

554 West Bakerview Road Bellingham, Washington 98225 253.312.7958

May 30, 2025

Century Communities 20000 North Creek Parkway, Suite 201 Bothell, Washington 98011

Attention: Jason Hancock

Subject: 2025 Annual Monitoring Report for Groundwater and

Surface Water at the Go East Corp Closed Landfill

File No. 26410-001-03

GeoEngineers, Inc. (GeoEngineers) is pleased to provide this 2025 annual monitoring report for the Go East Corp Closed Landfill (the Facility). The Facility is located near 4330 108th Street SE in Everett, Washington (47.897830, -122.171860). The general Facility location is shown in Figure 1. The landfill and pertinent features are shown in Figure 2.

This annual monitoring report summarizes the groundwater and surface water sampling results collected through March 2025 as required in Solid Waste Facility Permit No. PT0004938 (SW-026) (Permit) for Go East Landfill. This report does not include the landfill gas monitoring results. The annual monitoring reports for groundwater, surface water and landfill gas should be submitted to Snohomish County Health Department and the Washington State Department of Ecology (Ecology) by April 1 of each year in accordance with Sections III.E.2 and III.E.6 of the Permit.

Facility Background

The Go East Landfill operated from 1972 to 1983 and contains wood waste and construction debris. The landfill was consolidated and closed in 2022 in accordance with Washington Administrative Code (WAC) 173-350-400. Landfill materials were excavated from a wedge area on the periphery of the landfill and consolidated into the current landfill boundary. The former wedge and final landfill extent are shown in Figure 2.

A residential development is being developed around the closed landfill. The Snohomish County Planning and Development Services approved a plat map for the development in 2023. The Alpine Estates Owners Association is the current owner of the landfill, and Century Communities of Washington, LLC (Century Communities) currently governs the Alpine Estates Owners Association. Snohomish County Health Department issues a limited purpose landfill permit to the Alpine Estates Owners Association for the post-closure care of the landfill in accordance with WAC 173-350-400.

The Washington State Department of Ecology (Ecology) determined that the former owners of the landfill, P&GE, LLC (P&GE) and Century Communities of Washington, LLC, are potentially liable persons (PLPs) under the state's cleanup law, the Model Toxics Control Act (MTCA). P&GE and Century Communities entered into an Agreed Order (No. DE 18121) with Ecology in January 2021 and January 2023, respectively. The Agreed Order required P&GE and Century Communities to implement an interim action work plan during the permitted land disturbing activity and to complete a Remedial Investigation and Feasibility Study and prepare a Draft Cleanup Action Plan. The Cleanup Action Plan was finalized in May 2024. The Cleanup Action Plan consists of the completed landfill closure, the monitored natural attenuation of contamination in groundwater and surface water and the natural recovery of sediment. The Compliance Monitoring Plan (May 22, 2024) describes the groundwater and surface water sampling requirements for the Cleanup Action Plan and for landfill post-closure care in WAC 173-350-400. Ecology determined that the PLPs satisfied the Agreed Order in June 2024 and that the Compliance Monitoring Plan would be implemented under the permitting authority of Snohomish County Health Department.

The Facility is currently in the compliance monitoring phase following closure of the landfill. Groundwater, surface water and methane are being monitored. A Compliance Monitoring Plan for groundwater and surface water monitoring was prepared by GeoEngineers in accordance with WAC 173-340-410(3) and includes a Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) that meets the requirements of WAC 173-340-820 and WAC 173-350-500(4) (GeoEngineers 2024a).

The Compliance Monitoring Plans defines priority and contingent sampling locations.

- Priority sampling locations (MW-6, MW-7, MW-8, MW-10 and SWS-1) shall be monitored for the natural attenuation of the chemicals of concern (COCs) semi-annually until the concentrations of the COCs comply with the cleanup levels defined in the Cleanup Action Plan at that location in accordance with WAC 173-340-720(9). The COCs are iron, manganese, arsenic, lead, nickel and carcinogenic polycyclic aromatic hydrocarbons (cPAHs).
- Contingent sampling locations MW-2 and MW-3, along with MW-6, MW-7 and MW-8 shall be monitored annually for geochemical indicator parameters as long as methane concentrations exceed 5 percent in any of the 12 soil gas probes at the landfill boundary during the preceding 12 months. The geochemical indicators are manganese, iron and alkalinity.

The priority and contingency groundwater and surface water sampling locations are shown in Figure 2 and listed in Table 1. Wells MW-2 and MW-3 are completed in the advance outwash sand formation upgradient of the current and former landfill materials. Wells MW-6, MW-7 and MW-8 are completed in the advance outwash sand formation upgradient of the current landfill and beneath areas where landfill material was excavated. Well MW-10 and surface water sampling location SWS-1 are at the toe of a steep slope downgradient of the landfill, where glacial lacustrine soil is present beyond the limits of the advance outwash formation. SWS-1 is a concrete weir box where groundwater seeps from beneath the landfill and Well MW-10 is a nearby shallow well screened in stream deposits within the glacial lacustrine silt deposits.

Herrera Environmental Consultants monitors methane at the landfill in accordance with the Landfill Gas Monitoring and Contingency Plan (Herrera 2024a). There are 12 gas probes around the landfill as shown in the figure in Appendix A. Methane exceeded 5 percent in multiple gas probes in the past 12 months. A soil vapor extraction unit (blower) was activated in August 2024 to reduce methane concentrations. Methane has been below 5 percent in all probes except GP-6, GP-10, GP-11 and GP-12 since activation of the blower.

This annual monitoring report includes the data collected under the Compliance Monitoring Plan for groundwater and surface water through March 2025. The report also references the methane data collected through December 2024 (Herrera 2024b).

Groundwater and Surface Water Monitoring Activities

Groundwater and surface water samples were collected in September 2024 and March 2025 and submitted to an Ecology-accredited laboratory and analyzed for the parameters listed in Table 2.

Groundwater and Surface Water Data Summary

Groundwater and surface water field parameters from 2021 through 2025 are summarized in Table 3 and analytical results are summarized in Table 4. Table 3 lists the depths-to-groundwater and groundwater elevations, and Figure 2 depicts the inferred groundwater flow direction as described in the Remedial Investigation/Feasibility Study (GeoEngineers 2024b). Analytical results are compared to cleanup levels established in the Cleanup Action Plan (GeoEngineers 2024c). Data validation was performed on laboratory data, and all data were found acceptable for use, with some data qualified as estimated. The laboratory deliverables and data validation reports are included in Appendix B.

Monitored Natural Attenuation Evaluation

The primary sampling locations are monitored to confirm and evaluate the natural attenuation of the COCs at these locations.

The groundwater quality in wedge area wells MW-6, MW-7 and MW-8 is anticipated to improve since the waste material was removed, allowing the recharge within non-impacted oxygenated groundwater and rainwater.

The impact of the landfill is most evident in MW-6 and MW-8, where the depth of waste was greatest. Groundwater in MW-6 and MW-8 is relatively anaerobic with elevated alkalinity. MW-7 does not have the same geochemical signature because the depth of waste was relatively shallow.

Manganese and iron are mobilized under anaerobic reducing conditions. The concentrations of manganese continued to decrease in MW-6 and MW-8 as the aerobic conditions improved in the aquifer, while the concentrations of iron were below the cleanup levels during the last two semi-annual sampling events. The concentrations of manganese and iron comply with the cleanup levels in MW-7.

The concentrations of arsenic in MW-6 and MW-7 slightly exceed the site-specific background concentration of 7.3 μ g/L but are consistent with the 8.0 μ g/L regional background concentration for the Puget Sound Basin (Ecology 2022).

The concentrations of nickel and lead in MW-7 were below their cleanup levels during the last two semi-annual sampling events. The concentrations of cPAHs in MW-6 and MW-7 have been below their detection limit for the last five semi-annual sampling events.

The concentrations of manganese and iron exceed the cleanup levels at the toe of the landfill due to their mobilization under anaerobic reducing conditions. The surface water at SWS-1 becomes aerobic as the groundwater discharges to surface water and impacts shallow groundwater. The concentrations of manganese and iron are generally stable in SWS-1 and MW-10. The concentrations of lead were below the 2.5 µg/L cleanup level based on surface water protection in SWS-1.

The concentrations of lead exceeded the detection limit in two of the last nine sampling events in MW-10. These concentrations exceeded the $2.5\,\mu\text{g/L}$ cleanup level but were below the $15\,\mu\text{g/L}$ maximum contaminant level for drinking water. The detection of lead appears to be related to elevated turbidity in those samples. Turbidity was measured at 177 and 180 nephelometric turbidity units (NTUs) in the two sampling events when lead was detected, whereas lead was not detected during the other sampling events when turbidity was measured at less than approximately 50 NTU.

Detection Monitoring Evaluation

The geomembrane cover for the landfill restricts the diffusion of methane through the landfill cover. Methane has recently been elevated, especially in landfill gas probes GP-10, GP-11 and GP-12, despite initiation of the blower. The probes are located along the northwestern side of the landfill (Herrera 2024b). See Appendix A for Landfill Gas Monitoring Locations.

Manganese, iron and alkalinity² are monitored to evaluate whether persistent methane concentrations potentially impact groundwater in wells MW-2, MW-3, MW-6, MW-7 and MW-8 beyond the landfill boundary. Methane and carbon dioxide associated with landfill gas can increase the concentrations of manganese, iron and alkalinity in groundwater due to pressure gradients and impacts to infiltrating water. Appendix C contains Mann Kendall trend analysis and graphs of dissolved manganese, dissolved iron and alkalinity in MW-2, MW-3, MW-6, MW-7 and MW-8. As shown in Appendix C, the concentrations of manganese, iron and alkalinity are stable or decreasing in MW-2, MW-3, MW-7 and MW-8. In MW-6, dissolved manganese is decreasing, and alkalinity and dissolved iron are increasing (though concentrations of alkalinity and dissolved iron do not exceed cleanup levels in MW-6). The groundwater data generally indicate no apparent impacts from landfill gas.

Compliance Evaluation and Recommendations

Data from MW-6, MW-7, MW-8, MW-10 and SWS-1 were analyzed for statistical compliance under WAC 173-340-720(9). The upper one-sided 95 percent confidence limit on the true mean groundwater concentration was calculated for the COCs for each monitoring point. Concentrations are compared to cleanup levels established in the CAP. The results are summarized in Table 5, and include:

² Review of Table 4 indicates that alkalinity in site groundwater is 100 percent bicarbonate in every sample.

¹ Methane in GP-6 has also been measured slightly above and below 5 percent. GP-10, GP-11, and GP-12 are higher, consistently 8 percent to 23 percent methane.

- MW-6: The well is in compliance for arsenic and iron, and out of compliance for manganese and cPAHs. We recommend continued sampling for total and dissolved manganese and cPAHs. Although the concentrations of arsenic comply with the cleanup level, additional sampling is warranted because of the increasing concentration trend. Although the concentrations of iron comply with the cleanup levels, contingent sampling of iron should be performed annually to continue to monitor whether landfill gas impacts groundwater. We recommend sampling for total and dissolved iron in MW-6 annually only when the concentration of methane exceeds 5 percent in any of the 12 soil gas probes along the landfill perimeter during the preceding 12 months.
- MW-7: The well is in compliance for dissolved iron and manganese, and out of compliance for the other parameters listed in Table 2. We recommend sampling for dissolved iron in MW-7 annually only when the concentration of methane exceeds 5 percent in any of the 12 soil gas probes along the landfill perimeter during the preceding 12 months.
- **MW-8**: The well is out of compliance for iron and manganese. We recommend continued sampling at this well for these COCs.
- MW-10: The well is in compliance for lead, and out of compliance for iron and manganese. We recommend continued sampling for total and dissolved iron and manganese. We recommend discontinuing sampling for lead in MW-10.
- **SWS-1**: The sampling location SWS-1 is in compliance for lead, and out of compliance for total iron and manganese. We recommend continued sampling for total iron and manganese in SWS-1. **We recommend discontinuing sampling for lead in SWS-1.**

Groundwater and surface water will continue to be sampled in accordance with the Compliance Monitoring Plan in the coming year. GeoEngineers recommends that Table 2 be amended to remove the analysis of lead from MW-10 and SWS-1 and to change the sampling of iron in MW-6 and MW-7 to be contingent upon methane monitoring as described above. These changes should be implemented by the next sampling event in the fall of 2025.

References

Ecology, 2022, Natural Background Groundwater Arsenic Concentrations in Washington State, Ecology Publication No. 14-09-044, January 2022.

GeoEngineers 2024a. Compliance Monitoring Plan. Go East Corp. Landfill Site, Everett, Washington. May 22, 2024

GeoEngineers 2024b. Remedial Investigation / Feasibility Study. Go East Corp Landfill Site, Everett, Washington. May 17, 2024.

GeoEngineers 2024c. Cleanup Action Plan. Go East Corp Landfill Site, Everett, Washington. May 17, 2024.

Herrera 2024a. Landfill Gas Monitoring and Contingency Plan. Go East Landfill/Alpine Estates Development. January 17, 2024.

Herrera 2024b. Go East Landfill/Alpine Estates Landfill Gas Monitoring Data Update. December 20, 2024.

