Rocky Top Environmental Limited Purpose Landfill 2025 Second Quarter Groundwater Monitoring Report

August 2025

Rocky Top Environmental Limited Purpose Landfill 2025 Second Quarter Groundwater Monitoring Report

Prepared for

DTG Recycling P.O. Box 14203 Mill Creek, WA 98082

Prepared by

Parametrix

719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.206.649.6353 www.parametrix.com

August 2025 | 553-8472-009

Citation

Parametrix. 2025. Rocky Top Environmental Limited Purpose Landfill 2025 Second Quarter Groundwater Monitoring Report. Prepared for DTG Recycling by Parametrix, Seattle, Washington. August 2025.

Certification

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Sally Nguyen, GIT

Reviewed by Mike Brady, LG, LHG

Approved by Laura B. Lee, Project Manager

Contents

1.	Intro	duction		1	
	1.1	LPL Des	scription	1	
		1.1.1	MTCA Site	1	
		1.1.2	Additional Facility Operations	2	
2.	Phys	ical Setti	ng	2	
	2.1	Topogra	phy	2	
	2.2	Soils		2	
	2.3	Geology	·	2	
	2.4	Hydroge	eology	3	
		2.4.1	Recharge and Discharge	3	
		2.4.2	Groundwater Flow	4	
		2.4.3	Hydraulic Conductivity	4	
	2.5	Surface	Water	4	
3.	Moni	toring Hi	story	5	
٥.	3.1	_	Changes		
	3.2		/es		
	3.3		ance		
4					
4.			Analysis		
	4.1		Groundwater Sampling		
	4.2		water Analysis		
	4.3	Leachat	te Pond Monitoring		
5.	Resu	ılts		7	
	5.1	Groundwater Elevations and Flow			
		5.1.1	Groundwater Elevations	7	
		5.1.2	Groundwater Gradient	8	
		5.1.3	Groundwater Flow	8	
	5.2	Groundwater Quality			
		5.2.1	Data Quality Evaluation	8	
		5.2.2	Comparison of Data to Water Quality Criteria	8	
		5.2.3	Time-Series Plots	10	
		5.2.4	Geochemical Evaluation	11	
		5.2.5	Statistical Analysis of Groundwater Quality Data	12	

Contents (continued)

6.	Conclusion	18	14
	6.1 Reco	ommendations	15
7.	Reference	s	16
8.	Limitations	S	18
FIG	GURES		
	Figure 1	Facility Vicinity Map	
	Figure 2	Well Location Map	
	Figure 3	Groundwater Levels and Elevations	
	Figure 4	Second Quarter 2025 Shallow Aquifer Potentiometric Surface	
	Figure 5	Second Quarter 2025 Interflow Zone Potentiometric Surface	
TAI	BLES		
	Table 1	Well Detail Summary	
	Table 2	Groundwater Analyses and Analytical Methods	
	Table 3	Groundwater Levels and Elevations, Second Quarter 2025	
	Table 4	Second Quarter 2025 Shallow Aquifer Groundwater Quality Monitoring Results	
	Table 5	Shallow Aquifer Groundwater Samples that Failed to Meet Applicable Groundwater Standards in Second Quarter 2025	
	Table 6	Second Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results	
	Table 7	Interflow Zone Groundwater Samples that Failed to Meet Applicable Groundwater Standards in Second Quarter 2025	
	Table 8	Second Quarter 2025 Upper Prediction Limit (UPLs) and Shewhart Control Limit (Scomparisons	CLs)

APPENDICES

- A Second Quarter 2025 Field Data Sheets
- B Second Quarter 2025 Laboratory Analytical Report
- C Second Quarter 2025 Data Quality Evaluation
- D Time-Series Plots
- E Geochemistry
- F Statistics

Acronyms and Abbreviations

AA Alluvial Aquifer

AO Agreed Order

bgs below ground surface

CULs cleanup levels

CUSUM cumulative sum

COPC chemical of potential concern

DA Deep Aquifer

DTG DTG Recycling

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Facility 41 Rocky Top Road in Yakima, Washington

ft feet

GWQS Groundwater Quality Criteria (Chapter 173-200 WAC)

h control limit for CUSUM comparisons

HWA GeoSciences, Inc.

IZ Interflow Zone

LPL Limited Purpose Landfill

MCLs Maximum Contaminant Levels (Chapter 246-290 WAC)

meq/L milliequivalents per liter

mg/L milligrams per liter

MTCA Model Toxics Control Act (Chapter 173-340 WAC)

MRF Materials Recovery Facility

On-Site Environmental, Inc.

PCS Petroleum-contaminated soil

PFAS Per- and polyfluoroalkyl substances

RI remedial investigation

RL reporting limit

SA Shallow Aquifer

Acronyms and Abbreviations (continued)

SAP Sampling and Analysis Plan

SCL Shewhart Control Limit

TDS total dissolved solids

TPH total petroleum hydrocarbons

µmhos/cm micromhos per centimeter

UPLs upper prediction limits

US Army Corps of Engineers

VOCs volatile organic compounds

WAC Washington Administrative Code

YHD Yakima Health District

YRCAA Yakima Regional Clean Air Agency

1. Introduction

This report presents the results of the second quarter 2025 environmental monitoring completed at the Rocky Top Environmental Limited Purpose Landfill (LPL) located at 41 Rocky Top Road in Yakima, Washington (Facility). The Facility is owned and operated by DTG Recycling (DTG). Figure 1 shows the overall location of the Facility. Figure 2 shows the details of the Facility including monitoring well locations, lined and unlined cells, the leachate pond, and other operations.

1.1 LPL Description

The Facility was permitted for sand and gravel mining operations beginning in 1983. In 1991, the Facility permit was modified to include petroleum-contaminated soil (PCS) remediation and re-use of treated PCS for cover or crushed into rock for asphalt and used as fill material. The Facility was later permitted as an unlined construction, demolition, and land-clearing debris (landfill that began operation in 1997 as Anderson Rock and Demolition Pits) under Chapter 173-304 of the Washington Administrative Code (WAC). The Facility was reclassified as an LPL in 2007, with the southern expansion area permitted in 2015. The LPL accepted treated PCS that was stockpiled in a separate area on the northeast portion of the Facility and managed until soil concentrations were below the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) for unrestricted land use. Once soils in the stockpiles were below MTCA CULs, they were used as daily cover in the LPL following approval from Yakima Health District (YHD).

In October 2019, DTG purchased the Facility and overtook operations of the LPL. Phase 1 is the historical fill area and is unlined (Figure 2). Filling of Phase 1 continued through 2022, and then waste was placed in a permitted unlined expansion cell south of Phase 1. It was discovered that the area had hydrogeologic physical conditions differing from those estimated for the original permitting. This south area became known as the temporary fill area and DTG began plans for a lined expansion cell (Phase 2). Waste placement in the temporary fill area continued through June 2023 when the permit renewal for the LPL was denied primarily due to the need for an air permit from the Yakima Regional Clean Air Agency (YRCAA). By September 2024, DTG had completed the construction of Phase 2 located on the southern portion of the Facility that had a liner system and leachate collection system. The Facility permit was renewed in December 2024 (YHD 2024) and DTG began placing LPL waste in Phase 2 and moving waste from the temporary fill area into the new lined cell. A leachate collection pond (Figure 2) serves the lined cell.

1.1.1 MTCA Site

The Washington State Department of Ecology (Ecology) listed the northwest slope of Phase 1 of the LPL as a MTCA cleanup site in September 2022 related to ambient air found above MTCA CULs. DTG and Ecology negotiated an Agreed Order (AO) that was executed in February 2023. A subsurface fire beneath the northwest slope of the LPL was confirmed in March 2023. Based on the potential contaminants related to the fire, Ecology requested the installation of additional downgradient monitoring wells. These wells were installed in 2024 related to the MTCA limited remedial investigation (RI). Ecology also requested additional chemicals of potential concern (COPCs) in groundwater to be investigated.

Groundwater monitoring related to MTCA releases includes analysis for additional parameters that are suspected to be present related to the MTCA site and are being reported separately. This includes analysis of per- and polyfluoroalkyl substances (PFAS), dioxins/furans, semi-volatile organic compounds including carcinogenic polycyclic aromatic hydrocarbons, and U.S. Environmental Protection Agency (EPA) priority pollutant metals.

1.1.2 Additional Facility Operations

There is a materials recovery Facility (MRF) operating in the central portion of the Facility adjacent to the LPL. In 2023, YHD required the MRF to develop a covered receiving area which was installed in 2024. Additional MRF area requirements include an impervious receiving floor and leachate controls. DTG is in the process of designing and constructing these systems for the MRF. Figure 2 displays the current MRF location. An active rock quarry also operates in the western portion of the Facility and is permitted separately (Figure 2). A PCS remediation area is located on the eastern portion of the Facility. The PCS remediation area is currently undergoing closure with YHD so that the MRF can be developed at this location. Three 10-foot monitoring wells were installed around the PCS remediation area in 1991. The wells are dry and planned to be decommissioned during the closure process.

2. Physical Setting

The Facility is located northwest of Yakima in Section 10, Township 13 North, Range 17 East, Willamette Meridian, in Yakima County, Washington. The area of the LPL is within the Yakima fold and thrust belt of the Columbia Plateau which is a series of east-west trending thrust faults and folds on the westernmost portion of the Columbia Plateau. The anticlines are usually formed over a thrust fault and typically form topographic ridges. The Facility is located on the northeast flank of Cowiche Mountain, which is an east-west trending anticlinal structure that extends from Cowiche Mountain to under the City of Yakima and forms Yakima Ridge to the east of the LPL. The axis of the anticline is located approximately 1,600 feet (ft) to the south of the LPL (Bentley and Campbell 1983).

2.1 Topography

The topography of the Facility slopes northerly from an elevation of approximately 2,000 ft above sea level on the southern border of the Facility down to approximately 1,800 ft above sea level on the northern border of the Facility. The Facility has an average slope, from southwest to northeast, of approximately 15% to 25%.

2.2 Soils

Soils on the Facility consist of silt loams up to 14-inches thick derived from Ellensburg Formation undifferentiated deposits and breakdown of basalt bedrock. Some areas of the Facility surface soils consist solely of weathered basalt fragments. The thickness of unconsolidated soil above bedrock varies up to approximately 14 ft; however, it is as much as 35 ft in some areas of the Facility due to regrading.

2.3 Geology

Below the surface soils of the Ellensburg Formation undifferentiated deposits, the geology of the Facility is comprised of Columbia River Basalt bedrock with sedimentary interbeds. The Yakima Basalt Subgroup comprises the uppermost (youngest) portion of the regional Columbia River Basalt Group and includes (from youngest to oldest): the Saddle Mountain Basalt, the Wanapum Basalt, and the Grande Ronde Basalt.

Locally, the Saddle Mountain Basalt is absent. The Ellensburg Formation is interbedded with the Yakima Basalt subgroup and is comprised of surficial formations of silt above bedrock as well as a significant interbed, known as the Vantage member of the Ellensburg Formation (Vantage Interbed).

The surface geology of the LPL (Bentley and Campbell 1983) is mapped as the Kelley Hollow flow of the Frenchman Springs Member of the Wanapum Basalt with a thin band of the Vantage Interbed separating the Wanapum Basalt (north) from the Grande Ronde Basalt (south). Mining has since uncovered large portions of the Vantage Interbed at the Facility including within the current temporary fill area.

The Wanapum Basalt is the shallow bedrock below the Facility, and is comprised of massive basalt, fractured basalt, columnar zones, pillow basalt, and palagonite. The thickness varies across the Facility but has been identified to be up to 260 ft thick at the Facility. The Wanapum Basalt is underlain by the Vantage Interbed of the Ellensburg Formation. The Vantage Interbed consists of sandstone, silt, and sand lenses and is approximately 30 to 35 ft thick. Below the Vantage Interbed is the Grande Ronde Basalt consisting of massive, columnar, and fractured basalt. The Grande Ronde Basalt has been observed up to 900 ft thick below the Facility.

2.4 Hydrogeology

There are two aquifers that are currently monitored below the LPL including a Shallow Aquifer (SA) and Interflow Zone (IZ) located within the Columbia River Basalt bedrock. There is also a Deep Aquifer (DA) occurring in the basalt that was monitored for four quarters in 2023. The SA and DA are the primary drinking water aquifers for neighboring Group B and domestic wells.

The basalt is dipping northerly at the Facility due to the Cowiche Mountain anticline. The natural dip places the SA as the first groundwater unit below the northern portion of the Facility and the IZ as the first groundwater unit below the southern portion of the Facility. There is an Alluvial Aquifer (AA) north and downgradient of the Facility within the Cowiche Valley that is the ultimate discharge of the SA. The AA is locally up to 350 ft thick based on well logs from Ecology.

The SA occurs within the bottom flow zone of the Wanapum Basalt, saturated portions of the Vantage Interbed, and saturated portions of the flow top zone of the Grande Ronde basalt. The SA is partially to fully confined. Five monitoring wells have been completed in the SA. All five wells are located downgradient of the Facility. MW-2S and MW-3S were completed between 2005 and 2007 and background monitoring events were conducted in 2008 and 2009. MW-4S was completed in July 2022 and background monitoring events were completed through 2024. MW-5S and MW-6S were completed in 2024 and background monitoring is being conducted on an accelerated basis in 2025.

The IZ occurs approximately 150 to 200 ft below the Grande Ronde-Vantage Interbed interface. The IZ is fully confined. Four monitoring wells have been completed in the IZ, one upgradient and three downgradient. MW-7D, MW-8D, MW-9D, and MW-10D were completed in 2024 and background monitoring is being conducted on an accelerated basis in 2025.

The DA occurs approximately 200 to 400 ft below the IZ within the Grande Ronde Basalt. The DA is fully confined with water levels approximately 200 ft above the source zone. The DA was monitored for four quarters in 2023 with samples collected from the Bertheas '95 well located east of the Facility (Figure 2). No water levels could be measured in the well; however, the log indicates water levels were 600 ft below ground, or approximately elevation 1,325 ft above sea level. The Bertheas '95 well was decommissioned in 2024 after a variance request to convert the well into a monitoring well was denied by Ecology.

2.4.1 Recharge and Discharge

The Yakima area (including the LPL area) is classified as a "zone of little groundwater recharge potential from direct precipitation sources" (Myers et al 1979), which is the lowest of three relative groundwater recharge classifications in their study. Recharge to groundwater in the basalt aquifers

occurs primarily between Cowiche Mountain and Bethel Ridge to the northwest, with some recharge north of the sub-basin boundary (USACE 1978). The reach of Yakima River east of the LPL is also classified as a suspected recharge area (Myers et al 1979). The SA in the Wanapum Basalt and IZ within the Grande Ronde Basalt discharge to the AA at lower elevations to the north, and ultimately to Cowiche Creek, which flows into Naches River, and then into the Yakima River. The DA in the Grande Ronde Basalt likely continues below the AA north of the facility and discharges to AA within the Yakima River Valley to the east-northeast.

2.4.2 Groundwater Flow

Shallow Aquifer

The groundwater gradient for the SA is predominantly northerly following the topographic slope and dip of the Vantage Interbed. In March 2022, HWA Geosciences (HWA) measured groundwater depths in 18 private residential and orchard wells surrounding the LPL completed in the SA, as well as in DTG monitoring wells MW-2S and MW-3S. Methods and results are detailed in the Groundwater Gradient Study, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington (HWA 2022b). The interpreted groundwater elevation contour maps showed hydraulic gradients of 0.07 to 0.17 ft/ft, or approximately 370 to 900 ft per mile, with flow generally to the north, downslope and down-dip, as expected.

The gradient from the existing monitoring well network shows the SA is steeper below the Facility (0.23 to 0.28 ft/ft) and flattens slightly further north where the SA meets the Cowiche Valley.

Interflow Zone

The groundwater gradient for the IZ is described in Section 5.1 and has been observed to be northerly around 0.20 ft/ft following topography and the dip of the anticline. The third quarter 2024 was the first monitoring event where static water level elevations for the IZ were evaluated.

Deep Aquifer

Parametrix reviewed domestic well logs in the vicinity of the LPL to develop an approximate groundwater gradient map for the DA to support future well drilling. The gradient map developed from the domestic wells (Parametrix 2023b) showed a similar approximately north-northwesterly gradient for the DA near the LPL at a rate of approximately 0.11 ft/ft, or approximately 600 ft per mile. The gradient map also demonstrated there is a local groundwater divide located 1,500 ft south of the LPL along the anticline axis of Cowiche Mountain.

2.4.3 Hydraulic Conductivity

Hydraulic conductivity has been evaluated by previous hydraulic testing (HWA 2015, HWA 2022, Parametrix 2025a). The average, low, and high hydraulic conductivities for the SA and IZ were presented in the updated Hydrogeologic Characterization Report (Parametrix 2025e). Average hydraulic conductivity for the SA was calculated to be 3.1 ft/day with a known range from 0.4 to 7.8 ft/day. For the IZ wells, the average hydraulic conductivity was calculated to be 2 ft/day with a range of 0.05 to 7.5 ft/day.

2.5 Surface Water

Surface water at the Facility is comprised of ephemeral drainages flowing north off Cowiche Mountain periodically towards Cowiche Creek located in the valley north of the Facility. Surface water for the Facility is generally captured and evaporated on the Facility through surface water evaporation ponds.

3. Monitoring History

Groundwater monitoring for the LPL is completed quarterly for compliance with WAC 173-350-100 and permit requirements. Groundwater monitoring well locations at the LPL are shown on Figure 2. Table 1 summarizes the monitoring well details.

Well MW-2S was installed in December 2005. MW-3S was installed in September 2007. A third location, BH-1, was drilled in 2005 and was observed to be dry so no monitoring well was installed. Eight background monitoring events were conducted at MW-2S and MW-3S between August 2008 and August 2009 to establish baseline groundwater quality conditions. Background monitoring is described in the Groundwater Monitoring Report, Anderson Pit Limited Purpose Landfill, Yakima, Washington (HWA 2010). Since 2009, quarterly groundwater monitoring has been conducted at MW-2S and MW-3S and the results have been documented in annual reports. Quarterly groundwater reporting began in 2023.

Monitoring well MW-4S was installed in 2022 to update the hydrogeologic characterization and monitoring at the Facility (HWA 2022). It was initially sampled in October 2022 and has been monitored quarterly since installation. The initial results were presented in the 2022 annual report (Parametrix 2023a) and subsequent results were presented in quarterly and annual reports (Parametrix 2024a, 2025f).

The Bertheas '95 domestic well in the DA (Figure 2) was sampled for four quarters in 2023 and results were presented in the 2023 quarterly and annual reports (Parametrix 2024a). The Bertheas '95 well was decommissioned in September 2024 and is no longer available for sampling.

In 2024, two new SA wells and four new IZ wells were completed below the Facility. The two new SA wells MW-5S and MW-6S were installed prior to the second quarter 2024. Four new IZ monitoring wells (MW-7D, MW-8D, MW-9D, and MW-10D) were installed prior to the third quarter 2024. Eight groundwater monitoring events are planned for the new wells to meet the permit requirements. Four expedited sampling events (A events) are being completed in 2025 in addition to the routine quarterly monitoring (B events) and the six new wells will be sampled every approximately 1.5 months.

The Sampling and Analysis Plan (SAP) was updated in September 2024 (Parametrix 2024b) to reflect the revised statistical analysis approach for the groundwater monitoring program as well as to include information for the additional monitoring wells and sampling/monitoring the leachate pond for the Phase 2 lined cell. Leachate samples are collected annually during the first quarter event; however, the pond level and sump are checked quarterly. An additional MTCA-related groundwater SAP (Parametrix 2025b) was developed for required monitoring under the AO for additional contaminants.

Dedicated PFAS-free pumps have been installed in all the monitoring wells (Table 1). The results for MTCA-related contaminants are not included in this report and are presented in other reporting for the MTCA site as part of the AO. PFAS were confirmed in MW-3S at concentrations above CULs during the third and fourth quarters of 2024 (Parametrix 2024d, 2025c). A limited RI work plan (Parametrix 2025d) was developed for two additional monitoring wells (MW-1S and MW-11S) within the SA related to characterization of additional COPCs including PFAS.

3.1 Recent Changes

MW-1S and MW-11S were recently drilled and constructed northeast of Phase 1 and north of MW-3S. MW-11S was drilled to a depth of 241 ft below ground surface (bgs) and constructed with 20 ft of screen from 219 to 239 ft bgs. MW-1S was drilled to a depth of 142 ft bgs and constructed with 20 ft of screen from 113 to 133 ft bgs. The wells will be included in the routine monitoring

program starting in the third quarter 2025 sampling event after the dedicated PFAS-free sampling pumps have been installed.

The leachate pond for Phase 2 is active and in use. Leachate was sampled during the first quarter event (Parametrix, 2025h).

3.2 Objectives

This report documents the second quarter 2025 groundwater monitoring at the Rocky Top Environmental LPL. Reporting requirements, as required by the LPL operating permit and WAC 173-350-500, entail quarterly groundwater monitoring and submission of an annual groundwater monitoring report to the YHD and Ecology.

3.3 Compliance

If statistical analyses determine a significant increase over background (as described in Section 5.2.5), DTG will notify YHD and Ecology within 30 days of the evaluation finding. If the increase is not demonstrated to be attributable to a source other than the landfill, natural variation in groundwater quality, or an error in sampling, analyses, or statistical evaluation, and the concentrations of constituents exceed the groundwater quality criteria established by Chapter 173-200 WAC, Water Quality Standards for Groundwaters of the State of Washington, DTG in consultation with YHD and Ecology, will determine additional measures. Additional measures to be considered are to characterize the chemical composition of the release and the contaminant fate and transport characteristics by installing additional monitoring wells; assess and, if necessary, implement appropriate intermediate measures to remedy the release; and evaluate, select, and implement remedial measures as required by Chapter 173-340 WAC, MTCA, where applicable.

A suspected release from the LPL is currently being investigated as part of an AO under MTCA. Evaluation of additional monitoring wells downgradient of the suspected impacted monitoring wells (MW-3S and MW-4S) is being implemented to determine the nature and extent of the contamination including additional monitoring parameters that are reported separately as part of the MTCA investigation.

4. Sampling and Analysis

The second quarter 2025 groundwater sampling and analysis was conducted in accordance with the SAP (Parametrix 2024b). Field data sheets from the second quarter sampling are attached in Appendix A.

4.1 Routine Groundwater Sampling

Two sampling events were completed during the second quarter 2025:

- Second quarter "A event" (May 7 through 8) MW-5S, MW-6S, MW-7D, MW-9D, MW-10D
- Second quarter "B event" (June 17 through 19) All monitoring wells except for MW-1S and MW-11S

The monitoring wells were purged and sampled using the dedicated PFAS-free QED bladder pumps with an electronic pump control unit (QED Micropurge MP10/MP10H) and external nitrogen tank. Low flow purging methods were utilized in accordance with the SAP. Samples to be tested for dissolved

metals were field filtered through a 0.45-micron filter. A duplicate sample, MW-13S, was collected at wells MW-3S and MW-3S during the A and B events, respectively.

The second quarter "B event" also included additional MTCA analytical parameters including PFAS and semi-volatile organic compounds (SVOCs). Results for the MTCA parameters are summarized separately (Parametrix 2025i).

4.2 Groundwater Analysis

The second quarter 2025 samples for WAC 173-350-500 monitoring were analyzed by On-Site Environmental, Inc. (On-Site) located in Redmond, Washington. The analytical methods used are listed in Table 2.

In addition to the parameters required by WAC 173-350-500, the samples were analyzed for the volatile organic compounds (VOCs) included in WAC 173-351-990 Appendix I and naphthalene, and samples from the SA were analyzed for gasoline and diesel/oil range total petroleum hydrocarbons (TPH).

4.3 Leachate Pond Monitoring

The depth of leachate in the pond was observed to be 3.75 ft. The total depth of the lined pond is 7 ft. The leachate pond leak detection sump was measured with a sounder and no water was detected within the sump.

5. Results

5.1 Groundwater Elevations and Flow

5.1.1 Groundwater Elevations

Table 3 summarizes the groundwater depths and elevations measured at the LPL during the second quarter B event. Figure 3 presents a hydrograph of historical groundwater elevations for all monitoring wells compared with the cumulative deviation from average monthly precipitation recorded at the Yakima Air Terminal. The water levels are generally consistent with deviations in precipitation over time (Figure 3) with minor variances. The SA wells appear to respond to precipitation with MW-2S having less of a direct correlation. MW-2S is completed in the bottom of the SA below the Vantage Interbed.

Long term water level declines have been observed over the course of monitoring at both MW-2S and MW-3S. However, less of a decline has been observed at MW-2S and it has been stable since approximately 2023. MW-3S had further declines in 2024 and is currently approximately 30 ft below the historical maximum. The second quarter water level was slightly higher than the first quarter event. MW-4S water levels have been stable but were elevated during the first quarter event and slightly lowered in the second quarter. The new wells MW-5S, MW-6S, MW-8D, MW-9D, and MW-10D show slight increases over the last few events while MW-7D had a large initial drop before stabilizing in the last three events.

Due to issues with descending the water level meter, a water level was not taken at MW-7D in the second quarter 2025 B event. The water level from the A event is presented on Figures 3. Additionally, new SA well MW-11S was completed shortly prior to the second quarter sampling event and a water level was measured; however, the well has not been developed or surveyed following construction.

5.1.2 Groundwater Gradient

Potentiometric surface maps for the second quarter B event were developed for the SA (Figure 4) and the IZ (Figure 5). Water levels in the SA trend primarily northerly at a rate of 0.22 ft/ft, or approximately 1,173 ft per mile. Water levels in the IZ trend north-northeasterly at a rate of 0.21 ft/ft, or 1,122 ft per mile. These flow directions and gradients are similar to the previous events observed at the Facility. Both the SA and IZ discharge into the AA north of the Facility within the Cowiche Valley.

5.1.3 Groundwater Flow

Groundwater particle velocity is described by the following relationship: V = K i / n, where:

V = particle velocity

K = hydraulic conductivity

i = gradient

n = effective porosity

Groundwater flow velocities were calculated using the average, minimum, and maximum hydraulic conductivities for the SA and IZ (see Section 2.4.3), an assumed effective porosity of 0.2 (Nimmo et al 2003), and the calculated gradient (Section 5.1.2, above).

Shallow Aquifer

Average 3.41 ft/day (246 ft/year)

Minimum 0.44 ft/day

Maximum 8.59 ft/day

Interflow Zone

Average 2.12 ft/day (775 ft/ year)

Minimum 0.05 ft/day

Maximum 7.97 ft/day

5.2 Groundwater Quality

5.2.1 Data Quality Evaluation

Field data sheets from the second quarter 2025 events are presented in Appendix A and laboratory reports are presented in Appendix B. Appendix C presents an evaluation of the second quarter 2025 analytical and field data quality. No data were qualified related to the evaluation of compliance monitoring data.

5.2.2 Comparison of Data to Water Quality Criteria

5.2.2.1 Shallow Aquifer Samples

The data from the SA wells for second quarter 2025 events are presented in Table 4 and were compared to Water Quality Standards for Groundwaters of the State of Washington (GWQS; Chapter 173-200 WAC) and Maximum Contaminant Levels (MCLs; Chapter 246-290 WAC). TPH and

naphthalene concentrations were compared to MTCA Method A CULs. One event is presented for wells MW-2S, MW-3S, and MW-4S and two events are presented for MW-5S and MW-6S. Table 5 summarizes the parameters for which one or more of the above standards were exceeded and indicates the SA wells in which the standards were exceeded.

The following concentrations in the SA wells above these criteria were observed in the second quarter 2025 events:

MW-3S

Nitrate was above the GWQS and MCL of 10 mg/L

MW-4S

- Specific conductivity was above the MCL of 700 µmhos/cm
- Nitrate was above the GWQS and MCL of 10 mg/L
- Total dissolved solids (TDS) was above the GWQS and MCL of 500 mg/L

MW-6S

Nitrate was above the GWQS and MCL of 10 mg/L in both the A and B events

No VOCs were detected above laboratory reporting limits (RLs). No gasoline or diesel/oil-range TPH were detected. TPH has been sampled since 2022 and has not been detected in the SA.

The exceedances at MW-3S and MW-4S have potential impacts related to the LPL. Statistical comparisons for MW-2S, MW-3S, and MW-4S are presented in Section 5.2.5. Background sampling is still occurring for SA wells MW-5S and MW-6S.

5.2.2.2 Interflow Zone Samples

The data from the IZ wells for the second quarter 2025 events are presented in Table 6 and were compared to GWQS (Chapter 173-200 WAC) and MCLs (Chapter 246-290 WAC). Table 7 summarizes the compounds for which one or more of the above standards were exceeded and indicates the IZ wells in which the standards were exceeded.

The following concentrations in the IZ wells above these criteria were observed in the second quarter 2025 events:

MW-8D

■ Total iron was above the GWOS and MCL of 0.3 mg/L in the A event

MW-9D:

- Total iron was above the GWQS and MCL of 0.3 mg/L in the A and B events
- Dissolved iron was above the GWQS and MCL of 0.3 mg/L in the A event
- Total and dissolved manganese were above the GWQS and MCL of 0.05 mg/L in the A and B events

The aquifer at Well MW-9D is limited and water quality continues to remain elevated for total and dissolved iron and manganese. No VOCs were detected in the IZ wells above laboratory RLs.

5.2.3 Time-Series Plots

5.2.3.1 Groundwater

Time-series plots for inorganic parameters are presented in Appendix D. Data that have been identified as outliers for parameters that are evaluated statistically (Parametrix 2025f) and additional outliers for wells MW-2s and MW-3S identified for TOC have been excluded from the time-series plots. The data show a considerable degree of variability in TDS and some other analytes. It should be noted that the analytical laboratory has changed several times over the history of monitoring. The change of labs in the fourth quarter of 2022 is visible in the data. Some other apparent increasing trends have been observed in the inorganic parameters.

Data for the first sampling event of MW-9D in the third quarter of 2024 are anomalous for many parameters because the event was nonroutine and the well was turbid from development.

Alkalinity and Bicarbonate

Alkalinity and bicarbonate appear to be increasing at MW-4S, while generally stable/within the historical range in the remaining wells.

Ammonia

Ammonia has rarely been detected in the wells and was not detected in the second quarter 2025 except for a detection slightly above the reporting limit in well MW-9D during the B event..

Dissolved Calcium

Dissolved calcium is increasing in wells MW-3S and MW-4S, with the highest detected concentration at MW-4S occurring in the second quarter 2025 B event. The first quarter 2025 dissolved calcium concentration at MW-6S was the highest detected value at that well, with concentrations in second quarter 2025 decreasing. Background is still being established for MW-6S which is downgradient of MW-4S.

Chloride

Chloride appears to be increasing at MW-3S and relatively stable at the remaining wells.

Conductivity

Conductivity appears increasing in MW-3S, MW-4S, and MW-6S. Conductivity increased dramatically in the second quarter at MW-4S to the highest measured to date.

Total and Dissolved Iron

Total and dissolved iron show high variability in the data particularly in the new IZ wells.

Total and Dissolved Magnesium

Total and dissolved magnesium concentrations appear to be increasing in wells MW-3S and MW-4S. The second quarter 2025 concentration in MW-4S were the highest detected values at that well.

Total and Dissolved Manganese

Total and dissolved manganese show high variability particularly in the new IZ wells, though concentrations appear to be decreasing.

Nitrate

Apparent increases in nitrate are visible for MW-3S and MW-6S. MW-4S has been increasing and was observed to be the highest measured to-date.

pН

The second quarter 2025 data fall within the typical historical range for pH.

Dissolved Potassium

Dissolved potassium appears to be relatively stable/within the historical range for the wells with minor increases in all wells during the second quarter 2025 events.

Dissolved Sodium

Apparent increasing trends are present at MW-3S and MW-4S. A similar increase is apparent at MW-6S; however, background is still being established at that well.

Sulfate

Apparent increases in sulfate are present at MW-3S. The last four events are the highest recorded. Increases were also observed at MW-4S during the second quarter 2025 events, with the highest concentration measured to-date from the second quarter B event.

Total Dissolved Solids

Apparent increases in TDS appear at MW-3S and MW-4S. The other wells appear to be relatively stable.

Total Organic Carbon

TOC appears relatively stable across all wells.

5.2.3.2 Leachate

First quarter 2025 was the first time leachate samples were collected from the Phase 2 leachate pond (Parametrix 2025h, Figure 2). As additional leachate data are collected, time-series plots showing leachate through time will be developed.

5.2.4 Geochemical Evaluation

5.2.4.1 Cation/Anion Balances

Cation/anion balance evaluations for the 2025 second quarter events are presented in Appendix E. Cation/anion balances are a standard check of inorganic water quality data. When all the major anions and cations have been accurately determined, the sum of the anions in milliequivalents per liter (meq/L) should equal the sum of the cations expressed in the same units. WAC 173-351-420(5)(a) specifies that a 5 percent difference is acceptable if the anion plus cation sum of the sample is greater than 5 meq/L, while a 10 percent difference is acceptable if the anion plus cation sum of the sample is less than 5 meg/L.

The second quarter 2025 cation/anion balance differences were within acceptable limits except for MW-5S during the A event. Possible explanations for the cation/anion imbalances are the presence of other ions not analyzed for or suspended solids in the water samples.

5.2.4.2 Trilinear Diagram

A trilinear (piper) diagram showing the second quarter 2025 data is presented in Appendix E. Piper diagrams are trilinear graphical representations of inorganic water quality, where major anions (chloride, sulfate, and bicarbonate + carbonate) and cations (calcium, magnesium, and sodium + potassium) are plotted on a molar equivalent basis, on two triangular graphs, and the combined data projected onto a quadrilateral field, or four-sided graph. The Piper diagram can be used to compare different water samples to evaluate the degree of similarity, mixing relationships, time trends, etc.

