WA7152 1/23/96 179

Northwest EnviroService Inc. Western Blower Property

1.1.1

RCRA Closure Sampling Results

Northwest EnviroService Inc. Western Blower Property RCRA Closure Sampling Results

Introduction

From 1987 until 1995, Northwest EnviroService Inc. (NWES) operated a hazardous waste treatment and storage facility whose operations were regulated by the Washington State Department of Ecology (Ecology) under the Resource Conservation and Recovery Act (RCRA). NWES discontinued its hazardous waste operations in February 1995. Currently, NWES is proceeding with RCRA closure of the facility. This report summarizes the sampling results conducted in support of closure for that portion of the NWES facility known as the Western Blower property, located at 1700 Airport Way South.

Operations Conducted on the Western Blower Property

Hazardous waste operations have not been conducted on the Western Blower property since 1995. The Western Blower property encompasses former NWES operational areas 11 and 12. Areas 11 and 12 were covered with concrete pavement before NWES commenced operations in 1987. The pavement was routinely inspected and repaired (i.e., crack sealing). Care of the pavement, combined with spill prevention practices reduced the likelihood of any contaminated release to subpavement soils.

The RCRA regulated activities that historically have occurred in Areas 11 and 12 are described below:

- Blending of paint and paint-related wastes was conducted in Area 11. These activities were performed in compliance with the Dangerous Waste Regulations recycling exemptions (WAC 173-303). These wastes were processed and pumped to a dedicated tank located within the South Tank farm on the NWES property adjacent to the Western Blower property or repackaged and stored on the adjacent NWES property. All the paint related wastes were shipped offsite to a permitted energy recovery facility or to a permitted disposal facility.
- A solids energy recovery program also occurred in Area 11. F-listed solvent rags were received by NWES as solid wastes. The rags were compacted in a rag baler and then shipped to an offsite incinerator. The liquids collected from the compactor were transferred to the dedicated tank located within the South Tank Farm for later shipment to the offsite energy recovery facility.
- Area 11 was also the location where aerosol cans were depressurized. Empty cans were punctured. Gas residues were collected in activated carbon filters and liquids were transferred to a tank located within the South Tank Farm for offsite energy recovery.

 Administrative and warehousing activities were conducted in Area 12. Sealed, containerized wastes were unloaded from trucks at the load/unload dock and transported to the adjacent NWES property for processing.

Soil and Concrete Sample Collection - Field Sampling and Analytical Methods

Samples were collected to determine if NWES operations on the Western Blower property impacted the environment. Three concrete samples were collected from the loading dock surface and four soil samples were collected from beneath the driveway in Areas 11 and 12 on January 23 and 25, 1996. Sampling procedures were conducted according to Appendix A, Field Sampling and Analysis Plan of the draft *NWES Interim Status Closure Plan, July, 1995*.

As agreed with Ecology and US EPA Region 10, the samples were analyzed for 40 CFR 264, Appendix IX compounds that have comparable Model Toxics Control Act (MTCA) Method B soil cleanup levels (CULs) and were associated with NWES operations. A total of 172 chemical constituents were analyzed for including:

- volatile organic compounds
- semivolatile organic compounds
- pesticides / PCBs
- organophosphorous pesticides
- sulfide
- TPH
- dioxins
- metals and cyanide

Because total petroleum hydrocarbons (TPH) are not either Method B or Appendix IX compound MTCA Method A soils cleanup levels were used for comparison. Table A-1 in Appendix A lists these compounds by analytical group. Table A-2 in Appendix A summarizes all of the detected compounds. Appendix B contains the analytical data quality assurance/quality control summary, and Appendix C contains the Laboratory Data Reports.

Out of all the compounds tested for, only six constituents were detected at levels exceeding their respective cleanup levels. This included:

One semivolatile compound (benzo(a)pyrene), four inorganic compounds (arsenic, beryllium, cadmium, and lead), and TPH were detected at concentrations above their respective MTCA Method B CUL. Table 1 presents these results. A discussion of these results and their significance follows:

Table 1 Western Blower Sampling Results - MTCA Method B Soil CULs Exceedance						
Sample ID	Chemical Group	Parameter	Parameter MTCA Method B Soil Cleanup Level (mg/kg)		Lab Qualifier	
A11-S001	Inorganics	ARSENIC	1.667	7.800		
A11-S001	Inorganics	LEAD	250	315	N*J	
A11-S001	Semivolatiles	BENZO(a)PYRENE	0.137	0.33	J	
A11-S001	ТРН	ТРН	200*	580		
A11-S002	Inorganics	ARSENIC	1.667	5.3		
A11-S-002	Inorganics	BERYLLIUM	0.233	0.27	В	
A12-C-001	Inorganics	ARSENIC	1.667	7	В	
A12-C-001	Inorganics	BERYLLIUM	0.233	0.28	В	
A12-C-001	TPH	ТРН	200	410	J	
A12-C-002	Inorganics	ARSENIC	1.667	6.2	BJ	
A12-C-002	Inorganics	BERYLLIUM	0.233	0.31	BJ	
A12-C-002	Inorganics	CADMIUM	80	200	J	
A12-C-002	ТРН	ТРН	200	1100	J	
A12-C-003	Inorganics	ARSENIC	1.667	15.3		
A12-C-003	Inorganics	BERYLLIUM	0.233	0.26	В	
A12-C-003	TPH	ТРН	200	550		
A12-S-001	Inorganics	ARSENIC	1.667	6		
A12-S-001	Semivolatiles	BENZO(A)PYRENE	0.137	0.15	J	
A12-S-002	Inorganics	ARSENIC	1.667	4.7	J	
A12-S-002	TPH	ТРН	200	350	J	
*Value listed is	for MTCA Metho	d A CUL for Diesel.				

Organic Compounds

Benzo(a)pyrene. Two soil samples exceeded the MTCA Method B soil CUL level of 0.137 mg/kg for benzo(a)pyrene: A11-S-001 (0.33 mg/kg) and A12-S-001 (0.15 mg/kg). Both sample concentrations were flagged as estimates by the analytical laboratory because the concentrations were below the analytical reporting limit (see Table B-1 in Appendix B).

Benzo(a)pyrene, a polynuclear aromatic hydrocarbon (PAH) compound, is not associated with past facility treatment operations. Further, there are no recorded spills or releases which would account for its presence at the facility. Consequently, the presence of PAHs is believed to be due to background sources. Benzo(a)pyrene, along with several other PAH compounds have been detected throughout the Puget Sound Region. The presence of PAH compounds in the soil sampled at NWES may be attributable to past industrial activities in the Puget Sound Region or be naturally occurring. The industrial activities include coal shipping or air pollution from coal combustion which was not uncommon in the Puget

Sound Region during the first half of the 20th century. A data review of five industrial facilities located along the Duwamish River found that PAHs were detected in all five sites in both soil and groundwater (CH2M HILL, February 1995).

It is also possible that benzo(a)pyrene detected in the two soil samples may be derived from natural weathering of regional coal-bearing formations, including those that drained into the Duwamish River. The source of fill material on which the Western Blower property is situated has been documented to be characteristic of the land surfaces that align the Duwamish Waterway (NWES RFI Workplan, June 1994).

Total Petroleum Hydrocarbon. TPH was reported in five samples: two soil samples (350 and 580 mg/kg) and three concrete samples (410, 550, and 1100 mg/kg). NWES did not treat oily wastes on the Western Blower property. These detections are also believed to be indicative of background conditions.

While TPH was detected in these samples, subsequent analyses for volatiles and semivolatile constituent failed to identify chemical compounds which are typically associated with petroleum products (i.e., naphthalene) above MTCA Method B soils CULs.

Incidental emissions and drips from areas where vehicles routinely operated is a more plausible source of TPH contaminants. The results obtained during this sampling effort are believed to be comparable to any other parking lot or roadway were vehicles are stored or operated. Another possible explanation is that the TPH analytical method 418.1 is known to give false positive results in soils due to interference from naturally occurring organic matter. Based on this information, Ecology has recently recommended that soils not be analyzed by Method 418.1 but instead be analyzed for the individual chemical compounds normally associated with petroleum compounds NWES has completed these analyses and no constituents above MTCA Method B soil CULs were detected.

Inorganic Compounds

Four metals (arsenic, beryllium, cadmium, and lead) were detected above their respective MTCA Method B soil cleanup levels.

Because metals are naturally occurring in soils, it is useful to compare measured concentrations to natural levels Ecology has determined to be acceptable (*Natural Background Soil Metals Concentration in Washington State* Pub. #94-115, 10/94). NWES has evaluated the inorganic compound results in accordance with the following Ecology guidance, "If a Method A, B, or C cleanup level is a lower concentration than natural background, the cleanup level can be established at a concentration equal to the natural background concentration." "If background levels are used as cleanup levels, no single sample should be greater than twice the 90th percentile value and less than 10% of samples should exceed the 90th percentile value" (WAC 173-340-740(7)(e). The 90th percentile is a conservative default value. Ecology anticipates that 10% will exceed this value.

Arsenic

Arsenic was detected in all 7 samples. All soils met Ecology's background criterion. One concrete sample slightly exceeded twice the 90th percentile values (15.3 versus 14.6 mg/kg). All results were below the maximum level reported for natural background levels for the Puget Sound Basin.

Beryllium

Beryllium was detected in 1 soil and 3 concrete samples at concentrations slightly above its respective MTCA Method B soil CUL (0.23 mg/kg). Like arsenic, beryllium is commonly found in the Puget Sound Region. Based on Ecology's survey, the natural background concentration of beryllium in surficial soil in the Puget Sound Basin was found to be 0.6 mg/kg. The concentration reported in the soil at NWES (0.27 mg/kg) is below the conservative 90th percentile value.

Beryllium was found in all three concrete samples in the range of 0.26 to 0.31 mg/kg. The concentrations found in the concrete samples are also below the natural background soils levels established by Ecology for Puget Sound.

Cadmium

One concrete sample exceeded the respective MTCA Method B CUL of 80 mg/kg for cadmium: A12-C-002 (200 mg/kg). Likewise, these levels exceeded the 90th percentile value for cadmium in soil (0.8 mg/kg). Cadmium was not related to facility operations and no known spills have occurred in Area 12 involving cadmium. Further, there was no visible evidence of spills or contamination that might be a source of this detected compound. (It is possible that the metal bit used to collect the concrete sample or the presence of yellow striping paint on the loading dock are sources of these anomalous detections. Both materials contain cadmium.

Lead

The natural background level of lead (90th percentile) found in the Puget Sound Basin is 24 mg/kg with a maximum concentration 207 mg/kg. Lead was detected in one NWES soil sample (315 mg/kg) above its MTCA Method A soil CUL (250 mg/kg), and above the reported background value. Lead is not associated with NWES practices. A possible explanation for the presence of lead include natural levels in fill material and/or the very close proximity of the site to Interstate 5 and Airport Way South. The major traffic volumes using these two roadways and the corresponding vehicle emissions which would contain lead is a more likely source than NWES activities. This lead concentration is comparable with lead results obtained by any EPA from three surface soil samples they collected along Airport Way South in July of 1988 (NWES RFI Workplan, June 1994).

