

RETEASE # 2730 SNO HOMISH COUNTY **Hydrocarbon Evaluation** Release # 2730 EVERET UST Sito # 350

East and West Fuel Farms **Snohomish County Airport** Snohomish County, Washington

February 26, 2002

Prepared For:

Snohomish County Public Works Dept. 2930 Wetmore Avenue Everett, Washington 98201

Prepared By:

CDM

11811 NE 1st Street, Suite 201 Bellevue, Washington 98005

RECEIVED FEB 27 2002 DEPT OF ECOLOGY

CDM Project No. 19947-34153-Task 1

Bellevue, Washington 98005 tel: 425 453-8383 fax: 425 646-9523

February 26, 2002

Mr. John Bails
Department of Ecology, NW Regional Office
Toxics Cleanup Program
3190 160th Avenue SE
Bellevue, Washington 98008-5452

Subject:

Tank Nos. 93, 96, 97

East and West Fuel Farm

Snohomish County Airport - Paine Field

Snohomish County, Washington

Dear Mr. Bails:

This letter transmits Camp Dresser & McKee Inc.'s (CDM) evaluation of hydrocarbons at the East and West Fuel Farms located near the south end of Paine Field in Snohomish County, Washington. Tank No. 93 is at the East Fuel Farm and Tank Nos. 96 and 97 are at the West Fuel Farm. Mr. Andrew Rardin at Paine Field requested that a copy of this report be submitted to you.

Please call if you have any questions.

Very truly yours,

Pamela J. Morrill, CHMM

Project Manager

Camp Dresser & McKee Inc.

cc: Mr. Andrew Rardin, Paine Field

RECEIVED

FEB 2 7 2002

DEPT OF ECOLOGY

A Report Prepared For:

Snohomish County Public Works Department 2930 Wetmore Avenue Everett, Washington 98201

HYDROCARBON EVALUATION EAST AND WEST FUEL FARMS SNOHOMISH COUNTY AIRPORT SNOHOMISH COUNTY, WASHINGTON

February 26, 2002

Pamela Morrill, CHMM

Scientist

TANKS 93,96,97 NOT CISTEDS @ Sett 350, TANKS AKE Closen. FILED WITH RETENEE 5538.

CDM

11811 N.E. 1st Street, Suite 201 Bellevue, Washington 98005 425/453-8383

CDM Project No. 19947-34153-Task 1

Introduction

This report presents Camp Dresser & McKee Inc.'s (CDM) evaluation of petroleum hydrocarbon contamination at the East and West Fuel Farms located at the Snohomish County Airport (SCA) in Snohomish County, Washington. Snohomish County Public Works Department (the County) retained CDM to perform this evaluation in accordance with our October 4, 2001 proposal. CDM's services were performed under Master Agreement OC02-00, Work Authorization No. 12.

Background

The East and West Fuel Farms are located east and west of Goodrich Hangar 1 at the south end of Snohomish County Airport – Paine Field as shown on Figure 1. Underground Storage Tanks (USTs) at both fuel farms have been emptied and cleaned. During 2000 a change in service for USTs at the West Fuel Farm was submitted to Washington State Department of Ecology. USTs at the West Fuel Farm are used by the airport fire department as "Draft Pits" for testing water pumps on fire trucks. USTs at the East Fuel Farm are inactive.

In 1994 CDM conducted a subsurface contamination assessment at both fuel farms (AGI Technologies, 1994). Subsurface soils at both fuel farms consisted of fill within the UST cavities and very dense glacial till as native soils. Hydrocarbon contamination was identified in soil at the West Fuel Farm and in both soil and perched groundwater at the East Fuel Farm. Four monitoring wells (MW1 through MW4) were installed at the East Fuel Farm.

In response to a letter submitted by Washington State Department of Ecology (Ecology) requesting information on the status of remedial actions, Andrew Rardin at SCA requested an evaluation of current conditions with respect to hydrocarbon contamination and the potential for migration

Purpose and Scope of Services

The purpose of CDM's services was to evaluate changes in hydrocarbon contamination in perched groundwater, the potential for natural attenuation, and potential contaminant migration. The scope of our services included:

- Purge and sample five existing monitoring wells at the East Fuel Farm.
- Analyze collected water samples for fuel hydrocarbons.
- Evaluate natural attenuation processes.
- Review historical data collected on the sites. Compare historical and current groundwater analytical data.
- Prepare this report documenting our findings.

Sampling and Analysis

MW1 through MW4 were purged and sampled on October 24, 2001. An additional well (DW2) at the East Fuel Farm is screened in the aquifer. DW2 was also sampled. Figure 2 shows the well locations and Table 1 shows the screened interval and depth to water in each well. Wells installed in the perched groundwater range from 16 to 23 feet deep and have 5 to 10 feet of screen. At the time of sampling water levels in MW2 through MW4 ranged from about 4 to 4.5 feet below ground surface (ft bgs). The water level in MW1 was deeper at 9.6 ft bgs. MW1 is screened in a different interval than MW2 through MW4, which accounts for the difference in water levels. This difference in the water level at MW1 as compared to the other three wells exemplifies the discontinuity of perched water in the general area. DW2 is 147 feet deep with the water level at about 134 ft bgs.

The water in each well was purged until pH, specific conductivity, and temperature were stable or the well bailed dry. MW1 through MW4 were purged and sampled using disposable bailers. MW1 bailed dry and water levels in MW2 through MW4 dropped substantially (below the top of the screen) during purging. DW1 was purged and sampled using a Grundfos submersible pump. The water level in DW1 did not drop significantly during purging and sampling. Groundwater samples from each well were collected in 40-milliliter VOA vials and 1-liter amber glass bottles containing hydrochloric acid as a preservative. The samples were stored in a chilled cooler and transported directly to the CCI Analytical laboratory in Everett, Washington under chain-of-custody protocol.

The samples were analyzed for volatile and semivolatile petroleum hydrocarbons by Northwest Methods NWTPH-Gx and NWTPH-Dx, respectively, and for benzene, ethylbenzene, toluene, and xylenes (BETX) by EPA method 8021. Copies of the laboratory's analytical reports are included in the Appendix to this report.

Analytical Results

Analytical results for groundwater samples collected during this study are summarized in **Table 2** and compared against hydrocarbon analytical data from April 1994 and the State of Washington Model Toxics Control Act (MTCA) Method A cleanup levels. Petroleum hydrocarbons in the 1994 samples were analyzed by EPA method 8015 modified with quantification in the gasoline ($C_7 - C_{12}$), diesel ($C_{12} - C_{24}$), oil ($C_{22} - C_{34}$), and Jet A fuel ($C_7 - C_{22}$) ranges. The current analytical methods quantify two ranges of hydrocarbons: volatile ($C_8 - C_{12}$) and semivolatile ($C_{12} - C_{34}$). Thus, the comparison between historical and current analytical data is not direct.

Petroleum hydrocarbons were not detected in the aquifer well DW2, but were detected in MW1 through MW4. The chromatograms were reviewed and the profiles indicate that there are two different types of hydrocarbons present. Volatile, or gasoline-range, hydrocarbons were detected in MW2 and MW4 and semivolatile hydrocarbons were detected in all four shallow wells. The semivolatile hydrocarbons

are a very weathered diesel or similar product, but do not appear to be Jet A fuel. During the 1994 sampling, gasoline and/or Jet A fuel were identified in all four shallow wells, but not diesel or oil range hydrocarbons. The chromatograms of these earlier samples were reviewed, but the scale was so large that no pattern could be deciphered; thus they could not be compared to the current sample chromatograms.

What is evident is a significant decrease in total petroleum hydrocarbon (TPH) concentrations for all four monitoring wells, especially MW1 through MW3. Both volatile and semivolatile TPH concentrations in these three monitoring wells are less than current MTCA Method A cleanup levels. Previously, TPH concentrations exceeded cleanup levels in these three wells. TPH concentrations do not appear to have declined as much in MW4 as the other wells. However, it should be noted that CDM sampled these wells for another project in 1999 (see below), and at that time the water in MW4 exhibited a strong petroleum odor and sheen. During the current sampling round, the water had no sheen or obvious hydrocarbon odor.

BETX concentrations in these wells do not show the same overall decline as observed for TPH. Benzene concentrations are essentially the same as they were in 1994. In MW2, ethylbenzene, toluene, and total xylene concentrations are significantly lower than those observed in 1994. Concentrations of ethylbenzene, toluene, and xylenes in the remaining wells appear essentially unchanged; however, elevated detection limits for the 2001 sampling round hinders direct comparison.

Discussion of Natural Attenuation Processes

CDM did not conduct a formal study of natural attenuation processes at this site. However, existing data on wells MW1 through MW4 indicate contaminants are being biodegraded. In 1996 and 1999, MW1 through MW4 were sampled and analyzed for volatile organic compounds (VOCs) as a part of an investigation of the neighboring facility referred to as All Fab (former). Various chlorinated aliphatic hydrocarbons (CAHs)—including trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride (VC)—were detected in all four wells as summarized in Table 3. Previously, CDM reviewed the general history of chlorinated solvent use by All Fab. Results of that investigation determined that the TCE and 1,1,1-trichloroethane (1,1,1-TCA) were the only chlorinated solvents likely to have been used at the site and that the CAHs are likely to be degradation, or "daughter," products of TCE (CDM, 2000).

Biodegradation Pathways

The method in which specific chemical contaminants are biologically transformed varies. Some contaminants are transformed by both anaerobic and aerobic processes, while others will degrade strictly by one process or the other. Further complicating the process, some contaminants degrade in a stepwise fashion via different mechanisms. The East Fuel Farm contains petroleum hydrocarbons and chlorinated

solvents, which follow divergent degradation pathways. The following sections discuss the degradation mechanisms of these compounds.