Groundwater quality in the monitoring wells shows some variations in cation and anion distributions suggesting slightly differing geochemical conditions. The cation distributions in all monitoring wells fell within a similar zone with the principal cations being calcium and magnesium. The anion distributions were more variable.

The second quarter 2025 data were generally consistent with historical data from prior events. Anions in SA well MW-2S and IZ wells MW-7D and MW-10D were dominantly bicarbonate, while the other wells had varying proportions of bicarbonate, sulfate and chloride. Wells MW-4S, MW-5S, MW-8D, and MW-9D had slightly higher proportions of bicarbonate compared to wells MW-3S and MW-6S, which had slightly higher proportions of chloride. The data was relatively consistent between the two second quarter events.

MW-2S is screened slightly lower in the SA than the other monitoring wells and includes the flow top zone of the Grande Ronde Basalt. The Piper diagram is consistent with the slight differences in geochemistry anticipated due to differing positions of these wells and MW-2S more closely resembles the geochemistry of the other wells completed in the IZ of the Grande Ronde Basalt.

As noted in the first quarter report (Parametrix, 2025h), the leachate sample had slightly higher proportions of sulfate and calcium with respect to the majority of the groundwater samples.

5.2.5 Statistical Analysis of Groundwater Quality Data

5.2.5.1 Statistical Approach

Washington's Solid Waste Landfill regulations (Chapter 173-350 WAC) require evaluation of groundwater monitoring data to identify if a statistically significant increase above background has occurred. The current statistical approach is summarized in the 2024 annual report (Parametrix 2025f) and consists of comparing quarterly data for a subset of leachate indicator parameters to upper prediction limits (UPLs). Control charts are also used to supplement the UPLs to evaluate whether any trends are occurring that could potentially be attributable to the landfill, including comparing compliance data to Shewhart Control Limits (SCLs) and calculated cumulative sums (CUSUMs) to the calculated control limits (h), where percentages of non-detected values are greater than 50 percent.

An intrawell (i.e., within the same well) statistical approach is being used to evaluate compliance at the SA wells MW-2S, MW-3S, and MW-4S since there are no upgradient background wells within the SA. Intrawell background data is still being established at SA wells MW-5S and MW-6S. For the IZ, MW-10D is a background data point upgradient of the Facility. The initial eight data points for MW-10D and the downgradient monitoring wells MW-7D, MW-8D, and MW-9D will be completed at the end of 2025 and statistical analysis will be completed at that time for use in the 2026 monitoring program. Due to aquifer heterogeneity, intrawell comparisons are anticipated for the IZ wells as water quality is variable (Table 6). As noted above, leachate is currently being sampled, and the data may be used in the future to refine the subset of leachate indicator parameters.

A subset of leachate indicator parameters from Chapter 173-350 WAC are being used to establish statistical limits for the three monitoring wells that have established background (MW-2S, MW-3S, and MW-4S). The following parameters were selected for formal statistical analysis:

- pH
- chloride
- nitrate
- sulfate
- ammonia
- TDS
- total and dissolved iron
- total and dissolved manganese

The time series plots and apparent trends (Section 5.2.3 above) and comparison of groundwater to leachate data (Section 5.2.2.3 above), show these parameters appear to be appropriate leachate indicators for the statistical program.

The statistical limits are used in the following way to evaluate groundwater quality at the Rocky Top Environmental LPL:

- For a statistically significant increase (monitoring data exceeding a limit for two consecutive quarters) that cannot be attributed to sampling error, the monitoring data will be compared to the water quality standard in Chapter 173-200 WAC (if available).
- If the water quality standard is exceeded, the monitoring data will be compared to any historical data values that were flagged as outliers to determine whether the monitoring data are within the range of historical data. Because historical outliers were flagged based on statistical tests and visual assessments but could not be verified as outliers through additional data evaluation such as resampling or laboratory review, those values may actually represent a portion of the background population.

5.2.5.2 Second Quarter 2025 Statistical Evaluation

The statistical approach for evaluating data at the LPL was used to evaluate whether any statistically significant increases are present that could potentially be attributable to the landfill. Table 8 compares the second quarter 2025 event B data to the UPLs and SCLs (Parametrix 2025f and Appendix F). Control charts updated with second quarter 2025 data are presented in Appendix F.

The following exceedances were identified:

MW-3S

- Chloride exceeded the UPL of 47.39 mg/L but was below the SCL of 85.84 mg/L
- Nitrate exceeded the UPL of 9.837 mg/L but was below the SCL of 18.23 mg/L
- Sulfate exceeded the UPL of 46.12 mg/L and the SCL of 81.34 mg/L
- TDS exceeded the UPL of 293.6 mg/L but was below the SCL of 533.1 mg/L

MW-4S

Nitrate exceeded the UPL of 73.89 mg/L

The concentrations of chloride, nitrate, sulfate, and TDS at MW-3S have exceeded UPLs for more than two consecutive quarters (Parametrix 2025f). The first and second quarter nitrate concentrations were above the GWQS/MCL, although concentrations of chloride, sulfate, and TDS remained below GWQS/MCLs. These statistically significant increases will continue to be evaluated in on-going monitoring. Two new monitoring wells have been constructed downgradient of MW-3S, and excavation of the temporary fill area is being implemented. The results from 2025 first and second quarter monitoring events will continue to be monitored to determine if statistically significant increases continue to impact groundwater at MW-3S.

MW-4S had a detection of total iron above its UPL, which is set at the RL, in the second quarter of 2025. The detected concentration was below the GWQS/MCLs and may be related to turbidity or natural variability. This UPL exceedance was not observed in second quarter 2025. Nitrate was above the UPL at MW-4S in the second quarter. As discussed above, this is the highest concentration recorded at the well to-date. Other leachate parameters that have been observed to have increasing trends or exceedances of groundwater quality criteria in the well (conductivity, TDS) were found below their UPLs.

6. Conclusions

This report summarizes the second quarter 2025 monitoring at the Rocky Top Environmental LPL in compliance with WAC 173-350-500 which consisted of two separate monitoring events: May 2025 (A event) for six monitoring wells (MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, and MW-10D) and June 2025 (B event) for all the wells except for the two new monitoring wells that were just constructed (MW-1S, and MW-11S). Additional monitoring events are being completed to establish background water quality at the six monitoring wells completed in 2024 (MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, and MW-10D). Leachate was sampled during the first quarter B event (Parametrix, 2025h).

Water levels (Table 3) for the SA and IZ show predominantly northerly gradients (Figures 4 and 5). Groundwater flow velocities were calculated to average 3.41 ft/day for the SA and 2.14 ft/day for the IZ. Water levels appear to follow a seasonal pattern; however, some decreasing levels have been observed historically (Figure 3).

Leachate levels in the leachate pond were approximately 3.75 ft, indicating the pond levels have significantly decreased since the first quarter. No water was observed in the leachate pond leak detection sump.

Groundwater samples were compared to GWQSs and MCLs (Tables 4 and 6) and the following exceedances (Tables 5 and 7) were identified in at least one of the events:

- Nitrate was above the GWQS and MCL in MW-3S, MW-4S, and MW-6S
- Specific conductivity was above the MCL in MW-4S
- TDS was above the GWQS and MCL in MW-4S
- Total iron was above the GWQS and MCL in MW-8D in the A event and MW-9D in both A and B events; dissolved iron was above the GWQS and MCL in MW-9D in the A event
- Manganese (total and dissolved) was above the GWQS and MCL in MW-9D in both the A and B events

Time series plots were developed (Appendix D), and apparent increasing trends were observed at MW-3S and MW-4S for several leachate indicator parameters. MW-6S also showed potential increasing trends; however, background is still being established.

A geochemical evaluation of cations/anions were performed (Appendix E). Data for MW-5S was outside of WAC 173-351-420(5)(a) acceptable range potentially indicating additional anions are present. A piper diagram was developed showing the geochemistry of all the wells, and the geochemistry was generally consistent with historical data.

Results for MW-2S, MW-3S, and MW-4S were compared to established UPLs and SCLs for ten leachate indicator parameters (Table 8). MW-3S concentrations have exceeded the UPLs for chloride, nitrate, sulfate, and TDS for more than two consecutive quarters (Parametrix 2025f), SCLs have not been exceeded except sulfate in the second quarter 2025 event. The concentration of nitrate in MW-3S also exceeded the GWQS and MCL. These statistically significant increases are currently being addressed through construction of further downgradient well MW-1S and cross-gradient well MW-1S consistent with the RI Work Plan (Parametrix, 2025d), and the data will continue to be evaluated in on-going monitoring. Total iron in MW-4S was previous above the UPL in the first quarter and it was not found above its UPL in the second quarter. Other leachate parameters that have been observed to have increasing trends or exceedances of groundwater quality criteria in MW-4S (nitrate, conductivity, TDS) were found below their UPLs.

Assessment monitoring is being implemented at the LPL and additional monitoring wells will assist in determining the fate and transport of landfill contaminants. The monitoring wells are being analyzed for additional MTCA contaminants as part of the Limited RI under the AO. MTCA monitoring for the additional contaminants is reported separately. Potential impacts related to the landfill at MW-4S have been investigated with additional downgradient monitoring wells MW-5S and MW-6S and potential impacts at MW-3S are being investigated with additional monitoring wells MW-1S and MW-11S being recently drilled and constructed (Figure 2). The wells will be added to the expedited background (A events) and routine (B events) starting with the third quarter of 2025.

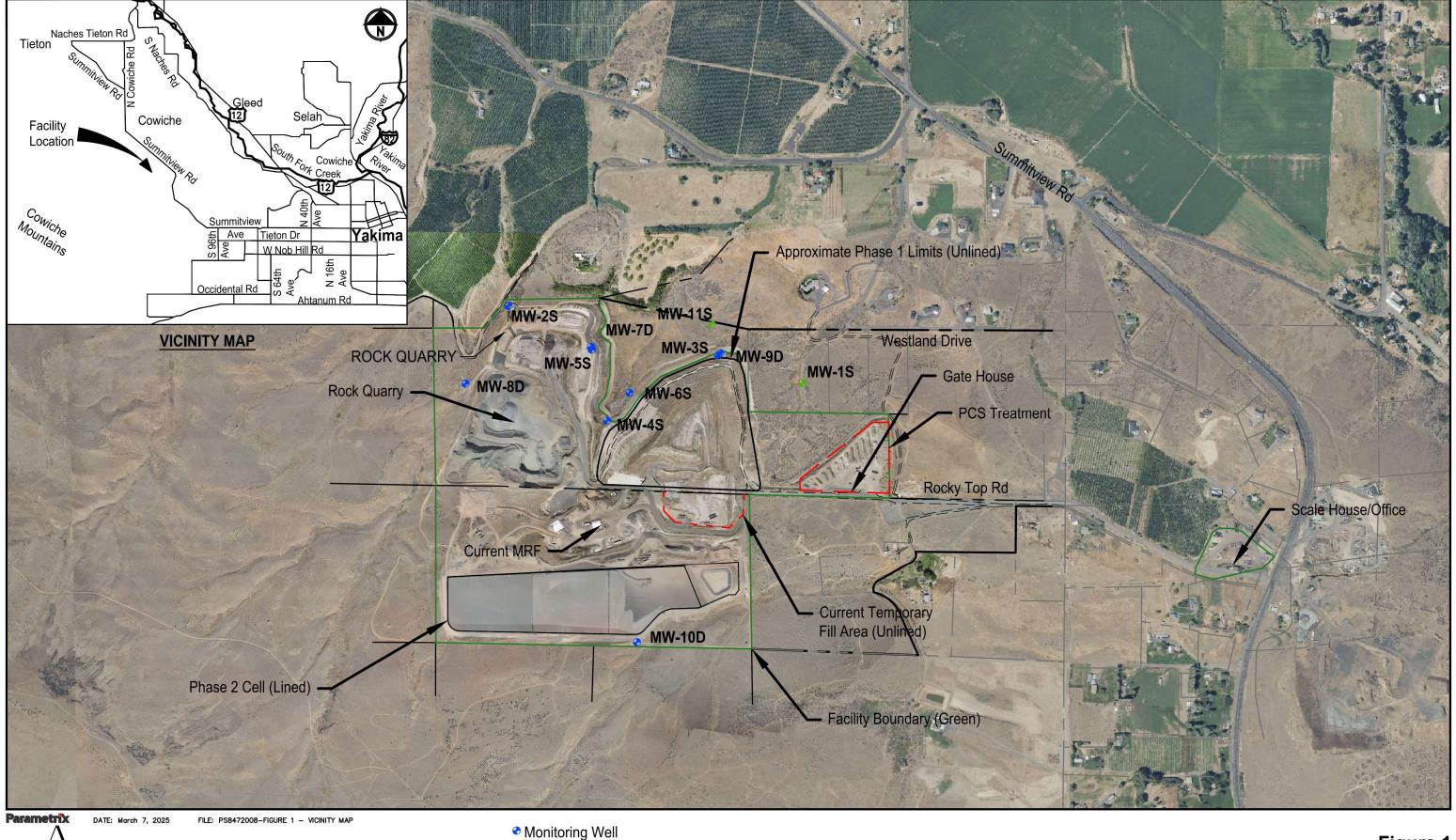
6.1 Recommendations

The following recommendations and planned activities are based on the data presented in this report:

- The SAP will be updated now that both MW-1S and MW-11S have been constructed.
- TPH and VOCs have been monitored in SA monitoring wells since 2022, and VOCs are being analyzed in samples from the IZ wells. TPH was recommended to be removed from monitoring in the 2024 annual report. VOCs likely should also be removed from monitoring. Samples should continue to be analyzed for TPH and VOCs in 2025 while the RI is on-going and background is being established; however, we recommend removal once background has been completed.
- DTG should continue removing waste from the temporary fill area to reduce potential leachate related contaminants from reaching the water table.

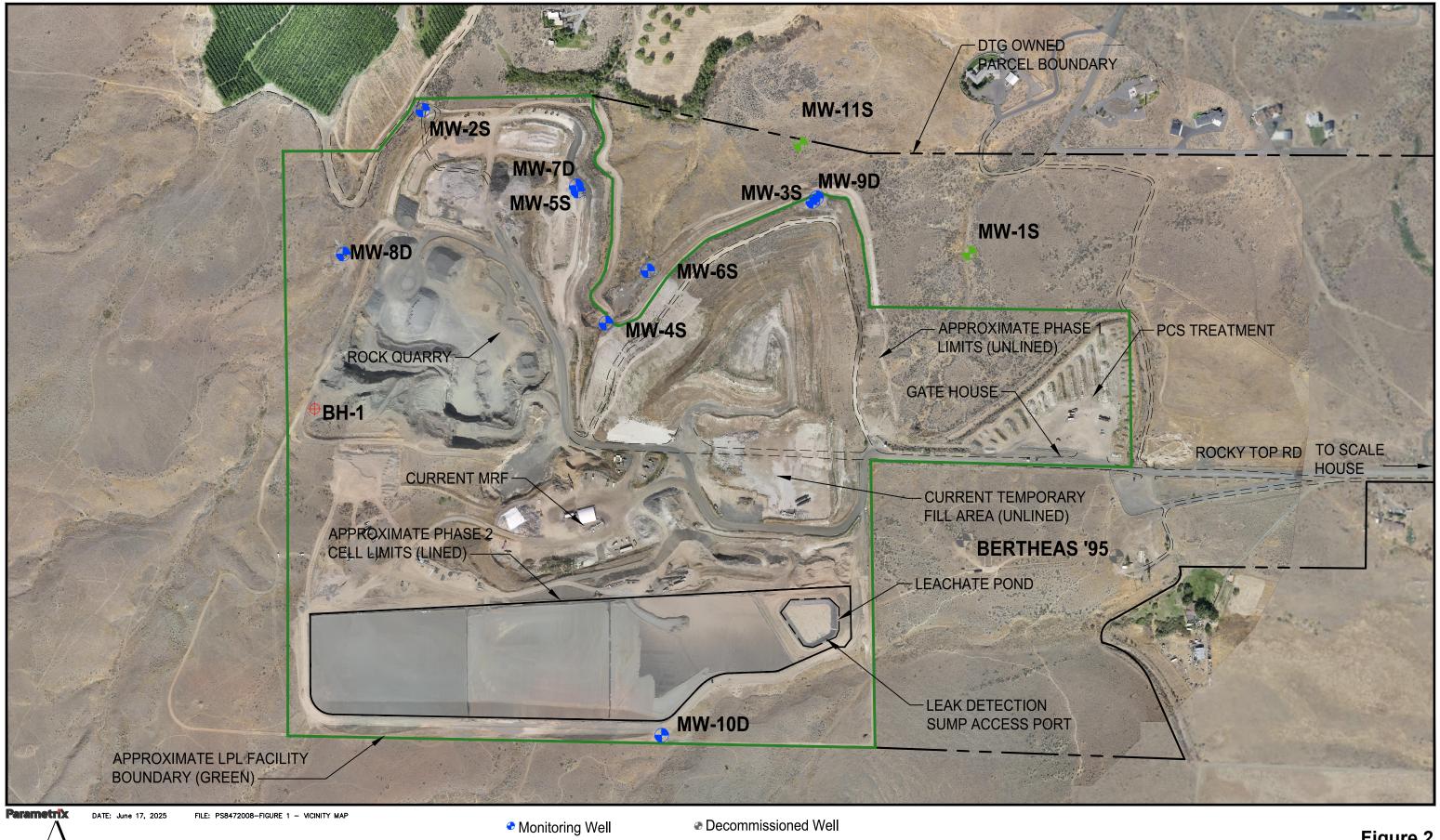
7. References

- Bentley, R.D. and N.P. Campbell. 1983. Geologic Map of the Yakima Quadrangle, Washington. Washington Division of Geology and Earth Resources Geologic Map GM-29.
- Drost, B.W., K.J. Whiteman, and J.B Gonthier. 1990. Geologic Framework of the Columbia Plateau Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Water-Resources Investigations Report 87-4328.
- Ecology (Washington Department of Ecology). 2018. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC. Publication No. 12-07-072. Revised December 2018.
- Ecology. 2023. Guidance for Investigating and Remediating PFAS Contamination in Washington State. Publication Number 22-09-058. Published December 2022, Revised June 2023.
- Ecology. 2024. DTG Yakima Limited Purpose Landfill—2023 Annual Groundwater Monitoring Report. Letter from Luke LeMond, LHG, Hydrogeologist, Solid Waste Management Program, Washington State Department of Ecology, to Steven Newchurch, Environmental Health Specialist/Solid Waste Program Lead, Yakima Health District. May 7, 2024.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007. March 2009.
- Golder Associates. 2002. Naches Basin (WRIA 38) Storage Assessment, Application of Aquifer Storage & Recovery. Prepared for Yakima River Basin Planning Unit, on behalf of the City of Yakima.
- Hansen, A.J., J.J. Vaccaro, and H.H. Bauer. 1994. Ground-Water Flow Simulation of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. USGS Water-Resources Investigation Report 91-4187.
- HWA (HWA GeoSciences Inc.). 2010. Groundwater Monitoring Report, Anderson Pit Limited Purpose Landfill, Yakima, Washington. February 2, 2010.
- HWA. 2015. Geotechnical and Hydrogeologic Investigation Report, Anderson Rock and Demolition Pits Limited Purpose Landfill Expansion. March 18, 2015.
- HWA. 2022a. Geotechnical and Hydrogeologic Investigation Report, DTG/Anderson Pit Limited Purpose Landfill. October 4, 2022.
- HWA. 2022b. Groundwater Gradient Study, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington. March 25, 2022.
- Molenaar, D. 1985. Water in the Lower Yakima River Basin, Washington. Washington Department of Ecology Water Supply Bulletin 53.
- Myers, C. W., S. M. Price, et al. 1979. Geologic Studies of the Columbia Plateau A Status Report. Rockwell Hanford Operations RHO-BWI-ST-4.
- Nimmo, J.R. and others. 2003. Hydraulic and Geochemical Framework of the Idaho National Engineering and Environmental Laboratory Vadose Zone. Special Section: Understanding Subsurface Flow and Transport Processes at the Idaho National Engineering & Environmental Laboratory (Ineel) Site, Vadose Zone Journal 3:6-34.
- Parametrix. 2023a. Anderson Pit Limited Purpose Landfill Yakima, Washington, 2022 Annual Groundwater Monitoring Report. April 2023.


- Parametrix. 2023b. Hydrogeologic Approach New Monitoring Wells at the DTG/Anderson Limited Purpose Landfill in Yakima, Washington. Letter report. Prepared for Steven Newchurch of the Yakima Health District. February 9, 2023.
- Parametrix in association with HWA Geosciences, Inc. 2023. Hydrogeologic Characterization Work Plan, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. May 2023.
- Parametrix 2024a. 2023 Annual Groundwater Monitoring Report, DTG Yakima Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. March 2024.
- Parametrix 2024b. Sampling and Analysis Plan for the DTG Yakima Limited Purpose Landfill, Yakima, Washington. Revised September 2024.
- Parametrix, Inc. 2024c. Monitoring Well Construction Update DTG Yakima Limited Purpose Landfill. Technical Memorandum completed for DTG Recycle. September 20, 2024.
- Parametrix 2024d. 3Q 2024 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, December 10, 2024.
- Parametrix 2025a. Hydraulic Testing Technical Memorandum, Rocky Top Environmental Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycling. January 2025.
- Parametrix 2025b. Groundwater Sampling and Analysis Plan MTCA Sampling, DTG Rocky Top Environmental Limited Purpose Landfill, prepared for DTG Recycling. January 2025.
- Parametrix 2025c. 4Q 2024 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, March 5, 2025.
- Parametrix 2025d. Limited Remedial Investigation Work Plan, Rocky Top Environmental Limited Purpose Landfill, prepared for DTG Recycling. January 2025.
- Parametrix 2025e. Updated Hydrogeologic Characterization Report, Rocky Top Environmental Limited Purpose Landfill, prepared for DTG Recycling, March 2025.
- Parametrix 2025f. 2024 Annual Groundwater Monitoring Report, DTG Yakima Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. March 2025.
- Parametrix 2025g. 1Q 2025 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, June 2025.
- Parametrix 2025h. Rocky Top Environmental Limited Purpose Landfill 2025 First Quarter Groundwater Monitoring Report. June 2025.
- Parametrix 2025i. 2Q 2025 MTCA Sampling AO #DE21624 Technical Memorandum. Prepared for the Washington State Department of Ecology on behalf of DTG Recycling, In Progress
- US Army Corps of Engineers (USACE), Seattle District. 1978. Yakima Valley Regional Water Management Study, Volume IV, Geology and Groundwater, July 17, 1978.
- Vaccaro, J. J. 1999. Summary of the Columbia Plateau Regional Aquifer-System Analysis, Washington, Oregon, and Idaho. U.S. Geological Survey Professional Paper 1413-A.
- Weather Underground. 2019. Data for Yakima, Washington, www.wunderground.com
- Western Regional Climate Center (WRCC). 2025. data for Yakima Air Terminal, Washington, https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa9465

8. Limitations

The conclusions expressed herein are based solely on material referenced in this report. Observations were made under the conditions stated. Within the limitations of scope, schedule and budget, these services were executed in accordance with generally accepted professional principles and practices in the area at the time the report was prepared. No warranty, expressed or implied, is made. Experience has shown that subsurface soil and groundwater conditions can vary significantly over small distances. The findings and conclusions must not be considered as scientific or engineering certainties, but rather as our professional opinion concerning the significance of the limited data gathered and interpreted during the course of the assessment.


This study and report have been prepared on behalf of DTG, for the specific application to the subject property. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Figures

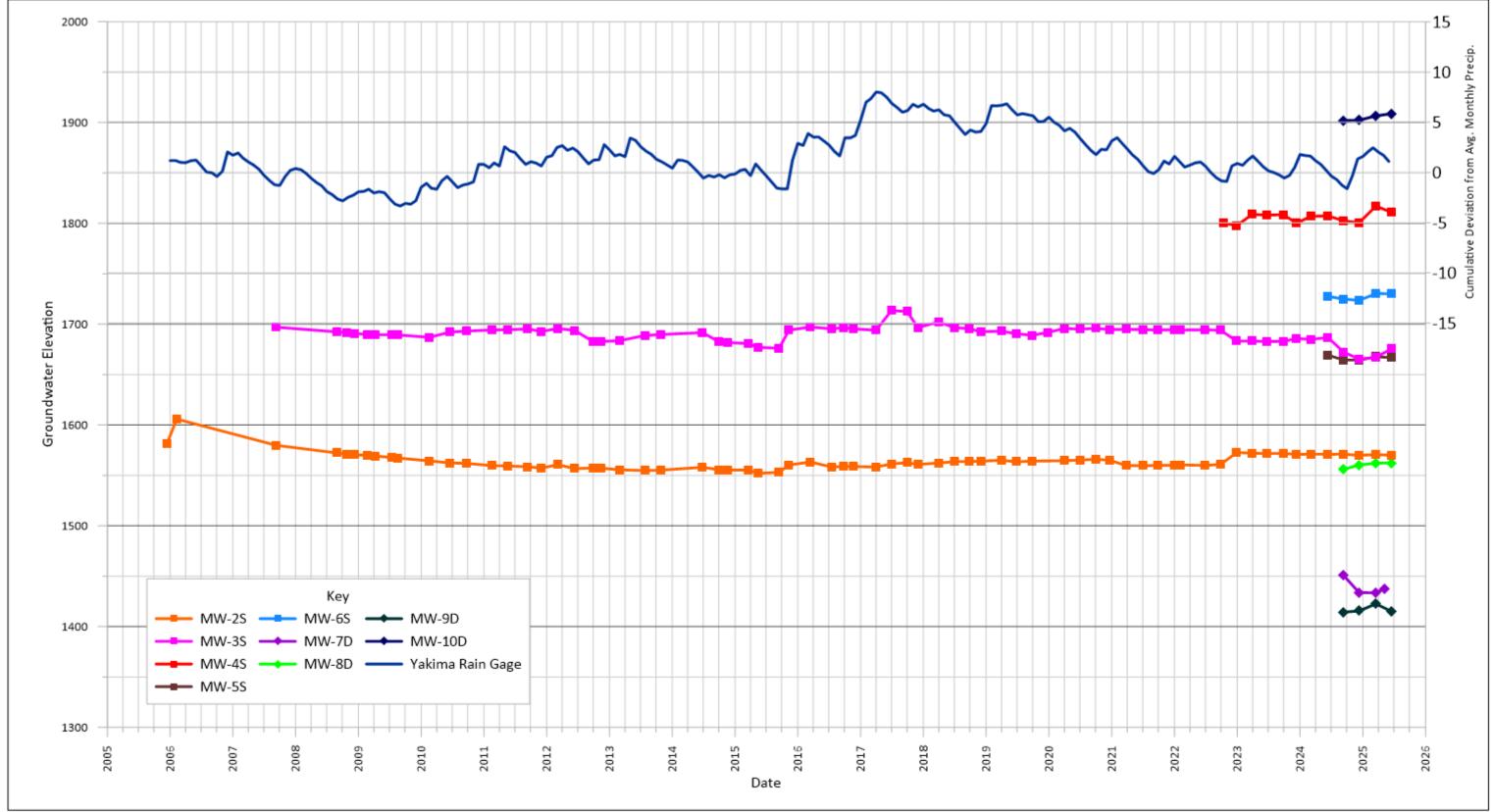
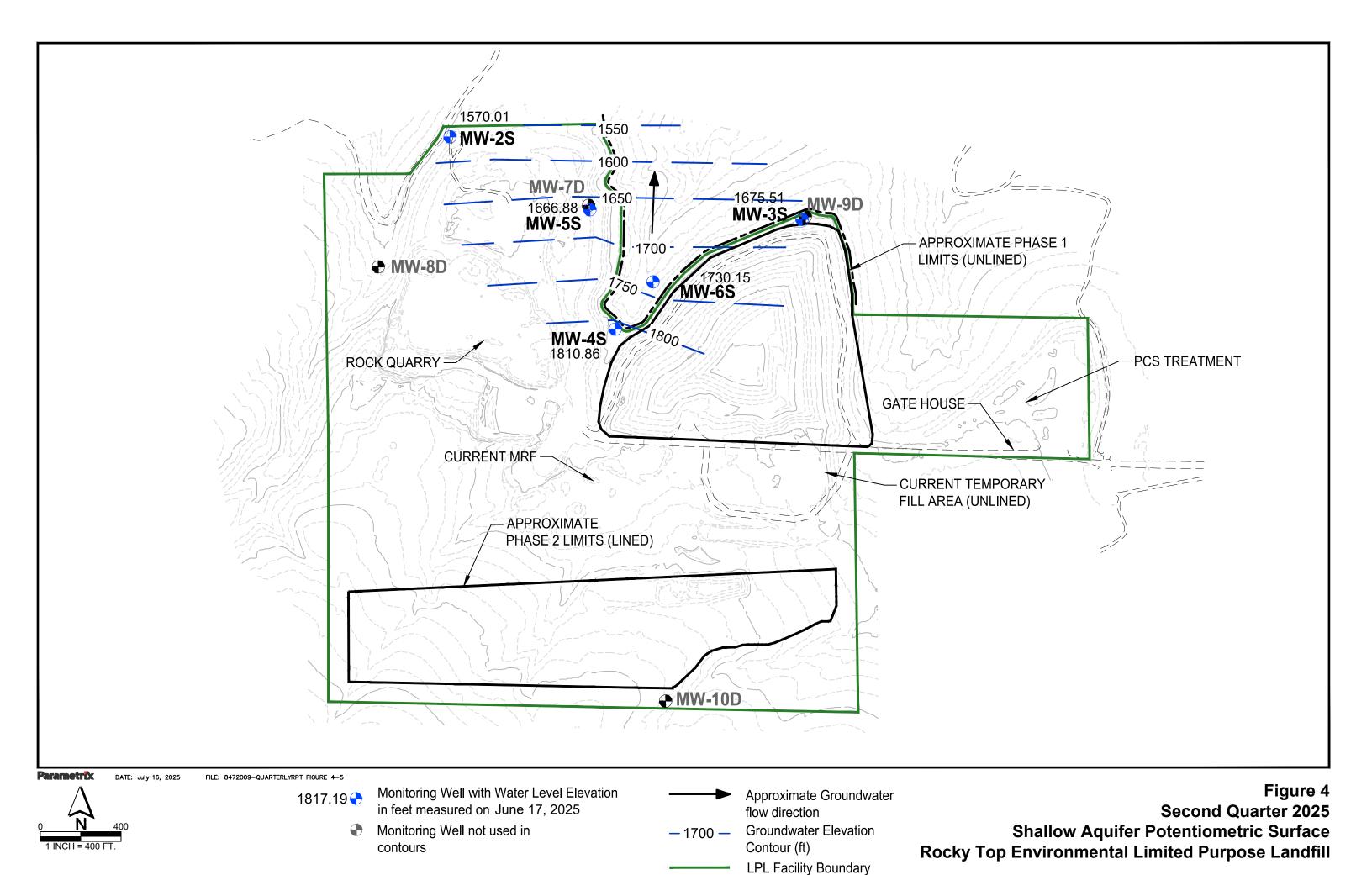
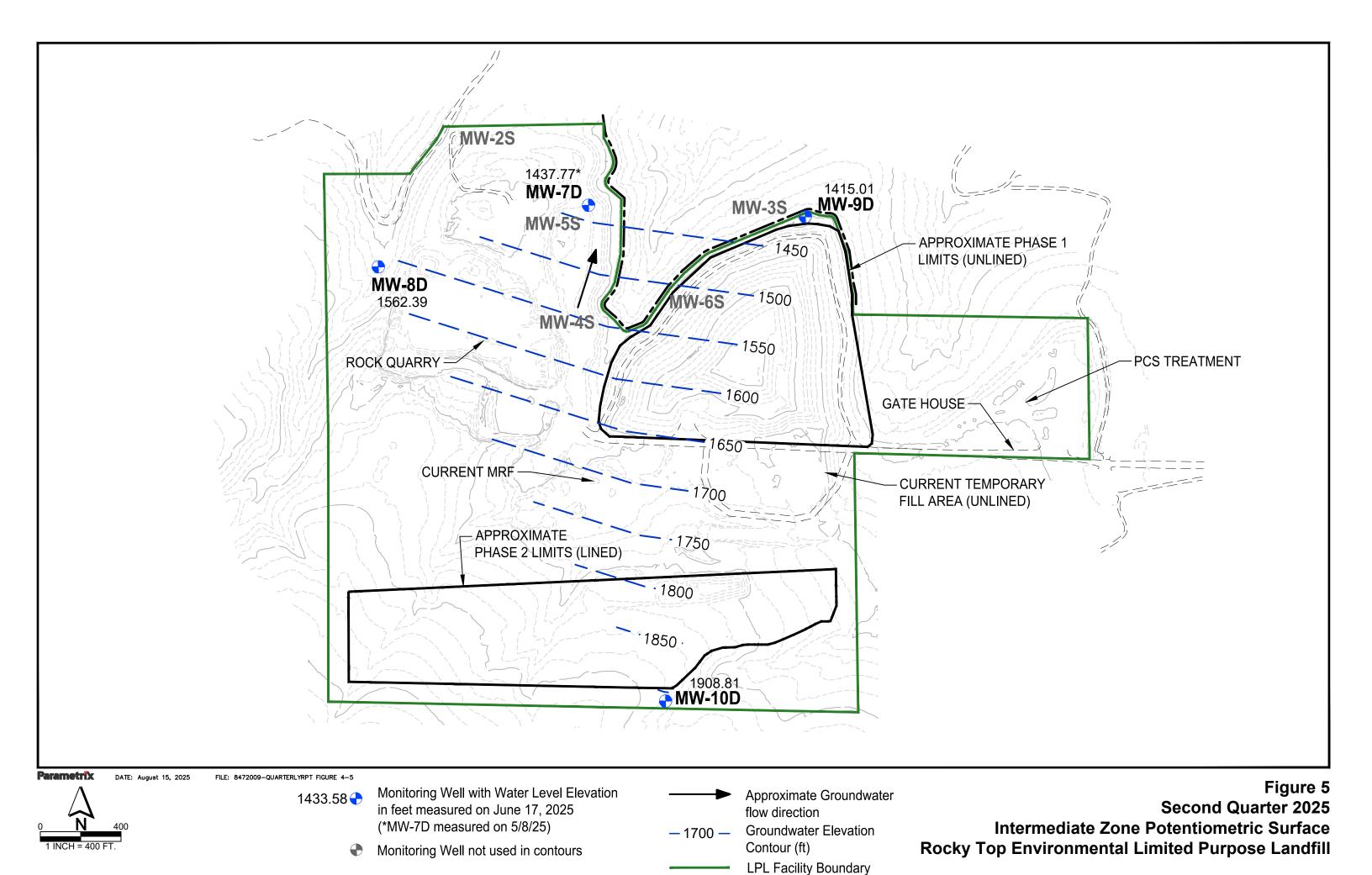