Groundwater Sampling

On April 21, 1994, four groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4), located at the NWES facility, were sampled. Monitoring wells MW-1 and MW-2 are located on the Western Blower property. MW-3 and 4 are located on the adjacent NWES property. Each groundwater sample was analyzed for 199 chemical compounds from the Appendix IX list.

Manganese was detected in MW-1 and MW-2 samples above the MTCA Method B groundwater cleanup level of 80 µg/l. All other chemical compounds analyzed for in MW-1 and MW-2 were below their respective MTCA Method B groundwater cleanup levels. Ecology has indicated that manganese is a common constituent in soils and groundwater in Western Washington. In a recent publication by Ecology, *Natural Background Soil Metals Concentrations in Washington State* (Ecology, October 1994), manganese in soil was detected

at concentrations ranging from 90 - 2,750 mg/kg. No similar background data is available for manganese in groundwater. Manganese was detected in MW-1 and MW-2 at 570 and 3400 μ g/l, respectively.

Conclusion

The only organic compound detected in the NWES samples above its respective closure performance standard is benzo(a)pyrene. Since benzo(a)pyrene was not associated with past plant operations, the presence of this benzo(a)pyrene in the soil is most likely attributable to the natural weathering of regional coal-bearing formations and/or the historical use of coal in regional industrial activities.

Metal analytes that exceeded their respective closure performance standards include cadmium and lead.

The presence of cadmium (one concrete sample) and lead (one soil sample) above their MTCA CULs is believed to be anomalous detections and are also not associated with NWES activities.

TPH is detected in five of the seven samples collected above MTCA Method A CULs. The likely source of these TPH detections is most likely a result of petroleum and residuals ubiguitous throughout developed areas. There is no evidence of petroleum spills or visible product in the area sampled.

This concludes the closure sampling of NWES areas 11 and 12 located on the Western Blower Property. NWES believes that the sampling has demonstrated that the facility has met the Clean Closure Performance Standard as required in 40 CFR 265 Subpart G and WAC 173-303-610.

Appendix A

p. i

Analyte List Detected Compounds

	Table A-1 Compounds Analyzed for Western Blower RCRA Closure						
Chemical Group	Parameter	Cas Number	MTCA Method B Soil Cleanup Leve (UG/KG)				
Volatiles	1,1,1,2-TETRACHLOROETHANE	630-20-6	38461.53846				
Volatiles	1,1,1-TRICHLOROETHANE	71-55-6	7200000				
Volatiles	1,1,2,2-TETRACHLOROETHANE	79-34-5	5000				
Volatiles	1,1,2-TRICHLOROETHANE	79-00-5	17543.85965				
Volatiles	1,1-DICHLOROETHANE	75-34-3	8000000				
Volatiles	1,1-DICHLOROETHENE	75-35-4	1666.666667				
Volatiles	1,2,3-TRICHLOROPROPANE	96-18-4	480000				
Volatiles	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	714.2857143				
Volatiles	1,2-DIBROMOETHANE	106-93-4	11.76470588				
Volatiles	1,2-DICHLOROETHANE	107-06-2	10989.01099				
Volatiles	1,2-DICHLOROPROPANE	78-87-5	14705.88235				
Volatiles	1,4-DIOXANE	123-91-1	90909.09091				
Volatiles	2-BUTANONE	78-93-3	4800000				
Volatiles	3-CHLOROPROPENE	107-05-1	4000000				
Volatiles	4-METHYL-2-PENTANONE	108-10-1	4000000				
Volatiles	ACETONE	67-64-1	8000000				
Volatiles	ACETONITRILE	75-05-8	480000				
Volatiles	ACROLEIN	107-02-8	1600000				
Volatiles	ACRYLONITRILE	107-13-1	1851.851852				
Volatiles	BENZENE	71-43-2	34482.75862				
Volatiles	BROMODICHLOROMETHANE	75-27-4	16129.03226				
Volatiles	BROMOFORM	75-25-2	126582.2785				
Volatiles	BROMOMETHANE	74-83-9	112000				
Volatiles	CARBON DISULFIDE	75-15-0	800000				
Volatiles	CARBON TETRACHLORIDE	56-23-5	7692.307692				
Volatiles	CHLOROBENZENE	108-90-7	1600000				
Volatiles	CHLOROFORM	67-66-3	163934.4262				
Volatiles	CHLOROMETHANE	74-87-3	76923.07692				
Volatiles	CHLOROPRENE	126-99-8	1600000				
Volatiles	DIBROMOCHLOROMETHANE	124-48-1	11904.7619				
Volatiles	DIBROMOMETHANE	74-95-3	800000				
Volatiles	DICHLORODIFLUOROMETHANE	75-71-8	1600000				
Volatiles	ETHYL METHACRYLATE	97-63-2	7200000				
Volatiles	ETHYLBENZENE	100-41-4	800000				
Volatiles	ISOBUTYL ALCOHOL	78-83-1	24000000				
Volatiles	METHACRYLONITRILE	126-98-7	8000				
Volatiles	METHYL METHACRYLATE	80-62-6	6400000				
Volatiles	METHYLENE CHLORIDE	75-09-2	133333.3333				
Volatiles	STYRENE	100-42-5	404.8582996				
Volatiles	TETRACHLOROETHENE		19607.84314				
Volatiles	TOLUENE	127-18-4	1600000				
Volatiles			1600000				
	TRANS-1,2-DICHLOROETHENE	156-60-5					
Volatiles	TRICHLOROETHENE	79-01-6	90909.09091				
Volatiles	TRICHLOROFLUOROMETHANE	75-69-4	2400000				
Volatiles		108-05-4	8000000				
Volatiles	VINYL CHLORIDE	75-01-4	526.3157895				
Volatiles	XYLENE (TOTAL)	1330-20-7	16000000				

7

	Table A-1 Compounds Analyzed for Western	Blower BCBA Closure		
Chemical Group	Parameter	Cas Number	MICA Method B Soil Cleanup Leve (UG/KG)	
Semivolatiles	1,2,4,5-TETRACHLOROBENZENE	95-94-3	24000	
Semivolatiles	1,2,4-TRICHLOROBENZENE	120-82-1	800000	
Semivolatiles	1,2-DICHLOROBENZENE	95-50-1	720000	
Semivolatiles	1,3,5-TRINITROBENZENE	99-35-4	4000	
Semivolatiles	1,3-DICHLOROBENZENE	541-73-1	712000	
Semivolatiles	1,3-DINITROBENZENE	99-65-0	800	
Semivolatiles	1,4-DICHLOROBENZENE	106-46-7	41666.6666	
Semivolatiles	1,4-PHENYLENEDIAMINE	106-50-3	1520000	
Semivolatiles	1-NAPHTHYLAMINE	134-32-7	1020000	
Semivolatiles	2,2'-OXYBIS(1-CHLOROPROP (1)	108-60-1		
Semivolatiles	2,3,4,6-TETRACHLOROPHENOL	58-90-2	2400000	
Semivolatiles	2,4,5-TRICHLOROPHENOL	95-95-4	800000	
Semivolatiles	2,4,6-TRICHLOROPHENOL	88-06-2	90909.0909	
Semivolatiles	2,4,6-1 RICHLOROPHENOL		240000	
Semivolatiles		120-83-2	160000	
	2,4-DIMETHYLPHENOL	105-67-9		
Semivolatiles	2,4-DINITROPHENOL	51-28-5	160000	
Semivolatiles	2,4-DINITROTOLUENE	121-14-2		
Semivolatiles	2,6-DINITROTOLUENE	606-20-2	1470.588235	
Semivolatiles	2-CHLORONAPHTHALENE	91-58-7	6400000	
Semivolatiles	2-CHLOROPHENOL	95-57-8	400000	
Semivolatiles	2-METHYLPHENOL	95-48-7	4000000	
Semivolatiles	3 & 4-METHYLPHENOL	N/A	400000	
Semivolatiles	3,3'-DICHLOROBENZIDINE	91-94-1	2222.222222	
Semivolatiles	3,3'-DIMETHYLBENZIDINE	119-93-7	108.6956522	
Semivolatiles	4-CHLOROANILINE	106-47-8	320000	
Semivolatiles	4-NITROPHENOL	100-02-7	640000	
Semivolatiles	5-NITRO-O-TOLUIDINE	99-55-8	30303.0303	
Semivolatiles	ACENAPHTHENE	83-32-9	4800000	
Semivolatiles	ACETOPHENONE	98-86-2	8000000	
Semivolatiles	ANILINE	62-53-3	175438.5965	
Semivolatiles	ANTHRACENE	120-12-7	2400000	
Semivolatiles	ARAMITE	140-57-8	40000	
Semivolatiles	BENZO(A)ANTHRACENE	56-55-3	1369.863014	
Semivolatiles	BENZO(A)PYRENE	50-32-8	136.9863014	
Semivolatiles	BENZO(B)FLUORANTHENE	205-99-2	1369.863014	
Semivolatiles	BENZO(K)FLUORANTHENE	207-08-9	13698.63014	
Semivolatiles	BENZYL ALCOHOL	100-51-6	2400000	
Semivolatiles	BIS(2-CHLOROETHYL)ETHER	111-44-4	909.090909	
Semivolatiles	BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	71428.57143	
Semivolatiles	BUTYLBENZYLPHTHALATE	85-68-7	1600000	
Semivolatiles	CHRYSENE	218-01-9	136986.3014	
Semivolatiles	DI-N-BUTYLPHTHALATE	84-74-2	800000	
Semivolatiles	DI-N-OCTYLPHTHALATE	117-84-0	160000	
Semivolatiles			136.986301	
		53-70-3		
Semivolatiles		132-64-9	32000	
Semivolatiles		84-66-2	640000	
Semivolatiles Semivolatiles	DIMETHYLPHTHALATE FLUORANTHENE	131-11-3 206-44-0	8000000	

• • •

1

,

Table A-1 Compounds Analyzed for Western Blower RCRA Closure						
Chemical Group	Parameter	Cas Number	MICA Method B Soil Cleanup Leve (UG/KG)			
Semivolatiles	FLUORENE	86-73-7	3200000			
Semivolatiles	HEXACHLOROBENZENE	118-74-1	625			
Semivolatiles	HEXACHLOROBUTADIENE	87-68-3	12820.51282			
Semivolatiles	HEXACHLOROCYCLOPENTADIENE	77-47-4	560000			
Semivolatiles	HEXACHLOROETHANE	67-72-1	71428.57143			
Semivolatiles	HEXACHLOROPHENE	70-30-4	24000			
Semivolatiles	INDENO(1,2,3-CD)PYRENE	193-39-5	1369.863014			
Semivolatiles	ISOPHORONE	78-59-1	1052631.579			
Semivolatiles	N-NITROSO-DI-N-BUTYLAMINE	924-16-3	185.1851852			
Semivolatiles	N-NITROSO-DI-N-PROPYLAMINE	621-64-7	142.8571429			
Semivolatiles	N-NITROSODIETHYLAMINE	55-18-5	6.666666667			
Semivolatiles	N-NITROSODIMETHYLAMINE	62-75-9	19.60784314			
Semivolatiles	N-NITROSODIPHENYLAMINE (3)	86-30-6	204081.6327			
Semivolatiles	N-NITROSOMETHYLETHYLAMINE	10595-95-6	45.45454545			
Semivolatiles	N-NITROSOPYRROLIDINE	930-55-2	476.1904762			
Semivolatiles	NAPHTHALENE	91-20-3	3200000			
Semivolatiles	NITROBENZENE	98-95-3	40000			
Semivolatiles	O-TOLUIDINE	95-53-4	4166.666667			
Semivolatiles	PENTACHLOROBENZENE	608-93-5	64000			
Semivolatiles	PENTACHLORONITROBENZENE	82-68-8	3846.153846			
Semivolatiles	PENTACHLOROPHENOL	87-86-5	8333.333333			
Semivolatiles	PHENOL	108-95-2	4800000			
Semivolatiles	PRONAMIDE	23950-58-5	6000000			
Semivolatiles	PYRENE	129-00-0	2400000			
Semivolatiles	PYRIDINE	110-86-1	80000			
Pesticides/PCBs	4,4'-DDD	72-54-8	4166.666667			
Pesticides/PCBs	4,4'-DDE	72-55-9	2941.176471			
Pesticides/PCBs	4,4'-DDT	50-29-3	2941.176471			
Pesticides/PCBs	ALDRIN	309-00-2	58.82352941			
Pesticides/PCBs	ALPHA-BHC	319-84-6	158.7301587			
Pesticides/PCBs	AROCLOR - 1016	12674-11-2	5600			
Pesticides/PCBs	AROCLOR - 1221	11104-28-2				
Pesticides/PCBs	AROCLOR - 1232	11141-16-5				
Pesticides/PCBs	AROCLOR - 1242	53469-21-9				
Pesticides/PCBs	AROCLOR - 1248	12672-29-6				
Pesticides/PCBs	AROCLOR - 1254	11097-69-1	1600			
Pesticides/PCBs	AROCLOR - 1260	11096-82-5	-			
Pesticides/PCBs	BETA-BHC	319-85-7	555.5555556			
Pesticides/PCBs	CHLORDANE	57-74-9	769.2307692			
Pesticides/PCBs	CHLOROBENZILATE	510-15-6	3703.703704			
Pesticides/PCBs	DIALLATE	2303-16-4	16393.44262			
Pesticides/PCBs	DIELDRIN	60-57-1	62.5			
Pesticides/PCBs	ENDOSULFAN I	959-98-8				
Pesticides/PCBs	ENDOSULFAN SULFATE	1031-07-8				
Pesticides/PCBs	ENDRIN	72-20-8	24000			
Pesticides/PCBs	GAMMA-BHC (LINDANE)	58-89-9	769.2307692			
Pesticides/PCBs	HEPTACHLOR	76-44-8	222.2222222			
Pesticides/PCBs	HEPTACHLOR EPOXIDE	1024-57-3	109.8901099			

• •

Table A-1					
	Compounds Analyzed for Western Bl	ower RCRA Closure	<i>i</i>		
			MICA Method B		
			Soil Cleanup Level		
Chemical Group	Parameter	Cas Number	(UG/KG)		
Pesticides/PCBs	METHOXYCHLOR	72-43-5	400000		
Pesticides/PCBs	TOXAPHENE	8001-35-2	909.0909091		
O. Pesticides	DIMETHOATE	60-51-5	16000		
O. Pesticides	DISULFOTON	298-04-4	3200		
O. Pesticides	ETHYL PARATHION	56-38-2	480000		
O. Pesticides	METHYL PARATHION	298-00-0	20000		
O. Pesticides	PHORATE	298-02-2	16000		
C. Herbicides	2,4,5-T	93-76-5	800000		
C. Herbicides	2,4-D	94-75-7	800000		
C. Herbicides	DINOSEB	88-85-7	80000		
C. Herbicides	SILVEX	93-72-1	640000		
General Chemistry	SULFIDE	N/A			
ТРН	TOTAL PETROLEUM HYDROCARBONS	N/A			
Dioxin	2,3,7,8-TCDD	1746-01-6	0.006666667		
Inorganics	ANTIMONY	7440-36-0	32000		
Inorganics	ARSENIC	7440-38-2	1666.666667		
Inorganics	BARIUM	7440-39-3	5600000		
Inorganics	BERYLLIUM	7440-41-7	232.5581395		
Inorganics	CADMIUM	7440-43-9	40000		
Inorganics	CHROMIUM	7440-47-3	80000000		
Inorganics	COBALT	7440-48-4			
Inorganics	COPPER	7440-50-8	2960000		
Inorganics	CYANIDE	N/A	1600000		
Inorganics	LEAD	7439-92-1	250000		
Inorganics	MERCURY	7439-97-6	24000		
Inorganics	NICKEL	7440-02-0	1600000		
Inorganics	SELENIUM	7782-49-2	400000		
Inorganics	SILVER	7440-22-4	400000		
Inorganics	THALLIUM	7440-28-0	5600		
Inorganics	TIN	7440-31-5	48000000		
Inorganics	VANADIUM	7440-62-2	560000		
Inorganics	ZINC	7440-66-6	24000000		

• •

Table A-2					
Western Blower Sampling Results - All Detects					
			Concentratio	n	
Sample ID	Chemical Group	Parameter	(ug/kg)	Qualifier	
A11-S-001	C. Herbicides	DINOSEB	14	J	
A11-S-001	Inorganics	ARSENIC	7800		
A11-S-001	Inorganics	BARIUM	131000		
A11-S-001	Inorganics	BERYLLIUM	220	В	
A11-S-001	Inorganics	CHROMIUM	72100		
11-S-001	Inorganics	COBALT	12000	В	
11-S-001	Inorganics	COPPER	98600		
11-S-001	Inorganics	CYANIDE	4100		
11-S-001	Inorganics	LEAD	315000	N*J	
A11-S-001	Inorganics	MERCURY	1200		
A11-S-001	Inorganics	NICKEL	50700		
A11-S-001	Inorganics	TIN	8100	B	
A11-S-001	Inorganics	VANADIUM	44200	2	
A11-S-001	Inorganics	ZINC	243000	F	
A11-S-001	Semivolatiles	ACENAPHTHENE	980		
A11-S-001	Semivolatiles	ANTHRACENE	700	т	
A11-S-001	Semivolatiles		620		
11-S-001	Semivolatiles		330		
A11-S-001	Semivolatiles	BENZO(B)FLUORANTHENE	430		
11-S-001	Semivolatiles	BENZO(K)FLUORANTHENE	290		
A11-S-001	Semivolatiles	BIS(2-ETHYLHEXYL)PHTHALATE	940		
A11-S-001	Semivolatiles	CHRYSENE	760		
A11-S-001	Semivolatiles	DIBENZ(A,H)ANTHRACENE	96	J	
A11-S-001	Semivolatiles	FLUORANTHENE	3100		
11-S-001	Semivolatiles	FLUORENE	930		
11-S-001	Semivolatiles	INDENO(1,2,3-CD)PYRENE	190		
A11-S-001	Semivolatiles	NAPHTHALENE	260		
11-S-001	Semivolatiles	PYRENE	1500	J	
11-S-001	TPH	TOTAL PETROLEUM HYDROCARBONS	580000		
11-S-001	Volatiles	ACETONE	61		
11-S-001	Volatiles	ETHYLBENZENE	2	J	
A11-S-001	Volatiles	TOLUENE	2	J	
11-S-001	Volatiles	XYLENE (TOTAL)	10		
A11-S-002	Inorganics	ARSENIC	5300		
11-S-002	Inorganics	BARIUM	93000		
11-S-002	Inorganics	BERYLLIUM	270	В	
11-S-002	Inorganics	CADMIUM	1400		
A11-S-002	Inorganics	CHROMIUM	46300		
A11-S-002	Inorganics	COBALT	12900		
11-S-002	Inorganics	COPPER	32100		
A11-S-002	Inorganics	LEAD	28200	N*J	
A11-S-002	Inorganics	MERCURY	70		
11-S-002	Inorganics	ZINC	407000		
A11-S-002 A11-S-002 A11-S-002 A11-S-002 A11-S-002 A11-S-002	Semivolatiles Semivolatiles Semivolatiles Semivolatiles Volatiles	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE FLUORANTHENE PYRENE 1,1,2,2-TETRACHLOROETHANE	310 86 130 110	1 1 1	

· · ·

		Table A-2		
	Weste	rn Blower Sampling Results - All Detects		
			Concentratio	
Sample ID	Chemical Group		(ug/kg)	Qualifier
A11-S-002	Volatiles	1,1,2-TRICHLOROETHANE	1	J
A11-S-002	Volatiles	ACETONE	11	J
A11-S-002	Volatiles	TRICHLOROETHENE	2	J
A12-C-001	C. Herbicides	2,4-D	19	J
A12-C-001	Inorganics	ANTIMONY	4500	
A12-C-001	Inorganics	ARSENIC	7000	В
A12-C-001	Inorganics	BARIUM	149000	-
A12-C-001	Inorganics	BERYLLIUM	280	В
A12-C-001	Inorganics	CADMIUM	1800	
A12-C-001	Inorganics	CHROMIUM	33700	
A12-C-001	Inorganics	COBALT	7100	В
A12-C-001	Inorganics	COPPER	27200	
A12-C-001	Inorganics	LEAD	6300	N*J
A12-C-001	Inorganics	NICKEL	24300	
A12-C-001	Inorganics	SILVER	3200	
A12-C-001	Inorganics	VANADIUM	46500	
A12-C-001	Inorganics	ZINC	46500	EJ
A12-C-001	Pesticides/PCBs	4,4'-DDE	3	
A12-C-001	Pesticides/PCBs	AROCLOR - 1260	31	
A12-C-001	Semivolatiles	BIS(2-ETHYLHEXYL)PHTHALATE	110	J
A12-C-001	TPH	TOTAL PETROLEUM HYDROCARBONS	410000	
A12-C-001	Volatiles	ACETONE	12	J
A12-C-002	C. Herbicides	2,4-D	13	
A12-C-002	Inorganics	ARSENIC	6200	
A12-C-002	Inorganics	BARIUM	147000	
A12-C-002	Inorganics	BERYLLIUM	310	
A12-C-002	Inorganics	CADMIUM	200000	
A12-C-002	Inorganics	CHROMIUM	28200	
A12-C-002	Inorganics	COBALT	7100	
A12-C-002	Inorganics	COPPER	252000	
A12-C-002 A12-C-002		LEAD	4200	
A12-C-002 A12-C-002	Inorganics		4200	
	Inorganics	NICKEL		
A12-C-002	Inorganics		241000	
A12-C-002	Inorganics	VANADIUM	52600	
A12-C-002	Inorganics	ZINC	254000	
A12-C-002	Pesticides/PCBs	4,4'-DDE	8.5	
A12-C-002	Pesticides/PCBs	AROCLOR - 1260	66	
A12-C-002	TPH	TOTAL PETROLEUM HYDROCARBONS		
A12-C-002	Volatiles	ACETONE	13	
A12-C-003	C. Herbicides	2,4-D	16	J
A12-C-003	Inorganics	ARSENIC	15300	
A12-C-003	Inorganics	BARIUM	113000	-
A12-C-003	Inorganics	BERYLLIUM	260	В
A12-C-003	Inorganics	CADMIUM	1300	
A12-C-003	Inorganics	CHROMIUM	28100	
A12-C-003	Inorganics	COBALT	6800	В
A12-C-003	Inorganics	COPPER	42000	
A12-C-003	Inorganics	LEAD	4200	N*J

. .,

		Table A-2				
	Western Blower Sampling Results - All Detects					
			Concentration			
Sample ID	Chemical Group	Parameter	(ug/kg) Qualifier			
A12-C-003	Inorganics	NICKEL	26500			
A12-C-003	Inorganics	SILVER	2100			
A12-C-003	Inorganics	VANADIUM	55000			
A12-C-003	Inorganics	ZINC	89900 E			
A12-C-003	Pesticides/PCBs		6.5			
A12-C-003		AROCLOR - 1260	30			
A12-C-003	Semivolatiles	BIS(2-ETHYLHEXYL)PHTHALATE	190 J			
A12-C-003	TPH	TOTAL PETROLEUM HYDROCARBONS				
A12-C-003	Volatiles	ACETONE	8 J			
A12-S-001	Inorganics	ARSENIC	6000			
A12-S-001	Inorganics	BARIUM	74400			
A12-S-001	Inorganics	BERYLLIUM	200 B			
A12-S-001	Inorganics	CADMIUM	2400			
A12-S-001	Inorganics	CHROMIUM	22100			
A12-S-001	Inorganics	COBALT	14400			
A12-S-001	Inorganics	COPPER	32800			
A12-S-001	Inorganics	CYANIDE	930			
A12-S-001	Inorganics	LEAD	69800 N*J			
A12-S-001	Inorganics	MERCURY	60 B			
A12-S-001	Inorganics	NICKEL	30200			
A12-S-001 A12-S-001		TIN	3400 B			
A12-S-001 A12-S-001	Inorganics Inorganics	VANADIUM	31600			
A12-S-001 A12-S-001	Inorganics	ZINC	98500 E			
A12-S-001 A12-S-001	Pesticides/PCBs	CHLOROBENZILATE	31			
A12-S-001 A12-S-001			110 J			
	Semivolatiles		150 J			
A12-S-001	Semivolatiles		130 J			
A12-S-001	Semivolatiles	BENZO(B)FLUORANTHENE	95 J			
A12-S-001	Semivolatiles	BENZO(K)FLUORANTHENE				
A12-S-001	Semivolatiles	CHRYSENE	140 J			
A12-S-001	Semivolatiles		160 J			
A12-S-001	Semivolatiles	INDENO(1,2,3-CD)PYRENE	140 J			
A12-S-001	Semivolatiles	PYRENE	170 J			
A12-S-002	Inorganics	ARSENIC	4700 J			
A12-S-002	Inorganics	BARIUM	73100 J			
A12-S-002	Inorganics	BERYLLIUM	160 BJ			
A12-S-002	Inorganics	CADMIUM	1400 J			
A12-S-002	Inorganics	CHROMIUM	20500 J			
A12-S-002	Inorganics	COBALT	10500 BJ			
A12-S-002	Inorganics	COPPER	45100 J			
A12-S-002	Inorganics	CYANIDE	1200 J			
A12-S-002	Inorganics	LEAD	103000 N*J			
A12-S-002	Inorganics	MERCURY	120 J			
A12-S-002	Inorganics	NICKEL	22600 J			
A12-S-002	Inorganics	SILVER	11400 J			
A12-S-002	Inorganics	TIN	3800 BJ			
A12-S-002	Inorganics	VANADIUM	30300 J			

- 1

Table A-2 Western Blower Sampling Results - All Detects					
			Concentratio	n	
Sample ID	Chemical Group	Parameter	(ug/kg)	Qualifier	
A12-S-002	Inorganics	ZINC	145000	EJ	
A12-S-002	Semivolatiles	BENZO(K)FLUORANTHENE	81	J	
A12-S-002	Semivolatiles	BIS(2-ETHYLHEXYL)PHTHALATE	190	J	
A12-S-002	Semivolatiles	CHRYSENE	84	J	
A12-S-002	Semivolatiles	FLUORANTHENE	79	J	
A12-S-002	Semivolatiles	INDENO(1,2,3-CD)PYRENE	76	J	
A12-S-002	TPH	TOTAL PETROLEUM HYDROCARBONS	350000	J	
A12-S-002	Volatiles	TETRACHLOROETHENE	3	J	
A12-S-002	Volatiles	TRICHLOROETHENE	2	J	

Table A-2					
Weste	rn Blower Sampling Results - All Detects	5			
		Concentratio			
Chamical Croup	Perameter		n Qualifier		
			Qualifier		
-			-		
			E		
			J		
			J		
•					
-					
			В		
			В		
			В		
Inorganics	ZINC		E		
Pesticides/PCBs	CHLOROBENZILATE	31			
Semivolatiles	BENZO(A)ANTHRACENE	110	J		
Semivolatiles	BENZO(A)PYRENE	150	J		
Semivolatiles	BENZO(B)FLUORANTHENE	130	J		
Semivolatiles	BENZO(K)FLUORANTHENE	95	J		
Semivolatiles	CHRYSENE	140	J		
Semivolatiles	FLUORANTHENE	160	J		
Semivolatiles	INDENO(1,2,3-CD)PYRENE	140	J		
Semivolatiles	PYRENE	170	J		
Inorganics		4700	J		
	BARIUM	73100	J		
0		160	BJ		
		1400			
0					
0					
0					
0					
•					
•					
Inorganics	VANADIUM	3800			
	Chemical Group Inorganics Inorganics Inorganics Pesticides/PCBs Pesticides/PCBs Semivolatiles TPH Volatiles Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Inorganics	Western Blower Sampling Results - All Detects Chemical Group Parameter Inorganics NICKEL Inorganics SILVER Inorganics ZINC Pesticides/PCBs 4,4'-DDE Pesticides/PCBs AROCLOR - 1260 Semivolatiles BIS(2-ETHYLHEXYL)PHTHALATE TPH TOTAL PETROLEUM HYDROCARBONS Volatiles ACETONE Inorganics ARSENIC Inorganics BARIUM Inorganics CADMIUM Inorganics COBALT Inorganics COBALT Inorganics COPPER Inorganics COPPER Inorganics NICKEL Inorganics NICKEL Inorganics CVANIDE Inorganics CVANIDE Inorganics NICKEL Inorganics NICKEL Inorganics NICKEL Inorganics NICKEL Inorganics NICKEL Inorganics NICKEL Inorganics	Western Blower Sampling Results - All Detects Chemical Group Parameter Concentratio (ug/kg) Inorganics NICKEL 26500 Inorganics VANADIUM 55000 Inorganics ZINC 89900 Pesticides/PCBs 4,4'-DDE 6.5 Pesticides/PCBs AROCLOR - 1260 30 Semivolatiles BIS(2-ETHYLHEXYL)PHTHALATE 190 TPH TOTAL PETROLEUM HYDROCARBONS 550000 Volatiles ACETONE 8 Inorganics BARIUM 74400 Inorganics CADMIUM 2200 Inorganics COBALT 14400 Inorganics COPPER 32800 Inorganics COPPER 32800 Inorganics COPPER 32800 Inorganics NICKEL 30200 Inorganics NICKEL 30200 Inorganics NICKEL 30200 Inorganics NICKEL 30200 Inorganics NICKEL 30200		

•

Table A-2 Western Blower Sampling Results - All Detects							
	Concentration						
Sample ID	Chemical Group	Parameter	(ug/kg)	Qualifier			
A12-S-002	Inorganics	ZINC	145000	EJ			
A12-S-002	Semivolatiles	BENZO(K)FLUORANTHENE	81	J			
A12-S-002	Semivolatiles	BIS(2-ETHYLHEXYL)PHTHALATE	190	J			
A12-S-002	Semivolatiles	CHRYSENE	84	J			
A12-S-002	Semivolatiles	FLUORANTHENE	79	J			
A12-S-002	Semivolatiles	INDENO(1,2,3-CD)PYRENE	76	J			
A12-S-002	TPH	TOTAL PETROLEUM HYDROCARBONS	350000	J			
A12-S-002	Volatiles	TETRACHLOROETHENE	3	J			
A12-S-002	Volatiles	TRICHLOROETHENE	2	J			

Appendix B

Laboratory QA/QC

Laboratory Quality Assurance/Quality Control

The samples were analyzed by Quality Analytical Laboratory (QAL) located in Redding, California, according to the specifications of the Laboratory Statement of Work (SOW) provided to the laboratory prior to the start of the project. Several analytical parameters including Organophosphorous Pesticides, Herbicides, and Total Petroleum Hydrocarbons were subcontracted to ATI/Fort Collins by QAL. These parameters were also performed according to the specifications of the SOW as requested. Any analytical exceptions are listed in the data validation reports. Electronic data deliverable (EDD) were provided by the laboratory as requested.

Data reduction, validation and reporting were conducted according to the QAPP. Data validation reports were prepared for each parameter. For parameters covered by the Contract Laboratory Program (CLP), data validation followed the USEPA CLP *National Functional Guidelines for Organic Data Review* and *National Functional Guidelines for Inorganic Data Review* (February 1994). For parameters not covered by the CLP, data were reviewed for calibrations, accuracy measurements, precision measurements, and blank sample measurements. These reports are included in the project files. Data qualifiers are incorporated into the NWES closure sampling database.

Data Assessment

The validated data have met the project quality assurance objectives described in the QAPP. The data are over 90 percent complete; that is, 90 percent of the data met the target goals for precision, accuracy, and representativeness.

Data Qualifiers

The meaning of the data qualifiers are as follows:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected. The presence or absence of the analyte can not be verified.

In addition to the above data qualifiers, the database also includes data-reporting qualifiers originating from the laboratory. These are laboratory-specific qualifiers for inorganic data

which are procedural in nature and may or may not address data quality. A list of these data reporting qualifiers and their meaning is included below:

- B The reported value obtained was less than the contract required detection limit, but greater than or equal to the instrument detection limit.
- E The reported value is estimated because of interference.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

Detection Limits

For 12 semivolatile compounds, the laboratory reporting limits (or PQLs) are slightly higher than the target detection limits, i.e., SW-846 Practical Quantitation Limits (PQLs) due to correction for soil moisture levels. A list of these compounds with reporting limits that exceed MTCA Method B Soil Cleanup Levels are shown in Table B-1. MTCA states "Where cleanup levels are below the PQL, compliance with cleanup standards will be based upon the PQL" (WAC 173-340-700(6)). Furthermore, MTCA states that "If those situation arise and the PQL is higher than the cleanup level the cleanup level shall be considered to have been attained ..." (WAC 173-340-707). In an implementation memorandum addressed to Ecology staff dated November 23, 1993, Ecology provided guidelines on using PQLs as cleanup standards. In it Ecology presented the results of a laboratory survey on Method Detection Limits (MDLs) and PQLs and compared them to SW-846 PQLs and MTCA Method B Cleanup Levels. In all cases, the PQLs reported in the NWES Areas 11 and 12 closure samples were within the range of PQLs found in the Ecology laboratory survey when soil moisture levels were taken into account.

As can be observed from Table B-1, 10 of the 12 compounds were not detected suggesting their respective cleanup level was achieved. Benzo(a)pyrene was detected in two soil samples both at estimated concentrations above the MTCA Method B CULs. Dibenz(a,h)anthracene was detected in 1 soil sample at below the MTCA Method B CULs. Both of these compounds are polynuclear aromatic hydrocarbons (PAH) compounds and their presence in the soil are discussed in the report.

Table B-1 PQL Comparisons						
Target Compound	MTCA Method B Soil Cleanup Level (μg/kg)	SW846 PQL (µg/kg)°	Ecology Lab Survey PQL Range (µg/kg)°	NWES PQL Range (µg/kg)*	NWES Sample Concentration Range (µg/kg)	
3,3-Dimethylbenzidine	109	1000	330-1000	690-850	ND	
Benzo(a)Pyrene	137	660	5-660	690-850	150J - 330J	
Dibenz(a,h)anthracene	137	660	10-660	690-850	96J	
Hexachlorobenzene	625	660	17-660	690-850	ND	
Hexachlorophene	24000	Not listed	Not listed	35000-44000	ND	
N-Nitroso-di-n-butylamine	186	1300	330-1300	690-850	ND	
N-Nitroso-di-n- propylamine	143	1300	33-1300	690-850	ND	
N-Nitrosodiethylamine	6.7	1300	33-1300	690-850	ND	
N-Nitrosodimethylamine	19.6	1300	33-1300	690-850	ND	
N- Nitrosomethylethylamine	45.5	1300	33-1300	690-850	ND	
N-Nitrosophyrrolidine	476	1300	33-1300	690-850	ND	
Pentachloronitrobenzene	3846	Not listed	Not listed	4100-4400	ND	

ND - Non-detect

* Multiple PQLs are available for each compounds due to the variation in moisture levels in the soil samples. PQLs for diluted samples are not included.

^b SW-846 Method PQLs are listed. The PQLs are reported on dry weight basis. In cases where there are no known PQL values, a factor of 10 times the MDL is used for the PQL value.

° The range of 13 responses out of a survey conducted by Ecology is listed.

CHAIN OF CUSTODY RECORD AND AGREEMENT TO PERFORM SERVICES

1 -.

1

	17-11																		-					THIS	AREA FOR L	AB USE ON	VLY
Project #	A R	? 7	2		P	urch	ase	Ord	er #			•			novation	Drive, S 615-958			Reddin	Caterpillar	003-141	2		Lab #		Page	of
Project Name	1.0.	1.0											_	(904)	462-305) FAX (904) 462	1670		44-5227	FAX (9	16) 244-4	109				
NWE	5-1	Pri	20	CIN	Sul	ê.F	S	AV	10	LIL	IG.									(W o Analytic	al Labor	atories. li	nc.	Client Ser	vice	Price Sou	
Company Nam				100									_	Monto	Fairlane Jomery, A	J 36116	-1622	0400	50 Bat	hurst, Uni	it 12					APQ	S
SEA														(334)	271-244	0 FAX (334) 271	-3420	(519)	747-2575	FAX (5	19) 747-3	806	Acct Cod	9	Test Grou	D
Project Manage		ntact	& PI	none #	# F	Repo	rt Co	opy	to:								A	NALYS	ES REO	QUEST	ED			ACCICOU	6	1001 0.00	F
Project munage	1.1.2	1.	/							6 A	1.	e_1		*						,							
CARULAN Requested Comp	K0 M	-/	55.1	/.)		<i>70</i> .	N			Sam		enne	al·	O F	XI	X		N.F.IX	×	×	*	AFF. 1X	SULFILE	Project C	ode	Ack. Gen	•
Requested Comp	letion Da	te:	Site	ID			x			Diana	10 01	Retu		с	- ·			8	2	a.	APP. 1X	ist.	Ľ.				
ALA AGAE	THE	55								Dispo]			O N T	App.	9:4			Sido App IX	32-7-0 APP. 1X	N	1	S.	LIMS Ver		Login	Mult.
	Туре	Mat	rix								Τ			A	3240	2	RIT	3030	7	2	120	171.5	01	COC Rev	lew	1	
Sampling	CG	W	S				SVW		ID			QCI	D	NE	30	0626					ā	E	2	COOTIE		LAB 1	LAB 2
	C G O R M A P B	W A T E R	ĭ		(9 (CHAI	RAC	TER	S)		(3	CH/	AR)	RS	Sw	ζ. M	Ϋ́́́́ Ξ	I.S.	32	3	3	ME		SAMPL	E REMARKS	ID	ID ID
Date Time		R											1			<u>^'</u>						L	-		×		
1/13/2 1310	V		F	11	2	-	C	-	00	21			-	7		1		~	· ·	-			-				-
1/23/2/1415		1	I	1 1	2	-	C	-	0	2 2	-			7	<u> </u>	-	V	~		~	V	~					
1/13/76 162	1 1	,		AL	2	-	C	-	0	33				7	5	4.0	L.	U.	V	1.1	L.*	~	~				
1/23/26 1341				11	2	-	5	- 2	20	01				7	1-	~	V	~	~	~	~	4	~				
1/1/26 100				1	2	T	R	1	0	51				3	-							1					
			-1		h		5		- 1	> 2			-	7	V	L	v	~	-	V	L	4	L				
1/25/201410				-	1-	-	S			01				7	-	-	L	~	~~	~	L	L	4				
1/25/96 1555	5			11	1	-	5						-	7	10	1-	V	1	V	V	V	V	V				
Y2 /06 1620	4		1	MI	1	-	2	-	0	07	=	1		T			K				1			-			
			4	\square	X			_		_	4-		\leftarrow					X				\uparrow				1	
		X				N			_	4		_	\vdash	-		4—	_		X				+ /				
	X														V.	1				\checkmark			Date/	Time	HAZWRAP/NES	SSA: Y	N
Sampled By & T	itle	(Please	sign ar		ame)	٨	J.	124	14	Dat	e/Tin	ne c Δ/	AF	Relin	quished	Und	(Pleas	e sign and po	T.	VEREN	e 1		Tris	Time 96 [50\$ /Time		Y	N
Received By	~ 0			nd print n			-1-	12	1	5/0 (Dat	e/Tin	né :	M.C.		quished			e sign and p					Date	Time			
Received by											/	· · ·		Della		Du	(Diago	e sign and p	(int name)				Date	/Time	QC LEVEL 1	2 3 OT	HER
Received By		(Please	e sign a	nd print n	ame)		.) **	>		Qa	te/Tin	กฮะ			quished	Бу	(Fields	a siðu and b							рН	Ice	
Received By		(Pleas	e sign a	nd print n nd print n	name)		4	2 (1	1.1	Da	te/Tir	ne	ĩ	Ship	oed Vla Fed	LEY	Other			Shippin	ig #				Custody Seal	Temp	
														013	rec		01101								Broom and and a second second second		
Batch Remarks	EE.	FU	17	A	5	01	ing	40	21	=10	rff	I_1															

Instructions and Agreement Provisions on Reverse Side · · · · CEMHILI PHOTO RECORD FILE INDEX

RO	LL	N	Э.
	the state of the s		•.

PERIOD FROM ______ TO_____ 19 ____

PROJECT: NWES ACRA CLOSURE

PROJECT NO. 106099,03.22

PREPARED BY: GLEN VEDERA

1

2 2 1

PICTURE	PHOTO DESCRIPTION/LOCATION	DATE	DAILY LOG NUMBER
l	OVERVIEW OF LOAD/UNLOAD AREA, ADMIN. BLDG., AREA 12	1/23/96	
2	SAMPLE LOCATION A 12-5-003	1/23/96	
3	SAMPLE LOCATION A12-C-001	1/23/96	
4	SAMPLE LOCATION A12-C-002	1/23/56	
5	OVERVIEW SAMPLE LOCATION ALZ S-001	1/25/96	
6	CLOSE-UP OF SAMPLE LOCATION ARS-001	1/25/96	
7	OVERVIEW SAMPLE LOCATION A12-5-002	1/25/26	
8	CLOSE-UP OF SAMPLE LOCATION A12-5-002	1/25/96	
9	OVERVIEW AT SAMPLE LOCATION A11-5-001	1/25/96	
10	CLOSE-UP OF SAMPLE LOCATION AII-5-001	1/25/96	
	•		
ж [.]			
	i k		
		<i>s</i> ²	

1.11.

FLEFF

2

1.0

1.

PHOTO	RECORD	FILE	INDEX
FILLIO	IL COLLD		

ROLL NO	
PERIOD FROM 12/5	TO 19

PROJECT: NWES RCRA CLOSURE PROJECT NO. 106059-03.22

PREPARED BY: CLEN VEDERA

CH?

PICTURE NUMBER	PHOTO DESCRIPTION/LOCATION	DATE	DAILY LOG NUMBEF
1	PREPARING TO COME CONCRETE IN PATRACK		
	MAREA OPPOSITE THE STORES BUILDING, AREA AIZ	12/5	
7	A12, CORING IN ACTION AT LOCATION OOZ, NOTE	-	
	DISCOLORATION FROM CUTTING INTO RRTIE	12/5	
3	All, LOCATION OOL, OPPOSITE LEAN TO		
4	A 11-001, CUTING IN ACTION	12/5	
5	AIL-OOL PROXIMITY TO SUMP	12/5	
6	An-OUL CLOSE UP	12/5	
	All, LOCATION 002, BOTTOM OF SUMP AT BACK		
	OF LEAN TO	12/5	*)
0	AIZ, LOCATION OOI, ADJACENT TO VAULT AT	12/5	
8	AIL LOCATION OUT MOUNCE TTO UNCEL AT		
			· · · ·
1.1			

REV 1/87 FORM 303

ere a statistica databaixa.

), IF	х ст	joi	00	79 .	03.	22		RC	NA	cu	-05	s ne	-		-					N	ote		k No. ntinue									
		100							1											1					1	1		1		1	1	_
			_																							-						
13/	0	F	11	2	·C	- 0	01																	-		-						
															_									-		-		-				
				.2	02		FOR	2:		82	40		49	IX										_		_						
					50					81	290	A	R	١X												_						
					52					4	8.1																					
					Z						80		HPP	X																		
					02					81	40	F	HP	X																		
					08					82	70	An	0	815	D	APP	N															
					oz									Ac		1		E		SU	CA	Æ										
			-	0	OE							10																				
-			-					-																								
-						-		-				2.4			.0			- / .	2.	0		In	472	2	1-	2	Q .	ц.	PD	170	U,	
14	15																	40	442	J. V	un		1 16	1	- 05							
		(24							1				5155	10		1.	_										-				
							F	R:	1		40			1										-		-						-
					402		-			T	90		514													-						-
					402	-	-	-			9.1	-																				-
					4 02	-				80	30	AP	P. 17																			-
					402	2					40			1	ļ	<u> </u>					-											-
					803	2				82	70	Ar	0	815	p,	4PP	×															-
					807					AR	ix	m	En	ALS,	C	An	TE	Ar	05	is	NE											
																											• .					
16	25		17	(- (00	3																									
							T																									
					2	02		FOR		82	40	API	2N																			
1						50					90	1	1	1																		
-			-		4		1	1	1		8.1	1					1															
1	1						-			-	50	10	0,0		1																	
-	-				4	50	-	-	-		40				1	1						1										
-	+					02		+	-	0	170		In In	319	10	10	PIX															
-	-				La	02		+	-	-	-	1	-	aus	-		-		DC		A	+						-				Г
			_		0	02	-		-	AP	TIX	M		~>	10	THE	5112	An	12	Ju	Jue										-	Г
+-						-			-	-	+	+	-		+	+		-	-	-	-							-	-	-	-	T
-		+					+	-	-		-		-	+			-	-		+	+	+						-		-	-	T
-							-														-							-			-	1
							-		-	-		-			-		-	-		-		-				-	L					1
1	110	0	fr.	SiT	ę .	- 5	ECL	ne	Q	STO	A.	5 6		e لر	CA	su	au	- 10	CKE	p (TAR	2				Cor	ntinu	ed o	n Pag	e		
																	Read	and	Und	ersto	od E	Ву										
		η.	,	t	٥.						1	ha	h																			
	>	Se	- (J	al	L	-		-	-	,	100	199	0							Sig	ned								Date		-
			219	ned								U	are								Jig											_

225 F.VEDERA PMO W. UNMELL (SEA) PUSITE FOR Soli SAMAINIC 110 Areas Aiz Amo Ai 110 Areas Aiz Amo Ai 111 WEATTER: OVERCAST AT FIRST WITH RAINSHOUTAS CATER 111 WEATTER: OVERCAST AT FIRST WITH RAINSHOUTAS CATER 111 CALLS SECONS BOND AMO SIGNS HIJS ADDENOUT AFTER 111 CALLS OF HIS PLAN 111 CALLS OF SAMAZ OF SAMAZ OF HIS PLANS OF HIS PLANS (MILTER) OK 111 CALLS OF SAMAZ OF SAMAZ OF HIS PLANS (MILTER) OK 112 CALLS OF SAMAZ OF SAMAZ OF HIS PLANS (MILTER) OK 11300 FOR STANDAM CALLS OF SAMAZ OF HIS PLANS (MILTER) OK 11300 FOR STANDAM CALLS OF SAMAZ OF HIS PLANS (MILTER) OK 11300 FOR STANDAM CALLS OF SAMAZ OF HIS PLANS (MILTER) OK 11300 FOR STANDAM CALLS OF SAMAZ OF HIS PLANS (MILTER) OK 11300 FOR STANDAM CALLS OF SAMAZ OF HIS PLANS (MILTER) OK 11300 FOR STANDAM CALLS OF SAMAZ OF HIS SAMAZ OF HIS SAMAZ OF HIS SAMAZ OF HIS SAMAZ OF H	CT	06099.03.22 RCRA		Continued From Page	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Isp	6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	125	G.VEDERA AND W. UND	ELL (SEA) ON	JEITE FOR SOLL SAMALING	
WERTHER: OVERCAST AT FIRST WITH (ALUS NOWS CHIPE LINDEL IS VECTAS RETNEW OF HIS PLAN RETNEW OF HIS PLAN CACIB. HIS EQUANSIT CACIB. HIS EQUANSIT CACIB. HIS EQUANSIT CACIB. HIS EQUANSIT CACIB. WIS EQUANSIT CACIB. HIS EQUANSIT CACIB. HIS EQUANSIT CACIB. WIS EQUANSIT CACID. WIS EQUANSIT		11, areas A12 And AI	\		
28 new of ##S PcAN CACIB. H#S EQUIPMENT: CG1 MSD 260 CARECO # 5504 CG2 CARECO # 5504 CARECO # 59692 CG2 CARECO # 5504 CARECO # 59692 CG2 CARECO # 500 K CARECO # 59692 Q2 NEMOS ZI%O OK CARECO # 59702 Q2 NEMOS ZI%O OK CARECO # 59502 Q2 NEW OF ARCON # 1000 #		WEATHER : OVER	AST AT FIRST L	WITH RAINSHOWERS CATER	
28 new of ##S PcAN CACIB. H#S EQUIPMENT: CG1 MSD 260 CARECO # 5504 CG2 CARECO # 5504 CARECO # 59692 CG2 CARECO # 5504 CARECO # 59692 CG2 CARECO # 500 K CARECO # 59692 Q2 NEMOS ZI%O OK CARECO # 59702 Q2 NEMOS ZI%O OK CARECO # 59502 Q2 NEW OF ARCON # 1000 #		LINDER IS VEDERAS BU	DOY AND SIGN	S HIS ADDENOUM AFTE	82
CACIB. H \$ \$ EQUIPMENT: CG1 MSA 260 HAZCO # 5504 CG1 MSA 260 HAZCO # 5504 CG1 CALIB W/ 0.75% REATTANE (HAZCO COT # \$9692) ACAMM CO 10% LEL 0.75% REATANE (HAZCO COT # \$9692) ACAMM CO 10% LEL 0.75% REATANE (FARS) 50 * A LEL Q7_ NEADS 21% OK 0.1005 (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK BLUCK END OF SAMAZ TUB2 AND RUP BAN DINDS (HOLSAS) OK ISON 1525 BENISS AND OF AND CREATES STEEL ISON 1525 BENISS ATEN WITH WILLINGEL REVIEW SAMANK REAN AND WORK OND AND AND SAMAK WITH BANGKSKY ISON 1525 BENISS STEEL (ST) THE SUMA IS THALESES STEEL (ST) THE SUMA IS THALESES STEEL (ST) IAO STANDUK AND AND AND SAMAK WITH BANGKSKY ISAN AND STANDERS STEEL (ST) IAO STANDUK AND AND AND SAMAK M		REVIEW OF 4 5 PLAN			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CALIB. HIS EQUIPME	T :		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			a 12000	# 5804	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CALIB W	1 0.75% PEA	MANE (HAZCO LOT # 396	92)
0.25% PENTANE READS 50 % LEL 0.25% PENTANE READS 50 % LEL 0.2 NEADS 21% 100 Rom METHONE (ARHA 645 dot 72 35.32.3) 100 North Art 10 100 Rom METHONE (ARHA 645 dot 72 35.32.3) 100 North Art 10 1150 100 RM METHONE (ARHA 645 dot 72 35.32.3) 100 North Art 10 1150 100 RM METHONE (ARHA 645 dot 72 35.32.3) 1160 North Art 10 1170 North Art 10 1180 Set 100			@ 10% LEL		
Q.Z. NEANS ZING OK BLOCK END OF SAMAZ TUSZ AND RUNP BAN DROS (NOLSHS) OK FID FOX BUCS IZB HAZCO ^B 3021 INDORPMISTANDARD CA. GAS READS 90 PM INDORPMISTANCE DIAL RAND CANTAL INDORPMISTANCE DIAL RAND CANTAL REPORT INDORPMISTANCE DIAL RAND CANTAL REPORT INDORPMISTANCE DIAL COLLECTED SAMARE WITH PREVENCE ITHE INDORPMIST STREET STREET (ST) BOWL AND STAN CANTAR ACTING A ACTING A CONTROL OF A CONTR		n.75%	PENTANE RE	ANS 50 ·/OLEL	
BLOCK END OF SAMAZ TUSZ MORIAP BAN ONDS (NOLZHE) OK BLOCK END OF SAMAZ TUSZ MORIAP BAN ONDS (NOLZHE) OK I D FOX BULS 128 HAZCO ^F 3021 URLB - W/ 100 PRM METURAR (KRHA GAS LOT # 35323) 100PPM STANDARD CR. CAS READS 98PDM 1150 105 Hz IN UNTO ULINDEL. REVIEW SAMPING PLAN 1300-1325 REVIEW H'S RANJ WITH W. LINDEL. REVIEW SAMPING PLAN 1300 SET-UP OJ A12.001. COLLECTED SAMPLE WITH PREVIEWS Y 1340 SET-UP OJ A12.001. COLLECTED SAMPLE WITH PREVIEWS Y 1341 A12.5.001 WELL CAMPS SIND AND GRAVE MEDIUM RAWN NO ODR 2022 CWM - B240 BOZ CWM - B270 AND GRAVE / SOLUTION 1341 A12.5.001 WELL CAMPS SAMO AND GRAVE / MEDIUM RAWN NO ODR 2022 CWM - B240 BOZ CWM - B270 AND GRAVE / SOLUTION 402 CWM - B140 OVA = D.J APM 1340 CLIMA - B140 OVA = D.J APM					
BLOCK END OF SAMAZ TUSZ MORIAP BAN ONDS (NOLZHE) OK BLOCK END OF SAMAZ TUSZ MORIAP BAN ONDS (NOLZHE) OK I D FOX BULS 128 HAZCO ^F 3021 URLB - W/ 100 PRM METURAR (KRHA GAS LOT # 35323) 100PPM STANDARD CR. CAS READS 98PDM 1150 105 Hz IN UNTO ULINDEL. REVIEW SAMPING PLAN 1300-1325 REVIEW H'S RANJ WITH W. LINDEL. REVIEW SAMPING PLAN 1300 SET-UP OJ A12.001. COLLECTED SAMPLE WITH PREVIEWS Y 1340 SET-UP OJ A12.001. COLLECTED SAMPLE WITH PREVIEWS Y 1341 A12.5.001 WELL CAMPS SIND AND GRAVE MEDIUM RAWN NO ODR 2022 CWM - B240 BOZ CWM - B270 AND GRAVE / SOLUTION 1341 A12.5.001 WELL CAMPS SAMO AND GRAVE / MEDIUM RAWN NO ODR 2022 CWM - B240 BOZ CWM - B270 AND GRAVE / SOLUTION 402 CWM - B140 OVA = D.J APM 1340 CLIMA - B140 OVA = D.J APM			EAS 210/0 01	K	
FID FOX BUCA 128 HAZCOF 3021 LALIA - W/ 100 RDM METHINNE (ARHA GAS LOT # 35323) 100 RPM STANDARD CA. CAS READS 98 RPM 1150 105 HZ IN UNIT 1150 105 HZ IN UNIT 1300-1325 LEVIEW HIS REAM WITH W. LINDEL. REVIEW SAMPLIKE REAM 1300 SET-UP OF AIZ-COI. COLLECTED SAMPLE WITH PREMICISLY 1340 SET-UP OF AIZ-COI. COLLECTED SAMPLE WITH PREMICISLY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION OF A GENERGY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION OF A GENERGY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION OF A GENERGY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-9270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-9270 AND GIVE JSOD 14 2 02 CWM-8240 BJZ CWM-9270 AND GIVE JSOD 15 0 02 00 00 00 00 00 00 00 00 00 00 00 0					
FID FOX BUCA 128 HAZCOF 3021 LALIA - W/ 100 RDM METHINNE (ARHA GAS LOT # 35323) 100 RPM STANDARD CA. CAS READS 98 RPM 1150 105 HZ IN UNIT 1150 105 HZ IN UNIT 1300-1325 LEVIEW HIS REAM WITH W. LINDEL. REVIEW SAMPLIKE REAM 1300 SET-UP OF AIZ-COI. COLLECTED SAMPLE WITH PREMICISLY 1340 SET-UP OF AIZ-COI. COLLECTED SAMPLE WITH PREMICISLY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION OF A GENERGY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION OF A GENERGY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION OF A GENERGY 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-8270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-9270 AND GIVE JSOD 1341 A 12 - 5-001 WELL GARD SAMPLE COATION FOODER 2 02 CWM-8240 BJZ CWM-9270 AND GIVE JSOD 14 2 02 CWM-8240 BJZ CWM-9270 AND GIVE JSOD 15 0 02 00 00 00 00 00 00 00 00 00 00 00 0	_	4.00	ELA DE SAMAS	ETUBE AND RINP BALL OLOPS	(NOLSAK) OK
CALIB-W/ 100 PMM METHUNG (ALPHA GAS LOT # 35323) 100PPM STANDARD CAL GAS AZADS 98 PPM 1150 105 Hz IN UNIT 1150 105 Hz IN UNIT 1150 105 Hz IN UNIT 1300 1325 REVIEW HIS RAN WITH W.CINDEL. REVIEW SAMPING REAM AND WORK OUT OUR RAN OF ATTACK 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1341 A 12-5-001 WIEW GAARED SAND AN GAME, MEDIUM BROWN NO DOR 1341 A 12-5-001 WIEW GAARED SAND AN GAME, MEDIUM BROWN NO DOR 202 CWM-8240 BOZ CWM-METAS/CYHIDE/SULFIDE 402 CWM-8240 BOZ CWM-METAS/CYHIDE/SULFIDE 402 CWM-8140 OVA = 0.0 APM 402 CWM-8140 OVA = 0.0 APM AOZ CWM-8140 OVA = 0.0 APM CONTINUED NEW OVA = 0.0 APM					
CALIB-W/ 100 PMM METHUNG (ALPHA GAS LOT # 35323) 100PPM STANDARD CAL GAS AZADS 98 PPM 1150 105 Hz IN UNIT 1150 105 Hz IN UNIT 1150 105 Hz IN UNIT 1300 1325 REVIEW HIS RAN WITH W.CINDEL. REVIEW SAMPING REAM AND WORK OUT OUR RAN OF ATTACK 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PADRICUS Y 1341 A 12-5-001 WIEW GAARED SAND AN GAME, MEDIUM BROWN NO DOR 1341 A 12-5-001 WIEW GAARED SAND AN GAME, MEDIUM BROWN NO DOR 202 CWM-8240 BOZ CWM-METAS/CYHIDE/SULFIDE 402 CWM-8240 BOZ CWM-METAS/CYHIDE/SULFIDE 402 CWM-8140 OVA = 0.0 APM 402 CWM-8140 OVA = 0.0 APM AOZ CWM-8140 OVA = 0.0 APM CONTINUED NEW OVA = 0.0 APM			120 4070	9# 3021	
100PPM STMOARD CAL GAS NEARS JOINTH 1150 105 Hz IN UNIT 1150 105 Hz IN UNIT 1300-1325 REVIEW His RAN WITH W. LINDEL. REVIEW SAMAIN ARAN AND WORK OUT OUR RAN OF ATTACK 1340 SET-UP ON A1Z-001. COLLECTED SAMAR WITH PREVICESLY 1340 SET-UP ON A1Z-001. COLLECTED SAMAR WITH PREVICESLY 1341 A1Z-5-001 WELL GAMED SAND AND COLLECT MEDIUM BROWN NOODOR 202 CUM-8240 SOZ CUM-SZTO AND BROWN NOODOR 202 CUM-8240 SOZ CUM-SZTO AND BROWN NOODOR 202 CUM-8240 SOZ CUM-SZTO AND STO 402 CUM-8240 SOZ CUM-SZTO AND STO 402 CUM-8240 OVA = 0.0 PPM 402 CUM-818. 402 CUM-818. 1000 OVA = 0.0 PPM Continued on Page 2 Read and Understood By MUT-UPA 125/96		FID FOX DUC	128 11-	ISTING (4944 GAS LOT # =	35323)
1300-1325 REVIEW HIS REAL WITH WITH WITH RULINDEU. REVIEW SAMPLING PLAN 1300-1325 REVIEW HIS PLAN WITH WICHNDEU. REVIEW SAMPLING PLAN AND WORK OUT OUR PLAN OF ATTACK AND WORK OUT OUR PLAN OF ATTACK 1340 SET-UP ON A12-001. COLLECTED SAMPLE WITH PRENEDELY 1340 SET-UP ON A12-001. COLLECTED SAMPLE WITH PRENEDELY 1340 STANCESS STEEL (ST) BOWL AND SLOW PER THE SUMP FIELD SAMPLIESS STEEL (ST) BOWL AND SLOW PER THE SUMP FIELD SAMPLIESS STEEL (ST) BOWL AND SLOW PER THE SUMP HE SUMP IS MOUNTHIC, THESENET THE SAMPLE LOCATION OF A CRACK GU THE SUMP IS MOUNTHIC, THESENET THE SAMPLE LOCATION IS TO UP SIDE (EAST) 1341 A 12 - 5 - OOI WELL GLADED SAW AND GLAVEL MEDIUM BROWN NO ODOR 2 OZ CUM - 8240 BOZ CUM - BETO AND BROWN NO ODOR 4 OZ CUM - 8290 BOZ CUM - METHES/CHILDE/SULFIDE 4 OZ CUM - 418.1 4 OZ CUM - 8140 OVA = 0.0 ROM 4 OZ CUM - 8140 OVA = 0.0 ROM CONTINUED ON PAGE 2 Read and Understood BY METURE 1/25/96		CACIB- U	5/ 100 Home 1	CAS DEADS 98 APM	
1300-1325 REVIEW HIS PLAN WITH W. LINDEL. REVIEW SAMPLING PLAN AND WORK OUT OUR PLAN OF ATTACK AND WORK OUT OUR PLAN OF ATTACK 1340 SET-UP ON A 12-001. COLLECTED SAMPLE WITH PROJUCISCY DECOLUED STANCESS STEEL (ST) BOWL AND SDOWN PER THE STANCESS STEEL (ST) BOWL AND SDOWN PER THE FIELD SAMPLIKE AND ANALYSIS PLAN. THIS IS THE WORTHWOR A GENER THE SUMP IS MONOUTHIC, THEREFOLE THE SAMPLE WORTHWOR A GENER THE SUMP IS MONOUTHIC, THEREFOLE THE SAMPLE WORTHWOR A GENER 1341 A 12 - 5 - 001 WELL GAARED SAND AND GALVEL MEDIUM BROWN NO ODOR 2 dz CWM - 8240 8 DZ CWM - 8270 AND GIO 4 dz CWM - 8290 9 0 0 2 CWM - METMIS/CHAIRE / SULFIDE 4 dz CWM - 8290 9 0 0 2 CWM - METMIS/CHAIRE / SULFIDE 4 dz CWM - 8140 0VA = 0.0 APM 0000000000000000000000000000000000		100PPm	STANDARD OR	ons remis	
1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 145 SAMPLINE STRUCESS STEEL (ST) BOWL AND SDOW PER THE 15 THE SUMP IS MONOUTRIC, THEOSOLE THE SAMPLE LOCATION OF A GRAPE GUI 1341 A 12 - 5 - OOI WELL GAADED SAND AND GAMEL MEDIUM BROWN NO ODOR 202 CWM - 8240 802 CWM - 8270 AND 8150 402 CWM - 8290 902 CWM - 8270 AND 8150 402 CWM - 418. 402 CWM - 418. 402 CWM - 8140 0VA = 0.0 APM Continued on Page 2 Read and Understood BY WT-UP 1/25/96		1150 10	s Hz IN Ur		
1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 145 SAMPLINE STRUCESS STEEL (ST) BOWL AND SDOW PER THE 15 THE SUMP IS MONOUTRIC, THEOSOLE THE SAMPLE LOCATION OF A GRAPE GUI 1341 A 12 - 5 - OOI WELL GAADED SAND AND GAMEL MEDIUM BROWN NO ODOR 202 CWM - 8240 802 CWM - 8270 AND 8150 402 CWM - 8290 902 CWM - 8270 AND 8150 402 CWM - 418. 402 CWM - 418. 402 CWM - 8140 0VA = 0.0 APM Continued on Page 2 Read and Understood BY WT-UP 1/25/96					paper
1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 1340 SET-UP ON A 12-COI. COLLECTED SAMPLE WITH PREMEUSEY 145 SAMPLINE STRUCESS STEEL (ST) BOWL AND SDOW PER THE 15 THE SUMP IS MONOUTRIC, THEOSOLE THE SAMPLE LOCATION OF A GRAPE GUI 1341 A 12 - 5 - OOI WELL GAADED SAND AND GAMEL MEDIUM BROWN NO ODOR 202 CWM - 8240 802 CWM - 8270 AND 8150 402 CWM - 8290 902 CWM - 8270 AND 8150 402 CWM - 418. 402 CWM - 418. 402 CWM - 8140 0VA = 0.0 APM Continued on Page 2 Read and Understood BY WT-UP 1/25/96	1300-	1325 REVIEW HESI	piper with w.c	INDEL. REVIEW SAMPLING	
DECOLATED STRUCESS STEEL (ST) BOUL And SLOON PER THE SUMA FIELD SAMOLINE AND ANALYSIS PLAN. THIS IS THE LOCATION OF A GRAPE GU THE SUMA IS MOLOUTHIC, THEREFORE THE SAMPLE LOCATION IS TO ONE SIDE (EAST) 134. A 12 - 5 - 001 WELL GRAPED SAMD AND GRAVEL MEDIUM DROWN NO ODOR 2 OZ CUM - 8240 802 CLUM - 8270 AND 8150 4 OZ CLUM - 8290 9 OZ CLUM - METRICS/CYHILDE/SULFIDE 4 OZ CLUM - 418. 1 4 OZ CLUM - 8180 0VA = 0.0 APM 4 OZ CLUM - 8140 0VA = 0.0 APM Continued on Page 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		AND WORK 007	- our plans of	ATTACK	
DECOLATED STRUCESS STEEL (ST) BOUL And SLOON PER THE SUMA FIELD SAMOLINE AND ANALYSIS PLAN. THIS IS THE LOCATION OF A GRAPE GU THE SUMA IS MOLOUTHIC, THEREFORE THE SAMPLE LOCATION IS TO ONE SIDE (EAST) 134. A 12 - 5 - 001 WELL GRAPED SAMD AND GRAVEL MEDIUM DROWN NO ODOR 2 OZ CUM - 8240 802 CLUM - 8270 AND 8150 4 OZ CLUM - 8290 9 OZ CLUM - METRICS/CYHILDE/SULFIDE 4 OZ CLUM - 418. 1 4 OZ CLUM - 8180 0VA = 0.0 APM 4 OZ CLUM - 8140 0VA = 0.0 APM Continued on Page 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
DECOLATED STRUCESS STEEL (ST) BOUL And SLOON PER THE SUMA FIELD SAMOLINE AND ANALYSIS PLAN. THIS IS THE LOCATION OF A GRAPE GU THE SUMA IS MOLOUTHIC, THEREFORE THE SAMPLE LOCATION IS TO ONE SIDE (EAST) 134. A 12 - 5 - 001 WELL GRAPED SAMD AND GRAVEL MEDIUM DROWN NO ODOR 2 OZ CUM - 8240 802 CLUM - 8270 AND 8150 4 OZ CLUM - 8290 9 OZ CLUM - METRICS/CYHILDE/SULFIDE 4 OZ CLUM - 418. 1 4 OZ CLUM - 8180 0VA = 0.0 APM 4 OZ CLUM - 8140 0VA = 0.0 APM Continued on Page 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1340	SET-UP ON AIZ-	col. couter	TEO SAMPLE WITH PREVIO	USCY
FIELD SAMOUNE AND ANALYSIS PLAN. THIS IS THE DUMMOUS INCOMPLANT THE SUMP IS MONOLITHIC, THEREFORE THE SAMPLE LOCATION IS TO ONE SIDE (EAST) 1341 A 12 - 5 - 001 WELL GAADED SAND AND GAADEL MEDIUM BROWN NO ODOR 202 CWM - 8240 802 CWM - 8270 AND 8150 402 CWM - 8290 802 CWM - METHOS/CTHILE/SULFIDE 402 CWM - 8290 802 CWM - METHOS/CTHILE/SULFIDE 402 CWM - 8190 8080 CGI = BG 402 CWM - 8190 OVA = 0.0 APM Indiana 402 CWM - 8190 OVA = 0.0 APM Indiana 10 102 125/96 Data Continued on Page		DECOURED STANCE	SS STELL (SS)	BOWL And SPOON PER	THE SUMP
$1341 A 12 - 5 - 001 \qquad well GAADED SAND AND GAADEL MEDIUM BROWN NO ODOR 2 oz cwm - 8240 8 0z \ Cwm - 8270 \ Ao 8/50 \ Ao 2 \ Cwm - 8290 \ Boz \ Cwm - Metmes/C441d=/SulfipE 4 oz \ Cwm - 418.1 \ Aoz \ Cwm - 418.1 \ Aoz \ Cwm - 8140 \ OVA = 0.0 \ AOM \ Continued on Page 4 0z \ Cwm - 8140 \ OVA = 0.0 \ AOM \ Continued on Page Read and Understood ByMu T \ Usdh \ Jz5/96 \ Data$			ANALY SIS	PLAN THIS IS THE WCHING	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		THE SUMP IS MONOLIT	HIC THEREFORE T	HE SAMPLE LOCATION IS TO ONES	IDE (EASI)
$\frac{2 \circ z \circ z \circ u - 8240}{4 \circ z \circ u - 8290} = \frac{8 \circ z \circ u - 8270 \circ x - 8270 \circ x - 8270}{4 \circ z \circ u - 8290} = \frac{8 \circ z \circ u - 8270 \circ x - 8270 \circ x - 8170}{2 \circ 2 \circ u - 8170} = \frac{2 \circ z \circ u - 8170}{2 \circ 2 \circ u - 8170} = \frac{2 \circ z \circ u - 8170}{2 \circ 2 \circ u - 8170} = \frac{2 \circ z \circ u - 8170}{2 \circ 2 \circ u - 8170} = \frac{2 \circ z \circ u - 8170}{2 \circ 2 \circ$	121	A 17 - 5-001	NEW GRADED	SAND AND GRAVEL MEDIUM BRC	WN NOODOR
$\frac{2}{4 \circ 2} \begin{array}{c} \hline & 0 & 0 & 0 \\ \hline & 4 \circ 2 & \hline & 0 & 0 \\ \hline & 4 \circ 2 & \hline & 0 & - & 0 \\ \hline & 4 \circ 2 & \hline & 0 & - & 4 \\ \hline & 4 \circ 2 & \hline & 0 & - & 4 \\ \hline & 4 \circ 2 & \hline & 0 & - & 4 \\ \hline & 4 \circ 2 & \hline & 0 & - & 4 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 4 \circ 2 & \hline & 0 & - & 8 \\ \hline & 6 & - & - & - \\ \hline & 7 & - & 7 \\ \hline & 7 & - \\ \hline &$	134			802 CUM - 8270 ANO 81	20
$\frac{4 \circ z}{4 \circ z} \frac{18}{4 \circ z} - \frac{418}{418} \frac{1}{418} \frac{1}{6} \frac{1}{6}$				802 Cum - METRIS/CYHIL	E/SULFIDE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
AOZ CUM - 8140 AOZ CUM - 8140 Read and Understood By MCT-Ued 1/25/96 Date				CET = BE	
Read and Understood By				$\alpha_{A} = \alpha_{A} \alpha_{A} \alpha_{A}$	
X/25/96		402 Cum - 819		Contraction Co	ntinued on Page
XL-T-Ued 1/25/96 Date				Read and Understood By	
XIL T-Ued 1/25/96 Date					
		Xhe T-Ued	1/25/96	Circad .	Date

r .	106099.03.2	22	RCR	AC	105	SURI	E				No	otebo		NO							il to a suid
JECT	1080,00,00			1	1			1		1							1			T	T
											-		1	12-0	n/	71	45			+	\dagger
1410	SET-UP A	TA	12-0	DZ	- 5	Ami	EP	ROCI	ear	265	H	50	HI	2-0	07.		713			+	+
ITIN																			-	+-	+
		1	10.1	EA	1	4/10	47.2	2	AS	Jun 1	40	1000		10-0-			EPI	IPE			1
	15 NEAN CYCLE	69.	112				1	1 7	2-5	an	mi	0 -	THI	515	TH	E	Loa	ATIO	w		
	CYCLE I	WITH	THE	a	-	110			112	/		•			İ						1
	OFA CRA	ck in	J THE	CON	rene	TE	COVE	en.							+						1
1410	A12-5-007	2 4	JELL	GRA	ADEC	SA	no	An	06	RA	JEL	, B	na	<u>un</u>	+				-	+-	-
1-11-	ZOZ CWIN	- 8	240																		_
	402 CUV		200																_		
	402 CW	n _ j	4.0.																		
	402 CW	n -	418,1																		
-	40Z CWM	1 T	3080							-					1	1					_
	107 1014	u - 1	5140								-					+			1		-
	802 CW	MLE	3270	And	815	;0										-	+				-
	802 CW		icm	sin	YAN	DE 1	SUCF	ANE													
	802 CW	m - 10	12AC	7-	1774																
										1	1										
	CGI = B	G									+					+					_
	OVA =		2								-	-								-	-
					×	- 7.7	->														
				1	•	A12-0	207						-								_
				++		A16-1															
				+	1.																
	A-N			25.0												+	-				
											-									-+	-
				Y															+	-+	_
				11									L							De	20
					1 1	1	1	-		10.9	3-	H	1.	2.2							_
												•	F								
			STORE	5 6	SUL	DINE	7						1			+					Γ
									AL	2-0									A	DM	H
																			-	B	U
																					-
			+++																		
												-									
																			•	T	T
																			+	+	t
																			-	-	+
					٨	10		CA	m	DI	F	1	20	AT	0	1	D	aT	-		+
					A	12	- -	2+	174	ry	4	-66		m	01	5	14	~.			
			47						$\left \right $								Conti	nued o	on Pa	ge	
																					_
		54 C						. 1	Reada	and U	Inder	stood	Ву								
					,	,															
N	-T.Uech			1/	25	96		_												Dat	te
						ate						Si	gned							Cut	-

	2A CLOSUNE	Notebook No	5
PROJECT 106099.03.22 RCC			
1520-1540 USED VAC-	TRUCK TO REMOVE	STANDING WATER AT AIL-	
1250 0000	TAN. LAS DONE TU	LICE, NOTED SHEER ON	
	ALL ALL MASIT	ATTALLISZ STATISTY	COLICI
AT AIZ.	THIS LOCATION 15 TO S	AMPRE LADER A CRACK IN	Curca
1550 A11-5-001 TOP	1 INCH APPEARS STAIN	DARK GRAY TO BLACK GR	
	ALLA DAVINED SPACEL	WITH STATIC COM	SE lies
THIS IS BRE	WN SAMO, SICT ANAC	FRANEL, SMELLS LIKE OLD	
PETROLEEM	propuct.		
Z OZ CUI	- 8240	CGI = BG	
4 02 Cuu	- 8290	OVA = 0.04Pm	
402 Clul	4 - 418.1		
	4 - 8030		
	n - 8140		
	4 - 8270 mm 8150		
		SULFINE	
Boz Cur	u - methos/cm		
		SUMP AT THE BACK SOUT	HUE
1620 AN-002 15 A	THE DOVICE OF THE	- HAD TO USE A VAC TRUC	K
COLLEN OF THE	LEAN TO DUILUNG	THE SUMP. NOTED A"SWAM	npy
TO REMOVE ST	ANDING WATER IN		
COLLECTED SAM	IPLE WITH 33 HOURS		
202 04	m - 8240		
4 02 04	um - 8290	CGI = BG	
402 (4	um - 418.1	OVA = 0.0PPm	
4 02 01	wim - 8080	OV - OF -	
402 01	um - 8140		
802 (1	um - 8270 AND 8150	3	
	um - mETALS/CHAN	DEY SULFIDE	
PACK SAMPLES	S AND DEMORS EQUIP	MENT	
		Continued on P	age
	Read and	Understood By	
	1/2 = br		
the T- Ueden	1/25/96	Signed	Date
Signed	Date		

S. 2017

1074-16

1.25

13

Constants and

