Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Site Seattle, Washington

August 2025

ERRG Project No. 20230065

Prepared for:

State of Washington, Department of Ecology 3190 160th Avenue SE Bellevue, WA 98008

Prepared by:

Engineering/Remediation Resources Group, Inc. 15333 NE 90th Street, Bldg. S, Suite 100 Redmond, WA 98052 (425) 658-5026

Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Site Seattle, Washington

Submitted by:

Engineering/Remediation Resources Group, Inc.

Am glm	August 29, 2025
Signature	Date
Spencer Slominski, PE	Project Manager
Name / / /	Title
/ Just	August 29, 2025
Signature	Date
Fernando Idiarte, LG	Project Geologist
Name	Title

Table of Contents

1.	INTRO	ODUCT	ION	1-1
	1.1.	Site Inf	Formation	1-1
	1.2.	Site Hi	story	1-1
	1.3.	Site Us	e	1-2
2.	SITE 1	BACKG	ROUND	2-1
	2.1.	Geolog	y	2-1
	2.2.	Hydrog	geology	2-1
	2.3.	Previou	is Investigations and Remedial Activities	2-2
		2.3.1.	1989–1990 UST Removal and Remediation (GeoEngineers)	2-2
		2.3.2.	1992–1999 Groundwater Monitoring and Operation and Maintenance (Glacier)	2-4
		2.3.3.	2005 Enhanced Fluid Recovery (EcoVac Services, Inc.)	2-4
		2.3.4.	2005–2006 Groundwater Monitoring (EA Engineering, Science, and Technology Inc.)	
		2.3.5.	2016–2017 Remedial Investigation/Feasibility Study (Kennedy Jenks)	2-5
	2.4.	System	Design, Installation, and Testing	2-6
		2.4.1.	System Design	2-6
		2.4.2.	System Installation	2-6
		2.4.3.	System Commissioning and Testing	2-6
3.	SYSTI	SYSTEM OPERATION, MONITORING, SAMPLING, AND MAINTENANCE3-		
	3.1.		Details	
		3.1.1.	General Conveyance and Monitoring Infrastructure	3-1
		3.1.2.	Vapor Treatment System	3-2
		3.1.3.	Water Treatment System	3-2
		3.1.4.	Continuous Operation Phases	3-2
	3.2.	System	Operation and Maintenance	3-3
		3.2.1.	Weekly O&M	3-3
		3.2.2.	Monthly O&M	3-3
	3.3.	System	Monitoring	3-4
		3.3.1.	Well VOCs, Vacuum, and Flow	3-4
		3.3.2.	System VOCs, Vacuum, and Flow	3-5
		3.3.3.	System Liquid Discharge	3-5
	3.4.	System	Sampling	3-5
		3.4.1.	Vapor Pin Sampling	3-5
		3.4.2.	VTS Sampling	3-5
		3.4.3.	WTS Sampling	3-5

Table of Contents (continued)

	3.5.	Field (Quality Control	3-6
	3.6.	Invest	igation-Derived Waste	3-6
	3.7.	Deviat	tions	3-6
4.	GROU	J NDW A	ATER MONITORING ACTIVITIES	4- 1
	4.1.		ndwater Measurements And Inspections	
	4.2.	Groun	ndwater Sampling	4-1
	4.3.	Equip	ment Decontamination	4-2
	4.4.	Invest	igation-Derived Waste	4-2
	4.5.	Field (Quality Control	4-2
	4.6.	Deviat	tions	4-2
5.	RESU	LTS		5- 1
	5.1.	Systen	n Monitoring	5-1
	5.2.	Systen	m Vapor and Water Samples	5-1
		5.2.1.	As-Needed Vapor Sampling	5-2
		5.2.2.	VTS Sampling	5-2
		5.2.3.	WTS Sampling	5-3
	5.3.	Groun	ndwater Results	5-3
		5.3.1.	Groundwater Elevations Results	5-3
		5.3.2.	April 2025 Groundwater Sampling Results	5-4
		5.3.3.	May 2025 Groundwater Sampling Results	
6.	CONC	CLUSIO	ONS AND RECOMMENDATIONS	6- 1
	6.1.	Conclu	usions	6-1
		6.1.1.	Vapor Monitoring and Sampling	6-1
		6.1.2.	System Vapor and Water Treatment	6-1
		6.1.3.	Groundwater Monitoring and Sampling	6-2
	6.2.	Recon	nmendations	6-3
		6.2.1.	Upcoming Work	6-4
		6.2.2.	Identified Problems and Proposed Solutions	6-4
7	DEFE	DENCI	TQ.	7 _1

List of Figures

Figure 1.	Site Location and Vicinity
Figure 2.	Site Layout with System and Wells
Figure 3.	System Process Flow Diagram
Figure 4.	GRO and Benzene Concentrations in System Vapor Influent and Effluen
Figure 5.	GRO and Benzene Concentrations in System Water Influent and Effluen
Figure 6.	Groundwater Elevation Contours, May 2025
Figure 7.	Groundwater GRO Concentration Contours, May 2025
Figure 8.	Groundwater Benzene Concentration Contours, May 2025

List of Tables

Table 1.	Well Construction Information
Table 2.	MPE System Performance and Recorded Field Measurements
Table 3.	Vapor Analytical Results – Second Quarter 2025
Table 4.	MPE System Vapor Performance, Estimated Emissions and Limits
Table 5.	MPE System Liquid Performance and Volume Discharged and Injected – Second Quarter 2025
Table 6.	Water Treatment System Analytical Results – Second Quarter 2025
Table 7.	Depth to Groundwater and Elevation – Second Quarter 2025
Table 8.	Groundwater Analytical Results – Second Quarter 2025

List of Appendices

Appendix A.	Field Data During Reporting Period
Appendix B.	Laboratory Reports During Reporting Period
Appendix C.	Data Validation Reports During Reporting Period
Appendix D.	Spent Carbon Certificate of Reactivation

Acronyms and Abbreviations

amsl above mean sea level

bgs below ground surface

BTEX benzene, ethylbenzene, toluene, and total xylenes

CAP Cleanup Action Plan
cfm cubic feet per minute
COCs chemicals of concern

CULs cleanup levels

CVOCs chlorinated volatile organic compounds

DRO diesel-range organics

EA Engineering EA Engineering, Science, and Technology, Inc.

Ecology Washington State Department of Ecology

EFR enhanced fluid recovery
EIWs extraction/injection wells

ERRG Engineering/Remediation Resources Group, Inc.

FOG fats, oils, and grease FS Feasibility Study

GAC granular activated carbon

Glacier Environmental Services

GRO gasoline-range organics

IDW investigation-derived waste

inHg inches of mercury

Kennedy Jenks Kennedy Jenks Consultants, Inc.
KCIW King County Industrial Waste

lbs/hr pounds per hour

LNAPL light nonaqueous-phase liquid

mg/kg milligrams per kilogram
mg/L milligrams per liter
MPE multiphase extraction
MTCA Model Toxics Control Act

O&M Operation and Maintenance

Acronyms and Abbreviations (continued)

PID photoionization detector

ppm parts per million

PSCAA Puget Sound Clean Air Agency

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RI remedial investigation

SAP Sampling and Analysis Plan SOG Standard Operating Guideline SSD sub-slab depressurization SVE soil vapor extraction

TPH total petroleum hydrocarbons

USTs underground storage tanks

VOC volatile organic compound VTS vapor treatment system

WAC Washington Administrative Code

WTS water treatment system

yd³ cubic yards

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

1. Introduction

Engineering/Remediation Resources Group, Inc. (ERRG) has prepared this Quarterly Remedial Progress Evaluation Report to document the operations, monitoring, and maintenance activities performed for the remedial system at the Former Circle K 1641 Site during Second Quarter 2025 under Phase 1. The requirements for system sampling and operations are detailed in the Operations and Maintenance (O&M) Manual (Kennedy Jenks Consultants, Inc. [Kennedy Jenks], 2024b).

1.1. SITE INFORMATION

The site is located at 2350 24th Avenue East in Seattle, Washington (Figure 1). The site is a former gasoline service station located in an area of primarily commercial and residential mixed-use development. The former service station operated from 1968 to 1990. Four gasoline underground storage tanks (USTs), one pump island, one waste oil UST, and one heating oil UST were located at the site. The site is managed by the Washington State Department of Ecology (Ecology), Facility Site ID No. 92-2-08095-8.

1.2. SITE HISTORY

The site was operated as a retail gasoline station from 1968 to mid-1990. In 1989, a leak was discovered in one of the four gasoline USTs. It was estimated that approximately 4,000 to 6,000 gallons of gasoline was released to the subsurface. Following the discovery of the release, all six USTs and the pump island were removed along with about 900 cubic yards (yd³) of petroleum hydrocarbon-impacted soil. Follow-up investigative and remedial activities were performed between 1989 and 2006, including groundwater monitoring, light nonaqueous-phase liquid (LNAPL) recovery, groundwater extraction and treatment, soil vapor extraction (SVE), and enhanced fluid recovery (EFR). The site was redeveloped in 1990 and 1991 and currently includes a single one-story building operated as a retail dry cleaning store (Jay's Cleaners) and a convenience store (Mont's Market) (Kennedy Jenks, 2017a).

In February 1992, the site owner entered into Consent Decree No. 92-2-08095-8 with Ecology to perform additional investigation and remediation of petroleum contamination at the site. Ecology's lien on the property for the sum of \$50,000 was released in January 2008, after Ecology received the full payment for past costs from mixed funding sources (Kennedy Jenks, 2017a).

In 1994, Ecology conducted a Site Hazard Assessment for the site. The site ranked a 3 out of 5, with 1 being the highest risk and 5 being the lowest risk (Ecology, 1994).

A health investigation of the site was reportedly performed by the Washington State Department of Health in 1995, although the investigation report was not available for review in Ecology's files. The health department noted that, while the site posed a potential for adverse impact to public health, it was not of immediate concern because of the lack of any completed human exposure pathway (Kennedy Jenks, 2017a).

1.3. SITE USE

Two businesses currently operate at the site, including a dry cleaner (Jay's Cleaners) and a general store (Mont's Market). Jay's Cleaners is operated by the property owner, and Mont's Market is operated independently under a lease agreement. The site is located in an approximately two-block-long area of commercial and residential mixed-use development within the Montlake neighborhood of the city of Seattle (a primarily residential neighborhood) (Kennedy Jenks, 2017a).

Jay's Cleaners has a Resource Conservation and Recovery Act Site ID (WAD988515458) as a hazardous waste generator, but is listed as inactive as a hazardous waste generator since 31 December 1994. The site is also listed in Ecology's Hazardous Waste program (Program ID No. CRK000003160). The start date for this interaction is listed as 1 January 1988 and the end date is listed in Ecology's database as 1 March 1989 (Kennedy Jenks, 2017a).

2. Site Background

The following sections summarize the geology and hydrogeology at the Site.

2.1. GEOLOGY

Based on a review of boring logs generated during remedial investigation (RI) activities performed in 2016 and 2017 and previous investigations, three generalized stratigraphic units are identified at the Site, as summarized below (Kennedy Jenks, 2021).

- Silt Typically encountered from the ground surface (i.e., beneath pavement and subgrade fill) to depths of approximately 2 to 8 feet below ground surface (bgs), but extends to greater depths (up to approximately 13 feet bgs) in the northern portion of the site. The unit is generally described as soft to stiff, brown to gray, silt to sandy silt, locally with gravel and/or organics.
- Sand/Silt Typically encountered below the silt layer to depths of approximately 17 to 22 feet bgs. The unit is generally described as gray to brown, fine sand, silty fine sand, or sandy silt locally containing cobbles. The unit is also described as loose, medium dense, dense, and very dense with vertical and lateral variation. This unit may locally include the uppermost, possibly weathered, portion of the underlying glacial till unit.
 - Till Typically encountered below the sand/silt starting at approximately 17 to 22 feet bgs. The unit is generally described as gray silt, silty sand, or sandy silt with sand and gravel. The till unit is also described as dense to very dense, hard to very hard, or stiff to very stiff, as indicated during drilling by increased drilling pressure and significant increases in blow counts required to drive split-spoon soil samplers.

Fill has also been encountered at the site, including pea gravel that was placed within the former excavation area to depths of approximately 17 feet bgs (Kennedy Jenks, 2021).

2.2. HYDROGEOLOGY

The depth to groundwater at the site ranges from 3 to 12 feet bgs, based on water levels measured from April to December 2016. This zone of shallow groundwater occurs under unconfined conditions, is perched on top of the till unit, and is interpreted to represent the local water table aquifer. Although a seasonal fluctuation of 1 foot or less in the aquifer was generally observed near the former UST area during the April and December 2016 monitoring events, a fluctuation of nearly 6 feet was recorded at the northernmost monitoring well MW-11 (Kennedy Jenks, 2021). It should be noted that wells MW-17 through MW-21 were completed in August and September 2016; therefore, they were only included in the December 2016 monitoring event.

Groundwater level data collected from wells located at the site in April and December 2016 (within the property parking lot) show a flow direction to the southeast, with a localized area of depression in the

vicinity of well MW-6. The potentiometric low around well MW-6 (located in East McGraw Street) is likely attributable to utility corridors located in the center of the street right-of-way (Kennedy Jenks, 2017a).

Previous reports have indicated that the general direction of groundwater flow was toward the northeast, and that while the onsite LNAPL recovery and remediation system was operating (December 1989 through May 2000), a stable cone of depression developed near the recovery well (Kennedy Jenks, 2017a).

2.3. PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES

This section summarizes the previous site investigations and remedial activities. Unless indicated otherwise, the information provided in this section is from the 2017 RI/Feasibility Study (FS) Report (Kennedy Jenks, 2017a).

2.3.1. 1989–1990 UST Removal and Remediation (GeoEngineers)

On 7 August 1989, a leak was detected in one of the gasoline USTs at the site. Upon discovery of the release, the remaining product was removed from the leaking UST, and a release notification was made to Ecology (GeoEngineers, 1990a). The capacity of the leaking UST was reportedly 4,000 gallons and it is unknown whether the tank stored leaded or unleaded gasoline. (Note: Leaded gasoline was not completely phased out in Washington until 1996.) Based on a review of tank inventory records, the release occurred between 22 June and 7 August 1989.

In late 1989, 16 groundwater monitoring wells (MW-1 through MW-16) were constructed at the site. During drilling, a petroleum-like odor was reportedly observed at several well locations (MW-2, MW-3, MW-4, MW-6, MW-10, MW-13, and MW-15) (GeoEngineers, 1990a). Soil samples were collected from each of the monitoring well borings for analysis of petroleum hydrocarbons (gasoline-range organics [GRO] and diesel-range organics [DRO]); benzene, ethylbenzene, toluene, and xylenes (BTEX); and other gasoline-related compounds. The highest detected concentration of GRO was in a soil sample collected from well MW-4 at 8.5 feet bgs (1,200 milligrams per kilogram [mg/kg]).

All six USTs and the pump island were removed from the site in October 1989. In addition to the UST removals, approximately 900 yd³ of petroleum hydrocarbon-impacted soil was excavated and removed. The four gasoline USTs were removed from one excavation, and the waste oil and heating oil USTs were each removed from separate excavations (GeoEngineers, 1990a). Monitoring wells MW-2 and MW-3 were abandoned during excavation activities because they were located within the footprint of the main UST excavation. Following excavation activities, the excavation was backfilled with pea gravel with a crushed gravel top course.

Following removal of the gasoline USTs, approximately 80 to 100 gallons of LNAPL was removed from the excavation. Petroleum hydrocarbon-impacted soil was removed from the UST excavation to a depth of approximately 14 to 16 feet bgs. Eight confirmation soil samples were collected from the sidewalls and

base of the excavation. The confirmation soil sample results indicated GRO and/or DRO and BTEX were present at concentrations exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs), except in the sample collected from the eastern sidewall. The GRO concentrations ranged from not detected (samples EW-1 and ET-3, eastern sidewall) to 1,700 mg/kg (sample NW-1 along the northern sidewall). The highest benzene concentration (31 mg/kg) was also detected in sample NW-1, while other detected concentrations ranged from 0.11 to 1.3 mg/kg.

The waste oil and heating oil USTs reportedly contained residual product, which was removed prior to excavation (GeoEngineers, 1990a). No perforations were observed in either tank; however, field screening of soil samples surrounding each tank indicated that some petroleum hydrocarbon-impacted soil was present. Approximately 10 yd³ of impacted soil was removed from the area surrounding the heating oil UST, and approximately 80 yd³ of impacted soil was removed from the waste oil UST excavation, primarily from the base and the eastern sidewall (GeoEngineers, 1990a). Following excavation of petroleum hydrocarbon-impacted soil, confirmation soil samples were collected from each excavation sidewall and bottom and analyzed for total petroleum hydrocarbons (TPH). TPH concentrations in all samples were less than the MTCA Method A CULs for diesel and oil in soil.

The former pump island was reportedly removed from the site in March 1990 (Ecology, 2009); however, no information on confirmation sampling, if any, was available.

In late 1989, an LNAPL recovery system, groundwater treatment system, and SVE system were also installed at the site within the former gasoline tanks excavation area. The remediation systems consisted of a 30-inch-diameter steel recovery well along the northern edge of the excavation and a dual-pumping system consisting of an LNAPL (free product) recovery pump and a water table depression pump (Ecology, 2009). Three groundwater and LNAPL recovery trenches were also constructed within the excavation along the northern sidewall.

Approximately 538 gallons of LNAPL was recovered from December 1989 through September 1990 (GeoEngineers, 1990b). In addition, measurable LNAPL was bailed from the monitoring wells on a monthly basis. The groundwater treatment system was operated until May 2000, at which time Ecology decided to discontinue operation of the system and evaluate other cleanup alternatives (Glacier Environmental Services [Glacier], 2001).

The SVE system was installed in the excavation and consisted of horizontal slotted polyvinyl chloride (PVC) vapor extraction piping connected to a blower. Soil vapors were routed through a condensate trap, particulate filter, and a series of granular activated carbon (GAC) filters for treatment. Although the SVE system was installed at the same time as the LNAPL recovery and groundwater treatment systems were installed, it was operated from the early 1990s until 1997, at which time it was shut down because no

significant hydrocarbons were detected in the extracted soil vapor for 2 consecutive months (Ecology, 2009).

2.3.2. 1992–1999 Groundwater Monitoring and Operation and Maintenance (Glacier)

From 1992 through 1999, Glacier performed two groundwater monitoring events and O&M of the groundwater treatment system at the site. Groundwater monitoring activities consisted of collecting groundwater samples and measuring LNAPL in the second quarter 1992 and second quarter 1999.

2.3.3. 2005 Enhanced Fluid Recovery (EcoVac Services, Inc.)

In June 2005, EcoVac Services, Inc. performed a pilot test to evaluate use of an EFR mobile dual-phase extraction technology to remediate petroleum hydrocarbons at the site. The EFR technology uses a combination of a specially designed truck-mounted vacuum and liquid handling system integrated with a mobile hydrocarbon vapor treatment system (VTS). High vacuum is applied to one or more monitoring or recovery wells with down-hole apparatuses to control the fluid elevation in each well. EFR simultaneously removes multiple phases of hydrocarbons (liquid, dissolved, adsorbed, and vapor phase) by extracting free product, soil vapors, and groundwater from the selected monitoring and/or recovery wells. The purpose of the 8-hour EFR pilot test was to evaluate the technology as a method for removing LNAPL, impacted groundwater, and hydrocarbon vapors from monitoring wells MW-4, MW-8, MW-9, and MW-13 located near the former UST excavation area. The results of the EFR pilot test are summarized below.

- Approximately 18 gallons of gasoline was removed during the test.
- Vapor-phase hydrocarbon removal rates ranged from 1.9 pounds per hour (lbs/hr) when extracting from monitoring well MW-13 located farthest from the former UST excavation area to 38 lbs/hr when simultaneously extracting from multiple monitoring wells (i.e., MW-4, MW-8, and MW-9) located nearer to the former UST excavation area.
- The groundwater drawdown measured in the observation monitoring wells ranged from 0.08 foot to 2.75 feet when extracting from monitoring well MW-9 and generally correlated with the distance from the point of applied vacuum. The groundwater drawdown measured in three observation wells when extracting from monitoring well MW-4 was approximately the same, regardless of distance.
 - Pre-test LNAPL measurements ranged from a sheen in monitoring well MW-8 to 0.42 foot in monitoring well MW-4. LNAPL was not present in measurable thicknesses in measurements taken approximately 3 weeks after the pilot test. Measurements of LNAPL collected during the three subsequent quarters indicated that LNAPL was measurable on the groundwater but did not return to the pre-test thickness in monitoring well MW-4.

2.3.4. 2005–2006 Groundwater Monitoring (EA Engineering, Science, and Technology, Inc.)

In 2005 and 2006, EA Engineering, Science, and Technology, Inc. (EA) performed groundwater monitoring activities at the site (EA, 2006). The monitoring activities during this period consisted of collecting groundwater samples from select monitoring wells and measuring for LNAPL approximately 1 week prior to the EFR pilot test described in Section 2.3.3 and approximately 1 week after the pilot test. EA performed three additional rounds of groundwater monitoring in 2006. The groundwater monitoring results during this period indicated that GRO and benzene remained in groundwater at concentrations exceeding the MTCA Method A CULs to the north of the former gasoline UST area (EA, 2006). In addition, the LNAPL thickness in monitoring wells located in the former gasoline UST area slowly rebounded following the EFR pilot test but did not return to pre-test thicknesses in the monitoring well (MW-4) located adjacent to the former USTs, where the greatest thickness had been observed prior to the test. Follow-up monitoring performed in February 2008 indicated that LNAPL remained as film (i.e., no measurable thickness) in monitoring wells MW-4 and MW-13 and a hydrocarbon sheen was present in monitoring wells (MW-8, MW-9, and MW-15) to the north, and that the extent of LNAPL-impacted groundwater was relatively stable.

2.3.5. 2016–2017 Remedial Investigation/Feasibility Study (Kennedy Jenks)

The RI was performed to address identified data gaps and evaluate the nature and extent of contamination at the site. The RI included constructing 3 new groundwater monitoring wells (MW-17, MW-18, and MW-19) and 9 new multipurpose wells (MW-20, MW-21, and RW-1 through RW-7); advancing 16 reconnaissance soil borings; collecting soil samples for laboratory analyses; and performing additional rounds of groundwater monitoring.

GRO and benzene were identified as the primary chemicals of concern (COCs) at the site. Concentrations of GRO and benzene in soil and groundwater appeared to be highest in the western-central portion of the site and appeared to extend off-property to the north and east. The vertical extent of GRO and benzene concentrations in soil exceeding the MTCA Method A CULs appeared to be generally limited to depths from about 8 to 20 feet bgs. No LNAPL was observed in the monitoring wells during the 2016–2017 RI activities. Potentially complete pathways for human exposure to contaminated soil, groundwater, and soil vapors were identified.

The FS evaluated remedial alternatives for the site, with the goal of identifying the most effective remedial strategy that is protective of human health and the environment and meets the requirements of Ecology's MTCA regulations (Washington Administrative Code [WAC] 173-340). The recommended remedial alternative for the site included a combination in-situ bioremediation to address impacted saturated soil and groundwater at the site and SVE to support remediation of the vadose zone and to mitigate the vapor intrusion pathway into on-property buildings.

2.4. SYSTEM DESIGN, INSTALLATION, AND TESTING

This section summarizes the design, installation, and testing of the remedial system at the site.

2.4.1. System Design

An Engineering Design Report was prepared in December 2021 detailing the specific criteria and design requirements for implementing the remedial alternative selected during the RI/FS and Cleanup Action Plan (CAP) process (Kennedy Jenks, 2021). The remedial alternative chosen in the RI/FS and CAP included an SVE system for remediation of residual soil impacts and implementation of a groundwater recirculation system with injection of bioaugmentation reagents. Kennedy Jenks prepared the design drawings and specifications, which were provided in the bid package for the construction bidding process in December 2022.

2.4.2. System Installation

Glacier was awarded the contract to construct and install the proposed remedial system in February 2023, but permit approvals delayed the start of work. After obtaining approved permits, Glacier completed the work elements described below between June 2024 and November 2024.

- Installed three new vertical and three new slant remediation wells.
- Installed four vapor pins and three horizontal sub-slab depressurization wells.
- Trenched and backfilled piping from each wellhead to the treatment shed.
- Procured and delivered the treatment system shed, GAC vessels, catalytic oxidizer, security fencing, and other treatment system components.
 - Commissioned the system and performed functionality testing.

2.4.3. System Commissioning and Testing

Glacier and Kennedy Jenks performed commissioning and testing of system components in October and November 2024. System commissioning and testing included, but was not limited to:

- confirming functionality of system components (pumps, gauges, flowmeters, etc.);
- testing well performance to estimate extraction flow rates;
- testing alarms and notification;
- performing treatment batching and obtaining discharge rates; and
- obtaining baseline vapor measurements of vapor pins and sub-slab depressurization wells.

During testing, the system discharge outlet overflowed after only 300 gallons had been discharged between 4 November and 6 November 2024. After troubleshooting and scoping the drainpipe, a blockage was identified between the outlet and the sanitary sewer main. An alternate discharge outlet was selected, and

temporary piping was installed in December 2024 to allow for system operation. Extraction and injection lines were removed from the wells to minimize groundwater extraction and focus on SVE. After successful operation using the temporary piping for batch discharges, the extraction and injection lines were reinstalled at the wells to increase groundwater extraction on 05 February 2025. The installation of the permanent discharge pipeline was completed on 04 March 2025.

Section 3.1 further discusses the system components. Glacier submitted system commissioning and testing documentation, troubleshooting discussion, and as-built drawings under their Construction Completion Report to Ecology (Glacier, 2025).

3. System Operation, Monitoring, Sampling, and Maintenance

The remedial system consists of a multiphase extraction (MPE) component and a surfactant/nutrient/oxygen injection component to reduce concentrations of GRO and BTEX in the site soil and groundwater in accordance with the CAP (Kennedy Jenks, 2017b). Groundwater, soil, and vapor samples are collected to monitor treatment progress in accordance with the Sampling and Analysis Plan/Quality Assurance Project Plan ([SAP/QAPP]; Kennedy Jenks, 2024a). Weekly, monthly, semiannual, and annual inspections, monitoring, maintenance, and sampling are performed on the MPE system to ensure it remains operational and the site is progressing toward achieving the remedial action objectives. Section 3.1 provides details on the system components. Sections 3.2, 3.3, and 3.4 describe the specific maintenance, monitoring, and system sampling activities performed during this event, respectively. Sections 3.5 and 3.6 describe field quality control activities and management of investigation-derived waste (IDW). Section 3.7 discusses deviations from the O&M Manual and SAP/QAPP. Section 4 describes the groundwater monitoring activities, and Section 5 summarizes the monitoring results.

3.1. SYSTEM DETAILS

The MPE system was designed to incorporate three new vertical wells and three new slant wells along with seven existing wells into a single extraction/injection system for a total of 13 remediation wells (Figure 2 and Table 1). Each well within the network of remediation wells is individually connected to both the extraction and injection manifolds in the treatment system enclosure (i.e., the Treatment Shed) located on site. Figure 2 shows the location of the Treatment Shed, and Figure 3 provides the system process flow diagram. The vapor and water extracted from the wells is piped to the treatment system. The treatment train splits at a knock-out tank to a water treatment train and a vapor treatment train.

3.1.1. General Conveyance and Monitoring Infrastructure

The extraction/injection wells (EIWs) consist of 13 remediation wells, including 1 existing monitoring well (MW-4), as follows (Figure 2):

- Seven existing remediation wells (RW-2, RW-3, RW-4, RW-5, RW-6, RW-7, and MW-4)
- Three new remediation wells (RW-8, RW-9, and RW-10)
 - Three new slant remediation wells (SW-1, SW-2, and SW-3)

The wells are organized into four groups of either three or four remediation wells.

Three 4-foot-long sub-slab depressurization (SSD) horizontal wells constructed of 3-inch-diameter PVC slotted pipes are installed below grade in gravel. Four vapor pin monitoring points are also installed through the floor slab inside of the onsite building. Figure 2 shows the locations of the SSD wells and the vapor monitoring pins.

Extracted soil vapor from the three SSD wells are manually controlled at Manifold A. Extracted vapor/water from each well group is controlled at Manifold B located within the Treatment Shed at the southwest corner of the onsite building. Treated water for recirculation back into the individual EIWs is controlled at Manifold C, also located within the Treatment Shed.

3.1.2. Vapor Treatment System

The VTS begins with a liquid ring vacuum pump (B-301) installed downstream of the 40-gallon steel moisture separator/knockout tank (T-300) and connecting piping to pull vapor and groundwater from active EIWs (Figure 3). B-301 pulls vapor from T-300 into the system. A heat exchanger reduces the exit temperature on the discharge side of the liquid ring pump. A temporary catalytic oxidizer (FALCO-300) was installed downstream from B-301 for use during the first several months of operation (December 2024 to April 2025) to treat vapor concentrations to satisfy Puget Sound Clean Air Agency (PSCAA) requirements. Two 2,000-pound vapor GAC vessels are connected downstream from B-301, parallel to the catalytic oxidizer, and have been in use since April 2025 following the removal of the catalytic oxidizer.

3.1.3. Water Treatment System

The water treatment system (WTS) begins at T-300 located upstream of B-301 (Figure 3). A transfer pump (P-300) is located adjacent to T-300 to transfer water from T-300 to a 400-gallon storage tank (T-301). A second transfer pump (P-400) is located adjacent to T-301 to transfer untreated water through the filtration and treatment process. The filtration and treatment process consists of an inline bag filter and four 200-pound liquid GAC vessels which are plumbed for operation in a lead-lag arrangement downstream of the bag filter (two sets of lead-lag trains). A 300-gallon storage tank (T-400) is connected downstream of the liquid GAC vessels to collect treated groundwater. Treated groundwater is discharged by gravity into the sanitary sewer from the storage tank until COC concentrations are amenable to bioremediation. Once COC concentrations are amendable, treated groundwater will then be pumped to a 300-gallon mixing tank (T-500) where amendments will be added. An inline oxygen generator is connected to the injection piping downstream of the transfer pump, which is connected to the mixing tank.

3.1.4. Continuous Operation Phases

After completion of the startup testing discussed in Section 2.4.3, the remedial system began continuous operation. The remedial system is expected to operate in three phases throughout the life of the system. Sections 3.1.4.1, 3.1.4.2, and 3.1.4.3 describe each operational phase.

3.1.4.1. Phase 1 – Multiphase Extraction

The EIWs will be operated to extract groundwater and vapor for treatment. Extraction occurs at active wells and all sub-slab depressurization locations based on system capabilities. Vapors were treated with the temporary catalytic oxidizer until transitioning to Vapor GAC in April 2025. Vapor GAC will be used

until groundwater concentrations stabilize and approach asymptotic levels, approximately 6 to 12 months, after which Phase 2 will begin. Treated groundwater will be discharged to the sanitary sewer under an approved King County Industrial Waste (KCIW) permit.

3.1.4.2. Phase 2 – Surfactant Reinjection

When groundwater concentrations stabilize and approach asymptotic levels, the system will begin reinjection with surfactant addition. Surfactants in the reinjected water will act to liberate hydrocarbons adsorbed in the soil. Reinjection will occur until the liquid-phase concentrations have dropped to a level indicative of asymptotic performance of the surfactant reinjection. The duration of Phase 2 is estimated to be 6 months.

3.1.4.3. Phase 3 – Enhanced Bioremediation

Once Phase 2 is complete, the surfactant reinjection will be replaced by adding oxygen/nutrients to the reinjected water. Operation will be rotated between the four sets of wells monthly to quarterly based on the monitoring results. Enhanced bioremediation will be performed until the site COCs have been reduced significantly in the wells or site CULs have been reached. The duration of Phase 3 is estimated to be 24 to 48 months.

3.2. SYSTEM OPERATION AND MAINTENANCE

System O&M activities were performed in accordance with the O&M Manual (Kennedy Jenks, 2024b). Sections 3.2.1 and 3.2.2 describe the weekly and monthly O&M activities.

3.2.1. Weekly O&M

A visual inspection, temperature check, and removal of accumulated debris of the catalytic oxidizer within the VTS were performed weekly until the removal of the catalytic oxidizer on 15 April 2025. The catalytic oxidizer was observed as operational and in working condition; no deficiencies were noted during the inspection. Site inspections are documented in the System Monitoring Forms (Appendix A).

3.2.2. Monthly O&M

Monthly general inspections were performed of the following items:

- Equipment piping
- Manifold piping
- Gas and electrical lines
- Programmable logic controller
- Treatment shed

- Vapor pins (located on the VTS)
- Liquid ring pump (located on the VTS)
- Heat exchanger (located on the VTS)
- Transfer pumps (located on the WTS)
- Bag filter (located on the WTS)
- Liquid GAC vessels (located on the WTS)
- Oxygen generator and air compressor (located on the WTS)

The system was observed to be operational and in good working condition; no deficiencies of the above system components were noted during the inspection. Site inspections are documented in the System Monitoring Forms (Appendix A).

3.3. SYSTEM MONITORING

The following system parameters were monitored during this event:

- Ambient air temperature
- Ambient barometric pressure
- Vacuum and flow of EIW and SSD wells
- Vacuum and flow of the VTS
- Vacuum of vapor pins
- Temperature of the catalytic oxidizer
- Volatile organic compound (VOC) concentrations at the EIWs, SSD wells, vapor pins and VTS
- pH and turbidity of the WTS
- Volume discharged to sewer by WTS

Sections 3.3.1, 3.3.2, and 3.3.3 provide additional details on system monitoring activities. All monitoring data are logged on the System Monitoring Forms (Appendix A).

3.3.1. Well VOCs, Vacuum, and Flow

VOC concentrations, vacuum, and flow are measured monthly at the well manifold. A photoionization device (PID) is used to measure VOC concentration at each active EIW and SSD, as well as the monitoring four vapor pins located inside the adjacent buildings. Vacuum is measured based on the pressure gauge readings along the well manifold for each active EIW and SSD well, if the well was active. Flow at each active EIW and SSD is measured using an anemometer. SSD and vapor pins are monitored for additional gas measurements, such as carbon dioxide, hydrogen sulfide, methane, and oxygen. VOC measurements from inactive EIWs are collected quarterly.

3.3.2. System VOCs, Vacuum, and Flow

VOC concentrations, vacuum, and flow are measured monthly at VTS. VOC concentrations in influent and effluent are measured with a PID. VTS vacuum and flow are recorded based on the readings on the system status panel.

3.3.3. System Liquid Discharge

The total volume discharged from the WTS to the sewer is currently measured calculating the change between totalizer measurements collected from the permanent flowmeter on the discharge pipeline. A digital totalizer is also visible on the system status panel.

3.4. SYSTEM SAMPLING

This section describes the as-needed vapor sampling, as well as system compliance vapor and water samples, which were collected monthly during Phase 1 and submitted for laboratory analysis in accordance with the SAP/QAPP (Kennedy Jenks, 2024a). Table 2 summarizes system performance and recorded field measurements.

3.4.1. Vapor Pin Sampling

Vapor samples were collected on 30 May 2025 at vapor pins VP-3, and VP-4, using Summa canisters. Sampling was performed in response to PID measurements exceeding 425 ppb at VP-4 on 08 May 2025, as well as previous exceedance measured at VP-3. Samples were submitted to an offsite laboratory for analysis of VOCs (including GRO and BTEX) by Method TO-15. Results are presented in Table 3 and discussed in Section 5.2.1.

3.4.2. VTS Sampling

Monthly VTS samples were collected from two locations (influent and effluent of the vapor GAC) using 1-liter Summa canisters on 18 April 2025, 30 May 2025, and 20 June 2025. Samples were submitted to an offsite laboratory for analysis of VOCs (including GRO and BTEX) by Method TO-15. Results are presented in Table 4, shown on Figure 4, and discussed in Section 5.2.2.

3.4.3. WTS Sampling

Monthly WTS samples were collected from the following three locations throughout the system: influent to the lead liquid GAC vessel, midpoint between the lead and lag liquid GAC vessel, and effluent of the lag liquid GAC vessel. Results are presented in Table 6, shown on Figure 5, and discussed in Section 5.2.3.

WTS samples were collected on 25 April 2025, 23 May 2025, and 20 June 2025 from LG-401, LG-403, and LG-404 (influent, midpoint, and effluent, respectively). Samples were submitted to an offsite

laboratory for analysis of GRO, BTEX, and nonpolar fats, oil, and grease (FOG). Samples were also analyzed for selected chlorinated VOCs, as required per the KCIW permit. Field instruments were used to measure pH and turbidity.

3.5. FIELD QUALITY CONTROL

During the April 2025, May 2025, and June 2025 WTS sampling events, two duplicates were collected at LG-404 (DUP-1 and DUP-2). All DUP-1 samples were analyzed for GRO, BTEX, chlorinated VOCs, and FOG for each event, while DUP-2 samples were analyzed for FOG only.

3.6. INVESTIGATION-DERIVED WASTE

System operations generated the following IDW during the reporting period:

- Used WTS filter bags, which were placed inside a 55-gallon drum within the WTS containment area
- Treated and untreated system water during sample collection, which was placed into T-301 for processing
- Spent carbon was removed from the vapor GAC vessels and reactivated offsite by ERRG's vendor (Pacific Coast Carbon).

3.7. DEVIATIONS

No deviations with system monitoring or sampling were observed during the reporting period.

4. Groundwater Monitoring Activities

Groundwater monitoring is performed during remedial system operation for compliance and performance monitoring, as well as during confirmation monitoring after remedy implementation (Kennedy Jenks, 2024a). Each groundwater monitoring and sampling event includes measuring groundwater levels (and LNAPL levels, if applicable) (collectively known as "liquid levels") in site monitoring wells and EIWs (as accessible) and collecting groundwater samples from select monitoring wells for laboratory analysis. Although LNAPL has not been observed in the site monitoring wells since October 2006 (EA, 2006), its presence will be monitored during the groundwater monitoring events.

4.1. GROUNDWATER MEASUREMENTS AND INSPECTIONS

Liquid-level measurements were obtained from all wells prior to collecting groundwater samples in accordance with Standard Operating Guideline (SOG)-005 in the O&M Manual (Kennedy Jenks, 2024b). Groundwater measurements were taken on 25 April 2025 and 23 May 2025, during the monthly events at the monitoring, compliance, and remediation wells (25 in total). Table 7 and Figure 6 show the groundwater elevation results, which are summarized in Section 5.3.1. An electronic oil/water interface probe was used to measure the depth to product and depth to water levels. Measurements were referenced to the top of the well casing on the north side.

4.2. GROUNDWATER SAMPLING

Groundwater samples were collected on 25 April 2025 and 23 May 2025, during each monthly sampling event using low-flow purging methodology in accordance with SOG-006 (Kennedy Jenks, 2024b). Table 8 and Figures 7 and 8 show the groundwater analytical results, which are summarized in Sections 5.3.2 and 5.3.3, for the second quarter monthly monitoring events.

Upon arrival, the condition of the well was noted and then an oil-water interface probe was used to measure the depth to water and total well depth to the nearest 0.01 foot from the top of the well casing to establish the appropriate purge volumes. Dedicated polyethylene tubing was used at each well prior to purging the well, and the tubing inlet was placed within the screened interval. Groundwater wells were purged using a portable peristaltic pump. Field parameters were monitored during the purging process using a multi-parameter water quality meter, equipped with a flow-through cell, to continuously monitor the following parameters: temperature, pH, specific conductivity, oxidation-reduction potential, and dissolved oxygen. Turbidity was measured using a separate turbidity meter. Meter readings were recorded at 5-minute intervals during the purging process, including a final reading taken at the completion of purging each well location.

The monitoring wells were purged at low-flow rates (5 to 50 milliliters per minute) and adjusted, as necessary, to minimize drawdown in the well until water quality parameters stabilized within ranges established in SOG-006 (Kennedy Jenks, 2024b). Parameter readings, as well as olfactory and visual

observations, obtained during the purging and sampling process were recorded on groundwater purge forms (Appendix A). Purged groundwater was containerized and managed as discussed in Section 4.4.

4.3. EQUIPMENT DECONTAMINATION

All non-dedicated equipment used during sampling (oil-water interface probe, water quality meter, turbidity meter, and flow-through cell) were decontaminated in accordance with the SOG-008 (Kennedy Jenks, 2024b). Decontamination water was stored in a 55-gallon drum on the site.

All disposable personal protective equipment (i.e., gloves) and sampling equipment (i.e., tubing, paper towels, etc.) were placed in trash bags on the site during sampling and were disposed of as municipal solid waste at the end of the day.

4.4. INVESTIGATION-DERIVED WASTE

IDW generated during groundwater monitoring was purge water and equipment decontamination water. IDW was stored in 5-gallon buckets during sampling activities and then transferred into T-301 for treatment.

4.5. FIELD QUALITY CONTROL

In April 2025, a blind duplicate was collected from well MW-6 and submitted for analysis of GRO and BTEX. A trip blank was also submitted and analyzed for GRO and BTEX. In May 2025, a blind duplicate was collected from well MW-15 and submitted for analysis of GRO and BTEX. Two trip blanks were also submitted and analyzed for GRO and BTEX. Appendix A includes field documentation, and Appendix B includes the analytical laboratory reports.

4.6. DEVIATIONS

No deviations were observed during the reporting period.

5. Results

This section summarizes the system monitoring and sampling results.

5.1. SYSTEM MONITORING

Table 2 presents the system monitoring measurements recorded during the reporting period. Table 5 presents the total volume discharged per month during the reporting period.

System influent flow rates ranged between 59.8 cubic feet per minute (cfm) and 106.5 cfm. System influent vacuum ranged from 10.4 pounds inches of mercury (inHg) to 16.9 inHg. VOC concentrations in vapor influent ranged from 164.8 ppm to 560 ppm. VOC concentrations in vapor effluent ranged from 0.0 ppm to 72.1 ppm.

EIW vacuum measurements ranged from 5 inHg at several wells to 19.5 inHg at well RW-7. EIW flow rates ranged from 23.6 cfm at well RW-8 to 64.2 cfm at well RW-7. Measured VOC concentrations at EIWs ranged from 0 ppm at SW-1 to 685 ppm at RW-7. Some VOC and flow measurements may have skewed due to excess water being extracted from EIW.

Vapor pin vacuum measurements ranged from 0.006 inH₂0 (inches of water) at vapor pin VP-2 to 0.012 inH₂0 at vapor pin VP-1. VOC concentrations at vapor pins ranged from 60 ppb ppm at VP-1 to 11.6 ppm at VP-4. Methane, oxygen, carbon dioxide, and hydrogen sulfide measurements were also collected at all vapor pins. Oxygen measurements ranged from 19.2% at VP-1 to 20.9% at the remaining three vapor pins, while carbon dioxide measurements ranged from 0.06% at VP-3 and 0.92% at VP-1. Methane and hydrogen sulfide were not observed in vapor pin measurements.

SSD vacuum measurements ranged from 0.201 inH_20 at SSD-2 to 3.171 inH_20 at SSD-3. SSD flow rates ranged from 5.4 cfm at SSD-2 to 28.2 cfm at SSD-3. VOC concentrations at SSD locations ranged from 0.1 ppm at SSD-1 to 2.2 ppm at SSD-3. Methane, oxygen, carbon dioxide, and hydrogen sulfide measurements were also collected at all vapor pins. Oxygen was measured at 20.9% at all SSD locations, while carbon dioxide measurements ranged from 0.02% at SSD-2 and 0.09% at SSD-3. Methane and hydrogen sulfide were not observed in SSD measurements.

During Second Quarter 2025 reporting period, approximately 54,026 gallons of treated water were discharged to the sewer (Table 5).

5.2. SYSTEM VAPOR AND WATER SAMPLES

Table 3 presents the analytical results for the as-needed vapor sampling event. Table 4 and Figure 4 present the analytical results from sampling VTS influent and effluent. Table 6 and Figure 5 present the analytical results from sampling WTS influent, midpoint, and effluent.

Appendix B includes the analytical laboratory reports for the soil vapor and water samples. ERRG completed Stage 2A validation of the data in accordance with the SAP/QAPP (Kennedy Jenks, 2024a). Appendix C includes the data validation reports.

Sections 5.2.1, 5.2.2, and 5.2.3 summarize vapor pin, VTS, and WTS sample results, respectively.

5.2.1. As-Needed Vapor Sampling

- Vapor pin samples were analyzed for VOCs, including GRO and BTEX, however only GRO was detected at concentrations exceeding the sub-slab soil gas screening levels, as summarized below. GRO concentrations exceeded the screening level of 1,500 micrograms per cubic meter (μg/m³) in both samples (VP-3 and VP-4), with concentrations of 9,290 μg/m³ and 6,030 μg/m³, respectively.
- Benzene, toluene, ethylbenzene, and total xylenes were detected in both samples (VP-3 and VP-4); however, concentrations did not exceed the screening levels of 460 μg/m³, 76,000 μg/m³, 15,000 μg/m³, and 1,500 μg/m³, respectively.

Additional VOCs that were detected in the vapor pin samples are provided in the laboratory analytical reports (Appendix B).

5.2.2. VTS Sampling

GRO and BTEX were detected in influent and effluent samples, as summarized below.

- GRO concentrations were 582,000 μg/m3 (influent) and 1,040 μg/m3 (effluent) in April 2025, 117,000 μg/m3 (influent) and 190,000 μg/m3 (effluent) in May 2025, and 727,000 μg/m3 (influent) and non-detect (effluent) in June 2025.
- Benzene concentrations were 5,170 μg/m³ (influent) and 5.94 μg/m³ (effluent) in April 2025, and 1,490 μg/m³ (influent) and 658 μg/m³ (effluent) in May 2025, and 1,970 μg/m³ (influent) and 1.03 μg/m³ (effluent) in June 2025.
- Toluene concentrations were 9,910 μg/m³ (influent) and 36.5 μg/m³ (effluent) in April 2025, non-detect μg/m³ (influent) and 2,970 μg/m³ (effluent) in May 2025, and 1,040 μg/m³ (influent) and non-detect (effluent) in June 2025.
- Ethylbenzene concentrations were 2,350 μ g/m³ (influent) and 15.5 μ g/m³ (effluent) in April 2025, non-detect μ g/m³ (influent) and 2,010 μ g/m³ (effluent) in May 2025, and 4,160 μ g/m³ (influent) and non-detect (effluent) in June 2025.
- Total xylenes concentrations were 28,200 μg/m³ (influent) and 434 μg/m³ (effluent) in April 2025, non-detect (influent) and 23,000 μg/m³ (effluent) in May 2025, and 39,700 μg/m³ (influent) and non-detect (effluent) in June 2025.

Additional VOCs that were detected in the VTS samples are provided in the laboratory analytical reports (Appendix B).

5.2.3. WTS Sampling

During the April 2025 monitoring event, GRO was detected below the screening level concentration of 0.25 milligrams per liter (mg/L), at 0.152 mg/L in influent sample LG-401-INF (influent to lead liquid GAC vessel). All other analyte concentrations were below the detection limit for all samples collected.

In May 2025, all analytes were reported as non-detect above laboratory limits of detection in all samples, with the exception of the influent sample. In the influent, FOG, GRO, total xylenes, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE) and tetrachloroethylene (PCE) were detected at concentrations below their respective screening levels of 100 mg/L, 2.2 mg/L, 0.25 mg/L, 0.5 mg/L, 1.0mg/L and 0.24 mg/L. Detected concentrations in the influent were 6.1 mg/L FOG, 0.738 mg/L for GRO, 0.00794 mg/L, 0.00125 mg/L for TCE, 0.0012 mg/L for cis-1,2-DCE, and 0.016 mg/L for PCE. FOG was also detected in the middle and effluent samples, at concentrations of 6.7 mg/L and 6.0 mg/L, respectively, all of which were below applicable screening levels.

In June 2025, all analytes were reported as non-detect above laboratory limits of detection in all samples, with the exception of the influent sample. In the influent, FOG, GRO, and total xylenes were detected at concentrations below their respective screening levels of 100 mg/L, 0.25 mg/L, and 2.2 mg/L. Detected concentrations in the influent were 6.17 mg/L for FOG, 0.107 mg/L for GRO, and 0.00362 mg/L for total xylenes. FOG was also detected in the middle and effluent samples, at concentrations of 5.38 mg/L and 5.68 mg/L, respectively. All detected concentrations were below applicable screening levels.

Field instrument measurements for pH and turbidity were within permitted ranges. Measurements for pH ranged from 7.32 to 8.24, and turbidity measurements ranged from 2.5 to 45 nephelometric turbidity units.

5.3. GROUNDWATER RESULTS

This section summarizes the groundwater elevation results and the baseline and January groundwater sample results.

Appendix B includes the analytical laboratory reports for the groundwater samples, which underwent Stage 2A validation in accordance with the SAP/QAPP (Kennedy Jenks, 2024a). Appendix C includes the data validation reports prepared by ERRG.

5.3.1. Groundwater Elevations Results

In April 2025 and May 2025, depth-to-water measurements indicated continued seasonal and operational fluctuations in groundwater elevations across the monitoring well network. In April 2025, groundwater elevations ranged from 50.24 feet amsl at well MW-20 to 60.71 feet amsl at MW-2. In May 2025, groundwater elevations ranged from 50.98 feet amsl at MW-21 to 60.92 feet amsl at MW-11. These variations are consistent with the effects of ongoing groundwater extraction and seasonal recharge patterns.

Depth-to-water measurements and groundwater elevation contours for these periods are presented in Table 7, with corresponding hydrographs provided in Figure 6. No light non-aqueous phase liquid (LNAPL) was observed during either monitoring event.

Depth-to-water measurements and groundwater elevation contours for May 2025 are shown on Figure 6 and calculations for April 2025 and May 2025 are summarized in Table 7.

5.3.2. April 2025 Groundwater Sampling Results

During the April 2025 event, GRO and/or BTEX analytes were detected at concentrations exceeding their respective cleanup levels in several monitoring wells, as summarized below.

- GRO was detected at concentrations ranging from 122 μg/L to 47,000 μg/L in wells RW-1 and MW-21, respectively. GRO concentrations exceeding the cleanup level of 800 μg/L were reported in wells MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21.
- Benzene was detected at concentrations ranging from 5.91 μg/L to 10,800 μg/L in wells MW-6 and MW-21, respectively. Benzene exceeded the cleanup level of 5 μg/L in wells MW-6, MW-13, MW-19, MW-20, and MW-21.
- Toluene was detected at concentrations ranging from 44.1 μg/L to 9,830 μg/L in wells MW-9 and MW-21, respectively. The detected toluene concentration exceeded the cleanup level of 1,000 μg/L in wells MW-13, MW-19, and MW-21.
- Ethylbenzene was detected at concentrations ranging from 252 μg/L to 1,450 μg/L in wells MW-13 and MW-21, respectively. Ethylbenzene exceeded the cleanup level of 700 μg/L in wells MW-8, MW-19, MW-20 and MW-21.
- Total Xylenes were detected at concentrations ranging from 1,110 μg/L to 8,030 μg/L in wells MW-15 and MW-21, respectively. Concentrations exceeding the cleanup level of 1,000 μg/L were reported in wells MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21

5.3.3. May 2025 Groundwater Sampling Results

During the May 2025 event, GRO and/or BTEX analytes were detected at concentrations exceeding their respective cleanup levels in several monitoring wells, as summarized below.

- GRO was detected at concentrations ranging from 147 μ g/L to 67,000 μ g/L in wells RW-1 and MW-21, respectively. GRO concentrations exceeding the cleanup level of 800 μ g/L were reported in wells MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21.
- Benzene was detected at concentrations ranging from 173 μg/L to 9,630 μg/L in wells MW-13 and MW-21, respectively. Benzene exceeded the cleanup level of 5 μg/L in wells MW-13, MW-19, MW-20, and MW-21.

- Toluene was detected at concentrations ranging from 35.1 μg/L to 15,200 μg/L in wells MW-9 and MW-21, respectively. The detected toluene concentration exceeded the cleanup level of 1,000 μg/L in wells MW-19, and MW-21.
- Ethylbenzene was detected at concentrations ranging from 121 μg/L to 1,660 μg/L in wells MW-13 and MW-20, respectively. Ethylbenzene exceeded the cleanup level of 700 μg/L in wells MW-8 and MW-21.
- Total Xylenes were detected at concentrations ranging from 1,450 μ g/L to 10,200 μ g/L in wells MW-9 and MW-21, respectively. Concentrations exceeding the cleanup level of 1,000 μ g/L were reported in wells MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21.

Due to high concentrations of analytes, dilutions were required for certain samples in order to obtain results within the instrument calibration range, which increased laboratory limit of detection for all analytes. In samples, with elevated concentrations of detected analytes, some analytes may be reported as non-detected due to the increased limit of detection. These non-detects may still contain concentrations above the cleanup level for site COCs that are below the elevated limit of detection. Dilution impacts to limit of detections are expected mitigated as site concentrations decrease.

6. Conclusions and Recommendations

This section summarizes the conclusions and recommendations for the site based on the system operation, monitoring, sampling, and maintenance activities completed during the Second Quarter 2025 reporting period.

6.1. CONCLUSIONS

The remedial system operated under Phase 1 conditions from 01 April 2025 through 30 May 2025 and from 13 June through 30 June 2025. The system extracted and discharged to the sewer approximately 54,026 gallons of treated groundwater.

The remedial system was offline from 30 May through 12 June 2025 due to the system not achieving the required control efficiency of 97% removal and/or less than 10 ppm at the effluent. A carbon sample was collected for profiling on 04 June 2025 to confirm carbon was viable for re-use and reactivation in lieu of landfill disposal. Carbon changeout was completed on 12 June 2025, and 2,000 pounds of 4x10 virgin coconut carbon was used. Three super sacks of spent carbon were removed from the vapor GAC vessels and hauled offsite for reactivation. A certificate of reactivation for the spent carbon is provided in Appendix D.

6.1.1. Vapor Monitoring and Sampling

VOC PID readings exceeded 100 ppm at three EIWs (RW-6, RW-7, and RW-8) and exceeded 425 ppb at one vapor pin (VP-4), as shown in Table 2. Two vapor pins were sampled with Summa canisters for laboratory analysis by TO-15, as VP-3 previously exceeded 425 ppb in First Quarter 2025. Samples from both vapor pins exhibited GRO concentrations exceeding the 1,500 μg/m³ screening level¹ (Table 3). Although BTEX concentrations were detected in both samples, all BTEX concentrations were less than their respective screening levels² (Appendix B).

6.1.2. System Vapor and Water Treatment

The VTS operated as intended during the reporting period operating with the catalytic oxidizer from 15 April 2025 through 15 April 2025 and with the vapor GAC vessels after 15 April 2025, with the exception of falling below removal efficiency requirements on 30 May 2025. Based on PID measurements, VOC concentration was above 10 ppm and control efficiency was below 97% removal. GRO and benzene concentrations in effluent vapor were less than the PSCAA emission limits during the reporting period, except for benzene in the May 2025. The system was shut off upon collecting the system vapor influent and effluent sample, which confirmed that control efficiency was not being achieved along with the PID

¹ Screening levels are based on MTCA Method B, "Noncancer Sub-Slab Soil Gas Screening Level – Cleanup Levels and Risk Calculation Vapor Intrusion Method B Table, February 2025" (Kennedy Jenks, 2024a). Also available online at: https://ecology.wa.gov/regulations-permits/guidance-technical-assistance/contamination-cleanup-tools/clarc/data-tables.

measurements. The VTS continued operating as intended after carbon change out was completed on 12 June 2025.

The WTS continued to operate as intended during the reporting period. All analyte concentrations for the WTS effluent samples were below their respective KCIW permit discharge limits. Additionally, WTS influent samples continue to exhibit concentrations below the KCIW permit discharge limits.

Figures 4 and 5 show the GRO and benzene concentrations in vapor effluent and liquid effluent samples across each event.

6.1.3. Groundwater Monitoring and Sampling

Figure 6 shows the groundwater elevation contours for May 2025. Groundwater elevations between April and May 2025 show offsite groundwater flow in a south to southeast direction from wells MW-11 and MW-2 (Table 7). Groundwater elevations northeast of the WTS are relatively flat, while groundwater from MW-17 and MW-18 flows north by northwest to the localized area of depression in the vicinity of well MW-6 and MW-7, consistent with historical groundwater flow. Influence from groundwater extraction can be observed at wells MW-13, MW-20, and MW-21, as groundwater elevations exhibit signs of drawdown relative to wells MW-18 and MW-6.

Figure 7 and Figure 8 present the contours for GRO and benzene concentrations detected at the site during the May 2025 event, respectively. The benzene and GRO plumes are largely bounded within the site property boundaries, with the northern portion extending into the adjacent road. The plume area with the highest concentrations is delineated by MW-20, MW-21, and MW-19. These concentrations drop down rapidly in all directions, with elevated GRO concentrations extending north, towards MW-8. GRO and/or BTEX concentrations exceeding the cleanup levels² were observed in seven monitoring wells in April and May 2025. A decrease in concentrations was observed in monitoring wells MW-6, MW-8, and MW-13, while fluctuation was observed in monitoring wells MW-19, MW-20, and MW-21.

GRO concentrations exceeded the cleanup level of 800 µg/L in six wells (MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21) between April 2025 and May 2025. GRO concentrations did not decrease to below cleanup levels in any wells. Concentrations decreased in two wells (MW-8 and MW-19), and increased in six wells (RW-1, MW-9, MW-13, MW-17, MW-20, and MW-21) between monitoring events.

Benzene concentrations exceeded the cleanup level of 5 μ g/L in five wells (MW-6, MW-13, MW-19, MW-20, and MW-21) between April 2025 and May 2025. Concentrations decreased in each of the five wells between monitoring events. Benzene concentrations decreased below cleanup levels

² Cleanup levels are based on MTCA Method A Groundwater CULs in WAC 173-340-720, Table 720-1.

in well MW-6 in from 5.91 μ g/L in April 2025 to non-detect with a laboratory detection limit of 1.0 μ g/L in May 2025.

Toluene concentrations exceeded the cleanup level of 1,000 μ g/L in three wells (MW-13, MW-20, and MW-21) between April 2025 and May 2025. Toluene concentrations decreased below cleanup level in well MW-13 from 1,160 μ g/L to 973 μ g/L between monitoring events. Concentrations decreased in five additional wells (MW-8, MW-9, MW-19, MW-20, and MW-21) between April 2025 and May 2025 monitoring events.

Ethylbenzene concentrations exceeded the cleanup level of 700 μ g/L in four wells (MW-8, MW-19, MW-20, and MW-21) between April 2025 and May 2025. Ethylbenzene concentrations decreased to below screening levels in well MW-19 from 1,080 μ g/L to 511 μ g/L and in well MW-20 from 859 μ g/L to 657 μ g/L between monitoring events. Concentrations decreased in two additional wells (MW-8 and MW-13), concentrations increased in one well (MW-21) between April 2025 and May 2025 monitoring events.

Total xylenes concentrations exceeded the cleanup level of 1,000 µg/L in six wells (MW-8, MW-9, MW-13, MW-19, MW-20, and MW-21) between April 2025 and May 2025. Concentrations decreased in four wells (MW-8, MW-13, MW-19, and MW-20) and increased in two wells (MW-9 and MW-20) between April 2025 and May 2025 monitoring events.

Comparisons of groundwater concentrations between previous contour maps show minimal change in the shape of the GRO and BTEX plume. However, concentrations have decreased below cleanup levels in wells MW-15 and MW-6 for GRO and in well MW-6 for benzene since remedial operation began. Additionally, concentrations of GRO and benzene at the wells exhibiting the highest concentrations (MW-19, MW-20, and MW-21) have fluctuations and decreases in concentration from October 2024 to May 2025.

6.2. RECOMMENDATIONS

The recommendations listed below are based on the results of system monitoring and sampling.

- Continue to operate the remedial system under Phase 1 conditions.
- Focus extraction on EIWs within GRO and benzene plume, minimize extraction from EIWs that
 can potentially extract additional analytes near monitoring wells with detected concentrations of
 select CVOCs.

6.2.1. Upcoming Work

The upcoming work is expected to be completed between the end of this reporting period through the subsequent reporting period, as summarized below.

- ERRG will continue O&M of remedial system.
- Monthly vapor monitoring of EIWs and VTS will occur in July 2025, August 2025, and September 2025.
- Quarterly vapor pins and SSD well monitoring will occur in August 2025.
- Vapor sampling at VTS influent and effluent will transition to a quarterly frequency, with the next event occurring in August 2025
- Water sampling at WTS influent, midpoint, and effluent will transition to a quarterly frequency, with the next event occurring in August 2025
- Groundwater monitoring and sampling will transition to a quarterly frequency, with the next event occurring in August 2025
- Perform carbon change outs as needed.
- As-needed vapor or water sampling.

6.2.2. Identified Problems and Proposed Solutions

The problems and proposed solutions summarized below were identified during the reporting period.