Proposed Monitoring Well

Figure 1
Facility Vicinity Map
Rocky Top Environmental Limited Purpose Landfill


Proposed Monitoring WellBorehole


Figure 2
Well Location Map
Rocky Top Environmental Limited Purpose Landfill

Parametrix

Figure 3 Second Quarter 2025 Water Level Summary Rocky Top Environmental Limited Purpose Landfill

Tables

Table 1. Well Detail Summary

Well ID	Northing	Easting	Ground Elevation (ft)	TOC Elevation (ft)	Screen Interval (ft bgs)	Completion Zone	Pump Type	Pump Depth (ft bgs)
MW-2S	473814.19	1591095.99	1856.31	1858.36	310-330	SA	P1101HM-Z	316.5
MW-3S	473404.76	1592840.90	1843.82	1845.92	188-198	SA	P1101M-Z	189.5
MW-4S	472860.94	1591915.35	1843.44	1845.59	49-69	SA	P1101M-Z	56.5
MW-5S	473452.58	1591789.89	1881.53	1883.88	222-242	SA	P1101M-Z	236
MW-6S	473095.44	1592102.50	1822.97	1825.31	110-130	SA	P1101M-Z	123
MW-7D	473475.06	1591782.75	1881.68	1883.88	475-495	IZ	P1101HM-Z	485.5
MW-8D	473169.85	1590740.82	1861.60	1863.94	375-405	IZ	P1101HM-Z	390.5
MW-9D	473421.50	1592857.26	1845.25	1847.49	420-440	IZ	P1101HM-Z	439.5
MW-10D	471017.47	1592164.59	1986.47	1988.77	150-170	IZ	P1101M-Z	160.5

SA = Shallow Aquifer

bgs = below ground surface

IZ = Interflow zone

Table 2. Groundwater Analyses and Analytical Methods

Analyte	Methods
Temperature	field
рН	field
Specific conductivity	field
Alkalinity as CaCO ₃	SM 2520B
Ammonia	EPA 350.1
Bicarbonate as CaCO ₃	Calculation
Calcium (D)	SM3111B
Chloride	SM4500-CI E
Iron (D&T)	SM3111B
Magnesium (D&T)	SM3111B
Manganese (D&T)	SM3111B
Nitrate as N	EPA 353.2
Potassium (D)	SM3111B
Sodium (D)	SM3111B
Sulfate	ASTM D516-90
Total Dissolved Solids	SM2540C
Total Organic Carbon	SM 2550B
Volatile Organic Compounds	EPA 8260D*
Total Petroleum Hydrocarbons – Gasoline range	NWTPH-Gx
Total Petroleum Hydrocarbons - Diesel/Oil range	NWTPH-Dx

D = Dissolved

T = Total

^{*}WAC 173-351-430 parameter list

Table 3. Groundwater Elevations, Second Quarter 2025, Rocky Top Environmental Limited Purpose Landfill

Well Number	Measurement Date	Elevation Top of PVC Casing (feet)	Depth to Groundwater (feet below top of casing)	Groundwater Elevation (feet)
MANA/ OC	6 (47 (2025	1050.06	200.25	1570.01
MW-2S	6/17/2025	1858.36	288.35	1570.01
MW-3S	6/17/2025	1845.92	170.41	1675.51
MW-4S	6/17/2025	1845.59	34.73	1810.86
MW-5S	6/17/2025	1883.88	217.00	1666.88
MW-6S	6/17/2025	1825.31	95.16	1730.15
MW-7D	5/8/2025	1883.88	446.11	1437.77
MW-8D	6/17/2025	1863.94	301.55	1562.39
MW-9D	6/17/2025	1847.49	432.48	1415.01
MW-10D	6/17/2025	1988.77	79.96	1908.81

Notes:

Elevation datum based on NAD83

NA = Not measured

Table 4. Second Quarter 2025 Shallow Aquifer Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

		lable 4. Second	Quarter 202	5 Snallow Aq	uiter Groundw		nitoring Resu	ітѕ, коску гор	Environmental	Limitea Purpo	se Lanatili			
Analyte	Units	GWQS	MCL	MW-2S 6/17/2025	MW-3S 6/18/2025	MW-13S (MW-3S Dup) 6/18/2025	MW-4S 6/18/2025	MW-5S 5/7/2025	MW-13S (MW-5S Dup) 5/7/2025	MW-5S 6/17/2025	MW-6S 5/7/2025	MW-6S 6/18/2025	Trip Blank 5/7/2025	Trip Blank 6/17/2025
		diri Qu		3, 1., 1010	3, 23, 2323	3, 23, 2020	3, 23, 2020	3, 1, 2323	3, 1, 2020	3, 1., 1313	3, 1, 2323	3, 23, 2323	3, 1, 2323	3, 1., 1010
Field Data					0.07									
pH		6.5-8.5	700 444	7.15	6.87		6.72	7.92		7.49	7.31	7.02		
Conductivity	μmhos/cm		700 **	182.6	669		1,207	681		403.2	615	591		
Temperature	С			14.9	14.7		13.4	16.2		14.7	13.7	13.2		
Redox	mv			192.2	247.6		288.6	-135.1		-60.4	121.1	272.7		
Dissolved Oxygen	mg/L			7.52	5.39 2.64		4.96	1.03 77.5		2.27	4.75	4.38		
Turbidity	NTU			49.60	2.04		49.96	11.5		7.50	1.18	2.51		
Metals														
Calcium, Dissolved	mg/L			13	50	50	110	30	30	30	46	44		
Iron, Total	mg/L	0.30 **	0.3 **	<0.050	<0.050	<0.050	<0.050	0.25	0.25	0.18	<0.05	<0.050		
Iron, Dissolved	mg/L		0.3 **	< 0.056	0.088	< 0.056	< 0.056	0.15	0.15	0.21	< 0.056	<0.056		
Magnesium, Total	mg/L			9.2	37	37	78	21	19	20	32	32		
Magnesium, Dissolved	mg/L			9.3	37	37	78	20	20	20	32	31		
Manganese, Total	mg/L	0.05 **	0.05 **	< 0.010	<0.010	<0.010	<0.010	0.039	0.035	0.039	<0.010	<0.010		
Manganese, Dissolved	mg/L		0.05 **	< 0.011	< 0.011	< 0.011	<0.011	0.039	0.038	0.042	< 0.011	<0.011		
Potassium, Dissolved	mg/L			3.2	4.8	4.8	7.4	3.4	3.3	3.6	4.4	4.5		
Sodium, Dissolved	mg/L			10	20	20	24	18	18	19	16	18		
Water Quality Parameters														
Alkalinity, Total	mg CaCO3/L			82	100	96	180	110	100	110	88	88		
Ammonia (NH3) as Nitrogen (N)	mg/L			<0.053	<0.053	<0.053	<0.053	<0.053	<0.053	<0.053	<0.053	<0.053		
Bicarbonate	mg CaCO3/L			82	100	96	180	110	100	110	88	88		
Chloride	mg/L	250 **	250 **	2.9	67	69	51	29	30	19	65	61		
Nitrate	mg/L-N	10 *	10 *	0.686	12.0	12.1	78.2	0.0240	0.0380	<0.200	11.8	11.8		
Sulfate	mg/L	250 **	250 **	6.3	99	80	160	83	83	68	60	59		
Total Dissolved Solids	mg/L	500 **	500 **	140	420	400	720	240	250	230	360	330		
Total Organic Carbon	mg/L			<1.0	3.2	3.1	5.2	1.7	1.8	<1.0	3.3	3.1		
_														
Total Petroleum Hydrocarbons														
Gasoline Range Organics ^a	μg/L	MTCA Method A:	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100		
TPHDx														
Diesel Range Organics	mg/L			<0.21	<0.21	<0.21	<0.20	<0.21	<0.21	<0.21	<0.20	<0.20		
Lube Oil Range Organics	mg/L			<0.21	<0.21	<0.21	<0.20	<0.21	<0.21	<0.21	<0.20	<0.20		
Total TPHDx	mg/L	MTCA Method A:	0.5	<0.21	< 0.21	<0.21	<0.20	<0.21	<0.21	<0.21	<0.20	<0.20		
Volatile Organic Compounds														
Chloromethane	μg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	µg/L	0.02 ***	2 *	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Bromomethane	µg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	μg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11, Trichlorofluoromethane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethene	µg/L		7 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acetone	µg/L			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<6.7	<5.0	<6.7	<5.0	<5.0
Methyl lodide	µg/L			<1.0	<1.0	<1.0	<1.0	<1.5	<1.5	<1.4	<1.5	<1.4	<1.5	<1.3
Carbon Disulfide	µg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.26	<0.20	<0.26	<0.20	<0.20
Methylene Chloride	µg/L	5 ***	5 *	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acrylonitrile	µg/L	0.07 ***		<1.0	<1.0	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<1.0	<0.50	<1.0
Trans-1,2-Dichloroethene	µg/L		100 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	1 ***		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Acetate	µg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	μg/L		70 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

August 2025 | 553-8472-009

Table 4. Second Quarter 2025 Shallow Aguifer Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

		Table 4. Second	Quarter 202	Silaliow Aq	uner Groundw		nitoring Resu	its, Rocky Top	Environmental	Limited Purpo	Se Lanuini		1	
Analyte	Units	GWQS	MCL	MW-2S 6/17/2025	MW-3S 6/18/2025	MW-13S (MW-3S Dup) 6/18/2025	MW-4S 6/18/2025	MW-5S 5/7/2025	MW-13S (MW-5S Dup) 5/7/2025	MW-5S 6/17/2025	MW-6S 5/7/2025	MW-6S 6/18/2025	Trip Blank 5/7/2025	Trip Blank 6/17/2025
Volatile Organic Compounds (cont.)	01110	dirigo		3/ 11/ 2323	0, 10, 2020	0, 10, 2020	0, 10, 2020	0,1,2020	0, 1, 2020	0, 1., 2020	0,1,2020	0, 10, 2020	3,1,2323	0, 1., 2020
2-Butanone	µg/L			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	7 ***	80 * THM	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	200 *	200 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	µg/L	0.3 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	1 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethene	µg/L	3 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	0.6 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromomethane	µg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorobromomethane	μg/L	0.3 ***	80 * THM	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-methyl-2-pentanone	μg/L			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Toluene	μg/L		1000 *	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,3-Dichloropropene	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	μg/L		5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Tetrachloroethene	μg/L	0.8 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone	μg/L			<2.0	<2.0	<2.0	<2.0	<2.5	<2.5	<2.0	<2.5	<2.0	<2.5	<2.0
Dibromochloromethane	μg/L		80 * THM	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromoethane (EDB)	μg/L	0.001 ***	0.05 *	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chlorobenzene	μg/L		100 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/L		700 *	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m, p-Xylene	μg/L			< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	< 0.40	<0.40	<0.40	<0.40
o-Xylene	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Styrene	μg/L		100 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	μg/L	5 ***	80 * THM	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.27
trans-1,4-Dichloro-2-butene	μg/L			<1.0	<1.0	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<1.0	<0.50	<1.0
1,4-Dichlorobenzene	μg/L	4 ***	75 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	μg/L		600 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromo-3-chloropropane	μg/L		0.2 *	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	μg/L	MTCA Method A:	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200)

MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290)

MTCA = Model Toxics Control Act (WAC 173-340)

^a = Gasoline with no benzene present

* = Primary

** = Secondary

*** = Carcinogen

*THM = Primary MCL for the sum of all trihalomethanes

*XYL = Primary MCL for the sum of all xylenes

= Does not meet GWQS or MCL

-- = Not analyzed

August 2025 | 553-8472-009 Page 2 of 2

Table 5. Shallow Aquifer Groundwater Samples that Failed to Meet Applicable Groundwater Standards in Second Quarter 2025

	Type of S	Standard					
Analyte	GWQS	MCL	MW-2S	MW-3S	MW-4S	MW-5S	MW-6S
Specific Conductivity	-	Secondary			2B	-	
Nitrate	Primary	Primary		2B	2B		2A, 2B
Total Dissolved Solids	Secondary	Secondary			2B	-	-

²A = May 2025 (MW-2S, MW-3S, MW-4S not sampled)

GWQS = Water Quality Standards for Groundwaters of the State of Washington (WAC 173-200)

MCL = State Maximum Contaminant Levels (WAC 246-290)

²B = June 2025

 [–] Data did not exceed groundwater standard

Table 6. Second Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

Table 6. Second Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill MW-7D MW-8D MW-9D MW-9D MW-10D MW-10D Trip Blank													Telm Diamic
Amakan	11-14-	014/00	1401									-	Trip Blank
Analyte	Units	GWQS	MCL	5/7/2025	6/17/2025	5/7/2025	6/18/2025	5/7/2025	6/18/2025	5/8/2025	6/19/2025	5/7/2025	6/17/2025
Field Data													
рН		6.5-8.5		7.92	7.54	7.98	7.69	7.11	6.82	7.46	6.88		
Conductivity	µmhos/cm		700 **	199.2	194.5	363.5	353.5	425.3	431.5	238.5	237		
Temperature	С			15.9	16.0	15.3	15.0	15.1	15.5	13.8	14.4		
Redox	mv			-102.3	-87.2	71	215.6	-12.8	157.4	230.4	306.4		
Dissolved Oxygen	mg/L			3.19	0.60	0.76	0.48	0.81	4.50	6.64	6.21		
Turbidity	NTU			24.91	1.41	89.00	560.25	1.76	0.75	15.49	2.89		
Metals													
Calcium, Dissolved	mg/L			14	15	26	26	30	31	19	20		
Iron, Total	mg/L	0.30 **	0.30 **	0.20	0.11	0.33	0.20	0.63	0.47	<0.050	<0.050		
Iron, Dissolved	mg/L		0.3 **	0.17	0.10	<0.056	<0.056	0.33	0.16	< 0.056	<0.056		
Magnesium, Total	mg/L			9.8	11	18	17	18	19	12	12		
Magnesium, Dissolved	mg/L			11	11	18	19	19	20	11	12		
Manganese, Total	mg/L	0.05 **	0.05 **	0.030	0.032	0.020	0.025	0.18	0.15	<0.010	<0.010		
Manganese, Dissolved	mg/L		0.05 **	0.031	0.034	<0.011	0.023	0.18	0.16	< 0.011	<0.011		
Potassium, Dissolved	mg/L			2.7	2.9	3.0	3.2	2.2	2.7	2.6	2.8		
Sodium, Dissolved	mg/L			11	12	18	20	22	27	13	13		
	G												
Water Quality Parameters	. 0. 000 (1			400		0.4		00		400			
Alkalinity, Total	mg CaCO3/L			100	98	94	92	90	88	100	98		
Ammonia (NH3) as Nitrogen (N)	mg/L			<0.053	<0.053	<0.053	<0.053	<0.053	0.090	<0.053	<0.053		
Bicarbonate	mg CaCO3/L			100	98	94	92	90	88	100	98		
Chloride	mg/L	250 **	250 **	2.7	2.6	15	13	40	41	3.6	4.0		
Nitrate	mg/L-N	10 *	10 *	0.0350	<0.200	1.60	1.58	0.0510	1.64	1.48	1.64		
Sulfate	mg/L	250 **	250 **	<5.0	<5.0	54	58	50	57	11	13		
Total Dissolved Solids	mg/L	500 **	500 **	150	130	240	220	270	270	150	160		
Total Organic Carbon	mg/L			<1.0	<1.0	<1.0	<1.0	2.0	2.9	<1.0	<1.0		
Total Petroleum Hydrocarbons													
Gasoline Range Organics ^a	μg/L	MTCA Method A:	1000										
TPHDx	P-0/ -												
Diesel Range Organics	mg/L												
Lube Oil Range Organics	mg/L												
5 5	3												
Volatile Organic Compounds													
Chloromethane	μg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	μg/L	0.02 ***	2 *	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Bromomethane	μg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	μg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11, Trichlorofluoromethane	μg/L			<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethene	μg/L		7 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acetone	μg/L			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl lodide	μg/L			<1.5	<1.0	<1.5	<1.3	<1.5	<1.3	<1.5	<1.3	<1.5	<1.3
Carbon Disulfide	µg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	µg/L	5 ***	5 *	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acrylonitrile	µg/L	0.07 ***		< 0.50	< 0.69	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trans-1,2-Dichloroethene	µg/L		100 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	1 ***		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Acetate	µg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	µg/L		70 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Butanone	µg/L		<u> </u>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane	µg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2.0000101110414110	MP/ -			10120	10120	-0.20		.0.20	-0.20	-0120	10120	.0120	10.20

August 2025 | 553-8472-009

Table 6. Second Quarter 2025 Interflow Zone Groundwater Quality Monitoring Results, Rocky Top Environmental Limited Purpose Landfill

				MW-7D	MW-7D	MW-8D	MW-8D	MW-9D	MW-9D	MW-10D	MW-10D	Trip Blank	Trip Blank
alyte	Units	GWQS	MCL	5/7/2025	6/17/2025	5/7/2025	6/18/2025	5/7/2025	6/18/2025	5/8/2025	6/19/2025	5/7/2025	6/17/2025
atile Organic Compounds (cont.)													
Chloroform	μg/L	7 ***	80 * THM	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	200 *	200 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	μg/L	0.3 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	1 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethene	μg/L	3 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/L	0.6 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromomethane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorobromomethane	μg/L	0.3 ***	80 * THM	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-methyl-2-pentanone	μg/L			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Toluene	µg/L		1000 *	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,3-Dichloropropene	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	μg/L		5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Tetrachloroethene	μg/L	0.8 ***	5 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone	μg/L			<2.5	<2.0	<2.5	<2.0	<2.5	<2.0	<2.5	<2.0	<2.5	<2.0
Dibromochloromethane	μg/L		80 * THM	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromoethane (EDB)	μg/L	0.001 ***	0.05 *	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chlorobenzene	μg/L		100 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/L		700 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m, p-Xylene	μg/L			< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	<0.40	<0.40	< 0.40	< 0.40
o-Xylene	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Styrene	μg/L		100 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	μg/L	5 ***	80 * THM	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	µg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane	μg/L			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.27
trans-1,4-Dichloro-2-butene	μg/L			<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	μg/L	4 ***	75 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	µg/L		600 *	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromo-3-chloropropane	μg/L		0.2 *	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	µg/L	MTCA Method A:	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200)

MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290)

MTCA = Model Toxics Control Act (WAC 173-340)

^a = Gasoline with no benzene present

* = Primary

** = Secondary

*** = Carcinogen

*THM = Primary MCL for the sum of all trihalomethanes

*XYL = Primary MCL for the sum of all xylenes

= Does not meet GWQS, MCL, or MTCA

- - = Not analyzed

August 2025 | 553-8472-009 Page 2 of 2

Table 7. Interflow Zone Groundwater Samples that Failed to Meet Applicable Groundwater Standards in Second Quarter 2025

	Type of Standard					
Analyte	GWQS	MCL	MW-7D	MW-8D	MW-9D	MW-10D
Iron, Total	Secondary	Secondary		2A	2A, 2B	-
Iron, Dissolved	Secondary	Secondary	-	-	2A	_
Manganese, Total	Secondary	Secondary		-	2A, 2B	-
Manganese, Dissolved	Secondary	Secondary			2A, 2B	

²A = May 2025

GWQS = Water Quality Standards for Groundwaters of the State of Washington (WAC 173-200)

MCL = State Maximum Contaminant Levels (WAC 246-290)

²B = June 2025

 ⁼ Data did not exceed groundwater standard

Table 8. Second Quarter 2025 Upper Prediction Limit (UPLs) and Shewhart Control Limit (SCLs) Comparison

Well	Analyte	Results (mg/L)	UPL (mg/L)	UPL Exceedance?	SCL (mg/L)	SCL Exceedance?
	Ammonia	<0.053	0.14	no		
	Chloride	2.9	18	no		
	Dissolved Iron	<0.056	0.281	no		
	Total Iron	<0.050	0.118	no		
MANA/ OC	Dissolved Manganese	<0.011	0.1	no		<u></u>
MW-2S	Total Manganese	<0.010	0.01	no		
	Nitrate	0.686	2.092	no		
	рН	7.15	7.86	no	5.827 - 8.245	no
	Sulfate	6.3	10.86	no	19.01	no
	Total Dissolved Solids	140	178	no		
	Ammonia	<0.053	0.14	no		no
	Chloride	67	47.39	yes	85.84	no
	Dissolved Iron	0.088	0.37	no	-	
	Total Iron	< 0.050	0.25	no	-	
	Dissolved Manganese	<0.011	0.03	no		
MW-3S	Total Manganese	<0.010	0.01	no		
	Nitrate	12.0	9.837	yes	18.23	no
	рН	6.87	7.765	no		
	Sulfate	99	46.12	yes	81.34	yes
	Total Dissolved Solids	420	293.6	yes	533.1	no
	Ammonia	<0.053	0.085	no		
	Chloride	51	61.57	no	74.83	no
	Dissolved Iron	<0.056	0.056	no		
	Total Iron	<0.050	0.055	no		
	Dissolved Manganese	<0.011	0.011	no		
MW-4S	Total Manganese	<0.010	0.01	no		
	Nitrate	78.2	73.89	yes	105.3	no
	рН	6.72	7.352	no	6.685 - 7.478	no
	Sulfate	160	168.4	no	240.7	no
	Total Dissolved Solids	720	811.3	no	1024	no

- = SCL not established
BOLD = Value exceeds UPL

BOLD = Value exceeds UPL and SCL

Appendix A

Second Quarter 2025 Field Data Sheets

Water Level Measurement Field Report

DATE 5/6/25	JOB NO.		
PROJECT: Yakima LPL	COMPANY NA	ME: PMX	
LOCATION: Rocky Top			
WEATHER	TEMP	° at	AM
sunny	70-80F	° at	PM
PERSONNEL	1		
C. Bourgeois B Has	N. Shaufler		

THE FOLLOWING WAS NOTED:

		Depth to Water (ft below top of		Screen Interval (ft bgs)
WELL NUMBER	Time	casing)	Measuring Point	
MW-2S			тос	310-330
MW-3S			TOC	188-198
MW-4S	410 BH		TOC	49.5 – 69.5
MW-5S	1890	214.26	TOC	222-243
MW-6S	15 PASON BY	94.37	TOC	110-130
MW-7D	1306 1215	no reading BY	TOC	475-495
MW-8D	14251329	301.6	TOC	375-405
MW-9D	1605	430.18	TOC	420-440
MW-10D	0820	80,83	TOC	150-170
			-	
	2			

Well #: MW-5S

						The second by Nation and	*****	# . <u></u>	
Project Nun	mber:	VOISIN AT THE PARK		Date:		51112	5		I
Project Nan	ne: Yakima	a LPL		Compa Name:	ny F	MX			
Project Add	dress: Rocky	Тор		Sample	d By:	_]
Casing Diar	meter: 2" _	4	4 ″ _	6"	Othe	er]
Initial Depth below TOC)	n to Water (feet):	216,26		Purge F Measur	Rate ement Metho	od:			
Top of Scre	en (feet bgs):	222		Date Pu	ırged:	5/1/25			
Bottom of S	Screen (feet bgs)	243		Purge 1	ime (from/to): <u>0910</u>	- FEW 09	52 34	
Reference F	Point (surveyor's	notch, etc.):		Time S	ampled:	[-000)		-
TIME (2400 hr)	DEPTH TO WATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
<u>Initial</u>	gleigle		4513	11/	00 -	001	2-12	(1412	1-70
0910	3/6-36	7.4	CART	<u>145</u>	267	9.51	2015	4010	1750 8
0917	dludo	7.47	751	145	377	1.69	2.44		
0122	216-3	771	792	141	16.2	0.41	5.85		
0925	<u> 26 alla</u>	1.85	195	15:0	-630	0.8/	<u>9.90</u>		
0730	211 27	19	762	151	108,8	1.19	5.1	d.	
0931	مران ۱	701	764	11.5 KX	-121 -	151-	16/1		
04 700 A		7 90	719	1010	-(30)	1.19	73	30130	1501
nd(2		7.9.2	681	16.2	-1351	1403	77.5		
Stabiliz	ation Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equi	pment:			Flow R	ate: 40) mla/m]
Laboratory				Date Se	ent to Lab:				
Shipment N	Method			Field Q	C Sample Nu	ımber:	MW-1	NO CE	00
Remarks:									1
2.0									
	4								
Signature:	divi	IN	7						

Well #:MW-6S

					AND RESIDENCE OF THE PARTY OF T	The state of the s	Name of the last o	
Project Number:	553-	- 3472 -	006	Date:	5	17/25	n.	
Project Name:	Yakima	LPL		Compar Name:	y Pur	anetw?	0	
Project Address:	Rocky T	Гор		Sample	I By: Cl	nris Bourgeo	is. Bri Hive:	s, W. Show
Casing Diameter:	2"	4	" —	6"	Othe	r		
Initial Depth to Wate below TOC):	er (feet	94.37	-	Purge R Measure	ate ment Metho	od:		
Top of Screen (feet I	bgs):	110		Date Pu	rged:	5/7/20	5	
Bottom of Screen (fe	eet bgs)	130		Purge T	me (from/to		se - 154	0
Reference Point (sur	rveyor's n	otch, etc.):		Time Sa	mpled:	15:2	5	
TIME DEPT (2400 hr) WATE		pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
Initial 94. 15:10 94. 15:10 95. 15:20 95. 15:25	3+ .lel .12 .26 .44	7.90 7.38 7.33 7.31	600 613 617 615	13.8 13.8 13.7	13.9 121.5 120.5 121.1	9.72 4.52 4.79 4.75	1.27	11/9 8
Stabilization Crit	eria	± 0.1	3%	3%	± 10 mv	10%, or 3	 10%, or 3<5.0	
					my	<0.5		
Purge Equipment:				Flow Ra	te: 200/	Min		
Laboratory:				Date Se	nt to Lab:			
Shipment Method				Field Q0	Sample Nu	ımber:		
Remarks: D	UP, MW	/-13S	collected	d here, at:				
Signature:								

					273	Well Well	#: <u>MW-7D</u>
Project Number: 55	53-8472-	oole	Date:	-	5/10/6	75	
Project Name: Ya	kima LPL		Compar Name:	ny			
Project Address: Ro	ску Тор		Sample	d By: Ch	ris Bourgeo	is Bithlei	Urshouft
Casing Diameter: 2	2"4	<u> </u>	6"	Other			
Initial Depth to Water (fe below TOC):	et		Purge R Measure	Rate ement Method	d:		
Top of Screen (feet bgs)	475		Date Pu	rged:	1//20	7	
Bottom of Screen (feet b	ogs) 495		Purge T	ime (from/to)	121	5-133	5
Reference Point (survey	or's notch, etc.):		Time Sa	ampled:		306	
TIME DEPTH TO (2400 hr) WATER (f		Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
Initial	x 41	205.1	204	57/0	9.20	27.70	47/35 240.
12:25	5.01	197.5	15.7	50.7	9 30	31.32	1957,210
12:30	7.76	97.0	15.5	62.7	8.93	34.19	-
12:35	7-64	97.0	5.7	70.0	6.52	26.62	
12:40	7.72	1985	15.6	62.2	3.43	29.38	
12:45	7.82	198.2	15.6	-1.2	3.35	28.19	
12.50	+.8+	100 3	15.9	-99:11 - 2 9 D	216	21.32	
13:00	7.92	199.4	15.8	-95.1	3.22	18/16.6	
Stabilization Criteria	±0.1 7 - 92	3% 199. 2	15.9	± 10 mv - 102.3	10%, or 3 3 < 0.5 9	10%, or 3<5.0 24.91	
Purge Equipment:		111	Flow Ra	ate: 3101	ne min		
Laboratory:			Date Se	ent to Lab:			
Shipment Method			Field Q	C Sample Nur	mber:		
Remarks: Couldn't	read way	ler level	5/6/25	>			
MA 446.11	- Mesin	ed Wa	fer !	evel			
In .	5	18					
Signature:	1						

						Well #	#: <u>MW-8D</u>
Project Number:			Date:		5/7	125	
Project Name: Yakima	LPL		Compan Name:	У			
Project Address: Rocky	Гор		Sampled	By:	iris Bourgeon	S	
Casing Diameter: 2" _	4	<u>'" – </u>	6"	Othe	r		
Initial Depth to Water (feet below TOC):	301.6	0	Purge R Measure	ate ement Metho	od:		
Top of Screen (feet bgs):	375		Date Pu	rged:	0/7/25	4	
Bottom of Screen (feet bgs)	405		Purge T	ime (from/to): <u>0134°</u>	1-1420)
Reference Point (surveyor's	notch, etc.):	4	Time Sa	mpled:	14	125	
TIME DEPTH TO (2400 hr) WATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
Initial 301.60	8.00	377.2	13.6	97.3	7,72	2.8	30/30 210
1355	7.85	374.	14,4	98.5	2,19	371	11 24
303.8	7.69	367.7	15.0	97.5	0.81	16.81	
1405 303,304 S	7.97	3653	151d	811	(),83	71,20	
1916	7.95	363.2	15.3	76.1	080	84.74.50	
1420 35.08	7,48	363.5	15.3	71	0.76	89	
Stabilization Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3	10%, or 3<5.0	
				:11	<0.5		
Purge Equipment:			Flow Ra	te: 46	0		
Laboratory:	T. T.		Date Se	nt to Lab:			
Shipment Method	3		Field Q0	Sample Nu	ımber:		
Remarks:							
Water land f	luctuation	o dunky	sampling				
							-
Signature:	a D	Idi				-	

Well #: MW-9D

Project Number:				Date:	5	17/2	5		
Project Name:	Yakima	LPL		Compan	у	1			
				Name: Sampled	IBv: Ch	ric Bourgeo	is W. Starfler	r R Hino	
Project Address:	Rocky 7					W	is it swu the	, D. (1976)	
Casing Diameter:	2" _	4		6"	Othe	r			
Initial Depth to W below TOC):	ater (feet	430.1	9	Purge R Measure	ate ment Metho	d:			
Top of Screen (fe	et bgs):	420		Date Purged: 5/7/25					
Bottom of Screen	(feet bgs)	440	Purge Time (from/to): 1650						
Reference Point ((surveyor's ı	notch, etc.):		Time Sa	mpled:	1655			
	EPTH TO ATER (ft)	pH (units)	Ec (μmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
Initial 1	430.18	7(1	410.5	15.3	115.3	7.75	8217	60/40	
$\frac{1000}{100}$	12).72	7.40	397.1	14.7	127.4	7,36	7.15	- U	
1615	431.0	7.24	315.6	H-8	131.9	6.21	1.74	G	
1620	131.32	7,20	398.5	1915.0	131.9	4.32	2.14	((
1625	131.72	7,12	419.5	14.9	98	1,36	2.64	4	
630	22.04	7/12	4728	15.3	51.7	0.93	100	1	
1635 4	32.09	7.12 4	1/1 (434 - A	15.5	11 1 1	<u>0,90</u> 0,83	1.89	(,	
16.46	132 19	7.0	423	15.7	-22	0.81	1.84	- Ci	
Stabilization (Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3	10%, or 3<5.0		
						<0.5			
Purge Equipmen	ıt:			Flow Ra	te:	400			
Laboratory:					nt to Lab:				
Shipment Metho	d			Field Q	Sample Nu	ımber:			
Remarks:									
	m -	011							
Signature: _	Mu	XH	1						
650		7.11	425,3	151	1-12.8	081	100		
655		* 1						Page <u>1</u> of <u>1</u>	

Well #: MW-10D

				THE RESIDENCE		2				
Project Number	:			Date:	5	8/25				
Project Name:	Yakim	a LPL		Compar Name:	y Par	ametri &				
Project Address	s: Rocky	Тор		Sample			is B. Hires,	W. Strake		
Casing Diamete	er: 2" _	4	' " –	6"	Other	•				
Initial Depth to below TOC):	Water (feet	80.83		Purge R Measure	ate ement Metho	d:				
Top of Screen (feet bgs):	147								
Bottom of Scree	en (feet bgs)	167		Purge T	ime (from/to)	570-	08115			
Reference Poin	t (surveyor's	notch, etc.):		Time Sa	mpled:	0830)			
	DEPTH TO	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING		
Initial	86.83	7 111	137.9	12 9	021 U	4.56	1 20	aster Who		
7:25 C	02 EIL	1,12	738 U	12-1	232.6	1. 57	2 42	2010,1907		
8-15	93.57 93 ng	7.47	1.38.4	13.7	232.0	632	5.74	2010, 10		
8:10	81.84	7.46	238.3	13.7	231,2	641	17.24			
8:15	84.74	7.46	238.5	13.8	230.4	6.64	15.49			
8:20										
8:25										
Stabilization	n Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0			
				= -	450	mL/ma				
Purge Equipme	ent:			Flow Ra	nt to Lab:	METIVE				
Laboratory: Shipment Meth	and				C Sample Nu	mber:	-			
Snipment weth										
Remarks:										
THE .										
450 ML/mi	_									
	1									
	MAA									
Signature:	MIV									

Water Level Measurement Field Report

DATE 6/17/25		JOB NO. 553-8472-009	
PROJECT: Yakima LPL		COMPANY NAME: Parametrix	
LOCATION: Rocky Top			
WEATHER	TEMP	° at	AM
Sunny		90° at	12 PM
PERSONNEL			,
HILLS & 1	Jognzes	△	

THE FOLLOWING WAS NOTED:

THE FOLLOWIN	THE FOLLOWING WAS NOTED:									
		Depth to Water (ft below top of		Screen Interval (ft bgs)						
WELL NUMBER	Time	casing)	Measuring Point	9						
MW-2S	955	288.35	TOC	310-330						
MW-3S	1029	170.41	TOC	188-198						
MW-4S	1619	34,73	TOC	49.5 – 69.5						
MW-5S	915	217.00	TOC	222-243						
MW-6S	1018	95.16	TOC	110-130						
₩W-7D		Wilder and Advanced and Advanced Advanc	TOC	475-495						
MW-8D	1007	301.55	TOC	375-405						
MW-9D	1035	432.48	TOC	420-440						
MW-10D	1045	79.96	TOC	150-170						
Mw-11s	1521	109.96	TOC							
				17						
		(4)								

6/18/25

^{*} Couldn't get NL reading

Well #: MW -25 6/17/25 553 - 847 - 2009 Date: **Project Number:** Company **Project Name:** Yakima LPL Name: Sampled By: **Project Address:** Rocky Top **Casing Diameter:** Other gaduated cylinder **Purge Rate Initial Depth to** Measurement Method: Water (feet): 6017125 Date Purged: Depth of Well (feet): Purge Time (from/to): Top of Screen (feet) 1524 Reference Point (surveyor's notch, etc.): Time Sampled: **Dissolved** Ec **TURBIDITY PUMP** TIME **DEPTH TO** (µmhos/cm Redox Oxygen 25°C) TEMP °C mg/L (visual) SETTING pH (units) (mv) (2400 hr) WATER (ft) Initial 30/30 175 162 19.5 288.32 1500 175,5 n 1506 289,21 11 11 50 1959.30 1540 10%, or 3 10%, or 3<5.0 Stabilization Criteria 3% 3% ± 10 mv ± 0.1 <0.5 **Purge Equipment:** Flow Rate: 6/19/95 **Date Sent to Lab:** Laboratory: draged of Field QC Sample Number: **Shipment Method** MC Sampled 648 19/25 @ 0938
Let purp to 15 minutes before onliche Remarks: Signature:

b

35 BA

Vell #:MW-85

							vveil 7	7: <u>IVI VV -63</u>	=
Project Number:	553.	-847-6	2009	Date:	C	118/25			
Project Name:	Yakima	LPL		Compar Name:	ny	YMX			
Project Address:	Rocky	Гор		Sample	d By:	3H, JN)		
Casing Diameter:	2" _	4)" _	6"	Othe	r			
Initial Depth to Wabelow TOC):	ater (feet	170,4		Purge R Measure	ate ement Metho	d: grad	unted Cyl	inder	
Top of Screen (fee	et bgs):	1340		Date Pu	rged:	0/18/2	<u> </u>		
Bottom of Screen	(feet bgs)	X50		Purge T	ime (from/to	1: 1245 -	-13/0		
Reference Point (surveyor's r	notch, etc.):		Time Sa	mpled:	1310			
	PTH TO TER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
<u>Initial</u> 1250	70,39	7.56	651	15.4	20,3	8.8 5.84	2.90	40/20	130 YS)
1255		6.91	670	14.9	237.9	5.47	2.13	11	[1
1300 17	11.02	6.89	(e72	14.9	243.1	5.43	2.81	1)	(T
305	097	68-1	669	140/	247.10	539	269		
1310									
1320			<u> </u>						
(325									
Stabilization C	Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equipment	: 151	Probe		Flow Ra	te:	130 ML	min]
Laboratory:				Date Se	nt to Lab:		6/19/8	75	
Shipment Method		droppel	H	Field Q0	C Sample Nu	mber:	1W-135		
Remarks:	DUP, MW	V-13S	collected	l here, at:	0800				
Signature:	My	law							1
3	- J								I .

