

10 February 2020

Ms. Sandra Treccani Site Manager Washington State Department of Ecology 4601 North Monroe Street Spokane, Washington 99205

Subject: Second Semiannual 2019 Groundwater Sampling Results

BNSF Railway Company, Parkwater Rail Yard

Spokane, Washington

KJ 1996110.00

Dear Ms. Treccani:

This letter summarizes the monitoring activities and presents the field and laboratory results for samples collected during the second semiannual 2019 groundwater sampling event at the BNSF Railway Company (BNSF) Parkwater Rail Yard (Site) located in Spokane, Washington.

Background

Cleanup work at the Site is being implemented under Consent Decree No. 12202548-1 between BNSF and the Washington State Department of Ecology (Ecology). A soil and groundwater remediation system operated at the Site from March 2009 to May 2016. Ecology approved a request to shut down the remediation system and continue with a reduced groundwater monitoring schedule in a letter dated 26 January 2016.

Groundwater monitoring activities are conducted in accordance with the Compliance Monitoring Plan (CMP) included in the Engineering Design Report (EDR)¹. As specified in the CMP, the reduced monitoring will be conducted on monitoring wells MW-6, MW 7, MW-14, and MW-19 (Fueling Area wells) for a minimum of four consecutive quarters. According to the CMP, groundwater monitoring "will be ceased in the Fueling Area wells after the remediation system has been shut down for one full year and laboratory data from four consecutive quarters of monitoring indicate diesel-range organics (DRO) and arsenic concentrations in groundwater samples are less than cleanup criteria." Four consecutive quarters of monitoring were conducted following the shutdown of the remediation system in 2016. In a letter dated 28 August 2017, BNSF requested that the frequency of groundwater monitoring and cap integrity inspections be reduced from quarterly to semiannual (second and fourth quarter each year). Ecology approved the proposed sampling reduction in a letter dated 25 September 2017.

Field Activities

The second semiannual 2019 groundwater sampling event was conducted on 25 November 2019. Well MW-6 was inaccessible due to trains parked in the vicinity of the well during multiple site visits in November 2019. Therefore, MW-6 was sampled on 8 January 2020. Groundwater monitoring activities included measuring depth-to-water in monitoring wells, then purging groundwater from each well using a

¹ GeoEngineers. 2013. Engineering Design Report, BNSF Parkwater Rail Yard Site, Spokane, Washington.

Ms. Sandra Treccani Washington State Department of Ecology 10 February 2020 Page 2

stainless steel bladder pump and collecting groundwater samples. Purging and sampling was conducted in general conformance with the U.S. Environmental Protection Agency's (EPA) low-flow groundwater sampling procedures².

Groundwater samples were collected in accordance with the requirements of the CMP, and stored in a cooler containing crushed ice until being delivered to Pace Analytical National Center for Testing & Innovation, of Mt. Juliet, Tennessee (Pace National), a Washington State-accredited environmental laboratory, under appropriate chain-of-custody. Samples were analyzed by Pace National for DRO by Method NWTPH-Dx with silica gel cleanup (SGC) and total arsenic by EPA Method 6020.

Results

Depth-to-groundwater measurements and calculated groundwater elevations are summarized in Table 1 and presented on Figure 1. Water quality parameters measured during groundwater purging are summarized in Table 2, and monitoring well purge forms are included in Attachment A. Analytical results are summarized in Table 3 and are presented on Figure 2 (arsenic and DRO), and the laboratory reports are included in Attachment B. The laboratory reports were reviewed for quality control/quality assurance purposes and the data found to be acceptable for its intended purpose. Data validation reports are included in Attachment B.

Groundwater elevation measurements indicate a west to west-northwest groundwater flow direction with an average hydraulic gradient of 0.0022 feet per foot. This is consistent with the groundwater flow direction observed during previous monitoring events at the Site.

During the November 2019/January 2020 sampling event, concentrations of total arsenic ranged from 0.00217 milligrams per liter (mg/L) in well MW-6 to 0.00496 mg/L in well MW-19. Concentrations of total arsenic during the event were not above the cleanup level (0.005 mg/L) established in the EDR. DRO was not reported above its laboratory reporting limit in the four samples.

Monitoring wells MW-6, MW-7, MW-14 and MW-19 were redeveloped in April 2019 until a turbidity below 10 nephelometric turbidity units (NTU) was achieved. Elevated turbidity levels were observed in each well during the second semiannual 2019 event, ranging from 17.8 NTU in well MW-6 to 33.0 NTU in well MW-19.

Previously reported total arsenic concentrations above the Site-specific cleanup level are generally associated with elevated turbidity, indicating that elevated arsenic concentrations are likely associated with the suspended sediment and not representative of groundwater quality. Groundwater samples collected with turbidity less than 5 NTU have reported total arsenic concentrations below the cleanup level in all but one of 23 samples. Elevated turbidity measurements above 5 NTU (up to 75.70 NTU in MW-19) have been observed in 13 samples (one or more from wells MW-6, MW-7, MW-14, and

² U.S. Environmental Protection Agency, Region 1. 1996. Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells, EPA SOP No. GW 0001, Revision No. 2, July 30.

Ms. Sandra Treccani Washington State Department of Ecology 10 February 2020 Page 3

MW-19), with total arsenic concentrations above the EDR Site-specific cleanup level in five of the 13 samples.

Summary

In the four consecutive sampling events conducted since June 2018, total arsenic has been reported at concentrations above the Site-specific cleanup level in one monitoring well during the first semiannual 2018 event (MW-19) and two wells during the second semiannual 2018 event (MW-6 and MW-14). Total and dissolved (sampled in May 2019) arsenic concentrations were below the Site-specific cleanup levels in the two semiannual 2019 events. DRO has not been reported at concentrations above the Site-specific cleanup levels since November 2016.

Please contact us at (503) 423-4018 if you have questions regarding the above information.

Very truly yours,

Kennedy/Jenks Consultants, Inc.

Olice Rolinson

Ryan Hultgren, P.E. Principal Engineer 10/2020

Alice Robinson Project Engineer

CC:

Shane DeGross, BNSF Railway Company

Attachments:

Table 1 – Groundwater Elevation Summary 25 November 2019

Table 2 – Water Quality Parameters Summary

Table 3 – 2016-2019 Groundwater Analytical Results Summary

Figure 1 – Groundwater Potentiometric Map, 25 November 2019

Figure 2 – Groundwater Results Map, 2016-2019

Attachment A – Spokane Environmental Services Monitoring Well Sampling Field Log

Attachment B – Laboratory Analytical Report and Chain-of-Custody Documentation

Tables

TABLE 1

GROUNDWATER ELEVATION SUMMARY

25 November 2019 BNSF Parkwater Rail Yard Spokane, Washington

Well Number	Date	Top of Casing Elevation (feet) ^(a)	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet amsl) ^(a)
MW-4	11/25/2019	1,950.76	66.08	1,884.68
MW-6	01/08/2020	1,951.04	67.31	1,883.73
MW-7	11/25/2019	1,951.13	67.47	1,883.66
MW-11	11/25/2019	1,951.20	70.19	1,881.01
MW-14	11/25/2019	1,951.41	68.20	1,883.21
MW-16	11/25/2019	1,950.44	67.90	1,882.54
MW-19	11/25/2019	1,951.24	67.52	1,883.72

Notes:

(a) Elevations are referenced to the North American Vertical Datum of 1988 (NAVD 88).

btoc = below top of casing

amsl = above mean sea level

NM = not measured

Monitoring well MW-6 was not accessible on 25 November 2019. The well was gauged on 8 January 2020.

