Groundwater Assessment

Stillwater Holdings Chevron Site 7 East Rose Street Walla Walla, Washington

for Washington State Department of Ecology

June 6, 2025

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Groundwater Assessment

Stillwater Holdings Chevron Site 7 East Rose Street Walla Walla, Washington

> File No. 0504-202-01 June 6, 2025

Prepared for:

State of Washington Department of Ecology Toxics Cleanup Program, Eastern Region Office 4601 North Monroe Street Spokane, Washington 99205

Attention: Elizabeth Kercher, LUST Project Manager

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Łola T. Otoki Environmental Scientist

Melissa Roskamp, PE Project Engineer

Scott H. Lathen, PE Associate Environmental Engineer

LTO:MR:SHL:kjb

Disclaimer: Any electronic form, facsimile, or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	Introduction	1
2.0	Site Description and Background	1
2.1	Previous Investigations	2
2.2	Prior Analytical Results	2
3.0	Field Investigation Activities	2
3.1	Groundwater and Sump Water Assessment	3
3.2	Investigation-derived Waste	3
4.0	Chemical Analytical Results	3
4.1	Groundwater Chemical Analytical ResusIts	3
4.2	Sump Water Chemical Analytical ResusIts	4
5.0	Summary and Recommendations	5
6.0	Limitations	5
7.0	References	6

List of Tables

Table 1.	Summary	of Gro	undwa	ter Field	l Parame	eters
Table 2.	Chemical	Analyti	cal Res	sults – (Groundw	ater

Table 3. Chemical Analytical Results – Sump Water

List of Figures

Figure 1. Vicinity Map

Figure 2. Site Plan

Figure 3. Groundwater Assessment – March 2025

Appendices

Appendix A. Field Assessment Procedures

Appendix B. Data Validation Report and Chemical Analytical Laboratory Report

Appendix C. Report Limitations and Guidelines for Use

1.0 Introduction

This report describes the March 2025 groundwater assessment conducted at Stillwater Holdings Chevron cleanup site (herein referred to as "Site"), as shown on the Vicinity Map, Figure 1. The Site includes the Chevron gas station located at 7 East Rose Street, the Marcus Whitman Hotel located at 6 West Rose Street, and the 106 Building located at 106 North 2nd Avenue, in Walla Walla, Washington, as shown on the Site Plan, Figure 2. The Washington State Department of Ecology (Ecology) reference numbers for this Site include Facility Site ID (FSID) No. 28575673 and Cleanup Site ID (CSID) No. 5818.

This assessment report has been prepared by GeoEngineers for Ecology under Ecology Master Contract No. C2500073. This report describes Site history, field activities, observations and chemical analytical results associated with groundwater samples collected at the Site in March 2025. The purpose of this assessment is to act in compliance with Washington Administrative Code (WAC) 173-340-430 (Interim Actions) to reduce a threat to human health or the environment by eliminating or substantially reducing one or more pathways for exposure to contaminated groundwater. Data generated from this assessment, in combination with previous groundwater sampling data from the Site, will be used to support the development of the interim cleanup action.

2.0 Site Description and Background

In September 2023, Ecology was notified of gasoline odor complaints at the Marcus Whitman Hotel. It was determined that gasoline vapors were entering the hotel building via the basement and gasoline was present in groundwater beneath the hotel building. The basement underlies the original portion of the historic Marcus Whitman building and includes hotel operations and utility rooms (electrical, boiler, air handler, etc.).

In the east corner of the basement, a lower-level basement (referred to as the sub-basement) contains a partial dirt floor and contains a vault and groundwater sump, which were identified as likely preferential pathways for vapor to enter the basement. Further investigation identified gasoline vapors and gasoline contaminated water in two sumps and a vault in an adjacent 106 Building. Emergency actions were taken to vent potentially explosive levels of volatile organic compounds (VOCs) and recover product from the sumps.

The Chevron gas station, located northeast of the Marcus Whitman and adjacent to the 106 Building, was identified as the source of the gasoline release. Thirteen monitoring wells were installed to delineate and monitor the release, as shown in Groundwater Assessment – March 2025, Figure 3. Four wells (AMW-01 through AMW-04) are located on the Chevron property. Nine wells (MW-1 through MW-9) are located nearby City of Walla Walla (City) right-of-way. Chevron property wells, as well as MW-7 through MW9) are 4-inches in diameter, and MW-1 through MW-6 are 2-inches in diameter. All wells are installed in the shallow, unconfined aquifer below the Site.

Emergency Removal Actions have continued at the Site since the identification of the release, including interception of contaminated groundwater in the sumps, treatment of contaminated groundwater using granular activated carbon (GAC) and discharging the treated groundwater to the municipal sewer. In May 2024, Stillwater Holdings, the owner of the Chevron gas station, petitioned Ecology to take over the continued remediation of the Site due to lack of funds.

Emergency interim action remains necessary at the site as unmitigated response to groundwater contamination or exposure to soil vapors would create a potential risk to public safety and could present a threat to the environment.

2.1 PREVIOUS INVESTIGATIONS

Assessment and remediation actions have been conducted at the Site since identification of the release in September 2023. Ecology and consultants hired by Stillwater Holdings have installed groundwater wells, implemented interim remediation measures, and monitored Site air and groundwater concentrations. Assessment and remediation actions have included:

- Using venting fans and isolation of rooms (sealed plastic sheets) to reduce VOC levels to less than the lower explosive limit (LEL) and mitigate risks to human health in the Marcus Whitman and the 106 Building.
- Intercepting groundwater in existing sumps within the Marcus Whitman and the 106 Building, where it
 is then manually removed and treated for VOCs prior to discharge to the Walla Walla publicly owned
 treatment works (POTW);
- Conducting indoor air sampling for VOCs in the 106 Building and the Marcus Whitman to evaluate the
 efficacy of the vapor ventilation systems in use at the properties;
- Sampling intercepted groundwater for VOCs and other constituents, following treatment by GAC, as required by the Industrial Pretreatment Program with the Walla Walla POTW;
- Installing and sampling thirteen groundwater monitoring wells (AMW-01-AMW-4, MW1-MW-9) to delineate and monitor the impacts of the September 2023 release. The groundwater monitoring well network has been sampled by Ecology or Aspect Consulting (Aspect) for VOCs, lead, naphthalene and product thickness in wells; and
- Conducting a preferential pathway investigation to determine pathways of soil vapor entering the 106 Building. The stormwater sump was identified as a soil vapor pathway to this building.

2.2 PRIOR ANALYTICAL RESULTS

Chemical analytical results from groundwater sampling between November 2023 and May 2024 indicated that gasoline-range petroleum hydrocarbons (GRPH) and petroleum-related VOCs were present in groundwater in nine monitoring wells (AMW-01 through AMW-04, MW-2, MW-3, MW-5, MW-6 and MW-9) at concentrations greater than the Model Toxics Control Act (MTCA) Method A cleanup levels. Chlorinated solvents including tetrachloroethene (PCE) and trichloroethene (TCE) were also detected in MW-7 and MW-8 concentrations greater than their respective MTCA Method A groundwater cleanup levels. There is no known use of chlorinated solvents at the Site. Lead has not been detected in the groundwater samples. MW-1 was damaged shortly after installation and does not produce water, and has not been sampled. All prior sampling has been performed by Ecology of Aspect.

3.0 Field Investigation Activities

The following sections describe field activities and a discussion of observed groundwater conditions during the March 2025 groundwater assessment.

3.1 GROUNDWATER AND SUMP WATER ASSESSMENT

Depth to water, presence of free product, and well headspace volatile organic vapor concentrations were measured prior to sample collection. Free product was not observed in any wells. Headspace vapor concentrations were observed to be between <1.0 ppm to 1,672.0 ppm (MW-6). Groundwater samples were collected in monitoring wells AMW-01 through AMW-04 located on the Chevron property, and monitoring wells MW-2 through MW-9 located on the City right-of-way on March 25 and 26, 2025. The monitoring wells were purged using low-flow techniques and groundwater quality parameters were monitored prior to sampling as described in Appendix A. Groundwater level measurements and groundwater quality parameters. Depths to groundwater ranged between 8.42 feet below top of casing (BTOC) in MW-6 to 13.61 feet BTOC in MW-7. Groundwater elevations ranged between 937.02 feet in MW-7 and 943.98 feet in MW-6, and the groundwater gradient was to the southeast. Groundwater elevations and the groundwater gradient are shown on Figure 3.

Samples were additionally collected from the two sumps currently intercepting groundwater from beneath the Marcus Whitman (Marcus Whitman Sump) and the 106 Building (BLDG 106 Sump). Samples were collected using low flow techniques on March 27, 2025 following the standard procedures in Appendix A and submitted for chemical analysis.

3.2 INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW), including purge and decontamination water generated during groundwater sampling activities, was placed in the groundwater treatment system and discharged to the municipal sewer under permit with Walla Walla publicly owned treatment works.

4.0 Chemical Analytical Results

The following sections describe groundwater and sump water chemical analytical results. The laboratory report and a data validation report are included in Appendix B.

4.1 GROUNDWATER CHEMICAL ANALYTICAL RESUSLTS

Twelve groundwater samples, and one duplicate groundwater sample from AMW-01, were submitted to Eurofins Environment Testing Northwest (Eurofins) in Spokane Valley, Washington, for chemical analysis of the following contaminants of concern (COCs):

- GRPH using Northwest Method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) using U.S. Environmental Protection Agency (EPA) Method 8260D.

Groundwater chemical analytical results are presented and compared to the MTCA Method A cleanup levels in Table 2, Chemical Analytical Results – Groundwater, and are summarized below:

GRPH was detected at concentrations exceeding the MTCA Method A cleanup level (CUL) of 800 micrograms per liter (µg/L), applicable when benzene is present on the Site, in monitoring wells AMW-01, AMW-02, MW-2, MW-3, MW-5, and MW-6 during the March 2025 monitoring event. GRPH

concentrations exceeding the MTCA Method A CUL ranged from 910 μ g/L in MW-2 to 39,000 μ g/L in MW-5. GRPH was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.

- Benzene was detected at concentrations exceeding the MTCA Method A CUL of 5 µg/L in monitoring wells AMW-01, AMW-02, AMW-03, AMW-04, MW-2, MW-3, and MW-5 during the March 2025 monitoring event. Benzene concentrations exceeding the MTCA Method A CUL ranged from 12 µg/L in AMW-03 to 3,300 µg/L in AMW-01. Benzene was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Toluene was detected at concentrations exceeding the MTCA Method A CUL of 1,000 µg/L in monitoring wells AMW-01, AMW-02, and MW-5 during the March 2025 monitoring event. Toluene concentrations exceeding the MTCA Method A CUL ranged from 3,200 µg/L in AMW-02 to 8,700 µg/L in AMW-01. Toluene was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Ethylbenzene was detected at concentrations exceeding the MTCA Method A CUL of 700 µg/L in monitoring wells AMW-01 and MW-5 during the March 2025 monitoring event. Ethylbenzene concentrations exceeding the MTCA Method A CUL ranged from 970 µg/L in AMW-01 to 6,300 µg/L in MW-5. Ethylbenzene was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Total xylenes were detected at concentrations exceeding the MTCA Method A CUL of 1000 µg/L in monitoring wells AMW-01, AMW-02, MW-3, MW-5, and MW-6 during the March 2025 monitoring event. Total xylenes concentrations exceeding the MTCA Method A CUL ranged from 1,100 µg/L in MW-3 to 8,200 µg/L in MW-5. total xylenes were detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.

4.2 SUMP WATER CHEMICAL ANALYTICAL RESUSLTS

Two sump water samples, Marcus Whitman Sump and BLG 106 Sump, were submitted to Eurofins for the chemical analyses listed above

Sump water from both locations undergoes pretreatment prior to discharge to the Walla Walla POTW and these samples represent only pretreatment concentrations.

Sump water chemical analytical results are presented and compared to MTCA Method A cleanup levels and the Walla Walla POTW Discharge Limits in Table 3, Chemical Analytical Results – Sump Water, and are summarized below:

- GRPH was detected at a concentration exceeding the Walla Walla POTW Discharge Limit of 1,000 µg/L in the sump water sample from the Marcus Whitman Hotel during the March 2025 monitoring event. GRPH was detected at a concentration less than the MTCA Method A cleanup level of 800 µg/L, and less than Discharge Limit for the Walla Walla POTW, in the 106 Building sump water sample.
- Benzene was detected at concentrations exceeding the Walla Walla POTW Discharge Limit of 10 µg/L in the sump water samples from the Marcus Whitman Hotel and the 106 Building sumps during the March 2025 monitoring event.

Toluene, ethylbenzene, and total xylenes were either not detected or detected at concentrations less than their respective MTCA Method A cleanup levels and the Walla Walla POTW Discharge Limits in the samples analyzed.

5.0 Summary and Recommendations

Twelve monitoring wells and two sumps were sampled in March 2025 at the Stillwater Holdings Chevron Site in Walla Walla Washinton. Groundwater and sump water samples collected during the monitoring event were submitted for chemical analysis. Based on previous data collected by others, an increase was seen in GRPH and individual VOC concentrations in MW-3, and a decrease seen in concentrations measured in AMW-04, MW-6, and MW-8. Other wells showed relatively steady concentrations of GRPH between November 2024 and March 2025, with results of the same order of magnitude observed.

Laboratory analytical results indicate that petroleum contamination is present at this Site at concentrations greater than the MTCA Method A cleanup levels. The plume appears to be bounded by the current well sampling network, by MW-8 to the south and MW-4 to the north, and by MW-7 to the west and MW-9 to the east. We recommend continued quarterly sampling of Site wells throughout the assessment and implementation of the interim cleanup action.

Petroleum contamination is present at concentrations in the sumps in both the Marcus Whitman and the 106 Building at concentrations greater than the Walla Walla POTW Discharge Limits, necessitating the continued need for pretreatment of sump water prior to discharge.

6.0 Limitations

We have prepared this report for the exclusive use of Washington State Department of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services were executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Please refer to Appendix C, Report Limitations and Guidelines for Use, for additional information pertaining to this report.

7.0 References

- Draft Engineering Design Report Wastewater Treatment: Marcus Whitman Hotel–Wastewater Treatment System, dated May 8,
- Marcus Whitman Hotel Vapor Intrusion Evaluation Workplan, dated March 27, 2024 and associated Memorandum between Aspect Consulting and Ecology, dated February 7, 2024
- Washington State Department of Ecology. 2013. "Model Toxics Control Act Regulation and Statute, Champer 173-340 WAC and 70.105D RCW." Revised 2024.

Tables

Table 1

Summary of Groundwater Field Parmeters

Stillwater Holdings Chevron Site

Walla Walla, Washington

			Headspace				Field Meas	sured Groundwat	er Quality Para	meters	
Monitoring	g Well Location	Sample Date	Vapor Measurement (ppm)	Depth to Water (feet btoc)	Groundwater Elevation (feet)	pH (pH units)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (degrees C)
		11/09/2023				7.14	474.36	-182.1	0.6	14.6	13.58
		05/01/2024				6.91	1234.2	-135.8	0.21	25.4	16.97
	AMW-01	8/21/2024				6.65	864	-78.7	0.4		20.22
		11/13/2024				6.72	1226	-117 3	0.1/		18.21
		02/25/2025	620.7	11.1	040.99	6.62	1220	126.0	0.00	0.4	17.4
		03/23/2023	039.1	11.1	940.88	7.00	1290	-130.9	-0.03	9.4	10.07
		11/09/2023				7.26	616.82	145.8	0.4	6.69	16.37
		05/01/2024				6.92	827.25	-111.4	0.17	5.74	16.46
	AMW-02	8/21/2024				6.80	820	-73.2	1.7		18.64
Chovron		11/14/2024				6.69	1347	-123.1	0.24		13.23
Pornerty		3/25/2025	17.6	11.71	941.57	6.71	1012	-118.8	0.14	2.95	16.9
wells		11/09/2023				7.17	470.38	-112	0.38	5.01	14.96
Wells		05/01/2024				6.82	538.87	36.8	0.3	9.95	14.93
	AMW-03	8/21/2024				6.11	597	-22.6	24.8 %		18.20
		11/13/2024				6.72	754	-25.6	0.42		16.38
		3/25/2025	<1	13.60	938.83	6.70	693	30.6	1.45	3.62	17.5
		11/09/2023				7.01	408.91	-173	0.31	1.79	16.45
		05/01/2024		I		7.03	607.78	-131 5	0.27	4 14	15 79
	Δ Μ ₩-04	8/21/2024				6.99	50/	-102.0	26		18.01
	AUUW-04	0/21/2024	ļ			7 10	534	-103.0	2.0		10.24
		11/14/2024				7.10	557	-90.9	0.47		18.40
		3/25/2025	<1	10.61	943.31	6.51	548	19.1	0.01	4.85	16.1
		11/29/2023				7.1	555.85	-94.4	0.38	2.96	12.72
		04/30/2024				6.87	554.36	-77.3	0.39	24.2	15.93
	MW-2	8/20/2024				6.76	479	-44.6	1.9		17.67
		11/13/2024				6.78	640	-75.0	0.19		15.37
		3/26/2025	<1	12.89	938.05	6.66	648	-74.8	0.10	5.58	16.9
		11/29/2023				7.19	617.85	50	0.37	7.88	12.63
		04/30/2024				6.95	675.49	-1.8	0.73	10.7	15.91
	MW-3	8/20/2024				6.77	452	8.9	1.9		17.84
		11/13/2024				7.07	440	-48.7	1.01		16.52
		3/26/2025	98.1	9.56	941.26	6.84	975	131.6	-0.02	1.88	12.0
		11/29/2023	00.2	0.00	0.110	6 59	365	203.1	1.54	1.00	13.65
		04/20/2023				6.69	451.82	190.1	1.34	2.00	15.00
		8/20/2024				6.70	451.82	100.4	1.19	3.09	10.20
	141.44-44	8/20/2024				0.70	443	100.4	0.9		10.99
		11/13/2024				6.77	390	59.2	0.84		15.20
		3/26/2025	<1	11.71	938.63	6.66	410	158.9	1.74	27.69	16.1
		11/29/2023				6.6	887.38	-41.6	0.4	4.32	14.29
	MW-5	05/01/2024				7.11	718.49	-158.6	0.46	4.93	16.39
City-Right-		11/13/2024				6.97	551	-97.8	1.06		18.62
Of-Way		3/26/2025	397.0	10.92	940.93	6.86	792	-131.2	-0.05	3.47	15.6
Wells		05/01/2024				6.76	418.53	-34.8	0.21	4.51	15.28
	MW-6	11/14/2024				6.45	927	-84.6	1.47		19.04
		3/26/2025	1,672.0	8.42	943.98	6.51	454	61	0.29	42.84	14.8
		11/10/2023				6.82	214.66	141.9	3.88	3.31	13.9
		04/30/2024				6.87	270.66	76.4	5.51	2.36	12.26
	MW-7	8/20/2024				6.82	237	162.5	2.47		17.40
		11/13/2024				6.87	294	175.3	3.33		15.50
		3/26/2025		13 61	937 02	6.29	295	118.2	6.52	1.42	12.6
		11/10/2022		10.01	001.02	67	250	107	1 00	1.00	15.20
		11/10/2023	ļ			0.7	204.00	170	1.22	1.09	10.02
		05/01/2024				0.04	244.1	170.0	2.00	1.20	15.45
	WIW-8	8/20/2024				6.72	270	118.9	1.13		17.14
		11/13/2024			ļ	6.70	332	172.8	1.87	-	15.92
		3/26/2025	7.5	12.33	940.91	6.56	325	125.6	2.32	2.42	16.2
		11/10/2023				6.61	411.35	84	0.62	2	16.04
		05/01/2024				6.7	461.28	198.5	5.09	8.52	13.8
	MW-9	08/20/2024				6.60	453	172.9	3.4	-	17.21
		11/13/2024				6.70	415	137.7	1.47		16.10
		3/26/2025	3.9	10.5	942.07	6.68	454	114.6	6.05	1.31	14.6

Notes:

Italics notes Ecology and Aspect data as reported to GeoEngineers on April 15, 2025

Data collected by GeoEngineers during the March 2025 grounbdwater assessemnt are dated 03/25/25 - 03/26/25.

ppm = parts per million

Btoc = Below top of casing

 μ S/cm = microSiemens per centimeter

mV = millivolts

mg/L = milligrams per liter

NTU = Nephelometric Turbidity Units

deg C = degrees Celsius

																									Walla Walla	a, Washington																						
										Chevror	n Property Well	ls													City-Right-Of Way Wells																							
Monitoring Well Location				AMW-01					AMW-02				AMW-03	<u>.</u>		<u> </u>	AMW-	•04				MW	-2			1	MW-3			MW	-4		I	W-5		MW-6			MW	<i>N</i> -7			MW-′	-8			MW-9	
Sample Date		11/09/2023	05/01/2024 8	8/21/2024 11/1	13/2024 03/2	25/2025 (Dup) 03/25/20	025 11/09/2023	23 05/01/2024 8/	/21/2024 11/14/	2024 3/25/20	2025 11/09/202	23 05/01/2024	8/21/2024 11/1	3/2024 3/25/	2025 11/09	/2023 05/01/	/2024 8/21/2	2024 11/14/20	24 (Dup) 11/14/2024	3/25/2025 1	1/29/2023 04,	/30/2024 8/20/2	2024 11/13/20	24 3/26/2025	11/29/2023	04/30/2024 8/	/20/2024 11/13/	2024 3/26/2025	11/28/2023 0	04/30/2024 8/20/2	024 11/13/2024	3/26/2025 11/2	/2023 05/01/2024	11/13/2024	3/26/2025 05/0	1/2024 11/14/20	24 3/26/2025	11/10/2023	04/30/2024 8/20/	/2024 11/13/202	24 3/26/2025	11/10/2023 (J5/01/2024 8/20/26	.024 11/13/202	24 3/26/2025 1	1/10/2023 05/01	1/2024 08/20/2024	.4 11/13/2024 3/26/2025
Analyte	Unit MTCA ⁶	3																																														
Petroleum Hydrocarbons ¹			I	I				1	I	I		1	l					I		1				I		I	I	I	1					1 1		I	I		I									
GRPH	ug/L 800	13,000	85,000	4,100 25	5,000 27	7,000 33,000	29,000	59,000	4,800 4,30	00 5,400	00 7,300	62	660	300 73	J 9,1	.00 39,0	000 13,0	6,400	5,200	420	6,700	290 51	0 1,100	910	7,300	2,800	54 54	4,900	< 50 U	< 50 U 54	54	< 54 U 19	,000 130,000	42,000	39,000 77	,000 25,000	12,000	76	< 50 U 5	5 170	L 66	320	310 760	J 1,900	760 J	240 < !	50 U 54	59 J < 54 U
BTEX ²				,	,					,											,										II								I							I	I	
Benzene	ug/L 5	1,100	7,100	1,800 3	3,000 3	3,300 3,200	2,600	7,200	3,100 1,20	00 1,700	00 1,200	24	140	54 12	2 97	70 1,7	00 67	0 440	360	23	910	190 13	0 270	260	700	120	0.52 2.	57	< 1.0 U	< 2.0 U 0.38	< 0.4 U	< 0.4 U 9	.00 700	800	1,500 2,	000 650	4.3	< 1.0 U	< 2.0 U <0.	.4 U < 0.4 U	< 0.4 U	3.4	< 2.0 U < 0.4	, U < 0.4 U	< 0.4 U	41 < 2	2.0 U < 0.4 U	< 0.4 U < 0.4 U
Toluene	ug/L 1000	2,300	21,000	5,600 5	5,500 8	8,700 8,500	4,800	15,000	4,700 1,40	00 3,200	00 1,200	< 2.0 U	7.1	2 4.	0 1,3	00 7,0	00 2,20	00 810	690	18	1,300	< 2.0 U 0.4	9 29	3.1	510	120	0.31 0.3	J 100	< 1.0 U	< 2.0 U 0.31	< 1.0 U	< 0.53 UJ 3	000 5,500	6,500	6,300 9,	000 69,000	78	< 1.0 U	< 2.0 U 0.	31 < 1.0 U	1.4	< 1.0 U	< 2.0 U < 1.0	, U < 1.0 U	< 0.77 UJ	< 1.0 U < 2	2.0 U < 1.0 U	< 1.0 U < 0.57 UJ
Ethylbenzene	ug/L 700	150	1300	440	680 1	L,000 970	360	820	450 22	0 450	0 160	6.9	53	19 4.:	2 16	50 91	.0 51	0 390	310	23	120	64 61	L 100	120	58	68	0.2 1.	220	< 1.0 U	< 2.0 U 0.23	< 1.0 U	0.44 J 2	000 2,400	880	1,100 1,	900 1,100	150	< 1.0 U	< 2.0 U 0.	. 2 < 1.0 U	0.79 J	< 1.0 U	< 2.0 U < 1.0	, U < 1.0 U	0.26 J	< 1.0 U < 2	2.0 U < 1.0 U	< 1.0 U < 1.0 U
Xylenes (Total)	ug/L 1000	1,100	6,300	2,260 3	8,300 5	5,700 5,400	2,500	5,000	2,100 81	0 1,600	690	< 4 U	24.5	8.4 3.	8 92	20 4,8	00 2,33	30 1,200	1,000	50	630	< 4 U 1.5	52 120	30	1,200	450	0.44 3.4	1,100	< 3.0 U	< 4 U 0.44	< 3.0 U	1.4 J 10	000 3,000	8,200	8,200 12	,000 7,700	1,700	< 3.0 U	< 4 U 0.4	44 < 3.0 U	3.5	< 3.0 U	< 4 U < 2.0'	U < 3.0 U	1.2 J	< 3.0 U <	4 U < 2.0 U	< 3.0U 0.75 J
Metals ³																																																
Lead (dissolved)	ug/L 15		< 1.0 U					< 1.0 U				< 1.0 U			-	- < 1.	0U						-									-										-						
PAHs ⁴																								-	-									· · ·			-											
Naphthalene	ug/L 160		130	77				120	74			< 2.0 U	4.8		-	- 90	0 88	3				7.6 2.4	4			30	0.63			< 2.0 U < 2.0	U		- 420		4				< 2.0 U < 2./	.0 U			< 2.0 U < 2.0 /	U		- < 2	2.0 U < 2.0 U	
VOCs ⁵	- <u>,</u>																							-																								
1,2,4-Trimethylbenzene	ug/L 80		510	210				580	250			< 2.0 U	14		-	- 78	0 37	0			-	30 7.4	4	-		84	< 1.0 U			< 2.0 U < 1.0	U		- 2,400		2,	100			< 2.0 U < 1.0	.0 U			< 2.0 U < 1.0 '	U		< 2	0 U < 1.0 U	
1,2-Dibromoethane (EDB)	ug/L 0.01		< 0.010 U		-			< 0.010 U				< 0.010 U			-	- < 0.0.	10 U				- <	0.010 U	-	-		< 0.010 U				< 0.010 U			- < 0.010 U		< 0.	010 U			< 0.010 U	·			< 0.010 U			< 0.0	J10 U	
1,2-Dichloroethane (EDC)	ug/L 5		< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U		-	< 2.0 U	< 1.0 U		-	- < 2.	0 U < 1.0	DU		-		< 2.0 U < 1.0	OU	-		2.4	< 1.0 U -	-	-	< 2.0 U < 1.0	U –	-	- < 2.0 U		- <:	2.0 U			< 2.0 U < 1.0	<u> 0U</u> –		-	< 2.0 U < 1.0 /	<u> </u>	-	- < 2.	0 U < 1.0 U	
1,3,5-Trimethylbenzene	ug/L 80		130	47				160	64		-	< 2.0 U	2		-	- 21	.0 90)		-		< 2.0 U < 1.0	OU	-		36	< 1.0 U -	-	-	< 2.0 U < 1.0	U	-	- 650		- 6	640			< 2.0 U < 1.0	<u> 0U</u> –		-	< 2.0 U < 1.0 /	<u> </u>	-	- < 2.	0 U < 1.0 U	
2-Chlorotoluene	ug/L 160		< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U			< 2.0 U	< 1.0 U		-	- < 2.0	0 U < 1.0	DU				< 2.0 U < 1.0	ou			2.7	< 1.0 U	-		< 2.0 U < 1.0	U	-	- < 2.0 U		<:	2.0 U			< 2.0 U < 1.0	0U			< 2.0 U < 1.0 /	U	-	- < 2.	0 U < 1.0 U	
4-Chlorotoluene	ug/L 160		< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U			< 2.0 U	< 1.0 U		-	- < 2.0	0 U < 1.0	DU				< 2.0 U < 1.0	OU			7.5	< 1.0 U	-		< 2.0 U < 1.0	U	-	- < 2.0 U		<:	2.0 U			< 2.0 U < 1.0	<u> 0 U</u>			< 2.0 U < 1.0 /	<u> </u>		- < 2,	0 U < 1.0 U	
4-Methyl-2-pentanone	ug/L 640		15	NA				< 10 U	NA			< 10 U	NA		-	- < 10	DU NA	<u>۱</u>				< 10 U NA	A			< 10 U	NA			< 10 U NA			- < 10 U		<	10 U			< 10 U NA	<u>A</u>			< 10 U NA				<u>.0 U NA</u>	
Acetone	ug/L 7200		96 J	NA	-			< 25 U	NA			< 25 U	NA		-	- < 25	5 U NA	<u>۱</u>			-	< 25 U NA	A -			30	NA			< 25 U NA			- < 25 U		<	25 U			< 25 U NA	<u>A</u>			< 25 U NA			< 2'	.5 U NA	
cis-1,2-Dichloroethene (cDCE)	ug/L 16		< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U			< 2.0 U	< 1.0 U		-	- < 2.0	0 U < 1.0	DU				< 2.0 U < 1.0	0 <i>U</i>			< 2.0 U	< 1.0 U			< 2.0 U < 1.0	J		- < 2.0 U		<:	2.0 U			4.9 3	,			82 85			< 2.	.0 U < 1.0 U	
Hexachlorobutadiene	ug/L 8		< 2.0 U	< 2.0 U				< 2.0 U	< 2.0 U			< 2.0 U	< 2.0 U		-	- < 2.0	0 U < 2.0	DU				< 2.0 U < 2.0	00			< 2.0 U	< 2.0 U			< 2.0 U < 2.0	J		- < 2.0 U		< 2	2.0 U			< 2.0 U < 2.0	<u> </u>			< 2.0 U < 2.0 I	<u> </u>		< 2.	.0 U < 2.0 U	
Isopropylbenzene (cumene)	ug/L 800		27	10				25	11			< 2.0 U	3			- 30	6 18	3				3.5 2.2	2			3.0	< 1.0 U			< 2.0 U < 1.0	U		- 77			91			< 2.0 U < 1.0	<u> </u>			< 2.0 U < 1.0 l	<u> </u>		< 2.	.00 < 1.00	/
m,p-Xylenes	ug/L 1600		4,200	1,500				3,300	1200		-	< 4.0 U	15		-	- 330				-		< 4.0 U < 2.0	00 01	-		190	< 2.0 U	-		< 4.0 U < 2.0	U	-	- 2,100		8,	800			< 4.0 U < 2.0	<u> </u>			< 4.0 U < 2.0 l	<u> </u>		< 4.7	.00 < 2.00	
Methyl tert-butyl ether (MTBE)	ug/L 20		< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U			< 2.0 U	< 1.00		-	- < 2.0	00 < 1.0					< 2.00 < 1.0				< 2.0 0	< 1.0 U			< 2.0 0 < 1.0	U		- < 2.0 U		<:	2.00			< 2.0 0 < 1.0	<u> </u>			< 2.00 < 1.00			< 2.7	.00 < 1.00	
n-Butylbenzene	ug/L 400		< 2.0 0	< 1.00				< 2.0 0	< 1.00			< 2.0 U	0.64 J		-	- < 2.0						< 2.00 < 1.0				4.9	< 1.0 U			< 2.00 < 1.0	U		- < 2.0 0		</th <th>2.00</th> <th></th> <th></th> <th>< 2.00 < 1.0</th> <th><u> </u></th> <th></th> <th></th> <th>< 2.00 < 1.00</th> <th></th> <th></th> <th> < 2.0</th> <th>.00 < 1.00</th> <th></th>	2.00			< 2.00 < 1.0	<u> </u>			< 2.00 < 1.00			< 2.0	.00 < 1.00	
n-Propylbenzene	ug/L 800		2 100	32				1 700	36			< 2.0 U	6.3		-	- 9:						7.0 5.3	3			4.1	< 1.0 U			< 2.00 < 1.0			- 240		3	200			< 2.00 < 1.0				< 2.00 < 1.00			< 2.	2011 <1011	
o-Xylene	ug/L 1600		2,100	1				1,700	900			< 2.00	9.5			- 130						< 2.00 < 1.0	21		-	200	< 1.00			< 2.00 < 1.0			- 900		3,	200			< 2.00 < 1.0	<u> </u>		++	< 2.00 < 1.00			< 2.	2011 < 1.00	
p-isopropyitoluene			< 2.0 0	2				< 2.0 0	1.93 J			< 2.00	0.34 J			- 2.0						< 2.0 0 0.5	5			< 2.0 U	< 1.00			< 2.00 < 1.0			- 0.4			D.1			< 2.00 < 1.0	<u> </u>		++	< 2.00 < 1.00			<2.	2011 < 1011	
sec-Butylbenzene	ug/L 800		4.0	3				2.0	10			< 2.0 U	6.10U			- 3.	9 3 .0	-				< 2.0 0 0.5				< 2.0 0	< 1.0 U			< 2.00 < 1.0			- 3.1			2.9.9			< 2.00 < 1.0	<u> </u>			< 2.00 < 1.00	<u></u>		< 2.	2011 < 1011	
Styrene			< 2011	11				< 2.00	< 1 0 11			< 2011	< 1 0 11				011 - 10					< 2011 < 11				12	< 1.00			<2011 <10			- < 2.00			2.00			< 2011 < 1				<2011 <10	<u>, </u>			2011 < 1011	
			< 2011	< 1 0 1/				< 2.00	<1011			< 2011	< 1 0 11				011 - 10					< 2011 < 11				< 2011	< 1.00			<2011 <10			< 2.00			2.00			62 5				840 920				61 49	
			< 2011	<1.0.1/				< 2.00	<1011			< 2011	<1011			- < 2.	011 <1.0					< 2011 <10)			< 2011	<1011			<2011 <10	· · ·		- < 2011			2011			<u><u> </u></u>				41 < 20				2011 < 1011	
			< 2.011	<1.0 U				< 2.011	<1.0.1/			< 2011	<1.0 U			- < 2.	0 <1 0) //				< 2.0 U <10)U			< 2.011	<1.0.1/			<2.01/ <1.0	/		- <2011			2.01/			8.3 4	4.9			66 79			<'	2.011 0.51	
Vinyl Chloride			< 0.2011	< 0.4.11				< 0.2011	< 0.411			< 0.2011	< 0.4.11			- < 0.0	2011 < 0 /	111				(0.2011 < 0.2	411			< 0.2011	< 0.411		<u> </u>	< 0.2011 < 0.4	, 		- < 0.2011	<u> </u>		2011			< 0.2011 < 0	411			0.96 < 0.4	411	++		2011 < 0.411	
	ug/ L 0.2		\$ 0.20 0	· U. - U				\$ 0.20 0			-	\$ 0.20 0	× 0. 7 0			< 0.2	× 0.4				-	10.200				0.200				10.200 10.4	-		10.200		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-200			. 0.20 0 . 0.4				× 0.4 (× 0.2	200 \0.40	/

Notes:

Samples collected by GeoEngineers during the March 2025 groundwater assessment and analyzed by Eurofins Environment Testing Northwest located in Spokane Valley, Washington are dated 03/25/25 - 03/26/25. Sample Locations are shown on Figure 2. All results in micrograms per liter unless otherwise stated.

¹Gasoline-range petroleum hydrocarbons analyzed using Northwest Method NWTPH-Gx. ^{2,5} Volatile organic compounds analyzed using United States Environmental Protection Agency (EPA) Method 8260D.

³Metals analyzed using EPA Method 6010D.

⁴Polycylic aromatic hydrocarbons analyzed using the EPA Method 8270 E ⁶Model Toxics Control Act (MTCA) Method A/B Cleanup Levels (CUL) for Groundwater

TPHs - Total Petroleum Hydrocarbons

U = Analyte was not detected.

bold indicates analyte was detected.

UJ = Analyte was not deemed above the reported sample quantitation limit due to trip blank contamination. J = Analyte was detected at a concentration between the laboratory method detection limit (MDL) and reporting limit (RL) and the concentration is an estimated value OR the number is an estimated value.

"--" = not analyzed.

Table 2 Chemical Analytical Results - Groundwater Stillwater Holdings Chevron Site

Table 3

Chemical Analytical Results - Sump Water Stillwater Holdings Chevron Site

Walla Walla, Washington

			Sample location			Building 106			Marcus Whitman Hotel					
			Sample Date	11/8/2024	3/28/2024	8/16/2024	11/14/2024	3/27/2025	11/8/2023	3/28/2024	8/16/2024	11/14/2024	3/27/2025	
	5	Sample Identification	106HS-110823	106 Sump	106Sump	106Sump	BLG 106 Sump	MWH Sump-110823	MWH Sump	MHWSump	MHWSump	Marcus Whitman Sump		
Analyte	Unit	Walla Walla POTW Discharge Limits	MTCA Method A Cleanup Level for Groundwater ⁴											
Petroleum Hydrocarbons ¹														
GRPH	µg/L	1000	800	6,900	9,900	2,000	2,700	750	54,000	17,000	< 54 U	< 54 U	3,600	
Volatile Organic Compounds (VOCs) ²														
Benzene	µg/L	10	5	420	270	71	67	36	1,700	640	0.18 J	< 0.093 U	290	
Toluene	µg/L	NE	1000	980	1,400	240	310	110	4,300	1,900	0.64 J	< 0.45 U	66	
Ethylbenzene	µg/L	NE	700	46	160	45	49	15	110	28	< 0.2 U	< 0.2 U	15	
Xylenes (Total)	µg/L	NE	1000	780	1,320	420	490	160	6,900	2,540	1.07 J	< 0.44 U	860	
BTEX Total ³	µg/L	200	NE	2,226	3,150	776	916	321	13,010	5,108	1.89	1.183	1,231	

Notes:

Samples collected by GeoEngineers and analyzed by Eurofins Environment Testing Northwest located in Spokane Valley, Washington during the March 2025 grounbdwater assessemnt are dated 03/27/25. Sample Locations are shown on Figure 2.

Results reported in micrograms per liter unless otherwise stated.

 $^1\mbox{Gasoline-range}$ petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx.

² Volatile organic compounds analyzed using United States Environmental Protection Agency (EPA) Method 8260D.

³BTEX = Benzene, Toluene, Ethylbenzene and Xylenes (total).

 ${}^{^{4}}$ Model Toxics Control Act (MTCA) Method A/B Cleanup Levels (CUL) for Groundwater

Results in **bold** indicate TPH or VOCs were detected.

Results in $\operatorname{\boldsymbol{bold}}$ and highlighted grey are detected above the MTCA Method A cleanup level.

NE = Not established

Figures

:\0\0504202\GIS\0504202_Project\0504202_Project.aprx\050420201_F01_VicinityMap Date Exported: 01/08/25 by ccabrera

Coordinate System: NAD 1983 StatePlane Washington South FIPS 4602 Feet

Walla Walla GIS

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

Stillwater Holdings Chevron Walla Walla, Washington

Figure 2

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

Appendices

Appendix A

Field Assessment Procedures

Appendix A Field Assessment Procedures

Standard Procedures

This section contains standard procedures for field data collection that were conducted during groundwater sampling activities at the Stillwater Holdings Chevron cleanup site located at 7 East Rose Street in Walla Walla, Washington.

MONITORING WELL SAMPLING

Groundwater samples were collected from groundwater monitoring wells AMW-01 through AMW-04, MW-2 through MW-9 and analyzed as described below. Depth to groundwater relative to the top of the polyvinyl chloride (PVC) well casing was measured to the nearest 0.01 foot using an electronic interface probe and recorded in the field notes.

Following depth to groundwater measurement, a groundwater sample was collected from each monitoring well consistent with the U.S. Environmental Protection Agency's (EPA's) low-flow groundwater sampling procedure, as described in EPA (2017) and Puls and Barcelona (1996). Dedicated tubing and a peristaltic pump was used for groundwater purging and sampling. During purging activities, water quality parameters, including pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), turbidity and temperature were measured using a multi-parameter meter equipped with a flow-through cell. Depth to water also was measured and recorded when groundwater quality parameters were recorded. Each monitoring well was purged until parameters stabilized, or a maximum of 30 minutes, whichever occurred first, before collecting the sample. Stability was defined as the following:

- pH: ± 0.1 pH units;
- Conductivity: ± 3 percent micro-Siemens per centimeter (µS/cm);
- ORP: ± 10 millivolts (mV);
- DO: ± 0.3 milligrams per Liter (mg/L);
- Turbidity: less than 10 nephelometric turbidity units (NTUs) or ± 10 percent NTUs when turbidity is greater than 10 NTUs; and
- Temperature: ± 3 percent degrees Celsius.

Field water quality measurements and depth-to-water measurements were recorded on a well purging-field water quality measurement form. Groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Chain-of-Custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the Quality Assurance Project Plan (QAPP) included in the Work Plan (GeoEngineers 2024).

SUMP SAMPLING

Water samples were collected from sumps located in the Marcus Whitman sub-basement and the 106 Building basement, dedicated tubing and a peristaltic pump. Low flow (<200 milliliters per minute) were used to reduce degassing of VOC samples. Water samples were transferred in the field to laboratory-

prepared sample containers and kept cool during transport to the testing laboratory. Chain-of-Custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the QAPP.

References

- Puls, R. W. and M.J. Barcelona. 1996. "Low-flow (Minimal Drawdown) Ground-water Sampling Procedures." EPA Ground Water Issue. April. p.1-9.
- U.S. Environmental Protection Agency (EPA). 2017. Region 1, "Low Stress (Low-Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells." EPA SOP No. GW4, Revision No. 4., September 19, 2017.

Appendix B

Data Validation Report and Chemical Analytical Laboratory Report

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125

www.geoengineers.com

Project:	Stillwater Holdings Chevron – Environmental Services March 2025 Groundwater Samples
File:	0504-202-01
Date:	April 22, 2025

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A data validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of water samples collected as part of the March 2025 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Stillwater Holdings Chevron facility located at 7 East Rose Street, in Walla Walla, Washington.

Objective and Quality Control Elements

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates
- Miscellaneous

Validated Sample Delivery Groups

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1. SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

LABORATORY SDG	SAMPLES VALIDATED
590-30157-1	AMW-01-032525, DUP-032525, AMW-2-032525, AMW-3-032525, AMW-4-032525, MW-2-032625, MW-3-032625, MW-4-032625, MW-5-032625, MW-6-032625, MW-7-032625, MW-8-032625, MW-9-032525, Marcus Whitman Sump Water, Bldg 106 Sump, Trip Blank

Chemical Analysis Performed

Eurofins Environment Testing, Inc. (Eurofins), located in Spokane, Washington, performed laboratory analyses on the samples using the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx; and
- Volatile Organic Compounds (VOCs) by Method EPA8260D

Data Validation Summary

The results for each of the QC elements are summarized below.

DATA PACKAGE COMPLETENESS

Eurofins provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

CHAIN-OF-CUSTODY DOCUMENTATION

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

HOLDING TIMES AND SAMPLE PRESERVATION

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample coolers arrived at the laboratory within the appropriate temperatures of between two and six degrees Celsius.

SURROGATE RECOVERIES

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits. Data Validation Report April 22, 2025 Page 3

METHOD AND TRIP BLANKS

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks.

Trip Blanks

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the analytes of interest were detected in the trip blank, with the following exception:

SDG 590-30157-1: (VOCs) There was a positive result for toluene detected above the method detection limit, but below the reporting limit in the trip blank, Sample Trip Blank. The positive results for toluene were qualified as non-detected (U) in Samples MW-4-032625, MW-8-032625, and MW-9-032525.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

There were no MS/MSD sample sets performed on the associated GeoEngineers' field samples.

LABORATORY CONTROL SAMPLES/LABORATORY CONTROL SAMPLE DUPLICATES

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the percent recovery and RPD values were within the proper control limits.

Data Validation Report April 22, 2025 Page 4

FIELD DUPLICATES

In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for water samples is 30 percent.

SDG 590-30157-1: One field duplicate sample pair, AMW-01-032525 and DUP-032525, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair.

MISCELLANEOUS

SDG 590-30157-1: (NWTPH-Gx) The positive result for gasoline-range hydrocarbons in Sample MW-8-032625 appears to be due to the presence of discrete peaks (tetrachloroethene) in the sample concentration. For this reason, the positive result for this target analyte was qualified as estimated (J) in this sample.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD and field duplicate RPD values.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2. SUMMARY OF QUALIFIED SAMPLES

SAMPLE ID	ANALYTE	QUALIFIER	REASON
MW-4-032625	Toluene	U	Trip Blank Contamination
MW-8-032625	Gasoline-range hydrocarbons	J	See Miscellaneous
	Toluene	U	Trip Blank Contamination
MW-9-032525	Toluene	U	Trip Blank Contamination

References

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA). Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Melissa Roskamp GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202 Generated 4/7/2025 5:04:10 AM

JOB DESCRIPTION

Stillwater Holdings Chevron/0504-202-01

JOB NUMBER

590-30157-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

See page two for job notes and contact information.

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 4/7/2025 5:04:10 AM

Authorized for release by Madison Vaughan, Analyst I <u>Madison.Vaughan@et.eurofinsus.com</u> Designee for Randee Arrington, Business Unit Manager <u>Randee.Arrington@et.eurofinsus.com</u> (509)924-9200

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	16
Chronicle	20
Certification Summary	23
Method Summary	24
Chain of Custody	25
Receipt Checklists	27

Job ID: 590-30157-1

Eurofins Spokane

Job Narrative 590-30157-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/27/2025 1:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0°C.

Gasoline Range Organics

Method NWTPH_Gx_MS: The Gasoline Range Organics (GRO) concentration reported for the following sample is due to the presence of discrete peaks(Tetrachloroethene): MW-8-032625 (590-30157-11). Gasoline

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4/7/2025

Sample Summary

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	_
590-30157-1	AMW-01-032525	Water	03/25/25 12:00	03/27/25 13:30	
590-30157-2	AMW-2-032525	Water	03/25/25 13:20	03/27/25 13:30	
590-30157-3	AMW-3-032525	Water	03/25/25 13:50	03/27/25 13:30	
590-30157-4	AMW-4-032525	Water	03/25/25 10:35	03/27/25 13:30	
590-30157-5	MW-2-032625	Water	03/26/25 16:05	03/27/25 13:30	
590-30157-6	MW-3-032625	Water	03/26/25 15:15	03/27/25 13:30	
590-30157-7	MW-4-032625	Water	03/26/25 13:35	03/27/25 13:30	
590-30157-8	MW-5-032625	Water	03/26/25 15:00	03/27/25 13:30	
590-30157-9	MW-6-032625	Water	03/26/25 11:10	03/27/25 13:30	
590-30157-10	MW-7-032625	Water	03/26/25 17:30	03/27/25 13:30	
590-30157-11	MW-8-032625	Water	03/26/25 09:50	03/27/25 13:30	
590-30157-12	MW-9-032525	Water	03/25/25 14:10	03/27/25 13:30	
590-30157-13	DUP-032525	Water	03/25/25 08:00	03/27/25 13:30	
590-30157-14	Marcus Whitman Sump	Water	03/27/25 09:05	03/27/25 13:30	
590-30157-15	Bldg 106 Sump	Water	03/27/25 08:40	03/27/25 13:30	
590-30157-16	Trip Blank	Water	03/25/25 00:00	03/27/25 13:30	

Job ID: 590-30157-1

Definitions/Glossary

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Qualifiers

 ML

MPN

MQL

NC

ND NEG

POS

PQL

PRES

QC

RL RPD

TEF

TEQ

TNTC

RER

GC/MS VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	

RL

40

100

200

100

100

300

Limits

80 - 120

76 - 120

80 - 123

80 - 120

MDL Unit

28 ug/L

16 ug/L

31 ug/L

44 ug/L

9.3 ug/L

20 ug/L D

Prepared

Prepared

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Result Qualifier

3300

1000

3900

1700

8700

5700

%Recovery Qualifier

89

89

110

104

Client Sample ID: AMW-01-032525

Date Collected: 03/25/25 12:00

Date Received: 03/27/25 13:30

Analyte

Benzene

Ethylbenzene

Xylenes, Total

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

m,p-Xylene

o-Xylene

Toluene

Surrogate

Job ID: 590-30157-1

Lab Sample ID: 590-30157-1

Analyzed

04/03/25 15:21

04/03/25 15:21

04/03/25 15:21

04/03/25 15:21

04/03/25 15:21

04/03/25 15:21

Analyzed

04/03/25 15:21

04/03/25 15:21

04/03/25 15:21

04/03/25 15:21

Lab Sample ID: 590-30157-2

Matrix: Water

Dil Fac

100

100

100

100

100

100

100

100

100

100

Matrix: Water

Dil Fac

6

Method: NWTPH-Gx - Northwest - V	olatile Petroleum Product	s (GC/MS)		
Analyte	Result Qualifier	RL	MDL Unit	D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	27000		1500	540	ug/L			04/03/25 15:00	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		68.7 - 141					04/03/25 15:00	10

Client Sample ID: AMW-2-032525

Date Collected: 03/25/25 13:20

Date Received: 03/27/25 13:30

Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1700		40	9.3	ug/L			04/03/25 16:03	100
Ethylbenzene	450		10	2.0	ug/L			04/03/25 15:42	10
m,p-Xylene	1000		200	28	ug/L			04/03/25 16:03	100
o-Xylene	580		100	16	ug/L			04/03/25 16:03	100
Toluene	3200		100	31	ug/L			04/03/25 16:03	100
Xylenes, Total	1600		300	44	ug/L			04/03/25 16:03	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		80 - 120			-		04/03/25 15:42	10
1,2-Dichloroethane-d4 (Surr)	90		80 - 120					04/03/25 16:03	100
4-Bromofluorobenzene (Surr)	87		76 _ 120					04/03/25 15:42	10
4-Bromofluorobenzene (Surr)	94		76 - 120					04/03/25 16:03	100

Dibromofluoromethane (Surr)	110	80 - 123	04/03/25 15:42	10
Dibromofluoromethane (Surr)	110	80 - 123	04/03/25 16:03	100
Toluene-d8 (Surr)	107	80 - 120	04/03/25 15:42	10
Toluene-d8 (Surr)	103	80 - 120	04/03/25 16:03	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline	5400		150	54	ug/L			04/01/25 18:54	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	88		68.7 - 141			-		04/01/25 18:54	1		

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Client Sample ID: AMW-3-032525

Date Collected: 03/25/25 13:50 Date Received: 03/27/25 13:30

Method: SW846 8260D - Volati	e Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	12		0.40	0.093	ug/L			04/01/25 19:15	1
Ethylbenzene	4.2		1.0	0.20	ug/L			04/01/25 19:15	1
m,p-Xylene	2.8		2.0	0.28	ug/L			04/01/25 19:15	1
o-Xylene	1.0		1.0	0.16	ug/L			04/01/25 19:15	1
Toluene	4.0		1.0	0.31	ug/L			04/01/25 19:15	1
Xylenes, Total	3.8		3.0	0.44	ug/L			04/01/25 19:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		80 - 120			-		04/01/25 19:15	1
4-Bromofluorobenzene (Surr)	96		76 - 120					04/01/25 19:15	1
Dibromofluoromethane (Surr)	104		80 - 123					04/01/25 19:15	1
Toluene-d8 (Surr)	102		80 - 120					04/01/25 19:15	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	73	J	150	54	ug/L			04/01/25 19:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		68.7 _ 141					04/01/25 19:15	1

Client Sample ID: AMW-4-032525

Date Collected: 03/25/25 10:35

Date Received: 03/27/25 13:30

Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	23		0.40	0.093	ug/L			04/01/25 19:36	1
Ethylbenzene	23		1.0	0.20	ug/L			04/01/25 19:36	1
m,p-Xylene	27		2.0	0.28	ug/L			04/01/25 19:36	1
o-Xylene	23		1.0	0.16	ug/L			04/01/25 19:36	1
Toluene	18		1.0	0.31	ug/L			04/01/25 19:36	1
Xylenes, Total	50		3.0	0.44	ug/L			04/01/25 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		80 - 120			-		04/01/25 19:36	1
4-Bromofluorobenzene (Surr)	93		76 - 120					04/01/25 19:36	1
Dibromofluoromethane (Surr)	105		80 - 123					04/01/25 19:36	1
Toluene-d8 (Surr)	104		80 - 120					04/01/25 19:36	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	420		150	54	ug/L			04/01/25 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		68.7 - 141			-		04/01/25 19:36	1

Job ID: 590-30157-1

Matrix: Water

Lab Sample ID: 590-30157-3

Lab Sample ID: 590-30157-4

Matrix: Water

2 3 4 5 6 7

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Client Sample ID: MW-2-032625

Date Collected: 03/26/25 16:05

Date Received: 03/27/25 13:30

Method: SW846 8260D - Vo	ethod: SW846 8260D - Volatile Organic Compounds by GC/MS										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	260		4.0	0.93	ug/L			04/03/25 16:24	10		
Ethylbenzene	120		10	2.0	ug/L			04/03/25 16:24	10		
m,p-Xylene	21		2.0	0.28	ug/L			04/01/25 19:57	1		
o-Xylene	9.4		1.0	0.16	ug/L			04/01/25 19:57	1		
Toluene	3.1		1.0	0.31	ug/L			04/01/25 19:57	1		
Xvienes, Total	30		3.0	0.44	ua/L			04/01/25 19:57	1		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		80 - 120		04/01/25 19:57	1
1,2-Dichloroethane-d4 (Surr)	91		80 - 120		04/03/25 16:24	10
4-Bromofluorobenzene (Surr)	92		76 - 120		04/01/25 19:57	1
4-Bromofluorobenzene (Surr)	89		76 - 120		04/03/25 16:24	10
Dibromofluoromethane (Surr)	108		80 - 123		04/01/25 19:57	1
Dibromofluoromethane (Surr)	110		80 - 123		04/03/25 16:24	10
Toluene-d8 (Surr)	103		80 - 120		04/01/25 19:57	1
Toluene-d8 (Surr)	103		80 - 120		04/03/25 16:24	10

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	910		150	54	ug/L			04/01/25 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		68.7 - 141					04/01/25 19:57	1

Client Sample ID: MW-3-032625

Date Collected: 03/26/25 15:15

Date Received: 03/27/25 13:30

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	57		0.40	0.093	ug/L			04/01/25 20:18	1
Ethylbenzene	220		10	2.0	ug/L			04/03/25 16:45	10
m,p-Xylene	600		20	2.8	ug/L			04/03/25 16:45	10
o-Xylene	530		10	1.6	ug/L			04/03/25 16:45	10
Toluene	100		10	3.1	ug/L			04/03/25 16:45	10
Xylenes, Total	1100		30	4.4	ug/L			04/03/25 16:45	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		80 - 120					04/01/25 20:18	1
1,2-Dichloroethane-d4 (Surr)	89		80 - 120					04/03/25 16:45	10
4-Bromofluorobenzene (Surr)	89		76 - 120					04/01/25 20:18	1
4-Bromofluorobenzene (Surr)	94		76 - 120					04/03/25 16:45	10
Dibromofluoromethane (Surr)	93		80 - 123					04/01/25 20:18	1
Dibromofluoromethane (Surr)	104		80 - 123					04/03/25 16:45	10
Toluene-d8 (Surr)	106		80 - 120					04/01/25 20:18	1
Toluene-d8 (Surr)	103		80 - 120					04/03/25 16:45	10
- Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	4900		150	54	ug/L			04/01/25 20:18	1

Job ID: 590-30157-1

Lab Sample ID: 590-30157-5 Matrix: Water

Lab Sample ID: 590-30157-6

Matrix: Water

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Client Sample ID: MW-3-032625

Date Collected: 03/26/25 15:15

Job ID: 590-30157-1

Matrix: Water

Lab Sample ID: 590-30157-6

04/01/25 20:39

Lab Sample ID: 590-30157-8

1

Matrix: Water

1 2 3 4 5 6 7

Date Received: 03/27/25 13:30									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		68.7 - 141			-	-	04/01/25 20:18	1
Client Sample ID: MW-4-03	2625						Lab San	nple ID: 590-3	0157-7
Date Collected: 03/26/25 13:35								Matrix	k: Water
Date Received: 03/27/25 13:30									
Method: SW846 8260D - Volati	le Organic Comp	ounds by (GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			04/01/25 20:39	1
Ethylbenzene	0.44	J	1.0	0.20	ug/L			04/01/25 20:39	1
m,p-Xylene	0.96	J	2.0	0.28	ug/L			04/01/25 20:39	1
o-Xylene	0.47	J	1.0	0.16	ug/L			04/01/25 20:39	1
Toluene	0.53	J	1.0	0.31	ug/L			04/01/25 20:39	1
Xylenes, Total	1.4	J	3.0	0.44	ug/L			04/01/25 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		80 - 120			-		04/01/25 20:39	1
4-Bromofluorobenzene (Surr)	95		76 - 120					04/01/25 20:39	1
Dibromofluoromethane (Surr)	108		80 - 123					04/01/25 20:39	1
Toluene-d8 (Surr)	102		80 - 120					04/01/25 20:39	1
Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		150	54	ug/L			04/01/25 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client Sample ID: MW-5-032625

95

Date Collected: 03/26/25 15:00 Date Received: 03/27/25 13:30

4-Bromofluorobenzene (Surr)

Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1500		40	9.3	ug/L			04/03/25 17:27	100
Ethylbenzene	1100		100	20	ug/L			04/03/25 17:27	100
m,p-Xylene	5600		200	28	ug/L			04/03/25 17:27	100
o-Xylene	2600		100	16	ug/L			04/03/25 17:27	100
Toluene	6300		100	31	ug/L			04/03/25 17:27	100
Xylenes, Total	8200		300	44	ug/L			04/03/25 17:27	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		80 - 120			-		04/03/25 17:27	100
4-Bromofluorobenzene (Surr)	93		76 - 120					04/03/25 17:27	100
Dibromofluoromethane (Surr)	106		80 - 123					04/03/25 17:27	100
Toluene-d8 (Surr)	106		80 - 120					04/03/25 17:27	100
- Method: NWTPH-Gx - Northw	est - Volatile Petro	oleum Prod	ucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	39000		15000	5400	ug/L			04/03/25 17:27	100

68.7 - 141

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Client Sample ID: MW-5-032625

Date Collected: 03/26/25 15:00

Date Received: 03/27/25 13:30

Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		68.7 - 141			-		04/03/25 17:27	100
Client Sample ID: MW-6-03	32625						Lab Sam	nple ID: 590-3	0157-9
Date Collected: 03/26/25 11:10								Matrix	c: Wate
Date Received: 03/27/25 13:30									
- Method: SW846 8260D - Volati	le Organic Comp	ounds by (GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	4.3		0.40	0.093	ug/L			04/01/25 21:42	
Ethylbenzene	150		10	2.0	ug/L			04/03/25 17:48	10
m,p-Xylene	1300		200	28	ug/L			04/03/25 18:30	100
o-Xylene	430		100	16	ug/L			04/03/25 18:30	100
Toluene	78		1.0	0.31	ug/L			04/01/25 21:42	
Xylenes, Total	1700		300	44	ug/L			04/03/25 18:30	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	86		80 - 120			-		04/01/25 21:42	
1,2-Dichloroethane-d4 (Surr)	91		80 - 120					04/03/25 17:48	10
1,2-Dichloroethane-d4 (Surr)	91		80 - 120					04/03/25 18:30	100
4-Bromofluorobenzene (Surr)	85		76 - 120					04/01/25 21:42	
4-Bromofluorobenzene (Surr)	95		76 - 120					04/03/25 17:48	10
4-Bromofluorobenzene (Surr)	93		76 - 120					04/03/25 18:30	100
Dibromofluoromethane (Surr)	95		80 - 123					04/01/25 21:42	
Dibromofluoromethane (Surr)	106		80 - 123					04/03/25 17:48	10
Dibromofluoromethane (Surr)	109		80 - 123					04/03/25 18:30	100
Toluene-d8 (Surr)	103		80 - 120					04/01/25 21:42	
Toluene-d8 (Surr)	102		80 - 120					04/03/25 17:48	10
Toluene-d8 (Surr)	102		80 - 120					04/03/25 18:30	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	12000		1500	540	ug/L			04/03/25 17:48	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		68.7 - 141					04/03/25 17:48	10

Client Sample ID: MW-7-032625

Date Collected: 03/26/25 17:30

Date Received: 03/27/25 13:30

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			04/01/25 22:03	1
Ethylbenzene	0.79	J	1.0	0.20	ug/L			04/01/25 22:03	1
m,p-Xylene	2.7		2.0	0.28	ug/L			04/01/25 22:03	1
o-Xylene	0.77	J	1.0	0.16	ug/L			04/01/25 22:03	1
Toluene	1.4		1.0	0.31	ug/L			04/01/25 22:03	1
Xylenes, Total	3.5		3.0	0.44	ug/L			04/01/25 22:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		80 - 120			-		04/01/25 22:03	1
4-Bromofluorobenzene (Surr)	96		76 - 120					04/01/25 22:03	1

Eurofins Spokane

Matrix: Water

Lab Sample ID: 590-30157-10

Job ID: 590-30157-1

Matrix: Water

Lab Sample ID: 590-30157-8

4/7/2025

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Client Sample ID: MW-7-032625

Date Collected: 03/26/25 17:30

Date Received: 03/27/25 13:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	105		80 - 123					04/01/25 22:03	1
Toluene-d8 (Surr)	102		80 - 120					04/01/25 22:03	1
- Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Proc	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	99	J	150	54	ug/L			04/01/25 22:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		68.7 - 141					04/01/25 22:03	1
Client Sample ID: MW-8-03	2625						Lab Sam	ple ID: 590-30	157-11
Date Collected: 03/26/25 09:50								Matrix	k: Water
Date Received: 03/27/25 13:30									

Method: SW846 8260D - Volati	le Organic Comp	ounds by C	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.40	0.093	ug/L			04/01/25 22:24	
Ethylbenzene	0.26	J	1.0	0.20	ug/L			04/01/25 22:24	
m,p-Xylene	1.2	J	2.0	0.28	ug/L			04/01/25 22:24	
o-Xylene	ND		1.0	0.16	ug/L			04/01/25 22:24	
Toluene	0.77	J	1.0	0.31	ug/L			04/01/25 22:24	
Xylenes, Total	1.2	J	3.0	0.44	ug/L			04/01/25 22:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	85		80 - 120					04/01/25 22:24	
4-Bromofluorobenzene (Surr)	95		76 - 120					04/01/25 22:24	
Dibromofluoromethane (Surr)	95		80 - 123					04/01/25 22:24	
Toluene-d8 (Surr)	106		80 - 120					04/01/25 22:24	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline	760		150	54	ug/L			04/01/25 22:24	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	95		68.7 - 141			-		04/01/25 22:24	1			

Client Sample ID: MW-9-032525

Date Collected: 03/25/25 14:10

Date Received: 03/27/25 13:30

.

lethod: SW846 8260D - Volatile Organic Compounds by GC/MS												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	ND		0.40	0.093	ug/L			04/01/25 22:45	1			
Ethylbenzene	ND		1.0	0.20	ug/L			04/01/25 22:45	1			
m,p-Xylene	0.75	J	2.0	0.28	ug/L			04/01/25 22:45	1			
o-Xylene	ND		1.0	0.16	ug/L			04/01/25 22:45	1			
Toluene	0.57	J	1.0	0.31	ug/L			04/01/25 22:45	1			
Xylenes, Total	0.75	J	3.0	0.44	ug/L			04/01/25 22:45	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
1,2-Dichloroethane-d4 (Surr)	94		80 - 120			-		04/01/25 22:45	1			

Eurofins Spokane

Matrix: Water

Lab Sample ID: 590-30157-12

Job ID: 590-30157-1

Lab Sample ID: 590-30157-10 Matrix: Water

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Client Sample ID: MW-9-032525

Date Collected: 03/25/25 14:10

Date Received: 03/27/25 13:30

Surrogate	%Recovery	Qualifier	Limits	,			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		76 - 120			-		04/01/25 22:45	1
Dibromofluoromethane (Surr)	111		80 - 123					04/01/25 22:45	1
Toluene-d8 (Surr)	100		80 - 120					04/01/25 22:45	1
- Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		150	54	ua/L			04/01/25 22:45	1

Gasonine	ND		100		04/01/20 22.40	
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		68.7 - 141		04/01/25 22:45	1

Client Sample ID: DUP-032525

Date Collected: 03/25/25 08:00

Date Received: 03/27/25 13:30

Method: SW846 8260D - Volatile	Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	3200		40	9.3	ug/L			04/03/25 19:13	100
Ethylbenzene	970		100	20	ug/L			04/03/25 19:13	100
m,p-Xylene	3800		200	28	ug/L			04/03/25 19:13	100
o-Xylene	1700		100	16	ug/L			04/03/25 19:13	100
Toluene	8500		100	31	ug/L			04/03/25 19:13	100
Xylenes, Total	5400		300	44	ug/L			04/03/25 19:13	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		80 - 120					04/03/25 19:13	100
4-Bromofluorobenzene (Surr)	92		76 - 120					04/03/25 19:13	100
Dibromofluoromethane (Surr)	106		80 - 123					04/03/25 19:13	100
Toluene-d8 (Surr)	103		80 - 120					04/03/25 19:13	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	33000		15000	5400	ug/L			04/03/25 19:13	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		68.7 - 141					04/03/25 19:13	100

Client Sample ID: Marcus Whitman Sump

Date Collected: 03/27/25 09:05

Date Received: 03/27/25 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	290		4.0	0.93	ug/L			04/03/25 19:34	10	
Ethylbenzene	15		1.0	0.20	ug/L			04/01/25 23:27	1	
m,p-Xylene	460		20	2.8	ug/L			04/03/25 19:34	10	
o-Xylene	400		10	1.6	ug/L			04/03/25 19:34	10	
Toluene	66		1.0	0.31	ug/L			04/01/25 23:27	1	
Xvlenes, Total	860		30	4.4	ug/L			04/03/25 19:34	10	

Lab Sample ID: 590-30157-14 Matrix: Water

Eurofins Spokane

Job ID: 590-30157-1

Matrix: Water

Matrix: Water

Lab Sample ID: 590-30157-12

Lab Sample ID: 590-30157-13

Limits

80 - 120

80 - 120

76 - 120

76 - 120

80 - 123

80 - 123

80 - 120

80 - 120

Limits

68.7 - 141

RL

150

MDL Unit

54 ug/L

D

%Recovery

81

88

88

93

100

106

102

102

3600

88

%Recovery

Result Qualifier

Qualifier

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Qualifier

Client Sample ID: Marcus Whitman Sump

Date Collected: 03/27/25 09:05

Date Received: 03/27/25 13:30

1,2-Dichloroethane-d4 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Analyte

Gasoline

Surrogate

Surrogate

Job ID: 590-30157-1

Matrix: Water

Dil Fac

1

10

1

10

1

10

1

10

Dil Fac

Dil Fac

Matrix: Water

Lab Sample ID: 590-30157-14

Analyzed

04/01/25 23:27

04/03/25 19:34

04/01/25 23:27

04/03/25 19:34

04/01/25 23:27

04/03/25 19:34

04/01/25 23:27

04/03/25 19:34

Analyzed

04/01/25 23:27

Analyzed

Prepared

Prepared

Prepared

2 3 4 5 6 7

04/01/25 23:27 1
Lab Sample ID: 590-30157-15

Client Sample ID: Bldg 106 Sump

Date Collected: 03/27/25 08:40

4-Bromofluorobenzene (Surr)

Date Received: 03/27/25 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	36		0.40	0.093	ug/L			04/01/25 23:48	1
Ethylbenzene	15		1.0	0.20	ug/L			04/01/25 23:48	1
m,p-Xylene	89		2.0	0.28	ug/L			04/01/25 23:48	1
o-Xylene	68		1.0	0.16	ug/L			04/01/25 23:48	1
Toluene	110		10	3.1	ug/L			04/03/25 19:55	10
Xylenes, Total	160		3.0	0.44	ug/L			04/01/25 23:48	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		80 - 120		04/01/25 23:48	1
1,2-Dichloroethane-d4 (Surr)	91		80 - 120		04/03/25 19:55	10
4-Bromofluorobenzene (Surr)	90		76 - 120		04/01/25 23:48	1
4-Bromofluorobenzene (Surr)	92		76 - 120		04/03/25 19:55	10
Dibromofluoromethane (Surr)	100		80 - 123		04/01/25 23:48	1
Dibromofluoromethane (Surr)	109		80 - 123		04/03/25 19:55	10
Toluene-d8 (Surr)	105		80 - 120		04/01/25 23:48	1
Toluene-d8 (Surr)	104		80 - 120		04/03/25 19:55	10

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline	750		150	54	ug/L			04/01/25 23:48	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	90		68.7 - 141			-		04/01/25 23:48	1		

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Froject/oite. Stillwater Flordings Chevron/000-

Client Sample ID: Trip Blank Date Collected: 03/25/25 00:00

Date Received: 03/27/25 13:30

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			04/03/25 20:37	1
Ethylbenzene	ND		1.0	0.20	ug/L			04/03/25 20:37	1
m,p-Xylene	ND		2.0	0.28	ug/L			04/03/25 20:37	1
o-Xylene	ND		1.0	0.16	ug/L			04/03/25 20:37	1
Toluene	0.35	J	1.0	0.31	ug/L			04/03/25 20:37	1
Xylenes, Total	ND		3.0	0.44	ug/L			04/03/25 20:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		80 - 120			-		04/03/25 20:37	1
4-Bromofluorobenzene (Surr)	96		76 _ 120					04/03/25 20:37	1
Dibromofluoromethane (Surr)	109		80 - 123					04/03/25 20:37	1
Toluene-d8 (Surr)	102		80 - 120					04/03/25 20:37	1
- Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		150	54	ug/L			04/02/25 00:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		68.7 - 141		04/02/25 00:09	1

Eurofins Spokane

Job ID: 590-30157-1

Matrix: Water

Lab Sample ID: 590-30157-16

5 6 7 8

ug/L		04/01/25 17:20
ug/L		04/01/25 17.29
ug/L		04/01/25 17:29
	Prepared	Analyzed
	Prepared	Analyzed 04/01/25 17:29
	Prepared	Analyzed 04/01/25 17:29 04/01/25 17:29
	Prepared	Analyzed 04/01/25 17:29 04/01/25 17:29 04/01/25 17:29

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-53200/10

Matrix: Water Analysis Batch: 53200

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			04/01/25 17:29	1
Ethylbenzene	ND		1.0	0.20	ug/L			04/01/25 17:29	1
m,p-Xylene	ND		2.0	0.28	ug/L			04/01/25 17:29	1
o-Xylene	ND		1.0	0.16	ug/L			04/01/25 17:29	1
Toluene	ND		1.0	0.31	ug/L			04/01/25 17:29	1
Xylenes, Total	ND		3.0	0.44	ug/L			04/01/25 17:29	1
	МВ	МВ							
Surrogata	% Pasavary	Qualifiar	Limito				Bronorod	Analyzed	Dil Eas

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepar	ed Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		80 - 120		04/01/25 17:29	1
4-Bromofluorobenzene (Surr)	93		76 - 120		04/01/25 17:29	1
Dibromofluoromethane (Surr)	109		80 - 123		04/01/25 17:29	1
Toluene-d8 (Surr)	103		80 - 120		04/01/25 17:29	1

Lab Sample ID: LCS 590-53200/1005 Matrix: Water Analysis Batch: 53200

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	9.93		ug/L		99	80 - 120	
Ethylbenzene	10.0	10.1		ug/L		101	80 - 122	
m,p-Xylene	10.0	9.59		ug/L		96	80 - 125	
o-Xylene	10.0	8.89		ug/L		89	80 - 130	
Toluene	10.0	10.1		ug/L		101	80 - 129	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		80 - 120
4-Bromofluorobenzene (Surr)	86		76 - 120
Dibromofluoromethane (Surr)	108		80 - 123
Toluene-d8 (Surr)	104		80 - 120

Lab Sample ID: LCSD 590-53200/6 Matrix: Water

Analysis Batch: 53200

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	9.69		ug/L		97	80 - 120	2	15
Ethylbenzene	10.0	9.35		ug/L		93	80 - 122	7	35
m,p-Xylene	10.0	9.10		ug/L		91	80 - 125	5	35
o-Xylene	10.0	8.50		ug/L		85	80 - 130	4	35
Toluene	10.0	9.52		ug/L		95	80 - 129	6	35

	LCSD	LCSD		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	90		80 - 120	
4-Bromofluorobenzene (Surr)	88		76 - 120	
Dibromofluoromethane (Surr)	111		80 - 123	
Toluene-d8 (Surr)	100		80 - 120	

Lab Sample ID: MB 590-53238/10

Analyte

Benzene

Ethylbenzene

Xylenes, Total

m,p-Xylene

o-Xylene

Toluene

Prep Type: Total/NA

7

Dil Fac D Prepared Analyzed 04/03/25 14:39 1 04/03/25 14:39 1 04/03/25 14:39 1 04/03/25 14:39 1 04/03/25 14:39 1 04/03/25 14:39 1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		80 - 120		04/03/25 14:39	1
4-Bromofluorobenzene (Surr)	91		76 - 120		04/03/25 14:39	1
Dibromofluoromethane (Surr)	115		80 _ 123		04/03/25 14:39	1
Toluene-d8 (Surr)	103		80 - 120		04/03/25 14:39	1

Lab Sample ID: LCS 590-53238/1005 Matrix: Water Analysis Batch: 53238

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	9.71		ug/L		97	80 - 120	
Ethylbenzene	10.0	10.0		ug/L		100	80 - 122	
m,p-Xylene	10.0	9.60		ug/L		96	80 - 125	
o-Xylene	10.0	9.15		ug/L		91	80 - 130	
Toluene	10.0	9.94		ug/L		99	80 - 129	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		80 - 120
4-Bromofluorobenzene (Surr)	91		76 - 120
Dibromofluoromethane (Surr)	101		80 - 123
Toluene-d8 (Surr)	103		80 - 120

Lab Sample ID: LCSD 590-53238/6 Matrix: Water

Analysis Batch: 53238

1
Limit
15
35
35
35
35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		80 - 120
4-Bromofluorobenzene (Surr)	96		76 - 120
Dibromofluoromethane (Surr)	103		80 - 123
Toluene-d8 (Surr)	102		80 - 120

Page 17 of 27

Prep Type: Total/NA

Eurofins Spokane

RL

0.40

1.0

2.0

1.0

1.0

3.0

MDL Unit

0.093 ug/L

0.20 ug/L

0.28 ug/L

0.16 ug/L

0.31 ug/L

0.44 ug/L

Matrix: Water Analysis Batch: 53238 MB MB

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

--- ---

QC Sample Results

Lab Sample ID: MB 590-53201/10

Matrix: Water

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Prep Type: Total/NA

Client Sample ID: Method Blank

Analysis Batch: 53201															
-		мв	МВ												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Pr	repared	Analyzed	0	Dil Fac
Gasoline		ND			150		54	ug/L					04/01/25 17:29)	1
		MR	MB												
Surrogate	%Reco	verv	Qualifier	Lim	its						Pr	repared	Analyzed	г	Dil Fac
4-Bromofluorobenzene (Surr)	,	93		68.7 -	141					-		0,000	04/01/25 17:29	,	1
Lab Sample ID: LCS 590-53201/10	09									CI	ient	Sample	ID: Lab Contr	ol Sa	mple
Matrix: Water													Prep Type	: Tota	al/NA
Analysis Batch: 53201															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qua	ifier	Unit		D	%Rec	Limits		
Gasoline				1000		910			ug/L			91	80 - 120		
	LCS	LCS													
Surrogate %	Recoverv	Qual	lifier	Limits											
4-Bromofluorobenzene (Surr)	90			68.7 - 141											
Lab Sample ID: LCSD 590-53201/1	020								C	lient \$	Sam	ple ID: I	Lab Control Sa	mple	Dup
Matrix: Water													Prep Type	: Tota	al/NA
Analysis Batch: 53201															
				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	ifier	Unit		D	%Rec	Limits R	PD	Limit
Gasoline				1000		898			ug/L			90	80 - 120	1	20
	LCSD	LCS	ס												
Surrogate %	«Recoverv	Qual	- lifier	Limits											
4-Bromofluorobenzene (Surr)	92			68.7 - 141	-										
-												Client C			Rlank
Lab Sample ID: MB 590-53239/10												chent 3	ample ID: Metl	nod E	Juni
Lab Sample ID: MB 590-53239/10 Matrix: Water												Chefit 3	ample ID: Meti Prep Type	nod E : Tota	al/NA
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239												Cheffit 3	ample ID: Met Prep Type	nod E : Tota	al/NA
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239		МВ	МВ									Cheffit 3	ample ID: Met Prep Type	nod E : Tota	al/NA
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte	Re	MB esult	MB Qualifier		RL		MDL	Unit		D	Pr	repared	Cample ID: Met	nod E : Tota	al/NA Dil Fac
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline	Re	MB esult ND	MB Qualifier		RL 150		MDL 54	Unit ug/L		<u>D</u> .	Pr	repared	Analyzed	nod E : Tota	al/NA Dil Fac
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline	R6	MB esult ND	MB Qualifier MB		RL 150		MDL 54	Unit ug/L		<u>D</u>	Pr	repared	Analyzed	nod E : Tota 	Dil Fac
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate	Reco	MB esult ND MB very	MB Qualifier MB Qualifier		RL 150		MDL 54	Unit ug/L		<u>D</u>	Pr	repared	ample ID: Meti Prep Type - <u>Analyzed</u> 04/03/25 14:39 Analyzed	nod E : Tota 	al/NA Dil Fac 1 Dil Fac
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	Reco	MB esult ND MB very 91	MB Qualifier MB Qualifier		RL 150 <i>its</i> 141		MDL 54	Unit ug/L		<u>D</u>	Pr Pi	repared	Analyzed 04/03/25 14:39 _ Analyzed 04/03/25 14:39	nod E : Tota 	Dil Fac 1 Dil Fac 1
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	Reco	MB esult ND MB very 91	MB Qualifier MB Qualifier	Lim 68.7 -	RL 150 <i>its</i> 141		MDL 54	Unit ug/L		- <u>D</u> -	Pr Pi	repared	Analyzed 04/03/25 14:39 Analyzed 04/03/25 14:39	nod E : Tota 	Dil Fac 1 Dil Fac 1 Dil Fac 1
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-53239/100	Reco 	MB esult ND MB very 91	MB Qualifier MB Qualifier	Lim 68.7 -	RL 150 <i>its</i> 141		MDL 54	Unitug/L		CI	Pr Pi	repared repared Sample	Analyzed 04/03/25 14:35 Analyzed 04/03/25 14:35 04/03/25 14:35 04/03/25 14:35 01D: Lab Control	nod E : Tota 	Dil Fac 1 Dil Fac 1 Dil Fac 1 mple
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-53239/100 Matrix: Water		MB esult ND MB very 91	MB Qualifier MB Qualifier	Lim 68.7 -	RL 150 <i>its</i> 141		MDL 54	Unit ug/L		D CI	Pr Pr	repared repared Sample	Analyzed 04/03/25 14:36 - Analyzed 04/03/25 14:36 - Analyzed 04/03/25 14:36 ID: Lab Control Prep Type	nod E : Tota ol Sa : Tota	Dil Fac 1 Dil Fac 1 Dil Fac 1 mple al/NA
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-53239/100 Matrix: Water Analysis Batch: 53239	Reco 09	MB esult ND MB very 91	MB Qualifier MB Qualifier	Lim 68.7 -	RL 150 <i>its</i> 141		<u>MDL</u> 54	Unit ug/L		D CI	Pr Pr	repared repared Sample	Analyzed 04/03/25 14:39 Analyzed 04/03/25 14:39 ID: Lab Contro Prep Type	nod E : Tota ol Sa : Tota	Dil Fac 1 Dil Fac 1 mple al/NA
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-53239/100 Matrix: Water Analysis Batch: 53239	Re 	MB esult ND MB very 91	MB Qualifier MB Qualifier	<i>Lim</i> 68.7 -	RL 150 <i>its</i> 141	LCS	MDL 54	Unit ug/L		CI	Pr Pr	repared repared Sample	Analyzed 04/03/25 14:35 - Analyzed 04/03/25 14:35 - Analyzed 04/03/25 14:35 HD: Lab Control Prep Type %Rec	nod E : Tota ol Sa : Tota	Dil Fac 1 Dil Fac 1 Dil Fac 1 mple al/NA
Lab Sample ID: MB 590-53239/10 Matrix: Water Analysis Batch: 53239 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-53239/100 Matrix: Water Analysis Batch: 53239 Analyte	Reco 09	MB esult ND MB very 91	MB Qualifier MB Qualifier		RL 150 its 141	LCS Result	MDL 54	Unit ug/L	Unit	CI	Pr Pi ient	repared Sample	Analyzed 04/03/25 14:39 04/03/25 14:39 04/03/25 14:39 01/03/25 14:39 01/03/25 14:39 01/03/25 14:39 02/03/25 14:39 03/03/25 14:39 04/03/25 14:39	nod E : Tota ol Sa : Tota	Dil Fac 1 Dil Fac 1 mple al/NA

Surrogate%RecoveryQualifierLimits4-Bromofluorobenzene (Surr)9368.7 - 141

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCSD 590-532 Matrix: Water Analysis Batch: 53239	239/1020				Clie	ent Sam	iple ID: I	Lab Contro Prep T	I Sample ype: Tot	e Dup tal/NA	
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline			1000	922		ug/L		92	80 - 120	0	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	93		68.7 - 141								

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Lab Sample ID: 590-30157-1 Matrix: Water

Lab Sample ID: 590-30157-3

Lab Sample ID: 590-30157-4

Lab Sample ID: 590-30157-5

Lab Sample ID: 590-30157-6

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 03/25/25 12:00 Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		100	43 mL	43 mL	53238	04/03/25 15:21	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	53239	04/03/25 15:00	JSP	EET SPK

Client Sample ID: AMW-2-032525 Date Collected: 03/25/25 13:20 Date Received: 03/27/25 13:30

Client Sample ID: AMW-01-032525

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		10	43 mL	43 mL	53238	04/03/25 15:42	JSP	EET SPK
Total/NA	Analysis	8260D		100	43 mL	43 mL	53238	04/03/25 16:03	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 18:54	JSP	EET SPK

Client Sample ID: AMW-3-032525

Date Collected: 03/25/25 13:50 Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 19:15	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 19:15	JSP	EET SPK

Client Sample ID: AMW-4-032525

Date Collected: 03/25/25 10:35

Date Received: 03/27/25 13:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 19:36	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 19:36	JSP	EET SPK

Client Sample ID: MW-2-032625

Date Collected: 03/26/25 16:05

Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 19:57	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	53238	04/03/25 16:24	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 19:57	JSP	EET SPK

Client Sample ID: MW-3-032625

Date Collected: 03/26/25 15:15 Date Received: 03/27/25 13:30

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Amount Amount Number or Analyzed Run Factor Analyst Lab Total/NA Analysis 8260D 43 mL 43 mL 53200 04/01/25 20:18 JSP EET SPK 1 Total/NA Analysis 8260D 10 43 mL 43 mL 53238 04/03/25 16:45 JSP EET SPK Analysis NWTPH-Gx 43 mL EET SPK Total/NA 1 43 mL 53201 04/01/25 20:18 JSP

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Lab Sample ID: 590-30157-7 Matrix: Water

Lab Sample ID: 590-30157-8

Lab Sample ID: 590-30157-9

Lab Sample ID: 590-30157-10

Date Collected: 03/26/25 13:35 Date Received: 03/27/25 13:30

Client Sample ID: MW-4-032625

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 20:39	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 20:39	JSP	EET SPK

Client Sample ID: MW-5-032625 Date Collected: 03/26/25 15:00 Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		100	43 mL	43 mL	53238	04/03/25 17:27	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	53239	04/03/25 17:27	JSP	EET SPK

Client Sample ID: MW-6-032625

Date Collected: 03/26/25 11:10

Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 21:42	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	53238	04/03/25 17:48	JSP	EET SPK
Total/NA	Analysis	8260D		100	43 mL	43 mL	53238	04/03/25 18:30	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	53239	04/03/25 17:48	JSP	EET SPK

Client Sample ID: MW-7-032625

Date Collected: 03/26/25 17:30

Date Rece	ived:	03/27/25	13:30
-----------	-------	----------	-------

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 22:03	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 22:03	JSP	EET SPK

Client Sample ID: MW-8-032625

Date Collected: 03/26/25 09:50

Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 22:24	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 22:24	JSP	EET SPK

Client Sample ID: MW-9-032525

Date Collected: 03/25/25 14:10

Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 22:45	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 22:45	JSP	EET SPK

Matrix: Water

Matrix: Water

8

Matrix: Water

Lab Sample ID: 590-30157-11 Matrix: Water

Lab Sample ID: 590-30157-12

Matrix: Water

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Lab Sample ID: 590-30157-13 Matrix: Water

Date Collected: 03/25/25 08:00 Date Received: 03/27/25 13:30

Client Sample ID: DUP-032525

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		100	43 mL	43 mL	53238	04/03/25 19:13	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	53239	04/03/25 19:13	JSP	EET SPK

Client Sample ID: Marcus Whitman Sump Date Collected: 03/27/25 09:05 Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 23:27	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	53238	04/03/25 19:34	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 23:27	JSP	EET SPK

Client Sample ID: Bldg 106 Sump

Date Collected: 03/27/25 08:40 Date Received: 03/27/25 13:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	Number or Analyzed		Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	53200	04/01/25 23:48	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	53238	04/03/25 19:55	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	53201	04/01/25 23:48	JSP	EET SPK

Client Sample ID: Trip Blank Date Collected: 03/25/25 00:00 Date Received: 03/27/25 13:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab EET SPK Total/NA Analysis 8260D 43 mL 43 mL 53238 04/03/25 20:37 JSP 1 04/02/25 00:09 Total/NA Analysis NWTPH-Gx 1 43 mL 43 mL 53201 JSP EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: 590-30157-14 Matrix: Water

1			
ed	Analyst	Lab	
27	JSP	EET SPK	
34	JSP	EET SPK	

Lab Sample ID: 590-30157-15

Matrix: Water

Lab Sample ID: 590-30157-16

Matrix: Water

8

Accreditation/Certification Summary

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01 Job ID: 590-30157-1

Laboratory:	Eurofins	Spokane
-------------	-----------------	---------

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-26

Method Summary

Client: GeoEngineers Inc Project/Site: Stillwater Holdings Chevron/0504-202-01

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	EET SPK
5030C	Purge and Trap	SW846	EET SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins Eaton Analyitcal -Gauth Bond

Chain of Custody Record

11922 E 1st Ave

Spokane, WA 99206 Phone (509) 924-9200

Client Information	Sampler Matthow Kowfman	Sampler Mothew Koufman				Lab PM: Bandea Arrington							COC No:		
Client Contact:	Phone:	E			hail:								Page:		
Melissa Hoskamp	509-979-1537				oskamp@geoengineers.com								Page 1 of 3		
GeoEngineers		11012.		Analysis Req						k			000 #.		
Address. 523 W 2nd Ave	Due Date Requested:									T			Preservation Cod	es: M Hevane	
City:	TAT Requested (days):			10 a a a a									A HCL B NaOH	N None	
State, Zip:	Siand	laro											C Zn Acetate D Nitric Acid	P Na2O4S	
WA, 99202	Compliance Project: A Yes	Δ No											E NaHSO4 F MeOH	R Na2S203	
Phone:	PO #·												G Arnchlor H Ascorbic Acid	T TSP Dodecahydrate	
Email;	WO #:			ž S									i ice J Di Water	V MCAA	
Project Name:	Project #:		¥	S N								ners	K EDTA	W pH 4-5 Y Trizma	
Stillwater Holdings Chevron	0504-202-01			a Se								ontai	Other	Z other (specify)	
Walla Walla Wa				ds		Ì						6			
r		Sample Mat	trix	MSM	₽							ре́			
	Sample	Type (w-w	nater Diid,	E E	IdI +							N N			
Sample Identification	Sample Date Time	G=grab) BT=Tissue	e, A=Alr)	Fer	BTE							Tota	Special In:	structions/Note.	
		Preservation Co	ode: 🔰	$\langle X \rangle$	A					Ţ		$\mid \mid \mid \mid \mid \mid$			
AMW-01-032525	3/15/25 1200	G u)		8							7			
AMW-2-032525	3/25/25 1320				X							3			
AMW 3 - 032525	3/15/25 1350				x							3			
A-MW-4-032525	3/15/25 1035				X							3			
MW-2-032425	3/26/25 1605				×							3			
MW-3 - 032625	3/26/25 1515				X							3		<u></u>	
MW-4-032625	3/24/25 1335				×							3			
MW-5-032525	2/25/25 1500				x							3			
MW-6-032425	3/26/25 1110				x							3			
MW-7-032625	3 24/25- 1730				X							-3	590-30157	Chain of Custody	
MW-8-031425	3/26/25 0950				×							3		onum of ouslody	
Possible Hazard Identification				San	nple Dispo	osal (i	A fee ma	iy be a	ssessed	l if sam	ples are	e retain	ed longer than 1	nonth)	
Non-Hazard Flammable Skin Trritant	Poison B Unknown	Radiological		Spa	Return :	To Clié	nl OC Beau	X D	isposal i	By Lab		Arch	ive For	_ Months	
				Ope		500/115/	ao nequ	an enhen							
Empty Kil Relinquished by	Date ⁻	lo.	T	ime:	0				Met	hod of Sh	pment:				
menerguisred by:	3/27/15 1330	Company	13		Received by: Covon Reame			,	D		27/a	25 13470	ELISPO		
Relinquished by:	Date/Time:	Compan	ly		Received by:					- D	ate/Time:			Company	
Relinquished by:	Date/Time:	Compan	ıy		Received by:						ale/Time:			Company	
Custody Seals Intact: Custody Seal No. Δ Yes Δ No						Cooler Temperature(s) °C and Other Remarks:									

Eurofins Eaton Analyitcal South Bond

Chain of Custody Record

11922 E 1st Ave Spokane, WA 99206

Phone (509) 924-9200																						
Client Information	Sampler Lab Matthew Kaufman Ra				Lab PM: Rande	M: dee Arrington						Carrier Tracking No(s):						C	OC No:			
Client Contact: Melissa Roskamp	Phone: E- 509-979-1537 <u>II</u>				E-Mail: mroski	i: Sta kamp@geoengineers.com W.							State WA	State of Origin: WA					Page: Page:Lof J			
Company: GeoEngineers	PWSID:					Analysis Rec								quested						ob #:		
Address; 523 W 2nd Ave	Due Date Request	ed:																	P	Preservation Cod	es	
City:	TAT Requested (d	ays):					:												A	A HCL	M Hexane N None	
Spokane		Stand	lard																Ċ	C Zn Acetate	O AsNaO2 P Na2O4S	
State, Zip: WA, 99202	Compliance Proje	cl. & Yes	A No		-														E	D Nitric Acid E NaHSO4	Q Na2SO3 R Na2S2O3	
Phone:	PO #:																		6	- MeOH G Amchtor H Ascorbic Acid	S H2SO4 T TSP Dodecal	hydrate
Emai	WO #:					200]]	Ice J DI Water	U Acetone V MCAA	
Project Name:	Project #:				-	S N												Ler,	ĸ	K EDTA	vv pH4-5 Y Trizma	
Stillwater Holdings Chevron	0504-202-01																	Į		LEDA	Z other (specify	0
Site: Walls Walla, Wa	SSOW#:				, mes	Samp SD (Y												of co	; [°)ther		
			Sample	Matri	ix 3		5											ber	1			
			Туре	(Wewate	er, 1		H											N CI				
		Sample	(C=Comp,	O=waste/	s. /oi		ă											la la				
Sample Identification	Sample Date	Time	G=grab)	BT=Tissue, /	A=Air)ü	Ĩ	Ē			-+		_						-Ę	╆	Special In	structions/No	ie.
			rieservi	alion Coo		¥	A			+	_	·	+		-+	-	+	-Y	¥			
MW-9-032525	3/25/25	1410	6		<u> </u>		X	_										3	-			
000 031525	3/25/25	0800	└ / /		\rightarrow	_	$ \lambda $						+		_			2	\bot			
Marcus whither Sump	3/11/25	0805					X	ļ	ļ									2				
Blogloce Sump	3/27/25	0940		1			X											3				
Trip Black							X											1				
							T											Τ	Τ			
Possible Hazard Identification						Sa	mple	e Disj	posal	(Af	lee ma	y be	asses	sed if	i san	ples	are r	etain	ned	l longer than 1	month)	
Non-Hazard Flammable Skin Trritant Po	ison B ^{€]} Unkr	iown	Radiologica	al			F	Return	1 То С	lient		<u>_</u> X_	Dispo	sal By	Lab		i	Arch	hive	9 For	Months	
Deliverable Requested: II, III, IV Other (specify) IIB						Sp	ecial	Instr	uclion	s/QC	Requ	uireme	ents:									
Empty Kit Relinquished by		Date:			Т	lime:								Methor	d of SI	hipmer	d:					
Relinquished by	Date/Time: 27.7.0		Сотрађу	<u> </u>		Rec	eived b	y: Sar	1/11	Der		~		1)ate/Ti ੨	me: / 2_1	7/8		- 13130	Company RFT	(Pa	
Relinquished by:	Date/Time:			Company	<i>i 1</i>		Rece	eived b	y:	((0 10	-0-		Ī	Date/Ti	me:	- / G		Company		
Relinquished by:	Date/Time:			Company			Rec	elved b	y:					Date/Time:							Company	
Custody Seals Intact: Custody Seal No. Δ Yes Δ No						Cooler Temperature(s) °C and Other Remarks:																

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 30157 List Number: 1

Creator: Desimone, Carson

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-30157-1

List Source: Eurofins Spokane

Appendix C Report Limitations and Guidelines for Use

Appendix C Report Limitations and Guidelines for Use¹

This appendix provides information to help you manage your risks with respect to the use of this report.

ENVIRONMENTAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES, PERSONS AND PROJECTS

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

THIS ENVIRONMENTAL REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

This report has been prepared for the Stillwater Holdings Chevron cleanup site located at 7 East Rose Street in Walla Walla, Washington (the "Site"). GeoEngineers considered a number of unique, projectspecific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

RELIANCE CONDITIONS FOR THIRD PARTIES

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services

File No. 0504-202-01

have been executed in accordance with our Agreement with Ecology and generally accepted environmental practices in this area at the time this report was prepared.

ENVIRONMENTAL REGULATIONS ARE ALWAYS EVOLVING

Some substances may be present in the Site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject Site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

UNCERTAINTY MAY REMAIN EVEN AFTER THIS PHASE II ESA IS COMPLETED

No environmental site assessment can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

SUBSURFACE CONDITIONS CAN CHANGE

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

MOST ENVIRONMENTAL FINDINGS ARE PROFESSIONAL OPINIONS

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the Site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted, or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the Site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

DO NOT REDRAW THE EXPLORATION LOGS

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable but recognize that separating logs from the report can elevate risk.

READ THESE PROVISIONS CLOSELY

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could

lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

GEOTECHNICAL, GEOLOGIC AND GEOENVIRONMENTAL REPORTS SHOULD NOT BE INTERCHANGED

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

BIOLOGICAL POLLUTANTS

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