					Well #:	45			
Project Number: 55	3 - 847-200	O Date:	61	18725					
Project Name: Yakin	na LPL	Compa Name:	ny 🖓	XV					
Project Address: Rock	у Тор	Sample	d By:	+,50					
Casing Diameter: 2" _	. 4" _	6"	Other	-					
Initial Depth to Water (feet):	4.73	Purge F Measur	Rate rement Method	: grana	ated cylin	de			
Depth of Well (feet):		Date Pu	urged: (d	18/25	1 2				
Top of Screen (feet)		Purge 1	Time (from/to)		-1035				
Reference Point (surveyor's	s notch, etc.):	Time Sa	ampled:	1040					
TIME DEPTH TO (2400 hr) WATER (ft)		Ec nhos/cm 25°C) TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING			
Initial 0955 75.23 1040 1015 35.400 1026 1	6.87 10 6.74 12 6.74 12 6.74 13 6.72 16 6.72 16	144 14,1 134 13,4 133 14,1 14,5 14,5 14,5 14,5 14,5 14,5 13,5 13,6 13,6 13,7 13,4	259.3 263.3 268.9 273.2 271.4 283.3 286.4 288.6	5.3 4.54 4.12 4.42 5.04 5.04 4.96	18.82 30.17 40.31030.44	W10 4 	40 ps		
Purge Equipment:	Princ	Flow Ra	ate: 75	D					
Laboratory:		Date Se	ent to Lab:		6/14/6	75			
Shipment Method	drypen of		C Sample Nur		NI	/A			
Remarks: Remarks: The to the sample Number.									

Well #:MW-5S

		77011 //: <u>INTT CO</u>	
Project Number: 553	- 847-209	Date: 6/17/25	
Project Name: Yakima	a LPL	Company PM X	
Project Address: Rocky	Тор	Sampled By: 3 H	
Casing Diameter: 2" _	4" _	6" Other	
Initial Depth to Water (feet below TOC):	217	Purge Rate Measurement Method: 4 Purple Rate 4 Purple Rate	
Top of Screen (feet bgs):	222	Date Purged: (0/17/2/5	
Bottom of Screen (feet bgs)	243	Purge Time (from/to): (105 - 1135	
Reference Point (surveyor's	notch, etc.):	Time Sampled:	
TIME DEPTH TO (2400 hr) WATER (ft)	Ec (µmhos/cm pH (units) 25°C)	Dissolved Redox Oxygen TURBIDITY PUMP TEMP °C (mv) mg/L (visual) SETTING	
1110 11	7.52 410	16.1 276.4 171 3.06 40/20 41.6 - 105.9 1.71 4.91 40/20	BUPSI
1120 11	7.60 759 7.63 711.2	14.6 - 136.1 1.63 +0.5.66 11 14.8 -136.7 0.94 6.32 11	el el
1135 11	7.51 408	14.6 -686 2.3 3685 11	ال (اد
1135 11	1.49 4.3.2	14.7 -60.4 2.27 4094 11	
1145			
Stabilization Criteria	± 0.1 3%	3% ± 10 mv 10%, or 3 10%, or 3<5.0 <0.5	
Purge Equipment:	SI frome	Flow Rate:	
Laboratory:	•	Date Sent to Lab:	1
Shipment Method	dropped of	Field QC Sample Number:	
Remarks:		\$ TV6	1
Was for PEAS	by accident will not a	e-on supply bettles salved to > 1500 then harved around 300	
level	by will hot	1500 Jm	
Wite		harocal around 300	
Signature:	el Mi		

Well #:MW-6S

							****	#. <u>IVI VV -03</u>	_
Project Number:	553	- 547-	JW4	Date:	Ŷ	118125			
Project Name:	Yakima	LPL		Compai Name:	ny F	MX			
Project Address	Rocky	Гор		Sample	d By: B	H,5N			
Casing Diameter	: 2″ _	4	1 " _	6"	Othe	er			
Initial Depth to V below TOC):	Vater (feet	95.16		Purge R Measur	late ement Metho	od: grad	rated Cylin	der	
Top of Screen (fo	eet bgs):	_110		Date Pu	rged:	6/18/20	5		
Bottom of Scree	n (feet bgs)	130		Purge T	ime (from/to): <u>1110</u>	-1125		
Reference Point	(surveyor's	notch, etc.):		Time Sa	impled:	112	5		
	EPTH TO ATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox / (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
Initial	15,51	7-20	621	13.2	2749	4.33	252	11/9	80 PS
1115		7,04	621	12.9	TRX	4169	2,54	119	70151
1120	局	7.02	591	13.2	272.7	4.38	2.51	12	11
1125									
1130									
1135									
1140									
1175									
1150									
Stabilization	Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equipmer	nt: 451	Mobe		Flow Ra	ite: 500	ml/N	ν'n		
Laboratory:				Date Se	nt to Lab:		6/19/2	5	
Shipment Metho	d	drype	At	Field Q	C Sample Nu	mber:	NA		
Remarks:	-DUE-		collecte	l here, ex:					1
				O	87				
		F	iral les	2/-	() · M				
Signature:	Bu	1	Hu	6					

							vveii +	7: <u>MVV-7D</u>
Project Number:		- 847	2-w9	Date:		117/25		
Project Name:	Yakima	LPL		Compan Name:	y /	MX		
Project Address:	Rocky T	`op		Sampled	By: B	4,5W		
Casing Diameter:	2"_	4	<u> </u>	6"	Other	•		
Initial Depth to Wate below TOC):	er (feet	311-36	= Bx	Purge R Measure	ate ement Metho	d: grach	rated cyli	nder
Top of Screen (feet	bgs):	475		Date Pur	rged:(0/17/20	5	
Bottom of Screen (f	feet bgs)	495		Purge Ti	ime (from/to)	: 1329	5 - 13516	5
Reference Point (su	ırveyor's n	otch, etc.):		Time Sa	mpled:	1351	0	
	TH TO ER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
<u>Initial</u>		7.9	194.3	15.9 15.2	60.8	9,25	2.01	40135
1335 =		7.31	196.1	16.1	-4,5	4.72	20	-1
1340 <u>-</u> 1340 <u>-</u> 1350		7.53 7.56 7.55 7.54	194.8 194.7 194.8	16.0 15.9 160	-79 -79 -82 -87.2	<u>038</u> <u>073</u>	1:48 61:45 1:48 1:41	
Stabilization Crit	teria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
Purge Equipment:	451	Probe		Flow Ra	te:	475	mL/mh	
Laboratory:				Date Se	nt to Lab:		6/19/	25
Shipment Method		dropped o	Q	Field QC	Sample Nu	mber:		
Remarks:			. کمار	30				
	hed a	Kr Wy	er gettir	Leng Cons, (12 m			
Signature:	Gr	i L	4.7					

<u> </u>		-		9		vveii	#:MVV-8D	
Project Number: 553	- 547-	2009	Date:	6.	118/25			
Project Name: Yakim	a LPL		Compai Name:	ny (MX			
Project Address: Rocky	Тор		Sample	d By:	H, 51			
Casing Diameter: 2"_		4"	6"	Othe	er			
Initial Depth to Water (feet	301.75	34	Purge R			1 1 2 2 10	1.	
below TOC):	Carrent 9	th really	Measur	ement Metho	od: gram	ated cylin		
Top of Screen (feet bgs):	375		Date Pu): (18/7	-0850		
Bottom of Screen (feet bgs)			_	ime (from/to	185			
Reference Point (surveyor's	notcn, etc.):		1 Ime 5	ampled:				
TIME DEPTH TO (2400 hr) WATER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
Initial	701	7.A1	13,9	234	1.90	6.01	30/30	235
<u>0815</u>	7.62	355, 3	143	234.6	5.7	5) 48	11	l i
0825	7.59	3496545	14.7	235	060	15.H.8	11	١į
\$ 30	7.62	354	14.8	274.8	0,49	BATTALDY	1.77 11	l l
0835	7.64	352.6	14.9	2321	0.51	37,18	<u>u</u>	4
6840	1164	353,3	14.9	229	0.47	65,98		ll
0847	169	<u>353.5</u>	15.0	215,6	0.48	5 60,00		11
0850								
Stabilization Criteria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equipment:	projec		Flow Ra	ate:				
Laboratory:			Date Se	ent to Lab:		86/10	125	
Shipment Method	dropad	et	Field Q	C Sample Nu	ımber:	NA		
Remarks: Actualist get stu	n rendirg							
nuter got shu	ik on tub	ing						
	4	0	7.					
	110	1 1 / 11)					

Well #:MW-9D

WITH THE PROPERTY OF THE PARTY	THE RESIDENCE TO SERVICE AND RESIDENCE		The state of
Project Number: 5	53-847-2009	Date: (18175	
Project Name: Yal	kima LPL	Company Name:	
Project Address: Roo	ску Тор	Sampled By: BA 5N	
Casing Diameter: 2	4 " _	6" Other	
Initial Depth to Water (fe	et 432.48	Purge Rate Measurement Method: 9 Mulated cylinder	
Top of Screen (feet bgs)	420	Date Purged: 6/18/25	
Bottom of Screen (feet b	gs) 440	Purge Time (from/to):	1445
Reference Point (survey	or's notch, etc.):	Time Sampled: (450	
	Ec	Dissolved	\neg
TIME DEPTH TO (2400 hr) WATER (fi) (μmhos/cm	Redox Oxygen TURBIDITY PUM TEMP °C (mv) mg/L (visual) SETTI	
Initial	6.82 430.8	17.9 221.7 877.18 2154 (0) 16.4 236 28 2.67 12 15.6 240.7 6.88 20.275 12 15.6 20.6 6.5 6.75 2 6.35 12 15.8 17.8 4.73 0.80 14 15.8 17.8 4.73 0.80 14 15.6 16.7.2 4.55 0.75 15.6 16.3.1 4.53 0.74 15.5 57.4 4.6 0.75 15.6 16.3.1 4.53 0.74	
Purge Equipment:	11 mbc	Flow Rate: 390 mL/min	
Laboratory:		Date Sent to Lab: (9/19/25	
Shipment Method	dapperof	Field QC Sample Number:	
Remarks: Accide	artally listed DO	in turbidity Column & vice versa	
Riwil	corret when die	in turbidity Columno vice vera gitize data	
1m			
Signature:	wid hui		

Well #:MW-10D

Division Cristic Children Service Light	33 2 All 24 Sept. 15			Latin Company	PRODUCTIONS			=
Project Number:	553 - 847 -	2009	Date:	_(119 125			
Project Name: Ŋ	Yakima LPL		Compai Name:	пу	PMX			
Project Address:	Rocky Top		Sample	d By:	1H, 5N)		
Casing Diameter:	2"	1 " _	6"	Othe	r			
Initial Depth to Water ((feet 79, 9 ()	Purge R Measur	tate ement Metho	od: Ma	uated upl	inder	
Top of Screen (feet bg	js): <u>147</u>		Date Pu	rged:	G/19/8	45		
Bottom of Screen (fee	t bgs) <u>167</u>		Purge T	ime (from/to): <u>0752</u>	-0808		
Reference Point (surv	eyor's notch, etc.):		Time Sa	ampled:	<u> </u>	10		
TIME DEPTH (2400 hr) WATER		Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
Initial 98752 79.9	6 6.42	236.4	14,6	338.	9,78	2.95	20/10	90 PS
6757 81	,6 6.76	236.5	14.4	316.4	5.43	2.76	- 11	4
6802 81	32 (0.83	36.4	144	311.5	6.88	2.80	11	u
080-7 81	10 6.88	237	14,4	301.4	6.21	2.89		''
1813	_							
0817								
<u>082h</u>								
<u>6527</u> 6332		-						
Stabilization Criteri	a ± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equipment:	VSI prize		Flow Ra	nte: 47	75 mL	min		
Laboratory:	43	×.		nt to Lab:		6/19/2	5	1
Shipment Method	diagned	of	Field Q	C Sample Nu	mber:	NIA		
Remarks:								
							+	
A/	7 ()	1						
0	Á	11.						

Well #: Leachate Pond

			A - WHENEY VALUE	ALLENS OF	
Project Number:			Date:	_	6/19/25
Project Name:	Yakima LPL		Client Nam	e	DTG Recycle
Project Address:	41 Rocky To	p Road	Measured I	Ву:	BH, 5N
	Yakima, WA				
TIME (2400 h		Depth to Water from Cleanout Pipe			Depth of Water in Leachate Pond (ft)
Remarks: Top 1928 ft, bott Pond design:	om 1921 ft; a	pproximate length of p	pipe 22 ft (2	3:1)	
	SE SPERMANNI BOUT AND STREET SPERMANNING BY BY AND STREET SPERMANNING BY		GRAVEL MAJER	UNER SYS	AI7
Signature:					

Appendix B

Second Quarter 2025
Laboratory Analytical Report

May 23, 2025

Laura Lee Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-009

Laboratory Reference No. 2505-101

Dear Laura:

Enclosed are the analytical results and associated quality control data for samples submitted on May 8, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 23, 2025 Samples Submitted: May 8, 2025 Laboratory Reference: 2505-101

Project: 553-8472-009

Case Narrative

Samples were collected on May 7 and 8, 2025 and received by the laboratory on May 8, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25	
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25	
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25	
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	68-133				
Taluana do	107	70 400				

Toluene-d8 107 79-123 4-Bromofluorobenzene 100 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25	
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25	
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25	
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	68-133				

Toluene-d8 107 79-123 4-Bromofluorobenzene 100 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25	
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25	
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25	
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	68-133				

Dibromofluoromethane 107 79-123 Toluene-d8 4-Bromofluorobenzene 99 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25	
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25	
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-7D						
Laboratory ID:	05-101-04						
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25		
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25		
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25		
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	113	68-133					
T-1	400	70.400					

Toluene-d8 108 79-123 4-Bromofluorobenzene 99 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25	
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25	
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25	
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	68-133				

Toluene-d8 106 79-123 4-Bromofluorobenzene 99 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-9D						
Laboratory ID:	05-101-06						
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25		
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25		
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25		
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25		
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25		
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25		
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25		

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-9D						
Laboratory ID:	05-101-06						
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25		
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25		
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25		
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	112	68-133					

Toluene-d8 107 79-123 4-Bromofluorobenzene 99 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-10D						
Laboratory ID:	05-101-07						
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25		
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25		
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25		
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25		
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25		
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25		
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25		

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-10D						
Laboratory ID:	05-101-07						
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25		
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25		
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25		
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	112	68-133					

Dibromotluoromethane 107 Toluene-d8 79-123 4-Bromofluorobenzene 100 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags		
Client ID:	Trip Blanks							
Laboratory ID:	05-101-08							
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25			
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25			
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25			
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25			
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25			
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25			
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25			
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25			
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25			
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25			
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25			
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25			
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25			
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25			
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25			
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25			

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	Trip Blanks						
Laboratory ID:	05-101-08						
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25		
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25		
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25		
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25		
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	115	68-133					
T-1	400	70.400					

Toluene-d8 108 79-123 4-Bromofluorobenzene 100 78-117

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0512W1					
Chloromethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Bromomethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Chloroethane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Acetone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
lodomethane	ND	1.5	EPA 8260D	5-12-25	5-12-25	
Carbon Disulfide	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methylene Chloride	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Acrylonitrile	ND	0.50	EPA 8260D	5-12-25	5-12-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Vinyl Acetate	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Butanone	ND	5.0	EPA 8260D	5-12-25	5-12-25	
Bromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Chloroform	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Benzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Trichloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Dibromomethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromodichloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	5-12-25	5-12-25	
Toluene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Tetrachloroethene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
2-Hexanone	ND	2.5	EPA 8260D	5-12-25	5-12-25	

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0512W1					
Dibromochloromethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	5-12-25	5-12-25	
Chlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Ethylbenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
m,p-Xylene	ND	0.40	EPA 8260D	5-12-25	5-12-25	
o-Xylene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Styrene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
Bromoform	ND	1.0	EPA 8260D	5-12-25	5-12-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	5-12-25	5-12-25	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	5-12-25	5-12-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	5-12-25	5-12-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Naphthalene	ND	1.0	EPA 8260D	5-12-25	5-12-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	68-133				
Toluene-d8	106	79-123				

Toluene-d8 106 79-123 78-117 4-Bromofluorobenzene 99

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

					Source	Percent		Recovery		RPD	
Analyte	Res	ult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-10										
	MS	MSD	MS	MSD		MS	MSD				
Chloromethane	8.60	9.26	10.0	10.0	ND	86	93	49-136	7	27	
Vinyl Chloride	10.1	10.9	10.0	10.0	ND	101	109	69-126	8	16	
Bromomethane	9.11	10.3	10.0	10.0	ND	91	103	32-158	12	24	
Chloroethane	10.5	11.6	10.0	10.0	ND	105	116	62-125	10	14	
Trichlorofluoromethane	10.6	11.7	10.0	10.0	ND	106	117	80-128	10	16	
1,1-Dichloroethene	10.3	11.4	10.0	10.0	ND	103	114	73-125	10	15	
Acetone	13.8	13.4	10.0	10.0	1.26	125	121	37-164	3	29	
lodomethane	7.18	8.41	10.0	10.0	ND	72	84	35-141	16	25	
Carbon Disulfide	8.21	8.62	10.0	10.0	ND	82	86	55-127	5	17	
Methylene Chloride	9.77	10.9	10.0	10.0	ND	98	109	63-118	11	16	
(trans) 1,2-Dichloroethene	10.5	11.5	10.0	10.0	ND	105	115	70-127	9	16	
1,1-Dichloroethane	10.4	11.7	10.0	10.0	ND	104	117	71-126	12	15	
Vinyl Acetate	11.2	12.2	10.0	10.0	ND	112	122	60-140	9	17	
(cis) 1,2-Dichloroethene	10.7	12.0	10.0	10.0	ND	107	120	71-130	11	16	
2-Butanone	10.3	11.2	10.0	10.0	ND	103	112	56-143	8	19	
Bromochloromethane	10.8	12.1	10.0	10.0	ND	108	121	68-133	11	17	
Chloroform	10.4	11.7	10.0	10.0	ND	104	117	68-127	12	16	
1,1,1-Trichloroethane	10.4	11.6	10.0	10.0	ND	104	116	74-127	11	17	
Carbon Tetrachloride	10.5	11.6	10.0	10.0	ND	105	116	72-134	10	18	
Benzene	9.91	11.1	10.0	10.0	ND	99	111	69-129	11	16	
1,2-Dichloroethane	10.8	12.4	10.0	10.0	ND	108	124	71-134	14	17	
Trichloroethene	9.89	10.8	10.0	10.0	ND	99	108	74-134	9	12	
1,2-Dichloropropane	10.4	11.5	10.0	10.0	ND	104	115	74-130	10	17	
Dibromomethane	10.5	11.8	10.0	10.0	ND	105	118	74-140	12	16	
Bromodichloromethane	10.7	11.9	10.0	10.0	ND	107	119	77-137	11	17	
(cis) 1,3-Dichloropropene	10.9	12.3	10.0	10.0	ND	109	123	73-137	12	17	
Methyl Isobutyl Ketone	10.4	11.7	10.0	10.0	ND	104	117	61-146	12	19	
Toluene	9.65	10.7	10.0	10.0	ND	97	107	71-128	10	19	
(trans) 1,3-Dichloropropene	10.6	11.7	10.0	10.0	ND	106	117	70-136	10	18	
1,1,2-Trichloroethane	10.2	11.1	10.0	10.0	ND	102	111	68-146	8	16	
Tetrachloroethene	9.50	10.3	10.0	10.0	ND	95	103	78-132	8	22	
2-Hexanone	9.32	10.1	10.0	10.0	ND	93	101	57-154	8	25	
Dibromochloromethane	10.2	11.0	10.0	10.0	ND	102	110	51-160	8	27	

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
1,2-Dibromoethane	10.4	11.6	10.0	10.0	ND	104	116	74-133	11	16	
Chlorobenzene	9.93	10.8	10.0	10.0	ND	99	108	83-121	8	16	
1,1,1,2-Tetrachloroethane	10.4	11.5	10.0	10.0	ND	104	115	82-129	10	17	
Ethylbenzene	9.57	10.4	10.0	10.0	ND	96	104	84-123	8	17	
m,p-Xylene	18.8	20.4	20.0	20.0	ND	94	102	82-125	8	17	
o-Xylene	9.81	10.6	10.0	10.0	ND	98	106	83-123	8	17	
Styrene	10.0	10.9	10.0	10.0	ND	100	109	83-128	9	19	
Bromoform	10.6	11.6	10.0	10.0	ND	106	116	69-135	9	18	
1,1,2,2-Tetrachloroethane	9.92	11.0	10.0	10.0	ND	99	110	75-138	10	17	
1,2,3-Trichloropropane	10.1	10.9	10.0	10.0	ND	101	109	64-131	8	18	
1,4-Dichlorobenzene	9.32	10.2	10.0	10.0	ND	93	102	79-127	9	15	
1,2-Dichlorobenzene	9.67	10.7	10.0	10.0	ND	97	107	80-130	10	16	
1,2-Dibromo-3-chloropropane	9.56	10.8	10.0	10.0	ND	96	108	68-139	12	19	
Naphthalene	10.0	11.7	10.0	10.0	ND	100	117	67-142	16	23	
Surrogate:											
Dibromofluoromethane						110	112	68-133			
Toluene-d8						107	108	79-123			
4-Bromofluorobenzene						102	102	78-117			

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					_
Laboratory ID:	05-101-01					
Gasoline	ND	100	NWTPH-Gx	5-15-25	5-15-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	68	62-122				
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Gasoline	ND	100	NWTPH-Gx	5-15-25	5-15-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	62-122				
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Gasoline	ND	100	NWTPH-Gx	5-15-25	5-15-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	62-122				
Client ID:	Trip Blanks					
Laboratory ID:	05-101-08					
Gasoline	ND	100	NWTPH-Gx	5-15-25	5-15-25	
Surrogate:	Percent Recovery	Control Limits	_		_	
Fluorobenzene	82	62-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515W3					
Gasoline	ND	100	NWTPH-Gx	5-15-25	5-15-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	72	62-122				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						68	73	62-122			
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Gasoline	4620	5310	5000	5000	ND	92	106	75-125	14	15	
Surrogate:	•	•		•	•		•		•	•	•
Fluorobenzene						93	90	62-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	5-13-25	5-13-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	5-13-25	5-13-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Diesel Range Organics	ND	0.20	NWTPH-Dx	5-13-25	5-13-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	5-13-25	5-13-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	5-13-25	5-13-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	5-13-25	5-13-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
, ,						

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0513W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	5-13-25	5-13-25	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	5-13-25	5-13-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		1	NΑ	NA	NA	40	
Lube Oil Range	ND	ND	NA	NA		1	NΑ	NA	NA	40	
Surrogate:											
o-Terphenyl						110	104	50-150			
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Diesel Range	0.435	0.452	0.500	0.500	ND	87	90	54-123	4	40	
Surrogate:											
o-Terphenyl						98	107	50-150			

TOTAL ALKALINITY SM 2320B

Office. This Gacobic				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
_aboratory ID:	05-101-01					
Total Alkalinity	110	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-6S					
_aboratory ID:	05-101-02					
Total Alkalinity	88	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Total Alkalinity	100	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-7D					
	05-101-04					
Laboratory ID: Total Alkalinity	100	2.0	SM 2320B	5-9-25	5-9-25	
Total Alkallility	100	2.0	3IVI 2320B	3-9-23	3-9-23	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Total Alkalinity	94	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Total Alkalinity	90	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW 40D					
Laboratory ID:	MW-10D 05-101-07					
•	100	2.0	SM 2320B	5.0.25	5-9-25	
Total Alkalinity	100	2.0	SIVI ZSZUB	5-9-25	J-9-ZJ	

TOTAL ALKALINITY SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509W1					
Total Alkalinity	ND	2.0	SM 2320B	5-9-25	5-9-25	

					Source	_	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Total Alkalinity	108	108	١	NA.	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	194	194	100	100	108	86	86	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB05	09W1									
	S	SB	5	SB	•		SB		•	•	•
Total Alkalinity	10	00	1	00	NA		100	81-104	NA	NA	•

BICARBONATE SM 2320B

ome. mg caccor				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Bicarbonate	110	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Bicarbonate	88	2.0	SM 2320B	5-9-25	5-9-25	
0 11						
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Bicarbonate	100	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Bicarbonate	100	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Bicarbonate	94	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Bicarbonate	90	2.0	SM 2320B	5-9-25	5-9-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Bicarbonate	100	2.0	SM 2320B	5-9-25	5-9-25	

BICARBONATE SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509W1					
Bicarbonate	ND	2.0	SM 2320B	5-9-25	5-9-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Bicarbonate	108	108	N	lΑ	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Bicarbonate	194	194	100	100	108	86	86	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB05	09W1									
	S	В	5	SB			SB		•		
Bicarbonate	10	00	1	00	NA		100	81-104	NA	NA	•

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Total Dissolved Solids	240	13	SM 2540C	5-12-25	5-12-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Total Dissolved Solids	360	13	SM 2540C	5-12-25	5-12-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Total Dissolved Solids	250	13	SM 2540C	5-12-25	5-12-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Total Dissolved Solids	150	13	SM 2540C	5-12-25	5-12-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Total Dissolved Solids	240	13	SM 2540C	5-12-25	5-12-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Total Dissolved Solids	270	13	SM 2540C	5-12-25	5-12-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Total Dissolved Solids	150	13	SM 2540C	5-12-25	5-12-25	
		-				•

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0512W1					
Total Dissolved Solids	ND	13	SM 2540C	5-12-25	5-12-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE			•						
Laboratory ID:	05-10	01-01							
	ORIG	DUP							
Total Dissolved Solids	241	245	NA	NA	NA	NA	2	40	
SPIKE BLANK									
Laboratory ID:	SB05	12W1							
	S	В	SB		SB		•		•
Total Dissolved Solids	48	84	500	NA	97	72-123	NA	NA	

CHLORIDE SM 4500-CI E

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Chloride	29	2.0	SM 4500-CI E	5-9-25	5-9-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Chloride	65	2.0	SM 4500-CI E	5-9-25	5-9-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Chloride	30	2.0	SM 4500-CI E	5-9-25	5-9-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Chloride	2.7	2.0	SM 4500-CI E	5-9-25	5-9-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Chloride	15	2.0	SM 4500-CI E	5-9-25	5-9-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Chloride	40	2.0	SM 4500-CI E	5-9-25	5-9-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Chloride	3.6	2.0	SM 4500-CI E	5-9-25	5-9-25	

CHLORIDE SM 4500-CI E **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0509W1					
Chloride	ND	2.0	SM 4500-CLF	5-9-25	5-9-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Chloride	29.3	30.1	N	IA	NA	1	NA	NA	3	15	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	82.2	80.0	50.0	50.0	29.3	106	101	79-131	3	20	
SPIKE BLANK											
Laboratory ID:	SB05	09W1									
_	S	В	S	SB		,	SB			•	
Chloride	50).8	50	0.0	NA	1	02	82-123	NA	NA	

SULFATE **ASTM D516-11**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Sulfate	83	25	ASTM D516-16	5-9-25	5-9-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Sulfate	60	20	ASTM D516-16	5-9-25	5-9-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Sulfate	83	20	ASTM D516-16	5-9-25	5-9-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Sulfate	ND	5.0	ASTM D516-16	5-9-25	5-9-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Sulfate	54	20	ASTM D516-16	5-9-25	5-9-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Sulfate	50	20	ASTM D516-16	5-9-25	5-9-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Sulfate	11	5.0	ASTM D516-16	5-9-25	5-9-25	

SULFATE ASTM D516-11 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0509W1					
Sulfate	ND	5.0	ASTM D516-16	5-9-25	5-9-25	

Analyto	Po	sult	Snike	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flags
Analyte	Ke:	Suit	Эріке	Level	Result	Rec	covery	LIIIIIIS	KPD	Lillin	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Sulfate	83.4	84.2	١	IA.	NA		NA	NA	1	11	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	180	186	100	100	83.4	97	103	70-131	3	20	
SPIKE BLANK											
Laboratory ID:	SB05	09W1									
	S	В	5	SB			SB				
Sulfate	8.	83	10	0.0	NA		88	83-113	NA	NA	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

orme. mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	

AMMONIA (as Nitrogen) SM 4500-NH₃ D **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0514W1					
Ammonia	ND	0.053	SM 4500-NH3 D	5-14-25	5-14-25	

A malada	D	14	0 !!		Source	_	rcent	Recovery	DDD	RPD	5 1
Analyte	Res	sult	Spike	Level	Result	Kec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Ammonia	ND	ND	N	IA	NA	1	NA	NA	NA	21	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Ammonia	5.32	5.38	5.00	5.00	ND	106	108	76-114	1	20	
SPIKE BLANK											
Laboratory ID:	SB05	14W1									
	S	В	<u> </u>	BB			SB				
Ammonia	5.	01	5.	00	NA	1	00	81-110	NA	NA	