TABLE 2

WATER QUALITY PARAMETERS SUMMARY BNSF Parkwater Rail Yard, Spokane, Washington

Monitoring Well ID	Sample		Water Quality Parameters Dissolved									
well iD	Collection Date	рН	Conductivity (mS/cm)	Turbidity (NTU)	Temperature (°C)	Dissolved Oxygen (mg/L)	ORP (mV)					
	03/15/2016	7.37	0.278	0.72	11.17	1.34	76.4					
		7.41	0.278	1.63	12.59	1.03	83.9					
	05/24/2016											
	08/17/2016 11/07/2016	7.40 6.79	0.255 0.412	5.78 1.21	14.37 12.66	6.56 0.60	14.8 -20.1					
				2.46	12.66		-					
MW-6	03/08/2017	7.22	0.265			1.82	44.9					
	11/06/2017	7.18	0.232	2.74 0.0	11.03	2.91	72.5					
	06/28/2018	7.57	0.286		15.77	0.00	35.0					
-	12/05/2018	6.98	0.301	46.9	11.09	1.33	243.0					
-	05/14/2019	7.42	0.266	0.0	13.18	0.00	101.0					
	01/08/2020	6.50	0.271	17.8	10.31	0.00	170.0					
_	03/15/2016	7.70	0.252	2.82	11.37	5.32	101.8					
_	05/24/2016	7.69	0.250	2.45	12.95	7.69	-72.9					
=	08/17/2016	7.87	0.244	3.42	15.11	7.77	38.8					
=	11/07/2016	7.53	0.255	0.23	11.93	6.45	83.6					
MW-7	03/08/2017	7.32	0.290	2.77	10.29	4.46	51.5					
_	11/06/2017	7.88	0.251	7.79	11.33	5.89	73.9					
_	06/28/2018	7.82	0.275	0.0	14.91	1.78	131.0					
_	12/05/2018	7.63	0.290	5.2	10.87	4.25	258.0					
_	05/14/2019	7.28	0.260	0.0	12.78	4.54	138.0					
	11/25/2019	8.00	0.340	25.5	7.41	7.70	36.0					
	03/15/2016	7.64	0.251	0.00	10.21	7.26	75.8					
	05/24/2016	7.72	0.252	2.48	13.27	7.84	45.5					
	08/17/2016	7.48	0.261	2.92	17.13	5.12	17.2					
	11/07/2016	7.00	0.372	0.88	12.64	1.47	-24.3					
MW-14	03/08/2017	7.14	0.265	11.71	9.35	7.11	65.3					
10100-14	11/06/2017	7.52	0.289	13.59	8.96	3.58	33.3					
	06/28/2018	8.02	0.261	0.0	17.12	5.15	173.0					
	12/05/2018	7.21	0.339	7.8	10.58	1.98	155.0					
	05/14/2019	7.64	0.253	0.0	12.93	5.64	55.0					
	11/25/2019	7.63	0.451	31.4	7.20	11.90	0.0					
	03/15/2016	7.90	0.243	1.43	11.06	9.25	114.3					
	05/24/2016	7.91	0.242	1.25	13.17	9.72	81.5					
	08/17/2016	7.71	0.251	1.47	17.05	8.45	40.7					
	11/07/2016	7.57	0.256	1.37	12.20	7.96	114.9					
NAVA / 40	03/08/2017	7.54	0.252	4.41	10.12	9.21	59.5					
MW-19	11/06/2017	7.72	0.255	5.67	10.63	7.53	78.6					
	06/28/2018	7.97	0.264	75.7	12.28	0.60	125.0					
	12/05/2018	7.55	0.285	1.6	10.74	4.59	287.0					
	05/14/2019	7.93	0.247	0.0	12.95	4.77	113.0					
	11/25/2019	8.09	0.329	33.0	10.03	8.44	65.0					

Notes:

mS/cm = milliSiemens per centimeter.

NTU = nephelometric turbidity units.

°C = degrees Celsius.

mg/L = milligrams per liter.

ORP = oxidation-reduction potential.

mV = millivolts.

TABLE 3

2016-2019 GROUNDWATER ANALYTICAL RESULTS SUMMARY BNSF Parkwater Rail Yard, Spokane, Washington

Monitoring Well ID ^(a)	Date	Total Arsenic ^(b) (mg/L)	Dissolved Arse (mg/L)	nic ^(b)	Diesel-Range Organics ^(c) (mg/L)	Turbidity (NTU)
MW-6	03/15/2016	0.002 U	0.002	U	0.488	0.72
	05/24/2016	0.002 U			0.201	1.63
	08/17/2016	0.00505			0.131 B	5.78
	11/07/2016	0.00450			1.560	1.21
	03/08/2017	0.00323			0.250 U	2.46
	11/06/2017	0.00139 J			0.095 J	2.74
	06/28/2018	0.00334			0.200 U	0.0
	12/05/2018	0.02090			0.096 J	46.9
	05/14/2019	0.00131 J	0.0014	J	0.200 U	0.0
	01/08/2020	0.00217		_	0.200 U	17.8
MW-7	03/15/2016	0.00336	0.0032		0.153	2.82
	05/24/2016	0.00485			0.138	2.45
	08/17/2016	0.00548			0.100 U	3.42
	11/07/2016	0.00342			0.250 U	0.23
	03/08/2017	0.00200 U			0.250 U	2.77
	11/06/2017	0.00200 0			0.200 U	7.79
	06/28/2018	0.00370	-		0.200 U	0.0
	12/05/2018	0.00388			0.200 U	5.2
	05/14/2019	0.00493	0.00334		0.200 U	0.0
	11/25/2019	0.00303	0.00334		0.200 U	25.5
MW-14	03/15/2019		0.00272/0.00279		0.100/0.100 U	0.0
IVIVV-14		0.00283/0.00289 ^(d)			· · · · · · · · · · · · · · · · · · ·	
	05/24/2016	0.00423/0.00397	/		0.100/0.100 U	2.48
	08/17/2016	0.00445/0.00371	/		0.100/0.112 U/B	2.42
	11/07/2016	0.00223/0.00225	/		0.647/0.648	0.88
	03/08/2017	0.0104/0.0107	/		0.250/0.250 U/U	11.71
	11/06/2017	0.00286/0.00295	/		0.200/0.200 U	13.59
	06/28/2018	0.00482/0.00474	/		0.200/0.200 U	0.0
	12/05/2018	0.00548/0.00331	/		0.200/0.200 U	7.8
	05/14/2019	0.00323/0.00358	0.00321/0.00313		0.200/0.200 U	0.0
	11/25/2019	0.00381/0.00390	/		0.106/0.107 J/J	31.4
MW-19	03/15/2016	0.00394	0.00455		0.100 U	1.43
	05/24/2016	0.00416			0.100 U	1.25
	08/17/2016	0.00367			0.100 U	1.47
	11/07/2016	0.00334			0.250 U	1.37
	03/08/2017	0.00387			0.250 U	4.41
	11/06/2017	0.00302			0.200 U	5.67
	06/28/2018	0.00564			0.200 U	75.7
	12/05/2018	0.00389			0.200 U	1.6
	05/14/2019	0.00432	0.00467		0.200 U	0.0
	11/25/2019	0.00496			0.200 U	33.0
Field Blank	03/15/2016	0.002 U	0.002	U	0.100 U	
	05/24/2016	0.002 U			0.100 U	
	08/17/2016	0.002 U			0.100 U	-
	11/07/2016	0.002 U			0.250 U	-
5	03/08/2017	0.002 U			0.250 U	-
Rinsate Blank	03/15/2016	0.002 U	0.002	U	0.100 U	-
	05/24/2016	0.002 U			0.218	-
	08/17/2016	0.002 U			0.100 U	
	11/07/2016	0.002 U			0.250 U	
	03/08/2017	0.002 U			0.250 U	
	05/14/2019	0.002 U		<u></u>	0.200 U	-
EDR Site-Specific Cle	eanup Levels	0.005	0.005		0.5	