- Groundwater samples collected in April and May 2025 were analyzed for select CVOCs and detections for various CVOCs were observed in several wells.
 - Groundwater impacts via chlorinated VOCs will be resolved under separate Consent Decree or Agreed Order.

7. References

- EA Engineering, Science, and Technology, Inc. (EA), 2006. "Circle K Station #1461, Groundwater Summary for August 2006, Recommendations for Additional Cleanup Action Tests." November.
- GeoEngineers, 1990a. "Report of Geotechnical Services Subsurface Contamination Study and Remedial Action Monitoring Circle K Facility 1461 Seattle, Washington." March.
- ———, 1990b. "Progress Report No. 2 Remedial Monitoring Program Circle K Facility 1461 Seattle, Washington." November.
- Glacier Environmental Services (Glacier), 2001. "Major Discharge Authorization No. 192-01, Jin's Enterprises, 2350 24th Avenue East, Seattle, Washington." January.
- ———, 2025. "Construction Completion Report, Environmental Remediation System Installation, Former Circle K 1461, Seattle, Washington." May.
- Kennedy Jenks Consultants, Inc. (Kennedy Jenks), 2017a. "Remedial Investigation/Feasibility Study (RI/FS) Report, Former Circle K Site." December 14.
- ——, 2017b. "Cleanup Action Plan, Former Circle K 1461, Seattle, Washington." December 18.
- ———, 2021. "Engineering Design Report, Former Circle K Site 1461, Seattle, Washington." December 10.
- ———, 2024a. "Revised Draft Sampling and Analysis Plan/Quality Assurance Project Plan, Former Circle K 1461, Seattle, Washington." August 8.
- ———, 2024b. "Revised Draft Operations and Maintenance Manual, Environmental Remediation System, Former Circle K 1461, Seattle, Washington." November.
- Washington State Department of Ecology (Ecology), 1994. "Site Hazard Assessment Report, Circle K Station #1461." June.
- ———, 2009. "Draft Remedial Investigation/Feasibility Study, Circle K Station #1461, Seattle, WA." September.

Figures

Figure 1. Site Location and Vicinity

First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461
Seattle, WA

Figure 2. Site Layout with System and Wells
First Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461
Seattle, WA

Figure 3. System Process Flow Diagram

Figure 4. GRO and Benzene Concentrations in System Vapor Influent and Effluent Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461

Figure 5. GRO and Benzene Concentrations in System Water Influent and Effluent Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461

Figure 6. Groundwater Elevation Contours, May 2025
Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461
Seattle, WA

Figure 7. Groundwater Gasoline-Range Organics Contours, May 2025 Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Seattle, WA

Figure 8. Groundwater Benzene Concentration Contours, May 2025 Second Quarter 2025 Remedial Progress Evaluation Report for Former Circle K 1461 Seattle, WA

Tables

Table 1. Well Construction Information

Monitoring Well ID No.	Date Installed	Easting (feet)	Northing (feet)	MPE Well Group	Well Diameter (inches)	Screened Interval (feet bgs)	Top of Casing Elevation (feet amsl)	Well Use
MW-2	9/11/1989	1278287.96	236985.88	MW	2	5.5–20.9	69.79	Monitoring Well
MW-4	09/12/1989	1278447.91	236985.00	1	2	4–18.8	63.62	Remediation Well
MW-6	10/02/1989	1278462.46	236998.42	MW	2	5–20.4	63.13	Compliance Well
MW-7	10/02/1989	1278497.04	236983.26	MW	2	5–20.2	62.66	Monitoring Well
MW-8	10/03/1989	1278438.10	237006.82	MW	2	5–20.3	63.59	Compliance Well
MW-9	10/03/1989	1278408.96	237007.40	MW	2	5–21.2	64.3	Compliance Well
MW-10	10/03/1989	1278488.93	236997.48	MW	2	5–20.4	62.86	Monitoring Well
MW-11	10/04/1989	1278384.53	237065.31	MW	2	5–20	63.59	Monitoring Well
MW-13	12/20/1989	1278402.55	236971.66	MW	2	4–19	65.08	Compliance Well
MW-14	12/20/1989	1278458.03	237022.92	MW	2	4–19.3	63.3	Compliance Well
MW-15	12/21/1989	1278421.35	237026.01	MW	2	4–18.7	64.18	Compliance Well
MW-16	12/21/1989	1278390.29	237013.58	MW	2	4–19.2	64	Compliance Well
MW-17	08/01/2016	1278436.82	236871.78	MW	2	4–19	65.98	Compliance Well
MW-18	08/01/2016	1278391.36	236873.73	MW	2	5–15	66.73	Compliance Well
MW-19	09/23/2016	1278433.66	236911.07	MW	2	5–20	66.36	Compliance Well
MW-20	09/23/2016	1278392.00	236918.95	MW	4	5–20	66.17	Compliance Well
MW-21	09/23/2016	1278392.68	236948.84	MW	4	5–20	65.89	Compliance Well
RW-1	02/07/2017	1278390.95	236890.20	MW	4	5.5–20.5		Compliance Well
RW-2	02/09/2017	1278404.38	236970.10	4	4	5–20		Remediation Well
RW-3	02/09/2017	1278409.31	236960.04	1	4	5–20		Remediation Well
RW-4	02/08/2017	1278418.32	236947.52	2	4	5–20		Remediation Well

 Table 1.
 Well Construction Information (continued)

Monitoring Well ID No.	Date Installed	Easting (feet)	Northing (feet)	MPE Well Group	Well Diameter (inches)	Screened Interval (feet bgs)	Top of Casing Elevation (feet amsl)	Well Use
RW-5	02/08/2017	1278407.00	236932.47	3	4	5–20		Remediation Well
RW-6	02/10/2017	1278425.63	236982.51	1	4	5–20		Remediation Well
RW-7	02/07/2017	1278432.90	236913.61	4	4	5–20		Remediation Well
RW-8	02/07/2017	1278394.71	236950.38	2	4	5–20		Remediation Well
RW-9	02/08/2024	1278403.54	236904.78	1	4	5–20		Remediation Well
RW-10	02/08/2024	1278422.51	236924.38	3	4	25–30		Remediation Well
SW-1	02/10/2024	1278385.44	236943.23	2	4	5–18		Slant Remediation Well
SW-2	02/12/2024	1278397.11	236929.86	3	4	5–18		Slant Remediation Well
SW-3	02/09/2024	1278392.00	236913.40	4	4	5–18		Slant Remediation Well

Monitoring Well = Existing monitoring well for groundwater level measurements only

Compliance Well = Existing monitoring well for groundwater compliance monitoring

Remediation Well = Existing injection/extraction remediation well

Slant Remediation Well = New slanted remediation well

amsl = above mean sea level

bgs= below ground surface

MPE = multiphase

-- = data were not available

 Table 2.
 MPE System Performance and Recorded Field Measurements

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH ₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
Falco 300 Influent	1/3/2025	24.7	42	119.8				
(Liquid Ring Pump for Pressure)	1/6/2025	24.7	67					
,	1/16/2025	21.6	76.4					
	1/17/20252			61.6				
	1/23/2025	20.6	76.4					
	2/6/2025	16.3	112.4	254.9				
	2/17/2025	16.3	98.2					
	2/19/2025	15.2	112.8	160.9				
	3/7/20252	15.2	98	212				
	3/14/2025 ²	14.2	102					
	3/16/20252	18	87.5					
	3/21/2025 ²	17.6	83.8					
	3/24/20252	17.6	82.9	153				
	3/28/20252	16.5	86.4					
	4/4/2025 ²	16.9	87.4	252				
	4/11/2025 ²	15.1	98.5	244.1				
	4/15/2025 ²	13.6	115.2					
	4/18/2025 ²	13.3	101.5	164.8				
	4/25/20252	10.4	89.6					
	5/2/2025 ²	13.8	66.5	206				

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
Falco 300 Influent	5/8/20252	13.1	66.3	376				
(Liquid Ring Pump for Pressure)	5/16/2025 ²	12.4	64.1	537				
(continued)	5/23/20252	12.8	60.7					
	5/30/20252	12.3	59.8	560 / 168.4				
	6/13/2025 ²	12.4	86.2	303				
	6/20/20252	12.6	83.6	261.2 / 298.2				
	6/27/2025 ²	12	88.3	294				
Falco 300 Effluent	1/3/2025			33.4				
	1/17/2025 ²			198 ppb				
	2/19/2025			11.4				
	3/7/2025 ²			1.6				
	3/24/20252			0.9				
	4/4/2025 ²			3.3				
	4/11/2025 ²			2.3				
	4/15/2025 ²							
	4/18/2025 ²			0				
	4/25/2025 ²							
	5/2/2025 ²			0.8				
	5/8/2025 ²			3.3				

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
Falco 300 Effluent	5/16/20252			6.4				
(cont.)	5/23/20252							
	5/30/20252			72.1 / 43.2				
	6/13/2025 ²			1.4				
	6/20/20252			0				
	6/27/20252			0				
RW-2	1/3/2025	-8	9.7	2				
	2/6/2025	-8	17.6	0.9				
	2/19/2025	-2		32.8				
	3/7/20252	offline						
	4/4/2025 ²	offline						
	4/18/2025 ²	offline		2.8				
	6/13/2025 ²	-5.5						
	6/20/20252	offline						
RW-3	1/3/2025	-3.5	7.5	8.1				
	2/6/2025	offline						
	2/19/2025	-4.5		14.5				
	3/7/20252	offline						
	4/4/2025 ²	offline						
	4/18/2025 ²	offline		20.1				

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H₂S (ppm)
RW-3	6/13/2025 ²	-5.5						
(cont.)	6/20/2025 ²	-5.5		32-340.9 (water in tubing)				
	6/27/2025 ²	-5.5	31.9					
RW-4	1/3/2025	-6	7.5	8.1				
	2/6/2025	-8	0	151.3				
	2/19/2025	-5		233.5				
	3/7/20252	-12	63	137				
	4/4/2025 ²	-19	48.3	90.6				
	4/15/2025 ²	-5						
	4/18/2025 ²	-6		82.8				
	5/2/20252	offline		66.9				
	5/8/20252	online						
RW-5	1/3/2025	offline						
	2/6/2025	offline						
	2/19/2025	-4.5		32.7				
	3/7/2025 ²	offline						
	4/4/20252	offline						
	4/18/2025 ²	offline		19.5				

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
RW-6	1/3/2025	-6	9.3	1.3				
	2/6/2025	-6	7.55	24.2				
	2/19/2025	-5		23.4				
	3/7/2025 ²	offline						
	4/4/2025 ²	offline						
	4/15/2025 ²	-5						
	4/18/20252	-5		3.6				
	5/2/2025 ²	-7	46.2	178				
	6/13/20252	-10						
	6/20/20252	-10		641				
	6/27/20252	-10	43.2					
RW-7	1/3/2025	-5	24.7	18.3				
-	2/6/2025	-8	0	56.1				
•	2/19/2025	-5		698.2				
	3/7/2025 ²	-13	40	624				
	4/4/2025 ²	-19.5	64.2	685				
	4/15/2025 ²	-10						
	4/18/2025 ²	-11		483				
	5/2/20252	-10	58.3	381.5 (water in tubing)				
	5/8/2025 ²	offline						

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH ₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
RW-8	1/3/2025	-6.5	27	9.5				
	2/8/2025	-8	3	334				
-	2/19/2025	-5		559.8				
	3/7/20252	-12	43	242				
	4/4/2025 ²	-19	55.1	125.1				
	4/15/2025 ²	-5.5						
	4/18/2025 ²	-6		94.5				
	5/2/2025 ²	-6.5	30.6	103.7				
	6/13/2025 ²	-5.5						
	6/20/2025 ²	-5.5		432				
	6/27/2025 ²	-5.5	23.6					
RW-9	1/3/2025	-2.5	133.1	3.1				
	2/6/2025	-7	0	27.5				
	2/19/2025	-4.5		39.9				
	3/7/20252	offline						
	4/4/2025 ²	offline						
	4/15/2025 ²	-5.5						
	4/18/2025	-5		60.8				
	5/2/2025	-6.5	40.3	38.6				
	6/13/2025	offline						

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
RW-10	1/3/2025							
	2/6/2025	offline						
	2/19/2025	-5	0	39.5				
	3/7/2025 ²	offline						
	4/4/2025 ²	offline						
	4/15/2025	-5						
	4/18/2025	offline		0.3				
MW-4	1/3/2025	offline						
	2/6/2025	-12	5.46	0				
	2/19/2025	-5		25.9				
	3/7/20252	offline						
	4/4/2025 ²	offline						
	4/15/2025 ²	-5						
	4/18/2025 ²	-5		31				
	4/25/20252	offline						
	5/30/20252	offline						
	6/13/2025 ²	-10						
	6/20/20252	-10		31.6				
	6/27/2025 ²	-10	53.4					

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
SW-1	1/3/2025	-7.5	38.7	11.6				
	2/6/2025	offline						
	2/19/2025	-5		52				
	3/7/20252	offline						
	4/4/20252	offline						
	4/18/2025 ²	offline		0				
SW-2	1/3/2025	offline						
	2/6/2025	offline						
	2/19/2025	-5		51.5				
	3/7/20252	offline						
	4/4/20252	offline						
•	4/15/2025 ²	-8						
	4/18/2025 ²	-8		29.3				
	5/2/20252	-10	42.1	11.9 (water in tubing)				
	6/13/20252	offline						
SW-3	1/3/2025	-4	67.8					
	2/6/2025	-12.5		1				
	2/19/2025	-4.5		20.82				
	3/7/20252	offline						

 Table 2.
 MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring		Vapor	Monitoring		
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH ₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)
SW-3	4/15/2025 ²	-5						
(cont.)	4/18/2025 ²	offline		2.8				
VP-1	1/3/2025	-0.001 (inH ₂ O)		0.8				
-	1/31/20252			133 ppb	0	20.4	0.28	0.0
-	2/6/2025	-0.14 (inH ₂ O)		2.6				
-	5/8/2025 ²	-0.009 (inH ₂ O)		60 ppb	0	19.2	0.92	0
VP-2	1/3/2025	-0.001 (inH ₂ O)		0.6				
-	1/31/20252			108 ppb	0	20.5	0.04	0.0
-	2/6/2025	-0.1 (inH ₂ O)		6.6				
-	5/8/2025 ²	-0.006 (inH ₂ O)		78 ppb	0	20.9	0.10	0
VP-3	1/3/2025	-0.002 (inH ₂ O)		3.5				
_	1/31/20252			1.282	0	20.3	0.26	0.0
-	2/6/2025	-0.049 (inH ₂ O)		6.6				
-	5/8/20252	-0.012 (inH ₂ O)		135 ppb	0	20.9	0.06	0
VP-4	1/3/2025	-0.003 (inH ₂ O)		38.1				
-	1/31/20252			18.7	0	19.0	1.06	0.0
_	2/6/2025	-0.013 (inH ₂ 0)		137.7				
_	2/19/2025	-0.05 (inH ₂ 0)		122				
_	5/8/2025 ²	-0.007 (inH ₂ 0)		11.6	0	20.9	0.42	0

Table 2. MPE System Performance and Recorded Field Measurements (continued)

		System Monito	ring	Vapor Monitoring					
Monitoring Location ID No.	Date	Pressure/Vacuum (inHg, unless noted)	Flow (cfm)	VOCs ¹ (ppm)	CH₄ (% LEL)	O ₂ (%)	CO ₂ (%)	H ₂ S (ppm)	
SSD-1	2/6/2025	-5 (inH ₂ 0)							
	2/19/2025	-1.5 (inH ₂ 0)							
	3/7/20252	-0.661 (inH ₂ 0)	4.2	20 ppb	0	20.9	0.08	0	
	4/4/20252	-0.557 (inH ₂ 0)	7.6	0.1	0	20.9	0.08	0	
SSD-2	2/6/2025	-5 (inH ₂ 0)							
	2/19/2025	-1.5 (inH ₂ 0)							
	3/7/20252	-1.006 (inH ₂ 0)	6.8	118 ppb	0	20.9	0.02	0	
	4/4/20252	-0.201 (inH ₂ 0)	5.4	0.2	0	20.9	0.02	0	
SSD-3	2/6/2025	-18 (inH ₂ 0)							
	2/19/2025	-4.9 inH ₂ 0							
	3/7/20252	-3.308 (inH ₂ 0)	22.8	2.3	0	20.9	0.09	0	
	4/4/20252	-3.171 (inH ₂ 0)	28.2	2.2	0	20.9	0.09	0	

2 = Measurement collected by ERRG

Gray Cell = measurement not required at location

cfm = cubic foot per minute

 CH_4 = methane

 CO_2 = carbon dioxide

 H_2S = hydrogen sulfide

inHg = inch of mercury

 inH_20 = inch of water

MPE = multiphase extraction

 O_2 = oxygen

ppm = parts per million

ppb = parts per billion

VOC = volatile organic compounds

-- = not measured

%LEL = percentage of the lower explosive limit

^{1 =} VOCs reading taken with low range sensor if concentrations for measurements <1.0 ppm.

Table 3. Vapor Analytical Results – Second Quarter 2025

		VOCs by Method TO-15							
Monitoring Well ID No.	Sample Date	GRO¹	Benzene ¹	Toluene ¹	Ethylbenzene ¹	Total Xylenes ¹			
Screening	g Level (µg/m³):	1,500	460	76,000	15,000	1,500			
VP-3	02/13/2025	1,920	5.30	31.6	24.5	306			
VP-3	6/20/2025	9,290	0.639	117	48.1	443			
VP-4	02/13/2025	158,000	4.73	31.8	23.2	227			
VP-4	6/20/2025	6,030	0.639	8.02	3.42	8.29			

Bold = sample result was detected

Yellow = sample result exceeds the screening level

GRO = gasoline-range organics (as total petroleum hydrocarbons)

μg/m³ = micrograms per cubic meter

^{1 =} Screening levels are based on updated MTCA Method B, "Noncancer Sub-Slab Soil Gas Screening Level – Cleanup Levels and Risk Calculation Vapor Intrusion Method B Table, February 2025" (Kennedy Jenks, 2024a). Also available online at: https://ecology.wa.gov/regulations-permits/guidance-technical-assistance/contamination-cleanup-tools/clarc/data-tables.

Table 4. MPE System Vapor Performance, Estimated Emissions and Limits

		Vapor Tr System (µg/	Results	Estimated Em System Flow		WA	.C 173-460-150 SQER Va		nd
Analytes of Concern	Date	Influent	Effluent	Treated Outlet Concentration Rate (lbs/24hr)	Outlet Concentration Rate (lbs/yr)	De Minimis ¹ (lbs/24hr)	De Minimis ¹ (lbs/yr)	SQER ¹ (lbs/24hr)	SQER ¹ (lbs/yr)
GRO	01/17/2025	107,000	1,020	0.0092	3.4				
	02/13/2025	599,000	2,500	0.022	8.2				
	03/24/2025	300,000	1,000	0.0090	3.3				
	4/18/2025	582,000	1,040	0.0093	3.4				
	5/30/2025	117,000	190,000	1.7	623				
	6/20/2025	727,000	826 U	0.0074	2.7				
Benzene	01/17/2025	399	9.14	0.000082	0.030		1.0		21
	02/13/2025	7,510	28.7	0.00026	0.094		1.0		21
	03/24/2025	6,900	9.97	0.000090	0.033		1.0		21
	4/18/2025	5,170	5.94	0.000053	0.019		1.0		21
	5/30/2025	1,490	658	0.0059	2.2		1.0		21
	6/20/2025	1,970	1.03	0.0000093	0.0034		1.0		21
Toluene	01/17/2025	618	1.17 U	0.000011	0.0038	19		370	
	02/13/2025	12,200	28	0.00025	0.092	19		370	
	03/24/2025	13,100	1.88 U	0.000017	0.0062	19		370	
	4/18/2025	9,910	36.5	0.00033	0.12	19		370	
	5/30/2025	18.8 U	2,970	0.027	9.7	19		370	
	6/20/2025	10,000	1.88 U	0.000017	0.0062	19		370	

Table 4. MPE System Vapor Performance, Estimated Emissions and Limits (continued)

		Vapor Trea System Re (µg/m³)		Estimated Em System Flow		WA	C 173-460-150 SQER Va		nd
Analytes of Concern	Date	Influent	Effluent	Treated Outlet Concentration Rate (lbs/24hr)	Outlet Concentration Rate (lbs/yr)	De Minimis ¹ (lbs/24hr)	De Minimis ¹ (lbs/yr)	SQER ¹ (lbs/24hr)	SQER ¹ (lbs/yr)
Ethylbenzene	01/17/2025	1,040	0.542 J	0.0000049	0.0018		3.2		65
	02/13/2025	3,680	9.19	0.000083	0.030		3.2		65
	03/24/2025	3,030	0.867 U	0.0000078	0.0028		3.2		65
	4/18/2025	2,350	15.5	0.00014	0.051		3.2		65
	5/30/2025	8.67 U	2,010	0.018	6.6		3.2		65
	6/20/2025	4,160	0.867 U	0.0000078	0.0028		3.2		65
Total Xylenes	01/17/2025	8,770	0.808 J	0.0000073	0.0027	0.82		16	
	02/13/2025	37,100	40.9	0.00037	0.13	0.82		16	
	03/24/2025	30,500	4.60	0.000041	0.015	0.82		16	
	4/18/2025	28,200	434	0.0039	1.4	0.82		16	
	5/30/2025	26.1 U	23,000	0.21	75	0.82		16	
	6/20/2025	39,700	2.61 U	0.000023	0.0086	0.82		16	
Additional Anal	ytes								
PCE	01/17/2025	1.29 U	66.2	0.00060	0.22		1.3		27
	02/13/2025	1,910	37.3	0.00034	0.12		1.3		27
	03/24/2025	136 U	13.8	0.00012	0.045		1.3		27
	4/18/2025	5,210	15.1	0.00014	0.050		1.3		27
	5/30/2025	151	233	0.0021	0.76		1.3		27
	6/20/2025	136	1.36 U	0.000012	0.0045		1.3		27

Table 4. MPE System Vapor Performance, Estimated Emissions and Limits (continued)

			eatment Results m³)1	Estimated Em System Flow		WA	C 173-460-150 SQER Va		d
Analytes of Concern	Date	Influent	Effluent	Treated Outlet Concentration Rate (lbs/24hr)	Outlet Concentration Rate (lbs/yr)	De Minimis ¹ (lbs/24hr)	De Minimis ¹ (lbs/yr)	SQER ¹ (lbs/24hr)	SQER ¹ (lbs/yr)
Additional Analy	rtes (continued)								
Vinyl Chloride	01/17/2025	1.33	0.486 U	0.0000044	0.0016		0.92		18
	02/13/2025	51.1 U	0.667	0.0000060	0.0022		0.92		18
	03/24/2025	51.1 U	0.511 U	0.0000046	0.0017		0.92		18
	4/18/2025	22.4	0.511 U	0.0000046	0.0017		0.92		18
	5/30/2025	8.33	10.2 U	0.000092	0.033		0.92		18
	6/20/2025	51.1 U	0.511 U	0.0000046	0.0017		0.92		18
Chloroethane	01/17/2025	0.501	0.427 J	0.0000038	0.0014	110		2,200	
	02/13/2025	52.8 U	2.06	0.000019	0.0068	110		2,200	
	03/24/2025	52.8 U	0.615	0.0000055	0.0020	110		2,200	
	4/18/2025	10.6 U	0.528 U	0.0000047	0.0017	110		2,200	
	5/30/2025	5.28 U	10.6 U	0.000095	0.035	110		2,200	
	6/20/2025	52.8 U	0.528 U	0.0000047	0.0017	110		2,200	
Chloromethane	01/17/2025	0.392	10.1	0.000091	0.033	0.33		6.7	
	02/13/2025	41.3 U	45.2	0.00041	0.15	0.33		6.7	
	03/24/2025	41.3 U	13.8	0.00012	0.045	0.33		6.7	
	4/18/2025	8.26 U	0.706	0.0000063	0.0023	0.33		6.7	
	5/30/2025	4.13 U	8.26 U	0.000074	0.027	0.33		6.7	
	6/20/2025	41.3 U	0.626 U	0.0000056	0.0021	0.33		6.7	

Table 4. MPE System Vapor Performance, Estimated Emissions and Limits (continued)

		Vapor Treatment System Results (µg/m³)¹		Estimated Em System Flow		WAC 173-460-150 De Minimis a SQER Values ²			d
Analytes of Concern	Date	Influent	Effluent	Treated Outlet Concentration Rate (lbs/24hr)	Outlet Concentration Rate (lbs/yr)	De Minimis ¹ (lbs/24hr)	De Minimis ¹ (lbs/yr)	SQER ¹ (lbs/24hr)	SQER ¹ (lbs/yr)
Methylene	01/17/2025	0.660	3.58	0.000032	0.012		490		9,800
Chloride	02/13/2025	69.4 U	24.0	0.00022	0.079		490		9,800
	03/24/2025	767	4.72	0.000042	0.015		490		9,800
	4/18/2025	13.9 U	0.694 U	0.0000062	0.0023		490		9,800
	5/30/2025	6.94 U	13.9 U	0.00012	0.046		490		9,800
	6/20/2025	69.4 U	0.694 U	0.0000062	0.0023		490		9,800

Green = emission below the analyte's respective De Minimis and SQER limit

Yellow = emission above the analyte's respective De Minimis and/or SQER limit

cfm = cubic feet per minute GRO = gasoline-range organics lbs/24hr = pounds per 24 hours lbs/yr = pounds per year MPE = multiphase extraction N/A = not applicable PCE = tetrachloroethylene SQER = Small Quantity Emission Rate WAC = Washington Administrative Code μ g/m³ = micrograms per cubic meter U = not detected at the limit of detection.

-- = no value available

^{1 =} Emissions were calculated using the limit of detection for effluent results not detected above

^{2 =} Washington Administrative Code 173-460-150 De Minimis and Small Quantity Emission Rate limits.

Table 5. MPE System Liquid Performance and Volume Discharged and Injected – Second Quarter 2025

Month	Approximate Volume Extracted (gallons) ¹	Cumulative Volume Discharged (gallons)	Maximum Daily Discharge Flow Rate (gpd)	Cumulative Volume Injected (gallons)	Maximum Injection Rate (gpd)	Notes
January 2025	7,920	9,090	561	0	0	Continued Phase 1 operations without stingers; last meter reading 1/24/2025.
February 2025	20,081	29,171	1,160	0	0	Stingers reinstalled on 2/5/2025, continued Phase 1 operations,
March 2025	21,150	50,321	1,020	0	0	Continued Phase 1 operations
April 2025	20,999	71,320	972	0	0	Continued Phase 1 operations
May 2025	21,506	92,826	856	0	0	Continued Phase 1 operations, system offline on May 30, 2025 due to vapor GAC not meeting removal efficiency requirements
June 2025	11,521	104,347	739	0	0	Continued Phase 1 operations, system restarted on June 13, 2025 after carbon changeout.

Notes: Wastewater Discharge Authorization No. 4614-01.

gpd = gallons per day

MPE = multiphase extraction

^{1 =} Volume estimated based on last recorded totalizer reading for the month.

 Table 6.
 Water Treatment System Analytical Results – Second Quarter 2025

									Chemica	al of Concern				
		Water Paran	Quality neters	Nonpolar FOG by EPA Method 1664B	VOCs by Method NWTPHGX				VOC	s by EPA Metl	nod 8260D			
Sample Location	Sample Date	рН	Turbidity (NTU)	Oil and Grease	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	TCE	Cis-1,2-DCE	PCE	Trans-1-2-DCE	Vinyl Chloride
Screenin	ng Level¹ (mg/L):	5.0-12.0	25	100	0.25	0.07	1.4	1.7	2.2	0.5	1	0.24	1	0.012
LG-401-INF	1/17/2025	6.49	21	5.88 U	0.109	0.001 U	0.001 U	0.001 U	0.003 U					
	02/27/2025	6.61	48	11.9 J-	0.114	0.00209	0.00183	0.001 U	0.003 U	0.001 U	0.001 U	0.00336	0.001 U	0.001 U
	03/21/2025	7.23	4.63	6.31	0.180 J+	0.001 U	0.001 U	0.001 U	0.00604	0.001 U	0.001 U	0.001 U	0.001 U	0.001 C3
	4/25/2025	8.18	43	63.9	0.152	0.001	0.001 U	0.001 U	0.003	0.001 U	0.001 U	0.0159	0.001 U	0.001 U
	5/23/2025	7.48	26	6.1	0.738	0.001 U	0.001 U	0.001 U	0.00794	0.00125	0.0012	0.016	0.001 U	0.001 U
	6/27/2025	7.66	45	6.17	0.107	0.001 U	0.001 U	0.001 U	0.00362	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
LG-403-MID	1/17/2025	6.75	19	5.88 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U					
	02/27/2025	6.55	36	5.62 UJ	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
	03/21/2025	7.22	2.84	5.81 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 C3
	4/25/2025	8.24	18	5.8 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
	5/23/2025	7.41	3.4	6.7	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
	6/27/2025	7.53	22	5.38	0.1	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
LG-404-EFF	1/17/2025 ²	6.82	23	5.49 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	1/17/2025 ²			5.81 U										
DUP-2	1/17/2025 ²			5.95 U										
DUP-3	1/17/2025 ²	6.82	22	5.75 U	0.119	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
LG-404-EFF	02/27/20253	6.56	19	5.88 UJ	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	02/27/20253	6.58	23	6.1 UJ	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-2	02/27/20253			6.33 UJ										
LG-404-EFF	03/21/20254	7.23	2.91	5.95 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	03/21/20253	7.23	2.89	5.26 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-2	03/21/20253			5.26 U										
LG-404-EFF	04/25/2025	8.22	15	6 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	04/25/2025	8.20	11	5.8 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-2	04/25/2025			5.9 U										
LG-404-EFF	05/23/2025	7.32	2.5	6.0 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	05/23/2025	7.34	4.6	6.0 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U

Table 6. Water Treatment System Analytical Results – Second Quarter 2025 (continued)

									Chemica	of Concern				
		Water (Param	,	Nonpolar FOG by EPA Method 1664B	VOCs by Method NWTPHGX	VOCs by EPA Method 8260D								
Sample Location	Sample Date	рН	Turbidity (NTU)	Oil and Grease	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	TCE	Cis-1,2-DCE	PCE	Trans-1-2-DCE	Vinyl Chloride
Screenin	g Level¹ (mg/L):	5.0-12.0	25	100	0.25	0.07	1.4	1.7	2.2	0.5	1	0.24	1	0.012
DUP-2	05/23/2025			6.0 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
LG-404-EFF	06/27/2025	7.50	5.6	5.68 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-1	06/27/2025	7.50	4.8	5.75 U	0.1 U	0.001 U	0.001 U	0.001 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
DUP-2	06/27/2025			6.1 U										

Notes:

1 = Screening levels are based on effluent limits in the KCIW Discharge Permit No. 4614-01.

2 = Samples DUP-1, DUP-2, and DUP-3, collected on 17 January 2025 are field duplicates of LG-404-EFF.

3 =Samples DUP-1, and DUP-2, collected on 27 February 2025 are field duplicates of LG-404-EFF.

4 = Samples DUP-1, and DUP-2, collected on 21 March 2025 are field duplicates of LG-404-EFF.

5 = Sample DUP-1, collected on 24 April 2025 is a field duplicate of LG-404-EFF.

6 = Sample DUP-1, collected on 23 May 2025 is a field duplicate of LG-404-EFF.

Bold = sample result was detected

DCE = dichloroethene

EPA = U.S. Environmental Protection Agency

FOG = fats, oils, and grease

GRO = gasoline-range organics

KCIW = King County Industrial Waste

mg/L = milligrams per liter

NTU = nephelometric turbidity unit

NWTPHGX = Northwest Total Petroleum Hydrocarbons as Gasoline

PCE = tetrachloroethene

TCE = trichloroethene

VOCs = volatile organic compounds

-- = sample was not analyzed for the water quality parameter, analyte, and/or chemical of concern

Laboratory Qualifiers:

J = Estimated: The analyte was positively identified; the quantitation is an estimation.

J-= Estimated, Low Bias: The result was an estimated quantity, but the result may be biased low.

J+ = Estimated, High Bias: The result was an estimated quantity, but the result may be biased high.

U = Not detected at the limit of detection.

UJ = Not detected at the limit of detection, but the limit is an estimation.

Table 7. Depth to Groundwater and Elevation – Second Quarter 2025

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
MW-2	1/17/2025	9.68	69.79	60.11
	02/21/2025	9.49	69.79	60.30
	03/28/2025	9.08	69.79	60.71
	4/25/2025	9.23	69.79	60.56
-	5/23/2025	10.03	69.79	59.76
MW-6	1/17/2025	11.64	63.13	51.49
-	02/21/2025	11.70	63.13	51.43
-	03/28/2025	11.50	63.13	51.63
-	4/25/2025	11.71	63.13	51.42
-	5/23/2025	11.63	63.13	51.50
MW-7	1/17/2025	7.50	62.66	55.16
-	02/21/2025	7.27	62.66	55.39
_	03/28/2025	11.24	62.66	51.42
	4/25/2025	8.35	62.66	54.31
-	5/23/2025	9.24	62.66	53.42
MW-8	1/17/2025	9.13	63.59	54.46
_	02/21/2025	9.53	63.59	54.06
_	03/28/2025	9.10	63.59	54.49
_	4/25/2025	9.8	63.59	53.79
_	5/23/2025	10.33	63.59	53.26
MW-9	1/17/2025	9.20	64.30	55.10
_	02/21/2025	10.12	64.30	54.18
_	03/28/2025	10.06	64.30	54.24
_	4/25/2025	10.58	64.30	53.72
	5/23/2025	11.28	64.30	53.02
MW-11	1/17/2025	2.67	63.59	60.92
	02/21/2025	2.85	63.59	60.74
	03/28/2025	1.54	63.59	62.05
	4/25/2025	3.3	63.59	60.29
	5/23/2025	3.12	63.59	60.47

Table 7. Depth to Groundwater and Elevation – Second Quarter 2025 (continued)

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
MW-13	1/17/2025	10.21	65.08	54.87
_	02/21/2025	11.26	65.08	53.82
_	03/28/2025	11.96	65.08	53.12
	4/25/2025	12.2	65.08	52.88
	5/23/2025	13.13	65.08	51.95
MW-14	1/17/2025	7.57	63.30	55.73
	02/21/2025	7.51	63.30	55.79
	03/28/2025	6.83	63.30	56.47
-	4/25/2025	8.11	63.30	55.19
_	5/23/2025	8.43	63.30	54.87
MW-15	1/17/2025	6.50	64.18	57.68
_	02/21/2025	4.52	64.18	59.66
_	03/28/2025	2.53	64.18	61.65
_	4/25/2025	8.34	64.18	55.84
_	5/23/2025	8.79	64.18	55.39
MW-16	1/17/2025	8.11	64.00	55.89
	02/21/2025	8.37	64.00	55.63
	03/28/2025	5.97	64.00	58.03
	4/25/2025	9.01	64.00	54.99
	5/23/2025	9.41	64.00	54.59
MW-17	1/17/2025	10.77	65.98	55.21
	02/21/2025	12.23	65.98	53.75
_	03/28/2025	12.22	65.98	53.76
_	4/25/2025	13.34	65.98	52.64
-	5/23/2025	13.86	65.98	52.12
MW-18	1/17/2025	11.79	66.73	54.94
	02/21/2025	12.71	66.73	54.02
	03/28/2025	12.98	66.73	53.75
	4/25/2025	13.28	66.73	53.45
-	5/23/2025	13.61	66.73	53.12

Table 7. Depth to Groundwater and Elevation – Second Quarter 2025 (continued)

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
MW-19	1/17/2025	10.74	66.36	55.62
	02/21/2025	13.35	66.36	53.01
	03/28/2025	13.23	66.36	53.13
	4/25/2025	14.39	66.36	51.97
	5/23/2025	14.02	66.36	52.34
MW-20	1/17/2025	10.53	66.17	55.64
	02/21/2025	13.29	66.17	52.88
	03/28/2025	13.90	66.17	52.27
	4/25/2025	14.53	66.17	51.64
	5/23/2025	15.93	66.17	50.24
MW-21	1/17/2025	9.64	65.89	56.25
	02/21/2025	13.39	65.89	52.20
	03/28/2025	14.17	65.89	51.72
	4/25/2025	14.6	65.89	51.29
	5/23/2025	14.91	65.89	50.98
RW-1	1/17/2025	11.14		
	02/21/2025	12.70		
	03/28/2025	13.19		
	4/25/2025	13.66		
	5/23/2025	14.55		
RW-2	1/17/2025	7.75		
	02/21/2025	11.40		
	03/28/2025	11.92		
	4/25/2025	12.15		
	5/23/2025	13.09		
RW-3	1/17/2025	6.85		
	02/21/2025	11.65		
	03/28/2025	12.10		
	4/25/2025	12.11		
	5/23/2025	13.10		

Table 7. Depth to Groundwater and Elevation – Second Quarter 2025 (continued)

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
RW-4	1/17/2025	9.83		
-	02/21/2025	12.65		
-	03/28/2025	12.70		
-	4/25/2025	12.72		
-	5/23/2025	13.70		
RW-5	1/17/2025	11.31		
-	02/21/2025	12.76		
-	03/28/2025	13.81		
-	4/25/2025	14.31		
-	5/23/2025	15.6		
RW-6	1/17/2025	8.16		
-	02/21/2025	9.30		
-	03/28/2025	10.06		
-	4/25/2025	8.05		
-	5/23/2025	11.3		
RW-7	1/17/2025	7.71		
-	02/21/2025	12.39		
	03/28/2025	12.97		
	4/25/2025	12.13		
	5/23/2025	12.94		
RW-8	1/17/2025	7.36		
	02/21/2025	12.04		
	03/28/2025	13.21		
	4/25/2025	13.03		
	5/23/2025	13.78		
RW-9	1/17/2025	10.55		
	02/21/2025	14.17		
	03/28/2025	13.81		
	4/25/2025	12.26		
	5/23/2025	12.37		

Table 7. Depth to Groundwater and Elevation – Second Quarter 2025 (continued)

Monitoring Well ID No. 1	Date of Measurement	Depth to Water (feet bgs)	Top of Casing Elevation (feet amsl)	Groundwater Elevation (feet amsl)
RW-10	1/17/2025	11.36		
	02/21/2025	12.78		
	03/28/2025	13.08		
	4/25/2025	14.84		
	5/23/2025	12.89		

1 = MW-4 excluded from the table because the wellhead is not fitted with a removable well cap to allow for measurements. MW-10 excluded from the table because it has remained obstructed through each January, February, and March 2025 event, rendering it inaccessible.

amsl = above mean sea level

bgs = below ground surface

-- = information not available

Table 8. Groundwater Analytical Results – Second Quarter 2025

	Sample Date	Chemicals of Concern					
Monitoring Well ID No.		GRO by Method NWTPHGX	VOCs by EPA Method 8260D				
		GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	
	Cleanup Level¹ (µg/L):	800	5	1,000	700	1,000	
RW-1	1/17/2025	167 J+	1 U	1 U	1 U	3 U	
	02/21/2025	223	1 U	1 U	1 U	3 U	
	03/28/2025	128 J+	1 U	1 U	1 U	3 U	
	04/25/2025	122	10 U	10 U	10 U	30 U	
	5/23/2025	147	10 U	10 U	10 U	30 U	
MW-6 ²	1/17/2025	263 J+	46.2	1.67	5.28	3 U	
	02/21/2025	109	22.7	1 U	1.38	3 U	
	03/28/2025	100 U	19.1	1 U	1.22	3 U	
	03/28/2025	100 U	10 U	10 U	10 U	30 U	
	04/25/2025	100 U	2.28	1 U	1 U	3 U	
	04/25/2025	100 U	5.91	1 U	1 U	3 U	
	5/23/2025	100 U	1 U	1 U	1 U	3 U	
MW-8	1/17/2025	18,300	50 U	188	1,270	4,920	
	02/21/2025	23,400	50 U	178	1,070	4,060	
	02/21/2025	23,500	10 U	1,140	186	4,210	
	03/28/2025	16,200	50 U	72.5	570	2,440	
	04/25/2025	19,900	50 U	210	1,390	4,880	
	5/23/2025	19,100	50 U	143	1,130	3,490	
MW-9	1/17/2025	3,850	20 U	20 U	156	203	
	1/17/2025	5,270	25 U	25 U	198	247	
	02/21/2025	9,020	20 U	32.5	351	665	
	03/28/2025	5,000	20 U	20.4	271	508	

Table 8. Groundwater Analytical Results – Second Quarter 2025 (continued)

	Sample Date	Chemicals of Concern					
		GRO by Method NWTPHGX	VOCs by EPA Method 8260D				
Monitoring Well ID No.		GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	
	Cleanup Level¹ (µg/L):	800	5	1,000	700	1,000	
MW-9	04/25/2025	8,030	20 U	44.1	530	1,110	
(continued)	5/23/2025	12,700	20 U	35.1	607	1,450	
MW-13	1/17/2025	16,100	380	847	712	7,430	
	02/21/2025	14,100	352	580	409	5,140	
	03/28/2025	8,290	180	138	61.3	1,360	
	04/25/2025	8,000	211	1,160	252	3,690	
	5/23/2025	9,920	173	973	121	2,840	
MW-14	1/17/2025	100 U	1 U	1 U	1 U	3 U	
	02/21/2025	100 U	1 U	1 U	1 U	3 U	
	03/28/2025	100 U	1 U	1 U	1 U	3 U	
	04/25/2025	100 U	1 U	5.02	1 U	3 U	
	5/23/2025	100 U	1 U	21.3	1 U	3 U	
MW-15	1/17/2025	100 U	1 U	1 U	1 U	3 U	
	02/21/2025	100 U	1 U	1 U	1 U	3 U	
	03/28/2025	100 U	1 U	1 U	1 U	3 U	
	04/25/2025	100 U	1 U	1 U	1 U	3 U	
	5/23/2025	100 U	1 U	1 U	1 U	3 U	
MW-16	1/17/2025	100 U	1 U	1 U	1 U	3 U	
	02/21/2025	112	1 U	1 U	1 U	3 U	
	03/28/2025	100 U	1 U	1 U	1 U	3 U	
	04/25/2025	100 U	1 U	1 U	1 U	3 U	
	5/23/2025	100 U	1 U	1 U	1 U	3 U	

Table 8. Groundwater Analytical Results – Second Quarter 2025 (continued)

		Chemicals of Concern					
	Sample Date	GRO by Method NWTPHGX	VOCs by EPA Method 8260D				
Monitoring Well ID No.		GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	
,	Cleanup Level¹ (µg/L):	800	5	1,000	700	1,000	
MW-17	1/17/2025	300 J+	1 U	1 U	1 U	3 U	
	02/21/2025	323	1 U	1 U	1 U	3 U	
	03/28/2025	276	1 U	1 U	1 U	3 U	
,	04/25/2025	392	1 U	1 U	1 U	3 U	
,	5/23/2025	429	1 U	1 U	1 U	3 U	
MW-18	1/17/2025	117 J+	1 U	1 U	1 U	3 U	
	02/21/2025	110 U	1 U	1 U	1 U	3 U	
	03/28/2025	100 U	1 U	1 U	1 U	3 U	
	04/25/2025	100 U	1 U	1 U	1 U	3 U	
	5/23/2025	100 U	1 U	1 U	1 U	3 U	
MW-19	1/17/2025	14,800	402	669	684	4,490	
	02/21/2025	17,100	336	933	718	3,820	
	03/28/2025	13,500	122	802	725	3,430	
	04/25/2025	38,600	5,670	8,970	1,080	5,780	
	5/23/2025	17,400	498	2,220	511	2,670	
MW-20	1/17/2025	8,950	861	250 U	712	2,880	
	02/21/2025	41,600	7,730	7,970	920	4,940	
	03/28/2025	25,400	2,420	3,070	886	4,620	
	04/25/2025	12,600	2,240	828	859	4,360	
	5/23/2025	17,500	1,070	781	657	3,400	

Table 8. Groundwater Analytical Results – Second Quarter 2025 (continued)

		Chemicals of Concern								
		GRO by Method NWTPHGX	VOCs by EPA Method 8260D							
Monitoring Well ID No.	Sample Date	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes				
	Cleanup Level¹ (µg/L):	800	5	1,000	700	1,000				
MW-21	1/17/2025	12,000	3,130	1,780	500 U	2,820				
	02/21/2025	69,000	16,400	14,700	970	6,390				
	03/28/2025	47,200	9,270	8,460	1,540	7,400				
	04/25/2025	47,000	10,800	9,830	1,450	8,030				
	5/23/2025	67,000	9,630	15,200	1,660	10,200				

Notes:

Bold = sample result was detected

Yellow = sample result exceeds the cleanup level

Orange = elevated limit of detection, due to sample dilution, exceeds cleanup level

CULs = cleanup levels

EPA = U.S. Environmental Protection Agency

GRO = gasoline-range organics

MTCA = Model Toxics Control Act

NWTPHGX = Northwest Total Petroleum Hydrocarbons as Gasoline

VOCs = volatile organic compounds

WAC = Washington Administrative Code

μg/L = micrograms per liter

Qualifiers:

J+ = Estimated, High Bias: The result was an estimated quantity, but the result may be biased high.

U= Not detected at the limit of detection.

^{1 =} Screening levels are based on MTCA Method A Groundwater CULs (WAC 173-340-720, Table 720-1).

^{2 =} Samples for MW-6 were field duplicated as DUP-1 on 4/25/2025.

^{3 =} Samples for MW-15 were field duplicated as DUP-1 on 05/21/2025.

Appendix A. Field Data During Reporting Period

Name & Company: ERRG F	I			System On on Arriv	/al? (circle): yes no				
Date/time of data collection: 4	/4/2025		•	Sys	stem Hours: 2624.6				
Weather: C	vercast, Light Showe	rs	•	Phase 1: MPE / SVE, all active EIWs in extraction mode					
Barometric pressure (psi): 2	9.57			Barometric Pressure source: Anemometer					
Ambient Temperature (°F): 4	5			Ambient Temperature source: Internet					
Noise (dBA):	above 60 dBA, notify KJ pe	ersonnel		Noise measurement source:					
Moisture Separator Drained? (circle)		Yes	No	Active Alarm Conditions (circle, note affected equipment):					
Approximate volume (gal)		2 cycles whi	le onsite	1. No Alarm					
Catalytic Oxidizer Installed? (circle)		Yes	No	2. High Water Level	Tank(s):				
Effluent Vapor VOC Conc (opm):	3.3		3. Low Water Level	Tank(s):				
PID Calibration Performed? (circle)		Yes	No	4. High Pressure	Equipment:				
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipment:				
Calibration Value (ppm):	0	100		6. System Shutdown	Equipment:				
Instrument Reading (ppm):	0	99.6		7. Temperature	Equipment:				
				8. Other:					

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		16		
RW-3	-	-	-	С	After MS	PI 310		26		
RW-4	19	48.3	90.6	0	Before Blower	VI 300		16.9		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.8	87.4	
RW-6	-	-	-	С	At Heat Exchanger	TT-302		55.9		
RW-7	19.5	64.2	685	0	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	19	55.1	125.1	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		32		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		30	6.54	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			6.87	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	0.557	7.6	0.1	0	After Liquid GAC 2	FE-407			0	
SSD-2	0.201	5.4	0.2	0	After Liquid GAC**	PI-404		0		
SSD-3	3.171	28.2	2.2	0	Catalytic Oxidizer Tempe	eratures (°F)	T1 Entrance: (626.5 T2 Exit	656.1 T3 Interio	or : 668.2
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: 252	Post	3.3	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	87.4			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	4/4/2025	11:30	25,980	
					-	FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Collect system readings, record totalizer from flow meter	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Glacier sub onsite installing heat trace along piping, HEX-302 sensor replaced on 4/1	If exceeded, notify Kennedy Jenks personnel.			

Collect weekly BTEX midpoint sample

Collect system vapor influent and effluent PID measurements

Measure SSD with PID and 4-gas, CO2 as follows SSD-1: 0.08%, SSD-2: 0.02%, SSD-3: 0.09%

(0.0 ppm H2S at all 3, 0% LEL at all 3, 20.9% O2, at all 3)

Name &	Company:	ERRG	FI				System On on Arriva	al? (circle):	yes	no			
Date/time	e of data coll	ection:	4/11/2025				Sys	tem Hours:	2795	2			
Weather	:		Cool, Cloud	у			Phase 1: MPE / SVE, all active EIWs in extraction mode.						
Baromet	ric pressure	(psi):	30.35				Barometric Pressure source	ce:	Anemome	ter			
Ambient	Temperature	e (°F):	54				Ambient Temperature sou	rce: I	nternet				
Noise (dl	BA):		If above 60 dB	A, notify KJ pe	rsonnel		Noise measurement source	e:					
Moisture	Separator D	rained? (circ	le)		Yes	No	Active Alarm Conditions (cir	cle, note affe	cted equip	ment):			
Approximate volume (gal):					1 cycle while	onsite	1. No Alarm						
Catalytic	Oxidizer Ins	talled? (circle	!)		Yes	No	2. High Water Level	Tank(s):					
	Effluent Var	oor VOC Con	c (ppm):		2.3		3. Low Water Level	Tank(s):					
PID Calib	oration Perfo	rmed? (circle)		Yes	No	4. High Pressure	Equipmer	nt:				
	PID Calibra	ition		Zero Gas	Span Gas		5. Low Pressure	Equipmer	nt:				
	Calibration '	Value (ppm):		0	100		6. System Shutdown	Equipmer	nt:				
	Instrument	Reading (ppn	n):	0	99.8		7. Temperature	Equipmer	nt:				
							8. Other:						

	Wells - Inject	ion/Extractior	n (At Manifol	d)	Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		14.2		
RW-3	-	-	-	С	After MS	PI 310		26		
RW-4	-	-	-	0	Before Blower	VI 300		15.1		
RW-5	-	-	-	С	After Blower	PI/FI 302		3	98.5	
RW-6	-	-	-	С	At Heat Exchanger	TT-302		66.3		
RW-7	-	-	-	С	Before Vapor GAC	PI 411		NA	NA	NA
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	-	-	-	С	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	-	-	-	С	After Pump P-400	PI 400		31		
SW-1	-	-	-	С	Before Bag Filter	PI-405		31		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		25	-	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		14		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			6.23	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			5.87	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	T1 Entrance: 6	626.6 T2 Exit	692.4 T3 Inter	rior 692.9
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: 244.1	Ро	st: 2.3	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	98.5			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	4/11/2025	1:30	32,784	
						FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discl	narge Limits (se	e permits):
Collect system readings, collect system vapor influent and effluent PID measurements	Air: 200 scfm	Water:	3 gpm / 4500 gpd
Record totalizer from flow meter	If exceeded, notify Ke	nnedy Jenks person	nel.
Collect weekly BTEX midpoint sample			

Name &	Company:	ERRG	FI				System On on A	rrival? (circle):	yes	no
Date/time	e of data col	lection:	4/15/2025					System Hours:	2885	.6
Weather			Overcast, C	Cool		•	Phase 1: MPE / SVE, all a	active EIWs in ext	raction mod	le.
Barometi	ric pressure	(psi):	30.21				Barometric Pressure s	ource:	Anemome	ter
Ambient	Temperature	e (°F):	66				Ambient Temperature	source:	Internet	
Noise (di	3A):		If above 60 dB	A, notify KJ pe	rsonnel		Noise measurement so	ource:		
Moisture	Separator D	rained? (circ	le)		Yes	No	Active Alarm Conditions	(circle, note affe	cted equip	ment):
	Approximate volume (gal):				2 cycles whi	le onsite	1. No Alarm			
Catalytic	Oxidizer Ins	talled? (circle	e)		Yes	No	2. High Water Level	Tank(s):		
	Effluent Va	oor VOC Cor	ıc (ppm):		-		Low Water Level	Tank(s):		
PID Calib	ration Perfo	rmed? (circle)		Yes	No	4. High Pressure	Equipmer	nt:	
	PID Calibra	ation		Zero Gas	Span Gas		5. Low Pressure	Equipmer	nt:	
	Calibration	Value (ppm):		0	100		6. System Shutdown	Equipmer	nt:	
	Instrument	Reading (ppr	m):	0	99.2		7. Temperature	Equipmer	nt:	
							8. Other:			

	Wells - Inject	ion/Extractior	n (At Manifol	d)	Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	5	-	-	0	Before MS	VI 210		12.5		
RW-3	-	=	-	С	After MS	PI 310		26		
RW-4	5	=	-	0	Before Blower	VI 300		13.6		
RW-5	-	=	-	С	After Blower	PI/FI 302		3.3	115.2	
RW-6	5	=	-	С	At Heat Exchanger	TT-302		64		
RW-7	10	=	-	0	Before Vapor GAC	PI 411		1	NA	NA
RW-8	5.5	=	-	0	Vapor GAC Midpoint**	PI 412		NA	NA	NA
RW-9	5.5	-	-	0	After Vapor GAC**	PI 410		NA	NA	NA
RW-10	5	-	-	0	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		32		
SW-2	8	-	-	0	After Bag Filter**	FI 400/PI 401		30	0	
SW-3	5	-	-	0	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	5	-	-	0	After Liquid GAC 1	FE-404			0	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	=	=	0	After Liquid GAC 2	FE-407			0	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A			
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A	
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	N/A			
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total F	low (gal)
VP-4	-		-			FT 500	4/15/2025	11:00	35,475	
					-	FT 500				

** Location for collection of air or water sample for laboratory analysis.

	Permit Discharge Limits (see permits):				
Glacier onsite to disconnect CatOx unit.	Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Wires disconnected, coalescing valve removed, valve closed off and locked.	If exceeded, notify Kenned	ly Jenks person	nel.		

Switch to Vapor GAC for treatment, open more extraction wells to balance system vapor concentrations.

Collect system readings, record totalizer from flow meter

Name & Company: ERRG FI				System On on Arriv	/al? (circle):	yes	no
Date/time of data collection: 4/18/2	2025			Sys	stem Hours:	2963.5	
Weather: Overd	ast, Cool			Phase 1: MPE / SVE, all acti	ve EIWs in extr	action mode.	
Barometric pressure (psi): 29.98				Barometric Pressure sour	ce:	Anemomete	r
Ambient Temperature (°F): 64				Ambient Temperature sou	ırce: I	nternet	
Noise (dBA): If above	e 60 dBA, notify KJ pe	rsonnel		Noise measurement sour	ce:		
Moisture Separator Drained? (circle)		Yes	No	Active Alarm Conditions (ci	rcle, note affe	cted equipme	ent):
Approximate volume (gal):		3 cycles while	e onsite	1. No Alarm			
Catalytic Oxidizer Installed? (circle)		Yes	No	2. High Water Level	Tank(s):		
Effluent Vapor VOC Conc (ppm):			3. Low Water Level	Tank(s):		
PID Calibration Performed? (circle)		Yes	No	4. High Pressure	Equipmer	nt:	
PID Calibration	Zero Gas	Span Gas		5. Low Pressure	Equipmer	nt:	
Calibration Value (ppm):	0	100		6. System Shutdown	Equipmer	nt:	
Instrument Reading (ppm):	0	101.2		7. Temperature	Equipmer	nt:	
-				8. Other:			

,	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	2.8	С	Before MS	VI 210		12			
RW-3	-	-	20.1	С	After MS	PI 310		26			
RW-4	6	-	82.8	0	Before Blower	VI 300		13.3			
RW-5	-	-	19.5	С	After Blower	PI/FI 302		3.4	101.5		
RW-6	5	-	3.6	0	At Heat Exchanger	TT-302		77.3			
RW-7	11	-	483	0	Before Vapor GAC	PI 411		3	NA	164.8	
RW-8	6	-	94.5	0	Vapor GAC Midpoint**	PI 412		NA	NA	0	
RW-9	5	-	60.8	0	After Vapor GAC**	PI 410		NA	NA	0	
RW-10	-	-	0.3	С	After Pump P-400	PI 400		0			
SW-1	-	-	0	С	Before Bag Filter	PI-405		0			
SW-2	8	-	29.3	0	After Bag Filter**	FI 400/PI 401		0	0		
SW-3	-	-	2.8	С	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	5	-	31	0	After Liquid GAC 1	FE-404			0		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			0		
SSD-2	=	-	-	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A				
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	N/A				
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)	
VP-4	-		-			FT 500	4/18/2025	15:00	22578.66		
						FT 500					

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits				
Closed wells SW-3, RW-2 to improve vacuum and target high concentration wells,	Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Collect system readings.	If exceeded, notify Kenn	edy Jenks personi	nel.		

System vacuum improved: 11.5 inHg to 13.3 inHg, system flow reduced: 118 cfm to 101.5 cfm

Record totalizer from flow meter, collect weekly BTEX midpoint sample, collect monthly system vapor samples.

Low vacuum alarm notification on 4/22, closed MW-4, adjust valves on open wells to maintain adequate vacuum.

Collect system vapor influent and effluent PID measurements

Name & Company:	ERRG	FI				System On on Ar	rival? (circle): yes no
Date/time of data coll	ection:	4/25/2025				S	system Hours: 3129.2
Weather:		Overcast				Phase 1: MPE / SVE, all ad	ctive EIWs in extraction mode.
Barometric pressure	(psi):	29.88				Barometric Pressure so	urce: Anemometer
Ambient Temperature	e (°F):	68				Ambient Temperature s	ource: Internet
Noise (dBA):		If above 60 dB/	A, notify KJ pe	rsonnel		Noise measurement so	urce:
Moisture Separator D	rained? (circ	e)		Yes	No	Active Alarm Conditions	(circle, note affected equipment):
Approxima	ate volume (g	al):		4 cycles while	e onsite	1. No Alarm	
Catalytic Oxidizer Ins	talled? (circle	·)		Yes	No	2. High Water Level	Tank(s):
Effluent Var	or VOC Con	c (ppm):		-		3. Low Water Level	Tank(s):
PID Calibration Perfo	rmed? (circle)		Yes	No	4. High Pressure	Equipment:
PID Calibra	ition		Zero Gas	Span Gas		5. Low Pressure	Equipment:
Calibration '	Value (ppm):		-	-		6. System Shutdown	Equipment:
Instrument	Reading (ppn	າ):	-	-		7. Temperature	Equipment:
						8. Other:	

	Wells - Inject	ion/Extractio	n (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		9.5		
RW-3	-	-	-	С	After MS	PI 310		26		
RW-4	-	-	-	0	Before Blower	VI 300		10.4		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.7	89.6	
RW-6	-	-	-	0	At Heat Exchanger	TT-302		71		
RW-7	-	-	-	0	Before Vapor GAC	PI 411		0.1	-	-
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		0	-	-
RW-9	-	-	-	0	After Vapor GAC**	PI 410		0	-	-
RW-10	-	-	-	С	After Pump P-400	PI 400		0		
SW-1	-	-	-	С	Before Bag Filter	PI-405		0		
SW-2	-	-	-	0	After Bag Filter**	FI 400/PI 401		0	-	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			1	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-	
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	=	-	О	Catalytic Oxidizer Tempe	eratures (°F)	N/A			
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A	
VP-2	-		=		Catalytic Oxidizer Flow Rate (scfm) N/A					
VP-3	-		-		Water Discharge Flow Totalizer Date Time Total Flow (gal			ow (gal)		
VP-4	-		-			FT 500	4/25/2025	12:00	42674.28	
					-	FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Dischar	ge Limits (se	e permits):	
Collect system readings	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Record totalizer from flow meter	If exceeded, notify Kennedy Jenks personnel.			

Collect weekly BTEX midpoint sample, collect monthly system water samples.

Turbidity and pH readings for influent, midpoint, and effluent samples: 8.18/43 NTU, 8.24/18 NTU, 8.22,8.20/ 15,11 NTU
Blaine Tech onsite to collect monthly groundwater samples.

Name & 0	Company:	ERRG	FI				System	On on Arrival	? (circle):	yes	no	
Date/time	of data coll	ection:	5/2/2025					Syste	m Hours:	3296	.6	
Weather:			Sunny, War	m			Phase 1: MPE /	SVE, all active	EIWs in extra	action mod	le.	
Barometr	ic pressure	(psi):	29.88				Barometric Pr	essure source	: <i>F</i>	Anemome	ter	
Ambient '	Temperature	e (°F):	68				Ambient Temp	perature sourc	e: I	nternet		
Noise (dE	3A):		If above 60 dB	A, notify KJ pe	rsonnel		Noise measur	ement source	:			
Moisture	Separator D	rained? (circ	le)		Yes	No	Active Alarm C	onditions (circl	e, note affe	cted equip	ment):	
	Approxima	ate volume (g	ıal):		2 cycles while	e onsite	1. No Alarm					
Catalytic	Oxidizer Ins	talled? (circle	e)		Yes	No	2. High Water	Level	Tank(s):			
	Effluent Var	or VOC Con	c (ppm):				3. Low Water	Level	Tank(s):			
PID Calib	ration Perfo	rmed? (circle	e)		Yes	No	4. High Pressւ	ure	Equipmen	t:		
	PID Calibra	ition		Zero Gas	Span Gas		5. Low Pressu	ire	Equipmen	t:		
	Calibration '	Value (ppm):		0	100		6. System Shu	utdown	Equipmen	t:		
	Instrument	Reading (ppr	n):	0	100.2		7. Temperatur	re	Equipmen	t:		
							0 Othor:					

	Wells - Inject	ion/Extractio	n (At Manifol	d)		Tre	atment Syste	m		
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	=	-	-	С	Before MS	VI 210		12.5		
RW-3	-	-	-	С	After MS	PI 310		26		
RW-4	-	-	66.9	С	Before Blower	VI 300		13.8		
RW-5	-	-	-	С	After Blower	PI/FI 302		2	66.5	
RW-6	7	46.2	178	0	At Heat Exchanger	TT-302		75.1		
RW-7	10	58.3	381.5**	0	Before Vapor GAC	PI 411		0	-	206
RW-8	6.5	30.6	103.7	0	Vapor GAC Midpoint**	PI 412		0	-	9
RW-9	6.5	40.3	38.6	0	After Vapor GAC**	PI 410		0	-	0.8
RW-10	-	-	-	С	After Pump P-400	PI 400		0		
SW-1	=	-	-	С	Before Bag Filter	PI-405		0		
SW-2	10	42.1	11.9**	0	After Bag Filter**	FI 400/PI 401		0	-	
SW-3	=	-	-	С	Midpoint Liquid GAC 1**	PI 403		0		
MW-4	=	-	-	С	After Liquid GAC 1	FE-404			-	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0		
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-	
SSD-2	-	=	-	0	After Liquid GAC**	PI-404		0		
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A			
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	:: N/A	
VP-2	=		=		Catalytic Oxidizer Flow Rate (scfm) N/A					
VP-3	-		-		Water Discharge Flow Totalizer Date Time Total Flow (ow (gal)			
VP-4	-		-			FT 500	5/2/2025	12:00	45,980	
					-	FT 500				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge Limits (see permits):			
Closed wells RW-4 to improve vacuum	Air: 200 scfm	Water:	3 gpm / 4500 gpd	
Collect system readings, record totalizer from flow meter	If exceeded, notify Kennedy	y Jenks personn	el.	

System vacuum improved: 10.4 in Hg to 13.8 in Hg, system flow reduced: 88.2 cfm to 66.5 cfm

Collect weekly BTEX midpoint sample

Collect system vapor influent and effluent PID measurements

^{**}low readings in SW-2 and RW-7 most likely due to water in piping/tubing preventing accurate reading

Name & Com	ipany:	ERRG	FI				System On on Arri	val? (circle):	yes	no
Date/time of o	data colle	ction:	5/8/2025			_	Sy	stem Hours:	3439	.7
Weather:			Cool, Overc	ast		•	Phase 1: MPE / SVE, all act	ive EIWs in ext	raction mod	e.
Barometric pr	ressure (p	si):	29.9				Barometric Pressure sou	rce:	Anemome	ter
Ambient Tem	perature	(°F):	60				Ambient Temperature so	urce:	Internet	
Noise (dBA):			If above 60 dB/	A, notify KJ pe	ersonnel		Noise measurement sou	rce:		
Moisture Sep	arator Dra	ained? (circle	e)		Yes	No	Active Alarm Conditions (d	ircle, note affe	ected equip	ment):
Ap	proximate	e volume (ga	al):		2 cycles while	onsite	1. No Alarm			
Catalytic Oxid	dizer Insta	lled? (circle)		Yes	No	2. High Water Level	Tank(s):		
Efflu	uent Vapo	r VOC Cond	(ppm):				3. Low Water Level	Tank(s):		
PID Calibration	on Perforr	ned? (circle))		Yes	No	4. High Pressure	Equipme	nt:	
PID	Calibrati	on		Zero Gas	Span Gas		5. Low Pressure	Equipme	nt:	
Cali	ibration Va	alue (ppm):		0	100 / 10		6. System Shutdown	Equipme	nt:	
Inst	rument R	eading (ppm):	0	100.6 / 9.95]	7. Temperature	Equipme	nt:	
							8. Other:			

,	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	-	С	Before MS	VI 210		12			
RW-3	-	-	-	С	After MS	PI 310		26			
RW-4	-	-	-	0	Before Blower	VI 300		13.1			
RW-5	-	-	-	С	After Blower	PI/FI 302		2.1	66.3		
RW-6	-	-	-	0	At Heat Exchanger	TT-302		64.2			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		0	-	376	
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		0	-	29	
RW-9	-	-	-	0	After Vapor GAC**	PI 410		0	-	3.3	
RW-10	-	-	-	С	After Pump P-400	PI 400		0			
SW-1	-	-	-	С	Before Bag Filter	PI-405		0			
SW-2	-	-	-	0	After Bag Filter**	FI 400/PI 401		0	-		
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			-		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-		
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	-	0	Catalytic Oxidizer Tempera	atures (°F)	N/A				
VP-1	0.009		60 ppb		Catalytic Oxidizer PID (pp	m)	Pre: N/A	Post	:: N/A		
VP-2	0.006		78 ppb		Catalytic Oxidizer Flow Ra	te (scfm)	N/A				
VP-3	0.012		135 ppb		Water Discharge Flow Tot	alizer	Date	Time	Total FI	ow (gal)	
VP-4	0.007		11.6			FT 500	5/8/2025	11:00	51,114		
					-	FT 500					
							_				

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Dischar	ge Limits (se	e permits):
System influent concentrations increasing, switch RW-7 for RW-4 to help maintain levels.	Air: 200 scfm	Water:	3 gpm / 4500 gpd
Collect system readings. Record totalizer from flow meter	If exceeded, notify Kenne	dy Jenks personr	nel.

Collect weekly BTEX midpoint sample

Collect system vapor influent and effluent PID measurements

Measure vapor pins with PID, 4-gas and manometer, CO2 as follows VP-1: 0.92%, VP-2: 0.10%, VP-3: 0.06%, VP-4: 0.42%

(0.0 ppm H2S at all 4, $\,$ 0% LEL at all 4, 20.9% O2, at 3, 19.2% O2 at VP-1)

Name & Comp	any:	ERRG	FI				System	On on Arrival	? (circle):	yes	no
Date/time of da	ata coll	ection:	5/16/2025					Syste	m Hours:	3632.4	
Weather:			Light Show	ers		•	Phase 1: MPE /	SVE, all active	EIWs in extr	action mode.	
Barometric pre	ssure	(psi):	29.88				Barometric Pr	essure source	: /	Anemomete	r
Ambient Temp	erature	e (°F):	55				Ambient Temp	perature sourc	e: I	nternet	
Noise (dBA):			If above 60 dB	A, notify KJ pe	rsonnel		Noise measur	ement source:	:		
Moisture Sepa	rator D	rained? (ci	cle)		Yes	No	Active Alarm C	Conditions (circle	e, note affe	cted equipm	ent):
Арр	roxima	ate volume	(gal):		2 cycles whi	le onsite	1. No Alarm				
Catalytic Oxidi	zer Ins	talled? (circ	le)		Yes	No	2. High Water	Level	Tank(s):		
Efflue	ent Vap	oor VOC Co	nc (ppm):		-		3. Low Water	Level	Tank(s):		
PID Calibration	Perfo	rmed? (circ	le)		Yes	No	4. High Pressi	ure	Equipmen	nt:	
PID (Calibra	ition		Zero Gas	Span Gas		5. Low Pressu	ıre	Equipmen	nt:	
Calib	ration '	Value (ppm):	0	100		6. System Shu	utdown	Equipmen	ıt:	
Instru	ıment l	Reading (p	om):	0	101.2		7. Temperatur	re	Equipmen	nt:	
							8. Other:				

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	-	С	Before MS	VI 210		11.5			
RW-3	-	-	-	С	After MS	PI 310		26			
RW-4	-	-	-	0	Before Blower	VI 300		12.4			
RW-5		-	-	С	After Blower	PI/FI 302		2.2	64.1		
RW-6	-	-	-	0	At Heat Exchanger	TT-302		60.6			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		1.4	-	537	
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		0	-	85.3	
RW-9	-	-	-	0	After Vapor GAC**	PI 410		0	-	6.4	
RW-10	-	-	-	С	After Pump P-400	PI 400		0			
SW-1	-	-	-	С	Before Bag Filter	PI-405		0			
SW-2	-	-	-	0	After Bag Filter**	FI 400/PI 401		0	-		
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			-		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	ı	0	After Liquid GAC 2	FE-407			-		
SSD-2	-	-	=	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	=	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A				
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A		
VP-2	-		-		Catalytic Oxidizer Flow Rate (scfm)						
VP-3	-		-		Water Discharge Flow Totalizer Date Time Total Flow (gal)			ow (gal)			
VP-4	-		-			FT 500	5/16/2025	12:00	56,640		
						FT 500					

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	ce Activities: Permit Discharge Limits (see permits)					
Collect system readings		Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Record totalizer from flow meter		If exceeded, notify Kenr	nedy Jenks personi	nel.		
Collect weekly BTEX midpoint sample						

Collect weekly BTEX midpoint sample

Collect system vapor influent and effluent PID measurements

Name & C	company:	ERRG	FI/DC				System	On on Arrival	? (circle):	yes	no
Date/time	of data colle	ection:	5/23/2025					Syste	m Hours:	3801.	В
Weather:			Clear, Warn	า		•	Phase 1: MPE	SVE, all active	EIWs in extr	action mode) .
Barometri	c pressure (psi):	29.88				Barometric Pr	essure source	e: /	Anemomet	er
Ambient T	emperature	(°F):	66				Ambient Temp	perature sourc	e: I	nternet	
Noise (dB.	A):	50-75	If above 60 dB/	A, notify KJ pe	rsonnel		Noise measur	ement source	: 1	loise mete	r
Moisture S	Separator D	rained? (circle	e)		Yes	No	Active Alarm C	Conditions (circl	e, note affe	cted equipr	nent):
	Approxima	te volume (ga	al):		2 cycles whi	le onsite	1. No Alarm				
Catalytic C	Oxidizer Inst	alled? (circle)		Yes	No	2. High Water	Level	Tank(s):		
E	Effluent Vap	or VOC Cond	(ppm):		-		3. Low Water	Level	Tank(s):		
PID Calibr	ation Perfor	med? (circle))		Yes	No	4. High Press	ure	Equipmen	t:	
F	PID Calibra	tion		Zero Gas	Span Gas		5. Low Pressu	ıre	Equipmen	t:	
(Calibration \	/alue (ppm):		=	-		6. System Shi	utdown	Equipmen	t:	
Ī	nstrument F	Reading (ppm	1):	-	-		7. Temperatur	re	Equipmen	t:	
							0 Othor:				

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System							
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)		
RW-2	-	-	-	С	Before MS	VI 210		12				
RW-3	-	-	-	С	After MS	PI 310		26				
RW-4	-	-	-	0	Before Blower	VI 300		12.8				
RW-5	-	-	-	С	After Blower	PI/FI 302		2.1	60.7			
RW-6	-	-	-	0	At Heat Exchanger	TT-302		67.5				
RW-7	-	-	-	С	Before Vapor GAC	PI 411		0	-	-		
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		0	-	-		
RW-9	-	-	-	0	After Vapor GAC**	PI 410		0	-	-		
RW-10	-	-	-	С	After Pump P-400	PI 400		0				
SW-1	-	-	-	С	Before Bag Filter	PI-405		0				
SW-2	-	-	-	0	After Bag Filter**	FI 400/PI 401		0	-			
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0				
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			-			
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0				
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-			
SSD-2	=	-	-	0	After Liquid GAC**	PI-404		0				
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	ratures (°F)	N/A					
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A			
VP-2	-		-		Catalytic Oxidizer Flow Rate (scfm) N/A							
VP-3	-		-		Water Discharge Flow Totalizer Date Time Total Flow (ow (gal)					
VP-4	-		-			FT 500	5/23/2025	13:00	62.278			
					-	FT 500						

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities: Permit Discharge Limits (see					
Collect system readings, record totalizer from flow meter	Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Collect weekly BTEX midpoint sample, collect monthly system water samples. If exceeded, notify Kennedy Jenks personnel.					

Turbidity and pH readings for influent, midpoint, and effluent samples: 7.48/26 NTU, 7.41/3.4 NTU, 7.32,7.34 / 2.5,4.6 NTU

Blaine Tech onsite to collect monthly groundwater samples.

Noise measurements collected at various locations: adjacent to system 70-75 dB, adjacent to main road 62-74 dB

adjacent to McGraw 51-69 dB, at front door of mart/dry cleaner 63-74 dB (second measurement indicative of moving vehicle influence

Name &	Company:	ERRG	FI				System On o	on Arrival? (circle):	yes	no
Date/time	e of data coll	ection:	5/30/2025					System Hours:	3968.	2
Weather			Clear, Warn	n			Phase 1: MPE / SVE,	, all active EIWs in extr	action mod	e.
Barometi	ric pressure	(psi):	29.88				Barometric Pressu	re source:	Anemome	ter
Ambient	Temperature	e (°F):	75				Ambient Temperat	ture source:	nternet	
Noise (di	3A):		If above 60 dB	A, notify KJ pe	rsonnel		Noise measuremen	nt source:		
Moisture	Separator D	rained? (circ	e)		Yes	No	Active Alarm Condit	tions (circle, note affe	cted equip	ment):
	Approxima	ate volume (g	al):		1 cycle while	onsite	1. No Alarm			
Catalytic	Oxidizer Ins	talled? (circle	·)		Yes	No	2. High Water Leve	el Tank(s):		
	Effluent Var	oor VOC Con	c (ppm):		-		3. Low Water Leve	el Tank(s):		
PID Calib	ration Perfo	rmed? (circle)		Yes	No	4. High Pressure	Equipmen	t:	
	PID Calibra	ition		Zero Gas	Span Gas		5. Low Pressure	Equipmen	t:	
	Calibration '	Value (ppm):		0	100		6. System Shutdov	wn Equipmen	t:	
	Instrument	Reading (ppn	າ):	0	100.9		7. Temperature	Equipmen	t:	
							8. Other:			

	Wells - Inject	ion/Extraction	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	-	С	Before MS	VI 210		11.5			
RW-3	-	-	-	С	After MS	PI 310		26			
RW-4	-	-	-	0	Before Blower	VI 300		12.3			
RW-5	-	-	-	С	After Blower	PI/FI 302		2	59.8		
RW-6	-	-	-	0	At Heat Exchanger	TT-302		75.1			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		0	-	560 / 168.4	
RW-8	-	-	-	0	Vapor GAC Midpoint**	PI 412		0	-	-	
RW-9	-	-	-	0	After Vapor GAC**	PI 410		0	-	72.1 / 43.2	
RW-10	-	-	-	С	After Pump P-400	PI 400		0			
SW-1	-	-	-	С	Before Bag Filter	PI-405		0			
SW-2	-	-	-	0	After Bag Filter**	FI 400/PI 401		0	-		
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	-	-	-	С	After Liquid GAC 1	FE-404			-		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-		
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A				
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Post	:: N/A		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	N/A				
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)	
VP-4	-		-			FT 500	5/30/2025	13:00	66,541		
					•	FT 500					

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharg	e Limits (se	e permits):		
Collect system readings, record totalizer from flow meter.	Air: 200 scfm	Water:	3 gpm / 4500 gpd		
Collect influent, midpoint, and effluent PID measurements	If exceeded, notify Kennedy Jenks personnel.				

Collect weekly BTEX midpoint sample

Collect monthly system vapor samples collected,

Vapor GAC not meeting 97% control and/or <10 ppm at effluent, adjusted wells to reduce influent from 560 ppm to 168.4 ppm

Vapor GAC still below 97% control and above 10 ppm, shut system down, coordinate for carbon changeout

Name & 0	Company:	ERRG	FI / DC				System	On on Arrival	? (circle):	yes	no	
Date/time	of data coll	ection:	6/13/2025				System Hours: 3969.6					
Weather:			Clear, cool			•	Phase 1: MPE /	SVE, all active I	EIWs in extra	action mod	le.	
Barometr	ic pressure	(psi):	29.88				Barometric Pr	essure source	: <i>F</i>	Anemome	ter	
Ambient '	Temperature	e (°F):	64				Ambient Temperature source: Internet					
Noise (dE	3A):		If above 60 dB/	A, notify KJ pe	rsonnel		Noise measurement source:					
Moisture	Separator D	rained? (circ	e)		Yes	No	Active Alarm C	onditions (circle	e, note affe	cted equip	ment):	
Approximate volume			al):	2 cycles while			1. No Alarm					
Catalytic	Oxidizer Ins	talled? (circle)		Yes	No	2. High Water	Level	Tank(s):			
	Effluent Var	or VOC Con	c (ppm):		-		3. Low Water	Level	Tank(s):			
PID Calib	ration Perfo	rmed? (circle)		Yes	No	4. High Pressu	ure	Equipmen	t:		
	PID Calibra	tion		Zero Gas	Span Gas		5. Low Pressu	ire	Equipmen	t:		
	Calibration Value (ppm):			0	100		6. System Shutdown Equipme		Equipmen	t:		
Instrument Reading (ppm):			0	99.6	9.6 7. Temperature Equipmer		t:					
							0 Othor:					

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System							
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)		
RW-2	5.5	-	-	0	Before MS	VI 210		11.5				
RW-3	5.5	-	-	0	After MS	PI 310		26				
RW-4	-	-	-	С	Before Blower	VI 300		12.4				
RW-5	-	-	-	С	After Blower	PI/FI 302		2.6	86.2			
RW-6	10	-	-	0	At Heat Exchanger	TT-302		63.2				
RW-7	=	-	-	С	Before Vapor GAC	PI 411		0	-	303		
RW-8	5.5	-	-	0	Vapor GAC Midpoint**	PI 412		0	-	5.5		
RW-9	-	-	-	С	After Vapor GAC**	PI 410		0	-	1.4		
RW-10	-	-	-	С	After Pump P-400	PI 400		0				
SW-1	=	-	-	С	Before Bag Filter	PI-405		0				
SW-2	=	-	-	С	After Bag Filter**	FI 400/PI 401		0	-			
SW-3	=	-	-	С	Midpoint Liquid GAC 1**	PI 403		0				
MW-4	10	-	-	0	After Liquid GAC 1	FE-404			=			
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0				
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-			
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0				
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A					
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A			
VP-2	=		-		Catalytic Oxidizer Flow Rate (scfm) N/A							
VP-3	-		-		Water Discharge Flow Totalizer Date Time Total Flow (g		ow (gal)					
VP-4	-		-			FT 500	6/13/2025	13:00	66,874			
					-	FT 500						

** Location for collection of air or water sample for laboratory analysis.

6/4 DC collected carbon sample to submit for VOC/RCRA-8/TCLP for profiling	Air: 200 scfm	Water:	3 gpm / 4500 gpd
6/12 Carbon change out performed by Pacific Coast Carbon, spent carbon evacuated	If exceeded, notify Kenr	nedy Jenks personi	nel.

into super sac's, Vapor GAC vessels filled with 4,000lbs of 4x10 virgin coconut carbon, bolt stripped, sealing bolt opening until repair

Spent carbon will be reactivated for reuse by Pacific Coast Carbon. Pacific Coast Carbon to retap bolts on 6/17.

6/13 System restarted at 1030am, no issues with seal, returned to operation, collect system readings, record totalizer from flow meter

Collect system vapor influent and effluent PID measurements, collect weekly BTEX midpoint sample

Name & 0	Company:	ERRG	FI				System On o	n Arrival? (circle):	yes	no
Date/time	of data coll	ection:	6/20/2025					System Hours:	4142.2	2
Weather:			Partialy Clo	udy, Cool			Phase 1: MPE / SVE,	all active EIWs in extr	raction mode) <u>.</u>
Barometr	ic pressure	(psi):	29.88				Barometric Pressur	e source:	Anemomet	er
Ambient ⁻	Temperature	e (°F):	66				Ambient Temperatu	ıre source:	Internet	
Noise (dE	BA):		If above 60 dB	A, notify KJ pe	rsonnel		Noise measuremen	nt source:		
Moisture	Separator D	rained? (circ	le)		Yes	No	Active Alarm Conditi	ons (circle, note affe	cted equipn	nent):
	Approxima	ate volume (g	al):		2 cycles whil	le onsite	1. No Alarm			
Catalytic	Oxidizer Ins	talled? (circle))		Yes	No	2. High Water Leve	l Tank(s):		
	Effluent Var	oor VOC Con	c (ppm):		-		3. Low Water Level	Tank(s):		
PID Calib	ration Perfo	rmed? (circle	·)		Yes	No	4. High Pressure	Equipmer	nt:	
	PID Calibra	ition		Zero Gas	Span Gas		5. Low Pressure	Equipmer	nt:	
	Calibration '	Value (ppm):		0	100		6. System Shutdow	n Equipmer	nt:	
	Instrument	Reading (ppr	n):	0	100.7		7. Temperature	Equipmer	nt:	
							8 Other			

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System						
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)	
RW-2	-	-	-	С	Before MS	VI 210		11.5			
RW-3	5.5	-	32-340.9	0	After MS	PI 310		26			
RW-4	-	-	-	С	Before Blower	VI 300		12.6			
RW-5	-	-	-	С	After Blower	PI/FI 302		2.8	83.6		
RW-6	10	-	641	0	At Heat Exchanger	TT-302		65.3			
RW-7	-	-	-	С	Before Vapor GAC	PI 411		0	-	261.2 / 298.2	
RW-8	5.5	-	432	0	Vapor GAC Midpoint**	PI 412		0	-	0.6 / 0.3	
RW-9	-	-	-	С	After Vapor GAC**	PI 410		0	-	0.0 / 0.0	
RW-10	-	-	-	С	After Pump P-400	PI 400		0			
SW-1	-	-	-	С	Before Bag Filter	PI-405		0			
SW-2	-	-	-	O	After Bag Filter**	FI 400/PI 401		0	-		
SW-3	-	-	-	O	Midpoint Liquid GAC 1**	PI 403		0			
MW-4	10	-	31.6	0	After Liquid GAC 1	FE-404			1		
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		0			
SSD-1	-	-	-	0	After Liquid GAC 2	FE-407			-		
SSD-2	-	-	-	0	After Liquid GAC**	PI-404		0			
SSD-3	-	-	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A				
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Pos	t: N/A		
VP-2	-		-		Catalytic Oxidizer Flow R	ate (scfm)	N/A				
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)	
VP-4	-		-			FT 500	6/20/2025	12:00	72,048		
						FT 500					

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharg	e Limits (se	e permits):
6/17 DC and Pacific Coast Carbon onsite to retap bolts on Vapor GAC vessel lids.	Air: 200 scfm	Water:	3 gpm / 4500 gpd
System down for <30 minutes, returned to operation without issue upon completing repairs.	If exceeded, notify Kenned	y Jenks personn	el.

6/20 Collect system readings, record totalizer from flow meter, collect system vapor and vapor pin samples

Collect weekly BTEX midpoint sample, collect system vapor influent and effluent PID measurements

Closed RW-2 to improve vacuum, increased from 9.0 inHg to 12.6 inHg, flow reduced from 106.5 cfm to 83.6 cfm.

Influent vapor increased from 261.2 ppm to 298.2 ppm after closing RW-2.

Name & 0	Company:	ERRG	FI				System	On on Arrival?	(circle):	yes	no	
Date/time	of data coll	ection:	6/27/2025				System Hours: 4308.2					
Weather:			Overcast, C	ool		'	Phase 1: MPE / SVE, all active EIWs in extraction mode.					
Barometr	ic pressure	(psi):	30.06			Barometric Pressure source: Anemome					er	
Ambient '	Temperature	e (°F):	67				Ambient Temperature source: Internet					
Noise (dBA): If above 60 dBA, not				A, notify KJ pe	rsonnel		Noise measur	ement source:				
Moisture	Moisture Separator Drained? (circle)				Yes	No	Active Alarm Conditions (circle, note affected equi		cted equipr	nent):		
Approximate volume (gal):			2 cycles while	e onsite	1. No Alarm							
Catalytic	Oxidizer Ins	talled? (circle	e)		Yes	No	2. High Water	Level	Tank(s):			
	Effluent Vap	or VOC Con	c (ppm):		-		3. Low Water	Level	Tank(s):			
PID Calib	ration Perfo	rmed? (circle	e)		Yes	No	4. High Pressure		Equipment:			
	PID Calibra	ition		Zero Gas	Span Gas		5. Low Pressure		Equipment:			
Calibration Value (ppm):		0	100	100		6. System Shutdown Equip		t:				
Instrument Reading (ppm):		0	100.8		7. Temperature Equipment:							
							8 Other:					

	Wells - Inject	ion/Extractio	n (At Manifol	d)	Treatment System					
Well ID	Pres/Vac (in Hg)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Location	ID	Temp (°F)	Pres/Vac (psi or inHg)	Flow (cfm/gpm)	PID (ppm)
RW-2	-	-	-	С	Before MS	VI 210		11.5		
RW-3	5.5	31.9	-	0	After MS	PI 310		26		
RW-4	-	-	-	С	Before Blower	VI 300		12		
RW-5	-	-	-	С	After Blower	PI/FI 302		2.9	88.3	
RW-6	10	43.2	-	0	At Heat Exchanger	TT-302		71.3		
RW-7	-	-	-	С	Before Vapor GAC	PI 411		0	-	294.2
RW-8	5.5	23.6	-	0	Vapor GAC Midpoint**	PI 412		0	-	0.4
RW-9	-	-	-	С	After Vapor GAC**	PI 410		0	-	0
RW-10	-	-	-	С	After Pump P-400	PI 400		32		
SW-1	-	-	-	С	Before Bag Filter	PI-405		32		
SW-2	-	-	-	С	After Bag Filter**	FI 400/PI 401		23	-	
SW-3	-	-	-	С	Midpoint Liquid GAC 1**	PI 403		23		
MW-4	10	53.4	-	0	After Liquid GAC 1	FE-404			6.13	
Well ID	Pres/Vac (inWC)	Flow (cfm)	PID (ppm)	Valve (O/C, fraction)	Midpoint Liquid GAC 2**	PI 406		9		
SSD-1	0.495	6.4	-	0	After Liquid GAC 2	FE-407			5.76	
SSD-2	0.35	4.4	-	0	After Liquid GAC**	PI-404		25		
SSD-3	1.52	24.3	-	0	Catalytic Oxidizer Tempe	eratures (°F)	N/A			
VP-1	-		-		Catalytic Oxidizer PID (p	pm)	Pre: N/A	Post	t: N/A	
VP-2	-		-		Catalytic Oxidizer Flow R	Catalytic Oxidizer Flow Rate (scfm)				
VP-3	-		-		Water Discharge Flow To	otalizer	Date	Time	Total FI	ow (gal)
VP-4	-		-			FT 500	6/27/2025	12:00	76,354	
					•	FT 500				
									•	

** Location for collection of air or water sample for laboratory analysis.

Comments/Maintenance Activities:	Permit Discharge	Limits (see	permits):
Drew from KCIW onsite to collect effluent samples for permit compliance	Air: 200 scfm	Water:	3 gpm / 4500 gpd
Collect system readings, record totalizer from flow meter .	If exceeded, notify Kennedy	Jenks personne	el.

Measure flows on active wells, record vacuums.

Collect weekly BTEX midpoint sample, collect monthly system water samples.

Turbidity and pH readings for influent, midpoint, and effluent samples: 7.66/45 NTU, 7.53/22 NTU, 7.50,7.50 / 5.6,4.8 NTU

Collect system vapor influent and effluent PID measurements

WELL GAUGING DATA

Afternoon to the December of the Art of the All Profession of the Art of the	25		
D-1-1 250475-V11	11 1-15 1-5	Client ERRG	
Project # 250425-KC1	Date 4 1 8/2 /25	Client CERG	
A LEAD IN THE CONTRACT OF THE			

Site 2350 24th Ave E, Seattle WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-2	0815	2	-	1	1	-	9.23	16.44		
MW-4	0808	2	-	ŀ	1	1	30.60	87.95		
MW-6	1022	2	+	1	1	I	11.71	20.38		
MW-7	0805	2	-	-1	T	1	8.35	20.40		
MW-8	0951	2	odor	1	Î		9.80	19.40		
Mwg	0925	2	-	1	j	_	10.58	20.29		
MW-10		1	0654	ructe	da	9.22		_		
MW-11	0806	2	_	1	1	1	3.30	19.78		
MW-13	1580	2	-	1	Ţ	-	12.20	18.68		
MW-14	0811	2	-	1	-	-	8.11	18.81		
MW-15	0809	2	-	1	1	-	8.34	16.44		
MW-16	0934	2	1	-	-	-	9.01	16,99		
MW-17	0820	Z	-	-		-	13.34	19.73		
MW-L8	0815	2	_			1	13.28	14.91		
MW-19	0836	2	-	1	17-1	1	14.39	20.01		
MW-20	0827	Ч	-	J		-	14.53	19.61		
15-WM	8280	4	-		T e l	اجينا	14.60	18.67	1	

1g 20 f Z

WELL GAUGING DATA

Project # 2350-250425-KC Date	4/25/25	Client ERRG	

Site 2350 Zym Are E, Scattle WA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
RW-1	0809	4	-	-	-	_	13.66	19.96		
Rw-2	0817	4	1	-	-	Œ.L.	12.15	19.25		
RW-3	0819	4	-	H [_	-	12-11	19.76		
RW-4	0818	ч	Là	+	-	_	12.72	14.94		
NW5	0835	4		je.	4	- E	14.31	19.51		
RW-6	0814	4	-	ÆN	-	-	8.05	19.61		
RW7	0679	4	_	-		La I	17.13	18.69		
RW-8	0825	4	-	-	-	-	13.03	20.10		
RW9	0825	4	-		-	-	12.26	20.12		
RW-W	0831	4	Te	- 1	7	-	14.84	30.50	J	

		LOW F	LOW WE	LL MONI	TORING	DATA S	SHEET			
Project #	: 25042	25-Kc	7	Client: ERRG						
Sampler:	Ke			Gauging Date: 4/25/25						
Well I.D.	: MW-6			Well Diameter (in.): (2) 3 4 6 8						
Total We	ell Depth (f	t.):20.	38	Depth to Water (ft.): 11.71						
Depth to	Free Produ	ıct: -		Thickness	of Free Pr	oduct (fe	et): —			
Referenc	ed to:	PTO	Grade	Flow Cell	7	V1				
Purge Meth Sampling M	1ethod:	2" Grundfo Dedicated	Dibing	200	Peristaltic P New Tubing	A 10 **	Bladder Pump Other	. 3.0		
Start Purge	Time: 102		Flow Rate: _2	200 ML /	41.7	_	Pump Depth: 10	0.3		
Time	Temp.	pН	Cond. (mS/cm or (MS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Wate (ft.)		
1027	14.12	6.45	660	89	2.94	85.9	600	12.00		
1030	14.40	6.90	470	86	2.78	79.5	1200	12.05		
1033	14.42	6.95	672	112	2.71	75.4	1800	12.08		
1036	14.21	6.97	473	toa	2.70	76.4	2400	12.10		
1039	14.26	6.97	668	105	7.68	775.7	3000	12.14		
	/									
								1		
/						— Т				
Did well	dewater?	Yes	<u> </u>	-	Amount	actually e	vacuated: 3 c	Dodno		
Sampling	g Time: \C	142			Sampling	Date: 4	125/25			
Sample I	.D.: Mw	-6			Laborato	ry: PAC	E			
Analyzed	l for:	TPH-G	BTEX MTE	BE TPH-D		Other: 5	ee coc			
Equipme	nt Blank I.	D.:	@ Time		Duplicate	e I.D.: ∇	1-10			
Sample I Analyzed	.D.: Mw I for:	TPH-G	@	BE TPH-D	Laborato	ry: PAC Other: S	E coc			

Project #	: 25042	5- KC		Client: ERRG						
Sampler	marker are to			Gauging Date: 4/25/25						
Well I.D	: MW-8			Well Diameter (in.): 2 3 4 6 8						
Total We	ell Depth (f	ft.): 19	40	Depth to Water (ft.): 9,80 —						
7-11-1-17	Free Produ			Thickness of Free Product (feet):						
Reference		evo	Grade	Flow Cell Type: HANNA						
Purge Meth Sampling M		2" Grundf Dedicated	Tubing	7.0 4	Peristaltic I New Tubin	VCV-CC*	Bladder Pump Other			
Start Furge	Time: Dety	,	2 (0.00) (0.00)	200 mm/	m.,7	_	Pump Depth: _\	2		
Time	Temp.	pН	Cond. (mS/cm or aS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals, or m)	Depth to Water (ft.)		
0958	14.30	6.95	372	25	2.84	75.7	600	10.15		
1001	14.33	6.89	371	43	2.73	81.3	1200	10.21		
1004	14.18	6.82	369	47	264	79.1	1800	10.24		
1007	14.36	6.77	369	50	2.60	77.1	2400	10.28		
1010	14.23	6.75	370	49	2.60	76.5	3000	10.30		
		/	$\overline{)}$							
	/									
0	/		-		/			-/		
		-	1							
- 1		,								
Did well	dewater?	Yes	10		Amount	actually o	evacuated: 3	200mL		
Sampling	g Time: رز)13			Sampling	g Date: L	1125125			
Sample I	.D.: MW	8-1			Laborato	ry: PAC	E			
Analyze	d for:	TPH-G	BTEX MTI	BE TPH-D		Other: S	ice con			
Equipme	ent Blank I.	D.:	@ Time		Duplicat	eID.	_			

Project #	: 25042		LOW WE	Client: E		DATA	SHEET				
	-/-	J-KCI					2				
Sampler:	ke			Gauging Date: 4 (25/25							
Well I.D.	: MW-9			Well Diam	Well Diameter (in.): 2 3 4 6 8						
Total We	ll Depth (f	t.): 20.	29	Depth to Water (ft.): 10.58							
Depth to	Free Produ	ict:	-	Thickness of Free Product (feet):							
Reference	ed to:	TVO	Grade	Flow Cell	Type: HA	WWA					
Purge Meth Sampling M	fethod:	2" Grundfe Dedicated	Fubing	4	Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time: 092			200 mm1	min	-	Pump Depth: \(\)	6			
Time	Temp.	pH	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals, or mD)	Depth to Water (ft.)			
0930	14.25	7.10	530	23	2.86	87.7	600	10.79			
0933	14.41	7.01	536	20	2.78	85-1	1200	10.81			
0936	14.43	6.97	540	21	2,71	80.4	1800	10.85			
0939	14.35	6.90	537	22 2.67		80.0	7400	10.85			
0942	14.46	6.89	537	23	2.64	79.4	3000	10.85			
		1									
	/	1									
								/			
/				-/				-			
		_		-							
Did well	dewater?	Yes (No		Amount	actually e	l evacuated: 3೦	000			
Sampling	g Time: O	945	675		Sampling	g Date: 4	1/25/25	5			
Sample I	.D.: MW-	q			Laborato						
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D		Other: Je	ce coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicate	11.11.97					

Project #	: 25042	5-KC	1	Client: ERIG							
Sampler:				Gauging Date: 4/25/25							
	: MW-13			Well Diameter (in.): ② 3 4 6 8							
	ell Depth (f		4.4	Depth to Water (ft.): \7.20							
William Co.	Free Produ		0	Thickness of Free Product (feet):							
Reference	Transaction of the last of the	EV2	Grade	Flow Cell Type: HANNA							
Purge Meth Sampling N	iod:	2" Grundf Dedicated	Pubing		Peristaltic Dump Bladder Pump New Tubing Other 200 ml/nin Pump Depth: 16						
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water			
1130	17.25	7.15	707	61	298	95.8	600	13.01			
1133	17.15	7.12	641	63	2.65		lead	13.34			
1136	17.76	7.07	635	58	2.51	85,1	1800	13.59			
1134	17.71	7.06	633	57 2.44	2.49	184.8	2400	13.85			
1142	17.84	7.08	630	56	2.48	84.5	3000	13.92			
)								
/		-									
Did well	dewater?	Yes	Ø)		Amount	actually e	vacuated: 30	Done			
Sampling	g Time: \[45			Sampling	Date: υ	1125 125	A 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			
Sample I	.D.: MW-1	3			Laborato						
Analyzed	l for:	TPH-G	BTEX MTI	BE TPH-D		Other: Se	e coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicate		_				

_			2011112	LL INIOIN	- CILLII		VALUE A			
Project #	250429	5-KC1		Client: E	FRRG					
Sampler:				Gauging I	Date: 04	125 125				
Well I.D		14 377 (Well Dian	neter (in.)	: ② 3	4 6 8	3		
Total We	ell Depth (f	~	31	Depth to V	TOTAL CATALO	T .T971 311				
Lav bur.	Free Produ		17,7	Thickness	of Free P	roduct (fe	et): —			
Referenc		P	Grade	Flow Cell	-	Hann				
Purge Meth Sampling N		2" Grundfo Dedicated	C & W. A (A 1971)	am 1	Peristatic New Tubin	Pump g	Bladder Pump Other Pump Depth:			
Start Furge	Time. 0-10	<u></u>	1 0 10	200ml	min .		Pump Depun:	15.5		
Time	Temp.	pН	Cond. (mS/cm or µS/c	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nD)	Depth to Water (ft.)		
0906	13.27	6.17	386	20	1.44	323.1	600	8.17.		
0909	13.25	5.87	389	19	1.08	334.8	1200	8.19		
0912	13.28	5.79	390	19	0.96	340.2	1800	8.21		
0915	13. 26	5.71	389	19	0.93	343.0	2400	8.23		
8180	13.25	5.69	886	19	0.88	345.5	3000	8.24		
	/									
,			1							
-										
					-		/			
Did well	dewater?	Yes	160		Amount	actually e	vacuated: 2	sooul.		
Sampling	g Time:	1590			Sampling	g Date: C	4/25/25.			
Sample I	.D.: MU	v-14.			Laborato		ce.			
Analyzed	And the second	TPH-G	BTEX MTI	BE TPH-D			See cox			
Equipme	nt Blank I.	D.:	@ Time	Describe etc. I.D.						

Project #	250475	5-KC1		Client: E	RRG			
Sampler:				Gauging D	7.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	25/25		
Well I.D.				Well Diam		~	4 6 8	3
Total We	ll Depth (f	1.0	.13	Depth to V		T. Butters		
Pri Wallan	Free Produ			Thickness			7.	
Reference		PVC	Grade	Flow Cell		Han		
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	A CONTRACTOR OF THE CONTRACTOR	2000	Peristaltic I New Tubin	ump g	Bladder Pump Other Pump Depth:	
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m/D)	Depth to Water
1004	13.92	5.14	107	30	1.76	357.3	600	8.39.
FOOL	13.93	4.94	104	20	1.68	363.2	1200	8.41
1010	13.95	4.86	104	18	1.57	364.9	1800	8.43
1013	13.99	4.82	105	17	1.96	363.0	2400	8.45.
1016	14.01	4.83	105	I7.	1.38	362.4	3000	8.46.
							/	
-/							/	
			1					
Did well	dewater?	Yes	69		Amount	actually e	vacuated: 3	2000al.
Sampling	Time:	1019			Sampling	g Date:	04/25/25	
Sample I.	D.: MU	U-15			Laborato	THE THE PER	ce.	
Analyzed		TPH-G	BTEX MTI	BE TPH-D			ce coc.	
Equipme	nt Blank I.l	D.:	@ Time		Duplicat		_	

Project #	: 25047	25-KC1		Client: E	PRG			
Sampler:		THE ACCUMUNT		Gauging I	Date: 04	25/25		
Well I.D				Well Dian	neter (in.)		4 6 8	3
Total We	ell Depth (f	t.): 16	.99	Depth to V	Vater (ft.)	: 09.0	o)	
Depth to	Free Produ	uct: —		Thickness	of Free Pr	oduct (fe	et):	
Referenc	ed to:	PYC	Grade	Flow Cell	Type:	Hanr	<u>α</u> .	
Purge Meth Sampling M Start Purge		2" Grundfo Dedicated	Tubing	200ml/m	PeristaltioP New Tubing	'ump g	Bladder Pump Other	
Time	Temp.	pН	Cond. (mS/cm or µS/(m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)
0939	14.06	5.52	933	104	0.58	339.4	600	09.08
0947	14.13	5.58	949	97	0.46	334.6	1700	09.10
0945	14.09	5.62	949	72	0.33	331.6	1800	09.12.
0948	14.10	5.66	950	69	0.31	328.3	2400	09.14.
0951	14.13	5.68	948	F 6	0.30	326.8	3000	09.16
			1				/	
/								
/				1				
Did well	dewater?	Yes	60		Amount	actually e	vacuated:	300 ml.
Sampling	g Time: (2954			Sampling	g Date: (04/25/25	
Sample I	12.00 L VO	W-16			Laborato	ry: Pc	ice.	
Analyzed	d for:	TPH-G	BTEX MT	BE TPH-D			Seecoc	
Equipme	ent Blank I.	D.:	@ Time		Duplicate			

Project #	25047	5-KC1	Tiek.	Client:	ERRG					
Sampler:		idy r		Gauging D	ate: 041	25/25				
Well I.D.			Y	Well Diam	eter (in.)	(2) 3	4 6 8			
Total We	ell Depth (f		.73	Depth to W	Vater (ft.)	: 13.3	9			
Depth to	Free Produ	1923		Thickness	red man	7 - 71 - 17				
Referenc	ed to:	r(VC)	Grade	Flow Cell	THE PERSON NAMED IN	1 1-1-1 No. 1	mel			
Purge Meth Sampling M Start Purge		2" Grundfo Dedicate		200-11	Peristatic New Tubin	g	Bladder Pump Other_ Pump Depth:			
Time	Temp.	pН	Cond. (mS/cm or µS/(m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nD)	Depth to Water (ft.)		
8011	14.63	5.89	151	17	3.27	315.1	600	13.47.		
1111	14.57	5.86	152	17	3.20	316.1	1200	13.51		
1114	14.50	5.87	152	17	3.14	318.1	1800	13.54		
FILL	14.61	5.80	151	17	3.13	319.4	2400	13.57.		
1150	14.69	5.79	152	18	3.09	3209	3000	13.61		
			1							
/										
/	120000000		0				Comments.			
Did well	dewater?	Yes	(6)		Amount	actually e	vacuated: 3	500ml.		
Sampling	g Time:	123			Sampling	g Date: C	25/25	37. (5.7.)		
Sample I	.D.: Mu)-17.			Laborato	ry: Fa	ce			
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D		Other:	See coc.			
Equipme	nt Blank I.	D.:	@ Time	Development I D						

				1	. OILLI		CILLEI						
Project #	: 25042	25-KL1	6-0-000	Client: ERRG									
Sampler:	no on			Gauging I	Date: 4/2	5/25							
Well I.D	.: MW-18			Well Dian	neter (in.)	: (2) 3	4 6 8	3					
Total We	ell Depth (f	t.): 14	1.91	Depth to V									
Depth to	Free Produ	ict:	_	Thickness		TELEVISION AS							
Referenc		(PVb)	Grade	Flow Cell									
Purge Meth Sampling N		2" Grundf Dedicated		100 m	Peristaltic I New Tubin	7	Bladder Pump Other_ Pump Depth:						
			(17 des 50 VIII) -	1	1		Tump Depui						
Time	Temp.	pН	Cond. (mS/cm or us/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nL))	Depth to Water (ft.)					
1132	15.32	7.44	439	36	1.55	40.3	300	13.62					
1135	15.79	7.12	448	31	1.50	102.1	600	13.97					
1138	15.98	7.01	448	28	1.60	105.1	900	14.21					
			wel	l der	pateri	ng	/						
_			Samp	le La		114		/					
		7	417.5		Line	111	1						
Did wall	dewater? ((C)	N.		A		1 0	100					
C + 1881 #77 #1			No					100					
Sampling	g Time:	1140					4/25/25						
Sample I	.D.: MW	-18			Laborato	ry: PA	CE						
Analyzed	d for:	TPH-G	BTEX MTI	BE TPH-D		Other:	See co	4					
Equipme	ent Blank I.	D.:	@ Time	Direction ID									

Project #	: 25042	5-KC1	1	Client: ERRG									
Sampler:	Sane	lu		Gauging D		25/25							
Well I.D.				Well Dian	neter (in.)	(2) 3	4 6 8	3					
Total We	ell Depth (f	t.):16	.58	Depth to V	Water (ft.)	: 14.	39						
Depth to	Free Produ	ict:	77.7	Thickness	of Free Pr	oduct (fe	et): —						
Referenc		PVC	Grade	Flow Cell		Hanne	- 21-						
Purge Meth Sampling M	1ethod:	2" Grundfo Dedicate	Tubing		Peristal ic P	200 - 200	Bladder Pump Other						
Start Purge	Time: 102	9_	Flow Rate: _	200ml	min.	_	Pump Depth:	15.5'					
Time	Temp.	pН	Cond. (mS/cm or µS/qm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)					
1032	15.13	5.87	212	14	0.61	321.9	600	14.46					
1035	15.23	5.95	229	14	0.49	310.3	1200	14.49					
1038	15.29	5.99	231	13	0.44	300.5	1800	14.52					
1041	15.26	6.05	232	13	0.43	293.5	2400	14.55					
1044	15.37	6.06	233	14	0.39	289.7	3000	14.58					
,													
_/				1									
-													
/													
Did well	dewater?	Yes	6		Amount	actually e	vacuated: 2	5000l.					
Sampling	g Time: ျ	FPO			Sampling	g Date:	04/25/25						
Sample I	.D.: MW	-19			Laborato	ry: Fa	Bee-						
Analyzed	d for:	TPH-G	BTEX MTI	BE TPH-D		Other:	See coc.						
Equipme	nt Blank I.	D.:	@ Time	Doublines I.D.									

Project #	: 2504	25 - K	c1.	Client: F	ERRG			
Sampler:	- CT T	du M		Gauging D	Pate: 04	25 25	5	
Well I.D.		1		Well Diam		A		3
Total We	ell Depth (f	t.): 19.	61	Depth to V				3
TANK MEDICAL TOTAL	Free Produ	7 ()	-	Thickness	A. 1			
Referenc		(VC)	Grade	Flow Cell		Hann	0.81	
Purge Meth Sampling M Start Purge		2" Grundfo Dedicate	Tubing	200m	Peristatic P	ump	Bladder Pump Other Pump Depth:	17.51
Time	Temp.	pН	Cond. (mS/cm or µS/m	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)
1142	18.87	7.15	1375	215	0.42	1527	600	14.58
1145	18,35	7.19	1335	707	0.73	104.6	1200	14.61
1148	18.87	7.16	1331	200	0.68	93.8	1800	14.64
1151	18.81	7.15	1326	198	0.55	F.P8	2400	14.66
1154	18.69	7.15	1327	193	0.49	84.3	3000	14.68
								/
1				1			/	
/								
Did well	dewater?	Yes	6		Amount a	actually e	vacuated:	3000ml.
Sampling	g Time: (1	57			Sampling	Date:	04/25/25	
Sample I	.D.: M(w-20			Laborato	ry: Po	A A TOTAL	
Analyzed		TPH-G	BTEX MT	BE TPH-D		N CONTRACTOR	de coc	
Equipme	nt Blank I.	D.:	@ Time		Duplicate			1801

				LL MON	TORING	G DATA	SHEET	
Project #	: 2504	25-KC	1	Client: €	RRG	110		
Sampler:	ka	-111		Gauging D	Date: 41	25/2	5	
Well I.D	: MW-2	2 (Well Dian	neter (in.)	: 2 3	4) 6 8	3
Total We	ell Depth (f	ft.): 18.6	67	Depth to V	Vater (ft.)	: 14.61)	
Vert to be true	Free Produ	at a c	-	Thickness	of Free P	roduct (fe	et): —	
Referenc	ed to:	PVO	Grade	Flow Cell				
Purge Meth Sampling M Start Purge	lethod:	2" Grundfo	Tubing	200 mc 1	Reristaltic	1 4 4 1 6 1	Bladder Pump Other Pump Depth: \(\)	
Time	Temp.	pН	Cond. (mS/cm or us/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or pd)	Depth to Water (ft.)
1057	14.02	6.82	800	42	2.80	72.8	600	14.67
6011	16.03	6.84	800	32	2.76	71.3	1200	14.70
1103	16.29	Ce.91	810	25	2.58	63.3	1800	14.70
1106	16.09	Co.96	809	23	2.57	61.7	2400	14.70
1109	16.00	6.93	800	23	2.56	63.0	3000	14.70
				1	2	T de b		
	-		1			/		1
	/							
-/	1							
-/-								
Did well	dewater?	Yes	<u> </u>		Amount	actually e	vacuated: B	200un
Sampling	g Time: ι	al.			Samplin	g Date: 4	125125	
Sample I	.D.: MW-	-21				ory: VACE		
Analyzed	AVAIL TO THE	TPH-G	BTEX MTI	BE TPH-D	23,34 (12.14.4)	Other: Su		
Equipme	nt Blank I.	D.	@		Duplicat			

Project #	: 25042	25-Kc	7	Client: E	RRG			
Sampler:	KL			Gauging I	Date: 4	25/2	25	
Well I.D	: RW-1			Well Dian	neter (in.)	: 2 3	(4) 6 E	
Total We	ell Depth (f	t.): 14.	96	Depth to V	42 D.T. VECT	v w A He		
to crown	Free Produ			Thickness	MATERIAL ST	100 T 100 TO		
Referenc		MO	Grade	Flow Cell	A Company of the Comp			
Purge Meth Sampling M Start Purge		2" Grundfo Dedicated	Tubing	200 un 1	Peristaltic F New Tubin	Pump	Bladder Pump Other Pump Depth:	
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water
0828	5.812.25	5.82	382	99	3.43	100.1	600	13.80
0901	14.30	5.73	382	51	3.37	98.4	1200	13.88
0904	14.48	5.50	383	38	3.12	90.6	1800	13.94
0907	14.51	5,47	385	39	3.09	89.2	2400	14.01
0910	14.46e	5.43	385	37	3.06	88.8	3000	14.04
/								
Did well	dewater?	Yes (№		Amount	actually e	evacuated: 30	100 me
Sampling	g Time: A	13			Sampling	g Date: -	125/25	
Sample I	.D.: Rw-	\			Laborato	1 - 17 1.01		
Analyzed	d for:	TPH-G	BTEX MTI	BE TPH-D		Other: S.	ec coc	
Equipme	nt Blank I.	D.:	@ Time		Duplicate		-	

WELLHEAD INSPECTION FORM

Job#: 25042	5- Kc	1			Tec	hnic	ian:	K	-,	P	0	SN	1		Page\ of Z
					Ch	eck i	ndica	tes de	ficie	тсу					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolts missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are access issues associated with repairs, if traffic contro is required, if stand pipe damaged, or any specific details not covered by checklist)
MW-2	1														
MW-4															
MW-6	/					Ω.				17					
MW-7	1														
MW-8							М								
MW-9	V														
MW-2 MW-6 MW-7 MW-8 MW-9 MW-10 MW-11 MW-13 MW-14 MW-15 MW-16													1		
MWII	1									Ē					A
MW-13															
MW-14	1														
MW15	-												m		
MULL	/														
MW-17	/														
MW-18	~														
MW-19															
MW20 MW21	1														
MW-21	V														

WELLHEAD INSPECTION FORM

Job#:25042	5-Ke.	7_			Tec	hnic	ian:	K	L,	21	u,	Po			Page _ 2 of _ 2
					Ch	eck i	ndica	tes de	ficier	ісу					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolts missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are access issues associated with repairs, if traffic contro is required, if stand pipe damaged, or any specific details not covered by checklist)
2W-1	/														
RW-2	1														
2w-1 2w-2 2w-3															
RW-4	1														
RW5	/														
RW 5	/														
RW-7													i i i i		
kw 8	~	/													
RW-9	1											1			
RW-7 RW-9 RW-10					E										
											Ē				
NOTES:															

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	ME 2350 U	the Ave E,	Seattle	PROJECT NUMBER 240425-KC1								
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS					
NAWN A	JOBN COCO ME	4125125	en 3	U,08 7.36 9.93		19,2	KC					
			000d 2000 041, 257.5 0.0, 100	238:5	/	19.2	K					
Hanna.	101500031F0	04/25/28	PH 7	3.96. 7.03 9.96		18.1	SM					
		1,12	COND. 3900 ORP. 237.5 BO. 100	3897 . 237 · I 99.8 .		18.1	SM					
Hanna	07460037101	4/25/25	Pl+ 7	4.02	~	19.2	Do					
			Cond 3900 ORP 237.5 OU 100	3896 238.4 97.0	~	19.2	po					

WELL GAUGING DATA

Projec	t#_ 250	523-SA	41	_Date	5/23/25	Client _	ERRG	
Site	2350	2414	AVE	E	SEATTLE	WA		

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscibl e Liquid (ft.)	Volume of Immiscible s Removed (ml)		Depth to well bottom (ft.)	Water/ SPH Meter	PID (PPM)
144. S	P080	2				-	60.03	16.37.	**.	ó.
MW-H	0828	2	_	T=	-	-	30.78	88,88	**	0.0
111116	0978	2	L-L		1	-	11.63	70.38	**	0.0
MW.7	0923	2	1 =	-	9	-	09.24	20.31	* *	0.0
MW-8	1050	2	ador	6	1	-	10.33	19.37	**	0.0
MM-9	0955	2 .	odor			n= I	11.28	20.26	* *	0.0
MW-10	-		- c	obst	(oct	ed	at	9.26	\	
MW II	0813	2	_	-		-	3.12	19.92	**	0.0
MW-13	08 39	2	-		-	1	13.13	18.71	**	0.0
MW-14	0818	2		-	-		8.43	18.84	* *	0.0
MW-15	0815	2	-	9	Ē	ge j	8.79	17.16	**	0.0
My4-16	0924	2	11-	-	-	-	9.41	17.00	**	0.0
NW-17	0814	2	-	-	e e	0	13.86	19.76	**	0.0
MW-18	0818	2	-1			-	13.61	14.93	**	0.0
MW-19	0836	2	H	Tel	1-1	-	14.02	70.04	de y	0.1

Instruments Used: Durham Geoslope Water Level Indicator* GeoTech Oil/Water Interface Probe** Other:

Survey Point - Top of casing at all wells

WELL GAUGING DATA

Proje	ct #	750523-9	SM)	Date_	5/23/2	-5	Client _	E2726	
Site	2350	> 74114	AVE L	2 5	EATTLE	WA			

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscibl e Liquid (ft.)	Volume of Immiscible s Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Water/ SPH Meter	PID (PPM)
MW 20	0833	7	-				15.93	19.42	**	0.0
1444-21	0845	4	odor	-	7		14.91	18.74	**	0.0
PW-1	0820	4	-	J	1	-	14.55	20.03	W	00
PW-Z	0837	4	_	-	P	-	13.09	19.39	**	0.0
RW-3	0841	4	L	_	1,1-1	_	13.10	19.74	**	0.0
RW-4	0846	4	-	=	-	<u> </u>	13.70	19.80	XX	00
12W-5	0842	4	-	-	H	-	15.60	19.30	MH	0.0
12W-6	0833	4	=	5-1			(1.03	20.17	**	0.0
Rw-7	0838	4		-	_	-	12.94	18.89	AX	0.0
Pw-8	0850	4		iá.		1	13.78	20.15	**	0,0
RW-9	0829	4	_	-	0	1	12.37	70.03	44	0.0
12W-10	0843	4	-	-	-	1-1	12.89.	30.21	**	0.0
									340	ķ —
			15					4		

Instruments Used:	Durham Geoslope Water Level Indicator*	GeoTech Oil/Water Interface Probe**	Other:
monutarità coca.	Dartian Geoslope water Bever meleutor	George Water Interface 1100c	Other

Survey Point - Top of casing at all wells

Project #:	25052	3.SM)		Client: ERPG						
Sampler:	LB			Gauging Date: 5/23/25						
Well I.D.	: Mw-6	,		Well Dian	at Parkers N	100 100		3		
Total We	ll Depth (f	100	20.38	Depth to Water (ft.): 11.63 Thickness of Free Product (feet):						
io con un or	Free Produ	3.13								
Reference		(PVC)	Grade	10111111111111111						
Purge Metho Sampling M Start Purge		2" Grundf Dedicated		Peristatio Pump Peristatio Pump New Dibing Pump Depth: 16'						
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water		
loca	13.75	7.51	616	594	1207	34.9	GOC	11.68		
1005	13.77	7.51	616	392	0.11	Z9.8	1200	11.70		
1008	13.65	7.52	618	287	0.09	75.9	1890	(1.7)		
1011	13.69	7.52	670	284	0.08	74.6	2400	11.73		
1014	13.71	7.53	621	281	0.08	73.9	3000	11.74		
/				1						
Did well	dewater?	Yes	ND ND		Amount	actually	evacuated: 30	DOM L		
Sampling	Time: 16	015			Sampling		5/23/25			
Sample I.	D.: MW	-6			Laborato	ry: j	ACE			
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		45 77	SEE COC			
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	: I.D.:				

25052	3-5M		Client: ERRG.					
1721	The last of Them.		had the state of the		23/25			
			Well Diam	neter (in.)	: ② 3	4 6 8		
Friday Inches			Depth to V	Vater (ft.)	: 10.33	5		
TR THE SHIP OF			12 F7 = XT		TN Y LIN			
	PVO	Grade						
Time: 105	4	Flow Rate: _	200ml	min.		Pump Depth:	14.51	
Temp. (°Or °F)	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or thD)	Depth to Water (ft.)	
13.94	5.81	295	27	1.39	327.1	600	10.38	
14.01	5.89	297	27	1.31	316.0	1200	10.41	
13.96	5.93	297	28	1.27	308.5	1800	10.44	
13.89	5.98	297	28	1.26	300.8	2400	10.47	
13.83	6.99	297	28	1.26	298.6	3000	10.50	
		7					/	
-		-					/	
							/	
						/		
dewater?	Yes	160)		Amount	actually e	vacuated:	3000ml.	
Time: 1	12			Sampling	g Date:			
21.70mm n 149	Wilder -			Laborato	ry: Pa			
A-3-10-1-1	TPH-G	BTEX MT	BE TPH-D		dom 0 is) +		
A strain and are		@						
	Temp. (°Or °F) 13.94 14.01 13.96 13.83 13.83	## Davidy M. ## Mw. 8 (odor) ## IDepth (ft.): 19. ## Free Product: — ## dto: ## Grundfo ## Grundfo ## Grundfo ## Hotel Dedicated ## Temp. ## (°Cor °F) pH ## 13.94 5.81 ## 13.94 5.98 ## 13.83 5.99 ## 13.83 5.99 ## 13.83 5.99 ## 13.83 5.99 ## 13.83 5.99 ## 13.83 5.99 ## 13.83 5.99	E MW 8 (odor). II Depth (ft.): 19.37. Free Product: — ed to: EV Grade od: 2" Grundfos Pump Dedicated Jubing Time: 1054 Flow Rate: Cond. (mS/cm or µS/cm) 13.94 5.81 295 14.01 5.89 297 13.96 5.93 297 13.83 5.98 297 13.83 5.98 297 13.83 6.99 297 13.83 6.99 297 Time: 1117 D.: MW 8 for: TPH-G BTEX MT	Gauging Derived to the second	Gauging Date: 05 Mul 8 (odor) Well Diameter (in.) Depth (ft.) : 19.37 Depth to Water (ft.) Thickness of Free Product:	Gauging Date: 05 23 25 25 25 25 25 25 2	Gauging Date: 05 23 25	

Project #	: 250573			21.45.55	Client: ERFG.						
Sampler:				Gauging D		123/25					
	:: MW-9.		0			-	4 6 8				
Total We	Depth (f	t.): -++-	28-60.26	Depth to V	Depth to Water (ft.): 20 26 511 11.28						
-	Free Produ			Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	P(ve)	Grade	Flow Cell	Flow Cell Type: Hanna						
Purge Meth Sampling M		2" Grundf Dedicated			Peristal(ic) New Tubin		Bladder Pump Other				
Start Purge	Time: 095	9	Flow Rate: _	200ml/n	win.	-1	Pump Depth:	15.5			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or not)	Depth to Water			
1002	13.88	6.10	405	22	1-62	308-8	600	20.33			
1005	13.95	6.04	411	18	1.37	300.0	1200	20.36			
1008	14.02	6.03	413	18	1.31	280.0	1800	20.39			
1011	14.09	6.03	413	18	1.29	283.0	2400	20.41			
1014	14.13	6.04	411	18	1.28	277.0	3000	20.44			
	/										
								/			
-/				1				/			
1								/			
Did well	dewater?	Yes	160		Amount	actually e	vacuated: -	3000ml.			
Sampling	g Time: 10	FIC			Sampling	g Date:	05 23 25				
Sample I	.D.: Mu	1-9			Laboratory: Pace.						
Analyzed	l for:	TPH-G	BTEX MTI	BE TPH-D							
Equipme	nt Blank I.	D.:	@ Time		Duplicate I.D.:						

Project #	25057	3-511		Client: ERRG.							
Sampler:	Sand	uM		Gauging D	Date: 05	23/25.					
Well I.D.			r).	Well Dian	neter (in.)	: ② 3	4 6 8	3			
Total We	ll Depth (f	t.): 18.7	N.	Depth to V	Depth to Water (ft.): 13.13.						
Depth to	Free Produ	ıct: —		Thickness	of Free Pr	roduct (fe	et): —				
Reference	ed to:	H(VC)	Grade	Flow Cell	Туре:	Hann	CL.				
Purge Meth Sampling M	fethod:	2" Grundfe Dedicated	Dibing		Peristal(ic) New Tubin	g	Bladder Pump Other				
Start Purge	Time: 120	0_		200m/n	nin.	_	Pump Depth:	16'			
Time	Temp.	pН	Cond. (mS/cm or µS/(m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nD	Depth to Water (ft.)			
1203	15.57	6.21	491	26	1.56	260.1	600	13.21			
1706	15.47	6.30	484	28	1.38	247.9	1700	13.24.			
1209	15.55	6.30	480	29	1.37	240.9	1800	13.27			
1212	15.61	6.30	481	29	1.37	237.8	2400	13.30			
1215	15.88	6.29	480	30	1.36	234.8	3000	13.33			
	/		1			1 10 /	As T. Green	/			
	/							-/-			
-			1					/			
-/							-				
-		7					-/				
1				1			/				
Did well	dewater?	Yes	160		Amount	actually e	vacuated:	3000			
Sampling	D-ATO TO	T-T-C-					05 123 125	3000M.			
Sample I.	EUT I OT	1218			Laborato			7			
	77-7-1	U-13	Daniel Control	an appropriate	Lauorato	1100					
Analyzed	TO A COUNTY OF	TPH-G	BTEX MTI	BE TPH-D	-30.77 A-1		See coc				
Equipme	nt Blank I.	D.:	Time		Duplicat	e I.D.:					

Project #:	: 25052	3.5m1		Client:	ERRG	Amir	777			
Sampler:	-1 -2 1	undu M		Gauging D	Virginia de la Caración de la Caraci	123/25				
Well I.D.		A CHOIL COM		Ac. Id. Village	Value Hotels		T / 1 - N - N	3		
Total We	ll Depth (f		84	Depth to Water (ft.): 8.43						
NAME OF TAXABLE	Free Produ			Thickness	of Free Pr	oduct (fe	et):			
Reference	ed to:	PVS	Grade	Well Diameter (in.): 2 3 4 6 8						
Purge Meth Sampling M		2" Grundfe Dedicated			Peristal(C) New Tubin	ump	Bladder Pump			
Start Purge	Time: 1119		Flow Rate:	200ml/	mn.		Pump Depth:	13.51		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Depth to Water (ft.)		
117.2	15.47.	5.06	310	35	1.43	348.0	600	8.52		
1125	15.28	4.93	314	33	1.33	33 345.7 1200	8.55			
1178	15.33	4.89	317	34	1.32	343.8	1800	8.58.		
1131	15.31	4.88	319	34	1.31	341.1	2400	8.61		
1134	15.36	4.08	321	34	1.29	338.7	3000	8.64		
	/									
/			1				/			
						1 - 1				
/										
Did well	dewater?	Yes	(No)		Amount	actually e	vacuated: 2	2000 1		
Sampling	m.	Fδι						0000M		
Sample I.		U-14.			Sampling Date: 05 23 25 - Laboratory: Pace -					
Analyzed		TPH-G	BTEX MTI	BE TPH-D		100				
10.70	nt Blank I.	D.:	@ Time		Other: See COC Duplicate I.D.:					

Project #	25057	13-5M1		Client: ERRG.						
Sampler:				Gauging D		23/25				
Well I.D.	: MW-15			Well Diameter (in.): 2 3 4 6 8						
THE PARTY OF THE PARTY OF	ell Depth (f		\$ 6	Depth to V	(A.) (1) (A.)					
Depth to	Free Produ	uct: —		Thickness	VI - VI					
Referenc	ed to:	P(V)	Grade	Flow Cell		Hanna				
Purge Meth Sampling M	lethod:	2" Grundf Dedicated			Peristalo I New Tubin		Bladder Pump Other			
Start Purge	Time: 1024		Flow Rate: _	200ml	min.	_	Pump Depth:	131		
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n(L))	Depth to Water (ft.)		
F501	FO. 11	5.53	8F0	47	3.83	333.8	600	8.88		
1030	14.18	5.33	076	47	3.82	344.9	1700	8.92		
1033	14-22	5.31	075	46	3.76	347.1	1800	8.95		
1036	14.30	5.26	075	46	3.69	350.5	2400	8,98.		
1039	14.35	5.24	075	46	3.63	352.3	3000			
	/		1					1		
								/		
/								/		
				1						
Did well	dewater?	Yes	®		Amount	actually e	vacuated: 3	word.		
Sampling	g Time: 📊	027	1042		Sampling	g Date: C	5/23/25.			
Sample I	.D.: Mu	U-15			Laborato	ry: Pa	æ.			
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	ce coc.			
Equipme	nt Blank I.	D.:	@ Time		Duplicat		DUP-1.			

Project #	25052	13-5M		Client: ERRG						
Sampler:	Sund	M		Gauging I	Date: 05	23/25				
Well I.D.	: MW-16			Well Dian				8		
Total We	ll Depth (f	t.) : 54	00.FI	Depth to V	Vater (ft.)					
Depth to	Free Produ	ict: —		Thickness	of Free Pr	oduct (fe	et): —			
Reference	ed to:	PVC	Grade	Flow Cell	Type:	Ha	rna.			
Purge Meth Sampling M		2" Grundf Dedicated	The second second		Peristaltie F	ump	Bladder Pump Other			
Start Purge	Time: <u>0978</u>		Flow Rate: _	200ml/	min.		Pump Depth:	15'		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n/D)	Depth to Water (ft.)		
0931	13.66	6.59	627	101	15.1	279.9	600	9.48		
0934	13.80	6.30	628	82	1.52	292.8	0051	9.52		
FEP0	13.91	6.23	631	85	1.45	299.2	*1800	9.55		
0940	13.99	6.21	630	80	1.42	303.9	2400	9.58		
0943	14.03	6.19	6 30	88.	1.40	306.8	5000	9.62		
			1	1000			case I V de tra			
	/		1							
/										
/						-	/	1		
				-						
/										
Did	d'annual a C				New York			- A		
V.T./ 1-000	dewater?	Yes	M		e C. L. wys. As		vacuated: 3	3000 ml		
Sampling	Time:	2946			Sampling	g Date:	05/23/25			
Sample I	.D.: MW	-16			Laborato	ry: P	ace			
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D		Other:	See roc			
Equipme	nt Blank I.	D.:	@ Time		Duplicat					

Project #	: 25057	23-5M1		Client: ERRG						
Sampler:	LB			Gauging Date: 6/23/25						
Well I.D	: My1-1	7		Well Diameter (in.): 2 3 4 6 8						
Total We	ell Depth (f	t.): 19.	70	Depth to Water (ft.): /3.86						
	Free Produ			Thickness of Free Product (feet):						
Referenc		PVC	Grade	Flow Cell Type: HANNA						
Purge Meth Sampling N	/lethod:	2" Grundf Dedicated	Tubing		Peristatio I	7 7 7 7 7 7	Bladder Pump Other			
Start Purge	Time: 1167			200 ML	MEN		Pump Depth:	77'		
Time	Temp.	pН	Cond. (mS/cm or uS/3n)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nets)	Depth to Water (ft.)		
1106	15.03	7.30	195	106	0.86	127.4	600	13.91		
1109	15.14	7.01	186	32	0.84	168,4	1200	13.93		
1112	15.21	6.85	182	76	6.83	164.5	1800	13,97		
1115	15.25	6.86	182	25	0.82	1619	2400	13.98		
1118	15.28	6.88	181	24	0.31	159.8	3000	13 99		
								-		
1										
Did well	dewater?	Yes	1		Amount	actually	evacuated: 30	CONL		
Sampling	g Time: 1/	120			Sampling	g Date:	5/23/25			
Sample I	.D.: My	u-17			Laborato		CE			
Analyzed		TPH-G	BTEX MTI	BE TPH-D						
Equipme	nt Blank I.	D.:	@		Duplicate I.D.:					

Project #	25052	3-541		Client: ERRG							
Sampler:	Later Control			Gauging D	ate: 5	123/25					
Well I.D.	: MW-18			Well Diameter (in.): Ø 3 4 6 8							
Total We	ell Depth (f	t.): 14.	13	Depth to Water (ft.): 13.61							
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):							
Referenc	ed to:	PVO	Grade	Flow Cell Type: HANNA							
Purge Meth Sampling M Start Purge		2" Grundf Dedicated		Peristatio Pump Bladder Pump New Tubing Other							
Time	Temp.	pН	Cond. (mS/cm or uS/om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
1138	16.24	6.82	-227410	47	0.91	227.8	300	14.01			
		- Inle	LL DEN	ATEIZTAIG,	GAINIP	LE COL	LEERD -				
-/											
				/							
Did well	dewater?	Yes	Atg.		Amount	actually e	evacuated: 30	DOM L			
Sampling	Time: 1	140			Sampling	g Date:	5/23/25				
Sample I	.D.: Mu	v-18			Laborato	ry: P	ACE				
Analyzed	MARK EVEN	TPH-G	BTEX MTI								
Equipme	nt Blank I.	D.:	@ Time		Duplicate		_				

Project #:	25057	3-501		Client: ERRG					
Sampler:	Sand			Gauging D		123/25			
Well I.D.:				Well Diam	PARTITION	1 7321 1 1		3	
Total Well			.04	Depth to V	Vater (ft.)	: 14.0			
Depth to F	ree Produ	ict: 2	-	Thickness	of Free Pr	oduct (fe	et): —		
Reference	d to:	PVC	Grade	Flow Cell	Туре:	Hanne	х		
Purge Methoo Sampling Me Start Purge T	ethod:	2" Grundfo Dedicated		200ml/	Peristaltic P New Tubing	g	Bladder Pump Other		
Start Furge 1	ime17_0	1	Acres and the second	aumy	1		Pump Depth:	14	
Time	Temp. (Oor °F)	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	The second secon	
1300	17.64	6.73	163	25	0.93	60.5	600	14.09	
1303	18.37	6.45	154	22	0.56	69.6	1700	Depth to Water (ft.) 14.09 14.12 14.15 14.18 14.20	
1306	18.39	6.39	149	20	0.59	0081 F.1F &	14.15		
1309	18.42	6.37	147	20	0.59	72.8	2400	14.18	
1312	18.49	6.35	145	19	6.58.	73.7	3000	Depth to Water (ft.) 14.09 14.12 14.15 14.18	
								/	
							/	/	
/				1					
/						/			
Did well d	lewater?	Yes	<u></u>		Amount	actually e	vacuated:	3000ml.	
Sampling	Time:	1315			Sampling	g Date: (05/23/25		
Sample I.I	D.: M	w-19			Laborato	ry: F	Sec.		
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	Sec coc.		
Equipmen	t Blank I.l	D.:	@ Time		Duplicate		-		

Project #:	25057	23-5MI		Client: EP26						
Sampler:	LB			Gauging D	ate:	5/23/2	5			
Well I.D.	: Mk1-2	0		Well Diameter (in.): 2 3 4 6 8						
Total We	ll Depth (f	room or a	12	Depth to Water (ft.): 15.93						
KE CONTR	Free Produ			Thickness of Free Product (feet):						
Reference		PYC)	Grade	Flow Cell Type: HANNA						
Purge Methors Sampling M Start Purge		2" Grundfo Dedicated	Tubing	ZOWAJIL	Peristaltio I New Tubin	Pump g	Bladder Pump Other Pump Depth:	<i>1</i> 8′		
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Wate		
1034	15.09	7.66	1265	>1000	0.17	-367	600	16.04		
1037	14.98	7.66	1319	71000	0.12	-45.0	1200	16.08		
1040	14.93	7.66	1337	386	6.10	-52.0	1800	16.08		
1043	14.97	7.68	1336	361	0.10	-52.6	2400	16.10		
1046	15.03	7.67	1338	351	0.10	-52.5	3000	16.10		
1049	15.04	7.67	1337	350	0.09	-51.8	3600	16.10		
1		P N								
Did well	dewater?	Yes	1		Amount	actually e	vacuated: 3	600 ML		
Sampling	Time: /	050			Sampling	g Date:	5/23/25			
Sample I.	D.: MW	.20			Laborato	ory: Pa	Œ			
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D	73	- Trans 2	Exc			
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:				

	minut #. On and of			Client, Face							
Project #	: 25032	3-5m	1	Client: ERRG							
Sampler:	Dan	dyM		Gauging D	Date: 05	23/25.					
Well I.D	: MW-21		·).	Well Diameter (in.): 2 3 (4) 6 8							
Total We	ell Depth (f	t.): 18	.74	Depth to Water (ft.): 14.91							
Depth to	Free Produ	ict: -		Thickness	Thickness of Free Product (feet): —						
Referenc	ed to:	PVC	Grade	Flow Cell Type: Hounga.							
Purge Meth Sampling M		2" Grundfo Dedicated	Control of the Contro		Peristaltic P	g	Bladder Pump Other				
Start Purge	Time: 1225	5_	Flow Rate: _	200 m	1/min		Pump Depth:	17			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)			
1228	15.48	6.39	931	33	2.26	170.5	600	14.99			
1231	15.52	6.40	928	29	2.18	158.4	1700	\$ 150			
1234	15.50	6.41	928	29	2.15	150.8	1800	15.05			
1237	15.46	6.42	927	29	2-14	144.5	2400	15.08			
1240	15.43	6.42	927	50	2.15	142.0	3000	15.10			
	-										
	/							/			
	/			1				/			
-/				1							
-/-				-							
$\overline{}$											
D: 1 11	40000000	200	2				160000	5 11			
528 7	dewater?	Yes	<u></u>					5000ml.			
Sampling	g Time:	1243			Sampling	Date: C	5/23/25				
Sample I	.D.: Mu	2-21			Laborato		e.				
Analyzed	d for:	TPH-G	BTEX MTI	BE TPH-D	-	Other: (le coc-				
Equipme	nt Blank I.	D.:	@ Time	19.00	Duplicate		10-20-				
						AND ALL AND ADDRESS OF THE PARTY OF THE PART					

Project #:	2506	23.181	112 7	Client: ERRG						
Sampler:	LB	11 11		Gauging D	ate: 5	123/25				
Well I.D.	: RW-1			Well Diameter (in.): 2 3 4 6 8						
Total We	ll Depth (f	10 × 110	0.03	Depth to Water (ft.): 14.55						
Depth to	Free Produ		_	Thickness of Free Product (feet):						
Reference		POO	Grade	Flow Cell Type: HAWMA						
Purge Methors Sampling M	lethod:	2" Grundf Dedicated	Dubing	Kere Mi	Peristakic I		Bladder Pump Other			
Start Purge	Time: 115	2	Flow Rate: _	ZOO IVIL	MIEN	_	Pump Depth:	18'		
Time	Temp.	pН	Cond. (mS/cm or us/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mt)	Depth to Water (ft.)		
1200	15.21	6.87	343	237	0.77	52.1	600	14.61		
1203	15.33	6.83	337	74	0.75	45.0	1200	14.61		
1200	15.27	681	337	44	0.74	36.4	1800	14.61		
1209	15.31	6.81	336	43	0.74	34.8	2400	14.61		
1212	15.30	6.80	336	41	0.73	32.6	3000	1461		
/				1						
(
Did well	dewater?	Yes	<u></u> ₩		Amount	actually e	evacuated: 30	DOOM		
Sampling	Time: 1	215					5/23/25			
Sample I.	D.: RW-	1			Laborato		CE			
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other S	E COC			
Equipme	nt Blank I.	D.:	@ Time		Duplicat	e I.D.:	-			

WELLHEAD INSPECTION FORM

Client: ERRG Site: 2350 74th Ave E., Seattle wa Date: 05/23/25 Job#: 250573-5M1. Technician: 6M / LB. Page 1 of 2 Check indicates deficiency Well Inspected - No Corrective Action Required nnular seal incomplete Other (explain in notes) abs stripped (list qty) abs broken (list qty) Well Not Inspected (explain in notes) ock non-functional olts missing (list im / Lid broken Notes (list if cap or lick replaced, if there are access issues associated with repairs, if traffic control is required, if stand pipe damaged, or any Well ID specific details not covered by checklist) Mw-2 MW-4 MW-6 F-WM MW-B MW-9 obstructed well MW-10 at 9.261 MW-11 MW-13 MW-14 MW-15 MW-16 FI-WM MW-18 MW-19 MW-20 Mw-21 NOTES:

WELLHEAD INSPECTION FORM

					Ch	eck i	ndica	tes de	ficier	тсу					
Well ID	Well Inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Bolts missing (list qty)	Tabs stripped (list qty)	Tabs broken (list qty)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (list if cap or lick replaced, if there are acces) issues associated with repairs, if traffic controls required, if stand pipe damaged, or any specific details not covered by checklist)
RW-1	1							Ė							
RW-Z	8											П			
RW-3	/													12.11	
RW-4	/													J. By	
RW-5	/														
RW-6	/						in i							LET.	
RW-7	/														
RW-8	~														
RW-9	/														
RW-10.	~														
	417													4 ,1	

SEATTLE

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	ME 256523	3-5M1		PROJECT NUMBER 2350 24th ANE. E., Seattle, WA						
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS			
Hanna	07460003101	05/23/25 @ 0630	PH 4	4.04 6.95 9.96		#W18.7	am			
			cond .3900 ORD 237.5	3892 . 736.8 . 99.8		18.7	5M			
HANNA	0802008101	5/23/25 COCHS	PH 4,0 7.0 10.0	3.98 7.02 10.03	V	18.3	L8			
			390c	3903		18.4	43			
			ORP 237,5	7368/		12.4	LB			
			PU/00%	100.3%		_	LB			
	k =									

Appendix B. Laboratory Reports During Reporting Period

Pace Analytical® ANALYTICAL REPORT

May 05, 2025

Engineering/Remediation Resources Group

Sample Delivery Group:

L1852466

Samples Received:

04/26/2025

Project Number:

20230065

Description:

Former Circle K

Site:

1461

Report To:

Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamper Gambill Jennifer Gambill

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
RW-1 L1852466-01	7
MW-14 L1852466-02	8
MW-9 L1852466-03	9
MW-16 L1852466-04	10
MW-8 L1852466-05	11
MW-15 L1852466-06	12
MW-6 L1852466-07	13
MW-19 L1852466-08	14
MW-21 L1852466-09	15
MW-17 L1852466-10	16
MW-18 L1852466-11	17
MW-13 L1852466-12	18
MW-20 L1852466-13	19
DUP-1 L1852466-14	20
TB-1 L1852466-15	21
TB-2 L1852466-16	22
Qc: Quality Control Summary	23
Volatile Organic Compounds (GC) by Method NWTPHGX	23
Volatile Organic Compounds (GC/MS) by Method 8260B	27
GI: Glossary of Terms	29
Al: Accreditations & Locations	30

Sc: Sample Chain of Custody

31

SAMPLE SUMMARY

RW-1 L1852466-01 GW			Collected by Blaine Tech	Collected date/time 04/25/25 09:13	Received da 04/26/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	1	04/29/25 14:10	04/29/25 14:10	AEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	10	04/30/25 11:03	04/30/25 11:03	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-14 L1852466-02 GW			Blaine Tech	04/25/25 09:21	04/26/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	1	04/29/25 14:31	04/29/25 14:31	AEB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 07:29	04/30/25 07:29	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-9 L1852466-03 GW			Blaine Tech	04/25/25 09:45	04/26/25 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2503086	5	04/30/25 20:33	04/30/25 20:33	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	20	04/30/25 11:27	04/30/25 11:27	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-16 L1852466-04 GW			Blaine Tech	04/25/25 09:54	04/26/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2503086	1	04/30/25 19:29	04/30/25 19:29	ACG	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 07:52	04/30/25 07:52	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8 L1852466-05 GW			Blaine Tech	04/25/25 10:13	04/26/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	5	04/29/25 17:01	04/29/25 17:01	AEB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	50	04/30/25 11:51	04/30/25 11:51	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-15 L1852466-06 GW			Blaine Tech	04/25/25 10:19	04/26/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2503086	1	04/30/25 19:50	04/30/25 19:50	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG2503000 WG2503012	1	04/30/25 08:16	04/30/25 08:16	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-6 L1852466-07 GW			Blaine Tech	04/25/25 10:42	04/26/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	1	04/29/25 15:57	04/29/25 15:57	AEB	Mt. Juliet, TI
Valatila Organia Compounda (CC/MS) by Mathad 93C0D	W62502000	1	04/20/25 00:40	04/20/25 00:40	ACC	Ma Julias TN

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2503012

04/30/25 08:40

04/30/25 08:40

ACG

Mt. Juliet, TN

SAMPLE SUMMARY

MW-19 L1852466-08 GW			Collected by Blaine Tech	Collected date/time 04/25/25 10:47	Received da 04/26/25 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	10	04/29/25 17:22	04/29/25 17:22	AEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	100	04/30/25 12:15	04/30/25 12:15	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-21 L1852466-09 GW			Blaine Tech	04/25/25 11:11	04/26/25 09	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	10	04/29/25 17:44	04/29/25 17:44	AEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	500	04/30/25 12:39	04/30/25 12:39	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-17 L1852466-10 GW			Blaine Tech	04/25/25 11:23	04/26/25 09	1:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	1	04/29/25 16:18	04/29/25 16:18	AEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	25	04/30/25 13:03	04/30/25 13:03	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-18 L1852466-11 GW			Blaine Tech	04/25/25 11:40	04/26/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502383	1	04/29/25 16:40	04/29/25 16:40	AEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 09:03	04/30/25 09:03	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-13 L1852466-12 GW			Blaine Tech	04/25/25 11:45	04/26/25 09	1:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502873	10	04/30/25 01:11	04/30/25 01:11	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	50	04/30/25 13:27	04/30/25 13:27	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-20 L1852466-13 GW			Blaine Tech	04/25/25 11:57	04/26/25 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502873	10	04/30/25 01:33	04/30/25 01:33	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	250	04/30/25 13:51	04/30/25 13:51	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
DUP-1 L1852466-14 GW			Blaine Tech	04/25/25 12:00	04/26/25 09	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502873	1	04/29/25 21:16	04/29/25 21:16	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503919	1	05/01/25 12:48	05/01/25 12:48	JHH	Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
TB-1 L1852466-15 GW			Blaine Tech	04/25/25 12:01	04/26/25 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502459	1	04/29/25 12:38	04/29/25 12:38	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 06:41	04/30/25 06:41	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-2 L1852466-16 GW			Blaine Tech	04/25/25 12:02	04/26/25 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502459	1	04/29/25 12:58	04/29/25 12:58	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 07:05	04/30/25 07:05	ACG	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

Collected date/time: 04/25/25 09:13

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	122	В	100	1	04/29/2025 14:10	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	97.5		78.0-120		04/29/2025 14:10	WG2502383

Ss

Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
ug/l		ug/l		date / time	
ND		10.0	10	04/30/2025 11:03	WG2503012
ND		10.0	10	04/30/2025 11:03	WG2503012
ND		10.0	10	04/30/2025 11:03	WG2503012
ND		30.0	10	04/30/2025 11:03	WG2503012
16.5		10.0	10	04/30/2025 11:03	WG2503012
ND		10.0	10	04/30/2025 11:03	WG2503012
ND		10.0	10	04/30/2025 11:03	WG2503012
409		10.0	10	04/30/2025 11:03	WG2503012
ND		10.0	10	04/30/2025 11:03	WG2503012
103		80.0-120		04/30/2025 11:03	WG2503012
98.7		77.0-126		04/30/2025 11:03	WG2503012
97.3		70.0-130		04/30/2025 11:03	WG2503012
	ND ND ND 16.5 ND	ND ND ND ND ND 16.5 ND ND ND 10.3 98.7	ug/l ug/l ND 10.0 ND 10.0 ND 30.0 16.5 10.0 ND 10.0 ND 10.0 ND 10.0 ND 10.0 ND 10.0 ND 30.0 10.0 10.0 ND 10.0 10.3 80.0-120 98.7 77.0-126	ug/l ug/l ND 10.0 10 ND 10.0 10 ND 10.0 10 ND 30.0 10 16.5 10.0 10 ND 10.0 10 ND 10.0 10 A09 10.0 10 ND 10.0 10 ND 10.0 10 ND 77.0-126 10	ug/l ug/l date / time ND 10.0 10 04/30/2025 11:03 ND 10.0 10 04/30/2025 11:03 ND 10.0 10 04/30/2025 11:03 ND 30.0 10 04/30/2025 11:03 16.5 10.0 10 04/30/2025 11:03 ND 10.0 10 04/30/2025 11:03 ND 10.0 10 04/30/2025 11:03 409 10.0 10 04/30/2025 11:03 ND 10.0 0 04/30/2025 11:03

Collected date/time: 04/25/25 09:21

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 14:31	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	96.8		78.0-120		04/29/2025 14:31	WG2502383

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 07:29	WG2503012
Ethylbenzene	ND		1.00	1	04/30/2025 07:29	WG2503012
Toluene	5.02		1.00	1	04/30/2025 07:29	WG2503012
Xylenes, Total	ND		3.00	1	04/30/2025 07:29	WG2503012
Trichloroethene	ND		1.00	1	04/30/2025 07:29	WG2503012
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 07:29	WG2503012
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 07:29	WG2503012
Tetrachloroethene	ND		1.00	1	04/30/2025 07:29	WG2503012
Vinyl chloride	ND		1.00	1	04/30/2025 07:29	WG2503012
(S) Toluene-d8	104		80.0-120		04/30/2025 07:29	WG2503012
(S) 4-Bromofluorobenzene	99.3		77.0-126		04/30/2025 07:29	WG2503012
(S) 1,2-Dichloroethane-d4	95.9		70.0-130		04/30/2025 07:29	WG2503012

Collected date/time: 04/25/25 09:45

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	8030		500	5	04/30/2025 20:33	WG2503086
(S) a,a,a-Trifluorotoluene(FID)	98.6		78.0-120		04/30/2025 20:33	WG2503086

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		20.0	20	04/30/2025 11:27	WG2503012
Ethylbenzene	530		20.0	20	04/30/2025 11:27	WG2503012
Toluene	44.1		20.0	20	04/30/2025 11:27	WG2503012
Xylenes, Total	1110		60.0	20	04/30/2025 11:27	WG2503012
Trichloroethene	ND		20.0	20	04/30/2025 11:27	WG2503012
cis-1,2-Dichloroethene	ND		20.0	20	04/30/2025 11:27	WG2503012
trans-1,2-Dichloroethene	ND		20.0	20	04/30/2025 11:27	WG2503012
Tetrachloroethene	ND		20.0	20	04/30/2025 11:27	WG2503012
Vinyl chloride	ND		20.0	20	04/30/2025 11:27	WG2503012
(S) Toluene-d8	99.4		80.0-120		04/30/2025 11:27	WG2503012
(S) 4-Bromofluorobenzene	100		77.0-126		04/30/2025 11:27	WG2503012
(S) 1,2-Dichloroethane-d4	91.1		70.0-130		04/30/2025 11:27	WG2503012

Collected date/time: 04/25/25 09:54

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/30/2025 19:29	WG2503086
(S) a,a,a-Trifluorotoluene(FID)	97.2		78.0-120		04/30/2025 19:29	WG2503086

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		3.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
ND		1.00	1	04/30/2025 07:52	WG2503012
103		80.0-120		04/30/2025 07:52	WG2503012
99.1		77.0-126		04/30/2025 07:52	WG2503012
97.4		70.0-130		04/30/2025 07:52	WG2503012
	ND N	ND N	ug/l ug/l ND 1.00 ND 1.00 ND 3.00 ND 1.00 99.1 77.0-126	ug/l ug/l ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 ND 1.00 1 ND 1.70.0 1 77.0-126 77.0-126	ug/l ug/l date / time ND 1.00 1 04/30/2025 07:52 ND 1.00 1 04/30/2025 07:52 ND 1.00 1 04/30/2025 07:52 ND 3.00 1 04/30/2025 07:52 ND 1.00 1 04/30/2025 07:52 103 80.0-120 04/30/2025 07:52 99.1 77.0-126 04/30/2025 07:52

Collected date/time: 04/25/25 10:13

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	19900		500	5	04/29/2025 17:01	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	95.7		78.0-120		04/29/2025 17:01	WG2502383

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		50.0	50	04/30/2025 11:51	WG2503012
Ethylbenzene	1390		50.0	50	04/30/2025 11:51	WG2503012
Toluene	210		50.0	50	04/30/2025 11:51	WG2503012
Xylenes, Total	4880		150	50	04/30/2025 11:51	WG2503012
Trichloroethene	ND		50.0	50	04/30/2025 11:51	WG2503012
cis-1,2-Dichloroethene	ND		50.0	50	04/30/2025 11:51	WG2503012
trans-1,2-Dichloroethene	ND		50.0	50	04/30/2025 11:51	WG2503012
Tetrachloroethene	ND		50.0	50	04/30/2025 11:51	WG2503012
Vinyl chloride	ND		50.0	50	04/30/2025 11:51	WG2503012
(S) Toluene-d8	101		80.0-120		04/30/2025 11:51	WG2503012
(S) 4-Bromofluorobenzene	102		77.0-126		04/30/2025 11:51	WG2503012
(S) 1,2-Dichloroethane-d4	91.2		70.0-130		04/30/2025 11:51	WG2503012

Collected date/time: 04/25/25 10:19

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/30/2025 19:50	WG2503086
(S) a,a,a-Trifluorotoluene(FID)	95.6		78.0-120		04/30/2025 19:50	WG2503086

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		3.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
ND		1.00	1	04/30/2025 08:16	WG2503012
105		80.0-120		04/30/2025 08:16	WG2503012
98.8		77.0-126		04/30/2025 08:16	WG2503012
98.2		70.0-130		04/30/2025 08:16	WG2503012
	ug/l ND	ug/l ND	ug/l ug/l ND 1.00 ND 1.00 ND 3.00 ND 1.00 ND 3.00 105 80.0-120 98.8 77.0-126	ug/l ug/l ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 ND 1.00 1 105 80.0-120 98.8 77.0-126	ug/l ug/l date / time ND 1.00 1 04/30/2025 08:16 ND 1.00 1 04/30/2025 08:16 ND 1.00 1 04/30/2025 08:16 ND 3.00 1 04/30/2025 08:16 ND 1.00 1 04/30/2025 08:16

L1852466

Collected date/time: 04/25/25 10:42

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 15:57	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	95.8		78.0-120		04/29/2025 15:57	WG2502383

3 Ss

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
2.28		1.00	1	04/30/2025 08:40	WG2503012
ND		1.00	1	04/30/2025 08:40	WG2503012
ND		1.00	1	04/30/2025 08:40	WG2503012
ND		3.00	1	04/30/2025 08:40	WG2503012
ND		1.00	1	04/30/2025 08:40	WG2503012
1.11		1.00	1	04/30/2025 08:40	WG2503012
ND		1.00	1	04/30/2025 08:40	WG2503012
ND		1.00	1	04/30/2025 08:40	WG2503012
2.47		1.00	1	04/30/2025 08:40	WG2503012
105		80.0-120		04/30/2025 08:40	WG2503012
101		77.0-126		04/30/2025 08:40	WG2503012
97.1		70.0-130		04/30/2025 08:40	WG2503012
	ug/l 2.28 ND ND ND ND ND ND 1.11 ND ND 1.05 101	ug/l 2.28 ND ND ND ND ND ND 1.11 ND ND 1.05 105	ug/l ug/l 2.28 1.00 ND 1.00 ND 3.00 ND 1.00 1.11 1.00 ND 1.00 ND 1.00 ND 1.00 1.00 2.47 1.05 80.0-120 101 77.0-126	ug/l ug/l 2.28 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 ND 1.00 1 1.11 1.00 1 ND 1.00 1 ND 1.00 1 ND 1.00 1 105 80.0-120 101 77.0-126	ug/l ug/l date / time 2.28 1.00 1 04/30/2025 08:40 ND 1.00 1 04/30/2025 08:40 ND 1.00 1 04/30/2025 08:40 ND 3.00 1 04/30/2025 08:40 ND 1.00 1 04/30/2025 08:40 1.11 1.00 1 04/30/2025 08:40 ND 1.00 1 04/30/2025 08:40 ND 1.00 1 04/30/2025 08:40 2.47 1.00 1 04/30/2025 08:40 105 80.0-120 04/30/2025 08:40 101 77.0-126 04/30/2025 08:40

Collected date/time: 04/25/25 10:47

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	_
Gasoline Range Organics-NWTPH	38600		1000	10	04/29/2025 17:22	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	92.8		78.0-120		04/29/2025 17:22	WG2502383

Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
ug/l		ug/l		date / time	
5670		100	100	04/30/2025 12:15	WG2503012
1080		100	100	04/30/2025 12:15	WG2503012
8970		100	100	04/30/2025 12:15	WG2503012
5780		300	100	04/30/2025 12:15	WG2503012
168		100	100	04/30/2025 12:15	WG2503012
ND		100	100	04/30/2025 12:15	WG2503012
ND		100	100	04/30/2025 12:15	WG2503012
590		100	100	04/30/2025 12:15	WG2503012
ND		100	100	04/30/2025 12:15	WG2503012
104		80.0-120		04/30/2025 12:15	WG2503012
102		77.0-126		04/30/2025 12:15	WG2503012
92.1		70.0-130		04/30/2025 12:15	WG2503012
	ug/l 5670 1080 8970 5780 168 ND ND S90 ND 104 102	ug/l 5670 1080 8970 5780 168 ND ND 590 ND 104 102	ug/l ug/l 5670 100 1080 100 8970 100 5780 300 168 100 ND 100 ND 100 ND 100 ND 100 104 80.0-120 102 77.0-126	ug/l ug/l 5670 100 100 1080 100 100 8970 100 100 5780 300 100 168 100 100 ND 100 100 ND 100 100 590 100 100 ND 100 100 104 80.0-120 102 77.0-126	ug/l ug/l date / time 5670 100 100 04/30/2025 12:15 1080 100 100 04/30/2025 12:15 8970 100 100 04/30/2025 12:15 5780 300 100 04/30/2025 12:15 168 100 100 04/30/2025 12:15 ND 100 100 04/30/2025 12:15 ND 100 100 04/30/2025 12:15 590 100 100 04/30/2025 12:15 ND 100 100 04/30/2025 12:15 104 80.0-120 04/30/2025 12:15 102 77.0-126 04/30/2025 12:15

Collected date/time: 04/25/25 11:11

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	47000		1000	10	04/29/2025 17:44	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	88.7		78.0-120		04/29/2025 17:44	WG2502383

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	10800		500	500	04/30/2025 12:39	WG2503012
Ethylbenzene	1450		500	500	04/30/2025 12:39	WG2503012
Toluene	9830		500	500	04/30/2025 12:39	WG2503012
Xylenes, Total	8030		1500	500	04/30/2025 12:39	WG2503012
Trichloroethene	ND		500	500	04/30/2025 12:39	WG2503012
cis-1,2-Dichloroethene	ND		500	500	04/30/2025 12:39	WG2503012
trans-1,2-Dichloroethene	ND		500	500	04/30/2025 12:39	WG2503012
Tetrachloroethene	ND		500	500	04/30/2025 12:39	WG2503012
Vinyl chloride	ND		500	500	04/30/2025 12:39	WG2503012
(S) Toluene-d8	104		80.0-120		04/30/2025 12:39	WG2503012
(S) 4-Bromofluorobenzene	104		77.0-126		04/30/2025 12:39	WG2503012
(S) 1,2-Dichloroethane-d4	95.6		70.0-130		04/30/2025 12:39	WG2503012

L1852466

Collected date/time: 04/25/25 11:23

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	392	В	100	1	04/29/2025 16:18	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	96.9		78.0-120		04/29/2025 16:18	WG2502383

2_{To}

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		25.0	25	04/30/2025 13:03	WG2503012
Ethylbenzene	ND		25.0	25	04/30/2025 13:03	WG2503012
Toluene	ND		25.0	25	04/30/2025 13:03	WG2503012
Xylenes, Total	ND		75.0	25	04/30/2025 13:03	WG2503012
Trichloroethene	57.3		25.0	25	04/30/2025 13:03	WG2503012
cis-1,2-Dichloroethene	ND		25.0	25	04/30/2025 13:03	WG2503012
trans-1,2-Dichloroethene	ND		25.0	25	04/30/2025 13:03	WG2503012
Tetrachloroethene	1570		25.0	25	04/30/2025 13:03	WG2503012
Vinyl chloride	ND		25.0	25	04/30/2025 13:03	WG2503012
(S) Toluene-d8	103		80.0-120		04/30/2025 13:03	WG2503012
(S) 4-Bromofluorobenzene	101		77.0-126		04/30/2025 13:03	WG2503012
(S) 1,2-Dichloroethane-d4	95.4		70.0-130		04/30/2025 13:03	WG2503012

L1852466

Collected date/time: 04/25/25 11:40

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 16:40	WG2502383
(S) a,a,a-Trifluorotoluene(FID)	97.2		78.0-120		04/29/2025 16:40	WG2502383

2_{TC}

Ss

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
ND		1.00	1	04/30/2025 09:03	WG2503012
ND		1.00	1	04/30/2025 09:03	WG2503012
ND		1.00	1	04/30/2025 09:03	WG2503012
ND		3.00	1	04/30/2025 09:03	WG2503012
4.33		1.00	1	04/30/2025 09:03	WG2503012
2.21		1.00	1	04/30/2025 09:03	WG2503012
ND		1.00	1	04/30/2025 09:03	WG2503012
164		1.00	1	04/30/2025 09:03	WG2503012
ND		1.00	1	04/30/2025 09:03	WG2503012
102		80.0-120		04/30/2025 09:03	WG2503012
96.1		77.0-126		04/30/2025 09:03	WG2503012
98.1		70.0-130		04/30/2025 09:03	WG2503012
	ug/I ND ND ND ND 4.33 2.21 ND 164 ND 102 96.1	ug/l ND ND ND ND ND ND 164 ND 102 96.1	ug/l ug/l ND 1.00 ND 1.00 ND 3.00 4.33 1.00 2.21 1.00 ND 1.00 164 1.00 ND 1.00 102 80.0-120 96.1 77.0-126	ug/l ug/l ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 4.33 1.00 1 2.21 1.00 1 ND 1.00 1 164 1.00 1 ND 1.00 1 102 80.0-120 96.1 77.0-126	ug/l ug/l date / time ND 1.00 1 04/30/2025 09:03 ND 1.00 1 04/30/2025 09:03 ND 1.00 1 04/30/2025 09:03 ND 3.00 1 04/30/2025 09:03 4.33 1.00 1 04/30/2025 09:03 2.21 1.00 1 04/30/2025 09:03 ND 1.00 1 04/30/2025 09:03 164 1.00 1 04/30/2025 09:03 ND 1.00 1 04/30/2025 09:03 ND 1.00 1 04/30/2025 09:03 102 80.0-120 04/30/2025 09:03 96.1 77.0-126 04/30/2025 09:03

Collected date/time: 04/25/25 11:45

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	8000		1000	10	04/30/2025 01:11	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	91.1		78.0-120		04/30/2025 01:11	WG2502873

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	211		50.0	50	04/30/2025 13:27	WG2503012
Ethylbenzene	252		50.0	50	04/30/2025 13:27	WG2503012
Toluene	1160		50.0	50	04/30/2025 13:27	WG2503012
Xylenes, Total	3690		150	50	04/30/2025 13:27	WG2503012
Trichloroethene	ND		50.0	50	04/30/2025 13:27	WG2503012
cis-1,2-Dichloroethene	ND		50.0	50	04/30/2025 13:27	WG2503012
trans-1,2-Dichloroethene	ND		50.0	50	04/30/2025 13:27	WG2503012
Tetrachloroethene	ND		50.0	50	04/30/2025 13:27	WG2503012
Vinyl chloride	ND		50.0	50	04/30/2025 13:27	WG2503012
(S) Toluene-d8	102		80.0-120		04/30/2025 13:27	WG2503012
(S) 4-Bromofluorobenzene	103		77.0-126		04/30/2025 13:27	WG2503012
(S) 1,2-Dichloroethane-d4	90.9		70.0-130		04/30/2025 13:27	WG2503012

Collected date/time: 04/25/25 11:57

SAMPLE RESULTS - 13

L18

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	12600		1000	10	04/30/2025 01:33	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	91.8		78.0-120		04/30/2025 01:33	WG2502873

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	2240		250	250	04/30/2025 13:51	WG2503012
Ethylbenzene	859		250	250	04/30/2025 13:51	WG2503012
Toluene	828		250	250	04/30/2025 13:51	WG2503012
Xylenes, Total	4360		750	250	04/30/2025 13:51	WG2503012
Trichloroethene	ND		250	250	04/30/2025 13:51	WG2503012
cis-1,2-Dichloroethene	ND		250	250	04/30/2025 13:51	WG2503012
trans-1,2-Dichloroethene	ND		250	250	04/30/2025 13:51	WG2503012
Tetrachloroethene	ND		250	250	04/30/2025 13:51	WG2503012
Vinyl chloride	ND		250	250	04/30/2025 13:51	WG2503012
(S) Toluene-d8	102		80.0-120		04/30/2025 13:51	WG2503012
(S) 4-Bromofluorobenzene	103		77.0-126		04/30/2025 13:51	WG2503012
(S) 1,2-Dichloroethane-d4	94.8		70.0-130		04/30/2025 13:51	WG2503012

Collected date/time: 04/25/25 12:00

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 21:16	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	92.0		78.0-120		04/29/2025 21:16	WG2502873

Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
ug/l		ug/l		date / time	
5.91		1.00	1	05/01/2025 12:48	WG2503919
ND		1.00	1	05/01/2025 12:48	WG2503919
ND		1.00	1	05/01/2025 12:48	WG2503919
ND		3.00	1	05/01/2025 12:48	WG2503919
1.23		1.00	1	05/01/2025 12:48	WG2503919
2.41		1.00	1	05/01/2025 12:48	WG2503919
ND		1.00	1	05/01/2025 12:48	WG2503919
ND		1.00	1	05/01/2025 12:48	WG2503919
4.29		1.00	1	05/01/2025 12:48	WG2503919
108		80.0-120		05/01/2025 12:48	WG2503919
89.0		77.0-126		05/01/2025 12:48	WG2503919
105		70.0-130		05/01/2025 12:48	WG2503919
	ug/l 5.91 ND ND ND 1.23 2.41 ND ND ND 80 89.0	ug/l 5.91 ND ND ND 1.23 2.41 ND ND ND 1.00 ND ND ND ND ND ND ND 4.29 108 89.0	ug/l ug/l 5.91 1.00 ND 1.00 ND 3.00 1.23 1.00 2.41 1.00 ND 1.00 ND 1.00 ND 1.00 100 4.29 108 80.0-120 89.0 77.0-126	ug/l ug/l 5.91 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 1.23 1.00 1 2.41 1.00 1 ND 1.00 1 ND 1.00 1 ND 1.00 1 108 80.0-120 89.0 77.0-126	ug/l ug/l date / time 5.91 1.00 1 05/01/2025 12:48 ND 1.00 1 05/01/2025 12:48 ND 1.00 1 05/01/2025 12:48 ND 3.00 1 05/01/2025 12:48 1.23 1.00 1 05/01/2025 12:48 2.41 1.00 1 05/01/2025 12:48 ND 1.00 1 05/01/2025 12:48 ND 1.00 1 05/01/2025 12:48 4.29 1.00 1 05/01/2025 12:48 108 80.0-120 05/01/2025 12:48 89.0 77.0-126 05/01/2025 12:48

L1852466

Collected date/time: 04/25/25 12:01

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 12:38	WG2502459
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		04/29/2025 12:38	WG2502459

²Тс

²Tc

³Ss

Result	<u>Qualifier</u>	RDL	Dilution	Analysis	<u>Batch</u>
ug/l		ug/l		date / time	
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		3.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
ND		1.00	1	04/30/2025 06:41	WG2503012
106		80.0-120		04/30/2025 06:41	WG2503012
100		77.0-126		04/30/2025 06:41	WG2503012
96.1		70.0-130		04/30/2025 06:41	WG2503012
	ug/l ND	ug/l ND	ug/l ug/l ND 1.00 ND 1.00 ND 3.00 ND 1.00 106 80.0-120 100 77.0-126	ug/l ug/l ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 ND 1.00 1 106 80.0-120 100 77.0-126	ug/l ug/l date / time ND 1.00 1 04/30/2025 06:41 ND 1.00 1 04/30/2025 06:41 ND 1.00 1 04/30/2025 06:41 ND 3.00 1 04/30/2025 06:41 ND 1.00 1 04/30/2025 06:41 106 80.0-120 04/30/2025 06:41 100 77.0-126 04/30/2025 06:41

Collected date/time: 04/25/25 12:02

SAMPLE RESULTS - 16

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 12:58	WG2502459
(S) a,a,a-Trifluorotoluene(FID)	103		78.0-120		04/29/2025 12:58	WG2502459

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 07:05	WG2503012
Ethylbenzene	ND		1.00	1	04/30/2025 07:05	WG2503012
Toluene	ND		1.00	1	04/30/2025 07:05	WG2503012
Xylenes, Total	ND		3.00	1	04/30/2025 07:05	WG2503012
Trichloroethene	ND		1.00	1	04/30/2025 07:05	WG2503012
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 07:05	WG2503012
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 07:05	WG2503012
Tetrachloroethene	ND		1.00	1	04/30/2025 07:05	WG2503012
Vinyl chloride	ND		1.00	1	04/30/2025 07:05	WG2503012
(S) Toluene-d8	104		80.0-120		04/30/2025 07:05	WG2503012
(S) 4-Bromofluorobenzene	99.0		77.0-126		04/30/2025 07:05	WG2503012
(S) 1,2-Dichloroethane-d4	99.0		70.0-130		04/30/2025 07:05	WG2503012

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1852466-01,02,05,07,08,09,10,11

Method Blank (MB)

(MB) R4207271-3 04/29/	/25 10:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	52.4	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	97.1			78.0-120

²Tc

³Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4207271-1 04/29/2	25 09:04 • (LCS	D) R4207271-2	2 04/29/25 09	:26						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5000	4420	4410	88.4	88.2	70.0-124			0.227	20
(S)				103	105	78.0-120				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1852466-15,16

Method Blank (MB)

(MB) R4207173-3 04/29/	/25 10:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	103			78.0-120

²Tc

Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4207173-1 04/29/2	25 09:08 • (LCS	SD) R4207173-2	2 04/29/25 09	:28						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5000	5390	5430	108	109	70.0-124			0.739	20
(S)				107	107	78.0-120				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1852466-12,13,14

Method Blank (MB)

(MB) R4207592-2 04/29	9/25 16:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	93.5			78.0-120

Laboratory Control Sample (LCS)

(LCS) R4207592-1 04/29)/25 15:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	4480	89.6	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			99.7	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1852466-03,04,06

Method Blank (MB)

(MB) R4208963-2 04/30	/25 13:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	59.9	J	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	96.7			78.0-120

³C₆

4Cn

Laboratory Control Sample (LCS)

(LCS) R4208963-1 04/30	0/25 12:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	4680	93.6	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			99.4	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1852466-01,02,03,04,05,06,07,08,09,10,11,12,13,15,16

Method Blank (MB)

(MB) R4207781-3 04/30/2	25 06:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	105			80.0-120
(S) 4-Bromofluorobenzene	99.7			77.0-126
(S) 1,2-Dichloroethane-d4	97.9			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.12	5.41	102	108	70.0-123			5.51	20	
Ethylbenzene	5.00	4.80	5.01	96.0	100	79.0-123			4.28	20	
Toluene	5.00	5.08	5.27	102	105	79.0-120			3.67	20	
Xylenes, Total	15.0	14.4	15.3	96.0	102	79.0-123			6.06	20	
Trichloroethene	5.00	5.39	5.83	108	117	78.0-124			7.84	20	
cis-1,2-Dichloroethene	5.00	4.91	5.22	98.2	104	73.0-120			6.12	20	
trans-1,2-Dichloroethene	5.00	5.31	5.68	106	114	73.0-120			6.73	20	
Tetrachloroethene	5.00	5.60	5.85	112	117	72.0-132			4.37	20	
Vinyl chloride	5.00	5.18	5.56	104	111	67.0-131			7.08	20	
(S) Toluene-d8				104	103	80.0-120					
(S) 4-Bromofluorobenzene				104	103	77.0-126					
(S) 1,2-Dichloroethane-d4				92.8	94.8	70.0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1852466-14

Method Blank (MB)

(MB) R4208846-3 05/01/2	25 12:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	111			80.0-120
(S) 4-Bromofluorobenzene	90.4			77.0-126
(S) 1,2-Dichloroethane-d4	97.0			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4208846-1 05/01/25 11:11 • (LCSD) R4208846-2 05/01/25 11	1:30
---	------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%	·		%	%	
Benzene	5.00	4.81	4.86	96.2	97.2	70.0-123			1.03	20	
Ethylbenzene	5.00	4.81	4.92	96.2	98.4	79.0-123			2.26	20	
Toluene	5.00	5.24	5.31	105	106	79.0-120			1.33	20	
Xylenes, Total	15.0	14.6	14.7	97.3	98.0	79.0-123			0.683	20	
Trichloroethene	5.00	4.59	4.83	91.8	96.6	78.0-124			5.10	20	
cis-1,2-Dichloroethene	5.00	4.79	4.77	95.8	95.4	73.0-120			0.418	20	
trans-1,2-Dichloroethene	5.00	5.59	5.31	112	106	73.0-120			5.14	20	
Tetrachloroethene	5.00	4.97	5.19	99.4	104	72.0-132			4.33	20	
Vinyl chloride	5.00	5.46	5.46	109	109	67.0-131			0.000	20	
(S) Toluene-d8				108	110	80.0-120					
(S) 4-Bromofluorobenzene				94.3	90.3	77.0-126					
(S) 1.2-Dichloroethane-d4				103	109	70.0-130					

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Callalitier	Description

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Engineering/Remediation	on Resou	irces		Sonnichsen	Accounts	Pres				Analysis / Con	tainer / Preserva	tive		Chain of Custoo	y Page of	
15333 NE 90th Street			Payable 15333 N Ste 100	15333 NE 90th Street										PEOPL	ACE* E ADVANCING SCIENCE	
Report to: Jennifer Sonnichsen 425-658-502	6		Email To: jennifer.sonnichsen@errg.com;spencer.slomins											1	ULIET, TN	
Project Description: City/State FORMER CIRCLE K Collected:		City/State Collected:	SEATTLE, WA Please Circle:											12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of Pace Terms and Conditions found at: https://linfo.pacelabs.com/hubfs/pas-standard-		
Regulatory Program(DOD,RCRA,DW,etc): ECOLOGY - EIM	Client Project	23001		Lab Project # ENGREMR	WA-CIRCLE K	(-BIR						spg # L185 2466		
Collected by (print): BLAINE TECH	Site/Facility I	D#		P.O. #			пр на	DH-dr	ס	CI-BIK				Table # H014		
Collected by (signature):	Same D	Lab MUST Be ay Five	Day	Quote #	T.		40mlAmb	40mlAmb-HCI-BIk	V8260 40mlAmb-HCI	Amb-HC				Acctnum: ENGREMRWA Template:T263464 Prelogin: P1144782		
Immediately Packed on Ice N Y	Two Da	y 10 Da lay STD 1	ay (Rad Only)	Date Resi	ults Needed	No.	NWTPHGX	NWTPHGX	0 40ml	0 40mlAmb				PM: 3500 - Jen PB: 4/15	nifer Gambill	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWT	IWN	V826	V8260				Shipped Via: Fe	Sample # (lab only)	
RW-1	GRAD	GW	NA	4/25/24	5 0913	6	X		X						N/	
mw-14		GW	1		0921	6	X		X						- 01	
mad-9		GW			0945	6	X		X	149	1 203				- 03	
mw-16		GW			0954	6	X		X						- 04	
mn-8		GW			1013	6	X		X						- 05	
MW-15		GW			1019	6	X		X						- 00	
MW-6		GW			1042	6	X		X							
MW-19		GW			1047	6	X		X			_			- 07	
MW-21		GW			Till	6	X		X						- 68	
MW-17	4	GW	7		1123	6	X		X	100					- 09	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water DT - Other	marks:V8260: mples returned upsFedEx	Yla:	Cs custom TLE, PCF	list.	it DCE ONLY			392		pH	Temp Other		Sampl COC Seal Pre COC Signed/A Bottles arri Correct bott Sufficient	ve intact:	NP CY NN	
Relinquished by: (Signature) 5, Sr	^ Da		Time:	Recei	yed by: (Signat.	are) T) ER					ived: (Yes/No HCL/Me TBR		VOA Zero Hea Preservation RAD Screen	dspace: Correct/Che	/Y N	
		125/21		30 Recei	FEDE	X			(emp: 8/A4 ° 0.9+0/1=1.3		ed:	If preservation	required by Logi	n: Date/Time	
Relinquished by : (Signature)	Da	te:	Time:	Recei	ived for lab by: (Signatu Man (L				4/26/25	Time: 0,900		Hold:		Condition: NCF / OK	

Company Name/Address:			Billing Info	ormation:					, ,	Analysis /	Ontainer /	Preservative		Chain of Custo	dy Pag	e 2 of 2	
Ingineering/Remediation Resources Group 5333 NE 90th Street		Payable	Jennifer Sonnichsen Accounts Payable 15333 NE 90th Street										P	ace	SCIENCE		
			n - d = 11	4 MIA 000F3					ш								
Report to: Jennifer Sonnichsen 425-658-5026			Email To:	onnichsen@errg.c	om:spencer s	lomins						3			ULIET, 1		
Project Description: FORMER CIRCI	LE K	City/State Collected:	0	ircle: CT ET								12065 Lebanon Rd. N. Submitting a sample constitutes acknowle Pace Terms and Cono https://info.pacelabs terms.pdf	via this chain of dgment and acc itions found at:	custody ceptance of the			
egulatory Program(DOD,RCRA,DW,etc): Client Project #		5	Lab Project # ENGREMRW	A-CIRCLE K	(1-8 k						SDG # L18	15 24	166	
ollected by (print):	Site/Facility ID			P.O. #			DH q	1 H	-	CI-BIK			2	Table #	Table #		
Collected by (signature):		b MUST Be		Quote #			40mlAmb	40mlAmb-HCI-Blk	mb-HC	mp+HC				Acctnum: EN Template:T26	CONTRACTOR OF THE PARTY OF THE		
mmediately Packed on Ice N Y	Next Day Two Day	5 Day	(Rad Only) ay (Rad Only)	Date Result	s Needed	No. of		NWTPHGX 40	V8260 40mlAmb-HCI	40mlAmb-H				Prelogin: P11 PM: 3500 - Jer PB: 4//5	nifer Gan	mbill V	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWTPHGX	NWTF	V8260	V8260				Shipped Via: F	edEX Gr		
MW-18	GRAB	GW	NA	4/25/25	1140	6	X		X						-	11	
MW-13		GW	1	1	1145	6	X		X							12	
N/W- 20		GW			1157	6	X		X							13	
DUP-1	4	GW	4	+	1200	6	X		X							14	
		GW				6	X		_X_	-0							
RIP BLANK		−G₩		-		6	X		X	J (P)						//	
TB-1	-	GW	MA	42525	1201	2		X		X					-	15	
T13-2	7	GW	4	7	1202	2		Х		Х						16	
						\vdash											
Matrix: 5 - Soil AIR - Air F - Filter W - Groundwater B - Bioassay //W - WasteWater			OCs custom list.				pH Temp Flow Other							Sample Receipt Checklist COC Seal Present/Intact: _NP _Y _N COC Signed/Accurate: _N _N _N Bottles arrive intact: _Y _N			
T - Other	Samples returned vi UPS FedEx			Trackin	ng#			1439	1 2	452 5	367		Suffici	t bottles used: ient volume sent: <u>If Applicab</u> ; ro Headspace:	e	Y N	
elinquished by : (Signature)	TECH 4	यि	Time:	Receiv	ed by: (Signat	ure)	RG			rip Blank F		NCL / MeoH		vation Correct/Che reen <0.5 mR/hr:	cked: Z	Y _N	
Relinquished by : (Signature)	Date		Time:	130 Receiv	ed by: (Signat				Т	0.940,4=	3°C Bo	ottles Received	If preser	vation required by Log	in: Date/T	ime	
Relinquished by: (Signature)	Date		Time:	Receiv	ed for lab by:	200	re)		D	ate:	26/25	0900	Hold:		Condi NCF		

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

L1863104 Sample Delivery Group:

Samples Received: 05/24/2025

Project Number: 20230065

Description: Former Circle K

Site: 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamper Gambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
MW-16 L1863104-01	7
MW-17 L1863104-02	8
MW-18 L1863104-03	9
MW-19 L1863104-04	10
MW-20 L1863104-05	11
MW-21 L1863104-06	12
RW-1 L1863104-07	13
DUP-1 L1863104-08	14
MW-6 L1863104-09	15
MW-8 L1863104-10	16
MW-13 L1863104-11	17
MW-14 L1863104-12	18
MW-9 L1863104-13	19
MW-15 L1863104-14	20
TB-01 L1863104-15	21
TB-02 L1863104-16	22
Qc: Quality Control Summary	23
Volatile Organic Compounds (GC) by Method NWTPHGX	23
Volatile Organic Compounds (GC/MS) by Method 8260B	26
GI: Glossary of Terms	29
Al: Accreditations & Locations	30

Sc: Sample Chain of Custody

31

SAMPLE SUMMARY

MW-16 L1863104-01			Collected by LB/SM	Collected date/time 05/23/25 09:46	Received da 05/24/25 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 16:02	05/29/25 16:02	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	1	05/30/25 13:00	05/30/25 13:00	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-17 L1863104-02			LB/SM	05/23/25 11:20	05/24/25 08	3:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 16:22	05/29/25 16:22	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	25	05/30/25 15:39	05/30/25 15:39	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-18 L1863104-03			LB/SM	05/23/25 11:40	05/24/25 08	3:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 16:42	05/29/25 16:42	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	1	05/30/25 13:20	05/30/25 13:20	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-19 L1863104-04			LB/SM	05/23/25 13:15	05/24/25 08	3:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	10	05/29/25 17:23	05/29/25 17:23	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	100	05/30/25 16:39	05/30/25 16:39	DYW	Mt. Juliet, TN
MW-20 L1863104-05			Collected by LB/SM	Collected date/time 05/23/25 10:50	Received da 05/24/25 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	10	05/31/25 19:24	05/31/25 19:24	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2530030	50	06/04/25 02:32	06/04/25 02:32	JHH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-21 L1863104-06			LB/SM	05/23/25 12:43	05/24/25 08	3:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	10	05/31/25 19:46	05/31/25 19:46	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	500	05/30/25 17:19	05/30/25 17:19	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
RW-1 L1863104-07			LB/SM	05/23/25 12:15	05/24/25 08	3:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	1	05/31/25 13:55	05/31/25 13:55	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	10	05/30/25 15:00	05/30/25 15:00	DYW	Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
DUP-1 L1863104-08			LB/SM	05/23/25 12:00	05/24/25 08	::30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	1	05/31/25 14:17	05/31/25 14:17	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	1	05/30/25 13:40	05/30/25 13:40	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-6 L1863104-09			LB/SM	05/23/25 10:15	05/24/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	1	05/31/25 14:38	05/31/25 14:38	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	1	05/30/25 14:00	05/30/25 14:00	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8 L1863104-10			LB/SM	05/23/25 11:12	05/24/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	5	05/31/25 20:07	05/31/25 20:07	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	50	05/30/25 15:59	05/30/25 15:59	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-13 L1863104-11			LB/SM	05/23/25 12:18	05/24/25 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	10	05/31/25 20:30	05/31/25 20:30	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	50	05/30/25 16:19	05/30/25 16:19	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-14 L1863104-12			LB/SM	05/23/25 11:37	05/24/25 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	1	05/31/25 15:00	05/31/25 15:00	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	1	05/30/25 14:20	05/30/25 14:20	DYW	Mt. Juliet, TN
volutic organic compounds (ocims) by method 02000	W02J2002J	·	03/30/23 14.20	03/30/23 14.20	DIW	Wit. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-9 L1863104-13			LB/SM	05/23/25 10:17	05/24/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	,		date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	5	05/31/25 20:51	05/31/25 20:51	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526623	20	05/30/25 15:20	05/30/25 15:20	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-15 L1863104-14			LB/SM	05/23/25 10:42	05/24/25 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527544	1	05/31/25 15:22	05/31/25 15:22	CDD	Mt. Juliet, TN
Valatila Opposia Carra annala (CC/MC) in Matha d OCCO			05/20/25 44 40	05/00/05 44 40	2-2	M. I. I. Thi

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2526623

05/30/25 14:40

05/30/25 14:40

DYW

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
TB-01 L1863104-15			LB/SM	05/23/25 13:30	05/24/25 08:30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527548	1	05/31/25 02:09	05/31/25 02:09	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2530030	1	06/04/25 02:11	06/04/25 02:11	JHH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-02 L1863104-16			LB/SM	05/23/25 13:35	05/24/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2527548	1	05/31/25 02:33	05/31/25 02:33	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2527497	1	05/31/25 08:47	05/31/25 08:47	JHH	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

Sample Delivery Group (SDG) Narrative

Analyzed from headspace vial.

Lab Sample ID Method **Project Sample ID** L1863104-15 TB-01 8260B

Collected date/time: 05/23/25 09:46

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/29/2025 16:02	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	103		78.0-120		05/29/2025 16:02	WG2526017

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 13:00	WG2526623
Ethylbenzene	ND		1.00	1	05/30/2025 13:00	WG2526623
Toluene	ND		1.00	1	05/30/2025 13:00	WG2526623
Xylenes, Total	ND		3.00	1	05/30/2025 13:00	WG2526623
Trichloroethene	ND		1.00	1	05/30/2025 13:00	WG2526623
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 13:00	WG2526623
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 13:00	WG2526623
Tetrachloroethene	ND		1.00	1	05/30/2025 13:00	WG2526623
Vinyl chloride	ND	<u>C3</u>	1.00	1	05/30/2025 13:00	WG2526623
(S) Toluene-d8	100		80.0-120		05/30/2025 13:00	WG2526623
(S) 4-Bromofluorobenzene	94.6		77.0-126		05/30/2025 13:00	WG2526623
(S) 1,2-Dichloroethane-d4	101		70.0-130		05/30/2025 13:00	WG2526623

Collected date/time: 05/23/25 11:20

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	429		100	1	05/29/2025 16:22	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	103		78.0-120		05/29/2025 16:22	WG2526017

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		25.0	25	05/30/2025 15:39	WG2526623
Ethylbenzene	ND		25.0	25	05/30/2025 15:39	WG2526623
Toluene	ND		25.0	25	05/30/2025 15:39	WG2526623
Xylenes, Total	ND		75.0	25	05/30/2025 15:39	WG2526623
Trichloroethene	50.5		25.0	25	05/30/2025 15:39	WG2526623
cis-1,2-Dichloroethene	ND		25.0	25	05/30/2025 15:39	WG2526623
trans-1,2-Dichloroethene	ND		25.0	25	05/30/2025 15:39	WG2526623
Tetrachloroethene	1120		25.0	25	05/30/2025 15:39	WG2526623
Vinyl chloride	ND	<u>C3</u>	25.0	25	05/30/2025 15:39	WG2526623
(S) Toluene-d8	102		80.0-120		05/30/2025 15:39	WG2526623
(S) 4-Bromofluorobenzene	95.4		77.0-126		05/30/2025 15:39	WG2526623
(S) 1,2-Dichloroethane-d4	97.6		70.0-130		05/30/2025 15:39	WG2526623

8 of 32

Collected date/time: 05/23/25 11:40

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/29/2025 16:42	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	103		78.0-120		05/29/2025 16:42	WG2526017

Ss

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 13:20	WG2526623
Ethylbenzene	ND		1.00	1	05/30/2025 13:20	WG2526623
Toluene	ND		1.00	1	05/30/2025 13:20	WG2526623
Xylenes, Total	ND		3.00	1	05/30/2025 13:20	WG2526623
Trichloroethene	4.18		1.00	1	05/30/2025 13:20	WG2526623
cis-1,2-Dichloroethene	1.81		1.00	1	05/30/2025 13:20	WG2526623
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 13:20	WG2526623
Tetrachloroethene	165		1.00	1	05/30/2025 13:20	WG2526623
Vinyl chloride	ND	<u>C3</u>	1.00	1	05/30/2025 13:20	WG2526623
(S) Toluene-d8	98.5		80.0-120		05/30/2025 13:20	WG2526623
(S) 4-Bromofluorobenzene	95.3		77.0-126		05/30/2025 13:20	WG2526623
(S) 1,2-Dichloroethane-d4	102		70.0-130		05/30/2025 13:20	WG2526623

Collected date/time: 05/23/25 13:15

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	17400		1000	10	05/29/2025 17:23	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	99.2		78.0-120		05/29/2025 17:23	WG2526017

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	498		100	100	05/30/2025 16:39	WG2526623
Ethylbenzene	511		100	100	05/30/2025 16:39	WG2526623
Toluene	2220		100	100	05/30/2025 16:39	WG2526623
Xylenes, Total	2670		300	100	05/30/2025 16:39	WG2526623
Trichloroethene	115		100	100	05/30/2025 16:39	WG2526623
cis-1,2-Dichloroethene	ND		100	100	05/30/2025 16:39	WG2526623
trans-1,2-Dichloroethene	ND		100	100	05/30/2025 16:39	WG2526623
Tetrachloroethene	525		100	100	05/30/2025 16:39	WG2526623
Vinyl chloride	ND	<u>C3</u>	100	100	05/30/2025 16:39	WG2526623
(S) Toluene-d8	100		80.0-120		05/30/2025 16:39	WG2526623
(S) 4-Bromofluorobenzene	96.3		77.0-126		05/30/2025 16:39	WG2526623
(S) 1,2-Dichloroethane-d4	104		70.0-130		05/30/2025 16:39	WG2526623

Collected date/time: 05/23/25 10:50

L1863104

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	17500		1000	10	05/31/2025 19:24	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	95.9		78.0-120		05/31/2025 19:24	WG2527544

²Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	1070		50.0	50	06/04/2025 02:32	WG2530030
Ethylbenzene	657		50.0	50	06/04/2025 02:32	WG2530030
Toluene	781		50.0	50	06/04/2025 02:32	WG2530030
Xylenes, Total	3400		150	50	06/04/2025 02:32	WG2530030
Trichloroethene	ND		50.0	50	06/04/2025 02:32	WG2530030
cis-1,2-Dichloroethene	62.7		50.0	50	06/04/2025 02:32	WG2530030
trans-1,2-Dichloroethene	ND		50.0	50	06/04/2025 02:32	WG2530030
Tetrachloroethene	ND		50.0	50	06/04/2025 02:32	WG2530030
Vinyl chloride	ND		50.0	50	06/04/2025 02:32	WG2530030
(S) Toluene-d8	101		80.0-120		06/04/2025 02:32	WG2530030
(S) 4-Bromofluorobenzene	93.4		77.0-126		06/04/2025 02:32	WG2530030
(S) 1,2-Dichloroethane-d4	102		70.0-130		06/04/2025 02:32	WG2530030

Cn

Sample Narrative:

L1863104-05 WG2530030: Target and Non-target compounds too high to run at a lower dilution.

Volatile Organic Compounds (GC) by Method NWTPHGX

Collected date/time: 05/23/25 12:43

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	67000		1000	10	05/31/2025 19:46	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	94.2		78.0-120		05/31/2025 19:46	WG2527544

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	9630		500	500	05/30/2025 17:19	WG2526623
Ethylbenzene	1660		500	500	05/30/2025 17:19	WG2526623
Toluene	15200		500	500	05/30/2025 17:19	WG2526623
Xylenes, Total	10200		1500	500	05/30/2025 17:19	WG2526623
Trichloroethene	ND		500	500	05/30/2025 17:19	WG2526623
cis-1,2-Dichloroethene	ND		500	500	05/30/2025 17:19	WG2526623
trans-1,2-Dichloroethene	ND		500	500	05/30/2025 17:19	WG2526623
Tetrachloroethene	ND		500	500	05/30/2025 17:19	WG2526623
Vinyl chloride	ND	<u>C3</u>	500	500	05/30/2025 17:19	WG2526623
(S) Toluene-d8	100		80.0-120		05/30/2025 17:19	WG2526623
(S) 4-Bromofluorobenzene	96.9		77.0-126		05/30/2025 17:19	WG2526623
(S) 1,2-Dichloroethane-d4	98.3		70.0-130		05/30/2025 17:19	WG2526623

Collected date/time: 05/23/25 12:15

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	147		100	1	05/31/2025 13:55	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	97.4		78.0-120		05/31/2025 13:55	WG2527544

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		10.0	10	05/30/2025 15:00	WG2526623
Ethylbenzene	ND		10.0	10	05/30/2025 15:00	WG2526623
Toluene	ND		10.0	10	05/30/2025 15:00	WG2526623
Xylenes, Total	ND		30.0	10	05/30/2025 15:00	WG2526623
Trichloroethene	14.3		10.0	10	05/30/2025 15:00	WG2526623
cis-1,2-Dichloroethene	ND		10.0	10	05/30/2025 15:00	WG2526623
trans-1,2-Dichloroethene	ND		10.0	10	05/30/2025 15:00	WG2526623
Tetrachloroethene	250		10.0	10	05/30/2025 15:00	WG2526623
Vinyl chloride	ND	<u>C3</u>	10.0	10	05/30/2025 15:00	WG2526623
(S) Toluene-d8	98.8		80.0-120		05/30/2025 15:00	WG2526623
(S) 4-Bromofluorobenzene	92.1		77.0-126		05/30/2025 15:00	WG2526623
(S) 1,2-Dichloroethane-d4	101		70.0-130		05/30/2025 15:00	WG2526623

Collected date/time: 05/23/25 12:00

1863104

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/31/2025 14:17	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	97.2		78.0-120		05/31/2025 14:17	WG2527544

²Tc

Ss

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 13:40	WG2526623
Ethylbenzene	ND		1.00	1	05/30/2025 13:40	WG2526623
Toluene	ND		1.00	1	05/30/2025 13:40	WG2526623
Xylenes, Total	ND		3.00	1	05/30/2025 13:40	WG2526623
Trichloroethene	ND		1.00	1	05/30/2025 13:40	WG2526623
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 13:40	WG2526623
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 13:40	WG2526623
Tetrachloroethene	ND		1.00	1	05/30/2025 13:40	WG2526623
Vinyl chloride	ND	<u>C3</u>	1.00	1	05/30/2025 13:40	WG2526623
(S) Toluene-d8	100		80.0-120		05/30/2025 13:40	WG2526623
(S) 4-Bromofluorobenzene	96.2		77.0-126		05/30/2025 13:40	WG2526623
(S) 1,2-Dichloroethane-d4	102		70.0-130		05/30/2025 13:40	WG2526623

Collected date/time: 05/23/25 10:15

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/31/2025 14:38	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	97.5		78.0-120		05/31/2025 14:38	WG2527544

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 14:00	WG2526623
Ethylbenzene	ND		1.00	1	05/30/2025 14:00	WG2526623
Toluene	ND		1.00	1	05/30/2025 14:00	WG2526623
Xylenes, Total	ND		3.00	1	05/30/2025 14:00	WG2526623
Trichloroethene	ND		1.00	1	05/30/2025 14:00	WG2526623
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 14:00	WG2526623
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 14:00	WG2526623
Tetrachloroethene	ND		1.00	1	05/30/2025 14:00	WG2526623
Vinyl chloride	1.03	<u>C3</u>	1.00	1	05/30/2025 14:00	WG2526623
(S) Toluene-d8	102		80.0-120		05/30/2025 14:00	WG2526623
(S) 4-Bromofluorobenzene	97.4		77.0-126		05/30/2025 14:00	WG2526623
(S) 1,2-Dichloroethane-d4	105		70.0-130		05/30/2025 14:00	WG2526623

Collected date/time: 05/23/25 11:12

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	19100		500	5	05/31/2025 20:07	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	95.6		78.0-120		05/31/2025 20:07	WG2527544

³Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		50.0	50	05/30/2025 15:59	WG2526623
Ethylbenzene	1130		50.0	50	05/30/2025 15:59	WG2526623
Toluene	143		50.0	50	05/30/2025 15:59	WG2526623
Xylenes, Total	3490		150	50	05/30/2025 15:59	WG2526623
Trichloroethene	ND		50.0	50	05/30/2025 15:59	WG2526623
cis-1,2-Dichloroethene	ND		50.0	50	05/30/2025 15:59	WG2526623
trans-1,2-Dichloroethene	ND		50.0	50	05/30/2025 15:59	WG2526623
Tetrachloroethene	ND		50.0	50	05/30/2025 15:59	WG2526623
Vinyl chloride	ND	<u>C3</u>	50.0	50	05/30/2025 15:59	WG2526623
(S) Toluene-d8	99.1		80.0-120		05/30/2025 15:59	WG2526623
(S) 4-Bromofluorobenzene	98.5		77.0-126		05/30/2025 15:59	WG2526623
(S) 1,2-Dichloroethane-d4	101		70.0-130		05/30/2025 15:59	WG2526623

L186310

Collected date/time: 05/23/25 12:18

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	9920		1000	10	05/31/2025 20:30	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	94.7		78.0-120		05/31/2025 20:30	WG2527544

Ss

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
173		50.0	50	05/30/2025 16:19	WG2526623
121		50.0	50	05/30/2025 16:19	WG2526623
973		50.0	50	05/30/2025 16:19	WG2526623
2840		150	50	05/30/2025 16:19	WG2526623
ND		50.0	50	05/30/2025 16:19	WG2526623
ND		50.0	50	05/30/2025 16:19	WG2526623
ND		50.0	50	05/30/2025 16:19	WG2526623
ND		50.0	50	05/30/2025 16:19	WG2526623
ND	<u>C3</u>	50.0	50	05/30/2025 16:19	WG2526623
101		80.0-120		05/30/2025 16:19	WG2526623
98.8		77.0-126		05/30/2025 16:19	WG2526623
98.0		70.0-130		05/30/2025 16:19	WG2526623
	ug/l 173 121 973 2840 ND ND ND ND ND ND ND 101 98.8	ug/l 173 121 973 2840 ND	ug/l ug/l 173 50.0 121 50.0 973 50.0 2840 150 ND 50.0 ND 80.0-120 98.8 77.0-126	ug/l ug/l 173 50.0 50 121 50.0 50 973 50.0 50 2840 150 50 ND 50.0 50 101 80.0-120 98.8 77.0-126 77.0-126	ug/l ug/l date / time 173 50.0 50 05/30/2025 16:19 121 50.0 50 05/30/2025 16:19 973 50.0 50 05/30/2025 16:19 2840 150 50 05/30/2025 16:19 ND 50.0 50 05/30/2025 16:19 ND 63 50.0 50 05/30/2025 16:19

Collected date/time: 05/23/25 11:37

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/31/2025 15:00	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	97.7		78.0-120		05/31/2025 15:00	WG2527544

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 14:20	WG2526623
Ethylbenzene	ND		1.00	1	05/30/2025 14:20	WG2526623
Toluene	21.3		1.00	1	05/30/2025 14:20	WG2526623
Xylenes, Total	ND		3.00	1	05/30/2025 14:20	WG2526623
Trichloroethene	ND		1.00	1	05/30/2025 14:20	WG2526623
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 14:20	WG2526623
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 14:20	WG2526623
Tetrachloroethene	ND		1.00	1	05/30/2025 14:20	WG2526623
Vinyl chloride	ND	<u>C3</u>	1.00	1	05/30/2025 14:20	WG2526623
(S) Toluene-d8	104		80.0-120		05/30/2025 14:20	WG2526623
(S) 4-Bromofluorobenzene	93.3		77.0-126		05/30/2025 14:20	WG2526623
(S) 1,2-Dichloroethane-d4	94.9		70.0-130		05/30/2025 14:20	WG2526623

Collected date/time: 05/23/25 10:17

1863104

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	12700		500	5	05/31/2025 20:51	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	98.5		78.0-120		05/31/2025 20:51	WG2527544

Ss

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		20.0	20	05/30/2025 15:20	WG2526623
Ethylbenzene	607		20.0	20	05/30/2025 15:20	WG2526623
Toluene	35.1		20.0	20	05/30/2025 15:20	WG2526623
Xylenes, Total	1450		60.0	20	05/30/2025 15:20	WG2526623
Trichloroethene	ND		20.0	20	05/30/2025 15:20	WG2526623
cis-1,2-Dichloroethene	ND		20.0	20	05/30/2025 15:20	WG2526623
trans-1,2-Dichloroethene	ND		20.0	20	05/30/2025 15:20	WG2526623
Tetrachloroethene	ND		20.0	20	05/30/2025 15:20	WG2526623
Vinyl chloride	ND	<u>C3</u>	20.0	20	05/30/2025 15:20	WG2526623
(S) Toluene-d8	98.1		80.0-120		05/30/2025 15:20	WG2526623
(S) 4-Bromofluorobenzene	96.6		77.0-126		05/30/2025 15:20	WG2526623
(S) 1,2-Dichloroethane-d4	100		70.0-130		05/30/2025 15:20	WG2526623

Collected date/time: 05/23/25 10:42

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/31/2025 15:22	WG2527544
(S) a,a,a-Trifluorotoluene(FID)	97.5		78.0-120		05/31/2025 15:22	WG2527544

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 14:40	WG2526623
Ethylbenzene	ND		1.00	1	05/30/2025 14:40	WG2526623
Toluene	ND		1.00	1	05/30/2025 14:40	WG2526623
Xylenes, Total	ND		3.00	1	05/30/2025 14:40	WG2526623
Trichloroethene	ND		1.00	1	05/30/2025 14:40	WG2526623
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 14:40	WG2526623
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 14:40	WG2526623
Tetrachloroethene	ND		1.00	1	05/30/2025 14:40	WG2526623
Vinyl chloride	ND	<u>C3</u>	1.00	1	05/30/2025 14:40	WG2526623
(S) Toluene-d8	101		80.0-120		05/30/2025 14:40	WG2526623
(S) 4-Bromofluorobenzene	96.4		77.0-126		05/30/2025 14:40	WG2526623
(S) 1,2-Dichloroethane-d4	101		70.0-130		05/30/2025 14:40	WG2526623

Collected date/time: 05/23/25 13:30

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/31/2025 02:09	WG2527548
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		05/31/2025 02:09	WG2527548

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	06/04/2025 02:11	WG2530030
Ethylbenzene	ND		1.00	1	06/04/2025 02:11	WG2530030
Toluene	ND		1.00	1	06/04/2025 02:11	WG2530030
Xylenes, Total	ND		3.00	1	06/04/2025 02:11	WG2530030
Trichloroethene	ND		1.00	1	06/04/2025 02:11	WG2530030
cis-1,2-Dichloroethene	ND		1.00	1	06/04/2025 02:11	WG2530030
trans-1,2-Dichloroethene	ND		1.00	1	06/04/2025 02:11	WG2530030
Tetrachloroethene	ND		1.00	1	06/04/2025 02:11	WG2530030
Vinyl chloride	ND		1.00	1	06/04/2025 02:11	WG2530030
(S) Toluene-d8	101		80.0-120		06/04/2025 02:11	WG2530030
(S) 4-Bromofluorobenzene	90.1		77.0-126		06/04/2025 02:11	WG2530030
(S) 1,2-Dichloroethane-d4	107		70.0-130		06/04/2025 02:11	WG2530030

Collected date/time: 05/23/25 13:35

1863104

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/31/2025 02:33	WG2527548
(S) a,a,a-Trifluorotoluene(FID)	100		78.0-120		05/31/2025 02:33	WG2527548

Tc Ss

Analysis <u>Batch</u>
date / time
05/31/2025 08:47 <u>WG2527497</u>
05/31/2025 08:47 <u>WG2527497</u>
05/31/2025 08:47 <u>WG2527497</u>
05/31/2025 08:47 WG2527497
05/31/2025 08:47 <u>WG2527497</u>
05/31/2025 08:47 WG2527497
05/31/2025 08:47 WG2527497
05/31/2025 08:47 WG2527497

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1863104-01,02,03,04

Method Blank (MB)

(MB) R4224392-2 05/29	9/25 10:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		78.6	100
(S) a,a,a-Trifluorotoluene(FID)	103			78.0-120

3

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R4224392-1 05/29	9/25 09:26				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	4520	90.4	70.0-124	
(S)			104	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1863104-05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

(MB) R4224744-2 05/31/	/25 11:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		78.6	100
(S) a,a,a-Trifluorotoluene(FID)	97.3			78.0-120

3

4

Laboratory Control Sample (LCS)

(LCS) R4224744-1 05/31/	25 11:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	5210	104	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			106	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1863104-15,16

Method Blank (MB)

(MB) R4224215-3 05/31/	25 01:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		78.6	100
(S) a,a,a-Trifluorotoluene(FID)	101			78.0-120

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4224215-1 05/30	/25 23:51 • (LCS	D) R4224215-	2 05/31/25 00:	15						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5000	4510	4770	90.2	95.4	70.0-124			5.60	20
(S)				102	103	78.0-120				

Engineering/Remediation Resources Group

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1863104-01,02,03,04,06,07,08,09,10,11,12,13,14

Method Blank (MB)

(MB) R4225031-3 05/30/2	25 08:14				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.0941	1.00	
Ethylbenzene	U		0.137	1.00	
Toluene	U		0.278	1.00	
Xylenes, Total	U		0.174	3.00	
Trichloroethene	U		0.190	1.00	
cis-1,2-Dichloroethene	U		0.126	1.00	
trans-1,2-Dichloroethene	U		0.149	1.00	
Tetrachloroethene	U		0.300	1.00	
Vinyl chloride	U		0.234	1.00	
(S) Toluene-d8	100			80.0-120	
(S) 4-Bromofluorobenzene	93.8			77.0-126	
(S) 1,2-Dichloroethane-d4	102			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4225031-1 05/30/25 06:54 • (LCSD) R4225031-
--

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzene	5.00	4.27	4.15	85.4	83.0	70.0-123			2.85	20
Ethylbenzene	5.00	4.34	4.09	86.8	81.8	79.0-123			5.93	20
Toluene	5.00	4.24	3.99	84.8	79.8	79.0-120			6.08	20
Xylenes, Total	15.0	12.7	12.0	84.7	80.0	79.0-123			5.67	20
Trichloroethene	5.00	4.40	4.27	88.0	85.4	78.0-124			3.00	20
cis-1,2-Dichloroethene	5.00	4.31	4.27	86.2	85.4	73.0-120			0.932	20
trans-1,2-Dichloroethene	5.00	4.27	3.95	85.4	79.0	73.0-120			7.79	20
Tetrachloroethene	5.00	4.21	3.99	84.2	79.8	72.0-132			5.37	20
Vinyl chloride	5.00	3.90	3.81	78.0	76.2	67.0-131			2.33	20
(S) Toluene-d8				97.4	98.1	80.0-120				
(S) 4-Bromofluorobenzene				96.6	95.3	77.0-126				
(S) 1,2-Dichloroethane-d4				103	99.6	70.0-130				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1863104-16

Method Blank (MB)

(MB) R4224723-2 05/31/25	02:37			
1	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	99.1			80.0-120
(S) 4-Bromofluorobenzene	89.8			77.0-126
(S) 1,2-Dichloroethane-d4	106			70.0-130

Laboratory Control Sample (LCS)

(LCS) R4224/23-1 0	5/31/25 01:56
--------------------	---------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.43	109	70.0-123	
Ethylbenzene	5.00	5.08	102	79.0-123	
Toluene	5.00	5.31	106	79.0-120	
Xylenes, Total	15.0	14.9	99.3	79.0-123	
Trichloroethene	5.00	5.61	112	78.0-124	
cis-1,2-Dichloroethene	5.00	5.00	100	73.0-120	
trans-1,2-Dichloroethene	5.00	5.09	102	73.0-120	
Tetrachloroethene	5.00	5.13	103	72.0-132	
Vinyl chloride	5.00	4.65	93.0	67.0-131	
(S) Toluene-d8			99.6	80.0-120	
(S) 4-Bromofluorobenzene			92.9	77.0-126	
(S) 1,2-Dichloroethane-d4			103	70.0-130	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1863104-05,15

Method Blank (MB)

(MB) R4225291-3 06/03/2	25 23:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	98.6			80.0-120
(S) 4-Bromofluorobenzene	90.1			77.0-126
(S) 1.2-Dichloroethane-d4	100			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4225291-1 06/03/25 22:47 • (LCSD) R4225291-2 06/03/25 23:	.31-1 00/03/23 22.47 • (LC3D) K4223231-2 00/03/23 23.00
--	---

,	١,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	4.67	4.75	93.4	95.0	70.0-123			1.70	20	
Ethylbenzene	5.00	4.62	4.57	92.4	91.4	79.0-123			1.09	20	
Toluene	5.00	4.68	4.65	93.6	93.0	79.0-120			0.643	20	
Xylenes, Total	15.0	13.5	13.4	90.0	89.3	79.0-123			0.744	20	
Trichloroethene	5.00	4.53	4.52	90.6	90.4	78.0-124			0.221	20	
cis-1,2-Dichloroethene	5.00	4.68	4.62	93.6	92.4	73.0-120			1.29	20	
trans-1,2-Dichloroethene	5.00	4.45	4.26	89.0	85.2	73.0-120			4.36	20	
Tetrachloroethene	5.00	4.91	4.78	98.2	95.6	72.0-132			2.68	20	
Vinyl chloride	5.00	4.48	4.30	89.6	86.0	67.0-131			4.10	20	
(S) Toluene-d8				104	102	80.0-120					
(S) 4-Bromofluorobenzene				93.2	92.8	77.0-126					
(S) 1 2-Dichloroethane-d4				106	107	70 0-130					

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
0 1:6	B

Qualifier Description

C3

The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

pany Name/Address:			Billing Info	rmation:	-79				A	nalvsis /	Contair	ner / Preservative		Chain of Custody	Page _ of ~
ingineering/Remediation	on Resou	rces	Payable							*				- Pa	ace
5333 NE 90th Street			Ste 100	15333 NE 90th Street Ste 100 Email To:								,		1 200 20	ABVANCING SCIENCE
leport to: ennifer Sonnichsen 425-658-502				onnichsen@errg.co	^	<u> </u>			# ·			2		12065 Lebanon Rd Mo Submitting a sample via constitutes acknowled	unt Juliet, TN 37122 a this chain of custody gment and acceptance of th
Project Description: Former Gre	lek		Seaffle		Please Cir P MT C						52			Pace Terms and Condit https://info.pacelabs.co terms.pdf	ions found at: om/hubfs/pas-standard-
egulatory Program(DOD,RCRA,DW,etc):	Client Project	1		Lab Project # ENGREMRWA	A-CIRCLE K		ס	CI-BIR		_				SDG# L 18	
Collected by (print): L. Bures S. Midosek	Site/Facility ID	Delivery of the last of the la		P.O.#			mb H(40mlAmb-HC	7	40mlAmb-HCI-BIk				Acctnum: ENG	
Collected by (signature):	-	ab MUST Be		Quote #		il de la company	40mlAmb H	OmlA	Amp+	Amb-				Template: T26 Prelogin: P11	
mmediately Packed on Ice N Y X	Next Day Two Day	y 5 Da	y (Rad Only) Day (Rad Only)	Date Results	Needed	No.	NWTPHGX 4	NWTPHGX 4	V8260 40mlAmb-HCl	40ml				PM: 3500 - Jen PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	WTP	WTP	260	V8260				Shipped Via: Fo	edEX Ground
>A> 4.14		GW		5 loo l	eQuie.	6	Z	ź	% X	85				Remarks	Sample # (lab only
MW-16	6			5/23/25		6	X		X						- 05
MW-17		GW			1120	6									60
MW-18		GW			1140	+	X	-	X	-					216
MW-19		GW	-		1316	6	X		X	-					
MW-70		GW	-		1050	6	X	-	X		1		100		4 35
MW-21		GW	-		1243	6	X	-	X						- %
RW-1		GW	-		1215	6	X	ALC:	X						- 57
DUP-	*	GW	-	4	1200	6	X	1	X				4		- 08
		GW			1	6	X	Q	X	5					[1] 建设
		GW		25.4		6	X	Lie ski	X				6550		
S - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:V8260:		OCs custom		14	A CONTRACTOR OF THE PARTY OF TH				pH		Temp	COC Seal COC Sign Bottles Correct	ample Receipt Ch Present/Intact: ned/Accurate: arrive intact: bottles used: ent volume sent:	NP XY
or - Other	UPSFedEx		Time	Tracking Received	ed by: (Signat	ure)	15	92	9	ZZ Trip Blar	37 k Receiv	ved: Yes/No HCL/MeoH TBR	Preserva RAD Scre	If Applicable Headspace: ation Correct/Cheen <0.5 mR/hr:	1
Relinquished by : (Signature)	Da	123/2	Time	11	ed by: (Signat	ure)		24		Temp: 7	TAPPO	Bottles Received	If preserva	ation required by Log	in: Date/Time
Relinquished by : (Signature)	Da	itė:	Time		ed for lab by:	(Signat	ure)	he	M	Date:	141	Time: 25 083	Hold:		Condition: NCF / OK

Company Name/Address:	-16	112	Billing Info	rmation:	16.0	T	T			nalysis /	Contain	er / Preservation	/P		Chain of Custody	y Page 2 of
Engineering/Remediation	on Resoul	rces	Jennifer Payable	Jennifer Sonnichsen Accounts Payable 15333 NE 90th Street								3	V	Total Control of Contr	- Pi	ace.
15333 NE 90th Street			Ste 100	J 1414 000F3									- 3	644		ULIET, TN
Report to: Jennifer Sonnichsen 425-658-502 Project Description:		City/State	jennifer.so	onnichsen@errg.co	Rlease C										12065 Lebanon Rd Mo Submitting a sample vi	ount Juliet, TN 37122 ia this chain of custody Igment and acceptance of th
former urcle	Client Project	Collected:	Sea H	Lab Project #	11	CT ET									https://info.pacelabs.c terms.pdf	com/hubfs/pas-standard-
Regulatory Program(DOD,RCRA,DW,etc):	BR	2023	2000	ENGREMRW	A-CIRCLE K	1	ū	10-81		*			Control of the Contro		SDG# L	1863104
L. BURB / S. MROSEK	Site/Facility ID)#		P.O. #		I	√mb ⊢	1mp+	HG	HG-8		4.00			Acctnum: ENG	GREMRWA
Collected by (signature): Immediately Packed on Ice N Y	Same Da	ab MUST Be ay Five y 5 Da y 10 Da ay STD	Day y (Rad Only) Day (Rad Only)	Quote # Date Result	s Needed	No.	NWTPHGX 40mlAmb HC	NWTPHGX 40mlAmb-HCl-Blk	V8260 40mlAmb-HCl	0 40mlAmb-HCI-BIK					Prelogin: P11 PM: 3500 - Jen PB:	.52155 nnifer Gambill
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWTF	MW	V826(V8260		* <u> 1</u>		A Constitution of the Cons	Shipped Via: For Remarks	Sample # (lab only)
MW-6	6	GW	-	5/23/25	1015	6	X		Х							- 09
MW.8		GW	-		1112	6	X		X							- 10
MN-13		GW	-		1218	6	X		X							- 11
MM-14		GW	-		1137	6	X		X							- 12
MW-9		GW	-		1017	6	X		X		4 7					- 13
MW-15	1	GW	-		1042	6	X		X			1,5,0,00				- 14
TRIP BLANK	*	GW	-	1	1330	2		X		X						15
TRIP BLANK TB-02		GW	-	4	1335	2		Х		Х					_	- 16
	\$ The		-	+		-	10.2	-							-	
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sa	emarks:V8260:		OCs custom	list.) og # /JI	10-	7			pH Flow		Temp		COC Seal COC Signe Bottles : Correct)	ample Receipt Ch Present/Intact: ed/Accurate: arrive intact: bottles used: nt volume sent: If Applicab.	· NP Y N
OT - OtherRelinquished by : (Signature)	_UPSFedEx		Time		ed by: (Signat	tur	5	59		CC:	CONTRACTOR OF THE PARTY OF THE	ed: Yes/No U HCL/Me		Preserva	Headspace: tion Correct/Che en <0.5 mR/hr:	/_ N
Relinquished by (Signature)	Da	5/23/2	Time	Recei	ed by: (Signat	ture)				Colt	11A90	Bottles Receiv	7ed: 1	If preserva	tion required by Log	jin: Date/Time
Relinquished by : (Signature)	Da	te:	Time	The second secon	ed for lab by:		CALL SELECTION	rin	THE RESERVE	Date:	7.41	Time: 09		Hold:		NCF / OK

Pace Analytical® ANALYTICAL REPORT

May 21, 2025

Engineering/Remediation Resources Group

Sample Delivery Group: L1852469

Samples Received: 04/26/2025

Project Number: 20230065

Description: Former Cicle K

Site: 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LG-404-EFF-20250425 L1852469-01	5
DUP-1-20250425 L1852469-02	6
LG-402-MID-20250425 L1852469-03	7
LG-401-INF-20250425 L1852469-04	8
TB-1-20250425 L1852469-06	9
Qc: Quality Control Summary	10
Volatile Organic Compounds (GC) by Method NWTPHGX	10
Volatile Organic Compounds (GC/MS) by Method 8260B	12
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

			Collected by	Collected date/time		
LG-404-EFF-20250425 L1852469-01			ERRG	04/25/25 11:25	04/26/25 0	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502873	1	04/29/25 21:37	04/29/25 21:37	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 09:27	04/30/25 09:27	ACG	Mt. Juliet, TN
Subcontracted Analyses	WG2501564	1	05/19/25 00:00	05/19/25 00:00	-	Minneapolis, MN 55414
			Collected by	Collected date/time	Received d	ate/time
DUP-1-20250425 L1852469-02			ERRG	04/25/25 11:35	04/26/25 0	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260B	WG2502873 WG2503012	1	04/29/25 21:58 04/30/25 09:51	04/29/25 21:58 04/30/25 09:51	ACG ACG	Mt. Juliet, TN Mt. Juliet, TN
Subcontracted Analyses	WG2501564	1	05/19/25 00:00	05/19/25 00:00	-	Minneapolis, MN 55414
LG-402-MID-20250425 L1852469-03			Collected by ERRG	Collected date/time 04/25/25 12:00	Received d 04/26/25 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502873	1	04/29/25 22:20	04/29/25 22:20	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 10:15	04/30/25 10:15	ACG	Mt. Juliet, TN
Subcontracted Analyses	WG2501564	1	05/19/25 00:00	05/19/25 00:00	-	Minneapolis, MN 55414
LG-401-INF-20250425 L1852469-04			Collected by ERRG	Collected date/time 04/25/25 12:15	Received d 04/26/25 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502873	1	04/29/25 22:41	04/29/25 22:41	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2503012	1	04/30/25 10:38	04/30/25 10:38	ACG	Mt. Juliet, TN
Subcontracted Analyses	WG2501564	1	05/19/25 00:00	05/19/25 00:00	-	Minneapolis, MN 55414
DUP-2-20250425 L1852469-05			Collected by ERRG	Collected date/time 04/25/25 11:45	Received d 04/26/25 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2501564	1	05/19/25 00:00	05/19/25 00:00	-	Minneapolis, MN 55414
TB-1-20250425 L1852469-06			Collected by ERRG	Collected date/time 04/25/25 12:30	Received d 04/26/25 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2502459	1	04/29/25 13:18	04/29/25 13:18	DWR	Mt. Juliet, TN
Valatila Organia Compounds (CC/MS) by Mathad 9360D	WC2E02621	1	04/20/2E 10:10	04/20/2E 10:10	VCT	Mt Juliot TNI

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2503621

1

04/30/25 18:10

04/30/25 18:10

KST

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

Project Narrative

L1852469 -01, -02, -03, -04, -05 contains subout data that is included after the chain of custody.

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 21:37	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	92.5		78.0-120		04/29/2025 21:37	WG2502873

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 09:27	WG2503012
Ethylbenzene	ND		1.00	1	04/30/2025 09:27	WG2503012
Toluene	ND		1.00	1	04/30/2025 09:27	WG2503012
Xylenes, Total	ND		3.00	1	04/30/2025 09:27	WG2503012
Trichloroethene	ND		1.00	1	04/30/2025 09:27	WG2503012
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 09:27	WG2503012
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 09:27	WG2503012
Tetrachloroethene	ND		1.00	1	04/30/2025 09:27	WG2503012
Vinyl chloride	ND		1.00	1	04/30/2025 09:27	WG2503012
(S) Toluene-d8	104		80.0-120		04/30/2025 09:27	WG2503012
(S) 4-Bromofluorobenzene	99.4		77.0-126		04/30/2025 09:27	WG2503012
(S) 1,2-Dichloroethane-d4	96.2		70.0-130		04/30/2025 09:27	WG2503012

DUP-1-20250425

Collected date/time: 04/25/25 11:35

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 21:58	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	93.8		78.0-120		04/29/2025 21:58	WG2502873

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 09:51	WG2503012
Ethylbenzene	ND		1.00	1	04/30/2025 09:51	WG2503012
Toluene	ND		1.00	1	04/30/2025 09:51	WG2503012
Xylenes, Total	ND		3.00	1	04/30/2025 09:51	WG2503012
Trichloroethene	ND		1.00	1	04/30/2025 09:51	WG2503012
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 09:51	WG2503012
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 09:51	WG2503012
Tetrachloroethene	ND		1.00	1	04/30/2025 09:51	WG2503012
Vinyl chloride	ND		1.00	1	04/30/2025 09:51	WG2503012
(S) Toluene-d8	105		80.0-120		04/30/2025 09:51	WG2503012
(S) 4-Bromofluorobenzene	96.9		77.0-126		04/30/2025 09:51	WG2503012
(S) 1,2-Dichloroethane-d4	99.7		70.0-130		04/30/2025 09:51	WG2503012

Engineering/Remediation Resources Group

LG-402-MID-20250425 Collected date/time: 04/25/25 12:00

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 22:20	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	94.0		78.0-120		04/29/2025 22:20	WG2502873

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 10:15	WG2503012
Ethylbenzene	ND		1.00	1	04/30/2025 10:15	WG2503012
Toluene	ND		1.00	1	04/30/2025 10:15	WG2503012
Xylenes, Total	ND		3.00	1	04/30/2025 10:15	WG2503012
Trichloroethene	ND		1.00	1	04/30/2025 10:15	WG2503012
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 10:15	WG2503012
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 10:15	WG2503012
Tetrachloroethene	ND		1.00	1	04/30/2025 10:15	WG2503012
Vinyl chloride	ND		1.00	1	04/30/2025 10:15	WG2503012
(S) Toluene-d8	103		80.0-120		04/30/2025 10:15	WG2503012
(S) 4-Bromofluorobenzene	97.4		77.0-126		04/30/2025 10:15	WG2503012
(S) 1,2-Dichloroethane-d4	97.6		70.0-130		04/30/2025 10:15	WG2503012

LG-401-INF-20250425 Collected date/time: 04/25/25 12:15

SAMPLE RESULTS - 04

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	152		100	1	04/29/2025 22:41	WG2502873
(S) a,a,a-Trifluorotoluene(FID)	94.2		78.0-120		04/29/2025 22:41	WG2502873

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 10:38	WG2503012
Ethylbenzene	ND		1.00	1	04/30/2025 10:38	WG2503012
Toluene	ND		1.00	1	04/30/2025 10:38	WG2503012
Xylenes, Total	ND		3.00	1	04/30/2025 10:38	WG2503012
Trichloroethene	ND		1.00	1	04/30/2025 10:38	WG2503012
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 10:38	WG2503012
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 10:38	WG2503012
Tetrachloroethene	15.9		1.00	1	04/30/2025 10:38	WG2503012
Vinyl chloride	ND		1.00	1	04/30/2025 10:38	WG2503012
(S) Toluene-d8	102		80.0-120		04/30/2025 10:38	WG2503012
(S) 4-Bromofluorobenzene	105		77.0-126		04/30/2025 10:38	WG2503012
(S) 1,2-Dichloroethane-d4	94.9		70.0-130		04/30/2025 10:38	WG2503012

TB-1-20250425

SAMPLE RESULTS - 06

Collected date/time: 04/25/25 12:30

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	04/29/2025 13:18	WG2502459
(S) a,a,a-Trifluorotoluene(FID)	103		78.0-120		04/29/2025 13:18	WG2502459

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	04/30/2025 18:10	WG2503621
Ethylbenzene	ND		1.00	1	04/30/2025 18:10	WG2503621
Toluene	ND		1.00	1	04/30/2025 18:10	WG2503621
Xylenes, Total	ND		3.00	1	04/30/2025 18:10	WG2503621
Trichloroethene	ND		1.00	1	04/30/2025 18:10	WG2503621
cis-1,2-Dichloroethene	ND		1.00	1	04/30/2025 18:10	WG2503621
trans-1,2-Dichloroethene	ND		1.00	1	04/30/2025 18:10	WG2503621
Tetrachloroethene	ND		1.00	1	04/30/2025 18:10	WG2503621
Vinyl chloride	ND		1.00	1	04/30/2025 18:10	WG2503621
(S) Toluene-d8	102		80.0-120		04/30/2025 18:10	WG2503621
(S) 4-Bromofluorobenzene	93.9		77.0-126		04/30/2025 18:10	WG2503621
(S) 1,2-Dichloroethane-d4	124		70.0-130		04/30/2025 18:10	WG2503621

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1852469-06

Method Blank (MB)

(MB) R4207173-3 04/29	/25 10:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	103			78.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4207173-1 04/29/2	25 09:08 • (LCS	SD) R4207173-2	2 04/29/25 09	:28						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5000	5390	5430	108	109	70.0-124			0.739	20
(S) a.a.a-Trifluorotoluene(FID)				107	107	78.0-120				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1852469-01,02,03,04

Method Blank (MB)

(MB) R4207592-2 04/29	9/25 16:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	93.5			78.0-120

³Ss

Laboratory Control Sample (LCS)

(LCS) R4207592-1 04/29	9/25 15:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	4480	89.6	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			99.7	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1852469-01,02,03,04

Method Blank (MB)

(MB) R4207781-3 04/30/25	06:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	105			80.0-120
(S) 4-Bromofluorobenzene	99.7			77.0-126
(S) 1,2-Dichloroethane-d4	97.9			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.12	5.41	102	108	70.0-123			5.51	20	
Ethylbenzene	5.00	4.80	5.01	96.0	100	79.0-123			4.28	20	
Toluene	5.00	5.08	5.27	102	105	79.0-120			3.67	20	
Xylenes, Total	15.0	14.4	15.3	96.0	102	79.0-123			6.06	20	
Trichloroethene	5.00	5.39	5.83	108	117	78.0-124			7.84	20	
cis-1,2-Dichloroethene	5.00	4.91	5.22	98.2	104	73.0-120			6.12	20	
trans-1,2-Dichloroethene	5.00	5.31	5.68	106	114	73.0-120			6.73	20	
Tetrachloroethene	5.00	5.60	5.85	112	117	72.0-132			4.37	20	
Vinyl chloride	5.00	5.18	5.56	104	111	67.0-131			7.08	20	
(S) Toluene-d8				104	103	80.0-120					
(S) 4-Bromofluorobenzene				104	103	77.0-126					
(S) 1,2-Dichloroethane-d4				92.8	94.8	70.0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1852469-06

Method Blank (MB)

(MB) R4207819-2 04/30/25	5 10:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	102			80.0-120
(S) 4-Bromofluorobenzene	93.9			77.0-126
(S) 1,2-Dichloroethane-d4	119			70.0-130

Laboratory Control Sample (LCS)

(LCS) R4207819-1 04/30/25 09:39

· /							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	ug/l	ug/l	%	%			
Benzene	5.00	4.06	81.2	70.0-123			
Ethylbenzene	5.00	4.83	96.6	79.0-123			
Toluene	5.00	4.49	89.8	79.0-120			
Xylenes, Total	15.0	14.6	97.3	79.0-123			
Trichloroethene	5.00	4.33	86.6	78.0-124			
cis-1,2-Dichloroethene	5.00	4.45	89.0	73.0-120			
trans-1,2-Dichloroethene	5.00	4.72	94.4	73.0-120			
Tetrachloroethene	5.00	5.00	100	72.0-132			
Vinyl chloride	5.00	4.33	86.6	67.0-131			
(S) Toluene-d8			99.9	80.0-120			
(S) 4-Bromofluorobenzene			101	77.0-126			
(S) 1,2-Dichloroethane-d4			115	70.0-130			

Sc

PAGE: 13 of 30

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	ormation:		T				Analysis	/ Conta	iner / Preservative		_	Chain of Custody	Page of
Engineering/Remediatio	n Resou	ırces	lennifer	Sonniche	en Accounts	Pres									- Crisiii or Costody	1986-401-4
Group			Payable		in Accounts	Chk					1		1-11		12	
				15333 NE 90th Street Ste 100											Pa	ice.
15333 NE 90th Street			Ste 100								100				PEOPLE	ADVANCING SCIENCE
Report to:			Email To:	L TAVA OO	300		-		1		1		1		MTJU	LIET, TN
Jennifer Sonnichsen 425-658-5026	i		jennifer.se	onnichsen@e	errg.com;spencer.	slomins	1977				Ph.	1000			12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody	
Project Description: FORMER CIRCLE K City/State Collected:		GATT	IE IU	Please (PT) MT											ment and acceptance of the ons found at:	
Regulatory Program(DOD,RCRA,DW,etc):	Client Projec		./	Lab Projec		-	100	*			1		100		0	67469
ECOLOGY . EIM	207	13006	5	ENGREN	IRWA-CIRCLE	K	-	1-8 k			-		133		SDG# D	016
Collected by (print):	Site/Facility			P.O. #			HC	무	-		8 B				Table	010
ERRG (FI)	ju	161		-			dm	nb nb	HC	무	D		-		Acctnum: ENG	DEMADIANA
Collected by (signature):	Committee of the Commit	(Lab MUST B	e Notified)	Quote #	-		A P	40mlAmb	7	19+	+q	10.3	1000		Template: T263	
1 1/1			Day			15	100	101	三	Am	Am	0.00	100		Prelogin: P114	
Immediately	Next D		ay (Rad Only) Day (Rad Only)	Date	Results Needed	No.	3× 2		1L-Cir-WT-HCI	40mlAmb+IC	40mlAmb-HCI-BIK				PM: 3500 - Jenn	
Packed on Ice N Y	Three I	DaySTD	TAT			of	PHC	H	X	0 4(100		PB: 4/15	The second second
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWTPHGX 40mlAmb	NWTPHGX	OGHEX	V8260	V8260				Shipped Via: Fe	dEX Ground Sample # (lab only)
16-404-EFF-20150415	GOAR	GW	NIA	1/12	25 1125	8	X	-	X	X					FOG IN ala	1
DUP-1-20250428	1	GW	10/11	1910	-	8	10000		1000						COOLER 2/2	0
202509 4			++	+ 1	7135	1	X		X	X					COOLER 2/2	-07
LG-402-MID-20250423		GW	1	1	1500	8	X		X	X	1					_ 03
CG -401-INI-20250/18		GW			1215	8	X		X	X			1000			-04
DUP-2 - 20750424		GW			1145	2			X				1		COOLER 2/2	_ 05
TRIP BLANK TB-1-2025040	*	GW	1	1	1230	3		X			X	1931			1 -7	-06
D (22 030-74)			Υ		122											
* Matrix: Ren	narks: 000	O- RITY	V Total	2	246 120	-								Carri	+ Denedul Si	ablicat 1
SS - Soil AIR - Air F - Filter	8.28	D- DIE	r, ICE, I	PE, VC	CDCE, +DC	-		(00	LER	рН		Temp	COC Sea	1 Pre	e Receipt Che	NP ZY N
GW - Groundwater B - Bioassay WW - WasteWater			ONE	1		COC	111	101	2	Flow		Other	Bottles	arri	ve intact:	ZY_N
DW - Drinking Water	anlar raturna	luis.			1000	- (1)									les used:	N N
	nples returned UPS FedEx				racking #	40	139	245	25	378			10000		If Applicable	2 Y N
Relinquished by : (Signature)	D	ate:	Time	10	eceived by: (Signa		^		Minimum	Trip Blar	k Recei		Preserv	ration	Correct/Chec	cked: Y N
I THAT ERG	26	4/25/25	5	136	TE	VE	1					HGL / MebH TBR	2	61_		
Relinquished by: (Signature)		ate:	Time		Received by: (Signa	iture)				Temp: 1			If preserv	vation	required by Logic	n: Date/Time
Relinquished by : (Signature)	D	ate:	Time	e: f	teceived for lab by	: (Signat	ture)	1111		Date:		Time:	Hold:			Condition:
					Enton	Om	,			4/2	6/25	0900				NCF / OK

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

May 19, 2025

Client Services Pace National 12065 Lebanon Rd Mt. Juliet, TN 37122

RE: Project: L1852469 WG2501564

Pace Project No.: 10733305

Dear Client Services:

Enclosed are the analytical results for sample(s) received by the laboratory on May 06, 2025. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tong Lee tong.lee@pacelabs.com (612)473-6804

Project Manager

Enclosures

CC: Jimmy Huckaba, Pace Analytical National Center for Testing & Innovation

CERTIFICATIONS

Project: L1852469 WG2501564

Pace Project No.: 10733305

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929

Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 DoD Certification via A2LA #: 2926.01

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 GMP+ Certification #: GMP050884 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368

ISO/IEC 17025 Certification via A2LA #: 2926.01

Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064

Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C

Wyoming UST Certification via A2LA #: 2926.01

USDA Permit #: P330-19-00208

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: L1852469 WG2501564

Pace Project No.: 10733305

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10733305001	LG-404-EFF-20250425	Water	04/25/25 11:25	05/06/25 08:50
10733305002	DUP-1-20250425	Water	04/25/25 11:35	05/06/25 08:50
10733305003	LG-402-MID-20250425	Water	04/25/25 12:00	05/06/25 08:50
10733305004	LG-401-INF-20250425	Water	04/25/25 12:15	05/06/25 08:50
10733305005	DUP-2-20250425	Water	04/25/25 11:45	05/06/25 08:50

SAMPLE ANALYTE COUNT

Project: L1852469 WG2501564

Pace Project No.: 10733305

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10733305001	LG-404-EFF-20250425	EPA 1664B OG	RM3	1	PASI-M
10733305002	DUP-1-20250425	EPA 1664B OG	RM3	1	PASI-M
10733305003	LG-402-MID-20250425	EPA 1664B OG	RM3	1	PASI-M
10733305004	LG-401-INF-20250425	EPA 1664B OG	RM3	1	PASI-M
10733305005	DUP-2-20250425	EPA 1664B OG	RM3	1	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

Project: L1852469 WG2501564

Pace Project No.: 10733305

Date: 05/19/2025 05:02 PM

Sample: LG-404-EFF-20250425	Lab ID: 107	733305001	Collected: 04/25/2	25 11:25	Received: 05/	/06/25 08:50 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	ND	mg/L	6.0	1		05/17/25 12:12		

Project: L1852469 WG2501564

Pace Project No.: 10733305

Date: 05/19/2025 05:02 PM

Sample: DUP-1-20250425	Lab ID: 10	733305002	Collected: 04/25/2	25 11:35	Received: 05	/06/25 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	ND	mg/L	5.8	1		05/17/25 12:12		

Project: L1852469 WG2501564

Pace Project No.: 10733305

Date: 05/19/2025 05:02 PM

Sample: LG-402-MID-20250425	Lab ID: 107	733305003	Collected: 04/25/2	25 12:00	Received: 05/	/06/25 08:50 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	ND	mg/L	5.8	1		05/17/25 12:12		

Project: L1852469 WG2501564

Pace Project No.: 10733305

Date: 05/19/2025 05:02 PM

Sample: LG-401-INF-20250425	Lab ID: 107	733305004	Collected: 04/25/2	25 12:15	Received: 05/	/06/25 08:50 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	63.9	mg/L	5.9	1		05/17/25 12:12		

Project: L1852469 WG2501564

Pace Project No.: 10733305

Date: 05/19/2025 05:02 PM

Sample: DUP-2-20250425	Lab ID: 107	733305005	Collected: 04/25/2	25 11:45	Received: 05/	/06/25 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	ND	mg/L	5.9	1		05/17/25 12:12		

QUALITY CONTROL DATA

Project: L1852469 WG2501564

Pace Project No.: 10733305

QC Batch: 1007465 Analysis Method: EPA 1664B OG

QC Batch Method: EPA 1664B OG Analysis Description: 1664B HEM, Oil and Grease

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10733305001, 10733305002, 10733305003, 10733305004, 10733305005

METHOD BLANK: 5252539 Matrix: Water

Associated Lab Samples: 10733305001, 10733305002, 10733305003, 10733305004, 10733305005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Oil and Grease mg/L ND 5.0 05/17/25 12:12

LABORATORY CONTROL SAMPLE: 5252540

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Oil and Grease mg/L 40 43.2 108 78-114

MATRIX SPIKE SAMPLE: 5252542

MS MS % Rec 10733409001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Oil and Grease mg/L 42.6 39.1 90 78-114

SAMPLE DUPLICATE: 5252541

Date: 05/19/2025 05:02 PM

 Parameter
 Units
 Result Result Result
 RPD RPD
 Max RPD
 Qualifiers

 Oil and Grease
 mg/L
 <1.3</td>
 ND
 18

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: L1852469 WG2501564

Pace Project No.: 10733305

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 1007465

Date: 05/19/2025 05:02 PM

[BE] Batch extracted by solid phase extraction (SPE).

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: L1852469 WG2501564

Pace Project No.: 10733305

Date: 05/19/2025 05:02 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10733305001	LG-404-EFF-20250425	EPA 1664B OG	1007465		
10733305002	DUP-1-20250425	EPA 1664B OG	1007465		
10733305005	DUP-2-20250425	EPA 1664B OG	1007465		
10733305003 10733305004	LG-402-MID-20250425 LG-401-INF-20250425	EPA 1664B OG EPA 1664B OG	1007465 1007465		

Sub-Contract Chain of Custody

Batch Date/Time: 04/28/25 08:25 Sub-Contract Lab: PACEMN Address: 1700 Elm Street Suite 200

SE

City/State: Minneapolis, MN 55414 Contact: Tong.Lee@pacelabs.com Owner Lab: PACEMTJL

Address: 12065 Lebanon Rd. City/State: Mt. Juliet, TN 37122

Phone: (615) 773-9756 Fax: (615) 758-5859 **WO:** WG2501564

Email: MTJLSuboutTeam@pacelabs.com

Results Due Date: 05/09/25

ESC Purchase Order #: L1852469 Send Reports to: James C Huckaba Pace Analytical*

12065 Lebanon Rd. Mt. Juliet, TN 37122 Phone:(615) 773-9756 Fax:(615) 758-5859

Sample ID Container ID	Matrix	State	Collect	Date	Descr	iption	Method	l Sai	mple ab U	Number Ise Only	Sample Comments Lab Use Only
LG-404-EFF-20250425	GW	WA	04/25/25	11:25 Oil	& Grease	(Hexane Extr)	1664A			2469-01	6)1
DUP-1-20250425	GW	WA	04/25/25	11:35 Oil	& Grease	(Hexane Extr)	1664A	2. I	_1852	2469-02	D2
LG-402-MID-20250425	GW	WA	04/25/25	12:00 Oil	& Grease	(Hexane Extr)	1664A	3. I	_1852	2469-03	03
LG-401-INF-20250425	GW					(Hexane Extr)				2469-04	ey_
DUP-2-20250425	: ·				& Grease	(Hexane Extr)	1664A	5. I	1852	2469-05	€5
*= Container used for multi	ple Banı	ples ar	id/or Anal	yses							
Relinquished by	M			Date	5.5	25					
Received by:	Bu		-5/	bate	5 8	1.50	1.17	J. ^	o ๋	(
Relinquished by:				Date							
Received by:				_ Date							

WO#:10733305

ENV-FRM-MIN4-0150 v19_Sample Condition Upon Receipt

Person Examining & Date: (RV 5/6/25	P	ROJECT	#: []	WO#:10733305							
-			T i	PM: TKL Due Date: 05/09/25							
Client Name: Pace MTJL			1 -	CLIENT: PASI-TN							
			'								
Custody Seal Present: VES NO Seals Intact:			يا								
Tracking Number: 4439 2457 5957 , 44 Courler: □ Client □ Commercial ■ FedFx	7 = -	457	—	See Exceptions form ENV-FRM-MIN4-0142.							
	⊔ Pace	Courie	r/Field	☐ SpeeDee ☐ UPS ☐ USPS							
Wrap Wrap		Other:		Biological Tissue Frozen: 🗆 YES 🖃 NO							
	☐ T4 (0402	2) T	ype of I	ce: Blue Dry Wet Melted None							
\Box T9 (0428) \Box 01339252 (0710) Temp Blank: \Box YES \Box NO (list temps on except Did Samples Originate in West Virginia: \Box YES \Box NO (list temps on except											
Read Temp w/Temp Blank:				• / • • • • • • • • • • • • • • • • • •							
				iiner Temps Taken: □ YES □ NO ☑ N/A Temp Blank Only):							
USDA Regulated Soil: \(\text{N/A} - \text{Water Sample/Other (describe):} \)				FRM-MIN4-0142.							
Did Samples originate from one of the following states (check maps):	☐ YES ☐	NO NO	Are s	amples from a foreign source (international, including Hawaii							
Circle State: AL, AR, AZ, CA, FL, GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TM	I, TX, VA			Puerto Rico): 🗆 YES 🗆 NO							
NOTE: If YES to either question fill out a Regulated Soil C	hecklist (E	NV-FRN	1-MIN4	-0154) and include with SCUR/COC paperwork.							
LOCATION (check one): DULUTH MINNEAPOLIS VIRGINIA	YES	NO	N/A	COMMENT(S)							
Chain of Custody Present and Filled Out? (i.e., Analysis/ID/Date/Time)				1.							
Chain of Custody Relinquished?	4			2.							
Sampler Name and/or Signature on COC?		- V		3.							
Samples Arrived within Hold Time?	<u> </u>			4.							
If Fecal: □ <8 hrs □ >8 hr but <24 hr □ >24 hr											
Short Hold Time Analysis (<72 hr)?		Ø		5. □ BOD / cBOD □ Fecal coliform □ Hex Chrom							
		,		☐ HPC ☐ Nitrate ☐ Nitrite ☐ Ortho Phos							
Rush Turn Around Time Requested?		┞	-	☐ Total coliform/E. coli ☐ Turbidity ☐ Other:							
	- ⁴²			6. ☐ Same Day ☐ 1 Day ☐ 2 Day ☐ 3 Day ☐ 5 Day Due Date:							
Sufficient Sample Volume? (If NO, list approximate volume in section 7.)			 -	7.							
Correct Containers Used?				8.							
- Pace Containers Used?											
Containers Intact?			/	9.							
Field Filtered Volume Received for Dissolved Tests?			石	10.							
ID/Date/Time Match? (If NO fill out section 11.)		<u> </u>		Is sediment visible in the dissolved container: ☐ YES ☐ NO							
Matrix: □ Oil □ Soil ☑ Water □ Other	· 🗷		-	11.							
All containers needing acid/base preservation have been checked?			1	See Exceptions form ENV-FRM-MIN4-0142							
Sample #:		<u> </u>		12.							
□ HNO3 □ H2SO4		NaOH		Zinc Acetate							
pH Paper Lot #:											
☐ Residual Chlorine ☐ 0-6 Roll	□	0-6 Str	ip	□ 0-14 Strip							
				for Residual Chlorine (NaOH containers only): ☐ YES ☐ NO							
Preserved containers in compliance with EPA recommendations? (HNO3, H2SO4, < 2 pH, NaOH > 9 Sulfide, NaOH > 10 Cyanide)			Ø	☐ See Exceptions form ENV-FRM-MIN4-0142							
EXCECTIONS (water only): VOA, Coliform, TOC/DOC, Oil & Grease, Phenols,	, 📈										
DRO/8015, Dioxins, and PFAS	' ¹	ш									
Extra labels present on soil VOA or WIDRO containers? (soil only)			1	13.							
Headspace in Methyl Mercury Container?				14.							
Headspace in VOA Vials (greater than 6mm)?			4	☐ See Exceptions form ENV-FRM-MIN4-0140							
Trip Blanks Present?			Ø	15.							
Trip Blank Custody Seals Present?			Ø	Pace Trip Blank Lot # (if purchased):							
CLIENT NOTIFICATION / RESOLUTION:				Labeled By: Line:							
				Mr. 1 2 510105							
Person Contacted & Date/Time:		PM I	Review	& Date: 5/6/25							
NOTE: When there is a discrepancy affecting North Carolina compliance s	amples, a	copy of	this for	m will be sent to the North Carolina DEO Cartification Office							

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

Sample Delivery Group:

L1863045

Samples Received:

05/24/2025

Project Number:

20230065

Description:

Former Circle K

Report To:

Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill Jennifer Gambill

Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LG-401-INF-20250523 L1863045-01	5
LG-402-MID-20250523 L1863045-02	6
LG-404-EFF-20250523 L1863045-03	7
DUP-1-20250523 L1863045-04	8
TRIP BLANK L1863045-06	9
Qc: Quality Control Summary	10
Volatile Organic Compounds (GC) by Method NWTPHGX	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

	0, 22	0 0 11111	,,, ,, ,,			
LG-401-INF-20250523 L1863045-01			Collected by FL	Collected date/time 05/23/25 12:15	Received d 05/24/25 0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Metilou	Datell	Dilution	date/time	date/time	Allalyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 14:41	05/29/25 14:41	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526626	1	05/30/25 12:11	05/30/25 12:11	JHH	Mt. Juliet, TN
Subcontracted Analyses	WG2526277	1	06/13/25 00:00	06/13/25 00:00	ANF	Minneapolis, MN 55414
			Collected by	Collected date/time	Received d	ate/time
LG-402-MID-20250523 L1863045-02			FL	05/23/25 12:05	05/24/25 0	8:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 15:01	05/29/25 15:01	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2526626	1	05/30/25 12:30	05/30/25 12:30	JHH	Mt. Juliet, TN
Subcontracted Analyses	WG2526277	1	06/13/25 00:00	06/13/25 00:00	ANF	Minneapolis, MN 55414
			Collected by	Collected date/time	Received d	ate/time
LG-404-EFF-20250523 L1863045-03			FL	05/23/25 11:45	05/24/25 0	8:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 15:21	05/29/25 15:21	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2527331	1	05/30/25 19:02	05/30/25 19:02	ACG	Mt. Juliet, TN
Subcontracted Analyses	WG2526277	1	06/13/25 00:00	06/13/25 00:00	ANF	Minneapolis, MN 55414
			Collected by	Collected date/time	Received d	ate/time
DUP-1-20250523 L1863045-04			FL	05/23/25 11:50	05/24/25 0	8:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 15:42	05/29/25 15:42	NCD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2527331	1	05/30/25 19:23	05/30/25 19:23	ACG	Mt. Juliet, TN
Subcontracted Analyses	WG2526277	1	06/13/25 00:00	06/13/25 00:00	ANF	Minneapolis, MN 55414
			Collected by	Collected date/time	Received d	ate/time
DUP-2-20250523 L1863045-05			FL	05/23/25 11:55	05/24/25 0	8:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2526277	1	06/13/25 00:00	06/13/25 00:00	ANF	Minneapolis, MN 55414
			Collected by	Collected date/time	Received d	ate/time
TRIP BLANK L1863045-06			FL	05/23/25 14:45	05/24/25 0	8:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2526017	1	05/29/25 11:21	05/29/25 11:21	NCD	Mt. Juliet, TN
Volatila Organic Compounds (CC/MS) by Mothod 8260B	WC2527221	1	05/20/25 19:00	05/20/25 19:00	۸CG	Mt Juliot TN

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2527331

05/30/25 18:00

05/30/25 18:00

ACG

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

Project Narrative

L1863045 -01, -02, -03, -04, -05 contains subout data that is included after the chain of custody.

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	738		100	1	05/29/2025 14:41	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		05/29/2025 14:41	WG2526017

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 12:11	WG2526626
Ethylbenzene	ND		1.00	1	05/30/2025 12:11	WG2526626
Toluene	ND		1.00	1	05/30/2025 12:11	WG2526626
Xylenes, Total	7.94		3.00	1	05/30/2025 12:11	WG2526626
Trichloroethene	1.25		1.00	1	05/30/2025 12:11	WG2526626
cis-1,2-Dichloroethene	1.20		1.00	1	05/30/2025 12:11	WG2526626
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 12:11	WG2526626
Tetrachloroethene	16.0		1.00	1	05/30/2025 12:11	WG2526626
Vinyl chloride	ND		1.00	1	05/30/2025 12:11	WG2526626
(S) Toluene-d8	98.1		80.0-120		05/30/2025 12:11	WG2526626
(S) 4-Bromofluorobenzene	99.6		77.0-126		05/30/2025 12:11	WG2526626
(S) 1,2-Dichloroethane-d4	102		70.0-130		05/30/2025 12:11	WG2526626

LG-402-MID-20250523 Collected date/time: 05/23/25 12:05

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/29/2025 15:01	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		05/29/2025 15:01	WG2526017

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 12:30	WG2526626
Ethylbenzene	ND		1.00	1	05/30/2025 12:30	WG2526626
Toluene	ND		1.00	1	05/30/2025 12:30	WG2526626
Xylenes, Total	ND		3.00	1	05/30/2025 12:30	WG2526626
Trichloroethene	ND		1.00	1	05/30/2025 12:30	WG2526626
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 12:30	WG2526626
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 12:30	WG2526626
Tetrachloroethene	ND		1.00	1	05/30/2025 12:30	WG2526626
Vinyl chloride	ND		1.00	1	05/30/2025 12:30	WG2526626
(S) Toluene-d8	101		80.0-120		05/30/2025 12:30	WG2526626
(S) 4-Bromofluorobenzene	101		77.0-126		05/30/2025 12:30	WG2526626
(S) 1,2-Dichloroethane-d4	101		70.0-130		05/30/2025 12:30	WG2526626

LG-404-EFF-20250523 Collected date/time: 05/23/25 11:45

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/29/2025 15:21	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		05/29/2025 15:21	WG2526017

Result	Qualifier	RDL	Dilution	Analysis	Batch
ug/l		ug/l		date / time	
ND		1.00	1	05/30/2025 19:02	WG2527331
ND		1.00	1	05/30/2025 19:02	WG2527331
ND		1.00	1	05/30/2025 19:02	WG2527331
ND		3.00	1	05/30/2025 19:02	WG2527331
ND		1.00	1	05/30/2025 19:02	WG2527331
ND		1.00	1	05/30/2025 19:02	WG2527331
ND		1.00	1	05/30/2025 19:02	WG2527331
ND		1.00	1	05/30/2025 19:02	WG2527331
ND	C3 J4	1.00	1	05/30/2025 19:02	WG2527331
99.1		80.0-120		05/30/2025 19:02	WG2527331
92.6		77.0-126		05/30/2025 19:02	WG2527331
97.8		70.0-130		05/30/2025 19:02	WG2527331
	ND N	ND N	ug/l ug/l ND 1.00 ND 1.00 ND 3.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 2.00 ND 1.00 ND 80.0-120 99.1 80.0-120 92.6 77.0-126	ug/l ug/l ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 3.00 1 ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 1.00 1 ND 23 J4 1.00 1 99.1 80.0-120 92.6 77.0-126	ug/l ug/l date / time ND 1.00 1 05/30/2025 19:02 ND 1.00 1 05/30/2025 19:02 ND 1.00 1 05/30/2025 19:02 ND 3.00 1 05/30/2025 19:02 ND 1.00 1 05/30/2025 19:02 ND 23 J4 1.00 1 05/30/2025 19:02 99.1 80.0-120 05/30/2025 19:02 92.6 77.0-126 05/30/2025 19:02

DUP-1-20250523

Collected date/time: 05/23/25 11:50

SAMPLE RESULTS - 04

Volatile Organic Compounds (GC) by Method NWTPHGX

	•	• •					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Gasoline Range Organics-NWTPH	ND		100	1	05/29/2025 15:42	WG2526017	
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		05/29/2025 15:42	WG2526017	

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 19:23	WG2527331
Ethylbenzene	ND		1.00	1	05/30/2025 19:23	WG2527331
Toluene	ND		1.00	1	05/30/2025 19:23	WG2527331
Xylenes, Total	ND		3.00	1	05/30/2025 19:23	WG2527331
Trichloroethene	ND		1.00	1	05/30/2025 19:23	WG2527331
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 19:23	WG2527331
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 19:23	WG2527331
Tetrachloroethene	ND		1.00	1	05/30/2025 19:23	WG2527331
Vinyl chloride	ND	<u>C3 J4</u>	1.00	1	05/30/2025 19:23	WG2527331
(S) Toluene-d8	100		80.0-120		05/30/2025 19:23	WG2527331
(S) 4-Bromofluorobenzene	94.7		77.0-126		05/30/2025 19:23	WG2527331
(S) 1,2-Dichloroethane-d4	99.0		70.0-130		05/30/2025 19:23	WG2527331

TRIP BLANK

SAMPLE RESULTS - 06

Collected date/time: 05/23/25 14:45

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/29/2025 11:21	WG2526017
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		05/29/2025 11:21	WG2526017

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	05/30/2025 18:00	WG2527331
Ethylbenzene	ND		1.00	1	05/30/2025 18:00	WG2527331
Toluene	ND		1.00	1	05/30/2025 18:00	WG2527331
Xylenes, Total	ND		3.00	1	05/30/2025 18:00	WG2527331
Trichloroethene	ND		1.00	1	05/30/2025 18:00	WG2527331
cis-1,2-Dichloroethene	ND		1.00	1	05/30/2025 18:00	WG2527331
trans-1,2-Dichloroethene	ND		1.00	1	05/30/2025 18:00	WG2527331
Tetrachloroethene	ND		1.00	1	05/30/2025 18:00	WG2527331
Vinyl chloride	ND	C3 J4	1.00	1	05/30/2025 18:00	WG2527331
(S) Toluene-d8	99.7		80.0-120		05/30/2025 18:00	WG2527331
(S) 4-Bromofluorobenzene	93.6		77.0-126		05/30/2025 18:00	WG2527331
(S) 1,2-Dichloroethane-d4	97.1		70.0-130		05/30/2025 18:00	WG2527331

WG2526017

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1863045-01,02,03,04,06

Method Blank (MB)

(MB) R4224392-2 05/29	9/25 10:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		78.6	100
(S) a,a,a-Trifluorotoluene(FID)	103			78.0-120

³Ss

Laboratory Control Sample (LCS)

(LCS) R4224392-1 05/29	/25 09:26				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5000	4520	90.4	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			104	78.0-120	

WG2526626

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1863045-01,02

Method Blank (MB)

(MB) R4224989-3 05/30/	25 05:49				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.0941	1.00	
Ethylbenzene	U		0.137	1.00	
Toluene	U		0.278	1.00	
Xylenes, Total	U		0.174	3.00	
Trichloroethene	U		0.190	1.00	
cis-1,2-Dichloroethene	U		0.126	1.00	
trans-1,2-Dichloroethene	U		0.149	1.00	
Tetrachloroethene	U		0.300	1.00	
Vinyl chloride	U		0.234	1.00	
(S) Toluene-d8	99.3			80.0-120	
(S) 4-Bromofluorobenzene	99.1			77.0-126	
(S) 1.2-Dichloroethane-d4	99.9			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

			•	- 1				 <u> </u>	<u>'</u>	
(LCS) R4224989-1 0	E/20/2E 0	1.52	. // ()	באם וט	2/000	3 2 05/20	/2E 0E:11			
(LC3) R4224909-1 U	3/30/23 0	4.52	• (LC3	D) K42	2490	9-2 03/30/	/23 03.11			
									_	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.26	5.08	105	102	70.0-123			3.48	20	
Ethylbenzene	5.00	5.08	4.90	102	98.0	79.0-123			3.61	20	
Toluene	5.00	5.06	4.56	101	91.2	79.0-120			10.4	20	
Xylenes, Total	15.0	15.4	14.6	103	97.3	79.0-123			5.33	20	
Trichloroethene	5.00	5.61	5.40	112	108	78.0-124			3.81	20	
cis-1,2-Dichloroethene	5.00	5.37	5.61	107	112	73.0-120			4.37	20	
trans-1,2-Dichloroethene	5.00	5.37	5.53	107	111	73.0-120			2.94	20	
Tetrachloroethene	5.00	5.32	4.75	106	95.0	72.0-132			11.3	20	
Vinyl chloride	5.00	5.60	5.57	112	111	67.0-131			0.537	20	
(S) Toluene-d8				100	96.7	80.0-120					
(S) 4-Bromofluorobenzene				97.0	101	77.0-126					
(S) 1,2-Dichloroethane-d4				99.9	102	70.0-130					

L1863004-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1863004-03 05/30	/25 10:54 • (MS)	R4224989-4	05/30/25 12:4	9 • (MSD) R422	24989-5 05/3	0/25 13:08						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Benzene	5.00	ND	4.44	3.89	86.7	75.7	1	17.0-158			13.2	27
Ethylbenzene	5.00	ND	4.22	3.69	84.4	73.8	1	30.0-155			13.4	27
Toluene	5.00	ND	4.10	3.70	82.0	74.0	1	26.0-154			10.3	28

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Engineering/Remediation Resources Group
 20230065
 L1863045
 06/13/25 10:49
 11 of 31

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1863045-01,02

L1863004-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(0.0) 1000001 00	05/00/05 40 54	(NAC) DAGGAGGG	05/00/05 10 10	(NACD) DAGGAGGG F	05/00/05 40 00
105111863004-03	()5/3()/25 1().54	• (MS) R4774989-4	(15/30/75 17:49)	(MSD) R4224989-5	05/30/25 13:08

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Xylenes, Total	15.0	ND	12.6	10.9	84.0	72.7	1	29.0-154			14.5	28
Trichloroethene	5.00	13.2	16.8	16.5	72.0	66.0	1	10.0-160			1.80	25
cis-1,2-Dichloroethene	5.00	ND	5.38	4.66	90.9	76.5	1	10.0-160			14.3	27
trans-1,2-Dichloroethene	5.00	ND	4.58	4.03	91.6	80.6	1	17.0-153			12.8	27
Tetrachloroethene	5.00	ND	4.31	3.77	86.2	75.4	1	10.0-160			13.4	27
Vinyl chloride	5.00	ND	5.00	4.31	100	86.2	1	10.0-160			14.8	27
(S) Toluene-d8					96.4	100		80.0-120				
(S) 4-Bromofluorobenzene					97.9	98.7		77.0-126				
(S) 1 2-Dichloroethane-d4					102	10.3		70 0-130				

WG2527331

QUALITY CONTROL SUMMARY

L1863045-03,04,06

Method Blank (MR)

Method	BIGUK	(INID)

(S) 1,2-Dichloroethane-d4

(MB) R4223207-3 05/30/2	25 14:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
Trichloroethene	U		0.190	1.00
cis-1,2-Dichloroethene	U		0.126	1.00
trans-1,2-Dichloroethene	U		0.149	1.00
Tetrachloroethene	U		0.300	1.00
Vinyl chloride	U		0.234	1.00
(S) Toluene-d8	99.0			80.0-120
(S) 4-Bromofluorobenzene	95.5			77.0-126

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

70.0-130

(LCS) R4223207-1 05/30/25 11:20 • (LCSD) R4223207-2 05/30/25 11:40

97.4

,	*	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	4.64	4.82	92.8	96.4	70.0-123			3.81	20	
Ethylbenzene	5.00	4.20	4.42	84.0	88.4	79.0-123			5.10	20	
Toluene	5.00	4.50	4.53	90.0	90.6	79.0-120			0.664	20	
Xylenes, Total	15.0	13.0	13.4	86.7	89.3	79.0-123			3.03	20	
Trichloroethene	5.00	4.72	4.84	94.4	96.8	78.0-124			2.51	20	
cis-1,2-Dichloroethene	5.00	4.44	4.35	88.8	87.0	73.0-120			2.05	20	
trans-1,2-Dichloroethene	5.00	4.47	4.49	89.4	89.8	73.0-120			0.446	20	
Tetrachloroethene	5.00	4.62	4.64	92.4	92.8	72.0-132			0.432	20	
Vinyl chloride	5.00	3.09	3.15	61.8	63.0	67.0-131	<u>J4</u>	<u>J4</u>	1.92	20	
(S) Toluene-d8				99.7	98.7	80.0-120					
(S) 4-Bromofluorobenzene				92.6	93.3	77.0-126					
(S) 1,2-Dichloroethane-d4				96.8	99.6	70.0-130					

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J4	The associated batch QC was outside the established quality control range for accuracy.

¹Cp

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Engineering/Remediation Resources Group

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:		*****	Billing Information:			100	Analysis / Container / Preser					ner / Preservative	Chain of Custody Page of		
Engineering/Remediatio	n Resou	rces	lannifor	Sonnichsen A	Accounts	Pres									10
Group			Payable		accounts	Chk							-	18	7
			4	E 90th Street			111		17:17					1-1-6	1CE
15333 NE 90th Street			Ste 100			11			N. T.) PEOPE	E ADVANCINO SCIENCE
Report to:			Email To:	J 14/4 000F3				1	- 0				MTJ	ULIET, TN	
Jennifer Sonnichsen 425-658-5026	;		jennifer.sonnichsen@errg.com;spencer.slomins											12065 Lebanon Rd Me Submitting a sample v	ount Juliet, TN 37122 ia this chain of custody
Project Description: Former Gircle	K	City/State Collected:			Say He WA Please Circle:									constitutes acknowled Pace Terms and Condi	Igment and acceptance of the
Regulatory Program(DOD,RCRA,DW,etc):	Client Project	#	-	Lab Project #			1	-					-	terms-par	1-3046
EIM EDD	200	1300	65	ENGREMRWA	A-CIRCLE K		0	CI-BIK			×			D08	87
Collected by (print):	Site/Facility I	D #		P.O. #		P	40mlAmb HCl	40mlAmb+H	1L-Cir-WT-HCI	HG	HCI-BIK			Acctnum: EN	
ollected by (signature): Rush? (Lab MUST		Lab MUST Be	Notified)	Quote #			NA N	Alu	1×	1 de	-qu			Template: T26	3466
Next Day5			Day y (Rad Only) Date Results Needed ay (Rad Only)				401	400	32	40mlAmb-HC	40mlAmb-HCl			Prelogin: P11	52157
								1 30	1		0m			PM: 3500 - Jer	nifer Gambill
Packed on Ice N Y	Three I	DaySTD	TAT			No. of	ЭНС	PH		0 4				PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWTPHGX	NWTPHGX	OGHEX	V8260	V8260			Shipped Via: F	edEX Ground Sample # (lab only)
26-401 -INF-20250523	GRAG	GW	NA	5/23/25	1215	8	X	- France	X	X					-01
LG-402-MID-20250527	7	GW	1		1205	8	Х		X	X					-01
LG-404-EFF-20256523		GW			1145	8	X		X	X					-03
		GW	1	1	119	8			X	X					03
DUP-1-20250523				1-1-	1130	-	X			^					1
DUP-2-20250523	P	GW			1155	2			X				1 2.33		- 09
TRIP BLANK TB-01-20250573	7	Bow	1	10	1445	22	-	X			X				-06
							3								
						1									
						1				-					
A															
* Matrix: Ren SS - Soil AIR - Air F - Filter	narks:	VOG	TCE,	PCE, CDCE	+DLE	- V	1			рН		Temp		Sample Receipt Ch 1 Present/Intact	
GW - Groundwater B - Bioassay			RT	EX	Dala	, ,				Pers			COC Sign	ned/Accurate:	- N
WW - WasteWater			.0.		only	(),1				Flow		Other	Correc+	arrive intact: bottles used:	N
OT - Other	ples returned			Trackin	g# 41)	73	59º	29	27	26			Sufficie	end volume sent: If Applicab	le J_N
	JPS FedEx		Time	Passiva	d bus (Signat	1-1	06	4.	111	Cuin Plan	le Danabe	-1. 60 /N-		o Headspace: ation Correct/Che	ecked: Y N
Relinquished by (Signature)	Da	te:/77/	2 Time	400 Receive	ed by: (Signat	n C	V			пр віап	2	red: (Yes / No HgL / MeoH		een <0.5 mR/hr:	₩ _N
Relinquished by : (Signature)	D	Y 65/	Time	Receive	ed by: (Signat	ure	1				1	TBR Bottles Received:	If precent	ration required by Log	rin: Date/Time
, Signature)	De	ice.	Time	. Receive	o by, (Signat	ure/			-	TLA9	20to	4-24 34	ii preserv	accontrequired by LOE	in. Date/ fille
Relinquished by : (Signature)	Da	ite:	Time	Receive	d for lab by:	(Signatu	ure)		E	Date:/	21	Time: 1 2	Hold:		Condition
						//	X	X	4	71	415	() 0,50			NCF / OK
		-				1	1	1		1-	100				

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

June 12, 2025

Client Services Pace National 12065 Lebanon Rd Mt. Juliet, TN 37122

RE: Project: L1863045 WG2526277

Pace Project No.: 10736794

Dear Client Services:

Enclosed are the analytical results for sample(s) received by the laboratory on May 31, 2025. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tong Lee tong.lee@pacelabs.com (612)473-6804

Project Manager

Enclosures

cc: Jimmy Huckaba, Pace Analytical National Center for Testing & Innovation

CERTIFICATIONS

Project: L1863045 WG2526277

Pace Project No.: 10736794

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680

California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 DoD Certification via A2LA #: 2926.01

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137
Florida Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368

ISO/IEC 17025 Certification via A2LA #: 2926.01

Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: Al-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064

Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification via A2LA #: R-036 North Dakota Certification via MN #: R-036

Ohio DW Certification #: 41244

Ohio VAP Certification (1700) #: CL101

Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #: 74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Vermont Certification #: VT-027053137
Virginia Certification #: 460163
Washington Certification #: C486
West Virginia DEP Certification #: 382
West Virginia DW Certification #: 9952 C

Wyoming UST Certification via A2LA #: 2926.01

USDA Permit #: P330-19-00208

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: L1863045 WG2526277

Pace Project No.: 10736794

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10736794001	LG-401-INF-20250523	Water	05/23/25 12:15	05/31/25 09:11
10736794002	LG-402-MID-20250523	Water	05/23/25 12:05	05/31/25 09:11
10736794003	LG-404-EFF-20250523	Water	05/23/25 11:45	05/31/25 09:11
10736794004	DUP-1-20250523	Water	05/23/25 11:50	05/31/25 09:11
10736794005	DUP-2-20250523	Water	05/23/25 11:55	05/31/25 09:11

SAMPLE ANALYTE COUNT

Project: L1863045 WG2526277

Pace Project No.: 10736794

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10736794001	LG-401-INF-20250523	EPA 1664B OG	RM3	1	PASI-M
10736794002	LG-402-MID-20250523	EPA 1664B OG	RM3	1	PASI-M
10736794003	LG-404-EFF-20250523	EPA 1664B OG	RM3	1	PASI-M
10736794004	DUP-1-20250523	EPA 1664B OG	RM3	1	PASI-M
10736794005	DUP-2-20250523	EPA 1664B OG	RM3	1	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

Project: L1863045 WG2526277

Pace Project No.: 10736794

Date: 06/12/2025 06:03 PM

Sample: LG-401-INF-20250523	Lab ID: 107	736794001	Collected: 05/23/2	25 12:15	Received: 05/	/31/25 09:11 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	•	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis						
Oil and Grease	6.1	mg/L	6.0	1		06/12/25 14:40		

Project: L1863045 WG2526277

Pace Project No.: 10736794

Date: 06/12/2025 06:03 PM

Sample: LG-402-MID-20250523	Lab ID: 107	736794002	Collected: 05/23/2	25 12:05	Received: 05/	/31/25 09:11 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	•	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis						
Oil and Grease	6.7	mg/L	5.9	1		06/12/25 14:40		

Project: L1863045 WG2526277

Pace Project No.: 10736794

Date: 06/12/2025 06:03 PM

Sample: LG-404-EFF-20250523	Lab ID: 10736794003		Collected: 05/23/2	25 11:45	Received: 05/	/31/25 09:11 M	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
1664B HEM, Oil and Grease	•	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	ND	mg/L	6.0	1		06/12/25 14:39			

Project: L1863045 WG2526277

Pace Project No.: 10736794

Date: 06/12/2025 06:03 PM

Sample: DUP-1-20250523	Lab ID: 107	736794004	Collected: 05/23/2	25 11:50	Received: 05	/31/25 09:11 M	atrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
1664B HEM, Oil and Grease	•	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis							
Oil and Grease	ND	mg/L	6.0	1		06/12/25 14:39			

Project: L1863045 WG2526277

Pace Project No.: 10736794

Date: 06/12/2025 06:03 PM

Sample: DUP-2-20250523	Lab ID: 107	736794005	Collected: 05/23/2	25 11:55	Received: 05/	/31/25 09:11 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1664B HEM, Oil and Grease	•	Analytical Method: EPA 1664B OG Pace Analytical Services - Minneapolis						
Oil and Grease	ND	mg/L	6.0	1		06/12/25 14:39		

QUALITY CONTROL DATA

Project: L1863045 WG2526277

Pace Project No.: 10736794

QC Batch: 1012643 Analysis Method: EPA 1664B OG

QC Batch Method: EPA 1664B OG Analysis Description: 1664B HEM, Oil and Grease

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10736794001, 10736794002, 10736794003, 10736794004, 10736794005

METHOD BLANK: 5278636 Matrix: Water

Associated Lab Samples: 10736794001, 10736794002, 10736794003, 10736794004, 10736794005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Oil and Grease mg/L ND 5.0 06/12/25 14:28

LABORATORY CONTROL SAMPLE: 5278637

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Oil and Grease mg/L 40 38.2 96 78-114

MATRIX SPIKE SAMPLE: 5278638

10736404001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Oil and Grease mg/L 34.7 40.4 85 78-114

SAMPLE DUPLICATE: 5278639

Date: 06/12/2025 06:03 PM

Parameter Units Result Result RPD Max Qualifiers

Oil and Grease mg/L <1.3 ND 18

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: L1863045 WG2526277

Pace Project No.: 10736794

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 1012643

Date: 06/12/2025 06:03 PM

[BE] Batch extracted by solid phase extraction (SPE).

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: L1863045 WG2526277

Pace Project No.: 10736794

Date: 06/12/2025 06:03 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10736794003	LG-404-EFF-20250523	EPA 1664B OG	1012643		
10736794004	DUP-1-20250523	EPA 1664B OG	1012643		
10736794005	DUP-2-20250523	EPA 1664B OG	1012643		
10736794002	LG-402-MID-20250523	EPA 1664B OG	1012643		
10736794001	LG-401-INF-20250523	EPA 1664B OG	1012643		

Sub-Contract Chain of Custody

Batch Date/Time: 05/29/25 13:22 Sub-Contract Lab: PACEMN Address: 1700 Elm Street Suite 200

City/State: Minneapolis, MN 55414 Contact: Tong.Lee@pacelabs.com

Owner Lab: PACEMTJL Address: 12065 Lebanon Rd. City/State: Mt. Juliet, TN 37122 Phone: (615) 773-9756 Fax: (615) 758-5859

WO: WG2526277

Email: MTJLSuboutTeam@pacelabs.com

Results Due Date: 06/09/25 ESC Purchase Order #: L1863045 Send Reports to: James C Huckaba Pace Analytical®

12065 Lebanon Rd. Mt. Juliet, TN 37122 Phone:(615) 773-9756 Fax:(615) 758-5859

Sample ID Container ID	Matrix	State	Collect Date	Description	Method	Sample Number Lab Use Only	Sample Comments Lab Use Only
G-401-INF-20250523 1L-Clr-WT-HCl - 52130454 1L-Clr-WT-HCl - 52130455	GW	WA	05/23/25 12:15	Oil & Grease (Hexane Extr)	1664A	1. L1863045-01	al.
G-402-MID-20250523 IL-Clr-WT-HCl - 52130456 1L-Clr-WT-HCl - 52130457	GW	WA	05/23/25 12:05	Oil & Grease (Hexane Extr)	1664A	2. L1863045-02	est
G-404-EFF-20250523 1L-Clr-WT-HCl - 52130458 1L-Clr-WT-HCl -	GW	WA	05/23/25 11:45	Oil & Grease (Hexane Extr)	1664A	3. L1863045-03	ω3
52130459 DUP-1-20250523 1L-Clr-WT-HCl - 52130460 1L-Clr-WT-HCl -	GW	WA	05/23/25 11:50	Oil & Grease (Hexane Extr)	1664A	4. L1863045-04	coy
52130461 DUP-2-20250523 1L-Clr-WT-HCl - 52130462 1L-Clr-WT-HCl -	GW	WA	05/23/25 11:55	Oil & Grease (Hexane Extr)	1664A	5. L1863045-05	ws.

WO#:10736794

ENV-FRM-MIN4-0150 v19_Sample Condition Upon Receipt

lient Name: PACE MTJL				M: TKL Due Date: 06/16/25 LIENT: PASI-TN
ustody Seal Present: ☑ YES ☐ NO Seals Intact: ☑ YES	□ NC	_		
racking Number: 4580 6305 6130				See Exceptions form ENV-FRM-MIN4-01
ourier: Client Commercial FedEx	☐ Pace	Courier	/Field	☐ SpeeDee ☐ UPS ☐ USPS
acking Material:		Other:		Biological Tissue Frozen: ☐ YES ☐ NO
Wrap				
	4 (0402) 8 (0775)		pe of Ic mp Blai	, <u> </u>
IOTE: Temp should be ≤ 6°C, but above freezing.	Did Sa			e in West Virginia:
Read Temp w/Temp Blank: 2.0, 1.4°c				iner Temps Taken: YES NO NA
				Temp Blank Only):
7 0 / (/				FRM-MIN4-0142,
ISDA Regulated Soil: W/A Water Sample/Other (describe):				21001101
oid Samples originate from one of the following states (check maps):	YFS □	NO	Are sa	amples from a foreign source (international, including Haw
ircle State: AL, AR, AZ, CA, FL, GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN,				Puerto Rico): YES NO
		0/ FDA4		•
NOTE: If YES to either question, fill out a Regulated Soil Che				0154) and include with SCOR/COC paperwork.
LOCATION (check one): DULUTH MINNEAPOLIS VIRGINIA	YES	NO	N/A	COMMENT(S)
hain of Custody Present and Filled Out? (i.e., Analysis/ID/Date/Time)				1.
hain of Custody Relinquished?				2.
ampler Name and/or Signature on COC?			4	3./ R
amples Arrived within Hold Time?				4.
Fecal: □ <8 hrs □ >8 hr but <24 hr □ >24 hr				
hort Hold Time Analysis (<72 hr)?				5. □ BOD / cBOD □ Fecal coliform □ Hex Chrom
			l .	☐ HPC ☐ Nitrate ☐ Nitrite ☐ Ortho Phos
the state of the s	ļ .			☐ Total coliform/E. coli ☐ Turbidity ☐ Other:
ush Turn Around Time Requested?		K		6. Same Day 1 Day 2 Day 3 Day 5 D
fficient control of the control of t				Due Date: 6/9/2-8
ufficient Sample Volume? (If NO, list approximate volume in section 7.)				7.
Correct Containers Used?				8. 2× GNHZ/SAMPLE
Pace Containers Used?	1			
ontainers Intact?				9.
ield Filtered Volume Received for Dissolved Tests?				10.
D/Date/Time Match? (If NO, fill out section 11.)				Is sediment visible in the dissolved container: ☐ YES ☐ 11.
Aatrix: Oil Soil Water Other	-			☐ See Exceptions form ENV-FRM-MIN4-0
Il containers needing acid/base preservation have been checked?			1	12.
ample #:	1 "		461	12.
☐ H2SO4		NaOH		
H Paper Lot #: Residual Chlorine □ 0-6 Roll) n c c+-	in	□ 0-14 Strip
A RESIDUAL CHIOTHE				for Residual Chlorine (NaOH containers only):
reserved containers in compliance with EPA recommendations?	Тп		USILIVE	
HNO3, H2SO4, < 2 pH, NaOH > 9 Sulfide, NaOH > 10 Cyanide)				
XCECTIONS (water only): VOA, Coliform, TOC/DOC, Oil & Grease, Phenols,				
PRO/8015, Dioxins, and PFAS				
xtra labels present on soil VOA or WIDRO containers? (soil only)			P	13.
leadspace in Methyl Mercury Container?				14.
leadspace in VOA Vials (greater than 6mm)?				☐ See Exceptions form ENV-FRM-MIN4-0
rip Blanks Present?				15.
rip Blank Custody Seals Present?				Pace Trip Blank Lot # (if purchased):
LIENT NOTIFICATION / RESOLUTION:				Labeled By: TZW Line:

Qualtrax ID: 52742

Effective Date: 03/04/25

ENV-FRM-MIN4-0142 v04_Sample Condition Upon Receipt - Exceptions

	No Temp	Blank			PM Noti	ified of Out	of Temp C	ooler?	☐ YES	□ NO
Read Temp	Corrected	l Temp	Average ter	np	If yes, indicate who was co If no, indicate r			ontacted, date and time.		
					——————————————————————————————————————	ultiple Cook	or Project		:	
lf anything	is OVER	6.0°C,	you <u>MU</u>	ST docu						
Tracking	y Number		Temperatu	re	Out of Te	mp Sample	ID	Containei Type	andre 🛮 andre 🗼	# of
458063	08 613	0	2.0		<u></u>	<u></u>		ype		/iitailieis
458063 45806	305 61	29	1.4							
	<u> </u>			_						
			· · · · · · · · · · · · · · · · · · ·							
			 -							
	<u>.</u>			<u> </u>						
				<u> </u>						<u> </u>
			att saltmasura							
	1		oH Adjustme	nt Log for P		mpies		In Com	pliance	
Sample ID	Type Of	pH Upon	Date	Time	Amount Added	Lot#	рН	Af	ter	Initials
	Preserve	Receipt	Adjusted	Adjusted	(mL)	Added	After	YES	tion? NO	
										-
							<u> </u>			
·					<u>L</u>		l			

Qualtrax ID: 52763

Effective Date: 03/12/25

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

Sample Delivery Group:

L1874324

Samples Received:

06/28/2025

Project Number:

20230065

Description:

Former Circle K 1461

Report To:

Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LG-404-EFF-20250627 L1874324-01	5
DUP-1-20250627 L1874324-02	6
LG-402-MID-20250627 L1874324-03	7
LG-401-INF-20250627 L1874324-04	8
DUP-2-20250627 L1874324-05	9
TB-01-20250627 L1874324-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 1664B	11
Volatile Organic Compounds (GC) by Method NWTPHGX	12
Volatile Organic Compounds (GC/MS) by Method 8260B	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

	JAIVIT LL .	3 O IVIII	MAIN I			
			Collected by	Collected date/time		
LG-404-EFF-20250627 L1874324-01			FI	06/27/25 11:00	06/28/25 08	1:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2553151	1	07/04/25 23:18	07/05/25 16:40	DGC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2552809	1	07/04/25 09:08	07/04/25 09:08	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2551643	1	07/02/25 17:25	07/02/25 17:25	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-1-20250627 L1874324-02			FI	06/27/25 11:05	06/28/25 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2553151	1	07/04/25 23:18	07/05/25 16:40	DGC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2552809	1	07/04/25 09:30	07/04/25 09:30	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2551643	1	07/02/25 17:46	07/02/25 17:46	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-402-MID-20250627 L1874324-03			FI	06/27/25 11:20	06/28/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 1664B	WG2553151	1	07/04/25 23:18	07/05/25 16:40	DGC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2552809	1	07/04/25 09:52	07/04/25 09:52	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2551643	1	07/02/25 18:06	07/02/25 18:06	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
LG-401-INF-20250627 L1874324-04			FI	06/27/25 11:30	06/28/25 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 1664B	WG2553151	1	07/04/25 23:18	07/05/25 16:40	DGC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2552809	1	07/04/25 10:15	07/04/25 10:15	CDD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2551643	1	07/02/25 18:27	07/02/25 18:27	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-2-20250627 L1874324-05			FI	06/27/25 11:10	06/28/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 1664B	WG2553151	1	07/04/25 23:18	07/05/25 16:40	DGC	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
TB-01-20250627 L1874324-06			FI	06/27/25 12:00	06/28/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2552809

WG2551643

1

1

07/04/25 08:01

07/02/25 15:22

07/04/25 08:01

07/02/25 15:22

CDD

DYW

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

LG-404-EFF-20250627

SAMPLE RESULTS - 01

Collected date/time: 06/27/25 11:00

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.68	1	07/05/2025 16:40	WG2553151

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	07/04/2025 09:08	WG2552809
(S) a,a,a-Trifluorotoluene(FID)	105		78.0-120		07/04/2025 09:08	WG2552809

Cn

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	07/02/2025 17:25	WG2551643
Ethylbenzene	ND		1.00	1	07/02/2025 17:25	WG2551643
Toluene	ND		1.00	1	07/02/2025 17:25	WG2551643
Xylenes, Total	ND		3.00	1	07/02/2025 17:25	WG2551643
Trichloroethene	ND		1.00	1	07/02/2025 17:25	WG2551643
cis-1,2-Dichloroethene	ND		1.00	1	07/02/2025 17:25	WG2551643
trans-1,2-Dichloroethene	ND		1.00	1	07/02/2025 17:25	WG2551643
Tetrachloroethene	ND		1.00	1	07/02/2025 17:25	WG2551643
Vinyl chloride	ND		1.00	1	07/02/2025 17:25	WG2551643
(S) Toluene-d8	92.8		80.0-120		07/02/2025 17:25	WG2551643
(S) 4-Bromofluorobenzene	93.9		77.0-126		07/02/2025 17:25	WG2551643
(S) 1,2-Dichloroethane-d4	97.1		70.0-130		07/02/2025 17:25	WG2551643

DUP-1-20250627

Collected date/time: 06/27/25 11:05

SAMPLE RESULTS - 02

1874324

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.75	1	07/05/2025 16:40	WG2553151

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	07/04/2025 09:30	WG2552809
(S) a,a,a-Trifluorotoluene(FID)	105		78.0-120		07/04/2025 09:30	WG2552809

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Benzene	ND		1.00	1	07/02/2025 17:46	WG2551643	
Ethylbenzene	ND		1.00	1	07/02/2025 17:46	WG2551643	
Toluene	ND		1.00	1	07/02/2025 17:46	WG2551643	1
Xylenes, Total	ND		3.00	1	07/02/2025 17:46	WG2551643	
Trichloroethene	ND		1.00	1	07/02/2025 17:46	WG2551643	
cis-1,2-Dichloroethene	ND		1.00	1	07/02/2025 17:46	WG2551643	
trans-1,2-Dichloroethene	ND		1.00	1	07/02/2025 17:46	WG2551643	
Tetrachloroethene	ND		1.00	1	07/02/2025 17:46	WG2551643	ľ
Vinyl chloride	ND		1.00	1	07/02/2025 17:46	WG2551643	
(S) Toluene-d8	93.8		80.0-120		07/02/2025 17:46	WG2551643	
(S) 4-Bromofluorobenzene	93.4		77.0-126		07/02/2025 17:46	WG2551643	
(S) 1,2-Dichloroethane-d4	97.1		70.0-130		07/02/2025 17:46	WG2551643	

LG-402-MID-20250627 Collected date/time: 06/27/25 11:20

SAMPLE RESULTS - 03

1874324

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		5.38	1	07/05/2025 16:40	WG2553151

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	07/04/2025 09:52	WG2552809
(S) a,a,a-Trifluorotoluene(FID)	105		78.0-120		07/04/2025 09:52	WG2552809

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	07/02/2025 18:06	WG2551643
Ethylbenzene	ND		1.00	1	07/02/2025 18:06	WG2551643
Toluene	ND		1.00	1	07/02/2025 18:06	WG2551643
Xylenes, Total	ND		3.00	1	07/02/2025 18:06	WG2551643
Trichloroethene	ND		1.00	1	07/02/2025 18:06	WG2551643
cis-1,2-Dichloroethene	ND		1.00	1	07/02/2025 18:06	WG2551643
trans-1,2-Dichloroethene	ND		1.00	1	07/02/2025 18:06	WG2551643
Tetrachloroethene	ND		1.00	1	07/02/2025 18:06	WG2551643
Vinyl chloride	ND		1.00	1	07/02/2025 18:06	WG2551643
(S) Toluene-d8	95.4		80.0-120		07/02/2025 18:06	WG2551643
(S) 4-Bromofluorobenzene	94.8		77.0-126		07/02/2025 18:06	WG2551643
(S) 1.2-Dichloroethane-d4	96.0		70.0-130		07/02/2025 18:06	WG2551643

LG-401-INF-20250627 Collected date/time: 06/27/25 11:30

SAMPLE RESULTS - 04

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Oil & Grease (Hexane Extr)	ND		6.17	1	07/05/2025 16:40	WG2553151

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	107		100	1	07/04/2025 10:15	WG2552809
(S) a,a,a-Trifluorotoluene(FID)	106		78.0-120		07/04/2025 10:15	WG2552809

Ss

Cn

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	07/02/2025 18:27	WG2551643
Ethylbenzene	ND		1.00	1	07/02/2025 18:27	WG2551643
Toluene	ND		1.00	1	07/02/2025 18:27	WG2551643
Xylenes, Total	3.62		3.00	1	07/02/2025 18:27	WG2551643
Trichloroethene	ND		1.00	1	07/02/2025 18:27	WG2551643
cis-1,2-Dichloroethene	ND		1.00	1	07/02/2025 18:27	WG2551643
trans-1,2-Dichloroethene	ND		1.00	1	07/02/2025 18:27	WG2551643
Tetrachloroethene	ND		1.00	1	07/02/2025 18:27	WG2551643
Vinyl chloride	ND		1.00	1	07/02/2025 18:27	WG2551643
(S) Toluene-d8	92.4		80.0-120		07/02/2025 18:27	WG2551643
(S) 4-Bromofluorobenzene	95.8		77.0-126		07/02/2025 18:27	WG2551643
(S) 1,2-Dichloroethane-d4	94.8		70.0-130		07/02/2025 18:27	WG2551643

DUP-2-20250627

SAMPLE RESULTS - 05

Collected date/time: 06/27/25 11:10

Wet Chemistry by Method 1664B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Oil & Grease (Hexane Extr)	ND		6.10	1	07/05/2025 16:40	WG2553151	

Engineering/Remediation Resources Group

TB-01-20250627

Collected date/time: 06/27/25 12:00

SAMPLE RESULTS - 06

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Gasoline Range Organics-NWTPH	ND		100	1	07/04/2025 08:01	WG2552809	
(S) a,a,a-Trifluorotoluene(FID)	104		78.0-120		07/04/2025 08:01	WG2552809	

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	ND		1.00	1	07/02/2025 15:22	WG2551643
Ethylbenzene	ND		1.00	1	07/02/2025 15:22	WG2551643
Toluene	ND		1.00	1	07/02/2025 15:22	WG2551643
Xylenes, Total	ND		3.00	1	07/02/2025 15:22	WG2551643
Trichloroethene	ND		1.00	1	07/02/2025 15:22	WG2551643
cis-1,2-Dichloroethene	ND		1.00	1	07/02/2025 15:22	WG2551643
trans-1,2-Dichloroethene	ND		1.00	1	07/02/2025 15:22	WG2551643
Tetrachloroethene	ND		1.00	1	07/02/2025 15:22	WG2551643
Vinyl chloride	ND		1.00	1	07/02/2025 15:22	WG2551643
(S) Toluene-d8	95.1		80.0-120		07/02/2025 15:22	WG2551643
(S) 4-Bromofluorobenzene	95.9		77.0-126		07/02/2025 15:22	WG2551643
(S) 1,2-Dichloroethane-d4	96.0		70.0-130		07/02/2025 15:22	WG2551643

WG2553151

QUALITY CONTROL SUMMARY

L1874324-01,02,03,04,05

Wet Chemistry by Method 1664B Method Blank (MB)

(MB) R4240906-1 07/05/25 16:40

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Oil & Grease (Hexane Extr)	U		1.40	5.00

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4240906-2 07/05/25 16:40 • (LCSD) R4240906-3 07/05/25 16:40

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Oil & Grease (Hexane Extr)	40.0	37.1	34.4	92.8	86.0	78.0-114			7.55	20

⁶Qc

(OS) L1874338-01 07/05/25 16:40 • (MS) R4240906-4 07/05/25 16:40

(03) [107 +330 01 07/03/	25 10.40 - (1415)	114240500 4 0	7//03/23 10.	10			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Oil & Grease (Hexane Extr)	40.0	ND	37.1	92.6	1	78.0-114	

WG2552809

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1874324-01,02,03,04,06

Method Blank (MB)

(MB) R4241334-2 07/04/2	25 01:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		78.6	100
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4241334-1 07/04/	25 00:13 • (LCSI	J) R4241334-5	0//04/25 0/:	18							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5000	4460	4430	89.2	88.6	70.0-124			0.675	20	
(S) a.a.a-Trifluorotoluene(FID)				115	114	78.0-120					

(OS) L1874344-03 07/04/	25 03:39 • (MS)	R4241334-3 C	7/04/25 06:12	2 • (MSD) R4241	1334-4 07/04/2	25 06:34							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5000	ND	4310	4460	86.2	89.2	1	10.0-155			3.42	21	
(S) a,a,a-Trifluorotoluene(FID)					99.9	101		78.0-120					

WG2551643

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1874324-01,02,03,04,06

Method Blank (MB)

(MB) R4241984-5 07/02/2	25 14:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.0941	1.00	
Ethylbenzene	U		0.137	1.00	
Toluene	U		0.278	1.00	
Xylenes, Total	U		0.174	3.00	
Trichloroethene	U		0.190	1.00	
cis-1,2-Dichloroethene	U		0.126	1.00	
trans-1,2-Dichloroethene	U		0.149	1.00	
Tetrachloroethene	U		0.300	1.00	
Vinyl chloride	U		0.234	1.00	
(S) Toluene-d8	93.6			80.0-120	
(S) 4-Bromofluorobenzene	94.4			77.0-126	
(S) 1,2-Dichloroethane-d4	95.1			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R424198	4-1 0//	02/251	1:58
---------------	---------	--------	------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	ug/l	ug/l	%	%			
Benzene	5.00	5.55	111	70.0-123			
Ethylbenzene	5.00	4.90	98.0	79.0-123			
Toluene	5.00	5.03	101	79.0-120			
Xylenes, Total	15.0	15.0	100	79.0-123			
Trichloroethene	5.00	4.94	98.8	78.0-124			
cis-1,2-Dichloroethene	5.00	5.53	111	73.0-120			
trans-1,2-Dichloroethene	5.00	5.48	110	73.0-120			
Tetrachloroethene	5.00	5.21	104	72.0-132			
Vinyl chloride	5.00	5.48	110	67.0-131			
(S) Toluene-d8			91.0	80.0-120			
(S) 4-Bromofluorobenzene			95.6	77.0-126			
(S) 1,2-Dichloroethane-d4			98.3	70.0-130			

Sc

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Deminions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
U (Radiochemistry)	Result + Error < MDA.
J (Radiochemistry)	Result < MDA; Result + Error > MDA.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PAGE:

14 of 16

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:	- 20 00		Billing Infor	mation:					A	nalysis /	Container	Preservative		Chain of Custod	y Page — of	
Engineering/Remediation	n Resoui	rces		Sonnichsen A	ccounts	Pres Chk		1							,	
Group			Payable	90th Street		Clik								- Pa	ace ⁻	
15333 NE 90th Street			Ste 100			Ì	15.05							(PEOPL	E ADVANCING SCIENCE	
Report to:			Email To:	1 1414 DOOES									-		ULIET, TN	
Jennifer Sonnichsen 425-658-5026		to	jennifer.so	nnichsen@errg.cor	A									constitutes acknowled	ia this chain of custody Igment and acceptance of th	
Project Description: Circle K	146	City/State Collected:	Sea	He, WA	PT MT) -						Pace Terms and Condi https://info.pacelabs. terms.pdf	itions found at: com/hubfs/pas-standard-	
legulatory Program(DOD,RCRA,DW,etc):				Lab Project # ENGREMRWA	CIPCLE			× ×						SDG# L1	874324	
Feology	202	3000	5	7			Ū	3			*			D1		
Collected by (print):	Site/Facility ID	#		P.O. #	100		NWTPHGX 40mlAmb HCI	40mlAmb-HCI-BIk	HG	D	40mlAmb-HCI-BIK		100	Acctnum: EN	GREMRWA	
Collected by (signature): Rush? (Lab MUST		ab MUST Be	Notified)	Quote #			mIA	mlA	OGHEX 1L-CIr-WT-HCI	V8260 40mlAmb-HC	-qu			Template: T26	63466	
711		y Five I		Date Results	Needed	1	40	40	Ö	nlAr	nIA			Prelogin: P11	159303 nnifer Gambill	
Immediately V	Two Day	10 Da	ay (Rad Only)			No. of	É9H	NWTPHGX	X 11	40	401			PB:	milet Guillian	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	VTP	VTP	HE	260	V8260	() · · · · · ·			edEX Ground	
Sumple 15	comp, cras		1			_	2	È	90	8	8			Remarks	Sample # (lab only	
16-404-EFF-2010000	6006	GW	a/k	6/27/20	1100	8	X		X	X			12 3		- 01	
DOP-1-20250627 LG-408-MID-20250627	1	GW	1	,	1105	8	X		X	Х					205	
LG-408-11117-20250627		GW		- 10	1120	8	X		X	X					7 03	
1G-401-1NF-20250627		GW			1130	8	X		X	Х	11/19				704	
DUP-2-20250627		GW			1110	2			X		44.14				- 05	
TB-01-201627	9	GW	+	+	1200	3		Х			X				- 66	
				*	4											
				120												
* Matrix: Ren	narks: She	110	4 1/00	5- B	TEX	100				рН	1	emp		Sample Receipt C 1 Present/Intact		
GW - Groundwater B - Bloassay	Orto	STT US	, 400		COCE	TLA	F. pr	F 110	- ,	Flow		Other	coc sig	ned/Accurate:	7	
WW - WasteWater DW - Drinking Water	and a construction of the	odes.		100	, evce	100	2	٠٠١٥				oulei	Correct	bottles used: ent volume sent:		
OT - Other	IPSFedEx			Trackin	g# 7	417	8 le	111	27	40				If Applicat o Headspace:	N.	
Relinquished by : (Signature)	Da	te 17 2	V IV	12A Receive	ed by: (Signa	ture)	1		7	Trip Blan	Received	YESY NO HCD/ MeoH		ation Correct/Ch een <0.5 mR/hr:	recked: YY _1	
Relinquished by (Signature)	Da	te:	Time	Receive	ed by: (Signa	ture)	~		-	Temps	14 2	TBR Bottles Received:	, If preserv	vation required by Lo	gin: Date/Time	
nemiquisite days, (signature)										TLAGO, HONZ1.134						
					ed for lab by		_		_	Date: /	0.0		Hold:		Condition:	

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

Sample Delivery Group:

L1849945

Samples Received:

04/19/2025

Project Number:

20230065

Description:

Former Circle K 1461

Report To:

Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-412-INF-20250418 L1849945-01	5
VG-410-EFF-20250418 L1849945-02	7
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
Gl: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

Volatile Organic Compounds (MS) by Method TO-15	WG2495461	1	04/20/25 22:34	04/20/25 22:34	JAP	Mt. Juliet, TN
			date/time	date/time		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
VG-410-EFF-20250418 L1849945-02 Air			Fernando Idiarte	04/18/25 14:45	04/19/25 08	:30
			Collected by	Collected date/time	Received da	
Volatile Organic Compounds (MS) by Method TO-15	WG2497943	500	04/23/25 18:05	04/23/25 18:05	DAH	Mt. Juliet, TN
olatile Organic Compounds (MS) by Method TO-15	WG2495461	20	04/21/25 00:28	04/21/25 00:28	JAP	Mt. Juliet, TN
			date/time	date/time		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
VG-412-INF-20250418 L1849945-01 Air			Fernando Idiarte	04/18/25 14:35	04/19/25 08	:30
			Collected by	Collected date/time	Received da	ite/time

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer Gambill Project Manager

SAMPLE RESULTS - 01

L1849945

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	25.0	59.4	ND	ND		20	WG2495461
Allyl chloride	107-05-1	76.53	4.00	12.5	ND	ND		20	WG2495461
Benzene	71-43-2	78.10	4.00	12.8	1620	5170		20	WG2495461
Benzyl Chloride	100-44-7	127	4.00	20.8	ND	ND		20	WG2495461
Bromodichloromethane	75-27-4	164	4.00	26.8	ND	ND		20	WG2495461
Bromoform	75-25-2	253	12.6	130	ND	ND		20	WG2495461
Bromomethane	74-83-9	94.90	4.00	15.5	ND	ND		20	WG2495461
,3-Butadiene	106-99-0	54.10	40.0	88.5	ND	ND		20	WG2495461
Carbon disulfide	75-15-0	76.10	8.00	24.9	ND	ND		20	WG2495461
Carbon tetrachloride	56-23-5	154	4.00	25.2	ND	ND		20	WG2495461
	108-90-7	113	4.00	18.5	ND	ND		20	
Chlorobenzene									WG2495461
Chloroethane	75-00-3	64.50	4.00	10.6	ND	ND		20	WG2495461
Chloroform	67-66-3	119	4.00	19.5	ND	ND		20	WG2495461
Chloromethane	74-87-3	50.50	4.00	8.26	ND	ND		20	WG2495461
2-Chlorotoluene	95-49-8	126	4.00	20.6	ND	ND		20	WG2495461
Cyclohexane	110-82-7	84.20	100	344	1940	6680		500	WG2497943
Dibromochloromethane	124-48-1	208	4.00	34.0	ND	ND		20	WG2495461
I,2-Dibromoethane	106-93-4	188	4.00	30.8	ND	ND		20	WG2495461
l,2-Dichlorobenzene	95-50-1	147	4.00	24.0	ND	ND		20	WG2495461
l,3-Dichlorobenzene	541-73-1	147	4.00	24.0	ND	ND		20	WG2495461
,4-Dichlorobenzene	106-46-7	147	4.00	24.0	ND	ND		20	WG2495461
l,2-Dichloroethane	107-06-2	99	4.00	16.2	17.8	72.1		20	WG2495461
,1-Dichloroethane	75-34-3	98	4.00	16.0	ND	ND		20	WG2495461
,1-Dichloroethene	75-35-4	96.90	4.00	15.9	ND	ND		20	WG2495461
cis-1,2-Dichloroethene	156-59-2	96.90	4.00	15.9	108	428		20	WG2495461
rans-1,2-Dichloroethene	156-60-5	96.90	4.00	15.9	ND	ND		20	WG2495461
,2-Dichloropropane	78-87-5	113	4.00	18.5	ND	ND		20	WG2495461
cis-1,3-Dichloropropene	10061-01-5	111	4.00	18.2	ND	ND		20	WG2495461
rans-1,3-Dichloropropene	10061-02-6	111	4.00	18.2	ND	ND		20	WG2495461
,4-Dioxane	123-91-1	88.10	12.6	45.4	ND	ND		20	WG2495461
Ethanol	64-17-5	46.10	50.0	94.3	ND	ND		20	WG2495461
Ethylbenzene	100-41-4	106	4.00	17.3	541	2350		20	WG2495461
1-Ethyltoluene	622-96-8	120	4.00	19.6	658	3230		20	WG2495461
richlorofluoromethane	75-69-4	137.40	4.00	22.5	ND	ND		20	WG2495461
Dichlorodifluoromethane	75-71-8	120.92	4.00	19.8	ND	ND		20	WG2495461
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	4.00	30.7	ND	ND		20	WG2495461
,2-Dichlorotetrafluoroethane	76-14-2	171	4.00	28.0	ND	ND		20	WG2495461
Heptane	142-82-5	100	100	409	2740	11200		500	WG2497943
Hexachloro-1,3-butadiene	87-68-3	261	12.6	135	ND	ND	<u>J3 J4</u>	20	WG2495461
n-Hexane	110-54-3	86.20	315	1110	18000	63500		500	WG2497943
sopropylbenzene	98-82-8	120.20	4.00	19.7	54.0	265		20	WG2495461
Methylene Chloride	75-09-2	84.90	4.00	13.9	ND	ND		20	WG2495461
Methyl Butyl Ketone	591-78-6	100	25.0	102	ND	ND		20	WG2495461
?-Butanone (MEK)	78-93-3	72.10	25.0	73.7	ND	ND		20	WG2495461
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	25.0	102	ND	ND		20	WG2495461
Methyl methacrylate	80-62-6	100.12	4.00	16.4	ND	ND		20	WG2495461
MTBE	1634-04-4	88.10	4.00	14.4	ND	ND		20	WG2495461
laphthalene	91-20-3	128	12.6	66.0	55.4	290	<u>J3</u>	20	WG2495461
-Propanol	67-63-0	60.10	25.0	61.5	ND	ND	_	20	WG2495461
ropene	115-07-1	42.10	25.0	43.0	ND	ND		20	WG2495461
tyrene	100-42-5	104	8.00	34.0	ND	ND		20	WG2495461
,1,2,2-Tetrachloroethane	79-34-5	168	4.00	27.5	ND	ND		20	WG2495461
etrachloroethylene	127-18-4	166	4.00	27.5	767	5210			
,								20	WG2495461
etrahydrofuran	109-99-9	72.10	4.00	11.8	ND 2020	ND 0010		20	WG2495461
oluene	108-88-3	92.10	250	942	2630 NB	9910 NB	10	500	WG2497943
,2,4-Trichlorobenzene	120-82-1	181	12.6	93.3	ND	ND	<u>J3</u>	20	WG2495461

VG-412-INF-20250418 Collected date/time: 04/18/25 14:35

SAMPLE RESULTS - 01

L1849945

	CAS #	Mol. Wt.	RDL1	DDI 2	Docult	Docult	Qualifier	Dilution	Datah
	CAS#	IVIOI. VVI.		RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	4.00	21.8	ND	ND		20	WG2495461
1,1,2-Trichloroethane	79-00-5	133	4.00	21.8	ND	ND		20	WG2495461
Trichloroethylene	79-01-6	131	4.00	21.4	71.1	381		20	WG2495461
1,2,4-Trimethylbenzene	95-63-6	120	100	491	998	4900		500	WG2497943
1,3,5-Trimethylbenzene	108-67-8	120	4.00	19.6	1280	6280		20	WG2495461
2,2,4-Trimethylpentane	540-84-1	114.22	100	467	4570	21300		500	WG2497943
Vinyl chloride	75-01-4	62.50	4.00	10.2	8.77	22.4		20	WG2495461
Vinyl Bromide	593-60-2	106.95	4.00	17.5	ND	ND		20	WG2495461
Vinyl acetate	108-05-4	86.10	12.6	44.4	ND	ND		20	WG2495461
Xylenes, Total	1330-20-7	106.16	300	1300	6500	28200		500	WG2497943
m&p-Xylene		106	200	867	4680	20300		500	WG2497943
o-Xylene	95-47-6	106	100	434	1820	7890		500	WG2497943
TPH (GC/MS) Low Fraction	8006-61-9	101	100000	413000	141000	582000		500	WG2497943
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		112				WG2495461
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.9				WG2497943

SAMPLE RESULTS - 02

L1849945

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			<u> </u>
Acetone	67-64-1	58.10	1.25	2.97	4.91	11.7		1	WG2495461
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2495461
Benzene	71-43-2	78.10	0.200	0.639	1.86	5.94		1	WG2495461
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2495461
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2495461
Bromoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2495461
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2495461
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2495461
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2495461
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2495461
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2495461
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2495461
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2495461
Chloromethane	74-87-3	50.50	0.200	0.413	0.342	0.706		1	WG2495461
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2495461
Cyclohexane	110-82-7	84.20	0.200	0.689	0.451	1.55		1	WG2495461
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2495461
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2495461
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2495461
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2495461
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2495461
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2495461
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2495461
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2495461
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	0.231	0.915		1	WG2495461
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2495461
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2495461
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2495461
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2495461
,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2495461
Ethanol	64-17-5	46.10	2.50	4.71	5.38	10.1		1	WG2495461
Ethylbenzene	100-41-4	106	0.200	0.867	3.57	15.5		1	WG2495461
1-Ethyltoluene	622-96-8	120	0.200	0.982	12.3	60.4		1	WG2495461
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	ND	ND		1	WG2495461
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	ND	ND		1	WG2495461
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2495461
l,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2495461
Heptane	142-82-5	100	0.200	0.818	0.993	4.06	10.11	1	WG2495461
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND	<u>J3 J4</u>	1	WG2495461
n-Hexane	110-54-3	86.20	0.630	2.22	1.04	3.67		1	WG2495461
sopropylbenzene	98-82-8	120.20	0.200	0.983	0.572	2.81		1	WG2495461
Methylene Chloride	75-09-2 F01-79-6	84.90	0.200	0.694	ND	ND		1	WG2495461
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND F.C2		1	WG2495461
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	1.91	5.63		1	WG2495461
1-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND ND		1	WG2495461
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2495461
MTBE	1634-04-4	88.10	0.200	0.721	ND 9.77	ND 51.1	ıo	1	WG2495461
Naphthalene	91-20-3 67-63-0	128	0.630 1.25	3.30 3.07	9.77 7.04	51.1 17.3	<u>J3</u>	1	WG2495461
2-Propanol	115-07-1	60.10 42.10	1.25		7.04 ND	17.3 ND		1	WG2495461
Propene	100-42-5	104	0.400	2.15 1.70	ND ND	ND ND			WG2495461
Styrene								1	WG2495461
1,2,2-Tetrachloroethane etrachloroethylene	79-34-5 127-18-4	168 166	0.200	1.37 1.36	ND 2.23	ND 15.1		1	WG2495461
			0.200					1	WG2495461
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	4.53	13.4		1	WG2495461
oluene	108-88-3	92.10	0.500	1.88	9.70	36.5	12	1	WG2495461
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND	<u>J3</u>	1	WG2495461

VG-410-EFF-20250418 Collected date/time: 04/18/25 14:45

SAMPLE RESULTS - 02

1849945

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2495461
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2495461
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2495461
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	68.0	334		1	WG2495461
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	27.2	133		1	WG2495461
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	0.659	3.08		1	WG2495461
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2495461
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2495461
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2495461
Xylenes, Total	1330-20-7	106.16	0.600	2.61	99.9	434		1	WG2495461
m&p-Xylene		106	0.400	1.73	66.4	288		1	WG2495461
o-Xylene	95-47-6	106	0.200	0.867	33.5	145		1	WG2495461
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	252	1040		1	WG2495461
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		102				WG2495461

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1849945-01,02

Method Blank (MB)

(MB) R4203299-2 04/20/	25 10:04				L
	MB Result	MB Qualifier	MB MDL	MB RDL	Г
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.520	1.25	— į
Allyl chloride	U		0.186	0.200	1
Benzene	U		0.110	0.200	_ [
Benzyl Chloride	U		0.0888	0.200	Г
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	<u> </u>
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	
Carbon tetrachloride	U		0.0746	0.200	
Chlorobenzene	U		0.118	0.200	
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
2-Chlorotoluene	U		0.0787	0.200	
Cyclohexane	U		0.170	0.200	
Dibromochloromethane	U		0.0696	0.200	_ [
1,2-Dibromoethane	U		0.0690	0.200	
1,2-Dichlorobenzene	U		0.0734	0.200	
1,3-Dichlorobenzene	U		0.0753	0.200	
1,4-Dichlorobenzene	U		0.0768	0.200	
1,2-Dichloroethane	U		0.0730	0.200	
1,1-Dichloroethane	U		0.0710	0.200	
1,1-Dichloroethene	U		0.0747	0.200	
cis-1,2-Dichloroethene	U		0.0796	0.200	
trans-1,2-Dichloroethene	U		0.0735	0.200	
1,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
trans-1,3-Dichloropropene	U		0.0795	0.200	
1,4-Dioxane	U		0.164	0.630	
Ethanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
1,2-Dichlorotetrafluoroethane	U		0.0756	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	U		0.0800	0.630	
n-Hexane	U		0.143	0.630	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1849945-01,02

Method Blank (MB)

(MB) R4203299-2 04/20/2	25 10:04				-
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Isopropylbenzene	U		0.0722	0.200	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
Naphthalene	U		0.617	0.630	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Tetrahydrofuran	U		0.164	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	U		0.462	0.630	
1,1,1-Trichloroethane	U		0.0718	0.200	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
Vinyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
TPH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	98.8			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4203299-1	04/20/25 09:26 • ((LCSD) R4203299-3	04/20/25 11:08
------------------	--------------------	-------------------	----------------

(LCS) 1(+203233 1 0+/2	0/25 05.20 · (LC	3D) N-20323	3 3 04/20/23	1.00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	4.22	4.07	113	109	70.0-130			3.62	25
Allyl chloride	3.75	4.20	4.11	112	110	70.0-130			2.17	25
Benzene	3.75	3.90	3.76	104	100	70.0-130			3.66	25

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Engineering/Remediation Resources Group
 20230065
 L1849945
 04/24/25 16:00
 10 of 16

Methyl Butyl Ketone

3.75

4.30

4.18

115

111

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1849945-01,02

Тс

Ss

Cn

Sr

GI

Αl

Sc

PAGE:

11 of 16

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4203299-1 04/20/25 09:26 • (LCSD) R4203299-3 04/20/25 11:08 **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte ppbv % % % % % vdaa ppbv Benzyl Chloride 3.75 4.17 4.03 111 107 70.0-152 3.41 25 99.5 70.0-130 2.99 25 Bromodichloromethane 3.75 3.73 3.62 96.5 Bromoform 3.75 2.91 2.79 77.6 74.4 70.0-130 4.21 25 89.9 70.0-130 0.297 25 Bromomethane 3.75 3.37 3.36 89.6 1,3-Butadiene 3.75 3.49 3.43 93.1 91.5 70.0-130 1.73 25 25 Carbon disulfide 7.50 7.88 7.71 105 103 70.0-130 2.18 3.75 3.77 3.67 101 97.9 70.0-130 2.69 25 Carbon tetrachloride Chlorobenzene 3.75 3.73 3.64 99.5 97.1 70.0-130 2.44 25 3.75 3.75 3.40 100 90.7 70.0-130 9.79 25 Chloroethane 25 Chloroform 3.75 3.81 3.69 102 98.4 70.0-130 3.20 3.75 3.72 3.69 99.2 98.4 70.0-130 0.810 25 Chloromethane 25 2-Chlorotoluene 3.75 4.12 3.90 110 104 70.0-130 5.49 Cyclohexane 3.75 4.14 3.97 110 106 70.0-130 4.19 25 93.9 25 Dibromochloromethane 3.75 3.52 3.43 91.5 70.0-130 2.59 25 1,2-Dibromoethane 3.75 3.93 3.79 105 101 70.0-130 3.63 1,2-Dichlorobenzene 3.75 3.91 3.78 104 101 70.0-130 3.38 25 25 3.75 3.92 3.81 105 102 70.0-130 2.85 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3.75 3.96 3.84 106 102 70.0-130 3.08 25 3.75 3.65 97.3 97.6 70.0-130 0.274 25 1,2-Dichloroethane 3.66 3.75 3.83 3.68 102 98.1 70.0-130 3.99 25 1,1-Dichloroethane 25 3.75 107 101 70.0-130 5.39 1,1-Dichloroethene 4.00 3.79 3.75 4.18 4.05 108 70.0-130 3.16 25 cis-1,2-Dichloroethene 111 trans-1,2-Dichloroethene 3.75 3.95 3.83 105 102 70.0-130 3.08 25 3.75 3.74 99.7 97.6 70.0-130 2.16 25 1,2-Dichloropropane 3.66 108 106 70.0-130 2.49 25 cis-1,3-Dichloropropene 3.75 4.06 3.96 102 70.0-130 25 trans-1,3-Dichloropropene 3.75 3.98 3.81 106 4.36 25 1,4-Dioxane 3.75 4.01 3.86 107 103 70.0-140 3.81 Ethanol 3.75 4.70 4.51 125 120 55.0-148 4.13 25 3.75 110 106 25 Ethylbenzene 4.11 3.96 70.0-130 3.72 3.75 110 70.0-130 25 4-Ethyltoluene 4.34 4.11 116 5.44 101 97.6 3.49 25 Trichlorofluoromethane 3.75 3.79 3.66 70.0-130 3.75 3.84 102 98.1 64.0-139 4.26 25 Dichlorodifluoromethane 3.68 1,1,2-Trichlorotrifluoroethane 3.75 3.78 3.67 101 97.9 70.0-130 2.95 25 100 70.0-130 25 1,2-Dichlorotetrafluoroethane 3.75 3.92 3.76 105 4.17 Heptane 3.75 4.13 3.80 110 101 70.0-130 8.32 25 25 69.1 Hexachloro-1,3-butadiene 3.75 3.79 2.59 101 70.0-151 J3 J4 37.6 3.75 4.23 4.07 113 109 70.0-130 3.86 25 n-Hexane 25 Isopropylbenzene 3.75 4.41 4.21 118 112 70.0-130 4.64 3.75 3.67 3.58 97.9 95.5 70.0-130 2.48 25 Methylene Chloride

ACCOUNT: SDG: PROJECT: DATE/TIME: Engineering/Remediation Resources Group 20230065 L1849945 04/24/25 16:00

70.0-149

25

2.83

TPH (GC/MS) Low Fraction

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1849945-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4203299-1 04/20/25 09:26 • (LCSD) R4203299-3 04/20/25 11:08

183

172

97.3

102

· /		,									_
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	2
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
2-Butanone (MEK)	3.75	4.07	3.87	109	103	70.0-130			5.04	25	Ŀ
4-Methyl-2-pentanone (MIBK)	3.75	4.08	3.92	109	105	70.0-139			4.00	25	3
Methyl methacrylate	3.75	3.99	3.79	106	101	70.0-130			5.14	25	L
MTBE	3.75	4.21	4.02	112	107	70.0-130			4.62	25	4
Naphthalene	3.75	4.99	3.38	133	90.1	70.0-159		<u>J3</u>	38.5	25	
2-Propanol	3.75	3.88	3.75	103	100	70.0-139			3.41	25	L
Propene	3.75	3.63	3.45	96.8	92.0	64.0-144			5.08	25	5
Styrene	7.50	8.63	8.23	115	110	70.0-130			4.74	25	L
1,1,2,2-Tetrachloroethane	3.75	3.96	3.72	106	99.2	70.0-130			6.25	25	6
Tetrachloroethylene	3.75	3.88	3.67	103	97.9	70.0-130			5.56	25	
Tetrahydrofuran	3.75	3.89	3.73	104	99.5	70.0-137			4.20	25	
Toluene	3.75	4.07	3.93	109	105	70.0-130			3.50	25	7
1,2,4-Trichlorobenzene	3.75	3.88	2.64	103	70.4	70.0-160		<u>J3</u>	38.0	25	L
1,1,1-Trichloroethane	3.75	3.75	3.65	100	97.3	70.0-130			2.70	25	8
1,1,2-Trichloroethane	3.75	3.83	3.69	102	98.4	70.0-130			3.72	25	
Trichloroethylene	3.75	3.90	3.76	104	100	70.0-130			3.66	25	Ļ
1,2,4-Trimethylbenzene	3.75	4.25	4.15	113	111	70.0-130			2.38	25	9
1,3,5-Trimethylbenzene	3.75	4.23	3.98	113	106	70.0-130			6.09	25	L
2,2,4-Trimethylpentane	3.75	4.33	4.08	115	109	70.0-130			5.95	25	
Vinyl chloride	3.75	3.60	3.47	96.0	92.5	70.0-130			3.68	25	
Vinyl Bromide	3.75	3.98	3.82	106	102	70.0-130			4.10	25	
Vinyl acetate	3.75	4.11	4.10	110	109	70.0-130			0.244	25	
Xylenes, Total	11.3	12.9	12.2	114	108	70.0-130			5.58	25	
m&p-Xylene	7.50	8.52	8.15	114	109	70.0-130			4.44	25	
o-Xylene	3.75	4.34	4.06	116	108	70.0-130			6.67	25	

70.0-130

60.0-140

Engineering/Remediation Resources Group

91.5

101

6.20

25

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1849945-01

Method Blank (MB)

(MB) R4204297-2 04/23/2	25 10:03		(MB) R4204297-2 04/23/25 10:03							
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ppbv		ppbv	ppbv						
Cyclohexane	U		0.170	0.200						
Heptane	U		0.114	0.200						
n-Hexane	U		0.143	0.630						
Toluene	U		0.130	0.500						
1,2,4-Trimethylbenzene	U		0.0927	0.200						
2,2,4-Trimethylpentane	U		0.0898	0.200						
Xylenes, Total	U		0.0887	0.600						
m&p-Xylene	U		0.174	0.400						
o-Xylene	U		0.0887	0.200						
TPH (GC/MS) Low Fraction	U		68.3	200						
(S) 1,4-Bromofluorobenzene	96.2			60.0-140						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

194

104

103

195

188

(LCS) R4204297-1 04/2	:3/25 09:24 • (LC	SD) R420429	7-3 04/23/25 1	1:05							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Cyclohexane	3.75	4.42	4.29	118	114	70.0-130			2.99	25	
Heptane	3.75	4.34	4.17	116	111	70.0-130			4.00	25	
n-Hexane	3.75	4.51	4.42	120	118	70.0-130			2.02	25	
Toluene	3.75	4.44	4.32	118	115	70.0-130			2.74	25	
1,2,4-Trimethylbenzene	3.75	4.63	4.53	123	121	70.0-130			2.18	25	
2,2,4-Trimethylpentane	3.75	4.67	4.47	125	119	70.0-130			4.38	25	
Xylenes, Total	11.3	13.7	13.5	121	119	70.0-130			1.47	25	
m&p-Xylene	7.50	9.07	8.99	121	120	70.0-130			0.886	25	
o-Xylene	3.75	4.65	4.48	124	119	70.0-130			3.72	25	

70.0-130

60.0-140

TPH (GC/MS) Low Fraction

(S) 1,4-Bromofluorobenzene

103

99.4

0.514

25

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

<u>a a a iiii e i</u>	2000.101.011
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Engineering/Remediation Resources Group

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Pace* Location Requested (City/State):	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant field:										LAB	JSE ONLY- Affi	worke	der/Login I	abel Here	-0.55	
Company Name: Engineering/Remediation Resource Street Address: 15333 NE 90th Street City, State Zip: Customer Project N: 20 23 0065 Project Name:		Phone #: 4 E-Mail: Jenn rra. Cc E-Mail: Invoice to:	-	026 hsen@errg	ı.com;spen	cer.slom	inski@e	Scan QR code for instructions								M022	
Project Name: For MER GREEK Site Collection Info/Facility ID (as applicable): ENGREMRWA-CIRCLE K	1961	E-Mail: Purchase Order # (if applicable): Quote #:							Analyses Reque					equested	Proj. Manager:		
Time Lone Collected: [] AK [/] PT [] MT [] CT [] ET		State origin o	sample(s):	WA	4											3500 - Jennifer Gambill AcctNum / Client	
Data Deliverables: [] Level III	Regulatory Prog applicable: Rush (Pre-appro 2 Day 3 day 5 Date Results	oval required);	ELV	Permit # as applicable: Units for Reporting: (uk/m²) PPBV mg/m³ PPMV			Canister Pressure / Vacuum		10	PUF / FILT	ER	ma		W	ENGREMRWA Table #: Profile /		
* Matrix Codes (Insert in Matrix box below): Ambient (A), Indoor (I),	Requested: Soil Vapor (SV), Ot	1	Flow				Start Pressure /	End Pressure	Duration	Flow	Total Volume	5 Summa			Template: T262502 Prelog / Bottle Ord. ID: P1144784		
Customer Sample ID	Matrix *	Summa Canister ID	Controller	Date	Collection	End C	Time	Vacuum (in Hg)	Vacuum (in Hg)	(minutes)	m³/min	Sampled	TO-1				
VG-412-INF-20250418 VG-410-EFF-20250418	12002	2002	20808	4/18	1430	4/18	1435	30	4	(minutes)	or L/min	m³ or L	X				
XG-410-EFF-2020418	SV	13949	9179	1	1440	+	1495	30	5				Х			02	
COC Seal Present/Intact: Y N N N N N N N N N N N N N N N N N N	Size: Z Tage Color Condition:	Airs 6L G W	1.41 2 P B NCF														
Customer Remarks / Special Conditions / Possible Hazards:				Signature,	Te Ge	2G mar	100 ld	icarte		Additional #		ns from Pace			rrection	Obs. Temp. (JC) Corrected Temp. (*C)	
Relinquished by/Company: (Signature) Relinquished by/Company: (Signature) Relinquished by/Company: (Signature)	Da	ste/Time:			Company: (Sig Company: (Sig Company: (Sig		EX			Date/Time; Date/Time;				Fai	ter (*C): Gackin Gackin Delivere	Number: 7185 5650 ed by: In-Person Courier	
Relinquished by/Company: (Signature) Submitting a sample via this chain of custody constitutes acknowledges	-	ite/Time:		7.011	Company (Sig		us	lm	_	Date/Time:	1/19		08	30		FedEX UPS Other	

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

Sample Delivery Group:

L1864793

Samples Received:

05/31/2025

Project Number:

20230065

Description:

Former Circle K 1461

Report To:

Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Project Manager

Entire Report Reviewed By:

Jamples Cambill Jennifer Gambill

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-401-INF-20250530 L1864793-01	5
VG-404-EFF-20250530 L1864793-02	7
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time		
VG-401-INF-20250530 L1864793-01				05/30/25 13:45	05/31/25 08:45		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Volatile Organic Compounds (MS) by Method TO-15	WG2528220	10	06/01/25 20:46	06/01/25 20:46	CAM	Mt. Juliet, TN	
Volatile Organic Compounds (MS) by Method TO-15	WG2529012	100	06/02/25 18:21	06/02/25 18:21	VJC	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
VG-404-EFF-20250530 L1864793-02				05/30/25 13:55	05/31/25 08:	:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Volatile Organic Compounds (MS) by Method TO-15	WG2528220	20	06/01/25 21:10	06/01/25 21:10	CAM	Mt. Juliet, TN	
Volatile Organic Compounds (MS) by Method TO-15	WG2529012	100	06/02/25 18:48	06/02/25 18:48	VJC	Mt. Juliet, TN	

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

SAMPLE RESULTS - 01

L1864793

	CAC #		Method 7		Decell	Darrille	0	Dilenter	Datab
Analista	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	07.044	50.40	ppbv	ug/m3	ppbv	ug/m3		40	Waasaaaa
Acetone	67-64-1	58.10	12.5	29.7	ND	ND		10	WG2528220
Allyl chloride	107-05-1	76.53	2.00	6.26	ND	ND		10	WG2528220
Benzene	71-43-2	78.10	2.00	6.39	467	1490		10	WG2528220
enzyl Chloride	100-44-7	127	2.00	10.4	ND	ND		10	WG2528220
Bromodichloromethane	75-27-4	164	2.00	13.4	ND	ND		10	WG2528220
romoform	75-25-2	253	6.30	65.2	ND	ND		10	WG2528220
romomethane	74-83-9	94.90	2.00	7.76	ND	ND		10	WG2528220
3-Butadiene	106-99-0	54.10	20.0	44.3	ND	ND		10	WG2528220
arbon disulfide	75-15-0	76.10	4.00	12.4	10.1	31.4		10	WG2528220
Carbon tetrachloride	56-23-5	154	2.00	12.6	ND	ND		10	WG2528220
Chlorobenzene	108-90-7	113	2.00	9.24	3.21	14.8		10	WG2528220
Chloroethane	75-00-3	64.50	2.00	5.28	ND	ND		10	WG2528220
Chloroform	67-66-3	119	2.00	9.73	ND	ND		10	WG2528220
hloromethane	74-87-3	50.50	2.00	4.13	ND	ND		10	WG2528220
-Chlorotoluene	95-49-8	126	2.00	10.3	ND	ND		10	WG2528220
Cyclohexane	110-82-7	84.20	20.0	68.9	1500	5170		100	WG2529012
ibromochloromethane	124-48-1	208	2.00	17.0	ND	ND		10	WG2528220
2-Dibromoethane	106-93-4	188	2.00	15.4	ND	ND		10	WG2528220
2-Dichlorobenzene	95-50-1	147	2.00	12.0	ND	ND		10	WG2528220
3-Dichlorobenzene	541-73-1	147	2.00	12.0	ND	ND		10	WG2528220
4-Dichlorobenzene	106-46-7	147	2.00	12.0	ND	ND		10	WG2528220 WG2528220
2-Dichloroethane	107-06-2	99	2.00	8.10	7.33	29.7		10	WG2528220 WG2528220
	75-34-3	98	2.00	8.02	7.55 ND	ND		10	
1-Dichloroethane									WG2528220
1-Dichloroethene	75-35-4	96.90	2.00	7.93	ND	ND		10	WG2528220
s-1,2-Dichloroethene	156-59-2	96.90	2.00	7.93	29.1	115		10	WG2528220
ans-1,2-Dichloroethene	156-60-5	96.90	2.00	7.93	ND	ND		10	WG2528220
2-Dichloropropane	78-87-5	113	2.00	9.24	ND	ND		10	WG2528220
s-1,3-Dichloropropene	10061-01-5	111	2.00	9.08	ND	ND		10	WG2528220
ans-1,3-Dichloropropene	10061-02-6	111	2.00	9.08	ND	ND		10	WG2528220
4-Dioxane	123-91-1	88.10	6.30	22.7	ND	ND		10	WG2528220
thanol	64-17-5	46.10	25.0	47.1	ND	ND		10	WG2528220
thylbenzene	100-41-4	106	2.00	8.67	ND	ND		10	WG2528220
-Ethyltoluene	622-96-8	120	2.00	9.82	ND	ND		10	WG2528220
richlorofluoromethane	75-69-4	137.40	2.00	11.2	ND	ND		10	WG2528220
ichlorodifluoromethane	75-71-8	120.92	2.00	9.89	ND	ND		10	WG2528220
1,2-Trichlorotrifluoroethane	76-13-1	187.40	2.00	15.3	ND	ND		10	WG2528220
2-Dichlorotetrafluoroethane	76-14-2	171	2.00	14.0	ND	ND		10	WG2528220
eptane	142-82-5	100	20.0	81.8	1290	5280		100	WG2529012
exachloro-1,3-butadiene	87-68-3	261	6.30	67.3	ND	ND		10	WG2528220
-Hexane	110-54-3	86.20	63.0	222	8710	30700		100	WG2529012
opropylbenzene	98-82-8	120.20	2.00	9.83	ND	ND		10	WG2528220
lethylene Chloride	75-09-2	84.90	2.00	6.94	ND	ND		10	WG2528220
lethyl Butyl Ketone	591-78-6	100	12.5	51.1	ND	ND		10	WG2528220
-Butanone (MEK)	78-93-3	72.10	12.5	36.9	ND	ND		10	WG2528220 WG2528220
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	12.5	51.2	ND	ND		10	WG2528220 WG2528220
			2.00		ND ND	ND ND		10	
lethyl methacrylate ITBE	80-62-6	100.12		8.19					WG2528220
	1634-04-4	88.10	2.00	7.21	ND	ND		10	WG2528220
aphthalene	91-20-3	128	6.30	33.0	ND	ND		10	WG2528220
-Propanol	67-63-0	60.10	12.5	30.7	ND	ND		10	WG2528220
ropene	115-07-1	42.10	12.5	21.5	ND	ND		10	WG2528220
tyrene	100-42-5	104	4.00	17.0	ND	ND		10	WG2528220
1,2,2-Tetrachloroethane	79-34-5	168	2.00	13.7	ND	ND		10	WG2528220
etrachloroethylene	127-18-4	166	2.00	13.6	22.3	151		10	WG2528220
etrahydrofuran	109-99-9	72.10	2.00	5.90	ND	ND		10	WG2528220
oluene	108-88-3	92.10	5.00	18.8	ND	ND		10	WG2528220
,2,4-Trichlorobenzene	120-82-1	181	6.30	46.6	ND	ND		10	WG2528220

 $\begin{array}{c} VG\text{--}401\text{--}INF\text{--}20250530 \\ \text{Collected date/time: } 05/30/25 \ 13:45 \end{array}$

SAMPLE RESULTS - 01

L1864793

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	2.00	10.9	ND	ND		10	WG2528220
1,1,2-Trichloroethane	79-00-5	133	2.00	10.9	ND	ND		10	WG2528220
Trichloroethylene	79-01-6	131	2.00	10.7	10.1	54.1		10	WG2528220
1,2,4-Trimethylbenzene	95-63-6	120	2.00	9.82	ND	ND		10	WG2528220
1,3,5-Trimethylbenzene	108-67-8	120	2.00	9.82	ND	ND		10	WG2528220
2,2,4-Trimethylpentane	540-84-1	114.22	20.0	93.4	4430	20700		100	WG2529012
Vinyl chloride	75-01-4	62.50	2.00	5.11	3.26	8.33		10	WG2528220
Vinyl Bromide	593-60-2	106.95	2.00	8.75	ND	ND		10	WG2528220
Vinyl acetate	108-05-4	86.10	6.30	22.2	ND	ND		10	WG2528220
Xylenes, Total	1330-20-7	106.16	6.00	26.1	ND	ND		10	WG2528220
m&p-Xylene		106	4.00	17.3	ND	ND		10	WG2528220
o-Xylene	95-47-6	106	2.00	8.67	ND	ND		10	WG2528220
TPH (GC/MS) Low Fraction	8006-61-9	101	2000	8260	28400	117000		10	WG2528220
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		87.9				WG2528220
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		88.3				WG2529012

SAMPLE RESULTS - 02

1864793

	CAS #	Mol. Wt.	RDL1	RDL2	Pocul t	Pocul t	Qualifier	Dilution	Batch
Analyte	CAS#	IVIOI. VVI.	ppbv	ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	<u>BdlCII</u>
•	67-64-1	58.10	25.0	59.4	507	1200		20	WC2F20220
Acetone	107-05-1	76.53	4.00	12.5	ND	ND		20	WG2528220 WG2528220
llyl chloride									
enzene	71-43-2	78.10	4.00	12.8	206 ND	658		20	WG2528220
enzyl Chloride	100-44-7	127	4.00	20.8	ND	ND		20	WG2528220
romodichloromethane	75-27-4	164	4.00	26.8	ND	ND		20	WG2528220
romoform	75-25-2	253	12.6	130	ND	ND		20	WG2528220
romomethane	74-83-9	94.90	4.00	15.5	ND	ND		20	WG2528220
3-Butadiene	106-99-0	54.10	40.0	88.5	ND	ND		20	WG2528220
arbon disulfide	75-15-0	76.10	8.00	24.9	ND	ND		20	WG2528220
Carbon tetrachloride	56-23-5	154	4.00	25.2	ND	ND		20	WG2528220
Chlorobenzene	108-90-7	113	4.00	18.5	ND	ND		20	WG2528220
hloroethane	75-00-3	64.50	4.00	10.6	ND	ND		20	WG2528220
hloroform	67-66-3	119	4.00	19.5	ND	ND		20	WG2528220
hloromethane	74-87-3	50.50	4.00	8.26	ND	ND		20	WG2528220
-Chlorotoluene	95-49-8	126	4.00	20.6	ND	ND		20	WG2528220
yclohexane	110-82-7	84.20	4.00	13.8	740	2550		20	WG2528220
ibromochloromethane	124-48-1	208	4.00	34.0	ND	ND		20	WG2528220
2-Dibromoethane	106-93-4	188	4.00	30.8	ND	ND		20	WG2528220
2-Dichlorobenzene	95-50-1	147	4.00	24.0	ND	ND		20	WG2528220
3-Dichlorobenzene	541-73-1	147	4.00	24.0	ND	ND		20	WG2528220
4-Dichlorobenzene	106-46-7	147	4.00	24.0	ND	ND		20	WG2528220
2-Dichloroethane	107-06-2	99	4.00	16.2	11.0	44.5		20	WG2528220
1-Dichloroethane	75-34-3	98	4.00	16.0	ND	ND		20	WG2528220
1-Dichloroethene	75-35-4	96.90	4.00	15.9	ND	ND		20	WG2528220
s-1,2-Dichloroethene	156-59-2	96.90	4.00	15.9	6.07	24.1		20	WG2528220
ans-1,2-Dichloroethene	156-60-5	96.90	4.00	15.9	ND	ND		20	WG2528220
2-Dichloropropane	78-87-5	113	4.00	18.5	ND	ND		20	WG2528220
s-1,3-Dichloropropene	10061-01-5	111	4.00	18.2	ND	ND		20	WG2528220 WG2528220
	10061-01-5		4.00	18.2	ND	ND		20	
ans-1,3-Dichloropropene		111							WG2528220
4-Dioxane	123-91-1	88.10	12.6	45.4	ND	ND		20	WG2528220
thanol	64-17-5	46.10	50.0	94.3	ND 464	ND		20	WG2528220
thylbenzene	100-41-4	106	4.00	17.3	464	2010		20	WG2528220
-Ethyltoluene	622-96-8	120	4.00	19.6	692	3400		20	WG2528220
richlorofluoromethane	75-69-4	137.40	4.00	22.5	ND	ND		20	WG2528220
ichlorodifluoromethane	75-71-8	120.92	4.00	19.8	ND	ND		20	WG2528220
1,2-Trichlorotrifluoroethane	76-13-1	187.40	4.00	30.7	ND	ND		20	WG2528220
2-Dichlorotetrafluoroethane	76-14-2	171	4.00	28.0	ND	ND		20	WG2528220
eptane	142-82-5	100	4.00	16.4	822	3360		20	WG2528220
exachloro-1,3-butadiene	87-68-3	261	12.6	135	ND	ND		20	WG2528220
-Hexane	110-54-3	86.20	63.0	222	6580	23200		100	WG2529012
opropylbenzene	98-82-8	120.20	4.00	19.7	48.0	236		20	WG2528220
ethylene Chloride	75-09-2	84.90	4.00	13.9	ND	ND		20	WG2528220
lethyl Butyl Ketone	591-78-6	100	25.0	102	ND	ND		20	WG2528220
-Butanone (MEK)	78-93-3	72.10	25.0	73.7	ND	ND		20	WG2528220
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	25.0	102	29.8	122		20	WG2528220
lethyl methacrylate	80-62-6	100.12	4.00	16.4	ND	ND		20	WG2528220
TBE	1634-04-4	88.10	4.00	14.4	ND	ND		20	WG2528220
aphthalene	91-20-3	128	12.6	66.0	488	2550		20	WG2528220
-Propanol	67-63-0	60.10	25.0	61.5	ND	ND		20	WG2528220
ropene	115-07-1	42.10	25.0	43.0	ND	ND		20	WG2528220
tyrene	100-42-5	104	8.00	34.0	ND	ND		20	WG2528220
1,2,2-Tetrachloroethane	79-34-5	168	4.00	27.5	ND	ND		20	WG2528220
etrachloroethylene	127-18-4	166	4.00	27.2	34.3	233		20	WG2528220 WG2528220
etrahydrofuran	109-99-9	72.10	4.00	11.8	ND	ND		20	WG2528220 WG2528220
,					788				
oluene	108-88-3	92.10	10.0	37.7		2970 ND		20	WG2528220
,2,4-Trichlorobenzene	120-82-1	181	12.6	93.3	ND	ND		20	WG2528220

VG-404-EFF-20250530 Collected date/time: 05/30/25 13:55

SAMPLE RESULTS - 02

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	4.00	21.8	ND	ND		20	WG2528220
1,1,2-Trichloroethane	79-00-5	133	4.00	21.8	ND	ND		20	WG2528220
Trichloroethylene	79-01-6	131	4.00	21.4	6.57	35.2		20	WG2528220
1,2,4-Trimethylbenzene	95-63-6	120	20.0	98.2	2050	10100		100	WG2529012
1,3,5-Trimethylbenzene	108-67-8	120	4.00	19.6	1300	6380		20	WG2528220
2,2,4-Trimethylpentane	540-84-1	114.22	20.0	93.4	2780	13000		100	WG2529012
Vinyl chloride	75-01-4	62.50	4.00	10.2	ND	ND		20	WG2528220
Vinyl Bromide	593-60-2	106.95	4.00	17.5	ND	ND		20	WG2528220
Vinyl acetate	108-05-4	86.10	63.0	222	3170	11200		100	WG2529012
Xylenes, Total	1330-20-7	106.16	12.0	52.1	5290	23000		20	WG2528220
m&p-Xylene		106	8.00	34.7	3550	15400		20	WG2528220
o-Xylene	95-47-6	106	4.00	17.3	1740	7540		20	WG2528220
TPH (GC/MS) Low Fraction	8006-61-9	101	4000	16500	45900	190000		20	WG2528220
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		104				WG2528220
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG2529012

Volatile Organic Compounds (MS) by Method TO-15

L1864793-01,02

Method Blank (MB)

(MB) R4224237-3 06/01/2	5 10:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	ī
Analyte	ppbv		ppbv	ppbv	
Acetone	0.824	<u>J</u>	0.520	1.25	— !
Allyl chloride	U		0.186	0.200	
Benzene	U		0.110	0.200	
Benzyl Chloride	U		0.0888	0.200	[
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	- !
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	
Carbon tetrachloride	U		0.0746	0.200	
Chlorobenzene	U		0.118	0.200	
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
2-Chlorotoluene	U		0.0787	0.200	
Cyclohexane	U		0.170	0.200	
Dibromochloromethane	U		0.0696	0.200	
1,2-Dibromoethane	U		0.0690	0.200	
1,2-Dichlorobenzene	U		0.0734	0.200	
1,3-Dichlorobenzene	U		0.0753	0.200	
1,4-Dichlorobenzene	U		0.0768	0.200	
1,2-Dichloroethane	U		0.0730	0.200	
1,1-Dichloroethane	U		0.0710	0.200	
1,1-Dichloroethene	U		0.0747	0.200	
cis-1,2-Dichloroethene	U		0.0796	0.200	
trans-1,2-Dichloroethene	U		0.0735	0.200	
1,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
trans-1,3-Dichloropropene	U		0.0795	0.200	
1,4-Dioxane	U		0.164	0.630	
Ethanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
1,2-Dichlorotetrafluoroethane	U		0.0756	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	U		0.0800	0.630	
Isopropylbenzene	U		0.0722	0.200	

Volatile Organic Compounds (MS) by Method TO-15

L1864793-01,02

Method Blank (MB)

(MB) R4224237-3 06/01/2	5 10:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
Naphthalene	U		0.617	0.630	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Tetrahydrofuran	U		0.164	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	U		0.462	0.630	
1,1,1-Trichloroethane	U		0.0718	0.200	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
Vinyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
TPH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	87.8			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4224237-1 06/C)1/25 09:13 • (LCS	D) R4224237	-2 06/01/25 09	:42						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	4.52	4.45	121	119	70.0-130			1.56	25
Allyl chloride	3.75	3.63	3.66	96.8	97.6	70.0-130			0.823	25
Benzene	3.75	3.92	3.95	105	105	70.0-130			0.762	25
Benzyl Chloride	3.75	3.94	4.03	105	107	70.0-152			2.26	25
Bromodichloromethane	3.75	3.92	3.96	105	106	70.0-130			1.02	25

Volatile Organic Compounds (MS) by Method TO-15

L1864793-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4224237-1 06/01/25 09:13 • (LCSD) R4224237-2 06/01/25 09:42

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
nalyte	ppbv	ppbv	ppbv	%	%	%			%	%
romoform	3.75	4.32	4.28	115	114	70.0-130			0.930	25
romomethane	3.75	3.96	3.99	106	106	70.0-130			0.755	25
3-Butadiene	3.75	3.75	3.82	100	102	70.0-130			1.85	25
arbon disulfide	7.50	7.84	7.94	105	106	70.0-130			1.27	25
arbon tetrachloride	3.75	4.08	4.08	109	109	70.0-130			0.000	25
nlorobenzene	3.75	4.14	4.15	110	111	70.0-130			0.241	25
loroethane	3.75	3.92	3.91	105	104	70.0-130			0.255	25
loroform	3.75	3.97	3.97	106	106	70.0-130			0.000	25
loromethane	3.75	3.59	3.74	95.7	99.7	70.0-130			4.09	25
hlorotoluene	3.75	4.10	4.14	109	110	70.0-130			0.971	25
clohexane	3.75	3.97	3.97	106	106	70.0-130			0.000	25
romochloromethane	3.75	4.19	4.20	112	112	70.0-130			0.238	25
Dibromoethane	3.75	4.13	4.16	110	111	70.0-130			0.724	25
-Dichlorobenzene	3.75	4.39	4.39	117	117	70.0-130			0.000	25
Dichlorobenzene	3.75	4.38	4.45	117	119	70.0-130			1.59	25
Dichlorobenzene	3.75	4.42	4.44	118	118	70.0-130			0.451	25
ichloroethane	3.75	3.95	3.95	105	105	70.0-130			0.000	25
chloroethane	3.75	3.80	3.73	101	99.5	70.0-130			1.86	25
chloroethene	3.75	3.84	3.89	102	104	70.0-130			1.29	25
2-Dichloroethene	3.75	3.84	3.85	102	103	70.0-130			0.260	25
-1,2-Dichloroethene	3.75	3.91	3.87	104	103	70.0-130			1.03	25
ichloropropane	3.75	3.89	3.82	104	102	70.0-130			1.82	25
3-Dichloropropene	3.75	4.06	4.14	108	110	70.0-130			1.95	25
s-1,3-Dichloropropene	3.75	3.96	3.98	106	106	70.0-130			0.504	25
Dioxane	3.75	4.09	4.10	109	109	70.0-140			0.244	25
ol	3.75	3.15	3.15	84.0	84.0	55.0-148			0.000	25
lbenzene	3.75	4.05	4.09	108	109	70.0-130			0.983	25
nyltoluene	3.75	4.49	4.47	120	119	70.0-130			0.446	25
llorofluoromethane	3.75	4.06	4.02	108	107	70.0-130			0.990	25
lorodifluoromethane	3.75	3.95	3.97	105	106	64.0-139			0.505	25
-Trichlorotrifluoroethane	3.75	4.04	4.04	108	108	70.0-130			0.000	25
Dichlorotetrafluoroethane	3.75	3.99	3.98	106	106	70.0-130			0.251	25
tane	3.75	3.83	3.91	102	104	70.0-130			2.07	25
achloro-1,3-butadiene	3.75	4.11	4.21	110	112	70.0-151			2.40	25
ropylbenzene	3.75	4.27	4.26	114	114	70.0-130			0.234	25
nylene Chloride	3.75	3.68	3.73	98.1	99.5	70.0-130			1.35	25
thyl Butyl Ketone	3.75	3.56	3.51	94.9	93.6	70.0-149			1.41	25
utanone (MEK)	3.75	3.95	3.95	105	105	70.0-130			0.000	25
ethyl-2-pentanone (MIBK)	3.75	3.25	3.38	86.7	90.1	70.0-139			3.92	25
hyl methacrylate	3.75	4.00	4.07	107	109	70.0-133			1.73	25

PAGE:

11 of 16

Volatile Organic Compounds (MS) by Method TO-15

L1864793-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4224237-1 06/01/25 09:13 • (LCSD) R4224237-2 06/01/25 09:42

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
MTBE	3.75	3.89	3.87	104	103	70.0-130			0.515	25	
Naphthalene	3.75	3.72	3.86	99.2	103	70.0-159			3.69	25	
2-Propanol	3.75	3.50	3.44	93.3	91.7	70.0-139			1.73	25	
Propene	3.75	3.55	3.62	94.7	96.5	64.0-144			1.95	25	
Styrene	7.50	9.25	9.39	123	125	70.0-130			1.50	25	
1,1,2,2-Tetrachloroethane	3.75	4.08	4.08	109	109	70.0-130			0.000	25	
Tetrachloroethylene	3.75	4.45	4.45	119	119	70.0-130			0.000	25	
Tetrahydrofuran	3.75	3.59	3.57	95.7	95.2	70.0-137			0.559	25	
Toluene	3.75	4.09	4.08	109	109	70.0-130			0.245	25	
1,2,4-Trichlorobenzene	3.75	3.79	3.87	101	103	70.0-160			2.09	25	
1,1,1-Trichloroethane	3.75	4.02	4.04	107	108	70.0-130			0.496	25	
1,1,2-Trichloroethane	3.75	4.10	4.12	109	110	70.0-130			0.487	25	
Trichloroethylene	3.75	4.06	4.07	108	109	70.0-130			0.246	25	
1,2,4-Trimethylbenzene	3.75	4.52	4.55	121	121	70.0-130			0.662	25	
1,3,5-Trimethylbenzene	3.75	4.52	4.60	121	123	70.0-130			1.75	25	
Vinyl chloride	3.75	3.81	3.80	102	101	70.0-130			0.263	25	
Vinyl Bromide	3.75	4.09	4.03	109	107	70.0-130			1.48	25	
Vinyl acetate	3.75	3.73	3.76	99.5	100	70.0-130			0.801	25	
Xylenes, Total	11.3	13.2	13.3	117	118	70.0-130			0.755	25	
m&p-Xylene	7.50	8.75	8.77	117	117	70.0-130			0.228	25	
o-Xylene	3.75	4.49	4.56	120	122	70.0-130			1.55	25	
TPH (GC/MS) Low Fraction	188	184	185	97.9	98.4	70.0-130			0.542	25	
(S) 1,4-Bromofluorobenzene	د			97.9	97.9	60.0-140					

Volatile Organic Compounds (MS) by Method TO-15

L1864793-01,02

Method Blank (MB)

(MB) R4224474-3 06/02/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Cyclohexane	U		0.170	0.200	
Heptane	U		0.114	0.200	
n-Hexane	U		0.143	0.630	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
Vinyl acetate	U		0.0968	0.630	
(S) 1,4-Bromofluorobenzene	92.6			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4224474-1 06/02/25 09:12 • (LCSD) R42	.24474-2 06/02/25 09:39
--	-------------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Cyclohexane	3.75	3.77	3.69	101	98.4	70.0-130			2.14	25	
Heptane	3.75	4.09	4.01	109	107	70.0-130			1.98	25	
n-Hexane	3.75	3.88	3.99	103	106	70.0-130			2.80	25	
1,2,4-Trimethylbenzene	3.75	3.99	3.96	106	106	70.0-130			0.755	25	
2,2,4-Trimethylpentane	3.75	4.06	4.07	108	109	70.0-130			0.246	25	
Vinyl acetate	3.75	3.46	3.65	92.3	97.3	70.0-130			5.34	25	
(S) 1,4-Bromofluorobenzen	е			101	100	60.0-140					

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

PAGE:

14 of 16

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Pace* Location Requested (City/State):	Pace* Location Requested (City/State): Air CHAIN-OF-CUSTOD Chain-of-Custody is a LEGAL									LAB USE ONLY- Affix Workorder/Login Label Here M198							
Conjuny Name: Engineering/Remediation Resource street Address: 15335 NE 90th Street	-n	Phone #: 42 E-Mail: jenn rra.c Cc E-Mail:	Market Contract	26 en@errg.c	com;spen	cer.slomii	nski@e	Scan QR code for it						ons			
Project Name: FRMER GRCLE Site Collection Info/Facility ID (as applicable):	K 1461		er#{ifapplicabl	e);				Field Information				Analyses Requested			Proj. Manager: 3500 - Jennifer Gambill	2	
ENGREMRWA-CIRCLE K Time Zone Collected: []AK PT [] MT []CT []ET		Quote #: State origin of	sample(s)												AcctNum / Client		
Data Deliverables: [] Level III [] Level IV [] EQU'.5	Regulatory Proj applicable: Bush (Pre-appr 2 Day 3 day 1) Date Results Requested:	gram (CAA, RCRA oval required): o day Other_	(etc) as	Permit # as Units for Reporting:	applicable	OG) BV)mg/m³			v / Vacuum		PUF / FILT	ER Total	umma			ENGREMRWA Table #: Profile / Template: T262502	
* Satur Codes (Insert in Matrix box below): Ambient (A), Indoor (I), Customer Sample ID		Summa Canister ID	Flow Controller ID	Begin Co Date	ollection Time	End C	Collection	Start Pressure / Vacuum (in Hg)	End Pressure / Vacuum (in Hg)	Duration (minutes)	Rate m³/min or L/min	Volume Sampled m ³ or L	TO-15 S			Prelog / Bottle Ord. ID: P1155812 USUAPPS Sample Comment Pressure recoing	
46-401-INF-20250530	sv	28137	24845	5/30	1340	5/30	1345	W30	10				X			Swhen zeroed	
VG-404-EFF-20250530	SV	28762	29489	5/30	1350	5/30	1355	1330	5				X				-10
Sample Receipt	Checklist	Airs	1.4L				1			d very							
coc signed/Accurate:	Tage Color: Condition:	6_ WZ	P_ B														
Unused:	Condition													74			
				1								1 5	73-	2			
FLOW CONTroller 24845 was	way pa	st 30 110 2ck	Hq	Collected B Printed Na Signature:	me: F	IRG I	4			# Coolers:	il Instructi	ons from Pa		Correc Factor	(°C):	Obs. Temp. (°C): Corrected Temp.	(°C):
Relinquished by/Company: (Signature) Relinquished by/Company/(Signature)	RPG	Date/Time: 5/30/ Date/Time:	25 15/5		y/Company:	1	ED6	76		Date/Time:					Trackin 40 Deliver		
Relinguished by/Company: (Signature)		Date/Time:		1	y/Company:	ri it	2			Date/Time:						FedEX UPS Other	
Relinquished by/Company: (Signature) Submitting a sample via this chain of custody constitutes as					Company	100	1.11	m	ELVE	Date/Time: 0819 Page: 1 of:					Page: of:		

Pace Analytical® ANALYTICAL REPORT

Engineering/Remediation Resources Group

L1872064 Sample Delivery Group:

Samples Received: 06/21/2025

Project Number: 20230065

Description: Former Circle K 1461

Report To: Jennifer Sonnichsen

15333 NE 90th Street

Ste 100

Redmond, WA 98052

Entire Report Reviewed By:

Jamples Cambill

Jennifer Gambill

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-411-INF-20250620 L1872064-01	5
VG-412-EFF-20250620 L1872064-02	7
VP-3-20250620 L1872064-03	9
VP-4-20250620 L1872064-04	11
Qc: Quality Control Summary	13
Volatile Organic Compounds (MS) by Method TO-15	13
GI: Glossary of Terms	28
Al: Accreditations & Locations	29
Sc: Sample Chain of Custody	30

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
VG-411-INF-20250620 L1872064-01				06/20/25 12:45	06/21/25 08:	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG2544253	1	06/22/25 15:23	06/22/25 15:23	GH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-412-EFF-20250620 L1872064-02				06/20/25 13:00	06/21/25 08:	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG2544253	1	06/22/25 16:10	06/22/25 16:10	GH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2547350	100	06/26/25 15:14	06/26/25 15:14	DAH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2548800	500	06/28/25 12:17	06/28/25 12:17	CAM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VP-3-20250620 L1872064-03				06/20/25 13:25	06/21/25 08:	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG2548292	1	06/27/25 16:16	06/27/25 16:16	DAH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG2548922	10	06/28/25 16:21	06/28/25 16:21	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VP-4-20250620 L1872064-04				06/20/25 13:40	06/21/25 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG2544253	1	06/22/25 17:46	06/22/25 17:46	GH	Mt. Juliet, TN

WG2548825

200

06/28/25 11:07

06/28/25 11:07

VJC

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jennifer Gambill Project Manager

SAMPLE RESULTS - 01

L1872064

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	24.5	58.2		1	WG2544253
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2544253
Benzene	71-43-2	78.10	0.200	0.639	0.324	1.03		1	WG2544253
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2544253
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2544253
Bromoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2544253
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2544253
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2544253
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2544253
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2544253
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2544253
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2544253
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2544253
Chloromethane	74-87-3	50.50	0.200	0.413	0.303	0.626		1	WG2544253
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2544253
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2544253
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2544253
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2544253
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2544253
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2544253
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2544253
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2544253
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2544253
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2544253
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2544253
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2544253
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2544253
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2544253
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2544253
1,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND 5.24		1	WG2544253
Ethanol	64-17-5	46.10	2.50	4.71	2.78	5.24		1	WG2544253
Ethylbenzene 4 Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2544253
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND ND	ND ND		1	WG2544253
Trichlorofluoromethane Dichlorodifluoromethane	75-69-4 75-71-8	137.40 120.92	0.200 0.200	1.12 0.989	ND	ND ND		1	WG2544253 WG2544253
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2544253 WG2544253
1,2-Dichlorotetrafluoroethane	76-13-1	171	0.200	1.40	ND	ND		1	WG2544253 WG2544253
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2544253 WG2544253
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2544253
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2544253
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2544253
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2544253
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2544253
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2544253
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2544253
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2544253
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2544253
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2544253
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2544253
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2544253
Styrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2544253
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2544253
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG2544253
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2544253
•				1.88	ND	ND		1	
Toluene	108-88-3	92.10	0.500	1.00	ND	ND		1	WG2544253

VG-411-INF-20250620 Collected date/time: 06/20/25 12:45

SAMPLE RESULTS - 01

L1872064

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2544253
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2544253
Trichloroethylene	79-01-6	131	0.200	1.07	0.753	4.03		1	WG2544253
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2544253
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2544253
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	0.280	1.31		1	WG2544253
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2544253
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2544253
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2544253
Xylenes, Total	1330-20-7	106.16	0.600	2.61	ND	ND		1	WG2544253
m&p-Xylene		106	0.400	1.73	ND	ND		1	WG2544253
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2544253
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2544253
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.6				WG2544253

SAMPLE RESULTS - 02

L1872064

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	125	297	ND	ND		100	WG2547350
Allyl chloride	107-05-1	76.53	20.0	62.6	ND	ND		100	WG2547350
Benzene	71-43-2	78.10	20.0	63.9	616	1970		100	WG2547350
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2544253
Bromodichloromethane	75-27-4	164	20.0	134	ND	ND		100	WG2547350
Bromoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2544253
Bromomethane	74-83-9	94.90	20.0	77.6	ND	ND		100	WG2547350
,3-Butadiene	106-99-0	54.10	200	443	ND	ND		100	WG2547350
Carbon disulfide	75-15-0	76.10	40.0	124	ND	ND		100	WG2547350
Carbon tetrachloride	56-23-5	154	20.0	126	ND	ND		100	WG2547350
Chlorobenzene	108-90-7	113	20.0	92.4	ND	ND		100	WG2547350
Chloroethane	75-00-3	64.50	20.0	52.8	ND	ND		100	WG2547350
Chloroform	67-66-3	119	20.0	97.3	ND	ND		100	WG2547350
Chloromethane	74-87-3	50.50	20.0	41.3	ND	ND		100	WG2547350
?-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2544253
Cyclohexane	110-82-7	84.20	20.0	68.9	2440	8400		100	WG2547350
Dibromochloromethane	124-48-1	208	20.0	170	ND	ND		100	WG2547350
I,2-Dibromoethane	106-93-4	188	20.0	154	ND	ND		100	WG2547350
l,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2544253
l,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2544253
l,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2544253
I,2-Dichloroethane	107-06-2	99	20.0	81.0	ND	ND		100	WG2547350
,1-Dichloroethane	75-34-3	98	20.0	80.2	ND	ND		100	WG2547350
,1-Dichloroethene	75-35-4	96.90	20.0	79.3	ND	ND		100	WG2547350
cis-1,2-Dichloroethene	156-59-2	96.90	20.0	79.3	ND	ND		100	WG2547350
rans-1,2-Dichloroethene	156-60-5	96.90	20.0	79.3	ND	ND		100	WG2547350
,2-Dichloropropane	78-87-5	113	20.0	92.4	ND	ND		100	WG2547350
cis-1,3-Dichloropropene	10061-01-5	111	20.0	90.8	ND	ND		100	WG2547350
trans-1,3-Dichloropropene	10061-02-6	111	20.0	90.8	ND	ND		100	WG2547350
I,4-Dioxane	123-91-1	88.10	63.0	227	ND	ND		100	WG2547350
Ethanol	64-17-5	46.10	250	471	ND	ND		100	WG2547350
Ethylbenzene	100-41-4	106	20.0	86.7	960	4160		100	WG2547350
1-Ethyltoluene	622-96-8	120	20.0	98.2	368	1810		100	WG2547350
Frichlorofluoromethane	75-69-4	137.40	20.0	112	ND	ND		100	WG2547350
Dichlorodifluoromethane	75-71-8 76-13-1	120.92	20.0	98.9	ND	ND		100	WG2547350
I,1,2-Trichlorotrifluoroethane	76-13-1	187.40	20.0	153	ND	ND		100	WG2547350
,2-Dichlorotetrafluoroethane	76-14-2	171	20.0	140	ND	ND 15000		100	WG2547350
Heptane Hexachloro-1,3-butadiene	142-82-5 87-68-3	100 261	20.0 0.630	81.8 6.73	3870 ND	15800 ND		100	WG2547350
n-Hexane	110-54-3	86.20	315	1110	11100	39100		1 500	WG2544253 WG2548800
sopropylbenzene	98-82-8	120.20	0.200	0.983	65.2	321		1	WG2544800 WG2544253
Methylene Chloride	75-09-2	84.90	20.0	69.4	ND	ND		100	WG2547350
•	591-78-6	100	125	511	ND	ND		100	WG2547350 WG2547350
Methyl Butyl Ketone 2-Butanone (MEK)	78-93-3	72.10	125	369	ND ND	ND ND		100	WG2547350 WG2547350
1-Methyl-2-pentanone (MIBK)	108-10-1	100.10	125	512	ND ND	ND		100	WG2547350 WG2547350
Methyl methacrylate	80-62-6	100.10	20.0	81.9	ND	ND		100	WG2547350 WG2547350
итве Итве	1634-04-4	88.10	20.0	72.1	ND	ND		100	WG2547350 WG2547350
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2544253
?-Propanol	67-63-0	60.10	125	3.30	6820	16800		100	WG2547350
Propene	115-07-1	42.10	125	215	ND	ND		100	WG2547350 WG2547350
Styrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2547330 WG2544253
,1,2,2-Tetrachloroethane	79-34-5	168	0.400	1.70	ND	ND		1	WG2544253 WG2544253
[etrachloroethylene	127-18-4	166	20.0	136	ND	ND		100	WG2547350
etrahydrofuran	109-99-9	72.10	20.0	59.0	ND	ND		100	WG2547350 WG2547350
oluene	108-88-3	92.10	50.0	188	2660	10000		100	WG2547350 WG2547350
l,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2544253
, E, T THE HOLD CHECKE	120.02-1	101	0.030	1.00	IND	NU			1102311233

 $\begin{array}{c} VG\text{-}412\text{-}EFF\text{-}20250620 \\ \text{Collected date/time: } 06/20/25 \text{ } 13:00 \end{array}$

SAMPLE RESULTS - 02

1872064

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	20.0	109	ND	ND		100	WG2547350
1,1,2-Trichloroethane	79-00-5	133	20.0	109	ND	ND		100	WG2547350
Trichloroethylene	79-01-6	131	20.0	107	ND	ND		100	WG2547350
1,2,4-Trimethylbenzene	95-63-6	120	20.0	98.2	1150	5640		100	WG2547350
1,3,5-Trimethylbenzene	108-67-8	120	20.0	98.2	784	3850		100	WG2547350
2,2,4-Trimethylpentane	540-84-1	114.22	20.0	93.4	9430	44100		100	WG2547350
Vinyl chloride	75-01-4	62.50	20.0	51.1	ND	ND		100	WG2547350
Vinyl Bromide	593-60-2	106.95	20.0	87.5	ND	ND		100	WG2547350
Vinyl acetate	108-05-4	86.10	63.0	222	ND	ND		100	WG2547350
Xylenes, Total	1330-20-7	106.16	60.0	261	9150	39700		100	WG2547350
m&p-Xylene		106	40.0	173	6490	28100		100	WG2547350
o-Xylene	95-47-6	106	20.0	86.7	2660	11500		100	WG2547350
TPH (GC/MS) Low Fraction	8006-61-9	101	20000	82600	176000	727000		100	WG2547350
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		512		<u>J1</u>		WG2544253
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG2547350
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.1				WG2548800

Sample Narrative:

L1872064-02 WG2544253: Surrogate failure due to matrix interference

Collected date/time: 06/20/25 13:25

SAMPLE RESULTS - 03

L1872064

	CAS #	Mol. Wt.	RDL1	RDL2	Docult	Docult	Qualifier	Dilution	Batch
Analyte	CAS#	IVIOI. VVI.		ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Balcii
•	C7.C4.1	F0 10	ppbv					1	WC2E40202
cetone	67-64-1	58.10	1.25	2.97	11.8 NB	28.0		1	WG2548292
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2548292
enzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2548292
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2548292
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2548292
romoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2548292
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2548292
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2548292
arbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2548292
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2548292
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2548292
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2548292
hloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2548292
hloromethane	74-87-3	50.50	0.200	0.413	0.396	0.818		1	WG2548292
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2548292
yclohexane	110-82-7	84.20	0.200	0.689	27.1	93.3		1	WG2548292
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2548292
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2548292
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2548292
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2548292
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2548292
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2548292
	75-34-3	98	0.200	0.802	ND	ND		1	
I-Dichloroethane								1	WG2548292
l-Dichloroethene	75-35-4	96.90	0.200	0.793	ND 0.011	ND			WG2548292
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	0.911	3.61		1	WG2548292
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2548292
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2548292
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2548292
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2548292
4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2548292
hanol	64-17-5	46.10	2.50	4.71	16.6	31.3		1	WG2548292
thylbenzene	100-41-4	106	0.200	0.867	11.1	48.1		1	WG2548292
-Ethyltoluene	622-96-8	120	0.200	0.982	5.03	24.7		1	WG2548292
richlorofluoromethane	75-69-4	137.40	0.200	1.12	ND	ND		1	WG2548292
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.474	2.34		1	WG2548292
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2548292
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2548292
eptane	142-82-5	100	0.200	0.818	46.6	191		1	WG2548292
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2548292
Hexane	110-54-3	86.20	6.30	22.2	162	571		10	WG2548922
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2548292
ethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2548292
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2548292
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	4.86	14.3		1	WG2548292 WG2548292
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	4.66 ND	14.3 ND		1	WG2548292 WG2548292
				0.819	ND ND	ND ND		1	
ethyl methacrylate	80-62-6	100.12	0.200						WG2548292
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2548292
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2548292
Propanol	67-63-0	60.10	1.25	3.07	16.5	40.6		1	WG2548292
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2548292
tyrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2548292
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2548292
etrachloroethylene	127-18-4	166	0.200	1.36	98.3	667		1	WG2548292
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2548292
oluene	108-88-3	92.10	0.500	1.88	31.1	117		1	WG2548292
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2548292

VP-3-20250620

SAMPLE RESULTS - 03

L1872064

Collected date/time: 06/20/25 13:25

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2548292
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2548292
Trichloroethylene	79-01-6	131	0.200	1.07	16.8	90.0		1	WG2548292
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	14.0	68.7		1	WG2548292
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	9.06	44.5		1	WG2548292
2,2,4-Trimethylpentane	540-84-1	114.22	2.00	9.34	187	874		10	WG2548922
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2548292
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2548292
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2548292
Xylenes, Total	1330-20-7	106.16	0.600	2.61	102	443		1	WG2548292
m&p-Xylene		106	0.400	1.73	71.2	309		1	WG2548292
o-Xylene	95-47-6	106	0.200	0.867	30.4	132		1	WG2548292
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	2250	9290		1	WG2548292
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG2548292
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG2548922

Collected date/time: 06/20/25 13:40

SAMPLE RESULTS - 04

L1872064

	CAS #	(MS) by	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	CAS#	IVIOI. VVI.	ppbv	ug/m3	ppbv	ug/m3	Quaiillei	ווענוטוו	batch
Acetone	67-64-1	58.10	1.25	2.97	4.33	10.3		1	WG2544253
	107-04-1	76.53	0.200	0.626	4.33 ND	ND		1	
Allyl chloride									WG2544253
Benzene Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2544253
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2544253
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2544253
Bromoform	75-25-2	253	0.630	6.52	ND	ND		1	WG2544253
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2544253
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2544253
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		1	WG2544253
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2544253
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2544253
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2544253
Chloroform	67-66-3	119	0.200	0.973	11.1	54.0		1	WG2544253
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2544253
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2544253
Cyclohexane	110-82-7	84.20	0.200	0.689	78.7	271		1	WG2544253
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2544253
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2544253
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2544253
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	0.401	2.41	<u>B</u>	1	WG2544253
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	2.26	13.6	=	1	WG2544253
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2544253
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	
								1	WG2544253
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND			WG2544253
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	4.18	16.6		1	WG2544253
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	0.900	3.57		1	WG2544253
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2544253
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2544253
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2544253
,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2544253
thanol	64-17-5	46.10	2.50	4.71	6.15	11.6		1	WG2544253
thylbenzene	100-41-4	106	0.200	0.867	0.789	3.42		1	WG2544253
-Ethyltoluene	622-96-8	120	0.200	0.982	0.998	4.90		1	WG2544253
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.320	1.80		1	WG2544253
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	5.10	25.2		1	WG2544253
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2544253
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2544253
- Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2544253
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2544253
i-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2544253
sopropylbenzene	98-82-8	120.20	0.200	0.983	3.95	19.4		1	WG2544253
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2544253 WG2544253
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2544253 WG2544253
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2544253
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2544253
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2544253
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2544253
laphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2544253
-Propanol	67-63-0	60.10	1.25	3.07	4.06	9.98		1	WG2544253
ropene	115-07-1	42.10	1.25	2.15	15.1	26.0		1	WG2544253
ityrene	100-42-5	104	0.400	1.70	ND	ND		1	WG2544253
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2544253
etrachloroethylene	127-18-4	166	40.0	272	4890	33200		200	WG2548825
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2544253
Toluene	108-88-3	92.10	0.500	1.88	2.13	8.02		1	WG2544253
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2544253

VP-4-20250620

Collected date/time: 06/20/25 13:40

SAMPLE RESULTS - 04

L1872064

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.343	1.87		1	WG2544253
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2544253
Trichloroethylene	79-01-6	131	0.200	1.07	47.9	257		1	WG2544253
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.941	4.62		1	WG2544253
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	0.634	3.11		1	WG2544253
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2544253
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2544253
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2544253
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2544253
Xylenes, Total	1330-20-7	106.16	0.600	2.61	1.91	8.29		1	WG2544253
m&p-Xylene		106	0.400	1.73	0.810	3.51		1	WG2544253
o-Xylene	95-47-6	106	0.200	0.867	1.10	4.77		1	WG2544253
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	1460	6030		1	WG2544253
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		107				WG2544253
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		92.4				WG2548825

L1872064-01,02,04

Volatile Organic Compounds (MS) by Method TO-15

Method Blank (MB)

(MB) R4235996-3 06/22/2	25 14:25				-
	MB Result	MB Qualifier	MB MDL	MB RDL	i
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.520	1.25	- !
Allyl chloride	U		0.186	0.200	
Benzene	U		0.110	0.200	
Benzyl Chloride	0.127	<u>J</u>	0.0888	0.200	
Bromodichloromethane	U		0.0695	0.200	
Bromoform	U		0.0755	0.630	
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	_
Carbon tetrachloride	U		0.0746	0.200	
Chlorobenzene	U		0.118	0.200	_
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
2-Chlorotoluene	U		0.0787	0.200	_
Cyclohexane	U		0.170	0.200	
Dibromochloromethane	U		0.0696	0.200	
1,2-Dibromoethane	U		0.0690	0.200	
1,2-Dichlorobenzene	0.139	<u>J</u>	0.0734	0.200	
1,3-Dichlorobenzene	0.129	<u>J</u>	0.0753	0.200	
1,4-Dichlorobenzene	0.167	<u>J</u>	0.0768	0.200	
1,2-Dichloroethane	U		0.0730	0.200	
1,1-Dichloroethane	U		0.0710	0.200	
1,1-Dichloroethene	U		0.0747	0.200	
cis-1,2-Dichloroethene	U		0.0796	0.200	
trans-1,2-Dichloroethene	U		0.0735	0.200	
1,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
trans-1,3-Dichloropropene	U		0.0795	0.200	
1,4-Dioxane	U		0.164	0.630	
Ethanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
1,2-Dichlorotetrafluoroethane			0.0756	0.200	
Heptane	U		0.114	0.200	
Hexachloro-1,3-butadiene	0.224	<u>J</u>	0.0800	0.630	
n-Hexane	U		0.143	0.630	

Volatile Organic Compounds (MS) by Method TO-15

L1872064-01,02,04

Method Blank (MB)

(MB) R4235996-3 06/22/2	25 14:25				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Isopropylbenzene	U		0.0722	0.200	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
Naphthalene	U		0.617	0.630	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	
Styrene	0.157	<u>J</u>	0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Tetrahydrofuran	U		0.164	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	0.489	<u>J</u>	0.462	0.630	
1,1,1-Trichloroethane	U		0.0718	0.200	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
2,2,4-Trimethylpentane	U		0.0898	0.200	
Vinyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
TPH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	99.6			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R	4235996-1	06/22/25 09:24 •	(LCSD) R4235996-2	06/22/25 10:14
---------	-----------	------------------	-------	--------------	----------------

(ECS) 1(+255550 1 00/22)	725 05.2+ - (LC	3D) N4233330	5 2 00/22/25 1	0.14						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	3.93	3.98	105	106	70.0-130			1.26	25
Allyl chloride	3.75	4.13	4.25	110	113	70.0-130			2.86	25
Benzene	3.75	3.90	3.92	104	105	70.0-130			0.512	25

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Engineering/Remediation Resources Group
 20230065
 L1872064
 06/30/25 10:08
 14 of 30

Volatile Organic Compounds (MS) by Method TO-15

ACCOUNT:

Engineering/Remediation Resources Group

L1872064-01,02,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4235996-1 06/22/	′25 09:24 • (LC	SD) R4235996	6-2 06/22/25 1	0:14						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Benzyl Chloride	3.75	4.16	4.11	111	110	70.0-152			1.21	25
Bromodichloromethane	3.75	3.87	3.85	103	103	70.0-130			0.518	25
Bromoform	3.75	3.90	3.92	104	105	70.0-130			0.512	25
Bromomethane	3.75	3.79	3.83	101	102	70.0-130			1.05	25
1,3-Butadiene	3.75	4.08	4.14	109	110	70.0-130			1.46	25
Carbon disulfide	7.50	7.91	8.14	105	109	70.0-130			2.87	25
Carbon tetrachloride	3.75	3.91	3.93	104	105	70.0-130			0.510	25
Chlorobenzene	3.75	3.82	3.89	102	104	70.0-130			1.82	25
Chloroethane	3.75	4.38	4.38	117	117	70.0-130			0.000	25
Chloroform	3.75	3.87	3.86	103	103	70.0-130			0.259	25
Chloromethane	3.75	4.01	4.01	107	107	70.0-130			0.000	25
2-Chlorotoluene	3.75	4.04	4.06	108	108	70.0-130			0.494	25
Cyclohexane	3.75	3.98	4.02	106	107	70.0-130			1.00	25
Dibromochloromethane	3.75	3.83	3.90	102	104	70.0-130			1.81	25
1,2-Dibromoethane	3.75	3.90	3.98	104	106	70.0-130			2.03	25
1,2-Dichlorobenzene	3.75	3.95	3.92	105	105	70.0-130			0.762	25
l,3-Dichlorobenzene	3.75	4.10	4.02	109	107	70.0-130			1.97	25
1,4-Dichlorobenzene	3.75	4.02	3.99	107	106	70.0-130			0.749	25
1,2-Dichloroethane	3.75	3.94	3.90	105	104	70.0-130			1.02	25
,1-Dichloroethane	3.75	3.98	4.00	106	107	70.0-130			0.501	25
1,1-Dichloroethene	3.75	3.97	3.97	106	106	70.0-130			0.000	25
cis-1,2-Dichloroethene	3.75	3.97	3.96	106	106	70.0-130			0.252	25
trans-1,2-Dichloroethene	3.75	3.94	3.97	105	106	70.0-130			0.759	25
1,2-Dichloropropane	3.75	3.95	3.94	105	105	70.0-130			0.253	25
cis-1,3-Dichloropropene	3.75	4.04	3.98	108	106	70.0-130			1.50	25
trans-1,3-Dichloropropene	3.75	4.00	3.97	107	106	70.0-130			0.753	25
1,4-Dioxane	3.75	3.96	3.90	106	104	70.0-140			1.53	25
Ethanol	3.75	3.70	3.71	98.7	98.9	55.0-148			0.270	25
Ethylbenzene	3.75	3.94	3.96	105	106	70.0-130			0.506	25
4-Ethyltoluene	3.75	4.05	3.96	108	106	70.0-130			2.25	25
Trichlorofluoromethane	3.75	3.86	3.95	103	105	70.0-130			2.30	25
Dichlorodifluoromethane	3.75	3.82	3.73	102	99.5	64.0-139			2.38	25
1,1,2-Trichlorotrifluoroethane	3.75	3.99	3.97	106	106	70.0-130			0.503	25
1,2-Dichlorotetrafluoroethane	3.75	4.21	4.16	112	111	70.0-130			1.19	25
Heptane	3.75	4.15	4.10	111	109	70.0-130			1.21	25
Hexachloro-1,3-butadiene	3.75	4.08	4.06	109	108	70.0-151			0.491	25
n-Hexane	3.75	4.02	3.99	107	106	70.0-130			0.749	25
Isopropylbenzene	3.75	4.19	3.94	112	105	70.0-130			6.15	25
Methylene Chloride	3.75	3.84	3.85	102	103	70.0-130			0.260	25
Methyl Butyl Ketone	3.75	4.03	3.99	107	106	70.0-149			0.998	25

SDG:

L1872064

DATE/TIME:

06/30/25 10:08

PAGE: 15 of 30

PROJECT:

20230065

Volatile Organic Compounds (MS) by Method TO-15

L1872064-01,02,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4235996-1 06/22/25 09:24 • (LCSD) R4235996-2 06/22/25 10:14

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
2-Butanone (MEK)	3.75	4.16	4.17	111	111	70.0-130			0.240	25	
4-Methyl-2-pentanone (MIBK)	3.75	3.86	3.89	103	104	70.0-139			0.774	25	
Methyl methacrylate	3.75	3.88	3.94	103	105	70.0-130			1.53	25	
MTBE	3.75	3.96	3.99	106	106	70.0-130			0.755	25	
Naphthalene	3.75	4.19	4.15	112	111	70.0-159			0.959	25	
2-Propanol	3.75	3.87	3.85	103	103	70.0-139			0.518	25	
Propene	3.75	4.08	4.13	109	110	64.0-144			1.22	25	
Styrene	7.50	8.25	8.18	110	109	70.0-130			0.852	25	
1,1,2,2-Tetrachloroethane	3.75	4.07	4.07	109	109	70.0-130			0.000	25	
Tetrachloroethylene	3.75	3.83	3.86	102	103	70.0-130			0.780	25	
Tetrahydrofuran	3.75	4.12	4.05	110	108	70.0-137			1.71	25	
Toluene	3.75	3.87	3.92	103	105	70.0-130			1.28	25	
1,2,4-Trichlorobenzene	3.75	4.15	4.14	111	110	70.0-160			0.241	25	
1,1,1-Trichloroethane	3.75	3.85	3.91	103	104	70.0-130			1.55	25	
1,1,2-Trichloroethane	3.75	3.90	3.95	104	105	70.0-130			1.27	25	
Trichloroethylene	3.75	3.85	3.90	103	104	70.0-130			1.29	25	
1,2,4-Trimethylbenzene	3.75	4.06	3.95	108	105	70.0-130			2.75	25	
1,3,5-Trimethylbenzene	3.75	4.13	4.07	110	109	70.0-130			1.46	25	
2,2,4-Trimethylpentane	3.75	3.99	4.03	106	107	70.0-130			0.998	25	
Vinyl chloride	3.75	4.02	4.09	107	109	70.0-130			1.73	25	
Vinyl Bromide	3.75	4.00	4.03	107	107	70.0-130			0.747	25	
Vinyl acetate	3.75	4.07	4.06	109	108	70.0-130			0.246	25	
Xylenes, Total	11.3	12.1	12.1	107	107	70.0-130			0.000	25	
m&p-Xylene	7.50	8.04	8.07	107	108	70.0-130			0.372	25	
o-Xylene	3.75	4.04	4.01	108	107	70.0-130			0.745	25	

70.0-130

60.0-140

188

184

186

97.9

99.3

TPH (GC/MS) Low Fraction

(S) 1,4-Bromofluorobenzene

98.9

99.3

1.08

25

Volatile Organic Compounds (MS) by Method TO-15

L1872064-02

Method Blank (MB)

(MB) R4237127-3 06/26/2					L
	MB Result	MB Qualifier	MB MDL	MB RDL	- 1
Analyte	ppbv		ppbv	ppbv	.
Acetone	U		0.520	1.25	
Allyl chloride	U		0.186	0.200	3
Benzene	U		0.110	0.200	L
Bromodichloromethane	U		0.0695	0.200	4
Bromomethane	U		0.0938	0.200	
1,3-Butadiene	U		0.158	2.00	
Carbon disulfide	U		0.160	0.400	
Carbon tetrachloride	U		0.0746	0.200	L
Chlorobenzene	U		0.118	0.200	
Chloroethane	U		0.110	0.200	
Chloroform	U		0.104	0.200	
Chloromethane	U		0.110	0.200	
Cyclohexane	U		0.170	0.200	L
Dibromochloromethane	U		0.0696	0.200	Г
1,2-Dibromoethane	U		0.0690	0.200	
1,2-Dichloroethane	U		0.0730	0.200	
1,1-Dichloroethane	U		0.0710	0.200	
1,1-Dichloroethene	U		0.0747	0.200	L
cis-1,2-Dichloroethene	U		0.0796	0.200	
trans-1,2-Dichloroethene	U		0.0735	0.200	
1,2-Dichloropropane	U		0.0752	0.200	
cis-1,3-Dichloropropene	U		0.0743	0.200	
trans-1,3-Dichloropropene	U		0.0795	0.200	
1,4-Dioxane	U		0.164	0.630	
Ethanol	U		2.37	2.50	
Ethylbenzene	U		0.0778	0.200	
4-Ethyltoluene	U		0.0887	0.200	
Trichlorofluoromethane	U		0.0771	0.200	
Dichlorodifluoromethane	U		0.0806	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0751	0.200	
1,2-Dichlorotetrafluoroethane	U		0.0756	0.200	
Heptane	U		0.114	0.200	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	

Volatile Organic Compounds (MS) by Method TO-15

L1872064-02

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	ppbv		ppbv	ppbv	
etrachloroethylene	U		0.111	0.200	
etrahydrofuran	U		0.164	0.200	
oluene	U		0.130	0.500	
1,1-Trichloroethane	U		0.0718	0.200	
1,2-Trichloroethane	U		0.0683	0.200	
richloroethylene	U		0.0680	0.200	
2,4-Trimethylbenzene	U		0.0927	0.200	
3,5-Trimethylbenzene	U		0.0853	0.200	
2,4-Trimethylpentane	U		0.0898	0.200	
nyl chloride	U		0.0826	0.200	
nyl Bromide	U		0.0749	0.200	
inyl acetate	U		0.0968	0.630	
ylenes, Total	U		0.0887	0.600	
&p-Xylene	U		0.174	0.400	
Xylene	U		0.0887	0.200	
PH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	94.5			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237127-1 06/26	/25 09:36 • (LCS	SD) R4237127-	2 06/26/25 10:	25							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Acetone	3.75	4.03	4.05	107	108	70.0-130			0.495	25	
Allyl chloride	3.75	4.45	4.66	119	124	70.0-130			4.61	25	
Benzene	3.75	4.51	4.47	120	119	70.0-130			0.891	25	
Bromodichloromethane	3.75	4.36	4.29	116	114	70.0-130			1.62	25	
Bromomethane	3.75	4.05	4.09	108	109	70.0-130			0.983	25	
1,3-Butadiene	3.75	3.99	4.01	106	107	70.0-130			0.500	25	
Carbon disulfide	7.50	9.11	9.11	121	121	70.0-130			0.000	25	
Carbon tetrachloride	3.75	4.21	4.20	112	112	70.0-130			0.238	25	
Chlorobenzene	3.75	4.41	4.35	118	116	70.0-130			1.37	25	
Chloroethane	3.75	4.39	4.32	117	115	70.0-130			1.61	25	
Chloroform	3.75	4.26	4.28	114	114	70.0-130			0.468	25	
Chloromethane	3.75	3.84	3.90	102	104	70.0-130			1.55	25	
Cyclohexane	3.75	4.33	4.35	115	116	70.0-130			0.461	25	
Dibromochloromethane	3.75	4.33	4.27	115	114	70.0-130			1.40	25	
1,2-Dibromoethane	3.75	4.39	4.36	117	116	70.0-130			0.686	25	
1,2-Dichloroethane	3.75	4.38	4.42	117	118	70.0-130			0.909	25	

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

4.46

3.75

Engineering/Remediation Resources Group

Toluene

4.40

(LCS) R4237127-1 06/26/25 09:36 • (LCSD) R4237127-2 06/26/25 10:25 LCSD Qualifier RPD **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier Analyte ppbv % % % % % ppbv ppbv 1,1-Dichloroethane 3.75 4.45 4.45 119 119 70.0-130 0.000 25 25 3.75 118 118 0.678 1,1-Dichloroethene 4.41 4.44 70.0-130

CI3-1,3-DICITIOTOPTOPCTIC	3.73	7.55	7.50	110	110	70.0-130	0.230	25		
trans-1,3-Dichloropropene	3.75	4.44	4.38	118	117	70.0-130	1.36	25		
1,4-Dioxane	3.75	4.48	4.40	119	117	70.0-140	1.80	25		
Ethanol	3.75	3.38	3.48	90.1	92.8	55.0-148	2.92	25		
Ethylbenzene	3.75	4.45	4.47	119	119	70.0-130	0.448	25		
4-Ethyltoluene	3.75	4.49	4.41	120	118	70.0-130	1.80	25		

4	Lillyitoluelle	3.73	4.43	4,41	120	110	70.0-130	1.00	23
Ti	richlorofluoromethane	3.75	4.11	4.13	110	110	70.0-130	0.485	25
D	ichlorodifluoromethane	3.75	3.86	3.92	103	105	64.0-139	1.54	25
1,	1,2-Trichlorotrifluoroethane	3.75	4.58	4.59	122	122	70.0-130	0.218	25
1,	2-Dichlorotetrafluoroethane	3.75	4.15	4.15	111	111	70.0-130	0.000	25

70.0-130

SDG:

L1872064

Heptane	3.75	4.29	4.37	114	117	70.0-130	1.85	25	
Methylene Chloride	3.75	4.28	4.26	114	114	70.0-130	0.468	25	
Methyl Butyl Ketone	3.75	4.44	4.52	118	121	70.0-149	1.79	25	
2-Butanone (MFK)	3 75	4 41	4 63	118	123	70.0-130	4 87	25	

4-Methyl-2-pentanone (MIBK)	3.75	4.44	4.52	118	121	70.0-139	1.79	25
Methyl methacrylate	3.75	4.32	4.29	115	114	70.0-130	0.697	25
MTBE	3.75	4.28	4.28	114	114	70.0-130	0.000	25
2 Drananal	2 7E	4.00	4.10	100	100	70.0.120	0.244	2E

119

2-1 Topanoi	5.75	4.03	7.10	103	103	70.0-133	0.277	23
Propene	3.75	3.80	3.81	101	102	64.0-144	0.263	25
Tetrachloroethylene	3.75	4.42	4.36	118	116	70.0-130	1.37	25
Tetrahydrofuran	3.75	4.27	4.37	114	117	70.0-137	2.31	25

1,1,1-Trichloroethane	3.75	4.24	4.25	113	113	70.0-130	0.236	25
1,1,2-Trichloroethane	3.75	4.37	4.38	117	117	70.0-130	0.229	25
Trichloroethylene	3.75	4.52	4.42	121	118	70.0-130	2.24	25
1,2,4-Trimethylbenzene	3.75	4.64	4.63	124	123	70.0-130	0.216	25

117

1,3,5-Trimethylbenzene	3.75	4.58	4.73	122	126	70.0-130	3	3.22 25
2,2,4-Trimethylpentane	3.75	4.29	4.33	114	115	70.0-130	C).928 25
Vinyl chloride	3.75	4.04	4.14	108	110	70.0-130	2	2.44 25
Vinyl Bromide	3.75	4.12	4.07	110	109	70.0-130	1	.22 25

Vinyl acetate	3.75	4.14	4.14	110	110	70.0-130	0.000	25
Xylenes, Total	11.3	13.4	13.6	119	120	70.0-130	1.48	25
m&p-Xylene	7.50	8.91	8.98	119	120	70.0-130	0.783	25
o-Xylene	3.75	4.51	4.57	120	122	70.0-130	1.32	25

20230065

25

25

1.35

Ss

[†]Cn

GI

Sc

Volatile Organic Compounds (MS) by Method TO-15

L1872064-02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237127-1 06/26/25 09:36 • (LCSD) R4237127-2 06/26/25 10:25

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
(S) 1,4-Bromofluorobenzene				93.5	96.2	60.0-140				

Volatile Organic Compounds (MS) by Method TO-15

ACCOUNT:

Engineering/Remediation Resources Group

Method Blank (MB)

Method Blank (MB)				
(MB) R4237678-3 06/27/25	5 11:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
	U		0.520	1.25
	U		0.186	0.200
	U		0.110	0.200
	U		0.0888	0.200
	U		0.0695	0.200
	U		0.0755	0.630
	U		0.0938	0.200
	U		0.158	2.00
	U		0.160	0.400
	U		0.0746	0.200
	U		0.0740	0.200
	U		0.110	0.200
			0.104	
	U			0.200
	U		0.110	0.200
	U		0.0787	0.200
	U		0.170	0.200
	U		0.0696	0.200
	U		0.0690	0.200
	U		0.0734	0.200
	U		0.0753	0.200
	U		0.0768	0.200
1,2-Dichloroethane	U		0.0730	0.200
1,1-Dichloroethane	U		0.0710	0.200
1,1-Dichloroethene	U		0.0747	0.200
cis-1,2-Dichloroethene	U		0.0796	0.200
trans-1,2-Dichloroethene	U		0.0735	0.200
1,2-Dichloropropane	U		0.0752	0.200
cis-1,3-Dichloropropene	U		0.0743	0.200
trans-1,3-Dichloropropene	U		0.0795	0.200
	U		0.164	0.630
	U		2.37	2.50
	U		0.0778	0.200
	U		0.0887	0.200
	U		0.0771	0.200
	U		0.0806	0.200
	U		0.0751	0.200
	U		0.0756	0.200
	U		0.0730	0.200
			0.0800	0.630
	U			
Isopropylbenzene	U		0.0722	0.200

SDG:

L1872064

DATE/TIME:

06/30/25 10:08

PAGE: 21 of 30

PROJECT:

20230065

Volatile Organic Compounds (MS) by Method TO-15

L1872064-03

Method Blank (MB)

(MB) R4237678-3 06/27/2	25 11:16				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.169	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.116	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.106	1.25	
Methyl methacrylate	U		0.169	0.200	
MTBE	U		0.0813	0.200	
Naphthalene	U		0.617	0.630	
2-Propanol	U		0.680	1.25	
Propene	U		0.214	1.25	
Styrene	U		0.0802	0.400	
1,1,2,2-Tetrachloroethane	U		0.0695	0.200	
Tetrachloroethylene	U		0.111	0.200	
Tetrahydrofuran	U		0.164	0.200	
Toluene	U		0.130	0.500	
1,2,4-Trichlorobenzene	U		0.462	0.630	
1,1,1-Trichloroethane	U		0.0718	0.200	
1,1,2-Trichloroethane	U		0.0683	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0927	0.200	
1,3,5-Trimethylbenzene	U		0.0853	0.200	
Vinyl chloride	U		0.0826	0.200	
Vinyl Bromide	U		0.0749	0.200	
Vinyl acetate	U		0.0968	0.630	
Xylenes, Total	U		0.0887	0.600	
m&p-Xylene	U		0.174	0.400	
o-Xylene	U		0.0887	0.200	
TPH (GC/MS) Low Fraction	U		68.3	200	
(S) 1,4-Bromofluorobenzene	96.1			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237678-1 06/27/25 09:54 • (LCSD) R4237678-2 06/27/25 10:36											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Acetone	3.75	3.81	3.78	102	101	70.0-130			0.791	25	
Allyl chloride	3.75	3.95	3.84	105	102	70.0-130			2.82	25	
Benzene	3.75	3.46	3.46	92.3	92.3	70.0-130			0.000	25	
Benzyl Chloride	3.75	3.75	3.70	100	98.7	70.0-152			1.34	25	
Bromodichloromethane	3.75	3.45	3.41	92.0	90.9	70.0-130			1.17	25	

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237678-1 06/27/2	.CS) R4237678-1 06/27/25 09:54 • (LCSD) R4237678-2 06/27/25 10:36												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%			
Bromoform	3.75	3.50	3.45	93.3	92.0	70.0-130			1.44	25			
Bromomethane	3.75	3.08	3.14	82.1	83.7	70.0-130			1.93	25			

Ss

[†]Cn

Sc

Chlorobenzene	3.75	3.52	3.48	93.9	92.8	70.0-130	1.14	25	
Chloroethane	3.75	2.91	2.98	77.6	79.5	70.0-130	2.38	25	
Chloroform	3.75	3.40	3.36	90.7	89.6	70.0-130	1.18	25	
Chloromethane	3.75	3.10	3.12	82.7	83.2	70.0-130	0.643	25	
2-Chlorotoluene	3.75	3.58	3.54	95.5	94.4	70.0-130	1.12	25	

2-Chlorotoluene	3./5	3.58	3.54	95.5	94.4	70.0-130	1.12	25		
Cyclohexane	3.75	3.52	3.50	93.9	93.3	70.0-130	0.570	25		
Dibromochloromethane	3.75	3.51	3.45	93.6	92.0	70.0-130	1.72	25		
1,2-Dibromoethane	3.75	3.53	3.52	94.1	93.9	70.0-130	0.284	25		
10 01 11	0.75	0.50	0.55	0.4.0	0.4.7	70.0.400	0.004	0.5		

1,2-Dichlorobenzene	3.75	3.56	3.55	94.9	94.7	70.0-130	0.281	25		
1,3-Dichlorobenzene	3.75	3.61	3.55	96.3	94.7	70.0-130	1.68	25		
1,4-Dichlorobenzene	3.75	3.63	3.60	96.8	96.0	70.0-130	0.830	25		
1,2-Dichloroethane	3.75	3.43	3.37	91.5	89.9	70.0-130	1.76	25		

1,1-Dichloroethane	3.75	3.33	3.34	88.8	89.1	/0.0-130	0.300	25	
1,1-Dichloroethene	3.75	3.65	3.62	97.3	96.5	70.0-130	0.825	25	
cis-1,2-Dichloroethene	3.75	3.37	3.36	89.9	89.6	70.0-130	0.297	25	
trans-1.2-Dichloroethene	3.75	3.39	3.37	90.4	89.9	70.0-130	0.592	25	

1,2-Dichloropropane	3.75	3.40	3.40	90.7	90.7	70.0-130	0.000	25
cis-1,3-Dichloropropene	3.75	3.53	3.46	94.1	92.3	70.0-130	2.00	25
trans-1,3-Dichloropropene	3.75	3.49	3.44	93.1	91.7	70.0-130	1.44	25
14-Dioxane	3 75	3 48	3 41	92.8	90 9	70 0-140	2.03	25

Ethanol	3.75	2.78	2.76	74.1	73.6	55.0-148	0.722	25
Ethylbenzene	3.75	3.51	3.48	93.6	92.8	70.0-130	0.858	25
4-Ethyltoluene	3.75	3.68	3.63	98.1	96.8	70.0-130	1.37	25
Trichlorofluoromethane	3.75	3.30	3.29	88.0	87.7	70.0-130	0.303	25

Dichlorodifluoromethane	3.75	3.08	2.95	82.1	78.7	64.0-139	4.31	25
1,1,2-Trichlorotrifluoroethane	3.75	4.01	3.14	107	83.7	70.0-130	24.3	25
1,2-Dichlorotetrafluoroethane	3.75	3.41	3.29	90.9	87.7	70.0-130	3.58	25
Heptane	3.75	3.51	3.44	93.6	91.7	70.0-130	2.01	25
Hexachloro-13-butadiene	3 75	3 57	3 62	95.2	96.5	70 0-151	139	25

rickaciiloro i,o batadiciic	3.73	5.57	5.02	33.Z	30.3	70.0 151	1	25	
Isopropylbenzene	3.75	3.75	3.69	100	98.4	70.0-130	1.0	61 25	
Methylene Chloride	3.75	3.18	3.20	84.8	85.3	70.0-130	0.	.627 25	
Methyl Butyl Ketone	3.75	3.67	3.61	97.9	96.3	70.0-149	1.0	65 25	
2-Butanone (MEK)	3.75	3.31	3.29	88.3	87.7	70.0-130	0.	.606 25	

2-Butanone (MEK)	3.75	3.31	3.29	88.3	87.7	70.0-130	0.606	25
4-Methyl-2-pentanone (MIBK)	3.75	3.63	3.53	96.8	94.1	70.0-139	2.79	25
Methyl methacrylate	3.75	3.50	3.42	93.3	91.2	70.0-130	2.31	25

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237678-1 06/27/25 09:54 • (LCSD) R4237678-2 06/27/25 10:36

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
MTBE	3.75	3.60	3.58	96.0	95.5	70.0-130			0.557	25
Naphthalene	3.75	3.69	3.69	98.4	98.4	70.0-159			0.000	25
2-Propanol	3.75	3.50	3.50	93.3	93.3	70.0-139			0.000	25
Propene	3.75	3.20	3.16	85.3	84.3	64.0-144			1.26	25
Styrene	7.50	7.61	7.50	101	100	70.0-130			1.46	25
1,1,2,2-Tetrachloroethane	3.75	3.43	3.36	91.5	89.6	70.0-130			2.06	25
Tetrachloroethylene	3.75	3.53	3.53	94.1	94.1	70.0-130			0.000	25
Tetrahydrofuran	3.75	3.29	3.26	87.7	86.9	70.0-137			0.916	25
Toluene	3.75	3.55	3.51	94.7	93.6	70.0-130			1.13	25
1,2,4-Trichlorobenzene	3.75	3.54	3.56	94.4	94.9	70.0-160			0.563	25
1,1,1-Trichloroethane	3.75	3.45	3.45	92.0	92.0	70.0-130			0.000	25
1,1,2-Trichloroethane	3.75	3.45	3.43	92.0	91.5	70.0-130			0.581	25
Trichloroethylene	3.75	3.48	3.45	92.8	92.0	70.0-130			0.866	25
1,2,4-Trimethylbenzene	3.75	3.71	3.67	98.9	97.9	70.0-130			1.08	25
1,3,5-Trimethylbenzene	3.75	3.72	3.68	99.2	98.1	70.0-130			1.08	25
Vinyl chloride	3.75	3.08	3.10	82.1	82.7	70.0-130			0.647	25
Vinyl Bromide	3.75	3.21	3.25	85.6	86.7	70.0-130			1.24	25
Vinyl acetate	3.75	3.09	3.05	82.4	81.3	70.0-130			1.30	25
Xylenes, Total	11.3	10.9	10.8	96.5	95.6	70.0-130			0.922	25
m&p-Xylene	7.50	7.30	7.16	97.3	95.5	70.0-130			1.94	25
o-Xylene	3.75	3.64	3.60	97.1	96.0	70.0-130			1.10	25
TPH (GC/MS) Low Fraction	188	179	181	95.2	96.3	70.0-130			1.11	25
(S) 1,4-Bromofluorobenzene	2			97.5	97.5	60.0-140				

WG2548800

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1872064-02

Method Blank (MB)

(MB) R4238084-2 06/28/2	25 08:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
n-Hexane	U		0.143	0.630
(S) 1,4-Bromofluorobenzene	94.3			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 114230004 1 00/20/	25 07.50 - (EC	3D) N4230004	5 00/20/25 0	0.50						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
n-Hexane	3.75	4.47	4.44	119	118	70.0-130			0.673	25
(S) 1.4-Bromofluorobenzene				94.8	95.0	60.0-140				

WG2548825

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1872064-04

Method Blank (MB)

(MB) R4237951-3 06/28/2	5 07:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Tetrachloroethylene	U		0.111	0.200
(S) 1,4-Bromofluorobenzene	96.9			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237951-1 06/28	3/25 06:32 • (LCS	SD) R4237951-	-2 06/28/25 07	7:01							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Tetrachloroethylene	3.75	3.57	3.48	95.2	92.8	70.0-130			2.55	25	
(S) 1.4-Rromofluorobenzen	ne			100	100	60 0-140					

WG2548922

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1872064-03

Method Blank (MB)

(MB) R4237870-3 06/28/25 07:38 MB Result MB MDL MB RDL MB Qualifier Analyte ppbv ppbv ppbv U n-Hexane 0.143 0.630 2,2,4-Trimethylpentane 0.0898 0.200 (S) 1,4-Bromofluorobenzene 94.4 60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4237870-1 06/28/25 06:44 • (LCSD) R4237870-2 06/28/25 07:13

(LC3) N+237070-1 00/20	(LC3) (14237070-1 00/20/23 00.44 (LC3D) (14237070-2 00/20/23 07.13										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
n-Hexane	3.75	3.88	3.72	103	99.2	70.0-130			4.21	25	
2,2,4-Trimethylpentane	3.75	4.01	3.87	107	103	70.0-130			3.55	25	
(S) 1,4-Bromofluorobenzen	е			102	103	60.0-140					

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbieviations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
U (Radiochemistry)	Result + Error < MDA.
J (Radiochemistry)	Result < MDA; Result + Error > MDA.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Engineering/Remediation Resources Group

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Pace . Pace* Location Requested (City/State):		Air CHAIN-O Chain-of-Cus	F-CUSTOD stody is a LEGAL								LAB	ISE ONLY- Affix	Workarde	er/Login	M	010
Empany Name: Engineering/Remediation Resource Stree: Address: 15333 NE 90th Street City, State Zip: Lustomer Project #: 20230065	es Grou	Phone #: 4; E-Mail: jenn rro.c Cc E-Mail:	25-658-50	26 sen@errg.c	com;spen	cer.slomi	nski@e				Scan Qf	R code for i	nstructio	ons		
Site Collection (No/Facility ID (as applicable):	K 146	Invoice E-Mail: Purchase Orde	er#(if applicab	le):									Ana	lyses Req	uested	AV 6/17/25 Proj. Manager:
Sime . Gra Collected [] AK [X]PT [] MT [] CTol] ET		Quote #: State origin of	sample(s):						Field	Information						3500 - Jennifer Gambill AcctNum / Client
D Deliverables:		gram (CAA, RCRA						Ca	nister		PUF / FILT					ENGREMRWA
	Rush (Pre-appr 2 Day 3 day :			Permit # as	applicable:			Pressure	e / Vacuum		TOF / FILL		a			Table #:
ijother EIM WA	Date Results Requested:			Units for Reporting:	ug/m³ PPB	√ mg/m³	PPMV				Flow	ow Total	nmma			Template: T262502
* Matrix Co., P.; (In , ert in Matrix box below): Ambient (A), Indoor (I), S	ioil Vapor (SV), O	ther (O) Summa	Flow	Begin Co	ollection	End C	ollection	Start Pressure /		Duration	Rate	Volume	15 S			Prelog / Bottle P1159305
Customer Sample ID	Matrix *	Canister ID	Controller	Date	Time	Date	Time	(in Hg)	Vacuum (in Hg)	(minutes)	m³/min or L/min	Sampled m ³ or L	5			Sample Comment
VG-411-INF-20250620 VG-412-EFF-20250620 VP-3-20250620	SY	22967	29/04	6/20	1240	6/26	1245	30	4				Х			L1872064-01
VG-412-EFF-202506 20	SV	15175	11376	6/20	1255	6/20	1300	29	3				х			02
NP-3-20250620	SV	2790	15759	6/20	130	6/20	125	29	5				Х	1 1		63
VP-4-20250620	SY	15486	22509	6/20	1335	6 26	1346	730	5			1 = 3	х			ou
COC Seal Present/Intart Y COC Signed/Accurate Bottles arrive intact Correct bottles used Vmused: 11 61 01	Receipt Ch N MP N Siz N Tag	ecklist Air. The Color G	61. M 4 F	1 41. B												
Customer Carrolla (Sandal Carrolla Carrolla III)																
Customer P.emarks / Special Conditions / Possible Hazards::				Collected By: Printed Nan Signature:	" FI	286	1			Additional	instructio	ns from Pac			rection tor (°C):	Obs. Lengt. (*C)
relinquished by/Company: (Signature)		6/20/2	1570	Received by/	Compy: (S	FEI	EX			Date/Time:				Fac	42	16 7193 0340
Pelinquished by/Company: (Signature) Relinquished by/Company: (Signature)		Date/Time: Date/Time:		Received by/						Date/Time:					Deliver	
relinguished by/Company: (Signature)	neinquished by/Company: (Signature) Inelinquished by/Company: (Signature)			Received by/Company: (Signature) Received by/Company: (Signature)			//	May 06/21/25 0930						CEEDEN UPS Other		

Appendix C. Data Validation Reports During Reporting Period

Site Name	Circle K	Project Name	O&M – Groundwater Sampling
Data Reviewer (signature and date)	Anauda Walff	Technical Reviewer (signature and date)	6/4/2025
Laboratory Report No.	L1852466 (samples collected 4/25/2025)	Laboratory	Pace Analytical
Analyses	VOCs by Method NWTPHGX and Method 8	3260B	
Sample and Matrix	RW-1 (GW) MW-14 (GW) MW-9 (GW) MW-16 (GW) MW-8 (GW) MW-15 (GW) MW-6 (GW) MW-19 (GW) MW-17 (GW) MW-17 (GW) MW-18 (GW) MW-13 (GW) MW-13 (GW) MW-20 (GW) DUP-1 (GW) TB-1 (Water) TB-2 (Water)	L1852466-01 L1852466-02 L1852466-03 L1852466-04 L1852466-05 L1852466-06 L1852466-07 L1852466-09 L1852466-10 L1852466-11 L1852466-12 L1852466-13 L1852466-14 L1852466-15 L1852466-16	
Field Duplicate Pairs	DUP-1 is a duplicate of MW-6.		
Field Blanks	Two trip blanks were identified in this SDG	. No field blanks were iden	tified in this SDG.

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

With Crite	Exceedance/Notes
Y	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
N	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks except for those noted below:

Sample IDs	Analyte	Method Blank	Quantitation Limit	Qualifier
		Result (μ/L)	(QL) μ/L	
RW-1, MW-14,	Gasoline Range	52.4 (between	100	If the sample result is less than the
MW-8, MW-6,	Organics	MDL and RDL)		quantitation limit, then report at QL and
MW-19, MW-21,		,		qualify as U.
MW-17, MW-18				If the sample result is greater than the
MW-9, MW-16,	Gasoline Range	59.9 (between	100	QL, then qualify J+
MW-15	Organics	MDL and RDL)		

Field Blanks:

Within Criteria	Exceedance/Notes
Υ	All analytes for both trip blanks were non-detect.

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
Υ	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

MS/MSD:

	·	
Within Criteria	Exceedance/Notes	
NA	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample.	

Laboratory Control Samples:

Within Criteria	Exceedance/Notes
Y	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. Percent recoveries (%R) and RPD were within QC limits.

Field duplicates:

With Crite		Exceedance/Notes
Y	,	Field duplicate sample analysis was performed. RPD were within QC limits (<30%), as noted below (RPDs were only calculated for detected analytes in both samples).

RPD Calculation [|R1-R2| ÷ ((R1+R2) ÷ 2)] x 100]

Field Duplicate Pair	Analyte	RPD Calculation	New Qualifier
	Benzene	[2.28-5.91 ÷ ((2.28+5.91) ÷ 2)]*100 = 88.64	J qualifier for all
MW-6 and DUP-1	cis-1,2-Dichloroethene	[1.11-2.41 ÷ ((1.11+2.41) ÷ 2)]*100 = 73.86	detects UJ qualifier for all
	Vinyl chloride	[2.47-4.29 ÷ ((2.47+4.29) ÷ 2)]*100 = 53.84	non-detects

Sample dilutions:

Within Criteria	Exceedance/Notes
Y	RW-1 analyzed for VOCs by 8260B was diluted by a factor of 10. MW-9 analyzed for VOCs by 8260B was diluted by a factor of 20 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 5. MW-8 analyzed for VOCs by 8260B was diluted by a factor of 50 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 5. MW-19 analyzed for VOCs by 8260B was diluted by a factor of 100 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 10. MW-21 analyzed for VOCs by 8260B was diluted by a factor of 500 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 10. MW-17 analyzed for VOCs by 8260B was diluted by a factor of 25.

MW-13 analyzed for VOCs by 8260B was diluted by a factor of 50 and analyzed for Gasoline Range Organics-NWTPH,
which was diluted by a factor of 10.
MW-20 analyzed for VOCs by 8260B was diluted by a factor of 250 and analyzed for Gasoline Range Organics-NWTPH,
which was diluted by a factor of 10.

Re-extraction and reanalysis:

110 Oxtraction and reality of or		
Within	Exceedance/Notes	
Criteria	Exceedance/Notes	
NA		

MDLs/RLs:

Within Criteria	Exceedance/Notes
N/A	

Tentatively identified compounds:

i Oiitati V	ory raditation compounds:
Within	Exceedance/Notes
Criteria	Exceedance/Notes
NA	

Other [none]:

	Within Criteria	Exceedance/Notes
	NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.
J	The reported result was an estimated value with unknown bias.
J+	The result was an estimated quantity, but the results may be biased high.
J-	The result was an estimated quantity, but the results may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.
Х	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.

Site Name	Circle K	Project Name	O&M – Groundwater Sampling
Data Reviewer (signature and date)	J Junior 6/26/2025	Technical Reviewer (signature and date)	6/30/2025
Laboratory Report No.	L1863104 (samples collected 5/23/2025)	Laboratory	Pace Analytical
Analyses	VOCs by Method NWTPHGX and Method 8.	260B	
Sample and Matrix	MW-16 (GW) MW-17 (GW) MW-18 (GW) MW-19 (GW) MW-20 (GW) MW-21 (GW) RW-1 (GW) DUP-1 (GW) MW-6 (GW) MW-8 (GW) MW-13 (GW) MW-13 (GW) MW-14 (GW) MW-15 (GW) TB-1 (Water) TB-2 (Water)	L1863104-01 L1863104-02 L1863104-03 L1863104-04 L1863104-05 L1863104-06 L1863104-07 L1863104-08 L1863104-09 L1863104-10 L1863104-11 L1863104-12 L1863104-13 L1863104-14 L1863104-15 L1863104-16	
Field Duplicate Pairs	DUP-1 is a duplicate of MW-15.		
Field Blanks	Two trip blanks were identified in this SDG.	No field blanks were ident	ified in this SDG.

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Sample TB-01 was analyzed from a VOA vial containing headspace.

Method Blanks:

mounou.	Pidimo!	
Within Criteria	Exceedance/Notes	
Y	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks.	

Field Blanks:

Within Criteria	Exceedance/Notes	
Υ	All analytes for both trip blanks were non-detect.	

System monitoring compounds (surrogates and labeled compounds):

1	thin teria	Exceedance/Notes
`	Υ	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

MS/MSD:

Within Criteria	Exceedance/Notes
NA	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample.

Laboratory Control Samples:

_	abolatolj	dentition builtiploon
	Within Criteria	Exceedance/Notes
	Υ	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. Percent recoveries (%R) and Relative Percent Difference (RPD) were within QC limits.

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	Field duplicate sample analysis was performed. No analytes were detected in the primary or duplicate sample so no RPD was calculated.

Sample dilutions:

Within	Exceedance/Notes
Criteria	
	MW-17 analyzed for VOCs by 8260B was diluted by a factor of 25.
	MW-19 analyzed for VOCs by 8260B was diluted by a factor of 100 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 10.
	MW-20 analyzed for VOCs by 8260B was diluted by a factor of 50 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 10.
	MW-21 analyzed for VOCs by 8260B was diluted by a factor of 500 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 10.
Υ	RW-1 analyzed for VOCs by 8260B was diluted by a factor of 10.
	MW-8 analyzed for VOCs by 8260B was diluted by a factor of 50 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 5.
	MW-13 analyzed for VOCs by 8260B was diluted by a factor of 50 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 10.
	MW-9 analyzed for VOCs by 8260B was diluted by a factor of 20 and analyzed for Gasoline Range Organics-NWTPH, which was diluted by a factor of 5.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

MDLs/RLs:

Within Criteria	Exceedance/Notes
N/A	

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

Other [none]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.
J	The reported result was an estimated value with unknown bias.
J+	The result was an estimated quantity, but the results may be biased high.
J-	The result was an estimated quantity, but the results may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.
X	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.

Site Name	Circle K	Project Name	O&M – Monthly Water System
Data Reviewer (signature and date)	Smauda Walff	Technical Reviewer (signature and date)	
	14050450		6/4/2025
Laboratory Report No.	L1852469	Laboratory	Pace Analytical
Analyses	VOCs by Method NWTPHGX and Method 83	260B and Oil and Grease HI	EM by Method 1664B
	LG-404-EFF-20250425	L1852469-01	
	DUP-1-20250425	L1852469-02	
Campula and Marketin	LG-402-MID-20250425	L1852469-03	
Sample and Matrix	LG-401-INF-20250425 L1852469-04		
	DUP-2-20250425 L1852469-05		
	TB-1-20250425	L1852469-06	
Field Duplicate Dairs	DUP-1-20250425 and DUP-2-20250425 are duplicates of LG-404-EFF-20250425. DUP-2-20250425 was only analyzed		
Field Duplicate Pairs	for Oil and Grease HEM by Method 1664B.		
Field Blanks	One trip blank was identified in this SDG. N	o field blanks were identific	ed in this SDG.

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria Exceedance/Notes	
Y	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
Υ	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks.

Field Blanks:

Within Criteria	Exceedance/Notes
Υ	All analytes for Trip Blank TB-1-20250425 resulted in non-detects.

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
Υ	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

MS/MSD:

Within Criteria	Exceedance/Notes
	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project
Υ	sample. MS/MSD analysis was performed on the sample batch submitted for Oil and Grease HEM by Method 1664B.
	All %R were within criteria.

Laboratory Control Samples:

Within Criteria	Exceedance/Notes
Υ	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. Percent recoveries (%R) and RPD were within QC limits.

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	All sample analytes were not detected in the primary and duplicate samples, therefore RPD was not calculated.

Sample dilutions:

Within Criteria	Exceedance/Notes
Υ	All samples were analyzed undiluted.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

Other [none]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.	
J	The reported result was an estimated value with unknown bias.	
J+	The result was an estimated quantity, but the results may be biased high.	
J-	The result was an estimated quantity, but the results may be biased low.	
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".	
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.	

UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.
X	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.

Site Name	Circle K	Project Name	O&M – Monthly Water System
Data Reviewer (signature and date)	J Junior 6/26/2025	Technical Reviewer (signature and date)	6/30/2025
Laboratory Report No.	L1863045	Laboratory	Pace Analytical
Analyses	VOCs by Method NWTPHGX and Method 8	260B and Oil and Grease H	EM by Method 1664B
Sample and Matrix	LG-401-INF-20250523 LG-402-MID -20250523 LG-404-EFF-20250523 DUP-1-20250523 DUP-2-20250523 TB-1-20250523	L1863045-01 L1863045-02 L1863045-03 L1863045-04 L1863045-05 L1863045-06	
Field Duplicate Pairs	DUP-1-20250523 and DUP-2-20250523 are for Oil and Grease HEM by Method 1664B.	duplicates of LG-404-EFF-2	0250523. DUP-2-20250523 was only analyzed
Field Blanks	One trip blank was identified in this SDG. N	lo field blanks were identific	ed in this SDG.

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
Υ	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks.

Field Blanks:

Within Criteria	Exceedance/Notes
Υ	No analytes were detected in the Trip Blank.

System monitoring compounds (surrogates and labeled compounds):

Within	Within	
Criteria	Exceedance/Notes	
Υ	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample. MS/MSD analysis was performed on the sample batch submitted for Oil and Grease HEM by Method 1664B. All percent recoveries (%R) were within criteria.

Laboratory Control Samples:

Within	Exceedance/Notes
Criteria Y	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. %R and Relative Percent Difference (RPD) were within QC limits with the exception noted below:
	were within QC lithing with the exception noted below.

Sample ID	Analyte	LCS %R	LCSD %R	QC Limits	RPD	RPD Limit	New Qualifier
L1863045-03, L1863045-04 and L1863045-06	Vinyl chloride	61.8	63.0	67-131	1.92	20	J – all detections UJ – non-detects

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	No analytes were detected in the primary and duplicate samples, therefore RPD was not calculated.

Sample dilutions:

Within Criteria	Exceedance/Notes	
Υ	All samples were analyzed undiluted.	

Re-extraction and reanalysis:

	Within Criteria	Exceedance/Notes
	NA	

MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

· Oiitativ	ory radiitinda dompoanadi
Within Criteria	Exceedance/Notes
NA	

Other [none]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.
J	The reported result was an estimated value with unknown bias.
J+	The result was an estimated quantity, but the results may be biased high.

J-	The result was an estimated quantity, but the results may be biased low.					
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".					
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.					
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.					
Х	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.					

Site Name	Circle K	Project Name	O&M – Monthly Water System		
Data Reviewer (signature and date)	Brandon Berger 7/29/2025	Technical Reviewer (signature and date)	7/31/2025		
Laboratory Report No.	L1874324	Laboratory	Pace Analytical		
Analyses	VOCs by Method NWTPHGX and Method 8260B and Oil and Grease HEM by Method 1664B				
Sample and Matrix	LG-404-EFF-20250627 L1874324-01 DUP-1-20250627 L1874324-02 LG-402-MID-20250627 L1874324-03 LG-401-INF-20250627 L1874324-04 DUP-2-20250627 L1874324-05 TB-01-20250627 L1874324-06				
Field Duplicate Pairs	DUP-1-20250627 and DUP-2-20250627 are duplicates of LG-404-EFF-20250627. DUP-2-20250627 was only analyzed for Oil and Grease HEM by Method 1664B.				
Field Blanks	One trip blank was identified in this SDG. No field blanks were identified in this SDG.				

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Y	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
Υ	Method blanks were analyzed as required by the methods. No contaminants were found in the method blanks.

Field Blanks:

Within Criteria	Exceedance/Notes
Υ	No analytes were detected in the Trip Blank.

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
Υ	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample. MS/MSD analysis was performed on the sample batch submitted for Oil and Grease HEM by Method 1664B. All percent recoveries (%R) were within criteria.

Laboratory Control Samples:

	,	
With Crite		Exceedance/Notes
Y		Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. %R and Relative Percent Difference (RPD) were within QC limits.

Field duplicates:

Within Criteria	Exceedance/Notes
Y	No analytes were detected in the primary or duplicate samples, therefore RPD was not calculated.

Sample dilutions:

Within Criteria	Exceedance/Notes
Υ	All samples were analyzed undiluted.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

Other [none]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.				
J	The reported result was an estimated value with unknown bias.				
J+ The result was an estimated quantity, but the results may be biased high.					
J- The result was an estimated quantity, but the results may be biased low.					
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".				
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.				

UJ The analyte was not detected and was reported as less than the LOD or as defined by the customer, however associated numerical value is approximate.			
X	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.		

Site Name	Circle K	Project Name	O&M – Monthly Vapor System		
Data Reviewer (signature and date)	5/12/2025	Technical Reviewer (signature and date)	J Junior 5/19/2025		
Laboratory Report No.	L1849945	Laboratory	Pace Analytical		
Analyses	VOCs by TO-15 Summa				
Sample and Matrix	VG-412-INF-20250418 L184994501 VG-410-EFF-20250418 L184994502				
Field Duplicate Pairs	d Duplicate Pairs No field duplicate pairs were identified in this SDG.				
Field Blanks No trip or field blanks were identified in this SDG.					

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	ΕΥΓΩΔΠΩΠΓΩ/ΝΛΤΩς			
Υ				

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Y	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
Υ	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks.

Field Blanks:

Within Criteria	FACOUSULOS
NA	No trip or field blanks were analyzed.

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
Υ	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

MS/MSD:

Withi Criter	FYCEEdance/Notes
NA	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample.

Laboratory Control Samples:

Within Criteria	Exceedance/Notes					
Ν	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. Percent recoveries (%R) and RPD were within QC limits except those noted below:					

Samples Affected	Analyte	LCSD %R	%R Limits	RPD (%)	RPD Limits (%)	New Qualifier
VG-412-INF-20250418 (L1849945-01) VG-410-EFF-20250418 (L1849945-02)	Hexachloro-1,3- butadiene	69.1	70.0-151	37.6	25	J for detections; UJ for non- detects
	Naphthalene	NA	NA	38.5	25	J for detections; no qualification
(L1049945-02)	1,2,4-Trichlorobenzene	NA	NA	38	25	for non-detects

Field duplicates:

Within Criteria	Exceedance/Notes
NA	Field duplicate sample analysis was not performed.

Sample dilutions:

Jampi	dilationo	
Within Criteria	FYCEEGANCE/NOTES	
Y	VG-412-INF-20250418 (L1849945-1) was diluted by a factor of 20 for all analytes except for Cyclohexane, Heptane, n-Hexane, Toluene, 1,2,4-Trimethylbenzene, 2,2,4-Trimethylpentane, Xylenes (Total), m&p-Xylene, o-Xylene, and TPH (GC/MS) Low Fraction which were diluted by a factor of 500.	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes	
NA		

MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

· Oiitativ	matively labilities compounded	
Within Criteria	Exceedance/Notes	
NA		

Other [none]:

	Within Criteria	Exceedance/Notes
Ī	NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

	U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.
J -		The reported result was an estimated value with unknown bias.
	J+	The result was an estimated quantity, but the results may be biased high.

J-	The result was an estimated quantity, but the results may be biased low.		
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".		
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.		
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.		
Х	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.		

Site Name	Circle K	Project Name	O&M – Monthly Vapor System
Data Reviewer (signature and date)	6/4/2025	Technical Reviewer (signature and date)	J Surian 6/12/2025
Laboratory Report No.	L1864793 (samples collected 5/30/2025)	Laboratory	Pace Analytical
Analyses	VOCs by TO-15 Summa		
Sample and Matrix VG-401-INF-20250530 VG-404-EFF-20250530 L186479301 L186479302 Field Duplicate Pairs No field duplicate pairs were identified in this SDG. Field Blanks No trip or field blanks were identified in this SDG.			

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	ΕΥΓΔΩΠΩΠΓΩΓΙΩ	
Υ		

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
N	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks except for those noted below.

Sample IDs	Analyte	Method Blank Result (ppbv)	Quantitation Limit (QL) ppbv	Qualifier
VG-401-INF- 20250530 and VG- 404-EFF- 20250530	Acetone	0.824 (between MDL and RDL)	1.25	If the sample result is less than the quantitation limit, then report at QL and qualify as U. If the sample result is greater than the QL but less than 2x the Blank Result for common laboratory Contaminants, then report at QL and qualify U. If the sample result is greater than QL and greater than 2x Blank Result for common laboratory contaminants, then report at sample result and qualify J+.

Field Blanks:

Within Criteria	Exceedance/Notes
NA	No trip or field blanks were analyzed.

System monitoring compounds (surrogates and labeled compounds):

- 1	Vithin riteria		_	•		Exce	eedan	ce/Note	es		
	Υ	Surrogates w	ere added t	o all sam _l	oles as requ	uired by th	ne met	hod. Al	Il surrogate recoveries ((%R) were within QC lim	its.

MS/MSD:

Within Criteria	Exceedance/Notes
NA	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample.

Laboratory Control Samples:

		
	thin teria	Exceedance/Notes
\ \ \	Y	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. Percent recoveries (%R) and RPD were within QC limits.

Field duplicates:

Within Criteria	Exceedance/Notes
NA	Field duplicate sample analysis was not performed.

Sample dilutions:

Within Criteria	Exceedance/Notes
Υ	VG-401-INF-20250530 was diluted by a factor of 10 for all analytes except for Cyclohexane, Heptane, n-Hexane, Toluene, and 2,2,4-Trimethylpentane, which were diluted by a factor of 100. VG-404-EFF-20250530 was diluted by a factor of 20 for all analytes except for n-Hexane, 1,2,4-Trimethylbenzene, 2,2,4-Trimethylpentane, and Vinyl acetate which were diluted by a factor of 100.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

MDLs/RLs:

	
Within	Exceedance/Notes
Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

Other [none]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.	
J	The reported result was an estimated value with unknown bias.	

J+	The result was an estimated quantity, but the results may be biased high.			
J-	he result was an estimated quantity, but the results may be biased low.			
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".			
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.			
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.			
X	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.			

DATA VALIDATION CHECKLIST - STAGE 2A

Site Name	Circle K	Project Name	O&M – Monthly Vapor System		
Data Reviewer (signature and date)	Brandon Berger 7/02/2025	Technical Reviewer (signature and date)	7/11/2025		
Laboratory Report No. L1872064 (samples collected 6/20/2025)		Laboratory	Pace Analytical		
Analyses VOCs by TO-15 Summa					
Sample and Matrix	VG-412-EFF-20250620 VG-411-INF-20250620 VP-3-20250620 VP-4-20250620				
Field Duplicate Pairs	No field duplicate pairs were identified in this SDG.				
Field Blanks	No trip or field blanks were identified in this SDG.				

INTRODUCTION

This checklist summarizes the Stage 2A validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (January 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines for Organic and Inorganic Superfund Methods Data Review (November 2020).

OVERALL EVALUATION

All results are usable with the qualifications described in this checklist.

Data completeness and verification

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times.

Method Blanks:

Within Criteria	Exceedance/Notes
N	Method blanks were analyzed as required by the method. No contaminants were found in the method blanks except for those noted below.

Sample IDs	Analyte	Method Blank	Quantitation	Qualifier
		Result (ppbv)	Limit (QL) ppbv	
VG-412-EFF- 20250620, VG-411-INF-20250620 VP-4-20250620	Benzyl Chloride (2- Chlorotoluene)	0.127 (between MDL and RDL)	0.2	If the sample result is less than the quantitation limit, then report at QL and qualify as U. If the sample result is greater than QL, then report at sample result and qualify J+.
	1,2-	0.139 (between	0.2	
	Dichlorobenzene	MDL and RDL)		

Sample IDs	Analyte	Method Blank	Quantitation	Qualifier
		Result (ppbv)	Limit (QL) ppbv	
	1,3- Dichlorobenzene	0.129 (between MDL and RDL)	0.2	If the sample result is less than the quantitation limit, then report at QL
VG-412-EFF-	1,4- Dichlorobenzene	0.167 (between MDL and RDL)	0.2	and qualify as U. If the sample result is greater than QL, then report at sample result and
20250620 VG-411-INF-20250620	Hexachloro-1,3- butadiene	0.224 (between MDL and RDL)	0.63	qualify J+.
VP-4-20250620	Styrene	0.157 (between MDL and RDL)	0.4	
	1,2,4- Trichlorobenzene	0.489 (between MDL and RDL)	0.63	

Field Blanks:

Within Criteria	Exceedance/Notes
NA	No trip or field blanks were analyzed.

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
Y	Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits except for one surrogate recovery, 1,4-Bromofluorobenzene in VG-412-EFF-20250260. The surrogate failed above QC limits due to matrix interference; however, two additional surrogate analysis were ran on VG-412-EFF-20250260 and were within QC limits, therefore, no data qualifiers are recommended.

MS/MSD:

Within Criteria	FYCEEGANCE/NOTES	
NA	Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was not performed on an associated project sample.	

Laboratory Control Samples:

Within Criteria	Exceedance/Notes
Υ	Laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) sample analysis were performed. Percent recoveries (%R) and RPD were within QC limits.

Field duplicates:

Within Criteria	Exceedance/Notes
NA	Field duplicate sample analysis was not performed.

Sample dilutions:

Within Criteria	Exceedance/Notes
Y	VG-411-INF -20250620 was diluted by a factor of 100 for all analytes except for Benzyl Chloride, Bromoform, 2-Chlorotoluene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Hexachloro-1,3-butadiene, Isopropylbenzene, Naphthalene, Styrene, 1,1,2,2-Tetrachloroethane and 1,2,4-Trichlorobenzene which were not diluted and n-hexane which was diluted by a factor of 500. VP-3-20250620 was diluted by a factor of 10 for n-Hexane and 2,2,4-Trimethylpentane. VP-4-20250620 was diluted by a factor of 200 for Tetrachloroethylene.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	

Tentatively identified compounds:

_		ory recommend composition
	Within	Exceedance/Notes
	Criteria	
	NA	

Other [none]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

U	The analyte was not detected and was reported as less than the LOD or as defined by the customer.
J	The reported result was an estimated value with unknown bias.
J+	The result was an estimated quantity, but the results may be biased high.
J-	The result was an estimated quantity, but the results may be biased low.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a "tentative identification".

NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer, however, the associated numerical value is approximate.
Х	The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.

Appendix D. Spent Carbon Certificate of Reactivation

Activated Carbon Products & Services

PO Box 1346 – Ridgefield, WA 98642 Phone: (360) 727-3775 Email: Info@PacificCoastCarbon.com

July 14th, 2025 Attn: Dale Meyers / 425-389-2521 Former Circle K 1461 Site 2350 24th Ave E - B Seattle, WA 98112

This letter certifies the following non hazardous spent carbon received by Pacific Coast Carbon was reactivated in accordance with 40 CFR Part 265 and part 61 regulations:

Generators Mailing & Site Address

Former Circle K 1461 Site 2350 24th Ave E – B Seattle, WA 98112

Profile Number: V-25101

Shipping Documentation number: 25307 - dated 06/12/2025

Date of Receipt: 06-12-25

Qty, Container type & Weight: 3 – Supersacks- 5,079 pounds

Reactivation Date: 07/14/2025

Under civil and criminal penalties of law for false and or fraudulent statements or representations, I verify the information contained above is accurate, true and complete. As to the identified sections(s) of this certificate for which I cannot personally verify accuracy and truth, I certify as the company official and having company authority and responsibility for the persons who, acting under my direct instructions, made the verification that this information is accurate, true and complete.

Pacific Coast Carbon Sincerely,

Alex Peru

President