we received from TestAmerica on May 18, 2007. Ecology has not received any physical parameter data on C:N values, pH, temperature, Solvita results, etc., so we cannot approve the material for these parameters. I am available this morning to review any of this data.

It should be clear that even if Ecology approves the Cedar Grove material, the responsibility for restoration success is still BNSF's.

Thank you.

Louise Bardy Department of Ecology 3190 160th Ave. SE Bellevue, WA 98008 (425) 649-7209 From: Sarah Albano [mailto:SAlbano@retec.com]
Sent: Tuesday, May 22, 2007 3:30 PM
To: Bardy, Louise (ECY)
Cc: Mike Byers; Halah Voges
Subject: Skykomish, Topsoil, Please Respond

Hi Louise,

I wanted to summarize our phone conversation from this morning regarding residential topsoil up in Skykomish. After your review of the data (attached), you determined that the chemical make-up of the Cedar Grove material is typical of commercially available top soils. While the material does not meet the site-specific cleanup level of 22 mg/kg NWPTH-Dx, the TPH concentration is significantly lower than the direct contact criteria of 3,400 mg/kg NWTPH-Dx. You raised concerns about the long term nutrients in the soil and the temperature of the compost when it is applied.

BNSF needs written approval from Ecology to import and apply this material on residential properties in Skykomish. Please reply back to this message and let us know if you approve the Cedar Grove material for use in Skykomish.

Sarah Albano Environmental Engineer The RETEC Group, Inc.- Merged with ENSR in 2007 1011 S.W. Klickitat Way, Suite 207 Seattle, WA 98134

phone: (206) 624-9349 x207 fax: (206) 624-2839

"Bardy, Louise (ECY)" <LBAR461@ECY.WA.GOV> 05/24/2007 04:53 PM

- To "Sarah Albano" <SAlbano@retec.com>
- cc "Halah Voges" <HVoges@retec.com>, "Mike Byers" <mbyers@retec.com>, "Timm, Ronald W. (ECY)" <rtim461@ECY.WA.GOV>, "Winston Chen"

bcc

Subject RE: Skykomish, Topsoil, Please Respond

Hello Sarah,

As Halah and I discussed by phone this morning, the Cedar Grove topsoil described in the attached lab report is approved for landscaping in Skykomish. These type of amendments require follow-up fertilization several times per year until the yards are well established.

Louise Bardy Department of Ecology 3190 160th Ave. SE Bellevue, WA 98008 (425) 649-7209

From: Sarah Albano [mailto:SAlbano@retec.com]
Sent: Wednesday, May 23, 2007 12:41 PM
To: Bardy, Louise (ECY)
Cc: Halah Voges; Mike Byers; Timm, Ronald W. (ECY); Winston Chen
Subject: RE: Skykomish, Topsoil, Please Respond

Louise and Ron,

Here are the physical parameters for the Cedar Grove Top Soil. Please let us know if you have any questions.

Sarah Albano Environmental Engineer The RETEC Group, Inc.- Merged with ENSR in 2007 1011 S.W. Klickitat Way, Suite 207 Seattle, WA 98134

phone: (206) 624-9349 x207 fax: (206) 624-2839

 "Bardy, Louise (ECY)"
 To "Sarah Albano" <SAlbano@retec.com>

 <LBAR461@ECY.WA.GOV>
 cc "Mike Byers" <mbyers@retec.com>, "Halah Voges" <HVoges@retec.com>, "Timm, Ronald W. (ECY)" <rtim461@ECY.WA.GOV>

 05/23/2007 07:58 AM
 Subj RE: Skykomish, Topsoil, Please Respond ect

Good Morning Sarah,

Ecology approves this material only for the chemical analyses described in the data package we received from TestAmerica on May 18, 2007. Ecology has not received any physical parameter data on C:N values, pH, temperature, Solvita results, etc., so we cannot approve the material for these parameters. I am available this morning to review any of this data.

It should be clear that even if Ecology approves the Cedar Grove material, the responsibility for restoration success is still BNSF's.

Thank you.

Louise Bardy Department of Ecology 3190 160th Ave. SE Bellevue, WA 98008 (425) 649-7209

From: Sarah Albano [mailto:SAlbano@retec.com]
Sent: Tuesday, May 22, 2007 3:30 PM
To: Bardy, Louise (ECY)
Cc: Mike Byers; Halah Voges
Subject: Skykomish, Topsoil, Please Respond

Hi Louise,

I wanted to summarize our phone conversation from this morning regarding residential topsoil up in Skykomish. After your review of the data (attached), you determined that the chemical make-up of the Cedar Grove material is typical of commercially available top soils. While the material does not meet the site-specific cleanup level of 22 mg/kg NWPTH-Dx, the TPH concentration is significantly lower than the direct contact criteria of 3,400 mg/kg NWTPH-Dx. You raised concerns about the long term nutrients in the soil and the temperature of the compost when it is applied.

BNSF needs written approval from Ecology to import and apply this material on residential properties in Skykomish. Please reply back to this message and let us know if you approve the Cedar Grove material for use in Skykomish.

Sarah Albano Environmental Engineer The RETEC Group, Inc.- Merged with ENSR in 2007 1011 S.W. Klickitat Way, Suite 207 Seattle, WA 98134 phone: (206) 624-9349 x207 fax: (206) 624-2839

ENVIRONMENTAL HEALTH DIVISION 3020 Rucker Avenue, Suite 104 Everett, WA 98201-3900 425.339.5250 FAX: 425.339.5254 Deat/Hard of Hearing: 425.339.5252 (TTY)

SOLID Y	VASTE FACILITY PERMIT #SW-182
1997 1997 1997 1997 1997 1997	
Issued by the Snohomish H the Revised Code of Wash Code (WAC) and the Snoh text of WAC 173-350)	lealth District in accordance with the provisions of Chapter 70.95 of ington (RCW), Chapter 173-350 of the Washington Administrative omish Health District Sanitary Code, Chapters 3.1 and 3.2 (Adopted
PERMIT.I	PERIOD: JULY 1, 2006 TO JUNE 30, 2007
PERMIT	FEE AND ADMINISTRATIVE INFORMATION
NAME OF FACILITY.	Cedar Grove Composting
FACILITY LOCATION:	3620 36th Place NE, Everett, Washington 98201
FACILITY OWNER: FACILITY OPERATOR: PHONE:	Cedar Grove, Inc. Jerry Bartlett 206.832.3000
PERMIT TYPE ANNUAL FEE	Waste Recycling / Composing

The conditions of this permit are contained on the following pages. This permit is the property of the Snohomish Health District and may be suspended or revoked upon violation of any rules and regulations applicable hereto. This permit is not transferable to a different site, and must be renewed annually. This permit or a legible copy must be displayed or stored in a manner, which allows easy access by operating personnel.

Aran Enger, R.S. Solid Waste and Toxics Section Date of Issuance Environmental Health Division

Page 1 of 5

Cedar Grove Composting Compost Quality Assurance Program 2007

Two Way Topsoil Mix 2007

On February 11, 2004 the Washington State Department of Ecology imposed new minimum functional standards for all composting facilities. WAC 173-350-220 specifically defines compost manufacturing and product quality standards. Cedar Grove Composting meets these required standards. (*The new standards replace The Interim Guidelines for Grade AA Compost Quality.*)

As required, based on our production schedule at Cedar Grove, we sample every 10,000 yards of Type 1* and every 5,000 yards of Type 3* feedstock and send the samples to outside laboratories for the following **required** tests. Chart 1, Tables A & B below details the State Standards and Cedar Grove results.

In addition, on a quarterly basis, Cedar Grove tests the current compost sales inventory for moisture, nutrients and trace elements, salts, organic matter, and chlopyralid. Chart 2, Table C on the next page outlines our additional **voluntary** testing protocol.

		As of 2-11-2004	
REQUIRED 1	ESTING	WAC 173-350-220 Standard	Cedar Grove Topsoil
Table A		Limit	As of 3/01/07
Metals		(mg/kg dry weight)	
Arsenic		<=20	4
Cadmium		<=10	2
Copper		<=750	36
Lead	parts per	<=150	15
Mercury	million dry	<=8	<1
Molybdenum	weight	<=9	2
Nickel		<=210	36
Selenium		<=18	<1
Zinc		<=1400	98
Table B			
Other Parameters		Limit	Cedar Grove
рН		5-10 (range)	7.46
		< 3 Most Probable Number per	
Salmonella	CFU/g dry wt	4 grams of total solids	<3
Sharps		0 percent	0
Manufactured Inerts		< 1 percent	< 0.5
Total Nitrogen	% dry basis	report every 10,000 yds	0.71
	Respiration rate	Very Stable, Stable, or	
Stability	C/gOM/day)	Moderately Unstable	Stable

Chart 1. Washington Administrative Code (WAC) – Solid Waste Handling Standards (Chapter 173-350 Section 220, page 29 & 30)

*Type 1 Feedstock as defined by the WAC means source separated yard and garden waste, wood wastes, agricultural crop residue, wax-coated cardboard, and pre-consumer food wastes.*Type 3 Feedstock as defined by WAC means meat and post-consumer source separated food wastes.

VOLUNTARY TESTIN	IG	
Table C		As of 3/1/07
Nutrients -Primary & Second	dary	
Ammonia		19
Nitrate		276
Phosphorus	(parts per million dry weight)	1360
Potassium		4602
Sulfate		121
Calcium	(percent dry weight)	0.86
Magnesium	(percent ary weight)	0.92
Trace Elements		
Copper	(, 11 , 1	36
Zinc	(parts per million dry weight)	98
Boron	0 /	1
Salts, Bulk Density, Etc.		
Sodium		0.03
Chloride		0.11
Organic Nitrogen	(percent dry weight)	0.68
Organic Matter		19.9
Organic Carbon		10.5
Moisture	(Percent)	36.1
Total Solids	(1 0/00/10)	93.9
Bulk Density	(lb/cu ft)	44
Carbon to Nitrogen Ratio	(Ratio)	15
Electrical Conductivity	(dS/m - mmhos/cm)	1 72
Particle Size	Percent Retained	Percent Passing
>2.0 inches	0.0	100
1.0 to 2.0 in.	0.0	100
0.64 to 1.0 in.	0.0	100
0.38 to0.64 in.	0.0	97.1
0.25 to 0.38 in.	1.2	93.9
0.16 to 0.25 in.	6.2	86.6
0.08 to 0.16 in.	15.5	60.3
< 0.08	77.1	

Chart 2. Cedar Grove Composting Voluntary Testing (Performed Quarterly by Outside Laboratory)

Additional Requirements by Department of Ecology:

In addition, the organic material shall have the following physical characteristics:

- 1. Shall be screened using a sieve no finer than 7/16" and no greater than 3/4".
- 2. Shall pass a standard cress test for seed germination (90% germination compared to standard). Alternatively, compost shall score a number 5 or above on the Solvita Compost Maturity Test.
- 3. Shall have a pH from 5.5 to 7.5.
- 4. Shall have a maximum electrical conductivity of 3.0 mhos/cm. (Other states allow as much as 10)
- 5. Shall have a maximum carbon to nitrogen ratio of 15:1.
- 6. Shall be certified by the Process to Further Reduce Pathogens (PFRP) guideline for hot composting as established by the United States Environmental Protection Agency.

May 18, 2007

Sarah Albano The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish Levee

Enclosed are the results of analyses for samples received by the laboratory on 05/07/07 16:10. The following list is a summary of the Work Orders contained in this report, generated on 05/18/07 17:18.

If you have any questions concerning this report, please feel free to contact me.

Work Order BQE0096 <u>Project</u> BNSF-Skykomish Levee ProjectNumber BN050-19390-220

TestAmerica - Seattle, WA

110 Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

	ANALYTICAL REPORT FOR SAMPLES											
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received								
Sky-Topsoil-Cedar	BQE0096-01	Soil	05/07/07 14:00	05/07/07 16:10								

TestAmerica - Seattle, WA

hung Kate Haney, Project Manager

without the written approval of the laboratory.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Analytical Case Narrative

TestAmerica - Seattle, WA

BQE0096

SAMPLE RECEIPT

The samples were received May 8th, 2007 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.0 degrees Celsius. The Silica Gel Clean-up for NWPTH-Dx was added 05/10/07 by The RETEC Group, Inc.

PREPARATIONS AND ANALYSIS

Volatile Petroleum Products by NWTPH-Gx: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up): No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up: No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Total Metals by EPA 6000/7000 Series Methods: No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Organochlorine Pesticides by EPA Method 8081A: The calibration verification standard for all endrin ketone in the blank spike was above the method established acceptance criteria. A high bias may be indicated. The result was qualified and reported. No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Free-Acid Herbicides by EPA Method 8151A: The calibration verification standard for all analytes qualified with a C7 qualifier was below the method established acceptance criteria due to matrix interference carried over from analytical samples. The matrix interference was confirmed by reanalysis with the same result. All analytes affected were qualified and reported. No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Semivolatile Organic Compounds by EPA Method 8270C: No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica - Seattle, WA

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

	Volatile Petroleum Products by NWTPH-Gx TestAmerica - Seattle, WA											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
BQE0096-01	(Sky-Topsoil-Cedar)		Soil Sampled: 05/07/07 14:00									
Gasoline Range H	Iydrocarbons	NWTPH-Gx	ND		6.82 n	ng/kg dry	1x	7E07056	05/07/07 18:01	05/08/07 08:21		
Surrogate(s)	: 4-BFB (FID)		:	93.6%		50 - 150 %	"			"		

Surrogate(s): 4-BFB (FID)

TestAmerica - Seattle, WA

lung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01RE1	l-Cedar)	Soil Sampled: 05/07/07 14:00									
Diesel Range Hydrod	carbons	NWTPH-Dx	160		66.8	mg/kg dry	2x	7E08040	05/08/07 11:40	05/09/07 12:40	Q6
Lube Oil Range Hyd	lrocarbons	"	1220		167	"	"	"	"	"	
Surrogate(s):	2-FBP			91.9%		54 - 148 %	"			"	
	Octacosane			182%		62 - 142 %	"			"	ZX

TestAmerica - Seattle, WA

und

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica - Seattle WA

			10	su mene	a - Deal	iic, wh					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01	(Sky-Topsoil-Cedar)		Soil	Soil Sampled: 05/07/07 14:00							
Diesel Range (SGC	CU)	NWTPH-Dx	44.6		33.4	mg/kg dry	1x	7E08040	05/08/07 11:40	05/11/07 01:19	Q6
Lube Oil Range (S	GCU)	"	346		83.5	"	"		"	"	
Surrogate(s):	2-FBP (SGCU)			74.7%		54 - 148 %	"			"	
	Octacosane (SGCU)			149%		62 - 142 %	"			"	ZX

TestAmerica - Seattle, WA

und

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee

BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Total Metals by EPA 6000/7000 Series Methods TestAmerica - Seattle, WA

Analyte		Method l	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01	(Sky-Topsoil-Cedar)		Soil			Sample	ed: 05/07	/07 14:00			
Antimony	E	PA 6020	ND		1.94	mg/kg dry	1x	7E07055	05/07/07 17:50	05/08/07 08:21	
Arsenic		"	3.30		0.646	"	"	"		05/08/07 13:13	
Beryllium		"	ND		0.646	"	"	"		"	
Cadmium		"	ND		0.646	"	"	"			
Chromium		"	39.3		0.646	"	"	"			
Copper		"	33.0		0.646	"	"	"			
Lead		"	15.3		0.646		"	"		"	
Mercury	EF	PA 7471A	ND		0.133	"	"	7E08032	05/08/07 11:24	05/08/07 14:14	
Nickel	E	PA 6020	36.1		0.646		"	7E07055	05/07/07 17:50	05/08/07 13:13	
Selenium		"	ND		0.646	"	"	"		"	
Silver		"	ND		0.646	"	"	"		"	
Thallium		"	ND		0.646	"	"	"		"	
Zinc		"	91.8		6.46	"	"	"		"	

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Organochlorine Pesticides by EPA Method 8081A TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01 (Sky-Topsoil-Cedar)		Soil	l		Sampl	ed: 05/(07/07 14:00			RL1
Aldrin [2C]	EPA 8081A	ND		26.3	ug/kg dry	20x	7E08038	05/08/07 11:38	05/16/07 08:21	
alpha-BHC [2C]	"	ND		26.3			"		"	
beta-BHC [2C]		ND		52.6	"	"	"			C
delta-BHC [2C]	"	ND		26.3			"		"	
gamma-BHC (Lindane) [2C]		ND		26.3		"	"		"	
alpha-Chlordane [2C]		ND		26.3		"	"		"	
gamma-Chlordane [2C]	"	ND		26.3		"	"		"	
4,4'-DDD [2C]	"	ND		52.6	"		"		"	
4,4'-DDE [2C]	"	ND		52.6		"	"		"	
4,4'-DDT [2C]	"	ND		52.6	"		"		"	C
Dieldrin [2C]		ND		52.6			"			
Endosulfan I [2C]		ND		26.3	"	"	"		"	
Endosulfan II [2C]	"	ND		52.6	"	"	"		"	
Endosulfan sulfate [2C]	"	ND		52.6			"			
Endrin [2C]	"	ND		52.6	"	"	"		"	
Endrin aldehyde [2C]		ND		52.6			"			
Endrin ketone [2C]	"	ND		52.6			"			C
Heptachlor [2C]		ND		26.3			"			
Heptachlor epoxide [2C]	"	ND		26.3			"			
Hexachlorobenzene [2C]		ND		26.3			"			
Methoxychlor [2C]		ND		52.6			"			
Toxaphene [2C]		ND		1310		"	"	"		
Surrogate(s): TCX [2C]			101%		52 - 129 %	"			"	
Decachlorobiphenyl			114%		40 - 158 %	"			"	

TestAmerica - Seattle, WA

Kato Duurg Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Volatile Organic Compounds by EPA Method 8260B TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01	(Sky-Topsoil-Cedar)		Soil			Sampl	led: 05/(07/07 14:00			A-01
Benzene		EPA 8260B	ND		0.0207	mg/kg dry	1x	7E08006	05/08/07 11:20	05/08/07 13:11	
Ethylbenzene		"	ND		0.104	"		"	"	"	
Toluene			ND		0.104	"		"		"	
Total Xylenes		"	ND		0.311		"	"	"		
Surrogate(s):	1,2-DCA-d4			98.6%		75 - 125 %	"			"	
	Toluene-d8			100%		75 - 125 %	"			"	
	4-BFB			106%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

	Semivolatile Organic Compounds by EPA Method 8270C TestAmerica - Seattle, WA											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
BQE0096-01	(Sky-Topsoil-Ced	ar)	Soi	il		Samp	oled: 05/0	07/07 14:00				
Acenaphthene		EPA 8270C	ND		1.10	mg/kg dry	1x	7E08039	05/08/07 11:39	05/09/07 20:37		
Acenaphthylene			ND		1.10	"	"	"		"		
Aniline		"	ND		1.10	"	"	"		"		
Anthracene		"	ND		1.10	"	"	"		"		
Benzo (a) anthrae	cene	"	ND		1.10	"	"	"		"	1	
Benzo (a) pyrene	•	"	ND		1.10	"	"	"	"	"	1	
Benzo (b) fluorar	nthene	"	ND		1.10	"	"	"	"	"	1	
Benzo (k) fluorar	nthene	"	ND		1.10	"	"	"	"	"	1	
Benzo (ghi) pery	lene		ND		1.10	"	"	"		"	1	
Benzoic Acid			ND		3.34	"	"	"		"		
Benzyl alcohol		"	ND		1.10	"	"	"	"	"		
Bis(2-chloroetho	xy)methane		ND		1.10	"	"	"		"		
Bis(2-chloroethy	l)ether	"	ND		1.10	"	"	"	"	"		
Bis(2-chloroisop	ropyl)ether	"	ND		1.10	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate		ND		1.10	"	"	"		"	1	
4-Bromophenyl j	ohenyl ether	"	ND		1.10	"	"	"	"	"		
Butyl benzyl pht	halate	"	ND		1.10	"	"	"	"	"	1	
Carbazole		"	ND		1.10	"	"	"	"	"		
4-Chloroaniline		"	ND		1.67	"	"	"	"	"		
4-Chloro-3-meth	ylphenol	"	ND		1.10	"	"	"	"	"		
2-Chloronaphtha	lene	"	ND		1.10	"	"	"	"	"		
2-Chlorophenol		"	ND		1.10	"	"	"	"	"		
4-Chlorophenyl j	phenyl ether	"	ND		1.10	"	"	"	"	"		
3 & 4-Methylphe	enol (m,p-Cresols)	"	ND		1.10	"	"	"	"	"		
2-Methylphenol	(o-Cresol)	"	ND		1.10	"	"	"	"	"		
Chrysene		"	ND		1.10	"	"	"		"	1	
Di-n-butyl phtha	late	"	ND		1.10	"	"	"	"	"		
Dibenz (a,h) anth	nracene	"	ND		1.10	"	"	"	"	"	1	
Dibenzofuran		"	ND		1.10	"	"	"		"		
1,2-Dichlorobenz	zene	"	ND		1.10	"	"	"	"	"		
1,3-Dichlorobenz	zene	"	ND		1.10	"	"	"	"	"		
1,4-Dichlorobenz	zene	"	ND		1.10	"	"	"		"		
3,3'-Dichloroben	zidine	"	ND		16.7	"	"	"	"	"	1	
2,4-Dichloropher	nol	"	ND		1.10	"	"	"	"	"		
Diethyl phthalate		"	ND		1.10	"	"	"		"		
2,4-Dimethylphe	nol	"	ND		1.10	"	"	"	"	"		
Dimethyl phthala	ate	"	ND		1.10	"	"	"		"		
4,6-Dinitro-2-me	thylphenol	"	ND		1.67	"	"	"		"		
2,4-Dinitropheno	bl	"	ND		1.67	"	"	"		"		
2,4-Dinitrotoluer	ne	"	ND		1.67	"	"	"		"		
2,6-Dinitrotoluer	ne		ND		1.67	"	"			"		
N-Nitrosodiphen	ylamine		ND		1.10	"	"			"		
Elucronthono			ND		1 10							