TOTAL ORGANIC CARBON SM 5310B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Total Organic Carbon	1.7	1.0	SM 5310B	5-20-25	5-20-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Total Organic Carbon	3.3	1.0	SM 5310B	5-20-25	5-20-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Total Organic Carbon	1.8	1.0	SM 5310B	5-20-25	5-20-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Total Organic Carbon	ND	1.0	SM 5310B	5-20-25	5-20-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Total Organic Carbon	ND	1.0	SM 5310B	5-20-25	5-20-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Total Organic Carbon	2.0	1.0	SM 5310B	5-20-25	5-20-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Total Organic Carbon	ND	1.0	SM 5310B	5-20-25	5-20-25	

TOTAL ORGANIC CARBON SM 5310B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						,
Laboratory ID:	MB0520W1					
Total Organic Carbon	ND	1.0	SM 5310B	5-20-25	5-20-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Total Organic Carbon	1.67	1.66	N	Α	NA		NA	NA	1	10	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Total Organic Carbon	11.3	11.9	10.0	10.0	1.67	96	102	70-136	5	20	
SPIKE BLANK											
Laboratory ID:	SB05	20W1									
	S	В	S	В		;	SB				
Total Organic Carbon	11	.0	10	0.0	NA	1	110	83-130	NA	NA	

Date of Report: May 23, 2025 Samples Submitted: May 8, 2025 Laboratory Reference: 2505-101

Project: 553-8472-009

DISSOLVED METALS EPA 6010D

Matrix: Water
Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Calcium	30	1.1	EPA 6010D		5-15-25	
Iron	0.15	0.056	EPA 6010D		5-15-25	
Magnesium	20	1.1	EPA 6010D		5-15-25	
Manganese	0.039	0.011	EPA 6010D		5-15-25	
Potassium	3.4	1.1	EPA 6010D		5-15-25	
Sodium	18	1.1	EPA 6010D		5-15-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Calcium	46	1.1	EPA 6010D		5-15-25	
Iron	ND	0.056	EPA 6010D		5-15-25	
Magnesium	32	1.1	EPA 6010D		5-15-25	
Manganese	ND	0.011	EPA 6010D		5-15-25	
Potassium	4.4	1.1	EPA 6010D		5-15-25	
Sodium	16	1.1	EPA 6010D		5-15-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Calcium	30	1.1	EPA 6010D		5-15-25	
Iron	0.15	0.056	EPA 6010D		5-15-25	
Magnesium	20	1.1	EPA 6010D		5-15-25	
Manganese	0.038	0.011	EPA 6010D		5-15-25	
Potassium	3.3	1.1	EPA 6010D		5-15-25	
Sodium	18	1.1	EPA 6010D		5-15-25	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Calcium	14	1.1	EPA 6010D		5-15-25	
Iron	0.17	0.056	EPA 6010D		5-15-25	
Magnesium	11	1.1	EPA 6010D		5-15-25	
Manganese	0.031	0.011	EPA 6010D		5-15-25	
Potassium	2.7	1.1	EPA 6010D		5-15-25	
Sodium	11	1.1	EPA 6010D		5-15-25	

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

· /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Calcium	26	1.1	EPA 6010D		5-15-25	
Iron	ND	0.056	EPA 6010D		5-15-25	
Magnesium	18	1.1	EPA 6010D		5-15-25	
Manganese	ND	0.011	EPA 6010D		5-15-25	
Potassium	3.0	1.1	EPA 6010D		5-15-25	
Sodium	18	1.1	EPA 6010D		5-15-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Calcium	30	1.1	EPA 6010D		5-15-25	
Iron	0.33	0.056	EPA 6010D		5-15-25	
Magnesium	19	1.1	EPA 6010D		5-15-25	
Manganese	0.18	0.011	EPA 6010D		5-15-25	
Potassium	2.2	1.1	EPA 6010D		5-15-25	
Sodium	22	1.1	EPA 6010D		5-15-25	
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Calcium	19	1.1	EPA 6010D		5-15-25	
Iron	ND	0.056	EPA 6010D		5-15-25	
Magnesium	11	1.1	EPA 6010D		5-15-25	
Manganese	ND	0.011	EPA 6010D		5-15-25	
Potassium	2.6	1.1	EPA 6010D		5-15-25	

Sodium

1.1

EPA 6010D

5-15-25

13

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509F1					
Calcium	ND	1.1	EPA 6010D	5-9-25	5-15-25	
Iron	ND	0.056	EPA 6010D	5-9-25	5-15-25	
Magnesium	ND	1.1	EPA 6010D	5-9-25	5-15-25	
Manganese	ND	0.011	EPA 6010D	5-9-25	5-15-25	
Potassium	ND	1.1	EPA 6010D	5-9-25	5-15-25	
Sodium	ND	1.1	EPA 6010D	5-9-25	5-15-25	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-1	01-01								
	ORIG	DUP								
Calcium	30.3	31.0	NA	NA		NA	NA	2	20	
Iron	0.145	0.150	NA	NA		NA	NA	3	20	
Magnesium	20.1	20.6	NA	NA		NA	NA	3	20	
Manganese	0.0391	0.0398	NA	NA		NA	NA	2	20	
Potassium	3.36	3.39	NA	NA		NA	NA	1	20	
Sodium	17.6	18.0	NA	NA		NA	NA	2	20	

MATRIX SPIKES

Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				<u>_</u>
Calcium	54.2	53.6	22.2	22.2	30.3	108	105	75-125	1	20	
Iron	24.6	24.4	22.2	22.2	0.145	110	109	75-125	1	20	
Magnesium	43.9	43.8	22.2	22.2	20.1	107	107	75-125	0	20	
Manganese	0.580	0.575	0.556	0.556	0.0391	97	96	75-125	1	20	
Potassium	27.4	27.3	22.2	22.2	3.36	108	108	75-125	0	20	
Sodium	40.9	40.9	22.2	22.2	17.6	105	105	75-125	0	20	

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

Offits. Hig/L (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	05-101-01					
Iron	0.25	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	21	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	0.039	0.010	EPA 6010D	5-15-25	5-15-25	
Client ID:	MW-6S					
Laboratory ID:	05-101-02					
Iron	ND	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	32	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	ND	0.010	EPA 6010D	5-15-25	5-15-25	
Client ID:	MW-13S					
Laboratory ID:	05-101-03					
Iron	0.25	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	19	1.0	EPA 6010D	5-15-25 5-15-25	5-15-25 5-15-25	
Manganese	0.035	0.010	EPA 6010D	5-15-25 5-15-25	5-15-25 5-15-25	
Manganese	0.000	0.010	LI A 00 10D	J-10-20	J-10-20	
Client ID:	MW-7D					
Laboratory ID:	05-101-04					
Iron	0.20	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	9.8	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	0.030	0.010	EPA 6010D	5-15-25	5-15-25	
Client ID:	MW-8D					
Laboratory ID:	05-101-05					
Iron	0.33	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	18	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	0.020	0.010	EPA 6010D	5-15-25	5-15-25	
Client ID:	MW-9D					
Laboratory ID:	05-101-06					
Iron	0.63	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	18	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	0.18	0.010	EPA 6010D	5-15-25	5-15-25	
Manganoso	00	0.010	LI /\ 00 10D	0-10-20	0-10-20	

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	05-101-07					
Iron	ND	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	12	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	ND	0.010	EPA 6010D	5-15-25	5-15-25	

Date of Report: May 23, 2025 Samples Submitted: May 8, 2025 Laboratory Reference: 2505-101 Project: 553-8472-009

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515WH1					
Iron	ND	0.050	EPA 6010D	5-15-25	5-15-25	
Magnesium	ND	1.0	EPA 6010D	5-15-25	5-15-25	
Manganese	ND	0.010	EPA 6010D	5-15-25	5-15-25	

Analyte	Re	sult	Spike	Level	Source Result	_	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	05-10	01-01									
	ORIG	DUP									
Iron	0.247	0.252	NA	NA			NA	NA	2	20	
Magnesium	20.8	20.8	NA	NA		I	NA	NA	0	20	
Manganese	0.0390	0.0392	NA	NA		l	NA	NA	0	20	
MATRIX SPIKES											
Laboratory ID:	05-10	01-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	20.8	20.6	20.0	20.0	0.247	103	102	75-125	1	20	
Magnesium	39.6	39.3	20.0	20.0	20.8	94	92	75-125	1	20	
Manganese	0.518	0.514	0.500	0.500	0.0390	96	95	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Analytical Results Report For:

OnSite Environmental, Inc.

Project:

Parametrix DTG Yakima

Anatek Work Order:

YFE0356

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: OnSite Environmental, Inc.

Address: 14648 NE. 95th St.

Redmond, WA 98052

Attn: David Baumeister

Work Order: YFE0356

Project: Parametrix DTG Yakima

Reported: 5/8/2025 22:37

Analytical Results Report

Sally Nguyen

Sample Location: MW-5S

Lab/Sample Number: YFE0356-01
Date Received: 05/08/25 10:43

Collect Date: 05/07/25 10:00

Collected By:

Matrix: Water

Analyzed Analyte Result Units PQL Analyst Method Qualifier **Inorganics** 0.0240 5/8/25 16:40 DRA Hach 10206 Nitrate/N mg/L 0.200

MW-6S Sample Location:

Lab/Sample Number: 05/07/25 15:25 YFE0356-02 Collect Date: Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	11.8	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

MW-13S Sample Location:

Lab/Sample Number: 05/07/25 08:00 YFE0356-03 Collect Date: Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0380	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

MW-7D Sample Location:

Lab/Sample Number: Collect Date: 05/07/25 13:06 YFE0356-04 Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0350	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

MW-8D Sample Location:

Lab/Sample Number: YFE0356-05 Collect Date: 05/07/25 14:25 Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	1.60	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

MW-9D Sample Location:

Lab/Sample Number: YFE0356-06 Collect Date: 05/07/25 16:55 Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0510	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

MW-10D Sample Location:

Lab/Sample Number: YFE0356-07 05/08/25 08:20 Collect Date: Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	1.48	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

Sample Location: MS/MSD MW-5S

Lab/Sample Number: YFE0356-08 Collect Date: 05/07/25 10:00 Date Received: 05/08/25 10:43 Collected By: Sally Nguyen

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	0.0460	mg/L	0.200	5/8/25 16:40	DRA	Hach 10206	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Emily Wengrowski for Kathleen Sattler, Lab Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Chain of Custody Record

1282 Alturas Dri 504 E Sprague Ste

ĭ	Г		Ų,	35	0)	
III	III	1111	111		11	1111	ı
Ш	Ш	Ш	Ш	Ш	Ш	Ш	ı
III	Ш	Ш	Ш		Ш	Ш	ı

Company Name: OnSite Environmental (Parametri							ect Mar		0			ımeis				Due: 05/22/25
Addre	^{ss:} 14648 NE	951	th St	reet		Proje	ect Nan	ne &	# : P	aran	netri	x DT	GΥ	akima	1	
	Redmond				98052		hase C									X_NormalPhone
Phone	² 425-883-3	881				Sam	pler Na	me &	Phor	ne:						Next Day*Email 2nd Day* *All rush order requests must
Email	Address(es): dk	aun	neist	er@onsite-	env.com											Other* have prior approval
1200									List	Ana	lyse	s Req	uest	ed		Note Special Instructions/Comments
11						containers	Sample Volumes	Nitrate	Ŧ.					2		Extra MS/MSD volume at MW-5S
Lab ID	Sample Identific	ation	Sam	pling Date/Time	Matrix	# of C	Samp	ž								7.P500
	MW-5S		5/71	125 1000	Water	1		Х								
	MW-6S			1525	Water	1		Х								
	MW-13S			0800	Water	1		Х								5
	MW-7D			1306	Water	1	1	Х		\sqcup			_			
	MW-8D			1425	Water	1		Х					\perp			Inspection Checklist
	MW-9D		-	1 1655	Water	1		Х					_		\perp	Received Intact?
	MW-10D		7/5	8/25 6820	Water	1		Х					_			Labels & Chains Agree? N Containers Sealed? N
						┞									\perp	
						_	_						_	_	+-	No VOC Head Space?
						ــــ							_	_		Cooler? N N Ice/Ice Packs Present? X N
													+	-	+	
						T							\top			Temperature (°C)0.5/0.7
		Print	ed Nai	me	Signature					Com	pany		D	ate	Time	Number of Containers:
Relino	quished by	Soci	MI	vomen	4	TY	n			Par	ame	etrix	5	18/25	1043	Shipped Via:
Recei	ved by	Cam	nur ?	Stubbleheld	A Taka	Est	L			Atere	erku	k-	5	18/25	10:43	Preservative:
Relino	quished by															
Recei	ved by															Date & Time: 5 8 25 10:45
Relind	quished by															Inspected By:
Recei	ved by															

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

	OnSite	
V. F	Environmental	Inc.
	14648 NE 95th Street a Redmond V	

Chain of Custody

	1	1
age	of	1

	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com			naround Req n working da	uest ys)		L	.abc	orat	ory	Νι	ımk	er:		0	5 -	11	01								
Comp	^{any:} Parametrix	١.		(Check One)					wil															- A		4 H III
Projec	553-8472-009]	☐ Sar ☐ 2 D		☐ 1 Day ☐ 3 Days		VOCs (8260D - WAC 173-351 Appendix I) Naphthalene; SIM-VC and 1,2-EDB							Ca, K, Na)												
Projec	T Name: DTG Yakima LPL			ndard (7 Days		(0	73-351 /			TDS				In, Mg,	(a)											
Projec	Laura Lee, Mike Brady	,	(TP	PH analysis 5 [Days)	tainers	WAC 17			onate,				(Fe, M	Mn, M											
Samp	led by:	[(other)		of Con	60D - \	ĕ	č	Bicarb	Sulfate			Metals	als (Fe,	*3										ø
Lab ID	Sample Identification		Date mpled	Time Sampled	Matrix	Number of Containers	VOCs (82	NWTPH-Gx	NWTPH-Dx	Alkalinity, Bicarbonate, TDS	Chloride,	Ammonia	TOC	Dissolved Metals (Fe, Mn, Mg,	Total Metals (Fe, Mn, Mg)	Nitrate*		DOM/SOIM								% Moisture
1	MW-5S	5	17	1000	Water	24	Х	Х	X	X	Х	Х	X	Х	X	×	,									
2	MW-6S			1525	Water	13	Х	х	Х	Х	х	X	х	Х	Х	X										
3	MW-13S			0800	Water	13	Х	х	Х	Х	Х	х	х	х	х	×										
4	MW-7D			1306	Water	9	Х			Х	X	Х	Х	Х	Х	x										
5	MW-8D			1425	Water	9	Х			Х	Х	X	X	X	X	×									+	
6	MW-9D	,	1	1455	Water	9	Х			Х	Х	Х	Х	X	Х	X									+	
7	MW-10D	5	18	0820	Water	9	Х			Х	Х	Х	Х	X	Х	X		+					+	-	+	
8	Trip Blanks	5			Water	\$5 5N	Х	Х					1 × 11	.4.	/s									+	+	
		,	-1			24												+								
																	×	-					+	+		
	Signature		C	ompany		13.0		Date			Time			Com	ment	s/Speci	al Ins	truction	ons							
Relir	quished 44		P	arametrix				5/	3/2	055	12	°, D	4	*Nitr	ate s	subbed	to An	atek								
Rece	ived		- 2	SB				5/	81-	25).	2:2	14	Add	ition	al MS/I	MSD	olum	nes tal	en @	M	N - E	S			
Relir	quished							- /																		
Rece	ived																									
Relin	quished																									
Rece	ived																									
Revie	iewed/Date Reviewed/Date												Chromatograms with final report													
	Da	to Pa	okago. I	Lovel III 🗆 L	ovel IV I I	antror	in Dad	- D-1		/	D-1															

June 27, 2025

Laura Lee Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-009 Laboratory Reference No. 2506-262

Dear Laura:

Enclosed are the analytical results and associated quality control data for samples submitted on June 19, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 27, 2025 Samples Submitted: June 19, 2025 Laboratory Reference: 2506-262

Project: 553-8472-009

Case Narrative

Samples were collected on June 17, 18 and 19, 2025 and received by the laboratory on June 19, 2025. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: June 27, 2025 Samples Submitted: June 19, 2025 Laboratory Reference: 2506-262

Project: 553-8472-009

TOTAL ALKALINITY SM 2320B

Matrix: Water

Units: mg CaCO3/L

Units: mg CaCO3/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-262-01					
Total Alkalinity	82	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Total Alkalinity	100	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Total Alkalinity	180	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW 50					
	MW-5S 06-262-04					
Laboratory ID:		0.0	OM 0000B	0.00.05	0.00.05	
Total Alkalinity	110	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Total Alkalinity	88	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Total Alkalinity	96	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Total Alkalinity	98	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Total Alkalinity	92	2.0	SM 2320B	6-23-25	6-23-25	
rotal / maininty	02	2.0	OIVI ZOZOD	0-20-20	0-20-20	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Total Alkalinity	88	2.0	SM 2320B	6-23-25	6-23-25	

TOTAL ALKALINITY SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					_
Laboratory ID:	06-262-10					
Total Alkalinity	98	2.0	SM 2320B	6-23-25	6-23-25	

TOTAL ALKALINITY SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Total Alkalinity	ND	2.0	SM 2320B	6-23-25	6-23-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-20	62-02									
	ORIG	DUP									
Total Alkalinity	100	100	١	۱A	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	06-20	62-02									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	184	184	100	100	100	84	84	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB06	23W1									
	S	B	5	SB			SB		•		
Total Alkalinity	98	3.0	1	00	NA		98	81-104	NA	NA	

Date of Report: June 27, 2025 Samples Submitted: June 19, 2025 Laboratory Reference: 2506-262

Project: 553-8472-009

BICARBONATE SM 2320B

Units: mg CaCO3/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-262-01					
Bicarbonate	82	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Bicarbonate	100	2.0	SM 2320B	6-23-25	6-23-25	
				V = V = V	V = 0 = 0	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Bicarbonate	180	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Bicarbonate	110	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Bicarbonate	88	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Bicarbonate	96	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Bicarbonate	98	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Bicarbonate	92	2.0	SM 2320B	6-23-25	6-23-25	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Bicarbonate	88	2.0	SM 2320B	6-23-25	6-23-25	

BICARBONATE SM 2320B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Bicarbonate	98	2.0	SM 2320B	6-23-25	6-23-25	

BICARBONATE SM 2320B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Bicarbonate	ND	2.0	SM 2320B	6-23-25	6-23-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-20	62-02									
	ORIG	DUP									
Bicarbonate	100	100	١	۱A	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	06-20	62-02									
	MS	MSD	MS	MSD		MS	MSD				
Bicarbonate	184	184	100	100	100	84	84	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB06	23W1									
	S	B	5	SB			SB		•	•	•
Bicarbonate	98	3.0	1	00	NA		98	81-104	NA	NA	

TOTAL DISSOLVED SOLIDS SM 2540C

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2S	1 &	Mictiliou	Trepared	Analyzea	i iugs
Laboratory ID:	06-262-01					
Total Dissolved Solids	140	13	SM 2540C	6-23-25	6-23-25	
Total Dissolved Collas	140	10	OW 20400	0-20-20	0-20-20	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Total Dissolved Solids	420	13	SM 2540C	6-23-25	6-23-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Total Dissolved Solids	720	13	SM 2540C	6-23-25	6-23-25	
Total Dissolved Solids	720	13	3W 2340C	0-23-23	0-23-23	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Total Dissolved Solids	230	13	SM 2540C	6-23-25	6-23-25	
Olivert ID:	MW 60					
Client ID:	MW-6S 06-262-05					
Laboratory ID: Total Dissolved Solids		13	SM 2540C	6-23-25	6-23-25	
Total Dissolved Solids	330	13	SIVI 2540C	0-23-25	0-23-25	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Total Dissolved Solids	400	13	SM 2540C	6-23-25	6-23-25	
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Total Dissolved Solids	130	13	SM 2540C	6-23-25	6-23-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Total Dissolved Solids	220	13	SM 2540C	6-23-25	6-23-25	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Total Dissolved Solids	270	13	SM 2540C	6-23-25	6-23-25	

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Total Dissolved Solids	160	13	SM 2540C	6-23-25	6-23-25	_

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Total Dissolved Solids	ND	13	SM 2540C	6-23-25	6-23-25	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	06-26	62-02							
	ORIG	DUP							
Total Dissolved Solids	424	413	NA	NA	NA	NA	3	40	
SPIKE BLANK									
Laboratory ID:	SB06	23W1							
	S	В	SB		SB				
Total Dissolved Solids	47	76	500	NA	95	72-123	NA	NA	

CHLORIDE SM 4500-CI E

Analyte	Result	PQL	Method	Date	Date	Elogo
Analyte Client ID:	MW-2S	PQL	Wethou	Prepared	Analyzed	Flags
Laboratory ID:	06-262-01					
Chloride	2.9	2.0	SM 4500-CI E	6-23-25	6-23-25	
Cilionae	2.9	2.0	31VI 4300-CI E	0-23-23	0-23-23	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Chloride	67	2.0	SM 4500-CI E	6-23-25	6-23-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Chloride	51	2.0	SM 4500-CI E	6-23-25	6-23-25	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Chloride	19	2.0	SM 4500-CI E	6-23-25	6-23-25	
Sillollad		2.0	5III 1000 GI E	0 20 20	0 20 20	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Chloride	61	2.0	SM 4500-CI E	6-23-25	6-23-25	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Chloride	69	2.0	SM 4500-CI E	6-23-25	6-23-25	
Client ID:	MANA 7D					
Client ID:	MW-7D					
Laboratory ID: Chloride	06-262-07	2.0	SM 4500-CI E	6-23-25	6-23-25	
Chloride	2.6	2.0	3IVI 4300-CI E	0-23-23	0-23-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Chloride	13	2.0	SM 4500-CI E	6-23-25	6-23-25	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Chloride	41	2.0	SM 4500-CI E	6-23-25	6-23-25	

CHLORIDE SM 4500-CI E

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Chloride	4.0	2.0	SM 4500-CI E	6-23-25	6-23-25	

CHLORIDE SM 4500-CI E **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Chloride	ND	2.0	SM 4500-CLF	6-23-25	6-23-25	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-26	62-02									
	ORIG	DUP									
Chloride	67.1	69.0	N	IA	NA	1	NA	NA	3	15	
MATRIX SPIKES											
Laboratory ID:	06-26	62-02									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	169	169	100	100	67.1	102	102	79-131	0	20	
SPIKE BLANK											
Laboratory ID:	S	В									
	S	В	5	SB			SB				
Chloride	49	9.2	50	0.0	NA	(98	82-123	NA	NA	

SULFATE **ASTM D516-16**

Onits: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-262-01		10711 0510 10	0.05.05	0.05.05	
Sulfate	6.3	5.0	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Sulfate	99	50	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Sulfate	160	50	ASTM D516-16	6-25-25	6-25-25	
Cunato	100		NOTHI BOTO TO	0 20 20	0 20 20	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Sulfate	68	20	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Sulfate	59	20	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-13S					
	06-262-06					
Laboratory ID:		25	A CTM DE4C 4C	0.05.05	C 05 05	
Sulfate	80	25	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Sulfate	ND	5.0	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Sulfate	58	20	ASTM D516-16	6-25-25	6-25-25	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Sulfate	57	20	ASTM D516-16	6-25-25	6-25-25	
Sullate	91	20	A311010010-10	0-20-20	0-20-20	

SULFATE **ASTM D516-16**

Analyta	Result	PQL	Method	Date	Date	Elogo
Analyte	Resuit	PUL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Sulfate	13	5.0	ASTM D516-16	6-25-25	6-25-25	

SULFATE ASTM D516-16 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0625W1					
Sulfate	ND	5.0	ASTM D516-16	6-25-25	6-25-25	

Analuta	Por	sult	Snika	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flogo
Analyte	Ke	Suit	Эріке	Level	Resuit	Kec	overy	LIIIIIIS	KPD	Lillin	Flags
DUPLICATE											
Laboratory ID:	06-26	52-02									
	ORIG	DUP									
Sulfate	98.7	96.2	N	IA	NA		NA	NA	3	11	
MATRIX SPIKES											
Laboratory ID:	06-26	52-02									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	190	189	100.0	100.0	98.7	91	90	70-131	1	20	
SPIKE BLANK											
Laboratory ID:	SB06	25W1									
	S	В	S	B			SB				
Sulfate	8.8	85	10	0.0	NA		89	83-113	NA	NA	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Units: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-262-01					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
7 tillionia		0.000	CIVI 1000 IVIIO B	02120	0 2 1 20	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
7 Hilling		0.000	GW 1000 THIS B	0 2 1 20	0 2 1 20	
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	
AIIIIIOIIIa	ND	0.000	31VI 4300-INFI3 D	0-24-20	0-24-20	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Ammonia	0.090	0.053	SM 4500-NH3 D	6-24-25	6-24-25	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	

AMMONIA (as Nitrogen) SM 4500-NH₃ D **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624W1					
Ammonia	ND	0.053	SM 4500-NH3 D	6-24-25	6-24-25	

Analyto	Po	sult	Snika	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flags
Analyte	Ke	Suit	Эріке	Level	Resuit	Ket	overy	LIIIIIIS	KPD	Lillin	Flags
DUPLICATE											
Laboratory ID:	06-262-02										
	ORIG	DUP									
Ammonia	ND	ND	N	IA	NA		NA	NA	NA	21	
MATRIX SPIKES											
Laboratory ID:	06-26	52-02									
	MS	MSD	MS	MSD		MS	MSD				
Ammonia	4.60	4.80	5.00	5.00	ND	92	96	76-114	4	20	
SPIKE BLANK											
Laboratory ID:	SB0624W1										
_	S	SB SB			SB					•	
Ammonia	4.5	88	5.00		NA		98	81-110	NA	NA	

TOTAL ORGANIC CARBON SM 5310B

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2S			•	•	
Laboratory ID:	06-262-01					
Total Organic Carbon	ND	1.0	SM 5310B	6-24-25	6-24-25	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Total Organic Carbon	3.2	1.0	SM 5310B	6-24-25	6-24-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Total Organic Carbon	5.2	1.0	SM 5310B	6-24-25	6-24-25	
Total Organio Odibon	V.E	1.0	CIVI 00 10D	0 LT-20	U 2 T-2U	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Total Organic Carbon	ND	1.0	SM 5310B	6-24-25	6-24-25	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Total Organic Carbon	3.1	1.0	SM 5310B	6-24-25	6-24-25	
Total Organio Carbon	U. 1	1.0	CINI CO TOD	0 2 1 20	0 2 1 20	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Total Organic Carbon	3.1	1.0	SM 5310B	6-24-25	6-24-25	
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Total Organic Carbon	ND	1.0	SM 5310B	6-24-25	6-24-25	
Total Organic Carbon	ND	1.0	3W 33 10B	0-24-23	0-24-23	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Total Organic Carbon	ND	1.0	SM 5310B	6-24-25	6-24-25	
Client ID:	MW-9D					
Client ID: Laboratory ID:	06-262-09					
Total Organic Carbon	2.9	1.0	SM 5310B	6-24-25	6-24-25	
Total Organic Carbon	4.3	1.0	31VI 33 TUB	0-24-20	0-24-20	

TOTAL ORGANIC CARBON SM 5310B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Total Organic Carbon	ND	1.0	SM 5310B	6-24-25	6-24-25	

TOTAL ORGANIC CARBON SM 5310B **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624W1					
Total Organic Carbon	ND	1.0	SM 5310B	6-24-25	6-24-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-26	62-02									
	ORIG	DUP									
Total Organic Carbon	3.16	3.12	N	IA	NA	l	NA	NA	1	10	
MATRIX SPIKES											
Laboratory ID:	06-26	52-02									
	MS	MSD	MS	MSD		MS	MSD				
Total Organic Carbon	14.4	14.5	10.0	10.0	3.16	112	113	70-136	1	20	
SPIKE BLANK											
Laboratory ID:	SB06	24W1									
	S	В	S	B		- ;	SB			•	•
Total Organic Carbon	10	.2	1(0.0	NA	1	02	83-130	NA	NA	

DISSOLVED METALS EPA 6010D

- " '				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-262-01					
Calcium	13	1.1	EPA 6010D		6-24-25	
Iron	ND	0.056	EPA 6010D		6-24-25	
Magnesium	9.3	1.1	EPA 6010D		6-24-25	
Manganese	ND	0.011	EPA 6010D		6-24-25	
Potassium	3.2	1.1	EPA 6010D		6-24-25	
Sodium	10	1.1	EPA 6010D		6-24-25	
Client ID:	MIM 20					
Client ID:	MW-3S					
Laboratory ID:	06-262-02 50	1.1	EDA 6040D		6.04.05	
Calcium	0.088		EPA 6010D		6-24-25	
Iron		0.056	EPA 6010D		6-24-25	
Magnesium	37 ND	1.1	EPA 6010D		6-24-25	
Manganese	ND	0.011	EPA 6010D		6-24-25	
Potassium	4.8 20	1.1	EPA 6010D		6-24-25	
Sodium	20	1.1	EPA 6010D		6-24-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Calcium	110	10	EPA 6010D		6-24-25	
Iron	ND	0.056	EPA 6010D		6-24-25	
Magnesium	78	10	EPA 6010D		6-24-25	
Manganese	ND	0.011	EPA 6010D		6-24-25	
Potassium	7.4	1.1	EPA 6010D		6-24-25	
Sodium	24	1.1	EPA 6010D		6-24-25	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Calcium	30	1.1	EPA 6010D		6-24-25	
Iron	0.21	0.056	EPA 6010D		6-24-25	
Magnesium	20	1.1	EPA 6010D		6-24-25	
Manganese	0.042	0.011	EPA 6010D		6-24-25	
Potassium	3.6	1.1	EPA 6010D		6-24-25	
Sodium	19	1.1	EPA 6010D		6-24-25	

Date of Report: June 27, 2025 Samples Submitted: June 19, 2025 Laboratory Reference: 2506-262

Project: 553-8472-009

DISSOLVED METALS EPA 6010D

Analyte Result PQL Method Prepared Analyze of Client ID: Client ID: MW-6S Laboratory ID: 06-262-05 Calcium 44 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 31 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25 Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	I Flore
Laboratory ID: 06-262-05 Calcium 44 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 31 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25 Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	d Flags
Calcium 44 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 31 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25 Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 31 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25 Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Magnesium 31 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25 Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Manganese ND 0.011 EPA 6010D 6-24-25 Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Potassium 4.5 1.1 EPA 6010D 6-24-25 Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Sodium 18 1.1 EPA 6010D 6-24-25 Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Client ID: MW-13S Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Laboratory ID: 06-262-06 Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Calcium 50 1.1 EPA 6010D 6-24-25 Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Iron ND 0.056 EPA 6010D 6-24-25 Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Magnesium 37 1.1 EPA 6010D 6-24-25 Manganese ND 0.011 EPA 6010D 6-24-25	
Manganese ND 0.011 EPA 6010D 6-24-25	
Potassium 4.8 1.1 EPA 6010D 6-24-25	
Sodium 20 1.1 EPA 6010D 6-24-25	
Client ID: MW-7D	
Laboratory ID: 06-262-07	
Calcium 15 1.1 EPA 6010D 6-24-25	
Iron 0.10 0.056 EPA 6010D 6-24-25	
Magnesium 11 1.1 EPA 6010D 6-24-25	
Manganese 0.034 0.011 EPA 6010D 6-24-25	
Potassium 2.9 1.1 EPA 6010D 6-24-25	
Sodium 12 1.1 EPA 6010D 6-24-25	
Client ID: MW-8D	
Laboratory ID: 06-262-08	
Calcium 26 1.1 EPA 6010D 6-24-25	
Iron ND 0.056 EPA 6010D 6-24-25	
Magnesium 19 1.1 EPA 6010D 6-24-25	
Manganese 0.023 0.011 EPA 6010D 6-24-25	
Potassium 3.2 1.1 EPA 6010D 6-24-25	
Sodium 20 1.1 EPA 6010D 6-24-25	

DISSOLVED METALS EPA 6010D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					_
Laboratory ID:	06-262-09					
Calcium	31	1.1	EPA 6010D		6-24-25	_
Iron	0.16	0.056	EPA 6010D		6-24-25	
Magnesium	20	1.1	EPA 6010D		6-24-25	
Manganese	0.16	0.011	EPA 6010D		6-24-25	
Potassium	2.7	1.1	EPA 6010D		6-24-25	
Sodium	27	1.1	EPA 6010D		6-24-25	

Client ID:	MW-10D				
Laboratory ID:	06-262-10				
Calcium	20	1.1	EPA 6010D	6-24-25	
Iron	ND	0.056	EPA 6010D	6-27-25	
Magnesium	12	1.1	EPA 6010D	6-24-25	
Manganese	ND	0.011	EPA 6010D	6-24-25	
Potassium	2.8	1.1	EPA 6010D	6-24-25	
Sodium	13	1.1	EPA 6010D	6-24-25	

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624D1					
Calcium	ND	1.1	EPA 6010D		6-24-25	
Iron	ND	0.056	EPA 6010D		6-24-25	
Magnesium	ND	1.1	EPA 6010D		6-24-25	
Manganese	ND	0.011	EPA 6010D		6-24-25	
Potassium	ND	1.1	EPA 6010D		6-24-25	
Sodium	ND	1.1	EPA 6010D		6-24-25	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-26	32-02								
	ORIG	DUP								
Calcium	50.1	51.4	NA	NA		NA	NA	2	20	
Iron	0.0881	ND	NA	NA		NA	NA	NA	20	
Magnesium	36.9	37.3	NA	NA		NA	NA	1	20	
Manganese	ND	ND	NA	NA		NA	NA	NA	20	
Potassium	4.81	4.90	NA	NA		NA	NA	2	20	
Sodium	20.4	20.6	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	06-20	62-02									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	85.2	85.1	40.0	40.0	50.1	88	88	75-125	0	20	
Iron	24.3	25.0	22.2	22.2	0.0881	109	112	75-125	3	20	
Magnesium	59.6	60.7	22.2	22.2	36.9	103	107	75-125	2	20	
Manganese	0.606	0.617	0.556	0.556	ND	109	111	75-125	2	20	
Potassium	29.3	30.0	22.2	22.2	4.81	110	113	75-125	2	20	
Sodium	44.1	45.0	22.2	22.2	20.4	107	111	75-125	2	20	