Note: all reference documents are available on <u>Ecology's Go East Corp Landfill Website</u> (https://apps.ecology.wa.gov/cleanupsearch/site/4294)

Sincerely,

GeoEngineers, Inc.

Garrett R. Leque

Senior Environmental Geologist

GRL:TRM:atk

Attachments

Table 1. Monitoring Well and Surface Water Location Summary

Table 2. Analytical Program

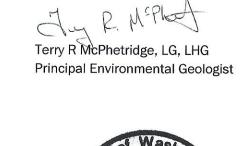
Table 3. Groundwater and Surface Water Field Parameters

Table 4. Groundwater and Surface Water Data

Table 5. Groundwater and Surface Water Compliance Evaluation

Figure 1. Vicinity Map

Figure 2. Site Plan


Appendix A. Landfill Gas Monitoring Locations

Appendix B. Laboratory Results and Data Validation Reports

Appendix C. Trend Analysis

One electronic copy submitted

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

drogeologist

R. McPHETRIDGE

5/30/25

Monitoring Well and Surface Water Location Summary

Go East Corp Landfill Site Everett, Washington

Location Identification	Well Monument	Depth to Base of Well (feet bgs) ¹	Well Screen Interval Depth (feet bgs) ¹	Status/Sampling Priority
MW-1	Flush	75	65 to 75	Decommissioned
MW-2	Stickup	60	50 to 60	Contingent sampling location ²
MW-3	Stickup	83	73 to 83	Contingent sampling location ²
MW-4	NA	NA	NA	Decommissioned
MW-5	Flush	80	70 to 80	Decommissioned
MW-6	Stickup	55	45 to 55	Priority/contingent sampling location
MW-7	Stickup	60	45 to 60	Priority/contingent sampling location
MW-8	Stickup	55.5	45.5 to 55.5	Priority/contingent sampling location
MW-9	Stickup	10	5 to 10	Decommissioned
MW-10	Stickup	10	5 to 10	Priority sampling location
SWS-1	NA	NA	NA	Priority sampling location

Notes:

bgs = below ground surface

NA = Not applicable

¹ Depths and elevations rounded to the nearest foot.

 $^{^{2}}$ Well sampled in March 2025 for geochemical indicators due to methane exceeding 5% in perimeter probes; see report text.

Analytical Program

Go East Corp Landfill Site Everett, Washington

					Analyte List				
Location Identification	Field Parameters ¹	Iron	Manganese	Arsenic	Lead	Nickel	Ammonia	Alkalinity and Bicarbonate	сРАНs
MW-2 (Contingent ²)	Yes	Yes (T/D)	Yes (T/D)					Yes	
MW-3 (Contingent ²)	Yes	Yes (T/D)	Yes (T/D)	-				Yes	
MW-6	Yes	Yes (T/D)	Yes (T/D)	Yes (T)			Yes	Yes	Yes
MW-7	Yes	Yes (T/D)	Yes (T/D)	Yes (T)	Yes (T)	Yes (T)	Yes	Yes	Yes
MW-8	Yes	Yes (T/D)	Yes (T/D)				Yes	Yes	
MW-10	Yes	Yes (T/D)	Yes (T/D)		Yes (T)		Yes	Yes	
SWS-1	Yes	Yes (T)	Yes (T)	-1	Yes (T)		Yes	Yes	

Notes:

cPAHs = carcinogenic polycyclic aromatic hydrocarbons listed in Table 708-2 of the Model Toxics Control Act (MTCA), to calculate Total cPAH TEQ

T/D = Total and dissolved metals

T = Total metals

¹ Field parameters included pH, specific conductivity, temperature, dissolved oxygen and oxidation-reduction potential.

 $^{^{2}}$ Well sampled in March 2025 for geochemical indicators based on methane results; see report text.

Groundwater and Surface Water Field Parameters

Go East Corp Landfill Site Everett, Washington

ocation lentification	Sample Identification	Sample Date	Depth to Water (ft bTOC)	Water Elevation (NAVD88)	Temperature (°C)	Dissolved Oxygen (mg/L)	Specific Conductance (uS/cm)	рН	Oxidation-Reduction Potential (mV)	Turbidity (NTU)
	MW2-210406	4/6/2021	50.41	184.10	10.02	0.88	158	6.65	-139.8	16.1
	MW2-211208	12/8/2021	50.42	184.09	9.8	0.32	273.6	8.18	-280.2	9.95
	MW2-20220318	3/18/2022	50.75	183.76	49.2	4.60	190.2	8.26	18.5	32.0
	MW-2-220505	5/5/2022	50.75	183.76	9.4	10.44	183	8.18	128	21
MW2	MW-2-20220628	6/28/2022	51.19	183.32	12.5	3.45	243.3	8.06	-296	38.2
IVIVVZ	MW-2-20220922	9/22/2022	51.58	182.93	12.57	1.7	218	8.29	-122.5	7.96
	MW-2-20230407	4/7/2023	50.71	183.80	11.05	2.11	200	7.19	-68.1	8.12
	Well casing height a	djusted by a licer	sed driller to mat	ch modified grou	nd surface elevati	on on May 10, 2023.				
	MW-2-20231004	10/4/2023	46.44	183.42	12.05	8.96	152	8.33	-59.2	48.6
	20250306-MW-2	3/6/2025	45.92	183.94	11.0	0.3	270.8	7.93	22.4	4.9
	MW3-210406	4/6/2021	39.34	201.76	10.22	3.72	174	6.81	-113.0	41.9
	Well extended by lic	ensed driller by 2	2.83 feet in 2021			1			1	
	MW3-211206	12/6/2021	60.95	208.98	10.00	0.08	264.4	8.24	-309.0	2.97
	MW-3-30922	3/9/2022	59.79	210.14	10.50	4.15	191.0	8.32	-173.0	88.7
	MW-3-20220427	4/27/2022	59.99	209.94	11.55	6.78	219.6	8.12	52.9	87.4
MW3	MW-3-20220621	6/21/2022	60.10	209.83	11.6	6.78	219.6	8.12	52.7	87.4
	MW-3-20220920	9/20/2022	58.58	211.35	15.73	0.69	241	8.22	132.8	11.1
	MW-3-20230403	4/3/2023	58.50	211.43	10.60	7.7	623	NR	-147	119
						on on May 10, 2023.				
	MW-3-20231004	10/4/2023	56.94	210.30	11.87	12.17	63	8.09	-42.3	23.8
	20250306-MW-3	3/6/2025	56.98	210.26	11.20	0.64	266.4	7.73	44.3	12.8
	MW6-211209	12/9/2021	47.57	212.35	14.3	1.52	451.0	6.69	-177.7	9.82
	MW-6-31122	3/11/2022	47.61	212.31	13.4	0.74	362.6	6.69	15.8	6.28
	MW-6-220503	5/3/2022	47.60	212.32	14.2	5.10	461.5	6.56	138.4	27.7
	MW-6-20220620	6/20/2022	47.34	212.58	15.8	2.01	405.5	6.61	-104.9	0.77
MW6	MW-6-20220921	9/21/2022	47.32	212.60	16.82	0.12	387	6.78	-64.1	2.6
	MW-6-20230405	4/5/2023	47.67	212.25	12.78	1.06	382	6.57	-9.4	4.1
			1			on on May 10, 2023.				
	MW-6-20231006	10/6/2023	43.24	212.57	14.45	7.78	382	6.73	-0.4	12.4
	MW-6-20240826	8/26/2024	43.33	212.25	12.70	0.90	325	6.60	20.8	7.00
	20250306-MW-6	3/6/2025	43.66	212.15	10.8	1.63	541	6.28	60.4	26.9
	MW7-211209	12/9/2021	48.15	194.84	10.5	4.22	237.8	7.99	-136.5	9.81
	MW7-20220314	3/14/2022	48.30	194.69	9.4	10.25	162.3	8.07	253.4	26.1
	MW-7-20220506	5/6/2022	48.56	194.43	9.8	11.54	192.8	8.10	201.8	64.0
	MW-7-20220620	6/20/2022	49.70	193.29	12.2	2.38	209	7.73	-102.7	20.0
MW7	MW-7-20220921	9/21/2022	48.46	194.53	14.68	1.25	213	7.98	-69.4	13.2
	MW-7-20230405	4/5/2023	48.40	194.59	10.46	2.56	200	7.87	58.4	0.13
		-	1			on on May 10, 2023.	454	7.00	1 4000	
	MW-7-20231005	10/5/2023	47.01	194.86	12.06	5.76	154	7.88	132.3	14.1
	MW-7-20240822	8/22/2024	48.24	193.63	13.19	11.20	142	8.09	42.3	13.4
	20250304-MW-7	3/4/2025	47.18	194.69	10.3	1.36	234.7	7.53	189.4	15.3
	MW8-211213	12/13/2021	49.88	180.90	12.0	0.47	592.8	6.67	-191.6	9.63
	MW8-20220322	3/22/2022	50.21	180.57	13.2	4.70	469.5	6.78	171.2	137
	MW8-05022022	5/2/2022	50.30	180.48	11.50	7.32	347.1	6.75	159.1	43.1
NANA/O	MW-8-20220622	6/22/2022	51.20	179.58	14.1	0.35	465.8	6.63	-176.2	9.59
MW8	MW-8-20220920	9/20/2022	51.51	179.27	19.84	2.08	447	6.60	29.9	8.9
	MW-8-20230331	3/31/2023	50.79	179.99	18.03	2.13	439	6.80	28.5	18.5
	MW-8-20231003	10/3/2023	48.64	182.14	14.54	5.09	277	6.64	110.8	20.7
	MW-8-20240822 20250305-MW-8	8/22/2024 3/5/2025	48.96 48.60	181.82 182.18	13.27 11.90	3.97 0.93	270 422.8	6.54 6.15	80.8 86.7	19.5 19.5
	MW-10-20220404	4/4/2022	48.60	94.31	9.3	0.93 6.51	310.1	7.14	148.9	19.5
	MW-10-20220519 MW-10-20220623	5/19/2022	NR 4.69	NR 94.25	10.3 15.5	0.78 0.29	424.1 323.3	6.84 6.73	-82.2 -400.2	10.3 32
		6/23/2022	4.69 5.25	94.25	15.5	0.29	523.3 520	6.73		3.6
MW10	MW-10-220921	9/21/2022							53.5	
	MW-10-20230411	4/11/2023	4.00	94.94	9.9	0.14	948	7.42	-61 48.6	52
	MW-10-20231002	10/2/2023	4.34	94.60	12.94	0.00	597	6.40	-48.6 19.5	2.92
	MW-10-20240826 20250310-MW-10	8/26/2024 3/10/2025	4.89 4.60	94.05 94.34	15.57 10.74	1.21 1.17	453 530	6.52 6.52	-18.5 -90.6	43.5 180
	SP1-210402	4/2/2021	4.60	34.34	11.96	8.05	602	6.52	-49.3	6.68
	SP1-210402 SWS-1-20211101			-	11.96 NR	8.05 NR	602 NR	6.79 NR		6.68 NR
	SWS-1-20211101 SWS-1-211208	11/1/2021	-						NR 103.7	
	SWS-1-211208 SWS-1-20220321	12/8/2021 3/21/2022		-	12.9 NR	8.40 NR	824 NR	6.89 NR	-103.7 NR	NR NR
	SWS-1-20220321 SWS-1-220503	, ,	-	-					38.8	NR NR
SWS-1	SWS-1-220503 SWS-1-20220621	5/3/2022			13.4 17.9	5.44 5.83	773 809	6.61 7.18	-44.9	20.3
		6/21/2022							+	
	SWS-1-220920	9/20/2022			11.9 13.09	6.2	531	6.24	157.2	9.66
	SWS-1-20231012 SWS-20240826				15.72	3.3 7.38	840	6.63 6.80	-30.7 106.6	>500
	JVVJ-ZUZ4UOZ0	8/26/2024			±0.1∠	1.30	495	0.00	100.0	/500

Notes:

ft bTOC = feet below top of casing

mg/L = milligram per liter

uS/cm = microsiemen per centimeter

mV = millivolt

NTU = nephelometric turbidity unit

°C = degree Celsius

NR = not recorded due to equipment malfunction. File No. 26410-001-03
Table 3 | May 30, 2025

