Rocky Top Environmental Limited Purpose Landfill 2025 First Quarter Groundwater Monitoring Report

June 2025

Rocky Top Environmental Limited Purpose Landfill 2025 First Quarter Groundwater Monitoring Report

Prepared for

DTG Recycling P.O. Box 14203 Mill Creek, WA 98082

Prepared by

Parametrix

719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.206.649.6353 www.parametrix.com

June 2025 | 553-8472-009

Citation

Parametrix. 2025. Rocky Top Environmental Limited Purpose Landfill 2025 First Quarter Groundwater Monitoring Report. Prepared for DTG Recycling by Parametrix, Seattle, Washington. June 2025.

Certification

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Michael Brady, LG, LHG

Reviewed by Lisa Gilbert, LG, LHG

Approved by Laura B. Lee, Project Manager

Contents

1.		1					
	1.1 LPL Description						
		1.1.1	MTCA Site	1			
		1.1.2	Additional Facility Operations	2			
2.	Physi	ical Setti	ng	2			
	2.1						
	2.2	Soils		2			
	2.3	Geology	·	2			
	2.4	Hydrogeology					
		2.4.1	Recharge and Discharge	3			
		2.4.2	Groundwater Flow	4			
		2.4.3	Hydraulic Conductivity	4			
	2.5	Surface	Water	4			
3.	Moni	toring His	story	5			
	3.1						
	3.2		'es				
	3.3		ince				
4.	Sami	nling and	Analysis	6			
	4.1		Groundwater Sampling				
	4.2		tine Groundwater Sampling				
	4.3		water and Leachate Analysis				
	4.4		e Pond Monitoring				
5	Poor						
5.	5.1		water Elevations and Flow				
	5.1	5.1.1	Groundwater Elevations				
		5.1.2	Groundwater Gradient				
		5.1.3	Groundwater Flow				
	5.2		water and Leachate Quality				
	J.Z	5.2.1	Data Quality Evaluation				
		5.2.2	Comparison of Data to Water Quality Criteria				
		5.2.3	Time-Series Plots				
		5.2.5	11116-961165 F1005	10			

Contents (continued)

	5.2.4	Geochemical Evaluation	12
	5.2.5	Statistical Analysis of Groundwater Quality Data	12
6	Conclusion)S	1.4
О.			
	6.1 Reco	mmendations	16
7.	References	S	17
8.	Limitations	S	19
FIG	URES		
	Figure 1	Facility Vicinity Map	
	Figure 2	Well Location Map	
	Figure 3	Groundwater Levels and Elevations	
	Figure 4	First Quarter 2025 Shallow Aquifer Potentiometric Surface	
	Figure 5	First Quarter 2025 Interflow Zone Potentiometric Surface	
TAI	BLES		
	Table 1	Well Detail Summary	
	Table 2	Groundwater Analyses and Analytical Methods	
	Table 3	Groundwater Levels and Elevations, First Quarter 2025	
	Table 4	First Quarter 2025 Shallow Aquifer Groundwater Quality Monitoring Results	
	Table 5	Shallow Aquifer Groundwater Samples that Failed to Meet Applicable Groundwater Standards in First Quarter 2025	
	Table 6	First Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results	
	Table 7	Interflow Zone Groundwater Samples that Failed to Meet Applicable Groundwater Standards in First Quarter 2025	
	Table 8	First Quarter 2025 Leachate Quality Monitoring Results	
	Table 9	First Quarter 2025 Upper Prediction Limit (UPLs) and Shewhart Control Limit (SC Comparisons	Ls)

APPENDICES

- A First Quarter 2025 Field Data Sheets
- B First Quarter 2025 Laboratory Analytical Report
- C First Quarter 2025 Data Quality Evaluation
- D Time-Series Plots
- E Geochemistry
- F Statistics

Acronyms and Abbreviations

AA Alluvial Aquifer

AO Agreed Order

AMSL above mean sea level

CULs cleanup levels

CUSUM cumulative sum

cm/sec centimeters per second

COPC chemical of potential concern

DA Deep Aquifer

DTG DTG Recycling

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Facility 41 Rocky Top Road in Yakima, Washington

GWQS Groundwater Quality Criteria (Chapter 173-200 WAC)

h control limit for CUSUM comparisons

HWA GeoSciences, Inc.

IZ Interflow Zone

LPL Limited Purpose Landfill

MCLs Maximum Contaminant Levels (Chapter 246-290 WAC)

meq/L milliequivalents per liter

mg/L milligrams per liter

MTCA Model Toxics Control Act (Chapter 173-340 WAC)

MRF Materials Recovery Facility

On-Site Environmental, Inc.

PCS Petroleum-contaminated soil

PFAS Per- and polyfluoroalkyl substances

RI remedial investigation

RL reporting limit

SA Shallow Aquifer

Acronyms and Abbreviations (continued)

SAP Sampling and Analysis Plan

SCL Shewhart Control Limit

TDS total dissolved solids

TPH total petroleum hydrocarbons

μg micrograms

µmhos/cm micromhos per centimeter

UPLs upper prediction limits

US Army Corps of Engineers

VOCs volatile organic compounds

WAC Washington Administrative Code

YHD Yakima Health District

YRCAA Yakima Regional Clean Air Agency

1. Introduction

This report presents the results of the first quarter 2025 environmental monitoring completed at the Rocky Top Environmental Limited Purpose Landfill (LPL) located at 41 Rocky Top Road in Yakima, Washington (Facility). The Facility is owned and operated by DTG Recycling (DTG). Figure 1 shows the overall location of the Facility. Figure 2 shows the details of the Facility including the monitoring well locations, lined and unlined cells, the leachate pond, and other operations.

1.1 LPL Description

The Facility was permitted for sand and gravel mining operations beginning in 1983. In 1991, the Facility permit was modified to include petroleum-contaminated soil (PCS) remediation and re-use of treated PCS for cover or crushed into rock for asphalt and used as fill material. The Facility was later permitted as an unlined construction, demolition, and land-clearing debris (landfill that began operation in 1997 as Anderson Rock and Demolition Pits) under Chapter 173-304 of the Washington Administrative Code (WAC). The Facility was reclassified as an LPL in 2007, with the southern expansion area permitted in 2015. The LPL accepted treated PCS that was stockpiled in a separate area on the northeast portion of the Facility and managed until soil concentrations were below the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) for unrestricted land use. Once soils in the stockpiles were below MTCA CULs, they were used as daily cover in the LPL following approval from Yakima Health District (YHD).

In October 2019, DTG purchased the Facility and overtook operations of the LPL. Phase 1 is the historical fill area and is unlined (Figure 2). Filling of Phase 1 continued through 2022, and then waste was placed in a permitted unlined expansion cell south of Phase 1. It was discovered that the area had hydrogeologic physical conditions differing from those estimated for the original permitting. This south area became known as the temporary fill area and DTG began plans for a lined expansion cell (Phase 2). Waste placement in the temporary fill area continued through June 2023 when the permit renewal for the LPL was denied primarily due to the need for an air permit from the Yakima Regional Clean Air Agency (YRCAA). By September 2024, DTG had completed the construction of Phase 2 located on the southern portion of the Facility that had a liner system and leachate collection system. The Facility permit was renewed in December 2024 (YHD 2024) and DTG began placing LPL waste in Phase 2 and moving waste from the temporary fill area into the new lined cell. A leachate collection pond (Figure 2) serves the lined cell.

1.1.1 MTCA Site

The Washington State Department of Ecology (Ecology) listed the northwest slope of Phase 1 of the LPL as a MTCA cleanup site in September 2022 related to ambient air found above MTCA CULs. DTG and Ecology negotiated an Agreed Order (AO) that was executed in February 2023. A subsurface fire beneath the northwest slope of the LPL was confirmed in March 2023. Based on the potential contaminants related to the fire, Ecology requested the installation of additional downgradient monitoring wells. These wells were installed in 2024 related to the MTCA limited remedial investigation (RI). Ecology also requested additional chemicals of potential concern (COPCs) in groundwater to be investigated.

Groundwater monitoring related to MTCA releases includes analysis for additional parameters that are suspected to be present related to the MTCA site and is being reported separately. This includes analysis of per- and polyfluoroalkyl substances (PFAS), dioxins/furans, semi-volatile organic compounds including carcinogenic polycyclic aromatic hydrocarbons, and U.S. Environmental Protection Agency (EPA) priority pollutant metals.

1.1.2 Additional Facility Operations

There is a materials recovery Facility (MRF) operating in the central portion of the Facility adjacent to the LPL. In 2023, YHD required the MRF to develop a covered receiving area which was installed in 2024. Additional MRF area requirements include an impervious receiving floor and leachate controls. DTG is in the process of designing and constructing these systems for the MRF. Figure 2 displays the current MRF location. An active rock quarry also operates in the western portion of the Facility and is permitted separately (Figure 2). A PCS remediation area is located on the eastern portion of the Facility. The PCS remediation area is currently undergoing closure with YHD so that the MRF can be developed at this location. Three 10-foot monitoring wells were installed around the PCS remediation area in 1991. The wells are dry and planned to be decommissioned during the closure process.

2. Physical Setting

The Facility is located northwest of Yakima in Section 10, Township 13 North, Range 17 East, Willamette Meridian, in Yakima County, Washington. The area of the LPL is within the Yakima fold and thrust belt of the Columbia Plateau which is a series of east-west trending thrust faults and folds on the westernmost portion of the Columbia Plateau. The anticlines are usually formed over a thrust fault and typically form topographic ridges. The Facility is located on the northeast flank of Cowiche Mountain, which is an east-west trending anticlinal structure that extends from Cowiche Mountain to under the City of Yakima and forms Yakima Ridge to the east of the LPL. The axis of the anticline is located approximately 1,600 feet (ft) to the south of the LPL (Bentley and Campbell 1983).

2.1 Topography

The topography of the Facility slopes northerly from an elevation of approximately 2,000 ft above sea level on the southern border of the Facility down to approximately 1,800 ft above sea level on the northern border of the Facility. The Facility has an average slope, from southwest to northeast, of approximately 15% to 25%.

2.2 Soils

Soils on the Facility consist of silt loams up to 14-inches thick derived from Ellensburg Formation undifferentiated deposits and breakdown of basalt bedrock. Some areas of the Facility surface soils consist solely of weathered basalt fragments. The thickness of unconsolidated soil above bedrock varies up to approximately 14 ft; however, it is as much as 35 ft in some areas of the Facility due to regrading.

2.3 Geology

Below the surface soils of the Ellensburg Formation undifferentiated deposits, the geology of the Facility is comprised of Columbia River Basalt bedrock with sedimentary interbeds. The Yakima Basalt Subgroup comprises the uppermost (youngest) portion of the regional Columbia River Basalt Group and includes (from youngest to oldest): the Saddle Mountain Basalt, the Wanapum Basalt, and the Grande Ronde Basalt.

Locally, the Saddle Mountain Basalt is absent. The Ellensburg Formation is interbedded with the Yakima Basalt subgroup and is comprised of surficial formations of silt above bedrock as well as a significant interbed, known as the Vantage member of the Ellensburg Formation (Vantage Interbed).

The surface geology of the LPL (Bentley and Campbell 1983) is mapped as the Kelley Hollow flow of the Frenchman Springs Member of the Wanapum Basalt with a thin band of the Vantage Interbed separating the Wanapum Basalt (north) from the Grande Ronde Basalt (south). Mining has since uncovered large portions of the Vantage Interbed at the Facility including within the current temporary fill area.

The Wanapum Basalt is the shallow bedrock below the Facility, and is comprised of massive basalt, fractured basalt, columnar zones, pillow basalt, and palagonite. The thickness varies across the Facility but has been identified to be up to 260 ft thick at the Facility. The Wanapum Basalt is underlain by the Vantage Interbed of the Ellensburg Formation. The Vantage Interbed consists of sandstone, silt, and sand lenses and is approximately 30 to 35 ft thick. Below the Vantage Interbed is the Grande Ronde Basalt consisting of massive, columnar, and fractured basalt. The Grande Ronde Basalt has been observed up to 900 ft thick below the Facility.

2.4 Hydrogeology

There are two aquifers that are currently monitored below the LPL including a Shallow Aquifer (SA) and Interflow Zone (IZ) located within the Columbia River Basalt bedrock. There is also a Deep Aquifer (DA) occurring in the basalt that was monitored for four quarters in 2023. The SA and DA are the primary drinking water aquifers for neighboring Group B and domestic wells.

The basalt is dipping northerly at the Facility due to the Cowiche Mountain anticline. The natural dip places the SA as the first groundwater unit below the northern portion of the Facility and the IZ as the first groundwater unit below the southern portion of the Facility. There is an Alluvial Aquifer (AA) north and downgradient of the Facility within the Cowiche Valley that is the ultimate discharge of the SA. The AA is locally up to 350 ft thick based on well logs from Ecology.

The SA occurs within the bottom flow zone of the Wanapum Basalt, saturated portions of the Vantage Interbed, and saturated portions of the flow top zone of the Grande Ronde basalt. The SA is partially to fully confined. Five monitoring wells have been completed in the SA. All five wells are located downgradient of the Facility. MW-2S and MW-3S were completed between 2005 and 2007 and background monitoring events were conducted in 2008 and 2009. MW-4S was completed in July 2022 and background monitoring events were completed through 2024. MW-5S and MW-6S were completed in 2024 and background monitoring is being conducted on an accelerated basis in 2025.

The IZ occurs approximately 150 to 200 ft below the Grande Ronde-Vantage Interbed interface. The IZ is fully confined. Four monitoring wells have been completed in the IZ, one upgradient and three downgradient. MW-7D, MW-8D, MW-9D, and MW-10D were completed in 2024 and background monitoring is being conducted on an accelerated basis in 2025.

The DA occurs approximately 200 to 400 ft below the IZ within the Grande Ronde Basalt. The DA is fully confined with water levels approximately 200 ft above the source zone. The DA was monitored for four quarters in 2023 with samples collected from the Bertheas '95 well located east of the Facility (Figure 2). No water levels could be measured in the well; however, the log indicates water levels were 600 ft below ground, or approximately elevation 1,325 ft above sea level. The Bertheas '95 well was decommissioned in 2024 after a variance request to convert the well into a monitoring well was denied by Ecology.

2.4.1 Recharge and Discharge

The Yakima area (including the LPL area) is classified as a "zone of little groundwater recharge potential from direct precipitation sources" (Myers et al 1979), which is the lowest of three relative groundwater recharge classifications in their study. Recharge to groundwater in the basalt aquifers

occurs primarily between Cowiche Mountain and Bethel Ridge to the northwest, with some recharge north of the sub-basin boundary (USACE 1978). The reach of Yakima River east of the LPL is also classified as a suspected recharge area (Myers et al 1979). The SA in the Wanapum Basalt and IZ within the Grande Ronde Basalt discharge to the AA at lower elevations to the north, and ultimately to Cowiche Creek, which flows into Naches River, and then into the Yakima River. The DA in the Grande Ronde Basalt likely continues below the AA north of the facility and discharges to AA within the Yakima River Valley to the east-northeast.

2.4.2 Groundwater Flow

Shallow Aquifer

The groundwater gradient for the SA is predominantly northerly following the topographic slope and dip of the Vantage Interbed. In March 2022, HWA Geosciences (HWA) measured groundwater depths in 18 private residential and orchard wells surrounding the LPL completed in the SA, as well as in DTG monitoring wells MW-2S and MW-3S. Methods and results are detailed in the Groundwater Gradient Study, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington (HWA 2022b). The interpreted groundwater elevation contour maps showed hydraulic gradients of 0.07 to 0.17 ft/ft, or approximately 370 to 900 ft per mile, with flow generally to the north, downslope and down-dip, as expected.

The gradient from the existing monitoring well network shows the SA is steeper below the Facility (0.23 to 0.28 ft/ft) and flattens slightly further north where the SA meets the Cowiche Valley.

Interflow Zone

The groundwater gradient for the IZ is described in Section 5.1 and has been observed to be northerly around 0.20 ft/ft following topography and the dip of the anticline. The third quarter 2024 was the first monitoring event where static water level elevations for the IZ were evaluated.

Deep Aquifer

Parametrix reviewed domestic well logs in the vicinity of the LPL to develop an approximate groundwater gradient map for the DA to support future well drilling. The gradient map developed from the domestic wells (Parametrix 2023b) showed a similar approximately north-northwesterly gradient for the DA near the LPL at a rate of approximately 0.11 ft/ft, or approximately 600 ft per mile. The gradient map also demonstrated there is a local groundwater divide located 1,500 ft south of the LPL along the anticline axis of Cowiche Mountain.

2.4.3 Hydraulic Conductivity

Hydraulic conductivity has been evaluated by previous hydraulic testing (HWA 2015, HWA 2022, Parametrix 2025a). The average, low, and high hydraulic conductivities for the SA and IZ were presented in the updated Hydrogeologic Characterization Report (Parametrix 2025e). Average hydraulic conductivity for the SA was calculated to be 3.1 ft/day with a known range from 0.4 to 7.8 ft/day. For the IZ wells, the average hydraulic conductivity was calculated to be 2 ft/day with a range of 0.05 to 7.5 ft/day.

2.5 Surface Water

Surface water at the Facility is comprised of ephemeral drainages flowing north off Cowiche Mountain periodically towards Cowiche Creek located in the valley north of the Facility. Surface water for the Facility is generally captured and evaporated on the Facility through surface water evaporation ponds.

3. Monitoring History

Groundwater monitoring for the LPL is completed quarterly for compliance with WAC 173-350-100 and permit requirements. Groundwater monitoring well locations at the LPL are shown on Figure 2. Table 1 summarizes the monitoring well details.

Well MW-2S was installed in December 2005. MW-3S was installed in September 2007. A third location, BH-1, was drilled in 2005 and was observed to be dry so no monitoring well was installed. Eight background monitoring events were conducted at MW-2S and MW-3S between August 2008 and August 2009 to establish baseline groundwater quality conditions. Background monitoring is described in the Groundwater Monitoring Report, Anderson Pit Limited Purpose Landfill, Yakima, Washington (HWA 2010). Since 2009, quarterly groundwater monitoring has been conducted at MW-2S and MW-3S and the results have been documented in annual reports. Quarterly groundwater reporting began in 2023.

Monitoring well MW-4S was installed in 2022 to update the hydrogeologic characterization and monitoring at the Facility (HWA 2022). It was initially sampled in October 2022 and has been monitored quarterly since installation. The initial results were presented in the 2022 annual report (Parametrix 2023a) and subsequent results were presented in quarterly and annual reports (Parametrix 2024a, 2025f).

The Bertheas '95 domestic well in the DA (Figure 2) was sampled for four quarters in 2023 and results were presented in the 2023 quarterly and annual reports (Parametrix 2024a). The Bertheas '95 well was decommissioned in September 2024 and is no longer available for sampling.

In 2024, two new SA wells and four new IZ wells were completed below the Facility. The two new SA wells MW-5S and MW-6S were installed prior to the second quarter 2024. Four new IZ monitoring wells (MW-7D, MW-8D, MW-9D, and MW-10D) were installed prior to the third quarter 2024. Eight groundwater monitoring events are planned for the new wells to meet the permit requirements. Four expedited sampling events (A events) are being completed in 2025 in addition to the routine quarterly monitoring (B events) and the six new wells will be sampled every approximately 1.5 months.

The Sampling and Analysis Plan (SAP) was updated in September 2024 (Parametrix 2024b) to reflect the revised statistical analysis approach for the groundwater monitoring program as well as to include information for the additional monitoring wells and sampling/monitoring the leachate pond for the Phase 2 lined cell. Leachate samples are collected annually during the first quarter event; however, the pond level and sump are checked quarterly. An additional MTCA-related groundwater SAP (Parametrix 2025b) was developed for required monitoring under the AO for additional contaminants.

Dedicated PFAS-free pumps have been installed in all the monitoring wells (Table 1). The results for MTCA-related contaminants are not included in this report and are presented in other reporting for the MTCA site as part of the AO. PFAS were confirmed in MW-3S at concentrations above CULs during the third and fourth quarters of 2024 (Parametrix 2024d, 2025c). A limited RI work plan (Parametrix 2025d) was developed for two additional monitoring wells (MW-1S and MW-11S) within the SA related to characterization of additional COPCs including PFAS.

3.1 Recent Changes

MW-1S and MW-11S are currently being drilled and constructed northeast of Phase 1 and north of MW-3S. MW-11S was drilled to a depth of 241 ft below ground and constructed with 20 ft of screen. MW-1S is currently being drilled. The wells will likely be included in the routine monitoring program

starting in the third quarter 2025 sampling event. Non-routine groundwater samples will likely be collected during the second quarter.

The leachate pond for Phase 2 is active and in use. Leachate is sampled annually during the first quarter event.

3.2 Objectives

This report documents the first quarter 2025 groundwater and leachate monitoring at the Rocky Top Environmental LPL. Reporting requirements, as required by the LPL operating permit and WAC 173-350-500, entail quarterly groundwater monitoring and submission of an annual groundwater monitoring report to the YHD and Ecology.

3.3 Compliance

If statistical analyses determine a significant increase over background (as described in Section 5.2.5), DTG will notify YHD and Ecology within 30 days of the evaluation finding. If the increase is not demonstrated to be attributable to a source other than the landfill, natural variation in groundwater quality, or an error in sampling, analyses, or statistical evaluation, and the concentrations of constituents exceed the groundwater quality criteria established by Chapter 173-200 WAC, Water Quality Standards for Groundwaters of the State of Washington, DTG in consultation with YHD and Ecology, will determine additional measures. Additional measures to be considered are to characterize the chemical composition of the release and the contaminant fate and transport characteristics by installing additional monitoring wells; assess and, if necessary, implement appropriate intermediate measures to remedy the release; and evaluate, select, and implement remedial measures as required by Chapter 173-340 WAC, MTCA, where applicable.

A suspected release from the LPL is currently being investigated as part of an AO under MTCA. Evaluation of additional monitoring wells downgradient of the suspected impacted monitoring wells (MW-3S and MW-4S) is being implemented to determine the nature and extent of the contamination including additional monitoring parameters that are reported separately as part of the MTCA investigation.

4. Sampling and Analysis

The first quarter 2025 groundwater sampling and analysis was conducted in accordance with the SAP (Parametrix 2024b). Field data sheets from the first quarter sampling are attached in Appendix A.

4.1 Routine Groundwater Sampling

Two sampling events were completed during the first quarter 2025:

- First quarter "A event" (February 12, 13, 14) MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, MW-10D
- First quarter "B event" (March 25, 31, April 1) All monitoring wells and leachate

The monitoring wells were purged and sampled using the dedicated PFAS-free QED bladder pumps with an electronic pump control unit (QED Micropurge MP10/MP10H) and external nitrogen tank. Low flow purging methods were utilized in accordance with the SAP. Samples to be tested for dissolved

metals were field filtered through a 0.45-micron filter. A duplicate sample, MW-13S, was collected at well MW-6S during both the A and B events.

The first quarter "B event" also included additional MTCA analytical parameters including PFAS. Those results are included in the laboratory report (attached in Appendix B) but summarized separately (Parametrix 2025g).

4.2 Nonroutine Groundwater Sampling

No additional non-routine monitoring events were completed during the first quarter of 2025. Non-routine monitoring will likely occur following completion of drilling and construction of MW-1S and MW-11S.

4.3 Groundwater and Leachate Analysis

The first quarter 2025 samples for WAC 173-350-500 monitoring were analyzed by On-Site Environmental, Inc. (On-Site) located in Redmond, Washington. The analytical methods used are listed in Table 2.

In addition to the parameters required by WAC 173-350-500, the samples were analyzed for the volatile organic compounds (VOCs) included in WAC 173-351-990 Appendix I and naphthalene, and samples from the SA were analyzed for gasoline and diesel/oil range total petroleum hydrocarbons (TPH).

4.4 Leachate Pond Monitoring

Samples were collected from the leachate pond on March 25. The depth of leachate in the pond was observed to be 6.5 ft which is up into the designed free board (2 ft). The total depth of the lined pond is 7 ft. The leachate pond leak detection sump was measured with a sounder. Water was detected at approximately 32.4 ft of the total sump length of 33.5 ft indicating less than 3 inches of liquid is present within the sump.

5. Results

5.1 Groundwater Elevations and Flow

5.1.1 Groundwater Elevations

Table 3 summarizes the groundwater depths and elevations measured at the LPL during the first quarter "B event". Figure 3 presents a hydrograph of historical groundwater elevations for all monitoring wells compared with the cumulative deviation from average monthly precipitation recorded at the Yakima Air Terminal. The water levels are generally consistent with deviations in precipitation over time (Figure 3) with minor variances. The SA wells appear to respond to precipitation with MW-2S having less of a direct correlation. MW-2S is completed in the bottom of the SA below the Vantage Interbed.

Long term water level declines have been observed over the course of monitoring at both MW-2S and MW-3S. However, less of a decline has been observed at MW-2S and it has been stable since approximately 2023. MW-3S had further declines in 2024 and is currently approximately 30 feet below the historical maximum. MW-4S water levels have been stable but was elevated during the first

quarter event. The new wells MW-5S, MW-6S, MW-8D, MW-9D, and MW-10D show slight increases over the last few events while MW-7D had a large initial drop before stabilizing in the last two events.

5.1.2 Groundwater Gradient

Potentiometric surface maps for the first quarter B event were developed for the SA (Figure 4) and the IZ (Figure 5). Water levels in the SA trend primarily northerly at a rate of 0.25 ft/ft, or approximately 1,320 ft per mile. Water levels in the IZ trend north-northeasterly at a rate of 0.21 ft/ft, or 1,123 ft per mile. These flow directions and gradients are similar to the previous events observed at the Facility. Both the SA and IZ discharge into the AA north of the Facility within the Cowiche Valley.

5.1.3 Groundwater Flow

Groundwater particle velocity is described by the following relationship: V = K i / n, where:

V = particle velocity

K = hydraulic conductivity

i = gradient

n = effective porosity

Groundwater flow velocities were calculated using the average, minimum, and maximum hydraulic conductivities for the SA and IZ (see Section 2.4.3), an assumed effective porosity of 0.2 (Nimmo et al 2003), and the calculated gradient (Section 5.1.2, above).

Shallow Aquifer

Average 3.88 ft/day (1,414 ft/year)

Minimum 0.50 ft/day

Maximum 9.75 ft/day

Interflow Zone

Average 2.13 ft/day (777 ft/ year)

Minimum 0.05 ft/day

Maximum 7.98 ft/day

5.2 Groundwater and Leachate Quality

5.2.1 Data Quality Evaluation

For the first quarter 2025 events, field data sheets are presented in Appendix A and laboratory reports are presented in Appendix B. Appendix C presents an evaluation of the first quarter 2025 analytical and field data quality. No data were qualified related to the evaluation of compliance monitoring data.

5.2.2 Comparison of Data to Water Quality Criteria

5.2.2.1 Shallow Aquifer Samples

The data from the SA wells for first quarter 2025 events are presented in Table 4 and were compared to Water Quality Standards for Groundwaters of the State of Washington (GWQS; Chapter 173-200 WAC) and Maximum Contaminant Levels (MCLs; Chapter 246-290 WAC). TPH and naphthalene concentrations were compared to MTCA Method A CULs. One event is presented for wells MW-2S, MW-3S, and MW-4S and two events are presented for MW-5S and MW-6S. Table 5 summarizes the parameters for which one or more of the above standards were exceeded and indicates the SA wells in which the standards were exceeded.

The following concentrations in the SA wells above these criteria were observed in the first quarter 2025 events:

MW-3S

Nitrate was above the GWQS of 10 mg/L

MW-4S

- Specific conductivity was above the GWQS of 700 μmhos/cm
- Nitrate was above the GWQS of 10 mg/L
- Total dissolved solids (TDS) was above the MCL of 500 mg/L

MW-5S

- Specific conductivity was above the GWQS of 700 µmhos/cm in the A event
- Total and dissolved iron were above the GWQS and MCL of 0.3 mg/L in both A and B events
- Total and dissolved manganese were above the GWQS and MCL of 0.05 mg/L in both A and B events

MW-6S

- Nitrate were above the GWQS of 10 mg/L in both A and B events
- Total manganese was above the GWQS and MCL of 0.05 mg/L in the A event

No VOCs were detected above laboratory reporting limits (RLs). No gasoline or diesel/oil-range TPH were detected. TPH has been sampled since 2022 and has not been detected in the SA.

The exceedances at MW-3S and MW-4S are potential impacts related to the LPL. Statistical comparisons for MW-2S, MW-3S, and MW-4S are presented in Section 5.2.5. Background sampling is still occurring for SA wells MW-5S and MW-6S.

5.2.2.2 Interflow Zone Samples

The data from the IZ wells for the first quarter 2025 events are presented in Table 6 and were compared to GWQS (Chapter 173-200 WAC) and MCLs (Chapter 246-290 WAC). Table 7 summarizes the compounds for which one or more of the above standards were exceeded and indicates the IZ wells in which the standards were exceeded.

The following concentrations in the IZ wells above these criteria were observed in the first quarter 2025 events:

MW-8D

■ Total iron was above the GWQS and MCL of 0.3 mg/L in the A event

MW-9D:

- Total and dissolved iron were above the GWQS and MCL of 0.3 mg/L in the A and B events
- Total and dissolved manganese were above the GWQS and MCL of 0.05 mg/L in the A and B events

The aquifer at Well MW-9D is limited and water quality continues to remain elevated for total and dissolved iron and manganese. No VOCs were detected in the IZ wells above laboratory RLs.

5.2.2.3 Leachate Samples

The data from the leachate pond for the first quarter 2025 annual sampling are presented in Table 8.

No VOCs were detected in the leachate samples. TPH-diesel and TPH-oil were detected in the leachate at 0.18 mg/L and 0.28 mg/L, respectively. No gas-range TPH was detected. The leachate quality was lower in concentrations than the average of the monitoring wells for most parameters. The first quarter event occurred approximately 4 months after waste began being placed into the Phase 2 cell. The leachate generated to date did not appear to have much retention time within the LPL and largely lacked contaminants except for the metals and TPH.

5.2.3 Time-Series Plots

5.2.3.1 Groundwater

Time-series plots for inorganic parameters are presented in Appendix D. Data that have been identified as outliers for parameters that are evaluated statistically (Parametrix 2025f) and additional outliers for wells MW-2s and MW-3S identified for TOC have been excluded from the time-series plots. The data show a considerable degree of variability in TDS and some other analytes. It should be noted that the analytical laboratory has changed several times over the history of monitoring. The change of labs in the fourth quarter of 2022 is visible in the data. Some other apparent increasing trends have been observed in the inorganic parameters.

Data for the first sampling event of MW-9D in the third quarter of 2024 are anomalous for many parameters because the event was nonroutine and the well was turbid from development.

Alkalinity and Bicarbonate

Alkalinity and bicarbonate appear to be increasing at MW-4S, while generally stable/within the historical range in the remaining wells.

Ammonia

Ammonia has rarely been detected in the wells and was not detected in the first quarter 2025 events.

Dissolved Calcium

Dissolved calcium appears to be increasing in wells MW-3S and MW-4S. The first quarter 2025 dissolved calcium concentration at MW-6S was the highest detected value at that well; however, background is still being established. MW-6S is downgradient of MW-4S.

Chloride

Chloride appears to be increasing at MW-3S and relatively stable at the remaining wells.

Conductivity

Conductivity appears relatively stable since the fourth quarter of 2022.

Total and Dissolved Iron

Total and dissolved iron show high variability in the data particularly in the new IZ wells.

Total and Dissolved Magnesium

Total and dissolved magnesium concentrations appear to be increasing in wells MW-3S and MW-4S. The first quarter 2025 concentration in MW-4S were the highest detected values at that well.

Total and Dissolved Manganese

Total and dissolved manganese show high variability particularly in the new IZ wells.

Nitrate

Apparent increases in nitrate are visible for MW-3S and MW-4S. An apparent increase is also occurring at MW-6S; however, background is still being established at that well.

рН

The first quarter 2025 data fall within the typical historical range for pH.

Dissolved Potassium

Dissolved potassium appears to be relatively stable/within the historical range for the wells.

Dissolved Sodium

Apparent increasing trends are present at MW-3S and MW-4S. A similar increase is apparent at MW-6S; however, background is still being established at that well.

Sulfate

Apparent increases in sulfate are present at MW-3S. The last three quarters are the highest recorded.

Total Dissolved Solids

Apparent increases in TDS appear at MW-3S and MW-4S. The other wells appear to be relatively stable.

Total Organic Carbon

TOC appears relatively stable across all wells.

5.2.3.2 Leachate

This was the first quarter leachate samples were collected from the Phase 2 leachate pond (Figure 2). As additional leachate data are collected, time-series plots showing leachate through time will be developed.

5.2.4 Geochemical Evaluation

5.2.4.1 Cation/Anion Balances

Cation/anion balance evaluations for the 2025 first quarter events are presented in Appendix E. Cation/anion balances are a standard check of inorganic water quality data. When all the major anions and cations have been accurately determined, the sum of the anions in milliequivalents per liter (meq/L) should equal the sum of the cations expressed in the same units. WAC 173-351-420(5)(a) specifies that a 5 percent difference is acceptable if the anion plus cation sum of the sample is greater than 5 meq/L, while a 10 percent difference is acceptable if the anion plus cation sum of the sample is less than 5 meq/L.

The first quarter 2025 cation/anion balance differences were within acceptable limits except for MW-9D during the A event and MW-6S, MW-10D, and the leachate sample during the B event. Possible explanations for the cation/anion imbalances are the presence of other ions not analyzed for or suspended solids in the water samples.

5.2.4.2 Trilinear Diagram

A trilinear (piper) diagram showing the first quarter 2025 data is presented in Appendix E. Piper diagrams are trilinear graphical representations of inorganic water quality, where major anions (chloride, sulfate, and bicarbonate + carbonate) and cations (calcium, magnesium, and sodium + potassium) are plotted on a molar equivalent basis, on two triangular graphs, and the combined data projected onto a quadrilateral field, or four-sided graph. The Piper diagram can be used to compare different water samples to evaluate the degree of similarity, mixing relationships, time trends, etc.

Groundwater quality in the monitoring wells shows some variations in cation and anion distributions suggesting slightly differing geochemical conditions. The cation distributions in all monitoring wells fell within a similar zone with the principal cations being calcium and magnesium. The anion distributions were more variable.

The first quarter 2025 data were generally consistent with historical data from the fourth quarter of 2024. Anions in SA well MW-2S and IZ wells MW-7D and MW-10D were dominantly bicarbonate, while the other wells had varying proportions of bicarbonate, sulfate and chloride. Wells MW-4S, MW-5S, MW-8D, and MW-9D had slightly higher proportions of bicarbonate compared to wells MW-3S and MW-6S, which had slightly higher proportions of chloride. The data were relatively consistent between the two first quarter events, except that the A event for MW-5S had a higher proportion of sulfate and chloride with respect to bicarbonate, whereas the B event was more consistent with historical data.

MW-2S is screened slightly lower in the SA than the other monitoring wells and includes the flow top zone of the Grande Ronde Basalt. The Piper diagram is consistent with the slight differences in geochemistry anticipated due to differing positions of these wells and more closely resembles the geochemistry of the other wells completed in the IZ of the Grande Ronde Basalt.

The leachate sample had slightly higher proportions of sulfate and calcium with respect to the majority of the groundwater samples.

5.2.5 Statistical Analysis of Groundwater Quality Data

5.2.5.1 Statistical Approach

Washington's Solid Waste Landfill regulations (Chapter 173-350 WAC) require evaluation of groundwater monitoring data to identify if a statistically significant increase above background has

occurred. The current statistical approach is summarized in the 2024 annual report (Parametrix 2025f) and consists of comparing quarterly data for a subset of leachate indicator parameters to upper prediction limits (UPLs). Control charts are also used to supplement the UPLs to evaluate whether any trends are occurring that could potentially be attributable to the landfill, including comparing compliance data to Shewhart Control Limits (SCLs) and calculated cumulative sums (CUSUMs) to the calculated control limits (h), where percentages of non-detected values are greater than 50 percent.

An intrawell (i.e., within the same well) statistical approach is being used to evaluate compliance at the SA wells MW-2S, MW-3S, and MW-4S since there are no upgradient background wells within the SA. Intrawell background data is still being established at SA wells MW-5S and MW-6S. For the IZ, MW-10D is a background data point upgradient of the Facility. The initial eight data points for MW-10D and the downgradient monitoring wells MW-7D, MW-8D, and MW-9D will be completed at the end of 2025 and statistical analysis will be completed at that time for use in the 2026 monitoring program. Due to aquifer heterogeneity, intrawell comparisons are anticipated for the IZ wells as water quality is variable (Table 6). As noted above, leachate is currently being sampled and the data may be used in the future to refine the subset of leachate indicator parameters.

A subset of leachate indicator parameters from Chapter 173-350 WAC are being used to establish statistical limits for the three monitoring wells that have established background (MW-2S, MW-3S, and MW-4S). The following parameters were selected for formal statistical analysis:

- pH
- chloride
- nitrate
- sulfate
- ammonia
- TDS
- total and dissolved iron
- total and dissolved manganese

The time series plots and apparent trends (Section 5.2.3 above) and comparison of groundwater to leachate data (Section 5.2.2.3 above), show these parameters appear to be appropriate leachate indicators for the statistical program.

The statistical limits are used in the following way to evaluate groundwater quality at the Rocky Top Environmental LPL:

- For a statistically significant increase (monitoring data exceeding a limit for two consecutive quarters) that cannot be attributed to sampling error, the monitoring data will be compared to the water quality standard in Chapter 173-200 WAC (if available).
- If the water quality standard is exceeded, the monitoring data will be compared to any historical data values that were flagged as outliers to determine whether the monitoring data are within the range of historical data. Because historical outliers were flagged based on statistical tests and visual assessments but could not be verified as outliers through additional data evaluation such as resampling or laboratory review, those values may actually represent a portion of the background population.

5.2.5.2 First Quarter 2025 Statistical Evaluation

The statistical approach for evaluating data at the LPL was used to evaluate whether any statistically significant increases are present that could potentially be attributable to the landfill. Table 9 compares the first quarter 2025 event B data to the UPLs and SCLs (Parametrix 2025f and Appendix F). Control charts updated with first quarter 2025 data are presented in Appendix F.

The following exceedances were identified:

MW-3S

- Chloride exceeded the UPL of 47.39 mg/L but was below the SCL of 85.84 mg/L
- Nitrate exceeded the UPL of 9.837 mg/L but was below the SCL of 18.23 mg/L
- Sulfate exceeded the UPL of 46.12 mg/L but was below the SCL of 81.34 mg/L
- TDS exceeded the UPL of 293.6 mg/L but was below the SCL of 533.1 mg/L

MW-4S

■ Total Iron slightly exceeded the UPL of 0.055 mg/L

The concentrations of chloride, nitrate, sulfate, and TDS at MW-3S have exceeded UPLs for more than two consecutive quarters (Parametrix 2025f). The first quarter nitrate concentration was above the GWQS/MCL, although concentrations of chloride, sulfate, and TDS remain below GWQS/MCLs. These statistically significant increases will continue to be evaluated in on-going monitoring. Two new monitoring wells are being installed downgradient of MW-3S and excavation of the temporary fill area is being implemented. The results from 2025 first quarter monitoring event will be confirmed in the second quarter 2025 event to determine if statistically significant increases continue to impact groundwater at MW-3S.

MW-4S had a detection of total iron above its UPL which is set at the RL. The detected concentration was below the GWQS/MCLs and may be related to turbidity or natural variability. Since this is the first quarter where statistical comparisons are being conducted at MW-4S, this exceedance will be verified in the second quarter of 2025. Other leachate parameters that have been observed to have increasing trends or exceedances of groundwater quality criteria in the well (nitrate, conductivity, TDS) were found below their UPLs.

6. Conclusions

This report summarizes the first quarter 2025 monitoring at the Rocky Top Environmental LPL in compliance with WAC 173-350-500 which consisted of two separate monitoring events February 2025 (A event) for the six new monitoring wells and March/April 2025 (B event) for all the wells. Additional monitoring events are being completed to establish background water quality at the six monitoring wells completed in 2024 (MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, and MW-10D). Leachate was sampled during the first quarter B event.

Water levels (Table 3) for the SA and IZ show predominantly northerly gradients (Figures 4 and 5). Groundwater flow velocities were calculated to average 3.88 ft/day for the SA and 2.13 ft/day for the IZ. Water levels appear to follow a seasonal pattern; however, some decreasing levels have been observed historically (Figure 3).

Leachate levels in the leachate pond were up into the designed freeboard with approximately 6.5 ft of leachate present. Less than 3 inches of water were observed in the leachate pond leak detection sump.

Groundwater samples were compared to GWQSs and MCLs (Tables 4 and 6) and the following exceedances (Tables 5 and 7) were identified in at least one of the events:

- Nitrate was above the GWQS in MW-3S, MW-4S, and MW-6S
- Specific conductivity was above the GWQS in MW-4S and MW-5S (A event only)
- TDS was above the MCL in MW-4S
- Manganese (total and dissolved) was above the GWQS and MCL in MW-5S and MW-9D; and total manganese was above the GWQS and MCL in MW-6S (A event only)
- Iron (total and dissolved) was above the GWQS and MCL in MW-5S and MW-9D; and total iron was above the GWQS and MCL in MW-8D (A event only)

Time series plots were developed (Appendix D) and apparent increasing trends were observed at MW-3S and MW-4S for several leachate indicator parameters. MW-6S also showed potential increasing trends; however, background is still being established.

A geochemical evaluation of cations/anions were performed (Appendix E). Data for MW-9D for the A event and MW-6S, MW-10D, and the leachate sample for the B event were outside of WAC 173-351-420(5)(a) acceptable range potentially indicating additional anions are present. A piper diagram was developed showing the geochemistry of all the wells. The geochemistry was generally consistent with historical data except that the MW-5S data for the A event had a higher proportion of sulfate and chloride with respect to bicarbonate, whereas data for the B event were more consistent with historical data.

Results for MW-2S, MW-3S, and MW-4S were compared to established UPLs and SCLs for ten leachate indicator parameters (Table 9). MW-3S concentrations have exceeded the UPLs for chloride, nitrate, sulfate, and TDS for more than two consecutive quarters (Parametrix 2025f), although the first quarter 2025 data were below the SCLs. The concentration of nitrate in MW-3S also exceeded the GWQS and MCL. These statistically significant increases are currently being addressed through installation of further downgradient well MW-11S, and the data will continue to be evaluated in on-going monitoring. MW-4S had a detection of total iron above its UPL which is set at the RL. Since this is the first quarter where statistical comparisons are being conducted at MW-4S, this exceedance will be verified in the second quarter of 2025. Other leachate parameters that have been observed to have increasing trends or exceedances of groundwater quality criteria in MW-4S (nitrate, conductivity, TDS) were found below their UPLs.

Assessment monitoring is being implemented at the LPL and additional monitoring wells will assist in determining the fate and transport of landfill contaminants. The monitoring wells are being analyzed for additional MTCA contaminants as part of the Limited RI under the AO. MTCA monitoring for the additional contaminants is reported separately. Potential impacts related to the landfill at MW-4S have been investigated with additional downgradient monitoring wells MW-5S and MW-6S and potential impacts at MW-3S are being investigated with additional monitoring wells MW-1S and MW-1S (Figure 2). MW-11S was drilled and constructed in the first quarter of 2025. MW-1S will be completed in the second quarter of 2025. The wells will be added to the expedited background (A events) and routine (B events) starting with the third quarter of 2025.

6.1 Recommendations

The following recommendations and planned activities are based on the data presented in this report:

- The SAP should be updated following completion of MW-1S anticipated in the second quarter of 2025.
- TPH and VOCs have been monitored in SA monitoring wells since 2022 and VOCs are being analyzed in samples from the IZ wells. TPH was recommended to be removed from monitoring in the 2024 annual report. VOCs likely should also be removed from monitoring. Samples should continue to be analyzed for TPH and VOCs in 2025 while the RI is on-going and background is being established; however, we recommend removal once background has been completed.
- DTG should continue removing waste from the temporary fill area to reduce potential leachate related contaminants from reaching the water table.

7. References

- Bentley, R.D. and N.P. Campbell. 1983. Geologic Map of the Yakima Quadrangle, Washington. Washington Division of Geology and Earth Resources Geologic Map GM-29.
- Drost, B.W., K.J. Whiteman, and J.B Gonthier. 1990. Geologic Framework of the Columbia Plateau Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Water-Resources Investigations Report 87-4328.
- Ecology (Washington Department of Ecology). 2018. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC. Publication No. 12-07-072. Revised December 2018.
- Ecology. 2023. Guidance for Investigating and Remediating PFAS Contamination in Washington State. Publication Number 22-09-058. Published December 2022, Revised June 2023.
- Ecology. 2024. DTG Yakima Limited Purpose Landfill—2023 Annual Groundwater Monitoring Report. Letter from Luke LeMond, LHG, Hydrogeologist, Solid Waste Management Program, Washington State Department of Ecology, to Steven Newchurch, Environmental Health Specialist/Solid Waste Program Lead, Yakima Health District. May 7, 2024.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007. March 2009.
- Golder Associates. 2002. Naches Basin (WRIA 38) Storage Assessment, Application of Aquifer Storage & Recovery. Prepared for Yakima River Basin Planning Unit, on behalf of the City of Yakima.
- Hansen, A.J., J.J. Vaccaro, and H.H. Bauer. 1994. Ground-Water Flow Simulation of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. USGS Water-Resources Investigation Report 91-4187.
- HWA (HWA GeoSciences Inc.). 2010. Groundwater Monitoring Report, Anderson Pit Limited Purpose Landfill, Yakima, Washington. February 2, 2010.
- HWA. 2015. Geotechnical and Hydrogeologic Investigation Report, Anderson Rock and Demolition Pits Limited Purpose Landfill Expansion. March 18, 2015.
- HWA. 2022a. Geotechnical and Hydrogeologic Investigation Report, DTG/Anderson Pit Limited Purpose Landfill. October 4, 2022.
- HWA. 2022b. Groundwater Gradient Study, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington. March 25, 2022.
- Molenaar, D. 1985. Water in the Lower Yakima River Basin, Washington. Washington Department of Ecology Water Supply Bulletin 53.
- Myers, C. W., S. M. Price, et al. 1979. Geologic Studies of the Columbia Plateau A Status Report. Rockwell Hanford Operations RHO-BWI-ST-4.
- Nimmo, J.R. and others. 2003. Hydraulic and Geochemical Framework of the Idaho National Engineering and Environmental Laboratory Vadose Zone. Special Section: Understanding Subsurface Flow and Transport Processes at the Idaho National Engineering & Environmental Laboratory (Ineel) Site, Vadose Zone Journal 3:6-34.
- Parametrix. 2023a. Anderson Pit Limited Purpose Landfill Yakima, Washington, 2022 Annual Groundwater Monitoring Report. April 2023.

- Parametrix. 2023b. Hydrogeologic Approach New Monitoring Wells at the DTG/Anderson Limited Purpose Landfill in Yakima, Washington. Letter report. Prepared for Steven Newchurch of the Yakima Health District. February 9, 2023.
- Parametrix in association with HWA Geosciences, Inc. 2023. Hydrogeologic Characterization Work Plan, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. May 2023.
- Parametrix 2024a. 2023 Annual Groundwater Monitoring Report, DTG Yakima Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. March 2024.
- Parametrix 2024b. Sampling and Analysis Plan for the DTG Yakima Limited Purpose Landfill, Yakima, Washington. Revised September 2024.
- Parametrix, Inc. 2024c. Monitoring Well Construction Update DTG Yakima Limited Purpose Landfill. Technical Memorandum completed for DTG Recycle. September 20, 2024.
- Parametrix 2024d. 3Q 2024 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, December 10, 2024.
- Parametrix 2025a. Hydraulic Testing Technical Memorandum, Rocky Top Environmental Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycling. January 2025.
- Parametrix 2025b. Groundwater Sampling and Analysis Plan MTCA Sampling, DTG Rocky Top Environmental Limited Purpose Landfill, prepared for DTG Recycling. January 2025.
- Parametrix 2025c. 4Q 2024 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, March 5, 2025.
- Parametrix 2025d. Limited Remedial Investigation Work Plan, Rocky Top Environmental Limited Purpose Landfill, prepared for DTG Recycling. January 2025.
- Parametrix 2025e. Updated Hydrogeologic Characterization Report, Rocky Top Environmental Limited Purpose Landfill, prepared for DTG Recycling, March 2025.
- Parametrix 2025f. 2024 Annual Groundwater Monitoring Report, DTG Yakima Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. March 2025.
- Parametrix 2025g. 1Q 2025 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, In progress.
- US Army Corps of Engineers (USACE), Seattle District. 1978. Yakima Valley Regional Water Management Study, Volume IV, Geology and Groundwater, July 17, 1978.
- Vaccaro, J. J. 1999. Summary of the Columbia Plateau Regional Aquifer-System Analysis, Washington, Oregon, and Idaho. U.S. Geological Survey Professional Paper 1413-A.
- Weather Underground. 2019. Data for Yakima, Washington, www.wunderground.com
- Western Regional Climate Center (WRCC). 2025. data for Yakima Air Terminal, Washington, https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa9465

8. Limitations

The conclusions expressed herein are based solely on material referenced in this report. Observations were made under the conditions stated. Within the limitations of scope, schedule and budget, these services were executed in accordance with generally accepted professional principles and practices in the area at the time the report was prepared. No warranty, expressed or implied, is made. Experience has shown that subsurface soil and groundwater conditions can vary significantly over small distances. The findings and conclusions must not be considered as scientific or engineering certainties, but rather as our professional opinion concerning the significance of the limited data gathered and interpreted during the course of the assessment.

