

GROUNDWATER MONITORING SEPTEMBER 2016 **BEAR CREEK VILLAGE** SHOPPING CENTER

17100 - 17262 Redmond Way Redmond, Washington

Submitted To: TMT Bear Creek Shopping Center, Inc.

c/o Colliers International - REMS 601 Union Street. Suite 5300

Seattle, WA 98101

Submitted By: Golder Associates Inc.

18300 NE Union Hill Road, Suite 200

Redmond, WA 98052 USA

Distribution: 1 Copy Ramon Chavez, Colliers International

1 Copy Grant Yang, Department of Ecology, Bellevue

1 Copy Kevin Murphy, City of Redmond

December 8, 2016

Project No. 1525393-16.200

A world of capabilities delivered locally

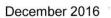


Table of Contents

1.0	IN	ITRODUCTION	1
1.	1	Site Description	1
1.3	2	Purpose and Scope	1
2.0	BA	ACKGROUND	2
2.	1	Previous Environmental Investigations	2
2.3	2	Independent Remedial Actions	2
2.3	3	Groundwater Monitoring Frequency	2
3.0	GI	ROUNDWATER SAMPLING	4
3.	1	Groundwater Investigation Methods	4
3.	2	Groundwater Flow Direction	4
3.	3	Groundwater Quality	
	3.3.1	Perchloroethylene	
	3.3.2	Trichloroethene	. 6
	3.3.3	Cis-1,2-Dichloroethene	. 6
	3.3.4	Vinyl Chloride	. 6
	3.3.5	1,3-Dichlorobenzene	. 6
	3.3.6	Seasonal Fluctuation	. 7
4.0	C	ONCLUSIONS AND RECOMMENDATIONS	. 8
4.	1	Findings and Conclusions	. 8
4.	2	Recommendations	. 8
5.0	CI	LOSING	Ç
60	D	EEEDENCES	1 (

i

ii

List of Tables

Table 1	June 2016 Groundwater Analytical Results
Table 2	Historical Groundwater Analytical Results
Table 3	Historical Groundwater Elevations

List of Figures

Figure 1	Site Location Map
Figure 2	Groundwater Monitoring Well Locations
Figure 3	Groundwater Elevations, June 2016 Groundwater Monitoring
Figure 4	Groundwater Concentrations – Southeast Area June 2016 Groundwater Monitoring
Figure 5a	MW-2 HVOC Detections Over Time
Figure 5b	MW-2 PCE Trend Over Time
Figure 6	MW-3 HVOC Detections Over Time
Figure 7	MW-4 HVOC Detections Over Time
Figure 8a	MW-10 and MW-10A HVOC Detections Over Time
Figure 8b	MW-10 and MW-10A Vinyl Chloride Trend Over Time
Figure 9	MW-13 HVOC Detections Over Time
Figure 10	PCE Detections Over Time
Figure 11	TCE Detections Over Time
Figure 12	Vinyl Chloride Detections Over Time

List of Appendices

Appendix A	Sample Integrity Data Sheets
Appendix B	Laboratory Analytical Reports

1.0 INTRODUCTION

This report presents the results of groundwater monitoring conducted by Golder Associates Inc. (Golder) at the Bear Creek Village Shopping Center during the month of September 2016.

1.1 Site Description

The site is currently developed as a shopping center known as the Bear Creek Village Shopping Center, located at 17100 - 17262 Redmond Way, in Redmond, King County, Washington (site). Figure 1 depicts the location of the site on a United States Geological Survey (USGS) topographic map. The existing shopping center development was constructed in phases in approximately 1969, 1977, and 1985. Before the existing shopping center, the site was agricultural land with several houses, outbuildings, and a small warehouse complex along the northern side. The shopping center includes two core building complexes, one stand-alone multi-tenant retail-strip building, and three pad buildings (Taco Time, Jiffy Lube [previously Q-Lube], and O'Reilly Auto Parts [previously Schuck's]). Paved parking areas and limited landscaped areas comprise the remaining area. A dry cleaning establishment known as Bear Creek Cleaners formerly operated in the site. Bear Creek Cleaners was located at the southeastern portion of the site and is the focus of this groundwater monitoring program. A brief background on the history of Bear Creek Cleaners and the resulting remedial investigations is provided below in Section 2.0.

1.2 Purpose and Scope

The purpose of this groundwater monitoring was to determine groundwater quality with respect to the presence of halogenated volatile organic compounds (HVOCs) as a result of the former Bear Creek Cleaners operations, and to obtain groundwater elevation data to determine the groundwater flow direction.

The scope of work for this groundwater monitoring included the following:

- Collection of groundwater samples from six on-site groundwater-monitoring wells (MW-2, MW-3, MW-4, MW-9, MW-10A, and MW-13).
- Collection of other data from these wells including groundwater level readings, pH, conductivity, dissolved oxygen, turbidity, oxidation-reduction potential, and temperature.
- Quality control procedures, including the analysis of a duplicate sample (duplicate collected from MW-4, which was identified with the sample number MW-44), an equipment blank, and a trip blank.
- Analysis of the groundwater and quality control samples for the presence of HVOCs using United States Environmental Protection Agency (EPA) Method 8260C.

2.0 BACKGROUND

2.1 Previous Environmental Investigations

Previous environmental investigations concerning the dry cleaner facility included the following:

■ Letter Report – Additional Soil and Groundwater Investigation – Bear Creek Cleaners, Dames & Moore, November 20, 1996.

2

- Summary Letter of Field Activities at the Bear Creek Cleaners and Q-Lube, Versar Inc., May 21, 1997.
- Memorandum Preliminary Summary of Results, Delta Environmental Consultants, Inc., September 3, 1997.

2.2 Independent Remedial Actions

An independent remedial action related to the release of perchloroethylene (PCE) from the former Bear Creek Cleaners was conducted in the latter part of 1997 and the early part of 1998. The remedial action is discussed in the following report:

■ Report – Voluntary Soil Cleanup – Former Bear Creek Cleaners – Bear Creek Village Shopping Center – Redmond, Washington, Dames & Moore, February 25, 1998.

Previous investigations conducted in 1996 and 1997 indicated the presence of HVOCs, primarily PCE, in soil and groundwater beneath and behind the dry cleaning establishment (Dames & Moore 1996; Versar Inc. 1997; Delta Environmental Consultants, Inc. 1997). Subsequent remedial action and investigation by Dames & Moore during the latter part of 1997 included the excavation of PCE-impacted soil from beneath and behind the dry cleaning establishment and the installation of 12 groundwater-monitoring wells (Dames & Moore 1998). The monitoring well locations were placed at various locations in the site for the following reasons:

- To determine the extent of HVOC-impacted groundwater around the dry cleaning establishment.
- To determine background groundwater quality to identify any HVOC-impacted groundwater coming from off-site sources or leaving the site.
- To assess the possible presence of petroleum hydrocarbons in groundwater near the Jiffy Lube facility.

Dames & Moore sampled groundwater from the monitoring wells on October 22, 1997 (Dames & Moore 1998). Analytical results for these samples (using EPA Method 8021B) indicated the presence of PCE and other HVOCs in groundwater along the eastern margin of the shopping center property. No petroleum hydrocarbons were detected in groundwater at the Jiffy Lube facility.

2.3 Groundwater Monitoring Frequency

Groundwater monitoring occurred at the site on a quarterly schedule from February 1999 through September 2005. ATC Associates Inc. (ATC) performed quarterly monitoring during the following periods:

- February, June, September, and December 1999
- March 2000

Two additional monitoring wells, MW-13 and MW-14, were installed by ATC in June 1999.

No sampling of groundwater was conducted during June 2000 due to changing consultants from ATC to Golder. Written notification of this change was submitted to the Washington State Department of Ecology (Ecology) in a letter dated September 7, 2000.

Golder resumed quarterly groundwater monitoring of MW-2, MW-3, MW-4, MW-9, MW-10A, and MW-13 (in addition to water level monitoring in MW-1, MW-5, MW-6, and MW-14) in September 2000 and has performed monitoring during the following periods:

- September and December 2000
- March, June, September, and December 2001
- March, June, September, and December 2002
- March, June, September, and December 2003
- March, June, September, and December 2004
- March, June, and September 2005

After the September 2005 sampling event, the sampling frequency was reduced from quarterly to semi-annually. On behalf of the property owner, Golder provided notice to Ecology regarding the change in sampling frequency (Golder 2005). The semi-annual sampling schedule has continued as follows:

- March and September 2006
- March and September 2007
- March and September 2008
- March and September 2009
- May and October 2010
- March and September 2011
- March and September 2012
- March and September 2013
- April and September 2014
- March and September 2015
- June and September 2016

The September 2016 analytical results are presented in Table 1. Historical analytical results for groundwater sampling conducted since 1999 are summarized in Table 2. A narrative of historical sampling activities was provided in previous monitoring reports.

3.0 GROUNDWATER SAMPLING

3.1 Groundwater Investigation Methods

On September 27, 2016, Golder sampled groundwater from five groundwater monitoring wells (MW-2, MW-4, MW-9, MW-10A, and MW-13). MW-3 was not sampled because it was dry. Figure 2 depicts the location of all pertinent on-site monitoring wells. Sampling conditions and data collected during the monitoring event were recorded on the Sample Integrity Data Sheets (SIDS) contained in Appendix A. The following methods and procedures were used in collecting the groundwater samples:

- Depth to groundwater was measured in all on-site wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-9, MW-10A, MW-13, and MW-14) prior to purging and sampling. Water levels were recorded on the SIDS. Table 3 presents depth to water measurements and elevations. Figure 3 depicts groundwater elevations and contours.
- Dedicated tubing is located in all groundwater-monitoring wells and is replaced as needed. New tubing was installed in all wells for the September 2016 event. After repositioning, each well was slowly purged of water at a rate of approximately 190 to 220 milliliters (mL) per minute using a peristaltic pump connected to the dedicated tubing.
- Field parameters of temperature, pH, conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential were measured and recorded during purging at 5-minute intervals until parameters were stable. All field parameters were recorded on the SIDS (Appendix A).
- Upon completion of purging, groundwater samples were collected directly from the dedicated sample tubing into bottles.
- For quality control purposes, a duplicate sample and equipment blank were collected. The duplicate sample was collected from MW-4, which was identified with the sample label MW-44. The equipment blank was collected after sampling at MW-4.
- For each groundwater sample, three 40-mL vials of groundwater were collected and preserved with hydrochloric acid. The samples were placed into laboratory-provided containers, labeled, and placed in a cooler with ice.
- The collected samples were transported to OnSite Environmental Inc. in Redmond, Washington for analysis on the same day as sample collection, following chain-of-custody protocols.

All groundwater and quality control samples were analyzed for the presence of HVOCs using EPA Method 8260C. The results of the field duplicate (MW-44) performed at MW-4 and the equipment blank were within acceptable limits and no quality assurance/quality control concerns were indicated. Results for the duplicate are included in Table 2 as bracketed results associated with MW-4. Figure 4 depicts the detected HVOC concentrations for the sampled wells. Figures 5a through 9 depict the detected concentrations of HVOCs for each well over time.

3.2 Groundwater Flow Direction

For the September 2016 groundwater sampling event, static groundwater levels were measured in all on-site monitoring wells (including those that are not sampled for HVOCs) on September 27, 2016. The groundwater levels found that day (as well as during historical sampling) are summarized in Table 3.

Commonly, groundwater elevations are at their highest levels during the wetter winter/spring months and lower during the drier summer/fall months. This trend was true for the September 2016 sampling event. The groundwater levels measured that day were similar to previous years' September/October events.

The groundwater elevation contour map for September 27, 2016 is depicted in Figure 3. There is some variability in groundwater flow direction across the site, but the inferred groundwater flow direction is generally west or northwesterly, away from Bear Creek. The groundwater gradient measured on September 27, 2016 is generally consistent with all prior monitoring periods, except that MW-3 was dry. This suggests that Bear Creek loses water to the aquifer. A steep hydraulic gradient is inferred just to the east of the former dry cleaner facility as evidenced by the groundwater contours between MW-3 and MW-4. A similar inferred steep gradient was also present in this general area on all previous groundwater elevation contour maps. This feature is unexpected in shallow alluvial aquifers such as the type present below the site.

3.3 Groundwater Quality

The groundwater analytical data for PCE, trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride detected in this round of sampling are summarized in Table 1. Table 2 contains the historical sampling results. Appendix B contains a copy of the laboratory analytical data report. The HVOC concentrations detected during this round of sampling are depicted in Figure 4. Groundwater HVOC concentrations and elevations with respect to time for MW-2, MW-3, MW-4, MW-10/10A, and MW-13 are depicted in Figures 5a, 6, 7, 8a, and 9 for the last 18 years.

PCE or its degradation compounds were detected in four of the five monitoring wells sampled during this period. All four wells with PCE or degradation compound detections (TCE, cis-1,2-DCE, and vinyl chloride) were located on the eastern side of the former dry cleaner facility (MW-2, MW-4, MW-10A, and MW-13).

3.3.1 Perchloroethylene

PCE was detected in MW-2, MW-4, and MW-13 at concentrations of 1.6 micrograms per liter (μ g/L), 0.42 μ g/L, and 3.2 μ g/L, respectively. The practical quantitation limit, or PQL, is 0.20 μ g/L. PCE concentrations did not exceed the Model Toxics Control Act (MTCA) Method A Cleanup Level of 5.0 μ g/L in any wells during the September 2016 sampling event. PCE has never been detected in MW-9. Figure 5b depicts the trend of PCE detections in MW-2 over time. The trendline indicates that PCE is decreasing in MW-2, albeit some seasonal variation in concentrations does occur. Concentrations of PCE in MW-2 have been less than the MTCA cleanup level for the past seven sampling events (since September 2012). Figure 10 depicts the PCE detections for all of the routinely sampled wells since 1999. This figure shows an overall decline of PCE concentrations over time across the site. The trend of MW-13 has remained constant since 2008.

TCE was detected at concentrations greater than or equal to the PQL (0.20 µg/L) in three of the five wells sampled (MW-2, MW-4, and MW-13) at concentrations of 0.47 μg/L, 1.1 μg/L, and 3.9 μg/L, respectively. TCE concentrations did not exceed the MTCA Method A Cleanup Level of 5.0 µg/L in any of the sampled wells. TCE has never been detected in MW-9. Figure 11 depicts the TCE detections for MW-2, MW-3, MW-4, MW-10A, and MW-13 since 1997. This figure shows an overall decline of TCE concentrations over time across the site. MW-13 has a slight increasing trend since 2011, however remains below cleanup level.

6

3.3.3 Cis-1,2-Dichloroethene

Cis-1,2-DCE was detected at concentrations greater than or equal to the PQL (0.20 µg/L) in four of the five sampled wells (MW-2, MW-4, MW-10A, and MW-13) at concentrations of 4.4, 5.5, 3.2, and 1.1 µg/L, respectively. The concentrations of cis-1,2-DCE detected during the September 2016 sampling event were less than the current MTCA Method B Cleanup Level of 16 μg/L in all wells. Cis-1,2-DCE has never been detected at a concentration exceeding the current or historical (80 µg/L) MTCA Method B Cleanup Level in effect in any of the wells. Cis-1,2-DCE was detected in MW-9 during the 2002 sampling periods, but not during previous or subsequent sampling periods.

3.3.4 Vinyl Chloride

Vinyl chloride was detected at concentrations greater than or equal to the PQL of 0.2 μ g/L in one of the five sampled wells (MW-10A) at a concentration of 0.37 µg/L during the September 2016 sampling event. The concentration of vinyl chloride detected during the September 2016 sampling event was greater than the MTCA Method A Cleanup Level of 0.2 µg/L. Vinyl chloride has never been detected in MW-9. Figure 12 depicts the vinyl chloride detections for MW-2, MW-3, MW-4, MW-10A, and MW-13 since 1997. This figure shows an overall site-wide decline of vinyl chloride concentrations.

3.3.5 1,3-Dichlorobenzene

1,3-Dichlorobenzene was not detected in any of the groundwater samples, or equipment blank samples, collected during the September 2016 event. During the September 2007, March 2008, and more recently in the September 2011 event, 1,3-Dichlorobenzene was detected at concentrations greater than the PQL (0.20 µg/L) in groundwater samples. The detection of this compound during the 2007, 2008, and 2011 events is attributed to the degradation of the dedicated tubing located in the monitoring wells at that time. In all events, the concentrations of 1,3-Dichlorobenzene in the samples ranged from 0.24 to 0.32 µg/L. The dedicated tubing in all wells was replaced before the September 2008 and March 2012 events and as a result, 1,3-Dichlorobenzene was not detected in any of the groundwater samples or equipment blank samples in subsequent sampling events.

3.3.6 Seasonal Fluctuation

Figures 5a, 6, 7, 8a, and 8b depict the groundwater levels along with the detected HVOC concentrations for each well over time. These figures show that groundwater levels fluctuate seasonally and some of the HVOC detections appear to fluctuate as well. For example, detections of TCE and cis-1,2-DCE in MW-2 appear to be inversely proportional to the groundwater levels such that when the groundwater is at its lowest point (typically during the September sampling events) the TCE and cis-1,2-DCE concentrations are at their highest (Figure 5a). During high groundwater levels, the concentrations of TCE and cis-1,2-DCE appear to be low. This trend was also occurring in MW-4 for cis-1,2-DCE until the September 2007 sampling event when a potential increase in degradation of PCE seems to have occurred, as indicated by the drop in PCE accompanied by an increase in TCE and cis-1,2-DCE concentrations (Figure 7). The degradation rate seems to have leveled off around March 2011 and the seasonal fluctuations seen before have returned.

PCE concentrations appear to be directly proportional to the seasonal variations in groundwater levels such that when groundwater levels are high, the PCE concentrations are high, and when groundwater levels decrease, the PCE concentrations decrease as well. This seasonal fluctuation is most notable in wells MW-4 and MW-13 (Figures 7 and 9).

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Findings and Conclusions

The findings and conclusions of this Groundwater Monitoring Report are summarized as follows:

- During the September 2016 sampling event, only MW-10A had a detection of vinyl chloride exceeding the MTCA Method A Cleanup Level. The remaining wells had no detections of any of the constituents of concern (COCs) exceeding MTCA Method A Cleanup Levels.
- The current results indicate an overall decrease in PCE concentrations has occurred in MW-2, MW-4, MW-10A, and MW-13 since March 2007. PCE has not exceeded the MTCA cleanup level in any of the wells since 2012. PCE has not been detected in MW-10A since the March 2007 sampling event.
- A general leveling of HVOC concentrations in the wells, particularly MW-2 and MW-13, is indicated over the last five years of groundwater monitoring.

4.2 Recommendations

Based on the findings and conclusions of the September 2016 groundwater monitoring period, the following recommendations are made:

- The sampling program at the site will continue on the semi-annual sampling schedule (typically March and September) until two consecutive "clean" monitoring events are achieved in a row at which time the frequency will be increased to quarterly sampling to confirm that results are clean during all seasons of the year. Thus, the next routine semi-annual monitoring event should be scheduled for March 2017.
- The wells sampled during the next groundwater monitoring event should include MW-2, MW-3, MW-4, MW-9, MW-10A, and MW-13, for the following reasons:
 - Sampling of all six wells should continue in order to confirm trends in HVOC concentrations and to support the goal of four consecutive sampling periods with HVOC concentrations that are less than MTCA Method A Cleanup Levels.
 - Sampling of MW-9 should continue because it represents the nearest down-gradient well from the former dry cleaner facility.

5.0 CLOSING

Golder Associates Inc. is pleased to continue working on the Bear Creek Village Shopping Center project. If you have any questions regarding this report, please feel free to contact Eric Adams at (425) 883-0777.

GOLDER ASSOCIATES INC.

Eric Adams

Staff Hydrogeologist

Doug Dunster

Principal and Senior Consultant

EA/DGD/sb

6.0 REFERENCES

- Dames & Moore. 1996. Additional Soil and Groundwater Investigation Bear Creek Cleaners. November 20.
- Dames & Moore. 1998. Voluntary Soil Cleanup Former Bear Creek Cleaners Bear Creek Village Shopping Center Redmond, Washington. February 25.
- Delta Environmental Consultants, Inc. 1997. Memorandum Preliminary Summary of Results. September 3.
- Golder Associates Inc. (Golder). 2005. Correspondence Re: Notice of Revised Groundwater Monitoring Schedule Bear Creek Village Shopping Center 17100-17262 Redmond Way, Redmond, Washington. Prepared for Ching-Pi Wang, Washington State Department of Ecology. November 29.
- Versar Inc. 1997. Summary Letter of Field Activities at the Bear Creek Cleaners and Q-Lube. May 21.

TABLES

Table 1: September 2016 Groundwater Analytical Results

					Mo	onitoring V	Vell		
Analytes	Cleanup Level	Units	MW-2	MW-3	MW-4	MW-9	MW-10A	MW-13	MW-44*
PCE	5.0 (A)	μg/L	1.6		0.42	ND	ND	3.2	0.37
TCE	5.0 (A)	μg/L	0.47		1.1	ND	ND	3.9	1.1
VC	0.2 (A)	μg/L	ND		ND	ND	0.37	ND	ND
cis-1,2-DCE	16 (B) ¹	μg/L	4.4		5.5	ND	3.2	1.1	5.5
1,3-DCB		μg/L	ND		ND	ND	ND	ND	ND
Groundwat	er Elevation	ft amsl	34.76	Dry	29.94	30.42	29.92	36.52	29.94

Notes:

cis -1,2-DCE = cis -1,2-Dichloroethene

PCE = Perchloroethylene = Tetrachloroethylene

1,3-DCB = 1,3-Dichlorobenzene

TCE = Trichloroethene

VC = Vinyl Chloride

ND = indicates sample was not detected above the laboratory analytical detection limit.

(A) = MTCA Method A Cleanup Level (Model Toxics Control Act Cleanup Regulation - Chapter 173-340 WAC).

(B) = MTCA Method B formula value (Model Toxics Control Act Cleanup Regulation - Chapter 173-340

WAC and Model Toxics Control Act Cleanup Levels and Risk Calculations - February 1996).

Analytical results in parentheses represent duplicate samples.

Bold Italic = indicates the analytical result exceeds the MTCA Method A or B Cleanup Level.

Groundwater elevation determined using the surveyed elevation (NAVD 88 datum) of the top of each well casing. Elevations given in feet above mean sea level.

^{*} Duplicate sample collected at MW-4.

¹ Current (2014) MTCA Method B value. Historical value was 80 μg/L.

Table 2: Historical Groundwater Analytical Results

Monitoring	Sampling	Volatile Organic Compounds (μg/L)					
Well ID	Date	PCE	TCE	VC	cis-1,2-DCE		
	10/22/1997	36. 7	2.23	ND	7.52		
	2/19/1999	270	6	ND	6		
	6/29/1999	ND	ND	ND	ND		
	9/15/1999	51	ND	ND	ND		
	12/14/1999	150	ND	ND	ND		
	3/22/2000	39	ND	ND	ND		
	9/27/2000	41	ND	ND	ND		
	12/20/2000	34	ND	ND	ND		
	3/29/2001	82	2.3	ND	3		
	6/14/2001	51	1.7	ND	0.42		
	9/12/2001	36	3.8	0.22	3.3		
	12/18/2001	50	1.2	ND	0.33		
	3/26/2002	17 (18)	0.46 (0.45)	ND	0.31 (0.37)		
	6/10/2002	21 (21)	8.6 (7.0)	ND (ND)	2.6 (2.4)		
	9/12/2002	4.4	ND	ND	ND		
	12/9/2002	4.8	0.46	ND	0.33		
	3/13/2003	11	1.2	ND	1.1		
	6/17/2003	11	2.1	0.47	3		
	9/9/2003	*	*	*	*		
	12/9/2003	30 (28)	0.63 (0.68)	ND	ND		
	3/10/2004	17	0.6	ND	ND		
	6/9/2004	5.2	3.6	ND	2.3		
	9/22/2004	11	5.2	ND	3.6		
	12/13/2004	19	0.35	ND	ND		
	3/23/2005	10	2.1	ND	1.5		
MW-2	6/20/2005	13	0.74	ND	ND		
	9/8/2005	4.5	5.4	ND	6.2		
	3/6/2006	16	0.33	ND	ND		
	9/21/2006	6.1	3.6	ND	3.6		
	3/16/2007	14	0.47	ND	0.28		
	9/13/2007	8.8	4.4	ND	4.5		
	2/28/2008	9.6	0.22	ND	ND		
	9/8/2008	8.6 (8.1)	1.9 (1.9)	ND	0.96 (1.0)		
	3/24/2009	11(11)	0.38 (0.28)	ND	ND		
	9/18/2009	5.2	4	ND	6.4		
	5/18/2010	6	ND	ND	ND		
	10/7/2010	8.3	1.3	ND	1.1		
	3/23/2011	7.9	ND	ND	ND		
	9/8/2011	7.2	1.5	ND	1.2		
	3/23/2012	7.0	ND	ND	ND		
	9/14/2012	5.3	0.74	ND	0.52		
	3/28/2013	2.8	ND	ND	ND		
	9/4/2013	4.4	0.70	ND	0.53		
				100000	100000000		
	4/4/2014	3.3	ND	ND	ND		
	9/23/2014	2.9	0.73	ND	1.7		
	3/17/2015	2.6	ND	ND	ND		
	9/28/2015	1.2	0.54	ND	6.2		
	6/15/2016	2.3	0.2	ND	ND		
	9/27/2016	1.6	0.47	ND	4.4		

Table 2: Historical Groundwater Analytical Results

Monitoring	Sampling	Volatile Organic Compounds (µg/L)					
Well ID	Date	PCE	TCE	VC	cis -1,2-DCE		
	10/22/1997	ND	ND	ND	1.09		
	2/19/1999	28	11	7	18		
	6/29/1999	12	8	4	8		
	9/15/1999	ND	10	ND	10		
	12/14/1999	12	8	10	14		
	3/22/2000	7	5	ND	7		
	9/27/2000	ND	ND	ND	12		
	12/20/2000	2	ND	ND	8		
	3/29/2001	3.8	4.5	3.3	8.5		
	6/14/2001	3.8	4.6	1.5	4.1		
	9/12/2001	ND	1.4	0.79	6.2		
	12/18/2001	1.8	5.7	0.98	5.2		
	3/26/2002	0.39	1.5	0.9	3.5		
	6/10/2002	ND	0.95	0.96	3.3		
	9/10/2002	0.23	1.3	0.74	4.3		
	12/9/2002	ND	0.55	0.74	2.6		
	3/13/2003	ND	0.5(0.50)	0.45(0.45)	2.7(2.7)		
	6/17/2003	ND	0.22	0.53	3		
	9/9/2003	ND	ND	0.36	2.7		
	12/9/2003	ND	0.45	0.33	3.1		
	3/11/2004	ND	0.48	0.42	1.8		
	6/9/2004	ND	ND	0.35	1.9		
	9/22/2004	ND	ND	0.51	2.0		
MW-3	12/13/2004	ND	0.25	0.31	2.4		
	3/23/2005	ND	ND	0.28	2.0		
	6/20/2005	ND	ND	ND	1.2 (1.3)		
	9/8/2005	ND	ND	0.23	1.1		
	3/16/2007	ND	ND	ND ND	0.88		
	9/13/2007	ND	ND	ND	0.62		
	2/28/2008	ND	ND	0.22	0.88		
	9/8/2008	ND	ND	ND ND	0.47		
	3/24/2009	ND	ND	ND ND	0.56		
	9/18/2009	ND	ND	ND ND	0.72 (0.73)		
	5/18/2010	ND	ND	ND ND	0.48 (0.52)		
	10/7/2010	ND	ND	ND	0.36		
	3/23/2011	ND	ND	ND	0.41		
	9/8/2011	ND	ND	ND	0.32		
	3/23/2012	ND	ND	ND ND	0.53		
	9/14/2012	ND	ND	ND ND	0.33		
		ND					
	3/28/2013		ND	ND	0.35		
	9/4/2013	ND	ND	ND	0.34		
	4/4/2014	ND	ND	ND	0.38		
	9/23/2014	ND	ND	ND	0.23		
	3/17/2015	ND	ND	ND	0.41		
	9/28/2015	ND	ND	ND	0.31		
	6/15/2016	ND	ND	ND	0.27		

Table 2: Historical Groundwater Analytical Results

Monitoring	Sampling	Volatile Organic Compounds (µg/L)					
Well ID	Date	PCE	TCE	VC	cis-1,2-DCE		
	10/22/1997	11.8	5.99(0.50)	1.9	6.84		
	2/19/1999	74	17	16	26		
	6/29/1999	60	16	14	14		
	9/15/1999	42	19	19	16		
	12/14/1999	38	14	12	12		
	3/22/2000	36	9	ND	8		
	9/27/2000	16	12	8	14		
	12/20/2000	16	8	ND	8		
	3/29/2001	11	7.5	2.8	5.1		
	6/14/2001	6.8	6.1	1	2.1		
	9/12/2001	8.3	6.8	1.3	5.7		
	12/18/2001	12	6.3	1.7	3.4		
	3/26/2002	5.1	2.4	ND	1.1		
	6/10/2002	5.7	2.7	0.57	2		
	9/12/2002	5.4	3.9	0.66	3.4		
	12/9/2002	5	3	1.6	2.9		
	3/13/2003	6.3	1.8	ND	0.71		
	6/17/2003	2.7	2.6	0.69	4.4		
	9/9/2003	3.5	2.8	0.42	3.2		
	12/9/2003	5.7	2.5	0.37	2.9		
	3/11/2004	4.1	1.8	0.23	2.0		
	6/9/2004	1.8	2.2	0.33	2.4		
	9/22/2004	1	1.4	0.68	2.1		
	12/13/2004	3.8	1.3	ND	0.93		
MW-4	3/23/2005	2.2	1.0	ND	1.5		
45745450000 - 15500	6/20/2005	0.74	0.93	0.57	2.1		
	9/8/2005	0.64 (0.65)	0.88 (0.88)	ND (ND)	2.3 (2.3)		
	3/6/2006	1.5 (1.4)	1.2 (1.3)	0.36 (0.33)	0.82 (0.85)		
	9/21/2006	0.99 (0.85)	1.1 (1.1)	0.22 (0.25)	1.7 (2.1)		
	3/16/2007	2.6 (2.7)	1.7 (1.7)	ND (ND)	1.2 (1.2)		
	9/13/2007	0.68 (0.63)	0.65 (0.71)	ND (ND)	1.2 (1.3)		
	2/28/2008	0.73 (0.72)	0.64 (0.61)	0.2 (ND)	1.1 (1.1)		
	9/8/2008	0.23	2.2	ND ND	4.6		
	3/24/2009	0.56	2.9	ND	4.8		
	9/18/2009	ND	1.2	ND	8.8		
	5/18/2010	0.27	1.6	ND	6.9		
	10/7/2010	ND ND	0.52	ND	2.4		
	3/23/2011	0.46	0.48	ND	0.66		
	9/8/2011	0.23 (0.25)	0.52 (0.58)	ND (ND)	5.6 (5.1)		
	3/23/2012	0.36 (0.34)	0.58 (0.57)	ND (ND)	0.48 (0.47)		
	9/14/2012	ND (ND)	0.23 (0.29)	ND (ND)	5.4 (6.1)		
	3/28/2013	ND (ND)	0.63 (0.62)	ND (ND)	3.4 (3.5)		
	9/4/2013	ND (ND)	0.21 (0.21)	ND (ND)	6.8 (6.7)		
	4/4/2014	0.31 (0.29)	0.37 (0.36)	ND (ND)	0.83 (0.85)		
	9/23/2014	ND (ND)	ND (ND)	ND (ND)	3.8 (3.9)		
	3/17/2015	ND (ND)	0.32 (0.34)	ND (ND)	5.1 (5.4)		
					The same of the same of the same		
	9/28/2015	ND (ND)	ND (ND)	ND (ND)	4.6 (4.6)		
	6/15/2016 9/27/2016	ND (ND) 0.42 (0.37)	ND (ND) 1.1 (1.1)	ND (ND) ND (ND)	6.0 (5.7) 5.5 (5.5)		

Table 2: Historical Groundwater Analytical Results

M onitoring	Sampling	Volatile Organic Compounds (μg/L)					
Well ID	Date	PCE TCE VC cis-1,2-DCE					
	10/22/1997	ND	ND	ND	ND		
	2/19/1999	ND	ND	ND	ND		
	6/29/1999	ND	ND	ND	ND		
	9/15/1999	ND	ND	ND	ND		
	12/14/1999	ND	ND	ND	ND		
	3/22/2000	ND	ND	ND	ND		
	9/28/2000	ND	ND	ND	ND		
	12/20/2000	ND	ND	ND	ND		
	3/28/2001	ND	ND	ND	ND		
	6/14/2001	ND	ND	ND	ND		
	9/12/2001	ND	ND	ND	ND		
	12/18/2001	ND	ND	ND	ND		
	3/26/2002	ND	ND	0.21	0.44		
	6/10/2002	ND	ND	ND	0.21		
	9/10/2002	ND	ND	ND	0.46		
	12/9/2002	ND	ND	ND	0.26		
	3/13/2003	ND	ND	ND	ND		
	6/18/2003	ND	ND	ND	ND		
	9/9/2003	ND	ND	ND	ND		
	12/9/2003	ND	ND	ND	ND		
	3/10/2004	ND	ND	ND	ND		
	6/9/2004	ND	ND	ND	ND		
	9/22/2004	ND	ND	ND	ND		
	12/13/2004	ND	ND	ND	ND		
	3/23/2005	ND	ND	ND	ND		
MW-9	6/20/2005	ND	ND	ND	ND		
	9/8/2005	ND	ND	ND	ND		
	3/6/2006	ND	ND	ND	ND		
	9/21/2006	ND	ND	ND	ND		
	3/16/2007	ND	ND	ND	ND		
	9/13/2007	ND	ND	ND	ND		
	2/28/2008	ND	ND	ND	ND		
	9/8/2008	ND	ND	ND	ND		
	3/24/2009	ND	ND	ND	ND		
	9/18/2009	ND	ND	ND	ND		
	5/18/2010	ND	ND	ND	ND		
	10/7/2010	ND	ND	ND	ND		
	3/23/2011	ND	ND	ND	ND		
	9/8/2011	ND	ND	ND	ND		
	3/23/2012	ND	ND	ND	ND		
	9/14/2012	ND	ND	ND	ND		
	3/28/2013	ND	ND	ND	ND		
	9/4/2013	27/00/20		S244450	f(5000		
		ND	ND	ND	ND		
	4/4/2014	ND	ND	ND	ND		
	9/23/2014	ND	ND	ND	ND		
	3/17/2015	ND	ND	ND	ND		
	9/28/2015	ND	ND	ND	ND		
	6/15/2016	ND	ND	ND	ND		
	3/ 10/2010	110	IND	IND	ND		

Table 2: Historical Groundwater Analytical Results

Monitoring	Sampling	Volatile Organic Compounds (µg/L)					
Well ID		PCE	TCE	VC	cis -1,2-DCE		
		ND	ND	1.39	2.53		
	2/19/1999	67	14	ND	22		
	6/29/1999	30	14	ND	11		
	9/15/1999	7	8	ND	7		
	12/14/1999	15	14	ND	21		
	3/22/2000	17	9	ND	11		
	9/28/2000	3	5	ND	5		
	12/20/2000	4	ND	ND	6		
	3/28/2001	4.2 (4.6)	6.6 (6.2)	2.1 (2.2)	11 (10)		
	6/14/2001	4.4	6	0.97	4.6		
	9/12/2001	1.1	4.4	1.2	3.6		
	12/18/2001	1.8	5.7	0.98	5.2		
MW-10	3/26/2002	1.1	5.1	0.76	5.1		
10100	6/10/2002	0.28	4.8	0.95	4.5		
	9/10/2002	1.3	2	ND	2.4		
	12/9/2002	ND	2.5	0.61	4.9		
	3/13/2003	ND	2.2	0.22	3.1		
	6/18/2003	ND	1.6	0.38	5.7		
	9/9/2003	ND	0.84	0.33	1.9		
	12/9/2003	0.31	3.6	0.59	7.5		
	3/11/2004	ND	2.8	0.53	5.7		
	6/9/2004	ND	0.64	1.3	4.4		
	9/22/2004	ND	0.94	1.1	3.2		
	12/13/2004	ND	0.81	0.51	4.8		
	3/23/2005	ND	0.62	0.62	4.1		
	6/20/2005	0.5	1.5	0.25	3.9		
	3/16/2007	1.1	1.1	0.28	7.10		
	9/13/2007	ND	1.5	ND	9.1		
	2/28/2008	ND	0.82	0.33	14		
	9/8/2008	ND	0.21	0.34	8.7		
	3/24/2009	ND	ND	0.24	6.5		
	9/18/2009	ND	ND	0.27	5		
	5/18/2010	ND	ND	0.52	5.2		
	10/7/2010	ND	ND	0.26 (0.21)	6.4 (6.3)		
	3/23/2011	ND	ND	ND (ND)	6.8 (6.8)		
MW-10A	9/8/2011	ND	ND	0.43	4.1		
IVIVV-1UA	3/23/2012	ND	ND	0.21	4.5		
	9/14/2012	ND	ND	ND	4.1		
	3/28/2013	ND	ND	ND	4.7		
	9/4/2013	ND	ND	0.54	5.9		
	4/4/2014	ND	ND	ND	4.2		
	9/23/2014	ND	ND	0.39	5.5		
	3/17/2015	ND	ND	0.65	5.9		
	9/28/2015	ND	ND	0.41	3.7		
	6/15/2016	ND	ND	0.91	5.8		
	9/27/2016	ND	ND	0.37	3.2		
	UIZ I IZU IU	140	IND	0.07	J.2		

Table 2: Historical Groundwater Analytical Results

Monitoring	Sampling	Volatile Organic Compounds (µg/L)					
Well ID	Date	PCE	TCE	VC	cis -1,2-DCE		
	6/29/1999	54	42	ND	45		
	9/15/1999	38	35	ND	41		
	12/14/1999	53	48	ND	67		
	3/22/2000	58	40	ND	28		
	9/27/2000	27	19	ND	16		
	12/20/2000	24	13	ND	9		
	3/28/2001	19	18	0.78	15		
	6/14/2001	24	17	0.49	6		
	9/12/2001	20	12	ND	4.5		
	12/18/2001	26	27	0.44	14		
	3/26/2002	24	21	ND	12		
	6/11/2002	22	14	ND	6.5		
	9/12/2002	14 (12)	11 (9.2)	ND (0.24)	5.8 (4.6)		
	12/9/2002	10 (10)	6.5 (6.6)	0.30 (0.29)	2.8 (2.7)		
	3/13/2003	12	9.3	0.27	3.8		
	6/18/2003	10	6.8	ND	4.3		
	9/9/2003	10	6.7	ND	1.9		
	12/9/2003	12	7.2	ND	2.7		
	3/10/2004	16 (15)	7.7 (7.4)	ND	2.2 (2.2)		
	6/9/2004	7.9	5.9	ND	2.3		
	9/22/2004	11(11)	7.7 (7.8)	ND (ND)	2.7 (2.7)		
	12/13/2004	9.7	5.9	ND	2.3		
	3/23/2005	8.0	5.1	ND	1.7		
MW-13	6/20/2005	4.9	3.1	ND	1.0		
	9/8/2005	5.0	3.9	ND	1.5		
	3/6/2006	8.2	3.5	ND	0.78		
	9/21/2006	4.2	2.8	ND	0.67		
	3/16/2007	6.8	3.1	ND	0.81		
	9/13/2007	3.1	2.2	ND	0.59		
	2/28/2008	5.7	1.4	ND	0.35		
	9/8/2008	1.8	2.4	ND	0.57		
	3/24/2009	4.3	1.4	ND	0.47		
	9/18/2009	2	2.2	ND	0.66		
	5/18/2010	4	1.4	ND	0.37		
	10/7/2010	1.9	2.5	ND	0.66		
	3/23/2011	4.8	1	ND	ND		
	9/8/2011	1.5	2.2	ND	0.47		
	3/23/2012	4.5	2.1	ND	0.55		
	9/14/2012	1.5	2	ND	0.51		
	3/28/2013	4.1	2.7	ND ND	0.87		
	9/4/2013	3.1	3.4	ND ND	1.4		
	4/4/2014	4.4	2.2	ND ND	0.54		
	9/23/2014	3.7					
	3/17/2015		3.8	ND	1.1		
		3.5	2.9	ND	1.2		
	9/28/2015 6/15/2016	4.3	3.6	ND ND	0.74		

Table 2: Historical Groundwater Analytical Results

Monitoring	Sampling	Volatile Organic Compounds (μg/L)					
Well ID	Date	PCE	TCE	VC	cis-1,2-DCE		
	10/22/1997	ND	ND	7.7	25.2		
	2/19/1999	ND	ND	ND	ND		
MW-1	6/29/1999	ND	ND	ND	ND		
	9/15/1999	ND	ND	ND	ND		
	12/14/1999	ND	ND	ND	ND		
	3/22/2000	ND	ND	ND	ND		
	10/22/1997	1.58	2.55	ND	ND		
	2/19/1999	ND	ND	ND	ND		
MW-5	6/29/1999	ND	ND	ND	ND		
WWW O	9/15/1999	ND	ND	ND	ND		
	12/14/1999	ND	ND	ND	ND		
	3/22/2000	ND	ND	ND	ND		
MW-6	10/22/1997	ND	ND	ND	ND		
	2/19/1999	ND	ND	ND	ND		
MW-7	10/22/1997	ND	ND	ND	ND		
	2/18/1999	ND	ND	ND	ND		
MW-8	10/22/1997	ND	ND	ND	ND		
	2/18/1999	ND	ND	ND	ND		
MW-11	10/22/1997	ND	ND	ND	ND		
	2/18/1999	ND	ND	ND	ND		
MW-12	10/22/1997	ND	ND	ND	ND		
10100-12	2/19/1999	ND	ND	ND	ND		
	6/29/1999	ND	ND	ND	ND		
	9/15/1999	ND	ND	ND	ND		
	12/14/1999	ND	ND	ND	ND		
	3/22/2000	ND	ND	ND	ND		
MW-14	9/27/2000	ND	ND	ND	ND		
	12/20/2000	ND	ND	ND	ND		
	3/28/2001	ND	ND	ND	ND		
	6/14/2001	ND	ND	ND	ND		
	9/12/2001	ND	ND	ND	ND		
MTCA Clear	nup Levels	5.0 A	5.0 A	0.2 A	16 B 1		

Notes:

Analytical results in parentheses represent duplicate samples.

Bold Italic = indicates the analytical result exceeds the MTCA Method A or B Cleanup Level.

ND = indicates sample was not detected above the laboratory analytical detection limit.

A = MTCA Method A Cleanup Level (Model Toxics Control Act Cleanup Regulation - Chapter 173-340 WAC).
B = MTCA Method B formula value (Model Toxics Control Act Cleanup Regulation - Chapter 173-340 WAC and

Model Toxics Control Act Cleanup Levels and Risk Calculations - February 1996).

¹ Current (2014) MTCA Method B value. Historical value was 80 µg/L.

* Groundwater elevation resided beneath the well screen. Sample could not be collected.

cis-1,2-DCE = cis-1,2-Dichloroethene

PCE = Perchloroethylene = Tetrachloroethylene

TCE = Trichloroethene

VC = Vinyl Chloride

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	43.70	10/22/1997	12.41	31.29
			1/14/1998	10.06	33.64
			2/18/1999	8.86	34.84
			6/29/1999	12.35	31.35
			9/15/1999	13.45	30.25
			12/14/1999	9.01	34.69
			3/22/2000	10.14	33.56
			9/27/2000	13.59	30.11
			12/20/2000	12.60	31.10
			3/29/2001	12.30	31.40
1			6/13/2001	12.06	31.64
1			9/12/2001	13.43	30.27
			12/17/2001	6.63	37.07
1			3/26/2002	9.82	33.88
Ì			6/10/2002	11.85	31.85
1			9/10/2002	13.33	30.37
1			12/9/2002	13.80	29.90
1			3/12/2003	11.22	32.48
			6/17/2003	12.41	31.29
			9/9/2003	14.02	29.68
-			12/9/2003	9.59	34.11
1			3/10/2004		33.49
				10.21	- Contraction
			6/9/2004	12.85	30.85
			9/22/2004	12.91	30.79
			12/13/2004	11.17	32.53
MW-1			3/23/2005	12.55	31.15
			6/20/2005	10.95	32.75
			9/8/2005	13.49	30.21
			3/6/2006	9.89	33.81
			9/21/2006	12.55	31.15
			3/16/2007	9.77	33.93
			9/13/2007	13.26	30.44
	New Elevation***	43.69	2/28/2008	9.68	34.01
			9/8/2008	NC	NC
			3/24/2009	9.91	33.78
			9/18/2009	12.91	30.78
			5/18/2010	10.01	33.68
			10/7/2010	12.58	31.11
			3/23/2011	9.01	34.68
			9/8/2011	13.03	30.66
			3/23/2012	8.27	35.42
	New Elevation****	47.39	7/9/2012		
			9/14/2012	Dry	Dry
			3/28/2013	10.34	37.05
			9/4/2013	14.15	33.24
			4/4/2014	9.27	38.12
			9/23/2014	12.44	34.95
			3/17/2015	9.52	37.87
			9/28/2015	Dry	Dry
			6/15/2016	11.33	36.06
			9/27/2016	Dry	Dry

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	44.95	10/22/1997	16.70	28.25
			1/14/1998	11.51	33.44
			2/18/1999	(feet below TOC) 16.70	37.52
4			6/29/1999	12.97	31.98
			9/15/1999	15.46	29.49
			12/14/1999	7.77	37.18
			3/22/2000	7.77	37.18
			9/27/2000	16.41	28.54
			12/20/2000	11.83	33.12
			3/28/2001	9.67	35.28
			6/13/2001	9.85	35.10
			9/12/2001	17.30	27.65
			12/17/2001	6.42	38.53
			3/26/2002	7.72	37.23
			6/10/2002	10.05	34.90
			9/10/2002	7.11	37.84
			12/9/2002		29.85
			3/12/2003		35.55
			6/17/2003		30.01
			9/9/2003		below screen
			12/9/2003		35.99
			3/10/2004	/8535283L	34.53
			6/9/2004	Noted Affice	32.63
			9/22/2004	Alexandra records	32.70
			12/13/2004		35.50
MW-2			3/23/2005		34.74
10100-2			6/20/2005		35.24
			9/8/2005		31.75
			3/6/2006	800000000	36.89
			9/21/2006		32.88
			3/16/2007		36.95
1	N 51 11 444	45.04	9/13/2007		32.37
	New Elevation***	45.01	2/28/2008		36.32
-			9/8/2008		34.21
-			3/24/2009		36.16
-			9/18/2009		31.86
-			5/18/2010		35.91
			10/7/2010		33.84
			3/23/2011		37.46
			9/8/2011		33.44
1	12 W 12 V 12 V 10 V 10 V 10 V 10 V 10 V 10 V		3/23/2012	6.97	38.04
	New Elevation****	48.59	7/9/2012		
			9/14/2012		36.79
			3/28/2013		40.58
			9/4/2013		37.18
			4/4/2014	7.54	41.05
[9/23/2014	12.25	36.34
			3/17/2015	7.84	40.75
			9/28/2015	13.56	35.03
			6/15/2016	10.18	38.41
			9/27/2016	13.83	34.76

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	45.27	10/22/1997	17.11	28.16
			1/14/1998	14.26	31.01
			2/18/1999	12.43	32.84
			6/29/1999	17.36	27.91
			9/15/1999	18.70	26.57
			12/14/1999	12.72	32.55
			3/22/2000	14.22	31.05
			9/27/2000	18.72	26.55
			12/20/2000	17.13	28.14
			3/28/2001	16.81	28.46
			6/13/2001	16.82	28.45
			9/12/2001	18.40	26.87
			12/17/2001	10.67	34.60
			3/26/2002	13.52	31.75
			6/10/2002	16.53	28.74
			9/10/2002	18.35	26.92
			12/9/2002	18.12	27.15
			3/12/2003	15.50	29.77
			6/17/2003	17.09	28.18
			9/9/2003	19.30	25.97
			12/9/2003	13.70	31.57
1			3/10/2004	14.02	31.25
			6/9/2004	17.46	27.81
			9/22/2004	17.48	27.59
MW-3			12/13/2004	16.31	28.96
				15.04	30.23
			3/23/2005		
			6/20/2005	16.11	29.16
			9/8/2005	18.48	26.79
			3/16/2007	13.15	32.12
			9/13/2007	17.93	27.34
			2/28/2008	12.45	32.82
			9/8/2008	15.15	30.12
			3/24/2009	13.99	31.28
			9/18/2009	17.73	27.54
			5/18/2010	13.96	31.31
			10/7/2010	16.73	28.54
			3/23/2011	10.34	34.93
			9/8/2011	17.47	27.80
			3/23/2012	9.03	36.24
	New Elevation****	48.91	7/9/2012		
			9/14/2012	18.41	30.5
			3/28/2013	10.47	38.44
			9/4/2013	17.46	31.45
			4/4/2014	9.34	39.57
			9/23/2014	15.47	33.44
			3/17/2015	8.54	40.37
			9/28/2015	17.56	31.35
			6/15/2016	12.52	36.39

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	44.44	10/22/1997	16.18	28.26
	silted up to 18-19'		1/14/1998	(feet below TOC)	31.31
			2/18/1999		32.59
			6/29/1999	15.44	29.00
			9/15/1999	17.76	26.68
			12/14/1999	9.46	34.98
			3/22/2000	10.50	33.94
			12/9/2002	15.97	28.47
			12/20/2000	12.66	31.78
			3/28/2001	9.64	34.80
			6/13/01/	9.68	34.76
			9/12/2001	15.32	29.12
			12/17/2001	8.42	36.02
			3/26/2002	8.60	35.84
			6/10/2002	10.24	34.20
			9/10/2002	14.40	30.04
			12/9/2002	15.50	28.94
			3/12/2003		35.44
			6/17/2003		33.91
			9/9/2003	100000000000000000000000000000000000000	31.24
			12/9/2003		34.88
			3/10/2004		35.98
			6/9/2004		32.47
			9/22/2004		31.61
			12/13/2004	20000000	34.58
MW-4			3/23/2005		28.08
			6/20/2005	1,000,000	34.41
			9/8/2005		30.91
			3/6/2006		36.34
			9/21/2006		29.63
			3/16/2007		33.99
			9/13/2007		29.99
	New Elevation***	44.32	2/28/2008		33.58
	New Lievation	44.32	9/8/2008	2000	29.62
			3/24/2009		31.52
			9/18/2009	251/100 x 51/100	27.76
			5/18/2010	7.5	30.32
			10/7/2010		28.84
			3/23/2011		33.89
			9/8/2011		27.70
			3/23/2012		35.30
	New Elevation****	47.96	7/9/2012		
	, ton Licration	47.50	9/14/2012		30.6
			3/28/2013		35.88
			9/4/2013		30.77
			4/4/2014		36.26
					31.30
			9/23/2014		
			3/17/2015		35.59
			9/28/2015		30.59
			6/15/2016		31.49
			9/27/2016	18.02	29.94

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	44.87	10/22/1997	14.42	30.02
			1/14/1998	NA**	NA**
			2/18/1999	7.69	37.18
			6/29/1999	10.10	34.77
			9/15/1999	11.12	33.75
			12/14/1999	8.06	36.81
		a a	3/22/2000	8.25	36.62
			9/27/2000	11.58	33.29
			12/20/2000	9.84	35.03
			3/29/2001	9.51	35.36
			6/13/2001	9.32	35.55
			9/12/2001	10.63	34.24
			12/17/2001	6.60	38.27
			3/26/2002	7.21	37.66
			6/10/2002	9.65	35.22
			9/10/2002	9.30	35.57
			12/9/2002	9.66	35.21
			3/12/2003	8.38	36.49
			6/17/2003	9.97	34.9
			9/9/2003	11.64	33.23
			12/9/2003	8.66	36.21
			3/10/2004	7.91	36.96
			6/9/2004	11.36	33.51
			9/22/2004	10.15	34.72
			12/13/2004	8.91	35.96
AAA/ 5			3/23/2005	10.04	34.83
MW-5				7.77.7	35.87
			6/20/2005	9.00	15.50, 1.6
			9/8/2005	10.83	34.04
			3/6/2006	7.77	37.10
			9/21/2006	10.61	34.26
			3/16/2007	7.15	37.72
		11.00	9/13/2007	10.44	34.43
	New Elevation***	44.92	2/28/2008	8.82	36.10
			9/8/2008	9.79	35.13
			3/24/2009	8.71	36.21
			9/18/2009	10.97	33.95
			5/18/2010	9.02	35.90
			10/7/2010	9.98	34.94
			3/23/2011	6.86	38.06
			9/8/2011	10.42	34.50
			3/23/2012	6.35	38.57
	New Elevation****	48.52	7/9/2012		
			9/14/2012	10.69	37.83
			3/28/2013	7.93	40.59
			9/4/2013	10.43	38.09
			4/4/2014	8.09	40.43
			9/23/2014	10.13	38.39
			3/17/2015	6.37	42.15 ¹
			9/28/2015	10.52	38.00
			6/15/2016	9.73	38.79
			9/27/2016	11.13	37.39

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	45.22	10/22/1997	11.01	33.43
			1/14/1998	9.63	35.59
			2/18/1999	8.43	36.79
			6/29/1999	10.70	34.52
			9/15/1999	11.86	33.36
			12/14/1999	8.69	36.53
			3/22/2000	8.80	36.42
			9/27/2000	11.24	33.98
			12/20/2000	10.45	34.77
			3/28/2001	10.19	35.03
			6/13/2001	9.83	35.39
			9/12/2001	10.69	34.53
			12/17/2001	7.61	37.61
			3/26/2002	8.01	37.21
			6/10/2002	9.62	35.60
			12/9/2002	10.30	34.92
			3/12/2003	9.40	35.82
			6/17/2003	10.03	35.19
			9/9/2003	13.11	32.11
			12/9/2003	9.05	36.17
			3/10/2004	8.79	36.43
			6/9/2004	11.40	33.82
			9/22/2004	10.21	35.02
1			12/13/2004	9.71	35.51
			3/23/2005	9.84	35.38
MW-6				8.44	
-			6/20/2005	73.70	36.78
1			9/8/2005	10.55	34.67
-			3/6/2006	8.00	37.22
}			9/21/2006	10.06	35.16
-			3/16/2007	8.48	36.74
-	N	45.07	9/13/2007	10.17	35.05
-	New Elevation***	45.27	2/28/2008	9.13	36.14
-			9/8/2008	9.50	35.77
-			3/24/2009	9.09	36.18
-			9/18/2009	10.76	34.51
-			5/18/2010	9.30	35.97
-			10/7/2010	9.62	35.65
			3/23/2011	7.84	37.43
			9/8/2011	10.18	35.09
			3/23/2012	7.52	37.75
	New Elevation****	48.84	7/9/2012		
ļ			9/14/2012	10.51	38.33
			3/28/2013	8.20	40.64
[9/4/2013	9.81	39.03
			4/4/2014	7.90	40.94
Į			9/23/2014	9.30	39.54
[3/17/2015	7.95	40.89
[9/28/2015	10.54	38.30
			6/15/2016	9.58	39.26
			9/27/2016	10.96	37.88

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	44.01	10/22/1997	18.59	25.85
			1/14/1998	15.79	28.22
			2/18/1999	14.27	29.74
			6/29/1999	18.89	25.12
			9/15/1999	19.91	24.10
			12/14/1999	14.19	29.82
			3/22/2000	16.16	27.85
			9/27/2000	19.75	24.26
			12/20/2000	18.44	25.57
			3/28/2001	18.36	25.65
MW-7			6/13/2001		25.65
			9/12/2001	19.43	24.58
			12/17/2001	12.65	31.36
			3/26/2002	15.81	28.20
			6/10/2002	18.21	25.80
			9/10/2002	19.79	24.22
			12/9/2002	19.52	24.49
			3/12/2003	17.02	26.99
			6/17/2003	18.44	25.57
			9/9/2003	19.88	24.13
			9/16/2003	abandoned	abandoned
	10 - 20	46.23	10/22/1997	20.79	23.65
			1/14/1998	17.95	28.28
			2/18/1999	16.51	29.72
			6/29/1999	21.11	25.12
			9/15/1999	22.17	24.06
			12/14/1999	16.43	29:80
			3/22/2000	18.34	27.89
			9/27/2000	22.02	24.21
			12/20/2000	20.66	25.57
			3/28/2001	20.52	25.71
MW-8			6/13/2001	20.54	25.69
			9/12/2001	21.63	24.60
			12/17/2001	14.86	31.37
			3/26/2002	18.00	28.23
			6/10/2002	20.38	25.85
			9/10/2002	22.00	24.23
			12/9/2002	21.74	24.49
			3/12/2003	19.22	27.01
			6/17/2003	20.60	25.63
			9/9/2003	abandoned 20.79 17.95 16.51 21.11 22.17 16.43 18.34 22.02 20.66 20.52 20.54 21.63 14.86 18.00 20.38 22.00 21.74 19.22 20.60 22.09	24.14
			9/16/2003	abandoned	abandoned

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	44.83	10/22/1997	16.15	28.29
			1/14/1998	13.23	31.60
			2/18/1999	10.51	34.32
			6/29/1999	15.60	29.23
			9/15/1999	17.67	27.16
			12/14/1999	11.02	33.81
			3/22/2000	11.89	32.94
			9/27/2000	17.01	27.82
			12/20/2000	15.58	29.25
			3/28/2001	15.02	29.81
			6/13/2001	14.84	29.99
			9/12/2001	16.88	27.95
			12/17/2001	8.74	36.09
			3/26/2002	11.42	33.44
			6/10/1992	14.64	30.19
			9/10/2002	16.23	28.60
			12/9/2002	16.78	28.05
			3/12/2003	13.65	31.18
			6/17/2003	15.34	29.49
			9/9/2003	18.15	26.68
			12/9/2003	12.59	32.44
			3/10/2004	12.68	32.44
				2,000,000,000	
			6/9/2004	15.76	29.07
			9/22/2004	15.94	28.89
			12/13/2004	14.04	30.79
MW-9			3/23/2005	14.08	30.75
			6/20/2005	14.51	30.32
			9/8/2005	17.33	27.5
			3/6/2006	11.65	33.18
			9/21/2006	16.15	28.68
			3/16/2007	12.07	32.76
			9/13/2007	16.94	27.89
			2/28/2008	12.57	32.26
			9/8/2008	15.32	29.51
			3/24/2009	14.18	30.65
			9/18/2009	16.79	28.04
			5/18/2010	13.68	31.15
			10/7/2010	15.73	29.1
	*\	Vell box replaced.	3/23/2011	10.47	34.36
	These water levels were		9/8/2011	16.63	31.81
	the 7/9/12 surv		3/23/2012	10.10	38.3
	New Elevation****	48.44	7/9/2012		
			9/14/2012	16.09	32.35
			3/28/2013	12.34	36.1
			9/4/2013	16.29	32.15
			4/4/2014	11.25	37.19
			9/23/2014	15.66	32.78
			3/17/2015	11.61	36.83
			9/28/2015	16.77	31.67
			6/15/2016	15.12	33.32
			9/27/2016	18.02	30.42

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	44.84	10/22/1997	16.61	27.83
			1/14/1998	13.86	30.98
			2/18/1999	(feet below TOC) 16.61	32.73
			6/29/1999	16.91	27.93
			9/15/1999		26.62
			12/14/1999	12.37	32.47
			3/22/2000	13.87	30.97
			9/27/2000		26.60
			12/20/2000	16.63	28.21
			3/28/2001		28.44
			6/13/2001		28.41
			9/12/2001		26.92
			12/17/2001		34.92
MW-10			3/26/2002	12.32	35.52
1010			6/10/2002	16.14	28.70
			9/10/2002		32.00
			12/9/2002		26.76
			3/12/2003		29.72
			6/17/2003		28.17
			9/9/2003	1,151,151,51	26.04
			12/9/2003		31.28
			3/10/2004		31.09
			6/9/2004		27.80
			9/22/2004		27.62
			12/13/2004	13/2004 14.97	29.87
			3/23/2005		28.63
			6/20/2005		28.96
			8/31/2005		abandoned
	15 - 20	44.74	3/16/2007		30.94
			9/13/2007	17.67	27.07
			2/28/2008	13.80	30.94
			9/8/2008	15.93	28.81
			3/24/2009	15.26	29.48
			9/18/2009	17.19	27.55
			5/18/2010	14.89	29.85
			10/7/2010	16.72	28.02
			3/23/2011	12.83	31.91
			9/8/2011	100000000000000000000000000000000000000	27.10
MW-10A			3/23/2012		32.71
	New Elevation****	48.37	7/9/2012		
	TOW Elevation	40.07	9/14/2012		30.85
			3/28/2013		34.17
			9/4/2013		
			4/4/2014		30.98
					34.97
			9/23/2014		31.11
			3/17/2015		34.10
			9/28/2015		30.46
			6/15/2016		31.42
			9/27/2016	18.45	29.92

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 25	47.18	10/22/1997	21.91	22.53
			1/14/1998	19.05	28.13
			2/18/1999	17.51	29.67
		Color	22.24	24.94	
			9/15/1999	23.31	23.87
			12/14/1999	17.44	29.74
			3/22/2000	19.42	27.76
			9/27/2000	23.13	24.05
			12/20/2000	21.75	25.43
			3/28/2001	21.64	25.54
MW-11			6/13/2001	21.85	25.33
			9/12/2001	22.73	24.45
			12/17/2001	15.94	31.24
			3/26/2002	19.10	28.08
			6/10/2002	21.50	25.68
			9/10/2002	23.13	24.05
			12/9/2002	22.84	24.34
			3/12/2003	20.28	26.90
			6/17/2003	21.78	25.40
			9/9/2003	23.20	23.98
			9/16/2003	abandoned	abandoned
	10 - 25	44.03	10/22/1997	17.41	27.03
			1/14/1998	14.16	29.87
			2/18/1999	12.95	31.08
[6/29/1999	17.65	26.38
[9/15/1999	18.81	25.22
			12/14/1999	12.84	31.19
			3/22/2000	14.68	29.35
			9/27/2000	18.78	25.25
			12/20/2000	17.30	26.73
			3/28/2001	17.25	26.78
MW-12				17.25	26.78
				18.49	25.54
			12/17/2001	11.11	32.92
				14.46	29.57
			6/10/2002	17.05	26.98
			9/10/2002	18.78	25.25
				18.62	25.41
[15.94	28.09
[6/17/2003	17.39	26.64
			9/9/2003	19.06	24.97
			9/16/2003	abandoned	abandoned

Table 3: Historical Groundwater Elevations

Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	43.86	6/29/1999	11.27	32.59
			9/15/1999	12.50	31.36
			12/14/1999	6.86	37.00
			3/22/2000	7.47	36.39
			9/27/2000	12.26	31.60
			12/20/2000	12.02	31.84
			3/28/2001	9.86	34.00
			6/13/2001	10.71	33.15
			9/12/2001	12.00	31.86
			12/17/2001	5.49	38.37
			3/26/2002	7.12	36.74
			6/10/2002	9.84	34.02
			9/10/2002	9.59	34.27
			12/9/2002	10.10	33.76
			3/12/2003	9.61	34.25
1			6/17/2003	10.66	33.20
			9/9/2003	12.62	31.24
i			3/10/2004	7.61	36.25
			6/9/2004	10.99	32.87
i			9/22/2004	11.85	32.01
			12/13/2004	12.47	31.39
			3/23/2005	9.57	34.29
1			6/20/2005	9.90	33.96
иW-13			9/8/2005	11.78	32.08
			3/6/2006	7.27	36.59
			9/21/2006	11.78	32.08
i			3/16/2007	7.45	36.41
1			9/13/2007	11.76	32.10
	New Elevation***	43.89	2/28/2008	7.80	36.09
			9/8/2008	10.74	33.15
			3/24/2009	8.41	35.48
			9/18/2009	11.93	31.96
			5/18/2010	8.6	35.29
			10/7/2010	11.52	32.37
			3/23/2011	7.02	36.87
			9/8/2011	11.52	32.37
			3/23/2012	6.70	37.19
	New Elevation****	47.47	7/9/2012		
			9/14/2012	11.28	36.19
			3/28/2013	7.74	39.73
			9/4/2013	10.34	37.13
			4/4/2014	7.45	40.02
			9/23/2014	10.96	36.51
			3/17/2015	7.01	40.46
ŀ			9/28/2015	10.62	36.85
			6/15/2016	9.31	38.16
-			9/27/2016	10.95	36.52

Table 3: Historical Groundwater Elevations

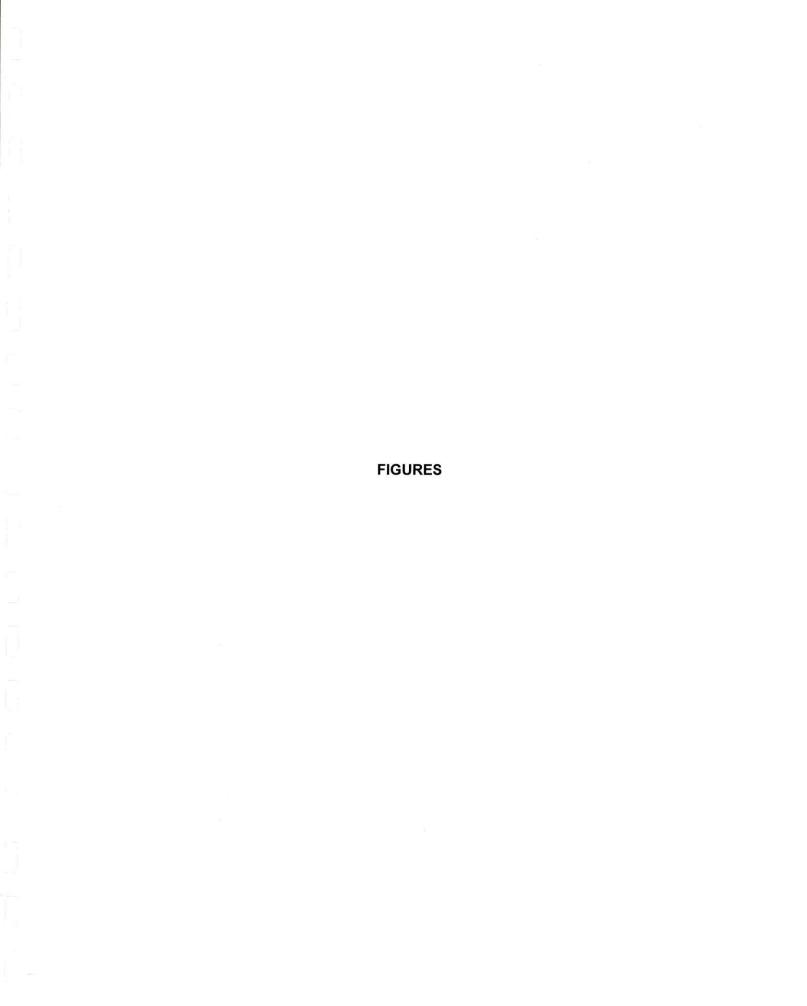
Well No.	Screened Interval (feet bgs)	Reference Elevation*	Date	Depth to Water (feet below TOC)	Groundwater Elevation
	10 - 20	45.90	6/29/1999	17.02	28.88
			9/15/1999	18.39	27.51
			12/14/1999	12.33	33.5 7
			3/22/2000	13.77	32.13
			9/27/2000	18.45	27.45
			12/20/2000	17.00	17/200 60000
					28.90
			3/28/2001	16.56	29.34
			6/13/2001	16.58	29.32
			9/12/2001	18.12	27.78
			12/17/2001	9.94	35.96
			3/26/2002	13.40	32.50
			6/10/2002	16.22	29.68
			9/10/2002	18.95	26.95
			12/9/2002	18.19	27.71
			3/12/2003	15.22	30.68
			6/17/2003	16.79	29.11
			9/9/2003	18.98	26.92
			3/10/2004	13.81	Commission of Commission
-				1407808:2507	32.09
-			6/9/2004	17.20	28.70
			9/22/2004	17.41	28.49
			12/13/2004	15.36	30.54
			3/23/2005	16.36	29.54
ЛW-14 [6/20/2005	16.06	29.84
			9/8/2005	18.25	27.65
			3/6/2006	13.01	32.89
			9/21/2006	17.04	28.86
			3/16/2007	13.64	32.26
			9/13/2007	17.96	27.94
-	New Elevation***	45.89	2/28/2008	12.75	33.14
+			9/8/2008	16.19	29.70
-			3/24/2009 9/18/2009	11.37 >12.41†	34.52
1			5/18/2010	11.49	34.40
1			10/7/2010	>12.41†	
1			3/23/2011	10.17	35.72
			9/8/2011	>12.41†	
			3/23/2012	9.67	36.22
	New Elevation****	49.5	7/9/2012		
1			9/14/2012	Dry	Dry
-			3/28/2013	Dry	Dry
-			5/2/2013	12.05	37.45
-			9/4/2013	16.21	33.29
}			4/4/2014	10.58	38.92
+			9/23/2014	16.96	32.54
+			3/17/2015	11.61	37.89
+			9/28/2015 6/15/2016	Dry 16.70	Dry 32.80
-			9/27/2016	Dry	32.60 Dry

^{*} These elevations are of the top of the PVC well casing measured in feet above mean sea level (MSL).

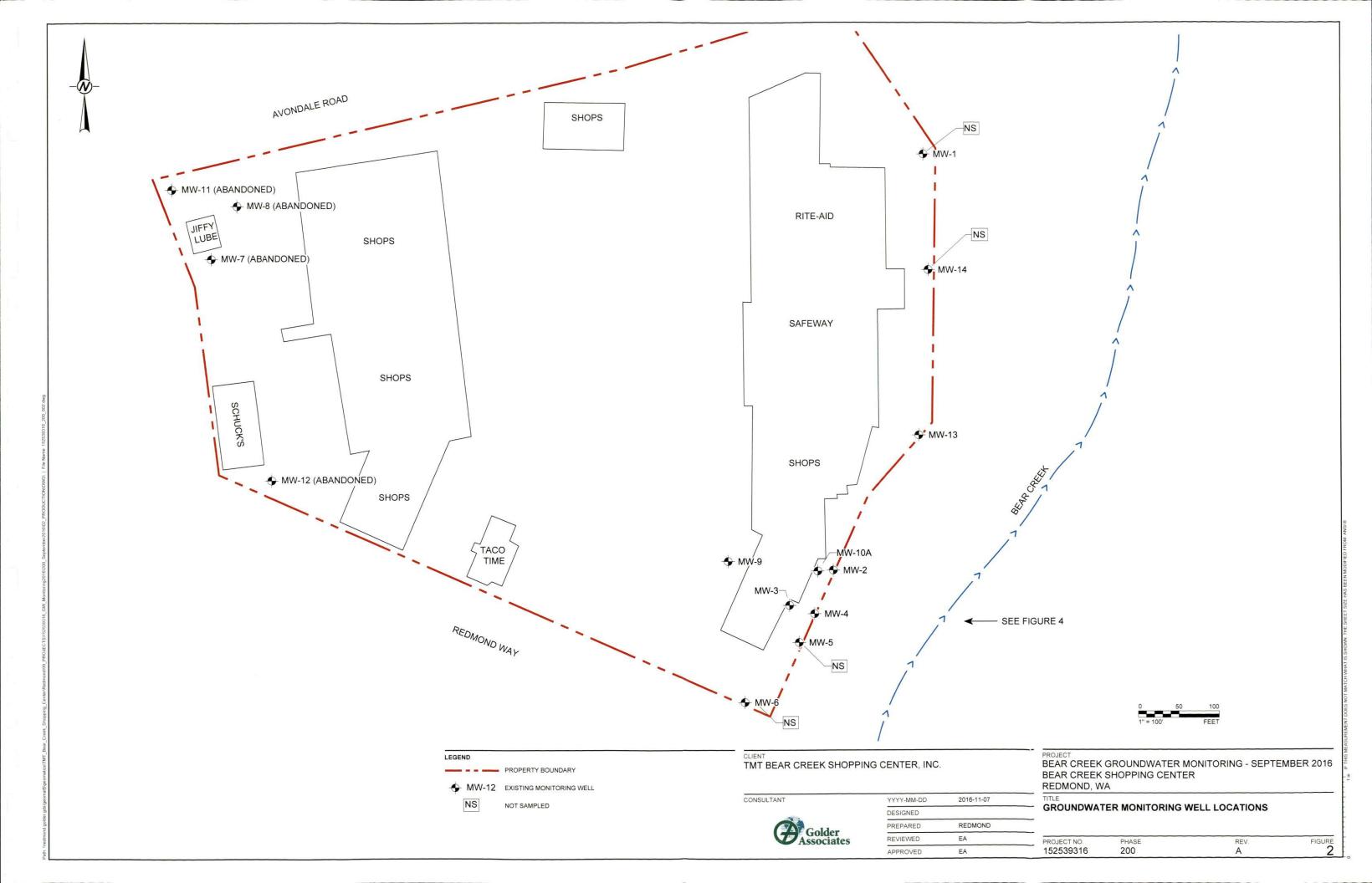
^{**} MW-5 was not accessible for the 1/14/98 measurement.

^{***}Wells re-surveyed November 2007 and reported in NGVD29 datum.

^{****}Wells re-surveyed in July 2013 and reported in NAVD88 datum.


¹ Anomalous groundwater elevation reading. Value was not used in contouring.


[†] No water was observed in the well. Bottom of the well was tagged at 12.41 feet below TOC on 9/18/2009. Well was jet-routed on 11/13/2012 and bottom of well tagged at 18.41 feet below TOC.


TOC = top of PVC well casing.

NC = Not Collected due to damaged well monument.

bgs = below ground surface.

MONITORING WELL LOCATION WITH GROUNDWATER ELEVATION, FEET ABOVE MSL. $\,$

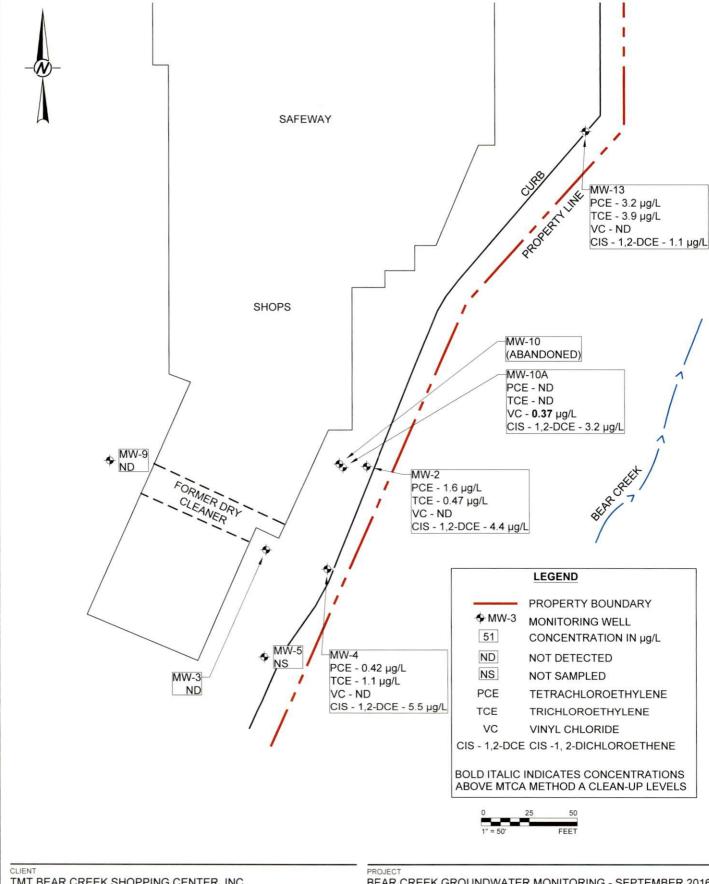
APPROXIMATE GROUNDWATER CONTOUR WITH ELEVATION, FEET ABOVE MSL, SEPTMEBER 28, 2015. DASHED WHERE APPROPRIATE.

MSL, SEPTMEBER 28, 2015. DASHED WHERE APPROPRIATE.

WATER ELEVATION COULD NOT BE MEASURED BECAUSE WELL WAS DRY.

CLIENT
TMT BEAR CREEK SHOPPING CENTER, INC.

CONSULTANT


2016-11-07	
REDMOND	
EA	
EA	
	REDMOND EA

PROJECT
BEAR CREEK GROUNDWATER MONITORING - SEPTEMBER 2016
BEAR CREEK SHOPPING CENTER
REDMOND, WA

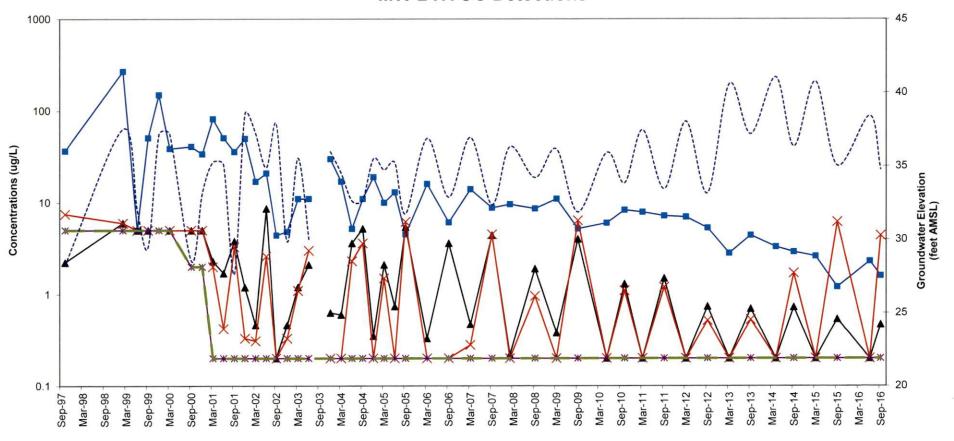
GROUNDWATER ELEVATIONS

PROJECT NO.	PHASE	REV.	FIGURE
152539316	200	Α	3

1 in IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN THE SHEET

TMT BEAR CREEK SHOPPING CENTER, INC.

CONSULTANT

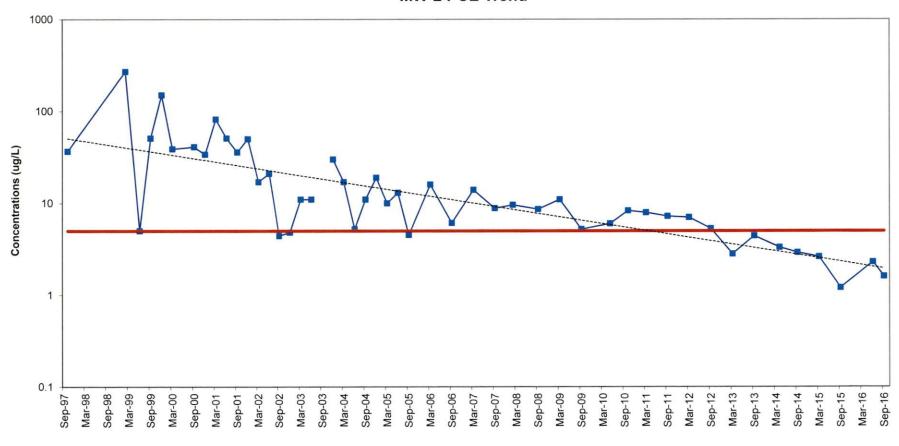

YYYY-MM-DD	2016-11-07	
DESIGNED		
PREPARED	REDMOND	
REVIEWED	EA	
APPROVED	EA	

BEAR CREEK GROUNDWATER MONITORING - SEPTEMBER 2016 BEAR CREEK SHOPPING CENTER REDMOND, WA

GROUNDWATER CONCENTRATIONS - SOUTHEAST AREA

152559516	200	A	4
152539316	200	٨	1
PROJECT NO.	PHASE	REV.	FIGURE

MW-2 HVOC Detections



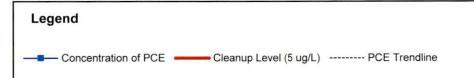
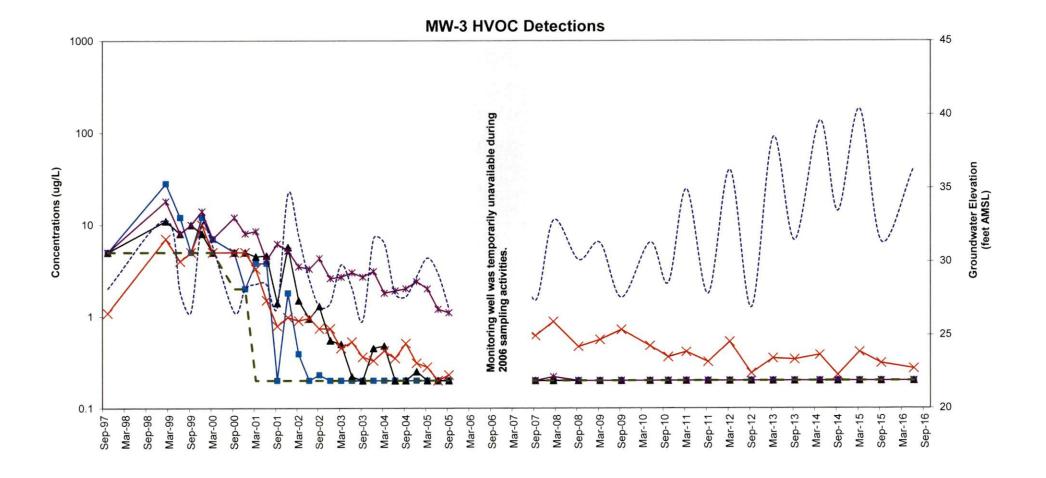
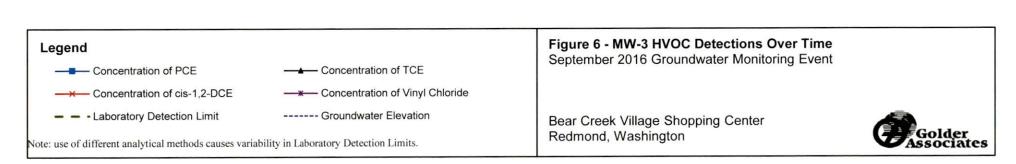

Note: Use of different analytical methods causes variability in Laboratory Detection Limits. On 9/9/2003 the water level was below the screen, so no sample was collected.

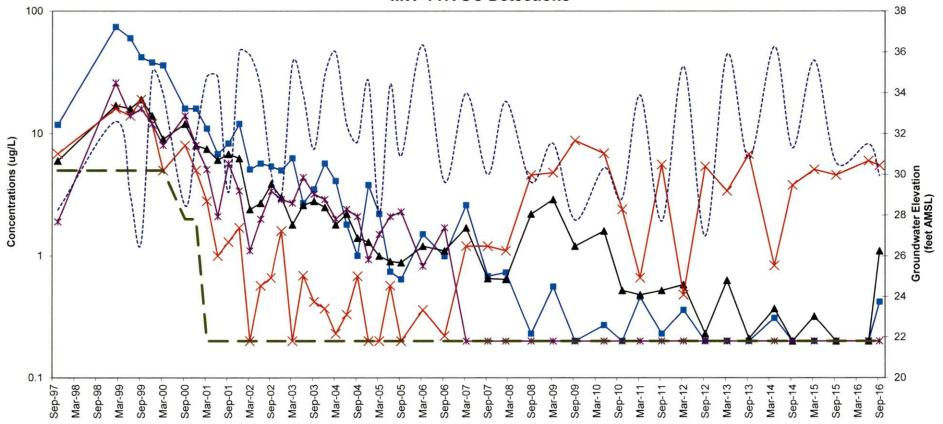
Figure 5a MW-2 HVOC Detections Over Time September 2016 Groundwater Monitoring Event

MW-2 PCE Trend





Note: Use of different analytical methods causes variability in Laboratory Detection Limits. On 9/9/2003 the water level was below the screen, so no sample was collected.


Figure 5b MW-2 PCE Trend Over Time September 2016 Groundwater Monitoring Event

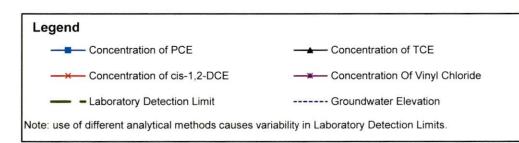
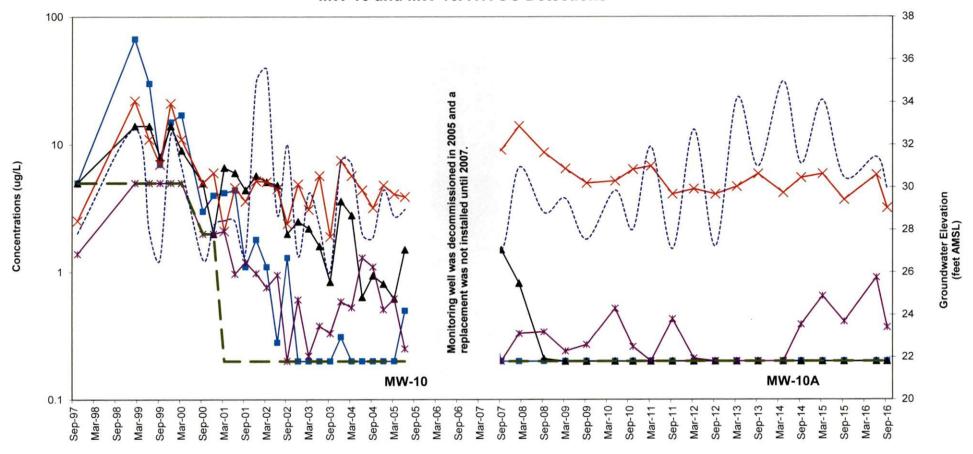
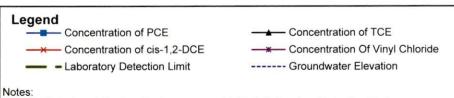
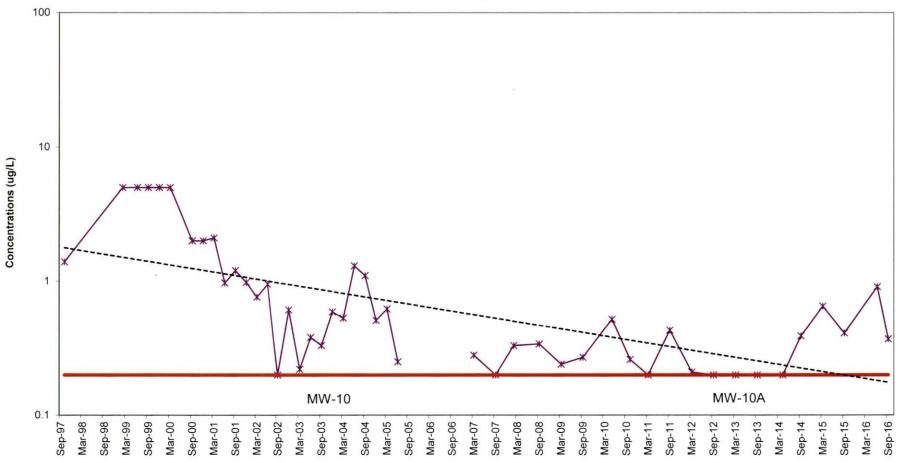




Figure 7 - MW-4 HVOC Detections Over Time September 2016 Groundwater Monitoring Event

MW-10 and MW-10A HVOC Detections



Use of different analytical methods causes variability in Laboratory Detection Limits. MW-10 was abandoned after June 2005 sampling event. MW-10A is the replacement well for MW-10, installed in March 2007.

Figure 8a - MW-10 and MW-10A HVOC Detections Over Time September 2016 Groundwater Monitoring Event

MW-10 and MW-10A Vinyl Chloride Trend

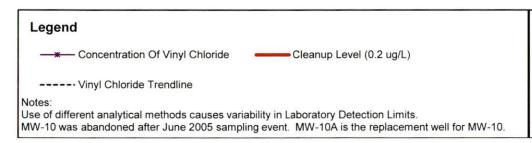
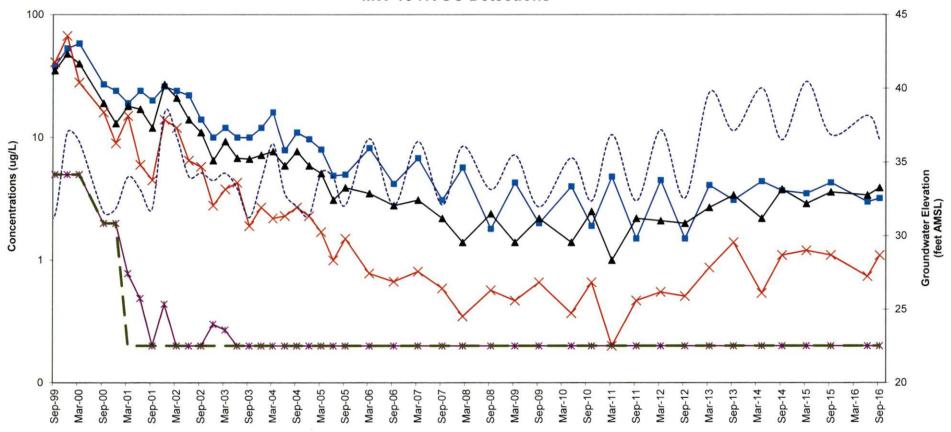
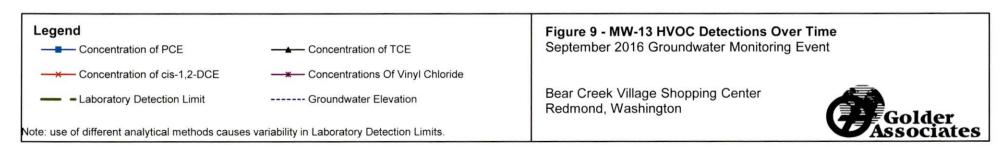
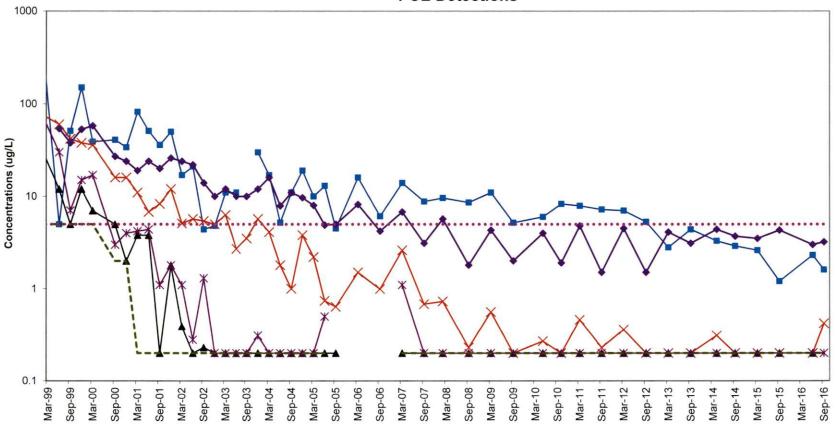
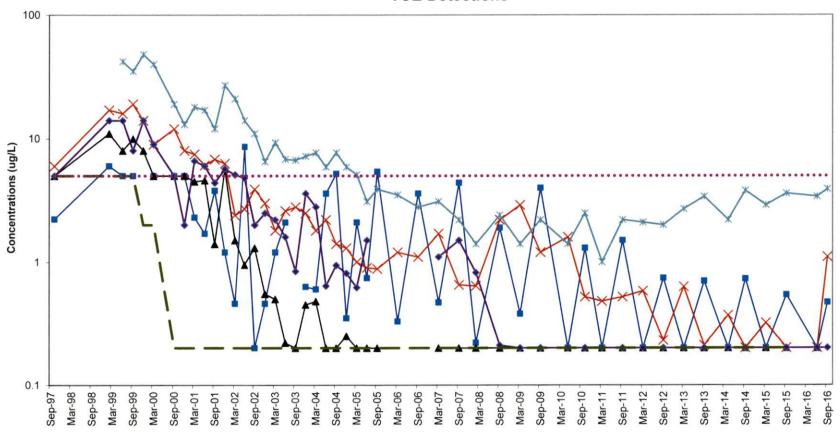




Figure 8b - MW-10 and MW-10A Vinyl Chloride Trend Over Time Setpember 2016 Groundwater Monitoring Event



MW-13 HVOC Detections

PCE Detections



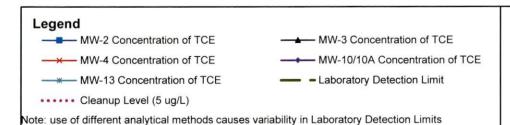

Note: use of different analytical methods causes variability in Laboratory Detection Limits

Figure 10 - PCE Detections Over TimeSeptember 2016 Groundwater Monitoring Event

TCE Detections

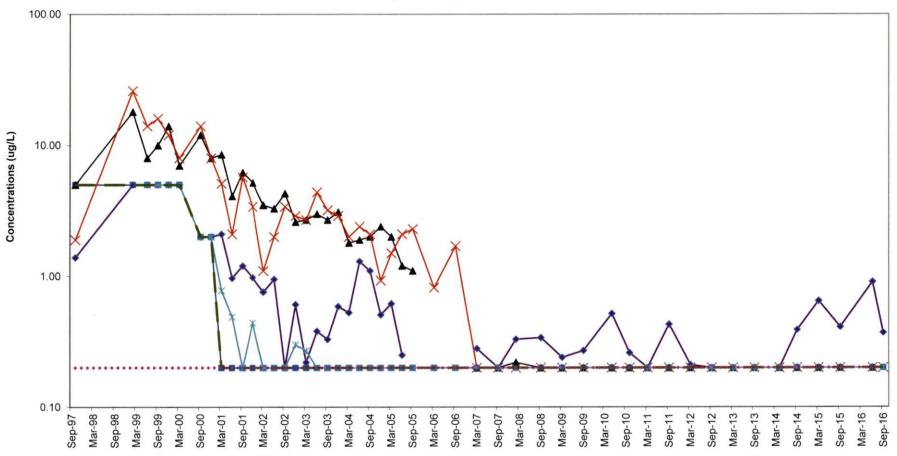


Figure 11 - TCE Detections Over TimeSeptember 2016 Groundwater Monitoring Event

Vinyl Chloride Detections

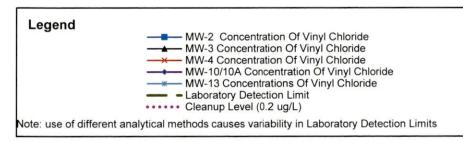


Figure 12 - Vinyl Chloride Detections Over Time September 2016 Groundwater Monitoring Event

APPENDIX A SAMPLE INTEGRITY DATA SHEETS

Plant/Site Bear Cree	k Village	Pro	ject No. <u>152-5393</u>	-16.002
Site Location Redm	ond, WA	Sar	nple ID	
Sampling Location	Groundwater Mo	nitoring well – end o	f dedicated sampling	g tube
Technical Procedur	e Reference(s) <u>T</u>	G 1.2-23; TG 1.4-6a:	TG 1.2-20	
Type of Sampler pe	ristaltic pump			
Date1/27//	6		1205	
Media water		Station	nw-z	
Sample Type:	grab	time composite	е	space composite
Sample Acquisition	Measurements (depth, volume of stat	ic well water and p	urged water, etc.)
Static Water Level:	13.87 BTOC_	9/27/16 \$124		
Screened Interval:	10-20		1	
Pump intake at: ~1			_	
Sample Description	(lear			
			A Marine Control of the Control of t	
Field Measurement	s on Sample (pH,	conductivity, etc.) _		
See Field Parameter	s Sheet			
Aliquot Amount		Container	Pres	servation / Amount
3- 40 mL	HVOC	VOA Vial]	·ICl
Sampler (signature	Eri Odgo	Da Da	te 9/27/16	
Supervisor (signatu	ire) Lacing	Lucity Da	te <u>9/30/16</u>	

Well ID_	mu-	2
Date	9/27/16	
Time Beg	in Purge 🔰	125
Time Coll	ect Sample	1205

Water Level feet bmp	Time	Volume Purged	рН	Conductivity uS/cm	Temp.	Turbidity NTU	DO mg/L	eH rel mV
14.51	1135	`	5.76	84.7	15.7	5.38	1.28	1-1
14.98	1140	_	5.76	85.1	15.8	6.19	1.16	95.4
15.29	1145	_	5,76	85.5	15.8	3,62	0.82	95.7
15.71	1150	_	5.76	85.9	15.7	3.18	0.59	96,2
16,42	1199		5.75	54.9	15.4	3.90	0.66	97.2
16.82	1200	_	5.76	85.2	15.5	3, 36	0.82	94.2
	4							
		No.						

Comments: MW-2 purged dry during sample. Shut clover allow recharge collected rample but has some sediment

Purge Rate: 180 ~1/min

Sampler's Initials EA

Plant/Site Bear Creek Village			Project No	152-5393-16.002
Site Location Redmo	ond, WA		Sample ID _	NA
Sampling Location	Groundwater M	fonitoring well – en	d of dedicated	i sampling tube
			•	
Technical Procedure	Reference(s)	TG 1.2-23; TG 1.4	-6a; TG 1.2-2	0
Type of Sampler per	ristaltic pump			
Date		Tin	ne	
Media water		Sta	tion	P
Sample Type:	grab	time compo	osite	space composite
		9 V		ter and purged water, etc.)
Static Water Level: >	15.1 BTOC	9/27/16 @	0832	DRY
Screened Interval:				
Pump intake at:	BTOC			
Sample Description	No S	Tomplo	- W	

		N.		0.1
Field Measurements	on Sample (pl	H, conductivity, etc	.)	
See Field Parameters	Sheet			
Aliquot Amount		Container		Preservation / Amount
3- 40 mL	HVOC	VOA Vial		HCl
		MVIS '800		
Sampler (signature)	Eni Od	ar	Date 9/	27/16
Supervisor (signatur		11	Date 91	30/160
ouper visor (signatur	- Traffic de	Starten 1		

Well ID_	MW-3
Date	-
Time Begi	n Purge
Time Coll	ect Sample

Water Level feet bmp	Time	Volume Purged	pН	Conductivity uS/cm	Temp. °C	Turbidity NTU	DO mg/L	eH rel mV
	-							
-								
		A						
							,	

Comments:	Well Dr	y - No	Somplo			
	Purge R	ate:				

Sampler's Initials & Q

Project N	Project No. <u>152-5393-16.002</u>			
Sample I	D Mury + Mur44 - duplico			
onitoring well - end of dedic	cated sampling tube			
TG 1.2-23; TG 1.4-6a; TG 1.	.2-20			
Time	450 1455 duplicate			
Station _Mu	4			
time composite	space composite			
(depth, volume of static well	water and purged water, etc.)			
9/27/16 @ 1344	/			
	*			
Container	Preservation / Amount			
VOA Vial	HCl			
Data 9.	127/16			
The Date of	1/20/16			
Date 7	130/40			
	Sample II onitoring well – end of dedice TG 1.2-23; TG 1.4-6a; TG 1 Time/ Station/ time composite (depth, volume of static well 1/27/16 @ 1344			

Well ID_MW-4	-
Date 9/27/16	
Time Begin Purge 1345	
Time Collect Sample 1450	1455

Water Level feet bmp	Time	Volume Purged	pН	Conductivity uS/cm	Temp.	Turbidity NTU	DO mg/L	eH rel mV
18.87	1355		5.86	158.3	14.9	89.7	0-90	80.5
19.15	1900		5.90	159.7	14.9	21.6	1.42	78.9
19.16	1405	~	5.86	163.0	15.1	75.3	0.96	79.5
19.16	1410		5.88	165.8	15.6	28.9	0-83	77.1
19.25	1415	_	5.89	166.4	15.5	9.97	0.76	75,3
19.43	14/20		9.89	167.4	15.3	74.9	0,72	75,3
						•	EL	
19.25	1448		5.98	171.0	16-6	5,54		99.4
				-		· ·	1.44	
								1
						-		
					•			

Comments:	Bottom of nell@	19.5 -	shut down	and allow	rchor	90	
	Purge Rate: 180 ml	- Irin	Dec to 140	Inlain Q	1401		
			,40				

Sampler's Initials_E&

Plant/Site Bear Creek Village	2	Project No. <u>152-5393-16.002</u>				
Site Location Redmond, WA		Sample ID				
Sampling Location Groundw	vater Monitoring well - en	d of dedicated sampling tube				
Technical Procedure Referen	nce(s) <u>TG 1.2-23; TG 1.4</u>	-6a; TG 1.2-20				
Type of Sampler peristaltic p	pump	***				
Date 9/27/16	Tin	ne 0940				
Media water	Star	tion_NW-9				
Sample Type: grab	time compo	osite space composite				
Sample Acquisition Measure	ements (depth, volume of	static well water and purged water, etc.)				
Static Water Level: 18,02 B		852				
Screened Interval: 10-20		(A.). N. (A.).				
Pump intake at: Pump BT	roc					
Sample Description	- /					
Field Measurements on Sam	ple (pH, conductivity, etc.)				
See Field Parameters Sheet						
	a .					
Aliquot Amount	Container	Preservation / Amount				
3- 40 mL HVC		HCl				
3- 40 ME 1144	OC VOA VIAI	Hei				
Sampler (signature)	Odna	Date 9/27/16				
Supervisor (signature)	and little	Date 6/30//				
Supervisor (signature)	ung Sunty	Date 11-1/16				

Well ID_	mw-9	
Date	9/27/16	•
Time Beg	in Purge 0907	
Time Coll	ect Sample 0940	

Water Level feet bmp	Time	Volume Purged	pН	Conductivity uS/cm	Temp.	Turbidity NTU	DO mg/L	eH rel mV
18,43	0913		5.86	274.6	16.9	1.72	0.86	75.1
18:61	2918	_	5.80	276.2	16.8	1.05	0.80	72-7
18.75	0923	_	5.87	277.2	16.7	0.66	0.59	35.4
19.04	9928	_	5.40	276.6	16.5	1.10	0.48	27.2
19.30	0933	_	5,90	276.2	16.5	1.37	0.40	21.4
19.50	0938		5.96	275.9	16.4	1.74	0.52	11.7
							,	
		·						
					4			
						II.		
			*:					

		42	*			
Comments:						
Comments.						
	-					
	Purge 1	Rate: 180 n	1/min			

Sampler's Initials EQ

Project No. <u>152-5393-16.002</u>				
Sample ID MW-10 A				
ell - end of dedicated sampling tube				
TG 1.4-6a; TG 1.2-20				
Time/33 0				
Station MW-10A				
e composite space composite				
ume of static well water and purged water, etc.)				
,249				
*				
ity, etc.)				
ainer Preservation / Amount				
A Vial HCl				
0.67/1				
- 9/7///6				
Date 9/3//6 Date 9/30//6				

Well ID Mu	ioA
Date 4/27/1	6
Time Begin Purge	1250
Time Collect Sample	1330

Water Level feet bmp	Time	Volume Purged	рН	Conductivity uS/cm	Temp.	Turbidity NTU	DO mg/L	eH rel mV
18.89	1300	_	6.09	152.9	17.1	190	1,29	107.3
18.89	1305		6.10	1570	17.0	28.3	0,99	87.5
18.91	13/0	~	6.11	158./	17.0	9.15	0.87	75.1
18.95	1315	_	6.12	161.5	16.9	5,32	0.82	64.0
18.99	1320	_	6.13	163,6	16.8	5.59	0.75	
18.99	1325	-	6.14	167.0	16,7	3.12	0.76	56.0 49.5
				,				
								K

Comments:	Initial	Purge	gray muddy	

Purge Rate: 180 ml/min

Sampler's Initials

Plant/Site Bear Cre	ek Village	F	roject No. 1:	52-5393-16.002
Site Location Redn	nond, WA	S	Sample ID	MW-13
Sampling Location	Groundwater Mo	onitoring well - end	of dedicated	sampling tube
Technical Procedu	re Reference(s) _]	TG 1.2-23; TG 1.4-	6a; TG 1.2-20	
Type of Sampler p	eristaltic pump			
Date 4/27	/16	Time	e <u>1105</u> ion <u>M</u> w	
Media water		Stati	ion <u>Mu</u>	-13
Sample Type:	grab	time compos	site	space composite
Sample Acquisition	Measurements (depth, volume of s	tatic well wate	er and purged water, etc.)
Static Water Level:	19.92 BTOC	9/27/16	1019	
Screened Interval:	10-20			
Pump intake at: -/				
Sample Description	Clear			
		*		
Field Measurement	s on Sample (pH,	, conductivity, etc.)		
See Field Parameter	s Sheet			
Aliquot Amount		Container		Preservation / Amount
3- 40 mL	HVOC	VOA Vial		HCl HCl
		-1-24		
	- 01			
Sampler (signature) Exic Olla	D D	Date _ 9/2	7/16
Supervisor (signatu	re) salfu	Lette D	Date	0/16
	/ /			

Well ID_	MW-13
Date 9/2	17/16
Time Begin	Purge
Time Collec	t Sample 1/05

Water Level feet bmp	Time	Volume Purged	pН	Conductivity uS/cm	Temp. °C	Turbidity NTU	DO mg/L	eH rel mV
11.30	1030	_	5.67	104.7	16.4	141	0,62	77.2
11.36	1035	_	5.70	105.5	16,3	106	0.88	78.0
11,40	1040	_	5.66	1079	16.4	68.3	0.56	80.6
11.41	1045	_	5,68	109.6	16.4	49.9	0.40	50.3
11.43	1050		5.69	111.4	16,3	26.8	0,33	79.3
11.45	1055		5.71	112.5	16.3	11,8	0,29	78. /
11.44	1100		5.72	1/2,3	16.3	3.70	0.28	77.5
								4
	i i							

Comments:	Reddistr	Fe	floc with	initial	purge	note/
	Purge Rat	e: 2 3	Oml/min			

Sampler's Initials Ed

Plant/Site Bear Creek Village	Project	No. 152-5393-16.002
Site Location Redmond, WA	Sample	ID <u>FB</u>
Sampling Location Groundwa	ter Monitoring well – end of ded	icated sampling tube
Technical Procedure Reference	e(s) <u>TG 1.2-23; TG 1.4-6a; TG</u>	1.2-20
Type of Sampler peristaltic pur	mp	
Date 9/27/16	5000 S 200 S 2	1340
Media water	Station	EB at MW-10A
Sample Type: grab	time composite	space composite
Sample Acquisition Measurem	nents (depth, volume of static we	ell water and purged water, etc.)
Static Water Level: NA BT	OC	
Screened Interval:		1
Pump intake at: NA BTO		
Sample Description _ Equips	ent blank using Lab	provided DI water
purped through	new tubing	
Field Measurements on Sampl	e (pH, conductivity, etc.)	
See Field Parameters Sheet		
Aliquot Amount	Container	Preservation / Amount
3- 40 mL HVOC	C VOA Vial	HCl
A		
-		
Sampler (signature) Eyz (Manyo Date 1	1/27/16
Supervisor (signature)	ufweittes Date	2/30/16

Well ID E B	
Date 9/27/16	
Time Begin Purge	- 1/A
Time Collect Sample	- /0 //

Water Level feet bmp	Time	Volume Purged	pН	Conductivity uS/cm	Temp. °C	Turbidity NTU	DO mg/L	eH rel mV
				/	1			
•							_	
			X					
					-			
							10-22	

Comments:	
	Equipment Blank
}	
1	Purge Rate:

Sampler's Initials_ & A

APPENDIX B LABORATORY ANALYTICAL REPORTS

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 4, 2016

Eric Adams Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052-3333

Re:

Analytical Data for Project 152-5393-16 Laboratory Reference No. 1609-349

Dear Eric:

Enclosed are the analytical results and associated quality control data for samples submitted on September 27, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

Case Narrative

Samples were collected on September 27, 2016 and received by the laboratory on September 27, 2016. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	09-349-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Vinyl Chloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

Date of Report: October 4, 2016 Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349 Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	09-349-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	71-131				
Toluene-d8	89	80-127				

Toluene-d8 4-Bromofluorobenzene 93 80-125

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13					
Laboratory ID:	09-349-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Vinyl Chloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(cis) 1,2-Dichloroethene	1.1	0.20	EPA 8260C	9-30-16	9-30-16	
Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene	3.9	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13					
Laboratory ID:	09-349-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	3.2	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits			·	
Dibromofluoromethane	104	71-131				
Toluene-d8	104	80-127				

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10A					
Laboratory ID:	09-349-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Vinyl Chloride	0.37	0.20	EPA 8260C	9-30-16	9-30-16	
Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(cis) 1,2-Dichloroethene	3.2	0.20	EPA 8260C	9-30-16	9-30-16	
Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10A					
Laboratory ID:	09-349-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	71-131				

Toluene-d8

4-Bromofluorobenzene

80-127

80-125

103

94

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	EB					
Laboratory ID:	09-349-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Vinyl Chloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	EB					
Laboratory ID:	09-349-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	71-131				

Surrogate:	Percent Recovery	Control Limit
Dibromofluoromethane	108	71-131
Toluene-d8	107	80-127
4-Bromofluorobenzene	94	80-125

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Analyte Result PQL Met	hod Prepared Analyzed Flags
Client ID: MW-4	
Laboratory ID: 09-349-05	
Dichlorodifluoromethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Chloromethane ND 1.0 EPA 8	3260C 9-30-16 9-30-16
Vinyl Chloride ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Bromomethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Chloroethane ND 1.0 EPA 8	3260C 9-30-16 9-30-16
Trichlorofluoromethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
1,1-Dichloroethene ND 0.20 EPA 8	3260C 9-30-16 9-30-16
lodomethane ND 1.0 EPA 8	3260C 9-30-16 9-30-16
Methylene Chloride ND 1.0 EPA 8	3260C 9-30-16 9-30-16
(trans) 1,2-Dichloroethene ND 0.20 EPA 8	3260C 9-30-16 9-30-16
1,1-Dichloroethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
2,2-Dichloropropane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
(cis) 1,2-Dichloroethene 5.5 0.20 EPA 8	3260C 9-30-16 9-30-16
Bromochloromethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Chloroform ND 0.20 EPA 8	3260C 9-30-16 9-30-16
1,1,1-Trichloroethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Carbon Tetrachloride ND 0.20 EPA 8	3260C 9-30-16 9-30-16
1,1-Dichloropropene ND 0.20 EPA 8	3260C 9-30-16 9-30-16
1,2-Dichloroethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Trichloroethene 1.1 0.20 EPA 8	3260C 9-30-16 9-30-16
1,2-Dichloropropane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Dibromomethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
Bromodichloromethane ND 0.20 EPA 8	3260C 9-30-16 9-30-16
2-Chloroethyl Vinyl Ether ND 3.9 EPA 8	3260C 9-30-16 9-30-16
(cis) 1,3-Dichloropropene ND 0.20 EPA 8	3260C 9-30-16 9-30-16
(trans) 1,3-Dichloropropene ND 0.20 EPA 8	3260C 9-30-16 9-30-16

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	09-349-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	0.42	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	71-131				
80.41 W 988						

Toluene-d8 103 80-127 4-Bromofluorobenzene 93 80-125

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Dichlorodifluoromethane					Date	Date	
Laboratory ID: 09-349-06 Dichlorodifluoromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Chloromethane ND 1.0 EPA 8260C 9-30-16 9-30-16 Vinyl Chloride ND 0.20 EPA 8260C 9-30-16 9-30-16 Siromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Chloroethane ND 1.0 EPA 8260C 9-30-16 9-30-16 Chloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 In-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 In-Dichloroethene ND 1.0 EPA 8260C 9-30-16 9-30-16 Methylene Chloride ND 1.0 EPA 8260C 9-30-16 9-30-16 Methylene Chloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 In-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 In-Dichloroethane ND	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodifluoromethane	Client ID:	MW-44					
Chloromethane	Laboratory ID:	09-349-06					
Principal Chloride	Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Strommethane ND 0.20 EPA 8260C 9-30-16 9-30-	Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Chloroethane	Vinyl Chloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichlorofluoromethane ND 0.20 EPA 8260C 9-30-16 9-30-	Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethene	Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
odomethane ND 1.0 EPA 8260C 9-30-16 9-30-16 Methylene Chloride ND 1.0 EPA 8260C 9-30-16 9-30-16 I,1-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 I,1-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloroethene 5.5 0.20 EPA 8260C 9-30-16 9-30-16 3cis) 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 3cromochloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 3chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16<	Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride ND 1.0 EPA 8260C 9-30-16 9-30-16 trans) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloroethene 5.5 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 0.20 EPA 8260C	1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
trans) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethene 5.5 0.20 EPA 8260C 9-30-16 9-30-16 3romochloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1,1-Trichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C	lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethane	Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
2,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 cis) 1,2-Dichloroethene 5.5 0.20 EPA 8260C 9-30-16 9-30-16 Bromochloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1,1-Trichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 0.20 EPA 8260C<	(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Cis 1,2-Dichloroethene 5.5 0.20 EPA 8260C 9-30-16 9-	1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Stromochloromethane ND 0.20 EPA 8260C 9-30-16	2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1,1-Trichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	(cis) 1,2-Dichloroethene	5.5	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1-Trichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane 1.1 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1richloroethene 1.1 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethene 1.1 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene 1.1 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Trichloroethene	1.1	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
	2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
trans) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
	(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-44					
Laboratory ID:	09-349-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	0.37	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	106	71-131
Toluene-d8	97	80-127
4-Bromofluorobenzene	90	80-125

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-2					
09-349-07					
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	1.0	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	1.0	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	1.0	EPA 8260C	9-30-16	9-30-16	
ND	1.0	EPA 8260C	9-30-16	9-30-16	
0.40	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
4.4	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
0.47	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	3.9	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
ND	0.20	EPA 8260C	9-30-16	9-30-16	
	MW-2 09-349-07 ND	MW-2 09-349-07 ND 0.20 ND 1.0 ND 0.20 ND 0.20 ND 0.20 ND 1.0 O.40 0.20 ND 0.20	MW-2 09-349-07 ND 0.20 EPA 8260C ND 1.0 EPA 8260C ND 0.20 EPA 8260C ND 0.20 EPA 8260C ND 1.0 EPA 8260C ND 0.20 EPA 8260C ND 1.0 EPA 8260C ND 1.0 EPA 8260C ND 1.0 EPA 8260C ND 1.0 EPA 8260C ND 0.20 EPA 8260C ND <td>MW-2 09-349-07 ND 0.20 EPA 8260C 9-30-16 ND 1.0 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 1.0 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 1.0 EPA 8260C 9-30-16 ND 0.20 <t< td=""><td>Result PQL Method Prepared Analyzed MW-2 09-349-07 PA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16</td></t<></td>	MW-2 09-349-07 ND 0.20 EPA 8260C 9-30-16 ND 1.0 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 1.0 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 1.0 EPA 8260C 9-30-16 ND 0.20 EPA 8260C 9-30-16 ND 0.20 <t< td=""><td>Result PQL Method Prepared Analyzed MW-2 09-349-07 PA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16</td></t<>	Result PQL Method Prepared Analyzed MW-2 09-349-07 PA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 1.0 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16 9-30-16 ND 0.20 EPA 8260C 9-30-16

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	09-349-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	1.6	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	71-131				
Toluene-d8	104	80-127				

4-Bromofluorobenzene 90 80-125

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-349-08					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Vinyl Chloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349 Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-349-08					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	71-131				
Toluene-d8	104	80-127				

4-Bromofluorobenzene

95

80-125

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 1 of 2

aboratory ID: MB0930W1 ichlorodifluoromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 inlorodifluoromethane ND 1.0 EPA 8260C 9-30-16 9-30-16 inloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 inloromethane ND 1.0 EPA 8260C 9-30-16 9-30-16 inloromethane ND 1.0 EPA 8260C 9-30-16 9-30-16 inloromethane ND 0.20 EPA 8260C 9-30-16	-3-			Date	Date		
Schlorodif Commethane ND 0.20 EPA 8260C 9-30-16 9-30	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Schlorodif Commethane ND 0.20 EPA 8260C 9-30-16 9-30							
Althoromethane ND 1.0 EPA 8260C 9-30-16 9-30-16 from order than ND 0.20 EPA 8260C 9-30-16 9-30-16 from ND 0.20 EPA 8260C 9-30-16 9-30-16 promote than ND 0.20 EPA 8260C 9-30-1	Laboratory ID:	MB0930W1					
Sinyl Chloride	Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Part	Chloromethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Schloroethane ND 1.0 EPA 8260C 9-30-16 9-30-	Vinyl Chloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
richlorofluoromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 ,1-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 odomethane ND 1.0 EPA 8260C 9-30-16 9-30-16 dethylene Chloride ND 1.0 EPA 8260C 9-30-16 9-30-16 dethylene Chloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 dethylene Chloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 dethylene Chloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 dethylene Chloroethane ND 0.20 EPA 826	Bromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9	Chloroethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
odomethane ND 1.0 EPA 8260C 9-30-16 9-30-16 Methylene Chloride ND 1.0 EPA 8260C 9-30-16 9-30-16 Methylene Chloride ND 0.20 EPA 8260C 9-30-16 9-30-16 Morans) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 Morandel Chloropropane ND 0.20 E	Trichlorofluoromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Methylene Chloride ND 1.0 EPA 8260C 9-30-16 9-30-16 grans) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 gransochloromethane ND 0.20 <	1,1-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Paramax 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16	lodomethane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
,1-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 cis) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 cromochloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 chloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 carbon Tetrachloride ND 0.20 EPA 8260C 9-	Methylene Chloride	ND	1.0	EPA 8260C	9-30-16	9-30-16	
,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 cis) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 cromochloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 chloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 cy-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 crichloroethane ND 0.20 EPA 8260C 9-30-16	(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Cis) 1,2-Dichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 Cromochloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 Chloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 Crichloroethane ND 0.20 EPA 8260C <	1,1-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Stromochloromethane ND 0.20 EPA 8260C 9-30-16	2,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chloroform ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1,1-Trichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromodichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromodichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromodichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1-Trichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 1,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 1,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromothyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 10bromothyl Vinyl Ether ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromothyl Vinyl Ether ND 0.20 EPA 8260C 9-30-16 9-30-16 10bromothyl Vinyl Ether ND 0.20 EPA 8260C 9-30-16 9-30-16	Bromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Carbon Tetrachloride ND 0.20 EPA 8260C 9-30-16 9-30-16 ,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 richloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 0ibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 3romodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 3-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 3-3-16 9-30-16 9-30-16 9-30-16 9-30-16 9-30-16	Chloroform	ND	0.20	EPA 8260C	9-30-16	9-30-16	
,1-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 frichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 0bbromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 3romodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 4-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 5cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
,2-Dichloroethane ND 0.20 EPA 8260C 9-30-16 9-30-16 richloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 C-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Carbon Tetrachloride	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Trichloroethene ND 0.20 EPA 8260C 9-30-16 9-30-16 ,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 bibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 C-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 Cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,1-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
,2-Dichloropropane ND 0.20 EPA 8260C 9-30-16 9-30-16 Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 I-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,2-Dichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromomethane ND 0.20 EPA 8260C 9-30-16 9-30-16 Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 I-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Trichloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromodichloromethane ND 0.20 EPA 8260C 9-30-16 9-30-16 4-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	1,2-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
-Chloroethyl Vinyl Ether ND 3.9 EPA 8260C 9-30-16 9-30-16 cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Dibromomethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	Bromodichloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	2-Chloroethyl Vinyl Ether	ND	3.9	EPA 8260C	9-30-16	9-30-16	
rans) 1,3-Dichloropropene ND 0.20 EPA 8260C 9-30-16 9-30-16	(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
	(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-30-16	9-30-16	

Samples Submitted: September 27, 2016

Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	sult PQL		Prepared	Analyzed	Flags
Laboratory ID:	MB0930W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Tetrachloroethene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Dibromochloromethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Chlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Bromoform	ND	1.0	EPA 8260C	9-30-16	9-30-16	
Bromobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,1,2,2-Tetrachloroethane	ND	0.26	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-30-16	9-30-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-30-16	9-30-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-30-16	9-30-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	71-131				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	93	80-125				

Samples Submitted: September 27, 2016 Laboratory Reference: 1609-349

Project: 152-5393-16

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

					Per	Percent Recovery			RPD	
Analyte	Res	sult	Spike	Level	Rec			RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	30W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.5	8.84	10.0	10.0	105	88	62-132	17	20	
Benzene	10.9	9.60	10.0	10.0	109	96	75-121	13	15	
Trichloroethene	9.76	8.50	10.0	10.0	98	85	65-115	14	15	
Toluene	11.1	10.0	10.0	10.0	111	100	78-120	11	15	
Chlorobenzene	10.8	9.31	10.0	10.0	108	93	77-118	15	15	
Surrogate:										
Dibromofluoromethane					99	103	71-131			
Toluene-d8					101	104	80-127			
4-Bromofluorobenzene					92	90	80-125			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

	i	1
Page	(of	

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Number:							umber: 09-349																		
Project I Project I Samplec	Golder Associates	Date	ndard (7 Days) H analysis 5 Da (other)	1 Day 3 Days ys)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A					% Moisture
1	MW-9	9-27-6	T	W	3	_	2	2		>	X	ш	00 2	<u> </u>	<u>a</u>	0	0	U	F	F	-	I		\forall	1		%
2	MW-13	1	1105	w	3						X				1									\neg			\neg
3	MW-10A		1330	W	3						X																
4	Eβ		1340	W	3						X																
5			1450	w	3						X																
6	MW-44		1455	w	3						χ																
7	MW-2		1205	W	3						X																
8	MW-44 MW-2 Trip Blank		Loh	w	3						X																
Relinquished Early Company				Acces	ta		9-2	7-	-	Time		7	Com	ment	s/Spe	cial I	nstru	ction	S								
Receive	ished Eric Orlans		Golder.	F	216		9/2	20/	1/2	16	O	2															
Relinqu			Car	-		1	116) in	0			3															
Receiv	ed																										
Relinqu	ished																										
Received												Data	Pack	age:	Star	ndarc	1 🗆	Lev	el III		_evel	IV []				
Review	ed/Date		Reviewed/Dat	e									Chron	nato	grams	s with	n fina	l repo	ort 🗌	Elec	ctronic	: Data	Deliv	erable	s (ED	Ds)]