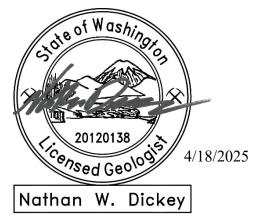
SUBSURFACE INVESTIGATION REPORT 1700 Airport Way South, Seattle, WA Prepared for: Evergreen Treatment Services

Project No. AS180043 • April 18, 2025 FINAL



SUBSURFACE INVESTIGATION REPORT 1700 Airport Way South, Seattle, WA Prepared for: Evergreen Treatment Services

Project No. AS180043 • April 18, 2025 FINAL

Aspect Consulting, a Geosyntec Company

Nathan Dickey, LG Geologist Nathan.Dickey@aspectconsulting.com

Datate

Dave Cook, LG, CPG Senior Principal Geologist Dave.Cook@aspectconsulting.com

Contents

Ac	cronyms		iii
1	Introduc	tion	1
2	Backgro	und	2
		Description	
	2.1.1	Site History	2
	2.1.2	Physical Setting	
	2.1.3	Radon Risk	
		ious Environmental Reports	
	2.2.1	Environmental Reports by Northwest EnviroService	
	2.2.2	Previous Investigations by Aspect Consulting	6
3	Subsurfa	ace Investigation (Aspect, 2024)	9
	3.1 Subs	surface Utility Clearance	9
	3.2 Soil	Investigation	9
	3.3 Grou	Indwater Investigation	11
	3.4 Rade	on Investigation	12
	3.4.1	Radon Test Devices	
	3.4.2	Radon Test Locations and Conditions	12
	3.5 Resu	ults	13
	3.5.1	Geology and Hydrogeology	13
	3.5.2	Soil 13	4.4
	3.5.3 3.5.4	Groundwater Radon	
	5.5.4	Rauon	15
4	Conclus	ions	16
5	Recomm	nendations	17
6	Reference	ces	18

List of Tables

- 1a Metals and PAHs in Soil
- 1b TPH and VOCs in Soil
- 2 Soil Gas Results
- 3a Groundwater Measurements
- 3b Groundwater Analytical Results
- 4 Radon Results

List of Figures

- 1 Site Location
- 2 Site Map
- 3a Soil Analytical Results Metals and PAHs
- 3b Soil Analytical Results TPH and VOCs
- 3c Soil Analytical Results North Warehouse VOCs
- 4 Soil Gas Results
- 5a Groundwater Elevation Map December 2018
- 5b Groundwater Elevation Map November 2024
- 6a Groundwater Analytical Results December 2018
- 6b Groundwater Analytical Results November 2025
- 7 Summary of Radon Results

List of Appendices

- A Previoius Environmental Reports
- B Laboratory and Survey Reports
- C Soil Boring and Monitoring Well Construction Logs
- D Report Limitations and Use Guidelines

Acronyms

Aspect	Aspect Consulting
bgs	below ground surface
CUL	Cleanup level
Ecology	Washington State Department of Ecology
ETS	Environmental Treatment Services
µg/L	micrograms per liter
MTCA	Model Toxics Control Act
NFA	No Further Action
REC	Recognized Environmental Condition
TCE	trichloroethylene
TPH	total petroleum hydrocarbons
VOC	volatile organic compound

1 Introduction

Aspect Consulting, a Geosyntec Company (Aspect), presents this Subsurface Investigation Report for the property located at 1700 Airport Way South in Seattle, Washington (King County tax parcel number 766620-2855) herein referred to as the Site.

The Site is currently owned by Evergreen Treatment Services (ETS) and developed with one building with two wings connected via an open breezeway. The southern wing includes a former warehouse that has been converted into office space and treatment rooms used by ETS until a water line break in early 2024 rendered the building largely unusable. The northern wing is a predominantly an unoccupied warehouse partially used for temporary storage of support materials for ETS' operations. The building was constructed in 1914–1915 as a factory for the Western Blower Company, manufacturer of industrial blowers for sawmills and furnaces. The Site is shown relative to surrounding physical features on Figure 1.

ETS is expecting to receive grant funding from the U.S. Department of Housing and Urban Development (HUD) to support redevelopment of the Site, including demolition of the current facility. In preparation for environmental reviews required under the National Environmental Protection Act (NEPA), Washington State Environmental Protection Act (SEPA), and other applicable regulations, the City of Seattle has requested characterization of the nature and extent of contaminants in soil and groundwater that may be encountered on the Site during redevelopment activities. The City of Seattle has also requested assessment of radon risk via testing of indoor air.

Since 2018, Aspect has provided environmental support for ETS' acquisition of the property, evaluations of soil, groundwater, and soil gas, and advice regarding regulatory closure and potential redevelopment of the property. This Subsurface Investigation Report presents the results of sampling completed between October 2024 and December 2024 in combination with the results of previous investigations completed by previous occupants of the Site and by Aspect on behalf of ETS.

2 Background

2.1 Site Description

The Site is located at 1700 Airport Way South in Township 24 North, Range 4 East, and Section 8 in Seattle, King County, Washington (Figure 1). It comprises tax parcel no. 766620-2855, covering approximately 32,516 square feet (0.75 acres), as indicated in tax assessor records. The Site is currently developed with an approximately 15,500-square-foot 2-story wood-framed building with two wings separated by a breezeway. Both wings feature a basement.

The south wing is a former warehouse which was converted for use by ETS in 1998. The wing has been largely unused since the building was severely damaged by a water line break in early 2024.

The north wing is a former warehouse that prior to ETS' use was used by Emerald Recycling, a subsidiary of Clean Harbors, as part of their used-oil recycling facility. The north wing is currently in partial use by ETS for storage of equipment and supplies. The central courtyard of the Site is used to provide addiction treatment services out of mobile medical units operated by ETS.

2.1.1 Site History

The earliest available historical records reviewed by previous environmental reports indicate the Site was first developed with residential property as early as 1893 (Aspect, 2024d). At that time, present-day Airport Way South was a wood plank road at the eastern edge of the Elliott Bay tide flats, and the dwellings were possibly built on wharf-like structures supported by timber piles.

Records indicate Western Blower constructed the facility during 1914 and1915. Historical documents indicate that in 1937, a 350-gallon fuel tank was installed to supply an oil-burning boiler in the central portion of the building. In 1942, the basement of the north wing featured a paint spray booth, metal shop, metal plating areas, and a sump. Western Blower occupied the property until the 1960s, and the Site was reportedly vacant in the 1970s.

Northwest EnviroService, Inc. (NWES) began operating a tank cleaning service north of the Site in the late 1970s and expanded operations to the Site in 1987. NWES' operations included storage and treatment of commercial hazardous waste until 1995. In 1995, NWES vacated the south wing of the Site building and began operating as Emerald Recycling in 1996. ETS began operating as a tenant of the south wing of the facility in 1997. Emerald Recycling (also known as Emerald Services¹) vacated the north wing of the warehouse in 2020, and ETS acquired the Site from Emerald Services in 2021.

2.1.2 Physical Setting

According to the Geologic Map of Seattle, produced by the U.S. Geological Survey (USGS) and the Pacific Northwest Center for Geological Mapping Studies, the Site and

¹ Emerald Services was acquired by Clean Harbors, Inc., in 2016, but still operates on the northadjoining property to the Site (1500 Airport Way South) as Emerald Recycling.

properties westward are underlain by tide flat deposits (Troost et al., 2005). The steep hillslope to the immediate east is underlain mainly by Quaternary continental glacial drift deposits from the Pleistocene, including pre-Fraser-age glaciation, about 70,000 to 20,000 years ago. Historical Sanborn maps reviewed for the 2021 Phase I ESA (Aspect, 2021) for the predevelopment Site vicinity indicate that the Elliott Bay tide flats were located at the Site, and Airport Way South was a plank road. The tide flats were artificially filled in the early 1900s. Today, the area west of the Site is generally flat and situated at approximate Elevation² 25 feet. The eastern boundary of the Site abuts a steep slope beneath current Interstate 5, separating the Site from northern Beacon Hill.

GeoEngineers, Inc. (GeoEngineers) completed a geotechnical investigation on the Site in 2023, based on multiple sources of soil data including Aspect soil boring logs from 2018 (GeoEngineers, 2023). Based on the geotechnical investigation, the Site is underlain by approximately 11 to 16 feet of undocumented imported fill. The fill overlies soft estuarine deposits ranging in thickness from 5 to 19 feet thick, thickening to the west with distance from the steep slopes east of the Site. The estuarine deposits consist of soft interbedded silt and clay, which are underlain by glacially consolidated soils consisting of very stiff to hard silt and clay. The top of these soils appears to slope to the west, increasing in depth from approximately 16 feet below ground surface (bgs; approximate Elevation 15 feet) on the eastern property boundary to approximately 30 feet bgs (approximate Elevation -5 feet) on the western property boundary. The glacially consolidated soils reportedly continue deeper than the maximum depth explored on the Site (approximately 35 feet bgs; approximate Elevation -10 feet).

2.1.3 Radon Risk

The United States Environmental Protection Agency (EPA) Radon Zone for King County is Zone 3 (EPA, 2024). The average indoor radon activity level in Zone 3 is less than 2 picoCuries per liter (pCi/L).

The Washington State Department of Health (DOH) maintains a map of radon risk based on surface geology (DOH, 2025).³ The map ranks radon risk as "high," "medium," or "guarded" depending on the geology. The categories correlate with EPA's radon risk categories of Zone 1 (high), Zone 2 (medium), and Zone 3 (guarded). EPA's radon risk categories are estimated based on measured radon activity reported to the agency, while DOH's radon risk mapping is based on measured radon activity reported to the Washington Tracking Network and potential sources of radon in known geologic units.

The surficial geologic unit underlying the Site is categorized as posing "guarded" radon risk, but an area of high radon risk is mapped within 50 feet of the eastern Site boundary.

2.2 Previous Environmental Reports

A total of ten previous environmental assessments and investigations have been completed on the Site:

² Elevations in are reported in reference to the National Vertical Datum of 1988 (NAVD88).

³ https://doh.wa.gov/data-and-statistical-reports/washington-tracking-network-wtn/radon

- "Northwest EnviroService Inc. Interim Status Closure Plan, Western Blower Property" (1995 Closure Plan; NWES, 1995)
- "Northwest EnviroService Inc, Western Blower Property RCRA Closure Sampling Results" (1996 Results Report; NWES, 1996)
- 3) "Phase I Environmental Site Assessment" (2019 Phase I ESA; Aspect, 2019a)
- 4) "Phase II Environmental Site Assessment" (Phase II ESA; Aspect 2019b)
- "Sump Cleanout and Soil Gas Sampling Memorandum" (Sump and Soil Gas Memo; Aspect, 2020).
- 6) "Phase I Environmental Site Assessment" (2021 Phase I ESA; Aspect, 2021)
- 7) "Preconstruction Environmental Actions and Next Steps" (Preconstruction Memo; Aspect, 2024a)
- 8) "Subsurface Investigation Work Plan" (Aspect, 2024b)
- 9) "Analysis of Brownfields Cleanup Alternatives Preliminary Evaluation" (ABCA; Aspect, 2024c)
- 10) "Phase I Environmental Site Assessment" (2024 Phase I ESA; Aspect, 2024d)

Copies of select reports are included in Appendix A.

2.2.1 Environmental Reports by Northwest EnviroService

From 1987 to 1995, NWES operated a hazardous waste treatment and storage facility that occupied 1.3 acres between Airport Way South and Interstate 5, spanning from South Atlantic Street to the north and South Holgate Street to the south. The main treatment part of this facility occupied the property immediately north of the Site, but a part of the facility also extended onto and included the Site. Site operations were regulated by the Washington State Department of Ecology (Ecology) under the Resource Conservation and Recovery Act (RCRA).

In 1995, NWES discontinued its hazardous-waste operations and started RCRA closure of the hazardous-waste handling aspect of the facility. Since their use of the Site (known as the Western Blower Property) was limited, closure of this portion of the property was conducted separately from the remainder of the property to the north where more hazardous-waste handling (aka oil recycling) activities were focused. The following provides a summary of NWES's use of the Site, as provided in the 1995 and 1996 NWES reports, and closure activities completed in 1995. The Closure Plan included assessment of the shed-like structure on the property north-adjoining the Site, but data on the northadjoining property is not included in this report.

Little information is available in the 1995 and 1996 NWES reports providing specifics on site use, or chemical handling or storage. NWES states in the reports that Site use included "administrative and warehouse activities," and "Sealed and containerized wastes were unloaded from trucks at the load/unload dock and transported to the north-adjacent NWES property for processing." The loading dock near the center of the Site building was used for loading and unloading hazardous waste. Containerized waste was then transferred to the north-adjacent parcel, also owned by NWES, for processing. NWES

used the Site warehouse space to store pumps, hoses, and other equipment. The north warehouse included an area for repairing pumps and a parts washer.

A figure in the report refers to the north warehouse as the "Stores Building." King County tax assessor records indicate that the southern portion of the south wing included laboratory space for organic and inorganic sample preparation, most likely for waste disposal characterization.

The 1995 Closure Plan stated the following activities were to be completed for facility closure:

- Remove waste inventory
- Decontamination of site concrete, sumps, tanks, and equipment
- Disposal of contaminated materials
- Collection of samples to certify completion of closure

The language in the 1995 Closure Plan does not provide details about specific storage tanks or sumps to be decontaminated on the Site. The 1996 Results Report provides results from the post-closure sample collection on the Site including three concrete samples, two shallow soil samples, and two groundwater samples from wells⁴ MW-1 and MW-2. Sample locations are depicted on Figure 2. Samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCS), pesticides, polychlorinated biphenyls (PCBs), sulfide, total petroleum hydrocarbons (TPH), dioxins, metals, and cyanide.

In concrete samples, cadmium was detected at a concentration of 200 milligrams/kilogram (mg/kg), exceeding the Washington State Model Toxics Control Act (MTCA) cleanup level (CUL) for unrestricted land use (NWES, 1996). In soil samples, arsenic, TPH, and benzo(a)pyrene (BaP) were detected at concentrations less than the current MTCA Method A CULs (Figures 3a and 3b). In groundwater samples, manganese was detected at a concentration of 3,400 micrograms/liter (μ g/L) in the sample from MW-2, which exceeded the drinking water standard at the time (2,200 μ g/L), and exceeds the current drinking water standard (50 μ g/L; DOH, 2023). Analytical results are included in a copy of the 1996 Results Report included in Appendix A (NWES, 1996).

In 1997, Ecology provided an opinion that No Further Action (NFA) or investigation would be required for site closure (at the Site; Ecology, 2017); however, a restrictive covenant would need to be placed on the property. The restrictive covenant has the following stipulations:

• "The property shall be used in compliance with General Industrial 2 zoning classification per City of Seattle ordinances.

⁴ Monitoring wells were decommissioned or destroyed sometime between 1995 and 2010 (Aspect, 2024d)

- Property groundwater shall not be used for domestic, agricultural, industrial, or any other use.
- Existing structures cannot be altered or modified in any manner that may result in the release or exposure to the environment of contaminated soils or concrete, without prior Ecology approval.
- Existing paved surface must be maintained to prevent the release or exposure to the environment of contaminated soils or concrete. Any activity that would pierce or damage the surface is prohibited, without prior Ecology approval."

These environmental (aka restrictive) covenant requirements will need to be upheld and honored during redevelopment of the Site.

2.2.2 Previous Investigations by Aspect Consulting

The Recognized Environmental Conditions (RECs) identified in the 2019 Phase I ESA (Aspect, 2019a) for the Site include historical manufacturing operations by Western Blower Company and hazardous and nonhazardous waste handling by NWES, as well as former used-oil waste handling in the northern warehouse of the Site. These property-use activities indicated a potential for petroleum, solvents, and metals contamination to soil and/or groundwater at the Site from on-property potential sources, and a risk for vapor encroachment or intrusion to the Site structures.

2.2.2.1 Phase II ESA – Aspect, 2019

Based on the RECs identified in the 2019 Phase I ESA, Aspect completed the Phase II ESA (Aspect, 2019b) consisting of soil, groundwater, and soil gas sampling to evaluate

- the presence and nature of volatile contaminants of potential concern (COPCs) in soil gas beneath the Site,
- the potential presence of soil contamination associated with current or past sources of contamination on the Site or nearby adjacent properties, and
- the potential presence of groundwater contamination associated with current or past sources of contamination on the Site or nearby upgradient properties.

The Phase II ESA included installation of four permanent groundwater monitoring wells (AMW-1 through AMW-4; Figure 2) on and off the Site and completion of four temporary soil gas sampling points. Soil, groundwater, and soil gas samples were collected and submitted for laboratory analysis. Soil observed in the borings included fill material to maximum depths ranging from 15 to 19 feet bgs. Fill soils were underlain by a clay to sandy clay unit to the maximum depth explored, which were identified as historical tideflat deposits. Groundwater was encountered in all four monitoring wells at depths ranging from 4.5 to 5.7 feet bgs, indicating a westerly flow direction (Table 3a, Figure 5a).

A total of six soil samples were submitted for analysis based on field observations and analyzed for gasoline-, diesel-, and oil-range TPH (using methods NWTPH-Gx, and NWTPH-Dx), and metals (arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel, and zinc) using EPA Method 6020B. Additionally, two samples were submitted for analysis of VOCs using EPA Method 8260D and carcinogenic polycyclic aromatic hydrocarbons (cPAHs) using EPA Method 8270D/SIM. Soil results are

summarized in Tables 1a and 1b. Copies of laboratory reports are included in Appendix B. Contaminants of concern were either not detected at concentrations greater than laboratory reporting limits or were detected at concentrations less than the applicable MTCA Method A cleanup levels in soil except for the following:

• Arsenic and lead were detected in the soil sample collected from 12.5 feet bgs at location AMW-1 at concentrations exceeding the applicable MTCA Method A CULs (Figure 3a; Table 1a).

Four temporary subslab soil gas samples (SV-1 through SV-4; Figure 4) were collected and submitted for analysis of VOCs by EPA Method TO-15. These results are presented on Table 2 in comparison to current MTCA Method B subslab soil gas screening levels for unrestricted land use. Contaminants of concern were either not detected at concentrations greater than laboratory reporting limits or were detected at concentrations less than the MTCA Method B screening level except for the following:

- Benzene was detected in the samples from SV-3 and SV-4 at concentrations exceeding the MTCA Method B screening level.
- Trichloroethene (TCE) was detected in the samples from SV-1, SV-3, and SV-4 at concentrations exceeding the MTCA Method B screening level.
- Vinyl chloride was detected in the sample from SV-4 at a concentration exceeding the MTCA Method B screening level.
- Acrolein and 1,3-butadiene were detected in the sample from SV-3 at concentrations exceeding the applicable MTCA Method B screening levels. However, these analytes are commonly detected in samples of soil gas without a known source and are not representative of subslab soil gas conditions.⁵

Based on the concentrations of analytes detected in soil gas, Ecology guidance available at the time of the Phase II ESA report, and vapor intrusion modeling⁶ using the Johnson-Ettinger Model for vapor intrusion (JEM), vinyl chloride and TCE were predicted to be potentially intruding into indoor air in the North Warehouse at concentrations exceeding the MTCA Method B CUL for indoor air. The model did not predict exceedances of contaminants in the south warehouse. Aspect recommended that the sump in the north warehouse (the suspected source of solvents) be cleaned, following which soil gas be resampled in the north wing of the building. The Phase II ESA recommendations also indicated that if "concentrations remain elevated in soil gas, mitigation measures may be necessary (such as active and/or passive venting systems) for that portion of the building.

⁵ Eklund (2020) explains that post-sampling reactions can occur between ketone solvents and the summa canister lining material which produce acrolein. Eklund also explains that 1,3-butadiene is commonly associated with use of heavy tools during installation of subslab soil gas sampling points and is typically not found in follow-up testing.

⁶ Completed in accordance with Ecology guidance documents available at the time of the Phase II ESA report (Ecology, 2018a; 2018b; and 2018c). These documents are incorporated into Ecology's current guidance regarding vapor intrusion (Ecology, 2022).

to be occupied." These results are presented on Table 2 in comparison to current MTCA Method B subslab soil gas screening levels for unrestricted land use.

Four groundwater samples were collected from the four wells installed during the Phase II ESA and submitted for analysis of gasoline-range TPH by Northwest Method NWTPH-Gx, diesel- and oil-range TPH by Northwest Method NTWPH-Dx, VOCs by EPA Method 8260D, dissolved metals (arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel, and zinc) by EPA Method 6020B, and total cyanide by EPA Method SM 4500-CN. Groundwater analytical results are summarized in Table 3b. Copies of laboratory reports are included in Appendix B. Contaminants of concern were either not detected at concentrations greater than laboratory reporting limits or were detected at concentrations less than cleanup levels in groundwater except for the following:

 Vinyl chloride was detected in groundwater at a concentration of 2.9 μg/L in offproperty well AMW-1, exceeding the MTCA Method A CUL. Dissolved arsenic concentrations greater than the MTCA Method A CUL (5 μg/L) were detected in off-property wells AMW-1 and AMW-3 at concentrations of 11 and 20.3 μg/L, respectively (Figure 6a; Table 3b).

2.2.2.2 Sump Cleanout and Soil Vapor Sampling – Aspect, 2021

In 2020, the basement sump in the north warehouse, and on-site stormwater system (five catch basins around the Site), were cleaned (Aspect, 2021). After the sump and stormwater systems were cleaned, two subslab soil gas samples were collected and analyzed for VOCs and air-phase petroleum hydrocarbons. Based on the chemical analytical soil gas results, the following contaminants were detected at concentrations greater than the MTCA Method B screening levels: benzene, TPH, TCE, and vinyl chloride. Analytical results are summarized on Table 2 and Figure 4.

2.2.2.3 Redevelopment Support – Aspect, 2024

In 2024, ETS began the process of designing and planning for building demolition and then a multi-phased redevelopment. The initial phase of redevelopment will include construction of a clinical services building on the north portion of the Site followed by future support structures to facilitate ETS' mission. In the Preconstruction Memo (Aspect, 2024a), Aspect provided a summary of the environmental conditions of the Site and next steps including development of a Subsurface Investigation Work Plan (Aspect, 2024b). In the ABCA (Aspect, 2024c), Aspect evaluated potential cleanup alternatives which could be implemented during redevelopment of the Site, ultimately recommending excavation of contaminated soil from the Site and construction of a protective cap to prevent potential contact between remnant contaminated media and Site occupants.

In the 2024 Phase I ESA (Aspect, 2024d), Aspect reviewed the RECs identified in previous Phase I ESAs and determined that most of the RECs had been addressed by actions completed in 2019 and 2020 or the existing covenant. Aspect determined the remaining REC ("Spills and releases to drains and sump from former property use by NWES/Emerald") was "partially addressed" and noted that further investigation was in progress at the time of the report. The results of that investigation are described in Section 3.

3 Subsurface Investigation (Aspect, 2024)

As reviewed in Section 2, previous investigations identified the sump in the north warehouse as a potential source of contamination identified in soil gas and groundwater on the Site. From October 2024 to December 2024, Aspect completed or oversaw the completion of a supplemental subsurface investigation to assess the potential nature and extent of contamination shallow soil and groundwater in the vicinity of the sump in the basement of the north warehouse, to assess the current status of contamination in groundwater identified by previous investigations, and to assess potential radon activity in indoor air in the basements of both wings of the Site building.

This investigation included the following tasks::

- Advancement of seven soil borings via limited-access direct-push drilling
- Completion of one of the soil borings in the basement as a permanent monitoring well
- Collection and laboratory analysis of soil samples from the soil borings
- Measurement of depth to water in groundwater monitoring wells
- Collection and laboratory analysis of groundwater samples from five monitoring wells
- Sampling of radon activity in the north warehouse basement, south offices basement and ambient radon activity.

The work is described in detail in the subsections below.

3.1 Subsurface Utility Clearance

Prior to drilling activities, Aspect submitted a public utility locate ticket and subcontracted C-N-I Locates, Ltd. (CNI) to complete a geophysical survey and private utility locate to identify unmarked buried utilities and reinforcing steel in the concrete slab foundation. Subsurface investigation locates were shifted as needed to avoid overhead and subsurface obstacles.

3.2 Soil Investigation

The seven soil borings were completed to a maximum depth of 15 feet bgs to evaluate the condition of the surficial fill layer. Borings were terminated at refusal or when the top of the native estuarine deposits was encountered. Soil boring locations were selected as follows:

• Boring AB-01 was located approximately 30 feet south and approximately 10 feet west of the sump in the basement of the North Warehouse to assess the potential extent of impacts in soil between the sump and AMW-1. The soil boring was completed to a depth of 10 feet bgs.

- Boring AB-02 was located approximately 10 feet south of the sump to assess soil conditions immediately downgradient of the sump. The soil boring was completed to a depth of 12 feet bgs.
- Boring AB-03 was located approximately 8 feet west of the sump to assess soil conditions immediately cross-gradient of the sump. The soil boring met refusal at a depth of 8 feet bgs.
- Boring AB-04 was located outside of the North Warehouse, approximately 8 feet north of the sump. This boring was completed to assess soil conditions immediately upgradient of the sump. The soil boring was completed to a depth of 15 feet bgs.
- Boring AB-05 was located approximately 15 feet south and approximately 10 feet west of the sump to assess soil conditions between AB-01 and AB-05. The soil boring was completed to a depth of 14 feet bgs.
- Boring AB-06 was located approximately 30 feet south of the sump to assess soil conditions downgradient of the sump beyond AMW-5. The soil boring met refusal at a depth of 8.5 feet bgs.
- Boring AMW-5 was located approximately 15 feet south of the sump and was completed to a depth of 12 feet bgs. The soil boring was completed as a monitoring well featuring a 10-foot slotted screen. The boring and monitoring well were completed to assess soil and groundwater impacts downgradient of the sump.

The soil borings were advanced on October 31 to November 1, 2024, using a trackmounted GeoProbe® 6610DT direct-push drilling device operated by a licensed driller from Holocene Drilling of Puyallup, Washington. Soil samples were collected in continuous 2-foot cores from each location except AB-04, where soil samples were collected in continuous 5-foot cores. An Aspect field geologist observed and logged each soil core in general accordance with the Unified Soil Classification System (USCS). Soil samples were field screened for potential evidence of contamination via visual observations, sheen tests, and headspace vapor measurements using a photoionization detector (PID) to check for the presence of volatile compounds⁷. The soil classifications, visual observations, and PID readings observed during this subsurface investigation and previous Aspect investigations are recorded on the exploration boring logs in Appendix C.

Borings were advanced to depths ranging from approximately 8 to 15 feet bgs to characterize soil in the vicinity of the sump in the basement of the North Warehouse. Discrete soil samples were collected where field screening indicated the presence of contamination, or at select intervals if no field-screening indications of contamination were observed. Soil samples were collected from the sampler using clean, stainless-steel hand tools or new disposable sampling equipment. Reusable hand tools were decontaminated with a solution of potable water and detergent (Alconox® powdered cleaner) followed by a double rinse with clean water. Disposable sampling equipment was discarded and replaced after each sample was collected.

Each discrete soil sample was collected in laboratory-prepared glassware and labeled with unique sample identification numbers, date, and time of sample collection. Sample

⁷ The PID was calibrated to 100 parts per million (ppm) isobutylene standard.

containers were placed in a chilled cooler immediately following sampling and were subsequently transported to an Ecology-accredited laboratory, Friedman & Bruya, Inc., of Seattle, Washington (the laboratory), under standard chain-of-custody protocols.

During this subsurface investigation, a total of 14 soil samples were analyzed for one or more of the following analytes by the indicated method:

- TPH as gasoline-range organics (TPH-GRO) by Northwest Method NWTPH-Gx
- TPH as diesel-range organics (TPH-DRO) and motor oil-range organics (TPH-ORO) by Northwest Method NWTPH-Dx
- VOCs by (EPA) Method 8260D
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270E
- Total arsenic, cadmium, chromium, lead, and mercury by EPA Method 6020B

After drilling was completed, AB-01 through AB-06 were backfilled with bentonite in accordance with the requirements for decommissioning environmental investigation wells described in Washington Administrative Code (WAC) Chapter 173-160. The surface of each decommissioned borehole was patched with high-strength fast-setting concrete to match its surroundings.

3.3 Groundwater Investigation

Soil boring AMW-5 was completed as a groundwater monitoring well in accordance with WAC section 173-160. The well was constructed of 2-inch-diameter schedule 40 PVC with threaded connections and screened from approximately 2 to 12 feet bgs with a prepacked 0.010-inch (10-slot) well screen. The well was completed with a traffic-grade steel monument set flush with the ground surface. Following installation, the well was developed to remove fine-grained material from inside the well casing and filter pack, and to improve hydraulic communication between the well screen and the surrounding water-bearing formation.

The construction of AMW-5 expanded the network of monitoring wells associated with the Site to a total of five wells. On November 5, 2024, groundwater samples were collected from the five wells on the Site. Prior to collecting groundwater samples, the depth to water in each well was measured from the northside of the top of the well casing to the nearest 0.01 feet. Each well was purged following standard low-flow sampling methods using a peristaltic pump and dedicated tubing. Upon stabilization of field parameters, groundwater samples were collected from each well for analysis by the laboratory.

A total of five groundwater samples and one field duplicate were analyzed for one or more of the following analytes by the indicated method:

- TPH as gasoline-range organics (TPH-GRO) by Northwest Method NWTPH-Gx
- TPH as diesel-range organics (TPH-DRO) and motor oil-range organics (TPH-ORO) by Northwest Method NWTPH-Dx
- VOCs by EPA Method 8260D

- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270E
- Total and dissolved arsenic, cadmium, chromium, lead, and mercury by EPA Method 200.8

All soil cuttings, decontamination water, and purged groundwater generated by the investigation were placed into labeled and sealed U.S. Department of Transportation (USDOT)-approved 55-gallon steel drums and temporarily stored at the Site as investigation-derived waste (IDW) pending chemical analysis and disposal at an appropriately designated waste facility.

Previously, the monitoring well network had been surveyed relative to an arbitrary elevation datum. On December 5, 2024, the expanded well network was surveyed by a licensed land surveyor from True North Land Surveying, Inc. to allow for evaluation of groundwater elevation and flow direction in relation to elevations based on NAV88. The horizontal and vertical locations of each well were surveyed in relation to a Washington State Department of Transportation survey monument. Well construction details are included on the logs included in Appendix C. Surveyed elevation data relative to the North American Vertical Datum of 1988 (NAVD88) are summarized on Table 3a. Copies of survey reports are included in Appendix B.

3.4 Radon Investigation

A radon investigation was completed during November 2024 and consisted of the placement of radon test devices in the basement of each wing of the Site building, and an ambient background sample was collected from the courtyard area of the Site. Radon testing was conducted by Nathan Dickey of Geosyntec, a Radon Measurement Professional licensed by the National Radon Proficiency Program (NRPP), license #114975-RMP.

3.4.1 Radon Test Devices

The radon test devices used during this testing were liquid scintillation (LS) radon in air test canisters provided by Spruce Environmental Technologies, Inc., an operator of two laboratories (AccuStar and Air Chek) certified by the NRPP and the National Radon Safety Board (NRSB) and accredited by the National Environmental Laboratory Accreditation Program (the laboratory). Radon test devices were provided by the laboratory on November 25, 2024.

3.4.2 Radon Test Locations and Conditions

Radon test locations are indicated on Figure 4. The radon test devices used during this testing were liquid scintillation (LS) radon in air test canisters provided by Spruce Environmental Technologies, Inc., an operator of two laboratories (AccuStar and Air Chek) certified by the NRPP and the National Radon Safety Board (NRSB) and accredited by the National Environmental Laboratory Accreditation Program (the laboratory).

Radon testing began at 8:00 AM on November 19, 2024, and concluded at 10:00 AM on November 21, 2024. Testing conditions were observed before and during the test in accordance with the American National Standards Institute (ANSI) and Indoor Environments Association (formerly the American Association of Radon Scientists and Technologists; AARST) Protocol MA-MFLB-2023, *Protocol for Conducting Measurements of Radon and Radon Decay Products in Multifamily, School, Commercial and Mixed-Use Buildings*, effective December 1, 2023 (AARST, 2023). The radon test devices were shipped to the laboratory under chain-of-custody protocols and analyzed for radon activity. The chain of custody for test devices is included in the laboratory reports included in Appendix B.

3.5 Results

This section summarizes the results of the subsurface investigation completed in 2024.

3.5.1 Geology and Hydrogeology

Soils observed during the 2024 investigation were consistent with past studies. Soil consisted primarily of fill soil overlying native estuarine sediments. The fill material was observed to generally be composed of reworked silty sand with gravel, with artificial debris including shards of glass, bricks, and wood. The observed estuarine sediments were composed of interbedded silty sand, sand with silt, sandy clay, and sand with gravel. Estuarine sediments included some seashell fragments and trace rootlets.

Groundwater was measured at depths ranging from 0.80 feet bgs⁸ in AMW-5 to 6.55 feet bgs in AMW-4. Based on surveyed elevations of the wells, groundwater elevations ranged from Elevation 18.13 feet in AMW-1 to Elevation 19.75 feet at AMW-4. Based on calculated groundwater elevations, the hydrologic flow direction is westward, with a calculated hydraulic gradient of approximately 0.015 feet per foot.

3.5.2 Soil

The analytical results for soil samples are evaluated against the applicable MTCA Method A or Method B cleanup levels for unrestricted land use. Metals concentrations are also evaluated against naturally occurring metals background concentrations for the region (Ecology, 1994). The analytical results for soil are summarized in Tables 1a and 1b. Laboratory reports are provided in Appendix B.

Concentrations of cadmium, lead, or PAHs exceeding applicable cleanup levels were detected in soil representative of the surficial fill layer underlying the Site and were either not detected or detected at concentrations less than the applicable cleanup levels in samples presentative of estuarine deposits underlying the fill material. Other metals, including arsenic, chromium⁹, and mercury, either not detected or detected at concentrations less than the applicable site and were either not detected at concentrations less than the applicable cleanup level. Analytical results for metals and PAHs are summarized in Table 1a.

TPH-DRO was detected in several samples but at concentrations less than the MTCA Method A cleanup level. Additionally, the laboratory indicated the detected concentration

⁸ AMW-5 is located in the basement of the north warehouse, the floor of which is approximately 5 feet below Site grade.

⁹ Detected concentrations of total chromium were less than the natural background concentration of chromium identified in the Puget Sound region, indicating a lack of artificial sources of chromium on the Site. Based on the lack of evidence of use of hexavalent chromium during historical use of the Site, the detected concentration of total chromium is compared to the MTCA Method A cleanup level for naturally occurring Chromium III (2,000 mg/kg).

of TPH-DRO did not match the fuel standard used for quantification, indicating the detected pattern of TPH is not representative of a recent release of diesel product. TPH results are summarized in Table 1b.

Chlorinated solvents including tetrachloroethylene (PCE) and its common degradation products¹⁰ were detected in soil at various depths beneath the north warehouse. Specifically, PCE was detected in the soil sample from 10 feet bgs at AB-04 at a concentration less than the MTCA Method A cleanup level and was not detected in other samples. TCE was detected in multiple samples and detected at concentration exceeding the MTCA Method A cleanup level in samples from AB-01, AB-03, and AB-06. cDCE and tDCE were detected at concentrations less than the applicable MTCA Method A cleanup levels in samples from each boring location. Vinyl chloride was detected at a concentration exceeding the applicable MTCA Method A cleanup level in the sample from 12 feet bgs at AMW-5. Vinyl chloride was also detected at a concentration less than the MTCA Method A cleanup level in the sample from 9.5 feet bgs at AB-02, 7 feet bgs at AB-03, and 8.5 feet bgs at AB-06. Analytical results for VOCs including PCE, its degradation products, and other VOCs associated with TPH are summarized in Table 1b.

3.5.3 Groundwater

The analytical results for groundwater samples are evaluated against the applicable MTCA Method A or Method B cleanup levels for unrestricted land use. The analytical results for groundwater are summarized in Table 3b. Laboratory reports are provided in Appendix B.

Groundwater samples were analyzed for total metals in unfiltered samples and in laboratory-filtered samples¹¹. Analysis of metals in the filtered samples represents the concentration of dissolved metals in the groundwater sample. The detected concentration of metals in the unfiltered samples are included in Table 3b for comparison purposes but are not considered representative of metals concentrations in water. Dissolved arsenic was detected at concentrations exceeding the applicable MTCA Method A cleanup level groundwater samples from AMW-1 and AMW-3.

TPH-DRO was detected in groundwater samples from AMW-2 and AMW-5 at concentrations less than the applicable MTCA Method A cleanup level. Similar to the soil results, the laboratory indicated the chromatographic pattern of the detected hydrocarbons did not match the fuel standard used for quantitation, indicating the detected pattern is not representative of a recent release of diesel product.

Vinyl chloride and cDCE were detected at concentrations exceeding the MTCA Method A cleanup level in the groundwater sample from AMW-5, which is located in the basement of the north warehouse immediately downgradient of the sump. Vinyl chloride was also detected at a concentration exceeding the cleanup level in the groundwater sample from AMW-1, which is located off-Site in the sidewalk of Airport Way South, which is owned by the City of Seattle. No other VOCs were detected at concentrations

¹⁰ The most common degradation products of PCE are TCE, cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), and vinyl chloride

¹¹ The laboratory filtered an aliquot of each groundwater sample through a 500-micron filter to enable analysis of dissolved metals.

greater than the laboratory reporting limits in groundwater samples collected during the subsurface investigation.

3.5.4 Radon

Radon activity is reported in pCi/L, which is a measurement of radioactivity in air due to the decay of radon and radon decay products (EPA, 2023). EPA has set an action level of 4.0 pCi/L.

No radon activity was detected in radon tests at levels greater than the laboratory reporting limit of 0.4 pCi/L. Based on conditions observed during the test, the measurements are considered to be reliable.

4 Conclusions

Previous investigation by NWES (1996) identified metals in concrete, metals and PAHs in soil, and manganese in groundwater at concentrations which motivated the implementation of an environmental covenant on the Site. The environmental covenant restricts the modification of surface features or structures in a manner that "may result in the release or exposure to the environmental covenant also forbids the use of groundwater on the Site for any purpose.

Investigations by Aspect from 2019 through 2024 have confirmed the presence of metals and PAHs in fill soil at concentrations exceeding applicable MTCA Method A cleanup levels. Fill soils are present from ground surface to between 11 and 16 feet bgs across the Site.

Aspect's investigations have identified additional contaminants of potential concern in soil and groundwater; specifically, certain chlorinated solvents including TCE, cDCE, and vinyl chloride. Benzene has been detected in subslab soil gas at concentrations exceeding screening levels set by Ecology for unrestricted land use, but benzene has not been detected in soil or groundwater at concentrations exceeding applicable MTCA Method A cleanup levels.

Previous work overseen by Aspect included cleanout of a sump and floor drains present in the basement of the North Warehouse, but the subsurface investigation completed in 2024 indicates concentrations of chlorinated solvents are still present in soil and groundwater at concentration exceeding applicable MTCA Method A cleanup levels. Additionally, the detected concentration of vinyl chloride in AMW-1, located off-Site in the northern sidewalk of Airport Way South (along the southern boundary of the ETS' property) indicates that chlorinated solvents have migrated off-property; however, the detected concentration of vinyl chloride in 2024 ($2.4 \mu g/L$) is approximately 83% of the concentration detected in 2018 ($2.9 \mu g/L$), whereas the detected concentration of dissolved arsenic in AMW-1 in 2024 ($12 \mu g/L$) is similar to the concentration detected in AMW-1 in 2018 ($11.4 \mu g/L$). This indicates the concentration of chlorinated solvents on the Site may be naturally attenuating.

5 Recommendations

Aspect understands ETS is working towards redevelopment of the Site with a design intended to prevent exposure of Site occupants to environmental contaminants described in the current environmental covenant on the property; however, the environmental covenant does not address the presence of chlorinated solvents in soil, groundwater, and soil gas on the Site.

Based on the detected nature and extent of chlorinated solvents in soil and groundwater on the Site, Aspect recommends ETS implement cleanup of impacted soil and groundwater to the maximum extent practicable during redevelopment. Enrollment in Ecology's Expedited Voluntary Cleanup Program is recommended to facilitate effective engagement of Ecology on the accelerated timelines often required for redevelopment projects. If removal of all identified contaminated soil and groundwater is not feasible during development, engineering controls such as chemical treatment, soil gas mitigation, and/or natural attenuation or institutional controls such as an expanded environmental covenant may be viable cleanup options after redevelopment is complete.

Prior to redevelopment, Aspect recommends the development of an Environmental Construction Management Plan (ECMP) or a similar document to prepare for handling and disposal of contaminated soils during construction. The ECMP should also address construction contingencies such as managing removal of one or more potential undocumented heating oil underground storage tanks (USTs); identified in historical documents regarding the Site), removal of the sump in the basement of the North Warehouse, and handling of potential impacted or contaminated soils not found during this investigation.

Finally, if full remediation of the source of chemical vapors is not possible, then Aspect recommends inclusion of a chemical vapor barrier along the base and sidewalls in the design of the proposed subsurface parking garage to protect occupants of a future development from the intrusion of contaminated soil gas into the structure.

6 References

- AARST Consortium on National Standards (AARST), 2023, Protocol for Conducting Measurements of Radon and Radon Decay Products in Multifamily, School, Commercial and Mixed-Use Buildings, Standard MA-MFLB, effective December 1, 2023.
- Aspect Consulting, LLC (Aspect), 2019a, Phase I Environmental Site Assessment Report, 1700 Airport Way S, Seattle, WA, February 19, 2019.
- Aspect Consulting, LLC (Aspect), 2019b, Phase II Environmental Site Assessment Report, 1700 Airport Way South, Seattle, WA, February 11, 2019.
- Aspect Consulting, LLC (Aspect), 2020, Sump Cleanout, Stormwater System Inspection, and Soil Gas Sampling Memorandum - 1700 Airport Way South, Seattle, Washington, September 30, 2020.
- Aspect Consulting, LLC (Aspect), 2021, Phase I Environmental Site Assessment Report, 1700 Airport Way S, Seattle, WA, April 6, 2021.
- Aspect Consulting, a Geosyntec Company (Aspect), 2024a, Preconstruction Environmental Actions and Next Steps, 1700 Airport Way South, Seattle, Washington, June 27, 2024.
- Aspect Consulting, a Geosyntec Company (Aspect), 2024b, Subsurface Investigation Work Plan, 1700 Airport Way South, Seattle, Washington, September 27, 2024.
- Aspect Consulting, a Geosyntec Company (Aspect), 2024c, Analysis of Brownfields Cleanup Alternatives – Preliminary Evaluation, 1700 Airport Way South, Seattle, Washington, November 11, 2024.
- Aspect Consulting, a Geosyntec Company (Aspect), 2024d, Phase I Environmental Site Assessment, 1700 Airport Way South, Seattle, Washington, November 25, 2024.
- GeoEngineers, Inc. (GeoEngineers), 2024, Geotechnical MUP Report, Seattle Clinic Renovation, Seattle, Washington, August 16, 2023.
- Northwest EnviroService Inc (NWES), 1995, Interim Status Closure Plan, Western Blower Property, revision #2, July 24, 1995.
- Northwest EnviroService Inc (NWES), 1996, RCRA Closure Sampling Results, Western Blower Property, January 23, 1996.
- Troost, K.G., Booth., D.B., Wisher, A.P., and Shimel., S.A. (Troost et al.), 2005, The Geologic Map of Seattle—A Progress Report., United States Geological Survey Open-File Report 2005-1252, version 1.0, August 1, 2005.
- United States Environmental Protection Agency (EPA). 2023. Basic Radon Facts, EPA 402-F-16002. Revised January 2023.
- United States Environmental Protection Agency (EPA), 2024, The EPA Map of Radon Zones, accessed April 14, 2025. https://www.epa.gov/radon/epa-map-radonzones

- Washington State Department of Ecology (Ecology), 1994, Natural Background Soil Metals Concentrations in Washington State, Publication No. 94-115, dated October 1994.
- Washington State Department of Ecology (Ecology), 2017, Environmental Restrictive Covenant, Western Blower Associates, LLC (grantor), Ecology (grantee), recorded on December 27, 2017.
- Washington State Department of Ecology, 2018a, "Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action," dated October 2009 and Revised February 2016 and April 2018.
- Washington State Department of Ecology, 2018b, Frequently Asked Questions (FAQs) Regarding Vapor Intrusion (VI) and Ecology's 2009 Draft VI Guidance, Implementation Memorandum No. 21, dated November 15, 2018.
- Washington State Department of Ecology, 2018c. DRAFT Vapor Intrusion (VI) Investigations and Short-term Trichloroethene (TCE) Toxicity, Implementation Memorandum No. 22, dated November 21, 2018.
- Washington State Department of Ecology (Ecology), 2022, Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Publication No. 09-09-047, dated March 2022.
- Washington State Department of Health (DOH), 2023, Manganese in Drinking Water, Recommendations for Public Water Systems Managers, DOH 331-741, December 2023.
- Washington State Department of Health (DOH), 2025, WTN On The Go Radon, accessed April 14, 2025, https://fortress.wa.gov/doh/wtnmobile/wtnmobile/#!/

Limitations

Work for this project was performed for the Evergreen Treatment Services (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix D titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

TABLES

Table 1a. Metals and PAHs in Soil

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

			Location Name		AB-01	AB-02	AB-02	AB-03	AB-03	AB-04	AB-04	AB-05	AB-05	AB-06	AB-06
			Sample Date				10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	11/01/2024		11/01/2024	
			Sample Name			AB-02-03	AB-02-09.5		AB-03-07	AB-04-02.5	AB-04-10	AB-05-02.5	AB-05-13	AB-06-01	AB-06-08.5
	-	-	Depth (ft bgs)	1.5 ft	9 ft	3 ft	9.5 ft	1 ft	7 ft	2.5 ft	10 ft	2.5 ft	13 ft	1 ft	8.5 ft
	MTCA	MTCA	Puget Sound												
	Method A	Method B	Background												
Analyte	CUL	CUL	Soil Level ¹												
Metals															
Arsenic	20	0.67	7	4.5	4.6	3	18	9.2	3.6	4.8	3.4	7.6	3.3	6.5	4
Cadmium	2	80	1	1.9	< 1 U	40	2.2	220	70	<1U	<1U	1.2	<1U	18	< 1 U
Chromium	2000	0.38	48	32	23	16	37	13	32	19	16	39	19	24	31
Copper	ne	3200	36												
Lead	250	ne	24	45	46	15	2900	19	75	29	60	73	46	6 8	32
Mercury	2	ne	0.07	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Nickel	ne	1600	48												
Zinc	ne	24000	85												
Polycyclic Aromatic Hydro	carbons (PAHs	5)													
1-Methylnaphthalene	ne	20	na	0.11	0.019	< 0.005 U	0.085	< 0.005 U	< 0.005 U	0.012	0.011	< 0.005 U	< 0.005 U	0.036	0.17
2-Methylnaphthalene	ne	320	na	0.18	0.0088	0.0054	0.13	0.0058	< 0.005 U	0.0098	0.02	< 0.005 U	0.0083	0.078	0.21
Acenaphthene	ne	4800	na	0.3	0.18	< 0.005 U	0.063	0.011	< 0.005 U	0.016	< 0.005 U	0.025	< 0.005 U	0.15	0.014
Acenaphthylene	ne	ne	na	0.0085	< 0.005 U	0.0056	0.05	< 0.005 U	< 0.005 U	0.016	< 0.005 U	0.0051	< 0.005 U	0.0079	0.0053
Anthracene	ne	24000	na	0.33	< 0.005 U	< 0.005 U	0.086	0.012	< 0.005 U	0.03	< 0.005 U	0.017	< 0.005 U	0.14	< 0.005 U
Benzo(g,h,i)perylene	ne	ne	na	0.35	0.022	0.079	0.28	0.057	0.012	0.28	0.026	0.17	0.0054 J	0.26	0.015 J
Fluoranthene	ne	3200	na	4.3	0.09	0.058	0.8	0.11	0.033	0.63	0.031	0.33	0.019	0.97	0.1
Fluorene	ne	3200	na	0.34 J	0.012	< 0.005 U	0.11	0.01	< 0.005 U	0.012	< 0.005 U	0.017	< 0.005 U	0.17	0.037
Naphthalene	5	1600	na	0.78	0.025	0.0082	0.15	0.0065	0.0058	0.014	0.024	0.0051	0.0058	0.42	0.33
Phenanthrene	ne	ne	na	1.9 J	0.061	0.022	0.6	0.079	0.018	0.32	0.022	0.06	0.014	0.53	0.18
Pyrene	ne	2400	na	2.2	0.07	0.053	0.79	0.078	0.034	0.54	0.046	0.24	0.015	0.61	0.067
Carcinogenic Polycyclic Ar	omatic Hydroc	arbons (cPAH	s)												
Benz(a)anthracene	ne	ne	na	0.88	0.036	0.05	0.29	0.053	0.017	0.22	0.036	0.13	0.0084	0.33	0.029
Benzo(a)pyrene	0.1	0.19	na	0.46	0.026	0.078	0.3	0.06	0.012	0.29	0.022	0.16	0.0074 J	0.33	0.024 J
Benzo(b)fluoranthene	ne	ne	na	0.91	0.03	0.09	0.44	0.09	0.022	0.33	0.031	0.24	0.01 J	0.49	0.033 J
Benzo(k)fluoranthene	ne	ne	na	0.25	0.01	0.028	0.12	0.021 J	0.0065	0.11	0.0089	0.061	< 0.005 UJ	0.12	0.011 J
Chrysene	ne	ne	na	1	0.059	0.055	0.36	0.058	0.021	0.3	0.036	0.14	0.012	0.51	0.057
Dibenzo(a,h)anthracene	ne	ne	na	0.091	< 0.005 U	0.019	0.062	0.012 J	< 0.005 U	0.049	0.006	0.023 J	< 0.005 UJ	0.062	< 0.005 UJ
Indeno(1,2,3-cd)pyrene	ne	ne	na	0.34	0.017	0.064	0.21	0.051	0.01	0.27	0.027	0.14	< 0.005 UJ	0.24	0.01 J
Total cPAHs TEQ ²	0.1	0.19	na	0.717	0.0361	0.104	0.416	0.0833 J	0.018	0.391	0.0333	0.221 J	0.0101 J	0.459	0.0331 J

Notes and Definitions:

¹ Natural background concentrations for the Puget Sound region, from Ecology (1994). See Report for details.

² Total carcinogenic PAHs (cPAHs) calculated using toxicity equivalency factors (TEQs) in accordance with Ecology's Implementation Memorandum #10 (2015).

- ft bgs feet below ground surface
- CUL Cleanup Level
- ne Indicated cleanup level is not yet established.
- -- Not analyzed.
- U Analyte was not detected at a concentration greater than the indicated laboratory reporting limit.
- J The reported conceentration is an estimate. See laboratory report for details.
- UJ Analyte was not detected at a concentration greater than the indicated reporting limit and the reporting limit is estimated.
- **Bold** Analyte detected at a concetration greater than the laboratory reporting limit.
- **Red Bold** Detected concentration exceeds the Puget Sound Natural Background concentration.

Blue Shaded Detected concentration exceeds the MTCA Method A Cleanup Level or the MTCA Method B Cleanup Level if Method A is not established.