This study and report have been prepared on behalf of DTG, for the specific application to the subject property. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Figures

Proposed Monitoring Well

Figure 1
Facility Vicinity Map
Rocky Top Environmental Limited Purpose Landfill

Proposed Monitoring WellBorehole

Figure 2
Well Location Map
Rocky Top Environmental Limited Purpose Landfill

Parametrix

Figure 3 Water Level Summary Rocky Top Environmental Limited Purpose Landfill

Tables

Table 1. Well Detail Summary

Well ID	Northing	Easting	Ground Elevation (ft)	TOC Elevation (ft)	Screen Interval (ft bgs)	Completion Zone	Pump Type	Pump Depth (ft bgs)
MW-2S	473814.19	1591095.99	1856.31	1858.36	310-330	SA	P1101HM-Z	316.5
MW-3S	473404.76	1592840.90	1843.82	1845.92	188-198	SA	P1101M-Z	189.5
MW-4S	472860.94	1591915.35	1843.44	1845.59	49-69	SA	P1101M-Z	56.5
MW-5S	473452.58	1591789.89	1881.53	1883.88	222-242	SA	P1101M-Z	236
MW-6S	473095.44	1592102.50	1822.97	1825.31	110-130	SA	P1101M-Z	123
MW-7D	473475.06	1591782.75	1881.68	1883.88	475-495	IZ	P1101HM-Z	485.5
MW-8D	473169.85	1590740.82	1861.60	1863.94	375-405	IZ	P1101HM-Z	390.5
MW-9D	473421.50	1592857.26	1845.25	1847.49	420-440	IZ	P1101HM-Z	439.5
MW-10D	471017.47	1592164.59	1986.47	1988.77	150-170	IZ	P1101M-Z	160.5

SA = Shallow Aquifer

bgs = below ground surface

IZ = Interflow zone

Table 2. Groundwater Analyses and Analytical Methods

Analyte	Methods		
Temperature	field		
рН	field		
Specific conductivity	field		
Alkalinity as CaCO ₃	SM 2520B		
Ammonia	EPA 350.1		
Bicarbonate as CaCO ₃	Calculation		
Calcium (D)	SM3111B		
Chloride	SM4500-CI E		
Iron (D&T)	SM3111B		
Magnesium (D&T)	SM3111B		
Manganese (D&T)	SM3111B		
Nitrate as N	EPA 353.2		
Potassium (D)	SM3111B		
Sodium (D)	SM3111B		
Sulfate	ASTM D516-90		
Total Dissolved Solids	SM2540C		
Total Organic Carbon	SM 2550B		
Volatile Organic Compounds	EPA 8260D*		
Total Petroleum Hydrocarbons – Gasoline range	NWTPH-Gx		
Total Petroleum Hydrocarbons - Diesel/Oil range	NWTPH-Dx		

D = Dissolved

T = Total

^{*}WAC 173-351-430 parameter list

Table 3. Groundwater Elevations, First Quarter 2025, Rocky Top Environmental Limited Purpose Landfill

Well Number	Measurement Date	Elevation Top of PVC Casing (feet)	Depth to Groundwater (feet below top of casing)	Groundwater Elevation (feet)
MW-2S	4/1/2025	1858.36	287.71	1570.65
MW-3S	3/31/2025	1845.92	178.74	1667.18
MW-4S	4/1/2025	1845.59	28.40	1817.19
MW-5S	3/31/2025	1883.88	216.18	1667.70
MW-6S	4/1/2025	1825.31	95.02	1730.29
MW-7D	3/31/2025	1883.88	450.30	1433.58
MW-8D	4/1/2025	1863.94	301.82	1562.12
MW-9D	3/31/2025	1847.49	424.90	1422.59
MW-10D	3/31/2025	1988.77	82.15	1906.62

Notes:

Elevation datum based on NAD83

Water levels were taken on different dates due to aquifer testing and sampling event scheduling

June 2025 | 553-8472-009 Page 1 of 1

Table 4. First Quarter 2025 Shallow Aquifer Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

	Tabl	C T . 1 1130	Quart	51 2025 Shai	iow Aquilei C	ilouliuwatei (Quality Monit	oring Nesults,	TOUCKY TOP LI	iviioiiiiieiitai L	illiteu Fulpose L	andmi		
Analyte	GWQS	MCL		Units	MW-2S 4/1/2025	MW-3S 3/31/2025	MW-4S 4/1/2025	MW-5S 2/13/2025	MW-5S 3/31/2025	MW-6S 2/14/2025	MW-13S (MW-6S Dup) 2/14/2025	MW-6S 4/1/2025	MW-13S (MW-6S Dup) 4/1/2025	Trip Blank 3/31/2025
	unqo	WOL		Onne	1, 1, 2020	0,01,2020	1, 1, 2020	2/ 10/ 2020	0,01,2020	2, 11, 2020	2, 1 1, 2020	1, 1, 2020	1, 1, 2020	0,01,2020
Field Data	0505				7.50	7.00	7.40	7.47	7.07	7.05		7.54		
pH	6.5-8.5	700	.tt.	. ,	7.59	7.09	7.13	7.17	7.87	7.25		7.51		
Conductivity		700	**	μmhos/cm	120	432	752	765	525	573.4		389		
Temperature				С	13.73	13.69	12.33	12.9	13.8	10.6		12.36		
Redox				mv	192	172	187	110.5	-187	120.9		165		
Dissolved Oxygen				mg/L	7.28	4.77	5.77	0.22	8.75	3.35		4.26		
Turbidity				NTU	0.06	0.21	0.36	0.0	0.25	1.71		0.5		
Metals														
Calcium, Dissolved				mg/L	14	52	100	60	35	41	40	48	48	
Iron, Total	0.30 *	* 0.3	**	mg/L	< 0.056	< 0.056	0.057	1.0	0.87	0.12	0.16	<0.056	<0.056	
Iron, Dissolved		0.3 **		mg/L	< 0.056	< 0.056	< 0.056	0.92	0.37	< 0.056	< 0.056	<0.056	<0.056	
Magnesium, Total				mg/L	8.9	34	70	45	24	30	31	29	30	
Magnesium, Dissolved				mg/L	9.3	36	72	42	23	28	28	32	32	
Manganese, Total	0.05 *	* 0.05	**	mg/L	<0.011	< 0.011	< 0.011	0.21	0.14	0.30	0.32	0.018	0.020	
Manganese, Dissolved		0.05	**	mg/L	< 0.011	< 0.011	< 0.011	0.21	0.096	< 0.011	< 0.011	<0.011	< 0.011	
Potassium, Dissolved				mg/L	2.6	4.2	6.3	5.2	3.1	4.1	3.9	3.9	4.2	
Sodium, Dissolved				mg/L	10	21	25	20	19	16	15	18	18	
Water Quality Parameters														
Alkalinity, Total				mg CaCO3/L	78	94	160	100	100	84	84	86	86	
Ammonia (NH3) as Nitrogen (N)				mg/L	< 0.053	< 0.053	< 0.053	< 0.053	<0.053	< 0.053	< 0.053	<0.053	<0.053	
Bicarbonate				mg CaCO3/L	78	94	160	100	100	84	84	86	86	
Chloride	250 *	* 250	**	mg/L	2.7	68	49	77	26	60	62	62	64	
Nitrate	10	* 10	*	mg/L-N	0.702	11.3	62.8	< 0.050	0.0800	11	10	11.3	11.6	
Sulfate	250 *	* 250	**	mg/L	<5.0	75	100	160	79	56	50	51	54	
Total Dissolved Solids	500 *	* 500	**	mg/L	160	420	710	300	330	340	330	390	430	
Total Organic Carbon				mg/L	<1.0	3.0	5.0	4.0	<1.0	3.1	3.2	3.0	3.1	
Total Petroleum Hydrocarbons														
Gasoline Range Organics ^a	MTCA M	letr 1000		μg/L	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
TPHDx														
Diesel Range Organics				mg/L	< 0.21	<0.20	< 0.21	< 0.21	<0.20	<0.20	< 0.20	<0.20	<0.21	
Lube Oil Range Organics				mg/L	<0.21	<0.20	<0.21	<0.21	<0.20	<0.20	<0.20	<0.20	<0.21	
Volatile Organic Compounds														
Chloromethane				ug/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	0.02 **	** 2	*	µg/L				<0.020						<1.0
Vinyl Chloride	0.02 ^/	^		µg/L	<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Bromomethane				µg/L	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0
CFC 11. Triphlarefluoremethans				µg/L		<1.0	<1.0		<1.0	<1.0		<1.0	<1.0	<1.0
CFC-11, Trichlorofluoromethane		7	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethene		1		µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acetone				µg/L	<5.0	<5.0	<5.0	<5.0	<6.7	<5.0	<5.0	<6.7	<5.0	<5.0
Methyl lodide				µg/L	<1.0	<1.0	<1.0	<1.7	<1.4	<1.7	<1.7	<1.4	<1.0	<1.0
Carbon Disulfide	<u> </u>	тт	al.	µg/L	<0.20	<0.20	<0.20	<0.20	<0.26	<0.20	<0.20	<0.26	<0.20	<0.20
Methylene Chloride		** 5	*	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acrylonitrile	0.07 **	**		µg/L	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50
Trans-1,2-Dichloroethene		100	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	1 *	**		µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Acetate				µg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene		70	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

June 2025 | 553-8472-009

Table 4. First Quarter 2025 Shallow Aquifer Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

alyte	GWQS	,	MCL		Units	MW-2S 4/1/2025	MW-3S 3/31/2025	MW-4S 4/1/2025	MW-5S 2/13/2025	MW-5S 3/31/2025	MW-6S 2/14/2025	MW-13S (MW-6S Dup) 2/14/2025	MW-6S 4/1/2025	MW-13S (MW-6S Dup) 4/1/2025	Trip Blank 3/31/2025
atile Organic Compounds (continued)															
2-Butanone					µg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	7	***	80	* THM	µg/L	<0.20	<0.20	<0.20	<1.0	<0.20	<1.0	<1.0	<0.20	<0.20	< 0.20
1,1,1-Trichloroethane	200	*	200	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	0.3	***	5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20
Benzene	1	***	5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
1,2-Dichloroethane	0.5	***	5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethene	3	***	5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
1,2-Dichloropropane	0.6	***	5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromomethane					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorobromomethane	0.3	***	80	* THM	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
cis-1,3-Dichloropropene					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-methyl-2-pentanone					µg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Toluene			1000	*	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,3-Dichloropropene					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane			5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Tetrachloroethene	0.8	***	5	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone					µg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dibromochloromethane			80	* THM	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
1,2-Dibromoethane (EDB)	0.001	***	0.05	*	µg/L	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chlorobenzene			100	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene			700	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m, p-Xylene					µg/L	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	< 0.40	<0.40	<0.40	< 0.40	< 0.40
o-Xylene					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Styrene			100	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	5	***	80	* THM	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane					µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.27
trans-1,4-Dichloro-2-butene					µg/L	<0.50	< 0.50	<0.50	<0.50	<1.0	< 0.50	<0.50	<1.0	< 0.50	< 0.50
1,4-Dichlorobenzene	4	***	75	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene			600	*	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromo-3-chloropropane			0.2	*	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	MT	CA Meth			µg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200)

MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290)

MTCA = Model Toxics Control Act (WAC 173-340)

^a = Gasoline with no benzene present

* = Primary

** = Secondary

*** = Carcinogen

*THM = Primary MCL for the sum of all trihalomethanes

*XYL = Primary MCL for the sum of all xylenes

= Does not meet GWQS or MCL

- - = Not analyzed

June 2025 | 553-8472-009

Table 5. Shallow Aquifer Groundwater Samples that Failed to Meet Applicable Groundwater Standards in First Quarter 2025

	Type of S	Standard					
Analyte	GWQS	MCL	MW-2S	MW-3S	MW-4S	MW-5S	MW-6S
Specific Conductivity	-	Secondary			1B	1A	-
Iron, Total	Secondary	Secondary				1A, 1B	-
Iron, Dissolved	Secondary	Secondary				1A, 1B	
Manganese, Total	Secondary	Secondary				1A, 1B	1A
Manganese, Dissolved	Secondary	Secondary			_	1A, 1B	_
Nitrate	Primary	Primary		1B	1B		1A, 1B
Total Dissolved Solids	Secondary	Secondary	-		1B	-	_

¹A = February 2025 (MW-2S, MW-3S, MW-4S not sampled)

GWQS = Water Quality Standards for Groundwaters of the State of Washington (WAC 173-200)

MCL = State Maximum Contaminant Levels (WAC 246-290)

¹B = March/April 2025

^{– =} Data did not exceed groundwater standard

Table 6. First Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

				MW-7D	MW-7D	MW-8D	MW-8D	MW-9D	MW-9D	MW-10D	MW-10D	Trip Blank	Trip Blank	Trip Blank
Analyte	GWQS	MCL	Units	2/13/2025	3/31/2025	2/13/2025	4/1/2025	2/12/2025	3/31/2025	2/14/2025	3/31/2025	2/13/2025	2/14/2025	3/31/2025
Field Date	-													
Field Data	GEOE			7.46	7.62	7.66	7.00	6.06	7.00	7.26	7.00			
pH Conductivity	6.5-8.5	700 **	ah aa /am	7.46 200.1	7.63 187.8	7.66	7.92 245	6.96 435	7.28	7.36 244.5	7.28			
Conductivity		700 ^^	µmhos/cm C	11.5	15.3	371 13.3	12.29	10.9	460.4 12.0	13.3	227.8 13.2			
Temperature					-182.7					113.9				
Redox			mv	135.3		152.4	130	171.9	-171.6		-108.9			
Dissolved Oxygen			mg/L	1.39	0.19	0.37 J	0.00	24.9	0.07	4.12	4.49			
Turbidity			NTU	0.0	0.89	0.0	0.12	1.45	0.97	2.08	0.89			
Metals														
Calcium, Dissolved			mg/L	13	15	24	28	33	31	17	20			
Iron, Total	0.30 **	0.3 **	mg/L	0.29	0.22	0.55	0.20	1.4	0.88	0.17	<0.056			
Iron, Dissolved		0.3 **	mg/L	0.25	0.21	<0.056	<0.056	0.55	0.69	<0.056	<0.056			
Magnesium, Total			mg/L	11	10	19	18	22	18	11	11			
Magnesium, Dissolved			mg/L	9.7	11	17	19	20	19	9.7	12			
Manganese, Total	0.05 **	0.05 **	mg/L	0.037	0.033	0.018	0.013	0.45	0.34	0.012	<0.011			
Manganese, Dissolved		0.05 **	mg/L	0.036	0.033	<0.011	<0.011	0.43	0.32	<0.011	<0.011			
Potassium, Dissolved			mg/L	2.4	2.3	2.7	2.7	2.3	1.8	1.9	2.2			
Sodium, Dissolved			mg/L	10	12	18	21	29	26	13	15			
Water Quality Parameters														
Alkalinity, Total			mg CaCO3/L	94	94	92	92	100	100	96	94			
Ammonia (NH3) as Nitrogen (N)			mg/L	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053			
Bicarbonate			mg CaCO3/L	94	94	92	92	100	100	96	94			
Chloride	250 **	250 **	mg/L	3.1	3.7	15	16	40	41	3.4	3.7			
Nitrate	10 *	10 *	mg/L-N	0.066	0.0410	1.6	1.78	<0.050	0.0770	1.4	1.51			
Sulfate	250 **	250 **	mg/L	<5.0	<5.0	50	57	48	49	9.9	11			
Total Dissolved Solids	500 **	500 **	mg/L	110	160	230	260	330	290	280	180			
Total Organic Carbon			mg/L	<1.0	<1.0	<1.0	<1.0	3.1	3.1	<1.0	<1.0			
Volatile Organic Compounds														
Chloromethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	0.02 ***	2 *	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Bromomethane	0.02		μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11, Trichlorofluoromethane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1.1-Dichloroethene		7 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acetone		<u> </u>	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl Iodide			μg/L	<1.7	<1.0	<1.7	<1.3	<1.7	<1.3	<1.7	<1.3	<1.7	<1.7	<1.3
Carbon Disulfide			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	5 ***	5 *	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acrylonitrile	0.07 ***		μg/L	<0.50	< 0.69	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trans-1,2-Dichloroethene	0.01	100 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	1 ***		μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Acetate			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene		70 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Butanone			μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	7 ***	80 * THM		<1.0	<0.20	<1.0	<0.20	<1.0	<0.20	<1.0	<0.20	<1.0	<1.0	<0.20
1,1,1-Trichloroethane	200 *	200 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	0.3 ***	5 *	μg/L μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	1 ***	5 *	μg/ L μg/ L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	0.5 ***	5 *		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-DIGHOIDECHARE	0.5 " " "	5 °	μg/L	\U.ZU	\0.20	\U.ZU	\0.20	\U.ZU	\0.20	\U.ZU	\U.ZU	\U.ZU	\0.20	\0.20

June 2025 | 553-8472-009

Table 6. First Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

				MW-7D	MW-7D	MW-8D	MW-8D	MW-9D	MW-9D	MW-10D	MW-10D	Trip Blank	Trip Blank	Trip Blank
nalyte	GWQS	MCL	Units	2/13/2025	3/31/2025	2/13/2025	4/1/2025	2/12/2025	3/31/2025	2/14/2025	3/31/2025	2/13/2025	2/14/2025	3/31/2025
olatile Organic Compounds (cont.)														
Trichloroethene	3 ***	5 *	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	0.6 ***	5 *	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromomethane			μg/L	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorobromomethane	0.3 ***	80 * THM	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene			µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-methyl-2-pentanone			µg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Toluene		1000 *	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,3-Dichloropropene			µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane		5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Tetrachloroethene	0.8 ***	5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone			µg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dibromochloromethane		80 * THM	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromoethane (EDB)	0.001 ***	0.05 *	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chlorobenzene		100 *	µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene		700 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m, p-Xylene			μg/L	< 0.40	<0.40	< 0.40	<0.40	< 0.40	<0.40	< 0.40	<0.40	< 0.40	<0.40	<0.40
o-Xylene			µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Styrene		100 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	5 ***	80 * THM	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane			µg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.27
trans-1,4-Dichloro-2-butene			µg/L	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	4 ***	75 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene		600 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromo-3-chloropropane		0.2 *	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	MTCA Method A:	160	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200)

MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290)

MTCA = Model Toxics Control Act (WAC 173-340)

^a = Gasoline with no benzene present

* = Primary

** = Secondary

*** = Carcinogen

*THM = Primary MCL for the sum of all trihalomethanes

*XYL = Primary MCL for the sum of all xylenes

= Does not meet GWQS, MCL, or MTCA

- = Not analyzed

J = Estimated value

June 2025 | 553-8472-009

Table 7. Interflow Zone Groundwater Samples that Failed to Meet Applicable Groundwater Standards in First Quarter 2025

	Type of S	Standard				
Analyte	GWQS	MCL	MW-7D	MW-8D	MW-9D	MW-10D
Iron, Total	Secondary	Secondary	_	1A	1A, 1B	-
Iron, Dissolved	Secondary	Secondary	-		1A, 1B	-
Manganese, Total	Secondary	Secondary		-	1A, 1B	-
Manganese, Dissolved	Secondary	Secondary	-		1A, 1B	-

¹A = February 2025

MCL = State Maximum Contaminant Levels (WAC 246-290)

¹B = March/April 2025

^{-- =} Data did not exceed groundwater standard

GWQS = Water Quality Standards for Groundwaters of the State of Washington (WAC 173-200)

Table 8. First Quarter 2025 Leachate Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

nalyte ield Data pH Conductivity Temperature	Units	3/25/202 7.63
Conductivity Temperature		7 62
Temperature		
	μmhos/cm	187.8
D. J.	C	15.3
Redox Dissolved Oxygen	mv mg/L	-182.7 0.19
Turbidity	NTU	0.19
letals		
Calcium, Total	mg/L	26
Iron, Total	mg/L	0.27
Magnesium, Total	mg/L	9.4 0.019
Manganese, Total Potassium, Total	mg/L mg/L	1.8
Sodium, Total	mg/L	12
ater Quality Parameters		
Alkalinity, Total	mg CaCO3/L	64
Ammonia (NH3) as Nitrogen (N)	mg/L	< 0.053
Bicarbonate	mg CaCO3/L	36
Chloride	mg/L	3.2
Nitrate	mg/L-N	4.45
Sulfate Total Disaglyard Solida	mg/L	44
Total Dissolved Solids Total Organic Carbon	mg/L mg/L	140 8.6
tal Petroleum Hydrocarbons	g -	0.0
Gasoline Range Organics ^a	μg/L	<100
TPHDx Diesel Range Organics	ma/l	0.18
Lube Oil Range Organics	mg/L mg/L	0.18
Total TPHDx	mg/L	0.46
latile Organic Compounds	J	
Chloromethane	µg/L	<1.0
Vinyl Chloride	μg/L	<0.020
Bromomethane	μg/L	<1.0
Chloroethane	μg/L	<1.0
CFC-11, Trichlorofluoromethane	µg/L	<0.20
1,1-Dichloroethene	μg/L	<0.20
Acetone	µg/L	<5.0
Methyl lodide	μg/L	<1.8
Carbon Disulfide	μg/L	<0.20
Methylene Chloride	μg/L	<1.0
Acrylonitrile	μg/L	<0.50
Trans-1,2-Dichloroethene	μg/L	<0.20
1,1-Dichloroethane	 μg/L	<0.20
Vinyl Acetate	 μg/L	<1.0
cis-1,2-Dichloroethene		<0.20
2-Butanone	μg/L	<5.0
	μg/L	
Bromochloromethane	μg/L 	<0.20
Chloroform	μg/L	<0.20
1,1,1-Trichloroethane	μg/L	<0.20
Carbon Tetrachloride	µg/L	<0.20
Benzene	µg/L	<0.20
1,2-Dichloroethane	μg/L	<0.20
Trichloroethene	μg/L	<0.20
1,2-Dichloropropane	μg/L	<0.20
Dibromomethane	μg/L	<0.20
Dichlorobromomethane	μg/L	<0.20
cis-1,3-Dichloropropene	μg/L	<0.20
4-methyl-2-pentanone	µg/L	<2.0
Toluene	μg/L	<1.0
Trans-1,3-Dichloropropene	μg/L	<0.20
1,1,2-Trichloroethane	µg/L	<0.20
Tetrachloroethene	μg/L	<0.20
2-Hexanone	μg/L	<2.0
Dibromochloromethane		<0.20
	μg/L	
1,2-Dibromoethane (EDB)	μg/L	<0.020
Chlorobenzene	μg/L	<0.20
	- /1	< 0.20
1,1,1,2-Tetrachloroethane	μg/L	
	μg/L μg/L μg/L	<0.20

June 2025 | 553-8472-005 Page 1 of 2

Table 8. First Quarter 2025 Leachate Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

		Leachate
alyte	Units	3/25/2025
atile Organic Compounds (cont.)		
Styrene	μg/L	<0.20
Bromoform	μg/L	<1.0
1,1,2,2-Tetrachloroethane	μg/L	<0.20
1,2,3-Trichloropropane	μg/L	<0.20
trans-1,4-Dichloro-2-butene	μg/L	<0.50
1,4-Dichlorobenzene	μg/L	<0.20
1,2-Dichlorobenzene	μg/L	<0.20
1,2-Dibromo-3-chloropropane	μg/L	<1.0
Naphthalene	μg/L	<1.0

Notes:

June 2025 | 553-8472-005 Page 2 of 2

^a = Gasoline with no benzene present

Table 9. First Quarter 2025 Upper Prediction Limit (UPLs) and Shewhart Control Limit (SCLs)
Comparison

Well	Analyte	Results (mg/L)	UPL (mg/L)	UPL Exceedance?	SCL (mg/L)	SCL Exceedance?
MW-2S	Ammonia	<0.053	0.14	no		
	Chloride	2.7	18	no		
	Dissolved Iron	<0.056	0.281	no		
	Total Iron	<0.056	0.118	no		
	Dissolved Manganese	<0.011	0.1	no		
	Total Manganese	<0.011	0.01	no		
	Nitrate	0.702	2.092	no		
	рН	7.59	7.86	no	5.827 - 8.245	
	Sulfate	<5.0	10.86	no	19.01	
	Total Dissolved Solids	160	0.14	no		
MW-3S	Ammonia	<0.053	0.14	no		•
	Chloride	68	47.39	yes	85.84	no
	Dissolved Iron	<0.056	0.37	no		-
	Total Iron	< 0.056	0.25	no		-
	Dissolved Manganese	<0.011	0.03	no		-
	Total Manganese	<0.011	0.01	no		
	Nitrate	11.3	9.837	yes	18.23	no
	рН	7.09	7.765	no		
	Sulfate	75	46.12	yes	81.34	no
	Total Dissolved Solids	420	293.6	yes	533.1	no
MW-4S	Ammonia	<0.053	0.085	no	-	-
	Chloride	49	61.57	no	74.83	
	Dissolved Iron	< 0.056	0.056	no		-
	Total Iron	0.057	0.055	yes		
	Dissolved Manganese	<0.011	0.011	no		
	Total Manganese	<0.011	0.01	no		
	Nitrate	62.8	73.89	no	105.3	
	рН	7.13	7.352	no	6.685 - 7.478	
	Sulfate	100	168.4	no	240.7	
	Total Dissolved Solids	710	811.3	no	1024	

^{-- =} SCL not established

BOLD BOLD

BOLD = Value exceeds UPL

= Value exceeds UPL and SCL

Appendix A

First Quarter 2025 Field Data Sheets

Water Level Measurement Field Report

DATE 2/12 - 2/14		JOB NO. 553-8472	
PROJECT: Yakima LPL		COMPANY NAME: PMX	
LOCATION: Rocky Top			
WEATHER	TEMP	20 ° at	AM
Snow		° at	PM
PERSONNEL			
G. Bourgeois Brady	& Ngmer	~	

THE FOLLOWING WAS NOTED:

	WELL NUMBER	Time	Depth to Water (ft below top of casing)	Measuring Point	Screen Interval (ft bgs)
2/13	MW-5S	13.53	217-03	тос	222-243
2/14	MW-6S	929	97.30	тос	110-130
2/12	MW-7D	1313	450.62	тос	475-495
213	MW-8D	850	30245	TOC	375-405
412	MW-9D	1040	434.32	тос	420-440
2/13	MW-10D	1620	83.52	тос	150-170

Selfor

@1353

Groundwater Sampling Field Data Sheet

Well #:MW-5S

Project Name: Yakima LPL							- 50		7. <u>11111-50</u>		
Name: Sampled By: Casing Diameter: 2"4"6"Other	Project Number:				Date:		21	3			
Casing Diameter: 2" 4" 6" Other	Project Name:	Yakima	LPL			ny					
Initial Depth to Water (feet below TOC):	Project Address:	Rocky T	ор		Sample	d By:					
Initial Depth to Water (feet below TOC):	Casing Diameter:	2"	4"		6"	Other					
Date Purged: Purge Time (from/to): Time Sampled:	Initial Depth to Wa										
Time Sampled:		t bgs):			Date Purged:						
TIME DEPTH TO (2400 hr) WATER (ft) pH (units) (umhos/cm 25°C) TEMP °C (mv) Dissolved Oxygen mg/L (visual) SETTING Initial 21±03 525	Bottom of Screen	(feet bgs)	243		Purge T	ime (from/to):	:				
TIME (2400 hr) DEPTH TO (2400 hr) WATER (ft) pH (units) (umhos/cm 25°C) TEMP °C (mv) Mark (ft) pH (visual) SETTING (mv) Mark (ft) pH (units) 25°C) TEMP °C (mv) Mark (mv) Mark (ft) pH (visual) SETTING (mv) Mark (mv) M	Reference Point (s	urveyor's n	otch, etc.):		Time Sa	ampled:	-	1840			
1525	(2400 hr) WAT	TER (ft)	pH (units)	(µmhos/cm	TEMP °C		Oxygen				
Stabilization Criteria	1525	14.03	7.56			138.1		0-0	40/20		
Stabilization Criteria ± 0.1 3% 3% ± 10 mv 10%, or 3 10%, or 3<5.0 < 0.5 Purge Equipment: Flow Rate: 250 mulmis Laboratory: Date Sent to Lab: Shipment Method Field QC Sample Number: Remarks: Hold to find a dapter, VSI beeps tuning or find.			7.12		- 1		_				
Stabilization Criteria ±0.1 3% 3% ±10 mv 10%, or 3 10%, or 3<5.0 Purge Equipment: Laboratory: Date Sent to Lab: Field QC Sample Number: Remarks: Had be find adapter, YSI beepe funing or 4.				•	7-0-			- Contraction of the Contraction			
Purge Equipment: Flow Rate: 25.0 ml/miss Laboratory: Date Sent to Lab: Field QC Sample Number:	1540 -		4.17	462			_0.22	·			
Purge Equipment: Flow Rate: 25.0 ml/miss Laboratory: Date Sent to Lab: Field QC Sample Number:											
Purge Equipment: Flow Rate: 25.0 ml/miss Laboratory: Date Sent to Lab: Field QC Sample Number:											
Purge Equipment: Flow Rate: 25.0 ml/miss Laboratory: Date Sent to Lab: Field QC Sample Number:											
Purge Equipment: Flow Rate: 25.0 ml/miss Laboratory: Date Sent to Lab: Field QC Sample Number:											
Laboratory: Shipment Method Field QC Sample Number: Remarks: Hold to find a dapter, YSI beeps turning or ,	Stabilization Cr	riteria	± 0.1	3%	3%	± 10 mv		10%, or 3<5.0			
Laboratory: Shipment Method Field QC Sample Number: Remarks: Had be find adapter, YSI beeps funing or ,	Purge Equipment:				Flow Ra	ate:		250 m	Umis		
Remarks: Het to find adapter, YSI beeps turning org,	Laboratory:										
4SI beeps tuning ora,	Shipment Method) -			Field Q	C Sample Nur	nber:				
4SI beeps tuning ora,	Remarks: Ho	(8 4	2 ind a	la pte r							
simular ~											
Eliza a Arraya I			All	h~							

							Well	#: <u>MW-6S</u>	
Project Number:				Date:	2	14			
Project Name:	Yakima	LPL		Compar Name:	ıy				
Project Address:	Rocky T	`op		Sample	d By:	rgn	en		
Casing Diameter:	2"_	4	″ _	6"	Other				
Initial Depth to Water below TOC):	(feet	97.3	O D 929	Purge R Measure		l: ₂₂			
Top of Screen (feet by	gs):	110		Date Pu	rged:				
Bottom of Screen (fee	et bgs)	130 Purge Time (from/to): 925 - 1030							
Reference Point (surv	veyor's n	otch, etc.):		Time Sa	mpled:	q	50		
TIME DEPTH (2400 hr) WATER		pH (units)	Ec (μmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
<u>Initial</u> 97.3	30	7.71	543.3	16:6	121.6	5.08		11/4	90
935 -	_	736	547.3	10.4	1200	3.76	2.15	1119	65
940 -		7.27	559.7	109	120.5	3,34	1.99		V 3
945 -		7.26	5704	10.4	121.0	3.65	1.76		
950 _	_	7.75	573.4	10.6	120.9	3.35	1.71		
	_								
	_								
		· ·							
Stabilization Crite	ria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	 10%, or 3<5.0		
Purge Equipment:				Flow Ra	ite:		350 mi	1 entra	
Laboratory:				Date Se	nt to Lab:				
Shipment Method				Field Q	C Sample Nun	nber:	7		
Remarks: DI	ID MAN	129 N7	4 collected	1 have st	1100				
	•			i nere, at:	, , , ,				
YSI Keaps s	thut.	The 8 E	F *						
		7							
Circumstant	- 2	M	no						
Signature:		A	(//)					1	

Groundwater Sampling Field Data Sheet

Well #:MW-7D

								VV C11 7	#. <u>19174-7.D</u>
	Project Number:				Date:	1 -	2/12/2	5 2l1	3/25
-	Project Name:	Yakima	LPL		Compai Name:	ny			
	Project Address:	Rocky '	Гор		Sample	d By:			
	Casing Diameter:	2″ _	4	v" _	6"	Othe	r		
450.72	Initial Depth to Wat below TOC):	ter (feet	450.6	2 131	Purge R Measure	Rate ement Metho	d:		
2/13	Top of Screen (feet	t bgs):	475		Date Pu	ırged:			
@ 1140	Bottom of Screen (feet bgs)	495	2	Purge T	ime (from/to)):		
	Reference Point (s	urveyor's	notch, etc.):		Time Sa	ampled:	1320		
		TH TO ER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
~	Initial	50.22		=		3			
	1250 -		2.32	20.2	17.12	142.3	6.80	00	40/20
	1255		7.28	203.7	12.1	1410	416		
	[300]		7.31	200.1	12.5	139.0	3.00		
	1305 _		7.34	1999	17.3	1380	2.36		
*	1/500 —		7.44	1999	11.3	135.7	1.66	<u> </u>	
	1315	_	7.46	2009	10.9	1359	1.46		
	1320 _		7.46	2 00 11	11.5	1353	1.39		
	Stabilization Cr	iteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
	Purge Equipment:				Flow Ra	ate: /	75 m L/	11. n	
	Laboratory:				Date Se	nt to Lab:			
	Shipment Method				Field Q	C Sample Nu	mber:		
	Remarks:	bive	fr679	en. Y	51 5.1	(arre	whive	Pro Ze	w. *
	151 Ke	ShvHi	god.						
	Signature:		911	W	3				

Well #:MW-8D

							VV (II)	7. <u>MTT-0B</u>		
Project Number:				Date:	2	13				
Project Name:	Yakima	LPL		Compan Name:	у					
Project Address:	Rocky T	`op		Sample	Sampled By: Ngman					
Casing Diameter:	2" _	4'		6"	Other					
Initial Depth to Wat below TOC):	er (feet	302.4	5 0850	Purge R Measure	ate ement Method	:				
Top of Screen (feet	bgs):	375		Date Pu	rged:					
Bottom of Screen (feet bgs)	405		Purge T	ime (from/to):					
Reference Point (su	urveyor's n	7		Time Sa	mpled:	103	5			
(2400 hr) WAT	TH TO ER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen	TURBIDITY (visual)	PUMP SETTING	1	
Initial 302		4.29	0.367	@?	167.0	25.5%	. 00	30/30	240B	
1020		1.40	0.342	12.8	165.2	13.5%				
	3.93	7/45	0.372	12.9	160.0	5.7%			2	
1020		4.52	0.372	13.2	155,1	5.1%				
	5.25	766	0.371	13.3	152.4	3:5%				
					100					
										
					."					
Stabilization Cri	teria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0			
Purge Equipment:				Flow Ra	te:	37	25 ml	enda		
Laboratory:				Date Sei	nt to Lab:					
Shipment Method				Field Q0	Sample Num	iber:				
Remarks: Very	diffi	CA+ 48	read ys	il due t	o conde	in sorti	on.			
couldn't t	ovch	buttons	to Chai	of un	its be	rause	YSIN	ond		
restart.										
tubing fr	ozen	, Had -1	8 than	,						
Signature:		N.	M	\triangle						

9D Well#:**MW-46D**

	Date: 2:12.	125
a LPL	Company	
	Name:	
Тор	Sampled By: MYS	
4" _	6" Other	
437.32	Purge Rate Measurement Method:	
147 420	Date Purged:	
167 440	Purge Time (from/to):	57
notch, etc.):	Time Sampled:	2.5
Ec (μmhos/c pH (units) 25°C)	Dissolved n Redox Oxygen TEMP °C (mv) mg/L	TURBIDITY PUMP (visual) SETTING
6.77 0,540	9:4 187.7 35.1	<u>8.34</u> <u>8.34</u> <u>3.33</u> 3.33
6,94 3,430	11.5 1778 23.7	2.02 1.44 1.68
4 24	0	1.45
± 0.1 3%	3% ± 10 mv 10%, or 3 <0.5	10%, or 3<5.0
	Flow Rate:	
	Date Sent to Lab:	
	Field QC Sample Number:	
190 sec. , 4	SI Foren, Universe	@ (Timing
	Top 4" _ 43 \ 32. 147 420 167 440 notch, etc.): Ec (\(\text{umhos/cr} 25^\circ\) (0.55 \ 0.100 (0.77 \ 0.570 (0.94 \ 0.434 (0.98 \ 0.435 \delta 36 \ 0.435 \delta 36 \ 0.435	Top Sampled By: M P 3

(OD) ell #:**MW:807**

							Well 7	#: <u>MW⊕D</u>		
Project Number:				Date:	2	-114.				
Project Name:	Yakima Ll	PL		Compai	ny					
Project Address:	Rocky Top	5		Sample	d By:	voder	zen			
Casing Diameter:	2" _	4"		6"	Other	r	6			
Initial Depth to Water below TOC):	r (feet	83.5	2 942	O Purge F Measur	Rate ement Metho	d:				
Top of Screen (feet b	gs):	Date Purged:								
Bottom of Screen (feet bgs) 40 107 Purge Time (from/to): 520 - 906										
Reference Point (sur	veyor's not	ch, etc.):		Time Sa	ampled:	80	10			
TIME DEPTI (2400 hr) WATE		H (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING		
Initial	_ 17			de la constitución de la constit		t		20/10	9045)	
825	4-T -	7.40	242.0	11.8	113.4	3,31	0.0			
830 -		7.34	241.2	13.1	114.6	3.81	3.20			
835		7.33	240.3	13.2	114,9	4.06	2,13			
840 -		7.36	2445	13.3	1139	4.12	2.08			
	-									
Stabilization Crite	eria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		7.	
Purge Equipment:				Flow Ra	ite:		4000	-Unin		
Laboratory:	9:			Date Se	nt to Lab:					
Shipment Method				Field Q	C Sample Nu	mber:				
Remarks: VS/	MDh.	t Sta	yon.	D:9:	cult t	e vecs	vol			
paramu			U							
	Sp	Up								

								Well	#: <u>MW-2S</u>
Project Numb	er:				Date:	0	111129	5	
Project Name:	:	Yakima	ı LPL		Compan Name:	y.	PMX		
Project Addre	ess:	Rocky '	Гор		Sampled	I By:	Burke	S. Ng	yen
Casing Diame	eter:	2″ _	4	,n _	6"	Other			
Initial Depth to below TOC):	o Wate	er (feet	287	71	Purge Ra Measure	ate ment Method	: Grac	luated c	yrinder
Top of Screen	ı (feet	bgs):	310		Date Pur	ged:	41112	5	
Bottom of Scr	reen (f	eet bgs)	330		Purge Ti	me (from/to):	11:19	est-	
Reference Poi	int (su	rveyor's	notch, etc.):		Time Sa	mpled:	-110	53	
TIME (2400 hr) Initial	DEPT		pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
11:22	19	5.42	7.30	0.120	12.50	202	5.28	0.06	30/30 170ps
11-27	- GC-1		7.18	0.120	12.93	197	5.24	6.06	110
11 37			7.41	0-120	13.34	188	7.06	0.00	
11 37	28	3.71	7.40	0.120	13.36	189	8-22	0.00	
11.92			7.56	0-120	13.64	197	7.16	0.06	
	288	.78	7.56	5.120	13.72	191	7.18	0.06	
11:52			7.59	0.120	13.73	192	7.28	0-06	
11:57									<u></u>
Stabilization	on Crit	eria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
Purge Equipm	nent:	MPI	DH.		Flow Rat	e: 350	mlw	un	
Laboratory:					Date Sen	t to Lab:			
Shipment Mét	thod				Field QC	Sample Num	ber:	·	
Remarks:									
Signature:									

							Wel	#: <u>MW-3S</u>
Project Number:				Date:		3-31- 1	25	
Project Name:	Yakima	a LPL		Compa Name:		pm		
Project Address:	Rocky '	Гор		Sample	ed By:C	hris Bourge	ois	7
Casing Diameter:	2"_		1" _	6"	Othe	er		
Initial Depth to Water below TOC):	er (feet	178.7	4	Purge F Measur	Rate ement Metho	-	unil.	igund
Top of Screen (feet	bgs):	188		Date Pu		3-21	- 25	nin
Bottom of Screen (fe	eet bgs)	198			ime (from/to	0	1-1422	
Reference Point (surveyor's notch, etc.):					impled:	146	The state of the s	
1407 170 1412 17	9.20 9.21 9.21	pH (units) 7.31 7.15 7.13	Ec (µmhos/cm 25°C) O · 430 O · 431 O · 432	TEMP °C 13.55 13.64 13.64	161	Dissolved Oxygen mg/L 5 6 1 4.35 4.36	TURBIDITY (visyal) PP+ 0-21 0-21 0-21	PUMP SETTING 4012.0 100.ps
	922 1.20	7.10	0.431	13.66	172	4.43 4.77	0.21 0.21	<u> </u>
Stabilization Criter	ria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
Purge Equipment: N	APIDH			Flow Rate	e:			
Laboratory:				Date Sen	t to Lab:			
Shipment Method				─ Field QC	Sample Num	iber:		
Remarks:								
Signature:								

Well #: MW-4S

Project Nun	nber:			Date:		4-1-2	5				
Project Nan	ne: Yakima	LPL		Compar Name:	ny						
Project Add	lress: Rocky	Тор		Sample	d By:	L. Burk	ce s. n	guyen			
Casing Diar	meter: 2"_	4	3 " _	6"	Othe						
Initial Depth below TOC)	n to Water (feet):	28.	40		Purge Rate Measurement Method: Som min						
Top of Scre	en (feet bgs):	49.5		Date Pu	Date Purged: 3 4-1-25						
Bottom of S	Screen (feet bgs)	69.5		Purge T	ime (from/to	9:30	-9:55				
Reference F	Point (surveyor's	notch, etc.):		Time Sa	impled:	9	.55				
TIME (2400 hr) Initial	DEPTH TO WATER (ft)	pH (units)	Ec (μmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING			
0953	28.73	7.18	0.774	12.31	203	5.81	6-38	30/30			
0438	28.67	7.17	0-770	12.32	197	4.61	0.37	700			
0943	18.61	7.14	0.760	12.38	191	5.16	0.37				
6948	28.67	7.14	0.757	12.39	191	5-12	0-37				
6943	28.72	7.13	0.752	12.33	187	5.77	0.30	1			
Stabiliza	ation Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	 10%, or 3<5.0				
Purge Equi	pment:			Flow Ra	te:						
Laboratory	:			Date Se	nt to Lab:						
Shipment M	lethod			Field QC	Sample Nu	mber:					
Remarks: Needs replace must to UK on Well											
Signature:											

a

Initial Depth to Water (fee below TOC):	216.	18		Purge Rate Measurement Method: 190 MI/min					
Top of Screen (feet bgs):	222		Date P		3-31-				
Bottom of Screen (feet by	20 12		Purge Time (from/to): 11:36 -						
Reference Point (surveyo	r's notch, etc.):		Time S	ampled:					
TIME DEPTH TO WATER (ft)	pH (units)	Ec (μmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING		
11:50 11:55 216.19 12:00 216.20	7.40	0.432	13.70 13.73 13.72	-23 -95 -147	10.91	0.21	40/20 128 =		
12:10 12:10 12:15 214:20 214:20	7.85	0.523	13.72	-168	9.19	0.25	+		
12:20 216.	7.88	0.527	13.74 13.76	<u>-181</u> -187	8.75	0.25			
Stabilization Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0			
Purge Equipment: M A	90 H		Flow Rat	e:					
Laboratory: Shipment Method			Date Sen	t to Lab: Sample Nur	mber:				

Well #:MW-6S

·							wen	#: <u>IVIVV-05</u>	
Project Num	ber:			Date:		4-1-25			Ţ
Project Name	e: Yakima	a LPL		Compar Name:	ny				
Project Addr	ress: Rocky	Тор		Sample	d By:	Birke	& No	man	
Casing Diam	ieter: 2"_	4	1 "	6"	Othe	er		V	1
Initial Depth below TOC):	to Water (feet	95	02	Purge R Measure	ate ement Metho	od:			
Top of Scree	en (feet bgs):	110		rged:					
Bottom of So	creen (feet bgs)	130		Purge T	ime (from/to	p): 14	30-		
Reference Po	oint (surveyor's	notch, etc.):		Time Sa	mpled:	1	455		
TIME (2400 hr)	DEPTH TO WATER (ft)	pH (units)	Ec (μmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
Initial	95.02			. 11		(2/3	1.2	3	
1435	95.61	771	0.1393	12.14	175	4.98	OCO	10/20	~ 15085
1440	95.80	7.62	0.401	12.18	172	4.65	0.0		
1445 1450	G= 0.	7:52	0 : 402	12.14	173		1450,2	2.121	
1450	95.91	1.53	0-401	12.36	177	4,26	0.8	30/30	
19100	1451	7:31	(<u>) 100</u> (12.50	165		<u>U13</u>		
Stabilizat	tion Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equip	ment:			Flow Ra	te:	380.	ut luin]
Laboratory:				Date Se	nt to Lab:				
Shipment Me	ethod			Field Q0	Sample Nu	ımber: ₩	N-13S	P 900	
Remarks:	DUP, MV	V-13S	collected	i here, at:]
Signature:									1

Project Nur	mber:			Date:	Date: 5 9 /3					
Project Nar	ne: Yakima	LPL		Compa	ny	Pavam	etrix			
Project Add	dress: Rocky	Гор		Sample	d By:	Pavam	4			
Casing Dia	meter: 2″ _	4	" _	6"	6" Other Purge Rate Measurement Method:					
Initial Depti below TOC	h to Water (feet):	450	30'							
Top of Scre	een (feet bgs):	475		Date Pu	ırged:					
Bottom of S	Screen (feet bgs)	495		Purge T	ime (from/to)	.7.4				
Reference I	Point (surveyor's	notch, etc.):		Time Sa	ampled:					
TIME (2400 hr) Initial	DEPTH TO WATER (ft) 450-30	pH (units)	Ec (μmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING		
1130		7.64	187.2	13.6	- 91.1	8.08	-	40 38	~240 PS1	
1135	_	7.35	188.0	14.5	-102.2	3.73	1.17			
1140	- marking	7.55	167-7	14,9	-1263	1,29	1.10			
1145		7.1de	187.8	15.1	-150.3	0.48	1.32			
1150		7.66	1878	15.1	-162.3	0.39	1.08			
1155	***************************************	7.65	188.0	15.2	-175.5	0.29	0.93			
1200	Wing.	7.63	187.8	15.2	-183.1	0.28	1.23			
1205	- Nations	7.63	187.8	15.3	-1827	0.19	0.89			
Stabiliz	ation Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0			
Purge Equi	pment:			Flow Ra	nte: 45	so mulh	NO.			
Laboratory	:			Date Se	ent to Lab:					
Shipment N	Method			Field Q	C Sample Nur	mber:	15			
Remarks:										
Signature:										

1305

	CO CL						Well	#: MW-8D	=
Project Nun	mber:			Date:		4/112	5		
Project Nan	ne: Yakima	a LPL		Compan Name:	ıy	pmx			
Project Add	dress: Rocky	Тор		Sample	d By:		cel 8.	Ngryce	4
Casing Diar	meter: 2" _		•	6"	Othe	er			
Initial Depth below TOC)	h to Water (feet):	301	, 8a	Purge R Measure	ate ement Metho	od:			
Top of Scre	en (feet bgs):	375		Date Pu	rged:	411125			
Bottom of S	Screen (feet bgs)	405		Purge T	ime (from/to		39-132	4	
Reference F	Point (surveyor's	notch, etc.):	-	Time Sa	mpled:	13	,24		
TIME (2400 hr)	DEPTH TO WATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
<u>Initial</u>	<u>301.8</u> 2	7.7/2	0 3186	12.71	196	4.41	PP+	30/30	
1245		7.76	0-246	100 (1)	190	4.41	6.13	250 p	51
(255	352.79	7.80	0.244	11.86	200	2.52	0:11	30/38	210 F
1260	302.94	7.88	0 244	11.98	164	1.09	0-11	2600	3 i
1315	303.54	782	0.245	12.24	148	0.25	0-12		
1320	303.79	7.92	6-245	12.34	132	0.00	0.12		
1325	303.85	7.92	0.245	12.29	130	0 00	0.12	4	
								<u></u>	
Stabiliza	ation Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equi	pment:			Flow Ra	te: 34	o milv	nin		
Laboratory	:	Anatek	-1	Date Sei	nt to Lab:				
Shipment M	lethod .			Field QC	Sample Nu	ımber:			
Remarks:									
Signature:									

