

VIA: Electronic Delivery

Ms. Paula Skryja BP Olympic Pipeline Company LLC **Environmental Coordinator**

March 18, 2025

RE: Bioassay Report Transmittal

Dear Ms. Skryja,

Attached, please find the Olympic Pipeline Gasoline Spill and Remediation Project Sediment Evaluation — Toxicity Testing Report, dated March 11, 2025. The report documents the testing of sediment collected in November 2024 as per the Bioassay Plan (March 2024) approved by the Washington Department of Ecology (WDOE). WDOE participated in the sample location designation and the sample collection of sediment for this toxicity test. No exceedences of any cleanup or risk criteria were present in the testing results. Based on these findings there does not appear to be any residual hydrocarbons from the gasoline spill present in the sediment of Hill Ditch, in the vicinity of the spill site, that presents a risk to invertebrates or other organisms that may consume them. Based on these findings we recommend that no further action is required for sediment evaluated under this plan.

Please let me know if you have any questions,

Sincerely,

Tony Palagyi

Tony Palagyi Senior Environmental Response Consultant CTEH, L.L.C.

Olympic Pipeline Gasoline Spill and Remediation Project Sediment Evaluation – Toxicity Testing Report

Sample IDs: MVWH1122P001 and MVWH1122P002

Sample Collection: November 2024

Prepared for: CTEH

5120 Northshore Drive North Little Rock, AR 72118

Prepared by: Nautilus Environmental

(previously Enthalpy Analytical)

San Diego Bioassay Lab 4340 Vandever Avenue San Diego, CA 92120

Date Submitted: March 11, 2025

Data Quality Assurance:

- Nautilus Environmental is a member of the IEH Laboratories & Consulting Group. IEH acquired the San Diego aquatic toxicology group from Enthalpy Analytical on December 7, 2024. The testing that is being reported under this cover was performed under the name Enthalpy Analytical and is being reported by Nautilus Environmental.
- Nautilus Environmental (previously Enthalpy Analytical) is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- All test results have met internal Quality Assurance Program requirements.

Verified by:

Kasey Skrivseth, Project Manager

San Diego, California 4340 Vandever Avenue San Diego, California 92120 858.587.7333

INTRODUCTION

Sediment toxicity bioassay procedures using the midge *Chironomus dilutus* (*Chironomus*) and the amphipod *Hyalella azteca* (*Hyalella*) were performed on two samples in support of the Olympic Pipeline Gasoline Spill and Remediation Project located near Conway, Washington. Bioassay testing was conducted between December 19, 2024, and January 16, 2025, at Nautilus Environmental, Inc. (Nautilus; formerly Enthalpy Analytical), located in San Diego, California.

METHODS AND MATERIALS

Sample Collection, Receipt and Preparation

Two samples were collected on November 22, 2024. Following collection, the sample material was placed in double-layered, labeled polyethylene plastic bag and sealed to minimize headspace. Bags were placed in ice chests with wet ice and shipped to Nautilus via FedEx. The samples were received at Nautilus on November 26, 2024. The contents of each cooler were inspected to ensure samples were intact and matched the chain-of-custody (COC) form. Sample temperatures ranged from 6.2 to 6.5 degrees Celsius (°C) upon arrival. Laboratory sample log-in numbers were added to all bags, and the labeling process was checked by a second analyst as part of the sample check in QC process. The sample was promptly transferred to storage and held at 4°C in the dark until used for testing.

Prior to testing, the samples were thoroughly homogenized and sieved through a 0.5-millimeter (mm) Nitex® mesh screen to remove native organisms and mitigate potential interferences with testing (e.g., competition with or predation of test organisms). An aliquot of each homogenized sediment was centrifuged to separate sediment particles from interstitial pore water for sulfide and total ammonia analysis. For total ammonia analysis, pore water pH was measured, and then the subsample was preserved with sulfuric acid.

A summary of sample information can be found in Table 1. Copies of the COC and sample check-in information are provided in Appendices A and B, respectively.

Table 1. Sample ID, Receipt, and Testing Information

Sample ID	Date/Time Collected	Date/Time Received	Receipt Temperature (°C)	Hyalella Test Initiation Date	Chironomid Test Initiation Date
MVWA1122P001 (sample)	11/22/24, 10:05	11/26/24,	6.2	12/19/24	12/20/24
MVWA1122P002 (reference)	11/22/24, 11:30	09:45	6.5	12/19/24	12/20/24

Bioassays were conducted in accordance with American Society for Testing and Materials "Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates" Method E1706-20 (ASTM 2020) Test methodology is summarized in Table 2 and 3.

Client: CTEH

TOXICITY TESTING REPORT Project: MVWA 1122 Bioassay Test IDs: 2412-S102 to S105

Table 2. Toxicity Test Methodology and QA/QC Requirements for the 10-day Solid Phase Midge Larvae Toxicity Test

Sond I hase mage Larvae Toxicity Test						
Test organism	Midge larvae Chironomus dilutus (formerly C. tentans)					
Test organism source	Aquatic BioSystems, Inc.; Fort Collins, CO					
Test organism age at initiation	10 days					
Test duration; endpoints	10 days; survival					
Test temperature	23 ± 1°C daily mean, 23 ± 3°C instantaneous limit					
Photoperiod	16 hours light:8 hours dark					
Test chamber	500-mL glass jar					
Sediment depth	2.5 cm					
Overlying water volume	250 mL					
Overlying water	Activated carbon filtered water (CFW)					
Overlying water renewal	Twice daily full volume exchanges using Zumwalt apparatus					
Overlying water quality monitoring	pH, temperature, conductivity, and dissolved oxygen (DO) daily; total ammonia, total sulfide, hardness and alkalinity at test initiation and termination					
Number of organisms/chamber	10					
Number of replicates	5, plus one surrogate test chamber for water quality readings and two surrogate chambers for porewater subsampling					
Feeding	Chambers were fed 1 mL Tetrafin® slurry: 0.60g/100mL days - 1 and 7-9, 0.20g/100mL days 0-3, and 0.40g/100mL days 4-6					
Negative control	Beach sand collected from San Diego, CA; sieved through a 0.5-mm screen and rinsed with deionized water and CFW; 0.5-1.0 tbsp DI soaked peat moss added to each chamber					
Aeration	Continuous (2-3 bubbles per second)					
Test Protocol	ASTM E1706-20 (ASTM 2020)					
Test acceptability criteria	≥ 80 percent mean control survival					
Reference toxicant	Ammonium chloride; water-only exposure					

cm - centimeter

°C – degrees Celsius

g – gram L – Liter

mg – milligram

mL – milliliter

mm – millimeter tbsp – tablespoon

USEPA - United States Environmental Protection Agency

Client: CTEH

Toxicity Test Methodology and QA/QC Requirements for the 28-day Table 3. Solid Phase Amphipod Toxicity Test

	ond Friase Ampinpod Toxicity Test
Test organism	Freshwater amphipod - <i>Hyalella azteca</i>
Test organism source	Aquatic Research Organisms; Hampton, NH
Test organism age at initiation	9 days
Test duration; endpoints	28 days; survival and growth (as dry weight)
Test temperature	23 ± 1°C mean, 23 ± 3°C instantaneous limit
Photoperiod	16 hours light/8 hours dark
Test chamber	1-L glass jar
Sediment depth	2.0 cm
Overlying water volume	450 mL
Overlying water	CFW
Overlying water renewal	Twice daily full volume exchanges using Zumwalt apparatus
Overlying water quality monitoring	pH, temperature, conductivity, and dissolved oxygen (DO) daily; hardness and alkalinity at test initiation and termination; total ammonia and sulfides on Day 0 and Day 28a.
Number of organisms/chamber	10
Number of replicates per sample	5, plus one surrogate test chamber for water quality readings and two surrogate chambers for porewater subsampling
Feeding	Chambers were fed 1 mL Yeast-Trout-chow-Cereal leaves (YTC) and 1 mL wheat grass slurry (0.025 g/100 mL week 1, 0.05g/100mL week 2, 0.10g/100mL week 3, and 0.15g/100mL week 4) daily
Negative control	Beach sand collected from San Diego, CA; sieved through a 0.5-mm screen and rinsed with deionized water and CFW
Aeration	Continuous (2-3 bubbles per second)
Test Protocol	ASTM E1706-20 (ASTM 2020)
Test acceptability criteria	≥ 80 percent mean survival; mean weight in controls should be ≥0.35 mg/organism
Reference toxicant	Copper chloride; water-only exposure

Client: CTEH

cm – centimeter °C – degrees Celsius

g – gram L – Liter

mg – milligram mL – milliliter

USEPA - United States Environmental Protection Agency

^a Sulfides were not measured in the overlying on day 28

Statistical Analyses

One control was included in the test design for each species and was associated with the samples both spatially within the environmental chamber and for statistical analyses. Mean survival and growth in each sample were compared to the mean control survival and growth. Furthermore, the site sample was compared to the reference sample. Survival data, expressed as a proportion, were arcsine square-root transformed prior to analysis to normalize the distribution of the data and satisfy statistical assumptions for analysis. Statistical assumptions were evaluated prior to analysis using Brown-Forsythe test for differences in variance and D'Agostino Pearson Omnibus test for normality. Unpaired test comparisons were performed to identify significant differences between the lab control or reference sample and the site sample when the site sample's mean survival or growth was less than the reference sample or lab control. If parametric assumptions were not met, the data were initially tested with Kruskal-Wallis test, followed by the Mann-Whitney U-test.

Statistical analyses of test data were performed using GraphPad Prism, Version 6.05. Statistical analyses of reference toxicant data were performed using Comprehensive Environmental Toxicity Information System Software (CETIS™), Version 2.1.4.11. (Tidepool Scientific Software 2000-2022). Analysis for this test followed standard USEPA flow chart methods specified for this test type and the dose-responses were reviewed.

RESULTS AND DISCUSSION

Summaries of toxicity test results are provided in Tables 4 and 5. Detailed results are provided in Appendix C. Raw datasheets including water quality measurements, ammonia analyses, and sulfide analysis are provided in Appendix D. Summaries of statistical analyses are provided in Appendix E.

Chironomus Day 10 Survival Results

Mean survival in the sediment laboratory control was 96 percent, exceeding the ASTM guideline survival criterion of 80 percent. Mean survival in the MVWA1122P001 sample was 94 percent (Figure 1 and Table 4). A Mann-Whitney test failed to detect a statistically significant difference between the MVWA1122P001 sample and the laboratory control or the reference site (p=0.5000, Appendix E). The reference site MVWA1122P002 resulted in 96 percent survival, which was equal to the laboratory control and, therefore, not significantly reduced (Appendix E). Survival in the sample was less than a 20 percent difference from both the control and the reference, which is below both the Sediment Cleanup Objective (SCO) of a greater than 20 percent difference and the Cleanup Screening Level (CSL) of a greater than 30 percent difference. The Chironomus test met all control and reference performance standards and was below any action levels for cleanup outlined in the Sediment Clean Up User Manual (SCUM).

Client: CTEH

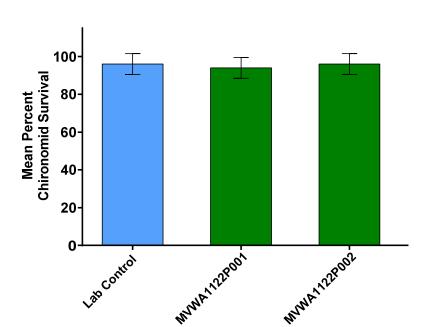


Figure 1. Summary of Chironomus 10-Day Survival (mean percent survival ±95% S.D.; n=5).

Table 4. Summary of Test Results for Chironomus Survival

Sample ID	Mean Percent Survival	Mean Percent Mortality
Lab Control	96.0	4.0
MVWA1122P001	94.0	6.0
MVWA1122P002	96.0	4.0

Hyalella Day 28 Survival Results

Mean survival in the sediment laboratory control was 100 percent, exceeding the ASTM guideline survival criterion of 80 percent. Mean survival in the MVWA1122P002 reference sample was 90 percent (Figure 2 and Table 5). An unpaired t-test with Welch's correction detected a statistically significant difference between the MVWA1122P002 reference sample and the laboratory control (p=0.0431, Appendix E). Mean survival in the MVWA1122P001 sample was 98.0 (Figure 2 and Table 5). An unpaired t-test failed to detect a statistically significant difference between the MVWA1122P001 sample and the laboratory control (p=0.1869, Appendix E). Survival in the MVWA1122P001 sample was greater than in the MVWA1122P002 reference sample, and therefore not significantly reduced (Appendix E). Survival in the sample was exactly 10 percent different from the control and less than 10 percent different from the reference, which is below both the Sediment Cleanup Objective (SCO) of a greater than 10 percent difference and the

Client: CTEH

Client: CTEH Test IDs: 2412-S102 to S105 Testing: December 2024

Cleanup Screening Level (CSL) of a greater than 25 percent difference for amphipod survival. Survival in the amphipod test met all control and reference performance standards and was below any action levels for cleanup outlined in the Sediment Clean Up User Manual (SCUM).

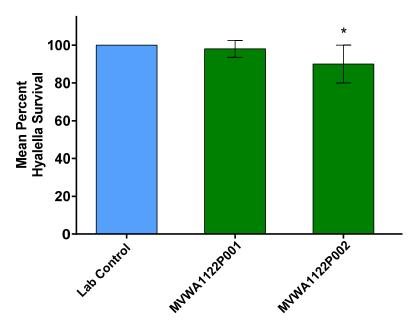


Figure 2. Summary of Hyalella 28-Day Survival (mean percent survival ±95% S.D.; n=5). *An asterisk indicates a statistically significant reduction in survival from the lab control.

Hyalella Day 28 Growth Results

The mean weight per organism in the sediment laboratory control was 0.86-mg, exceeding the ASTM guideline growth criterion of ≥ 0.35-mg per individual dry weight. Mean weight per organism in the MVWA1122P002 reference sample was 0.87-mg, which was greater than the laboratory control and therefore, not significantly reduced (Figure 3 and Table 5). Mean weight per organism in the MVWA1122P001 sample was 0.89-mg, which was greater than the laboratory control and the reference sample and, therefore, not significantly reduced (Figure 3 and Table 5). Growth in the sample was greater than both the control and reference, indicating no detrimental effects to amphipod growth. Ratios of sample and control/reference growth were above the SCO and CSL levels; note that action levels for the growth endpoint are expressed as less than <0.75 and <0.60 for the SCO and CSL, respectively, therefore exceeding these ratios indicates the sample was not impacted relative to the control or reference. Growth in the amphipod test met all control and reference performance standards and was below any action levels for cleanup outlined in the Sediment Clean Up User Manual (SCUM).

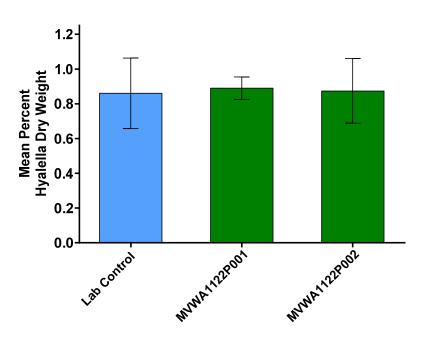


Figure 3. Summary of *Hyalella* 28-Day Growth (mean dry weight per surviving organism ±95% S.D.; n=5).

Table 5. Summary of Test Results for Hyalella Survival and Growth

Sample ID	Mean Percent Survival	Mean Percent Mortality	Mean Dry Weight per Organism (mg)
Lab Control	100	0.0	0.86
MVWA1122P001	98.0	2.0	0.89
MVWA1122P002	90.0	10	0.87

Values in **bold** indicate a statistically significant difference when compared to the laboratory control.

Client: CTEH

QUALITY ASSURANCE

All data presented have been thoroughly reviewed and deemed acceptable for reporting in accordance with relevant USEPA protocols and Nautilus's internal QA/QC program. Discussions and deviations with respect to test conditions are summarized below. Minor QA/QC issues that were unlikely to impact the final test data are noted on test datasheets, and a list of laboratory qualifier codes used on raw datasheets can be found in Appendix F.

Following the 2020 ASTM guidance, *Hyalella* for a 28-day (or 42-day) test the organism age should be between 7 and 8 days old. The test reported herein was initiated with 9-day-old *Hyalella*. The 2020 ASTM guidance indicates that the younger age range for the 42-day test, compared to the 10-day guidance of 7-10 day old, is suggested to avoid reproduction occurring prior to the 28-day endpoint. Reproduction is not an endpoint in this test, therefore it is unlikely that the age affected survival or growth results. Furthermore, the reference toxicant test that was run concurrently had typical results, indicating that slightly older organisms did not affect the sensitivity of the organisms.

It was the laboratories intent to collect ammonia and sulfides from the overlying water of the *Hyalella* test on day 10 in addition to days 0and 28. Subsamples were not collected on day 10 of the test. Also, overlying sulfides were not collected on day 28 of the *Hyalella* test. Given the low ammonia values in other subsamples, it is not likely that an additional data point from day 10 would provide any value. In addition, there were no effects above the cleanup level standards and amphipod growth was higher in the sample than either the reference or control; this suggests that there were no impacts to the amphipod survival and growth due to ammonia or sulfides.

Minimal information is available on the effects of sulfide on these freshwater test organisms. Sulfide measurements in the porewater of the reference sample MVWA1122P002 were higher compared to sample MVWA1122P001 for both tests and at initiation and termination. It is possible that sulfide influenced the survival effects observed in the reference sample (P002).

All water quality parameters were within specified ranges for the duration of the tests. Overlying water total ammonia concentrations ranged from <0.5 to 1.5 milligrams per liter (mg/L). Interstitial water total ammonia concentrations ranged from <0.5 to 8.2 mg/L. All total ammonia values were well below any reported thresholds for *Chironomus* or *Hyalella* (USEPA 2000).

Reference Toxicant Test

Mean control survival in the concurrent reference toxicant test with *Chironomus* was 100 percent. A median lethal effect concentration (LC_{50}) value of 96.0 mg/L total ammonia was determined using the trimmed Spearman-Karber method. Mean control survival in the concurrent reference toxicant test with *Hyalella* was 100 percent. A LC_{50} value of 236 micrograms per liter (μ g/L) copper was determined using the trimmed Spearman-Karber method. Both LC_{50} values were within plus or minus two standard deviations from the historical mean. This indicates that these batches of organisms were of typical sensitivity to \ammonia and copper for this endpoint (96-hour survival) as those historically tested at

Client: CTEH

Nautilus. Based on the dose response observed, the calculated effect concentration was

deemed reliable. A copy of the reference toxicant results is provided in Appendix G.

REFERENCES

- ASTM. 2020. Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. American Society for Testing and Materials, Philadelphia Pennsylvania. ASTM Method E1706-20.
- CTEH, 2024. Bioassay Sampling and Analysis Plan. Olympic Pipeline Gasoline Spill.
- GraphPad Software Inc. 1992-2014. GraphPad Prism, Version 6.05.
- State of Washington Department of Ecology, Sediment Cleanup User's Manual (SCUM), 2021. Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC, Publication No. 12-09-057. Third Revision December 2021
- Tidepool Scientific Software. 2000-2022. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 2.1.4.11.
- Zumwalt, D.C, Dwyer, F.J, Greer, I.E., and Ingersoll, C.G. 1994. A water-renewal system that accurately delivers small volumes of water to exposure chamber. Environ. Toxicol. Chem. 1311-1314.

Client: CTEH

Appendix A

Chain-of-Custody Forms

4340 Vandever Avenue San Diego, CA 92120 Phone 858.587.7333

Company Address City/State/Zip Contact Phone Pavla Skyla bl. com Email SAMPLE ID SAMPLE MATRIX CODE Email Type (FW, SW, Sed, Styla, W, W, O) Type (Gord, STRM, GW, W, W, O) FYPE PROJECT INFORMATION SAMPLE RECEIPT Total No. of Containers		YSES REQUIRED	ANALY										Ву:	Sample Collection
SAMPLE ID SAMPLE TIME Type (FW, SW, Sed, 17 PP) Qty MVWA 1122 POO2 U 2 U 3 O C SED 20 L BACKBROUND PROJECT INFORMATION SAMPLE RECEIPT 1) RELINQUISHED BY (CLIENT) Project Name: MVWA 1122 Bigassa Total No. of Containers PO No.: Received Good Condition? Matches Test Schedule? Matches Test Schedule? Matches Test Schedule? 3) RELINQUISHED BY (COURIER) (Company)	mposite Freshwater Geawater Sediment = Stormwater	<u>G</u> = G <u>C</u> → Cd <u>FW</u> = <u>SW</u> = <u>Sed</u> <u>STRM</u>		ASSA		Same as Report to	y ite/Zip	Compan Address City/Sta Contact Phone	iom	ry 1 a				Company Address City/Star Contact Phone
MVWA 1122 POO2 1130 C STRM, GW, WW, O) Type GY BACKS ROUND PROJECT INFORMATION SAMPLE RECEIPT 1) RELINQUISHED BY (CLIENT) 2) RECEIVED BY (COURIER) Project Name: MVWA 1122 Bi passa Total No. of Containers PO No.: Received Good Condition? PECIAL INSTRUCTIONS/COMMENTS: 3) RELINQUISHED BY (COURIER) (Company)				-	TS	COMMEN	ner	Contair			SAMPLE		PLF ID	SAM
PROJECT INFORMATION SAMPLE RECEIPT 1) RELINQUISHED BY (CLIENT) 2) RECEIVED BY (COURIER) Project Name: PO No.: Received Good Condition? Matches Test Schedule? Matches Test Schedule? A PROJECT INFORMATION SAMPLE RECEIPT 1) RELINQUISHED BY (CLIENT) (Company)	ner (specify)	0 = 0				COMMEN	Qty	Туре	STRM, GW, WW, O)		Time	11.7		
PROJECT INFORMATION SAMPLE RECEIPT 1) RELINQUISHED BY (CLIENT) 2) RECEIVED BY (COURIER) Project Name: PO No.: Received Good Condition? Matches Test Schedule? Matches Test Schedule? A RECEIVED BY (COURIER) (Company)					0	BACKEROUN	1	201	Sed	C	11:30	11/22	2217002	MVWAt
Project Name: MVWA 1122 Bigassa Total No. of Containers PO No.: Received Good Condition? Shipped Via: FEDEX Matches Test Schedule? Matches Test Schedule? SPECIAL INSTRUCTIONS/COMMENTS: (Signature) (Signature) (Company) (Company) (Company) (Company) (Company) (Company) (Signature) (Company) (Date) (Printed Name) (Date) (Printed Name) (Date)					AREA	REPERENCE								
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Matches Test Schedule? Received Good Condition? (Company)													= 54	
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Matches Test Schedule? Received Good Condition? (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Matches Test Schedule? Received Good Condition? (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Matches Test Schedule? Received Good Condition? (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Shipped Via: FEDEX Matches Test Schedule? Matches Test Schedule? Matches Test Schedule? Signature (Signature) (Signature) (Company) (Company) (Company) (Company) (Company) (Company) (Signature) (Printed Name) (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Matches Test Schedule? Received Good Condition? (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Shipped Via: Matches Test Schedule? PECIAL INSTRUCTIONS/COMMENTS: (Signature) (Signature) (Company) (Company) (Company) (Company) (Company) (Company) (Signature) (Printed Name) (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Shipped Via: FEDEX Matches Test Schedule? Matches Test Schedule? Matches Test Schedule? Signature (Signature) (Signature) (Company) (Company) (Company) (Company) (Company) (Company) (Signature) (Printed Name) (Company)														
Project Name: MVWA 1122 Bioassa Total No. of Containers PO No.: Received Good Condition? Shipped Via: FEDEX Matches Test Schedule? Matches Test Schedule? Matches Test Schedule? Signature) (Company) (Com		EIVED BY (COUR			(CLIENT)	1) RELINQUISHED BY			APLE RECEIPT	SAN		N	ECT INFORMATIO	PROJ
PO No.: Received Good Condition? Matches Test Schedule? (Company)	(Time)		e)	(Signatur	10 I DA	NXA	(Signature)	1	ontainers	al No. of Co	4 Tot	Binassa	MUWA 1122	Project Name:
Shipped Via: FEDEX Matches Test Schedule? Company Company	(Date)		lame)	(Printed	(Date)	1/6/8/	(Printed Nam		Condition?	ived Cood		1210-1-2	1100111122	DO No.
Shipped Via: FEDEX Matches Test Schedule? PECIAL INSTRUCTIONS/COMMENTS: 3) RELINQUISHED BY (COURIER) (Signature) (Frinted Name) (Printed Name) (Date) (Printed Name) (Date)									Conditions	iveu Good	Kece			PO No.:
3) RELINQUISHED BY (COURIER) (Signature) (Printed Name) (Date) 4) RECEIVED BY (LABORATORY Of Time) (Printed Name) (Printed Name) (Date)			0	(Compan			(Company)	y	Schedule?	ches Test S	Mat		FEDEX	Shipped Via:
(Signature) (Time) (Signature) (Time) (Printed Name) (Date) (Printed Name) (Date)	TORY)	VED BY (LABORA	4) RECEIV		COURIER)	3) RELINQUISHED BY (C						NTS:		PECIAL INSTRI
(Printed Name) (Date) (Printed Name) (Date	(Time)		2)	(Signatur			(Signature)							
	0945			1 1/3	/Podes	n)	(Drinted Nam							
and word Danker 11121	(Date)	CVALIAN			(Date)	-1	Le rinteu Ham							
13 01/2011 1/ 0 1/	Log-in #s)	44014					(Company)							

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

Shaded areas are for lab use only

Report turn-around-time varies depending on length of test; please inquire with your project manager.

http://enthalpy.com/environmental-toxicology-2/

Enthalpy Analytical - Environmental Toxicology

Chain of Custody

4340 Vandever Avenue San Diego, CA 92120 Phone 858.587.7333

													W/24 Page 1	of
Sample Collection	ı By:										ANALYS	ES REQ		
Report to: Compan Address City/Sta Contact Phone Email		Paula - 425. 4 Paula -	Skryja 89. 904 Skryje	3 Chpec	on	Invoice To: Company Address City/Stat Contact Phone Email		Same as Report to	4554				Enthalpy Matrix Codes: G = Grab C = Composite FW = Freshwater SW = Seawater Sed Sediment STRM = Stormwater GW = Groundwater	Docaint Tomnorature (0C)
			SAMPLE		MATRIX CODE	Contain	er		9.0				<u>WW</u> = Wastewater	٥
SAM	PLE ID	Date	Time	Type (G or C)	(FW, SW, Sed, STRM, GW, WW, O)	Туре	Qty	COMMENTS	ZZ,				O = Other (specify)	
MVWA 112	228001	11/27	10:05	C	Sed	ZOL	1	NOAR ORIGINAL	X					6.
7.010								SOURCE AREA					1 1 1 1 1 1	
								a .						
											\perp			L
												- 2		
				36							-			
				*		*					1			
					200	1							((60))	
PRO.	DECT INFORMATIO	DN		SA	MPLE RECEIPT		(Signature)	1) RELINQUISHED BY (CLIENT)	(Signature)		Z) KECE	IAED B	(COURIER)	_
Project Name:	MVIUA 1122	Binassau	To	tal No. of (Containers	1	1/	WC N 09:5	0					
PO No.:	1.00.0	0.0.2.0	Rece	eived Good	Condition?	Y	(Frinted Na	(Date)	(Printed Na	me)			(Date)	
Shipped Via:	7 1 5		Ma	tches Test	Schedule?	V	(Company)	in the same	(Company)					
	FINES UCTIONS/COMMI	NTC.						3) RELINQUISHED BY (COURIER)		4)	RECEIV	FD BY (LABORATORY)	
SPECIAL INSTR	00110113/0011111						(Signature)	(Time)	(Signature)				(Time)	
									An				0945 (Date)	
							(Printed Nac	ne) (Date)	(Printed Na		SWED	V	(Log-in #s)	u
							(Company)		(Company)					
							1		IIA	-ID			24-3301	

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted. Shaded areas are for lab use only Report turn-around-time varies depending on length of test; please inquire with your project manager.

http://enthalpy.com/environmental-toxicology-2/

Appendix B
Sample Receipt Information

Client: CTEH	

Test Type(s): 28-day Hynlella Surival & Growth or 10-day Chironomid Survival

Project: MVWA 1122 Bioassay

Test IDs: 2412-5102 +05105

Enthalpy Log-in 24-xxxx	Sample ID	Collection Date & Time	Receipt Date & Time	Receipt Temp. (°C)	No. Containers	Container Type	Approx. Total Volume Received (L)	Sample Description	Tech Intials	QC Initials
3301	MVWA1122 POOI	11122124 1005		6.2	1	Postic	~12	high mosture, dark brown	σA	44
3301	MVWA1122 POO2	1112124	W26124 0945	6.5	1	plastic bag	~15	high most the, nove brum	M	HU
						1				
			-	_						
		-				_				

Samples Shipped Via: 「しんとな	Sub-samples for additional chemistry:	8
COC Present? Y N	Collect and Preserve Initial Porewater	Tech Initials ALS OBO KL
Sieving Required? N Screen Size: O. SWM	Other	Tech Initials
	Other	Tech Initials
Comments: Q18 UF (2/19/24		
OC Check: AS 2/27/45		Final Review: 3/3/25

Sediment Sample Sieving Worksheet DS-047

Test ID(s): Test Initiation Date(s):	: MVWA 1122 Bioassay : 2412-5102	Sieve by Date: 12/13/2024 Target Sieve Size: 0.5-mm Minimum Sieved Volume: 6-L						
Sample ID	Enthalpy Log-in	Sample Description	Organisms Present Yes/No ¹	Final Sieve Size Used	Sieved by Date/Initials	QC Intials ²		
MVWA1122P001	24-3301	partition, earthy odor, liquidy	Yes; Zicians	p. Smm	JR 12/13/24	KL		
MVWA1122P002	24-3302	Swampy odor, piant material, liquidy	Yes Eshall	0.5vum	412/3/29	(4M)		
Comments		escription necks that the original sample container label matches the bag of	f sieved sample					

Final Review :

QC Check: 48 3/2/25

Control	Sediment	Datasheet
DS-054		

Client: CTEH					:	Sieve by Date:	12/18/2024			
Project: MVWA 1122 Bioa	assay		_		Targ	et Sieve Size:	0.5-mm			
Test ID(s): 24 12-5102	\$ 5103 15 104, 45	105			Minimum Si	eved Volume:	6-L			
Test ID(s): 24 12 - 510 2 Test Initiation Date(s): 12 19 (2)	1 and 12/10/2	4	-							
Control Sediment Information					Control Sedime	nt Use & Prep	aration			
Sample Description	Organisms Present	Final Sieve Size Used	Sieved by (Initials/Date)	QC (initials)	Control Sediment Type	Test Type	Enthalpy Log-in#	Rinse Water Type	Rinsed by (Initials/ Date)	QC (initials)
fine brown sand	2	0.5mm	AI) 12118124	yr	SS	28d Hya & 10d Chiro	24-7013	DIYCFW	AD 12/18/124	KL
	_									
1 Include quantity and general description										
Control Sediment Type: SS - Scripps Sand MS - Marine Sedimer	Eoh - Eohaustorius Home Sedin	nent MBS - Marin	ne Bioaccum, Sedime	ent						
					_					0
Comments:										
-										
QC Check: ALS 3/2/25						Final Review	: V3 3	3 25		
							(e	N 100		

DC-001

Client: CTEH

Project: MVWA 1122 Bioassay

Test Type: 28-day Hyalella and 10-day Chironomous

DI Blank: 0.0

Test Start Date: 12/19/24 & 12/20/24

Analyst:

Analysis Date:

						N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	pH (units)	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA NA	NA	NA	8.2	10-0
MVWA1122P001	24-3301	12/13/2024	pre-test	6.83	4.1	5.0
MVWA1122P002	24-3302	12/13/2024	pre-test	6.83	4.4	5.4
Spike Check (10 mg/L NH ₃)		NA NA	NA		8.2	(0.0
		,				
Sample Duplicate ^a	24-3302	NA NA	NA	NA NA	4,3	5,2
Sample Duplicate + Spike ^a		NA	NA	NA	13.5	27.00 16.
Spike Check (10 mg/L NH ₃)		NA NA	NA	NA	8.2	10.0

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	10	10	NA	100
24-3302	5,4	5.2	27.00	10	DIH3 3.8	@3-6 111
			10.5			1/2

		2000		
	Reagent 1	Reagent 2	Test Tubes	
Standard Lot Number	2395266	2395466	7606945	

(A)Q18412/16/24 (5) 614415 2/27/26

Notes: "Unless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

^c Calculation not performed due to one or both values below the method detection limit.

HACH Ammonia Nitrogen Test Kit, Test 'N Tube™ Vials. Method 10031. Method Detection Limit = 0.5 mg/L

QC Check: A/S 2/27/25

Final Review:

CI	ient:	
----	-------	--

CTEH

Project:

MVWA 1122 Bioassay

Test Type:

28-day Hyalella and 10-day Chironomous

DI Blank:

(A)

Analyst:

Analysis Date: 12 16 24

Sample ID	Sample ID	Test Day	pH (units)	Sulfide µg/L S ²⁻
(® MVWA1122P001	24-3301	pre-test	6.83	404
® MVWA1122P002	24-3302	pre-test	6.83	18387 389
¥				
Sample Duplicate (8002)	24-3302	pre-test	6.83	186 x2 = 3=
Sample Duplicate ^a (POO1)	24-3301	pre-tert	6.03	380

Comments: (8) 018/412/16/24 (8) P	Forewater samples collected on 12/16/24.
Notes: ^a Unless otherwise noted, the last sample listed on Method Detection Limit = 5.0 µg/L S ² -	the datasheet is used for duplicate and duplicate
QC Check: ACS 2/27/15	Final Review: \\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Vautilus Environmental, Inc. 4340 Vandever Avenue. San Diego, C	CA 92120.

Appendix C
Summary of Results Tables

CTEH
10-Day *Chironomus* Survival Bioassay
Project: MVWA 1122 Bioassay

Sample Date: 11/22/2024 Test Initiation Date: 12/20/2024

Site ID	Replicate	Random No.	No. Larvae Alive	Total No. Alive ^a	Percent Survival	Mean Percent Survival	Standard Deviation	Percent Mortality	Mean Percent Mortality	Standard Deviation
	Α	23	10	10	100			0.0		
	В	29	9	9	90.0			10.0		
Lab Control	С	28	10	10	100	96.0	5.5	0.0	4.0	5.5
	D	21	9	9	90.0			10.0		
	E	17	9	10	100			0.0		
	Α	30	9	9	90.0			10.0		
	В	20	9	9	90.0			10.0		
MVWA1122P001	С	24	9	9	90.0	94.0	5.5	10.0	6.0	5.5
	D	26	10	10	100			0.0		
	E	22	10	10	100			0.0		
	Α	27	10	10	100			0.0		
	В	19	10	10	100			0.0		
MVWA1122P002	С	25	9	9	90.0	96.0	5.5	10.0	4.0	5.5
	D	18	9	10	100			0.0		
	Е	16	9	9	90.0			10.0		

^a Total number alive includes organisms that are pupae or emerged as flies and are used in the percent survival calculation

CTEH

28-Day *Hyalella* Survival & Growth Bioassay Project: MVWA 1122 Bioassay

Sample Date: 11/22/2024 Test Initiation Date: 12/19/2024

Site ID	Replicate	Random No.	No. Alive	Percent Survival	Mean Percent Survival	Standard Deviation	Percent Mortality	Mean Percent Mortality	Standard Deviation	Total Dry Weight (mg)	Dry Weight per Org. (mg)	Mean Dry Weight per Org. (mg)	Standard Deviation
	Α	9	10	100			0.0			8.11	0.81		
	В	6	10	100			0.0			8.20	0.82		
Lab Control	С	7	10	100	100	0.0	0.0	0.0	0.0	12.08	1.21	0.86	0.20
	D	10	10	100			0.0			7.80	0.78		
	E	5	10	100			0.0			6.78	0.68		
	Α	4	10	100			0.0			8.71	0.87		
	В	15	10	100			0.0			7.86	0.79		
MVWA1122P001	С	14	9	90.0	98.0	4.5	10.0	2.0	4.5	8.66	0.96	0.89	0.06
	D	11	10	100			0.0			9.13	0.91		
	E	8	10	100			0.0			9.15	0.92		
	Α	12	10	100			0.0			6.83	0.68		
	В	1	10	100			0.0			9.23	0.92		
MVWA1122P002	С	13	8	80.0	90.0*	10	20.0	10	10	9.38	1.17	0.87	0.19
	D	2	8	80.0			20.0			6.37	0.80		
	E	3	9	90.0			10.0			7.19	0.80		

Values in **bold** with an asterisk were found to be statistically significant when compared to the Lab Control

Appendix D

Raw Datasheets

10-Day Freshwater Sediment Bioassay DS-032GC

Organism Survival and Growth Q194 12/17/14

Tech Initials: Tech Initials:	Client:	CTEH		Test Species:	Chironomus dil	utus	_
Test No(s): 2412 - 61 ct. 24 5105 Initial No. Organisms: 10/rep Random Number Number Alive 10% QC Check of final counts 16 9 17 10 (1) 18 10 (1) 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Project ID:	MVWA 1122 Bi	oassay	Start Date/Time:	12/20/2024	1235	
Random Number Number Alive 10% QC Check of final counts 16 9 17 10 (1) 18 10 (1) 19 10 20 9 21 9 21 9 22 10 22 10 22 10 22 10 23 10 24 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					1 .		
Random Number Number Alive 10% QC Check of final counts 16 9 17 10 (1) 18 10 10 10 10 10 10 10 10 10 10 10 10 10							•
Tech Initials: Tech Initials: To counts: To counts:						· · · · · · · · · · · · · · · · · · ·	
17	Random Number	Number Alive		AND	Number Alive	and the second s	
18 10 0 0 20 9 21 9 22 10 23 10 24 9 25 9 9 26 10 27 10 28 10 29 9 30 9 30 9 30 9 30 9 30 9 30 10 40 1	16	9					1
19	17	10 (1)		- N			
20 9 21 9 22 10 23 10 24 9 25 9 7 26 10 27 10 28 10 29 7 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9	18	10(1)]
21 9 22 10 23 1/0 24 9 25 9 9 26 10 27 10 28 10 29 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 3	19		. 10]
22 Q Q Q Q Q Q Q Q Q	20						1
23 10 24 9 25 9 7 26 D 27 D 28 D 29 7 30 9 9 30 9 9 30 9 9 30 9 9 30 G	21	9			1		
24 25 9 9 9 2 26 10 27 10 28 10 29 30 9 9 30 9 9 9 30 9 9 9 30 9 9 9 9 30 9 9 9 9	22	10		M]
25 9 9 9 30 9 9 30 9 9 30 9 9 9 30 9 9 9 9	23	10					
26 C 27 C 28 C 29 G 30 G 9 G G G G G G G G	24						
27 28 10 29 30 9 30 9 Tech Initials: Tech Initials: Towerlying water subsamples: Ammonia: Alkalinity & Hardness: Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Termination (initials): Toverlying water subsamples: Ammonia: Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Drying Oven Info Date/Time pdf: Temp (*C): Temp (*C):	25		9				
28 29 30 G 9 Tech Initials: Townights: Townights: NA Counts: HH 080 Lights (16:8): Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Townights (initials): Termination (initials): Termination (initials): Alkalinity & Hardness: Townights (initials): Termination (initials): Termination (initials): Townights (initials): Alkalinity & Hardness: Townights (initials): Termination (initials): Townights (initials): Termination (initials): Termination (initials): Termination (initials): Termination (initials): Termination (initials): Townights (initials): Termination Check: Lights (16:8): Lights	26	10			7.9		1
Tech Initials: Tech Initials: Initiation (initials): To Weights: Counts: Counts: HH 080 (S) Counts QC: HK 280 (H							_
Tech Initials: 4/5/M) AD A/5 Tech Initials: Initiation (initials): To Weights: N/A Counts: N/H HORO N/S Counts QC: N/H A/S N/H Initiation Check: Lights (16:8): Air: Alir: Alir: Alkalinity & Hardness: A/S Animal Source/Date Received: A/S 12/2/M Age at Initiation: 10 days Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 Comments: Note: Received # A/S Note: Rec							-
Tech Initials: To Weights: To Weights: Counts: Counts QC: Initiation Check: Lights (16:8): Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Termination (initials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Toverlying water subsamples: Ammonia: Termination (unitials): Toverlying water subsamples: Ammonia: Alkalinity & Hardness: Toverlying water subsamples: Ammonia: Termination (unitials): Toverlying water subsamples: Ammonia: Termination (initials): Toverlying water subsamples: Ammonia: Toverlying water subsample			2	1			1
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):	30	9	7				1
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):							-
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):				4		-	1
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):							-
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):			-	-	2		-
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):				-	-		-
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):							-
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):							1
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):						 	1
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):							1
Initiation (initials): To Weights: Counts: HH 080 (S) Initiation Check: Lights (16:8): Lights (16:8): Lights (16:8): Alkalinity & Hardness: Termination (initials): To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: To overlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Drying Oven Info Weights: Note: Record # of pupae in parentheses and exclude from wt. energysis Q1 y 1/2 2 1 223 Date/Time in: Date/Time in: Date/Time odt: Temp (°C):	Tech Initials:	Ars /Ath	NO LACI	Tech Initials:			-
To Weights: NA Counts: NHH 080 S Lights (16:8): Lights (16:8): Lights (16:8): Termination (initials): T-overlying water subsamples: Ammonia: A Alkalinity & Hardness:	Took inicialo.	1 (02/11)	AVIA	(John Milliano)			
Counts: MHH 080 KS Lights (16:8): Lights (16:8): Lig	Contraction of the Contraction o				A .		1
Counts QC: HS Lights (16:8): Air: To overlying water subsamples: Ammonia: WF Alkalinity & Hardness: WF Alkalinity & Hardness: MF Alkalinity & Hard	T ₀ Weights:			Test Initiated By:	KL		
Counts QC: HS Lights (16:8): Air: To overlying water subsamples: Ammonia: WF Alkalinity & Hardness: WF Alkalinity & Hardness: MF Alkalinity & Hard	Counts:	KL / HH	1 080 65	Initiation Check:	HH		
Air: To overlying water subsamples: Ammonia: WE Alkalinity & Hardness: WE Termination (initials): Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardnes	Counts QC:	HI OPO		Lights (16:8):	4		
Termination (initials): Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Troverlying water subsamples: Ammonia: Alkalinity & Hardness: Alkalinity & Hardness: Alkalinit		1			10		1
Termination (initials): Troverlying water subsamples: Ammonia: AC) Alkalinity & Hardness: ACS Animal Source/Date Received: ABS 12 18 24 Age at Initiation: 10 days Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 / none Comments: Note: Record # of pupae in parentheses and exclude from wt. analysis Q1 4 ltr 5 242/L5 Date/Time out: Temp (°C):			15		/		
Animal Source/Date Received: ABS 12 18 24 Age at Initiation: 10 days Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 / none Comments: Note: Record # of pupae in parentheses and exclude from wt. enelyeis Q1 y 167 5 242/25 Date/Time odt: Temp (°C):	T ₀ overlying water	er subsamples: A	mmonia: NY	Alkalinity & Ha	rdness:_\(
Animal Source/Date Received: ABS 12 18 24 Age at Initiation: 10 days Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 / none Comments: Note: Record # of pupae in parentheses and exclude from wt. enelyeis Q1 y 167 5 242/25 Date/Time odt: Temp (°C):	Termination (ini	itials):					-
Animal Source/Date Received: ABS 12 18 24 Age at Initiation: 10 days Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 / none Comments: Note: Record # of pupae in parentheses			mmonia: AC)	Alkalinity & Har	dness: ATS		
Animal Acclimation Qualifiers (circle all that apply): Q22 / Q23 / none Comments: Note: Record # of pupae in parentheses and exclude from wt. analysis Q1 y 1/2 / L5 Date/Time in: Date/Time odt: Temp (°C):			1	f		1 0000	
Comments: Note: Record # of pupae in parentheses and exclude from wt. enelyeis Q1 \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) Date/Time out: Temp (°C):	Animal Source/D	ate Received:	427 15/18	Age at Initia	tion:	ings	
and exclude from wt. analysis Q1 \(\frac{1}{2} \) \(\frac{1}{2}	Animal Acclimati	on Qualifiers (ci	rcle all that apply):	Q22 / Q23	/ none		00
and exclude from wt. analysis Q1 \(\frac{1}{2} \) \(\frac{1}{2}	Comments	Note: Record # of	nunge in parentheses		Drying	Oven Info	11 12/24
Date/Time out: Temp (°C):	comments:						- 63 1-11.11-1
Temp (°C):		and exelede from	wt. analysis Q V In	5 44/15		/	-
2/2/26							=
QC Check: At 5 2/27/25 Final Review: V7 3/3/25					remp (°C)		-:
QC Check: At 5 2/27/25 Final Review: \\4 3\3\15				_		1 /	
	QC Check: At S	2/27/25		Final Review:	W7 3/	3/1/5	

10-Day Freshwater Sediment Bioassay DS-031C

Daily Observations

Client:	СТЕН	Test Species:	Chironomus	dilutus	
Project ID:	MVWA 1122 Bioassay	Start Date/Time:	12/20/2024	1235	
Test No.:	2412-5104 and 5105	End Date/Time:	12/30/24	1045	

Random		Daily Observations (Use Codes Provided)											
Number	1	2	3	4	5	6	7	8	9	10			
16	NSI	EN 51	S,	5,	5,.	N	N	N	N	N			
17 (H)	SIN	N	N	N	N	N	N	N	N	N			
18	N	E	N	N	12	N	N	77	N	N			
19	É	E	N	2	N.	N	N	~	N	N			
20	E	E	E	12	N	N	N	N	N	N			
21	E	È	N	2	N	N	N	N	N	N			
22	N	E	N	F	E	N	N	N	N	N			
23	E	E	N	N	1	N	N	N	N	N			
24	N	N	N	N	N	N	N	N	N	N			
25	N	E	N	E	E	N	N	N	N	N			
26	F	E	N	N	~	N	N	N	N	N			
27	N	N	N	7	N	N	N	N	N	N			
28	N,	N	N	N	N	N	N	N	N	N			
29	N	OE N	N	N	N	N	N	N	N	N			
30	E	BME	1	N	N	N	N	N	7	N			
									4	P.			
									la de la constitución de la cons	j.			
						7.	-						
	-						1 11						
	-												
	-												
	-												
				/ /									
	-												
	CSC OA												
Tech	TVV	4	WF	AD	in	1/16	WF	Gm	AND	40)			

Observations	Key:
--------------	------

1	<u>A</u> =	No/low	aeration	$\underline{\mathbf{B}}$ = Body or molf	t on sedi	ment surface, specify number	C = Cloudy
ļ	<u>E</u> =	Excess	food on	sediment surface	$\underline{\mathbf{G}} = Abi$	normal growth on or discolorati	on of sediment surface
ļ	<u>N</u> =	Normal	$\mathbf{P} = \mathbf{D}$	eveloped pupae ob	oserved	S = Organism trapped on surf	face, specify number

			/ / /
OC Check: AS 2/17/25		NS 3/3/25	(H)Q1840 12/2
OC Check: P/S 2/12/12	Final Daviess	15/5/5/1/7	0.0

CTEH 10-Day Chironomus Survival Bioassay
Project: MVWA 1122 Bioassay
Test Initiation Date: 12/19/2024

Site	Rep	Rand #	
	Α	23	
	В	29	
Lab Control	С	28	
	D	21	
	E	17	
II.	Α	30	
	В	20	
MVWA1122P001	С	24	
	D	26	
	E	22	
	Α	27	
	В	19	
MVWA1122P002	С	25	
	D	18	
	E	16	

QC: HM

DS-030S

Client: CTEH

Project ID: MVWA 1122 Bioassay

Test No(s) .: 2412 - 5104 and 5105

Sample ID: Lab Control

Test Species: Hyalella azteca (piro nomus dilutios

Start Date/Time: 12/20/2024 1235

End Date/Time: 12/30124 1045

Log-in No.: 24-7013

Test Day	pH (units)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	Technician Initials	Alkalinity/ Hardness (mg/L)	Technician Initials	Comments
0	8.05	8.4	870	22.3	WF	111 /216	FM	Note: Subsample for ampronia, alkalighty, & hardness (initial on count sheet)
1	8,02	8,2	942	224	(L)			
2	101.8	8.0	661	22.5	AD			
3	8.13	8.4	851	22.5	WF			
4	8.14	8.0	883	22.6	AD			
5	0,06	8,0	847	22.4	64			
6	7.71	B7.87.0	866	22.9	WF			
7	8.31	8.1	885	23.1	WF			
8	8.34	8-2	860	22.8	GM			
9	8.30	8.2	892		AD		offin and the second	
10	4.28	8.2	895	22.7	GM	124 /234	桕	Note: Subsample for arbmonia, allialinity, & harpness (initial on count sheet)

@ Q18 FM 12/21/24

Environmental Chamber:	F
------------------------	---

QC Check: A(5 2/17/25

@ QIB WF 12/26/24

Final Review: 145 3/3/25

DS-030S

Client: CTEH

Project ID: MVWA 1122 Bioassay

Test No(s).: 2412-5104

Sample ID: MVWA1122P001

Test Species: Hyalella azteca Chironomos dilutus

Start Date/Time: 12/20/2024 \V35

End Date/Time: 12/30/24 1045

Log-in No.: 24-3301

Test Day	pH (units)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	Technician Initials	Alkalinity/ Hardness (mg/L)	Technician Initials	Comments
0	7.97	8.3	837	22.3	WF	127 /236	FM	Note: Subsample for ammonia, alkalinity, & harchess (initial on count sheet)
1	8102	82	88)	A VI, 8 22	8 M			
2	8.03	8.0	804	22.6	AD			
3	8.05	8.3	812	22.5	WF			
4	8.09	7.9	844	22.6	AD			
5	8,00	8,0	853	22,12	LM			
6	7.26	5.0	818	22.9	WF			
7	7.80	7.2	848	23.1	WF			
8	7.30	4.4 @	826	22.9	GM			
9	8.06	7.9	855	22.8	AD			
10	8.12	8-0	873	22-8	GM	114 / 228	AD	Note: Subsample for ambionia, alkalinity, & hardness (initial on count sheet)

@Q16 FM 12/21/24 Otiviline tailure in surregates Replient DOS range from 6.8-7.5 mg/L

Environmental Chamber:

QC Check: A75 2/27/25

Final Review: 15 3/3/25

@ QBM 1212124

DS-030S

Client: CTEH

Project ID: MVWA 1122 Bioassay

Test No(s).: 24/2-3105

Sample ID: MVWA1122P002

Test Species: Hyalella azteca Chironomus dilufus

Start Date/Time: 12/20/2024 \235

End Date/Time: 12/30/24 1045

Log-in No.: 24-3302

Test Day	pH (units)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	Technician Initials	Alkalinity/ Hardness (mg/L)	Technician Initials	Comments
0	7.71	7.9	861	22.3	WF	119 / 229	FM	Note: Subsample for arranonia, alkalinity, & haragess (initial on count sheet)
1 🕲	7.9977	18,0	0/03	2216	LM			
2	7.89	7.8	817	22.2	AD			
3	7.81	7.8	812	22.5	WF			
4	7.81	7.6	834	22.6	AD			
5	7,80	7.9	841	22,0	M			
6	7.22	5.2	815	23.8	WF			
7	7.97	7.7	828	22.9	WF			
8	7.86	7.5	800	22.8	Gm			
9	7.97	7.7	850	22.8	AD			
10	7.95	7.7	852	22.8	GM	110 /223	AN)	Note: Subsample for ammonia, alkalinity, & hardness (initial on count sheet)

AD Q18	FM	12	121	124
				12.00

Environmental Chamber:	,	F	
Environmental onamber.	-		

QC Check: A(5 2/27/25

AQISMIZIZIZG

Final Review: 75 3/3/25

10-Day Freshwater Sediment Bioassay Static-Renewal Conditions

RENEWAL Water Quality Measurements

DS-030

Client: CTEH

Test Species: Chironomus dilutus

Project ID: MVWA 1122 Bioassay

Start Date/Time: 12/20/2024 12-35

Test No(s) .: 24/2-5104 and 5105

End Date/Time: 12/30/24 1045

Renewal Water Type: Carbon Filtered Water (CFW)

7	pH	Dissolved	Conductivity	Temperature	Technician	Water Ch	ange Time	Feeding	
Test Day	(units)	Oxygen (mg/L)	(µmhos/cm)	(°C)	Initials	AM	PM	Time ^a	Comments
-1	8.33	8.8	823	22.0	HH		1740	1520	
0	6.35	8,2	968	2410	IM	0850	1640	1710	
1	4,39	84	938	22.8	M	0825	1510	1555	
2	8.42	8.7	849	22.1	AT	0915	1500	1535	
3	8.34	8.7	840	22.5	WE	0910	1600	1625	
4	8.36	8.3	872	22.8	AT	0850	1425	1445	
5	934	8.0	880	24,0	M	0620	1400	145	
6	8.37	8.4	842	23.8	WF	1000	1600	1630	
7	8.27	8.1	875	24.0	WF	0820	1540	1635	
8	8.41	8.1	848	24.0	Gm	0 200	1400	1420	
9	8.45	8.3	885	23.8	MD (CA	0935	1535	1550	
10									

Feeding time applies	to the test	chambers	for the	entire test.
----------------------	-------------	----------	---------	--------------

Environmental Chamber:	F	

QC Check: ACS 2/27/25

Final Review: \\\ 3/3/25

Client: CTEH

Test Species: Hyalella azteca

Project ID:	MVWA 1122 Bio	oassay	Start Date/Time:	12/19/2024	1615
	2412-5102	and 5103	End Date/Time:	1116/25	1245
			l No. Organisms:		
Random Number	Number Alive	10% QC Check of final counts	Random Number	Number Alive	10% QC Check of final counts
1	10				
2	8	8			
3	9				
4	10				
5	10				
6	10				
7	10	10			
8	10				
9	10		*		
10	10				
11	10				
12	10		-		
13	8				
14	4				
15	10		-		
			-	-	
			-		
			-		
			-		
Tech Initials:	YS DT	A) 10 DT	Tech Initials:		
	1 1 1	DQ18 DT V	16/25		
Initiation (initial					
T ₀ Weights:			Test Initiated By:		
Counts:	WE		Initiation Check:	HH	
Counts QC:	1.6		Lights (16:8):	HU	
Air:	MA				+ -
	Proj			116	
T ₀ overlying water	er subsamples: A	mmonia: W/	Alkalinity & Ha	rdness: WY	
Termination (ini	tials):				
T _f overlying wate	r subsamples: A	mmonia:	Alkalinity & Har	dness: WF	
Animal Source/D	ate Received:	1BO/12/18/	2 le Size at Initis	ation: q D	
	,	,			
Animal Acclimati	on Qualifiers (ci	rcle all that apply):	Q22 / Q23	/ none	
Comments:	@ Q18 H1 5 2/	2/25		Drying	Oven Info
				Date/Time in:	16/25 1356
				Date/Time out:	1/ / 1/100
				Temp (°C)	
	11		_	ماء	()
QC Check: A75	3/2/25		Final Review:	49 3\1	1/10

Sediment Bioassay

Test Organism Weights

DS-046

Client: CTEH

Test Species: Hyalella azteca

Project ID: MVWA 1122 Bioassay

Start Date/Time: 12/19/25 1615

Test No .: 2412-5102 and

End Date/Time: 1/16/25 1245

Random No.	Pan Weight (mg)	Pan + Organism Dry Weight (mg)	Total Organism Dry Weight (mg)
1	553.78	563.01	9.23
2	557.91	564.28	6.37
3	572.33	579.52	7.19
4	568.26	576.97	8.71
5	603.11	609.89	6.78
6	589.34	597.54	8.20
7	685.48	697.56	12.08
8	658.67	667.82	9.15
9	659.74	667.85	8.11
10	687.47	695.27	7.80
11	555.82	564.95	9.13
12	550.99	557.82	6.83
13	546.07	555.45	9.38
14	547.36	556.02	8.66
15	611.19	619.05	7.86
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
			0.00
		 	0.00
			0.00
			0.00
			0.00
			0.00
Tech Initials:	FM	FM	0.00
Loch Initiale	I-M	I FM	

QC Check: ALS 3 N S Final Review: Nautilus Environmental, Inc. 4340 Vandever Ave. San Diego, CA 92120.

CTEH 28-Day Hyalella Survival & Growth Bioassay Project: MVWA 1122 Bioassay Test Initiation Date: 12/18/2024

Site	Rep	Rand #
	Α	9
	В	6
Lab Control	С	7
	D	10
	E	5
	Α	4
	В	15
MVWA1122P001	С	14
	D	11
	E	8
	Α	12
	В	1
MVWA1122P002	С	13
	D	2
	E	3

ac: A)
A) a16k12/18/24

28-Day Freshwater Sediment Bioassay Static-Renewal Conditions

DS-023

Client: CTEH

Project ID: MVWA 1122 Bioassay

Test No(s) .: 1412-5102 and 5103

Renewal Water Type: Carbon Filtered Water

Test Species: Hyalella azteca

Start Date/Time: 12/19/2024 (6)5

End Date/Time: 16 25 1245

7		Dissolved	Conductivity	Temperature	Technician		Change me	Feeding	Comments
Test Day	pH (units)	Oxygen (mg/L)	(µmhos/cm)	(°C)	Initials	AM	PM	Time ^a	Comments
-1	8.30	8.8	923	20.8 0	GA		1630		
0	8.33	8.8	823	22.0	WF	1150	1140	1820	
1	9,35	8.2	966	.54'0	LM	0825	1030	1710	
2	430	9.4	938	22,8	M	0820	1510	1555	
3	3.42	8.7	8401	221	GA.	0915	1600	1535	
4	8.34	8.7	840	22.5	WF	0910	1600	1025	
5	8.36	8.3	872	22.8	.AD	0850	1425	1445	
6	8,34	8,0	880	240	LAN	0620	1400	MIS	
7	8.37	8.4	842	23.8	WF	1000	4600	1630	
8	8,27	8.1	875	24.0	WE	2820	1540	1635	
9	8.41	4-1	848	24.0	Gm	0800	1400	1420	
10	8.45	8.3	885	23.8	AD	0935	1535	1550	
11	4.45	4.4	884	23.4	6m	0815	1515	1620	
12	8.34	3.2	\$63	23.5	GM	\$ 75	1430	1445	
13	8.42	8.4	800	23.6	DA	0740	1455	1530	
14	8.42	8.3	854	23,6	WF	0815	1720	1735	
15	8.37	8.7	882	22.6	WF	0745	Neso	11026	
16	Ch. D	\$3	062	23,5	TW	0715	M30	1435	
17	8.47	8.1	835	23.7	AD	0855	1510	1520	
18	8.12	8.2	858	24.0	AD	0815	1555	1030	
19	8.30	8.4	864	23.8	CA	0910		1656	
20	8,45	8.7	831	23.7	WE	0815	1 11	1540	
21	8.40	8.6	862	23.4	WE	0815	1010	1050	3
22	8.45		862	23.3	WE	620	1500	1510	
23	2.45	8.3	927	23.2	WF	0845	1455	1505	
24	8.40	8.3	864	23.1	AD	0900	1500	1510	
25	8.41	8.4	878	22-9	SM	0905	1715	1736	
26	8,29	8.4	848	22.9	AD .	6910	1555	1405	
27	8,38	8.3	887	22.8	WE	0910	1605	1615	
28			JE 0 G						

* Feeding time applies to the test chambers for the entire test. (6) No e-gardians exposed to low temperature and day -	Hos	3/2/25	Environmental Chamber:	F	
QC Check: A(5 3/2/25			Final Review:	45 3/3/25	_

28-Day Freshwater Sediment Bioassay

DS-024

Client: CTEH

Test Species: Hyalella azteca

Project ID: MVWA 1122 Bioassay

1615 Start Date/Time: 12/19/2024

Test No .: 2412-5102 and 5103

End Date/Time: 16 25 1245

Random											Dai	ly Obs	ervat	ions (Use C	odes	Provi	ded)										
Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	N		N	N	N	N.	Sa	N	N	N	N	EXB2	Bz	B3	B3	Bs	84	80	Bu	3 3	Br	B.	Bes	86	B3	B3	BZ	N
2	N.	N.	N	N	N	IN	N	N	N	N	N	2	8,	Bz	BI	Bi	82	82	Bi	Bz	Bz	B2	BI	B3	B5,5,	BZ	131	1
3	N.	N.	N	N	N	W.	N	N	N	N	NO	DINBI	13	B3	By	134	Вч	B7	69	33	138	85	B3		B45.	B3	132	1
4	IV.	N	N	N	N	N	N	N	N	2	N	N	8,	Bi	BI	BL	By	83	54.31	Bi	Bus:	283	13	Bus	B2	83	133	N
5	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
6	N	N	N	N	N	N.	5.	N	N	N	N	N	N	N	N	N	B	40N	N	N	N	5,	Bi	8,	2	31	N	N
7	N.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ь,	N	N	N	N	N	N	2	N	N	1
8	No	N	N	N	N	N	51	N	5,	N	N	~	N	Bz	N	NI	7	Bi	N	8'	B.		B3	N	82	N	BI	N
9	N	N	N	N	12	N	N	N	N	N	N	N	2	N	N	10	N	N	N	N	N	N	N	2	BI	N	N	N
10	N	N	N	N	N	N	N	N	N	N	N	N	2	N	N	N	12	N	N	N	N	B,	Bi	N	N	N	N	N
11	N	N	N	5,	N	N	N	N	N	N		DX8	3 B4	135	133	BI	B	83	N	N		133	13,	2	BI	B,	5,	N
12	N	N	N	N	Q18	6	NOC	N	N	9 82	6 8.1	63.0	688	By	B 3	Bi	B 60 83		83 578 5			82	B,	Be 63		B	BI	Λ
13	14,	N	N	N	N	N	N	N,	N	N	N	N	By	BU	B2	32	Ba	88	Ba	BS		B3	135	by	B4	B5	35	N
14	N,	N	N	N	N	N	N	N	N	N	N	N	7	133	Ba	Br	B,	82	32		B3	Br	Br	Bi	Bi	B	BI	1
15	//	N	N	N	N	N	2	B.	B,	N	N	N	B2	BI	B3	83	5,	8,	8,	B.	32	B,	Bz	N	N	N	N	~
	-				-	-	-	-	_			_					-											
		-			-	-	-	-		-	-						-											-
					-	-	-	-	-								-											
				-	-	-		-	-	-	-	-					-	-										
						-	-	-	-	-	-						-	-										
						-	-	-		-									_								\vdash	
						-	-	-	-	-																		
						-		-	-	-	-					-												
					-	+	-	-	-	-	-	<u> </u>																
					-	+				-	-													V				
						1		-																				
						1																						
						1																						
ech Initials:	LM	LM	M	WE	AD OF	iM	WF	WF	6m	AN	(m)	cm	M	WE	WF	LM	AD	4D	(DA	3/6	WF	WE	WF	AD	SM	M	WE	V

OL.				220	1	30.0
Obs	ser	vat	юг	IS I	NΘ	٠v

 \underline{A} = No/low aeration \underline{B} = Body or molt on sediment surface, specify number \underline{C} = Cloudy

 \underline{G} = Abnormal growth on or discoloration of sediment surface \underline{N} = Normal

S = Organism trapped on surface, specify number

QC Check: AS 3/4/25

Final Review:

28-Day Freshwater Sediment Bioassay Static-Renewal Conditions DS-023S

Client: CTEH

Project ID: MVWA 1122 Bioassay

Test No(s) .: 3224 5102 and 5103

Sample ID: Lab Control

Test Species: Hyalella azteca

1615 Start Date/Time: 12/19/2024

End Date/Time: \\\\ 25 1245

Log-in No.: 24- 7013

Test Day	pH (units)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	Technician Initials	Alkalinity/ Hardness (mg/L)	Technician Initials	Comments
0	8,22	8.9	980	22.0	WF	128 / 237	FM	Note: Subsample for aming hia, alkalinity, & hardness (initial on count sheet
1	91A	35	943	20,3 9,	LM	30 31-45		
2	8,30	82	938	2216	M			
3	8.37	8.4	853	22.6	AD	e du cureta		
4	8.29	8.5	841	22.5	WF			
5	8.29	8.2	874	22.7	AD		to Cart	
6	933	8.1	880	22,5	M			
7	8.71	2.0	866	22.9	WF			
8	8.26	8.2	874	23.1	WF			
9	8.36	8.3	849	22.8	GM			-
10	842	8.2	188	22.9	40			
11	8.40	8-4	885	22.8	Gon			attended to the second
12	9.35	5.3	864	22.9	Gm			22
13	8,34	8.5	868	22.9	AD			
14	8.33	8.3	855	22.8	WF			
15	8.31	8.6	882	22.6	WF		in the facility	
16	936	84	963	227	IM			
17	8.41	8.2	836	22.8	AD AD			
18	8.35	8.7	850	22.8				
19	8.33	8.4	863	22.7	AD.			
20	8.37	8.1	832	22.6	WF	开启5. 改变		
21	8.36	8,5	864	22.6	WF	F" - 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
22	8.37	8.1	864	22.6	WF			
23	8.32	8.3	928	22.6	WE			
24	8.37	8.3	862	22.6	10			
25	8.26	8.3	882	22.6	514			
26	9.22	8.2	850	22.6	10			
27	8.18	8.1	891	22.5	WF			
28	8.24	\$5	991	22.2	HH	162 1285	01	Note: Subsample for ammonia, alkalinity, & hardness (initial on count sheet)

Environmen	tal Chamber:	
QC Check:	ACS 3/2/25	,

Bas will es

Final Review:

28-Day Freshwater Sediment Bioassay Static-Renewal Conditions DS-023S

Client: CTEH
Project ID: MVWA 1122 Bioassay
Test No(s):かんと 510 を
Sample ID: MVWA1122P001

Test Day	pH (units)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	Technician Initials	Alkalinity/ Hardness (mg/L)	Technician Initials	Comments
0	7.85	8.6	960	22.3	1.16	118 / 129	WF 860 FM	Note: Subsample for amodonia, alkayhity, & handness (initial on count sheet)
1	7.88	85	919	204 9	25			
2	7,48	9.1	911	22,6	IM			
3	7,91	8.0	829	22.7	AD			
4	7.93	8.3	822	22.6	WF	HALLES		
5	7.95	8.0	855	22.7	AD			
6	9.05	8,0	841	72,5	IM			
7		07.06.0	D366818	22.9	WF			
8	8.20	7.8	876	23.1	WF			
9	9-38	8.0	-655	23.0	GM			
10	848	8.1	898	22.9	OF			*
11	8.50	8-2	908	22.8	(m)			
12	8.46	4-2	892	22.8	GM			
13	8.45	8.5	902	22.8	AD			
14	8,40	8.4	883	22.8	WF			
15	8.35	8.5	904	22.7	WF			
16	834	8.3	878	222	IM		36 4	
17	8.32	8.1	848	22.8	RO			
18	8.27	8.6	860	22.7	CA			
19	11.8	1.8	870	22.7	AD			
20	8.17	8.4	835	22.7	WF		74 1.5	
21	8,19	8.2	865	22.6	WF			
22	8.18	7.9	863	22.6	WF			
23	8.12	8,1	926	22.7	WF			
24	8.12	8.1	856	22.7	AD			
25	8.03	0.8	872	226	SM			
26	7.98	8.0	841	22.6	to			
27	7.93	7.8	279	22,6	WF			
28	8.04	8.4	anie	22.5	HIM	144 1294	DT	Note: Subsample for ammonia, alkalinity, & hardness (initial on count sheet)

Environmental Chamber:	F

Qa18 WF 12/26/24

Final Review: Vs 3 3 2

QC Check: A16 3/2/25

28-Day Freshwater Sediment Bioassay Static-Renewal Conditions

DS-023S

Client: CTEH

Project ID: MVWA 1122 Bioassay

Test No(s) .: 2412-5103

Sample ID: MVWA1122P002

Test Species: Hyalella azteca

1613 Start Date/Time: 12/19/2024

1245 End Date/Time: \16/25

Log-in No.: 24-3302

Test Day	pH (units)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	Technician Initials	Alkalinity/ Hardness (mg/L)	Technician Initials	Comments
0	8.20	8.9	981	22,4	WF	136/239	WF	Note: Subsample for amorphia, alkalinjty, & harages (initial on count sheet)
1	7,63	B.07.7	954	20:7 9	IM			
2	7,87	9,0	0125	22,5	LM			
3	7.90	7.9	830	22.7	AD			
4	7.85	8.7	B8.19819	22.5	WF			
5	7.87	7.8	850	22.7	AD			
6	7.87	7.8	461	22 7	M			
7	7.22	6.7	815	23.8	WF			
8	8.18	7.9	855	23.1	WF		STREET, STREET	
9	8-23	8.0	83)	22.9	Gm			
10	8.39	7.9	872	22.9	AD			
11	4-54	8-1	892	22.8	GM			
12	4,66	8.0	890	22.9	Gm			
13	8.73	8.5	902	22.8	AD			
14	8.72	8.1	894	22.8	WF			
15	8.57	8.2	920	22.7	WE			
16	6,53	8,0	0/18/3	2216	LA 1			
17	8.43	7.9	873	22.8	RD			
18	8.31	8.5	882	22.8	AD.			
19	8.24	8.1	886	22.7	AD			
20	8.22	8.4	853	22.7	WE			
21	8.18	8,4	882	22.6	WE			
22	8.17	7.9	875	22.6	WF			
23	8.14	8.0	938	22.7	WF			
24	8.11	8.0	962	22.4	AD			
25	8.03	8.6	875	22.6	SM			
26	7.96	7.9	842	22.5	10			
27	7.03	7.7	879	22.6	WF			
28	7.98	83	9173	72.5	HU	144 / 282	DI	Note: Subsample for ammonia, alkalinity, & hardness (initial on count sheet)

Environment	tal Chamber:	F
QC Check:	ATS 3/2/2	5

Final Review: 43 3 25

Total Ammonia Analysis Freshwater

Pore Water

DC-001

Client: CTEH

Project: MVWA 1122 Bioassay

Test Type: 28-day Hyalella

DI Blank: (). O

Analyst: ≤ ™

Test Start Date: 12/19/2024

Analysis Date: 313125

						N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	pH (units)	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	NA	8.1	9.9
Lab Control	10	12/19/2024	0	8.04	0.0	60.5
MVWA1122P001	11	12/19/2024	0	6.94	5.2	6.3
MVWA1122P002	12	12/19/2024	0	6.92	6.0	7-3
Lab Control	13	1/16/2025	28	9.37	0.0	60.5
MVWA1122P001	14	1/16/2025	28	5.62	0.7	0.9
MVWA1122P002	15	1/16/2025	28	6.66	1.1	1.3
Spike Check (10 mg/L NH ₃)		NA NA	NA			
Batch Sumple OC	21084				0.0	40.5
Sample Duplicate ^a	21 CTEH	NA NA	NA	NA	0.0	40.5
Sample Duplicate + Spike ^a		NA	NA	NA NA	8.1	9-9
Spike Check (10 mg/L NH ₃)	Marine Marine	NA	NA	NA NA	8-1	9.9

 $\frac{\text{Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)}}{[average ammonia] (mg/L)} \times 100$

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

Test Tubes

QC Sample ID	[NH ₃]	[Sample Dup]	weasured [Spike]	Nominai [Spike]	RPD	% Recovery
Blank	0.0	NA	9.9	10	NA	99
21 CTEA	20.5	60.5	9.9	10	C	C

	Reagent 1	Reagent 2	Test Tubes
Standard Lot Number	A198	A 213	14240
Comments:			
Notes: aUnless otherwise noted, the last	sample listed on the datasheet	is used for duplicate and duplicate	e + spike QC check.
^b Acceptable range for % recommatrix and are for information		ike. Spike recoveries in samples	may vary based on sample
^c Calculation not performed du	e to one or both values below the	ne method detection limit.	
HACH Ammonia Nitrogen Tes	t Kit, Test 'N Tube™ Vials. Meth	nod 10031. Method Detection Limi	it = 0.5 mg/L
QC Check: ACS 3/3/25	_	Final Review:	V3 3 3 25

Nautilus Environmental, Inc. 4340 Vandever Avenue. San Diego, CA 92120.

DC-001

Client: CTEH

Project: MVWA 1122 Bioassay

Test Type: 28-day Hyalella

DI Blank: O.O

Test Start Date: 12/19/2024

Analyst:

Analysis Date: 313125

N x 1.22

Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	8.1	9.9
Lab Control	1	12/19/2024	0	0.2	40.5
MVWA1122P001	2	12/19/2024	0	1.2	1.5
MVWA1122P002	3	12/19/2024	0	1.0	1.2
Lab Control	4	12/29/2024	10	(A)	(A)
MVWA1122P001	5	12/29/2024	10	\mathcal{B}	B
MVWA1122P002	6	12/29/2024	10	(F)	(AX)
Lab Control	7	1/16/2025	28	0.0	10.5
MVWA1122P001	8	1/16/2025	28	0.0	20.5
MVWA1122P002	9	1/16/2025	28	0-0	60.5
Spike Check (10 mg/L NH ₃)		NA NA	NA		
Batch Sample QC	21 (JEH			0.0	10.5
Sample Duplicate ^a	21 CTEH	NA -	NA	0.0	10.5
Sample Duplicate + Spike ^a		NA NA	NA	8,1	9-9
Spike Check (10 mg/L NH ₃)		NA J	NA	8-1	9.9

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA I	9.9	10	NA	99
21 CTEH	60.5	60.5	9.9	10	C	C

	Reagent 1	Reagent 2	Test Tubes	
Standard Lot Number	A4198	A213	A4240	

to teels.

Notes: ^aUnless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

^c Calculation not performed due to one or both values below the method detection limit.

HACH Ammonia Nitrogen Test Kit, Test 'N Tube™ Vials. Method 10031. Method Detection Limit = 0.5 mg/L

425 3/3 QC Check:

Final Review:

Total Ammonia Analysis Freshwater

Pore Water

DC-001

Client: CTEH

Project: MVWA 1122 Bioassay Test Type: 10-day Chironomous

DI Blank: 0-0 Test Start Date: 12/20/2024

Analyst: SM Analysis Date: 3/3/25

						N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	pH (units)	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA NA	NA	NA	8.3	10.1
Lab Control	22	12/20/2024	0	7.50	0.8	1.0
MVWA1122P001	23	12/20/2024	0	6.78	5.9	7.2
MVWA1122P002	24	12/20/2024	0	6.89	6.7	8.2
Lab Control	25	12/30/2024	10	9-08	1-6	2.0
MVWA1122P001	26	12/30/2024	10	6.52	4.8	5.9
MVWA1122P002	27	12/30/2024	10	6.73	5.7	70
Spike Check (10 mg/L NH ₃)		NA NA	NA			
Batel Sample QC	25-6171				2-8	3.4
Sample Duplicate ^a	25-0171	NA	NA	NA	26	3.2
Sample Duplicate + Spike ^a		NA	NA	NA NA	11.2	13.7
Spike Check (10 mg/L NH ₃)		NA	NA	NA	8.3	10.1

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) \times 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) × 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	[Spike]	[Spike]	RPD	% Recovery
Blank	0.0	NA	10.1	10	NA	101
25-0171	3.4	3.2	13.7	10	6,1	103

	Reagent 1	Reagent 2	Te	st Tubes
Standard Lot Number	A198	A213	AH	240
Comments:				
Notes: aUnless otherwise noted, the last				
^b Acceptable range for % recommatrix and are for information	very applies only to the blank spi only.	ke. Spike recoveries in samples m	nay vary bas	ed on sample
^c Calculation not performed du	e to one or both values below th	e method detection limit.		
HACH Ammonia Nitrogen Tes	t Kit, Test 'N Tube™ Vials. Meth	od 10031. Method Detection Limit	= 0.5 mg/L	
QC Check: 4(5 3/3/2)	_	Final Review:	493	3 25

Total Ammonia Analysis Freshwater

Overlying Water

DC-001

Client: CTEH

Project: MVWA 1122 Bioassay

Test Type: 10-day Chironomous

DI Blank: ().()

Test Start Date: 12/20/2024

Analyst:

Analysis Date: 313126

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	8.1	9.9
Lab Control	16	12/20/2024	0	0.0	40.5
MVWA1122P001	17	12/20/2024	0	0.8	1.0
MVWA1122P002	18	12/20/2024	0	0.7	0.9
Lab Control	19	12/30/2024	10	1.0	1.2
MVWA1122P001	20	12/30/2024	10	0.1	10.5
MVWA1122P002	21	12/30/2024	10	0.0	40.5
Spike Check (10 mg/L NH ₃)		NA NA	NA		
Sample Duplicate ^a	21	NA NA	NA	0.0	40.6
Sample Duplicate + Spike ^a		NA	NA	8.1	9.9
Spike Check (10 mg/L NH ₃)		NA	NA	1.8	9.9

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

 QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA NA	9.9	10	NA	99
21	20-5	10.5	9.9	10	C	C

	Reagent 1	Reagent 2	Test Tubes
Standard Lot Number	A198	A213	A4240

Notes: ^aUnless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

^c Calculation not performed due to one or both values below the method detection limit.

HACH Ammonia Nitrogen Test Kit, Test 'N Tube™ Vials. Method 10031. Method Detection Limit = 0.5 mg/L

QC Check: AS

Final Review:

Overlying Water

~		
1.1	ien	
	16:11	E. W.

CTEH

Project: Test Type: MVWA 1122 Bioassay 10-day Chironomus

DI Blank:

0 mg/2 s2-

Analyst: K

Analysis Date: 12/20/24

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²
Lab Control	12/20/2024	0	8.05	6
MVWA1122P001	12/20/2024	0	7,97	3
MVWA1122P002	12/20/2024	0	7.71	5
Sample Duplicate ^a (PWD)	2/20/24	0	7.71	4

Comments:		
Notes: ^a Unless otherwise noted, the last sample listed on the datasheet is a	used for duplicate and duplicate)
Method Detection Limit = 5.0 μg/L S ²⁻		
QC Check: 4(5 2/27/25	Final Review:	45 3/3/25

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Client:

CTEH

Project:

MVWA 1122 Bioassay

Test Type:

10-day Chironomus

DI Blank:

Analyst: _ 1/5

Analysis Date: 12/20 124

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²⁻
Lab Control	12/30/2024	10	8.28	A60
MVWA1122P001	12/30/2024	10	8.12	D264 11
MVWA1122P002	12/30/2024	10	7.95	3
				-4
Sample Duplicate ^a	Au	Ач		AH

omments: # 12/3/24		
lotes: ^a Unless otherwise noted, the last sample listed on the datast Method Detection Limit = 5.0 µg/L S ²⁻	heet is used for duplicate and duplica	te
QC Check: A7 5 2/27/25	Final Review:	453 3 25

Pore Water

C	ı	i	_	,		•		
v	ŧ	ŧ	u	ı	ı	L		

CTEH

Project:

MVWA 1122 Bioassay

Test Type:

10-day Chironomus

DI Blank:

Ong/Ls2-

Analyst: V

Analysis Date: 12/20/24

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²⁻
Lab Control	12/20/2024	0	7.50	16 x2=32
MVWA1122P001	12/20/2024	0	6.78	470
MVWA1122P002	12/20/2024	0	6.89	579
Sample Duplicate ^a (P002)	17/20/24	0	6.89	302X2=604

Comments:		
lotes: aUnless otherwise noted, the last sample listed on the datashee	t is used for duplicate and duplica	ate
Method Detection Limit = 5.0 μg/L S ²⁻		
QC Check: At 5 1/27/25	Final Review:	45 3 3 25
Nautilus Environmental, Inc. 4340 Vandever Avenue, San Diego, CA 92120.		

Client:	
---------	--

CTEH

Project: Test Type: 10-day Chironomus

MVWA 1122 Bioassay

DI Blank: 🔿

Analyst: _ 🌱

Analysis Date: 12 30/24

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²
Lab Control	12/30/2024	10	9.08	6
MVWA1122P001	12/30/2024	10	6.52	264
MVWA1122P002	12/30/2024	10	6.73	458
Sample Duplicate ^a \$00 \	12/30/24	10		275

Comments:				
Notes: ^a Unless otherwise noted, the last sample listed on the datasheet is	s used for duplicate and duplic	ate		
Method Detection Limit = 5.0 μg/L S ²⁻				
QC Check: A(5 2/27/25	Final Review:	453 3 25		

Nautilus Environmental, Inc. 4340 Vandever Avenue. San Diego, CA 92120.

Overlying Water

CI	ien	t:
----	-----	----

CTEH

Project:

MVWA 1122 Bioassay

Test Type: 28-day Hyalella

DI Blank: Oug/L

Analyst: MIFM
Analysis Date: 12 19 24

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²⁻
Lab Control	12/19/2024	0	8.22	0
MVWA1122P001	12/19/2024	0	7.85	
MVWA1122P002	12/19/2024	0	820	35
	,			
Sample Duplicate ^a (P 0	02) 12/19/24	D	8.20	27

Comments:	
Notes: ^a Unless otherwise noted, the last sample liste	d on the datasheet is used for duplicate and duplicate
Method Detection Limit = 5.0 µg/L S ²⁻	
QC Check: A(5 2/27/25	Final Review: V53 3 76

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Pore Water

C	li	P	n	+٠	
$\mathbf{\circ}$		C	ш	٠.	

CTEH

Project:

MVWA 1122 Bioassay

Test Type: 28-day Hyalella and 10-day Chironomous

DI Blank: OngIL

Analyst: KL FM

Analysis Date: 12

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²⁻
Lab Control	12/19/2024	0	8,04	0x2=
MVWA1122P001	12/19/2024	0	6.94	481
MVWA1122P002	12/19/2024	0	6.92	564
				-
1				
				-
	+		-	-
	-		-	+
4				
Sample Duplicate ^a (poo2)	12/19/24	0	692	290 XZ=5

Comments:		
Notes: aUnless otherwise noted, the last sample listed o	n the datasheet is used for duplicate	and duplicate
Method Detection Limit = 5.0 μg/L S ²⁻		
QC Check: A(5 2/27/25	Final Review:	1453 3 25

Nautilus Environmental, Inc. 4340 Vandever Avenue. San Diego, CA 92120.

Pore Water

Client:	CTEH	
Project:	MVWA 1122 Bioassay	
Test Type:	28-day Hyalella	
DI Blank:	0	Analyst: Analysis Date:

Sample ID	Sample Date	Test Day	pH (units)	Sulfide µg/L S ²⁻
Lab Control	1/16/2025	28	9.37	28
MVWA1122P001	1/16/2025	28	5,62	179
MVWA1122P002	1/16/2025	28	6.66	212
				-711
Sample Duplicate ^a Pou 2	1/16/25	28	NA	211

Comments:			
Notes: ^a Unless otherwise noted, the last sample listed on	the datasheet is used for duplicate and duplicate	9	
Method Detection Limit = 5.0 μg/L S ²⁻			
QC Check: At 5 2/27/15	Final Review:	V53/3	25

Appendix E Summary of Statistical Analyses

CTEH / MVWA 1122 Bioassay Toxicity Test Mean Survival and Data Transform Summary

Sample Date: 11/22/24; Test Initiation Date: 12/20/24

Chironomid 10-day Survival

Site ID	Replicate	Number Alive	Percent Survival	Mean Percent Survival
	Α	10	100	
1	В	9	90.0	
Lab Control	C	10	100	96.0
	D	9	90.0	
	E	10	100.0	
MVWA1122P001	Α	9	90.0	
	В	9	90.0	
	С	9	90.0	94.0
	D	10	100	
	E	10	100	
	Α	10	100	
	В	10	100	
MVWA1122P002	С	9	90.0	96.0
carrieronane con comi	D	10	100.0	
	E	9	90.0	

Entry: ACS 3/3/25

Initial Number of Animals:

10

Number Initial	Number Survived	Proportion Alive	Transformed Result
10	10	1	1.412
10	9	0.9	1.249
10	10	1	1.412
10	9	0.9	1.249
10	10	1	1.412
10	9	0.9	1.249
10	9	0.9	1.249
10	9	0.9	1.249
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	9	0.9	1.249
10	10	1	1.412
10	9	0.9	1.249

CTEH MVWA 1122 Bioassay Normality Test Chironomid 10-Day Survival, Initiated 12/20/24

	Residuals
Number of values	15
Minimum	-0.0978
25% Percentile	-0.0978
Median	0.0652
75% Percentile	0.0652
Maximum	0.0978
Mean	0.0
Std. Deviation	0.08266
Std. Error of Mean	0.02134
Lower 95% CI of mean	-0.04577
Upper 95% CI of mean	0.04577
D'Agostino & Pearson omnibus normality	test
K2	14.92
P value	0.0006
Passed normality test (alpha=0.05)?	No
P value summary	***
Sum	0.0

Entry: ACS 3/3/25

QC:

193/3/25

Prism v. 6.05

Nautilus Environmental, Inc. San Diego, CA

CTEH MVWA 1122 Bioassay Variance Test Chironomid 10-Day Survival, Initiated 12/20/24

Table Analyzed	Survival Transformed
Kruskal-Wallis test	
P value	> 0.9999
Exact or approximate P value?	Exact
P value summary	ns
Do the medians vary signif. (P < 0.05)	No
Number of groups	3
Kruskal-Wallis statistic	0.5000
Data summary	
Number of treatments (columns)	3
Number of values (total)	15

Entry: ACS 3/3/25

QC:

143/3/25

Prism v. 6.05

Nautilus Environmental, Inc. San Diego, CA

CTEH MVWA 1122 Bioassay T-Tests Chironomid 10-Day Survival, Initiated 12/20/24

Table Analyzed	Survival Transformed
Column C	MVWA1122P002
vs.	VS.
Column B	MVWA1122P001
Mann Whitney test	
P value	0.5000
Exact or approximate P value?	Exact
P value summary	ns
Significantly different? (P < 0.05)	No
One- or two-tailed P value?	One-tailed
Sum of ranks in column B,C	25,30
Mann-Whitney U	10
Difference between medians	
Median of column B	1.249, n=5
Median of column C	1.412, n=5
Difference: Actual	0.1630
Difference: Hodges-Lehmann	0.0

Table Analyzed	Survival Transformed
Column B	MVWA1122P001
vs.	vs.
Column A	Lab Control
Mann Whitney test	
P value	0.5000
Exact or approximate P value?	Exact
P value summary	ns
Significantly different? (P < 0.05)	No
One- or two-tailed P value?	One-tailed
Sum of ranks in column A,B	30,25
Mann-Whitney U	10
Difference between medians	
Median of column A	1.412, n=5
Median of column B	1.249, n=5
Difference: Actual	-0.1630
Difference: Hodges-Lehmann	0.0

Entry: ACS 3/3/25

CTEH
MVWA 1122 Bioassay
Column Statistics
Chironomid 10-Day Survival, Initiated 12/20/24

	Lab Control	MVWA1122P001	MVWA1122P002
Number of values	5	5	5
Minimum	1.249	1.249	1.249
25% Percentile	1.249	1.249	1.249
Median	1.412	1.249	1.412
75% Percentile	1.412	1.412	1.412
Maximum	1.412	1.412	1.412
Mean	1.347	1.314	1.347
Std. Deviation	0.08928	0.08928	0.08928
Std. Error of Mean	0.03993	0.03993	0.03993
Lower 95% CI of mean	1.236	1.203	1.236
Upper 95% CI of mean	1.458	1.425	1.458
Sum	6.734	6.571	6.734

Entry: ACS 3/3/25 QC: 45 3 3 25

CTEH / MVWA 1122 Bioassay Toxicity Test Mean Survival and Data Transform Summary

Initial Number of Animals:

10

Sample Date: 11/22/24; Test Initiation Date: 12/19/24 Hyalella 28-day Survival

Site ID	Replicate	Number Alive	Percent Survival	Mean Percent Survival
	Α	10	100	
	В	10	100	
Lab Control	C	10	100	100
	D	10	100	
	E	10	100	
	A	10	100	
	В	10	100	
MVWA1122P001	C	9	90.0	98.0
AND THE PROPERTY OF THE PARTY O	D	10	100	
	E	10	100	
	Α	10	100	
	В	10	100	
MVWA1122P002	С	8	80.0	90.0
	D	8	80.0	
	D E	9	90.0	

Number Initial	Number Survived	Proportion Alive	Transformed Result
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	9	0.9	1.249
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	10	1	1.412
10	8	0.8	1.107
10	8	8.0	1.107
10	9	0.9	1.249

Entry: ACS 3/2/25 Q/C: V3 3/3/25

CTEH MVWA 1122 Bioassay Normality Test Hyalella 28-Day Survival, Initiated 12/19/24

	Residuals
Number of values	15
Minimum	-0.1504
25% Percentile	-0.008400
Median	-2.146e-007
75% Percentile	0.0326
Maximum	0.1546
Mean	-1.118e-009
Std. Deviation	0.09038
Std. Error of Mean	0.02334
Lower 95% CI of mean	-0.05005
Upper 95% CI of mean	0.05005
D'Agostino & Pearson omnibus normality test	
K2	0.3243
P value	0.8503
Passed normality test (alpha=0.05)?	Yes
P value summary	ns
Sum	-1.676e-008

Entry: ACS 3/2/25 QC: 45 3/3/25

Prism v. 6.05

Nautilus Environmental, Inc. San Diego, CA

CTEH MVWA 1122 Bioassay Variance Test Hyalella 28-Day Survival, Initiated 12/19/24

Table Analyzed	Survival Transformed
ANOVA summary F P value	3.484 0.0641
P value summary Are differences among means statistically significant? (P < 0.05) R square	ns No 0.3674
Brown-Forsythe test F (DFn, DFd) P value P value summary Significantly different standard deviations? (P < 0.05)	5.940 (2, 12) 0.0161 *

		ĺ				
•	ANOVA table Treatment (between columns) Residual (within columns) Total	SS 0.06641 0.1144 0.1808	DF 2 12 14	MS 0.03321 0.009531	F (DFn, DFd) F (2, 12) = 3.484	P value P = 0.0641
	Data summary Number of treatments (columns) Number of values (total)	3 15				

Entry: ACS 3/2/25 QC:

Prism v. 6.05

Nautilus Environmental, Inc. San Diego, CA

CTEH MVWA 1122 Bioassay T-Tests Hyalella 28-Day Survival, Initiated 12/19/24

Table Analyzed	Survival Transformed
Column B	MVWA1122P001
VS.	vs.
Column A	Lab Control
Unpaired t test with Welch's correction	
P value	0.1869
P value summary	ns
Significantly different? (P < 0.05)	No
One- or two-tailed P value?	One-tailed
Welch-corrected t, df	t=1.000 df=4.000
How big is the difference?	
Mean ± SEM of column A	1.412 ± 2.145e-007, n=5
Mean ± SEM of column B	1.379 ± 0.0326, n=5
Difference between means	-0.03260 ± 0.0326
95% confidence interval	-0.1231 to 0.05791
R squared	0.2000
F test to compare variances	
F,DFn, Dfd	2.310e+010, 4, 4
P value	< 0.0001
P value summary	****
Significantly different? (P < 0.05)	Yes

Prism v. 6.05

Table Analyzed	Survival Transformed
Column C	MVWA1122P002
VS.	vs.
Column A	Lab Control
Unpaired t test with Welch's correction	
P value	0.0431
P value summary	
Significantly different? (P < 0.05)	Yes
One- or two-tailed P value?	One-tailed
Welch-corrected t, df	t=2.266 df=4.000
How big is the difference?	
Mean ± SEM of column A	1.412 ± 2.145e-007, n=5
Mean ± SEM of column C	1.257 ± 0.06823, n=5
Difference between means	-0.1546 ± 0.06823
95% confidence interval	-0.3440 to 0.03484
R squared	0.5621
F test to compare variances	
F,DFn, Dfd	1.012e+011, 4, 4
P value	< 0.0001
P value summary	****
Significantly different? (P < 0.05)	Yes

Entry: ACS 3/2/25

ac: 453(3/2

CTEH MVWA 1122 Bioassay Column Statistics Hyalella 28-Day Survival, Initiated 12/19/24

	Lab Control	MVWA1122P001	MVWA1122P002
Number of values	5	5	5
Minimum	1.412	1.249	1.107
25% Percentile	1.412	1.331	1.107
Median	1.412	1.412	1.249
75% Percentile	1.412	1.412	1.412
Maximum	1.412	1.412	1.412
Mean	1.412	1.379	1.257
Std. Deviation	4.805e-007	0.07290	0.1526
Std. Error of Mean	2.149e-007	0.0326	0.06823
Lower 95% CI of mean	1.412	1.289	1.068
Upper 95% CI of mean	1.412	1.470	1.447
Sum	7.060	6.897	6.287

Entry: ACS 3/2/25 QC: 45 3/3/25 Appendix F

Laboratory Qualifier Codes

Glossary of Qualifier Codes

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to the test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C within 1 day or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt within 1 day or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.

Version: 12/06/2024

Appendix G

Reference Toxicant Results

Report Date:

02 Mar-25 16:33 (p 1 of 1)

Test Code/ID: 241220ctrNH3SED / 11-5004-4537

								Test C	ode/ID:		41220Ctrivi	135ED / 11-	-5004-453
Chironomus!	96-h Acute Sun	vival Test									Nautilus	Environme	ental (CA)
Batch ID:	04-2898-8790	Т	est Type:	Survival (96h)				Ana	lyst:				
Start Date:	20 Dec-24 13:4	10 P	Protocol: EPA/600/R-99/064 (2000)					Dilu	ent:	Carbon Filtered Water (CFV		Water (CFV	J)
Ending Date:	24 Dec-24 12:1	5 S	pecies:	Chironomus dil	utus			Brin	ne:	Not A	Applicable		
Test Length:	95h	Т	axon:					Sou	irce:	Aqua	tic Biosyste	ms, CO	Age: 100
Sample ID:	19-1533-0172	C	ode:	241220ctrNH3	SED			Pro	ject:				
Sample Date:	20 Dec-24	N	laterial:	Total Ammonia	i			Sou	ırce:	Refe	rence Toxic	ant	
Receipt Date:	: 20 Dec-24	C	AS (PC):					Stat	tion:	Total	Ammonia		
Sample Age:	14h	С	lient:	Internal									
Multiple Com	parison Summ	ary											
Analysis ID	Endpoint		Com	oarison Method			√	NOEL	LOEL		TOEL	PMSD	
18-7507-2413	96h Survival R	ate	Steel	Many-One Rank	Sum Test			35.1	68.4		49	18.3%	
Point Estimat	te Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/L		95% LCL	95% UCL	
	96h Survival R	ate	Trimn	ned Spearman-K	Kärber			EC50	96		81.6	113	
Test Accepta	bility					TAC	3 L	imits					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	-	Upper	Over	lap	Decision		
07-8997-7725	96h Survival R	ate	Contr	ol Resp	1	0.9		<<	Yes		Passes Cr	iteria	
18-7507-2413	96h Survival R	ate	Contr	ol Resp	0.9		<<	Yes			iteria		
96h Survival	Rate Summary												
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	Err	Std Dev	CV%	%Effect
0	LC	4	1.000	1.000	1.000	1.000		1.000	0.000)	0.000	0.00%	0.00%
18.2		4	0.950	0.858	1.040	0.900		1.000	0.029)	0.058	6.08%	5.00%
35.1		4	0.950	0.791	1.110	0.800		1.000	0.050)	0.100	10.53%	5.00%
68.4		4	0.525	0.373	0.677	0.400		0.600	0.048	3	0.096	18.24%	47.50%
129.2		4	0.525	0.068	0.982	0.100		0.700	0.144		0.287	54.71%	47.50%
245.6		4	0.000	0.000	0.000	0.000		0.000	0.000)	0.000		100.00%
498		4	0.050	-0.042	0.142	0.000		0.100	0.029)	0.058	115.47%	95.00%
96h Survival	Rate Detail							ME	5: D18	24E20	CF528475E	12054C1C8	7A3D7F4
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	LC	1.000	1.000	1.000	1.000								
18.2		1.000	1.000	0.900	0.900								
35.1		1.000	1.000	0.800	1.000								
68.4		0.500	0.600	0.400	0.600								
129.2		0.700	0.100		0.600								
045.0													

245.6

498

0.000

0.100

0.000

0.000

0.000

0.100

0.000

0.000

Report Date:

02 Mar-25 16:33 (p 1 of 2)

Test Code/ID:

241220ctrNH3SED / 11-5004-4537

								1681 00	ode/ID:	241220CUNF	133ED / 11	-5004-45
Chironomus	96-h	Acute Surv	vival Test							Nautilus	Environm	ental (CA
Analysis ID:	18-7	7507-2413	End	ipoint: 96h	Survival Ra	ate		CET	IS Version	: CETISv2.	1.4	
Analyzed:	02 N	2 Mar-25 16:33 Analysis: Nonparametric-Control vs Treatments Status Level:					us Level:	1				
Edit Date:	02 1	Mar-25 16:3	2 M D	5 Hash: D18	324E2CF528	3475E12054	C1C87A3E	07F4 Edit	or ID:	007-926-9	968-0	
Data Transfo	rm		Alt Hyp				NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corr	ected)	C > T				35.1	68.4	49		0.183	18.29%
Steel Many-C	One R	ank Sum T	est									
Control	vs	Conc-mg	ı/L di	Test Stat	Critical	Ties	P-Type	P-Value	Decision	η(α:5%)		
Lab Control		18.2	6	14	10	1	CDF	0.3081	Non-Sign	nificant Effect		
		35.1	6	16	10	1	CDF	0.5661	Non-Sigr	nificant Effect		
		68.4*	6	10	10	0	CDF	0.0350	Significal	nt Effect		
		129.2*	6	10	10	0	CDF	0.0350	Significa	nt Effect		
ANOVA Table	е										-	
Source		Sum Squ	iares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	n(a:5%)		
Between		1.49761		0.374403		4	13	9.3E-05	Significa	nt Effect		
Error		0.433331		0.0288888	3	15						
Total		1.93094				19						
ANOVA Assu	ımpti	ons Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision	n(a:1%)		
Variance		Bartlett E	quality of Va	ariance Test					Indeterm	inate		
Distribution		Shapiro-V	Nilk W Norn	nality Test		0.831	0.866	0.0026	Non-Normal Distribution		on	
96h Survival	Rate	Summary										
Conc-mg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LC	4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
18.2			4	0.950	0.858	1.000	0.950	0.900	1.000	0.029	6.08%	5.00%
35.1			4	0.950	0.791	1.000	1.000	0.800	1.000	0.050	10.53%	5.00%
68.4			4	0.525	0.373	0.677	0.567	0.400	0.600	0.048	18.24%	47.50%
129.2			4	0.525	0.068	0.982	0.667	0.100	0.700	0.144	54.71%	47.50%
245.6			4	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.009
498			4	0.050	0.000	0.142	0.050	0.000	0.100	0.029	115.47%	95.00%
Angular (Co	rrecte	ed) Transfo	rmed Sumr	nary								
Conc-mg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0		LC	4	1.410	1.410	1.410	1.410	1.410	1.410	0.000	0.00%	0.00%
18.2			4	1.330	1.180	1.480	1.330	1.250	1.410	0.047	7.07%	5.77%
35.1			4	1.340	1.090	1.580	1.410	1.110	1.410	0.076	11.41%	5.40%
68.4			4	0.811	0.657	0.964	0.853	0.685	0.886	0.048	11.89%	42.59%
129.2			4	0.798	0.287	1.310	0.956	0.322	0.991	0.161	40.25%	43.52%
245.6			4	0.159	0.159	0.159	0.159	0.159	0.159	0.000	0.00%	88.76%
400				0.040	0.004	0.000	0.040	0.450	0.000	0.047	00 400/	00 000/

39.16%

498

4

0.091

0.240

0.390

0.240

0.159

0.322

0.047

82.98%

Report Date:

02 Mar-25 16:33 (p 2 of 2)

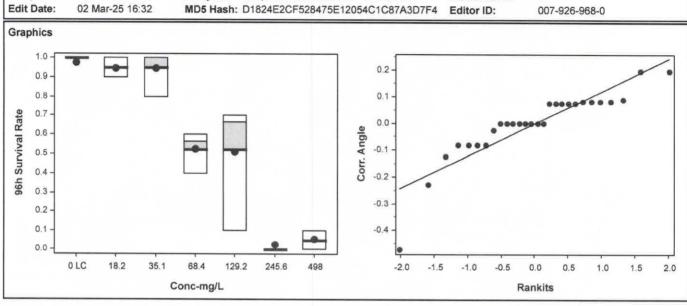
Test Code/ID:

241220ctrNH3SED / 11-5004-4537

Chironomus 96-h Acute Survival Test Nautilus Environmental (CA)

Analysis ID: 18-7507-2413 Analyzed:

02 Mar-25 16:33


Endpoint: 96h Survival Rate

Analysis: Nonparametric-Control vs Treatments

CETIS Version: CETISv2.1.4

Status Level:

007-926-968-0

Report Date:

02 Mar-25 16:33 (p 1 of 1)

Test Code/ID:

241220ctrNH3SED / 11-5004-4537

Chironomus 96-h Acute Survival Test

Nautilus Environmental (CA)

Analysis ID: 07-8997-7725

Endpoint: 96h Survival Rate

CETIS Version:

CETISv2.1.4

Analyzed:

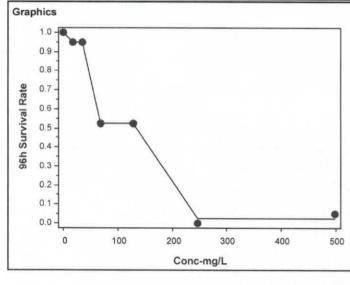
02 Mar-25 16:33

Analysis: Trimmed Spearman-Kärber

Status Level:

Edit Date:

02 Mar-25 16:32


MD5 Hash: D1824E2CF528475E12054C1C87A3D7F4 Editor ID:

007-926-968-0

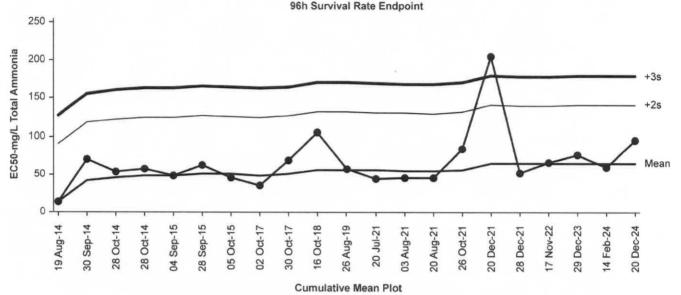
Trimmed Spearman-Kär	ber Estimates
----------------------	---------------

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL	
Control Threshold	0	5.00%	1.98	0.0354	96	81.6	113	Τ

96h Survival Ra				Isotonic Variate							
Conc-mg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	4	1.000	1.000	1.000	1.000	0.00%	0.00%	40/40	1.000	0.00%
18.2		4	0.950	0.950	0.900	1.000	6.08%	5.00%	38/40	0.950	5.00%
35.1		4	0.950	1.000	0.800	1.000	10.53%	5.00%	38/40	0.950	5.00%
68.4		4	0.525	0.567	0.400	0.600	18.24%	47.50%	21/40	0.525	47.50%
129.2		4	0.525	0.667	0.100	0.700	54.71%	47.50%	21/40	0.525	47.50%
245.6		4	0.000	0.000	0.000	0.000		100.00%	0/40	0.025	97.50%
498		4	0.050	0.050	0.000	0.100	115.47%	95.00%	2/40	0.025	97.50%

Report Date:

02 Mar-25 16:34 (1 of 1)


Chironomus 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h) Organism: Chironomus dilutus Material: Total Ammonia

Protocol: EPA/600/R-99/064 (2000) Endpoint: 96h Survival Rate Source: Reference Toxicant-REF

Mean: 65.13 Count: 20 -2s Warning Limit: -10.9 -3s Action Limit: -48.9 Sigma: 38 CV: 58.30% +2s Warning Limit: 141 +3s Action Limit: 179

Qual	lity	Contr	οl	Data	

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2014	Aug	19	17:35	13.85	-51.28	-1.349			06-6149-7180	09-7696-8711
2		Sep	30	17:00	69.92	4.786	0.126			02-9200-2624	04-0033-0926
3		Oct	28	17:00	54.12	-11.01	-0.2898			09-6234-9603	12-8117-9461
4			28	17:15	57.95	-7.183	-0.189			05-4330-2797	06-7105-1932
5	2015	Sep	4	15:25	48.29	-16.84	-0.4432			14-6837-4354	08-3599-8388
6			28	15:40	62.77	-2.36	-0.06211			09-3006-9944	07-2648-2888
7		Oct	5	17:30	45.89	-19.24	-0.5064			03-9930-1734	08-1584-7208
8	2017		2	15:30	36.13	-29	-0.7631			13-5191-9297	06-9058-0712
9			30	15:40	68.62	3.493	0.09192			00-1769-0978	07-0805-0360
10	2018		16	16:20	106.1	40.97	1.078			15-9035-9078	13-0630-5838
11	2019	Aug	26	15:00	57.25	-7.878	-0.2073			10-0394-8759	15-3104-1914
12	2021	Jul	20	17:00	45.18	-19.95	-0.525			10-2159-3177	00-8996-5427
13		Aug	3	16:10	46.47	-18.66	-0.4911			20-0306-0810	06-2460-6245
14			20	17:45	45.95	-19.18	-0.5048			03-1493-3047	03-2065-0498
15		Oct	26	18:55	84.59	19.46	0.5122			11-0299-7216	02-4594-7205
16		Dec	20	15:00	204.9	139.7	3.678	(+)	(+)	03-6450-9872	04-5264-7968
17			28	16:45	51.86	-13.27	-0.3493			07-8056-3793	09-1111-8136
18	2022	Nov	17	16:40	66.14	1.012	0.02662			15-3915-2035	21-4130-6161
19	2023	Dec	29	11:40	76.81	11.68	0.3075			18-8410-8536	09-6635-0369
20	2024	Feb	14	15:20	59.83	-5.298	-0.1394			12-0941-4704	18-6822-4113
21		Dec	20	13:40	96.02	30.89	0.8128			11-5004-4537	07-8997-7725

Client: Internal	Test Species: C. dilutus		Te	ch Init	als	
Sample ID: NH ₃	Start Date/Time: 12/20/29 13 40	0,	24	48	72	96
Test No.: 2412 20 ct / NH3 SED	End Date/Time: 12/11/11/11/12/15	Counts:	-	1	-	HH
-		Readings: HH	M	和	WF	AD
	Dilutions made by/Sub	sample NH ₃ day 0:	-	1	-	-
	High c	onc. made (mg/L): 500	-	-	-	-
	Vol. NH	stock added (mL): 91-1	-	1	-	-
N		inal Volume (mL): 2000	-	-	-	-
	QS			_		

Consentation	Da		of Live			pН			ı			xyge	n	1		nducti				Ten	npera	ture	
Concentration mg/L	Rand #	Organ	nisms		(units)				(mg/L)		THOUS.	(µn	nhos/	cm)				('0)		1/0/1
(measured)		0	96	0	24	48	72	96	0	24	48	72	96	OF T	24	48	72	96	0	24	48	72	96
Lab Control	26	10	10	4,33	8,24	828	8.20	8 18		9,2	8.1	8.1	8.0	802	992	877	883	931	230	227	229	22.8	22.5
	1	10	10						9.2					882							1840		1
	8	10	ID							1100						. 1/2			28	M s			
	12	10	10		Carry I			1/4	0	1790									AL C				
15.6	23	10	10	8.04	8,20	8.25	8.16	8.24		8,2	8.0	8.2	7.9	81	108	976	970	1012	23.1	22,18	23.0	23,1	23
(18.2)	25	10	10						4.2					103	1779		213					C	
	6	10	9		17.					Ties		197				W.185				3	345		
	24	10	9						0					0	1								
31.25	3	10	10	245	8.13	8.19	8,08	8.13	War.	8.1	8.0	8.1	7.9	SA	1213	1078	1069	1115	23.1	2216	23.0	227	23
(35.1)	13	10	10						8.2					1195									
	27	10	8												- M							12.65	
	9	10	10						73		(A, <u>1</u>			0									
62.5	2	10	5	100	8,52	11.8	7.99	804	1294	8.1	7.9	8,0	7.8	20	1474	1300	128	1333	22.4	2.9	23.\	23.1	23
(68.4)	15	10	6						8,2					189	?								
	14	10	U					1							Te la					Tyrin.	in b		
-	22	10	6						5					0								Printer I	
125	20	10	7	1.0	7.89	8.00	7.85	7.86	SAX'	7.9	7.8	7.9	1.8	\$	194	21714	1696	1750	23:	2218	231	23,0	23
(129 A (6)	7	10	1				W. Sty	2:16	4.2		0 -	G.		SHU			150						
(129,2)	4	10	1																				
	11	10	6				N-A		~					0				1					
250	19	10	0	221	7.77	7,77	7:66	7.64	2810	7.9	7.7	7,7	7.7	03	109	2480	2450	2550	27.4	ni	731	23.0	23
(245.6)	16	10	0					1000	9,2	40				000									
,	21	10	0									1.88											
	17	10	ŏ				M		1					~								n in	
500	5	10	1	200	7,63	7.67	7.40	1-44	SACK.	8.0	7.9	7.8	3.8	\$	477	4140	410	9427	ma.	2201	23.1	23.	123
(498.0)	18	10	0				15		8.3		die.			'YIC									
11000	10	10	1								17.0	101.5											
	28	10	0		1.0	13		1000	The same			M									1600	1 1/6	

(498.0)	18	10	0				8.3				will									
	10	10	1															74 S		
	28	10	0																	
nitial Count QC'd by: Initated by:	K	X B	AB(المرا	кАх	Env	ironmenta	l Chan		FIL) dae	15					Fee	ding T	imes	
imal Acclimatio			cle all tha	t apply):			Q22 /	Q23	/ Q2	4 1	none)				0	24	48	72	96
mments:	214.	HH 12	Just	М				(A)	Ran	don	- 1 -	Wa			AM:	8,11		of the		
00		Chamber	s fed prior	to initiation	, circle or	ne (y) n)	(8)	cyas	of	bert			le.	PM:					
Check:	Arc	2/2	120			(E) 6	14 ALS 3/21	25	10	741	he	al	B	i 12/	zelt	ц	Y	3	3/2	5
Environmental, Inc. 43		012	11)		_								, .,,			-			-	on 12/0

Total Ammonia Analysis Freshwater

DC-001

Client: Internal

Project: 2412 20 ctr N +3 KED

Test Type: 96-hr Chironomus Ammonia_refrense toxicant test

eference

DI Blank: 0.0 Test Start Date: 12/20/2024 Analysis Date: 2117125

N x 1.22

					N X 1.22	
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)	
Blank Spike (10 mg/L NH ₃)	And recognition (News)	NA	NA	8.3	10.1	
LC	28	12/20/2024	0	0.1	10.5	
15.6	29	12/20/2024	0	14.9	18.2	
31.25	30	12/20/2024	0	28.8	35.1	
62.5	31	12/20/2024	0	28.0	34.2×2 =	- 68
125	32	12/20/2024	0	26.5	32.3 ×4 =	120
250	33	12/20/2024	0	25.2	30,7 ×8 =	24
500	34	12/20/2024	0	40.8	49.8 x10 =	49
Spike Check (10 mg/L NH ₃)		NA NA	NA			
Sample Duplicate®	29	NA NA	NA	14.8	18.1	
Sample Duplicate + Spike		NA NA	NA NA	22.4	27.3	
Spike Check (10 mg/L NH ₃)		NA NA	NA NA	8.3	10.1	

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[nH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA NA	10.1	10	NA	101
29	18.2	18.1	27.3	10	0.6	ai

	Reagent 1	Reagent 2	Test Tubes
Standard Lot Number	A 4198	A4213	A4240

Notes: "Unless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

^c Calculation not performed due to one or both values below the method detection limit.

HACH Ammonia Nitrogen Test Kit, Test 'N Tube™ Vials. Method 10031. Method Detection Limit = 0.5 mg/L

QC Check: 4(5 3/2/15

Final Review: 453325

Report Date:

08 Jan-25 11:34 (p 1 of 1)

Test Code/ID: 241219harSED / 06-3922-3450

Acute Amphip	ood Survival Tes	t									Nautilus	Environme	ental (C	A)
Batch ID: Start Date: Ending Date: Test Length:	13-3884-3756 19 Dec-24 16:30 23 Dec-24 16:55 4d 0h	Pro	tocol: cies:	Survival (96h) EPA/600/R-99/0 Hyalella azteca	064 (2000)			Anal Dilue Brine Sour	ent: e:	Not Ap	plicable	Water (CFW)d
Sample ID: Sample Date: Receipt Date: Sample Age:	19 Dec-24		erial: S (PC):	241219harSED Copper chloride				Proje Sour Stati	ce:		nce Toxic r Chloride	ant		
Multiple Com	parison Summa	ry												
Analysis ID	Endpoint		-	parison Method			√		LOEL		TOEL	PMSD		
07-5596-7140	96h Survival Rat	e	Steel	Many-One Rank	Sum Test			100	200	1	141.4	10.6%		
Point Estimat Analysis ID 08-5703-8091	e Summary Endpoint 96h Survival Rat	e		Estimate Methoned Spearman-K	Co. 500		√	Level EC50	μ g/L 236		9 5% LCL 202	95% UCL 276		,
Test Acceptal	bility					TAC	Li	mits						
Analysis ID	Endpoint		Attrib	oute	Test Stat	Lower		Upper	Overl	ар [Decision			
	96h Survival Rat 96h Survival Rat			ol Resp ol Resp	1	0.9 0.9		<< <<	Yes Yes		Passes Cr Passes Cr			
96h Survival I	Rate Summary													
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	rr S	Std Dev	CV%	%Effe	ect
0	LC	4	1.000	1.000	1.000	1.000		1.000	0.000	(0.000	0.00%	0.00%	6
100		4	0.975	0.895	1.050	0.900		1.000	0.025	(0.050	5.13%	2.50%	6
200		4	0.475		0.747	0.300		0.700	0.085		0.171	35.95%	52.50	
400		4	0.275		0.427	0.200		0.400	0.048		0.096	34.82%	72.50	
800		4	0.025		0.105	0.000		0.100	0.025		0.050	200.00%	97.50	
1600		4	0.025	-0.055	0.105	0.000		0.100	0.025		0.050	200.00%	97.50	%
96h Survival	Rate Detail							MD	5: 5010	C103AC	C849C61E	E050645E04	846716	32
Conc-µg/L	Code	Rep 1	Rep 2	2 Rep 3	Rep 4									
0	LC	1.000	1.000	1.000	1.000									
100		0.900	1.000	1.000	1.000									
200		0.300	0.700		0.500									
400		0.200	0.400	0.300	0.200									
					0.000									
800		0.100	0.000	0.000	0.000									

ANOVA Assumptions Tests

Report Date:

08 Jan-25 11:34 (p 1 of 2)

Test Code/ID: 24

241219harSED / 06-3922-3450

Nautilus Environmental (CA)

Acute Amphipod Survival Test

Analysis ID: 07-5596-7140 Endpoint: 96h Survival Rate

 Analyzed:
 08 Jan-25 11:33
 Analysis:
 Nonparametric-Control vs Treatments

 Edit Date:
 08 Jan-25 11:33
 MD5 Hash:
 501C103AC849C61E050645E048467162

CETIS Version: CETISv2.1.4

Status Level: 1

Editor ID: 007-926-968-0

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corrected)	C > T	100	200	141.4		0.106	10.61%

Steel Many-0	One R	ank Sum Test							
Control	vs	Conc-µg/L	df	Test Stat	Critical	Ties	P-Type	P-Value	Decision(a:5%)
Lab Control		100	6	16	10	1	CDF	0.6105	Non-Significant Effect
		200*	6	10	10	0	CDF	0.0417	Significant Effect
		400*	6	10	10	0	CDF	0.0417	Significant Effect
		800*	6	10	10	0	CDF	0.0417	Significant Effect
		1600*	6	10	10	0	CDF	0.0417	Significant Effect

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	5.8849	1.17698	5	114	<1.0E-05	Significant Effect	
Error	0.185958	0.010331	18				
Total	6.07086		23				

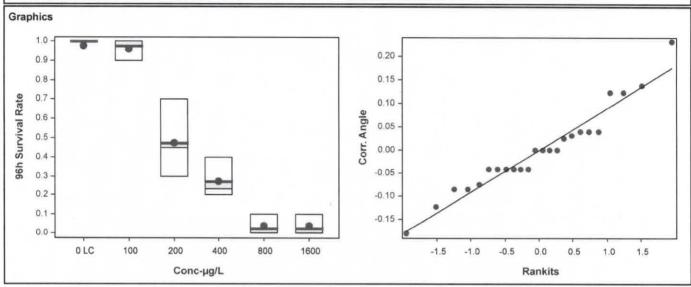
Attribute	Test				Test Stat	Critical	P-Value	Decision	n(a:1%)		
Variance Distribution		Equality of V Wilk W Norr		t	0.955	0.884	0.3436	Indeterm Normal I	inate Distribution		
96h Survival R	ate Summary										
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
100		4	0.975	0.895	1.000	1.000	0.900	1.000	0.025	5.13%	2.50%
200		4	0.475	0.203	0.747	0.450	0.300	0.700	0.085	35.95%	52,50%
400		4	0.275	0.123	0.427	0.233	0.200	0.400	0.048	34.82%	72.50%
800		4	0.025	0.000	0.105	0.000	0.000	0.100	0.025	200.00%	97.50%
1600		4	0.025	0.000	0.105	0.000	0.000	0.100	0.025	200.00%	97.50%

Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	4	1.410	1.410	1.410	1.410	1.410	1.410	0.000	0.00%	0.00%
100		4	1.370	1.240	1.500	1.410	1.250	1.410	0.041	5.94%	2.89%
200		4	0.760	0.481	1.040	0.735	0.580	0.991	0.088	23.07%	46.16%
400		4	0.548	0.379	0.717	0.502	0.464	0.685	0.053	19.41%	61.20%
800		4	0.200	0.070	0.329	0.159	0.159	0.322	0.041	40.84%	85.87%
1600		4	0.200	0.070	0.329	0.159	0.159	0.322	0.041	40.84%	85.87%

Acute Amphipod Survival Test

Report Date:

08 Jan-25 11:34 (p 2 of 2)


Test Code/ID: 241219harSED / 06-3922-3450

Nautilus Environmental (CA)

Analysis ID: 07-5596-7140 Endpoint: 96h Survival Rate CETIS Version: CETISv2.1.4

Analyzed: 08 Jan-25 11:33 Analysis: Nonparametric-Control vs Treatments Status Level: 1

Edit Date: 08 Jan-25 11:33 MD5 Hash: 501C103AC849C61E050645E048467162 Editor ID: 007-926-968-0

Report Date:

08 Jan-25 11:34 (p 1 of 1)

Test Code/ID:

241219harSED / 06-3922-3450

Acute Amphipod Survival Test

Nautilus Environmental (CA)

Analysis ID: 08-5703-8091

Endpoint: 96h Survival Rate

CETIS Version:

Analyzed:

CETISv2.1.4

Edit Date:

08 Jan-25 11:34 08 Jan-25 11:33 Analysis: Trimmed Spearman-Kärber MD5 Hash: 501C103AC849C61E050645E048467162 Status Level: Editor ID:

007-926-968-0

Trimmed Spearman-Kärber Estimates

Threshold Option Threshold Trim Mu Sigma EC50 95% LCL 95% UCL

2.50% Control Threshold 0 2.37 0.034 236 276

96h Survival Rate Summary						Isotonic Variate					
Conc-µg/L Coc		Count	Mean	Median	Min Max		CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	4	1.000	1.000	1.000	1.000	0.00%	0.00%	40/40	1.000	0.00%
100		4	0.975	1.000	0.900	1.000	5.13%	2.50%	39/40	0.975	2.50%
200		4	0.475	0.450	0.300	0.700	35.95%	52.50%	19/40	0.475	52.50%
400		4	0.275	0.233	0.200	0.400	34.82%	72.50%	11/40	0.275	72.50%
800		4	0.025	0.000	0.000	0.100	200.00%	97.50%	1/40	0.025	97.50%
1600		4	0.025	0.000	0.000	0.100	200.00%	97.50%	1/40	0.025	97.50%

Quality Control Data

Report Date:

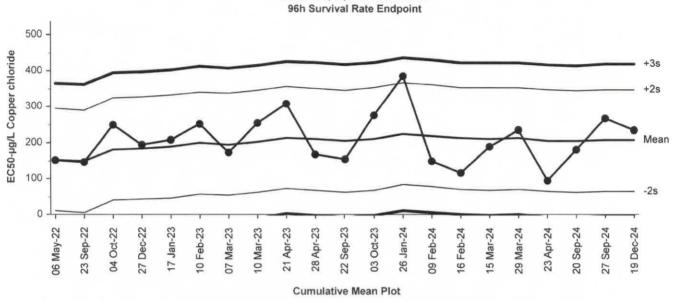
08 Jan-25 11:34 (1 of 1)

Acute Amphipod Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)

Organism: Hyalella azteca


Material: Copper chloride

Protocol: EPA/600/R-99/064 (2000)

Endpoint: 96h Survival Rate

Source: Reference Toxicant-REF

Acute Amphipod Survival Test

 Mean:
 207.4
 Count:
 20
 -2s Warning Limit:
 65.3
 -3s Action Limit:
 -5.72

 Sigma:
 71.04
 CV:
 34.30%
 +2s Warning Limit:
 349
 +3s Action Limit:
 421

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2022	May	6	15:50	151.8	-55.63	-0.7831			18-9899-3969	02-1827-7020
2		Sep	23	18:10	144.7	-62.74	-0.8831			19-7717-5225	18-7002-2538
3		Oct	4	15:45	247.9	40.46	0.5695			12-1324-5905	16-9032-8146
4		Dec	27	16:30	193.8	-13.6	-0.1915			17-2611-4440	08-0671-0162
5	2023	Jan	17	17:30	207.2	-0.2226	-0.00313			04-7626-4182	05-5044-0652
6		Feb	10	17:00	252	44.58	0.6276			17-2264-1690	06-9899-9279
7		Mar	7	15:15	172.4	-35.01	-0.4928			05-7367-1481	11-4226-5734
8			10	15:40	254.7	47.32	0.666			13-0750-5556	19-2670-8300
9		Apr	21	17:15	308.4	101	1.422			03-0194-2656	10-5075-1011
10			28	15:10	168.2	-39.22	-0.5521			06-5993-5770	04-5746-7376
11		Sep	22	16:10	154.8	-52.64	-0.741			15-0126-4382	10-8932-6756
12		Oct	3	16:30	275.8	68.44	0.9634			14-9349-6936	10-0172-0824
13	2024	Jan	26	14:30	386.9	179.5	2.527	(+)		19-0033-5341	00-6517-8183
14		Feb	9	16:05	148.8	-58.65	-0.8256			00-8657-8400	08-9847-6763
15			16	15:25	114.9	-92.53	-1.303			04-0414-4548	19-6977-4716
16		Mar	15	15:40	188.6	-18.84	-0.2652			20-0438-2868	02-4656-0536
17			29	16:10	235.1	27.71	0.3901			18-6545-5346	19-6564-0167
18		Apr	23	17:55	94.74	-112.7	-1.586			12-0877-9386	17-4796-2357
19		Sep	20	14:15	180.2	-27.23	-0.3832			00-2900-9740	02-6845-2833
20			27	17:00	267.3	59.87	0.8428			01-7978-3149	06-8639-7282
21		Dec	19	16:30	235.7	28.28	0.3981			06-3922-3450	08-5703-8091

Freshwater Acute Bioassay **Static Conditions** DF-011 (SED)

Water Quality Measurements & Test Organism Survival

Client:	Internal	Test Species: H. azteca		1				
Sample ID:	CuCl ₂	Start Date/Time: 12/19/24	1630	0	24	48	72	96
Test No.:	241219 har SED	End Date/Time: 12/23/24	1655 Counts:	WF				WF
		The second secon	Readings:	WF	M	M	AD	WF
			Dilutions made by:	WF	VI.		M.	
			High conc, made (μg/L):	1600	4			
			Vol. Cu stock added (mL):	66.1	H. V.			
		Cu stock concentration (µg/L):	Final Volume (mL):	4000				(A)

Concentration µg/L	Rand #	O			pH (units)							lved C (mg/L		n			nducti nhos/e			Temperature (°C)				
	"	0	96	0	2	4 4	8	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	4	10	10	8,30	A	148	24	8.34	8.58	8,6	4,6	84	8.2	8.4	822	962	953	844	834	22.0	22,0	2216	22.7	22.5
	10	10	10					MA.								132	Value	No. 10						
	5	10	10																			0.000		
	9	10	10		V						1													
100	23	10	on	8.20	16:	268	26	8.31	8.57	8.6	8.6	83	8-1	8.3	822	962	955	847	837	22,0	200	316	12.6	22.5
	18	10	10															2 10						
	3	10	10																			100		
	6	10	10					10,00	W.										(A)			100		
200	19	10	3	8,2	88	278	25	8.35	8,59	8.7	8,6	8,3	81	8,4	822	96)	954	846	837	22.1	22,0	22-19	22.5	22.5
	14	10	7																					
	2	10	H						PATE A									100						-
	17	10	5													AZZ	10-1	250					20,51	
400	20	10	2	8,2	68	268	33	8.35	8,25	8.6	1816	8,3	8.7	-8,4	821	964	195k	847	836	22.	122 1	22:	122	122,
	11	10	4			1/	NX.		100		10.00													
	7	10	3					1													-			
	22	10	2				170					2	60	MHSW.				0.4	200			A A		1 2 0
800	8	10	1	8.2	28	rug	打	8.57	8.2	8.6	8,4	8,3	81	8,3	819	938	949	841	830	22.	1221	1221	727.	1 64,
	15	10	0				4								1	1 10-105			10.0					
	1	10	0										1					100	130					
	21	10	0			E L	ile.	19914					2	#	101-	2 421	ala	2 - 4 -	0.1		1	5-01	2 22	0 77
1600	13	10	0	8,0	88	168	19	8.31	8,2	8.9	815	83	8.1	8.3	813	951	97	8 857	182	127.	>221	372,	LL.	124
	16	10	1							-				1 - 10		+								
	24	10	0	151					-					0.000	-							-		
	12	10	0	1 30			771				88 (80)(6										10 1859.10			
							p.																7	
			-				NO.																	

	22	10	2		198	William			31	1000	9000			197			Your	19\V8	1000		MARK		
800	8	10		8.27	8,22	8,20	8.52	8.25	8.6	8,6	8,3	81	8.3	819	958	949	841	830	22.1	220	227	22.7	22,6
	15	10	0			69		70.47	This.	16175	J. Gr.			- 1999	Alexander of the second							- 11	15 7/3
	1	10	0							A SA		10					7624	38.70					
	21	10	0	Tille	1776	500						(E)	I SON			U.C.	SUE!			900	- 0		200
1600	13	10	0	8,00	8.16	8,19	8.30	8,23	8.5	8,5	83	8.1	8.3	813	951	943	835	825	22.5	2213	22,9	22.9	22.7
	16	10	1										1000	No char									
	24	10	0	76 1 24	177.5				The state of			i X					12-17						
	12	10	0	100		189			11/16	8/16		1000		L SU		Ser.	19.19 19.19	9.11					W 5.23
												250000	-	-	-	100,100	-			31400		THE SECTION	NAME OF TAXABLE PARTY.
						1000	I BE	Fig.				100					Tue Vo				Has		March.
				30																			
				ALC: N				1	Win.	1300		0.500	1000				1210.70	189	1,515	1000	Div.		
Counts QC' Initiated b	y:_W	5	- - A P	30,	19	南	12	118	hu			Age	at Init	tiation	:	a d				-			
Animal Acclim		ualifiers					ne (Ty)/ n) (F)		22 /					one	w.i'		17.				