Petroleum Hydrocarbons

Petroleum hydrocarbons biodegrade in virtually all soil and groundwater systems. In most subsurface environments, both aerobic and anaerobic degradation of fuel hydrocarbons can occur, often simultaneously in different parts of the plume (Weidemeier et al., 1998). However, because aerobic metabolism is the most energetically favorable, this is the fastest and most efficient method of hydrocarbon degradation. Anaerobic degradation processes were originally thought to be too slow to be of significance in groundwater. It is now generally accepted that this is not the case. An exception to this is the aromatic hydrocarbons, BETX. Although anaerobic biodegradation of aromatic hydrocarbons has been reported, it is uncommon and slow relative to aerobic biodegradation (Wrenn, 1998).

Chlorinated Compounds

Highly chlorinated compounds such as tetrachloroethene (PCE), TCE, and 1,1,1-TCA can be transformed by biological and abiotic processes to form a variety of other CAHs. These include chloroform, methylene chloride, cis-1,2-DCE, trans -1,2-DCE, 1,1-DCE, VC, 1,1-dichlorethane, and chloroethane. Contrary to the petroleum hydrocarbons, reductive dechlorination is the most common method by which chlorinated VOCs are biologically transformed. Figure 3 shows the reductive dechlorination sequences of the chlorinated ethenes and ethanes.

The major environmental requirement for anaerobic reductive transformation of CAHs is the presence of sufficient concentrations of other organics that serve as electron donors for energy metabolism (McCarty, 1997). Unfortunately, direct dechlorinators must compete for available H₂ with the hydrogenotrophic methanogens and sulfate reducers (Gossett and Zinder, 1997). Consequently, systems contaminated with petroleum hydrocarbons tend to be more conducive toward degradation of CAHs.

Conclusions

Based on the variety and relatively high concentrations of the degradation products of TCE in groundwater at the East Fuel Farm, reductive dechlorination is actively occurring. These processes are likely being assisted by the presence of fuel hydrocarbons. TPH concentrations have declined significantly over the past years. The exception to this appears to be BETX— most notably benzene. Given the reducing conditions at the site, this would be expected. BETX are not expected to degrade substantially until the other hydrocarbons are depleted and the system becomes more aerobic.

The lateral migration of contamination in perched groundwater at the East Fuel Farm will be limited by: 1) natural biodegradation processes that are currently occurring, 2)

the density of the till soils at SCA, and 3) the discontinuous nature of the perched water. Further, chemical analysis of the water in the aquifer shows that hydrocarbon contamination has not migrated vertically to the aquifer and density of the till soils.

Hydrocarbons at the West Fuel Farm are also expected to naturally attenuate at a very slow rate. Contaminant migration beyond the current locations will be very limited due to the lack of groundwater at this facility.

Based on our review of current and historical data, petroleum hydrocarbon contamination at the East and West Fuel Farms does not pose an imminent threat to human health and the environment.

Limitations

This report was prepared for the exclusive use of Snohomish County Public Works Department and SCA for this project only. The analyses, conclusions, and recommendations in this report are based on conditions encountered at the time of our field investigation, information you provided, and our experience and engineering judgment. CDM cannot be responsible for interpretation by others of the data contained herein.

Our work has been performed in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the area. No other warranty, express or implied, is made.

References

AGI Technologies (now CDM). 1994. Final Report, Contamination Assessment, Paine Field Fuel Farms and Old Mike Soil Stockpile, Snohomish County Airport, Snohomish County, Washington. Prepared for Snohomish County Public Works Department. Project No. 15,512.206. August 12.

CDM. 2000. Aquifer Investigation, All Fab (Former), Snohomish County Airport, Everett, Washington. Prepared for Snohomish County Public Works Department. Project No. 19947-29702-15512334.

Gossett, James M. and Stephen H. Zinder. 1997. Microbiological Aspects Relevant to Natural Attenuation of Chlorinated Ethenes. In Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water. EPA/540/R-97/504. May 1997.

McCarty, Perry L. 1997. Biotic and Abiotic Transformations of Chlorinated Solvents in Ground Water. In Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water. EPA/540/R-97/504. May 1997.

Wiedemeier, Todd H., Matthew A. Swanson, David E. Moutoux, and E. Kinzie Gordon of Parsons Engineering Science, Inc.; John T. Wilson, Barbara H. Wilson, and

Donald H. Kampbell of the U.S. Environmental Protection Agency, National Risk Management Research Laboratory; Patrick Haas, Ross N. Miller, and Jerry E. Hansen of U.S. Air Force Center for Environmental Excellence, Technology Transfer Division; and Francis H. Chapelle, United States Geological Survey. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128. September 1998.

Wrenn, Brian. 1998. Biodegradation of Aromatic Hydrocarbons. April 21, 1998. http://www.glue.umed.edu

Distribution

1 Copy

Snohomish County Public Works Department

2930 Wetmore Avenue Everett, Washington 98201

Attention: Mr. Dale Topham, P.E.

2 Copies

Paine Field

3220 100th Street S.W.

Everett, Washington 98204-1390

Attention: Mr. Andrew Rardin

1 Copy

Department of Ecology, NW Regional Office

Toxics Cleanup Program 3190 160th Avenue SE

Bellevue, Washington 98008-5452

Attention: Mr. John Bails

Quality Assurance / Technical Review by:

Susan J. Penoyar, P.E.

Principal

Tables

Tables

Table 1 Static Groundwater Level Data Summary Snohomish County Public Works Department/SCA Everett, Washington

Well I.D.	Total Boring Depth (ft bgs)	Depth of Screened Interval (ft bgs)	Date Measured	Depth to Water (ft TOC)	Top of Casing Elevation " (ft)	Water Surface Elevation (ft)
MW1	25.5	14.5 - 24.5	04/22/94	11.90	99.12	87.22
- 17		2 244	10/24/01	9.58		89.54
MW2	23.0	12 - 17	04/22/94	4.97	98.69	93.72
1 1 1		4 44	10/24/01	4.52	100	94.17
MW3	24.0	12.5 - 17.5	04/22/94	4.78	98.69	93.91
		10 K	10/24/01	4.16	and All	94.53
MW4	17.5	7 - 17	04/22/94	4.39	99.08	94.69
			10/24/01	4.05	-	95.03
DW2	147	137 - 147	10/24/01	134.39	- u	

Notes:

a) Top of casing elevations relative to an arbitrary benchmark with an arbitrary datum of 100.00 feet. ft bgs - feet below ground surface.

ft TOC - feet below top of casing.

Table 2
Analytical Summary - Hydrocarbons in Groundwater
Snohomish County Public Works Department/SCA
Snohomish County, Washington

					EPA Test Me	ethod			
			8015 Modified/NW	TPH ^a			8020/8021	b	
	Date	Gasoline/ TPH-Volatile	Diesel/ TPH-Semivolatile	Oil	Jet A	Benzene	Ethylbenzene	Toluene	Total Xylenes
Well I.D.	Sampled				μg/	L			
Shallow Wells									
MW1	04/27/94	1,000	<1,000	<20,000	<1,000	7.8	2	3.7	1.8
	10/24/01	<50	320			33	<10	<10	<30
MW2	04/27/94	2,000	<1,000	<20,000	1,000	13	88	47	470
	10/24/01	55	150			12	5	2	4
MW3	04/27/94	<1,000	<1,000	<20,000	1,300	65	0.6	3.2	1.8
	10/24/01	<50	380		****************	42	<10	<10	<30
MW4	04/27/94	2,000	<1,000	<20,000	1,100	130	75	8.7	80
	10/24/01	1,100	990			160	96	<10	<130
Deep Well									
DW2	10/24/01	<50	<130			<1	<1	<1	<3
Cleanup Level c		800	500		500	5	700	1,000	1,000

Notes:

Shaded value indicates concentration exceeds Method A cleanup level.

The 2001 testing used Northwest test methods NWTPH-Gx and NWTPH-Dx to quantify hydrocarbons in the volatile and semivolatile range.

- a) Earlier testing used method EPA 8015 Modified to quantify hydrocarbons as gasoline, diesel, oil, and Jet A fuel.
- b) EPA Test Method 8020 is an earlier method. EPA Method 8021 is a revised method of EPA Method 8020.
- c) Washington Administrative Code Chapter 173-340 Model Toxics Control Act Cleanup Regulation Method A cleanup level for groundwater. µg/L - micrograms per liter.

Table 3
Analytical Summary - Chlorinated VOCs in Perched Groundwater
Snohomish County Public Works Department/SCA
Everett, Washington

	Date	Tetra- chloroethene (PCE)	Trichloroethene (TCE)	cis -1,2- Dichloroethene (cis -1,2-DCE)	trans -1,2- Dichloroethene (trans -1,2-DCE)	1,1-Dichloroethene (1,1-DCE)	Vinyl Chloride (VC)	1,2-Dichloroethane (1,2-DCA)	Chloroethane (Ethylchloride)
Well I.D.	Sampled					μg/L			
MW1	05/07/96 02/24/99	 ND	1,490 4,400	3,730 6,700	189 460	 34	(80 ND) 85	 ND	 ND
MW2	05/07/96 02/24/99	ND	33.9 79	301 2,600	(8 ND) 50	9	131 920	 8	ND
MW3	02/24/99	ND	7,900	9,400	530	120	440	180	ND
MW4	02/24/99	ND	19	83	58	ND	1,100	ND	ND
Detection Lim	nit	4	5	5	5	5	5	5	5
Cleanup Leve	el ^a	5	5			14	0.2	5	e

Notes:

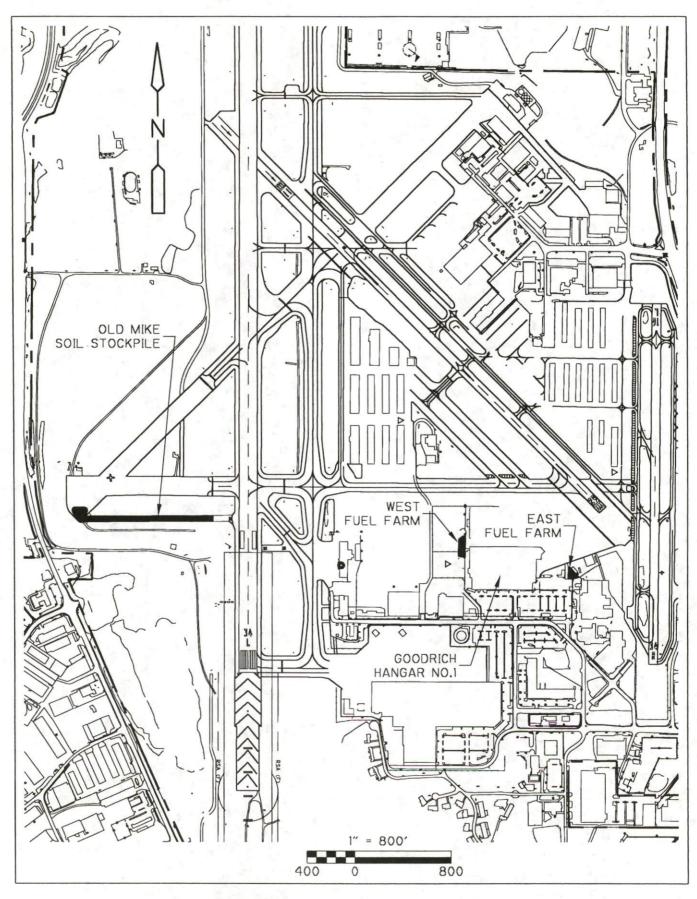
Shaded value indicates concentration exceeds Method A cleanup level.

Data from CDM, 2000, Aquifer Investigation, All Fab (Former) Snohomish County Airport.

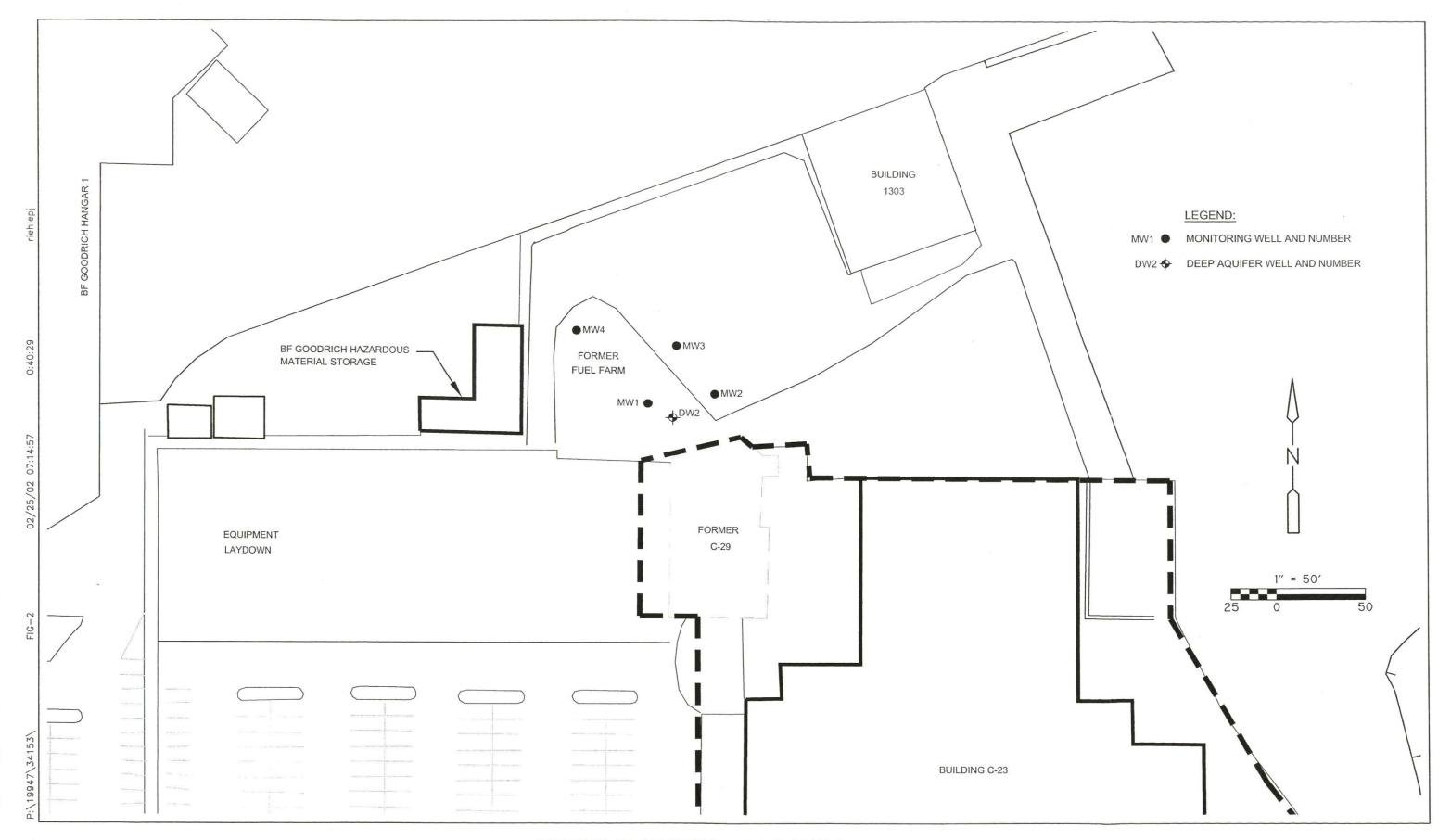
a) Washington Administrative Code Chapter 173-340 Model Toxics Control Act Cleanup Regulation Method A cleanup level for groundwater.

NA - not analyzed.

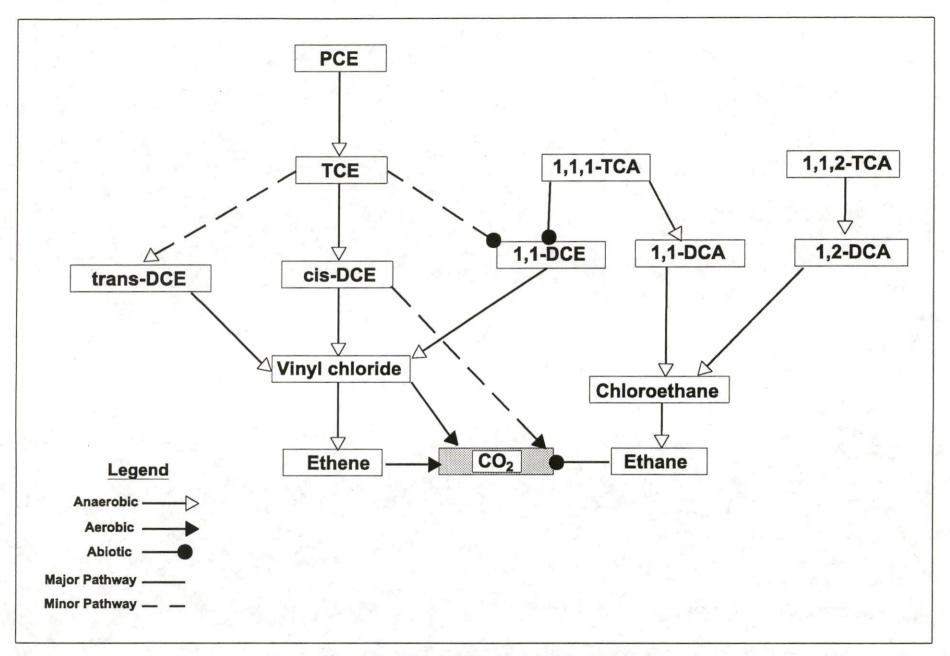
ND - not detected.


-- not reported (presumably analyzed and not detected, but detection limit not reported).

μg/L - microgram per liter.


Figures

Figures



SNOHOMISH COUNTY PUBLIC WORKS DEPT. / SCA SNOHOMISH COUNTY, WASHINGTON

SNOHOMISH COUNTY PUBLIC WORKS DEPT. / SCA SNOHOMISH COUNTY, WASHINGTON

Figure No. 2 Monitoring Well Locations - East Fuel Farm

Attachments

CAMP DRESSER & MCKEE INC. CLIENT:

DATE: 10/31/01 110108

11811 N.E. FIRST ST., SUITE 201

CCIL JOB #:

BELLEVUE, WA 98005

CCIL SAMPLE #:

1

DATE RECEIVED: 10/24/01 WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

CLIENT SAMPLE ID:

MW1-10/01 10/24/01 1400

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**		ANALYSIS DATE	ANALYSIS BY	
TPH-VOLATILE RANGE	NWTPH-GX	ND	UG/L		10/25/01	LAH	
MTBE***	EPA-8021	ND(<10)	UG/L		7/10/01	LAH	
BENZENE	EPA-8021	33	UG/L		10/29/01	LAH	
TOLUENE	EPA-8021	ND(<10)	UG/L		10/29/01	LAH	
ETHYLBENZENE	EPA-8021	ND(<10)	UG/L		10/29/01	LAH	
XYLENES	EPA-8021	ND(<30)	UG/L		10/29/01	LAH	
TPH-SEMIVOLATILE RANGE	NWTPH-DX	320	UG/L		10/28/01	MHR	

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

^{* &}quot;ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES GASOLINE(VOLATILE RANGE) REPORTING LIMIT IS 50 UG/L DIESEL RANGE REPORTING LIMIT IS 130 UG/L LUBE OIL RANGE REPORTING LIMIT IS 250 UG/L

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ANY POSITIVE MTBE RESULT SHOULD BE CONFIRMED BY GC/MS ANALYSIS

CLIENT: CAMP DRESSER & MCKEE INC.

11811 N.E. FIRST ST., SUITE 201

BELLEVUE, WA 98005

DATE: 10/31/01

CCIL JOB #:

110108

CCIL SAMPLE #:

2

DATE RECEIVED: 10/24/01

WDOE ACCREDITATION #:

CLIENT CONTACT:

PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

CLIENT SAMPLE ID:

MW2-10/01 10/24/01 1340

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-VOLATILE RANGE	NWTPH-GX	55	UG/L	10/29/01	LAH
MTBE***	EPA-8021	ND(<1)	UG/L	7/10/01	LAH
BENZENE	EPA-8021	12	UG/L	10/29/01	LAH
TOLUENE	EPA-8021	2	UG/L	10/29/01	LAH
ETHYLBENZENE	EPA-8021	5	UG/L	10/29/01	LAH
XYLENES	EPA-8021	4	UG/L	10/29/01	LAH
TPH-SEMIVOLATILE RANGE	NWTPH-DX	150	UG/L	10/28/01	MHR

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS HIGHLY WEATHERED GASOLINE AND UNIDENTIFIED

DIESEL RANGE PRODUCT

GASOLINE(VOLATILE RANGE) REPORTING LIMIT IS 50 UG/L

DIESEL RANGE REPORTING LIMIT IS 130 UG/L LUBE OIL RANGE REPORTING LIMIT IS 250 UG/L

^{* &}quot;ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ANY POSITIVE MTBE RESULT SHOULD BE CONFIRMED BY GC/MS ANALYSIS

CLIENT: CAMP DRESSER & MCKEE INC.

DATE: 10/31/01

11811 N.E. FIRST ST., SUITE 201

CCIL JOB #: 110108

BELLEVUE, WA 98005

CCIL SAMPLE #:

3

DATE RECEIVED: 10/24/01

3

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

CLIENT SAMPLE ID:

MW3-10/01 10/24/01 1000

DATA RESULTS

		46					
ANALY	TE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY	
TPH-VC	DLATILE RANGE	NWTPH-GX	ND	UG/L	10/25/01	LAH	
MTBE*		EPA-8021	ND(<10)	UG/L	7/10/01	LAH	
BENZE!	Ye.	EPA-8021	42 ND(<10)	UG/L UG/L	10/29/01 10/29/01	LAH LAH	
ETHYLE	BENZENE ES	EPA-8021 EPA-8021	ND(<10) ND(<30)	UG/L UG/L	10/29/01 10/29/01	LAH LAH	
TPH-SE	MIVOLATILE RANGE	NWTPH-DX	380	UG/L	10/28/01	MHR	

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

APPROVED BY: _

^{* &}quot;ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

GASOLINE(VOLATILE RANGE) REPORTING LIMIT IS 50 UG/L

DIESEL RANGE REPORTING LIMIT IS 130 UG/L

LUBE OIL RANGE REPORTING LIMIT IS 250 UG/L

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ANY POSITIVE MTBE RESULT SHOULD BE CONFIRMED BY GC/MS ANALYSIS

CLIENT: CAMP DRESSER & MCKEE INC.

DATE: 10/31/01

11811 N.E. FIRST ST., SUITE 201

CCIL JOB #: 11

110108

BELLEVUE, WA 98005

CCIL SAMPLE #:

4

DATE RECEIVED: 10/24/01

124/04

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

CLIENT SAMPLE ID:

MW4-10/01 10/24/01 1042

DATA RESULTS

	ANALYTE		METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
	TPH-VOLATILE RANGE		NWTPH-GX	1100	UG/L	10/25/01	LAH
	MTBE***		EPA-8021	ND(<10)	UG/L	7/10/01	LAH
1	BENZENE		EPA-8021	160	UG/L	10/25/01	LAH
,	TOLUENE		EPA-8021	ND(<10)	UG/L	10/25/01	LAH
	ETHYLBENZENE		EPA-8021	96	UG/L	10/25/01	LAH
	XYLENES		EPA-8021	ND(<130)	UG/L	10/25/01	LAH
	TPH-SEMIVOLATILE RANGE	*	NWTPH-DX	990	UG/L	10/28/01	MHR

NOTES:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCTS WHICH ARE LIKELY WEATHERED GASOLINE AND DIESEL DIESEL RANGE RESULT BIASED HIGH DUE TO VOLATILE RANGE OVERLAP

GASOLINE(VOLATILE RANGE) REPORTING LIMIT IS 500 UG/L

DIESEL RANGE REPORTING LIMIT IS 130 UG/L LUBE OIL RANGE REPORTING LIMIT IS 250 UG/L

APPROVED BY: _

^{* &}quot;ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ANY POSITIVE MTBE RESULT SHOULD BE CONFIRMED BY GC/MS ANALYSIS

CLIENT: CAMP DRESSER & MCKEE INC.

DATE: 10/31/01 CCIL JOB #: 110108

11811 N.E. FIRST ST., SUITE 201

CCIL SAMPLE #:

BELLEVUE, WA 98005

DATE RECEIVED: 10/24/01

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

CLIENT SAMPLE ID:

DW2-10/01 10/24/01 1140

DATA RESULTS

	ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
	TPH-VOLATILE RANGE	NWTPH-GX	ND	UG/L	10/26/01	LAH
	MTBE***	EPA-8021	ND(<3)	UG/L	7/10/01	LAH
1	BENZENE	EPA-8021	ND(<1)	UG/L	10/26/01	LAH
1	TOLUENE	EPA-8021	ND(<1)	UG/L	10/26/01	LAH
	ETHYLBENZENE	EPA-8021	ND(<1)	UG/L	10/26/01	LAH
	XYLENES	EPA-8021	ND(<3)	UG/L	10/26/01	LAH
	TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	UG/L	10/28/01	MHR

[&]quot; "ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES GASOLINE(VOLATILE RANGE) REPORTING LIMIT IS 50 UG/L DIESEL RANGE REPORTING LIMIT IS 130 UG/L LUBE OIL RANGE REPORTING LIMIT IS 250 UG/L

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ANY POSITIVE MTBE RESULT SHOULD BE CONFIRMED BY GC/MS ANALYSIS

CLIENT: CAMP DRESSER & MCKEE INC.

DATE: 10/31/01 11811 N.E. FIRST ST., SUITE 201 CCIL JOB #: 110108

BELLEVUE, WA 98005

DATE RECEIVED: 10/24/01

WDOE ACCREDITATION #:

CLIENT CONTACT: PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

			DATA RESULTS				
			SURROGATE RECOVERY				
CCIL	SAMPLE ID		ANALYTE	SUR ID			% RECV
COLL				30K 15			70 KECV
110	108-01		NWTPH-GX	TFT			*
110	108-01		EPA-8021	TFT			101
110	108-01		NWTPH-DX	C25			87
110	108-02		NWTPH-GX	TFT			94
	108-02		EPA-8021	TFT			136
	0108-02		NWTPH-DX	C25			129
110	7100 02		WITT DA	C23			123
110	0108-03		NWTPH-GX	TFT			134
110	0108-03		EPA-8021	TFT			79
110	0108-03		NWTPH-DX	C25			114
110	0108-04		NWTPH-GX	TFT			109
110	0108-04		EPA-8021	TFT			101
	0108-04		NWTPH-DX	C25			89
110	0108-05		NWTPH-GX	TFT			117
	0108-05		EPA-8021	TFT			119
	0108-05		NWTPH-DX	C25			77
				020			100
			BLANK AND DUPLICATE RESULTS				
METH	HOD	BLK RESULT	ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPI
NIM	TPH-GX (GAS)	ND(<50)	110108-01 TO 05	ND(< EO)	ND(< FO)	****	SAME
	A-8021(MTBE)	ND(<30)	110108-01 TO 05	ND(<50) ND(<3)	ND(<50) ND(<3)	****	SAME
	A-8021(BENZENE)	ND(<1)	110108-01 TO 05	ND(<3)	ND(<3)	****	SAME
	A-8021(TOLUENE)	ND(<1)	110108-01 TO 05	ND(<1)	ND(<1)	****	SAME
	A-8021(ETHYLBENZ)	ND(<1)	110108-01 TO 05	ND(<1)	ND(<1)	****	SAME
	A-8021(XYLENE)	ND(<3)	110108-01 TO 05	ND(<3)	ND(<1)	****	SAME
	TPH-DX (DSL)	ND(<130)	110108-01 TO 05	ND(<130)	150	****	SAME
	TPH-DX (OIL)	ND(<250)	110108-01 TO 05	ND(<250)	ND(<250)	****	SAME

CLIENT: CAMP DRESSER & MCKEE INC.

11811 N.E. FIRST ST., SUITE 201 CCIL JOB #: 110108

BELLEVUE, WA 98005

DATE RECEIVED: 10/24/01

DATE: 10/31/01

WDOE ACCREDITATION #: C142

CLIENT CONTACT: PAM MORRILL

CLIENT PROJECT ID:

EAST FUEL FARM 19947-34153-TASK1

DATA RESULTS

SPIKE/ SPIKE DUPLICATE RESULTS

		ASSOCIATED	% SPIKE	% SPIKE DUP	
METHOD	SPIKE ID	SAMPLES	RECOVERY	RECOVERY	REL % DIFF
EPA-8021	MTBE	110108-01 TO 05	104	N/A	N/A
EPA-8021	BENZENE	110108-01 TO 05	101	N/A	N/A
EPA-8021	TOLUENE	110108-01 TO 05	99	N/A	N/A
EPA-8021	ETHYLBENZENE	110108-01 TO 05	97	N/A	N/A
EPA-8021	XYLENE	110108-01 TO 05	97	N/A	N/A

APPROVED BY

^{*} SURROGATE DILUTED OUT OF CALIBRATION RANGE

^{**** %}RPD NOT REPORTED FOR VALUES <X5 THE REPORTING LIMIT

Data file : D:\HPCHEM\2\DATA\70110251\003F1501.D

Gas/BTEX 1 Report Created on 10/30/01 3:41:22 PM

Injection Date & Time: ____Thu, 25. Oct. 2001 6:32:54 PM

Sample Name : GAS 200 PEB 110108-31 5WIL

cq Operator : LAH

Acq. Method : 70GB1001.M

Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

FII	D1 A, (70	110251\003F	1501.D)				-					-
12000 -	2.569	3.896 1 5.054 5.609	6.841	Surrogate	Gasoline Envelope							
10000 -	1	4.731	1	TFT-Su	oline Er							
8000 =	1		6.358	8.654 -	99							
6000			7.253	φ 1	10.792							
4000 -	2.282		· 14	8.317	6 -				24.300	26.067		
2000 -	22			88		en la la caracteria	1	· zamannak po m		26.	ورسان والافراق والماران والمسادة	
0		5 110251\003F	-		10	15	20		25	5		m
				(7)			- 2 3					111
12000 -	2.648	3.473 - MTBE 5.031	Benzepg	-Surrogate	18.75	Kylenes re						
				(n	Γ	₹, P						
10000		4.076	340 = 1	TFT-S	790 - 1	ու 187 MFtgh pbgl						
10000 -		4.723	840 -	E	10.790 - T40.666	5.0845.187 999						
-	.435	4.723	-6.840 = 1	E	10.790 - Tel	12.955.089.187 5596 — FENPORDERBS 13.2959 — FENPORDERBS 13.293 — O-Xylene 15.772 15.772 15.772	00 400	€ 8	11 102 102 105	88 33	12 ¹ 90	
8000 -	- i	3.140	840 -	E	10.790 - 1 11.644.6	12.955.089.187 13.5959- 压制地 15.342 16.006- 15.772 19.5562	18.88310 19.294 28.289	% 188 0. 21.3 <u>8</u> 5. 22.373	23.320 23.741 24.302 24.306 25.356	26.073 26.658	7.775 28.335 3.963	
8000 - 6000 -		4.723	840 -	E	10.790 = 1 11.644.8	12.955.089.187 13.5959	18.8%10 19.5%	29.385 21.385 22.353	23.320 23.741 23.741 24.302 24.906	26.073 26.073 f 26.658	27.775 28.335 28.963	
8000	- i	3.269_3.140 3.9554	840 -	E		12.95 15.342 16.006 - 1 19.6362 17.382	18.86410	M. L. Li	23.320 23.741 24.302 24.906	الله علي الله		
8000 = 60	2.282	3.140	840 -	E	10.790 - 11.84A.8	12.995.099.187 13.395 14.342 16.006 15.772 16.006 15.772	20	M. L. Li	23.320 23.741 24.302 24.306 25.35906	الله علي الله		mi
8000	2.282	3.955 4.723	840 -	FTT 8.610	10	12.95 15.342 16.006 - 1 19.6362 17.382	20	M. L. Li		الله علي الله		mi
8000	7877 7877 7877 7877 7877 7877 7877 787	3.955 4.723	ound N	Jame	10	15.342 16.006 - 16.006 - 17.00	20 An	nount		5		m
8000	7877 7877 7877 7877 7877 7877 7877 787	3,269,3,140 Compo	ound N	Jame	10 e	15 Area 148762.828	20 An	nount 1 4 REVIEN	ug/L 4.458* 6.142	5	1 /	mi

			Gas-50ug/L	REVIEWED BY AS
	Ret.	Compound Name	Area	Amount ug/L
	4.076	MTBE	16696363.000	681.627
	6.840	Benzene	2394359.000	35.978
	8.610	TFT-Surrogate	730220.813	29.479¥
		Toluene	430148.250	6.107
	13.969	Ethylbenzene	11532.104	0.142
SE /	14.213	M & P Xylenes	24937.354	0.243
	14.943	O-Xylene	9670.364	0.131

MTBE, B on other run T= Gug/ E= rug/ X=3 ug/ mteference IH
MTBE BTEX off 500 ul b/c of interference.

Data file : D:\HPCHEM\2\DATA\70110291\013F1301.D

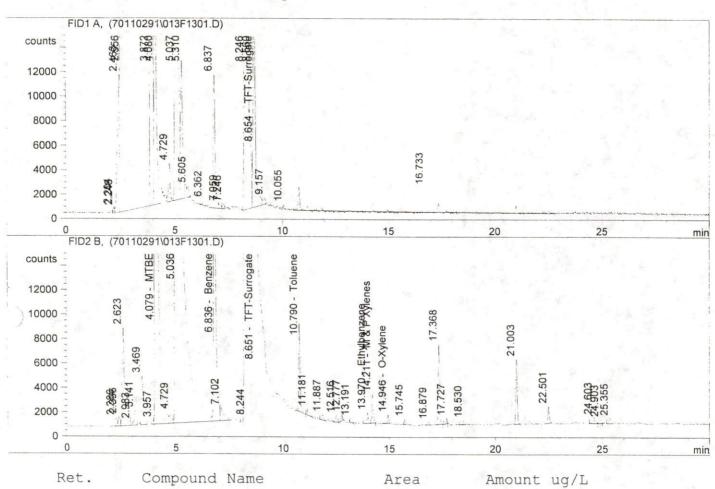
Gas/BTEX 1 Report Created on 10/30/01 2:43:23 PM

Injection Date & Time: Mon, 29. Oct. 2001 4:08:23 PM

Cample Name

: 110108-1c RR 500

dq Operator


: LAH

Acq. Method

: 70GB1001.M

Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

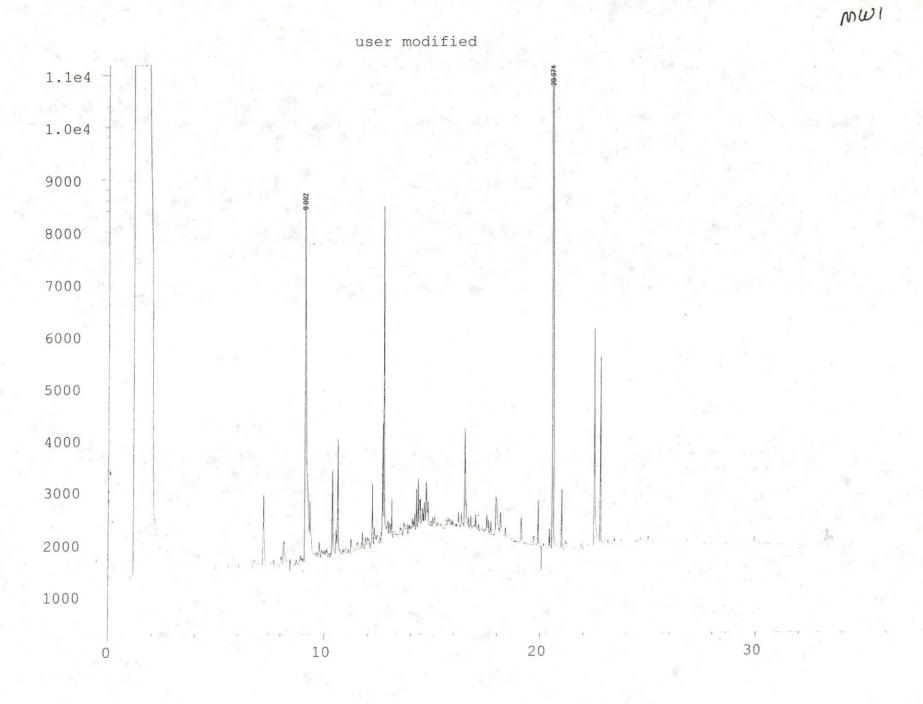
Ret.	Compound Name	Area	Amount ug/L
	TFT-Surrogate	102396.437	10.236 102/
0.000	Gasoline Envelope	0.000	0.000

NEVIEWED		Cras-500 ug/c	Gas on previo
Ret.	Compound Name	Area	Amount ug/L

us run

4.148	4.079	MTBE	1780835.000	72.130RT
	6.836	Benzene	235115.078	3.274
	8.651	TFT-Surrogate	257436.438	10.106 10%
	10.790	Toluene	32941.223	0.357
(1)	13.970	Ethylbenzene	3744.323	0.046
The same	14.211	M & P Xylenes	10345.644	0.101
	14.946	O-Xylene	2556.566	0.035

MTBE = 720 mg/L B= 330 mg/L T, E < 10 mg/L X < 30 mg/L
MTBF < 10 mg/L 33 mg/L


External Standard Report Page Number : 1 Instrument : DIESEL #2 Vial Number : 11 Sample Name : 110108-1 Injection Number: 1 Run Time Bar Code: Sequence Line : 8 Acquired on : 28 Oct 01 04:23 PM Instrument Method: 4DXT1001.MTH Report Created on: 29 Oct 01 11:27 AM Analysis Method : 4DSL1001.MTH Last Recalib on : 25 OCT 01 07:45 AM Sample Amount : 0 Multiplier ISTD Amount Sig. 1 in D:\HPCHEM\4\DATA\41102801\011F0801.D Ret Time Area Type Width Ref# ug/ml 146 \$ 871 User Modified

> D= 129.059 mg/e + Int 400 ml = 0.32 mg/l

MOL 25 mg/e

A DATE /0/3/61

NH 10 29-01

Data file : D:\HPCHEM\2\DATA\70110291\010F1001.D

Gas/BTEX 1 Report Created on 10/29/01 3:20:10 PM

Injection Date & Time: Mon, 29. Oct. 2001 2:21:35 PM

cample Name : 110108-2d RR 5ML

cq Operator : LAH

Acq. Method : 70GB1001.M

Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

0	5	10	15	20	25	m
2000 -	22	00 01 10 00 1	13.66 13.66 14.8 15.35 18.25 18.25	20.060	23.737	
4000 -	2.38887 3.137 4.727	7.634 19960 0.656 646148 12.133	14.804564 14.804564 15.332 16.585 18.256 18.256 18.256	20.060	37	
6000		17.88	201			
8000 -	ď	70 .845 8.652- 10 36 1.874	200			
10000 -	4 4	789 789	14.949 - NEWPORNERBS 14.944 - O-Xylene 15.837 15.837			
12000 -	14	0)				
counts -	2.661 - MTBE 5.037 5.617	8 241 Surrogate 9.155 Toluene	Kylene -Xylene 15.837			
	FID2 B, (70110291\010F1001.		15	20	25	
0 -	5	10	and the State State of the State Sta	San Street Washington	A to grant with the same and a second or a	e olev serveril en
2000 -	2.212	1012		3	24.305	
4000	V 4.7 2 1	12000	2		52 89	
6000 -	4.36	8 8	696			
8000 -	727	847.847 8.654	G			
10000		Ė	soline			
12000		-Sur	Env			
counts	23. 45.08 33. 45.08 44.08 5.037 5.622	8.242 9.156 9.156	13.969 - Gasoline Envelope			

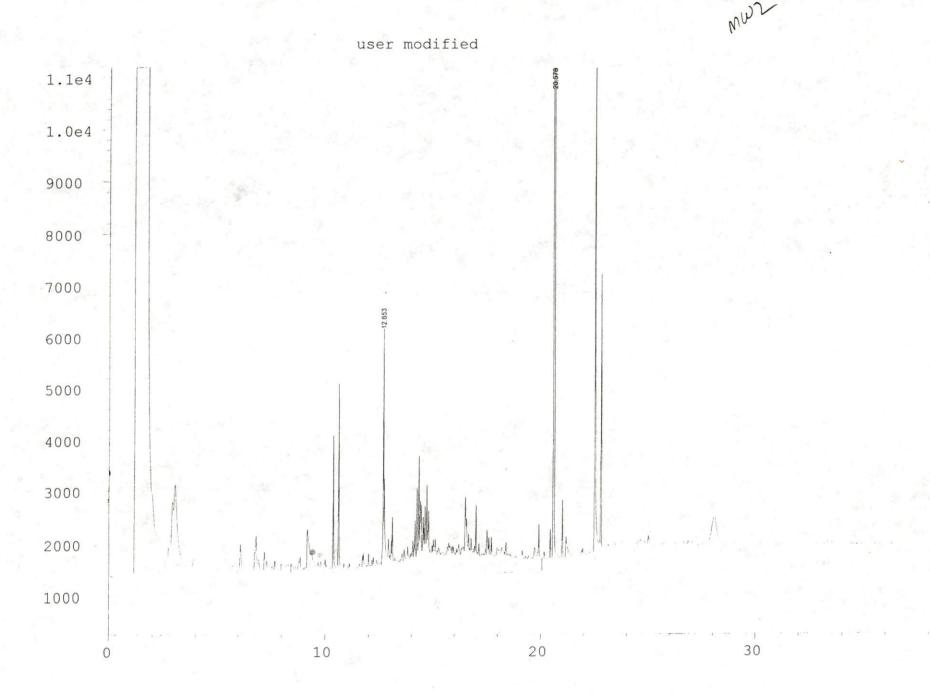
Ret.	Compound Name	Area	Amount	ug/L
0 654				0/1/
	TFT-Surrogate	93721.375		9.446 947.
13.969	Gasoline Envelope	455747.500	į.	54.914

		Gas=5	5 mg/c	REVIEWED BY Ph
	Ret.	Compound Name	Area	Amount ug/L
4.	4.078	MTBE	2228942.500	90.441RT
	6.841	Benzene	826562.625	12.232
	8.652	TFT-Surrogate	343051.875	13.614/36/
	10.789	Toluene	135871.672	1.659
	13.968	Ethylbenzene	319998.094	5.075
1	14.213	M & P Xylenes	376913.969	4.445
		O-Xylene	33828.059	0.458

MTBE < / ug/L B= 12 12 ug/L T= 2 ug/L E= 5 ug/L X= 4 ug/L

117-20-0114

External Standard Report Data File Name : D:\HPCHEM\4\DATA\41102801\012F0801.D O rator : LAH Page Number Instrument : DIESEL #2 Vial Number : 12 Sample Name : 110108-2 Injection Number: 1 Run Time Bar Code: Sequence Line : 8 Acquired on : 28 Oct 01 05:07 PM Instrument Method: 4DXT1001.MTH Report Created on: 29 Oct 01 11:28 AM Analysis Method : 4DSL1001.MTH Last Recalib on : 25 OCT 01 07:45 AM Sample Amount : 0 Multiplier ISTD Amount Sig. 1 in D:\HPCHEM\4\DATA\41102801\012F0801.D Ret Time Area Type Width Ref# ug/ml |-----|-----|----|----|----| 51.688 nC-25 surrogate 1791.


User Modified

D= 60.074 mg/ex low = 0.15 mg/e 400 ml = 0.15 mg/e unidentified Deenl range product

MC L ,25mg/e

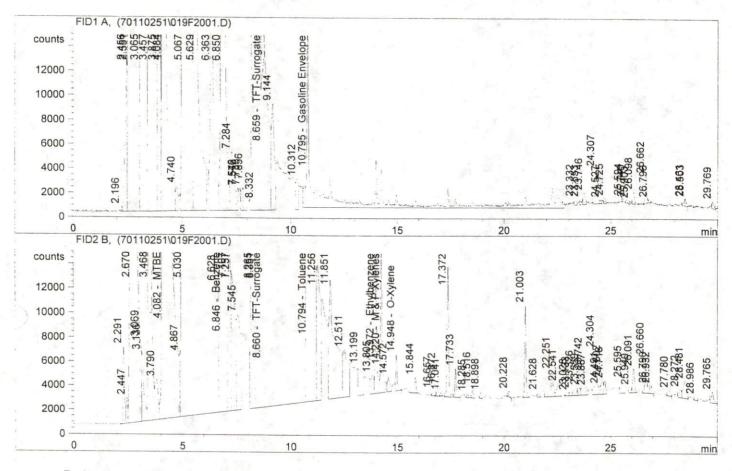
REVIEWED BY KB 6 DATE /0/3/51

MH 10-29-01

Data file : D:\HPCHEM\2\DATA\70110251\019F2001.D

Gas/BTEX 1 Report Created on 10/30/01 3:58:31 PM

Injection Date & Time: Thu, 25. Oct. 2001 9:29:30 PM


Sample Name : 110108-3 5ML

£q Operator : LAH

Acq. Method : 70GB1001.M

Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

Ret.	Compound Name	Area	Amount ug/L
	TFT-Surrogate Gasoline Envelope	137321.375 393862.562	13.416 <i>134</i> //. 47.003

	Co	A - F 11116 1	EWED BY RA	W &
Ret.	Compound Nam	Area	Amount ug/L	NO MO GE
4.082	MTBE	20219874.000	825.609	JUR COM
6.846	Benzene	2522872.000	37.925	New 10
8.660	TFT-Surrogate	122480.203	4.576	0.0000
10.794	Toluene	613740.000	8.883	Con O-
13.972	Ethylbenzene	62950.957	0.774	no M.
14.220	M & P Xylenes	60159.926	0.587	50
	O-Xylene	14275.330	0.193	(D)

BTEXUSE 500 ML

Data file : D:\HPCHEM\2\DATA\70110291\015F1501.D

Gas/BTEX 1 Report Created on 10/30/01 4:01:22 PM

Injection Date & Time: Mon, 29. Oct. 2001 5:38:34 PM

Sample Name : 110108-3c RR 500

q Operator : LAH

Acq. Method : 70GB1001.M

Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

8000 - 6000 -	2.398 3.08145 3.967 4.733 6.565	8.248 8.660 11.868	13.8721.7 Ethylor 4.950 - O-Xylene	1,7,35 21.008 22.508		
8000 -		(0)	₩ E			
10000 -	4.00	0- TFT-S	트twkPrXglenes Xylene			
12000	. Be	r-Surr	Phes			
counts _	2.652 3.471 MTBE 5.043	-Surrogate				
FIC	5 D2 B, (70110291\015F1501.D)		10	20	25	r
0	5	10	15	graph their hammer and a surregar and a substitution on the case and analysis of the case	05	
2000 -	2.395	8.250 8.250 921/5				
4000 -	4.733	24				
6000 -	3	8				
8000 -	5.627	8.657 -				
10000 -	6.362	H				
12000 -		Sur				
counts	2.557 43.886 55.3743 6.846	ogate				
counts	D1 A, (70110291\015F1501.D)	Surrogate				

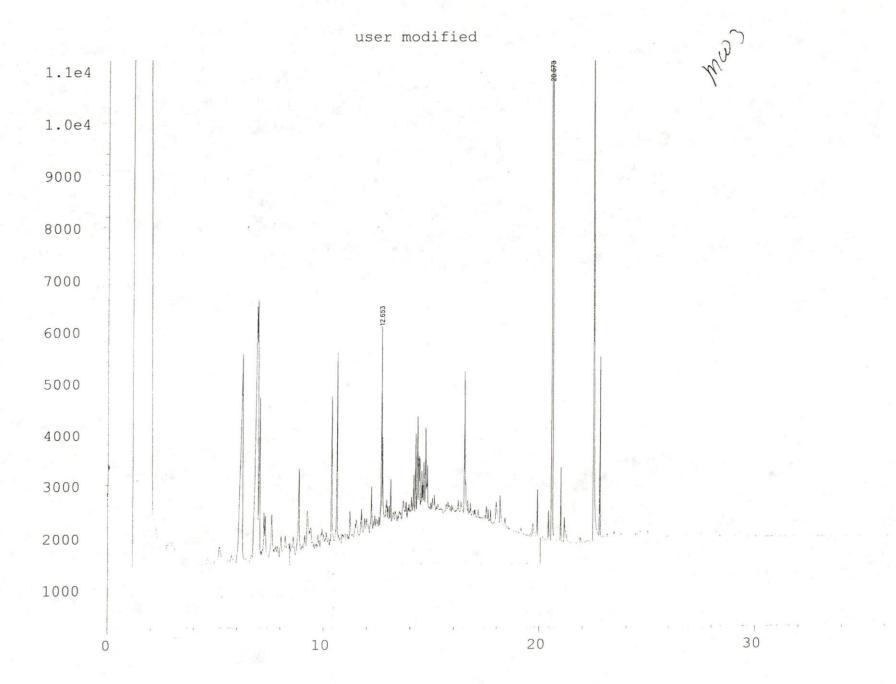
Ret.	Compound Name	Area	Amount	ug/L	
	TFT-Surrogate Gasoline Envelope	99661.523		9.987	100%
0.000	gazottue puvetobe	0.000		0.000	

Gras = 500 Light On previous run

	Ret.	Compound Name	Area	Amount ug/L
	4.084	MTBE	2341644.250	95.046
	6.842	Benzene	294886.187	4.179
	8.660	TFT-Surrogate	202550.078	7.85779%
	10.793	Toluene	28746.342	0.311
1	13.973	Ethylbenzene	5895.010	0.072
1	14.217	M & P Xylenes	10723.673	0.105
	14.950	O-Xylene	2395.888	0.032

T. E < Dugh X < 3 ug/L MTBE < 10 µg/L B=42 µg/L

External Standard Report Da+a File Name : D:\HPCHEM\4\DATA\41102801\014F0801.D O; rator : LAH Page Number Instrument : DIESEL #2 Vial Number : 14 Sample Name : 110108-3 Injection Number: 1 Run Time Bar Code: Sequence Line : 8 Acquired on : 28 Oct 01 06:35 PM Instrument Method: 4DXT1001.MTH Report Created on: 29 Oct 01 11:33 AM Analysis Method : 4DSL1001.MTH Last Recalib on : 25 OCT 01 07:45 AM Sample Amount : 0 Multiplier ISTD Amount Sig. 1 in D:\HPCHEM\4\DATA\41102801\014F0801.D Ret Time Area Type Width Ref# ug/ml 610326 MM 2.174 1 150.032 TPH-Dsl envelope 224822 MM T 0.029 1 45.790 nC-25 surrogate 12.653 User Modified


D = 150.032 mjl. + lad = 0.38 mjl.

Diesel

1702 C.25 mg/e

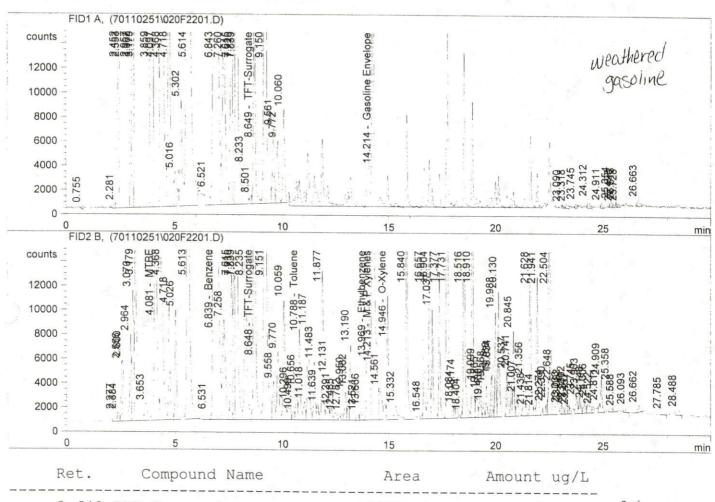
NH 10-29-01

REMERICE AN KIS

: D:\HPCHEM\2\DATA\70110251\020F2201.D

Gas/BTEX 1 Report Created on 10/26/01 11:56:33 AM

Injection Date & Time: Thu, 25. Oct. 2001 10:40:09 PM


Sample Name : 110108-4 500UL

cq Operator : LAH

Acq. Method 70GB1001.M

Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

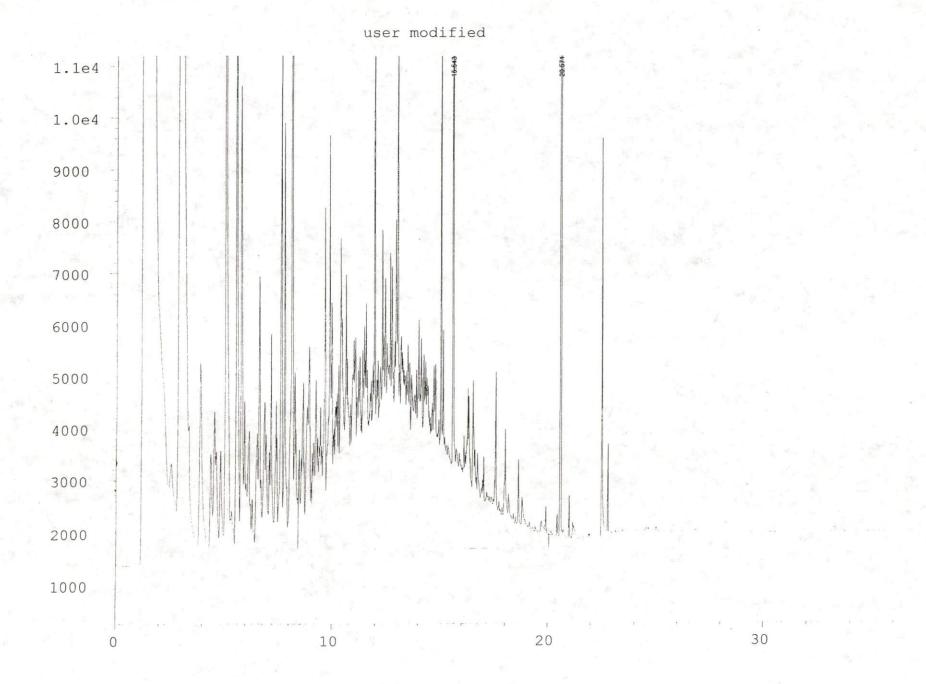
Ret.	Compound Name	Area	Amount ug/L
	TFT-Surrogate Gasoline Envelope	109794.047 873434.188	10.909 109%

		Gas=	11cayle	REVIEWED BY KA
	Ret.	Compound Name	Area	Amount ug/L
4.148	4.081	MTBE	193865.188	7.281
	6.839	Benzene	1094089.000	16.284
	8.648	TFT-Surrogate	257324.062	10.102/01/.
	10.788	Toluene	36624.563	0.397
)	13.969	Ethylbenzene	584028.188	9.585
100	14.213	M & P Xylenes	974232.063	12.935
	14.946	O-Xylene	50222.555	0.680

MTBE < 10 mg/L B= 1600 mg/L T < 10 mg/L E-96 mg/L X=130 mg/L 10-30 01LH

External Standard Report

Data File Name : D:\HPCHEM\4\DATA\41102801\015F0801.D Op lator : LAH Page Number Vial Number : 15 Instrument : DIESEL #2 Sample Name : 110108-4 Injection Number: 1 Run Time Bar Code: Sequence Line : 8 Acquired on : 28 Oct 01 07:18 PM Instrument Method: 4DXT1001.MTH Report Created on: 29 Oct 01 11:34 AM Analysis Method : 4DSL1001.MTH Last Recalib on : 25 OCT 01 07:45 AM Sample Amount : 0 Multiplier ISTD Amount Sig. 1 in D:\HPCHEM\4\DATA\41102801\015F0801.D Ret Time Area Type Width Ref# ug/ml |-----| User Modified


D= 397,412 mg/e + Int = 0.99 mg/e

Deal biased high due to volatile range overlap.

MO L 0.25 mg/2

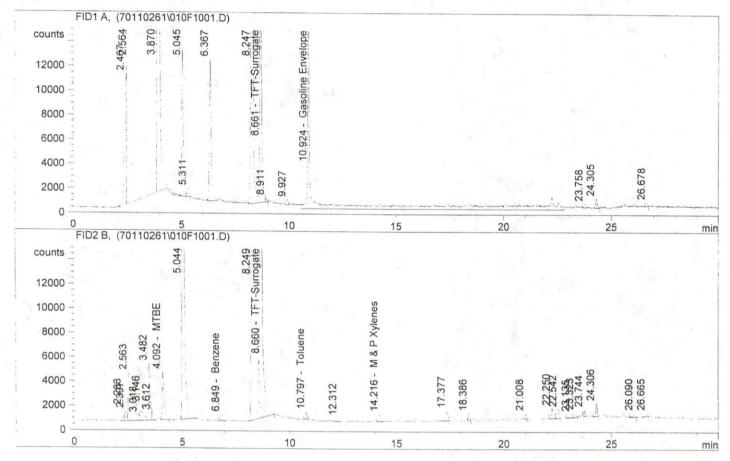
MJ 10-29-01

DEVIEWED W RB, 1931/01

Data file : D:\HPCHEM\2\DATA\70110261\010F1001.D

Gas/BTEX 2 Report Created on 10/27/01 3:37:24 PM

Injection Date & Time: Fri, 26. Oct. 2001 5:06:44 PM


Sample Name : 110108-5 5ML

zq Operator : LAH

Acq. Method : 70GB1001.M

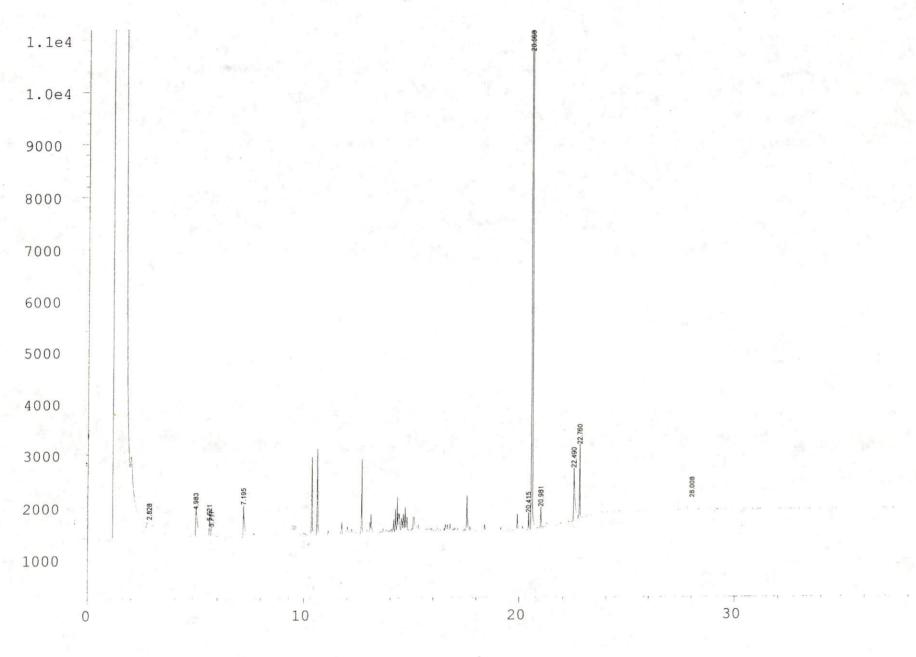
Analysis Method: D:\HPCHEM\5\METHODS\70GB1001.M

FID1 A equivalent to FID analysis. FID2 B equivalent to PID analysis.

Ret.	Compound Na	ame	Area	Amount ug/L	
	TFT-Surrogate Gasoline Envel		118053.539 306072.937	11.662 36.526	410×100=

		Cas	-50 mg/c	MEVIEWED BY RA
	Ret.	Compound Name	Area	Amount ug/L /9/3/6/
	4.092	MTBE	22795.135	0.705
	6.849	Benzene	2819.386	0.033
	8.660	TFT-Surrogate	301333.281	11.905 (9%
	10.797	Toluene	2261.184	0.025
	0.000	Ethylbenzene	0.000	0.000
1000	14.216	M & P Xylenes	3041.305	0.030
		O-Xylene	0.000	0.000

MTBE=3mg/L B.T.E=/mg/L X=3mg/L


10-27-OILH

External Standard Report Data File Name : D:\HPCHEM\4\DATA\41102801\016F0801.D Op rator : LAH Page Number : 1 Instrument : DIESEL #2 Vial Number : 16 Sample Name : 110108-5 Injection Number: 1 Run Time Bar Code: Sequence Line : 8 Acquired on : 28 Oct 01 08:02 PM Instrument Method: 4DXT1001.MTH Report Created on: 29 Oct 01 11:35 AM Analysis Method : 4DSL1001.MTH Last Recalib on : 25 OCT 01 07:45 AM Sample Amount : 0 Multiplier : 1 ISTD Amount Sig. 1 in D:\HPCHEM\4\DATA\41102801\016F0801.D Ret Time Area Type Width Kei# ug/mil
|-----|-----|-----|-----|-----|
15.543 * not found * 1 TPH-Dsl envelope
20.568 152097 PB 0.026 1 30.963 nC-25 surrogate Ret Time Area Type Width Ref# ug/ml Not all calibrated peaks were found

> Di 0.13 mg/e MOL 0.25 V

> > M10-29-01

CHAIN-OF-CUSTODY

														D	ate		10	12	4/	01			_	Pag	je .		/		of _	_/			
PROJECT INFORMATION							Laboratory Number:																										
Project Manager: Pam Mount							ANALYSIS REQUEST																										
Project Name: Egst Fuel Farin							PETROLEUM				ORGANIC COMPOUNDS						PESTS/PCBs				METALS				LI	EAC			OTHER				
Project Number: 19947 - 34153 - Taski																								2 3	17		STS	_				Z	
Site Location: <u>Pame Feld</u> Sampled By: P3 m							TPH-D	TPH-418.1	15M	101	20 A	20M	40 0	8310 PAHs	40 P	NS -	80M	40 0	8150 0	Necte	ganio	L M	iority	MESP	F	TCLP -	1	TCLP -				JMBI	
DISPOSAL INFORMATION								8.1	1PH Special Instructions 8015M Fuel Hydrocarbon	8010 Halogenated VOCs	8020 Aromatic VOCs	8020M - BETX only	82/0 GC/MS Semivolatiles 8240 GC/MS Volatiles	AHs	8040 Phenols	DWS - Volatiles and Semivolatiles	8080M PCBs only	8140 OP Pesticides	8150 OC Herbicides	Selected Metals: list	Organic Lead (Ca)	TCL Metals (23)	Priority Poll. Metals (13)	MFSP - Metals (Wa)	TCLP - Volatiles (ZHE)	Sem	Pes	Metals				NUMBER OF CONTAINERS	
☐ Lab Disposal (d)		TPH-HCID S	3	(2)	(2)	Hyd	enate	atic V	O XT	S Vo		ols	tiles	S on	estici	erbic	etals	d (C	(23)	Met	tals (tiles	Semivolatiles	Pesticides	als				OF CO	
Disposal Method:					State:	State:	State:	State:	tructi	ed Vo	OCs	nly	latile			and	200	des	des	list	a)		als (Wa)	HZ	atiles	S					TNC	
Disposed by:	And I would be a second	1000					N	0	ons	OCs	3		s			Sem	1		-				13)									AINE	
	PRMATION					3	P							S	S		volat																RS
□SW-846 □ CLP □					+	-	2.0									iles																34.	
SAMPLE ID	DATE	TIME		LABID		X	V	+	+	+	+	-	+	+		+	+	+	+	+	-		+	+	+	H	\vdash	+	+	\vdash	+	>	
MW1-10/01	10/24/01	1340	WATER	1	H	- 1		+	+	+	+		+	+		+	+		+	+	-		+	+	+	+		+	+	\vdash	+	4	
M WZ-13/01	The state of the s	1000		3-1	H	X	X	+	+	+	+		1	3-		+	+	\vdash	+	+	+	Н	+	+	+	\forall	\forall	+	+	\vdash	+	>	
MW4-17/01	-	1042		4	H	X	Y	+		+	+		+		\forall	-	1		+	+	+		+	+	+	H		+		\vdash	+	2	
* DW 2-10/01	1	1140	1/	5.		-	V	+	+	†	+		+		\forall	\dagger	+		+	\dagger			+	+	+		\Box	+	+	\Box	+	7	
W 1000 C 10101	*	1110	V			^	1	+		†			+			\dagger	+		1	†			1	+	+	T							
Y	-1					1	1		\top	t	T		\dagger				†		1	1					1			1	- 1			1	
X Sample ID on bottle	is this.	10/01	14.2													Part of					Cag.												
LAB INFORMA	Commence Produce		SAM	LE REC	EIP	Т	1		4,7	RE	M	IQL	IISH	IED	BY	: 1	0	REL	INC	UI	SHI	ED	BY	2	.	REI	LIN	QU	ISHI	ED E	3Y: 3	3.	
Lab Name: (CI	},	Tota	Number of C	Containers:	1				1	Sign	ature:	M	lon	01	1	Time 43	:	Signat	ure:					Time:		Signature: Time:							
Lab Address: Fyret		Chai	n-of-Custody	Seals: Y/N	/NA					Print	ted Na	me:				Date	:	Printe	Nam	e:			, di-	Date:		Printe	d Na	me:			Da	ite:	
Intact?: Y/N/NA						Police J. Marrill 10-2							Company:							+	Company:					\dashv							
Via: Sample Received in Good Condition/Co														Maria a	2							-											
Turn Around Time: ☐ Standard ☐ 24 hr. ☐ 48 hr. ☐ 72 h							Tr. 1 WK. RECEIVED BY: 1.						200								-	Committee Contractors					3.						
PRIOR AUTHORIZATION IS REQUIRED FOR RUSH						A				olgn	ature:		_	- Versions	130	Time		Signature: Time:								Signature: T					110	id.	
Special Instructions:										Print	ted Ma	me:	American de Company	opinioni in	0.2	Date 47		Printe	Nam	e:				Date:	1	Printe	d Na	me:			Da	ite:	
												Company A						Company:								Company:							

CDM OFF S: Bellevue: (206) 453-8383 Portland: (503) 232-1800

Gig Harbor: (206) 851-5562

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to CDM Project Files; Gold to CDM Disposal Files id\chain of custody.p65

10/24/01