Brett Hunter Chevron EMC Portfolio Chevron Service Station No. 352300 Second Quarter 2010 Groundwater Monitoring and Sampling Report

July 19, 2010

Mr. Brett Hunter Chevron Environmental Management Company 6111 Bollinger Canyon Road, Suite 3628 San Ramon, California, 94583

Subject: Second Quarter 2010 Groundwater Monitoring and Sampling Report

Chevron Service Station No. 352300 State Route 274, Tekoa, Washington

Dear Mr. Hunter:

The Benham Companies LLC (Benham), a Science Applications International Corporation (SAIC) company is pleased to submit the second quarter 2010 groundwater monitoring report for activities completed at the above-referenced site. Groundwater monitoring and sampling was conducted by Gettler-Ryan, Inc. on May 17, 2010. The Gettler-Ryan Groundwater Monitoring and Sampling Report is presented as Attachment A. Benham is performing environmental services under contract to Chevron Environmental Management Company (Chevron).

SECOND QUARTER 2010 GROUNDWATER MONITORING ACTIVITIES

On May 17, 2010, the depth to groundwater was measured in Wells MW-1 through MW-7.

Groundwater Elevation, Flow Direction and Gradient

The groundwater elevation ranged from 2487.95 (MW-3) to 2492.25 (MW-6) feet above mean sea level. Groundwater flow is to the northeast at a gradient of approximately 0.02 ft/ft.

Groundwater Monitoring Well Analytical Test Results

Once the depth to groundwater was measured at the wells, the wells were purged using Low-Flow (minimal drawdown) technique as discussed in United States Environmental Protection Agency (EPA) Ground Water Issue, publication number EPA/540/S-95/504 April 1996 ("Low-Flow Minimal Drawdown Ground-Water Sampling Procedures"), followed by collection of groundwater samples from Wells MW-1 through MW-5, and MW-7. A duplicate sample was collected from MW-7 and labeled DUP. A sample was not collected from MW-6 due to an obstruction in the well casing. All samples were

collected in accordance with the sampling procedures described in Attachment A, and shipped under chain-of-custody protocol to Lancaster Laboratories, Inc. in Lancaster, Pennsylvania. Groundwater samples were submitted for the following analyses:

- Diesel- and heavy oil-range hydrocarbons by Washington State Department of Ecology (WDOE) Method NWTPH-Dx with silica gel clean-up;
- Gasoline-range hydrocarbons by WDOE Method NWTPH-Gx;
- Dissolved lead using EPA Method 6020;
- Polynuclear aromatic hydrocarbons (PAHs) using EPA Method 8270C SIM; and
- Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene, total xylenes (BTEX), and naphthalene using EPA Method 8260.

Table A. Second Quarter 2010 Groundwater Analytical Results

Well ID	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	TPHGx (μg/L)	TPHDx (μg/L)
MW-1	< 0.5	< 0.5	<0.5	<0.5	120	310
MW-2	< 0.5	<0.5	1	2	1,800	1,200
MW-3	< 0.5	<0.5	<0.5	<0.5	140	130
MW-4	< 0.5	<0.5	<0.5	<0.5	<50	57
MW-5	<0.5	<0.5	<0.5	<0.5	<50	220
MW-6			well not sampled du	e to obstruction in w	ell	
MW-7	7	<0.5	25*	11*	4,800*	2,300*

Note: $\mu g/L = micrograms$ per liter. *Value of duplicate sample used.

Groundwater surface elevation contours, summaries of groundwater surface elevations and analytical results, groundwater monitoring and sampling procedures, a copy of the analytical report, and chain-of-custody documentation are attached in Gettler Ryan's "Groundwater Monitoring and Sampling Report Event of May 17, 2010," dated June 10, 2010.

Please call Ronald Santos at (208) 429-3772 if you have any questions regarding the contents of this letter.

Sincerely,

THE BENHAM COMPANIES, LLC

Chris Wildt

Environmental Scientist

Ronald Santos Project Manager

Dennis M. Terzian

Dennis Terzian, LG

Sr. Project Manager

Enclosures:

Attachment A: Gettler-Ryan "Groundwater Monitoring and Sampling Report"

Attachment B: Hydrographs

cc:

6

June 17, 2010 G-R #385853

TO:

Mr. Ronald Santos

SAIC

405 South 8th Street, Suite 301

Boise, Idaho 83702

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE: Chevron Facility #352300

(Former Standard Oil Bulk Plant

#1001152) State Route 274 Tekoa, Washington

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	June 10, 2010	Groundwater Monitoring and Sampling Report Event of May 17, 2010

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> use and distribution to the following:

Mr. Brett Hunter, Chevron EMC, 6111 Bollinger Canyon Rd., Room 3628, San Ramon, CA 94583

Current Site Check List included.

Enclosure trans/352300-BH

Well ID Well Box Well Plug Well Lock MW-1 MW-2 MW-3 MW-4 MW-5 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-8 MW-8 MW-7 MW-8 MW-7 MW-8 MW-7 MW-8 M		8	CHEVRON - SI	TE CHE	CK LIST		
Address: State Route 274 City/St.: Tekoa,WA Status of Site: VALANT Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, content location of drum: # Description Condition Labeling Contents Location of drum: # Description Condition Labeling Contents Location of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock of MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 DRSTRUCTED AT 4/20 Pt O K MW-7 MW-7		Facility#:	Chevron #352300		Date: 5.	17-10	
Status of Site: VALANTON Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, content location of drum: # Description Condition Labeling Contents Location of drum: # Description Condition Labeling Contents Location of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock of MW-1 OK OK OK OK OK MW-2 MW-2 MW-3 MW-4 MW-5 ORSTRUCTED AT 4.00 PL OK OK MW-7 MW-7 OX OK		Address:	State Route 274				
Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, content location of drum: # Description Condition Labeling Contents Low Drums Description Condition Labeling Contents Low Drums		City/St.:	Tekoa,WA	<u> </u>			
Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, content location of drum: # Description Condition Labeling Contents Low Drums # Description Labeling Contents Lo	ĺ	Status of Site:	VACAAT LOT				
Description Condition Labeling Contents Lower	IMS:		- VIII A	description	condition	laheling co	ontente
Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock OK OK OK MW-2 MW-3 MW-4 MW-5 MW-6 OR ST RUCTED AT 4.0 Pr OK MW-7 OX				. woodinpalon	i, condition	, iaboiiig, o	onicino,
Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock OK OK OK OK MW-2 MW-3 MW-4 MW-5 MW-6 OR ST RUCTED AT 4.00 Pr OK MW-7 OK MW-7 OK MW-7	ſ	#	Description	Condition	Labeling	Contents	Locatio
Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock (MW-1 OK			1 0			Contonto	Locatio
Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock (MW-1 OK			///				
Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, we etc.: Well ID Well Box Bolts Well Plug Well Lock (MW-1 OK	97		500 (Ann C				
Well ID Well Box Bolts Well Plug Well Lock ON			Neuro)			<u> </u>	
Well ID Well Box Bolts Well Plug Well Lock ON			he condition of ALL WELLS @ sit	e: i.e., well	box condit	ion, well plu	g, well lock
MW-2 MW-3 MW-4 MW-5 MW-6 OBSTRUCTED AT 4.00 Pt OK MW-7 OX	[Well Box	Bolts	Well Plug	Well Lock	Other
MW-3 MW-4 MW-5 MW-6 OBSTRUCTED AT 4.00 Pr. OK MW-7 COX		MW-1	OK	OK	OK	OK	-
MW-5 MW-6 ORSTRUCTED AT 4.00 PT OK MW-7 OX	// [MW-2			1	1	
MW-5 MW-6 OBSTRUCTED AT 4.00 PT OK MW-7 OX	// L						
MW-6 OBSTRUCTED AT 4.00 PT OK MW-7 OX	´				. /		
MW-7	L		V	A	V	Y	
	L		OBSTRUCTED AT 4.00 PT	OK-			
	-	MW-7	OK-				
	<u> </u>						
	-	_		<u> </u>			
	⊢			_			
	⊢						
	⊢						<u></u>
	<u> </u>						.
	⊢			-			-
	<u> </u> -						
	⊢						
	<u> </u>				-	-	
L	 		-	-			<u> </u>
Additional Comments/Observations:		Additional Com	ments/Ohsen/ations:				<u> </u>

June 10, 2010 Job #385853

Mr. Brett Hunter Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3628 San Ramon, CA 94583

RE: Event of May 17, 2010

Groundwater Monitoring & Sampling Report

Chevron Facility #352300

(Former Standard Oil Bulk Plant #1001152)

State Route 274 Tekoa, Washington

Dear Mr. Hunter:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are presented in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. Purge water was treated by filtering the water through granular activated carbon and was subsequently discharged. The chain of custody document and laboratory analytical reports are attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely.

Deanna L. Harding Project Coordinator

Douglas V. Lee Senior Geologist, L.G. No. 2660

Figure 1: Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results

Table 2: Groundwater Analytical Results - PAH
Table 3: Groundwater Analytical Results - VOC

Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

ensed Geo

Douglas J. Lee

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #352300

(Former Standard Oil Bulk Plant #1001152)

State Route 274

Tekoa, Washington

							i ckoa, w asini	Prom						
					TPH-	TPH-	TPH-							
WELL ID		TOC*	DTW	GWE	DRO	HRO	GRO	В	T	E	X	MTBE	D. LEAD	T, LEAD
DATE		(%)	(fL)	(ft.)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
MW-1														
11/10/08	LFP	2494.59	6.13	2488.46	170	<73	140¹	0.61	< 0.5	< 0.5	<1.0	< 0.5	< 0.050	2.8
02/09/09	LFP	2494.59	3.24	2491.35	471	<66	82 ¹	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.050	0.361
03/08/10	LFP	2494.59	4.41	2490.18	87	<68	<50	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	0.15	57.4
05/17/10	LFP	2494.59	6.13	2488.46	310	130	120	<0.5	<0.5	<0.5	<0.5	<0.5	0.052	181
MW-2														
11/10/08	LFP	2495.26	6.74	2488.52	2,500	420	2,400	0.9^{1}	< 0.5	21	4.81	<0.5	2	2
02/09/09		2495.26	INACCESS	SIBLE									**	_
03/08/10	LFP	2495.26	5.67	2489.59	880	<71	1,000	<0.5	< 0.5	0.6	0.7	<0.5	< 0.050	9.5
05/17/10	LFP	2495.26	5.99	2489.27	1,200	92	1,800	<0.5	<0.5	1	2	<0.5	<0.050	_2
MW-3														
11/10/08	LFP	2493.95	6.40	2487.55	400	100 ¹	170 ¹	<0.5	<0.7	<0.8	<1.6	<0.5	< 0.050	54.2
02/09/09		2493.95	INACCESS									-0.5	~0.030	
03/08/10		2493.95	3.48		NOT SAMPL	ED DUE TO O	BSTRUCTION	IN WELL				-		
05/17/10	LFP	2493.95	6.00	2487.95	130	<70	140	<0.5	<0.5	<0.5	<0.5	<0.5	<0.050	46.4
MW-4														
11/10/08	LFP	2494.10	6.53	2487.57	360	77 ¹	230 ¹	11	<0.5	<0.5	<1.0	<0.5	<0.050	57.7
02/09/09		2494.10	INACCESS	SIBLE										
03/08/10	LFP	2494.10	4.99	2489.11	830	<68	2,700	3	< 0.5	14	16	< 0.5	0.14	53.0
05/17/10	LFP	2494.10	5.33	2488.77	57	<73	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.050	21.0
MW-5														
11/10/08	LFP	2495.16	6.63	2488.53	1,700	1,600	240 ¹	0.61	<0.5	<0.5	<1.0	<0.5	2	2
02/09/09	LFP	2495.16	0.92	2494.24	180	230 ¹	<50	<0.5	<0.5	<0.5	<1.0	<0.5	0.0931	1.6
03/08/10	LFP	2495.16	5.87	2489.29	450	<700 ³	71	<0.5	<0.5	<0.5	<0.5	<0.5	0.074	1.0
05/17/10	LFP	2495.16	5.15	2490.01	220	470	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.050	63.4

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #352300

(Former Standard Oil Bulk Plant #1001152)

State Route 274

Tekoa, Washington

					TPH-	TPH-	TPH-							
WELL ID	/	TOC*	DTW	GWE	DRO	HRO	GRO	В	1	E	X	MTBE	D. LEAD	T, LEAD
DATE		(ft.)	(ft)	(f-)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6												•		
11/10/08	LFP	2496.04	5.66	2490.38	570	1401	<50	< 0.5	< 0.5	< 0.5	<1.0	<0.5	2	649
02/09/09		2496.04	INACCESS	SIBLE		-								
03/08/10	LFP	2496.04	5.74	2490.30	58	<69	<50	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.050	39.3
05/17/10		2496.04	3.79	2492,25	NOT SAMPI	LED DUE TO	OBSTRUCTIO	N IN WELL	-	-	-	_	-	-
MW-7														
11/10/08	LFP	2495.66	5.12	2490.54	2,500	400	4,400	21	2 ¹	25	49	<0.5	0.063^{1}	95.2
02/09/09		2495.66	INACCESS	BLE										
03/08/10	LFP	2495.66	4.77	2490.89	56	<69	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	0.059	18.1
03/08/10	LFP (D)	2495.6 6			110	110	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.050	21.9
05/17/10	LFP	2495.66	5.28	2490.38	1,600	230	3,400	7	<0.5	23	10	<0.5	< 0.050	85.6
05/17/10	LFP (D)	2495.66		-	2,300	370	4,800	7	<0.5	25	11	<0.5	<0.050	95.9
TRIP BLA	NK													
QA														
11/10/08							<50	<0.5	< 0.5	<0.5	<0.5			
02/09/09							<50	<0.5	<0.5	<0.5	<0.5			
03/ 08 /10							<50	<0.5	<0.5	<0.5	<0.5			
05/17/10					_		<50	<0.5	<0.5	<0.5	<0.5			

Constituent:		TPH-HRO	TPH-GRO	В	T	E	X	MTBE	D. LEAD	T. LEAD
Standard Laboratory Reporting Limits:	_			0.5	0.5	0.5	0.5	0.5	0.050	0.050
MTCA Method A Cleanup Levels:	500	500	800/1,000	5	1,000	700	1,000	20		15
Current Method:	NWTPH-D	k Extended	NWTPH-Gx		EP_	A Method 8	260		EPA 6020	EPA 6020

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #352300 (Former Standard Oil Bulk Plant #1001152)

State Route 274

Tekoa, Washington

EXPLANATIONS:

TOC = Top of Casing
(ft.) = Feet
DTW = Depth to Water

GWE = Groundwater Elevation
TPH = Total Petroleum Hydrocarbons
DRO = Diesel Range Organics

GRO = Gasoline Range Organics HRO = Heavy Range Organics B = Benzene

T = Toluene E = Ethylbenzene

X = Xylenes

MTBE = Methyl Tertiary Butyl Ether

D. LEAD = Dissolved Lead
T. LEAD = Total Lead

 $(\mu g/L)$ = Micrograms per liter

- = Not Measured/Not Analyzed

LFP = Low Flow Purge

QA = Quality Assurance/Trip Blank

(D) = Duplicate

MTCA = Model Toxics Control Act Cleanup Regulations
[WAC 173-340-720(2)(a)(I), as amended 02/01]

ANALYTICAL METHODS:

TPH-DRO and TPH-HRO w/silica gel by ECY 97-602 NWTPH-Dx modified

TPH-GRO by ECY 97-602 NWTPH-Gx modified

BTEX and MTBE by EPA Method 8260.

Total Lead and Dissolved Lead by SW-846-6020

- * TOC elevations were provided on August 14, 2008, by Statewide Land Surveying Inc. Vertical Datum is NAVD88.
- Laboratory report indicates estimated value.
- Not sampled due to insufficient water.
- Laboratory report indicates due to the nature of the sample matrix, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.

Table 2
Groundwater Analytical Results - PAH

Chevron Service Station #352300 (Former Standard Oil Bulk Plant #1001152) State Route 274

Tekoa, Washington

CARLEST CONTRACTOR		*******						** dominge								
WELL ID/ DATE	Acenaphthene (pg/L)	Acenaphthylene (1197.1.)	Anthracene (pg/L)	Benzo (k) Anthracene (kg/L)	Benzo (s) Pyrene (pg/L)	Benzo (6) Fluorsothene (pg/L)	Benzu (g.h.j) Perylene (ag/L)	Benzo (k) Fluaranthene (ug/L)	Chrysene (ag/L)	Dibenz (s.b) Anthracene (ug/L)	Fluoranthene (pg/L)	Fluorene (11871,)	Indeas (1,2,3-cd) Pyrene (ng/L)	Naphthalene (µg/L,)	Phenanthrene (ug/L)	Pyrene say'i.)
MW-1				O EN-2" DAW ELL NO												
11/10/08 ²	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	<0.123	< 0.011	<0.011
02/09/09	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.011	< 0.011	< 0.011	<0.12	< 0.011	< 0.011
03/08/10	< 0.0099	0.12	0.14	0.18	0.32	0.51	0.33	0.22	0.23	0.084	0.42	< 0.0099	0.34	0.028	0.29	0.33
05/17/10	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	0.20	<0.050	<0.050
MW-2			_													
11/10/08 ²	0.0411	< 0.011	0.0491	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	0.0131	< 0.011	0.020^{1}	0.058	< 0.011	12	0.018^{1}	0.016 ¹
02/09/09	INACCES	SIBLE				••	••					••				
03/08/10	0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	10	< 0.10	< 0.10
05/17/10 ⁵	<0.050	<0.050	0.12	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.059	<0.050	8.5	<0.050	<0.050
MW-3																
11/10/08 ²	0.0131	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	<0.17 ³	0.0141	< 0.011
02/09/09	INACCES	SIBLE							-							-0.011
03/08/10 ⁶		••														
05/17/10 ⁵	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
MW-4																
MW-4 11/10/08 ²	<0.011	<0.011	0.016 ¹	<0.011	<0.011	<0.011	~0.011	<0.011	<0.011	<0.011	<0.01°	-0.011	-0.011	0.000	0.01=1	
02/09/09	INACCES		0.016	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.089	0.0171	<0.011
03/08/10	0.13	<0.025 ⁴	0.035	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	0.015	0.23	 -0.00 06	4.6	0.070	
05/05/10 05/17/10 ⁵	<0.0 099	<0.023	0.033	<0.0093	<0.0093 <0.0099	<0.0093	<0.0093 <0.0099	<0.0093 <0.0099	<0.0093 <0.0099	<0.0093 <0.0099	<0.00 99	<0.00 99	<0.0095 <0.0099	4.5 0 .036	0.079 < 0.0099	0.012 <0.0099
							2.3077		-010077	-0.00//	-010077	~0.0077	~0.0077	V. V.JU	~v.UU77	~v.009

As of 05/17/10

352300.xls/#385853

Table 2
Groundwater Analytical Results - PAH

Chevron Service Station #352300 (Former Standard Oil Bulk Plant #1001152)

State Route 274

Tekoa, Washington

Stock and Control	0.0000000000000000000000000000000000000	MANAGEMENT OF THE PARTY OF THE	000000000000000000000000000000000000000	355555555	900000000000000000000000000000000000000	400400000	10101010101	w asningt	1010400000	0000000000	0000000000	252000000	55555555555	STRUCTURE	2.553.5555.557	
WELL ID/ DATE	Acenaphthene (usH.)	Acenaphthylene (14g/L)	Anthracene (pg/L)	Benzo (a) Anthracene Osg.L.)	Benzo (s) Pyrene (µg/L)	Benzo (b) Flusranthene (hg/L)	Beaza (g,h,j) Perylene (pg/L)	Benzo (k) Flueranthene (14g/L)	Chrysene (ug/L)	Dibenz (a,b) Anthracone (µg/L)	Fluoranthene (pg/L)	Fluorene (ug/L)	Indeno (1,2,3-cd) Pyrene (<i>0g.</i> L.)	Naphthalene (ug/L)	Phenanthrene (48/L)	Pyrene (ug/L)
MW-5			**											(100 ~ (0.7700)		40 - 10 T E
11/10/08 ²	0.044	0.31	0.29	0.63	1.2	2.0	0.64	0.62	0.92	0.20	1.5	0.064	0.67	0.29	0.98	1.2
02/09/09	< 0.010	0.0131	0.037^{1}	0.011	0.014^{1}	0.018^{1}	0.0211	0.014^{1}	0.0131	< 0.010	0.0241	< 0.010	0.017^{1}	< 0.010	0.0201	0.0171
03/08/105	< 0.009	5 <0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.025	< 0.0095	< 0.0095
05/17/10	0.017	0.44	0.32	0.55	1.1	1.6	0.97	0.77	0.87	0.24	1.6	0.035	0.91	0.090	0.80	0.93
MW-6																
11/10/08 ²	< 0.01	0.055	0.029^{1}	0.044^{1}	0.12	0.13	0.090	0.057	0.079	0.0201	0.21	0.020 ¹	0.076	0.12	0.15	0.20
02/09/09	INACC	ESSIBLE		_											U.13	0.20
03/08/105	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	0.25	<0.10	<0.10
05/17/10	OBSTR	UCTION IN	WELL	-		-	_		-	_	-		-	_		
MW-7																
11/10/08	0.18	<0.040 ⁴	0.041^{1}	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	<0.010	0.010 ¹	0.33	<0.010	6.7	0.057	0.014 ¹
02/09/09		ESSIBLE			_								-0.010		0.057 	0.017
03/08/10	<0.009	5 <0.0095	0.015	< 0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	< 0.0095	< 0.0095	<0.0095	0.042	<0.0095	< 0.0095
,	O.009	5 <0.0095	0.015	<0.0095	<0.0095	<0.0095	<0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.063	< 0.0095	< 0.0095
0 5/17/10 ⁵	0.21	<0.060 ⁴	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	0.62	<0.050	3.1	0.12	<0.050
05/17/10 (1	D) INSUFI	ICENT WA	TER TO S	AMPLE		_			_				_			

Table 2

Groundwater Analytical Results - PAH

Chevron Service Station #352300 (Former Standard Oil Bulk Plant #1001152) State Route 274 Tekoa, Washington

EXPLANATIONS

ANALYTICAL METHODS:

(μg/L) = Micrograms per liter PAHs = Polynuclear Aromatic Hydrocarbons

PAHs by EPA Method 8270C

(D) = Duplicate

- Laboratory report indicates estimated value.
- Laboratory report indicates due to insufficient sample, the reporting limits for the GC/MS semivolatile compounds were raised.
- Laboratory report indicates due to the presence of an interferent near the retention time of naphthalene, the reporting limit was raised. This was due to the fact that the interferent had a significant abundance of ions at or near the mass of naphthalene.
- 4 Laboratory report indicates due to the presence of an interferent near the retention time of acenaphthylene, the reporting limit was raised. This was due to the fact that the interferent had a significant abundance of ions at or near the mass of acenaphthylene.
- Laboratory report indicates due to the nature of the sample matrix, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.
- 6 Obstruction in well.

Table 3 Groundwater Monitoring Data and Analytical Results - VOC

Chevron Service Station #352300

(Former Standard Oil Bulk Plant #1001152)

State Route 274

Tekoa, Washington

630000000000000000000000000000000000000		100000000000000000000000000000000000000	(a)				55555555555	KOa, Wasi	migron		uniformus.	UNICOSONO.	222222				
WELL ID/ DATE	Bromodichloromefhane (µg/L)	n-Butylbenzene (ug/L)	sec-Butylbenzene (µg/L)	tert-Butylbenzene (ug/L)	Chloroform (µgL)	1,1-Dichloroethene (11g/L)	cis-1,2-Dichlaroethene (µg/L)	trans-1,2-Dichloroethene (kg/L)	lsoprapylbenzene (µg/L)	p-Isopropyttolusne (1112/L.)	Naphthalene (ug/L)	n-Propylbenzene (ng/L)	Tetrachloroethene (µg/L)	(4.1.1-Trichloroethane (4.8/L)	Trichloroethene (µg/L)	1.2,4-Trimethylbenzene (pg/L)	1,3,5-Trimethylbenzene (µg/L)
MW-1																	
11/10/081	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	-1
02/09/09	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<i< td=""><td><1</td><td><1</td><td><1</td><td><0.8</td><td><0.8</td><td><1</td><td><1</td><td><1 <1</td></i<>	<1	<1	<1	<0.8	<0.8	<1	<1	<1 <1
03/08/10	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
05/17/10	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
									12		307	0.70		-0.0			
MW-2																	
11/10/08	<1	2 ²	7	<1	<0.8	<0.8	<0.8	<0.8	17	10	16	22	<0.8	<0.8	<1	130	39
02/09/09	INACCE	SSIBLE								-			••				
03/08/10	<1	1	5	<1	< 0.8	<0.8	<0.8	<0.8	8	3	4	10	<0.8	<0.8	<1	27	<1
05/17/10	<1	2	9	1	<0.8	<0.8	<0.8	<0.8	16	7	7	21	<0.8	<0.8	<1	69	21
MW-3																	
11/10/083	<1	<1	12	<1	< 0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
02/09/09	INACCE		_						075 2 -2	<u>``</u>							
03/08/10 ⁷	••	<u> </u>			696	2550							-			-	
05/17/10	<1	<1	2	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
MW-4																	
11/10/08	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
02/09/09	INACCE									-							
03/08/10	<1	2	10	<1	<0.8	<0.8	<0.8	<0.8	22	5	4	24	<0.8	<0.8	<1	69	10
05/17/10	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1

Table 3 Groundwater Monitoring Data and Analytical Results - VOC

Chevron Service Station #352300 (Former Standard Oil Bulk Plant #1001152)

State Route 274

Tekoa, Washington

								16	koa, Wash	inigion								
WELL ID/		Bromodichloromethane $(\mu g L)$	n-Butylbenzene (ug/L)	sec-Butylbenzene $(\mu g L)$	tert Butylbenzene (148/1.)	Chloroform (#g/L)	1,1-Dichloroethene (µg/L)	cis-1,2. Dichlaroethens $(\mu g L)$	trans-1,2 Dichloroethene (118/L)	Ksopropylbenzene (#&/L)	p-tsapropyltolusae (µg/L)	Naphthalene (ug/L)	n-Propylbeazene (11g/L)	Tetrachloraethene (#g/L)	(.1.).Trichloroethane (pg/L)	Trichioroethene (ug/L)	(48L)	1,3,5-Trimethylbenzene (ug/L)
MW-5					15-51													
11/10/08		<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	< 0.8	<0.8	<1	<1	<1
02/09/09		<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
03/08/10 ⁵		<1	<1	<1	<1	< 0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<i< td=""><td><1</td><td><1</td></i<>	<1	<1
05/17/10		<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
MW-6																		
11/10/08		<1	<1	<1	<1	<0.8	<0.8	< 0.8	< 0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
02/09/09		INACCE	SSIBLE	**	**					-	_					**		
03/08/10 ⁶		<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	<0.8	<0.8	<1	<1	<1
05/17/10		OBSTRI	UCTION I	N WELL	-		-	-		-	-	, <u></u>	-			_	-	_
MW-7																		
11/10/084		<1	5	11	1 ²	<0.8	<0.8	<0.8	<0.8	29	13	12	38	<0.8	<0.8	<1	150	59
02/09/09		INACCE	SSIBLE															
03/08/10		<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	<1	<1	< 0.8	<0.8	<1	<1	<1
03/08/10	(D)	<1	<1	<1	<1	<0.8	<0.8	<0.8	<0.8	<1	<1	·<1	<1	<0.8	<0.8	-!	<1	<1
05/17/10 ⁸		<1	3	12	1	<0.8	<0.8	<0.8	<0.8	29	9	2	38	<0.8	<0.8	<1	42	3
05/17/10 ⁸	(D)	<1	3	13	1	<0.8	<0.8	<0.8	<0.8	30	10	2	39	<0.8	<0.8	<1	44	3

Table 3

Groundwater Monitoring Data and Analytical Results - VOC

Chevron Service Station #352300 (Former Standard Oil Bulk Plant #1001152)

State Route 274
Tekoa, Washington

EXPLANATIONS

ANALYTICAL METHODS: VOCs by EPA Method 8260B

(μg/L) = Micrograms per liter VOC = Volatile Organic Compounds

(D) = Duplicate

♦ All other VOCs by EPA Method 8260B were less than the reporting limit unless noted.

- Laboratory report indicates Carbon Disulfide was detected at 1 μg/L (estimated value).
- Laboratory report indicates estimated value.
- Laboratory report indicates Carbon Disulfide was detected at 2 μg/L (estimated value).
- Laboratory report indicates 1,2 Dichloroethane was detected at 4 μg/L and Acetone was detected at 23 μg/L.
- Laboratory report indicates Carbon Disulfide was detected at 2 μg/L.
- Laboratory report indicates Carbon Disulfide was detected at 1 μg/L.
- Obstruction in well.
- Laboratory report indicates 2-Chlorotoluene was detected at 1 μg/L and 1,2 Dichloroethane was detected at 3 μg/L.

Standard Operating Procedure, Low-Flow Purging and Sampling

Gettler-Ryan Inc. field personnel adhere to the following Standard Operating Procedure (SOP) for the collection and handling of representative groundwater samples using the Low-Flow (Minimal-Drawdown) Purging technique. This SOP incorporates purging and sampling methods discussed in U.S. EPA, Ground Water Issue, Publication Number EPA/540/S-95/504, April 1996 by Puls, R.W. and M.J. Barcelona - "Low-Flow (Minimal-Drawdown) Ground-Water Sampling Procedures."

A QED Well WizardTM (or equivalent) bladder pump or Peristaltic Pump will be used to purge and sample selected wells as outlined in the scope-of-work. An in-line flow cell or other multi-parameter meter is used to collect water quality indicating parameters during purging.

Initial Pump Discharge Test Procedures

In each well, the Static Water Level (SWL) is measured prior to the installation of the pump or tubing in the well. In addition, the presence or absence of separate-phase hydrocarbons (SPH) is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot. The SWL measurement and SPH thickness, if any, will be recorded on the field data sheet.

The bladder pump or suction inlet tubing of the peristaltic pump is then positioned with its inlet located within the screened interval of the well. After pump installation, the SWL is allowed to recover to its original level. The pump is then started at a discharge rate between 100 ml to 300 ml per minute without the in-line flow cell connected. The water level is monitored continuously for any change from the original measurement and the discharge rate is adjusted until an optimum discharge rate (ODR) is determined. The goal for the ODR is to produce a stable drawdown of less than 0.1 meter; however the total drawdown from the initial SWL should not exceed 25% of the distance between pump inlet location and the top of the well screen. If the in-line flow cell is to be used, purging is discontinued once the ODR is determined, and the inline flow cell is connected. Purging is then resumed and the ODR is adjusted to allow for the back pressure of the in-line flow cell.

Purging and Water Quality Parameter Measurement

Prior to sampling the well, the SWL will be re-measured and documented and purging will be re-initiated using the ODR. The discharge rate will be confirmed by volumetric discharge measurement and the ODR adjusted as necessary. When the ODR has been re-established, the SWL drawdown has stabilized within the acceptable range and at least one pump system volume (bladder volume and/or discharge tubing volume) has been purged, field measurements for temperature (T), pH, conductivity (Ec), and if required, oxygen reduction potential (ORP) and dissolved oxygen (DO) will be collected and documented on the field data sheet. Measurements should be taken every three to five minutes until parameters stabilize for three consecutive readings. The minimum parameter subset of T (\pm 10%), pH (\pm 0.1 unit), and Ec (\pm 10 uS) are required to stabilize. Additional parameters that may be required are DO (\pm 0.2 mg/l) and ORP (\pm 20 mV).

Sample Collection

When water quality parameters have stabilized, and there is no change in the SWL drawdown, groundwater sample collection may begin. Water samples are collected from the discharge tubing into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to

the laboratory. A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

Client/Facility#:	Chevron #3	52300		Job Number	: 385853		
Site Address:	State Route	274		Event Date:	5.17-	10	— (inclusive)
City:	Tekoa,WA			Sampler:	911	10	_ (inclusive)
				Sampler.	<u> </u>		
Weil ID	MW-/		-	Date Monitored	: 5-17-	10	
Well Diameter	2 ir	— 1.	F.7				-
Total Depth	8.95 A	_		olume 3/4"= 0 actor (VF) 4"= 0		2"= 0.17 3"= 0.3; 6"= 1.50 12"= 5.8;	•
Depth to Water	6.13 ft		L	olumn is less then 0.		0 - 1.50 12 - 5.60	<u></u>
•	<u></u>	xVF ~		x3 case volume		- 1/alimai	
Depth to Water	w/ 80% Recharge		Water Column v 0 :	X3 case volume 20) + DTW]:	- Estimated Purg	e volume:	gal.
•		- Krieight of	VVEICE COIGHIN X 0.2	20) + D1VVj		and a collection	
Purge Equipment:		8	Sampling Equipme	ent:	Time Sta Time Co	mpleted:	(2400 hrs) (2400 hrs)
Disposable Bailer			Disposable Bailer		Depth to	Product:	ft
Stainless Steel Baile	r	F	Pressure Bailer			Water:	ft
Stack Pump		E	Discrete Bailer		riyarocar Visual Co	bon Thickness: onfirmation/Description	ft
Suction Pump		P	Peristaltic Pump		- I		
Grundfos		C	DED Bladder Pump		Skimmer Amt Rem	/ Absorbant Sock (cin oved from Skimmer:_	cle one)
Peristaltic Pump		C	Other:		■ Amt Rem	oved from Well:	yai
QED Bladder Pump					■ Water Re	moved: ransferred to:	
Other:					r roduct r	ransierieu to	·
Start Time (purge		-	Weather (Conditions:	SUMAY		
Commis Time - /Da				, =			
	te: <u>/030 /5</u>			ior: Class	Odor: Y / /	9	
Approx. Flow Ra		<u>5-/7-10</u> øpm.		lor: (Qev) Description:	Odor: Y 1	9	
	te: Z00 M	gpm.		Description:	More		160
Approx. Flow Rate	te: <u>ZOO M</u>	gpm.	Sediment	Description:	gal. DTW @	Sampling:	
Approx. Flow Ra	te: ZOO MI ? NO If	gpm.	Sediment Conductivity	Description: Diume: Temperature	gal. DTW @	Sampling:	Gauge DTW
Approx. Flow Rate Did well de-water	te: ZOO MI ? NO If	gpm. yes, Time:	Sediment Conductivity (µmhos/cm - µS)	Description: Diume: Temperature	gal. DTW @	Sampling:	
Approx. Flow Rate Did well de-water	te: ZOO MI ? NO If	gpm. yes, Time:	Sediment Conductivity	Description: Diume: Temperature	gal. DTW @	Sampling:	Gauge DTW as parameters
Approx. Flow Rate Did well de-water	te: ZOO MI ? NO If	gpm. yes, Time:	Sediment Conductivity (µmhos/cm - µS)	Description: Diume: Temperature	gal. DTW @	Sampling:	Gauge DTW as parameters
Approx. Flow Rate Did well de-water	te: ZOO MI ? NO If	gpm. yes, Time:	Sediment Conductivity (µmhos/cm - µS)	Description: Diume: Temperature	gal. DTW @	Sampling:	Gauge DTW as parameters
Approx. Flow Rate Did well de-water	te: ZOO MI ? NO If	gpm. yes, Time:	Sediment Conductivity (µmhos/cm - µS)	Description: Diume: Temperature	gal. DTW @	Sampling:	Gauge DTW as parameters
Approx. Flow Rate Did well de-water	te: ZOO MI ? NO If	gpm. yes, Time: pH 7.// 7.01 7.04	Sediment Conductivity (µmhos/cm - µS) 561 Solo	Description: Diume: Temperature / F)	gal. DTW @	Sampling:	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	te: ZOO MI ? NO If	gpm. yes, Time: pH 7.// 7.01 7.04	Sediment Conductivity (µmhos/cm - µS) 561 Solo	Description: Diume: Temperature / F) // J / L // INFORMATION	gal. DTW @	Sampling:O ORP (mV)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	te: ZOO MI Volume (#) CONTAINER (#) CONTAINER x voa viai	ph ph 7.01 7.01 7.01 REFRIG. YES	Conductivity (µmhos/cm - (µS) SO (µS) ABORATORY PRESERV. TYP HCL	Description: Diume: Temperature / F) // S) INFORMATION E LABORATORY LANCASTER	gal. DTW @	Sampling:ORP (mV)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	te: ZOO M Volume Volume 3 3.6 4.7 (*) CONTAINER x voa vial x 1 liter ambers	ph ph 7.// 7.07 7.04 REFRIG. YES YES	Conductivity (µmhos/cm - µS) SO () ABORATORY PRESERV. TYP HCL HCL	Description: Dlume: Temperature (gal. DTW @ D.O. (mg/L)	Sampling:ORP (mV) ANALYSES C's(8260)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	te: ZOO M Tolume Volume 3 3.6 4.7 (*) CONTAINER © x voa viai Z x 1 liter ambers Z x 1 liter ambers	pH 7.07 7.07 7.07 REFRIG. YES YES YES	Conductivity (µmhos/cm - µS) SO () ABORATORY PRESERV. TYP HCL HCL Na2S2O3	Description: Dlume: Temperature (gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg	ORP (mV) ANALYSES C's(8260)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	(#) CONTAINER (#) CONTAINER (#) CONTAINER (*) CONTAINER (*) X voa vial X x 1 liter ambers X x 500ml poly	pH 7.07 7.07 REFRIG. YES YES YES YES	Sediment Conductivity (µmhos/cm - µs) SO ABORATORY PRESERV. TYP HCL HCL Na2S2O3 HNO3	INFORMATION E LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ANALYSES C's(8260) I) CP/MS 6020)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	te: ZOO M Tolume Volume 3 3.6 4.7 (*) CONTAINER © x voa viai Z x 1 liter ambers Z x 1 liter ambers	pH 7.07 7.07 7.07 REFRIG. YES YES YES	Conductivity (µmhos/cm - µS) SO () ABORATORY PRESERV. TYP HCL HCL Na2S2O3	Description: Dlume: Temperature (gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ORP (mV) ANALYSES C's(8260)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	(#) CONTAINER (#) CONTAINER (#) CONTAINER (*) CONTAINER (*) X voa vial X x 1 liter ambers X x 500ml poly	pH 7.07 7.07 REFRIG. YES YES YES YES	Conductivity (µmhos/cm - µS) SO ABORATORY PRESERV. TYP HCL HCL Na2S2O3 HNO3	INFORMATION E LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ANALYSES C's(8260) I) CP/MS 6020)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	(#) CONTAINER (#) CONTAINER (#) CONTAINER (*) CONTAINER (*) X voa vial X x 1 liter ambers X x 500ml poly	pH 7.07 7.07 REFRIG. YES YES YES YES	Conductivity (µmhos/cm - µS) SO ABORATORY PRESERV. TYP HCL HCL Na2S2O3 HNO3	INFORMATION E LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ANALYSES C's(8260) I) CP/MS 6020)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	(#) CONTAINER (#) CONTAINER (#) CONTAINER (*) CONTAINER (*) X voa vial X x 1 liter ambers X x 500ml poly	pH 7.07 7.07 REFRIG. YES YES YES YES	Conductivity (µmhos/cm - µS) SO ABORATORY PRESERV. TYP HCL HCL Na2S2O3 HNO3	INFORMATION E LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ANALYSES C's(8260) I) CP/MS 6020)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	(#) CONTAINER (#) CONTAINER (#) CONTAINER (*) CONTAINER (*) X voa vial X x 1 liter ambers X x 500ml poly	pH 7.07 7.07 REFRIG. YES YES YES YES	Conductivity (µmhos/cm - µS) SO ABORATORY PRESERV. TYP HCL HCL Na2S2O3 HNO3	INFORMATION E LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ANALYSES C's(8260) I) CP/MS 6020)	Gauge DTW as parameters
Approx. Flow Rate Did well de-water Time (2400 hr.)	(#) CONTAINER (#) CONTAINER (#) CONTAINER (*) X voa vial Z x 1 liter ambers Z x 1 liter ambers 1 x 500ml poly x 500ml poly	ph yes, Time: pH 7.01 7.01 7.01 REFRIG. YES YES YES YES YES	Conductivity (µmhos/cm - µS) SO ABORATORY PRESERV. TYP HCL HCL Na2S2O3 HNO3	INFORMATION E LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	gal. DTW @ D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM	ANALYSES C's(8260) I) CP/MS 6020)	Gauge DTW as parameters

	Chevron #35230		_ Job Number	:: 385853	
Site Address:	State Route 274		Event Date:	5-17-10	(inclusive)
City:	Tekoa,WA		- Sampler:		(inclusive)
			_ Sampler.	<u> MC</u>	
Well ID	MW- 2_	<u> </u>	Data Maria	5-17 V	<u> </u>
			Date Monitored	: 5-17-10	<u> </u>
Well Diameter	2 in.		ume 3/4"= 0	.02 1"= 0.04 2"= 0.1	7 3"= 0.38
Total Depth	8,49 ft.	Fac	tor (VF) 4"= 0		
Depth to Water	<u> ४ वं क</u>	Check if water colu	mn is less then 0.	50 ft.	
	xVF			= Estimated Purge Volume	aal
Depth to Water v	v/ 80% Recharge (Hei	ght of Water Column x 0.20) + DTWI:	. are the same of the same	: gal.
	5 K	.	, · · · · · · · · · · · · · · · · · · ·		
Purge Equipment:		Sampiling Equipmen	t:	Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product:	
Stainless Steel Bailer		Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thick	kness:ft
Suction Pump		Peristaltic Pump		Visual Confirmatio	n/Description:
Grundfos		QED Bladder Pump		Skimmer / Absorba	ant Sock (circle one)
Peristaltic Pump		Other:		Amt Removed from	n Skimmer:gai
QED Bladder Pump				Water Removed:	n Well:gal
Other:				Product Transferre	d to:
Charl Time (c)	12110			C 7	
Start Time (purge)		Weather C	/ / / -	SUMMY	
Sample Time/Dat		Water Cold	r. Cloud	Odor: Y / 🗚	
Approx. Flow Rate	e: 7년 0 시 gpm	. Sediment E	escription		
			Caci iptici i,	//a/n/\	
Did well de-water				DTW @ Sampli	00: 630
Did well de-water		Time: <u>/355</u> Vol		DTW @ Samplin	ng: <u>6.30</u>
Time	Volume,	Time: /355 Volu	ime: 3 L		ORP Gauge DTW
Time (2400 hr.)	? LES If yes,	Time: <u>/355</u> Vol	ime: 3 L	DTW @ Sampli	ORP Gauge DTW (mV) as parameters
Time	Volume,	Time: /355 Volume: Conductivity (µmhos/cm - 45)	ime: 3 L	DTW @ Samplin	ORP Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume pH	Time: /355 Volume: Conductivity (µmhos/cm - 45)	ime: 3 L	DTW @ Samplin	ORP Gauge DTW (mV) as parameters
Time (2400 hr.)	Volume pH	Time: /355 Volume: Conductivity (µmhos/cm - 45)	ime: 3 L	DTW @ Samplin	ORP Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume pH	Time: /355 Volume: Conductivity (µmhos/cm - 45)	ime: 3 L	DTW @ Samplin	ORP Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume pH	Time: /355 Volume: Conductivity (µmhos/cm - 45)	ime: 3 L	DTW @ Samplin	ORP Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume pH	Conductivity (µmhos/cm - (S)) 2	Temperature (6/F)	DTW @ Samplin	ORP Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume pH	Conductivity (µmhos/cm - 45) 2 49 2 2 49 5 LABORATORY II	Temperature (Ø / F) 12.1 12.1	D.O. (mg/L)	ORP (mV) Gauge DTW as parameters are recorded 7,89
Time (2400 hr.) /350 /353	Volume pH 2 6.7	Conductivity (µmhos/cm - 45) 2	Temperature (6/F) 12.1 12.1	D.O. (mg/L)	ORP (mV) Gauge DTW as parameters are recorded 7,89
Time (2400 hr.) /350 /353	Volume pH Z Z C Z C C C C C C C C C	Conductivity (µmhos/cm - 45) 2	Temperature (Ø / F)	D.O. (mg/L)	ORP (mV) Gauge DTW as parameters are recorded 7,89
Time (2400 hr.) /350 /353	Volume pH Z Z C Z C C C C C C C C C	Conductivity (µmhos/cm - (S)) 2	Temperature (0 / F)	DTW @ Sampling D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg	ORP (mV) Gauge DTW as parameters are recorded 7,89
Time (2400 hr.) /350 /353	Volume pH Z Z G:7 CONTAINER REF Ex voa vial YE x 1 liter ambers YE x 1 liter ambers YE	Conductivity (µmhos/cm - (S)) 2	Temperature (Ø / F)	D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) as parameters are recorded 7, 8, 9
Time (2400 hr.) /350 /353	Volume pH Z Z C Z Z	Conductivity (µmhos/cm - (S)) 2 49 2 2 49 5 LABORATORY II RIG. PRESERV. TYPE S HCL S Na2S2O3 HNO3	Temperature (DTW @ Sampling D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg	ORP (mV) as parameters are recorded 7, 8 9 8, 2
Time (2400 hr.) /350 /353	Volume pH Z Z G	Conductivity (µmhos/cm - (S)) 2 49 2 2 49 5 LABORATORY II RIG. PRESERV. TYPE S HCL S Na2S2O3 S HNO3	Temperature (D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (IOP/M8 60	ORP (mV) as parameters are recorded 7, 8 9 8, 2
Time (2400 hr.) / 350 / 353	Volume pH Z Z C.7 CONTAINER REF Exvoa vial YE x 1 liter ambers YE x 500ml poly YE x 500ml poly YE	Conductivity (µmhos/cm - (S)) 2 49 2 2 49 5 LABORATORY II RIG. PRESERV. TYPE S HCL S Na2S2O3 S HNO3	Temperature (D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (IOP/M8 60	ORP (mV) as parameters are recorded 7, 8 9 8, 2
Time (2400 hr.) / 350 / 353	Volume pH Z C.7 Z.6 (#) CONTAINER REF x voa vial YE x 1 liter ambers YE x 500ml poly YE x 500ml poly YE	Conductivity (µmhos/cm - (S)) 2	Temperature (D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP/M	ORP (mV) as parameters are recorded 7, 8,9 YSES 48 6020)
Time (2400 hr.) / 350 / 353	Volume pH Z Z G	Conductivity (µmhos/cm - (S)) 2	Temperature (D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP/M DISSOLVED LEAD (ICP/M ATER TO SA	ORP (mV) as parameters are recorded 7, 89 8,21
Time (2400 hr.) / 350 / 353	Volume PH Z C.7 Z.G. G.7 Z.G. G.7 PH Z Z.G. G.7 A 1 iter ambers VE x 1 liter ambers YE x 500ml poly YE VOLUME VO	Conductivity (µmhos/cm - (S)) 2 49 2 2 49 5 LABORATORY II RIG. PRESERV. TYPE S HCL S Na2S2O3 HNO3 S NP TELED RC76 THE AMBER	Temperature (D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP/M DISSOLVED LEAD (ICP/M R NWTPH-B	ORP (mV) as parameters are recorded 7.89 8.2 See 1
Time (2400 hr.) / 350 / 353	Volume PH Z C.7 Z.G. G.7 Z.G. G.7 PH Z Z.G. G.7 A 1 iter ambers VE x 1 liter ambers YE x 500ml poly YE VOLUME VO	Conductivity (µmhos/cm - (S)) 2	Temperature (D.O. (mg/L) ANAL NWTPH-Gx/VOC's(8260) NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP/M DISSOLVED LEAD (ICP/M R NWTPH-B	ORP (mV) as parameters are recorded 7, 89 8,21

Chentracility#:	Chevron #354	-000		Job Number	: 385853		
Site Address:	State Route 2	74	· · · · · · · · · · · · · · · · · · ·	Event Date:	5-17-	10	— (inclusive)
City:	Tekoa,WA			Sampler:	ML		_ (
Well ID	MW-,3			Date Monitored	: 5-17-	10	
Well Diameter	2 in.		-				-
Total Depth	9.67 ft		Volun Facto	ne 3/4"= 0. r (VF) 4"= 0.		2"= 0.17 3"= 0.3 6"= 1.50 12"= 5.8	_
Depth to Water			ــــــا heck if water colun	n is less then 0.			
Denth to Water	w/ 80% Recharge [der	=	x3 case volume	= Estimated Purge	Volume:	gal.
Dopin to Water	W 00 % Necharge [(Height of V	vater Column x 0.20)	+ DTWJ:			37-20 T
Purge Equipment:		Sa	ampling Equipment:		Time Start	led: pleted:	(2400 hrs) (2400 hrs)
Disposable Bailer			sposable Bailer		Depth to P	Product:	
Stainless Steel Baile	er		essure Bailer		Depth to V	Vater:	ft
Stack Pump		Dî	screte Bailer		Hydrocarb Visual Cor	on Thickness: nfirmation/Description	ft
Suction Pump		Pe	eristaltic Pump			•	
Grundfos		QE	ED Bladder Pump		Skimmer /	Absorbant Sock (circle) ved from Skimmer:	cle one)
Peristaltic Pump	<u>×</u>	Ot	her:		Amt Remo	ved from Well:	gal
QED Bladder Pump					■ Water Ren	noved:	
Other:					Flouder 11	ansferred to:	
	سترسو د د					,	
Start Time (purge			Weather Co	nditions:	SUNN		
Sample Time/Da		17-10	Water Color:	Cloudy	_Odor: Y / M	2	ii.
Approx. Flow Ra	te: 200 ml_d	pm.	Sediment De	scription:	1. iaht		
Did well de-water	r? <u>40 </u>	es, Time:	Volur			Sampling: 6	.47
		es, Time:	Volur	ne:	gal. 4DTW @ S		, 42 Gauga DTM
Did well de-water Time (2400 hr.)	Volume ,	es, Time:	Conductivity _	ne:	gal. DTW @ S	ORP	Gauge DTW as parameters
Time			Conductivity (µmhos/cm - 15)	ne:	gal. 4DTW @ S		as parameters are recorded
Time	Volume ,		Conductivity _	ne:	gal. DTW @ S	ORP	as parameters
Time	Volume ,		Conductivity (µmhos/cm - 15)	ne:	gal. DTW @ S	ORP	as parameters are recorded
Time	Volume ,		Conductivity (µmhos/cm - 15)	ne:	gal. DTW @ S	ORP	as parameters are recorded
Time	Volume ,		Conductivity (µmhos/cm - 15)	ne:	gal. DTW @ S	ORP	as parameters are recorded
Time	Volume ,	pH -38 -42 -43	Conductivity (µmhos/cm - AS)	Temperature (£) F) 12.9 13.0	gal. DTW @ S	ORP	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	Volume 3 3, 6 4, 2 (*) CONTAINER	pH - 38 - 42 - 43 - L REFRIG.	Conductivity (µmhos/cm - 15) (0 0 5) (1 / 0) ABORATORY IN PRESERV. TYPE	Temperature (£) F) 12.9 13.0 13.0 FORMATION LABORATORY	gal. DTW @ S	ORP (mV)	as parameters are recorded
Time (2400 hr.) /2/0 /2/3 /2/6	Volume 3 3, 6 4, 2 (*) CONTAINER • x voa vial	pH 2.38 .42 .43 .43 REFRIG. YES	Conductivity (µmhos/cm - AS) (0 0 5) (0 1 / 0) ABORATORY IN PRESERV. TYPE HCL	Temperature (E) F) 12.9 13.0 13.0 FORMATION LABORATORY LANCASTER	D.O. (mg/L)	ORP (mV)	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	Volume 3 3.6 4,2 (#) CONTAINER • x voa vial 2 x 1 liter ambers	PH	Conductivity (µmhos/cm - AS) (Temperature (E) F) 12,9 13.0 13.0 FORMATION LABORATORY LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC	ORP (mV)	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	Volume 3 3.6 4,2 (#) CONTAINER • x voa vial 2 x 1 liter ambers 2 x 1 liter ambers	PH .42 .43 .43 .EFRIG. YES YES YES	Conductivity (µmhos/cm AS) (Temperature (E) F) 12 9 13.0 13.0 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV)	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	// CONTAINER (*) CONTAINER (*) x voa vial 2 x 1 liter ambers 2 x 1 liter ambers 1 x 500ml poly	PH . 42 . 43 . 42 . 43 . 45 . 45 . 45 . 45 . 45 . 45 . 45 . 45	Conductivity (µmhos/cm /IS) (005 ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (É) F) 12 9 13. 0 13. 0 13. 0 LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260)	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	Volume 3 3.6 4,2 (#) CONTAINER • x voa vial 2 x 1 liter ambers 2 x 1 liter ambers	PH .42 .43 .43 .EFRIG. YES YES YES	Conductivity (µmhos/cm AS) (Temperature (E) F) 12 9 13.0 13.0 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260)	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	// CONTAINER (*) CONTAINER (*) x voa vial 2 x 1 liter ambers 2 x 1 liter ambers 1 x 500ml poly	PH . 42 . 43 . 42 . 43 . 45 . 45 . 45 . 45 . 45 . 45 . 45 . 45	Conductivity (µmhos/cm /IS) (005 ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (É) F) 12 9 13. 0 13. 0 13. 0 LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260)	as parameters are recorded
Time (2400 hr.) / 2/0 / 2/3 / 2/16	// CONTAINER (*) CONTAINER (*) x voa vial 2 x 1 liter ambers 2 x 1 liter ambers 1 x 500ml poly	PH . 42 . 43 . 42 . 43 . 45 . 45 . 45 . 45 . 45 . 45 . 45 . 45	Conductivity (µmhos/cm /IS) (005 ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (É) F) 12 9 13. 0 13. 0 13. 0 LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260)	as parameters are recorded
Time (2400 hr.) /2/0 /2/3 /2/6 SAMPLE ID MW- 3	// CONTAINER (*) CONTAINER (*) x voa vial 2 x 1 liter ambers 2 x 1 liter ambers 1 x 500ml poly	PH . 42 . 43 . 42 . 43 . 45 . 45 . 45 . 45 . 45 . 45 . 45 . 45	Conductivity (µmhos/cm /IS) (005 ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (É) F) 12 9 13. 0 13. 0 13. 0 LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260)	as parameters are recorded
Time (2400 hr.) /2/0 /2/3 /2/6 SAMPLE ID MW- 3	// CONTAINER (*) CONTAINER (*) x voa vial 2 x 1 liter ambers 2 x 1 liter ambers 1 x 500ml poly	PH . 42 . 43 . 42 . 43 . 45 . 45 . 45 . 45 . 45 . 45 . 45 . 45	Conductivity (µmhos/cm /IS) (005 ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (É) F) 12 9 13. 0 13. 0 13. 0 LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260)	as parameters are recorded

Client/Facility#:	Cnevron #3	52300		Job Numbe	r: 385853		
Site Address:	State Route	274		Event Date:	5-17-10	2	— (inclusive)
City:	Tekoa,WA			Sampler:			(#10143146)
				Campler.	<u>ML</u>		
Well ID	MW- 4			Date Monitored	1: 5-17-10	2	
Well Diameter		<u></u> n,	г-	Date Monitoret	1. 0-11-10		
Total Depth	10.00	!!: t.		Volume 3/4"= 0 Factor (VF) 4"= 0		= 0.17 3"= 0.3	
Depth to Water			L			1.50 12"= 5.8	<u></u> _
Depui to Water	<u> </u>	<u>`</u> xVF		olumn is less then 0.			-
Denth to Water	w/ 80% Pachara		11Mates October 11	x3 case volume	= Estimated Purge Vo	olume:	gal.
Dopui to Water	w 00 % Nechary	e ((ueiðrit or	vvater Column x u	.20) + DTW]:		25 8 20	200
Purge Equipment:			Sampling Equipm	ent:	Time Started Time Comple	:	(2400 hrs) (2400 hrs)
Disposable Bailer			Disposable Bailer		Depth to Prod	duct:	` ft ′
Stainless Steel Baile	r		Pressure Bailer		Depth to Wat	er:	ft
Stack Pump		ı	Discrete Bailer		Hydrocarbon	Thickness: mation/Descriptio	ft
Suction Pump		ı	Peristaltic Pump		Visual Comin	matron/Descriptro	n:
Grundfos			QED Bladder Pumi	, —	Skimmer / Ab	sorbant Sock (cir	cle one)
Peristattic Pump			Other:		Amt Remove	d from Skimmer:_ d from Well:	gal
QED Bladder Pump					Water Remov	ed:	gal
Other:					Product Trans		
		1012					
Start Time (purge): 1750		Weather	Conditions:	SUMY		
Sample Time/Da	te: /320 /	5-17-10	D Water Co	olor: C(O//V	Odor: Y /(N	· · · · · · · · · · · · · · · · · · ·	
Approx. Flow Rat	te: 7/07 Inl	pm.		t Description:	/isht		
Did well de-water		— •	o:V	· -	gal DTW @ Sai	molina:	7
		,, , , , , , , , , , , , , , , , , , , ,	· •	<u></u>	- gaily Di vv (@ Sai	inpling	63
Time	Volume	рН	Conductivity	. , .	D.O.	ORP	Gauge DTW
(2400 hr.)	gen C	1 ~	(µmhos/cm - µS)) ((E)/F)	(mg/L)	(mV)	as parameters are recorded
1500		6.48	760	71,8			5.67
1304	316	6.54	763	11.8			2195
1311	4.7	6.55	764	11.8			5.65
							
SAMPLE ID	(#) CONTAINER	REFRIG.	LABORATORY PRESERV. TY	INFORMATION			
MW-4	x voa vial		HCL	PE LABORATORY LANCASTER	NWTPH-Gx/VOC's(8	ANALYSES	
	2 x 1 liter ambers	YES	HCL	LANCASTER	NWTPH-Dx w/sg	,200)	———
	x 1 liter ambers	YES	Na2S2O3	LANCASTER	PAH's (8270 SIM)		
	x 500ml poly	YES	HNO3	LANCASTER	TOTAL LEAD (ICP/N	IS 6020)	
	x 500ml poly	YES	NP	LANCASTER	DISSOLVED LEAD (ICP/MS 6020)	
 			 -				
			<u> </u>		<u> </u>		
COMMENTS: _							
	···						
Add/Replaced L	ock:	Add/	Replaced Plug		Add/Replaced Bo	olt:	

Client/Facility#	: Chevron #3	52300		Job Number	: 385853		
Site Address:	State Route	274	_	Event Date:	5-17-	10	 (inclusive)
City:	Tekoa,WA			Sampler:	ML		_ (
Well ID				Date Monitored	: 5-17-	10	
Well Diameter	2 i	<u>n.</u>	Volum				-
Total Depth	9.22 f	<u>t.</u>		or (VF) 4"= 0.		2"= 0.17	
Depth to Water	5.15 f		Check if water colum	nn is less then 0.	50 ft.	·	
Depth to Water	w/ 80% Recharge	xvr e [(Height of	= Water Column x 0.20)	+ DTW]:	= Estimated Purge \	/olume:	gal.
Purge Equipment:			Sampling Equipment:		Time Starte Time Comp		(2400 hrs)
Disposable Bailer			Disposable Bailer			oduct:	(2400 hrs)
Stainless Steel Baile	er		Pressure Bailer		Depth to W	ater:	ft
Stack Pump			Discrete Bailer			n Thickness:	ft
Suction Pump		F	Peristaltic Pump	X		•	
Grundfos		C	QED Bladder Pump		Skimmer / A	bsorbant Sock (cin	cle one)
Peristaltic Pump	_X	C	Other:		Amt Remov	ed from Skimmer:_ ed from Well:	gar gal
QED Bladder Pump					■ Water Reme	oved:	
Other:					Product tra	nsferred to:	
Start Time (purge		- 1 -	Weather Co		Sum	Y	
Sample Time/Da Approx. Flow Ra Did well de-wate	te: 200 mg	<u>5-17-10</u> gpm. yes, Time	Sediment De	· -	Odor: Y / ゆ しっして gal. DTW @ Si	ampling: 5	28
Approx. Flow Ra	te: 200 mg	gpm.	Sediment De	escription:	— .	ampling: 5. ORP (mV)	Gauge DTW as parameters are recorded 5.26
Approx. Flow Ra Did well de-wate	r? 200 mg	gpm. yes, Time	Sediment De	escription: J_ me: Temperature	gal. DTW @ Si	ORP	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate	r? 200 mg	ppm. yes, Time pH 2. 68 2. 74 2. 75	Sediment De Conductivity (µmhos/cm - µS)	Temperature (G/F)	gal. DTW @ Si	ORP	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //23 //24	volume 3 3.6 4.7 (#) CONTAINER	ppm. yes, Time pH 2. 68 2. 74 2. 75	Sediment De	Temperature (G/F)	gal. DTW @ Si	ORP (mV)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //23	volume volume 3 4 Volume 4 Volume 4 Volume 4 Volume 4 Volume x voa vial	ppm. yes, Time pH 2.74 2.75 REFRIG. YES	Sediment De Conductivity (µmhos/cm - µS) CS O SS I ABORATORY IN PRESERV. TYPE HCL	Temperature (G/F) //G.3 //G.3 FORMATION LABORATORY LANCASTER	gal. DTW @ Si	ORP (mV)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //2.3 //2.4	Volume Volume 3 Volume 4 Volume 4 Volume 4 Volume 4 Volume 2 Volume 4 Vol	ppm. yes, Time pH 2.74 2.75 REFRIG. YES YES	Sediment De Conductivity (µmhos/cm - µS) (µS) (µS)	Temperature (C/F) /// S /// S FORMATION LABORATORY LANCASTER LANCASTER	D.O. (mg/L) D.O. (mg/L) NWTPH-GxVOC's	ORP (mV)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //2.3 //2.4	Volume Volume Volume Volume Volume Volume X X X X X X X X X X X X X	ppm. yes, Time pH 9.74 9.75 REFRIG. YES YES YES	Conductivity (µmhos/cm - µS) (µS) (µS) (µS) (µS) (µS) (µS) (µS) (Temperature (C/F) //C, 3 //C, 3 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	D.O. (mg/L) D.O. (mg/L) NWTPH-GxVOC's NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //23 //24	// CONTAINER (#) CONTAINER (#) x voa viail 2 x 1 liter ambers 7 x 500ml poly	ppm. yes, Time pH 2.74 2.75 REFRIG. YES YES YES YES	Conductivity (µmhos/cm - µS) (µS)	Temperature (C) F) // C, Z // C, 3 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) D.O. (mg/L) NWTPH-GxVOC'S NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP)	ORP (mV)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //23 //24	Volume Volume Volume Volume Volume Volume X X X X X X X X X X X X X	ppm. yes, Time pH 9.74 9.75 REFRIG. YES YES YES	Conductivity (µmhos/cm - µS) (µS) (µS) (µS) (µS) (µS) (µS) (µS) (Temperature (C/F) //C, 3 //C, 3 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	D.O. (mg/L) D.O. (mg/L) NWTPH-GxVOC's NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV)	Gauge DTW as parameters are recorded 5.76
Approx. Flow Ra Did well de-wate Time (2400 hr.) //20 //2.3 //2.4	// CONTAINER (#) CONTAINER (#) x voa viail 2 x 1 liter ambers 7 x 500ml poly	ppm. yes, Time pH 2.74 2.75 REFRIG. YES YES YES YES	Conductivity (µmhos/cm - µS) (µS)	Temperature (C) F) // C, Z // C, 3 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) D.O. (mg/L) NWTPH-GxVOC'S NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP)	ORP (mV)	Gauge DTW as parameters are recorded

Client/Facility#:	Chevron #352300		Job Number:	385853		
Site Address:	State Route 274		Event Date:	5-17-11		(inclusive)
City:	Tekoa,WA		— Sampler:	ML		(miciusive)
			_ oumpier.			
Well ID	MW-6		Date Monitored:	5-17-10	<u></u>	
Well Diameter	2 in.	<u></u>				
Total Depth	9.75 ft.		lume 3/4"= 0.0 ctor (VF) 4"= 0.6			İ
Depth to Water	3.79 ft.	Check if water col	umn is less then 0.50		12 - 0,00	
	xVF_			Estimated Purge Volum	<u> </u>	
Depth to Water v	v/ 80% Recharge [(Heigh	t of Water Column x 0.2	0) + DTW]:	Louisiaco i dige voidii	G	gai.
				Time Started:		(2400 hrs)
Purge Equipment:	,	Sampling Equipment	nt:	Time Completed		(2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product	: _	ft
Stainless Steel Bailer		Pressure Baller		Depth to Water:_ Hydrocarbon Thi		ft
Stack Pump		Discrete Bailer		Visual Confirmati	on/Description:	——— ⁿ
Suction Pump		Peristaltic Pump		4	•	
Grundfos		QED Bladder Pump		Skimmer / Absort	ant Sock (circle	one)
Peristaltic Pump		Other:		Amt Removed fro Amt Removed fro	m Skimmer: m Well:	ga!
QED Bladder Pump				Water Removed:		
Other:				Product Transfer	ed to:	
Sample Time/Dat Approx. Flow Rate Did well de-water Time (2400 hr.)	e:gpm.	Conductivity (µmhos/cm - (µs)	Description: Jume: Temperature (C F)	Odor: Y / N pal. DTW @ Sample D.O. (mg/L)	ORP (mV)	Gardge DTW as parameters are recorded
SAMPLE ID	(#) CONTAINER REFRI	LABORATORY G. PRESERV. TYPE				
MW-	woo vial YES				LYSES	
	liter ambers YES			MWTPH-Gx/VOC's (826) NWTPH-Dx w/sg	"	
	x 1 liter ambers YES	Na2S2O3		PAH's (B270 SIM)		
	x 500ml poly YES	HNO3		TOTAL LEAD (ICP/MS 6	020)	
	x 500ml poly YES	NO NO		DISSOLVED LEAD (ICP		
				- SOULTED LEAD (ICP.	1113 0020)	
COMMENTS:	INABLE TO S	'AMPLE - E	DBSTKU	ETED AT	~ 4.0	DO FEET
Add/Replaced Lo	ock: Ac	ld/Replaced Plug:		Add/Replaced Bolt:		

Client/Facility#:	Chevron #35	2300		Job Number:	385853		
Site Address:	State Route	274		Event Date:	5-17-1	6	- (inclusive)
City:	Tekoa,WA			Sampler:	146		_(
				Sampler.			-
Well ID	MW- 7				· · ·		
		-	L	Date Monitored:	5,17-		_
Well Diameter	2 in	-	Volum			= 0.17 3"= 0.38	
Total Depth	10:15 ft.	- —	Factor	· · · · · · · · · · · · · · · · · · ·		= 1.50 12"= 5.80	
Depth to Water	5.28 ft.	_ 🛄 0	heck if water colum	n is less then 0.5	0 ft.		
		xVF	=	x3 case volume =	Estimated Purge Vo	olume:	_ gal.
Depth to Water	w/ 80% Recharge	[(Height of V	Vater Column x 0.20) +				
					Time Started	l:	(2400 hrs)
Purge Equipment:		S	ampling Equipment:		Time Comple	eted:	(2400 hrs)
Disposable Bailer		D	isposable Bailer		Depth to Pro		ft
Stainless Steel Baile	er	P	ressure Bailer		Hydrocarbon	ter	ft
Stack Pump		D	iscrete Bailer			mation/Description	f
Suction Pump		Po	eristaltic Pump			•	
Grundfos		Q	ED Bladder Pump		Skimmer / At	osorbant Sock (circ d from Skimmer:	le one)
Peristaltic Pump		0	ther:		Amt Remove	d from Well:	gai
QED Bladder Pump					Water Remov	ved:	
Other:			965		Product Tran	sferred to:	
Start Time (purge	·	30	Weather Cor		Sumy		
	ite: / 450 /5	-17-BO	Water Color:	(100 A	Odor(Y)/ N	AAAAAA	•
	-				- /	700 N	
Approx. Flow Ra	ite: 200 ml	gpm.	Sediment De		light	7000	
Approx. Flow Ra Did well de-wate		gpm. yes, Time:	Sediment De	scription:	- /	mpling: _(a.)	2.7
Did well de-wate	r? 10 If		Sediment De	scription:	gal. DTW@Sa		
Did well de-wate	r? 10 If		Sediment DeVolum Conductivity	scription:	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate	r? 10 If	yes, Time:	Sediment De Volun Conductivity (µmhos/cm µS)	scription: ne: Temperature	gal. DTW@Sa		Gauge DTW
Did well de-wate	r? 10 If	yes, Time:	Sediment DeVolum Conductivity	scription:	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate	r? 10 If	yes, Time:	Sediment De Volun Conductivity (µmhos/cm µS)	scription: ne: Temperature	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate	r? 10 If	yes, Time:	Sediment De Volun Conductivity (µmhos/cm µS)	scription: ne: Temperature	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate	r? 10 If	yes, Time:	Sediment De Volun Conductivity (µmhos/cm µS)	scription: ne: Temperature	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate	r? 10 If	pH (6.9(6 7.01 7.00	Sediment De Volun Conductivity (µmhos/cm-µS) S// S// S// S// S// S// S// S// S//	Temperature (5)/F) /3./ /3./	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate Time (2400 hr.) [435	7? 10 If Volume 13 (2 7.2	yes, Time: pH (6.9(6) 7.01 7.00	Sediment De Volun Conductivity (µmhos/cm - (S) S C S C S C ABORATORY IN	Temperature (Ø / F) / 3 · / / 3 · / / 3 · 2 FORMATION	gal. DTW @ Sa	ORP (mV)	Gauge DTW as parameters
Did well de-wate Time (2400 hr.) [435 /438 /44/ SAMPLE ID	7? 10 If Volume 13. (2 7. 2 (#) CONTAINER	pH (9.9() 7.01 7.00 REFRIG.	Sediment De Volun Conductivity (µmhos/cm - µS) S C S C S C ABORATORY IN PRESERV. TYPE	Temperature (D/F) /3./ /3./ /3.Z FORMATION LABORATORY	gal. DTW @ Sa D.O. (mg/L)	ORP (mV)	Gauge DTW as parameters
Did well de-wate Time (2400 hr.) [435	Volume pH (a.9(a) 7.01 7.00 REFRIG. YES	Sediment De Volun Conductivity (µmhos/cm - 15) SE SE SE ABORATORY IN PRESERV. TYPE HCL	Temperature (D/F) /3./ /3./ /3.2 FORMATION LABORATORY LANCASTER	D.O. (mg/L)	ORP (mV)	Gauge DTW as parameters	
Did well de-wate Time (2400 hr.) [435 /438 /44/ SAMPLE ID	Volume pH (A.9(a) 7.01 7.00 REFRIG. YES YES	Sediment De Volun Conductivity (µmhos/cm - µs) SU	Temperature (C) F) /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's	ORP (mV)	Gauge DTW as parameters	
Did well de-wate Time (2400 hr.) [435 /438 /44/ SAMPLE ID	Volume pH (6.9(6) 7.07 7.00 REFRIG. YES YES YES	Sediment De Volun Conductivity (µmhos/cm - µS) S	Temperature (C) F) /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV)	Gauge DTW as parameters	
Did well de-wate Time (2400 hr.) [435 /438 /44/ SAMPLE ID	Volume pH (A.9(a) 7.01 7.00 REFRIG. YES YES	Sediment De Volun Conductivity (µmhos/cm - µs) SU	Temperature (C) F) /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's (NWTPH-Dx w/sg) PAH's (8270 SIM)	ORP (mV) ANALYSES (8260) MS 6020)	Gauge DTW as parameters	
Did well de-wate Time (2400 hr.) [435 /438 /44/ SAMPLE ID	Volume pH (0.9(0) 7.07 7.00 REFRIG. YES YES YES YES	Sediment De Volun Conductivity (µmhos/cm -µS) S// S// S// ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (C) F) /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's NWTPH-Dx w/sg PAH's (8270 SIM)	ORP (mV) ANALYSES (8260) MS 6020)	Gauge DTW as parameters	
Did well de-wate Time (2400 hr.) [435 /438 /44/ SAMPLE ID	Volume pH (0.9(0) 7.07 7.00 REFRIG. YES YES YES YES	Sediment De Volun Conductivity (µmhos/cm -µS) S// S// S// ABORATORY IN PRESERV. TYPE HCL HCL Na2S2O3 HNO3	Temperature (C) F) /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's (NWTPH-Dx w/sg) PAH's (8270 SIM)	ORP (mV) ANALYSES (8260) MS 6020)	Gauge DTW as parameters	
Time (2400 hr.) (435 /438 /44/ SAMPLE ID MW-7	Volume yes, Time: pH (9.9() 7.07 7.00 REFRIG. YES YES YES YES	Sediment De Volun Conductivity (µmhos/cm -µS) S/	Temperature (C) F) /3./ /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's (NWTPH-Dx w/sg) PAH's (8270 SIM) TOTAL LEAD (ICP/DISSOLVED LEAD	ORP (mV) ANALYSES (8260) MS 6020) (ICP/MS 6020)	Gauge DTW as parameters are recorded Co.16	
Time (2400 hr.) (435 /438 /44/ SAMPLE ID MW-7	Volume yes, Time: pH (9.9() 7.07 7.00 REFRIG. YES YES YES YES	Sediment De Volun Conductivity (µmhos/cm -µS) S/	Temperature (C) F) /3./ /3./ /3.2 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's (NWTPH-Dx w/sg) PAH's (8270 SIM) TOTAL LEAD (ICP/DISSOLVED LEAD	ORP (mV) ANALYSES (8260) MS 6020) (ICP/MS 6020)	Gauge DTW as parameters are recorded Co.16	
Time (2400 hr.) (435 /438 /44/ SAMPLE ID MW-7	Volume yes, Time: pH (9.9() 7.01 7.00 REFRIG. YES YES YES YES YES OUL D	Sediment De Volun Conductivity (µmhos/cm -µS) S/	Temperature (D/F) /3./ /3.2 FORMATION LABORATORY LANCASTER	D.O. (mg/L) NWTPH-Gx/VOC's NWTPH-Dx w/sg PAH's (8270 SIM) TOTAL LEAD (ICP/DISSOLVED LEAD	ORP (mV) ANALYSES (8260) MS 6020) (ICP/MS 6020)	Gauge DTW as parameters	

Chevron Northwest Region Analysis Request/Chain of Custody

Lancaster Laboratories			800	L#:	121	a0		For	Lanc	este	Lab	orate	ories	UBO (only					
Where quality is a science.			ACC	C#:	<u></u>	<i>y</i>	San	<u> </u>						<u></u>		SCR		110		
					Ĺ			Ала	nlyse	s Re	dne	ste d			\exists	וסתכ		=119	2/6	00
Facility #: SS#352300-OML G-R#385853		1	Matrix		H		11		Serv	atio	n Co			1 37				tive Coo		٦
Site Address: State Route 274, TEKOA, WA		i i		•		-+	+	4	Ч-,	+	+	##	10	N		H = HCI N = HNC		T = Thic B = NaC		,
Chevron PM: BH Lead Consultant: S	AICRS	-	П		툏	- }			8							8 = H ₂ S		0 = Oth		ı
Consultant/Office: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 9456			를 X	Jen	Ž			1	5 2	· [[5		_	(000)	1	J value	report	ing neede	d	\neg
Consultant Prj. Mgr. Deanna L. Harding (deanna@grinc.com)			Potable NPDES	\$	8021 🗆 8280 💢 Naphth	- [å	ca Gel Cleanup (00 Mathod		□ quantification		Š	13	ן (Must m	neet lov	vest detec 260 comp	tion IIm	ite
Consultant Phone,#925-551-7555 Fax #: 9	25-551-7899			õ	ō	-		(C)		1	層	3	.			•		zoo <i>comp</i> Ifirmation	JUNUS	
sampler: MING LOMBARD		1		ا قار	28	- }	a .	x D	因			9728		E	[[t	_ Confim	n MTBI	E + Napht	alene	1
Service Order #: Non SAR:	Time & Collected O			OII Air [] Total Number of Containers		8	Oxygenates TOH G		X		NWTPH HCID	5	15	1l	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Confirm	n highe	st hit by 8	260	1
Date	Time & E	Ī	Water		• хаше	8260 tul scan				VPHEPH	E	70	글	40	i		OXY	s by 8260 s on high	est hit	- 1
Sample Identification Collected \[\infty A 5 - \lambda - \lambda 0 \]	Collected 호 전	100	3		5	28	12		P8	_ ₹	1₹	>	2	1		Run_	ожу	s on all h		
	030 X	╂╌	\\	15	P	-+	_ <u>_</u> X	X	1	+	+-				∐'	Comme	nte / R	temarks		
MW-2	520 X	╁		9	1	十	一	75		+	╁	X	X	X	\mathbf{H}					
mw-3 /	225 X		X	12	1	_	又	オӽ	X	十	╁	X	+-	V	H	*DI!	SSOL	VED LE	AD	
MW-Y	320 X	\perp	X	17		\Box	X	<u> </u>	<u> </u>	才		X	Ź	V	7			TO BE		1
	35 8	╄	×	17		4	_ \>	4 .	X X		L	X	X	Y		FILT	ERE) PRIOF	RTO	
NUP V	150 X	╂┈	15	11/2	\vdash		\ <u>`</u>		<u> </u>	1	↓_	X	上	X	\Box	PRE		VING W	ITH	
	 ^ -	╂╌	^	10	┝╌	+	4	42		4	╄-	×		X	_	~		103. *		4
		╅╌		+	H	┪	+	╅	+	╫	╁	├	\vdash	\vdash	\dashv	JNUI	ABL	E 70 C	alle	
		†			H	┱	_	+	+	╁	╁	 	╁╌	\vdash]	PU-D		ls for	KIO	4
						_	1	1	1	T	\dagger	 	一		٦	OUE T	. T.A.	ISU D	ryw. Siattl	
		<u> </u>				\perp	\Box													7
Typesqued Time Requested (TAT) (please circle)	Relinguished		-//	7			5-1		Tim		Rece	ived	pX:					Date	Time	7
6TD. TAT 72 hour 48 hour 24 hour 5 day	Relinquished by:	6	\Leftrightarrow	<u> </u>		-	Da		Tim		Rece	had	her	<u> </u>	_			2.0	<u> </u>	_
100, 100,				<u> </u>				T .					<u>~</u>			\		Date	Time	'
Data Package Options (please circle if required) EDF/EDD	Relinquished by:	_					Da	te	Tim	е	Rege	ived	by:				<u></u>	Dete	Time	7
QC Summary Type 1 - Full Type VI (Raw Data) Disk / EDD	Relinquished by	Com	nercial (Carrier:			L			\dashv	Fece	ivad	Sec.		_			-		4
Type VI (Raw Data) Disk / EDD WIP (RWQCB) Standard Format	1	dE)	887.73	Other_						- }	7	11400	٦,	10	$\langle 1 \rangle$			Soule	Time	•
DiskOther.	Temperature Up	on Re	ceipt _		c°					十	Cust	y s		Intac	àW	Yes	No	WWW.	042	4
							_					_	+	1	/->					

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

3468 Rev. 8/6/01

2425 New Holland Pille, PO Box 12425, Lancasier, PA 17805-2425 •717-656-2500 Fee: 717-656-2661 • www.lancesterlebs.com

RECEIVED

ANALYTICAL RESULTS

JUN 0 7 2010 Prepared for:

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 GETTER RYAN INC.

San Ramon CA 94583

June 04, 2010

Project: 352300

Submittal Date: 05/19/2010 Group Number: 1195162 PO Number: 0015061824 Release Number: HUNTER State of Sample Origin: WA

Client Sample Description	Lancaster Labs (LLI) #
QA Water Sample	5983951
MW-1 Grab Water Sample	5983952
MW-1 Filtered Grab Water Sample	5983953
MW-2 Grab Water Sample	5983954
MW-2 Filtered Grab Water Sample	5983955
MW-3 Grab Water Sample	5983956
MW-3 Filtered Grab Water Sample	5983957
MW-4 Grab Water Sample	5983958
MW-4 Filtered Grab Water Sample	5983959
MW-5 Grab Water Sample	5983960
MW-5 Filtered Grab Water Sample	5983961
MW-7 Grab Water Sample	5983962
MW-7 Filtered Grab Water Sample	5983963
DUP Grab Water Sample	5983964
DUP Filtered Grab Water Sample	5983965

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC

SAIC c/o Gettler-Ryan

Attn: Cheryl Hansen

COPY TO

2425 New Holland Pike, PO Box 12425, Lanconter, PA 17605-2425 -717-656-2500 Fixt; 717-656-2661 - www.lancesterlebs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Matthe & Button

Matthew E. Barton

Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-658-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983951

LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

Discard: 07/05/2010

TEKQA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	ECY 97-60	2 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	N.D.	50	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Kethod	Trial#	Batch#	Analysis Date and Time	Analyet	Dilution Fector
10943	BTEX 8260B Water	SW-846 8260B	1	F101393AA	05/19/2010 22:29	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F101393AA	05/19/2010 22:29	Plorida A Cimino	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH	- 1	10140A20A	05/20/2010 18:50	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010 18:50	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: MW-1 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983952 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 10:30 by ML

Chevron

6001 Bollinger Canyon Road

ls Received

L4310

San Ramon CA 94583

Submitted: 05/19/2010 08:50

Reported: 06/04/2010 08:28

Discard: 07/05/2010

TEKM1

CAT			A - 1 - 4 - 1 - 1	As Received	
	Analysis Name	CAS Number	As Received	Method	Dilution
No.	Andrias neme	CAS NUMBER	Result	Dstection Limit	Factor
,	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Acetone	67-64-1	N.D.	6	1
10903	Benzene	71-43-2	N.D.	0.5	1
10903	Bromobenzene	108-86-1	N.D.	1	1
10903	Bromochloromethane	74-97-5	N.D.	1	1
10903	Bromodichloromethane	75-27-4	N.D.	1	1
10903	Bromoform	75-25-2	N.D.	1	1
10903	Bromomethane	74-83-9	N.D.	1	1
10903	2-Butanone	78-93-3	N.D.	3	1
10903	n-Butylbenzene	104-51-8	N.D.	1	1
10903	sec-Butylbenzene	135-98-8	N.D.	1	1
10903	tert-Butylbenzene	98-06-6	N.D.	1	1
10903	Carbon Disulfide	75-15-0	N.D.	1	1
10903	Carbon Tetrachloride	56-23-5	N.D.	1	1
10903	Chlorobenzene	108-90-7	N.D.	0.8	1
10903	Chloroethane	75-00-3	N.D.	1	ī
10903	Chloroform	67-66-3	N.D.	0.8	ī
10903	Chloromethane	74-87-3	N.D.	1	i
10903	2-Chlorotoluene	95-49-8	N.D.	1	ī
10903	4-Chlorotoluene	106-43-4	N.D.	ī	1
10903	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	i
10903	Dibromochloromethane	124-48-1	N.D.	1	i
10903	1.2-Dibromoethane	106-93-4	N.D.	0.5	1
10903	Dibromomethane	74-95-3	N.D.	1	1
10903	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10903	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10903	1.4-Dichlorobenzene	106-46-7	N.D.	1	1
10903	Dichlorodifluoromethane	75-71-8	N.D.	2	_
10903	1.1-Dichloroethane	75-34-3	N.D.	1	1
10903	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10903	1,1-Dichloroethene	75-35-4	N.D.	0.8	1
10903	cis-1,2-Dichloroethene	156-59-2	N.D.		1
10903	trans-1,2-Dichloroethene			0.8	1
10903	1,2-Dichloropropane	156-60-5	N.D.	0.8	1
10903	1,3-Dichloropropane	78-87-5 142-28-9	N.D. N.D.	1	1
10903	2,2-Dichloropropane			1	1
10903		594-20-7	N.D.	1	1
	1,1-Dichloropropene	563-58-6	N.D.	1	1
10903	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10903	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10903	Ethylbenzene	100-41-4	N.D.	0.5	1
10903	Hexachlorobutadiene	87-68-3	N.D.	2	1
10903	2-Hexanone	591-78-6	N.D.	3	1
10903	Isopropylbenzene	98-82-8	N.D.	1	1
10903	p-Isopropyltoluene	99-87-6	N.D.	1	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10903	Methylene Chloride	75-09-2	N.D.	2	1
10903	Naphthalene	91-20-3	N.D.	1	1
10903	n-Propylbenzene	103-65-1	N.D.	1	1
10903	Styrene	100-42-5	N.D.	1	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 2 of 3

Sample Description: MW-1 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983952 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 10:30 by ML Chevron

6001 Bollinger Canyon Road

As Received

Submitted: 05/19/2010 08:50 L431

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

TEKM1

CAT	Analysis Name		CAS Number	As Received	Method	Dilution
No.	wentlers were		CAD NUMBER	Result	Detection Limit	Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10903	1,1,1,2-Tetrachloro	ethane	630-20-6	N.D.	1	1
10903	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	ī	ī
10903	Tetrachloroethene		127-18-4	N.D.	0.8	ī
10903	Toluene		108-88-3	N.D.	0.5	ī
10903	1,2,3-Trichlorobenz	ene	87-61-6	N.D.	1	ī
10903	1,2,4-Trichlorobenz	ene	120-82-1	N.D.	ī	î
10903	1,1,1-Trichloroetha	ne	71-55-6	N.D.	0.8	ī
10903	1,1,2-Trichloroetha	ne	79-00-5	N.D.	0.8	1
10903	Trichloroethene		79-01-6	N.D.	1	ī
10903	Trichlorofluorometh	ane	75-69-4	N.D.	2	î
10903	1,2,3-Trichloroprop	ane	96-18-4	N.D.	1	ī
10903	1,2,4-Trimethylbenz		95-63-6	N.D.		ī
10903	1,3,5-Trimethylbenz		108-67-8	N.D.	ī	ī
10903	Vinyl Chloride		75-01-4	N.D.	ī	î
10903	m+p-Xylene		179601-23-1	N.D.	0.5	ī
10903	o-Xylene		95-47-6	N.D.	0.5	ī
10903	Xylene (Total)		1330-20-7	N.D.	0.5	ī
	•					•
GC/MS	Semivolatiles	SW-846	8270C SIM	ug/l	ug/l	
08357	Acenaphthene		83-32-9	N.D.	0.050	1
08357	Acenaphthylene		208-96-8	N.D.	0.050	1
08357	Anthracene		120-12-7	N.D.	0.050	1
08357	Benzo(a)anthracene		56-55-3	N.D.	0.050	1
08357	Benzo (a) pyrene		50-32-8	N.D.	0.050	1
08357	Benzo (b) fluoranthene	9	205-99-2	N.D.	0.050	1
08357	Benzo(g,h,i)perylene	=	191-24-2	N.D.	0.050	1
08357	Benzo(k) fluoranthene	•	207-08-9	N.D.	0.050	1
08357	Chrysene		218-01-9	N.D.	0.050	1
08357	Dibenz (a, h) anthraces	ne .	53-70-3	N.D.	0.050	1
08357	Fluoranthene		206-44-0	N.D.	0.050	1
08357	Fluorene		86-73-7	N.D.	0.050	ī
08357	Indeno(1,2,3-cd)pyre	ene	193-39-5	N.D.	0.050	1
08357	Naphthalene		91-20-3	0.20	0.050	1
08357	Phenanthrene		85-01-8	N.D.	0.050	1
08357	Pyrene		129-00-0	N.D.	0.050	1
Surro	gate recoveries are	outside o	f QC limits for th	e initial GC/MS		_
semiv	olatile analysis. T	he analys	is was repeated ou	tside of the require	d	
hold	time and the surroga	te recove	ries are within th	e limits. The data		
	ted is from the init					
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C1		n.a.	120	50	1
OC 18	ractable TPH	B (W 67	602 NWTPH-Dx	ug/l	ug/1	
	1000			49/4	nd\ T	
w/Si G		modifie	a a			
02211	DRO C12-C24 w/Si Gel		n.a.	310	30	1
02211	HRO C24-C40 w/Si Gel		n.a.	130	71	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: MW-1 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983952 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 10:30 by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

7439-92-1

Discard: 07/05/2010

San Ramon CA 94583

TEKM1

CAT Analysis Name No.

As Received CAS Mumber Result

As Received Detection Limit

Dilution Factor

Metals 06035 Lead SW-846 6020

ug/l

ug/l

181 0.050

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

		24001400	ry se	dupie Anaiya.	DIODDA 61			
CAT No.	Analysis Name	Nethod	Trial#	Batch#	Analysis Date and Tr	ime	Analyst	Dilution Factor
10903	8260 Solvent Compound - Water	SW-846 8260B	1	W101401AA	05/20/2010	14:45	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W101401AA	05/20/2010	14:45	Emily R Styer	1
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	10140WAA026	05/27/2010	16:01	Joseph M Gambler	1
10470	BNA Water Extraction (SIM)	SW-846 3510C	1	10140WAA026	05/20/2010	13:30	Kelli M Barto	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	10140A20A	05/20/2010	20:17	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010	20:17	Marie D John	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101420003A	05/26/2010		Melissa McDcrmott	ī
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101420003A	05/23/2010	15:30	Olivia Arosemena	1
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:18	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1 Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983953 LLI Group # 1195162

Account

11260

Project Name: 352300

Collected: 05/17/2010 10:30

by ML

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

Discard: 07/05/2010

Analysis Name

CAS Number

As Received Recult

As Received Method Detection Limit

Dilution **Factor**

Metals Dissolved

SW-846 6020

ug/l

ug/l

06035 Lead

CAT

No.

7439-92-1 0.052 0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	•	Analyst	Dilution Factor
06035		SW-846 6020	1	101406050002A	05/25/2010 0	9:20	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010 2	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 3

Sample Description: MW-2 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983954 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 15:20

by ML

Chevron

6001 Bollinger Canyon Road

L4310

T4210

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

San Ramon CA 94583

Discard: 07/05/2010

TEKM2

CAT				As Received	As Received Method	Dilution
No.	Analysis Name		CAS Number	Result	Method Detection Limit	Factor
					Detection mimic	
		SW-846	8260B	ug/l	u g/1	
10903	Acetone		67-64-1	N.D.	6	1
10903	Benzene		71-43-2	N.D.	0.5	1
10903	Bromobenzene		108-86-1	N.D.	1	1
10903	Bromochloromethane		74-97-5	N.D.	1	1
10903	Bromodichloromethane		75-27-4	N.D.	1	1
10903	Bromoform		75-25-2	N.D.	1	1
10903	Bromomethane		74-83-9	N.D.	1	1
10903	2-Butanone		78-93-3	N.D.	3	1
10903	n-Butylbenzene		104-51-8	2	1	1
10903	sec-Butylbenzene		135-98-8	9	1	1
10903	tert-Butylbenzene		98-06-6	1	1	1
10903	Carbon Disulfide		75-15-0	N.D.	1	1
10903	Carbon Tetrachloride		56-23-5	N.D.	1	1
10903	Chlorobenzene		108-90-7	N.D.	0.8	1
10903	Chloroethane		75-00-3	N.D.	1	1
10903	Chloroform		67-66-3	N.D.	0.8	1
10903	Chloromethane		74-87-3	N.D.	1	1
10903	2-Chlorotoluene		95-49-8	N.D.	1	1
10903	4-Chlorotoluene		106-43-4	N.D.	1	1
10903	1,2-Dibromo-3-chlorop	ropane	96-12-8	N.D.	2	1
10903	Dibromochloromethane	_	124-48-1	N.D.	1	1
10903	1,2-Dibromoethane		106-93-4	N.D.	0.5	ī
10903	Dibromomethane		74-95-3	N.D.	1	1
10903	1,2-Dichlorobenzene		95-50-1	N.D.	1	ī
10903	1,3-Dichlorobenzene		541-73-1	N.D.	1	1
10903	1,4-Dichlorobenzene		106-46-7	N.D.	1	1
10903	Dichlorodifluorometha	ne	75-71-8	N.D.	2	1
10903	1,1-Dichloroethane		75-34-3	N.D.	1	1
10903	1,2-Dichloroethane		107-06-2	N.D.	0.5	1
10903	1,1-Dichloroethene		75-35-4	N.D.	0.8	1
10903	cis-1,2-Dichloroethen	e	156-59-2	N.D.	0.8	ī
10903	trans-1,2-Dichloroeth	ene	156-60-5	N.D.	0.8	1
10903	1,2-Dichloropropane		78-87-5	N.D.	1	ī
10903	1,3-Dichloropropane		142-28-9	N.D.	1	ī
10903	2,2-Dichloropropane		594-20-7	N.D.	ī	ī
10903	1,1-Dichloropropene		563-58-6	N.D.	1	ī
10903	cis-1,3-Dichloroprope	ne	10061-01-5	N.D.	1	1
10903	trans-1, 3-Dichloropro		10061-02-6	N.D.	1	ī
10903	Ethylbenzene	-	100-41-4	1	0.5	ī
10903	Hexachlorobutadiene		87-68-3	N.D.	2	1
10903	2-Hexanone		591-78-6	N.D.	3	ī
10903	Isopropylbenzene		98-82-8	16	1	ī
10903	p-Isopropyltoluene		99-87-6	7	ī	î
10903	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.5	î
10903	4-Methyl-2-pentanone		108-10-1	N.D.	3	ī
10903	Methylene Chloride		75-09-2	N.D.	2	i
10903	Naphthalene		91-20-3	7	1	1
10903	n-Propylbenzene		103-65-1	21	1	1
10903	Styrene		100-42-5	N.D.	1	î
	-				-	-

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Sample Description: MW-2 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983954 LLI Group # 1195162

11260

Project Name: 352300

Collected: 05/17/2010 15:20 by ML Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

Discard: 07/05/2010

Submitted: 05/19/2010 08:50

Reported: 06/04/2010 08:28

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	1	1
10903	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	ī	ī
10903	Tetrachloroethene	127-18-4	N.D.	0.8	ī
10903	Toluene	108-88-3	N.D.	0.5	ī
10903	1,2,3-Tricblorobenzene	87-61-6	N.D.	1	ī
10903	1,2,4-Trichlorobenzene	120-82-1	N.D.	ī	ī
10903	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ī
10903	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ī
10903	Trichloroethene	79-01-6	N.D.	1	1
10903	Trichlorofluoromethane	75-69-4	N.D.	2	ī
10903	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
10903	1,2,4-Trimethylbenzene	95-63-6	69	1	ī
10903	1,3,5-Trimethylbenzene	108-67-8	21	1	1
10903	Vinyl Chloride	75-01-4	N.D.	1	1
10903	m+p-Xylene	179601-23-1	2	0.5	1
10903	o-Xylene	95-47-6	0.6	0.5	1
10903	Xylene (Total)	1330-20-7	2	0,5	1
-	Semivolatiles SW-846	8270C SIM	ug/l	ug/l	
08357	Acenaphthene	83-32-9	N.D.	0.050	1
08357	Acenaphthylene	208-96-8	N.D.	0.050	1
08357	Anthracene	120-12-7	0.12	0.050	1
08357	Benzo (a) anthracene	56-55-3	N.D.	0.050	1
08357	Benzo(a) pyrene	50-32-8	N.D.	0.050	1
08357	Benzo(b)fluoranthene	205-99-2	N.D.	0.050	1
08357	Benzo(g,h,i)perylene	191-24-2	N.D.	0.050	1
08357	Benzo(k) fluoranthene	207-08-9	N.D.	0.050	1
08357	Chrysene	218-01-9	N.D.	0.050	1
08357	Dibenz(a,h)anthracene	53-70-3	N.D.	0.050	1
08357	Fluoranthene	206-44-0	N.D.	0.050	1
08357	Fluorene	86-73-7	0.059	0.050	1
08357	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.050	1
08357	Naphthalene	91-20-3	8.5	0.050	1
08357	Phenanthrene	85-01-8	N.D.	0.050	1
08357	Pyrene	129~00-0	N.D.	0.050	1
	o the nature of the sample mains. The reporting limits were				
GC Vol	atiles ECY 97-	602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	1,800	50	1
GC Ext	ractable TPH ECY 97-	602 NWTPH-Dx	ug/l	ug/l	
w/Si G	el modifie	đ			
	DRO C12-C24 w/Si Gel	n.a.	1,200	28	•
	HRO C24-C40 w/Si Gel	n.a.	92	29 67	1
22411	INO CERTOR WILL GEE	41. a.	34	6/	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-658-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: MW-2 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983954 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 15:20

by ML

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

Submitted: 05/19/2010 08:50

Reported: 06/04/2010 08:28

Discard: 07/05/2010

TEKM2

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			_	- 10.				
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Data and Ti	ne	Analyst	Dilution Factor
10903	8260 Solvent Compound - Water	SW-846 8260B	1	W101401AA	05/20/2010	15:39	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W101401AA	05/20/2010	15:39	Emily R Styer	1
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	10140WAA026		16:31	Joseph M Gambler	1
10470	BNA Water Extraction (SIM)	SW-846 3510C	1	10140WAA026	• •	13:30	Kelli M Barto	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	10140A20A	05/20/2010	20:39	Marie D John	ī
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010	20:39	Marie D John	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101420003A		22:25	Melissa McDermott	ī
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101420003A	05/23/2010	15:30	Olivia Arosemena	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2 Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983955 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 15:20

by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50

Reported: 06/04/2010 08:28

L4310

San Ramon CA 94583

Discard: 07/05/2010

CAT No.

Analysis Name

CAS Mumber

As Received Result

As Received Method

Detection Limit

Dilution **Factor**

ug/l

Metals Dissolved

06035 Lead

7439-92-1

N.D.

0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

SW-846 6020

			_					
CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	De .		Factor
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:22	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: MW-3 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983956 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 12:25

Submitted: 05/19/2010 08:50

by ML

Chevron

6001 Bollinger Canyon Road

L4310

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

CAT No.	Analysis Name	CAS Number	As Received	As Received Method	Dilution
BIC.			Result	Detection Limit	Factor
GC/MS	Volatiles SW-	846 8260B	ug/1	ug/l	
10903	Acetone	67-64-1	N.D.	6	1
10903	Benzene	71-43-2	N.D.	0.5	î
10903	Bromobenzene	108-86-1	N.D.	1	ī
10903	Bromochloromethane	74-97-5	N.D.	î	î
10903	Bromodichloromethane	75-27-4	N.D.	1	î
10903	Bromoform	75-25-2	N.D.	1	î
10903	Bromomethane	74-83-9	N.D.	ī	î
10903	2-Butanone	78-93-3	N.D.	3	ī
10903	n-Butylbenzene	104-51-8	N.D.	1	ī
10903	sec-Butylbenzene	135-98-8	2	1	ī
10903	tert-Butylbenzene	98-06-6	N.D.	1	1
10903	Carbon Disulfide	75-15-0	N.D.	ī	ī
10903	Carbon Tetrachloride	56-23-5	N.D.	_ 1	ī
10903	Chlorobenzene	108-90-7	N.D.	0.8	ī
10903	Chloroethane	75-00-3	N.D.	1	ī
10903	Chloroform	67-66-3	N.D.	0.8	ī
10903	Chloromethane	74-87-3	N.D.	1	î
10903	2-Chlorotoluene	95-49-8	N.D.	1	1
10903	4-Chlorotoluene	106-43-4	N.D.	1	ī
10903	1,2-Dibromo-3-chloropropa		N.D.	2	ī
10903	Dibromochloromethane	124-48-1	N.D.	1	ī
10903	1.2-Dibromoethane	106-93-4	N.D.	0.5	1
10903	Dibromomethane	74-95-3	N.D.	1	i
10903	1.2-Dichlorobenzene	95-50-1	N.D.	1	1
10903	1,3-Dichlorobenzene	541-73-1	N.D.	1	î
10903	1,4-Dichlorobenzene	106-46-7	N.D.	1	î
10903	Dichlorodifluoromethane	75-71-8	N.D.	2	î
10903	1,1-Dichloroethane	75-34-3	N.D.	1	î
10903	1,2-Dichloroethane	107-06-2	N.D.	0.5	ī
10903	1,1-Dichloroethene	75-35-4	N.D.	0.8	ī
10903	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	1
10903	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	ī
10903	1,2-Dichloropropane	78-87-5	N.D.	1	ī
10903	1,3-Dichloropropane	142-28-9	N.D.	1	ī
10903	2,2-Dichloropropane	594-20-7	N.D.	1	ī
10903	1,1-Dichloropropene	563-58-6	N.D.	ī	ī
10903	cis-1,3-Dichloropropene	10061-01-5	N.D.	ī	1
10903	trans-1,3-Dichloropropene	10061-02-6	N.D.		1
10903	Ethylbenzene	100-41-4	N.D.	0.5	ī
10903	Hexachlorobutadiene	87-68-3	N.D.	2	ī
10903	2-Hexanone	591-78-6	N.D.	3	1
10903	Isopropylbenzene	98-82-8	N.D.	1	1
10903	p-Isopropyltoluene	99-87-6	N.D.	ī	1
10903	Methyl Tertiary Butyl Eth	er 1634-04-4	N.D.	0.5	ī
10903	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10903	Methylene Chloride	75-09-2	N.D.	2	ī
10903	Naphthalene	91-20-3	N.D.	1	ī
10903	n-Propylbenzene	103-65-1	N.D.	1	ī
10903	Styrene	100-42-5	N.D.	1	ī
	-			0	_

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Sample Description: MW-3 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983956 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 12:25 by ML Chevron

6001 Bollinger Canyon Road

L4310

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

Submitted: 05/19/2010 08:50

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Fector
GC/MS	Volatiles	SW-846	8260B	ug/1	ug/l	
10903	1,1,1,2-Tetrachlor	oethane	630-20-6	N.D.	1	1
10903	1,1,2,2-Tetrachlor	oethane	79-34-5	N.D.	1	ī
10903	Tetrachloroethene		127-18-4	N.D.	0.8	ī
10903	Toluene		108-88-3	N.D.	0.5	ī
10903	1,2,3-Trichlorobens	zene	87-61-6	N.D.	1	ī
10903	1,2,4-Trichlorobens	zene	120-82-1	N.D.	1	ī
10903	1,1,1-Trichloroeth	ane	71-55-6	N.D.	0.8	ī
10903	1,1,2-Trichloroeth	ane	79-00-5	N.D.	0.8	1
10903	Trichloroethene		79-01-6	N.D.	1	1
10903	Trichlorofluoromet)	hane	75-69-4	N.D.	2	1
10903	1,2,3-Trichloroprop	pane	96-18-4	N.D.	ī	ī
10903	1,2,4-Trimethylben:	zene	95-63-6	N.D.	1	1
10903	1,3,5-Trimethylben:	zene	108-67-8	N.D.	1	1
10903	Vinyl Chloride		75-01-4	N.D.	1	1
10903	m+p-Xylene		179601-23-1	N.D.	0.5	ī
10903	o-Xylene		95-47-6	N.D.	0.5	1
10903	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC/MS	Semivolatiles	SW-846	8270C SIM	ug/l	ug/1	
08357	Acenaphthene		83-32-9	N.D.	0.050	1
08357	Acenaphthylene		208-96-8	N.D.	0.050	1
08357	Anthracene		120-12-7	N.D.	0.050	1
08357	Benzo(a) anthracene		56-55-3	N.D.	0.050	1
08357	Benzo(a)pyrene		50-32-8	N.D.	0.050	1
08357	Benzo (b) fluoranthen	ie	205-99-2	N.D.	0.050	1
08357	Benzo(g,h,i)perylen		191-24-2	N.D.	0.050	1
08357	Benzo(k) fluoranthen	ie	207-08-9	N.D.	0.050	1
08357	Chrysene		218-01-9	N.D.	0.050	1
08357	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.050	1
08357	Fluoranthene		206-44-0	N.D.	0.050	1
08357	Fluorene		86-73-7	N.D.	0.050	1
08357	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.050	1
08357	Naphthalene		91-20-3	N.D.	0.050	1
08357	Phenanthrene		85-01-8	N.D.	0.050	1
08357	Pyrene		129-00-0	N.D.	0.050	1
	o the nature of the sis. The reporting				r	
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/1	ug/1	
08273	NWTPH-Gx water C7-C	12	n.a.	140	50	1
GC Ext	ractable TPH	ECY 97-0	602 NWTPH-Dx	ug/1	ug/1	
w/81 G	el	modified	1			
02211	DRO C12-C24 w/Si Ge		n.a.	130	30	1
02211	HRO C24-C40 w/Si Ge		n.a.	N.D.	70	1
, <u>-</u>	,	_	24 1 14 1		,,,	4
Metals		SW-846	5020	ug/l	ug/l	
	Lead		7439-92-1	46.4	0.050	1
				- 4 1 3	0.030	*

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: MW-3 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983956 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 12:25

Submitted: 05/19/2010 08:50

by ML

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

Reported: 06/04/2010 08:28 Discard: 07/05/2010

TEKM3

CAT No.

Analysis Name

CAS Number

As Received Result As Racaived Method Detection Limit

Dilution Factor

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			-	21 21 27				
CAT	Analysis Name	Nethod	Trial#	Batch#	Analysis		Analyst	Dilution
Mo.					Data and Ti	200		Factor
10903	8260 Solvent Compound - Water	SW-846 8260B	1	W101401AA	05/20/2010	16:02	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W101401AA	05/20/2010	16:02	Emily R Styer	1
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	10140WAA026	05/27/2010		Joseph M Gambler	ī
10470	BNA Water Extraction (SIM)	SW-846 3510C	1	10140WAA026	05/20/2010	13:30	Kelli M Barto	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	. 1	10140A20A	05/20/2010	21:01	Marie D John	ī
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010	21:01	Marie D John	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101420003A	05/26/2010	22:45	Melissa McDermott	ī
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101420003A	05/23/2010	15:30	Olivia Arosemena	1
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:24	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	ī

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3 Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983957 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 12:25

by ML

Chevron

6001 Bollinger Canyon Road

L4310

Submitted: 05/19/2010 08:50

Reported: 06/04/2010 08:28

Discard: 07/05/2010 San Ramon CA 94583

Analysis Name

CAS Mumber

As Received Result

As Received Method

Detection Limit

Dilution Pactor

SW-846 6020

ug/l

Metals Dissolved

06035 Lead

CAT

No.

7439-92-1 N.D.

0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	ne .	Analyst	Dilution Factor
06035		SW-846 6020	1	101406050002A	05/25/2010	09:25	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681* www.lancasterlabs.com

Page 1 of 3

Sample Description: MW-4 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983958 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 13:20

by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

San Ramon CA 94583

Discard: 07/05/2010

CAT				As Received	- 4
	Analysis Name	CAS Number	As Received	Method	Dilution
No.	AMELYSIS NAME	CAS number	Result	Detection Limit	Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10903	Acetone	67-64-1	N.D.	6	1
10903	Benzene	71-43-2	N.D.	0.5	i
10903	Bromobenzene	108-86-1	N.D.	1	1
10903	Bromochloromethane	74-97-5	N.D.	1	1
10903	Bromodichloromethane	75-27-4	N.D.	1	1
10903	Bromoform	75-25-2	N.D.	1	1
10903	Bromomethane	74-83-9	N.D.	1	1
10903	2-Butanone	78-93-3	N.D.	3	1
10903	n-Butylbenzene	104-51-8	N.D.	1	1
10903	sec-Butylbenzene	135-98-8	N.D.	1	1
10903	tert-Butylbenzene	98-06-6	N.D.	1	1
10903	Carbon Disulfide	75-15-0	N.D.	1	
10903	Carbon Tetrachloride	56-23-5	N.D.	1	1
10903	Chlorobenzene	108-90-7	N.D.	0.8	_
10903	Chloroethane	75-00-3	N.D.		1
10903	Chloroform	67-66-3	N.D.	1	1
10903	Chloromethane	74-87-3	N.D. N.D.	0.8	1
10903	2-Chlorotoluene	95-49-8	N.D.	1	1
10903	4-Chlorotoluene			1	1
10903	1,2-Dibromo-3-chloropropane	106-43-4 96-12-8	N.D.	1	1
10903	Dibromochloromethane		N.D.	2	1
10903	1,2-Dibromoethane	124-48-1	N.D.	1	1
10903	Dibromomethane	106-93-4	N.D.	0.5	1
		74-95-3	N.D.	1	1
10903	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10903	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10903	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10903	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10903	1,1-Dichloroethane	75-34-3	N.D.	1	1
10903	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10903	1,1-Dichloroethene	75-35-4	N.D.	0.8	1
10903	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	1
10903	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	1
10903	1,2-Dichloropropane	78-87-5	N.D.	1	1
10903	1,3-Dichloropropane	142-28-9	N.D.	1	1 2
10903	2,2-Dichloropropane	594-20-7	N.D.	1	1
10903	1,1-Dichloropropene	563-58-6	N.D.	1	1
10903	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10903	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10903	Ethylbenzene	100-41-4	N.D.	0.5	1
10903	Hexachlorobutadiene	87-68-3	N.D.	2	1
10903	2-Hexanone	591-78-6	N.D.	3	1
10903	Isopropylbenzene	98-82-8	N.D.	1	1
10903	p-Isopropyltoluene	99-87-6	N.D.	1	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	4-Metbyl-2-pentanone	108-10-1	N.D.	3	1
10903	Methylene Chloride	75-09-2	N.D.	2	1
10903	Naphthalene	91-20-3	N.D.	1	1
10903	n-Propylbenzene	103-65-1	N.D.	1	1
10903	Styrene	100-42-5	N.D.	1	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Sample Description: MW-4 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983958 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 13:20 by ML Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50 L4310

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

No. Analysis Name CAS Number Result Detecti	ion Limit Factor
GC/MS Volatiles SW-846 8260B ug/l ug/l	
10903 1,1,1,2-Tetrachloroethane 630-20-6 N.D. 1	1
10903 1,1,2,2-Tetrachloroethane 79-34-5 N.D. 1	i
10903 Tetrachloroethene 127-18-4 N.D. 0.8	1
10903 Toluene 108-88-3 N.D. 0.5	1
10903 1,2,3-Trichlorobenzene 87-61-6 N.D. 1	i
10903 1,2,4-Trichlorobenzene 120-82-1 N.D. 1	1
10903 1,1,1-Trichloroethane 71-55-6 N.D. 0.8	1
10903 1,1,2-Trichloroethane 79-00-5 N.D. 0.8	î
10903 Trichloroethene 79-01-6 N.D. 1	ī
10903 Trichlorofluoromethane 75-69-4 N.D. 2	
10903 1,2,3-Trichloropropane 96-18-4 N.D. 1	ī
10903 1,2,4-Trimethylbenzene 95-63-6 N.D. 1	ī
10903 1,3,5-Trimethylbenzene 108-67-8 N.D. 1	ī
10903 Vinyl Chloride 75-01-4 N.D. 1	1
10903 m+p-Xylene 179601-23-1 N.D. 0.5	ī
10903 o-Xylene 95-47-6 N.D. 0.5	1
10903 Kylene (Total) 1330-20-7 N.D. 0.5	1
GC/MS Semivolatiles SW-846 8270C SIM ug/l ug/l	
08357 Acenaphthene 83-32-9 N.D. 0.0099	1
08357 Acenaphthylene 208-96-8 N.D. 0,0099	_ 1
08357 Anthracene 120-12-7 0.018 0.0099	ī
08357 Benzo(a)anthracene 56-55-3 N.D. 0.0099	ī
08357 Benzo(a) pyrene 50-32-8 N.D. 0.0099	_ 1
08357 Benzo(b) fluoranthene 205-99-2 N.D. 0.0099	1
08357 Benzo(g,h,i)perylene 191-24-2 N.D. 0.0099	1
08357 Benzo(k)fluoranthene 207-08-9 N.D. 0.0099	1
08357 Chrysene 218-01-9 N.D. 0.0099	1
08357 Dibenz(a,h)anthracene 53-70-3 N.D. 0.0099	1
08357 Fluoranthene 206-44-0 N.D. 0.0099	1
08357 Fluorene 86-73-7 N.D. 0.0099	1
08357 Indeno(1,2,3-cd)pyrene 193-39-5 N.D. 0.0099	1
08357 Naphthalene 91-20-3 0.036 0.0099	1
08357 Phenanthrene 85-01-8 N.D. 0.0099	1
08357 Pyrene 129-00-0 N.D. 0.0099	1
Due to the nature of the sample matrix, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.	
GC Volatiles ECY 97-602 NWTPH-Gx ug/1 ug/1	
08273 NWTPH-Gx water C7-C12 n.a. N.D. 50	1
GC Extractable TPH ECY 97-602 NWTPH-Dx ug/1 ug/1	
w/Si Gel modified	
02211 DRO C12-C24 w/Si Gel n.a. 57 31	1
02211 HRO C24-C40 w/Si Gel n.a. N.D. 73	ī
Metals SW-846 6020 ug/l ug/l	
06035 Lead 7439-92-1 21.0 0.050	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: MW-4 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983958 LLI Group # 1195162

11260

Project Name: 352300

Collected: 05/17/2010 13:20

by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50

L4310

Reported: 06/04/2010 08:28

07/05/2010

San Ramon CA 94583

Discard: TEKM4

CAT No.

Analysis Name

CAS Mumber

As Received Result

As Received Method Detection Limit

Dilution Factor

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Paperson's Samble Wistland Watcold										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Dete and Ti	.me	Analyst	Dilution Factor			
10903	8260 Solvent Compound - Water	SW-846 8260B	1	W101401AA	05/20/2010	16:26	Emily R Styer	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W101401AA	05/20/2010	16:26	Emily R Styer	1			
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	10140WAA026	05/27/2010	17:33	Joseph M Gambler	1			
10470	BNA Water Extraction (SIM)	SW-846 3510C	1	10140WAA026	05/20/2010	13:30	Kelli M Barto	1			
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	10140A20A	05/20/2010	21:22	Marie D John	1			
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010	21:22	Marie D John	1			
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101420003A	05/26/2010	23:05	Melissa McDermott	1			
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101420003A	05/23/2010	15:30	Olivia Arosemena	1			
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:27	Choon Y Tian	1			
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1			

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4 Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983959 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 13:20 by ML

Chevron

6001 Bollinger Canyon Road

Reported: 06/04/2010 08:28

Discard: 07/05/2010

Submitted: 05/19/2010 08:50

San Ramon CA 94583

Analysis Name No.

CAT

CAS Number

As Recaived

As Recaived Method

Dilution

Metals Dissolved

Result

Detection Limit

Pector

SW-846 6020

ug/l

ug/l

06035 Lead

7439-92-1

N.D.

0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trials	Batch#	Analysie Date and Time	Analyst	Dilution Factor
06035 06050	Lead ICP/MS SW-846 Water Digest	SW-846 6020 SW-846 3010A modified	1	101406050002A 101406050002	05/25/2010 09:32 05/20/2010 20:00	Choon Y Tian Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: MW-5 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983960 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 11:35 by ML Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

Discard: 07/05/2010

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10903	Acetone	67-64-1	N.D.	6	1
10903	Benzene	71-43-2	N.D.	0.5	î
10903	Bromobenzene	108-86-1	N.D.	1	ī
10903	Bromochloromethane	74-97-5	N.D.	ī	ī
10903	Bromodichloromethane	75-27-4	N.D.	1	ī
10903	Bromoform	75-25-2	N.D.	1	ī
10903	Bromomethane	74-83-9	N.D.	1	ī
10903	2-Butanone	78-93-3	N.D.	3	1
10903	n-Butylbenzene	104-51-8	N.D.	1	1
10903	sec-Butylbenzene	135-98-8	N.D.	1	1
10903	tert-Butylbenzene	98-06-6	N.D.	1	1
10903	Carbon Disulfide	75-15-0	N.D.	1	1
10903	Carbon Tetrachloride	56-23-5	N.D.	1	1
10903	Chlorobenzene	108-90-7	N.D.	0.8	1
10903	Chloroethane	75-00-3	N.D.	1	1
10903	Chloroform	67-66-3	N.D.	0.8	1
10903	Chloromethane	74-87-3	N.D.	1	ī
10903	2-Chlorotoluene	95-49-8	N.D.	1	ī
10903	4-Chlorotoluene	106-43-4	N.D.	1	ī
10903	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10903	Dibromochloromethane	124-48-1	N.D.	1	1
10903	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10903	Dibromomethane	74-95-3	N.D.	1	1
10903	1,2-Dichlorobenzene	95-50-1	N.D.	1	ī
10903	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10903	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10903	Dichlorodifluoromethane	75-71-8	N.D.	2	ī
10903	1,1-Dichloroethane	75-34-3	N.D.	1	1
10903	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10903	1,1-Dichloroethene	75-35-4	N.D.	0.8	1
10903	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	1
10903	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	1
10903	1,2-Dichloropropane	78-87-5	N.D.	1	1
10903	1,3-Dichloropropane	142-28-9	N.D.	1	1
10903	2,2-Dichloropropane	594-20-7	N.D.	1	1
10903	1,1-Dichloropropene	563-58-6	N.D.	1	1
10903	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10903	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10903	Ethylbenzene	100-41-4	N.D.	0.5	1
10903	Hexachlorobutadiene	87-68-3	N.D.	2	1
10903	2-Hexanone	591-78-6	N.D.	3	1
10903	Isopropylbenzene	98-82-8	N.D.	1	1
10903	p-Isopropyltoluene	99-87-6	N.D.	1	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10903	Methylene Chloride	75-09-2	N.D.	2	1
10903	Naphthalene	91-20-3	N.D.	1	1
10903	n-Propylbenzene	103-65-1	N.D.	1	1
10903	Styrene	100-42-5	N.D.	1	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 2 of 3

Sample Description: MW-5 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983960 LLI Group # 1195162

Account # 11260

Project Name: 352300

Collected: 05/17/2010 11:35 by ML Chevron

6001 Bollinger Canyon Road

L4310

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

Submitted: 05/19/2010 08:50

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10903	1,1,1,2-Tetrachlore	pethane	630-20-6	N.D.	1	1
10903	1,1,2,2-Tetrachlore	oethane	79-34-5	N.D.	ī	1
10903	Tetrachloroethene		127-18-4	N.D.	0.8	ī
10903	Toluene		108-88-3	N.D.	0.5	ī
10903	1,2,3-Trichlorobens	zene	87-61-6	N.D.	1	ī
10903	1,2,4-Trichlorobens	zene	120-82-1	N.D.	1	1
10903	1,1,1-Trichloroetha	ane	71-55-6	N.D.	0.8	1
10903	1,1,2-Trichloroetha	ine	79~00-5	N.D.	0.8	ī
10903	Trichloroethene		79-01-6	N.D.	1	1
10903	Trichlorofluorometh	iane	75-69-4	N.D.	2	1
10903	1,2,3-Trichloroprop	ane	96-18-4	N.D.	1	1
10903	1,2,4-Trimethylbenz		95-63-6	N.D.	1	1
10903	1,3,5-Trimethylbena	ene	108-67-8	N.D.	1	1
10903	Vinyl Chloride		75-01-4	N.D.	1	1
10903	m+p-Xylene		179601-23-1	N.D.	0.5	1
10903	o-Xylene		95-47-6	N.D.	0.5	1
10903	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC/MS	Semivolatiles	SW-846	8270C SIM	ug/l	ug/l	
08357	Acenaphthene		83-32-9	0.017	0.010	1
08357	Acenaphthylene		208-96-8	0.44	0.010	1
08357	Anthracene		120-12-7	0.32	0.010	1
08357	Benzo(a) anthracene		56-55-3	0.55	0.010	1
08357	Benzo(a) pyrene		50-32-8	1.1	0.010	1
08357	Benzo(b) fluoranthen		205-99-2	1.6	0.010	1
08357	Benzo(g,h,i)perylen		191-24-2	0.97	0.010	1
08357	Benzo(k) fluoranthen	e	207-08-9	0.77	0.010	1
08357	Chrysene		218-01-9	0.87	0.010	1
08357	Dibenz (a, h) anthrace	ne	53-70-3	0,24	0.010	1
08357	Fluoranthene		206-44-0	1.6	0.010	1
08357	Fluorene		86-73-7	0.035	0.010	1
08357	Indeno(1,2,3-cd)pyr	ene	193-39-5	0.91	0.010	1
08357	Naphthalene		91-20-3	0.090	0.010	1
08357	Phenanthrene		85-01-8	0.80	0.010	1
08357	Pyrene		129-00-0	0.93	0.010	1
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/1	
08273	NWTPH-Gx water C7-C	12	n.a.	N.D.	50	1
GC Ext	ractable TPH	ECY 97-	602 NWTPH-Dx	ug/l	ug/1	
w/Si G		modifie	-			
	DRO C12-C24 w/Si Ge	_	n.a.	220	30	1
02211	HRO C24-C40 w/Si Ge	1	n.a.	470	70	1
Metals		SW-846	6020	ug/l	ug/1	
06035	Lead		7439-92-1	63.4	0.050	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: MW-5 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983960 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 11:35

by ML

Chevron

6001 Bollinger Canyon Road

L4310

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

TEKM5

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution		
No.					Date and Ti	ime		Factor		
10903	8260 Solvent Compound - Water	SW-846 8260B	1	W101401AA	05/20/2010	16:49	Emily R Styer	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W101401AA	05/20/2010	16:49	Emily R Styer	1		
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	10140WAA026	05/27/2010	18:04	Joseph M Gambler	1		
10470	BNA Water Extraction (SIM)	SW-846 3510C	1	10140WAA026	05/20/2010	13:30	Kelli M Barto	1		
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	. 1	10140A20A	05/20/2010	21:44	Marie D John	1		
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010	21:44	Marie D John	1		
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101420003A	05/27/2010	11:15	Melissa McDermott	1		
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101420003A	05/23/2010	15:30	Olivia Arosemena	1		
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:34	Choon Y Tian	1		
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fex: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5 Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983961 LLI Group # 1195162 # 11260 Account

Project Name: 352300

Collected: 05/17/2010 11:35

by ML

Chevron

Submitted: 05/19/2010 08:50

6001 Bollinger Canyon Road

Reported: 06/04/2010 08:28

L4310

San Ramon CA 94583

Discard: 07/05/2010

CAT

Analysis Name

CAS Mumber

As Received

As Received Method Detection Limit

Dilution Pactor

Metals Dissolved

SW-846 6020

Result ug/l

ug/l

06035 Lead

7439-92-1 N.D. 0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Dete and Ti	.ne	Analyst	Dilution Factor
	=	SW-846 6020	1	101406050002A	05/25/2010	09:36	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: MW-7 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983962

LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 14:50 by ML Chevron

6001 Bollinger Canyon Road

L4310

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

Submitted: 05/19/2010 08:50

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Fector
GC/MS	Volatiles SW-840	5 8260B	ug/l	ug/l	
10903	Acetone	67-64-1	N.D.	6	1
10903	Benzene	71-43-2	7	0.5	1
10903	Bromobenzene	108-86-1	N.D.	1	1
10903	Bromochloromethane	74-97-5	N.D.	1	1
10903	Bromodichloromethane	75-27-4	N.D.	1	1
10903	Bromoform	75-25-2	N.D.	1	1
10903	Bromomethane	74-83-9	N.D.	1	1
10903	2-Butanone	78-93-3	N.D.	3	1
10903	n-Butylbenzene	104-51-8	3	1	1
10903	sec-Butylbenzene	135-98-8	12	1	1
10903	tert-Butylbenzene	98-06-6	1	1	1
10903	Carbon Disulfide	75-15-0	N.D.	1	
10903	Carbon Tetrachloride	56-23-5	N.D.	1	1
10903	Chlorobenzene	108-90-7	N.D.	0.8	1
10903	Chloroethane	75-00-3	N.D.	1	
10903	Chloroform	67-66-3	N.D.		1
10903	Chloromethane	74-87-3	N.D.	0.8 1	1
10903	2-Chlorotoluene	95-49-8	N.D. 1		1
10903	4-Chlorotoluene	106-43-4	N.D.	1	1
10903	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	1 2	1
10903	Dibromochloromethane	124-48-1	N.D.	1	1
10903	1.2-Dibromoethane	106-93-4	N.D.	0.5	1
10903	Dibromomethane	74-95-3	N.D.		1
10903	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10903	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10903	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10903	Dichlorodifluoromethane	75-71-8	N.D.	2	1
10903	1,1-Dichloroethane	75-34-3	N.D.	1	
10903	1,2-Dichloroethane	107-06-2	3	0.5	1
10903	1.1-Dichloroethene	75-35-4	N.D.	0.8	1
10903	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	_
10903	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	1
10903	1,2-Dichloropropane	78-87-5	N.D.	1	1
10903	1,3-Dichloropropane	142-28-9	N.D.	1	1
10903	2,2-Dichloropropane	594-20-7	N.D.	1	1
10903	1,1-Dichloropropene	563-58-6	N.D.	1	1
10903	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	
10903	trans-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10903	Ethylbenzene	100-41-4	23	0.5	1
10903	Hexachlorobutadiene	87-68-3	N.D.	2	1
10903	2-Hexanone	591-78-6	N.D.	3	1
10903	Isopropylbenzene	98-82-8	29	i	1
10903	p-Isopropyltoluene	99-87-6	9	1	1
10903	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10903	4-Methyl-2-pentanone	108-10-1	N.D.		
10903	Methylene Chloride	75-09-2	N.D.	3 2	1
10903	Naphthalene	91-20-3	N.D. 2	1	
10903	n-Propylbenzene	103-65-1	38	1	1
10903	Styrene	100-42-5	N.D.	1	1
_0,00		100-48-3	54 + 24 +	1	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-658-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 2 of 3

Sample Description: MW-7 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983962

LLI Group # 1195162 Account # 11260

1

Project Name: 352300

Collected: 05/17/2010 14:50 by ML

Chevron

6001 Bollinger Canyon Road

L4310

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

San Ramon CA 94583

Discard: 07/05/2010

TEKM7

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW	-846 8260B	ug/l	ug/l	
10903	1,1,1,2-Tetrachloroetha	ne 630-20-6	N.D.	1	1
10903	1,1,2,2-Tetrachloroetha	ne 79-34-5	N.D.	1	ī
10903	Tetrachloroethene	127-18-4	N.D.	0.8	1
10903	Toluene	108-88-3	N.D.	0.5	1
10903	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	1
10903	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	1
10903	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	1
10903	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	1
10903	Trichloroethene	79-01-6	N.D.	1	1
10903	Trichlorofluoromethane	75-69-4	N.D.	2	1
10903	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
10903	1,2,4-Trimethylbenzene	95-63-6	42	1	1
10903	1,3,5-Trimethylbenzene	108-67-8	3	1	1
10903	Vinyl Chloride	75-01-4	N.D.	1	1
10903	m+p-Xylene	179601-23-1	9	0.5	1
10903	o-Xylene	95-47-6	1	0.5	1
10903	Xylene (Total)	1330-20-7	10	0.5	1
GC/MS	Semivolatiles SW-	846 8270C SIM	u g/1	ug/l	
08357	Acenaphthene	83-32-9	0.21	0.050	1
08357	Acenaphthylene	208-96-8	N.D.	0.060	ī
08357	Anthracene	120-12-7	N.D.	0.050	1
08357	Benzo(a)anthracene	56-55-3	N.D.	0.050	1
08357	Benzo(a) pyrene	50-32-8	N.D.	0.050	î
08357	Benzo(b) fluoranthene	205-99-2	N.D.	0.050	1
08357	Benzo(g,h,i)perylene	191-24-2	N.D.	0.050	1
08357	Benzo(k) fluoranthene	207-08-9	N.D.	0.050	1
08357	Chrysene	218-01-9	N.D.	0.050	1
08357	Dibenz (a, h) anthracene	53-70-3	N.D.	0.050	1
08357	Pluoranthene	206-44-0	N.D.	0.050	1
08357	Fluorene	86-73-7	0,62	0.050	1
08357	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.050	1
08357	Naphthalene	91-20-3	3.1	0.050	ī
08357	Phenanthrene	85-01-8	0.12	0.050	ī
08357	Pyrene	129-00-0	N.D.	0.050	ī
Due t	o the nature of the samp	le matrix a reduced al	impor was used for	•	_

Due to the nature of the sample matrix, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Due to the presence of an interferent near the retention time of acenaphthylene, the reporting limit was raised. This was due to the fact that the interferent had a significant abundance of ions at or near the mass of acenaphthylene.

GC Vo	latiles	ECY 97-602	NWTPH-Gx	ug/I	ug/l
08273	NWTPH-Gx water C7-C	12	n.a.	3,400	50

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: MW-7 Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983962 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 14:50

by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50

L4310

Reported: 06/04/2010 08:28

Discard: 07/05/2010

San Ramon CA 94583

TEKM7	

CAT No.	Analysis Name	cu	. d. W	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Ext		ECY 97-602 N modified	WTPH-Dx	ug/l	ug/l	
02211 02211	DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel			1,600 230	31 72	1
Metals 06035	Lead	SW-846 602 0 74		ug/1 85.6	ug/l 0.050	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Pactor
10903	8260 Solvent Compound - Water	SW-846 8260B	1	W101401AA	05/20/2010	17:12	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W101401AA	05/20/2010	17:12	Emily R Styer	1
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	10140WAA026	05/27/2010	18:35	Joseph M Gambler	1
10470	BNA Water Extraction (SIM)	SW-846 3510C	1	10140WAA026	05/20/2010	13:30	Kelli M Barto	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH	- 1	10140A20A	05/20/2010	22:06	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10140A20A	05/20/2010	22:06	Marie D John	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	101420003A	05/26/2010	23:26	Melissa McDermott	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	- 1	101420003A	05/23/2010	15:30	Olivia Arosemena	1
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:38	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	ī

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-7 Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983963 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 14:50

by ML

Chevron

Submitted: 05/19/2010 08:50

6001 Bollinger Canyon Road

L4310

Reported: 06/04/2010 08:28

Discard:

07/05/2010

San Ramon CA 94583

CAT No.

Analysis Name

CAS Number

As Received Result

As Received Method Detection Limit

Dilution

Metals Dissolved

SW-846 6020

ug/l

ug/l

06035 Lead

7439-92-1 N.D. 0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Nethod	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Pector
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:39	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: DUP Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983964 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010 by ML

Chevron

6001 Bollinger Canyon Road

L4310

Reported: 06/04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

Submitted: 05/19/2010 08:50

TEKFD

CAT No.	Analysis Hame		CAS Number	As Received Result		As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/1		ug/l	
10903	Acetone		67-64-1	N.D.		6	1
10903	Benzene		71-43-2	7		0.5	ī
10903	Bromobenzene		108-86-1	N.D.		1	î
10903	Bromochloromethane		74-97-5	N.D.		1	î
10903	Bromodichloromethane		75-27-4	N.D.	-	ī	ī
10903	Bromoform		75-25-2	N.D.		ī	ī
10903	Bromomethane		74-83-9	N.D.		1	ī
10903	2-Butanone		78-93-3	N.D.		3	ī
10903	n-Butylbenzene		104-51-8	3		ì	ī
10903	sec-Butylbenzene		135-98-8	13		1	1
10903	tert-Butylbenzene		98-06-6	1		ī	ī
10903	Carbon Disulfide		75-15-0	N.D.		ī	1
10903	Carbon Tetrachloride		56-23-5	N.D.		ī	ī
10903	Chlorobenzene		108-90-7	N.D.		0.8	î
10903	Chloroethane		75-00-3	N.D.		1	ī
10903	Chloroform		67-66-3	N.D.		0.8	ī
10903	Chloromethane		74-87-3	N.D.		1	i
10903	2-Chlorotoluene		95-49-8	1		ī	1
10903	4-Chlorotoluene		106-43-4	N.D.		1	1
10903	1,2-Dibromo-3-chlorop	ropane	96-12-8	N.D.		2	i
10903	Dibromochloromethane		124-48-1	N.D.		1	i
10903	1,2-Dibromoethane		106-93-4	N.D.		0.5	î
10903	Dibromomethane		74-95-3	N.D.		1	i
10903	1,2-Dichlorobenzene		95-50-1	N.D.		1	ī
10903	1,3-Dichlorobenzene		541-73-1	N.D.		ī	1
10903	1.4-Dichlorobenzene		106-46-7	N.D.		1	î
10903	Dichlorodifluorometha	ne	75-71-8	N.D.		2	î
10903	1,1-Dichloroethane		75-34-3	N.D.		ī	1
10903	1,2-Dichloroethane		107-06-2	3		0.5	î
10903	1.1-Dichloroethene		75-35-4	N.D.		0.8	1
10903	cis-1,2-Dichloroethen	e	156-59-2	N.D.		0.8	î
10903	trans-1, 2-Dichloroeth		156-60-5	N.D.		0.8	ī
10903	1,2-Dichloropropane		78-87-5	N.D.		1	ī
10903	1,3-Dichloropropane		142-28-9	N.D.		1	ī
10903	2,2-Dichloropropane		594-20-7	N.D.		1	ī
10903	1,1-Dichloropropene		563-58-6	N.D.		ī	ī
10903	cis-1,3-Dichloroprope	ne	10061-01-5	N.D.		ī	1
10903	trans-1,3-Dichloropro		10061-02-6	N.D.		ī	ī
10903	Ethylbenzene		100-41-4	25		0.5	1
10903	Hexachlorobutadiene		87-68-3	N.D.		2	1
10903	2-Hexanone		591-78-6	N.D.		3	ī
10903	Isopropylbenzene		98-82-8	30		1	ī
10903	p-Isopropyltoluene		99-87-6	10		1	i
10903	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.		0.5	î
10903	4-Methyl-2-pentanone		108-10-1	N.D.		3	1
10903	Methylene Chloride		75-09-2	N.D.		2	1
10903	Naphthalene		91-20-3	2		1	1
10903	n-Propylbenzene		103-65-1	39		1	1
10903	Styrene		100-42-5	N.D.		1	1
						_	•

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Sample Description: DUP Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA LLI Sample # WW 5983964 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: **05**/17/2010

by ML

Chevron

6001 Bollinger Canyon Road

L4310

Submitted: 05/19/2010 08:50 Reported: 06/04/2010 08:28

04/2010 08:28 San Ramon CA 94583

Discard: 07/05/2010

TEKFD

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Fector
GC/MS	Volatiles	SW-846 82	60B	u g/1	ug/l	
10903	1,1,1,2-Tetrachlor	coethane	630-20-6	N.D.	1	1
10903	1,1,2,2-Tetrachlor	coethane	79-34-5	N.D.	1	1
10903	Tetrachloroethene		127-18-4	N.D.	0.8	1
10903	Toluene		108-88-3	N.D.	0.5	1
10903			87-61-6	N.D.	1	1
10903	_, _,		120-82-1	N.D.	1	1
10903			71-55-6	N.D.	0.8	1
10903	1,1,2-Trichloroeth	ane	79-00-5	N.D.	0.8	1
10903	Trichloroethene		79-01-6	N.D.	1	1
10903	Trichlorofluoromet	hane	75-69-4	N.D.	2	1
10903	1,2,3-Trichloropro	•	96-18-4	N.D.	1	1
10903	1,2,4-Trimethylben		95-63-6	44	1	1
10903	1,3,5-Trimethylben	zene	108-67-8	3	1	1
10903	Vinyl Chloride		75-01-4	N.D.	1	1
10903	m+p-Xylene		179601-23-1	9	0.5	1
10903	o-Xylene		95-47-6	1	0.5	1
10903	Xylene (Total)		1330-20-7	11	0.5	1
GC Vol	atiles	ECY 97-602	NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-	C12	n.a.	4,800	50	1
	ractable TPH	ECY 97-602	NWTPH-Dx	ug/l	ug/l	
w/81 G		modified				
	DRO C12-C24 w/S1 G		n.a.	2,300	61	2
02211	HRO C24-C40 w/Si G	el	n.a.	370	140	2
Metals	l	SW-846 602	0	ug/l	ug/l	
06035	Lead		7439-92-1	95.9	0.050	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record CAT Analysis Name Method Trial# Batch# Analysis Analyst Dilution No. Date and Time Factor 10903 8260 Solvent Compound -SW-846 8260B 1 W101401AA 05/20/2010 17:59 Emily R Styer 1 Water 01163 GC/MS VOA Water Prep SW-846 5030B 1 W101401AA 05/20/2010 17:59 Emily R Styer 08273 NWTPH-Gx water C7-C12 ECY 97-602 NWTPH-1 10140A20A 05/20/2010 22:27 Marie D John 1 01146 GC VOA Water Prep SW-846 5030B 1 10140A20A 05/20/2010 22:27 Marie D John 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: DUP Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Sample # WW 5983964 LLI Group # 1195162 Account # 11260

Project Name: 352300

Collected: 05/17/2010

by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 05/19/2010 08:50

L4310

Reported: 06/04/2010 08:28

San Ramon CA 94583

Discard: 07/05/2010

TEKFD

Laboratory	Sample	Analysi	s Record
------------	--------	---------	----------

CAT No.	Analysis Name	Method Ti	rial#	Batch#	Analysis Date and Tir	De	Analyst	Dilution Factor
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101420003A	05/27/2010	10:34	Melissa McDermott	2
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101420003A	05/23/2010	15:30	Olivia Arosemena	1
06035	Lead	SW-846 6020	1	101406050002A	05/25/2010	09:41	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: DUP Filtered Grab Water Sample

Facility# 352300 Job# 385853 State Route 274 - Tekoa, WA

LLI Group # 1195162 Account # 11260

LLI Sample # WW 5983965

Project Name: 352300

Collected: 05/17/2010 by ML

Chevron

Submitted: 05/19/2010 08:50

6001 Bollinger Canyon Road L4310

Reported: 06/04/2010 08:28

San Ramon CA 94583

Discard: 07/05/2010

CAT

As Received

As Received

Dilution

Analysis Name No.

CAS Number

Result

Method Detection Limit

Factor

Metals Dissolved

SW-846 6020

ug/l

ug/l

06035 Lead

7439-92-1

N.D.

0.050

General Sample Comments

State of Washington Lab Certification No. C259 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
				Date and Ti	70 P		Factor
06035 Lead	SW-846 6020	1	101406050002A	05/25/2010	09:43	Choon Y Tian	1
06050 ICP/MS SW-846 Water Digest	SW-846 3010A	1	101406050002	05/20/2010	20:00	Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 6

Quality Control Summary

Client Name: Chevron

Group Number: 1195162

Reported: 06/04/10 at 08:28 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS %REC	LCSD AREC	LCS/LCSD Limits	RPD	RPD Max
Batal waster wastername								
Batch number: F101393AA Benzene		mber(s): 59						
Ethylbenzene	N.D.	0.5	ug/l	89		79-120		
	N.D.	0.5	ug/l	94		79-120		
Toluene	N.D.	0.5	ug/l	96		79-120		
Xylene (Total)	N.D.	0.5	ug/l	96		80-120		
Batch number: W101401AA	Sample num	mber(s): 59	83952,5983	954,5983	956,598395	8,5983960,59	83962.5	983964
Acetone	N.D.	6.	ug/l	130	163	49-234	22	30
Benzene	N.D.	0.5	ug/l	104	103	79-120	0	30
Bromobenzene	N.D.	1.	ug/l	106	103	80-120	3	30
Bromochloromethane	N.D.	1.	ug/1	107	104	80-120	4	30
Bromodichloromethane	N.D.	1.	ug/l	101	101	80-120	ī	30
Bromoform	N.D.	1.	ug/1	113	113	61-120	ī	30
Bromomethane	N.D.	1.	ug/1	105	102	44-120	3	30
2-Butanone	N.D.	3.	ug/l	123	136	66-151	10	30
n-Butylbenzene	N.D.	1.	ug/l	93	94	74-120	1	30
sec-Butylbenzene	N.D.	1.	ug/1	96	95	78-120	ī	30
tert-Butylbenzene	N.D.	1.	ug/l	99	98	80-120	2	30
Carbon Disulfide	N.D.	1.	ug/l	92	92	62-120	ō	30
Carbon Tetrachloride	N.D.	1.	ug/l	111	114	75-123	3	30
Chlorobenzene	N.D.	0.8	ug/1	105	105	80-120	ĭ	30
Chloroethane	N.D.	1.	ug/l	95	93	49-129	2	30
Chloroform	N.D.	0.8	ug/l	100	101	77-122	ĩ	30
Chloromethane	N.D.	1.	ug/l	107	100	60-129	7	30
2-Chlorotoluene	N.D.	1.	ug/l	103	100	80-120	3	30
4-Chlorotoluene	N.D.	1.	ug/l	104	102	80-120	2	30
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/l	89	89	66-120	ī	30
Dibromochloromethane	N.D.	1.	ug/l	107	106	80-120	ī	30
1,2-Dibromoethane	N.D.	0.5	ug/l	101	100	80-120	ī	30
Dibromomethane	N.D.	1.	ug/l	103	101	80-120	2	30
1,2-Dichlorobenzene	N.D.	1.	ug/l	106	105	80-120	2	30
1,3-Dichlorobenzene	N.D.	1.	ug/l	107	102	80-120	5	30
1,4-Dichlorobenzene	N.D.	1.	ug/l	107	105	80-120	ĭ	30
Dichlorodifluoromethane	N.D.	2.	ug/l	75	81	54-152	7	30
1,1-Dichloroethane	N.D.	1.	ug/1	103	104	79-120	í	30
1,2-Dichloroethane	N.D.	0.5	ug/l	98	98	70-130	ī	30
1.1-Dichloroethene	N.D.	0.8	ug/l	99	99	74-123	ō	30
cis-1,2-Dichloroethene	N.D.	0.8	ug/l	102	102	80-120	ŏ	30
trans-1,2-Dichloroethene	N.D.	0.8	ug/1	102	102	80-120	ŏ	30
1,2-Dichloropropane	N.D.	1.	ug/1	108	107	78-120	ĭ	30
1,3-Dichloropropane	N.D.	ī.	ug/1	103	101	80-120	2	30
2,2-Dichloropropane	N.D.	ī.	ug/l	99	99	77-124	ő	30
1,1-Dichloropropene	N.D.	1.	ug/l	98	101	80-120	3	30
cis-1,3-Dichloropropene	N.D.	ī.	ug/l	102	101	80-120	1	30
trans-1,3-Dichloropropene	N.D.	1.	ug/1	101	99	79-120	2	30
Ethylbenzene	N.D.	0.5	ug/1	102	102	79-120	0	30
Hexachlorobutadiene	N.D.	2.	ug/1	85	86	79-120 58-120	0	30
	,	~ .	~9/ -	00	90	20-TZO	U	3 ♥

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 2 of 6

Quality Control Summary

Client Name: Chevron Group Number: 1195162

Reported: 06/04/10 at 08:28 AM

Laboratory Compliance Quality Control

- 170	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name 2-Hexanone	Result N.D.	MDL	Onite	*REC	*REC	Limita	RPD	RPD Max
Isopropylbenzene	N.D.	3.	ug/l	116	121	65-136	4	30
p-Isopropyltoluene	N.D.	1.	ug/l	103	103	77-120	0	30
Methyl Tertiary Butyl Ether	N.D.	1. 0.5	ug/1	99	98	80-120	1	30
4-Methyl-2-pentanone	N.D.	3.	ug/1	92	89	76-120	4	30
Methylene Chloride	N.D.	2.	ug/l	114 104	114	70-121	0	30
Naphthalene	N.D.	1.	ug/1	85	104 82	80-120	0	30
n-Propylbenzene	N.D.	1.	ug/l ug/l	100	99	62-120 80-120	4 2	30
Styrene	N.D.	1.	ug/1	102	101	80-120	1	30 30
1,1,1,2-Tetrachloroethane	N.D.	î.	ug/l	110	108	80-120	i	30
1,1,2,2-Tetrachloroethane	N.D.	1.	ug/l	103	99	71-120	4	30
Tetrachloroethene	N.D.	0.8	ug/l	108	107	80-121	ō	30
Toluene	N.D.	0.5	ug/l	103	103	79-120	ŏ	30
1,2,3-Trichlorobenzene	N.D.	1.	ug/l	94	88	65-120	7	30
1,2,4-Trichlorobenzene	N.D.	1.	ug/1	97	92	67-120	Ś	30
1,1,1-Trichloroethane	N.D.	0.8	ug/1	103	105	75-127	2	30
1,1,2-Trichloroethane	N.D.	0.8	ug/1	104	103	80-120	ī	30
Trichloroethene	N.D.	1.	ug/l	99	101	80-120	ī	30
Trichlorofluoromethane	N.D.	2.	ug/l	100	105	64-129	5	30
1,2,3-Trichloropropane	N.D.	1.	ug/l	102	100	80-120	2	30
1,2,4-Trimethylbenzene	N.D.	1.	ug/1	98	95	74-120	4	30
1,3,5-Trimethylbenzene	N.D.	1.	ug/1	98	97	75-120	2	30
Vinyl Chloride	N.D.	1.	ug/l	112	113	59-120	ī	30
m+p-Xylene	N.D.	0.5	ug/l	106	105	80-120	1	30
o-Xylene	N.D.	0.5	ug/l	104	102	80-120	2	30
Xylene (Total)	N.D.	0.5	ug/l	106	104	80-120	2	30
Batch number: 10140WAA026	Sample nu	mber(s): 598	3952,5983	954,5983	956,598395	8.5983960.59	83962	
Acenaphthene	N.D.	0.010	ug/l	92	86	74-109	6	30
Acenaphthylene	N.D.	0.010	ug/l	97	89	70-110	8	30
Anthracene	N.D.	0.010	ug/l	94	87	66-111	7	30
Benzo(a) anthracene	N.D.	0.010	ug/l	93	91	72-114	3	30
Benzo(a)pyrene	N.D.	0.010	ug/l	92	88	64-115	4	30
Benzo(b) fluoranthene	N.D.	0.010	ug/l	98	88	69-123	10	30
Benzo(g,h,i)perylene	N.D.	0.010	ug/l	100	98	68-125	. 2	30
Benzo(k) fluoranthene	N.D.	0.010	ug/l	92	90	72-122	3	30
Chrysene	N.D.	0.010	ug/l	98	92	76-116	7	30
Dihenz (a, h) anthracene	N.D.	0.010	ug/l	92	92	71-125	0	30
Fluoranthene	N.D.	0.010	ug/l	96	97	75-116	1	30
Fluorene	N.D.	0.010	ug/l	105	99	75-114	5	30
Indeno(1,2,3-cd)pyrene	N.D.	0.010	ug/l	94	94	69-124	1	30
Naphthalene	N.D.	0.010	ug/l	95	91	72-109	5	30
Phenanthrene	N.D.	0.010	ug/l	92	88	76-111	5	30
Pyrene	N.D.	0.010	ug/l	106	107	69-118	1	30
Batch number: 10140A20A		mber(s): 598 983954,59839		8.5983960	.5963962.9	5983964		
NWTPH-Gx water C7-C12	N.D.	50.	ug/l	100	100	75-135	0	30
Batch number: 101420003A	Sample nu	mber(s): 598	3952.5983	954.59839	156 . 5983951	9.5983960 59	93962 59	92964
DRO C12-C24 w/Si Gel	N.D.	30.	ug/1	60	66	50-100	10	20
HRO C24-C40 w/Si Gel	N.D.	70.	ug/l			20 200	10	24
Batch number: 101406050002A	Sample nu	mber(s): 598	- 3952-5983	53,59839	55-598396	5		
Lead	N.D.	0.050	ug/l	101		90-115		