					V.2.	IE1	Well	#: <u>MW-9D</u>	
Project Num	ber:			Date:	157	3/31/2	2		
Project Nam	e: Yakima	LPL		Compa Name:	ny				
Project Add	ress: Rocky	Гор		Sample	d By:	Ngz	yen		
Casing Dian	neter: 2"_	4	1 " _	6"	Other]
Initial Depth below TOC):	to Water (feet	424	.901	Purge F Measur	Rate ement Method	d:			
Top of Scree	en (feet bgs):	420		Date Pu	ırged:				
Bottom of S	creen (feet bgs)	440		Purge 1	ime (from/to)		1-1500)	
Reference P	oint (surveyor's	notch, etc.):		Time S	ampled:	10	125		
TIME (2400 hr)	DEPTH TO WATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (*isual) NTU	PUMP	
Initial	42400	7 79	453.1	12.5	-139.1	0.47	0.93	60110	~230PSI
1400	425.28	7.38	456.7	125	-145.8	0.17	2.09	60/40	
1410	425.41	7.34	458.3	12.5	-155.0	0.14	1.22		
1415	4-	7.32	458.9	12.4	-163.3	0.11	1.17		
1420	425.50	7.29	459.5	12.3	-168.9	0.09	0.97		
1425	425.61	7.28	460.4	12.0	-171.6	0.07	,		
									
Stabiliza	ation Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equip	ment:			Flow R	ate: 170	mllwin]
Laboratory:				Date Se	ent to Lab:				
Shipment M	ethod			Field Q	C Sample Nur	mber:			-
Remarks:	v:qman) thi	rough s	ampling	sw.+d	ned fo	60/6	D		
Signaturo									

							Well #:	MW-10D
Project Num	ıber:			Date:	_3	131/25	\$	
Project Nam	e: Yakima	a LPL		Compa Name:	ny			1
Project Add	ress: Rocky	Тор		Sample	d By:			
Casing Dian	neter: 2" _	4	" _	6"	Other			
Initial Depth below TOC)	to Water (feet	82.15		Purge R Measur	late ement Method	:		
Top of Scre	en (feet bgs):	147		Date Pu	rged:			
Bottom of S	creen (feet bgs)	167		Purge T	ime (from/to):	154	16-16	4(
Reference P	oint (surveyor's	notch, etc.):		Time Sa	ampled:		1625	
TIME (2400 hr)	DEPTH TO WATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
Initial		7.63	227.2	15.5	-97.0	0 2 2		
	Do 50			12.5		8.33	9 57	
1555	82.59	7.22	277.1	11.7	- 103.B	2.97	2.52	
1600	*D=.,.	7.21	227.5		-109.1 -104.1	3.94	1.94	
1605	02.00	7.26	227.6	14.0		4.51	2.14	
1610	03.99	7.75	227.9	13.9	-105,0 -106.2		1.44	<u> </u>
1615		7 - 1		13.4		4.45	1.27	
1020	83.94	7.27	227.6		-107.6	4,48	A .BO	
1625	03.17	7.28	227.8	13.2	-108.9	4.49	0.89	
Stabiliza	ation Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
Purge Equip	ment:			Flow Ra	ite:			
Laboratory:				Date Se	nt to Lab:			
Shipment M	ethod			Field Q	C Sample Num	ber:		
Remarks:			_					
Signature:								

di bai

Chain of Custody

Page_

| 약

Sampled I Project M Project Na Company Project N

 L_{\leftarrow}

MW-7D

6

MW-13S

N

MW-6S

A

õ

MW-10D

Signature

Received Relinquished

Relinquished Received Relinquished

Reviewed/Date

Data Package: Level III 🗍 Level IV 🗍 Electronic Data Deliverables (EDDs) 🗍

Reviewed/Date

Chromatograms with final report

9

MW-9D MW-8D

22

17% 17% 1276

×

 \times

 \times

 \times

 \times \times

× \times

60

 \times

 \times

 \times

8 CO

 \times

×

 \times

 \times

 \times

 \times

W

1675

S X

 \times

 \times

 \times \times \times

 \times

 \times

×

Company Parametrix

Date

Time

Comments/Special Instructions

T ST

349

4 2 25

1349

7. <u>w</u>

1300

Ŋ

MW-4S

N

MW-5S / MW-5S MS/MSD

3/31

2532

26

 \times

 \times

×

×

 \times

 \times

 \times

 \times

工

SS 741

≅

 \times

 \times \times

 \times

 \times

 \times

 \times \times

 \times ×

 \times

× ×

and a

900

፟

 \times

 \times

×

 \times

 \times \times

 \times

 \times \times

 \times

×

×

225

8

 \times

×

×

×

 \times

 \times

 \times

 \times

 \times

×

×

Lab ID

MW-2S Sample Identification Sample Identification H	Sampled	Date	led by: Royal & Borket	Laura Lee	Rocky Top Environmental LPL Standa	**Number: 553-8472-006	Parametrix / DTG	ח	
	アルラマッ 18	Time Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	s 3 Days	Day 🔲 1 Day	(Check One)	Turnaround Request (in working days)
	18	Numb	er of C	Contain	ers				
	×	VOCs	(8260D	– WAC SIM-VC	173-351	1 Appen	dix I)		100
	×	NWTP		J VO	I,4				<u>5</u>
	×	NWTP	H-Dx						2
	×	Tot Pr	iority P	ollutant	Metals	+Fe, M	n, Mg		5
		Total I	Metals	(Fe, Mn	, Mg)				2
:	×	+		ollutant		+Fe, Mn.	Mg, Ca, I	K, Na	Laboratory Number:
		Dissol	ved M	etals (Fe	e, Mn, M	lg, Ca, I	K, Na)		e .
	×	chlori	ide, sul	fate					0
	×	TDS,	Alkalin	ity, Bica	rbonate				-
΄	×	Ammo	onia						1
<	×	тос			*				(1)
×	×	PFAS	3						U
×	×	Dioxi	ins and	I Furans					
×	×	Nitra	te s (A r	natek) -	J2				
_	-	% M	loisture		_				

LEACHATE POND

Project Number:	Date: 3/25/2025
Project Name: Yakima LPL	Company Name:
Project Address: Rocky Top	Sampled By: Mike Body, Kartie Burke,
Water Depth in the Pond? (65)	
Sample Collected?	
Water present in the sump? \$\frac{1}{2}\$.	4' Total sump length: 33.5'
Sampling Equipment: Pen Pump	Flow Rate: 300 ml/min
Laboratory:	Date Sent to Lab:
Shipment Method	Field QC Sample Number:
Remarks:	
SE PEC CAP SEE SPECIATIONS COMMISSION CO	A THE BUCK HERE
OPP: 135	GRANDES ERICON GRANDES ERICON
Conductivity: 170 TYPICAL LEAGUAGE FORD LEAK DETECTION LEAK DETECT	T WHATH BACK HER TO HEAR
Thrbidge 11-8 NTV	<u>1</u>
PH: 9.36	-
temp: 12.4	DETAIL CONTINUED OF THE SOLE
DO: 13-88	
Signature:	

Appendix B

First Quarter 2025 Laboratory Analytical Report

February 27, 2025

Laura Lee Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-005x Laboratory Reference No. 2502-167

Dear Laura:

Enclosed are the analytical results and associated quality control data for samples submitted on February 13, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 27, 2025 Samples Submitted: February 13, 2025 Laboratory Reference: 2502-167

Project: 553-8472-005x

Case Narrative

Samples were collected on February 12, 2025 and received by the laboratory on February 13, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Vinyl Acetate is outside the control limits in the Spike Blank. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

The percent recovery for Vinyl Acetate is outside the control limits in the Matrix Spike and Matrix Spike Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Nitrate (as Nitrogen) EPA 353.2 Analysis

The reported Nitrate results are a calculated value based on the subtraction of Nitrite from the Nitrate plus Nitrite result. The Nitrite analysis, which has a 48-hour holding time, was performed within the holding time. Immediately after this analysis, an aliquot from each sample was preserved with concentrated sulfuric acid and stored at 4 degrees C. The preserved samples were then analyzed within the maximum 28-day holding time for the Nitrate plus Nitrite analysis.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM

Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	101	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	101	78-117

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM

Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	02-167-02					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	02-167-02					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
			•	•	•	

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	101	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	100	78-117

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0215W1					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0215W1					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	68-133				

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

Page 1 of 2

					Source	Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-18										
	MS	MSD	MS	MSD		MS	MSD				
Chloromethane	10.2	9.05	10.0	10.0	ND	102	91	36-162	12	19	
Vinyl Chloride	11.2	9.92	10.0	10.0	ND	112	99	62-121	12	15	
Bromomethane	13.0	11.4	10.0	10.0	ND	130	114	48-166	13	22	
Chloroethane	10.1	9.04	10.0	10.0	ND	101	90	62-129	11	14	
Trichlorofluoromethane	10.6	9.55	10.0	10.0	ND	106	96	77-120	10	16	
1,1-Dichloroethene	10.6	9.50	10.0	10.0	ND	106	95	76-119	11	15	
Acetone	9.45	8.29	10.0	10.0	ND	95	83	56-132	13	17	
lodomethane	6.76	6.34	10.0	10.0	ND	68	63	54-121	6	21	
Carbon Disulfide	9.05	8.40	10.0	10.0	ND	91	84	47-123	7	16	
Methylene Chloride	10.7	9.35	10.0	10.0	ND	107	94	74-114	13	16	
(trans) 1,2-Dichloroethene	10.5	9.43	10.0	10.0	ND	105	94	79-120	11	16	
1,1-Dichloroethane	10.6	9.56	10.0	10.0	ND	106	96	77-122	10	15	
Vinyl Acetate	16.1	14.7	10.0	10.0	ND	161	147	54-123	9	17	V,V
(cis) 1,2-Dichloroethene	10.8	9.63	10.0	10.0	ND	108	96	81-128	11	16	
2-Butanone	10.8	9.67	10.0	10.0	ND	108	97	57-142	11	15	
Bromochloromethane	10.8	9.60	10.0	10.0	ND	108	96	80-129	12	17	
Chloroform	10.6	9.42	10.0	10.0	ND	106	94	75-126	12	16	
1,1,1-Trichloroethane	10.2	9.12	10.0	10.0	ND	102	91	74-126	11	17	
Carbon Tetrachloride	10.4	9.45	10.0	10.0	ND	104	95	70-128	10	18	
Benzene	10.6	9.43	10.0	10.0	ND	106	94	76-122	12	16	
1,2-Dichloroethane	11.1	9.68	10.0	10.0	ND	111	97	70-126	14	17	
Trichloroethene	10.6	9.60	10.0	10.0	ND	106	96	80-130	10	12	
1,2-Dichloropropane	10.7	9.65	10.0	10.0	ND	107	97	79-121	10	17	
Dibromomethane	11.0	9.78	10.0	10.0	ND	110	98	81-122	12	16	
Bromodichloromethane	10.7	9.51	10.0	10.0	ND	107	95	82-127	12	17	
(cis) 1,3-Dichloropropene	11.3	9.84	10.0	10.0	ND	113	98	81-128	14	17	
Methyl Isobutyl Ketone	11.6	10.7	10.0	10.0	ND	116	107	62-130	8	14	
Toluene	10.9	9.75	10.0	10.0	ND	109	98	75-124	11	19	
(trans) 1,3-Dichloropropene	11.6	10.1	10.0	10.0	ND	116	101	71-124	14	18	
1,1,2-Trichloroethane	10.8	9.84	10.0	10.0	ND	108	98	76-126	9	16	
Tetrachloroethene	10.9	9.85	10.0	10.0	ND	109	99	84-126	10	19	
2-Hexanone	11.0	9.94	10.0	10.0	ND	110	99	41-156	10	23	
Dibromochloromethane	10.9	9.54	10.0	10.0	ND	109	95	74-131	13	18	

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

Page 2 of 2

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
1,2-Dibromoethane	11.7	10.5	10.0	10.0	ND	117	105	74-131	11	16	
Chlorobenzene	11.2	9.88	10.0	10.0	ND	112	99	84-121	13	16	
1,1,1,2-Tetrachloroethane	11.5	10.3	10.0	10.0	ND	115	103	82-125	11	17	
Ethylbenzene	11.2	10.2	10.0	10.0	ND	112	102	85-125	9	17	
m,p-Xylene	22.0	19.8	20.0	20.0	ND	110	99	84-124	11	17	
o-Xylene	11.3	9.99	10.0	10.0	ND	113	100	84-126	12	17	
Styrene	11.6	10.2	10.0	10.0	ND	116	102	83-131	13	19	
Bromoform	11.5	10.2	10.0	10.0	ND	115	102	67-137	12	18	
1,1,2,2-Tetrachloroethane	12.4	10.7	10.0	10.0	ND	124	107	56-143	15	15	
1,2,3-Trichloropropane	11.7	10.4	10.0	10.0	ND	117	104	61-125	12	15	
1,4-Dichlorobenzene	11.5	10.3	10.0	10.0	ND	115	103	80-126	11	15	
1,2-Dichlorobenzene	11.8	10.5	10.0	10.0	ND	118	105	79-127	12	16	
1,2-Dibromo-3-chloropropane	11.3	10.3	10.0	10.0	ND	113	103	54-143	9	19	
Naphthalene	11.3	10.2	10.0	10.0	ND	113	102	48-143	10	17	
Surrogate:											
Dibromofluoromethane						102	100	68-133			
Toluene-d8						102	101	79-123			
4-Bromofluorobenzene						101	100	78-117			

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

Page 1 of 2

			Percent	Recovery	
Analyte	Result	Spike Level	Recovery	Limits	Flags
SPIKE BLANK					
Laboratory ID:	SB0215W1				
Chloromethane	8.95	10.0	90	45-145	
Vinyl Chloride	9.75	10.0	98	67-130	
Bromomethane	10.8	10.0	108	27-165	
Chloroethane	8.82	10.0	88	61-132	
Trichlorofluoromethane	9.07	10.0	91	67-136	
1,1-Dichloroethene	9.17	10.0	92	74-125	
Acetone	8.16	10.0	82	49-140	
lodomethane	5.94	10.0	59	15-154	
Carbon Disulfide	8.44	10.0	84	58-122	
Methylene Chloride	9.08	10.0	91	70-123	
(trans) 1,2-Dichloroethene	9.04	10.0	90	77-125	
1,1-Dichloroethane	9.13	10.0	91	75-125	
Vinyl Acetate	14.2	10.0	142	61-138	V
(cis) 1,2-Dichloroethene	9.24	10.0	92	78-130	
2-Butanone	9.53	10.0	95	58-144	
Bromochloromethane	9.01	10.0	90	79-132	
Chloroform	8.97	10.0	90	73-128	
1,1,1-Trichloroethane	8.77	10.0	88	72-127	
Carbon Tetrachloride	8.85	10.0	89	68-131	
Benzene	9.05	10.0	91	76-124	
1,2-Dichloroethane	9.31	10.0	93	68-133	
Trichloroethene	9.33	10.0	93	80-126	
1,2-Dichloropropane	9.40	10.0	94	78-124	
Dibromomethane	9.35	10.0	94	76-131	
Bromodichloromethane	9.24	10.0	92	81-128	
(cis) 1,3-Dichloropropene	9.59	10.0	96	80-131	
Methyl Isobutyl Ketone	10.3	10.0	103	67-133	
Toluene	9.52	10.0	95	75-120	
(trans) 1,3-Dichloropropene	9.95	10.0	100	77-128	
1,1,2-Trichloroethane	9.33	10.0	93	80-124	
Tetrachloroethene	9.43	10.0	94	80-125	
2-Hexanone	9.61	10.0	96	65-134	
Dibromochloromethane	9.24	10.0	92	81-131	

Laboratory Reference: 2502-167 Project: 553-8472-005x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

Page 2 of 2

			Percent	Recovery	
Analyte	Result	Spike Level	Recovery	Limits	Flags
SPIKE BLANK					
Laboratory ID:	SB0215W1				
1,2-Dibromoethane	10.2	10.0	102	82-129	
Chlorobenzene	9.61	10.0	96	80-119	
1,1,1,2-Tetrachloroethane	9.87	10.0	99	80-124	
Ethylbenzene	9.79	10.0	98	80-121	
m,p-Xylene	19.2	20.0	96	80-122	
o-Xylene	9.75	10.0	98	80-121	
Styrene	9.96	10.0	100	82-128	
Bromoform	10.2	10.0	102	77-131	
1,1,2,2-Tetrachloroethane	10.5	10.0	105	66-138	
1,2,3-Trichloropropane	10.0	10.0	100	67-127	
1,4-Dichlorobenzene	9.79	10.0	98	78-127	
1,2-Dichlorobenzene	10.0	10.0	100	79-129	
1,2-Dibromo-3-chloropropane	9.81	10.0	98	62-140	
Naphthalene	9.09	10.0	91	53-144	
Surrogate:					·
Dibromofluoromethane			100	68-133	
Toluene-d8			101	79-123	
4-Bromofluorobenzene			102	78-117	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Iron	1.4	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	22	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.45	0.010	EPA 6010D	2-20-25	2-20-25	

Laboratory Reference: 2502-167

Project: 553-8472-005x

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water
Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0220WH1					
Iron	ND	0.050	EPA 6010D	2-20-25	2-20-25	_
Magnesium	ND	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	ND	0.010	EPA 6010D	2-20-25	2-20-25	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE			-								
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Iron	0.172	0.187	NA	NA		1	NA	NA	8	20	
Magnesium	11.2	11.4	NA	NA		1	NA	NA	2	20	
Manganese	0.0117	0.0109	NA	NA			NA	NA	6	20	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Iron	20.1	21.3	20.0	20.0	0.172	100	106	75-125	6	20	
Magnesium	30.6	31.8	20.0	20.0	11.2	97	103	75-125	4	20	
Manganese	0.520	0.549	0.500	0.500	0.0117	102	108	75-125	5	20	

Laboratory Reference: 2502-167 Project: 553-8472-005x

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Calcium	33	1.1	EPA 6010D		2-18-25	
Iron	0.55	0.056	EPA 6010D		2-18-25	
Magnesium	20	1.1	EPA 6010D		2-18-25	
Manganese	0.43	0.011	EPA 6010D		2-18-25	
Potassium	2.3	1.1	EPA 6010D		2-18-25	
Sodium	29	1.1	EPA 6010D		2-18-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0218D1					
Calcium	ND	1.1	EPA 6010D		2-18-25	_
Iron	ND	0.056	EPA 6010D		2-18-25	
Magnesium	ND	1.1	EPA 6010D		2-18-25	
Manganese	ND	0.011	EPA 6010D		2-18-25	
Potassium	ND	1.1	EPA 6010D		2-18-25	
Sodium	ND	1.1	EPA 6010D		2-18-25	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-18	33-05								
	ORIG	DUP								
Calcium	17.2	17.2	NA	NA		NA	NA	0	20	
Iron	ND	ND	NA	NA		NA	NA	NA	20	
Magnesium	9.73	9.72	NA	NA		NA	NA	0	20	
Manganese	ND	ND	NA	NA		NA	NA	NA	20	
Potassium	1.92	1.94	NA	NA		NA	NA	1	20	
Sodium	13.1	13.1	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	02-1	83-05									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	39.4	38.8	22.2	22.2	17.2	100	97	75-125	2	20	
Iron	23.7	23.0	22.2	22.2	ND	107	104	75-125	3	20	
Magnesium	32.7	32.2	22.2	22.2	9.73	104	101	75-125	2	20	
Manganese	0.558	0.544	0.556	0.556	ND	100	98	75-125	3	20	
Potassium	27.3	26.8	22.2	22.2	1.92	114	112	75-125	2	20	
Sodium	35.4	34.7	22.2	22.2	13.1	100	97	75-125	2	20	

Laboratory Reference: 2502-167 Project: 553-8472-005x

NITRATE (as Nitrogen) **EPA** 353.2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Nitrate	ND	0.050	EPA 353.2	2-24-25	2-24-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

NITRATE (as Nitrogen) **EPA 353.2 QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224W1					
Nitrate	ND	0.050	EPA 353.2	2-24-25	2-24-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	02-16	67-01							
	ORIG	DUP							
Nitrate	ND	ND	NA	NA	NA	NA	NA	22	
MATRIX SPIKE									
Laboratory ID:	02-16	67-01							
	M	IS	MS		MS				
Nitrate	1.9	94	2.00	ND	97	86-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB02-	-24W1							
	S	В	SB		SB				
Nitrate	1.3	80	2.00	NA	90	85-117	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

CHLORIDE SM 4500-CI E

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Chloride	40	2.0	SM 4500-CI E	2-19-25	2-19-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

CHLORIDE SM 4500-CI E **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0219W1					
Chloride	ND	2.0	SM 4500-CI E	2-19-25	2-19-25	

					Source	_	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Chloride	3.39	3.26	N	IA	NA		NA	NA	4	21	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	52.0	52.9	50.0	50.0	3.39	97	99	81-115	2	20	
SPIKE BLANK											
Laboratory ID:	SB02	19W1									
	S	В	S	B			SB				
Chloride	49	9.1	50	0.0	NA		98	77-115	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

SULFATE ASTM D516-11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Sulfate	48	20	ASTM D516-11	2-21-25	2-21-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

SULFATE ASTM D516-11 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0221W1					
Sulfate	ND	5.0	ASTM D516-11	2-21-25	2-21-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	83-05									
	ORIG	DUP									
Sulfate	9.87	9.93	١	IA	NA	1	NA	NA	1	11	
MATRIX SPIKES											
Laboratory ID:	02-18	83-05									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	22.0	22.2	10.0	10.0	9.87	121	123	69-134	1	20	
SPIKE BLANK											
Laboratory ID:	SB02	21W1									
	S	В	S	B	•	,	SB		•		
Sulfate	9.	81	10	0.0	NA	(98	81-106	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					_
Laboratory ID:	02-167-01					
Total Dissolved Solids	330	13	SM 2540C	2-14-25	2-14-25	_

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0214W1					
Total Dissolved Solids	ND	13	SM 2540C	2-14-25	2-14-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	02-16	67-01							
	ORIG	DUP							
Total Dissolved Solids	331	333	NA	NA	NA	NA	1	29	
SPIKE BLANK									
Laboratory ID:	SB02	14W1							
<u> </u>	S	В	SB		SB		•		
Total Dissolved Solids	50	00	500	NA	100	76-120	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL ALKALINITY SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Total Alkalinity	100	2.0	SM 2320B	2-24-25	2-24-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL ALKALINITY SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224W1					
Total Alkalinity	ND	2.0	SM 2320B	2-24-25	2-24-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Total Alkalinity	96.0	96.0	N	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	180	180	100	100	96.0	84	84	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB02	24W1									
	S	В	S	SB	•		SB				•
Total Alkalinity	90	0.0	1	00	NA		90	82-101	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL BICARBONATE SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Bicarbonate	100	2.0	SM 2320B	2-24-25	2-24-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL BICARBONATE SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224W1					
Bicarbonate	ND	2.0	SM 2320B	2-24-25	2-24-25	

	_				Source	_	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Bicarbonate	96.0	96.0	N	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Bicarbonate	180	180	100	100	96.0	84	84	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB02	24W1									
	S	В	S	SB			SB		•		
Bicarbonate	90	0.0	1	00	NA		90	82-101	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

AMMONIA (as Nitrogen) SM 4500-NH₃ D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

AMMONIA (as Nitrogen) SM 4500-NH₃ D **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0227W1					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	02-18	33-05							
	ORIG	DUP							
Ammonia	ND	ND	NA	NA	NA	NA	NA	15	
MATRIX SPIKE									
Laboratory ID:	02-18	33-05							
	M	IS	MS		MS				
Ammonia	5.	37	5.00	ND	107	75-111	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB02	27W1							
_	S	В	SB	•	SB		•	•	•
Ammonia	5.	14	5.00	NA	103	81-110	NA	NA	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL ORGANIC CARBON SM 5310B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	02-167-01					
Total Organic Carbon	3.1	1.0	SM 5310B	2-25-25	2-25-25	

Laboratory Reference: 2502-167 Project: 553-8472-005x

TOTAL ORGANIC CARBON SM 5310B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0225W1					
Total Organic Carbon	ND	1.0	SM 5310B	2-25-25	2-25-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	02-18	33-05							
	ORIG	DUP							
Total Organic Carbon	ND	ND	NA	NA	NA	NA	NA	11	
MATRIX SPIKE									
Laboratory ID:	02-18	33-05							
	M	IS	MS		MS				
Total Organic Carbon	11	1.1	10.0	ND	111	85-120	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB02	25W1							
	S	В	SB		SB				
Total Organic Carbon	10).6	10.0	NA	106	79-120	NA	NA	•

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

l ay	D
0	Ď
-[
ı	
Ċ)
ī	-
1	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature			V				2 TRIP BLANT	- MW-9D	Lab ID Sample Identification	Sampled by: MS(and)	Mike-Brady Lee	Rocky Top Environmental	Project Number: 553-8472-005 ★	Parametrix	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
= = = = = = = = = = = = = = = = = = =					V	7	>			3				2/0	2/12	Date Sampled	[
Reviewed/Date					C375	Parametrix	Company							- H20	2 1125 the	Time d Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)		Same Day 1 Day	(Check One)
		Ģ.	55.		~ 1:	2	Date					21 1		> 2 ×	0 X	Numb VOCs (8260D alene; S	ontaine - WAC SIM-VC		Append		
	7				113/21	4112							0		X	NWTPI Total M	H-Dx letals (f	Fe, Mn,	- Tr	ı, Ca, K,	Na)	במסכו מנכו א ושמווו
0		21 1 1 1			1400		Time				2 -				X X X	Nitrate,	chlorid	le, sulfa	te			AUIIIDEI.
Chromatograms with final report	400.						Comments/Special Instructions		=	- 1					X	TOC	lla					Cr
th final report							al Instructions															
								1														
													- 1				1					
																% Mois	ture					

February 27, 2025

Laura Lee Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006x Laboratory Reference No. 2502-183

Dear Laura:

Enclosed are the analytical results and associated quality control data for samples submitted on February 14, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183

Project: 553-8472-006x

Case Narrative

Samples were collected on February 13 and 14, 2025 and received by the laboratory on February 14, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Vinyl Acetate is outside the control limits in the Spike Blank. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

The percent recovery for Vinyl Acetate is outside the control limits in the Matrix Spike and Matrix Spike Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Nitrate (as Nitrogen) EPA 353.2 Analysis

The reported Nitrate results are a calculated value based on the subtraction of Nitrite from the Nitrate plus Nitrite result. The Nitrite analysis, which has a 48-hour holding time, was performed within the holding time. Immediately after this analysis, an aliquot from each sample was preserved with concentrated sulfuric acid and stored at 4 degrees C. The preserved samples were then analyzed within the maximum 28-day holding time for the Nitrate plus Nitrite analysis.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Surrogata:	Paraant Pagayary	Control Limita				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	101	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	101	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

Analyte Client ID: Laboratory ID: 2-Hexanone Dibromochloromethane 1,2-Dibromoethane	Result MW-6S-0214 02-183-02 ND ND ND ND ND ND ND ND ND	2.0 0.20 0.20 0.020	Method EPA 8260D EPA 8260D EPA 8260D	2-15-25 2-15-25 2-15-25	2-15-25 2-15-25	Flags
Laboratory ID: 2-Hexanone Dibromochloromethane 1,2-Dibromoethane	02-183-02 ND ND ND ND	0.20 0.20 0.020	EPA 8260D EPA 8260D	2-15-25 2-15-25	2-15-25	
2-Hexanone Dibromochloromethane 1,2-Dibromoethane	ND ND ND ND	0.20 0.20 0.020	EPA 8260D EPA 8260D	2-15-25 2-15-25	2-15-25	
Dibromochloromethane 1,2-Dibromoethane	ND ND ND	0.20 0.20 0.020	EPA 8260D EPA 8260D	2-15-25 2-15-25	2-15-25	
1,2-Dibromoethane	ND ND	0.20 0.020	EPA 8260D	2-15-25		
	ND	0.020			2 15 25	
			EDA OCCODICINA		2-15-25	
1,2-Dibromoethane (SIM)	ND		EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene		0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Limit
Dibromofluoromethane	101	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	101	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

oring. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	102	68-133
Toluene-d8	101	79-123
4-Bromofluorobenzene	100	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
				•		

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	101	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	100	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Currogata:	Baraant Basayary	Control Limita				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	101	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	101	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
√inyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2	.,,,	0.20	2.7.02000	0 _0	2 .0 20	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

Analyte Client ID: Laboratory ID: 2-Hexanone Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane (SIM) Chlorobenzene	Result MW-13S-0214 02-183-06	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID: 2-Hexanone Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane (SIM) Chlorobenzene	02-183-06		_			
2-Hexanone Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane (SIM) Chlorobenzene						
Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane (SIM) Chlorobenzene	ND					
1,2-Dibromoethane 1,2-Dibromoethane (SIM) Chlorobenzene	ND	2.0	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM) Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
•	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND		ED4 0000D	0.45.05	0.45.05	
Surrogate:	ND	1.0	EPA 8260D	2-15-25	2-15-25	

Surrogate:	Percent Recovery	Control Limit
Dibromofluoromethane	101	68-133
Toluene-d8	101	79-123
4-Bromofluorobenzene	99	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	02-183-07					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
lodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	02-183-07					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	100	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	100	78-117

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0215W1					
Chloromethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Bromomethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Chloroethane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Acetone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Iodomethane	ND	1.7	EPA 8260D	2-15-25	2-15-25	
Carbon Disulfide	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methylene Chloride	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Acrylonitrile	ND	0.50	EPA 8260D	2-15-25	2-15-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Vinyl Acetate	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
2-Butanone	ND	5.0	EPA 8260D	2-15-25	2-15-25	
Bromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Chloroform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Benzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Trichloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Dibromomethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromodichloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Toluene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Tetrachloroethene	ND	0.20	EPA 8260D	2-15-25	2-15-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0215W1					
2-Hexanone	ND	2.0	EPA 8260D	2-15-25	2-15-25	
Dibromochloromethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	2-15-25	2-15-25	
Chlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Ethylbenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
m,p-Xylene	ND	0.40	EPA 8260D	2-15-25	2-15-25	
o-Xylene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Styrene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
Bromoform	ND	1.0	EPA 8260D	2-15-25	2-15-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	2-15-25	2-15-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	2-15-25	2-15-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	2-15-25	2-15-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Naphthalene	ND	1.0	EPA 8260D	2-15-25	2-15-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	68-133				
Toluene-d8	100	79-123				

4-Bromofluorobenzene

78-117

100

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

					Source	Percent		Recovery		RPD	
Analyte	Res	ult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-18										
	MS	MSD	MS	MSD		MS	MSD				
Chloromethane	10.2	9.05	10.0	10.0	ND	102	91	36-162	12	19	
Vinyl Chloride	11.2	9.92	10.0	10.0	ND	112	99	62-121	12	15	
Bromomethane	13.0	11.4	10.0	10.0	ND	130	114	48-166	13	22	
Chloroethane	10.1	9.04	10.0	10.0	ND	101	90	62-129	11	14	
Trichlorofluoromethane	10.6	9.55	10.0	10.0	ND	106	96	77-120	10	16	
1,1-Dichloroethene	10.6	9.50	10.0	10.0	ND	106	95	76-119	11	15	
Acetone	9.45	8.29	10.0	10.0	ND	95	83	56-132	13	17	
lodomethane	6.76	6.34	10.0	10.0	ND	68	63	54-121	6	21	
Carbon Disulfide	9.05	8.40	10.0	10.0	ND	91	84	47-123	7	16	
Methylene Chloride	10.7	9.35	10.0	10.0	ND	107	94	74-114	13	16	
(trans) 1,2-Dichloroethene	10.5	9.43	10.0	10.0	ND	105	94	79-120	11	16	
1,1-Dichloroethane	10.6	9.56	10.0	10.0	ND	106	96	77-122	10	15	
Vinyl Acetate	16.1	14.7	10.0	10.0	ND	161	147	54-123	9	17	V,V
(cis) 1,2-Dichloroethene	10.8	9.63	10.0	10.0	ND	108	96	81-128	11	16	
2-Butanone	10.8	9.67	10.0	10.0	ND	108	97	57-142	11	15	
Bromochloromethane	10.8	9.60	10.0	10.0	ND	108	96	80-129	12	17	
Chloroform	10.6	9.42	10.0	10.0	ND	106	94	75-126	12	16	
1,1,1-Trichloroethane	10.2	9.12	10.0	10.0	ND	102	91	74-126	11	17	
Carbon Tetrachloride	10.4	9.45	10.0	10.0	ND	104	95	70-128	10	18	
Benzene	10.6	9.43	10.0	10.0	ND	106	94	76-122	12	16	
1,2-Dichloroethane	11.1	9.68	10.0	10.0	ND	111	97	70-126	14	17	
Trichloroethene	10.6	9.60	10.0	10.0	ND	106	96	80-130	10	12	
1,2-Dichloropropane	10.7	9.65	10.0	10.0	ND	107	97	79-121	10	17	
Dibromomethane	11.0	9.78	10.0	10.0	ND	110	98	81-122	12	16	
Bromodichloromethane	10.7	9.51	10.0	10.0	ND	107	95	82-127	12	17	
(cis) 1,3-Dichloropropene	11.3	9.84	10.0	10.0	ND	113	98	81-128	14	17	
Methyl Isobutyl Ketone	11.6	10.7	10.0	10.0	ND	116	107	62-130	8	14	
Toluene	10.9	9.75	10.0	10.0	ND	109	98	75-124	11	19	
(trans) 1,3-Dichloropropene	11.6	10.1	10.0	10.0	ND	116	101	71-124	14	18	
1,1,2-Trichloroethane	10.8	9.84	10.0	10.0	ND	108	98	76-126	9	16	
Tetrachloroethene	10.9	9.85	10.0	10.0	ND	109	99	84-126	10	19	
2-Hexanone	11.0	9.94	10.0	10.0	ND	110	99	41-156	10	23	
Dibromochloromethane	10.9	9.54	10.0	10.0	ND	109	95	74-131	13	18	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
1,2-Dibromoethane	11.7	10.5	10.0	10.0	ND	117	105	74-131	11	16	
Chlorobenzene	11.2	9.88	10.0	10.0	ND	112	99	84-121	13	16	
1,1,1,2-Tetrachloroethane	11.5	10.3	10.0	10.0	ND	115	103	82-125	11	17	
Ethylbenzene	11.2	10.2	10.0	10.0	ND	112	102	85-125	9	17	
m,p-Xylene	22.0	19.8	20.0	20.0	ND	110	99	84-124	11	17	
o-Xylene	11.3	9.99	10.0	10.0	ND	113	100	84-126	12	17	
Styrene	11.6	10.2	10.0	10.0	ND	116	102	83-131	13	19	
Bromoform	11.5	10.2	10.0	10.0	ND	115	102	67-137	12	18	
1,1,2,2-Tetrachloroethane	12.4	10.7	10.0	10.0	ND	124	107	56-143	15	15	
1,2,3-Trichloropropane	11.7	10.4	10.0	10.0	ND	117	104	61-125	12	15	
1,4-Dichlorobenzene	11.5	10.3	10.0	10.0	ND	115	103	80-126	11	15	
1,2-Dichlorobenzene	11.8	10.5	10.0	10.0	ND	118	105	79-127	12	16	
1,2-Dibromo-3-chloropropane	11.3	10.3	10.0	10.0	ND	113	103	54-143	9	19	
Naphthalene	11.3	10.2	10.0	10.0	ND	113	102	48-143	10	17	
Surrogate:											
Dibromofluoromethane						102	100	68-133			
Toluene-d8						102	101	79-123			
4-Bromofluorobenzene						101	100	78-117			

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

			Percent	Recovery	
Analyte	Result	Spike Level	Recovery	Limits	Flags
SPIKE BLANK					
Laboratory ID:	SB0215W1				
Chloromethane	8.95	10.0	90	45-145	
Vinyl Chloride	9.75	10.0	98	67-130	
Bromomethane	10.8	10.0	108	27-165	
Chloroethane	8.82	10.0	88	61-132	
Trichlorofluoromethane	9.07	10.0	91	67-136	
1,1-Dichloroethene	9.17	10.0	92	74-125	
Acetone	8.16	10.0	82	49-140	
lodomethane	5.94	10.0	59	15-154	
Carbon Disulfide	8.44	10.0	84	58-122	
Methylene Chloride	9.08	10.0	91	70-123	
(trans) 1,2-Dichloroethene	9.04	10.0	90	77-125	
1,1-Dichloroethane	9.13	10.0	91	75-125	
Vinyl Acetate	14.2	10.0	142	61-138	V
(cis) 1,2-Dichloroethene	9.24	10.0	92	78-130	
2-Butanone	9.53	10.0	95	58-144	
Bromochloromethane	9.01	10.0	90	79-132	
Chloroform	8.97	10.0	90	73-128	
1,1,1-Trichloroethane	8.77	10.0	88	72-127	
Carbon Tetrachloride	8.85	10.0	89	68-131	
Benzene	9.05	10.0	91	76-124	
1,2-Dichloroethane	9.31	10.0	93	68-133	
Trichloroethene	9.33	10.0	93	80-126	
1,2-Dichloropropane	9.40	10.0	94	78-124	
Dibromomethane	9.35	10.0	94	76-131	
Bromodichloromethane	9.24	10.0	92	81-128	
(cis) 1,3-Dichloropropene	9.59	10.0	96	80-131	
Methyl Isobutyl Ketone	10.3	10.0	103	67-133	
Toluene	9.52	10.0	95	75-120	
(trans) 1,3-Dichloropropene	9.95	10.0	100	77-128	
1,1,2-Trichloroethane	9.33	10.0	93	80-124	
Tetrachloroethene	9.43	10.0	94	80-125	
2-Hexanone	9.61	10.0	96	65-134	
Dibromochloromethane	9.24	10.0	92	81-131	

Laboratory Reference: 2502-183 Project: 553-8472-006x

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

			Percent	Recovery	
Analyte	Result	Spike Level	Recovery	Limits	Flags
SPIKE BLANK					
Laboratory ID:	SB0215W1				
1,2-Dibromoethane	10.2	10.0	102	82-129	
Chlorobenzene	9.61	10.0	96	80-119	
1,1,1,2-Tetrachloroethane	9.87	10.0	99	80-124	
Ethylbenzene	9.79	10.0	98	80-121	
m,p-Xylene	19.2	20.0	96	80-122	
o-Xylene	9.75	10.0	98	80-121	
Styrene	9.96	10.0	100	82-128	
Bromoform	10.2	10.0	102	77-131	
1,1,2,2-Tetrachloroethane	10.5	10.0	105	66-138	
1,2,3-Trichloropropane	10.0	10.0	100	67-127	
1,4-Dichlorobenzene	9.79	10.0	98	78-127	
1,2-Dichlorobenzene	10.0	10.0	100	79-129	
1,2-Dibromo-3-chloropropane	9.81	10.0	98	62-140	
Naphthalene	9.09	10.0	91	53-144	
Surrogate:					
Dibromofluoromethane			100	68-133	
Toluene-d8			101	79-123	
4-Bromofluorobenzene			102	78-117	

Laboratory Reference: 2502-183 Project: 553-8472-006x

GASOLINE RANGE ORGANICS NWTPH-Gx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Gasoline	ND	100	NWTPH-Gx	2-20-25	2-20-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-122				
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Gasoline	ND	100	NWTPH-Gx	2-20-25	2-20-25	
Surrogate:	Percent Recovery	Control Limits				_
Fluorobenzene	91	61-122				
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Gasoline	ND	100	NWTPH-Gx	2-20-25	2-20-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-122				
Client ID:	Trip Blank					
Laboratory ID:	02-183-07					
Gasoline	ND	100	NWTPH-Gx	2-20-25	2-20-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-122				

Laboratory Reference: 2502-183 Project: 553-8472-006x

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK						
Laboratory ID:	MB0220W1					
Gasoline	ND	100	NWTPH-Gx	2-20-25	2-20-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-122				

Analyte	Res	sult	Spike	Level	Source Result	_	rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		ı	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						91	83	61-122			
MATRIX SPIKES											
Laboratory ID:	02-18	33-02									
-	MS	MSD	MS	MSD		MS	MSD				
Gasoline	5300	5320	5000	5000	ND	106	106	75-125	0	15	
Surrogate:											
Fluorobenzene						104	98	61-122			

Laboratory Reference: 2502-183 Project: 553-8472-006x

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	2-18-25	2-18-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	2-18-25	2-18-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Diesel Range Organics	ND	0.20	NWTPH-Dx	2-18-25	2-18-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	2-18-25	2-18-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Diesel Range Organics	ND	0.20	NWTPH-Dx	2-18-25	2-18-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	2-18-25	2-18-25	
Surrogate:	Percent Recovery	Control Limits		2 .3 20	2 .3 20	
o-Terphenyl	114	50-150				
· · · · · · · · · · · · · · · · · · ·		22 700				

Laboratory Reference: 2502-183 Project: 553-8472-006x

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0218W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	2-18-25	2-18-25	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	2-18-25	2-18-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB02	18W1									
	ORIG	DUP									
Diesel Fuel #2	0.387	0.370	NA	NA		1	NA	NA	4	40	
Surrogate: o-Terphenyl						114	111	50-150			
MATRIX SPIKES											
Laboratory ID:	02-18	83-02									
	MS	MSD	MS	MSD		MS	MSD				
Diesel Range	0.441	0.528	0.500	0.500	ND	88	106	50-129	18	40	
Surrogate: o-Terphenyl						116	134	50-150			

Laboratory Reference: 2502-183 Project: 553-8472-006x

TOTAL METALS EPA 6010D

Office. Hig/L (ppiff)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213			•	•	•
Laboratory ID:	02-183-01					
Iron	1.0	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	45	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.21	0.010	EPA 6010D	2-20-25	2-20-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Iron	0.12	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	30	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.30	0.010	EPA 6010D	2-20-25	2-20-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Iron	0.29	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	11	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.037	0.010	EPA 6010D	2-20-25	2-20-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Iron	0.55	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	19	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.018	0.010	EPA 6010D	2-20-25	2-20-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Iron	0.17	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	11	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.012	0.010	EPA 6010D	2-20-25	2-20-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Iron	0.16	0.050	EPA 6010D	2-20-25	2-20-25	
Magnesium	31	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	0.32	0.010	EPA 6010D	2-20-25	2-20-25	

Laboratory Reference: 2502-183

Project: 553-8472-006x

TOTAL METALS EPA 6010D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0220WH1					
Iron	ND	0.050	EPA 6010D	2-20-25	2-20-25	_
Magnesium	ND	1.0	EPA 6010D	2-20-25	2-20-25	
Manganese	ND	0.010	EPA 6010D	2-20-25	2-20-25	

Analyte	Re	sult	Spike	Level	Source Result	_	rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	02-1	83-05									
	ORIG	DUP									
Iron	0.172	0.187	NA	NA		I	NA	NA	8	20	
Magnesium	11.2	11.4	NA	NA		ı	NA	NA	2	20	
Manganese	0.0117	0.0109	NA	NA		ı	NA	NA	6	20	
MATRIX SPIKES											
Laboratory ID:	02-1	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Iron	20.1	21.3	20.0	20.0	0.172	100	106	75-125	6	20	
Magnesium	30.6	31.8	20.0	20.0	11.2	97	103	75-125	4	20	
Manganese	0.520	0.549	0.500	0.500	0.0117	102	108	75-125	5	20	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183

Project: 553-8472-006x

DISSOLVED METALS EPA 6010D

onits. Trig/L (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Calcium	60	10	EPA 6010D		2-18-25	
Iron	0.92	0.056	EPA 6010D		2-18-25	
Magnesium	42	1.1	EPA 6010D		2-18-25	
Manganese	0.21	0.011	EPA 6010D		2-18-25	
Potassium	5.2	1.1	EPA 6010D		2-18-25	
Sodium	20	1.1	EPA 6010D		2-18-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02 41	1.1	EPA 6010D		2-18-25	
Calcium						
Iron	ND	0.056	EPA 6010D		2-18-25	
Magnesium	28 ND	1.1	EPA 6010D		2-18-25	
Manganese	ND	0.011	EPA 6010D		2-18-25	
Potassium Sodium	4.1 16	1.1 1.1	EPA 6010D EPA 6010D		2-18-25 2-18-25	
Codium			LITTOOTOB		2-10-20	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Calcium	13	1.1	EPA 6010D		2-18-25	
Iron	0.25	0.056	EPA 6010D		2-18-25	
Magnesium	9.7	1.1	EPA 6010D		2-18-25	
Manganese	0.036	0.011	EPA 6010D		2-18-25	
Potassium	2.4	1.1	EPA 6010D		2-18-25	
Sodium	10	1.1	EPA 6010D		2-18-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Calcium	24	1.1	EPA 6010D		2-18-25	
Iron	ND	0.056	EPA 6010D		2-18-25	
Magnesium	17	1.1	EPA 6010D		2-18-25	
Manganese	ND	0.011	EPA 6010D 2-18-25			
Potassium	2.7	1.1	EPA 6010D		2-18-25	
Sodium	18	1.1	EPA 6010D		2-18-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

DISSOLVED METALS EPA 6010D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Calcium	17	1.1	EPA 6010D		2-18-25	
Iron	ND	0.056	EPA 6010D		2-18-25	
Magnesium	9.7	1.1	EPA 6010D		2-18-25	
Manganese	ND	0.011	EPA 6010D		2-18-25	
Potassium	1.9	1.1	EPA 6010D		2-18-25	
Sodium	13	1.1	EPA 6010D		2-18-25	

Client ID:	MW-13S-0214				
Laboratory ID:	02-183-06				
Calcium	40	1.1	EPA 6010D	2-18-25	
Iron	ND	0.056	EPA 6010D	2-18-25	
Magnesium	28	1.1	EPA 6010D	2-18-25	
Manganese	ND	0.011	EPA 6010D	2-18-25	
Potassium	3.9	1.1	EPA 6010D	2-18-25	
Sodium	15	1.1	EPA 6010D	2-18-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						·
Laboratory ID:	MB0218D1					
Calcium	ND	1.1	EPA 6010D		2-18-25	
Iron	ND	0.056	EPA 6010D		2-18-25	
Magnesium	ND	1.1	EPA 6010D		2-18-25	
Manganese	ND	0.011	EPA 6010D		2-18-25	
Potassium	ND	1.1	EPA 6010D		2-18-25	
Sodium	ND	1.1	EPA 6010D		2-18-25	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-18	33-05								
	ORIG	DUP								
Calcium	17.2	17.2	NA	NA		NA	NA	0	20	
Iron	ND	ND	NA	NA		NA	NA	NA	20	
Magnesium	9.73	9.72	NA	NA		NA	NA	0	20	
Manganese	ND	ND	NA	NA		NA	NA	NA	20	
Potassium	1.92	1.94	NA	NA		NA	NA	1	20	
Sodium	13.1	13.1	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	02-1	83-05									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	39.4	38.8	22.2	22.2	17.2	100	97	75-125	2	20	
Iron	23.7	23.0	22.2	22.2	ND	107	104	75-125	3	20	
Magnesium	32.7	32.2	22.2	22.2	9.73	104	101	75-125	2	20	
Manganese	0.558	0.544	0.556	0.556	ND	100	98	75-125	3	20	
Potassium	27.3	26.8	22.2	22.2	1.92	114	112	75-125	2	20	
Sodium	35.4	34.7	22.2	22.2	13.1	100	97	75-125	2	20	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183 Project: 553-8472-006x

NITRATE (as Nitrogen) **EPA** 353.2

A 1 4 .	5	201		Date	Date	-1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Nitrate	ND	0.050	EPA 353.2	2-24-25	2-24-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Nitrate	11	0.25	EPA 353.2	2-24-25	2-24-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Nitrate	0.066	0.050	EPA 353.2	2-24-25	2-24-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Nitrate	1.6	0.050	EPA 353.2	2-24-25	2-24-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Nitrate	1.4	0.050	EPA 353.2	2-24-25	2-24-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Nitrate	10	0.25	EPA 353.2	2-24-25	2-24-25	
	-					

Laboratory Reference: 2502-183 Project: 553-8472-006x

NITRATE (as Nitrogen) **EPA 353.2 QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224W1					
Nitrate	ND	0.050	EPA 353.2	2-24-25	2-24-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	83-05									
	ORIG	DUP									
Nitrate	1.38	1.41	N	A	NA		NA	NA	2	22	
MATRIX SPIKE											
Laboratory ID:	02-18	83-05									
	M	1S	М	S		ı	MS				
Nitrate	3.	09	2.0	00	1.38		86	86-119	NA	NA	
MATRIX SPIKES											
Laboratory ID:	02-18	83-05									
	MS	MSD	MS	MSD		MS	MSD				
Nitrate	3.09	3.17	2.00	2.00	1.38	86	90	86-119	3	20	·

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183 Project: 553-8472-006x

CHLORIDE SM 4500-CI E

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Chloride	77	2.0	SM 4500-CI E	2-19-25	2-19-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Chloride	60	2.0	SM 4500-CI E	2-19-25	2-19-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Chloride	3.1	2.0	SM 4500-CI E	2-19-25	2-19-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Chloride	15	2.0	SM 4500-CI E	2-19-25	2-19-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Chloride	3.4	2.0	SM 4500-CI E	2-19-25	2-19-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Chloride	62	2.0	SM 4500-CI E	2-19-25	2-19-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

CHLORIDE SM 4500-CI E **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0219W1					
Chloride	ND	2.0	SM 4500-CLE	2-19-25	2-19-25	