Aspect Consulting

4/15/2025

S:\Evergreen Treatment Services 180043\Report Drafts\2025.04 Subsurface Investigation\Tables\Table 1a-2 Soil and Soil Gas

Table 1aSubsurface Investigation ReportPage 1 of 2

Table 1a. Metals and PAHs in Soil

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

			Location Name Sample Date Sample Name Depth (ft bgs)	AMW-1 12/09/2018 AMW-1-12.5 12.5 ft	AMW-2 12/09/2018 AMW-2-2.5 2.5 ft	AMW-2 12/09/2018 AMW-2-5.5 5.5 ft	AMW-3 12/09/2018 AMW-3-5.0 5 ft	AMW-4 12/09/2018 AMW-4-2.5 2.5 ft	AMW-4 12/10/2018 AMW-4-8.0 8 ft	AMW-5 10/31/2024 AMW-5-01 1 ft	AMW-5 11/01/2024 AMW-5-12 12 ft
	MTCA	MTCA	Puget Sound	1210 10	2.0 10		UR	2.0 10	ÖR		
	Method A	Method B	Background								
Analyte	CUL	CUL	Soil Level ¹								
Metals											
Arsenic	20	0.67	7	27.8	6.93		5.39	5.59	<1U	5.9	16
Cadmium	2	80	1	2	<1U		<1U	<1U	<1U	53	1.2
Chromium	2000	0.38	48	22.2	42.6		34.1	18.2	23.4	39	12
Copper	ne	3200	36	404	28.7		29.8	22	11.4		
Lead	250	ne	24	4720	35.3		5.21	32.1	7.35	160	1700
Mercury	2	ne	0.07	< 1 UJ	<1U		<1U	<1U	<1U	<1U	<1U
Nickel	ne	1600	48	19.6	44		49.7	21.5	35.7		
Zinc	ne	24000	85	911	66.8		48.8	71.2	25.7		
Polycyclic Aromatic Hydro	carbons (PAHs))									
1-Methylnaphthalene	ne	20	na							0.013	0.0072
2-Methylnaphthalene	ne	320	na							0.022	0.0077
Acenaphthene	ne	4800	na							0.085	< 0.005 U
Acenaphthylene	ne	ne	na							0.02	< 0.005 U
Anthracene	ne	24000	na							0.11	< 0.005 U
Benzo(g,h,i)perylene	ne	ne	na							0.58	0.0074
Fluoranthene	ne	3200	na							1	0.022
Fluorene	ne	3200	na							0.11	< 0.005 U
Naphthalene	5	1600	na	< 0.05 U					< 0.05 U	0.034	0.017
Phenanthrene	ne	ne	na							0.56	0.02
Pyrene	ne	2400	na							0.79	0.019
Carcinogenic Polycyclic A	omatic Hydroc	arbons (cPAH	s)								
Benz(a)anthracene	ne	ne	na				< 0.01 U	0.013		0.36	0.011
Benzo(a)pyrene	0.1	0.19	na				< 0.01 U	0.02		0.59	0.01
Benzo(b)fluoranthene	ne	ne	na				< 0.01 U	0.028		0.78	0.012
Benzo(k)fluoranthene	ne	ne	na				< 0.01 U	< 0.01 U		0.28	< 0.005 U
Chrysene	ne	ne	na				< 0.01 U	0.017		0.47	0.011
Dibenzo(a,h)anthracene	ne	ne	na				< 0.01 U	< 0.01 U		0.1	< 0.005 U
Indeno(1,2,3-cd)pyrene	ne	ne	na				< 0.01 U	0.018		0.49	0.0051
Total cPAHs TEQ ²	0.1	0.19	na				< 0.00755 U	0.02707		0.796	0.0134

<u>Notes and Definitions:</u>
¹ Natural background concentrations for the Puget Sound region, from Ecology (199

² Total carcinogenic PAHs (cPAHs) calculated using toxicity equivalency factors (TE

ft bgs	feet below ground surface
CUL	Cleanup Level
ne	Indicated cleanup level is not yet established.
	Not analyzed.
U	Analyte was not detected at a concentration greater than th
J	The reported conceentration is an estimate. See laboratory
UJ	Analyte was not detected at a concentration greater than th
Bold	Analyte detected at a concetration greater than the laborate
Red Bold	Detected concentration exceeds the Puget Sound Natural E
Blue Shaded	Detected concentration exceeds the MTCA Method A Clear

Aspect Consulting

Table 1a Subsurface Investigation Report Page 2 of 2

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

		Location Name	AB	-01	AB	-02	AB	-03	AB	-04	AB	-05	AB	-06
		Sample Date	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	11/01/2024	11/01/2024	11/01/2024	11/01/2024
		Sample Name	AB-01-01.5	AB-01-09	AB-02-03	AB-02-09.5	AB-03-01	AB-03-07	AB-04-02.5	AB-04-10	AB-05-02.5	AB-05-13	AB-06-01	AB-06-08.5
		Depth (ft bgs)	1.5 ft	9 ft	3 ft	9.5 ft	1 ft	7 ft	2.5 ft	10 ft	2.5 ft	13 ft	1 ft	8.5 ft
	MTCA	MTCA												
	Method A	Method B												
Analyte	CUL	CUL												
Petroleum Hydrocarbons (TPH)					-			-					-	
Gasoline Range Organics (GRO)	30	ne	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	8.3	< 5 U
Diesel Range Organics (DRO)			170 X	83 X	< 50 U	100 X	< 50 U	< 50 U	< 50 U	210 X	75 X	< 50 U	71 X	310 X
Motor Oil Range Organics (ORO)	2000	ne	< 250 U	360	< 250 U	< 250 U	< 250 U	530						
DRO and ORO			170 X	83 X	< 250 U	100 X	< 250 U	< 250 U	< 250 U	570 X	75 X	< 250 U	71 X	840 X
Benzene, Toluene, Ethylbenzene, a	nd Xylenes													
Benzene	0.03	18	< 0.002 U	< 0.002 U	0.0025	0.018	< 0.002 U	0.0079	< 0.002 U	< 0.002 U	0.0032	0.0036	0.0024	< 0.002 U
Toluene	7	6400	0.0054	0.0043	0.0055	0.018	0.041	0.061	< 0.002 U	0.012	0.0029	0.0075	0.0085	0.009
Ethylbenzene	6	8000	0.0034	< 0.002 U	< 0.002 U	0.0057	< 0.002 U	0.015	< 0.002 U	0.0026	< 0.002 U	0.0029	0.0036	0.012
o-Xylene	ne	16000	0.0029	< 0.002 U	< 0.002 U	0.0065	< 0.002 U	0.0038	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0028	0.0024
m,p-Xylenes	ne	16000	0.0064	0.006	< 0.004 U	0.009	< 0.004 U	0.016	< 0.004 U	0.007	< 0.004 U	< 0.004 U	0.009	< 0.004 U
Total Xylenes	9	16000	0.0093	0.006	< 0.004 U	0.0155	< 0.004 U	0.0198	< 0.004 U	0.007	< 0.004 U	< 0.004 U	0.0118	0.0024
PCE and Degredation Products														
Tetrachloroethene (PCE)	0.05	480	< 0.002 U	0.0036	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U						
Trichloroethene (TCE)	0.03	12	0.013	0.064	0.012	< 0.002 U	0.058	0.16	< 0.002 U	0.019	0.0037	< 0.002 U	0.11	0.003
cis-1,2-Dichloroethene (cDCE)	ne	160	0.0051	0.016	0.0051	0.31	0.035	0.14	< 0.002 U	0.01	0.011	< 0.002 U	0.018	0.038
trans-1,2-Dichloroethene (tDCE)	ne	1600	< 0.002 U	0.0023	< 0.002 U	< 0.002 U	< 0.002 U	0.13	< 0.002 U	0.0028	0.0036	< 0.002 U	0.0068	< 0.002 U
Vinyl Chloride (VC)	ne	0.67	< 0.002 U	< 0.002 U	< 0.002 U	0.51	< 0.002 U	0.017	< 0.002 U	0.0026				
Other Volatile Organic Compounds	(VOCs)													
1,1,1,2-Tetrachloroethane	ne	38	< 0.05 U											
1,1,1-Trichloroethane	2	160000	< 0.002 U											
1,1,2,2-Tetrachloroethane	ne	5	< 0.05 U											
1,1,2-Trichloroethane	ne	18	< 0.05 U											
1,1-Dichloroethane	ne	180	< 0.002 U											
1,1-Dichloroethene	ne	4000	< 0.002 U											
1,1-Dichloropropene	ne	ne	< 0.05 U											
1,2,3-Trichlorobenzene	ne	64	< 0.25 U											
1,2,3-Trichloropropane	ne	0.0063	< 0.05 U											
1,2,4-Trichlorobenzene	ne	34	< 0.25 U											
1,2,4-Trimethylbenzene	ne	800	< 0.05 U											
1,2-Dibromo-3-chloropropane	ne	0.23	< 0.5 U											
1,2-Dibromoethane (EDB)	0.005	0.5	< 0.005 U											
1,2-Dichlorobenzene	ne	7200	< 0.05 U											
1,2-Dichloroethane (EDC)	ne	11	< 0.003 U											
1,2-Dichloropropane	ne	27	< 0.05 U											
1,3,5-Trimethylbenzene	ne	800	< 0.05 U											
1,3-Dichlorobenzene	ne	ne	< 0.05 U											
1,3-Dichloropropane	ne	1600	< 0.05 U											
1,4-Dichlorobenzene	ne	190	< 0.05 U											
2,2-Dichloropropane	ne	ne	< 0.05 U											
2-Butanone	ne	48000	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
2-Chlorotoluene	ne	1600	< 0.05 U											
2-Hexanone	ne	400	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U
4-Chlorotoluene	ne	1600	< 0.05 U											
4-Methyl-2-pentanone	ne	6400	< 1 U	< 1 U	<1U	< 1 U	< 1 U	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U	< 1 U

Aspect Consulting

4/15/2025

S:\Evergreen Treatment Services 180043\Report Drafts\2025.04 Subsurface Investigation\Tables\Soil All

Table 1b

Subsurface Investigation Report Page 1 of 4

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

		Location Name	AB	-01	AB	-02	AB	-03	AB	-04	AB	-05	AB	8-06
		Sample Date	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	10/31/2024	11/01/2024	11/01/2024	11/01/2024	11/01/2024
		Sample Name	AB-01-01.5	AB-01-09	AB-02-03	AB-02-09.5	AB-03-01	AB-03-07	AB-04-02.5	AB-04-10	AB-05-02.5	AB-05-13	AB-06-01	AB-06-08.5
		Depth (ft bgs)	1.5 ft	9 ft	3 ft	9.5 ft	1 ft	7 ft	2.5 ft	10 ft	2.5 ft	13 ft	1 ft	8.5 ft
	MTCA	MTCA												
	Method A	Method B												
Analyte	CUL	CUL												
Other VOCs					•									
Acetone	ne	72000	< 5 UJ											
Bromobenzene	ne	640	< 0.05 U											
Bromodichloromethane	ne	16	< 0.05 U											
Bromoform	ne	130	< 0.05 U											
Bromomethane	ne	110	< 0.5 U											
Carbon Tetrachloride	ne	14	< 0.05 U											
Chlorobenzene	ne	1600	< 0.05 U											
Chloroethane	ne	ne	< 0.1 U											
Chloroform	ne	32	< 0.05 U											
Chloromethane	ne	ne	< 0.5 U											
cis-1,3-Dichloropropene	ne	ne	< 0.05 U											
Dibromochloromethane	ne	12	< 0.05 U											
Dibromomethane	ne	800	< 0.05 U											
Dichlorodifluoromethane	ne	16000	< 0.5 U											
Isopropylbenzene	ne	8000	< 0.05 U											
Methyl tert-butyl ether (MTBE)	0.1	560	< 0.002 U											
Methylene Chloride	0.02	94	< 0.4 UJ											
n-Hexane	ne	4800	< 0.25 U											
n-Propylbenzene	ne	8000	< 0.05 U											
p-Isopropyltoluene	ne		< 0.05 U											
sec-Butylbenzene	ne	8000	< 0.05 U											
Styrene	ne	16000	< 0.05 U											
tert-Butylbenzene	ne	8000	< 0.05 U											
trans-1,3-Dichloropropene	ne	ne	< 0.05 U											
Trichlorofluoromethane	ne	24000	< 0.5 U											

Table 1b Subsurface Investigation Report Page 2 of 4

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

		Location Name	AMW-1	AMV	N-2	AMW-3	AM	W-4	AM	N-5
		Sample Date	12/09/2018	12/09/2018	12/09/2018	12/09/2018	12/09/2018	12/10/2018	10/31/2024	11/01/2024
		Sample Name	AMW-1-12.5	AMW-2-2.5	AMW-2-5.5	AMW-3-5.0	AMW-4-2.5	AMW-4-8.0	AMW-5-01	AMW-5-12
		Depth (ft bgs)	12.5 ft	2.5 ft	5.5 ft	5 ft	2.5 ft	8 ft	1 ft	12 ft
	MTCA									
	Method A	Method B								
Analyte	CUL	CUL								
Petroleum Hydrocarbons (TPH)							I			
Gasoline Range Organics (GRO)	30	ne	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel Range Organics (DRO)			< 50 U	110 X	< 50 U					
Motor Oil Range Organics (ORO)	2000	ne	< 250 U							
DRO and ORO									110 X	< 250 U
Benzene, Toluene, Ethylbenzene, and	d Xvlenes									
Benzene	0.03	18	< 0.03 U					< 0.03 U	0.0047	0.03
Toluene	7	6400	< 0.05 U					< 0.05 U	0.008	0.026
Ethylbenzene	6	8000	< 0.05 U					< 0.05 U	0.0066	0.0072
o-Xylene	ne	16000	< 0.05 U					< 0.05 U	0.005	0.0052
m,p-Xylenes	ne	16000	< 0.00 U					< 0.1 U	0.0097	0.0064
Total Xylenes	9	16000	< 0.1 U					< 0.1 U	0.0147	0.0116
PCE and Degredation Products	· · ·		0.1 0			1	I			
Tetrachloroethene (PCE)	0.05	480	< 0.025 U	[< 0.025 U	< 0.002 U	< 0.002 U
Trichloroethene (TCE)	0.03	12	< 0.02 U					< 0.02 U	0.03	< 0.002 U
cis-1,2-Dichloroethene (cDCE)	ne	160	< 0.05 U					< 0.05 U	0.0024	0.95
trans-1,2-Dichloroethene (tDCE)	ne	1600	< 0.05 U					< 0.05 U	< 0.002 U	0.002
Vinyl Chloride (VC)	ne	0.67	< 0.05 U					< 0.05 U	< 0.002 U	1.7
Other Volatile Organic Compounds (0.07	0.00 0			I	I	10.00 0	+ 0.002 0	
1,1,1,2-Tetrachloroethane	ne	38	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,1,1-Trichloroethane	2	160000	< 0.05 U					< 0.05 U	< 0.002 U	< 0.002 U
1,1,2,2-Tetrachloroethane	ne	5	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,1,2-Trichloroethane	ne	18	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloroethane	ne	180	< 0.05 U					< 0.05 U	< 0.002 U	< 0.002 U
1,1-Dichloroethene	ne	4000	< 0.05 U					< 0.05 U	< 0.002 U	< 0.002 U
1,1-Dichloropropene	ne	ne	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,2,3-Trichlorobenzene	ne	64	< 0.25 U					< 0.25 U	< 0.25 U	< 0.25 U
1,2,3-Trichloropropane	ne	0.0063	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,2,4-Trichlorobenzene	ne	34	< 0.25 U					< 0.25 U	< 0.25 U	< 0.25 U
1,2,4-Trimethylbenzene	ne	800	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dibromo-3-chloropropane	ne	0.23	< 0.5 U					< 0.5 U	< 0.5 U	< 0.5 U
1,2-Dibromoethane (EDB)	0.005	0.5	< 0.05 U					< 0.05 U	< 0.005 U	< 0.005 U
1,2-Dichlorobenzene	ne	7200	< 0.05 U					< 0.05 U	< 0.005 U	< 0.05 U
1,2-Dichloroethane (EDC)	ne	11	< 0.05 U					< 0.05 U	< 0.003 U	< 0.003 U
1,2-Dichloropropane	ne	27	< 0.05 U					< 0.05 U	< 0.003 U	< 0.05 U
1,3,5-Trimethylbenzene	ne	800	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,3-Dichlorobenzene	ne	ne	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,3-Dichloropropane	ne	1600	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
1,4-Dichlorobenzene	ne	190	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
2,2-Dichloropropane	ne	ne	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
2-Butanone	ne	48000	< 0.5 U					< 0.5 U	< 1 U	< 1 U
2-Chlorotoluene	ne	1600	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
2-Hexanone	ne	400	< 0.5 U					< 0.5 U	< 1 U	< 1 U
4-Chlorotoluene	ne	1600	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
4-Methyl-2-pentanone	ne	6400	< 0.5 U					< 0.5 U	< 1 U	< 1 U
-meuryi-z-pentanone		0400	× 0.5 0					× 0.5 0		10

Aspect Consulting

S:\Evergreen Treatment Services 180043\Report Drafts\2025.04 Subsurface Investigation\Tables\Soil All

Table 1b

Subsurface Investigation Report Page 3 of 4

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

		Location Name	AMW-1	AM	W-2	AMW-3	AM	W-4	AM	W-5
		Sample Date Sample Name	12/09/2018 AMW-1-12.5	12/09/2018 AMW-2-2.5	12/09/2018 AMW-2-5.5	12/09/2018 AMW-3-5.0	12/09/2018 AMW-4-2.5	12/10/2018 AMW-4-8.0	10/31/2024 AMW-5-01	11/01/2024 AMW-5-12
		Depth (ft bgs)	12.5 ft	2.5 ft	5.5 ft	5 ft	2.5 ft	8 ft	1 ft	12 ft
	MTCA	MTCA								
	Method A	Method B								
Analyte	CUL	CUL								
Other VOCs		· · ·					•	•		
Acetone	ne	72000	< 0.5 U					< 0.5 U	< 5 UJ	< 5 UJ
Bromobenzene	ne	640	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Bromodichloromethane	ne	16	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Bromoform	ne	130	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Bromomethane	ne	110	< 0.5 U					< 0.5 U	< 0.5 U	< 0.5 U
Carbon Tetrachloride	ne	14	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Chlorobenzene	ne	1600	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Chloroethane	ne	ne	< 0.5 U					< 0.5 U	< 0.1 U	< 0.1 U
Chloroform	ne	32	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Chloromethane	ne	ne	< 0.5 U					< 0.5 U	< 0.5 U	< 0.5 U
cis-1,3-Dichloropropene	ne	ne	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Dibromochloromethane	ne	12	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Dibromomethane	ne	800	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Dichlorodifluoromethane	ne	16000	< 0.5 U					< 0.5 U	< 0.5 U	< 0.5 U
Isopropylbenzene	ne	8000	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Methyl tert-butyl ether (MTBE)	0.1	560	< 0.05 U					< 0.05 U	< 0.002 U	< 0.002 U
Methylene Chloride	0.02	94	< 0.5 U					< 0.5 U	< 0.4 UJ	< 0.4 UJ
n-Hexane	ne	4800	< 0.25 U					< 0.25 U	< 0.25 U	< 0.25 U
n-Propylbenzene	ne	8000	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
p-Isopropyltoluene	ne		< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
sec-Butylbenzene	ne	8000	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Styrene	ne	16000	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
tert-Butylbenzene	ne	8000	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
trans-1,3-Dichloropropene	ne	ne	< 0.05 U					< 0.05 U	< 0.05 U	< 0.05 U
Trichlorofluoromethane	ne	24000	< 0.5 U					< 0.5 U	< 0.5 U	< 0.5 U

Notes a	nd Definitio	ons:

ft bgs	feet below ground surface
MTCA	Model Toxics Control Act
CUL	Cleanup Level
ne	Indicated cleanup level is not yet established.
	Not analyzed.
U	Analyte was not detected at a concentration greater than the indicated laboratory reporting limit.
J	The reported conceentration is an estimate. See laboratory report for details.
UJ	Analyte was not detected at a concentration greater than the indicated reporting limit and the reporting limit is estim
Х	The laboratory indicated the chromatographic pattern of detected TPH does not match the fuel standard
Bold	Analyte detected at a concetration greater than the laboratory reporting limit.
Red Bold	Detected concentration exceeds the Model Toxics Control Act (MTCA) Method B Cleanup Level but not the MTCA
Blue Shaded	Detected concentration exceeds the Model Toxics Control Act (MTCA) Method A Cleanup Level, or the MTCA Meth

timated. rd used for quantitation.

A Method B Cleanup Level. ethod B Cleanup Level if Method A is n

Table 1bSubsurface Investigation ReportPage 4 of 4

Table 2. Soil Gas Results

Project No. 180043, Evergreen Treatment Services, Seattle, Washington

	Location Name	SV-1	SV-2	SV		SV-4	SV-5
	Sample Date Sample Name	12/10/2018 SV-1-181210	12/10/2018 SV-2-181210	12/10/2018 SV-3-181210	09/10/2020 SV-3-091020	12/10/2018 SV-4-181210	09/17/2020 SV-5-09172
Leak Testing	Results (% Helium):	< 0.6 U	< 0.6 U				
	MTCA Method B Subslab Soil Gas		1	in micrograms			0.00
Analyte	Screening Levels - Unrestricted Use*		Results	in morograms		r (ug/m)	
Air-Phase Hydrocarbons (APH)	Onrestricted Ose						
C5 - C8 Aliphatic Hydrocarbons					3100		29000 E
C9 - C12 Aliphatic Hydrocarbons	ne				860		22000
C9 - C10 Aromatic Hydrocarbons Total APH**	1500				< 420 U 4,389		< 1000 U 52,135 E
Polcyclic Aromatic Hydrocarbons	1500				4,309		52,135 E
Naphthalene	2.5	< 0.73 U	< 0.79 U	< 0.79 U	< 4.5 U	1.2	< 11 U
Benzene, Toluene, Ethylbenzene, a							
Benzene	11	3.8	4.1	19	29	150	170
Toluene	76000 15000	25	<u>25</u> 5	39	< 320 U < 7.4 U	260	< 790 U < 18 U
Ethylbenzene m,p-Xylenes	15000	5.6 20	5 18	6.7 20	< 7.4 U 20	11 24	< 16 U
o-Xylene	1500	7	6.2	7.1	< 7.4 U	18	37
Total Xylenes		27	24.2	27.1	20	42	37
PCE and Degredation Products			-			-	
Tetrachloroethene (PCE)	320	< 9.5 U	< 10 U	< 10 U	< 120 U	< 10 U	< 280 U
Trichloroethene (TCE) cis-1,2-Dichloroethene (cDCE)	11 610	26 < 0.56 U	< 0.4 U < 0.59 U	14 2.9	40 35	43 220	61 70
trans-1,2-Dichloroethene (CDCE)	610	< 0.56 U	< 0.59 U < 0.59 U	2.9 < 0.59 U	35 < 6.7 U	43	110
Vinyl Chloride (VC)	9.5	< 0.36 U	< 0.38 U	< 0.38 U	< 4.3 U	320 E	280
Volatile Organic Compounds							
1,1,1-Trichloroethane	76000	< 0.76 U	< 0.82 U	< 0.82 U	< 9.3 U	< 0.82 U	< 23 U
1,1,2,2-Tetrachloroethane	1.4	< 0.19 U	< 0.21 U	< 0.21 U	< 2.3 U	< 0.21 U	< 5.8 U
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	3 76000	< 0.15 U < 1.1 U	< 0.16 U < 1.1 U	< 0.16 U 2.1	< 1.9 U < 13 U	< 0.16 U < 1.1 U	< 2.3 U < 32 U
1,1-Dichloroethane	52	< 0.57 U	< 0.61 U	1.7	< 6.9 U	0.91	< <u>32 0</u> < 17 U
1,1-Dichloroethene	3000	< 0.56 U	< 0.59 U	0.62	< 6.7 U	5.1	< 17 U
1,2,4-Trichlorobenzene	30	< 1 U	< 1.1 U	< 1.1 U	< 13 U	< 1.1 U	< 31 U
1,2,4-Trimethylbenzene	910	< 3.4 U	< 3.7 U	< 3.7 U	< 42 U	5.8	< 100 U
1,2-Dibromoethane (EDB)	0.14	< 0.11 U	< 0.12 U	< 0.12 U	< 1.3 U	< 0.12 U	< 3.2 U
1,2-Dichlorobenzene 1,2-Dichloroethane (EDC)	3000 3.2	< 0.84 U < 0.057 U	< 0.9 U < 0.061 U	< 0.9 U < 0.061 U	< 10 U < 0.69 U	< 0.9 U < 0.061 U	< 25 U < 1.7 U
1,2-Dichloropropane	23	< 0.057 0 0.9	0.061 0	< 0.061 0 0.58	< 3.9 U	0.001 0	< 1.7 U < 9.7 U
1,3,5-Trimethylbenzene	910	< 3.4 U	< 3.7 U	< 3.7 U	< 42 U	5.6	< 100 U
1,3-Dichlorobenzene	ne	< 0.84 U	< 0.9 U	< 0.9 U	< 10 U	< 0.9 U	< 25 U
1,4-Dichlorobenzene	7.6	< 0.34 U	< 0.36 U	< 0.36 U	< 3.9 U	< 0.36 U	< 9.7 U
1-Propene	ne	< 1 U	<10	52	180	1700 E	2100 E
2-Butanone	76000	17	13	30	< 50 U	24	< 120 U
2-Chlorotoluene 2-Hexanone	<i>ne</i> 460	< 7.2 U < 5.7 U	< 7.8 U < 6.1 U	< 7.8 U < 6.1 U	< 88 U < 70 U	< 7.8 U < 6.1 U	< 220 U < 170 U
4-Methyl-2-pentanone	46000	< 5.7 U	< 6.1 U	< 6.1 U	< 70 U	< 6.1 U	< 170 U
Acetone	ne	130	160	430 E	640	780 E	< 600 U
Acrolein	0.3	< 1.3 U	< 1.4 U	3.8	< 35 U	< 1.4 U	< 87 U
Allyl Chloride	14	< 1.8 U	< 1.9 U	< 1.9 U	< 27 U	< 1.9 U	< 66 U
Bromodichloromethane	2.3	< 0.094 U	< 0.1 U	< 0.1 U	< 1.1 U	< 0.1 U	< 2.8 U
Bromoform Bromomethane	76 76	< 2.9 U < 2.2 U	< 3.1 U < 2.3 U	< 3.1 U < 2.3 U	< 35 U < 40 U	< 3.1 U < 2.3 U	< 87 U < 98 U
Butane	ne	15	19	44	400	2000 E	2000
Carbon Disulfide	11000	< 8.7 U	< 9.3 U	< 9.3 U	< 110 U	< 9.3 U	< 260 U
Carbon Tetrachloride	14	< 0.88 U	< 0.94 U	< 0.94 U	< 5.3 U	< 0.94 U	< 13 U
Chlorobenzene	760	< 0.64 U	< 0.69 U	< 0.69 U	< 7.8 U	< 0.69 U	< 19 U
Chloroethane Chloroform	150000 3.6	< 3.7 U	< 4 U	< 4 ∪ 0.7	< 45 U	7.9 < 0.074 U	< 110 U < 2.1 U
Chloromethane	3.6 1400	0.46 < 2.9 U	0.61 < 3.1 U	0.7 < 3.1 U	1.7 < 63 U	< 0.074 U < 3.1 U	< 2.1 U < 160 U
cis-1,3-Dichloropropene	ne	< 0.64 U	< 0.68 U	< 0.68 U	< 7.7 U	< 0.68 U	< 100 U
Cyclohexane	91000	< 9.6 U	< 10 U	12	< 120 U	150	< 290 U
Dibromochloromethane	ne	< 0.12 U	< 0.13 U	< 0.13 U	< 1.4 U	< 0.13 U	< 3.6 U
Dichlorodifluoromethane	1500	2.9	2.9	2.9	< 8.4 U	< 0.74 U	< 21 U
Ethanol Ethyl acetate	<i>ne</i> 1100	280 E < 10 U	140 < 11 U	450 E < 11 U	570 < 120 U	250 E < 11 U	< 320 U < 300 U
ztnyi acetate sopropyl Alcohol	ne	< 10 U 66	< 11 U 64	< 11 U 70	< 120 U < 150 U	79	< 300 U < 360 U
sopropylbenzene	6100	< 3.4 U	< 3.7 U	< 3.7 U	< 42 U	8.8	< 100 U
Methyl Methacrylate	11000	< 5.7 U	< 6.1 U	< 6.1 U	< 70 U	< 6.1 U	< 170 U
Methyl tert-butyl ether (MTBE)	320	< 2.5 U	< 2.7 U	< 2.7 U	< 31 U	< 2.7 U	< 76 U
Methylene Chloride	2200	< 120 U	< 130 U	< 130 U	< 590 UJ	< 130 U	< 1500 U.
n-Hexane	11000	13	18	29	79	290 E	360
Nonane n-Propylbenzene	<i>ne</i> 15000	< 7.3 U < 3.4 U	< 7.9 U < 3.7 U	< 7.9 U < 3.7 U	< 89 U < 42 U	52 J < 3.7 U	< 220 U < 100 U
Pentane	ne	< 3.4 0 12	16	< 3.7 0 32	190	850 E	870
Styrene	15000	< 1.2 U	< 1.3 U	1.5	< 14 U	< 1.3 U	< 36 U
-Butyl alcohol (TBA)	ne	< 17 U	< 18 U	< 18 U	< 210 U	< 18 U	< 510 U
Tetrahydrofuran	30000	21 J	21 J	16 J	28	16 J	18
trans-1,3-Dichloropropene	ne	< 0.64 U	< 0.68 U	< 0.68 U	< 7.7 U	< 0.68 U	< 19 U
Trichlorofluoromethane Vinyl Acetate	11000 3000	< 3.1 U < 9.9 U	< 3.4 U < 11 U	< 3.4 U < 11 U	< 38 U < 120 U	< 3.4 U < 11 U	< 94 U < 300 U
Vinyi Acetate Vinyi Bromide	5.6	< 9.9 U < 0.61 U	< 11 U < 0.66 U	< 11 U < 0.66 U	< 120 U < 7.4 U	< 11 U < 0.66 U	< 300 U < 18 U
1,3-Butadiene	2.8	< 0.01 U	< 0.00 U	< 0.00 0 12	< 0.75 U	< 0.00 U < 0.03 U	< 1.9 U

Aspect Consulting

4/15/2025

S:\Evergreen Treatment Services 180043\Report Drafts\2025.04 Subsurface Investigation\Tables\Soil All

Soil Gas Sampling Memorandum Page 1 of 2

Table 2

Table 2. Soil Gas Results

Project No. 180043, Evergreen Treatment Services, Seattle, Washington

	SV-1	SV-2	S۱	/-3	SV-4	SV-5				
	12/10/2018	12/10/2018	12/10/2018	09/10/2020	12/10/2018	09/17/2020				
	SV-1-181210	SV-2-181210	SV-3-181210	SV-3-091020	SV-4-181210	SV-5-091720				
Leak Testing	Results (% Helium):	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U			
	MTCA Method B									
	Subslab Soil Gas	Results in micrograms per cubic meter (ug/m ³)								
	Screening Levels -									
Analyte	Unrestricted Use*									
Volatile Organic Compounds (Continued)										
2,2,4-Trimethylpentane	ne	< 6.5 U	< 7 U	< 7 U	< 79 U	380 E	460			
4-Ethyltoluene	ne	< 3.4 U	< 3.7 U	< 3.7 U	< 42 U	< 3.7 U	< 100 U			
alpha-Chlorotoluene	1.7	< 0.072 U	< 0.078 U	< 0.078 U	< 0.88 U	< 0.078 U	< 2.2 U			
Freon 114	ne	< 0.98 U	< 1 U	< 1 U	< 12 U	< 1 U	< 29 U			
Heptane	6100	11	17	32	< 70 U	140	< 170 U			

Notes and Definitions:

Е

* Minimum of carcinogenic and noncarcinogenic soil gas Model Toxics Control Act (MTCA) Method B Screening Levels for subslab soil gas.

** Total APH calculated with nondetect concentrations as 1/2 of indicated reporting limit.

MTCA Model Toxics Control Act

ne Screening level is not yet established.

-- Not analyzed.

U Analyte was not detected at a concentration greater than the indicated laboratory reporting limit.

J The reported conceentration is an estimate. See laboratory report for details.

UJ Analyte was not detected at a concentration greater than the indicated reporting limit and the reporting limit is estimated.

Detected concentration exceeded the laboratory instrument calibration range. Reported value is an estimate.

Bold Analyte detected at a concetration greater than the laboratory reporting limit.

Blue Shaded Detected concentration exceeds the MTCA Method B screening level.

Aspect Consulting 4/15/2025 S:\Evergreen Treatment Services 180043\Report Drafts\2025.04 Subsurface Investigation\Tables\Soil All

Soil Gas Sampling Memorandum Page 2 of 2

Table 2

Table 3a. Groundwater Measurements

Project No. AS180043, Evergreen Treatment Services, Seattle, WA

		AMW-1	AMW-2	AMW-3	AMW-4	AMW-5				
Well Construction Data										
Date Constructed		12/10/2018	12/10/2018	12/10/2018	12/10/2018	11/1/2025				
Ecology Tag ID		BKF 905	BKF 906	BKF 907	BKF 908	BPK 160				
Constructed Well Depth (ft bgs)		15	14	15	14	12				
Constructed Top of Screen Depth (ft bgs		5	4	5	4	2				
Top of Monument Elevation (ft NAVD88)		24.137	23.813	23.226	25.642	19.890				
TOC Elevation (ft NAVD88)		23.800	23.398	22.836 25.267		19.593				
Top of Screen Elevation (ft NAVD88)		19.137	19.813	18.226	21.642	17.89				
Bottom of Well Elevation (ft NAVD88)		9.137	9.813	8.226	11.642	7.89				
Meas	sured Groundwater Elevations									
2/17/2018	Depth to Water (ft bTOC)	5.56	4.88	4.50	5.73	Not Present				
12/17	Elevation (ft NAVD88)	18.24	18.52	18.34	19.54					
11/5/2025	Depth to Water (ft bTOC)	5.67	4.90	4.55	5.55	0.80				
11/5/	Elevation (ft NAVD88)	18.13	18.50	18.29	19.72	18.79				

Notes:

ft = feet

NAVD88 = North American Vertical Datum of 1988

bgs = below ground surface

bTOC = below top of well casing, measured from the north edge.

Elevations provided by True North Land Surveying, Inc., dated December 11, 2024, collected using a Leica LS10. Survey based on Washington State Department of Transportation Monument # GP17005-231

Table 3b. Groundwater Analytical ResultsProject No. AS180043, Evergreen Treatment Services, Seattle, WA

		L	ocation Name	AMW-1		AMW-2		AMW-3		AMW-4		AMW-5
			Sample Date	12/17/2018	11/05/2024	12/17/2018	11/05/2024	12/17/2018	11/05/2024	12/17/2018	11/05/2024	11/05/2024
		MTCA	MTCA		•			•				
		Method A	Method B				Results in	micrograms per	liter (ug/L)			
Analyte	Fraction	CUL	CUL									
Metals	-											
Araopia	D	5	0.058	11.4	12	4.33	2.4	20.3	14	<1U	<1U	4.3
Arsenic	Т		0.050		12		9.5		18		1.1	4.8
Co dresivare	D	E	0	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U
Cadmium	Т	- 5	8		<1U		< 1 U		<1U		<1U	<1U
	D	50		<1U	< 1 U	<1U	< 1 U	< 1 U	<1U	<1U	<1U	< 1 U
Chromium	Т	50	ne -		< 1 U		< 1 U		< 1 U		<10	1.6
Copper	D	ne	640	< 5 U		< 5 U		< 5 U		< 5 U		
	D			<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Lead		15	ne		1.9		7.4		< 1 U		<10	26
Manganese	D	ne	750	 575		302		680		485		
manyanese		110	130		 <1U	302 <1U	 <1U	< 1 U	 <1U	405 <1U	 <1U	 <1U
Mercury		2	ne	<10		<10		<10		<10		
-			000		<10		< 1 U		< 1 U		<10	< 1 U
Nickel	D	ne	320	1.31		3.8		2.22		2.24		
Zinc	D	ne	4800	< 5 U		< 5 U		< 5 U		< 5 U		
Conventionals		-			-	-	-	-	-	-		
Cyanide (total)	Т	ne	0.005	< 0.05 U		< 0.05 U		< 0.05 U		< 0.05 U		
Petroleum Hydrocarbons (TPH)							-			-	-	
Gasoline Range Organics (GRO)	Т	1000	ne	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U				
Diesel Range Organics (DRO)	Т			< 50 U	< 50 U	73 X	57 X	< 50 U	< 50 U	< 50 U	< 50 U	95 X
Motor Oil Range Organics (ORO)	T	500	ne	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U				
DRO and ORO	<u> </u>			< 250 U	< 250 U	73 X	57 X	< 250 U	< 250 U	< 250 U	< 250 U	95 X
Benzene, Toluene, Ethylbenzene	, and Xyle	1										
Benzene		5	0.8	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U				
Toluene		1000	640	< 1 U	<10	< 1 U	< 1 U	< 1 U	< 1 U	<10	<10	< 1 U
Ethylbenzene		700	800	< 1 U	<10	< 1 U	< 1 U	< 1 U	< 1 U	<10	<10	< 1 U
Total Xylenes		1000	1600	< 1 U	< 2 U	< 1 U	< 2 U	< 1 U	< 2 U	< 1 U	< 2 U	< 2 U
PCE and Degredation Products Tetrachloroethene (PCE)	Тт	5	21	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U
Trichloroethene (TCE)		5	0.54	<1U	< 0.5 U	<1U	< 0.5 U	<1U	< 0.5 U	<10 <1U	< 0.5 U	< 0.5 U
cis-1,2-Dichloroethene (cDCE)		ne	16	<1U	< 1 U	<1U	< 1 U	<1U	< 1 U	<1U	< 1 U	< 0.3 0 22
trans-1,2-Dichloroethene (tDCE)	+ <u>'</u>	ne	160	<1U	<1U <1U	<1U	<1U	<1U	<1U	<1U	<1U	< 1 U
Vinyl Chloride (VC)	T	0.2	0.029	2.9	2.4	< 0.2 U	< 0.02 U	< 0.2 U	< 0.02 U	< 0.2 U	< 0.02 U	23
Other Volatile Organic Compoun	ds (VOCs)		0.020	2.0		0.20	0.02.0	0.20	0.02.0	0.20	0.02.0	20
1,1,1,2-Tetrachloroethane	<u>т</u>	ne	1.7	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	<1U	< 1 U
1,1,1-Trichloroethane	T	200	16000	<10	<10	<10	<10	<10	< 1 U	<10	<10	< 1 U
1,1,2,2-Tetrachloroethane	Т	ne	0.22	<10	< 0.2 U	<10	< 0.2 U	<10	< 0.2 U	<10	< 0.2 U	< 0.2 U
1,1,2-Trichloroethane	Т	ne	0.77	< 1 U	< 0.5 U	< 1 U	< 0.5 U	<10	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U
1,1-Dichloroethane	Т	ne	7.7	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1,1-Dichloroethene	Т	ne	400	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U
1,1-Dichloropropene	Т	ne		< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	<1U	< 1 U
1,2,3-Trichlorobenzene	Т	ne	6.4	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1,2,3-Trichloropropane	Т	ne	0.00038	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1,2,4-Trichlorobenzene	Т	ne	1.5	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1,2,4-Trimethylbenzene	T	ne	80	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U

Aspect Consulting

Table 3b Subsurface Investigation Report Page 1 of 3

Table 3b. Groundwater Analytical ResultsProject No. AS180043, Evergreen Treatment Services, Seattle, WA

	Location Name AMW-1		W-1	AM	W-2	AM	W-3	AM	W-4	AMW-5		
			Sample Date	12/17/2018	11/05/2024	12/17/2018	11/05/2024	12/17/2018	11/05/2024	12/17/2018	11/05/2024	11/05/2024
		MTCA	MTCA		•							
		Method A	Method B				Results in	micrograms per	liter (ug/L)			
Analyte	Fraction	CUL	CUL									
Other VOCs (continued)		-										
1,2-Dibromo-3-chloropropane	Т	ne	0.014	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U				
1,2-Dibromoethane (EDB)	Т	0.01	0.022	<1U	< 0.01 U	<1U	< 0.01 U	<1U	< 0.01 U	< 1 U	< 0.01 U	< 0.01 U
1,2-Dichlorobenzene	Т	ne	720	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1,2-Dichloroethane (EDC)	Т	5	0.48	< 1 U	< 0.2 U	< 1 U	< 0.2 U	<1U	< 0.2 U	< 1 U	< 0.2 U	< 0.2 U
1,2-Dichloropropane	Т	ne	1.2	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U
1,3,5-Trimethylbenzene	Т	ne	80	<1U	<1U	< 1 U	<1U	<1U	< 1 U	< 1 U	< 1 U	<1U
1,3-Dichlorobenzene	Т	ne	ne	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U
1,3-Dichloropropane	Т	ne	160	< 1 U	<1U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U
1,4-Dichlorobenzene	Т	ne	8.1	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U
2,2-Dichloropropane	Т	ne	ne	< 1 U	<1U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U
2-Butanone	Т	ne	4800	< 10 U	< 20 U	< 10 U	< 20 U	< 10 U	< 20 U	< 10 U	< 20 U	< 20 U
2-Chlorotoluene	Т	ne	160	< 1 U	<1U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U
2-Hexanone	Т	ne	40	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U				
4-Chlorotoluene	Т	ne	160	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
4-Methyl-2-pentanone	Т	ne	640	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U				
Acetone	Т	ne	7200	< 50 U	< 50 UJ	< 50 U	< 50 UJ	< 50 U	< 50 UJ	< 50 U	< 50 UJ	< 50 UJ
Bromobenzene	Т	ne	64	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Bromodichloromethane	Т	ne	0.71	< 1 U	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U
Bromoform	Т	ne	5.5	< 1 U	< 5 U	<1U	< 5 U	< 1 U	< 5 U	< 1 U	< 5 U	< 5 U
Bromomethane	Т	ne	11	<1U	< 5 U	<1U	< 5 U	< 1 U	< 5 U	<1U	< 5 U	< 5 U
Carbon Tetrachloride	Т	ne	0.63	< 1 U	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U
Chlorobenzene	Т	ne	160	< 1 U	<1U	<1U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Chloroethane	Т	ne	ne	<1U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	<1U	< 1 U	< 1 U
Chloroform	Т	ne	1.4	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Chloromethane	T	ne	ne	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U				
cis-1,3-Dichloropropene	Т	ne	ne	<1U	< 0.4 U	<1U	< 0.4 U	< 1 U	< 0.4 U	<1U	< 0.4 U	< 0.4 U
Dibromochloromethane	T	ne	0.52	< 1 U	< 0.5 U	<1U	< 0.5 U	< 1 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U
Dibromomethane	Т	ne	80	< 1 U	< 1 U	< 1 U	<1U	<10	< 1 U	< 1 U	<10	< 1 U
Dichlorodifluoromethane	Т	ne	1600	<1U	< 1 U	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U	<1U
Isopropylbenzene	Т	ne	800	<1U	<1U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
m,p-Xylenes	T	ne	1600	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	T	20	24	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Methylene Chloride	T	5	5.8	< 5 U	< 5 UJ	< 5 U	< 5 UJ	< 5 U	< 5 UJ	< 5 U	< 5 UJ	< 5 UJ
n-Hexane	T	ne	480	< 1 U	< 5 U	< 1 U	< 5 U	< 1 U	< 5 U	< 1 U	< 5 U	< 5 U
n-Propylbenzene	Т	ne	800	<1U	< 1 U	<1U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U
o-Xylene	T	ne	1600	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
p-lsopropyltoluene	<u> </u>	ne	ne	< 1 U	<1U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	<1U
sec-Butylbenzene	T	ne	800	< 1 U	< 1 U	<1U	< 1 U	<1U	<1U	<1U	<1U	<1U
Styrene	T	ne	1600	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	<1U	<1U
tert-Butylbenzene	T	ne	800	< 1 U	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	<1U	<1U
trans-1,3-Dichloropropene	T	ne	ne	< 1 U	< 0.4 U	<1U	< 0.4 U	<1U	< 0.4 U	<1U	< 0.4 U	< 0.4 U
Trichlorofluoromethane	<u> </u>	ne	2400	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
PAHs		1			1			1			T	
Naphthalene	T	160	160	< 1 U	<1U	<1U	<10	< 1 U	< 1 U	< 1 U	< 1 U	<1U

Table 3b Subsurface Investigation Report Page 2 of 3

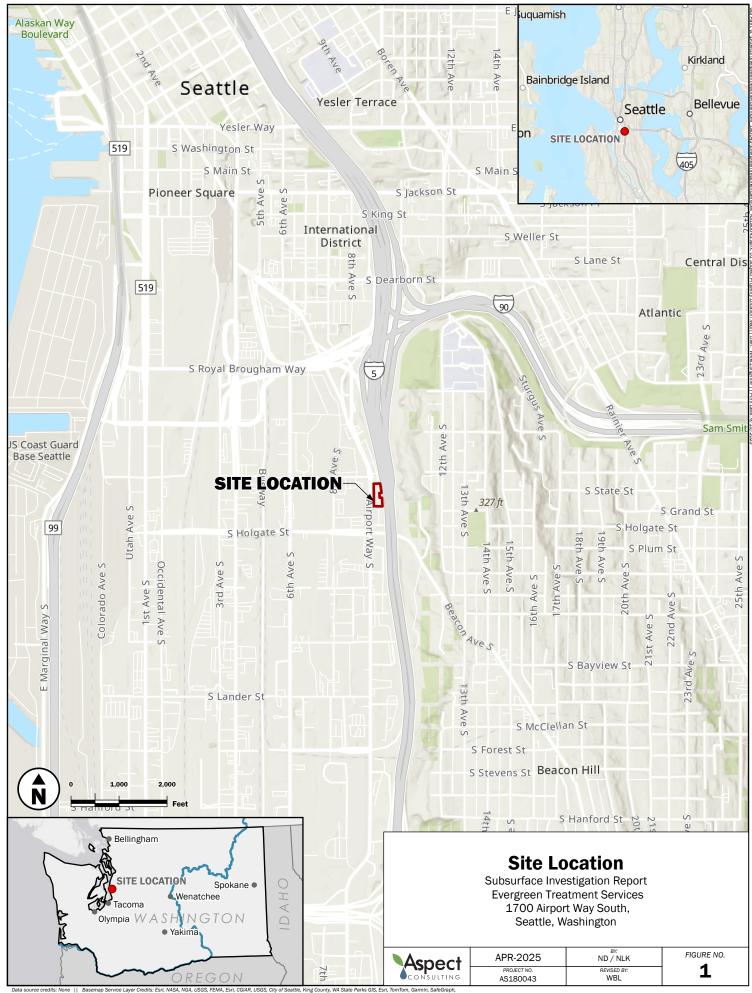
Table 3b. Groundwater Analytical ResultsProject No. AS180043, Evergreen Treatment Services, Seattle, WA

			Lo	ocation Name	AM	W-1	AM	N-2	AM	W-3	AM	W-4	AMW-5
	Sample Date			12/17/2018	11/05/2024	12/17/2018	11/05/2024	12/17/2018	11/05/2024	12/17/2018	11/05/2024	11/05/2024	
			MTCA	MTCA						-	•		•
			Method A	Method B		Results in micrograms per liter (ug/L)							
Analyte		Fraction	CUL	CUL									
Notes and Def	Notes and Definitions:												
MTCA	Model Toxics Control Act												
CUL	Cleanup Level												
ne	Indicated cleanup lev	el is not ye	t established.										
	Not analyzed.												
U	Analyte was not dete	cted at a co	oncentration gro	eater than the in	dicated laborator	y reporting limit.							
J	The reported conceer	ntration is a	an estimate. Se	e laboratory rep	ort for details.								
UJ	Analyte was not detected at a concentration greater than the indicated reporting limit and the reporting limit is estimated.												
Bold	Analyte detected at a concetration greater than the laboratory reporting limit.												
Red Bold	Bold Detected concentration exceeds the Model Toxics Control Act (MTCA) Method B Cleanup Level but not the MTCA Method B Cleanup Level.												
Blue Shaded	aded Detected concentration exceeds the Model Toxics Control Act (MTCA) Method A Cleanup Level, or the MTCA Method B Cleanup Level if Method A is not established.												

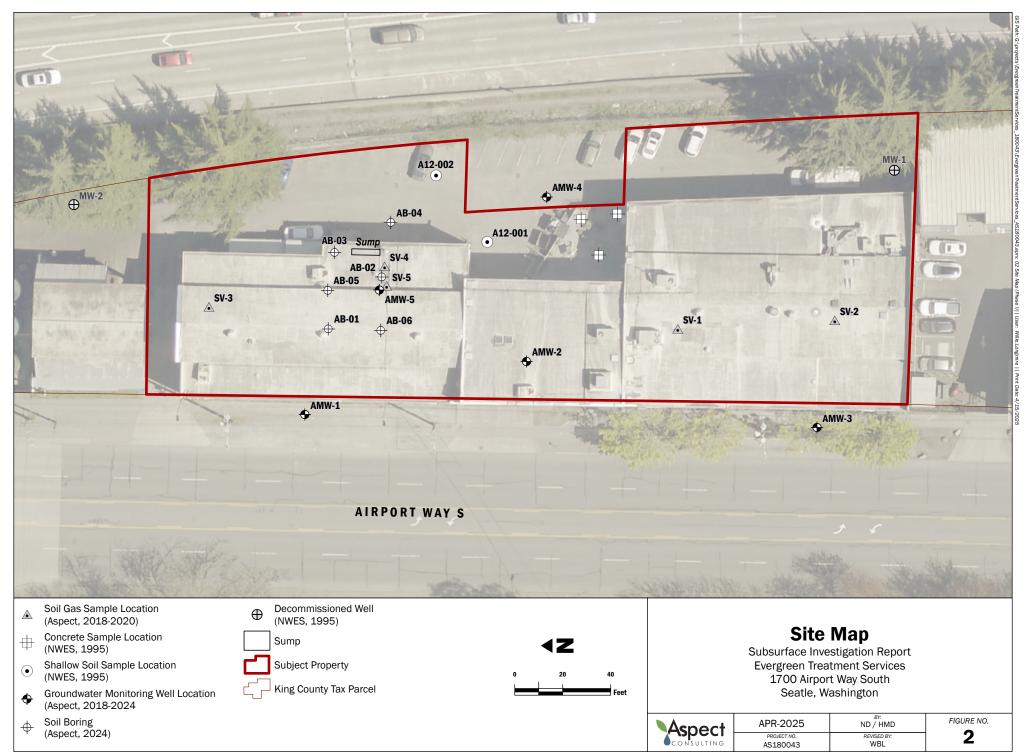
Table 3b Subsurface Investigation Report Page 3 of 3

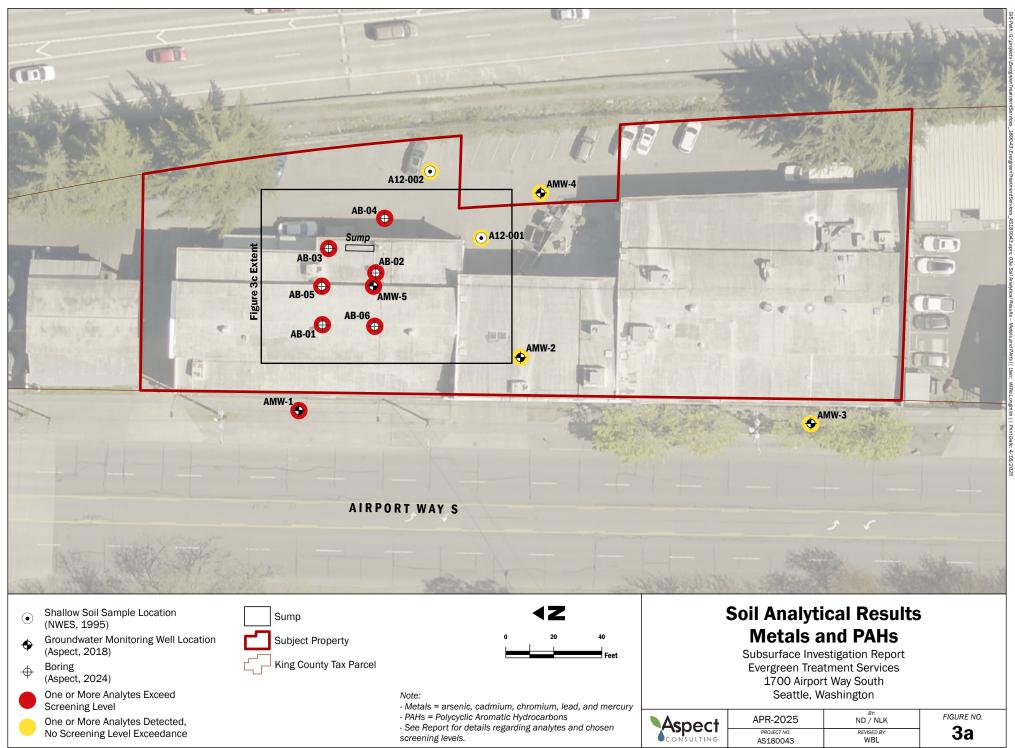
Table 4. Summary of Radon Test Results

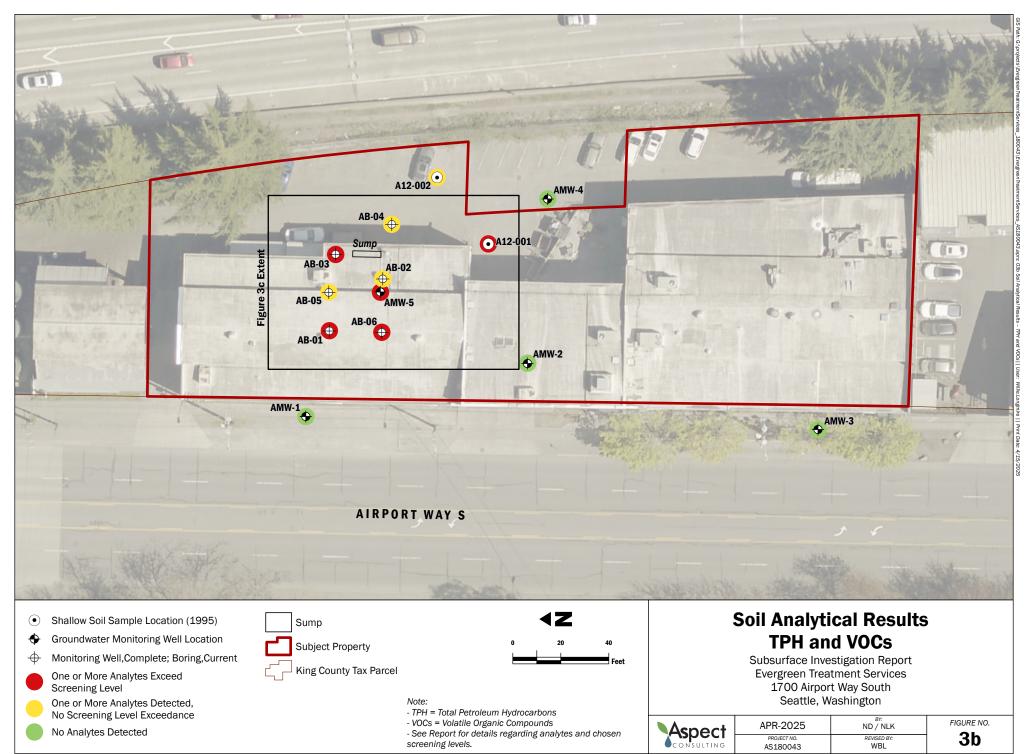
Project No. AS180043, Evergreen Treatment Services, Seattle, Washington

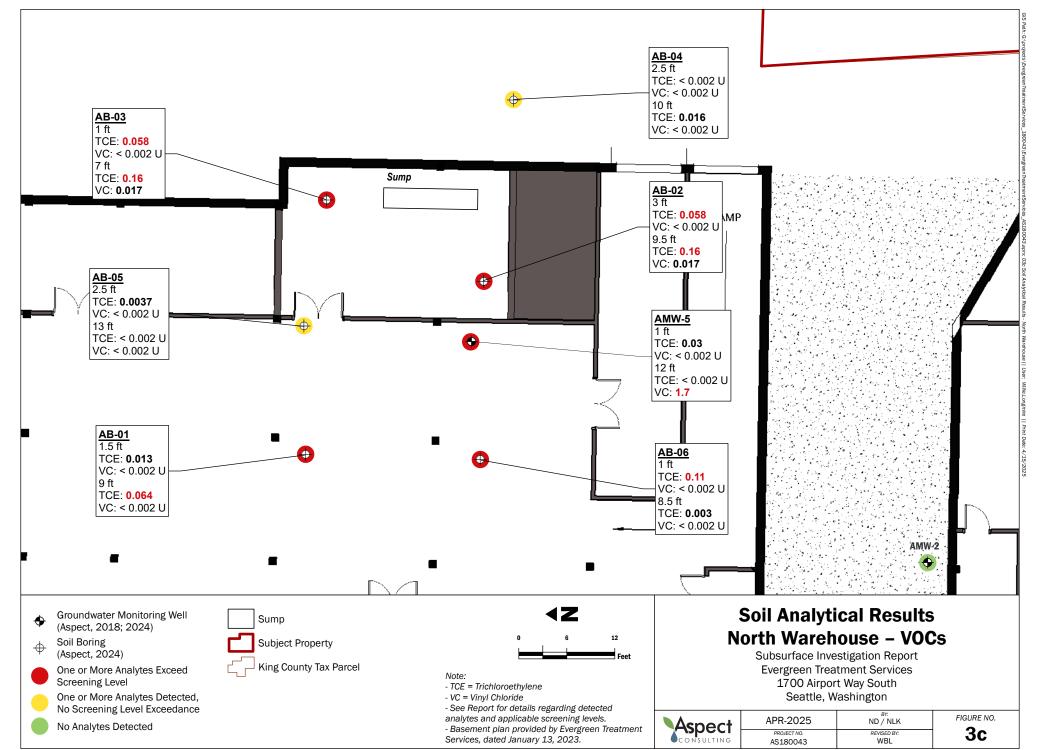

Location	Test Area	Radon Test Device Number	Test Start	Test End	Total Time (Hours)	Result (pCi/L)
Preliminary Radon		Number	Test Start		(110013)	(ponc)
	North Warehouse Basement	5071311	11/19/24 8:00 AM	11/21/2024 10:00AM	50.0	< 0.4
1700 Airport Way S	South Warehouse Basement	5110881	11/19/24 8:00 AM	11/21/2024 10:00AM	50.0	< 0.4
	Courtyard (Outdoors)	5110880	11/19/24 8:00 AM	11/21/2024 10:00AM	50.0	< 0.4
United States Environmental Protection Agency (EPA) Action Level: 4.0						

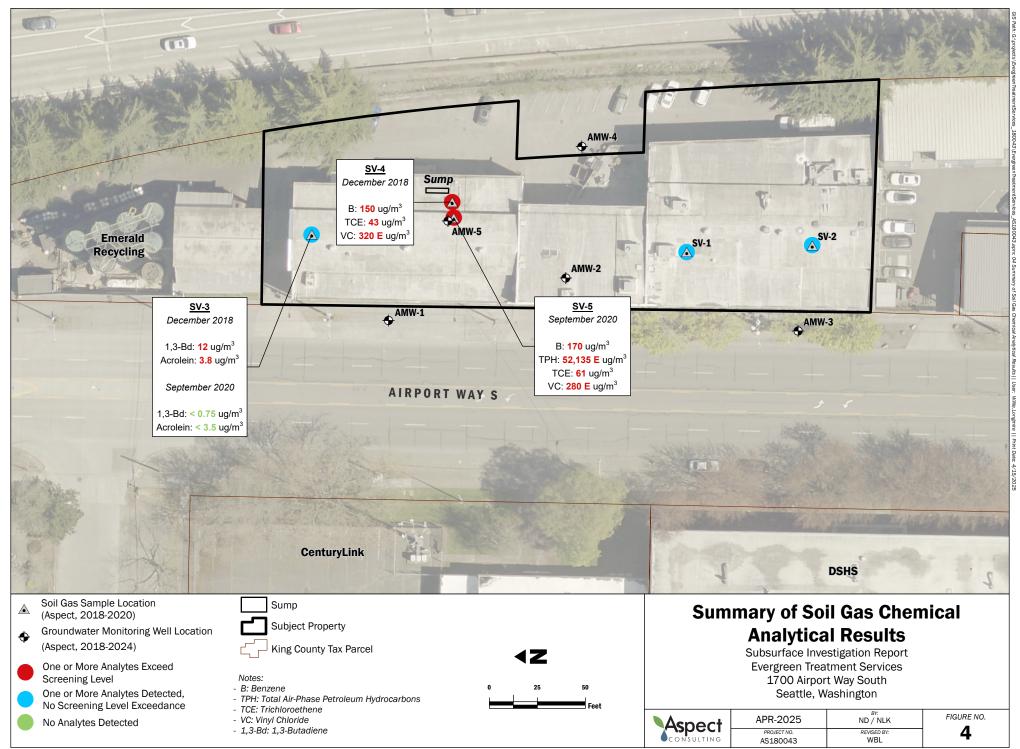
Notes and Definitions:

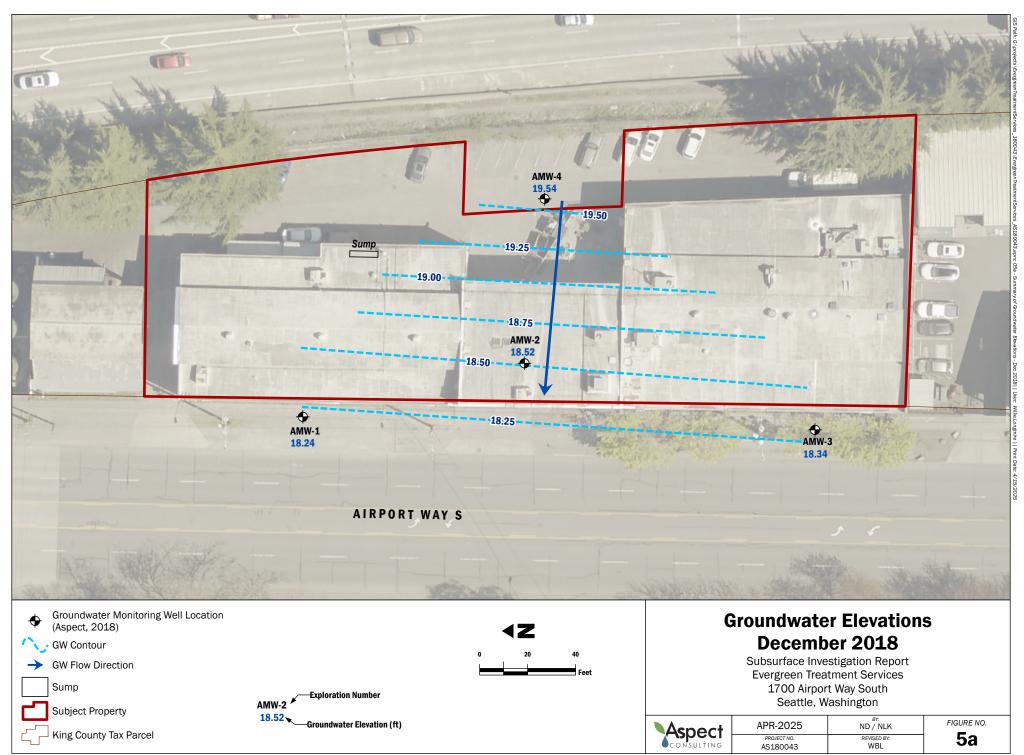

pCi/L picocuries per liter

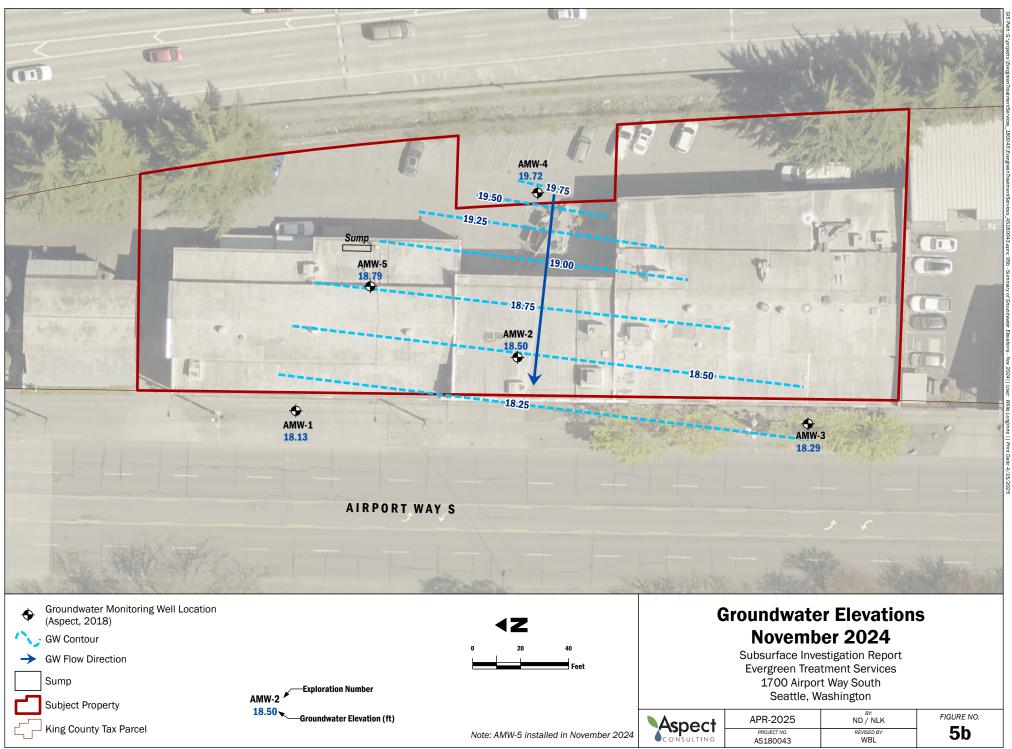

< Detected radon activity was less than the indicated laboratory reporting limit.