Groundwater and Surface Water Data

Go East Landfill

Everett, Washington

	Loca	tion ID	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2
	San	nple ID	MW2-210406	MW2-211208	MW2-20220318	MW-2-220505	MW-2-20220628	MW-2-2022092	MW-2-20230407	20231004-MW-2	20250306-MW-2
	Sampl	e Date	4/6/2021	12/8/2021	3/18/2022	5/5/2022	6/28/2022	9/22/2022	4/7/2023	10/4/2023	3/6/2025
	Cleanup										
Analyte	Level	Units									
Alkalinity as CaCO3	NE	mg/L	110	120	120	110	110	110	120	110	120
Bicarbonate as CaCO3	NE	mg/L	110	120	120	110	110	110	120	110	120
Ammonia (Total as N)	NE	mg/L	-	0.097	0.11	0.14	0.094	0.10	0.1	0.057	
Total Arsenic	7.3	ug/L	4.7	4.8	5.3	11	5.3	4.5	5.8	7.4	
Dissolved Arsenic	7.3	ug/L	4.5	4.2	4.6	13	4.3	4.2	4	5.9	
Total Iron	3,010	ug/L	1200	370	1600	6200	690	1100	2600	5400	430
Dissolved Iron	3,010	ug/L	48	56 U	56 U	56 U	56 U	56 U	76	100	56 U
Total Lead	2.5	ug/L	-	1.1 U	1.1 U	2.0		-		1.7	
Total Manganese	354	ug/L	230	300	310	350	250	230	300	330	240
Dissolved Manganese	354	ug/L	210	270	250	200	220	210	250	230	210
Total Nickel	26.3	ug/L	-	22 U	22 U	22 U	22 U	-	-	22 U	
Benzo(a)anthracene	NE	ug/L	-	0.0095 U	0.0095 U	0.0099 U		-	-	-	-
Benzo(a)pyrene	NE	ug/L	-	0.0095 U	0.0095 U	0.0099 U	-	-	-	-	-
Benzo(b)fluoranthene	NE	ug/L	-	0.0095 U	0.0095 U	0.0099 U		-	-	-	-
Benzo(j,k)fluoranthene	NE	ug/L	-	0.0095 U	0.0095 U	0.0099 U			-	-	
Chrysene	NE	ug/L	-	0.0095 U	0.0095 U	0.0099 U		-	-	-	-
Dibenz(a,h)anthracene	NE	ug/L		0.0095 U	0.0095 U	0.0099 U		-	-	-	-
Indeno(1,2,3-c,d)pyrene	NE	ug/L		0.0095 U	0.0095 U	0.0099 U		-	-	-	-
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	-	0.00717 U	0.00717 U	0.00747 U			-	-	-

	Loop	tion ID	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3
			_	MW3-211206							
		nple ID			MW-3-30922	MW-3-20220427					
		e Date	4/6/2021	12/6/2021	3/9/2022	4/27/2022	6/21/2022	9/20/2022	4/3/2023	10/4/2023	3/6/2025
	Cleanup										
Analyte	Level	Units									
Alkalinity as CaCO3	NE	mg/L	110	110	110	100	110	110	110	110	110
Bicarbonate as CaCO3	NE	mg/L	110	110	110	100	110	110	110	110	110
Ammonia (Total as N)	NE	mg/L		0.059	0.061	0.060	0.050 U	0.050	0.13	0.050 U	-
Total Arsenic	7.3	ug/L	4.4	3.6	5.0	3.6	4.6	3.3 U	13	4.9	-
Dissolved Arsenic	7.3	ug/L	3.2	3.4	3.4	3.1	4.1	3.4	12	4.3	
Total Iron	3,010	ug/L	4100	110	2500	3800	1400	610	4000	1500	390
Dissolved Iron	3,010	ug/L	32	56 U	56 U	56 U	56 U	56 U	56	56 U	56 U
Total Lead	2.5	ug/L	-	1.1 U	1.2	1.1	1.1 U				
Total Manganese	354	ug/L	260	190	240	220	190	160	220	190	190
Dissolved Manganese	354	ug/L	140	170	180	150	140	140	150	140	130
Total Nickel	26.3	ug/L	-	22 U	22 U	22 U	22 U		-	22 U	-
Benzo(a)anthracene	NE	ug/L	-	0.0095 U	0.0097 U	0.010 U			-		-
Benzo(a)pyrene	NE	ug/L	-	0.0095 U	0.0097 U	0.010 U	_	-	_	-	-
Benzo(b)fluoranthene	NE	ug/L	-	0.0095 U	0.0097 U	0.010 U	_	_	_	-	_
Benzo(j,k)fluoranthene	NE	ug/L	-	0.0095 U	0.0097 U	0.010 U			-		-
Chrysene	NE	ug/L	-	0.0095 U	0.0097 U	0.010 U			-		-
Dibenz(a,h)anthracene	NE	ug/L	-	0.0095 U	0.0097 U	0.010 U			-		-
Indeno(1,2,3-c,d)pyrene	NE	ug/L		0.0095 U	0.0097 U	0.010 U	-	-	-		-
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	-	0.00717 U	0.00732 U	0.00755 U			-	-	-

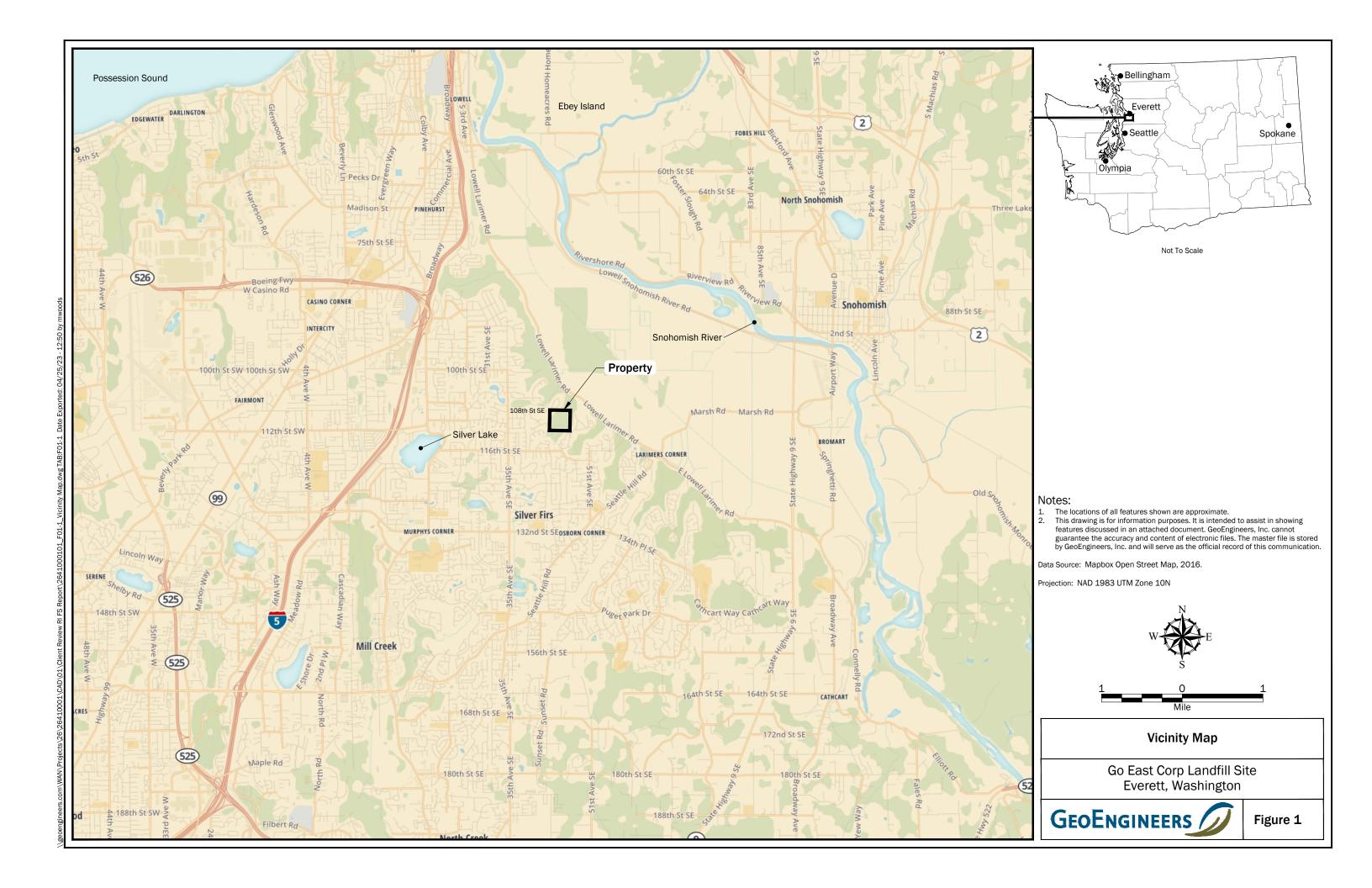
	Loca	ition ID	MW6	MW6	MW6	MW6	MW6	MW6	MW6	MW6	MW6
		nple ID		MW-6-31122	_	-	-	-	_	MW-6-20240826	
		e Date		3/11/2022	5/3/2022	6/20/2022	9/21/2022	4/5/2023	10/6/2023	8/26/2024	3/6/2025
	Cleanup		, , ,	-, , -	-, -,	-, -, -	-, , -	, , ,	., .,	-, -, -	
Analyte	Level	Units									
Alkalinity as CaCO3	NE	mg/L	190	200	230	220	190	220	230	230	260
Bicarbonate as CaCO3	NE	mg/L	190	200	230	220	190	220	230	230	250
Ammonia (Total as N)	NE	mg/L	0.10	0.096	0.10	0.068	0.10	0.081	0.050 U	0.078	0.11
Total Arsenic	7.3	ug/L	3.5	4.2	5.8	5.2	5.7	6.6	7.0	7.8	7.9
Dissolved Arsenic	7.3	ug/L	3.0	3.9	4.2	4.4	5.6	7.1	7.4		
Total Iron	3,010	ug/L	420	1100	2000	1200	510	840	1800	1100	2700
Dissolved Iron	3,010	ug/L	62	74	67	310	330	580	700	800	900
Total Lead	2.5	ug/L	1.1 U	1.1 U	1.1 U						
Total Manganese	354	ug/L	1800	2100	2100	2400	1700	1400	1100	710	850
Dissolved Manganese	354	ug/L	1800	2000	2000	2400	1700	1500	1200	640	750
Total Nickel	26.3	ug/L	22 U	22 U	22 U	22 U		-	22 U	-	
Benzo(a)anthracene	NE	ug/L	0.0098 U	0.010 U	0.27	0.0095 U	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Benzo(a)pyrene	NE	ug/L	0.0098 U	0.010 U	0.17	0.0095 U	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Benzo(b)fluoranthene	NE	ug/L	0.0098 U	0.010 U	0.12	0.028 U	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Benzo(j,k)fluoranthene	NE	ug/L	0.018	0.010 U	0.36	0.0095 U	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Chrysene	NE	ug/L	0.0098 U	0.010 U	0.085	0.010	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Dibenz(a,h)anthracene	NE	ug/L	0.0098 U	0.010 U	0.14	0.0095 U	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Indeno(1,2,3-c,d)pyrene	NE	ug/L	0.0098 U	0.010 U	0.12	0.0095 U	0.0095 U	0.0095 U	0.0096 U	0.0095 U	0.0095 U
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	0.00871	0.00755 U	0.27185	0.00815	0.00717 U	0.00717 U	0.00725 U	0.00717 U	0.00717 U