					Source	_	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Chloride	3.39	3.26	N	IA	NA		NA	NA	4	21	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	52.0	52.9	50.0	50.0	3.39	97	99	81-115	2	20	
SPIKE BLANK											
Laboratory ID:	SB02	19W1									
	S	В	S	BB			SB				
Chloride	49	9.1	50	0.0	NA		98	77-115	NA	NA	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183 Project: 553-8472-006x

SULFATE **ASTM D516-11**

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Sulfate	160	50	ASTM D516-11	2-21-25	2-21-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Sulfate	56	20	ASTM D516-11	2-21-25	2-21-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Sulfate	ND	5.0	ASTM D516-11	2-21-25	2-21-25	
Olice at ID.	MW 0D 0040					
Client ID:	MW-8D-0213					
Laboratory ID: Sulfate	02-183-04 50	20	ASTM D516-11	2-21-25	2-21-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Sulfate	9.9	5.0	ASTM D516-11	2-21-25	2-21-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Sulfate	50	20	ASTM D516-11	2-21-25	2-21-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

SULFATE ASTM D516-11 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0221W1					
Sulfate	ND	5.0	ASTM D516-11	2-21-25	2-21-25	

Analyta	Por	sult	Snika	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flogs
Analyte	Res	Suit	Зріке	Level	Result	Rec	overy	Limits	KPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Sulfate	9.87	9.93	N	IA	NA	ı	NA	NA	1	11	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	22.0	22.2	10.0	10.0	9.87	121	123	69-134	1	20	
SPIKE BLANK											
Laboratory ID:	SB02	21W1									
	S	В	S	BB		;	SB				
Sulfate	9.	81	10	0.0	NA		98	81-106	NA	NA	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183 Project: 553-8472-006x

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Total Dissolved Solids	300	13	SM 2540C	2-19-25	2-19-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Total Dissolved Solids	340	13	SM 2540C	2-19-25	2-19-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Total Dissolved Solids	110	13	SM 2540C	2-19-25	2-19-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Total Dissolved Solids	230	13	SM 2540C	2-19-25	2-19-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Total Dissolved Solids	280	13	SM 2540C	2-19-25	2-19-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Total Dissolved Solids	330	13	SM 2540C	2-19-25	2-19-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0219W1					
Total Dissolved Solids	ND	13	SM 2540C	2-19-25	2-19-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	02-18	83-05							
	ORIG	DUP							
Total Dissolved Solids	277	281	NA	NA	NA	NA	1	29	
SPIKE BLANK									
Laboratory ID:	SB02	19W1							
	S	В	SB		SB				
Total Dissolved Solids	4	77	500	NA	95	76-120	NA	NA	•

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183

Project: 553-8472-006x

TOTAL ALKALINITY SM 2320B

Ŭ				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Total Alkalinity	100	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Total Alkalinity	84	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Total Alkalinity	94	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Total Alkalinity	92	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Total Alkalinity	96	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Total Alkalinity	84	2.0	SM 2320B	2-24-25	2-24-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224W1					
Total Alkalinity	ND	2.0	SM 2320B	2-24-25	2-24-25	

Analyte	Res	sult	Spike	Level	Source Result	_	rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	83-05									
	ORIG	DUP									
Total Alkalinity	96.0	96.0	١	IA.	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	02-18	83-05									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	180	180	100	100	96.0	84	84	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB02	24W1									
	S	B	S	SB			SB				
Total Alkalinity	90	0.0	1	00	NA		90	82-101	NA	NA	

Laboratory Reference: 2502-183 Project: 553-8472-006x

BICARBONATE SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Bicarbonate	100	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Bicarbonate	84	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Bicarbonate	94	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Bicarbonate	92	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Bicarbonate	96	2.0	SM 2320B	2-24-25	2-24-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Bicarbonate	84	2.0	SM 2320B	2-24-25	2-24-25	

Laboratory Reference: 2502-183 Project: 553-8472-006x

BICARBONATE SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224W1					
Bicarbonate	ND	2.0	SM 2320B	2-24-25	2-24-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Bicarbonate	96.0	96.0	N	IA	NA	ļ	NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Bicarbonate	180	180	100	100	96.0	84	84	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB02	24W1									
	SB		S	SB		SB					
Bicarbonate	90.0 100		NA		90	82-101	NA	NA			

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183 Project: 553-8472-006x

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Ü				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	
Client ID:	MW-13S-0214					
	02-183-06					
Laboratory ID: Ammonia	02-163-06 ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	
AIIIIIUIIIa	ND	0.003	31VI 4300-INFI3 D	2-21-20	Z-Z1-Z0	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025

Laboratory Reference: 2502-183 Project: 553-8472-006x

AMMONIA (as Nitrogen) SM 4500-NH₃ D **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0227W1					
Ammonia	ND	0.053	SM 4500-NH3 D	2-27-25	2-27-25	

					Source	_	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Ammonia	ND	ND	N	IA	NA	1	NA	NA	NA	15	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Ammonia	5.37	5.14	5.00	5.00	ND	107	103	75-111	4	20	
SPIKE BLANK											
Laboratory ID:	SB02	27W1									
	S	В	S	SB	•	,	SB				
Ammonia	5.	14	5.	00	NA	1	03	81-110	NA	NA	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025 Laboratory Reference: 2502-183 Project: 553-8472-006x

TOTAL ORGANIC CARBON SM 5310B

ŭ				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0213					
Laboratory ID:	02-183-01					
Total Organic Carbon	4.0	1.0	SM 5310B	2-25-25	2-25-25	
Client ID:	MW-6S-0214					
Laboratory ID:	02-183-02					
Total Organic Carbon	3.1	1.0	SM 5310B	2-25-25	2-25-25	
Client ID:	MW-7D-0213					
Laboratory ID:	02-183-03					
Total Organic Carbon	ND	1.0	SM 5310B	2-25-25	2-25-25	
Client ID:	MW-8D-0213					
Laboratory ID:	02-183-04					
Total Organic Carbon	ND	1.0	SM 5310B	2-25-25	2-25-25	
Client ID:	MW-10D-0214					
Laboratory ID:	02-183-05					
Total Organic Carbon	ND	1.0	SM 5310B	2-25-25	2-25-25	
Client ID:	MW-13S-0214					
Laboratory ID:	02-183-06					
Total Organic Carbon	3.2	1.0	SM 5310B	2-25-25	2-25-25	

Date of Report: February 27, 2025 Samples Submitted: February 14, 2025

Laboratory Reference: 2502-183 Project: 553-8472-006x

TOTAL ORGANIC CARBON SM 5310B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0225W1					
Total Organic Carbon	ND	1.0	SM 5310B	2-25-25	2-25-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-18	33-05									
	ORIG	DUP									
Total Organic Carbon	ND	ND	N	IA	NA		NA	NA	NA	11	
MATRIX SPIKES											
Laboratory ID:	02-18	33-05									
	MS	MSD	MS	MSD		MS	MSD				
Total Organic Carbon	11.1	11.0	10.0	10.0	ND	111	110	85-120	1	20	
SPIKE BLANK											
Laboratory ID:	SB02	25W1									
	S	В	S	B		,	SB				
Total Organic Carbon	10).6	10	0.0	NA	1	06	79-120	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page
0

Ť	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		Trip Blank	6 MW-135 - 6214	5 MW-100 - 0214	N S - G6-AM	4 MW-8D - 0213	3 MW-70 - 6213	2 MW-68 - 52+8	NW-58 - 0213	Lab ID Sample	Sampled by: M Brady / S Nguyen	Project Manager: Laura Lee	Project Name: DTG Ya	553-8472-006x	Company: Parametrix	14648 NE 95th Stree Phone: (425) 883-386	
Da						Eta Due	S	ature								0214	3	Sample Identification	/ S Nguyen	_ee	DTG Yakima LPL	72-006x	×	14648 NE 95th Street • Radmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	
a Package							5				2/14	2114		2 12	2/13	2/14	2/13	Date Sampled	[13	2			1
Data Package: Level III] Level IV []	Reviewed/Date					0	Parametrix	Company			1100	840		1035	1320	920	1540	Time Sampled	(other)		Standard (7 Days)	2 Days	Same Day	(in working days)	irnaround Rec
	ate					35				Water 0	Water	Water	Water	Water	Water	Water 1 S	Water	Matrix		,	s)	3 Days	1 Day	ays)	THEST
Electronic Data Deliverables (EDDs)										8	13	18	6	9	9	2	3	Numb	er of C	ontaine	rs				
iic Dat										×	×	×	*	×	×	×	×	VOCs (Naphth	(8260D alene; \$	- WAC	173-351 and 1,2-	Append EDB	lix i)		
a Deliv						2/14/2025	2/1	Date		×	×					×	×	NWTP	H-Gx		W-11-11-11-11-11-11-11-11-11-11-11-11-11			Laboratory Numb	
erable						1/20	2/14/24				×					×	×	NWTP				***********		rato	
s (EDI			d				-	-			×	×	X	×	×	×	×			Fe, Mn,		C- K	Al-X	Ž	
Ds)						143	14	Time			×	×	×	×	×	×	×			als (Fe,		, Ca, K,	, Na)	E	
						200	39				×	×	×	×	×	×	×			le, sulfa , Bicark				nbe	
	Ω							0			×	×	×	×	×	×	×	Ammo						er:	
	hroma					MS/M		omm			×	×	×	×	×	×	×	TOC					-		3
	Chromatograms with final report					MS/MSD extra volume provided 6S/10D		Comments/Special Instructions					3			1				 		-,-		1	
	s with					dra vo		pecial																e and	8
	final re					olume		Instru	· · ·															0	I.
	port [prov		ctions														1.			~
	ĻJ					ided (S																	
						3S/10											56	P					14	-do	
						D				-							1				The Post		_		
									1						ļ		A. C.	-	,,,				_		
İ									-						-	×		NA	SMS	D Gx,	Dv				
										-		×			-		-	-		D GX, D All (~~~				
																		IVI	SINIS	O MII (Juleis				
																		% Moi	sture						

Sample/Cooler Receipt ar	nd Acc	eptan	ce Checklist
Client: PAR Client Project Name/Number: 553-8172-006 >> OnSite Project Number: 02-183		Initiated by	: <u> 2/14/25</u>
1.0 Cooler Verification			
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A 1 2 3 4
1.2 Were the custody seals intact?	Yes	No	N/A 1 2 3 4
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	1 2 3 4
1.4 Were the samples delivered on ice or blue ice?	es	No	N/A 1 2 3 4
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	N/A Temperature: 0, 1
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	WA	
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx OSE Pickup Other
2.0 Chain of Custody Verification			
2.1 Was a Chain of Custody submitted with the samples?	Yes	No	1 2 3 4
2.2 Was the COC legible and written in permanent ink?	Yes	No	1 2 3 4
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No	1 2 3 4
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	(No.)	1 2 3 4
2.5 Were all of the samples listed on the COC submitted?	Yes	No	1 2 3 4
2.6 Were any of the samples submitted omitted from the COC?	Yes	No	1 2 3 4
3.0 Sample Verification			
3.1 Were any sample containers broken or compromised?	Yes	No	1 2 3 4
3.2 Were any sample labels missing or illegible?	Yes	No	1 2 3 4
3.3 Have the correct containers been used for each analysis requested?	Yes	No	1 2 3 4
3.4 Have the samples been correctly preserved?	Yes	No	N/A 1 2 3 4
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	res	No	N/A 1 2 3 4
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No	1 2 3 4
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No	1 2 3 4
3.8 Was method 5035A used?	Yes	No	1 2 3 4
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	# #		N/A 1 2 3 4

Explain any discrepancies:

- 1 Discuss issue in Case Narrative
- 2 Process Sample As-is

- 3 Client contacted to discuss problem
- 4 Sample cannot be analyzed or client does not wish to proceed

April 7, 2025

Michael Brady Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006

Laboratory Reference No. 2503-357

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on March 26, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 7, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357

Project: 553-8472-006

Case Narrative

Samples were collected on March 25, 2025 and received by the laboratory on March 26, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Dibromochloromethane is outside the control limits in the Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

The RPD for Dibromochloromethane is outside the control limits for the Spike Blank/Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: April 7, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Chloromethane	ND	1.0	EPA 8260D	3-28-25	3-28-25	_
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	3-28-25	3-28-25	
Bromomethane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Chloroethane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Acetone	ND	5.0	EPA 8260D	3-28-25	3-28-25	
Iodomethane	ND	1.8	EPA 8260D	3-28-25	3-28-25	
Carbon Disulfide	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Methylene Chloride	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Acrylonitrile	ND	0.50	EPA 8260D	3-28-25	3-28-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Vinyl Acetate	ND	1.0	EPA 8260D	3-28-25	3-28-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
2-Butanone	ND	5.0	EPA 8260D	3-28-25	3-28-25	
Bromochloromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Chloroform	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Benzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Trichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Dibromomethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Bromodichloromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	3-28-25	3-28-25	
Toluene	ND	1.0	EPA 8260D	3-28-25	3-28-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Tetrachloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
2-Hexanone	ND	2.0	EPA 8260D	3-28-25	3-28-25	
Dibromochloromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	3-28-25	3-28-25	
Chlorobenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Ethylbenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
m,p-Xylene	ND	0.40	EPA 8260D	3-28-25	3-28-25	
o-Xylene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Styrene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Bromoform	ND	1.0	EPA 8260D	3-28-25	3-28-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	3-28-25	3-28-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Naphthalene	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Surrogate:	Percent Recovery	Control Limits			_	•
Dibromofluoromethane	99	68-133				
T-1	100	70.400				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	99	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	97	78-117

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

Offits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0328W1					
Chloromethane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	3-28-25	3-28-25	
Bromomethane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Chloroethane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Acetone	ND	5.0	EPA 8260D	3-28-25	3-28-25	
Iodomethane	ND	1.8	EPA 8260D	3-28-25	3-28-25	
Carbon Disulfide	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Methylene Chloride	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Acrylonitrile	ND	0.50	EPA 8260D	3-28-25	3-28-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Vinyl Acetate	ND	1.0	EPA 8260D	3-28-25	3-28-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
2-Butanone	ND	5.0	EPA 8260D	3-28-25	3-28-25	
Bromochloromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Chloroform	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Benzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Trichloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Dibromomethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Bromodichloromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	3-28-25	3-28-25	
Toluene	ND	1.0	EPA 8260D	3-28-25	3-28-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Tetrachloroethene	ND	0.20	EPA 8260D	3-28-25	3-28-25	

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0328W1					
2-Hexanone	ND	2.0	EPA 8260D	3-28-25	3-28-25	
Dibromochloromethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	3-28-25	3-28-25	
Chlorobenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Ethylbenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
m,p-Xylene	ND	0.40	EPA 8260D	3-28-25	3-28-25	
o-Xylene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Styrene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
Bromoform	ND	1.0	EPA 8260D	3-28-25	3-28-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	3-28-25	3-28-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	3-28-25	3-28-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	3-28-25	3-28-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Naphthalene	ND	1.0	EPA 8260D	3-28-25	3-28-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-133				
Toluene de	0.8	70 122				

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB032	28W1								
	SB	SBD	SB	SBD	SB	SBD				
Chloromethane	10.4	9.28	10.0	10.0	104	93	45-145	11	19	
Vinyl Chloride	11.7	10.6	10.0	10.0	117	106	67-130	10	15	
Bromomethane	12.7	11.6	10.0	10.0	127	116	27-165	9	36	
Chloroethane	10.3	9.60	10.0	10.0	103	96	61-132	7	18	
Trichlorofluoromethane	11.0	10.2	10.0	10.0	110	102	67-136	8	17	
1,1-Dichloroethene	10.0	9.29	10.0	10.0	100	93	74-125	7	15	
Acetone	8.02	7.42	10.0	10.0	80	74	49-140	8	20	
lodomethane	5.62	6.01	10.0	10.0	56	60	15-154	7	49	
Carbon Disulfide	9.37	9.60	10.0	10.0	94	96	58-122	2	18	
Methylene Chloride	9.57	8.78	10.0	10.0	96	88	70-123	9	15	
(trans) 1,2-Dichloroethene	9.99	9.34	10.0	10.0	100	93	77-125	7	15	
1,1-Dichloroethane	10.1	9.43	10.0	10.0	101	94	75-125	7	15	
Vinyl Acetate	11.8	12.2	10.0	10.0	118	122	61-138	3	16	
(cis) 1,2-Dichloroethene	10.0	9.32	10.0	10.0	100	93	78-130	7	15	
2-Butanone	9.14	9.03	10.0	10.0	91	90	58-144	1	16	
Bromochloromethane	10.7	10.0	10.0	10.0	107	100	79-132	7	15	
Chloroform	10.3	9.59	10.0	10.0	103	96	73-128	7	15	
1,1,1-Trichloroethane	10.4	9.63	10.0	10.0	104	96	72-127	8	15	
Carbon Tetrachloride	10.6	9.92	10.0	10.0	106	99	68-131	7	15	
Benzene	10.2	9.55	10.0	10.0	102	96	76-124	7	15	
1,2-Dichloroethane	10.1	9.43	10.0	10.0	101	94	68-133	7	15	
Trichloroethene	10.7	10.0	10.0	10.0	107	100	80-126	7	15	
1,2-Dichloropropane	10.3	9.64	10.0	10.0	103	96	78-124	7	15	
Dibromomethane	10.8	10.2	10.0	10.0	108	102	76-131	6	15	
Bromodichloromethane	10.2	9.67	10.0	10.0	102	97	81-128	5	15	
(cis) 1,3-Dichloropropene	10.6	10.1	10.0	10.0	106	101	80-131	5	15	
Methyl Isobutyl Ketone	9.60	9.76	10.0	10.0	96	98	67-133	2	16	
Toluene	10.5	9.91	10.0	10.0	105	99	75-120	6	15	
(trans) 1,3-Dichloropropene	10.7	10.0	10.0	10.0	107	100	77-128	7	15	
1,1,2-Trichloroethane	10.2	9.68	10.0	10.0	102	97	80-124	5	15	
Tetrachloroethene	10.8	10.1	10.0	10.0	108	101	80-125	7	15	
2-Hexanone	9.00	8.80	10.0	10.0	90	88	65-134	2	20	
Dibromochloromethane	10.6	6.69	10.0	10.0	106	67	81-131	45	15	I,L

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										_
Laboratory ID:	SB032	28W1								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dibromoethane	11.0	10.3	10.0	10.0	110	103	82-129	7	15	
Chlorobenzene	10.6	9.84	10.0	10.0	106	98	80-119	7	15	
1,1,1,2-Tetrachloroethane	11.1	10.6	10.0	10.0	111	106	80-124	5	15	
Ethylbenzene	10.5	9.79	10.0	10.0	105	98	80-121	7	15	
m,p-Xylene	20.8	19.6	20.0	20.0	104	98	80-122	6	15	
o-Xylene	10.5	9.87	10.0	10.0	105	99	80-121	6	15	
Styrene	10.5	9.97	10.0	10.0	105	100	82-128	5	15	
Bromoform	12.0	11.4	10.0	10.0	120	114	77-131	5	15	
1,1,2,2-Tetrachloroethane	11.0	10.6	10.0	10.0	110	106	66-138	4	15	
1,2,3-Trichloropropane	10.2	9.85	10.0	10.0	102	99	67-127	3	18	
1,4-Dichlorobenzene	10.5	10.1	10.0	10.0	105	101	78-127	4	15	
1,2-Dichlorobenzene	10.5	10.0	10.0	10.0	105	100	79-129	5	15	
1,2-Dibromo-3-chloropropane	10.4	10.0	10.0	10.0	104	100	62-140	4	18	
Naphthalene	8.87	8.58	10.0	10.0	89	86	53-144	3	25	
Surrogate:										
Dibromofluoromethane					101	102	68-133			
Toluene-d8					100	103	79-123			
4-Bromofluorobenzene					98	99	78-117			

Date of Report: April 7, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357

Project: 553-8472-006

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Gasoline	ND	100	NWTPH-Gx	3-27-25	3-27-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	61-122				

1

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyto	Result	PQL	Method	Date	Date Analvzed	Elogo
Analyte METHOD BLANK	Resuit	PQL	Wethou	Prepared	Analyzeu	Flags
Laboratory ID:	MB0327W4					
Gasoline	ND	100	NWTPH-Gx	3-27-25	3-27-25	
Surrogate:	Percent Recovery	Control Limits		_	_	
Fluorobenzene	80	61-122				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	03-31	19-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										

61-122 Fluorobenzene 80 81

Date of Report: April 7, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357

Project: 553-8472-006

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

·,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Diesel Range Organics	0.18	0.15	NWTPH-Dx	4-2-25	4-2-25	
Lube Oil Range Organics	0.28	0.20	NWTPH-Dx	4-2-25	4-2-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0402W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	4-2-25	4-2-25	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	4-2-25	4-2-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										_
Laboratory ID:	03-37	77-01								
	ORIG	DUP								
Diesel Range Organics	0.180	0.158	NA	NA		NA	NA	13	40	
Lube Oil Range Organics	0.271	0.250	NA	NA		NA	NA	8	40	
Surrogate:										
o-Terphenyl						101 88	50-150			

TOTAL METALS EPA 6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Iron	270	50	EPA 6010D	3-27-25	3-27-25	_
Magnesium	9400	1000	EPA 6010D	3-27-25	3-27-25	
Manganese	19	10	EPA 6010D	3-27-25	3-27-25	

Date of Report: April 7, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357

Project: 553-8472-006

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0327WH2					
Iron	ND	50	EPA 6010D	3-27-25	3-27-25	_
Magnesium	ND	1000	EPA 6010D	3-27-25	3-27-25	
Manganese	ND	10	FPA 6010D	3-27-25	3-27-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike Level		Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-2	32-10									
	ORIG	DUP									
Iron	478	414	NA	NA		I	NA	NA	14	20	
Magnesium	2590	2220	NA	NA		ı	NA	NA	16	20	
Manganese	35.6	30.5	NA	NA			NA	NA	15	20	
MATRIX SPIKES											
Laboratory ID:	03-2	32-10									
	MS	MSD	MS	MSD		MS	MSD				
Iron	24200	23900	20000	20000	478	119	117	75-125	1	20	·
Magnesium	25900	25400	20000	20000	2590	116	114	75-125	2	20	
Manganese	602	592	500	500	35.6	113	111	75-125	2	20	

CHLORIDE SM 4500-CI E

Amaluda	Dogulé	PQL	Mathad	Date	Date	Flore
<u>Analyte</u>	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Chloride	3.2	2.0	SM 4500-CI E	3-31-25	3-31-25	

CHLORIDE SM 4500-CI E **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0331W1					
Chloride	ND	2.0	SM 4500-CI E	3-31-25	3-31-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-35	57-01							
	ORIG	DUP							
Chloride	3.23	3.40	NA	NA	NA	NA	5	21	
MATRIX SPIKE									
Laboratory ID:	03-3	57-01							
	N	IS	MS		MS				
Chloride	52	2.3	50.0	3.23	98	81-115	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB03	31W1							
	S	В	SB		SB				
Chloride	48	3.5	50.0	NA	97	77-115	NA	NA	

SULFATE **ASTM D516-11**

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	Leachate			_	_	
Laboratory ID:	03-357-01					
Sulfate	44	10	ASTM D516-11	3-28-25	3-28-25	

SULFATE ASTM D516-11 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0328W1					
Sulfate	ND	5.0	ASTM D516-11	3-28-25	3-28-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-26	60-12							
	ORIG	DUP							
Sulfate	44.1	44.2	NA	NA	NA	NA	0	11	
MATRIX SPIKE									
Laboratory ID:	03-26	60-12							
	M	1S	MS		MS				
Sulfate	86	6.6	40.0	44.1	106	69-134	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB03	28W1							
	S	В	SB		SB				
Sulfate	9.	68	10.0	NA	97	81-106	NA	NA	

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Total Dissolved Solids	140	13	SM 2540C	3-31-25	3-31-25	

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0331W1					
Total Dissolved Solids	ND	13	SM 2540C	3-31-25	3-31-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	03-35	57-01							
	ORIG	DUP							
Total Dissolved Solids	141	160	NA	NA	NA	NA	13	29	
SPIKE BLANK									
Laboratory ID:	SB03	31W1							
·	S	В	SB		SB				
Total Dissolved Solids	48	B1	500	NA	96	76-120	NA	NA	•

TOTAL ALKALINITY SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Total Alkalinity	64	2.0	SM 2320B	3-31-25	3-31-25	

TOTAL ALKALINITY SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0331W1					
Total Alkalinity	ND	2.0	SM 2320B	3-31-25	3-31-25	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-36	63-01							
	ORIG	DUP							
Total Alkalinity	42.0	42.0	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB03	31W1							
	S	В	SB		SB				
Total Alkalinity	92	2.0	100	NA	92	82-101	NA	NA	

BICARBONATE SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Bicarbonate	36	2.0	SM 2320B	3-31-25	3-31-25	

BICARBONATE SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0331W1					
Bicarbonate	ND	2.0	SM 2320B	3-31-25	3-31-25	

Analyte	Result		Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	03-36	33-01							
	ORIG	DUP							
Bicarbonate	42.0	42.0	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB0331W1								
	S	В	SB	•	SB				
Bicarbonate	92	2.0	100	NA	92	82-101	NA	NA	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Ammonia	ND	0.053	SM 4500-NH3 D	4-1-25	4-1-25	_

AMMONIA (as Nitrogen) SM 4500-NH₃ D **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0401W1					
Ammonia	ND	0.053	SM 4500-NH3 D	4-1-25	4-1-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-35	57-01							
	ORIG	DUP							
Ammonia	ND	ND	NA	NA	NA	NA	NA	15	
MATRIX SPIKE									
Laboratory ID:	03-3	57-01							
	N	IS	MS		MS				
Ammonia	5.	43	5.00	ND	109	75-111	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB04	01W1							
-	S	В	SB		SB				
Ammonia	5.	13	5.00	NA	103	81-110	NA	NA	

TOTAL ORGANIC CARBON SM 5310B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					_
Laboratory ID:	03-357-01					
Total Organic Carbon	8.6	1.0	SM 5310B	3-27-25	3-27-25	_

TOTAL ORGANIC CARBON SM 5310B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0327W1					
Total Organic Carbon	ND	1.0	SM 5310B	3-27-25	3-27-25	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-28	32-01							
	ORIG	DUP							
Total Organic Carbon	5.72	5.70	NA	NA	NA	NA	0	11	
MATRIX SPIKE									
Laboratory ID:	03-28	32-01							
	M	IS	MS		MS				
Total Organic Carbon	16	6.5	10.0	5.72	108	85-120	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB03	27W1							
	S	В	SB	•	SB			•	
Total Organic Carbon	11	.6	10.0	NA	116	79-120	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Analytical Results Report For:

OnSite Environmental, Inc.

Project:

Parametrix DTG Yakima

Anatek Work Order:

YFC0620

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: OnSite Environmental, Inc.

Address: 14648 NE. 95th St.

Redmond, WA 98052

Attn: David Baumeister

Work Order: YFC0620

Project: Parametrix DTG Yakima

Reported: 3/28/2025 11:49

Analytical Results Report

Sample Location: Leachate

Lab/Sample Number: YFC0620-01

YFC0620-01 Collect Date: 03/25/25 10:25 03/26/25 15:36 Collected By: Shaufler/Burke

Matrix: Water

Date Received:

Analyzed Analyte Result Units PQL Analyst Method Qualifier **Inorganics** 4.45 3/27/25 9:03 DRA Hach 10206 Nitrate/N mg/L 0.200

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Emily Wengrowski for Kathleen Sattler, Lab Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Chain of Custody Record

Anatek La 1282 Alturas Drive, Moscow 504 E Sprague Ste D, Spokane

YFC0620	

Due: 04/10/25

Comp	oany Name: Onsite Er	metrix)	Project Manager: David Baumeister									Due: 04/10/25	
	ess: 14648 NE 95th			Proje	ct Nam	ne & #	^{‡ :} Paran	netrix	DTG Y	akima	а		Please refer to www.an
	Redmond		98052		nase O								<u>∽</u> NormalPhone Next Day*Email
Phone	^{e:} 425.883.3881		8	Sam	oler Na	me &	Phone: S	haufle	er / Burl	ke (P	arame	trix)	2nd Day* *All rush order requests must
Email	Address(es): dbaume	ister@onsite-env.c	com										Other* have prior approval
						* 1	List An	alyse	s Requ	este	d		Note Special Instructions/Comments
				Containers	Sample Volumeris	Nitrate							
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of	Sam	Ë							Mient Container XI
	MW-2S		H <u>2O</u>	1		*							
	M W 38		H2 0	1		*							
	MW-4S		H2O	-		×							
	MW-5S		H2O	1-		*							
	M W-68-		H 20	4	-	*							Inspection Checklist
	MW-138-	1 -	+120-	+		*							Received Intact? N
	MW-7D		<u>H2O</u>	+		*					0 10		Labels & Chains Agree? Y
	MW-8D-		H20	4		*							Containers Sealed? Y
	Oe-WM		H20	1		*							No VOC Head Space? Y N
	M W-10D		H2O	4-		×							Cooler? N
	Leachate	3-25-25110:25	H2O	1		×		_		\perp			Ice/Ice Packs Present?
_				┢	-			+	++	+	+		Temperature (°C): 9.0-0/9.2-C Din 14
2000	Print	ed Name	Signature	1			Co	mpany	,	Da		Time	Number of Containers;
Relin	quished by	atie Bunce	lato	1	9 1	W	_ Y	20ras	netri)	(3	-26-	5 13:31	Shipped Via: hand
	7/1	Lu andersa	- A	d	era	r		Tu	reter	5 3/	24/25	CO 534	Preservative:
Relin	quished by				1 2			w		1	'		, ,
Rece	ived by												Date & Time: 3/26/25 /536
Relin	quished by												Inspected By:
Rece	ived by												

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

Chain of Custody

	Pag
1	
1	
	0
ĺ	_

Reviewed/Date	Received	Relinquished	Received State Pull	Relinquished	Received CALMUS John	Relinquished My A B	Signature							Leachate	ta si	Shaufler / Burke / Brady	Project Manager: Laura Lee Lblee@parametrix.com	Project Name: Rocky Top Environmental LPL	Project Number: 553-8472-006	Company: Parametrix / DTG	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
				2	9	Pa	Co							3/25/25	Date Sampled]	Stan	2 Days	Same Day	Turn (in
Reviewed/Date			088	delix	delivery express	Parametrix	Company							10:23	Time Sampled	(other)	(TEH ahalysis 5 Days)	Standard (7 Days)		K One	(in working days)
ite			_	livery express	-) exp									H2O	Matrix		Jays)		3 Days	1 Day	uest ys)
				pr	Sal									13	Numb	er of Co	ntaine	rs			
				55	Ŋ,		i.							3	VOCs (Naphth	8260D - alene; S	- WAC 1 IM-VC a	73-351 and 1,2-l	Append EDB	ix I)	
			3	3/26	3	3/2	Date							2	NWTP	H-Gx					abo
			26/2	26/	3/26/25	3/26/25	10							_	NWTP	H-Dx					Laboratory Number:
			25	26	32	(C)									Tot Pri	ority Pol	lutant M	letals +	Fe, Mn,	, Mg	bry
			133	(i)	183	12:0	Time								Total M	letals (F	e, Mn, I	Mg)			N
			35	35	1835	00		 _		-	-						llutant N				a De
			0				100	 -		-				-	Dissolv	red Meta	als (Fe,	Mn, Mg	Ca, K,	Na)	er:
Chrom			T	<u> </u>	· > :	_	Comn		-	-	-			 		le, sulfa		227			
atogra			0	וונ	: []	<u>8</u>	nents,		-	-	-					10	, Bicarb	onate		-6	0
ıms wi			Во	၁၈၀	an	6	Spec	-			+	-			Ammor	nia				-	CO
th fina		×	7 ,	βαι	S	dire	ial Ins	-	-		-				TOC		***			-1	OT .
Chromatograms with final report			130	grec	Ęţ Ş	nvoice directly to	Comments/Special Instructions	 -	-	-	-				PFAS						
а Ц			2	sutton@atgrecycle.com	Attn: lan Sutton, PE	ਰ	ions			-						s and Fi				-	
			≡	e.cc	Щ	\Box			-			-			Milrate	s (Anate	ек)				
			ree	B	(G.			-											-	
			¥, /			ec		 	-											-	
			\leq		,	DTG Recycling	M				+	-								-	
			P.O. Box 14302 Mill Creek, WA 98082		ď	ă	Ė				 									-	
			82				H											3.10		1	
							H				1				% Mois	sture) ha	

Data Package: Level III 🗌 Level IV 🗍 Electronic Data Deliverables (EDDs) 🗎

June 20, 2025

Michael Brady Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006 Laboratory Reference No. 2503-357B

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on March 26, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 20, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357B

Project: 553-8472-006

Case Narrative

Samples were collected on March 25, 2025 and received by the laboratory on March 26, 2025. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: June 20, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357B Project: 553-8472-006

TOTAL METALS EPA 6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Leachate					
Laboratory ID:	03-357-01					
Calcium	26000	1000	EPA 6010D	6-13-25	6-18-25	_
Potassium	1800	1000	EPA 6010D	6-13-25	6-18-25	
Sodium	12000	1000	EPA 6010D	6-13-25	6-18-25	

Date of Report: June 20, 2025 Samples Submitted: March 26, 2025 Laboratory Reference: 2503-357B

Project: 553-8472-006

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0613WH1					
Calcium	ND	1000	EPA 6010D	6-13-25	6-18-25	_
Potassium	ND	1000	EPA 6010D	6-13-25	6-18-25	
Sodium	ND	1000	EPA 6010D	6-13-25	6-18-25	

Analyte	Res	sult	Spike	Level	Source Result	_	rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE			•								
Laboratory ID:	06-14	46-01									
	ORIG	DUP									
Calcium	30200	27300	NA	NA		1	NA	NA	10	20	
Potassium	4990	4510	NA	NA		1	NΑ	NA	10	20	
Sodium	72000	68300	NA	NA		1	NA	NA	5	20	
MATRIX SPIKES											
Laboratory ID:	06-14	46-01									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	49600	48700	20000	20000	30200	97	92	75-125	2	20	
Potassium	26400	26200	20000	20000	4990	107	106	75-125	1	20	
Sodium	90400	88600	20000	20000	72000	92	83	75-125	2	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page
L.
으
-
1

Reviewed/Date	Received	Relinquished	Received Heter Pull	Relinquished	Received All Mr Spot	Relinquished My By	Signature							Leachate	Lab ID Sample Identification	Sampled by: Shaufler / Burke / Brady	Project Manager: Laura Lee Lblee@parametrix.com	Project Name: Rocky Top Environmental LPL	Project Number: 553-8472-006	Company: Parametrix / DTG	Phone: (425) 883-3881 • www.onsite-env.com	ENVIRONMENTAL INC.
Rev				de	8	Para	Company							3/25/25	Date Sampled S				2 Days	Same Day	2	Turnary (in wo
Reviewed/Date			088 J	livery	delivery	Parametrix	oany							10:23 H2O	Time Sampled Ma	(other)	(TEN alialysis o Days)	Standard (7 Days)	П		nok One)	Turnaround Request (in working days)
				express	express									13 3	VOCs (8260D -	ontaine	73-351	Append	ix I)		
			3			3/	Date							20	Naphth		IM-VC a	nd 1,2-E	EDB			Lab
			126/15	3/26/	3/26/25	3/26/25									NWTP	H-Dx					a	orat
			15	26	25	25									Tot Pri	ority Pol	llutant M	etals +	Fe, Mn	, Mg		VNO
			1335	[33	183	12:00	Time										e, Mn, f		Fe Mn M	ı Ca K N	la	Laboratory Num
			Ü	Ù	5	0								,			als (Fe,			_		ber:
Chro	\bigotimes						Con							_	chlorid	le, sulfa	te			Т		
Chromatograms with final report	B		P.O	lsutton@atgrecycle.com	Attn: Ian Sutton, PE	lnvo	Comments/Special Instructions							_	TDS, A	lkalinity	, Bicarb	onate			(
ams w	Hed		Bo	on(c	: <u> </u>	ic e	s/Spec							_	Ammor	nia 	-vi(ii=lini			_	1	
ith fine			7 ,	and	้า	dire	ial Ins	(#)					_	_	TOC					_		
d repo			130	grec	It or	<u>C</u>	structi		*	The Table					PFAS					_		7
_ (250		2	ycle	ر ا <u>ح</u> ا	ਹੋਂ	ons							_		s and F					ł	
	7		0	.co	ш	DT(-							-	-1	
	Ů		P.O. Box 14302 Mill Creek, WA 98082	Ä	9	Invoice directly to DTG Recycling								8	Tota	al k	<u>'-</u> 1 C	a, r	Va			
			N																			
													_		% Mois	sture						

Data Package: Level III

Level IV

Electronic Data Deliverables (EDDs)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 22, 2025

Laura Lee Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006

Laboratory Reference No. 2504-035

Dear Laura:

Enclosed are the analytical results and associated quality control data for samples submitted on April 2, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 553-8472-006

Case Narrative

Samples were collected on March 31, 2025 and April 1, 2025 and received by the laboratory on April 2, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for 1,2,3-Trichloropropane and 1,2-Dichlorobenzene is outside the control limits in the Matrix Spike Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

The RPD for Acetone and Methyl Isobutyl Ketone is outside the control limits for the Matrix Spike/Matrix Spike Duplicate. The percent recoveries on both spike blanks are within recovery limits. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-133				
Toluene-d8	98	79-123				

78-117

4-Bromofluorobenzene

97

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-133				
Toluene-d8	100	79-123				

78-117

4-Bromofluorobenzene

99

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-4S					
04-035-03					
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.40	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.50	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
Percent Recovery	Control Limits				
100	68-133				
99	79-123				
	MW-4S 04-035-03 ND	MW-4S 04-035-03 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.40 ND 0.20 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 0.50 ND 0.50 ND 0.20 ND 0.20 ND 1.0 ND 1.0 Percent Recovery Control Limits 100 68-133	MW-4S 04-035-03 0.20 EPA 8260D ND 0.020 EPA 8260D/SIM ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.40 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.50 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D Percent Recovery Control Limits 100 68-133	Result PQL Method Prepared MW-4S 04-035-03 04-035-03 0.20 EPA 8260D 4-5-25 ND 0.020 EPA 8260D/SIM 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.40 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.50 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 1.0 EPA 8260D	Result PQL Method Prepared Analyzed MW-4S 04-035-03 Herebox Analyzed ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.020 EPA 8260D/SIM 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.40 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.50 EPA 8260D 4-5-25 4-5-25 ND

78-117

4-Bromofluorobenzene

98

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
n,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	68-133				
Toluene-d8	98	79-123				

Toluene-d8 79-123 4-Bromofluorobenzene 98 78-117

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	68-133				
Toluene-d8	101	79-123				

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Date of Report: April 22, 2025 Samples Submitted: April 2, 2025 Laboratory Reference: 2504-035 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-133				
Toluene-d8	99	79-123				

78-117

4-Bromofluorobenzene

97

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-133				
Toluene-d8	99	79-123				

78-117

4-Bromofluorobenzene

99

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Office. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	04-035-08					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Date of Report: April 22, 2025 Samples Submitted: April 2, 2025 Laboratory Reference: 2504-035 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	04-035-08					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-133				
Toluene-d8	99	79-123				

4-Bromofluorobenzene 98 78-117

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	04-035-09					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-9D					
04-035-09					
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.40	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.50	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
Percent Recovery	Control Limits				
100	68-133				
98	79-123				
	MW-9D 04-035-09 ND	MW-9D 04-035-09 ND 0.20 ND 0.020 ND 0.20 ND 0.20 ND 0.40 ND 0.20 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 0.50 ND 0.20 ND 0.20 ND 1.0 ND 1.0 Percent Recovery Control Limits 100 68-133	MW-9D 04-035-09 0.20 EPA 8260D ND 0.020 EPA 8260D/SIM ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.40 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.50 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D Percent Recovery Control Limits 100 68-133	Result PQL Method Prepared MW-9D 04-035-09 04-035-09 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.40 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.50 EPA 8260D 4-5-25 ND 0.50 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 <td< td=""><td>Result PQL Method Prepared Analyzed MW-9D 04-035-09 Head of the control contro</td></td<>	Result PQL Method Prepared Analyzed MW-9D 04-035-09 Head of the control contro

78-117

98

4-Bromofluorobenzene

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Office. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Date of Report: April 22, 2025 Samples Submitted: April 2, 2025 Laboratory Reference: 2504-035 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	68-133				
Toluene-d8	99	79-123				

4-Bromofluorobenzene 100 78-117

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
Trip Blank					
04-035-11					
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	5.0	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.50	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	5.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	2.0	EPA 8260D	4-5-25	4-5-25	
ND	1.0	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	0.20	EPA 8260D	4-5-25	4-5-25	
ND	2.0	EPA 8260D	4-5-25	4-5-25	
	Trip Blank 04-035-11 ND	Trip Blank 04-035-11 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.20 ND 0.20 ND 5.0 ND 1.0 ND 0.20 ND 1.0 ND 0.20 ND </td <td>Trip Blank 04-035-11 1.0 EPA 8260D ND 0.020 EPA 8260D/SIM ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 5.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 0.50 EPA 8260D ND 0.50 EPA 8260D ND 0.20 EPA 8260D ND 0.20</td> <td>Result PQL Method Prepared Trip Blank 04-035-11 04-035-11 ND 1.0 EPA 8260D 4-5-25 ND 0.020 EPA 8260D/SIM 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 0.50 EPA 8260D 4-5-25 ND 0.20 EPA 8260D<td>Result PQL Method Prepared Analyzed Trip Blank 04-035-11 04-035-11 FPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D/SIM 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.50 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4</td></td>	Trip Blank 04-035-11 1.0 EPA 8260D ND 0.020 EPA 8260D/SIM ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 5.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 0.50 EPA 8260D ND 0.50 EPA 8260D ND 0.20 EPA 8260D ND 0.20	Result PQL Method Prepared Trip Blank 04-035-11 04-035-11 ND 1.0 EPA 8260D 4-5-25 ND 0.020 EPA 8260D/SIM 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 0.20 EPA 8260D 4-5-25 ND 1.0 EPA 8260D 4-5-25 ND 0.50 EPA 8260D 4-5-25 ND 0.20 EPA 8260D <td>Result PQL Method Prepared Analyzed Trip Blank 04-035-11 04-035-11 FPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D/SIM 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.50 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4</td>	Result PQL Method Prepared Analyzed Trip Blank 04-035-11 04-035-11 FPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D/SIM 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 1.0 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4-5-25 ND 0.50 EPA 8260D 4-5-25 4-5-25 ND 0.20 EPA 8260D 4-5-25 4

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	04-035-11					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
m,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-133				
Toluene-d8	98	79-123				

78-117

4-Bromofluorobenzene

97

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0405W2					
Chloromethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Bromomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Chloroethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Acetone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
lodomethane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Carbon Disulfide	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methylene Chloride	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Acrylonitrile	ND	0.50	EPA 8260D	4-5-25	4-5-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Vinyl Acetate	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Butanone	ND	5.0	EPA 8260D	4-5-25	4-5-25	
Bromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Chloroform	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Benzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Trichloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Dibromomethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromodichloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-5-25	4-5-25	
Toluene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Tetrachloroethene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
2-Hexanone	ND	2.0	EPA 8260D	4-5-25	4-5-25	

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	Rooun	. 42	Motriou	Tropurou	Analyzou	i lugo
Laboratory ID:	MB0405W2					
Dibromochloromethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	4-5-25	4-5-25	
Chlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Ethylbenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
n,p-Xylene	ND	0.40	EPA 8260D	4-5-25	4-5-25	
o-Xylene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Styrene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
Bromoform	ND	1.0	EPA 8260D	4-5-25	4-5-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-5-25	4-5-25	
trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	4-5-25	4-5-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-5-25	4-5-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Naphthalene	ND	1.0	EPA 8260D	4-5-25	4-5-25	
Surrogate:	Percent Recovery	Control Limits				
D:1	00	00.400				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	98	68-133
Toluene-d8	100	79-123
4-Bromofluorobenzene	98	78-117

Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Chloromethane	9.03	9.79	10.0	10.0	ND	90	98	36-162	8	19	
Vinyl Chloride	8.56	9.21	10.0	10.0	ND	86	92	62-121	7	15	
Bromomethane	9.13	9.86	10.0	10.0	ND	91	99	48-166	8	22	
Chloroethane	9.21	9.91	10.0	10.0	ND	92	99	62-129	7	14	
Trichlorofluoromethane	8.70	9.36	10.0	10.0	ND	87	94	77-120	7	16	
1,1-Dichloroethene	9.37	10.1	10.0	10.0	ND	94	101	76-119	7	15	
Acetone	10.0	12.0	10.0	10.0	ND	100	120	56-132	18	17	W
Iodomethane	9.04	9.32	10.0	10.0	ND	90	93	54-121	3	21	
Carbon Disulfide	8.59	8.63	10.0	10.0	ND	86	86	47-123	0	16	
Methylene Chloride	8.86	10.0	10.0	10.0	ND	89	100	74-114	12	16	
(trans) 1,2-Dichloroethene	9.74	10.6	10.0	10.0	ND	97	106	79-120	8	16	
1,1-Dichloroethane	9.57	10.5	10.0	10.0	ND	96	105	77-122	9	15	
Vinyl Acetate	8.63	10.0	10.0	10.0	ND	86	100	54-123	15	17	
(cis) 1,2-Dichloroethene	9.88	10.8	10.0	10.0	ND	99	108	81-128	9	16	
2-Butanone	9.16	10.3	10.0	10.0	ND	92	103	57-142	12	15	
Bromochloromethane	10.1	11.0	10.0	10.0	ND	101	110	80-129	9	17	
Chloroform	9.65	10.8	10.0	10.0	ND	97	108	75-126	11	16	
1,1,1-Trichloroethane	9.59	10.4	10.0	10.0	ND	96	104	74-126	8	17	
Carbon Tetrachloride	9.71	10.5	10.0	10.0	ND	97	105	70-128	8	18	
Benzene	9.53	10.5	10.0	10.0	ND	95	105	76-122	10	16	
1,2-Dichloroethane	9.72	10.9	10.0	10.0	ND	97	109	70-126	11	17	
Trichloroethene	10.4	11.5	10.0	10.0	ND	104	115	80-130	10	12	
1,2-Dichloropropane	10.0	11.1	10.0	10.0	ND	100	111	79-121	10	17	
Dibromomethane	10.1	11.6	10.0	10.0	ND	101	116	81-122	14	16	
Bromodichloromethane	10.7	12.0	10.0	10.0	ND	107	120	82-127	11	17	
(cis) 1,3-Dichloropropene	10.6	11.8	10.0	10.0	ND	106	118	81-128	11	17	
Methyl Isobutyl Ketone	9.72	11.2	10.0	10.0	ND	97	112	62-130	14	14	W
Toluene	10.0	11.0	10.0	10.0	ND	100	110	75-124	10	19	
(trans) 1,3-Dichloropropene	11.0	12.2	10.0	10.0	ND	110	122	71-124	10	18	
1,1,2-Trichloroethane	10.9	12.2	10.0	10.0	ND	109	122	76-126	11	16	
Tetrachloroethene	10.9	11.9	10.0	10.0	ND	109	119	84-126	9	19	
2-Hexanone	9.86	11.0	10.0	10.0	ND	99	110	41-156	11	23	
Dibromochloromethane	11.6	12.7	10.0	10.0	ND	116	127	74-131	9	18	

Date of Report: April 22, 2025 Samples Submitted: April 2, 2025 Laboratory Reference: 2504-035 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
1,2-Dibromoethane	10.7	12.1	10.0	10.0	ND	107	121	74-131	12	16	
Chlorobenzene	10.8	11.9	10.0	10.0	ND	108	119	84-121	10	16	
1,1,1,2-Tetrachloroethane	11.1	12.2	10.0	10.0	ND	111	122	82-125	9	17	
Ethylbenzene	10.9	11.9	10.0	10.0	ND	109	119	85-125	9	17	
m,p-Xylene	21.7	23.8	20.0	20.0	ND	109	119	84-124	9	17	
o-Xylene	11.0	12.1	10.0	10.0	ND	110	121	84-126	10	17	
Styrene	11.2	12.3	10.0	10.0	ND	112	123	83-131	9	19	
Bromoform	10.5	11.9	10.0	10.0	ND	105	119	67-137	13	18	
1,1,2,2-Tetrachloroethane	10.8	12.3	10.0	10.0	ND	108	123	56-143	13	15	
1,2,3-Trichloropropane	11.4	12.7	10.0	10.0	ND	114	127	61-125	11	15	V
1,4-Dichlorobenzene	11.1	12.5	10.0	10.0	ND	111	125	80-126	12	15	
1,2-Dichlorobenzene	11.6	12.9	10.0	10.0	ND	116	129	79-127	11	16	V
1,2-Dibromo-3-chloropropane	12.3	12.8	10.0	10.0	ND	123	128	54-143	4	19	
Naphthalene	10.3	11.8	10.0	10.0	ND	103	118	48-143	14	17	
Surrogate:											
Dibromofluoromethane						98	100	68-133			
Toluene-d8						100	101	79-123			
4-Bromofluorobenzene						100	100	78-117			

Project: 553-8472-006

GASOLINE RANGE ORGANICS NWTPH-Gx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-122				
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-122				
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-122				
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	61-122				
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-122				
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	61-122				

Project: 553-8472-006

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0404W1					
Gasoline	ND	100	NWTPH-Gx	4-4-25	4-4-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	61-122				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-03	35-04									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		ļ	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						83	78	61-122			
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
o-Xylene	5230	5250	5000	5000	ND	105	105	75-125	0	15	
Surrogate:		•					•			•	•
Fluorobenzene						94	91	61-122			

Project: 553-8472-006

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Onits. Ing/L (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S			•		
Laboratory ID:	04-035-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	4-7-25	4-7-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	4-7-25	4-7-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
, ,						
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Diesel Range Organics	ND	0.20	NWTPH-Dx	4-7-25	4-7-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	4-7-25	4-7-25	
Surrogate:	Percent Recovery	Control Limits		-	-	
o-Terphenyl	104	50-150				
σ . σ. <i>μ</i> σγ.		00 .00				
						
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	4-7-25	4-7-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	4-7-25	4-7-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Diesel Range Organics	ND	0.20	NWTPH-Dx	4-7-25	4-7-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	4-7-25	4-7-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
c respirent	0,	00 700				
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Diesel Range Organics	ND	0.20	NWTPH-Dx	4-7-25	4-7-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	4-7-25	4-7-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Diesel Range Organics	ND	0.21	NWTPH-Dx	4-7-25	4-7-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	4-7-25 4-7-25	4-7-25 4-7-25	
		Control Limits	INVVII TI-DX	4 -1-23	4-1-20	
Surrogate:	Percent Recovery	50-150				
o-Terphenyl	96	50-150				

Project: 553-8472-006

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0407W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	4-7-25	4-7-25 13:02	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	4-7-25	4-7-25 13:02	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	04-03	35-04								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	40	_
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	40	
Surrogate:										_
o-Terphenyl						91 92	50-150			

Project: 553-8472-006

TOTAL METALS EPA 200.8/6010D/7470A

Date

Date

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Antimony	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0033	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Iron	ND	0.056	EPA 6010D	4-8-25	4-10-25	
Lead	ND	0.0011	EPA 200.8	4-8-25	4-8-25	
Magnesium	8.9	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	ND	0.011	EPA 6010D	4-8-25	4-10-25	
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	
Nickel	ND	0.022	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.028	EPA 200.8	4-8-25	4-8-25	

Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Antimony	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0033	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Iron	ND	0.056	EPA 6010D	4-8-25	4-10-25	
Lead	ND	0.0011	EPA 200.8	4-8-25	4-8-25	
Magnesium	34	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	ND	0.011	EPA 6010D	4-8-25	4-10-25	
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	
Nickel	ND	0.022	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.028	EPA 200.8	4-8-25	4-8-25	

Project: 553-8472-006

TOTAL METALS EPA 200.8/6010D/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Antimony	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0033	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Iron	0.057	0.056	EPA 6010D	4-8-25	4-10-25	
Lead	ND	0.0011	EPA 200.8	4-8-25	4-8-25	
Magnesium	70	11	EPA 6010D	4-8-25	4-10-25	
Manganese	ND	0.011	EPA 6010D	4-8-25	4-10-25	
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	
Nickel	ND	0.022	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.028	EPA 200.8	4-8-25	4-8-25	

Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Antimony	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0033	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Iron	0.87	0.056	EPA 6010D	4-8-25	4-10-25	
Lead	ND	0.0011	EPA 200.8	4-8-25	4-8-25	
Magnesium	24	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	0.14	0.011	EPA 6010D	4-8-25	4-10-25	
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	
Nickel	ND	0.022	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.028	EPA 200.8	4-8-25	4-8-25	

Project: 553-8472-006

TOTAL METALS EPA 200.8/6010D/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Antimony	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0033	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Iron	ND	0.056	EPA 6010D	4-8-25	4-11-25	
Lead	ND	0.0011	EPA 200.8	4-8-25	4-8-25	
Magnesium	29	1.1	EPA 6010D	4-8-25	4-11-25	
Manganese	0.018	0.011	EPA 6010D	4-8-25	4-11-25	
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	
Nickel	ND	0.022	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.028	EPA 200.8	4-8-25	4-8-25	

Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Antimony	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0033	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Iron	ND	0.056	EPA 6010D	4-8-25	4-10-25	
Lead	ND	0.0011	EPA 200.8	4-8-25	4-8-25	
Magnesium	30	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	0.020	0.011	EPA 6010D	4-8-25	4-10-25	
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	
Nickel	ND	0.022	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0056	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.028	EPA 200.8	4-8-25	4-8-25	

Project: 553-8472-006

TOTAL METALS EPA 6010D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Iron	0.22	0.056	EPA 6010D	4-8-25	4-10-25	
Magnesium	10	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	0.033	0.011	EPA 6010D	4-8-25	4-10-25	
Client ID:	MW-8D					
Laboratory ID:	04-035-08					
Iron	0.20	0.056	EPA 6010D	4-8-25	4-10-25	
Magnesium	18	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	0.013	0.011	EPA 6010D	4-8-25	4-10-25	
Client ID:	MW-9D					
Laboratory ID:	04-035-09					
Iron	0.88	0.056	EPA 6010D	4-8-25	4-10-25	
Magnesium	18	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	0.34	0.011	EPA 6010D	4-8-25	4-10-25	
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Iron	ND	0.056	EPA 6010D	4-8-25	4-10-25	
Magnesium	11	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	ND	0.011	EPA 6010D	4-8-25	4-10-25	

Project: 553-8472-006

TOTAL METALS EPA 200.8/6010D/7470A QUALITY CONTROL

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0408WM1					
Antimony	ND	0.0022	EPA 200.8	4-8-25	4-8-25	
Arsenic	ND	0.0013	EPA 200.8	4-8-25	4-8-25	
Beryllium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Cadmium	ND	0.0018	EPA 200.8	4-8-25	4-8-25	
Chromium	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Copper	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Lead	ND	0.00044	EPA 200.8	4-8-25	4-8-25	
Nickel	ND	0.0089	EPA 200.8	4-8-25	4-8-25	
Selenium	ND	0.0022	EPA 200.8	4-8-25	4-8-25	
Silver	ND	0.0044	EPA 200.8	4-8-25	4-8-25	
Thallium	ND	0.0022	EPA 200.8	4-8-25	4-8-25	
Zinc	ND	0.011	EPA 200.8	4-8-25	4-8-25	
Laboratory ID:	MB0408WM1					
Iron	ND	0.056	EPA 6010D	4-8-25	4-10-25	
Magnesium	ND	1.1	EPA 6010D	4-8-25	4-10-25	
Manganese	ND	0.011	EPA 6010D	4-8-25	4-10-25	
Laboratory ID:	MB0408W1					
Mercury	ND	0.00050	EPA 7470A	4-8-25	4-8-25	

Project: 553-8472-006

TOTAL METALS EPA 200.8/6010D/7470A QUALITY CONTROL

Analyte	Res	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	04-03	35-04									
	ORIG	DUP									
Antimony	ND	ND	NA	NA			NA	NA	NA	20	
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Beryllium	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Copper	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
Nickel	ND	ND	NA	NA			NA	NA	NA	20	
Selenium	ND	ND	NA	NA			NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Thallium	ND	ND	NA	NA			NA	NA	NA	20	
Zinc	ND	ND	NA	NA			NA	NA	NA	20	
ZIIIC	ND	ND_	INA	INA			INA	INA	INA	20	
Laboratory ID:		35-04									
Iron	0.866	0.855	NA	NA			NA	NA	1	20	
Magnesium	24.1	24.0	NA	NA			NA	NA	1	20	
Manganese	0.143	0.144	NA	NA			NA	NA	1	20	
Laboratory ID:	04-03	35-04									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES Laboratory ID:	04-01	35-04									
Edbordtory IB.	MS	MSD	MS	MSD		MS	MSD				
Antimony	0.229	0.213	0.222	0.222	ND	103	96	75-125	7	20	
Arsenic	0.234	0.212	0.222	0.222	ND	105	96	75-125 75-125	, 10	20	
Beryllium	0.234	0.212	0.222	0.222	ND	100	95	75-125 75-125	6	20	
Cadmium	0.223	0.205	0.222	0.222	ND	100	92	75-125 75-125	8	20	
Chromium	0.223	0.203	0.222	0.222	ND	98	91	75-125 75-125	8	20	
	0.215	0.202	0.222	0.222	ND	97	89	75-125 75-125		20	
Copper Lead	0.217	0.197	0.222	0.222	ND ND	98	91	75-125 75-125	9 8	20	
Nickel			0.222	0.222		98	91	75-125 75-125		20	
	0.217	0.201			ND				8		
Selenium	0.246	0.215	0.222	0.222	ND	111	97	75-125	13	20	
Silver	0.207	0.195	0.222	0.222	ND	93	88	75-125	6	20	
Thallium	0.218	0.203	0.222	0.222	ND	98	92	75-125	7	20	
Zinc	0.234	0.210	0.222	0.222	ND	106	95	75-125	11	20	
Laboratory ID:		35-04									
Iron	23.3	24.0	22.2	22.2	0.866	101	104	75-125	3	20	
Magnesium	44.1	44.7	22.2	22.2	24.1	90	93	75-125	1	20	
Manganese	0.362	0.368	0.222	0.222	0.143	99	101	75-125	2	20	
Laboratory ID:	04-0:	35-04									
Mercury		0.00608	0.00625	0.00625	ND	99	97	75-125	2	20	
iviologiy	0.00010	3.0000	0.00020	0.00020	יאט	- 33	<u> </u>	10-120			

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A

3, = (FF)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Calcium	14	1.1	EPA 6010D		4-9-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Magnesium	9.3	1.1	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Mercury	ND	0.00050	EPA 7470A		4-8-25	
Nickel	ND	0.020	EPA 200.8		4-8-25	
Potassium	2.6	1.1	EPA 6010D		4-9-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Sodium	10	1.1	EPA 6010D		4-9-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A

g. = (FF)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3S			-		
Laboratory ID:	04-035-02					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Calcium	52	1.1	EPA 6010D		4-9-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Magnesium	36	1.1	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Mercury	ND	0.00050	EPA 7470A		4-8-25	
Nickel	ND	0.020	EPA 200.8		4-8-25	
Potassium	4.2	1.1	EPA 6010D		4-9-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Sodium	21	1.1	EPA 6010D		4-9-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Calcium	100	10	EPA 6010D		4-9-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Magnesium	72	10	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Mercury	ND	0.00050	EPA 7470A		4-8-25	
Nickel	ND	0.020	EPA 200.8		4-8-25	
Potassium	6.3	1.1	EPA 6010D		4-9-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Sodium	25	1.1	EPA 6010D		4-9-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Calcium	35	1.1	EPA 6010D		4-9-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Iron	0.37	0.056	EPA 6010D		4-9-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Magnesium	23	1.1	EPA 6010D		4-9-25	
Manganese	0.096	0.011	EPA 6010D		4-9-25	
Mercury	ND	0.00050	EPA 7470A		4-8-25	
Nickel	ND	0.020	EPA 200.8		4-8-25	
Potassium	3.1	1.1	EPA 6010D		4-9-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Sodium	19	1.1	EPA 6010D		4-9-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Calcium	48	1.1	EPA 6010D		4-9-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Magnesium	32	1.1	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Mercury	ND	0.00050	EPA 7470A		4-8-25	
Nickel	ND	0.020	EPA 200.8		4-8-25	
Potassium	3.9	1.1	EPA 6010D		4-9-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Sodium	18	1.1	EPA 6010D		4-9-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A

				Date	Date	
Analyt	Result	PQL	Method	Prepared	Analyzed	Flags
е						
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Calcium	48	1.1	EPA 6010D		4-9-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Magnesium	32	1.1	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Mercur	ND	0.00050	EPA 7470A		4-8-25	
у						
Nickel	ND	0.020	EPA 200.8		4-8-25	
Potassium	4.2	1.1	EPA 6010D		4-9-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Sodium	18	1.1	EPA 6010D		4-9-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	

Client ID:	MW-7D				
Laboratory ID:	04-035-07				
Calcium	15	1.1	EPA 6010D	4-9-25	
Iron	0.21	0.056	EPA 6010D	4-9-25	
Magnesium	11	1.1	EPA 6010D	4-9-25	
Manganese	0.033	0.011	EPA 6010D	4-9-25	
Potassium	2.3	1.1	EPA 6010D	4-9-25	
Sodium	12	1.1	EPA 6010D	4-9-25	

Project: 553-8472-006

DISSOLVED METALS EPA 6010D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	04-035-08					
Calcium	28	1.1	EPA 6010D		4-9-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Magnesium	19	1.1	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Potassium	2.7	1.1	EPA 6010D		4-9-25	
Sodium	21	1.1	EPA 6010D		4-9-25	

Client ID:	MW-9D			
Laboratory ID:	04-035-09			
Calcium	31	1.1	EPA 6010D	4-9-25
Iron	0.69	0.056	EPA 6010D	4-9-25
Magnesium	19	1.1	EPA 6010D	4-9-25
Manganese	0.32	0.011	EPA 6010D	4-9-25
Potassium	1.8	1.1	EPA 6010D	4-9-25
Sodium	26	1.1	EPA 6010D	4-9-25

Client ID:	MW-10D			
Laboratory ID:	04-035-10			
Calcium	20	1.1	EPA 6010D	4-9-25
Iron	ND	0.056	EPA 6010D	4-9-25
Magnesium	12	1.1	EPA 6010D	4-9-25
Manganese	ND	0.011	EPA 6010D	4-9-25
Potassium	2.2	1.1	EPA 6010D	4-9-25
Sodium	15	1.1	EPA 6010D	4-9-25

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0408D1					
Antimony	ND	0.0050	EPA 200.8		4-8-25	
Arsenic	ND	0.0030	EPA 200.8		4-8-25	
Beryllium	ND	0.010	EPA 200.8		4-8-25	
Cadmium	ND	0.0040	EPA 200.8		4-8-25	
Chromium	ND	0.010	EPA 200.8		4-8-25	
Copper	ND	0.010	EPA 200.8		4-8-25	
Lead	ND	0.0010	EPA 200.8		4-8-25	
Nickel	ND	0.020	EPA 200.8		4-8-25	
Selenium	ND	0.0050	EPA 200.8		4-8-25	
Silver	ND	0.010	EPA 200.8		4-8-25	
Thallium	ND	0.0050	EPA 200.8		4-8-25	
Zinc	ND	0.025	EPA 200.8		4-8-25	
Laboratory ID:	MB0409D1					
Calcium	ND	1.1	EPA 6010D		4-9-25	
Iron	ND	0.056	EPA 6010D		4-9-25	
Magnesium	ND	1.1	EPA 6010D		4-9-25	
Manganese	ND	0.011	EPA 6010D		4-9-25	
Potassium	ND	1.1	EPA 6010D		4-9-25	
Sodium	ND	1.1	EPA 6010D		4-9-25	
Laboratory ID:	MB0400D4					
Laboratory ID:	MB0408D1	0.00050	EDA 74704		4.0.05	
Mercury	ND	0.00050	EPA 7470A		4-8-25	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A QUALITY CONTROL

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										_
Laboratory ID:	04-03	35-04								
	ORIG	DUP								
Antimony	ND	ND	NA	NA		NA	NA	NA	20	
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Beryllium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	ND	ND	NA	NA		NA	NA	NA	20	
Copper	ND	ND	NA	NA		NA	NA	NA	20	
Lead	ND	ND	NA	NA		NA	NA	NA	20	
Nickel	ND	ND	NA	NA		NA	NA	NA	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Thallium	ND	ND	NA	NA		NA	NA	NA	20	
Zinc	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	04-03	35-04								
Calcium	34.5	34.7	NA	NA		NA	NA	1	20	
Iron	0.370	0.368	NA	NA		NA	NA	0	20	
Magnesium	22.9	23.2	NA	NA		NA	NA	1	20	
Manganese	0.0957	0.0963	NA	NA		NA	NA	1	20	
Potassium	3.11	3.07	NA	NA		NA	NA	1	20	
Sodium	19.3	19.3	NA	NA		NA	NA	0	20	
Laboratory ID:	04-03	35-04								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	

Project: 553-8472-006

DISSOLVED METALS EPA 200.8/6010D/7470A QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	04-0	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Antimony	0.0855	0.0854	0.0800	0.0800	ND	107	107	75-125	0	20	_
Arsenic	0.0849	0.0850	0.0800	0.0800	ND	106	106	75-125	0	20	
Beryllium	0.0824	0.0813	0.0800	0.0800	ND	103	102	75-125	1	20	
Cadmium	0.0826	0.0837	0.0800	0.0800	ND	103	105	75-125	1	20	
Chromium	0.0723	0.0723	0.0800	0.0800	ND	90	90	75-125	0	20	
Copper	0.0709	0.0725	0.0800	0.0800	ND	89	91	75-125	2	20	
Lead	0.0806	0.0817	0.0800	0.0800	ND	101	102	75-125	1	20	
Nickel	0.0698	0.0711	0.0800	0.0800	ND	87	89	75-125	2	20	
Selenium	0.187	0.195	0.200	0.200	ND	93	98	75-125	4	20	
Silver	0.0651	0.0655	0.0800	0.0800	ND	81	82	75-125	1	20	
Thallium	0.0798	0.0810	0.0800	0.0800	ND	100	101	75-125	1	20	
Zinc	0.0915	0.0935	0.0800	0.0800	ND	114	117	75-125	2	20	
Laboratory ID:	04-0	35-04									
Calcium	57.4	57.1	22.2	22.2	34.5	103	102	75-125	1	20	
Iron	25.2	25.4	22.2	22.2	0.370	112	113	75-125	1	20	
Magnesium	45.2	45.5	22.2	22.2	22.9	100	102	75-125	1	20	
Manganese	0.704	0.711	0.556	0.556	0.0957	109	111	75-125	1	20	
Potassium	29.1	29.3	22.2	22.2	3.11	117	118	75-125	1	20	
Sodium	43.0	43.1	22.2	22.2	19.3	107	107	75-125	0	20	
Laboratory ID:	04-0	35-04									
Mercury	0.00595	0.00600	0.00625	0.00625	ND	95	96	75-125	1	20	

Project: 553-8472-006

CHLORIDE SM 4500-CI E

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2S					1 1 1 9 2
Laboratory ID:	04-035-01					
Chloride	2.7	2.0	SM 4500-CI E	4-4-25	4-4-25	
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Chloride	68	2.0	SM 4500-CI E	4-4-25	4-4-25	
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Chloride	49	2.0	SM 4500-CI E	4-4-25	4-4-25	
					· · · - ·	
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Chloride	26	2.0	SM 4500-CI E	4-4-25	4-4-25	
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Chloride	62	2.0	SM 4500-CI E	4-4-25	4-4-25	
Client ID:	MW-13S					
Laboratory ID:	04-035-06		014 4500 015	4.4.05	4.4.05	
Chloride	64	2.0	SM 4500-CI E	4-4-25	4-4-25	
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Chloride	3.7	2.0	SM 4500-CI E	4-4-25	4-4-25	
Olicert ID.	MW OD					
Client ID:	MW-8D					
Laboratory ID: Chloride	04-035-08	2.0	SM 4500-CI E	4-4-25	4-4-25	
Chiloride	16	2.0	3IVI 43UU-CI E	4-4-20	4-4-20	
Client ID:	MW-9D					
Laboratory ID:	04-035-09					
Chloride	41	2.0	SM 4500-CI E	4-4-25	4-4-25	

Project: 553-8472-006

CHLORIDE SM 4500-CI E

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Chloride	3.7	2.0	SM 4500-CI E	4-4-25	4-4-25	

Project: 553-8472-006

CHLORIDE SM 4500-CI E QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0404W1					
Chloride	ND	2.0	SM 4500-CLF	4-4-25	4-4-25	

	_				Source	_	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-03	35-04									
	ORIG	DUP									
Chloride	25.6	26.0	N	IA.	NA		NA	NA	2	21	
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	73.4	75.2	50.0	50.0	25.6	96	99	81-115	2	20	
SPIKE BLANK											
Laboratory ID:	SB04	04W1									
	S	В	S	SB			SB				
Chloride	48	3.2	50	0.0	NA		96	77-115	NA	NA	

Project: 553-8472-006

SULFATE ASTM D516-11

Analyte	Units: mg/L				Date	Date	
Client ID:	Analyte	Result	PQL	Method			Flags
Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-3S Laboratory ID: 04-035-02 Sulfate 75 25 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-4S Laboratory ID: 04-035-03 Sulfate 100 50 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-5S MW-5S MW-5S MW-6S MW-10-25 MW-10-25		MW-2S			-	_	
Client ID:	Laboratory ID:	04-035-01					
Laboratory ID: 04-035-02 Sulfate 75 25 ASTM D516-11 4-10-25 4-10-25	Sulfate	ND	5.0	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-02 Sulfate 75 25 ASTM D516-11 4-10-25 4-10-25							
Laboratory ID: 04-035-02 Sulfate 75 25 ASTM D516-11 4-10-25 4-10-25	Client ID:	MW 25					
Sulfate 75 25 ASTM D516-11 4-10-25 4-10-25							
Client ID: MW-4S Laboratory ID: 04-035-03 Sulfate 100 50 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-5S Laboratory ID: 04-035-04 Sulfate 79 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-6S Laboratory ID: 04-035-05 Sulfate 51 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-13S Laboratory ID: 04-035-06 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09 O4-035-09 ASTM D516-11 4-10-25 4-10-25			25	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-03	Canaco			, com Boto II	1 10 20	1 10 20	
Laboratory ID: 04-035-03	Client ID:	MW-4S					
Sulfate 100 50 ASTM D516-11 4-10-25 4-10-25							
Client ID: MW-5S Laboratory ID: 04-035-04 Sulfate 79 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-6S Laboratory ID: 04-035-05 Sulfate 51 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-13S Laboratory ID: 04-035-06 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09 4-035-09			50	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID:							
Sulfate 79 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-6S Laboratory ID: 04-035-05 Sulfate 51 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-13S Laboratory ID: 04-035-06 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09	Client ID:	MW-5S					
Client ID: MW-6S Laboratory ID: 04-035-05 Sulfate 51 20 ASTM D516-11 4-10-25 4-10-25	Laboratory ID:	04-035-04					
Laboratory ID:	Sulfate	79	20	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-05							
Sulfate 51 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-13S ASTM D516-11 4-10-25 4-10-25 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D ASTM D516-11 4-10-25 4-10-25 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D ASTM D516-11 4-10-25 4-10-25 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D ASTM D516-11 4-10-25 4-10-25 Laboratory ID: 04-035-09 4-10-25 4-10-25	Client ID:	MW-6S					
Client ID: MW-13S Laboratory ID: 04-035-06 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09 04-035-09	Laboratory ID:	04-035-05					
Laboratory ID: 04-035-06 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D ASTM D516-11 4-10-25 4-10-25 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D ASTM D516-11 4-10-25 4-10-25 Laboratory ID: 04-035-09	Sulfate	51	20	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-06 Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D ASTM D516-11 4-10-25 4-10-25 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D ASTM D516-11 4-10-25 4-10-25 Laboratory ID: 04-035-09							
Sulfate 54 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 ASTM D516-11 4-10-25 4-10-25 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D ASTM D516-11 4-10-25 4-10-25 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D ASTM D516-11 MW-9D ASTM D516-11 ASTM D516-11	Client ID:	MW-13S					
Client ID: MW-7D Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09	Laboratory ID:	04-035-06					
Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09	Sulfate	54	20	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-07 Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09							
Sulfate ND 5.0 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09							
Client ID: MW-8D Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09							
Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09	Sulfate	ND	5.0	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-08 Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09							
Sulfate 57 20 ASTM D516-11 4-10-25 4-10-25 Client ID: MW-9D Laboratory ID: 04-035-09	Client ID:	MW-8D					
Client ID: MW-9D Laboratory ID: 04-035-09	Laboratory ID:	04-035-08					
Laboratory ID: 04-035-09	Sulfate	57	20	ASTM D516-11	4-10-25	4-10-25	
Laboratory ID: 04-035-09							
Sulfate 49 20 ASTM D516-11 4-10-25 4-10-25							
	Sulfate	49	20	ASTM D516-11	4-10-25	4-10-25	

Project: 553-8472-006

SULFATE ASTM D516-11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Sulfate	11	5.0	ASTM D516-11	4-10-25	4-10-25	

Project: 553-8472-006

SULFATE ASTM D516-11 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0410W1					
Sulfate	ND	5.0	ASTM D516-11	4-10-25	4-10-25	

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-03	35-04									
	ORIG	DUP									
Sulfate	78.8	80.4	N	IA	NA	١	NΑ	NA	2	11	
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	185	179	100.0	100.0	78.8	106	100	69-134	3	20	
SPIKE BLANK											
Laboratory ID:	SB04	10W1									
	S	В	S	В	•	5	SB			•	•
Sulfate	9.	59	10	0.0	NA	ę	96	81-106	NA	NA	

Project: 553-8472-006

TOTAL DISSOLVED SOLIDS SM 2540C

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Total Dissolved Solids	160	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Total Dissolved Solids	420	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-4S					
Laboratory ID:	04-035-03					
Total Dissolved Solids	710	13	SM 2540C	4-4-25	4-4-25	
		•		· · · - ·	· · · - ·	
Client ID:	MW-5S					
Laboratory ID:	04-035-04	40	014.05.400	1.1.05	1.1.05	
Total Dissolved Solids	330	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Total Dissolved Solids	390	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Total Dissolved Solids	430	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Total Dissolved Solids	160	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-8D					
Laboratory ID:	04-035-08					
Total Dissolved Solids	260	13	SM 2540C	4-4-25	4-4-25	
Client ID:	MW-9D					
Laboratory ID:	04-035-09	40	CM 05400	4 4 05	4 4 05	
Total Dissolved Solids	290	13	SM 2540C	4-4-25	4-4-25	

Project: 553-8472-006

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Total Dissolved Solids	180	13	SM 2540C	4-4-25	4-4-25	

Project: 553-8472-006

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0404W1					
Total Dissolved Solids	ND	13	SM 2540C	4-4-25	4-4-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	04-03	35-04							
	ORIG	DUP							
Total Dissolved Solids	331	323	NA	NA	NA	NA	2	29	
SPIKE BLANK									
Laboratory ID:	SB04	04W1							
	S	В	SB		SB				
Total Dissolved Solids	43	31	500	NA	86	76-120	NA	NA	

Project: 553-8472-006

TOTAL ALKALINITY SM 2320B

Units: mg CaCO3/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Total Alkalinity	78	2.0	SM 2320B	4-8-25	4-8-25	
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Total Alkalinity	94	2.0	SM 2320B	4-8-25	4-8-25	
Oli A ID	MN4/ 40					
Client ID:	MW-4S					
Laboratory ID:	04-035-03		014 00000	4.0.05	4.0.05	
Total Alkalinity	160	2.0	SM 2320B	4-8-25	4-8-25	
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Total Alkalinity	100	2.0	SM 2320B	4-8-25	4-8-25	
Total / ilitalinity	100	2.0	OW ZOZOB	1020	1020	
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Total Alkalinity	86	2.0	SM 2320B	4-8-25	4-8-25	
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Total Alkalinity	86	2.0	SM 2320B	4-8-25	4-8-25	
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Total Alkalinity	94	2.0	SM 2320B	4-8-25	4-8-25	
Client ID:	MW-8D					
Laboratory ID:	04-035-08					
Total Alkalinity	92	2.0	SM 2320B	4-8-25	4-8-25	
Client ID:	MW-9D					
Laboratory ID:	04-035-09					
Total Alkalinity	100	2.0	SM 2320B	4-8-25	4-8-25	

Project: 553-8472-006

TOTAL ALKALINITY SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Total Alkalinity	94	2.0	SM 2320B	4-8-25	4-8-25	

Project: 553-8472-006

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0408W1					
Total Alkalinity	ND	2.0	SM 2320B	4-8-25	4-8-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-0	35-04									
	ORIG	DUP									
Total Alkalinity	104	102	N	۱A	NA		NA	NA	2	10	
MATRIX SPIKES											
Laboratory ID:	04-0	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	184	184	100	100	104	80	80	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB04	08W1									
	S	В	5	SB			SB		•		
Total Alkalinity	94	l.0	1	00	NA		94	82-101	NA	NA	

Project: 553-8472-006

BICARBONATE SM 2320B

Client ID:	Units: mg CaCO3/L				Date	Date	
Laboratory ID: 04-035-01 Bicarbonate 78 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-3S Laboratory ID: 04-035-02 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-4S Laboratory ID: 04-035-03 Bicarbonate 160 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-5S Laboratory ID: 04-035-04 Bicarbonate 100 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-6S Laboratory ID: 04-035-04 Bicarbonate 100 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-6S Laboratory ID: 04-035-05 Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-13S Laboratory ID: 04-035-06 Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-7D Laboratory ID: 04-035-07 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25			PQL	Method	Prepared	Analyzed	Flags
Bicarbonate 78		_					
Client ID: MW-3S Laboratory ID: 04-035-02 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25							
Laboratory ID: 04-035-02	Bicarbonate	78	2.0	SM 2320B	4-10-25	4-10-25	
Laboratory ID: 04-035-02							
Sicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25	Client ID:	MW-3S					
Client ID:	Laboratory ID:	04-035-02					
Laboratory ID: 04-035-03	Bicarbonate	94	2.0	SM 2320B	4-10-25	4-10-25	
Laboratory ID: 04-035-03							
Bicarbonate 160 2.0 SM 2320B 4-10-25 4-10-25	Client ID:	MW-4S					
Bicarbonate 160 2.0 SM 2320B 4-10-25 4-10-25	Laboratory ID:	04-035-03					
Laboratory ID:	Bicarbonate	160	2.0	SM 2320B	4-10-25	4-10-25	
Laboratory ID:							
Bicarbonate 100 2.0 SM 2320B 4-10-25 4-10-25	Client ID:	MW-5S					
Client ID: MW-6S Laboratory ID: 04-035-05 Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-13S Laboratory ID: 04-035-06 04-035-06 04-035-06 04-035-07 04-035-07 04-035-07 04-035-07 04-035-07 04-035-07 04-035-08 04-035	Laboratory ID:	04-035-04					
Laboratory ID: 04-035-05	Bicarbonate	100	2.0	SM 2320B	4-10-25	4-10-25	
Laboratory ID: 04-035-05							
Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-13S Laboratory ID: 04-035-06 SM 2320B 4-10-25 4-10-25 Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-7D Autoratory ID: MW-8D Autoratory ID: Autoratory ID: MW-8D Laboratory ID: MW-8D Autoratory ID: MW-9D SM 2320B 4-10-25 4-10-25 Client ID: MW-9D MW-9D MW-9D MW-9D MW-9D	Client ID:	MW-6S					
Client ID: MW-13S Laboratory ID: 04-035-06 Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-7D 4-10-25 4-10-25 4-10-25 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D 4-10-25 4-10-25 4-10-25 4-10-25 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D MW-9D MW-9D MW-9D	Laboratory ID:	04-035-05					
Discription Discription	Bicarbonate	86	2.0	SM 2320B	4-10-25	4-10-25	
Discription Discription							
Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-7D MW-8D MW-8D MW-8D MW-8D MW-8D MW-8D MW-8D MW-8D MW-8D MW-9D MW-9D MW-320B 4-10-25 4-10	Client ID:	MW-13S					
Bicarbonate 86 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-7D Author (Control of the control of the	Laboratory ID:	04-035-06					
Laboratory ID: 04-035-07 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D	•	86	2.0	SM 2320B	4-10-25	4-10-25	
Laboratory ID: 04-035-07 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D							
Laboratory ID: 04-035-07 Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D	Client ID:	MW-7D					
Bicarbonate 94 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-8D Laboratory ID: 04-035-08 4-10-25 4-10-25 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D							
Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D		94	2.0	SM 2320B	4-10-25	4-10-25	
Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D							
Laboratory ID: 04-035-08 Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D	Client ID:	MW-8D					
Bicarbonate 92 2.0 SM 2320B 4-10-25 4-10-25 Client ID: MW-9D							
Client ID: MW-9D	•	92	2.0	SM 2320B	4-10-25	4-10-25	
	Client ID:	MW-9D					
Laboratory ID: 04-035-09	Laboratory ID:	04-035-09					
Bicarbonate 100 2.0 SM 2320B 4-10-25 4-10-25	Bicarbonate	100	2.0	SM 2320B	4-10-25	4-10-25	

Project: 553-8472-006

BICARBONATE SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Bicarbonate	94	2.0	SM 2320B	4-10-25	4-10-25	

Project: 553-8472-006

BICARBONATE SM 2320B QUALITY CONTROL

Matrix: Water
Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0408W1					
Bicarbonate	ND	2.0	SM 2320B	4-10-25	4-10-25	

					Source		rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-03	35-04									
	ORIG	DUP									
Bicarbonate	104	102	١	IA.	NA		NA	NA	2	10	
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Bicarbonate	184	184	100	100	104	80	80	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB04	08W1									
	S	В	5	SB	•		SB		•		
Bicarbonate	94	1.0	1	00	NA		94	82-101	NA	NA	

Project: 553-8472-006

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Onits: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	04-035-01					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MW-3S					
Laboratory ID:	04-035-02					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MINAL 4C					
Client ID:	MW-4S 04-035-03					
Laboratory ID:		0.053	CM 4500 NILIS D	4-11-25	4 11 OF	
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MW-5S					
Laboratory ID:	04-035-04					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MW-6S					
Laboratory ID:	04-035-05					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MW-13S					
Laboratory ID:	04-035-06					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Animonia	ND	0.000	3W 4300-W 13 D	4-11-23	4-11-25	
Client ID:	MW-7D					
Laboratory ID:	04-035-07					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MANA OF					
Client ID:	MW-8D 04-035-08					
Laboratory ID:	04-035-08 ND	0.052	CM 4500 NH2 D	1 11 OF	4 11 OF	
Ammonia	NU	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
Client ID:	MW-9D					
Laboratory ID:	04-035-09					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	
-						

Project: 553-8472-006

AMMONIA (as Nitrogen) SM 4500-NH₃ D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	_

Project: 553-8472-006

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0411W1					
Ammonia	ND	0.053	SM 4500-NH3 D	4-11-25	4-11-25	

			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Leve	el Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-035-04	ļ						
	ORIG DU	JP						
Ammonia	ND N	D NA	NA	NA	NA	NA	15	
MATRIX SPIKE								
Laboratory ID:	04-035-04	ļ						
	MS	MS		MS				
Ammonia	5.18	5.00	ND	104	75-111	NA	NA	
MATRIX SPIKES								
Laboratory ID:	04-035-04	ļ						
	MS MS	SD MS MS	SD	MS MSD				
Ammonia	5.18 5.2	5.00 5.0	00 ND	104 105	75-111	1	20	
SPIKE BLANK								
Laboratory ID:	SB0411W	1						
	SB	SB		SB				
Ammonia	4.93	5.00	NA	99	81-110	NA	NA	

Project: 553-8472-006

TOTAL ORGANIC CARBON SM 5310B

Client ID: MW-3S Laboratory ID: 04-035-01 Client ID: MW-4S Laboratory ID: 04-035-02 Client ID: MW-4S Laboratory ID: 04-035-02 Client ID: MW-4S Laboratory ID: 04-035-03 Total Organic Carbon 5.0 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-4S Laboratory ID: 04-035-03 Total Organic Carbon 5.0 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-6S Laboratory ID: 04-035-04 Client ID: MW-6S Laboratory ID: 04-035-05 Client ID: MW-6S Laboratory ID: 04-035-05 Client ID: MW-6S Laboratory ID: 04-035-06 Client ID: MW-13S Laboratory ID: 04-035-06 Client ID: MW-7D Laboratory ID: 04-035-07 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-7D Laboratory ID: 04-035-07 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-7D Laboratory ID: 04-035-07 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-7D Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-09 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09 Total Organic Carbon 3.1 1.0 SM 5310B 4-9-25 4-9-25	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:			ı QL	Method	Trepared	Analyzeu	riags
Total Organic Carbon ND							
Client ID:			1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID:							
Total Organic Carbon 3.0 1.0 SM 5310B 4-9-25 4-9-25	Client ID:	MW-3S					
Client ID:	Laboratory ID:	04-035-02					
Laboratory ID: O4-035-03 Total Organic Carbon S.0 1.0 SM 5310B 4-9-25 4-9-25	Total Organic Carbon	3.0	1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID: O4-035-03 Total Organic Carbon S.0 1.0 SM 5310B 4-9-25 4-9-25							
Total Organic Carbon 5.0 1.0 SM 5310B 4-9-25 4-9-25							
Client ID: MW-5S Laboratory ID: 04-035-04 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-6S Laboratory ID: 04-035-05 4-9-25 4-9-25 4-9-25 Client ID: MW-13S Laboratory ID: 04-035-06 4-9-25 4-9-25 4-9-25 Client ID: MW-7D Laboratory ID: 04-035-07 4-9-25 4-9-25 4-9-25 Client ID: MW-7D Laboratory ID: 04-035-07 4-9-25 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-08 4-9-25 4-9-25 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-08 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09 4-9-25 4-9-25			1.0	CM F240D	4.0.05	4.0.05	
Laboratory ID:	Total Organic Carbon	5.0	1.0	2INI 23 IUB	4-9-25	4-9-25	
Laboratory ID:	Client ID:	MW-5S					
Client ID:		04-035-04					
Laboratory ID:	Total Organic Carbon	ND	1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID:							
Total Organic Carbon 3.0 1.0 SM 5310B 4-9-25 4-9-25							
Client ID: MW-13S Laboratory ID: 04-035-06 Total Organic Carbon 3.1 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-7D MW-8D MW-8D 4-9-25 4-9-25 4-9-25 Client ID: MW-8D MW-8D 4-9-25 4-9-25 4-9-25 Client Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D MW-9D 4-9-25 4-9-25 4-9-25 Laboratory ID: 04-035-09 04-035-09 4-9-25 4-9-25							
Laboratory ID:	Total Organic Carbon	3.0	1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID:	Client ID:	MW-13S					
Total Organic Carbon 3.1 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-7D Laboratory ID: 04-035-07 1.0 SM 5310B 4-9-25 4-9-25 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D 4-9-25 4-9-25 4-9-25 Collient ID: MW-9D ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D ND 1.0 MW-9D ND 1.0 ND 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Laboratory ID: 04-035-07 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09			1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID: 04-035-07 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09							
Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-8D Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09	Client ID:	MW-7D					
Client ID: MW-8D Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09		04-035-07					
Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09	Total Organic Carbon	ND	1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID: 04-035-08 Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09	Client ID:	MW-8D					
Total Organic Carbon ND 1.0 SM 5310B 4-9-25 4-9-25 Client ID: MW-9D Laboratory ID: 04-035-09							
Client ID: MW-9D Laboratory ID: 04-035-09			1.0	SM 5310B	4-9-25	4-9-25	
Laboratory ID: 04-035-09	Total Organio Odibon	145	1.0	CIVI 00 10D	1 0-20	1 0-20	
	Client ID:	MW-9D					
Total Organic Carbon 3.1 1.0 SM 5310B 4-9-25 4-9-25	Laboratory ID:	04-035-09					
	Total Organic Carbon	3.1	1.0	SM 5310B	4-9-25	4-9-25	

Project: 553-8472-006

TOTAL ORGANIC CARBON SM 5310B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	04-035-10					
Total Organic Carbon	ND	1.0	SM 5310B	4-9-25	4-9-25	

Project: 553-8472-006

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0409W1					
Total Organic Carbon	ND	1.0	SM 5310B	4-9-25	4-9-25	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-03	35-04									
	ORIG	DUP									
Total Organic Carbon	ND	ND	N	A	NA	1	NΑ	NA	NA	11	
MATRIX SPIKES											
Laboratory ID:	04-03	35-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Organic Carbon	11.2	10.8	10.0	10.0	ND	112	108	85-120	4	20	
SPIKE BLANK											
Laboratory ID:	SB04	09W1									
	S	В	S	В	•	,	SB			•	
Total Organic Carbon	9.9	99	10	.0	NA	1	00	79-120	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Service Request No:K2503482

Nichelle Biffin Onsite Environmental Incorporated 14648 Northeast 95th Street Redmond, WA 98052

Laboratory Results for: PFAS-1633

Dear Nichelle,

Enclosed are the results of the sample(s) submitted to our laboratory April 04, 2025 For your reference, these analyses have been assigned our service request number **K2503482**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633 Date Received: 04/04/2025

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Six water samples were received for analysis at ALS Environmental on 04/04/2025. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

Organic LC:

Method 1633, 04/10/2025: The upper control criterion was exceeded for one or more analytes in several Continuing Calibration Verifications (CCVs). The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required.

The control criteria were exceeded for one or more isotopes in several Continuing Calibration Verifications (CCVs). The recovery of the associated native analyte was within control criteria, which indicated the analysis was in control, or were biased high, as noted above. No further corrective action was appropriate.

Method 1633, 04/10/2025: Manual integration of one or more chromatographic peaks in multiple samples was required to correct the integration performed by the automated data processing program. The manual integration was performed in accordance with ALS policy, which is consistent with the National Environmental Laboratory Accreditation Program (NELAP), Department of Defense (DOD), and other certifying agencies. Refer to the raw data for the compounds impacted by the manual integration.

Method 1633, 04/10/2025: The results reported for n-Methylperfluorooctane sulfonamide (MeFOSA) in Low Level Lab Control Sample (LCS_LL) KQ2505161-07 may contain a bias. The ion ratio criteria were not met. The failing ratio may indicate a bias to the results in the associated samples. The analyte in question was not detected in the associated field samples. The data quality was not significantly affected. The LCS_LL results were flagged with "I" to indicate the issue.

Approved by \mathcal{N} Oe \mathcal{O} . \mathcal{O} Oak Date 04/17/2025

1633

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-3S		Lab	ID: K2503	3482-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorobutane sulfonic acid (PFBS)	9.6		0.43	4.3	ng/L	Draft EPA Method 1633
Perfluorobutanoic acid (PFBA)	27		0.86	4.3	ng/L	Draft EPA Method 1633
Perfluoroheptanoic acid (PFHpA)	13		0.71	4.3	ng/L	Draft EPA Method 1633
Perfluorohexane sulfonic acid (PFHxS)	3.9	J	0.82	4.3	ng/L	Draft EPA Method 1633
Perfluorohexanoic acid (PFHxA)	25		0.63	4.3	ng/L	Draft EPA Method 1633
Perfluorooctane sulfonic acid (PFOS)	2.5	J	0.83	4.3	ng/L	Draft EPA Method 1633
Perfluorooctanoic acid (PFOA)	15		0.87	4.3	ng/L	Draft EPA Method 1633
Perfluoropentane sulfonic acid (PFPeS)	1.8	J	0.89	4.3	ng/L	Draft EPA Method 1633
Perfluoropentanoic acid (PFPeA)	42		0.64	4.3	ng/L	Draft EPA Method 1633
CLIENT ID: MW-4S		Lab	ID: K2503	3482-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorobutane sulfonic acid (PFBS)	4.2	J	0.43	4.6	ng/L	Draft EPA Method 1633
Perfluorobutanoic acid (PFBA)	31		0.86	4.6	ng/L	Draft EPA Method 1633
Perfluoroheptanoic acid (PFHpA)	9.0		0.71	4.6	ng/L	Draft EPA Method 1633
Perfluorohexane sulfonic acid (PFHxS)	0.84	J	0.82	4.6	ng/L	Draft EPA Method 1633
Perfluorohexanoic acid (PFHxA)	19		0.63	4.6	ng/L	Draft EPA Method 1633
Perfluorooctanoic acid (PFOA)	3.2	J	0.87	4.6	ng/L	Draft EPA Method 1633
Perfluoropentanoic acid (PFPeA)	25		0.64	4.6	ng/L	Draft EPA Method 1633
CLIENT ID: MW-5S		Lab	ID: K2503	3482-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorobutane sulfonic acid (PFBS)	4.3		0.43	4.3	ng/L	Draft EPA Method 1633
Perfluorobutanoic acid (PFBA)	47		0.86	4.3	ng/L	Draft EPA Method 1633
Perfluoroheptanoic acid (PFHpA)	1.2	J	0.71	4.3	ng/L	Draft EPA Method 1633
Perfluorohexanoic acid (PFHxA)	11		0.63	4.3	ng/L	Draft EPA Method 1633
Perfluoropentanoic acid (PFPeA)	21		0.64	4.3	ng/L	Draft EPA Method 1633

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-6S						
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorobutane sulfonic acid (PFBS)	6.3		0.43	4.7	ng/L	Draft EPA Method 1633
Perfluorobutanoic acid (PFBA)	9.5		0.86	4.7	ng/L	Draft EPA Method 1633
Perfluorohexane sulfonic acid (PFHxS)	1.1	J	0.82	4.7	ng/L	Draft EPA Method 1633
Perfluorohexanoic acid (PFHxA)	4.7	J	0.63	4.7	ng/L	Draft EPA Method 1633
Perfluoropentane sulfonic acid (PFPeS)	1.1	J	0.89	4.7	ng/L	Draft EPA Method 1633
Perfluoropentanoic acid (PFPeA)	8.1		0.64	4.7	ng/L	Draft EPA Method 1633

CLIENT ID: MW-13S		Lab	ID: K2503	3482-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorobutane sulfonic acid (PFBS)	6.9		0.43	4.5	ng/L	Draft EPA Method 1633
Perfluorobutanoic acid (PFBA)	9.6		0.86	4.5	ng/L	Draft EPA Method 1633
Perfluorohexane sulfonic acid (PFHxS)	1.0	J	0.82	4.5	ng/L	Draft EPA Method 1633
Perfluorohexanoic acid (PFHxA)	4.9		0.63	4.5	ng/L	Draft EPA Method 1633
Perfluoropentane sulfonic acid (PFPeS)	1.0	J	0.89	4.5	ng/L	Draft EPA Method 1633
Perfluoropentanoic acid (PFPeA)	7.9		0.64	4.5	ng/L	Draft EPA Method 1633

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
MW-2S	4/1/2025	1153
MW-3S	3/31/2025	1424
MW-4S	4/1/2025	0955
MW-5S	3/31/2025	1223
MW-6S	4/1/2025	1455
MW-13S	4/1/2025	0900
	MW-2S MW-3S MW-4S MW-5S MW-6S	MW-2S4/1/2025MW-3S3/31/2025MW-4S4/1/2025MW-5S3/31/2025MW-6S4/1/2025

42503482

Page 1 of 1

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: ALS Environmental

Attention: Mark Harris

1317 South 13th Avenue, Kelso, WA 98626

Phone Number: (360) 577-7222

Laboratory Reference #: 04-035

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com

Project Number: 553-8472-006

Project Name:

Lab ID	Sample Identification	Date	Time		# of	
Lavib	MW-2S	Sampled 4/1/25	Sampled 11:53	Matrix W	Cont.	Requested Analyses PFAS
	MW-3S	3/31/25	14:24	W	3	PFAS
	MW-4S	4/1/25	9:55	w	3	PFAS
	MW-5S	3/31/25	12:23	w	3	PFAS
	MW-6S	4/1/25	14:55	W	3	PFAS NAME BOOK NAME OF THE PARTY OF THE PART
	MW-13S	4/1/25	9:00	w	3	PFAS ANALYSIS ENTER SERVICE
					A, S. S.	
				3.3.		
				. 3 4 5 7		
					1	
	Signature	Com	рапу		Date	Time Comments/Special Instructions
Reling	sished by: Michilla Stur	000	N.		416/25	1500
Receiv	ed by: William Mills AL	<u>S</u>			414125	
Reling	uished by:					
Receiv	ed by:					
Relinqu	uished by:					
Receiv	ed by:					Water III and I was a second of the

Turnaround Request

2 Day

Standard

3 Day

1 Day

Other:

lient On	Site	Co	ooler Receipt a	nd Pre	serva		Form	K25 0	348Z	м <u>М</u>	<u>H</u>
eceived:	19195	Opened: (1/4/25	By:	Vor		Unloaded	. 1.	25 By: \	MM	
. Samples we	T re received via? re received in: (circ y seals on coolers?	<i>~</i>	oler Box	PS En	DF velope		PDX Other	Courie	r Hand Deli	vered NA	
	<u>y scars</u> on coolers: ere custody seals ir						gned and dated	?	Y	N	
Temp Blank	Sample Temp		Cooler #/COC ID / N/		Out of	temp	PM Notifie	ed	Tracking Numb		Filed
	1. 7	IDO(p						17	2684EIL	897 897	sФ(с
	erature Blank prese		NA Y N						column below:		
If no, were to fapplicable, the fapplicable, the fapplicable, the fapplicable, the fapplicable, the fapplicable, were sample. Were all sample. Were appropriate the property of the fapplicable fappli	s received within the received on ice issue samples were saterial: Inserts dy papers properly les received in goo imple labels comple labels and tags oppriate bottles/cont H-preserved bottle vials received with Res negative?	and same day received: Faggies But filled out (ink d condition (use the (ie, analysis agree with cus ainers and volus (see SMO GE) hout headspaced method specialogy bottles fill	nbroken) s, preservation, etc.)? stody papers? umes received for the EN SOP) received at the e? Indicate in the table fied time limit? If not, led exactly to the 100	ges? notate the hawed is Wet tests indi the appropriate below.	cated? cated? cated?	# belo ed Pry Ice H? Ind	w and notify th Sleeves	e PM.	NA Y N N N N N N N Perfilled		
	Sample ID		Bottle Count Bottle Type	Head- space	Broke	рН	Reagent	Volume added	Reagent Lot Number	Initials	Time
Notes, Disc	repancies, Reso	lutions:									
Q:\ENV	RONMENTAL\1	SOP & Poli	cy Statements\SM	10\CRF	Upda	te 20	25-02-28.do	сх	Updated: E	3JD 2/28	/25