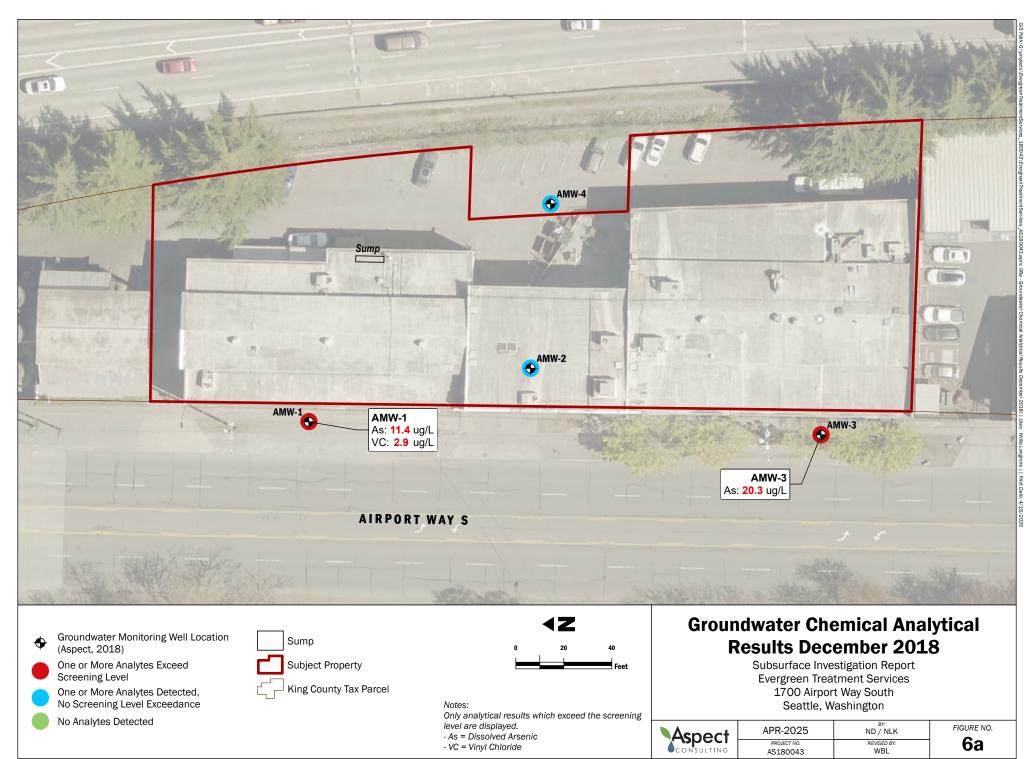

FIGURES

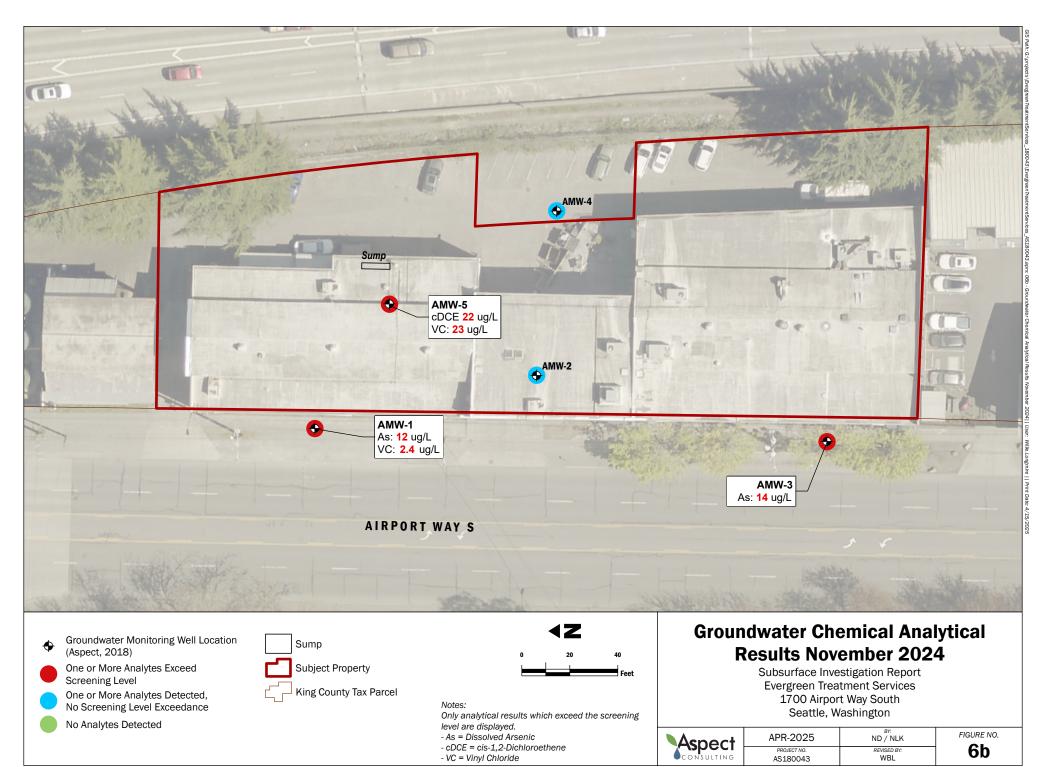


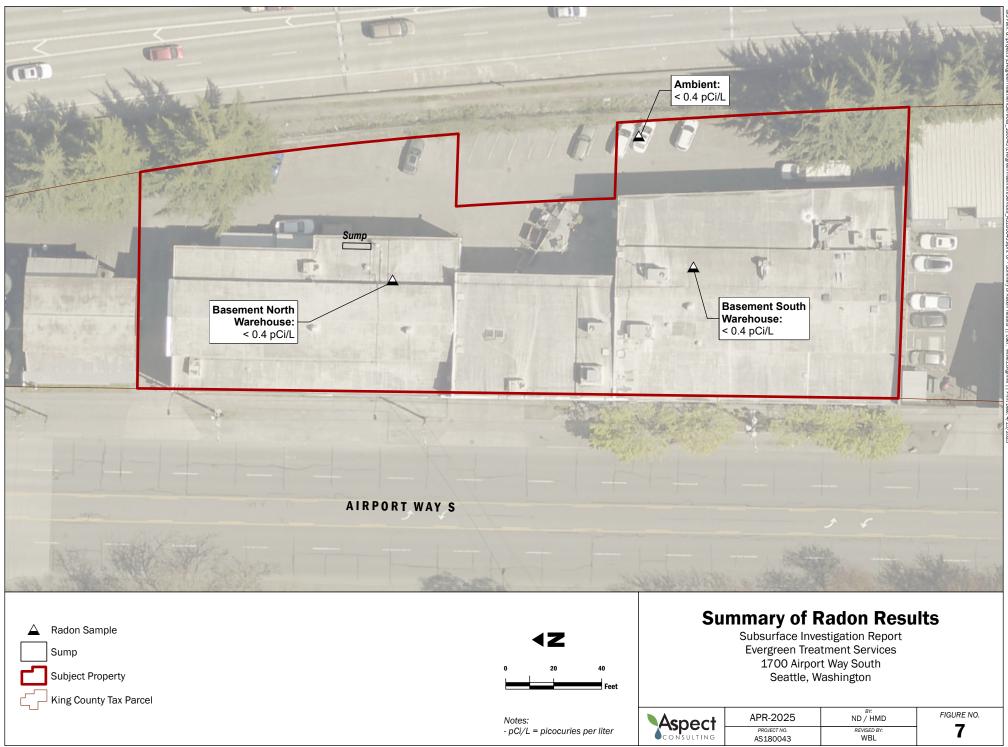

Data source credits: None || Basemap Service Layer Credits: Esri, NASA, NGA, USGS, FEMA, Esri, CGIAR, USGS, City of Seattle, King County, WA State Parks GIS, Esri, TomTom, Garmin, Safet FAO, MET/WASA, USGS, Bureau of Land Management, EPA, NPS, USFWS, WSU Faolities Services GIS, City of Seattle, King County, WA State Parks GIS, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Im, MET/MASA, USGS, Bureau of Land Management, FEA, NPS, USFWS, Birai, NetS, Era, NPS, Servi, HeEB, Garmin, USGS, EPA, NPS








Data source credits: DLC / EAC / SCC || Basemap Service Layer Credits: EagleView Technologies, Inc.



Data source credits: None || Basemap Service Layer Credits: EagleView Technologies, Inc.

APPENDIX A

Previous Environmental Reports

APPENDIX B

Laboratory and Survey Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 19, 2018

Dana Cannon, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Cannon:

Included are the results from the testing of material submitted on December 11, 2018 from the Evergreen Treatment Services 180043, F&BI 812129 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Kristin Beck ASP1219R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 11, 2018 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Evergreen Treatment Services 180043, F&BI 812129 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
812129 -01	AMW-1-2.5
812129 -02	AMW-1-12.5
812129 -03	AMW-2-2.5
812129 -04	AMW-2-5.5
812129 -05	AMW-2-19.5
812129 -06	AMW-3-5.0
812129 -07	AMW-3-10.0
812129 -08	AMW-3-15.0
812129 -09	AMW-4-2.5
812129 -10	AMW-4-8.0
812129 -11	AMW-4-14.0
812129 -12	AMW-4-19.0

A 6020A internal standard failed the acceptance criteria for sample AMW-1-12.5 due to matrix interferences. The data were flagged accordingly. The sample was diluted and reanalyzed.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129 Date Extracted: 12/12/18 Date Analyzed: 12/12/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
AMW-1-12.5 812129-02	<5	87
AMW-2-2.5 812129-03	<5	83
AMW-2-5.5 812129-04	<5	83
AMW-3-5.0 812129-06	<5	85
AMW-4-2.5 812129-09	<5	82
AMW-4-8.0 812129-10	<5	83
Method Blank 08-2777 MB	<5	87

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129 Date Extracted: 12/12/18 Date Analyzed: 12/12/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
AMW-1-12.5 812129-02	<50	<250	83
AMW-2-2.5 812129-03	<50	<250	91
AMW-2-5.5 812129-04	<50	<250	90
AMW-3-5.0 812129-06	<50	<250	84
AMW-4-2.5 812129-09	<50	<250	83
AMW-4-8.0 812129-10	<50	<250	91
Method Blank 08-2786 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-12.5 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-02 812129-02.093 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	27.8		
Cadmium	2.00		
Chromium	22.2		
Copper	404		
Lead	3,740 ve J		
Mercury	<1 J		
Nickel	19.6		
Zinc	911		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	AMW-1-12.5 12/11/18 12/14/18	Client: Project: Lab ID:	Aspect Consulting, LLC Evergreen Treatment Services 812129-02 x25
Date Extracted. Date Analyzed: Matrix:	12/14/18 12/17/18 Soil	Data File: Instrument:	812129-02 x25 812129-02 x25.033 ICPMS2
Units:	son mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	4,720		

5

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-2.5 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-03 812129-03.094 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	6.93		
Cadmium	<1		
Chromium	42.6		
Copper	28.7		
Lead	35.3		
Mercury	<1		
Nickel	44.0		
Zinc	66.8		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3-5.0 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-06 812129-06.095 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.39		
Cadmium	<1		
Chromium	34.1		
Copper	29.8		
Lead	5.21		
Mercury	<1		
Nickel	49.7		
Zinc	48.8		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-2.5 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-09 812129-09.108 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.59		
Cadmium	<1		
Chromium	18.2		
Copper	22.0		
Lead	32.1		
Mercury	<1		
Nickel	21.5		
Zinc	71.2		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-8.0 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-10 812129-10.109 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	23.4		
Copper	11.4		
Lead	7.35		
Mercury	<1		
Nickel	35.7		
Zinc	25.7		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 12/14/18 12/14/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services I8-860 mb I8-860 mb.057 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	<1		
Mercury	<1		
Nickel	<1		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3-5.0 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-06 1/5 121407.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 76 73	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthene		< 0.01		
Benzo(k)fluoranther		< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrace	ene	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-2.5 12/11/18 12/14/18 12/14/18 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 812129-09 1/5 121408.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 84 89	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Benz(a)anthracene		0.013		
Chrysene		0.017		
Benzo(a)pyrene		0.020		
Benzo(b)fluoranther	ne	0.028		
Benzo(k)fluoranther		< 0.01		
Indeno(1,2,3-cd)pyre		0.018		
Dibenz(a,h)anthrac	ene	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 12/14/18 12/14/18 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen Treatment Services 08-2796 mb 1/5 121406.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 81 83	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthene		< 0.01		
Benzo(k)fluoranthene		< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-12.5 12/11/18 12/12/18 12/12/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Ll Evergreen Treatment 812129-02 121208.D GCMS4 JS	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-c	14	101	62	142	
Toluene-d8		97	55	145	
4-Bromofluorobenzer	ne	103	65	139	
Compounds:		Concentration mg/kg (ppm)	Compour	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet	hane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibro	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluorometh	ane	< 0.5	Ethylber		< 0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		< 0.1
Hexane		<0.25	o-Xylene	1	< 0.05
Methylene chloride		<0.5	Styrene		< 0.05
Methyl t-butyl ether		< 0.05	Isopropy		< 0.05
trans-1,2-Dichloroet	hene	< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propyl		< 0.05
2,2-Dichloropropane		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroether	ne	< 0.05		methylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		< 0.5		chloropropane	< 0.05
1,2-Dichloroethane (< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroethan	ie	<0.05 <0.05	4-Chloro		<0.05 <0.05
1,1-Dichloropropene Carbon tetrachloride		<0.05 <0.05		ylbenzene methylbenzene	<0.03 <0.05
Benzene		< 0.03		Ibenzene	<0.05 <0.05
Trichloroethene		< 0.03		oyltoluene	< 0.05
1,2-Dichloropropane		<0.02		lorobenzene	<0.05
Bromodichlorometha		<0.05		lorobenzene	<0.05
Dibromomethane		<0.05		lorobenzene	<0.05
4-Methyl-2-pentanor	le	<0.5		omo-3-chloropropane	<0.5
cis-1,3-Dichloroprop		<0.05		chlorobenzene	<0.25
Toluene		<0.05		orobutadiene	<0.25
trans-1,3-Dichloropr	opene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroethan		< 0.05	-	chlorobenzene	<0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-8.0 12/11/18 12/12/18 12/12/18 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Ll Evergreen Treatment 812129-10 121209.D GCMS4 JS	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-o	14	101	62	142	
Toluene-d8		100	55	145	
4-Bromofluorobenzer	ne	106	65	139	
Compounds:		Concentration mg/kg (ppm)	Compour	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet	hane	<0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibro	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluorometh	ane	<0.5	Ethylber		< 0.05
Acetone		<0.5		etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		<0.1
Hexane		<0.25	o-Xylene	1	< 0.05
Methylene chloride		<0.5	Styrene		< 0.05
Methyl t-butyl ether		< 0.05	Isopropy		< 0.05
trans-1,2-Dichloroet	hene	< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propyl		< 0.05
2,2-Dichloropropane		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroether	ne	< 0.05		methylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		< 0.5		chloropropane	< 0.05
1,2-Dichloroethane (1,1,1-Trichloroethan		<0.05 <0.05	2-Chloro 4-Chloro		<0.05 <0.05
1,1-Dichloropropene	le	<0.05 <0.05		ylbenzene	<0.03 <0.05
Carbon tetrachloride	``	<0.05 <0.05		methylbenzene	<0.03 <0.05
Benzene	5	< 0.03		Ibenzene	<0.05
Trichloroethene		< 0.03	Ū.	oyltoluene	<0.05
1,2-Dichloropropane		< 0.02		lorobenzene	<0.05
Bromodichlorometha		< 0.05		lorobenzene	<0.05
Dibromomethane	ane	<0.05		lorobenzene	< 0.05
4-Methyl-2-pentanor	ne	<0.5		omo-3-chloropropane	<0.5
cis-1,3-Dichloroprop		<0.05		chlorobenzene	<0.25
Toluene		< 0.05		orobutadiene	<0.25
trans-1,3-Dichloropr	opene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroethan		< 0.05		chlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 12/12/18 12/12/18 Soil mg/kg (ppn		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Ll Evergreen Treatment 08-2753 mb2 121207.D GCMS4 JS	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-	d4	100	62	142	
Toluene-d8		97	55	145	
4-Bromofluorobenze	ne	101	65	139	
Compounds:		Concentration mg/kg (ppm)	Compour	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet	hane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5		oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibro	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluorometh	nane	< 0.5	Ethylber		< 0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		< 0.1
Hexane		< 0.25	o-Xylene	1	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.05	Isopropy		< 0.05
trans-1,2-Dichloroet	thene	< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	15		< 0.05
2,2-Dichloropropane		< 0.05			< 0.05
cis-1,2-Dichloroethe	ne	< 0.05		methylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		< 0.5		chloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		<0.05 <0.05	4-Chloro		<0.05 <0.05
1,1-Dichloropropene Carbon tetrachlorid		<0.05 <0.05		ylbenzene methylbenzene	<0.03 <0.05
Benzene	e	< 0.03		Ibenzene	<0.03 <0.05
Trichloroethene		< 0.03		oyltoluene	<0.05 <0.05
1,2-Dichloropropane	``````````````````````````````````````	< 0.02		lorobenzene	<0.05
Bromodichlorometh		< 0.05		lorobenzene	<0.05
Dibromomethane	and	< 0.05		lorobenzene	<0.05
4-Methyl-2-pentano	ne	<0.5		omo-3-chloropropane	<0.5
cis-1,3-Dichloroprop		<0.05		chlorobenzene	<0.25
Toluene		<0.05		orobutadiene	<0.25
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha		< 0.05	1	ichlorobenzene	<0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 812139-28 (Duplicate)							
			Du	plicate			
		Sample R	lesult R	esult	RPD		
Analyte	Reporting Units	(Wet V	Vt) (W	et Wt)	(Limit 20)		
Gasoline	mg/kg (ppm)	<5		<5	nm		
Laboratory Code: L	aboratory Control	Sample					
			Percent				
		Spike	Recovery	Acceptance			
Analyte	Reporting Units	Level	LCS	Criteria	_		
Gasoline	mg/kg (ppm)	20	105	71-131	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 812129-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	88	100	64-133	13
Laboratory Code: Laboratory Control Sample							
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	94	58-1	47		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 812190-01 (Matrix Spike)

Laboratory Code	e: 812190-01 (Ma	trix Spike)				
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	4.23	110	107	75-125	3
Cadmium	mg/kg (ppm)	10	<1	109	104	75-125	5
Chromium	mg/kg (ppm)	50	6.42	102	101	75-125	1
Copper	mg/kg (ppm)	50	<5	97	96	75-125	1
Lead	mg/kg (ppm)	50	3.91	107	104	75-125	3
Mercury	mg/kg (ppm	5	<1	108	108	75-125	0
Nickel	mg/kg (ppm)	25	5.06	101	96	75-125	5
Zinc	mg/kg (ppm)	50	10.8	96	91	75-125	5

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	104	80-120
Cadmium	mg/kg (ppm)	10	107	80-120
Chromium	mg/kg (ppm)	50	110	80-120
Copper	mg/kg (ppm)	50	109	80-120
Lead	mg/kg (ppm)	50	109	80-120
Mercury	mg/kg (ppm)	5	108	80-120
Nickel	mg/kg (ppm)	25	113	80-120
Zinc	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 812129-09 1/5 (Matrix Spike)

Laboratory Couc. 012120	oo iyo (maarix op	inc)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	0.012	93	23-144
Chrysene	mg/kg (ppm)	0.17	0.016	88	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.026	107	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	98	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	0.019	100	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	0.018	89	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	87	31-146

Laboratory Code: Laboratory Control Sample 1/5

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	89	89	51-115	0
Chrysene	mg/kg (ppm)	0.17	92	92	55-129	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	101	101	56-123	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	99	97	54-131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	88	86	51-118	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	98	95	49-148	3
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	97	97	50-141	0

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 812128-09 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	26	27	10-142	4
Chloromethane	mg/kg (ppm)	2.5	<0.5	53	53	10-126	0
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	58	61	10-138	5
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.5	61 69	67 71	10-163 10-176	9 3
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	67	68	10-176	1
Acetone	mg/kg (ppm)	12.5	<0.5	85	84	10-163	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	<0.05	76	76	10-160	0
Hexane	mg/kg (ppm)	2.5	< 0.25	63	65	10-137	3
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	103	106	10-156	3
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	89	90	21-145	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	84	84	14-137	0
1,1-Dichloroethane	mg/kg (ppm)	2.5 2.5	<0.05	87	88	19-140	1
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05 <0.05	86 89	87 90	10-158 25-135	1
Chloroform	mg/kg (ppm)	2.5	<0.05	92	93	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	88	87	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	92	92	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	91	92	10-156	1
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	88	89	17-140	1
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	98	99	9-164	1
Benzene	mg/kg (ppm)	2.5	< 0.03	86	87	29-129	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	85	86	21-139	1
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	93 97	95 98	30-135 23-155	2 1
Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	97 89	98 89	23-155	0
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.05	96	97	23-145	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	<0.05	94	94	28-144	0
Toluene	mg/kg (ppm)	2.5	< 0.05	88	88	35-130	0
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	93	93	26-149	0
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	91	92	10-205	1
2-Hexanone	mg/kg (ppm)	12.5	<0.5	93	93	15-166	0
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	94	95	31-137	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	86	87	20-133	1
Dibromochloromethane 1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	103 91	104 91	28-150 28-142	1 0
Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05	91 90	91 91	28-142 32-129	0
Ethylbenzene	mg/kg (ppm)	2.5	<0.05	90	91	32-125	1
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	<0.05	99	99	31-143	0
m,p-Xylene	mg/kg (ppm)	5	<0.1	88	89	34-136	1
o-Xylene	mg/kg (ppm)	2.5	< 0.05	91	91	33-134	0
Styrene	mg/kg (ppm)	2.5	< 0.05	91	92	35-137	1
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	92	92	31-142	0
Bromoform	mg/kg (ppm)	2.5	< 0.05	107	107	21-156	0
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	94	95	23-146	1
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	93 94	94 95	34-130 18-149	1 1
1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	94 95	93 97	28-149	2
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	<0.05	95	96	25-140	1
2-Chlorotoluene	mg/kg (ppm)	2.5	<0.05	92	93	31-134	1
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	93	95	31-136	2
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	92	93	30-137	1
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	92	94	10-182	2
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	92	93	23-145	1
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	93	94	21-149	1
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	90	92	30-131	2
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	90 90	92 91	29-129 31-132	2 1
1,2-Dichiorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.5	90 95	91 97	31-132 11-161	1 2
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	93 86	89	22-142	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	89	90	10-142	1
Naphthalene	mg/kg (ppm)	2.5	<0.05	86	87	14-157	1
				85	87		2

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812129

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory C	ond of Bample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	52	10-146
Chloromethane	mg/kg (ppm)	2.5	70	27-133
Vinyl chloride	mg/kg (ppm)	2.5	80	22-139
Bromomethane	mg/kg (ppm)	2.5	77	38-114
Chloroethane	mg/kg (ppm)	2.5	88	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5 12.5	90 94	10-196 52-141
Acetone 1,1-Dichloroethene	mg/kg (ppm)	2.5	94 92	47-128
Hexane	mg/kg (ppm) mg/kg (ppm)	2.5	92 87	43-142
Methylene chloride	mg/kg (ppm)	2.5	99	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	101	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	67-127
1.1-Dichloroethane	mg/kg (ppm)	2.5	100	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	100	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	102	72-113
Chloroform	mg/kg (ppm)	2.5	104	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	96	57-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	104	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	106	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	102	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	115	60-139
Benzene	mg/kg (ppm)	2.5 2.5	98 97	68-114
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm)	2.5	97 104	64-117 72-127
Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2.5	104	72-127
Dibromomethane	mg/kg (ppm)	2.5	100	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	100	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	103	75-136
Toluene	mg/kg (ppm)	2.5	98	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	102	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	101	75-113
2-Hexanone	mg/kg (ppm)	12.5	101	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	105	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	96	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	114	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	102	74-132
Chlorobenzene	mg/kg (ppm)	2.5 2.5	101	76-111
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	100 110	64-123 69-135
m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5	97	78-122
o-Xylene	mg/kg (ppm)	2.5	100	77-124
Styrene	mg/kg (ppm)	2.5	100	74-126
Isopropylbenzene	mg/kg (ppm)	2.5	101	76-127
Bromoform	mg/kg (ppm)	2.5	119	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	103	74-124
Bromobenzene	mg/kg (ppm)	2.5	102	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	103	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	106	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	105	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	101	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	103	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	102	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	101	76-125
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103 102	71-130 70-132
1,3-Dichlorobenzene		2.5	102	70-132 75-121
1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	99	75-121 74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	100	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	96	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	98	50-153
Naphthalene	mg/kg (ppm)	2.5	96	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	95	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

DATE 12/1/18						Received by:	Ph. (206) 285-8282
DATE CA/18	FPH	anglain	Mitt-1	8	ant the	Relinquished by:	ی
DATE	10 Maria	1 LACA			Latter	Received by:	
	COMPANY	T NAME	PRINT N	*	NATURE	Relinquished by:	Friedman & Bruya, Inc.
Anpiek redeived at 3 °C				1550	¢	09 1	Amw-4-2.5
				1009		80	Amw-3-15.0
				09576		ťo	Amw-3-10.0
\times	X	XX.		0930		90	Amw-3-5.0
Mr.				1520		50	Amw-2-19.5
12/11/16		XX		1202		8	Amm-2-515
X X-DE DC		XX		1450		03	Amw-2-2,5
	X	XX		8021		02 A-E	Amw-1-12.5
a & an not real				- INAS			Amin 1-8.5
			Sail 5	1025	12/9/18	OI A-E	Amw-1-2.5
Metals - V (As, Cd, Cr, U, Ht. Pb, N.	VOCs by 8260C SVOCs by 8270D PAHS 8270D SIM CPAHS Metals	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B	Sample # of Type Jars	Time Sampled	Date Sampled	Lab ID	Sample ID
D Archive Samples	Payabk		HIGH SE MUL	F		Emaíl	Phone En
SAMPLE DISPOSAL R Dispose after 30 days	INVOICE TO)		REMARKS	48/04	ly WA 9	City, State, ZIP Lat
KStandard Turnaround RUSH Rush charges authorized by:	PO# 1/PU#J	ent Service	Everghan Treatment	PROJECT NAME Evergran Tr	2	he Suites	Company Alyert Cansulting Address 710 2nd Arc, Suite 550
Page # 1 of 2		Kr AB	SAMPLERS (signature)	SAMPLE	Beck	n E Kalutio	Report To Daya Cantain & Kristin Beck

F.n. (ZUB) 283-8282	2029		Friedman & Bruva Inc.				14mw - 4-19.0	Anw -4-140	1	Sample ID		Phone En		Address	Comment Activity Pra Gitting	Report To Dava any and Kriftin	
Kecetred by:	Relinquished by:	Received by:	SIQNATU Relinquished by: V				12/13/		10 MAR 12/10/18	Lab ID Date Sampled		Email		J	a aittino	812129 M. Krithin Bec	
	(Here 1					1525	1523	1506	Time Sampled			REMARKS	Freighe	PROJECT NAME	SAMPLE (
	Witt Lay	A WING	PRINT NAM				4		soil 5 >	Sample Jars TPH-HCID		Please toto	V	Everyneen Treatment	NAME	SAMPLE CHAIN OF CUSTODY	
	ucition	ech + -	AE /	<u>v</u> 2					\mathbf{X}	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by 8260C SVOCs by 8270D	ANALYSE		/	Somices 180043	P	TODY	
	Flhac	Aged	COMPANY	Samples received at					· ×	PAHD 8270D SIM CPAtts Metals –	ANALYSES REQUESTED				PO#	81/11/E1 24	
	230 9/1/14	12/11/18 082	DATE TIME	0° <						Cu, Ha, Pb, Ni,		Dispose after 30 days I Archive Samples I Other	SAMPLE DISPOSAL	D'RUSH Rush charges authorized by:	urd Turnaround	123/pas	
L	<u> </u>					L	1	<u> </u>				1			Anni- ini-	T 6	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 19, 2018

Dana Cannon, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Cannon:

Included are the results from the testing of material submitted on December 11, 2018 from the Evergreen Treatment Services 180043, F&BI 812130 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Kristin Beck ASP1219R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 11, 2018 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Evergreen Treatment Services 180043, F&BI 812130 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
812130 -01	SV-1
812130 -02	SV-2
812130 -03	SV-3
812130 -04	SV-4

The TO-15 ethanol concentration for sample SV-1, ethanol and acetone for sample SV-3, and several other compounds for sample SV-4 exceeded the calibration range. In addition, calibration standard for tetrahydrofuran did not pass the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SV-1 12/11/1 12/10/1 12/12/1 Air ug/m3	8	Inst	ect:	Aspect Consulting, I Evergreen Treatmer 812130-01 1/1.4 121120.D GCMS7 BAT/MS		0043
Surrogates: 4-Bromofluorobenz		% Recovery: 114	Lower Limit: 70	Upper Limit: 130			
		Concent Concent					
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene	.1	<1	< 0.56		chloropropane	0.90	0.19
Dichlorodifluorome	ethane	2.9	0.60	1,4-Dic		< 0.5	< 0.14
Chloromethane		<2.9	<1.4		rimethylpentane	<6.5	<1.4
F-114		< 0.98	< 0.14		l methacrylate	<5.7	<1.4
Vinyl chloride		< 0.36	< 0.14	Heptar		11	2.6
1,3-Butadiene		< 0.03	< 0.04		dichloromethane	< 0.094	< 0.014
Butane		15	6.5		proethene	26	4.9
Bromomethane		<2.2 <3.7	$<\!$		Dichloropropene	$<\!$	<0.14 <1.4
Chloroethane Vinyl bromide		< 3.7 < 0.61	<1.4 <0.14		yl-2-pentanone , 3-Dichloropropene	<0.64	<1.4 <0.14
Vinyl bromide Ethanol		<0.01 280 ve	<0.14 150 ve	Toluen		< 0.04	<0.14 6.7
Acrolein		<1.3	<0.56		richloroethane	< 0.15	<0.028
Pentane		1.3	<0.50 4.2	2-Hexa		<0.13	<0.028
Trichlorofluoromet	hano	<3.1	<0.56		hloroethene	<9.5	<1.4 <1.4
Acetone	liane	130	<0.50 54		nochloromethane	< 0.12	<0.014
2-Propanol		66	27		promoethane (EDB)	< 0.12	< 0.014
1,1-Dichloroethene		< 0.56	< 0.14		benzene	< 0.64	< 0.14
trans-1,2-Dichloroe		< 0.56	< 0.14		enzene	5.6	1.3
Methylene chloride		<120	<35		-Tetrachloroethane	< 0.19	< 0.028
t-Butyl alcohol (TB		<17	<5.6	Nonan		<7.3	<1.4
3-Chloropropene)	<1.8	< 0.56		ylbenzene	<3.4	< 0.7
CFC-113		<1.1	< 0.14		rotoluene	<7.2	<1.4
Carbon disulfide		<8.7	<2.8		benzene	<3.4	< 0.7
Methyl t-butyl ethe	er (<2.5	<0.7		ltoluene	<3.4	< 0.7
Vinyl acetate	·	<9.9	<2.8	m,p-Ňy		20	4.6
1,1-Dichloroethane	<u>.</u>	< 0.57	< 0.14	o-Xyler		7.0	1.6
cis-1,2-Dichloroeth	ene	< 0.56	< 0.14	Styren	e	<1.2	< 0.28
Hexane		13	3.8	Bromo		<2.9	< 0.28
Chloroform		0.46	0.095	Benzyl	chloride	< 0.072	< 0.014
Ethyl acetate		<10	<2.8		rimethylbenzene	<3.4	<0.7
Tetrahydrofuran		21 ca	7.0 ca		rimethylbenzene	<3.4	<0.7
2-Butanone (MEK)		17	5.6		hlorobenzene	< 0.84	< 0.14
1,2-Dichloroethane		< 0.057	< 0.014		hlorobenzene	< 0.34	< 0.056
1,1,1-Trichloroetha		< 0.76	< 0.14		hlorobenzene	< 0.84	< 0.14
Carbon tetrachlorid	de	< 0.88	< 0.14		richlorobenzene	<1	< 0.14
Benzene		3.8	1.2	Napht		< 0.73	< 0.14
Cyclohexane		<9.6	<2.8	Hexacl	nlorobutadiene	< 0.3	< 0.028

ENVIRONMENTAL CHEMISTS

	Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SV-2 12/11/1 12/10/1 12/12/1 Air ug/m3	8	Inst	ect:	Aspect Consulting, I Evergreen Treatmer 812130-02 1/1.5 121121.D GCMS7 BAT/MS		0043
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			%	Lower	Upper			
				Limit:	Limit:			
	4-Bromofluorobenz	ene	98	70	130			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compounds:				Compo	unds:	ug/m3	ppbv
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dropono		-1	<0 6	1906	hlarannanana	0.95	0.19
$\begin{array}{llllllllllllllllllllllllllllllllllll$		thang						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		thane						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			< 0.66					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			140	75			25	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Acrolein		<1.4	< 0.6	1,1,2-T	richloroethane	< 0.16	< 0.03
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pentane		16	5.4	2-Hexa	none	<6.1	<1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trichlorofluoromet	hane	<3.4	< 0.6	Tetrac	hloroethene	<10	<1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acetone				Dibron	nochloromethane	< 0.13	
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Methylene chloride<130<371,1,2,2-Tetrachloroethane<0.21<0.03t-Butyl alcohol (TBA)<18								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A)						
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Methyl t-butyl ether (< 2.7 < 0.75 4 -Ethyltoluene < 3.7 < 0.75 Vinyl acetate < 11 < 3 m, p -Xylene 18 4.2 $1, 1$ -Dichloroethane < 0.61 < 0.15 o -Xylene 6.2 1.4 cis- $1, 2$ -Dichloroethene < 0.59 < 0.15 Styrene < 1.3 < 0.3 Hexane 18 5.2 Bromoform < 3.1 < 0.3 Chloroform 0.61 0.12 Benzyl chloride < 0.078 < 0.015 Ethyl acetate < 11 < 3 $1, 3, 5$ -Trimethylbenzene < 3.7 < 0.75 Tetrahydrofuran 21 ca 7.0 ca $1, 2, 4$ -Trimethylbenzene < 3.7 < 0.75 2-Butanone (MEK) 13 4.4 $1, 3$ -Dichlorobenzene < 0.9 < 0.15 $1, 2$ -Dichloroethane < 0.82 < 0.15 $1, 2$ -Dichlorobenzene < 0.9 < 0.15 Carbon tetrachloride < 0.94 < 0.15 $1, 2, 4$ -Trichlorobenzene < 1.1 < 0.15 Benzene 4.1 1.3 Naphthalene < 0.79 < 0.15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		er (0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
Hexane18 5.2 Bromoform <3.1 <0.3 Chloroform 0.61 0.12 Benzyl chloride <0.078 <0.015 Ethyl acetate <11 <3 $1,3,5$ -Trimethylbenzene <3.7 <0.75 Tetrahydrofuran 21 ca 7.0 ca $1,2,4$ -Trimethylbenzene <3.7 <0.75 2-Butanone (MEK) 13 4.4 $1,3$ -Dichlorobenzene <0.9 <0.15 $1,2$ -Dichloroethane (EDC) <0.061 <0.015 $1,4$ -Dichlorobenzene <0.36 <0.06 $1,1,1$ -Trichloroethane <0.82 <0.15 $1,2$ -Dichlorobenzene <0.9 <0.15 Carbon tetrachloride <0.94 <0.15 $1,2,4$ -Trichlorobenzene <1.1 <0.15 Benzene 4.1 1.3 Naphthalene <0.79 <0.15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ene						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccc} 1,1,1\mbox{-}Trichloroethane & <0.82 & <0.15 & 1,2\mbox{-}Dichlorobenzene & <0.9 & <0.15 \\ Carbon tetrachloride & <0.94 & <0.15 & 1,2,4\mbox{-}Trichlorobenzene & <1.1 & <0.15 \\ Benzene & 4.1 & 1.3 & Naphthalene & <0.79 & <0.15 \\ \end{array} $								
Carbon tetrachloride<0.94<0.151,2,4-Trichlorobenzene<1.1<0.15Benzene4.11.3Naphthalene<0.79								
Benzene 4.1 1.3 Naphthalene <0.79 <0.15								
Cyclohexane <10 <3 Hexachlorobutadiene <0.32 <0.03			4.1	1.3			< 0.79	< 0.15
	Cyclohexane		<10	<3	Hexacl	nlorobutadiene	< 0.32	< 0.03

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SV-3 12/11/2 12/10/2 12/12/2 Air ug/m3	18 18	Inst	ject:	Aspect Consulting, Evergreen Treatmer 812130-03 1/1.5 121122.D GCMS7 BAT/MS		0043
		%	Lower	Upper			
Surrogates: 4-Bromofluorobenz	ene	Recovery: 106	Limit: 70	Limit: 130			
		Concen					
-		Concen			_		
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene		52	30	1,2-Dic	hloropropane	0.58	0.13
Dichlorodifluorome	ethane	2.9	0.58	1,4-Dio	oxane	< 0.54	< 0.15
Chloromethane		<3.1	<1.5	2,2,4-T	rimethylpentane	<7	<1.5
F-114		<1	< 0.15	Methyl	methacrylate	<6.1	<1.5
Vinyl chloride		< 0.38	< 0.15	Heptar		32	7.8
1,3-Butadiene		12	5.6		dichloromethane	< 0.1	< 0.015
Butane		44	19		oroethene	14	2.6
Bromomethane		<2.3	<0.6		Dichloropropene	<0.68	< 0.15
Chloroethane		<4	<1.5		yl-2-pentanone	<6.1	<1.5
Vinyl bromide		< 0.66	< 0.15		,3-Dichloropropene	<0.68	< 0.15
Ethanol		450 ve	240 ve	Toluen		39	10
Acrolein		3.8	1.7		richloroethane	< 0.16	< 0.03
Pentane	,	32	11	2-Hexa		< 6.1	<1.5
Trichlorofluoromet	hane	<3.4	< 0.6		hloroethene	<10	<1.5
Acetone		430 ve	180 ve		nochloromethane	< 0.13	< 0.015
2-Propanol		70	28		promoethane (EDB)	< 0.12	< 0.015
1,1-Dichloroethene trans-1,2-Dichloroe		0.62 <0.59	0.16 <0.15	Ethylb	benzene	<0.69 6.7	<0.15 1.5
Methylene chloride		<0.39 <130	<0.13		-Tetrachloroethane	< 0.21	< 0.03
t-Butyl alcohol (TB		<130	<6	Nonan		<7.9	<0.05
3-Chloropropene	(A)	<1.9	<0.6		ylbenzene	<3.7	<0.75
CFC-113		2.1	0.28		rotoluene	<7.8	<1.5
Carbon disulfide		< 9.3	<3		benzene	<3.7	< 0.75
Methyl t-butyl ethe	er (<2.7	< 0.75		ltoluene	<3.7	< 0.75
Vinyl acetate	- (···	<11	<3	m,p-Xy		20	4.7
1,1-Dichloroethane	•	1.7	0.43	o-Xyler		7.1	1.6
cis-1,2-Dichloroeth		2.9	0.73	Styren		1.5	0.36
Hexane		29	8.1	Bromo		<3.1	< 0.3
Chloroform		0.70	0.14	Benzyl	chloride	< 0.078	< 0.015
Ethyl acetate		<11	<3	1,3,5-T	rimethylbenzene	<3.7	< 0.75
Tetrahydrofuran		16 ca	5.3 ca	1,2,4-T	rimethylbenzene	<3.7	< 0.75
2-Butanone (MEK)		30	10		hlorobenzene	<0.9	< 0.15
1,2-Dichloroethane		< 0.061	< 0.015		hlorobenzene	< 0.36	< 0.06
1,1,1-Trichloroetha		< 0.82	<0.15		hlorobenzene	< 0.9	< 0.15
Carbon tetrachlorid	de	< 0.94	< 0.15		richlorobenzene	<1.1	< 0.15
Benzene		19	5.8	Naphtl		< 0.79	< 0.15
Cyclohexane		12	3.5	Hexacl	nlorobutadiene	< 0.32	< 0.03

ENVIRONMENTAL CHEMISTS

Date Collected: 12/	11/18 10/18 12/18	Inst	ject:	Aspect Consulting, 1 Evergreen Treatmer 812130-04 1/1.5 121123.D GCMS7 BAT/MS		0043
Surrogates: 4-Bromofluorobenzene	% Recovery: 104	Lower Limit: 70	Upper Limit: 130			
	Concent					
Compounds:	Concent ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
Propene	1,700 ve	990 ve		hloropropane	0.57	0.12
Dichlorodifluoromethan		<0.15	1,4-Dio		< 0.54	< 0.15
Chloromethane	<3.1	<1.5		rimethylpentane	380 ve	80 ve
F-114	<1	< 0.15		methacrylate	<6.1	<1.5
Vinyl chloride	320 ve	120 ve	Heptar		140	35
1,3-Butadiene	< 0.03	< 0.015		dichloromethane	< 0.1	< 0.015
Butane	2,000 ve	850 ve		roethene	43	8.1
Bromomethane	<2.3	< 0.6		Dichloropropene	< 0.68	< 0.15
Chloroethane	7.9	3.0		yl-2-pentanone	< 6.1	<1.5
Vinyl bromide	< 0.66	< 0.15		,3-Dichloropropene	< 0.68	< 0.15
Ethanol	250 ve	140 ve	Toluen		260	69
Acrolein	<1.4	< 0.6		richloroethane	< 0.16	< 0.03
Pentane	850 ve	290 ve	2-Hexa		<6.1	<1.5
Trichlorofluoromethane		<0.6		hloroethene	<10	<1.5
Acetone 2 Drononol	780 ve 79	330 ve 32		nochloromethane	< 0.13	< 0.015
2-Propanol 1,1-Dichloroethene	79 5.1	32 1.3		promoethane (EDB)	<0.12 <0.69	<0.015 <0.15
trans-1,2-Dichloroethen		1.5	Ethylb	benzene	<0.09 11	<0.15 2.5
Methylene chloride	<130	<37		-Tetrachloroethane	< 0.21	< 0.03
t-Butyl alcohol (TBA)	<130	<6	Nonan		<0.21 52	<0.03 9.9
3-Chloropropene	<1.9	<0.6		ylbenzene	8.8	1.8
CFC-113	<1.1	< 0.15		rotoluene	<7.8	<1.5
Carbon disulfide	<9.3	<3		benzene	<3.7	< 0.75
Methyl t-butyl ether (< 0.75		ltoluene	<3.7	< 0.75
Vinyl acetate	<11	<3	m,p-Xy		24	5.5
1,1-Dichloroethane	0.91	0.22	o-Xyler		18	4.2
cis-1,2-Dichloroethene	220	55	Styren		<1.3	< 0.3
Hexane	290 ve	83 ve	Bromo		<3.1	< 0.3
Chloroform	< 0.074	< 0.015	Benzyl	chloride	< 0.078	< 0.015
Ethyl acetate	<11	<3		rimethylbenzene	5.6	1.1
Tetrahydrofuran	16 ca	5.5 ca	1,2,4-T	rimethylbenzene	5.8	1.2
2-Butanone (MEK)	24	8.0		hlorobenzene	< 0.9	< 0.15
1,2-Dichloroethane (ED	C) <0.061	< 0.015		hlorobenzene	< 0.36	< 0.06
1,1,1-Trichloroethane	< 0.82	< 0.15		hlorobenzene	< 0.9	< 0.15
Carbon tetrachloride	< 0.94	< 0.15		richlorobenzene	<1.1	< 0.15
Benzene	150	48	Naphtl		1.2	0.23
Cyclohexane	150	45	Hexacl	nlorobutadiene	< 0.32	< 0.03

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 12/12/18 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: iment:	Aspect Consulting, Ll Evergreen Treatment 08-2755 mb 121111.D GCMS7 BAT/MS		0043
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenz	ene 87	70	130			
	Concent	tration			Cone	centration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
_						
Propene	< 0.69	< 0.4		chloropropane	< 0.23	< 0.05
Dichlorodifluorome Chloromethane	ethane <0.49 <2.1	<0.1 <1	1,4-Di		<0.36 <4.7	< 0.1
F-114	<2.1 <0.7	<0.1		Frimethylpentane I methacrylate	<4.7 <4.1	<1 <1
Vinyl chloride	<0.7	<0.1 <0.1	Hepta		<4.1 <4.1	<1 <1
1,3-Butadiene	< 0.20	< 0.01		odichloromethane	<0.067	< 0.01
Butane	< 0.022	<0.01		oroethene	<0.007	< 0.01
Bromomethane	<1.6	<0.4		-Dichloropropene	< 0.27	< 0.1
Chloroethane	<2.6	<1		hyl-2-pentanone	<4.1	<1
Vinyl bromide	<0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5	<4	Toluer		< 0.38	< 0.1
Acrolein	< 0.92	< 0.4		Frichloroethane	< 0.11	< 0.02
Pentane	<3	<1	2-Hexa		<4.1	<1
Trichlorofluoromet		< 0.4		chloroethene	<6.8	<1
Acetone	<4.8	<2	Dibror	nochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	<3.5	1,2-Di	bromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroe		< 0.1		benzene	< 0.43	< 0.1
Methylene chloride		<25	1,1,2,2	2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB		<4	Nonar		<5.2	<1
3-Chloropropene	<1.3	< 0.4		pylbenzene	<2.5	<0.5
CFC-113	< 0.77	< 0.1		rotoluene	<5.2	<1
Carbon disulfide	<6.2	<2		lbenzene	<2.5	< 0.5
Methyl t-butyl ethe		< 0.5		ltoluene	<2.5	< 0.5
Vinyl acetate	<7	<2	m,p-X		< 0.87	< 0.2
1,1-Dichloroethane		< 0.1	o-Xyle		< 0.43	< 0.1
cis-1,2-Dichloroeth Hexane	ene <0.4 <3.5	<0.1 <1	Styrer Bromo		< 0.85 < 2.1	<0.2 <0.2
Chloroform	<0.049	<0.01		l chloride	<2.1 <0.052	<0.2 <0.01
Ethyl acetate	< 0.049	<0.01		Frimethylbenzene	<0.052	< 0.01
Tetrahydrofuran	<0.29	<0.1		Frimethylbenzene	<2.5	<0.5 <0.5
2-Butanone (MEK)		<1		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane		< 0.01		chlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroetha		< 0.1		chlorobenzene	<0.21	< 0.1
Carbon tetrachlorie		< 0.1		Frichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1		halene	< 0.52	< 0.1
Cyclohexane	<6.9	<2		hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812130 Date Extracted: 12/17/18 Date Analyzed: 12/17/18

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
SV-1 812130-01	<0.6
SV-2 812130-02	<0.6
SV-3 812130-03	<0.6
SV-4 812130-04	<0.6

Method Blank	< 0.6
--------------	-------

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Col	ntrol Sample		Densent	
	Dementing	Cuiles	Percent	Assertance
Analyta	Reporting	Spike	Recovery LCS	Acceptance
Analyte	Units	Level	121	Criteria
Propene Dichlorodifluoromethane	ppbv	5		70-130
	ppbv	5	102	70-130
Chloromethane	ppbv	5	119	70-130
F-114	ppbv	5	99 00	70-130
Vinyl chloride	ppbv	5	99 100	70-130
1,3-Butadiene	ppbv	5	109	70-130
Butane	ppbv	5	123	70-130
Bromomethane	ppbv	5	119	70-130
Chloroethane	ppbv	5	101	70-130
Vinyl Bromide	ppbv	5	90	70-130
Ethanol	ppbv	5	113	70-130
Acrolein	ppbv	5	110	70-130
Pentane	ppbv	5	114	70-130
Trichlorofluoromethane	ppbv	5	103	70-130
Acetone	ppbv	5	107	70-130
2-Propanol	ppbv	5	117	70-130
1,1-Dichloroethene	ppbv	5	101	70-130
trans-1,2-Dichloroethene	ppbv	5	104	70-130
Methylene chloride	ppbv	5	105	70-130
t-Butyl alcohol (TBA)	ppbv	5	112	70-130
3-Chloropropene	ppbv	5	130	70-130
CFC-113	ppbv	5	100	70-130
Carbon disulfide	ppbv	5	108	70-130
Methyl t-butyl ether (MTBE)	ppbv	5	109	70-130
Vinyl acetate	ppbv	5	149 vo	70-130
1,1-Dichloroethane	ppbv	5	120	70-130
cis-1,2-Dichloroethene	ppbv	5	105	70-130
Hexane	ppbv	5	113	70-130
Chloroform	ppbv	5	117	70-130
Ethyl acetate	ppbv	5	134 vo	70-130
Tetrahydrofuran	ppbv	5	134 vo	70-130
2-Butanone (MEK)	ppbv	5	114	70-130
1,2-Dichloroethane (EDC)	ppbv	5	127	70-130
1,1,1-Trichloroethane	ppbv	5	115	70-130
Carbon tetrachloride	ppbv	5	110	70-130
Benzene	ppbv	5	112	70-130
Cyclohexane	ppbv	5	103	70-130
1,2-Dichloropropane	ppbv	5	110	70-130
1,4-Dioxane	ppbv	5	109	70-130
2,2,4-Trimethylpentane	ppbv	5	119	70-130
Methyl methacrylate	ppbv	5	137 vo	70-130
j- meender jiwee	rr ^b ,	3	20. 10	

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Reporting UnitsSpike LevelRecovery LCSAcceptance CriteriaHeptaneppbv512770-130Bromodichloromethaneppbv511670-130Trichlorootetheneppbv510670-130cis-1, 3-Dichloropropeneppbv510670-1304-Methyl-2-pentanoneppbv59470-130Trauser, 1, 3-Dichloropropeneppbv59570-130Tolueneppbv59570-1301, 1, 2-Trichloroethaneppbv510370-1302-Hexanoneppbv510370-130Tetrachloroethaneppbv510370-1301, 2-Dibromoethane (EDB)ppbv510470-1301, 2-Dibromoethane (EDB)ppbv510670-1301, 1, 2.2-Tetrachloroethaneppbv510670-1301, 1, 2.2-Tetrachloroethaneppbv510670-1301, 1, 2.2-Tetrachloroethaneppbv510170-1301, 2, 2-Tetrachloroethaneppbv510070-1301, 3oropylbenzeneppbv510270-1301, 1, 2-Tetrachloroethaneppbv510370-1301, 3, 5-Trimethylbenzeneppbv510170-1301, 3, 5-Trimethylbenzeneppbv510270-1301, 3, 5-Trimethylbenzeneppbv510270-1301, 3, 5-Trimethylbenzeneppbv <t< th=""><th>Laboratory Code. Laboratory Co</th><th>Sillion Sample</th><th></th><th>Percent</th><th></th></t<>	Laboratory Code. Laboratory Co	Sillion Sample		Percent	
AnalyteUnitsLevelLCSCriteriaHeptaneppbv512770-130Bromodichloromethaneppbv511670-130Trichloroetheneppbv510670-130cis-1, 3-Dichloropropeneppbv59470-130trans-1, 3-Dichloropropeneppbv59470-130trans-1, 3-Dichloropropeneppbv59570-130trans-1, 3-Dichloropropeneppbv59570-130Tolueneppbv510870-1302-Hexanoneppbv5133 vo70-130Tetrachloroetheneppbv59270-130Dibromochloromethaneppbv510470-1301, 2-Dibromoethane (EDB)ppbv510670-130L1, 2, 2-Tetrachloroethaneppbv510670-130Sopropylbenzeneppbv510670-130Nonaneppbv510670-130Sopropylbenzeneppbv510170-1302-Chlorotolueneppbv510670-130Nonaneppbv510670-130Styreneppbv510670-130Nonaneppbv510170-130Sopropylbenzeneppbv510270-130Styreneppbv510270-130Styreneppbv510270-130Styreneppbv5 <td< td=""><td></td><td>Reporting</td><td>Spike</td><td></td><td>Acceptance</td></td<>		Reporting	Spike		Acceptance
Heptaneppbv512770-130Bromodichloromethaneppbv511670-130Trichloroetheneppbv510670-130cis-1,3-Dichloropropeneppbv510670-1304-Methyl-2-pentanoneppbv59470-130trans-1,3-Dichloropropeneppbv510870-1301,1,2-Trichloroethaneppbv510370-1302-Hexanoneppbv510370-1302-Hexanoneppbv510370-1302-Hexanoneppbv510470-1301,2-Dibromoethane (EDB)ppbv510370-1301,2-Dibromoethane (EDB)ppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,3-Sorpoylbenzeneppbv510670-1302-Chlorotolueneppbv510670-1303-Chlorotolueneppbv510270-1304-Ethyltolueneppbv510270-1303-Syleneppbv510270-1303-Syleneppbv510270-1303-Syleneppbv510270-1	Analyte		-		
Bromodichloromethane ppbv 5 116 70-130 Trichloroethene ppbv 5 106 70-130 cis-1, 3-Dichloropropene ppbv 5 106 70-130 trans-1, 3-Dichloropropene ppbv 5 94 70-130 trans-1, 3-Dichloropropene ppbv 5 95 70-130 trans-1, 3-Dichloropropene ppbv 5 95 70-130 trans-1, 3-Dichloropropene ppbv 5 103 70-130 trans-1, 3-Dichloropropene ppbv 5 103 70-130 trans-1, 3-Dichloropropene ppbv 5 103 70-130 trans-1, 3-Dichloropthane ppbv 5 103 70-130 trans-1, 3-Dichloroethane ppbv 5 104 70-130 trans-1, 3-Dichloromethane (EDB) ppbv 5 104 70-130 1, 2-Dibromochlare (EDB) ppbv 5 106 70-130 thylbenzene ppbv 5 106 70-130					
Trichloroetheneppbv510670-130cis-1, 3-Dichloropropeneppbv510670-1304-Methyl-2-pentanoneppbv59470-130trans-1, 3-Dichloropropeneppbv510870-130Tolueneppbv510370-1301,1,2-Trichloroethaneppbv5133 vo70-1302-Hexanoneppbv59270-130Tetrachloroetheneppbv510470-1301,2-Dibromoethane (EDB)ppbv510370-1301,1,2-Tetrachloroethaneppbv59770-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510170-1301,1,2,2-Tetrachloroethaneppbv510170-1301,1,2,2-Tetrachloroethaneppbv510170-1301,1,2,2-Tetrachloroethaneppbv510170-1302-Chlorotolueneppbv510170-1302-Chlorotolueneppbv510670-1303-Styleneppbv510270-1304-Ethyltolueneppbv510270-1303-Styleneppbv510270-1303-Styleneppbv59670-1303-Styleneppbv59070-1303,3-5-Trimethylbenzeneppbv5<					
cis-1, 3-Dichloropropene ppbv 5 106 70-130 4-Methyl-2-pentanone ppbv 5 94 70-130 trans-1, 3-Dichloropropene ppbv 5 108 70-130 Toluene ppbv 5 95 70-130 1,1,2-Trichloroethane ppbv 5 92 70-130 2-Hexanone ppbv 5 92 70-130 Tetrachloroethene ppbv 5 104 70-130 1,2-Dibromoethane (EDB) ppbv 5 103 70-130 Chlorobenzene ppbv 5 106 70-130 L,2.2-Tetrachloroethane ppbv 5 106 70-130 Stopropylbenzene ppbv 5 106 70-130 Isopropylbenzene ppbv 5 106 70-130 2-Chlorotoluene ppbv 5 101 70-130 Propylbenzene ppbv 5 106 70-130 Propylbenzene ppbv 5					
4-Methyl-2-pentationeppbv59470-130trans-1,3-Dichloropropeneppbv510870-130Tolueneppbv59570-1301,1,2-Trichloroethaneppbv510370-1302-Hexanoneppbv5133 vo70-1302-Hexanoneppbv5133 vo70-1302-Hexanoneppbv510470-1302-Hexanoneppbv510470-1301,2-Dibromoethaneppbv510370-1301,2-Dibromoethane (EDB)ppbv59770-130Chlorobenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510170-130Sopropylbenzeneppbv510170-1302-Chlorotolueneppbv510170-1302-Chlorotolueneppbv510670-1303-Chlorotolueneppbv510670-1304-Ethyltolueneppbv510270-1303-Styreneppbv510270-1303-Styreneppbv510270-1303-Styreneppbv510270-1303-A-Ethyltolneneppbv510270-1303-A-Ethyltolneneppbv510270-1303-Styreneppbv510270-1303-Styreneppbv5 <td>cis-1,3-Dichloropropene</td> <td></td> <td></td> <td>106</td> <td></td>	cis-1,3-Dichloropropene			106	
trans-1,3-Dichloropropeneppbv510870-130Tolueneppbv59570-1301,1,2-Trichloroethaneppbv510370-1302-Hexanoneppbv5133 vo70-1302-Hexanoneppbv5133 vo70-130Tetrachloroetheneppbv59270-130Dibromochloromethaneppbv510470-1301,2-Dibromoethane (EDB)ppbv59770-130Ethylbenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-130Nonaneppbv510170-130Isopropylbenzeneppbv510170-1302-Chlorotolueneppbv510670-130Propylbenzeneppbv510670-130-Xyleneppbv510270-130Styreneppbv510270-130Styreneppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,3,5-Trimethylbenzeneppbv59470-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trimethylbenzeneppbv58870-1301,2,2-Trimethylbenzeneppbv58870-1301,2,2-Tetrachlorobenzeneppbv59070-1301,			5	94	
Tolueneppbv59570-130 $1, 1, 2$ -Trichloroethaneppbv510370-130 2 -Hexanoneppbv5133 vo70-130Tetrachloroethaneppbv59270-130Dibromochloromethaneppbv510470-130 $1, 2$ -Dibromoethane (EDB)ppbv510370-130Chlorobenzeneppbv59770-130Ethylbenzeneppbv510670-130 $1, 1, 2, 2$ -Tetrachloroethaneppbv510670-130Isopropylbenzeneppbv511070-130Schlorotolueneppbv510170-130Propylbenzeneppbv510170-1302-Chlorotolueneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510270-130Styreneppbv510270-130Styreneppbv510270-130J,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59070-1301,2,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-130		••	5	108	70-130
2-Hexanone ppbv 5 133 vo 70-130 Tetrachloroethene ppbv 5 92 70-130 Dibromochloromethane ppbv 5 104 70-130 1,2-Dibromoethane (EDB) ppbv 5 103 70-130 Chlorobenzene ppbv 5 97 70-130 Ethylbenzene ppbv 5 106 70-130 I,1,2,2-Tetrachloroethane ppbv 5 106 70-130 Nonane ppbv 5 106 70-130 Isopropylbenzene ppbv 5 101 70-130 2-Chlorotoluene ppbv 5 107 70-130 Propylbenzene ppbv 5 109 70-130 4-Ethyltoluene ppbv 5 106 70-130 m,p-Xylene ppbv 5 102 70-130 Styrene ppbv 5 104 70-130 Styrene ppbv 5 102 70-130			5	95	70-130
Tetrachloroetheneppbv59270-130Dibromochloromethaneppbv510470-1301,2-Dibromoethane (EDB)ppbv510370-130Chlorobenzeneppbv59770-130Ethylbenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-130Nonaneppbv5142 vo70-130Isopropylbenzeneppbv510170-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510270-130o-Xyleneppbv510270-130Bromoformppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59070-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-130	1,1,2-Trichloroethane	ppbv	5	103	70-130
Dibromochloromethaneppbv510470-1301,2-Dibromoethane (EDB)ppbv510370-130Chlorobenzeneppbv59770-130Ethylbenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-130Nonaneppbv5142 vo70-130Isopropylbenzeneppbv510170-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510670-130o-Xyleneppbv510270-130Styreneppbv510270-130Bromoformppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-130	2-Hexanone	ppbv	5	133 vo	70-130
1,2-Dibromoethane (EDB)ppbv510370-130Chlorobenzeneppbv59770-130Ethylbenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-130Nonaneppbv5142 vo70-130Isopropylbenzeneppbv510170-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510670-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510670-130o-Xyleneppbv510270-130Bromoformppbv510470-130Jyreneppbv510270-130Jyreneppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130Naphthaleneppbv59270-130	Tetrachloroethene	ppbv	5	92	70-130
Chlorobenzeneppbv59770-130Ethylbenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv5142 vo70-130Nonaneppbv5142 vo70-130Isopropylbenzeneppbv511070-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510170-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510670-130o-Xyleneppbv510270-130Styreneppbv510270-130Bromoformppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130	Dibromochloromethane	ppbv	5	104	70-130
Ethylbenzeneppbv510670-1301,1,2,2-Tetrachloroethaneppbv510670-130Nonaneppbv5142 vo70-130Isopropylbenzeneppbv511070-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510670-130o-Xyleneppbv510270-130Styreneppbv510270-130Bromoformppbv510470-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130Naphthaleneppbv59270-130	1,2-Dibromoethane (EDB)	ppbv	5	103	70-130
1,1,2,2-Tetrachloroethaneppbv510670-130Nonaneppbv5142 vo70-130Isopropylbenzeneppbv511070-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv510670-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv510270-130l,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130	Chlorobenzene	ppbv		97	70-130
Nonaneppbv5142 vo70-130Isopropylbenzeneppbv511070-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m, p-Xyleneppbv109970-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv510270-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-130	Ethylbenzene	ppbv	5	106	70-130
Isopropylbenzeneppbv511070-1302-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv109970-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130	1,1,2,2-Tetrachloroethane	ppbv	5	106	70-130
2-Chlorotolueneppbv510170-130Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m,p-Xyleneppbv109970-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130	Nonane	ppbv	5	142 vo	70-130
Propylbenzeneppbv510970-1304-Ethyltolueneppbv510670-130m, p-Xyleneppbv109970-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130	Isopropylbenzene	ppbv		110	70-130
4-Ethyltolueneppbv510670-130m,p-Xyleneppbv109970-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv57970-1301,2,4-Trichlorobenzeneppbv59270-130Naphthaleneppbv59270-130	2-Chlorotoluene	ppbv		101	70-130
m, p-Xyleneppbv109970-130o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-130	Propylbenzene			109	70-130
o-Xyleneppbv510270-130Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-130	4-Ethyltoluene	ppbv	5		70-130
Styreneppbv510470-130Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv59270-1301,2,4-Trichlorobenzeneppbv59270-130	m,p-Xylene	ppbv	10	99	70-130
Bromoformppbv59670-130Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv57970-1301,2,4-Trichlorobenzeneppbv59270-130Naphthaleneppbv59270-130		ppbv		102	70-130
Benzyl chlorideppbv510270-1301,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv57970-1301,2,4-Trichlorobenzeneppbv59270-130Naphthaleneppbv59270-130		ppbv			70-130
1,3,5-Trimethylbenzeneppbv510170-1301,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv57970-1301,2,4-Trichlorobenzeneppbv59270-130Naphthaleneppbv59270-130		ppbv			
1,2,4-Trimethylbenzeneppbv59470-1301,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv57970-130Naphthaleneppbv59270-130	Benzyl chloride	ppbv		102	70-130
1,3-Dichlorobenzeneppbv59070-1301,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv57970-130Naphthaleneppbv59270-130	1,3,5-Trimethylbenzene	ppbv		101	70-130
1,4-Dichlorobenzeneppbv58870-1301,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv57970-130Naphthaleneppbv59270-130		ppbv			70-130
1,2-Dichlorobenzeneppbv58870-1301,2,4-Trichlorobenzeneppbv57970-130Naphthaleneppbv59270-130		ppbv			
1,2,4-Trichlorobenzeneppbv57970-130Naphthaleneppbv59270-130					
Naphthalene ppbv 5 92 70-130					
Hexachlorobutadiene ppbv 5 80 70-130					
	Hexachlorobutadiene	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{v}$	5	80	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/19/18 Date Received: 12/11/18 Project: Evergreen Treatment Services 180043, F&BI 812130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	812130-04 (Dupl	icate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

						<u> </u>				n	d N	NUN 606 (206)
	nta 1	7		1 pel ch	the mark				By: TTTL	Relinquished by:	Rel	Ph. (206) 285-8282
0.80 81/11/12	Aspect	к	ecte	1 tink	the second			Hold	No.	Received by:		Souz 16th Avenue West Seattle, WA 98119-2029
IY DATE TIME	COMPANY		ME	PRINT NAME	PRI		*	URUS	SIGNATURE			Friedman & Bruya, Inc.
		-								-		
							-					
	2											
PID=0.1 00m	XD	\times	RIVER	М	1145	8	(-	222	2299	09		SV-4
P10=21 00m	X P	~	1002	-,	4500	29 0		1227	3412	03		SV-3
PID=1.4 ppm	X	\times	NE 30	Г	1589	30 0		106	3668	20	4	SV-2
PID=1.1 ppm	XP	×	2340	2	8440	36	12/10/18	162 1	2433	0/		SY-1
Notes	TO-15 BTEXN TO-15 cVOCs I-klum	TO-15 Full Scan	Field Final Time	Field Final Press. (Hg)	Field Initial Time	Field Initial Press. (Hg)	Date Sampled	Flow Contr. ID	Canister ID	U lab		Sample Name
1	ANALYSIS REQUESTED	ANAL								·		
SAMPLE DISPOSAL Dispose after 30 days Archive Samples	INVOICE TO		foil Gas trab	□ Deep Soil C □ SVE/Grab	Ē	REPORTING LEVEL	REPO Indox Sub S	04	14 98104		Email	City, State, ZIP
A.Standard □ RUSH	PO#	<u>e</u>	Services	rent	Treat	Fuergreen Treatment	Fred	50	Shile S	onsultin	(iond	Company <u>HSPECt</u> Address <u>HO</u> SP
TURNAROUND TIME		0	2 ×	X	ignature	SAMPLERS (signature)	SAMP	rect	Listin B		anon t	Report To Dana
- 1 81/11/	ME 121	Y	STOL	F CU:		E CHL	SAMPLE CHAIN OF CUSTODY	7.0		S D	81213	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2018

Dana Cannon, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Cannon:

Included are the results from the testing of material submitted on December 18, 2018 from the Evergreen 180043, F&BI 812250 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP1227R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 18, 2018 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Evergreen 180043, F&BI 812250 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
812250 -01	AMW-1-121718
812250 -02	AMW-2-121718
812250 -03	AMW-3-121718
812250 -04	AMW-4-121718
812250 -04	AMW-4-121718

The samples were sent to Fremont Analytical for cyanide analysis. The report will be forwarded upon receipt.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250 Date Extracted: 12/18/18 Date Analyzed: 12/18/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

~

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
AMW-1-121718 812250-01	<100	84
AMW-2-121718 812250-02	<100	82
AMW-3-121718 812250-03	<100	84
AMW-4-121718 812250-04	<100	83
Method Blank 08-2807 MB	<100	88

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250 Date Extracted: 12/19/18 Date Analyzed: 12/19/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
AMW-1-121718 812250-01	<50	<250	111
AMW-2-121718 812250-02	73 x	<250	121
AMW-3-121718 812250-03	<50	<250	116
AMW-4-121718 812250-04	<50	<250	119
Method Blank 08-2871 MB	<50	<250	104

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-121718 12/18/18 12/21/18 12/21/18 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen 180043, F&BI 812250 812250-01 812250-01.063 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	11.4		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	<1		
Manganese	575		
Mercury	<1		
Nickel	1.31		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-121718 12/18/18 12/21/18 12/21/18 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen 180043, F&BI 812250 812250-02 812250-02.086 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	4.33		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	<1		
Manganese	302		
Mercury	<1		
Nickel	3.80		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3-121718 12/18/18 12/21/18 12/21/18 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen 180043, F&BI 812250 812250-03 812250-03.087 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	20.3		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	<1		
Manganese	680		
Mercury	<1		
Nickel	2.22		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-121718 12/18/18 12/21/18 12/21/18 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen 180043, F&BI 812250 812250-04 812250-04.088 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	<1		
Manganese	485		
Mercury	<1		
Nickel	2.24		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 12/21/18 12/21/18 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Evergreen 180043, F&BI 812250 I8-879 mb I8-879 mb.051 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Lead	<1		
Manganese	<1		
Mercury	<1		
Nickel	<1		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Date Received:1Date Extracted:1Date Analyzed:1Matrix:1	AMW-1-121718 12/18/18 12/18/18 12/20/18 Water 1g/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Evergreen 180043, 812250-01 122012.D GCMS9 MS		
Surrogates: 1,2-Dichloroethane-d4	% Recov 101	ery: Lower 50	Upper Limit: 150		
Toluene-d8 4-Bromofluorobenzene	97	50 50	150 150		
Compounds:	Concentr ug/L (p		inds:	Concentration ug/L (ppb)	
Dichlorodifluorometha	ane <1	1.3-Dich	lloropropane	<1	
Chloromethane	<10		loroethene	<1	
Vinyl chloride	2.9		ochloromethane	<1	
Bromomethane	<1		omoethane (EDB)	<1	
Chloroethane	<1	Chlorob	enzene	<1	
Trichlorofluorometha		Ethylbe		<1	
Acetone	<50		Fetrachloroethane	<1	
1,1-Dichloroethene	<1	m,p-Xyl		<2	
Hexane	<1	o-Xylene		<1 <1	
Methylene chloride	<5	Styrene	Styrene Isopropylbenzene		
Methyl t-butyl ether (<1	
trans-1,2-Dichloroethe 1,1-Dichloroethane	ene <1 <1	Bromofo p Propy	lbenzene	<1 <1	
2,2-Dichloropropane	<1 <1	Bromob		<1 <1	
cis-1,2-Dichloroethene			imethylbenzene	<1	
Chloroform	<1		Fetrachloroethane	<1	
2-Butanone (MEK)	<10		ichloropropane	<1	
1,2-Dichloroethane (E	DC) <1	2-Chloro		<1	
1,1,1-Trichloroethane	<1	4-Chloro	otoluene	<1	
1,1-Dichloropropene	<1		ylbenzene	<1	
Carbon tetrachloride	<1		imethylbenzene	<1	
Benzene	<0.3	5	lbenzene	<1	
Trichloroethene	<1		pyltoluene	<1	
1,2-Dichloropropane	<1		llorobenzene llorobenzene	<1	
Bromodichloromethan Dibromomethane	ne <1 <1		llorobenzene	<1 <1	
4-Methyl-2-pentanone			romo-3-chloropropane		
cis-1,3-Dichloroproper			ichlorobenzene	<10	
Toluene	<1		lorobutadiene	<1	
trans-1,3-Dichloroprop		Naphtha		<1	
1,1,2-Trichloroethane	<1		ichlorobenzene	<1	
2-Hexanone	<10				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-121 12/18/18 12/18/18 12/18/18 Water ug/L (ppb)	718	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L1 Evergreen 180043, F& 812250-02 121822.D GCMS9 MS	
Surrogates: 1,2-Dichloroethane- Toluene-d8		% Recovery: 99 100	Lower Limit: 50 50	Upper Limit: 150 150	
4-Bromofluorobenze	ene	98	50	150	
Compounds:		Concentration ug/L (ppb)	Compour	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10		oroethene	<1
Vinyl chloride		<0.2		chloromethane	<1
Bromomethane		<1		omoethane (EDB)	<1
Chloroethane		<1	Chlorobe		<1
Trichlorofluoromet	nane	<1	Ethylber		<1
Acetone		<50 <1		etrachloroethane	<1 <2
1,1-Dichloroethene Hexane		<1 <1	m,p-Xyle o-Xylene		<2 <1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	r (MTBE)	<1		lbenzene	<1
trans-1,2-Dichloroe		<1	Bromofo		<1
1,1-Dichloroethane		<1	n-Propyl	benzene	<1
2,2-Dichloropropane	e	<1	Bromobe		<1
cis-1,2-Dichloroethe	ene	<1		methylbenzene	<1
Chloroform		<1		etrachloroethane	<1
2-Butanone (MEK)		<10		chloropropane	<1
1,2-Dichloroethane		<1	2-Chloro		<1
1,1,1-Trichloroetha 1,1-Dichloropropene		<1 <1	4-Chloro	ylbenzene	<1 <1
Carbon tetrachlorid		<1 <1		methylbenzene	<1
Benzene		<0.35		lbenzene	<1
Trichloroethene		<1	5	oyltoluene	<1
1,2-Dichloropropane	9	<1		lorobenzene	<1
Bromodichlorometh	ane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentano		<10		omo-3-chloropropane	<10
cis-1,3-Dichloroprop	ene	<1		chlorobenzene	<1
Toluene		<1		probutadiene	<1
trans-1,3-Dichlorop		<1	Naphtha		<1
1,1,2-Trichloroetha	ne	<1	1,2,3-111	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	AMW-3-121718 12/18/18 12/18/18 12/18/18 12/18/18 Water ug/L (ppb)	8	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LI Evergreen 180043, F8 812250-03 121823.D GCMS9 MS	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	ł	% Recovery: 100 100 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150	
Compounds:	C	oncentration ug/L (ppb)	Compour	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (E 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethan	ne (MTBE) ene e EDC)	<1 <10 <0.2 <1 <1 <1 <50 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1,3-Dichl Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropyl Bromofor n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chlorot 4-Chlorot tert-Buty 1,2,4-Tri sec-Buty p-Isoprop 1,3-Dichl 1,4-Dichl	loropropane oroethene chloromethane omoethane (EDB) mzene izene ietrachloroethane ene lbenzene mzene methylbenzene ietrachloroethane chloropropane toluene toluene toluene dibenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene lbenzene oyltoluene lorobenzene lorobenzene	$ \begin{array}{c} <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloroproper Toluene trans-1,3-Dichloropro 1,1,2-Trichloroethane 2-Hexanone	ne pene	<1 <10 <1 <1 <1 <1 <1 <1 <10	1,2-Dibro 1,2,4-Tri Hexachlo Naphtha	lorobenzene omo-3-chloropropane chlorobenzene orobutadiene lene chlorobenzene	<1 <10 <1 <1 <1 <1 <1

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	AMW-4-1217 12/18/18 12/18/18 12/18/18 Water ug/L (ppb)	718	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L1 Evergreen 180043, F& 812250-04 121824.D GCMS9 MS	
Surrogates: 1,2-Dichloroethane-d Toluene-d8 4-Bromofluorobenzen		% Recovery: 99 100 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150	
Compounds:		Concentration ug/L (ppb)	Compour	nds:	Concentration ug/L (ppb)
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (E 1,1,1-Trichloroethane (E 1,1,1-Trichloroethane (E 1,1,1-Dichloropropane Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichlorometha	une (MTBE) iene e EDC)	$<1 \\<10 \\<0.2 \\<1 \\<1 \\<1 \\<50 \\<1 \\<1 \\<5 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1$	1,3-Dichl Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isoprop 1,3-Dichl 1,4-Dichl	loropropane oroethene chloromethane pmoethane (EDB) enzene izene 'etrachloroethane ene lbenzene methylbenzene enzene methylbenzene toluene toluene toluene ylbenzene methylbenzene methylbenzene lbenzene oyltoluene lorobenzene lorobenzene	$ \begin{array}{c} <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
Dibromomethane 4-Methyl-2-pentanom cis-1,3-Dichloroprope Toluene trans-1,3-Dichloropro 1,1,2-Trichloroethane 2-Hexanone	ne opene	<1 <10 <1 <1 <1 <1 <1 <1 <10	1,2-Dibre 1,2,4-Tri Hexachle Naphtha	lorobenzene omo-3-chloropropane chlorobenzene orobutadiene ilene chlorobenzene	<1 <10 <1 <1 <1 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 12/18/18 12/18/18 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Evergreen 180043, F& 08-2769 mb 121808.D GCMS9 MS	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane-	d4	101	50	150	
Toluene-d8		97	50	150	
4-Bromofluorobenze	ene	95	50	150	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10		oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe		<1
Trichlorofluorometh	nane	<1	Ethylber		<1
Acetone		<50		etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle		<2
Hexane Methylene chloride		<1 <5	o-Xylene Styrene		<1 <1
Methyl t-butyl ethe	r (MTBF)	<5 <1		lbenzene	<1
trans-1,2-Dichloroe		<1	Bromofo		<1
1,1-Dichloroethane		<1	n-Propyl		<1
2,2-Dichloropropane	9	<1	Bromobe		<1
cis-1,2-Dichloroethe		<1	1,3,5-Tri	methylbenzene	<1
Chloroform		<1		etrachloroethane	<1
2-Butanone (MEK)		<10		chloropropane	<1
1,2-Dichloroethane		<1	2-Chloro		<1
1,1,1-Trichloroetha		<1	4-Chloro		<1
1,1-Dichloropropene Carbon tetrachlorid		<1 <1		ylbenzene	<1 <1
Benzene	le	<1 <0.35		methylbenzene lbenzene	<1 <1
Trichloroethene		<0.35	5	oyltoluene	<1
1,2-Dichloropropane	<u>a</u>	<1		lorobenzene	<1
Bromodichlorometh		<1		lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentano	ne	<10		omo-3-chloropropane	<10
cis-1,3-Dichloroprop	oene	<1		chlorobenzene	<1
Toluene		<1		orobutadiene	<1
trans-1,3-Dichlorop		<1	Naphtha		<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 812240-01 (Duplicate)								
	Reporting	Sampl	e Duj	olicate	RPD			
Analyte	Units	Result	t R	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100	<	100	nm			
Laboratory Code: Labo	Laboratory Code: Laboratory Control Sample							
			Percent					
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Gasoline	ug/L (ppb)	1,000	94	69-134	-			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	88	61-133	9

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 812294-01 (Matrix Spike)

Ū	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	1.83	113	110	75-125	3
Cadmium	ug/L (ppb)	5	<1	103	102	75-125	1
Chromium	ug/L (ppb)	20	<1	104	103	75-125	1
Copper	ug/L (ppb)	20	<5	94	94	75-125	0
Lead	ug/L (ppb)	10	<1	92	92	75-125	0
Manganese	ug/L (ppb)	20	219	173 b	101 b	75-125	53 b
Mercury	ug/L (ppb)	5	<1	94	95	75-125	1
Nickel	ug/L (ppb)	20	<1	96	97	75-125	1
Zinc	ug/L (ppb)	50	<5	94	95	75-125	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	108	80-120
Cadmium	ug/L (ppb)	5	105	80-120
Chromium	ug/L (ppb)	20	105	80-120
Copper	ug/L (ppb)	20	105	80-120
Lead	ug/L (ppb)	10	111	80-120
Manganese	ug/L (ppb)	20	105	80-120
Mercury	ug/L (ppb)	5	104	80-120
Nickel	ug/L (ppb)	20	105	80-120
Zinc	ug/L (ppb)	50	103	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 812231-21 (Matrix Spike)

Laboratory Code. 812231-21 (Mat	li ix Spike)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	113	55-137
Chloromethane	ug/L (ppb)	50	<10	93	61-120
Vinyl chloride	ug/L (ppb)	50	0.57	95	61-139
Bromomethane Chloroethane	ug/L (ppb)	50 50	<1	96 100	20-265
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	95	55-149 71-128
Acetone	ug/L (ppb) ug/L (ppb)	250	<50	86	48-149
1.1-Dichloroethene	ug/L (ppb)	50	<1	96	71-123
Hexane	ug/L (ppb)	50	<1	88	44-139
Methylene chloride	ug/L (ppb)	50	<5	86	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68-125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	91	79-113
2,2-Dichloropropane cis-1.2-Dichloroethene	ug/L (ppb)	50 50	<1 39	85 88 b	48-157 63-126
Chloroform	ug/L (ppb) ug/L (ppb)	50	<1	90	77-117
2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	250	20	89	70-135
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	93	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	89	75-121
1,1-Dichloropropene	ug/L (ppb)	50	<1	95	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	89	70-132
Benzene	ug/L (ppb)	50	< 0.35	90	75-114
Trichloroethene	ug/L (ppb)	50	<1	92	73-122
1,2-Dichloropropane	ug/L (ppb)	50	<1	97	80-111
Bromodichloromethane Dibromomethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	93 90	78-117 73-125
4-Methyl-2-pentanone	ug/L (ppb)	250	15	110	79-140
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	94	76-120
Toluene	ug/L (ppb)	50	<1	89	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	91	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	89	81-116
2-Hexanone	ug/L (ppb)	250	<10	94	74-127
1,3-Dichloropropane	ug/L (ppb)	50	<1	94	80-113
Tetrachloroethene	ug/L (ppb)	50	<1	92 94	72-113
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1 <1	94 95	69-129 79-120
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50	<1	90 90	75-115
Ethylbenzene	ug/L (ppb)	50	<1	93	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	90	76-130
m,p-Xylene	ug/L (ppb)	100	<2	95	63-128
o-Xylene	ug/L (ppb)	50	<1	100	64-129
Styrene	ug/L (ppb)	50	<1	99	56-142
Isopropylbenzene	ug/L (ppb)	50	<1	98	74-122
Bromoform	ug/L (ppb)	50	<1	94	49-138
n-Propylbenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	93 93	65-129 70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	<1	98	60-138
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	92	79-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	88	62-125
2-Chlorotoluene	ug/L (ppb)	50	<1	92	40-159
4-Chlorotoluene	ug/L (ppb)	50	<1	91	76-122
tert-Butylbenzene	ug/L (ppb)	50	<1	99	74-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	96	59-136
sec-Butylbenzene	ug/L (ppb)	50	<1	95	69-127
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb)	50 50	<1 <1	97 92	64-132 77-113
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	92 86	77-113 75-110
1.2-Dichlorobenzene	ug/L (ppb)	50	<1	90	70-120
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	96	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	98	66-123
Hexachlorobutadiene	ug/L (ppb)	50	<1	91	53-136
Naphthalene	ug/L (ppb)	50	<1	99	60-145
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	93	59-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/18 Date Received: 12/18/18 Project: Evergreen 180043, F&BI 812250

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laborato	ry control sample		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	123	123	50-157	0
Chloromethane	ug/L (ppb)	50	99	96	62-130	3
Vinyl chloride	ug/L (ppb)	50	98	97	70-128	1
Bromomethane	ug/L (ppb)	50	97	98	62-188	1
Chloroethane Trichlorofluoromethane	ug/L (ppb)	50 50	100 98	102 98	66-149 70-132	2
Acetone	ug/L (ppb) ug/L (ppb)	250	88	98 87	44-145	1
1.1-Dichloroethene	ug/L (ppb)	50	100	98	75-119	2
Hexane	ug/L (ppb)	50	95	93	51-153	$\tilde{2}$
Methylene chloride	ug/L (ppb)	50	87	85	63-132	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	96	96	70-122	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	95	76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	92	90	77-119	2 0
2,2-Dichloropropane cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	93 91	93 90	62-141 76-119	0
Chloroform	ug/L (ppb) ug/L (ppb)	50	90	90 90	78-119	0
2-Butanone (MEK)	ug/L (ppb)	250	92	89	49-147	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	94	93	78-114	1
1,1,1-Trichloroethane	ug/L (ppb)	50	91	90	80-116	1
1,1-Dichloropropene	ug/L (ppb)	50	97	95	78-119	2
Carbon tetrachloride	ug/L (ppb)	50	92	91	72-128	1
Benzene	ug/L (ppb)	50	91	90	75-116	1
Trichloroethene 1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	94 99	93 97	72-119 79-121	$\frac{1}{2}$
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50	99 94	93	76-120	2
Dibromomethane	ug/L (ppb)	50	91	89	79-121	2
4-Methyl-2-pentanone	ug/L (ppb)	250	110	108	54-153	2
cis-1,3-Dichloropropene	ug/L (ppb)	50	98	96	76-128	2
Toluene	ug/L (ppb)	50	90	89	79-115	1
trans-1,3-Dichloropropene	ug/L (ppb)	50	95	92	76-128	3
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb)	50 250	91 95	88 92	78-120 49-147	3 3
2-Hexanone 1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	250 50	95 95	92 94	49-147 81-115	3
Tetrachloroethene	ug/L (ppb)	50	95	92	78-109	3
Dibromochloromethane	ug/L (ppb)	50	96	95	63-140	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	97	94	82-118	3
Chlorobenzene	ug/L (ppb)	50	91	90	80-113	1
Ethylbenzene	ug/L (ppb)	50	94	93	83-111	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	91	89 93	76-125	2 3
m,p-Xylene o-Xylene	ug/L (ppb) ug/L (ppb)	100 50	96 102	93 100	84-112 81-117	2
Styrene	ug/L (ppb)	50	102	98	83-121	3
Isopropylbenzene	ug/L (ppb)	50	99	97	81-122	2
Bromoform	ug/L (ppb)	50	97	95	40-161	2
n-Propylbenzene	ug/L (ppb)	50	95	93	81-115	2
Bromobenzene	ug/L (ppb)	50	95	94	80-113	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	99	98	83-117	1
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	92 90	91 88	79-118 74-116	1 2
2-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50	94	93	79-112	2
4-Chlorotoluene	ug/L (ppb)	50	92	91	80-116	1
tert-Butylbenzene	ug/L (ppb)	50	100	101	81-119	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	97	96	81-121	1
sec-Butylbenzene	ug/L (ppb)	50	96	96	83-123	0
p-Isopropyltoluene	ug/L (ppb)	50	99	99	81-122	0
1,3-Dichlorobenzene	ug/L (ppb)	50 50	94 87	93 86	80-115 77-112	1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	87 91	80 89	79-112	2
1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50	94	93	62-133	2
1,2,4-Trichlorobenzene	ug/L (ppb)	50	99	99	75-119	0
Hexachlorobutadiene	ug/L (ppb)	50	95	95	70-116	Ő
Naphthalene	ug/L (ppb)	50	100	99	72-131	1
1,2,3-Trichlorobenzene	ug/L (ppb)	50	93	93	74-122	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 812250 Work Order Number: 1812267

December 26, 2018

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 12/18/2018 for the analyses presented in the following report.

Cyanide by SM 4500-CN C, E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Vola C. Redy

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Friedman & Bruya 812250 1812267	Work Order Sample Summar				
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received			
1812267-001	AMW-1-121718	12/17/2018 2:15 PM	12/18/2018 12:20 PM			
1812267-002	AMW-2-121718	12/17/2018 4:35 PM	12/18/2018 12:20 PM			
1812267-003	AMW-3-121718	12/17/2018 3:25 PM	12/18/2018 12:20 PM			
1812267-004	AMW-4-121718	12/17/2018 1:15 PM	12/18/2018 12:20 PM			

Case Narrative

WO#: **1812267** Date: **12/26/2018**

CLIENT:Friedman & BruyaProject:812250

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1812267** Date Reported: **12/26/2018**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1812267

 Date Reported:
 12/26/2018

CLIENT:	Friedman & Bruya
Project:	812250

Lab ID: 1812267-001 Client Sample ID: AMW-1-121718	Collection Date: 12/17/2018 2:15:00 PM Matrix: Water			
Analyses	Result	RL Qual	Units DF Date Analyzed	
<u>Cyanide by SM 4500-CN C, E</u>			Batch ID: 23064 Analyst: WF	
Cyanide, Total	ND	0.0500	mg/L 1 12/26/2018 12:22:00 PM	

Lab ID: 1812267-002 Client Sample ID: AMW-2-121718				Collection Matrix: W		12/17/2018 4:35:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
<u>Cyanide by SM 4500-CN C, E</u>				Batch	ID: 230	064 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/26/2018 12:36:00 PM
Lab ID: 1812267-003				Collection	Date:	12/17/2018 3:25:00 PM
Client Sample ID: AMW-3-121718				Matrix: W	/ater	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
<u>Cyanide by SM 4500-CN C, E</u>				Batch	ID: 230	064 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/26/2018 12:40:00 PM

Analytical Report

 Work Order:
 1812267

 Date Reported:
 12/26/2018

CLIENT:Friedman & BruyaProject:812250

Lab ID: 1812267-004 Client Sample ID: AMW-4-121718	Collection Date: 12/17/2018 1:15:00 PM Matrix: Water			
Analyses	Result	RL Qual	Units DF Date Analyzed	
<u>Cyanide by SM 4500-CN C, E</u>			Batch ID: 23064 Analyst: WF	
Cyanide, Total	ND	0.0500	mg/L 1 12/26/2018 12:43:00 PM	

Work Order: CLIENT: Project:	1812267 Friedman & E 812250	Bruya						• -	SUMMARY RE /anide by SM 4500-	_
Sample ID MB-23	064	SampType: MBLK			Units: mg/L		Prep Date:	12/26/2018	RunNo: 48552	
Client ID: MBLK	N	Batch ID: 23064					Analysis Date:	12/26/2018	SeqNo: 951593	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimi	t Qual
Cyanide, Total		ND	0.0500							
Sample ID LCS-23	3064	SampType: LCS			Units: mg/L		Prep Date:	12/26/2018	RunNo: 48552	
Client ID: LCSW		Batch ID: 23064					Analysis Date:	12/26/2018	SeqNo: 951594	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimi	t Qual
Cyanide, Total		0.262	0.0500	0.2500	0	105	80	120		
Sample ID 181226	7-001ADUP	SampType: DUP			Units: mg/L		Prep Date:	12/26/2018	RunNo: 48552	
Client ID: AMW-1	-121718	Batch ID: 23064					Analysis Date:	12/26/2018	SeqNo: 951596	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimi	t Qual
Cyanide, Total		ND	0.0500					0	2	0
Sample ID 181226	7-001AMS	SampType: MS			Units: mg/L		Prep Date:	12/26/2018	RunNo: 48552	
Client ID: AMW-1	-121718	Batch ID: 23064					Analysis Date:	12/26/2018	SeqNo: 951597	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimi	t Qual
Cyanide, Total		0.294	0.0500	0.2500	0	118	80	120		
Sample ID 181226	7-001AMSD	SampType: MSD			Units: mg/L		Prep Date:	12/26/2018	RunNo: 48552	
Client ID: AMW-1	-121718	Batch ID: 23064					Analysis Date:	12/26/2018	SeqNo: 951598	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimi	t Qual
Cyanide, Total		0.281	0.0500	0.2500	0	112	80	120 0.2941	4.63 3	0

CI	ient Name:	FB	Work Order Number: 1812267				
Lo	gged by:	Clare Griggs	Date Received:	12/18/201	8 12:20:00 PM		
<u>Cha</u>	in of Custe	ody					
1.	Is Chain of C	ustody complete?	Yes 🔽	No 🗌	Not Present		
2.	How was the	sample delivered?	<u>FedEx</u>				
<u>Log</u>	In						
-	Coolers are p	iresent?	Yes	No 🔽			
э.			No cooler prese				
4.	Shipping cont	tainer/cooler in good condition?	Yes 🖌	No 🗌			
		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹		
6.	Was an atten	npt made to cool the samples?	Yes	No 🗸	NA 🗌		
			Unknown prior to re	cepit.			
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	No 🗹	NA 🗌		
			Refer to item inform	ation.			
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌			
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🖌	No 🗌			
10.	Are samples	properly preserved?	Yes 🖌	No 🗌			
11.	Was preserva	ative added to bottles?	Yes	No 🔽	NA 🗌		
12	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽		
		es containers arrive in good condition(unbroken)?	Yes 🖌				
-		ork match bottle labels?	Yes 🖌	No 🗌			
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌			
16.	Is it clear what	at analyses were requested?	Yes 🖌	No			
17.	Were all hold	ing times able to be met?	Yes 🖌	No			
<u>Spe</u>	cial Handli	ing (if applicable)					
18.	Was client no	tified of all discrepancies with this order?	Yes	No 🗌	NA 🗹		
	Person	Notified: Dat	te				
	By Who	m: Via	: 🗌 eMail 🗌 Ph	one 🗌 Fax [In Person		
	Regardi	ng:					
	Client In	structions:					
19.	Additional rer	narks:					

Item Information

Item #	Temp ⁰C
Sample	10.7

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fax (206) 283-5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.							AMW-4-121718	81 E1 21 - E - MWA	AMW-2-121718	AMW-1-121718	Sample ID		Phone #(206) 285-8282	City, State, ZIP <u>Seattle</u> ,		CompanyFrie	Send Report <u>To Mic</u>	
н	\bigcap		č.	 _			_	_	 				_	Lab ID		282	ttle, V	2 16tł	dmar	chael]	
Received by:	Relinquished by:	Relinquished by								~		_	31/11/21	Date Sampled		_Fax #(2	WA 98119	3012 16th Ave W	Friedman and Bruya,	Michael Erdahl	
	y:		. SIGNATURE							1215	S 2 S	1635	1415	Time Sampled		(206) 283-5044			a, Inc.		SUBCO
		K								4		_	mite	Matrix			RE		PR		SUBCONTRACT SAMPLE CHAIN OF CUSTODY
		Mid		-						-	-	-	1	# of jars			REMARKS	cC	OJEC	BCUN	TSA
	R	Michael Erdahl				1								Total Organic Carbon		Please	S	8 (2250	T NAN	SUBCONTRACTER	MPL
	N N	rdahl	PRIN											COD		Please Email Results		SO	PROJECT NAME/NO.	TEK	E CH
	A	*	PRINT NAME											BOD		Result					AIN
	2 K	5	Æ											Chloride	ANALYSES					remont	OFO
	È	2												Sulfate	YSES	tspart EDD		A-663			TSU
-	4	Fri		_										Sulfide	REQ	CUN		63	PO#		ODY
	F	Friedman &	CO	_			8	_		×	x	×	Х	Cyanide	REQUESTED						de=
	Y	& Bruya	COMPANY	 _			_		 		-				ED			I B			AL C
		uya	Y	_		_	_] Retur] Will c	Disp	tush ch	Standa RUSH	-1-	all a
	T	121		_	_		_								$\left \right $	Return samples Will call with in	SAMPE se after	arges a	lard (2 I	Page #_ TURNA	- CE
	ISIK		DATE											Notes		□ Return samples □ Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	≨ Standard (2 Weeks) □ RUSH	Page # of TURNAROUND TIME	18122
	228	11:00 AM.	TIME											S S		ons	SAL	by:		of 1 TIME	- 1

10/10

C

Ph. (206) 285-8282	Seattle, WA 98119-2029	Friedman & Bruya, Inc.	- ·				Amw-4-121710	PMW-3-121719	AMW-2-121718	Amw-1-121718	Sample ID		2-0	ute, ZIP	812250 Report To Dank Company Appect
Received by:	Received by: Relinquished by:	Relinquished by VG	SIG				oy r	03	02	OIAT	Lab ID		hail deannor	Seattle	Cannon
Jans		5	SIGNATURE				t			12/17/18	Date Sampled		Sal Carlo		
		6					1315	1525	635	TF-TS	Time Sampled		L Consu	HEMABKSER	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) U. (PROJECT NAME Evergreen
Nhan	LAND	Na Hywra				 ×.	¢		,	Water	Sample Type		Hing, Co	KER	MPLE CHAIN OF SAMPLERS (signature) PROJECT NAME Evergreen
	2		PRINT NA				÷			2	Jars of TPH-HCID		Š.	1/2/	OF CUS $ure)$ $\int a$
Phan	1020	Ma.	AME				X X	XX	メ	ХX	TPH-Diesel TPH-Gasoline BTEX by 8021B			X	TODY
FeB	- R.	Asp		Sai			7	X	×	X	VOCs by 8260C SVOCs by 8270D	ANALYSES	MUTY PAULSUE	INVOICE TO	NE 1 162043
87	08	pect	COMPANY	 Samples rec			 XX	XX	XX	イイ	PAHs 8270D SIM Silsolan Mehl Cyanide	REQUESTI	r	£.	3/18
				 received at	- 							đ	□ Archive Samples □ Other	SAMP Dispose aft	/1 &
12/18/18	2/18/18	1 81/11/21	DATE	4 °C				I leid tiltered	pb, Ni, Zn	Cr.Cu, 1	Notes		mples	SAMPLE DISPOSAL	Page # / of / TURNAROUND TIME ndard Turnaround SH
1000	55:16	218	TIME					Hered	S	HA MA				F]	AZA ME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 17, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on September 10, 2020 from the Evergreen Treatment Services 1700 Airport Way South, Seattle, WA PO 180043, F&BI 009183 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0917R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 10, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Evergreen Treatment Services 1700 Airport Way South, Seattle, WA PO 180043, F&BI 009183 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
009183 -01	SV-3-091020

The TO-15 calibration standard failed the acceptance criteria for methylene chloride. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	SV-3-091020	Client:		Aspect Consulting, LLC				
Date Received:	09/10/20	Project		Evergreen Treatment Services, Seattle, WA				
Date Collected:	Date Collected: 09/10/20):	009183-01 1/17				
Date Analyzed:	09/15/20	Data F	'ile:	091430.D				
Matrix:	Air	Instru	ment:	GCMS7				
Units:	its: ug/m3		cor:	bat				
	%	Lower	Upper					
Surrogates:	Recovery:	Limit:	Limit:					
4-Bromofluorobenz	zene 108	70	130					
	Concentration							
Compounds:	ug/m3							
APH EC5-8 aliphatics3APH EC9-12 aliphatics4APH EC9-10 aromatics4								

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	Method Blank	Client:		Aspect Consulting, LLC				
Date Received:	Not Applicable	Project		Evergreen Treatment Services, Seattle, WA				
Date Collected:	Not Applicable	Lab ID):	00-2043 MB				
Date Analyzed:	09/14/20	Data F	'ile:	091421.D				
Matrix:	Air	Instru	ment:	GCMS7				
Units:	ug/m3	Operat	cor:	bat				
	%	Lower	Upper					
Surrogates:	Recovery:	Limit:	Limit:					
4-Bromofluorobenz	zene 110	70	130					
	Concentration							
Compounds:	ug/m3							
APH EC5-8 alipha	tics <40							
APH EC9-12 aliphatics								
APH EC9-10 arom	atics <25							

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Units: ug/m3 Operator: bat	
% Lower Upper	
Surrogates: Recovery: Limit: Limit:	
4-Bromofluorobenzene 105 70 130	
Concentration Concentration	
Compounds: ug/m3 ppbv Compounds: ug/m3 p	pbv
1 1	0.85
· ·	:1.7
	<17
	<17 <17
	>17).17
Butane 400 170 Trichloroethene 40	7.4
	7.4 :1.7
	<17
	<1.7
	<85
	-85).34
	<17
	<17
).17
).17
	:1.7
	:1.7
	0.34
	<17
	8.5
	<17
	8.5
	8.5
Vinyl acetate <120 <34 m,p-Xylene 20	4.6
	:1.7
	3.4
Hexane 79 22 Bromoform <35	3.4
Chloroform 1.7 0.36 Benzyl chloride <0.88 <	0.17
Ethyl acetate <120 <34 1,3,5-Trimethylbenzene <42	≈ 8.5
	≈ 8.5
	:1.7
	0.65
	1.7
	:1.7
	0.85
Cyclohexane <120 <34 Hexachlorobutadiene <3.6 <0).34

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 09/14/20 Air ug/m3	Inst	ect:	Aspect Consulting, LLC Evergreen Treatment Services, Seattle, WA 00-2043 MB 091421.D GCMS7 bat					
	%	Lower	Upper						
Surrogates:	Recovery:		Limit:						
4-Bromofluorobenz	ene 107	70	130						
	Conce	ntration			Concer	tration			
Compounds:	ug/m3		Compo	unds:	ug/m3	ppbv			
Propene	<1.2			chloropropane	< 0.23	< 0.05			
Dichlorodifluorome			1,4-Dic		< 0.36	< 0.1			
Chloromethane	<3.7			rimethylpentane	<4.7	<1			
F-114	<0.7			l methacrylate	<4.1	<1			
Vinyl chloride	< 0.26		Heptar		<4.1	<1			
1,3-Butadiene	< 0.044			dichloromethane	< 0.067	< 0.01			
Butane	<2.4			proethene	< 0.11	< 0.02			
Bromomethane	<2.3			Dichloropropene	< 0.45	< 0.1			
Chloroethane	<2.6			yl-2-pentanone	<4.1	<1			
Vinyl bromide	< 0.44			,3-Dichloropropene	< 0.45	< 0.1			
Ethanol	<7.5		Toluen		<19	<5			
Acrolein	<2.1			richloroethane	< 0.11	< 0.02			
Pentane	<3		2-Hexa		<4.1	<1			
Trichlorofluoromet				hloroethene	<6.8	<1			
Acetone	<4.8			nochloromethane	< 0.085	< 0.01			
2-Propanol	<8.6			promoethane (EDB)	< 0.077	< 0.01			
1,1-Dichloroethene				benzene	<0.46	< 0.1			
trans-1,2-Dichloroe				enzene	< 0.43	< 0.1			
Methylene chloride				-Tetrachloroethane	<0.14	< 0.02			
t-Butyl alcohol (TB			Nonan		<5.2	<1			
3-Chloropropene CFC-113	<1.6 <0.77			oylbenzene rotoluene	<2.5 <5.2	< 0.5			
Carbon disulfide	<0.77 <6.2			benzene	<0.2 <2.5	<1 <0.5			
Methyl t-butyl ethe				ltoluene	<2.5	< 0.5			
Vinyl acetate	(MIDE) <1.8 <7		m,p-Xy		<0.87	<0.3			
1,1-Dichloroethane			o-Xylei		<0.43	<0.2			
cis-1,2-Dichloroeth			Styren		<0.45	<0.1			
Hexane	<3.5		Bromo		<2.1	<0.2			
Chloroform	< 0.049			chloride	< 0.052	< 0.01			
Ethyl acetate	<7.2			rimethylbenzene	<2.5	< 0.5			
Tetrahydrofuran	< 0.29			rimethylbenzene	<2.5	< 0.5			
2-Butanone (MEK)				chlorobenzene	< 0.6	< 0.1			
1,2-Dichloroethane				chlorobenzene	< 0.23	< 0.038			
1,1,1-Trichloroetha				hlorobenzene	< 0.6	< 0.1			
Carbon tetrachlorio			,	richlorobenzene	< 0.74	< 0.1			
Benzene	< 0.32		Naphtl		< 0.26	< 0.05			
Cyclohexane	<6.9			nlorobutadiene	< 0.21	< 0.02			

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183 Date Extracted: 09/16/20 Date Analyzed: 09/16/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
SV-3-091020 009183-01	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 009222-03 1/8.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	370	260	35 vo
APH EC9-12 aliphatics	ug/m3	1,600	1,500	6
APH EC9-10 aromatics	ug/m3	<210	<210	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	80	70-130
APH EC9-12 aliphatics	ug/m3	67	102	70-130
APH EC9-10 aromatics	ug/m3	67	88	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009222-03 1/8.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<10	<10	nm
Dichlorodifluoromethane	ug/m3	<4.1	<4.1	nm
Chloromethane	ug/m3	<31	<31	nm
F-114	ug/m3	<5.8	<5.8	nm
Vinyl chloride	ug/m3	3.7	3.7	0
1,3-Butadiene	ug/m3	< 0.37	< 0.37	nm
Butane	ug/m3	<20	<20	nm
Bromomethane	ug/m3	<19	<19	nm
Chloroethane	ug/m3	<22	<22	nm
Vinyl bromide	ug/m3	<3.6	<3.6	nm
Ethanol	ug/m3	<63	<63	nm
Acrolein	ug/m3	<17	<17	nm
Pentane	ug/m3	<24	<24	nm
Trichlorofluoromethane	ug/m3	<19	<19	nm
Acetone	ug/m3	110	91	19
2-Propanol	ug/m3	<71	<71	nm
1,1-Dichloroethene	ug/m3	<3.3	<3.3	nm
trans-1,2-Dichloroethene	ug/m3	<3.3	<3.3	nm
Methylene chloride	ug/m3	<290	<290	nm
t-Butyl alcohol (TBA)	ug/m3	<100	<100	nm
3-Chloropropene	ug/m3	<13	<13	nm
CFC-113	ug/m3	< 6.4	< 6.4	nm
Carbon disulfide	ug/m3	<52	<52	nm
Methyl t-butyl ether (MTBE)	ug/m3	<15	<15	nm
Vinyl acetate	ug/m3	<58	<58	nm
1,1-Dichloroethane	ug/m3	<3.4	<3.4	nm
cis-1,2-Dichloroethene	ug/m3	<3.3	<3.3	nm
Hexane	ug/m3	<29	<29	nm
Chloroform	ug/m3	< 0.41	< 0.41	nm
Ethyl acetate	ug/m3	<60	<60	nm
Tetrahydrofuran	ug/m3	<2.4	<2.4	nm
2-Butanone (MEK)	ug/m3	45	42	7
1,2-Dichloroethane (EDC)	ug/m3	< 0.34	< 0.34	nm
1,1,1-Trichloroethane	ug/m3	<4.5	<4.5	nm
Carbon tetrachloride	ug/m3	<2.6	<2.6	nm
Benzene	ug/m3	<2.7	<2.7	nm
Cyclohexane	ug/m3	$<\!\!57$	<57	nm
1,2-Dichloropropane	ug/m3	<1.9	<1.9	nm
1,4-Dioxane	ug/m3	<3	<3	nm
2,2,4-Trimethylpentane	ug/m3	<39	<39	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009222-03 1/8.3 (Duplicate, continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<34	<34	nm
Heptane	ug/m3	<34	<34	nm
Bromodichloromethane	ug/m3	< 0.56	< 0.56	nm
Trichloroethene	ug/m3	< 0.89	< 0.89	nm
cis-1,3-Dichloropropene	ug/m3	<3.8	<3.8	nm
4-Methyl-2-pentanone	ug/m3	<34	<34	nm
trans-1,3-Dichloropropene	ug/m3	<3.8	<3.8	nm
Toluene	ug/m3	<160	<160	nm
1,1,2-Trichloroethane	ug/m3	< 0.91	< 0.91	nm
2-Hexanone	ug/m3	<34	<34	nm
Tetrachloroethene	ug/m3	<56	<56	nm
Dibromochloromethane	ug/m3	< 0.71	< 0.71	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.64	< 0.64	nm
Chlorobenzene	ug/m3	<3.8	<3.8	nm
Ethylbenzene	ug/m3	<3.6	<3.6	nm
1,1,2,2-Tetrachloroethane	ug/m3	1.6	1.5	6
Nonane	ug/m3	<44	<44	nm
Isopropylbenzene	ug/m3	<20	<20	nm
2-Chlorotoluene	ug/m3	<43	<43	nm
Propylbenzene	ug/m3	<20	<20	nm
4-Ethyltoluene	ug/m3	<20	<20	nm
m,p-Xylene	ug/m3	<7.2	<7.2	nm
o-Xylene	ug/m3	<3.6	<3.6	nm
Styrene	ug/m3	<7.1	<7.1	nm
Bromoform	ug/m3	<17	<17	nm
Benzyl chloride	ug/m3	< 0.43	< 0.43	nm
1,3,5-Trimethylbenzene	ug/m3	<20	<20	nm
1,2,4-Trimethylbenzene	ug/m3	<20	<20	nm
1,3-Dichlorobenzene	ug/m3	<5	<5	nm
1,4-Dichlorobenzene	ug/m3	<1.9	<1.9	nm
1,2-Dichlorobenzene	ug/m3	<5	<5	nm
1,2,4-Trichlorobenzene	ug/m3	< 6.2	< 6.2	nm
Naphthalene	ug/m3	<2.2	<2.2	nm
Hexachlorobutadiene	ug/m3	<1.8	<1.8	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ontroi Sample		Percent	
	Reporting	Spike	Recovery	Accontance
Analyta	Units	Level	LCS	Acceptance Criteria
Analyte			102	70-130
Propene Dichlorodifluoromethane	ug/m3 ug/m3	$\begin{array}{c} 23 \\ 67 \end{array}$		70-130
Chloromethane	ug/m3 ug/m3	28	$\begin{array}{c} 104 \\ 103 \end{array}$	70-130
F-114	0	$\frac{28}{94}$		
	ug/m3		105	70-130
Vinyl chloride	ug/m3	$35 \\ 20$	103	70-130
1,3-Butadiene	ug/m3	30	101	70-130
Butane	ug/m3	32 59	103	70-130
Bromomethane	ug/m3	52 26	110	70-130
Chloroethane	ug/m3	36 50	103	70-130
Vinyl bromide	ug/m3	59 9	108	70-130
Ethanol	ug/m3	25	95	70-130
Acrolein	ug/m3	31	99	70-130
Pentane	ug/m3	40	105	70-130
Trichlorofluoromethane	ug/m3	76	107	70-130
Acetone	ug/m3	32	106	70-130
2-Propanol	ug/m3	33	102	70-130
1,1-Dichloroethene	ug/m3	54	103	70-130
trans-1,2-Dichloroethene	ug/m3	54	102	70-130
Methylene chloride	ug/m3	94	92	70-130
t-Butyl alcohol (TBA)	ug/m3	41	101	70-130
3-Chloropropene	ug/m3	42	96	70-130
CFC-113	ug/m3	100	104	70-130
Carbon disulfide	ug/m3	42	95	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	103	70-130
Vinyl acetate	ug/m3	48	94	70-130
1,1-Dichloroethane	ug/m3	55	105	70-130
cis-1,2-Dichloroethene	ug/m3	54	104	70-130
Hexane	ug/m3	48	105	70-130
Chloroform	ug/m3	66	105	70-130
Ethyl acetate	ug/m3	49	108	70-130
Tetrahydrofuran	ug/m3	40	100	70-130
2-Butanone (MEK)	ug/m3	40	112	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	104	70-130
1,1,1-Trichloroethane	ug/m3	74	103	70-130
Carbon tetrachloride	ug/m3	85	104	70-130
Benzene	ug/m3	43	101	70-130
Cyclohexane	ug/m3	46	102	70-130
1,2-Dichloropropane	ug/m3	62	96	70-130
1,4-Dioxane	ug/m3	49	92	70-130
2,2,4-Trimethylpentane	ug/m3	63	98	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (Continued)

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	98	70-130
Heptane	ug/m3	55	99	70-130
Bromodichloromethane	ug/m3	90	101	70-130
Trichloroethene	ug/m3	73	100	70-130
cis-1,3-Dichloropropene	ug/m3	61	105	70 - 130
4-Methyl-2-pentanone	ug/m3	55	106	70 - 130
trans-1,3-Dichloropropene	ug/m3	61	100	70 - 130
Toluene	ug/m3	51	98	70 - 130
1,1,2-Trichloroethane	ug/m3	74	102	70 - 130
2-Hexanone	ug/m3	55	100	70 - 130
Tetrachloroethene	ug/m3	92	92	70 - 130
Dibromochloromethane	ug/m3	120	102	70 - 130
1,2-Dibromoethane (EDB)	ug/m3	100	102	70-130
Chlorobenzene	ug/m3	62	100	70 - 130
Ethylbenzene	ug/m3	59	101	70 - 130
1,1,2,2-Tetrachloroethane	ug/m3	93	105	70 - 130
Nonane	ug/m3	71	105	70 - 130
Isopropylbenzene	ug/m3	66	105	70-130
2-Chlorotoluene	ug/m3	70	107	70-130
Propylbenzene	ug/m3	66	110	70-130
4-Ethyltoluene	ug/m3	66	116	70-130
m,p-Xylene	ug/m3	120	103	70-130
o-Xylene	ug/m3	59	102	70-130
Styrene	ug/m3	58	101	70-130
Bromoform	ug/m3	140	104	70-130
Benzyl chloride	ug/m3	70	105	70-130
1,3,5-Trimethylbenzene	ug/m3	66	106	70-130
1,2,4-Trimethylbenzene	ug/m3	66	108	70-130
1,3-Dichlorobenzene	ug/m3	81	104	70-130
1,4-Dichlorobenzene	ug/m3	81	98	70-130
1,2-Dichlorobenzene	ug/m3	81	98	70-130
1,2,4-Trichlorobenzene	ug/m3	100	91	70-130
Naphthalene	ug/m3	71	92	70-130
Hexachlorobutadiene	ug/m3	140	106	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/20 Date Received: 09/10/20 Project: Evergreen Treatment Services 1700 Airport Way South, Seattle, F&BI 009183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 0	09138-01 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	<0.6	nm	0-20
Laboratory Code: 0	09233-01 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FC	PI		A) 31				1		<u> </u>	1		1.0	••• ·	20	م	.0	A	
Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	Friedman & Bruya, Inc. 3012 I fih Avenue West	• • •					2			SV-3-091020	Sample Name	SAMPLE INFORMATION	Phone (206)413-5411 Email ayon Kotseil aspect consulting, com	City, State, ZIP Seattle, WA 98104	Address The Line Ave, Ste 550	Report To Andrew Yon Kotski
Received by:	Relinquished by:	Received b	Relinquished by:									0	Lab UD		mail Ay	W/W	Consu tve,	Yon
by:	shed by:		SIC		-							2294	Canister ID		micolati	86 N	Sters	KOFSK
		MAR	SIGNATURE									280	Flow Cont. ID		@ aspect	401	50	***
		Ŵ	E		IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA /GG	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		consulting, ior	- NOTES:	PROJE	SAMPI
	QUI	There was	2						~.	×-		09/10/20	Date Sampled		3	ų,	PROJECT NAME & ADDRESS Everymeen Treatment Services 1700 Anportway South, Saithe, WA	SAMPLEKS (signature)
	J. J.		PRI								III	0 28157	Initial Vac.				TE & AD Treatm	șnature)
	mm Co	p (nwel	PRINT NAME			-	₹ <u>µ</u> - ₹					1532	Field Initial Time				DRESS untse untse	Jaims
				-	,							5	Final Vac.				rvices the,WA	m
			24	-								1537 /	Field Final Time		A	INV	500AS الأ	2
	den	1 leg	- 01										TO15 Full Scan TO15 BTEXN	ANALYSIS REQUESTED	AP	INVOICE TO	ро# 43	/
			COMPANY										TO15 cVOCs	IS REQ				ļ
	,											\leq	Helium	UESTE	🗆 Archi	⊡ Defau	X Standard	П
	cre /all	10/10/10	~ 10										z		□ Archive (Fee māy apply)	SAMPLE DISPOSAL	☐ RUSH Rush charges authorized by:	TURNAROUND TIME
		100	TIME										Notes		pply)	OSAL r 3 days	zed by:) TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 18, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on September 17, 2020 from the 180043, F&BI 009308 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0918R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 17, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC 180043, F&BI 009308 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
009308 -01	SV-5-091720

The TO-15 calibration standard failed the acceptance criteria for methylene chloride. The data were flagged accordingly.

The APH EC5-8 aliphatics and propene concentration in sample SV-5-091720 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received:	Client: Project:		Aspect Consulting, LLC 180043, F&BI 009308	
Date Collected:	09/17/20	Lab II):	009308-01 1/42
Date Analyzed:	09/18/20	Data F	File:	091723.D
Matrix:	Air	Instru	ment:	GCMS7
Units:	ug/m3	Operat	tor:	bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	natics 22,000			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 09/17/20 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Aspect Consulting, LLC 180043, F&BI 009308 00-2080 MB 091718.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 106	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <50			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Analyzed:09/18/20Data File:091723.DMatrix:AirInstrument:GCMS7Units:ug/m3Operator:bat	
% Lower Upper	
Surrogates: Recovery: Limit: Limit:	
4-Bromofluorobenzene 93 70 130	
Concentration Concent	rotion
Compounds: ug/m3 ppbv Compounds: ug/m3	ppbv
	pppv
Propene 2,100 ve 1,200 ve 1,2-Dichloropropane <9.7	<2.1
Dichlorodifluoromethane <21 <4.2 1,4-Dioxane <15	<4.2
Chloromethane <160 <76 2,2,4-Trimethylpentane 460	99
F-114 <29 <4.2 Methyl methacrylate <170	<42
Vinyl chloride 280 110 Heptane <170	<42
1,3-Butadiene <1.9 <0.84 Bromodichloromethane <2.8	< 0.42
Butane 2,000 850 Trichloroethene 61	11
Bromomethane <98 <25 cis-1,3-Dichloropropene <19	<4.2
Chloroethane <110 <42 4-Methyl-2-pentanone <170	<42
Vinyl bromide <18 <4.2 trans-1,3-Dichloropropene <19	<4.2
Ethanol <320 <170 Toluene <790	<210
Acrolein <87 <38 1,1,2-Trichloroethane <2.3	< 0.42
Pentane 870 290 2-Hexanone <170	<42
Trichlorofluoromethane <94 <17 Tetrachloroethene <280	<42
Acetone <600 <250 Dibromochloromethane <3.6	< 0.42
2-Propanol <360 <150 1,2-Dibromoethane (EDB) <3.2	< 0.42
1,1-Dichloroethene <17 <4.2 Chlorobenzene <19	<4.2
trans-1,2-Dichloroethene 110 28 Ethylbenzene <18	<4.2
Methylene chloride <1,500 ca <420 ca 1,1,2,2-Tetrachloroethane <5.8	< 0.84
t-Butyl alcohol (TBA) <510 <170 Nonane <220	<42
3-Chloropropene <66 <21 Isopropylbenzene <100	<21
CFC-113 <32 <4.2 2-Chlorotoluene <220	<42
Carbon disulfide <260 <84 Propylbenzene <100	<21
Methyl t-butyl ether (MTBE) <76 <21 4-Ethyltoluene <100	<21
Vinyl acetate <300 <84 m,p-Xylene <36	<8.4
1,1-Dichloroethane <17 <4.2 o-Xylene 37	8.5
cis-1,2-Dichloroethene 70 18 Styrene <36	<8.4
Hexane 360 100 Bromoform <87	<8.4
Chloroform <2.1 <0.42 Benzyl chloride <2.2	< 0.42
Ethyl acetate <300 <84 1,3,5-Trimethylbenzene <100	<21
Tetrahydrofuran 18 6.2 1,2,4-Trimethylbenzene <100	<21
2-Butanone (MEK) <120 <42 1,3-Dichlorobenzene <25	<4.2
1,2-Dichloroethane (EDC) <1.7 <0.42 1,4-Dichlorobenzene <9.7	<1.6
1,1,1-Trichloroethane <23 <4.2 1,2-Dichlorobenzene <25	<4.2
Carbon tetrachloride <13 <2.1 1,2,4-Trichlorobenzene <31	<4.2
Benzene 170 54 Naphthalene <11	<2.1
Cyclohexane <290 <84 Hexachlorobutadiene <9	< 0.84

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

	Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl Not Appl 09/17/20 Air ug/m3	icable	Client: Project: Lab ID: Data File: Instrument: Operator:		Aspect Consulting, LL0 180043, F&BI 009308 00-2080 MB 091718.D GCMS7 bat	3	
			0/0	Lower	Unner			
	Surrogates:	R						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			G				a	
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	0 1				C	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Propene		<1.2	< 0.7	1,2-Di	chloropropane	< 0.23	< 0.05
$\begin{array}{llllllllllllllllllllllllllllllllllll$		thane	< 0.49					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<3.7	<1.8			<4.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						• •		<1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vinyl chloride							<1
Butane < 2.4 < 1 Trichloroethene < 0.11 < 0.02 Bromomethane < 2.3 < 0.6 $< cis-1,3$ -Dichloropropene < 0.45 < 0.11 Chloroethane < 2.6 < 1 4 -Methyl-2-pentanone < 4.1 < 1 Vinyl bromide < 0.44 < 0.11 trans.1,3-Dichloropropene < 0.45 < 0.11 Ethanol < 7.5 < 4 Toluene < 19 < 5 Acrolein < 2.1 < 0.9 $1,1,2$ -Trichloroethane < 0.055 < 0.01 Pentane < 3 < 1 2 -Hexanone < 4.1 < 1 Trichlorofluoromethane < 2.2 < 0.4 Tetrachloroethene < 4.8 < 2 Acetone < 4.8 < 2 Dibromochloromethane < 0.085 < 0.01 2-Propanol < 8.6 < 3.5 $1,2$ -Dibromoethane (EDB) < 0.077 < 0.01 1, 1-Dichloroethene < 0.4 < 0.1 Chlorobenzene < 0.46 < 0.1 trans.1,2-Dichloroethene < 0.4 < 0.1 Ethylbenzene < 0.43 < 0.1 Methylene chloride < 35 ca < 10 ca $1,1,2,2$ -Tetrachloroethane < 0.44 < 0.02 t-Butyl alcohol (TBA) < 12 < 4 Nonane < 5.2 < 1 2-Chloropropene < 1.6 < 0.5 Isopropylbenzene < 2.5 < 0.5 CFC-113 < 0.77 < 0.1 2 -Chlorotoluene < 5.2 < 1 Carbon disulfide < 6.2 < 2 Proylbenzene < 0.87	-		< 0.044	< 0.02			< 0.067	< 0.01
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<2.3	< 0.6				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				< 0.1				
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				< 0.9	1, 1, 2-7	Trichloroethane		
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$		hane		< 0.4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<4.8	<2	Dibror	nochloromethane		< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Propanol			<3.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				< 0.1	Ethylk	oenzene	< 0.43	< 0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<35 ca		-			
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	,	<1.6	< 0.5	Isopro	pylbenzene	<2.5	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								< 0.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methyl t-butyl ethe	er (MTBE)	<1.8	< 0.5			<2.5	
$\begin{array}{llllllllllllllllllllllllllllllllllll$. , ,					< 0.87	< 0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			< 0.4					
$\begin{array}{llllllllllllllllllllllllllllllllllll$			< 0.4	< 0.1	Styren	ie	< 0.85	< 0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hexane		<3.5				<2.1	< 0.2
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Chloroform		< 0.049	< 0.01	Benzy	l chloride	< 0.052	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethyl acetate		<7.2	<2	1,3,5-7	Frimethylbenzene	<2.5	< 0.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tetrahydrofuran		< 0.29	< 0.1	1,2,4-7	Trimethylbenzene	<2.5	< 0.5
1,1,1-Trichloroethane<0.55<0.11,2-Dichlorobenzene<0.6<0.1Carbon tetrachloride<0.31			<2.9	<1			< 0.6	< 0.1
Carbon tetrachloride <0.31 <0.05 $1,2,4$ -Trichlorobenzene <0.74 <0.1 Benzene <0.32 <0.1 Naphthalene <0.26 <0.05	1,2-Dichloroethane	(EDC)	< 0.04	< 0.01	1,4-Di	chlorobenzene	< 0.23	< 0.038
Benzene <0.32 <0.1 Naphthalene <0.26 <0.05	1,1,1-Trichloroetha	ne	< 0.55	< 0.1	1,2-Di	chlorobenzene	< 0.6	< 0.1
Benzene <0.32 <0.1 Naphthalene <0.26 <0.05	Carbon tetrachlorid	le	< 0.31	< 0.05	1,2,4-7	Trichlorobenzene	< 0.74	< 0.1
Cyclohexane <6.9 <2 Hexachlorobutadiene <0.21 <0.02	Benzene		< 0.32	< 0.1	Napht	halene	< 0.26	< 0.05
	Cyclohexane		<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308 Date Extracted: 09/18/20 Date Analyzed: 09/18/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
SV-5-091720 009308-01	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 009252-01 1/3.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	350	350	0
APH EC9-12 aliphatics	ug/m3	790	630	23
APH EC9-10 aromatics	ug/m3	<95	<95	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	87	70-130
APH EC9-12 aliphatics	ug/m3	67	116	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009252-01 1/3.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<4.6	<4.6	nm
Dichlorodifluoromethane	ug/m3	2.7	2.9	7
Chloromethane	ug/m3	<14	<14	nm
F-114	ug/m3	<2.7	<2.7	nm
Vinyl chloride	ug/m3	< 0.97	< 0.97	nm
1,3-Butadiene	ug/m3	< 0.17	< 0.17	nm
Butane	ug/m3	<9	<9	nm
Bromomethane	ug/m3	<8.9	<8.9	nm
Chloroethane	ug/m3	<10	<10	nm
Vinyl bromide	ug/m3	<1.7	<1.7	nm
Ethanol	ug/m3	280	290	4
Acrolein	ug/m3	<7.8	<7.8	nm
Pentane	ug/m3	<11	<11	nm
Trichlorofluoromethane	ug/m3	<8.5	<8.5	nm
Acetone	ug/m3	230	240	4
2-Propanol	ug/m3	51	51	0
1,1-Dichloroethene	ug/m3	<1.5	<1.5	nm
trans-1,2-Dichloroethene	ug/m3	<1.5	<1.5	nm
Methylene chloride	ug/m3	140	140	0
t-Butyl alcohol (TBA)	ug/m3	94	94	0
3-Chloropropene	ug/m3	<5.9	<5.9	nm
CFC-113	ug/m3	<2.9	<2.9	nm
Carbon disulfide	ug/m3	<24	<24	nm
Methyl t-butyl ether (MTBE)	ug/m3	<6.9	<6.9	nm
Vinyl acetate	ug/m3	<27	<27	nm
1,1-Dichloroethane	ug/m3	<1.5	<1.5	nm
cis-1,2-Dichloroethene	ug/m3	<1.5	<1.5	nm
Hexane	ug/m3	<13	<13	nm
Chloroform	ug/m3	0.37	0.35	6
Ethyl acetate	ug/m3	$<\!\!27$	<27	nm
Tetrahydrofuran	ug/m3	<1.1	<1.1	nm
2-Butanone (MEK)	ug/m3	15	14	7
1,2-Dichloroethane (EDC)	ug/m3	< 0.15	< 0.15	nm
1,1,1-Trichloroethane	ug/m3	2.7	2.7	0
Carbon tetrachloride	ug/m3	<1.2	<1.2	nm
Benzene	ug/m3	3.4	3.4	0
Cyclohexane	ug/m3	<26	<26	nm
1,2-Dichloropropane	ug/m3	< 0.88	< 0.88	nm
1,4-Dioxane	ug/m3	<1.4	<1.4	nm
2,2,4-Trimethylpentane	ug/m3	<18	<18	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009252-01 1/3.8 (Duplicate, continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<16	<16	nm
Heptane	ug/m3	<16	<16	nm
Bromodichloromethane	ug/m3	< 0.25	< 0.25	nm
Trichloroethene	ug/m3	< 0.41	< 0.41	nm
cis-1,3-Dichloropropene	ug/m3	< 1.7	<1.7	nm
4-Methyl-2-pentanone	ug/m3	<16	<16	nm
trans-1,3-Dichloropropene	ug/m3	< 1.7	<1.7	nm
Toluene	ug/m3	<72	<72	nm
1,1,2-Trichloroethane	ug/m3	< 0.21	< 0.21	nm
2-Hexanone	ug/m3	<16	<16	nm
Tetrachloroethene	ug/m3	<26	<26	nm
Dibromochloromethane	ug/m3	< 0.32	< 0.32	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.29	< 0.29	nm
Chlorobenzene	ug/m3	<1.7	<1.7	nm
Ethylbenzene	ug/m3	2.9	2.6	11
1,1,2,2-Tetrachloroethane	ug/m3	< 0.52	< 0.52	nm
Nonane	ug/m3	<20	<20	nm
Isopropylbenzene	ug/m3	<9.3	<9.3	nm
2-Chlorotoluene	ug/m3	<20	<20	nm
Propylbenzene	ug/m3	<9.3	<9.3	nm
4-Ethyltoluene	ug/m3	<9.3	<9.3	nm
m,p-Xylene	ug/m3	14	13	7
o-Xylene	ug/m3	5.0	4.5	11
Styrene	ug/m3	<3.2	<3.2	nm
Bromoform	ug/m3	<7.9	<7.9	nm
Benzyl chloride	ug/m3	< 0.2	< 0.2	nm
1,3,5-Trimethylbenzene	ug/m3	<9.3	<9.3	nm
1,2,4-Trimethylbenzene	ug/m3	<9.3	<9.3	nm
1,3-Dichlorobenzene	ug/m3	<2.3	<2.3	nm
1,4-Dichlorobenzene	ug/m3	< 0.87	< 0.87	nm
1,2-Dichlorobenzene	ug/m3	<2.3	<2.3	nm
1,2,4-Trichlorobenzene	ug/m3	<2.8	<2.8	nm
Naphthalene	ug/m3	<1	<1	nm
Hexachlorobutadiene	ug/m3	< 0.81	< 0.81	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Reporting PropeneSpike UnitsRecovery LevelAcceptance CriteriaPropeneug/m32311370-130Dichlorodifluoromethaneug/m32811170-130Chloromethaneug/m32811170-130F.114ug/m33510970-130J.3-Butadieneug/m33010670-130Butaneug/m33211270-130Bromomethaneug/m33210970-130Chloroethaneug/m35210970-130Vinyl bromideug/m35910870-130Ethanolug/m33110170-130Acroleinug/m33110170-130Pentaneug/m33110170-130Acetoneug/m33210770-1302-Propanolug/m33310570-1301,-Dichloroetheneug/m35410370-1301,-Dichloroetheneug/m34110370-1302-Propanolug/m3429770-1303-Chloropropeneug/m3429770-130CFC-113ug/m34810270-130Carbon disulfideug/m34810270-130Cichloroethaneug/m35511070-130Cichloroethaneug/m34910570-130Cichloroethaneug/m34910570-1301,1-Dichloroethaneug/m3	Laboratory Code. Laboratory Co	Percent					
AnalyteUnitsLevelLCSCriteriaPropeneug/m32311370-130Dichlorodifluoromethaneug/m32311170-130Chloromethaneug/m3811170-130F-114ug/m39410870-130Vinyl chlorideug/m33510970-130J.3-Butadieneug/m33211270-130Butaneug/m33211270-130Butaneug/m35210970-130Chloroethaneug/m35510270-130Choroethaneug/m32510270-130Choroethaneug/m33110170-130Choroethaneug/m33110170-130Pentaneug/m33210770-130Acroleinug/m33310570-130Pentaneug/m33310570-130Trichlorofluoromethaneug/m33410470-130Acetoneug/m35410470-130L'Dichloroetheneug/m35410470-130trans-1,2-Dichloroetheneug/m3429770-130CFC-113ug/m34810270-130Cabon disulfideug/m34810570-130Chloropropeneug/m34810570-130Chloropthaneug/m34810570-130Chloropthaneug/m34810570-130		Reporting	Sniko		Accentance		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyte		-		-		
Dichlorodifluoromethane $ug/m3$ 6710670-130Chloromethane $ug/m3$ 2811170-130F-114 $ug/m3$ 9410870-130Vinyl chloride $ug/m3$ 3510970-1301,3-Butadiene $ug/m3$ 3211270-130Butane $ug/m3$ 3211270-130Bromomethane $ug/m3$ 5210970-130Chloroethane $ug/m3$ 5910870-130Vinyl bromide $ug/m3$ 5910870-130Pentane $ug/m3$ 2510270-130Acrolein $ug/m3$ 3110170-130Pentane $ug/m3$ 3210770-130Acetone $ug/m3$ 3210770-1302-Propanol $ug/m3$ 3310570-1301,1-Dichloroethene $ug/m3$ 5410370-130trans-1,2-Dichloroethene $ug/m3$ 4110370-130CFC-113 $ug/m3$ 4211070-130Carbon disulfide $ug/m3$ 429770-130Vinyl acetate $ug/m3$ 4810270-130Li-Dichloroethene $ug/m3$ 5511070-130CrC-113 $ug/m3$ 4910570-130Crabon disulfide $ug/m3$ 4810270-130Vinyl acetate $ug/m3$ 5510870-130Li-Dichloroethane $ug/m3$ 5510870-130Carb							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-					
F-114ug/m39410870-130Vinyl chlorideug/m33510970-1301,3-Butadieneug/m33211270-130Butaneug/m33211270-130Bromomethaneug/m35210970-130Chloroethaneug/m33610870-130Vinyl bromideug/m35910870-130Ethanolug/m32510270-130Acroleinug/m33110170-130Pentaneug/m34010970-130Accoleinug/m33210770-130Acetoneug/m33210770-1302-Propanolug/m35410370-1301,1-Dichloroetheneug/m35410370-130trans-1,2-Dichloroetheneug/m34110370-130dchropropeneug/m34110370-130dchropropeneug/m34211070-130CFC-113ug/m310010670-130CrEC-113ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroetheneug/m35511070-130Cirstopropeneug/m34810570-130Crobo disulfideug/m34810570-1301,1-Dichloroethaneug/m35511070-1301,1-Dichloroethaneug/m34810870-1		0					
Vinyl chloride $ug/m3$ 35 109 $70-130$ 1,3-Butadiene $ug/m3$ 30 106 $70-130$ Butane $ug/m3$ 32 112 $70-130$ Bromomethane $ug/m3$ 32 109 $70-130$ Chloroethane $ug/m3$ 52 109 $70-130$ Vinyl bromide $ug/m3$ 59 108 $70-130$ Ethanol $ug/m3$ 59 108 $70-130$ Acrolein $ug/m3$ 31 101 $70-130$ Pentane $ug/m3$ 31 100 $70-130$ Acetone $ug/m3$ 32 107 $70-130$ 2-Propanol $ug/m3$ 33 105 $70-130$ 1,1-Dichloroethene $ug/m3$ 54 103 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 104 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 41 103 $70-130$ t-Butyl alcohol (TBA) $ug/m3$ 41 103 $70-130$ CFC-113 $ug/m3$ 42 97 $70-130$ Carbon disulfide $ug/m3$ 48 102 $70-130$ Vinyl acetate $ug/m3$ 48 102 $70-130$ Vinyl acetate $ug/m3$ 49 105 $70-130$ Hexane $ug/m3$ 49 105 $70-130$ Carbon disulfide $ug/m3$ 49 105 $70-130$ Lip-lichloroethane $ug/m3$ 48 102 $70-130$ Lip-lichloroethane u		0					
1,3-Butadiene $ug/m3$ 3010670-130Butane $ug/m3$ 3211270-130Bromomethane $ug/m3$ 5210970-130Chloroethane $ug/m3$ 5210870-130Vinyl bromide $ug/m3$ 5910870-130Ethanol $ug/m3$ 2510270-130Acrolein $ug/m3$ 3110170-130Pentane $ug/m3$ 4010970-130Acrolein $ug/m3$ 3210770-130Actone $ug/m3$ 3210770-1302-Propanol $ug/m3$ 3310570-1301,1-Dichloroethene $ug/m3$ 5410370-130trans-1,2-Dichloroethene $ug/m3$ 4110370-130t-Butyl alcohol (TBA) $ug/m3$ 4211070-1303-Chloropropene $ug/m3$ 429770-130Carbon disulfide $ug/m3$ 4810270-130Vinyl acetate $ug/m3$ 4810270-130Vinyl acetate $ug/m3$ 4810570-130I,1-Dichloroethane $ug/m3$ 4810570-130Uinyl acetate $ug/m3$ 4911570-130Jultate $ug/m3$ 4810270-130I,1-Dichloroethane $ug/m3$ 4911570-130Carbon disulfide $ug/m3$ 4810870-130I,1-Dichloroethane $ug/m3$ 4911570-130 <td></td> <td>0</td> <td></td> <td></td> <td></td>		0					
Butane $ug/m3$ 32 112 70.130 Bromomethane $ug/m3$ 52 109 70.130 Chloroethane $ug/m3$ 36 108 70.130 Vinyl bromide $ug/m3$ 59 108 70.130 Ethanol $ug/m3$ 59 102 70.130 Acrolein $ug/m3$ 31 101 70.130 Pentane $ug/m3$ 40 109 70.130 Trichlorofluoromethane $ug/m3$ 32 107 70.130 Acetone $ug/m3$ 32 107 70.130 2-Propanol $ug/m3$ 54 103 70.130 trans-1,2-Dichloroethene $ug/m3$ 54 104 70.130 trans-1,2-Dichloroethene $ug/m3$ 41 103 70.130 dreftyl alcohol (TBA) $ug/m3$ 41 103 70.130 3-Chloropropene $ug/m3$ 42 97 70.130 CFC-113 $ug/m3$ 49 105 70.130 Carbon disulfide $ug/m3$ 49 105 70.130 Vinyl acetate $ug/m3$ 48 102 70.130 Hexane $ug/m3$ 48 105 70.130 Chloroptoptene $ug/m3$ 49 105 70.130 J.1-Dichloroethane $ug/m3$ 49 105 70.130 Hexane $ug/m3$ 49 105 70.130 Hexane $ug/m3$ 49 105 70.130 Hexane $ug/m3$ 49	-	0					
Bromomethane $ug/m3$ 52 109 70.130 Chloroethane $ug/m3$ 36 108 70.130 Vinyl bromide $ug/m3$ 59 108 70.130 Ethanol $ug/m3$ 25 102 70.130 Acrolein $ug/m3$ 25 102 70.130 Pentane $ug/m3$ 31 101 70.130 Pentane $ug/m3$ 40 109 70.130 Trichlorofluoromethane $ug/m3$ 32 107 70.130 2-Propanol $ug/m3$ 32 107 70.130 1,1-Dichloroethene $ug/m3$ 54 103 70.130 trans-1,2-Dichloroethene $ug/m3$ 54 104 70.130 Methylene chloride $ug/m3$ 41 103 70.130 3-Chloropropene $ug/m3$ 42 110 70.130 CFC-113 $ug/m3$ 42 97 70.130 Carbon disulfide $ug/m3$ 48 102 70.130 Vinyl acetate $ug/m3$ 48 105 70.130 Vinyl acetate $ug/m3$ 49 105 70.130 Chloroform $ug/m3$ 49 115 70.130 Vinyl acetate $ug/m3$ 49 105 70.130 Liplacetate $ug/m3$ 49 115 70.130 Chloroform $ug/m3$ 49 113 70.130 Chloroform $ug/m3$ 49 115 70.130 I,1-Dichloroethane $ug/m3$ <td>-</td> <td>-</td> <td></td> <td></td> <td></td>	-	-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-					
Vinyl bromide $ug/m3$ 5910870-130Ethanol $ug/m3$ 2510270-130Acrolein $ug/m3$ 3110170-130Pentane $ug/m3$ 3110170-130Pentane $ug/m3$ 4010970-130Trichlorofluoromethane $ug/m3$ 7610870-130Acetone $ug/m3$ 3210770-1302.Propanol $ug/m3$ 3310570-1301,1-Dichloroethene $ug/m3$ 5410370-130trans-1,2-Dichloroethene $ug/m3$ 949570-130trans-1,2-Dichloroethene $ug/m3$ 4110370-130dthylene chloride $ug/m3$ 4110370-130dt-Butyl alcohol (TBA) $ug/m3$ 4211070-130GCFC-113 $ug/m3$ 4010670-130CFC-113 $ug/m3$ 4910570-130Vinyl acetate $ug/m3$ 4810270-1301,1-Dichloroethane $ug/m3$ 4810270-130is-1,2-Dichloroethene $ug/m3$ 4810870-130Chloroform $ug/m3$ 4911570-130Hexane $ug/m3$ 4011370-130Chloroform $ug/m3$ 4011370-130Lityl acetate $ug/m3$ 4011370-1302-Butanone (MEK) $ug/m3$ 4011370-1301,2-Dichloroethane $ug/m3$ 43102		-					
Ethanol $ug/m3$ 25 102 $70-130$ Acrolein $ug/m3$ 31 101 $70-130$ Pentane $ug/m3$ 40 109 $70-130$ Trichlorofluoromethane $ug/m3$ 40 109 $70-130$ Acetone $ug/m3$ 32 107 $70-130$ 2-Propanol $ug/m3$ 33 105 $70-130$ 1,1-Dichloroethene $ug/m3$ 54 103 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 104 $70-130$ Methylene chloride $ug/m3$ 41 103 $70-130$ t-Butyl alcohol (TBA) $ug/m3$ 41 103 $70-130$ S-Chloropropene $ug/m3$ 42 97 $70-130$ CFC-113 $ug/m3$ 40 106 $70-130$ Carbon disulfide $ug/m3$ 42 97 $70-130$ Vinyl acetate $ug/m3$ 45 105 $70-130$ Vinyl acetate $ug/m3$ 48 102 $70-130$ Vinyl acetate $ug/m3$ 48 105 $70-130$ Hexane $ug/m3$ 48 105 $70-130$ Chloroform $ug/m3$ 49 115 $70-130$ Detay 48 105 $70-130$ Liplacetate $ug/m3$ 49 115 $70-130$ Chloroform $ug/m3$ 40 113 $70-130$ Chloroform $ug/m3$ 40 113 $70-130$ Liplacetate $ug/m3$ 40 113 <		-					
Acrolein $ug/m3$ 31 101 $70-130$ Pentane $ug/m3$ 40 109 $70-130$ Trichlorofluoromethane $ug/m3$ 76 108 $70-130$ Acetone $ug/m3$ 32 107 $70-130$ 2-Propanol $ug/m3$ 33 105 $70-130$ 1,1-Dichloroethene $ug/m3$ 54 104 $70-130$ trans-1,2-Dichloroethene $ug/m3$ 54 104 $70-130$ Methylene chloride $ug/m3$ 94 95 $70-130$ t-Butyl alcohol (TBA) $ug/m3$ 41 103 $70-130$ 3-Chloropropene $ug/m3$ 42 110 $70-130$ CFC-113 $ug/m3$ 100 106 $70-130$ Carbon disulfide $ug/m3$ 49 105 $70-130$ Vinyl acetate $ug/m3$ 48 102 $70-130$ Nethyl t-butyl ether (MTBE) $ug/m3$ 48 102 $70-130$ (is-1,2-Dichloroethane $ug/m3$ 48 105 $70-130$ Hexane $ug/m3$ 48 108 $70-130$ Chloroform $ug/m3$ 46 102 $70-130$ Ethyl acetate $ug/m3$ 40 113 $70-130$ Chloroform $ug/m3$ 40 113 $70-130$ Dichloroethane (EDC) $ug/m3$ 40 113 $70-130$ 1,2-Dichloroethane $ug/m3$ 45 106 $70-130$ 1,2-Dichloroethane $ug/m3$ 43 102 $70-130$ <		-					
Pentaneug/m34010970-130Trichlorofluoromethaneug/m37610870-130Acetoneug/m33210770-1302-Propanolug/m33310570-1301.1-Dichloroetheneug/m35410370-130trans-1,2-Dichloroetheneug/m35410470-130Methylene chlorideug/m3949570-130t-Butyl alcohol (TBA)ug/m34110370-1303-Chloropropeneug/m34211070-130CFC-113ug/m310010670-130Carbon disulfideug/m34910570-130Vinyl acetateug/m34910570-130Vinyl acetateug/m34810270-130I,1-Dichloroetheneug/m35410570-130Vinyl acetateug/m34810870-130Lexaneug/m34810870-130Lexaneug/m34911570-130Lexaneug/m34010870-130Chloroformug/m34010870-130Ethyl acetateug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethaneug/m37410570-1301,2-Dichloroethaneug/m34011370-1301,2-Dichloroethaneug/m34510670-1301,2-Dichloroetha		-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-					
Acetoneug/m3 32 107 $70-130$ 2-Propanolug/m3 33 105 $70-130$ 1,1-Dichloroetheneug/m3 54 103 $70-130$ trans-1,2-Dichloroetheneug/m3 54 104 $70-130$ Methylene chlorideug/m3 94 95 $70-130$ t-Butyl alcohol (TBA)ug/m3 41 103 $70-130$ 3-Chloropropeneug/m3 42 110 $70-130$ CFC-113ug/m3 100 106 $70-130$ Carbon disulfideug/m3 42 97 $70-130$ Methyl t-butyl ether (MTBE)ug/m3 49 105 $70-130$ Vinyl acetateug/m3 48 102 $70-130$ Vinyl acetateug/m3 55 110 $70-130$ texaneug/m3 54 105 $70-130$ Hexaneug/m3 54 105 $70-130$ Chloroformug/m3 54 105 $70-130$ Hexaneug/m3 48 108 $70-130$ Chloroformug/m3 49 115 $70-130$ Ethyl acetateug/m3 40 113 $70-130$ Z-Butanone (MEK)ug/m3 40 113 $70-130$ 1,2-Dichloroethaneug/m3 55 108 $70-130$ 1,2-Dichloroethaneug/m3 43 102 $70-130$ Carbon tetrachlorideug/m3 43 102 $70-130$ 1,2-Dichloroethaneug/m3 43 <		0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0					
1,1-Dichloroetheneug/m35410370-130trans-1,2-Dichloroetheneug/m35410470-130Methylene chlorideug/m3949570-130t-Butyl alcohol (TBA)ug/m34110370-1303-Chloropropeneug/m34211070-130CFC-113ug/m310010670-130Carbon disulfideug/m3429770-130Methyl t-butyl ether (MTBE)ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis.1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m34810870-130Ethyl acetateug/m34911570-130Chloroformug/m34010870-130Ethyl acetateug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethaneug/m37410570-1301,1-Trichloroethaneug/m34310270-130Carbon tetrachlorideug/m34310270-1301,2-Dichloroethaneug/m34610270-1301,2-Dichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34		0					
trans-1,2-Dichloroetheneug/m3 54 104 70.130 Methylene chlorideug/m3 94 95 70.130 t-Butyl alcohol (TBA)ug/m3 41 103 70.130 3-Chloropropeneug/m3 42 110 70.130 CFC-113ug/m3 100 106 70.130 Carbon disulfideug/m3 42 97 70.130 Methyl t-butyl ether (MTBE)ug/m3 49 105 70.130 Vinyl acetateug/m3 48 102 70.130 1,1-Dichloroethaneug/m3 55 110 70.130 cis-1,2-Dichloroetheneug/m3 54 105 70.130 Hexaneug/m3 48 108 70.130 Chloroformug/m3 48 108 70.130 Ethyl acetateug/m3 49 115 70.130 Z-Butanone (MEK)ug/m3 40 113 70.130 1,2-Dichloroethaneug/m3 55 108 70.130 1,1.1-Trichloroethaneug/m3 55 108 70.130 1,2-Dichloroethaneug/m3 43 102 70.130 Carbon tetrachlorideug/m3 43 102 70.130 1,2-Dichloroethaneug/m3 46 102 70.130 1,2-Dichloroethaneug/m3 46 102 70.130 1,2-Dichloroethaneug/m3 46 102 70.130 1,2-Dichloroethaneug/m3 46 102 70.130 <		-					
Methylene chloride $ug/m3$ 94 95 70.130 t-Butyl alcohol (TBA) $ug/m3$ 41 103 70.130 3-Chloropropene $ug/m3$ 42 110 70.130 CFC-113 $ug/m3$ 100 106 70.130 Carbon disulfide $ug/m3$ 42 97 70.130 Methyl t-butyl ether (MTBE) $ug/m3$ 49 105 70.130 Vinyl acetate $ug/m3$ 48 102 70.130 1,1-Dichloroethane $ug/m3$ 55 110 70.130 cis-1,2-Dichloroethene $ug/m3$ 54 105 70.130 Hexane $ug/m3$ 48 108 70.130 Chloroform $ug/m3$ 49 115 70.130 Ethyl acetate $ug/m3$ 40 108 70.130 Z-Butanone (MEK) $ug/m3$ 40 113 70.130 1,2-Dichloroethane $ug/m3$ 74 105 70.130 1,1.1-Trichloroethane $ug/m3$ 85 106 70.130 1,2-Dichloroethane $ug/m3$ 43 102 70.130 Carbon tetrachloride $ug/m3$ 45 106 70.130 L,2-Dichloroptopane $ug/m3$ 46 102 70.130 1,2-Dichloroptopane $ug/m3$ 46 102 70.130 1,2-Dichloroptopane $ug/m3$ 49 93 70.130 1,4-Dioxane $ug/m3$ 49 93 70.130	-	0					
t-Butyl alcohol (TBA)ug/m34110370-1303-Chloropropeneug/m34211070-130CFC-113ug/m310010670-130Carbon disulfideug/m3429770-130Methyl t-butyl ether (MTBE)ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m34810870-130Ethyl acetateug/m34911570-130Z-Butanone (MEK)ug/m34010870-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1-Trichloroethaneug/m37410570-1301,2-Dichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34610270-1301,2-Dichloroethaneug/m34610270-1301,2-Dichloroptopaneug/m34610270-1301,2-Dichloroptopaneug/m34610270-1301,2-Dichloroptopaneug/m3499370-1301,4-Dioxaneug/m3499370-130		-					
3-Chloropropeneug/m34211070-130CFC-113ug/m310010670-130Carbon disulfideug/m3429770-130Methyl t-butyl ether (MTBE)ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m36610870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-1301,1,1-Trichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34310270-1301,1,1-Trichloroethaneug/m34410570-1301,2-Dichloroptopaneug/m34610270-1301,2-Dichloroptopaneug/m34610270-1301,2-Dichloroptopaneug/m3499370-1301,4-Dioxaneug/m3499370-130		-					
CFC-113ug/m310010670-130Carbon disulfideug/m3429770-130Methyl t-butyl ether (MTBE)ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m36610870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,1-Trichloroethaneug/m35510870-1301,2-Dichloroethaneug/m37410570-1302,3-Dichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34310270-1301,1-Trichloroethaneug/m34310270-1301,2-Dichloroethaneug/m34410570-1301,2-Dichloropropaneug/m34610270-1301,2-Dichloropropaneug/m34610270-1301,2-Dichloropropaneug/m3499370-1301,4-Dioxaneug/m3499370-130		-					
Carbon disulfideug/m3429770-130Methyl t-butyl ether (MTBE)ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m34810870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethaneug/m35510870-1301,1,1-Trichloroethaneug/m35510670-130Carbon tetrachlorideug/m34310270-130Benzeneug/m34310270-1301,2-Dichloropropaneug/m34610270-1301,2-Dichloropropaneug/m3499370-130		-					
Methyl t-butyl ether (MTBE)ug/m34910570-130Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m36610870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethaneug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m34310270-130Benzeneug/m34610270-1301,2-Dichloropropaneug/m34610270-1301,2-Dichloropropaneug/m3499370-130		-					
Vinyl acetateug/m34810270-1301,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m36610870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m34310270-130Benzeneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,2-Dichloropropaneug/m3499370-130		-					
1,1-Dichloroethaneug/m35511070-130cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m36610870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m34310270-130Benzeneug/m34610270-1301,2-Dichloropropaneug/m34610270-1301,2-Dichloropropaneug/m3499370-130		-					
cis-1,2-Dichloroetheneug/m35410570-130Hexaneug/m34810870-130Chloroformug/m36610870-130Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m38510670-130Benzeneug/m34610270-1301,2-Dichloropropaneug/m34610270-1301,2-Dichloropropaneug/m3499370-130	-		55				
Hexaneug/m348108 $70-130$ Chloroformug/m366108 $70-130$ Ethyl acetateug/m349115 $70-130$ Tetrahydrofuranug/m340108 $70-130$ 2-Butanone (MEK)ug/m340113 $70-130$ 1,2-Dichloroethane (EDC)ug/m355108 $70-130$ 1,1,1-Trichloroethaneug/m374105 $70-130$ Carbon tetrachlorideug/m385106 $70-130$ Benzeneug/m343102 $70-130$ L,2-Dichloropropaneug/m346102 $70-130$ 1,2-Dichloropropaneug/m34993 $70-130$			54	105	70-130		
Ethyl acetateug/m34911570-130Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m38510670-130Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	Hexane	-	48	108	70-130		
Tetrahydrofuranug/m34010870-1302-Butanone (MEK)ug/m34011370-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m38510670-130Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	Chloroform	-	66	108	70-130		
2-Butanone (MEK)ug/m34011370-1301,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m38510670-130Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	Ethyl acetate	ug/m3	49	115	70-130		
1,2-Dichloroethane (EDC)ug/m35510870-1301,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m38510670-130Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	Tetrahydrofuran	ug/m3	40	108	70-130		
1,1,1-Trichloroethaneug/m37410570-130Carbon tetrachlorideug/m38510670-130Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	2-Butanone (MEK)	ug/m3	40	113	70-130		
Carbon tetrachlorideug/m38510670-130Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	1,2-Dichloroethane (EDC)	ug/m3	55	108	70-130		
Benzeneug/m34310270-130Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	1,1,1-Trichloroethane	ug/m3	74	105	70-130		
Cyclohexaneug/m34610270-1301,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	Carbon tetrachloride	ug/m3	85	106	70-130		
1,2-Dichloropropaneug/m36210370-1301,4-Dioxaneug/m3499370-130	Benzene	ug/m3	43	102	70-130		
1,4-Dioxane ug/m3 49 93 70-130	Cyclohexane	ug/m3	46	102	70-130		
	1,2-Dichloropropane	ug/m3	62	103	70-130		
2,2,4-Trimethylpentane ug/m3 63 105 70-130		ug/m3		93	70-130		
	2,2,4-Trimethylpentane	ug/m3	63	105	70-130		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (Continued) Percent

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	109	70-130
Heptane	ug/m3	55	111	70-130
Bromodichloromethane	ug/m3	90	107	70-130
Trichloroethene	ug/m3	73	103	70-130
cis-1,3-Dichloropropene	ug/m3	61	110	70-130
4-Methyl-2-pentanone	ug/m3	55	104	70-130
trans-1,3-Dichloropropene	ug/m3	61	100	70-130
Toluene	ug/m3	51	105	70-130
1,1,2-Trichloroethane	ug/m3	74	108	70-130
2-Hexanone	ug/m3	55	110	70-130
Tetrachloroethene	ug/m3	92	94	70-130
Dibromochloromethane	ug/m3	120	107	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	106	70-130
Chlorobenzene	ug/m3	62	102	70-130
Ethylbenzene	ug/m3	59	104	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	104	70-130
Nonane	ug/m3	71	109	70-130
Isopropylbenzene	ug/m3	66	101	70-130
2-Chlorotoluene	ug/m3	70	103	70-130
Propylbenzene	ug/m3	66	106	70-130
4-Ethyltoluene	ug/m3	66	113	70-130
m,p-Xylene	ug/m3	120	99	70-130
o-Xylene	ug/m3	59	98	70-130
Styrene	ug/m3	58	97	70-130
Bromoform	ug/m3	140	101	70-130
Benzyl chloride	ug/m3	70	105	70-130
1,3,5-Trimethylbenzene	ug/m3	66	100	70-130
1,2,4-Trimethylbenzene	ug/m3	66	103	70-130
1,3-Dichlorobenzene	ug/m3	81	102	70-130
1,4-Dichlorobenzene	ug/m3	81	95	70-130
1,2-Dichlorobenzene	ug/m3	81	94	70-130
1,2,4-Trichlorobenzene	ug/m3	100	89	70-130
Naphthalene	ug/m3	71	91	70-130
Hexachlorobutadiene	ug/m3	140	102	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/20 Date Received: 09/17/20 Project: 180043, F&BI 009308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 009308-01 (Duplicate)

	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	< 0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at				•						FORMS\COC\COCTO-15.DOC
								≥d by:	Received by:	Fax (206) 283-5044
411	921	to h	pro,	awes	Ja		the second	Relinquished by:	Relinqu	Ph. (206) 285-8282
Aspect-consulting/11/7/20	Aspect Cor	nwell	Corn	net (- Vached Corr	$\left \right\rangle$	Garry	∕∕ ŝ	Received by	Soll'2 16th Avenue West
NY DATE	COMPANY	Æ	PRINT NAME	PRIN) **	E	SIGNATURE	SIC		Friedman & Bruya, Inc.
						IA / SG				
						IA / SG				
						IA / SG				
		-				IA / SG				· · · · · · · · · · · · · · · · · · ·
						IA / SG				
						IA / SG				
						IA / SG				
		2 1103	103)	8	9/11/20	IA / 🕄	8	18579	0	SV-5-091720
	TO1 TO	Vac. ("Hg)	Time	Vac. ("Hg)	Date Sampled	SG=Soil Gas (Circle One)	Flow Cont. ID	Canister ID	Lab ID	Sample Name
APH Helium	5 Full Scan 15 BTEXN 15 cVOCs	5				Reporting Level:				
QUESTED	ANALYSIS REQUESTED								-	SAMPLE INFORMATION
Archive (Fee may apply)	A			:	·cum	et can builting	Part	Jonvorski	mail ai	Phone (206) 413 - 5411 Email ayou kotski @ axect canbuilting. cum
SAMPLE DISPOSAL XDefault: Clean after 3 days	INVOICE TO					- NOTES:	24	Scattur WA 98704	L'W	City, State, ZIP Scut
Rush charges authorized by:	180043	3	222	Jan 2	LVergreen I reannust services	- LTU61		HE 556	ve,s	Address 710 2nd Ave, SK 556
Standard	PO#	7	DRESS	& AD	PROJECT NAME & ADDRESS	PROJE		hyra		
Page # 1 of 1 TURNAROUND TIME		my c	Revens	vature)	SAMPLERS (signature)	SAMPL		Ť.	I ON YOU	Report To ANDYW You Katski
イン	NE 09-1	rody	CUSI	NOF	E CHAI	SAMPLE CHAIN OF CUSTODY			0	009308

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

November 12, 2024

Nathan Dickey, Project Manager Aspect Consulting 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Dickey:

Included are the results from the testing of material submitted on November 5, 2024 from the Evergreen Treatment Services AS180043, F&BI 411071 project. There are 29 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1112R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 5, 2024 by Friedman & Bruya, Inc. from the Aspect Consulting Evergreen Treatment Services AS180043, F&BI 411071 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting
411071 -01	AMW-1-20241105
411071 -02	AMW-2-20241105
411071 -03	AMW-3-20241105
411071 -04	AMW-4-20241105
411071 -05	AMW-5-20241105

The dissolved metals samples were filtered at Friedman and Bruya. The data were flagged accordingly.

The 8260D methylene chloride calibration standard did not meet the acceptance criteria. The data were flagged accordingly.

The 8260D laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071 Date Extracted: 11/07/24 Date Analyzed: 11/07/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
AMW-1-20241105 411071-01	<100	106
AMW-2-20241105 411071-02	<100	104
AMW-3-20241105 411071-03	<100	108
AMW-4-20241105 411071-04	<100	108
AMW-5-20241105 411071-05	<100	108
Method Blank 04-2699 MB	<100	100

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071 Date Extracted: 11/06/24 Date Analyzed: 11/06/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
AMW-1-20241105 411071-01	<50	<250	90
$\underset{\scriptstyle{411071\cdot02}}{\text{AMW-2-20241105}}$	57 x	<250	104
$\underset{\scriptstyle{411071\text{-}03}}{\text{AMW-3-}20241105}$	<50	<250	94
AMW-4-20241105 411071-04	<50	<250	88
AMW-5-20241105 411071-05	95 x	<250	107
Method Blank 04-2755 MB	<50	<250	77

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-202 11/05/24 11/11/24 11/11/24 Water ug/L (ppb)	241105	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment 411071-01 111128.D GCMS13 MD	z Services
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 98 98 99 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethan 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene	hane er (MTBE) ethene ene (EDC) ne e de de		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Cetrachloroethane ene Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone	-	<0.4 <0.5 <10	Naphtha		<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-202 11/05/24 11/11/24 11/11/24 Water ug/L (ppb)	241105	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment 411071-02 111129.D GCMS13 MD	Services
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 98 101	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane	hane er (MTBE) ethene ene (EDC) ne e de de		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich 1,2-Dibr	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <0.01 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<1 <0.4 <0.5 <10	Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene		<0.5 <1 <1

ENVIRONMENTAL CHEMISTS

AMW-3-202 11/05/24 11/11/24 11/11/24 Water ug/L (ppb)	241105	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment 411071-03 111130.D GCMS13 MD	z Services
-d4 ene	% Recovery: 93 96 102	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
thane hane er (MTBE) thene e ene (EDC) ne e de de ane pene pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene chloromethane omoethane (EDB) enzene nzene 'etrachloroethane ene 'etrachloroethane ene 'etrachloroethane enzene 'methylbenzene 'etrachloroethane chloropropane toluene ylbenzene imethylbenzene 'etoluene toluene ylbenzene imethylbenzene 'lbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane chlorobenzene orobutadiene	
ne	<0.5 <10			<1
	11/05/24 11/11/24 11/11/24 Water ug/L (ppb) -d4 ene thane hane hane (EDC) ne e ene (EDC) ne e hane hane	$\begin{array}{ccccccc} 11/11/24 \\ 11/11/24 \\ Water \\ ug/L (ppb) \end{array} & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-202 11/05/24 11/11/24 11/11/24 Water ug/L (ppb)	241105	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment 411071-04 111131.D GCMS13 MD	z Services
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze		% Recovery: 100 94 100	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroe 1,1-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentano cis-1,3-Dichloroprop Toluene	nane r (MTBE) thene e ene (EDC) ne e le le		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<0.4 <0.5 <10	Naphthalene <		<1 <1

ENVIRONMENTAL CHEMISTS

AMW-5-202 11/05/24 11/11/24 11/11/24 Water ug/L (ppb)	241105	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatmen 411071-05 111132.D GCMS13 MD	t Services
-d4 ene	% Recovery: 100 99 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
thane hane er (MTBE) thene eene (EDC) ne e de de hane pene pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene alene	
ne	<0.4 <0.5 <10	Naphthalene 1,2,3-Trichlorobenzene		<1 <1
	11/05/24 11/11/24 11/11/24 Water ug/L (ppb) -d4 ene thane hane hane (EDC) ne e ene (EDC) ne e hane hane	$\begin{array}{cccccccc} 11/11/24 \\ 11/11/24 \\ Water \\ ug/L (ppb) \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 11/11/24 11/11/24 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment 04-2762 mb 111109.D GCMS11 IJL	t Services
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 94 96	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine de hane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	nzene 'etrachloroethane ene '' 'lbenzene frm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene pylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.4 <0.5 <10	Naphtha 1,2,3-Tri	alene ichlorobenzene	<1 ca <1

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-20241105 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-01 411071-01.178 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	12		
Cadmium	<1		
Chromium	<1		
Lead	1.9		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-20241105 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-02 411071-02.179 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	9.5		
Cadmium	<1		
Chromium	<1		
Lead	7.4		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3-20241105 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-03 411071-03.180 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	18		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-20241105 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-04 411071-04.181 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	1.1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-20241105 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-05 411071-05.182 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	4.8		
Cadmium	<1		
Chromium	1.6		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-5-20241105	Client:	Aspect Consulting
Date Received:	11/05/24	Project:	Evergreen Treatment Services
Date Extracted:	11/06/24	Lab ID:	411071-05 x10
Date Analyzed:	11/07/24	Data File:	411071-05 x10.123
Matrix:	Water	Instrument:	ICPMS3
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Lead

26

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services I4-951 mb I4-951 mb.163 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-20241105 f 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-01 411071-01.126 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)	1	
Arsenic Cadmium Chromium Lead Mercury	12 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	AMW-2-20241105 f 11/05/24 11/06/24 11/06/24 Water	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting Evergreen Treatment Services 411071-02 411071-02.129 ICPMS3
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	2.4		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	AMW-3-20241105 f 11/05/24 11/06/24 11/06/24	Client: Project: Lab ID: Data File:	Aspect Consulting Evergreen Treatment Services 411071-03 411071-03.130
Matrix:	Water	Instrument:	ICPMS3
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	14		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4-20241105 f 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-04 411071-04.131 ICPMS3 SP
	Concentration		
Analyte:	ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-20241105 f 11/05/24 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services 411071-05 411071-05.132 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)	o poratori	
Arsenic Cadmium Chromium Lead Mercury	4.3 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank f NA 11/06/24 11/06/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting Evergreen Treatment Services I4-950 mb I4-950 mb.114 ICPMS3 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code:	411062-02 (Dupli	icate)			
	Reporting	Sample	e Dup	olicate	RPD
Analyte	Units	Result	: Re	sult	(Limit 20)
Gasoline	ug/L (ppb)	1,300	1,	300	0
Laboratory Code:	Laboratory Cont	rol Sample			
			Percent		
	Reporting	Spike	Percent Recovery	Acceptance	
Analyte	Reporting Units	Spike Level		Acceptance Criteria	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	96	65 - 151	0

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 411145-02 (Matrix Spike)

Laboratory Code. 411145-02 (N	atilix opike	,		Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	91	30-221
Chloromethane	ug/L (ppb)	10	<10	89	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	100	50-150
Bromomethane	ug/L (ppb)	10	<5	101	50-150
Chloroethane	ug/L (ppb)	10	<1	97	50-150
Trichlorofluoromethane	ug/L (ppb)	10 50	<1 <50	104	50-150
Acetone 1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 10	<50 <1	35 90	18-161 50-150
Hexane	ug/L (ppb) ug/L (ppb)	10	<5	106	50-150
Methylene chloride	ug/L (ppb) ug/L (ppb)	10	<5	61	50-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	91	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	93	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	92	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	94	43-171
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	91	10-211
Chloroform	ug/L (ppb)	10	<1	97	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	60	10-192
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	1.6	95	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	92	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	95	50-150
Carbon tetrachloride	ug/L (ppb)	10 10	<0.5 3.8	93 99 b	50-150
Benzene Trichloroethene	ug/L (ppb)	10	3.8 <0.5	99 b 95	50-150 35-149
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<0.5	90 90	50-149 50-150
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	<0.5	90 96	50-150
Dibromomethane	ug/L (ppb)	10	<1	92	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	95	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	99	50-150
Toluene	ug/L (ppb)	10	<1	98	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	88	50-150
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	94	50 - 150
2-Hexanone	ug/L (ppb)	50	<10	66	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	95	50 - 150
Tetrachloroethene	ug/L (ppb)	10	<1	101	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	92	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	98	50-150
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	98 98	50-150 50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<1	98 92	50-150 50-150
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	<2	92 96	50-150
o-Xylene	ug/L (ppb)	10	<1	94	50-150
Styrene	ug/L (ppb)	10	<1	93	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	93	50-150
Bromoform	ug/L (ppb)	10	<5	90	50-150
n-Propylbenzene	ug/L (ppb)	10	<1	86	50-150
Bromobenzene	ug/L (ppb)	10	<1	85	50 - 150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	85	50 - 150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	89	50-150
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	84	50-150
2-Chlorotoluene	ug/L (ppb)	10	<1	84	50-150
4-Chlorotoluene	ug/L (ppb)	10 10	<1 <1	85 85	50-150
tert-Butylbenzene 1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	86	50-150 50-150
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	83	50-150
p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10	<1	84	50-150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	86	50-150
1.4-Dichlorobenzene	ug/L (ppb)	10	<1	85	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	83	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	79	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	83	50-150
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	79	50-150
Naphthalene	ug/L (ppb)	10	<1	81	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	82	50 - 150

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laborat			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	98	96	46-206	2
Chloromethane	ug/L (ppb)	10	94	94	59-132	0
Vinyl chloride	ug/L (ppb)	10	104	106	64-142	2
Bromomethane	ug/L (ppb)	10	101	102	50-197	1
Chloroethane	ug/L (ppb)	10	99	101	70-130	2
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	10	98 22	104	51-159	6
Acetone 1.1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 10	22 93	31 95	10-140 64-140	34 vo 2
Hexane	ug/L (ppb) ug/L (ppb)	10	105	95 91	54-136	2 14
Methylene chloride	ug/L (ppb)	10	91	73	43-134	22 vo
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	94	95	70-130	1
trans-1,2-Dichloroethene	ug/L (ppb)	10	96	97	70-130	1
1.1-Dichloroethane	ug/L (ppb)	10	97	97	70-130	0
2,2-Dichloropropane	ug/L (ppb)	10	105	108	64-148	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	96	98	70-130	2
Chloroform	ug/L (ppb)	10	98	101	70-130	3
2-Butanone (MEK)	ug/L (ppb)	50	58	60	47-112	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	99	99	70-130	0
1,1,1-Trichloroethane	ug/L (ppb)	10	98	99	70-130	1
1,1-Dichloropropene	ug/L (ppb)	10	96	95	70-130	1
Carbon tetrachloride	ug/L (ppb)	10	98	99	70-130	1
Benzene	ug/L (ppb)	10	103	104	70-130	1
Trichloroethene	ug/L (ppb)	10	98	98	70-130	0
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb)	10 10	95 98	95 95	70-130	0 3
Dibromomethane	ug/L (ppb) ug/L (ppb)	10	98 91	95 95	70-130 70-130	3
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	10 50	91 95	95 89	68-130	47
cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	96 96	98	69-131	2
Toluene	ug/L (ppb)	10	99	99	70-130	0
trans-1,3-Dichloropropene	ug/L (ppb)	10	96	92	70-130	4
1,1,2-Trichloroethane	ug/L (ppb)	10	95	94	70-130	1
2-Hexanone	ug/L (ppb)	50	68	68	45-138	0
1,3-Dichloropropane	ug/L (ppb)	10	92	92	70-130	0
Tetrachloroethene	ug/L (ppb)	10	102	101	70-130	1
Dibromochloromethane	ug/L (ppb)	10	93	94	60-148	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	100	99	70-130	1
Chlorobenzene	ug/L (ppb)	10	95	96	70-130	1
Ethylbenzene	ug/L (ppb)	10	99	99	70-130	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	99	100	70-130	1
m,p-Xylene	ug/L (ppb)	20	97	97	70-130	0
o-Xylene Styrene	ug/L (ppb)	10	96 97	96	70-130 70-130	0
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	10 10	97 97	96 96	70-130	1 1
Bromoform	ug/L (ppb) ug/L (ppb)	10	97 97	96 94	69-138	3
n-Propylbenzene	ug/L (ppb)	10	93	87	70-130	7
Bromobenzene	ug/L (ppb)	10	92	87	70-130	6
1,3,5-Trimethylbenzene	ug/L (ppb)	10	93	90	70-130	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	94	94	70-130	õ
1,2,3-Trichloropropane	ug/L (ppb)	10	90	87	70-130	3
2-Chlorotoluene	ug/L (ppb)	10	88	88	70-130	0
4-Chlorotoluene	ug/L (ppb)	10	91	87	70-130	4
tert-Butylbenzene	ug/L (ppb)	10	94	91	70-130	3
1,2,4-Trimethylbenzene	ug/L (ppb)	10	91	91	70-130	0
sec-Butylbenzene	ug/L (ppb)	10	93	91	70-130	2
p-Isopropyltoluene	ug/L (ppb)	10	94	93	70-130	1
1,3-Dichlorobenzene	ug/L (ppb)	10	93	88	70-130	6
1,4-Dichlorobenzene	ug/L (ppb)	10	93	91	70-130	2
1,2-Dichlorobenzene	ug/L (ppb)	10	93	89 87	70-130	4
1,2-Dibromo-3-chloropropane 1.2.4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10 10	88 90	87 91	70-130 70-130	1
1,2,4-1 richlorobenzene Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	10	90 94	93	70-130	1
Naphthalene	ug/L (ppb)	10	83	53 87	70-130	5
1.2.3-Trichlorobenzene	ug/L (ppb)	10	93	95	70-130	2

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 411062-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<10	98	96	75 - 125	2
Cadmium	ug/L (ppb)	10	<10	97	96	75 - 125	1
Chromium	ug/L (ppb)	10	<10	95	94	75 - 125	1
Lead	ug/L (ppb)	10	<10	101	100	75 - 125	1
Mercury	ug/L (ppb)	5	<10	95	97	75 - 125	2

Laboratory Code: Laboratory Control Sample

Laboratory CO	ue. Baseratory	001101 01 00	linpic	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	102	80-120
Cadmium	ug/L (ppb)	10	99	80-120
Chromium	ug/L (ppb)	10	104	80-120
Lead	ug/L (ppb)	10	103	80-120
Mercury	ug/L (ppb)	5	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/24 Date Received: 11/05/24 Project: Evergreen Treatment Services AS180043, F&BI 411071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 411071-01 (Matrix Spike)

Laboratory Co	ue. 411071-01 (/inc)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	12.1	104 b	102 b	75 - 125	2 b
Cadmium	ug/L (ppb)	10	<1	92	90	75 - 125	2
Chromium	ug/L (ppb)	10	<1	93	94	75 - 125	1
Lead	ug/L (ppb)	10	<1	102	102	75 - 125	0
Mercury	ug/L (ppb)	5	<1	104	103	75 - 125	1

Laboratory Code: Laboratory Control Sample

Bubblutbily 00	ac. Basoratory	001101 01 00	linpic	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	99	80-120
Cadmium	ug/L (ppb)	10	94	80-120
Chromium	ug/L (ppb)	10	98	80-120
Lead	ug/L (ppb)	10	98	80-120
Mercury	ug/L (ppb)	5	99	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

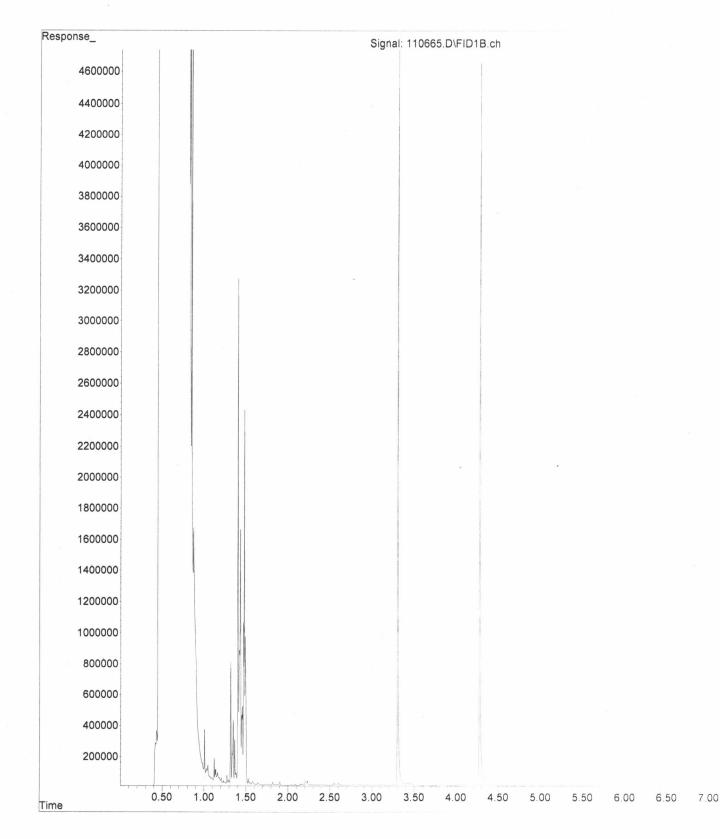
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

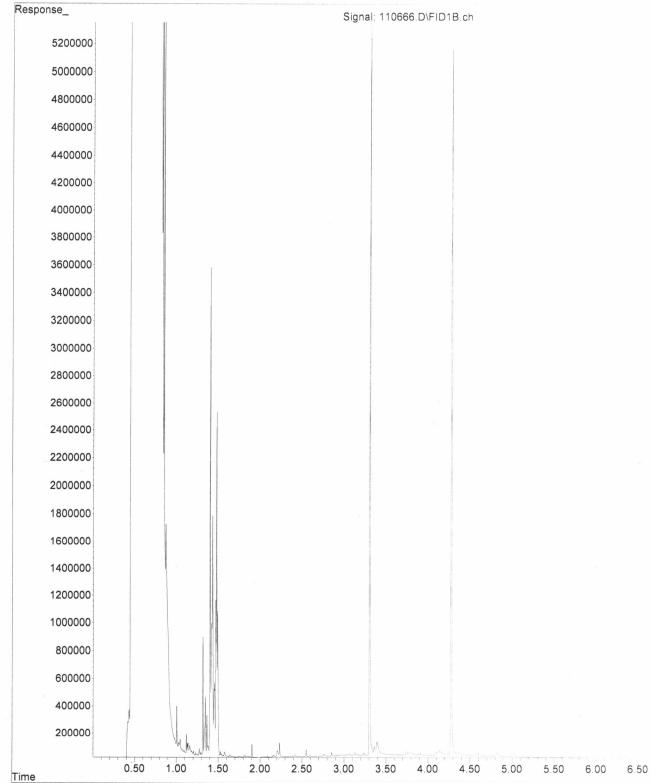
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

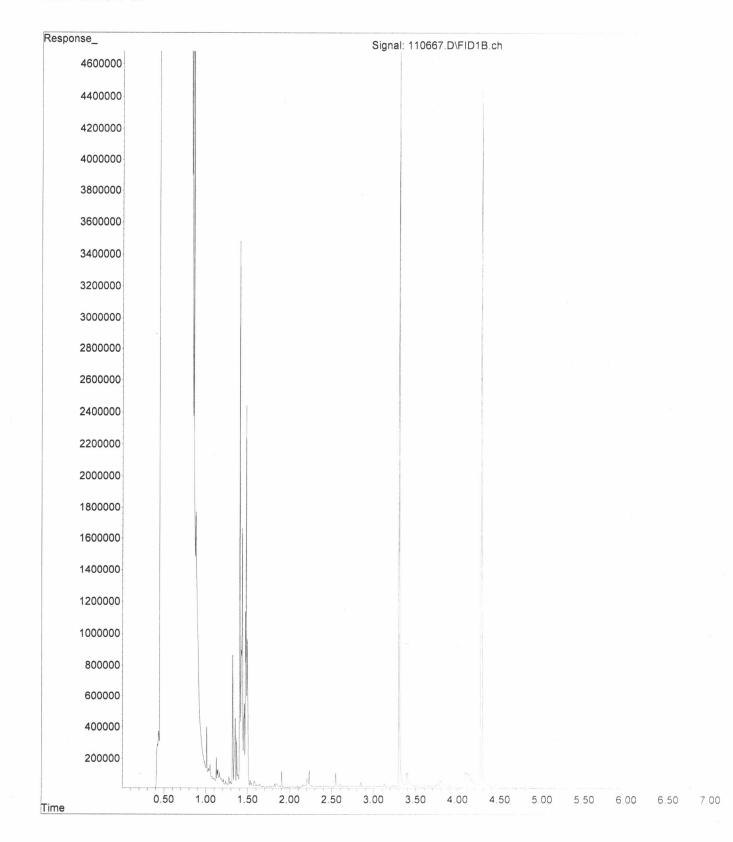

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

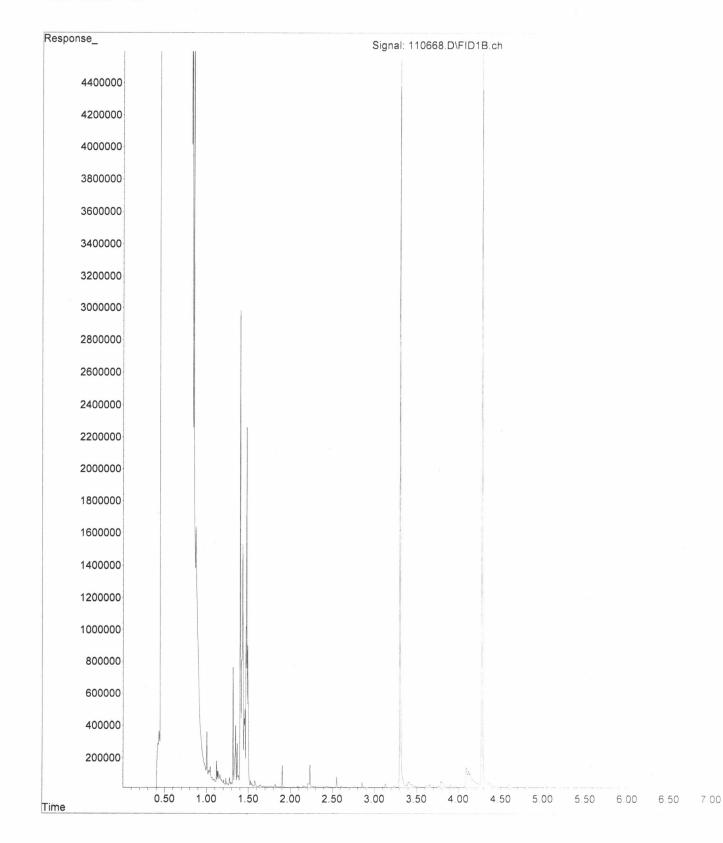
oppreespreamananaoraya.com Rece		Friedman & Bruya, Inc. Relin						Amw - 5 - 20241105	Amw - 4 - 2024 1105	AMW - 3 - 20241105	AMW-2-20241105	+MW-1-20240105	Sample ID		PhoneEmail_	City, State, ZIP	Address SCATTLE	Commany A salest	Report To A LAND	411071
Received by:	Received by:	Relinquished by:	SI		N	-		05 A - T	GY A-G	4 60	02	OIA-I	Lab ID			•		~	ickup	
		more	SIGNATURE									11/5	Date Sampled							
	5.						3	1315	1230	1020	1502	1600	Time Sampled		- Project	- REMARKS	Euron	PROJE	SAMPL	SAMPLE CHAIN OF CUSTODY
	<u>B</u> 1	Nat						-				64	Sample Type		Project specific RLs? -	-	Services	PROJECT NAME	SAMPLERS (signature)	CHAIN
		how	PRI					A	HA H	2	هر	a	# of Jars			4	ice's	-	uture)	OF
	bun	Ð	PRINT NAME					X	X	×	X	X	NWTPH-Dx		Yes /	a.,	tmaut		6	CU
	ž	inter	NAM	 -				X	×	X	X	X	NWTPH-Gx		/ No		١		N	STC
	1	4	E								1.1		BTEX EPA 8021	1			A		1	DDY
	*												NWTPH-HCID]		Π	SI			
								X	\times	×	\times	\times	VOCs EPA 8260	ANA	1	INVOICE TO	4s 1900 uz	P		_
													PAHs EPA 8270	ISAT		ICE	24	PO #		-
U a	1 TA	A							- <u>5</u>				PCBs EPA 8082	IS R		TO	Er,		•	G
Samples received		toous	COMPANY					メ	X	X	X	X	TOTAL MTLAS	ANALYSES REQUESTED						24
23 T	W	S	PAN					X	X	X	X	X	DISS. MTCH S	ESTI						1
Cel			R										GLAB Filt.	B	⊔ Other Default	Ard	Rush	RII		N
		1 - 44											5	1	ult:]	SAN: hive	char	ndar	Page #_ TURN/	10
	11	14												1	Dispo	SAMPLE DISPOSAL	Rush charges authorized by	Standard turnaround	Page # of TURNAROUND TIME	105/24 F2/K3/VW4
4		3/2	DATE												ose a	DIS	utho	naro	OUN	- L
L C	<u> </u>												Notes		fter	POS/	rized	und	D TII	
	1632	1639	TIME					1					· ۵۵		⊔ ∪tner Default: Dispose after 30 days	AL	by:		ME	>
	P	à	E												1VS					

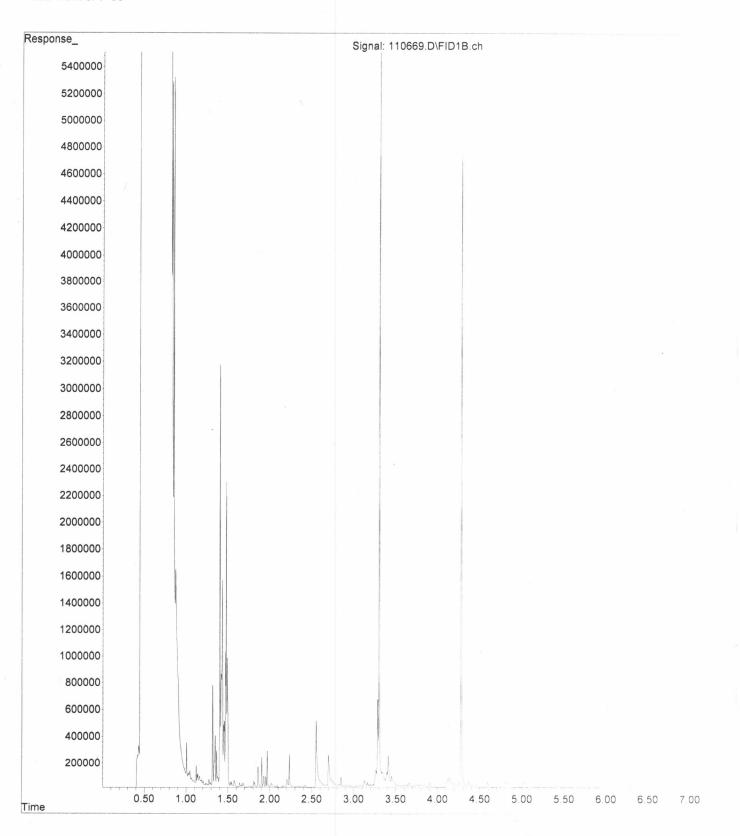
SA	MPLE COND	ITION UPON RECEIPT	CHECKLIST	
PROJECT # 41071	CLIENT_	Speet	INITIALS/ DATE:	5/24
If custody seals are	present on co	oler, are they intact?	A NA D YES	D NO
Cooler/Sample temp	oerature		Thermometer ID: Fluk	°C ce 96312917
Were samples receiv	ved on ice/col	l packs?	Ø YES	□ NO
How did samples ar		□ Picked up by F&BI	□ FedEx/UPS/GSO	·
Is there a Chain-of- *or other representative do			NO Initials/ AP Date: 11/06	124
Number of days san	ples have bee	en sitting prior to receip	t at laboratory	_days
Are the samples clea	arly identified	l? (explain "no" answer below)	Ø YES	D NO
Were all sample con leaking etc.)? (explain		ved intact (i.e. not broke ^{v)}	n, 🖉 YES	D NO
Were appropriate sa	ample contair	ers used?	YES D NO D U	nknown
If custody seals are	present on sa	mples, are they intact?	NA _ YES	D NO
Are samples requiri	ng no headsp	ace, headspace free?	D NA ZYES	O NO
Is the following info (explain "no" answer below	prmation prov	ided on the COC, and do	bes it match the sampl	e label?
Sample ID's		v .		
Date Sampled	🛛 Yes 🗆 No		□ Not on CC	C/label
Time Sampled	🗹 Yes 🗆 No		Not on CC	C/label
# of Containers	🗆 Yes 🛛 No	Received 7 containers	for AMW-4-2024	1105(04
Relinquished	🛛 Yes 🗆 No			
Requested analysis	🖉 Yes 🗆 On	Hold		
		ige if needed)		
Air Samples: Were a	any additiona	l canisters/tubes receive s Number of u	d? 🖉 NA 🗆 YES	D NO

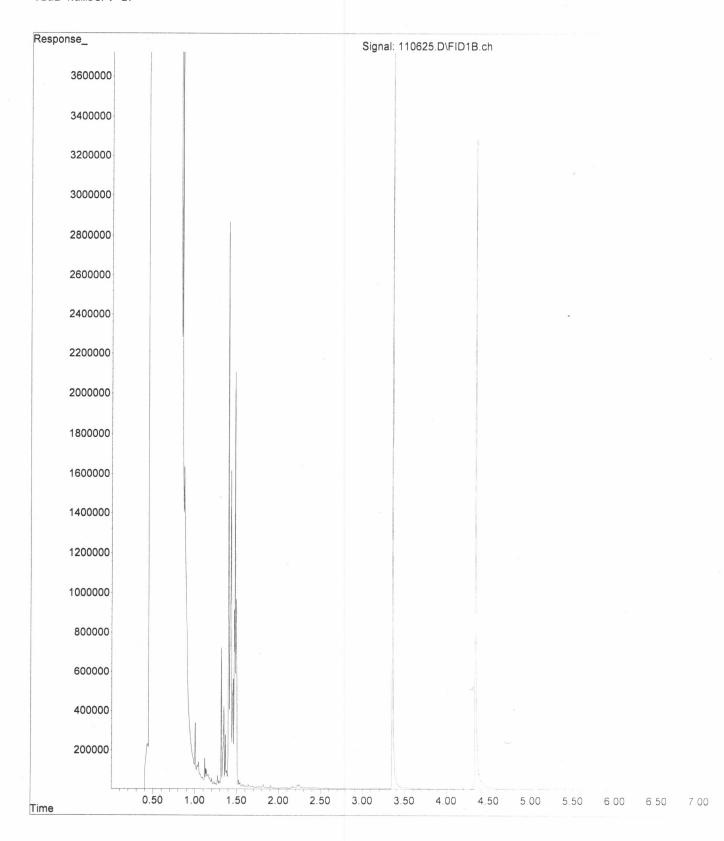

File :D:\GC14\GC14_Data\11-06-24\110665.D
Operator : TL
Acquired : 06 Nov 2024 10:26 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 411071-01
Misc Info :
Vial Number: 49

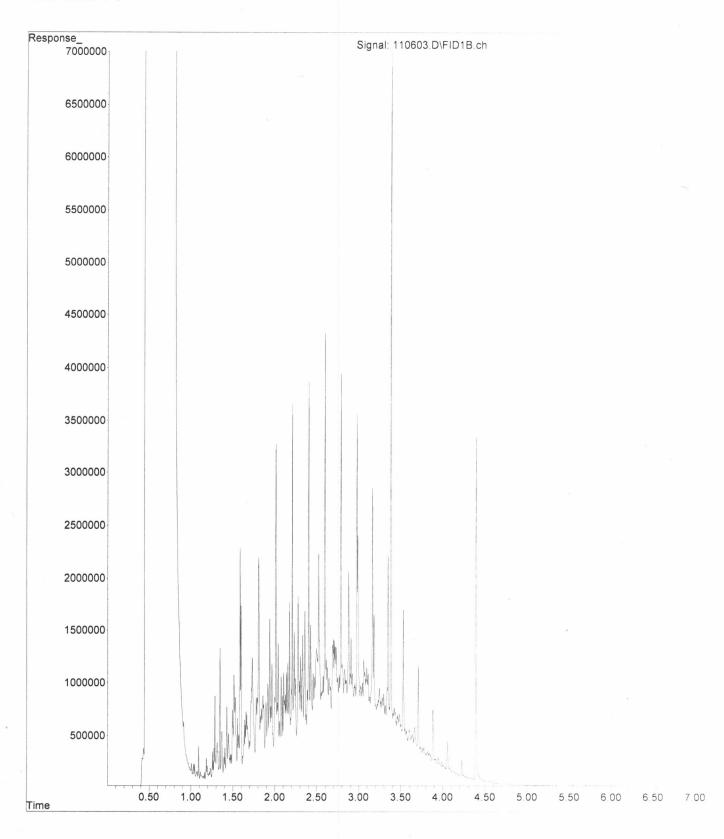

File :D:\GC14\GC14_Data\11-06-24\110666.D Operator : TL Acquired : 06 Nov 2024 10:38 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 411071-02 Misc Info : Vial Number: 50

ERR


7.00


File :D:\GC14\GC14_Data\11-06-24\110667.D
Operator : TL
Acquired : 06 Nov 2024 10:50 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 411071-03
Misc Info :
Vial Number: 51


File :D:\GC14\GC14_Data\11-06-24\110668.D
Operator : TL
Acquired : 06 Nov 2024 11:02 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 411071-04
Misc Info :
Vial Number: 52


File :D:\GC14\GC14_Data\11-06-24\110669.D
Operator : TL
Acquired : 06 Nov 2024 11:14 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 411071-05
Misc Info :
Vial Number: 53

File :D:\GC14\GC14_Data\11-06-24\110625.D
Operator : TL
Acquired : 06 Nov 2024 02:25 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 04-2755 mb
Misc Info :
Vial Number: 17

File :D:\GC14\GC14_Data\11-06-24\110603.D
Operator : TL
Acquired : 06 Nov 2024 08:54 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 500 Dx 73-88G
Misc Info :
Vial Number: 3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

November 15, 2024

Nathan Dickey, Project Manager Aspect Consulting 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Dickey:

Included are the results from the testing of material submitted on November 4, 2024 from the ETS Subsurface Investigation PO 180043-02, F&BI 411043 project. There are 80 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1115R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 4, 2024 by Friedman & Bruya, Inc. from the Aspect Consulting ETS Subsurface Investigation PO 180043-02, F&BI 411043 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting
AB-01-01.5
AB-01-02.5
AB-01-06.5
AB-01-09
AB-02-01
AB-02-03
AB-02-05
AB-02-06.5
AB-02-09.5
AB-02-10.5
AB-03-01
AB-03-02.5
AB-03-05.5
AB-03-07
AB-04-02.5
AB-04-05.5
AB-04-10
AB-04-12.5
AB-05-02
AB-05-02.5
AB-05-05
AB-05-07
AB-05-09.7
AB-05-11
AB-05-13
AMW-5-01
AMW-5-02
AMW-5-02.5
AMW-5-06.5
AMW-5-08.5

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	Aspect Consulting
411043 -31	AMW-5-12
411043 -32	AB-06-01
411043 -33	AB-06-04.5
411043 -34	AB-06-06.5
411043 -35	AB-06-08.5

The 8260D calibration standard did not meet the acceptance criteria for methylene chloride. The data were flagged accordingly.

An 8270E internal standard did not meet the acceptance criteria for samples AB-03-01, AB-05-02.5, AB-05-13, and AB-06-08.5. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043 Date Extracted: 11/08/24 Date Analyzed: 11/11/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
AB-01-01.5 411043-01	<5	88
AB-01-09 411043-04	<5	97
AB-02-03 411043-06	<5	91
AB-02-09.5 411043-09	<5	85
AB-03-01 411043-11	<5	96
AB-03-07 411043-14	<5	97
$\substack{\text{AB-04-02.5}_{411043-15}}$	<5	93
AB-04-10 411043-17	<5	87
AB-05-02.5 411043-20	<5	89
AB-05-13 411043-25	<5	95
AMW-5-01 411043-26	<5	89

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043 Date Extracted: 11/08/24 Date Analyzed: 11/11/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
AMW-5-12 411043-31	<5	92
AB-06-01 411043-32	8.3	100
AB-06-08.5 411043-35	<5	91
Method Blank 04-2703 MB	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043 Date Extracted: 11/08/24 Date Analyzed: 11/08/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
AB-01-01.5 411043-01	170 x	<250	104
AB-01-09 411043-04	83 x	<250	102
AB-02-03 411043-06	<50	<250	101
AB-02-09.5 411043-09	100 x	<250	101
AB-03-01 411043-11	<50	<250	101
AB-03-07 411043-14	<50	<250	101
AB-04-02.5 411043-15	<50	<250	99
AB-04-10 411043-17	210 х	360	104
AB-05-02.5 411043-20	75 x	<250	105
AB-05-13 411043-25	<50	<250	101
AMW-5-01 411043-26	110 x	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043 Date Extracted: 11/08/24 Date Analyzed: 11/08/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
AMW-5-12 411043-31	<50	<250	103
AB-06-01 411043-32	71 x	<250	101
AB-06-08.5 411043-35	310 x	530	102
Method Blank 04-2797 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Surrogates:% Recovery1,2-Dichloroethane-d4100Toluene-d8984-Bromofluorobenzene96Compounds:Concentrati mg/kg (pprDichlorodifluoromethane<0.5Chloromethane<0.5Vinyl chloride<0.002Bromomethane<0.5Chloroethane<0.1Trichlorofluoromethane<0.5Acetone<51,1-Dichloroethene<0.002Hexane<0.25Methyl t-butyl ether (MTBE)<0.002trans-1,2-Dichloroethene<0.0021,1-Dichloroethane<0.05cis-1,2-Dichloroethene<0.05cis-1,2-Dichloroethene<0.05Chloroform<0.05	nt Operator:	GCMS13 MD	
Compounds:mg/kg (pprDichlorodifluoromethane<0.5	Lower ry: Limit: 84 73 57	Upper Limit: 120 128 146	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		nds:	Concentration mg/kg (ppm)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tetrachi Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T 1,1,1,2-T 1,1,1,2-T 1,1,2,2-T 1,2,3-Tr 1,3,5-Tr 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 1,2,4-Tr 1,2-Dich 1,2-Dich 1,2,4-Tr	nzene 'etrachloroethane ene 'lbenzene frm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.005 \\ < 0.0034 \\ < 0.05 \\ 0.0064 \\ 0.0029 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ 0.78 \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-01-09 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Aspect Consulting ETS Subsurface Inve 411043-04 1/0.5 111109.D GCMS13 MD Upper	stigation
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	97	84 79	120	
Toluene-d8 4-Bromofluorobenz	000	98 97	73 57	$128\\146$	
4-Dromonuorobenz	ene	91	57	140	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane	_	< 0.1	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.002
Acetone		<5		etrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.002 <0.25	m,p-Xyle o-Xylene		0.0060 <0.002
Methylene chloride		<0.25 <0.4 ca	Styrene	; ;	<0.05
Methyl t-butyl ethe		<0.4 ca <0.002		lbenzene	< 0.05
trans-1,2-Dichloroe		0.0023	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	0.016		imethylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		<0.003	2-Chloro 4-Chloro		<0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.002 <0.05		ylbenzene	<0.05 <0.05
Carbon tetrachlorid		<0.05		imethylbenzene	< 0.05
Benzene		< 0.002		lbenzene	< 0.05
Trichloroethene		0.064		pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	,	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		0.0043		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	<0.05 <0.05	Naphtha 1 2 3 Tri	alene ichlorobenzene	0.024 < 0.25
1,1,2-Trichloroetha 2-Hexanone	ne	<0.05 <1	1, 2 , 5 -11	lemoropenzene	<u>~0.20</u>
		71			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-02-03 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm	h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-06 1/0.5 111110.D GCMS13 MD	stigation
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 99 98	Lower Limit: 84 73 57	Upper Limit: 120 128 146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,3-Dichloropethane 4-Methyl-2-pentane cis-1,3-Dichloropethane	hane er (MTBE) ethene e ene (EDC) ne e de de	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \\ < 0.002 \\ < 0.25 \\ < 0.4 \ ca \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.005 \\ < 0.005 \\ < 1 \\ < 0.003 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.005 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.005 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Cetrachloroethane ene dbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.002 \\ < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.05 <1	Naphtha 1,2,3-Tri	alene ichlorobenzene	<0.01 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-02-09.5 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-09 1/0.5 111111.D GCMS13 MD	stigation
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 94	Lower Limit: 84	Upper Limit: 120	
Toluene-d8 4-Bromofluorobenz	ene	92 99	73 57	$128\\146$	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	<0.5		loropropane	< 0.05
Chloromethane Vinyl chloride		$<\!$		loroethene ochloromethane	<0.002 <0.05
Bromomethane		<0.51		omoethane (EDB)	<0.005
Chloroethane		<0.1	Chlorobe	. ,	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	0.0057
Acetone		<5		Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyle		0.0090
Hexane		<0.25	o-Xylene	e e	0.0065
Methylene chloride		<0.4 ca	Styrene Isopropylbenzene		<0.05
Methyl t-butyl ethe trans-1,2-Dichloroe		<0.002 <0.002	Bromofo		$< 0.05 \\ < 0.05$
1,1-Dichloroethane		<0.002	n-Propyl		<0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroethe		0.31	1,3,5-Tri	imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.003	2-Chloro		< 0.05
1,1,1-Trichloroetha		<0.002	4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen Carbon tetrachloric		$< 0.05 \\ < 0.05$		ylbenzene imethylbenzene	<0.05
Benzene	ie	0.018		vlbenzene	<0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	,	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentance		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloroproj	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		0.018		orobutadiene	< 0.25
trans-1,3-Dichlorop 1,1,2-Trichloroetha	-	$< 0.05 \\ < 0.05$	Naphtha 1.2.3 Tri	ichlorobenzene	<0.01 <0.25
2-Hexanone	110	<0.05 <1	1,2,0-11	0001120110	-0.40

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates:	AB-03-01 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppn	n) Dry Weight % Recovery:	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit:	Aspect Consulting ETS Subsurface Invest 411043-11 1/0.5 111112.D GCMS13 MD Upper Limit:	stigation
1,2-Dichloroethane	-d4	90	84	120	
Toluene-d8		92	73	128	
4-Bromofluorobenz	ene	98	57	146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane Trichlorofluoromet	hana	<0.1 <0.5	Chlorob Ethylber		<0.05 <0.002
Acetone	nane	<0.5 <5		Cetrachloroethane	<0.05
1,1-Dichloroethene		< 0.002	m,p-Xyle		< 0.004
Hexane		< 0.25	o-Xylene		< 0.002
Methylene chloride	•	<0.4 ca	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		<0.002		lbenzene	< 0.05
2,2-Dichloropropan cis-1,2-Dichloroeth		$<\!$	Bromobe	enzene imethylbenzene	$< 0.05 \\ < 0.05$
Chloroform	ene	< 0.055		Cetrachloroethane	<0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.003	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	< 0.05
Benzene Trichloroethene		$< 0.002 \\ 0.058$	•	vlbenzene	$< 0.05 \\ < 0.05$
1,2-Dichloropropan	Δ	< 0.058		pyltoluene lorobenzene	< 0.05
Bromodichlorometh		< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		0.041		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	<0.05	Naphtha		< 0.01
1,1,2-Trichloroetha 2-Hexanone	.ne	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
∠-nexanone		<1			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-03-07 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm	h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-14 1/0.5 111113.D GCMS13 MD	stigation
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 98 98	Lower Limit: 84 73 57	Upper Limit: 120 128 146	
Compounds:		Concentration mg/kg (ppm)	Compou		Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropar Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropar Bromodichloromet Dibromomethane 4-Methyl-2-pentam	hane er (MTBE) ethene ene ene (EDC) ine ie de	$\begin{array}{c} < 0.5 \\ < 0.5 \\ 0.017 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \\ < 0.002 \\ < 0.25 \\ < 0.4 \ ca \\ < 0.002 \\ 0.13 \\ < 0.002 \\ < 0.05 \\ 0.14 \\ < 0.05 \\ < 1 \\ < 0.003 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \end{array}$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	nzene Cetrachloroethane ene e Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.05 \\ 0.015 \\ < 0.05 \\ 0.016 \\ 0.0038 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.0$
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	propene	< 0.05 0.061 < 0.05 < 0.05 < 1	Hexachl Naphtha	ichlorobenzene orobutadiene alene ichlorobenzene	<0.25 <0.25 <0.01 <0.25

ENVIRONMENTAL CHEMISTS

LowerUpperSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410084120Toluene-d8100731284-Bromofluorobenzene10157146Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.51,3-Dichloropropane<0.05Choromethane<0.5Tetrachloroethene<0.002Vinyl chloride<0.002Dibromochloromethane<0.05Bromomethane<0.51,2-Dibromochloromethane<0.05Chlorobenzene<0.01Chlorobenzene<0.002Chlorobenzene<0.02<0.002Acetone<51,1,1,2-Tetrachloroethane<0.05Acetone<51,1,1,2-Tetrachloroethane<0.06Hexane<0.02<0.002Methyl echloride<0.002Isopropylbenzene<0.002Methyl thutyl ether (MTBE)<0.002Isopropylbenzene<0.051,1-Dichloroethane<0.05Romoform<0.051,1-Dichloroethane<0.05Romoform<0.051,1-Dichloroethane<0.002I.3-Trimethylbenzene<0.051,1-Dichloropropane<0.05Romoform<0.051,1-Dichloropropane<0.05Romoform<0.051,1-Dichloropropane<0.05Romoform<0.051,1-Dichloropropane<0.05Romoform<0.051,1-Dichloropropane<0.05Romoform<0.051,1-	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-04-02.5 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-15 1/0.5 111114.D GCMS13 MD	stigation
		14		Limit:	Limit:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-d4				
Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5		ene				
Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.5	1 Diomondoi obomz	ene		01	110	a
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds			Compou	nde	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	_			_		
Vinyl chloride<0.002Dibromochloromethane<0.05Bromomethane<0.5		thane				
Bromomethane<0.51,2-Dibromoethane (EDB)<0.005Chloroethane<0.1						
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
$\begin{array}{llllllllllllllllllllllllllllllllllll$					· · · · ·	
Acetone<51,1,2-Tetrachloroethane<0.051,1-Dichloroethene<0.002		hane				
1,1-Dichloroethene<0.002m,p-Xylene<0.004Hexane<0.25		liulie				
Hexane<0.25o-Xylene<0.002Methylene chloride<0.4 ca						
Methyl t-butyl ether (MTBE)<0.002Isopropylbenzene<0.05trans-1,2-Dichloroethene<0.002						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methylene chloride	•	<0.4 ca			< 0.05
1,1-Dichloroethane<0.002n-Propylbenzene<0.052,2-Dichloropropane<0.05						
2,2-Dichloropropane<0.05Bromobenzene<0.05cis-1,2-Dichloroethene<0.002						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-					
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
2-Butanone (MEK)<11,2,3-Trichloropropane<0.051,2-Dichloroethane (EDC)<0.003		ene				
1,2-Dichloroethane (EDC)<0.0032-Chlorotoluene<0.051,1,1-Trichloroethane<0.002						
1,1,1-Trichloroethane<0.0024-Chlorotoluene<0.051,1-Dichloropropene<0.05		(EDC)				
1,1-Dichloropropene<0.05tert-Butylbenzene<0.05Carbon tetrachloride<0.05		· /				
Benzene<0.002sec-Butylbenzene<0.05Trichloroethene<0.002						
Trichloroethene<0.002p-Isopropyltoluene<0.051,2-Dichloropropane<0.05	Carbon tetrachlorid	de	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
1,2-Dichloropropane<0.05 $1,3$ -Dichlorobenzene<0.05Bromodichloromethane<0.05						
Bromodichloromethane<0.051,4-Dichlorobenzene<0.05Dibromomethane<0.05						
Dibromomethane<0.051,2-Dichlorobenzene<0.054-Methyl-2-pentanone<1						
4-Methyl-2-pentanone<11,2-Dibromo-3-chloropropane<0.5cis-1,3-Dichloropropene<0.05		nane		,		
cis-1,3-Dichloropropene<0.051,2,4-Trichlorobenzene<0.25Toluene<0.002		220				
Toluene<0.002Hexachlorobutadiene<0.25trans-1,3-Dichloropropene<0.05						
trans-1,3-Dichloropropene<0.05Naphthalene<0.011,1,2-Trichloroethane<0.05		pene				
1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene <0.25		propene				
	· · ·	-				
			<1			

ENVIRONMENTAL CHEMISTS

AB-04-10 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-17 1/0.5 111115.D GCMS13 MD	stigation
	% Recovery: 102 98 100	Lower Limit: 84 73 57	Upper Limit: 120 128 146	
	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \\ < 0.002 \\ < 0.25 \\ < 0.4 \ ca \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.0010 \\ < 0.005 \\ < 1 \\ < 0.003 \\ < 0.002 \\ < 0.005 \\ < 0.002 \\ < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.012 \\ \end{array}$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene ene ene ene ene ene ene ene ene	$\begin{array}{c} < 0.05 \\ 0.0036 \\ < 0.05 \\ < 0.005 \\ < 0.005 \\ 0.0026 \\ < 0.05 \\ 0.0070 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < $
	<0.05 <0.05 <1	-		<0.01 <0.25
	11/04/24 11/11/24 11/11/24 Soil	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates:	AB-05-02.5 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm) Dry Weight % Recovery:	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit:	Aspect Consulting ETS Subsurface Invest 411043-20 1/0.5 111116.D GCMS13 MD Upper Limit:	stigation
1,2-Dichloroethane	-d4	99	84	120	
Toluene-d8		99	73	128	
4-Bromofluorobenz	ene	99	57	146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane Trichlorofluoromet	h a - a a	<0.1 <0.5	Chlorobe		< 0.05
Acetone	nane	<0.5 <5	Ethylber 1 1 1 2-7	Setrachloroethane	<0.002 <0.05
1,1-Dichloroethene		<0.002	m,p-Xyle		<0.004
Hexane		< 0.25	o-Xylene		< 0.002
Methylene chloride	•	<0.4 ca	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002		lbenzene	< 0.05
trans-1,2-Dichloroe		0.0036	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan cis-1,2-Dichloroeth		<0.05 0.011	Bromobe	enzene imethylbenzene	$< 0.05 \\ < 0.05$
Chloroform	ene	<0.011		Cetrachloroethane	<0.05
2-Butanone (MEK)		<1		ichloropropane	<0.05
1,2-Dichloroethane		< 0.003	2-Chloro		< 0.05
1,1,1-Trichloroetha	ne	< 0.002	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorio	de	< 0.05		imethylbenzene	< 0.05
Benzene		0.0032		vlbenzene	< 0.05
Trichloroethene 1,2-Dichloropropan	0	0.0037 < 0.05		pyltoluene lorobenzene	$< 0.05 \\ < 0.05$
Bromodichlorometh		<0.05		lorobenzene	<0.05
Dibromomethane	lulle	< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
Toluene		0.0029		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		<1			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-13 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-25 1/0.5 111117.D GCMS13 MD	stigation
Surrogates: 1,2-Dichloroethane Toluene-d8		% Recovery: 101 101	Lower Limit: 84 73	Upper Limit: 120 128	
4-Bromofluorobenz	ene	100 Concentration	57	146	Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometl	hane er (MTBE) ethene ene (EDC) ne e le	$\begin{array}{c} < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \\ < 0.002 \\ < 0.25 \\ < 0.4 \ ca \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.003 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich	nzene Cetrachloroethane ene e Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.005 \\ < 0.0029 \\ < 0.05 \\ < 0.004 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 $
Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	pene propene	< 0.05 < 1 < 0.05 0.0075 < 0.05 < 1	1,2-Dibr 1,2,4-Tri Hexachl Naphtha	lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene ichlorobenzene	< 0.05 < 0.5 < 0.25 < 0.25 < 0.01 < 0.25

ENVIRONMENTAL CHEMISTS

LowerSurrogates:% Recovery:Limit:1,2-Dichloroethane-d49884Toluene-d897734-Bromofluorobenzene9957ConcentrationCompounds:mg/kg (ppm)Dichlorodifluoromethane<0.51,3-DichloropropChloromethane<0.5Tetrachloroethethethethethethethethethethethethethe	et Consulting Subsurface Investig 13-26 1/0.5 18.D S13	ation
Compounds:mg/kg (ppm)Compounds:Dichlorodifluoromethane<0.5	Upper Limit: 120 128 146	
Chloromethane<0.5TetrachloroetherVinyl chloride<0.002		oncentration ng/kg (ppm)
Carbon tetrachloride<0.051.2.4-TrimethylkBenzene0.0047sec-ButylbenzenTrichloroethene0.030p-Isopropyltolue1,2-Dichloropropane<0.05	ene methane nane (EDB) loroethane ne ne lbenzene loroethane propane e e e ene lbenzene ne ene lbenzene ne ene nzene nzene nzene nzene chloropropane ponzene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.05 \\ 0.0066 \\ < 0.05 \\ 0.0097 \\ 0.0050 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0$

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	AMW-5-12 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-31 1/0.5 111119.D GCMS13 MD	stigation
Surrogates: 1,2-Dichloroethane-d Toluene-d8 4-Bromofluorobenzei		% Recovery: 97 99 98	Lower Limit: 84 73 57	Upper Limit: 120 128 146	
Compounds:	(Concentration mg/kg (ppm)	Compou		Concentration mg/kg (ppm)
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (1,1,1-Trichloroethane (1,1,1-Trichloroethane 1,2-Dichloropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropene Bromodichloromethane 4-Methyl-2-pentanor	nane (MTBE) hene ne EDC) e		1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	loropropane oroethene ochloromethane omoethane (EDB) enzene "etrachloroethane ene " dbenzene rm lbenzene enzene imethylbenzene "etrachloroethane ichloropropane otoluene	$\begin{array}{c} \text{mg, mg (ppm)}\\ <0.05\\ <0.002\\ <0.05\\ <0.005\\ <0.005\\ <0.0072\\ <0.05\\ 0.0064\\ 0.00522\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.5\\ \end{array}$
cis-1,3-Dichloroprope Toluene trans-1,3-Dichloropr 1,1,2-Trichloroethan 2-Hexanone	ene opene	<0.05 0.026 <0.05 <0.05 <1	1,2,4-Tri Hexachl Naphtha	ichlorobenzene orobutadiene	<0.25 <0.25 <0.01 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-01 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Aspect Consulting ETS Subsurface Inve 411043-32 1/0.5 111120.D GCMS13 MD Upper	stigation
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	97	84	120	
Toluene-d8		98	73	128	
4-Bromofluorobenz	ene	97	57	146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane		< 0.1	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		0.0036
Acetone 1,1-Dichloroethene		<5 <0.002		etrachloroethane	$< 0.05 \\ 0.0090$
Hexane		<0.002 <0.25	m,p-Xyle o-Xylene		0.0090
Methylene chloride	`	<0.25 <0.4 ca	Styrene	5	< 0.05
Methyl t-butyl ethe		<0.002	-	lbenzene	< 0.05
trans-1,2-Dichloroe		0.0068	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan	ie	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	0.018		imethylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		<0.003	2-Chloro 4-Chloro		<0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.002 <0.05		ylbenzene	< 0.05 < 0.05
Carbon tetrachlorio		<0.05		imethylbenzene	< 0.05
Benzene		0.0024		lbenzene	< 0.05
Trichloroethene		0.11		pyltoluene	< 0.05
1,2-Dichloropropan	le	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		0.0085		orobutadiene	< 0.25
trans-1,3-Dichlorog	-	<0.05	Naphtha 1 2 2 Trai	alene ichlorobenzene	0.42 < 0.25
1,1,2-Trichloroetha 2-Hexanone	.116	<0.05 <1	1,2, 5 -11	lemoropenzene	<u>~0.20</u>
		71			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-08.5 11/04/24 11/11/24 11/11/24 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 411043-35 1/0.5 111121.D GCMS13 MD	stigation
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 97 98	Lower Limit: 84 73 57	Upper Limit: 120 128 146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan	hane er (MTBE) thene e ene (EDC) ne e le hane pene	$< 0.5 \\ < 0.5 \\ 0.0026 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \\ < 0.002 \\ < 0.25 \\ < 0.4 ca \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.003 \\ < 0.05 \\ < 1 \\ < 0.003 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.0090 \\ 0.0090 \\ 0.0090 \\ 0.0000 \\ $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	nzene Cetrachloroethane ene dibenzene frm lbenzene enzene imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.005 \\ < 0.05 \\ < 0.012 \\ < 0.05 \\ < 0.004 \\ 0.0024 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ $
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<0.05 <0.05 <1	Naphtha 1,2,3-Tri	ichlorobenzene	0.10 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 11/11/24 11/11/24 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Inve 04-2761 mb 1/0.5 111107.D GCMS13 MD	stigation
Sumorator		% Recovery:	Lower Limit:	Upper Limit:	
Surrogates: 1,2-Dichloroethane-d4		⁵⁶ Recovery. 102	84	120	
Toluene-d8		98	73	120	
4-Bromofluorobenzene		97	57	146	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluoromethane		< 0.5	1,3-Dichloropropane		< 0.05
Chloromethane		< 0.5	Tetrachloroethene		< 0.002
Vinyl chloride		< 0.002	Dibromochloromethane		< 0.05
Bromomethane		< 0.5	1,2-Dibromoethane (EDB)		< 0.005
Chloroethane	1	<0.1	Chlorobenzene		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylbenzene 1,1,1,2-Tetrachloroethane		<0.002
Acetone 1,1-Dichloroethene		<5 <0.002	m,p-Xylene		<0.05 <0.004
Hexane		<0.002	o-Xylene		< 0.004
Methylene chloride		<0.4 ca	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe		< 0.002	Bromoform		< 0.05
1,1-Dichloroethane		< 0.002	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002	1,3,5-Trimethylbenzene		< 0.05
Chloroform		< 0.05	1,1,2,2-Tetrachloroethane		< 0.05
2-Butanone (MEK) 1,2-Dichloroethane (EDC)		<1	1,2,3-Trichloropropane 2-Chlorotoluene		< 0.05
	· /	< 0.003			<0.05
1,1,1-Trichloroethane 1,1-Dichloropropene		<0.002 <0.05	4-Chlorotoluene tert-Butylbenzene		<0.05 <0.05
Carbon tetrachloride		< 0.05	1,2,4-Trimethylbenzene		< 0.05
Benzene		< 0.002	sec-Butylbenzene		< 0.05
Trichloroethene		< 0.002	p-Isopropyltoluene		< 0.05
1,2-Dichloropropane		< 0.05	1,3-Dichlorobenzene		< 0.05
Bromodichloromethane		< 0.05	1,4-Dichlorobenzene		< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentanone		<1	1,2-Dibromo-3-chloropropane		< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Trichlorobenzene		< 0.25
Toluene		< 0.002		orobutadiene	< 0.25
trans-1,3-Dichlorog	-	<0.05	Naphtha 1.2.2 Tri		<0.01 <0.25
1,1,2-Trichloroetha 2-Hexanone	.116	<0.05 <1	1,2, 5 -11	ichlorobenzene	~0.20
		1			

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-01-01.5 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-01 110824.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 84 106 Concentration	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	ene	$\begin{array}{c} 0.44\\ 0.18\\ 0.11\\ 0.0085\\ 0.30\\ 0.34\\ 1.9\\ 0.33\\ 4.3\\ 2.2\\ 0.88\\ 1.0\\ \end{array}$		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-01-01.5 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-01 1/10 111014.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene Compounds:	-d12	% Recovery: 127 d 92 d Concentration mg/kg (ppm)	Lower Limit: 50 50	Upper Limit: 150 150
Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(a)pyrene Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ene rene rene	0.91 0.25 0.46 0.34 0.091 0.35		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

% Recovery: 87 103	Lower Limit: 50 50	Upper Limit:
~	50	$\begin{array}{c} 150 \\ 150 \end{array}$
Concentration mg/kg (ppm)		
$\begin{array}{c} 0.025\\ 0.0088\\ 0.019\\ < 0.005\\ 0.18\\ 0.012\\ 0.061\\ < 0.005\\ 0.090\\ 0.070\\ 0.036\\ 0.059\\ 0.030\\ 0.010\\ 0.026\\ 0.017\end{array}$		
	$\begin{array}{c} 0.0088\\ 0.019\\ <0.005\\ 0.18\\ 0.012\\ 0.061\\ <0.005\\ 0.090\\ 0.070\\ 0.036\\ 0.059\\ 0.030\\ 0.010\\ 0.026\end{array}$	$\begin{array}{c} 0.0088\\ 0.019\\ < 0.005\\ 0.18\\ 0.012\\ 0.061\\ < 0.005\\ 0.090\\ 0.070\\ 0.036\\ 0.059\\ 0.030\\ 0.010\\ 0.026\\ 0.017\\ < 0.005 \end{array}$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-02-03 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-06 110826.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 99 104	Lower Limit: 50 50	Upper Limit: 150 150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.0082		
2-Methylnaphthale	ene	0.0054		
1-Methylnaphthale	ene	< 0.005		
Acenaphthylene		0.0056		
Acenaphthene		< 0.005		
Fluorene		< 0.005		
Phenanthrene		0.022		
Anthracene		< 0.005		
Fluoranthene		0.058		
Pyrene		0.053		
Benz(a)anthracene		0.050		
Chrysene		0.055		
Benzo(b)fluoranthe	ene	0.090		
Benzo(k)fluoranthe	ene	0.028		
Benzo(a)pyrene		0.078		
Indeno(1,2,3-cd)pyr		0.064		
Dibenz(a,h)anthrac	eene	0.019		
Benzo(g,h,i)peryler	ie	0.079		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-02-09.5 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-09 1/10 111006.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 93 d 68 d	Lower Limit: 50 50	Upper Limit: 150 150
Company las		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.15		
2-Methylnaphthale	ene	0.13		
1-Methylnaphthale	ene	0.085		
Acenaphthylene		0.050		
Acenaphthene		0.063		
Fluorene		0.11		
Phenanthrene		0.60		
Anthracene		0.086		
Fluoranthene		0.80		
Pyrene		0.79		
Benz(a)anthracene		0.29		
Chrysene		0.36		
Benzo(b)fluoranthe		0.44		
Benzo(k)fluoranthe	ene	0.12		
Benzo(a)pyrene		0.30		
Indeno(1,2,3-cd)py		0.21		
Dibenz(a,h)anthrac		0.062		
Benzo(g,h,i)peryler	ne	0.28		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-03-01 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-11 110828.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 101 103	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ene	mg/kg (ppm) 0.0065 0.0058 <0.005 <0.005 0.011 0.010 0.079 0.012 0.11 0.078		
Benz(a)anthracene Chrysene Benzo(k)fluoranthe Dibenz(a,h)anthrac	ene	0.053 0.058 0.021 J 0.012 J		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-03-01 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-11 1/10 111007.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene Compounds:	-d12	% Recovery: 121 d 86 d Concentration mg/kg (ppm)	Lower Limit: 50 50	Upper Limit: 150 150
Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(a)pyrene Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ene cene	0.090 <0.05 0.060 0.051 <0.05 0.057		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-03-07 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-14 110829.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 98 99	Lower Limit: 50 50	Upper Limit: 150 150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.0058		
2-Methylnaphthale	ene	< 0.005		
1-Methylnaphthale	ene	< 0.005		
Acenaphthylene		< 0.005		
Acenaphthene		< 0.005		
Fluorene		< 0.005		
Phenanthrene		0.018		
Anthracene		< 0.005		
Fluoranthene		0.033		
Pyrene		0.034		
Benz(a)anthracene		0.017		
Chrysene		0.021		
Benzo(b)fluoranthe		0.022		
Benzo(k)fluoranthe	ene	0.0065		
Benzo(a)pyrene		0.012		
Indeno(1,2,3-cd)pyr		0.010		
Dibenz(a,h)anthrac		< 0.005		
Benzo(g,h,i)peryler	ie	0.012		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-04-02.5 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-15 110830.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 96 99	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
-		0041 /		
Naphthalene		0.014		
2-Methylnaphthale		0.0098		
1-Methylnaphthale	ene	0.012		
Acenaphthylene		0.016		
Acenaphthene		0.016		
Fluorene		0.012		
Phenanthrene		0.32		
Anthracene		0.030		
Fluoranthene		0.63		
Pyrene		0.54		
Benz(a)anthracene		0.22		
Chrysene Bases (h) flags as the		0.30		
Benzo(b)fluoranthe		0.33		
Benzo(k)fluoranthe	ene	$\begin{array}{c} 0.11 \\ 0.29 \end{array}$		
Benzo(a)pyrene Indeno(1,2,3-cd)pyr	<i>iono</i>	$\begin{array}{c} 0.29 \\ 0.27 \end{array}$		
Dibenz(a,h)anthrac		0.27 0.049		
Benzo(g,h,i)peryler		0.049 0.28		
Denzo(g,n,i)peryler	IC	0.20		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-04-10 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-17 110831.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 85 107	Lower Limit: 50 50	Upper Limit: 150 150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.024		
2-Methylnaphthale	ene	0.020		
1-Methylnaphthale	ene	0.011		
Acenaphthylene		< 0.005		
Acenaphthene		< 0.005		
Fluorene		< 0.005		
Phenanthrene		0.022		
Anthracene		< 0.005		
Fluoranthene		0.031		
Pyrene		0.046		
Benz(a)anthracene		0.036		
Chrysene		0.036		
Benzo(b)fluoranthe		0.031		
Benzo(k)fluoranthe	ene	0.0089		
Benzo(a)pyrene		0.022		
Indeno(1,2,3-cd)py		0.027		
Dibenz(a,h)anthrac		0.0060		
Benzo(g,h,i)peryler	ne	0.026		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-02.5 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-20 110832.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 84 103	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Dibenz(a,h)anthrace	ene	$\begin{array}{c} 0.0051 \\ < 0.005 \\ < 0.005 \\ 0.0051 \\ 0.025 \\ 0.017 \\ 0.060 \\ 0.017 \\ 0.33 \\ 0.24 \\ 0.13 \\ 0.14 \\ 0.023 \mathrm{J} \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-02.5 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-20 1/10 111008.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene-	-d12	% Recovery: 128 d 94 d Concentration	Lower Limit: 50 50	Upper Limit: 150 150
Compounds: Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(a)pyrene Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ne ene ene	mg/kg (ppm) 0.24 0.061 0.16 0.14 <0.05 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-13 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-25 110833.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 83 102	Lower Limit: 50 50	Upper Limit: 150 150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.0058		
2-Methylnaphthale	ene	0.0083		
1-Methylnaphthale	ene	< 0.005		
Acenaphthylene		< 0.005		
Acenaphthene		< 0.005		
Fluorene		< 0.005		
Phenanthrene		0.014		
Anthracene		< 0.005		
Fluoranthene		0.019		
Pyrene		0.015		
Benz(a)anthracene		0.0084		
Chrysene		0.012		
Benzo(b)fluoranthe		$0.010 \mathrm{~J}$		
Benzo(k)fluoranthe	ene	<0.005 J		
Benzo(a)pyrene		$0.0074~\mathrm{J}$		
Indeno(1,2,3-cd)py		<0.005 J		
Dibenz(a,h)anthrac		<0.005 J		
Benzo(g,h,i)peryler	ne	$0.0054~\mathrm{J}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-13 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-25 1/10 111009.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene-	-d12	% Recovery: 111 d 87 d Concentration	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		mg/kg (ppm)		
Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(a)pyrene Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ene rene rene	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-01 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-26 110834.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 70 89	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	ene	$\begin{array}{c} 0.033\\ 0.022\\ 0.013\\ 0.020\\ 0.085\\ 0.11\\ 0.56\\ 0.11\\ 1.0\\ 0.79\\ 0.36\\ 0.47\\ \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-01 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-26 1/10 111010.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 117 d 101 d Concentration	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		mg/kg (ppm)		
Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(a)pyrene Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ne rene rene	$\begin{array}{c} 0.78 \\ 0.28 \\ 0.59 \\ 0.49 \\ 0.10 \\ 0.58 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-12 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-31 110835.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 94 94	Lower Limit: 50 50	Upper Limit: 150 150
0 1		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		0.017		
2-Methylnaphthale	ene	0.0077		
1-Methylnaphthale	ene	0.0072		
Acenaphthylene		< 0.005		
Acenaphthene		< 0.005		
Fluorene		< 0.005		
Phenanthrene		0.020		
Anthracene		< 0.005		
Fluoranthene		0.022		
Pyrene		0.019		
Benz(a)anthracene		0.011		
Chrysene		0.011		
Benzo(b)fluoranthe		0.012		
Benzo(k)fluoranthe	ene	< 0.005		
Benzo(a)pyrene		0.010		
Indeno(1,2,3-cd)pyr		0.0051		
Dibenz(a,h)anthrac		< 0.005		
Benzo(g,h,i)peryler	ne	0.0074		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-01 11/04/24 10/08/24 11/08/24 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-32 110836.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 85 108	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	ene	$\begin{array}{c} 0.25\\ 0.078\\ 0.036\\ 0.0079\\ 0.15\\ 0.17\\ 0.53\\ 0.14\\ 0.97\\ 0.61\\ 0.33\\ 0.51 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-01 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-32 1/10 111011.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 113 d 93 d Concentration	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		mg/kg (ppm)		
Benzo(b)fluoranthe	ne	0.49		
Benzo(k)fluoranthe	ene	0.12		
Benzo(a)pyrene		0.33		
Indeno(1,2,3-cd)pyr	rene	0.24		
Dibenz(a,h)anthrac	ene	0.062		
Benzo(g,h,i)perylen	e	0.26		

ENVIRONMENTAL CHEMISTS

4/24 8/24 9/24	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-35 110837.D GCMS9 VM
% Recovery: 85 102	Lower Limit: 50 50	Upper Limit: 150 150
Concentration mg/kg (ppm)		
$\begin{array}{c} 0.33\\ 0.21\\ 0.17\\ 0.0053\\ 0.014\\ 0.037\\ 0.18\\ <\!0.005\\ 0.10\\ 0.067\\ 0.029\\ 0.057\\ 0.033 \mathrm{J} \end{array}$		
0.024 J 0.010 J <0.005 J		
1.	$\begin{array}{c} 85\\ 102\\\\ \hline \\ \text{Concentration}\\ \text{mg/kg (ppm)}\\\\ 0.33\\ 0.21\\ 0.17\\ 0.0053\\ 0.014\\ 0.0053\\ 0.014\\ 0.037\\ 0.18\\ <0.005\\ 0.10\\ 0.067\\ 0.029\\ 0.057\\ 0.033 \text{ J}\\ 0.011 \text{ J}\\ 0.024 \text{ J}\\ 0.010 \text{ J}\\ \end{array}$	4/24 Project: $8/24$ Lab ID: $9/24$ Data File: Instrument: Instrument: kg (ppm) Dry Weight Operator: % Recovery: Limit: 85 50 102 50 Concentration mg/kg (ppm) 0.33 0.21 0.17 0.0053 0.014 0.037 0.18 <0.005

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-08.5 11/04/24 10/08/24 11/10/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-35 1/10 111012.D GCMS14 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 108 d 95 d Concentration	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		mg/kg (ppm)		
Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(a)pyrene Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)perylen	ne rene rene	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/08/24 11/08/24 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 04-2793 mb 110823.D GCMS9 VM
Surrogates: Anthracene-d10 Benz(a)anthracene	-d12	% Recovery: 85 93	Lower Limit: 50 50	Upper Limit: 150 150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.005		
2-Methylnaphthale	ene	< 0.005		
1-Methylnaphthale	ene	< 0.005		
Acenaphthylene		< 0.005		
Acenaphthene		< 0.005		
Fluorene		< 0.005		
Phenanthrene		< 0.005		
Anthracene		< 0.005		
Fluoranthene		< 0.005		
Pyrene		< 0.005		
Benz(a)anthracene		< 0.005		
Chrysene		< 0.005		
Benzo(b)fluoranthe	ene	< 0.005		
Benzo(k)fluoranthe	ene	< 0.005		
Benzo(a)pyrene		< 0.005		
Indeno(1,2,3-cd)pyr		< 0.005		
Dibenz(a,h)anthrac		< 0.005		
Benzo(g,h,i)peryler	ne	< 0.005		

ENVIRONMENTAL CHEMISTS

Client ID:	AB-01-01.5	Client:	Aspect Consulting
Date Received:	11/04/24	Project:	ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-01
Date Analyzed:	11/12/24	Data File:	411043-01.116
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Arsenic Cadmium Mercury	Concentration mg/kg (ppm) 4.5 1.9 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	AB-01-01.5 11/04/24 11/12/24 11/13/24	Client: Project: Lab ID: Data File:	Aspect Consulting ETS Subsurface Investigation 411043-01 x5 411043-01 x5.061
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	32		
Lead	45		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-01-09 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-04 411043-04.117 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.6		
Cadmium	<1		
Chromium	23		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	AB-01-09 11/04/24 11/12/24 11/13/24 Soil	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting ETS Subsurface Investigation 411043-04 411043-04.067 ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

46

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-02-03 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-06 411043-06.118 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.0		
Cadmium	40		
Chromium	16		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AB-02-03	Client:	Aspect Consulting
Date Received:	11/04/24	Project:	ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-06
Date Analyzed:	11/13/24	Data File:	411043-06.068
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

15

ENVIRONMENTAL CHEMISTS

Client ID:	AB-02-09.5	Client:	Aspect Consulting
Date Received:	11/04/24	Project:	ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-09
Date Analyzed:	11/12/24	Data File:	411043-09.119
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Arsenic Cadmium Mercury	Concentration mg/kg (ppm) 18 2.2 <1		

ENVIRONMENTAL CHEMISTS

Client ID:	AB-02-09.5	Client:	Aspect Consulting
Date Received:	11/04/24	Project:	ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-09 x25
Date Analyzed:	11/13/24	Data File:	411043-09 x25.069
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Chromium Lead	Concentration mg/kg (ppm) 37 2,900		51

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-03-01 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-11 411043-11.120 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)	- 1	
Arsenic	9.2		
Cadmium	220		
Chromium	13		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	AB-03-01 11/04/24 11/12/24 11/13/24 Soil	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting ETS Subsurface Investigation 411043-11 411043-11.080 ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

19

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-03-07 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-14 411043-14.121 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.6		
Cadmium	70		
Chromium	32		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AB-03-07	Client:	Aspect Consulting
Date Received:	11/04/24	Project:	ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-14
Date Analyzed:	11/13/24	Data File:	411043-14.081
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight Concentration	Operator:	SP
Analyte:	mg/kg (ppm)		

Lead

75

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-04-02.5 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-15 411043-15.124 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.8		
Cadmium	<1		
Chromium	19		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	AB-04-02.5 11/04/24	Client: Project:	Aspect Consulting ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-15
Date Analyzed:	11/13/24	Data File:	411043-15.098
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	29		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-04-10 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-17 411043-17.125 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.4		
Cadmium	<1		
Chromium	16		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AB-04-10	Client:	Aspect Consulting
Date Received:	11/04/24	Project:	ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-17
Date Analyzed:	11/13/24	Data File:	411043-17.099
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

60

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-02.5 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-20 411043-20.126 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	7.6		
Cadmium	1.2		
Chromium	39		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted:	AB-05-02.5 11/04/24 11/12/24	Client: Project: Lab ID:	Aspect Consulting ETS Subsurface Investigation 411043-20
Date Analyzed:	11/13/24	Data File:	411043-20.100
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	73		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-05-13 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-25 411043-25.127 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.3		
Cadmium	<1		
Chromium	19		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	AB-05-13 11/04/24 11/12/24 11/13/24 Soil	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting ETS Subsurface Investigation 411043-25 411043-25.101 ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

46

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-01 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-26 411043-26.128 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.9		
Cadmium	53		
Chromium	39		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	AMW-5-01 11/04/24 11/12/24 11/13/24 Soil	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting ETS Subsurface Investigation 411043-26 x20 411043-26 x20.102 ICPMS3
Units: Analyte:	mg/kg (ppm) Dry Weight Concentration mg/kg (ppm)	Operator:	SP

Lead

160

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-12 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-31 411043-31.129 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)	-	
Arsenic	16		
Cadmium	1.2		
Chromium	12		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	AMW-5-12 11/04/24 11/12/24	Client: Project: Lab ID:	Aspect Consulting ETS Subsurface Investigation 411043-31 x20
Date Analyzed:	11/13/24	Data File:	411043-31 x20.141
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	1,700		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-01 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-32 411043-32.130 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)	-	
Arsenic	6.5		
Cadmium	18		
Chromium	24		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	AB-06-01 11/04/24	Client: Project:	Aspect Consulting ETS Subsurface Investigation
Date Extracted:	11/12/24	Lab ID:	411043-32
Date Analyzed:	11/13/24	Data File:	411043-32.142
Matrix:	Soil	Instrument:	ICPMS3
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

68

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AB-06-08.5 11/04/24 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation 411043-35 411043-35.131 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.0		
Cadmium	<1		
Chromium	31		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	AB-06-08.5 11/04/24 11/12/24	Client: Project: Lab ID: Data Film	Aspect Consulting ETS Subsurface Investigation 411043-35
Date Analyzed: Matrix: Units:	11/13/24 Soil mg/kg (ppm) Dry Weight	Data File: Instrument: Operator:	411043-35.143 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		

Lead

32

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 11/12/24 11/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting ETS Subsurface Investigation I4-970 mb I4-970 mb.074 ICPMS3 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 41	10568-01 (Duplic	ate)			
		Samp	le Du	plicate	
	Reporting	Resu	lt F	lesult	RPD
Analyte	Units	(Wet V	Vt) (W	/et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: L	aboratory Contro	ol Sample	Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	40	82	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 41	1043-01 (Matrix	x Spike)					
			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	230	105	103	64-136	2
Laboratory Code: La	aboratory Contr	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	v Accepta	ance		
Analyte	Units	Level	LCS	Crite	ria		
Diesel Extended	mg/kg (ppm)	5,000	106	78-12	21		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 411043-26 (Matrix Spike)

Laboratory Code: 41	1043-26 (Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	50	49	10-142	2
Chloromethane	mg/kg (ppm)	2	< 0.5	72	74	10-126	3
Vinyl chloride	mg/kg (ppm)	2	< 0.05	79	78	10-138	1
Bromomethane	mg/kg (ppm)	2	< 0.5	67	67	10-163	0
Chloroethane	mg/kg (ppm)	2	< 0.5	79	78	10-176	1
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	84	81	10-176	4
Acetone	mg/kg (ppm)	10	<5	66	58	10-163	13
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	86	83	10-160	4
Hexane Mathedana abharida	mg/kg (ppm)	$\frac{2}{2}$	<0.25	85	84	10-137	1
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.05	$65 \\ 85$	63 85	10-156 21-145	3 0
trans-1,2-Dichloroethene		2	<0.05	80 81	83	21-145 14-137	2
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	2	<0.05	84	82	19-140	2
2,2-Dichloropropane	mg/kg (ppm)	2	<0.05	85	81 81	10-158	5
cis-1,2-Dichloroethene	mg/kg (ppm)	2	<0.05	85	87	25-135	2
Chloroform	mg/kg (ppm)	2	< 0.05	85	83	21-145	2
2-Butanone (MEK)	mg/kg (ppm)	10	<1	76	72	19-147	5
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	<0.05	91	90	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	87	87	10-156	0
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	86	87	17-140	1
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	95	96	9-164	1
Benzene	mg/kg (ppm)	2	< 0.03	86	86	29-129	0
Trichloroethene	mg/kg (ppm)	2	< 0.02	84	83	21-139	1
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	91	89	30-135	2
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	88	88	23 - 155	0
Dibromomethane	mg/kg (ppm)	2	< 0.05	84	84	23 - 145	0
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	89	95	24 - 155	7
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	89	89	28-144	0
Toluene	mg/kg (ppm)	2	< 0.05	81	80	35-130	1
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	85	85	26-149	0
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	85	81	10-205	5
2-Hexanone	mg/kg (ppm)	10	<1	81	77	15-166	5
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	2 2	<0.05 <0.025	86 83	85 82	31-137 20-133	1 1
Dibromochloromethane	mg/kg (ppm)	2	<0.025	83	82 79	20-133 28-150	5
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2	<0.05	83	79 80	28-150	3 4
Chlorobenzene	mg/kg (ppm)	2	<0.05	83	81	32-129	2
Ethylbenzene	mg/kg (ppm)	2	<0.05	85	82	32-125	4
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	<0.05	83	81	31-143	2
m,p-Xylene	mg/kg (ppm)	4	<0.1	83	83	34-136	0
o-Xylene	mg/kg (ppm)	2	< 0.05	80	80	33-134	Õ
Styrene	mg/kg (ppm)	2	< 0.05	82	80	35-137	2
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	84	82	31-142	2
Bromoform	mg/kg (ppm)	2	< 0.05	85	83	21-156	2
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	85	87	23-146	2
Bromobenzene	mg/kg (ppm)	2	< 0.05	82	83	34-130	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	85	86	18-149	1
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	89	89	28-140	0
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	87	86	25 - 144	1
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	81	84	31-134	4
4-Chlorotoluene	mg/kg (ppm)	2	< 0.05	85	86	31-136	1
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	84	88	30-137	5
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	83	85	10-182	2
sec-Butylbenzene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	86	86	23-145	0
p-Isopropyltoluene 1.3-Dichlorobenzene	mg/kg (ppm)	2	<0.05 <0.05	84 84	87 84	21-149 30-131	4
1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	84 81	84 83	29-129	$^{0}_{2}$
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	<0.05 <0.05	81 79	83 82	29-129 31-132	2 4
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	<0.05	79 81	82 88	11-161	4 8
1.2.4-Trichlorobenzene	mg/kg (ppm)	2	<0.5	79	81	22-142	2
Hexachlorobutadiene	mg/kg (ppm)	2	<0.25	79 81	80	10-142	2 1
Naphthalene	mg/kg (ppm)	2	<0.25	84	84	14-157	0
1.2.3-Trichlorobenzene	mg/kg (ppm)	2	<0.25	83	85	20-144	2
		-					

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Col	teror Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	61	10-146
Chloromethane	mg/kg (ppm)	2	79	27-133
Vinyl chloride	mg/kg (ppm)	2	87	22-139
Bromomethane	mg/kg (ppm)	2	69	10-201
Chloroethane	mg/kg (ppm)	2	72	10-163
Trichlorofluoromethane	mg/kg (ppm)	2	99	10-196
Acetone	mg/kg (ppm)	10	90	52-141
1,1-Dichloroethene	mg/kg (ppm)	2	91	47-128
Hexane Methylene chloride	mg/kg (ppm)	$\frac{2}{2}$	96 73	43-142
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2	91	10-184 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2	93	64-132
1,1-Dichloroethane	mg/kg (ppm)	2	92	64-135
2.2-Dichloropropane	mg/kg (ppm)	2	90	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2	94	64-135
Chloroform	mg/kg (ppm)	2	91	61-139
2-Butanone (MEK)	mg/kg (ppm)	10	99	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	100	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2	94	62-131
1,1-Dichloropropene	mg/kg (ppm)	2	93	64-136
Carbon tetrachloride	mg/kg (ppm)	2	105	60-139
Benzene	mg/kg (ppm)	2	94	65-136
Trichloroethene	mg/kg (ppm)	2	92	63-139
1,2-Dichloropropane	mg/kg (ppm)	2	99	61-145
Bromodichloromethane	mg/kg (ppm)	2	100	57-126
Dibromomethane	mg/kg (ppm)	2	95	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	$\frac{10}{2}$	96	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)		96	65-143
Toluene	mg/kg (ppm)	2 2	88	66-126
trans-1,3-Dichloropropene 1,1.2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2	96 91	$65-131 \\ 62-131$
2-Hexanone	mg/kg (ppm)	10	92	33-152
1,3-Dichloropropane	mg/kg (ppm)	2	95	67-128
Tetrachloroethene	mg/kg (ppm)	2	88	68-128
Dibromochloromethane	mg/kg (ppm)	2	92	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	91	66-129
Chlorobenzene	mg/kg (ppm)	2	89	67-128
Ethylbenzene	mg/kg (ppm)	2	90	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	93	64-121
m,p-Xylene	mg/kg (ppm)	4	89	68-128
o-Xylene	mg/kg (ppm)	2	88	67-129
Styrene	mg/kg (ppm)	2	88	67-129
Isopropylbenzene	mg/kg (ppm)	2	89	68-128
Bromoform	mg/kg (ppm)	2	96	56-132
n-Propylbenzene	mg/kg (ppm)	$\frac{2}{2}$	96	68-129
Bromobenzene	mg/kg (ppm)	2	91 95	69-128
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	95 96	69-129
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2	96 97	56-143 61-137
2-Chlorotoluene	mg/kg (ppm)	2	95	69-128
4-Chlorotoluene	mg/kg (ppm)	2	95	67-127
tert-Butylbenzene	mg/kg (ppm)	2	96	69-129
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	93	69-128
sec-Butylbenzene	mg/kg (ppm)	2	96	69-130
p-Isopropyltoluene	mg/kg (ppm)	2	94	69-130
1,3-Dichlorobenzene	mg/kg (ppm)	2	92	69-127
1,4-Dichlorobenzene	mg/kg (ppm)	2	91	68-126
1,2-Dichlorobenzene	mg/kg (ppm)	2	93	69-127
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	94	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	90	64-135
Hexachlorobutadiene	mg/kg (ppm)	2	91	50-153
Naphthalene	mg/kg (ppm)	2	95	62-128
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	96	61-126

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: 411043-01 (Matrix Spike)

JI (Matrix Spir	(e)					
		Sample	Percent	Percent		
Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
mg/kg (ppm)	0.5	0.38	113 b	111 b	50 - 150	2 b
mg/kg (ppm)	0.5	0.16	104 b	115 b	50 - 150	10 b
mg/kg (ppm)	0.5	0.098	97	106	50 - 150	9
mg/kg (ppm)	0.5	0.0075	95	98	50 - 150	3
mg/kg (ppm)	0.5	0.26	100 b	114 b	50 - 150	13 b
mg/kg (ppm)	0.5	0.30	101 b	$125 \mathrm{b}$	50 - 150	$21 \mathrm{b}$
mg/kg (ppm)	0.5	1.6	164 b	$241 \mathrm{~b}$	50 - 150	38 b
mg/kg (ppm)	0.5	0.29	98 b	118 b	50 - 150	19 b
mg/kg (ppm)	0.5	3.8	109 b	$292 \mathrm{b}$	50 - 150	91 b
mg/kg (ppm)	0.5	2.0	$77 \mathrm{b}$	110 b	50 - 150	$35 \mathrm{b}$
mg/kg (ppm)	0.5	0.77	$92 \mathrm{b}$	101 b	50 - 150	9 b
mg/kg (ppm)	0.5	0.91	82 b	83 b	50 - 150	1 b
mg/kg (ppm)	0.5	0.65	90 b	$85 \mathrm{ b} \mathrm{ J}$	50 - 150	6 b
mg/kg (ppm)	0.5	0.22	98 b	$95~{ m b}~{ m J}$	50 - 150	3 b
mg/kg (ppm)	0.5	0.33	100 b	97 b J	50 - 150	3 b
mg/kg (ppm)	0.5	0.28	$92 \mathrm{b}$	89 b J	50 - 150	3 b
mg/kg (ppm)	0.5	0.067	102	$100 \mathrm{J}$	50 - 150	2
mg/kg (ppm)	0.5	0.28	99 b	96 b J	50 - 150	3 b
	Reporting Units mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 0.5 mg/kg (ppm) 0.5	Reporting Units Spike Level Sample Result mg/kg (ppm) 0.5 0.38 mg/kg (ppm) 0.5 0.16 mg/kg (ppm) 0.5 0.098 mg/kg (ppm) 0.5 0.0075 mg/kg (ppm) 0.5 0.0075 mg/kg (ppm) 0.5 0.26 mg/kg (ppm) 0.5 0.30 mg/kg (ppm) 0.5 0.26 mg/kg (ppm) 0.5 0.29 mg/kg (ppm) 0.5 0.29 mg/kg (ppm) 0.5 0.77 mg/kg (ppm) 0.5 0.65 mg/kg (ppm) 0.5 0.22 mg/kg (ppm) 0.5 0.33 mg/kg (ppm) 0.5 0.28	Reporting Units Spike Level Sample Result Percent Recovery mg/kg (ppm) 0.5 0.38 113 b mg/kg (ppm) 0.5 0.38 113 b mg/kg (ppm) 0.5 0.16 104 b mg/kg (ppm) 0.5 0.098 97 mg/kg (ppm) 0.5 0.0075 95 mg/kg (ppm) 0.5 0.26 100 b mg/kg (ppm) 0.5 0.30 101 b mg/kg (ppm) 0.5 0.29 98 b mg/kg (ppm) 0.5 0.29 98 b mg/kg (ppm) 0.5 0.29 98 b mg/kg (ppm) 0.5 0.20 77 b mg/kg (ppm) 0.5 0.20 77 b mg/kg (ppm) 0.5 0.77 92 b mg/kg (ppm) 0.5 0.65 90 b mg/kg (ppm) 0.5 0.22 98 b mg/kg (ppm) 0.5 0.23 100 b mg/kg (ppm) 0.5 0.33	Reporting Units Spike Level Sample Result Percent Recovery Percent Recovery mg/kg (ppm) 0.5 0.38 113 b 111 b mg/kg (ppm) 0.5 0.38 113 b 111 b mg/kg (ppm) 0.5 0.16 104 b 115 b mg/kg (ppm) 0.5 0.098 97 106 mg/kg (ppm) 0.5 0.0075 95 98 mg/kg (ppm) 0.5 0.26 100 b 114 b mg/kg (ppm) 0.5 0.26 100 b 114 b mg/kg (ppm) 0.5 0.26 100 b 114 b mg/kg (ppm) 0.5 1.6 164 b 241 b mg/kg (ppm) 0.5 0.29 98 b 118 b mg/kg (ppm) 0.5 2.0 77 b 110 b mg/kg (ppm) 0.5 0.77 92 b 101 b mg/kg (ppm) 0.5 0.65 90 b 85 b J mg/kg (ppm) 0.5 0.22 98	Reporting UnitsSpike LevelSample ResultPercent RecoveryPercent RecoveryAcceptance Acceptancemg/kg (ppm)0.50.38113 b111 b50-150mg/kg (ppm)0.50.16104 b115 b50-150mg/kg (ppm)0.50.0989710650-150mg/kg (ppm)0.50.0075959850-150mg/kg (ppm)0.50.26100 b114 b50-150mg/kg (ppm)0.50.30101 b125 b50-150mg/kg (ppm)0.51.6164 b241 b50-150mg/kg (ppm)0.50.2998 b118 b50-150mg/kg (ppm)0.50.2998 b118 b50-150mg/kg (ppm)0.50.2998 b110 b50-150mg/kg (ppm)0.50.2998 b110 b50-150mg/kg (ppm)0.50.7792 b101 b50-150mg/kg (ppm)0.50.6590 b85 b J50-150mg/kg (ppm)0.50.2298 b95 b J50-150mg/kg (ppm)0.50.2298 b95 b J50-150mg/kg (ppm)0.50.2892 b89 b J50-150mg/kg (ppm)0.50.2892 b89 b J50-150mg/kg (ppm)0.50.2892 b89 b J50-150mg/kg (ppm)0.50.2892 b89 b J50-150mg/kg (ppm)0

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laborat	ory Control San	ipie		
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.5	79	70-130
2-Methylnaphthalene	mg/kg (ppm)	0.5	82	70-130
1-Methylnaphthalene	mg/kg (ppm)	0.5	81	70 - 130
Acenaphthylene	mg/kg (ppm)	0.5	94	70 - 130
Acenaphthene	mg/kg (ppm)	0.5	90	70 - 130
Fluorene	mg/kg (ppm)	0.5	94	70 - 130
Phenanthrene	mg/kg (ppm)	0.5	93	70 - 130
Anthracene	mg/kg (ppm)	0.5	86	70 - 130
Fluoranthene	mg/kg (ppm)	0.5	102	70 - 130
Pyrene	mg/kg (ppm)	0.5	89	70 - 130
Benz(a)anthracene	mg/kg (ppm)	0.5	84	70 - 130
Chrysene	mg/kg (ppm)	0.5	92	70 - 130
Benzo(b)fluoranthene	mg/kg (ppm)	0.5	85	70 - 130
Benzo(k)fluoranthene	mg/kg (ppm)	0.5	94	70 - 130
Benzo(a)pyrene	mg/kg (ppm)	0.5	87	70 - 130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.5	87	70 - 130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.5	85	70-130
Benzo(g,h,i)perylene	mg/kg (ppm)	0.5	91	70-130
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	$0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5$	94 87 87 85	70-130 70-130 70-130 70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/15/24 Date Received: 11/04/24 Project: ETS Subsurface Investigation PO 180043-02, F&BI 411043

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 411171-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	2.31	100 b	93 b	75 - 125	7 b
Cadmium	mg/kg (ppm)	10	<1	90	98	75 - 125	9
Chromium	mg/kg (ppm)	10	17.3	113 b	79 b	75 - 125	$35 \mathrm{b}$
Lead	mg/kg (ppm)	10	6.17	$152 \mathrm{ b}$	$105 \mathrm{b}$	75 - 125	$37 \mathrm{b}$
Mercury	mg/kg (ppm	10	<1	90	95	75 - 125	5

Laboratory Code: Laboratory Control Sample

Laboratory Co	de. Laboratory Con	noi Sampie	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	89	80-120
Cadmium	mg/kg (ppm)	10	94	80-120
Chromium	mg/kg (ppm)	10	103	80-120
Lead	mg/kg (ppm)	10	98	80-120
Mercury	mg/kg (ppm)	10	91	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$ \begin{array}{ c c c c } & \label{eq:constraint} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Keceiv	office@fried manandbruya.com	80	Friedman & Bruya, Inc. Reling		AB-02-10,5	AB-02-09,5	AB-02-06,5	AB-02-05	AB-02-03 0	AB-02-01	AB-01-09	AB-01-06,5 1	AB-01-0215	AB-01-01.5	Sample ID		PhoneEmail_	City, State, ZIP	S.	Assiect	Report To NATHAN D	64011h
SAMPLERS (signature) PROJECT NAME POWERT Subscription POWERT Subscription Notice Subscription INVOICE TO ANALYSES REQUEST INVOICE TO ANALYSES REQUEST Time Sample # of Time Sample INVOICE TO Time Sample # of INVOICE TO Time Sample # of INVOICE TO ANALYSES REQUEST Time Sample # of INVOICE TO ANALYSES REQUEST ANALYSES REQUEST ANALYSES REQUEST ANALYSES REQUEST INVERTINATION Sample NWTPH-HCID ANALYSES REQUEST NWTPH-HCID NWTPH-HCID NWTPH - Sample S ATLA S </td <td>red by:</td> <td>luished by:</td> <td>red by:</td> <td>uished by:</td> <td>SI</td> <td>0</td> <td>09</td> <td>80</td> <td>40</td> <td>60</td> <td>05</td> <td>04</td> <td>A-</td> <td>202</td> <td>OLA-E</td> <td>Lab ID</td> <td></td> <td>inthin . d</td> <td></td> <td></td> <td></td> <td>へであり</td> <td></td>	red by:	luished by:	red by:	uished by:	SI	0	09	80	40	60	05	04	A-	202	OLA-E	Lab ID		inthin . d				へであり	
SAMPLERS (signature) PROJECT NAME FTS S.h.s.r.kac. REMARKS C_{i} Asput E DD Project specific RLs? - Yes / No Time Sample Sample Sample Type T			Uhm	april 1	GNATURE											Date Sampled		wy change	3				
Imples r X X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8270 Imples r X X X X Yorks EPA 8082						1145	1140	1125	1123	1120	1115	1025	1020	1006	100)	Time Sampled				<u>T</u>	PROJEC	SAMPL	
Imples r X X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8270 Imples r X X X X Yorks EPA 8082			5	NI										-	N.	Sample Type		specific RL	C: Aspeul	5-1-	T NAME	ERS (signa	
Imples r X X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8270 Imples r X X X X Yorks EPA 8082			K	5 U	PRIN	J	N	J	FI	n	S	S	S	-	S	# of Jars			FEDD	restign		ture)	
Imples r X X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8260 Imples r X X X X Yorks EPA 8270 Imples r X X X X Yorks EPA 8082			\$		IT NA							×			<u> </u>	NWTPH-Dx				tion		P	
Imples to the second					ME	<u> </u>	×			×		×		-	×			Vo				Ŋ	
						-	-										$\left \right $			ā			
							×			×		×			\times		ANA		INV	8			11-
					Η		×			\times		×			×		LYS		DICE	3	PO #		204
		Sal.	TP.	43												PCBs EPA 8082	ES RI		ТО	02		V	4
Page # of		mple	B	lea	MO		X			\times		×			×	MTCA 5	EQUI						2
Page # of TURNAROUND TIME Standard turnaround RUSH tush charges authorized by: Other Default: Dispose after 30 da D Image: Standard turnaround Notes V Image: Standard turnaround Notes Image: Other Image: Standard turnaround Image: Standard turnaround Image: Other		s re	T	T	PAN												ESTE			R			ר נ
$\frac{e \# \int_{of} of}{RNAROUND TIME}$ ard turnaround $\frac{MPLE DISPOSAL}{e samples}$ Notes $\frac{Dispose after 30 da}{X pc.ND}$ $\frac{11/3/24 \text{ ME}}{11/4}$ $\frac{11/4}{2} \text{ ME}}{11/4}$		ceived			Y											9	D	efault:	Arc	ush cha	Standa	Pag	
$\frac{\int_{\text{of}} \frac{\int_{\text{rnaround}} \frac{\int_{\text{rnaround}} \frac{\int_{\text{rnaround}} \frac{\int_{\text{rnaround}} \frac{\int_{\text{ples}} \frac{\int_{\text{ples}} \frac{\int_{\text{rnaround}} \int_{\text$	-		F	-		-					-					~		Disp	MPL.	arges a	ard tu	RNAF	
of D TIME und POSAL POSAL POSAL POSAL POSAL POSAL		2	H2	1/4	DATI									-	=	~ pe		ose a	E DIS ples	autho	rnaro	OUN	_
Prime		å	X												24	Note		fter :	POS	rized	und	D TII	
			316	800	TIME										34	a a		30 da	AL	by:		ME	

S

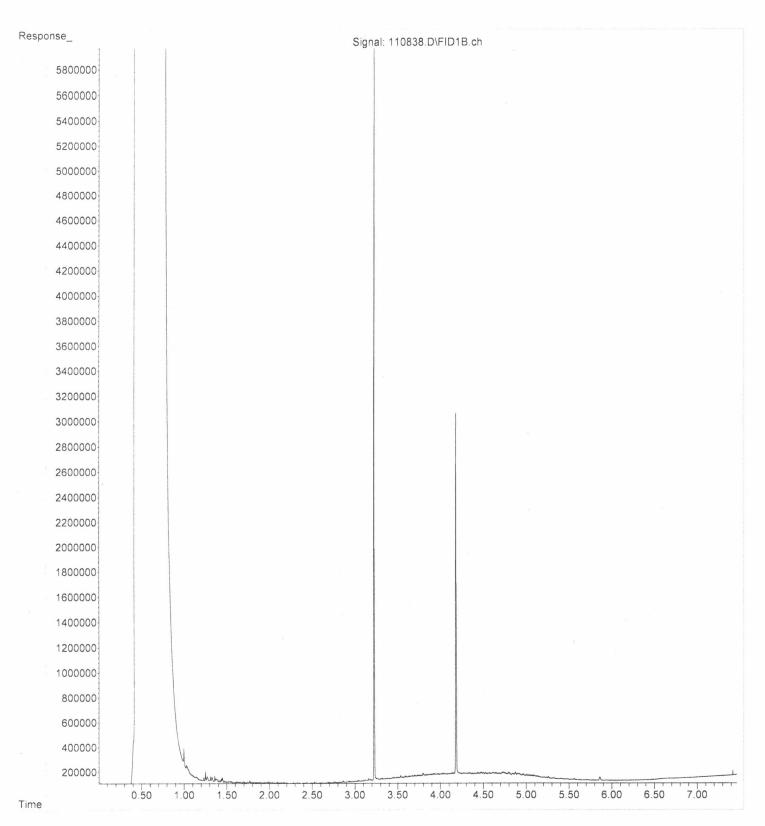
н.