Date of Report: June 27, 2025 Samples Submitted: June 19, 2025 Laboratory Reference: 2506-262

Project: 553-8472-009

TOTAL METALS EPA 6010D

Office. Trig/L (ppfff)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-262-01					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	9.2	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-3S					
Laboratory ID:	06-262-02					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	37	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-4S					
Laboratory ID:	06-262-03					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	78	10	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-5S					
Laboratory ID:	06-262-04					
Iron	0.18	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	20	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	0.039	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-6S					
Laboratory ID:	06-262-05					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	32	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-13S					
Laboratory ID:	06-262-06					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	37	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	

TOTAL METALS EPA 6010D

3. (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	06-262-07					
Iron	0.11	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	11	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	0.032	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-8D					
Laboratory ID:	06-262-08					
Iron	0.20	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	17	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	0.025	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-9D					
Laboratory ID:	06-262-09					
Iron	0.47	0.050	EPA 6010D	6-24-25	6-24-25	
Magnesium	19	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	0.15	0.010	EPA 6010D	6-24-25	6-24-25	
Client ID:	MW-10D					
Laboratory ID:	06-262-10					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	_
Magnesium	12	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	

TOTAL METALS EPA 6010D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624WH1					
Iron	ND	0.050	EPA 6010D	6-24-25	6-24-25	_
Magnesium	ND	1.0	EPA 6010D	6-24-25	6-24-25	
Manganese	ND	0.010	EPA 6010D	6-24-25	6-24-25	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-20	62-02									
	ORIG	DUP									
Iron	ND	ND	NA	NA		ı	NA	NA	NA	20	
Magnesium	37.4	36.3	NA	NA		ı	NA	NA	3	20	
Manganese	ND	ND	NA	NA		ı	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-26	62-02									
	MS	MSD	MS	MSD		MS	MSD				
Iron	20.1	20.5	20.0	20.0	ND	100	103	75-125	2	20	
Magnesium	54.8	57.3	20.0	20.0	37.4	87	100	75-125	4	20	
Manganese	0.524	0.533	0.500	0.500	ND	105	107	75-125	2	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Onsite Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052

Chain of Custody

	i .	
Page	\ of	1

	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com			naround Requ working day			L	abo	rate	ory	Nu	mb	er:	0	6 -	-2	6								
Compan	2.5.00.2858.5	A CONTRACTOR OF THE PROPERTY O		(Check One)							(a)	-												_	
Project I	Number: 553-8	3472-009	Sam		☐ 1 Day ☐ 3 Days						Ca, K, Na)														
Project I	Vamo:	op Environmental LPL		ndard (7 Days)			DS				, Mg, C	~													
Project I	Managor:	a Lee, Mike Brady		H analysis 5 D		ainers	nate, T				(Fe, Mr	Mn, Mg)													
Sampled		<u></u>		(other)		Number of Containers	Alkalinity, Bicarbonate, TDS	, Sulfate	m.		Dissolved Metals (Fe, Mn, Mg,	Total Metals (Fe, Mn,													ıre
ab ID		mple Identification	Date Sampled	Time Sampled	Matrix	Number	Alkalinity	Chloride,	Ammonia	TOC	Dissolve	Fotal Me			MS/MSD										% Moisture
)	MW-2S		6/17	1524	Water	6	X	Х	Х	X	X	X													
0	MW-3S		6/1B	1310	Water	8	Х	Х	х	х	х	х			х										
3	MW-4S		6/196	1040	Water	6	X	Х	Х	х	Х	х									9				
4	MW-5S		6117	1145	Water	6	Х	Х	х	х	Х	Х													
5	MW-6S		6/18	1125	Water	6	X	Х	Х	Х	Х	Х													
6	MW-13S		6/18	800	Water	6	X	х	х	х	х	х													
7 1	MW-7D	8	0(17	1356	Water	6	Х	Х	х	х	х	х													
8	MW-8D		6118	852	Water	6	X	х	х	х	х	х													
9	MW-9D		6	1450	Water	6	Х	х	х	х	х	х													
0	MW-10D		6/19	810	Water	6	Χ	Χ	Χ	Х	Х	Х													
		Signature	Co	ompany			-	Date		H 4	Time			Comi	ments	Spec	ial Ins	tructio	ons						
Relinqu	uished	SAN	Pa	arametrix				6	19/	25	15	3	3	Add	itiona	al MS/	MSD	volum	nes ta	ken @	MW-	-3S			
Receiv	ed	Han Piell		0	57			- 1	- 1	25		53	3							_					
Relinquished						/	7																		
Received																									
Relinqu	Relinquished																								
Receiv	ed																								
Review	Reviewed/Date			Reviewed/Da	te									Chron	natogr	ams w	th fina	l repor	t 🗆						

June 27, 2025

Laura Lee Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-009 Laboratory Reference No. 2506-263

Dear Laura:

Enclosed are the analytical results and associated quality control data for samples submitted on June 19, 2025.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 27, 2025 Samples Submitted: June 19, 2025 Laboratory Reference: 2506-263

Project: 553-8472-009

Case Narrative

Samples were collected on June 17, 18 and 19, 2025 and received by the laboratory on June 19, 2025. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Methylene Chloride is outside the control limits in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-263-01					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-263-01					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-133				

79-123

78-117

105

97

Toluene-d8

4-Bromofluorobenzene

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3S					
Laboratory ID:	06-263-02					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

Result MW-3S 06-263-02 ND ND ND ND	0.20 0.020	Method EPA 8260D	Prepared 6-23-25	Analyzed 6-23-25	Flags
06-263-02 ND ND ND	0.020		6-23-25	6 22 25	
ND ND ND	0.020		6-23-25	6 22 25	
ND ND	0.020		6-23-25	6 22 25	
ND		EDA OCCODICINA		0-23-25	
		EPA 8260D/SIM	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.40	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
Percent Recovery	Control Limits				
99	68-133				
F	ND N	ND 0.20 ND 0.40 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 0.20 ND 1.0 ND 1.0 Percent Recovery Control Limits	ND 0.20 EPA 8260D ND 0.40 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D Percent Recovery Control Limits	ND 0.20 EPA 8260D 6-23-25 ND 0.40 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25	ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 0.40 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 1.0 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 1.0 EPA 8260D 6-23-25 6-23-25 ND 1.0 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 1.0 EPA 8260D 6-23-25 6-23-25

Toluene-d8 104 79-123 4-Bromofluorobenzene 98 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S					
Laboratory ID:	06-263-03					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S					
Laboratory ID:	06-263-03					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-133				
Toluene-d8	102	70 122				

Toluene-d8 103 79-123 4-Bromofluorobenzene 96 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	06-263-04					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S					
Laboratory ID:	06-263-04					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-133				
Toluene-d8	104	79-123				

78-117

4-Bromofluorobenzene

96

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	06-263-05					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S					
Laboratory ID:	06-263-05					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits			_	
Dibromofluoromethane	95	68-133				
Toluene-d8	103	79-123				

Toluene-d8 79-123 103 4-Bromofluorobenzene 96 78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S					
Laboratory ID:	06-263-06					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

4-Bromofluorobenzene

94

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S					·
Laboratory ID:	06-263-06					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	68-133				
Toluene-d8	103	79-123				

78-117

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	06-263-07					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D					
Laboratory ID:	06-263-07					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	68-133				
Toluene-d8	101	79-123				

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	06-263-08					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	06-263-08					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				·
Dibromofluoromethane	93	68-133				
Toluene-d8	101	79-123				

78-117

4-Bromofluorobenzene

95

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	06-263-09					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D					
Laboratory ID:	06-263-09					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	68-133				
Toluene-d8	101	79-123				

78-117

4-Bromofluorobenzene

94

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Analyte Result PQL Method Prepared Analyzed Client ID: MW-10D Laboratory ID: 06-263-10 Chloromethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 6-23-25 6-23-25 Bromomethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Chloroethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Trichlorofluoromethane ND 0.20 EPA 8260D 6-23-25 6-23-25	Flags
Laboratory ID: 06-263-10 Chloromethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 6-23-25 6-23-25 Bromomethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Chloroethane ND 1.0 EPA 8260D 6-23-25 6-23-25	
Chloromethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 6-23-25 6-23-25 Bromomethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Chloroethane ND 1.0 EPA 8260D 6-23-25 6-23-25	
Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 6-23-25 6-23-25 Bromomethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Chloroethane ND 1.0 EPA 8260D 6-23-25 6-23-25	
Bromomethane ND 1.0 EPA 8260D 6-23-25 6-23-25 Chloroethane ND 1.0 EPA 8260D 6-23-25 6-23-25	
Chloroethane ND 1.0 EPA 8260D 6-23-25 6-23-25	
Trichlorofluoromethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
1,1-Dichloroethene ND 0.20 EPA 8260D 6-23-25 6-23-25	
Acetone ND 5.0 EPA 8260D 6-23-25 6-23-25	
lodomethane ND 1.0 EPA 8260D 6-23-25 6-23-25	
Carbon Disulfide ND 0.20 EPA 8260D 6-23-25 6-23-25	
Methylene Chloride ND 1.0 EPA 8260D 6-23-25 6-23-25	
Acrylonitrile ND 1.0 EPA 8260D 6-23-25 6-23-25	
(trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 6-23-25 6-23-25	
1,1-Dichloroethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Vinyl Acetate ND 1.0 EPA 8260D 6-23-25 6-23-25	
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 6-23-25 6-23-25	
2-Butanone ND 5.0 EPA 8260D 6-23-25 6-23-25	
Bromochloromethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Chloroform ND 0.20 EPA 8260D 6-23-25 6-23-25	
1,1,1-Trichloroethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Carbon Tetrachloride ND 0.20 EPA 8260D 6-23-25 6-23-25	
Benzene ND 0.20 EPA 8260D 6-23-25 6-23-25	
1,2-Dichloroethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Trichloroethene ND 0.20 EPA 8260D 6-23-25 6-23-25	
1,2-Dichloropropane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Dibromomethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Bromodichloromethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260D 6-23-25 6-23-25	
Methyl Isobutyl Ketone ND 2.0 EPA 8260D 6-23-25 6-23-25	
Toluene ND 1.0 EPA 8260D 6-23-25 6-23-25	
(trans) 1,3-Dichloropropene ND 0.20 EPA 8260D 6-23-25 6-23-25	
1,1,2-Trichloroethane ND 0.20 EPA 8260D 6-23-25 6-23-25	
Tetrachloroethene ND 0.20 EPA 8260D 6-23-25 6-23-25	
2-Hexanone ND 2.0 EPA 8260D 6-23-25 6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-10D					
06-263-10					
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.40	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	0.20	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
ND	1.0	EPA 8260D	6-23-25	6-23-25	
Percent Recovery	Control Limits				
92	68-133				
99	79-123				
	MW-10D 06-263-10 ND	MW-10D 06-263-10 ND 0.20 ND 0.020 ND 0.20 ND 0.20 ND 0.40 ND 0.20 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 0.20 ND 1.0 ND 1.0 Percent Recovery Control Limits 92 68-133	MW-10D 06-263-10 0.20 EPA 8260D ND 0.020 EPA 8260D/SIM ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.40 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D ND 1.0 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 0.20 EPA 8260D ND 1.0 EPA 8260D	Result PQL Method Prepared MW-10D 06-263-10 6-263-10 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 0.40 EPA 8260D 6-23-25 ND 0.40 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 1.0 EPA 8260D 6-23-25 ND 0.20 EPA 8260D 6-23-25	Result PQL Method Prepared Analyzed MW-10D 06-263-10 6-263-10 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 0.40 EPA 8260D 6-23-25 6-23-25 ND 0.40 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25 6-23-25 ND 1.0 EPA 8260D 6-23-25 6-23-25 ND 0.20 EPA 8260D 6-23-25

78-117

4-Bromofluorobenzene

94

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	06-263-11					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blanks					
Laboratory ID:	06-263-11					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	_
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	68-133				
Toluene-d8	100	79-123				

78-117

4-Bromofluorobenzene

93

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Chloromethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Bromomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Chloroethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Trichlorofluoromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acetone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
lodomethane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Carbon Disulfide	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Acrylonitrile	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Methylene Chloride	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Vinyl Acetate	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Butanone	ND	5.0	EPA 8260D	6-23-25	6-23-25	
Bromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Chloroform	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Carbon Tetrachloride	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Benzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Trichloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Dibromomethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromodichloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	6-23-25	6-23-25	
Toluene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Tetrachloroethene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
2-Hexanone	ND	2.0	EPA 8260D	6-23-25	6-23-25	

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Dibromochloromethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	6-23-25	6-23-25	
Chlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Ethylbenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
m,p-Xylene	ND	0.40	EPA 8260D	6-23-25	6-23-25	
o-Xylene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Styrene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
Bromoform	ND	1.0	EPA 8260D	6-23-25	6-23-25	
(trans) 1,4-Dichloro-2-butene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	6-23-25	6-23-25	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Naphthalene	ND	1.0	EPA 8260D	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-133				

Surrogate:	Percent Recovery	Control Limit
Dibromofluoromethane	100	68-133
Toluene-d8	107	79-123
4-Bromofluorobenzene	99	78-117

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 1 of 2

Water Matrix: Units: ug/L

					Pe	rcent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Red	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB062	23W1								
	SB	SBD	SB	SBD	SB	SBD				
Chloromethane	8.62	8.30	10.0	10.0	86	83	38-141	4	31	
Vinyl Chloride	9.65	9.27	10.0	10.0	97	93	67-131	4	16	
Bromomethane	9.74	9.52	10.0	10.0	97	95	30-155	2	34	
Chloroethane	11.0	10.6	10.0	10.0	110	106	63-130	4	18	
Trichlorofluoromethane	9.96	9.88	10.0	10.0	100	99	80-131	1	17	
1,1-Dichloroethene	11.3	10.9	10.0	10.0	113	109	77-125	4	15	
Acetone	10.8	8.79	10.0	10.0	108	88	45-135	21	24	
lodomethane	8.25	8.64	10.0	10.0	83	86	27-146	5	33	
Carbon Disulfide	10.0	10.0	10.0	10.0	100	100	41-150	0	19	
Methylene Chloride	13.0	13.6	10.0	10.0	130	136	66-123	5	15	1,1
(trans) 1,2-Dichloroethene	11.5	11.3	10.0	10.0	115	113	76-126	2	15	
1,1-Dichloroethane	11.4	11.1	10.0	10.0	114	111	75-126	3	15	
Vinyl Acetate	10.4	10.9	10.0	10.0	104	109	57-139	5	15	
(cis) 1,2-Dichloroethene	11.6	11.4	10.0	10.0	116	114	77-129	2	15	
2-Butanone	10.6	10.6	10.0	10.0	106	106	62-129	0	17	
Bromochloromethane	11.1	10.8	10.0	10.0	111	108	72-129	3	19	
Chloroform	11.6	11.1	10.0	10.0	116	111	72-125	4	15	
1,1,1-Trichloroethane	11.3	11.0	10.0	10.0	113	110	79-127	3	15	
Carbon Tetrachloride	11.2	11.0	10.0	10.0	112	110	78-131	2	15	
Benzene	11.2	10.8	10.0	10.0	112	108	75-126	4	15	
1,2-Dichloroethane	11.6	11.1	10.0	10.0	116	111	74-128	4	15	
Trichloroethene	12.2	11.8	10.0	10.0	122	118	80-130	3	15	
1,2-Dichloropropane	11.7	11.1	10.0	10.0	117	111	80-124	5	15	
Dibromomethane	11.7	11.3	10.0	10.0	117	113	80-131	3	15	
Bromodichloromethane	11.8	11.5	10.0	10.0	118	115	81-131	3	15	
(cis) 1,3-Dichloropropene	11.8	11.7	10.0	10.0	118	117	74-136	1	15	
Methyl Isobutyl Ketone	10.7	10.9	10.0	10.0	107	109	67-132	2	15	
Toluene	11.2	10.9	10.0	10.0	112	109	75-127	3	15	
(trans) 1,3-Dichloropropene	10.5	10.6	10.0	10.0	105	106	69-137	1	15	
1,1,2-Trichloroethane	10.5	10.0	10.0	10.0	105	100	80-122	5	15	
Tetrachloroethene	10.5	10.3	10.0	10.0	105	103	80-130	2	20	
2-Hexanone	9.08	9.49	10.0	10.0	91	95	67-130	4	19	
Dibromochloromethane	11.0	10.9	10.0	10.0	110	109	58-149	1	32	

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB062	23W1								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dibromoethane	10.5	10.3	10.0	10.0	105	103	82-127	2	15	
Chlorobenzene	10.5	10.3	10.0	10.0	105	103	80-120	2	15	
1,1,1,2-Tetrachloroethane	10.7	10.4	10.0	10.0	107	104	80-127	3	15	
Ethylbenzene	10.7	10.5	10.0	10.0	107	105	80-124	2	15	
m,p-Xylene	21.1	20.7	20.0	20.0	106	104	80-124	2	15	
o-Xylene	10.7	10.6	10.0	10.0	107	106	80-123	1	15	
Styrene	10.9	10.6	10.0	10.0	109	106	82-125	3	15	
Bromoform	9.82	9.78	10.0	10.0	98	98	66-136	0	15	
1,1,2,2-Tetrachloroethane	9.93	9.35	10.0	10.0	99	94	78-124	6	15	
1,2,3-Trichloropropane	9.37	9.38	10.0	10.0	94	94	67-123	0	15	
1,4-Dichlorobenzene	9.92	9.93	10.0	10.0	99	99	78-123	0	15	
1,2-Dichlorobenzene	10.2	10.0	10.0	10.0	102	100	79-125	2	15	
1,2-Dibromo-3-chloropropane	10.0	9.42	10.0	10.0	100	94	62-133	6	17	
Naphthalene	8.39	8.57	10.0	10.0	84	86	55-132	2	23	
Surrogate:										
Dibromofluoromethane					104	107	68-133			
Toluene-d8					111	112	79-123			
4-Bromofluorobenzene					109	109	78-117			

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-263-01					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	62-122				
Client ID:	MW-3S					
Laboratory ID:	06-263-02					
Gasoline ND		100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	62-122				
Client ID:	MW-4S					
Laboratory ID:	06-263-03					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	62-122				
Client ID:	MW-5S					
Laboratory ID:	06-263-04					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	62-122				
Client ID:	MW-6S					
Laboratory ID:	06-263-05					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	62-122				
Client ID:	MW-13S					
Laboratory ID:	06-263-06					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	62-122				
Client ID:	Trip Blanks					
Laboratory ID:	06-263-11					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	62-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

A 1 4 .	D	501	BB - 41 1	Date	Date	- 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624W2					
Gasoline	ND	100	NWTPH-Gx	6-24-25	6-24-25	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	62-122				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	06-26	63-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						105 08	62-122			

Fluorobenzene 62-122

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S					
Laboratory ID:	06-263-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics ND 0.21		0.21	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	MW-3S					
Laboratory ID:	06-263-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Client ID:	MW-4S					
Laboratory ID:	06-263-03					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
Client ID:	MW-5S					
Laboratory ID:	06-263-04					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
OU						
Client ID:	MW-6S					
Laboratory ID:	06-263-05					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	M\N/ 426					
Client ID:	MW-13S					
Laboratory ID:	06-263-06	0.04	NIM/TOLL D	0.00.05	0.00.05	
Diesel Range Organics	ND ND	0.21	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics	ND (B	0.21	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	6-23-25	6-23-25	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	6-23-25	6-23-25	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										_
Laboratory ID:	06-28	51-20								
	ORIG	DUP								
Diesel Range Organics	0.210	0.188	NA	NA		NA	NA	11	40	
Lube Oil Range Organics	0.255	0.267	NA	NA		NA	NA	5	40	
Surrogate:										
o-Terphenyl						118 114	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Analytical Results Report For:

OnSite Environmental, Inc.

Project:

Parametrix DTG Yakima

Anatek Work Order:

YFF0490

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: OnSite Environmental, Inc.

Address: 14648 NE. 95th St.

Redmond, WA 98052

Attn: David Baumeister

Work Order: YFF0490

Project: Parametrix DTG Yakima

Reported: 6/19/2025 13:58

Analytical Results Report

Sample Location: M\

MW-2S

Lab/Sample Number:

YFF0490-01

Collect Date:

06/17/25 15:24

Date Received:

06/17/25 16:20

Collected By:

Brianna Hines

Matrix:

Water

Analyzed Analyte Result Units PQL Analyst Method Qualifier **Inorganics** 0.686 6/19/25 8:53 DRA Hach 10206 Nitrate/N mg/L 0.200

MW-5S Sample Location:

Lab/Sample Number: YFF0490-02 Collect Date: 06/17/25 11:45 Date Received: 06/17/25 16:20 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	ND	mg/L	0,200	6/19/25 8:53	DRA	Hach 10206	

MW-7D Sample Location:

Lab/Sample Number: YFF0490-03 Collect Date: 06/17/25 13:56 Date Received: 06/17/25 16:20 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	ND	mg/L	0.200	6/19/25 8:53	DRA	Hach 10206	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Emily Wengrowski for Kathleen Sattler, Lab Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Inorganics

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BFF0912 - Y Hach Vial									
Blank (BFF0912-BLK1)			P	repared: 06/1	.9/25 08:38- A	nalyzed: 06	/19/25 08:53		
Nitrate as N	ND	0.200	mg/L						
LCS (BFF0912-BS1)			P	repared: 06/1	.9/25 08:38- A	nalyzed: 06	/19/25 08:53		
Nitrate as N	5.05	0.200	mg/L	5.00		101	90-110		
Matrix Spike (BFF0912-MS1)	Source: Y	FF0490-03	P	repared: 06/1	.9/25 08:38- A	nalyzed: 06	/19/25 08:53		
Nitrate as N	4.94	0.400	mg/L	5.00	ND	98.8	80-120		
Matrix Spike Dup (BFF0912-MSD1)	Source: Y	FF0490-03	P	repared: 06/1	.9/25 08:38- A	nalyzed: 06	/19/25 08:53		
Nitrate as N	5.12	0.400	mg/L	5.00	ND	102	80-120	3.58	20

Chain of Custody Record

Ana 1282 Alturas Drive, 504 E Sprague Ste D,

Due: 07/02/25

Company Name: OnSite Environmental (Parametrix)					ct Mar		David L				
	^{ss:} 14648 NE 95			Proje	ct Nan	ne & #	‡: Param	etrix DT	G Yakima	1	Ple. www.anateklabs.com/pricing-lists
City:	Redmond	State: WA Zip:	98052	1	hase C		934				X_NormalPhone Next Day*Email
Phone	425-883-3881			Sam	pler Na	ime &	Phone:				2nd Day* *All rush order requests mustOther* have prior approval
Email	Address(es): dbaur	meister@onsite-	env.com								Section February Lines (1997)
				announn			List Analy	ses Req	uested		Note Special Instructions/Comments
				Containers	Sample Volumes	Nitrate					Extra MS/MSD volume @ MW-3S
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of (Sam	Ž					Client Cont X 3
	MW-2S	6/17/25/10	Water	1		х					
	MW-9S	1524	Water	2		Х					
MW-48			Water	1		Х					
	MW-5S	411/25/1145	Water	1		Х					
	MW-6S		Water	1		Х					Inspection Checklist
	MW-13 S		Water	1		Х					Received Intact? N
	MW-7D	6/17/25/1356	Water	1		Х					Labels & Chains Agree? Y N
	MW-8D		Water	1		Х					Containers Sealed?
	MW-9D		Water	1		Х					No VOC Head Space? Y N -
	MW-10D		Water	1		Х					Cooler? N
											Ice/Ice Packs Present? N
_	 			\vdash	\vdash	+		++			Temperature (°C): 2.0-0 2.2-C. Dig 1
	Prin	nted Name	Signature A	diversit			Comp	any	Date	Time	Number of Containers:
Relin	quished by B	hann Hines	Birist 1	N	\supset		Para	ametrix	617/24		Shipped Via: Nand
Rece	ived by	hly anderson	and	\sim	_		an	Mek	6/17/25	5 1620	Preservative:
Relin	quished by										
Rece	ived by										Date & Time: 6 17 25 1620
Relin	quished by										Inspected By:
Rece	ived by						- 1				

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

Analytical Results Report For:

OnSite Environmental, Inc.

Project:

Parametrix DTG Yakima

Anatek Work Order:

YFF0508

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: OnSite Environmental, Inc.

Address: 14648 NE. 95th St.

Redmond, WA 98052

Attn: David Baumeister

Work Order: YFF0508

Project: Parametrix DTG Yakima

Reported: 6/25/2025 09:23

Analytical Results Report

Sample Location: MW-3S

Lab/Sample Number: YFF0508-01

Date Received: 06/19/25 10:31

Collect Date: 06/18/25 13:10
Collected By: Brianna Hines

Matrix: Water

Analyzed Analyte Result Units PQL Analyst Method Qualifier **Inorganics** 12.0 6/20/25 8:56 GIS Hach 10206 Nitrate/N mg/L 0.200

MW-4S Sample Location:

Lab/Sample Number: YFF0508-02 Collect Date: 06/18/25 10:40 Date Received: 06/19/25 10:31 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	78.2	mg/L	0.200	6/20/25 8:56	GIS	Hach 10206	

MW-6S Sample Location:

Lab/Sample Number: 06/18/25 11:25 YFF0508-03 Collect Date: Date Received: 06/19/25 10:31 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	11.8	mg/L	0.200	6/20/25 8:56	GIS	Hach 10206	

MW-13S Sample Location:

Lab/Sample Number: YFF0508-04 Collect Date: 06/18/25 08:00 Date Received: 06/19/25 10:31 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	12.1	mg/L	0.200	6/20/25 8:00	GIS	Hach 10206	

MW-8D Sample Location:

Lab/Sample Number: Collect Date: YFF0508-05 06/18/25 08:52 Date Received: 06/19/25 10:31 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed Analyst	Method Qualifier
Inorganics					
Nitrate/N	1.58	mg/L	0.200	6/20/25 8:46 GIS	Hach 10206

MW-9D Sample Location:

Lab/Sample Number: YFF0508-06 Collect Date: 06/18/25 14:50 Date Received: 06/19/25 10:31 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	1.64	mg/L	0.200	6/20/25 8:56	GIS	Hach 10206	

MW-10D Sample Location:

Lab/Sample Number: YFF0508-07 Collect Date: 06/19/25 08:10 Date Received: 06/19/25 10:31 Collected By: Brianna Hines

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N	1.64	mg/L	0.200	6/20/25 8:56	GIS	Hach 10206	

Anatek Labs, Inc.

emily unigrowshi

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Emily Wengrowski for Kathleen Sattler, Lab Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Inorganics

Analyte	Result Qua	Reporting I Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BFF1020 - Y Hach Vial									
Blank (BFF1020-BLK1)				Prepared: 06/2	20/25 08:41- A	nalyzed: 06	/20/25 08:56		
Nitrate as N	ND	0.200	mg/L			-			
LCS (BFF1020-BS1)				Prepared: 06/2	20/25 08:41- A	nalyzed: 06	/20/25 08:56		
Nitrate as N	5.18	0.200	mg/L	5.00		104	90-110		
Matrix Spike (BFF1020-MS1)	Sour	ce: YFF0508-01		Prepared: 06/2	20/25 08:41- A	nalyzed: 06	/20/25 08:56		
Nitrate as N	16.9	0.400	mg/L	5.00	12.0	98.0	80-120		
Matrix Spike Dup (BFF1020-MSD1)	Sour	ce: YFF0508-01		Prepared: 06/2	20/25 08:41- A	Analyzed: 06	/20/25 08:56		
Nitrate as N	16.8	0.400	mg/L	5.00	12.0	96.4	80-120	0.474	20

Chain of Custody Record

1282 Alturas Dr 504 E Sprague Sto

Due: 07/03/25

Comp	oany Name: OnSite I	Environmental (P	arametrix)	Proje	ect Mar	nager:	Da	vid Bau	meist	er			
	ess: 14648 NE 951			Proje	ect Nan	ne & #	# : Pa	arametri	x DT	G Yak	ima		www.anateklabs.com/pricing-lists
			98052		hase C								X_NormalPhone Next Day*Email
Phone	e: 425-883-3881			Sam	pler Na	me &	Phon	e:					2nd Day* *All rush order requests must
Email	Address(es): dbaun	neister@onsite-	env.com										Other* have prior approval
				100			List	Analyse	s Requ	ested			Note Special Instructions/Comments
				Containers	Sample Volumeranie	Nitrate							Extra MS/MSD volume @ MW-3S
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of C	Samp	ž							Client Cont X 7
	MW-2S		Water	4		X							
	MW-3S	6/18/25 1310	Water	2		Х							
	MW-4S	6/18 1040	Water	1		Х					1		1
	MW-5S		Water	_1==		X					_		
	MW-6S	6/18 1125	Water	1		Х					_		Inspection Checklist
	MW-13S	618 0800	Water	1		Х							Received Intact?
	MW-7D		Water	1		X					_		Labels & Chains Agree? Y
	MW-8D	618 0552	Water	1	_	X	_				_		Containers Sealed? Y
	MW-9D	6/18 1450	Water	1		Х	_		\vdash				No VOC Head Space? Y N
	MW-10D		Water	4	all the same years	X	1		\vdash				Cooler? Y N
	WM 40D	6/14 0810	Water	1	-	X	-	\vdash			-		Ice/Ice Packs Present?
\vdash				\vdash	+	\vdash	-						Temperature (°C): 0.5-0 0.7-C Digit
	Print	ed Name	Signature	1	1			Company		Date	9	Time	Number of Containers:
Relin	guished by Bn	appro thres	The of	V	1			Parame	etrix	61	19	D: 030	Shipped Via: hand
	N .	nou andorso	nan	do	1 De	\sim		and	tel	6/10	1/25	1031	Preservative:
Relin	quished by)											1
Rece	ived by												Date & Time: 6 19 05 1031
Relin	quished by												Inspected By:
Rece	ived by												

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

OnSite Environmental Inc.

Chain of Custody

Page __ | __ of __ 2___

	14648 NE 95t	UNITION TO STATE OF THE STREET	Т	urnaround Req (in working da	uest ys)		L	abc	rat	ory	Nu	mbe	er:	0	5 =	2	0	3						
Comp			1	(Check One)								1137												
Projec	t Number:	0.470.000	□s	Same Day	1 Day		1 Appendix I) -EDB																	
Projec	553-6 t Name:	8472-009	2	Days	3 Days		1 Appe																	
	Rocky T	op Environmental LPL		Standard (7 Days TPH analysis 5 [ည	73-351 and 1,2-E				25													
Projec	Laura Laura	a Lee, Mike Brady		TEH allalysis 5 L	Jays)	ntaine	- WAC 173-3 SIM-VC and 1				o,													
Sampl	ed by: H: Ne S	a Ngymen	-	(other)		Number of Containers	3260D -	-Gx	¥Q-	ata	1													ture
.ab ID	Sai	mple Identification	Date Sample	Time d Sampled	Matrix	Numbe	VOCs (8260D - Naphthalene; S	NWTPH-Gx	NWTPH-Dx	Nitrate	MS/MSB													% Moisture
1	MW-2S		6117	1524	Water	7	X	Х	х	×														
2	MW-3S		6/18	1310	Water	1 32	×	Х	х	X	×													
3	MW-4S		6119	3 1040	Water	7	Х	Х	Х	×	1													
4	MW-5S		617	- 1145	Water	7	х	Х	х	×														
5	MW-6S		6/18	1125	Water	7	Х	Х	Х	×														
6	MW-13S		6/18	3 0800	Water	7	х	Х	Х	X								ä						
7	MW-7D		6/17	1356	Water	3	х			X														
8	MW-8D		6/18	852	Water	3	х			X														
9	MW-9D		6118	1450	Water	3	х			X														
16	MW-10D		6/19	810	Water	3	Х			X														
		Signature	411.1	Company	1.77			Date	all s	1.5	Time	91		Com	nents/	/Speci	al Ins	tructi	ions	; . ·		5 v .		
Relin	quished			Parametrix				6	19	125	15	53	3	Add	itional	MS/I	/ISD	volur	nes ta	aken (MW (2	-3S		
Rece	ived	Irdan Prell		OS	3			6/1	9/2	15	15	53	3	Nitra	ates s	ubbed	l to lo	ocal l	ab (Ar	natek,	Yakin	na)		
Relin	quished	,						,																
Rece	ived																							
Relin	quished																							
Rece	ived																						 	
Revi	ewed/Date			Reviewed/Da	ate									Chron	natogra	ıms wit	h final	l repo	rt 🗆					
		Da	ta Package	o: Lovol III 🗆 I	aval IV 🗆 E	lootro	ia Dai	to Dali	vorah	loo (El	Dol											-		

Onsite Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 14648 NE 95th Street • Redmond, WA 98052

Chain of Custody

Page _______ of _______

					-																		
	onmental Inc. 5th Street • Redmond, WA 98052 1883-3881 • www.onsite-env.com	Turr (in	naround Req working da	uest ys)		L	abo	orat	ory	Nun	nber	0	6 -	-2	63	}							
Company: Parame	etrix / DTG	☐ Sarr	(Check One)	☐ 1 Day				T			_				+	Τ.			T		_		
Project Number: 553-	8472-009	2 Da	5	3 Days		VOCs (8260D – WAC 173-351 Appendix I) Naphthalene; SIM-VC and 1,2-EDB																	
Project Name: Rocky	Top Environmental LPL		ndard (7 Days H analysis 5 D))	LS.	173-351 and 1,2-E																	
Project Manager: Laur	a Lee, Mike Brady		Tanaiyaia o L	Jays)	ontaine	- WAC																	
Sampled by:	es & nommer		(other)		Number of Containers	(8260D	H-Gx	NWTPH-Dx															% Moisture
Lab ID Sa	ample Identification	Date Sampled	Time Sampled	Matrix	Num	VOCs	NWTE	NWT															% Wo
Trip Blanks		6/17	Materials	Water	6	X	Х																
																		_		4			
													_							_	_		
																		_		_			
													_										
													_							-			
													_					4		_	_		
																		-		_			
	Signature	Co	ompany	L	_		Date			Time		Com	monto	/Snooi	al Instr	uotion.							
Relinquished	SIM		arametrix					119/			33	GOII	ments	opeci	ai ilisu	uGuon	3						
Received	Philan Dull		C)SS				19/2	-	15	33												
Relinquished							/																
Received																							
Relinquished																							
Received / Data													- 11										
Reviewed/Date			Reviewed/Da	nte	-							Chro	matogra	ams wit	h final r	eport [

Appendix C

Second Quarter 2025
Data Quality Evaluation

DATE: June 12, 2025
TO: Project File
FROM: Lisa Gilbert

SUBJECT: Second Quarter 2025 (A) Data Quality Evaluation

CC: Mike Brady PROJECT NUMBER: 553-8472-009

PROJECT NAME: DTG Yakima Limited Purpose Landfill

A data quality evaluation was conducted for the Second Quarter 2025 (A) sampling event at the DTG Yakima Limited Purpose Landfill (LPL). Samples were collected on May 7 and 8, by Parametrix under contract to DTG. The samples were analyzed by OnSite Environmental under one associated work order:

- Work Order 2505-101: (MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, MW-10D, MW-13S (MW-5S DUP), Trip Blank).
- Nitrate samples were subcontracted to Anatek Labs under Work Order YFE0356.

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Sample MW-13S is a field duplicate of MW-5S.

Field Narrative

Groundwater sampling field data sheets were provided by Parametrix.

Laboratory Case Narrative

Samples collected on May 7 and 8, 2025 were received by the laboratory on May 8, 2025. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Work Order 2505-101

Volatiles - EPA Method SW8260D.

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The matrix spike and matrix spike duplicate recoveries and relative percent differences (RPDs) were within control limits.

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx) – SA Wells Only

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

Parametrix

June 12, 2025
Page 2

The duplicate RPDs were within control limits.

The matrix spike and matrix spike duplicate recoveries and relative percent differences (RPDs) were within control limits.

Wet Chemistry (Total Alkalinity, Bicarbonate, TDS, Chloride, Sulfate, Ammonia, TOC).

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

Total and Dissolved Metals (EPA Method 6010D).

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Nitrate (Anatek: EPA Method Hach 10206)

No QC data were provided but the laboratory did not note any problems with quality control.

MS/MSD was analyzed as a sample, no spike added.

Field Duplicate Evaluation

Relative Percent Differences (RPDs) were calculated for the results of sample MW-5S and duplicate MW-13S. Field Duplicate Relative Percent Difference Calculations are included in Attachment A.

The duplicate percent RPDs were within control limits for all analytes.

Data Qualification

No data were qualified.

Parametrix

References

- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Attachment A

Second Quarter 2025 (A)
Field Duplicate Relative
Percent Difference
Calculations

DTG Yakima LPL Field Duplicate Relative Percent Difference Calculations 553-8472-009

Second Quarter 2025 (A)

Sample Dates: May 7-8, 2025

Sample numbers: On-Site Environmental 2505-101: MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, MW-10D, MW-13S (MW-5S DUP),

Trip Blank

DUP MW-13S collected at MW-5S

Completed by: Lisa Gilbert 6/12/2025

Groundwater	sample	duplicate	avg	diff	RPD	=/<25%?	RL	w/in RL?
units = mg/L	MW-5S	MW-13S						
Iron, Total	0.25	0.25	0.25	0	0.0	У	0.050	
Magnesium, Total	21	19	20.00	2	10.0	у	1.0	
Manganese, Total	0.039	0.035	0.04	0.004	10.8	У	0.010	
Calcium, Dissolved	30	30	30.00	0	0.0	у	1.1	
Iron, Dissolved	0.15	0.15	0.15	0	0.0	У	0.056	
Magnesium, Dissolve	20	20	20.00	0	0.0	У	1.1	
Manganese, Dissolve	0.039	0.038	0.04	0.001	2.6	у	0.011	
Potassium, Dissolved	3.4	3.3	3.35	0.1	3.0	у	1.1	
Sodium, Dissolved	18	18	18.00	0	0.0	У	1.1	
Nitrate	0.0240	0.0380	0.03	-0.014	45.2	n	0.200	у
Chloride	29	30	29.50	-1	3.4	у	2.0	
Sulfate	83	83	83.00	0	0.0	у	25/20	
TDS	240	250	245.00	-10	4.1	у	13	
Alkalinity	110	100	105.00	10	9.5	у	2.0	
Bicarbonate	110	100	105.00	10	9.5	у	2.0	
Ammonia	< 0.053	< 0.053	n/a	n/a	n/a		0.053	у
TOC	1.7	1.8	1.75	-0.1	5.7	У	1.0	
TPH-Gasoline (ug/L)	<100	<100	n/a	n/a	n/a		100	у
TPH-Diesel	< 0.21	< 0.21	n/a	n/a	n/a		0.21	у
TPH-Oil	<0.21	<0.21	n/a	n/a	n/a		0.21	У
VOCs	None detected							
Comments:	No data qualified.							

DATE: July 8, 2025
TO: Project File
FROM: Chris Bourgeois

SUBJECT: Second Quarter 2025 (B) Data Quality Evaluation

CC: Mike Brady PROJECT NUMBER: 553-8472-009

PROJECT NAME: DTG Yakima Limited Purpose Landfill

A data quality evaluation was conducted for the Second Quarter 2025 (B) sampling event at the DTG Yakima Limited Purpose Landfill (LPL). Samples were collected on June 17, 18, and 19, by Parametrix under contract to DTG. The samples were analyzed by OnSite Environmental under two associated work orders:

- Work Order 2506-262: (MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-7D, MW-9D, MW-10D, MW-13S (MW-3S DUP)).
 - o Analytes: Wet Chemistry, Total and Dissolved Metals.
- Work Order 2506-263: (MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-7D, MW-9D, MW-10D, MW-13S (MW-3S DUP)).
 - Analytes: VOCs and Total Petroleum Hydrocarbons (NWTPH-Gx and Dx), SA Wells Only); Nitrates.
 - Nitrates subcontracted to Anatek Labs under Work Orders: YFF0490 (MW-2S, MW-5S, MW-7D) and YFF0508 (MW-3S, MW-4S, MW-6S, MW-8D, MW-9D, MW-10D, MW-13S (MW-3S DUP)).

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Sample MW-13S is a field duplicate of MW-3S.

Field Narrative

Groundwater sampling field data sheets were provided by Parametrix.

Laboratory Case Narrative

Samples collected on June 17, 18, and 19, 2025 were received by the laboratory on June 19, 2025. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Work Order 2506-262

Wet Chemistry (Total Alkalinity, Bicarbonate, TDS, Chloride, Sulfate, Ammonia, TOC)

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

Parametrix
July 8, 2025
Page 2

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

Total and Dissolved Metals (EPA Method 6010D)

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Work Order 2506-263

Volatiles - EPA Method SW8260D

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The matrix spike and matrix spike duplicate recoveries and relative percent differences (RPDs) were within control limits.

The percent recovery for Methylene Chloride is outside the control limits in the Spike Blank (high; 130 outside the 66-123 limit) and Spike Blank Duplicate (136 outside the 66-123 limit). The lab flagged the analysis 'I,I" to reflect the percentage recovery values being outside of the control limits. This method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked; furthermore, Methylene Chloride was not detected in the samples, therefore the sample results were not qualified.

<u>Total Petroleum Hydrocarbons (NWTPH-Gx and Dx) – SA Wells Only</u>

No gasoline-range hydrocarbons were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

Anatek Work Order YFF0490

Nitrate (Anatek: EPA Method Hach 10206)

The method blank(s) were clean at the reporting limits.

The percent recovery of the laboratory control sample was within control limits.

The matrix spike and matrix spike duplicate recoveries and relative percent differences (RPDs) were within control limits.

Anatek Work Order YFF05080

Nitrate (Anatek: EPA Method Hach 10206)

Parametrix
July 8, 2025
Page 3

The method blank(s) were clean at the reporting limits.

The percent recovery of the laboratory control sample was within control limits.

The matrix spike and matrix spike duplicate recoveries and relative percent differences (RPDs) were within control limits.

Field Duplicate Evaluation

Relative Percent Differences (RPDs) were calculated for the results of sample MW-3S and duplicate MW-13S. Field Duplicate Relative Percent Difference Calculations are included in Attachment A.

The duplicate percent RPDs were within control limits for all analytes.

Data Qualification

No data were qualified.

Parametrix

References

- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Attachment A

Second Quarter 2025 (B)
Field Duplicate Relative
Percent Difference
Calculations

DTG Yakima LPL Field Duplicate Relative Percent Difference Calculations 553-8472-009

Second Quarter 2025 (B)

Sample Dates: June 17-19, 2025

On-Site Environmental 2506-262 (Wet Chemistry, Total and Dissolved Metals): MW-2S, MW-3S, MW-4S, MW-5S, MW-6S,

Sample analyses: MW-7D, MW-8D, MW-9D, MW-10D, MW-13S (MW-3S DUP)

On-Site Environmental 2506-263 (VOCs, TPH): MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, MW-9D,

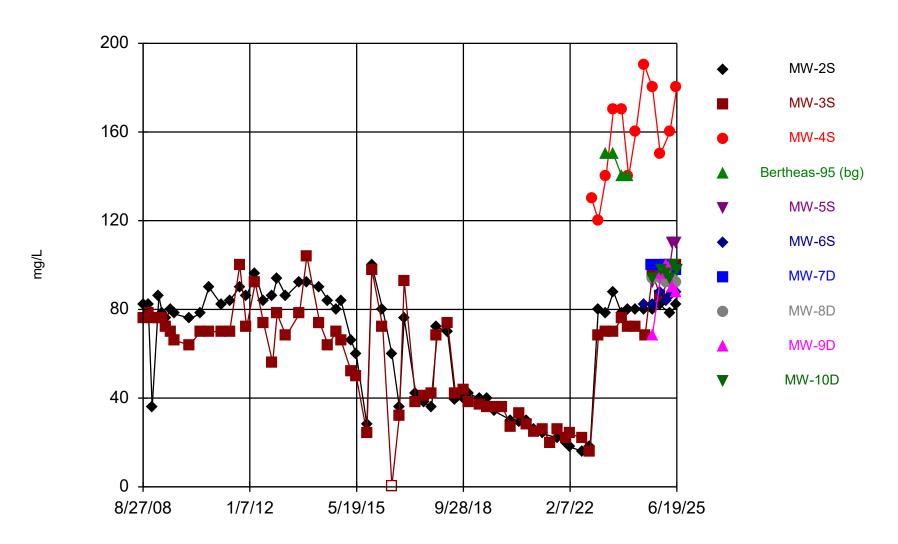
10D, MW-13S (MW-3S DUP), Trip Blank

Anatek Labs YFF0490 (Nitrates): MW-2S, MW-5S, MW-7D

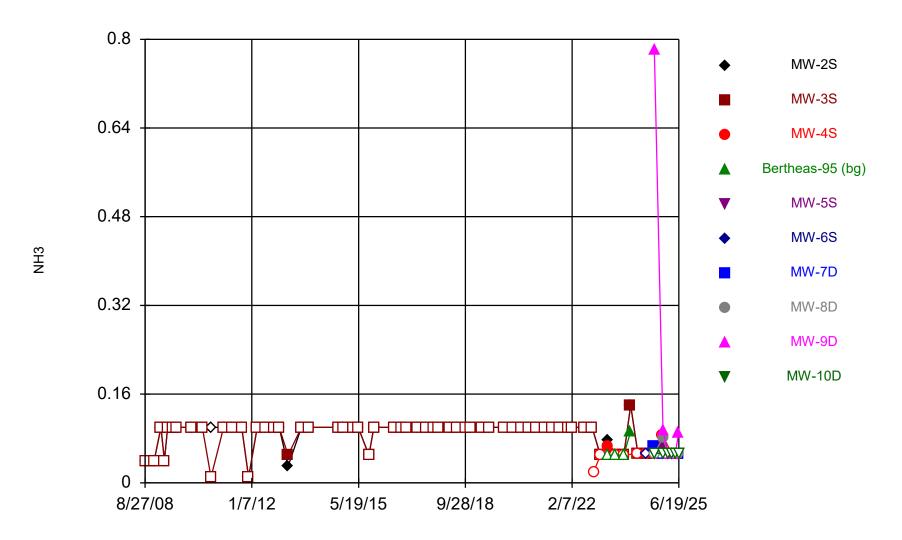
Anatek Labs YFF0508 (Nitrates): MW-3S, MW-4S, MW-6S, MW-8D, MW-9D, MW-10D, MW-13S (MW-3S DUP)

DUP MW-13S collected at MW-3S

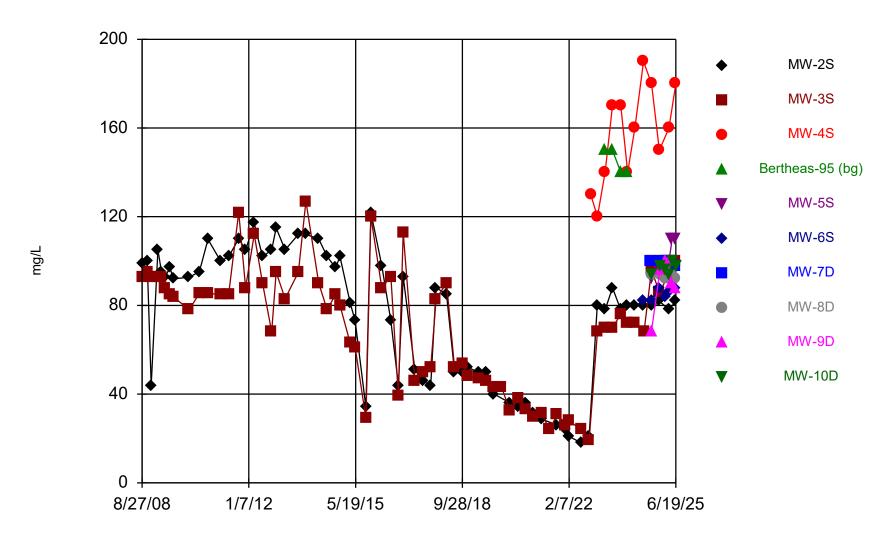
Comments:

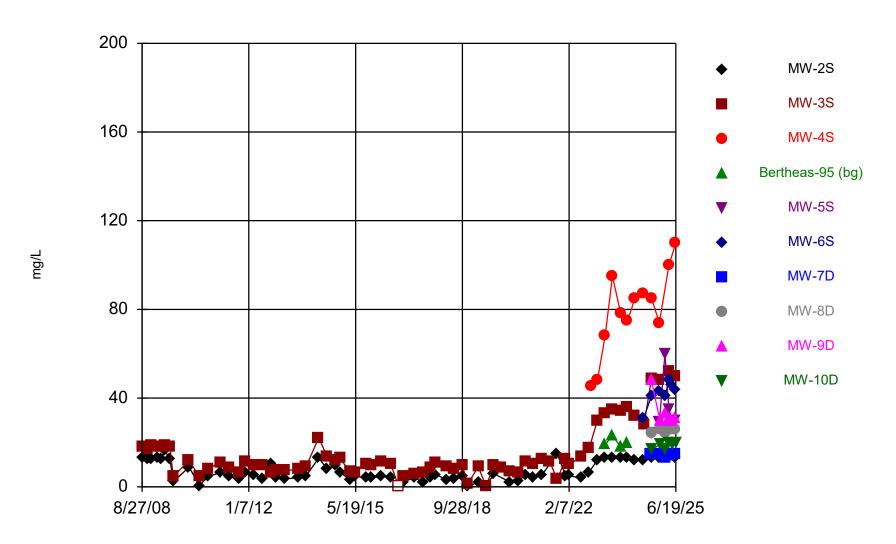

Completed by: Chris Bourgeois 7/8/2025

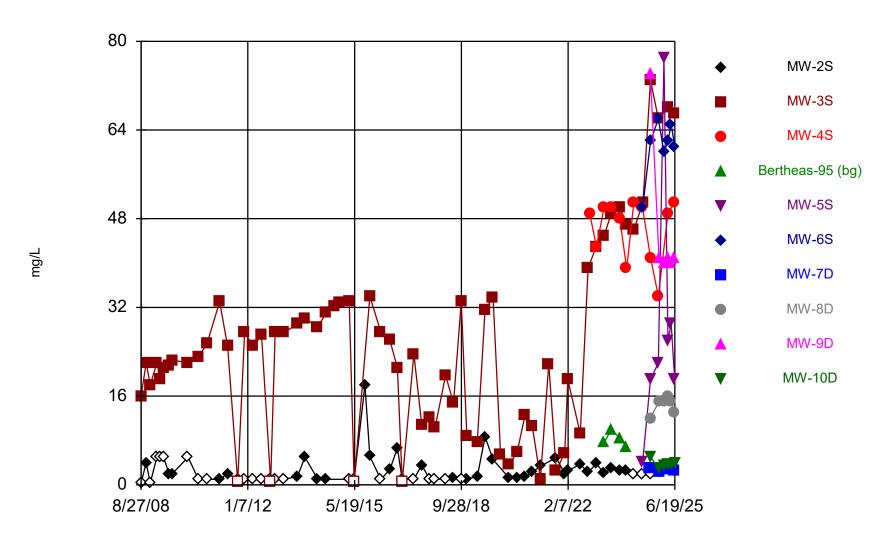
No data qualified.

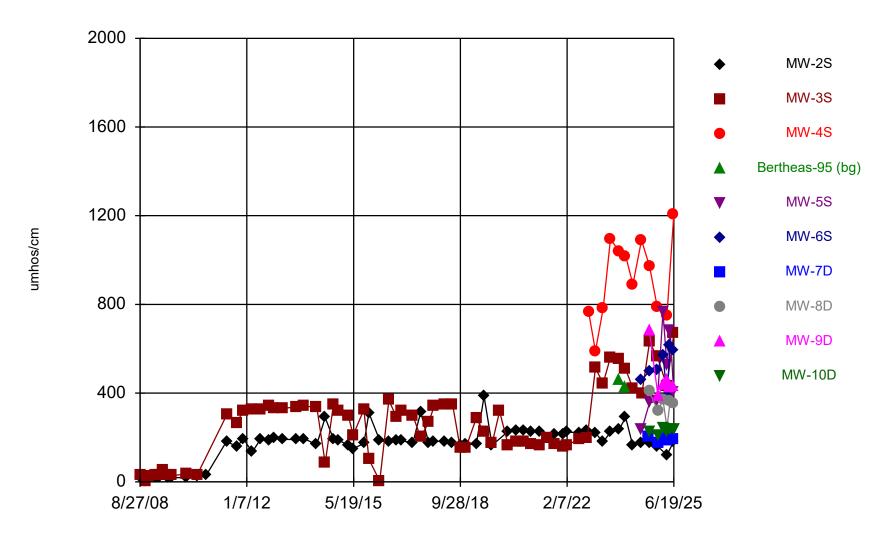

Groundwater	sample	duplicate	avg	diff	RPD	=/<25%?	RL	w/in RL?
units = mg/L	MW-3S	MW-13S						
Iron, Total	< 0.050	< 0.050	n/a	n/a	n/a		0.050	у
Magnesium, Total	37	37	37.00	0	0.0	у	1.0	
Manganese, Total	<0.010	<0.010	n/a	n/a	n/a		0.010	у
Calcium, Dissolved	50	50	50.00	0	0.0	y	1.1	
Iron, Dissolved	0.088	< 0.056	0.09	n/a	n/a		0.056	у
Magnesium, Dissolved	37	37	37.00	0	0.0	у	1.1	
Manganese, Dissolve	< 0.011	< 0.011	n/a	n/a	n/a		0.011	у
Potassium, Dissolved	4.8	4.8	4.80	0	0.0	у	1.1	
Sodium, Dissolved	20	20	20.00	0	0.0	у	1.1	
Nitrate	12.0	12.1	12.05	-0.1	0.8	у	0.200	
Chloride	67	69	68.00	-2	2.9	у	2.0	
Sulfate	99	80	89.50	19	21.2	у	50/25	
TDS	420	400	410.00	20	4.9	у	13	
Alkalinity	100	96	98.00	4	4.1	у	2.0	
Bicarbonate	100	96	98.00	4	4.1	у	2.0	
Ammonia	< 0.053	< 0.053	n/a	n/a	n/a		0.053	у
TOC	3.2	3.1	3.15	0.1	3.2	у	1.0	
TPH-Gasoline (ug/L)	<100	<100	n/a	n/a	n/a		100	y
TPH-Diesel	< 0.21	< 0.21	n/a	n/a	n/a		0.21	у
TPH-Oil	<0.21	<0.21	n/a	n/a	n/a		0.21	у
VOCs N	lone detected							

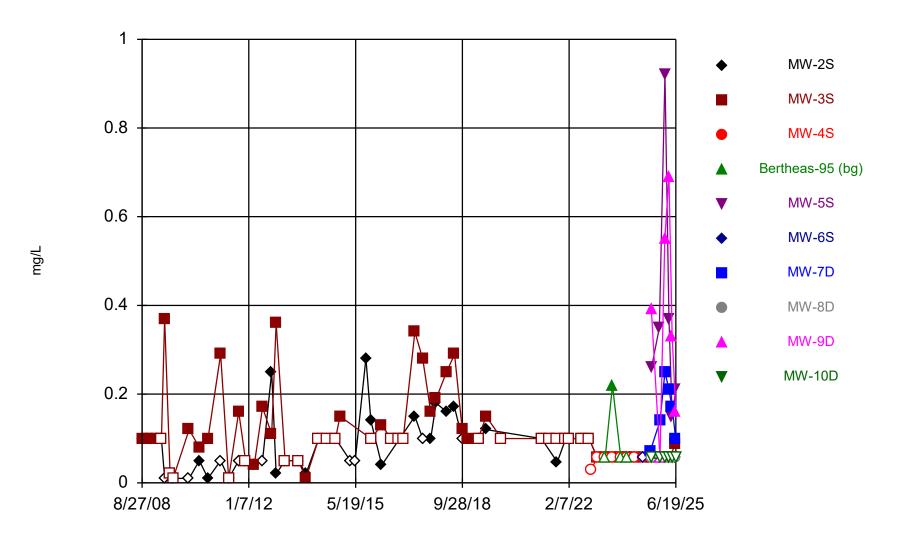
Appendix D

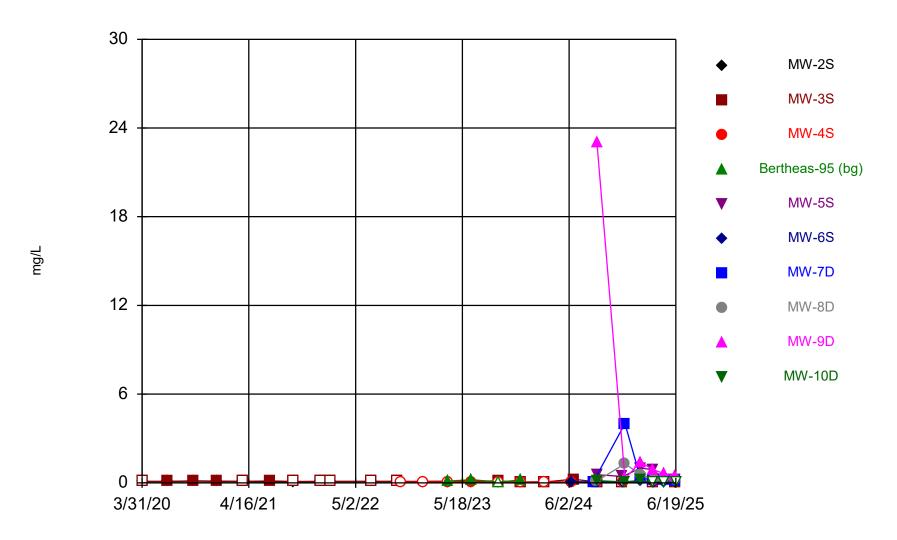

Time-Series Plots

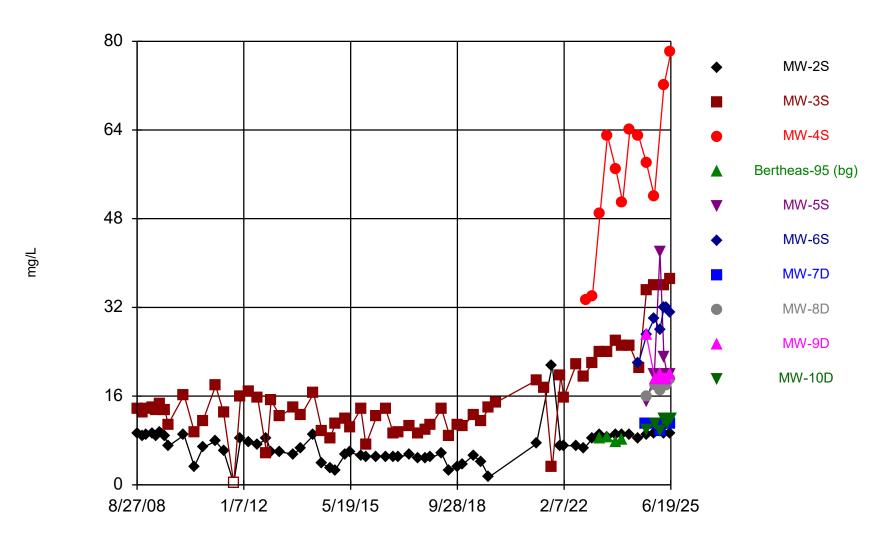

Constituent: Alkalinity, Total Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

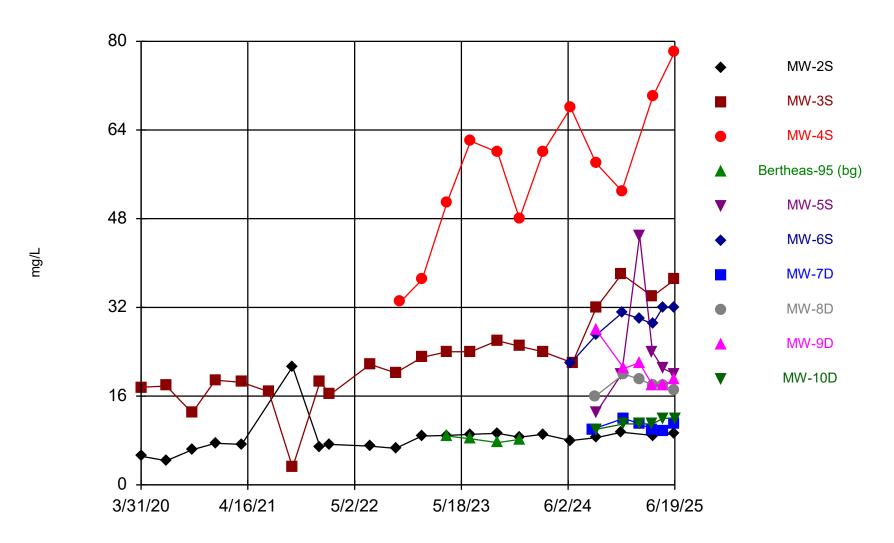

Constituent: Ammonia Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

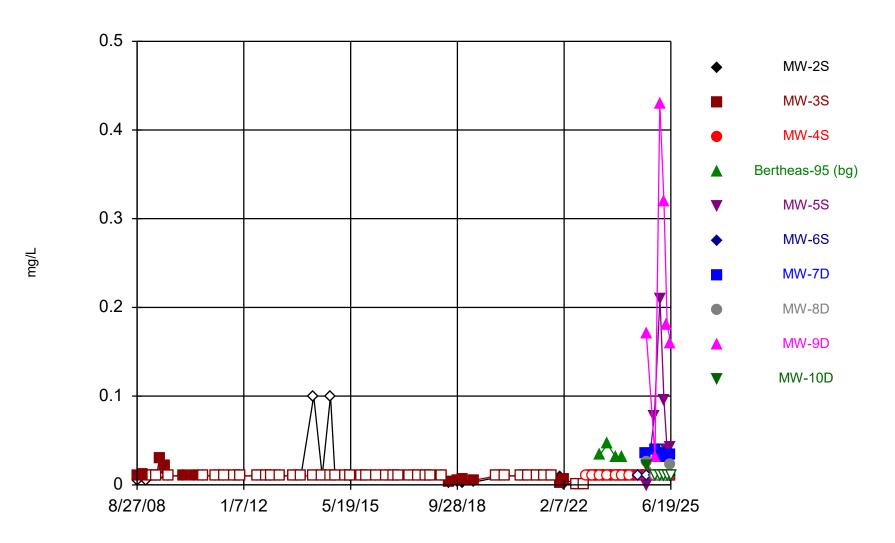

Constituent: Bicarbonate Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

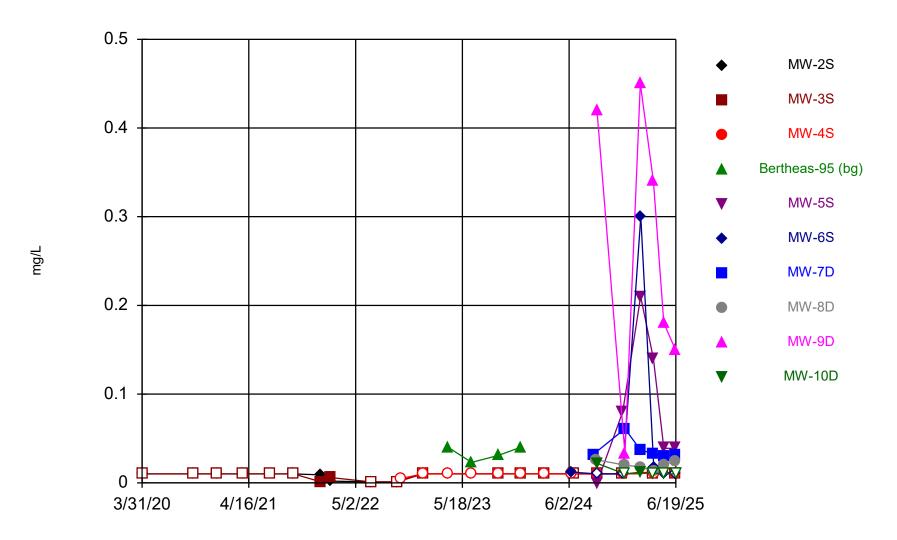

Constituent: Calcium, Dissolved Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

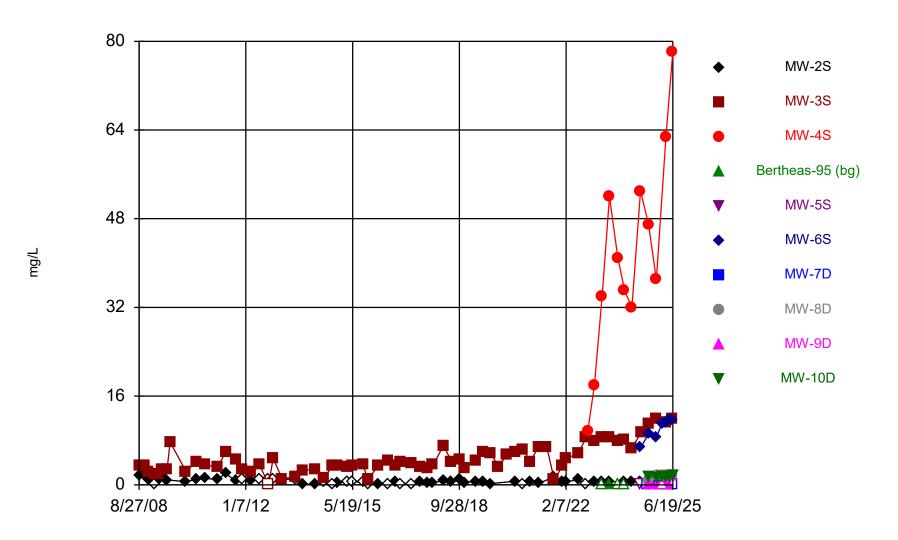

Constituent: Chloride Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

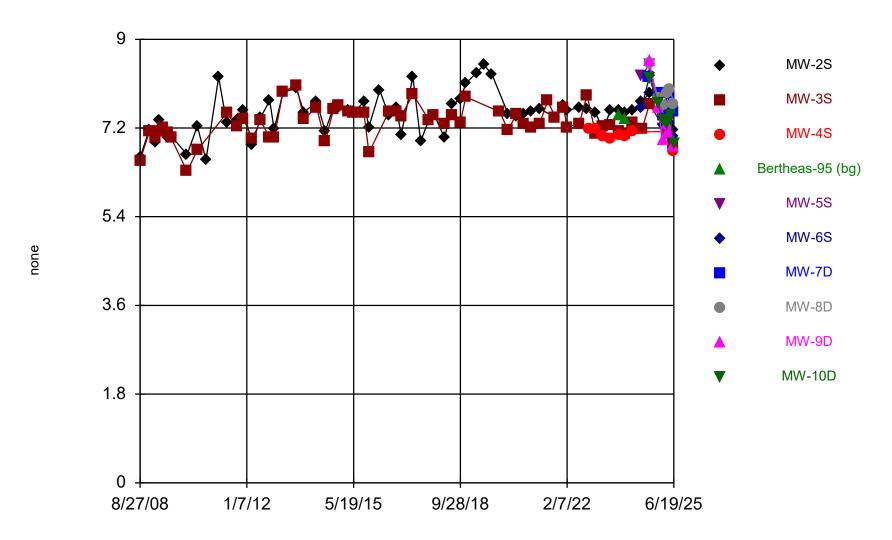

Constituent: Conductivity Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

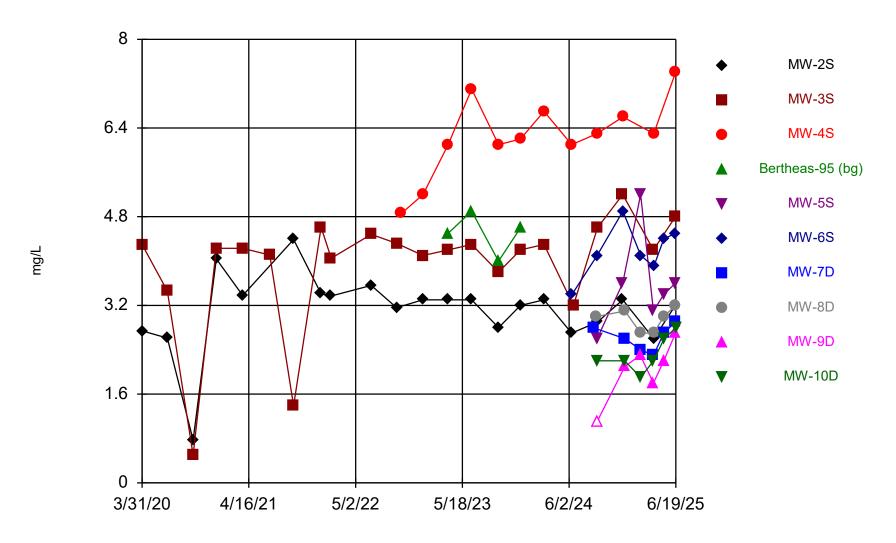

Constituent: Iron, Dissolved Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

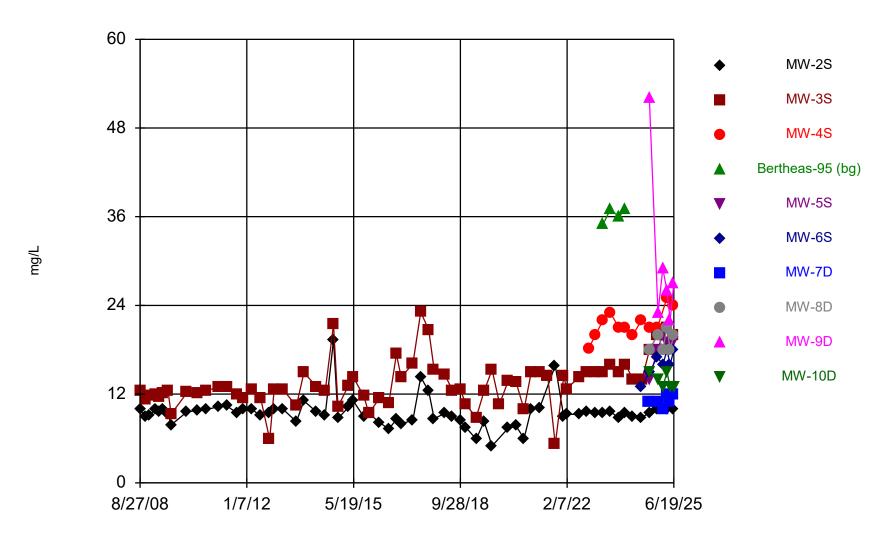

Constituent: Iron, Total Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

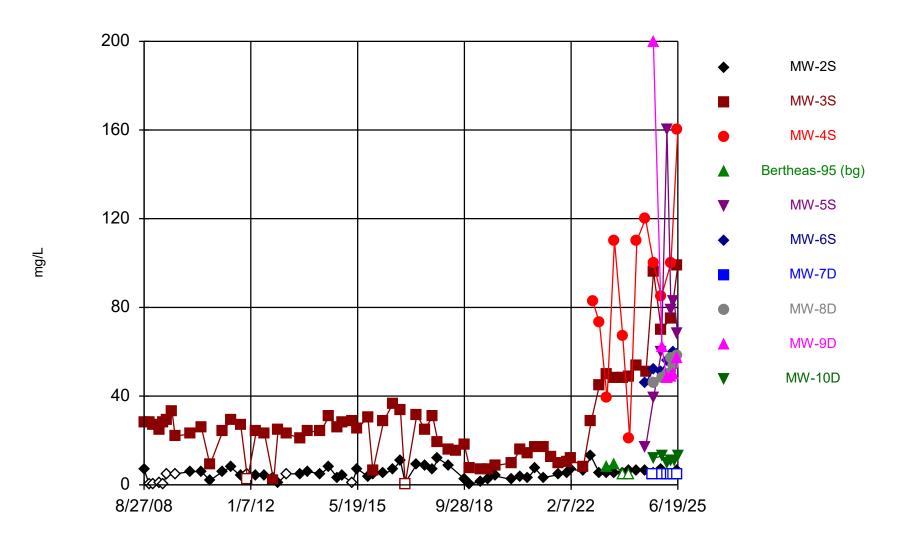

Constituent: Magnesium, Dissolved Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

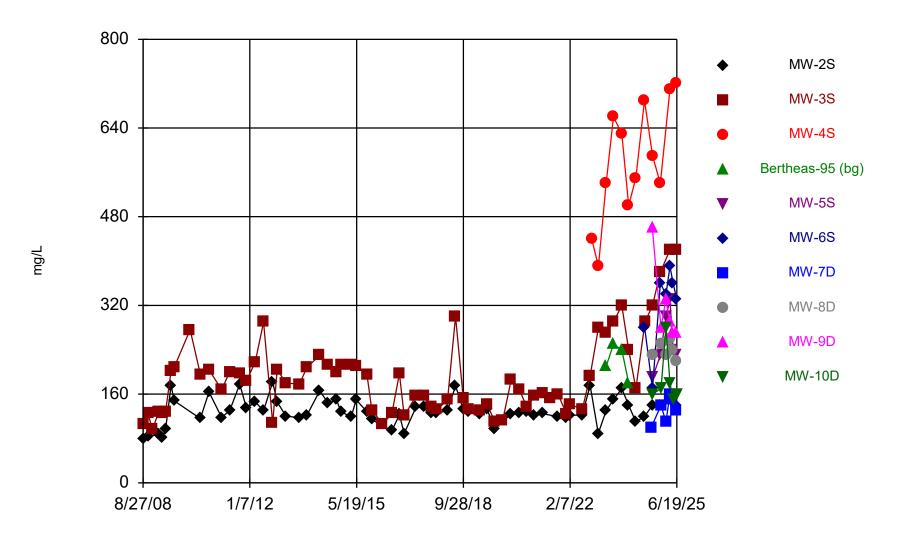

Constituent: Magnesium, Total Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

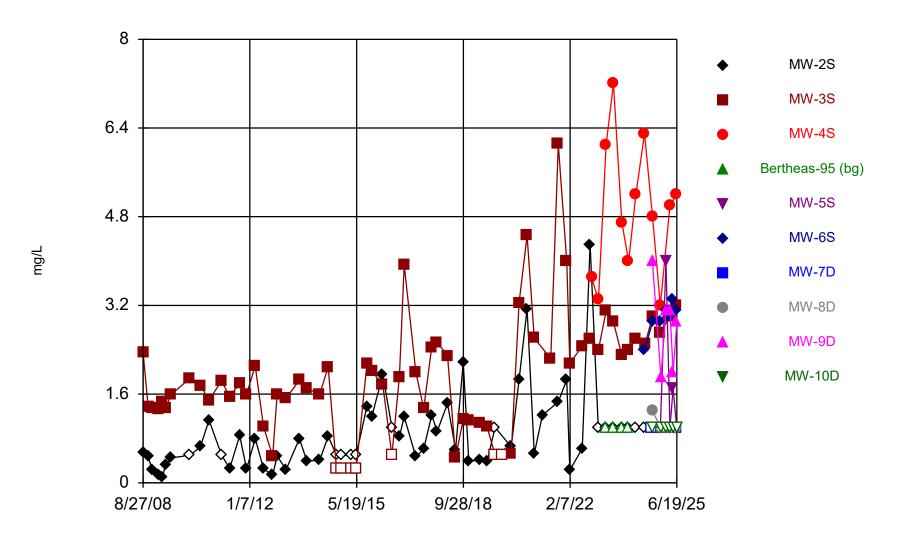

Constituent: Manganese, Dissolved Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Manganese, Total Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Nitrate Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: pH Analysis Run 7/17/2025 4:45 PM View: TSPs
Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Potassium, Dissolved Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Sodium, Dissolved Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Sulfate Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: TDS Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Total Organic Carbon Analysis Run 7/17/2025 4:45 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Appendix E

Geochemistry

Cation/Anion Balance Calculations, Rocky Top Environmental Limited Purpose Landfill, Second Quarter May 2025

	_	MW-5S				MW-6S			MW-7D		MW-8D			MW-9D		MW-10D			
	Conversion			Percent															
	Factor ¹	Value	Value	of Total															
	(mg/L to meq/L)	(mg/L)	(meq/L)	(meq/L)															
CATIONS																			
Na	0.0435	18	0.78	19.48	16	0.70	12.13	11	0.48	22.17	18	0.78	21.51	22	0.96	23.39	13	0.57	22.74
Ca	0.0499	30	1.50	37.24	46	2.30	40.00	14	0.70	32.36	26	1.30	35.65	30	1.50	36.58	19	0.95	38.13
Mg	0.08229	20	1.65	40.94	32	2.63	45.89	11	0.91	41.93	18	1.48	40.70	19	1.56	38.21	11	0.91	36.40
Fe(+2)	0.03581	0.15	0.01	0.13	0.028	0.00	0.02	0.17	0.01	0.28	0.028	0.00	0.03	0.33	0.01	0.29	0.028	0.00	0.04
K	0.02558	3.4	0.09	2.16	4.4	0.11	1.96	2.7	0.07	3.20	3	0.08	2.11	2.2	0.06	1.38	2.6	0.07	2.67
Mn	0.0364	0.039	0.00	0.04	0.0055	0.00	0.00	0.031	0.00	0.05	0.0055	0.00	0.01	0.18	0.01	0.16	0.0055	0.00	0.01
		TOTAL	4.02	100.00	TOTAL	5.74	100.00	TOTAL	2.16	100.00	TOTAL	3.64	100.00	TOTAL	4.09	100.00	TOTAL	2.49	100.00
ANIONS																			
HCO ₃ ²	0.02	110	2.20	46.34	88	1.76	30.96	100	2.00	93.87	94	1.88	53.08	90	1.80	45.31	100	2.00	82.09
SO ₄	0.02082	83	1.73	36.40	60	1.25	21.97	3	0.05	2.44	54	1.12	31.74	50	1.04	26.20	11	0.23	9.40
CI	0.02821	29	0.82	17.23	65	1.83	32.25	3	0.08	3.57	15	0.42	11.95	40	1.13	28.40	4	0.10	4.17
CO ₃ ²	0.02	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
NO ₃ ³	0.0714	0.0240	0.00	0.04	11.8	0.84	14.82	0	0.00	0.12	2	0.11	3.23	0	0.00	0.09	1	0.11	4.34
-		TOTAL	4.75	100.00	TOTAL	5.69	100.00	TOTAL	2.13	100.00	TOTAL	3.54	100.00	TOTAL	3.97	100.00	TOTAL	2.44	100.00
anion + ca	ation Sum (meq/L)		8.77			11.42			4.29			7.18			8.07			4.92	
																	Ī		
(meq/L cati	ons-anions)/(meq/L]														
cations	s+anions)*100			-8.31			0.46			0.65			1.36			1.48			1.02

¹Reference: Hem 1985.

Note: Values for cations in groundwater samples are measured as dissolved (field-filtered).

5 percent if anion plus cation sum greater than 5 meq/L; 10 percent if anion plus cation sum less than 5 meq/L

August 2025 | 553-8472-009

 $^{^2\}text{HCO}_3$ and CO_3 reported as CaCO_3 , conversion factor adjusted accordingly.

 $^{^3\}mathrm{NO_3}$ reported as $\mathrm{NO_3\text{-}N}$, conversion factor adjusted accordingly.

⁼ Outside WAC 173-351-420(5)(a) acceptable range

^{+/-5} percent (for anion plus cation sums greater than 5 meq/L), or

^{+/-10} percent (for anion plus cation sums less than 5 meq/L)

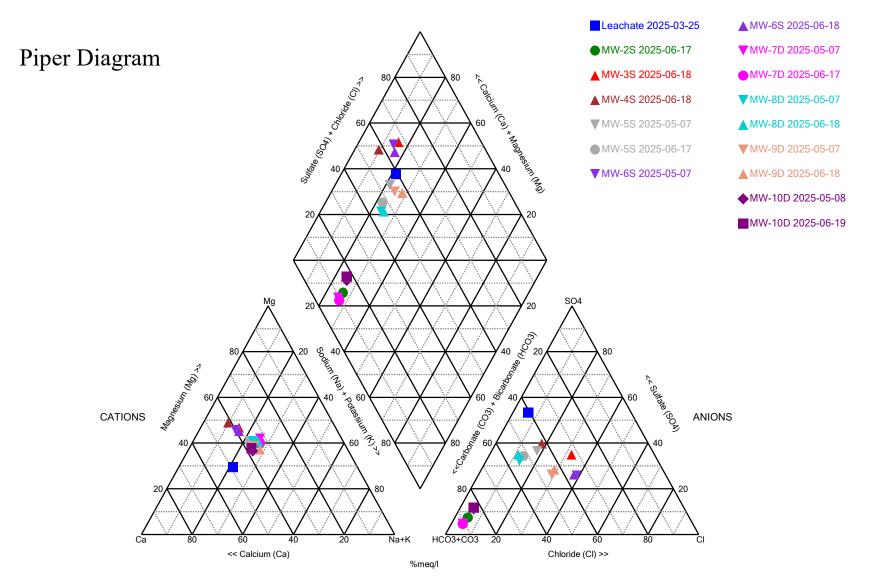
Cation/Anion Balance Calculations, Rocky Top Environmental Limited Purpose Landfill, Second Quarter June 2025

			MW-2S		MW-3S			MW-4S				MW-5S		MW-6S			MW-7D				MW-8D			MW-9D		MW-10D		
	Conversion			Percent																								
	Factor ¹	Value	Value	of Total																								
	(mg/L to meq/L)	(mg/L)	(meq/L)	(meq/L)																								
CATIONS																												
Na	0.0435	10	0.44	22.51	20	0.87	13.31	24	1.04	7.94	19	0.83	20.30	18	0.78	13.87	12	0.52	23.15	20	0.87	22.81	27	1.17	26.41	13	0.57	21.55
Ca	0.0499	13	0.65	33.58	50	2.50	38.17	110	5.49	41.77	30	1.50	36.78	44	2.20	38.89	15	0.75	33.19	26	1.30	34.01	31	1.55	34.78	20	1.00	38.04
Mg	0.08229	9.3	0.77	39.61	37	3.04	46.58	78	6.42	48.84	20	1.65	40.43	31	2.55	45.18	11	0.91	40.14	19	1.56	40.99	20	1.65	37.00	12	0.99	37.64
Fe(+2)	0.03581	0.028	0.00	0.05	0.088	0.00	0.05	0.028	0.00	0.01	0.21	0.01	0.18	0.028	0.00	0.02	0.11	0.00	0.17	0.028	0.00	0.03	0.16	0.01	0.13	0.028	0.00	0.04
K	0.02558	3.2	0.08	4.24	4.8	0.12	1.88	7.4	0.19	1.44	3.6	0.09	2.26	4.5	0.12	2.04	2.9	0.07	3.29	3.2	0.08	2.15	2.7	0.07	1.55	2.8	0.07	2.73
Mn	0.0364	0.0055	0.00	0.01	0.0055	0.00	0.00	0.0055	0.00	0.00	0.042	0.00	0.04	0.0055	0.00	0.00	0.034	0.00	0.05	0.023	0.00	0.02	0.16	0.01	0.13	0.0055	0.00	0.01
		TOTAL	1.93	100.00	TOTAL	6.54	100.00	TOTAL	13.14	100.00	TOTAL	4.07	100.00	TOTAL	5.65	100.00	TOTAL	2.26	100.00	TOTAL	3.81	100.00	TOTAL	4.45	100.00	TOTAL	2.62	100.00
ANIONS																												
HCO ₃ ²	0.02	82	1.64	86.23	100	2.00	29.38	180	3.60	25.80	110	2.20	52.90	88	1.76	31.70	98	1.96	93.67	92	1.84	52.17	88	1.76	41.70	98	1.96	79.66
SO ₄	0.02082	6.3	0.13	6.90	99	2.06	30.28	160	3.33	23.87	68	1.42	34.04	59	1.23	22.13	2.5	0.05	2.49	58	1.21	34.24	57	1.19	28.12	13	0.27	11.00
CI	0.02821	2.9	0.08	4.30	67	1.89	27.76	51	1.44	10.31	19	0.54	12.89	61	1.72	31.00	2.6	0.07	3.51	13	0.37	10.40	41	1.16	27.40	4.0	0.11	4.59
CO ₃ ²	0.02	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
NO ₂ ³	0.0714	0.686	0.05	2.58	12.0	0.86	12.59	78.2	5.58	40.02	0.1	0.01	0.17	11.8	0.84	15.18	0.1	0.01	0.34	1.58	0.11	3.20	1.64	0.12	2.77	1.64	0.12	4.76
		TOTAL	1.90	100.00	TOTAL	6.81	100.00	TOTAL	13.95	100.00	TOTAL	4.16	100.00	TOTAL	5.55	100.00	TOTAL	2.09	100.00	TOTAL	3.53	100.00	TOTAL	4.22	100.00	TOTAL	2.46	100.00
	ation Sum (meq/L)		3.83			13.34			27.10			8.23			11.20			4.35			7.34			8.67			5.08	
	ions-anions)/(meq/L s+anions)*100			0.79			-2.04			-2.99			-1.07			0.84			3.74			3.92			2.62			3.21

¹Reference: Hem 1985.

 $^2\text{HCO}_3$ and CO_3 reported as CaCO_3 , conversion factor adjusted accordingly.

³NO₃ reported as NO₃-N, conversion factor adjusted accordingly.

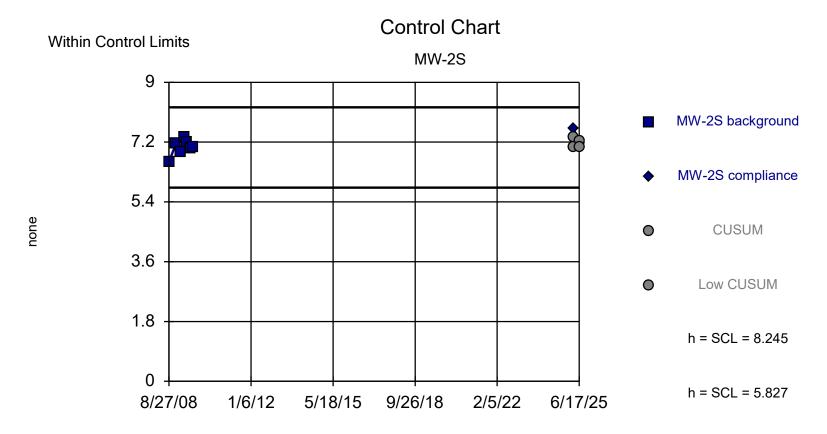

= Outside WAC 173-351-420(5)(a) acceptable range

+/-5 percent (for anion plus cation sums greater than 5 meq/L), or

+/-10 percent (for anion plus cation sums less than 5 meq/L)

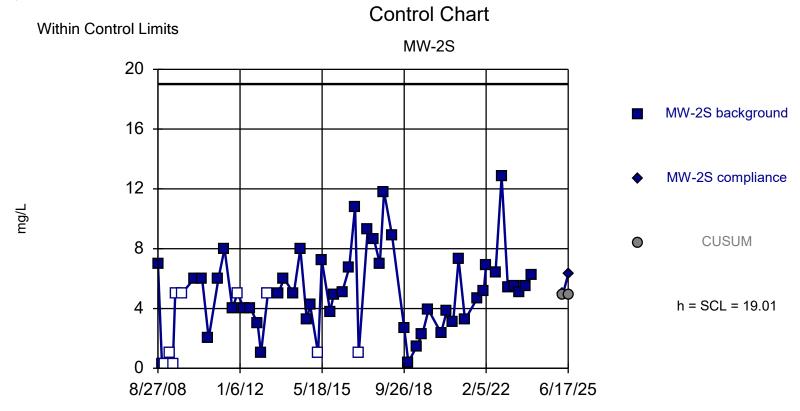
Note: Values for cations in groundwater samples are measured as dissolved (field-filtered).

5 percent if anion plus cation sum greater than 5 meq/L; 10 percent if anion plus cation sum less than 5 meq/L

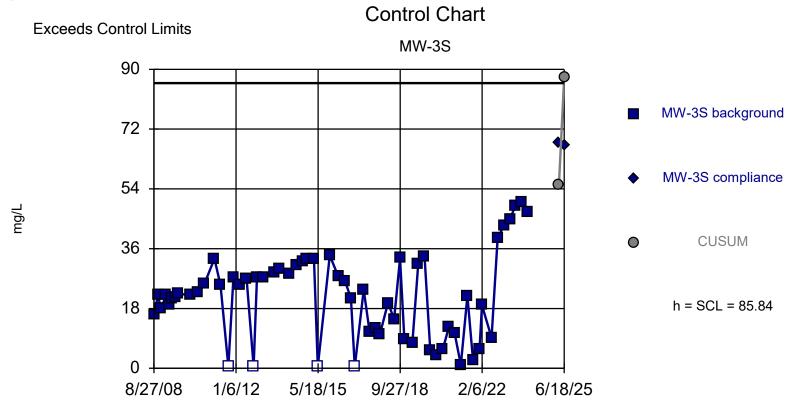


Analysis Run 8/21/2025 2:37 PM

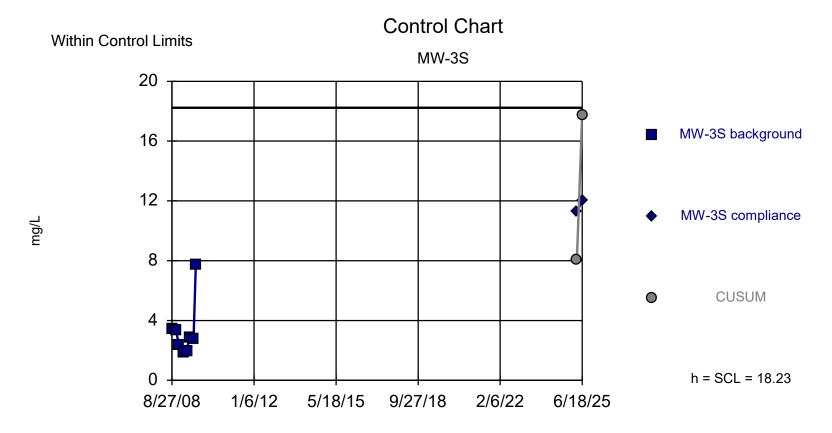
Yakima Limited Purpose Landfill Client: DTG Data: DTG Piper


Appendix F

Statistics


Background Data Summary: Mean=7.036, Std. Dev.=0.2418, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9617, critical = 0.803. Report alpha = 0.003022. Dates ending 8/19/2009 used for control stats. Standardized h=5, SCL=5.

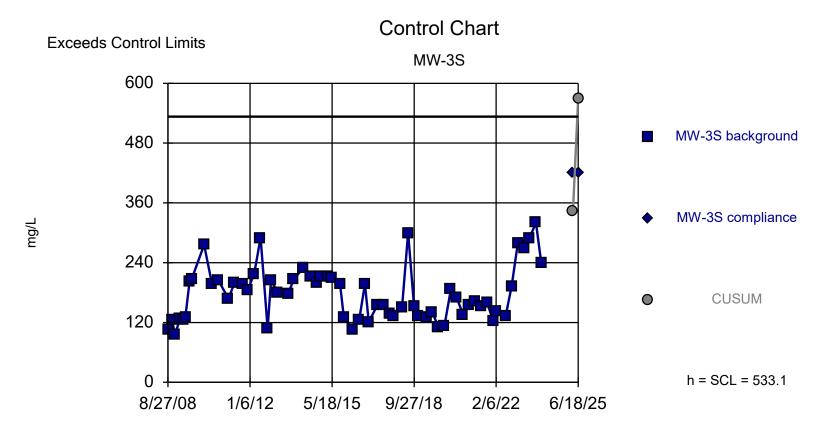
Constituent: pH Analysis Run 7/15/2025 12:30 PM View: 2025 Control Charts - 2008-2009 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary: Mean=4.912, Std. Dev.=2.819, n=58, 17.24% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9674, critical = 0.961. Report alpha = 0.000012. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

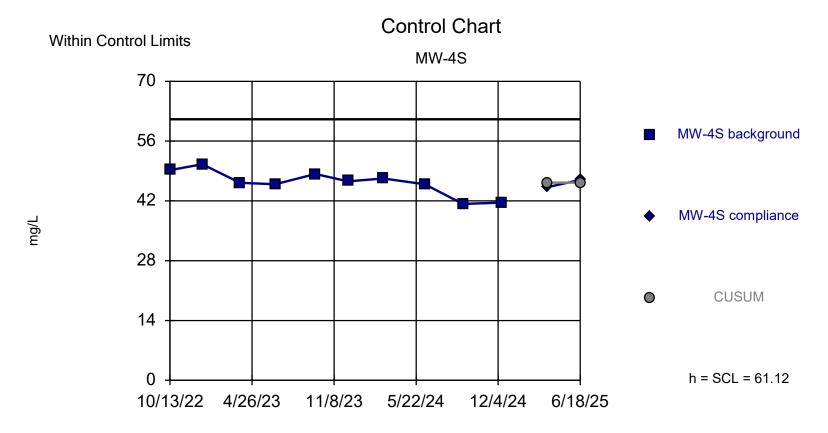
Constituent: Sulfate Analysis Run 7/15/2025 12:28 PM View: 2025 Control Charts - 2008-2023 backgroun Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=21.8, Std. Dev.=12.81, n=61, 6.557% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.977, critical = 0.962. Report alpha = 0.00001. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

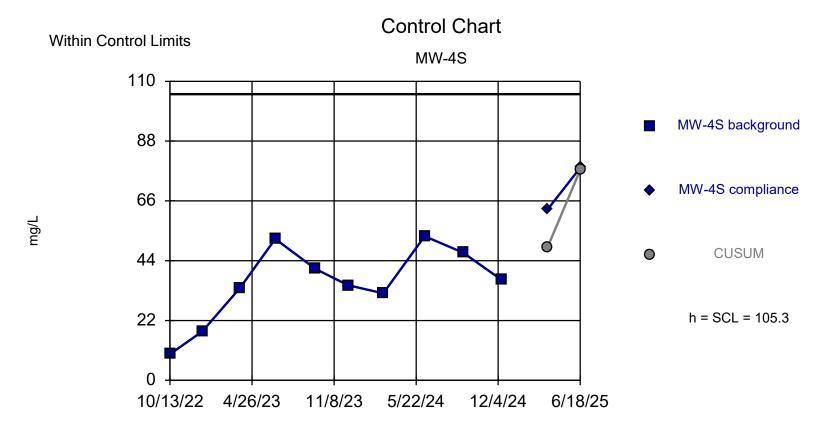
Constituent: Chloride Analysis Run 7/15/2025 12:28 PM View: 2025 Control Charts - 2008-2023 backgrou Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary (based on cube root transformation): Mean=1.453, Std. Dev.=0.2359, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8192, critical = 0.818. Report alpha = 0.001762. Dates ending 8/19/2009 used for control stats. Standardized h=5, SCL=5.

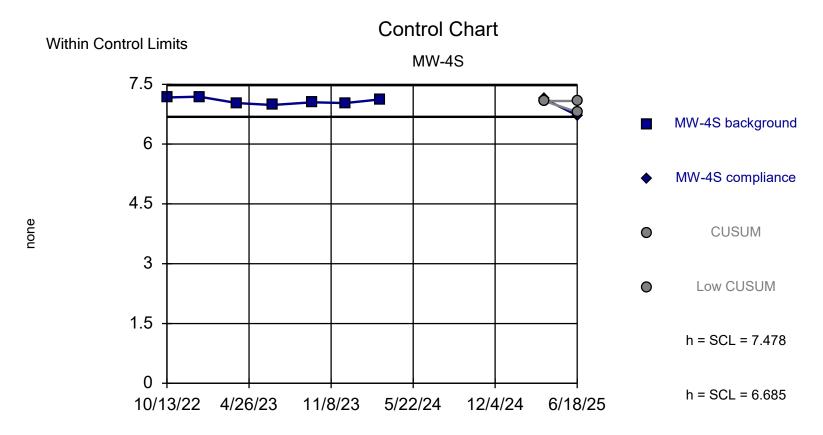
Constituent: Nitrate Analysis Run 7/15/2025 12:30 PM View: 2025 Control Charts - 2008-2009 backgroun Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary: Mean=22.68, Std. Dev.=11.73, n=61, 3.279% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9621, critical = 0.962. Report alpha = 0.000016. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

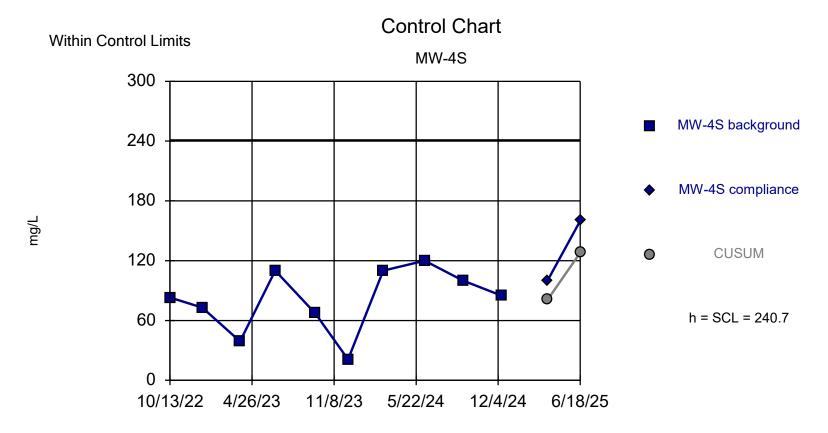
Constituent: Sulfate Analysis Run 7/15/2025 12:28 PM View: 2025 Control Charts - 2008-2023 backgroun Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary (based on square root transformation): Mean=13.18, Std. Dev.=1.982, n=62. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.05, calculated = 0.9641, critical = 0.963. Report alpha = 0.000012. Dates ending 12/12/2023 used for control stats. Standardized h=5, SCL=5.

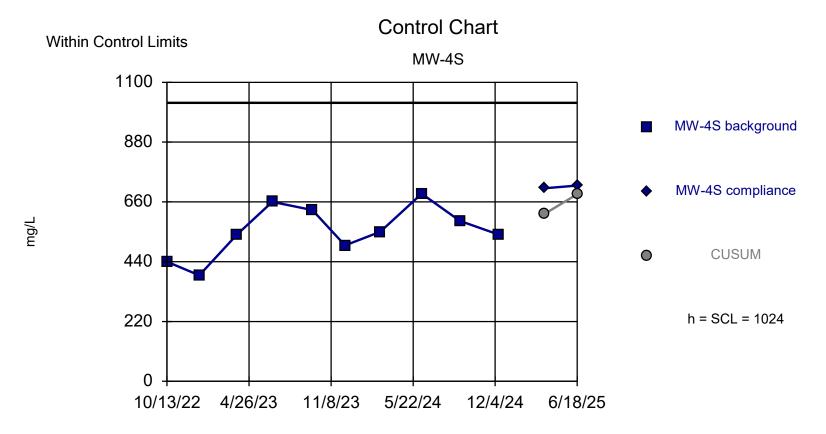
Constituent: TDS Analysis Run 7/15/2025 12:28 PM View: 2025 Control Charts - 2008-2023 background Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary: Mean=46.28, Std. Dev.=2.968, n=10. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9159, critical = 0.842. Report alpha = 0.000922. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: Chloride Analysis Run 7/15/2025 1:02 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary: Mean=35.86, Std. Dev.=13.88, n=10. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9342, critical = 0.842. Report alpha = 0.000922. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: Nitrate Analysis Run 7/15/2025 1:02 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Background Data Summary: Mean=7.081, Std. Dev.=0.07925, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9174, critical = 0.803. Report alpha = 0.002932. Dates ending 3/5/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: pH Analysis Run 7/15/2025 1:02 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=80.8, Std. Dev.=31.99, n=10. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9348, critical = 0.842. Report alpha = 0.000986. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: Sulfate Analysis Run 7/15/2025 1:02 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Background Data Summary: Mean=553, Std. Dev.=94.29, n=10. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9724, critical = 0.842. Report alpha = 0.000986. Dates ending 12/12/2024 used for control stats. Standardized h=5, SCL=5.

Constituent: TDS Analysis Run 7/15/2025 1:02 PM View: MW-4S Initial Background Evaluation Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats