First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Site Seattle, Washington

June 2025

ERRG Project No. 20230065

Prepared for:

State of Washington, Department of Ecology 3190 160th Avenue SE Bellevue, WA 98008

Prepared by:

Engineering/Remediation Resources Group, Inc. 15333 NE 90th Street, Bldg. S, Suite 100 Redmond, WA 98052 (425) 658-5026

First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Site Seattle, Washington

Submitted by:

Engineering/Remediation Resources Group, Inc.

An glm	6/12/2025
Signature	Date
Spencer Slominski, PE	Project Manager
Name	Title
L Jack	6/12/2025
Signature	Date
Fernando Idiarte, LG	Project Geologist
Name	Title

Table of Contents

1.	INTR	ODUCT	'ION	1-1
	1.1.	Site In	formation	1-1
	1.2.	Site Hi	story	1-1
	1.3.	Site Us	Se	1-2
2.	SITE 1	BACKG	ROUND	2-1
	2.1.	Geolog	gy	2-1
	2.2.	Hydrog	geology	2-1
	2.3.	Previo	us Investigations and Remedial Activities	2-2
		2.3.1.	1989–1990 UST Removal and Remediation (GeoEngineers)	2-2
		2.3.2.	1992–1999 Groundwater Monitoring and Operation and Maintenance (Glacier)	2-4
		2.3.3.	2005 Enhanced Fluid Recovery (EcoVac Services, Inc.)	2-4
		2.3.4.	2005–2006 Groundwater Monitoring (EA Engineering, Science, and Technology, Inc.)	2-5
		2.3.5.	2016–2017 Remedial Investigation/Feasibility Study (Kennedy Jenks)	2-5
	2.4.	System	Design, Installation, and Testing	2-6
		2.4.1.	System Design	2-6
		2.4.2.	System Installation	2-6
		2.4.3.	System Commissioning and Testing	2-6
3.	SYSTI	SYSTEM OPERATION, MONITORING, SAMPLING, AND MAINTENANCE		
	3.1.	System	n Details	3-1
		3.1.1.	General Conveyance and Monitoring Infrastructure	3-1
		3.1.2.	Vapor Treatment System	3-2
		3.1.3.	Water Treatment System	3-2
		3.1.4.	Continuous Operation Phases	3-2
	3.2.	System	Operation and Maintenance	3-3
		3.2.1.	Weekly O&M	3-3
		3.2.2.	Monthly O&M	3-3
	3.3.	System	n Monitoring	3-4
		3.3.1.	Well VOCs, Vacuum, and Flow	3-4
		3.3.2.	System VOCs, Vacuum, and Flow	3-5
		3.3.3.	System Liquid Discharge	3-5
	3.4.	System	ı Sampling	3-5
		3.4.1.	Vapor Pin Sampling	3-5
		3.4.2.	VTS Sampling	3-5
		3.4.3.	WTS Sampling	3-5

Table of Contents (continued)

	3.5.	Field (Quality Control	3-6
	3.6.	Investi	igation-Derived Waste	3-6
	3.7.	Deviat	tions	3-6
4.	GROU	J NDW A	ATER MONITORING ACTIVITIES	4-1
	4.1.	Groun	dwater Measurements And Inspections	4-1
	4.2.	Groun	dwater Sampling	4-1
	4.3.	Equipr	ment Decontamination	4-2
	4.4.	Investi	igation-Derived Waste	4-2
	4.5.	Field (Quality Control	4-2
	4.6.	Deviat	tions	4-2
5.	RESU	LTS		5-1
	5.1.	Systen	n Monitoring	5-1
	5.2.	System	n Vapor and Water Samples	5-1
		5.2.1.	As-Needed Vapor Sampling	5-2
		5.2.2.	VTS Sampling	5-2
		5.2.3.	WTS Sampling	5-3
	5.3.	Groun	dwater Results	5-3
		5.3.1.	Groundwater Elevations Results	5-3
		5.3.2.	January 2025 Groundwater Sampling Results	5-4
		5.3.3.	February 2025 Groundwater Sampling Results	5-4
		5.3.4.	March 2025 Groundwater Sampling Results	5-5
6.	CONCLUSIONS AND RECOMMENDATIONS6-1			
	6.1. Conclusions		6-1	
		6.1.1.	Vapor Monitoring and Sampling	6-1
		6.1.2.	System Vapor and Water Treatment	6-1
		6.1.3.	Groundwater Monitoring and Sampling	6-1
	6.2.	Recom	nmendations	6-3
		6.2.1.	Upcoming Work	6-3
		6.2.2.	Identified Problems and Proposed Solutions	6-3
7.	REFE	RENCE	ES	

Table 4.

Table 5.

Table 6.

Table 7. Table 8.

List of Figures

Figure 1.	Site Location and Vicinity
Figure 2.	Site Layout with System and Wells
Figure 3.	System Process Flow Diagram
Figure 4.	GRO and Benzene Concentrations in System Vapor Influent and Effluent
Figure 5.	GRO and Benzene Concentrations in System Water Influent and Effluent
Figure 6.	Groundwater Elevation Contours, March 2025
Figure 7.	Groundwater GRO Concentration Contours, March 2025
Figure 8.	Groundwater Benzene Concentration Contours, March 2025
	List of Tables
Γable 1.	Well Construction Information
Γable 2.	MPE System Performance and Recorded Field Measurements
Γable 3.	Vapor Analytical Results – First Quarter 2025

Groundwater Analytical Results – First Quarter 2025

List of Appendices

MPE System Liquid Performance and Volume Discharged and Injected –

MPE System Vapor Performance, Estimated Emissions and Limits

Water Treatment System Analytical Results – First Quarter 2025

Depth to Groundwater and Elevation – First Quarter 2025

Appendix A.	Field Data During Reporting Period
Appendix B.	Laboratory Reports During Reporting Period
Appendix C.	Data Validation Reports During Reporting Period

First Quarter 2025

Acronyms and Abbreviations

amsl above mean sea level

bgs below ground surface

BTEX benzene, ethylbenzene, toluene, and total xylenes

CAP Cleanup Action Plan cfm cubic feet per minute COCs chemicals of concern

CULs cleanup levels

CVOCs chlorinated volatile organic compounds

DRO diesel-range organics

EA Engineering EA Engineering, Science, and Technology, Inc.

Ecology Washington State Department of Ecology

EFR enhanced fluid recovery
EIWs extraction/injection wells

ERRG Engineering/Remediation Resources Group, Inc.

FOG fats, oils, and grease FS Feasibility Study

GAC granular activated carbon

Glacier Environmental Services

GRO gasoline-range organics

IDW investigation-derived waste

inHg inches of mercury

Kennedy Jenks Kennedy Jenks Consultants, Inc.
KCIW King County Industrial Waste

lbs/hr pounds per hour

LNAPL light nonaqueous-phase liquid

mg/kg milligrams per kilogram
mg/L milligrams per liter
MPE multiphase extraction
MTCA Model Toxics Control Act

O&M Operation and Maintenance

Acronyms and Abbreviations (continued)

PID photoionization detector

ppm parts per million

PSCAA Puget Sound Clean Air Agency

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RI remedial investigation

SAP Sampling and Analysis Plan
SOG Standard Operating Guideline
SSD sub-slab depressurization
SVE soil vapor extraction

TPH total petroleum hydrocarbons

USTs underground storage tanks

VOC volatile organic compound VTS vapor treatment system

WAC Washington Administrative Code

WTS water treatment system

yd³ cubic yards

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

1. Introduction

Engineering/Remediation Resources Group, Inc. (ERRG) has prepared this Quarterly Remedial Progress Evaluation Report to document the operations, monitoring, and maintenance activities performed for the remedial system at the Former Circle K 1641 Site during First Quarter 2025 under Phase 1. The requirements for system sampling and operations are detailed in the Operations and Maintenance (O&M) Manual (Kennedy Jenks Consultants, Inc. [Kennedy Jenks], 2024b).

1.1. SITE INFORMATION

The site is located at 2350 24th Avenue East in Seattle, Washington (Figure 1). The site is a former gasoline service station located in an area of primarily commercial and residential mixed-use development. The former service station operated from 1968 to 1990. Four gasoline underground storage tanks (USTs), one pump island, one waste oil UST, and one heating oil UST were located at the site. The site is managed by the Washington State Department of Ecology (Ecology), Facility Site ID No. 92-2-08095-8.

1.2. SITE HISTORY

The site was operated as a retail gasoline station from 1968 to mid-1990. In 1989, a leak was discovered in one of the four gasoline USTs. It was estimated that approximately 4,000 to 6,000 gallons of gasoline was released to the subsurface. Following the discovery of the release, all six USTs and the pump island were removed along with about 900 cubic yards (yd³) of petroleum hydrocarbon-impacted soil. Follow-up investigative and remedial activities were performed between 1989 and 2006, including groundwater monitoring, light nonaqueous-phase liquid (LNAPL) recovery, groundwater extraction and treatment, soil vapor extraction (SVE), and enhanced fluid recovery (EFR). The site was redeveloped in 1990 and 1991 and currently includes a single one-story building operated as a retail dry cleaning store (Jay's Cleaners) and a convenience store (Mont's Market) (Kennedy Jenks, 2017a).

In February 1992, the site owner entered into Consent Decree No. 92-2-08095-8 with Ecology to perform additional investigation and remediation of petroleum contamination at the site. Ecology's lien on the property for the sum of \$50,000 was released in January 2008, after Ecology received the full payment for past costs from mixed funding sources (Kennedy Jenks, 2017a).

In 1994, Ecology conducted a Site Hazard Assessment for the site. The site ranked a 3 out of 5, with 1 being the highest risk and 5 being the lowest risk (Ecology, 1994).

A health investigation of the site was reportedly performed by the Washington State Department of Health in 1995, although the investigation report was not available for review in Ecology's files. The health department noted that, while the site posed a potential for adverse impact to public health, it was not of immediate concern because of the lack of any completed human exposure pathway (Kennedy Jenks, 2017a).

1.3. SITE USE

Two businesses currently operate at the site, including a dry cleaner (Jay's Cleaners) and a general store (Mont's Market). Jay's Cleaners is operated by the property owner, and Mont's Market is operated independently under a lease agreement. The site is located in an approximately two-block-long area of commercial and residential mixed-use development within the Montlake neighborhood of the city of Seattle (a primarily residential neighborhood) (Kennedy Jenks, 2017a).

Jay's Cleaners has a Resource Conservation and Recovery Act Site ID (WAD988515458) as a hazardous waste generator, but is listed as inactive as a hazardous waste generator since 31 December 1994. The site is also listed in Ecology's Hazardous Waste program (Program ID No. CRK000003160). The start date for this interaction is listed as 1 January 1988 and the end date is listed in Ecology's database as 1 March 1989 (Kennedy Jenks, 2017a).

2. Site Background

The following sections summarize the geology and hydrogeology at the Site.

2.1. GEOLOGY

Based on a review of boring logs generated during remedial investigation (RI) activities performed in 2016 and 2017 and previous investigations, three generalized stratigraphic units are identified at the Site, as summarized below (Kennedy Jenks, 2021).

- Silt Typically encountered from the ground surface (i.e., beneath pavement and subgrade fill) to depths of approximately 2 to 8 feet below ground surface (bgs), but extends to greater depths (up to approximately 13 feet bgs) in the northern portion of the site. The unit is generally described as soft to stiff, brown to gray, silt to sandy silt, locally with gravel and/or organics.
- Sand/Silt Typically encountered below the silt layer to depths of approximately 17 to 22 feet bgs. The unit is generally described as gray to brown, fine sand, silty fine sand, or sandy silt locally containing cobbles. The unit is also described as loose, medium dense, dense, and very dense with vertical and lateral variation. This unit may locally include the uppermost, possibly weathered, portion of the underlying glacial till unit.
- Till Typically encountered below the sand/silt starting at approximately 17 to 22 feet bgs. The unit is generally described as gray silt, silty sand, or sandy silt with sand and gravel. The till unit is also described as dense to very dense, hard to very hard, or stiff to very stiff, as indicated during drilling by increased drilling pressure and significant increases in blow counts required to drive split-spoon soil samplers.

Fill has also been encountered at the site, including pea gravel that was placed within the former excavation area to depths of approximately 17 feet bgs (Kennedy Jenks, 2021).

2.2. HYDROGEOLOGY

The depth to groundwater at the site ranges from 3 to 12 feet bgs, based on water levels measured from April to December 2016. This zone of shallow groundwater occurs under unconfined conditions, is perched on top of the till unit, and is interpreted to represent the local water table aquifer. Although a seasonal fluctuation of 1 foot or less in the aquifer was generally observed near the former UST area during the April and December 2016 monitoring events, a fluctuation of nearly 6 feet was recorded at the northernmost monitoring well MW-11 (Kennedy Jenks, 2021). It should be noted that wells MW-17 through MW-21 were completed in August and September 2016; therefore, they were only included in the December 2016 monitoring event.

Groundwater level data collected from wells located at the site in April and December 2016 (within the property parking lot) show a flow direction to the southeast, with a localized area of depression in the

vicinity of well MW-6. The potentiometric low around well MW-6 (located in East McGraw Street) is likely attributable to utility corridors located in the center of the street right-of-way (Kennedy Jenks, 2017a).

Previous reports have indicated that the general direction of groundwater flow was toward the northeast, and that while the onsite LNAPL recovery and remediation system was operating (December 1989 through May 2000), a stable cone of depression developed near the recovery well (Kennedy Jenks, 2017a).

2.3. PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES

This section summarizes the previous site investigations and remedial activities. Unless indicated otherwise, the information provided in this section is from the 2017 RI/Feasibility Study (FS) Report (Kennedy Jenks, 2017a).

2.3.1. 1989–1990 UST Removal and Remediation (GeoEngineers)

On 7 August 1989, a leak was detected in one of the gasoline USTs at the site. Upon discovery of the release, the remaining product was removed from the leaking UST, and a release notification was made to Ecology (GeoEngineers, 1990a). The capacity of the leaking UST was reportedly 4,000 gallons and it is unknown whether the tank stored leaded or unleaded gasoline. (Note: Leaded gasoline was not completely phased out in Washington until 1996.) Based on a review of tank inventory records, the release occurred between 22 June and 7 August 1989.

In late 1989, 16 groundwater monitoring wells (MW-1 through MW-16) were constructed at the site. During drilling, a petroleum-like odor was reportedly observed at several well locations (MW-2, MW-3, MW-4, MW-6, MW-10, MW-13, and MW-15) (GeoEngineers, 1990a). Soil samples were collected from each of the monitoring well borings for analysis of petroleum hydrocarbons (gasoline-range organics [GRO] and diesel-range organics [DRO]); benzene, ethylbenzene, toluene, and xylenes (BTEX); and other gasoline-related compounds. The highest detected concentration of GRO was in a soil sample collected from well MW-4 at 8.5 feet bgs (1,200 milligrams per kilogram [mg/kg]).

All six USTs and the pump island were removed from the site in October 1989. In addition to the UST removals, approximately 900 yd³ of petroleum hydrocarbon-impacted soil was excavated and removed. The four gasoline USTs were removed from one excavation, and the waste oil and heating oil USTs were each removed from separate excavations (GeoEngineers, 1990a). Monitoring wells MW-2 and MW-3 were abandoned during excavation activities because they were located within the footprint of the main UST excavation. Following excavation activities, the excavation was backfilled with pea gravel with a crushed gravel top course.

Following removal of the gasoline USTs, approximately 80 to 100 gallons of LNAPL was removed from the excavation. Petroleum hydrocarbon-impacted soil was removed from the UST excavation to a depth of approximately 14 to 16 feet bgs. Eight confirmation soil samples were collected from the sidewalls and

base of the excavation. The confirmation soil sample results indicated GRO and/or DRO and BTEX were present at concentrations exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs), except in the sample collected from the eastern sidewall. The GRO concentrations ranged from not detected (samples EW-1 and ET-3, eastern sidewall) to 1,700 mg/kg (sample NW-1 along the northern sidewall). The highest benzene concentration (31 mg/kg) was also detected in sample NW-1, while other detected concentrations ranged from 0.11 to 1.3 mg/kg.

The waste oil and heating oil USTs reportedly contained residual product, which was removed prior to excavation (GeoEngineers, 1990a). No perforations were observed in either tank; however, field screening of soil samples surrounding each tank indicated that some petroleum hydrocarbon-impacted soil was present. Approximately 10 yd³ of impacted soil was removed from the area surrounding the heating oil UST, and approximately 80 yd³ of impacted soil was removed from the waste oil UST excavation, primarily from the base and the eastern sidewall (GeoEngineers, 1990a). Following excavation of petroleum hydrocarbon-impacted soil, confirmation soil samples were collected from each excavation sidewall and bottom and analyzed for total petroleum hydrocarbons (TPH). TPH concentrations in all samples were less than the MTCA Method A CULs for diesel and oil in soil.

The former pump island was reportedly removed from the site in March 1990 (Ecology, 2009); however, no information on confirmation sampling, if any, was available.

In late 1989, an LNAPL recovery system, groundwater treatment system, and SVE system were also installed at the site within the former gasoline tanks excavation area. The remediation systems consisted of a 30-inch-diameter steel recovery well along the northern edge of the excavation and a dual-pumping system consisting of an LNAPL (free product) recovery pump and a water table depression pump (Ecology, 2009). Three groundwater and LNAPL recovery trenches were also constructed within the excavation along the northern sidewall.

Approximately 538 gallons of LNAPL was recovered from December 1989 through September 1990 (GeoEngineers, 1990b). In addition, measurable LNAPL was bailed from the monitoring wells on a monthly basis. The groundwater treatment system was operated until May 2000, at which time Ecology decided to discontinue operation of the system and evaluate other cleanup alternatives (Glacier Environmental Services [Glacier], 2001).

The SVE system was installed in the excavation and consisted of horizontal slotted polyvinyl chloride (PVC) vapor extraction piping connected to a blower. Soil vapors were routed through a condensate trap, particulate filter, and a series of granular activated carbon (GAC) filters for treatment. Although the SVE system was installed at the same time as the LNAPL recovery and groundwater treatment systems were installed, it was operated from the early 1990s until 1997, at which time it was shut down because no

significant hydrocarbons were detected in the extracted soil vapor for 2 consecutive months (Ecology, 2009).

2.3.2. 1992–1999 Groundwater Monitoring and Operation and Maintenance (Glacier)

From 1992 through 1999, Glacier performed two groundwater monitoring events and O&M of the groundwater treatment system at the site. Groundwater monitoring activities consisted of collecting groundwater samples and measuring LNAPL in the second quarter 1992 and second quarter 1999.

2.3.3. 2005 Enhanced Fluid Recovery (EcoVac Services, Inc.)

In June 2005, EcoVac Services, Inc. performed a pilot test to evaluate use of an EFR mobile dual-phase extraction technology to remediate petroleum hydrocarbons at the site. The EFR technology uses a combination of a specially designed truck-mounted vacuum and liquid handling system integrated with a mobile hydrocarbon vapor treatment system (VTS). High vacuum is applied to one or more monitoring or recovery wells with down-hole apparatuses to control the fluid elevation in each well. EFR simultaneously removes multiple phases of hydrocarbons (liquid, dissolved, adsorbed, and vapor phase) by extracting free product, soil vapors, and groundwater from the selected monitoring and/or recovery wells. The purpose of the 8-hour EFR pilot test was to evaluate the technology as a method for removing LNAPL, impacted groundwater, and hydrocarbon vapors from monitoring wells MW-4, MW-8, MW-9, and MW-13 located near the former UST excavation area. The results of the EFR pilot test are summarized below.

- Approximately 18 gallons of gasoline was removed during the test.
- Vapor-phase hydrocarbon removal rates ranged from 1.9 pounds per hour (lbs/hr) when extracting from monitoring well MW-13 located farthest from the former UST excavation area to 38 lbs/hr when simultaneously extracting from multiple monitoring wells (i.e., MW-4, MW-8, and MW-9) located nearer to the former UST excavation area.
- The groundwater drawdown measured in the observation monitoring wells ranged from 0.08 foot to 2.75 feet when extracting from monitoring well MW-9 and generally correlated with the distance from the point of applied vacuum. The groundwater drawdown measured in three observation wells when extracting from monitoring well MW-4 was approximately the same, regardless of distance.
- Pre-test LNAPL measurements ranged from a sheen in monitoring well MW-8 to 0.42 foot in monitoring well MW-4. LNAPL was not present in measurable thicknesses in measurements taken approximately 3 weeks after the pilot test. Measurements of LNAPL collected during the three subsequent quarters indicated that LNAPL was measurable on the groundwater but did not return to the pre-test thickness in monitoring well MW-4.

2.3.4. 2005–2006 Groundwater Monitoring (EA Engineering, Science, and Technology, Inc.)

In 2005 and 2006, EA Engineering, Science, and Technology, Inc. (EA) performed groundwater monitoring activities at the site (EA, 2006). The monitoring activities during this period consisted of collecting groundwater samples from select monitoring wells and measuring for LNAPL approximately 1 week prior to the EFR pilot test described in Section 2.3.3 and approximately 1 week after the pilot test. EA performed three additional rounds of groundwater monitoring in 2006. The groundwater monitoring results during this period indicated that GRO and benzene remained in groundwater at concentrations exceeding the MTCA Method A CULs to the north of the former gasoline UST area (EA, 2006). In addition, the LNAPL thickness in monitoring wells located in the former gasoline UST area slowly rebounded following the EFR pilot test but did not return to pre-test thicknesses in the monitoring well (MW-4) located adjacent to the former USTs, where the greatest thickness had been observed prior to the test. Follow-up monitoring performed in February 2008 indicated that LNAPL remained as film (i.e., no measurable thickness) in monitoring wells MW-4 and MW-13 and a hydrocarbon sheen was present in monitoring wells (MW-8, MW-9, and MW-15) to the north, and that the extent of LNAPL-impacted groundwater was relatively stable.

2.3.5. 2016–2017 Remedial Investigation/Feasibility Study (Kennedy Jenks)

The RI was performed to address identified data gaps and evaluate the nature and extent of contamination at the site. The RI included constructing 3 new groundwater monitoring wells (MW-17, MW-18, and MW-19) and 9 new multipurpose wells (MW-20, MW-21, and RW-1 through RW-7); advancing 16 reconnaissance soil borings; collecting soil samples for laboratory analyses; and performing additional rounds of groundwater monitoring.

GRO and benzene were identified as the primary chemicals of concern (COCs) at the site. Concentrations of GRO and benzene in soil and groundwater appeared to be highest in the western-central portion of the site and appeared to extend off-property to the north and east. The vertical extent of GRO and benzene concentrations in soil exceeding the MTCA Method A CULs appeared to be generally limited to depths from about 8 to 20 feet bgs. No LNAPL was observed in the monitoring wells during the 2016–2017 RI activities. Potentially complete pathways for human exposure to contaminated soil, groundwater, and soil vapors were identified.

The FS evaluated remedial alternatives for the site, with the goal of identifying the most effective remedial strategy that is protective of human health and the environment and meets the requirements of Ecology's MTCA regulations (Washington Administrative Code [WAC] 173-340). The recommended remedial alternative for the site included a combination in-situ bioremediation to address impacted saturated soil and groundwater at the site and SVE to support remediation of the vadose zone and to mitigate the vapor intrusion pathway into on-property buildings.

2.4. SYSTEM DESIGN, INSTALLATION, AND TESTING

This section summarizes the design, installation, and testing of the remedial system at the site.

2.4.1. System Design

An Engineering Design Report was prepared in December 2021 detailing the specific criteria and design requirements for implementing the remedial alternative selected during the RI/FS and Cleanup Action Plan (CAP) process (Kennedy Jenks, 2021). The remedial alternative chosen in the RI/FS and CAP included an SVE system for remediation of residual soil impacts and implementation of a groundwater recirculation system with injection of bioaugmentation reagents. Kennedy Jenks prepared the design drawings and specifications, which were provided in the bid package for the construction bidding process in December 2022.

2.4.2. System Installation

Glacier was awarded the contract to construct and install the proposed remedial system in February 2023, but permit approvals delayed the start of work. After obtaining approved permits, Glacier completed the work elements described below between June 2024 and November 2024.

- Installed three new vertical and three new slant remediation wells.
- Installed four vapor pins and three horizontal sub-slab depressurization wells.
- Trenched and backfilled piping from each wellhead to the treatment shed.
- Procured and delivered the treatment system shed, GAC vessels, catalytic oxidizer, security fencing, and other treatment system components.
- Commissioned the system and performed functionality testing.

2.4.3. System Commissioning and Testing

Glacier and Kennedy Jenks performed commissioning and testing of system components in October and November 2024. System commissioning and testing included, but was not limited to:

- confirming functionality of system components (pumps, gauges, flowmeters, etc.);
- testing well performance to estimate extraction flow rates;
- testing alarms and notification;
- performing treatment batching and obtaining discharge rates; and
- obtaining baseline vapor measurements of vapor pins and sub-slab depressurization wells.

During testing, the system discharge outlet overflowed after only 300 gallons had been discharged between 4 November and 6 November 2024. After troubleshooting and scoping the drainpipe, a blockage was identified between the outlet and the sanitary sewer main. An alternate discharge outlet was selected, and

temporary piping was installed in December 2024 to allow for system operation. Extraction and injection lines were removed from the wells to minimize groundwater extraction and focus on SVE. After successful operation using the temporary piping for batch discharges, the extraction and injection lines were reinstalled at the wells to increase groundwater extraction on 05 February 2025. The installation of the permanent discharge pipeline was completed on 04 March 2025.

Section 3.1 further discusses the system components. Glacier submitted system commissioning and testing documentation, troubleshooting discussion, and as-built drawings under their Construction Completion Report to Ecology (Glacier, 2025).

3. System Operation, Monitoring, Sampling, and Maintenance

The remedial system consists of a multiphase extraction (MPE) component and a surfactant/nutrient/oxygen injection component to reduce concentrations of GRO and BTEX in the site soil and groundwater in accordance with the CAP (Kennedy Jenks, 2017b). Groundwater, soil, and vapor samples are collected to monitor treatment progress in accordance with the Sampling and Analysis Plan/Quality Assurance Project Plan ([SAP/QAPP]; Kennedy Jenks, 2024a). Weekly, monthly, semiannual, and annual inspections, monitoring, maintenance, and sampling are performed on the MPE system to ensure it remains operational and the site is progressing toward achieving the remedial action objectives. Section 3.1 provides details on the system components. Sections 3.2, 3.3, and 3.4 describe the specific maintenance, monitoring, and system sampling activities performed during this event, respectively. Sections 3.5 and 3.6 describe field quality control activities and management of investigation-derived waste (IDW). Section 3.7 discusses deviations from the O&M Manual and SAP/QAPP. Section 4 describes the groundwater monitoring activities, and Section 5 summarizes the monitoring results.

3.1. SYSTEM DETAILS

The MPE system was designed to incorporate three new vertical wells and three new slant wells along with seven existing wells into a single extraction/injection system for a total of 13 remediation wells (Figure 2 and Table 1). Each well within the network of remediation wells is individually connected to both the extraction and injection manifolds in the treatment system enclosure (i.e., the Treatment Shed) located on site. Figure 2 shows the location of the Treatment Shed, and Figure 3 provides the system process flow diagram. The vapor and water extracted from the wells is piped to the treatment system. The treatment train splits at a knock-out tank to a water treatment train and a vapor treatment train.

3.1.1. General Conveyance and Monitoring Infrastructure

The extraction/injection wells (EIWs) consist of 13 remediation wells, including 1 existing monitoring well (MW-4), as follows (Figure 2):

- Seven existing remediation wells (RW-2, RW-3, RW-4, RW-5, RW-6, RW-7, and MW-4)
- Three new remediation wells (RW-8, RW-9, and RW-10)
- Three new slant remediation wells (SW-1, SW-2, and SW-3)

The wells are organized into four groups of either three or four remediation wells.

Three 4-foot-long sub-slab depressurization (SSD) horizontal wells constructed of 3-inch-diameter PVC slotted pipes are installed below grade in gravel. Four vapor pin monitoring points are also installed through the floor slab inside of the onsite building. Figure 2 shows the locations of the SSD wells and the vapor monitoring pins.

Extracted soil vapor from the three SSD wells are manually controlled at Manifold A. Extracted vapor/water from each well group is controlled at Manifold B located within the Treatment Shed at the southwest corner of the onsite building. Treated water for recirculation back into the individual EIWs is controlled at Manifold C, also located within the Treatment Shed.

3.1.2. Vapor Treatment System

The VTS begins with a liquid ring vacuum pump (B-301) installed downstream of the 40-gallon steel moisture separator/knockout tank (T-300) and connecting piping to pull vapor and groundwater from active EIWs (Figure 3). B-301 pulls vapor from T-300 into the system. A heat exchanger reduces the exit temperature on the discharge side of the liquid ring pump. A temporary catalytic oxidizer (FALCO-300) is installed downstream from B-301 for use during the first several months of operation to treat vapor concentrations to satisfy Puget Sound Clean Air Agency (PSCAA) requirements. Two 2,000-pound vapor GAC vessels are connected downstream from B-301, parallel to the catalytic oxidizer, for use once influent vapor concentrations are less than 500 parts per million (ppm) during vapor monitoring.

3.1.3. Water Treatment System

The water treatment system (WTS) begins at T-300 located upstream of B-301 (Figure 3). A transfer pump (P-300) is located adjacent to T-300 to transfer water from T-300 to a 400-gallon storage tank (T-301). A second transfer pump (P-400) is located adjacent to T-301 to transfer untreated water through the filtration and treatment process. The filtration and treatment process consists of an inline bag filter and four 200-pound liquid GAC vessels which are plumbed for operation in a lead-lag arrangement downstream of the bag filter (two sets of lead-lag trains). A 300-gallon storage tank (T-400) is connected downstream of the liquid GAC vessels to collect treated groundwater. Treated groundwater is discharged by gravity into the sanitary sewer from the storage tank until COC concentrations are amenable to bioremediation. Once COC concentrations are amendable, treated groundwater will then be pumped to a 300-gallon mixing tank (T-500) where amendments will be added. An inline oxygen generator is connected to the injection piping downstream of the transfer pump, which is connected to the mixing tank.

3.1.4. Continuous Operation Phases

After completion of the startup testing discussed in Section 2.4.3, the remedial system began continuous operation. The remedial system is expected to operate in three phases throughout the life of the system. Sections 3.1.4.1, 3.1.4.2, and 3.1.4.3 describe each operational phase.

3.1.4.1. Phase 1 – Multiphase Extraction

The EIWs will be operated to extract groundwater and vapor for treatment. Extraction will occur at all wells and all sub-slab depressurization locations. Vapors will be treated with the temporary catalytic oxidizer until extracted vapor concentrations are reduced to 500 ppm. When that concentration is reached,

the catalytic oxidizer will be removed, and vapor GAC will be implemented. The use of the catalytic oxidizer is estimated to last from 1 to 3 months. Vapor GAC will be used until groundwater concentrations stabilize and approach asymptotic levels, approximately 6 to 12 months, after which Phase 2 will begin. Treated groundwater will be discharged to the sanitary sewer under an approved King County Industrial Waste (KCIW) permit.

3.1.4.2. Phase 2 – Surfactant Reinjection

When groundwater concentrations stabilize and approach asymptotic levels, the system will begin reinjection with surfactant addition. Surfactants in the reinjected water will act to liberate hydrocarbons adsorbed in the soil. Reinjection will occur until the liquid-phase concentrations have dropped to a level indicative of asymptotic performance of the surfactant reinjection. The duration of Phase 2 is estimated to be 6 months.

3.1.4.3. Phase 3 – Enhanced Bioremediation

Once Phase 2 is complete, the surfactant reinjection will be replaced by adding oxygen/nutrients to the reinjected water. Operation will be rotated between the four sets of wells monthly to quarterly based on the monitoring results. Enhanced bioremediation will be performed until the site COCs have been reduced significantly in the wells or site CULs have been reached. The duration of Phase 3 is estimated to be 24 to 48 months.

3.2. SYSTEM OPERATION AND MAINTENANCE

The system construction contractor (Glacier) performed system O&M until transitioning responsibility to ERRG on 04 March 2025. System O&M activities were performed in accordance with the O&M Manual (Kennedy Jenks, 2024b). Sections 3.2.1 and 3.2.2 describe the weekly and monthly O&M activities.

3.2.1. Weekly O&M

A visual inspection, temperature check, and removal of accumulated debris of the catalytic oxidizer within the VTS were performed weekly. The catalytic oxidizer was observed as operational and in working condition; no deficiencies were noted during the inspection. Site inspections are documented in the System Monitoring Forms (Appendix A).

3.2.2. Monthly O&M

Monthly general inspections were performed of the following items:

- Equipment piping
- Manifold piping
- Gas and electrical lines

- Programmable logic controller
- Treatment shed
- Vapor pins (located on the VTS)
- Liquid ring pump (located on the VTS)
- Heat exchanger (located on the VTS)
- Transfer pumps (located on the WTS)
- Bag filter (located on the WTS)
- Liquid GAC vessels (located on the WTS)
- Oxygen generator and air compressor (located on the WTS)

The system was observed to be operational and in good working condition; no deficiencies were noted during the inspection. Site inspections are documented in the System Monitoring Forms (Appendix A).

3.3. SYSTEM MONITORING

The following system parameters were monitored during this event:

- Ambient air temperature
- Ambient barometric pressure
- Vacuum and flow of EIW and SSD wells
- Vacuum and flow of the VTS
- Vacuum of vapor pins
- Temperature of the catalytic oxidizer
- Volatile organic compound (VOC) concentrations at the EIWs, SSD wells, vapor pins and VTS
- pH and turbidity of the WTS
- Volume discharged to sewer by WTS

Sections 3.3.1, 3.3.2, and 3.3.3 provide additional details on system monitoring activities. All monitoring data are logged on the System Monitoring Forms (Appendix A).

3.3.1. Well VOCs, Vacuum, and Flow

VOC concentrations, vacuum, and flow are measured monthly at the well manifold. A photoionization device (PID) is used to measure VOC concentration at each EIW and SSD, as well as the monitoring four vapor pins located inside the adjacent buildings. Vacuum is measured based on the pressure gauge readings along the well manifold for each EIW and SSD well, if the well was active. Flow at each EIW and SSD is

measured using an anemometer. SSD and vapor pins are monitored for additional gas measurements, such as carbon dioxide, hydrogen sulfide, methane, and oxygen.

3.3.2. System VOCs, Vacuum, and Flow

VOC concentrations, vacuum, and flow are measured monthly at VTS. VOC concentrations in influent and effluent are measured with a PID. VTS vacuum and flow are recorded based on the readings on the system status panel.

3.3.3. System Liquid Discharge

The total volume discharged from the WTS to the sewer is currently measured with a temporary flowmeter and then calculating the change between totalizer measurements. Glacier installed a permanent flowmeter after the alternate discharge outlet construction activities were completed in February 2025.

3.4. SYSTEM SAMPLING

This section describes the as-needed vapor sampling, as well as system compliance vapor and water samples, which were collected monthly during Phase 1 and submitted for laboratory analysis in accordance with the SAP/QAPP (Kennedy Jenks, 2024a). Table 2 summarizes system performance and recorded field measurements.

3.4.1. Vapor Pin Sampling

Vapor samples were collected on 13 February 2025 at vapor pins VP-3, and VP-4, using Summa canisters. Sampling was performed in response to PID measurements exceeding 425 ppb at both vapor pins on 31 January 2025. Samples were submitted to an offsite laboratory for analysis of VOCs (including GRO and BTEX) by Method TO-15. Results are presented in Table 3 and discussed in Section 5.2.1.

3.4.2. VTS Sampling

Monthly VTS samples were collected from two locations (influent and effluent of the catalytic oxidizer) using 1-liter Summa canisters on 17 January 2025, 13 February 2025, and 24 March 2025. Samples were submitted to an offsite laboratory for analysis of VOCs (including GRO and BTEX) by Method TO-15. Results are presented in Table 4, shown on Figure 4, and discussed in Section 5.2.2.

3.4.3. WTS Sampling

Monthly WTS samples were collected from the following three locations throughout the system: influent to the lead liquid GAC vessel, midpoint between the lead and lag liquid GAC vessel, and effluent of the lag liquid GAC vessel. Results are presented in Table 6, shown on Figure 5, and discussed in Section 5.2.3.

WTS samples were collected on 17 January 2025, 27 February 2025, and 21 March 2025 from LG-401, LG-403, and LG-404 (influent, midpoint, and effluent, respectively). Samples were submitted to an offsite laboratory for analysis of GRO, BTEX, and nonpolar fats, oil, and grease (FOG). Samples were also analyzed for selected chlorinated VOCs, as required per the KCIW permit. Field instruments were used to measure pH and turbidity.

3.5. FIELD QUALITY CONTROL

During the January 2025 WTS sampling event, three duplicates were collected at LG-404 (DUP-1, DUP-2, and DUP-3). DUP-1 was analyzed for GRO, BTEX, chlorinated VOCs, and FOG. DUP-2 and DUP-3 were analyzed for FOG only.

During the February 2025 and March 2025 WTS sampling events, two duplicates were collected at LG-404 (DUP-1 and DUP-2). DUP-1 was analyzed for GRO, BTEX, chlorinated VOCs, and FOG for each event, while DUP-2 was analyzed for FOG only.

3.6. INVESTIGATION-DERIVED WASTE

System operations generated the following IDW during the reporting period:

- Used WTS filter, which was placed inside a 55-gallon drum within the WTS containment area
- Treated and untreated system water during sample collection, which was placed into T-301 for processing

3.7. DEVIATIONS

No deviations with system monitoring or sampling were observed during the reporting period.

4. Groundwater Monitoring Activities

Groundwater monitoring is performed during remedial system operation for compliance and performance monitoring, as well as during confirmation monitoring after remedy implementation (Kennedy Jenks, 2024a). Each groundwater monitoring and sampling event includes measuring groundwater levels (and LNAPL levels, if applicable) (collectively known as "liquid levels") in site monitoring wells and EIWs (as accessible) and collecting groundwater samples from select monitoring wells for laboratory analysis. Although LNAPL has not been observed in the site monitoring wells since October 2006 (EA, 2006), its presence will be monitored during the groundwater monitoring events.

4.1. GROUNDWATER MEASUREMENTS AND INSPECTIONS

Liquid-level measurements were obtained from all wells prior to collecting groundwater samples in accordance with Standard Operating Guideline (SOG)-005 in the O&M Manual (Kennedy Jenks, 2024b). Groundwater measurements were taken on 17 January 2025, 27 February 2025, and 21 March 2025, during the monthly events at the monitoring, compliance, and remediation wells (25 in total). Table 7 and Figure 6 show the groundwater elevation results, which are summarized in Section 5.3.1. An electronic oil/water interface probe was used to measure the depth to product and depth to water levels. Measurements were referenced to the top of the well casing on the north side.

4.2. GROUNDWATER SAMPLING

Groundwater samples were collected on 17 January 2025, 21 February 2025, and 28 March 2025, during each monthly sampling event using low-flow purging methodology in accordance with SOG-006 (Kennedy Jenks, 2024b). Table 8 and Figures 7 and 8 show the groundwater analytical results, which are summarized in Sections 5.3.2 and 5.3.3, for the first quarter monthly monitoring events.

Upon arrival, the condition of the well was noted and then an oil-water interface probe was used to measure the depth to water and total well depth to the nearest 0.01 foot from the top of the well casing to establish the appropriate purge volumes. Dedicated polyethylene tubing was used at each well prior to purging the well, and the tubing inlet was placed within the screened interval. Groundwater wells were purged using a portable peristaltic pump. Field parameters were monitored during the purging process using a multiparameter water quality meter, equipped with a flow-through cell, to continuously monitor the following parameters: temperature, pH, specific conductivity, oxidation-reduction potential, and dissolved oxygen. Turbidity was measured using a separate turbidity meter. Meter readings were recorded at 5-minute intervals during the purging process, including a final reading taken at the completion of purging each well location.

The monitoring wells were purged at low-flow rates (5 to 50 milliliters per minute) and adjusted, as necessary, to minimize drawdown in the well until water quality parameters stabilized within ranges established in SOG-006 (Kennedy Jenks, 2024b). Parameter readings, as well as olfactory and visual

observations, obtained during the purging and sampling process were recorded on groundwater purge forms (Appendix A). Purged groundwater was containerized and managed as discussed in Section 4.4.

4.3. EQUIPMENT DECONTAMINATION

All non-dedicated equipment used during sampling (oil-water interface probe, water quality meter, turbidity meter, and flow-through cell) were decontaminated in accordance with the SOG-008 (Kennedy Jenks, 2024b). Decontamination water was stored in a 55-gallon drum on the site.

All disposable personal protective equipment (i.e., gloves) and sampling equipment (i.e., tubing, paper towels, etc.) were placed in trash bags on the site during sampling and were disposed of as municipal solid waste at the end of the day.

4.4. INVESTIGATION-DERIVED WASTE

IDW generated during groundwater monitoring was purge water and equipment decontamination water. IDW was stored in 5-gallon buckets during sampling activities and then transferred to a 55-gallon steel drum on the site during the January 2025 event. The IDW was transferred from the drum to T-301 for treatment through the WTS during the February 2025 event. IDW was transferred after completion of monitoring activities into T-301 during the February 2025 and March 2025 events.

4.5. FIELD QUALITY CONTROL

In January 2025, a blind duplicate was collected from well MW-9 and submitted for analysis of GRO and BTEX. A trip blank was also submitted and analyzed for GRO and BTEX. In February 2025, a blind duplicate was collected from well MW-8 and submitted for analysis of GRO and BTEX. Two trip blanks were also submitted and analyzed for GRO and BTEX. In March 2025, a blind duplicate was collected from well MW-6 and submitted for analysis of GRO and BTEX. Two trip blanks were also submitted and analyzed for GRO and BTEX. Appendix A includes field documentation, and Appendix B includes the analytical laboratory reports.

4.6. DEVIATIONS

The deviations listed below were documented during the reporting period.

- Liquid level measurements were not collected at well MW-10 due to obstruction in well.
- Liquid level measurements were not collected at well MW-4 due to wellhead fitting. The well is currently equipped for extraction, and persistent removal and reinstallation of the fitting would damage the well and its components.
- Only one trip blank and no equipment blank were collected during the January 2025 event due to a shortage of available trip blank containers.

5. Results

This section summarizes the system monitoring and sampling results.

5.1. SYSTEM MONITORING

Table 2 presents the system monitoring measurements recorded during the reporting period. Table 5 presents the total volume discharged per month during the reporting period.

System influent flow rates ranged between 42 cubic feet per minute (cfm) and 112.8 cfm. System influent vacuum ranged from 14.2 pounds inches of mercury (inHg) to 24.7 inHg. VOC concentrations in vapor influent ranged from 61.6 ppm to 254.9 ppm. VOC concentrations in vapor effluent ranged from 0.198 ppm to 33.4 ppm.

EIW vacuum measurements ranged from 2 inHg at well RW-2 to 13 inHg at well RW-7. EIW flow rates ranged from 3 cfm at well RW-8 to 133.1 cfm at well RW-9. Measured VOC concentrations at EIWs ranged from 0 ppm at MW-4 to 698.2 ppm at RW-7.

Vapor pin vacuum measurements ranged from 0.001 inH₂0 (inches of water) at vapor pin VP-2 to 0.14 inH₂0 at vapor pin VP-1. VOC concentrations at vapor pins ranged from 0.108 ppm at VP-2 to 137.7 ppm at VP-4. Methane, oxygen, carbon dioxide, and hydrogen sulfide measurements were also collected at all vapor pins. Oxygen measurements ranged from 19.0% at VP-4 to 20.5% at VP-2, while carbon dioxide measurements ranged from 0.04% at VP-2 and 1.06% at VP-4. Methane and hydrogen sulfide were not observed in vapor pin measurements.

SSD vacuum measurements ranged from 0.661 inH₂0 at SSD-1 to 18 inH₂0 at SSD-3. SSD flow rates ranged from 4.2 cfm at SSD-1 to 22.8 cfm at SSD-3. VOC concentrations at SSD locations ranged from 2.3 ppm at SSD-3 to 118 ppb at SSD-2. Methane, oxygen, carbon dioxide, and hydrogen sulfide measurements were also collected at all vapor pins. Oxygen was measured at 20.9% at all SSD locations, while carbon dioxide measurements ranged from 0.02% at SSD-2 and 0.09% at SSD-3. Methane and hydrogen sulfide were not observed in SSD measurements.

During First Quarter 2025 reporting period, approximately 49,151 gallons of treated water were discharged to the sewer (Table 5).

5.2. SYSTEM VAPOR AND WATER SAMPLES

Table 3 presents the analytical results for the as-needed vapor sampling event. Table 4 and Figure 4 present the analytical results from sampling VTS influent and effluent. Table 6 and Figure 5 present the analytical results from sampling WTS influent, midpoint, and effluent.

Appendix B includes the analytical laboratory reports for the soil vapor and water samples. Laboratory Data Consultants, Inc. completed Stage 2A validation of the data in accordance with the SAP/QAPP (Kennedy Jenks, 2024a). Appendix C includes the data validation reports.

Sections 5.2.1, 5.2.2, and 5.2.3 summarize vapor pin, VTS, and WTS sample results, respectively.

5.2.1. As-Needed Vapor Sampling

Vapor pin samples were analyzed for VOCs, including GRO and BTEX, however only GRO was detected at concentrations exceeding the sub-slab soil gas screening levels, as summarized below.

- GRO concentrations exceeded the screening level of 1,500 micrograms per cubic meter ($\mu g/m^3$) in both samples (VP-3 and VP-4), with concentrations of 1,920 $\mu g/m^3$ and 158,000 $\mu g/m^3$, respectively.
- Benzene, toluene, ethylbenzene, and total xylenes were detected in both samples (VP-3 and VP-4); however, concentrations did not exceed the screening levels of 460 μg/m³, 76,000 μg/m³, 15,000 μg/m³, and 1,500 μg/m³, respectively.

Additional VOCs that were detected in the vapor pin samples are provided in the laboratory analytical reports (Appendix B).

5.2.2. VTS Sampling

GRO and BTEX were detected in influent and effluent samples, as summarized below.

- GRO concentrations were 107,000 μg/m³ (influent) and 1,020 μg/m³ (effluent) in January 2025, 599,000 μg/m³ (influent) and 2,500 μg/m³ (effluent) in February 2025, and 300,000 μg/m³ (influent) and 1,000 μg/m³ (effluent) in March 2025.
- Benzene concentrations were 399 μg/m³ (influent) and 9.14 μg/m³ (effluent) in January 2025, 7,510 μg/m³ (influent) and 28.7 μg/m³ (effluent) in February 2025, and 6,900 μg/m³ (influent) and 9.97 μg/m³ (effluent) in March 2025.
- Toluene concentrations were 618 μg/m³ (influent) and 1.17 μg/m³ (effluent) in January 2025, 12,200 μg/m³ (influent) and 28.0 μg/m³ (effluent) in February 2025, and 13,100 μg/m³ (influent) and not detected (effluent) in March 2025.
- Ethylbenzene concentrations were 1,040 µg/m³ (influent) and 0.542 µg/m³ (effluent) in January 2025, 3,680 µg/m³ (influent) and 9.19 µg/m³ (effluent) in February 2025, and 3,030 µg/m³ (influent) and not detected (effluent) in March 2025.
- Total xylenes concentrations were 8,770 μg/m³ (influent) and 0.808 μg/m³ (effluent) in January 2025, 37,100 μg/m³ (influent) and 40.9 μg/m³ (effluent) in February 2025, and 30,500 μg/m³ (influent) and 4.60 μg/m³ (effluent) in March 2025.

Additional VOCs that were detected in the VTS samples are provided in the laboratory analytical reports (Appendix B).

5.2.3. WTS Sampling

During the January 2025 monitoring event, GRO was detected below the screening level concentration of 0.25 milligrams per liter (mg/L), at 0.109 mg/L in influent sample LG-401-INF (influent to lead liquid GAC vessel), and 0.119 mg/L in the triplicate sample for LG-404-EFF (effluent to lead liquid GAC vessel). All other analyte concentrations were below the detection limit for all samples collected.

In February 2025, analytes were not detected above the laboratory limit of detection all samples, except for the influent sample, where oil and grease, GRO, and tetrachloroethylene (PCE) were detected below their screening levels of 100 mg/L, 0.25mg/L, and 0.24 mg/L, respectively. Oil and grease were detected at a concentration of 11.9 mg/L, GRO was at 0.114 mg/L, and PCE was at 0.00336 mg/L.

In March 2025, analytes were not detected above the laboratory limit of detection all samples, except for the influent sample, where oil and grease, GRO, and total xylenes were detected below their screening levels of 100 mg/L, 0.25 mg/L, and 2.2 mg/L, respectively. Oil and grease were detected at a concentration of 6.31 mg/L, GRO was at 0.180 mg/L, and PCE was at 0.00604 mg/L.

Field instrument measurements for pH and turbidity were within permitted ranges. Measurements for pH ranged from 6.49 to 6.82, and turbidity measurements ranged from 19 to 40 nephelometric turbidity units.

5.3. GROUNDWATER RESULTS

This section summarizes the groundwater elevation results and the baseline and January groundwater sample results.

Appendix B includes the analytical laboratory reports for the groundwater samples, which underwent Stage 2A validation in accordance with the SAP/QAPP (Kennedy Jenks, 2024a). Appendix C includes the data validation reports prepared by Laboratory Data Consultants, Inc.

5.3.1. Groundwater Elevations Results

No LNAPL was observed during the baseline and January monitoring events. Between January 2025 and March 2025, depth-to-water measurements showed a general fluctuation of groundwater elevations across all monitoring wells and EIWs, as a result of start-up and the active groundwater extraction. Groundwater elevations in January 2025 ranged from 51.49 feet amsl to 60.92 feet amsl at wells MW-6 and MW-11, respectively. Groundwater elevations in February 2025 ranged from 51.43 feet amsl to 60.74 feet amsl at wells MW-6 and MW-11, respectively. Groundwater elevations in March 2025 ranged from 32.52 feet amsl to 62.05 feet amsl at wells MW-4 and MW-11, respectively. Depth-to-water measurements and

groundwater elevation contours for March 2025 are shown on Figure 6 and calculations are summarized in Table 7. Due to high concentrations of analytes, dilutions were required for certain samples in order to obtain results within the instrument calibration range, which increases laboratory limit of detection for all analytes. In samples, with elevated concentrations of detected analytes, some analytes may be reported as non-detected due to the increased limit of detection.

5.3.2. January 2025 Groundwater Sampling Results

During the January 2025 event, GRO and/or BTEX analytes were detected at concentrations exceeding their respective cleanup levels¹ in seven monitoring wells, as summarized below.

- GRO was detected at concentrations ranging from 117 μg/L to 18,300 μg/L in wells MW-18 and MW-8, respectively. GRO concentrations ranging from 3,850 μg/L to 18,300 μg/L exceeded the cleanup level of 800 μg/L in six wells (MW-8, MW-9 [in primary and duplicate], MW-13, MW-19, MW-20, and MW-21).
- Benzene was detected at concentrations ranging from 46.2 μg/L to 3,130 μg/L in wells MW-6, MW-13, MW-19, MW-20, and MW-21. All detected benzene concentrations exceeded the cleanup level of 5 μg/L.
- Toluene was detected at concentrations ranging from 1.67 μg/L to 1,780 μg/L in wells MW-6 and MW-21, respectively. The detected toluene concentration in well MW-21 exceeded the cleanup level of 1,000 μg/L.
- Ethylbenzene was detected at concentrations ranging from 5.28 μg/L to 1,270 μg/L in wells MW-6 and MW-8, respectively. Ethylbenzene concentrations (1,270 μg/L, 712 μg/L, and 712 μg/L) exceeded the cleanup level of 700 μg/L in three wells (MW-8, MW-13, and MW-20, respectively).

5.3.3. February 2025 Groundwater Sampling Results

During the February 2025 event, GRO and/or BTEX analytes were detected at concentrations exceeding their respective groundwater levels¹ in seven monitoring wells, as summarized below.

- GRO was detected at concentrations ranging from 5,270 μg/L to 69,000 μg/L in wells MW-9 and MW-21, respectively, which exceeded the cleanup level of 800 μg/L in six wells (MW-8 [in primary and duplicate], MW-9, MW-13, MW-19, MW-20, and MW-21).
- Benzene was detected at concentrations ranging from 22.7 μg/L to 16,400 μg/L in wells MW-6 and MW-21, respectively. All detected benzene concentrations exceeded the cleanup level of 5 μg/L, across seven wells (MW-6, MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21).

¹ Cleanup levels are based on MTCA Method A Groundwater CULs (WAC 173-340-720, Table 720-1) (Kennedy Jenks, 2024a).

- Toluene was detected at concentrations ranging from 32.5 μg/L to 14,700 μg/L in wells MW-9 and MW-21, respectively. The detected toluene concentration in wells MW-8 (1,140 μg/L, only in the duplicate), MW-20 (7,970 μg/L), and MW-21 (14,700 μg/L), exceeded the cleanup level of 1,000 μg/L.
- Ethylbenzene was detected at concentrations ranging from 1.38 μg/L to 1,070 μg/L in wells MW-6 and MW-8, respectively. Ethylbenzene concentrations (1,070 μg/L, 719 μg/L, 920 μg/L, and 970 μg/L) exceeded the cleanup level of 700 μg/L in four wells (MW-8, MW-19, MW-20, and MW-21, respectively).
- Total xylenes were detected at concentrations ranging from 665 μg/L to 6,390 μg/L in wells MW-9 and MW-21, respectively. Total xylenes concentrations ranging from 3,820 μg/L to 6,390 μg/L exceeded the cleanup level of 1,000 μg/L in five wells (MW-8 [in primary and duplicate], MW-13, MW-19, MW-20, and MW-21).

5.3.4. March 2025 Groundwater Sampling Results

During the March 2025 event, GRO and/or BTEX analytes were detected at concentrations exceeding their respective groundwater levels¹ in seven monitoring wells, as summarized below.

- GRO was detected at concentrations ranging from 128 J+ μg/L to 47,200 μg/L in wells RW-1 and MW-21, respectively. GRO concentrations (16,200 μg/L, 5,000 μg/L, 8,290 μg/L, 13,500 μg/L, 25,400 μg/L, and 47,200 μg/L) exceeded the cleanup level of 800 μg/L in six wells (MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21, respectively).
- Benzene was detected at concentrations ranging from 19.1 μg/L to 9,270 μg/L in wells MW-6 and MW-21, respectively. Benzene concentrations exceeded the cleanup level of 5 μg/L, across seven wells (MW-6, MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21).
- Toluene was detected at concentrations ranging from 20.4 μg/L to 8,460 μg/L in wells MW-9 and MW-21, respectively. The detected toluene concentration in wells MW-20 (3,070 μg/L), and MW-21 (8,460 μg/L), exceeded the cleanup level of 1,000 μg/L.
- Ethylbenzene was detected at concentrations ranging from 1.22 μg/L to 1,540 μg/L in wells MW-6 and MW-21, respectively. Ethylbenzene concentrations (725 μg/L, 886 μg/L, and 1,540 μg/L) exceeded the cleanup level of 700 μg/L in three wells (MW-19, MW-20, and MW-21, respectively).
- Total xylenes were detected at concentrations ranging from 508 μg/L to 7,400 μg/L in wells MW-9 and MW-21, respectively. Total xylenes concentrations ranging from 1,360 μg/L to 7,400 μg/L exceeded the cleanup level of 1,000 μg/L in five wells (MW-8, MW-13, MW-19, MW-20, and MW-21).

Groundwater samples collected during the March 2025 event were also analyzed for chlorinated volatile organic compounds (CVOCs), as requested by Ecology.

- Trichloroethene was detected in five wells (MW-6, MW-17, MW-18, MW-19, and RW-1), with concentrations ranging from 2.85 μg/L to 185 μg/L in wells MW-18 and MW-19, respectively.
- cis-1,2-Dichloroethene was detected in five wells (MW-6, MW-17, MW-18, MW-19, and RW-1), with concentrations ranging from 1.91 μ g/L to 142 μ g/L in wells MW-18 and MW-19, respectively.
- Tetrachloroethene was detected in four wells (MW-17, MW-18, MW-19, and RW-1), with concentrations ranging from 82.5 μg/L to 1030 μg/L in wells MW-18 and MW-17, respectively.
- Vinyl chloride was detected in one well, MW-6, with a concentration of 13.2 μg/L.
- Trans-1,2-Dichloroethene was not detected in any of the wells.

Table 8 summarizes the March 2025 groundwater results. Figures 6 and 7 show the TPH-G and benzene concentration contours, respectively.

6. Conclusions and Recommendations

This section summarizes the conclusions and recommendations for the site based on the system operation, monitoring, sampling, and maintenance activities completed during the First Quarter 2025 reporting period.

6.1. CONCLUSIONS

The remedial system operated under Phase 1 conditions from 17 December 2024 through 31 January 2025. Extraction/injection piping was removed from the EIWs prior to continuous operation to focus on vapor extraction and minimize water discharge, while discharge outlet piping issues were being resolved. EIW adjustments were based on discussions between Glacier and Kennedy Jenks during this reporting period.

6.1.1. Vapor Monitoring and Sampling

VOC PID readings exceeded 100 ppm at three EIWs (RW-4, RW-7, and RW-8) and exceeded 425 ppb at all four vapor pins, as shown in Table 2. Only VP-3 and VP-4 exceeded 425 ppb when measured by ERRG, which were then sampled with Summa canisters for laboratory analysis. Samples from the vapor pins exhibited GRO concentrations exceeding the 1,500 μ g/m³ screening level² (Table 3). Although BTEX concentrations were detected in both samples, all BTEX concentrations were less than their respective screening levels² (Appendix B).

6.1.2. System Vapor and Water Treatment

The VTS and WTS operated as intended during the reporting period. GRO and benzene concentrations in effluent vapor were less than the PSCAA emission limits. All analyte concentrations for the WTS effluent samples were also less than their respective KCIW permit limits. Figures 4 and 5 show the GRO and benzene concentrations in vapor effluent and liquid effluent samples across each event.

6.1.3. Groundwater Monitoring and Sampling

Figure 6 shows the groundwater elevation contours for March 2025. Groundwater elevations between January 2025 and March 2025 show offsite groundwater flow in a south to southeast direction from wells MW-11 and MW-2 (Table 7). Groundwater elevations northeast of the WTS are relatively flat, while groundwater from MW-17 and MW-18 flows north by northwest, toward MW-21, and the localized area of depression in the vicinity of well MW-6 and MW-7, consistent with historical groundwater flow.

Figure 7 and Figure 8 present the contours for GRO and benzene concentrations detected at the site during the March 2025 event, respectively. The benzene and GRO plumes are largely bounded within the site

² Screening levels are based on MTCA Method B, "Noncancer Sub-Slab Soil Gas Screening Level – Cleanup Levels and Risk Calculation Vapor Intrusion Method B Table, February 2025" (Kennedy Jenks, 2024a). Also available online at: https://ecology.wa.gov/regulations-permits/guidance-technical-assistance/contamination-cleanup-tools/clarc/data-tables.

property boundaries, with the northern portion extending into the adjacent road and sidewalk. Following start-up and groundwater extraction, a large depression of elevated concentrations has formed around MW-20 and MW-21. These concentrations drop down rapidly in all directions, with elevated GRO concentrations extending north, towards MW-8. GRO and/or BTEX concentrations exceeding the cleanup levels³ were observed in seven monitoring wells in January 2025, February 2025, and March 2025. A decrease in concentrations was observed in monitoring wells MW-6, MW-8, and MW-13, while fluctuation was observed in monitoring wells MW-20, and MW-21.

GRO concentrations exceeded the cleanup level of $800 \mu g/L$ in six wells (MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21) between January 2025 and March 2025. GRO concentrations did not decrease to below cleanup levels in any wells. Concentrations decreased in five wells (RW-1, MW-6, MW-8, MW-13, and MW-19), and increased in three wells (MW-9, MW-20, and MW-21) between the January 2025 and March 2025 monitoring events.

Benzene concentrations exceeded the cleanup level of 5 μg/L in seven wells (MW-6, MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21) between January 2025 and March 2025. Benzene concentrations did not decrease to below cleanup levels in any wells. Concentrations decreased in three wells (MW-6, MW-13, and MW-19), and increased in two wells (MW-20 and MW-21) between the January 2025 and March 2025 monitoring events.

Toluene concentrations exceeded the cleanup level of $1,000~\mu g/L$ in two wells (MW-20 and MW-21) between January 2025 and March 2025. Toluene concentrations did not decrease to below cleanup levels in any wells. Concentrations decreased in one well (MW-13), and increased in two wells (MW-20 and MW-21) between January 2025 and March 2025 monitoring events.

Ethylbenzene concentrations exceeded the cleanup level of 700 μ g/L in five wells (MW-8, MW-13, MW-19, MW-20, and MW-21) between January 2025 and March 2025. Ethylbenzene concentrations (570 μ g/L and 61.3 μ g/L) decreased to below screening levels in two wells (MW-8 and MW-13). Additionally, concentrations increased in three wells (MW-19, MW-20, and MW-21) between January 2025 and March 2025 monitoring events.

Total xylenes concentrations exceeded the cleanup level of 1,000 µg/L in five wells (MW-8, MW-13, MW-19, MW-20, and MW-21) between January 2025 and March 2025. Total xylenes concentrations did not decrease to less than the cleanup levels in any wells. Concentrations decreased in three wells (MW-8, MW-13, and MW-19) and increased in two wells (MW-20 and MW-21) between the January 2025 and March 2025 monitoring events.

³ Cleanup levels are based on MTCA Method A Groundwater CULs in WAC 173-340-720, Table 720-1.

The blind duplicate sample collected in March 2025 from MW-6 presented no detectable concentrations for GRO or BTEX, likely due to the higher dilution factor compared to previous samples at that well. However, historical analyte concentrations from primary samples still present an overall decrease in GRO and BTEX. The variations in GRO and BTEX concentrations observed in monitoring wells during the first quarter is likely attributed to initial system operation. Comparisons of groundwater concentration contour maps between the October 2024 and March 2025 shows minimal change in the shape of the GRO and BTEX plume, however the concentrations decrease as you move outward from the center of the plume, near MW-20 and MW-21.

6.2. RECOMMENDATIONS

The recommendations listed below are based on the results of system monitoring and sampling.

- Continue to operate the remedial system under Phase 1 conditions.
- Focus extraction on EIWs with vapor concentrations greater than 100 ppm based on PID measurements.

6.2.1. Upcoming Work

The upcoming work is expected to be completed between the end of this reporting period through the subsequent reporting period, as summarized below.

- ERRG will continue O&M of remedial system.
- Glacier will remove catalytic oxidizer and ERRG will transition VTS to Vapor GAC vessels.
- Vapor monitoring of EIWs, vapor pins, SSD wells, and VTS will occur in April 2025.
- Vapor sampling at VTS influent and effluent will occur in April 2025, May 2025, and June 2025.
- Water sampling at WTS influent, midpoint, and effluent will occur in April 2025 and May 2025.
- Groundwater monitoring and sampling will occur in April 2025 and May 2025.
- As-needed vapor or water sampling.

6.2.2. Identified Problems and Proposed Solutions

The problems and proposed solutions summarized below were identified during the reporting period.

- Groundwater samples collected in March 2025 were analyzed for select CVOCs and detections for various CVOCs were observed in several wells.
 - Groundwater impacts via chlorinated VOCs will be resolved under separate Consent Decree or Agreed Order.

- Liquid level measurements are were unable to be collected at wells MW-4 and MW-10.
 - The current configuration of well MW-4 does not allow access to measure liquid levels. Persistent removal and reinstallation of the wellhead fitting would damage the well and effect extraction performance.
 - Well MW-10 will be abandoned at a later time by Ecology due to the obstruction observed in the well.
 - Liquid level measurements will be discontinued at MW-4 and MW-10.

7. References

- EA Engineering, Science, and Technology, Inc. (EA), 2006. "Circle K Station #1461, Groundwater Summary for August 2006, Recommendations for Additional Cleanup Action Tests." November.
- GeoEngineers, 1990a. "Report of Geotechnical Services Subsurface Contamination Study and Remedial Action Monitoring Circle K Facility 1461 Seattle, Washington." March.
- ———, 1990b. "Progress Report No. 2 Remedial Monitoring Program Circle K Facility 1461 Seattle, Washington." November.
- Glacier Environmental Services (Glacier), 2001. "Major Discharge Authorization No. 192-01, Jin's Enterprises, 2350 24th Avenue East, Seattle, Washington." January.
- ———, 2025. "Construction Completion Report, Environmental Remediation System Installation, Former Circle K 1461, Seattle, Washington." May.
- Kennedy Jenks Consultants, Inc. (Kennedy Jenks), 2017a. "Remedial Investigation/Feasibility Study (RI/FS) Report, Former Circle K Site." December 14.
- ———, 2017b. "Cleanup Action Plan, Former Circle K 1461, Seattle, Washington." December 18.
- ———, 2021. "Engineering Design Report, Former Circle K Site 1461, Seattle, Washington." December 10.
- ———, 2024a. "Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Former Circle K 1461, Seattle, Washington." August 8.
- ———, 2024b. "Revised Draft Operations and Maintenance Manual, Environmental Remediation System, Former Circle K 1461, Seattle, Washington." November.
- Washington State Department of Ecology (Ecology), 1994. "Site Hazard Assessment Report, Circle K Station #1461." June.
- ———, 2009. "Draft Remedial Investigation/Feasibility Study, Circle K Station #1461, Seattle, WA." September.

Figures

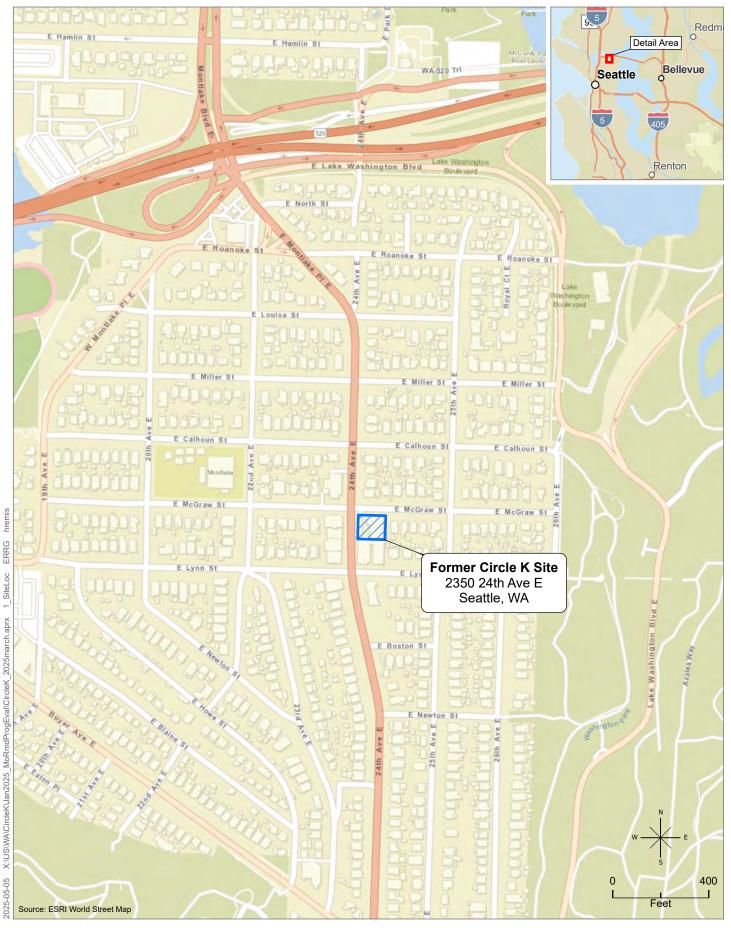


Figure 1. Site Location and Vicinity
First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461
Seattle, WA

Figure 2. Site Layout with System and Wells
First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461
Seattle, WA

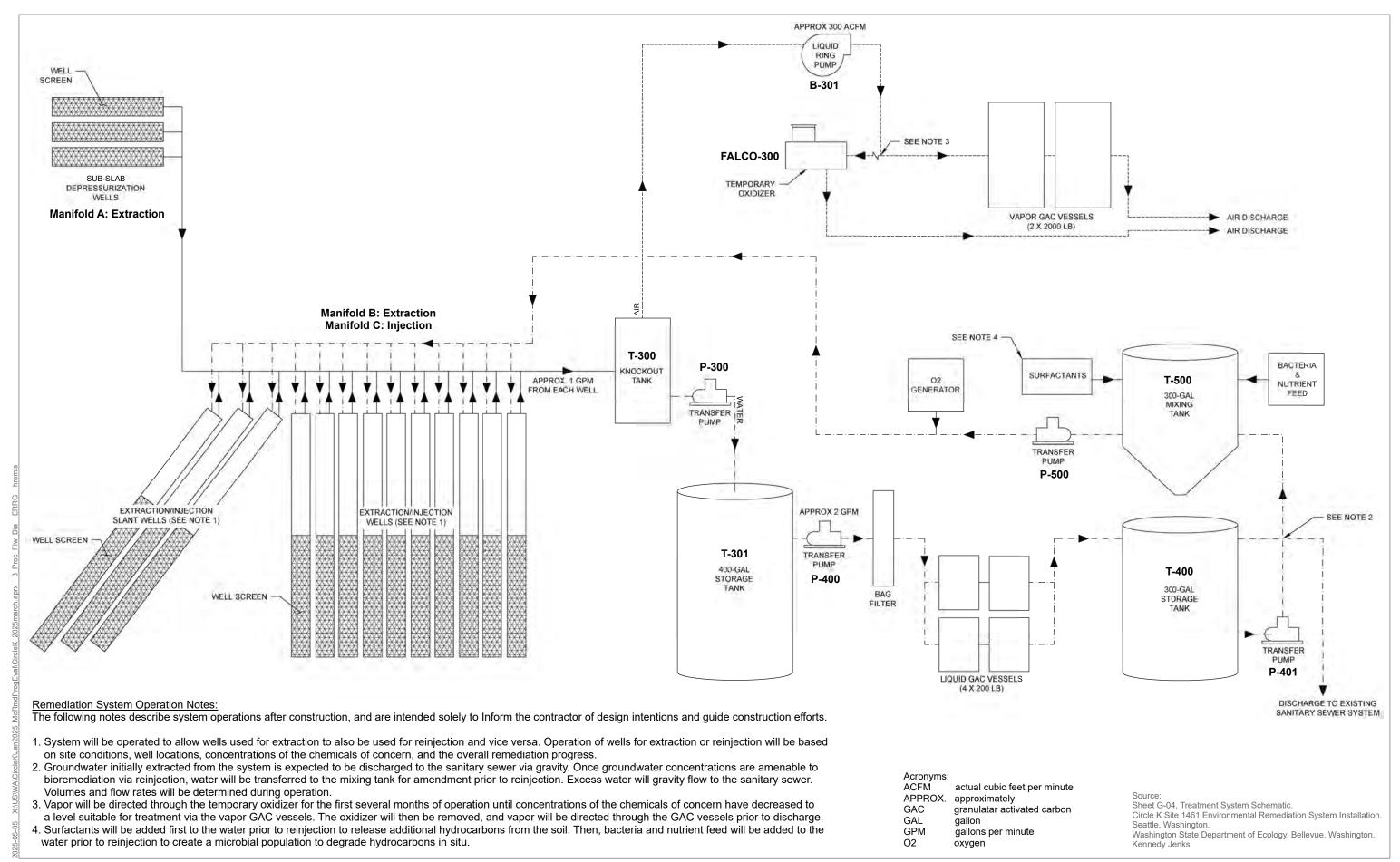
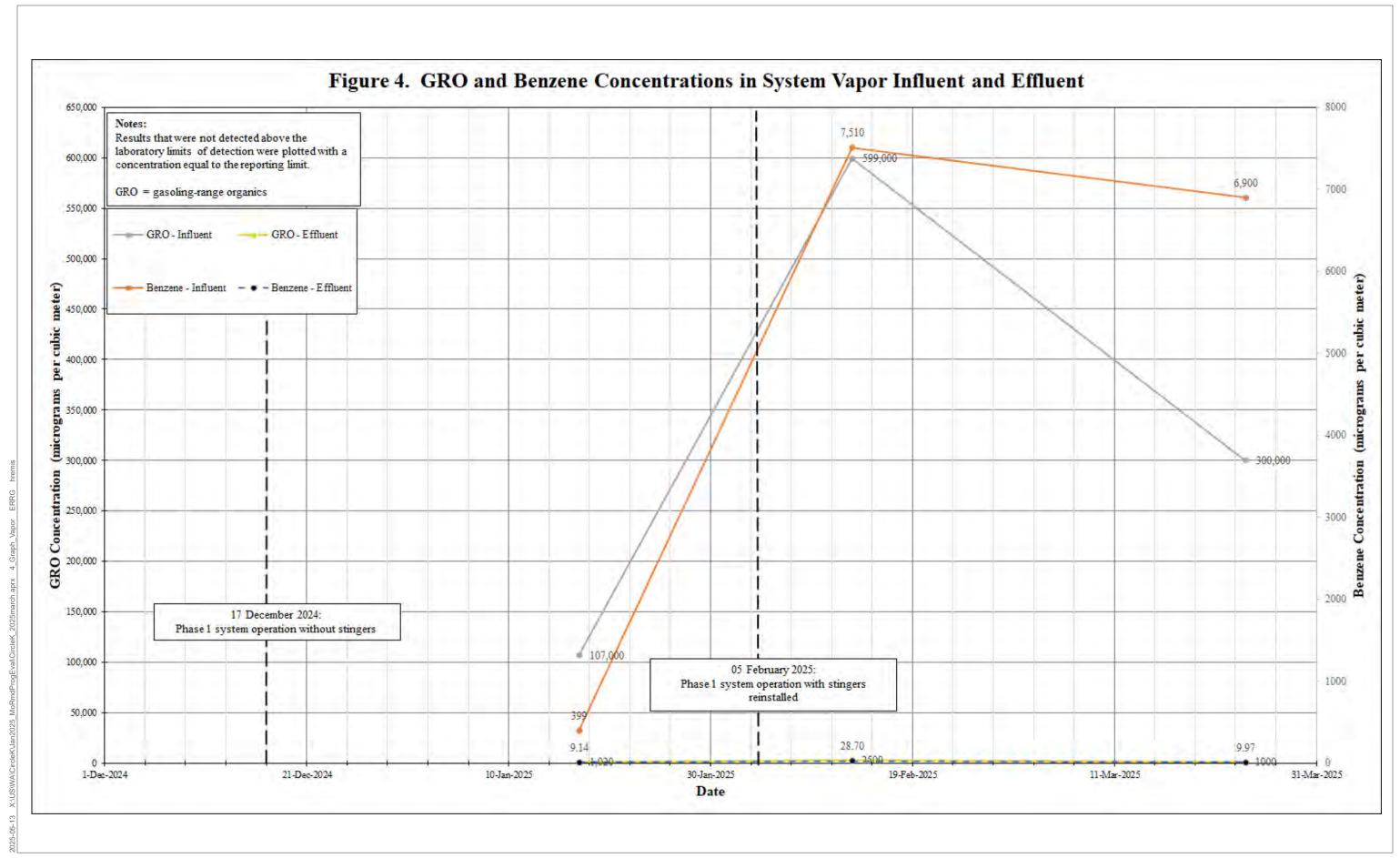



Figure 3. System Process Flow Diagram



Figure 5. GRO and Benzene Concentrations in System Water Influent and Effluent

First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461

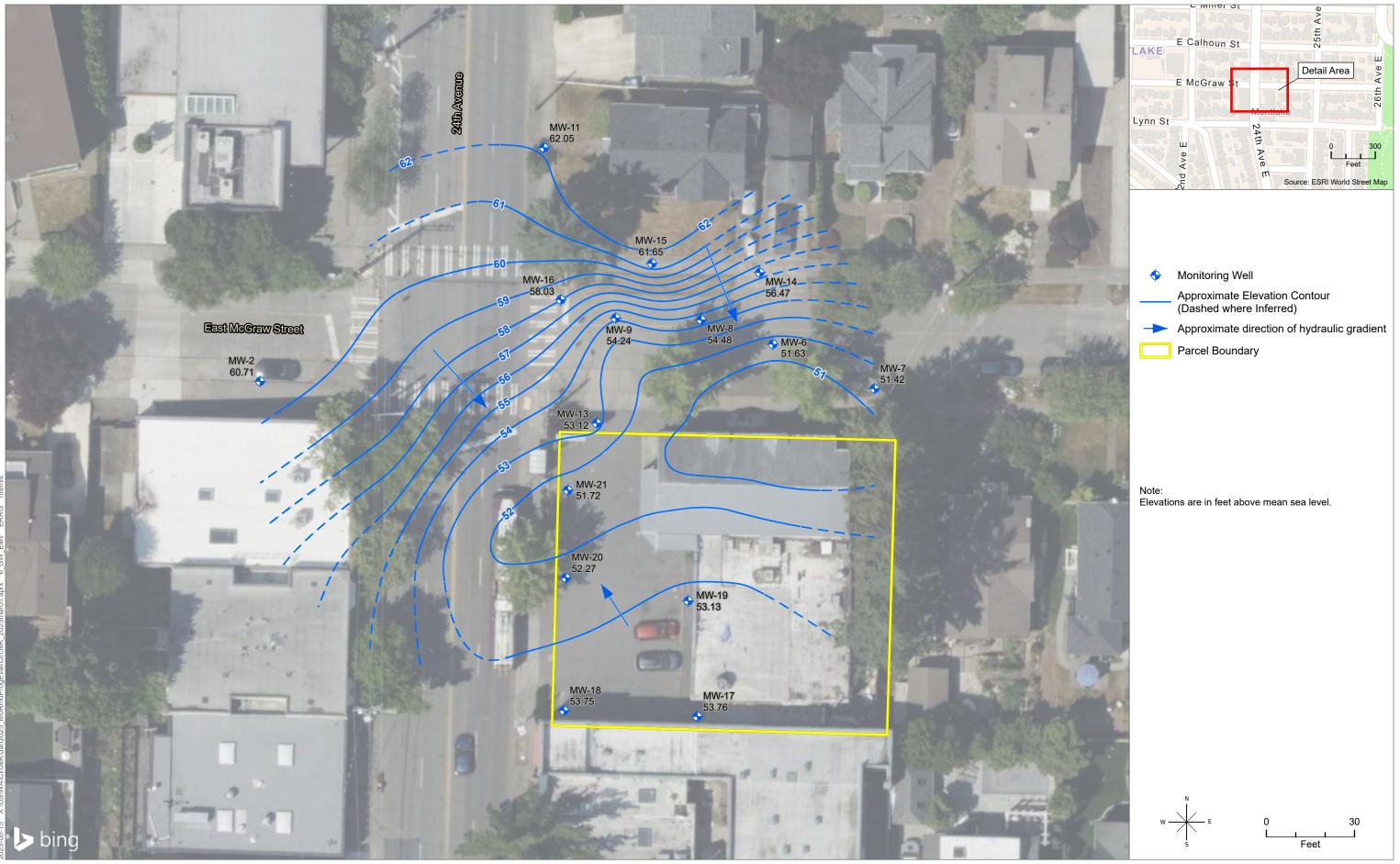


Figure 6. Groundwater Elevation Contours, March 2025
First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461
Seattle, WA

Figure 7. Groundwater Gasoline-Range Organics Contours, March 2025 First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Seattle, WA

Figure 8. Groundwater Benzene Concentration Contours, March 2025
First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461

Tables

Table 1. Well Construction Information

Monitoring Well ID No.	Date Installed	Easting (feet)	Northing (feet)	MPE Well Group	Well Diameter (inches)	Screened Interval (feet bgs)	Top of Casing Elevation (feet amsl)	Well Use
MW-2	9/11/1989	1278287.96	236985.88	MW	2	5.5–20.9	69.79	Monitoring Well
MW-4	09/12/1989	1278447.91	236985.00	1	2	4–18.8	63.62	Remediation Well
MW-6	10/02/1989	1278462.46	236998.42	MW	2	5–20.4	63.13	Compliance Well
MW-7	10/02/1989	1278497.04	236983.26	MW	2	5–20.2	62.66	Monitoring Well
MW-8	10/03/1989	1278438.10	237006.82	MW	2	5–20.3	63.59	Compliance Well
MW-9	10/03/1989	1278408.96	237007.40	MW	2	5–21.2	64.3	Compliance Well
MW-10	10/03/1989	1278488.93	236997.48	MW	2	5–20.4	62.86	Monitoring Well
MW-11	10/04/1989	1278384.53	237065.31	MW	2	5–20	63.59	Monitoring Well
MW-13	12/20/1989	1278402.55	236971.66	MW	2	4–19	65.08	Compliance Well
MW-14	12/20/1989	1278458.03	237022.92	MW	2	4–19.3	63.3	Compliance Well
MW-15	12/21/1989	1278421.35	237026.01	MW	2	4–18.7	64.18	Compliance Well
MW-16	12/21/1989	1278390.29	237013.58	MW	2	4–19.2	64	Compliance Well
MW-17	08/01/2016	1278436.82	236871.78	MW	2	4–19	65.98	Compliance Well
MW-18	08/01/2016	1278391.36	236873.73	MW	2	5–15	66.73	Compliance Well
MW-19	09/23/2016	1278433.66	236911.07	MW	2	5–20	66.36	Compliance Well
MW-20	09/23/2016	1278392.00	236918.95	MW	4	5–20	66.17	Compliance Well
MW-21	09/23/2016	1278392.68	236948.84	MW	4	5–20	65.89	Compliance Well
RW-1	02/07/2017	1278390.95	236890.20	MW	4	5.5–20.5		Compliance Well
RW-2	02/09/2017	1278404.38	236970.10	4	4	5–20		Remediation Well
RW-3	02/09/2017	1278409.31	236960.04	1	4	5–20		Remediation Well
RW-4	02/08/2017	1278418.32	236947.52	2	4	5–20		Remediation Well

 Table 1.
 Well Construction Information (continued)

Monitoring Well ID No.	Date Installed	Easting (feet)	Northing (feet)	MPE Well Group	Well Diameter (inches)	Screened Interval (feet bgs)	Top of Casing Elevation (feet amsl)	Well Use
RW-5	02/08/2017	1278407.00	236932.47	3	4	5–20		Remediation Well
RW-6	02/10/2017	1278425.63	236982.51	1	4	5–20		Remediation Well
RW-7	02/07/2017	1278432.90	236913.61	4	4	5–20		Remediation Well
RW-8	02/07/2017	1278394.71	236950.38	2	4	5–20		Remediation Well
RW-9	02/08/2024	1278403.54	236904.78	1	4	5–20		Remediation Well
RW-10	02/08/2024	1278422.51	236924.38	3	4	25–30		Remediation Well
SW-1	02/10/2024	1278385.44	236943.23	2	4	5–18		Slant Remediation Well
SW-2	02/12/2024	1278397.11	236929.86	3	4	5–18		Slant Remediation Well
SW-3	02/09/2024	1278392.00	236913.40	4	4	5–18		Slant Remediation Well

Monitoring Well = Existing monitoring well for groundwater level measurements only

Compliance Well = Existing monitoring well for groundwater compliance monitoring

Remediation Well = Existing injection/extraction remediation well

Slant Remediation Well = New slanted remediation well

amsl = above mean sea level

bgs= below ground surface

MPE = multiphase

-- = data were not available

Table 2. MPE System Performance and Recorded Field Measurements

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H₂S (ppm)
Falco 300 Influent	1/3/2025	24.7	42	119.8				
(Liquid Ring Pump for Pressure)	1/6/2025	24.7	67					
,	1/16/2025	21.6	76.4					
	1/17/2025 ²			61.6				
	1/23/2025	20.6	76.4					
	2/6/2025	16.3	112.4	254.9				
	2/17/2025	16.3	98.2					
	2/19/2025	15.2	112.8	160.9				
	3/7/20252	15.2	98	212				
	3/14/2025 ²	14.2	102					
	3/16/2025 ²	18	87.5					
	3/21/20252	17.6	83.8					
	3/24/2025 ²	17.6	82.9	153				
	3/28/2025 ²	16.5	86.4					
Falco 300 Effluent	1/3/2025			33.4				
	1/17/2025 ²			0.198				
	2/19/2025			11.4				
	3/7/2025 ²			1.6				
	3/24/20252			0.9				
RW-2	1/3/2025	-8	9.7	2				
	2/6/2025	-8	17.6	0.9				

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H₂S (ppm)
RW-2	2/19/2025	-2		32.8				
(cont.)	3/7/2025 ²	offline						
RW-3	1/3/2025	-3.5	7.5	8.1				
	2/6/2025	offline						
	2/19/2025	-4.5		14.5				
	3/7/2025 ²	offline						
RW-4	1/3/2025	-6	7.5	8.1				
	2/6/2025	-8	0	151.3				
	2/19/2025	-5		233.5				
	3/7/2025 ²	-12	63	137				
RW-5	1/3/2025	offline						
	2/6/2025	offline						
	2/19/2025	-4.5		32.7				
	3/7/2025 ²	offline						
RW-6	1/3/2025	-6	9.3	1.3				
	2/6/2025	-6	7.55	24.2				
	2/19/2025	-5		23.4				
	3/7/20252	offline						
RW-7	1/3/2025	-5	24.7	18.3				
	2/6/2025	-8	0	56.1				

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
RW-7 (continued)	2/19/2025	-5		698.2				
_	3/7/2025 ²	-13	40	624				
RW-8	1/3/2025	-6.5	27	9.5				
_	2/8/2025	-8	3	334				
_	2/19/2025	-5		559.8				
_	3/7/2025 ²	-12	43	242				
RW-9	1/3/2025	-2.5	133.1	3.1				
	2/6/2025	-7	0	27.5				
_	2/19/2025	-4.5		39.9				
_	3/7/2025 ²	offline						
RW-10	1/3/2025							
_	2/6/2025	offline						
_	2/19/2025	-5	0	39.5				
_	3/7/2025 ²	offline						
MW-4	1/3/2025	offline						
_	2/6/2025	-12	5.46	0				
_	2/19/2025	-5		25.9				
	3/7/2025 ²	offline						
SW-1	1/3/2025	7.5	38.7	11.6				
	2/6/2025	offline						

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H₂S (ppm)
SW-1	2/19/2025	-5		52				
(cont.)	3/7/2025 ²	offline						
SW-2	1/3/2025	offline						
	2/6/2025	offline						
	2/19/2025	-5		51.5				
	3/7/2025 ²	offline						
SW-3	1/3/2025	-4	67.8					
	2/6/2025	-12.5		1				
	2/19/2025	-4.5		20.82				
	3/7/2025 ²	offline						
VP-1	1/3/2025	0.001 (inH ₂ O)		0.8				
	1/31/2025 ²			0.133	0	20.4	0.28	0.0
	2/6/2025	-0.14 (inH ₂ O)		2.6				
VP-2	1/3/2025	0.001 (inH ₂ O)		0.6				
	1/31/2025 ²			0.108	0	20.5	0.04	0.0
	2/6/2025	-0.1 (inH ₂ O)		6.6				
VP-3	1/3/2025	0.002 (inH ₂ O)		3.5				
	1/31/20252			1.282	0	20.3	0.26	0.0
	2/6/2025	-0.049 (inH ₂ O)		6.6				
VP-4	1/3/2025	0.003 (inH ₂ O)		38.1				
	1/31/20252			18.7	0	19.0	1.06	0.0

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor Monitoring						
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)			
VP-4	2/6/2025	-0.013 (inH ₂ 0)		137.7							
(cont.)	2/19/2025	0.05 (inH ₂ 0)		122							
SSD-1	2/6/2025	-5 (inH₂0)									
_	2/19/2025	-1.5 (inH ₂ 0)									
_	3/7/20252	-0.661 (inH ₂ 0)	4.2	0.020	0	20.9	0.08	0			
SSD-2	2/6/2025	-5 (inH ₂ 0)									
_	2/19/2025	-1.5 (inH ₂ 0)									
_	3/7/20252	-1.006 (inH ₂ 0)	6.8	0.118	0	20.9	0.02	0			
SSD-3	2/6/2025	-18 (inH ₂ 0)									
	2/19/2025	-4.9 inH ₂ 0									
_	3/7/20252	-3.308 (inH ₂ 0)	22.8	0.0023	0	20.9	0.09	0			

2 = Measurement collected by ERRG

Gray Cell = measurement not required at location

cfm = cubic foot per minute

 CH_4 = methane

 CO_2 = carbon dioxide

 H_2S = hydrogen sulfide

inHg = inch of mercury

 $inH_20 = inch of water$

MPE = multiphase extraction

 O_2 = oxygen

ppm = parts per million ppb = parts per billion

VOC = volatile organic compounds

-- = not measured

%LEL = percentage of the lower explosive limit

^{1 =} VOCs reading taken with low range sensor if concentrations for measurements <1.0 ppm.

Table 3. Vapor Analytical Results - First Quarter 2025

		VOCs by Method TO-15									
Monitoring Well ID No.	Sample Date	GRO ¹	Benzene ¹	Toluene ¹	Ethylbenzene ¹	Total Xylenes ¹					
Screening	g Level (µg/m³):	1,500	460	76,000	15,000	1,500					
VP-3	02/13/2025	1,920	5.30	31.6	24.5	306					
VP-4	02/13/2025	158,000	4.73	31.8	23.2	227					

Bold = sample result was detected

Yellow = sample result exceeds the screening level

GRO = gasoline-range organics (as total petroleum hydrocarbons)

μg/m³ = micrograms per cubic meter

^{1 =} Screening levels are based on updated MTCA Method B, "Noncancer Sub-Slab Soil Gas Screening Level – Cleanup Levels and Risk Calculation Vapor Intrusion Method B Table, February 2025" (Kennedy Jenks, 2024a). Also available online at: https://ecology.wa.gov/regulations-permits/guidance-technical-assistance/contamination-cleanup-tools/clarc/data-tables.

Table 4. MPE System Vapor Performance, Estimated Emissions and Limits

		Vapor Treatment System Results (µg/m³)1		Estimated Em System Flow		WAC 173-460-150 De Minimis and SQER Values ²				
Analytes of Concern	Date	Influent	Effluent	Treated Outlet Concentration Rate (lbs/24hr)	Outlet Concentration Rate (lbs/yr)	De Minimis ¹ (lbs/24hr)	De Minimis ¹ (lbs/yr)	SQER ¹ (lbs/24hr)	SQER ¹ (lbs/yr)	
GRO	01/17/2025	107,000	1,020	0.0092	3.4					
	02/13/2025	599,000	2,500	0.022	8.2					
	03/24/2025	300,000	1,000	0.0090	3.3					
Benzene	01/17/2025	399	9.14	0.000082	0.030		1.0		21	
	02/13/2025	7,510	28.7	0.00026	0.094		1.0		21	
	03/24/2025	6,900	9.97	0.000090	0.033		1.0		21	
Toluene	01/17/2025	618	1.17 U	0.000011	0.0038	19		370		
	02/13/2025	12,200	28	0.00025	0.092	19		370		
	03/24/2025	13,100	1.88 U	0.000017	0.0062	19		370		
Ethylbenzene	01/17/2025	1,040	0.542 J	0.0000049	0.0018		3.2		65	
	02/13/2025	3,680	9.19	0.000083	0.030		3.2		65	
	03/24/2025	3,030	0.867 U	0.0000078	0.0028		3.2		65	
Total Xylenes	01/17/2025	8,770	0.808 J	0.0000073	0.0027	0.82		16		
	02/13/2025	37,100	40.9	0.00037	0.13	0.82		16		
	03/24/2025	30,500	4.60	0.000041	0.015	0.82		16		
Additional Anal	ytes									
PCE	01/17/2025	1.29 U	66.2	0.00060	0.22		1.3		27	
	02/13/2025	1,910	37.3	0.00034	0.12		1.3		27	
	03/24/2025	136 U	13.8	0.00012	0.045		1.3		27	

Table 4. MPE System Vapor Performance, Estimated Emissions and Limits (continued)

		Vapor Treatment System Results (µg/m³)¹		Estimated Em System Flow		WAC 173-460-150 De Minimis and SQER Values ²			
Analytes of Concern	Date	Influent	Effluent	Treated Outlet Concentration Rate (lbs/24hr)	Outlet Concentration Rate (lbs/yr)	De Minimis ¹ (lbs/24hr)	De Minimis ¹ (lbs/yr)	SQER ¹ (lbs/24hr)	SQER ¹ (lbs/yr)
Additional Analy	rtes (continued)		1				1		
Vinyl Chloride	01/17/2025	1.33	0.486 U	0.0000044	0.0016		0.92		18
	02/13/2025	51.1 U	0.667	0.0000060	0.0022		0.92		18
	03/24/2025	51.1 U	0.511 U	0.0000046	0.0017		0.92		18
Chloroethane	01/17/2025	0.501	0.427 J	0.0000038	0.0014	110		2,200	
	02/13/2025	52.8 U	2.06	0.000019	0.0068	110		2,200	
	03/24/2025	52.8 U	0.615	0.0000055	0.0020	110		2,200	
Chloromethane	01/17/2025	0.392	10.1	0.000091	0.033	0.33		6.7	
	02/13/2025	41.3 U	45.2	0.00041	0.148	0.33		6.7	
	03/24/2025	41.3 U	13.8	0.00012	0.045	0.33		6.7	
Methylene	01/17/2025	0.660	3.58	0.000032	0.012		490		9,800
Chloride	02/13/2025	69.4 U	24.0	0.00022	0.079		490		9,800
	03/24/2025	767	4.72	0.000042	0.0155		490		9,800

Green = emissions compared to their respective De Minimis and SQER limit

cfm = cubic feet per minute

GRO = gasoline-range organics

lbs/24hr = pounds per 24 hours

lbs/yr = pounds per year

MPE = multiphase extraction

N/A = not applicable

PCE = tetrachloroethylene

SQER = Small Quantity Emission Rate

WAC = Washington Administrative Code

 μ g/m³ = micrograms per cubic meter

U = not detected at the limit of detection.

-- = no value available

^{1 =} Emissions were calculated using the limit of detection for effluent results not detected above

^{2 =} Washington Administrative Code 173-460-150 De Minimis and Small Quantity Emission Rate limits.

Table 5. MPE System Liquid Performance and Volume Discharged and Injected – First Quarter 2025

Month	Approximate Volume Extracted (gallons) ¹	Cumulative Volume Discharged (gallons)	Maximum Daily Discharge Flow Rate (gpd)	Cumulative Volume Injected (gallons)	Maximum Injection Rate (gpd)	Notes
January 2025	7,920	9,090	561	0	0	Continued Phase 1 operations without stingers; last meter reading 1/24/2025.
February 2025	20,081	29,171	1160	0	0	Stingers reinstalled on 2/5/2025, continued Phase 1 operations,
March 2025	21,150	50,321	1020	0	0	Continued Phase 1 operations

Notes: Wastewater Discharge Authorization No. 4614-01.

gpd = gallons per day
MPE = multiphase extraction

^{1 =} Volume estimated based on last recorded totalizer reading for the month.

Table 6. Water Treatment System Analytical Results – First Quarter 2025

									Chemica	l of Concern				
		Water (Paran	•	Nonpolar FOG by EPA Method 1664B	VOCs by Method NWTPHGX				VOC	s by EPA Meth	nod 8260D			
Sample Location	Sample Date	рН	Turbidity (NTU)	Oil and Grease	e GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	TCE	Cis-1,2-DCE	PCE	Trans-1-2-DCE	Vinyl Chloride
Screenin	ng Level¹ (mg/L):	5.0-12.0	25	100	0.25	0.07	1.4	1.7	2.2	0.5	1	0.24	1	0.012
LG-401-INF	1/17/2025	6.49	21	5.88 U	0.109	0.001 U	0.001 U	0.001 U	0.003 U					
	02/27/2025	6.61	48	11.9 J-	0.114	0.00209	0.00183	0.001 U	0.003 U	0.001 U	0.001 U	0.00336	0.001 U	0.001 U
	03/21/2025	7.23	4.63	6.31	0.180 J+	0.001 U	0.001 U	0.001 U	0.00604	0.001 U	0.001 U	0.001 U	0.001 U	0.001 C3
LG-403-MID	1/17/2025	6.75	19	5.88 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U					
	02/27/2025	6.55	36	5.62 UJ	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
	03/21/2025	7.22	2.84	5.81 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 C3
LG-404-EFF	1/17/2025 ²	6.82	23	5.49 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	1/17/2025 ²			5.81 U										
DUP-2	1/17/2025 ²			5.95 U										
DUP-3	1/17/2025 ²	6.82	22	5.75 U	0.119	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
LG-404-EFF	02/27/20253	6.56	19	5.88 UJ	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	02/27/20253	6.58	23	6.1 UJ	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-2	02/27/20253			6.33 UJ										
LG-404-EFF	03/21/20254	7.23	2.91	5.95 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 C3
DUP-1	03/21/20253	7.23	2.89	5.26 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 C3
DUP-2	03/21/20253			5.26 U										

1 = Screening levels are based on effluent limits in the KCIW Discharge Permit No. 4614-01.

2 = Samples DUP-1, DUP-2, and DUP-3, collected on 17 January 2025 are field duplicates of LG-404-EFF.

3 =Samples DUP-1, and DUP-2, collected on 27 February 2025 are field duplicates of LG-404-EFF.

4 = Samples DUP-1, and DUP-2, collected on 21 March 2025 are field duplicates of LG-404-EFF.

Bold = sample result was detected

DCE = dichloroethene

EPA = U.S. Environmental Protection Agency

FOG = fats, oils, and grease

GRO = gasoline-range organics

KCIW = King County Industrial Waste mg/L = milligrams per liter

NTU = nephelometric turbidity unit

NWTPHGX = Northwest Total Petroleum Hydrocarbons as Gasoline

PCE = tetrachloroethene

TCE = trichloroethene

VOCs = volatile organic compounds

-- = sample was not analyzed for the water quality parameter, analyte, and/or chemical of concern

Laboratory Qualifiers:

J = Estimated: The analyte was positively identified; the quantitation is an estimation.

J-= Estimated, Low Bias: The result was an estimated quantity, but the result may be biased low.

J+ = Estimated, High Bias: The result was an estimated quantity, but the result may be biased high.

U = Not detected at the limit of detection.

UJ = Not detected at the limit of detection, but the limit is an estimation.

Table 7. Depth to Groundwater and Elevation – First Quarter 2025

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
MW-2	1/17/2025	9.68	69.79	60.11
-	02/21/2025	9.49	69.79	60.30
_	03/28/2025	9.08	69.79	60.71
MW-6	1/17/2025	11.64	63.13	51.49
-	02/21/2025	11.70	63.13	51.43
-	03/28/2025	11.50	63.13	51.63
MW-7	1/17/2025	7.50	62.66	55.16
-	02/21/2025	7.27	62.66	55.39
-	03/28/2025	11.24	62.66	51.42
MW-8	1/17/2025	9.13	63.59	54.46
-	02/21/2025	9.53	63.59	54.06
-	03/28/2025	9.10	63.59	54.49
MW-9	1/17/2025	9.20	64.30	55.10
-	02/21/2025	10.12	64.30	54.18
-	03/28/2025	10.06	64.30	54.24
MW-11	1/17/2025	2.67	63.59	60.92
-	02/21/2025	2.85	63.59	60.74
-	03/28/2025	1.54	63.59	62.05
MW-13	1/17/2025	10.21	65.08	54.87
_	02/21/2025	11.26	65.08	53.82
_	03/28/2025	11.96	65.08	53.12
MW-14	1/17/2025	7.57	63.30	55.73
-	02/21/2025	7.51	63.30	55.79
-	03/28/2025	6.83	63.30	56.47
MW-15	1/17/2025	6.50	64.18	57.68
-	02/21/2025	4.52	64.18	59.66
-	03/28/2025	2.53	64.18	61.65
MW-16	1/17/2025	8.11	64.00	55.89
_	02/21/2025	8.37	64.00	55.63
	03/28/2025	5.97	64.00	58.03

Table 7. Depth to Groundwater and Elevation – First Quarter 2025 (continued)

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
MW-17	1/17/2025	10.77	65.98	55.21
	02/21/2025	12.23	65.98	53.75
	03/28/2025	12.22	65.98	53.76
MW-18	1/17/2025	11.79	66.73	54.94
	02/21/2025	12.71	66.73	54.02
	03/28/2025	12.98	66.73	53.75
MW-19	1/17/2025	10.74	66.36	55.62
	02/21/2025	13.35	66.36	53.01
	03/28/2025	13.23	66.36	53.13
MW-20	1/17/2025	10.53	66.17	55.64
	02/21/2025	13.29	66.17	52.88
	03/28/2025	13.90	66.17	52.27
MW-21	1/17/2025	9.64	65.89	56.25
	02/21/2025	13.39	65.89	52.20
	03/28/2025	14.17	65.89	51.72
RW-1	1/17/2025	11.14		
	02/21/2025	12.70		
	03/28/2025	13.19		
RW-2	1/17/2025	7.75		
	02/21/2025	11.40		
	03/28/2025	11.92		
RW-3	1/17/2025	6.85		
	02/21/2025	11.65		
	03/28/2025	12.10		
RW-4	1/17/2025	9.83		
	02/21/2025	12.65		
	03/28/2025	12.70		
RW-5	1/17/2025	11.31		
	02/21/2025	12.76		
	03/28/2025	13.81		

Table 7. Depth to Groundwater and Elevation – First Quarter 2025 (continued)

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
RW-6	1/17/2025	8.16		
	02/21/2025	9.30		
	03/28/2025	10.06		
RW-7	1/17/2025	7.71		
	02/21/2025	12.39		
	03/28/2025	12.97		
RW-8	1/17/2025	7.36		
	02/21/2025	12.04		
	03/28/2025	13.21		
RW-9	1/17/2025	10.55		
	02/21/2025	14.17		
	03/28/2025	13.81		
RW-10	1/17/2025	11.36		
	02/21/2025	12.78		
	03/28/2025	13.08		

1 = MW-4 excluded from the table because the wellhead is not fitted with a removable well cap to allow for measurements. MW-10 excluded from the table because it has remained obstructed through each January, February, and March 2025 event, rendering it inaccessible.

amsl = above mean sea level bgs = below ground surface

-- = information not available

Table 8. Groundwater Analytical Results – First Quarter 2025

			Ch	emicals of Concern		
		GRO by Method NWTPHGX		VOCs by EPA	Method 8260D	
Monitoring Well ID No.	Sample Date	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes
	Cleanup Level¹ (µg/L):	800	5	1,000	700	1,000
RW-1	1/17/2025	167 J+	1 U	1 U	1 U	3 U
	02/21/2025	223 U	1 U	1 U	1 U	3 U
	03/28/2025	128 J+	1 U	1 U	1 U	3 U
MW-6 ²	1/17/2025	263 J+	46.2	1.67	5.28	3 U
	02/21/2025	109 U	22.7	1 U	1.38	3 U
	03/28/2025	100 U	19.1	1 U	1.22	3 U
	03/28/2025	100 U	10 U	10 U	10 U	30 U
MW-8 ³	1/17/2025	18,300	50 U	188	1,270	4,920
MW-8 ³ 1/2	02/21/2025	23,400	50 U	178	1,070	4,060
	02/21/2025	23,500	10 U	1,140	186	4,210
	03/28/2025	16,200	50 U	72.5	570	2,440
MW-9 ⁴	1/17/2025	3,850	20 U	20 U	156	203
	1/17/2025	5,270	25 U	25 U	198	247
	02/21/2025	9,020	20 U	32.5	351	665
	03/28/2025	5,000	20 U	20.4	271	508
MW-13	1/17/2025	16,100	380	847	712	7,430
	02/21/2025	14,100	352	580	409	5,140
	03/28/2025	8,290	180	138	61.3	1,360
MW-14	1/17/2025	100 U	1 U	1 U	1 U	3 U
	02/21/2025	100 U	1 U	1 U	1 U	3 U
	03/28/2025	100 U	1 U	1 U	1 U	3 U

 Table 8. Groundwater Analytical Results – First Quarter 2025 (continued)

			Ch	emicals of Concern		
		GRO by Method NWTPHGX		VOCs by EPA	Method 8260D	
Monitoring Well ID No.	Sample Date	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes
	Cleanup Level¹ (µg/L):	800	5	1,000	700	1,000
MW-15	1/17/2025	100 U	1 U	1 U	1 U	3 U
	02/21/2025	100 U	1 U	1 U	1 U	3 U
	03/28/2025	100 U	1 U	1 U	1 U	3 U
MW-16	1/17/2025	100 U	1 U	1 U	1 U	3 U
	02/21/2025	112 U	1 U	1 U	1 U	3 U
	03/28/2025	100 U	1 U	1 U	1 U	3 U
MW-17	1/17/2025	300 J+	1 U	1 U	1 U	3 U
	02/21/2025	323	1 U	1 U	1 U	3 U
	03/28/2025	276	1 U	1 U	1 U	3 U
MW-18	1/17/2025	117 J+	1 U	1 U	1 U	3 U
	02/21/2025	110 U	1 U	1 U	1 U	3 U
	03/28/2025	100 U	1 U	1 U	1 U	3 U
MW-19	1/17/2025	14,800	402	669	684	4,490
	02/21/2025	17,100	336	933	718	3,820
	03/28/2025	13,500	122	802	725	3,430
MW-20	1/17/2025	8,950	861	250 U	712	2,880
	02/21/2025	41,600	7,730	7,970	920	4,940
	03/28/2025	25,400	2,420	3,070	886	4,620
MW-21	1/17/2025	12,000	3,130	1,780	500 U	2,820
	02/21/2025	69,000	16,400	14,700	970	6,390
	03/28/2025	47,200	9,270	8,460	1,540	7,400

Table 8. Groundwater Analytical Results - First Quarter 2025 (continued)

Notes:

1 = Screening levels are based on MTCA Method A Groundwater CULs (WAC 173-340-720, Table 720-1).

2 = Samples for MW-6 were field duplicated as DUP-1 on 3/28/2025.

3 = Samples for MW-8 were field duplicated as DUP-1 on 02/21/2025.

4 = Samples for MW-9 were field duplicated as DUP-1 on 1/17/2025.

Bold = sample result was detected

Yellow = sample result exceeds the cleanup level

CULs = cleanup levels

EPA = U.S. Environmental Protection Agency

GRO = gasoline-range organics

MTCA = Model Toxics Control Act

NWTPHGX = Northwest Total Petroleum Hydrocarbons as Gasoline

VOCs = volatile organic compounds

WAC = Washington Administrative Code

μg/L = micrograms per liter

Qualifiers:

J+ = Estimated, High Bias: The result was an estimated quantity, but the result may be biased high.

U= Not detected at the limit of detection.

Appendix A. Field Data During Reporting Period

Name &	Company:	Glacier		Chris			System	On on Arriva	al? (circle):	yes	no
Date/time	of data colle	ection:	1/3/2025					Syst	em Hours:		
Weather			Rain				Phase 1: MPE	/ SVE, all wells	s in extraction	n mode.	
Barometi	ic pressure (psi):	29.7				Barometric Pi	essure sourc	e:	IPhone weat	her app
Ambient	Temperature	(°F):	47				Ambient Tem	perature soui	ce:	IPhone weat	her app
Noise (di			If above 60 dB	A, notify KJ pe	rsonnel		Noise measu			hand held in	
	Separator Dr	•	e)		Yes		Active Alarm (Conditions (circ	cle, note affe	ected equipme	ent):
	pproximate v			13.17			1. No Alarm		- .()		
Catalytic	Oxidizer Insta	` '			Yes		2. High Wate		Tank(s):		
DID O-III	Effluent Vapo			27	V		 Low Water High Press 		Tank(s): Equipmer	·+•	
PID Call	ration Perfor	<u> </u>		1	Yes	-	5. Low Pressi				
	PID Calibrat	ion		Zero Gas	Span Gas				Equipmer		
	Calibration V	/alue (ppm):					System Sh		Equipmer		
	Instrument R	teading (ppm):				7. Temperatu	re	Equipmer	nt:	
							8. Other:				
	Wells - Inject	ion/Extraction	n (At Manifol	d)			Trea	atment Syster	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)
RW-2	8	9.7	2	Indictions	Before MS		VI 210	(1)		(ciri/gpiii)	тъ (ррпі)
									24		
RW-3	3.5	7.5	8.1		After MS		PI 310		24.7		
RW-4	6	7.5	8.1		Before Blowe	r	VI 300		24.7		
RW-5	0	0	0		After Blower		PI/FI 302		1.9		
RW-6	6	9.3	1.3		At Heat Exch	anger	TT-302		39.8		
RW-7	5	24.7	18.3		Before Vapor	GAC	PI 411		0	0	0
RW-8	6.5	27	9.5		Vapor GAC N	/lidpoint**	PI 412		0	0	0
RW-9	2.5	133.1	3.1		After Vapor G	GAC**	PI 410		0	0	0
RW-10	0	0			After Pump P	- 400	PI 400		0		
SW-1	7.5	38.7	11.6		Before Bag F	ïlter	PI-405		0		
SW-2	0				After Bag Filt	er**	FI 400/PI 401		0	0	
SW-3	4	67.8			Midpoint Liqu	id GAC 1**	PI 403		0		
MW-4	0				After Liquid G	GAC 1	FE-404			0	
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liqu	id GAC 2**	PI 406		0		
SSD-1					After Liquid G	GAC 2	FE-407			0	
SSD-2					After Liquid C	GAC**	PI-404		0		
SSD-3					Catalytic Oxid	dizer Tempe	eratures (°F)	T1 Entrance: 6	28 T2 Ex	it 650 T3 Inte	erior 664
VP-1	0.001		0.8		Catalytic Oxid	dizer PID (p	pm)	Pre: 119.8		Post	33.4
VP-2	0.001		0.6		Catalytic Oxid	dizer Flow R	tate (scfm)	Pre: 42	Po	st:	
VP-3	0.002		3.5		Water Discha	arge Flow To	otalizer	Date	Time	Total Fl	ow (gal)
VP-4	0.003		38.1				FT 500				
							FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):		
Some flows not able to take due to moisture in lines. Fouls sensor	Air: 200 scfm	Water:	3 gpm / 4500 gpd
Noise level collected at property line with traffic	If exceeded, notify Kennedy	Jenks personn	el.

FE302 tubing moisture restriction, disconnect and empty out

T301 has 300 gallons, discharge flow meter 264120

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

SYSTEM MONITORING FORM

	CIR	RCLE K - P	HASE 1: M	ULTI-PHA	SE EXTRA	CTION (MI	PE) / SOIL V	APOR EXT	RACTION	(SVE)	
Name &	Company:	Glacier					System	On on Arriv	val? (circle):	yes	no
Date/tim	e of data colle	ction:	1/6/2025			•		Sys	stem Hours:		
Weather			Rain			•	Phase 1: MPE	/ SVE, all we	lls in extractio	n mode.	
Baromet	ric pressure (p	si):					Barometric Pr	essure sour	ce:		
Ambient	Temperature	(°F):					Ambient Tem	perature sou	urce:		
Noise (d	BA):		If above 60 dE	BA, notify KJ p	ersonnel		Noise measur	ement sour	ce:		
Moisture	Separator Dra	ained? (circl	le)		Yes	No	Active Alarm C	Conditions (c	ircle, note aff	ected equipm	ent):
	Approximate v	olume (gal)	:	13.17			1. No Alarm				
Catalytic	Oxidizer Insta	alled? (circle	;)		Yes	No	2. High Water	Level	Tank(s):		
	Effluent Vapo	or VOC Con	c (ppm):	27			3. Low Water	Level	Tank(s):		
PID Cali	bration Perforn	ned? (circle	·)		Yes	No	4. High Press	ure	Equipme	nt:	
	PID Calibrati	ion		Zero Gas	Span Gas		5. Low Pressu	ıre	Equipme	nt:	
	Calibration Va	alue (ppm):					6. System Sh	utdown	Equipme	nt:	
	Instrument Re	eading (ppn	 n):				7. Temperatu	re	Equipme	nt:	
	•		<u>, · </u>		•	•	8. Other:				
	Wells - Injection	on/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)
RW-2					Before MS		VI 210		23.3		
RW-3			-		After MS		PI 310		23.3		
RW-4					Before Blow	er	VI 300		24.7		
RW-5					After Blower		PI/FI 302		1.9		
RW-6					At Heat Excl	nanger	TT-302		2.6		
RW-7					Before Vapo	r GAC	PI 411		0	0	0
RW-8					Vapor GAC	Midpoint**	PI 412		0	0	0
RW-9					After Vapor	GAC**	PI 410		0	0	0
RW-10					After Pump I	P-400	PI 400		0		

Before Bag Filter

After Bag Filter**

After Liquid GAC 1

After Liquid GAC 2

After Liquid GAC**

Midpoint Liquid GAC 1*

Midpoint Liquid GAC 2*

Catalytic Oxidizer Temperatures (°F)

Catalytic Oxidizer Flow Rate (scfm)

Water Discharge Flow Totalizer

Catalytic Oxidizer PID (ppm)

PI-405

FI 400/PI 401

PI 403

FE-404

PI 406

FE-407

PI-404

FT 500 FT 500

** Location for collection of air or water sample for laboratory analysis.

T1 Entrance: 626.3

67.0

Date

Pre:

0

0

0

0

0

0

Time

T2 Exit 646.2

Post

0

0

Total Flow (gal)

T3 Interior 660.5

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):		
collected discharge flow meter reading	Air: 200 scfm	Water:	3 gpm / 4500 gpd
collected readings from HMI	If exceeded, notify Kenned	ly Jenks persor	inel.

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

PID

(ppm)

Valve (O/C,

fraction)

Flow

(cfm)

SW-1

SW-2

SW-3

MW-4

Well ID

SSD-1

SSD-2

SSD-3

VP-1

VP-2

VP-3

VP-4

Pres/Vac

(in Hg)

SYSTEM MONITORING FORM

	CII	RCLE K - P	PHASE 1: M	IULTI-PHA	SE EXTRA	CTION (MI	PE) / SOIL V	APOR EXT	RACTION	(SVE)	
Name &	Company:	Glacier					System	On on Arriv	/al? (circle):	yes	no
Date/time	e of data colle	ection:	1/16/2025			•	-	Sys	stem Hours:		
Weather			Rain			Phase 1: MPE / SVE, all wells in extraction mode.					
Baromet	ric pressure (psi):					Barometric Pr	essure sour	ce:		
Ambient	Temperature	(°F):					Ambient Tem	perature sou	ırce:		
Noise (d	BA):		If above 60 dE	BA, notify KJ p	ersonnel		Noise measur				
Moisture	Separator Di	rained? (circl	le)		Yes	No	Active Alarm C	Conditions (c	ircle, note aff	ected equipm	nent):
,	Approximate ¹	volume (gal)	:	13.17		•	1. No Alarm				
Catalytic	Oxidizer Inst	alled? (circle	e)		Yes	No	High Water	Level	Tank(s):		
	Effluent Vap	or VOC Con	c (ppm):				3. Low Water	Level	Tank(s):		
PID Calil	ration Perfor	med? (circle)		Yes	No	4. High Press	ure	Equipme	nt:	
	PID Calibrat	tion		Zero Gas	Span Gas		5. Low Pressu	ıre	Equipme	nt:	
	Calibration \	/alue (ppm):					6. System Sh	utdown	Equipme	nt:	
	Instrument F	Reading (ppn	n):				7. Temperatu	re	Equipme	nt:	
							8. Other:				
	Wells - Inject	tion/Extractio	n (At Manifo	ld)			Trea	atment Syste	em		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)
RW-2					Before MS		VI 210				
RW-3					After MS		PI 310				
RW-4					Before Blow	er	VI 300		21.6		
RW-5					After Blower		PI/FI 302		2.9	76.4	
RW-6					At Heat Excl	nanger	TT-302		2.9		
RW-7					Before Vapo	r GAC	PI 411		0	0	0
RW-8					Vapor GAC	Midpoint**	PI 412		0	0	0
RW-9					After Vapor	GAC**	PI 410		0	0	0

SSD-3 T1 Entrance: 626.9 T2 Exit 648.6 T3 Interior 662.4 Catalytic Oxidizer Temperatures (°F) VP-1 Pre: Post Catalytic Oxidizer PID (ppm)

VP-2 76.4 Catalytic Oxidizer Flow Rate (scfm) VP-3

After Pump P-400

Before Bag Filter

After Bag Filter**

After Liquid GAC 1

After Liquid GAC 2

After Liquid GAC**

Midpoint Liquid GAC 1*

Midpoint Liquid GAC 2*

PI 400

PI-405

FI 400/PI 401

PI 403

FE-404

PI 406

FE-407

PI-404

FT 500

0

0

0

0

0

0

0

0

Water Discharge Flow Totalizer Time Date Total Flow (gal) VP-4 FT 500

** Location for collection of air or water sample for laboratory analysis. Comments/Maintenance Activities: Permit Discharge Limits (see permits): 3 gpm / collected discharge flow meter reading 4500 gpd Air: 200 scfm Water: collected readings from HMI exceeded, notify Kennedy Jenks personnel

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

RW-10

SW-1

SW-2

SW-3

MW-4

Well ID

SSD-1

SSD-2

Pres/Vac

(in Hg)

Flow

(cfm)

PID

(ppm)

Valve (O/C,

fraction)

Name &	Company:	Glacier					System	On on Arriva	al? (circle):	yes	no
Date/time	e of data colle	ction:	1/23/2025					Syst	em Hours:	944.1	-
Weather:			Clear Cold				Phase 1: MPE	/ SVE, all wells	s in extraction	n mode.	
Barometr	ric pressure (p	osi):					Barometric Pr	essure sourc	e:		
Ambient '	Temperature	(°F):					Ambient Tem	perature sour	ce:		
Noise (d	3A):		If above 60 dE	A, notify KJ pe	ersonnel		Noise measu	rement sourc	e:		
	Separator Dr	•	e)		Yes	No	Active Alarm (Conditions (cir	cle, note aff	ected equipm	ent):
	Approximate v			7.62			1. No Alarm				
-	Oxidizer Insta				Yes	No	2. High Water		Tank(s):		
	Effluent Vapo		: (ppm):		V	NI-	 Low Water High Press 		Tank(s):	o.t.	
	PID Calibrat	, ,		Zero Gas	Yes Span Gas	No	5. Low Pressi		Equipmer Equipmer		
	Calibration V			Zeio Gas	оран Саз		6. System Sh		Equipme		
	Instrument R		١٠				7. Temperatu		Equipme	nt:	
	instrument ix	eading (ppin).				8. Other:	. •	_90.60.		
	Wells - Injecti	on/Extraction	n (At Manifo	ld)				atment Syste	m		
	Pres/Vac	Flow	PID					Temp	Pres/Vac	Flow	
Well ID	(in Hg)	(cfm)	(ppm)	Valve (O/C, fraction)	Location		ID	(°F)	(psi)	(cfm/gpm)	PID (ppm)
RW-2					Before MS		VI 210				
RW-3					After MS		PI 310				
RW-4					Before Blowe	er	VI 300		20.6		
RW-5					After Blower		PI/FI 302		3.1	79.5	
RW-6					At Heat Exch	nanger	TT-302				
RW-7					Before Vapo	r GAC	PI 411		0	0	0
RW-8					Vapor GAC I	Midpoint**	PI 412		0	0	0
RW-9					After Vapor (GAC**	PI 410		0	0	0
RW-10					After Pump F	P-400	PI 400		0		
SW-1					Before Bag F	ilter	PI-405		0		
SW-2					After Bag Filt	ter**	FI 400/PI 401		0	0	
SW-3					Midpoint Liqu	uid GAC 1**	PI 403		0		
MW-4					After Liquid (GAC 1	FE-404			0	
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liqu	uid GAC 2**	PI 406		0		
SSD-1					After Liquid (GAC 2	FE-407			0	
SSD-2					After Liquid (GAC**	PI-404		0		
SSD-3					Catalytic Oxi	dizer Tempe	eratures (°F)	T1 Entrance: 6	326.9 T2 Exit	645.4 T3 Into	erior 658.9
VP-1					Catalytic Oxi	dizer PID (p	pm)	Pre:	F	Post	
VP-2					Catalytic Oxi	dizer Flow F	Rate (scfm)	Pre: 76.4	F	Post:	
VP-3					Water Discha	arge Flow To	otalizer	Date	Time	Total Fl	ow (gal)
VP-4							FT 500				
							FT 500				
-						** Loca	tion for collect				
Commen	ts/Maintenan	ce Activities:						Permit D	rmit Discharge Limits (see permits):		
	discharge flo		ling					Air: 200 scfn	า		3 gpm / 4500 gpd
	readings fron							If exceeded, no	tify Kennedy J	lenks personnel.	
Manifold	B pressure le	vels < 5 InHo	g on all wells	s, adjust to	>5 InHg						

No water discharged since last visit

Notes: psi = pounds/square activated carbon; O/C= ope	e inch; cfm = cubic feet	per minute; ppm = pa	arts per million; gal =	gallons; MS = vapor lid	quid separator; GAC = grant	ular
•						

Name &	Company:	Glacier				_	Systen	n On on Arriv	ai? (circie):	yes	no	
Date/time	e of data colle	ection:	1/23/2025			<u>-</u>		Sys	tem Hours:	965		
Weather:			Clear Cold				Phase 1: MPE	/ SVE, all well	s in extractior	n mode.		
	ric pressure (p	-					Barometric P	essure sour	ce:			
	Temperature	(°F):					Ambient Tem	perature sou	rce:			
Noise (dl	,			3A, notify KJ pe			Noise measu					
	Separator Dr	•	e)		Yes	No	Active Alarm (Conditions (ci	cle, note aff	ected equipm	ent):	
	Approximate v			7.62			1. No Alarm		T1-(-).			
Catalytic	Oxidizer Insta				Yes	No	High WaterLow Water		Tank(s):			
DID Calik	Effluent Vapo oration Perfor				Yes	No	4. High Press		Tank(s): Equipme	nt.		
FID Call	PID Calibrat		<u>'</u>	Zero Gas]	5. Low Pressi		Equipment:			
	Calibration V			2010 000	Opan Gas		6. System Sh		Equipme			
	Instrument R).				7. Temperatu		Equipme			
	motrament	cading (ppin	<i>)</i> -				8. Other:		1.1			
	Wells - Inject	ion/Extraction	n (At Manifo	ld)				atment Syste	em			
	Pres/Vac	Flow	PID	Valve (O/C,				Temp	Pres/Vac	Flow		
Well ID	(in Hg)	(cfm)	(ppm)	fraction)	Location		ID	(°F)	(psi)	(cfm/gpm)	PID (ppm)	
RW-2					Before MS		VI 210					
RW-3					After MS		PI 310					
RW-4					Before Blow	er	VI 300		20.6			
RW-5					After Blower		PI/FI 302		3.1	79.5		
RW-6					At Heat Exc		TT-302					
RW-7					Before Vapo	or GAC	PI 411		0	0	0	
RW-8					Vapor GAC	Midpoint**	PI 412		0	0	0	
RW-9					After Vapor	GAC**	PI 410		0	0	0	
RW-10					After Pump	P-400	PI 400		0			
SW-1					Before Bag	Filter	PI-405		0			
SW-2					After Bag Fi	lter**	FI 400/PI 401		0	0		
SW-3					Midpoint Liq	uid GAC 1**	PI 403		0			
MW-4					After Liquid	GAC 1	FE-404			0		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liq	uid GAC 2**	PI 406		0			
SSD-1					After Liquid	GAC 2	FE-407			0		
SSD-2					After Liquid	GAC**	PI-404		0			
SSD-3					Catalytic Ox	idizer Tempe	eratures (°F)	T1 Entrance:	626.9 T2 Exit	645.4 T3 Int	erior 658.9	
VP-1					Catalytic Ox	idizer PID (p	pm)	Pre:	F	Post		
VP-2					Catalytic Ox	idizer Flow F	Rate (scfm)	Pre: 76.4	F	Post:		
VP-3					Water Disch	arge Flow To	otalizer	Date	Time	Total FI	ow (gal)	
VP-4]		FT 500					
							FT 500					

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
collected discharge flow meter reading	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
collected readings from HMI	If exceeded, notify Kennedy	Jenks personne	el.	

called to site to check on alarms, LRP Low vacuum found open sample ports on Manifold B. talked to ERRG, they took some reading on there last visit and may have forgot to close them. Closed sample ports and re adjusted wells to >5 InHg. System Vacuum returned to normal adjusted Low vacuum alarm to 14 InHg, Rechecked readings on discharge flow meter and recorded them on Flow Calcs page

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

Name &	Company:	Glacier		Chris	System On on Arrival? (circle): yes no								
Date/time	of data colle	ection:	1/3/2025			System Hours:							
Weather:			Rain				Phase 1: MPE	/ SVE, all wells	in extraction	action mode.			
Barometr	ic pressure (psi):	29.7			Barometric Pressure source: IPhone weather					her app		
Ambient '	Temperature	(°F):	47		Ambient Tem			perature soui	ce:	IPhone weat	her app		
Noise (de	•		If above 60 dB	A, notify KJ pe	rsonnel		Noise measu			hand held in			
	Separator Dr	•	e)		Yes	No Active Alarm Conditions (circle, note affected equipment):							
	pproximate v			13.17			1. No Alarm						
Catalytic	Oxidizer Insta	` '			Yes		High Water Level Tank(s): Low Water Level Tank(s):						
DID O-III		or VOC Cond		27	V		Low water High Press		Tank(s): Equipmer	·+•			
PID Call	ration Perfor	<u>, , , , , , , , , , , , , , , , , , , </u>		1	Yes	-	5. Low Pressi						
	PID Calibrat	ion		Zero Gas	Span Gas				Equipmer				
	Calibration V	/alue (ppm):					System Sh		Equipmer				
	Instrument R	Reading (ppm):				7. Temperatu	re	Equipmer	nt:			
							8. Other:						
	Wells - Inject	ion/Extraction	n (At Manifol	d)			Trea	atment Syster	m				
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)		
RW-2	8	9.7	2		Before MS		VI 210	(.)		(9111, 95111)	· · · · (pp····)		
RW-3	3.5	7.5	8.1		After MS		PI 310		24				
RW-4	6		8.1		Before Blowe				24.7				
	0	7.5	0			:1	VI 300		24.7				
RW-5					After Blower		PI/FI 302		1.9				
RW-6	6	9.3	1.3		At Heat Exch		TT-302		39.8				
RW-7	5	24.7	18.3		Before Vapor		PI 411		0	0	0		
RW-8	6.5	27	9.5		Vapor GAC N		PI 412		0	0	0		
RW-9	2.5	133.1	3.1		After Vapor C		PI 410		0	0	0		
RW-10	0	0			After Pump P		PI 400		0				
SW-1	7.5	38.7	11.6		Before Bag F		PI-405		0				
SW-2	0				After Bag Filt		FI 400/PI 401		0	0			
SW-3	4	67.8			Midpoint Liqu		PI 403		0				
MW-4	0				After Liquid G	SAC 1	FE-404			0			
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liqu	id GAC 2**	PI 406		0				
SSD-1					After Liquid G	SAC 2	FE-407			0			
SSD-2					After Liquid C	GAC**	PI-404		0				
SSD-3					Catalytic Oxid	dizer Tempe	eratures (°F)	T1 Entrance: 6	28 T2 Ex	it 650 T3 Inte	erior 664		
VP-1	0.001		0.8		Catalytic Oxid	dizer PID (p	pm)	Pre: 119.8		Post	33.4		
VP-2	0.001		0.6		Catalytic Oxid	dizer Flow R	tate (scfm)	Pre: 42 Post:					
VP-3	0.002		3.5		Water Discha	arge Flow To	otalizer	Date	Time	Total Fl	ow (gal)		
VP-4	0.003		38.1				FT 500						
							FT 500						

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Some flows not able to take due to moisture in lines. Fouls sensor	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Noise level collected at property line with traffic	If exceeded, notify Kennedy	Jenks personn	el.	

FE302 tubing moisture restriction, disconnect and empty out

T301 has 300 gallons, discharge flow meter 264120

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

SYSTEM MONITORING FORM

	CIR	RCLE K - P	HASE 1: M	ULTI-PHA	SE EXTRA	CTION (MI	PE) / SOIL V	APOR EXT	RACTION	(SVE)		
Name &	Company:	Glacier					System	On on Arriv	val? (circle):	yes	no	
Date/tim	e of data colle	ction:	1/6/2025			•		Sys	stem Hours:			
Weather			Rain			Phase 1: MPE / SVE, all wells in extraction mode.						
Baromet	ric pressure (p	si):					Barometric Pr	essure sour	ce:			
Ambient	Temperature	(°F):					Ambient Tem	perature sou	urce:			
Noise (d	BA):		If above 60 dE	BA, notify KJ p	ersonnel		Noise measur	ement sour	ce:			
Moisture	Separator Dra	ained? (circl	le)		Yes	No	Active Alarm C	Conditions (c	ircle, note aff	ected equipm	ent):	
	Approximate v	olume (gal)	:	13.17			1. No Alarm					
Catalytic	Oxidizer Insta	alled? (circle	;)		Yes	No	2. High Water	Level	Tank(s):			
	Effluent Vapo	or VOC Con	c (ppm):	27			3. Low Water	Level	Tank(s):			
PID Cali	bration Perforn	ned? (circle)		Yes No		4. High Press	ure	Equipment:			
	PID Calibrati	ion		Zero Gas	Span Gas		5. Low Pressu	ıre	Equipme	nt:		
	Calibration Va	alue (ppm):				6. System Shutdown		utdown	Equipment:			
	Instrument Reading (ppm):					7. Temperature		Equipment:				
	•				•	•	8. Other:					
	Wells - Injection	on/Extractio	n (At Manifol	d)			Trea	atment Syst	em			
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)	
RW-2					Before MS		VI 210		23.3			
RW-3					After MS		PI 310		23.3			
RW-4					Before Blow	er	VI 300		24.7			
RW-5					After Blower		PI/FI 302		1.9			
RW-6					At Heat Excl	nanger	TT-302		2.6			
RW-7					Before Vapo	r GAC	PI 411		0	0	0	
RW-8					Vapor GAC	Midpoint**	PI 412		0	0	0	
RW-9					After Vapor	GAC**	PI 410		0	0	0	
RW-10					After Pump I	P-400	PI 400		0			

Before Bag Filter

After Bag Filter**

After Liquid GAC 1

After Liquid GAC 2

After Liquid GAC**

Midpoint Liquid GAC 1*

Midpoint Liquid GAC 2*

Catalytic Oxidizer Temperatures (°F)

Catalytic Oxidizer Flow Rate (scfm)

Water Discharge Flow Totalizer

Catalytic Oxidizer PID (ppm)

PI-405

FI 400/PI 401

PI 403

FE-404

PI 406

FE-407

PI-404

FT 500 FT 500

** Location for collection of air or water sample for laboratory analysis.

T1 Entrance: 626.3

67.0

Date

Pre:

0

0

0

0

0

0

Time

T2 Exit 646.2

Post

0

0

Total Flow (gal)

T3 Interior 660.5

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
collected discharge flow meter reading	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
collected readings from HMI	If exceeded, notify Kenned	ly Jenks persor	nnel.	

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

PID

(ppm)

Valve (O/C,

fraction)

Flow

(cfm)

SW-1

SW-2

SW-3

MW-4

Well ID

SSD-1

SSD-2

SSD-3

VP-1

VP-2

VP-3

VP-4

Pres/Vac

(in Hg)

SYSTEM MONITORING FORM

	CII	RCLE K - P	PHASE 1: M	IULTI-PHA	SE EXTRA	CTION (MI	PE) / SOIL V	APOR EXT	RACTION	(SVE)	
Name &	Company:	Glacier					System	On on Arriv	/al? (circle):	yes	no
Date/time	e of data colle	ection:	1/16/2025			•	-	Sys	stem Hours:		
Weather			Rain			•	Phase 1: MPE	/ SVE, all we	lls in extractio	n mode.	
Baromet	ric pressure (psi):					Barometric Pr	essure sour	ce:		
Ambient	Temperature	(°F):					Ambient Tem	perature sou	ırce:		
Noise (d	BA):		If above 60 dE	BA, notify KJ p	ersonnel		Noise measur				
Moisture	Separator Di	rained? (circl	le)		Yes	No	Active Alarm C	Conditions (c	ircle, note aff	ected equipm	nent):
,	Approximate ¹	volume (gal)	:	13.17		•	1. No Alarm				
Catalytic	Oxidizer Inst	alled? (circle	e)		Yes	No	High Water	Level	Tank(s):		
	Effluent Vap	or VOC Con	c (ppm):				3. Low Water	Level	Tank(s):		
PID Calil	ration Perfor	med? (circle)		Yes	No	4. High Press	ure	Equipme	nt:	
	PID Calibrat	tion		Zero Gas	Span Gas		5. Low Pressu	ıre	Equipme	nt:	
	Calibration \	/alue (ppm):					6. System Sh	utdown	Equipme	nt:	
	Instrument F	Reading (ppn	n):				7. Temperatu	re	Equipme	nt:	
							8. Other:				
	Wells - Inject	tion/Extractio	n (At Manifo	ld)			Trea	atment Syste	em		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)
RW-2					Before MS		VI 210				
RW-3					After MS		PI 310				
RW-4					Before Blow	er	VI 300		21.6		
RW-5					After Blower		PI/FI 302		2.9	76.4	
RW-6					At Heat Excl	nanger	TT-302		2.9		
RW-7					Before Vapo	r GAC	PI 411		0	0	0
RW-8					Vapor GAC	Midpoint**	PI 412		0	0	0
RW-9					After Vapor	GAC**	PI 410		0	0	0

SSD-3 T1 Entrance: 626.9 T2 Exit 648.6 T3 Interior 662.4 Catalytic Oxidizer Temperatures (°F) VP-1 Pre: Post Catalytic Oxidizer PID (ppm)

VP-2 76.4 Catalytic Oxidizer Flow Rate (scfm) VP-3

After Pump P-400

Before Bag Filter

After Bag Filter**

After Liquid GAC 1

After Liquid GAC 2

After Liquid GAC**

Midpoint Liquid GAC 1*

Midpoint Liquid GAC 2*

PI 400

PI-405

FI 400/PI 401

PI 403

FE-404

PI 406

FE-407

PI-404

FT 500

0

0

0

0

0

0

0

0

Water Discharge Flow Totalizer Time Date Total Flow (gal) VP-4 FT 500

** Location for collection of air or water sample for laboratory analysis. Comments/Maintenance Activities: Permit Discharge Limits (see permits): 3 gpm / collected discharge flow meter reading 4500 gpd Air: 200 scfm Water: collected readings from HMI exceeded, notify Kennedy Jenks personnel

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

RW-10

SW-1

SW-2

SW-3

MW-4

Well ID

SSD-1

SSD-2

Pres/Vac

(in Hg)

Flow

(cfm)

PID

(ppm)

Valve (O/C,

fraction)

Name & Company: Glacier							System	On on Arriva	al? (circle):	yes	no	
Date/time	e of data colle	ction:	1/23/2025					Syst	em Hours:	944.1	-	
Weather	1		Clear Cold				Phase 1: MPE	/ SVE, all wells	in extraction	n mode.		
Barometi	ric pressure (p	osi):					Barometric Pr	essure sourc	e:			
Ambient	Temperature	(°F):					Ambient Tem	perature source:				
Noise (di	,		If above 60 dE	BA, notify KJ pe	ersonnel		Noise measur					
	Separator Dr	•	e)		Yes	No	Active Alarm C	Conditions (cire	cle, note aff	ected equipm	ent):	
	Approximate v	ισ ,		7.62	V		1. No Alarm	امدما	T 1()			
Catalytic	Oxidizer Insta				Yes	No	High WaterLow Water					
PID Calik	Effluent Vapo oration Perform				Vas				Equipme	,		
i ib oaii	PID Calibrat	,		Zero Gas	Span Gas	140	5. Low Pressu		Equipme			
	Calibration V				opan oac		6. System Sh	utdown	Equipme			
Instrument Reading (ppm):							7. Temperatu	re	Equipmer	nt:		
	mod dinone re	caamig (ppin	<i>)</i> ·				8. Other:					
Wells - Injection/Extraction (At Manifold)								atment Syster	m			
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)	
RW-2	(0,	(/	(11 /	,	Before MS		VI 210	· /	(1)	(91 /	(11 /	
RW-3					After MS		PI 310					
RW-4					Before Blowe	er	VI 300		20.6			
RW-5					After Blower	,	PI/FI 302		20.6 3.1	79.5		
RW-6					At Heat Exch	anger	TT-302		3.1	79.5		
RW-7					Before Vapo		PI 411		0	0	0	
RW-8					Vapor GAC I		PI 412		0	0	0	
RW-9					After Vapor (•	PI 410		0	0	0	
RW-10					After Pump F		PI 400		0	U	U	
SW-1					Before Bag F		PI-405		0			
SW-2					After Bag Filter** FI 400/PI 401				0	0		
SW-3					Midpoint Liqu		PI 403		0	Ü		
MW-4					After Liquid (FE-404		Ü	0		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liqu	uid GAC 2**	PI 406		0			
SSD-1					After Liquid (GAC 2	FE-407			0		
SSD-2					After Liquid (GAC**	PI-404		0			
SSD-3					Catalytic Oxi	dizer Tempe	eratures (°F)	T1 Entrance: 6	26.9 T2 Exit	645.4 T3 Inte	erior 658.9	
VP-1					Catalytic Oxi	dizer PID (p	pm)	Pre:	F	Post		
VP-2					Catalytic Oxi	dizer Flow F	Rate (scfm)	Pre: 76.4	F	Post:		
VP-3					Water Discha	arge Flow To	otalizer	Date	Time	Total Flo	ow (gal)	
VP-4							FT 500					
							FT 500					
						** Loca	tion for collect	ion of air or w	ater sampl	e for laborato	ory analysis.	
Commen	Comments/Maintenance Activities:							Permit D	ischarge l	Limits (see p	ermits):	
	discharge flo		ding					Air: 200 scfm			3 gpm / 4500 gpd	
	readings from							If exceeded, no	tify Kennedy J	enks personnel.		
Manifold	B pressure le	vels < 5 InHo	on all wells	s, adjust to	>5 InHg							

No water discharged since last visit

Name &	Company:	Glacier				_	Systen	n On on Arriv	ai? (circie):	yes	no
Date/time	Date/time of data collection: 1/23/2025 Veather: Clear Cold Barometric pressure (psi):					<u>-</u>		Sys	tem Hours:	965	
Weather:			Clear Cold				Phase 1: MPE	/ SVE, all well	s in extractior	n mode.	
							Barometric P	essure sour	ce:		
	Temperature	(°F):					Ambient Tem	perature sou	rce:		
Noise (dl	,			BA, notify KJ pe			Noise measu				
	Separator Dr	•	€)		Yes	No	Active Alarm (Conditions (ci	cle, note aff	ected equipm	ent):
	Approximate v			7.62			1. No Alarm				
Catalytic	Oxidizer Insta				Yes	No 2. High Water Level Tank(s): 3. Low Water Level Tank(s):					
	Effluent Vapo		; (ppm):		Voo	No 4. High Pressure Equipment:			nt.		
PID Call	ration Perfor			7 0					Equipme		
	PID Calibrat			Zero Gas	Span Gas						
	Calibration V	<u> </u>	`			6. System Shutdown Equipment:					
	Instrument R	eading (ppm):			7. Temperature Equipment:					
	\\/-!!- !=:+	:/Ftuti	- / A + B A : f -	1-1\			8. Other:	-t			
	Wells - Inject		·	ia)			Tre	atment Syste			
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)
RW-2	(g)	(OIIII)	(PPIII)	- Hadden,	Before MS		VI 210	(1)	(601)	(omingpini)	т ів (ррін)
RW-3					After MS		PI 310				
RW-4					Before Blow	er	VI 300		20.0		
RW-5							PI/FI 302		20.6	70.5	
RW-6					After Blower At Heat Exc		TT-302		3.1	79.5	
RW-7					Before Vapo		PI 411		0	0	0
RW-8					Vapor GAC		PI 412		0	0	0
RW-9					After Vapor	-	PI 410		0	0	0
RW-10					After Pump		PI 400		0	U	
SW-1					Before Bag		PI-405		0		
SW-2					After Bag Fi		FI 400/PI 401		0	0	
SW-3						uid GAC 1**	PI 403		0	U	
MW-4					After Liquid		FE-404			0	
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liq		PI 406		0		
SSD-1					After Liquid	GAC 2	FE-407			0	
SSD-2					After Liquid	GAC**	PI-404		0		
SSD-3					Catalytic Ox	idizer Tempe	eratures (°F)	T1 Entrance:	626.9 T2 Exit	645.4 T3 Int	erior 658.9
VP-1					Catalytic Ox	idizer PID (p	pm)	Pre:	F	Post	
VP-2				Catalytic Ox	idizer Flow F	Rate (scfm)	Pre: 76.4	F	Post:		
VP-3			Water Di		Water Disch	arge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4							FT 500				
		·			-		FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge	Limits (see	permits):
collected discharge flow meter reading	Air: 200 scfm	Water:	3 gpm / 4500 gpd
collected readings from HMI	If exceeded, notify Kennedy	Jenks personne	el.

called to site to check on alarms, LRP Low vacuum found open sample ports on Manifold B. talked to ERRG, they took some reading on there last visit and may have forgot to close them. Closed sample ports and re adjusted wells to >5 InHg. System Vacuum returned to normal adjusted Low vacuum alarm to 14 InHg, Rechecked readings on discharge flow meter and recorded them on Flow Calcs page

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

Name & Compa	ny: Glacier				System On on Arr	rival? (circle): yes	no
Date/time of da	a collection: 2/6/2025				S	ystem Hours:	965
Weather:	snow, col	d			Phase 1: MPE / SVE, all w	ells in extraction mod	le.
Barometric pres	sure (psi):				Barometric Pressure sou	ırce:	29
Ambient Tempe	rature (°F):				Ambient Temperature so	ource:	35
Noise (dBA):	If above 60	dBA, notify KJ pe	ersonnel		Noise measurement sou	ırce:	
Moisture Separa	ator Drained? (circle)		Yes	No	Active Alarm Conditions (circle, note affected	equipment):
Approx	7.62			1. No Alarm			
Catalytic Oxidiz	er Installed? (circle)		Yes	No	2. High Water Level	Tank(s):	
Efflue	nt Vapor VOC Conc (ppm):				3. Low Water Level	Tank(s):	
PID Calibration	Performed? (circle)		Yes	No	4. High Pressure	Equipment:	
PID C	alibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:	
Calibr	ation Value (ppm):				6. System Shutdown	Equipment:	
Instrui	nent Reading (ppm):				7. Temperature	Equipment:	
					8. Other:		
\A/ - II -	Injection/Extraction (At Mani	(~ ~ \			Tranton ant Cur	4	

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-8	17.6	0.9		Before MS	VI 210		14.8			
RW-3	off				After MS	PI 310					
RW-4	-8	none	151.3		Before Blower	VI 300		16.3			
RW-5	off				After Blower	PI/FI 302		3.9	112.4		
RW-6	-6	7.55	24.2		At Heat Exchanger	TT-302		3.9			
RW-7	-8	none	56.1		Before Vapor GAC	PI 411		3.9	125.5	254.9	
RW-8	-8	3	334		Vapor GAC Midpoint**	PI 412		NA	NA	NA	
RW-9	-7	none	27.5		After Vapor GAC**	PI 410		NA	NA	NA	
RW-10	off				After Pump P-400	PI 400		0			
SW-1	off				Before Bag Filter	PI-405		0			
SW-2	off				After Bag Filter**	FI 400/PI 401		0	0		
SW-3	12.5	none	1		Midpoint Liquid GAC 1**	PI 403		0			
MW-4	-12	5.46	0		After Liquid GAC 1	FE-404			0		
Well ID	Pres/Vac (in IWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-5				After Liquid GAC 2	FE-407			0		
SSD-2	-5				After Liquid GAC**	PI-404		0			
SSD-3	-18				Catalytic Oxidizer Tempe	eratures (°F)	T1 Entrance:	626 T2 Exit	708 T3 Interio	or 697	
VP-1	-0.14	0	2.6		Catalytic Oxidizer PID (p	pm)	Pre: 254.9		Post		
VP-2	-0.1	0	6.6		Catalytic Oxidizer Flow R	Rate (scfm)	Pre: 125.5		Post:		
VP-3	-0.049	0	6.6		Water Discharge Flow To	otalizer	Date	Time	Total F	ow (gal)	
VP-4	-0.013	0	137.7			FT 500					
						FT 500					

Comments/Maintenance Activities:	Permit Discha	Permit Discharge Limits (see permits):				
adjust system flows to maximize recovery, closed wells with <50 PPM to increse vacuum	Air: 200 scfm	Water:	3 gpm / 4500 gpd			
ground water level is high, collected water levels in wells	If exceeded, notify Ken	nedy Jenks person	nel.			
collect system data.						

Name & Company: Glacier							System	On on Arriva	al? (circle):	yes	no	
Date/time	e of data colle	ction:	2/17/2025					Syst	em Hours:	1539		
Weather							Phase 1: MPE	/ SVE, all well:	s in extractio	n mode.		
	ric pressure (p						Barometric Pr					
	Temperature	(°F):					Ambient Tem					
Noise (dl	,	-il0 /-il	If above 60 dE	A, notify KJ pe		NI.	Noise measur			f = -1 = -1 =1 =	(\)	
	Separator Dra Approximate v	•	€)		Yes	No	Active Alarm (1. No Alarm	onaltions (cir	cie, note ar	rectea equipm	ient):	
	Oxidizer Insta	ιο ,	1		Yes	No	2. High Water	Level	Tank(s):	Tank(s):		
-	Effluent Vapo	` ,			3. Low Water Level				` ,			
PID Calib	oration Perform		,		Yes	• • • • • • • • • • • • • • • • • • • •			nt:			
	PID Calibrati			Zero Gas	Span Gas		5. Low Pressure Equipment:					
Calibration Value (ppm):							6. System Sh	utdown	Equipme	nt:		
Instrument Reading (ppm):							7. Temperatu	re	Equipme	nt:		
<u> </u>							8. Other:					
Wells - Injection/Extraction (At Manifold)							Trea	atment Syste	m			
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location		ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)	
RW-2					Before MS		VI 210		16.9			
RW-3					After MS		PI 310					
RW-4					Before Blowe	er	VI 300		16.3			
RW-5					After Blower		PI/FI 302		3.9			
RW-6					At Heat Exch	anger	TT-302					
RW-7					Before Vapo	r GAC	PI 411		3.9	98.2		
RW-8					Vapor GAC I	Midpoint**	PI 412		NA	NA	NA	
RW-9					After Vapor (GAC**	PI 410		NA	NA	NA	
RW-10					After Pump F	P-400	PI 400		0			
SW-1					Before Bag Filter		PI-405		0			
SW-2					After Bag Filt	ter**	FI 400/PI 401		0	0		
SW-3					Midpoint Liqu	uid GAC 1**	PI 403		0			
MW-4					After Liquid (GAC 1	FE-404			0		
Well ID	Pres/Vac (in IWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liqu	uid GAC 2**	PI 406		0			
SSD-1					After Liquid (GAC 2	FE-407			0		
SSD-2					After Liquid (GAC**	PI-404		0			
SSD-3					Catalytic Oxi	dizer Tempe	eratures (°F)	T1 Entrance: 6	627.1 T2 Exi	t 703.8 T3 Int	terior 700.3	
VP-1					Catalytic Oxi	dizer PID (p	pm)	Pre:	F	Post		
VP-2					Catalytic Oxi	dizer Flow R	tate (scfm)	Pre:	Post:			
VP-3					Water Discha	arge Flow To	otalizer	Date	Time	Total FI	ow (gal)	
VP-4							FT 500					
							FT 500					
							tion for collect		•			
Commer	Comments/Maintenance Activities:						Permit Discharge Limits (see permits):					
	recovery well	•						3 gpm / Air: 200 scfm Water: 4500 gpd				
collected	water meter r	eadings.						If exceeded, no	tify Kennedy C	Jenks personnel		

Name & Company: Glacier	TW			System On on Arri	ival? (circle): yes	no
Date/time of data collection:	2/19/2025			Sy	stem Hours: 159	1.3
Weather:	Partly Cloudy			Phase 1: MPE / SVE, all we	ells in extraction mode.	
Barometric pressure (psi):	30.1			Barometric Pressure sou	irce: Internet	
Ambient Temperature (°F):	51			Ambient Temperature so	ource: Internet	
Noise (dBA):	If above 60 dBA, notify KJ pe	ersonnel		Noise measurement sou	rce:	
Moisture Separator Drained? (circ	e)	Yes	No	Active Alarm Conditions (circle, note affected equ	ıipment):
Approximate volume (gal)	•	-		1. No Alarm		
Catalytic Oxidizer Installed? (circle	e)	Yes	No	2. High Water Level	Tank(s):	
Effluent Vapor VOC Cor	c (ppm):			3. Low Water Level	Tank(s):	
PID Calibration Performed? (circle)	Yes	No	4. High Pressure	Equipment:	
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:	
Calibration Value (ppm):				6. System Shutdown	Equipment:	
Instrument Reading (ppr	n):			7. Temperature	Equipment:	
				8. Other:		

	Wells - Injection/Extraction (At Manifold)				Treatment System							
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi)	Flow (cfm/gpm)	PID (ppm)		
RW-2	-2		32.8		Before MS	VI 210		15.2				
RW-3	-4.5		14.5		After MS	PI 310						
RW-4	-5		233.5		Before Blower	VI 300		15.2				
RW-5	-4.5		32.7		After Blower	PI/FI 302		3.4	112.8			
RW-6	-5		23.4		At Heat Exchanger	TT-302						
RW-7	-5		698.2		Before Vapor GAC	PI 411		3.4	98.2			
RW-8	-5		559.8		Vapor GAC Midpoint**	PI 412		NA	NA	NA		
RW-9	-4.5		39.9		After Vapor GAC**	PI 410		NA	NA	NA		
RW-10	-5		39.5		After Pump P-400	PI 400		0				
SW-1	-5		52		Before Bag Filter	PI-405		32				
SW-2	-5		51.5		After Bag Filter**	FI 400/PI 401		31	0			
SW-3	-4.5		20.82		Midpoint Liquid GAC 1**	PI 403		5				
MW-4	-5		25.9		After Liquid GAC 1	FE-404			0			
Well ID	Pres/Vac (in IWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0				
SSD-1	-1.5				After Liquid GAC 2	FE-407			0			
SSD-2	-1.5				After Liquid GAC**	PI-404		0				
SSD-3	-4.9				Catalytic Oxidizer Tempe	eratures (°F)	T1 Entrance:	626.8 T2 Exi	t 672.5 T3 Int	erior 679.1		
VP-1					Catalytic Oxidizer PID (p	pm)	Pre: 160.9		Post 11.4			
VP-2					Catalytic Oxidizer Flow R	Rate (scfm)	Pre:	Post:				
VP-3					Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)		
VP-4	0.05		122			FT 500						
					-	FT 500						

Comments/Maintenance Activities:	Permit Discha	Permit Discharge Limits (see permits):				
make adjustments to well valves, disconnect some tubing from well caps to assist in	Air: 200 scfm	Water:	3 gpm / 4500 gpd			
getting water to move through underground well conveyence piping for recovery.	If exceeded, notify Ken	nedy Jenks persor	nnel.			
collect PID reading from individule wells at manifold.						

Name & Company:	ERRG	FI				System On on Ar	rival? (circle): yes no			
Date/time of data col	lection:	3/7/2025				S	System Hours: 1965.1			
Weather:		Partly Cloud	ly			Phase 1: MPE / SVE, all ad	ctive EIWs in extraction mode.			
Barometric pressure (psi): 30.18						Barometric Pressure source: Anemometer				
Ambient Temperature (°F): 50						Ambient Temperature source: Internet				
Noise (dBA):		If above 60 dB/	A, notify KJ pe	rsonnel		Noise measurement sou	ırce:			
Moisture Separator [rained? (circ	le)		Yes	No	Active Alarm Conditions ((circle, note affected equipment):			
Approxima	te volume (ga	al):		1 cycle while	onsite	1. No Alarm				
Catalytic Oxidizer Ins	stalled? (circle	e)		Yes	No	2. High Water Level	Tank(s):			
Effluent Va	por VOC Cor	nc (ppm):	1.6			3. Low Water Level	Tank(s):			
PID Calibration Perfo	ormed? (circle	∍)		Yes	No	4. High Pressure	Equipment:			
PID Calibr	ation		Zero Gas	Span Gas		5. Low Pressure	Equipment:			
Calibration	Value (ppm)	•	0	100		6. System Shutdown	Equipment:			
Instrument Reading (ppm): 0			99.6		7. Temperature	Equipment:				
						8 Other				

	Wells - Inject	ion/Extraction	n (At Manifold	d)		Trea	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		14.9		
RW-3	-	-	-	С	After MS PI 310			32		
RW-4	-12	63	137	0	Before Blower VI 300			15.2		
RW-5	-	-	-	С	After Blower PI/FI 302			3.3	98	
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-			
RW-7	-13	40	624	0	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-12	43	242	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		32		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		30	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-0.661	4.2	20 ppb	0	After Liquid GAC 2	FE-407			0	
SSD-2	-1.006	6.8	118 ppb	0	After Liquid GAC**	PI-404		0		
SSD-3	-3.308	22.8	2.3	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	326.1 T2 Exit	685.6 T3 Inte	erior 688.4
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: 212		Post 1.6	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	98			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/7/2025	3:30	7345.53	

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Collect PID reading from active EIW and SSD wells at manifold and CatOX inf/eff	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
EIWs with PID measurements <100 ppm were closed off to focus on EIWs with >100ppm	If exceeded, notify Kenned	y Jenks personn	el.	
PID measurements prior to closing wells ranged from 10.8 ppm to 34.5 ppm for EIWs active prior to	o closing additional wel	ls		

FT 500

Record totalizer from new permanent flow meter Collect system readings, Glacier to replace TT-3		
Collect system readings, Glacier to replace 11-3	02 Selisui	
Notes: psi = pounds/square inch; cfm = cubic feet per	minute; ppm = parts per million; gal = gallons; MS = vapor liquid separat	or; GAC = granular activated carbon;
O/C= open/closed		

Name & 0	Company:	ERRG	FI				System On on Arriva	al? (circle): yes no			
Date/time	of data colle	ection:	3/14/2025				Syst	tem Hours: 2138.5			
Weather:			Clear, Cool				Phase 1: MPE / SVE, all activ	e EIWs in extraction mode.			
Barometri	ic pressure (psi):	29.57			Barometric Pressure source: Anemometer					
Ambient 7	Temperature	· (°F):	48				Ambient Temperature source: Internet				
Noise (dBA): If above 60 dBA, notify KJ personnel Noise						Noise measurement source	e:				
Moisture Separator Drained? (circle)				Yes	No	Active Alarm Conditions (circle, note affected equipment):					
Approximate volume (gal):				1 cycle while	onsite	1. No Alarm					
Catalytic	Oxidizer Inst	alled? (circle)			Yes	No	2. High Water Level Tank(s):				
	Effluent Vap	or VOC Cond	; (ppm):	-			3. Low Water Level	Tank(s):			
PID Calib	ration Perfor	med? (circle)		s	Yes	No	4. High Pressure	Equipment:			
	PID Calibra	tion		Zero Gas	Span Gas		5. Low Pressure	Equipment:			
	Calibration \	/alue (ppm):		0	100		6. System Shutdown	Equipment:			
	Instrument F	Reading (ppm):	0	100.2		7. Temperature	Equipment:			
	•			•			8 Other				

	Wells - Inject	ion/Extraction	n (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		14.2		
RW-3	-	-	-	С	After MS	PI 310		32		
RW-4	-11.5		137	0	Before Blower	VI 300		14.2		
RW-5	-	-	-	С	After Blower	PI/FI 302		3.4	102	
RW-6	-	-	-	С	At Heat Exchanger	TT-302				
RW-7	-13.5		732	0	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-11.5		242	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		30	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-0.661		-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-0.692		-	0	After Liquid GAC**	PI-404		0		
SSD-3	-3.512		-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	626.5 T2 Exit	752.1 T3 Inter	ior 734.9
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post	-	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	102			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/14/2025	9:00	14487.34	
						FT 500				

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Record totalizer from flow meter	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Collect system readings	If exceeded, notify Kenned	y Jenks personr	iel.	
Collect weekly BTEX midpoint sample				

Notes: psi = pounds/square inch;	cfm = cubic feet per minute; p	opm = parts per million; gal = g	gallons; MS = vapor liquid separat	or; GAC = granular activated carbon;
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; p of mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per c	or; GAC = granular activated carbon; lay
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; p of mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per c	or; GAC = granular activated carbon; lay
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; pof mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per c	or; GAC = granular activated carbon; lay
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; pof mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per c	or; GAC = granular activated carbon; lay
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; pof mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per c	or; GAC = granular activated carbon; lay
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; pof mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per o	or; GAC = granular activated carbon; lay
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; pof mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per o	or; GAC = granular activated carbon;
Notes: psi = pounds/square inch; O/C= open/closed; inHg = inches	cfm = cubic feet per minute; pof mercury; inWC = inches of	opm = parts per million; gal = g water column; PID = photoion	gallons; MS = vapor liquid separat ization device; gpd = gallons per o	or; GAC = granular activated carbon;

								_			
Name &	Company:	ERRG	FI				System On on	Arrival? (circle):	yes	no	
Date/time	of data coll	ection:	3/16/2025					System Hours:	2173.	3	
Weather:			Clear, Cool				Phase 1: MPE / SVE, all active EIWs in extraction			e.	
Barometric pressure (psi):			29.57				Barometric Pressure	source:	Anemomet	er	
Ambient	Temperature	e (°F):	48			Ambient Temperature source: Internet					
Noise (dBA): If above 60 dBA, notify KJ personnel							Noise measurement s	source:			
Moisture Separator Drained? (circle) Yes					Yes	No	Active Alarm Conditions (circle, note affected equipment):				
` ,					1 cycle while	onsite	1. No Alarm				
Catalytic	Oxidizer Ins	talled? (circle))		Yes	No	<mark>2. High Water</mark> Level	Tank(s): I	Moisture Se	perator	
	Effluent Vap	or VOC Cond	(ppm):		-		3. Low Water Level	Tank(s):	Tank(s):		
PID Calib	ration Perfo	rmed? (circle)	ı		Yes	No	4. High Pressure	Equipme	nt:		
	PID Calibra	tion		Zero Gas	Span Gas		<mark>5. Low Pressu</mark> re	Equipme	nt: Liquid Ri	ng Pump	
	Calibration '	Value (ppm):		-	-		6. System Shutdown	Equipme	nt:		
	Instrument I	Reading (ppm):	-	-		7. Temperature	Equipme	nt:		
							8. Other:				

	Wells - Inject	ion/Extractio	n (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		17		
RW-3	-	-	-	С	After MS	PI 310		24		
RW-4	-	-	-	0	Before Blower	VI 300		18		
RW-5	-	-	-	С	After Blower PI/FI 302			1.8	87.5	
RW-6	-	-	-	С	At Heat Exchanger TT-302		-			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		34		
SW-1	-	-	-	С	Before Bag Filter	PI-405		30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	623.4 T2 Exit	717.0 T3 Inter	ior 733.2
VP-1	-		-		Catalytic Oxidizer PID (p	om)	Pre: -	Post:	-	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	87.5			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total F	low (gal)
VP-4	-		-			FT 500	3/16/2025	14:30	15330.02	
					-	ET 500				

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Responding to system alarms, low vacuum, high level in tank.	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Flow at 2.1 scfm, Vacuum at 5.0 psi, shut wells off, transfer water to discharge tank.	If exceeded, notify Kennedy Jenks personnel.			
Restart system, unable to open up bank 4 with RW-7. run system with only RW-4 and RW-8.				

Record totalizer from flow me	eter.			
Notes: psi = pounds/square inch	: cfm = cubic feet per minute: ppm =	parts per million; gal = gallons; MS =	vapor liquid separator: GAC = granular a	ctivated carbon:
Notes: psi = pounds/square inch O/C= open/closed	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	ectivated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	ictivated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	ictivated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor liquid separator; GAC = granular a	activated carbon;

Name & Co	ompany:	ERRG	FI				System	On on Arrival	? (circle):	yes	no
Date/time o	of data colle	ection:	3/21/2025					Syste	m Hours:	2291.4	1
Weather:			Cloudy, Cool				Phase 1: MPE / SVE, all active EIWs in extraction mode.				
Barometric	pressure (osi):	29.89				Barometric Pre	essure source:	Ar	nemomete	er
Ambient Te	emperature	(°F):	48				Ambient Temperature source: Internet				
Noise (dBA): If above 60 dBA, notify KJ personnel Noise measurement source:											
Moisture Separator Drained? (circle)				Yes	No	Active Alarm Conditions (circle, note affected equipment):					
Approximate volume (gal):				·	3 cycles whil	e onsite	onsite <mark>1. No Alarm</mark>				
Catalytic O	Oxidizer Inst	alled? (circle)			Yes	No	2. High Water	Level	Tank(s):		
Е	Effluent Vap	or VOC Cond	(ppm):		-		3. Low Water I	_evel	Tank(s):		
PID Calibra	ation Perfor	med? (circle)			Yes	No	4. High Pressu	ure Equipment:			
Р	PID Calibra	tion		Zero Gas	Span Gas		5. Low Pressu	re	Equipment:		
C	Calibration \	/alue (ppm):		-	-		6. System Shu	tdown	Equipment:		
Ir	nstrument F	Reading (ppm):	-	-		7. Temperature	е	Equipment:		
							8 Other				

	Wells - Inject	ion/Extractio	n (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS VI 210			16.5		
RW-3	-	-	-	С	After MS	PI 310		25		
RW-4	-	-	-	0	Before Blower	VI 300		17.6		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.7	83.8	
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	626.7 T2 Exit	672.7 T3 Interi	ior 682.3
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post -		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	83.8			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/21/2025	11:30	18168.87	
	_					FT 500				

Comments/Maintenance Activities: Permit Discharge Limits (see				
Collect system readings	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Record totalizer from flow meter	If exceeded, notify Kennedy Jenks personnel.			

Glacier replaced filter on 3/	18 to resolve high level	alarms, switch liquid G	AC vessel banks.		
Natara ari manada /ammana ina		nutai nam – narta nar milli			ular activated earhon:
	ch; cfm = cubic feet per mii	nute; ppm = parts per mitti	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu carbon,
O/C= open/closed	ch; cfm = cubic feet per mii	nute; ppm = parts per mitti	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	ulai activateu carbon,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	ulai activateu cai buii,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	ulai activateu cai buii,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	ulai activateu cai buii,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai buii,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai buii,
	ch; cfm = cubic feet per mii	пите, ррпт = рагіз рег піпш	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai poii,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai poii,
	ch; cfm = cubic feet per mii	пите, ррпт = рагіз рег піпш	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai poii,
	ch; cfm = cubic feet per mii	пите, ррпт = рагіз рег піпш	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai poli,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai poli,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utai activateu cai poii,
	ch; cfm = cubic feet per mii	nute, ppm = parts per mitu	ion; gal = gallons; MS = vap	or liquid separator; GAC = gran	utal activated Caliboli,

Name & Company: E	RRG FI			System On on Arrival? (circle): yes no					
Date/time of data collect	tion: 3/24/202	:5			S	ystem Hours: 2364.4			
Weather:	Clear, C	ool			Phase 1: MPE / SVE, all active EIWs in extraction mode.				
Barometric pressure (psi): 30.2				Barometric Pressure sou	ırce: Anemometer				
Ambient Temperature (°	F): 57		Ambient Temperature so	ource: Internet					
Noise (dBA):	If above 60	dBA, notify KJ pe		Noise measurement sou	rce:				
Moisture Separator Drained? (circle)			Yes	No	Active Alarm Conditions (circle, note affected equipment):				
Approximate v	olume (gal):		1 cycle while	onsite	1. No Alarm				
Catalytic Oxidizer Install	ed? (circle)		Yes	No	2. High Water Level	Tank(s):			
Effluent Vapor	VOC Conc (ppm):		0.9	3. Low Water Level Tank(s):		Tank(s):			
PID Calibration Perform	ed? (circle)		Yes	No	4. High Pressure	Equipment:			
PID Calibration	on	Zero Gas	Span Gas		5. Low Pressure	Equipment:			
Calibration Va	lue (ppm):	0	100		6. System Shutdown	Equipment:			
Instrument Re	ading (ppm):	0	99.8		7. Temperature	Equipment:			
			•		8 Other:				

	Wells - Inject	ion/Extractio	n (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS VI 210			16.5		
RW-3	-	-	-	С	After MS	PI 310		26		
RW-4	-	-	-	0	Before Blower	VI 300		17.6		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.6	82.9	
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	626.7 T2 Exit	: 668.9 T3 Inter	ior: 679.2
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: 153	Pos	st 0.9	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	82.9			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/24/2025	14:30	20210.4	
	_					FT 500				

Comments/Maintenance Activities:	Permit Discha	Permit Discharge Limits (see permits):			
Collect system readings.		Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Record totalizer from flow meter .	If exceeded, notify Kennedy Jenks personnel.				

Collect PID readings from Ca	tOx inf/eff			
		namba namasilian sal sallana MC	- vapar liquid caparator: CAC - gr	
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	· vapor liquiu separator, GAC – gr	anutar activated carbon;
Notes: psi = pounds/square inch; O/C= open/closed	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor iiquid separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor iiquid separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapoi iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapoi iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapoi пциги separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapor iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapoi пциги separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapoi iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	Vapor iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	Vapor iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	Vapor iiquiu separator, GAC – gr	anutar activated carbon;
	; cfm = cubic feet per minute; ppm =	parts per million; gal = gallons; MS =	vapoi iiquiu separator, GAC – gr	anutar activated carbon;

Name & 0	Company:	ERRG	FI				System On on A	rival? (circle):	yes no)	
Date/time	of data coll	ection:	3/28/2025				5	System Hours:	2457.9		
Weather:			Overcast, Li	ght Shower	S		Phase 1: MPE / SVE, all active EIWs in extraction mode.				
Barometr	rometric pressure (psi): 29.57				Barometric Pressure source: Anemometer						
Ambient ⁻	mbient Temperature (°F): 45					Ambient Temperature s	ource:	Internet			
Noise (dE	Noise (dBA): If above 60 dBA, notify KJ personnel					Noise measurement sou	ırce:				
Moisture Separator Drained? (circle) Yes			Yes	No	Active Alarm Conditions (circle, note affected equipment):						
	Approximate	e volume (gal):		3 cycles whil	e onsite	1. No Alarm				
Catalytic	Oxidizer Inst	alled? (circle)			Yes	No	2. High Water Level	Tank(s):			
	Effluent Vap	or VOC Cond	; (ppm):		-		3. Low Water Level	Tank(s):			
PID Calib	ration Perfo	rmed? (circle)			Yes	No	4. High Pressure	Equipme	ent:		
	PID Calibra	tion		Zero Gas	Span Gas		5. Low Pressure	Equipme	ent:		
	Calibration \	Value (ppm):		-	-		6. System Shutdown	Equipme	ent:		
	Instrument F	Reading (ppm):	-	-		7. Temperature	Equipme	ent:		
							8 Other:				

	Wells - Inject	ion/Extraction	n (At Manifol	d)	Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS VI 210			15.5		
RW-3	-	-	-	С	After MS	PI 310		24		
RW-4	-	-	-	0	Before Blower	VI 300		16.5		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.8	86.4	
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	1	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	626.9 T2 Exit	660.2 T3 Inte	rior 671.5
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post	-	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	86.4			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/28/2025	12:30	22578.66	
						FT 500				

Comments/Maintenance Activities: Permit Discharge Limits (see				
Collect system readings	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Record totalizer from flow meter	If exceeded, notify Kennedy Jenks personnel.			

D				
		uplicate sample collected at MW-6		
Measure pH and conductivity at	influent, midpoint, and effluen	nt (turbidity: 4.51, 2.89, 2.63, ph: 7.	23, 7.22, 7.23, respectively)	
Notes: psi = pounds/square inch; cf O/C= open/closed	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	arbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;
	m = cubic feet per minute; ppm =	parts per million; gal = gallons; MS = va	apor liquid separator; GAC = granular activated ca	irbon;

Name & Company: ERRG F	1			System On on Arri	val? (circle): yes no		
Date/time of data collection: 3	/7/2025			Sy	stem Hours: 1965.1		
Weather: F	Partly Cloudy			Phase 1: MPE / SVE, all acti	ve EIWs in extraction mode.		
Barometric pressure (psi): 3	pressure (psi): 30.18			Barometric Pressure sour	rce: Anemometer		
Ambient Temperature (°F): 5	60)			urce: Internet		
Noise (dBA):	above 60 dBA, notify KJ per	rsonnel	Noise measurement source:				
Moisture Separator Drained? (circle)		Yes	No	No Active Alarm Conditions (circle, note affected equipment):			
Approximate volume (gal):		1 cycle while	onsite	1. No Alarm			
Catalytic Oxidizer Installed? (circle)		Yes	No	2. High Water Level	Tank(s):		
Effluent Vapor VOC Conc (ppm): 1.6			3. Low Water Level	Tank(s):		
PID Calibration Performed? (circle)		Yes	No	4. High Pressure	Equipment:		
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:		
Calibration Value (ppm):	0	100		6. System Shutdown	Equipment:		
Instrument Reading (ppm):	0	99.6		7. Temperature	Equipment:		
		•	·	8. Other:			
Wells - Injection/Extraction ((At Manifold)			Treatment Syst	em		

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		14.9		
RW-3	-	-	-	С	After MS	PI 310		32		
RW-4	-12	63	137	0	Before Blower	VI 300		15.2		
RW-5	-	-	-	С	After Blower PI/FI 302			3.3	98	
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-			
RW-7	-13	40	624	0	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-12	43	242	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		32		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		30	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-0.661	4.2	20 ppb	0	After Liquid GAC 2	FE-407			0	
SSD-2	-1.006	6.8	118 ppb	0	After Liquid GAC**	PI-404		0		
SSD-3	-3.308	22.8	2.3	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	626.1 T2 Exit	685.6 T3 Inte	erior 688.4
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: 212		Post 1.6	
VP-2	-		-		Catalytic Oxidizer Flow Rate (scfm)		98			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/7/2025	3:30	7345.53	
					-	FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Collect PID reading from active EIW and SSD wells at manifold and CatOX inf/eff	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
EIWs with PID measurements <100 ppm were closed off to focus on EIWs with >100ppm	If exceeded, notify Kennedy Jenks personnel.			

PID measurements prior to closing wells ranged from 10.8 ppm to 34.5 ppm for EIWs active prior to closing additional wells

Record totalizer from new permanent flow meter

Collect system readings, Glacier to replace TT-302 sensor

Name & Company: ERRG	FI			System On on Arriva	al? (circle): yes no			
Date/time of data collection:	3/14/2025				em Hours: 2138.5			
Weather:	Clear, Cool		•	Phase 1: MPE / SVE, all active				
Barometric pressure (psi):	29.57			Barometric Pressure source	e: Anemometer			
Ambient Temperature (°F):			Ambient Temperature source: Internet					
Noise (dBA):	If above 60 dBA, notify KJ p	ersonnel		Noise measurement source:				
Moisture Separator Drained? (circle	Yes	No	Active Alarm Conditions (circle, note affected equipment):					
Approximate volume (ga	1 cycle while	onsite	1. No Alarm					
Catalytic Oxidizer Installed? (circle)	Yes	No	2. High Water Level	Tank(s):				
Effluent Vapor VOC Cond	(ppm): -			3. Low Water Level	Tank(s):			
PID Calibration Performed? (circle)	s	Yes	No	4. High Pressure	Equipment:			
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:			
Calibration Value (ppm):		100		6. System Shutdown	Equipment:			
Instrument Reading (ppm):	100.2		7. Temperature	Equipment:			
				8. Other:				
Wells - Injection/Extractio	n (At Manifold)		Treatment System					

	Wells - Inject	ion/Extractior	ı (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		14.2		
RW-3	-	-	-	С	After MS	PI 310		32		
RW-4	-	-	-	0	Before Blower	VI 300		14.2		
RW-5	-	-	-	С	After Blower PI/FI 302			3.4	102	
RW-6	-	-	-	С	At Heat Exchanger TT-302					
RW-7	-	-	-	0	Before Vapor GAC PI 411			NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC** PI 410			NA	NA	NA
RW-10	-	-	-	С	After Pump P-400 PI 400			32		
SW-1	-	-	-	С	Before Bag Filter PI-405			30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		30	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-		-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-		-	0	After Liquid GAC**	PI-404		0		
SSD-3	-		-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	26.5 T2 Exit	752.1 T3 Interi	or 734.9
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post -		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	102			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	3/14/2025	9:00	14487.34	
						FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Record totalizer from flow meter	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Collect system readings	If exceeded, notify Kennedy Jenks personnel.			
Collect weekly BTEX midpoint sample				

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed; inHg = inches of mercury; inWC = inches of water column; PID = photoionization device; gpd = gallons per day

Name &	Company:	ERRG	FI			System On on Arrival? (circle): yes						
Date/time	e of data colle	ection:	3/16/2025				Sys	tem Hours:	2173.	6		
Weather			Clear, Cool			•	Phase 1: MPE / SVE, all active EIWs in extraction mode.					
Barometi	ric pressure (psi):	29.57				Barometric Pressure source: Anemometer					
Ambient	Temperature	e (°F):	48				Ambient Temperature source: Internet					
Noise (dBA): If above 60 dBA, notify KJ					rsonnel	Noise measurement source:						
Moisture Separator Drained? (circle)				Yes	No	Active Alarm Conditions (cir	cle, note affe	cted equipr	nent):			
Approximate volume (gal):				1 cycle while	onsite	1. No Alarm						
Catalytic	Oxidizer Inst	alled? (circle)			Yes	No	<mark>2. High Water</mark> Level	Tank(s): I	Moisture Se	eperator		
	Effluent Vap	or VOC Cond	(ppm):		-		3. Low Water Level Tank(s):					
PID Calib	ration Perfor	med? (circle)			Yes	No	4. High Pressure	Equipmer	nt:			
	PID Calibra	tion		Zero Gas	Span Gas		<mark>5. Low Pressu</mark> re	Equipmer	nt: Liquid R	ing Pump		
	Calibration \	/alue (ppm):		-	-		6. System Shutdown	Equipmer	nt:			
	Instrument F	Reading (ppm):	-	-		7. Temperature	Equipmer	nt:			
			·				8 Other:					

			Wells - Injection/Extraction (At Manifold)			Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	-	С	Before MS	VI 210		17			
₹W-3	-	-	-	С	After MS	PI 310		24			
₹W-4	-	-	-	0	Before Blower VI 300			18			
RW-5	-	-	-	С	After Blower PI/FI 302			1.8	87.5		
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-				
₹W-7	-	-	-	С	Before Vapor GAC PI 411			NA	NA	NA	
₹W-8	-	-	-	0	Vapor GAC Midpoint** PI 412			NA	NA	NA	
₹W-9	-	-	-	С	After Vapor GAC** PI 410			NA	NA	NA	
RW-10	-	-	-	С	After Pump P-400 PI 400			34			
SW-1	-	-	-	С	Before Bag Filter PI-405			30			
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0		
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0		
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	23.4 T2 Exit	717.0 T3 Interio	r 733.2	
/P-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post: -			
√P-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	87.5				
√P-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)	
√P-4	-		-			FT 500	3/16/2025	14:30	15330.02		
						FT 500					

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities: Permit Discharge Limit					
Responding to system alarms, low vacuum, high level in tank.	Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Flow at 2.1 scfm, Vacuum at 5.0 psi, shut wells off, transfer water to discharge tank.	If exceeded, notify Kennedy Jenks personnel.				
Restart system, unable to open up bank 4 with RW-7. run system with only RW-4 and RW-8.	_				

Record totalizer from flow meter.

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

Name & Company: ERRG	FI			System On on Arriva	l? (circle): yes no		
Date/time of data collection:	3/21/2025			Syste	em Hours: 2291.4		
Weather:	Cloudy, Cool		'	Phase 1: MPE / SVE, all active	EIWs in extraction mode.		
Barometric pressure (psi):	29.89			Barometric Pressure source: Anemometer			
Ambient Temperature (°F):			Ambient Temperature source: Internet				
Noise (dBA):	If above 60 dBA, notify KJ per	rsonnel		Noise measurement source:			
Moisture Separator Drained? (circle	e)	Yes	No	Active Alarm Conditions (circ	le, note affected equipment):		
Approximate volume (ga	3 cycles whil	e onsite	1. No Alarm				
Catalytic Oxidizer Installed? (circle)	Yes	No	2. High Water Level	Tank(s):			
Effluent Vapor VOC Conc	(ppm):	-		3. Low Water Level	Tank(s):		
PID Calibration Performed? (circle)		Yes	No	4. High Pressure	Equipment:		
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:		
Calibration Value (ppm):	-	-		6. System Shutdown	Equipment:		
Instrument Reading (ppm): -	-		7. Temperature	Equipment:		
•				8. Other:			
Wells - Injection/Extraction	n (At Manifold)		Treatment System				
W	DID		Pres/Vac				

	Wells - Inject	ion/Extractio	n (At Manifol	d)		Treatment System				
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		16.5		
RW-3	-	-	-	С	After MS	PI 310		25		
RW-4	-	-	-	0	Before Blower	VI 300		17.6		
RW-5	-	-	-	С	After Blower PI/FI 302			2.7	83.8	
RW-6	-	-	-	С	At Heat Exchanger TT-302 -		-			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC** PI 410			NA	NA	NA
RW-10	-	-	-	С	After Pump P-400 PI 400			32		
SW-1	-	-	-	С	Before Bag Filter PI-405			30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	26.7 T2 Exit	672.7 T3 Interio	or 682.3
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post -		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	83.8			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total F	ow (gal)
VP-4	-		-			FT 500	3/21/2025	11:30	18168.87	
						FT 500				
							_			

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities: Permit Discharge Limits (see				
Collect system readings	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Record totalizer from flow meter	If exceeded, notify Keni	If exceeded, notify Kennedy Jenks personnel.		

Collect monthly system water samples and weekly BTEX midpoint sample

Glacier replaced filter on 3/18 to resolve high level alarms, switch liquid GAC vessel banks.

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

Name & Company: ERRG FI				System On on Arr	ival? (circle): yes no			
Date/time of data collection: 3/24/2025				Sy	stem Hours: 2364.4			
Weather: Clear, Cool				tive EIWs in extraction mode.				
Barometric pressure (psi): 30.2				Barometric Pressure source: Anemometer				
Ambient Temperature (°F): 57				Ambient Temperature so	ource: Internet			
Noise (dBA): If above 60 dB	A, notify KJ per	sonnel		Noise measurement source:				
Moisture Separator Drained? (circle)	Yes	No	Active Alarm Conditions (circle, note affected equipment):					
Approximate volume (gal):	1 cycle while	onsite	1. No Alarm					
Catalytic Oxidizer Installed? (circle)		Yes	No	2. High Water Level	Tank(s):			
Effluent Vapor VOC Conc (ppm):		0.9		3. Low Water Level	Tank(s):			
PID Calibration Performed? (circle)		Yes	No	4. High Pressure	Equipment:			
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:			
Calibration Value (ppm):	0	100		6. System Shutdown	Equipment:			
Instrument Reading (ppm):	Instrument Reading (ppm): 0			7. Temperature	Equipment:			
				8. Other:				
Wells - Injection/Extraction (At Manifo	Treatment System							

	Wells - Inject	ion/Extractio	n (At Manifol	d)						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		16.5		
RW-3	-	-	-	С	After MS	PI 310		26		
RW-4	-	-	-	0	Before Blower	VI 300		17.6		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.6	82.9	
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		30		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	ı	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	26.7 T2 Exit	: 668.9 T3 Interi	or: 679.2
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: 153	Pos	t 0.9	
VP-2	ı		-		Catalytic Oxidizer Flow R	ate (scfm)	82.9			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4			-			FT 500	3/24/2025	14:30	20210.4	
					-	FT 500				

	"" Location for collection of al	r or water sample for	laboratory analysis.
Comments/Maintenance Activities:	Per	mit Discharge Limit	s (see permits):
Collect system readings.	Air: 200	scfm Wate	3 gpm / er: 4500 gpd
Record totalizer from flow meter .	If exceede	ed, notify Kennedy Jenks p	ersonnel.
Collect monthly system vapor influent and effluent samples.	-		

Collect PID readings from CatOx inf/eff

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

Name & C	Company:	ERRG	FI				System On on Arr	ival? (circle): yes no			
Date/time	of data coll	ection:	3/28/2025	3/28/2025			Sy	stem Hours: 2457.9			
Weather:			Overcast, Ligh	nt Shower	rs .	_	Phase 1: MPE / SVE, all active EIWs in extraction mode.				
Barometric pressure (psi): 29.57			29.57				Barometric Pressure sou	rce: Anemometer			
Ambient Temperature (°F):			45				Ambient Temperature so	ource: Internet			
Noise (dBA): If above 60 dBA, notify KJ				notify KJ per	sonnel		Noise measurement sou	rce:			
Moisture S	Separator D	rained? (circle	e)		Yes	No	Active Alarm Conditions (circle, note affected equipment):			
Approximate volume (gal):					3 cycles while	le onsite					
Catalytic (Oxidizer Inst	alled? (circle))		Yes	No	2. High Water Level	Tank(s):			
	Effluent Vap	or VOC Cond	c (ppm):		-		3. Low Water Level	Tank(s):			
PID Calibi	ration Perfo	rmed? (circle)	1		Yes	No	4. High Pressure	Equipment:			
	PID Calibra	tion	Z	ero Gas	Span Gas		5. Low Pressure	Equipment:			
	Calibration Value (ppm):		-				6. System Shutdown	Equipment:			
	Instrument F	Reading (ppm	n): -		-		7. Temperature	Equipment:			
							8. Other:				
			(4 (4 4) (5 1 1)				T 1 10				

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	-	С	Before MS	VI 210		15.5			
RW-3	-	-	-	С	After MS	PI 310		24			
RW-4	-	-	-	0	Before Blower	VI 300		16.5			
RW-5	-	-	-	С	After Blower	PI/FI 302		2.8	86.4		
RW-6	-	-	-	С	At Heat Exchanger	TT-302	-				
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA	
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA	
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA	
RW-10	-	-	-	С	After Pump P-400	PI 400		32			
SW-1	-	-	-	С	Before Bag Filter	PI-405		30			
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		26	0		
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			0		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0		
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	26.9 T2 Exit	660.2 T3 Interi	or 671.5	
VP-1	-		-		Catalytic Oxidizer PID (pp	om)	Pre: -	Post -	•		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	86.4				
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total Fl	low (gal)	
VP-4	-		-			FT 500	3/28/2025	12:30	22578.66		
					<u>-</u>	FT 500					
							_	_			

** Location for collection of air or water sample for laboratory analysis.

			atory arrangerer		
Comments/Maintenance Activities:	Permit Discharge Limits (see permits):				
Collect system readings	Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Record totalizer from flow meter	If exceeded, notify Kennedy	Jenks personne	ıl.		

Collect weekly BTEX midpoint sample and monthly system water samples.

Blaine Tech onsite to collect monthly groundwater samples, duplicate sample collected at MW-6.

Measure pH and conductivity at influent, midpoint, and effluent (turbidity: 4.51, 2.89, 2.63, ph: 7.23, 7.22, 7.23, respectively)

Notes: psi = pounds/square inch; cfm = cubic feet per minute; ppm = parts per million; gal = gallons; MS = vapor liquid separator; GAC = granular activated carbon; O/C= open/closed

WELL GAUGING DATA

Project # Z50117-KC1	Date 1-17-25	Client ERRC	
----------------------	--------------	-------------	--

Site 2350 24th Ave & Seattle WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscibl e Liquid (ft.)	Volume of Immiscible s Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Water/ SPH Meter	PID (PPM)
mw-s	0804	2	-		-	1	9.48	16.45		00
MW-4	r			Una	b1e	to A	cess:	FEE		1
MW-6	1034	Z	-	_	Ţ		11.64	20.32		00
MW-7	0823	Z		1-	-	-	7.50 70.5 m	20.30		0.0
MW-8	0950	2	odor			-	9,13	19.38		0.0
MW-9	0918	Z	odor	_	-	_	9.20	20.24		0.0
MW-10	1018	Z	obs	tructi	on E	2 9.90)' —			0.0
MW-11	0809	Z		12	_		2.67	19.85		0.0
MW-13	0806	2	_	-	-	_	10.21	18.66		0.0
MW-14	0813	z	-		-		7.57	18.80		0.0
MW-15	0819	Z	_	_			6.50	17.11		0.0
MW-16	0817	2	H E		_	_	8.11	17.54		0.0
MW-17	0816	2		-		=	10.77	19.70		0.0
MW-18	0824	2		-		_	11.79	14.90		0.0
MW-19	0823	2	-	_	-	_	10.74	20.10	1	0.0

Instruments Used: Durham Geoslope Water Level Indicator* GeoTech Oil/Water Interface Probe** Other:

Survey Point - Top of casing at all wells

WELL GAUGING DATA

Proje	ct # 25011	7-KC1		Date_	1-17-25	Client	EKRG	
Site	2350	244	Ave	E	Sentle WA			

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Volume of Immiscible s Removed (ml)	100	Depth to well bottom (ft.)	Water/ 8PH Meter	PID (PPM)
MW-20	0837	4	ido/	_	-	1	10.53	19.59		0.0
15-MM	0625	2	odar	-	1		9.64	19.02		0.0
rw-1	0834	4			المتعار		11,129	19.95		0.0
PW-Z	2808	ч	-		_		7.75	19.32		0.0
RW-3	0811	4				-	6.85	19.80		0.0
RW-4	0817	4	_	1	-	-	9.83	14.85	THE	0.0
km-2	0824	4		-			11.31	19.55		0.0
PW-6	0831	ч	_		1		8,16	19.49		0.0
RW-7	0827	4	-	-		8	7.71	EJ-718.84	15	0.0
RW-8	0821	4		_	_	-	7.36	20.20		0.0
RW-9	0836	4		-	ا ت		10.55	21.46		0.0
PW-10	0832	4		12-			11.36	30.45		0.0

Instruments Used:	Durham Geoslope Water Level Indicator*	GeoTech Oil/Water Interface Probe**	Other:

Survey Point - Top of casing at all wells

Project #	: 250117-1	KCI	0.00	Client: ERRG							
Sampler:				Gauging Date: 01/17/25							
Well I.D	: MW-6			Well Diameter (in.): 2 3 4 6 8							
	ell Depth (f	t.): 20.	37.	Depth to Water (ft.): 11.64							
A 40.1 a 7 1 1 1	Free Produ			Thickness			eet): —				
Referenc		(V)	Grade	Flow Cell							
Purge Meth Sampling N	/lethod:	2" Grunds Dedicated	Tubing		Perista(tio) New Tubin	Pump	Bladder Pump Other	<u> </u>			
Start Purge	Time: 1041		V-10-10-10-10-10-10-10-10-10-10-10-10-10-	200 mulm	in	_	Pump Depth: 11				
Time	Temp.	pН	Cond. (mS/cm or µ8/3m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals, or mL)	Depth to Water (ft.)			
1044	11.60	6.63	680	49	2.65	401.9	600	12.08			
1047	11.83	6.70	678	20	2.53	399.4	1200	12.16			
1020	11-92	6.75	677	48	100 100 100 100 100	398.2 397.7	1800 2400	12.23			
1053	17-99	6.77	678	47							
1026	12.02	6.78	676	48	12.35						
				\			/				
/				,	1	/	-				
Did well	dewater?	Yes	(8)		Amount	actually	evacuated: 300				
	g Time: 10 S							00			
						g Date:					
STATE OF THE	.D.: MW-6	7 57.00	12.7240 T. AV.	2 Y 17 Y 3	Laborate	ory: PACE					
Analyzed	DATE OF A	TPH-G	BTEX MT	BE TPH-D	- 1		EE 0.0.C				
Equipme	nt Blank I.	D.: -	Time	-	Duplicat	e I.D.: .					

			LOW WE		Total Value and Total	DAIA	SHEET				
Project #	:250117	1-KUZ		Client: ERRG							
Sampler:	KC			Gauging Date: (/17/25							
Well I.D	: MW- 9	8		Well Diameter (in.): 2 3 4 6 8							
	ell Depth (f		.38	Depth to Water (ft.): 9.13							
LITTER TO T	Free Produ	NU CHINA N	_	Thickness	of Free Pr	roduct (fe	et):				
Referenc		Ø	Grade	Flow Cell			1.46				
Purge Meth Sampling N	Aethod:	2" Grundfe Dedicated	C. 15-20-10-10-10-10-10-10-10-10-10-10-10-10-10		Peristatuc New Tubin		Bladder Pump Other				
Start Purge	Time: 395	2	Flow Rate: _	200 11	1 viin	_	Pump Depth: \(\)	5'			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
0955	1202	6.30	370	col	1.13	47.4	600	9.28			
0958					רטיו	34.8	1200	9.33			
1001	12.89	Ce.44	372	51	1.05	30.8	1800	9.39			
1004	12.95	6.43	371	54	1.05	31.5	2400	9.44			
1007	12.80	6.41	371	53	1.05	30.6	3000	9.48			
		/	\bigcap								
	/										
/		1000						A			
/			_								
Did well	dewater?	Yes /	R)		Amount	actually e	evacuated:	L			
Sampling	g Time: ιΟ	010			Sampling	g Date: (11712.	5			
Sample I	.D.: MW	-8				ry: PA					
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other: 5	see coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:	-				

Project #:	25011	7-150	1	Client: ERRY						
Sampler:	KC		7	Gauging Date: 1 /17 / 75						
				Well Diam	neter (in.) :	B) 3	4 6 8	3		
1 7 Y M	ll Depth (f		74	CTLEVEL AND DATES.	V/ JIKO					
No.	Free Produ			Depth to Water (ft.): 9.20 Thickness of Free Product (feet):						
Reference		Sec -	Grade	Flow Cell	11.		- P			
Purge Metho Sampling M	od:	2" Grundfo Dedicated	os Pump Pubing	200 mc/	Peristaltic P New Tubing	ul mp	Bladder Pump Other	1		
otant ruige	1 mie. <u>- 1 v</u>	<u></u>	Cond.	1	м	_	rump Depun; \tau	1		
Time	Temp.	рН	(mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n	Depth to Water (ft.)		
1500	12.43	6.85	558	48	1.12	26.2	C00	9.50		
0924	13.01	6-93		162	1,09	19.7	1200	9.50		
0927	12.76	6.90	532	126	1.07	13.4	1800	9.50		
0930	13.08	6.47	524	121	1.06	13.3	2400	9.53		
0933	13.04	6.84	524	118	1.05	13.0	3000	9.55		
0936	13.13	6.80	251	115	1.05	14.1	3600	9.53		
					1					
_/								1 1 (
Did well	dewater?	Yes	6		Amount a	actually e	evacuated: 34	00 m		
Sampling	Time: 0°	139					117 12			
Sample I.	D.: MW	-9			Laborato	ry: PAC	E			
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	see coe			
Equipmen	nt Blank I.	D·	@		Duplicate	ID.	DUP 1			

Project #	250117	- Kcz	- = /	Client: ERRG						
Sampler:				Gauging Date: 1/17/25						
Well I.D.	: MW-1	3		Well Diameter (in.): 3 4 6 8						
et all sections		7	\$6666	Depth to Water (ft.): 0.21 Thickness of Free Product (feet):						
Lower Committee	Free Produ	1.5								
Reference	ed to:	EVE	Grade	Flow Cell		7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Purge Meth Sampling M Start Purge		2" Grundfor Dedicated	Tubing	200 mu 1	Peristaltie F New Tubin	g	Bladder Pump Other Pump Depth:			
Time	Temp.	pН	Cond. (mS/cm or µS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)		
1025	11.28	5,47	677	42	1.14	87.9	600	10.81		
1028	11.72	15.67	712	39	1.09	77.6	1200	11.01		
1031	11.67	5.83	721	38	1.06	66.3	1800	11.15		
1034	11.71	5.87		40	1.05	62.9	2400	11.21		
1037	11/82	5.89	776	34	1.05	62.5	3000	11.29		
	1									
	/				/			1. V 1		
!										
Did well	dewater?	Yes	No)		Amount	actually e	vacuated: 30	200 nsl_		
Sampling	Time: 10	140					117/			
Sample I	.D.: MW.	-13				ry: PA				
Analyzed		TPH-G	BTEX MTI	BE TPH-D			ce coc	/		
Equipme	nt Blank I.	D.:	@ Time		Duplicat	12.5	_			

Project #: 250117-KC1	Client:	Client: ERR6							
Sampler: 1	Gauging D	Gauging Date: 1-17-25							
Well I.D.: MW-14	Well Dian	Well Diameter (in.): ② 3 4 6 8 Depth to Water (ft.): 7.57							
Total Well Depth (ft.): 18, 80	Depth to V								
Depth to Free Product:	Thickness	Thickness of Free Product (feet):							
Referenced to: (PV) Grade	Flow Cell	Type:	Han	ing					
Purge Method: 2" Grundfos Pump Sampling Method: Dedica Cot Tubing Start Purge Time: 0853 Flow Rate:	200 m	Peristal (ic) New Tubin		Bladder Pump Other Pump Depth:					
Cond. (mS/cm o Time or °F) pH μS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)				
0856 11.70 807 395	22	2.69	76.8	600	7.95				
0859 1207 7.89 401	22	2.63	79.9	1200	8-11				
0902 11.72 7.74 407	20	2.63	82.1	(800	8,23				
0905 11.65 7.70 407	19	2.61	84.1	2400	8.29				
0908 11.80 7.68 406	19	2.59	85.5	3000	8.33				
	- 11								
		/	1						
	-	1		\					
	-/				/				
	-/-								
		CAMPINATION IN	20 mm		0.00				
Did well dewater? Yes (No		THE WALL A CALL		vacuated. v	000mL				
Sampling Time: 0909		Sampling	g Date:	1-17-25					
Sample I.D.: MW-14		Laborato	ry:	PACE					
	TBE TPH-D		Other:	see coc					
Equipment Blank I.D.:		Detroit 1000	e I.D.:						

Project #	25011-	1-1601		Client: ERRG						
Sampler:	U			Gauging Date: 1-17-25						
Well I.D.	: MW-	15								
Total We	ll Depth (f	t.): [1.11	Well Diameter (in.): (2) 3 4 6 8 Depth to Water (ft.): (2.50						
Depth to	Free Produ	ict:		Thickness of Free Product (feet):						
Referenc	ed to:	PVC	Grade	Flow Cell						
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Tubing	200 my	Peristaltic Pump New Tubing Pump Depth: 12'					
Time	Temp.	pН	Cond. (mS/cm or µ\$/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals, or n(L)	Depth to Water (ft.)		
0949	9.77	6.89	134	45	2.77	[03.9	600	6.83		
0925	9.84	6.68	122	30	2.75	105.1	1200	6.89		
0955	9.57	6.50	118	30	2.76	105-7	1300	6.94		
0958	9.63	6.47	117	30	2.74	106.3	2400	6.99		
1001	9.74	6.41	116	29	2.72	107.0	3000	7-02		
							/			
		\				1				
		$\overline{}$					/-			
		_				room				
-		-	/							
Did well	dewater?	Yes /	NS)		Amount	notually a	evacuated: 30	Done		
		1			24	1,91000				
Sampling		(00)			Sampling	7, 10 / 10 / 10 / 10	1-17-25			
Sample I.	D.: M	W-15	2-120 - 2		Laborato	ry:	PACE			
Analyzed	in the transfer are	TPH-G	BTEX MTI	BE TPH-D		Other:	Ser col			
Equipmen	nt Blank I.	D.:	Time		Duplicate	e I.D.:				

			LANGE IV IV.							
Project #	: 250117-	-WCI		Client:	EFRG					
Sampler:	N			Gauging Date: 1-17-75						
Well I.D.	: Mh	1-(6		Well Diameter (in.): (2) 3 4 6 8						
	ell Depth (f		1.54	Depth to Water (ft.): 4, 1						
Depth to	Free Produ	ıct: —		Thickness of Free Product (feet):						
Referenc	ed to:	I(V)	Grade	Flow Cell	Type:	Hama				
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Tubing	200 mg	Peristaltic(I New (Dabin		Bladder Pump Other_ Pump Depth:			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)		
0925	10.89	7.32	527	147	2.68	78.9	600	8.44		
0928	11.78	7.29	524	128	2.62	79.2	1200	8.56		
0931	12.05	7.25	529	-58	2.58	79.8	(800	8.70		
0134	11.99	7.22	531	57	2.56	80.4	2400	8.83		
0137	12.16	רו.ר	531	54	2.56	81.3	3000	8.91		
				/						
		1								
		1)		
Did well	dewater?	Yes	(A)		Amount	actually	evacuated:300	ONL		
Sampling		0438			Samplin	g Date:	1-17-25			
Sample I	.D.: MV	J-16			Laborato	ory:	PACE			
Analyzed	d for:	TPH-G	BTEX MT	BE TPH-D		Other:	see coc			
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:	1.			

Project #	: 2501	17-KC1		Client: ERRG						
Sampler:	LJ			Gauging Date: 1-17-75						
Well I.D	: MW	-17		Well Diameter (in.): (2) 3 4 6 8						
Total We	ell Depth (f	t.): 19	.70	Depth to Water (ft.): 10.77						
Depth to	Free Produ	ict:		Thickness of Free Product (feet):						
Referenc	ed to:	RVD	Grade	Flow Cell	Type:	H	anna			
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Dubing	Wonyn	Peristalti New Tubin		Bladder Pump Other Pump Depth: 15			
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nL))	Depth to Water (ft.)		
1022	9,54	6.52	113	וח	2.97	85.4	600	11.02		
1025	9.86	6-61	112	14	2-93	83.4	(200	11.02		
1028	9.97	6.63	113	13	2.92	83.2	હિલ્ફ	11.02		
,031	10.10	6.64	113	13	2.90	82.9	2400	11.02		
1034	10.21	6.64	-117	12	2.89	83.2	3000	11.02		
								1		
	/	1			/	1				
-	1	-			/	-				
-			1	—		\rightarrow				
-1				/			1			
Did well	dewater?	Yes	No		Amount	actually e	evacuated: 30	100 n L		
Sampling	g Time:	1035	V ,,		Sampling		1-17-25			
Sample I	.D.: MV	V-17			Laborato	The same	PACE			
Analyzed	0.7.4	TPH-G	BTEX MT	BE TPH-D		Other:	Secon			
Equipme	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

Project #:	: 250117	-KC1		Client: ERRG							
Sampler:	い			Gauging Date: 1-17-25							
Well I.D.	· MW	18		Well Diam	Well Diameter (in.): 6 3 4 6 8						
Total We	ll Depth (f	t.): 14	90	Depth to Water (ft.): 11,79							
Depth to	Free Produ	ict: —		Thickness	Thickness of Free Product (feet):						
Reference	ed to:	(V)	Grade	Flow Cell	Type:	H	anna				
Purge Methors Sampling Months Start Purge		2" Grundf Dedicated	Dubing	200 M	Peristalte New Tubing		Bladder Pump Other_ Pump Depth:l				
Time	Temp.	pН	Cond. (mS/cm or µ\$7\$m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)			
1057	10.76	6.58	902	17	2.76	78.1	600	12.42			
1100	10.92	6.67	310	18	2.72	76.8	1200	12.52			
1103	10.91	6.70	314	18	2.69	77.7	1800	12.69			
(106	10.85	16.72	315	וח	2.68	78.6	2400	12.78			
11.09	10.17	6.72	315	18	2.67	79.0	3000	- 12.85			
				,							
		1									
		_									
Did well	dewater?	Yes	No)		Amount	actually e	vacuated: 3	DOUNL			
	Time: 🕽				Sampling	NA THE R	1-17-2				
Sample I.	V 4.77		P#1 15,50		Laborato	ry: P	ACF				
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	See (oc				
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate	e I.D.:					

Project #	250112-1	KCI		Client: ERRG							
Sampler:				Gauging Date: oli7/25							
	: MW-19			Well Diameter (in.): ② 3 4 6 8 Depth to Water (ft.): 10.74							
	ll Depth (f	t.): 22.	0								
	Free Produ	100 100 100 100			Thickness of Free Product (feet): —						
Referenc		ROD	Grade	Flow Cell		27.5 (V. 20.8 N. S.)	et): —				
Purge Meth Sampling M	od: 1ethod:	2" Grundi Dedicat®	fos Pump	12.5.1.001	Peristante New Tubin	Pump	Bladder Pump Other		1		
Start Purge	Time: 1115		Flow Rate: _	200 ML/r	7111		Pump Depth: 15.	5'			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nh)	Depth to Water (ft.)	P		
1118	13.14	6.89	287	4	2.05	395.4	600	11.06			
1121	13-15	6.87	287	2	1.97	391.7	1700	11.23	0.		
1124	13.25	6.75	303	Z	1.91	391.0	1800	/1.33	٥.		
1127	13.31	6.69	306	2	1.89	390.3	2400	11.39	٥,		
1130	13.34	6.66	367	2	1.90	387.6	3000	11.46	۵.		
							/				
	/			1							
/											
/					1	/					
Did well	dewater?	Yes	®		Amount	actually e	evacuated:30C	0			
Sampling	g Time: [13	3			Samplin	g Date: 01	117/25				
Sample I	.D.: MW-19					Dry: PACE					
Analyzed	770-007-7	TPH-G	BTEX MT	BE TPH-D		Other: 5					
Equipme	nt Blank I.	D.: -	@ Time		Duplicat	e I.D.: -					

Project #	: 250117			Client:				
Sampler:				Gauging D	V222 = 0	117	125	
Well I.D.	: MW-2	20		Well Diam	grant and grant and	99.5	(4) 6 E	8
THE BUILDING	ell Depth (f	(TO T T NO	59	Depth to V				
13357878	Free Produ			Thickness	1707 2 107 23		7	
Referenc		pro	Grade	Flow Cell		A. R. A. C. S. C. S.		
Purge Meth Sampling M Start Purge		2" Grundfe Dedicated	Tubing	200 00	Peristaltic P New Tubing	ump	Bladder Pump Other Pump Depth:	7.7.4
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals, or nd.)	Depth to Water (ft.)
1058	11.49	6.09	490	69	1.13	52.7	600	10.70
1101	11.83	6.20	466	54	1.08	44.9	1200	10.89
1104	12.01	6.22	452	44	1.06	41.5	1800	10.98
NOT	11.89	6.24	449	44	1.05	39.1	2400	11.04
1110	11.83	6.25	446	40	1.04	37.5	3000	11.09
						= 7		
/								
Did well	dewater?	Yes (No.		Amount	actually e	vacuated: 3	00 mi
Sampling	g Time:	111			Sampling	Date:	1/17/	25
Sample I	.D.: Mu	1-20			Laborato	ry: P		
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D	2.77	Other:	act See co	C
Equipme	nt Blank I.	D.:	@ Time		Duplicate		_	

Project #:	250117	-kc1		Client: ¿	ERRG						
Sampler:	KL			Gauging D	110, 11	117	175				
Well I.D.	: MW-2	l		Well Dian	1000 100			8			
Total We	ll Depth (f	t.): [9.	.02	Depth to V	Vater (ft.)	: 9.60	1				
Depth to	Free Produ	uct:	_	Thickness of Free Product (feet):							
Reference	ed to:	₩c	Grade	Flow Cell Type: (14 N N A							
Purge Metho Sampling M		2" Grundfo Dedicated	Pubing	Peristaltie Pump New Tubing Other							
Start Furge	1 tille: 00)			coo mi	00 mil min Pump Depth: (5'						
Time	Temp.	рН	Cond. (mS/cm or ps/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fil)	Depth to Water (ft.)			
0854	11.56	5.98	944	65	1.19	79.2	600	9.78			
0857	11.97	6.04	978	58	1.15	79.1	1200	9.85			
0900	12.15	6.13	1022	54	1.11	72-3	1800	9.87			
0903	11.99	6.14	1030	52	1.10	70.5	2400	4.85			
0906	12.08	Ce.16	1038	53	1.09	67.5	3000	9.85			
							-				
/						-					
-/-	1										
							*				
Did well	dewater?	Yes	<u> </u>		Amount	actually e	evacuated: 30	000 uzc			
Sampling	Time: 04	909			Sampling	g Date: [117/25				
Sample I.	D .: MW.	-21			Laboratory: PACE						
Analyzed	for:	TPH-G	втех мті	BE TPH-D	70.70						
Equipme	nt Blank I.	D.:	@ Time		Duplicate I.D.:						

Project #:	: 2501	17-160	,	Client:	ERRU				
Sampler:	い			Gauging D	Date: 1-1	7-25			1
Well I.D.	: RW.	-1		Well Dian	neter (in.)	2 6	6(4) 6 8	3	1
Total We	ell Depth (f	t.): 1.	45	Depth to V	Vater (ft.)	1 6	11.14		1
Depth to	Free Produ	ıct: _		Thickness	of Free Pr	oduct (fe	eet):		
Reference	ed to:	leve	Grade	Flow Cell	Type:	Hann	6]
Purge Methorstand		2" Grundfo Dedicated	Tubing	200mY	Peristaltie New Tubing		Bladder Pump Other Pump Depth:		1
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)	Pip
1131	11.42	6-91	275	16	2.79	81.7	600	11.44	0.
1134	11.32	6.93	276	12	2.78	81.3	1200	11.47	0.0
1137	11.96	6.90	275	12	2.73	80.8	1800	11.50	0.0
(140	11.90	6.39	279	12	2.73	86.5	2400	11.52	0.0
1143	11.86	6.88	282	(1	2.73	81.3	3000	11.53	0.0
								~	-
-	-				1		7		1
									1
	-						T-08/4		
							1		
		1]
Did well	dewater?	Yes (N		Amount a	actually	evacuated: 3	200ml	
Sampling	g Time: \	144			Sampling		1-17-2.	_	
Sample I.	.D.: // U	1	RW-1		Laborato	ry:	PACE		
Analyzed	l for:	TPH-G	BTEX MTI	BE TPH-D		Other:	See coc		
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:			

WELLHEAD INSPECTION FORM

					Ch	eck i	ndica	tes de	ficier	псу					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolls missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are accessuss associated with repairs, if traffic controls required, if stand pipe damaged, or any specific details not covered by checklist)
MW-2										1					
MW-4			1												
MW-6	/														
MW-7	~														
mw-8										V.					
MW-9							H					11			
MW-10		,													
MW-11															
MW-13															
MW-14	~									yl. I				61	
MW-15	7													7	
mw-lo	~					11									
mw-17						11									
mw-18		1=1								Ø.					
mw-19															
mw-20															
mw-20															

WELLHEAD INSPECTION FORM

Client: <u>ERRG</u> Job # : <u>250(17</u>	-KC1	_			Tec	hnic	ian:			C	C				Page 2_ of _2_
					Ch	eck i	ndica	tes de	ficier	ncy					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolts missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are acce issues associated with repairs, if traffic con is required, if stand pipe damaged, or an specific details not covered by checklist)
PW-1	V										J				
PW-1 PW-2 12W-3	V														
12W-3	V														
2w-4	V									5					
RW-5	L							Ŋ,							
6m-1	V		3=1				H								
PW-7	~									7	ner'				
6m-8															
Rw-9	/														
RW-10	V									34					
	Ŋ,														
													_		
NOTES:	11 4 10							_					\		

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAME	ME 2350 74TH	AVE E	SEAMLE	PROJECT NUMBER	MBER 25017-KCI	7 KCI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP,	INITIALS
HENNA	6746 00 03101		7 HB	3.96	7	6-61	17
			COND 3900 ORF 757.5 Do 100	78827 2002 70.501	7	7.9	77
HACH Zlood	AL94857	27.773 0 06.45	ולס איזע טלו טדא ס	98 NTO	7	1	57
MUTE RAE	184815-516	1-17.25 B 0650	ISOBUNIENE 100 PAY 102 20 9	98.C PPM 20.8	7	1	77
HRNNA	0746000 11001	1/17/25	P# 47	3.92 5.93	7	178	нн
			(PND 3900 0ft 757.5 Do 100	3891 138,1 98.0	7	3:11	ММ
HACH 7100Q	ALE1239	117/25	JTN 901	101	7	1	Н₩
MULTE	nnh125-560	117/25	50 100 ppn 07 20.09	100.1 em, 20.9	7	1	HWH.

PURGE DRUM INVENTORY LOG

CLIENT ERRCT		100					
SITE ADDRESS 2350	24 th	Ave	E	, S.	eatll	e, h	IA
STATUS OF DRUM(S) UPON ARRIVAL							
Number of drum(s) empty:	0	0					
Number of drum(s) 1/4 full:	0						
Number of drum(s) 1/2 full:	0	0					
Number of drum(s) 3/4 full:	0	О				1	
Number of drum(s) full:	3	0					
Total drum(s) on site:	3	1					
STATUS OF DRUM(S) UPON DEPARTURE							
Number of drum(s) empty:	0	0			4		-
Number of drum(s) 1/4 full:	1	0			7		
Number of drum(s) 1/2 full:	6	1					
Number of drum(s) 3/4 full:	0	6					
Number of drum(s) full:	3	0				1	
Total drum(s) on site:		(
LOCATION OF DRUM(S)							
Is/Are drum(s) at wellhead(s)?	Yes	405					
Describe location if drum(s) is/are located elsewhere:	Dr	om lo MW-	ocat	ed in	nux+ fenc	to red	area
Label drum(s) properly:	Yes	418					11/4
FINAL STATUS						2(
Number of new drum(s) left on site this event:	ı	0					
Date of inspection:	10/11/24	1/17/25					
Logged by BTS Field Technician:	AR	Ke				_	-
Office reviewed by:	7411-						

WELL GAUGING DATA

Project # 250221-MH1	Date 2-21-25	Client ERRG	

Site 2350 Z4th Ave E Seattle WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Volume of Immiscible s Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Water/ Sept Meter	PID (PPM)
MW-Z	0316	2	4		II-	15/01	9.49	16.38		0.0
MW-4			IABLE	TO	ACCE	s		-		
MU-6	6947	2	-		-	-	11.70	20.30		0.0
MW-7	0814	2	1	-		-	7.27	20.26		0.0
MW-8	6944	2			-	4	9.53	19.37		0.0
MW-9	0940	ı		1	-	-	10.12	20.24		0.0
MW-10	0817	2 01	BSTRUC	100	@	9.87		-		0.0
MW-11	0820	2	1	1	-		2.85	19.81		0.0
MW-13	6825	2	J	- 1	14		11.26	18.71	TIE!	0.0
MW-14	0827	2		1			7.51	19.03		0.0
MW-15	0824	2	-		-		4.52	17-11		ø- O
MN-16	0943	2	0	T, SJ. T			8.37	17.40		0.0
MW-17	0832	2		-		1	12.23	19.81		0.0
MW-18	0%12	2	12/1	451	141	-	12.71	15.93		1.0
MWIA	P580	2	(AT	IIS I	2	Let	13.35	20.60	1	0.0

Instruments Used: Durham Geoslope Water Level Indicator* GeoTeo	h Oil/Water Interface Probe** Other:
---	--------------------------------------

Survey Point - Top of casing at all wells

WELL GAUGING DATA

Project # 250	221-MH1	Date_	2-21-25	Client	ERR G	

Site 2350 24th Ave E Seattle WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscibl e Liquid (ft.)	and the second of the second		Depth to well bottom (ft.)	Water/	PID (PPM)
MN-50	0823	4		+	1	_	13.29	19.51		0.1
MW-21	9907	7	-	9	1		(3.39	19.02		0.0
RW-1	0816	ч	-	-	1	-	12.70	20.18		0.0
RW-2	0828	4	_	-	ď.	-	11.40	19.29		0.0
RW-3	0832	4	-		1	12	11.65	19.84		0.2
RW-4	0835	7	~	-	3	-	12.65	19.81		0.0
RW-5	9839	4	-	73-77	1	-37	12-76	(9.57		0.0
RW-6	0821	4	~	-	+	5	9-30	19.52		0.0
RW-7	0826	4		212	1	~	12.39	18.70		0.0
RW-8	0903	4	4	1-1	1	- (- j	12.04	20.15		0.0
Rw-9	0820	4	-	-	1	-	14.17	20.94		0.0
PW-10	0854	4	_		T.	-	12.78	30.11	1	0.0

Instruments Used: Durh	am Geoslope Water Level Indicator*	GeoTech Oil/Water nterface Probe**	Other:
------------------------	------------------------------------	------------------------------------	--------

Survey Point - Top of casing at all wells

			DE MICOLI	TA OTTALLO	DIKKEL	JIII I					
Project #	25022	1-100	1	Client: E	FRRG						
Sampler:				Gauging I		211	25				
Well I.D.	: MW-6	4		Well Diameter (in.): 2 3 4 6 8							
Total We	ll Depth (f	ft.): 20	30	Depth to Water (ft.): 11.70							
	Free Produ			Thickness	7.000.00	75 31 6					
Reference	Charles Anna Anna Anna Anna	PVC	Grade	Flow Cell	The state of the state of the state of	CALL TO A IN SEC.	2.57				
Purge Meth Sampling M		2" Grundf Dedicated			Peristaltic I New Tubin		Bladder Pump Other				
Start Purge	Time: 107	1	Flow Rate: _2	200 me	1 min		Pump Depth: 1	6'			
Time					D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)			
1024	12.29	6.33	516	304	1.61	28.4	600	11.91			
4027	12.41	6.40	545	180	1.48	21.7	1200	12.01			
1030	12.36	6.48	550	93	1.49	21.2	1800	12.05			
1033	12.38	6.48	550	86	1.49	21.1	2400	12.08			
1036	12.32	6.49	551	91	1.49	20.8	3000	12.10			
	/							/			
-											
Did well	dewater?	Yes	No.		Amount	actually e	levacuated: ▼З	000m			
Sampling Time: 103a					Sampling	g Date:	2/21/2	5			
March 19 Committee of the Committee of t	.D.: Mu				Laborato						
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D			ee coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicat	1 A 1 7 7 1		1			

Project #	: 25022	1-MH	2	Client: ERRG						
Sampler:	KL			Gauging D	Date: 2/	21/2	5			
Well I.D.	: MW-8			Well Diameter (in.): 2 3 4 6 8						
Total We	ell Depth (1	ft.): 19,	37	Depth to Water (ft.): 9,53						
Depth to	Free Prod	uct: -		(3.7 A. T. L	of Free Pr					
Referenc		Ø0	Grade	Flow Cell		1000				
Purge Meth Sampling M		2" Grundf Dedicated	Tubing	240.0	Peristaltic Pi		Bladder Pump Other			
Start Furge	Time. O-t.	1	Cond.	200 m	-14.0		Pump Depth:)		
Time	Temp.	pН	(mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nD)	Depth to Water (ft.)		
0954	12.40	6.68	350	74	0.29	6.2	600	9,98		
0957	12.24	6.68	349	47	0.25	3.3	1200	10.04		
1000	12.24	6.64	349	42	0.27	4.1	1800	10.06		
1003	12.34	6.66	348	43	0.27	3.0	2400	10.11		
1006	12.43	6.65	347	40	0.27	3.0	3000	10.4		
	1									
	/							/		
	/							/		
							1			
Did well	dewater?	Yes	M)		Amount a	ctually	evacuated: 3	jouni		
Sampling	g Time: (009			a de la		2/21/2	0.00		
Sample I	.D.: MW	-8			Laborator					
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D		4535	see coc			
Equipme	nt Blank I.	D.:	@ Time	7 1 17	Duplicate	I.D.:	DUP-I			

				,,		***	OKKELIKI K				
Project #:	: 25022	1-MH	2	Client: ¿	5RRG		71111				
Sampler:	KC			Gauging I	Date: Z	1211	25				
Well I.D.	: Mw-a						4 6 8	3			
Total We	ll Depth (f	ft.): Z8	24	Depth to Water (ft.): 10.12							
	Free Produ		_	Thickness of Free Product (feet):							
Reference		©€	Grade	Flow Cell		TO DO NOT THE OWNER.	- 7511				
Purge Methor Sampling M Start Purge	lethod:	2" Grundfi Dedicated		ruo m	Peristaltic P New Tubin		Bladder Pump Other Pump Depth:				
Time	Temp.	pН	Cond. (mS/cm or (S/Om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 🛍)	Depth to Wate			
0926	17.77	Q.85	517	36	0.41	11.6	600	10-31			
0929	12.88	6.87	512	36	0.33	4.3	1200	10.35			
0932	12.95	6.92	509	32	0.29	-2.2	1800	10.39			
0935	1309	6.93	507	73	0.29	-6.0	2400	10.42			
2938	13.12	6.93	505	33	0.30	-8.4	3000 10.45				
	/										
							/				
- /			0.5-1-								
Did well	dewater?	Yes (<u> </u>		Amount	actually e	evacuated: 38	(101) m			
Sampling	Time: 0	941					212112				
A CONTRACTOR	D.: Mu				Laborato						
Analyzed	for:	TPH-G	втех мте	BE TPH-D		Other:	Su coc				
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	100	_				

Project #:	25022	1-MH.	1	Client: ERRG							
Sampler:	KL			Gauging Date: 2/11/25							
Well I.D.	MW-1	>		Well Diameter (in.): 2 3 4 6 8							
A STATE OF STATE	ll Depth (f		. 68	Depth to V	Depth to Water (ft.): 11.26						
Ph. D.S.	Free Produ			Thickness	of Free Pr	oduct (fe	eet):				
Reference	ed to:	(VC)	Grade	Flow Cell	Type: HA	NNA					
Purge Metho Sampling M	ethod:	2" Grundfe Dedieated	Tubing	24-24	Reristaltic P New Tubing	11 T	Bladder Pump Other	Too I I			
Start Purge	Fime: 085	5	V A. A. A. A.	200 mc	Imin		Pump Depth: _\	5.5			
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mt)	Depth to Water (ft.)			
0858	11.59	6.31	751	31	0.55	50.1	600	11.51			
0901	11.89	6:34	760	28	0.42		1200	11.74			
0904	12.10	6.41	765	26	0.30		1800				
0407	12.13	6.42	767	25	0.29	39.2	2400	12.04			
0910	15.18	6.44	768	25	12.13						
		/						/			
								/			
	/						/				
-			/								
Did well	dewater?	Yes	₩		Amount a	actually e	evacuated: 30	W nn			
Sampling	Time: 0	113				-	2/21/2				
	D.: Mw-	U will be			Laborato		ACE				
Analyzed	for:	TPH-G	BTEX MT	A TOTAL OF THE STATE OF THE STA							
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	! I.D.:	_	1.77			

Project #	: 25027	21-MH1		Client:	ent: ERR 17						
Sampler:	D			Gauging Date: 2-21-25							
Well I.D.	: MW-	-14		Well Diameter (in.): (2) 3 4 6 8							
Total We	ell Depth (f	t.): [6	1.03		Depth to Water (ft.): 7.5/						
Depth to	Free Produ	ict:		Thickness	of Free Pr	oduct (fe	eet): —				
Referenc	ed to:	rve	Grade	Flow Cell	Type:	H	anna				
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Tubing	200 mc/	Peristalice New Tubing		Bladder Pump Other Pump Depth:				
Time	Temp.	pН	Cond. (mS/cm or µS/gm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)			
1009	11.51	6.93	33 3	(01	2.97	Q7.0	600	7.83			
1012	11.66	6.85	329	27	2.86	949	1200	7.98			
1015	11.75	6.83	332	23	2.79	91.4	1800	8.10			
1018	11.90	6.82	330	27	2.73	89. [2100	8.21			
1021	15.00	6-81	328	26	2.70	87.5	3000	8.30			
				_			/				
-/											
				/							
		1		/							
		1	/								
			/								
Did well	dewater?	Yes	NB S		Amount a	actually 6	evacuated: 300	DO ML			
Sampling					1						
F-127.1 Y		(023	-		Sampling		2-21-25				
Sample I		1W-14			Laborato	ry:	PACE				
Analyzed	F 5 2 2 2 2 2 2 2 2	TPH-G	BTEX MTI	BE TPH-D	o A service	Other:	See coc	4			
Equipme	nt Blank I.	D.:	Time		Duplicate	I.D.:					

Project #	: 2502	21-M	41	Client: ERRL						
Sampler:	1	,J		Gauging Date: 2-21-25						
Well I.D.	: Mh)-(5		Well Diameter (in.): 2 3 4 6 8						
Total We	ell Depth (f	t.): 17.	(1	Depth to V	Arrive of Francis		4.52			
Depth to	Free Produ	ict:		Thickness	of Free Pr	oduct (fe	et):			
Referenc	ed to:	PVe	Grade	Flow Cell	Туре:	Hav	144			
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Tabing	200 my	Peristal(ic) New Tubin	g	Bladder Pump Other Pump Depth:	-		
Time	Temp.	pН	Cond. (mS/cm or µ(S/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)		
(041	(0.03	6.35	101	27	3.33	101.4	600	5.10		
1244	10.17	6.65	98	26	3.27	[00.7	(200)	5.28		
1047	10.15	6.55	96	26	3.24	99.9	1600	5.45		
1090	10.16	6.52	96	26	3.23	100.3	2400	5.62		
1053	10.19	6.47	95	27	3.21	101.2	3000	5.79		
								8 = 3		
/		1			/		1			
		1					1			
_			1							
			1	/			_			
			1	/			_	/		
Did well	dewater?	Yes	Nø		Amount	actually e	vacuated: 30	OOML		
Sampling	g Time:	105			Sampling		2-21-2			
Sample I	- AV	IW-15			Laborato		PACE			
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D		Other:	See coc			
Equipme	nt Blank I.	D.;	@ Time		Duplicat	e I.D.:				

Project #: 250221-MH1	Client:							
Sampler: LJ	Gauging Da	Gauging Date: Z-21-25						
Well I.D.: MW-(6	Well Diameter (in.): (2) 3 4 6 8							
Cotal Well Depth (ft.): 17.40	Depth to W	ater (ft.)	: 8.	37				
Depth to Free Product:	Thickness of	of Free Pr	oduct (fe	et): —				
Referenced to: (VC) Grade	Flow Cell 7	Гуре:	Ham					
turge Method: 2" Grundfos Pump ampling Method: Dedicated Tubing tart Purge Time: 0943 Flow Rate:		Peristaltid P New Tubing	rump S	Bladder Pump Other Pump Depth:				
Temp. Cond. (mS/cm o	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
0946 11.63 6.88 601	166	3.19	94.8	600	8.49			
0949 11.85 6.89 825	124	3.13	93.8	1200	8.49 0			
0952 11.89 6.88 859	68	310	92.7	1800	8.52			
0955 12.02 6.91 871	65	3.67	90.6	2400	8.55			
0958 12.13 6.93 880	63	3,00	88.7	3000	8.57			
					-			
		/						
Did well dewater? Yes (No)		Amount a	actually e	vacuated: 37	DOOML			
Sampling Time: [000				2-21-25				
Sample I.D.: MW-16		Laborato	_	TLE				
	BE TPH-D		Other:	see coc				
Equipment Blank I.D.:		Duplicate	i.D.:	111110				

Client: ERRG						
Gauging Date: 2-21-25						
Well Diameter (in.): (2) 3 4 6 8						
Depth to Water (ft.): 12.23						
Thickness of Free Product (feet):						
Flow Cell Type: Hunna						
Peristatic Pump New Tubing Other Pump Depth:						
r Turbidity D.O. ORP Water Removed Depth to Water (NTUs) (mg/L) (mV) (gals. or nL) (ft.)						
13 3.04 77.2 600 12.41						
16 3.01 779 1200 12.46						
16 3.02 77.2 (800 12.50						
16 301 77.7 2400 12.54						
15 3.00 79.1 3000 12.56						
Amount actually evacuated: 3000~C						
Sampling Date: 2-21-25						
Laboratory: PACF						
TBE TPH-D Other: SO COC						
Duplicate I.D.:						
r						

Project #	: 7502	21-MH1		Client: ERPC7						
Sampler:	LJ			Gauging Date: 7-21-25						
Well I.D.	: MW-(7)		Well Diameter (in.): 2 3 4 6 8						
Total We	ell Depth (f	t.): [5	.93	Depth to V	and the latest		r			
	Free Produ			Thickness	The Court of					
Referenc		PVC	Grade	Flow Cell			ung			
Purge Meth Sampling M		2" Grundfo Dedicated	A S 2 A S 2 A		Peristal(ic) New Tubin		Bladder Pump Other			
Start Purge	Time: 091	8	Flow Rate: _	ZOOML	lun	-	Pump Depth: 1	4.51		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)		
0921	11.19	7.46	314	25	3.10	92.0	600	13 39		
0924	11.35	7.41	316	21	3.05	91,7	1200	13.50		
0927	[[.17	7-33	314	17	3.01	91.6	(800	13.74		
0930	11.30	7.29	314	17	2.98	92.0	2400	13.59		
0933	11.50	7.32	316	16	2.95	87.3	3000	13.63		
		1		ļ ,		1				
		1					\			
-		1		/			\			
		1		/						
Did well	dewater?	Vec	No		Amount	actually e	evacuated: 3	200. (
	Time: 0		110	4	Sampling	The state of	2-21-25	COMC		
Sample I	to the	J-18			Laborato		PACE			
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D	TPH-D Other: See (3)					
A. 176.03.1	nt Blank I.	D.	@ Time		Duplicate I.D.:					

Project #: 7	25022	11-MH	1)	Client: ERRG							
Sampler:	い		Maria	Gauging D	Gauging Date: 2-71-75						
Well I.D.:	MW-	(9		Well Diameter (in.): 2 3 4 6 8							
Total Well I	Depth (f	t.): 10	.00	Depth to V	Vater (ft.)	: 13.35					
Depth to Fre	ee Produ	ict: _	_	Thickness	of Free Pi	roduct (fe	et):				
Referenced	to:	ivo	Grade	Flow Cell	Туре:	May	Ma				
Purge Method: Sampling Meth	iod:	2" Grundfo Dedicated	Dubing	200 My	Peristattic F New Tubin	g	Bladder Pump Other				
Start Purge Tim	ne: HUL			i way	n.h		Pump Depth:	6-3			
Time (Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
1105	12.79	6.71	137	18	2.91	72.8	600	13.47			
1108	13.02	6.36	134	14	2-76	71.4	1200	13,23			
1111	13.39	6.88	135	14	2-70	69.2	(800)	13.56			
1114	13.32	6.90	135	14	2,66	71.6	2900	13.59			
1117	13.41	6.91	135	13	13.61						
-/	1				-						
		1			/						
					/						
Did well de	water?	Yes	(No)		Amount	actually e	evacuated: 3	DOOML			
Sampling T	ime:	1120			Sampling		2-21-2				
Sample I.D.	: Mh	1-19			Laborato	ry: f	ACE				
Analyzed fo	or:	TPH-G	втех мт	BE TPH-D	TPH-D Other: Sel COC						
Equipment l	Blank I.	D.:	@ Time		Duplicate	e I.D.:					

Project #: 25	022	1- MH	1	Client: &	ERRG		177				
Sampler: K	C			Gauging I	Date: Z	121	125				
Well I.D.:	uw-	20		at a vitaria a barre			10 6 8	3			
Total Well De	epth (f	t.): (1.51	Depth to Water (ft.): \3.24 Thickness of Free Product (feet):							
Depth to Free	W. F. STORY										
Referenced to		€9c	Grade	Flow Cell			• • • • • • • • • • • • • • • • • • • •				
Purge Method: Sampling Method Start Purge Time	i:	Dedicated	Tubing	200 ans	Peristaltic Pump New Tubing Bladder Pump Other						
	emp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water			
1132 12	.36	6.00	751	128	0.69	50.3	600	13.25			
1135 12	2.43	6.12	779	88	0.47	43.2	1200	13.28			
1138 12	2.58	6.26	793	Ce7	0.34	35.5	1800	13.30			
1141 17	2.78	6.30	789	63	0.34	29.4	2400	13.32			
1144 12	.83	6.35	788	61	0.35	26.3	3000	13.35			
	/										
						1					
Did well dew	ater?	Yes 7	[Amount	actually e	vacuated: 36	200 nss_			
Sampling Tin	ne: \	147			A. D. C. C.		212112				
Sample I.D.:	m	1-20			Laborato						
Analyzed for:		TPH-G	BTEX MTI	BE TPH-D		Other: 3	ce coc				
Equipment Bl	ank I.	D.:	@ Time		Duplicate			To Union			

Project #	2502	21-M	41	Client: ¿	RRG						
Sampler:				Gauging D		121	125				
	: Mw-2	1		Well Dian				3			
	ll Depth (f	TITLE TO	50.9	Depth to V							
LICENTY .	de la Carriaga	77	1.00	ACCOUNTS	7-75 (F # 12)						
Reference	Free Produ	PVQ	Conto	Thickness Flow Cell		- 1 - C - C - C - C - C - C - C - C - C					
		Port Linky	Grade	Flow Cell			100 mms.t.				
Purge Meth Sampling M		2" Grundfo Dedicated	The state of the s		Peristalfic F New Tubin	30 2 1 1 No.	Bladder Pump Other				
Start Purge	Time: \OS	4	Flow Rate: _	ZOO MI	1 41/4		Pump Depth:\	4.5			
Timé	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m)	Depth to Wate (ft.)			
1057	13.56	6.19	616	94	0.44	45.8	600	13.68			
1100	13.80	6.25	621	66	0.29	40.9	1200	13.75			
1103	13.87	6.37	621	55	0.28	37.9	1800	17.79			
1106	13.74	6.47	621	48	0.29	35.8	2400	13.85			
1109	13.73	6,50	622	51	0.30	32.9	3000	13.92			
1112	13-71	6,50	622	50	0.30	31.4	3600	13.96			
-/-							-/				
							- (
Did well	dewater?	Yes 7	and		Amount	actually e	evacuated: 36	Dur			
Sampling	Time:+\t	最阳 1	115				2/21/2				
Sample I.	D .: MW	-21			Laborato		Prince and the second				
Analyzed	for:	TPH-G	BTEX MTI	BE TPH-D		Other: S	ee coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicate I.D.:						

Project #:	22052	1-MH1		Client:	EPRG	21.1.Y.Y	AFTE		
Sampler:	IJ			Gauging D	Date: 2-	-21-25			
Well I.D.	: PW	-(Well Dian			-	3	
Total We	ll Depth (f	t.) : 70	.18	Depth to V	Vater (ft.)	: 12.	70		
Depth to	Free Produ	ict:	-0-1	Thickness	of Free P	roduct (fe	eet): —		1
Reference	ed to:	PVC	Grade	Flow Cell	Type:	Hauna			
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Tubing	200ml	Peristaltic I New Tubin		Bladder Pump Other Pump Depth:		7
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	PI
0858	11,47	8,18	232	577	3, 51	90.3	600	12.99	0.
0901	1272	8.22	225	57	3.28	18-1	(200	13.08	0-
0904	12.94	8.17	422	50	3.19	77.0	(800	13.11	0.
0707	12.93	8.12	225	48	3.15	77.6	2400	13.13	0.1
0710	13.05	8.09	226	47	3.10	78.3	3000	13.14	0.
-/							100		
		1				1	ħ(-
				1					
								A	
Did well	dewater?	Yes (No		Amount	actually 6	evacuated: 30	200MC	
Sampling	Time:	0912			Sampling	g Date:	2-21-25		
Sample I.	D.: P	M-(Laborato	ory:	PACE		
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D	- Table 1	Other:	See coc		
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:		1.555	

WELLHEAD INSPECTION FORM

Job#: 250221	-MHI				Tec	hnic	ian:	1	H_{r}	Ci	1, 1	120	_	_	Date: 2-21-25 Page of
					Ch	eck i	ndica	tes de	ficier	су					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolts missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are access issues associated with repairs, if traffic control is required, if stand pipe damaged, or any specific details not covered by checklist)
MW-2 MW-4	×										7.1			11	
MW-4	×				П										NO OPENING FOR PEBB
MW-6	×														
MW-7	×														
MW-8	×														
MW-9	×														
MW-W	×					1									WELL IS DESTRUCTED
MW-11	X												I		
MW-13	X									100			4		
MW-14	X														
MW-15	×														
MW-16	×														
MW-17	×					3					14			M	
MW-18	X														
MW-19	×														
MW-20	X						F					I	1		
MW-21	14														

WELLHEAD INSPECTION FORM

Client: ERR(7

Site: 2350 24th Are & Sentle WA Date: 2-21-25

	_	-			Ch	eck i	ndica	tes de	ficier	ісу					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolts missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are accessissues associated with repairs, if traffic controls required, if stand pipe damaged, or any specific details not covered by checklist)
PW-1	X			1					=				1		A THE PARTY OF THE
RW-2	X													inc i	
RW-3	×														
m fw-4	×														
RW-5	X													111	
PW-6	×														
PW-7	4														
Rw-8	X							TI							
FW-1 FW-2 RW-3 MA FW-4 RW-5 PW-6 PW-7 PW-8 PW-8 PW-10	X					14									
RW-10	X														
							4						-	<u></u>	
							Ī								
							-1						Ē		
NOTES:															

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAME	7350	24TY AIEE	SEATULE	PROJECT NUMBER	MBER 755221- MH)	МН1	
EQUIPMENT NAME	EQUIPMENT NUMBER	DAT	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%;	TEMP.	INITIALS
HANNA	0746@3101	2.12.2 52.12.2	P4 49 7 01	3.96 7.03 10.08	7	18.9	77
			COND 3900 URP 235,S DO 100	5912 239.4 78.6	7	6.81	7
KhG41 7100 Q	1184857	2-12-2 8 ocus	100 km 0 Nt	49 mm	7		7
MULT RAE	184815-540	2-12-2	15co 10co Pierra 19co 7 20.9	101 Pm. 20.9	7	1	5
HAMMA	10000000		P# 4.0	76.5 26.5)	18.9	KC
HOB G	ADB-1759	42	084 1315 084 1315 00 100	2.92Z 1688	7	16.91	KC
Kacti Z100Q	ALBINES	21/12	UN 0	8 0	7	1	Z
MUTERAL	095.521 HHY		BOLOOPPM O2 20.9	49.8Pm 720.9	7	Ĵ	¥

PURGE DRUM INVENTORY LOG

CLIENT ERF	CO						
SITE ADDRESS _	2350	24th	Ave	E,	Seattle.	WA	

STATUS OF DRUM(S) UPON ARRIVAL					V		
Number of drum(s) empty:	0	0	٥				
Number of drum(s) 1/4 full:	0	1	D				
Number of drum(s) 1/2 full:	0	0					
Number of drum(s) 3/4 full:	0	0	0				
Number of drum(s) full:	3	0	0				
Total drum(s) on site:	3	1					
STATUS OF DRUM(S) UPON DEPARTURE							
Number of drum(s) empty:	0	0	0				- 1
Number of drum(s) 1/4 full:	1	9	0			1	
Number of drum(s) 1/2 full:	6	1	Ĭ				
Number of drum(s) 3/4 full:	0	6	ð				
Number of drum(s) full:	3	0	6		4		40
Total drum(s) on site:		l l	1				
LOCATION OF DRUM(S)							
ls/Are drum(s) at wellhead(s)?	Yes	yes	Yes				
Describe location if drum(s) is/are located elsewhere:	Dr	um l MW	ocate	din	nux+ fenc	to	area
Label drum(s) properly:	Yes	448	465				
FINAL STATUS							
Number of new drum(s) left on site this event:	1	0	0				
Date of inspection:	10/11/24	1/17/25	02/21/25				
Logged by BTS Field Technician: Office reviewed by:	AL	Ke	MH				

WELL GAUGING DATA

Project # _	250328-KLI	_ Date	3/28/25	Client ERRG	
-------------	------------	--------	---------	-------------	--

Site 2350 24th Ave E, Seattle, WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
7 - WM	0825	2	1-	1	-	-	9.08	16,40		1
Mw-4	0818	2	-				31.10	88.03		NCORRECT W. AEASURED AS
MW-6	רוסו	2	odor	1			11,50	20.30		
MW-7	1040	2	_	1	-	-	11.24	20.32		
MW-8	0952	2	-	1	-	5-65	9.11	19.33		
MW-9	0923	2	-	1	-	_	10.06	20.20		
MW-10	1042		065	truct	d @	9.2	2 ft -			
MW-11	1580	2	4	1	(-	-	1.54	19.87		
MW-13	0833	2	_		-	-	11.96	18.73		
MW-14	0817	2	_	-	THE	-	6.83	18.76		
MW-15	0819	2	J	-			2,53	17.06		
MW-16	0948	2	-	-	-	-	5.97	17.44		
MW-17	0812	ス	-	-	-	_	12.22	19.75		
MW-18	0810	2	-	-		III EI	12.98	14.95		
Mw-19	0815	2	-			_	13.23	14.85		
MW-20	0823	4	_	-		_	13.90	19.39		
MW-21	2280	4			-		14.17	18.82	J	

WELL GAUGING DATA

Project #	250328-KCI	_ Date	3/28	125	Client ERRG	
-----------	------------	--------	------	-----	-------------	--

Site 2350 24th Ave E. Seattle, WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
RW-1	0813	4	-	_	_	_	13.19	20.02		
Rw-2	0830	4	_	1	-		11.92	19.30		
RW-3	0833	4	_	-	-	_	12.10	19.77		
RW-4	0830	4	_	_	_	-	12.70	19.78		
KW-5	0825	4	_	3	-		13.81	19.41		
RW-6	0822	ч	-	1-	-		10.06	19.57		
RW-7	0812	ч	-	-	-		12.47	18.70		
RW-8	0832	ч	TE	-	1_0	_	13.21	20.00		
RW-9	0834	4	-	-	-	-	13.81	20.15		
LW-10	0817	4	-	-	==(2.5	13.08	30.27	1	

Project #:	25032		LOW WE	Client: E	1251	DAIA	SHEET				
Sampler:	w			Gauging D	Date: 3 /	ZX /	25				
	: MW-6	0					4 6 8				
YITS SAAV	A material and a second		2.3	THE PERSON IS	15 at 5/7 a						
Total We	ll Depth (f	t.): 20	30	Depth to V	Vater (ft.)	: (1, 20)				
Depth to	Free Produ	uct:		Thickness	of Free Pr	roduct (fe	et): —				
Reference	ed to:	PVO	Grade	Flow Cell	Type: HA	WVA					
Purge Methors Sampling M		2" Grundf Dedicated			Peristaltie I New Tubin	10.00	Bladder Pump Other				
Start Purge	Time: 1026	2	Flow Rate: 2	200 mm / 1	nin		Pump Depth: _\	4'			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mf)	Depth to Water (ft.)			
1023	12.00	5.93	611	65	0.70	-7.8	600	11.69			
1026	12,13	6.11	620	58	0.68	-15.3	1200	11.77			
1029	17.13	6.21	626	61	0.70	-717.7	1800	11.90			
1032	17.14	4.23	625	58	0.72	0.72 -77.0 2400 12.					
1035	17.10	6.20	628	57	0.71-19.2 3000 13						
		7 1									
		/									
		1			/			V			
							2000				
							K para sana				
Did well	dewater?	Yes	M		Amount	actually e	evacuated: 30	ال معمد			
Sampling	Time: (038					3/28/25				
Sample I.	D.: MW	1-6			Laborato						
Analyzed		TPH-G	BTEX MTI	BE TPH-D	100 A 100						
Equipme	nt Blank I.	D.:	@ Time		Duplicate	e I.D.: \mathcal{D}					

Project #	: 25032	8-Ke1		Client: ERKG							
Sampler:	KC			Gauging Date: 3 / 28 / 25 Well Diameter (in.): ② 3 4 6 8 Depth to Water (ft.): 9,11							
Well I.D.	: MW-8										
Total We	ell Depth (f	ft.): (4.	33								
Depth to	Free Produ	uct:		Thickness of Free Product (feet):							
Referenc	ed to:	ENO	Grade	Flow Cell			- Indiana				
Purge Meth Sampling M Start Purge		2" Grundfi Dedicated	Pubing	Peristattic Pump Bladder Pump New Tubing Other 200 un 150 Pump Depth: 151							
Time	Temp.	рН	Cond. (mS/cm or µS/om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ptl)	Depth to Water (ft.)			
0957	11.87	6.46	284	14	0.41	-50.9	(000	9.31			
1000	11.89	6.40	255	15	0.78	-47.6	1200	9,34			
1003	11.92	0.51	232	14	0.23	-45.2	1800	9.38			
1006	11.93	6.53	218	14	0.23	-43.7	2400	9.33			
1009	11,17	6.50	229	14	0.23	-42.7	3000	9.50			
			-								
	1				/						
	/			-/							
	9 - 1										
Did well	dewater?	Yes ¿	1		Amount	actually e	vacuated: 36	100 KL			
Sampling	Time: (DIZ					125/25				
Sample I	.D.: MW	1-8			Laborato						
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other: Se	e cac				
Equipme	nt Blank I.	D.:	@ Time		Duplicate	- 10 y					

Project #	: 25032			Client: ELKG							
Sampler:			7 = 1	Gauging Date: 3 / 28/25 Well Diameter (in.): ② 3 4 6 8 Depth to Water (ft.): ② . UU Thickness of Free Product (feet):							
	: MW-	1									
	ll Depth (f	0.00	207								
	Free Produ										
Referenc	ed to:	æve	Grade	Flow Cell	Type: HA	UNA					
Purge Meth Sampling M		2" Grundf Dedicated			Peristaltie P New Tubing	V 6 19 1	Bladder Pump Other	,			
Start Purge	Time: <u>09</u> 2	U	Flow Rate: Z	nov me /	nin	_	Pump Depth: 1	51			
Time	Temp.	pН	Cond. (mS/cm or us/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fil)	Depth to Water (ft.)			
2927	11.99	7.15	288	4	0.60	-65.5	600	(0.22			
0932	11.94	7.40	570	3	0.36	-70.1	1200	10.28			
0935	17.88	7.35	546	3	0.24	-68.7	1800	10.31			
0938	11,89	7.29	539	3	0.23	-62.3	zya	10.34			
0941	11.90	7,24	542	3	0.23		3000	10.38			
			\rightarrow					7			
				/							
/								-			
Did well	dewater?	Yes	160		Amount	actually e	evacuated: 30	OURL			
Sampling	Time:	2944					3/28/25				
Sample I	.D.: MW-	d			Laborato						
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D		Other: 5	a ca				
Equipme	nt Blank I.	D.:	@ Time		Duplicate	I.D.:					

Project #: 250328-K	c1	Client: ERRG							
Sampler:		Gauging Date: 5/28/25 Well Diameter (in.): 0 3 4 6 8 Depth to Water (ft.): 12.05 Thickness of Free Product (feet): —							
Well I.D.: MW-13									
Total Well Depth (ft.): \	8.72								
Depth to Free Product:									
Referenced to:	Grade	Flow Cell Type: HANNA							
Sampling Method: Dedice	ndfos Pump ted Tubing	Peristaltic Pump Bladder Pump New Tubing Other							
Start Purge Time: 1053	THE PROPERTY OF THE PARTY OF TH	200 me	min	_	Pump Depth: 15	5.51			
Temp. Time Oor °F) pH	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or pt.)	Depth to Water			
1056 17.58 5.7	9 770	53	0.60	28.0	600	(2.11			
1059 12.39 5.0	06 790	64	0.39	23.8	(200)	12.20			
1102 12.26 5.9	3 796	63	0.38	18.3	1800	12.31			
1105 12.43 5.	19 797	63	0.33	11.5	2400	12.43			
1108 12.39 5.	5 800	60	0.33	10.5	3000	12.49			
A				Company IV					
					11	/			
	1					1			
Did well dewater? Yes	M O		Amount	actually e	vacuated: 3೦	0001			
Sampling Time: 3/2	((1)			The Part of the State of the St	128175				
Sample I.D.: MW-13			Laborato	19.51	Clarina and Control				
Analyzed for: TPH-	G BTEX MTI	BE TPH-D			e coc				
Equipment Blank I.D.:	@ Time		Duplicate	100000000000000000000000000000000000000					

Project #	25035	8-KC1		Client: ERKG							
Sampler:	L.	1		Gauging Date: 3-28-25							
Well I.D.	: MW-	-14		Well Diameter (in.): (2) 3 4 6 8							
Total We	ll Depth (f	t.): 17	.76	Depth to Water (ft.): 6.63							
Depth to	Free Produ	ıct:	_	Thickness of Free Product (feet):							
Reference	ed to:	PVO	Grade	Flow Cell	Type:	Man	10				
Purge Methors Manual Purge Methors Methods Met		2" Grundfo Dedicated	Jubing	2.004(Peristaltic Pump New Tubing Bladder Pump Other						
start Purge	rime: 10 t		Flow Rate: _	Soon	MW.		Pump Depth: 13	31			
Time	Temp.	pН	Cond. (mS/cm or µS/gm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nD)	Depth to Water (ft.)			
1043	11,96	6.78	273	17	2.87	101.4	600	6.91			
1046	12.06	6-36	278	17	2.23	6.001	(200				
1049	12,05	6.92	280	16	2.82	100.4	1800	7.12			
1052	12,03	6.47	282	17	231	100.4	240	7.16			
1055	11,99	7.01	2 83	16	2.80	100.2	3000	7.19			
		1					1				
/_											
-			1								
				1							
			6					, (
Did well	dewater?	Yes	(N)		Amount	actually e	evacuated: 30	DOOML			
Sampling	Time: \(()	056			Sampling	g Date:	3-28-25				
Sample I.	D.: MW	1-14			Laborato	ry:	PACE				
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	Seccou				
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:					

Project #:	25032	18-KC1	11000	Client: Exect							
Sampler:	l	J		Gauging Date: 3-28-25							
Well I.D.	: MW-	-15		Well Diameter (in.): 2 3 4 6 8							
Total We	ll Depth (1	ft.): /	0.06	Depth to Water (ft.): 2.73							
Depth to 1	Free Prod	1-0		Thickness of Free Product (feet): —							
Reference	ed to:	PYP	Grade	Flow Cell	And the second	- 14 Jan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Purge Metho Sampling M Start Purge	ethod:	2" Grundf Dedicated	Tubing	roonly	Peristal@Pump Bladder Pump New Tubing Other Pump Depth:						
Time	Temp.	pН	Cond. (mS/cm or µS(cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water			
1015	10.76	7.84	(00	48	2.93	110.9	600	2.54			
1018	10.20	7.56	96	30	2.89	112.2	1200	2.54			
104	10.85	7.30	94	25	2.86	113.5	1800	2.54			
rsc,	10,90	7.15	93	25	2.84	113.7	2400	2.54			
1057	10.92	7.09	93	25	2.83	11-1-1	3000	2.54			
1030	10.90	7.07	92	24	2.82	114.9	3600	2.54			
/								1			
			-			/					
D:1 "	1	. /	-				. 21				
Did well		-	No		Amount	actually e	vacuated: 36	00 nl			
Sampling	Time: (b)	2[Sampling	g Date:	3-28-25				
Sample I.	D.: /	W-15			Laborato	ry: PA	LE				
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	see con				
Equipmen	nt Blank I	.D.:	@ Time		Duplicat	e I.D.:					

Project #	250	328-KC		Client: ERR6								
Sampler:	L	2		Gauging Date: 3-28-25								
Well I.D.	: MW-1	6		Well Diameter (in.): 3 4 6 8								
Total We	ll Depth (1	ft.): 17.	.44	Depth to Water (ft.): 5.97								
Depth to	Free Produ	uct: —	7	Thickness	Thickness of Free Product (feet):							
Referenc	ed to:	PVO	Grade	Flow Cell	Type:	+	(anna					
Purge Meth Sampling M Start Purge		2" Grundf Dedicated		200ml	Peristal ic Pump New Tubing Other Pump Depth: 12.5							
Time	Temp.	pН	Cond. (mS/cm or µS(cm))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)				
0953	11.08	7.64	764	175	3.12	106.4	600	6.48				
0956	11.32	7.63	855	194	3.05	104.5	1200	6.65				
0959	11.31	7.64	843	182	3.03	103.6.	(80)	6.67				
1002	11.27	7.63	839	178	3.04	104.8	2400	6.75				
1005	11.22	7.62	832	171	3.04	104.7	3000	6.99				
						/						
			1			/						
			1									
					/	1-		V				
Didoust	d	XZ.	(A)					20 /				
7 T 7 T 7	dewater?	Yes	(N)				vacuated: 30	ounc				
Sampling	A STANDARD	1006		1	Sampling		3-23-25					
Sample I.	D.: [NN-(1	1		Laborato	ory:	ALE					
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other:	secol					
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:						

Project #	: 25032			Client: ERRG								
Sampler	11.12			Gauging Date: 3/28								
Well I.D	.: MW-1	1		Well Diameter (in.): (2) 3 4 6 8 Depth to Water (ft.): (7.27								
the recognition	ell Depth (f		75									
VALUE OF STREET	CASS - CEST COST		_									
Reference	Free Produ			Thickness of Free Product (feet): Flow Cell Type: HANNA								
10 TO BOOK 1		PVP	Grade	Flow Cell	Type: HA	NNA						
Purge Meth Sampling N		2" Grundf Dedicated			Peristaltic New Tubin		Bladder Pump Other					
Start Purge	Time: 114	8	Flow Rate: _	200 un 1	1 dies	_	Pump Depth: 10	6.51				
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)				
(121	12.07	6.16	194	w	2.34	-32.2	600	12.45				
1154	12.21	5.84	185	20	2.27	-28.4	1200	12.51				
1157	12.37	5.79	178	27	2.24	-31.9	1800	12.51				
1700	12.54	5.82	177	29	7.23	-34.6	2400	12.51				
1203	12.53	5.76	177	28	2.24	-36.1	3000	12.57				
		/				/						
/												
Did well	dewater?	Yes /	<u> </u>		A	n atus Ils.						
			190				evacuated: 30					
Sampling	g Time: 17	206			Samplin	g Date: 3	128/25					
Sample I	.D.: MW	-17			Laborato	ry: PAC	E					
Analyze	d for:	TPH-G	BTEX MT	BE TPH-D	X	Other: 5	ee cou					
Equipme	ent Blank I.	D.;	@ Time		Duplicat	e I.D.:						

Project #:	25032	3-1601		Client:	ERKG	,	4.7	
Sampler:	13			Gauging I	Date: 3-	28-25		
Well I.D.	: MW-	(8		Well Dian	neter (in.)	: (2) 3	3 4 6 8	3
Total We	ll Depth (f	t.): 12	.98	Depth to V				
Mark Street	Free Produ		_	Thickness				
Reference		(PVC)	Grade	Flow Cell		Hann		
Purge Metho Sampling M		2" Grundf Dedicated	Tubing	COMU	Peristatic I New Tubin	Jimp	Bladder Pump Other Pump Depth:	
Time	Temp.	рН	Cond. (mS/cm or µS/om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water
0853	11.55	3.94	416	16	3.18	(05-1	600	13.28
0856	11-26	8.73	421	12	3.09	97.6	1200	13.31
0859	11.19	8.67	420	lo	3.02	84.3	1800	13.33
0902	11.04	8.63	419	10	2.96	77.6	2400	13.36
0905	11.15 8.59 416 10 2.90 75.2 3000					13.38		
/						V/		
		1			11 = -		1	
						1		
			1		1	<u> </u>		,\)
					-			V.
Did well	dewater?	Yes	(Po)		Amount	actually	evacuated: 3	000mC
Sampling	Time:	0907			Samplin	g Date:	3-28-25	
Sample I.	D.: MW-				Laborato	ory: P	ACE	
Analyzed	for:	TPH-G	BTEX MTI	BE TPH-D		Other:	Sector	
Equipmen	nt Blank I.	D,:	@ Time		Duplicat	e I.D.:		

Project #:	25032	8-1	KCI	Client:	ERR	26				
Sampler:		U		Gauging I		-78-1	25			
Well I.D.	: MW-1	9		Well Dian	neter (in.)	_		3		
Total We	ll Depth (fi	t.): ["	1.85	Depth to V	7	()	,			
Depth to	Free Produ	ict: —	-	Thickness	of Free Pr	oduct (fe	et): —			
Reference	ed to:	evs	Grade	Flow Cell	Type:	H	ama			
Purge Metho Sampling M Start Purge		2" Grundf Dedicated		loon	Peristaltic P New Tubing		Bladder Pump Other Pump Depth:			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
[12]	13.74	7.51	167	49	215	83.3	600	13.32		
1124	13.70	7.73	[59	31	2-71	84.0	1200	13.32		
1127	13.84	7.78	122	21	2.68	81.9	(80)	13.32		
1136	13.91	7.91	154	22	2.66	79.5	2400 13.32			
1133	13.25	7.87	122	21	2.65 78.5 3000 13.2					
		1								
					/			1		
					/					
								-/-		
			1	/		-				
Did well	dewater?	Yes	140)		Amount	actually e	evacuated:	,000ml		
Sampling	Time:	[134			Sampling		3-29	3000ML		
Sample I.	-	n-19			Laborato		PACE			
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	Secon			
Equipmen	nt Blank I.l	D.:	@		Duplicate	e I.D.:	0 - 2 × ·			

Project #	: 250328	8-Kc2		Client: ¿	EKRG					
Sampler:				Gauging D	Date: 3/	28/25	-			
Well I.D.	: MW-20			Well Dian			DISTRICT OF THE PARTY OF THE PA	3		
7	ell Depth (f		34	Depth to V	LAUTEN LEAVY					
Zada IV z TVIII	Free Produ		_	Thickness	TT//28.70 = 97	10000				
Referenc		Fye	Grade	Flow Cell		F 3 1 1 1 1 7 7 7 8 7 1 8	ct). —			
Purge Meth Sampling M	od:	2" Grundfo Dedicated	os Pump Tubing	100 un	Peristaltic F New Tubin	- Gamp	Bladder Pump Other Pump Depth:(3.54		
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ovand)	Depth to Water		
0853	12.16	6.49	1067	69	0.99	20.5	600	14.08		
0856	12,19	7.03	1176	54	0.37	-9.5	1200	14.10		
0859	11.97	6.94	1141	57	0,27	-21.8	1800	14.10		
0902	11.89	6.8896	1138	52	0,26	-24.7	2400	14.14		
0905	11.99	6.97	1129	54	0,24	-27.1	300	14.16		
1										
Did well	dewater?	Yes (100		Amount	actually e	vacuated: 300	DO42		
Sampling	ر Time: ن	908			Sampling	g Date: 3	128/25			
John Burton	.D.: MW						a PACE			
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D	TO THE PARTY OF TH					
Equipme	nt Blank I.	D.:	@ Time		Duplicate I.D.:					

		20112	2011	DEED INCOLV	TI OILLI	DIKKEL	DALKIKI	
Project #	: 5803	2503	28-Kes	Client: E	RRG		10 11	
Sampler:				and the second second second second	Date: 3	1281	75	
Well I.D.	: MW-2	-1					4) 6 8	3
Total We	ell Depth (f	t.): 1%	82	Library Cons	Water (ft.)			
S. L. William A. T. Line	Free Produ			Toyota z s	of Free Pr	n ne CW		
Referenc		₩e	Grade		Type: NA	ALC: CLUSTER L		
Purge Meth Sampling M	od:	2" Grundfo	Tubing	200 mc/	Peristaltic I New Tubin	2mp	Bladder Pump Other	
Time	Temp.	pН	Cond. (mS/cm o	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)
1124	13.09	5.63	737	36	0.51	-7.5	600	14.63
1127	12.98	5.54	745	19	0.36	-14.5	1200	14.70
1130	12.94	5.57	745	14	0.33	-16.4	1800	14.72
1133	13.07	5.57	744	13	0.32	-18.3	2400	14.77
1136	13.11	5.57	744	14	0.33	-20.1	3000	14.80
								\bigcap
			- 17					1
	/				/			
/								
/								
Did well	dewater?	Yes (No		Amount	actually	evacuated: 30	00m2
Sampling	g Time: 10	39					3/28/25	
Sample I	.D.: MW-	21			Laborato	T. 17 T.		
Analyzed	l for:	TPH-G	BTEX M	гве трн-р			su cac	
Equipme	nt Blank I.	D.:	@ Time	CALE	Duplicat		_	7

roject #: 250328-KU	Client: ERUG
ampler: W	Gauging Date: 3-78-25
Vell I.D.: DW-1	Well Diameter (in.): 2 3 4 6 8
Total Well Depth (ft.): 20.02	Depth to Water (ft.): 13,19
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: KVO Grade	Flow Cell Type: Hanne
urge Method: 2" Grundfos Pump ampling Method: Dedicated Dubing tart Purge Time: 0414 Flow Rate	Peristalic Pump New Tubing Bladder Pump Other
Cond.	
1917 11.34 8.18 343	42 2.96 105.9 600 13.28
0920 11.39 3.14 343	37 2.94 1004 1200 13.32
0923 12.01 8.09 343	24 2.91 106.6 1800 13.35
0926 12.11 8.02 344	21 2.91 106.7 2400 13.37
0929 12.05 7.99 344	20 2.91 106.9 3000 13.40
07.32 12.16 7.95 343	20 2.89 107.1 3600 13.42
Did well dewater? Yes	Amount actually evacuated: 3600ML
ampling Time: 0133	Sampling Date: 3-28-25
ample I.D.: ルルー	Laboratory: PACE
	TBE TPH-D Other: See COC
Equipment Blank I.D.:	Duplicate I.D.:

WELLHEAD INSPECTION FORM

Date: 3/28/25

Page _____ of ____ Client: £121267 Site: 2356328-KL1 Technician: レム,レフ, Do Job#: 250328-KCI Check indicates deficiency Bolts missing (list qty) Tabs stripped (list qty)
Tabs broken (list qty) Other (explain in notes) ock non-functional Well Not Inspected (explain in notes) Rim / Lid broken Notes (list if cap or lick replaced, if there are access issues associated with repairs, if traffic control is required, if stand pipe damaged, or any Well ID specific details not covered by checklist) MW-Z MW-4 MW-6 MW-7 MW-8 Mw-9 MW-10 MW-11 MW-13 MW-14 MW-15 MW-16 MW-17 MW-18 MW-19 MW-20 MW-21 NOTES:

WELLHEAD INSPECTION FORM

Client: ERR G Site: 2350 24th Ave & Seattle Date: 3/28/25

Job #: 250328 - KC(Technician: KC, LJ, DO Page Z of Z Check indicates deficiency Bolts missing (list qty) Tabs stripped (list qty)
Tabs broken (list qty) nnular seal incomplete Other (explain in notes) ock non-functional Well Not Inspected (explain in notes) Cap non-functional Rim / Lid broken pron damaged Notes (list if cap or lick replaced, if there are access issues associated with repairs, if traffic control is required, if stand pipe damaged, or any Well ID specific details not covered by checklist) RW-1 RW-Z RW-3 RW-4 RW-5 RW-6 RW-7 RW-8 RW-9 RW-10 NOTES:

SAN DIEGO

TEST EQUIPMENT CALIBRATION LOG

	INITIALS	77	- /
RCI	TEMP.	14.2	
PROJECT NUMBER 250328- RCI	CALIBRATED TO: OR WITHIN 10%:	7	
PROJECT NUM	EQUIPMENT READING	\$0.01 \$0.7 40.4	
		PH 13	cond 3400
1961	DATE/TIME OF TEST	3/28/25	
E Circle K	EQUIPMENT NUMBER	02900 3/28/27	
PROJECT NAME Circle K	EQUIPMENT NAME	HANNA	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	ME 2350 24	PROJECT NAME 2350 24th 4m E fath WA	4 WA	PROJECT NUM	PROJECT NUMBER 250328-601	100	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Hamm	10/16003101	3-28-25 SOP 45	PHO Co	3.67	5	12.3	5
			Cent 3100 (appr37.7 (20100	38ml 236-4 027	7	14.3	77

Appendix B. Laboratory Reports During Reporting Period

Pace Analytical® ANALYTICAL REPORT

January 22, 2025

Engineering/Remediation Resources Group

Sample Delivery Group: L1818502 Samples Received: 01/18/2025

Project Number:

Description: System Vapor

Report To: Fernando Idiarte

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
FALCO-300-INF-20250117 L1818502-01	5
FALCO-300-EFF-20250117 L1818502-02	7
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

FALCO-300-INF-20250117 L1818502-01 Air			Collected by Fernando Idiarte	Collected date/time 01/17/25 08:15	Received date/time 01/18/25 09:00	
FALCO-300-INF-2025011/ L1818502-01 All					Analyst DAH DBB Received da	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG2435947	1	01/19/25 12:02	01/19/25 12:02	DAH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2437137	20	01/21/25 23:33	01/21/25 23:33	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FALCO-300-EFF-20250117 L1818502-02 Air			Fernando Idiarte	01/17/25 08:25	01/18/25 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG2435947	1	01/19/25 12:30	01/19/25 12:30	DAH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2437137	1	01/21/25 16:17	01/21/25 16:17	DBB	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

SDG:

L1818502

Collected date/time: 01/17/25 08:15

SAMPLE RESULTS - 01

1818502

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Result	Qualifier	DL	LOD	LOQ	Dilution	Analysis	Batch
nalyte		ug/m3		ug/m3	ug/m3	ug/m3		date / time	
cetone	67-64-1	1.50	U	1.24	1.50	2.97	1	01/19/2025 12:02	WG2435947
llyl Chloride	107-05-1	0.595	U	0.582	0.595	0.626	1	01/19/2025 12:02	WG2435947
enzene	71-43-2	399	_	7.03	12.1	12.8	20	01/21/2025 23:33	WG2437137
enzyl Chloride	100-44-7	0.987	<u>U</u>	0.461	0.987	1.04	1	01/19/2025 12:02	WG2435947
romodichloromethane	75-27-4	1.27	U	0.466	1.27	1.34	1	01/19/2025 12:02	WG2435947
omoform	75-25-2	3.21	<u>U</u>	0.781	3.21	6.52	1	01/19/2025 12:02	WG2435947
romomethane	74-83-9	0.737	<u>U</u>	0.364	0.737	0.776	1	01/19/2025 12:02	WG2435947
3-Butadiene	106-99-0	1.39	<u>U</u>	0.350	1.39	4.43	1	01/19/2025 12:02	WG2435947
arbon disulfide	75-15-0	0.591		0.498	0.591	1.24	1	01/19/2025 12:02	WG2435947 WG2435947
arbon tetrachloride	56-23-5	1.20	<u>U</u>	0.438	1.20	1.24	1	01/19/2025 12:02	WG2435947 WG2435947
	108-90-7	0.878	<u>U</u>	0.470	0.878	0.924		01/19/2025 12:02	
			<u>U</u>				1		WG2435947
nloroethane	75-00-3	0.501	<u>U</u>	0.290	0.501	0.528	1	01/19/2025 12:02	WG2435947
nloroform	67-66-3	0.925	<u>U</u>	0.506	0.925	0.973	1	01/19/2025 12:02	WG2435947
lloromethane	74-87-3	0.392	<u>U</u>	0.227	0.392	0.413	1	01/19/2025 12:02	WG2435947
Chlorotoluene	95-49-8	0.979	<u>U</u>	0.406	0.979	1.03	1	01/19/2025 12:02	WG2435947
	110-82-7	1660		11.7	13.1	13.8	20	01/21/2025 23:33	WG2437137
bromochloromethane	124-48-1	1.62	<u>U</u>	0.592	1.62	1.70	1	01/19/2025 12:02	WG2435947
2-Dibromoethane	106-93-4	1.46	<u>U</u>	0.531	1.46	1.54	1	01/19/2025 12:02	WG2435947
2-Dichlorobenzene	95-50-1	1.14	<u>U</u>	0.441	1.14	1.20	1	01/19/2025 12:02	WG2435947
3-Dichlorobenzene	541-73-1	1.14	<u>U</u>	0.453	1.14	1.20	1	01/19/2025 12:02	WG2435947
l-Dichlorobenzene	106-46-7	1.14	<u>U</u>	0.462	1.14	1.20	1	01/19/2025 12:02	WG2435947
2-Dichloroethane	107-06-2	0.769	U	0.296	0.769	0.810	1	01/19/2025 12:02	WG2435947
-Dichloroethane	75-34-3	0.762	U	0.285	0.762	0.802	1	01/19/2025 12:02	WG2435947
-Dichloroethene	75-35-4	0.753	U	0.296	0.753	0.793	1	01/19/2025 12:02	WG2435947
-1,2-Dichloroethene	156-59-2	22.6	_	0.315	0.753	0.793	1	01/19/2025 12:02	WG2435947
ns-1,2-Dichloroethene	156-60-5	0.753	<u>U</u>	0.291	0.753	0.793	1	01/19/2025 12:02	WG2435947
-Dichloropropane	78-87-5	0.878	U	0.348	0.878	0.924	1	01/19/2025 12:02	WG2435947
	10061-01-5	0.863	U	0.337	0.863	0.908	1	01/19/2025 12:02	WG2435947
ins-1,3-Dichloropropene	10061-02-6	0.863	U	0.361	0.863	0.908	1	01/19/2025 12:02	WG2435947
-Dioxane	123-91-1	1.12	<u>U</u>	0.591	1.12	2.27	1	01/19/2025 12:02	WG2435947
nanol	64-17-5	4.53	<u>U</u>	4.47	4.53	4.71	1	01/19/2025 12:02	WG2435947
nylbenzene	100-41-4	1040	<u> </u>	6.76	16.5	17.3	20	01/21/2025 23:33	WG2437137
Ethyltoluene	622-96-8	1130		8.69	18.7	19.6	20	01/21/2025 23:33	WG2437137
chlorofluoromethane	75-69-4	1.07	11	0.433	1.07	1.12	1	01/19/2025 12:02	WG2437137 WG2435947
	75-09- 4 75-71-8		<u>U</u>	0.433	0.940	0.989		01/19/2025 12:02	
chlorodifluoromethane		6.28					1		WG2435947
	76-13-1	1.46	<u>U</u>	0.576	1.46	1.53	1	01/19/2025 12:02	WG2435947
	76-14-2	1.33	<u>U</u>	0.529	1.33	1.40	1	01/19/2025 12:02	WG2435947
•	142-82-5	4250	11	9.33	15.5	16.4	20	01/21/2025 23:33	WG2437137
xachloro-1,3-butadiene	87-68-3	3.31	<u>U</u>	0.854	3.31	6.73	1	01/19/2025 12:02	WG2435947
	110-54-3	2560		10.1	21.9	44.4	20	01/21/2025 23:33	WG2437137
propylbenzene	98-82-8	190		0.355	0.934	0.983	1	01/19/2025 12:02	WG2435947
ethylene Chloride	75-09-2	0.660	<u>U</u>	0.587	0.660	0.694	1	01/19/2025 12:02	WG2435947
ethyl Butyl Ketone	591-78-6	2.58	<u>U</u>	0.544	2.58	5.11	1	01/19/2025 12:02	WG2435947
Butanone (MEK)	78-93-3	7.22		0.342	1.86	3.69	1	01/19/2025 12:02	WG2435947
Methyl-2-pentanone (MIBK)	108-10-1	2.58	<u>U</u>	0.434	2.58	5.12	1	01/19/2025 12:02	WG2435947
thyl Methacrylate	80-62-6	0.778	U	0.692	0.778	0.819	1	01/19/2025 12:02	WG2435947
BE	1634-04-4	0.685	U	0.293	0.685	0.721	1	01/19/2025 12:02	WG2435947
phthalene	91-20-3	155		3.23	3.25	3.30	1	01/19/2025 12:02	WG2435947
Propanol	67-63-0	77.7		1.67	2.46	3.07	1	01/19/2025 12:02	WG2435947
ppene	115-07-1	1.08	<u>U</u>	0.368	1.08	2.15	1	01/19/2025 12:02	WG2435947
rrene	100-42-5	0.808	<u>U</u>	0.341	0.808	1.70	1	01/19/2025 12:02	WG2435947
,2,2-Tetrachloroethane	79-34-5	1.31	<u>U</u>	0.478	1.31	1.37	1	01/19/2025 12:02	WG2435947
	127-18-4	1.29	_	0.478	1.29	1.36	1	01/19/2025 12:02	WG2435947 WG2435947
	127 IU-T		<u>U</u>						
,	109_00 0	0 560		() // Q //	0 660				
trahydrofuran	109-99-9 108-88-3	0.560 618	<u>U</u>	0.484 9.79	0.560 23.4	0.590 37.7	1 20	01/19/2025 12:02 01/21/2025 23:33	WG2435947 WG2437137

FALCO-300-INF-20250117

Collected date/time: 01/17/25 08:15

SAMPLE RESULTS - 01

L1818502

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Result	Qualifier	DL	LOD	LOQ	Dilution	Analysis	Batch
Analyte		ug/m3		ug/m3	ug/m3	ug/m3		date / time	
1,1,1-Trichloroethane	71-55-6	1.03	U	0.391	1.03	1.09	1	01/19/2025 12:02	WG2435947
1,1,2-Trichloroethane	79-00-5	1.03	<u>U</u>	0.372	1.03	1.09	1	01/19/2025 12:02	WG2435947
Trichloroethylene	79-01-6	1.02	<u>U</u>	0.364	1.02	1.07	1	01/19/2025 12:02	WG2435947
1,2,4-Trimethylbenzene	95-63-6	3390		9.08	18.7	19.6	20	01/21/2025 23:33	WG2437137
1,3,5-Trimethylbenzene	108-67-8	1400		8.39	18.7	19.6	20	01/21/2025 23:33	WG2437137
2,2,4-Trimethylpentane	540-84-1	4860		8.41	17.8	18.7	20	01/21/2025 23:33	WG2437137
Vinyl chloride	75-01-4	1.33		0.211	0.486	0.511	1	01/19/2025 12:02	WG2435947
Vinyl Bromide	593-60-2	0.831	<u>U</u>	0.328	0.831	0.875	1	01/19/2025 12:02	WG2435947
Vinyl acetate	108-05-4	1.09	<u>U</u>	0.341	1.09	2.22	1	01/19/2025 12:02	WG2435947
m&p-Xylene	179601-23-1	6590		15.1	26.9	34.7	20	01/21/2025 23:33	WG2437137
o-Xylene	95-47-6	2150		7.67	16.5	17.3	20	01/21/2025 23:33	WG2437137
Xylenes, Total	1330-20-7	8770		7.69	16.5	52.1	20	01/21/2025 23:33	WG2437137
TPH (GC/MS) Low Fraction	8006-61-9	107000		5660	15.7	16500	20	01/21/2025 23:33	WG2437137
(S) 1,4-Bromofluorobenzene	460-00-4	345	<u>J1</u>				60.0-140	01/19/2025 12:02	WG2435947
(S) 1,4-Bromofluorobenzene	460-00-4	105					60.0-140	01/21/2025 23:33	WG2437137

L1818502-01 WG2435947: Surrogate failure due to matrix interference

SDG:

L1818502

Collected date/time: 01/17/25 08:25

SAMPLE RESULTS - 02

L1818502

Volatile Organic Compounds (MS) by Method TO-15

Volatile Organic C	ompound	s (MS) by	Method T	O-15					
Analyte	CAS#	Result ug/m3	Qualifier	DL ug/m3	LOD ug/m3	LOQ ug/m3	Dilution	Analysis date / time	<u>Batch</u>
Acetone	67-64-1	1.50	11	1.24	1.50	2.97	1	01/19/2025 12:30	WG2435947
Allyl Chloride	107-05-1	0.595	<u>U</u>	0.582	0.595	0.626	1	01/19/2025 12:30	WG2435947 WG2435947
Benzene	71-43-2	9.14	<u>=</u>	0.351	0.607	0.639	1	01/19/2025 12:30	WG2435947 WG2435947
Benzyl Chloride	100-44-7	0.987	11	0.461	0.987	1.04	1	01/19/2025 12:30	WG2435947 WG2435947
Bromodichloromethane	75-27-4	1.27	U	0.466	1.27	1.34	1	01/19/2025 12:30	WG2435947
Bromoform	75-27-4	3.21	<u>U</u>	0.400	3.21	6.52	1	01/19/2025 12:30	WG2435947 WG2435947
Bromomethane	74-83-9	0.737		0.761	0.737	0.776	1	01/19/2025 12:30	WG2435947
1,3-Butadiene	106-99-0	1.39	<u>U</u>	0.350	1.39	4.43	1	01/19/2025 12:30	WG2435947 WG2435947
Carbon disulfide	75-15-0	0.591		0.330	0.591	1.24	1	01/19/2025 12:30	WG2435947 WG2435947
Carbon tetrachloride	56-23-5	1.20	<u>U</u>	0.490	1.20	1.24	1	01/19/2025 12:30	WG2435947 WG2435947
	108-90-7	8.18	<u>U</u>	0.470	0.878	0.924	1		
Chlorobenzene	75-00-3	0.427	1		0.501	0.528	1	01/19/2025 12:30	WG2435947
Chloroethane			<u>J</u>	0.290				01/19/2025 12:30	WG2435947
Chloroform	67-66-3	0.925	<u>U</u>	0.506	0.925	0.973	1	01/19/2025 12:30	WG2435947
Chloromethane	74-87-3	10.1		0.227	0.392	0.413	1	01/19/2025 12:30	WG2435947
2-Chlorotoluene	95-49-8	0.979	<u>U</u>	0.406	0.979	1.03	1	01/19/2025 12:30	WG2435947
Cyclohexane	110-82-7	33.2	1.1	0.585	0.654	0.689	1	01/21/2025 16:17	WG2437137
Dibromochloromethane	124-48-1	1.62	<u>U</u>	0.592	1.62	1.70	1	01/19/2025 12:30	WG2435947
1,2-Dibromoethane	106-93-4	1.46	<u>U</u>	0.531	1.46	1.54	1	01/19/2025 12:30	WG2435947
1,2-Dichlorobenzene	95-50-1	2.23		0.441	1.14	1.20	1	01/19/2025 12:30	WG2435947
1,3-Dichlorobenzene	541-73-1	1.14	<u>U</u>	0.453	1.14	1.20	1	01/19/2025 12:30	WG2435947
1,4-Dichlorobenzene	106-46-7	1.61		0.462	1.14	1.20	1	01/19/2025 12:30	WG2435947
1,2-Dichloroethane	107-06-2	0.769	<u>U</u>	0.296	0.769	0.810	1	01/19/2025 12:30	WG2435947
1,1-Dichloroethane	75-34-3	0.762	<u>U</u>	0.285	0.762	0.802	1	01/19/2025 12:30	WG2435947
1,1-Dichloroethene	75-35-4	0.753		0.296	0.753	0.793	1	01/19/2025 12:30	WG2435947
cis-1,2-Dichloroethene	156-59-2	0.753	<u>U</u>	0.315	0.753	0.793	1	01/19/2025 12:30	WG2435947
trans-1,2-Dichloroethene	156-60-5	0.753		0.291	0.753	0.793	1	01/19/2025 12:30	WG2435947
1,2-Dichloropropane	78-87-5	0.878	<u>U</u>	0.348	0.878	0.924	1	01/19/2025 12:30	WG2435947
cis-1,3-Dichloropropene	10061-01-5	0.863		0.337	0.863	0.908	1	01/19/2025 12:30	WG2435947
trans-1,3-Dichloropropene	10061-02-6	0.863	<u>U</u>	0.361	0.863	0.908	1	01/19/2025 12:30	WG2435947
1,4-Dioxane	123-91-1	1.12		0.591	1.12	2.27	1	01/19/2025 12:30	WG2435947
Ethanol	64-17-5	4.53	<u>7</u>	4.47	4.53	4.71	1	01/19/2025 12:30	WG2435947
Ethylbenzene	100-41-4	0.542	<u>_</u>	0.337	0.824	0.867	1	01/19/2025 12:30	WG2435947
4-Ethyltoluene	622-96-8	1.22		0.435	0.933	0.982	1	01/19/2025 12:30	WG2435947
Trichlorofluoromethane	75-69-4	1.07	<u>U</u>	0.433	1.07	1.12	1	01/19/2025 12:30	WG2435947
Dichlorodifluoromethane	75-71-8	1.05		0.399	0.940	0.989	1	01/19/2025 12:30	WG2435947
1,1,2-Trichlorotrifluoroethane	76-13-1	1.46	U	0.576	1.46	1.53	1	01/19/2025 12:30	WG2435947
1,2-Dichlorotetrafluoroethane		1.33	<u>U</u>	0.529	1.33	1.40	1	01/19/2025 12:30	WG2435947
Heptane	142-82-5	67.1		0.466	0.777	0.818	1	01/21/2025 16:17	WG2437137
Hexachloro-1,3-butadiene	87-68-3	3.31	<u>U</u>	0.854	3.31	6.73	1	01/19/2025 12:30	WG2435947
n-Hexane	110-54-3	146		0.504	1.09	2.22	1	01/21/2025 16:17	WG2437137
Isopropylbenzene	98-82-8	0.934	<u>U</u>	0.355	0.934	0.983	1	01/19/2025 12:30	WG2435947
Methylene Chloride	75-09-2	3.58		0.587	0.660	0.694	1	01/19/2025 12:30	WG2435947
Methyl Butyl Ketone	591-78-6	2.58	<u>U</u>	0.544	2.58	5.11	1	01/19/2025 12:30	WG2435947
2-Butanone (MEK)	78-93-3	1.86		0.342	1.86	3.69	1	01/19/2025 12:30	WG2435947
4-Methyl-2-pentanone (MIBK)	108-10-1	2.58	<u>U</u>	0.434	2.58	5.12	1	01/19/2025 12:30	WG2435947
Methyl Methacrylate	80-62-6	0.778		0.692	0.778	0.819	1	01/19/2025 12:30	WG2435947
MTBE	1634-04-4	0.685	<u>U</u>	0.293	0.685	0.721	1	01/19/2025 12:30	WG2435947
Naphthalene	91-20-3	3.25	<u>U</u>	3.23	3.25	3.30	1	01/19/2025 12:30	WG2435947
2-Propanol	67-63-0	2.46	<u>U</u>	1.67	2.46	3.07	1	01/19/2025 12:30	WG2435947
Propene	115-07-1	1.08	<u>U</u>	0.368	1.08	2.15	1	01/19/2025 12:30	WG2435947
Styrene	100-42-5	0.808	<u>U</u>	0.341	0.808	1.70	1	01/19/2025 12:30	WG2435947
1,1,2,2-Tetrachloroethane	79-34-5	1.31	U	0.478	1.31	1.37	1	01/19/2025 12:30	WG2435947
Tetrachloroethylene	127-18-4	66.2		0.754	1.29	1.36	1	01/19/2025 12:30	WG2435947
Tetrahydrofuran	109-99-9	0.560	<u>U</u>	0.484	0.560	0.590	1	01/19/2025 12:30	WG2435947
Toluene	108-88-3	1.17	<u>U</u>	0.490	1.17	1.88	1	01/19/2025 12:30	WG2435947
1,2,4-Trichlorobenzene	120-82-1	3.70	<u>U</u>	3.42	3.70	4.66	1	01/19/2025 12:30	WG2435947

FALCO-300-EFF-20250117

Collected date/time: 01/17/25 08:25

SAMPLE RESULTS - 02

Volatile Organic Compounds (MS) by Method TO-15

•		, ,							
	CAS #	Result	Qualifier	DL	LOD	LOQ	Dilution	Analysis	Batch
Analyte		ug/m3		ug/m3	ug/m3	ug/m3		date / time	
1,1,1-Trichloroethane	71-55-6	1.03	U	0.391	1.03	1.09	1	01/19/2025 12:30	WG2435947
1,1,2-Trichloroethane	79-00-5	1.03	U	0.372	1.03	1.09	1	01/19/2025 12:30	WG2435947
Trichloroethylene	79-01-6	1.02	U	0.364	1.02	1.07	1	01/19/2025 12:30	WG2435947
1,2,4-Trimethylbenzene	95-63-6	0.933	U	0.455	0.933	0.982	1	01/21/2025 16:17	WG2437137
1,3,5-Trimethylbenzene	108-67-8	1.71		0.419	0.933	0.982	1	01/19/2025 12:30	WG2435947
2,2,4-Trimethylpentane	540-84-1	218		0.420	0.888	0.934	1	01/19/2025 12:30	WG2435947
Vinyl chloride	75-01-4	0.486	U	0.211	0.486	0.511	1	01/19/2025 12:30	WG2435947
Vinyl Bromide	593-60-2	0.831	U	0.328	0.831	0.875	1	01/19/2025 12:30	WG2435947
Vinyl acetate	108-05-4	1.09	U	0.341	1.09	2.22	1	01/19/2025 12:30	WG2435947
m&p-Xylene	179601-23-1	0.806	J	0.754	1.34	1.73	1	01/21/2025 16:17	WG2437137
o-Xylene	95-47-6	0.824	U	0.385	0.824	0.867	1	01/21/2025 16:17	WG2437137
Xylenes, Total	1330-20-7	0.808	J	0.385	0.825	2.61	1	01/21/2025 16:17	WG2437137
TPH (GC/MS) Low Fraction	8006-61-9	1020		282	0.785	826	1	01/21/2025 16:17	WG2437137
(S) 1,4-Bromofluorobenzene	460-00-4	94.7					60.0-140	01/19/2025 12:30	WG2435947
(S) 1,4-Bromofluorobenzene	460-00-4	97.3					60.0-140	01/21/2025 16:17	WG2437137

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1818502-01,02

Method Blank (MB)

(MB) R4168842-3 01/19/25	10:00				
, ,	MB Result	MB Qualifier	MB MDL	MB LOD	MB RDL
Analyte	ug/m3		ug/m3	ug/m3	ug/m3
Acetone	1.50	U	1.24	1.50	2.97
Allyl Chloride	0.595	U	0.582	0.595	0.626
Benzene	0.607	U	0.351	0.607	0.639
Benzyl Chloride	0.987	U	0.461	0.987	1.04
Bromodichloromethane	1.27	U	0.466	1.27	1.34
Bromoform	3.21	U	0.781	3.21	6.52
Bromomethane	0.737	U	0.364	0.737	0.776
1,3-Butadiene	1.39	U	0.350	1.39	4.43
Carbon disulfide	0.591	U	0.498	0.591	1.24
Carbon tetrachloride	1.20	U	0.470	1.20	1.26
Chlorobenzene	0.878	U	0.545	0.878	0.924
Chloroethane	0.501	U	0.290	0.501	0.528
Chloroform	0.925	<u>U</u>	0.506	0.925	0.973
Chloromethane	0.392	U	0.227	0.392	0.413
2-Chlorotoluene	0.979	<u>U</u>	0.406	0.979	1.03
Dibromochloromethane	1.62	<u>U</u>	0.592	1.62	1.70
1,2-Dibromoethane	1.46	<u>U</u>	0.531	1.46	1.54
1,2-Dichlorobenzene	1.14	<u>U</u>	0.441	1.14	1.20
1,3-Dichlorobenzene	1.14	<u>U</u>	0.453	1.14	1.20
1,4-Dichlorobenzene	1.14	<u>U</u>	0.462	1.14	1.20
1,2-Dichloroethane	0.769	<u>U</u>	0.296	0.769	0.810
1,1-Dichloroethane	0.762	<u>U</u>	0.285	0.762	0.802
1,1-Dichloroethene	0.753	<u>U</u>	0.296	0.753	0.793
cis-1,2-Dichloroethene	0.753	<u>U</u>	0.315	0.753	0.793
trans-1,2-Dichloroethene	0.753	<u>U</u>	0.291	0.753	0.793
1,2-Dichloropropane	0.878	<u>U</u>	0.348	0.878	0.924
cis-1,3-Dichloropropene	0.863	<u>U</u>	0.337	0.863	0.908
trans-1,3-Dichloropropene	0.863	<u>U</u>	0.361	0.863	0.908
1,4-Dioxane	1.12	<u>U</u>	0.591	1.12	2.27
Ethanol	4.53	<u>U</u>	4.47	4.53	4.71
Ethylbenzene	0.824	<u>U</u>	0.337	0.824	0.867
4-Ethyltoluene	0.933	<u>U</u>	0.435	0.933	0.982
Trichlorofluoromethane	1.07	<u>U</u>	0.433	1.07	1.12
Dichlorodifluoromethane	0.940	<u>U</u>	0.399	0.940	0.989
1,1,2-Trichlorotrifluoroethane	1.46	<u>U</u>	0.576	1.46	1.53
1,2-Dichlorotetrafluoroethane	1.33	<u>U</u>	0.529	1.33	1.40
Hexachloro-1,3-butadiene	3.31	<u>U</u>	0.854	3.31	6.73
Isopropylbenzene	0.934	<u>U</u>	0.355	0.934	0.983
Methylene Chloride	0.660	<u>U</u>	0.587	0.660	0.694
Methyl Butyl Ketone	2.58	<u>U</u>	0.544	2.58	5.11

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1818502-01,02

Method Blank (MB)

(MB) R4168842-3 01/19/25	5 10:00						
	MB Result	MB Qualifier	MB MDL	MB LOD	MB RDL		
Analyte	ug/m3		ug/m3	ug/m3	ug/m3		
2-Butanone (MEK)	1.86	<u>U</u>	0.342	1.86	3.69		
4-Methyl-2-pentanone (MIBK)	2.58	<u>U</u>	0.434	2.58	5.12		
Methyl Methacrylate	0.778	<u>U</u>	0.692	0.778	0.819		
MTBE	0.685	<u>U</u>	0.293	0.685	0.721		
Naphthalene	3.25	<u>U</u>	3.23	3.25	3.30		
2-Propanol	2.46	<u>U</u>	1.67	2.46	3.07		
Propene	1.08	<u>U</u>	0.368	1.08	2.15		
Styrene	0.808	<u>U</u>	0.341	0.808	1.70		
1,1,2,2-Tetrachloroethane	1.31	<u>U</u>	0.478	1.31	1.37		
Tetrachloroethylene	1.29	<u>U</u>	0.754	1.29	1.36		
Tetrahydrofuran	0.560	<u>U</u>	0.484	0.560	0.590		
Toluene	1.17	<u>U</u>	0.490	1.17	1.88		
1,2,4-Trichlorobenzene	3.70	<u>U</u>	3.42	3.70	4.66		
1,1,1-Trichloroethane	1.03	<u>U</u>	0.391	1.03	1.09		
1,1,2-Trichloroethane	1.03	<u>U</u>	0.372	1.03	1.09		
Trichloroethylene	1.02	<u>U</u>	0.364	1.02	1.07		
1,3,5-Trimethylbenzene	0.933	<u>U</u>	0.419	0.933	0.982		
2,2,4-Trimethylpentane	0.888	<u>U</u>	0.420	0.888	0.934		
Vinyl chloride	0.486	<u>U</u>	0.211	0.486	0.511		
Vinyl Bromide	0.831	<u>U</u>	0.328	0.831	0.875		
Vinyl acetate	1.09	<u>U</u>	0.341	1.09	2.22		
(S) 1,4-Bromofluorobenzene	93.1				60.0-140		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4168842-1 01/19/25 09:04 • (LCSD) R4168842-2 01/19/25 09:33											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%	
Acetone	8.91	8.27	7.91	92.8	88.8	58.0-128			4.41	20	
Allyl Chloride	11.7	12.3	12.0	105	102	71.0-131			2.84	20	
Benzene	12.0	11.3	11.1	94.7	93.1	69.0-119			1.70	20	
Benzyl Chloride	19.5	18.2	18.0	93.3	92.3	50.0-147			1.15	20	
Bromodichloromethane	25.2	25.8	24.7	103	98.1	72.0-128			4.52	20	
Bromoform	38.8	32.6	32.2	84.0	82.9	66.0-139			1.28	20	
Bromomethane	14.6	14.4	13.9	99.2	95.7	63.0-134			3.56	20	
1,3-Butadiene	8.30	7.83	7.94	94.4	95.7	66.0-134			1.40	20	
Carbon disulfide	23.3	23.1	22.6	99.1	96.9	57.0-134			2.18	20	
Carbon tetrachloride	23.6	24.4	23.2	103	98.1	68.0-132			5.03	20	
Chlorobenzene	17.3	18.2	18.0	105	104	70.0-119			1.28	20	

PAGE:

10 of 16

Tetrahydrofuran

11.1

10.7

10.4

96.5

93.9

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1818502-01,02

(LCS) R4168842-1 01/19/25	5 09:04 • (LCSE	D) R4168842-2	2 01/19/25 09:3	3							
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%	
Chloroethane	9.89	9.60	9.55	97.1	96.5	63.0-127			0.551	20	
Chloroform	18.3	18.7	18.2	103	99.5	68.0-123			3.17	20	
Chloromethane	7.75	7.27	7.19	93.9	92.8	59.0-132			1.14	20	
2-Chlorotoluene	19.3	19.3	18.8	100	97.1	74.0-130			2.98	20	
Dibromochloromethane	31.9	32.9	31.4	103	98.4	70.0-130			4.76	20	
1,2-Dibromoethane	28.8	30.5	29.8	106	103	74.0-122			2.55	20	
1,2-Dichlorobenzene	22.5	24.1	23.7	107	105	63.0-129			1.51	20	
1,3-Dichlorobenzene	22.5	24.4	23.8	108	106	65.0-130			2.49	20	
1,4-Dichlorobenzene	22.5	23.7	23.5	105	104	60.0-131			1.02	20	
1,2-Dichloroethane	15.2	16.4	15.9	108	105	65.0-128			3.26	20	
1,1-Dichloroethane	15.0	15.1	14.8	101	98.1	68.0-126			2.42	20	
1,1-Dichloroethene	14.9	14.9	14.5	100	97.3	61.0-133			2.97	20	
cis-1,2-Dichloroethene	14.9	14.6	14.5	98.4	97.3	70.0-121			1.09	20	
rans-1,2-Dichloroethene	14.9	14.9	14.4	100	97.1	67.0-124			3.24	20	
,2-Dichloropropane	17.3	18.5	17.6	107	102	69.0-123			5.12	20	
cis-1,3-Dichloropropene	17.0	16.8	17.4	98.9	102	70.0-128			3.18	20	
rans-1,3-Dichloropropene	17.0	17.1	16.7	100	97.9	75.0-133			2.42	20	
l,4-Dioxane	13.5	14.5	13.7	107	101	71.0-122			5.87	20	
Ethanol	7.07	6.20	6.09	87.7	86.1	59.0-125			1.84	20	
Ethylbenzene	16.3	15.9	15.7	97.9	96.8	70.0-124			1.10	20	
1-Ethyltoluene	18.4	19.8	19.4	107	106	67.0-129			1.75	20	
Frichlorofluoromethane	21.1	21.6	20.9	103	99.2	62.0-126			3.43	20	
Dichlorodifluoromethane	18.5	18.9	18.3	102	98.9	59.0-128			3.18	20	
1,1,2-Trichlorotrifluoroethane	28.7	28.4	27.7	98.7	96.5	66.0-126			2.19	20	
I,2-Dichlorotetrafluoroethane	26.2	26.4	25.5	101	97.1	63.0-121			3.51	20	
Hexachloro-1,3-butadiene	40.0	41.7	40.8	104	102	56.0-138			2.33	20	
sopropylbenzene	18.4	18.8	18.4	102	99.7	68.0-124			2.38	20	
Methylene Chloride	13.0	12.6	12.1	96.8	92.8	62.0-115			4.22	20	
Methyl Butyl Ketone	15.3	15.7	15.3	102	99.7	62.0-128			2.38	20	
2-Butanone (MEK)	11.1	11.2	10.5	101	94.9	67.0-130			6.52	20	
1-Methyl-2-pentanone (MIBK)	15.4	16.1	15.5	105	101	67.0-130			3.89	20	
Methyl Methacrylate	15.4	15.4	15.1	100	98.4	70.0-128			1.61	20	
ИТВЕ	13.5	13.2	12.8	97.3	94.4	66.0-126			3.06	20	
laphthalene	19.6	19.3	18.7	98.4	95.2	57.0-138			3.31	20	
2-Propanol	9.22	8.87	8.50	96.3	92.3	52.0-125			4.24	20	
ropene	6.46	6.35	6.25	98.4	96.8	57.0-136			1.64	20	
tyrene	31.9	34.9	33.6	109	105	73.0-127			3.98	20	
,1,2,2-Tetrachloroethane	25.8	26.9	26.4	109	103	65.0-127			1.81	20	
Tetrachloroethylene	25.5	27.2	26.2	107	103	66.0-124			3.56	20	

PAGE:

11 of 16

64.0-123

2.80

20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1818502-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4168842-1 01/19/25 09:04 • (LCSD) R4168842-2 01/19/25 09:33

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%
Toluene	14.1	14.5	13.9	102	98.7	66.0-119			3.71	20
1,2,4-Trichlorobenzene	27.8	26.4	25.8	95.2	92.8	55.0-142			2.55	20
1,1,1-Trichloroethane	20.4	20.6	20.2	101	99.2	68.0-125			1.60	20
1,1,2-Trichloroethane	20.4	21.8	20.9	107	103	73.0-119			4.07	20
Trichloroethylene	20.1	20.8	20.3	104	101	71.0-123			2.60	20
1,3,5-Trimethylbenzene	18.4	20.2	19.6	110	107	67.0-130			2.96	20
2,2,4-Trimethylpentane	17.5	17.5	17.1	100	97.3	68.0-121			2.70	20
Vinyl chloride	9.59	9.36	9.30	97.6	97.1	64.0-127			0.548	20
Vinyl Bromide	16.4	16.4	15.9	99.7	96.8	71.0-126			2.99	20
Vinyl acetate	13.2	10.4	9.51	78.9	72.0	56.0-139			9.19	20
(S) 1,4-Bromofluorobenzene				102	101	60.0-140				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1818502-01,02

Method Blank (MB)

(MB) R4169161-3 01/21/25	MB) R4169161-3 01/21/25 09:57								
	MB Result	MB Qualifier	MB MDL	MB LOD	MB RDL				
Analyte	ug/m3		ug/m3	ug/m3	ug/m3				
Benzene	0.607	<u>U</u>	0.351	0.607	0.639				
Cyclohexane	0.654	<u>U</u>	0.585	0.654	0.689				
Ethylbenzene	0.824	<u>U</u>	0.337	0.824	0.867				
4-Ethyltoluene	0.933	<u>U</u>	0.435	0.933	0.982				
Heptane	0.777	<u>U</u>	0.466	0.777	0.818				
n-Hexane	1.09	<u>U</u>	0.504	1.09	2.22				
Toluene	1.17	<u>U</u>	0.490	1.17	1.88				
1,2,4-Trimethylbenzene	0.933	<u>U</u>	0.455	0.933	0.982				
1,3,5-Trimethylbenzene	0.933	<u>U</u>	0.419	0.933	0.982				
2,2,4-Trimethylpentane	0.888	<u>U</u>	0.420	0.888	0.934				
m&p-Xylene	1.34	<u>U</u>	0.754	1.34	1.73				
o-Xylene	0.824	<u>U</u>	0.385	0.824	0.867				
Xylenes, Total	0.825	<u>U</u>	0.385	0.825	2.61				
TPH (GC/MS) Low Fraction	0.785	<u>U</u>	282	0.785	826				
(S) 1,4-Bromofluorobenzene	93.0				60.0-140				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
alyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%
nzene	12.0	11.7	11.7	97.6	97.6	69.0-119			0.000	20
clohexane	12.9	12.2	12.0	94.4	93.1	70.0-117			1.42	20
ylbenzene	16.3	15.8	16.0	97.1	98.4	70.0-124			1.36	20
Ethyltoluene	18.4	19.3	19.4	105	105	67.0-129			0.253	20
ptane	15.3	13.9	13.5	90.9	88.0	69.0-123			3.28	20
Hexane	13.2	11.8	12.3	89.6	93.1	63.0-120			3.80	20
uene	14.1	14.1	14.0	100	99.2	66.0-119			0.803	20
,4-Trimethylbenzene	18.4	20.3	20.5	110	111	66.0-132			0.964	20
,5-Trimethylbenzene	18.4	19.5	19.6	106	106	67.0-130			0.251	20
,4-Trimethylpentane	17.5	16.6	16.2	94.7	92.5	68.0-121			2.28	20
p-Xylene	32.5	33.4	33.4	103	103	61.0-134			0.000	20
Kylene	16.3	17.1	17.0	105	105	67.0-125			0.254	20
H (GC/MS) Low Fraction	777	731	723	94.1	93.1	70.0-130	<u>J</u>	<u>J</u>	1.14	20
6) 1,4-Bromofluorobenzene	2			100	102	60.0-140				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

DI	Detection Limit
DL	Detection Limit.
LOD	Limit of Detection.
LOQ	Limit of Quantitation.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

<u> </u>	2 000p0
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
U	Below Detectable Limits: Indicates that the analyte was not detected.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

SDG:

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Pace* Location Requested (City/State):		Air CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields Contact/Report To: Fernando Idiarte						Sample Receipt Checklist CDC Seal Present/Intact: /Y N										
Company Name: Engineering/Remediation Resource Street Address: 15333 NE 90th Street	s Grou	Phone #: 42	25-658-50 lifer.sonnich	26		ndo.idiar	te@errg	Coc Signed/Accurate: Coc Signed/Accurate: N Size: N Size: N Tage Color: G M/P B Unused: Unused: T/P#:										
City, State Zip:		Invoice to:				-	-											
Customer Project #:		mydice to.					40									1	In lan	
Project Name:		E-Mail:											Ana	lyses Requ	ested	TY 1	9/25	
System Vapor			er # (if applicat	ale):			- 1	1					Colle	yses ned	Local	Proj. Manager	ri	
Site Collection Info/Facility ID (as applicable):		Quote #:	er ii fir appiicas	riet.					Field	Information						3500 - Jen	nifer Gambill	
ENGREMRWA-AIRBTEXTPH		THE CONTRACTOR	finantalah a				-	-						- 1				
Time Zone Collected: [] AK PT MT CT ET		State origin of sample(s):A ram (CAA, RCRA, etc.) as												AcctNum / C				
Data Deliverables:	applicable:				Ca	nister	1	PUF / FILT	R	Summa			£ -	EMRWA				
[]Level II []Level III []Level IV	Rush (Pre-appr 2 Day 3 day		oval required): Permit # as applicable:			Pressur	e / Vacuum				Ē			Table #	M002			
() EQUIS	Date Results	344 300.		Units for Reporting:	(g/m) pp	BV mg/m	PPNIV			-	Elow	Total	2			Profile / Template: T	236638	
Other	Requested Soil Vapor (SV), C	Other (O)							End Pressure	re Duration	Flow	Volume	10-1			Prelog / Bot Ord. ID:	P1124723	
			Flow	Bagin (Collection	End	Collection	Pressure /					Compled	0				
Customer Sample ID	Matrix *	Summa	Controller	-	Time	Date	Time	Vacuum	Vacuum	1000	m³/min	Sampled	gog			1	V-4	
		Canister ID	ID.	Date	Time	Date	tane	(in Hg)	(in Hg)	(minutes)	or L/min	m³ or L	-	-	-		ple Comment	
FALCO -300-1NF-20250117	SU	6968	12873	1/17	0810	117	03/2	201	4			11 = 1	X		4	618	18902-01	
FALCO-300-INF-20250117 FALCO-300-EFF-20250117	SV	21990	28422	1/17	08.59	1/17	08 52	30	0				X			GNOSE	00	
													- 1					
			-					-					\vdash		+	-		
			1															
Customer Remarks / Special Conditions / Possible Hazards:		1		Collected E	3y: [0 10	1		Additiona	Instructi	ons from Pa	ce*:					
DODTO-15: Standard List, BTEX and TPH.	n went	to 0 7	19	Printed N Signature	ame: Se	l va	No 10	rathe		# Coolers:		Thermomete	er ID:		rrection ctor (°C):	Obs. Temp.	(°C): Corrected Temp. (°C)	
Relinquished by/Company: (Signature)		Date/Time:		Received b	y/Corpany: (Signature	DES			Date/Time:						king Number:		
Relinquished by/Company: (Signature		Date/Time:			y/Company: (Signature)	En.	iten Oc	m	(10/25 0900			vered by: In- Perso	n Courier				
Relinquished by/Company: (Signature)		Date/Time:		-	y/Company: (Date/Time: 6 6				FedEX.	UPS Other					
Relinquished by/Company: (Signature)		Date/Time:		Received by/Company: (Signature)					Date/Time:	Date/Time:								

- 01

Pace Analytical® ANALYTICAL REPORT

January 27, 2025

Engineering/Remediation Resources Group

L1818655 Sample Delivery Group:

Samples Received: 01/18/2025

Project Number: 20230065

Description: Former Circle K

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LG-404-EFF-20250117 L1818655-01	5
LG-403-MID-20250117 L1818655-02	6
LG-401-INF-20250117 L1818655-03	7
DUP-3-20250117 L1818655-04	8
DUP-1-20250117 L1818655-05	9
DUP-2-20250117 L1818655-06	10
TB-01-20250117 L1818655-07	11
Qc: Quality Control Summary	12
Wet Chemistry by Method 1664B	12
Volatile Organic Compounds (GC) by Method NWTPHGX	13
Volatile Organic Compounds (GC/MS) by Method 8260D	14
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SAMPLE SUMMARY

				0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D : 11	
LG-404-EFF-20250117 L1818655-01 GW			Collected by FL	Collected date/time 01/17/25 11:00	Received da 01/18/25 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2438724	1	01/24/25 15:18	01/24/25 20:43	DAL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2436679	1	01/21/25 11:27	01/21/25 11:27	JBE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436674	1	01/21/25 06:00	01/21/25 06:00	DYW	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2438079	1	01/23/25 06:33	01/23/25 06:33	ACG	Mt. Juliet, TN
LG-403-MID-20250117 L1818655-02 GW			Collected by FL	Collected date/time 01/17/25 11:30	Received da 01/18/25 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2438724	1	01/24/25 15:18	01/24/25 20:43	DAL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2436679	1	01/21/25 11:49	01/21/25 11:49	JBE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436674	1	01/21/25 06:22	01/21/25 06:22	DYW	Mt. Juliet, TN
LG-401-INF-20250117 L1818655-03 GW			Collected by	Collected date/time 01/17/25 11:50	Received da 01/18/25 08:	
Method	Batch	Dilution	Droporation	Analysis	Analyst	Location
wettod	DdlCII	Dilution	Preparation date/time	Analysis date/time	Analyst	LOCALIOII
Wet Chemistry by Method 1664B	WG2438724	1	01/24/25 15:18	01/24/25 20:43	DAL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2436679	1	01/21/25 12:11	01/21/25 12:11	JBE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436674	1	01/21/25 06:43	01/21/25 06:43	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-3-20250117 L1818655-04 GW			FL	01/17/25 12:00	01/18/25 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2438724	1	01/24/25 15:18	01/24/25 20:43	DAL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2436679	1	01/21/25 12:33	01/21/25 12:33	JBE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436674	1	01/21/25 07:05	01/21/25 07:05	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-1-20250117 L1818655-05 GW			FL	01/17/25 11:05	01/18/25 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2438724	1	01/24/25 15:18	01/24/25 20:43	DAL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-2-20250117 L1818655-06 GW			FL	01/17/25 11:10	01/18/25 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2438724	1	01/24/25 15:18	01/24/25 20:43	DAL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-01-20250117 L1818655-07 GW			FL	01/17/25 14:00	01/18/25 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2436679	1	01/21/25 10:01	01/21/25 10:01	JBE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436674	1	01/21/25 01:42	01/21/25 01:42	DYW	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

The following analysis were performed from an unpreserved, insufficiently or inadequately preserved sample.

Lab Sample ID

Jennifer Gambill

Project Manager

Project Sample ID

Method

L1818655-04

4 of 20

SAMPLE RESULTS - 01

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.49	1	01/24/2025 20:43	WG2438724

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 11:27	WG2436679
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		01/21/2025 11:27	WG2436679

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/21/2025 06:00	WG2436674
cis-1,2-Dichloroethene	ND		0.00100	1	01/23/2025 06:33	WG2438079
trans-1,2-Dichloroethene	ND		0.00100	1	01/21/2025 06:00	WG2436674
Ethylbenzene	ND		0.00100	1	01/21/2025 06:00	WG2436674
Tetrachloroethene	ND		0.00100	1	01/21/2025 06:00	WG2436674
Toluene	ND		0.00100	1	01/21/2025 06:00	WG2436674
Trichloroethene	ND		0.00100	1	01/21/2025 06:00	WG2436674
Vinyl chloride	ND	<u>C3</u>	0.00100	1	01/21/2025 06:00	WG2436674
Xylenes, Total	ND		0.00300	1	01/21/2025 06:00	WG2436674
(S) Toluene-d8	105		80.0-120		01/21/2025 06:00	WG2436674
(S) Toluene-d8	100		80.0-120		01/23/2025 06:33	WG2438079
(S) 4-Bromofluorobenzene	105		77.0-126		01/21/2025 06:00	WG2436674
(S) 4-Bromofluorobenzene	94.2		77.0-126		01/23/2025 06:33	WG2438079
(S) 1,2-Dichloroethane-d4	94.8		70.0-130		01/21/2025 06:00	WG2436674
(S) 1,2-Dichloroethane-d4	93.8		70.0-130		01/23/2025 06:33	WG2438079

LG-403-MID-20250117 Collected date/time: 01/17/25 11:30

SAMPLE RESULTS - 02

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.88	1	01/24/2025 20:43	WG2438724

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 11:49	WG2436679
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		01/21/2025 11:49	WG2436679

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/21/2025 06:22	WG2436674
Ethylbenzene	ND		0.00100	1	01/21/2025 06:22	WG2436674
Toluene	ND		0.00100	1	01/21/2025 06:22	WG2436674
Xylenes, Total	ND		0.00300	1	01/21/2025 06:22	WG2436674
(S) Toluene-d8	102		80.0-120		01/21/2025 06:22	WG2436674
(S) 4-Bromofluorobenzene	103		77.0-126		01/21/2025 06:22	WG2436674
(S) 1,2-Dichloroethane-d4	93.9		70.0-130		01/21/2025 06:22	WG2436674

6 of 20

LG-401-INF-20250117 Collected date/time: 01/17/25 11:50

SAMPLE RESULTS - 03

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.88	1	01/24/2025 20:43	WG2438724

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.109		0.100	1	01/21/2025 12:11	WG2436679
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		01/21/2025 12:11	WG2436679

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/21/2025 06:43	WG2436674
Ethylbenzene	ND		0.00100	1	01/21/2025 06:43	WG2436674
Toluene	ND		0.00100	1	01/21/2025 06:43	WG2436674
Xylenes, Total	ND		0.00300	1	01/21/2025 06:43	WG2436674
(S) Toluene-d8	100		80.0-120		01/21/2025 06:43	WG2436674
(S) 4-Bromofluorobenzene	104		77.0-126		01/21/2025 06:43	WG2436674
(S) 1,2-Dichloroethane-d4	97.1		70.0-130		01/21/2025 06:43	WG2436674

DATE/TIME:

01/27/25 11:48

DUP-3-20250117

SAMPLE RESULTS - 04

L1818655

Wet Chemistry by Method 1664B

Collected date/time: 01/17/25 12:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.75	1	01/24/2025 20:43	WG2438724

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.119		0.100	1	01/21/2025 12:33	WG2436679
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		01/21/2025 12:33	WG2436679

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/21/2025 07:05	WG2436674
Ethylbenzene	ND		0.00100	1	01/21/2025 07:05	WG2436674
Toluene	ND		0.00100	1	01/21/2025 07:05	WG2436674
Xylenes, Total	ND		0.00300	1	01/21/2025 07:05	WG2436674
(S) Toluene-d8	99.2		80.0-120		01/21/2025 07:05	WG2436674
(S) 4-Bromofluorobenzene	105		77.0-126		01/21/2025 07:05	WG2436674
(S) 1,2-Dichloroethane-d4	93.0		70.0-130		01/21/2025 07:05	WG2436674

DUP-1-20250117

Collected date/time: 01/17/25 11:05

SAMPLE RESULTS - 05

L1818655

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.95	1	01/24/2025 20:43	WG2438724

DUP-2-20250117

SAMPLE RESULTS - 06

Collected date/time: 01/17/25 11:10

L1818655

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.81	1	01/24/2025 20:43	WG2438724

Engineering/Remediation Resources Group

TB-01-20250117

Collected date/time: 01/17/25 14:00

SAMPLE RESULTS - 07

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 10:01	WG2436679	
(S) a.a.a-Trifluorotoluene(FID)	104		78.0-120		01/21/2025 10:01	WG2436679	

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/21/2025 01:42	WG2436674
cis-1,2-Dichloroethene	ND		0.00100	1	01/21/2025 01:42	WG2436674
trans-1,2-Dichloroethene	ND		0.00100	1	01/21/2025 01:42	WG2436674
Ethylbenzene	ND		0.00100	1	01/21/2025 01:42	WG2436674
Tetrachloroethene	ND		0.00100	1	01/21/2025 01:42	WG2436674
Toluene	ND		0.00100	1	01/21/2025 01:42	WG2436674
Trichloroethene	ND		0.00100	1	01/21/2025 01:42	WG2436674
Vinyl chloride	ND	<u>C3</u>	0.00100	1	01/21/2025 01:42	WG2436674
Xylenes, Total	ND		0.00300	1	01/21/2025 01:42	WG2436674
(S) Toluene-d8	102		80.0-120		01/21/2025 01:42	WG2436674
(S) 4-Bromofluorobenzene	104		77.0-126		01/21/2025 01:42	WG2436674
(S) 1,2-Dichloroethane-d4	93.6		70.0-130		01/21/2025 01:42	WG2436674

QUALITY CONTROL SUMMARY

L1818655-01,02,03,04,05,06

Wet Chemistry by Method 1664B

(MB) R4170243-1 01/24/25 20:43

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Oil & Grease (Hexane Extr)	U		1.40	5.00

(LCS) R4170243-2 01/24/25 20:43 • (LCSD) R4170243-3 01/24/25 20:43

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Oil & Grease (Hexane Extr)	40.0	37.8	33.1	94 5	82.8	78 O-114			13 3	20

(OS) L1818655-01 01/24/25 20:43 • (MS) R4170243-4 01/24/25 20:43

(03) 1010033 01 01/24/2	20.40 - (1410) 1	1170245 4 01	12-1/25 20	,			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Oil & Grease (Hexane Extr)	40.0	ND	42.7	107	1	78.0-114	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1818655-01,02,03,04,07

Method Blank (MB)

(MB) R4169191-2 01/21/25	5 08:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Gasoline Range Organics-NWTPH	U		0.0316	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120

Laboratory Control Sample (LCS)

(LCS) R4169191-1 01/21/25	(LCS) R4169191-1 01/21/25 08:03								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/l	mg/l	%	%					
Gasoline Range Organics-NWTPH	5.00	4.71	94.2	70.0-124					
(S) a,a,a-Trifluorotoluene(FID)			107	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1818655-01,02,03,04,07

Method Blank (MB)

(MB) R4169459-4 01/20/2	25 22:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
cis-1,2-Dichloroethene	U		0.000126	0.00100
trans-1,2-Dichloroethene	U		0.000149	0.00100
Ethylbenzene	U		0.000137	0.00100
Tetrachloroethene	U		0.000300	0.00100
Toluene	U		0.000278	0.00100
Trichloroethene	U		0.000190	0.00100
Vinyl chloride	U		0.000234	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	100			80.0-120
(S) 4-Bromofluorobenzene	106			77.0-126
(S) 1,2-Dichloroethane-d4	94.8			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

'	,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00452	0.00463	90.4	92.6	70.0-123			2.40	20	
cis-1,2-Dichloroethene	0.00500	0.00466	0.00476	93.2	95.2	73.0-120			2.12	20	
trans-1,2-Dichloroethene	0.00500	0.00458	0.00457	91.6	91.4	73.0-120			0.219	20	
Ethylbenzene	0.00500	0.00440	0.00445	88.0	89.0	79.0-123			1.13	20	
Tetrachloroethene	0.00500	0.00427	0.00434	85.4	86.8	72.0-132			1.63	20	
Toluene	0.00500	0.00447	0.00445	89.4	89.0	79.0-120			0.448	20	
Trichloroethene	0.00500	0.00452	0.00446	90.4	89.2	78.0-124			1.34	20	
Vinyl chloride	0.00500	0.00387	0.00398	77.4	79.6	67.0-131			2.80	20	
Xylenes, Total	0.0150	0.0132	0.0131	88.0	87.3	79.0-123			0.760	20	
(S) Toluene-d8				102	101	80.0-120					
(S) 4-Bromofluorobenzene				102	103	77.0-126					
(S) 1 2-Dichloroethane-d4				91.8	96.4	70 0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1818655-01

Method Blank (MB)

(MB) R4169738-3 01/22/25	5 21:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
cis-1,2-Dichloroethene	U		0.000126	0.00100
(S) Toluene-d8	103			80.0-120
(S) 4-Bromofluorobenzene	100			77.0-126
(S) 1,2-Dichloroethane-d4	90.5			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

11 (5	1 D/160739 1	01/22/25 19:56 •	/I CSD	D/160739 2	01/22/25 20:15
(LC3	1 84109/30-1	01/22/25 19.50 •	(LCSD	1 K4109/30-2	01/22/25 20.15

(/		,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
cis-1,2-Dichloroethene	0.00500	0.00516	0.00526	103	105	73.0-120			1.92	20
(S) Toluene-d8				100	98.4	80.0-120				
(S) 4-Bromofluorobenzene				101	99.0	77.0-126				
(S) 1,2-Dichloroethane-d4				88.6	91.1	70.0-130				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

С3

The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.

PAGE:

16 of 20

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 1 6	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Infor	mation:		1			A	nalvsis /	Contain	er / Preserva	ative		Chain of Cus	tody	Page of			
Engineering/Remediation Group	n Resour	Payable 15333 NE 90th Street				Pres Chk									- A	Pac EOPLE ADV	CE ANCING SCIENCE			
15333 NE 90th Street			Ste 100	J 18/8 00	053							- 18		199	M	TJUL	IET, TN			
Report to: Jennifer Sonnichsen 425-658-5026			Email To: jennifer.sonnichsen@errg.com;spencer.sle												12065 Lebanon F Submitting a sam constitutes ackno	Rd Mount . nple via this owledgmen	Juliet, TN 37122 s chain of custody nt and acceptance of the			
Project Description: Former Circle K		City/State Collected:	SEAT	M.F.U	AV PT MT	Circle:									Pace Terms and https://info.pace terms.pdf	labs.com/	hubfs/pas-standard-			
Regulatory Program(DOD,RCRA,DW,etc):	Client Project	# 2023(Lab Proje		Lab Project # ENGREMRWA-CIRCLE K		ect#		ect#		рна	D		J-BIK	CI-BIK				303	7 9 6 5 2 034 NGREMRWA
PI				0		14	Aml	T-F	S-HC	1 Ho					Acctnum: Template:					
Collected by (signature): Immediately Packed on Ice N Y	Same D Next Da Two Da	Lab MUST Be ay Five by 5 Da y 10 D bay STD	Day y (Rad Only) ay (Rad Only)	Quote #	Results Needed	No.	NWTPHGX 40mlAmb H	EX 1L-CIr-WT-HC	0 40mlAmb-HCl	0 40mlAmb-HCI-Blk					Prelogin: PM: 3500	- Jenni				
Sample ID	Comp/Grab	Matrix *	Depth	Dat	te Time	Cntrs	NWT	OGHEX	V8250	V8260					Remark		Sample # (lab only)			
LG-404-EFF-2025017	LRAB	GW	NA	11/17	1/25 1100	8	X	X	X								-01			
LG-403-MID-20250197		GW	1	1	1130	8	X	X	X								-07			
1 G-401 - 101F-20750117		GW			115	8 C	X	X	X		1						-03			
DUD-3- 20750117		GW			120	0 8	X	X	X				8				-04			
DUP-3-20250117 DUP-1-20250117		GW			110	5 2		X									-09			
DUD220250117		GW			1110	2		X									-06			
TRIP BLANK TB-01-20250117	A	GW	4	9	1400	2	X			X							-01			
		GW				8	X	X	X	-	A									
						1														
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks: DUP3	UNPR	ESERV	€D p	COC PROKEN ALL	HLS IN C	OOLE	12 1	12	pH Flov		_ Temp _ Other		COC Sea COC Sig Bottles Correct	Sample Receip Al Present/Int gned/Accurate a arrive intact bottles used Lent volume se	act:	$ \begin{array}{c} \frac{\text{cklist}}{-NP} \underbrace{ $			
	mples returne UPS FedE		r		Tracking #	104	5	पप	10	708	STREET, SQUARE,)	No	VOA Zer	If Appl ro Headspace: vation Correct	c/Chec	ked: Y			
Relinquished by : (Signature)		Pate 17	Tim	e: 500	Received by: (S	gnature)	*			Trip Bla	nk Recei	2 HCL TBR	/ МеоН		RAD Screen <0.5 mR/hr: Y N If preservation required by Login: Date/Time					
Relinquished by : (Signature)	C	Date	Tim	e:	Received by: (S	gnature) V				Temp:	٥	C Bottles F	Received:	If preser	vation required t	y Logi				
Relinquished by : (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Date: Date: Date: Date: Time: Date: Time: Date: Date:				Time:	1045	Hold:			Condition: NCF / OK											

									5000 THS CHILLIAN	4208 1341 5270	Fed Ex tracking #
											Gun ID
									211-4=2.5	07 to 4=06	Temperature

Name

1/19/75 Date

Company Name/Address:			Billing Infor	mation:		1			A	nalvsis /	Contain	er / Preserva	tive		Chain of Custody	Page _ of _ 1				
Engineering/Remediation Group	n Resour	Jennifer Sonnichsen Account Payable 15333 NE 90th Street Ste 100				Pres Chk									PEDPLE	CC				
15333 NE 90th Street			-	J 14/4 00	053							- 10			MT JU	LIET, TN				
Report to: Jennifer Sonnichsen 425-658-5026			jennifer.sonnichsen@errg.com;spencer.sl									- 1			12065 Lebanon Rd Mour Submitting a sample via	nt Juliet, TN 37122 this chain of custody nent and acceptance of the				
Project Description: Former Circle K		City/State Collected:	SEAT	TLE, U	AV PT MT	Circle:			13			13			https://info.pacelabs.com terms.pdf	m/hubfs/pas-standard-				
Regulatory Program(DOD,RCRA,DW,etc):	Client Project Site/Facility ID	# 2023(Lab Proje		o Project # NGREMRWA-CIRCLE K		ect#		ect#		HCI	-		-BIK	7.8k					34
Collected by (print):	Site/ Facility it	, п				14	Amb	T-HC	HC	+Cd		- 10			Acctnum: ENG					
Collected by (signature):	Same Da	Lab MUST Be ay Five by 5 Day y 10 D bay STD	Day y (Rad Only) ay (Rad Only)	Quote #	Results Needed	No.	NWTPHGX 40mlAmb H	X 1L-clr-WT-HC	40mlAmb-HC	40mlAmb-HCl-Blk					Prelogin: P112 PM: 3500 - Jenn PB:	24726 nifer Gambill				
Packed on Ice N Y Sample ID	Comp/Grab	Matrix *	Depth	Dat	e Time	Cotre	NWTP	OGHEX	V8250	V8260					Shipped Via: Fe	Sample # (lab only				
LG-404-EFF-2025017	GRAB	GW	NA	11/17	125 1100	8	X	X	X							-01				
LG-403-MID-20250197		GW	1	1	1130	8	X	X	X						BTEX Only	1-07				
1 G-401 - 101F-20750117		GW			115	8 0	X	X	X		-				BTEX Only	-03				
DUP-3-20250117		GW			120	0 8	X	X	X						BTEX Only	-09				
DUP-1-20 250117		GW			110:	5 2		X								-09				
DUD220250117		GW			1110	2		X								-06				
TRIP BLANK TB-01-20250117	4	GW	4	8	1400	2	X		100	X						-01				
		GW	-			8	X	X	X	-	A					I Black to				
						1									Sample Receipt Ch	and list of				
SS - Soil AIR - Air F - Filter	marks: DUP3 60D VOCs - I	UN PR	cDCE, tDC	€D ¢	OnlyCCC VII	ns a	OOLE	12 1	12	pH		_ Temp _ Other		COC Sea COC Sig Bottles Correct	ned/Accurate: arrive intact: bottles used: ent volume sent:	NP				
	mples returned UPS FedE		r			104	5	धर	10	70 E	STREET, SQUARE,	ved: Yes/	No.	VOA Zer Preserv	If Applicab o Headspace: ation Correct/Che	le ecked: _Y _				
Relinquished by : (Signature)		Pate 17	US Tim	500	Received by: (S	QE!	*			Trip Bla	nk Recei	2 MCL	МеоН	RAD Screen <0.5 mR/hr: Y _N If preservation required by Login: Date/Time						
Relinquished by : (Signature)	C	Date	Tim	e;	Received by: (S	gnature) 				Temp:	0	C Bottles R	B G		vacion required by Lot					
Relinquished by : (Signature) Date: Time: Received for lab by: (Signature) Date:				1901:	Time: 25 0	045	Hold:		Condition: NCF / OK											

Pace Analytical® ANALYTICAL REPORT

January 24, 2025

Engineering/Remediation Resources Group

L1818670 Sample Delivery Group: Samples Received: 01/18/2025

Project Number: FORMER CIRCLE K Description: Former Circle K 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Project Manager

Entire Report Reviewed By:

Jamper Gambill Jennifer Gambill

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
MW-21 L1818670-01	7
MW-9 L1818670-02	8
MW-8 L1818670-03	9
MW-13 L1818670-04	10
MW-20 L1818670-05	11
MW-6 L1818670-06	12
MW-19 L1818670-07	13
MW-14 L1818670-08	14
MW-16 L1818670-09	15
MW-15 L1818670-10	16
MW-17 L1818670-11	17
MW-18 L1818670-12	18
RW-1 L1818670-13	19
DUP-1 L1818670-14	20
TB-01 L1818670-15	21
Qc: Quality Control Summary	22
Volatile Organic Compounds (GC) by Method NWTPHGX	22
Volatile Organic Compounds (GC/MS) by Method 8260D	23
GI: Glossary of Terms	26
Al: Accreditations & Locations	27

Sc: Sample Chain of Custody

28

SAMPLE SUMMARY

N			Collected by Blaine Tech	Collected date/time 01/17/25 09:09	Received da 01/18/25 08:	
MW-21 L1818670-01 GW						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	10	01/21/25 19:24	01/21/25 19:24	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	500	01/20/25 18:02	01/20/25 18:02	JTO	Mt. Juliet, TN
volutile organic compounds (comis) by method 02000	W62 136361	300	01/20/20 10:02	01/20/23 10:02	310	me sanet, m
			Collected by	Collected date/time	Received da	te/time
MW-9 L1818670-02 GW			Blaine Tech	01/17/25 09:39	01/18/25 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 16:36	01/21/25 16:36	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	20	01/20/25 18:24	01/20/25 18:24	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MANA 0 1 1010670 00 004			Blaine Tech	01/17/25 10:10	01/18/25 08:	
MW-8 L1818670-03 GW						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Adatis Occasis Company of (CC) h. M. H. LAMETRUOV	W00407050		date/time	date/time	ADM	NAL 1 11 1 TO
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	5	01/21/25 19:45	01/21/25 19:45	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	50	01/20/25 18:45	01/20/25 18:45	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-13 L1818670-04 GW			Blaine Tech	01/17/25 10:40	01/18/25 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	10	01/21/25 20:06	01/21/25 20:06	ADM	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	50	01/20/25 19:06	01/20/25 19:06	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-20 L1818670-05 GW			Blaine Tech	01/17/25 11:11	01/18/25 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	10	01/21/25 20:27	01/21/25 20:27	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	250	01/20/25 19:28	01/20/25 19:28	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ta/tima
MW-6 L1818670-06 GW			Blaine Tech	01/17/25 10:59	01/18/25 08:	
Wethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
mediou	Datti	DilutiOII	date/time	date/time	viiaikst	LUCALIUII
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 16:58	01/21/25 16:58	ADM	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	1	01/20/25 15:53	01/20/25 15:53	JTO	Mt. Juliet, TN
			0.11			
			Collected by	Collected date/time	Received da	
MW-19 L1818670-07 GW			Blaine Tech	01/17/25 11:33	01/18/25 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	10	01/21/25 20:48	01/21/25 20:48	ADM	Mt Juliat TN
Volume Organic Compounds (GC) by Method NWTPHGA	WGZ43/U38	100	04/20/25 40 50	01/21/20 20.40	ADIVI	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260D

WG2436501

100

01/20/25 19:50

01/20/25 19:50

JTO

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
MW-14 L1818670-08 GW			Blaine Tech	01/17/25 09:09	01/18/25 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 17:18	01/21/25 17:18	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	1	01/20/25 16:15	01/20/25 16:15	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-16 L1818670-09 GW			Blaine Tech	01/17/25 09:38	01/18/25 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 17:39	01/21/25 17:39	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	1	01/20/25 16:37	01/20/25 16:37	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-15 L1818670-10 GW			Blaine Tech	01/17/25 10:02	01/18/25 08:	45
	B	D:1 ::				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Valetile Operation Community (CCV) to Method NIMTRILOV	WC24270F0	1			ADM	MA Julian TNI
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 18:00	01/21/25 18:00	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	1	01/20/25 16:59	01/20/25 16:59	JTO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-17 L1818670-11 GW			Blaine Tech	01/17/25 10:35	01/18/25 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 18:21	01/21/25 18:21	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436501	1	01/20/25 17:20	01/20/25 17:20	OTL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-18 L1818670-12 GW			Blaine Tech	01/17/25 11:11	01/18/25 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 18:42	01/21/25 18:42	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436563	1	01/20/25 18:06	01/20/25 18:06	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RW-1 L1818670-13 GW			Blaine Tech	01/17/25 11:44	01/18/25 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 19:03	01/21/25 19:03	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436563	1	01/20/25 18:27	01/20/25 18:27	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-1 L1818670-14 GW			Blaine Tech	01/17/25 12:00	01/18/25 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	•	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	10	01/21/25 21:09	01/21/25 21:09	ADM	Mt. Juliet, TN
V-1-+il- 0i- C	11162426562	٥٢	04/20/25 20 52	04/00/05 00 50	IDE	NAC THE TAI

Volatile Organic Compounds (GC/MS) by Method 8260D

WG2436563

25

01/20/25 20:53

01/20/25 20:53

JBE

Mt. Juliet, TN

SAMPLE SUMMARY

TB-01 L1818670-15 GW			Collected by Blaine Tech	Collected date/time 01/17/25 00:00	e Received da: 01/18/25 08:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2437058	1	01/21/25 15:12	01/21/25 15:12	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2436570	1	01/20/25 16:56	01/20/25 16:56	DYW	Mt. Juliet. TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

Collected date/time: 01/17/25 09:09

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	12.0		1.00	10	01/21/2025 19:24	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	84.9		78.0-120		01/21/2025 19:24	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	3.13		0.500	500	01/20/2025 18:02	WG2436501
Toluene	1.78		0.500	500	01/20/2025 18:02	WG2436501
Ethylbenzene	ND		0.500	500	01/20/2025 18:02	WG2436501
Total Xylenes	2.82		1.50	500	01/20/2025 18:02	WG2436501
(S) Toluene-d8	102		80.0-120		01/20/2025 18:02	WG2436501
(S) 4-Bromofluorobenzene	105		77.0-126		01/20/2025 18:02	WG2436501
(S) 1,2-Dichloroethane-d4	95.1		70.0-130		01/20/2025 18:02	WG2436501

Collected date/time: 01/17/25 09:39

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	3.85		0.100	1	01/21/2025 16:36	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	107		78.0-120		01/21/2025 16:36	WG2437058

³Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.0200	20	01/20/2025 18:24	WG2436501
Toluene	ND		0.0200	20	01/20/2025 18:24	WG2436501
Ethylbenzene	0.156		0.0200	20	01/20/2025 18:24	WG2436501
Total Xylenes	0.203		0.0600	20	01/20/2025 18:24	WG2436501
(S) Toluene-d8	101		80.0-120		01/20/2025 18:24	WG2436501
(S) 4-Bromofluorobenzene	106		77.0-126		01/20/2025 18:24	WG2436501
(S) 1,2-Dichloroethane-d4	96.4		70.0-130		01/20/2025 18:24	WG2436501

Collected date/time: 01/17/25 10:10

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	18.3		0.500	5	01/21/2025 19:45	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.6		78.0-120		01/21/2025 19:45	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.0500	50	01/20/2025 18:45	WG2436501
Toluene	0.188		0.0500	50	01/20/2025 18:45	WG2436501
Ethylbenzene	1.27		0.0500	50	01/20/2025 18:45	WG2436501
Total Xylenes	4.92		0.150	50	01/20/2025 18:45	WG2436501
(S) Toluene-d8	103		80.0-120		01/20/2025 18:45	WG2436501
(S) 4-Bromofluorobenzene	103		77.0-126		01/20/2025 18:45	WG2436501
(S) 1.2-Dichloroethane-d4	94.3		70.0-130		01/20/2025 18:45	WG2436501

Collected date/time: 01/17/25 10:40

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	16.1		1.00	10	01/21/2025 20:06	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	87.6		78.0-120		01/21/2025 20:06	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.380		0.0500	50	01/20/2025 19:06	WG2436501
Toluene	0.847		0.0500	50	01/20/2025 19:06	WG2436501
Ethylbenzene	0.712		0.0500	50	01/20/2025 19:06	WG2436501
Total Xylenes	7.43		0.150	50	01/20/2025 19:06	WG2436501
(S) Toluene-d8	102		80.0-120		01/20/2025 19:06	WG2436501
(S) 4-Bromofluorobenzene	103		77.0-126		01/20/2025 19:06	WG2436501
(S) 1,2-Dichloroethane-d4	90.2		70.0-130		01/20/2025 19:06	WG2436501

Collected date/time: 01/17/25 11:11

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	8.95	<u>B</u>	1.00	10	01/21/2025 20:27	WG2437058
(S) a.a.a-Trifluorotoluene(FID)	86.4		78.0-120		01/21/2025 20:27	WG2437058

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.861		0.250	250	01/20/2025 19:28	WG2436501
Toluene	ND		0.250	250	01/20/2025 19:28	WG2436501
Ethylbenzene	0.712		0.250	250	01/20/2025 19:28	WG2436501
Total Xylenes	2.88		0.750	250	01/20/2025 19:28	WG2436501
(S) Toluene-d8	104		80.0-120		01/20/2025 19:28	WG2436501
(S) 4-Bromofluorobenzene	106		77.0-126		01/20/2025 19:28	WG2436501
(S) 1,2-Dichloroethane-d4	92.6		70.0-130		01/20/2025 19:28	WG2436501

Collected date/time: 01/17/25 10:59

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.263	<u>B</u>	0.100	1	01/21/2025 16:58	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	86.0		78.0-120		01/21/2025 16:58	WG2437058

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.0462		0.00100	1	01/20/2025 15:53	WG2436501
Toluene	0.00167		0.00100	1	01/20/2025 15:53	WG2436501
Ethylbenzene	0.00528		0.00100	1	01/20/2025 15:53	WG2436501
Total Xylenes	ND		0.00300	1	01/20/2025 15:53	WG2436501
(S) Toluene-d8	103		80.0-120		01/20/2025 15:53	WG2436501
(S) 4-Bromofluorobenzene	105		77.0-126		01/20/2025 15:53	WG2436501
(S) 1,2-Dichloroethane-d4	94.1		70.0-130		01/20/2025 15:53	WG2436501

Collected date/time: 01/17/25 11:33

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	14.8		1.00	10	01/21/2025 20:48	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	87.2		78.0-120		01/21/2025 20:48	WG2437058

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.402		0.100	100	01/20/2025 19:50	WG2436501
Toluene	0.669		0.100	100	01/20/2025 19:50	WG2436501
Ethylbenzene	0.684		0.100	100	01/20/2025 19:50	WG2436501
Total Xylenes	4.49		0.300	100	01/20/2025 19:50	WG2436501
(S) Toluene-d8	104		80.0-120		01/20/2025 19:50	WG2436501
(S) 4-Bromofluorobenzene	105		77.0-126		01/20/2025 19:50	WG2436501
(S) 1,2-Dichloroethane-d4	90.2		70.0-130		01/20/2025 19:50	WG2436501

Collected date/time: 01/17/25 09:09

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 17:18	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.6		78.0-120		01/21/2025 17:18	WG2437058

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 16:15	WG2436501
Toluene	ND		0.00100	1	01/20/2025 16:15	WG2436501
Ethylbenzene	ND		0.00100	1	01/20/2025 16:15	WG2436501
Total Xylenes	ND		0.00300	1	01/20/2025 16:15	WG2436501
(S) Toluene-d8	103		80.0-120		01/20/2025 16:15	WG2436501
(S) 4-Bromofluorobenzene	104		77.0-126		01/20/2025 16:15	WG2436501
(S) 1,2-Dichloroethane-d4	95.6		70.0-130		01/20/2025 16:15	WG2436501

Volatile Organic Compounds (GC) by Method NWTPHGX

Collected date/time: 01/17/25 09:38

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 17:39	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.3		78.0-120		01/21/2025 17:39	WG2437058

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 16:37	WG2436501
Toluene	ND		0.00100	1	01/20/2025 16:37	WG2436501
Ethylbenzene	ND		0.00100	1	01/20/2025 16:37	WG2436501
Total Xylenes	ND		0.00300	1	01/20/2025 16:37	WG2436501
(S) Toluene-d8	103		80.0-120		01/20/2025 16:37	WG2436501
(S) 4-Bromofluorobenzene	104		77.0-126		01/20/2025 16:37	WG2436501
(S) 1,2-Dichloroethane-d4	97.7		70.0-130		01/20/2025 16:37	WG2436501

Collected date/time: 01/17/25 10:02

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 18:00	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	87.8		78.0-120		01/21/2025 18:00	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 16:59	WG2436501
Toluene	ND		0.00100	1	01/20/2025 16:59	WG2436501
Ethylbenzene	ND		0.00100	1	01/20/2025 16:59	WG2436501
Total Xylenes	ND		0.00300	1	01/20/2025 16:59	WG2436501
(S) Toluene-d8	104		80.0-120		01/20/2025 16:59	WG2436501
(S) 4-Bromofluorobenzene	108		77.0-126		01/20/2025 16:59	WG2436501
(S) 1,2-Dichloroethane-d4	95.1		70.0-130		01/20/2025 16:59	WG2436501

Collected date/time: 01/17/25 10:35

SAMPLE RESULTS - 11

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.300	В	0.100	1	01/21/2025 18:21	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	89.0		78.0-120		01/21/2025 18:21	WG2437058

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 17:20	WG2436501
Toluene	ND		0.00100	1	01/20/2025 17:20	WG2436501
Ethylbenzene	ND		0.00100	1	01/20/2025 17:20	WG2436501
Total Xylenes	ND		0.00300	1	01/20/2025 17:20	WG2436501
(S) Toluene-d8	110		80.0-120		01/20/2025 17:20	WG2436501
(S) 4-Bromofluorobenzene	104		77.0-126		01/20/2025 17:20	WG2436501
(S) 1,2-Dichloroethane-d4	91.4		70.0-130		01/20/2025 17:20	WG2436501

Collected date/time: 01/17/25 11:11

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.117	B	0.100	1	01/21/2025 18:42	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.7		78.0-120		01/21/2025 18:42	WG2437058

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 18:06	WG2436563
Ethylbenzene	ND		0.00100	1	01/20/2025 18:06	WG2436563
Toluene	ND		0.00100	1	01/20/2025 18:06	WG2436563
Xylenes, Total	ND		0.00300	1	01/20/2025 18:06	WG2436563
(S) Toluene-d8	104		80.0-120		01/20/2025 18:06	WG2436563
(S) 4-Bromofluorobenzene	103		77.0-126		01/20/2025 18:06	WG2436563
(S) 1.2-Dichloroethane-d4	96.3		70.0-130		01/20/2025 18:06	WG2436563

Collected date/time: 01/17/25 11:44

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.167	В	0.100	1	01/21/2025 19:03	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.9		78.0-120		01/21/2025 19:03	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 18:27	WG2436563
Ethylbenzene	ND		0.00100	1	01/20/2025 18:27	WG2436563
Toluene	ND		0.00100	1	01/20/2025 18:27	WG2436563
Xylenes, Total	ND		0.00300	1	01/20/2025 18:27	WG2436563
(S) Toluene-d8	104		80.0-120		01/20/2025 18:27	WG2436563
(S) 4-Bromofluorobenzene	98.3		77.0-126		01/20/2025 18:27	WG2436563
(S) 1,2-Dichloroethane-d4	100		70.0-130		01/20/2025 18:27	WG2436563

Collected date/time: 01/17/25 12:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	5.27	В	1.00	10	01/21/2025 21:09	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.0		78.0-120		01/21/2025 21:09	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.0250	25	01/20/2025 20:53	WG2436563
Ethylbenzene	0.198		0.0250	25	01/20/2025 20:53	WG2436563
Toluene	ND		0.0250	25	01/20/2025 20:53	WG2436563
Xylenes, Total	0.247		0.0750	25	01/20/2025 20:53	WG2436563
(S) Toluene-d8	105		80.0-120		01/20/2025 20:53	WG2436563
(S) 4-Bromofluorobenzene	101		77.0-126		01/20/2025 20:53	WG2436563
(S) 1,2-Dichloroethane-d4	92.6		70.0-130		01/20/2025 20:53	WG2436563

Collected date/time: 01/17/25 00:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	01/21/2025 15:12	WG2437058
(S) a,a,a-Trifluorotoluene(FID)	88.3		78.0-120		01/21/2025 15:12	WG2437058

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	01/20/2025 16:56	WG2436570
Ethylbenzene	ND		0.00100	1	01/20/2025 16:56	WG2436570
Toluene	ND		0.00100	1	01/20/2025 16:56	WG2436570
Xylenes, Total	ND		0.00300	1	01/20/2025 16:56	WG2436570
(S) Toluene-d8	94.6		80.0-120		01/20/2025 16:56	WG2436570
(S) 4-Bromofluorobenzene	98.3		77.0-126		01/20/2025 16:56	WG2436570
(S) 1,2-Dichloroethane-d4	97.7		70.0-130		01/20/2025 16:56	WG2436570

QUALITY CONTROL SUMMARY

L1818670-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

Volatile Organic Compounds (GC) by Method NWTPHGX

(MB) R4169122-4 01/21/25	(MB) R4169122-4 01/21/25 12:59									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/l		mg/l	mg/l						
Gasoline Range Organics-NWTPH	0.0995	J	0.0316	0.100						
(S) a,a,a-Trifluorotoluene(FID)	88.3			78.0-120						

3 0 0

SS

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4169122-2 01/21/2	(LCS) R4169122-2 01/21/25 11:56 • (LCSD) R4169122-3 01/21/25 12:17										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5.00	4.43	4.80	88.6	96.0	70.0-124			8.02	20	
(S) a,a,a-Trifluorotoluene(FID)				94.8	95.5	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1818670-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R4168690-3 01/20/2	5 11:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Toluene	U		0.000278	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Total Xylenes	U		0.000174	0.00300	
(S) Toluene-d8	102			80.0-120	
(S) 4-Bromofluorobenzene	107			77.0-126	
(S) 1,2-Dichloroethane-d4	94.1			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LC3) K4100030-1 01/20/2	23 09.31 • (LC3L) K4100030-2	2 01/20/23 10.1	5							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	-
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	L
Benzene	0.00500	0.00478	0.00459	95.6	91.8	70.0-123			4.06	20	8
Toluene	0.00500	0.00475	0.00446	95.0	89.2	79.0-120			6.30	20	
Ethylbenzene	0.00500	0.00478	0.00450	95.6	90.0	79.0-123			6.03	20	a
Total Xylenes	0.0150	0.0143	0.0133	95.3	88.7	79.0-123			7.25	20	
(S) Toluene-d8				103	100	80.0-120					L
(S) 4-Bromofluorobenzene				104	102	77.0-126					
(S) 1,2-Dichloroethane-d4				91.5	93.0	70.0-130					

Engineering/Remediation Resources Group

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1818670-12,13,14

Method Blank (MB)

(MB) R4169437-3 01/20/2	5 11:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	3
Toluene	U		0.000278	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	107			80.0-120	
(S) 4-Bromofluorobenzene	97.3			77.0-126	
(S) 1,2-Dichloroethane-d4	100			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4169437-1	01/20/25	10	:09	•	(LCSD)	R4	41694	137-2	01/	20	/25	10:30	

(200) 11 1100 107 1 01/20/2	0 10.00 (2002	7) 11 1100 107 2	01/20/20 10.00	0							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	- [′
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00497	0.00503	99.4	101	70.0-123			1.20	20	8
Ethylbenzene	0.00500	0.00532	0.00530	106	106	79.0-123			0.377	20	
Toluene	0.00500	0.00525	0.00546	105	109	79.0-120			3.92	20	9
Xylenes, Total	0.0150	0.0155	0.0156	103	104	79.0-123			0.643	20	
(S) Toluene-d8				104	103	80.0-120					L
(S) 4-Bromofluorobenzene				101	98.4	77.0-126					
(S) 1,2-Dichloroethane-d4				95.6	93.1	70.0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1818670-15

Method Blank (MB)

(MB) R4169436-3 01/20/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Toluene	U		0.000278	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	93.8			80.0-120	
(S) 4-Bromofluorobenzene	98.7			77.0-126	
(S) 1,2-Dichloroethane-d4	95.7			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4169436-1 01/20/25 09:36 • (LCSD) R416	9436-2 01/20/25 09:57
---	-----------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00597	0.00573	119	115	70.0-123			4.10	20	
Ethylbenzene	0.00500	0.00494	0.00519	98.8	104	79.0-123			4.94	20	
Toluene	0.00500	0.00527	0.00534	105	107	79.0-120			1.32	20	
Xylenes, Total	0.0150	0.0155	0.0157	103	105	79.0-123			1.28	20	
(S) Toluene-d8				94.3	92.4	80.0-120					
(S) 4-Bromofluorobenzene				96.6	100	77.0-126					
(S) 1,2-Dichloroethane-d4				104	101	70.0-130					

Engineering/Remediation Resources Group

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations an	d Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Г)escri	nt	ior	•
Qualifici	\vdash	/C3C11	Ρι	101	

<u>a a a i i i e i </u>	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable: the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:					A	nalvsis /	Contai	ner / Preservativ	e		Chain of Custody	Page of
Engineering/Remedia	tion Resour	ces	Jennifer	Sonnichsen	Accounts	Pres					100				1	
Group			Payable			Chk									- Pa	ice:
			12227	E 90th Stree	et			1		-			41.		PEOPLE	ADVANCING SCIENCE
15333 NE 90th Street		15.3	Ste 100	1 141A 000F	,				100	E .					NAT III	JLIET, TN
Report to:			Email To:	nnichsen@err	g.com;spencer.s	slomins			1		17	5		0.0	12065 Lebanon Rd Mou	unt Juliet, TN 37122
Jennifer Sonnichsen		City/State	J. C.	- I	Please (1		6		12 1		-		Submitting a sample via constitutes acknowledge Pace Terms and Condition	ment and acceptance of the
Project Description: FORMER CIRC	LEK 146	Collected:	SEAT	TIGW	PT MT						200				https://info.pacelabs.co terms.pdf	
Phone: 425-658-5026		1 1	DALE	Lab Project #	RWA-CIRCLE	v		×	-	BIK			- 1		SDG# 18	18670
	Client Project #	ck c	TRY	ENGKEIVIF	WA-CINCLE		T	0 0 0	-	10			14		B03	6
Collected by (print):	Site/Facility ID			P.O. #		F 19	b HC	40mlAmb-HCI-BIk	40mlAmb-HCl	40mlAmb-HCl		12.33				
BLAINE TECH	Marie Co.					1	Am	Am	IAm	Am		1-17 5-1	1		Acctnum: ENG	
Collected by (signature):		ab MUST Be		Quote #			40mlAmb	J. I	0m	mo:					Prelogin: P11:	
JOHN MM	Same Day	5 Day	(Rad Only)	Date Re	sults Needed	1							633		PM: 3500 - Jeni	
Immediately Packed on Ice N Y	Two Day Three Da	-	ay (Rad Only)			No.	HG	HG	BTE	BTEX	100				PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWTPHGX	NWTPHGX	V8260BTEX	V8260I					-	edEX Ground
Sample			1	111			Ž	2	80	88					Remarks	Sample # (lab only)
MW-21	GRAB	GW	NA	11171	25 0909	6	X		X							-0
Mi1-9	1	GW	11		0934	6	X		X	194		1	1			-0)
Mill-8		GW			100	6	X		X							-03
1. 10/11/1-12		GW			Inun	6	X	199	X			166		10	1000	-04
100111-20		GW			1111	6	X		X					1		-05
1010		GW			1 m 6.0	6	X	-	X							- 56
11000		GW			1100	6	X		X				-			-07
1. 11/10 101			-		1133	9	1		10000		-	100		3		-08
MW-19		GW			0909	6	X		X							1-08
1. MW 16		GW			093	6	X		X							- (0)
MW-15		GW			1002	6	X		X							IU
* Matrix: SS - Soil AIR - Air F - Filter	Remarks:									рН		Temp		C Seal I	ple Receipt Ch Present/Intact:	
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay										Flow		Other			i/Accurate:	N N
WW - WasteWater DW - Drinking Water	-				On the second			200		FIOW		_ Other			ttles used:	N N
OT - Other	Samples returned v			Tra	acking# U	208	1	341	5	29	1		vo	A Zero I	If Applicabl Headspace:	<u>e</u> Y N
Relinquished by : (Signature)	Dat	te:	Time		ceived by: (Signa	ature)	F	TRIVA	NDO	Trip Blar	nk Recei	ived: Yes/No	Pr	eservati	on Correct/Che <0.5 mR/hr:	ecked: Y N
month of the state		1/17/7	5 12	2.05	FER	P		MAR				Z HCL/Me	оН			7 -
Relinquished by : (Stenature)	Dat	(a:	Time		ceived by: (Signa	ature)	1	-		Temp:		C Bottles Receiv	red: If I	preservati	on required by Log	in: Date/Time
7 LU	1	117119	1 15	00	TC!	VE)	1			1.51	y:	1.9 8	No. of Lot			
Relinquished by : (Signature)	Dat	ie. , /,	Time	Re	ceived for lab by	: (Signat	ure)	1		Date:	117	Time:	- P. T. K.	old:		Condition: NCF / OK
V			1000		MUN	1	VIVA	In	en	111	916	5 DBG	13			

Company Name/Address:			Billing Infor	rmation:					A	nalvsis /	Contain	er / Preservation	P		Chain of Cu	ustody	Page of
Engineering/Remediation	Resour	ces	lennifer	Sonnichsen A	ccounts	Pres					-					_	
Group			Payable	John Chisen A	ccounts	Chk			200						_ /	Bo	co.
				E 90th Street											_ /	7 a	DVANCING SCIENCE
15333 NE 90th Street			Ste 100				6.00										
Report to:			Email To:	J 14/4 000F3											N	IT JU	LIET, TN
Jennifer Sonnichsen				nnichsen@errg.com	m;spencer.sl	omins	100										his chain of custody
Project Description:	. 2 3478 0	ity/State	1	. 2	Please C	rcle:		1			5	100			constitutes ack	nowledgm d Condition	ent and acceptance of the ns found at:
FORMER GRUE	16 14010	city/State	PATT	US, WIT	P) MT						100	- 1000			https://info.pa terms.pdf	celabs.con	n/hubfs/pas-standard-
	Client Project #	,	10	Lab Project #			7	×	1500	-BIK	100	- 100		100	SDG#	10	10/20
1 none: 125 050 5020	FORME	2 CIR	CLEK	ENGREMRWA	-CIRCLE K			9	7	100	100				300#	10	18610
Collected by (print): BAINE TECH S				P.O. #			H	H	Ŧ	Ŧ	No.				Table #		3-11-11
Let.	necy ochicy to	-		1.0.1			qu	qu	H dr	mb		100			Acctnum:	ENG	REMRWA
Collected by (signature)	Rush? (La	h MIIST Do	Notified	Quote#			NWTPHGX 40mlAmb HCl	40mJAmb-HCI-BIK	40mlAmb-HCl	40mlAmb-HCl		11		-	Template		A CONTRACTOR OF THE PARTY OF TH
Att man	Same Day						Om	Om	100	101	14 8			1 - 3	Prelogin:		
- July and	Next Day	5 Day	(Rad Only)	Date Results	Needed	I	X		X		10,3				- 1000000000000000000000000000000000000		ifer Gambill
Packed on Ice N Y	Two Day Three Day		ay (Rad Only)			No.	16	HG.	BTE	BTE	115		-	100	PB:		
		1.22		1	-	Cntrs	T	NWTPHGX	V8260BTEX	V8260BTEX					Shipped V	/ia: Fe	dEX Ground
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	-	3	3	182	/82	10				Remar	ks	Sample # (lab only)
CALL: 17	-116	GW	1 1/ VA	Illia 120	10-25	6	X	-	X			1000					311
MMI	CKAR	GW	04 /1	11110	1093	1											711
Mu7-18		GW			1111	6	X		X								-14
Pul-1		GW			1144	6	X		X								-13
D. 10-1	4	GW		-	1200	6	X		X					1000			-14
DUPT	2				12300		-		-	-(A)							
The state of the s	***************************************	GW	***************************************			6	X		X	1							f -
Round president scale to the State S	77.5 383 388 A	GW	***************************************	118711777 161-M A		6	- X	26 243 10	X	(a)	179	6.3					
TRIP BLANK TR-OI		GW				2	1 3	X		X							-15
TRIP BLANK		GW				2		X		_X	(A)						
							2000				0						
			4						7			-					
			1	3													
* Matrix: Rema	arks:			1						рН		Temp			ample Receir		
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay										pri		. remp		COC Sign	Present/Int		- + N N
WW - WasteWater							1			Flow		Other			bottles used		Z,-N
DW - Drinking Water Samp	oles returned vi	a:		Trackin	41	2 00	1	211	1 -	200	-		F	Sufficie	ent volume se		_ N
OT - Other	PSFedEx	Courier		_ ITACKIN	8#	Lut		59	12	281					Headspace:		YN
Relinquished by (Signature)	Date	: 1 1	/ Time:		d by: (Signat	ure)	FF	MUG	CA	Trip Blan	k Receiv	ed: Yes/No	-11		en <0.5 mR/1		Y N
1 orbin	~	1/17/2	5 12	205 -	101)	CY	150	AR	6			TBR TBR	OH				
Relinquished by : (Signature)	Date	1.01.	Time:	Receive	d by: (Signat	ure)	14	ALI.	1	Temp:6	DAGC	Bottles Receiv	2	If preserva	ation required b	y Logi	n: Date/Time
1-11		1711	10	500 6	1501	= X				1.51	Car - 1 "	-1.9 4	54	1			
Relinquished by : (Signature)	Date	1	Time		d for lab by:	(Signate	ure)			Date:	34575	Time:		Hold:	Will Esta		Condition
V				A	INA	1	wh	LIT	en	1/1	812	5 08	15	No.		1574	NCF / OK

-

Pace Analytical® ANALYTICAL REPORT

February 21, 2025

Engineering/Remediation Resources Group

Sample Delivery Group: L1827337

Samples Received: 02/15/2025

Project Number: 20230065

Description: Former Circle K 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
FALCO-300-INF-20250213 L1827337-01	5
FALCO-300-EFF-20250213 L1827337-02	7
VP-3-20250213 L1827337-03	9
VP-4-2025021 L1827337-04	11
Qc: Quality Control Summary	13
Volatile Organic Compounds (MS) by Method TO-15	13
GI: Glossary of Terms	27
Al: Accreditations & Locations	28
Sc: Sample Chain of Custody	29

SAMPLE SUMMARY

FALCO-300-INF-20250213 L1827337-01 Air			Collected by Fernando Idiarte	Collected date/time 02/13/25 09:35	Received da 02/15/25 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2454385	100	02/19/25 21:43	02/19/25 21:43	DAH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2454886	500	02/20/25 18:43	02/20/25 18:43	MBF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FALCO-300-EFF-20250213 L1827337-02 Air			Fernando Idiarte	02/13/25 09:45	02/15/25 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2452779	1	02/16/25 21:05	02/16/25 21:05	MNP	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2454384	10	02/19/25 14:36	02/19/25 14:36	NIH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VP-3-20250213 L1827337-03 Air			Fernando Idiarte	02/13/25 10:25	02/15/25 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2452779	1	02/16/25 21:36	02/16/25 21:36	MNP	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2454383	10	02/19/25 21:12	02/19/25 21:12	NIH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VP-4-2025021 L1827337-04 Air			Fernando Idiarte	02/13/25 10:35	02/15/25 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2452779	1	02/16/25 22:08	02/16/25 22:08	MNP	Mt. Juliet, TN

WG2454383

200

02/20/25 00:21 02/20/25 00:21

NIH

Mt. Juliet, TN

Volatile Organic Compounds (MS) by Method TO-15

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

SAMPLE RESULTS - 01

L1827337

Volatile Organic Compounds (MS) by Method TO-15

Volatile Organic Co									
Analyte	CAS #	Mol. Wt.	RDL1	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch
•	C7 C4 1	F0.10	ppbv					100	WC24F420F
Acetone	67-64-1	58.10	125	297	380	903 ND		100	WG2454385
Allyl chloride	107-05-1	76.53	20.0	62.6	ND 22F0	ND 7510		100	WG2454385
Benzene Benzel Chleride	71-43-2	78.10	20.0	63.9	2350 ND	7510		100	WG2454385
Benzyl Chloride	100-44-7	127	20.0	104	ND	ND		100	WG2454385
Bromodichloromethane	75-27-4	164	20.0	134	ND	ND		100	WG2454385
Bromoform	75-25-2	253	63.0	652	ND	ND		100	WG2454385
Bromomethane	74-83-9	94.90	20.0	77.6	ND	ND		100	WG2454385
1,3-Butadiene	106-99-0	54.10	200	443	ND	ND		100	WG2454385
Carbon disulfide	75-15-0	76.10	40.0	124	ND	ND		100	WG2454385
Carbon tetrachloride	56-23-5	154	20.0	126	ND	ND		100	WG2454385
Chlorobenzene	108-90-7	113	20.0	92.4	ND	ND		100	WG2454385
Chloroethane	75-00-3	64.50	20.0	52.8	ND	ND		100	WG2454385
Chloroform	67-66-3	119	20.0	97.3	ND	ND		100	WG2454385
Chloromethane	74-87-3	50.50	20.0	41.3	ND	ND		100	WG2454385
2-Chlorotoluene	95-49-8	126	20.0	103	ND	ND		100	WG2454385
Cyclohexane	110-82-7	84.20	20.0	68.9	2480	8540		100	WG2454385
Dibromochloromethane	124-48-1	208	20.0	170	ND	ND		100	WG2454385
1,2-Dibromoethane	106-93-4	188	20.0	154	ND	ND		100	WG2454385
1,2-Dichlorobenzene	95-50-1	147	20.0	120	ND	ND		100	WG2454385
1,3-Dichlorobenzene	541-73-1	147	20.0	120	ND	ND		100	WG2454385
1,4-Dichlorobenzene	106-46-7	147	20.0	120	ND	ND		100	WG2454385
1,2-Dichloroethane	107-06-2	99	20.0	81.0	ND	ND		100	WG2454385
1,1-Dichloroethane	75-34-3	98	20.0	80.2	ND	ND		100	WG2454385
1,1-Dichloroethene	75-35-4	96.90	20.0	79.3	ND	ND		100	WG2454385
cis-1,2-Dichloroethene	156-59-2	96.90	20.0	79.3	50.4	200		100	WG2454385
trans-1,2-Dichloroethene	156-60-5	96.90	20.0	79.3	ND	ND		100	WG2454385
1,2-Dichloropropane	78-87-5	113	20.0	92.4	ND	ND		100	WG2454385
cis-1,3-Dichloropropene	10061-01-5	111	20.0	90.8	ND	ND		100	WG2454385
trans-1,3-Dichloropropene	10061-02-6	111	20.0	90.8	ND	ND		100	WG2454385
1,4-Dioxane	123-91-1	88.10	63.0	227	ND	ND		100	WG2454385
Ethanol	64-17-5	46.10	250	471	764	1440		100	WG2454385
Ethylbenzene	100-41-4	106	20.0	86.7	849	3680		100	WG2454385
4-Ethyltoluene	622-96-8	120	20.0	98.2	1170	5740		100	WG2454385
Trichlorofluoromethane	75-69-4	137.40	20.0	112	ND	ND		100	WG2454385
Dichlorodifluoromethane	75-71-8	120.92	20.0	98.9	ND	ND		100	WG2454385
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	20.0	153	ND	ND		100	WG2454385
1,2-Dichlorotetrafluoroethane	76-14-2	171	20.0	140	ND	ND		100	WG2454385
Heptane	142-82-5	100	20.0	81.8	4330	17700		100	WG2454385
Hexachloro-1,3-butadiene	87-68-3	261	63.0	673	ND	ND		100	WG2454385
n-Hexane	110-54-3	86.20	315	1110	15200	53600		500	WG2454886
Isopropylbenzene	98-82-8	120.20	20.0	98.3	ND	ND		100	WG2454385
Methylene Chloride	75-09-2	84.90	20.0	69.4	ND	ND		100	WG2454385
Methyl Butyl Ketone	591-78-6	100	125	511	ND	ND		100	WG2454385
2-Butanone (MEK)	78-93-3	72.10	125	369	ND	ND		100	WG2454385
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	125	512	ND	ND		100	WG2454385
Methyl methacrylate	80-62-6	100.12	20.0	81.9	ND	ND		100	WG2454385
MTBE	1634-04-4	88.10	20.0	72.1	ND	ND		100	WG2454385
Naphthalene	91-20-3	128	63.0	330	ND	ND		100	WG2454385
2-Propanol	67-63-0	60.10	125	307	1360	3340		100	WG2454385
Propene	115-07-1	42.10	125	215	ND	ND		100	WG2454385
Styrene	100-42-5	104	40.0	170	ND	ND		100	WG2454385
1,1,2,2-Tetrachloroethane	79-34-5	168	20.0	137	ND	ND		100	WG2454385
Tetrachloroethylene	127-18-4	166	20.0	136	281	1910		100	WG2454385
Tetrahydrofuran	109-99-9	72.10	20.0	59.0	ND	ND		100	WG2454385
Toluene	108-88-3	92.10	50.0	188	3230	12200		100	WG2454385
1,2,4-Trichlorobenzene	120-82-1	181	63.0	466	ND	ND		100	WG2454385

FALCO-300-INF-20250213

Collected date/time: 02/13/25 09:35

SAMPLE RESULTS - 01

L1827337

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	20.0	109	ND	ND		100	WG2454385
1,1,2-Trichloroethane	79-00-5	133	20.0	109	ND	ND		100	WG2454385
Trichloroethylene	79-01-6	131	20.0	107	ND	ND		100	WG2454385
1,2,4-Trimethylbenzene	95-63-6	120	20.0	98.2	902	4430		100	WG2454385
1,3,5-Trimethylbenzene	108-67-8	120	20.0	98.2	432	2120		100	WG2454385
2,2,4-Trimethylpentane	540-84-1	114.22	20.0	93.4	5510	25700		100	WG2454385
Vinyl chloride	75-01-4	62.50	20.0	51.1	ND	ND		100	WG2454385
Vinyl Bromide	593-60-2	106.95	20.0	87.5	ND	ND		100	WG2454385
Vinyl acetate	108-05-4	86.10	63.0	222	ND	ND		100	WG2454385
Xylenes, Total	1330-20-7	106.16	60.0	261	8540	37100		100	WG2454385
m&p-Xylene	179601-23-1	106	40.0	173	6470	28000		100	WG2454385
o-Xylene	95-47-6	106	20.0	86.7	2070	8970		100	WG2454385
TPH (GC/MS) Low Fraction	8006-61-9	101	20000	82600	145000	599000		100	WG2454385
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.2				WG2454385
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		91.8				WG2454886

Collected date/time: 02/13/25 09:45

SAMPLE RESULTS - 02

L1827337

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			_
Acetone	67-64-1	58.10	1.25	2.97	6.29	14.9	<u>B</u>	1	WG2452779
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND	_	1	WG2452779
Benzene	71-43-2	78.10	2.00	6.39	8.97	28.7		10	WG2454384
Benzyl Chloride	100-44-7	127	2.00	10.4	ND	ND		10	WG2454384
Bromodichloromethane	75-27-4	164	2.00	13.4	ND	ND		10	WG2454384
Bromoform	75-25-2	253	6.30	65.2	ND	ND		10	WG2454384
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2452779
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2452779
Carbon disulfide	75-15-0	76.10	0.400	1.24	1.50	4.67		1	WG2452779
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2452779
Chlorobenzene	108-90-7	113	2.00	9.24	ND	ND		10	WG2454384
Chloroethane	75-00-3	64.50	0.200	0.528	0.779	2.06		1	WG2452779
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2452779
Chloromethane	74-87-3	50.50	0.200	0.413	21.9	45.2		1	WG2452779
2-Chlorotoluene	95-49-8	126	2.00	10.3	ND	ND		10	WG2454384
Cyclohexane	110-82-7	84.20	0.200	0.689	24.8	85.4		1	WG2452779
Dibromochloromethane	124-48-1	208	2.00	17.0	ND	ND		10	WG2454384
1,2-Dibromoethane	106-93-4	188	2.00	15.4	ND	ND		10	WG2454384
1,2-Dichlorobenzene	95-50-1	147	2.00	12.0	ND	ND		10	WG2454384
1,3-Dichlorobenzene	541-73-1	147	2.00	12.0	ND	ND		10	WG2454384
1,4-Dichlorobenzene	106-46-7	147	2.00	12.0	ND	ND		10	WG2454384
1,2-Dichloroethane	107-06-2	99	2.00	8.10	ND	ND		10	WG2454384
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2452779
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2452779
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2452779
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2452779
1,2-Dichloropropane	78-87-5	113	2.00	9.24	ND	ND		10	WG2454384
cis-1,3-Dichloropropene	10061-01-5	111	2.00	9.08	ND	ND		10	WG2454384
trans-1,3-Dichloropropene	10061-02-6	111	2.00	9.08	ND	ND		10	WG2454384
1,4-Dioxane	123-91-1	88.10	6.30	22.7	ND	ND		10	WG2454384
Ethanol	64-17-5	46.10	2.50	4.71	8.81	16.6		1	WG2452779
Ethylbenzene	100-41-4	106	2.00	8.67	2.12	9.19		10	WG2454384
4-Ethyltoluene	622-96-8	120	2.00	9.82	ND	ND		10	WG2454384
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	ND	ND		1	WG2452779
Dichlorodifluoromethane	75-71-8 76-13-1	120.92	0.200	0.989	ND	ND		1	WG2452779
1,1,2-Trichlorotrifluoroethane	76-13-1 76-14-2	187.40 171	0.200 0.200	1.53 1.40	ND ND	ND ND		1	WG2452779
1,2-Dichlorotetrafluoroethane								10	WG2452779
Heptane Hexachloro-1,3-butadiene	142-82-5 87-68-3	100 261	2.00 6.30	8.18 67.3	35.9 ND	147 ND		10 10	WG2454384 WG2454384
n-Hexane	87-68-3 110-54-3	86.20	6.30	22.2	ND 236	ND 832		10	WG2454384 WG2454384
Isopropylbenzene	98-82-8	120.20	2.00	9.83	ND	ND		10	WG2454384 WG2454384
	75-09-2	84.90		0.694	6.91	24.0		1	
Methylene Chloride Methyl Butyl Ketone	75-09-2 591-78-6	100	0.200 12.5	51.1	ND	24.0 ND		10	WG2452779 WG2454384
2-Butanone (MEK)	78-93-3	72.10	12.5	3.69	ND	ND ND		10	WG2454384 WG2452779
4-Methyl-2-pentanone (MIBK)	78-93-3 108-10-1	100.10	12.5	51.2	ND ND	ND ND		10	WG2452779 WG2454384
Methyl methacrylate	80-62-6	100.10	2.00	8.19	ND	ND		10	WG2454384 WG2454384
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND ND		10	WG2454364 WG2452779
Naphthalene	91-20-3	128	6.30	33.0	ND	ND		10	WG2452779 WG2454384
2-Propanol	67-63-0	60.10	1.25	3.07	12.2	30.0		10	WG245454 WG2452779
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2452779 WG2452779
Styrene	100-42-5	104	4.00	17.0	ND	ND		10	WG2452773 WG2454384
1,1,2,2-Tetrachloroethane	79-34-5	168	2.00	13.7	ND	ND		10	WG2454384
Tetrachloroethylene	127-18-4	166	2.00	13.6	5.50	37.3		10	WG2454384
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG245454 WG2452779
Toluene	109-99-9	92.10	5.00	18.8	7.43	28.0		10	WG2452779 WG2454384
1,2,4-Trichlorobenzene	120-82-1	181	6.30	46.6	ND	ND		10	WG2454384
i,z, i iliciliorobelizelle	120-02-1	101	0.50	₹0.0	ND	ND		10	WOZTUTUUT

Ss

FALCO-300-EFF-20250213

Collected date/time: 02/13/25 09:45

SAMPLE RESULTS - 02

1827337

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2452779
1,1,2-Trichloroethane	79-00-5	133	2.00	10.9	ND	ND		10	WG2454384
Trichloroethylene	79-01-6	131	2.00	10.7	ND	ND		10	WG2454384
1,2,4-Trimethylbenzene	95-63-6	120	2.00	9.82	2.21	10.8		10	WG2454384
1,3,5-Trimethylbenzene	108-67-8	120	2.00	9.82	ND	ND		10	WG2454384
2,2,4-Trimethylpentane	540-84-1	114.22	2.00	9.34	95.9	448		10	WG2454384
Vinyl chloride	75-01-4	62.50	0.200	0.511	0.261	0.667		1	WG2452779
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2452779
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2452779
Xylenes, Total	1330-20-7	106.16	6.00	26.1	9.42	40.9		10	WG2454384
m&p-Xylene	179601-23-1	106	4.00	17.3	6.95	30.1		10	WG2454384
o-Xylene	95-47-6	106	2.00	8.67	2.47	10.7		10	WG2454384
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	606	2500		1	WG2452779
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		102				WG2452779
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.9				WG2454384

Collected date/time: 02/13/25 10:25

SAMPLE RESULTS - 03

Volatile Organic Co	ompounds	s (IVIS) by	Method I	O-15					
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	3.54	8.41	<u>B</u>	1	WG2452779
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2452779
Benzene	71-43-2	78.10	0.200	0.639	1.66	5.30		1	WG2452779
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2452779
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2452779
Bromoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2452779
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2452779
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2452779
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2452779
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2452779
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2452779
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2452779
Chloroform	67-66-3	119	0.200	0.973	0.967	4.71		1	WG2452779
Chloromethane	74-87-3	50.50	0.200	0.413	0.221	0.456		1	WG2452779
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2452779
Cyclohexane	110-82-7	84.20	0.200	0.689	0.308	1.06		1	WG2452779
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2452779
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2452779
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2452779
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2452779
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2452779
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2452779
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2452779
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2452779
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2452779
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2452779
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2452779
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2452779
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2452779
1,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2452779
Ethanol	64-17-5	46.10	2.50	4.71	8.97	16.9		1	WG2452779
Ethylbenzene	100-41-4	106	0.200	0.867	5.65	24.5		1	WG2452779
4-Ethyltoluene	622-96-8	120	0.200	0.982	9.21	45.2		1	WG2452779
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.208	1.17		1	WG2452779
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.379	1.87		1	WG2452779
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2452779
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2452779
Heptane	142-82-5	100	0.200	0.818	0.785	3.21		1	WG2452779
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2452779
n-Hexane	110-54-3	86.20	0.630	2.22	0.686	2.42		1	WG2452779
Isopropylbenzene	98-82-8	120.20	0.200	0.983	0.704	3.46		1	WG2452779
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.330	1.15		1	WG2452779
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2452779
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2452779
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2452779
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2452779
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2452779
Naphthalene	91-20-3	128	0.630	3.30	2.90	15.2		1	WG2452779
2-Propanol	67-63-0	60.10	1.25	3.07	1.94	4.77		1	WG2452779
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2452779
Styrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2452779
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2452779
Tetrachloroethylene	127-18-4	166	2.00	13.6	143	971		10	WG2454383
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2452779
Toluene	108-88-3	92.10	0.500	1.88	8.38	31.6		1	WG2452779
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2452779

TPH (GC/MS) Low Fraction

(S) 1,4-Bromofluorobenzene

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 03

L1827337

Collected date/time: 02/13/25 10:25 Volatile Organic Compounds (MS) by Method TO-15

8006-61-9

460-00-4

101

175

175

200

60.0-140

60.0-140

826

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2452779
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2452779
Trichloroethylene	79-01-6	131	0.200	1.07	11.7	62.7		1	WG2452779
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	37.9	186		1	WG2452779
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	11.5	56.4		1	WG2452779
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	0.470	2.20		1	WG2452779
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2452779
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2452779
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2452779
Xylenes, Total	1330-20-7	106.16	0.600	2.61	70.4	306		1	WG2452779
m&p-Xylene	179601-23-1	106	0.400	1.73	50.1	217		1	WG2452779
o-Xylene	95-47-6	106	0.200	0.867	20.3	88.0		1	WG2452779

465

103

93.1

1920

WG2452779

WG2452779

WG2454383

1

Collected date/time: 02/13/25 10:35

SAMPLE RESULTS - 04

1827337

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	0.10 "		ppbv	ug/m3	ppbv	ug/m3	<u>quannor</u>	2	<u> </u>
Acetone	67-64-1	58.10	1.25	2.97	2.77	6.58	<u>B</u>	1	WG2452779
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND	<u>=</u>	1	WG2452779
Benzene	71-43-2	78.10	0.200	0.639	1.48	4.73		1	WG2452779
Benzyl Chloride	100-44-7	127	0.200	1.04	1.40 ND	4.73 ND		1	WG2452779 WG2452779
,	75-27-4	164	0.200	1.34	ND	ND		1	
Bromodichloromethane								1	WG2452779
Bromoform	75-25-2	253	0.630	6.52	ND	ND			WG2452779
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2452779
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2452779
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2452779
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2452779
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2452779
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2452779
hloroform	67-66-3	119	0.200	0.973	4.33	21.1		1	WG2452779
hloromethane	74-87-3	50.50	0.200	0.413	0.211	0.436		1	WG2452779
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2452779
yclohexane	110-82-7	84.20	0.200	0.689	72.5	250		1	WG2452779
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2452779
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2452779
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2452779
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2452779
4-Dichlorobenzene	106-46-7	147	0.200	1.20	2.39	14.4		1	WG2452779
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2452779
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2452779
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2452779
	156-59-2	96.90		0.793	7.83	31.0		1	
s-1,2-Dichloroethene			0.200					1	WG2452779
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	0.720	2.85			WG2452779
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2452779
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2452779
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2452779
4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2452779
thanol	64-17-5	46.10	2.50	4.71	13.3	25.1		1	WG2452779
thylbenzene	100-41-4	106	0.200	0.867	5.34	23.2		1	WG2452779
-Ethyltoluene	622-96-8	120	0.200	0.982	6.01	29.5		1	WG2452779
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.247	1.39		1	WG2452779
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.740	3.66		1	WG2452779
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2452779
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2452779
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2452779
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2452779
-Hexane	110-54-3	86.20	0.630	2.22	1.14	4.02		1	WG2452779
opropylbenzene	98-82-8	120.20	0.200	0.983	0.838	4.12		1	WG2452779
lethylene Chloride	75-09-2	84.90	0.200	0.694	0.256	0.889		1	WG2452779
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2452779
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	1.43	4.22		1	WG2452779
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.09	1.43 ND	ND		1	WG2452779 WG2452779
ethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2452779
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2452779
aphthalene	91-20-3	128	0.630	3.30	7.23	37.9		1	WG2452779
-Propanol	67-63-0	60.10	1.25	3.07	4.92	12.1		1	WG2452779
ropene	115-07-1	42.10	1.25	2.15	9.69	16.7		1	WG2452779
tyrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2452779
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2452779
etrachloroethylene	127-18-4	166	40.0	272	4310	29300		200	WG2454383
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2452779
oluene	108-88-3	92.10	0.500	1.88	8.45	31.8		1	WG2452779
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2452779

SAMPLE RESULTS - 04

L1827337

Collected date/time: 02/13/25 10:35

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2452779
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2452779
Trichloroethylene	79-01-6	131	0.200	1.07	75.3	403		1	WG2452779
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	28.5	140		1	WG2452779
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	8.34	40.9		1	WG2452779
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	87.4	408		1	WG2452779
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2452779
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2452779
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2452779
Xylenes, Total	1330-20-7	106.16	0.600	2.61	52.3	227		1	WG2452779
m&p-Xylene	179601-23-1	106	0.400	1.73	34.5	150		1	WG2452779
o-Xylene	95-47-6	106	0.200	0.867	17.8	77.2		1	WG2452779
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	3830	15800		1	WG2452779
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		135				WG2452779
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.3				WG2454383

L1827337-02,03,04

Volatile Organic Compounds (MS) by Method TO-15

Method Blank (MB)

(MB) R4177872-3 02/16/25	5 10:30				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	0.657	<u>J</u>	0.520	1.25	
Allyl chloride	U		0.186	0.200	
Benzene	U		0.110	0.200	
Benzyl Chloride	U		0.0888	0.200	
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	
Carbon tetrachloride	U		0.0746	0.200	
Chlorobenzene	U		0.118	0.200	
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
2-Chlorotoluene	U		0.0787	0.200	
Cyclohexane	U		0.170	0.200	
Dibromochloromethane	U		0.0696	0.200	
,2-Dibromoethane	U		0.0690	0.200	
,2-Dichlorobenzene	U		0.0734	0.200	
,3-Dichlorobenzene	U		0.0753	0.200	
1,4-Dichlorobenzene	U		0.0768	0.200	
l,2-Dichloroethane	U		0.0730	0.200	
1,1-Dichloroethane	U		0.0710	0.200	
1,1-Dichloroethene	U		0.0747	0.200	
cis-1,2-Dichloroethene	U		0.0796	0.200	
trans-1,2-Dichloroethene	U		0.0735	0.200	
I,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
rans-1,3-Dichloropropene	U		0.0795	0.200	
I,4-Dioxane	U		0.164	0.630	
Ethanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
1,2-Dichlorotetrafluoroethane			0.0756	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	U		0.0800	0.630	
n-Hexane	U		0.143	0.630	

TPH (GC/MS) Low Fraction

(S) 1,4-Bromofluorobenzene 93.1

QUALITY CONTROL SUMMARY

L1827337-02,03,04

Method Blank (MB)

Volatile Organic Compounds (MS) by Method TO-15

Method Blank (MB)	1				[1]
(MB) R4177872-3 02/16/25	5 10:30				' L
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ppbv		ppbv	ppbv	ľ
Isopropylbenzene	U		0.0722	0.200	<u> </u>
Methylene Chloride	U		0.169	0.200	3
Methyl Butyl Ketone	U		0.133	1.25	L.
2-Butanone (MEK)	U		0.116	1.25	4
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	- 1
Methyl methacrylate	U		0.169	0.200	느
MTBE	U		0.0813	0.200	5
Naphthalene	U		0.617	0.630	l L
2-Propanol	U		0.680	1.25	6
Propene	U		0.214	1.25	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	7
Tetrahydrofuran	U		0.164	0.200	L
Toluene	U		0.130	0.500	8
1,2,4-Trichlorobenzene	U		0.462	0.630	1
1,1,1-Trichloroethane	U		0.0718	0.200	느
1,1,2-Trichloroethane	U		0.0683	0.200	9
Trichloroethylene	U		0.0680	0.200	L
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
Vinyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

68.3

200 *60.0-140*

(LCS) R4177872-1 02/16/25 09:27 • (LCSD) R4177872-2 02/16/25 09:59
--

(200) 1(11) 7072 1 02/10/2	(2002	,,	02/.0/20 00.0							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	3.91	3.96	104	106	70.0-130			1.27	25
Allyl chloride	3.75	3.62	3.42	96.5	91.2	70.0-130			5.68	25
Benzene	3.75	3.49	3.49	93.1	93.1	70.0-130			0.000	25
Benzyl Chloride	3.75	3.95	3.90	105	104	70.0-152			1.27	25

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Engineering/Remediation Resources Group
 20230065
 L1827337
 02/21/25 10:05
 14 of 29

Volatile Organic Compounds (MS) by Method TO-15

L1827337-02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

// CC\ D 4477070 1	00/40/05 00:07	(I CSD) R4177872-2	00/40/05 00.50
$\Pi \cup S \cup P \perp \Pi \cup I \cup S \cup I \cup I$	11/16//5 119:7/	$\Pi \cup S \cup \Pi \cup P \perp \Pi \cup I \cup S \cup I \cup I \cup I$	11/16//5 119:59

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Bromodichloromethane	3.75	3.49	3.52	93.1	93.9	70.0-130			0.856	25	
Bromoform	3.75	3.24	3.24	86.4	86.4	70.0-130			0.000	25	
Bromomethane	3.75	3.64	3.58	97.1	95.5	70.0-130			1.66	25	
1,3-Butadiene	3.75	3.46	3.48	92.3	92.8	70.0-130			0.576	25	
Carbon disulfide	7.50	6.96	6.92	92.8	92.3	70.0-130			0.576	25	
Carbon tetrachloride	3.75	3.79	3.74	101	99.7	70.0-130			1.33	25	
Chlorobenzene	3.75	3.53	3.55	94.1	94.7	70.0-130			0.565	25	
Chloroethane	3.75	3.57	3.48	95.2	92.8	70.0-130			2.55	25	
Chloroform	3.75	3.51	3.57	93.6	95.2	70.0-130			1.69	25	
Chloromethane	3.75	3.53	3.42	94.1	91.2	70.0-130			3.17	25	
2-Chlorotoluene	3.75	3.45	3.52	92.0	93.9	70.0-130			2.01	25	
Cyclohexane	3.75	3.44	3.43	91.7	91.5	70.0-130			0.291	25	
Dibromochloromethane	3.75	3.53	3.55	94.1	94.7	70.0-130			0.565	25	
1,2-Dibromoethane	3.75	3.63	3.71	96.8	98.9	70.0-130			2.18	25	
l,2-Dichlorobenzene	3.75	3.59	3.59	95.7	95.7	70.0-130			0.000	25	
l,3-Dichlorobenzene	3.75	3.66	3.67	97.6	97.9	70.0-130			0.273	25	
,4-Dichlorobenzene	3.75	3.72	3.72	99.2	99.2	70.0-130			0.000	25	
,2-Dichloroethane	3.75	3.55	3.56	94.7	94.9	70.0-130			0.281	25	
,1-Dichloroethane	3.75	3.58	3.57	95.5	95.2	70.0-130			0.280	25	
I,1-Dichloroethene	3.75	3.54	3.46	94.4	92.3	70.0-130			2.29	25	
cis-1,2-Dichloroethene	3.75	3.49	3.54	93.1	94.4	70.0-130			1.42	25	
rans-1,2-Dichloroethene	3.75	3.47	3.53	92.5	94.1	70.0-130			1.71	25	
1,2-Dichloropropane	3.75	3.42	3.41	91.2	90.9	70.0-130			0.293	25	
cis-1,3-Dichloropropene	3.75	3.56	3.48	94.9	92.8	70.0-130			2.27	25	
rans-1,3-Dichloropropene	3.75	3.52	3.74	93.9	99.7	70.0-130			6.06	25	
,4-Dioxane	3.75	3.49	3.58	93.1	95.5	70.0-140			2.55	25	
- Ethanol	3.75	3.13	3.05	83.5	81.3	55.0-148			2.59	25	
Ethylbenzene	3.75	3.43	3.47	91.5	92.5	70.0-130			1.16	25	
1-Ethyltoluene	3.75	3.75	3.79	100	101	70.0-130			1.06	25	
Trichlorofluoromethane	3.75	3.58	3.61	95.5	96.3	70.0-130			0.834	25	
Dichlorodifluoromethane	3.75	3.58	3.50	95.5	93.3	64.0-139			2.26	25	
,1,2-Trichlorotrifluoroethane	3.75	3.55	3.54	94.7	94.4	70.0-130			0.282	25	
,2-Dichlorotetrafluoroethane	3.75	3.59	3.50	95.7	93.3	70.0-130			2.54	25	
Heptane	3.75	3.45	3.47	92.0	92.5	70.0-130			0.578	25	
Hexachloro-1,3-butadiene	3.75	3.53	3.43	94.1	91.5	70.0-151			2.87	25	
n-Hexane	3.75	3.43	3.39	91.5	90.4	70.0-130			1.17	25	
sopropylbenzene	3.75	3.47	3.52	92.5	93.9	70.0-130			1.43	25	
Methylene Chloride	3.75	3.30	3.19	88.0	85.1	70.0-130			3.39	25	
Methyl Butyl Ketone	3.75	3.66	3.68	97.6	98.1	70.0-149			0.545	25	
2-Butanone (MEK)	3.75	3.53	3.53	94.1	94.1	70.0-130			0.000	25	

Volatile Organic Compounds (MS) by Method TO-15

L1827337-02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4177872-1 02/16/25 09:27 • (LCSD) R4177872-2 02/16/25 09:59

,	,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	3.75	3.59	3.55	95.7	94.7	70.0-139			1.12	25	
Methyl methacrylate	3.75	3.73	3.69	99.5	98.4	70.0-130			1.08	25	
MTBE	3.75	3.50	3.51	93.3	93.6	70.0-130			0.285	25	
Naphthalene	3.75	4.05	4.05	108	108	70.0-159			0.000	25	
2-Propanol	3.75	3.28	3.34	87.5	89.1	70.0-139			1.81	25	
Propene	3.75	3.32	3.45	88.5	92.0	64.0-144			3.84	25	
Styrene	7.50	7.40	7.47	98.7	99.6	70.0-130			0.941	25	
1,1,2,2-Tetrachloroethane	3.75	3.48	3.49	92.8	93.1	70.0-130			0.287	25	
Tetrahydrofuran	3.75	3.42	3.48	91.2	92.8	70.0-137			1.74	25	
Toluene	3.75	3.47	3.46	92.5	92.3	70.0-130			0.289	25	
1,2,4-Trichlorobenzene	3.75	3.44	3.45	91.7	92.0	70.0-160			0.290	25	
1,1,1-Trichloroethane	3.75	3.56	3.63	94.9	96.8	70.0-130			1.95	25	
1,1,2-Trichloroethane	3.75	3.68	3.64	98.1	97.1	70.0-130			1.09	25	
Trichloroethylene	3.75	3.49	3.51	93.1	93.6	70.0-130			0.571	25	
1,2,4-Trimethylbenzene	3.75	3.73	3.71	99.5	98.9	70.0-130			0.538	25	
1,3,5-Trimethylbenzene	3.75	3.72	3.71	99.2	98.9	70.0-130			0.269	25	
2,2,4-Trimethylpentane	3.75	3.45	3.53	92.0	94.1	70.0-130			2.29	25	
Vinyl chloride	3.75	3.54	3.44	94.4	91.7	70.0-130			2.87	25	
Vinyl Bromide	3.75	3.61	3.56	96.3	94.9	70.0-130			1.39	25	
Vinyl acetate	3.75	2.96	3.15	78.9	84.0	70.0-130			6.22	25	
Xylenes, Total	11.3	10.6	10.6	93.8	93.8	70.0-130			0.000	25	
m&p-Xylene	7.50	7.04	7.01	93.9	93.5	70.0-130			0.427	25	
o-Xylene	3.75	3.55	3.57	94.7	95.2	70.0-130			0.562	25	
TPH (GC/MS) Low Fraction	188	168	170	89.4	90.4	70.0-130			1.18	25	

60.0-140

(S) 1,4-Bromofluorobenzene

101

102

WG2454383

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1827337-03,04

Method Blank (MB)

(MB) R4178400-3 02/19/25	5 10:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Tetrachloroethylene	U		0.111	0.200
(S) 1,4-Bromofluorobenzene	88.5			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4178400-1 02/19/2	25 09:21 • (LCSI	D) R4178400-2	2 02/19/25 10:0	0						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Tetrachloroethylene	3.75	4.39	4.42	117	118	70.0-130			0.681	25
(S) 1,4-Bromofluorobenzene				98.7	98.3	60.0-140				

Volatile Organic Compounds (MS) by Method TO-15

L1827337-02

Method Blank (MB)

(MB) R4178377-3 02/19/25	5 11:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Benzene	U		0.110	0.200	
Benzyl Chloride	U		0.0888	0.200	
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	
Chlorobenzene	U		0.118	0.200	
2-Chlorotoluene	U		0.0787	0.200	
Dibromochloromethane	U		0.0696	0.200	
1,2-Dibromoethane	U		0.0690	0.200	
1,2-Dichlorobenzene	U		0.0734	0.200	
1,3-Dichlorobenzene	U		0.0753	0.200	
1,4-Dichlorobenzene	U		0.0768	0.200	
1,2-Dichloroethane	U		0.0730	0.200	
1,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
trans-1,3-Dichloropropene	U		0.0795	0.200	
1,4-Dioxane	U		0.164	0.630	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	U		0.0800	0.630	
n-Hexane	U		0.143	0.630	
Isopropylbenzene	U		0.0722	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
Naphthalene	U		0.617	0.630	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	U		0.462	0.630	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
(S) 1,4-Bromofluorobenzene				60.0-140	

Volatile Organic Compounds (MS) by Method TO-15

ACCOUNT:

Engineering/Remediation Resources Group

L1827337-02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4178377-1 02/19/2	•	•									
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	3.75	3.57	3.52	95.2	93.9	70.0-130			1.41	25	
Benzyl Chloride	3.75	3.54	3.53	94.4	94.1	70.0-152			0.283	25	
Bromodichloromethane	3.75	3.59	3.64	95.7	97.1	70.0-130			1.38	25	
Bromoform	3.75	3.52	3.40	93.9	90.7	70.0-130			3.47	25	
Chlorobenzene	3.75	3.59	3.66	95.7	97.6	70.0-130			1.93	25	
2-Chlorotoluene	3.75	3.79	3.70	101	98.7	70.0-130			2.40	25	
Dibromochloromethane	3.75	3.59	3.66	95.7	97.6	70.0-130			1.93	25	
1,2-Dibromoethane	3.75	3.47	3.64	92.5	97.1	70.0-130			4.78	25	
l,2-Dichlorobenzene	3.75	3.73	3.76	99.5	100	70.0-130			0.801	25	
1,3-Dichlorobenzene	3.75	3.67	3.67	97.9	97.9	70.0-130			0.000	25	
1,4-Dichlorobenzene	3.75	3.74	3.64	99.7	97.1	70.0-130			2.71	25	
1,2-Dichloroethane	3.75	3.85	3.73	103	99.5	70.0-130			3.17	25	
l,2-Dichloropropane	3.75	3.42	3.47	91.2	92.5	70.0-130			1.45	25	
cis-1,3-Dichloropropene	3.75	3.43	3.53	91.5	94.1	70.0-130			2.87	25	
rans-1,3-Dichloropropene	3.75	3.59	3.76	95.7	100	70.0-130			4.63	25	
,4-Dioxane	3.75	3.61	3.61	96.3	96.3	70.0-140			0.000	25	
- Ethylbenzene	3.75	3.66	3.63	97.6	96.8	70.0-130			0.823	25	
1-Ethyltoluene	3.75	3.76	3.74	100	99.7	70.0-130			0.533	25	
Heptane	3.75	3.66	3.61	97.6	96.3	70.0-130			1.38	25	
Hexachloro-1,3-butadiene	3.75	3.71	3.75	98.9	100	70.0-151			1.07	25	
n-Hexane	3.75	3.51	3.53	93.6	94.1	70.0-130			0.568	25	
sopropylbenzene	3.75	3.83	3.66	102	97.6	70.0-130			4.54	25	
Methyl Butyl Ketone	3.75	3.32	3.33	88.5	88.8	70.0-149			0.301	25	
4-Methyl-2-pentanone (MIBK)	3.75	3.47	3.55	92.5	94.7	70.0-139			2.28	25	
Methyl methacrylate	3.75	3.54	3.71	94.4	98.9	70.0-133			4.69	25	
Naphthalene	3.75	3.42	3.46	91.2	92.3	70.0-150			1.16	25	
Styrene	7.50	7.95	7.67	106	102	70.0-139			3.59	25	
1,1,2,2-Tetrachloroethane	3.75	3.44	3.37	91.7	89.9	70.0-130			2.06	25	
Fetrachloroethylene		3.62			98.4	70.0-130					
•	3.75		3.69	96.5					1.92	25	
Toluene	3.75	3.61	3.66	96.3	97.6	70.0-130			1.38	25	
1,2,4-Trichlorobenzene	3.75	3.04	3.22	81.1	85.9	70.0-160			5.75	25	
,1,2-Trichloroethane	3.75	3.54	3.57	94.4	95.2	70.0-130			0.844	25	
richloroethylene	3.75	3.52	3.52	93.9	93.9	70.0-130			0.000	25	
,2,4-Trimethylbenzene	3.75	3.86	3.88	103	103	70.0-130			0.517	25	
,3,5-Trimethylbenzene	3.75	3.84	3.80	102	101	70.0-130			1.05	25	
2,2,4-Trimethylpentane	3.75	3.50	3.48	93.3	92.8	70.0-130			0.573	25	
Kylenes, Total	11.3	11.4	11.1	101	98.2	70.0-130			2.67	25	
m&p-Xylene	7.50	7.60	7.43	101	99.1	70.0-130			2.26	25	
o-Xylene	3.75	3.82	3.68	102	98.1	70.0-130			3.73	25	
(S) 1,4-Bromofluorobenzene				99.2	97.6	60.0-140					

SDG:

L1827337

PROJECT:

20230065

DATE/TIME:

02/21/25 10:05

PAGE:

19 of 29

hod TO-15 L182

Volatile Organic Compounds (MS) by Method TO-15

L1827337-01

Method Blank (MB)

(MB) R4178428-3 02/19/2	5 11:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.520	1.25	
Allyl chloride	U		0.186	0.200	
Benzene	U		0.110	0.200	
Benzyl Chloride	U		0.0888	0.200	
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	
Carbon tetrachloride	U		0.0746	0.200	
Chlorobenzene	U		0.118	0.200	
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
2-Chlorotoluene	U		0.0787	0.200	
Cyclohexane	U		0.170	0.200	
Dibromochloromethane	U		0.0696	0.200	
,2-Dibromoethane	U		0.0690	0.200	
,2-Dichlorobenzene	U		0.0734	0.200	
,3-Dichlorobenzene	U		0.0753	0.200	
l,4-Dichlorobenzene	U		0.0768	0.200	
,2-Dichloroethane	U		0.0730	0.200	
,1-Dichloroethane	U		0.0710	0.200	
,1-Dichloroethene	U		0.0747	0.200	
cis-1,2-Dichloroethene	U		0.0796	0.200	
rans-1,2-Dichloroethene	U		0.0735	0.200	
,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
rans-1,3-Dichloropropene	U		0.0795	0.200	
,4-Dioxane	U		0.164	0.630	
thanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
l,2-Dichlorotetrafluoroethane	U		0.0756	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	U		0.0800	0.630	
Isopropylbenzene	U		0.0722	0.200	

WG2454385

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1827337-01

Method Blank (MB)

(MB) R4178428-3 02/19/25	5 11:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
Naphthalene	U		0.617	0.630	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Tetrahydrofuran	U		0.164	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	U		0.462	0.630	
1,1,1-Trichloroethane	U		0.0718	0.200	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
/inyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
TPH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	94.2			60.0-140	

L1826382-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1826382-12 02/19/25 16:19 • (DUP) R4178428-4 02/19/25 17:07

SDG:

L1827337-01

Volatile Organic Compounds (MS) by Method TO-15

L1826382-12 Original Sample (OS) • Duplicate (DUP)

Analyte Bromodichloromethane					DUP Qualifier	Limits	
Bromodichloromethane	ppbv	ppbv		%		%	
or or inotal critical carrier	ND	ND	1	0.000		25	
Bromoform	ND	ND	1	0.000		25	
Bromomethane	ND	ND	1	0.000		25	
1,3-Butadiene	ND	ND	1	0.000		25	
Carbon disulfide	ND	ND	1	0.000		25	
Carbon tetrachloride	ND	ND	1	0.000		25	
Chlorobenzene	ND	ND	1	0.000		25	
Chloroethane	ND	ND	1	0.000		25	
Chloroform	ND	ND	1	0.000		25	
Chloromethane	ND	ND	1	0.000		25	
2-Chlorotoluene	ND	ND	1	0.000		25	
Cyclohexane	ND	ND	1	0.000		25	
Dibromochloromethane	ND	ND	1	0.000		25	
1,2-Dibromoethane	ND	ND	1	0.000		25	
1,2-Dichlorobenzene	ND	ND	1	0.000		25	
1,3-Dichlorobenzene	ND	ND	1	0.000		25	
1,4-Dichlorobenzene	ND	ND	1	0.000		25	
1,2-Dichloroethane	ND	ND	1	0.000		25	
1,1-Dichloroethane	ND	ND	1	0.000		25	
1,1-Dichloroethene	ND	ND	1	0.000		25	
cis-1,2-Dichloroethene	ND	ND	1	0.000		25	
trans-1,2-Dichloroethene	ND	ND	1	0.000		25	
1,2-Dichloropropane	ND	ND	1	0.000		25	
cis-1,3-Dichloropropene	ND	ND	1	0.000		25	
trans-1,3-Dichloropropene	ND	ND	1	0.000		25	
1,4-Dioxane	ND	ND	1	0.000		25	
Ethanol	10.8	15.4	1	35.1		25	
Ethylbenzene	ND	ND	1	0.000		25	
4-Ethyltoluene	ND	ND	1	0.000		25	
Trichlorofluoromethane	0.298	0.289	1	3.07		25	
Dichlorodifluoromethane	0.468	0.468	1	0.000		25	
1,1,2-Trichlorotrifluoroethane	ND	ND	1	0.000		25	
1,2-Dichlorotetrafluoroethane	0.631	0.613	1	2.89		25	
Heptane	ND	ND	1	0.000		25	
Hexachloro-1,3-butadiene	ND	ND	1	0.000		25	
Isopropylbenzene	ND	ND	1	0.000		25	
Methylene Chloride	0.364	0.426	1	15.7		25	
	ND	ND	1	0.000		25	
Methyl Butyl Ketone	ND	ND	1	0.000		23	

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1827337-01

L1826382-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1826382-12 02/19/25 16:19 • (DUP) R4178428-4 02/19/25 17:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ppbv	ppbv		%		%
4-Methyl-2-pentanone (MIBK)	ND	ND	1	0.000		25
Methyl methacrylate	ND	ND	1	0.000		25
MTBE	ND	ND	1	0.000		25
Naphthalene	ND	ND	1	0.000		25
2-Propanol	1.66	1.98	1	17.6		25
Propene	ND	ND	1	0.000		25
Styrene	ND	ND	1	0.000		25
1,1,2,2-Tetrachloroethane	ND	ND	1	0.000		25
Tetrachloroethylene	ND	ND	1	0.000		25
Tetrahydrofuran	ND	ND	1	0.000		25
Toluene	ND	ND	1	1.08		25
1,2,4-Trichlorobenzene	ND	ND	1	0.000		25
1,1,1-Trichloroethane	ND	ND	1	0.000		25
1,1,2-Trichloroethane	ND	ND	1	0.000		25
Trichloroethylene	ND	ND	1	0.000		25
1,2,4-Trimethylbenzene	ND	ND	1	5.13		25
1,3,5-Trimethylbenzene	ND	ND	1	0.000		25
2,2,4-Trimethylpentane	0.233	0.239	1	2.54		25
Vinyl chloride	ND	ND	1	0.000		25
Vinyl Bromide	ND	ND	1	0.000		25
Vinyl acetate	ND	ND	1	0.000		25
Xylenes, Total	ND	ND	1	200	<u>P1</u>	25
m&p-Xylene	ND	ND	1	7.60		25
o-Xylene	ND	ND	1	16.9		25
TPH (GC/MS) Low Fraction	ND	ND	1	200	<u>P1</u>	25

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4178428-1 02/19/25 09:50 • (LCSD) R4178428-2 02/19/25 10:40

97.4

, ,	•	,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	3.57	3.63	95.2	96.8	70.0-130			1.67	25
Allyl chloride	3.75	3.75	3.87	100	103	70.0-130			3.15	25
Benzene	3.75	3.83	3.94	102	105	70.0-130			2.83	25
Benzyl Chloride	3.75	3.50	3.42	93.3	91.2	70.0-152			2.31	25
Bromodichloromethane	3.75	3.70	3.73	98.7	99.5	70.0-130			0.808	25
Bromoform	3.75	3.45	3.47	92.0	92.5	70.0-130			0.578	25
Bromomethane	3.75	3.64	3.60	97.1	96.0	70.0-130			1.10	25

60.0-140

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Engineering/Remediation Resources Group	20230065	L1827337	02/21/25 10:05	23 of 29

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4178428-1 02/19/25 09:50 • (LCSD) R4178428-2 02/19/25 10:40 **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte ppbv % % % % % vdaa ppbv 1,3-Butadiene 3.75 3.17 3.40 84.5 90.7 70.0-130 7.00 25 103 70.0-130 0.906 25 Carbon disulfide 7.50 7.69 7.76 103 Carbon tetrachloride 3.75 3.70 3.76 98.7 100 70.0-130 1.61 25 103 70.0-130 25 Chlorobenzene 3.75 3.85 3.92 105 1.80 Chloroethane 3.75 3.83 3.73 102 99.5 70.0-130 2.65 25 3.75 3.72 99.2 25 Chloroform 3.79 101 70.0-130 1.86 3.75 3.74 3.76 99.7 100 70.0-130 0.533 25 Chloromethane 2-Chlorotoluene 3.75 3.72 3.71 99.2 98.9 70.0-130 0.269 25 3.75 3.73 3.82 99.5 102 70.0-130 2.38 25 Cyclohexane 25 Dibromochloromethane 3.75 3.68 3.78 98.1 101 70.0-130 2.68 3.75 3.79 3.86 101 103 70.0-130 1.83 25 1,2-Dibromoethane 25 1,2-Dichlorobenzene 3.75 3.72 3.66 99.2 97.6 70.0-130 1.63 1,3-Dichlorobenzene 3.75 3.70 3.69 98.7 98.4 70.0-130 0.271 25 25 1,4-Dichlorobenzene 3.75 3.75 3.72 100 99.2 70.0-130 0.803 25 3.75 3.69 3.71 98.4 98.9 70.0-130 0.541 1,2-Dichloroethane 1,1-Dichloroethane 3.75 3.81 3.85 102 103 70.0-130 1.04 25 25 3.75 3.74 3.80 99.7 101 70.0-130 1.59 1,1-Dichloroethene cis-1,2-Dichloroethene 3.75 3.80 3.84 101 102 70.0-130 1.05 25 3.75 3.82 102 102 70.0-130 0.261 25 trans-1,2-Dichloroethene 3.83 3.75 3.87 3.90 103 104 70.0-130 0.772 25 1,2-Dichloropropane 25 3.77 101 101 70.0-130 0.529 cis-1,3-Dichloropropene 3.75 3.79 3.75 3.68 98.1 98.9 70.0-130 0.812 25 trans-1,3-Dichloropropene 3.71 1,4-Dioxane 3.75 3.59 3.70 95.7 98.7 70.0-140 3.02 25 Ethanol 3.75 3.45 3.47 92.0 92.5 55.0-148 0.578 25 3.75 100 102 70.0-130 1.58 25 Ethylbenzene 3.76 3.82 3.75 97.6 97.9 70.0-130 0.273 25 4-Ethyltoluene 3.66 3.67 25 Trichlorofluoromethane 3.75 3.69 3.73 98.4 99.5 70.0-130 1.08 Dichlorodifluoromethane 3.75 3.68 3.64 98.1 97.1 64.0-139 1.09 25 25 1,1,2-Trichlorotrifluoroethane 3.75 3.80 3.85 101 103 70.0-130 1.31 3.97 106 70.0-130 0.503 25 1,2-Dichlorotetrafluoroethane 3.75 3.99 106 3.75 103 25 Heptane 3.77 3.87 101 70.0-130 2.62 3.75 3.75 3.73 100 99.5 70.0-151 0.535 25 Hexachloro-1,3-butadiene Isopropylbenzene 3.75 3.77 3.68 101 98.1 70.0-130 2.42 25 3.70 98.7 70.0-130 1.34 25 Methylene Chloride 3.75 3.75 100 3.75 3.55 3.52 94.7 93.9 70.0-149 0.849 25 Methyl Butyl Ketone 25 70.0-130 2-Butanone (MEK) 3.75 3.78 3.84 101 102 1.57 4-Methyl-2-pentanone (MIBK) 3.75 3.56 3.61 94.9 96.3 70.0-139 1.39 25 25 Methyl methacrylate 3.75 3.44 3.62 91.7 96.5 70.0-130 5.10 MTBE 3.75 3.73 3.78 99.5 101 70.0-130 1.33 25

3.75

3.70

3.76

98.7

Naphthalene

100

70.0-159

25

1.61

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4178428-1 02/19/25 09:50 • (LCSD) R4178428-2 02/19/25 10:40

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
2-Propanol	3.75	3.65	3.61	97.3	96.3	70.0-139			1.10	25	
Propene	3.75	3.56	3.60	94.9	96.0	64.0-144			1.12	25	
Styrene	7.50	7.65	7.83	102	104	70.0-130			2.33	25	
1,1,2,2-Tetrachloroethane	3.75	3.66	3.58	97.6	95.5	70.0-130			2.21	25	
Tetrachloroethylene	3.75	3.81	3.85	102	103	70.0-130			1.04	25	
Tetrahydrofuran	3.75	3.70	3.74	98.7	99.7	70.0-137			1.08	25	
Toluene	3.75	3.76	3.81	100	102	70.0-130			1.32	25	
1,2,4-Trichlorobenzene	3.75	3.77	3.79	101	101	70.0-160			0.529	25	
1,1,1-Trichloroethane	3.75	3.66	3.71	97.6	98.9	70.0-130			1.36	25	
1,1,2-Trichloroethane	3.75	3.79	3.84	101	102	70.0-130			1.31	25	
Trichloroethylene	3.75	3.77	3.83	101	102	70.0-130			1.58	25	
1,2,4-Trimethylbenzene	3.75	3.71	3.64	98.9	97.1	70.0-130			1.90	25	
1,3,5-Trimethylbenzene	3.75	3.81	3.72	102	99.2	70.0-130			2.39	25	
2,2,4-Trimethylpentane	3.75	3.84	3.91	102	104	70.0-130			1.81	25	
Vinyl chloride	3.75	3.44	3.64	91.7	97.1	70.0-130			5.65	25	
Vinyl Bromide	3.75	3.66	3.66	97.6	97.6	70.0-130			0.000	25	
Vinyl acetate	3.75	3.72	3.73	99.2	99.5	70.0-130			0.268	25	
Xylenes, Total	11.3	11.3	11.5	100	102	70.0-130			1.75	25	
m&p-Xylene	7.50	7.56	7.71	101	103	70.0-130			1.96	25	
o-Xylene	3.75	3.74	3.77	99.7	101	70.0-130			0.799	25	
TPH (GC/MS) Low Fraction	188	169	172	89.9	91.5	70.0-130			1.76	25	

60.0-140

97.0

95.9

WG2454886

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1827337-01

Method Blank (MB)

(S) 1,4-Bromofluorobenzene

(MB) R4178586-3 02/20/2	5 10:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
n-Hexane	U		0.143	0.630
(S) 1,4-Bromofluorobenzene	88.4			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

99.1

98.6

(LCS) R4178586-1 02/2	0/25 09:09 • (LC:	SD) R4178586	-2 02/20/25 0	9:49						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
n-Hexane	3.75	4.28	4.33	114	115	70.0-130			1.16	25

60.0-140

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

, to bre traditions and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

	·
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PAGE:

27 of 29

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Engineering/Remediation Resources Group

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Pace* Location Requested (City/State):			tody is a LEGAL	DOCUMENT	- Complete al						LABU	SE ONLY- Affix	Workord	er/Login			
Company, Name: Engineering/Remediation Resource Street Address: 15333 NE 90th Street City, State Zip: Customer Project #: 20230065	Contact/Report To: Jennifer Sonnichsen Phone #: 425-658-5026 E-Mail: Jennifer.sonnichsen@errg.com;spencer.slominski@errg.com:fernando.idiarte@errg.com Cc E-Mail: Invoice to:					Sample Receipt Checklist COC Seal Present/Intact: Y N COC Signed/Accurate: Y N Size: 1L 6L 1.4L Bottles arrive intact: Y N Correct bottles used: Y N Tage Color: G W P B Unused:											
Project Name: FORMER CIRCLE K Site Collection Info/Facility ID (as applicable): ENGREMRWA-CIRCLE K	1461	Invoice E-Mail: Purchase Orde Quote #:	er#(if applicat	ole):			1		Field	Information	1		Ana	alyses Req	uested	Proj. Manager: 3500 - Jennifer Gam	
Time Zone Collected: [] AK PT] MT] CT] ET		State origin of	sample(s):	ACL												AcctNum / Client ID:	anager: - Jennifer Gambill Jim / Client GREMRWA #: // Bottle P1130172 Sample Comment GREMPE COMMENT GREM
applicable Rush (Pre 2 Oay 3 Final A Date Resi		rogram (CAA, RCRA, etc.) as proval required): Permit # as applicable:					Canister		PUF / FILTER					ENGREMR	WA		
		5 day Other	Units for Reporting: ug/m ¹ PPBV mg/m ¹ PPMV			Pressure / Vacuu	e / vacuum		Flow	Total	umma			Profile / Template: T26250	2502		
Other Requested:		Summa Flow		Begin Collection End Collec		Collection	Pressure /	End Pressur	Duration	Rate	Volume Sampled	15.8			Prelog / Bottle Ord. ID: P11	30172	
Customer Sample ID	Matrix *	Canister ID	Controller	Date	Time	Date	Time	(in Hg)	Vacuum (in Hg)	(minutes)	m³/min or L/min	100000	-OT			Sample Comr	ment
FALCO-300-INF-20250213	SV	12314	29006	2/13	0930	2/13	0935	30	5				X			L18273	37-01
FALL 0-300-EFF- 20250213	5V	7633	13601	1	0940	1	0945	28	4			1 1	X				02
118-3-20250213	SV	12540	13901		1020		1025	28	4				X				03
FALCO-300-INF-20250213 FALCO-300-EFF-20250213 VP-3-2025021	SV	23403	28915	*	1030	+	1035	28	ч				х				04
								71 = 1									
Customer Remarks / Special Conditions / Possible Hazards:				Printed N Signature	ame:	FER	NAN	100 li	DIAPTE	Additiona # Coolers:	l Instruction	ons from Pa			rrection	Obs. Temp. ("C): Corre	ected Temp. (°C):
Relinquished by/Company: (Signafure) Relinquished by/Company: (Signature)	G	Date/Time: /2/	4 1140		y/Company: (1			Date/Time:				Fa		72 9709	
Relinquished by/Company: (Signature)		Date/Time:		Received b	y/Company: (Signature)				Date/Time:	_				7		
Relinquished by/Company: (Signature)		Date/Time:		Received	y/Cop pany: (Signature	M	-		Date/Firms	15	0	90	0		Page: / of:	/

Pace Analytical® ANALYTICAL REPORT

February 27, 2025

Engineering/Remediation Resources Group

L1829173 Sample Delivery Group:

Samples Received: 02/22/2025

Project Number: 20230065

Description:

Site:

FORMER CIRCLE K 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Former Cricle K 1461

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamper Gambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
RW-1 L1829173-01	7
MW-13 L1829173-02	8
MW-18 L1829173-03	9
MW-9 L1829173-04	10
MW-16 L1829173-05	11
MW-8 L1829173-06	12
MW-14 L1829173-07	13
MW-6 L1829173-08	14
MW-15 L1829173-09	15
MW-17 L1829173-10	16
MW-21 L1829173-11	17
MW-20 L1829173-12	18
TB-1 L1829173-13	19
TB-2 L1829173-14	20
MW-19 L1829173-15	21
DUP-1 L1829173-16	22
Qc: Quality Control Summary	23
Volatile Organic Compounds (GC) by Method NWTPHGX	23
Volatile Organic Compounds (GC/MS) by Method 8260D	25
GI: Glossary of Terms	27
Al: Accreditations & Locations	28

Sc: Sample Chain of Custody

29

SAMPLE SUMMARY

RW-1 L1829173-01 GW			Collected by Blaine Tech	Collected date/time 02/21/25 09:12	Received da 02/22/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 13:33	02/25/25 13:33	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2457157	1	02/24/25 19:58	02/24/25 19:58	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-13 L1829173-02 GW			Blaine Tech	02/21/25 09:13	02/22/25 09	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	10	02/25/25 16:39	02/25/25 16:39	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2457157	50	02/24/25 22:09	02/24/25 22:09	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-18 L1829173-03 GW			Blaine Tech	02/21/25 09:35	02/22/25 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 13:55	02/25/25 13:55	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457157	1	02/24/25 20:16	02/24/25 20:16	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	e Received date/time	
MW-9 L1829173-04 GW			Blaine Tech	02/21/25 09:41	02/22/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 14:16	02/25/25 14:16	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	20	02/25/25 00:42	02/25/25 00:42	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-16 L1829173-05 GW			Blaine Tech	02/21/25 10:00	02/22/25 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 14:38	02/25/25 14:38	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	1	02/24/25 22:35	02/24/25 22:35	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8 L1829173-06 GW			Blaine Tech	02/21/25 10:09	02/22/25 09	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	5	02/25/25 17:01	02/25/25 17:01	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	50	02/25/25 01:03	02/25/25 01:03	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-14 L1829173-07 GW			Blaine Tech	02/21/25 10:23	02/22/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 14:59	02/25/25 14:59	ADM	Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
MW-6 L1829173-08 GW			Blaine Tech	02/21/25 10:39	02/22/25 09	1:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 15:21	02/25/25 15:21	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	1	02/24/25 23:17	02/24/25 23:17	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-15 L1829173-09 GW			Blaine Tech	02/21/25 10:55	02/22/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2458619	1	02/27/25 01:00	02/27/25 01:00	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	1	02/24/25 23:38	02/24/25 23:38	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-17 L1829173-10 GW			Blaine Tech	02/21/25 11:43	02/22/25 09	
	B	D:1 ::				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Valetile Operation Community (CCV) to Method NIMTDLICY	WC24F72FC	4			ADM	MA Lubra TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 16:18	02/25/25 16:18	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	1	02/25/25 00:00	02/25/25 00:00	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-21 L1829173-11 GW			Blaine Tech	02/21/25 11:15	02/22/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	10	02/25/25 17:22	02/25/25 17:22	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	500	02/25/25 03:11	02/25/25 03:11	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-20 L1829173-12 GW			Blaine Tech	02/21/25 11:47	02/22/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	10	02/25/25 17:44	02/25/25 17:44	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	250	02/25/25 02:50	02/25/25 02:50	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-1 L1829173-13 GW			Blaine Tech	02/21/25 09:00	02/22/25 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 11:24	02/25/25 11:24	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	1	02/24/25 21:53	02/24/25 21:53	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-2 L1829173-14 GW			Blaine Tech	02/21/25 09:05	02/22/25 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	1	02/25/25 11:45	02/25/25 11:45	ADM	Mt. Juliet, TN
Valatila Ossassia Cassassas da (CC/MC) las Matha el 00000	14/02/45/2040	4	00/04/05 00 44	00/04/05 00 44	1411	AAC 1 IS 1 TAI

Volatile Organic Compounds (GC/MS) by Method 8260D

WG2457316

02/24/25 22:14

02/24/25 22:14

JAH

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
MW-19 L1829173-15 GW			Blaine Tech	02/21/25 11:20	02/22/25 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	10	02/25/25 18:05	02/25/25 18:05	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	100	02/25/25 02:29	02/25/25 02:29	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-1 L1829173-16 GW			Blaine Tech	02/21/25 12:00	02/22/25 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2457356	10	02/25/25 18:26	02/25/25 18:26	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2457316	10	02/25/25 00:21	02/25/25 00:21	JAH	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

Collected date/time: 02/21/25 09:12

SAMPLE RESULTS - 01

L18

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.223	<u>B</u>	0.100	1	02/25/2025 13:33	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		02/25/2025 13:33	WG2457356

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 19:58	WG2457157
Ethylbenzene	ND		0.00100	1	02/24/2025 19:58	WG2457157
Toluene	ND		0.00100	1	02/24/2025 19:58	WG2457157
Xylenes, Total	ND		0.00300	1	02/24/2025 19:58	WG2457157
(S) Toluene-d8	101		80.0-120		02/24/2025 19:58	WG2457157
(S) 4-Bromofluorobenzene	94.8		77.0-126		02/24/2025 19:58	WG2457157
(S) 1.2-Dichloroethane-d4	121		70 0-130		02/24/2025 19:58	WG2457157

Collected date/time: 02/21/25 09:13

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	14.1		1.00	10	02/25/2025 16:39	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	98.3		78.0-120		02/25/2025 16:39	WG2457356

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.352		0.0500	50	02/24/2025 22:09	WG2457157
Ethylbenzene	0.409		0.0500	50	02/24/2025 22:09	WG2457157
Toluene	0.580		0.0500	50	02/24/2025 22:09	WG2457157
Xylenes, Total	5.14		0.150	50	02/24/2025 22:09	WG2457157
(S) Toluene-d8	104		80.0-120		02/24/2025 22:09	WG2457157
(S) 4-Bromofluorobenzene	96.2		77.0-126		02/24/2025 22:09	WG2457157
(S) 1,2-Dichloroethane-d4	107		70.0-130		02/24/2025 22:09	WG2457157

Collected date/time: 02/21/25 09:35

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.110	В	0.100	1	02/25/2025 13:55	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		02/25/2025 13:55	WG2457356

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 20:16	WG2457157
Ethylbenzene	ND		0.00100	1	02/24/2025 20:16	WG2457157
Toluene	ND		0.00100	1	02/24/2025 20:16	WG2457157
Xylenes, Total	ND		0.00300	1	02/24/2025 20:16	WG2457157
(S) Toluene-d8	100		80.0-120		02/24/2025 20:16	WG2457157
(S) 4-Bromofluorobenzene	97.4		77.0-126		02/24/2025 20:16	WG2457157
(S) 1,2-Dichloroethane-d4	118		70.0-130		02/24/2025 20:16	WG2457157

Collected date/time: 02/21/25 09:41

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	9.02		0.100	1	02/25/2025 14:16	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	118		78.0-120		02/25/2025 14:16	WG2457356

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.0200	20	02/25/2025 00:42	WG2457316
Ethylbenzene	0.351		0.0200	20	02/25/2025 00:42	WG2457316
Toluene	0.0325		0.0200	20	02/25/2025 00:42	WG2457316
Xylenes, Total	0.665		0.0600	20	02/25/2025 00:42	WG2457316
(S) Toluene-d8	90.2		80.0-120		02/25/2025 00:42	WG2457316
(S) 4-Bromofluorobenzene	97.1		77.0-126		02/25/2025 00:42	WG2457316
(S) 1,2-Dichloroethane-d4	116		70.0-130		02/25/2025 00:42	WG2457316

Sample Narrative:

Collected date/time: 02/21/25 10:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.112	<u>B</u>	0.100	1	02/25/2025 14:38	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		02/25/2025 14:38	WG2457356

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 22:35	WG2457316
Ethylbenzene	ND		0.00100	1	02/24/2025 22:35	WG2457316
Toluene	ND		0.00100	1	02/24/2025 22:35	WG2457316
Xylenes, Total	ND		0.00300	1	02/24/2025 22:35	WG2457316
(S) Toluene-d8	95.6		80.0-120		02/24/2025 22:35	WG2457316
(S) 4-Bromofluorobenzene	99.1		77.0-126		02/24/2025 22:35	WG2457316
(S) 1,2-Dichloroethane-d4	121		70.0-130		02/24/2025 22:35	WG2457316

L182917

Volatile Organic Compounds (GC) by Method NWTPHGX

Collected date/time: 02/21/25 10:09

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	23.4		0.500	5	02/25/2025 17:01	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	96.9		78.0-120		02/25/2025 17:01	WG2457356

³Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.0500	50	02/25/2025 01:03	WG2457316
Ethylbenzene	1.07		0.0500	50	02/25/2025 01:03	WG2457316
Toluene	0.178		0.0500	50	02/25/2025 01:03	WG2457316
Xylenes, Total	4.06		0.150	50	02/25/2025 01:03	WG2457316
(S) Toluene-d8	88.6		80.0-120		02/25/2025 01:03	WG2457316
(S) 4-Bromofluorobenzene	96.5		77.0-126		02/25/2025 01:03	WG2457316
(S) 1,2-Dichloroethane-d4	115		70.0-130		02/25/2025 01:03	WG2457316

7 (1

Sample Narrative:

Collected date/time: 02/21/25 10:23

SAMPLE RESULTS - 07

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	02/25/2025 14:59	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		02/25/2025 14:59	WG2457356

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 22:56	WG2457316
Ethylbenzene	ND		0.00100	1	02/24/2025 22:56	WG2457316
Toluene	ND		0.00100	1	02/24/2025 22:56	WG2457316
Xylenes, Total	ND		0.00300	1	02/24/2025 22:56	WG2457316
(S) Toluene-d8	96.9		80.0-120		02/24/2025 22:56	WG2457316
(S) 4-Bromofluorobenzene	101		77.0-126		02/24/2025 22:56	WG2457316
(S) 1,2-Dichloroethane-d4	118		70.0-130		02/24/2025 22:56	WG2457316

Collected date/time: 02/21/25 10:39

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.109	В	0.100	1	02/25/2025 15:21	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	98.5		78.0-120		02/25/2025 15:21	WG2457356

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.0227		0.00100	1	02/24/2025 23:17	WG2457316
Ethylbenzene	0.00138		0.00100	1	02/24/2025 23:17	WG2457316
Toluene	ND		0.00100	1	02/24/2025 23:17	WG2457316
Xylenes, Total	ND		0.00300	1	02/24/2025 23:17	WG2457316
(S) Toluene-d8	93.3		80.0-120		02/24/2025 23:17	WG2457316
(S) 4-Bromofluorobenzene	94.6		77.0-126		02/24/2025 23:17	WG2457316
(S) 1,2-Dichloroethane-d4	121		70.0-130		02/24/2025 23:17	WG2457316

Collected date/time: 02/21/25 10:55

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	02/27/2025 01:00	WG2458619
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		02/27/2025 01:00	WG2458619

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 23:38	WG2457316
Ethylbenzene	ND		0.00100	1	02/24/2025 23:38	WG2457316
Toluene	ND		0.00100	1	02/24/2025 23:38	WG2457316
Xylenes, Total	ND		0.00300	1	02/24/2025 23:38	WG2457316
(S) Toluene-d8	94.0		80.0-120		02/24/2025 23:38	WG2457316
(S) 4-Bromofluorobenzene	96.6		77.0-126		02/24/2025 23:38	WG2457316
(S) 1,2-Dichloroethane-d4	122		70.0-130		02/24/2025 23:38	WG2457316

Collected date/time: 02/21/25 11:43

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.323	В	0.100	1	02/25/2025 16:18	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		02/25/2025 16:18	WG2457356

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/25/2025 00:00	WG2457316
Ethylbenzene	ND		0.00100	1	02/25/2025 00:00	WG2457316
Toluene	ND		0.00100	1	02/25/2025 00:00	WG2457316
Xylenes, Total	ND		0.00300	1	02/25/2025 00:00	WG2457316
(S) Toluene-d8	94.3		80.0-120		02/25/2025 00:00	WG2457316
(S) 4-Bromofluorobenzene	95.9		77.0-126		02/25/2025 00:00	WG2457316
(S) 1,2-Dichloroethane-d4	117		70.0-130		02/25/2025 00:00	WG2457316

Collected date/time: 02/21/25 11:15

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	69.0		1.00	10	02/25/2025 17:22	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	89.8		78.0-120		02/25/2025 17:22	WG2457356

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	16.4		0.500	500	02/25/2025 03:11	WG2457316
Ethylbenzene	0.970		0.500	500	02/25/2025 03:11	WG2457316
Toluene	14.7		0.500	500	02/25/2025 03:11	WG2457316
Xylenes, Total	6.39		1.50	500	02/25/2025 03:11	WG2457316
(S) Toluene-d8	93.1		80.0-120		02/25/2025 03:11	WG2457316
(S) 4-Bromofluorobenzene	98.0		77.0-126		02/25/2025 03:11	WG2457316
(S) 1,2-Dichloroethane-d4	117		70.0-130		02/25/2025 03:11	WG2457316

Collected date/time: 02/21/25 11:47

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	41.6		1.00	10	02/25/2025 17:44	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	93.4		78.0-120		02/25/2025 17:44	WG2457356

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	7.73		0.250	250	02/25/2025 02:50	WG2457316
Ethylbenzene	0.920		0.250	250	02/25/2025 02:50	WG2457316
Toluene	7.97		0.250	250	02/25/2025 02:50	WG2457316
Xylenes, Total	4.94		0.750	250	02/25/2025 02:50	WG2457316
(S) Toluene-d8	91.9		80.0-120		02/25/2025 02:50	WG2457316
(S) 4-Bromofluorobenzene	98.8		77.0-126		02/25/2025 02:50	WG2457316
(S) 1.2-Dichloroethane-d4	123		70.0-130		02/25/2025 02:50	WG2457316

Engineering/Remediation Resources Group

Collected date/time: 02/21/25 09:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	02/25/2025 11:24	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		02/25/2025 11:24	WG2457356

Cp

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 21:53	WG2457316
Ethylbenzene	ND		0.00100	1	02/24/2025 21:53	WG2457316
Toluene	ND		0.00100	1	02/24/2025 21:53	WG2457316
Xylenes, Total	ND		0.00300	1	02/24/2025 21:53	WG2457316
(S) Toluene-d8	94.4		80.0-120		02/24/2025 21:53	WG2457316
(S) 4-Bromofluorobenzene	99.6		77.0-126		02/24/2025 21:53	WG2457316
(S) 1,2-Dichloroethane-d4	118		70.0-130		02/24/2025 21:53	WG2457316

Collected date/time: 02/21/25 09:05

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	02/25/2025 11:45	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		02/25/2025 11:45	WG2457356

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	02/24/2025 22:14	WG2457316
Ethylbenzene	ND		0.00100	1	02/24/2025 22:14	WG2457316
Toluene	ND		0.00100	1	02/24/2025 22:14	WG2457316
Xylenes, Total	ND		0.00300	1	02/24/2025 22:14	WG2457316
(S) Toluene-d8	97.4		80.0-120		02/24/2025 22:14	WG2457316
(S) 4-Bromofluorobenzene	101		77.0-126		02/24/2025 22:14	WG2457316
(S) 1.2-Dichloroethane-d4	121		70 0-130		02/24/2025 22:14	WG2457316

Collected date/time: 02/21/25 11:20

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	17.1		1.00	10	02/25/2025 18:05	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	96.9		78.0-120		02/25/2025 18:05	WG2457356

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.336		0.100	100	02/25/2025 02:29	WG2457316
Ethylbenzene	0.718		0.100	100	02/25/2025 02:29	WG2457316
Toluene	0.933		0.100	100	02/25/2025 02:29	WG2457316
Xylenes, Total	3.82		0.300	100	02/25/2025 02:29	WG2457316
(S) Toluene-d8	91.1		80.0-120		02/25/2025 02:29	WG2457316
(S) 4-Bromofluorobenzene	93.2		77.0-126		02/25/2025 02:29	WG2457316
(S) 1,2-Dichloroethane-d4	115		70.0-130		02/25/2025 02:29	WG2457316

Cn

Engineering/Remediation Resources Group

Collected date/time: 02/21/25 12:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	23.5		1.00	10	02/25/2025 18:26	WG2457356
(S) a,a,a-Trifluorotoluene(FID)	98.2		78.0-120		02/25/2025 18:26	WG2457356

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.0100	10	02/25/2025 00:21	WG2457316
Ethylbenzene	1.14		0.0100	10	02/25/2025 00:21	WG2457316
Toluene	0.186		0.0100	10	02/25/2025 00:21	WG2457316
Xylenes, Total	4.21		0.0300	10	02/25/2025 00:21	WG2457316
(S) Toluene-d8	87.1		80.0-120		02/25/2025 00:21	WG2457316
(S) 4-Bromofluorobenzene	95.2		77.0-126		02/25/2025 00:21	WG2457316
(S) 1,2-Dichloroethane-d4	122		70.0-130		02/25/2025 00:21	WG2457316

GI

Sample Narrative:

L1829173-16 WG2457316: Non-target compounds too high to run at a lower dilution.

Engineering/Remediation Resources Group

QUALITY CONTROL SUMMARY

L1829173-01,02,03,04,05,06,07,08,10,11,12,13,14,15,16

Method Blank (MB)

(MB) R4180407-2 02/25	/25 10:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Gasoline Range Organics-NWTPH	0.0647	<u>J</u>	0.0316	0.100
(S) a.a.a-Trifluorotoluene(FID)	99.9			78.0-120

Laboratory Control Sample (LCS)

Volatile Organic Compounds (GC) by Method NWTPHGX

(LCS) R4180407-1 02/25/	/25 09:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Gasoline Range Organics-NWTPH	5.00	5.24	105	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			99.2	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1829173-09

Method Blank (MB)

(MB) R4180754-3 02/26	/25 23:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Gasoline Range Organics-NWTPH	U		0.0316	0.100
(S) a,a,a-Trifluorotoluene(FID)	104			78.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4180754-1 02/26/	'25 21:31 • (LCSE	D) R4180754-4	02/26/25 23:	56							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5.00	4.76	4.92	95.2	98.4	70.0-124			3.31	20	
(S) a a a-Trifluorotoluene(FID)				106	104	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1829173-01,02,03

Method Blank (MB)

(MB) R4179828-3 02/24/2	25 12:49				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Toluene	U		0.000278	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	96.6			80.0-120	
(S) 4-Bromofluorobenzene	93.4			77.0-126	
(S) 1,2-Dichloroethane-d4	129			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	(LCS) R4179	9828-1 02/2	4/25 11:35 •	(LCSD) R4179828-2	02/24/25 11:53
--	-------------	-------------	--------------	-------	--------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00484	0.00490	96.8	98.0	70.0-123			1.23	20	
Ethylbenzene	0.00500	0.00448	0.00465	89.6	93.0	79.0-123			3.72	20	
Toluene	0.00500	0.00554	0.00558	111	112	79.0-120			0.719	20	
Xylenes, Total	0.0150	0.0144	0.0147	96.0	98.0	79.0-123			2.06	20	
(S) Toluene-d8				97.9	96.6	80.0-120					
(S) 4-Bromofluorobenzene				94.2	91.4	77.0-126					
(S) 1,2-Dichloroethane-d4				122	116	70.0-130					

Engineering/Remediation Resources Group

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1829173-04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R4179942-3 02/24/2				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
Ethylbenzene	U		0.000137	0.00100
Toluene	U		0.000278	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	93.3			80.0-120
(S) 4-Bromofluorobenzene	97.4			77.0-126
(S) 1,2-Dichloroethane-d4	113			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

116

119

(LCS)	R4179942-1	02/24/25 17:08 •	(LCSD) R4179942-2	02/24/25 17:29
-------	------------	------------------	-------	--------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00539	0.00517	108	103	70.0-123			4.17	20	
Ethylbenzene	0.00500	0.00413	0.00412	82.6	82.4	79.0-123			0.242	20	
Toluene	0.00500	0.00466	0.00452	93.2	90.4	79.0-120			3.05	20	
Xylenes, Total	0.0150	0.0129	0.0128	86.0	85.3	79.0-123			0.778	20	
(S) Toluene-d8				93.0	91.6	80.0-120					
(S) 4-Bromofluorobenzene				94.9	96.1	77.0-126					

70.0-130

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIC VIGIOIIS GIV	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

O I:6:	December
Qualifier	Description

<u>a a a mier</u>	2000.1911011
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable: the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Engineering/Remediation Resources Group

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:					An	alvsis / Co	ntainer / Preservative		Chain of Custody	Page 1
Engineering/Remediatio	n Resour	ces	Jennifer	Sonnichse	n	Pres							0	14
Group				E 90th Stre		Chk	1			9			- Pac	ce.
			Ste 100				133				100		PEOPLE AD	VANCING SCIENCE
15333 NE 90th Street			Redmon	id, WA 980	52	1	18						MT JUL	IFT. TN
Report to:			Email To:	onnichsen@ei	idiarte	23						12065 Lebanon Rd Mount	Juliet, TN 37122	
Fernando Idiarte 425-658-5026			^	Jillicisene el	Please C	100				- 10			Submitting a sample via thi constitutes acknowledgme Pace Terms and Conditions	nt and acceptance of the
Project Description: FORMER CIRCLE		City/State Collected:	sea H	le, wh	PT MT	CT ET		I.	100	- 10			https://info.pacelabs.com/ terms.pdf	
Regulatory Program(DOD,RCRA,DW,etc):	Client Project		1	Lab Project	# RWA-JBLM-Y	C	4.5	業	20				SDG # 17	211/2
EIGLOGY	200	5001	05		CLE K		고 무	4		- 10			B13	0
Collected by (print):	Site/Facility ID	THER O	K 1461	P.O. #			DODV8260 40mlAmb-HCl	DODV8260 40mlAmb-HCI-BIK	NUTTON				Acctnum: ENGR	REMRWA
Collected by (signature):	Rush? (L	ab MUST Be		Quote #			mlA	1	200				Template:T224	845
hlit	Same Da	y Five	Day			-	40	4	1				Prelogin: P113	
Immediately	Next Day		y (Rad Only) ay (Rad Only)		esults Needed	No.	260	560	8				PM: 3500 - Jenni PB: 21141	25 mV
Packed or Ce N Y Y	Three Di	aySTD1	TAT			of	/87	188	2				Shipped Via: Fed	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	DOD	Bob	GRO				Remarks	Sample # (lab only)
RW-1	GRAG	GW	NK	22/2/2	5 6912	186	X		N					701
nnw-13		GW	11	1	0973	180	X		X					-02
m111-18		GW			0935	36	X		X					-03
100 18		GW			0941	13/	X		X					-04
May Sign		GW			1000	30			X					-00
11/10/-10					1000	1 63	-		X					-06
MM		GW	1		100	1 4	1,000		X					- 27
MW-19		GW			1009	3 11	X		1			1000		-n8
MW-6		GW			1039	1 103	X							- 09
mw-15		GW			1055	03	X		_					- 10
Mui-17	A	GW	4	V	1143	63	X		1			0.4		10
	emarks:	D- BT	EX O	NLY						рН	Temp	COC Seal	mple Receipt Che Present/Intact:	NP Y N
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	826	50-61	0,0							Flann	Other		ed/Accurate: arrive intact:	J-N
WW - WasteWater							-			Flow _	Other		oottles used: nt volume sent:	N N
DW - Drinking Water OT - Other	mples returned UPS FedEx	via:			Tracking #	400	11	04	31	257	0		If Applicable Headspace:	e Y N
		ate: ,	Tim	ne:	Received by: (Sign	ature)					Received: Yes / No	Preserva	tion Correct/Chec en <0.5 mR/hr:	cked: $\frac{Y}{Y} = \frac{N}{N}$
Relinquished by (Signature)		2/21/	25 1	330	FF	DF	-X				H HCL/MeoH			
Relinquished by : (Signature)	D	4 01 0 ate:	(C) Tim	ne:	Received by: (Sign	ature)	1		T	emp: FD	Agor Bottles Received	If preserva	tion required by Logi	n: Date/Time
heiniquistied by . (Signature)										08t.	41.2 84			
Relinquished by : (Signature)	D	ate:	Tin	ne:	Received for lab b	y: (Signa	ture)			Date:	Time:	Hold:		Condition: NCF / OK
					aux	a	Mi	tel	ren	2/2	2/25 091	00		10

_

Company Name/Address:			Billing Infor	mation:					1	Analysis / Co	ontainer / Pr	servative		Chain of Custody	Page 4 of 1
Engineering/Remediation	Resource		100000000000000000000000000000000000000	Sonnichser		Pres Chk								B	
Group			Ste 100	E 90th Stre										PEOPLE	CC°
15333 NE 90th Street			Redmon	d, WA 980	52		-37							DAT III	LICT TAI
Report to:	Email To: jennifer.sonnichsen@				rg com:fernando	diarte	137							12065 Lebanon Rd Mou	
Fernando Idiarte 425-658-5026	l cit	y/State _	-		Please Ci				2.					Submitting a sample via constitutes acknowledge Pace Terms and Condition	ment and acceptance of the
Project Description: FORMER CIRCLE K 146	Co	llected: S	rea He	_	RIMT C	T ET	3		9					https://info.pacelabs.cor terms.pdf	
	2300G	8		ENGREM	# RWA-JBLM-YT	С	D	40mlAmb-HCI-BIK	HAL					SDG# [8	29173
Collected by (print):	e/Facility ID# ORMER GR	CLEK	7461	P.O. #			BOBV8260 40mlAmb-HCl	H-qui	NW					Table # Acctnum: ENG	REMRWA
Collected by (signature):	Rush? (Lab			Quote #			mlA	mlA	1					Template: T224	
79	Same Day Next Day	Five D 5 Day		Date R	esults Needed	T	0 40		8					Prelogin: P113 PM: 3500 - Jenn	
Immediately Packed on Ice N Y	Two Day Three Day	10 Da	y (Rad Only)			No.	326	326	80				100	PB: 2/14/	
		Matrix *	Depth	Date	Time	Cntrs	3000	DODA/8260	60					Shipped Via: Fe	edEX Ground Sample # (lab only)
MW-Z1 6	RAD	GW	NA	12/2/2	5 1115	1/38	X	- CI	X						1-11
mw-26		GW	1		1147	36	X		X				100		-12
TRIP BLANK TB-		-GW-		1	0900	2		X	X						-13
TQ-7		-			095	2		X	X			(miles)			-14
M141-19	1	EOW	-		1120	6	X		X						-15
Dira-1	-	4	1	8	1200	6	X		X						16
	·	-													180
* Matrix: Remai	rks: BTDO	ON	Y BY	82601						рН	Tem	p	COC Seal	mple Receipt Ch	ecklist NP Y, N
GW - Groundwater B - Bioassay WW - WasteWater	3.57									Flow_	Oth		COC Signe Bottles a Correct h	ed/Accurate: arrive intact: pottles used:	7 -N N N N N N N N N N N N N N N N N N N
OT Other	es returned via			T	acking# U[141	M	101	75	70				nt volume sent: If Applicabl Headspace:	le Y N
Relinquished by : Signature)	Date:		Time	R R	eceived by: (Signa	ture)	V	Tu.		Trip Blank		es / No ACL / MeoH	Preservat	tion Correct/Che en <0.5 mR/hr:	ecked: Y N
Relinquished by : (Signature)	Date:	_	Time		eceived by: (Signa	ture)				Temp: ED 2/27	190 Bot	tles Received:	If preserva	tion required by Log	in: Date/Time
Relinquished by : (Signature)	Date:		Time	R	eceived for lab by	(Signat	ure)	ih	in	Date: 2/2	7 Tin	090U	Hold:		Condition NCF / OK

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

L1831494 Sample Delivery Group:

Samples Received: 03/01/2025

Project Number: 20230065

Description: Former Circle K

Site: 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Jamper Gambill Entire Report Reviewed By:

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LG-404-EFF-20250227 L1831494-01	5
LG-403-MID-20250227 L1831494-02	6
LG-401-INF-20250227 L1831494-03	7
DUP-1-2025027 L1831494-04	8
DUP-2 L1831494-05	9
TB-1-20250228 L1831494-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 1664B	11
Volatile Organic Compounds (GC) by Method NWTPHGX	12
Volatile Organic Compounds (GC/MS) by Method 8260D	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

	SAIVIT LL .	301111	MAINI			
			Collected by	Collected date/time	Received da	te/time
LG-404-EFF-20250227 L1831494-01 GW			FL	02/27/25 16:00	03/01/25 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2463462	1	03/06/25 08:09	03/06/25 13:15	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2462795	1	03/05/25 15:30	03/05/25 15:30	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2461889	1	03/03/25 23:48	03/03/25 23:48	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-403-MID-20250227 L1831494-02 GW			FL	02/27/25 16:45	03/01/25 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2463462	1	03/06/25 08:09	03/06/25 13:15	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2462795	1	03/05/25 15:53	03/05/25 15:53	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2461889	1	03/04/25 00:07	03/04/25 00:07	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-401-INF-20250227 L1831494-03 GW			FL	02/27/25 17:00	03/01/25 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 1664B	WG2463462	1	03/06/25 08:09	03/06/25 13:15	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2462795	1	03/05/25 16:16	03/05/25 16:16	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2461889	1	03/04/25 00:26	03/04/25 00:26	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-1-2025027 L1831494-04 GW			FL	02/27/25 16:15	03/01/25 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 1664B	WG2463462	1	03/06/25 08:09	03/06/25 13:15	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2462795	1	03/05/25 16:40	03/05/25 16:40	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2461889	1	03/04/25 00:45	03/04/25 00:45	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-2 L1831494-05 GW			FL	02/27/25 16:30	03/01/25 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2463462	1	03/06/25 08:09	03/06/25 13:15	CWB	Mt. Juliet, TN
			Collocted by	Collected data him -	Dogowood -1-	to/timo
TD 4 00050000 14004404 00 000			Collected by FL	Collected date/time 02/28/25 12:00	Received da 03/01/25 09:	
TB-1-20250228 L1831494-06 GW			1 L	02/20/20 12.00	03/01/20 09.	.00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
VALUE OF THE STATE	11100 100====					

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260D

WG2462795

WG2461889

1

1

03/05/25 10:51

03/03/25 23:29

03/05/25 10:51

03/03/25 23:29

ADM

JBE

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

LG-404-EFF-20250227

SAMPLE RESULTS - 01

Collected date/time: 02/27/25 16:00

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.88	1	03/06/2025 13:15	WG2463462

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	03/05/2025 15:30	WG2462795
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		03/05/2025 15:30	WG2462795

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	03/03/2025 23:48	WG2461889
cis-1,2-Dichloroethene	ND		0.00100	1	03/03/2025 23:48	WG2461889
trans-1,2-Dichloroethene	ND		0.00100	1	03/03/2025 23:48	WG2461889
Ethylbenzene	ND		0.00100	1	03/03/2025 23:48	WG2461889
Tetrachloroethene	ND		0.00100	1	03/03/2025 23:48	WG2461889
Toluene	ND		0.00100	1	03/03/2025 23:48	WG2461889
Trichloroethene	ND		0.00100	1	03/03/2025 23:48	WG2461889
Vinyl chloride	ND		0.00100	1	03/03/2025 23:48	WG2461889
Xylenes, Total	ND		0.00300	1	03/03/2025 23:48	WG2461889
(S) Toluene-d8	97.4		80.0-120		03/03/2025 23:48	WG2461889
(S) 4-Bromofluorobenzene	99.3		77.0-126		03/03/2025 23:48	WG2461889
(S) 1,2-Dichloroethane-d4	104		70.0-130		03/03/2025 23:48	WG2461889

LG-403-MID-20250227 Collected date/time: 02/27/25 16:45

SAMPLE RESULTS - 02

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.62	1	03/06/2025 13:15	WG2463462

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	03/05/2025 15:53	WG2462795
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		03/05/2025 15:53	WG2462795

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	03/04/2025 00:07	WG2461889
cis-1,2-Dichloroethene	ND		0.00100	1	03/04/2025 00:07	WG2461889
trans-1,2-Dichloroethene	ND		0.00100	1	03/04/2025 00:07	WG2461889
Ethylbenzene	ND		0.00100	1	03/04/2025 00:07	WG2461889
Tetrachloroethene	ND		0.00100	1	03/04/2025 00:07	WG2461889
Toluene	ND		0.00100	1	03/04/2025 00:07	WG2461889
Trichloroethene	ND		0.00100	1	03/04/2025 00:07	WG2461889
Vinyl chloride	ND		0.00100	1	03/04/2025 00:07	WG2461889
Xylenes, Total	ND		0.00300	1	03/04/2025 00:07	WG2461889
(S) Toluene-d8	99.4		80.0-120		03/04/2025 00:07	WG2461889
(S) 4-Bromofluorobenzene	97.9		77.0-126		03/04/2025 00:07	WG2461889
(S) 1,2-Dichloroethane-d4	103		70.0-130		03/04/2025 00:07	WG2461889

$LG-401-INF-20250227 \\ \text{Collected date/time: } 02/27/25\ 17:00 \\$

SAMPLE RESULTS - 03

1831494

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	11.9		5.68	1	03/06/2025 13:15	WG2463462

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	0.114		0.100	1	03/05/2025 16:16	WG2462795
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		03/05/2025 16:16	WG2462795

⁴Cn

⁵Sr

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.00209		0.00100	1	03/04/2025 00:26	WG2461889
cis-1,2-Dichloroethene	ND		0.00100	1	03/04/2025 00:26	WG2461889
trans-1,2-Dichloroethene	ND		0.00100	1	03/04/2025 00:26	WG2461889
Ethylbenzene	ND		0.00100	1	03/04/2025 00:26	WG2461889
Tetrachloroethene	0.00336		0.00100	1	03/04/2025 00:26	WG2461889
Toluene	0.00183		0.00100	1	03/04/2025 00:26	WG2461889
Trichloroethene	ND		0.00100	1	03/04/2025 00:26	WG2461889
Vinyl chloride	ND		0.00100	1	03/04/2025 00:26	WG2461889
Xylenes, Total	ND		0.00300	1	03/04/2025 00:26	WG2461889
(S) Toluene-d8	103		80.0-120		03/04/2025 00:26	WG2461889
(S) 4-Bromofluorobenzene	92.2		77.0-126		03/04/2025 00:26	WG2461889
(S) 1,2-Dichloroethane-d4	98.4		70.0-130		03/04/2025 00:26	WG2461889

DUP-1-2025027

SAMPLE RESULTS - 04

Wet Chemistry by Method 1664B

Collected date/time: 02/27/25 16:15

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND	<u>J6</u>	6.10	1	03/06/2025 13:15	WG2463462

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	03/05/2025 16:40	WG2462795
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		03/05/2025 16:40	WG2462795

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	ND		0.00100	1	03/04/2025 00:45	WG2461889
cis-1,2-Dichloroethene	ND		0.00100	1	03/04/2025 00:45	WG2461889
trans-1,2-Dichloroethene	ND		0.00100	1	03/04/2025 00:45	WG2461889
Ethylbenzene	ND		0.00100	1	03/04/2025 00:45	WG2461889
Tetrachloroethene	ND		0.00100	1	03/04/2025 00:45	WG2461889
Toluene	ND		0.00100	1	03/04/2025 00:45	WG2461889
Trichloroethene	ND		0.00100	1	03/04/2025 00:45	WG2461889
Vinyl chloride	ND		0.00100	1	03/04/2025 00:45	WG2461889
Xylenes, Total	ND		0.00300	1	03/04/2025 00:45	WG2461889
(S) Toluene-d8	103		80.0-120		03/04/2025 00:45	WG2461889
(S) 4-Bromofluorobenzene	92.9		77.0-126		03/04/2025 00:45	WG2461889
(S) 1,2-Dichloroethane-d4	101		70.0-130		03/04/2025 00:45	WG2461889

DUP-2

SAMPLE RESULTS - 05

Collected date/time: 02/27/25 16:30

L1831494

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Oil & Grease (Hexane Extr)	ND		6.33	1	03/06/2025 13:15	WG2463462	

Engineering/Remediation Resources Group

TB-1-20250228

SAMPLE RESULTS - 06

Collected date/time: 02/28/25 12:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Gasoline Range Organics-NWTPH	ND		0.100	1	03/05/2025 10:51	WG2462795
(S) a.a.a-Trifluorotoluene(FID)	101		78.0-120		03/05/2025 10:51	WG2462795

Ss

Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
mg/l		mg/l		date / time	
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00100	1	03/03/2025 23:29	WG2461889
ND		0.00300	1	03/03/2025 23:29	WG2461889
94.8		80.0-120		03/03/2025 23:29	WG2461889
98.1		77.0-126		03/03/2025 23:29	WG2461889
101		70.0-130		03/03/2025 23:29	WG2461889
	mg/l ND	mg/l ND	mg/l mg/l ND 0.00100 ND 0.00300 94.8 80.0-120 98.1 77.0-126	mg/l mg/l ND 0.00100 1 ND 0.00300 1 94.8 80.0-120 98.1 77.0-126	mg/l mg/l date / time ND 0.00100 1 03/03/2025 23:29 ND 0.00300 1 03/03/2025 23:29 P4.8 80.0-120 03/03/2025 23:29 98.1 77.0-126 03/03/2025 23:29

QUALITY CONTROL SUMMARY

L1831494-01,02,03,04,05

Wet Chemistry by Method 1664B

(MB) R4183323-1 03/06/25 13:15

Method Blank (MB)

(,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Oil & Grease (Hexane Extr)	U		1.40	5.00

(LCS) R4183323-2 03/06/25 13:15 • (LCSD) R4183323-3 03/06/25 13:15

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Oil & Grease (Hexane Extr)	40.0	34.6	34 5	86.5	86.3	78 O-114			0.289	20

(OS) L1831494-04 03/06/25 13:15 • (MS) R4183323-4 03/06/25 13:15

(03) [1831494-04 03/00/2	, ,	Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Oil & Grease (Hexane Extr)	40.0	ND	25.6	64.0	1	78.0-114	<u>J6</u>

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1831494-01,02,03,04,06

Method Blank (MB)

(MB) R4183187-3 03/05/2	MB) R4183187-3 03/05/25 10:08						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Gasoline Range Organics-NWTPH	U		0.0316	0.100			
(S) a,a,a-Trifluorotoluene(FID)	101			78.0-120			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4183187-1 03/05/2	25 08:57 • (LCSI	D) R4183187-2	03/05/25 09:	21							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5.00	4.40	4.80	88.0	96.0	70.0-124			8.70	20	
(S) a a a-Trifluorotoluene(FID)				106	104	78.0-120					

(03) [1631191-01 03/05/2	3 12.47 • (IVIS) R	+103107-4 03/0	15/25 19.24 • ((NISD) K4103107	-5 03/05/25	19.47							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5.00	0.318	5.90	6.04	112	114	1	10.0-155			2.35	21	
(S) a,a,a-Trifluorotoluene(FID)					107	106		78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1831494-01,02,03,04,06

Method Blank (MB)

(MB) R4183796-2 03/03/2	25 22:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
cis-1,2-Dichloroethene	U		0.000126	0.00100	
trans-1,2-Dichloroethene	U		0.000149	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Tetrachloroethene	U		0.000300	0.00100	
Toluene	U		0.000278	0.00100	
Trichloroethene	U		0.000190	0.00100	
Vinyl chloride	U		0.000234	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	97.8			80.0-120	
(S) 4-Bromofluorobenzene	96.5			77.0-126	
(S) 1,2-Dichloroethane-d4	102			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R4183/96-1	03/03/25	19:52
------------------	----------	-------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.00500	0.00542	108	70.0-123	
cis-1,2-Dichloroethene	0.00500	0.00499	99.8	73.0-120	
trans-1,2-Dichloroethene	0.00500	0.00504	101	73.0-120	
Ethylbenzene	0.00500	0.00514	103	79.0-123	
Tetrachloroethene	0.00500	0.00599	120	72.0-132	
Toluene	0.00500	0.00533	107	79.0-120	
Trichloroethene	0.00500	0.00581	116	78.0-124	
Vinyl chloride	0.00500	0.00488	97.6	67.0-131	
Xylenes, Total	0.0150	0.0152	101	79.0-123	
(S) Toluene-d8			101	80.0-120	
(S) 4-Bromofluorobenzene			91.7	77.0-126	
(S) 1,2-Dichloroethane-d4			99.9	70.0-130	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J6

The sample matrix interfered with the ability to make any accurate determination; spike value is low.

¹Cp

²Tc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Info	rmation:		Analysis / Container / Preservative							Chain of Custody Page of		
Engineering/Remediatio	n Resour	rces	lannifor	Sonnichsen A	\.countr	Pres									, ,
Group			Payable	Sonnichsen F	Accounts	Chk								R	
Group			100000000000000000000000000000000000000	E 90th Street										- Pa	ice
15333 NE 90th Street			Ste 100	J 14/4 000F3											ADVANCING SCIENCE
Report to:			Email To:											The second second	ILIET, TN
Jennifer Sonnichsen 425-658-5026			jennifer.so	nnichsen@errg.co	m;spencer.s	lomins	100							12065 Lebanon Rd Mod Submitting a sample via	
Project Description: FORMER CIRCLE &		City/State Collected:	Seaf	le WA	Please C									Pace Terms and Condition https://info.pacelabs.co	ons found at:
Regulatory Program(DOD,RCRA,DW,etc):	Client Project			Lab Project #				*				-		SDG # 18	31494
EIM WA	200	2300	65	ENGREMRWA	A-CIRCLE K		T	ICI-BIK			×			D2	49
Collected by (print):	Site/Facility ID			P.O. #			NWTPHGX 40mlAmb HCl	40mlAmb-H	1L-CIr-WT-HCI	豆	40mlAmb-HCI-BIK			Acctnum: ENG	
Collected by (signature):		ab MUST Be	Notified)	Quote #			IA	A A	N	40mlAmb-HC	+91			Template: T26	3466
1111	Same Da			otined)			101	101	1	Am	Am			Prelogin: P11	32806
Immediately /	Next Day	y5 Da	y (Rad Only) Day (Rad Only)	Date Results	s Needed		×		10-1	I I	I'm		100	PM: 3500 - Jen	nifer Gambill
Packed on Ice N Y		aySTD				No.	HG	HG	X 1	40				PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	WTW	NWTPHGX	OGHEX	V8260	V8260			Shipped Via: Fe	Sample # (lab only)
LG-404-EFF-20290227	GRAB	GW	WA	2/19/94	1600	8	X		X	X					76
16-403-MID-20250227	0	GW	1	10110	1645	8	X	-	X	X					-02
1 G-401-1NE-20250227		GW	11		151700	9 8	X		X	X					-03
DUP-1-2025022		GW			1615	8	X		X	X	1				-04
DU0-7		GW		-	11/20	28	X		X	_x	-				-05
TRIP BLANK TB-1-20250225	1	GW	4	not not he	1200	2		X			X				06
10 + 200000	*			2000											
SS - Soil AIR - Air F - Filter	narks:	VOC	s Lis	T - BT	EX +	- T	Œ,	PC	E,	рН		_ Temp	COC Seal	mple Receipt Ch Present/Intact: d/Accurate:	ecklist Y N
GW - Groundwater B - Bioassay WW - WasteWater				1	10-1	AD(F	47	OF	Flow		Other	Bottles a	rrive intact:	N N
DW - Drinking Water	nples returned	via:			111	1	1	1		-				ottles used: t volume sent:	1 N
OT - Other	UPS FedEx			Trackin	ng# 42	21	09	290	008	U			VOA Zero	If Applicab Headspace:	le Y N
Relinquished by : (Signature)	Da	te: h&	Time	Receive	ed by: (Signa	ture)				Trip Blar	k Recei	ved: Yes / No HCL MeoH		ion Correct/Che n <0.5 mR/hr:	ecked: Y N
Relinquished by : (Signature)	Da	te:	Time	Receive	ed by: (Signa	ture)				Temp:	1	TBR Bottles Received:	If preservat	ion required by Log	gin: Date/Time
					, 1-0					to/	an	140,4-1134			
Relinquished by : (Signature)	Da	te:	Time	: Receive	ed for lab by	Signat	u/e)			Date:	10	Fime:	Hold:		Condition
						15	1			3/11	25	, 090	7		NCF / OK

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

L1839238 Sample Delivery Group:

Samples Received: 03/22/2025

Project Number: 20230065

Description: Former Circle K

Site: 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamper Gambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LG-404-EFF-20250321 L1839238-01	5
LG-404-DUP1-20250321 L1839238-02	6
LG-404-DUP2-20250321 L1839238-03	7
LG-402-MID-20250321 L1839238-04	8
LG-401-INF-20250321 L1839238-05	9
TB-01-20250321 L1839238-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 1664B	11
Volatile Organic Compounds (GC) by Method NWTPHGX	12
Volatile Organic Compounds (GC/MS) by Method 8260B	15
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SAMPLE SUMMARY

	SAMPLE	201/11/	MARY			
LG-404-EFF-20250321 L1839238-01 GW			Collected by	Collected date/time 03/21/25 12:30	Received da 03/22/25 09	
		B.I				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2479066	1	03/29/25 07:42	03/29/25 12:19	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2476256	1	03/26/25 02:08	03/26/25 02:08	JBE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2479143	1	03/29/25 16:30	03/29/25 16:30	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-404-DUP1-20250321 L1839238-02 GW			FL	03/21/25 12:35	03/22/25 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2479066	1	03/29/25 07:42	03/29/25 12:19	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2475151	1	03/24/25 20:21	03/24/25 20:21	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2479143	1	03/29/25 16:53	03/29/25 16:53	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-404-DUP2-20250321 L1839238-03 GW			FL	03/21/25 12:40	03/22/25 09):30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
W. O M. V. MOND	W0047000		date/time	date/time		
Wet Chemistry by Method 1664B	WG2479066	1	03/29/25 07:42	03/29/25 12:19	CWB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-402-MID-20250321 L1839238-04 GW			FL	03/21/25 12:50	03/22/25 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2479066	1	03/29/25 07:42	03/29/25 12:19	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2477158	1	03/26/25 18:23	03/26/25 18:23	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2479143	1	03/29/25 17:17	03/29/25 17:17	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-401-INF-20250321 L1839238-05 GW			FL	03/21/25 13:00	03/22/25 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2479066	1	03/29/25 07:42	03/29/25 12:19	CWB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2477158	1	03/26/25 18:44	03/26/25 18:44	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2479143	1	03/29/25 17:41	03/29/25 17:41	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-01-20250321 L1839238-06 GW			FL	03/21/25 13:30	03/22/25 09):30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (CC) by Mothed NWTDLICV	M/C2/1771E0	1	U2/20/20 17:10	02/20/25 17:10	CDD	NA Lulion TNI

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2477158

WG2479143

1

1

03/26/25 17:19

03/29/25 14:29

03/26/25 17:19

03/29/25 14:29

CDD

DWR

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

SAMPLE RESULTS - 01

1839238

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.95	1	03/29/2025 12:19	WG2479066

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	03/26/2025 02:08	WG2476256
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		03/26/2025 02:08	WG2476256

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	03/29/2025 16:30	WG2479143
Ethylbenzene	ND		1.00	1	03/29/2025 16:30	WG2479143
Toluene	ND		1.00	1	03/29/2025 16:30	WG2479143
Xylenes, Total	ND		3.00	1	03/29/2025 16:30	WG2479143
Trichloroethene	ND		1.00	1	03/29/2025 16:30	WG2479143
cis-1,2-Dichloroethene	ND		1.00	1	03/29/2025 16:30	WG2479143
trans-1,2-Dichloroethene	ND		1.00	1	03/29/2025 16:30	WG2479143
Tetrachloroethene	ND		1.00	1	03/29/2025 16:30	WG2479143
Vinyl chloride	ND	<u>C3</u>	1.00	1	03/29/2025 16:30	WG2479143
(S) Toluene-d8	100		80.0-120		03/29/2025 16:30	WG2479143
(S) 4-Bromofluorobenzene	102		77.0-126		03/29/2025 16:30	WG2479143
(S) 1,2-Dichloroethane-d4	95.3		70.0-130		03/29/2025 16:30	WG2479143

LG-404-DUP1-20250321 Collected date/time: 03/21/25 12:35

SAMPLE RESULTS - 02

1839238

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.26	1	03/29/2025 12:19	WG2479066

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	03/24/2025 20:21	WG2475151
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		03/24/2025 20:21	WG2475151

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	03/29/2025 16:53	WG2479143
Ethylbenzene	ND		1.00	1	03/29/2025 16:53	WG2479143
Toluene	ND		1.00	1	03/29/2025 16:53	WG2479143
Xylenes, Total	ND		3.00	1	03/29/2025 16:53	WG2479143
Trichloroethene	ND		1.00	1	03/29/2025 16:53	WG2479143
cis-1,2-Dichloroethene	ND		1.00	1	03/29/2025 16:53	WG2479143
trans-1,2-Dichloroethene	ND		1.00	1	03/29/2025 16:53	WG2479143
Tetrachloroethene	ND		1.00	1	03/29/2025 16:53	WG2479143
Vinyl chloride	ND	<u>C3</u>	1.00	1	03/29/2025 16:53	WG2479143
(S) Toluene-d8	104		80.0-120		03/29/2025 16:53	WG2479143
(S) 4-Bromofluorobenzene	99.7		77.0-126		03/29/2025 16:53	WG2479143
(S) 1,2-Dichloroethane-d4	95.0		70.0-130		03/29/2025 16:53	WG2479143

LG-404-DUP2-20250321

Collected date/time: 03/21/25 12:40

SAMPLE RESULTS - 03

L1839238

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.26	1	03/29/2025 12:19	WG2479066

Engineering/Remediation Resources Group

LG-402-MID-20250321 Collected date/time: 03/21/25 12:50

SAMPLE RESULTS - 04

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.81	1	03/29/2025 12:19	WG2479066

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	03/26/2025 18:23	WG2477158
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		03/26/2025 18:23	WG2477158

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Benzene	ND		1.00	1	03/29/2025 17:17	WG2479143	
Ethylbenzene	ND		1.00	1	03/29/2025 17:17	WG2479143	
Toluene	ND		1.00	1	03/29/2025 17:17	WG2479143	
Xylenes, Total	ND		3.00	1	03/29/2025 17:17	WG2479143	
Trichloroethene	ND		1.00	1	03/29/2025 17:17	WG2479143	
cis-1,2-Dichloroethene	ND		1.00	1	03/29/2025 17:17	WG2479143	
trans-1,2-Dichloroethene	ND		1.00	1	03/29/2025 17:17	WG2479143	
Tetrachloroethene	ND		1.00	1	03/29/2025 17:17	WG2479143	
Vinyl chloride	ND	<u>C3</u>	1.00	1	03/29/2025 17:17	WG2479143	
(S) Toluene-d8	103		80.0-120		03/29/2025 17:17	WG2479143	
(S) 4-Bromofluorobenzene	97.9		77.0-126		03/29/2025 17:17	WG2479143	
(S) 1,2-Dichloroethane-d4	97.2		70.0-130		03/29/2025 17:17	WG2479143	

LG-401-INF-20250321 Collected date/time: 03/21/25 13:00

SAMPLE RESULTS - 05

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	6.31		5.95	1	03/29/2025 12:19	WG2479066

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	180	В	100	1	03/26/2025 18:44	WG2477158
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		03/26/2025 18:44	WG2477158

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	03/29/2025 17:41	WG2479143
Ethylbenzene	ND		1.00	1	03/29/2025 17:41	WG2479143
Toluene	ND		1.00	1	03/29/2025 17:41	WG2479143
Xylenes, Total	6.04		3.00	1	03/29/2025 17:41	WG2479143
Trichloroethene	ND		1.00	1	03/29/2025 17:41	WG2479143
cis-1,2-Dichloroethene	ND		1.00	1	03/29/2025 17:41	WG2479143
trans-1,2-Dichloroethene	ND		1.00	1	03/29/2025 17:41	WG2479143
Tetrachloroethene	ND		1.00	1	03/29/2025 17:41	WG2479143
Vinyl chloride	ND	<u>C3</u>	1.00	1	03/29/2025 17:41	WG2479143
(S) Toluene-d8	98.9		80.0-120		03/29/2025 17:41	WG2479143
(S) 4-Bromofluorobenzene	101		77.0-126		03/29/2025 17:41	WG2479143
(S) 1,2-Dichloroethane-d4	97.4		70.0-130		03/29/2025 17:41	WG2479143

PAGE:

9 of 18

TB-01-20250321

Collected date/time: 03/21/25 13:30

SAMPLE RESULTS - 06

Volatile Organic Compounds (GC) by Method NWTPHGX

		-					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Gasoline Range Organics-NWTPH	ND		100	1	03/26/2025 17:19	WG2477158	
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		03/26/2025 17:19	WG2477158	

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	03/29/2025 14:29	WG2479143
Ethylbenzene	ND		1.00	1	03/29/2025 14:29	WG2479143
Toluene	ND		1.00	1	03/29/2025 14:29	WG2479143
Xylenes, Total	ND		3.00	1	03/29/2025 14:29	WG2479143
Trichloroethene	ND		1.00	1	03/29/2025 14:29	WG2479143
cis-1,2-Dichloroethene	ND		1.00	1	03/29/2025 14:29	WG2479143
trans-1,2-Dichloroethene	ND		1.00	1	03/29/2025 14:29	WG2479143
Tetrachloroethene	ND		1.00	1	03/29/2025 14:29	WG2479143
Vinyl chloride	ND	<u>C3</u>	1.00	1	03/29/2025 14:29	WG2479143
(S) Toluene-d8	102		80.0-120		03/29/2025 14:29	WG2479143
(S) 4-Bromofluorobenzene	101		77.0-126		03/29/2025 14:29	WG2479143
(S) 1,2-Dichloroethane-d4	95.3		70.0-130		03/29/2025 14:29	WG2479143

QUALITY CONTROL SUMMARY

L1839238-01,02,03,04,05

Wet Chemistry by Method 1664B

Method Blank (MB)

(MB) R4192618-1 03/29/25 12:19

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Oil & Grease (Hexane Extr)	U		1.40	5.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4192618-2 03/29/25 12:19 • (LCSD) R4192618-3 03/29/25 12:19

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Oil & Grease (Hexane Extr)	40.0	37 3	32.2	93.3	80.5	78 0-114			14 7	20

(OS) | 1838993-01 | 03/29/25 12:19 • (MS) R4192618-4 | 03/29/25 12:19

(03) 11030333 01 03/23/	25 12.15 - (1415) 1	(+132010 + 03	1/23/23 12.13				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Oil & Grease (Hexane Extr)	40.0	ND	38.7	96.8	1	78.0-114	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1839238-02

Method Blank (MB)

(MB) R4190797-2 03/24/	/25 10:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	37.7	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	100			78.0-120

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R4190797-1 03/24/	25 09:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	4940	98.8	70.0-124	
(S) a.a.a-Trifluorotoluene(FID)			105	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1839238-01

Method Blank (MB)

(MB) R4191224-4 03/25/	25 23:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	38.5	ī	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	101			78.0-120

²Tc

4

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4191224-2 03/25/	25 21:33 • (LCS)	D) R4191224-3	3 03/25/25 22:	11							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5000	4490	4460	89.8	89.2	70.0-124			0.670	20	
(S)				107	108	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1839238-04,05,06

Method Blank (MB)

(MB) R4191662-2 03/26/	(MB) R4191662-2 03/26/25 13:59							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Gasoline Range Organics-NWTPH	39.5	<u>J</u>	31.6	100				
(S) a,a,a-Trifluorotoluene(FID)	100			78.0-120				

²Tc

³Ss

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R4191662-1 03/26/	LCS) R4191662-1 03/26/25 13:00								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Gasoline Range Organics-NWTPH	5000	4750	95.0	70.0-124					
(S) a,a,a-Trifluorotoluene(FID)			107	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1839238-01,02,04,05,06

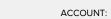
Method Blank (MB)

(MB) R4193025-3 03/29/25 10:48										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Benzene	U		0.0941	1.00						
Ethylbenzene	U		0.137	1.00						
Toluene	U		0.278	1.00						
Xylenes, Total	U		0.174	3.00						
Trichloroethene	U		0.190	1.00						
cis-1,2-Dichloroethene	U		0.126	1.00						
trans-1,2-Dichloroethene	U		0.149	1.00						
Tetrachloroethene	U		0.300	1.00						
Vinyl chloride	U		0.234	1.00						
(S) Toluene-d8	100			80.0-120						
(S) 4-Bromofluorobenzene	98.2			77.0-126						
(S) 1,2-Dichloroethane-d4	97.1			70.0-130						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4193025-1	03/29/25 09:37 •	(LCSD) R4193025-2	03/29/25 10:00

	·										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	4.81	4.75	96.2	95.0	70.0-123			1.26	20	
Ethylbenzene	5.00	4.55	4.72	91.0	94.4	79.0-123			3.67	20	
Toluene	5.00	4.79	4.72	95.8	94.4	79.0-120			1.47	20	
Xylenes, Total	15.0	14.0	14.2	93.3	94.7	79.0-123			1.42	20	
Trichloroethene	5.00	4.85	4.68	97.0	93.6	78.0-124			3.57	20	
cis-1,2-Dichloroethene	5.00	4.51	4.55	90.2	91.0	73.0-120			0.883	20	
trans-1,2-Dichloroethene	5.00	5.05	4.84	101	96.8	73.0-120			4.25	20	
Tetrachloroethene	5.00	4.55	4.80	91.0	96.0	72.0-132			5.35	20	
Vinyl chloride	5.00	3.81	3.75	76.2	75.0	67.0-131			1.59	20	
(S) Toluene-d8				100	99.3	80.0-120					
(S) 4-Bromofluorobenzene				98.1	100	77.0-126					
(S) 1,2-Dichloroethane-d4				94.9	94.8	70.0-130					



Engineering/Remediation Resources Group

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

В	The same analyte is found in the associated blank.
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J	The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:	Billing Information:					1	Analysis / Container / Preservative							Chain of Custody Page of		
Engineering/Remediati	on Resou	rces				Pres									1	
Group				Jennifer Sonnichsen Accounts Payable										R		
				90th Street			1							- Pa	ce	
15333 NE 90th Street						1	1	- 1						1 PEOPLE.	ADVANCING SCIENCE	
Report to:		_	Email To:	1 11/4 00053			131		1-				1000	MT JU	LIET, TN	
Jennifer Sonnichsen 425-658-502	26		jennifer.son	nnichsen@errg.co	m;spencer.sl	omins	100	1 -	1-6				1000	12065 Lebanon Rd Mou Submitting a sample via	this chain of custody	
Project Description: FORMER CIRCLE	FK	City/State Collected:	seatti.	AW, s	Please Ci		13							Submitting a sample via thi constitutes acknowledgmer Pace Terms and Conditions https://info.pacelabs.com/l terms.pdf		
Regulatory Program(DOD,RCRA,DW,etc):	Client Project	#	W	Lab Project #	CIDCLE		13	*	8-				100	SDG # 18	39720	
WAS EIM	10	230	165	ENGREMRWA	A-CIRCLE K	1	7	CI-BIK			2			B189	9 1200	
Collected by (print):	Site/Facility II	1/4		P.O. #			NWTPHGX 40mlAmb HCl	40mlAmb-H	FG	ō	40mlAmb-HCI-BIk			Acctnum: ENG		
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #			IA	IA	5	+9	+9		1000	Template: T263		
1	Same Da	ay Five	Day				101	10t	17	Am	Am	1000	10:11	Prelogin: P113		
Immediately Packed on Ice N Y	Next Da		y (Rad Only) Date Results Needed Day (Rad Only)				IGX 4		OGHEX 1L-CIr-WT-HCl	40mlAmb-HCl	40ml			PM: 3500 - Jenr		
Sample ID	Comp/Grab	Matrix *			Time	Of	VTP	NWTPHGX	HEX	V8260	V8260		1	Shipped Via: Fe	dEX Ground	
1-1				Date		1	3	Ž	90	8	8		188	Remarks	Sample # (lab only)	
1 5 - 404 - FEF. 202503	a GRAB	GW	114	32/20	1230	8	X		X	X					-01	
16-404-7001-2025032	1 1	GW		1	1235	8	X		X	X					702	
1 G-11 AU-DUON -21082	92	GW			172401	8-	ZX		X	X					-03	
C UNA DAY COM	5	GW			1250	8	X		X	X					-04	
1-6-901 - NVIID -2015	4				117		10000	-	1000	^	200				- 3 /	
LG-401-11/1-102503	EI (GW			1400	1/26	0		X						05	
TG-01-2025032	*	GW	+	+	1330	431		X			X				-0p	
									100	1						
* Matrix: SS - Soil AIR - Air F - Filter	emarks: V	Cs &	对一	E, HDCE,	m-	14		43	1L/	≯ pH		Temp	COC Seal	mple Receipt Che Present/Intact:		
GW - Groundwater B - Bioassay	BIEV	10	E DC	E, tVCE,	PLE	W		CA	11	Flow	,	Other	Bottles a	ed/Accurate: arrive intact:	J-N	
WW - WasteWater DW - Drinking Water	- 11	110							20.00	1101		_ other		oottles used:	Z N	
OT - OtherS	amples returned UPSFedEx	via:			ng# 44	39	2	44:	3	791	0		VOA Zero	If Applicabl Headspace:	e Y N	
Relinquished by: (Signafure)		ate:	/ Time	Receiv	ed by: (Signa	ture)			-			ived: Yes / No	Preservat	tion Correct/Che	cked: Y N	
11/17		1/2	1/05/18	518	I	E	17	FX				HCL/MeoH	IOD SCIE	on solo mistrici	V-, -''	
Relinquisted by (Signature)	l D	ate:	Time	Receiv	ed by: (Signa	ture)	1/9	1 / 1		Temp:/	TAO	TBR C Bottles Received:	If preservat	tion required by Log	in: Date/Time	
Relinquished by : (Signature)	D.	ate.	Title	, income	- / . (02+	,U=	7 34	1337			
Relinquished by : (Signature)	D	ate:	Time	: Receiv	ed for lab by	: (Signat	ture)	90.12		Date:	-	Time:	Hold:		Condition:	
meninquisited by a (signature)					undo			teh	en	31	77/1	25 0931	1		NCF / 9kg	
				u	100	-	200				4	/ 01				

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

L1839621 Sample Delivery Group:

Samples Received: 03/25/2025

Project Number: 20230065

Description: Former Circle K 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Gambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
FALCO-300-INF-20250324 L1839621-01	5
FALCO-300-EFF-20250324 L1839621-02	7
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

EAL CO 200 INE 20250224 14020624 04 Air			Collected by Fernando Idiarte	Collected date/time 03/24/25 14:10	Received date/time 03/25/25 09:00		
FALCO-300-INF-20250324 L1839621-01 Air	Dotah	Dilution					
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (MS) by Method TO-15	WG2476938	100	03/27/25 00:49	03/27/25 00:49	DAH	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
FALCO-300-EFF-20250324 L1839621-02 Air			Fernando Idiarte	03/24/25 14:25	03/25/25 09:00		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (MS) by Method TO-15	WG2476938	1	03/27/25 00:22	03/27/25 00:22	DAH	Mt. Juliet, TN	

Engineering/Remediation Resources Group

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

Collected date/time: 03/24/25 14:10

SAMPLE RESULTS - 01

L1839621

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	125	297	ND	ND		100	WG2476938
Allyl chloride	107-05-1	76.53	20.0	62.6	ND	ND		100	WG2476938
Benzene	71-43-2	78.10	20.0	63.9	2160	6900		100	WG2476938
Benzyl Chloride	100-44-7	127	20.0	104	ND	ND		100	WG2476938
Bromodichloromethane	75-27-4	164	20.0	134	ND	ND		100	WG2476938
Bromoform	75-25-2	253	63.0	652	ND	ND		100	WG2476938
Bromomethane	74-83-9	94.90	20.0	77.6	ND	ND		100	WG2476938
1,3-Butadiene	106-99-0	54.10	200	443	ND	ND		100	WG2476938
Carbon disulfide	75-15-0	76.10	40.0	124	ND	ND		100	WG2476938
Carbon tetrachloride	56-23-5	154	20.0	126	ND	ND		100	WG2476938
Chlorobenzene	108-90-7	113	20.0	92.4	ND	ND		100	WG2476938
Chloroethane	75-00-3	64.50	20.0	52.8	ND	ND		100	WG2476938
Chloroform	67-66-3	119	20.0	97.3	ND	ND		100	WG2476938
Chloromethane	74-87-3	50.50	20.0	41.3	ND	ND		100	WG2476938
2-Chlorotoluene	95-49-8	126	20.0	103	ND	ND		100	WG2476938
Cyclohexane	110-82-7	84.20	20.0	68.9	1590	5480		100	WG2476938
Dibromochloromethane	124-48-1	208	20.0	170	ND	ND		100	WG2476938
1,2-Dibromoethane	106-93-4	188	20.0	154	ND	ND		100	WG2476938
1,2-Dichlorobenzene	95-50-1	147	20.0	120	ND	ND		100	WG2476938
1,3-Dichlorobenzene	541-73-1	147	20.0	120	ND	ND		100	WG2476938
1,4-Dichlorobenzene	106-46-7	147	20.0	120	ND	ND		100	WG2476938
1,2-Dichloroethane	107-06-2	99	20.0	81.0	ND	ND		100	WG2476938
1,1-Dichloroethane	75-34-3	98	20.0	80.2	ND	ND		100	WG2476938
1,1-Dichloroethene	75-35-4	96.90	20.0	79.3	ND	ND		100	WG2476938
cis-1,2-Dichloroethene	156-59-2	96.90	20.0	79.3	53.5	212		100	WG2476938
trans-1,2-Dichloroethene	156-60-5	96.90	20.0	79.3	ND	ND		100	WG2476938
1,2-Dichloropropane	78-87-5	113	20.0	92.4	ND	ND		100	WG2476938
cis-1,3-Dichloropropene	10061-01-5	111	20.0	90.8	ND	ND		100	WG2476938
trans-1,3-Dichloropropene	10061-02-6	111	20.0	90.8	ND	ND		100	WG2476938
1,4-Dioxane	123-91-1	88.10	63.0	227	ND 1010	ND		100	WG2476938
Ethanol	64-17-5	46.10	250 20.0	471 86.7	1810 699	3410 3030		100	WG2476938
Ethylbenzene 4-Ethyltoluene	100-41-4 622-96-8	106 120	20.0	98.2	ND	ND		100	WG2476938 WG2476938
Trichlorofluoromethane	75-69-4	137.40	20.0	112	ND	ND		100	WG2476938 WG2476938
Dichlorodifluoromethane	75-03-4 75-71-8	120.92	20.0	98.9	ND	ND		100	WG2476938 WG2476938
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	20.0	153	ND	ND		100	WG2476938 WG2476938
1,2-Dichlorotetrafluoroethane	76-13-1	171	20.0	140	ND	ND		100	WG2476938
Heptane	142-82-5	100	20.0	81.8	2660	10900		100	WG2476938
Hexachloro-1,3-butadiene	87-68-3	261	63.0	673	ND	ND		100	WG2476938
n-Hexane	110-54-3	86.20	63.0	222	5260	18500		100	WG2476938
Isopropylbenzene	98-82-8	120.20	20.0	98.3	47.2	232		100	WG2476938
Methylene Chloride	75-09-2	84.90	20.0	69.4	221	767		100	WG2476938
Methyl Butyl Ketone	591-78-6	100	125	511	ND	ND		100	WG2476938
2-Butanone (MEK)	78-93-3	72.10	125	369	ND	ND		100	WG2476938
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	125	512	ND	ND		100	WG2476938
Methyl methacrylate	80-62-6	100.10	20.0	81.9	ND	ND		100	WG2476938
MTBE	1634-04-4	88.10	20.0	72.1	ND	ND		100	WG2476938
Naphthalene Naphthalene	91-20-3	128	63.0	330	ND	ND		100	WG2476938
	67-63-0	60.10	125	307	1780	4380		100	WG2476938
Z-Propanoi	115-07-1	42.10	125	215	ND	ND		100	WG2476938
	37 1	104	40.0	170	42.1	179		100	WG2476938
Propene	100-42-5			0					
Propene Styrene	100-42-5 79-34-5		20.0	137	ND	ND		100	WG2476938
Propene Styrene 1,1,2,2-Tetrachloroethane	79-34-5	168	20.0	137 136	ND ND	ND ND		100	WG2476938 WG2476938
2-Propanol Propene Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrahydrofuran	79-34-5 127-18-4	168 166	20.0	136	ND	ND		100	WG2476938
Propene Styrene 1,1,2,2-Tetrachloroethane	79-34-5	168							

FALCO-300-INF-20250324

Collected date/time: 03/24/25 14:10

SAMPLE RESULTS - 01

L1839621

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
1,1,1-Trichloroethane	71-55-6	133	20.0	109	ND	ND		100	WG2476938	
1,1,2-Trichloroethane	79-00-5	133	20.0	109	ND	ND		100	WG2476938	
Trichloroethylene	79-01-6	131	20.0	107	ND	ND		100	WG2476938	
1,2,4-Trimethylbenzene	95-63-6	120	20.0	98.2	1120	5500		100	WG2476938	
1,3,5-Trimethylbenzene	108-67-8	120	20.0	98.2	567	2780		100	WG2476938	
2,2,4-Trimethylpentane	540-84-1	114.22	20.0	93.4	2770	12900		100	WG2476938	
Vinyl chloride	75-01-4	62.50	20.0	51.1	ND	ND		100	WG2476938	
Vinyl Bromide	593-60-2	106.95	20.0	87.5	ND	ND		100	WG2476938	
Vinyl acetate	108-05-4	86.10	63.0	222	ND	ND		100	WG2476938	
Xylenes, Total	1330-20-7	106.16	60.0	261	7020	30500		100	WG2476938	
m&p-Xylene		106	40.0	173	5090	22100		100	WG2476938	
o-Xylene	95-47-6	106	20.0	86.7	1930	8370		100	WG2476938	
TPH (GC/MS) Low Fraction	8006-61-9	101	20000	82600	72700	300000		100	WG2476938	
(S) 14-Bromofluorobenzene	460-00-4	175	60 0-140		98 1				WG2476938	

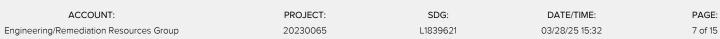
Collected date/time: 03/24/25 14:25

SAMPLE RESULTS - 02

L1839621

Volatile Organic Compounds (MS) by Method TO-15

Volatile Organic Co									
Analyte	CAS #	Mol. Wt.	RDL1	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch
•	C7 C4 1	F0.10	ppbv					1	WC247C020
Acetone	67-64-1	58.10	1.25	2.97	ND	ND		1	WG2476938
Allyl chloride	107-05-1 71-43-2	76.53	0.200	0.626	ND	ND 0.07			WG2476938
Benzene Benzel Chloride		78.10	0.200	0.639	3.12	9.97		1	WG2476938
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2476938
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2476938
Bromoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2476938
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2476938
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2476938
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2476938
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2476938
Chlorobenzene	108-90-7	113	0.200	0.924	0.733	3.39		1	WG2476938
Chloroethane	75-00-3	64.50	0.200	0.528	0.233	0.615		1	WG2476938
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2476938
Chloromethane	74-87-3	50.50	0.200	0.413	6.70	13.8		1	WG2476938
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2476938
Cyclohexane	110-82-7	84.20	0.200	0.689	10.9	37.5		1	WG2476938
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2476938
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2476938
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2476938
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2476938
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2476938
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2476938
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2476938
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2476938
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2476938
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2476938
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2476938
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2476938
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2476938
1,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2476938
Ethanol	64-17-5	46.10	2.50	4.71	15.3	28.8		1	WG2476938
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2476938
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2476938
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	ND	ND		1	WG2476938
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.279	1.38		1	WG2476938
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2476938
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2476938
Heptane	142-82-5	100	0.200	0.818	15.5	63.4		1	WG2476938
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2476938
n-Hexane	110-54-3	86.20	0.630	2.22	87.3	308		1	WG2476938
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2476938
Methylene Chloride	75-09-2	84.90	0.200	0.694	1.36	4.72		1	WG2476938
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2476938
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2476938
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2476938
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2476938
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2476938
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2476938
2-Propanol	67-63-0	60.10	1.25	3.07	9.25	22.7		1	WG2476938
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2476938
Styrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2476938
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2476938
Tetrachloroethylene	127-18-4	166	0.200	1.36	2.03	13.8		1	WG2476938
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2476938
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2476938
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2476938



FALCO-300-EFF-20250324

Collected date/time: 03/24/25 14:25

SAMPLE RESULTS - 02

L1839621

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2476938
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2476938
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2476938
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.215	1.06		1	WG2476938
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2476938
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	35.4	165		1	WG2476938
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2476938
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2476938
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2476938
Xylenes, Total	1330-20-7	106.16	0.600	2.61	1.06	4.60		1	WG2476938
m&p-Xylene		106	0.400	1.73	0.782	3.39		1	WG2476938
o-Xylene	95-47-6	106	0.200	0.867	0.274	1.19		1	WG2476938
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	243	1000		1	WG2476938
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.4				WG2476938

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1839621-01,02

Method Blank (MB)

(MB) R4191358-3 03/26/2	5 13:03				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.520	1.25	
Allyl chloride	U		0.186	0.200	
Benzene	U		0.110	0.200	
Benzyl Chloride	U		0.0888	0.200	
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	
Carbon tetrachloride	U		0.0746	0.200	
Chlorobenzene	U		0.118	0.200	
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
2-Chlorotoluene	U		0.0787	0.200	
Cyclohexane	U		0.170	0.200	
Dibromochloromethane	U		0.0696	0.200	
1,2-Dibromoethane	U		0.0690	0.200	
1,2-Dichlorobenzene	U		0.0734	0.200	
1,3-Dichlorobenzene	U		0.0753	0.200	
1,4-Dichlorobenzene	U		0.0768	0.200	
1,2-Dichloroethane	U		0.0730	0.200	
1,1-Dichloroethane	U		0.0710	0.200	
1,1-Dichloroethene	U		0.0747	0.200	
cis-1,2-Dichloroethene	U		0.0796	0.200	
trans-1,2-Dichloroethene	U		0.0735	0.200	
1,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
trans-1,3-Dichloropropene	U		0.0795	0.200	
1,4-Dioxane	U		0.164	0.630	
Ethanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
1,2-Dichlorotetrafluoroethane	U		0.0756	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	U		0.0800	0.630	
n-Hexane	U		0.143	0.630	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1839621-01,02

Method Blank (MB)

(MB) R4191358-3 03/26/25	5 13:03				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Isopropylbenzene	U		0.0722	0.200	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
Naphthalene	U		0.617	0.630	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Tetrahydrofuran	U		0.164	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	U		0.462	0.630	
1,1,1-Trichloroethane	U		0.0718	0.200	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
Vinyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
TPH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	97.1			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

4.03

107

4.02

3.75

Benzene

(LCS) R4191358-1 0	CS) R4191358-1 03/26/25 11:42 • (LCSD) R4191358-2 03/26/25 12:10											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%		
Acetone	3.75	3.76	3.94	100	105	70.0-130			4.68	25		
Allyl chloride	3.75	4.28	4.39	114	117	70.0-130			2.54	25		

70.0-130

107

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Engineering/Remediation Resources Group
 20230065
 L1839621
 03/28/25 15:32
 10 of 15

0.248

25

Methyl Butyl Ketone

3.75

4.46

4.50

119

120

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1839621-01,02

Тс

Ss

Cn

Sr

GI

ΑI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4191358-1 03/26/25 11:42 • (LCSD) R4191358-2 03/26/25 12:10 **RPD Limits** Spike Amount LCS Result **LCSD Result** LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte % % % % % ppbv vdaa ppbv Benzyl Chloride 3.75 4.43 4.51 118 120 70.0-152 1.79 25 0.458 25 Bromodichloromethane 3.75 4.38 4.36 117 116 70.0-130 Bromoform 3.75 4.22 4.17 113 111 70.0-130 1.19 25 102 70.0-130 25 Bromomethane 3.75 3.83 4.04 108 5.34 1,3-Butadiene 3.75 3.91 4.07 104 109 70.0-130 4.01 25 25 Carbon disulfide 7.50 8.51 8.12 113 108 70.0-130 4.69 3.75 4.26 4.42 114 118 70.0-130 3.69 25 Carbon tetrachloride Chlorobenzene 3.75 3.95 4.02 105 107 70.0-130 1.76 25 3.75 3.86 3.97 103 106 70.0-130 2.81 25 Chloroethane 25 Chloroform 3.75 3.95 4.14 105 110 70.0-130 4.70 3.75 3.91 3.98 104 106 70.0-130 1.77 25 Chloromethane 25 2-Chlorotoluene 3.75 4.20 4.25 112 113 70.0-130 1.18 Cyclohexane 3.75 3.83 4.01 102 107 70.0-130 4.59 25 118 118 25 Dibromochloromethane 3.75 4.41 4.44 70.0-130 0.678 25 1,2-Dibromoethane 3.75 4.22 4.24 113 113 70.0-130 0.473 1,2-Dichlorobenzene 3.75 4.21 4.35 112 116 70.0-130 3.27 25 3.75 4.31 115 120 70.0-130 4.54 25 1,3-Dichlorobenzene 4.51 1,4-Dichlorobenzene 3.75 4.33 4.41 115 118 70.0-130 1.83 25 3.75 4.16 4.21 111 112 70.0-130 1.19 25 1,2-Dichloroethane 3.75 4.07 4.03 109 107 70.0-130 0.988 25 1,1-Dichloroethane 25 3.75 3.99 106 111 70.0-130 4.41 1,1-Dichloroethene 4.17 3.75 107 108 70.0-130 0.995 25 cis-1,2-Dichloroethene 4.00 4.04 trans-1,2-Dichloroethene 3.75 4.17 3.73 111 99.5 70.0-130 11.1 25 3.75 4.05 4.17 108 111 70.0-130 2.92 25 1,2-Dichloropropane 115 118 70.0-130 2.75 25 cis-1,3-Dichloropropene 3.75 4.31 4.43 117 70.0-130 25 trans-1,3-Dichloropropene 3.75 4.31 4.39 115 1.84 25 104 4.27 1,4-Dioxane 3.75 3.90 4.07 109 70.0-140 Ethanol 3.75 4.03 4.14 107 110 55.0-148 2.69 25 3.75 111 25 Ethylbenzene 4.11 4.18 110 70.0-130 1.69 116 70.0-130 25 4-Ethyltoluene 3.75 4.28 4.34 114 1.39 107 110 1.97 25 Trichlorofluoromethane 3.75 4.03 4.11 70.0-130 3.75 4.17 110 111 64.0-139 1.45 25 Dichlorodifluoromethane 4.11 1,1,2-Trichlorotrifluoroethane 3.75 3.96 3.83 106 102 70.0-130 3.34 25 109 70.0-130 2.73 25 1,2-Dichlorotetrafluoroethane 3.75 3.98 4.09 106 Heptane 3.75 4.18 4.19 111 112 70.0-130 0.239 25 107 25 Hexachloro-1,3-butadiene 3.75 4.00 4.15 111 70.0-151 3.68 3.75 4.05 4.18 108 111 70.0-130 3.16 25 n-Hexane 25 Isopropylbenzene 3.75 4.06 4.22 108 113 70.0-130 3.86 3.75 4.03 3.96 107 106 70.0-130 1.75 25 Methylene Chloride

70.0-149

0.893

25

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1839621-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4191358-1 03/26/25 11:42 • (LCSD) R4191358-2 03/26/25 12:10

(100) 1(1101000 1 00/20/20	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
2-Butanone (MEK)	3.75	4.00	3.98	107	106	70.0-130			0.501	25
4-Methyl-2-pentanone (MIBK)	3.75	3.85	4.04	103	108	70.0-139			4.82	25
Methyl methacrylate	3.75	4.11	4.26	110	114	70.0-130			3.58	25
MTBE	3.75	3.92	4.03	105	107	70.0-130			2.77	25
Naphthalene	3.75	4.23	4.34	113	116	70.0-159			2.57	25
2-Propanol	3.75	3.94	3.98	105	106	70.0-139			1.01	25
Propene	3.75	4.11	4.13	110	110	64.0-144			0.485	25
Styrene	7.50	8.64	8.91	115	119	70.0-130			3.08	25
1,1,2,2-Tetrachloroethane	3.75	4.40	4.46	117	119	70.0-130			1.35	25
Tetrachloroethylene	3.75	3.98	4.16	106	111	70.0-130			4.42	25
Tetrahydrofuran	3.75	4.09	4.31	109	115	70.0-137			5.24	25
Toluene	3.75	4.08	4.01	109	107	70.0-130			1.73	25
1,2,4-Trichlorobenzene	3.75	3.97	4.00	106	107	70.0-160			0.753	25
1,1,1-Trichloroethane	3.75	4.08	4.21	109	112	70.0-130			3.14	25
1,1,2-Trichloroethane	3.75	4.12	4.14	110	110	70.0-130			0.484	25
Trichloroethylene	3.75	4.06	4.12	108	110	70.0-130			1.47	25
1,2,4-Trimethylbenzene	3.75	4.22	4.34	113	116	70.0-130			2.80	25
1,3,5-Trimethylbenzene	3.75	4.18	4.33	111	115	70.0-130			3.53	25
2,2,4-Trimethylpentane	3.75	3.98	4.18	106	111	70.0-130			4.90	25
Vinyl chloride	3.75	3.98	4.08	106	109	70.0-130			2.48	25
Vinyl Bromide	3.75	3.95	4.04	105	108	70.0-130			2.25	25
Vinyl acetate	3.75	3.98	3.92	106	105	70.0-130			1.52	25
Xylenes, Total	11.3	12.5	12.7	111	112	70.0-130			1.59	25
m&p-Xylene	7.50	8.42	8.51	112	113	70.0-130			1.06	25
o-Xylene	3.75	4.08	4.21	109	112	70.0-130			3.14	25
TPH (GC/MS) Low Fraction	188	204	204	109	109	70.0-130			0.000	25

60.0-140

(S) 1,4-Bromofluorobenzene

98.2

99.4

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Engineering/Remediation Resources Group

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Pace* Location Requested (City/State):			CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields								LAB	JSE ONLY- Affi	Warkord	er/Login Labe	el Here	
Company, Name: Engineering/Remediation Resource Street Address: 15333 NE 90th Street City, State Zip: Customer Project #: 20230065	s Grou	Phone #: 425-658-5026 E-Mail: jennifer.sonnichsen@errg.com;spencer.slominski@e rrd.com:fernando.idiarte@errd.com Cc E-Mail: Invoice to:					Scan QR code for instructions									
Project Name: FORMER CIRCLE K 14 Site Collection Info/Facility ID (as applicable): ENGREMRWA-CIRCLE K Time Zone Collected: [] AK [] PT [] MT [] CT [] ET	61	Quote #:	E-Mail: Purchase Order # (if applicable): 223 230065 - 411 - 61 Quote #: State origin of sample(s):				Field Information				Ana	Analyses Requested Proj. Manager: 3500 - Jennifer Gambill AcctNum / Client 10:				
[] Level II	Regulatory Pro applicable: Rush (Pre-appr 2 Day 3 day	ram (CAA, BCRA, etc.) as W + DOECOLO(val required): Permit # as applic				1		100	nister e / Vacuum		PUF / FILT	ER				ENGREMRWA Table #:
JOther Matrix Codes (Insert in Matrix box below): Ambient (A), Indoor (I), St	Date Results Requested:		Units for Reporting: Ug/m ³ PPBV mg/m ³ PPMV			Start	End Pressure		Flow	Total	Summa			Prelog / Bottle		
Customer Sample ID	Matrix *	Summa Canister ID	Flow Controller ID	Begin (Collection	End C	ollection Time	Pressure / Vacuum (in Hg)	Vacuum (in Hg)	Duration (minutes)	Rate m³/min or L/min	Volume Sampled m ³ or L	TO-15			Ord. ID: P1138501
FALCO-300-INF-20250324	SV	20269	22615	3/24	1905	3/14	1410	29	4				х			4839621-01
FALCO -300 : EFF -20250324	+	20620	7470	+	1420	b	1425	29	4				Х			62
											1114 -	1.00	001			
								COC Si Bottle Correc	al Present/ gned/Accura s arrive in t bottles u	Intact: \\ te: tact:	mple Rec	Tage	Color	Aixe	X P_	
						100	17.1	1						-		
Customer Remarks / Special Conditions / Possible Hazards: Relinquished by/Company: (Signature)	5	Date/Time: 3/24/2	+ 1515		y/Company: (S	luignature)	4 6	EPEL		II Coolers:	Instruction	Thermometer	ibs	Facto	ection or (°C); Trackin	Obs. Temp. (°C): Corrected Temp. (°C):
Relinquished by/Company: (Signature) Relinquished by/Company: (Signature)		Date/Time:			y/Company: (5 y/Company: (5					Date/Time: 3- Z Date/Time:	5-Z	5 (290	0	Deliver	red by: In-Person Courier
Relinquished by/Company: (Signature)		Date/Time:		Received b	y/Company: (S	ignature)				Date/Time:						Page: of:

Pace Analytical® ANALYTICAL REPORT

April 09, 2025

Engineering/Remediation Resources Group

L1841690 Sample Delivery Group:

Samples Received: 03/29/2025

Project Number: 20230065

Description: Former Cricle K

Site: 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamper Gambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

Engineering/Remediation Resources Group

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
MW-18 L1841690-01	7
MW-20 L1841690-02	8
RW-1 L1841690-03	9
MW-9 L1841690-04	10
MW-16 L1841690-05	11
MW-8 L1841690-06	12
MW-15 L1841690-07	13
MW-6 L1841690-08	14
MW-14 L1841690-09	15
MW-13 L1841690-10	16
MW-19 L1841690-11	17
MW-21 L1841690-12	18
MW-17 L1841690-13	19
DUP-1 L1841690-14	20
TB-01 L1841690-15	21
TB-02 L1841690-16	22
Qc: Quality Control Summary	23
Volatile Organic Compounds (GC) by Method NWTPHGX	23
Volatile Organic Compounds (GC/MS) by Method 8260B	25
GI: Glossary of Terms	27
Al: Accreditations & Locations	28

Sc: Sample Chain of Custody

29

SAMPLE SUMMARY

MW-18 L1841690-01 GW			Collected by Blaine Tech	Collected date/time 03/28/25 09:07	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 19:31	04/04/25 19:31	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	1	04/06/25 09:08	04/06/25 09:08	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-20 L1841690-02 GW			Blaine Tech	03/28/25 09:08	03/29/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	10	04/04/25 23:28	04/04/25 23:28	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	250	04/06/25 05:20	04/06/25 05:20	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RW-1 L1841690-03 GW			Blaine Tech	03/28/25 09:33	03/29/25 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 19:52	04/04/25 19:52	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	1	04/06/25 09:27	04/06/25 09:27	WHS	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2485762	10	04/09/25 00:56	04/09/25 00:56	DYW	Mt. Juliet, TN
MW-9 L1841690-04 GW			Collected by Blaine Tech	Collected date/time 03/28/25 09:44	Received da 03/29/25 09	
		D.I				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 20:13	04/04/25 20:13	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	20	04/06/25 05:39	04/06/25 05:39	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-16 L1841690-05 GW			Blaine Tech	03/28/25 10:06	03/29/25 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 20:35	04/04/25 20:35	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	1	04/06/25 09:46	04/06/25 09:46	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8 L1841690-06 GW			Blaine Tech	03/28/25 10:12	03/29/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	5	04/04/25 23:50	04/04/25 23:50	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	50	04/06/25 05:58	04/06/25 05:58	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-15 L1841690-07 GW			Blaine Tech	03/28/25 10:31	03/29/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 20:56	04/04/25 20:56	CDD	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2484067

1

04/06/25 10:05

WHS

Mt. Juliet, TN

04/06/25 10:05

SAMPLE SUMMARY

MW-6 L1841690-08 GW			Collected by Blaine Tech	Collected date/time 03/28/25 10:38	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B	WG2483497 WG2484067	1 1	04/04/25 21:18 04/06/25 10:24	04/04/25 21:18 04/06/25 10:24	CDD WHS	Mt. Juliet, TN Mt. Juliet, TN
MW-14 L1841690-09 GW			Collected by Blaine Tech	Collected date/time 03/28/25 10:56	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B	WG2483497 WG2484067	1	04/04/25 21:39 04/06/25 10:43	04/04/25 21:39 04/06/25 10:43	CDD WHS	Mt. Juliet, TN Mt. Juliet, TN
MW-13 L1841690-10 GW			Collected by Blaine Tech	Collected date/time 03/28/25 11:11	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B	WG2483497 WG2484067	10 50	04/05/25 00:11 04/06/25 06:17	04/05/25 00:11 04/06/25 06:17	CDD WHS	Mt. Juliet, TN Mt. Juliet, TN
MW-19 L1841690-11 GW			Collected by Blaine Tech	Collected date/time 03/28/25 11:34	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B	WG2483497 WG2484067	10 100	04/05/25 00:33 04/06/25 06:36	04/05/25 00:33 04/06/25 06:36	CDD WHS	Mt. Juliet, TN Mt. Juliet, TN
MW-21 L1841690-12 GW			Collected by Blaine Tech	Collected date/time 03/28/25 11:39	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B	WG2483497 WG2484067	10 500	04/05/25 00:55 04/06/25 06:55	04/05/25 00:55 04/06/25 06:55	CDD WHS	Mt. Juliet, TN Mt. Juliet, TN
MW-17 L1841690-13 GW			Collected by Blaine Tech	Collected date/time 03/28/25 12:06	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B Volatile Organic Compounds (GC/MS) by Method 8260B	WG2483497 WG2484067 WG2485762	1 1 25	04/04/25 22:01 04/06/25 11:02 04/09/25 01:16	04/04/25 22:01 04/06/25 11:02 04/09/25 01:16	CDD WHS DYW	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
DUP-1 L1841690-14 GW			Collected by Blaine Tech	Collected date/time 03/28/25 12:00	Received da 03/29/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2484900	1	04/08/25 00:38	04/08/25 00:38	NCD	Mt. Juliet, TN
Valatila Organia Compounda (CC/MC) b., Mathad O2COD	1110010107	10	11410C12E 07.44	04/06/25 07:14	WILL	NA Lulion TN

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2484067

10

04/06/25 07:14

04/06/25 07:14

WHS

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
TB-01 L1841690-15 GW			Blaine Tech	03/28/25 12:10	03/29/25 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 17:22	04/04/25 17:22	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	1	04/06/25 08:30	04/06/25 08:30	WHS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-02 L1841690-16 GW			Blaine Tech	03/28/25 12:11	03/29/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2483497	1	04/04/25 17:01	04/04/25 17:01	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2484067	1	04/06/25 08:49	04/06/25 08:49	WHS	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

Collected date/time: 03/28/25 09:07

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 19:31	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	93.1		78.0-120		04/04/2025 19:31	WG2483497

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 09:08	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 09:08	WG2484067
Toluene	ND		1.00	1	04/06/2025 09:08	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 09:08	WG2484067
Trichloroethene	2.85		1.00	1	04/06/2025 09:08	WG2484067
cis-1,2-Dichloroethene	1.91		1.00	1	04/06/2025 09:08	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 09:08	WG2484067
Tetrachloroethene	82.5		1.00	1	04/06/2025 09:08	WG2484067
Vinyl chloride	ND		1.00	1	04/06/2025 09:08	WG2484067
(S) Toluene-d8	96.2		80.0-120		04/06/2025 09:08	WG2484067
(S) 4-Bromofluorobenzene	98.3		77.0-126		04/06/2025 09:08	WG2484067
(S) 1,2-Dichloroethane-d4	102		70.0-130		04/06/2025 09:08	WG2484067

Collected date/time: 03/28/25 09:08

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	25400		1000	10	04/04/2025 23:28	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	88.9		78.0-120		04/04/2025 23:28	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	2420		250	250	04/06/2025 05:20	WG2484067
Ethylbenzene	886		250	250	04/06/2025 05:20	WG2484067
Toluene	3070		250	250	04/06/2025 05:20	WG2484067
Xylenes, Total	4620		750	250	04/06/2025 05:20	WG2484067
Trichloroethene	ND		250	250	04/06/2025 05:20	WG2484067
cis-1,2-Dichloroethene	ND		250	250	04/06/2025 05:20	WG2484067
trans-1,2-Dichloroethene	ND		250	250	04/06/2025 05:20	WG2484067
Tetrachloroethene	ND		250	250	04/06/2025 05:20	WG2484067
Vinyl chloride	ND		250	250	04/06/2025 05:20	WG2484067
(S) Toluene-d8	96.4		80.0-120		04/06/2025 05:20	WG2484067
(S) 4-Bromofluorobenzene	102		77.0-126		04/06/2025 05:20	WG2484067
(S) 1,2-Dichloroethane-d4	102		70.0-130		04/06/2025 05:20	WG2484067

Collected date/time: 03/28/25 09:33

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	128	<u>B</u>	100	1	04/04/2025 19:52	WG2483497
(S) a.a.a-Trifluorotoluene(FID)	92.0		78.0-120		04/04/2025 19:52	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 09:27	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 09:27	WG2484067
Toluene	ND		1.00	1	04/06/2025 09:27	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 09:27	WG2484067
Trichloroethene	19.9		1.00	1	04/06/2025 09:27	WG2484067
cis-1,2-Dichloroethene	6.35		1.00	1	04/06/2025 09:27	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 09:27	WG2484067
Tetrachloroethene	363		10.0	10	04/09/2025 00:56	WG2485762
Vinyl chloride	ND		1.00	1	04/06/2025 09:27	WG2484067
(S) Toluene-d8	94.6		80.0-120		04/06/2025 09:27	WG2484067
(S) Toluene-d8	106		80.0-120		04/09/2025 00:56	WG2485762
(S) 4-Bromofluorobenzene	98.0		77.0-126		04/06/2025 09:27	WG2484067
(S) 4-Bromofluorobenzene	102		77.0-126		04/09/2025 00:56	WG2485762
(S) 1,2-Dichloroethane-d4	108		70.0-130		04/06/2025 09:27	WG2484067
(S) 1,2-Dichloroethane-d4	119		70.0-130		04/09/2025 00:56	WG2485762

Collected date/time: 03/28/25 09:44

Volatile Organic Compounds (GC) by Method NWTPHGX

	<u> </u>	· -					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Gasoline Range Organics-NWTPH	5000		100	1	04/04/2025 20:13	WG2483497	
(S) a,a,a-Trifluorotoluene(FID)	95.9		78.0-120		04/04/2025 20:13	WG2483497	

Ss

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
ND		20.0	20	04/06/2025 05:39	WG2484067
271		20.0	20	04/06/2025 05:39	WG2484067
20.4		20.0	20	04/06/2025 05:39	WG2484067
508		60.0	20	04/06/2025 05:39	WG2484067
ND		20.0	20	04/06/2025 05:39	WG2484067
ND		20.0	20	04/06/2025 05:39	WG2484067
ND		20.0	20	04/06/2025 05:39	WG2484067
ND		20.0	20	04/06/2025 05:39	WG2484067
ND		20.0	20	04/06/2025 05:39	WG2484067
96.1		80.0-120		04/06/2025 05:39	WG2484067
101		77.0-126		04/06/2025 05:39	WG2484067
102		70.0-130		04/06/2025 05:39	WG2484067
	ND 271 20.4 508 ND ND ND ND ND ND ND ND ND 101 101	ND 271 20.4 508 ND ND ND ND ND ND ND ND ND 101 101	ug/l ug/l ND 20.0 271 20.0 20.4 20.0 508 60.0 ND 20.0 96.1 80.0-120 101 77.0-126	ug/l ug/l ND 20.0 20 271 20.0 20 20.4 20.0 20 508 60.0 20 ND 20.0 20 96.1 80.0-120 101 77.0-126	ug/l ug/l date / time ND 20.0 20 04/06/2025 05:39 271 20.0 20 04/06/2025 05:39 20.4 20.0 20 04/06/2025 05:39 508 60.0 20 04/06/2025 05:39 ND 20.0 20 04/06/2025 05:39 96.1 80.0-120 04/06/2025 05:39 101 77.0-126 04/06/2025 05:39

Collected date/time: 03/28/25 10:06

L1841690

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 20:35	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	92.4		78.0-120		04/04/2025 20:35	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 09:46	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 09:46	WG2484067
Toluene	ND		1.00	1	04/06/2025 09:46	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 09:46	WG2484067
Trichloroethene	ND		1.00	1	04/06/2025 09:46	WG2484067
cis-1,2-Dichloroethene	ND		1.00	1	04/06/2025 09:46	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 09:46	WG2484067
Tetrachloroethene	ND		1.00	1	04/06/2025 09:46	WG2484067
Vinyl chloride	ND		1.00	1	04/06/2025 09:46	WG2484067
(S) Toluene-d8	96.8		80.0-120		04/06/2025 09:46	WG2484067
(S) 4-Bromofluorobenzene	98.7		77.0-126		04/06/2025 09:46	WG2484067
(S) 1,2-Dichloroethane-d4	99.9		70.0-130		04/06/2025 09:46	WG2484067

Collected date/time: 03/28/25 10:12

1841690

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	16200		500	5	04/04/2025 23:50	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	97.2		78.0-120		04/04/2025 23:50	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		50.0	50	04/06/2025 05:58	WG2484067
Ethylbenzene	570		50.0	50	04/06/2025 05:58	WG2484067
Toluene	72.5		50.0	50	04/06/2025 05:58	WG2484067
Xylenes, Total	2440		150	50	04/06/2025 05:58	WG2484067
Trichloroethene	ND		50.0	50	04/06/2025 05:58	WG2484067
cis-1,2-Dichloroethene	ND		50.0	50	04/06/2025 05:58	WG2484067
trans-1,2-Dichloroethene	ND		50.0	50	04/06/2025 05:58	WG2484067
Tetrachloroethene	ND		50.0	50	04/06/2025 05:58	WG2484067
Vinyl chloride	ND		50.0	50	04/06/2025 05:58	WG2484067
(S) Toluene-d8	95.6		80.0-120		04/06/2025 05:58	WG2484067
(S) 4-Bromofluorobenzene	98.6		77.0-126		04/06/2025 05:58	WG2484067
(S) 1,2-Dichloroethane-d4	99.6		70.0-130		04/06/2025 05:58	WG2484067

Collected date/time: 03/28/25 10:31

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 20:56	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	93.4		78.0-120		04/04/2025 20:56	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 10:05	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 10:05	WG2484067
Toluene	ND		1.00	1	04/06/2025 10:05	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 10:05	WG2484067
Trichloroethene	ND		1.00	1	04/06/2025 10:05	WG2484067
cis-1,2-Dichloroethene	ND		1.00	1	04/06/2025 10:05	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 10:05	WG2484067
Tetrachloroethene	ND		1.00	1	04/06/2025 10:05	WG2484067
Vinyl chloride	ND		1.00	1	04/06/2025 10:05	WG2484067
(S) Toluene-d8	97.2		80.0-120		04/06/2025 10:05	WG2484067
(S) 4-Bromofluorobenzene	98.8		77.0-126		04/06/2025 10:05	WG2484067
(S) 1,2-Dichloroethane-d4	103		70.0-130		04/06/2025 10:05	WG2484067

Collected date/time: 03/28/25 10:38

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 21:18	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	94.5		78.0-120		04/04/2025 21:18	WG2483497

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	19.1		1.00	1	04/06/2025 10:24	WG2484067
Ethylbenzene	1.22		1.00	1	04/06/2025 10:24	WG2484067
Toluene	ND		1.00	1	04/06/2025 10:24	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 10:24	WG2484067
Trichloroethene	3.02		1.00	1	04/06/2025 10:24	WG2484067
cis-1,2-Dichloroethene	6.70		1.00	1	04/06/2025 10:24	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 10:24	WG2484067
Tetrachloroethene	ND		1.00	1	04/06/2025 10:24	WG2484067
Vinyl chloride	13.2		1.00	1	04/06/2025 10:24	WG2484067
(S) Toluene-d8	98.1		80.0-120		04/06/2025 10:24	WG2484067
(S) 4-Bromofluorobenzene	97.9		77.0-126		04/06/2025 10:24	WG2484067
(S) 1,2-Dichloroethane-d4	103		70.0-130		04/06/2025 10:24	WG2484067

Collected date/time: 03/28/25 10:56

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 21:39	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	94.7		78.0-120		04/04/2025 21:39	WG2483497

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 10:43	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 10:43	WG2484067
Toluene	ND		1.00	1	04/06/2025 10:43	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 10:43	WG2484067
Trichloroethene	ND		1.00	1	04/06/2025 10:43	WG2484067
cis-1,2-Dichloroethene	ND		1.00	1	04/06/2025 10:43	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 10:43	WG2484067
Tetrachloroethene	ND		1.00	1	04/06/2025 10:43	WG2484067
Vinyl chloride	ND		1.00	1	04/06/2025 10:43	WG2484067
(S) Toluene-d8	96.8		80.0-120		04/06/2025 10:43	WG2484067
(S) 4-Bromofluorobenzene	97.9		77.0-126		04/06/2025 10:43	WG2484067
(S) 1,2-Dichloroethane-d4	101		70.0-130		04/06/2025 10:43	WG2484067

Volatile Organic Compounds (GC) by Method NWTPHGX

Collected date/time: 03/28/25 11:11

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	8290		1000	10	04/05/2025 00:11	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	91.6		78.0-120		04/05/2025 00:11	WG2483497

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	180		50.0	50	04/06/2025 06:17	WG2484067
Ethylbenzene	61.3		50.0	50	04/06/2025 06:17	WG2484067
Toluene	138		50.0	50	04/06/2025 06:17	WG2484067
Xylenes, Total	1360		150	50	04/06/2025 06:17	WG2484067
Trichloroethene	ND		50.0	50	04/06/2025 06:17	WG2484067
cis-1,2-Dichloroethene	ND		50.0	50	04/06/2025 06:17	WG2484067
trans-1,2-Dichloroethene	ND		50.0	50	04/06/2025 06:17	WG2484067
Tetrachloroethene	ND		50.0	50	04/06/2025 06:17	WG2484067
Vinyl chloride	ND		50.0	50	04/06/2025 06:17	WG2484067
(S) Toluene-d8	96.1		80.0-120		04/06/2025 06:17	WG2484067
(S) 4-Bromofluorobenzene	99.9		77.0-126		04/06/2025 06:17	WG2484067
(S) 1,2-Dichloroethane-d4	102		70.0-130		04/06/2025 06:17	WG2484067

Collected date/time: 03/28/25 11:34

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	13500		1000	10	04/05/2025 00:33	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	94.8		78.0-120		04/05/2025 00:33	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	122		100	100	04/06/2025 06:36	WG2484067
Ethylbenzene	725		100	100	04/06/2025 06:36	WG2484067
Toluene	802		100	100	04/06/2025 06:36	WG2484067
Xylenes, Total	3430		300	100	04/06/2025 06:36	WG2484067
Trichloroethene	185		100	100	04/06/2025 06:36	WG2484067
cis-1,2-Dichloroethene	142		100	100	04/06/2025 06:36	WG2484067
trans-1,2-Dichloroethene	ND		100	100	04/06/2025 06:36	WG2484067
Tetrachloroethene	419		100	100	04/06/2025 06:36	WG2484067
Vinyl chloride	ND		100	100	04/06/2025 06:36	WG2484067
(S) Toluene-d8	95.4		80.0-120		04/06/2025 06:36	WG2484067
(S) 4-Bromofluorobenzene	98.4		77.0-126		04/06/2025 06:36	WG2484067
(S) 1,2-Dichloroethane-d4	103		70.0-130		04/06/2025 06:36	WG2484067

Collected date/time: 03/28/25 11:39

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	47200		1000	10	04/05/2025 00:55	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	83.9		78.0-120		04/05/2025 00:55	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	9270		500	500	04/06/2025 06:55	WG2484067
Ethylbenzene	1540		500	500	04/06/2025 06:55	WG2484067
Toluene	8460		500	500	04/06/2025 06:55	WG2484067
Xylenes, Total	7400		1500	500	04/06/2025 06:55	WG2484067
Trichloroethene	ND		500	500	04/06/2025 06:55	WG2484067
cis-1,2-Dichloroethene	ND		500	500	04/06/2025 06:55	WG2484067
trans-1,2-Dichloroethene	ND		500	500	04/06/2025 06:55	WG2484067
Tetrachloroethene	ND		500	500	04/06/2025 06:55	WG2484067
Vinyl chloride	ND		500	500	04/06/2025 06:55	WG2484067
(S) Toluene-d8	96.8		80.0-120		04/06/2025 06:55	WG2484067
(S) 4-Bromofluorobenzene	101		77.0-126		04/06/2025 06:55	WG2484067
(S) 1,2-Dichloroethane-d4	101		70.0-130		04/06/2025 06:55	WG2484067

Collected date/time: 03/28/25 12:06

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	276	В	100	1	04/04/2025 22:01	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	93.3		78.0-120		04/04/2025 22:01	WG2483497

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 11:02	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 11:02	WG2484067
Toluene	ND		1.00	1	04/06/2025 11:02	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 11:02	WG2484067
Trichloroethene	56.5		1.00	1	04/06/2025 11:02	WG2484067
cis-1,2-Dichloroethene	21.0		1.00	1	04/06/2025 11:02	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 11:02	WG2484067
Tetrachloroethene	1030		25.0	25	04/09/2025 01:16	WG2485762
Vinyl chloride	ND		1.00	1	04/06/2025 11:02	WG2484067
(S) Toluene-d8	94.4		80.0-120		04/06/2025 11:02	WG2484067
(S) Toluene-d8	105		80.0-120		04/09/2025 01:16	WG2485762
(S) 4-Bromofluorobenzene	99.6		77.0-126		04/06/2025 11:02	WG2484067
(S) 4-Bromofluorobenzene	101		77.0-126		04/09/2025 01:16	WG2485762
(S) 1,2-Dichloroethane-d4	102		70.0-130		04/06/2025 11:02	WG2484067
(S) 1,2-Dichloroethane-d4	118		70.0-130		04/09/2025 01:16	WG2485762

Collected date/time: 03/28/25 12:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/08/2025 00:38	WG2484900
(S) a,a,a-Trifluorotoluene(FID)	85.0		78.0-120		04/08/2025 00:38	WG2484900

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		10.0	10	04/06/2025 07:14	WG2484067
Ethylbenzene	ND		10.0	10	04/06/2025 07:14	WG2484067
Toluene	ND		10.0	10	04/06/2025 07:14	WG2484067
Xylenes, Total	ND		30.0	10	04/06/2025 07:14	WG2484067
Trichloroethene	ND		10.0	10	04/06/2025 07:14	WG2484067
cis-1,2-Dichloroethene	ND		10.0	10	04/06/2025 07:14	WG2484067
trans-1,2-Dichloroethene	ND		10.0	10	04/06/2025 07:14	WG2484067
Tetrachloroethene	ND		10.0	10	04/06/2025 07:14	WG2484067
Vinyl chloride	ND		10.0	10	04/06/2025 07:14	WG2484067
(S) Toluene-d8	96.3		80.0-120		04/06/2025 07:14	WG2484067
(S) 4-Bromofluorobenzene	97.8		77.0-126		04/06/2025 07:14	WG2484067
(S) 1,2-Dichloroethane-d4	100		70.0-130		04/06/2025 07:14	WG2484067

Collected date/time: 03/28/25 12:10

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 17:22	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	92.3		78.0-120		04/04/2025 17:22	WG2483497

Cp

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 08:30	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 08:30	WG2484067
Toluene	ND		1.00	1	04/06/2025 08:30	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 08:30	WG2484067
Trichloroethene	ND		1.00	1	04/06/2025 08:30	WG2484067
cis-1,2-Dichloroethene	ND		1.00	1	04/06/2025 08:30	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 08:30	WG2484067
Tetrachloroethene	ND		1.00	1	04/06/2025 08:30	WG2484067
Vinyl chloride	ND		1.00	1	04/06/2025 08:30	WG2484067
(S) Toluene-d8	96.9		80.0-120		04/06/2025 08:30	WG2484067
(S) 4-Bromofluorobenzene	98.7		77.0-126		04/06/2025 08:30	WG2484067
(S) 1,2-Dichloroethane-d4	101		70.0-130		04/06/2025 08:30	WG2484067

Collected date/time: 03/28/25 12:11

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/04/2025 17:01	WG2483497
(S) a,a,a-Trifluorotoluene(FID)	92.9		78.0-120		04/04/2025 17:01	WG2483497

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/06/2025 08:49	WG2484067
Ethylbenzene	ND		1.00	1	04/06/2025 08:49	WG2484067
Toluene	ND		1.00	1	04/06/2025 08:49	WG2484067
Xylenes, Total	ND		3.00	1	04/06/2025 08:49	WG2484067
Trichloroethene	ND		1.00	1	04/06/2025 08:49	WG2484067
cis-1,2-Dichloroethene	ND		1.00	1	04/06/2025 08:49	WG2484067
trans-1,2-Dichloroethene	ND		1.00	1	04/06/2025 08:49	WG2484067
Tetrachloroethene	ND		1.00	1	04/06/2025 08:49	WG2484067
Vinyl chloride	ND		1.00	1	04/06/2025 08:49	WG2484067
(S) Toluene-d8	96.3		80.0-120		04/06/2025 08:49	WG2484067
(S) 4-Bromofluorobenzene	99.7		77.0-126		04/06/2025 08:49	WG2484067
(S) 1,2-Dichloroethane-d4	101		70.0-130		04/06/2025 08:49	WG2484067

QUALITY CONTROL SUMMARY

L1841690-01,02,03,04,05,06,07,08,09,10,11,12,13,15,16

Method Blank (MB)

				-			
(MB) R4196111-2 04/04/2	MB) R4196111-2 04/04/25 16:12						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Gasoline Range Organics-NWTPH	42.4	<u>J</u>	31.6	100			
(S) a.a.a-Trifluorotoluene(FID)	92.5			78.0-120			

²Tc

⁴Cn

Laboratory Control Sample (LCS)

Volatile Organic Compounds (GC) by Method NWTPHGX

(LCS) R4196111-1 04/04/25	CS) R4196111-1 04/04/25 14:07								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Gasoline Range Organics-NWTPH	5000	4910	98.2	70.0-124					
(S) a,a,a-Trifluorotoluene(FID)			102	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1841690-14

Method Blank (MB)

(MB) R4196334-2 04/07/	/25 22:21	·		
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	32.8	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	86.2			78.0-120

³Ss

Laboratory Control Sample (LCS)

(LCS) R4196334-1 04/07/	CS) R4196334-1 04/07/25 21:35								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Gasoline Range Organics-NWTPH	5000	4600	92.0	70.0-124					
(S)			88.8	78.0-120					

QUALITY CONTROL SUMMARY

L1841690-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16 Volatile Organic Compounds (GC/MS) by Method 8260B

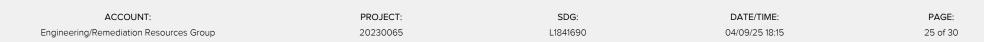
Method Blank (MB)

(MB) R4196703-3 04/06/25 05:01 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Benzene U 0.0941 1.00 U 0.137 1.00 Ethylbenzene Toluene U 0.278 1.00 Xylenes, Total U 0.174 3.00 Trichloroethene U 0.190 1.00 cis-1,2-Dichloroethene U 0.126 1.00 trans-1,2-Dichloroethene U 0.149 1.00 Tetrachloroethene U 0.300 1.00 Vinyl chloride U 0.234 1.00 96.2 80.0-120 (S) Toluene-d8 (S) 4-Bromofluorobenzene 99.6 77.0-126 70.0-130 (S) 1,2-Dichloroethane-d4 102

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4196703-1 04/06/25 04:04 • (LCSD) R4196703-2 04/06/25 04:23

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.14	5.45	103	109	70.0-123			5.85	20	
Ethylbenzene	5.00	4.60	4.74	92.0	94.8	79.0-123			3.00	20	
Toluene	5.00	4.71	4.95	94.2	99.0	79.0-120			4.97	20	
Xylenes, Total	15.0	13.8	14.8	92.0	98.7	79.0-123			6.99	20	
Trichloroethene	5.00	5.03	5.25	101	105	78.0-124			4.28	20	
cis-1,2-Dichloroethene	5.00	4.87	5.16	97.4	103	73.0-120			5.78	20	
trans-1,2-Dichloroethene	5.00	4.96	5.46	99.2	109	73.0-120			9.60	20	
Tetrachloroethene	5.00	4.40	4.97	88.0	99.4	72.0-132			12.2	20	
Vinyl chloride	5.00	5.50	5.78	110	116	67.0-131			4.96	20	
(S) Toluene-d8				94.4	94.3	80.0-120					
(S) 4-Bromofluorobenzene				99.6	99.8	77.0-126					
(S) 1,2-Dichloroethane-d4				104	104	70.0-130					



QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1841690-03,13

Method Blank (MB)

(MB) R4197129-3 04/08/25	5 22:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Tetrachloroethene	U		0.300	1.00
(S) Toluene-d8	104			80.0-120
(S) 4-Bromofluorobenzene	96.9			77.0-126
(S) 1,2-Dichloroethane-d4	119			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CS) R4197129-1	04/08/25 21.38	(LCSD) R4197129-2	04/08/25 21:58
(LCG) NTIG/1231	0-7/00/23 21.30	(LCSD) N-13/123 Z	0-7/00/23 21.30

(/		,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Tetrachloroethene	5.00	5.95	5.94	119	119	72.0-132			0.168	20
(S) Toluene-d8				105	103	80.0-120				
(S) 4-Bromofluorobenzene				102	99.4	77.0-126				
(S) 1,2-Dichloroethane-d4				117	117	70.0-130				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIC VIGIOIIS GIV	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

	_
Qualifier	Description

Gaanner	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05			
Alaska	17-026	Nevada	TN000032021-1			
Arizona	AZ0612	New Hampshire	2975			
Arkansas	88-0469	New Jersey-NELAP	TN002			
California	2932	New Mexico ¹	TN00003			
Colorado	TN00003	New York	11742			
Connecticut	PH-0197	North Carolina	Env375			
Florida	E87487	North Carolina ¹	DW21704			
Georgia	NELAP	North Carolina ³	41			
Georgia ¹	923	North Dakota	R-140			
Idaho	TN00003	Ohio-VAP	CL0069			
Illinois	200008	Oklahoma	9915			
Indiana	C-TN-01	Oregon	TN200002			
Iowa	364	Pennsylvania	68-02979			
Kansas	E-10277	Rhode Island	LAO00356			
Kentucky 16	KY90010	South Carolina	84004002			
Kentucky ²	16	South Dakota	n/a			
Louisiana	Al30792	Tennessee 1 4	2006			
Louisiana	LA018	Texas	T104704245-20-18			
Maine	TN00003	Texas ⁵	LAB0152			
Maryland	324	Utah	TN000032021-11			
Massachusetts	M-TN003	Vermont	VT2006			
Michigan	9958	Virginia	110033			
Minnesota	047-999-395	Washington	C847			
Mississippi	TN00003	West Virginia	233			
Missouri	340	Wisconsin	998093910			
Montana	CERT0086	Wyoming	A2LA			
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789			
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01			
Canada	1461.01	USDA	P330-15-00234			

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Info	rmation:		T	Analysis / Container / Preservative							Chain of Custody Page Page Page Page Page Page Page Page		
Engineering/Remediati	tion Resources Jennifer Sonnichs				Accounts	Pres										1 -
Group			Payable			Chk									Pa	ce
15333 NE 90th Street			Ste 100	15333 NE 90th Street Ste 100					-						PEOPLE	DVANCING SCIENCE
Report to:	t to:												- 10	10	MT JU	LIET, TN
	20	City/Chata	Jennier.sc	, , , ,											Submitting a sample via constitutes acknowledge	this chain of custody nent and acceptance of the
Project Description: FORMER CIRCI	EK	City/State Collected:	Seaffl	e, WA	PT MT										Pace Terms and Condition https://info.pacelabs.com terms.pdf	
Regulatory Program(DOD,RCRA,DW,etc):	Client Project	- 1	(Lab Project # ENGREMR	WA-CIRCLE	К		용		-B.K					SDG # 18	1690
ECOLOGY EIM	1202	7000					O	Ö	HC	모					BO	38
Collected by (print):	Site/Facility II	61		P.O.# 230065-PA-61			40mlAmb HC	40mlAmb-HCl-Blk	40mlAmb-HCl	40mlAmb-HCI-BIk					Acctnum: ENG	REMRWA
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #			A	IA	Alm	Alm A		-	11/2		Template:T263	464
JAM II		y Five						40h			40		130	8	Prelogin: P113	2794
Immediately	Next Da		y (Rad Only) ay (Rad Only)	Date Res	sults Needed	No.		XS	EX	X					PM: 3500 - Jenr	ifer Gambill
Packed on Ice NY	Three D	aySTD				of	PHG	PHG	OBT	OBT					PB:	terre e
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWTPHGX	NWTPH	V8260BTEX	V8260BTEX	30 3				Shipped Via: Fe	Sample # (lab only)
MW-18	GRAB	GW	NIA	13/28/2	1 190	7 6	X		X							-01
mw-20		GW			0908	8 6	X		X							_ 02
RW-1	1	GW			093	3 6	X		X		100					-03
Mw-9		GW			194	4 6	X		X							- 04
MW-16		GW			1006	6	X		X					2		_09
mu)-8		GW			1012	6	X		X							-06
MW-K		GW			1031	6	X		X		16					-07
M(1)-(0		GW			1038	6	X		X							-08
mw-14		GW			1056	6	X		X							- 09
MW-13	4	GW	4	4	1111	6	X		X							-10
* Matrix:	emarks: VO	(1	BTEX	+ TCE	, cDC	2 +	DC	P	DIE	-	-			Samp	ole Receipt Che	ecklist
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay		V S			11-1	, '	1	7	TCC	pH _	Tem	p	COC	: Signed,	resent/Intact: /Accurate:	NP Y N
WW - WasteWater				01	JCY			, \	16	Flow_	Oth	er			rive intact: ttles used:	ZY -N
DW - Drinking Water OT - Other	Samples returned via: Tracking # U251 067 0 1015															
VOA Zero Headspace:									eadspace:	YN						
Relinquished by : (Signature)	LAINE	te: /2/10/	Time	715 Rec	eived by: (Sign	ature)	~	001		Trip Blank		HCL / MeoH	PAI		<0.5 mR/hr:	ZY _N
Relinquished by : (Signature)	CATIVE Da	1 LO1	Time	()	eived by: (Sign	ature)	ER	1,6)		- °C Bot	TBR tles Received	i: If o	reservatio	n required by Log	n: Date/Time
LIF A	RG.	3/28/		330	VEDD	EV				Temp: TA	19 -	84	110	. 5501 40110	equiled by Log	a succession
Relinquished by : (Signature)	Da	ta:	Time		ceived for lab b	y: (Signal	ture)			Date:	Tin	ne:	Но	d:		Condition
V					aux	7	Mã	til	en	3/20	125	000	0			NCF / OK

*

Company Name/Address:			Billing Info	rmation:		1	1		1	Inalysis	/ Contain	nor / Pro	servative			Chain of Custody	y Page	1 of		
Engineering/Remediat	tion Resour	rces	1		2					TAIL STS						chair or costou	1	-		
		Jennier Johnstisen Accounts					100		10)										
Group 15333 NE 90th Street			Payable 15333 NE 90th Street Ste 100								1000			10000		Pa	ace			
											()					PEOPLE	E ADVANCING SCI	ENCE		
			0	1 14/4 ODOES		10					Many.		3000			MTII	ULIET, TN	J		
Report to: Jennifer Sonnichsen 425-658-50	126		Email To:	onnichsen@errg.	com:spencer	slomins					1000		No.	13.00		12065 Lebanon Rd Mo				
		City/State		, , , , ,			100				100			1000		Submitting a sample vi constitutes acknowled	Igment and accept			
Project Description: FORMER GRAM	EL	City/State Collected:	Seall		Please of MT										1	Pace Terms and Condit https://info.pacelabs.c terms.pdf		andard-		
Regulatory Program(DOD,RCRA,DW,etc				Lab Project #	NA-CIRCLE	K	193	×	100	왕				1 - 3		SDG# 184/191				
FCOLOGY EM	2023	3006	5	ENGREMRWA-CIRCLE K				O-B-	10	- D	100			100		10	116	10		
Collected by (print):	Site/Facility ID			P.O. # 230665-PA-01 otified) Quote #			40mlAmb HCl	40mlAmb-HCI-BIK	40mlAmb-HCl	40mlAmb-HCI-BIK				100		Table #				
Collected by (cignature):	-	46							IAIT	IAm	IAm			20 1000			tnum: ENGREMRWA			
Collected by (signature):	Rush? (L Same Da	ab MUST Be					J. M.	Jm.	Om O	l m	Bur		500	100		Template: T26				
ω		y Five		Date Resu	ılts Needed	T					100			-		Prelogin: P11 PM: 3500 - Jen		hill		
Immediately Packed on Ice N Y		10 C	ay (Rad Only)			No.	9	9	STE	3TE				-	1	PB:	uniter Curri			
					10.00	of Cntrs	급	I d	909	909		-		1		Shipped Via: F	edEX Gro	ound		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Linus	NWTPHGX	NWTPHGX	V8260BTEX	V8260BTEX						Remarks	Sample #	-		
MW-19	GRAM	GW		13/28/7	\$1134	б	X		X		-							17		
mw-21	1	GW		11001	1130		X		X									17		
M11 -17		GW			170	6	X		X								-	17		
71100-1				1 e histor	1200	7	-	-	-									14		
MP-1	BK.	GW		3/28/25	1200	6	X		X		1						-	7		
1		GW				6	X		X		ES	-								
-		GW-				-6	X		X	- 0	(0)									
TRIP BLANK TB-01	GRAB	GW		3/28/2	9 1210	2		X	1 an	X				1			-	5		
TRIP BLANK TB-62	9	GW		1		2		X		X							1	6		
113-02	0	Ow		4	RII	12	-	^		^							-	0		
						-	-			-										
						إردا	1_										1			
* Matrix: SS - Soil AIR - Air F - Filter	Remarks:		0.1	1						рН		Temp		COC Se	eal Pres	Receipt Ch	ecklist	Y I		
GW - Groundwater B - Bioassay	50	55	PAGE	/						-		0.1		COC Si	igned/Ad	ccurate: ve intact:	t	Ph 1		
WW - WasteWater				/			-			Flow		_ Other		Correc	ct bottl	les used:		1		
DW - Drinking Water OT - Other	Samples returned UPS FedEx			Trac	king# 47	57	De	129	lel	50						olume sent: If Applicab		- N		
Dalinguished by (Signature)				- Dans			V	ici		Service States	ale Danni	ved: Ye	I/No		ero Head	dspace: Correct/Che	ecked:	Y		
Relinquished by : (Signature)	Da	2/20/	7 & 12	10-	eived by: (Sign	Layure	TO)/		тпр віа	ik kecer		CL / MeoH	RAD So	creen <	0.5 mR/hr:		Y _1		
ELAINE KCS		18/	-3 1	10 /	MU	1	1	6			1		BR	1.6			1 0 - 1			
Relinquished by : (Signature)	Ol Da	dac.	Time	2-1 Rece	ved by: (Sign	ature)	11			Temp:	lag"	C Bottl	es Received:	If prese	rvation r	required by Lo	gin: Date/T	ime		
Just Br	Klo .	100	05/19	770	TE	1/1	X			out.	4-2)	89				1	-		
Relinquished by : (Signature)	Da	te:	Time		eived for lab by	100		- 1	112 7	Date:	4.0	Time		Hold:			NCF /			
					Musico	1 1	no	h	en	8/7	9/2	5	Date)		1	,	0		

Appendix C. Data Validation Reports During Reporting Period

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG March 26, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fraction listed below. This SDG was received on March 19, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60725:

SDG# **Fraction**

L1818502 Volatile Organic Compound

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60725 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	VOCs (TO-15)						
Matrix T	Matrix Type:								
Α	L1818502	3/19/25	4/9/25	Stage 2A	2				
Total			PM: PG		2				

These sample counts do not include MS/MSD, and DUPs.

EDD: EIM

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

March 25, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1818502

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
FALCO-300-INF-20250117	L1818502-01	Air	01/17/25	
FALCO-300-EFF-20250117	L1818502-02	Air	01/17/25	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. Laboratory Blanks/Canister

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister.

III. Field Blanks

No field blanks were identified in this SDG.

IV. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (60-140)	Affected Analyte	Flag	A or P
FALCO-300-INF-20250117	1,4-Bromofluorobenzene	345	Benzene Cyclohexane Ethylbenzene 4-Ethyltoluene Heptane n-Hexane Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 2,2,4-Trimethylpentane m&p-Xylene o-Xylene Xylenes total TPH as low fraction	J+ (all detects)	A

V. Matrix Spike/Matrix Spike Duplicate

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

No field duplicates were identified in this SDG.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to surrogate %R are summarized and presented in the Data Qualification Summary.

Circle K Volatile Organic Analytes - Data Qualification Summary - SDG L1818502

Sample	Analyte	Flag	A or P	Reason
FALCO-300-INF-20250117	Benzene Cyclohexane Ethylbenzene 4-Ethyltoluene Heptane n-Hexane Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 2,2,4-Trimethylpentane m&p-Xylene o-Xylene Xylenes total TPH as low fraction	J+ (all detects)	Α	Surrogates (%R)

Circle K Volatile Organic Analytes - Laboratory Blank Data Qualification Summary - SDG L1818502

No Sample Data Qualified in this SDG

Circle K Volatile Organic Analytes - Field Blank Data Qualification Summary - SDG L1818502

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60725A

SDG#:

L1818502

Laboratory: Pace Analytical, Mount Juliet, TN

Method:

Volatiles (EPA TO-15)

Date: 3/20/2025 Page: 1 Reviewer: MN 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks /canister	A/A	
III	Field blanks	7	
IV	Surrogate spikes	SW	
V	Matrix spike/Matrix spike duplicates	7	
VI	Laboratory control samples	A	LCS/D
VII	Field duplicates	7	
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualified

TB = Trip blank

SB = Source blank

SW = See worksheet FD = Field duplicate FB = Field blank EB = Equipment blank

			Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	ī	2	FALCO-300-INF-20250117	L1818502-01		Air	01/17/2025	Stage 2A
2	1	2	FALCO-300-EFF-20250117	L1818502-02		Air	01/17/2025	Stage 2A

Notes:

1(MB) R4168842-3		
2 (MB) R4169161-3		

LDC #: _60725A

VALIDATION FINDINGS WORKSHEET <u>Surrogate Recovery</u>

Page	:1_ of1_	
Reviewer: _	MN	

METHOD: GC/MS Volatiles (EPA SW-846 Method TO-15)

Surrogates were added to all samples as required by the method.

All surrogate recoveries (%R) were within QC limits with the exceptions identified below.

	Sample				
#] ID	Surrogate Compound	%R	Limits	Qualifications
	1 (DET+ND)	1,4-Bromofluorobenzene	345	60-140	J+DET/A (Qual all except Benzene, Cyclohexane, Ethylbenzene, 4- Ethyltoluene, Heptane, n-Hexane, Toluene, 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, 2,2,4- Trimethylpentane, m&p-Xylene, o- Xylene, Xylenes Total, TPH (GC/MS) Low Fraction
 	r (BETTNE)	1,4-Bioinoladiobelizelle	343	00-140	2011 / (dollar)

DFM = Dibromofluoromethane DCE = 1,2-Dichloroethane-d4

TOL = Toluene-d8

BFB = Bromofluorobenzene

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG March 19, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on January 30, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60540:

SDG# **Fraction**

L1818655

Volatile Organic Compound, Oil & Grease, Gasoline Range Organics

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60540 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	(9) VOCs (8260D)	GRO (NWTPH-Gx)	Oil & Grease (1664B)
Matrix T	Matrix Type:			Water	Water	Water	
Α	L1818655	1/30/25	2/21/25	Stage 2A	5	5	6
Total	PM: PG			5	5	6	

These sample counts do not include MS/MSD, and DUPs.

EDD: EIM EDD

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

March 19, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1818655

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250117	L1818655-01	Water	01/17/25
LG-403-MID-20250117	L1818655-02	Water	01/17/25
LG-401-INF-20250117	L1818655-03	Water	01/17/25
DUP-3-20250117	L1818655-04	Water	01/17/25
TB-01-20250117	L1818655-07	Water	01/17/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Sample TB-01-20250117 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples LG-404-EFF-20250117 and DUP-3-20250117 were identified as field duplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Compounds - Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Laboratory Blank Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Field Blank Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #:

60540A

SDG#:

L1818655

Laboratory:

Pace Analytical, Mount Juliet, TN

Page: 1 Reviewer: 2nd Reviewer:

Date: 2/14/2025

Method:

Volatiles (EPA 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
III	Field blanks	ND	TB-5
IV	Surrogate spikes	I A	
V	Matrix spike/Matrix spike duplicates	7	
VI	Laboratory control samples	A	LCSID
VII	Field duplicates	ND	LCS/D Dup=1+4
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualifiedSW = See worksheet

FD = Field duplicate

TB = Trip blank FB = Field blank SB = Source blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 12	LG-404-EFF-20250117	L1818655-01		Water	01/17/2025	Stage 2A
2	LG-403-MID-20250117	L1818655-02		Water	01/17/2025	Stage 2A
3 1	LG-401-INF-20250117	L1818655-03		Water	01/17/2025	Stage 2A
4 1	DUP-3-20250117	L1818655-04		Water	01/17/2025	Stage 2A
5	TB-01-20250117	L1818655-07	ТВ	Water	01/17/2025	Stage 2A

Notes:

1 MB R4169459-4		
2 MB R4169735-3	(000)	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

March 19, 2025

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1818655

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250117	L1818655-01	Water	01/17/25
LG-403-MID-20250117	L1818655-02	Water	01/17/25
LG-401-INF-20250117	L1818655-03	Water	01/17/25
DUP-3-20250117	L1818655-04	Water	01/17/25
TB-01-20250117	L1818655-07	Water	01/17/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Sample TB-01-20250117 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VII. Field Duplicates

Samples LG-404-EFF-20250117 and DUP-3-20250117 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/L)		
Analyte	LG-404-EFF-20250117	DUP-3-20250117	RPD
Gasoline range organics	0.100U	0.119	Not calculable

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Gasoline Range Organics - Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

Circle K

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

Circle K

Gasoline Range Organics - Field Blank Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #:

60540A

SDG#:

L1818655

Method:

Laboratory: Pace Analytical, Mount Juliet, TN

TPH (NWTPH-Gx), GRO

Date: 2/14/2025 Page: Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
III	Field blanks	ND .	TB=5
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	N	
VI	Laboratory control samples	A	LCS
VII	Field duplicates	- SW	Dyp=1+4
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank SB = Source blank

R = Rinsate

SW = See worksheet

N = Not provided/applicable NQ = Not qualifiedFD = Field duplicate TB = Trip blank FB = Field blank

EB = Equipment blank

		Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	1	LG-404-EFF-20250117	L1818655-01		Water	01/17/2025	Stage 2A
2	1	LG-403-MID-20250117	L1818655-02		Water	01/17/2025	Stage 2A
3	1	LG-401-INF-20250117	L1818655-03		Water	01/17/2025	Stage 2A
4	1	DUP-3-20250117	L1818655-04		Water	01/17/2025	Stage 2A
5	t	TB-01-20250117	L1818655-07	TB	Water	01/17/2025	Stage 2A

Notes:

1 MB R4169191-2	

LDC#: 60540A

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page 1 of ⁷ Reviewer: MN

Method: GC Gasoline Range Organics (Method NWTPH-GX)

	Concentration	RPD	
Compound	1		
Gasoline Range Organics-NWTPH	0.100U	0.119	NC

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

March 19, 2025

Parameters:

Oil and Grease

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1818655

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250117	L1818655-01	Water	01/17/25
LG-403-MID-20250117	L1818655-02	Water	01/17/25
LG-401-INF-20250117	L1818655-03	Water	01/17/25
DUP-3-20250117	L1818655-04	Water	01/17/25
DUP-1-20250117	L1818655-05	Water	01/17/25
DUP-2-20250117	L1818655-06	Water	01/17/25
LG-404-EFF-20250117MS	L1818655-01MS	Water	01/17/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Oil and Grease by Environmental Protection Agency (EPA) Method 1664B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

No field blanks were identified in this SDG.

IV. Surrogates

Surrogates were not performed for this SDG.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Quadruplicate

Samples LG-404-EFF-20250117, DUP-3-20250117, DUP-1-20250117, and DUP-2-20250117 were identified as field quadruplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Oil and Grease - Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

Circle K

Oil and Grease - Laboratory Blank Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

Circle K

Oil and Grease - Field Blank Data Qualification Summary - SDG L1818655

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 60540A SDG #: L1818655 Laboratory: Pace Analytical, Mount Juliet, TN

Page: 1/1
Reviewer: MR/NF
2nd Reviewer:

Date: 2/14/2025

Method: Oil and Grease (EPA 1664B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
III	Field blanks	N	
IV	Surrogate spikes	N	
V	Matrix spike/Matrix spike duplicates	A	
VI	Laboratory control samples	14	LCS/LCSD
VII	Field duplicates FQ	ND	
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	4	

Note: A = Acceptable ND = Not detected FT = Field triplicate AB = Ambient blank R = Rinsate N = Not provided/applicable NQ = Not qualified TB = Trip blank SB = Source blank FQ = Field Quadruplicate

SW = See worksheet FD = Field duplicate FB = Field blank EB = Equipment blank

•	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	LG-404-EFF-20250117	L1818655-01	FQ	Water	01/17/2025	Stage 2A
2	LG-403-MID-20250117	L1818655-02		Water	01/17/2025	Stage 2A
3	LG-401-INF-20250117	L1818655-03		Water	01/17/2025	Stage 2A
1	DUP-3-20250117	L1818655-04	FQ	Water	01/17/2025	Stage 2A
5	DUP-1-20250117	L1818655-05	FQ	Water	01/17/2025	Stage 2A
5	DUP-2-20250117	L1818655-06	Fa	Water	01/17/2025	Stage 2A
7	LG-404-EFF-20250117MS	L1818655-01MS	MS	Water	01/17/2025	Stage 2A
					_	
						
			·			

Notes:

LDC #: 60540A

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer: NF

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1-6	Oil and Grease
1	

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG May 16, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on February 6, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60566 RV1:

SDG# **Fraction**

L1818670 Volatile Organic Compound, Gasoline Range Organics

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60566 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	BTEX (8260D)	GRO (NWTPH-Gx)
Matrix T	Matrix Type:				Water	Water
Α	L1818670	2/6/25	2/28/25	Stage 2A	15	15
Total			PM: PG		15	15

These sample counts do not include MS/MSD, and DUPs. EDD: EIM EDD

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 16, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1818670

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-21	L1818670-01	Water	01/17/25
MW-9	L1818670-02	Water	01/17/25
MW-8	L1818670-03	Water	01/17/25
MW-13	L1818670-04	Water	01/17/25
MW-20	L1818670-05	Water	01/17/25
MW-6	L1818670-06	Water	01/17/25
MW-19	L1818670-07	Water	01/17/25
MW-14	L1818670-08	Water	01/17/25
MW-16	L1818670-09	Water	01/17/25
MW-15	L1818670-10	Water	01/17/25
MW-17	L1818670-11	Water	01/17/25
MW-18	L1818670-12	Water	01/17/25
RW-1	L1818670-13	Water	01/17/25
DUP-1	L1818670-14	Water	01/17/25
TB-01	L1818670-15	Water	01/17/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Sample TB-01 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples MW-9 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concent		
Analyte	MW-9	DUP-1	RPD
Ethylbenzene	0.156	0.198	24
Xylenes, Total	0.203	0.247	20

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Compounds - Data Qualification Summary - SDG L1818670

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Laboratory Blank Data Qualification Summary - SDG L1818670

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Field Blank Data Qualification Summary - SDG L1818670

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60566A

SDG#:

L1818670

Method:

Laboratory: Pace Analytical, Mount Juliet, TN

Volatiles (EPA 8260D), BTEX

Date: 2/21/2025 Page: 1 Reviewer:

2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
Ш	Field blanks	ND	TB=15, R=15
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	N	
VI	Laboratory control samples	A	LCS/D
VII	Field duplicates	JW.	LCS/D Dup= 82+14
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualified

TB = Trip blank

SB = Source blank

FD = Field duplicate FB = Field blank SW = See worksheet EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	MW-21	L1818670-01		Water	01/17/2025	Stage 2A
2	MW-9	L1818670-02		Water	01/17/2025	Stage 2A
3]	MW-8	L1818670-03		Water	01/17/2025	Stage 2A
4	MW-13	L1818670-04		Water	01/17/2025	Stage 2A
5	MW-20	L1818670-05		Water	01/17/2025	Stage 2A
6 1	MW-6	L1818670-06		Water	01/17/2025	Stage 2A
7	MW-19	L1818670-07		Water	01/17/2025	Stage 2A
8	MW-14	L1818670-08		Water	01/17/2025	Stage 2A
9	MW-16	L1818670-09		Water	01/17/2025	Stage 2A
10	MW-15	L1818670-10		Water	01/17/2025	Stage 2A
11 /	MW-17	L1818670-11		Water	01/17/2025	Stage 2A
12 2	MW-18	L1818670-12		Water	01/17/2025	Stage 2A
13 2	RW-1	L1818670-13	Rinsate	Water	01/17/2025	Stage 2A
14 2	DUP-1	L1818670-14	FD	Water	01/17/2025	Stage 2A
15 3	TB-01	L1818670-15	TB	Water	01/17/2025	Stage 2A

Notes:

1 MB R4168690-3	
2 MB R416 9437-3	
3 MB R4169436-3	

LDC #: 60566A

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page	e: _1		of	 ι_
Reviewer:		_M	N_	

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

	Concentration	RPD	
Compound	2	14	
Ethylbenzene	0.156	0.198	24
Xylenes, Total	0.203	0.247	20

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 16, 2025

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1818670

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-21	L1818670-01	Water	01/17/25
MW-9	L1818670-01	Water	01/17/25
MW-8	L1818670-03	Water	01/17/25
		 	
MW-13	L1818670-04	Water	01/17/25
MVV-20	L1818670-05	Water	01/17/25
MVV-6	L1818670-06	Water	01/17/25
MW-19	L1818670-07	Water	01/17/25
MW-14	L1818670-08	Water	01/17/25
MW-16	L1818670-09	Water	01/17/25
MW-15	L1818670-10	Water	01/17/25
MW-17	L1818670-11	Water	01/17/25
MW-18	L1818670-12	Water	01/17/25
RW-1	L1818670-13	Water	01/17/25
DUP-1	L1818670-14	Water	01/17/25
TB-01	L1818670-15	Water	01/17/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration (mg/L)	Associated Samples
(MB) R4169122-4	01/21/25	Gasoline range organics	0.0995	All samples in SDG L1818670

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration (mg/L)	Modified Final Concentration (mg/L)
MW-6	Gasoline range organics	0.263	0.263J+
MW-17	Gasoline range organics	0.300	0.300J+
MW-18	Gasoline range organics	0.117	0.117J+
RW-1	Gasoline range organics	0.167	0.167J+

III. Field Blanks

Sample TB-01 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples MW-9 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concen		
Analyte	MW-9	DUP-1	RPD
Gasoline range organics	3.85	5.27	31

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to laboratory blank contamination are summarized and presented in the Data Qualification Summary.

Circle K Gasoline Range Organics - Data Qualification Summary - SDG L1818670

No Sample Data Qualified in this SDG

Circle K Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG L1818670

Sample	Analyte	Modified Final Concentration (mg/L)
MW-6	Gasoline range organics	0.263J+
MW-17	Gasoline range organics	0.300J+
MW-18	Gasoline range organics	0.117J+
RW-1	Gasoline range organics	0.167J+

Circle K
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG
L1818670

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60566A

SDG#:

L1818670

Laboratory: Pace Analytical, Mount Juliet, TN

Page: Reviewer: 2nd Reviewer:

Date: 2/21/2025

Method:

TPH (NWTPH-Gx), GRO

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	SW	
III	Field blanks	BW)	TB=15 R=13
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	IN	
VI	Laboratory control samples	A	LC5/D
VII	Field duplicates	SW	LCS/D Dup= 32+ 14
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualifiedSW = See worksheet

FD = Field duplicate

TB = Trip blank FB = Field blank SB = Source blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 l	MW-21	L1818670-01		Water	01/17/2025	Stage 2A
2	MW-9	L1818670-02		Water	01/17/2025	Stage 2A
3 (MW-8	L1818670-03		Water	01/17/2025	Stage 2A
4 (MW-13	L1818670-04		Water	01/17/2025	Stage 2A
5 (MW-20	L1818670-05		Water	01/17/2025	Stage 2A
5	MW-6	L1818670-06		Water	01/17/2025	Stage 2A
7	MW-19	L1818670-07		Water	01/17/2025	Stage 2A
3 1	MW-14	L1818670-08		Water	01/17/2025	Stage 2A
)	MW-16	L1818670-09		Water	01/17/2025	Stage 2A
10	MW-15	L1818670-10		Water	01/17/2025	Stage 2A
11 1	MW-17	L1818670-11		Water	01/17/2025	Stage 2A
12	MW-18	L1818670-12		Water	01/17/2025	Stage 2A
13 (RW-1	L1818670-13	Rinsate	Water	01/17/2025	Stage 2A
14	DUP-1	L1818670-14	FD	Water	01/17/2025	Stage 2A
15	TB-01	L1818670-15	TB	Water	01/17/2025	Stage 2A

Notes:

1 MB R4169122-4	

LDC#: 60566A

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 Reviewer: MN

Method blanks were performed at the required frequency and sequence.

No contaminants were found in the method blanks with the exceptions identified below.

Blank analysis date: 1/21/25 Associated samples: __ALL (DET> 5X)(ND)

Conc. units: mg/L

Compound	Blank ID		Sample Identification					
Authorization ((MB) R4169122-4	6	11	12	13			
Gasoline Range Organics	0.0995	0.263/J+	0.300/J+	0.117/J+	0.167/J+			
						-		

Blank extraction date:	Blank analysis date:	Associated samples:
Conc. units:		

Compound	Blank ID	Sample Identification						

LDC#: 60566A

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: 1 of 1 Reviewer: MN

Method: GC Gasoline Range Organics (EPA Method NWTPH-GX)

	Concentration (mg/L)		RPD
Compound	2	14	
Gasoline Range Organics-NWTPH	3.85	5.27	31

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG March 25, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fraction listed below. This SDG was received on February 24, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60662:

SDG# **Fraction**

L1827337 Volatile Organic Compound

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60662 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	VOCs (TO-15)
Matrix T	ype:				Air
Α	L1827337	2/24/25	3/17/25	Stage 2A	4
Total			PM: PG		4

These sample counts do not include MS/MSD, and DUPs.

EDD: EIM EDD

PO 230065-LD-01

Project 20230065

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

March 20, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1827337

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
FALCO-300-INF-20250213	L1827337-01	Air	02/13/25
FALCO-300-EFF-20250213	L1827337-02	Air	02/13/25
VP-3-20250213	L1827337-03	Air	02/13/25
VP-4-20250213	L1827337-04	Air	02/13/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. Laboratory Blanks/Canister

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration (ppbv)	Associated Samples
(MB) R4177872-3	02/16/25	Acetone	0.657	FALCO-300-INF-20250213 FALCO-300-EFF-20250213 VP-3-20250213 VP-4-20250213

Canister blank analyses were performed for every sample canister.

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration (ppbv)	Modified Final Concentration (ppbv)
FALCO-300-EFF-20250213	Acetone	6.29	6.29J+
VP-3-20250213	Acetone	3.54	3.54J+
VP-4-20250213	Acetone	2.77	2.77J+

III. Field Blanks

No field blanks were identified in this SDG.

IV. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicate

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

No field duplicates were identified in this SDG.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to laboratory blank contamination are summarized and presented in the Data Qualification Summary.

Circle K Volatile Organic Analytes - Data Qualification Summary - SDG L1827337

No Sample Data Qualified in this SDG

Circle K Volatile Organic Analytes - Laboratory Blank Data Qualification Summary - SDG L1827337

Sample	Analyte	Modified Final Concentration (ppbv)
FALCO-300-EFF-20250213	Acetone	6.29J+
VP-3-20250213	Acetone	3.54J+
VP-4-20250213	Acetone	2.77J+

Circle K Volatile Organic Analytes - Field Blank Data Qualification Summary - SDG L1827337

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60662A

SDG #:

L1827337

Laboratory: Pace Analytical, Mount Juliet, TN

Method:

Volatiles (EPA TO-15)

Date: 3/12/2025 Page: 1 Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks / canismy	311/	persample
III	Field blanks	N	
IV	Surrogate spikes	IA	
V	Matrix spike/Matrix spike duplicates	N	
VI	Laboratory control samples	A	LCS/D
VII	Field duplicates	7	
VIII	Target analyte quantitation	7	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualified

TB = Trip blank

SB = Source blank

SW = See worksheet

FD = Field duplicate

FB = Field blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
15	FALCO-300-INF-20250213	L1827337-01		Air	02/13/2025	Stage 2A
2 1 4	FALCO-300-EFF-20250213	L1827337-02		Air	02/13/2025	Stage 2A
312	VP-3-20250213	L1827337-03		Air	02/13/2025	Stage 2A
412	VP-4-2025021 3	L1827337-04		Air	02/13/2025	Stage 2A
				T		

Notes:

1 (MB) R4177872-3	(fuse)	
2 (MB) R41784m-3	(Tet)	
4 (MB) R4176377-3	(fult) (partial)	

5 (MB) R4178428-3 6(MB) R4178586-3 (n-Hey)

LDC #: _60662A

VALIDATION FINDINGS WORKSHEET Blanks

Page	: _1	of_	_1_
Reviewer:		ΜN	J

METHOD: GC/MS Volatiles (EPA Meth Method blanks were performed at the r	required frequency and sequence
•	thod blanks with the exceptions identified below.
	•
Blank analysis date:2/16/25	Associated samples:1-4
Conc. units:ppbv	
Compound Blank ID	Sample Identification

Compound	Blank ID		Sample Identification						
1.64	(MB) R4177872-3	2	3	4					
Acetone	0.657	6.29/J +	3.54/J+	2.77/J +					
						!			
				,					

Blank extraction date:	Blank analysis date:	Associated samples:
Conc. units:		

Compound	Blank ID	Sample Identification						
						-		

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG April 10, 2025 15333 N.E. 90th Street, Suite 100

Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on March 13, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60707:

SDG # Fraction

L1831494

Volatile Organic Compound, Gasoline Range Organics, Oil and Grease

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60707 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	(9) VOCs (8260D)	GRO (NWTPH-Gx)	Oil & Grease (1664B)
Matrix T	Matrix Type:				Water	Water	Water
Α	L1831494	3/13/25	4/3/25	Stage 2A	5	5	5
Total			PM: PG		5	5	5

These sample counts do not include MS/MSD, and DUPs.

EDD: EIM

PO 230065-LD-01

Project 20230065

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

April 10, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1831494

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250227	L1831494-01	Water	02/27/25
LG-403-MID-20250227	L1831494-02	Water	02/27/25
LG-401-INF-20250227	L1831494-03	Water	02/27/25
DUP-1-2025027	L1831494-04	Water	02/27/25
TB-1-20250228	L1831494-06	Water	02/27/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Sample TB-1-20250228 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VII. Field Duplicates

Samples LG-404-EFF-20250227 and DUP-1-2025027 were identified as field duplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Compounds - Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Laboratory Blank Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Field Blank Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 60707A SDG #: L1831494

Laboratory: Pace Analytical, Mount Juliet, TN

Method: Volatiles (EPA 8260D)

Date: 3/18/2025
Page: |
Reviewer: MN
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
III	Field blanks	ND	TB=5
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	N	
VI	Laboratory control samples	Α	LCS
VII	Field duplicates	ND	Dun=1+45
VIII	Target analyte quantitation	7	
IX	Overall assessment of data	A	

Note: A = Acceptable ND = Not detected FT = Field triplicate AB = Ambient blank R = Rinsate

N = Not provided/applicable NQ = Not qualified TB = Trip blank SB = Source blank SW = See worksheet FD = Field duplicate FB = Field blank EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 (LG-404-EFF-20250227	L1831494-01		Water	02/27/2025	Stage 2A
2	LG-403-MID-20250227	L1831494-02		Water	02/27/2025	Stage 2A
3	LG-401-INF-20250227	L1831494-03		Water	02/27/2025	Stage 2A
4 \	DUP-1-2025027	L1831494-04	FD1	Water	02/27/2025	Stage 2A
5 \	TB-1-20250228	L1831494-06	ТВ	Water	02/27/2025	Stage 2A

Notes:

1 (MB) R4183796-2	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

April 10, 2025

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1831494

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250227	L1831494-01	Water	02/27/25
LG-403-MID-20250227	L1831494-02	Water	02/27/25
LG-401-INF-20250227	L1831494-03	Water	02/27/25
DUP-1-2025027	L1831494-04	Water	02/27/25
TB-1-20250228	L1831494-06	Water	02/27/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Sample TB-1-20250228 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples LG-404-EFF-20250227 and DUP-1-2025027 were identified as field duplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Gasoline Range Organics - Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

Circle K

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

Circle K

Gasoline Range Organics - Field Blank Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60707A

SDG#:

L1831494

Laboratory: Pace Analytical, Mount Juliet, TN

Page: \ Reviewer: 2nd Reviewer:

Date: 3/18/2025

Method:

GRO (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
III	Field blanks	NID	TB=5
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	7	
VI	Laboratory control samples	A	LCS/D
VII	Field duplicates	ND	Duo =1 +4
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualifiedSW = See worksheet

FD = Field duplicate

TB = Trip blank FB = Field blank SB = Source blankEB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	LG-404-EFF-20250227	L1831494-01		Water	02/27/2025	Stage 2A
2	LG-403-MID-20250227	L1831494-02		Water	02/27/2025	Stage 2A
3	LG-401-INF-20250227	L1831494-03		Water	02/27/2025	Stage 2A
4	DUP-1-2025027	L1831494-04	FD1	Water	02/27/2025	Stage 2A
5	TB-1-20250228	L1831494-06	ТВ	Water	02/27/2025	Stage 2A

Notes:

1(MB)R4183187-3	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

April 10, 2025

Parameters:

Oil and Grease

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1831494

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250227	L1831494-01	Water	02/27/25
LG-403-MID-20250227	L1831494-02	Water	02/27/25
LG-401-INF-20250227	L1831494-03	Water	02/27/25
DUP-1-2025027	L1831494-04	Water	02/27/25
DUP-2	L1831494-05	Water	02/27/25
DUP-1-2025027MS	L1831494-04MS	Water	02/27/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Oil and Grease by Environmental Protection Agency (EPA) Method 1664B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Samples LG-404-EFF-20250227, DUP-1-2025027, and DUP-2 were identified as field triplicates. No contaminants were found.

IV. Surrogates

Surrogates were not performed for this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (78-114)	Flag	A or P
DUP-1-2025027MS (All samples in SDG L1831494)	Oil and grease	64	J- (all detects) UJ (all non-detects)	Α

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Triplicate

Samples LG-404-EFF-20250227, DUP-1-2025027, and DUP-2 were identified as field triplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to MS/MSD %R are summarized and presented in the Data Qualification Summary.

Circle K
Oil and Grease - Data Qualification Summary - SDG L1831494

Sample	Analyte	Flag	A or P	Reason
LG-404-EFF-20250227 LG-403-MID-20250227 LG-401-INF-20250227 DUP-1-2025027 DUP-2	Oil and grease	J- (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

Circle K

Oil and Grease - Laboratory Blank Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

Circle K

Oil and Grease - Field Blank Data Qualification Summary - SDG L1831494

No Sample Data Qualified in this SDG

	VALIDATI	ON COMPLI	ETENESS	WORKSI	HEET		
LDC #:	60707A					Date:	3/18/2025
SDG #:	L1831494					Page:	
Laboratory:	Pace Analytical, Mount Juliet, TN					Reviewer:	
Method:	Oil and Grease (EPA 1664B)				·	2nd Reviewer:	
The comple	g ligted below wore reviewed for a	ah af tha fallaw	ina validatia	m amaga Wal	idation End	inag ana matad	
	s listed below were reviewed for ea indings worksheets.	ch of the follow	ing validatio	n areas. van	idation find	ings are noted	in attached
vandation i	munigs worksneets.						
	Validation Area	***************************************			Co	mments	
[Sample receipt/Technical holding time	es	A/A			2	
I	Laboratory Blanks		À				···
III	Field blanks		7				
IV	Surrogate spikes	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17				
V	Matrix spike/Matrix spike duplicates		SW				-
VI	Laboratory control samples		A	LCS /L	csD		
VII	Field duplicates Trp		HD				
VIII	Target analyte quantitation		7				
ΙΧ	Overall assessment of data	7					
	SW = See worksheet FD = Field	duplicate	FB = Field bla	ınk	EB = Equip	ment blank	Triplicate
	Client ID	Lab ID		QC Type	Matrix	Date	Stage
1	LG-404-EFF-20250227	L1831494-0	1	FT	Water	02/27/2025	Stage 2A
2	LG-403-MID-20250227	L1831494-02	2		Water	02/27/2025	Stage 2A
3	LG-401-INF-20250227	L1831494-0	3		Water	02/27/2025	Stage 2A
ļ	DUP-1-2025027	L1831494-0		FT	Water	02/27/2025	Stage 2A
5	DUP-2	L1831494-0		FT	Water	02/27/2025	Stage 2A
6	DUP-1-2025027MS	L1831494-0	4MS		Water	02/27/2025	Stage 2A
							<u> </u>
Notes:							

LDC #: 60707A

VALIDATION FINDINGS CHECKLIST <u>Sample Calculation Verification</u>

Page 1 of 2 Reviewer: SDG

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List		
1-5	Oil & Grease		
QC			
6	Oil & Grease		

LDC #: 60707A

VALIDATION FINDINGS CHECKLIST <u>Sample Calculation Verification</u>

Page 1 of 1 Reviewer: SDG

METHOD: Inorganics

MS analysis was performed by the laboratory. All MS percent recoveries (%R) were within the acceptable limits with the following exceptions:

MS ID	Matrix	Analyte	MS %R (%R limit)	Associated Samples	Qualification	Det/ND
6	W	Oil & G	64 (78-114)	all	J-/UJ/A	Det/ND

Comments:

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG April 10, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on March 4, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60696:

SDG # Fraction

L1829173 Volatile Organic Compound, Gasoline Range Organics

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60696 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	VOCs (8260D)	GRO (NWTPH-Gx)
Matrix T	Matrix Type:					Water
Α	L1829173	3/4/25	3/25/25	Stage 2A	16	16
Total			PM: PG		16	16

These sample counts do not include MS/MSD, and DUPs. EDD: EIM EDD

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Circle K

LDC Report Date: April 10, 2025

Parameters: Volatile Organic Compounds

Validation Level: Stage 2A

Laboratory: Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1829173

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
RW-1	L1829173-01	Water	02/21/25
MW-13	L1829173-02	Water	02/21/25
MW-18	L1829173-03	Water	02/21/25
MW-9	L1829173-04	Water	02/21/25
MW-16	L1829173-05	Water	02/21/25
MW-8	L1829173-06	Water	02/21/25
MW-14	L1829173-07	Water	02/21/25
MW-6	L1829173-08	Water	02/21/25
MW-15	L1829173-09	Water	02/21/25
MW-17	L1829173-10	Water	02/21/25
MW-21	L1829173-11	Water	02/21/25
MW-20	L1829173-12	Water	02/21/25
TB-1	L1829173-13	Water	02/21/25
TB-2	L1829173-14	Water	02/21/25
MW-19	L1829173-15	Water	02/21/25
DUP-1	L1829173-16	Water	02/21/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Samples TB-1 and TB-2 were identified as trip blanks. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples MW-8 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-8	DUP-1	RPD
Ethylbenzene	1.07	1.14	6
Toluene	0.178	0.186	4
Xylenes, Total	4.06	4.21	4

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Compounds - Data Qualification Summary - SDG L1829173

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Laboratory Blank Data Qualification Summary - SDG L1829173

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Field Blank Data Qualification Summary - SDG L1829173

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60696A

SDG #:

L1829173

Laboratory: Pace Analytical, Mount Juliet, TN

Method:

BTEX (EPA 8260D)

Date: 3/17/2025 Page: 1 Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	A	
III	Field blanks	ND	TB= 13, 14
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	7	
VI	Laboratory control samples	A	LCS/D
VII	Field duplicates		LCS/D Dup= 6 + 16
VIII	Target analyte quantitation	N	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

N = Not provided/applicable NQ = Not qualifiedSW = See worksheet

FD = Field duplicate

TB = Trip blankFB = Field blank SB = Source blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 A	RW-1	L1829173-01		Water	02/21/2025	Stage 2A
2 1	MW-13	L1829173-02		Water	02/21/2025	Stage 2A
3	MW-18	L1829173-03		Water	02/21/2025	Stage 2A
4 2	MW-9	L1829173-04		Water	02/21/2025	Stage 2A
5 2	MW-16	L1829173-05		Water	02/21/2025	Stage 2A
6 2	MW-8	L1829173-06		Water	02/21/2025	Stage 2A
7 2	MW-14	L1829173-07		Water	02/21/2025	Stage 2A
8 2	MW-6	L1829173-08		Water	02/21/2025	Stage 2A
9 2	MW-15	L1829173-09		Water	02/21/2025	Stage 2A
10 2	MW-17	L1829173-10		Water	02/21/2025	Stage 2A
11 2	MW-21	L1829173-11		Water	02/21/2025	Stage 2A
12 2	MW-20	L1829173-12		Water	02/21/2025	Stage 2A
13 2	TB-1	L1829173-13	TB	Water	02/21/2025	Stage 2A
14 3	TB-2	L1829173-14	ТВ	Water	02/21/2025	Stage 2A
15 2	MW-19	L1829173-15		Water	02/21/2025	Stage 2A
16 2	DUP-1	L1829173-16	FD	Water	02/21/2025	Stage 2A

Notes:

1/MB) R4179828-3	
2 (MB) R4179942-3	

LDC #: 60696A

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page	e: _1_	of	1_
Reviewer:		MN_	

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

	Concentr	RPD	
Compound	6	16	
Ethylbenzene	1.07	1.14	6
Toluene	0.178	0.186	4
Xylenes, Total	4.06	4.21	4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

April 10, 2025

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1829173

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
RW-1	L1829173-01	Water	02/21/25
MW-13	L1829173-02	Water	02/21/25
MW-18	L1829173-03	Water	02/21/25
MW-9	L1829173-04	Water	02/21/25
MW-16	L1829173-05	Water	02/21/25
MW-8	L1829173-06	Water	02/21/25
MW-14	L1829173-07	Water	02/21/25
MW-6	L1829173-08	Water	02/21/25
MW-15	L1829173-09	Water	02/21/25
MW-17	L1829173-10	Water	02/21/25
MW-21	L1829173-11	Water	02/21/25
MW-20	L1829173-12	Water	02/21/25
TB-1	L1829173-13	Water	02/21/25
TB-2	L1829173-14	Water	02/21/25
MW-19	L1829173-15	Water	02/21/25
DUP-1	L1829173-16	Water	02/21/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration (mg/L)	Associated Samples
(MB) R4180407-2	02/25/25	Gasoline range organics-NWTPH	0.0647	RW-1 MW-13 MW-18 MW-9 MW-16 MW-8 MW-14 MW-6 MW-17 MW-21 MW-21 TB-1 TB-2 MW-19 DUP-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration (mg/L)	Modified Final Concentration (mg/L)
RW-1	Gasoline range organics-NWTPH	0.223	0.223J+
MW-18	Gasoline range organics-NWTPH	0.110	0.110J+
MW-16	Gasoline range organics-NWTPH	0.112	0.112J+
MW-6	Gasoline range organics-NWTPH	0.109	0.109J+
MW-17	Gasoline range organics-NWTPH	0.323	0.323J+

III. Field Blanks

Samples TB-1 and TB-2 were identified as trip blanks. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples MW-8 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr		
Analyte	MW-8	DUP-1	RPD
Gasoline range organics-NWTPH	23.4	23.5	0

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to laboratory blank contamination are summarized and presented in the Data Qualification Summary.

Circle K Gasoline Range Organics - Data Qualification Summary - SDG L1829173

No Sample Data Qualified in this SDG

Circle K
Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG
L1829173

Sample	Analyte	Modified Final Concentration (mg/L)
RW-1	Gasoline range organics-NWTPH	0.223J+
MW-18	Gasoline range organics-NWTPH	0.110J+
MW-16	Gasoline range organics-NWTPH	0.112J+
MW-6	Gasoline range organics-NWTPH	0.109J+
MW-17	Gasoline range organics-NWTPH	0.323J+

Circle K
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG
L1829173

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: SDG#:

60696A

L1829173

Laboratory: Pace Analytical, Mount Juliet, TN

Method:

Gasoline Range Organics (NWTPH-Gx)

Date: 3/17/2025 Page: 1 Reviewer: Mr 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A/A	
II	Laboratory Blanks	SW	
Ш	Field blanks	ND	TB=13,14
IV	Surrogate spikes	A	
V	Matrix spike/Matrix spike duplicates	7	
VI	Laboratory control samples	A	LC5/D
VII	Field duplicates		Dup = 10 + 110
VIII	Target analyte quantitation	7	
IX	Overall assessment of data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

SW = See worksheet

N = Not provided/applicable NQ = Not qualifiedFD = Field duplicate TB = Trip blankFB = Field blank SB = Source blankEB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 (RW-1	L1829173-01		Water	02/21/2025	Stage 2A
2 1	MW-13	L1829173-02		Water	02/21/2025	Stage 2A
3 1	MW-18	L1829173-03		Water	02/21/2025	Stage 2A
4 1	MW-9	L1829173-04		Water	02/21/2025	Stage 2A
5 1	MW-16	L1829173-05		Water	02/21/2025	Stage 2A
6 l	MW-8	L1829173-06		Water	02/21/2025	Stage 2A
7 1	MW-14	L1829173-07		Water	02/21/2025	Stage 2A
8 1	MW-6	L1829173-08		Water	02/21/2025	Stage 2A
9 2	MW-15	L1829173-09		Water	02/21/2025	Stage 2A
101	MW-17	L1829173-10		Water	02/21/2025	Stage 2A
11 1	MW-21	L1829173-11		Water	02/21/2025	Stage 2A
12 (MW-20	L1829173-12		Water	02/21/2025	Stage 2A
13 (TB-1	L1829173-13	TB	Water	02/21/2025	Stage 2A
14	TB-2	L1829173-14	TB	Water	02/21/2025	Stage 2A
15 1	MW-19	L1829173-15		Water	02/21/2025	Stage 2A
16 (DUP-1	L1829173-16	FD	Water	02/21/2025	Stage 2A

Notes:

1 (MB) R480407-2	
2 (MB) R4180754-3	

LDC#: 60478A

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 Reviewer: MN

Method: GC Gasoline Range Organics (EPA Method NWTPHGx)

Method blanks were performed at the required frequency and sequence.

No contaminants were found in the method blanks with the exceptions identified below.

Blank analysis date: 2/25/25 Associated samples: 1-8,10-16_

Conc. units: mg/L

Compound	Blank ID		Sample Identification						
	(MB) R4180407-2	1	3	5	8	10			
Gasoline Range Organics-NWTPH	0.0647	0.223/J+	0.110/J+	0.112/J+	0.109/J+	0.323/J+			
						!	·		

Blank extraction date:	Blank analysis date:	Associated samples:
Conc. units:		

Compound	Blank ID	Sample Identification						
And the second address								

LDC#: 60478A

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page 1 of Reviewer: MN

Method: GC Gasoline Range Organics (EPA Method NWTPHGx)

	Concentratio	on (mg/L)	RPD
Compound	6	16	
Gasoline Range Organics-NWTPH	23.4	23.5	0

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG May 8, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on April 3, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60811:

SDG # Fraction

L1839238 L1839621 Volatile Organic Compound, Gasoline Range Organics, Oil and Grease

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60811 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	VOCs (TO-15)	(9) VOCs (8260B)	GRO (NWTPH-Gx)	Oil & Grease (1664B)
Matrix T	ype:				Air	Water	Water	Water
Α	L1839238	4/3/25	4/24/25	Stage 2A		5	5	5
В	L1839621	4/3/25	4/24/25	Stage 2A	2			
Total			PM: PG		2	5	5	5

These sample counts do not include MS/MSD, and DUPs.

EDD: EIM

PO 230065-LD-01

Project 20230065

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 7, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1839238

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250321	L1839238-01	Water	03/21/25
LG-404-DUP1-20250321	L1839238-02	Water	03/21/25
LG-402-MID-20250321	L1839238-04	Water	03/21/25
LG-401-INF-20250321	L1839238-05	Water	03/21/25
TB-01-20250321	L1839238-06	Water	03/21/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Sample TB-01-20250321 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples LG-404-EFF-20250321 and LG-404-DUP1-20250321 were identified as field duplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Compounds - Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Laboratory Blank Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Field Blank Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 60811A Date: 4/3/2025
SDG #: L1839238 Page: (
Laboratory: Pace Analytical, Mount Juliet, TN Reviewer: 2nd Reviewer:

Method: Volatiles (EPA 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample Receipt/Technical Holding Time	A/A	
II	Laboratory Blanks	A	
III	Field Blank	ND	TB=5
IV	Surrogate Spikes	A	
V	Matrix Spike/Matrix Spike Duplicate	N	
VI	Laboratory Control Sample	À	LCS/D
VII	Field Duplicate	ND	LCS/D Dun=1+2
VIII	Target Analyte Quantitation	IN	
IX	Overall Assessment of Data	A	

Note: A = Acceptable ND = Not detected FT = Field triplicate AB = Ambient blank R = Rinsate N = Not provided/applicable NQ = Not qualified TB = Trip blank SB = Source blank

SW = See worksheet FD = Field duplicate FB = Field blank EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
١ ١	LG-404-EFF-20250321	L1839238-01		Water	03/21/2025	Stage 2A
2 1	LG-404-DUP1-20250321	L1839238-02		Water	03/21/2025	Stage 2A
3 1	LG-402-MID-20250321	L1839238-04		Water	03/21/2025	Stage 2A
+ 1	LG-401-INF-20250321	L1839238-05		Water	03/21/2025	Stage 2A
5 1	TB-01-20250321	L1839238-06	ТВ	Water	03/21/2025	Stage 2A

Notes:

1 MB R4193025-3	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Circle K

LDC Report Date: May 7, 2025

Parameters: Gasoline Range Organics

Validation Level: Stage 2A

Laboratory: Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1839238

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250321	L1839238-01	Water	03/21/25
LG-404-DUP1-20250321	L1839238-02	Water	03/21/25
LG-402-MID-20250321	L1839238-04	Water	03/21/25
LG-401-INF-20250321	L1839238-05	Water	03/21/25
TB-01-20250321	L1839238-06	Water	03/21/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration (ug/L)	Associated Samples
(MB) R4190797-2	03/24/25	Gasoline range organics (NWTPH)	37.7	LG-404-DUP1-20250321
(MB) R4191224-4	03/25/25	Gasoline range organics (NWTPH)	38.5	LG-404-EFF-20250321
(MB) R4191224-4	03/26/25	Gasoline range organics (NWTPH)	38.5	LG-402-MID-20250321 LG-401-INF-20250321 TB-01-20250321

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration (ug/L)	Modified Final Concentration (ug/L)
LG-401-INF-20250321	Gasoline range organics (NWTPH)	180	180J+

III. Field Blanks

Sample TB-01-20250321 was identified as a trip blank. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples LG-404-EFF-20250321 and LG-404-DUP1-20250321 were identified as field duplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to laboratory blank contamination are summarized and presented in the Data Qualification Summary.

Circle K Gasoline Range Organics - Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

Circle K Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG L1839238

Sample	Analyte	Modified Final Concentration (ug/L)
LG-401-INF-20250321	Gasoline range organics (NWTPH)	180J+

Circle K
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG
L1839238

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 60811A SDG #: L1839238

Laboratory: Pace Analytical, Mount Juliet, TN

Method: Gasoline Range Organics (NWTPH-Gx)

Date: 4/3/2025
Page: I
Reviewer: MN
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample Receipt/Technical Holding Time	A/A	
II	Laboratory Blanks	ŚW	
III	Field Blank	ND	TB = 5
IV	Surrogate Spikes	A	
V	Matrix Spike/Matrix Spike Duplicate	N	
VI	Laboratory Control Sample	A	LC5/D
VII	Field Duplicate	ND	Dup: 1T2
VIII	Target Analyte Quantitation	N	
IX	Overall Assessment of Data	A	

Note: A = Acceptable ND = Not detected FT = Field triplicate AB = Ambient blank R = Rinsate

N = Not provided/applicable NQ = Not qualified TB = Trip blank SB = Source blank SW = See worksheet FD = Field duplicate FB = Field blank EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	LG-404-EFF-20250321	L1839238-01		Water	03/21/2025	Stage 2A
2 1	LG-404-DUP1-20250321	L1839238-02		Water	03/21/2025	Stage 2A
3	LG-402-MID-20250321	L1839238-04		Water	03/21/2025	Stage 2A
4	LG-401-INF-20250321	L1839238-05		Water	03/21/2025	Stage 2A
5	TB-01-20250321	L1839238-06	TB	Water	03/21/2025	Stage 2A

Notes:

1 (MB) R4190797-2	

LDC#: 60811A

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 Reviewer: MN

Method: GC Gasoline	Range	Organic	(NWTPHGX)
---------------------	-------	---------	-----------

Method blanks were performed at the required frequency and sequence.

No contaminants were found in the method blanks with the exceptions identified below.

Blank extraction date: 3/24/25 Conc. units: ug/L		Blank analy	sis date:	3/24/25	_ Associated s	amples:2 (N	D)_	
Compound	Blank ID	Sample Identification						
	(MB) R4190797-2							
Gasoline Range	37.7							
Organics-NWTPH								
lank extraction da	ate:3/25/25	Blank analys	is date:	3/25/25	Associated sa	mples:1(ND)		
Compound	Blank ID			Sample Identii	ication			
and the second s	(MD) D4404004 4							
	(MB) R4191224-4		<u> </u>			L	<u> </u>	
Gasoline Range	38.5							

Blank extraction date:_____3/26/25_____ Blank analysis date: ____3/26/25____ Associated samples: __3-5______

Conc. units: ____

Compound	Blank ID		Sample Identification					
	(MB) R4191224-4	4						
Gasoline Range	38.5	180/J+						
Organics-NWTPH								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 7, 2025

Parameters:

Oil and Grease

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1839238

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LG-404-EFF-20250321	L1839238-01	Water	03/21/25
LG-404-DUP1-20250321	L1839238-02	Water	03/21/25
LG-404-DUP2-20250321	L1839238-03	Water	03/21/25
LG-402-MID-20250321	L1839238-04	Water	03/21/25
LG-401-INF-20250321	L1839238-05	Water	03/21/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Oil and Grease by Environmental Protection Agency (EPA) Method 1664B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

No field blanks were identified in this SDG.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

V. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VI. Field Triplicate

Samples LG-404-EFF-20250321, LG-404-DUP1-20250321, and LG-404-DUP2-20250321 were identified as field triplicates. No results were detected in any of the samples.

VII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

VIII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Oil and Grease - Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

Circle K

Oil and Grease - Laboratory Blank Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

Circle K

Oil and Grease - Field Blank Data Qualification Summary - SDG L1839238

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 60811A Date: 4/3/2025 SDG#: L1839238 Page: 1/(Reviewer: SG Laboratory: Pace Analytical, Mount Juliet, TN 2nd Reviewer: Method: Oil and Grease (EPA 1664B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample Receipt/Technical Holding Time AIA Laboratory Blanks Ш Field Blank Surrogate Spikes Matrix Spike/Matrix Spike Duplicate LCS/LCSD Laboratory Control Sample A VI Field Duplicate TRP ND VII VIII Target Analyte Quantitation Overall Assessment of Data ΙX A = AcceptableND = Not detected FT = Field triplicate AB= Ambient blank Note: R = RinsateN = Not provided/applicable NQ = Not qualifiedTB = Trip blank SB = Source blankSW = See worksheet FD = Field duplicate FB = Field blank EB = Equipment blank Client ID Lab ID QC Type Matrix Date Stage Water LG-404-EFF-20250321 L1839238-01 FT 03/21/2025 Stage 2A LG-404-DUP1-20250321 L1839238-02 FT Water 03/21/2025 Stage 2A LG-404-DUP2-20250321 L1839238-03 FT Water 03/21/2025 Stage 2A LG-402-MID-20250321 Water L1839238-04 03/21/2025 Stage 2A LG-401-INF-20250321 L1839238-05 Water 03/21/2025 Stage 2A Notes:

LDC #: 60811A

VALIDATION FINDINGS CHECKLIST

<u>Sample Calculation Verification</u>

Page 1 of 1 Reviewer: SDG

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1-5	Oil & Grease

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 7, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1839621

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
FALCO-300-INF-20250324	L1839621-01	Air	03/24/25
FALCO-300-EFF-20250324	L1839621-02	Air	03/24/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. Laboratory Blanks/Canister

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister.

III. Field Blanks

No field blanks were identified in this SDG.

IV. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicate

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

No field duplicates were identified in this SDG.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Analytes - Data Qualification Summary - SDG L1839621

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Analytes - Laboratory Blank Data Qualification Summary - SDG L1839621

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Analytes - Field Blank Data Qualification Summary - SDG L1839621

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60811B

SDG#:

L1839621

Laboratory:

Pace Analytical, Mount Juliet, TN

Method:

Volatiles (EPA TO-15)

Page: Reviewer: 2nd Reviewer:

Date: 4/3/2025

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample Receipt/Technical Holding Time	A/A	
II	Laboratory Blanks / Canister	A/A	per samme
III	Field Blank	N	
IV	Surrogate Spikes	A	
V	Matrix Spike/Matrix Spike Duplicate	N	
VI	Laboratory Control Sample	A	LCS/D
VII	Field Duplicate	7	
VIII	Target Analyte Quantitation	7	
IX	Overall Assessment of Data	Α	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

SW = See worksheet

N = Not provided/applicable NQ = Not qualifiedFD = Field duplicate TB = Trip blank FB = Field blank SB = Source blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1	FALCO-300-INF-20250324	L1839621-01		Air	03/24/2025	Stage 2A
2	FALCO-300-EFF-20250324	L1839621-02		Air	03/24/2025	Stage 2A

Notes:

1 (MB) R4191358-3		

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ERRG May 12, 2025

15333 N.E. 90th Street, Suite 100 Redmond, WA 98052 ATTN: Mr. Fernando Idiarte fernando.idiarte@errg.com

SUBJECT: Circle K - Data Validation

Dear Mr. Idiarte,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on April 11, 2025. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #60855:

SDG # Fraction

L1841690 Volatile Organic Compound, Gasoline Range Organics

The data validation was performed under Stage 2A guidelines. The analysis was validated using the following documents, as applicable to each method:

- Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

LDC #60855 (ERRG - Redmond, WA / Circle K)

LDC	SDG#	Received Date	(21) Due Date	Validation Level	(9) VOCs (8260B)	GRO (NWTPH-Gx)
Matrix T	Matrix Type:				Water	Water
Α	L1841690	4/11/25	5/2/25	Stage 2A	16	16
Total	PM: PG			16	16	

These sample counts do not include MS/MSD, and DUPs.

EDD: EIM

PO 230065-LD-01

Project 20230065

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 9, 2025

Parameters:

Volatile Organic Compounds

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1841690

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-18	L1841690-01	Water	03/28/25
MW-20	L1841690-02	Water	03/28/25
RW-1	L1841690-03	Water	03/28/25
MW-9	L1841690-04	Water	03/28/25
MW-16	L1841690-05	Water	03/28/25
MW-8	L1841690-06	Water	03/28/25
MW-15	L1841690-07	Water	03/28/25
MW-6	L1841690-08	Water	03/28/25
MW-14	L1841690-09	Water	03/28/25
MW-13	L1841690-10	Water	03/28/25
MW-19	L1841690-11	Water	03/28/25
MW-21	L1841690-12	Water	03/28/25
MW-17	L1841690-13	Water	03/28/25
DUP-1	L1841690-14	Water	03/28/25
TB-01	L1841690-15	Water	03/28/25
TB-02	L1841690-16	Water	03/28/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

III. Field Blanks

Samples TB-01 and TB-02 were identified as trip blanks. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Field Duplicates

Samples MW-6 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-6	DUP-1	RPD
Benzene	19.1	10.0U	Not calculable
Ethylbenzene	1.22	10.0U	Not calculable
Trichloroethene	3.02	10.0U	Not calculable
cis-1,2-Dichloroethene	6.70	10.0U	Not calculable
Vinyl chloride	13.2	10.0U	Not calculable

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Circle K

Volatile Organic Compounds - Data Qualification Summary - SDG L1841690

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Laboratory Blank Data Qualification Summary - SDG L1841690

No Sample Data Qualified in this SDG

Circle K

Volatile Organic Compounds - Field Blank Data Qualification Summary - SDG L1841690

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC#:

60855A

SDG#:

L1841690

Laboratory:

Pace Analytical, Mount Juliet, TN

Reviewer: M 2nd Reviewer:

Date: 4/14/2025

Page: |

Method:

Volatiles (EPA 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample Receipt/Technical Holding Time	A/A	
II	Laboratory Blanks	A	
Ш	Field Blank	ND	TB=15,16
IV	Surrogate Spikes	A	
V	Matrix Spike/Matrix Spike Duplicate	7	
VI	Laboratory Control Sample	A	LCS/D
VII	Field Duplicate		LC3/0 Dup= 8 + 14
VIII	Target Analyte Quantitation	12	
IX	Overall Assessment of Data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

SW = See worksheet

N = Not provided/applicable NQ = Not qualifiedFD = Field duplicate TB = Trip blank FB = Field blank SB = Source blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 /	MW-18	L1841690-01		Water	03/28/2025	Stage 2A
2	MW-20	L1841690-02		Water	03/28/2025	Stage 2A
3 1 2	RW-1	L1841690-03		Water	03/28/2025	Stage 2A
4 1	MW-9	L1841690-04		Water	03/28/2025	Stage 2A
5	MW-16	L1841690-05		Water	03/28/2025	Stage 2A
6	MW-8	L1841690-06		Water	03/28/2025	Stage 2A
7	MW-15	L1841690-07		Water	03/28/2025	Stage 2A
8 (MW-6	L1841690-08		Water	03/28/2025	Stage 2A
9	MW-14	L1841690-09		Water	03/28/2025	Stage 2A
10	MW-13	L1841690-10		Water	03/28/2025	Stage 2A
11 1	MW-19	L1841690-11		Water	03/28/2025	Stage 2A
12 \	MW-21	L1841690-12		Water	03/28/2025	Stage 2A
13 1 2	MW-17	L1841690-13		Water	03/28/2025	Stage 2A
14	DUP-1	L1841690-14	FD	Water	03/28/2025	Stage 2A
15	TB-01	L1841690-15	ТВ	Water	03/28/2025	Stage 2A
16	TB-02	L1841690-16	TB	Water	03/28/2025	Stage 2A

Notes:

1 MB R4196703-3	
2 MB R4197129-3 (TCE)	

LDC #: 60855A

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page	e: _1	L of	f:	1_
Reviewer:		_MN		

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

	Concentrati	on (ug/L)	RPD
Compound	8	14	
Benzene	19.1	10.0U	NC
Ethylbenzene	1.22	10.0U	NC
Trichloroethene	3.02	10.0U	NC
cis-1,2-Dichloroethene	6.70	10.0U	NC
Vinyl chloride	13.2	10.0U	NC

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Circle K

LDC Report Date:

May 9, 2025

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2A

Laboratory:

Pace Analytical National, Mount Juliet, TN

Sample Delivery Group (SDG): L1841690

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18	L1841690-01	Water	03/28/25
MVV-20	L1841690-02	Water	03/28/25
RW-1	L1841690-03	Water	03/28/25
MW-9	L1841690-04	Water	03/28/25
MW-16	L1841690-05	Water	03/28/25
MW-8	L1841690-06	Water	03/28/25
MW-15	L1841690-07	Water	03/28/25
MW-6	L1841690-08	Water	03/28/25
MW-14	L1841690-09	Water	03/28/25
MW-13	L1841690-10	Water	03/28/25
MW-19	L1841690-11	Water	03/28/25
MW-21	L1841690-12	Water	03/28/25
MW-17	L1841690-13	Water	03/28/25
DUP-1	L1841690-14	Water	03/28/25
TB-01	L1841690-15	Water	03/28/25
TB-02	L1841690-16	Water	03/28/25

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Circle K, Seattle, Washington (August 2024) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary reports.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The result was an estimated quantity, but the result may be biased high.
- J- (Estimated, Low Bias): The result was an estimated quantity, but the result may be biased low.
- J (Estimated, Bias Indeterminate): The reported result was an estimated quantity value with an unknown bias.
- U (Non-detected): The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.
- UJ (Non-detected): The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ (Tentatively identified): The analyte has been "tentatively identified" or "presumptively identified" as present, and the associated numerical value was the estimated concentration in the sample.
- R (Rejected): The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration (ug/L)	Associated Samples
(MB) R4196111-2	04/04/25	Gasoline range organics (NWTPH)	42.4	MW-18 MW-20 RW-1 MW-9 MW-16 MW-8 MW-15 MW-6 MW-14 MW-13 MW-13 MW-17 TB-01 TB-02
(MB) R4196334-2	04/08/25	Gasoline range organics (NWTPH)	32.8	DUP-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration (ug/L)	Modified Final Concentration (ug/L)	
RW-1	Gasoline range organics (NWTPH)	128	128J+	

III. Field Blanks

Samples TB-01 and TB-02 were identified as trip blanks. No contaminants were found.

IV. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

V. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VII. Field Duplicates

Samples MW-6 and DUP-1 were identified as field duplicates. No results were detected in any of the samples.

VIII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2A validation.

IX. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Data qualified due to laboratory blank contamination are summarized and presented in the Data Qualification Summary.

Circle K

Gasoline Range Organics - Data Qualification Summary - SDG L1841690

No Sample Data Qualified in this SDG

Circle K

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG L1841690

Sample	Analyte	Modified Final Concentration (ug/L)		
RW-1	Gasoline range organics (NWTPH)	128J+		

Circle K

Gasoline Range Organics - Field Blank Data Qualification Summary - SDG L1841690

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #:

60855A

SDG#:

L1841690

Laboratory:

Pace Analytical, Mount Juliet, TN

Method:

Gasoline Range Organics (NWTPH-Gx)

Date: 4/14/2025 Page: \ 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample Receipt/Technical Holding Time	A/A	
II	Laboratory Blanks	SW	
III	Field Blank	ND	TB=15,10
IV	Surrogate Spikes	A	
V	Matrix Spike/Matrix Spike Duplicate	7	
VI	Laboratory Control Sample	A	LCS
VII	Field Duplicate	ND	Dun-8+14
VIII	Target Analyte Quantitation	7	
IX	Overall Assessment of Data	A	

Note:

A = Acceptable

ND = Not detected

FT = Field triplicate

AB= Ambient blank

R = Rinsate

SW = See worksheet

N = Not provided/applicable NQ = Not qualifiedFD = Field duplicate TB = Trip blank FB = Field blank SB = Source blank

EB = Equipment blank

	Client ID	Lab ID	QC Type	Matrix	Date	Stage
1 \	MW-18	L1841690-01		Water	03/28/2025	Stage 2A
2 (MW-20	L1841690-02		Water	03/28/2025	Stage 2A
3 1	RW-1	L1841690-03		Water	03/28/2025	Stage 2A
4 ١	MW-9	L1841690-04		Water	03/28/2025	Stage 2A
5	MW-16	L1841690-05		Water	03/28/2025	Stage 2A
6 1	MW-8	L1841690-06		Water	03/28/2025	Stage 2A
7	MW-15	L1841690-07		Water	03/28/2025	Stage 2A
8 1	MW-6	L1841690-08		Water	03/28/2025	Stage 2A
9 1	MW-14	L1841690-09		Water	03/28/2025	Stage 2A
10 \	MW-13	L1841690-10		Water	03/28/2025	Stage 2A
11 (MW-19	L1841690-11		Water	03/28/2025	Stage 2A
12 \	MW-21	L1841690-12		Water	03/28/2025	Stage 2A
13	MW-17	L1841690-13		Water	03/28/2025	Stage 2A
14 2	DUP-1	L1841690-14	FD	Water	03/28/2025	Stage 2A
15	TB-01	L1841690-15	TB	Water	03/28/2025	Stage 2A
16	TB-02	L1841690-16	TB	Water	03/28/2025	Stage 2A

Notes:

1(MB) R419611-2	
2(MB) R4196334-2	

LDC#: 60855A

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 Reviewer: MN

Method: GC Gasoline Range Organic (NWTPHGX)

Method blanks were performed at the required frequency and sequence.

No contaminants were found in the method blanks with the exceptions identified below.

Blank extraction date: 4/4/25 Associated samples: 1-13,15,16_(DET>5X)_

Conc. units: ug/L

Compound	Blank ID		Sample Identification					
	(MB) R4196111-2	3						
Gasoline Range	42.4	128/J+						
Organics-NWTPH								

Blank extraction date: _____4/8/25 ____ Blank analysis date: __4/8/25 ____ Associated samples: __14 (ND) _____

Conc. units: ___ug/L___

Compound	Blank ID	Sample Identification						
	(MB) R4196334-2							
Gasoline Range	32.8							
Organics-NWTPH								