		ERTS #(s):		738049				
	any documents to this ng the paperclip icon	Parcel	l # (s):	ROW, 038113000000				
on the lef	ig the paperclip icon	Count	` ,	Lewis				
DEPARTMENT OF	,	FSID #	•	100004503				
ECOLOGY		CSID #		17295				
State of Washington		UST#		n/a				
		"	-	-				
SITE INFORMATION								
Site Name (Name over door):	Site Address (including City, State, and Zi	. ,	Phone	Click to enter text.				
WSDOT ROW US Hwy 12 at MP138	98377		Email C	Click to enter text.				
Site Contact, Title, Business:	Site Contact Address (including City, State Zip):	e, and	<u>Phone</u>	509-480-2282				
Colton Peyser, Region Maintenance Environmenta	Click to enter text.		Email Coltor	navear@wedat wa gay				
Coordinator, WSDOT				n.peyser@wsdot.wa.gov				
Site Owner, Title Business:	Site Owner Address (including City, State,			Click to enter text.				
WSDOT	PO BOX 47331, Olympia, WA 9850 7331			Click to enter text.				
Site Owner Contact, Title,	Site Owner Contact Address (Including Cit	ty, State	Phone	564-870-9491				
Business: Patrick Svoboda,	and Zip):							
Hazardous Materials and	0044 DW Jahana - DJ J 004 T	4	<u>Email</u>					
Solid Waste Program Mgr.,	2214 RW Johnson Blvd SW, Tumv WA 98512	vater,		k.svoboda@wsdot.wa.gov				
Environmental Servies, WSDOT	VVA 30312			<u>.</u>				
Previous Site Owner(s):	Additional Info (for any Site Information Ite	<u>em):</u>	-					
	Please CC:							
Alternate Site Name(s):	Danyel Hiland, Hazardous Materials	and So	olid Was	lid Waste Lead, WSDOT,				
· ····································	Danyel.hiland@wsdot.wa.gov;							
Click to enter text.	William Sauriol, South Central Region Environmental Program Manager,							
onon to onto toxt.	WSDOT, William.sauriol@wsdot.wa.	•	imtronon	ort com				
	Luis Martinez, Lunaim Trucking, luis			UIL.COIII				
	` , ,	46.6884						
	Longitude (Decimal Degrees): -12	21.5799	96					
INSPECTION INFORMATION	Please check this box photos, in an existing			nspection information, such as data or ite.				
Inspection Conducted? Date/	Futry Notice:	Annoi	unced 🗌	Unannounced				
	to enter text.							
Photographs taken? Yes	No ⊠ Note: Attach p							
Samples Collected? Yes	No ⊠ Note: Attach re	ecord wi	ith media,	location, depth, etc.				
RECOMMENDATION		Т						
No Further Action (Check approp	oriate box below):		IST on Co	ontaminated Sites List: 🛛				
Release or threatened release								
No release or threatened release								
Refer to program/agency (Name	e: Click to enter text \		1 197	Γ on NFA Sites List:				

COMPLAINT (Brief Summary of ERTS Complaint):

Independent Cleanup Action Completed (contamination removed)

Semi-truck accident, saddle tanks ruptured, diesel released to ground smelled and observed by WSDOT staff as well as photographic evidence of release.

CURRENT SITE STATUS (Brief Summary of why Site is recommended for Listing or NFA):

Site cleanup and associated report were not completed within 90 days of the ERTS report as required under WAC 173-340-310 (5). Therefore, I recommend this site for listing.

Investigator: **Amanda Pole**Date Submitted: 7/14/2025

OBSERVATIONS Please check this box if you included information on the Supplemental Page at end of report.

Description (If site visit made, please be sure to include the following: site observations, site features and cover, chronology of events, sources/past practices likely responsible for contamination, presence of water supply wells and other potential exposure pathways, etc):

04/03/25: ERTS report was entered into system. Bill Sauriol reported an overturned truck and that responders had observed that when the truck was "righted", the saddles tanks were empty and they smelled diesel. Nick Zerkel (WSDOT) reported that he had observed pooled diesel at the base of a tree and the smell of diesel; he also reported that, on 4/2/25, WSP CVE Officer Guntner observed diesel spilling from the passenger side saddle tank. Josh Coulter and Courtney Serad from Ecology's Spill Response Program reached the to the site at 9:47 PM and were unable to smell or observe the fuel release. The semi-truck belonged to Lunaim Trucking, the incident occurred on 3/31/25. Grants Towing removed the tractor on 4/3/25 and trailer on 4/4/25. The above information is summarized from the ERTS report and SPIIS report.