TABLE 3 Page 2 of 2

2016-2019 GROUNDWATER ANALYTICAL RESULTS SUMMARY BNSF Parkwater Rail Yard, Spokane, Washington

Notes:

- (a) Samples analyzed by ESC Lab Sciences Inc., Mt. Juliet, Tennessee (now Pace National).
- (b) Total and dissolved arsenic analyzed using U.S. Environmental Protection Agency Method 6020.
- (c) Diesel-range petroleum hydrocarbons analyzed using Northwest Method NWTPH-Dx with silica-gel cleanup during 2016, November 2017, 2018, and 2019 sampling events. Diesel-range petroleum hydrocarbons analyzed using Northwest Method NWTPH-Dx without silica-gel cleanup during the March 2017 sampling event.
- (d) Where two values are displayed for the same date, the second value is the analytical result for a duplicate sample.

Bold indicates detected concentration above the EDR Site-Specific cleanup level.

mg/L = milligrams per liter.

- U = not detected at a concentration greater than or equal to the listed laboratory reporting limit.
- B = The sample analyte is found in the associated blank.
- J = Analyte concentration is an estimated value less than the laboratory reporting limit.
- -- = not sampled

Rinsate blank was collected by pumping distilled water through the sampling pump after it was decontaminated.

NTU = nephelometric turbidity units.

Figure**s**

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Legend

Monitoring Well, Groundwater Elevation, Sample Collected

Monitoring Well, Groundwater Elevation Only

Monitoring Well, Groundwater Not Measured

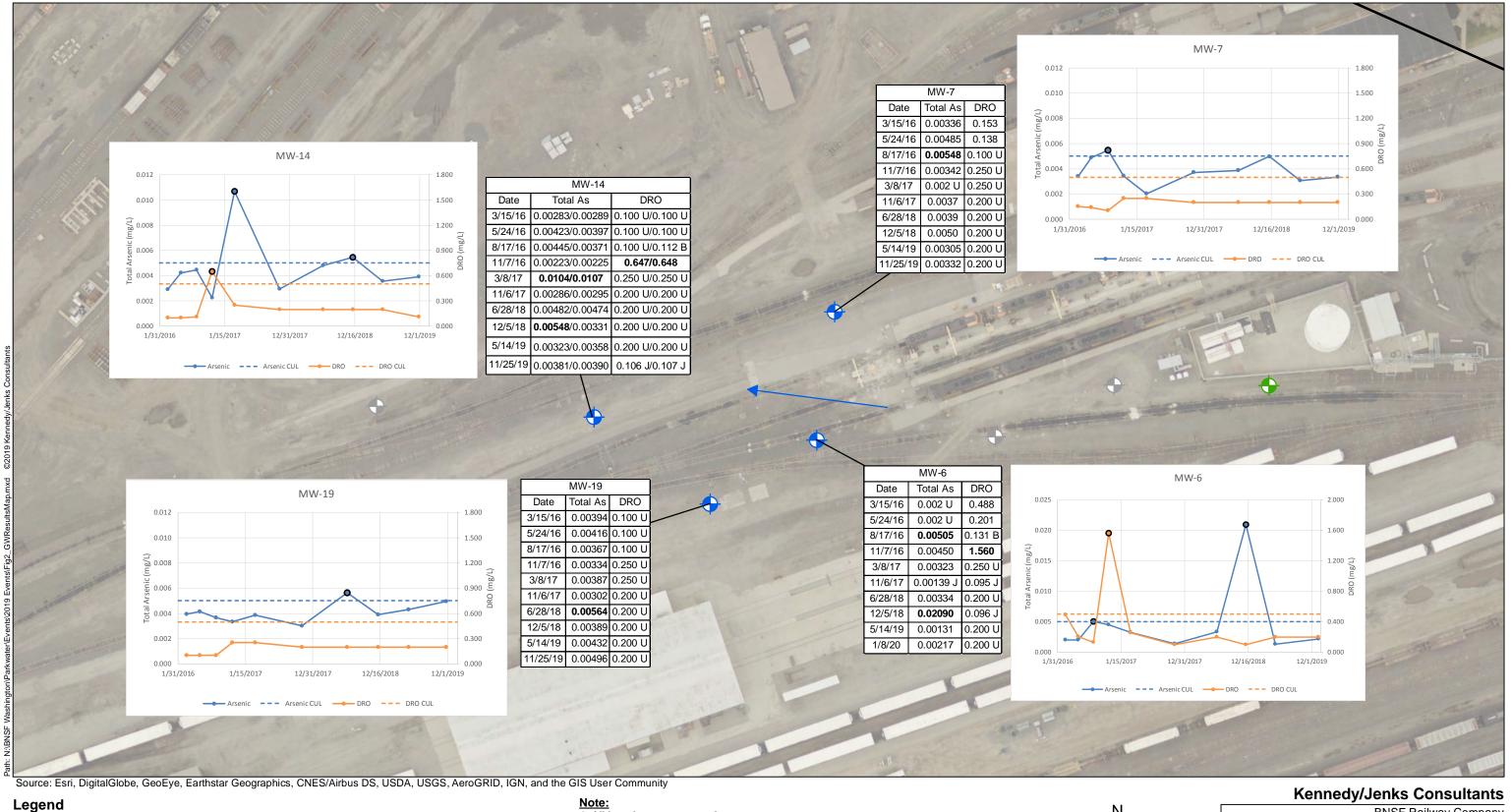
Groundwater Contour (Dashed Where Inferred)

Approximate Direction of Hydraulic Flow

Note

- 1. All locations are approximate.
- 2. Groundwater elevation measured in feet above mean sea level.
- 3. Groundwater elevations are relative to the NAVD 88 Datum.
- 4. * = Groundwater elevation measured on 8 January 2020; not included in contouring.

Kennedy/Jenks Consultants


BNSF Railway Company Parkwater Railyard Spokane, Washington

Groundwater Potentiometric Map 25 November 2019

> 1996110*00 January 2020

> > Figure 1

1883.91 Groundwater Elevation

Monitoring Well, Groundwater Elevation, Sample Collected

Approximate Direction of

Hydraulic Flow

Monitoring Well, Groundwater Elevation Only

Monitoring Well, Groundwater Not Measured

- 1. All locations are approximate.
- 2. Groundwater results are in milligrams per liter (mg/L).
- 3. DRO = Diesel-Range Organics.
- Total As = Total Arsenic.
- CUL = Cleanup Level.
- U = Below the laboratory reporting limit.
- B = Analyte is found in the associated blank.
- J = Concentration is estimated value above the laboratory detection limit and less than the laboratory reporting limit.
- 4. Duplicate samples collected from MW-14.
- 5. Black outline on chart symbols indicates detected concentration exceeds the Site-Specific cleanup level for arsenic (0.005 mg/L) or DRO (0.5 mg/L).

BNSF Railway Company Parkwater Railyard Spokane, Washington

Groundwater Results Map 2016-2019

1996110*00 January 2020

Figure 2

Attachment A

Spokane Environmental Services Monitoring Well Sampling Field Log

Well Number: WW-11

MW-14

Date: 11/25/19

Project Information Park water Project Name: Project Number: Sampling Information GP Field Team: Purge Method: Low Flow Sampling Method: Low Flow Water Quality Meter: Model: U-52 Serial Number: 66428 Purge Water Disposition: OWS Comments

Well Constru	uction Inform	ation				
Stick-up	or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)		
F		2	~75			
Monitoring I	nformation					
	DTW otoc)	1. 1. 27, 24, 24, 22, 23, 24	ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv		
68.2	ð					
Sample Con	tainers				42	
Number	Туре	Prese	ervative	Analytical Parameters	Filtered?	
2	VON	He	L	DX		
1	Poly	Hc N:h		AS	-	
					-	

Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 ⊔min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks		
	Pump On		(8.20	10-10	±3%	±10%	±0.1	±10mv	±10%	<= Stabilization Criteria		
5				5.67	550	21.31	8.19	61	45.5			
ID				6.25	519	5.30	8.01	36	40.5			
15				4.65	478	3.10	7.84	20	35.1			
20				6.96	455	12.19	7.70	10	31.8			
				7.00	452	12.01	7.68	5	32.1			
30				1.02	451	11.96	7.60	0	30.7			
35				7.20	451	11.90	7.63	6	31.4			
	Start Sampling / 630			Sample ID:	MW-14	1-112519	1	Sample Time	: 1030			
	End Sampling	1035				QA/QC Sample ID: DUP 1125 19				QA/QC Sample Time:		

Well Number: WW - 7

te: 11-25-19

Project Information Parlwater Project Name: Project Number: Sampling Information GP Field Team: Purge Method: Low Flow Sampling Method: Low Flow Water Quality Meter: Model: U-52 Serial Number: 66428 Purge Water Disposition: OWS Comments Soft Bottom - DEATH Approx.

Well Constr	ruction Inform	nation			
Stick-up or Flush		Well Diameter (in) Total Depth (ft btoc)		Screen Interval (ft bgs or btoc)	
F		2	175.5		
Monitoring	Information				
	il DTW btoc)	A CONTRACTOR OF THE PARTY OF TH	ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv	al)
67.	47				
Sample Cor	ntainers				2P
Number	Туре	Prese	ervative	Analytical Parameters	Filtered?
2	VOA	Hel		D×	
_1	POLY	Hel N;This		Δ,	-
					-

Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks
	Pump On		67.47	776	±3%	±10%	±0.1	±10mv	±10%	<= Stabilization Criteria
5				6.90	340	11.71	7.79	34	31.8	
10				7.08	351	9.01	7.99	27	30.1	
15				7,24	340	8.40	7.97	32	26.6	
20				7.33	340	8,01	8,02	33	25.4	
25				7.39	340	7.90	8.02	35	25.5	
90				7.41	340	7.70	8.00	36	25.5	
										-
	Start Samplin	9 1210		Sample ID: M	M.1.2 - 1	12618		Sample Time	: 1210	
	End Sampling	-		Sample ID: WW-7 - 112519 QA/QC Sample ID: —				QA/QC Sample Time:		

Well Number: WW-19
Date: 112519

Project Information		Well Const	ruction Inform	nation						
Project Name: Project Number:	- I HEIZ MEJOI		p or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)				
Sampling Information		F		2	81.5					
Field Team:	GP	Monitoring	Monitoring Information							
Purge Method: Low Flow Sampling Method: Low Flow			al DTW btoc)		ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter				
Water Quality Meter:	Model: U-52	67	.52							
	Serial Number:	Sample Co	Sample Containers							
Purge Water Disposition	η:	Number	Number Type		ervative	Analytical Parameters	Filtered?			
Comments		2	Puly	Hel		DV As				
							-			

Time	Volume Purged (L)	Purge Rate (L/min) (40.5 L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	pH	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks
	Pump On		Initial	1.2	±3%	±10%	±0.1	±10mv	±10%	<= Stabilization Criteria
5				8.54	311	14.01	7.99	59	30.7	
10				9.04	308	12.12	8.04	66	30.9	
15				9.41	301	10.42	8.19	71	33.1	
20				9.65	300	10.75	8.18	73	32.0	
25				10.01	329	8.49	8.06	66	34.2	
30				10.03	328	8.40	8.09	45	33.7	
35				10.03	329	8.44	8.09	65	33.0	
		-				5				
	Start Samplin	9 1400		Sample ID: M		12519		Sample Time	:1400	

Well Number: MW-6

Date: 0/08/20

Project Information	Well Construction	n Inform	nation						
Project Name: PARK WA TER Project Number:	Stick-up or F	lush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)				
Sampling Information	FLUSV	1	2	1					
Field Team: Flacin	Monitoring Information								
Purge Method: Low Flow Sampling Method: Low Flow	Initial DTV (ft btoc)	v	100000000000000000000000000000000000000	ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Interva				
Water Quality Meter: Model: U-52	67.3		====1)						
Serial Number:	Sample Containers								
Purge Water Disposition:	Number	Туре	Preservative		Analytical Parameters	Filtered?			
Comments									

Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 Umin)	DTW (ft btoc)	Temp.	Conductivity (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks
	Pump On		Initial		#3%	±10%	±0.1	±10mv	±10%	<= Stabilization Criteria
9:05 9:10 9:15 9:20 9:25 9:35	2 3.25 4.5 5.75 7 8.25 9,5	0.250		11.81 11.05 10.91 10.56 10.57 10.35	0,260 0,266 0,267 0,270 0,271 0,271	0.00 0.00 0.00 0.00 0.00 0.00	6.87 6.59 6.57 6.53 6.51 6.51 6.50	162 168 169 169 170 170	18.8 18.4 17.4 18.0 17.6 17.8	
	Start Sampling 8:/5 End Sampling /0:00			Sample ID: P		or 0/08	20	Sample Time	1)

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Pw-mwb-010820. @ 9:40

Attachment B

Laboratory Analytical Report and Chain-of-Custody Documentation

ANALYTICAL REPORT

December 04, 2019

Kennedy/Jenks Con-BNSF Region 1

Sample Delivery Group: L1165718

Samples Received: 11/27/2019

Project Number:

Description: BNSF - Parkwater, WA

Report To: Diane Tackett

275 Battery Street, Ste 550

San Francisco, CA 94111

⁴Cn

⁵Sr

Ss

⁶Qc

⁷Gl

⁸ Al

Entire Report Reviewed By:

Mark W. Beasley
Project Manager

Results relate only to the items tested or calibrated and are reported as nounded values. This test report shall not be reproduced, except in full, without written approach of the laboratory. Where applicable, sampling conducted by Psc.

18 No. 19 Psc. 19 Psc.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-14-112519 L1165718-01	5
MW-7-112519 L1165718-02	6
MW-19-112519 L1165718-03	7
DUP-112519 L1165718-04	8
Qc: Quality Control Summary	9
Metals (ICPMS) by Method 6020B	9
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

			Collected by	Collected date/time	Received da	te/time
MW-14-112519 L1165718-01 GW			Gary Panther	11/25/19 10:30	11/27/19 08:4	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICPMS) by Method 6020B	WG1388626	1	11/29/19 06:20	11/29/19 09:10	JPD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1389458	1	12/01/19 21:27	12/02/19 09:08	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-7-112519 L1165718-02 GW			Gary Panther	11/25/19 12:10	11/27/19 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1388626	1	11/29/19 06:20	11/29/19 09:13	JPD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1389458	1	12/01/19 21:27	12/02/19 09:34	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-19-112519 L1165718-03 GW			Gary Panther	11/25/19 14:00	11/27/19 08:4	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1388626	1	11/29/19 06:20	11/29/19 09:16	JPD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1389458	1	12/01/19 21:27	12/03/19 04:02	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-112519 L1165718-04 GW			Gary Panther	11/25/19 00:00	11/27/19 08:4	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1388626	1	11/29/19 06:20	11/29/19 09:19	JPD	Mt. Juliet, TN

WG1389458

1

12/01/19 21:27

12/03/19 04:28

JN

Mt. Juliet, TN

SAMPLE SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mark W. Beasley Project Manager

Diesel Range Organics (DRO)

(S) o-Terphenyl

Analyte

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 11/25/19 10:30

Metals (ICPMS) by Method 6020B

Result

ug/l

106

67.0

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Qualifier

J

MDL

ug/l

66.7

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic	3.81		0.250	2.00	1	11/29/2019 09:10	WG1388626

Dilution

1

Analysis

date / time

12/02/2019 09:08

12/02/2019 09:08

Batch

WG1389458

WG1389458

RDL

ug/l

200

52.0-156

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 11/25/19 12:10

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic	3.32		0.250	2.00	1	11/29/2019 09:13	WG1388626

Ss

		quanner			2	7 11101 3 010	244011
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic	3.32		0.250	2.00	1	11/29/2019 09:13	WG1388626

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/02/2019 09:34	WG1389458
(S) o-Terphenyl	66.5			52.0-156		12/02/2019 09:34	WG1389458

Diesel Range Organics (DRO)

(S) o-Terphenyl

Analyte

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 11/25/19 14:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic	4.96		0.250	2.00	1	11/29/2019 09:16	WG1388626

Dilution

1

Analysis

date / time

12/03/2019 04:02

12/03/2019 04:02

Batch

WG1389458

WG1389458

RDL

ug/l

200

52.0-156

³ Ss

⁴ Cn	
	ı

Result

ug/l

63.5

U

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

MDL

ug/l

66.7

Qualifier

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 11/25/19 00:00

Metals (ICPMS) by Method 6020B

Result

ug/l

107

70.5

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

MDL

ug/l

66.7

Qualifier

J

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic	3.90		0.250	2.00	1	11/29/2019 09:19	WG1388626	

Dilution

1

Analysis

date / time

12/03/2019 04:28

12/03/2019 04:28

Batch

WG1389458

WG1389458

RDL

ug/l

200

52.0-156

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020B

L1165718-01,02,03,04

*

Method Blank (MB)

 MB R3477296-1
 11/29/19
 08:16

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 Arsenic
 U
 0.250
 2.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3477296-2 11/29/19 08:20 • (LCSD) R3477296-3 11/29/19 08:23

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Arsenic	50.0	48.0	49.3	96.0	98.7	80.0-120			2.73	20

⁶Qc

(OS) L1165338-04 11/29/19 08:26 • (MS) R3477296-5 11/29/19 08:33 • (MSD) R3477296-6 11/29/19 08:36

(,	,			(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Arsenic	50.0	1.32	50.9	51.1	99.2	99.5	1	75.0-125			0.243	20	

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

L1165718-01,02,03,04

Method Blank (MB)

(MB) R3478013-1 12/02/19 03:28								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Diesel Range Organics (DRO)	U		66.7	200				
(S) o-Terphenyl	66.0			52.0-156				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3478013-2 12/02/19 03:54 • (LCSD) R3478013-3 12/02/19 04:20											
		Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
	Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
	Diesel Range Organics (DRO)	1500	1510	1430	101	95.3	50.0-150			5.44	20
	(S) n-Ternhenyl				79 5	74.0	52 0-156				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1165718 12/04/19 09:49 12 of 17

			Billing Information:						An	Analysis / Container / Preservative				Chain of Custody Page of		
Kennedy/Jenks Con-BNSF Region 1						Pres Chk		12						Pac	e Analytical*	
275 Battery Street, Ste 550 San Francisco, CA 94111			Federal Way, WA 98001											National	Center for Testing & Innovation	
Report to: Diane Tackett				ren@kennedyj	KennedyJenks.com enks.com,	,								12065 Lebanon R Mount Juliet, TN Phone: 615-758-	37122 PT	
Project Description: BNSF - Parkwater, \	NA	City/State Collected:	spakin	c, WA	Please Cir PT MT CI		(CI-B1				4			Phone: 800-767- Fax: 615-758-585		
Phone: 503-423-4000 Fax:	Client Project	#		Lab Project # BNSF1KEN	I-PARKWATER		40mIAmb-HCI-BT			SDG #//		57/8				
Collected by (print): GARY PANTHER	Site/Facility ID	0#		P.O. #				250mlHDPE-HNO3	36					Acctnum: BN	1	
Collected by (signature):		Lab MUST Be		Quote #			v/sgr	MIHD	-					1	Template: T159211 Prelogin: P741097	
Immediately Packed on Ice N Y	Next Da	y 10 D	y (Rad Only) ay (Rad Only)	Date R	Date Results Needed		NWTPHDX w/	As		-4				PB:	rk W. Beasley	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWT	Total					100	Shipped Via: Remarks	Sample # (lab only)	
mw-14-112519	G	GW	71	112519	1 1030	3	-	×					[65]	1	1-01	
MW-7-112519	G	GW	171	112519	9 1210	3	×	×				0.32		Jan 18	-62	
MW-19-112519	G	GW	70	11251	9 1400	3	X	X		- 10					-03	
DUP-112519	G	GW	71	11521	9 -	3	×	×					2		-04	
2016		GW	- 5			460	13		cu l							
	1.19	GW				138	ES.	- 3		100		1000				
		GW			1 1											
		GW				1sV	138									
75		GW		- 9		1	*		100	- 19		15 4			Carlo la	
-		GW				100			- 1	- 1		100				
Matrix: ss - Soil AIR - Air F - Filter GW Groundwater B - Bioassay WW - WasteWater	Remarks:					pH		mp	COC Second South Bottle	Sample Receipt al Present/Intac gned/Accurate: s arrive intact:	E: NE Y N					
DW - Drinking Water OT - Other	Samples retur	rned via: edExCou	rier	AUGUST NO.	Tracking #		4	194 8	843	7973			Correct bottles used: Sufficient volume sent: If Applicable VOA Zero Headspace: N			
Relinguished by: (Signature)	1	Date:	241	Time: 1/00	Received by: (Sign	ature)			Trip Blank Received: (6) / No				Preservation Correct/Checked: N RAD Screen <0.5 mR/hr: N If preservation required by Login: Date/Time			
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	ature)		10	- 10	Temp: °C Bottles Received:						
Relinquished by : (Signature)		Date:		Time:	Received for lab b	y: (Signa	ture	4	2 1	Date: -27-19	1	ime: 0845	Hold:		NCF / OX	

Data Path : C:\msdchem\1\data\120119\

Data File : 1201_37.d Signal(s) : FID1A.ch

Acq On : 2 Dec 2019 9:08 am

Operator : 473

Sample : L1165718-01 1x WG1389458

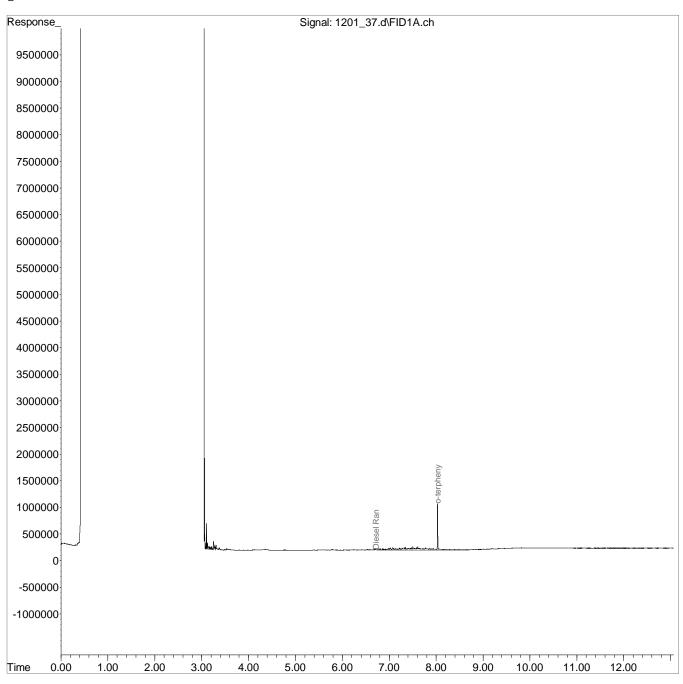
Misc : M.I.s on ranges are corrections

ALS Vial : 21 Sample Multiplier: 1

InstName : SVGC31

Integration File: events.e

Quant Time: Dec 02 10:00:41 2019


Quant Method : C:\msdchem\1\methods\DM31K28S.M

Quant Title :

QLast Update : Thu Nov 28 08:02:04 2019 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\120119\

Data File : 1201_38.d Signal(s) : FID1A.ch

Acq On : 2 Dec 2019 9:34 am

Operator : 473

Sample : L1165718-02 1x WG1389458

Misc : M.I.s on ranges are corrections

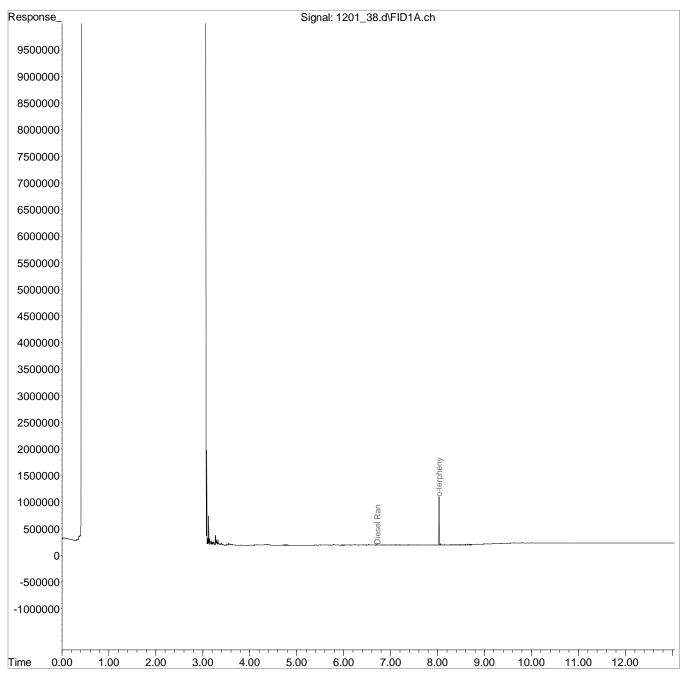
ALS Vial : 22 Sample Multiplier: 1

InstName : SVGC31

Integration File: events.e

Quant Time: Dec 02 10:01:28 2019

Quant Method: C:\msdchem\1\methods\DM31K28S.M


Quant Title

QLast Update: Thu Nov 28 08:02:04 2019

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\120319\

Data File : 1203_08.d Signal(s) : FID1A.ch

Acq On : 3 Dec 2019 4:02 am

Operator : 784

Sample : L1165718-03 1x WG1389458

Misc : M.I.s on ranges are corrections

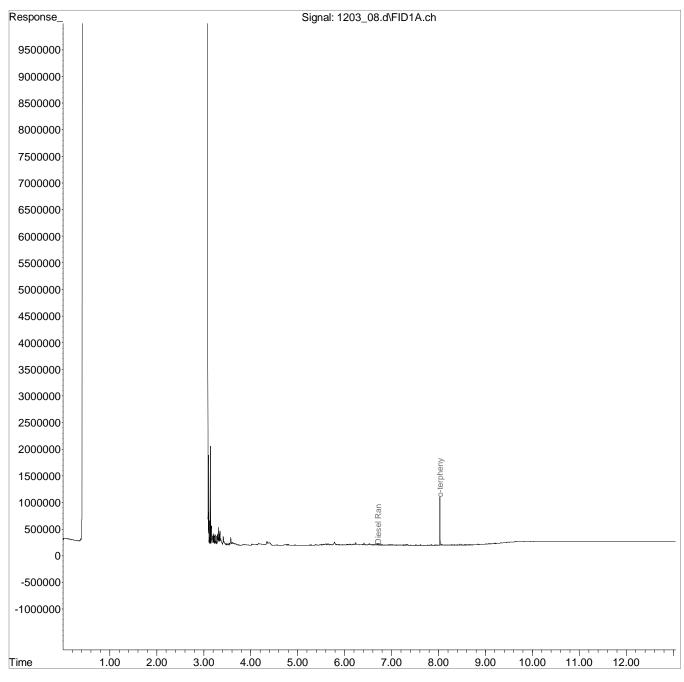
ALS Vial : 6 Sample Multiplier: 1

InstName : SVGC31

Integration File: events.e

Quant Time: Dec 03 07:10:37 2019

Quant Method: C:\msdchem\1\methods\DM31K28S.M


Quant Title

QLast Update: Thu Nov 28 08:02:04 2019
Response via: Initial Calibration

Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\120319\

Data File : 1203_09.d Signal(s) : FID1A.ch

Acq On : 3 Dec 2019 4:28 am

Operator : 784

: L1165718-04 1x WG1389458 Sample

: M.I.s on ranges are corrections Misc

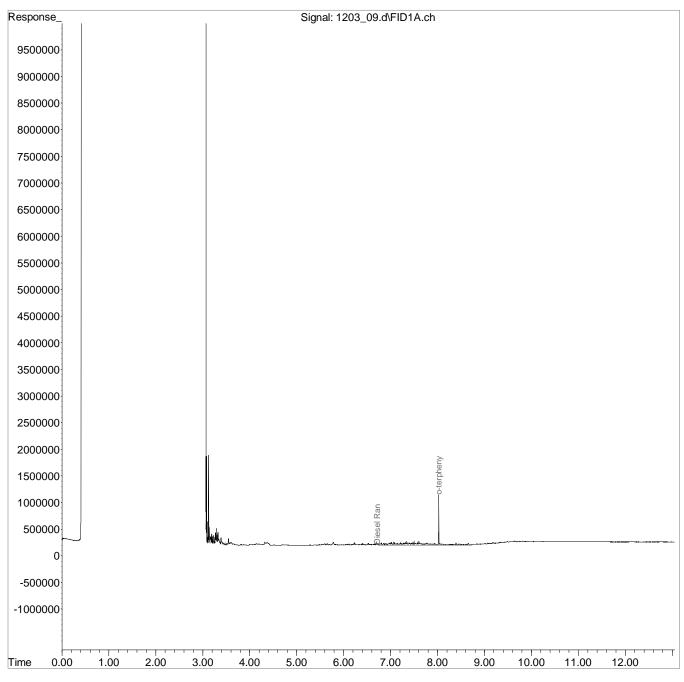
ALS Vial : 7 Sample Multiplier: 1

InstName : SVGC31

Integration File: events.e

Quant Time: Dec 03 07:11:02 2019

Quant Method: C:\msdchem\1\methods\DM31K28S.M


Quant Title

QLast Update : Thu Nov 28 08:02:04 2019

Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase : Signal Info

ANALYTICAL REPORT

January 14, 2020

Kennedy/Jenks Con-BNSF Region 1

Sample Delivery Group: L1177668

Samples Received: 01/09/2020

Project Number:

Description: BNSF - Parkwater, WA

Report To: Alice Robinson

275 Battery Street, Ste 550

San Francisco, CA 94111

7 GI

8 Al

Ss

Cn

Sr

[°]Qc

Entire Report Reviewed By:

Mark W. Beasley
Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approal of the biboratory. Where applicable, sampling conducted by Pace Admytrical Netronals be performed per guidance provided in biboratory standed operating procedures EW-50-Mail 12-005 and list of the procedure of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
PW-MW6-010820 L1177668-01	5
Qc: Quality Control Summary	6
Metals (ICPMS) by Method 6020B	6
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

PW-MW6-010820 L1177668-01 GW			Collected by Flavio	Collected date/time 01/08/20 09:40	Received dat 01/09/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1408781	1	01/09/20 21:05	01/10/20 12:23	TM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1408776	1	01/10/20 07:40	01/11/20 16:30	JN	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mark W. Beasley Project Manager

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 01/08/20 09:40

Metals (ICPMS) by Method 6020B

Result

ug/l

61.6

U

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Qualifier

MDL

ug/l

66.7

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic	2.17		0.250	2.00	1	01/10/2020 12:23	WG1408781

Dilution

1

Analysis

date / time

01/11/2020 16:30

01/11/2020 16:30

Batch

WG1408776

WG1408776

RDL

ug/l

200

52.0-156

Ss

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020B

(MB) R3489663-1 01/10/2	20 10:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.250	2.00

- /	100	DO 1000000	01/10/20 10:20 • (1 00000000	01/10/20 10:22
- (1 (\	1 R 34X9hh 3= /	(11/10)/201101.201	1 (\	1 R 34X400 3=3	(11/101/201101/23
١		113403003 2	01/10/20 10.20 1	LCJD	1113403003 3	01/10/20 10.23

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Arsenic	50.0	48.5	49.6	97.0	99.2	80.0-120			2.21	20

L1177713-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1177713-01 01/10/20 10:27 • (MS) R3489663-5 01/10/20 10:33 • (MSD) R3489663-6 01/10/20 10:37

(/	Spike Amount	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	50.0	1.13	50.4	51.3	98.6	100	1	75.0-125			1.65	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

L1177668-01

Method Blank (MB)

(MB) R3489865-1 01/10/20 16:36									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ug/l		ug/l	ug/l					
Diesel Range Organics (DRO)	U		66.7	200					
(S) o-Terphenyl	54.0			52.0-156					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3489865-2 01/10/20 16:57 • (LCSD) R3489865-3 01/10/20 17:17												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Diesel Range Organics (DRO)	1500	1270	1290	84.7	86.0	50.0-150			1.56	20		
(S) o-Ternhenyl				137	70.0	52 0-156						

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1177668 Kennedy/Jenks Con-BNSF Region 1 01/14/20 11:44 9 of 10

			Billing Info	g Information:						Analysis /	er / Pre	servative	Chain of Custody Page of				
Kennedy/Jenks Con-B 275 Battery Street, Ste 550 San Francisco, CA 94111	NSF Regi	ion 1	32001 3	Accounts Payable 32001 32nd Ave. S.,Ste. 100 Federal Way, WA 98001				<2							-		Analytical * Inter for Teeting & Innovation
Diane Tackett			Ernail To: DianeTackett@KennedyJenks.com, RyanHultgren@kennedyjenks.com,												A F	2065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	8 75.25
Project Description: BNSF - Parkwater, W		City/State Collected:			Please Circ	le:	CI-8.		400				Si.	100		hone: 800-767-58 ax: 615-758-5859	
Phone: 503-423-4000 Fax:	Client Project	#		Lab Project # BNSF1KEN-PARKWATER			40mlAmb-HCI-BT	103				. =				123 I23	
Collected by (print):	Site/Facility ID)#		P.O. #			Jul	H	113			= 1	10E	100			
FLAV10			-			3		DE.	1					150		Acctnum: BNS	
Collected by (signature):	Same Da	ab MUST Be ay Five I y 5 Day y 10 Da	(Rad Only)	Only) Date Results Needed			IDX w/SGT	s 250mIHDPE-HNO3							F	relogin: P74 M: 134 - Man	1097
Packed on Ice NY V	Comp/Grab	Matrix *	Depth	Date	Time	Of	NWTPHDX w/	Total As				23			S	hipped Via:	Sample # (lab only)
PW-MW6-010820		GW		01-08-2	0 09:40	3	V	V									-01
		GW		1	222	We to					4	-	10				
		GW				100	Treas.	2			-		1	1994	-		12/2/19
	-	GW				120	Ball	To The	177								
		GW			1 : 3	301			-				2		-		
		GW	Re-			1	ATT.		193			1.3					
		GW					5.50										
		GW				131											
		GW				11	1000		T.				Maria -			-	
					17 - 1	10								No.			
Matrix: SS - Soil AIR - Air F - Filter SGW - Groundwater B - Bioassay NW - WasteWater	Remarks:								pH Flow		_ Temp		COC S	eal Pre igned/A es arri	e Receipt C sent/Intact ccurate: ve intact: les used:	hecklist	
DW - Drinking Water DT - Other	Samples retur	ned via:	rier		Tracking#138	21	181	2	76	24				Suffic VOA Z	cient v ero Hea	olume sent: If Applications dapace:	de dy N
Relinquished by : (Signature)		Date: 01/08	/20		Received by: (Signa					Trip Blank Received: Yes / N HCL /			es / No HCL / MeoH TBR		Preservation Correct/Checked: YYN RAD Screen <0.5 mR/hr: N		
Relinquished by : (Signature)		Date:			Received by: (Signa	ture)				Temp: QM°C Bottles Received:			If preservation required by Login: Date/Time				
Relinquished by : (Signature) Date:			Time:	Received for lab by	: (\$igna	Pur	1/17	In	Date:	1/2	O Tim	8:30	Hold:			Condition: NCF OK	

DATA VALIDATION SUMMARY BNSF Parkwater

Laboratory Reports included in Data Validation	Dates	Sample IDs
Laboratory: Pace Analytical SDG: L1165718	Report Date: 12/4/2019	Aqueous Samples: MW-14-112519, MW-7-112519, MW-19-112519
Analyses: NWTPHDX-SGT, Metals	Sample Dates: 11/25/2019- 11/25/2019	Field Duplicates: DUP-112519 (duplicate of MW-14-112519) Equipment Blank: Not Collected Trip Blank: Not Collected
	Validation	

Criteria	(Yes or No)	Comment
Chain-of-Custody (COC) – Chain-of-custody protocol followed?	Yes	
Temperature Blank – Sample temperature criteria met?	Yes	
Holding times – Samples analyzed within specified holding time?	Yes	
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	No	
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	No	See Note
<u>Trip blank samples</u> – Analytes present in trip blank samples?	No	See Note
Matrix Spikes (MS)/Matrix Spike Duplicate (MSD) samples – Control limits met?	Yes	See Note
Surrogate percent recoveries – Control limits met?	Yes	
<u>Laboratory Control Sample (LCS)</u> – Control limits met?	Yes	
<u>Laboratory duplicate samples (if applicable)</u> – Control limits met?	Yes	
Field duplicate samples (if submitted) – Relative percent differences within control limits?	No	See Note
Other Issues?	No	

Field Blank Note: Not Collected Trip Blank Note: Not Collected MS/MSD Note: Not applicable

Field Duplicate Note: The RPD for the duplicate pair DUP-112519 and MW-14-112519 ranges from 0-3%, which is

within the acceptance criteria.

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

DATA VALIDATION SUMMARY BNSF Parkwater

Laboratory Reports included in Data Validation	Dates	Sample IDs
Laboratory: Pace Analytical Services, Mt.Juliet, TN	Report Date: 1/9/2020	Aqueous Samples: PW-MW6-010820
SDG: L1177668 Analyses: Metals, TPH-NWTPH-	Sample Dates:	Field Duplicates: Not Collected
DXSG	1/8/2020- 1/8/2020	Equipment Blank: Not Collected
	Validation Date:	Trip Blank: Not Collected
	1/23/2020	

Criteria	(Yes or No)	Comment
Chain-of-Custody (COC) – Chain-of-custody protocol followed?	Yes	
<u>Temperature Blank</u> – Sample temperature criteria met?	Yes	
Holding times – Samples analyzed within specified holding time?	Yes	
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	No	
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	No	See Note
<u>Trip blank samples</u> – Analytes present in trip blank samples?	No	See Note
Matrix Spikes (MS)/Matrix Spike Duplicate (MSD) samples – Control limits met?	Yes	See Note
Surrogate percent recoveries - Control limits met?	Yes	
<u>Laboratory Control Sample (LCS)</u> – Control limits met?	Yes	
<u>Laboratory duplicate samples (if applicable)</u> – Control limits met?	Yes	See Note
<u>Field duplicate samples (if submitted)</u> – Relative percent differences within control limits?	Yes	See Note
Other Issues?	No	

Field Blank Note: Not Collected Trip Blank Note: Not Collected MS/MSD Note: Not applicable Lab Duplicate Note: Not applicable Field Duplicate Note: Not applicable

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.