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17606-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 6

Quality Control Summary

Client Name: Chevron

Group Number: 1195162

Reported: 06/04/10 at 08:28 AM

Laboratory Compliance Quality Control

Blank Blank Report LCS LCSD LCS/LCSD
Analysis Name Result MDL Units TREC TREC Limits RPD RPD Max

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	ms brec	MSD	MS/MSD	222	RPD	BKG	DOB	DUP	Dup RPD
ANGLIO DO NOMO	3KBC	*REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Batch number: F101393AA		number(s)		UNSPK:	P98218	36			
Benzene	91	91	80-126	1	30				
Ethylbenzene	95	95	71-134	0	30				
Toluene	95	95	80-125	0	30				
Xylene (Total)	96	96	79-125	0	30				
Batch number: W101401AA	Sample 598395	number(s)	: 5983952	, 598395	4,59839	956,5983958,	5983960,598	3962,598396	4 UNSPK:
Acetone	96		52-139						
Benzene	107		80-126						
Bromobenzene	105		82-115						
Bromochloromethane	114		83-123						
Bromodichloromethane	104		78-125						
Bromoform	111		60-121						
Bromomethane	103		38-149						
2-Butanone	107		57-138						
n-Butylbenzene	92		73-128						
sec-Butylbenzene	98		79-125						
tert-Butylbenzene	101		81-121						
Carbon Disulfide	102		67-135						
Carbon Tetrachloride	122		81-138						
Chlorobenzene	107		87-124						
Chloroethane	98		51-145						
Chloroform	102		81-134						
Chloromethane	111		67-154						
2-Chlorotoluene	102		82-118						
4-Chlorotoluene	104		84-122						
1,2-Dibromo-3-chloropropane	84		66-121						
Dibromochloromethane	106		74-116						
1.2-Dibromoethane	100		77-116						
Dibromomethane	101		83-119						
1.2-Dichlorobenzene	103		84-119						
1,3-Dichlorobenzene	103		86-121						
1.4-Dichlorobenzene	103		85-121						
Dichlorodifluoromethane	97		64-163						
1,1-Dichloroethane	108		84-129						
1.2-Dichloroethane	99		66-141						
1,1-Dichloroethene	108		85-142						
cis-1,2-Dichloroethene	103		85-125						
trans-1,2-Dichloroethene	107		87-126						
1,2-Dichloropropane	111		83-124						
1,3-Dichloropropane	102		81-120						
2,2-Dichloropropane	105		81-120						
1,1-Dichloropropene	105								
r, r-promiorobiobene	107		86-137						

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2881 • www.lancasterlabs.com

Page 4 of 6

Quality Control Summary

Client Name: Chevron

Group Number: 1195162

Reported: 06/04/10 at 08:28 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	*REC	*REC	Limits	<u>RPD</u>	MAX	Conc	Conc	RPD	Max
cis-1,3-Dichloropropene	101		75-125						
trans-1,3-Dichloropropene	99		74-119						
Ethylhenzene	105		71-134						
Hexachlorobutadiene	66		56-134						
2-Hexanone	108		55-127						
Isopropylbenzene	106		75-128						
p-Isopropyltoluene	99		76-123						
Methyl Tertiary Butyl Ether	89		72-126						
4-Methyl-2-pentanone	111		63-123						
Methylene Chloride	102		79-120						
Naphthalene	84		52-125						
n-Propylbenzene	102		74-134						
Styrene	103		60-140						
1,1,1,2-Tetrachloroethane	109		82-119						
1,1,2,2-Tetrachloroethane	100		73-119						
Tetrachloroethene	115		80-128						
Toluene	106		80-125						
1,2,3-Trichlorobenzene	84		57-122						
1,2,4-Trichlorobenzene	89		60-122						
1,1,1-Trichloroethane	113		80-143						
1,1,2-Trichloroethane	103		77-124						
Trichloroethene	106		88-133						
Trichlorofluoromethane	123		73-152						
1,2,3-Trichloropropane	101		76-118						
1,2,4-Trimethylbenzene	96		72-130						
1,3,5-Trimethylbenzene	99		72-131						
Vinyl Chloride	133		66-133						
m+p-Xylene	109		79-125						
o-Xylene	105		79-125						
Xylene (Total)	107		79-125						
Batch number: 10140A20A			: 5983951 5983956.5		5983960	0,5983962,5	983964 IINS	PK• 5027	1964
NWTPH-Gx water C7-C12	45 (2)	-, ,	57-157	,		-,	TIDICE OND		
Batch number: 101406050002A Lead	Sample	number(s) 97	: 5983952 75-125	-598395 3	3,59839 20	955-5983965 0.86	UNSPK: P9	84105 BF 14 (1	KG: P984105

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water Batch number: F101393AA

	Dihromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5983951 Blank	100 103	95 97	99 99	95 94
LCS	100	97	100	99

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17805-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 5 of 6

Quality Control Summary

	d: 06/04/10 at 08:28			
MS	100		uality Control	
MSD	100 100	97 98	99 98	97
FIDD	100	96	98	98
Limits:	80-116	77-113	80-113	78-113
Analysis	Name: VOCs by 8260B - Wate	r		
Batch num	ber: W101401AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenze
5983952	100	101	96	93
5983954	99	99	95	95
5983956	100	100	95	90
5983958	100	98	96	90
5983960	99	98	95	89
5983962	100	100	100	94
5983964	100	99	101	= =
Blank	98			94
LCS		98	96	90
	99	102	98	94
LCSD	99	103	97	94
MS	99	101	97	95
Limits:	80-116	77-113	80-113	78-113
Analyssis 1	Name: PAHs in waters by SI			
	ber: 10140WAA026	n.		
Date: 11410	Nitrobenzene-d5	2-Fluorobiphenyl	Manufacture 3 - 23.4	
	MICIODEMPENE-GS	2-Fidorobiphenyi	Terphenyl-d14	
5983952	94	82	41*	
5983954	99	77	70	
5983956	103	97	78	
5983958	99	96	73	
5983960	97	101	59	
5983962	153*	84	57	
Blank	98	99	94	
LCS	103	104		
	= - =	= =	100	
LCSD	97	102	92	
imits:	64-147	68-132	53-129	
Analveie N	Name: NWTPH-Gx water C7-C12			
	per: 10140A20A			
saccii iidiii	Trifluorotoluene-F			
983951	89	<u>·</u>		
983952	88			
983954	87			
	87			
983956				
983958	89			
983960	88			
983962	139*			
983964	167*			
lank	89			
CS	117			
CSD	116			
S	180*			
imits:	63-135	*		

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 6 of 6

Quality Control Summary

Client Name: Chevron

Group Number: 1195162

Reported: 06/04/10 at 08:28 AM

Surrogate Quality Control

Analysis Name: NWTPH-Dx water w/Si Gel Batch number: 101420003A Orthoterphenyl

5983952	61	·	 		
5983954	86				
5983956	85				
5983958	83				
5983960	94				
5983962	114				
5983964	83				
Blank	79				
LCS	94				
LCSD	98				
• 1 1			 		

Limits: 50-150

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
iU	Intemational Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
mi	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ui	microliter(s)

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

X,Y,Z

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Inorganic Qualifiers

Correlation coefficient for MSA < 0.995

U.S. EPA CLP Data Qualifiers:

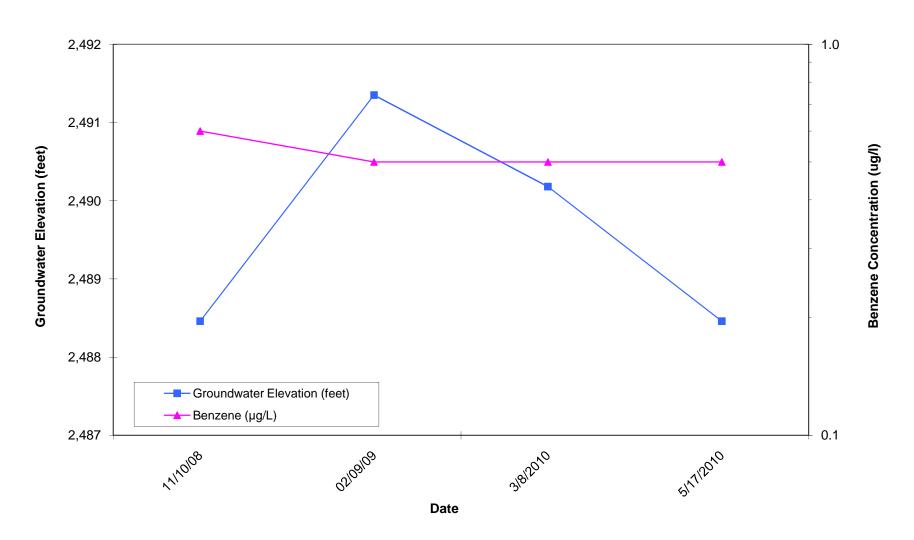
	-		
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

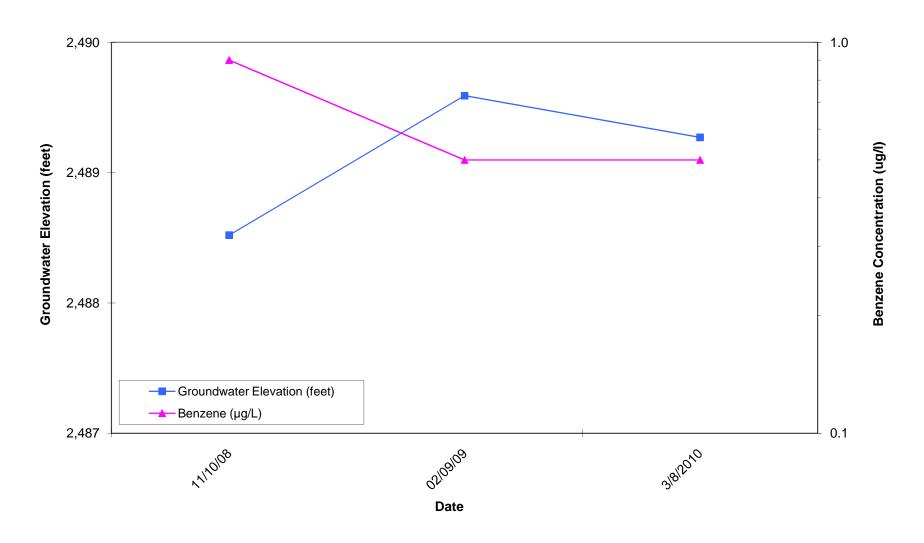
Measurement uncertainty values, as applicable, are available upon request.

Compound was not detected

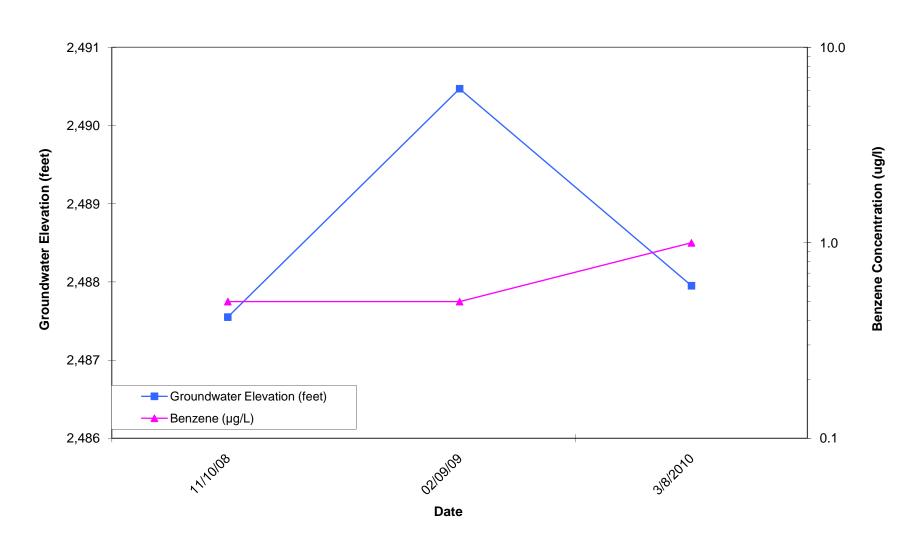
Defined in case narrative

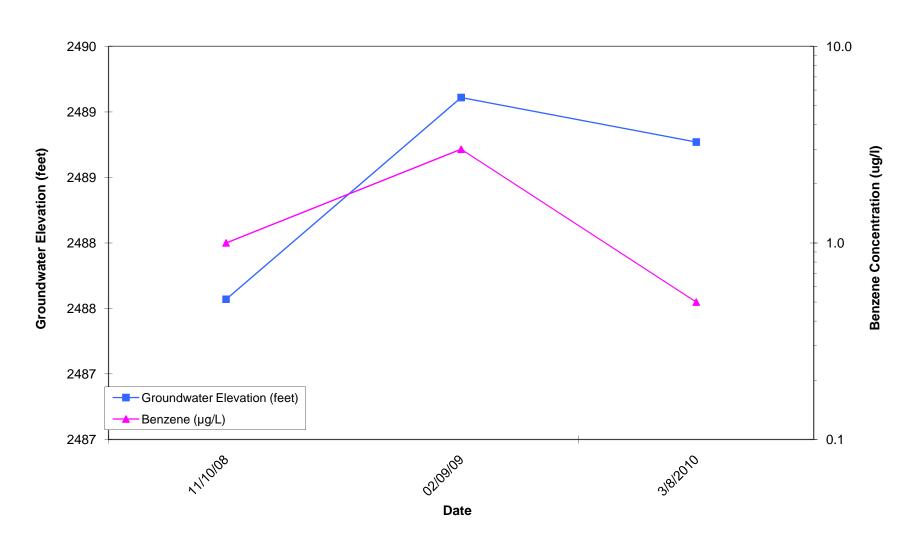

Organic Qualifiers

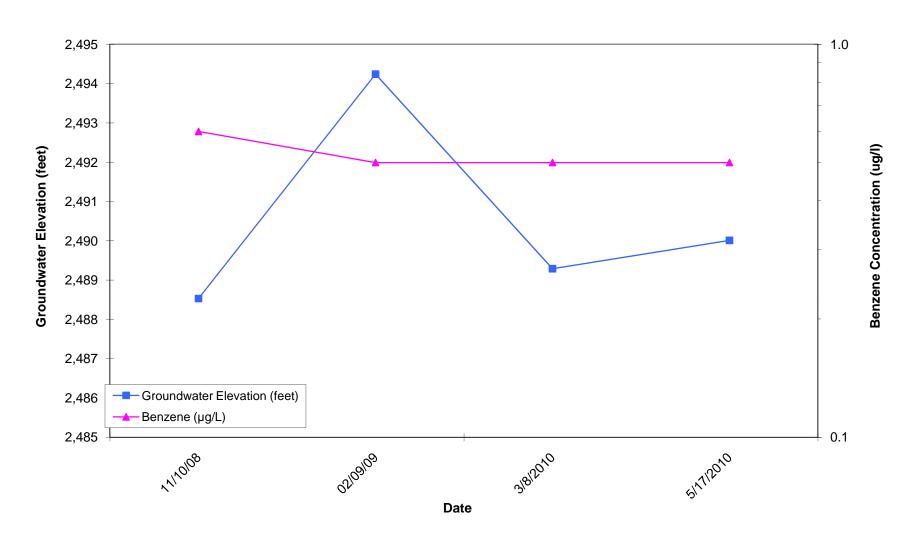
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

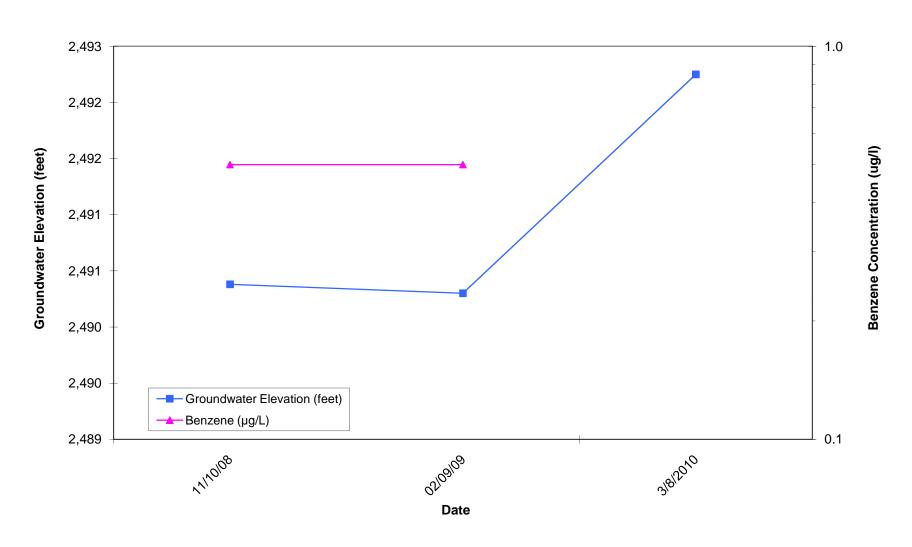

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

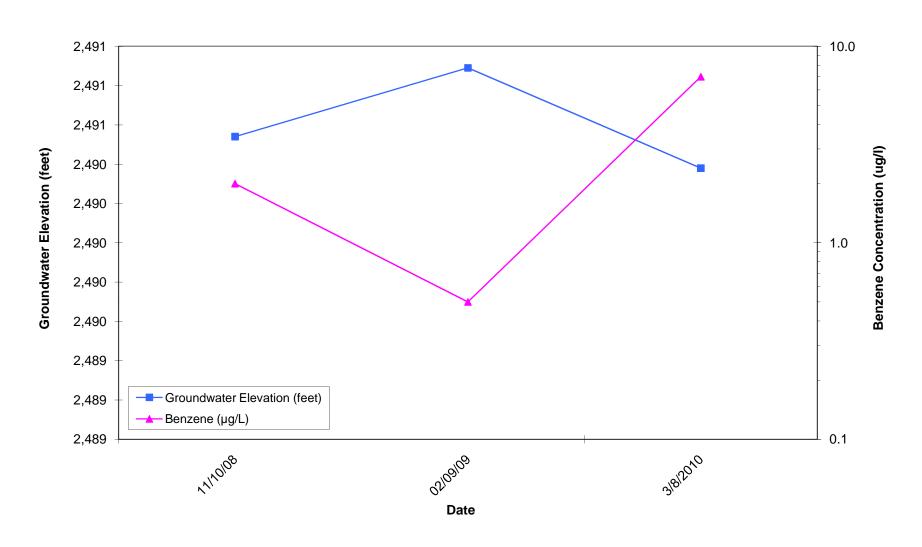
Attachment B: Hydrographs


Well MW-1 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington


Well MW-2 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington


Well MW-3 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington


Well MW-4 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington


Well MW-5 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington

Well MW-6 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington

Well MW-7 Hydrograph Chevron Station No. 352-300 State Route 274, Tekoa, Washington