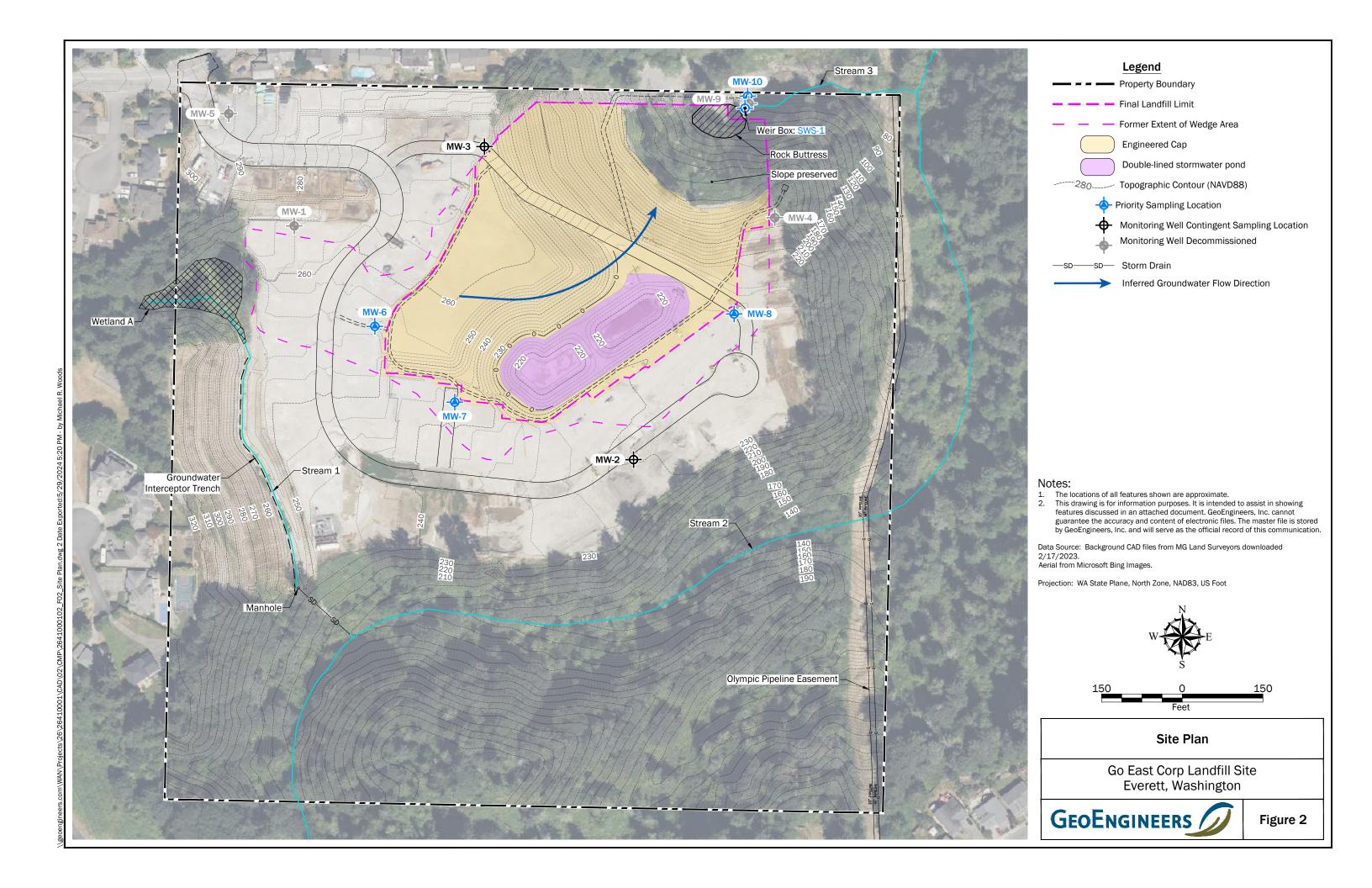
ſ		#: ID	N 414/7	A 4) A / 7	NAVA/7	MW7	N 434/7	N 414/7	1414/7	A 4) A / 7	MW7
		ition ID		MW7	MW7		MW7	MW7	MW7	MW7	
		nple ID			MW-7-20220506						
	· · · · ·	e Date	12/9/2021	3/14/2022	5/6/2022	6/20/2022	9/21/2022	4/5/2023	10/5/2023	8/22/2024	3/4/2025
	Cleanup										
Analyte	Level	Units									
Alkalinity as CaCO3	NE	mg/L	100	94	110	96	100	100	100	100	110
Bicarbonate as CaCO3	NE	mg/L	100	94	110	96	100	100	100	100	110
Ammonia (Total as N)	NE	mg/L	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.081	0.050 U	0.053 U	0.053 U
Total Arsenic	7.3	ug/L	11	10	12	11	8.8	8.8	8.7	8.9	8.1
Dissolved Arsenic	7.3	ug/L	8.5	8.8	9.1	9.1	9.1	9.1	9.0	-	-
Total Iron	3,010	ug/L	6900	2100	24000	550	3000	1500	2000	620	1200
Dissolved Iron	3,010	ug/L	56 U	56 U	56 U	56 U	56 U	56 U	56 U	56 U	56 U
Total Lead	2.5	ug/L	3.2	1.2	8.8		-	-	-	1.1 U	1.1 U
Total Manganese	354	ug/L	680	180	1300	40	190	110	70	310	62
Dissolved Manganese	354	ug/L	250	62	32	37	74	60	16	280	69
Total Nickel	26.3	ug/L	42	22 U	36	22 U		-	22 U	22 U	22 U
Benzo(a)anthracene	NE	ug/L	0.010 U	0.0095 U	0.011 U	0.011	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Benzo(a)pyrene	NE	ug/L	0.010 U	0.0095 U	0.011 U	0.015	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Benzo(b)fluoranthene	NE	ug/L	0.010 U	0.0095 U	0.011 U	0.028 U	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Benzo(j,k)fluoranthene	NE	ug/L	0.016	0.0095 U	0.011 U	0.0095 U	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Chrysene	NE	ug/L	0.010 U	0.0095 U	0.011 U	0.013	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Dibenz(a,h)anthracene	NE	ug/L	0.010 U	0.0095 U	0.011 U	0.0095 U	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Indeno(1,2,3-c,d)pyrene	NE	ug/L	0.010 U	0.0095 U	0.011 U	0.012	0.0095 U	0.0097 U	0.0097 U	0.0095 U	0.0095 U
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	0.00865	0.00717 U	0.0083 U	0.01978	0.00717 U	0.00732 U	0.00732 U	0.00717 U	0.00717 U

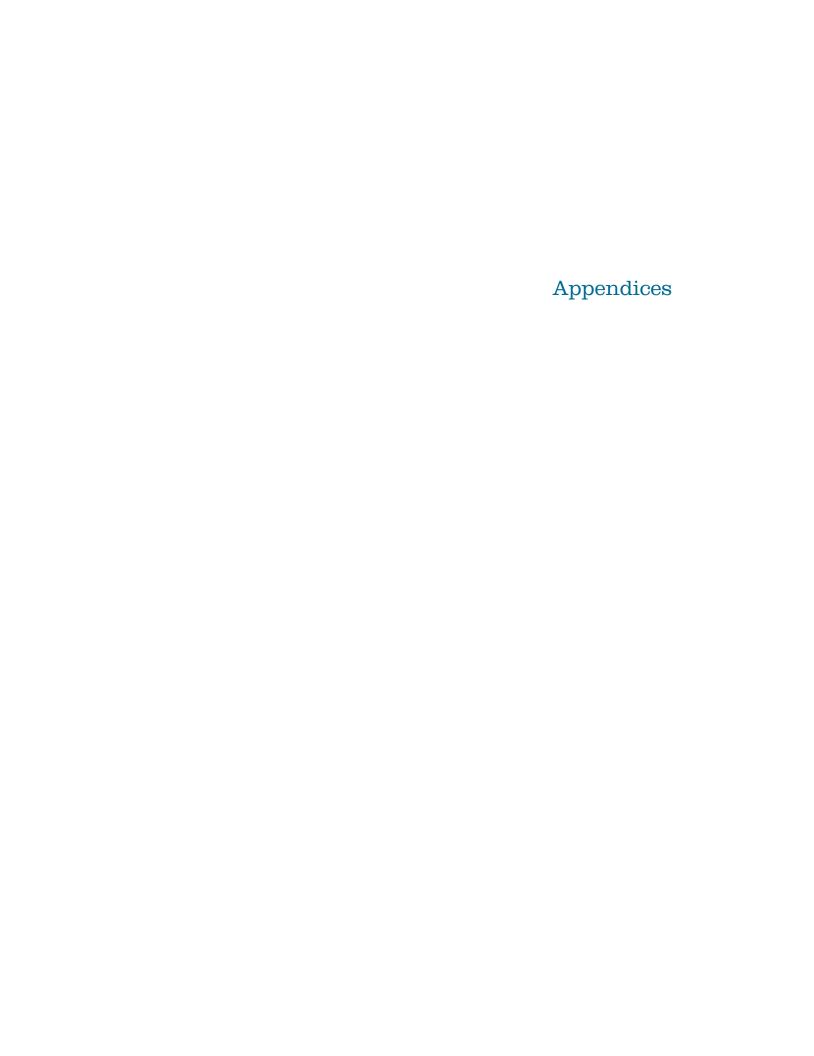
	1000	tion ID	MW8	MW8	MW8	MW8	MW8	MW8	MW8	MW8	MW8
		tion ID	_	_	_	_	-	_	_	_	_
		nple ID		MW8-20220322	MW8-05022022						
		e Date	12/13/2021	3/22/2022	5/2/2022	6/22/2022	9/20/2022	3/31/2023	10/3/2023	8/22/2024	3/5/2025
	Cleanup										
Analyte	Level	Units									
Alkalinity as CaCO3	NE	mg/L	230	220	200	210	180	190	160	180	170
Bicarbonate as CaCO3	NE	mg/L	230	220	200	210	180	190	160	180	170
Ammonia (Total as N)	NE	mg/L	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.05 U	0.050 U	0.053 U	0.053 U
Total Arsenic	7.3	ug/L	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	5.1	3.3 U		
Dissolved Arsenic	7.3	ug/L	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3 U	3.0 U		
Total Iron	3,010	ug/L	1300	2800	2100	1400	1100	17000	4800	300	680
Dissolved Iron	3,010	ug/L	120	99	65	190	56 U	82	80	61	240
Total Lead	2.5	ug/L	1.1 U	1.1 U	1.1 U	-	-			-	-
Total Manganese	354	ug/L	2100	2400	1600	1900	1400	1100	510	430	480
Dissolved Manganese	354	ug/L	1900	2200	1700	1800	1300	1400	260	420	490
Total Nickel	26.3	ug/L	39	22 U	22 U	22 U	-		22 U	-	-
Benzo(a)anthracene	NE	ug/L	0.0099 U	0.011 U	0.010 U	-	0.0095 U	0.0097 U		-	-
Benzo(a)pyrene	NE	ug/L	0.0099 U	0.011 U	0.010 U	-	0.0095 U	0.0097 U	-	-	-
Benzo(b)fluoranthene	NE	ug/L	0.0099 U	0.011 U	0.010 U	_	0.0095 U	0.0097 U	_	-	_
Benzo(j,k)fluoranthene	NE	ug/L	0.0099 U	0.011 U	0.010 U	_	0.0095 U	0.0097 U	_	-	_
Chrysene	NE	ug/L	0.0099 U	0.011 U	0.010 U	_	0.0095 U	0.0097 U	_	-	_
Dibenz(a,h)anthracene	NE	ug/L	0.0099 U	0.011 U	0.010 U	-	0.0095 U	0.0097 U	-	-	_
Indeno(1,2,3-c,d)pyrene	NE	ug/L	0.0099 U	0.011 U	0.010 U	-	0.0095 U	0.0097 U	-	-	-
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	0.00747 U	0.0083 U	0.00755 U	_	0.00717 U	0.00732 U	_	-	_

		ition ID	MW10	MW10	MW10	MW10	MW10	MW10	MW10	MW10	MW10
	Sar	nple ID	MW-10-20220404	MW-10-20220519	MW-10-20220623	MW-10-220921	MW-10-2023040	иW-10-2023041	20231012-MW-10	MW-10-20240826	20250310-MW-10
	Sampl	e Date	4/4/2022	5/19/2022	6/23/2022	9/21/2022	4/7/2023	4/12/2023	10/12/2023	8/26/2024	3/10/2025
	Cleanup										
Analyte	Level	Units									
Alkalinity as CaCO3	NE	mg/L	170	230	250	360	230	370	370	320	270
Bicarbonate as CaCO3	NE	mg/L	170	230	250	360	230	370	370	320	260
Ammonia (Total as N)	NE	mg/L	0.050 U	0.22	0.088	1.0	0.18	1.3	1.7	0.87	0.55
Total Arsenic	7.3	ug/L	4.3	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	3.0 U	-	-
Dissolved Arsenic	7.3	ug/L	3.0 U	3.0 U	3.0 U	3.0 U	3 U	3 U		-	-
Total Iron	3,010	ug/L	6800	1400	1300	6400	580	9700	8100	12000	15000
Dissolved Iron	3,010	ug/L	100	1000	930	6000	390	9500	56 U	13000	56 U
Total Lead	2.5	ug/L	4.5	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.0 U	1.1 U	7.5
Total Manganese	354	ug/L	320	460	450	1600	750	1500	1700	1200	1200
Dissolved Manganese	354	ug/L	200	440	450	1600	760	1600	1400	1400	900
Total Nickel	26.3	ug/L	22 U	22 U	22 U	22 U	22 U	22 U	20 U	-	-
Benzo(a)anthracene	NE	ug/L	0.010 U	0.0095 U	0.010 U	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Benzo(a)pyrene	NE	ug/L	0.010 U	0.0095 U	0.010 U	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Benzo(b)fluoranthene	NE	ug/L	0.010 U	0.0095 U	0.010 U	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Benzo(j,k)fluoranthene	NE	ug/L	0.010 U	0.011	0.016	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Chrysene	NE	ug/L	0.010 U	0.0095 U	0.010 U	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Dibenz(a,h)anthracene	NE	ug/L	0.010 U	0.0095 U	0.010 U	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Indeno(1,2,3-c,d)pyrene	NE	ug/L	0.010 U	0.0095 U	0.010 U	0.0094 U	0.0095 U	0.0095 U	0.0096 U	-	-
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	0.00755 U	0.0078	0.00865	0.0071 U	0.00717 U	0.00717 U	0.00725 U	-	-

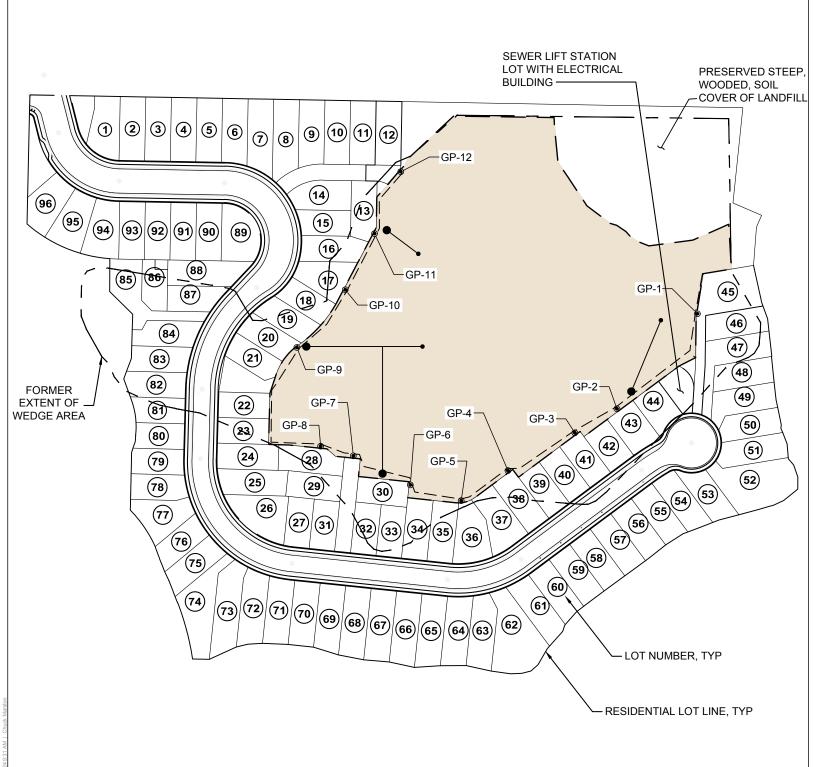
				21112 1								
		ion ID	SWS-1	SWS-1	SWS-1	SWS-1	SWS-1	SWS-1	SWS-1	SWS-1	SWS-1	SWS-1
	Sam	ple ID	SWS-1-20211101	SWS-1-211208	SWS-1-20220321	SWS-1-220503	SWS-1-20220621	SWS-1-220920	SWS-1-20230330	20231012-SWS-1	SWS1-20240826	20250310-SWS-
	Sample	e Date	11/1/2021	12/8/2021	3/21/2022	5/3/2022	6/21/2022	9/20/2022	3/30/2023	10/12/2023	8/26/2024	3/10/2025
	Cleanup											
Analyte	Level	Units										
Alkalinity as CaCO3	NE	mg/L			-	-	430	390	420	420	400	430
Bicarbonate as CaCO3	NE	mg/L		-	-	-	430	390	420	420	400	430
Ammonia (Total as N)	NE	mg/L		2.5	2.3	2.0	2.3	1.7	1.9	1.3	1.3	1.5
Total Arsenic	7.3	ug/L	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	3.0 U		
Dissolved Arsenic	7.3	ug/L	3 U		-	-	3.0 U				-	
Total Iron	3,010	ug/L	11000	8000	12000	6400	5000	7300	9500	14000	21000	14000
Dissolved Iron	3,010	ug/L	2400		-	-	56 U		_		-	
Total Lead	2.5	ug/L	1.1 U	1.1 U	6.2	1.1 U	1.1 U		_	1.0 U	1.5	1.1 U
Total Manganese	354	ug/L	1500	1800	2000	1600	1500	1600	1900	1900	1800	2100
Dissolved Manganese	354	ug/L	1300		-	-	1600		_	1600	-	
Total Nickel	26.3	ug/L	22 U	22 U	22 U	22 U	22 U	-	-	20 U	-	-
Benzo(a)anthracene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Benzo(a)pyrene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Benzo(b)fluoranthene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Benzo(j,k)fluoranthene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Chrysene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Dibenz(a,h)anthracene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Indeno(1,2,3-c,d)pyrene	NE	ug/L	0.01 U	0.010 U	0.010 U	0.0097 U	0.0097 U	0.0098 U	0.0099 U	0.011 U		-
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	0.00755 U	0.00755 U	0.00755 U	0.00732 U	0.00732 U	0.0074 U	0.00747 U	0.0083 U	-	-


Groundwater and Surface Water Compliance Evaluation


Go East Landfill Everett, Washington


	Loca	tion ID	MW6	MW6	MW6	MW6	MW6	MW6	MW6	MW6	MW6	Upper 95%	In Compliance
		e Date		3/11/2022	5/3/2022	6/20/2022	9/21/2022	4/5/2023	10/6/2023	8/26/2024	3/6/2025	оррог осло	compilance
	1		, , ,		-, -,			, , , , , ,	, , ,		.,.,		
Contaminant of Concern	CUL	Units											
Total Arsenic	7.3	ug/L	3.5	4.2	5.8	5.2	5.7	6.6	7	7.8	7.9	6.9	Yes
Total Iron	3,010	ug/L	420	1100	2000	1200	510	840	1800	1100	2700	1622	Yes
Dissolved Iron	3,010	ug/L	62	74	67	310	330	580	700	800	900	550	Yes
Total Manganese	354	ug/L	1800	2100	2100	2400	1700	1400	1100	710	850	1905	No
Dissolved Manganese	354	ug/L	1800	2000	2000	2400	1700	1500	1200	640	750	1902	No
Total cPAH TEQ (ND=0.5RL)	0.0095	ug/L	0.00871	0.00755	0.27185	0.00815	0.00717	0.00717	0.00725	0.00717	0.00717	0.024	No
	Loca	tion ID	MW7	MW7	MW7	MW7	MW7	MW7	MW7	MW7	MW7	Upper 95%	In Compliance
	Sampl		12/9/2021	3/14/2022	5/6/2022	6/20/2022	9/21/2022	4/5/2023	10/5/2023	8/22/2024	3/4/2025	Opper 95%	iii Compilance
	Sallipi	e Date	12/9/2021	3/14/2022	3/6/2022	6/20/2022	9/21/2022	4/5/2023	10/5/2025	0/22/2024	3/4/2023		
Contaminant of Concern	CUL	Units											
Total Arsenic	7.3	ug/L	11	10	12	11	8.8	8.8	8.7	8.9	8.1	10.5	No
Total Iron	3,010	,	6900	2100	24000	550	3000	1500	2000	620	1200	4605	No
Dissolved Iron	3,010	ug/L	56	56	56	56	56	56	56	56	56	56	Yes
Total Lead	2.5	ug/L	3.2	1.2	8.8	1.1	1.1	5.05		•		5.1	No
Total Manganese	354	ug/L	680	180	1300	40	190	110	70	310	62	362	No
Dissolved Manganese	354	ug/L	250	62	32	37	74	60	16	280	69	117	Yes
		ug/L	42	22	36	22	22	22	22			32	No
	26.3					0.01978	0.00717	0.00732	0.00732	0.00717	0.00717	0.0103	No
	0.0095 Loca	ug/L	0.00865 MW8	0.00717 MW8	0.0083 MW8	MW8	MW8	MW8	MW8	MW8	MW8	Upper 95%	In Compliance
Total cPAH TEQ (ND=0.5RL)	0.0095 Loca Sampl	tion ID e Date											In Compliance
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern	0.0095 Loca Sampl	tion ID e Date Units	MW8 12/13/2021	MW8 3/22/2022	MW8 5/2/2022	MW8 6/22/2022	MW8 9/20/2022	MW8 3/31/2023	MW8 10/3/2023	MW8 8/22/2024	MW8 3/5/2025	Upper 95%	
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern Total Iron	Loca Sampl CUL 3,010	tion ID e Date Units ug/L	MW8 12/13/2021 1300	MW8 3/22/2022 2800	MW8 5/2/2022 2100	MW8 6/22/2022	MW8 9/20/2022 1100	MW8 3/31/2023 17000	MW8 10/3/2023 4800	MW8 8/22/2024	MW8 3/5/2025 680	Upper 95% 3693	No
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern Total Iron Dissolved Iron	0.0095 Loca Sampl CUL 3,010 3,010	tion ID e Date Units ug/L ug/L	MW8 12/13/2021 1300 120	MW8 3/22/2022 2800 99	MW8 5/2/2022 2100 65	MW8 6/22/2022 1400 190	MW8 9/20/2022 1100 56	MW8 3/31/2023 17000 82	MW8 10/3/2023 4800 80	MW8 8/22/2024 300 61	MW8 3/5/2025 680 240	Upper 95% 3693 133	No No
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern Total Iron Dissolved Iron Total Manganese	0.0095 Loca Sampl CUL 3,010 3,010 354	tion ID e Date Units ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100	MW8 3/22/2022 2800 99 2400	MW8 5/2/2022 2100 65 1600	MW8 6/22/2022 1400 190	MW8 9/20/2022 1100 56 1400	MW8 3/31/2023 17000 82 1100	MW8 10/3/2023 4800 80 510	MW8 8/22/2024 300 61 430	MW8 3/5/2025 680 240 480	Upper 95% 3693 133 1685	No No No
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern Total Iron Dissolved Iron Total Manganese	0.0095 Loca Sampl CUL 3,010 3,010	tion ID e Date Units ug/L ug/L	MW8 12/13/2021 1300 120	MW8 3/22/2022 2800 99	MW8 5/2/2022 2100 65	MW8 6/22/2022 1400 190	MW8 9/20/2022 1100 56	MW8 3/31/2023 17000 82	MW8 10/3/2023 4800 80	MW8 8/22/2024 300 61	MW8 3/5/2025 680 240	Upper 95% 3693 133	No No
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern Total Iron Dissolved Iron Total Manganese	0.0095 Loca Sampl CUL 3,010 3,010 354 354	tion ID e Date Units ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900	MW8 3/22/2022 2800 99 2400 2200	MW8 5/2/2022 2100 65 1600 1700	MW8 6/22/2022 1400 190 1900 1800	MW8 9/20/2022 1100 56 1400 1300	MW8 3/31/2023 17000 82 1100 1400	MW8 10/3/2023 4800 80 510 260	MW8 8/22/2024 300 61 430 420	MW8 3/5/2025 680 240 480 490	Upper 95% 3693 133 1685	No No No No
Total cPAH TEQ (ND=0.5RL) Contaminant of Concern Total Iron Dissolved Iron Total Manganese	0.0095 Loca Sampl CUL 3,010 3,010 354	tion ID e Date Units ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900	MW8 3/22/2022 2800 99 2400 2200	MW8 5/2/2022 2100 65 1600 1700	MW8 6/22/2022 1400 190 1900	MW8 9/20/2022 1100 56 1400 1300	MW8 3/31/2023 17000 82 1100 1400	MW8 10/3/2023 4800 80 510 260	MW8 8/22/2024 300 61 430 420	MW8 3/5/2025 680 240 480 490	Upper 95% 3693 133 1685 1666	No No No No
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern	0.0095 Loca Sampl CUL 3,010 3,010 354 354 Loca Sampl CUL	Units Units Ug/L ug/L ug/L ug/L ug/L ug/L Units Units	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022	MW8 6/22/2022 1400 190 1900 1800 MW10 9/21/2022	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025	Upper 95% 3693 133 1685 1666 Upper 95%	No No No No In Compliance
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern	0.0095 Loca Sampl CUL 3,010 3,010 354 354 Loca Sampl CUL 3,010 CUL 3,010	Units Units Ug/L ug/L ug/L ug/L ug/L ug/L Units Units	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022	MW8 6/22/2022 1400 1900 1900 1800 MW10 9/21/2022	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023	MW8 3/31/2023 17000 82 11000 1400 MW10 4/12/2023	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025	Upper 95% 3693 133 1685 1666 Upper 95%	No No No No
Contaminant of Concern Total Iron Dissolved Manganese Contaminant of Concern Total Iron Dissolved Manganese Contaminant of Concern Total Iron Dissolved Iron	CUL 3,010 CUL 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010	tion ID e Date Units ug/L ug/L ug/L tion ID e Date Units ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930	MW8 6/22/2022 1400 1900 1800 MW10 9/21/2022	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56	Upper 95% 3693 133 1685 1666 Upper 95%	No No No No In Complianc
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern Total Iron Dissolved Manganese Dissolved Manganese	0.0095 Loca Sampl CUL 3,010 3,544 354 Loca Sampl CUL 3,010 2,55	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 1000 4.5	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1.000	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.1	MW8 6/22/2022 1400 190 1900 1800 MW10 9/21/2022 6400 6000 1.1	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.1	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.1	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 1.10	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5	No Yes
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern Total Iron Total Iron Dissolved Manganese Dissolved Manganese Total Iron Total Iron Dissolved Iron Total Lead Total Manganese	CUL 3,010 Sampl CUL 3,010 Solution 354 Solution 354 CUL 3,010 Solution 3,010 Solu	tion ID e Date Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100 4.5 320	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1000 1.11 460	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.11 450	MW8 6/22/2022 1400 190 1900 1800 MW10 9/21/2022 6400 6000 1.11 1600	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.11 750	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.11 1500	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56 11	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000 1.11 1200	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5 1200	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5 1290	No N
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Dissolved Manganese Contaminant of Concern Total Iron Dissolved Iron Total Iron Total Iron Total Iron Dissolved Iron Total Iron Dissolved Iron Total Lead Total Manganese	0.0095 Loca Sampl CUL 3,010 3,544 354 Loca Sampl CUL 3,010 2,55	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 1000 4.5	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1000 1.1	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.1	MW8 6/22/2022 1400 190 1900 1800 MW10 9/21/2022 6400 6000 1.1	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.1	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.1	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 1.10	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5	No Yes
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern Total Iron Total Iron Dissolved Manganese Dissolved Manganese Total Iron Total Iron Dissolved Iron Total Lead Total Manganese	CUL 3,010 3,	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100 4.55 320 200	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1.000 1.11 460 440	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.11 450	MW8 6/22/2022 1400 190 1900 1800 MW10 9/21/2022 6400 6000 1.1 1600	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.11 750 760	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.1 1500 1600	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56 1 1700 1400	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000 1.1 1200 1400	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5 1200 900	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5 1290 1256	No N
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern Total Iron Total Iron Dissolved Manganese Dissolved Manganese Total Iron Total Iron Dissolved Iron Total Lead Total Manganese	CUL 3,010 3,	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100 4.5 320	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1000 1.11 460	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.11 450	MW8 6/22/2022 1400 190 1900 1800 MW10 9/21/2022 6400 6000 1.11 1600	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.11 750	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.11 1500	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56 11	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000 1.11 1200	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5 1200	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5 1290	No N
Contaminant of Concern Total Iron Dissolved Iron Total Manganese Dissolved Manganese Contaminant of Concern Total Iron Dissolved Manganese Dissolved Manganese Contaminant of Concern Total Iron Dissolved Iron Total Lead Total Manganese Dissolved Manganese	CUL 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 4,014 354	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100 4.55 320 200	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1000 1.1 460 440 SWS-1	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.11 450 450 SWS-1	MW8 6/22/2022 1400 1900 1900 1800 MW10 9/21/2022 6400 6000 1.1 1600 SWS-1	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.1 750 760	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.11 1500 1600	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56 170 1400	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000 1.1 1200 1400	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5 1200 900	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5 1290 1256	No N
Contaminant of Concern Total Iron Dissolved Manganese Dissolved Manganese Contaminant of Concern Total Iron Dissolved Manganese Dissolved Manganese Dissolved Manganese Contaminant of Concern Total Iron Dissolved Manganese Dissolved Manganese Contaminant of Concern	CUL 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010 2,5, 354 Loca Sampl	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100 4.5 320 200 SWS-1 12/8/2021	MW8 3/22/2022 2800 99 2400 2200 MW10 5/19/2022 1400 1000 1.1 460 440 SWS-1	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.11 450 450 SWS-1 5/3/2022	MW8 6/22/2022 1400 1900 1900 1800 MW10 9/21/2022 6400 6000 1.1 1600 SWS-1 6/21/2022	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.11 750 760 SWS-1 9/20/2022	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.11 1500 1600 SWS-1 3/30/2023	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56 11 1700 1400	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000 1.11 1200 1400 SWS-1 8/26/2024	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5 1200 900 SWS-1 3/10/2025	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5 1290 1256 Upper 95%	No N
	CUL 3,010 3,	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW8 12/13/2021 1300 120 2100 1900 MW10 4/4/2022 6800 100 4.55 320 200	MW8 3/22/2022 2800 99 2400 5/19/2022 1400 1000 1.11 460 440 SWS-1 3/21/2022	MW8 5/2/2022 2100 65 1600 1700 MW10 6/23/2022 1300 930 1.11 450 450 SWS-1	MW8 6/22/2022 1400 1900 1900 1800 MW10 9/21/2022 6400 6000 1.1 1600 SWS-1	MW8 9/20/2022 1100 56 1400 1300 MW10 4/7/2023 580 390 1.1 750 760	MW8 3/31/2023 17000 82 1100 1400 MW10 4/12/2023 9700 9500 1.11 1500 1600	MW8 10/3/2023 4800 80 510 260 MW10 10/12/2023 8100 56 170 1400	MW8 8/22/2024 300 61 430 420 MW10 8/26/2024 12000 13000 1.1 1200 1400	MW8 3/5/2025 680 240 480 490 MW10 3/10/2025 15000 56 7.5 1200 900	Upper 95% 3693 133 1685 1666 Upper 95% 9074 2881 2.5 1290 1256	No N

Figures



LEGEND

GP-# LANDFILL PERIMETER SOIL GAS PROBE
 LANDFILL GAS SUMP
 LANDFILL GAS VENT
 GRAVEL TRENCH WITH 2 IN PIPE
 CAPPED AND CLOSED LANDFILL AREA

Appendix B

Laboratory Results and Data Validation Reports

September 6, 2024

Garrett Leque GeoEngineers, Inc. 554 West Bakerview Road Bellingham, WA 98226

Re: Analytical Data for Project 6694-002-05 Laboratory Reference No. 2408-343

Dear Garrett:

Enclosed are the analytical results and associated quality control data for samples submitted on August 27, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 6, 2024 Samples Submitted: August 27, 2024 Laboratory Reference: 2408-343

Project: 6694-002-05

Case Narrative

Samples were collected on August 22 and 26, 2024 and received by the laboratory on August 27, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW-6-20240826	08-343-01	Water	8-26-24	8-27-24	
MW-7-20240822	08-343-02	Water	8-22-24	8-27-24	
MW-8-20240822	08-343-03	Water	8-22-24	8-27-24	
MW-10-20240826	08-343-04	Water	8-26-24	8-27-24	
SWS1-20240826	08-343-05	Water	8-26-24	8-27-24	

Date of Report: September 6, 2024 Samples Submitted: August 27, 2024 Laboratory Reference: 2408-343

Project: 6694-002-05

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-20240826					
Laboratory ID:	08-343-01					
Ammonia	0.078	0.053	SM 4500-NH3 D	8-28-24	8-28-24	
Client ID:	MW-7-20240822					
Laboratory ID:	08-343-02					
Ammonia	ND	0.053	SM 4500-NH3 D	8-28-24	8-28-24	
Client ID:	MW-8-20240822					
Laboratory ID:	08-343-03					
Ammonia	ND	0.053	SM 4500-NH3 D	8-28-24	8-28-24	
Client ID:	MW-10-20240826					
Laboratory ID:	08-343-04					
Ammonia	0.87	0.053	SM 4500-NH3 D	8-28-24	8-28-24	
Client ID:	SWS1-20240826					
Laboratory ID:	08-343-05					
		0.052	SW 4500 NH3 D	9 29 24	9 29 24	
Ammonia	1.3	0.053	SM 4500-NH3 D	8-28-24	8-28-24	

Date of Report: September 6, 2024 Samples Submitted: August 27, 2024 Laboratory Reference: 2408-343

Project: 6694-002-05

TOTAL ALKALINITY SM 2320B

Matrix: Water
Units: mg CaCO3/L

Ŭ				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-20240826					
Laboratory ID:	08-343-01					
Total Alkalinity	230	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	MW-7-20240822					
Laboratory ID:	08-343-02					
Total Alkalinity	100	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	MW-8-20240822					
Laboratory ID:	08-343-03					
Total Alkalinity	180	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	MW-10-20240826					
Laboratory ID:	08-343-04					
Total Alkalinity	320	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	SWS1-20240826					
Laboratory ID:	08-343-05					
Total Alkalinity	400	2.0	SM 2320B	8-29-24	8-29-24	

TOTAL BICARBONATE SM 2320B

Matrix: Water

Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-20240826					
Laboratory ID:	08-343-01					
Bicarbonate	230	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	MW-7-20240822					
Laboratory ID:	08-343-02					
Bicarbonate	100	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	MW-8-20240822					
Laboratory ID:	08-343-03					
Bicarbonate	180	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	MW-10-20240826					
Laboratory ID:	08-343-04					
Bicarbonate	320	2.0	SM 2320B	8-29-24	8-29-24	
Client ID:	SWS1-20240826					
Laboratory ID:	08-343-05					
Bicarbonate	400	2.0	SM 2320B	8-29-24	8-29-24	

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-20240826					
Laboratory ID:	08-343-01					
Benzo[a]anthracene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Chrysene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo[a]pyrene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	27-106				
Pyrene-d10	82	37-125				
Terphenyl-d14	80	37-110				
Client ID:	MW-7-20240822					
Laboratory ID:	08-343-02					
Benzo[a]anthracene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Chrysene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo[a]pyrene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270E/SIM	8-29-24	8-29-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	27-106				
Pyrene-d10	96	37-125				
Terphenyl-d14	96	37-110				

TOTAL METALS EPA 200.8/200.7

Matrix: Water Units: ug/L (ppb)

3.3 50	Method EPA 200.8	Prepared 8-30-24	Analyzed	Flags
50		8-30-24		
50		8-30-24		
50		8-30-24		
		0 00 2 1	8-30-24	
	EPA 200.7	9-3-24	9-3-24	
10	EPA 200.7	9-3-24	9-3-24	
3.3	EPA 200.8	8-30-24	8-30-24	
50		9-3-24	9-3-24	
1.1	EPA 200.8	8-30-24	8-30-24	
10	EPA 200.7	9-3-24	9-3-24	
22	EPA 200.8	8-30-24	8-30-24	
50	EPA 200.7	9-3-24	9-3-24	
10	EPA 200.7	9-3-24	9-3-24	
10	EPA 200.7	9-3-24	9-3-24	
50	FPA 200 7	9-3-24	9-3-24	
	3.3 50 1.1 10 22	50 EPA 200.7 3.3 EPA 200.8 50 EPA 200.7 1.1 EPA 200.8 10 EPA 200.7 22 EPA 200.8 50 EPA 200.7 10 EPA 200.7 10 EPA 200.7 11 EPA 200.8 50 EPA 200.7 1.1 EPA 200.8 50 EPA 200.7 1.1 EPA 200.8	50 EPA 200.7 9-3-24 3.3 EPA 200.8 8-30-24 50 EPA 200.7 9-3-24 1.1 EPA 200.8 8-30-24 10 EPA 200.7 9-3-24 22 EPA 200.8 8-30-24 50 EPA 200.7 9-3-24 22 EPA 200.8 8-30-24 50 EPA 200.7 9-3-24 10 EPA 200.7 9-3-24 11 EPA 200.8 8-30-24 50 EPA 200.7 9-3-24 1.1 EPA 200.8 8-30-24 50 EPA 200.7 9-3-24 1.1 EPA 200.8 8-30-24	50 EPA 200.7 9-3-24 9-3-24 50 EPA 200.8 8-30-24 8-30-24 50 EPA 200.7 9-3-24 9-3-24 1.1 EPA 200.8 8-30-24 8-30-24 10 EPA 200.7 9-3-24 9-3-24 22 EPA 200.8 8-30-24 8-30-24 50 EPA 200.7 9-3-24 9-3-24 50 EPA 200.7 9-3-24 9-3-24 10 EPA 200.7 9-3-24 9-3-24 10 EPA 200.7 9-3-24 9-3-24 10 EPA 200.7 9-3-24 9-3-24 50 EPA 200.7 9-3-24 9-3-24 1.1 EPA 200.8 8-30-24 8-30-24 50 EPA 200.7 9-3-24 8-30-24 50 EPA 200.7 9-3-24 8-30-24

DISSOLVED METALS EPA 200.7

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-20240826					
Laboratory ID:	08-343-01					
Iron	800	56	EPA 200.7		9-3-24	
Manganese	640	11	EPA 200.7		9-3-24	
Client ID:	MW-7-20240822					
Laboratory ID:	08-343-02					
Iron	ND	56	EPA 200.7		9-3-24	
Manganese	280	11	EPA 200.7		9-3-24	
Client ID:	MW-8-20240822					
Laboratory ID:	08-343-03					
Iron	61	56	EPA 200.7		9-3-24	
Manganese	420	11	EPA 200.7		9-3-24	
Client ID:	MW-10-20240826					
Laboratory ID:	08-343-04					
Iron	13000	56	EPA 200.7		9-3-24	
Manganese	1400	11	EPA 200.7		9-3-24	

AMMONIA (as Nitrogen) SM 4500-NH₃ D **QUALITY CONTROL**

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828W1					
Ammonia	ND	0.053	SM 4500-NH3 D	8-28-24	8-28-24	

	_			Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-27	74-05							
	ORIG	DUP							
Ammonia	ND	ND	NA	NA	NA	NA	NA	15	
MATRIX SPIKE									
Laboratory ID:	08-27	74-05							
	М	S	MS		MS				
Ammonia	5.′	12	5.00	ND	102	75-111	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB082	28W1							
	S	В	SB		SB				
Ammonia	4.9	92	5.00	NA	98	81-110	NA	NA	

TOTAL ALKALINITY SM 2320B **QUALITY CONTROL**

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829W1					
Total Alkalinity	ND	2.0	SM 2320B	8-29-24	8-29-24	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	39-01							
	ORIG	DUP							
Total Alkalinity	100	100	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB08	29W1							
	S	В	SB		SB				
Total Alkalinity	96	6.0	100	NA	96	82-101	NA	NA	

TOTAL BICARBONATE SM 2320B **QUALITY CONTROL**

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829W1					
Bicarbonate	ND	2.0	SM 2320B	8-29-24	8-29-24	

Analyte	Result		Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	39-01							
	ORIG	DUP							
Bicarbonate	100	100	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB08	29W1							
	S	В	SB		SB				
Bicarbonate	96	6.0	100	NA	96	82-101	NA	NA	•

PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829W1					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Chrysene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	8-29-24	8-29-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	27-106				
Pyrene-d10	78	37-125				
Terphenyl-d14	76	37-110				

PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	29W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.498	0.545	0.500	0.500	100	109	55-116	9	22	
Chrysene	0.427	0.475	0.500	0.500	85	95	59-111	11	23	
Benzo[b]fluoranthene	0.406	0.461	0.500	0.500	81	92	62-115	13	27	
Benzo(j,k)fluoranthene	0.448	0.481	0.500	0.500	90	96	59-117	7	23	
Benzo[a]pyrene	0.442	0.478	0.500	0.500	88	96	64-109	8	24	
Indeno(1,2,3-c,d)pyrene	0.402	0.459	0.500	0.500	80	92	58-114	13	22	
Dibenz[a,h]anthracene	0.421	0.461	0.500	0.500	84	92	63-114	9	24	
Surrogate:										
2-Fluorobiphenyl					64	56	27-106			
Pyrene-d10					80	80	37-125			
Terphenyl-d14					76	87	37-110			

TOTAL METALS EPA 200.8/200.7 **QUALITY CONTROL**

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829WH1					
Iron	ND	50	EPA 200.7	9-3-24	9-3-24	
Manganese	ND	10	EPA 200.7	9-3-24	9-3-24	
Laboratory ID:	MB0830WM1					
Arsenic	ND	3.3	EPA 200.8	8-30-24	8-30-24	
Lead	ND	1.1	EPA 200.8	8-30-24	8-30-24	
Nickel	ND	22	EPA 200.8	8-30-24	8-30-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-14	40-06									
	ORIG	DUP									
Iron	5560	5380	NA	NA		ı	NA	NA	3	20	
Manganese	1370	1320	NA	NA		l	NA	NA	4	20	
Laboratory ID:	08-32	22-01									
Arsenic	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		ı	NΑ	NA	NA	20	
Nickel	ND	ND	NA	NA		l	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-14	40-06									
	MS	MSD	MS	MSD		MS	MSD				
Iron	24400	24900	20000	20000	5560	94	97	75-125	2	20	
Manganese	1790	1780	500	500	1370	84	82	75-125	1	20	
Laboratory ID:	08-32	22-01									
Arsenic	117	111	111	111	ND	105	100	75-125	5	20	
Lead	109	107	111	111	ND	98	96	75-125	2	20	
Nickel	109	104	111	111	ND	99	94	75-125	5	20	

DISSOLVED METALS EPA 200.7 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0903D1					
Iron	ND	56	EPA 200.7		9-3-24	_
Manganese	ND	11	EPA 200.7		9-3-24	

	_				Source		rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-2	89-07									
	ORIG	DUP									
Iron	17600	17600	NA	NA			NA	NA	0	20	
Manganese	1020	1010	NA	NA			NA	NA	0	20	
MATRIX SPIKES											
Laboratory ID:	08-2	89-07									
	MS	MSD	MS	MSD		MS	MSD				
Iron	103000	110000	100000	100000	17600	85	93	75-125	7	20	
Manganese	1480	1470	556	556	1020	84	81	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

00
The same of
9 1
46
K
V
V
~
~
Y
y
y
y
y
Y
y
y
y
y
y
y
y
y
y
y
y
y

Page

						đ	E												6					
Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished ///// CM/	Signatuye //	7		8127127	SWS1	9280h202-5024086	9220h202-01-MW h	2280h202-8-MW 5		92801202-9-MM 1	Lab ID Sample Identification	Sampled by: 4DE	Project Manager:	Project Name: (50 EGST	Project Number: 6694-002-05	Company: G		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					V (ODE	1 OET	Company		· .			42424 REPORT	(530)	JOH9/ MARS/8	1946	1315 W	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)		Same Day 1 Day	(Check One)	Turnaround Request (in working days)
					SI M/22/2	:51 K2122k	Date Time				3625-379-370-370	3 4	, , , , , , , , , , , , , , , , , , ,		×	× × ×	NWTP NWTP NWTP	Hex/	TTEX (80	13 121 8 1 + B n-up	icar	b 5		Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard ☐ Level III ☐ Level IV ☐			TTTTCG TITE		30 Call Granet Work	Comments/Special Instructions					× .				X X X	Semive (with lot PAHs & PCBs & Organo Chlorin	PA 801 platiles by leve 3270/SI 8082 pochloring phospinated Administration Metals bill and general section of the section of	1 (Water 8270/SI 1 PAHs) M (Iow- horus P cid Hert etals etals	M level) cides 80 esticides 80	81 s 8270/	SIM		ber: 08-343
EDDe)				0		J.85.6						×	×		X		PF Wall) Türe	+6+ -11		bal		The Control of the Co	

March 25, 2025

Garrett Leque GeoEngineers, Inc. 554 West Bakerview Road Bellingham, WA 98226

Re: Analytical Data for Project 6694-002-05 Laboratory Reference No. 2503-127

Dear Garrett:

Enclosed are the analytical results and associated quality control data for samples submitted on March 10, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 25, 2025 Samples Submitted: March 10, 2025 Laboratory Reference: 2503-127

Project: 6694-002-05

Case Narrative

Samples were collected on March 4, 5, 6 and 10, 2025 and received by the laboratory on March 10, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
20250304-MW-7	03-127-01	Water	3-4-25	3-10-25	
20250305-MW-8	03-127-02	Water	3-5-25	3-10-25	
20250306-MW-3	03-127-03	Water	3-6-25	3-10-25	
20250306-MW-2	03-127-04	Water	3-6-25	3-10-25	
20250306-MW-6	03-127-05	Water	3-6-25	3-10-25	
20250310-MW-10	03-127-06	Water	3-10-25	3-10-25	
20250310-SWS-1	03-127-07	Water	3-10-25	3-10-25	

PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250304-MW-7					
Laboratory ID:	03-127-01					
Benzo[a]anthracene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Chrysene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo[a]pyrene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	27-106				
Pyrene-d10	77	37-125				
Terphenyl-d14	94	37-110				
Client ID:	20250306-MW-6					
Laboratory ID:	03-127-05					
Benzo[a]anthracene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Chrysene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo[a]pyrene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270E/SIM	3-11-25	3-11-25	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	27-106				
Pyrene-d10	84	37-125				

рΗ SM 4500-H B

Matrix: Water

Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	20250310-MW-10				
Laboratory ID:	03-127-06				
рН	6.8	SM 4500-H B	3-12-25	3-12-25	
Client ID:	20250310-SWS-1				
Laboratory ID:	03-127-07				
рH	7.4	SM 4500-H B	3-12-25	3-12-25	

TOTAL DISSOLVED SOLIDS SM 2540C

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Total Dissolved Solids	330	13	SM 2540C	3-13-25	0313-25	
Client ID:	20250310-SWS-1					
Laboratory ID:	03-127-07					
Total Dissolved Solids	450	13	SM 2540C	3-13-25	0313-25	•

TURBIDITY EPA 180.1

Matrix: Water Units: NTU

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Turbidity	310	1.0	EPA 180.1	3-12-25	3-12-25	
Client ID:	20250310-SWS-1					
Laboratory ID:	03-127-07					
Turbidity	88	0.40	EPA 180.1	3-12-25	3-12-25	

TOTAL METALS EPA 200.7/200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	Flags
Analyte	Result	PQL	Method	Prepared	Analyzed	
Client ID:	20250304-MW-7					
Laboratory ID:	03-127-01					
Arsenic	8.1	3.3	EPA 200.8	3-14-25	3-14-25	
Iron	1200	50	EPA 200.7	3-14-25	3-14-25	
Lead	ND	1.1	EPA 200.8	3-14-25	3-14-25	
Manganese	62	10	EPA 200.7	3-14-25	3-14-25	
Nickel	ND	22	EPA 200.8	3-14-25	3-14-25	
Client ID:	20250305-MW-8					
Laboratory ID:	03-127-02					
Iron	680	50	EPA 200.7	3-14-25	3-14-25	
Manganese	480	10	EPA 200.7	3-14-25	3-14-25	
Client ID:	20250306-MW-3					
Laboratory ID:	03-127-03					
Iron	390	50	EPA 200.7	3-14-25	3-14-25	
Manganese	190	10	EPA 200.7	3-14-25	3-14-25	
Client ID:	20250306-MW-2					
Laboratory ID:	03-127-04					
Iron	430	50	EPA 200.7	3-14-25	3-14-25	
Manganese	240	10	EPA 200.7	3-14-25	3-14-25	
Client ID:	20250306-MW-6					
Laboratory ID:	03-127-05					
Arsenic	7.9	3.3	EPA 200.8	3-14-25	3-14-25	
Iron	2700	50	EPA 200.7	3-14-25	3-14-25	
Manganese	850	10	EPA 200.7	3-14-25	3-14-25	
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Iron	15000	50	EPA 200.7	3-14-25	3-14-25	
Lead	7.5	1.1	EPA 200.8	3-14-25	3-14-25	
Manganese	1200	10	EPA 200.7	3-14-25	3-14-25	

TOTAL METALS EPA 200.7/200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250310-SWS-1					
Laboratory ID:	03-127-07					
Iron	14000	50	EPA 200.7	3-14-25	3-14-25	
Lead	ND	1.1	EPA 200.8	3-14-25	3-14-25	
Manganese	2100	10	EPA 200.7	3-14-25	3-14-25	

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

mg daddo/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250304-MW-7					
Laboratory ID:	03-127-01					
Total Alkalinity	110	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250305-MW-8					
Laboratory ID:	03-127-02					
Total Alkalinity	170	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250306-MW-3					
Laboratory ID:	03-127-03					
Total Alkalinity	110	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250306-MW-2					
Laboratory ID:	03-127-04					
Total Alkalinity	120	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250306-MW-6					
Laboratory ID:	03-127-05					
Total Alkalinity	260	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Total Alkalinity	270	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250310-SWS-1					
Laboratory ID:	03-127-07					
Total Alkalinity	430	2.0	SM 2320B	3-15-25	3-15-25	

TOTAL BICARBONATE SM 2320B

Matrix: Water Units: mg CaCO3/L

Office. The Cacoote				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250304-MW-7					
Laboratory ID:	03-127-01					
Bicarbonate	110	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250305-MW-8					
Laboratory ID:	03-127-02					
Bicarbonate	170	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250306-MW-3					
Laboratory ID:	03-127-03					
Bicarbonate	110	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250306-MW-2					
Laboratory ID:	03-127-04					
Bicarbonate	120	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250306-MW-6					
Laboratory ID:	03-127-05					
Bicarbonate	250	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Bicarbonate	260	2.0	SM 2320B	3-15-25	3-15-25	
Client ID:	20250310-SWS-1					
Laboratory ID:	03-127-07					
Bicarbonate	430	2.0	SM 2320B	3-15-25	3-15-25	

Date of Report: March 25, 2025 Samples Submitted: March 10, 2025 Laboratory Reference: 2503-127

Project: 6694-002-05

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250304-MW-7					
Laboratory ID:	03-127-01					
Ammonia	ND	0.053	SM 4500-NH3 D	3-25-25	3-25-25	
Client ID:	20250305-MW-8					
Laboratory ID:	03-127-02					
Ammonia	ND	0.053	SM 4500-NH3 D	3-25-25	3-25-25	
Client ID:	20250306-MW-6					
Laboratory ID:	03-127-05					
Ammonia	0.11	0.053	SM 4500-NH3 D	3-25-25	3-25-25	
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Ammonia	0.55	0.053	SM 4500-NH3 D	3-25-25	3-25-25	
Client ID:	20250310-SWS-1					
Laboratory ID:	03-127-07					
Ammonia	1.5	0.053	SM 4500-NH3 D	3-25-25	3-25-25	

DISSOLVED METALS EPA 200.7

Matrix: Water ug/L (ppb) Units:

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	20250304-MW-7					
Laboratory ID:	03-127-01					
Iron	ND	56	EPA 200.7		3-14-25	
Manganese	69	11	EPA 200.7		3-14-25	
Client ID:	20250305-MW-8					
Laboratory ID:	03-127-02					
Iron	240	56	EPA 200.7		3-14-25	
Manganese	490	11	EPA 200.7		3-14-25	
Client ID:	20250306-MW-3					
Laboratory ID:	03-127-03					
Iron	ND	56	EPA 200.7		3-14-25	
Manganese	130	11	EPA 200.7		3-14-25	
Client ID:	20250306-MW-2					
Laboratory ID:	03-127-04					
Iron	ND	56	EPA 200.7		3-14-25	
Manganese	210	11	EPA 200.7		3-14-25	
Olice at ID.	00050000 MNA/ 0					
Client ID:	20250306-MW-6					
Laboratory ID:	03-127-05 900	56	EPA 200.7		3-14-25	
Iron	750	ອຣ 11	EPA 200.7 EPA 200.7		3-14-25 3-14-25	
Manganese	750		EPA 200.7		3-14-25	
Client ID:	20250310-MW-10					
Laboratory ID:	03-127-06					
Iron	ND	56	EPA 200.7	3-13-25	3-14-25	
Manganese	900	11	EPA 200.7	3-13-25	3-14-25	
		• • • • • • • • • • • • • • • • • • • •		<u> </u>	<u> </u>	

PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0311W1					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Chrysene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	3-11-25	3-11-25	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	27-106				
Pyrene-d10	86	37-125				
Terphenyl-d14	100	37-110				

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Red	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	11W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.415	0.397	0.500	0.500	83	79	55-116	4	22	
Chrysene	0.461	0.442	0.500	0.500	92	88	59-111	4	23	
Benzo[b]fluoranthene	0.447	0.418	0.500	0.500	89	84	62-115	7	27	
Benzo(j,k)fluoranthene	0.464	0.472	0.500	0.500	93	94	59-117	2	23	
Benzo[a]pyrene	0.447	0.420	0.500	0.500	89	84	64-109	6	24	
Indeno(1,2,3-c,d)pyrene	0.433	0.423	0.500	0.500	87	85	58-114	2	22	
Dibenz[a,h]anthracene	0.449	0.433	0.500	0.500	90	87	63-114	4	24	
Surrogate:										
2-Fluorobiphenyl					58	58	27-106			
Pyrene-d10					84	81	37-125			
Terphenyl-d14					88	89	37-110			

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

Matrix: Water Units: mg/L

				Date	Date Analyzed	Flags
Analyte	Result	PQL	Method	Prepared		
METHOD BLANK						
Laboratory ID:	MB0313W1					
Total Dissolved Solids	ND	13	SM 2540C	3-13-25	0313-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	03-15	50-01							
	ORIG	DUP							
Total Dissolved Solids	120	132	NA	NA	NA	NA	10	29	
SPIKE BLANK									
Laboratory ID:	SB03	13-W1							
	S	В	SB		SB				
Total Dissolved Solids	48	81	500	NA	96	76-120	NA	NA	

TURBIDITY EPA 180.1 QUALITY CONTROL

Matrix: Water Units: NTU

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0312W1					
Turbidity	ND	0.10	EPA 180.1	3-12-25	3-12-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	03-12	27-06							
	ORIG	DUP							
Turbidity	310	310	NA	NA	NA	NA	0	19	

TOTAL METALS EPA 200.7/200.8 **QUALITY CONTROL**

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0314WH2					
Iron	ND	50	EPA 200.7	3-14-25	3-14-25	
Manganese	ND	10	EPA 200.7	3-14-25	3-14-25	
Laboratory ID:	MB0314WM1					
Arsenic	ND	3.3	EPA 200.8	3-14-25	3-14-25	
Lead	ND	1.1	EPA 200.8	3-14-25	3-14-25	
Nickel	ND	22	EPA 200.8	3-14-25	3-14-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-12	27-01									
	ORIG	DUP									
Iron	1160	1180	NA	NA		1	NΑ	NA	2	20	
Manganese	61.6	62.4	NA	NA		1	NA	NA	1	20	
Laboratory ID:	02-30	09-10									
Arsenic	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Lead	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Nickel	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	03-12	27-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	22600	22600	20000	20000	1160	107	107	75-125	0	20	
Manganese	595	580	500	500	61.6	107	104	75-125	3	20	
Laboratory ID:	02-30	09-10									
Arsenic	97.3	96.9	111	111	ND	88	87	75-125	0	20	
Lead	102	98.5	111	111	ND	92	89	75-125	3	20	
Nickel	105	102	111	111	ND	94	92	75-125	2	20	

Date of Report: March 25, 2025 Samples Submitted: March 10, 2025 Laboratory Reference: 2503-127

Project: 6694-002-05

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water
Units: mg CaCO3/L

				Date	Date	
Analyte	Result PC		Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0315W1					
Total Alkalinity	1.0	2.0	SM 2320B	3-15-25	3-15-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE								-	
Laboratory ID:	03-12	27-01							
	ORIG	DUP							
Total Alkalinity	106	104	NA	NA	NA	NA	2	10	
SPIKE BLANK									
Laboratory ID:	SB03	15W1							
	S	В	SB		SB				
Total Alkalinity	98	3.0	100	NA	98	82-101	NA	NA	

TOTAL BICARBONATE SM 2320B **QUALITY CONTROL**

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result PQL Method		Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0315W1					
Bicarbonate	1.0	2.0	SM 2320B	3-15-25	3-15-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	03-12	27-01							
	ORIG	DUP							
Bicarbonate	106	104	NA	NA	NA	NA	2	10	
SPIKE BLANK									
Laboratory ID:	SB03	15W1							
	S	В	SB		SB		•	•	•
Bicarbonate	98	3.0	100	NA	98	82-101	NA	NA	

Date of Report: March 25, 2025 Samples Submitted: March 10, 2025 Laboratory Reference: 2503-127

Project: 6694-002-05

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0325W1					
Ammonia	ND	0.053	SM 4500-NH3 D	3-25-25	3-25-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-12	27-01							
	ORIG	DUP							
Ammonia	ND	ND	NA	NA	NA	NA	NA	15	
MATRIX SPIKE									
Laboratory ID:	03-12	27-01							
	M	IS	MS		MS				
Ammonia	4.	50	5.00	ND	90	75-111	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB03	25W1							
-	S	В	SB	•	SB		•		•
Ammonia	5.	18	5.00	NA	104	81-110	NA	NA	

Date of Report: March 25, 2025 Samples Submitted: March 10, 2025 Laboratory Reference: 2503-127

Project: 6694-002-05

DISSOLVED METALS EPA 200.7 QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0313F1					
Iron	ND	56	EPA 200.7	3-13-25	3-14-25	_
Manganese	ND	11	EPA 200.7	3-13-25	3-14-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-12	27-01									
	ORIG	DUP									
Iron	ND	ND	NA	NA		1	NA	NA	NA	20	
Manganese	69.3	71.9	NA	NA		1	NA	NA	4	20	
MATRIX SPIKES											
Laboratory ID:	03-12	27-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	24700	25000	22200	22200	ND	111	113	75-125	1	20	
Manganese	641	645	556	556	69.3	103	104	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Lab ID Project Manager: Project Number: 6694-062-05 Sampled by: Relinquished Reviewed/Date Relinquished Relinquished Received 70250310-MW-20150305 -mw-8 20250306-mw-0250304-MW-0250310-0150306-mw-0250306-MWI Phone: (425) 883-3881 • www.onsite-env.com 14648 NE 95th Sample Identification 425 O ME X 0 Standard (7 Days) 1400 1200 A. C. 700 200 (other) ☐ 1 Day

Q

3/10

1815

Comments/Special Instructions

200

Spe Turpidity Satisfi

Lame tess, pt

Carp or

YOU CON DO

Pleas

T-157 2020310-82-10

Data Package: Standard

Level \equiv

Level IV

Chromatograms with final report

Electronic Data Deliverables (EDDs)

б

Number of Containers

NWTPH-Gx/BTEX (8021 8260)

NWTPH-Dx (SG Clean-up □)

Halogenated Volatiles 8260 EDB EPA 8011 (Waters Only)

Semivolatiles 8270/SIM

Organochlorine Pesticides 8081

Chlorinated Acid Herbicides 8151

HEM (oil and grease) 1664

+ Bicarl

Organophosphorus Pesticides 8270/SIM

(with low-level PAHs) PAHs 8270/SIM (low-level)

NWTPH-HCID

NWTPH-Gx

Volatiles 8260

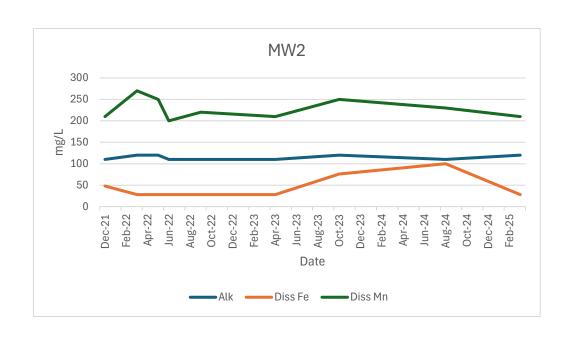
tory Testing Services Street • Redmond, WA 98052	imental inc.
Turnaround Request (in working days)	Clialli of Charon)
Laboratory Number:	Justouy
03-127 &	
(to t	Page of

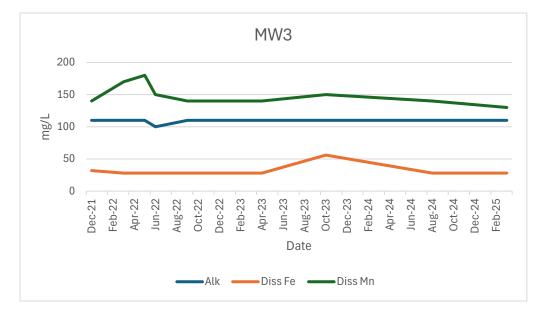
3 Days

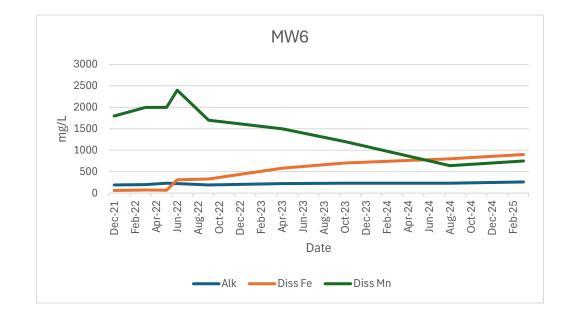
Appendix C Trend Analysis

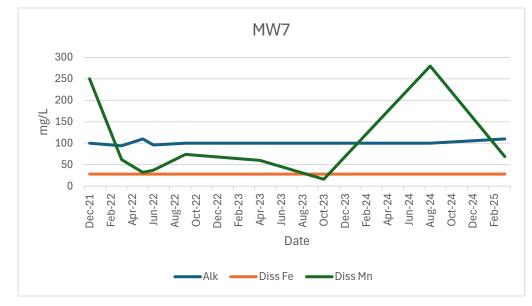
	MW2				
Date	Alk	Diss Fe	Diss Mn		
12/9/2021	110	48	210		
3/11/2022	120	28	270		
5/3/2022	120	28	250		
6/20/2022	110	28	200		
9/21/2022	110	28	220		
4/5/2023	110	28	210		
10/6/2023	120	76	250		
8/26/2024	110	100	230		
3/6/2025	120	28	210		
S	2	5	-4		
Var S	67	64	87		
Z	0.12	0.50	-0.32		
р	0.90	0.62	0.75		

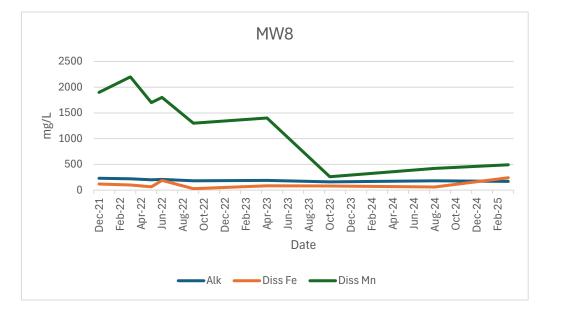
	MW3			
Date	Alk	Diss Fe	Diss Mn	
12/9/2021	110	32	140	
3/11/2022	110	28	170	
5/3/2022	110	28	180	
6/20/2022	100	28	150	
9/21/2022	110	28	140	
4/5/2023	110	28	140	
10/6/2023	110	56	150	
8/26/2024	110	28	140	
3/6/2025	110	28	130	
S	2	-3	-15	
Var S	27	48	82	
Z	0.19	-0.29	-1.54	
n	0.85	0.77	0.12	


	MW6				
Date	Alk	Diss Fe	Diss Mn		
12/9/2021	190	62	1800		
3/11/2022	200	74	2000		
5/3/2022	230	67	2000		
6/20/2022	220	310	2400		
9/21/2022	190	330	1700		
4/5/2023	220	580	1500		
10/6/2023	230	700	1200		
8/26/2024	230	800	640		
3/6/2025	260	900	750		
S	21	34	-23		
Var S	86	92	91		
Z	2.15	3.44	-2.31		
р	0.03	0.001	0.02		


		MW7				
	Date	Alk	Diss Fe	Diss Mn		
	12/9/2021	100	28	250		
	3/11/2022	94	28	62		
	5/3/2022	110	28	32		
	6/20/2022	96	28	37		
	9/21/2022	100	28	74		
	4/5/2023	100	28	60		
	10/6/2023	100	28	16		
	8/26/2024	100	28	280		
	3/6/2025	110	28	69		
li	S	11	0	0		
	Var S	74	0	92		
	Z	1.16	0.00	0.00		
	р	0.25	1.00	1.00		


		MW8				
	Date	Alk	Diss Fe	Diss Mn		
	12/9/2021	230	120	1900		
	3/11/2022	220	99	2200		
	5/3/2022	200	65	1700		
	6/20/2022	210	190	1800		
	9/21/2022	180	28	1300		
	4/5/2023	190	82	1400		
ľ	10/6/2023	160	80	260		
	8/26/2024	180	61	420		
	3/6/2025	170	240	490		
	S	-27	-4	-24		
	Var S	91	92	92		
	Z	-2.73	-0.31	-2.40		
	р	0.01	0.75	0.02		


Notes


Yellow highlighting indicates trend is significant at 5% level.