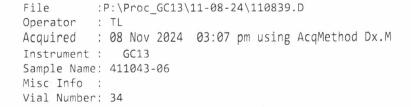
		(206) 285 - 8282 office@fried manandbruya.com	. 80	Friedman & Bruya, Inc. Rel		AB-65-02.5	A13-05-02	AB-64-12.5	AB-04-10	AB-04-05.5	AB-04-02.5	AB-03.07	AB-03-05,5	AB-03-02.5	AB-03-01	Sample ID		PhoneEmail_	City, State, ZIP	Address	, Company	Report To	640114
	Received by:	Relinquished by:	Received by:	Relinquished by:	SI	20	[9]	81	t)	16	15-	ויי	13	12	II AE	Lab ID							
		~~~~	VUM	7	SIGNATURE	11/1	1/1								10/31	Date Sampled							70
						1120	1112	1401	103/1400	1350	1342	1240	1236	1230	1220	Time Sampled		Project specific RLs? -	REMARKS		PROJECT NAME	SAMPLEKS (signature)	SAMPLE CHAIN OF CUSTO
			~	And											$\sim$	Sample Type		ecific RLs	33		<b>UNAME</b>	no (signa	CHAIN
	6		>-	B	PRIN	M	Æ	5	S	2	S	5	m	S	S	# of Jars		3? - Yes				ture)	OF (
2		-	R	-	PRINT NAM	$\times$			×		$\times$	×			$\times$	NWTPH-Dx		-					SUS
		<	#		AME	×			X		×	×			×	NWTPH-Gx		No					TO
																BTEX EPA 8021							DY
						-										NWTPH-HCID	A		IN			1	
					$\square$	×			X		×	$\times$			$\times$	VOCs EPA 8260	VALY		VOI		PO #		0
		5	X	Þ		×		-	×		×	$\times$			×	PAHs EPA 8270	ANALYSES REQUESTED		INVOICE TO		#		-04-24
		ami	2)	Ŕ	CC				×		×	~				PCBs EPA 8082	REG		0				20
		Samples received	6	ret	COMPANY	×						×	-	-	×	MTCA 5	UES					ļ	
		rece		'	ANA	-	-										TED	De		Rus			ŚU
		ive															$\left  \right $	Default:	SA Archiv	sh cha	□ Standa □ RUSH	TU	Page #
-		State of the state	-		+							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	87.	1		and the second			SAMPLE DI Archive samples	arges	ard tu	RNA	θ #
		2 °C	1-4-2eg 1:	11/4 8	DATE T				NB-04-10					-1		Notes		Dispose after 30 days	SAMPLE DISPOSAL hive samples er	Rush charges authorized by:	Standard turnaround RUSH	TURNAROUND TIME	۲ م
			B B	800	TIME				10.5-11/04		ļ.,							days			200		

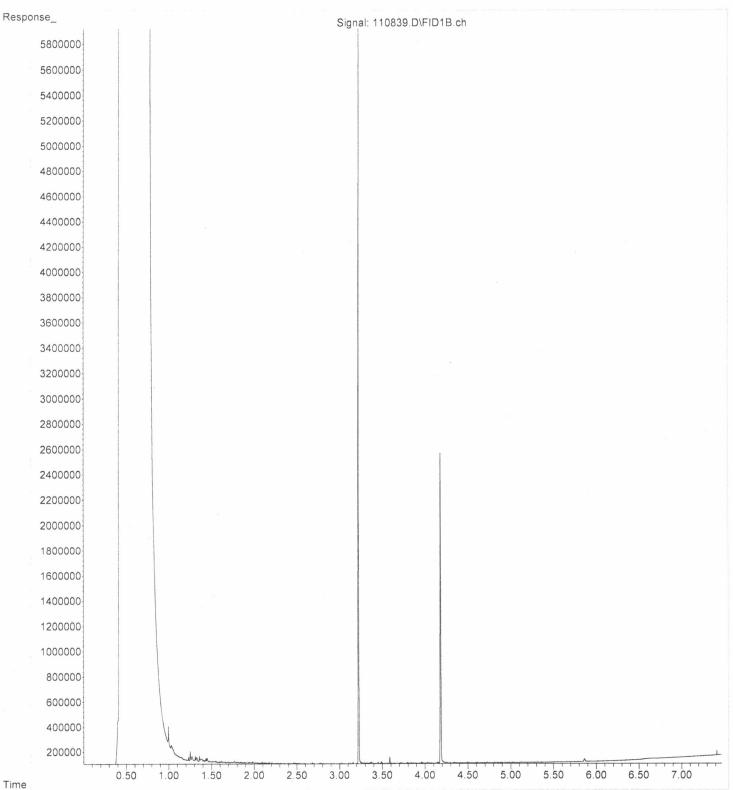
Γ	R	R	1	Friedman & Bruya, Inc. R		7.30-5-WMA	Amw-5-06,5	Amw - 5 - 02.5	Amw-5-02	AMW-S-01	AB-05-13	AB-05-11	AB-05-09,7	AB-05-07	AB-05-05	Sample ID		PhoneEmail	City, State, ZIP	Address	Company	Report To	
	Received by:	Relinquished by:	Received by:	Relinquished by:	SIC	30	891	an AE	4	26 X	25	he	23	22	21 A.E	Lab ID							
			LUNN	1901	SIGNATURE	-			14/1	15/21	11/1	-		-	11/1	Date Sampled							
						oquo	05 30	0920	0910	1435	1110	1135	1130	1124	1115	Time Sampled		- Project s	- REMARKS	1	PROJE	SAMPL	SAMPLE CHAIN OF CUSTO
	1945		2	2		_	(general)								S	Sample Type		Project specific RLs? -	KS		PROJECT NAME	SAMPLERS (signature)	CHAIN
		<		lise	PRINT NAME	_	S	S	-	S	S	A	S	m	5	# of Jars		3? - Yes				ture)	OF (
			Nt	D	IT N/		4			×	×					NWTPH-Dx		-	6				SUC
			H	×	AME	<u> </u>				×	×					NWTPH-Gx		No					
																BTEX EPA 8021	$\left  \right $						DY
					191	-				×	×					NWTPH-HCID VOCs EPA 8260	AN		INV		1	×	
$\left  \right $					$\square$	-				×	×					PAHs EPA 8270	ANALYSES		INVOICE TO		PO #	1	_
		S		H S				. ,								PCBs EPA 8082	ES R		E TO		74		0 H
		Samples	0	ned	COMPANY					×	$\times$					MTCA S	REQUESTED						(
		Co re			PAN												ESTI			. H		╧	ž
		received			Υ												Ð	Default:	SA Archiv Other	lush c	□ Standa □ RUSH		SN3
		20																	SAMH nive s:	harge	ndard	Page #	$\frac{3}{5}$
		t 2 °C	1-4-294	11/4	DATE											Notes		Dispose after	SAMPLE DISPOSAL Archive samples Other	Rush charges authorized by:	Standard turnaround RUSH	Page # > of TURNAROUND TIME	5
			1346	0800	TIME											ës		r 30 days	SAL	d by:		IME	C


Friedman & Bruya, Inc. 5500 4th Ave S. Seattle WA 98108 (206) 285-8282 office@friedmanandbruya.com		AB-06-08,5	A13-06-06.5	A13-06-04.5	A1306-01	Amw-s-12	Sample ID		PhoneEmail	City, State, ZIP	CompanyAddress		Report To	411043
SIC       SIC       Received by:       Relinquished by:       Received by:		35	84	33	32	31 A-E	Lab ID							
SIGNATURE		1/11	-			11/1	Date Sampled							
		1305	1256	1244	7451	1010	Time Sampled		Project s	REMARKS		PROJEC	SAMPLE	SAMPLE CHAIN OF CUSTODY
N		2	_			5	Sample Type		Project specific RLs? -	Sy		PROJECT NAME	SAMPLERS (signature)	CHAIN
PRINT N		5	$\sim$	5	S	И	# of Jars		- Yes				ure)	OF (
		Х			$\times$	$\prec$	NWTPH-Dx							SUC
		×			$\times$	$\times$	NWTPH-Gx		No					TOJ
4							BTEX EPA 8021							ΥC
		×					NWTPH-HCID	AN		INI				
		$\frac{1}{2}$			×	X	VOCs EPA 8260 PAHs EPA 8270	ALY		70IC		PO #		
		~			~		PCBs EPA 8082	SES		INVOICE TO		#		B
COMPANY 15put 101 Samples received		$\times$			$\times$	X	MTCA S	ANALYSES REQUESTED						A.
mples rec								JEST					_	=
YY								ΈD	□ Other Default	□ Ar	□ RU Rush	XSt.		- 40-11
V @ Cl	+								her	SAI	JSH_ 1 chai	andai	Page #	1
DATE TIME 11/4 0262 1+4-24 13/0 2t 2 °C							Notes		Other Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	□ RUSH Rush charges authorized by:	Kstandard turnaround	Page # of	24
									ays				t	

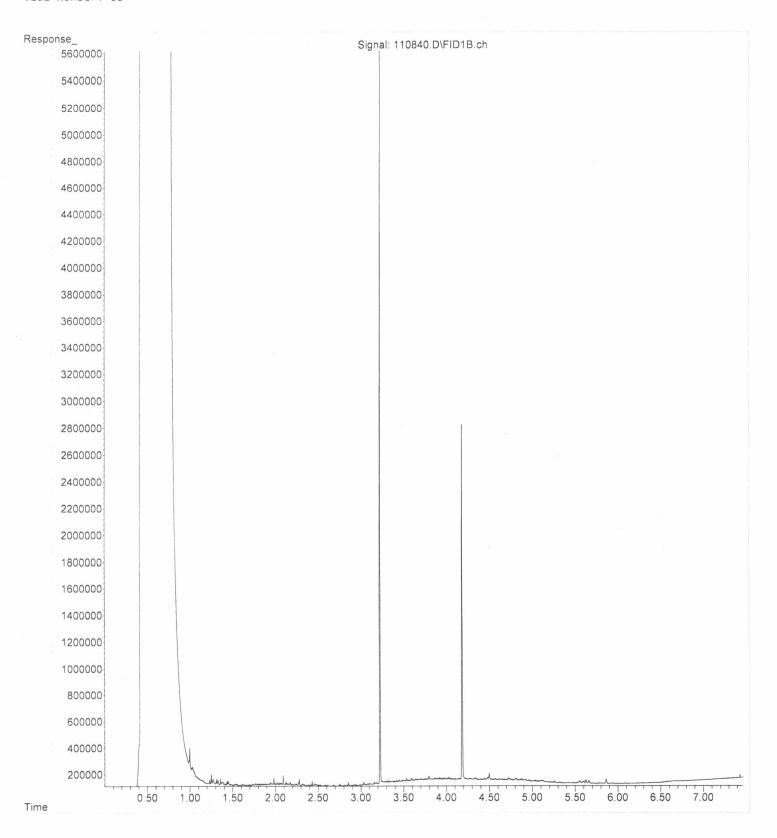
SAMPLE CONDITION UPON RECEIP	T CHE	CKLIST		
PROJECT # 411043 CLIENT Aspect		INITIALS		124
If custody seals are present on cooler, are they intact?	2	Ø NA	D YES	□ NO
Cooler/Sample temperature		Thern	aometer ID: Fluk	°C e 96312917
Were samples received on ice/cold packs?			r yes	□ NO
How did samples arrive?	[	□ FedEx	/UPS/GSO	
Is there a Chain-of-Custody* (COC)? ZYES *or other representative documents, letters, and/or shipping memos	D NO	Initi Date		14/24
Number of days samples have been sitting prior to rece	eipt at l	aborato	ory <u>3≥4</u>	_days
Are the samples clearly identified? (explain "no" answer below	v)		U YES	NO NO
Were all sample containers received intact (i.e. not bro leaking etc.)? (explain "no" answer below)	ken,	2 2 2	ø yes	□ NO
Were appropriate sample containers used?	YES		O D U	nknown
If custody seals are present on samples, are they intact	t?	Ø NA	D YES	🗆 NO
Are samples requiring no headspace, headspace free?		Ø NA	D YES	D NO
Is the following information provided on the COC, and (explain "no" answer below)				
Sample ID's 🛛 Yes 🖉 No		[	] Not on CC	O(/label)
Date Sampled 🛛 Yes 🗹 No		[	] Not on CC	Chabely
Time Sampled		[	Not on CC	Qlabel
# of Containers				
Relinquished 🖉 Yes 🗆 No				
Requested analysis 🗆 Yes 🗗 On Hold				
Other comments (use a separate page if needed) 5035 Soil Sample Kit label on the Z				
Air Samples: Were any additional canisters/tubes received Number of unused TO15 canisters NUMBER OF UNUSED V NUMBER OF UN	ived? of unuse	□ NA ed TO17	$\Box$ YES	🗆 NO
			Rev. (	5/01/24


FRIEDMAN & BRUYA, INC./FORMS/CHECKIN/SAMPLECONDITION.doc

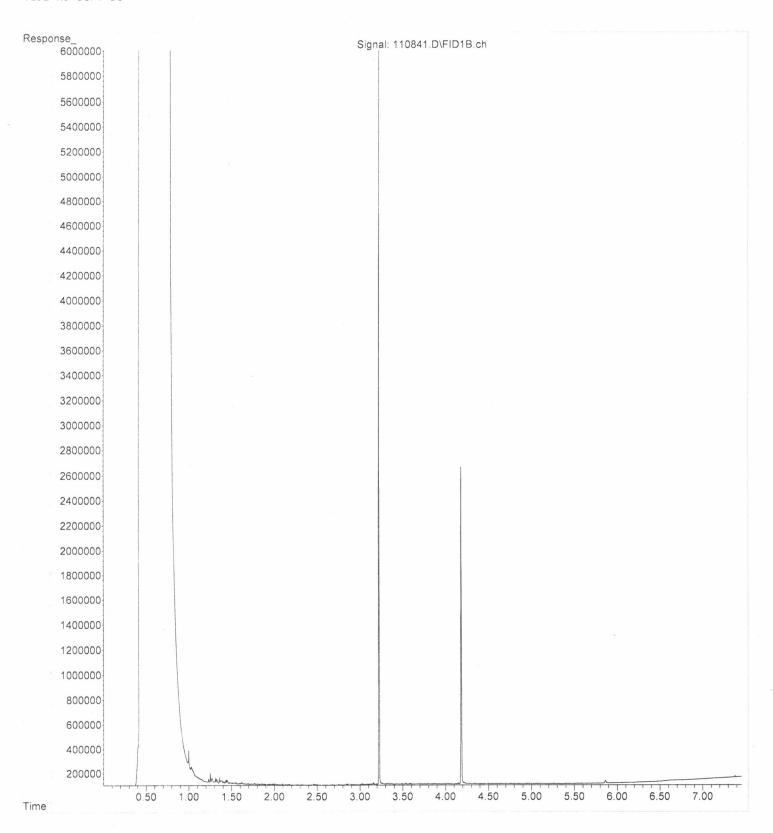

•


File :P:\Proc_GC13\11-08-24\110837.D
Operator : TL
Acquired : 08 Nov 2024 02:44 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-01
Misc Info :
Vial Number: 32

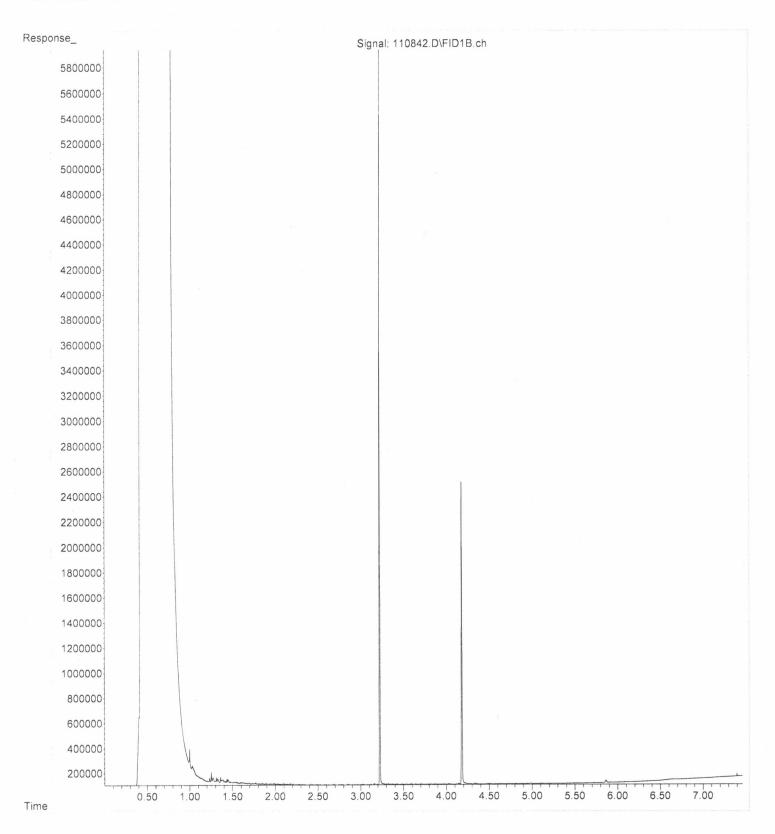



File :P:\Proc_GC13\11-08-24\110838.D
Operator : TL
Acquired : 08 Nov 2024 02:55 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-04
Misc Info :
Vial Number: 33

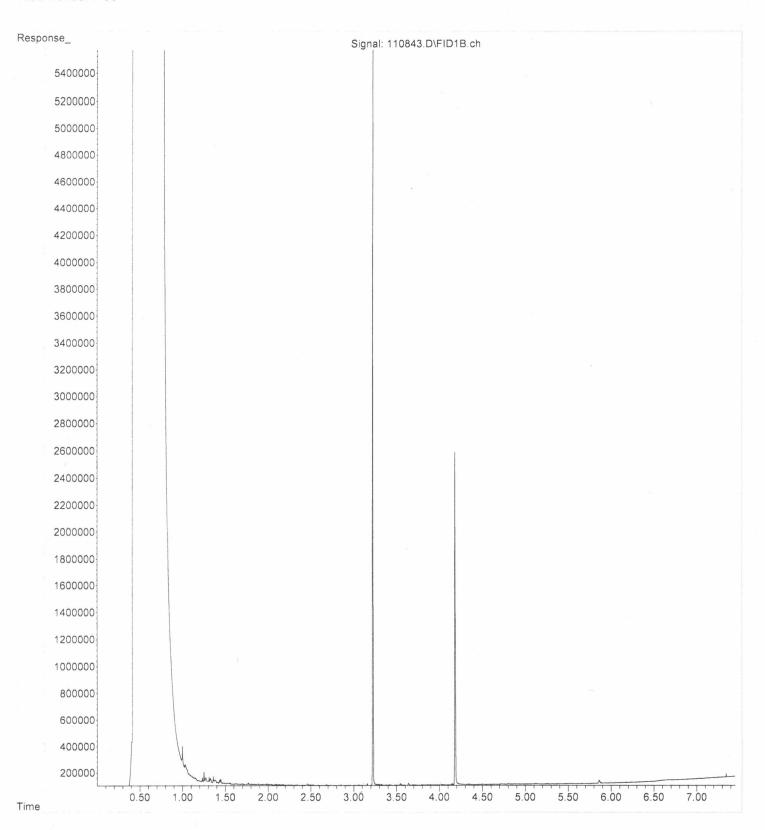


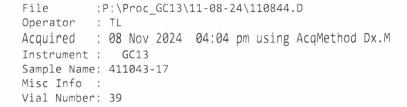


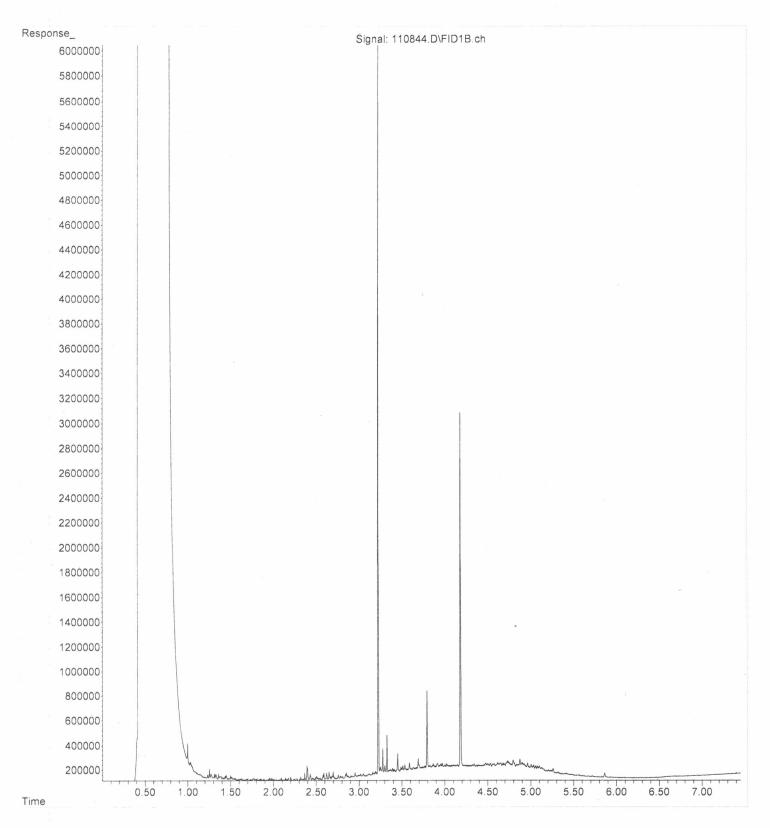




File :P:\Proc_GC13\11-08-24\110840.D
Operator : TL
Acquired : 08 Nov 2024 03:18 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-09
Misc Info :
Vial Number: 35




File :P:\Proc_GC13\11-08-24\110841.D
Operator : TL
Acquired : 08 Nov 2024 03:30 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-11
Misc Info :
Vial Number: 36

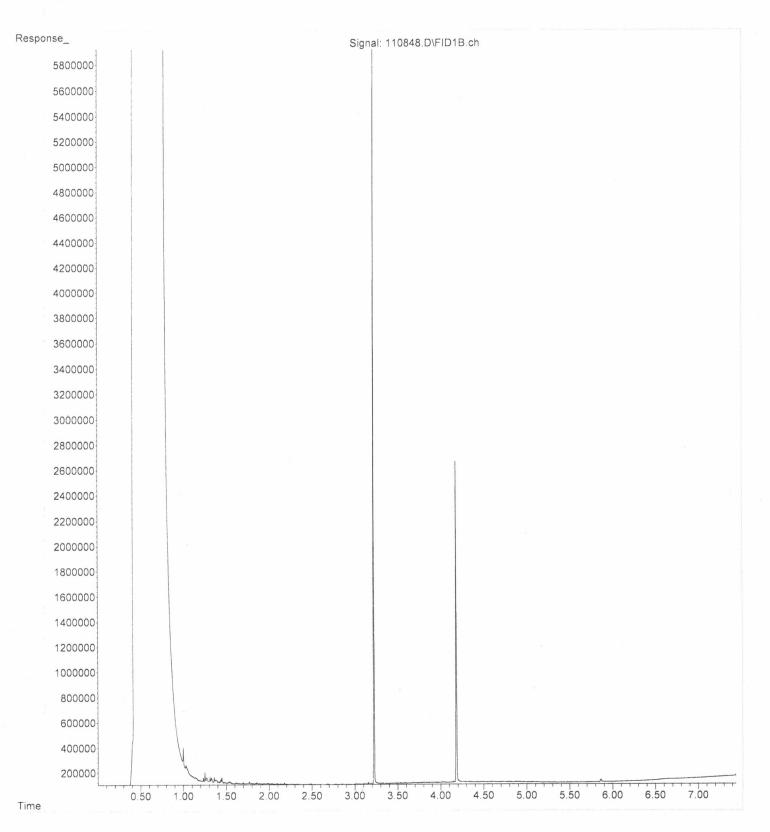




File :P:\Proc_GC13\11-08-24\110842.D
Operator : TL
Acquired : 08 Nov 2024 03:41 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-14
Misc Info :
Vial Number: 37

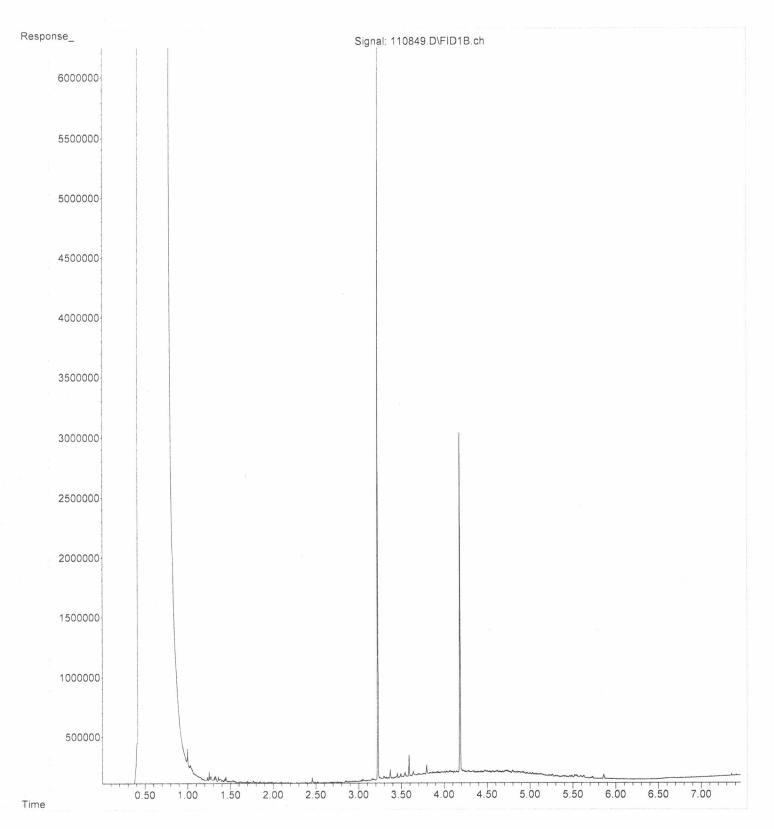


File :P:\Proc_GC13\11-08-24\110843.D
Operator : TL
Acquired : 08 Nov 2024 03:53 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-15
Misc Info :
Vial Number: 38

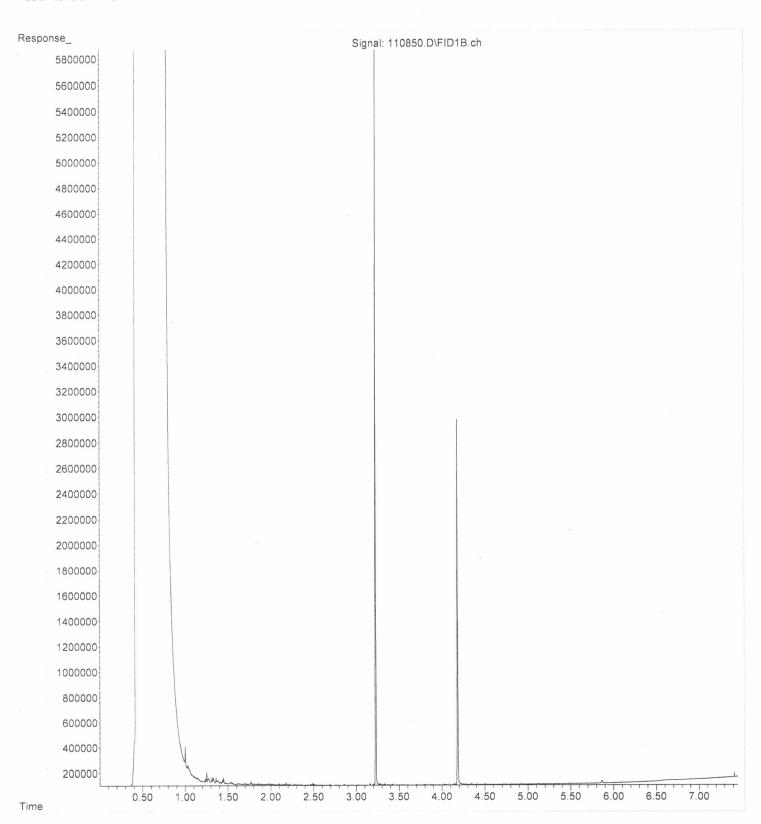




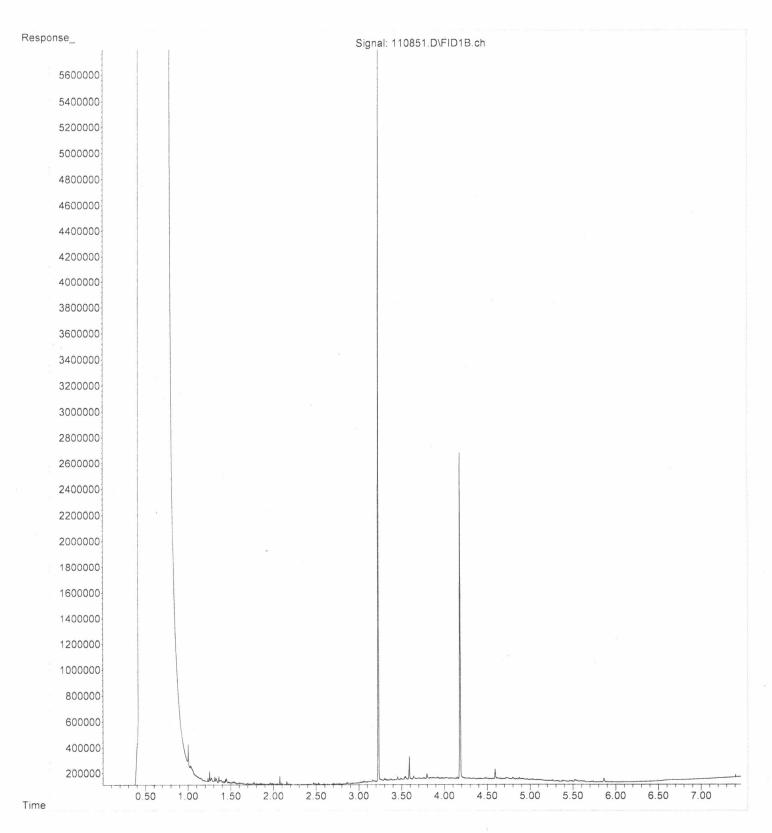




File :P:\Proc_GC13\11-08-24\110845.D
Operator : TL
Acquired : 08 Nov 2024 04:15 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-20
Misc Info :
Vial Number: 40

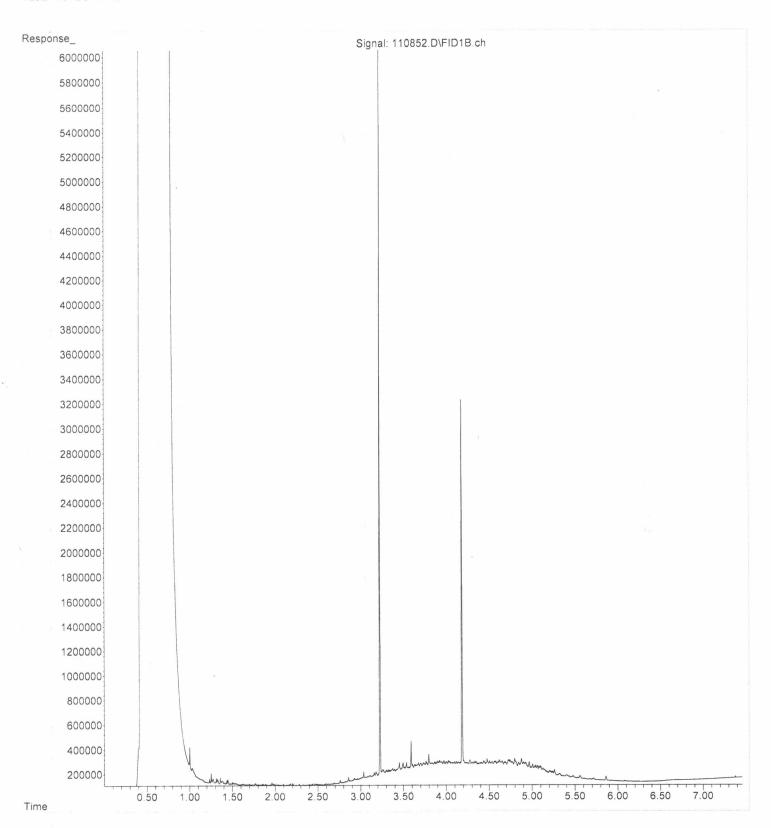



File :P:\Proc_GC13\11-08-24\110848.D
Operator : TL
Acquired : 08 Nov 2024 04:50 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-25
Misc Info :
Vial Number: 41

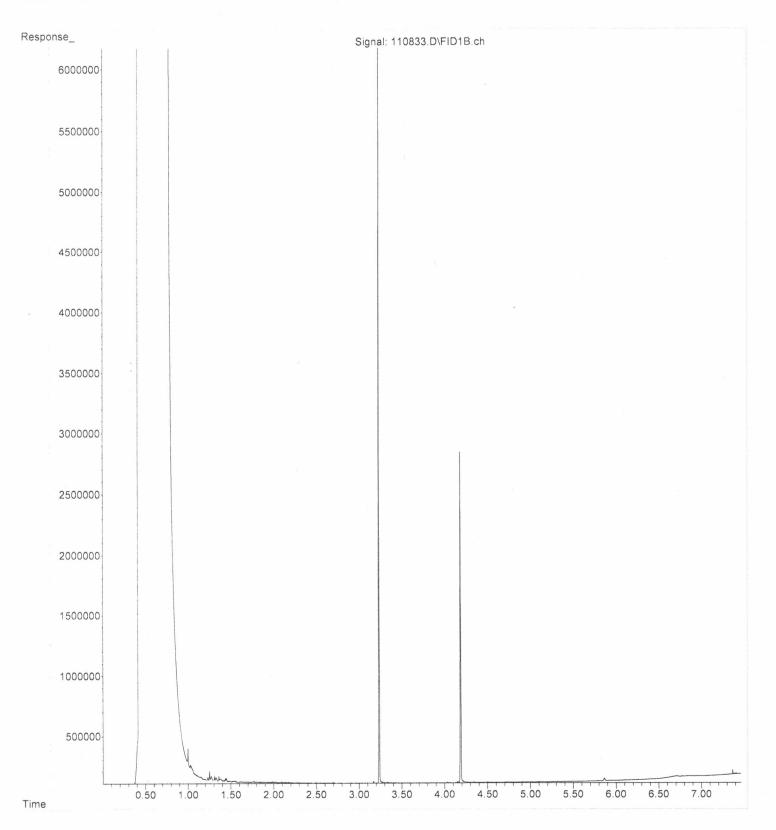



File :P:\Proc_GC13\11-08-24\110849.D
Operator : TL
Acquired : 08 Nov 2024 05:01 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-26
Misc Info :
Vial Number: 42

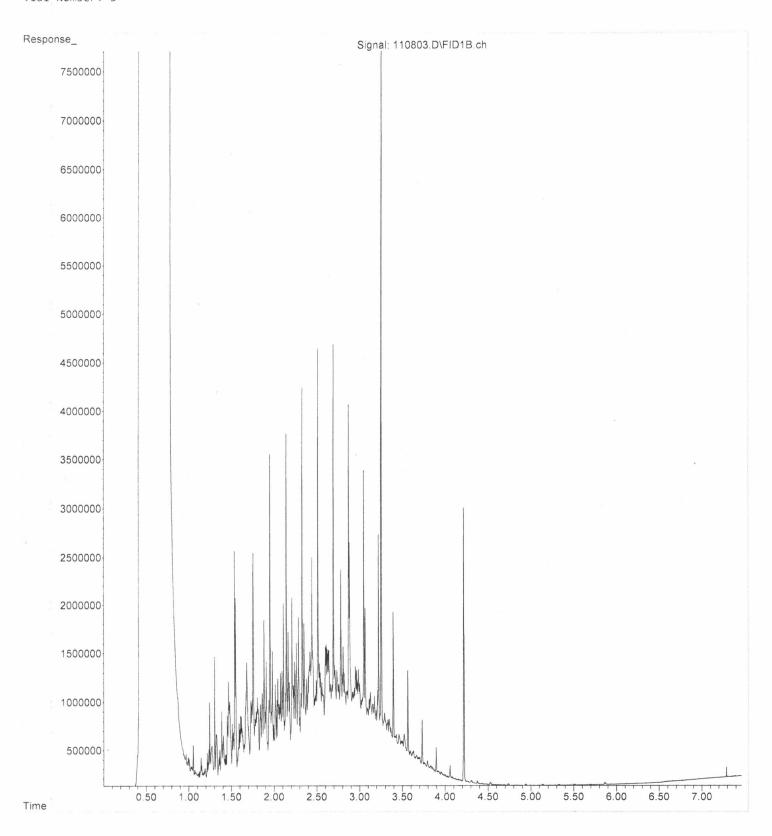



File :P:\Proc_GC13\11-08-24\110850.D
Operator : TL
Acquired : 08 Nov 2024 05:12 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-31
Misc Info :
Vial Number: 43




File :P:\Proc_GC13\11-08-24\110851.D
Operator : TL
Acquired : 08 Nov 2024 05:24 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-32
Misc Info :
Vial Number: 44




File :P:\Proc_GC13\11-08-24\110852.D
Operator : TL
Acquired : 08 Nov 2024 05:35 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 411043-35
Misc Info :
Vial Number: 45



File :P:\Proc_GC13\11-08-24\110833.D
Operator : TL
Acquired : 08 Nov 2024 01:58 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 04-2797 mb
Misc Info :
Vial Number: 28



File :P:\Proc_GC13\11-08-24\110803.D
Operator : TL
Acquired : 08 Nov 2024 08:14 am using AcqMethod Dx.M
Instrument : GC13
Sample Name: 500 Dx 73-88C
Misc Info :
Vial Number: 3





**NELAC NY 11769** NRPP 101193 AL NRSB ARL0017

EPA Method #402-R-92-004 Liquid Scintillation NRPP Device Code 8088 NRSB Device Code 12193

Laboratory Report for:

**Property Tested:** 

Evergreen Treatment Services	Evergreen Treatment Services			
1700 Airport Way South	1700 Airport Way South			
Seattle WA 98134	Seattle WA 98134			

Log [ Number N	Device Number	Test Exp	osure Duratio	n	Area Tested	Result pCi/L
8646445 5	071311 11/19/20	)24 8:00 am	11/21/2024	10:00 am	Basement South Warehouse	< 0.4
8646446 5	110880 11/19/20	)24 8:00 am	11/21/2024	10:00 am	First Floor Ambient	< 0.4
8646447 5	110881 11/19/20	)24 8:00 am	11/21/2024	10:00 am	Basement North Warehouse	< 0.4

Comment: Aspect Consulting was emailed a copy of this report.

Distributed by: Aspect Consulting

Date Received: 11/22/2024 Date Logged:

11/22/2024

Date Analyzed: 11/23/2024 Date Reported: 11/25/2024

**Disclaimer:** 

Report Reviewed By: _____

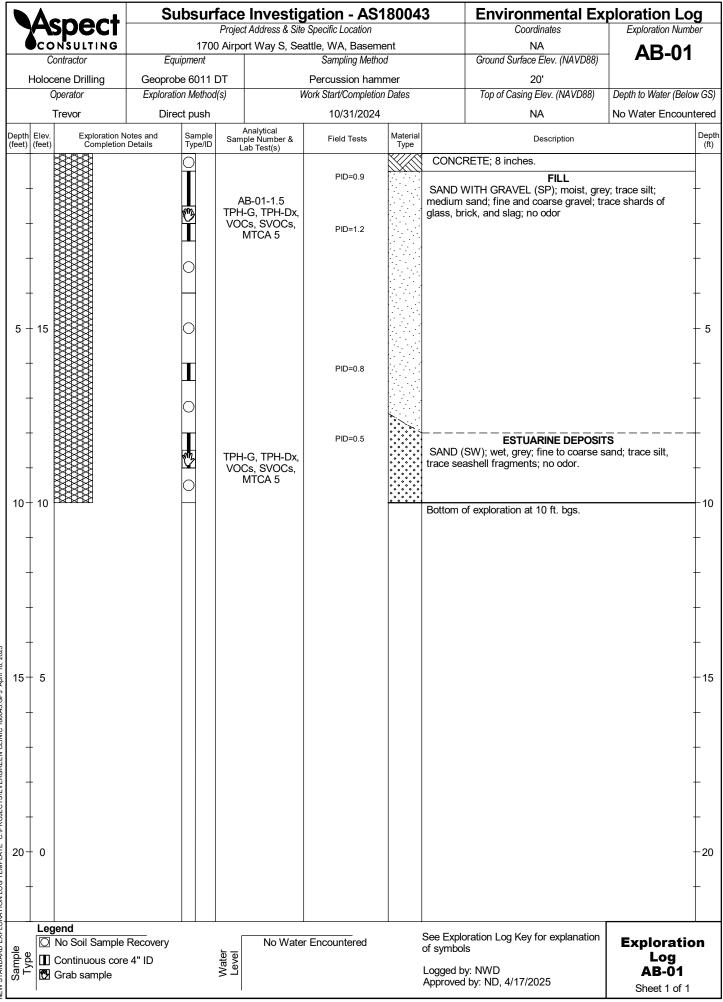
Report Approved By:

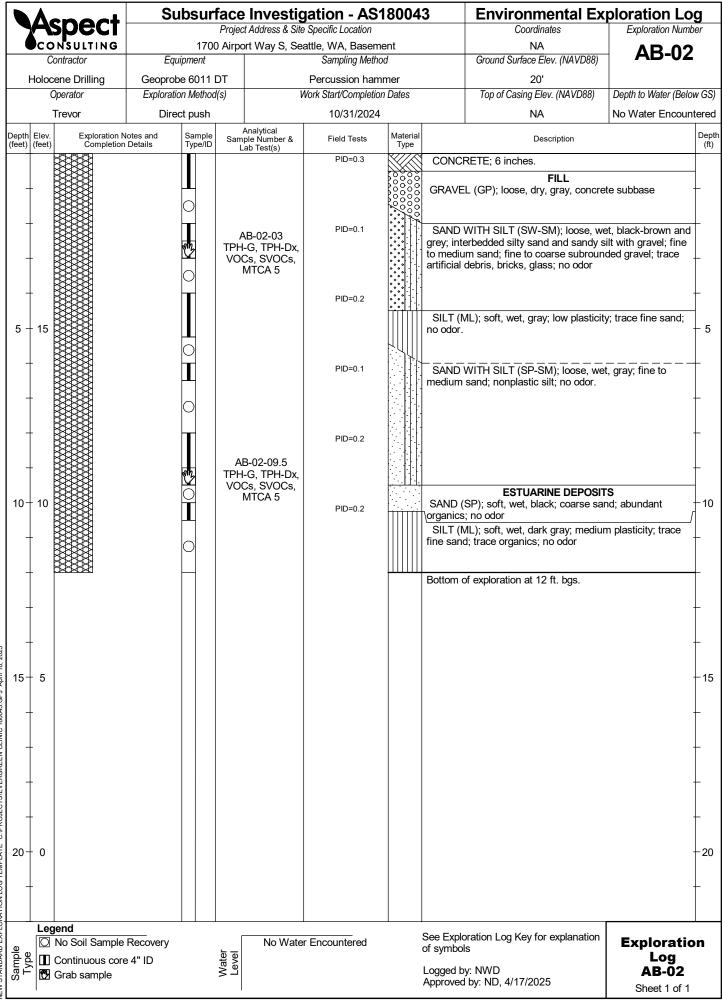
Shawn Price, Director of Laboratory Operations, AccuStar Labs

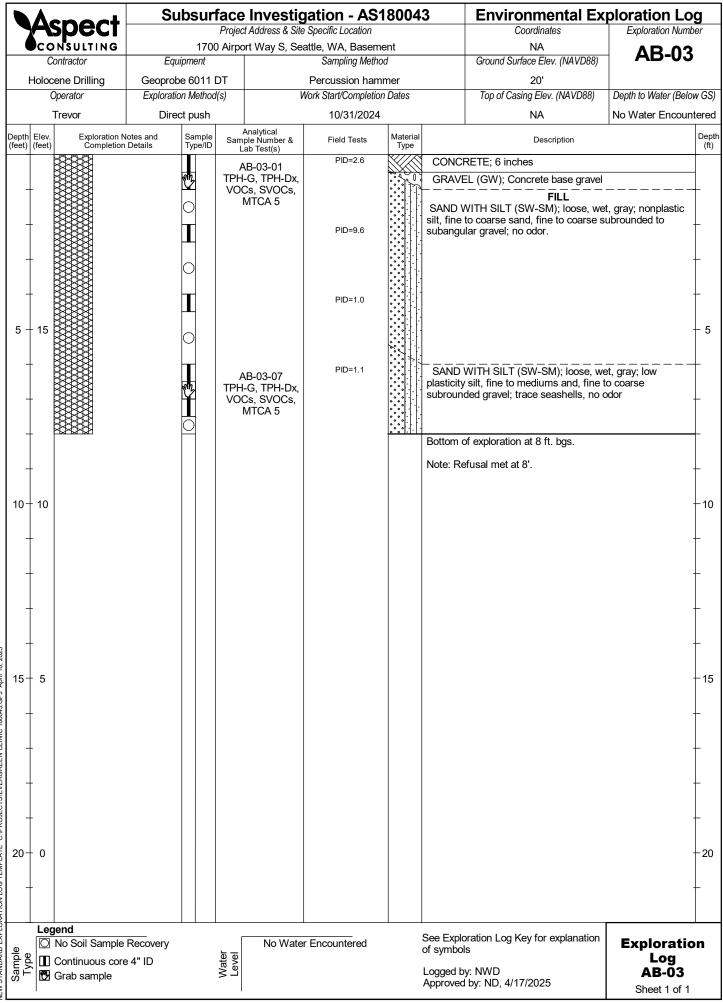
results relate to the samples as received by the laboratory. Results shown on this report represent levels of radon gas measured between the dates shown in the room or area of the site identified above as "Property Tested". Incorrect information will affect results. The results may not be construed as either predictive or

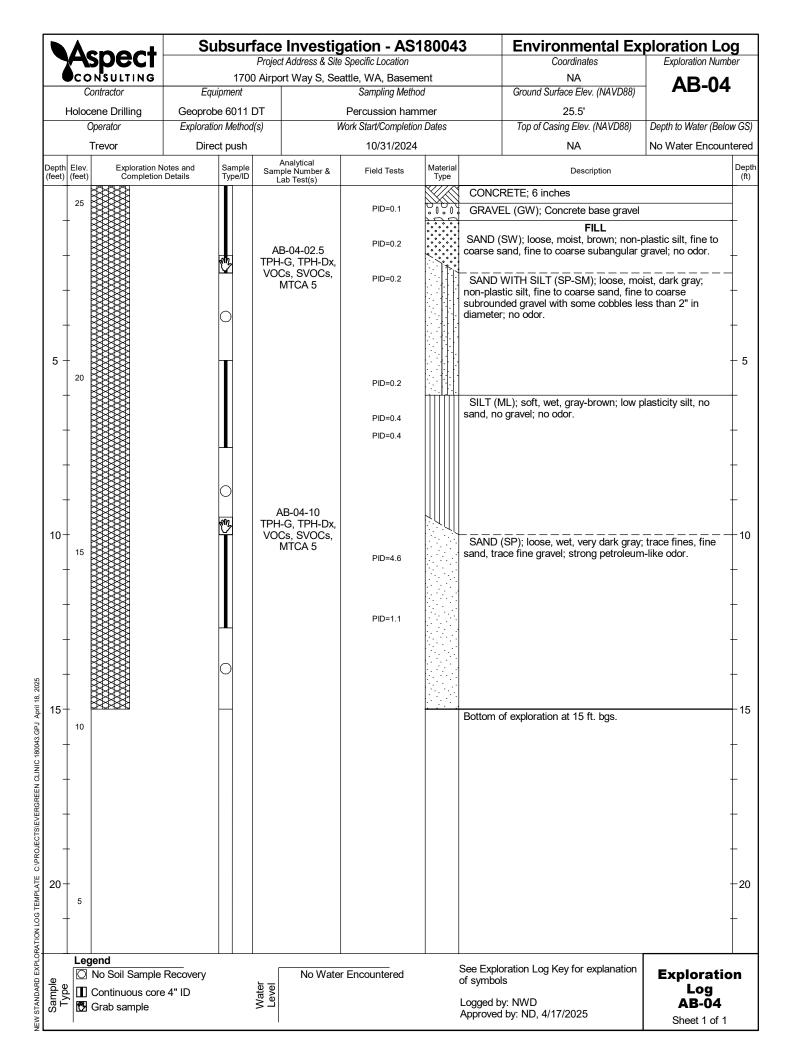
supportive of measurements conducted in any area of this structure at any other time. AccuStar Labs, its employees and agents are not responsible for the consequences of any action taken or not taken based upon the results reported or any verbal or written interpretation of the results.

radon concentrations, sample collection techniques and operation of the dwelling. Interference with test conditions may influence the test results.

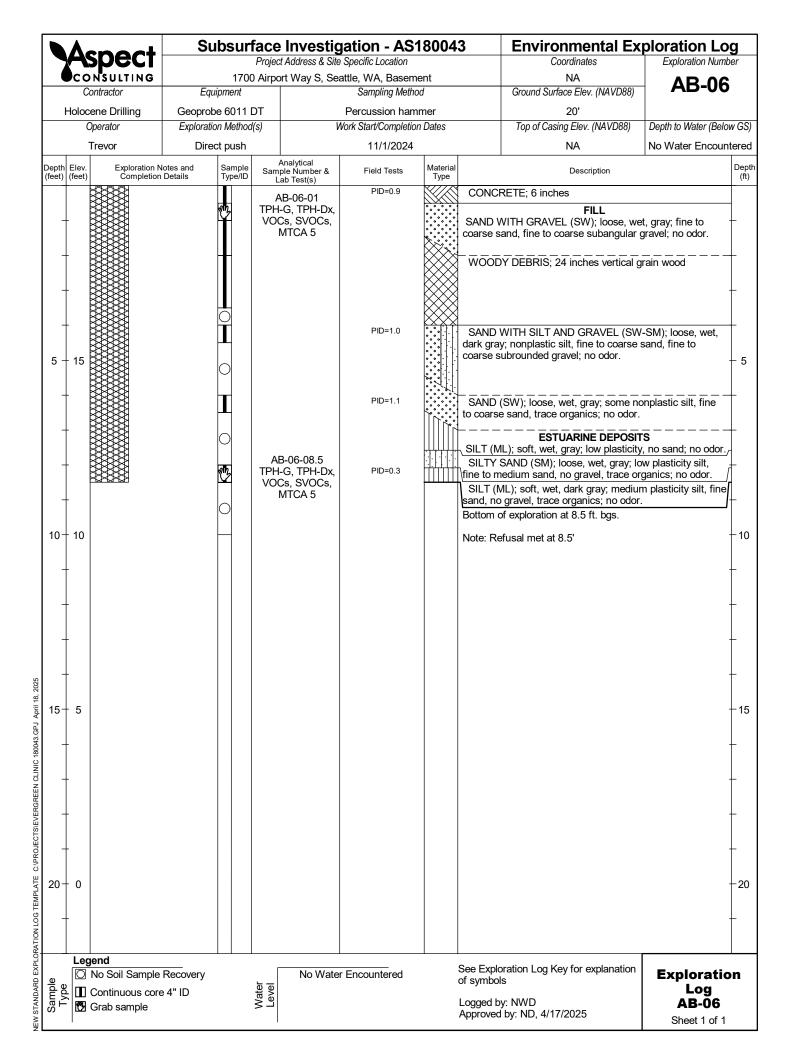

The counting uncertainty of this radon measurement is ~+/- 10 %. Factors contributing to uncertainty include statistical variations, daily and seasonal variations in

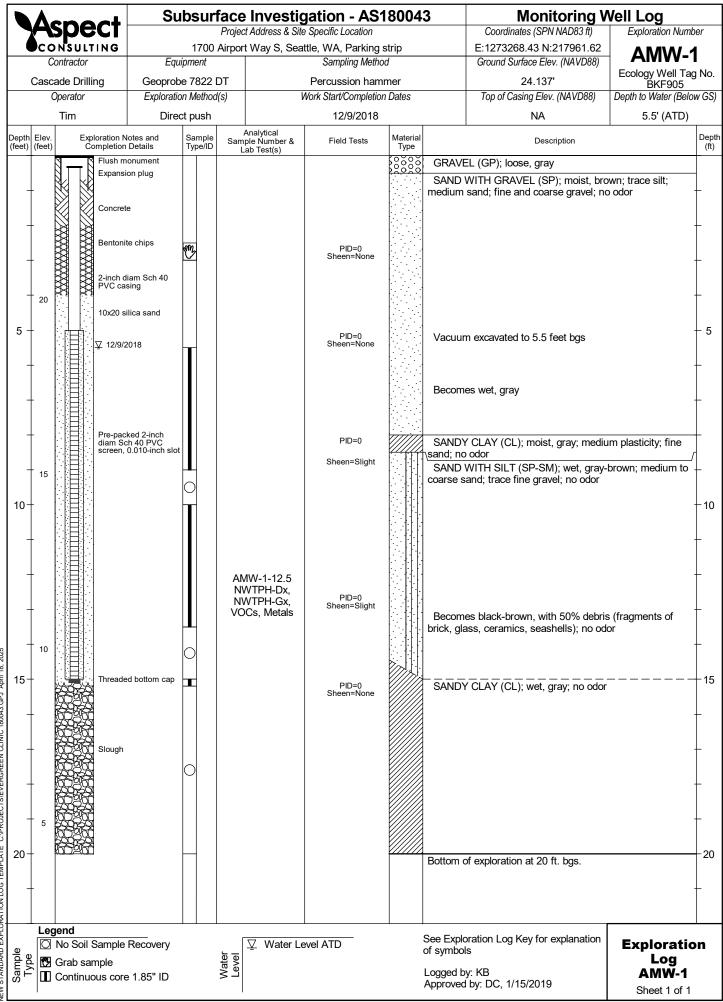

This report may only be transferred to a third party in its entirety. Laboratory personnel were not involved in the placement or retrieval of the samples. Analytical

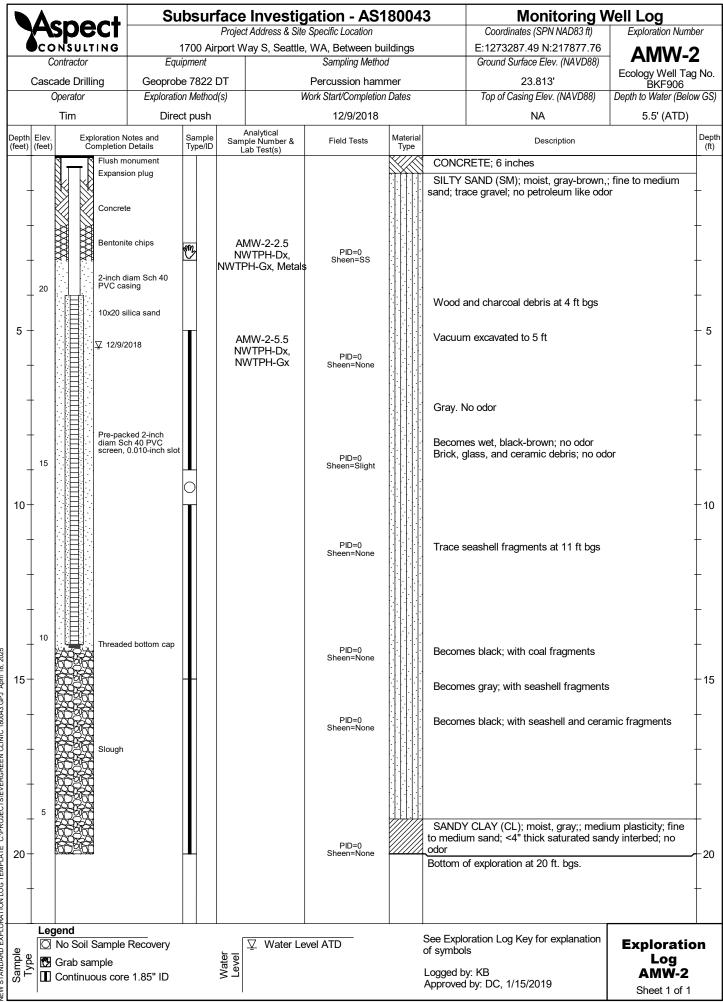

# **APPENDIX C**

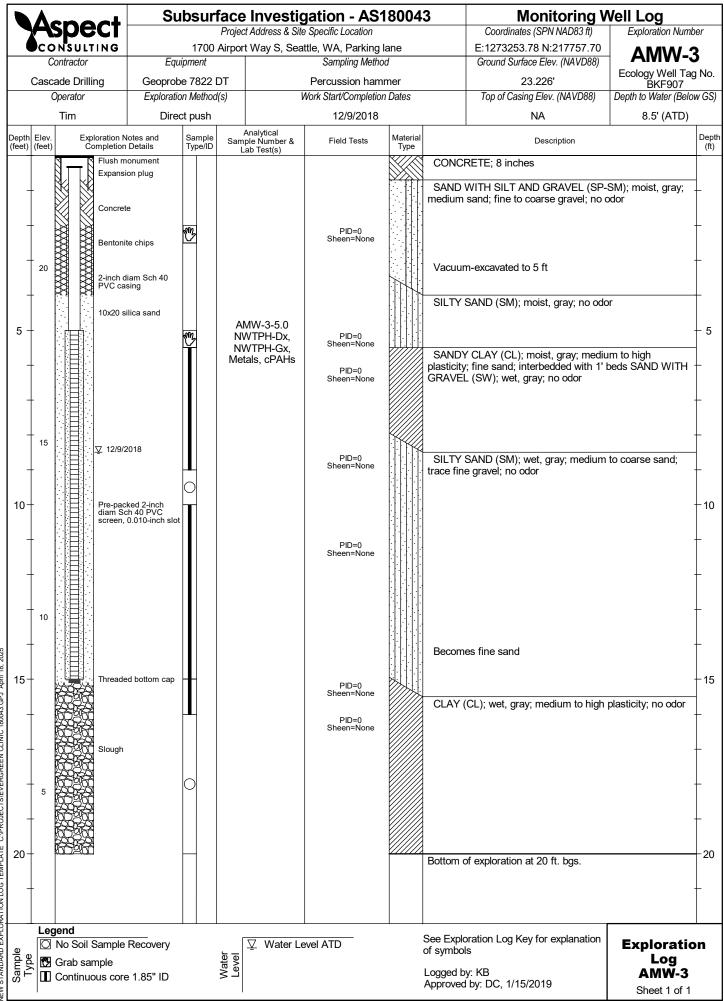

Soil Boring and Monitor Well Construction Logs

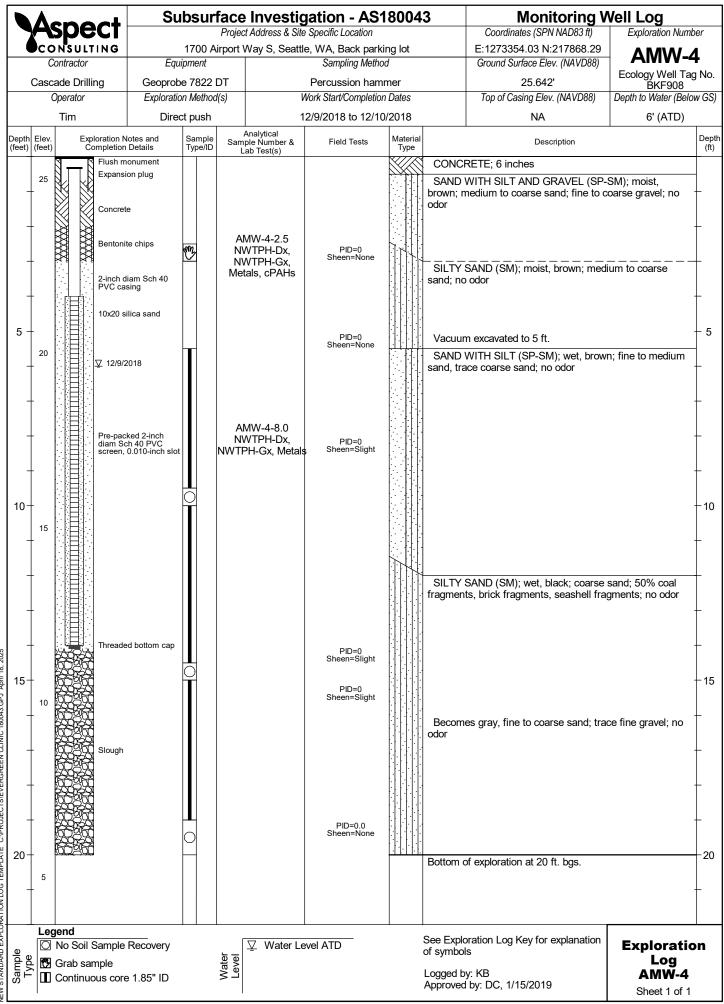
50% Retained on No. 200 Sieve	han 50% ¹ of Coars ed on No. 4 Sieve	U • OO U		GW GP	Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content GSGEOTECHNICAL LAB TESTSGS=Grain Size Distribution FC=Fines Content (% < 0.075 mm)GH=Hydrometer TestALAL=Atterberg Limits CCC=Consolidation TestStr=Strength Test OCOC=Organic Content (% Loss by Ignition)			
		Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Comp       =       Proctor Test         K       =       Hydraulic Conductivity Test         SG       =       Specific Gravity Test         CHEMICAL LAB TESTS			
50%1 Retai		<u>≥</u> 15%		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	BTEX       =       Benzene, Toluene, Ethylbenzene, Xylenes         TPH-Dx       =       Diesel and Oil-Range Petroleum Hydrocarbons         TPH-G       =       Gasoline-Range Petroleum Hydrocarbons         VOCs       =       Volatile Organic Compounds         SVOCs       =       Semi-Volatile Organic Compounds			
- More than	of Coarse Fraction 4 Sieve	Fines		sw	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)			
Coarse-Grained Soils - More than	e of Coars . 4 Sieve	≦5%I		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total) PID = Photoionization Detector FIELD TESTS			
	Sands - 50% ¹ or More Passes No.	Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL	Sheen=Oil Sheen TestSPT2=Standard Penetration TestNSPT=Non-Standard Penetration TestDCPT=Dynamic Cone Penetration Test			
		≥15%		SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inches 3 inches to 3/4 inchesComponent DEFINITIONS			
Sieve	ys EO0			ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Fine Gravel       =       3/4 inches to 0/4 inches         Coarse Sand       =       3/4 inches to No. 4 (4.75 mm)         Coarse Sand       =       No. 4 (4.75 mm) to No. 10 (2.00 mm)         Medium Sand       =       No. 10 (2.00 mm) to No. 40 (0.425 mm)         Fine Sand       =       No. 40 (0.425 mm) to No. 200 (0.075 mm)			
Passes No. 200	Silts and Clays	Its and Cla	Its and Cla	Its and Cla			CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay       =       Smaller than No. 200 (0.075 mm)         % by Weight       Modifier       % by Weight       Modifier       ESTIMATED ¹ <1
ore		ר בולמומ ב		OL	ORGANIC SILT SANDY OF GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL	1 to $<5$ =Trace30 to $45$ =Some5 to 10=Few>50=MostlyDry=Absence of moisture, dusty, dry to the touchMOISTURE			
ls - 50%1 or M	Silts and Clays	Silts and Clays Liquid Limit 50% or More	, I			мн	ELASTIC SILT SANDY or GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Slightly Moist=Perceptible moistureCONTENTMoist=Damp but no visible waterVery MoistWater visible but not free drainingVery Moist=Visible free water, usually from below water table	
Fine-Grained Soils				Silts and Clar			сн	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITYDensity³SPT² Blows/Foot $Very Loose$ Penetration with 1/2" Diameter Rod $\geq 2'$ Loose= 0 to 4 $= 5 to 10$ $\geq 2'$ $1' to 2'$
Fine					rinhin		он	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Medium Dense       =       11 to 30       3" to 1'         Dense       =       31 to 50       1" to 3"         Very Dense       =       >50 $< 1"$
PEAT and other mostly organic soils			Cohesive or Fine-Grained Soils       CONSISTENCY         Consistency³       SPT² Blows/Foot       Manual Test         Very Soft       =       0 to 1       Penetrated >1" easily by thumb. Extrudes between thumb & fingers.         Soft       =       2 to 4       Penetrated 1/4" to 1" easily by thumb. Easily molded.         Medium Stiff       =       5 to 8       Penetrated >1/4" with effort by thumb. Molded with strong pressure						
name; e.g. GRAVEL" n gravel. • "\	"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means unequal amounts of grain sizes • Group names separated by "/" means soil graded" means unequal amounts of grain sizes • Group names separated by "/" means soil								
contains la Soils were ASTM D24	ayers of the described 488. Where	e two so I and ide e indicat	il types; entified i ed in th	; e.g., SN in the fie ie log, sc		GEOLOGIC CONTACTS           Observed and Distinct         Observed and Gradual         Inferred			
2. (SPT) 5	<ol> <li>Estimated or measured percentage by dry weight</li> <li>(SPT) Standard Penetration Test (ASTM D1586)</li> <li>Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.</li> </ol>				/ D1586)	Exploration Log Key			

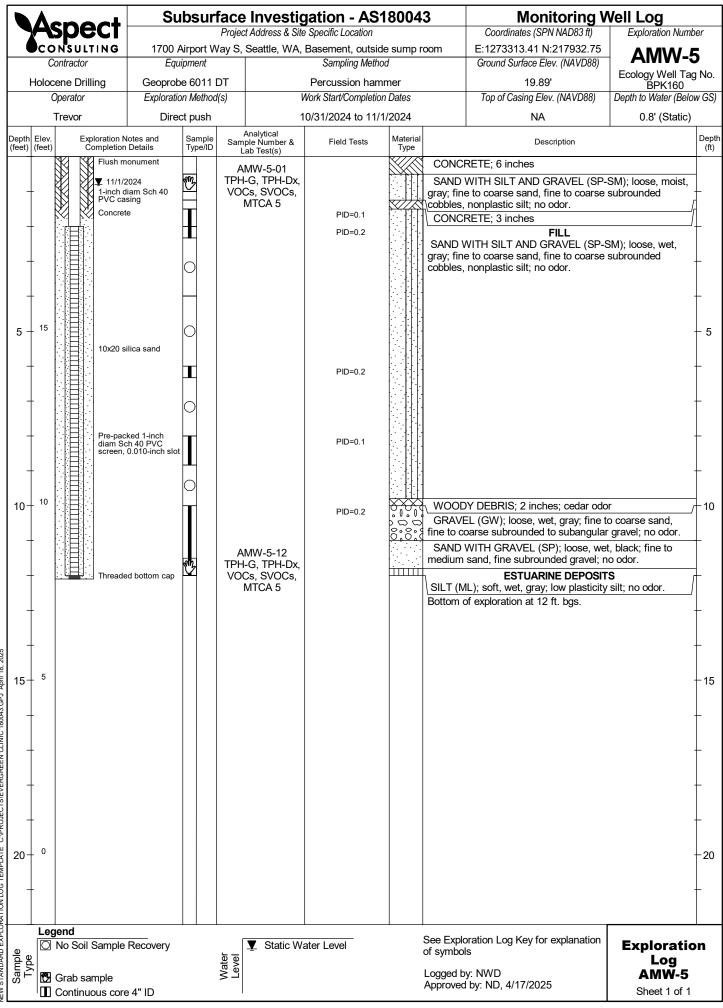




	Aspect	Subsu	rface Investig	ation - AS	180043	043 Environmental Explora			
7	CONSULTING	17/	Project Address & Site 00 Airport Way S, Sea	•	nent	Coordinates NA	Exploration Num		
Contractor		Equipment		Sampling Meth		Ground Surface Elev. (NAVD88)	<b>AB-05</b>		
L	lolocene Drilling	Geoprobe 6011		Percussion har		20'			
-	Operator	Exploration Metho		ork Start/Completion		Top of Casing Elev. (NAVD88)	Depth to Water (Belo	w G	
			. ,	•					
_	Trevor	Direct push		11/1/2024		NA	No Water Encour	liere	
	Elev. Exploration N (feet) Completion		e Analytical Sample Number & Lab Test(s)	Field Tests	Material Type	Description		Dep (fl	
			200 100(0)	PID=0.2	CONC	RETE; 6 inches			
_					GRAV	<b>FILL</b> EL WITH SAND (GP); loose, dry,	light grav		
					concret	e base gravel; no odor		ir i	
-		8 ¹⁷ 2	AB-05-02.5 TPH-G, TPH-Dx,	PID=0.9	black; r	D WITH SILT AND GRAVEL (SP-SM); loose, wet, nonplastic silt, fine to coarse sand, fine to coarse gular gravel; no odor			
-		I	VOCs, SVOCs, MTCA 5		SAND	WITH GRAVEL (SW); loose, we se sand, fine to coarse subrounde		-	
		$\bigcirc$			modera	te petroleum-like odor			
1				PID=0.2		ESTUARINE DEPOSIT		+	
					SAND	(SW); loose, wet, gray; fine to co o gravel; no odor	arse sand, no		
5 †	15				· · · · · · · · · · · · · · · · · · ·	- 3. 4101, 110 0401		+ *	
		$ \circ $							
1				PID=0.2	SILTY	SAND (SM); loose, wet, dark gra	ay; medium	Ť	
						y silt, fine to medium sand; no oc	lor		
1		<b> Ⅰ</b>						Ť	
		$ \circ $							
1				PID=0.3		ML); soft, wet, gray; nonplastic s	ilt, trace fine sand;	Ť	
					no odor				
1						SAND (SM); loose, wet, gray; no	onplastic silt_fine	Ŧ	
						se sand, no gravel; no odor			
0+	10	Ĩ		PID=0.2				+1	
						EL (GP); loose, wet, gray; no find		]	
Ţ						coarse subrounded to rounded gr	avel; no odor.	Γ	
					200			4	
Ť		Ĭ	AB-05-13	PID=0.3		: woody debris as broken sticks (SW); loose, wet, gray; no fines,		T	
			TPH-G, TPH-Dx,		sand, n	o gravel; no odor.		A	
1			VOCs, SVOCs, MTCA 5		GRAV	EL (GP); loose, wet, gray; no fine	es, trace sand,	It	
		$\square$				coarse subrounded to rounded gr (SW); loose, wet, gray; no fines,		1	
1					sand, tr	ace fine gravel; no odor.		ſ	
_	-				Bottom	of exploration at 14 ft. bgs.			
5+	5							ť	
Ť								T	
Ţ								Γ	
Ţ								Γ	
Ţ								Γ	
20+	0							1.	
-•Τ								+2	
1								Ť	
	Legend								
ט	No Soil Comple	Recovery		Encountered	See Exp of symbol	loration Log Key for explanation	Exploratio	on	
туре Туре	Continuous core	e 4" ID	Water Level				Log		
	😨 Grab sample				Logged Approve	by: NWD d by: ND, 4/17/2025	<b>AB-05</b>		
	I.		I				Sheet 1 of 1		














# **APPENDIX D**

Report Limitations and Use Guidelines

# **REPORT LIMITATIONS AND USE GUIDELINES**

#### **Reliance Conditions for Third Parties**

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

### Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the Site. The report is not intended to make any representation concerning title or ownership to the Site. If real property records were reviewed, they were reviewed for the sole purpose of determining the Site's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the Site, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and Site. This report should not be applied for any purpose or project except the purpose described in the Agreement.

## **This Report Is Project-Specific**

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the Site, project or governmental regulatory actions

If changes are made to the project or Site after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

#### **Geoscience Interpretations**

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

### **Discipline-Specific Reports Are Not Interchangeable**

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the Site.

## **Environmental Regulations Are Not Static**

Some hazardous substances or petroleum products may be present near the Site in quantities or under conditions that may have led, or may lead, to contamination of the Site, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

# **Property Conditions Change Over Time**

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

#### Phase I ESAs – Uncertainty Remains After Completion

Aspect has performed the services in general accordance with the scope and limitations of our Agreement and the current version of the "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process," ASTM E1527, and U.S. Environmental Protection Agency (EPA)'s Federal Standard 40 CFR Part 312 "Innocent Landowners, Standards for Conducting All Appropriate Inquiries".

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with Site. Performance of an ESA study is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental conditions affecting the Site. There is always a potential that areas with contamination that were not identified during this ESA exist at the Site or in the study area. Further evaluation of such potential would require additional research, subsurface exploration, sampling and/or testing.

#### **Historical Information Provided by Others**

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the Site or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

### Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.