04/18/25: Josh Coulter notified TCP of the reported soil contamination and inability to make contact with the trucking company for site cleanup.

04/23/25: Amanda Pole contacted Nick Zirkle (WSDOT) by phone to discuss his observations at the scene. He provided the following photos of taken while the semi was towed back onto the road. In the top left image, fluid can be seen spraying out of the ruptured saddle tank onto the ground. The top right image is a cropped/zoomed in version of the original photo to more easily see the leak in the original image.

04/23/25: Amanda Pole contacted Luis Martinez with Lunaim Trucking by phone to inquire about how much fuel was on board at the time of the accident; Luis's contact email was provided and Amanda sent a follow-up email summarizing the conversation and providing her contact information. Per Luis, by phone on 4/24/25, the driver estimated 75 gallons of fuel in the tank(s) at the time of the accident.

04/28/2025 – 07/14/2025: Numerous emails were exchanged between WSDOT and Ecology staff, the following is a synopsis of the most pertinent communications. Ecology TCP provided WSDOT with information on the initial investigation (II) process, TCP's limitation during this phase, and timing requirements defined in WAC 173-340-310, and requested information regarding any cleanup plans. WSDOT requested letters be sent to the spiller from Ecology as defined under WAC 173-340-500. On May 22nd Ecology's Spill Response program provided WSDOT with a summary of their activities, including their unsuccessful efforts to contact the trucking company. On June 9th, Ecology and WSDOT personnel met to discuss roles and responsibilities. On June 10th, Ecology's Spills Response program emailed Luis Martinez (Lunaim Trucking) regarding spiller responsibilities with invitation to contact Ecology's TCP personnel regarding cleanup. As of 7/14/25, TCP has not received any cleanup information from Lunaim Trucking or WSDOT.

The site is not near any wells or in any wellhead protection zones. Ohanapecosh River (Perennial), which runs north/south, is approximately 500 feet downhill to the west/southwest.

Because the site cleanup and associated report were not completed within 90 days of the ERTS report as required under WAC 173-340-310 (5), I recommend this site for listing.

Documents reviewed:

Brooks, Nannette (nbro461@ECY.WA.GOV), RE: ERTS 738049 WSDOT US12 at MP 138 Fuel Release, E-mail message, May 14, 2025

Coulter, Josh (jcou461@ECY.WA.GOV), ERTS 738049, Department of Ecology, E-mail message, April 18, 2025.

Coulter, Josh (jcou461@ECY.WA.GOV), Lunaim Trucking LLC from Department of Ecology (Please Review), E-mail message, June 10, 2025.

Department of Ecology, ERTS Incident #738049: Primary Initial Report, April 3, 2025, accessed on April 21, 2025.

Department of Ecology, Incident Detail Report: Spill Program Integrated Information System (Incident#: 139419), Washington, Accessed on June 17, 2025.

Pole, Amanda (apol461@ECY.WA.GOV), RE: ERTS 738049 WSDOT US12 at MP 138 Fuel Release, E-mail message, April 28, 2025.

Zirkle, Nick (nick.zirkle@wsdot.wa.gov), Diesel spill HWY 12 MP 138, WSDOT, E-mail message, April 23, 2025.

CONTAMINANT GROUP	CONTAMINANT	SOIL	GROUNDWATER	SURFACE WATER	AIR	SEDIMENT	DESCRIPTION	
	Phenolic Compounds	Select	Select	Select		Select	Compounds containing phenols (Examples: phenol; 4-methylphenol; 2-methylphenol)	
	Non-Halogenated Solvents	Select	Select	Select	Select	Select	Organic solvents, typically volatile or semi-volatile, not containing any halogens. To determine if a product has halogens, search HSDB (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB) and look at the Chemical/Physical Properties, and Molecular Formula. If there is not a Cl, I, Br, F in the formula, it's not halogenated. (Examples: acetone, benzene, toluene, xylenes, methyl ethyl ketone, ethyl acetate, methanol, ethanol, isopropranol, formic acid, acetic acid, stoddard solvent, Naptha). Use this when TEX contaminants are present independently of gasoline.	
Non-Halogenated	Polynuclear Aromatic Hydrocarbons (PAH)	Select	Select	Select	Select	Select	Hydrocarbons composed of two or more benzene rings.	
Organics	i lalogerialeu		Select	Select		Select	The main active ingredients in biocides used to control a broad spectrum of organisms. Found in antifouling marine paint, antifungal action in textiles and industria water systems. (Examples: Tributyltin; monobutyltin; dibutyltin)	
	Methyl tertiary-butyl ether	Select	Select	Select	Select	Select	MTBE is a volatile oxygen-containing organic compound that was formerly used as a gasoline additive to promote complete combustion and help reduce air pollution.	
	Benzene	S	S	Select	Select	Select	Benzene	
	Other Non-Halogenated Organics	S	S	Select	Select	Select	TEX	
	Petroleum Diesel	S	S	Select		Select	Petroleum Diesel	
	Petroleum Gasoline	Select	Select	Select	Select	Select	Petroleum Gasoline	
	Petroleum Other	S	s	Select		Select	Oil-range organics	
	PBDE	Select	Select	Select	Select	Select	Polybrominated di-phenyl ether	
	Other Halogenated Organics	Select	Select	Select	Select	Select	Other organic compounds with halogens (chlorine, fluorine, bromine, iodine). search HSDB (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB) and look at the Chemical/Physical Properties, and Molecular Formula. If there is a Cl, I, Br, F in the formula, it is halogenated. (Examples: Hexachlorobutadiene; hexachlorobenzene; pentachlorophenol)	
Halogenated	Halogenated solvents	Select	Select	Select	Select	Select	PCE, chloroform, EDB, EDC, MTBE	
Organics (see notes at bottom)	Polychlorinated Biphenyls (PCB)	Select	Select	Select	Select	Select	Any of a family of industrial compounds produced by chlorination of biphenyl, noted primarily as an environmental pollutant that accumulates in animal tissue with resultant pathogenic and teratogenic effects	
	Dioxin/dibenzofuran compounds (see notes at bottom)	Select	Select	Select	Select	Select	A family of more than 70 compounds of chlorinated dioxins or furans. (Examples: Dioxin; Furan; Dioxin TEQ; PCDD; PCDF; TCDD; TCDF; OCDD; OCDF). Do not use for 'dibenzofuran', which is a non-chlorinated compound that is detected using the semivolatile organics analysis 8270	
	Metals – Other	Select	Select	Select		Select	Cr, Se, Ag, Ba, Cd	
Metals	Lead	Select	Select	Select		Select	Lead	
	Mercury	Select	Select	Select	Select	Select	Mercury	
	Arsenic	Select	Select	Select		Select	Arsenic	
Pesticides	Non-halogenated pesticides	Select	Select	Select	Select	Select	Pesticides without halogens (Examples: parathion, malathion, diazinon, phosmet, carbaryl (sevin), fenoxycarb, aldicarb)	
· collouds	Halogenated pesticides	Select	Select	Select	Select	Select	Pesticides with halogens (Examples: DDT; DDE; Chlordane; Heptachlor; alpha-beta and delta BHC; Aldrin; Endosulfan, dieldrin, endrin)	

CONTAMINANT GROUP	CONTAMINANT	SOIL	GROUNDWATER	SURFACE WATER	AIR	SEDIMENT	DESCRIPTION	
	Radioactive Wastes	Select	Select	Select	Select	Select	Wastes that emit more than background levels of radiation.	
	Conventional Contaminants, Organic	Select	Select	Select		Select	Unspecified organic matter that imposes an oxygen demand during its decomposition (Example: Total Organic Carbon)	
Other Contaminants	Conventional Contaminants, Inorganic	Select	Select	Select	Select	Select	Non-metallic inorganic substances or indicator parameters that may indicate the existence of contamination if present at unusual levels (Examples: Sulfides, ammonia)	
	Asbestos	Select	Select	Select	Select	Select	All forms of Asbestos. Asbestos fibers have been used in products such as building materials, friction products and heat-resistant materials.	
	Other Deleterious Substances	Select	Select	Select		Select	Other contaminants or substances that cause subtle or unexpected harm to sediments (Examples: Wood debris; garbage (e.g., dumped in sediments))	
	Benthic Failures		Select	Select		Select	Failures of the benthic analysis standards from the Sediment Management Standards.	
	Bioassay Failures		Select	Select		Select	For sediments, a failure to meet bioassay criteria from the Sediment Management Standards. For soils, a failure to meet TEE bioassay criteria for plant, animal or soil biota toxicity.	
	Unexploded Ordinance	Select	Select	Select	Select	Select	Weapons that failed to detonate or discarded shells containing volatile material.	
Reactive Wastes	Other Reactive Wastes	Select	Select	Select	Select	Select	Other Reactive Wastes (Examples: phosphorous, lithium metal, sodium metal)	
	Corrosive Wastes	Select	Select	Select	Select	Select	Corrosive wastes are acidic or alkaline (basic) wastes that can readily corrode or dissolve materials they come into contact with. Wastes that are highly corrosive as defined by the Dangerous Waste Regulation (WAC 173-303-090(6)). (Examples: Hydrochloric acid; sulfuric acid; caustic soda)	

(fill in contaminant matrix above with appropriate status choice from the key below the table)

Status choices for contaminants	
Contaminant Status	Definition
B— Below Cleanup Levels (Confirmed)	The contaminant was tested and found to be below cleanup levels. (Generally, we would not enter each and every contaminant that was tested; for example if an SVOC analysis was done we would not enter each SVOC with a status of "below". We would use this for contaminants that were believed likely to be present but were found to be below standards when tested
S— Suspected	The contaminant is suspected to be present; based on some knowledge about the history of the site, knowledge of regional contaminants, or based on other contaminants known to be present
C— Confirmed Above Cleanup Levels	The contaminant is confirmed to be present above any cleanup level. For example—above MTCA method A, B, or C; above Sediment Quality Standards; or above a presumed site-specific cleanup level (such as human health criteria for a sediment contaminant).
RA— Remediated - Above	The contaminant was remediated, but remains on site above the cleanup standards (for example—capped area).
RB— Remediated - Below	The contaminant was remediated, and no area of the site contains this contaminant above cleanup standards (for example—complete removal of contaminated soils).

Halogenated chemicals and solvents: Any chemical compound with chloro, bromo, iodo or fluoro is halogenated; those with eight or fewer carbons are generally solvents (e.g. halogenated methane, ethane, propane, butane, pentane, hexane, heptane or octane) and may also be used for or registered as pesticides or fumigants. Most are dangerous wastes, either listed or categorical. Organic compounds with more carbons are almost always halogenated pesticides or a contaminant or derivative. Referral to the HSDB is recommended if you are unfamiliar with a chemical name or compound, as it contains useful information about synonyms, uses, trade names, waste codes, and other regulatory information about most toxic or potentially toxic chemicals.

Dibenzodioxins and dibenzofurans are normalized to a combined equivalent toxicity based on 2,3,7,8-tetrachloro-p-dibenzodioxin as set out in WAC 173-340-708(8)(d) and in the Evaluating the Toxicity and Assessing the Carcinogenic Risk of Environmental Mixtures using Toxicity Equivalency Factors Focus Sheet (https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf). Results may be reported as individual compounds and isomers (usually lab results), or as a toxic equivalency value (reports).

FOR ECOLOGY II REVIEWER USE O	ONLY (For Listing Sites):		
How did the Site come to be known	☐ Site Discovery (receive☑ ERTS Complaint☐ Other (please explain):		4/3/2025
Does an Early Notice Letter need to If No, please explain why:	be sent: ⊠ Yes □ N Click to enter text.	o	
NAICS Code (if known): Otherwise, briefly explain how prop Regulation and Administration of		station, dry cleaner, pa	int shop, vacant land, etc.):
Site Unit(s) to be created (Unit Type If multiple Unites needed, please ex	'	•	
Cleanup Process Type (for the Unit):	☑ No Process☑ Voluntary Cleanup Progr☑ Federal-supervised or co		nt Action pervised or conducted
Site Status: Awaiting Cleanup Cleanup Started No Further Action R	☐ Construction Complete – ☐ Cleanup Complete – Activequired	ve O&M/Monitoring	Model Remedy Used?
Site Manager (Default Click to enter	text.) Click to enter	text.	
Specific confirmed contaminants in Click to enter text in Sc Click to enter text. in G		Facility/Site ID No. (if I Click to enter text. Cleanup Site ID No. (if Click to enter text.	
Click to enter text. in O	ther (specify matrix: <u>Choose a</u>	n item.	

COUNTY ASSESSOR INFO: Please attach to this report a copy of the tax parcel/ownership information for each parcel associated with the site, as well as a parcel map illustrating the parcel boundary and location.

Additional or Supplemental Information for Observations Page Please use this box for any text that requires special formatting

5
Fuel spill likely impacted Gifford Pinchot National Forest Parcel 038113000000 as well ROW. Per William Sauriol w/ WSDOT, 6/9/25 meeting, WSDOT has Memorandum of Agreement that makes them responsible for land associated with traffic accident spills outside of ROW.
USDA Forest Service Contact: Ranger Theresa Tanner theresa.tanner@usda.gov 360-497-1105
000 407 1100