Page 9 of 56

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006 Service Request: K2503482

Sample Name: MW-2S

Lab Code: K2503482-001

Sample Matrix: Water **Date Collected:** 04/1/25

Date Received: 04/4/25

Analysis Method

1633 1633

Analyzed By Extracted/Digested By LILLIANSMITH **PSALYARDS**

Sample Name: MW-3S

Lab Code: K2503482-002

Sample Matrix: Water **Date Collected:** 03/31/25

Date Received: 04/4/25

Analysis Method

1633 1633 **Extracted/Digested By**

ASERVICE

ASERVICE LILLIANSMITH **Analyzed By**

PSALYARDS

PSALYARDS PSALYARDS

Sample Name: MW-3S

Lab Code:

1633

1633

K2503482-002.R01

Sample Matrix: Water **Date Collected:** 03/31/25

Date Received: 04/4/25

Analysis Method

Extracted/Digested By LILLIANSMITH

Analyzed By PSALYARDS

Sample Name: MW-4S **Date Collected:** 04/1/25

Lab Code: K2503482-003 Date Received: 04/4/25

Sample Matrix: Water

Analysis Method

1633 SM 2540 D Modified **Extracted/Digested By**

ASERVICE LILLIANSMITH **Analyzed By**

PSALYARDS PSALYARDS

AWILSON

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006

Sample Name: MW-5S Date Collected: 03/31/25

Lab Code: K2503482-004 **Date Received:** 04/4/25

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

1633 ASERVICE PSALYARDS 1633 LILLIANSMITH PSALYARDS

SM 2540 D Modified AWILSON

Sample Name: MW-6S Date Collected: 04/1/25

Lab Code: K2503482-005 **Date Received:** 04/4/25

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

1633 LILLIANSMITH PSALYARDS 1633 ASERVICE PSALYARDS

Sample Name: MW-13S Date Collected: 04/1/25

Lab Code: K2503482-006 **Date Received:** 04/4/25

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

1633 ASERVICE PSALYARDS 1633 LILLIANSMITH PSALYARDS

SM 2540 D Modified AWILSON

Service Request: K2503482

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Organic Compounds by HPLC/MS/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Date Collected: 04/01/25 11:53 **Project:** PFAS-1633/553-8472-006 **Date Received:** 04/04/25 09:10

Sample Matrix: Water

Units: ng/L

Service Request: K2503482

Sample Name: MW-2S Lab Code: K2503482-001 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)								
Perfluorobutane sulfonic acid (PFBS)	ND U	4.4	1.8	0.43	1	04/10/25 20:44	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	ND U	4.4	1.9	0.89	1	04/10/25 20:44	4/8/25	*
Perfluorohexane sulfonic acid (PFHxS)	ND U	4.4	1.8	0.82	1	04/10/25 20:44	4/8/25	*
Perfluoroheptane sulfonic acid (PFHpS)	ND U	4.4	1.9	0.69	1	04/10/25 20:44	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	ND U	4.4	1.9	0.83	1	04/10/25 20:44	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	4.4	1.9	0.33	1	04/10/25 20:44	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	4.4	1.9	0.67	1	04/10/25 20:44	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	4.4	1.9	0.56	1	04/10/25 20:44	4/8/25	*
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	ND U	4.4	2.0	0.86	1	04/10/25 20:44	4/8/25	
Perfluoropentanoic acid (PFPeA)	ND U	4.4	2.0	0.64	1	04/10/25 20:44	4/8/25	
Perfluorohexanoic acid (PFHxA)	ND U	4.4	2.0	0.63	1	04/10/25 20:44	4/8/25	
Perfluoroheptanoic acid (PFHpA)	ND U	4.4	2.0	0.71	1	04/10/25 20:44	4/8/25	
Perfluorooctanoic acid (PFOA)	ND U	4.4	2.0	0.87	1	04/10/25 20:44	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	4.4	2.0	0.75	1	04/10/25 20:44	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	4.4	2.0	0.60	1	04/10/25 20:44	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	4.4	2.0	0.82	1	04/10/25 20:44	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	4.4	2.0	0.61	1	04/10/25 20:44	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	4.4	2.0	0.46	1	04/10/25 20:44	4/8/25	*
Perfluorotetradecanoic acid (PFTDA)	ND U	4.4	3.0	1.3	1	04/10/25 20:44	4/8/25	*
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	4.4	2.0	0.72	1	04/10/25 20:44	4/8/25	
N-Methylperfluorooctane sulfonamide (MeFOSA)	ND U	4.4	3.0	1.2	1	04/10/25 20:44	4/8/25	
N-Ethylperfluorooctane sulfonamide	ND U	4.4	2.0	0.85	1	04/10/25 20:44	4/8/25	
(EtFOSAm) N-Methylperfluorooctane sulfonamido	ND U	4.4	2.0	0.82	1	04/10/25 20:44	4/8/25	
ethanol (MeFOSE) N-Ethylperfluorooctane sulfonamido	ND U	4.4	2.0	0.92	1	04/10/25 20:44	4/8/25	
ethanol (EtFOSE) N-Methylperfluorooctane sulfonamido	ND U	4.4	2.0	0.91	1	04/10/25 20:44	4/8/25	
acetic acid (NMeFOSAA) N-Ethylperfluorooctane sulfonamido	ND U	4.4	2.0	0.95	1	04/10/25 20:44	4/8/25	*
acetic acid (NEtFOSAA)	110 0	7.7	0	0.75	-	2.7.20.20.20.11	., 0, 20	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Date Collected: 04/01/25 11:53 **Project:** PFAS-1633/553-8472-006 **Date Received:** 04/04/25 09:10

Sample Matrix: Water

Sample Name: MW-2S Units: ng/L Lab Code: K2503482-001 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)								
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	4.4	1.9	0.42	1	04/10/25 20:44	4/8/25	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	4.4	2.9	1.3	1	04/10/25 20:44	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	4.4	1.9	0.86	1	04/10/25 20:44	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	170	20	6.8	1	04/10/25 20:44	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	170	20	4.2	1	04/10/25 20:44	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	170	20	6.0	1	04/10/25 20:44	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFE	SAs)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	4.4	1.8	0.43	1	04/10/25 20:44	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	4.4	1.9	0.45	1	04/10/25 20:44	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	4.4	1.9	0.39	1	04/10/25 20:44	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (P.	FECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	4.4	2.0	0.41	1	04/10/25 20:44	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	4.4	2.0	0.54	1	04/10/25 20:44	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	4.4	2.0	0.41	1	04/10/25 20:44	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	4.4	2.0	0.58	1	04/10/25 20:44	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	4.4	1.9	0.36	1	04/10/25 20:44	4/8/25	

Service Request: K2503482

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006 **Date Collected:** 04/01/25 11:53

Sample Matrix: Water Date Received: 04/04/25 09:10

 Sample Name:
 MW-2S
 Units: ng/L

 Lab Code:
 K2503482-001
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	105	40 - 135	04/10/25 20:44	
13C3-PFHxS	82	40 - 130	04/10/25 20:44	
13C8-PFOS	85	40 - 130	04/10/25 20:44	
13C4-PFBA	100	5 - 130	04/10/25 20:44	
13C5-PFPeA	110	40 - 130	04/10/25 20:44	
13C5-PFHxA	99	40 - 130	04/10/25 20:44	
13C4-PFHpA	96	40 - 130	04/10/25 20:44	
13C8-PFOA	93	40 - 130	04/10/25 20:44	
13C9-PFNA	96	40 - 130	04/10/25 20:44	
13C6-PFDA	94	40 - 130	04/10/25 20:44	
13C7-PFUnDA	129	30 - 130	04/10/25 20:44	
13C2-PFDoDA	85	10 - 130	04/10/25 20:44	
13C2-PFTeDA	52	10 - 130	04/10/25 20:44	
13C8-FOSA	65	40 - 130	04/10/25 20:44	
D3-MeFOSA	90	10 - 130	04/10/25 20:44	
D5-EtFOSA	66	10 - 130	04/10/25 20:44	
D7-MeFOSE	64	10 - 130	04/10/25 20:44	
D9-EtFOSE	61	10 - 130	04/10/25 20:44	
D3-MeFOSAA	71	40 - 170	04/10/25 20:44	
D5-EtFOSAA	73	25 - 135	04/10/25 20:44	
13C2-4:2 FTS	136	40 - 200	04/10/25 20:44	
13C2-6:2 FTS	93	40 - 200	04/10/25 20:44	
13C2-8:2 FTS	104	40 - 300	04/10/25 20:44	
13C3-HFPO-DA	87	40 - 130	04/10/25 20:44	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 03/31/25 14:24 **Project:** PFAS-1633/553-8472-006

Sample Matrix: Water **Date Received:** 04/04/25 09:10

Sample Name: MW-3S Units: ng/L Lab Code: K2503482-002 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)								
Perfluorobutane sulfonic acid (PFBS)	9.6	4.3	1.8	0.43	1	04/10/25 21:07	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	1.8 J	4.3	1.9	0.89	1	04/16/25 06:57	4/8/25	
Perfluorohexane sulfonic acid (PFHxS)	3.9 J	4.3	1.8	0.82	1	04/16/25 06:57	4/8/25	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	4.3	1.9	0.69	1	04/10/25 21:07	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	2.5 J	4.3	1.9	0.83	1	04/10/25 21:07	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	4.3	1.9	0.33	1	04/10/25 21:07	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	4.3	1.9	0.67	1	04/10/25 21:07	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	4.3	1.9	0.56	1	04/10/25 21:07	4/8/25	*
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	27	4.3	2.0	0.86	1	04/10/25 21:07	4/8/25	
Perfluoropentanoic acid (PFPeA)	42	4.3	2.0	0.64	1	04/10/25 21:07	4/8/25	
Perfluorohexanoic acid (PFHxA)	25	4.3	2.0	0.63	1	04/10/25 21:07	4/8/25	
Perfluoroheptanoic acid (PFHpA)	13	4.3	2.0	0.71	1	04/10/25 21:07	4/8/25	
Perfluorooctanoic acid (PFOA)	15	4.3	2.0	0.87	1	04/10/25 21:07	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	4.3	2.0	0.75	1	04/10/25 21:07	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	4.3	2.0	0.60	1	04/10/25 21:07	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	4.3	2.0	0.82	1	04/10/25 21:07	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	4.3	2.0	0.61	1	04/10/25 21:07	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	4.3	2.0	0.46	1	04/10/25 21:07	4/8/25	*
Perfluorotetradecanoic acid (PFTDA)	ND U	4.3	3.0	1.3	1	04/10/25 21:07	4/8/25	*
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	4.3	2.0	0.72	1	04/10/25 21:07	4/8/25	
N-Methylperfluorooctane sulfonamide	ND U	4.3	3.0	1.2	1	04/10/25 21:07	4/8/25	
(MeFOSA)								
N-Ethylperfluorooctane sulfonamide	ND U	4.3	2.0	0.85	1	04/10/25 21:07	4/8/25	
(EtFOSAm)								
N-Methylperfluorooctane sulfonamido	ND U	4.3	2.0	0.82	1	04/10/25 21:07	4/8/25	
ethanol (MeFOSE)								
N-Ethylperfluorooctane sulfonamido	ND U	4.3	2.0	0.92	1	04/10/25 21:07	4/8/25	
ethanol (EtFOSE)								
N-Methylperfluorooctane sulfonamido	ND U	4.3	2.0	0.91	1	04/10/25 21:07	4/8/25	
acetic acid (NMeFOSAA)								
N-Ethylperfluorooctane sulfonamido	ND U	4.3	2.0	0.95	1	04/10/25 21:07	4/8/25	*
acetic acid (NEtFOSAA)								

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 03/31/25 14:24 **Project:** PFAS-1633/553-8472-006

Date Received: 04/04/25 09:10 **Sample Matrix:** Water

Sample Name: MW-3S Units: ng/L Lab Code: K2503482-002 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)								
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	4.3	1.9	0.42	1	04/10/25 21:07	4/8/25	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	4.3	2.9	1.3	1	04/10/25 21:07	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	4.3	1.9	0.86	1	04/10/25 21:07	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	170	20	6.8	1	04/10/25 21:07	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	170	20	4.2	1	04/10/25 21:07	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	170	20	6.0	1	04/10/25 21:07	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFE	SAs)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	4.3	1.8	0.43	1	04/10/25 21:07	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	4.3	1.9	0.45	1	04/10/25 21:07	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	4.3	1.9	0.39	1	04/10/25 21:07	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (P.	FECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	4.3	2.0	0.41	1	04/10/25 21:07	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	4.3	2.0	0.54	1	04/10/25 21:07	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	4.3	2.0	0.41	1	04/10/25 21:07	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	4.3	2.0	0.58	1	04/10/25 21:07	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	4.3	1.9	0.36	1	04/10/25 21:07	4/8/25	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006 **Date Collected:** 03/31/25 14:24

Sample Matrix: Water Date Received: 04/04/25 09:10

 Sample Name:
 MW-3S
 Units: ng/L

 Lab Code:
 K2503482-002
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

Surrogate Name	% Rec	Control Limits	Date Analyzed Q
13C3-PFBS	108	40 - 135	04/10/25 21:07
13C3-PFHxS	130	40 - 130	04/16/25 06:57
13C8-PFOS	82	40 - 130	04/10/25 21:07
13C4-PFBA	97	5 - 130	04/10/25 21:07
13C5-PFPeA	112	40 - 130	04/10/25 21:07
13C5-PFHxA	111	40 - 130	04/10/25 21:07
13C4-PFHpA	101	40 - 130	04/10/25 21:07
13C8-PFOA	84	40 - 130	04/10/25 21:07
13C9-PFNA	95	40 - 130	04/10/25 21:07
13C6-PFDA	97	40 - 130	04/10/25 21:07
13C7-PFUnDA	116	30 - 130	04/10/25 21:07
13C2-PFDoDA	72	10 - 130	04/10/25 21:07
13C2-PFTeDA	45	10 - 130	04/10/25 21:07
13C8-FOSA	73	40 - 130	04/10/25 21:07
D3-MeFOSA	84	10 - 130	04/10/25 21:07
D5-EtFOSA	68	10 - 130	04/10/25 21:07
D7-MeFOSE	68	10 - 130	04/10/25 21:07
D9-EtFOSE	66	10 - 130	04/10/25 21:07
D3-MeFOSAA	67	40 - 170	04/10/25 21:07
D5-EtFOSAA	78	25 - 135	04/10/25 21:07
13C2-4:2 FTS	133	40 - 200	04/10/25 21:07
13C2-6:2 FTS	95	40 - 200	04/10/25 21:07
13C2-8:2 FTS	85	40 - 300	04/10/25 21:07
13C3-HFPO-DA	90	40 - 130	04/10/25 21:07

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Sample Matrix: Water

Date Received: 04/04/25 09:10

Service Request: K2503482

 Sample Name:
 MW-4S
 Units: ng/L

 Lab Code:
 K2503482-003
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)								
Perfluorobutane sulfonic acid (PFBS)	4.2 J	4.6	1.8	0.43	1	04/10/25 21:31	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	ND U	4.6	1.9	0.89	1	04/10/25 21:31	4/8/25	*
Perfluorohexane sulfonic acid (PFHxS)	0.84 J	4.6	1.8	0.82	1	04/10/25 21:31	4/8/25	*
Perfluoroheptane sulfonic acid (PFHpS)	ND U	4.6	1.9	0.69	1	04/10/25 21:31	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	ND U	4.6	1.9	0.83	1	04/10/25 21:31	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	4.6	1.9	0.33	1	04/10/25 21:31	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	4.6	1.9	0.67	1	04/10/25 21:31	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	4.6	1.9	0.56	1	04/10/25 21:31	4/8/25	*
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	31	4.6	2.0	0.86	1	04/10/25 21:31	4/8/25	
Perfluoropentanoic acid (PFPeA)	25	4.6	2.0	0.64	1	04/10/25 21:31	4/8/25	
Perfluorohexanoic acid (PFHxA)	19	4.6	2.0	0.63	1	04/10/25 21:31	4/8/25	
Perfluoroheptanoic acid (PFHpA)	9.0	4.6	2.0	0.71	1	04/10/25 21:31	4/8/25	
Perfluorooctanoic acid (PFOA)	3.2 J	4.6	2.0	0.87	1	04/10/25 21:31	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	4.6	2.0	0.75	1	04/10/25 21:31	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	4.6	2.0	0.60	1	04/10/25 21:31	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	4.6	2.0	0.82	1	04/10/25 21:31	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	4.6	2.0	0.61	1	04/10/25 21:31	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	4.6	2.0	0.46	1	04/10/25 21:31	4/8/25	*
Perfluorotetradecanoic acid (PFTDA)	ND U	4.6	3.0	1.3	1	04/10/25 21:31	4/8/25	*
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	4.6	2.0	0.72	1	04/10/25 21:31	4/8/25	
N-Methylperfluorooctane sulfonamide (MeFOSA)	ND U	4.6	3.0	1.2	1	04/10/25 21:31	4/8/25	
N-Ethylperfluorooctane sulfonamide	ND U	4.6	2.0	0.85	1	04/10/25 21:31	4/8/25	
(EtFOSAm) N-Methylperfluorooctane sulfonamido	ND U	4.6	2.0	0.82	1	04/10/25 21:31	4/8/25	
ethanol (MeFOSE) N-Ethylperfluorooctane sulfonamido	ND U	4.6	2.0	0.92	1	04/10/25 21:31	4/8/25	
ethanol (EtFOSE) N-Methylperfluorooctane sulfonamido	ND U	4.6	2.0	0.91	1	04/10/25 21:31	4/8/25	
acetic acid (NMeFOSAA) N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	4.6	2.0	0.95	1	04/10/25 21:31	4/8/25	*

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Date Collected: 04/01/25 09:55 **Project:** PFAS-1633/553-8472-006 **Date Received:** 04/04/25 09:10

Sample Matrix: Water

Sample Name: MW-4S Units: ng/L Lab Code: K2503482-003 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Date Extracted	Q
•	11050110	204		1,122		2 400 122425 2204	2	<u> </u>
Fluorotelomer Sulfonic Acids (FTSAs) 1H, 1H, 2H, 2H-Perfluorohexanesulfonic	ND U	4.6	1.9	0.42	1	04/10/25 21:31	4/8/25	
acid (4:2 FTS)	ND 0	4.0	1.7	0.42	1	04/10/23 21.31	17 07 23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	4.6	2.9	1.3	1	04/10/25 21:31	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	4.6	1.9	0.86	1	04/10/25 21:31	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	190	20	6.8	1	04/10/25 21:31	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	190	20	4.2	1	04/10/25 21:31	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	190	20	6.0	1	04/10/25 21:31	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFES	As)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	4.6	1.8	0.43	1	04/10/25 21:31	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	4.6	1.9	0.45	1	04/10/25 21:31	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	4.6	1.9	0.39	1	04/10/25 21:31	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (PF	ECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	4.6	2.0	0.41	1	04/10/25 21:31	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	4.6	2.0	0.54	1	04/10/25 21:31	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	4.6	2.0	0.41	1	04/10/25 21:31	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	4.6	2.0	0.58	1	04/10/25 21:31	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	4.6	1.9	0.36	1	04/10/25 21:31	4/8/25	

Service Request: K2503482

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006 **Date Collected:** 04/01/25 09:55

Sample Matrix: Water Date Received: 04/04/25 09:10

 Sample Name:
 MW-4S
 Units: ng/L

 Lab Code:
 K2503482-003
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
13C3-PFBS	101	40 - 135	04/10/25 21:31	
13C3-PFHxS	82	40 - 130	04/10/25 21:31	
13C8-PFOS	73	40 - 130	04/10/25 21:31	
13C4-PFBA	98	5 - 130	04/10/25 21:31	
13C5-PFPeA	97	40 - 130	04/10/25 21:31	
13C5-PFHxA	101	40 - 130	04/10/25 21:31	
13C4-PFHpA	86	40 - 130	04/10/25 21:31	
13C8-PFOA	91	40 - 130	04/10/25 21:31	
13C9-PFNA	96	40 - 130	04/10/25 21:31	
13C6-PFDA	102	40 - 130	04/10/25 21:31	
13C7-PFUnDA	108	30 - 130	04/10/25 21:31	
13C2-PFDoDA	71	10 - 130	04/10/25 21:31	
13C2-PFTeDA	46	10 - 130	04/10/25 21:31	
13C8-FOSA	65	40 - 130	04/10/25 21:31	
D3-MeFOSA	78	10 - 130	04/10/25 21:31	
D5-EtFOSA	62	10 - 130	04/10/25 21:31	
D7-MeFOSE	62	10 - 130	04/10/25 21:31	
D9-EtFOSE	59	10 - 130	04/10/25 21:31	
D3-MeFOSAA	65	40 - 170	04/10/25 21:31	
D5-EtFOSAA	67	25 - 135	04/10/25 21:31	
13C2-4:2 FTS	121	40 - 200	04/10/25 21:31	
13C2-6:2 FTS	96	40 - 200	04/10/25 21:31	
13C2-8:2 FTS	84	40 - 300	04/10/25 21:31	
13C3-HFPO-DA	86	40 - 130	04/10/25 21:31	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006 **Date Collected:** 03/31/25 12:23

Sample Matrix: Water

Date Received: 04/04/25 09:10

Service Request: K2503482

 Sample Name:
 MW-5S
 Units: ng/L

 Lab Code:
 K2503482-004
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)								
Perfluorobutane sulfonic acid (PFBS)	4.3	4.3	1.8	0.43	1	04/10/25 21:55	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	ND U	4.3	1.9	0.89	1	04/10/25 21:55	4/8/25	*
Perfluorohexane sulfonic acid (PFHxS)	ND U	4.3	1.8	0.82	1	04/10/25 21:55	4/8/25	*
Perfluoroheptane sulfonic acid (PFHpS)	ND U	4.3	1.9	0.69	1	04/10/25 21:55	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	ND U	4.3	1.9	0.83	1	04/10/25 21:55	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	4.3	1.9	0.33	1	04/10/25 21:55	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	4.3	1.9	0.67	1	04/10/25 21:55	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	4.3	1.9	0.56	1	04/10/25 21:55	4/8/25	*
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	47	4.3	2.0	0.86	1	04/10/25 21:55	4/8/25	
Perfluoropentanoic acid (PFPeA)	21	4.3	2.0	0.64	1	04/10/25 21:55	4/8/25	
Perfluorohexanoic acid (PFHxA)	11	4.3	2.0	0.63	1	04/10/25 21:55	4/8/25	
Perfluoroheptanoic acid (PFHpA)	1.2 J	4.3	2.0	0.71	1	04/10/25 21:55	4/8/25	
Perfluorooctanoic acid (PFOA)	ND U	4.3	2.0	0.87	1	04/10/25 21:55	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	4.3	2.0	0.75	1	04/10/25 21:55	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	4.3	2.0	0.60	1	04/10/25 21:55	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	4.3	2.0	0.82	1	04/10/25 21:55	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	4.3	2.0	0.61	1	04/10/25 21:55	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	4.3	2.0	0.46	1	04/10/25 21:55	4/8/25	*
Perfluorotetradecanoic acid (PFTDA)	ND U	4.3	3.0	1.3	1	04/10/25 21:55	4/8/25	*
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	4.3	2.0	0.72	1	04/10/25 21:55	4/8/25	
N-Methylperfluorooctane sulfonamide (MeFOSA)	ND U	4.3	3.0	1.2	1	04/10/25 21:55	4/8/25	
N-Ethylperfluorooctane sulfonamide	ND U	4.3	2.0	0.85	1	04/10/25 21:55	4/8/25	
(EtFOSAm)								
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	ND U	4.3	2.0	0.82	1	04/10/25 21:55	4/8/25	
N-Ethylperfluorooctane sulfonamido	ND U	4.3	2.0	0.92	1	04/10/25 21:55	4/8/25	
ethanol (EtFOSE) N-Methylperfluorooctane sulfonamido	ND U	4.3	2.0	0.91	1	04/10/25 21:55	4/8/25	
acetic acid (NMeFOSAA) N-Ethylperfluorooctane sulfonamido	ND U	4.3	2.0	0.95	1	04/10/25 21:55	4/8/25	*
acetic acid (NEtFOSAA)	ND 0	7.5	2.0	0.73	•	0.710/20 21.00	1, 0, 20	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 03/31/25 12:23 **Project:** PFAS-1633/553-8472-006

Sample Matrix: Water **Date Received:** 04/04/25 09:10

Sample Name: MW-5S Units: ng/L Lab Code: K2503482-004 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Prep Method: Method

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)								
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	4.3	1.9	0.42	1	04/10/25 21:55	4/8/25	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	4.3	2.9	1.3	1	04/10/25 21:55	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	4.3	1.9	0.86	1	04/10/25 21:55	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	170	20	6.8	1	04/10/25 21:55	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	170	20	4.2	1	04/10/25 21:55	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	170	20	6.0	1	04/10/25 21:55	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFE	SAs)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	4.3	1.8	0.43	1	04/10/25 21:55	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	4.3	1.9	0.45	1	04/10/25 21:55	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	4.3	1.9	0.39	1	04/10/25 21:55	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (P.	FECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	4.3	2.0	0.41	1	04/10/25 21:55	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	4.3	2.0	0.54	1	04/10/25 21:55	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	4.3	2.0	0.41	1	04/10/25 21:55	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	4.3	2.0	0.58	1	04/10/25 21:55	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	4.3	1.9	0.36	1	04/10/25 21:55	4/8/25	

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006 **Date Collected:** 03/31/25 12:23

Sample Matrix: Water Date Received: 04/04/25 09:10

 Sample Name:
 MW-5S
 Units: ng/L

 Lab Code:
 K2503482-004
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	112	40 - 135	04/10/25 21:55	
13C3-PFHxS	84	40 - 130	04/10/25 21:55	
13C8-PFOS	76	40 - 130	04/10/25 21:55	
13C4-PFBA	97	5 - 130	04/10/25 21:55	
13C5-PFPeA	104	40 - 130	04/10/25 21:55	
13C5-PFHxA	102	40 - 130	04/10/25 21:55	
13C4-PFHpA	97	40 - 130	04/10/25 21:55	
13C8-PFOA	82	40 - 130	04/10/25 21:55	
13C9-PFNA	93	40 - 130	04/10/25 21:55	
13C6-PFDA	91	40 - 130	04/10/25 21:55	
13C7-PFUnDA	126	30 - 130	04/10/25 21:55	
13C2-PFDoDA	75	10 - 130	04/10/25 21:55	
13C2-PFTeDA	46	10 - 130	04/10/25 21:55	
13C8-FOSA	69	40 - 130	04/10/25 21:55	
D3-MeFOSA	83	10 - 130	04/10/25 21:55	
D5-EtFOSA	67	10 - 130	04/10/25 21:55	
D7-MeFOSE	63	10 - 130	04/10/25 21:55	
D9-EtFOSE	62	10 - 130	04/10/25 21:55	
D3-MeFOSAA	63	40 - 170	04/10/25 21:55	
D5-EtFOSAA	75	25 - 135	04/10/25 21:55	
13C2-4:2 FTS	123	40 - 200	04/10/25 21:55	
13C2-6:2 FTS	106	40 - 200	04/10/25 21:55	
13C2-8:2 FTS	88	40 - 300	04/10/25 21:55	
13C3-HFPO-DA	88	40 - 130	04/10/25 21:55	

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 14:55 **Project:** PFAS-1633/553-8472-006

Sample Matrix: Water **Date Received:** 04/04/25 09:10

Sample Name: MW-6S Units: ng/L Lab Code: K2503482-005 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)								
Perfluorobutane sulfonic acid (PFBS)	6.3	4.7	1.8	0.43	1	04/10/25 22:18	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	1.1 J	4.7	1.9	0.89	1	04/10/25 22:18	4/8/25	*
Perfluorohexane sulfonic acid (PFHxS)	1.1 J	4.7	1.8	0.82	1	04/10/25 22:18	4/8/25	*
Perfluoroheptane sulfonic acid (PFHpS)	ND U	4.7	1.9	0.69	1	04/10/25 22:18	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	ND U	4.7	1.9	0.83	1	04/10/25 22:18	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	4.7	1.9	0.33	1	04/10/25 22:18	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	4.7	1.9	0.67	1	04/10/25 22:18	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	4.7	1.9	0.56	1	04/10/25 22:18	4/8/25	*
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	9.5	4.7	2.0	0.86	1	04/10/25 22:18	4/8/25	
Perfluoropentanoic acid (PFPeA)	8.1	4.7	2.0	0.64	1	04/10/25 22:18	4/8/25	
Perfluorohexanoic acid (PFHxA)	4.7 J	4.7	2.0	0.63	1	04/10/25 22:18	4/8/25	
Perfluoroheptanoic acid (PFHpA)	ND U	4.7	2.0	0.71	1	04/10/25 22:18	4/8/25	
Perfluorooctanoic acid (PFOA)	ND U	4.7	2.0	0.87	1	04/10/25 22:18	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	4.7	2.0	0.75	1	04/10/25 22:18	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	4.7	2.0	0.60	1	04/10/25 22:18	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	4.7	2.0	0.82	1	04/10/25 22:18	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	4.7	2.0	0.61	1	04/10/25 22:18	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	4.7	2.0	0.46	1	04/10/25 22:18	4/8/25	*
Perfluorotetradecanoic acid (PFTDA)	ND U	4.7	3.0	1.3	1	04/10/25 22:18	4/8/25	*
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	4.7	2.0	0.72	1	04/10/25 22:18	4/8/25	
N-Methylperfluorooctane sulfonamide	ND U	4.7	3.0	1.2	1	04/10/25 22:18	4/8/25	
(MeFOSA)								
N-Ethylperfluorooctane sulfonamide	ND U	4.7	2.0	0.85	1	04/10/25 22:18	4/8/25	
(EtFOSAm)			• •			0.4/4.0/0.5 00.40	4 10 10 7	
N-Methylperfluorooctane sulfonamido	ND U	4.7	2.0	0.82	1	04/10/25 22:18	4/8/25	
ethanol (MeFOSE)	NID II	4.7	2.0	0.00	1	04/10/25 22:18	4/8/25	
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	4.7	2.0	0.92	1	04/10/23 22:18	4/8/23	
N-Methylperfluorooctane sulfonamido	ND U	4.7	2.0	0.91	1	04/10/25 22:18	4/8/25	
acetic acid (NMeFOSAA)	1,2 3	•••		0.71				
N-Ethylperfluorooctane sulfonamido	ND U	4.7	2.0	0.95	1	04/10/25 22:18	4/8/25	*
acetic acid (NEtFOSAA)								

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 14:55 **Project:** PFAS-1633/553-8472-006

Sample Matrix: Water **Date Received:** 04/04/25 09:10

Sample Name: MW-6S Units: ng/L Lab Code: K2503482-005 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)		204		1,122	2	2 400 12242, 2002		
1H, 1H, 2H, 2H-Perfluorohexanesulfonic	ND U	4.7	1.9	0.42	1	04/10/25 22:18	4/8/25	
acid (4:2 FTS)			2.0			0.4/4.0/07.00.40	4 10 10 7	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	4.7	2.9	1.3	1	04/10/25 22:18	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	4.7	1.9	0.86	1	04/10/25 22:18	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	190	20	6.8	1	04/10/25 22:18	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	190	20	4.2	1	04/10/25 22:18	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	190	20	6.0	1	04/10/25 22:18	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFES	(Ag)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	4.7	1.8	0.43	1	04/10/25 22:18	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	4.7	1.9	0.45	1	04/10/25 22:18	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	4.7	1.9	0.39	1	04/10/25 22:18	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (PF	TECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	4.7	2.0	0.41	1	04/10/25 22:18	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	4.7	2.0	0.54	1	04/10/25 22:18	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	4.7	2.0	0.41	1	04/10/25 22:18	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	4.7	2.0	0.58	1	04/10/25 22:18	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	4.7	1.9	0.36	1	04/10/25 22:18	4/8/25	

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 14:55 **Project:** PFAS-1633/553-8472-006

Date Received: 04/04/25 09:10 **Sample Matrix:** Water

Sample Name: MW-6S Units: ng/L Lab Code: K2503482-005 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
13C3-PFBS	105	40 - 135	04/10/25 22:18	
13C3-PFHxS	76	40 - 130	04/10/25 22:18	
13C8-PFOS	89	40 - 130	04/10/25 22:18	
13C4-PFBA	99	5 - 130	04/10/25 22:18	
13C5-PFPeA	111	40 - 130	04/10/25 22:18	
13C5-PFHxA	105	40 - 130	04/10/25 22:18	
13C4-PFHpA	99	40 - 130	04/10/25 22:18	
13C8-PFOA	80	40 - 130	04/10/25 22:18	
13C9-PFNA	94	40 - 130	04/10/25 22:18	
13C6-PFDA	98	40 - 130	04/10/25 22:18	
13C7-PFUnDA	125	30 - 130	04/10/25 22:18	
13C2-PFDoDA	77	10 - 130	04/10/25 22:18	
13C2-PFTeDA	48	10 - 130	04/10/25 22:18	
13C8-FOSA	66	40 - 130	04/10/25 22:18	
D3-MeFOSA	85	10 - 130	04/10/25 22:18	
D5-EtFOSA	63	10 - 130	04/10/25 22:18	
D7-MeFOSE	64	10 - 130	04/10/25 22:18	
D9-EtFOSE	60	10 - 130	04/10/25 22:18	
D3-MeFOSAA	70	40 - 170	04/10/25 22:18	
D5-EtFOSAA	74	25 - 135	04/10/25 22:18	
13C2-4:2 FTS	119	40 - 200	04/10/25 22:18	
13C2-6:2 FTS	85	40 - 200	04/10/25 22:18	
13C2-8:2 FTS	89	40 - 300	04/10/25 22:18	
13C3-HFPO-DA	93	40 - 130	04/10/25 22:18	

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 09:00 **Project:** PFAS-1633/553-8472-006

Sample Matrix: Water **Date Received:** 04/04/25 09:10

Date

Sample Name: MW-13S Units: ng/L Lab Code: K2503482-006 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)								
Perfluorobutane sulfonic acid (PFBS)	6.9	4.5	1.8	0.43	1	04/10/25 22:42	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	1.0 J	4.5	1.9	0.89	1	04/10/25 22:42	4/8/25	*
Perfluorohexane sulfonic acid (PFHxS)	1.0 J	4.5	1.8	0.82	1	04/10/25 22:42	4/8/25	*
Perfluoroheptane sulfonic acid (PFHpS)	ND U	4.5	1.9	0.69	1	04/10/25 22:42	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	ND U	4.5	1.9	0.83	1	04/10/25 22:42	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	4.5	1.9	0.33	1	04/10/25 22:42	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	4.5	1.9	0.67	1	04/10/25 22:42	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	4.5	1.9	0.56	1	04/10/25 22:42	4/8/25	*
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	9.6	4.5	2.0	0.86	1	04/10/25 22:42	4/8/25	
Perfluoropentanoic acid (PFPeA)	7.9	4.5	2.0	0.64	1	04/10/25 22:42	4/8/25	
Perfluorohexanoic acid (PFHxA)	4.9	4.5	2.0	0.63	1	04/10/25 22:42	4/8/25	
Perfluoroheptanoic acid (PFHpA)	ND U	4.5	2.0	0.71	1	04/10/25 22:42	4/8/25	
Perfluorooctanoic acid (PFOA)	ND U	4.5	2.0	0.87	1	04/10/25 22:42	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	4.5	2.0	0.75	1	04/10/25 22:42	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	4.5	2.0	0.60	1	04/10/25 22:42	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	4.5	2.0	0.82	1	04/10/25 22:42	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	4.5	2.0	0.61	1	04/10/25 22:42	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	4.5	2.0	0.46	1	04/10/25 22:42	4/8/25	*
Perfluorotetradecanoic acid (PFTDA)	ND U	4.5	3.0	1.3	1	04/10/25 22:42	4/8/25	*
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	4.5	2.0	0.72	1	04/10/25 22:42	4/8/25	
N-Methylperfluorooctane sulfonamide	ND U	4.5	3.0	1.2	1	04/10/25 22:42	4/8/25	
(MeFOSA) N-Ethylperfluorooctane sulfonamide	ND U	4.5	2.0	0.85	1	04/10/25 22:42	4/8/25	
(EtFOSAm)	ND U	4.3	2.0	0.83	1	04/10/23 22.42	4/0/23	
N-Methylperfluorooctane sulfonamido	ND U	4.5	2.0	0.82	1	04/10/25 22:42	4/8/25	
ethanol (MeFOSE)	TAD C	1.5		0.02			., .,	
N-Ethylperfluorooctane sulfonamido	ND U	4.5	2.0	0.92	1	04/10/25 22:42	4/8/25	
ethanol (EtFOSE)								
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	4.5	2.0	0.91	1	04/10/25 22:42	4/8/25	
N-Ethylperfluorooctane sulfonamido	ND U	4.5	2.0	0.95	1	04/10/25 22:42	4/8/25	*
acetic acid (NEtFOSAA)								

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 09:00 **Project:** PFAS-1633/553-8472-006

Sample Matrix: Water **Date Received:** 04/04/25 09:10

Sample Name: MW-13S Units: ng/L Lab Code: K2503482-006 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)								
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	4.5	1.9	0.42	1	04/10/25 22:42	4/8/25	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	4.5	2.9	1.3	1	04/10/25 22:42	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	4.5	1.9	0.86	1	04/10/25 22:42	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	180	20	6.8	1	04/10/25 22:42	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	180	20	4.2	1	04/10/25 22:42	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	180	20	6.0	1	04/10/25 22:42	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFE	SAs)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	4.5	1.8	0.43	1	04/10/25 22:42	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	4.5	1.9	0.45	1	04/10/25 22:42	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	4.5	1.9	0.39	1	04/10/25 22:42	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (P.	FECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	4.5	2.0	0.41	1	04/10/25 22:42	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	4.5	2.0	0.54	1	04/10/25 22:42	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	4.5	2.0	0.41	1	04/10/25 22:42	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	4.5	2.0	0.58	1	04/10/25 22:42	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	4.5	1.9	0.36	1	04/10/25 22:42	4/8/25	

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006 **Date Collected:** 04/01/25 09:00

Sample Matrix: Water Date Received: 04/04/25 09:10

 Sample Name:
 MW-13S
 Units: ng/L

 Lab Code:
 K2503482-006
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	86	40 - 135	04/10/25 22:42	
13C3-PFHxS	72	40 - 130	04/10/25 22:42	
13C8-PFOS	78	40 - 130	04/10/25 22:42	
13C4-PFBA	95	5 - 130	04/10/25 22:42	
13C5-PFPeA	96	40 - 130	04/10/25 22:42	
13C5-PFHxA	99	40 - 130	04/10/25 22:42	
13C4-PFHpA	88	40 - 130	04/10/25 22:42	
13C8-PFOA	83	40 - 130	04/10/25 22:42	
13C9-PFNA	87	40 - 130	04/10/25 22:42	
13C6-PFDA	95	40 - 130	04/10/25 22:42	
13C7-PFUnDA	114	30 - 130	04/10/25 22:42	
13C2-PFDoDA	71	10 - 130	04/10/25 22:42	
13C2-PFTeDA	40	10 - 130	04/10/25 22:42	
13C8-FOSA	67	40 - 130	04/10/25 22:42	
D3-MeFOSA	84	10 - 130	04/10/25 22:42	
D5-EtFOSA	64	10 - 130	04/10/25 22:42	
D7-MeFOSE	61	10 - 130	04/10/25 22:42	
D9-EtFOSE	57	10 - 130	04/10/25 22:42	
D3-MeFOSAA	64	40 - 170	04/10/25 22:42	
D5-EtFOSAA	68	25 - 135	04/10/25 22:42	
13C2-4:2 FTS	101	40 - 200	04/10/25 22:42	
13C2-6:2 FTS	96	40 - 200	04/10/25 22:42	
13C2-8:2 FTS	84	40 - 300	04/10/25 22:42	
13C3-HFPO-DA	85	40 - 130	04/10/25 22:42	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 09:55 **Project:** PFAS-1633/553-8472-006

Date Received: 04/04/25 09:10 **Sample Matrix:** Water

Sample Name: MW-4S Basis: NA

Lab Code: K2503482-003

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed Q
Solids, Total Suspended (TSS)	SM 2540 D Modified	ND U	mg/L	100	-	-	1	04/04/25 17:42

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 03/31/25 12:23 **Project:** PFAS-1633/553-8472-006

Date Received: 04/04/25 09:10 **Sample Matrix:** Water

Sample Name: MW-5S Basis: NA

Lab Code: K2503482-004

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed Q
Solids, Total Suspended (TSS)	SM 2540 D Modified	ND U	mg/L	100	-	-	1	04/04/25 17:42

Analytical Report

Client: Onsite Environmental Incorporated

Service Request: K2503482 **Date Collected:** 04/01/25 09:00 **Project:** PFAS-1633/553-8472-006

Date Received: 04/04/25 09:10 **Sample Matrix:** Water

Sample Name: MW-13S Basis: NA

Lab Code: K2503482-006

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed Q
Solids, Total Suspended (TSS)	SM 2540 D Modified	ND U	mg/L	100	-	-	1	04/04/25 17:42

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Organic Compounds by HPLC/MS/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Extraction Method: Method

		MW-2S	MW-3S	MW-4S
Surrogate	Control Limits	K2503482-001	K2503482-002	K2503482-003
13C3-PFBS	40-135	105	108	101
13C3-PFHxS	40-130	82	130	82
13C8-PFOS	40-130	85	82	73
13C4-PFBA	5-130	100	97	98
13C5-PFPeA	40-130	110	112	97
13C5-PFHxA	40-130	99	111	101
13C4-PFHpA	40-130	96	101	86
13C8-PFOA	40-130	93	84	91
13C9-PFNA	40-130	96	95	96
13C6-PFDA	40-130	94	97	102
13C7-PFUnDA	30-130	129	116	108
13C2-PFDoDA	10-130	85	72	71
13C2-PFTeDA	10-130	52	45	46
13C8-FOSA	40-130	65	73	65
D3-MeFOSA	10-130	90	84	78
D5-EtFOSA	10-130	66	68	62
D7-MeFOSE	10-130	64	68	62
D9-EtFOSE	10-130	61	66	59
D3-MeFOSAA	40-170	71	67	65
D5-EtFOSAA	25-135	73	78	67
13C2-4:2 FTS	40-200	136	133	121
13C2-6:2 FTS	40-200	93	95	96
13C2-8:2 FTS	40-300	104	85	84
13C3-HFPO-DA	40-130	87	90	86

QA/QC Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Extraction Method: Method

		MW-5S	MW-6S	MW-13S
Surrogate	Control Limits	K2503482-004	K2503482-005	K2503482-006
13C3-PFBS	40-135	112	105	86
13C3-PFHxS	40-130	84	76	72
13C8-PFOS	40-130	76	89	78
13C4-PFBA	5-130	97	99	95
13C5-PFPeA	40-130	104	111	96
13C5-PFHxA	40-130	102	105	99
13C4-PFHpA	40-130	97	99	88
13C8-PFOA	40-130	82	80	83
13C9-PFNA	40-130	93	94	87
13C6-PFDA	40-130	91	98	95
13C7-PFUnDA	30-130	126	125	114
13C2-PFDoDA	10-130	75	77	71
13C2-PFTeDA	10-130	46	48	40
13C8-FOSA	40-130	69	66	67
D3-MeFOSA	10-130	83	85	84
D5-EtFOSA	10-130	67	63	64
D7-MeFOSE	10-130	63	64	61
D9-EtFOSE	10-130	62	60	57
D3-MeFOSAA	40-170	63	70	64
D5-EtFOSAA	25-135	75	74	68
13C2-4:2 FTS	40-200	123	119	101
13C2-6:2 FTS	40-200	106	85	96
13C2-8:2 FTS	40-300	88	89	84
13C3-HFPO-DA	40-130	88	93	85

QA/QC Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Extraction Method: Method

		Method Blank	Lab Control Sample	Duplicate Lab Control Sample KQ2505631-06	
Surrogate	Control Limits	KQ2505631-04	KQ2505631-05		
13C3-PFBS	40-135	126	124	102	
13C3-PFHxS	40-130	108	96	92	
13C8-PFOS	40-130	100	94	91	
13C4-PFBA	5-130	100	100	95	
13C5-PFPeA	40-130	97	91	94	
13C5-PFHxA	40-130	96	90	87	
13C4-PFHpA	40-130	98	95	101	
13C8-PFOA	40-130	104	98	93	
13C9-PFNA	40-130	104	100	93	
13C6-PFDA	40-130	105	108	90	
13C7-PFUnDA	30-130	122	123	94	
13C2-PFDoDA	10-130	103	104	75	
13C2-PFTeDA	10-130	93	89	65	
13C8-FOSA	40-130	77	79	61	
D3-MeFOSA	10-130	85	87	66	
D5-EtFOSA	10-130	80	83	64	
D7-MeFOSE	10-130	76	77	62	
D9-EtFOSE	10-130	82	85	65	
D3-MeFOSAA	40-170	100	97	78	
D5-EtFOSAA	25-135	85	86	66	
13C2-4:2 FTS	40-200	121	120	107	
13C2-6:2 FTS	40-200	74	90	70	
13C2-8:2 FTS	40-300	108	109	101	
13C3-HFPO-DA	40-130	84	82	88	

QA/QC Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project: PFAS-1633/553-8472-006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Extraction Method: Method

		Low Level Lab Control Sample				
Surrogate	Control Limits	KQ2505631-07				
13C3-PFBS	40-135	119				
13C3-PFHxS	40-130	99				
13C8-PFOS	40-130	93				
13C4-PFBA	5-130	99				
13C5-PFPeA	40-130	103				
13C5-PFHxA	40-130	90				
13C4-PFHpA	40-130	108				
13C8-PFOA	40-130	99				
13C9-PFNA	40-130	104				
13C6-PFDA	40-130	115				
13C7-PFUnDA	30-130	113				
13C2-PFDoDA	10-130	90				
13C2-PFTeDA	10-130	75				
13C8-FOSA	40-130	67				
D3-MeFOSA	10-130	69				
D5-EtFOSA	10-130	68				
D7-MeFOSE	10-130	69				
D9-EtFOSE	10-130	72				
D3-MeFOSAA	40-170	90				
D5-EtFOSAA	25-135	76				
13C2-4:2 FTS	40-200	111				
13C2-6:2 FTS	40-200	80				
13C2-8:2 FTS	40-300	121				
13C3-HFPO-DA	40-130	90				

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project:PFAS-1633/553-8472-006Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ng/L

 Lab Code:
 KQ2505631-04
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)					-	, and the same of		
Perfluorobutane sulfonic acid (PFBS)	ND U	5.0	1.8	0.43	1	04/09/25 23:01	4/8/25	
Perfluoropentane sulfonic acid (PFPeS)	ND U	5.0	1.9	0.89	1	04/09/25 23:01	4/8/25	
Perfluorohexane sulfonic acid (PFHxS)	ND U	5.0	1.8	0.82	1	04/09/25 23:01	4/8/25	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	5.0	1.9	0.69	1	04/09/25 23:01	4/8/25	
Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1.9	0.83	1	04/09/25 23:01	4/8/25	
Perfluorononane sulfonic acid (PFNS)	ND U	5.0	1.9	0.33	1	04/09/25 23:01	4/8/25	
Perfluorodecane sulfonic acid (PFDS)	ND U	5.0	1.9	0.67	1	04/09/25 23:01	4/8/25	
Perfluorododecane sulfonic acid (PFDoS)	ND U	5.0	1.9	0.56	1	04/09/25 23:01	4/8/25	
Perfluoroalkyl Carboxylic Acids (PFCAs)								
Perfluorobutanoic acid (PFBA)	ND U	5.0	2.0	0.86	1	04/09/25 23:01	4/8/25	
Perfluoropentanoic acid (PFPeA)	ND U	5.0	2.0	0.64	1	04/09/25 23:01	4/8/25	
Perfluorohexanoic acid (PFHxA)	ND U	5.0	2.0	0.63	1	04/09/25 23:01	4/8/25	
Perfluoroheptanoic acid (PFHpA)	ND U	5.0	2.0	0.71	1	04/09/25 23:01	4/8/25	
Perfluorooctanoic acid (PFOA)	ND U	5.0	2.0	0.87	1	04/09/25 23:01	4/8/25	
Perfluorononanoic acid (PFNA)	ND U	5.0	2.0	0.75	1	04/09/25 23:01	4/8/25	
Perfluorodecanoic acid (PFDA)	ND U	5.0	2.0	0.60	1	04/09/25 23:01	4/8/25	
Perfluoroundecanoic acid (PFUnDA)	ND U	5.0	2.0	0.82	1	04/09/25 23:01	4/8/25	
Perfluorododecanoic acid (PFDOA)	ND U	5.0	2.0	0.61	1	04/09/25 23:01	4/8/25	
Perfluorotridecanoic acid (PFTrDA)	ND U	5.0	2.0	0.46	1	04/09/25 23:01	4/8/25	
Perfluorotetradecanoic acid (PFTDA)	ND U	5.0	3.0	1.3	1	04/09/25 23:01	4/8/25	
Perfluoroalkyl Sulfonamido Substances								
Perfluorooctane sulfonamide (PFOSAm)	ND U	5.0	2.0	0.72	1	04/09/25 23:01	4/8/25	
N-Methylperfluorooctane sulfonamide (MeFOSA)	ND U	5.0	3.0	1.2	1	04/09/25 23:01	4/8/25	
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	5.0	2.0	0.85	1	04/09/25 23:01	4/8/25	
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	ND U	5.0	2.0	0.82	1	04/09/25 23:01	4/8/25	
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	5.0	2.0	0.92	1	04/09/25 23:01	4/8/25	
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	5.0	2.0	0.91	1	04/09/25 23:01	4/8/25	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	5.0	2.0	0.95	1	04/09/25 23:01	4/8/25	