TestAmerica - Seattle, WA

Kate Haney, Project Manager

Fluoranthene

ww

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ND

1.10

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Organic Compounds by EPA Method 8270C TestAmerica - Seattle, WA Method Result MRL Units Dil Analyzed Analyte MDL* Batch Prepared Notes Sampled: 05/07/07 14:00 Soil BOE0096-01 (Sky-Topsoil-Cedar) EPA 8270C 05/08/07 11:39 05/09/07 20:37 ND 1.10 1x 7E08039 Fluorene ----mg/kg dry Hexachlorobenzene ND 1.10 .. ., Hexachlorobutadiene ND 1.10 " Hexachlorocyclopentadiene ND 1.67 ., Hexachloroethane ND 1.10 Indeno (1,2,3-cd) pyrene ND 1.10 .. ., ND 1.10 Isophorone 1.10 .. ., 1-Methylnaphthalene ND 2-Methylnaphthalene ND 1.10 1.10 .. ., .. Naphthalene ND ., ND 1.67 2-Nitroaniline 1.67 .. ., .. 3-Nitroaniline ND ND 1.67 4-Nitroaniline .. ., ... Nitrobenzene ND 1.10 ----.. ., ... 2-Nitrophenol ND -----1.10 .. ., .. 4-Nitrophenol ND -----1.67 ., " N-Nitrosodi-n-propylamine ND 1.10 ----.. " .. Di-n-octyl phthalate ND 1.10 ----I " .. Pentachlorophenol ND 1.67 ., Phenanthrene 1.10 ND ., .. Phenol ND 1.10 .. 1.10 Pyrene ND 1.10 .. ., ... 1,2,4-Trichlorobenzene ND 1.10 .. " ND 2,4,5-Trichlorophenol -----.. ND 1.10 2,4,6-Trichlorophenol 27 - 126 % ,, 2-FBP 99.6% " Surrogate(s): 2-FP 96.4% 16 - 121 % " 96.2% 26 - 125 % " Nitrobenzene-d5 " Phenol-d6 62.9% 10 - 120 % p-Terphenyl-d14 26 - 150 % " 98.7% 10 - 152 % "

TestAmerica - Seattle, WA

uw Kate Haney, Project Manager

2,4,6-TBP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

98.7%

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

	Physical Parameters by APHA/ASTM/EPA Methods TestAmerica - Seattle, WA										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01	(Sky-Topsoil-Cedar)	(Sky-Topsoil-Cedar) Soil Sampled: 05/07/07 14:00									
Dry Weight		BSOPSPL003R0	75.1		1.00	%	1x	7E07051	05/07/07 16:58	05/08/07 00:00	

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Free-Acid Herbicides by EPA Method 8151A TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQE0096-01	(Sky-Topsoil-Cedar)		Soil	l		Sampl	led: 05/(07/07 14:00			RL1
2,4-D		EPA 8151A	ND		334	ug/kg dry	5x	7E08041	05/08/07 11:41	05/18/07 14:10	
2,4-DB		"	ND		334	"		"		"	
2,4,5-T		"	ND		334	"		"		"	
2,4,5-TP (Silvex)		"	ND		334	"		"		"	
Dalapon		"	ND		668	"		"		"	
Dicamba		"	ND		334	"		"		"	
Dichloroprop		"	ND		334	"		"		"	
Dinoseb		"	ND		334	"		"	"	"	
MCPA		"	ND		33400	"		"	"	"	
MCPP		"	ND		33400	"		"	"	"	
Pentachloropheno	l	"	ND		334	"		"	"		
Surrogate(s):	2,4-DCAA			65.5%		18 - 138 %	"			"	R10

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E07056 Soil Preparation Method: EPA 5030B (P/T) [%] (Limits) Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes RPD Result Amt Blank (7E07056-BLK1) Extracted: 05/07/07 18:01 NWTPH-Gx ND ---05/08/07 07:16 Gasoline Range Hydrocarbons 5.00 mg/kg wet 1x ------------" 05/08/07 07:16 Surrogate(s): 4-BFB (FID) Recovery: 87.3% Limits: 50-150% LCS (7E07056-BS1) Extracted: 05/07/07 18:01 NWTPH-Gx Gasoline Range Hydrocarbons 5.00 mg/kg wet 50.0 92.6% (75-125) 05/08/07 07:48 46.3 ----1x ---------Surrogate(s): 4-BFB (FID) Recovery: 93.3% Limits: 50-150% " 05/08/07 07:48 Duplicate (7E07056-DUP1) QC Source: BQE0096-01 Extracted: 05/07/07 18:01 NWTPH-Gx 6.82 mg/kg dry Gasoline Range Hydrocarbons ND ---1x ND 24.2% (40) 05/08/07 08:52 Surrogate(s): 4-BFB (FID) Recovery: 91.9% Limits: 50-150% " 05/08/07 08:52 Matrix Spike (7E07056-MS1) QC Source: BQE0096-01 Extracted: 05/07/07 18:01 Gasoline Range Hydrocarbons NWTPH-Gx 70.0 ----6.94 mg/kg dry 1x 1.62 69.4 98.5% (42-125) ------05/08/07 09:25 106% Surrogate(s): 4-BFB (FID) Recovery: Limits: 50-150% " 05/08/07 09:25

TestAmerica - Seattle, WA

IIUX

Kate Haney, Project Manager

The RETEC	Group, Inc.
-----------	-------------

1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batch: 7E08040	Soil Pre	paration N	lethod: H	EPA 3550B										
Analyte	Method	Result	MD	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	8) Analyzed	Notes
Blank (7E08040-BLK1)								Extr	acted:	05/08/07 11	:40			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.0	mg/kg wet	1x							05/08/07 22:27	
Lube Oil Range Hydrocarbons		ND		25.0	"									
Surrogate(s): 2-FBP Octacosane		Recovery:	78.5% 91.2%	L	imits: 54-148% 62-142%	"							05/08/07 22:27 "	
LCS (7E08040-BS1)								Extr	acted:	05/08/07 11	:40			
Diesel Range Hydrocarbons	NWTPH-Dx	68.3		10.0	mg/kg wet	1x		66.7	102%	(78-129)			05/08/07 22:56	
Surrogate(s): 2-FBP		Recovery:	83.4%	L	imits: 54-148%	"							05/08/07 22:56	
Octacosane			93.0%		62-142%	"							"	
Duplicate (7E08040-DUP2)				QC Sourc	e: BQE0096-01	RE1		Extr	acted:	05/08/07 11	:40			
Diesel Range Hydrocarbons	NWTPH-Dx	157		66.6	mg/kg dry	2x	160				1.89%	(40)	05/09/07 11:41	
Lube Oil Range Hydrocarbons		1180		166	"		1220				3.33%			
Surrogate(s): 2-FBP		Recovery:	89.9%	L	imits: 54-148%	"							05/09/07 11:41	
Octacosane			181%		62-142%	"							"	ZX
Matrix Spike (7E08040-MS2)				QC Sourc	e: BQE0096-01	RE1		Extr	acted:	05/08/07 11	:40			
Diesel Range Hydrocarbons	NWTPH-Dx	225		66.8	mg/kg dry	2x	160	89.1	73.0%	(46-155)			05/09/07 12:11	
Surrogate(s): 2-FBP		Recovery:	89.6%	L	imits: 54-148%	"							05/09/07 12:11	
Octacosane			168%		62-142%	"							"	ZX

TestAmerica - Seattle, WA

Kato Duurg Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207

Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batch: 7E08040	Soil Pre	paration N	lethod: E	PA 3550B										
Analyte	Method	Result	MDI	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7E08040-BLK2)								Extr	acted:	05/08/07 11	:40			
Diesel Range (SGCU)	NWTPH-Dx	ND		10.0	mg/kg wet	1x							05/10/07 23:22	
Lube Oil Range (SGCU)		ND		25.0	"	"							"	
Surrogate(s): 2-FBP (SGCU) Octacosane (SGCU)		Recovery:	77.1% 93.3%	L	imits: 54-148% 62-142%	"							05/10/07 23:22 "	
LCS (7E08040-BS2)								Extr	acted:	05/08/07 11	:40			
Diesel Range (SGCU)	NWTPH-Dx	65.7		10.0	mg/kg wet	1x		66.7	98.5%	(78-129)			05/10/07 23:51	
Surrogate(s): 2-FBP (SGCU) Octacosane (SGCU)		Recovery:	82.2% 92.0%	L	imits: 54-148% 62-142%	"							05/10/07 23:51 "	
Duplicate (7E08040-DUP3)				QC Sourc	e: BQE0096-01			Extr	acted:	05/08/07 11	:40			
Diesel Range (SGCU)	NWTPH-Dx	37.2		33.3	mg/kg dry	1x	44.6				18.1%	6 (50)	05/11/07 00:20	
Lube Oil Range (SGCU)	"	295		83.2	"		346				15.9%	. "		
Surrogate(s): 2-FBP (SGCU) Octacosane (SGCU)		Recovery:	64.7% 128%	L	imits: 54-148% 62-142%	"							05/11/07 00:20 "	
Matrix Spike (7E08040-MS3)				QC Sourc	e: BQE0096-01			Extr	acted:	05/08/07 11	:40			
Diesel Range (SGCU)	NWTPH-Dx	111		33.4	mg/kg dry	1x	44.6	89.1	74.5%	(46-155)			05/11/07 00:49	
Surrogate(s): 2-FBP (SGCU)		Recovery:	77.6%	L	imits: 54-148%	"							05/11/07 00:49	
Octacosane (SGCU)			141%		62-142%	"							"	

TestAmerica - Seattle, WA

Kato Duuz Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

attle, WA 98134

Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E07055 Soil Preparation Method: EPA 3050B Spike Source 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt Blank (7E07055-BLK1) Extracted: 05/07/07 17:50 EPA 6020 05/08/07 12:43 Lead ND 0.500 --mg/kg wet 1x ---_ ------___ Nickel .. ND 0.500 ------------.. ... ND 0.500 Copper -----------------.. ... ND 0.500 Chromium -----------------.. .. Cadmium ND 0.500 ------------.. .. Thallium ND 0.500 ---------.. ND 1.50 ... 05/08/07 07:58 Antimony ----------------Beryllium ND 0.500 ----------05/08/07 12:43 Arsenic ND 0.500 ------.. --------0.500 .. Silver ND ------.. ... 5.00 Zinc ND ----------------Selenium ND ----0.500 ---------___ ------LCS (7E07055-BS1) Extracted: 05/07/07 17:50 Zinc EPA 6020 43.4 5.00 mg/kg wet 1x 40.0 108% (80-120) 05/08/07 12:49 -------------Nickel 44 1 0 500 110% ------------Cadmium 43.9 0.500 110% ------____ ., 44.0 0.500 110% .. Chromium ---------.. .. 111% 44.5 0.500 Copper --------.. Thallium 41.6 0.500 ---104% ------" 41.8 0.500 ., 104% .. Selenium ------.. 1.50 30.0 113% 05/08/07 08:02 34.0 Antimony ---------42.6 0.500 40.0 106% 05/08/07 12:49 Lead ------.. Silver 44.2 0.500 ---110% ----.. 43.1 0.500 108% Arsenic ... 43.7 0.500 109% Beryllium Duplicate (7E07055-DUP1) QC Source: BQE0096-01 Extracted: 05/07/07 17:50

Dupheute (7107000	D 011)				-		 	 		
Copper	EPA 6020	26.4	 0.600	mg/kg dry	1x	33.0	 	 22.2% (30)	05/08/07 13:07	
Selenium	"	ND	 0.600	"		ND	 	 NR "	"	
Nickel	"	28.1	 0.600	"	"	36.1	 	 24.9% "		
Chromium	"	22.5	 0.600	"		39.3	 	 54.4% "	"	R9
Cadmium	"	ND	 0.600	"		ND	 	 11.8% "	"	R4
Beryllium	"	ND	 0.600	"		ND	 	 20.3% "	"	R4
Antimony	"	ND	 1.80	"		ND	 	 29.0% "	05/08/07 08:16	R4
Zinc	"	78.2	 6.00	"		91.8	 	 16.0% "	05/08/07 13:07	
Lead	"	12.3	 0.600	"	"	15.3	 	 21.7% "	"	
Arsenic	"	2.98	 0.600	"		3.30	 	 10.2% "	"	
Silver	"	ND	 0.600	"		ND	 	 13.6% (50)	"	R4

TestAmerica - Seattle, WA

Kate Haney, Project Manager

un

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA

					^									
QC Batch: 7E07055	Soil Pre	paration Met	hod: EPA	3050B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	ts) Analyzed	Notes
Duplicate (7E07055-DUP1)				QC Source	e: BQE0096-0	1		Extr	acted:	05/07/07 17	:50			
Thallium	EPA 6020	ND		0.600	mg/kg dry	1x	ND				NR	(30)	05/08/07 13:07	
Matrix Spike (7E07055-MS1)	QC Source: BQE0096-01					Extracted: 05/07/07 17:50								
Thallium	EPA 6020	43.3		0.616	mg/kg dry	1x	ND	49.3	87.8%	(75-120)			05/08/07 13:01	
Antimony	"	16.6		1.85	"	"	0.381	37.0	43.8%	(10-120)			05/08/07 08:12	
Lead	"	64.7		0.616	"	"	15.3	49.3	100%	(29-166)			05/08/07 13:01	
Nickel	"	86.5		0.616	"		36.1	"	102%	(35-150)			"	
Selenium	"	50.0		0.616		"	ND	"	101%	(61-120)			"	
Beryllium		52.5		0.616	"	"	0.142	"	106%	(72-122)			"	
Arsenic	"	54.0		0.616	"		3.30	"	103%	(57-125)			"	
Copper	"	82.1		0.616	"		33.0	"	99.6%	(20-148)			"	
Cadmium		52.1		0.616	"	"	0.304	"	105%	(80-120)			"	
Chromium	"	84.4		0.616	"		39.3	"	91.5%	(30-163)			"	
Silver	"	43.9		0.616	"		0.110	"	88.8%	(54-126)			"	
Zinc	"	137		6.16	"	"	91.8	"	91.7%	(20-160)				
Post Snike (7F07055-PS1)				OC Source	e: BOE0096-0	1		Extr	acted:	05/07/07 17	.50			
Cadmium	FPA 6020	0.0959		X = = = = = = =	ug/ml	- 1x	0.000456	0.100	95.4%	(75-125)			05/09/07 09:11	
Nickel	"	0.152			"	"	0.0542	0.0995	98.3%	(75 125)			"	
Copper		0.157			"		0.0495	0 101	106%					
Silver		0.0965					0.000165	0 100	96.3%				"	
Chromium		0.162			"		0.0590	"	103%				"	
Thallium		0.0845					0 0000194	"	84.5%				"	
Antimony		0.0388					0.000573	0.0500	76.5%				05/08/07 08:07	
Lead		0 107					0.0230	0.0995	84.4%				05/09/07 09.11	
Arsenic		0.106			"	"	0.00496	0.100	101%				"	
Beryllium		0.100			"	"	0.000214	"	99.8%					
Selenium		0.0939			"	"	0.000252	"	93.6%	"				
Zinc	"	0.236			"		0.138	0.0995	98.5%	"			"	

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E08032 Soil Preparation Method: EPA 7471A REC (Limits) RPD Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Result Amt Blank (7E08032-BLK1) Extracted: 05/08/07 11:24 EPA 7471A ND 05/08/07 13:20 Mercury ---0.100 mg/kg wet 1x ---------------LCS (7E08032-BS1) Extracted: 05/08/07 11:24 Mercury EPA 7471A 0.666 0.100 mg/kg wet 1x 0.667 99.9% (80-120) 05/08/07 13:22 -------------Extracted: 05/08/07 11:24 LCS Dup (7E08032-BSD1) Mercury EPA 7471A 0.658 ----0.100 mg/kg wet 1x ---0.667 98.7% (80-120) 1.21% (20) 05/08/07 13:25 QC Source: BQD0040-07 Duplicate (7E08032-DUP1) Extracted: 05/08/07 11:24 EPA 7471A ND ND 9.43% (30) 05/08/07 13:51 Mercury ----0.120 mg/kg dry 1x ---R4 ------QC Source: BQD0040-07 Extracted: 05/08/07 11:24 Matrix Spike (7E08032-MS1)

EPA 7471A 0.897 --- 0.120 mg/kg dry 1x 0.0374 0.802 107% (70-130) -- -- 05/08/07 13:27

TestAmerica - Seattle, WA

Mercury

uw Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Number: Project Manager:

Project Name:

BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Organochlorine Pesticides by EPA Method 8081A - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E08038 **Soil Preparation Method:** EPA 3550B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes (Limits) RPD REC Result Amt Blank (7E08038-BLK1) Extracted: 05/08/07 11:38 EPA 8081A 05/15/07 12:23 ND 1.00 Aldrin --ug/kg wet 1x -----alpha-BHC ND 1.00 --beta-BHC .. ND 2.00 ---------delta-BHC ND 1.00 -----------------... gamma-BHC (Lindane) ND 1.00 --------alpha-Chlordane ND 1.00 gamma-Chlordane ND 1.00 --------4,4'-DDD ND 2.00 -------------4,4'-DDE ND 2.00 ____ ------4,4'-DDT ND 2.00 ---Dieldrin ND 2.00 -------------Endosulfan I ND 1.00 ------------------Endosulfan II ND 2.00 ___ ___ ___ ---Endosulfan sulfate ND 2.00 ---Endrin ND 2.00 -----------Endrin aldehyde ND 2.00 ---------ND 2.00 Endrin ketone ------Heptachlor ND 1.00 ------------------Heptachlor epoxide ND 1.00 ------Hexachlorobenzene ND 1.00 ND 2.00 Methoxychlor -----.. 50.0 ... ND Toxaphene ------------------05/15/07 12:23 Surrogate(s): TCX Recovery: 90.4% Limits: 52-129% Decachlorobiphenyl 87.6% 40-158% LCS (7E08038-BS1) Extracted: 05/08/07 11:38 EPA 8081A 91.4% 05/15/07 12:43 Aldrin 3.81 1.00 1x 4.17 (73 - 125)ug/kg wet ------------82.3% alpha-BHC 3 4 3 1.00 (57-127)-------beta-BHC 4.11 2.00 98.6% (58-125) .. ., .. delta-BHC 3.16 1.00 75.8% (42-124) ... 3.51 1.00 gamma-BHC (Lindane) ---84.2% (65-125) -----alpha-Chlordane 3.82 1.00 ---91.6% (71-125) ------(72-125) gamma-Chlordane 3.57 1.00 85.6% ---4,4'-DDD 7.57 2.00 8.33 90.9% (70-129) ------... 4.4'-DDE 7.91 2.00 ---95.0% (70-125)------4.4'-DDT 8.36 2.00 ---100% (63-129) Dieldrin 7.80 2.00 .. ---., 93.6% (70-125) Endosulfan I 3.89 1.00 ... 4.17 93.3% ---(34-162)---Endosulfan II 7.73 2.00 8.33 92.8% (10-169)

TestAmerica - Seattle, WA

hund

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220

Report Created: 05/18/07 17:18

Sarah Albano Organochlorine Pesticides by EPA Method 8081A - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E08038 **Soil Preparation Method:** EPA 3550B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) Notes RPD REC Result Amt LCS (7E08038-BS1) Extracted: 05/08/07 11:38 Endosulfan sulfate EPA 8081A 7 23 05/15/07 12:43 2.00 8.33 --ug/kg wet 1x ---86.8% (56-131) ------Endrin 8.36 2.00 100% (69-127) ------.. Endrin aldehyde 6.30 2.00 75.6% (10-172) ---------.. ... Endrin ketone 2.00 91.5% 7.62 (32-172)------------... Heptachlor 3 97 1.00 4.17 95.2% (62-134) ------.. Heptachlor epoxide 3.78 1.00 90.6% (67-125) ., Hexachlorobenzene 3.64 1.00 4.00 91.0% (60-140) ------.. Methoxychlor 39.5 2.00 ---417 94.7% (10-170)------05/15/07 12.43 Surrogate(s): TCX Recovery: 87.9% Limits: 52-129% Decachlorobiphenvl 40-158% 87.7% Matrix Spike (7E08038-MS1) OC Source: BOE0096-01 Extracted: 05/08/07 11:38 Aldrin [2C] EPA 8081A 19.3 ND 345% 05/16/07 09:35 M1 13.4 ug/kg dry 10x 5.59 (44-139)--------alpha-BHC [2C] ND 13.4 ND NR (53-127)-----M2 ---., beta-BHC [2C] 1.98 26.8 ND 35.4% (20-161) -----delta-BHC [2C] 4.64 13.4 ND 83.0% (35-125) ... gamma-BHC (Lindane) [2C] ND ---13.4 ND NR (50-126) ------M2 alpha-Chlordane [2C] 8.97 13.4 7.57 25.0% (26-161) M2 -----gamma-Chlordane [2C] 8.89 13.4 ND 159% (39-150) .. M1 4,4'-DDD [2C] 12.3 26.8 5.83 11.2 57.8% (14-154).. ---4,4'-DDE [2C] 117 58.9% .. 18.3 26.8 (37-142)---------4,4'-DDT [2C] 15.7 26.8 ND 140% (29-179) Dieldrin [2C] 17.3 26.8 9.25 ., 71.9% (11-151) Endosulfan I [2C] 134 ND 90.9% 5.08 5 59 (16-162)---Endosulfan II [2C] 7.23 26.8 ND 11.2 64.6% (10-176) 9.14 ND Endosulfan sulfate [2C] 26.8 81.6% (10-158)2.12 ND 18.9% Endrin [2C] 26.8 (16-161)., ND Endrin aldehyde [2C] 3 91 26.8 34 9% (10-172)., Endrin ketone [2C] 8.85 26.8 ND 79.0% (10-173) Heptachlor [2C] 5.45 13.4 ND 5.59 97.5% (53-137) Heptachlor epoxide [2C] 4.79 13.4 ND 85.7% (10-166)

Surrogate(s): TCX

Decachlorobiphenyl

Limits: 52-129%

13.4

26.8

74.0%

116%

5.98

42.6

Recovery:

..

" 40-158% " 2.60

ND

5.36

55.9

63.1%

76.2%

(50-150)

(10-170)

05/16/07 09:35

TestAmerica - Seattle, WA

Hexachlorobenzene [2C]

Methoxychlor [2C]

hund

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

___ ---

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

	OI ganociiloi	ine i esticides by	Test	America	- Seattle, V	VA		ianty	contr	or ixesui	1.5			
QC Batch: 7E08038	Soil Pre	paration Method:	EPA	3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	∾ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike Dup (7E08038-M	ASD1)			QC Source	: BQE0096-	01		Ext	racted:	05/08/07 11	:38			
Aldrin [2C]	EPA 8081A	16.6		13.4	ug/kg dry	10x	ND	5.59	297%	(44-139)	15.0%	(35)	05/16/07 09:55	M1
alpha-BHC [2C]		ND		13.4	"	"	ND	"	NR	(53-127)		"	"	M4
beta-BHC [2C]		1.99		26.8	"	"	ND	"	35.6%	(20-161)	0.504%	. "	"	
delta-BHC [2C]		3.23		13.4	"	"	ND	"	57.8%	(35-125)	35.8%	"	"	R3
gamma-BHC (Lindane) [2C]		4.02		13.4	"	"	ND	"	71.9%	(50-126)		"	"	
alpha-Chlordane [2C]		8.95		13.4	"	"	7.57	"	24.7%	(26-161)	0.223%	. "	"	M2
gamma-Chlordane [2C]		8.34		13.4	"	"	ND	"	149%	(39-150)	6.38%	"	"	
4,4'-DDD [2C]	"	12.7		26.8	"	"	5.83	11.2	61.3%	(14-154)	3.20%	"	"	
4,4'-DDE [2C]	"	16.1		26.8	"	"	11.7	"	39.3%	(37-142)	12.8%	"	"	
4,4'-DDT [2C]	"	16.1		26.8	"	"	ND	"	144%	(29-179)	2.52%	"	"	
Dieldrin [2C]	"	14.9		26.8	"	"	9.25	"	50.4%	(11-151)	14.9%	"	"	
Endosulfan I [2C]	"	4.64		13.4	"	"	ND	5.59	83.0%	(16-162)	9.05%	"	"	
Endosulfan II [2C]	"	7.97		26.8	"	"	ND	11.2	71.2%	(10-176)	9.74%	"	"	
Endosulfan sulfate [2C]	"	7.61		26.8	"	"	ND	"	67.9%	(10-158)	18.3%	"	"	
Endrin [2C]		7.98		26.8	"	"	ND	"	71.2%	(16-161)	116%	"	"	R3
Endrin aldehyde [2C]	"	1090		26.8	"	"	ND	"	9730%	(10-172)	199%	"	"	R3, M1, E
Endrin ketone [2C]	"	7.68		26.8	"	"	ND	"	68.6%	(10-173)	14.2%	"	"	
Heptachlor [2C]	"	4.24		13.4	"	"	ND	5.59	75.8%	(53-137)	25.0%	"	"	
Heptachlor epoxide [2C]		5.16		13.4	"	"	ND	"	92.3%	(10-166)	7.44%	"	"	
Hexachlorobenzene [2C]		5.58		13.4	"	"	2.60	5.36	55.6%	(50-150)	6.92%	"	"	
Methoxychlor [2C]	"	40.3		26.8	"	"	ND	55.9	72.1%	(10-170)	5.55%	"		
Surrogate(s): TCX		Recovery: 72.6%		Li	mits: 52-1299	% "							05/16/07 09:5.	5
Decachlorobiphenyl		207%			40-158	% "							"	$Z\lambda$

TestAmerica - Seattle, WA

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E08006 Soil Preparation Method: EPA 5030B Source Spike 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt Blank (7E08006-BLK1) Extracted: 05/08/07 10:40 EPA 8260B 05/08/07 12:15 Benzene ND 0.0200 --mg/kg wet 1x ---_ ------___ Ethylbenzene .. ND 0.100 .. ---------------.. ND 0.100 ... Methyl tert-butyl ether -------------.. ND 0.100 .. Toluene ---------------" 0.300 Total Xylenes ND ------------------Surrogate(s): 1.2-DCA-d4 Recovery: 102% Limits: 75-125% 05/08/07 12:15 75-125% " 100% Toluene-d8 4-BFB 104% 75-125% " LCS (7E08006-BS1) Extracted: 05/08/07 10:40 Benzene EPA 8260B 2.28 0.0200 2.00 114% (75-125) 05/08/07 11:13 mg/kg wet 1x ----------... 2 25 0 100 112% Ethylbenzene ----------Methyl tert-butyl ether 1.94 0.100 97.0% (71-127) --------., ., 2.19 0.100 110% (75-125) .. Toluene ---------.. ... Total Xylenes 0.300 6.00 112% ... 6.70 ----------" Surrogate(s): 1.2-DCA-d4 98.5% Limits: 75-125% 05/08/07 11:13 Recovery: 75-125% " Toluene-d8 101% " " " 4-BFB 100% 75-125% LCS Dup (7E08006-BSD1) Extracted: 05/08/07 10:40 Benzene EPA 8260B 2.19 0.0200 mg/kg wet 1x 2.00 110% (75 - 125)4.03% (20) 05/08/07 11:44 0.100 113% Ethylbenzene .. 2.26 .. ., 0.443% .. ---Methyl tert-butyl ether .. 1.92 0.100, 96.0% (71 - 127)1.04% ------.. .. ., ... 107% Toluene 2.14 0.100 ---(75 - 125)2.31% ---.. Total Xylenes .. 6.53 0.300 6.00 109% .. 2.57% (30) Limits: 75-125% 05/08/07 11:44 Surrogate(s): 1,2-DCA-d4 Recovery: 98.0% " Toluene-d8 102% 75-125% " 4-BFB 100% 75-125%

TestAmerica - Seattle, WA

Kato Duur Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Organic Compounds by EPA Method 8270C - Laboratory Quality Control Results TestAmerica - Seattle, WA

handsMendeMendeMendeMendeMendeMendeMendeMendeMendeMendeMendeAccountionPixA (MA)N/N-N/N </th <th>QC Batch: 7E08039</th> <th>Soil Prej</th> <th>paration Metl</th> <th>hod: EPA</th> <th>3550B</th> <th></th>	QC Batch: 7E08039	Soil Prej	paration Metl	hod: EPA	3550B										
Brank (TEQBQ3-BLK.1)PIA (200)ND	Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Accample Accample Income Accample Income Accample Income Accample Income Accample Income Accample Income 	Blank (7E08039-BLK1)								Extr	acted:	05/08/07 11	:39			
Anamip Anime <br< td=""><td>Acenaphthene</td><td>EPA 8270C</td><td>ND</td><td></td><td>0.330</td><td>mg/kg wet</td><td>1x</td><td></td><td></td><td></td><td></td><td></td><td> (</td><td>05/09/07 18:23</td><td></td></br<>	Acenaphthene	EPA 8270C	ND		0.330	mg/kg wet	1x						(05/09/07 18:23	
AnimenceND <th< td=""><td>Acenaphthylene</td><td>"</td><td>ND</td><td></td><td>0.330</td><td>"</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></th<>	Acenaphthylene	"	ND		0.330	"	"							"	
AndmecnéND <th< td=""><td>Aniline</td><td>"</td><td>ND</td><td></td><td>0.330</td><td>"</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></th<>	Aniline	"	ND		0.330	"	"							"	
Benco (n)symmethyIND	Anthracene	"	ND		0.330	"	"							"	
HenceND	Benzo (a) anthracene	"	ND		0.330	"	"							"	
Bence (h) floomhene···	Benzo (a) pyrene	"	ND		0.330	"	"							"	
Bency (A) lucantheneND0.330Bit2-choroshynchynchaftarND0.3300.0 <t< td=""><td>Benzo (b) fluoranthene</td><td>"</td><td>ND</td><td></td><td>0.330</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></t<>	Benzo (b) fluoranthene	"	ND		0.330	"								"	
Band git) per yearNDN	Benzo (k) fluoranthene	"	ND		0.330	"								"	
Benck Ard Benck Ard 	Benzo (ghi) perylene	"	ND		0.330	"								"	
Beny alcoholND	Benzoic Acid	"	ND		1.00	"								"	
Biq2-chloroschoymehneND <t< td=""><td>Benzyl alcohol</td><td>"</td><td>ND</td><td></td><td>0.330</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></t<>	Benzyl alcohol	"	ND		0.330	"								"	
Bid2-chloroshylpitherND <t< td=""><td>Bis(2-chloroethoxy)methane</td><td>"</td><td>ND</td><td></td><td>0.330</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></t<>	Bis(2-chloroethoxy)methane	"	ND		0.330	"								"	
Bid2-chlorisoproplicheriND <td>Bis(2-chloroethyl)ether</td> <td>"</td> <td>ND</td> <td></td> <td>0.330</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	Bis(2-chloroethyl)ether	"	ND		0.330	"								"	
Bit 2-ethylinyddateNDND0.330 <td>Bis(2-chloroisopropyl)ether</td> <td>"</td> <td>ND</td> <td></td> <td>0.330</td> <td>"</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	Bis(2-chloroisopropyl)ether	"	ND		0.330	"	"							"	
Altomombury hendyMD	Bis(2-ethylhexyl)phthalate	"	ND		0.330	"								"	
Buy benzy bhalate " ND 0.330 " -	4-Bromophenyl phenyl ether	"	ND		0.330	"								"	
Carbazole ND 0.300 "	Butyl benzyl phthalate	"	ND		0.330	"								"	
4-ChloroadhineNDND0.500	Carbazole	"	ND		0.330	"								"	
4-Chloro-3-methylphenol"ND0.330""II	4-Chloroaniline	"	ND		0.500	"								"	
2-Chloronaphthaline ND 0,330	4-Chloro-3-methylphenol	"	ND		0.330	"								"	
ANDNDn0,330nn <td>2-Chloronaphthalene</td> <td>"</td> <td>ND</td> <td></td> <td>0.330</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	2-Chloronaphthalene	"	ND		0.330	"								"	
Altorophenylphenyl etherNDND0,330""<	2-Chlorophenol	"	ND		0.330	"								"	
3.4 -Metrylphenol (m-Cresols) " ND 0.330 " " 2-Metrylphenol (o-Cresol) " ND 0.330 "	4-Chlorophenyl phenyl ether	"	ND		0.330	"								"	
2-Methylphenol (o-Cresol) " ND 0.330 "	3 & 4-Methylphenol (m.p-Cresols)	"	ND		0.330	"								"	
Chrysene " ND 0.330 "	2-Methylphenol (o-Cresol)	"	ND		0.330	"								"	
Di-n-builty phthalate " ND 0.330 " " " " Dibenz (a,h) anthracene " ND 0.330 " " " " Dibenz (a,h) anthracene " ND 0.330 " " " " " Dibenz (a,h) anthracene " ND 0.330 "	Chrysene	"	ND		0 330	"									
Dibers (a,h) anthracene " ND 0.330 "	Di-n-butyl phthalate	"	ND		0 330	"									
Dibenzofuran " ND 0.330 " <td>Dibenz (a h) anthracene</td> <td>"</td> <td>ND</td> <td></td> <td>0 330</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dibenz (a h) anthracene	"	ND		0 330	"									
1,2-Dichlorobenzene "ND 0,330 "	Dibenzofuran	"	ND		0 330	"									
1,3-Dichlorobenzene " ND 0,330 " " 1,4-Dichlorobenzene " ND 0,330 " " " 1,4-Dichlorobenzene " ND 0,330 " "	1 2-Dichlorobenzene	"	ND		0 330	"									
1,4-Dichlorobenzene " ND 0.330 " " " 3,3'-Dichlorobenzidine " ND 5.00 " " " " 3,3'-Dichlorobenzidine " ND 5.00 " " " " 3,3'-Dichlorobenzidine " ND 0.330 " " " " " " " " " " "	1 3-Dichlorobenzene	"	ND		0 330	"								"	
3,3'-Dichlorobenzidine " ND 5.00 " " 2,4-Dichlorophenol " ND 0.330 " " " " Diethyl phthalate " ND 0.330 " " " 2,4-Dimethyl phthalate " ND 0.330 " " " 2,4-Dimethyl phthalate " ND 0.330 " " " Dimethyl phthalate " ND 0.330 " " " 4,6-Dinitro-2-methylphenol " ND 0.500 " <td>1 4-Dichlorobenzene</td> <td>"</td> <td>ND</td> <td></td> <td>0.330</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	1 4-Dichlorobenzene	"	ND		0.330	"								"	
2,4-Dichlorophenol " ND 0.330 " " " Diethyl phthalate " ND 0.330 " " " " " " " " "	3 3'-Dichlorobenzidine		ND		5.00	"								"	
Diethyl phthalate " ND 0.330 " " 2,4-Dimethyl phthalate " ND 0.330 " " " " " " " " " " " <td>2 4-Dichlorophenol</td> <td>"</td> <td>ND</td> <td></td> <td>0.330</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	2 4-Dichlorophenol	"	ND		0.330	"								"	
2,4-Dimethylphenol " ND 0.330 " <td< td=""><td>Diethyl phthalate</td><td>"</td><td>ND</td><td></td><td>0 330</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Diethyl phthalate	"	ND		0 330	"									
Dimethyl phthalate " ND 0.330 " 4,6-Dinitro-2-methylphenol " ND 0.500 " " " 2.4-Dinitronhenol " ND 0.500 " " "	2 4-Dimethylphenol	"	ND		0 330	"									
4,6-Dinitro-2-methylphenol " ND 0.500 " 2.4-Dinitronhenol " ND 0.500 " "	Dimethyl nhthalate	"	ND		0 330	"									
24-Dinitronhenol "ND 0.500 "	4.6-Dinitro-2-methylphenol	"	ND		0.500	"									
	2 4-Dinitronhenol	"	ND		0.500	"									

TestAmerica - Seattle, WA

Kate Haney, Project Manager

hung

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Number: Project Manager:

Project Name:

BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Organic Compounds by EPA Method 8270C - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Bate	h: 7E08039	Soil Pre	paration N	lethod: EPA	3550B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7E080	39-BLK1)								Extr	acted:	05/08/07 11	:39			
2,4-Dinitrotoluene		EPA 8270C	ND		0.500	mg/kg wet	1x							05/09/07 18:23	
2,6-Dinitrotoluene		"	ND		0.500	"									
N-Nitrosodiphenylar	nine	"	ND		0.330	"									
Fluoranthene		"	ND		0.330	"									
Fluorene		"	ND		0.330	"									
Hexachlorobenzene		"	ND		0.330	"									
Hexachlorobutadien	2	"	ND		0.330	"									
Hexachlorocyclopen	tadiene	"	ND		0.500	"									
Hexachloroethane		"	ND		0.330	"									
Indeno (1,2,3-cd) py	rene	"	ND		0.330	"									
Isophorone		"	ND		0.330	"									
1-Methylnaphthalen	•	"	ND		0.330	"									
2-Methylnaphthalen	e	"	ND		0.330	"								"	
Naphthalene		"	ND		0.330	"									
2-Nitroaniline		"	ND		0.500	"									
3-Nitroaniline		"	ND		0.500	"									
4-Nitroaniline		"	ND		0.500	"									
Nitrobenzene		"	ND		0.330	"									
2-Nitrophenol		"	ND		0.330	"									
4-Nitrophenol		"	ND		0.500	"									
N-Nitrosodi-n-propy	lamine	"	ND		0.330	"									
Di-n-octyl phthalate		"	ND		0.330	"									
Pentachlorophenol		"	ND		0.500	"									
Phenanthrene		"	ND		0.330	"									
Phenol		"	ND		0.330	"									
Pvrene		"	ND		0.330	"									
1.2.4-Trichlorobenze	ene	"	ND		0.330	"									
2.4.5-Trichlorophene	bl	"	ND		0.330	"									
2,4,6-Trichlorophene	ol	"	ND		0.330	"									
Surrogate(s)	2-FBP		Recovery:	90.1%	L	imits: 27-126%	"							05/09/07 18.2	3
Sarroguic(3).	2-FP		iccovery.	88.3%	L	16-121%	"							"	
	Nitrobenzene-d5			90.7%		26-125%	"							"	
	Phenol-d6			58.0%		10-120%	"							"	
	p-Terphenyl-d14			79.6%		26-150%	"							"	
	2.4.6-TBP			80.8%		10-152%	"							"	

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Organic Compounds by EPA Method 8270C - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batcl	h: 7E08039	Soil Pre	paration N	lethod: EPA	3550B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (7E08039	D-BS1)								Ext	racted:	05/08/07 11	:39			
Acenaphthene		EPA 8270C	2.89		0.330	mg/kg wet	1x		3.33	86.8%	(47-128)			05/09/07 18:56	
4-Chloro-3-methylph	nenol	"	2.95		0.330	"			"	88.6%	(49-130)			"	
2-Chlorophenol		"	2.88		0.330	"			"	86.5%	(51-120)			"	
1,4-Dichlorobenzene		"	2.72		0.330	"			"	81.7%				"	
2,4-Dinitrotoluene		"	2.91		0.500	"			"	87.4%	(51-135)			"	
4-Nitrophenol		"	3.45		0.500					104%	(32-155)				
N-Nitrosodi-n-propy	lamine	"	2.79		0.330					83.8%	(51-120)				
Pentachlorophenol		"	4.07		0.500					122%	(46-163)				
Phenol			2.89		0.330					86.8%	(50-122)				
Pyrene			2.82		0.330					84.7%	(45-138)				
1,2,4-Trichlorobenze	ne	"	2.92		0.330	"			"	87.7%	(47-120)			"	
Surrogate(s):	2-FBP		Recovery:	93.7%	Li	imits: 27-126%	"							05/09/07 18:56	
	2-FP			91.0%		16-121%	"							"	
	Nitrobenzene-d5			91.6%		26-125%	"							"	
	Phenol-d6			58.3%		10-120%	"							"	
	p-Terphenyl-d14			87.4%		26-150%	"							"	
	2,4,6-TBP			99.1%		10-152%	"							"	
Matrix Spike	(7E08039-MS1)				QC Source	e: BQE0096-01			Ext	racted:	05/08/07 11	:39			
Acenaphthene		EPA 8270C	3.35		1.10	mg/kg dry	1x	ND	4.44	75.5%	(47-128)			05/09/07 19:30	
4-Chloro-3-methylph	nenol	"	3.56		1.10		"	ND	"	80.2%	(45-130)				
2-Chlorophenol		"	3.57		1.10	"	"	ND	"	80.4%	(48-120)				
1,4-Dichlorobenzene		"	3.44		1.10			ND		77.5%	(50-120)			"	
2,4-Dinitrotoluene		"	3.25		1.66	"		ND	"	73.2%	(34-154)			"	
4-Nitrophenol		"	3.23		1.66	"		ND	"	72.7%	(17-164)			"	
N-Nitrosodi-n-propy	lamine	"	3.55		1.10			ND		80.0%	(49-120)				
Pentachlorophenol		"	3.09		1.66			ND		69.6%	(22-183)				
Phenol		"	3.65		1.10			ND		82.2%	(32-132)				
Pyrene		"	4.41		1.10			ND		99.3%	(31-147)				1
1,2,4-Trichlorobenze	ne	"	3.65		1.10			ND		82.2%	(47-120)				
Surrogate(s):	2-FBP		Recovery:	86.9%	Li	imits: 27-126%	"							05/09/07 19:30	
0.0	2-FP		-	83.6%		16-121%	"							"	
	Nitrobenzene-d5			85.8%		26-125%	"							"	
	Phenol-d6			53.4%		10-120%	"							"	
	p-Terphenyl-d14			91.9%		26-150%	"							"	
	2.4.6-TBP			89.9%		10-152%	"							"	

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Semivolatile Organic Compounds by EPA Method 8270C - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batc	h: 7E08039	Soil Pre	paration M	lethod: EPA	A 3550B									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	⁰‰ (Li RPD	mits) Analyzed	Notes
Matrix Spike I)up (7E08039-M	(SD1)			QC Source	e: BQE0096-01			Ext	racted:	05/08/07 11	:39		
Acenaphthene		EPA 8270C	3.37		1.10	mg/kg dry	1x	ND	4.44	75.9%	(47-128)	0.595% (24	4) 05/09/07 20:03	
4-Chloro-3-methylpl	nenol	"	3.51		1.10	"		ND	"	79.1%	(45-130)	1.41% (2.	3) "	
2-Chlorophenol		"	3.67		1.10	"		ND	"	82.7%	(48-120)	2.76% (2	7) "	
1,4-Dichlorobenzene	•	"	3.50		1.10	"		ND	"	78.8%	(50-120)	1.73% (34	4) "	
2,4-Dinitrotoluene		"	3.25		1.66	"		ND	"	73.2%	(34-154)	0.00% (24	4) "	
4-Nitrophenol		"	3.43		1.66	"	"	ND	"	77.3%	(17-164)	6.01% (3	l) "	
N-Nitrosodi-n-propy	lamine	"	3.74		1.10	"		ND	"	84.2%	(49-120)	5.21% "		
Pentachlorophenol		"	3.14		1.66	"		ND	"	70.7%	(22-183)	1.61% (2	5) "	
Phenol		"	3.67		1.10	"		ND	"	82.7%	(32-132)	0.546% (3	l) "	
Pyrene		"	4.12		1.10	"		ND	"	92.8%	(31-147)	6.80% (2	5) "	
1,2,4-Trichlorobenze	ene	"	3.66		1.10	"		ND	"	82.4%	(47-120)	0.274% (2	5) "	
Surrogate(s):	2-FBP		Recovery:	87.6%	Li	imits: 27-126%	"						05/09/07 20:03	3
	2-FP			84.5%		16-121%	"						"	
	Nitrobenzene-d5			84.9%		26-125%	"						"	
	Phenol-d6			54.1%		10-120%	"						"	
	p-Terphenyl-d14			91.0%		26-150%	"						"	
	2,4,6-TBP			89.0%		10-152%	"						"	

TestAmerica - Seattle, WA

Kato Duurg Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

	Physical Parar	neters by Al	PHA/ASTN Test	M/EPA N America -	Aethods Seattle, V	- Labo VA	oratory (Quality	Con	trol Res	ults			
QC Batch: 7E07051	Soil Prej	paration Met	hod: Dry	Weight										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7E07051-BLK1)								Extra	acted:	05/07/07 10	5:58			
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x						(05/08/07 00:00	

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220 Sarah Albano

Report Created: 05/18/07 17:18

Free-Acid Herbicides by EPA Method 8151A - Laboratory Quality Control Results TestAmerica - Seattle, WA QC Batch: 7E08041 Soil Preparation Method: EPA 8151A ^⁰∕_A (Limits) REC Source Spike % RPD Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Result Amt Blank (7E08041-BLK1) Extracted: 05/08/07 11:41 2,4-D EPA 8151A 50.0 05/18/07 09:06 ND 1x --ug/kg wet ---------------2,4-DB .. ND 50.0 ------------.. ND 50.0 .. 2,4,5-T -----------------.. ND ... 2.4.5-TP (Silvex) 50.0 ----------------.. Dalapon ND 100 ------------Dicamba ND 50.0 ------Dichloroprop ND 50.0 --------------Dinoseb ND ---50.0 --------------MCPA ND 5000 --------____ --" 5000 MCPP ND ---------.. 50.0 ... ND ---Pentachlorophenol -------------------" 05/18/07 09:06 Surrogate(s): 2,4-DCAA Limits: 18-138% Recovery: 83.8% LCS (7E08041-BS1) Extracted: 05/08/07 11:41 24-D EPA 8151A 103 05/18/07 09:27 ----50.0 1x ---100 103% (62 - 128)--ug/kg wet ---" ., 2,4-DB 531 ---50.0 ---500 106% (72-146) ------2,4,5-T " 97.7 50.0 .. 100 97.7% (63-125) .. ------------.. 2,4,5-TP (Silvex) 93.8 50.0 ., 93.8% (64-120) -----------

Surrogate(s):	2.4-DCAA	Recovery:	89.2%	Lin	nits: 18-1.	38% "					05/18/07 09:27
Pentachlorophenol		94.2		50.0	"	"	 100	94.2%	(74-116)	 	"
MCPP		" 11400		5000	"	"	 "	114%	(37-168)	 	"
MCPA		" 9590		5000	"	"	 10000	95.9%	(56-142)	 	"
Dinoseb		74.3		50.0	"	"	 "	74.3%	(36-174)	 	"
Dichloroprop		" 103		50.0	"	"	 "	103%	(53-144)	 	"
Dicamba		" 95.0		50.0	"	"	 100	95.0%	(68-121)	 	"
Dalapon		" 409		100	"	"	 500	81.8%	(29-164)	 	"

Surrogate(s): 2,4-DCAA

Limits: 18-138%

05/18/07 09:27

Matrix Spike	(7E08041-MS1)			Q	C Source:	BQE0096-01			Extr	acted: 0	5/08/07 11:41			
2,4-D	E	PA 8151A	69.3 -		670	ug/kg dry	10x	ND	134	51.7%	(10-160)	 	05/18/07 15:36	M4
2,4-DB		"	581 -		670	"		ND	670	86.7%	(40-174)	 		M4
2,4,5-T		"	53.6 -		670	"		ND	134	40.0%	(10-138)	 		M4
2,4,5-TP (Silvex)		"	60.3 -		670	"		ND	"	45.0%	(10-157)	 		M4
Dalapon		"	ND -		1340	"		ND	670	NR	(10-172)	 		M4
Dicamba		"	170 -		670	"		ND	134	127%	(10-158)	 		M4, R1
Dichloroprop		"	71.5 -		670	"		ND	"	53.4%	(10-170)	 		M4
Dinoseb		"	203 -		670	"		ND	"	151%	(36-174)	 		M4
MCPA		" 10	0800 -		67000	"		ND	13400	80.6%	(10-175)	 		M4
MCPP		" 21	1200 -		67000	"		ND	"	158%	(10-184)	 		M4, R1
Pentachlorophenol		"	123 -		670			ND	134	91.8%	(29-145)	 	"	M4

TestAmerica - Seattle, WA

un

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Levee** BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Free-Acid Herbicides by EPA Method 8151A - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7E08041	Soil Pre	paration M	lethod: EPA	A 8151A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike (7E08041-MS1)				QC Sourc	e: BQE0096-	01		Ext	racted:	05/08/07 11	:41			
Surrogate(s): 2,4-DCAA [2C]		Recovery:	221%	L	imits: 18-1389	% 10x							05/18/07 15:36	ZX, R
Matrix Spike Dup (7E08041-M	SD1)			QC Sourc	e: BQE0096-	01		Ext	racted:	05/08/07 11	:41			
2,4-D	EPA 8151A	73.7		670	ug/kg dry	10x	ND	134	55.0%	(10-160)	6.15%	6 (40)	05/18/07 15:57	M4
2,4-DB		509		670		"	ND	670	76.0%	(40-174)	13.2%	. "		M 4
2,4,5-T		62.6		670	"	"	ND	134	46.7%	(10-138)	15.5%	. "		M 4
2,4,5-TP (Silvex)		67.0		670	"	"	ND	"	50.0%	(10-157)	10.5%	. "		M 4
Dalapon		ND		1340	"	"	ND	670	NR	(10-172)		"		M 4
Dicamba		208		670	"	"	ND	134	155%	(10-158)	20.1%	. "		M4, R1
Dichloroprop		78.2		670	"	"	ND	"	58.4%	(10-170)	8.95%	. "		M 4
Dinoseb		284		670	"	"	ND	"	212%	(36-174)	33.3%	. "		M 4
MCPA	"	23000		67000		"	ND	13400	172%	(10-175)	72.2%	. "		M4, R1
MCPP	"	28700		67000		"	ND	"	214%	(10-184)	30.1%	. "		M 4
Pentachlorophenol	"	121		670		"	ND	134	90.3%	(29-145)	1.64%	5 "	"	M 4
Surrogate(s): 2,4-DCAA [2C]		Recovery:	214%	L	imits: 18-1389	% "							05/18/07 15:57	ZX, R.

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Levee BN050-19390-220

Sarah Albano

Report Created: 05/18/07 17:18

Notes and Definitions

Report Specific Notes:

A-01	-	Aliquot for analysis taken from 4 ounce jar.
C7	-	Calibration Verification recovery was below the method control limit due to matrix interference carried over from analytical samples. The matrix interference was confirmed by reanalysis with the same result.
Е	-	Concentration exceeds the calibration range and therefore result is semi-quantitative.
Ι	-	Internal Standard recovery was outside of method limits. Matrix interference was confirmed by reanalysis.
M1	-	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M2	-	The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M4	-	The sample required a dilution due to matrix interference. Because of this dilution, the matrix spike concentrations in the sample were reduced to a level where the recovery calculation does not provide useful information. See Blank Spike (LCS).
Q6	-	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
R1	-	The RPD between the primary and confirmatory analysis exceeded 40%. Per method 8000B, the higher value was reported.
R10	-	The RPD between the primary and confirmatory analysis exceeded 40%. Per method 8000B, the lower value was reported due to apparent chromatographic problems.
R3	-	The RPD exceeded the acceptance limit due to sample matrix effects.
R4	-	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
R9	-	Sample RPD exceeded the laboratory control limit.
RL1	-	Reporting limit raised due to sample matrix effects.
ZX	-	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
Laborator	ry Ro	eporting Conventions:
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
NR/NA	-	Not Reported / Not Available
dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
Dil	-	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

TestAmerica - Seattle, WA

uw Kate Haney, Project Manager

The RETEC Group, Inc.	Project Name:	BNSF-Skykomish Levee	
1011 SW Klickitat Way, Suite 207	Project Number:	BN050-19390-220	Report Created:
Seattle, WA 98134	Project Manager:	Sarah Albano	05/18/07 17:18

 Electronic
 - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

wix

Kate Haney, Project Manager

Algebrairsh Lack Frein freiher Part Carl Bill Repert Macura Same freiher Bill Part Carl Bill Repert Macura Bill Same freiher Bill Part Carl Bill Repert Macura Bill Same freiher Bill Part Carl Bill Repert Macura Bill Same freiher Bill Part Carl Bill Repert Macura Bill Same freiher Bill Part Carl Bill Repert Macura Bill Same freiher Bill Part Carl Bill Report Macura Bill Same freiher Bill Part Carl Bill Report Macura Bill Part Carl Bill Part Carl Bill Report Macura Bill Part Carl Bill Part Carl Bill Report Macura Bill Part Carl Bill Part Carl Bill Report Macura Bill Part Carl Bill Part Carl Bill Report Macura Bill Part Carl Bill Part Carl Bill Report Macura Bi			Vº 1014	ч 261	e RETEC Group, In	- - - -	TOEOG	
Harmith Jacc Text three Part of	of Custody	Kecora		\$ (S 10	1 S.W. Klickitat Way, Suite 6) 624-9349 Phone • (206 w.retec.com) 624-2839 Fax	162	RETEC
Amerika Matura State (Pet Hanel, S. AMucco) Amerika Matura A Larvi State (Pet Hanel, S. AMucco) Market Bioling A Larvi State (Pet Hanel, S. AMucco) Market Bioling A Larvi State (Pet Hanel, S. AMucco) Market Bioling A Larvi State (Pet Hanel, S. AMucco) Market Bioling A Larvi State (Pet Hanel, S. AMucco) Market Bioling A Larvier State (Pet Hanel, S. AMucco) Market Bioling A State (Larvier) State (Pet Hanel, S. AMucco) Market Bioling A State (Larvier) State (Pet Hanel, S. AMucco) Market Bioling B State (Larvier) State (Pet Hanel, S. AMucco) Market Bioling B State (Larvier) State (Pet Hanel, State (Pet Hanel) Market Bioling B State (Larvier) State (Pet Hanel) Market Bioling Market Bioling B State (Larvier) State (Pet Hanel) Market Bioling Market Bioling B State (Larvier) Market Biology Market Biology Market Biology B State (Larvier) Market Biology Market Biology Market Biology B State (Larvier) Market Biology Market Biology Market Biology B State (Larvier) Market Biology Market Biology Market Biology Market Biology	utomist Levec	Project Number: BN20-10	390-220		9	W		-
Control Same (Find Interts) The Control Different (Find) Mark <	chool A Marie	Sampler (Print Name): SA	lacuro		25.	14		Page of
Street the form Street the St	a by	Sampler (Print Name):		Pajs	9/2	An	Martent / /	RNSP SNSP
Add Notice: Add		Shipment Method: Court	K	X anbay		10)
Instruction Terms Same Same Contract Dot Dot Usamento Tame Same Same Same Same Same Lab Same		Airbill Number:					Dumbara 12	
N Same Same Same Same Same Same Lab Same Lab Same Coll- Coll N X X X X X X N X X X X X N X X X X X N X X X X X Coll- Coll 1400 S N X X X X X X N X X X X X Coll- Coll N X X X X X X X N X X X X X N X X X X X X Coll- Coll N X X X X X X X N X X X X X N X X X X X Coll- Coll N X X X X X X X X N X X X X X X N X X X X X X Coll Sinter All N X X X X X X X X N X X X X X X N X X X X X X Coll Sinter All N X X X X X X X X N X X X X X X X N X X X X X X X X Coll Sinter All N X X X X X X X X X X X X X X X X X X X		Laboratory Receiving:		Halta	14 N. A			Sup
Example Tange Tange Tange Tange Description escription< th=""> <thdescription< th=""> Descripti</thdescription<></thdescription<>				1/2/2/ A	10 12420		Communic Consid	ah Comula ID
Solut- CEOMA S1100 1/100 S XXX X X X XX Solut- CEOMA S1100 1/100 S XXX X X X XXX Image: Solution of the state of t	d Sample ID	Sample Sample Sample Date Time	Matrix Number of Containers		En to		Instructions, etc. (to	Lab Sample IU se completed by lab)
Mile Constrained Mile	SOL- CEDAR	5/2/07/1/00 5		× × ×	XX			Ō
Mile Research (Scienter American American American mile Mile Mile Mile Mile Mile le mile								
main Resented by (Signater) Date Image Sample Conditioned by Laboratory: min Resented by (Signater) Date Image Sample Conditioned by Laboratory: min Resented by (Signater) Date Image Sample Conditioned by Laboratory: min Resented by (Signater) Date Image Sample Conditioned by Laboratory: min Resented by (Signater) Date Image Sample Conditioned by Laboratory: min Resented by (Signater) Date Image Level 1 Resented conditioned by Laboratory: min Resented by (Signater) Date Image Level 1 Resented conditioned by Laboratory: min Resented by (Signater) Date Image Level 1 Resented conditioned by Laboratory:								
Image: Second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: Second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: Second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: Second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Image: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake) Date: The second by (Sprake)								
Image: Second Dy (Signality) Date: The second Dy (Signality) Image: Second Dy (Signality) Image: Second Dy (Signality) Date: The second Dy (Signality) Date: The second Dy (Signality) Image: Second Dy (Signality) Date: The second Dy (Signality) Date: The second Dy (Signality) Image: Second Dy (Signality) Date: The second Dy (Signality) Date: The second Dy (Signality) Image: The second Dy (Signality) Date: The second Dy (Signality) Date: The second Dy (Signality)								
Main Received by (Sprated) Date: Local Local <thlocal< th=""> <thlocal< th=""> Local<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlocal<></thlocal<>								
Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Date: Image: Second Dyr (Sgraute) Image: Second Dyr (Sgraute) Date: Image: D								
Image: Second Dy (Signature) Date: Time: Sample Custodian Ramachs (Completed by Laboratory): Image: Second Dy (Signature) Sample Custodian Ramachs (Completed by Laboratory): Image: Sample Custodian Ramachs (Completed by Laboratory): Sample Custodian Ramachs (Completed by Laboratory): Image: Received Dy (Signature) Date: Time: Sample Custodian Ramachs (Completed by Laboratory): Cost Sample Received 7 Image: Received Dy (Signature) Date: Time: Date: Time: Cost Sample Received 7 Sample Received 7 Image: Received Dy (Signature) Date: Time: Date: Time: Cost Sample Received 7 Cost Sample Received 7 Image: Received Dy (Signature) Date: Time: Cost Sample Received 7 Cost Sample Received 7								
Image: Second of Signature Parented by (Signature) Parented by								
Image: Second Dy: (Signature) Date: Image: Second Dy: (Signature) Date: Image: Second Dy: (Signature) Date: Image: Second Dy: (Signature) Date: Time: Sample Custodian Remarks (Completed By Laboratory): Image: Date: Image: Image: Date: Image: Date: Image: Date: Image: Image: Date: Image: Image: Image: Image: Date: Imag								
Image: Second of Signature) Received by (Signature) Date: Image: Second of Signature) Catologies of the second of Signature) Image: Second of Signature) Received by (Signature) Catologies of the second of Signature) Catologies of the second of Signature) Catologies of the second of								
Image: Second Dy: (Signature) Date: Image: Second Dy: (Signature) Date: Image: Second Dy: (Signature) Date: Image: Second Dy: (Signature) Date: Second Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descend Dy: (Signature) Descond Dy: (Signature) Descend Dy: (Signature) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Image: Second Dy. (Sonatree) Date: Image: Second Dy. (Sonatree) Completed By Laboratory): Image: Second Dy. (Sonatree) Sample Custodian Remarks (Completed By Laboratory): Sample Custodian Remarks (Completed By Laboratory): Image: Second Dy. (Sonatree) Sample Custodian Remarks (Completed By Laboratory): Sample Custodian Remarks (Completed By Laboratory): Image: Sample Custodian Remarks (Completed By Laboratory): Sample Custodian Remarks (Completed By Laboratory): Sample Received? Image: Sample Received Dy. (Sonatree) Date: Image								
Image: Second by: (Sgnature) Date: Time: Sample Custodian Remarks (Completed By Laboratory): Image: Second by: (Sgnature) S/71/or) 14/50 0.4/05 Level Tumaround Image: Second by: (Sgnature) Bate: Time: Sample Custodian Remarks (Completed By Laboratory): Sample Receipt Image: Second by: (Sgnature) Bate: Time: Level Tumaround Total # Containers Received? Image: Second by: (Sgnature) Bate: Time: Level I Date: Time: Image: Second by: (Sgnature) Date: Time: Level I Date: Time: Sample Receipt Image: Second by: (Sgnature) Date: Time: Level I Date: Time: Sample Receipt Image: Second by: (Sgnature) Date: Time: Coc Seals Intact? Sample Receipt Image: Second by: (Sgnature) Date: Time: Coc Seals Intact? Sample Receipt								
Image: Second by: (Signature) Date: Time: Sample Custodian Remarks (Completed by Laboratory): Image: Second by: (Signature) S/71/or) 14'SO QAOGC Level Tumaround Image: Signature) S/71/or) 14'SO QAOGC Level Tumaround Sample Receipt Image: Signature) Signature) Signature) Signature) Sample Receipt Received by: (Signature) Received for interceipt Tumaround Tumaround Sample Receipt Image: Im								
Indication Received by: (Signature) Date: Time: Sample Custodian Remarks (Completed By Laboratory): Indication S/71/or 1450 0A/0C Level Tumaround Sample Received? Indication Date: Time: Sample Custodian Remarks (Completed By Laboratory): Sample Receipt Indication S/71/or 1450 0A/0C Level Tumaround Tumaround Indication Date: Time: Level I Notation Indication Date: Time: Level I 24 Hour Received by: (Signature) Date: Time: Level I 24 Hour Urbit Level I 1 (Week COC Seals Intact? COC Seals Intact?								
Image: Construction of the custodian remarks (completed by Laboratory): Time: Time: Sample Custodian Remarks (completed by Laboratory): Image: Time: Time: Time: Time: Sample Custodian Remarks (completed by Laboratory): Image: Time: Time: Time: Time: Custodian Remarks (completed by Laboratory): Image: Time: Time: Time: Level Time: Cost Seals Present? Image: Time: Time: Level 1 24 Hour Cost Seals Intact? Une) Received by: (Signative) Date: Time: Level 1 Une) Received by: (Signative) Date: Time: Level 1 Une) Received by: (Signative) Date: Time: Level 1								
Image: Time: Date: Time: Sample Custodian Remarks (Completed By Laboratory): MMA Additional and the second of the s								
Match Mode Fraction Mode Str/ory 1450 0A/OC Level Tumaround Sample Receipt ture) Received/y: (Signatifie) Date: Time: Level 1 Number Containers Received? India # Containers Received? ture) Received by: (Signatifie) Date: Time: Level 1 24 Hour COC Seals Present? India # Containers Received? ture) Received by: (Signatifie) Date: Time: Level 1 1 Week Received Containers Intact? ture) Received by: (Signatifie) Date: Time: Level 1 1 Week Received Containers Intact? India	ture)	Received by: (Signature)	Date:	Time:	Sample Custodian	Remarks (Completed B)	r Laboratory):	
Itue) Received by: (Signature) Date: Time: Itue) Received by: (Signature) Date: Time: Itue) Level I Rutine Received by: (Signature) Date: Time: Itue) Received by: (Signature) Date: Itue) Date: Time: Itue) 1 Week CoC Seals Intact? Itue) Date: 1 Week Itue) Other Other	CMERT	K K /	2/2/0	1 1450	QA/QC Level	Turnaround	Sample Receipt	
Mathematical Mathematical Level I Routine COC Seals Present? ture) Received by: (Sgnature) Date: Time: Level II 24 Hour CoC Seals Intact? ture) Received by: (Sgnature) Date: Time: Level II 1 Week Received Containers Intact?	ture)	Received by: (Signature)	Date:	Time:	T		Total # Containers Received?	
ture) Received by: (Signatifie) Date: Time: Level II = 24 Hour & COC Seals Intact? COC Seals Intact? Received Containers Intact? Other = 0ther	0000	Q.	1410) Level I	Routine	COC Seals Present?		
ture) Received by (biginaryte) Catter Level III 1 Week Containers Intact?		(ON ON	2 dated			24 Hour	COC Seals Intact?	
	iture)	Received by: (bignargre)	רומוני.	2		1 Week	Received Containers Intact?	-
					Other	Other	Temperature?	

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207, Seattle, WA 98134-1162 T 206.624.9349 F 206.624.2839 www.ensr.aecom.com

Memorandum

Date:	August 30, 2007
To:	
From:	Saad Moustafa
Subject	Effect of Construction Activities on Structural Condition of the Skykomish School
Distribution:	

The Skykomish School is a three-story building situated close to the Skykomish River that houses both grade- and high- school facilities. In order to determine the effect of removal and replacement of contaminated soil adjacent to the river on the structural condition of the school building, two structural condition surveys were performed, the first at the start of construction and the second after completion of the work. Each survey was video recorded. The first survey was conducted on August 23rd, 2006 and the second survey was performed on June 27th, 2007. The school structural system consists of cast-in-place reinforced concrete exterior walls and wood frame interior. The first floor is a concrete slab on grade; the second and third floors are wood construction, as is the roof. The following is a brief summary of the structural condition of the building during the first survey.

Summary of First Survey

The overall structural condition of the building is good, without any obvious structural defects. Several non-structural hairline cracks (shrinkage / thermal) were observed in the exterior walls. These types of cracks usually occur during or very shortly after construction. Black, red, and green markers were used to highlight the cracks for easy comparison later. Cracks in the exterior of the east and north walls were highlighted using black marker; cracks in the exterior of the west and south walls were highlighted using red marker. Green marker was used to highlight all interior cracks.

Signs of moisture migration through the cracks were observed in the first floor in the paint storage room and in the second level of the gymnasium. All other cracks appear to be quite harmless. Noticeable floor settlement was observed in the boiler room floor. The settlement appeared to have taken place over a period of time due the heavy floor load. Very few plaster cracks were observed in the interior finishes.

Summary of Second Survey

The second survey consisted of a visual inspection with the object of identifying any changes (new cracks) in the structure. No changes (in width or length) in the cracks highlighted in black in the east

A Trusted Global Environmental, Health and Safety Partner

ENSR

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207, Seattle, WA 98134-1162 T 206.624.9349 F 206.624.2839 www.ensr.aecom.com

wall; these appeared to be quite old and either were missed during the first survey or were covered with paint and had a chance to open during the last 10 months. Unfortunately, the red highlight either washed or faded away. However, a comparison of the cracks identified in the first survey video revealed no change in the cracks previously recorded and that no new cracks were found. Survey of the interior of the building indicated no change in the cracks highlighted in green, and no new cracks were found.

Conclusion

Comparison of the results of the two condition surveys of the school structure indicated no change. It is, therefore, concluded that the construction activities taken place between August 23rd, 2006 and June 27th, 2007 did not cause any structural distress to the school building.

Saad Moustafa. P.E.

Your Own Unique Style.

For complete specifications contact: **PATTERNED CONCRETE Industries, Inc.** PO Box 691015 • Tulsa, Oklahoma 74169-1015 (800) 252-4619 • (918) 437-6499 • (918) 437-5150 FAX

PatternsAvailable

The following patterns shown are widely available, Specifiers are not limited to patterns shown. New custom patterns can be created at a reasonable cost. **NOTE**: Drawings are not to scale.

Board

12"x12"Slate

35"

Fieldstone

Ashlar Slate

Old English Brick Herringbone

6" x 6" Cobblestone

In a stacked bond formation, these square stones have a granite texture. (Medium texture with 3/8" wide x 1/4" deep joints.)

Board

This weathered authentic look comes complete with nail holes. (Light to medium texture with 1/4* joints.)

12" x 12" Slate

A stacked bond formation in a 12" x 12" grid. (Medium texture with 1/4" joints.)

Yorkstone

Varying sizes of stones from $12^{*} \times 6^{*}$ to $30^{*} \times 30^{*}$. No two applications are the same. (Light texture and $1/4^{*}$ joints.)

Keystone

This square stone duplicates the actual sawed Keystone of the Florida Keys. Looks fabulous around pools. (Light to medium texture with 3/8" wide x 1/4" deep joints.)

Fieldstone

Molded from large pitted rocks found in fields across the Midwest. (Heavy texture with 1/2" - 3/4" wide x 1/4" deep joints.)

Chase Slate

Four slate-textured rectangular stones "chase" themselves around a square center stone to form this pattern. (Medium texture with 1/4" joints.)

12" x 12" Adoquin

As mined in Mexico, our 12" x 12" pattern authenticates the volcanic look, coarse with ridges, chisel marks and craters. (Medium to heavy texture with 1/4" joints.)

Ashlar Slate

Random pattern of slate rectangles. (Medium texture with 1/4" joints.)

Old English Brick Running Bond

Like old town red brick streets of America, this pattern complete with worn out identification stamps in the brick. (Heavy texture with $3/8^*-1/2^*$ wide x $1/4^*$ deep joints)

Old English Brick Basketweave

A rugged looking pattern with a weave design. (Heavy texture with $1/2^{*}$ - $5/8^{*}$ wide x $1/4^{*}$ deep joints.)

Old English Brick Herringbone

This pattern demonstrates the look of rustic, worn bricks in a herringbone design. (Heavy textured with $1/2^* - 5/8^*$ wide x $1/4^*$ deep joints.)

6"x6" Cobblestone

Vorkstone

Chase Slate

Old English Brick Running Bond

Keystone

12"x12" Adoquin

Old English Brick Basketweave