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project:PFAS-1633/553-8472-006Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ng/L

 Lab Code:
 KQ2505631-04
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

							Date	
Analyte Name	Result	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)								
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	5.0	1.9	0.42	1	04/09/25 23:01	4/8/25	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	5.0	2.9	1.3	1	04/09/25 23:01	4/8/25	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	5.0	1.9	0.86	1	04/09/25 23:01	4/8/25	
Fluorotelomer Carboxylic Acids (FTCAs)								
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	ND U	200	20	6.8	1	04/09/25 23:01	4/8/25	
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	ND U	200	20	4.2	1	04/09/25 23:01	4/8/25	
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	ND U	200	20	6.0	1	04/09/25 23:01	4/8/25	
Perfluoroalkyl Ether Sulfonic Acids (PFE	SAs)							
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	ND U	5.0	1.8	0.43	1	04/09/25 23:01	4/8/25	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	ND U	5.0	1.9	0.45	1	04/09/25 23:01	4/8/25	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	ND U	5.0	1.9	0.39	1	04/09/25 23:01	4/8/25	
Perfluoroalkyl Ether Carboxylic Acids (Pl	FECAs)							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND U	5.0	2.0	0.41	1	04/09/25 23:01	4/8/25	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND U	5.0	2.0	0.54	1	04/09/25 23:01	4/8/25	
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	5.0	2.0	0.41	1	04/09/25 23:01	4/8/25	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND U	5.0	2.0	0.58	1	04/09/25 23:01	4/8/25	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ND U	5.0	1.9	0.36	1	04/09/25 23:01	4/8/25	

Analytical Report

Client: Onsite Environmental Incorporated Service Request: K2503482

Project:PFAS-1633/553-8472-006Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ng/L

 Lab Code:
 KQ2505631-04
 Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	126	40 - 135	04/09/25 23:01	
13C3-PFHxS	108	40 - 130	04/09/25 23:01	
13C8-PFOS	100	40 - 130	04/09/25 23:01	
13C4-PFBA	100	5 - 130	04/09/25 23:01	
13C5-PFPeA	97	40 - 130	04/09/25 23:01	
13C5-PFHxA	96	40 - 130	04/09/25 23:01	
13C4-PFHpA	98	40 - 130	04/09/25 23:01	
13C8-PFOA	104	40 - 130	04/09/25 23:01	
13C9-PFNA	104	40 - 130	04/09/25 23:01	
13C6-PFDA	105	40 - 130	04/09/25 23:01	
13C7-PFUnDA	122	30 - 130	04/09/25 23:01	
13C2-PFDoDA	103	10 - 130	04/09/25 23:01	
13C2-PFTeDA	93	10 - 130	04/09/25 23:01	
13C8-FOSA	77	40 - 130	04/09/25 23:01	
D3-MeFOSA	85	10 - 130	04/09/25 23:01	
D5-EtFOSA	80	10 - 130	04/09/25 23:01	
D7-MeFOSE	76	10 - 130	04/09/25 23:01	
D9-EtFOSE	82	10 - 130	04/09/25 23:01	
D3-MeFOSAA	100	40 - 170	04/09/25 23:01	
D5-EtFOSAA	85	25 - 135	04/09/25 23:01	
13C2-4:2 FTS	121	40 - 200	04/09/25 23:01	
13C2-6:2 FTS	74	40 - 200	04/09/25 23:01	
13C2-8:2 FTS	108	40 - 300	04/09/25 23:01	
13C3-HFPO-DA	84	40 - 130	04/09/25 23:01	

QA/QC Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006

04/09/25 **Date Analyzed: Sample Matrix:** Water **Date Extracted:** 04/08/25

Lab Control Sample Summary

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method: Draft EPA Method 1633 **Units: Prep Method:** Method **Basis:**

> **Analysis Lot:** 875598

K2503482

ng/L

NA

Service Request:

Low Level Lab Control Sample KQ2505631-07

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic	8.95	9.43	95	55-160
acid (11-Cl-PF3OUdS)				
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2	11.5	9.60	119	60-150
FTS)				
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2	9.64	9.37	103	70-145
FTS)				
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2	9.88	9.51	104	65-155
FTS)				
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA)	320	300	107	50-145
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	351	300	117	70-135
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	255	300	85	65-130
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	10.4	9.45	110	65-145
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic	10.9	9.33	116	70-155
acid (9-Cl-PF3ONS)				
Hexafluoropropyleneoxide dimer acid (HFPO-DA)	8.63	10.0	86	70-140
(GenX)				
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	7.79	10.0	78	65-145
N-Ethylperfluorooctane sulfonamido acetic acid	9.99	10.0	100	70-145
(NEtFOSAA)				
N-Ethylperfluorooctane sulfonamido ethanol	8.01	10.0	80	70-135
(EtFOSE)				
N-Methylperfluorooctane sulfonamide (MeFOSA)	7.51 I	10.0	75	60-150
N-Methylperfluorooctane sulfonamido acetic acid	8.30	10.0	83	50-140
(NMeFOSAA)				
N-Methylperfluorooctane sulfonamido ethanol	8.99	10.0	90	70-145
(MeFOSE)				
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	10.0	10.0	100	50-150
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	9.49	8.90	107	70-140
Perfluoro-3-methoxypropanoic acid (PFMPA)	9.67	10.0	97	55-140
Perfluoro-4-methoxybutanoic acid (PFMBA)	11.3	10.0	113	60-150
Perfluorobutane sulfonic acid (PFBS)	8.05	8.87	91	60-145
Perfluorobutanoic acid (PFBA)	8.14	10.0	81	70-140
Perfluorodecane sulfonic acid (PFDS)	8.35	9.65	87	60-145
Perfluorodecanoic acid (PFDA)	9.80	10.0	98	70-140
Perfluorododecane sulfonic acid (PFDoS)	5.66	9.70	58	50-145
Perfluorododecanoic acid (PFDOA)	10.1	10.0	101	70-140
Perfluoroheptane sulfonic acid (PFHpS)	8.50	9.53	89	70-150
Perfluoroheptanoic acid (PFHpA)	8.31	10.0	83	70-150
Perfluorohexane sulfonic acid (PFHxS)	8.56	9.14	94	65-145
Perfluorohexanoic acid (PFHxA)	9.37	10.0	94	70-145
Perfluorononane sulfonic acid (PFNS)	9.09	9.62	94	65-145

Printed 4/17/2025 4:20:47 PM

Superset Reference:25-0000728651 rev 00

QA/QC Report

Client:Onsite Environmental IncorporatedService Request:K2503482Project:PFAS-1633/553-8472-006Date Analyzed:04/09/25Sample Matrix:WaterDate Extracted:04/08/25

Lab Control Sample Summary

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method:Draft EPA Method 1633Units:ng/LPrep Method:MethodBasis:NA

Analysis Lot: 875598

Low Level Lab Control Sample KQ2505631-07

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Perfluorononanoic acid (PFNA)	10.3	10.0	103	70-150
Perfluorooctane sulfonamide (PFOSAm)	9.55	10.0	96	70-145
Perfluorooctane sulfonic acid (PFOS)	7.96	9.28	86	55-150
Perfluorooctanoic acid (PFOA)	7.91	10.0	79	70-150
Perfluoropentane sulfonic acid (PFPeS)	9.47	9.41	101	65-140
Perfluoropentanoic acid (PFPeA)	7.57	10.0	76	65-135
Perfluorotetradecanoic acid (PFTDA)	10.0	10.0	100	60-140
Perfluorotridecanoic acid (PFTrDA)	10.5	10.0	105	65-140
Perfluoroundecanoic acid (PFUnDA)	7.72	10.0	77	70-145

QA/QC Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006 **Date Analyzed:** 04/09/25 - 04/10/25

Sample Matrix: Water Date Extracted: 04/08/25

Duplicate Lab Control Sample Summary

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method:Draft EPA Method 1633Units:ng/LPrep Method:MethodBasis:NA

Analysis Lot: 875598

Service Request:

K2503482

Lab Control Sample KQ2505631-05

Duplicate Lab Control Sample KQ2505631-06

Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)	18.1	18.9	96	16.6	18.9	88	55-160	9	30
1H, 1H, 2H, 2H-Perfluorodecanesulfonic	23.1	19.2	120	23.8	19.2	124	60-150	3	30
acid (8:2 FTS) 1H, 1H, 2H, 2H-Perfluorohexanesulfonic	17.1	18.7	91	17.1	18.7	91	70-145	<1	30
acid (4:2 FTS) 1H, 1H, 2H, 2H-Perfluorooctanesulfonic	20.3	19.0	107	20.6	19.0	108	65-155	1	30
acid (6:2 FTS) 2H,2H,3H,3H-Perfluorodecanoic acid	388	400	97	424	400	106	50-145	9	30
(7:3 FTCA) 2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	425	400	106	460	400	115	70-135	8	30
(3.3 FTCA) 4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	325	400	81	376	400	94	65-130	15	30
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	20.5	18.9	108	19.0	18.9	101	65-145	7	30
9-Chlorohexadecafluoro-3-oxanonane-1-	22.4	18.7	120	21.4	18.7	115	70-155	4	30
sulfonic acid (9-Cl-PF3ONS) Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	15.0	20.0	75	15.5	20.0	77	70-140	3	30
N-Ethylperfluorooctane sulfonamide	16.2	20.0	81	16.8	20.0	84	65-145	4	30
(EtFOSAm) N-Ethylperfluorooctane sulfonamido	24.2	20.0	121	23.6	20.0	118	70-145	3	30
acetic acid (NEtFOSAA) N-Ethylperfluorooctane sulfonamido	16.4	20.0	82	16.9	20.0	84	70-135	3	30
ethanol (EtFOSE) N-Methylperfluorooctane sulfonamide	17.0	20.0	85	17.6	20.0	88	60-150	4	30
(MeFOSA)									
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	17.4	20.0	87	16.6	20.0	83	50-140	5	30
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	18.3	20.0	92	18.1	20.0	91	70-145	1	30
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	18.3	20.0	91	20.7	20.0	103	50-150	12	30
Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	16.4	17.8	92	18.7	17.8	105	70-140	13	30
Perfluoro-3-methoxypropanoic acid	21.1	20.0	105	19.2	20.0	96	55-140	9	30
(PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA)	24.3	20.0	122	22.3	20.0	111	60-150	9	30
Perfluorobutane sulfonic acid (PFBS)	16.5	17.7	93	16.2	17.7	91	60-145	2	30

Printed 4/17/2025 4:20:46 PM Superset Reference:25-0000728651 rev 00

QA/QC Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006 **Date Analyzed:** 04/09/25 - 04/10/25

Sample Matrix: Water Date Extracted: 04/08/25

Duplicate Lab Control Sample Summary

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS Compliant with Table B-24 of DOD QSM 5.4

Analysis Method:Draft EPA Method 1633Units:ng/LPrep Method:MethodBasis:NA

Analysis Lot: 875598

K2503482

Lab Control Sample KQ2505631-05 Duplicate Lab Control Sample KQ2505631-06

Service Request:

		•			•				
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Perfluorobutanoic acid (PFBA)	18.2	20.0	91	18.2	20.0	91	70-140	<1	30
Perfluorodecane sulfonic acid (PFDS)	18.0	19.3	93	15.6	19.3	81	60-145	14	30
Perfluorodecanoic acid (PFDA)	21.2	20.0	106	20.5	20.0	103	70-140	3	30
Perfluorododecane sulfonic acid	12.7	19.4	65	10.2	19.4	53	50-145	21	30
(PFDoS)									
Perfluorododecanoic acid (PFDOA)	19.6	20.0	98	20.5	20.0	102	70-140	4	30
Perfluoroheptane sulfonic acid (PFHpS)	19.1	19.1	100	15.9	19.1	83	70-150	19	30
Perfluoroheptanoic acid (PFHpA)	17.7	20.0	89	17.2	20.0	86	70-150	3	30
Perfluorohexane sulfonic acid (PFHxS)	20.8	18.3	114	15.5	18.3	85	65-145	29	30
Perfluorohexanoic acid (PFHxA)	19.2	20.0	96	19.4	20.0	97	70-145	<1	30
Perfluorononane sulfonic acid (PFNS)	19.1	19.2	99	17.1	19.2	89	65-145	11	30
Perfluorononanoic acid (PFNA)	21.4	20.0	107	20.8	20.0	104	70-150	3	30
Perfluorooctane sulfonamide (PFOSAm)	20.1	20.0	100	20.6	20.0	103	70-145	3	30
Perfluorooctane sulfonic acid (PFOS)	18.1	18.6	98	16.4	18.6	88	55-150	10	30
Perfluorooctanoic acid (PFOA)	17.4	20.0	87	15.9	20.0	79	70-150	9	30
Perfluoropentane sulfonic acid (PFPeS)	19.2	18.8	102	17.1	18.8	91	65-140	11	30
Perfluoropentanoic acid (PFPeA)	16.2	20.0	81	16.0	20.0	80	65-135	1	30
Perfluorotetradecanoic acid (PFTDA)	20.1	20.0	101	20.0	20.0	100	60-140	<1	30
Perfluorotridecanoic acid (PFTrDA)	22.5	20.0	113	21.9	20.0	110	65-140	3	30
Perfluoroundecanoic acid (PFUnDA)	15.7	20.0	79	15.9	20.0	80	70-145	2	30

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: K2503482-MB1

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed Q
Solids, Total Suspended (TSS)	SM 2540 D Modified	ND U	mg/L	100	-	-	1	04/04/25 17:42

Service Request: K2503482

Analytical Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: K2503482-MB2

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed Q
Solids, Total Suspended (TSS)	SM 2540 D Modified	ND U	mg/L	100	-	-	1	04/04/25 17:42

Service Request: K2503482

QA/QC Report

Client: Onsite Environmental Incorporated

Project: PFAS-1633/553-8472-006

Water

Service Request:

K2503482

Date Analyzed:

04/04/25

Date Extracted:

acted: NA

Lab Control Sample Summary

Solids, Total Suspended (TSS)

Analysis Method: SM 2540 D Modified

Prep Method: None

Sample Matrix:

Units:

mg/L

Basis:

NA

Analysis Lot:

875015

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K2503482-LCS	440	430	102	85-115

Analytical Results Report For:

OnSite Environmental, Inc.

Project:

Parametrix DTG Yakima

Anatek Work Order:

YFD0004

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: OnSite Environmental, Inc.

Address: 14648 NE. 95th St.

Redmond, WA 98052

Attn: David Baumeister

Work Order: YFD0004

Project: Parametrix DTG Yakima

Reported: 4/4/2025 11:34

Analytical Results Report

03/31/25 14:24

Sample Location: MW-3S

Lab/Sample Number: YFD0004-01
Date Received: 04/01/25 08:15

04/01/25 08:15 Collected By: Sally Nguyen

Collect Date:

Matrix: Water

Analyzed Analyte Result Units PQL Analyst Method Qualifier **Inorganics** 11.3 4/2/25 8:48 DRA Hach 10206 Nitrate/N mg/L 0.200

MW-5S Sample Location:

Lab/Sample Number: YFD0004-02 Collect Date: 03/31/25 12:23 Date Received: 04/01/25 08:15 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0800	mg/L	0.200	4/2/25 8:48	DRA	Hach 10206	

MW-7D Sample Location:

Lab/Sample Number: YFD0004-04 Collect Date: 03/31/25 12:05 Date Received: 04/01/25 08:15 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0410	mg/L	0.200	4/2/25 8:48	DRA	Hach 10206	

MW-9D Sample Location:

Lab/Sample Number: 03/31/25 14:25 YFD0004-05 Collect Date: Date Received: 04/01/25 08:15 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0770	mg/L	0.200	4/2/25 8:48	DRA	Hach 10206	

MW-10D Sample Location:

Lab/Sample Number: YFD0004-06 Collect Date: 03/31/25 16:25 Date Received: 04/01/25 08:15 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	1.51	mg/L	0.200	4/2/25 8:48	DRA	Hach 10206	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Emily Wengrowski for Kathleen Sattler, Lab Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Chain of Custody Record

Anatek I 1282 Alturas Drive, Mosco 504 E Sprague Ste D, Spoka

YFD0004

1	Onsite Environmental (Parametrix)	Pr	oject M	anage	r: Davi	d Baume	oiotor			Turn A Due: 04/15/25		
Address: 14648 NE 95th Street		Pro	Project Manager: David Baumeister Project Name & #: Parametrix DTG Yakima Purchase Order #:										
City: Redmond State: WA Zip: 98052									Pu	Please refe www.anatenaps.com/priong-note			
Phone: 425.883.3881				Pulchase Order #:						<u>∨</u> Normal Phone			
425.883.3881 Email Address(es): dbaumeister@onsite-env.com			Sa	Sampler Name & Phone: Shaufler / Burke (Parametrix)							Next Day*Email		
Linaii Address(es):	dbaumeister@onsite-	env.com						1 10 11	(2nd Day*		
						Liet	Analyse	s D		profiles a USA	Tiave prior approval		
- 42			Pre	servative:			lialyse	S Req	uestea	1 1	Note Special Instructions/Comments		
			ntainers	Volum	ø						Extra bottles for mn-5s for mon-5s for		
ID Sample Ider	ntification Sampling Date/T	ime Matrix	# of Cor	Sample Volume	Nitrate						Client Container X6		
MW-2S MW-3S	9	H2O	1		×	BU	+		++	++	Client Container X G		
MW-45	3131 1420		1		X				++	+			
- MW-58 /MW	-55 MSI 3/31 122	H2O H2O	1		X					+			
MW-6S	MSD XXX	H2O	1	2_	X								
MW-13S		H2O			×		\perp				Inspection Checklist		
MW-7D	3131 1205		1		×	_	-				Received Intact?		
MW-8D		H2O	1		×	-	+		\perp		Labels & Chains Agree?		
MW-9D	3131 1425	H2O	1		×	+	++	_			Containers Sealed?		
MW-10D	3131 1625	H2O	1		X	-	+	-	++	++	No VOC Head Space?		
Leachate		H2O	1		X						Cooler? Ice/Ice Packs Present?		
	Printed Name								+				
elinquished by	The second secon	Signature				C	mpany		Date	Time	Temperature (°C):4.0-0/4.2-c Dig/ Number of Containers:		
eceived by	ashluladure	And	0	<u>\</u>	~		vamet		411/25	0814	Shipped Via: hand		
elinquished by)	2 alina	usi	n		4	note	W.	4/1/25	815	Preservative:		
eceived by	Page 1	R.				+					11		
elinquished by						+					Date & Time: 4/1/25 8/5		
eceived by						+			-		Inspected By:		
mples submitted to Ana	atek Labs may be subcontacted	to other accredited lab	e if nos										

Analytical Results Report For:

OnSite Environmental, Inc.

Project:

Parametrix DTG Yakima

Anatek Work Order:

YFD0072

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: OnSite Environmental, Inc.

Address: 14648 NE. 95th St.

Redmond, WA 98052

Attn: David Baumeister

Work Order: YFD0072

Project: Parametrix DTG Yakima

Reported: 4/4/2025 11:37

Analytical Results Report

Sample Location: MW-2S

Lab/Sample Number: YFD0072-01

YFD0072-01 Collect Date: 04/01/25 11:53 04/02/25 09:32 Collected By: Nguyen/Burke

Matrix: Water

Date Received:

Analyzed Analyte Result Units PQL Analyst Method Qualifier **Inorganics** 0.702 4/2/25 16:29 DRA Hach 10206 Nitrate/N mg/L 0.200

MW-4S Sample Location:

Lab/Sample Number: YFD0072-02 Collect Date: 04/01/25 09:55 Date Received: 04/02/25 09:32 Collected By: Nguyen/Burke

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	62.8	mg/L	2.00	4/2/25 16:48	DRA	Hach 10206	

MW-6S Sample Location:

Lab/Sample Number: YFD0072-03 Collect Date: 04/01/25 14:55 Date Received: 04/02/25 09:32 Collected By: Nguyen/Burke

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	11.3	mg/L	0.200	4/2/25 16:29	DRA	Hach 10206	

MW-13S Sample Location:

Lab/Sample Number: YFD0072-04 Collect Date: 04/01/25 09:00 Date Received: 04/02/25 09:32 Collected By: Nguyen/Burke

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	11.6	mg/L	0.200	4/2/25 16:29	DRA	Hach 10206	

MW-8D Sample Location:

Lab/Sample Number: YFD0072-05 Collect Date: 04/01/25 13:26 Date Received: 04/02/25 09:32 Collected By: Nguyen/Burke

Analyte	Result Units		PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	1.78	mg/L	0.200	4/2/25 16:29	DRA	Hach 10206	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Emily Wengrowski for Kathleen Sattler, Lab Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Chain of Custody Record

Anatek 1282 Alturas Drive, Mose 504 E Sprague Ste D, Spok

Due: 04/16/25

Compa	any Name: ONS	te:	Environmental (Parametik	Proje	ct Mar	nager:	Da	wid	Ba	NWY	eist	er			Turn
Addres	ss: 14648	NE	95th St		Proje	ct Nan	ne &	# : Pa	rva	me	trix	D	tG	Yal	ermon	Please re www.anateklabs.com/pricing-lists
City:	zedmond		State: WA Zip:	98052	Purc	nase C	order #	‡ :	,							NormalPhone Next Day*Email
Phone	425 -8	83	- 3881		Sam	oler Na	ame &	Phon	e:	en i	B	wh	-e			2nd Day* *All rush order requests must
Email	Address(es):	ium	essteroousite.	-env.com		A			1							Other* have prior approval
					*			List	Ana	lyses	Rec	ues	ted			Note Special Instructions/Comments
Lab	Γ				f Containers	Sample Volumes	track									
ID	Sample Identifica	ation	Sampling Date/Time	Matrix	# of	Sa	2									Client Container X 5
	MW-28		4/10/1153	W (H20)	1		X		_	\vdash			-	_		
	MW-45		4/10 955	W (H20)	1		X	_	-	\vdash	\dashv		-	-	_	
	MW-105		4/10 1455		1		X	-	-	+	\dashv					
	MW-139		41.6 900	W (H20)	1	-	X	-	+	+	\dashv					Inspection Checklist
	MW-8D		4110 1326	W (A201	<u>'</u>	-	N	 	+-	\vdash	\dashv			-	-+	Received Intact?
		-			\vdash	 	-	_	\vdash	+	-				$\neg \vdash$	Labels & Chains Agree? (Y) N
						\vdash	\vdash	\vdash	<u> </u>	\Box	$\neg \uparrow$					Labels & Chains Agree? (Y) N Containers Sealed? Y N
										\Box		*				No VOC Head Space? Y N
																Cooler?
																Ice/Ice Packs Present? Ŷ N
							-		-							Temperature (°C): 1.0 1.2°C QTG-16
		Printe	ed Name	Signature					Con	npany			Date		Time	Number of Containers: 5
Relinc	quished by	Sal	lly Ngyyun	281	7	2	~	~	Pa	verhige	this	¢	4/2		0132	Shipped Via: I+-D
	ved by	De	Siree Alling	Desir	(1)	<u>^</u>			_	atek	-	-			9:32	Preservative: n(a
-	quished by	UC.		20,00	~	5				<u> </u>						
	ved by					Name of the last										Date & Time: 4-2-25 @9:32
	quished by															Inspected By: DYA
Recei	ved by															

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

April 21, 2025

Enthalpy Analytical - El Dorado Hills Work Order No. 2504028

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on April 04, 2025 under your Project Name '553-8472-006'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Kathy Zjorp

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH.

Work Order 2504028 Page 1 of 17

Enthalpy Analytical - EDH Work Order No. 2504028 Case Narrative

Sample Condition on Receipt:

Six water samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2504028 Page 2 of 17

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	14
Certifications	15
Sample Receipt	16

Work Order 2504028 Page 3 of 17

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2504028-01	MW-2S	01-Apr-25 11:53	04-Apr-25 07:55	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2504028-02	MW-3S	31-Mar-25 14:24	04-Apr-25 07:55	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2504028-03	MW-4S	01-Apr-25 09:55	04-Apr-25 07:55	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2504028-04	MW-5S	31-Mar-25 12:23	04-Apr-25 07:55	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2504028-05	MW-6S	01-Apr-25 14:55	04-Apr-25 07:55	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2504028-06	MW-13S	01-Apr-25 09:00	04-Apr-25 07:55	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Work Order 2504028 Page 4 of 17

ANALYTICAL RESULTS

Work Order 2504028 Page 5 of 17

Sample ID: Method Blank EPA Method 1613B

Client Data

Laboratory Data

Name: OnSite Environmental Inc.

Lab Sample: B25D112-BLK1

Project: 553-8472-006 Matrix: Aqueous QC Batch: B25D112 Date Extracted: 09-Apr-25 Sample Size: 1.00 L Column: ZB-DIOXIN

114400					EB BIOMIN	
Analyte	Conc. (pg/L)	EDL	EMPC	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.26			15-Apr-25 12:43	1
1,2,3,7,8-PeCDD	ND	1.03			15-Apr-25 12:43	1
1,2,3,4,7,8-HxCDD	ND	1.86			15-Apr-25 12:43	1
1,2,3,6,7,8-HxCDD	ND	2.12			15-Apr-25 12:43	1
1,2,3,7,8,9-HxCDD	ND	1.88			15-Apr-25 12:43	1
1,2,3,4,6,7,8-HpCDD	ND	4.84			15-Apr-25 12:43	
OCDD	ND	3.37			15-Apr-25 12:43	
2,3,7,8-TCDF	ND	0.902			15-Apr-25 12:43	
1,2,3,7,8-PeCDF	ND	0.758			15-Apr-25 12:43	
2,3,4,7,8-PeCDF	ND	0.775			15-Apr-25 12:43	
1,2,3,4,7,8-HxCDF	ND	0.750			15-Apr-25 12:43	
1,2,3,6,7,8-HxCDF	ND	0.767			15-Apr-25 12:43	
2,3,4,6,7,8-HxCDF	ND	0.749			15-Apr-25 12:43	
1,2,3,7,8,9-HxCDF	ND	1.02			15-Apr-25 12:43	
1,2,3,4,6,7,8-HpCDF	ND	0.862			15-Apr-25 12:43	
1,2,3,4,7,8,9-HpCDF	ND	1.08			15-Apr-25 12:43	
OCDF	ND	1.77			15-Apr-25 12:43	1
Toxic Equivalent	0.00					
TEQMinWHO2005Dioxin Totals	0.00					
	ND	1.26				
Total TCDD	ND	1.26				
Total PeCDD	ND	1.03				
Total HxCDD	ND	2.12				
Total HpCDD	ND	4.84				
Total TCDF	ND	0.902				
Total PeCDF	ND	0.775				
Total HxCDF	ND	1.02				
Total HpCDF	ND	1.08				
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	73.8	25 - 164		15-Apr-25 12:43	1
13C-1,2,3,7,8-PeCDD	IS	76.9	25 - 181		15-Apr-25 12:43	1
13C-1,2,3,4,7,8-HxCDD	IS	71.6	32 - 141		15-Apr-25 12:43	1
13C-1,2,3,6,7,8-HxCDD	IS	69.5	28 - 130		15-Apr-25 12:43	1
13C-1,2,3,7,8,9-HxCDD	IS	71.3	32 - 141		15-Apr-25 12:43	1
13C-1,2,3,4,6,7,8-HpCDD	IS	68.6	23 - 140		15-Apr-25 12:43	
13C-OCDD	IS	57.1	17 - 157		15-Apr-25 12:43	
13C-2,3,7,8-TCDF	IS	79.8	24 - 169		15-Apr-25 12:43	
13C-1,2,3,7,8-PeCDF	IS	81.0	24 - 185		15-Apr-25 12:43	
13C-2,3,4,7,8-PeCDF	IS	80.6	21 - 178		15-Apr-25 12:43	
13C-1,2,3,4,7,8-HxCDF	IS	71.6	26 - 152		15-Apr-25 12:43	
13C-1,2,3,6,7,8-HxCDF	IS	71.8	26 - 123		15-Apr-25 12:43	
13C-2,3,4,6,7,8-HxCDF	IS	71.7	28 - 136		15-Apr-25 12:43	
13C-1,2,3,7,8,9-HxCDF	IS	71.6			15-Apr-25 12:43	
		74.6	29 - 147		-	
13C-1,2,3,4,6,7,8-HpCDF	IS		28 - 143		15-Apr-25 12:43	
13C-1,2,3,4,7,8,9-HpCDF	IS	79.2	26 - 138		15-Apr-25 12:43	
13C-OCDF	IS	65.7	17 - 157		15-Apr-25 12:43	
37Cl-2,3,7,8-TCDD	CRS	97.1	35 - 197		15-Apr-25 12:43	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2504028 Page 6 of 17

Sample ID: OPR EPA Method 1613B

Client Data

Name:

OnSite Environmental Inc.

Project: 553-8472-006 Matrix: Aqueous Laboratory Data

Lab Sample: B25D112-BS1

QC Batch: B25D112 Date Extracted: 09-Apr-25 16:39 Sample Size: 1.00 L Column: ZB-DIOXIN

Analyte	Amt Found (pg/L)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	207	200	103	67-158		15-Apr-25 11:12	1
1,2,3,7,8-PeCDD	1050	1000	105	70-142		15-Apr-25 11:12	1
1,2,3,4,7,8-HxCDD	1080	1000	108	70-164		15-Apr-25 11:12	1
1,2,3,6,7,8-HxCDD	1060	1000	106	76-134		15-Apr-25 11:12	
1,2,3,7,8,9-HxCDD	1050	1000	105	64-162		15-Apr-25 11:12	
1,2,3,4,6,7,8-HpCDD	1070	1000	107	70-140		15-Apr-25 11:12	
OCDD	2100	2000	105	78-144		15-Apr-25 11:12	
2,3,7,8-TCDF	217	200	109	75-158		15-Apr-25 11:12	
1,2,3,7,8-PeCDF	1090	1000	109	80-134		15-Apr-25 11:12	1
2,3,4,7,8-PeCDF	1090	1000	109	68-160		15-Apr-25 11:12	
1,2,3,4,7,8-HxCDF	1080	1000	108	72-134		15-Apr-25 11:12	
1,2,3,6,7,8-HxCDF	1070	1000	107	84-130		15-Apr-25 11:12	
2,3,4,6,7,8-HxCDF	1100	1000	110	70-156		15-Apr-25 11:12	
1,2,3,7,8,9-HxCDF	1050	1000	105	78-130		15-Apr-25 11:12	
1,2,3,4,6,7,8-HpCDF	1050	1000	105	82-122		15-Apr-25 11:12	
1,2,3,4,7,8,9-HpCDF	1000	1000	100	78-138		15-Apr-25 11:12	
OCDF	2200	2000	110	63-170	0 110	15-Apr-25 11:12	1
Labeled Standards	Type		% Recovery	Limits	Qualifiers	•	Dilution
13C-2,3,7,8-TCDD	IS		81.8	20 - 175		15-Apr-25 11:12	
13C-1,2,3,7,8-PeCDD	IS		79.6	21 -227		15-Apr-25 11:12	
13C-1,2,3,4,7,8-HxCDD	IS		68.6	21 -193		15-Apr-25 11:12	1
13C-1,2,3,6,7,8-HxCDD	IS		71.4	25 -163		15-Apr-25 11:12	1
13C-1,2,3,7,8,9-HxCDD	IS		68.3	21 -193		15-Apr-25 11:12	1
13C-1,2,3,4,6,7,8-HpCDD	IS		63.3	26-166		15-Apr-25 11:12	1
13C-OCDD	IS		54.3	13 -199		15-Apr-25 11:12	1
13C-2,3,7,8-TCDF	IS		79.2	22 -152		15-Apr-25 11:12	1
13C-1,2,3,7,8-PeCDF	IS		78.4	21 -192		15-Apr-25 11:12	
13C-2,3,4,7,8-PeCDF	IS		82.7	13 -328		15-Apr-25 11:12	
13C-1,2,3,4,7,8-HxCDF	IS		70.8	19 -202		15-Apr-25 11:12	
13C-1,2,3,6,7,8-HxCDF	IS		71.4	21 -159		15-Apr-25 11:12	
13C-2,3,4,6,7,8-HxCDF	IS		69.4	22 - 176		15-Apr-25 11:12	
13C-1,2,3,7,8,9-HxCDF						15-Apr-25 11:12	
	IS		72.3	17 - 205		•	
13C-1,2,3,4,6,7,8-HpCDF	IS		66.7	21 -158		15-Apr-25 11:12	
13C-1,2,3,4,7,8,9-HpCDF	IS		71.9	20-186		15-Apr-25 11:12	
13C-OCDF	IS		58.3	13 -199		15-Apr-25 11:12	1
37Cl-2,3,7,8-TCDD	CRS		95.8			15-Apr-25 11:12	

Work Order 2504028 Page 7 of 17

16-Apr-25 03:12

1

1

1

1

1

1

1

Sample ID: MW-2S EPA Method 1613B

Client Data Laboratory Data

Name: OnSite Environmental Inc.

Project: 553-8472-006

Lab Sample: 2504028-01

QC Batch: B25D112

Date Received: 04-Apr-25 07:55

QC Batch: Date Extracted: 09-Apr-25

Matrix: Water Sample Size: 1.04 L Column: ZB-DIOXIN

Date Collected: 01-Apr-25 11:53 **EDL EMPC** Dilution Qualifiers Analyzed Analyte Conc. (pg/L) 2,3,7,8-TCDD ND 1.28 16-Apr-25 03:12 1,2,3,7,8-PeCDD ND 1.69 16-Apr-25 03:12 ND 2.04 1,2,3,4,7,8-HxCDD 16-Apr-25 03:12 ND 2.19 1,2,3,6,7,8-HxCDD 16-Apr-25 03:12 1 ND 2.27 1,2,3,7,8,9-HxCDD 16-Apr-25 03:12 ND 4.10 1,2,3,4,6,7,8-HpCDD 16-Apr-25 03:12 1 110 OCDD 16-Apr-25 03:12 1 ND 2.30 2,3,7,8-TCDF 16-Apr-25 03:12 1 1,2,3,7,8-PeCDF ND 2.85 16-Apr-25 03:12 1 2.3.4.7.8-PeCDF ND 3.02 16-Apr-25 03:12 1 ND 4.14 1,2,3,4,7,8-HxCDF 16-Apr-25 03:12 1,2,3,6,7,8-HxCDF ND 2.16 16-Apr-25 03:12 1 2,3,4,6,7,8-HxCDF ND 2.63 16-Apr-25 03:12 1,2,3,7,8,9-HxCDF ND 2.78 16-Apr-25 03:12 1.79 1,2,3,4,6,7,8-HpCDF 16-Apr-25 03:12 1,2,3,4,7,8,9-HpCDF ND 1.57 16-Apr-25 03:12 1 16-Apr-25 03:12 2.63 OCDF **Toxic Equivalent** TEQMinWHO2005Dioxin 0.0517 **Totals** Total TCDD ND 1.28 Total PeCDD ND 1.69 Total HxCDD ND 2.27 6.23 Total HpCDD ND Total TCDF ND 2.30 Total PeCDF ND 7.52 ND 4.14 Total HxCDF Total HpCDF 1.79 3.49 **Labeled Standards** Qualifiers Type % Recovery Limits Analyzed Dilution 13C-2,3,7,8-TCDD IS 70.9 16-Apr-25 03:12 25 - 164 IS 68.9 16-Apr-25 03:12 13C-1,2,3,7,8-PeCDD 25 - 181 1 IS 13C-1,2,3,4,7,8-HxCDD 59.2 32 - 141 16-Apr-25 03:12 1 13C-1,2,3,6,7,8-HxCDD IS 59.1 28 - 130 16-Apr-25 03:12 1 IS 13C-1,2,3,7,8,9-HxCDD 56.2 16-Apr-25 03:12 32 - 141 13C-1,2,3,4,6,7,8-HpCDD IS 52.1 23 - 140 16-Apr-25 03:12 1 IS 38.1 13C-OCDD 17 - 157 16-Apr-25 03:12 1 IS 71.1 13C-2,3,7,8-TCDF 24 - 169 16-Apr-25 03:12 1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

13C-1,2,3,7,8-PeCDF

13C-2,3,4,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

IS

IS

IS

IS

IS

IS

IS

IS

IS

CRS

Work Order 2504028 Page 8 of 17

24 - 185

21 - 178

26 - 152

26 - 123

28 - 136

29 - 147

28 - 143

26 - 138

17 - 157

35 - 197

65.1

70.9

57.4

58.1

57.7

60.4

55.2

57.4

42.8

86.5

Sample ID: MW-3S **EPA Method 1613B**

Laboratory Data Client Data

2504028-02 Date Received: Lab Sample: 04-Apr-25 07:55 Name: OnSite Environmental Inc. QC Batch: B25D112 Date Extracted: 09-Apr-25

Project: 553-8472-006

Sample Size: 1.04 L Column: ZB-DIOXIN Matrix: Water

Matrix: Water Date Collected: 31-Mar-25 1	4:24		Sample Size:	1.04 L	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.17				16-Apr-25 03:57	1
1,2,3,7,8-PeCDD	ND	2.10				16-Apr-25 03:57	1
1,2,3,4,7,8-HxCDD	ND	2.33				16-Apr-25 03:57	1
1,2,3,6,7,8-HxCDD	ND	2.59				16-Apr-25 03:57	1
1,2,3,7,8,9-HxCDD	ND	2.40				16-Apr-25 03:57	
1,2,3,4,6,7,8-HpCDD	ND	2.49				16-Apr-25 03:57	
OCDD	ND	6.93				16-Apr-25 03:57	
2,3,7,8-TCDF	ND	0.619				16-Apr-25 03:57	
1,2,3,7,8-PeCDF	ND	1.42				16-Apr-25 03:57	
2,3,4,7,8-PeCDF	ND	0.709				16-Apr-25 03:57	
1,2,3,4,7,8-HxCDF	ND	0.502				16-Apr-25 03:57	
1,2,3,6,7,8-HxCDF	ND	0.475				16-Apr-25 03:57	
2,3,4,6,7,8-HxCDF	ND	0.565				16-Apr-25 03:57	
1,2,3,7,8,9-HxCDF	ND	0.624				16-Apr-25 03:57	
1,2,3,4,6,7,8-HpCDF	ND	0.279				16-Apr-25 03:57	
1,2,3,4,7,8,9-HpCDF	ND	0.416				16-Apr-25 03:57	
OCDF	ND	2.27				16-Apr-25 03:57	1
Toxic Equivalent TEQMinWHO2005Dioxin	0.00						
Totals	0.00						
Total TCDD	ND	1.17					
Total PeCDD	ND	2.10					
Total HxCDD	ND	2.59					
Total HpCDD	ND	2.49					
Total TCDF	ND	0.619					
Total PeCDF	ND	1.42					
Total HxCDF	ND	0.624					
Total HpCDF	ND	0.416					
Labeled Standards	Type	% Recover	A¥.7	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	85.2	: y		Quanners	16-Apr-25 03:57	
13C-1,2,3,7,8-PeCDD	IS	84.1		25 - 164 25 - 181		16-Apr-25 03:57	
	IS					_	
13C-1,2,3,4,7,8-HxCDD		73.4		32 - 141		16-Apr-25 03:57	
13C-1,2,3,6,7,8-HxCDD	IS	72.7		28 - 130		16-Apr-25 03:57	
13C-1,2,3,7,8,9-HxCDD	IS	70.0		32 - 141		16-Apr-25 03:57	
13C-1,2,3,4,6,7,8-HpCDD	IS	71.4		23 - 140		16-Apr-25 03:57	
13C-OCDD	IS	61.3		17 - 157		16-Apr-25 03:57	
13C-2,3,7,8-TCDF	IS	80.5		24 - 169		16-Apr-25 03:57	
13C-1,2,3,7,8-PeCDF	IS	51.9		24 - 185		16-Apr-25 03:57	
13C-2,3,4,7,8-PeCDF	IS	83.6		21 - 178		16-Apr-25 03:57	
13C-1,2,3,4,7,8-HxCDF	IS	71.9		26 - 152		16-Apr-25 03:57	
13C-1,2,3,6,7,8-HxCDF	IS	71.4		26 - 123		16-Apr-25 03:57	
13C-2,3,4,6,7,8-HxCDF	IS	71.4		28 - 136		16-Apr-25 03:57	
13C-1,2,3,7,8,9-HxCDF	IS	72.1		29 - 147		16-Apr-25 03:57	7 1
13C-1,2,3,4,6,7,8-HpCDF	IS	71.6		28 - 143		16-Apr-25 03:57	7 1
13C-1,2,3,4,7,8,9-HpCDF	IS	75.5		26 - 138		16-Apr-25 03:57	7 1
13C-OCDF	IS	66.5		17 - 157		16-Apr-25 03:57	7 1
37Cl-2,3,7,8-TCDD	CRS	111		35 - 197		16-Apr-25 03:57	7 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2504028 Page 9 of 17

Sample ID: MW-4S EPA Method 1613B

Client Data Laboratory Data

Name: OnSite Environmental Inc.

Lab Sample: 2504028-03 Date Received: 04-Apr-25 07:55

Project: 553-8472-006 QC Batch: B25D112 Date Extracted: 09-Apr-25

Project: 553-8472-006 QC Batch: B25D112 Date Extracted: 09-Apr-25

Matrix: Water Sample Size: 1.04 L Column: ZB-DIOXIN

Matrix: Water Date Collected: 01-Apr-25 0	9:55		Sample Size:	1.04 L	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.846				16-Apr-25 04:42	1
1,2,3,7,8-PeCDD	ND	1.44				16-Apr-25 04:42	1
1,2,3,4,7,8-HxCDD	ND	2.33				16-Apr-25 04:42	
1,2,3,6,7,8-HxCDD	ND	2.60				16-Apr-25 04:42	1
1,2,3,7,8,9-HxCDD	ND	2.57				16-Apr-25 04:42	
1,2,3,4,6,7,8-HpCDD	ND	2.47				16-Apr-25 04:42	
OCDD	ND	12.7				16-Apr-25 04:42	
2,3,7,8-TCDF	ND	0.789				16-Apr-25 04:42	
1,2,3,7,8-PeCDF	ND	0.647				16-Apr-25 04:42	
2,3,4,7,8-PeCDF	ND	0.639				16-Apr-25 04:42	
1,2,3,4,7,8-HxCDF	ND	0.515				16-Apr-25 04:42	
1,2,3,6,7,8-HxCDF	ND	0.497				16-Apr-25 04:42	
2,3,4,6,7,8-HxCDF	ND	0.575				16-Apr-25 04:42	
1,2,3,7,8,9-HxCDF	ND	0.720				16-Apr-25 04:42	
1,2,3,4,6,7,8-HpCDF	ND	0.763				16-Apr-25 04:42	
1,2,3,4,7,8,9-HpCDF	ND	0.942				16-Apr-25 04:42	
OCDF	ND	1.98				16-Apr-25 04:42	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	0.846					
Total PeCDD	ND	1.44					
Total HxCDD	ND	2.60					
Total HpCDD	ND	2.47					
Total TCDF	ND	0.789					
Total PeCDF	ND	0.647					
Total HxCDF	ND	0.720					
Total HpCDF	ND	0.942					
Labeled Standards	Type	% Recover	·y	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	62.7		25 - 164		16-Apr-25 04:42	1
13C-1,2,3,7,8-PeCDD	IS	54.8		25 - 181		16-Apr-25 04:42	. 1
13C-1,2,3,4,7,8-HxCDD	IS	57.0		32 - 141		16-Apr-25 04:42	. 1
13C-1,2,3,6,7,8-HxCDD	IS	57.3		28 - 130		16-Apr-25 04:42	. 1
13C-1,2,3,7,8,9-HxCDD	IS	53.7		32 - 141		16-Apr-25 04:42	
13C-1,2,3,4,6,7,8-HpCDD	IS	50.1		23 - 140		16-Apr-25 04:42	1
13C-OCDD	IS	37.5		17 - 157		16-Apr-25 04:42	
13C-2,3,7,8-TCDF	IS	65.9		24 - 169		16-Apr-25 04:42	
13C-1,2,3,7,8-PeCDF	IS	66.2		24 - 185		16-Apr-25 04:42	
13C-2,3,4,7,8-PeCDF	IS	61.7		21 - 178		16-Apr-25 04:42	
13C-1,2,3,4,7,8-HxCDF	IS	57.8		26 - 152		16-Apr-25 04:42	
13C-1,2,3,6,7,8-HxCDF	IS	56.6		26 - 123		16-Apr-25 04:42	
13C-2,3,4,6,7,8-HxCDF	IS	56.6		28 - 136		16-Apr-25 04:42	
13C-1,2,3,7,8,9-HxCDF	IS	58.7		29 - 147		16-Apr-25 04:42	
13C-1,2,3,4,6,7,8-HpCDF	IS	50.0				16-Apr-25 04:42	
-				28 - 143		-	
13C-1,2,3,4,7,8,9-HpCDF	IS	57.7		26 - 138		16-Apr-25 04:42	
13C-OCDF	IS	40.0		17 - 157		16-Apr-25 04:42	
37C1-2,3,7,8-TCDD	CRS	85.7		35 - 197		16-Apr-25 04:42	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2504028 Page 10 of 17

Sample ID: MW-5S EPA Method 1613B

Client Data Laboratory Data

Name: OnSite Environmental Inc.

Lab Sample: 2504028-04 Date Received: 04-Apr-25 07:55

Project: 553-8472-006 QC Batch: B25D112 Date Extracted: 09-Apr-25

Project: 553-8472-00)6		QC Batch:	B25D112	Date Extracted:	09-Apr-25	
Matrix: Water			Sample Size:	1.05 L	Column:	ZB-DIOXIN	
Date Collected: 31-Mar-25 1	2:23						
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.88				16-Apr-25 05:27	1
1,2,3,7,8-PeCDD	ND	1.46				16-Apr-25 05:27	1
1,2,3,4,7,8-HxCDD	ND	3.20				16-Apr-25 05:27	1
1,2,3,6,7,8-HxCDD	ND	3.23				16-Apr-25 05:27	1
1,2,3,7,8,9-HxCDD	ND	3.51				16-Apr-25 05:27	1
1,2,3,4,6,7,8-HpCDD	ND	2.71				16-Apr-25 05:27	1
OCDD	ND	5.94				16-Apr-25 05:27	1
2,3,7,8-TCDF	ND	1.18				16-Apr-25 05:27	1
1,2,3,7,8-PeCDF	ND	4.30				16-Apr-25 05:27	1
2,3,4,7,8-PeCDF	ND	3.43				16-Apr-25 05:27	1
1,2,3,4,7,8-HxCDF	ND	1.36				16-Apr-25 05:27	1
1,2,3,6,7,8-HxCDF	ND	1.44				16-Apr-25 05:27	1
2,3,4,6,7,8-HxCDF	ND	1.72				16-Apr-25 05:27	1
1,2,3,7,8,9-HxCDF	ND	1.86				16-Apr-25 05:27	1
1,2,3,4,6,7,8-HpCDF	ND	0.708				16-Apr-25 05:27	1
1,2,3,4,7,8,9-HpCDF	ND	0.922				16-Apr-25 05:27	1
OCDF	ND	2.85				16-Apr-25 05:27	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	1.88					
Total PeCDD	ND	1.46					
Total HxCDD	ND	3.51					
Total HpCDD	ND	2.71					
Total TCDF	ND	1.18					
Total PeCDF	ND		6.88				
Total HxCDF	ND	1.86					
Total HpCDF	ND	0.922					
Labeled Standards	Туре	% Recover	y	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	65.1		25 - 164		16-Apr-25 05:27	1
13C-1,2,3,7,8-PeCDD	IS	60.0		25 - 181		16-Apr-25 05:27	
13C-1,2,3,4,7,8-HxCDD	IS	52.1		32 - 141		16-Apr-25 05:27	
13C-1,2,3,6,7,8-HxCDD	IS	49.6		28 - 130		16-Apr-25 05:27	
13C-1,2,3,7,8,9-HxCDD	IS	48.5		32 - 141		16-Apr-25 05:27	
13C-1,2,3,4,6,7,8-HpCDD	IS	42.5		23 - 140		16-Apr-25 05:27	
13C-OCDD	IS	32.9		17 - 157		16-Apr-25 05:27	
13C-2,3,7,8-TCDF	IS	63.3		24 - 169		16-Apr-25 05:27	
13C-1,2,3,7,8-PeCDF	IS	60.6		24 - 185		16-Apr-25 05:27	
13C-2,3,4,7,8-PeCDF	IS	63.7		24 - 183		16-Apr-25 05:27	
	IS						
13C-1,2,3,4,7,8-HxCDF		50.7		26 - 152		16-Apr-25 05:27	
13C-1,2,3,6,7,8-HxCDF	IS	48.7		26 - 123		16-Apr-25 05:27	
13C-2,3,4,6,7,8-HxCDF	IS	48.8		28 - 136		16-Apr-25 05:27	
13C-1,2,3,7,8,9-HxCDF	IS	52.3		29 - 147		16-Apr-25 05:27	
13C-1,2,3,4,6,7,8-HpCDF	IS	44.1		28 - 143		16-Apr-25 05:27	
13C-1,2,3,4,7,8,9-HpCDF	IS	49.3		26 - 138		16-Apr-25 05:27	
13C-OCDF	IS	34.5		17 - 157		16-Apr-25 05:27	
37Cl-2,3,7,8-TCDD	CRS	97.4		35 - 197		16-Apr-25 05:27	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2504028 Page 11 of 17

Sample ID: MW-6S EPA Method 1613B

Client Data Laboratory Data

Name: OnSite Environmental Inc.

Lab Sample: 2504028-05 Date Received: 04-Apr-25 07:55

Project: 553-8472-006 QC Batch: B25D112 Date Extracted: 09-Apr-25

Project: 553-8472-006 QC Batch: B25D112 Date Extracted: Sample Size: 1.03 L Column:

ZB-DIOXIN Date Collected: 01-Apr-25 14:55 **EDL EMPC** Dilution Conc. (pg/L) Qualifiers Analyzed Analyte 2,3,7,8-TCDD 1.07 ND 18-Apr-25 01:30 1,2,3,7,8-PeCDD ND 1.71 18-Apr-25 01:30 1,2,3,4,7,8-HxCDD ND 2.22 18-Apr-25 01:30 1,2,3,6,7,8-HxCDD ND 2.40 18-Apr-25 01:30 1 ND 2.47 18-Apr-25 01:30 1,2,3,7,8,9-HxCDD ND 3.31 18-Apr-25 01:30 1,2,3,4,6,7,8-HpCDD 1 ND 5.61 18-Apr-25 01:30 OCDD 1 2,3,7,8-TCDF ND 1.01 18-Apr-25 01:30 1 1,2,3,7,8-PeCDF ND 0.805 18-Apr-25 01:30 ND 18-Apr-25 01:30 2,3,4,7,8-PeCDF 0.791 1 ND 0.7251,2,3,4,7,8-HxCDF 18-Apr-25 01:30 1,2,3,6,7,8-HxCDF ND 0.703 18-Apr-25 01:30 2,3,4,6,7,8-HxCDF ND 0.867 18-Apr-25 01:30 1,2,3,7,8,9-HxCDF ND 1.05 18-Apr-25 01:30 ND 1,2,3,4,6,7,8-HpCDF 0.712 18-Apr-25 01:30 1,2,3,4,7,8,9-HpCDF ND 0.88618-Apr-25 01:30 1 OCDF ND 2.49 18-Apr-25 01:30 **Toxic Equivalent** TEQMinWHO2005Dioxin 0.00 **Totals** Total TCDD ND 1.07 Total PeCDD ND 1.71 Total HxCDD ND 2.47 Total HpCDD ND 3.31 Total TCDF ND 1.01 Total PeCDF ND 0.805 ND 1.05 Total HxCDF

Total HpCDF	ND	0.886			
Labeled Standards	Туре	% Recovery	Limits	Qualifiers Analyzed Dilutio	n
13C-2,3,7,8-TCDD	IS	68.0	25 - 164	18-Apr-25 01:30 1	
13C-1,2,3,7,8-PeCDD	IS	64.0	25 - 181	18-Apr-25 01:30 1	
13C-1,2,3,4,7,8-HxCDD	IS	56.5	32 - 141	18-Apr-25 01:30 1	
13C-1,2,3,6,7,8-HxCDD	IS	55.1	28 - 130	18-Apr-25 01:30 1	
13C-1,2,3,7,8,9-HxCDD	IS	49.8	32 - 141	18-Apr-25 01:30 1	
13C-1,2,3,4,6,7,8-HpCDD	IS	46.3	23 - 140	18-Apr-25 01:30 1	
13C-OCDD	IS	38.2	17 - 157	18-Apr-25 01:30 1	
13C-2,3,7,8-TCDF	IS	68.6	24 - 169	18-Apr-25 01:30 1	
13C-1,2,3,7,8-PeCDF	IS	64.6	24 - 185	18-Apr-25 01:30 1	
13C-2,3,4,7,8-PeCDF	IS	66.0	21 - 178	18-Apr-25 01:30 1	
13C-1,2,3,4,7,8-HxCDF	IS	56.9	26 - 152	18-Apr-25 01:30 1	
13C-1,2,3,6,7,8-HxCDF	IS	57.6	26 - 123	18-Apr-25 01:30 1	
13C-2,3,4,6,7,8-HxCDF	IS	54.3	28 - 136	18-Apr-25 01:30 1	
13C-1,2,3,7,8,9-HxCDF	IS	55.9	29 - 147	18-Apr-25 01:30 1	
13C-1,2,3,4,6,7,8-HpCDF	IS	49.7	28 - 143	18-Apr-25 01:30 1	
13C-1,2,3,4,7,8,9-HpCDF	IS	56.5	26 - 138	18-Apr-25 01:30 1	
13C-OCDF	IS	41.7	17 - 157	18-Apr-25 01:30 1	
37Cl-2,3,7,8-TCDD	CRS	88.9	35 - 197	18-Apr-25 01:30 1	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2504028 Page 12 of 17

Sample ID: MW-13S **EPA Method 1613B**

Laboratory Data Client Data

2504028-06 04-Apr-25 07:55 Lab Sample: Date Received: Name: OnSite Environmental Inc. 09-Apr-25

QC Batch: B25D112 Date Extracted: 553-8472-006 Project: Sample Size: 1.01 L Column:

Matrix: Water Date Collected: 01-Apr-25 09:	00		Sample Size:	1.01 L	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.24				16-Apr-25 06:58	1
1,2,3,7,8-PeCDD	ND	1.90				16-Apr-25 06:58	1
1,2,3,4,7,8-HxCDD	ND	1.40				16-Apr-25 06:58	1
1,2,3,6,7,8-HxCDD	ND	1.39				16-Apr-25 06:58	
1,2,3,7,8,9-HxCDD	ND	1.48				16-Apr-25 06:58	
1,2,3,4,6,7,8-HpCDD	ND	1.80				16-Apr-25 06:58	
OCDD	ND	4.25				16-Apr-25 06:58	
2,3,7,8-TCDF	ND	0.653				16-Apr-25 06:58	
1,2,3,7,8-PeCDF	ND	0.686				16-Apr-25 06:58	
2,3,4,7,8-PeCDF	ND	0.569				16-Apr-25 06:58	
1,2,3,4,7,8-HxCDF	ND	0.578				16-Apr-25 06:58	
1,2,3,6,7,8-HxCDF	ND	0.552				16-Apr-25 06:58	
2,3,4,6,7,8-HxCDF	ND	0.658				16-Apr-25 06:58	
1,2,3,7,8,9-HxCDF	ND	0.752				16-Apr-25 06:58	
1,2,3,4,6,7,8-HpCDF	ND	0.373				16-Apr-25 06:58	
1,2,3,4,7,8,9-HpCDF	ND ND	0.483 1.79				16-Apr-25 06:58	
OCDF	ND	1./9				16-Apr-25 06:58	1
Toxic Equivalent TEQMinWHO2005Dioxin	0.00						
Totals	0.00						
Total TCDD	ND	1.24					
Total PeCDD	ND	1.90					
Total HxCDD	ND	1.48					
Total HpCDD	ND	1.80					
Total TCDF	ND	0.653					
Total PeCDF	ND	0.686					
Total HxCDF	ND	0.752					
Total HpCDF	ND	0.483					
Labeled Standards	Type	% Recover	•v	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	73.8	: J	25 - 164	Quantities	16-Apr-25 06:58	
13C-1,2,3,7,8-PeCDD	IS	74.0		25 - 181		16-Apr-25 06:58	
13C-1,2,3,4,7,8-HxCDD	IS	66.4		32 - 141		16-Apr-25 06:58	
13C-1,2,3,6,7,8-HxCDD	IS	66.5		28 - 130		16-Apr-25 06:58	
13C-1,2,3,7,8,9-HxCDD	IS	64.4		32 - 141		16-Apr-25 06:58	
13C-1,2,3,4,6,7,8-HpCDD	IS	63.7		23 - 140		16-Apr-25 06:58	
13C-OCDD	IS	53.5				16-Apr-25 06:58	
13C-2,3,7,8-TCDF	IS	74.2		17 - 157		16-Apr-25 06:58	
13C-1,2,3,7,8-PeCDF	IS	72.6		24 - 169		16-Apr-25 06:58	
				24 - 185		16-Apr-25 06:58	
13C-2,3,4,7,8-PeCDF	IS	73.5		21 - 178		•	
13C-1,2,3,4,7,8-HxCDF	IS	65.8		26 - 152		16-Apr-25 06:58	
13C-1,2,3,6,7,8-HxCDF	IS	65.6		26 - 123		16-Apr-25 06:58	
13C-2,3,4,6,7,8-HxCDF	IS	61.4		28 - 136		16-Apr-25 06:58	
13C-1,2,3,7,8,9-HxCDF	IS	66.7		29 - 147		16-Apr-25 06:58	
13C-1,2,3,4,6,7,8-HpCDF	IS	64.2		28 - 143		16-Apr-25 06:58	
13C-1,2,3,4,7,8,9-HpCDF	IS	66.1		26 - 138		16-Apr-25 06:58	
13C-OCDF	IS	55.6		17 - 157		16-Apr-25 06:58	
37Cl-2,3,7,8-TCDD	CRS	88.2		35 - 197		16-Apr-25 06:58	3 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Page 13 of 17 Work Order 2504028

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

EDL Estimated Detection Limit

EMPC Estimated Maximum Possible Concentration

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2504028 Page 14 of 17

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

Work Order 2504028 Page 15 of 17

2504028 5.9°C

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: Enthalpy Analytical - El Dorado Hills

Attention: Jennifer Miller

Address: 1104 Windfield Way, El Dorado Hills, CA 95762

Phone Number: (916) 673-1520

Turnaround Request

2 Day 3 Day

Standard

1 Day

Other:

Laboratory Reference #: 04-035

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com

Project Number: 553-8472-006

Project Name:

Lab ID	Sample Identification		Date Sampled	Time Sampled	Matrix	# of Cont.	Requested Analyses
	MW-2S		4/1/25	11:53	W	2	Dioxins/Furans
	MW-3S		3/31/25	14:24	W	2	Dioxins/Furans
	MW-4S		4/1/25	9:55	W	2	Dioxins/Furans
	MW-5S		3/31/25	12:23	W	2	Dioxins/Furans
	MW-6S		4/1/25	14:55	W	2	Dioxins/Furans
	MW-13S		4/1/25	9:00	W	2	Dioxins/Furans
.))							
	Signature		Con	npany	ET VII	Date	Time Comments/Special Instructions
Relinqu	ıished by:						
Receiv	ed by: Karr. Arte	Ent	holps Ei	14		04/04/25	07:57
Relinqu	ished by:		. 0				
Receiv	ed by:						
Relinqu	uished by:						
Receiv	ed by:						

CoC/Label Reconciliation Report WO# 2504028

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time		Container	BaseMatrix	Sample Comments
2504028-01	A MW-2S			01-Apr-25 11:53	Ø.	Amber Glass NM Bottle, 1L	Aqueous	
2504028-01	B MW-2S	D		01-Apr-25 11:53	Ø	Amber Glass NM Bottle, 1L	Aqueous	
2504028-02	A MW-3S			31-Mar-25 14:24	Ø	Amber Glass NM Bottle, 1L	Aqueous	Section 1
2504028-02	B MW-3S	Ø		31-Mar-25 14:24		Amber Glass NM Bottle, 1L	Aqueous	
2504028-03	A MW-4S	D'		01-Apr-25 09:55	Ø	Amber Glass NM Bottle, 1L	Aqueous	
2504028-03	B MW-4S	Ø		01-Apr-25 09:55	$\square(A)$	Amber Glass NM Bottle, 1L	Aqueous	
2504028-04	A MW-5S			31-Mar-25 12:23	P	Amber Glass NM Bottle, 1L	Aqueous	
2504028-04	B MW-5S	Ø		31-Mar-25 12:23	Ø	Amber Glass NM Bottle, 1L	Aqueous	
2504028-05	A MW-6S			01-Apr-25 14:55	Ø.	Amber Glass NM Bottle, 1L	Aqueous	
2504028-05	B MW-6S	Ø,	ACTION TO THE PROPERTY NAMED IN	01-Apr-25 14:55	D	Amber Glass NM Bottle, 1L	Aqueous	
2504028-06	A MW-13S			01-Apr-25 09:00	D/	Amber Glass NM Bottle, 1L	Aqueous	
2504028-06	B MW-13S	d		01-Apr-25 09:00	Z J	Amber Glass NM Bottle, 1L	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

CONDITION	Yes	No	NA	Comments:	
Sample Container Intact?				(A) underlined part of sample date missing	7
Sample Container(s) Custody Seals Intact?					
Custody Seals On Cooler Intact?					
Adequate Sample Volume?					
Container Type Appropriate for Analysis(es)?					
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2	None Oth	ner		-	

Page 1 of 1 Printed: 4/4/2025 8:44:49AM 2504028

Work Order 2504028

Chain of Custody

Page ___

으

Relinquished Received	Relinquis		Received	Relinquished	Received	Relinquished	-	(C) M	-9 MI	A	7	ଚ ™	N §	¥ M	ĭ2	N	M	ab ID	Sampled by:	Project Manager:	Project Name:	Project Nu	Company:)	Age
		hed		hed		hed		MW-10D	MW-9D	MW-8D	MW-7D	MW-13S	MW-6S	MW-5S / MW-5S MS/MSD	MW-4S	MW-3S	MW-2S	Sai	The same	Laura	Rocky T	^{mber:} 553-8	Parametrix /	Phone: (425)	14648 NE 95th
				*	Thetan Due	Sept.	Signature	*	3					VIS/MSD				Sample Identification	en & Borke	a Lee	Rocky Top Environmental LPL	Project Number: 553-8472-006	etrix / DTG	883-3881 • www.onsite-env.com	14648 NE 95th Street • Redmond, WA 98052
							HIL	3 3	3 31	-	3 3	7	7	3/3		3/31	<u>-</u>	Date Sampled	[
					0	Parametrix	Company	1075	1475	1376	785	900	1455	1 1723	95S	1424	153	Time d Sampled	(other)	(TEH dilalysis 3 Days)	Standard (7 Days)	2 Days	Same Day	(Check One)	(in working days)
					382		+	~	The second se	and the second second	Photos a Maria de la constanta						NO(H)ON	Matrix		Days)	s)	3 Days	1 Day		ays)
							17	2 × 2	8 0	80	800	18	18	26	18	18	18			ontaine					
					Ţ		7	K×2	×	×	×	×	×	×	×	×	×	Naphth	alene; S	- WAC 1 IM-VC a	173-351 and 1,2-	Append EDB	lix I)		2
					N	4/2	Date					×	×	×	×	×	×	NWTP						- 1	Laboratory Numb
					25	25						×	×	×	×	×	×	NWTPI		llutant M	Actolo I	Eo Mn	Ma	1	ato
							Time	×	×	×	×	×	×	×	×	×	×			e, Mn,		r e, wiii	, wg		Z
					1345	349	16					×	×	×	×	×	×			Ilutant N		Fe, Mn, M	g, Ca, K, I	Va	M M
				,	- ى	0		×	×	×	×							Dissolv	ed Met	als (Fe,	Mn, Mg	, Ca, K,	Na)		ber:
2							Con	×	×	×	×	×	×	×	×	×	×	chlorid	le, sulfa	te					C
							Comments/Special Instructions	×	×	×	×	×	×	×	×	×	×	TDS, A	lkalinity	, Bicarb	onate		ą		4
							s/Spe	×	×	×	×	×	×	×	×	×	×	Ammor	nia						
							cial Ir	×	×	×	×	×	×	×	×	×	×	тос			7				C
							struc					×	×	×	×	×	×	PFAS							U
Ohromotograms with final roport							tions		5			×	×	×	×	×	×		s and F		161	3			
								×	_×_	<u>×</u>	×	×	\times	×		×_	×	Nitrate	es (Anat	ek)- V	r				
																							_		
																							_		
																		% Mois	sture						

Data Package: Level III 🗌 Level IV 🗍 Electronic Data Deliverables (EDDs) 🗍

Appendix C

First Quarter 2025
Data Quality Evaluation

DATE: June 6, 2025
TO: Project File
FROM: Katie Burke

SUBJECT: First Quarter 2025 (A) Data Quality Evaluation

CC: Lisa Gilbert PROJECT NUMBER: 553-8472-005

PROJECT NAME: DTG Yakima Limited Purpose Landfill

A data quality evaluation was conducted for the First Quarter 2025 (A) sampling event at the DTG Yakima Limited Purpose Landfill (LPL). Samples were collected on February 12 February 13, and February 14, 2025, by Parametrix under contract to DTG. The samples were analyzed by OnSite Environmental under two associated work orders:

- Work Order 2502-167: (MW-9D, Trip Blank)
- Work Order 2502-183: (MW-5S, MW-6S, MW-7D, MW-8D, MW-10D, MW-13S, Trip Blank)

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Sample MW-13S is a field duplicate of MW-6S.

Field Narrative

Groundwater sampling field data sheets were provided by Parametrix.

Laboratory Case Narrative

Samples collected on February 12, 2025 were received by the laboratory on February 13, 2025. The samples collected on February 13 and February 14, 2025, were received by the lab on February 14, 2025. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Work Order 2502-167

Volatiles - EPA Method SW8260D.

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The spike blank recoveries and relative percent differences (RPDs) were within control limits.

The percent recovery for Vinyl Acetate is outside the control limits in the Spike Blank (high; 142 outside the 61-138 limit). The lab flagged the spike blank 'V" to reflect the percentage recovery values being outside of the control limits. Since Vinyl Acetate was not detected in the samples, the sample results were not qualified.

Parametrix

June 6, 2025
Page 2

The percent recovery is outside the control limits in the MS/MSD for Vinyl Acetate (high; 161 and 147 respectively, outside 54-123). This method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked. The lab flagged Vinyl Acetate "V" for the MS/MSD to reflect the percent recovery values being outside of the control limits. Since Vinyl Acetate was not detected in the samples, the sample results will not be qualified.

Total and Dissolved Metals (EPA Method 6010D).

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Wet Chemistry.

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

Work Order 2502-183

Volatiles - EPA Method SW8260D.

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The spike blank recoveries and relative percent differences (RPDs) were within control limits.

The percent recovery for Vinyl Acetate is outside the control limits in the Spike Blank (high; 142 outside the 61-138 limit). The lab flagged the spike blank 'V" to reflect the percentage recovery values being outside of the control limits. Since Vinyl Acetate was not detected in the samples, the sample results were not qualified.

The percent recovery is outside the control limits in the MS/MSD for Vinyl Acetate (high; 161 and 147 respectively, outside 54-123). This method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked. The lab flagged Vinyl Acetate "V" for the MS/MSD to reflect the percent recovery values being outside of the control limits. Since Vinyl Acetate was not detected in the samples, the sample results will not be qualified.

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx)

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

Parametrix

June 6, 2025
Page 3

Field Duplicate Evaluation

Relative Percent Differences (RPDs) were calculated for the results of sample MW-6S and duplicate MW-13S. Field Duplicate Relative Percent Difference Calculations are included in Attachment A.

The duplicate percent RPDs were within control limits for all analytes.

Data Qualification

No data were qualified.

Parametrix

References

- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Attachment A

First Quarter 2025 (A)
Field Duplicate Relative
Percent Difference
Calculations

DTG Yakima LPL Field Duplicate Relative Percent Difference Calculations 553-8472-005

First Quarter 2025 (A)

Sample Dates: 2/12/25-2/14/25

Sample numbers: On-Site Environmental 2502-183: MW-5S, MW-6S, MW-7D, MW-8D, MW-10D, MW-13S, Trip Blank

On-Site Environmental 2502-167: MW-9D, Trip Blank

DUP MW-13S collected at MW-6S

Completed by: Katie Burke 4/10/2025

Groundwater	sample	duplicate	avg	diff	RPD	=/<25%?	RL	w/in RL?
units = mg/L	MW-6S	MW-13S						
Iron, Total	0.12	0.16	0.14	-0.04	28.6	n	0.050	У
Magnesium, Total	30	31	30.50	-1	3.3	У	1.0	
Manganese, Total	0.30	0.32	0.31	-0.02	6.5	У	0.010	
Calcium, Dissolved	41	40	40.50	1	2.5	у	1.1	
Iron, Dissolved	< 0.056	< 0.056	n/a	n/a	n/a		0.056	У
Magnesium, Dissolved	28	28	28.00	0	0.0	У	1.1	
Manganese, Dissolved	< 0.011	< 0.011	n/a	n/a	n/a		0.011	У
Potassium, Dissolved	4.1	3.9	4.00	0.2	5.0	У	1.1	
Sodium, Dissolved	16	13	14.50	3	20.7	У	1.1	
Nitrate	11	10	10.50	1	9.5	у	0.050	
Chloride	60	62	61.00	-2	3.3	У	2.0	
Sulfate	56	50	53.00	6	11.3	У	20	
TDS	340	330	335.00	10	3.0	У	13	
Alkalinity	84	84	84.00	0	0.0	У	2.0	
Bicarbonate	84	84	84.00	0	0.0	У	2.0	
Ammonia	< 0.053	< 0.053	n/a	n/a	n/a		0.053	У
тос	3.1	3.2	3.15	-0.1	3.2	У	1.0	
TPH-Gasoline (ug/L)	<100	<100	n/a	n/a	n/a		100	у
TPH-Diesel	< 0.20	< 0.20	n/a	n/a	n/a		0.20	у
TPH-Oil	<0.20	<0.20	n/a	n/a	n/a		0.20	У
VOCs	None detected							

VOCs None detected

Comments: No data qualified.

DATE: June 6, 2025
TO: Project File
FROM: Chris Bourgeois

SUBJECT: First Quarter 2025 (B) Data Quality Evaluation

CC: Lisa Gilbert PROJECT NUMBER: 553-8472-009

PROJECT NAME: DTG Yakima Limited Purpose Landfill

A data quality evaluation was conducted for the First Quarter 2025 (B) sampling event at the DTG Yakima Limited Purpose Landfill (LPL). Samples were collected on March 25, and on March 31 and April 1, 2025 during a subsequent mobilization by Parametrix under contract to DTG. Samples were submitted to OnSite Environmental and Anatek Labs, which performed Nitrate analyses under subcontract to OnSite. A subset of the samples collected on March 31 and April 1 were additionally analyzed for dioxins and furans by Entropy Analytical and PFAS by ALS Environmental, both under subcontract to OnSite. The results were reported under two separate OnSite work orders:

- Work Order 2503-357: (Leachate, collected March 25, 2025)
 - Anatek Work Order YFC0620 (Nitrates by Hach 10206)
- Work Order 2504-035: (MW-2S, MW-3S, MW-4S, MW-5S, MS-6S, MW-7D, MW-9D, MW-10D, MW-13S, trip blank, collected March 31 and April 1, 2025)
 - Anatek Work Order YFD0004 (Nitrates by Hach 10206)
 - Anatek Work Order YFD0072 (Nitrates by Hach 10206)
 - Enthalpy Work Order 2504028 (Dioxins and Furans by EPA Method 1613B)
 - ALS Environmental Service Request K2503482 (PFAS by Draft EPA Method 1633)

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Sample MW-13S is a field duplicate of MW-6S. Extra sample volume was collected from well MW-5S for matrix spike/matrix spike duplicate (MS/MSD) QC analyses.

Field Narrative

Groundwater sampling field data sheets were provided by Parametrix.

Laboratory Case Narrative

Samples collected on March 25, 2025 were received by the laboratories (OnSite and Anatek) on March 26, 2025. Samples collected on March 31 and April 1, 2025 were received by Anatek on April 1, 2025 and OnSite on April 2, 2025. All samples were maintained at a temperature of 2 to 6 degrees Celsius by the laboratories.

Parametrix

June 6, 2025
Page 2

Work Order 2503-357

Volatiles - EPA Method 8260D/SIM.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The spike blank and spike blank duplicate recoveries and relative percent differences (RPDs) were within control limits, except for percent recovery of Dibromochloromethane in the spike blank duplicate (low; 67, outside the 81-131 limit), and the associated Dibromochloromethane spike blank/spike blank duplicate RPD (45%; above the 15% limit). The lab flagged the spike blank and spike blank duplicate analysis for Dibromochloromethane "I,L" to reflect the recovery and RPD results outside of control limits. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked, therefore no data were qualified.

The MS recoveries and relative percent differences (RPDs) were within control limits.

Total Metals (EPA Method 6010D).

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

Nitrates - Hach 10206

The laboratory did not note any problems with quality control.

Work Order 2504-035

Volatiles - EPA Method 8260D/SIM.

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The trip blanks were clean at the reporting limits.

The spike blank recoveries and relative percent differences (RPDs) were within control limits.

Parametrix
June 6, 2025
Page 3

The MS and spike blank recoveries and RPDs were within control limits, except for the MS/MSD RPD for Acetone and Methyl Isobutyl Ketone (18, above 17 limit; and 14, equal to 14 limit, respectively) and the MSD percent recovery for 1,2,3-Trichloropropane and 1,2-Dichlorobenzene (high; 127, outside limit of 61-125; and high; 129, outside limit of 79-127, respectively). The lab flagged the MS/MSD RPD exceedances "W" and the MSD percent recovery exceedances as "V", citing matrix effects for the exceedances. None of the flagged analytes were detected in the associated samples, therefore no data were qualified.

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx)

The surrogate percent recoveries were within control limits.

The MS and MSD (if required) recoveries and RPDs were within control limits.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

Total and Dissolved Metals (EPA Method 200.8/6010D/7470A).

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

PFAS (Draft EPA Method 1633)

The surrogate percent recoveries were within control limits.

The spike blank and spike blank duplicate recoveries and relative percent differences (RPDs) were within control limits.

The method blank(s) were clean at the reporting limits.

Several analytes were detected at concentrations above the MDL but below the MRL, and were therefore J-flagged as estimated values by the laboratory. J-flagged detections include:

- Perfluorohexane sulfonic acid (PFHxS): MW-3S; MW-4S; MW-6S; MW-13S (MW-6S DUP)
- Perfluorooctane sulfonic acid (PFOS): MW-3S
- Perfluoropentane sulfonic acid (PFPeS): MW-3S; MW-6S; MW-13S (MW-6S DUP)
- Perfluorobutane sulfonic acid (PFBS): MW-4S
- Perfluorohexane sulfonic acid (PFHxS): MW-3S; MW-4S; MW-6S; MW-13S (MW-6S DUP)

Parametrix

June 6, 2025
Page 4

- Perfluorooctanoic acid (PFOA): MW-4S
- Perfluoroheptanoic acid (PFHpA): MW-5S
- Perfluorohexanoic acid (PFHxA): MW-6S

The upper control criterion was exceeded for one or more analytes in several Continuing Calibration Verifications (CCVs). The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required and no sample data were qualified.

The control criteria were exceeded for one or more isotopes in several Continuing Calibration Verifications (CCVs). The recovery of the associated native analyte was within control criteria, which indicated the analysis was in control, or were biased high, as noted above. No further corrective action was appropriate and no sample data were qualified.

Manual integration of one or more chromatographic peaks in multiple samples was required to correct the integration performed by the automated data processing program. The manual integration was performed in accordance with ALS policy, which is consistent with the National Environmental Laboratory Accreditation Program (NELAP), Department of Defense (DOD), and other certifying agencies. No sample data were qualified.

The results reported for n-Methylperfluorooctane sulfonamide (MeFOSA) in Low Level Lab Control Sample (LCS_LL) KQ2505161-07 may contain a bias. The ion ratio criteria were not met. The failing ratio may indicate a bias to the results in the associated samples. The analyte in question was not detected in the associated field samples. The data quality was not significantly affected. The LCS_LL results were flagged with "I" to indicate the issue. No sample data were qualified.

Total Suspended Solids (SM 2540D)

The spike blank recovery was within control limits.

Nitrates (Hach 10206)

The laboratory did not note any problems with quality control (both Anatek work orders).

Dioxins/Furans EPA Method 1613B

The samples were extracted and analyzed within the method hold times.

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Several analytes were detected at concentrations above the MDL but below the MRL, and were therefore J-flagged as estimated values by the laboratory. J-flagged detections include 1,2,3,4,6,7,8-HpCDF, OCDF, and Total HpCDF in sample MW-2S.

Field Duplicate Evaluation

Relative Percent Differences (RPDs) were calculated for the results of sample MW-6S and duplicate MW-13S. Field Duplicate Relative Percent Difference Calculations are included in Attachment A.

Parametrix

June 6, 2025
Page 5

The duplicate percent RPDs were within control limits for all analytes.

Data Qualification

Several analytes were detected at concentrations above the MDL but below the MRL, and were therefore J-flagged as estimated values by the laboratory. J-flagged detections include:

- Perfluorohexane sulfonic acid (PFHxS): MW-3S; MW-4S; MW-6S; MW-13S (MW-6S DUP)
- Perfluorooctane sulfonic acid (PFOS): MW-3S
- Perfluoropentane sulfonic acid (PFPeS): MW-3S; MW-6S; MW-13S (MW-6S DUP)
- Perfluorobutane sulfonic acid (PFBS): MW-4S
- Perfluorohexane sulfonic acid (PFHxS): MW-3S; MW-4S; MW-6S; MW-13S (MW-6S DUP)
- Perfluorooctanoic acid (PFOA): MW-4S
- Perfluoroheptanoic acid (PFHpA): MW-5S
- Perfluorohexanoic acid (PFHxA): MW-6S
- 1,2,3,4,6,7,8-HpCDF: MW-2S
- HpCDF: MW-2S
- Total HpCDF: MW-2S

Parametrix

References

- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Attachment A

First Quarter 2025 (B) Field Duplicate Relative Percent Difference Calculations

Rocky Top Environmental LPL Field Duplicate Relative Percent Difference Calculations

First Quarter (B) 2025 Sample Dates: 3/31/2025, 4/1/2025 (Leachate Sample collected 3/25/2025 under OnSite Environmental work order

2503-357)

On-Site Environmental 2504-035: MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, MW-10D, MW-13S (MW-6S DUP), Trip Blank Sample numbers:

Enthalpy Analytical 2504028: MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-13S (MW-6S DUP) ALS Environmental K2503482: MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-13S MW-13S (MW-6S DUP)

Anatek Labs YFD0004: MW-3S, MW-5S, MW-7D, MW-9D, MW-10D, MW-13S (MW-6S DUP)
Anatek Labs YFD0072: MW-2S, MW-4S, MW-6S, MW-8D, MW-13S (MW-6S DUP)

DUP MW-13S collected at MW-6S

Completed by: Chris Bourgeois 5/6/2025

Groundwater	camplo	duplicate	21/4	diff	RPD	=/<30%?	PQL/LOQ	¹w/in PQL/LOQ?
units = mg/L	sample MW-6S	MW-13S	avg	uiii	KPD	-/<30%f	PQL/LOQ	rqi/toq:
Antimony, Total	<0.0056	<0.0056	n/a	n/a	n/a		0.006	у
Arsenic, Total	<0.0033	<0.0033	n/a	n/a	n/a		0.0033	у
Beryllium, Total	< 0.011	< 0.011	n/a	n/a	n/a		0.011	у
Cadmium, Total	< 0.0044	< 0.0044	n/a	n/a	n/a		0.0044	У
Chromium, Total	<0.011	< 0.011	n/a	n/a	n/a		0.011	У
Copper, Total	<0.011	<0.011	n/a	n/a	n/a		0.011	У
Iron, Total	< 0.056	<0.056	n/a	n/a	n/a		0.056	У
Lead, Total Magnesium, Total	<0.0011 29	<0.056 30	n/a 29.50	n/a -1	n/a 3.4	.,	0.0011 1.1	У
Manganese, Total	0.018	0.020	0.02	-0.002	10.5	y y	0.011	
Mercury, Total	<0.00050	<0.00050	n/a	n/a	n/a	y	0.0005	у
Nickel, Total	<0.022	<0.022	n/a	n/a	n/a		0.022	y
Selenium, Total	< 0.0056	< 0.0056	n/a	n/a	n/a		0.0056	у
Silver, Total	< 0.011	< 0.011	n/a	n/a	n/a		0.011	у
Thallium, Total	<0.0056	< 0.0056	n/a	n/a	n/a		0.0056	У
Zinc, Total	<0.028	<0.028	n/a	n/a	n/a		0.028	У
Antimony, Dissolved	<0.0050	<0.0050	n/a	n/a	n/a		0.0050	У
Arsenic, Dissolved Beryllium, Dissolved	<0.0030	<0.0030	n/a	n/a	n/a		0.0030	У
Cadmium, Dissolved	<0.010 <0.0040	<0.010 <0.0040	n/a n/a	n/a n/a	n/a n/a		0.010 0.0040	У
Calcium, Dissolved	48	48	48.00	0	0.0	у	1.1	У
Chromium, Dissolved	< 0.010	<0.010	n/a	n/a	n/a	7	0.010	у
Copper, Dissolved	<0.010	<0.010	n/a	n/a	n/a		0.010	y
Iron, Dissolved	< 0.056	< 0.056	n/a	n/a	n/a		0.056	у
Lead, Dissolved	< 0.0010	<0.0010	n/a	n/a	n/a		0.0010	
Magnesium, Dissolved	32	32	32.00	0	0.0	У	1.1	
Manganese, Dissolved	<0.011	<0.011	n/a	n/a	n/a		0.011	У
Mercury, Dissolved	<0.00050	<0.00050	n/a	n/a	n/a		0.00050	У
Nickel, Dissolved	<0.020 3.9	<0.020	n/a 4.05	n/a -0.3	n/a 7	.,	0.020 1.1	У
Potassium, Dissolved Selenium, Dissolved	3.9 <0.0050	4.2 <0.0050	4.05 n/a	-0.3 n/a	7.4 n/a	У	1.1 0.0050	у
Silver, Dissolved	<0.010	<0.0030	n/a	n/a	n/a		0.0030	y y
Sodium, Dissolved	18	18	18.00	0	0.0	у	1.1	,
Thallium, Dissolved	<0.0050	<0.0050	n/a	n/a	n/a	,	0.0050	у
Zinc, Dissolved	< 0.025	< 0.025	n/a	n/a	n/a		0.025	у
Nitrate	11.3	11.6	11.45	-0.3	2.6	У	0.200	
Chloride	62	64	63.00	-2	3.2	У	2.0	
Sulfate	51	54	52.50	-3	5.7	У	20	
TDS	390	430	410.00	-40	9.8	У	13	
Alkalinity Bicarbonate	86 86	86 86	86.00 86.00	0 0	0.0 0.0	y y	2.0 2.0	
Ammonia	<0.053	<0.053	n/a	n/a	n/a	У	0.053	у
TOC	3.0	3.1	3.05	-0.1	3.3	у	1.0	,
						,		
TPH-Gasoline (ug/L)	<100	<100	n/a	n/a	n/a		100	у
TPH-Diesel	< 0.20	< 0.21	n/a	n/a	n/a		0.20/0.21	У
TPH-Oil	<0.20	< 0.21	n/a	n/a	n/a		0.20/0.21	У
l _{uaa}								
VOCs	None detected							
units = ng/L								
Perfluorobutane sulfonic acid (PFBS)	6.3	6.9	6.6	-0.6	9.1	у	4.7/4.5	
Perfluoropentane sulfonic acid (PFPeS)	1.1	1.0	1.05	0.1	9.5	y	4.7/4.5	
Perfluorohexane sulfonic acid (PFHxS)	1.1	1.0	1.05	0.1	9.5	y	4.7/4.5	
Perfluoroheptane sulfonic acid (PFHpS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorooctane sulfonic acid (PFOS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorononane sulfonic acid (PFNS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorodecane sulfonic acid (PFDS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorododecane sulfonic acid (PFDoS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	У
Perfluorobutanoic acid (PFBA) Perfluoropentanoic acid (PFPeA)	9.5 8.1	9.6 7.9	9.6 8.0	-0.1 0.2	1.0 2.5	y y	4.7/4.5 4.7/4.5	
Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA)	8.1 4.7	7.9 4.9	8.0 4.80	-0.2	4.2	y y	4.7/4.5 4.7/4.5	
Perfluoroheptanoic acid (PFHpA)	<4.7	<4.5	n/a	n/a	n/a	y	4.7/4.5	у
Perfluorooctanoic acid (PFOA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	y
Perfluorononanoic acid (PFNA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorodecanoic acid (PFDA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluoroundecanoic acid (PFUnDA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorododecanoic acid (PFDOA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	У
Perfluorotridecanoic acid (PFTrDA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorotetradecanoic acid (PFTDA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
Perfluorooctane sulfonamide (PFOSAm) N-Methylperfluorooctane sulfonamide (MeFOSA)	<4.7 <4.7	<4.5 <4.5	n/a n/a	n/a n/a	n/a n/a		4.7/4.5 4.7/4.5	y y
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	<4.7 <4.7	<4.5	n/a n/a	n/a n/a	n/a n/a		4.7/4.5	y y
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	y y
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	y
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	<4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
4,4,5,5,6,6,6-Heptafluorohexanoic acid (3:3 FTCA)	<190	<180	n/a	n/a	n/a		190/180	у
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 FTCA)	<190	<180	n/a	n/a	n/a n/a		190/180	у
2H,2H,3H,3H-Perfluorodecanoic acid (7:3 FTCA) Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA)	<190 <4.7	<180 <4.5	n/a n/a	n/a n/a	n/a n/a		190/180 4.7/4.5	y
EL CLINGOLOIZ-CLIOAVELIANEI SUNONIC ACIU (PFEESA)	<4.7 <4.7	<4.5 <4.5	n/a n/a	n/a n/a	n/a n/a		4.7/4.5 4.7/4.5	y y
		<4.5	n/a	n/a	n/a		4.7/4.5	y y
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS)	<4.7		/					
	<4.7 <4.7	<4.5	n/a	n/a	n/a		4.7/4.5	V
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS)		<4.5 <4.5	n/a n/a	n/a n/a	n/a n/a		4.7/4.5 4.7/4.5	y y
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS) Perfluoro-3-methoxypropanoic acid (PFMPA)	<4.7							
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS) Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA)	<4.7 <4.7	<4.5	n/a	n/a	n/a		4.7/4.5	у
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-CI-PF3ONS) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-CI-PF3OUdS) Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA) Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	<4.7 <4.7 <4.7	<4.5 <4.5	n/a n/a	n/a n/a	n/a n/a		4.7/4.5 4.7/4.5	y y
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-Cl-PF3ONS) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-Cl-PF3OUdS) Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA) Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) 4,8-Dioxa-3H-perfluorononanoic acid (DONA)	<4.7 <4.7 <4.7 <4.7 <4.7	<4.5 <4.5 <4.5	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a		4.7/4.5 4.7/4.5 4.7/4.5	у у у
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9-CI-PF3ONS) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11-CI-PF3OUdS) Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA) Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	<4.7 <4.7 <4.7 <4.7	<4.5 <4.5 <4.5	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a		4.7/4.5 4.7/4.5 4.7/4.5	у у у

Comments:

No data qualified.

¹ = Secondary comparison. When a RPD calculation is not available or is above limits, a reportling limit comparison is done.

RPD = Relative percent difference

LOQ = Limit of Quantitation PQL= Practical Quantitation Limit, referred to as Limit of Quantitation (LOQ) in ALS analytical report

n/a = Not applicable

Appendix D

Time-Series Plots

Constituent: Alkalinity, Total Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Ammonia Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Bicarbonate Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Calcium, Dissolved Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Chloride Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Conductivity Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Iron, Dissolved Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Iron, Total Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Magnesium, Dissolved Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Magnesium, Total Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Manganese, Dissolved Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Manganese, Total Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Nitrate Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: pH Analysis Run 6/11/2025 3:13 PM View: TSPs
Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Potassium, Dissolved Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Sodium, Dissolved Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Sulfate Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: TDS Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Total Organic Carbon Analysis Run 6/11/2025 3:13 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Appendix E

Geochemistry

Analysis Run 6/24/2025 9:52 AM

Yakima Limited Purpose Landfill Client: DTG Data: DTG Piper

Cation/Anion Balance Calculations, Rocky Top Environmental Limited Purpose Landfill, First Quarter 2025

			MW-2S			MW-3S			MW-4S			MW-5S			MW-6S			MW-7D			MW-8D			MW-9D			MW-10D		$\overline{}$	Leachate	
	Conversion			Percent			Percent			Percent			Percent			Percent			Percent			Percent			Percent			Percent	i		Percent
	Factor ¹	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total	Value	Value	of Total
	(mg/L to meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)	(mg/L)	(meq/L)	(meq/L)
																													1		
CATIONS	0.0405																												1		
Na	0.0435	10	0.44	22.12	21	0.91	13.88	25	1.09	8.94	19	0.83	18.12	18	0.78	13.24	12	0.52	23.27	21	0.91	23.16	26	1.13	26.16	15	0.65	24.21	12	0.52	19.70
Ca	0.0499	14	0.70	35.52	52	2.59	39.44	100	4.99	41.02	35	1.75	38.29	48	2.40	40.51	15	0.75	33.37	28	1.40	35.42	31	1.55	35.78	20	1.00	37.03	26	1.30	48.97
Mg	0.08229	9.3	0.77	38.91	36	2.96	45.03	72	5.92	48.71	23	1.89	41.49	32	2.63	44.54	11	0.91	40.35	19	1.56	39.64	19	1.56	36.16	12	0.99	36.63	9.4	0.77	29.20
Fe(+2)	0.03581	0.028	0.00	0.05	0.028	0.00	0.02	0.028	0.00	0.01	0.37	0.01	0.29	0.028	0.00	0.02	0.21	0.01	0.34	0.028	0.00	0.03	0.69	0.02	0.57	0.028	0.00	0.04	0.27	0.01	0.36
K	0.02558	2.6	0.07	3.38	4.2	0.11	1.63	6.3	0.16	1.32	3.1	0.08	1.74	3.9	0.10	1.69	2.3	0.06	2.62	2.7	0.07	1.75	1.8	0.05	1.06	2.2	0.06	2.09	1.8	0.05	1.74
Mn	0.0364	0.0055	0.00	0.01	0.0055	0.00	0.00	0.0055	0.00	0.00	0.096	0.00	0.08	0.0055	0.00	0.00	0.033	0.00	0.05	0.0055	0.00	0.01	0.32	0.01	0.27	0.0055	0.00	0.01	0.019	0.00	0.03
		TOTAL	1.97	100.00	TOTAL	6.58	100.00	TOTAL	12.16	100.00	TOTAL	4.56	100.00	TOTAL	5.91	100.00	TOTAL	2.24	100.00	TOTAL	3.94	100.00	TOTAL	4.32	100.00	TOTAL	2.70	100.00	TOTAL	2.65	100.00
																													1		
ANIONS																													1		
HCO ₃ ²	0.02	78	1.56	89.74	94	1.88	30.49	160	3.20	28.70	100	2.00	45.62	86	1.72	32.22	94	1.88	92.19	92	1.84	51.04	100	2.00	47.82	94	1.88	80.99	36	0.72	35.22
SO ₄	0.02082	2.5	0.05	2.99	75	1.56	25.32	100	2.08	18.68	79	1.64	37.52	51	1.06	19.89	2.5	0.05	2.55	57	1.19	32.92	49	1.02	24.39	11	0.23	9.87	44	0.92	44.82
CI	0.02821	2.7	0.08	4.38	68	1.92	31.11	49	1.38	12.40	26	0.73	16.73	62	1.75	32.77	3.7	0.10	5.12	16	0.45	12.52	41	1.16	27.65	3.7	0.10	4.50	3.2	0.09	4.42
CO32	0.02	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
NO ₃ ³	0.0714	0.702	0.05	2.88	11.3	0.81	13.08	62.8	4.48	40.22	0.0800	0.01	0.13	11.3	0.81	15.12	0.0410	0.00	0.14	1 78	0.13	3.53	0.077	0.01	0.13	1.51	0.11	4.64	4.45	0.32	15.54
1103	0.0114	TOTAL	1.74	100.00	TOTAL	6.17	100.00	TOTAL	11.15	100.00	TOTAL	4.38	100.00	TOTAL	5.34	100.00	TOTAL	2.04	100.00	TOTAL	3.61	100.00	TOTAL	4.18	100.00	TOTAL	2.32	100.00	TOTAL	2.04	100.00
anion + c	ation Sum (meg/L)	101/12	3.70		101/12	12.75	100.00	101/12	23.31	100.00	101/12	8.95	100.00	101/12	11.25	100.00	101/15	4.28	100.00	101/12	7.55	100.00	101/12	8.51	100.00	101/12	5.02				100.00
amon · c	adon Jun (med/ L)	 	3.70			12.75		ł	20.01		ļ	0.55			11.20		- 	7.20		 	1.00			0.01			5.02		r	4.00	
																													1		
(meq/L cat	ions-anions)/(meq/L																1												4		
cation	s+anions)*100			6.16			3.24			4.36			1.99			5.11			4.76			4.49			1.66			7.46			12.90

¹Reference: Hem 1985.

³NO₃ reported as NO₃-N, conversion factor adjusted accordingly.

= Outside WAC 173-351-420(5)(a) acceptable range

+/-5 percent (for anion plus cation sums greater than 5 meq/L), or $\,$

+/-10 percent (for anion plus cation sums less than 5 meq/L)

Note: Values for cations in groundwater samples are measured as dissolved (field-filtered).

5 percent if anion plus cation sum greater than 5 meq/L; 10 percent if anion plus cation sum less than 5 meq/L

 $^{^2\}mathrm{HCO_3}$ and $\mathrm{CO_3}$ reported as $\mathrm{CaCO_3},$ conversion factor adjusted accordingly.

Appendix F

Statistics

Background Data Summary: Mean=7.036, Std. Dev.=0.2418, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9617, critical = 0.803. Report alpha = 0.001854. Dates ending 8/19/2009 used for control stats. Standardized h=5, SCL=5.

Constituent: pH Analysis Run 6/2/2025 12:27 PM View: 2025 Control Charts - 2008-2009 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=4.912, Std. Dev.=2.819, n=58, 17.24% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9674, critical = 0.961. Report alpha = 0.0000004. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

Constituent: Sulfate Analysis Run 6/2/2025 12:25 PM View: 2025 Control Charts - 2008-2023 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=21.8, Std. Dev.=12.81, n=61, 6.557% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.977, critical = 0.962. Report alpha = 0.000002. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

Constituent: Chloride Analysis Run 6/2/2025 12:25 PM View: 2025 Control Charts - 2008-2023 backgroun Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary (based on cube root transformation): Mean=1.453, Std. Dev.=0.2359, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8192, critical = 0.818. Report alpha = 0.001166. Dates ending 8/19/2009 used for control stats. Standardized h=5, SCL=5.

Constituent: Nitrate Analysis Run 6/2/2025 12:27 PM View: 2025 Control Charts - 2008-2009 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=22.68, Std. Dev.=11.73, n=61, 3.279% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9621, critical = 0.962. Report alpha = 0.000004. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

Constituent: Sulfate Analysis Run 6/2/2025 12:25 PM View: 2025 Control Charts - 2008-2023 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary (based on square root transformation): Mean=13.18, Std. Dev.=1.982, n=62. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9641, critical = 0.963. Report alpha = 0.000006. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

Constituent: TDS Analysis Run 6/2/2025 12:25 PM View: 2025 Control Charts - 2008-2023 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=45.49, Std. Dev.=5.867, n=10. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8467, critical = 0.842. Report alpha = 0.00049. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: Chloride Analysis Run 6/2/2025 12:31 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=35.86, Std. Dev.=13.88, n=10. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9342, critical = 0.842. Report alpha = 0.00049. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: Nitrate Analysis Run 6/2/2025 12:32 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=7.081, Std. Dev.=0.07925, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9174, critical = 0.803. Report alpha = 0.001626. Dates ending 3/5/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: pH Analysis Run 6/2/2025 12:32 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=80.8, Std. Dev.=31.99, n=10. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9348, critical = 0.842. Report alpha = 0.000554. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: Sulfate Analysis Run 6/2/2025 12:32 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=553, Std. Dev.=94.29, n=10. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9724, critical = 0.842. Report alpha = 0.000554. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: TDS Analysis Run 6/2/2025 12:32 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats