

Groundwater Assessment

Stillwater Holdings Chevron Site 7 East Rose Street Walla Walla, Washington

for Washington State Department of Ecology

September 15, 2025

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Groundwater Assessment

Stillwater Holdings Chevron Site 7 East Rose Street Walla Walla, Washington

> File No. 0504-202-01 September 15, 2025

Prepared for:

State of Washington Department of Ecology Toxics Cleanup Program, Eastern Region Office 4601 North Monroe Street Spokane, Washington 99205

Attention: Elizabeth Kercher, LUST Project Manager

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Lola T. Otoki, EIT

Environmental Scientist

Melissa Roskamp, PE

Project Engineer

Scott H. Lathen, PE

Associate Environmental Engineer

LTO:MR:SHL:LEH:Ijs

Disclaimer: Any electronic form, facsimile, or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	Introduction	. 1
2.0	Site Description and Background	. 1
2.1	Previous Investigations	. 2
2.2	Prior Analytical Results	. 2
3.0	Field Investigation Activities	. 3
3.1	Groundwater and Sump Water Assessment	.3
3.2	Investigation-derived Waste	. 3
4.0	Chemical Analytical Results	. 3
4.1	Groundwater Chemical Analytical Results	. 4
4.2	Sump Water Chemical Analytical Results	. 5
5.0	Summary and Recommendations	. 5
6.0	Limitations	. 6
7.0	References	. 6

List of Tables

- Table 1. Summary of Groundwater Field Parameters
- Table 2. Chemical Analytical Results Groundwater
- Table 3. Chemical Analytical Results Sump Water

List of Figures

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Groundwater Assessment June 2025

Appendices

- Appendix A. Field Assessment Procedures
- Appendix B. Data Validation Report and Chemical Analytical Laboratory Report
- Appendix C. Report Limitations and Guidelines for Use

1.0 Introduction

This report describes the June 2025 groundwater assessment conducted at Stillwater Holdings Chevron cleanup Site (herein referred to as "Site"), as shown in the Vicinity Map, Figure 1. The Site includes the Chevron gas station located at 7 East Rose Street, the Marcus Whitman Hotel located at 6 West Rose Street, and the 106 Building located at 106 North 2nd Avenue, in Walla Walla, Washington, as shown in the Site Plan, Figure 2. The Washington State Department of Ecology (Ecology) reference numbers for this Site include Facility Site ID (FSID) Number (No.) 70525886 and Cleanup Site ID (CSID) No. 16913.

This assessment report has been prepared by GeoEngineers, Inc. (GeoEngineers) for Ecology under Ecology Master Contract No. C2500073. This report describes Site history, field activities, observations and chemical analytical results associated with groundwater samples collected at the Site in June 2025. The purpose of this assessment is to act in compliance with Washington Administrative Code (WAC) 173-340-430 (Interim Actions) to reduce a threat to human health or the environment by eliminating or substantially reducing one or more pathways for exposure to contaminated groundwater. Data generated from this assessment, in combination with previous groundwater sampling data from the Site, will be used to support the development of the interim cleanup action.

2.0 Site Description and Background

In September 2023, Ecology was notified of gasoline odor complaints at the Marcus Whitman Hotel. It was determined that gasoline vapors were entering the hotel building via the basement and gasoline was present in groundwater beneath the hotel building. The basement underlies the original portion of the historic Marcus Whitman building and includes hotel operations and utility rooms (electrical, boiler, air handler, etc.).

In the east corner of the basement, a lower-level basement (referred to as the sub-basement) contains a partial dirt floor and contains a vault and groundwater sump, which were identified as likely preferential pathways for vapor to enter the basement. Further investigation identified gasoline and gasoline contaminated water in two sumps and a vault in an adjacent 106 Building. Emergency actions were taken to vent potentially explosive levels of volatile organic compounds (VOCs) and recover product from the sumps.

The Chevron gas station, located northeast of the Marcus Whitman and adjacent to the 106 Building, was identified as the source of the gasoline release. Thirteen monitoring wells were installed to delineate and monitor the release, as shown in Groundwater Assessment – June 2025, Figure 3. Four wells (AMW-01 through AMW-04) are located on the Chevron property. Nine wells (MW-1 through MW-9) are located nearby in the City of Walla Walla (City) right-of-way. Chevron property wells, as well as MW-7 through MW9, are 4-inches in diameter, and MW-1 through MW-6 are 2-inches in diameter. All wells are installed in the shallow, unconfined aquifer below the Site.

Emergency actions have continued at the Site since the identification of the release, including interception of contaminated groundwater in the sumps, treatment of contaminated groundwater using granular

activated carbon (GAC) and discharging the treated groundwater to the municipal sewer. In May 2024, Stillwater Holdings, the owner of the Chevron gas station, petitioned Ecology to take over the continued remediation of the Site due to lack of funds.

Emergency interim action remains necessary at the site as unmitigated response to groundwater contamination or exposure to soil vapors would create a potential risk to public safety and could present a threat to the environment.

2.1 PREVIOUS INVESTIGATIONS

Assessment and remediation actions have been conducted at the Site since identification of the release in September 2023. Ecology and consultants hired by Stillwater Holdings have installed groundwater wells, implemented interim remediation measures, and monitored Site air and groundwater concentrations. Assessment and remediation actions have included:

- Using venting fans and isolation of rooms (sealed plastic sheets) to reduce VOC levels to less than
 the lower explosive limit (LEL) and mitigate risks to human health in the Marcus Whitman and the
 106 Building;
- Intercepting groundwater in existing sumps within the Marcus Whitman and the 106 Building, where it is then manually removed and treated for VOCs prior to discharge to the Walla Walla publicly owned treatment works (POTW);
- Conducting indoor air sampling for VOCs in the 106 Building and the Marcus Whitman to evaluate the
 efficacy of the vapor ventilation systems in use at the properties;
- Sampling intercepted groundwater for VOCs and other constituents, following treatment by GAC, as required by the Industrial Pretreatment Program with the Walla Walla POTW;
- Installing and sampling 13 groundwater monitoring wells (AMW-01 through AMW-04, and MW-1 through MW-9) to delineate and monitor the impacts of the September 2023 release. The groundwater monitoring well network has been sampled by Ecology or Aspect Consulting (Aspect) for VOCs, lead, naphthalene and product thickness in wells; and
- Conducting a preferential pathway investigation to determine pathways of soil vapor entering the 106 Building. The stormwater sump was identified as a soil vapor pathway to this building.

2.2 PRIOR ANALYTICAL RESULTS

Chemical analytical results from groundwater sampling between November 2023 and March 2025 indicated that gasoline-range petroleum hydrocarbons (GRPH) was frequently detected in five monitoring wells (AMW-01, AMW-02, AMW-04, MW-5 and MW-6), and occasionally detected in five monitoring wells (AMW-03, MW-2, MW-3 and MW-8) at concentrations greater than the Model Toxics Control Act (MTCA) Method A cleanup levels for GRPH. Petroleum-related VOCs were frequently detected in seven monitoring wells (AMW-01, AMW-02, AMW-03, AMW-04, MW-2, MW-5 and MW-6), and occasionally detected in three monitoring wells (MW-3, MW-8 and MW-9) concentrations greater than the MTCA Method A cleanup levels.

Chlorinated solvents (CVOCs) including tetrachloroethene (PCE) and/or trichloroethene (TCE) were also detected in MW-7, MW-8 and MW-9 at concentrations greater than their respective MTCA Method A groundwater cleanup levels. There is no known use of chlorinated solvents at the Site. Lead has not been

detected in the groundwater samples. MW-1 was damaged shortly after installation and does not produce water and has not been sampled. Prior sample events before March 2025 were performed by Ecology or Aspect.

3.0 Field Investigation Activities

The following sections describe field activities and a discussion of observed groundwater conditions during the June 2025 groundwater assessment.

3.1 GROUNDWATER AND SUMP WATER ASSESSMENT

Depth to water, presence of free product and well headspace volatile organic vapor concentrations were measured prior to sample collection. Free product was not observed in any wells. Headspace vapor concentrations were observed to be between <1.0 parts per million (ppm); (AMW-02) to 1,052.0 ppm (MW-6).

Groundwater samples were collected in monitoring wells AMW-01 through AMW-04 located on the Chevron property, and monitoring wells MW-2 through MW-9 located on the City right-of-way on June 24 and June 25, 2025. The monitoring wells were purged using low-flow techniques and groundwater quality parameters were monitored prior to sampling as described in Appendix A. Groundwater level measurements and groundwater quality parameters at the time of sample collection are summarized in Table 1, Summary of Groundwater Field Parameters. Depths to groundwater ranged between 9.31 feet below top of casing (BTOC) in MW-3 to 15.18 feet BTOC in MW-7. Groundwater elevations ranged between 9.35.45 feet in MW-7 and 941.92 feet in AMW-04, and the groundwater gradient was to the southeast. Groundwater elevations and the groundwater gradient are shown in Figure 3.

Samples were additionally collected from the two sumps currently intercepting groundwater from beneath the Marcus Whitman (Marcus Whitman Sump) and the 106 Building (BLDG 106 Sump). Water samples from the sumps were collected using low flow techniques on June 26, 2025, following the standard procedures in Appendix A and submitted for chemical analysis.

3.2 INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW), including purge and decontamination water generated during groundwater sampling activities, was placed in the groundwater treatment system and discharged to the municipal sewer under permit with Walla Walla publicly owned treatment works.

4.0 Chemical Analytical Results

The following sections describe groundwater and sump water chemical analytical results. The laboratory report and a data validation report are included in Appendix B.

4.1 GROUNDWATER CHEMICAL ANALYTICAL RESULTS

Twelve primary groundwater samples, and one duplicate groundwater sample from AMW-01, were submitted to Eurofins Environment Testing Northwest (Eurofins) in Spokane Valley, Washington, for chemical analysis of the following contaminants of concern (COCs):

- GRPH using Northwest Method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) and CVOCs (PCE, TCE, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride) using U.S. Environmental Protection Agency (EPA) Method 8260D.

Groundwater chemical analytical results are presented and compared to the MTCA Method A cleanup levels in Table 2, Chemical Analytical Results – Groundwater, and are summarized below:

- GRPH was detected at concentrations exceeding the MTCA Method A cleanup level (CUL) of 800 micrograms per liter (μg/L), applicable when benzene is present on the Site, in monitoring wells AMW-01, AMW-02, AMW-04, MW-3, MW-5, MW-6 and MW-8. GRPH concentrations exceeding the MTCA Method A CUL ranged from 1,100 μg/L in MW-8 to 36,000 μg/L in MW-5. GRPH was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Benzene was detected at concentrations exceeding the MTCA Method A CUL of 5 μg/L in monitoring wells AMW-01, AMW-02, AMW-03, AMW-04, MW-2, MW-3, MW-5 and MW-6. Benzene concentrations exceeding the MTCA Method A CUL ranged from 22 μg/L in AMW-03 to 3,000 μg/L in AMW-01. Benzene was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Toluene was detected at concentrations exceeding the MTCA Method A CUL of 1,000 μg/L in monitoring wells AMW-01, AMW-02 and MW-5. Toluene concentrations exceeding the MTCA Method A CUL ranged from 1,800 μg/L in AMW-01 to 5,300 μg/L in MW-5. Toluene was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Ethylbenzene was detected at concentrations exceeding the MTCA Method A CUL of 700 μg/L in monitoring wells AMW-01 and MW-5. Ethylbenzene concentrations exceeding the MTCA Method A CUL ranged from 930 μg/L in AMW-01 (810 μg/L in AMW-01-DUP) to 980 μg/L in MW-5. Ethylbenzene was either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Total xylenes were detected at concentrations exceeding the MTCA Method A CUL of 1,000 μg/L in monitoring wells AMW-01, AMW-02 and MW-5. Total xylenes concentrations exceeding the MTCA Method A CUL ranged from 1,600 μg/L in AMW-01 to 6,900 μg/L in MW-5. Total xylenes were detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.
- Chlorinated solvents including PCE and/or TCE were detected in AMW-01, MW-7, MW-8 and MW-9 at concentrations greater than their respective MTCA Method A groundwater cleanup levels of 5 µg/L. PCE concentrations exceeding the MTCA Method A CUL ranged from 6 µg/L at AMW-01 (duplicate sample only) to 970 µg/L at MW-8. TCE concentrations exceeding the MTCA Method A CUL

ranged from $5.1 \,\mu\text{g/L}$ at MW-07 to $86 \,\mu\text{g/L}$. PCE and/or TCE were either not detected or was detected at concentrations less than the MTCA Method A cleanup level in the remaining groundwater samples analyzed.

4.2 SUMP WATER CHEMICAL ANALYTICAL RESULTS

Two sump water samples, Marcus Whitman Sump and BLDG 106 Sump, were submitted to Eurofins for the chemical analyses for the following COCs:

- GRPH using Northwest Method NWTPH-Gx;
- BTEX using EPA Method 8260D.

Sump water from both locations undergoes pretreatment prior to discharge to the Walla Walla POTW and these samples represent pretreatment concentrations.

Sump water chemical analytical results are presented and compared to MTCA Method A cleanup levels and the Walla Walla POTW Discharge Limits in Table 3, Chemical Analytical Results – Sump Water, and are summarized below:

- GRPH was detected at a concentration of 1,000 μg/L exceeding the MTCA Method A CUL of 800 μg/L and at a concentration equal to the Walla Walla POTW Discharge Limit of 1,000 μg/L in the sump water sample from the Marcus Whitman Hotel. GRPH was detected at a concentration less than the MTCA Method A cleanup level of 800 μg/L, and less than Discharge Limit for the Walla Walla POTW, in the BLDG 106 sump water sample.
- Benzene was detected at a concentration of 5.1 μg/L, which is greater than the MTCA Method A CUL of 5 μg/L in the sump water sample from the Marcus Whitman Hotel, but at a concentration less than the Walla Walla POTW Discharge Limit of 10 μg/L. Benzene was not detected in the sample from the BLDG 106 sump during the June 2025 monitoring event.
- Toluene, ethylbenzene and total xylenes were either not detected or detected at concentrations less than their respective MTCA Method A cleanup levels and the Walla Walla POTW Discharge Limits in both sump samples analyzed.

5.0 Summary and Recommendations

Twelve monitoring wells and two sumps were sampled in June 2025 at the Stillwater Holdings Chevron Site in Walla Walla Washington. Groundwater and sump water samples collected during the monitoring event were submitted for chemical analysis. Based on previous data collected at this Site, concentrations of GRPH and individual VOC concentrations were generally consistent with prior events, but a continued decrease is observed in concentrations measured in MW-6. Detected concentration of GRPH in MW-6 has decreased from 77,000 μ g/L in the May 2024 groundwater sampling event, to 2,600 μ g/L in the June 2025 groundwater sampling event.

Laboratory analytical results indicate that petroleum contamination is present at this Site at concentrations greater than the MTCA Method A cleanup levels. The plume appears to be bounded in three directions by MW-4 to the north, and by MW-7 to the west and MW-9 to the east. Exceedances of GRPH at MW-8 to the

south indicate the plume may not be fully bounded in this direction by the monitoring well network, where there have been only low level GRPH concentrations detected. Although chlorinated solvents have been detected in selected wells on the Site since April 2024, there has been no known use of chlorinated solvents at the Site. We recommend continued quarterly sampling of Site wells throughout the assessment and implementation of the interim cleanup action.

Petroleum contamination is present in the sump at the Marcus Whitman at concentrations greater than the MTCA Method A cleanup levels, but equal to the Walla Walla POTW Discharge Limits, necessitating the continued need for pretreatment of sump water prior to discharge.

6.0 Limitations

We have prepared this report for the exclusive use of Washington State Department of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services were executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Please refer to Appendix C, Report Limitations and Guidelines for Use, for additional information pertaining to this report.

7.0 References

Draft Engineering Design Report Wastewater Treatment: Marcus Whitman Hotel—Wastewater Treatment System, dated May 8, 2024.

Marcus Whitman Hotel Vapor Intrusion Evaluation Workplan, dated March 27, 2024, and associated Memorandum between Aspect Consulting and Ecology, dated February 7, 2024.

Washington State Department of Ecology. 2013. "Model Toxics Control Act Regulation and Statute, Champer 173-340 WAC and 70.105D RCW." Revised 2024.

Table 1

Summary of Groundwater Field Parameters

Stillwater Holdings Chevron Site Walla Walla, Washington

Chevron Property wells And	AMW-02 AMW-03	11/09/2023 05/01/2024 8/21/2024 11/13/2024 03/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024	Headspace Vapor Measurement (ppm) 639.7 94.1 17.6 0.4 <1 0.8	11.1 12.22 11.71 12.81	940.88 939.76	pH (pH units) 7.14 6.91 6.65 6.72 6.62 6.69 7.26 6.92 6.80 6.69 6.71 6.85	Specific Conductivity (μS/cm) 474.36 1234.2 864 1226 1290 1433 616.82 827.25 820 1347 1012	ORP (mV) -182.1 -135.8 -78.7 -117.3 -136.9 -137.8 145.8 -111.4 -73.2 -123.1	Dissolved Oxygen (mg/L) 0.6 0.21 0.4 0.14 -0.09 0.06 0.4 0.17 1.7 0.24	Turbidity (NTU) 14.6 25.4 - 9.4 17.63 6.69 5.74	Temperature (degrees C) 13.58 16.97 20.22 18.21 17.4 18.7 16.37 16.46 18.64
Chevron Property wells And And City Right- Of-Way Wells	AMW-02	05/01/2024 8/21/2024 11/13/2024 03/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	94.1 17.6 0.4	12.22	939.76 941.57	6.91 6.65 6.72 6.62 6.69 7.26 6.92 6.80 6.69 6.71 6.85	1234.2 864 1226 1290 1433 616.82 827.25 820 1347	-135.8 -78.7 -117.3 -136.9 -137.8 145.8 -111.4 -73.2 -123.1	0.21 0.4 0.14 -0.09 0.06 0.4 0.17 1.7	25.4 - 9.4 17.63 6.69 5.74	16.97 20.22 18.21 17.4 18.7 16.37
Chevron Property wells And And City Right- Of-Way Wells	AMW-02	8/21/2024 11/13/2024 03/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	94.1 17.6 0.4	12.22	939.76 941.57	6.65 6.72 6.62 6.69 7.26 6.92 6.80 6.69 6.71 6.85	864 1226 1290 1433 616.82 827.25 820 1347	-78.7 -117.3 -136.9 -137.8 145.8 -111.4 -73.2 -123.1	0.4 0.14 -0.09 0.06 0.4 0.17 1.7	9.4 17.63 6.69 5.74	20.22 18.21 17.4 18.7 16.37
Chevron Property wells And City Right- Of-Way Wells	AMW-02	11/13/2024 03/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	94.1 17.6 0.4	12.22	939.76 941.57	6.72 6.62 6.69 7.26 6.92 6.80 6.69 6.71 6.85	1226 1290 1433 616.82 827.25 820 1347	-117.3 -136.9 -137.8 145.8 -111.4 -73.2 -123.1	0.14 -0.09 0.06 0.4 0.17 1.7	9.4 17.63 6.69 5.74	18.21 17.4 18.7 16.37 16.46
Chevron Property wells And City Right- Of-Way Wells	AMW-03	03/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	94.1 17.6 0.4	12.22	939.76 941.57	6.62 6.69 7.26 6.92 6.80 6.69 6.71 6.85	1290 1433 616.82 827.25 820 1347	-136.9 -137.8 145.8 -111.4 -73.2 -123.1	-0.09 0.06 0.4 0.17 1.7	9.4 17.63 6.69 5.74	17.4 18.7 16.37 16.46
Chevron Property wells And City Right- Of-Way Wells	AMW-03	6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	94.1 17.6 0.4	12.22	939.76 941.57	6.69 7.26 6.92 6.80 6.69 6.71 6.85	1433 616.82 827.25 820 1347	-137.8 145.8 -111.4 -73.2 -123.1	0.06 0.4 0.17 1.7	17.63 6.69 5.74	18.7 16.37 16.46
Chevron Property wells AM City Right- Of-Way Wells	AMW-03	11/09/2023 05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	17.6 0.4	11.71	941.57	7.26 6.92 6.80 6.69 6.71 6.85	616.82 827.25 820 1347	145.8 -111.4 -73.2 -123.1	0.4 0.17 1.7	6.69 5.74	16.37 16.46
Chevron Property wells AM City Right- Of-Way Wells	AMW-03	05/01/2024 8/21/2024 11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	0.4			6.92 6.80 6.69 6.71 6.85	827.25 820 1347	-111.4 -73.2 -123.1	0.17 1.7	5.74	16.46
Chevron Property Wells AM City Right- Of-Way Wells	AMW-03	11/14/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	0.4			6.69 6.71 6.85	1347	-123.1			18 64
Chevron Property Wells AM City Right- Of-Way Wells	AMW-03	3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	0.4			6.71 6.85			0.24		
Property wells And		6/25/2025 11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	0.4			6.85	1012				13.23
Property wells And		11/09/2023 05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024	<1	12.81	940.47			-118.8	0.14	2.95	16.9
Wells And And City Right- Of-Way Wells		05/01/2024 8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024					1372	-122	0.17	2.33	17.7
City Right-Of-Way Wells		8/21/2024 11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024				7.17	470.38	-112	0.38	5.01	14.96
City Right- Of-Way Wells		11/13/2024 3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024				6.82	538.87	36.8	0.3	9.95	14.93
City Right- Of-Way Wells	AMW-04	3/25/2025 6/25/2025 11/09/2023 05/01/2024 8/21/2024				6.11	597	-22.6	24.8 %		18.20
City Right- Of-Way Wells	AMW-04	6/25/2025 11/09/2023 05/01/2024 8/21/2024		40.00	000.00	6.72	754	-25.6	0.42		16.38
City Right- Of-Way Wells	AMW-04	11/09/2023 05/01/2024 8/21/2024	0.8	13.60	938.83	6.70	693	30.6	1.45	3.62	17.5 17.7
City Right- Of-Way Wells	AMW-04	05/01/2024 8/21/2024	 	14.73	937.70	6.80 7.01	796 408.91	-25.3 -173	0.11 0.31	4.74 1.79	16.45
City Right- Of-Way Wells	AMW-04	8/21/2024	Ī			7.01	607.78	-131.5	0.31	4.14	15.79
City Right- Of-Way Wells	AMW-04	11/14/2024				6.88	594	-103.0	2.6		18.24
City Right- Of-Way Wells						7.10	557	-90.9	0.47		18.46
City Right- Of-Way Wells		3/25/2025	<1	10.61	943.31	6.51	548	19.1	0.01	4.85	16.1
City Right- Of-Way Wells		6/25/2025	1.2	12.00	941.92	7	780	-160.9	0.11	8.6	16.9
City Right- Of-Way Wells		11/29/2023				7.1	555.85	-94.4	0.38	2.96	12.72
City Right- Of-Way Wells		04/30/2024				6.87	554.36	-77.3	0.39	24.2	15.93
City Right- Of-Way Wells	MW-2	8/20/2024				6.76	479	-44.6	1.9	-	17.67
City Right- Of-Way Wells		11/13/2024				6.78	640	-75.0	0.19		15.37
City Right- Of-Way Wells		3/26/2025	<1	12.89	938.05	6.66	648	-74.8	0.10	5.58	16.9
City Right- Of-Way Wells		6/24/2025	285	14.56	936.38	6.86	754	-81	0.11	6.31	18.1
City Right- Of-Way Wells	MW-3	11/29/2023 04/30/2024				7.19 6.95	617.85 675.49	50 -1.8	0.37 0.73	7.88 10.7	12.63 15.91
City Right- Of-Way Wells		8/20/2024				6.77	452	8.9	1.9	-	17.84
City Right- Of-Way Wells	MW-3	11/13/2024				7.07	440	-48.7	1.01		16.52
City Right- Of-Way Wells		3/26/2025	98.1	9.56	941.26	6.84	975	131.6	-0.02	1.88	12.0
City Right- Of-Way Wells		6/24/2025	133	9.31	941.51	7.09	734	-144.9	0.07	4.17	18.1
City Right- Of-Way Wells		11/29/2023				6.59	365	203.1	1.54	1.27	13.65
City Right- Of-Way Wells	-	04/30/2024				6.69	451.82	180.4	1.79	3.09	15.28
City Right- Of-Way Wells	MW-4	8/20/2024				6.70	443	100.4	6.9		18.99
City Right- Of-Way Wells		11/13/2024		44.74	222.22	6.77	390	59.2	0.84		15.20
City Right- Of-Way Wells		3/26/2025	<1	11.71	938.63	6.66	410	158.9	1.74	27.69	16.1
City Right- Of-Way Wells		6/24/2025 11/29/2023	99.8	11.61	938.73	6.81 6.6	549 887.38	73.5 -41.6	0.75 0.4	4.98 4.32	18 14.29
City Right- Of-Way Wells		05/01/2024				7.11	718.49	-158.6	0.46	4.93	16.39
City Right- Of-Way Wells	MW-5	11/13/2024				6.97	551	-97.8	1.06		18.62
Of-Way Wells		3/26/2025	397.0	10.92	940.93	6.86	792	-131.2	-0.05	3.47	15.6
Wells		6/25/2025	942.0	11.20	940.65	7.21	658	-166.1	0.06	3.45	18.2
n		05/01/2024				6.76	418.53	-34.8	0.21	4.51	15.28
	MW-6	11/14/2024				6.45	927	-84.6	1.47		19.04
	9	3/26/2025	1,672.0	8.42	943.98	6.51	454	61	0.29	42.84	14.8
		6/24/2025	1,052.0	10.78	941.62	6.83	747	-127.6	0.08	2.77	17.9
		11/10/2023				6.82	214.66	141.9	3.88	3.31	13.9
		04/30/2024				6.87	270.66	76.4 162.5	5.51	2.36	12.26
I.	MW-7	8/20/2024 11/13/2024				6.82 6.87	237 294	162.5 175.3	2.47 3.33		17.40 15.50
	14144-1	3/26/2025	-	13.61	937.02	6.29	294	118.2	6.52	1.42	12.6
	14144-1	6/25/2025	1.0	15.18	935.45	6.86	339.5	73.7	4.26	2.84	15.6
	14144-1	11/10/2023			-	6.7	254.55	127	1.22	1.09	15.32
	14144-1	05/01/2024				6.54	244.1	176	2.56	1.26	15.45
		8/20/2024				6.72	270	178.9	1.73		17.14
"		11/13/2024				6.70	332	172.8	1.87		15.92
	MW-8	0 (00 (0005	7.5	12.33	940.91	6.56	325	125.6	2.32	2.42	16.2
		3/26/2025	1.7	13.92	939.32	6.68	367	68.7	2.32	4.32	17.6
		6/25/2025				6.61	411.35	84	0.62	2	16.04
		6/25/2025 11/10/2023	ĺ			6.7	461.28	198.5	5.09	8.52	13.8
, n		6/25/2025 11/10/2023 05/01/2024	1			6.60	453	172.9	3.4		17.21
		6/25/2025 11/10/2023 05/01/2024 08/20/2024				6.70	415	137.7	1.47	-	16.10 14.6
	MW-8	6/25/2025 11/10/2023 05/01/2024	3.9	10.5	942.07	6.68	454	114.6	6.05	1.31	

Notes:

Btoc = Below top of casing

deg C = degrees Celsius

mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeter$

mV = millivolts

NTU = Nephelometric Turbidity Units

ppm = parts per million

Italics notes Ecology and Aspect data as reported to GeoEngineers on April 15, 2025

Data collected by GeoEngineers during the June 2025 groundwater assessment are dated 06/24/2025-06/25/2025.

Table 2

Chemical Analytical Results - Groundwater

Stillwater Holdings Chevron Site Walla Walla, Washington

										Chev	ron Property \	Wells							
Monitoring Well Lo	cation					AM	W-01						AMW-02				AMV	V-03	
Sample Date			11/09/2023	05/01/2024	08/21/2024	11/13/2024	03/25/2025	(Dup) 03/25/2025	06/25/2025	(Dup) 06/25/2025	11/09/2023	05/01/2024	8/21/2024	11/14/2024	03/25/2025	11/09/2023	05/01/2024	8/21/2024	11/13/2024
Analyte	Unit	MTCA ⁶																	
Petroleum Hydrocarbons ¹					•	•			•			•		•			•	•	•
GRPH	μg/L	800	13,000	85,000	4,100	25,000	27,000	33,000	24,000	26,000	29,000	59,000	4,800	4,300	5,400	7,300	62	660	300
BTEX ²				1			1										!	!	
Benzene	μg/L	5	1,100	7,100	1,800	3,000	3,300	3,200	3,000	2,900	2,600	7,200	3,100	1,200	1,700	1,200	24	140	54
Toluene	μg/L	1000	2,300	21,000	5,600	5,500	8,700	8,500	1,800	1,800	4,800	15,000	4,700	1,400	3,200	1,200	< 2.0 U	7.1	2
Ethylbenzene	μg/L	700	150	1300	440	680	1,000	970	930	810	360	820	450	220	450	160	6.9	53	19
Xylenes (Total)	μg/L	1000	1,100	6,300	2,260	3,300	5,700	5,400	5,700	5,500	2,500	5,000	2,100	810	1,600	690	< 4 U	24.5	8.4
Metals ³				·	· · ·						·						1		
Lead (dissolved)	μg/L	15		< 1.0 U	-			-			_	< 1.0 U			-		< 1.0 U	_	
PAHs ⁴						.1	1		1			•							1
Naphthalene	μg/L	160		130	77	_						120	74				< 2.0 U	4.8	
VOCs ⁵				ı			ı		1								1		
1,2,4-Trimethylbenzene	μg/L	80		510	210						_	580	250		_		< 2.0 U	14	
1,2-Dibromoethane (EDB)	μg/L	0.01	-	< 0.010 U								< 0.010 U					< 0.010 U		
1,2-Dichloroethane (EDC)	μg/L	5		< 2.0 U	< 1.0 U							< 2.0 U	< 1.0 U	-	-		< 2.0 U	< 1.0 U	
1,3,5-Trimethylbenzene	μg/L	80	-	130	47	-						160	64				< 2.0 U	2	
2-Chlorotoluene	μg/L	160	-	< 2.0 U	< 1.0 U	-		-				< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U	-
4-Chlorotoluene	μg/L	160	-	< 2.0 U	< 1.0 U	-		-				< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U	
4-Methyl-2-pentanone	μg/L	640		15	NA	-		-				< 10 U	NA				< 10 U	NA	
Acetone	μg/L	7200		96 J	NA							< 25 U	NA				< 25 U	NA	
cis-1,2-Dichloroethene (cDCE)	μg/L	16		< 2.0 U	< 1.0 U				< 1.0 U	< 10 U		< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U	
Hexachlorobutadiene	μg/L	8		< 2.0 U	< 2.0 U							< 2.0 U	< 2.0 U				< 2.0 U	< 2.0 U	
Isopropylbenzene (cumene)	μg/L	800		27	10							25	11				< 2.0 U	3	
m,p-Xylenes	μg/L	1600		4,200	1,500				4,000	4,000		3,300	1200				< 4.0 U	15	
Methyl tert-butyl ether (MTBE)	μg/L	20		< 2.0 U	< 1.0 U							< 2.0 U	< 1.0 U				< 2.0 U	< 1.0 U	-
n-Butylbenzene	μg/L	400		< 2.0 U	< 1.0 U							< 2.0 U	< 1.0 U				< 2.0 U	0.64 J	
n-Propylbenzene	μg/L	800		76	32							62	36				< 2.0 U	6.3	
o-Xylene	μg/L	1600		2,100	760				1,600	1,500		1,700	900				< 2.0 U	9.5	
p-Isopropyltoluene	μg/L			< 2.0 U	1							< 2.0 U	0.93 J				< 2.0 U	0.54 J	
sec-Butylbenzene	μg/L	800		4.0	3							2.6	1.5	-			< 2.0 U	0.73 J	
Styrene	μg/L	1600		< 2.0 U	< 1.0 U							< 2.0 U	18	-			< 2.0 U	< 1.0 U	-
tert-Butylbenzene	μg/L	800		< 2.0 U	1.1							< 2.0 U	< 1.0 U	-			< 2.0 U	< 1.0 U	
Tetrachloroethene (PCE)	μg/L	5	_	< 2.0 U	< 1.0 U			-	< 1.0 UJ	6.0 J	_	< 2.0 U	< 1.0 U		_		< 2.0 U	< 1.0 U	
trans-1,2-Dichloroethene	μg/L	160		< 2.0 U	<1.0 U				< 1.0 U	< 10 U		< 2.0 U	<1.0 U				< 2.0 U	<1.0 U	
Trichloroethene (TCE)	μg/L	5		< 2.0 U	<1.0 U				< 1.0 U	< 10 U		< 2.0 U	<1.0 U				< 2.0 U	<1.0 U	
Vinyl Chloride	μg/L	0.2		< 0.20 U	< 0.4 U				< 0.40 U	< 4.0 U		< 0.20 U	< 0.4 U				< 0.20 U	< 0.4 U	

						Che	vron Propert	y Wells				City Right-of-way Wells						
Monitoring Well Lo	cation		AM\	W-03				AMW-04				MW-2						
Sample Date			03/25/2025	06/25/2025	11/09/2023	05/01/2024	8/21/2024	11/14/2024	(Dup) 11/14/2024	03/25/2025	06/25/2025	11/29/2023	04/30/2024	8/20/2024	11/13/2024	03/26/2025	06/24/2025	
Analyte	Unit	MTCA ⁶																
Petroleum Hydrocarbons ¹		•				•	•	•			•			•	•	•		
GRPH	μg/L	800	73 J	130 J	9,100	39,000	13,000	6,400	5,200	420	3,300	6,700	290	510	1,100	910	700	
BTEX ²	•	•												•				
Benzene	μg/L	5	12	22	970	1,700	670	440	360	23	190	910	190	130	270	260	310	
Toluene	μg/L	1000	4.0	< 1.6 U ⁷	1,300	7,000	2,200	810	690	18	92	1,300	< 2.0 U	0.49	29	3.1	< 1.4 U ⁷	
Ethylbenzene	μg/L	700	4.2	12	160	910	510	390	310	23	110	120	64	61	100	120	74	
Xylenes (Total)	μg/L	1000	3.8	5.5	920	4,800	2,330	1,200	1,000	50	350	630	< 4 U	1.52	120	30	36	
Metals ³																		
Lead (dissolved)	μg/L	15				< 1.0 U								-		-		
PAHs ⁴																		
Naphthalene	μg/L	160			-	90	88				-		7.6	2.4		-		
VOCs ⁵																		
1,2,4-Trimethylbenzene	μg/L	80	-		-	780	370	-	_		-		30	7.4				
1,2-Dibromoethane (EDB)	μg/L	0.01	-		-	< 0.010 U	-	-	-		-		< 0.010 U			-	-	
1,2-Dichloroethane (EDC)	μg/L	5			-	< 2.0 U	< 1.0 U	-			-	-	< 2.0 U	< 1.0 U		_	-	
1,3,5-Trimethylbenzene	μg/L	80				210	90				-	-	< 2.0 U	< 1.0 U		-		
2-Chlorotoluene	μg/L	160			-	< 2.0 U	< 1.0 U	-			-	-	< 2.0 U	< 1.0 U	-	-		
4-Chlorotoluene	μg/L	160	-			< 2.0 U	< 1.0 U				-	-	< 2.0 U	< 1.0 U		-		
4-Methyl-2-pentanone	μg/L	640				< 10 U	NA						< 10 U	NA		-		
Acetone	μg/L	7200			-	< 25 U	NA						< 25 U	NA		-		
cis-1,2-Dichloroethene (cDCE)	μg/L	16		< 1.0 U	-	< 2.0 U	< 1.0 U				< 1.0 U		< 2.0 U	< 1.0 U		-	< 1.0 U	
Hexachlorobutadiene	μg/L	8	-		-	< 2.0 U	< 2.0 U				-		< 2.0 U	< 2.0 U		-		
Isopropylbenzene (cumene)	μg/L	800			-	36	18		-		-		3.5	2.2		-		
m,p-Xylenes	μg/L	1600		3.7	-	3300	1500				220		< 4.0 U	< 2.0 U			36	
Methyl tert-butyl ether (MTBE)	μg/L	20			-	< 2.0 U	< 1.0 U				-		< 2.0 U	< 1.0 U		-		
n-Butylbenzene	μg/L	400				< 2.0 U	12						< 2.0 U	< 1.0 U				
n-Propylbenzene	μg/L	800			-	95	63				-		7.0	5.8				
o-Xylene	μg/L	1600		1.7	-	1500	830				130		< 2.0 U	< 1.0 U			< 1.0 U	
p-lsopropyltoluene	μg/L				-	< 2.0 U	1.8						< 2.0 U	0.53 J				
sec-Butylbenzene	μg/L	800	-		-	3.9	3.3				-	-	< 2.0 U	0.55 J		_		
Styrene	μg/L	1600			-	< 2.0 U	< 1.0 U						< 2.0 U	< 1.0 U				
tert-Butylbenzene	μg/L	800			-	< 2.0 U	< 1.0 U				-		< 2.0 U	< 1.0 U				
Tetrachloroethene (PCE)	μg/L	5		< 1.0 U	-	< 2.0 U	< 1.0 U	_			< 1.0 U	-	< 2.0 U	< 1.0 U	_	-	< 1.0 U	
trans-1,2-Dichloroethene	μg/L	160		< 1.0 U	-	< 2.0 U	<1.0 U				< 1.0 U	-	< 2.0 U	<1.0 U	-	-	< 1.0 U	
Trichloroethene (TCE)	μg/L	5		< 1.0 U	-	< 2.0 U	<1.0 U				< 1.0 U	-	< 2.0 U	<1.0 U	_		< 1.0 U	
Vinyl Chloride	μg/L	0.2	-	< 0.40 U		< 0.20 U	< 0.4 U	-	-		< 0.40 U		< 0.20 U	< 0.4 U	-		< 0.40 U	

									City Right-of-way Wells									- T		
Monitoring Well Lo	cation				MW	<i>'</i> -3			MW-4						MW-5					
Sample Date			11/29/2023	04/30/2024	8/20/2024	11/13/2024	03/26/2025	06/24/2025	11/28/2023	04/30/2024	8/20/2024	11/13/2024	03/26/2025	06/24/2025	11/29/2023	05/01/2024	11/13/2024	03/26/2025	06/25/2025	
Analyte	Unit	MTCA ⁶ CUL																		
Petroleum Hydrocarbons ¹	•				•	•														
GRPH	μg/L	800	7,300	2,800	54	54 U	4,900	3,400	< 50 U	< 50 U	54	54	< 150 U	< 150 U	190,000	130,000	42,000	39,000	36,000	
BTEX ²					•															
Benzene	μg/L	5	700	120	0.52	2.7	57	69	< 1.0 U	< 2.0 U	0.38	< 0.4 U	< 0.40 U	0.48	9,100	700	800	1,500	670	
Toluene	μg/L	1000	510	120	0.31	0.31 J	100	97	< 1.0 U	< 2.0 U	0.31	< 1.0 U	< 0.53 U ⁷	< 0.46 B, U ⁷	33,000	5,500	6,500	6,300	5,300	
Ethylbenzene	μg/L	700	58	68	0.2	1.3	220	170	< 1.0 U	< 2.0 U	0.23	< 1.0 U	0.44 J	< 1.0 U	2,000	2,400	880	1,100	980	
Xylenes (Total)	μg/L	1000	1,200	450	0.44	3.5	1,100	590	< 3.0 U	< 4 U	0.44	< 3.0 U	1.4 J	1.2 J	16,000	3,000	8,200	8,200	6,900	
Metals ³																				
Lead (dissolved)	μg/L	15	-			-								-	-					
PAHs ⁴																				
Naphthalene	μg/L	160	-	30	0.63	-				< 2.0 U	< 2.0 U			-	-	420				
VOCs ⁵																				
1,2,4-Trimethylbenzene	μg/L	80		84	< 1.0 U	-				< 2.0 U	< 1.0 U	-		-	-	2,400	-			
1,2-Dibromoethane (EDB)	µg/L	0.01		< 0.010 U						< 0.010 U				-	-	< 0.010 U				
1,2-Dichloroethane (EDC)	μg/L	5		2.4	< 1.0 U	-				< 2.0 U	< 1.0 U	-		-	-	< 2.0 U	-			
1,3,5-Trimethylbenzene	μg/L	80		36	< 1.0 U					< 2.0 U	< 1.0 U	-				650				
2-Chlorotoluene	μg/L	160	-	2.7	< 1.0 U	-		-		< 2.0 U	< 1.0 U	-		-	-	< 2.0 U	-		-	
4-Chlorotoluene	μg/L	160	-	7.5	< 1.0 U	-				< 2.0 U	< 1.0 U	-		-	-	< 2.0 U			-	
4-Methyl-2-pentanone	μg/L	640	-	< 10 U	NA	-				< 10 U	NA			-	-	< 10 U			-	
Acetone	μg/L	7200	-	30	NA	-				< 25 U	NA			-	-	< 25 U				
cis-1,2-Dichloroethene (cDCE)	μg/L	16	-	< 2.0 U	< 1.0 U	-	-	< 1.0 U		< 2.0 U	< 1.0 U		-	< 1.0 U	-	< 2.0 U			< 1.0 U	
Hexachlorobutadiene	μg/L	8		< 2.0 U	< 2.0 U					< 2.0 U	< 2.0 U	-				< 2.0 U				
Isopropylbenzene (cumene)	μg/L	800	-	3.0	< 1.0 U	-				< 2.0 U	< 1.0 U			-	-	77			-	
m,p-Xylenes	μg/L	1600	-	190	< 2.0 U	-		270		< 4.0 U	< 2.0 U	-		1.2 J	-	2,100			4,600	
Methyl tert-butyl ether (MTBE)	µg/L	20	-	< 2.0 U	< 1.0 U	-				< 2.0 U	< 1.0 U	-			-	< 2.0 U			-	
n-Butylbenzene	µg/L	400		4.9	< 1.0 U	-		-	-	< 2.0 U	< 1.0 U	-			-	< 2.0 U			-	
n-Propylbenzene	μg/L	800	-	4.1	< 1.0 U	-		-		< 2.0 U	< 1.0 U	-			-	240	-			
o-Xylene	μg/L	1600	-	260	< 1.0 U	-		320		< 2.0 U	< 1.0 U	-		< 1.0 U	-	900			2,200	
p-lsopropyltoluene	μg/L		-	< 2.0 U	< 1.0 U	-				< 2.0 U	< 1.0 U	-				6.4			-	
sec-Butylbenzene	μg/L	800	-	< 2.0 U	< 1.0 U	_	-	-		< 2.0 U	< 1.0 U	-	-		-	9.1			-	
Styrene	μg/L	1600	-	8.5	< 1.0 U	-				< 2.0 U	< 1.0 U	-			-	< 2.0 U				
tert-Butylbenzene	μg/L	800	-	12	< 1.0 U	-				< 2.0 U	< 1.0 U			-	-	< 2.0 U				
Tetrachloroethene (PCE)	μg/L	5	-	< 2.0 U	< 1.0 U	_	-	< 1.0 U	_	< 2.0 U	< 1.0 U	-		< 1.0 U	-	< 2.0 U	_		< 1.0 U	
trans-1,2-Dichloroethene	μg/L	160	-	< 2.0 U	<1.0 U	-	-	< 1.0 U		< 2.0 U	<1.0 U	-		< 1.0 U	-	< 2.0 U	-		< 1.0 U	
Trichloroethene (TCE)	μg/L	5	-	< 2.0 U	<1.0 U	_	-	< 1.0 U	-	< 2.0 U	<1.0 U	-		< 1.0 U	-	< 2.0 U			< 1.0 U	
Vinyl Chloride	μg/L	0.2	-	< 0.20 U	< 0.4 U		-	< 0.40 U		< 0.20 U	< 0.4 U	-		< 0.40 U	-	< 0.20 U			< 0.40 U	

							City Right-of-way Wells											
Monitoring Well Lo	cation			MW	'-6				М	W-7			MW-8					
Sample Date			05/01/2024	11/14/2024	03/26/2025	06/24/2025	11/10/2023	04/30/2024	8/20/2024	11/13/2024	03/26/2025	06/25/2025	11/10/2023	05/01/2024	8/20/2024	11/13/2024	03/26/2025	06/25/2025
Analyte	Unit	MTCA ⁶ CUL																
Petroleum Hydrocarbons ¹				•										•		•		•
GRPH	μg/L	800	77,000	25,000	12,000	2,600	76	< 50 U	55	170	99 J	150	320	310	760	1,900	760 J	1,100
BTEX ²	<u> </u>			•					•	•	•			•	•	•	•	•
Benzene	μg/L	5	2,000	650	4.3	36	< 1.0 U	< 2.0 U	<0.4 U	< 0.4 U	< 0.40 U	2.2	3.4	< 2.0 U	< 0.4 U	< 0.4 U	< 0.40 U	< 0.40 U
Toluene	μg/L	1000	9,000	69,000	78	96	< 1.0 U	< 2.0 U	0.31	< 1.0 U	1.4	< 2.8 U ⁷	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 0.77 U ⁷	< 1.0 U
Ethylbenzene	μg/L	700	1,900	1,100	150	63	< 1.0 U	< 2.0 U	0.2	< 1.0 U	0.79 J	1.4	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	0.26 J	< 1.0 U
Xylenes (Total)	μg/L	1000	12,000	7,700	1,700	470	< 3.0 U	< 4 U	0.44	< 3.0 U	3.5	7.4	< 3.0 U	< 4 U	< 2.0U	< 3.0 U	1.2 J	< 3.0 U
Metals ³									•	•								
Lead (dissolved)	μg/L	15																-
PAHs ⁴									•	•								
Naphthalene	μg/L	160	420		-			< 2.0 U	< 2.0 U					< 2.0 U	< 2.0 U			
VOCs ⁵									•	•	•					•	•	•
1,2,4-Trimethylbenzene	μg/L	80	2,100		-			< 2.0 U	< 1.0 U					< 2.0 U	< 1.0 U			
1,2-Dibromoethane (EDB)	μg/L	0.01	< 0.010 U	-	-			< 0.010 U		-				< 0.010 U				
1,2-Dichloroethane (EDC)	μg/L	5	< 2.0 U		-			< 2.0 U	< 1.0 U	-				< 2.0 U	< 1.0 U			_
1,3,5-Trimethylbenzene	μg/L	80	640					< 2.0 U	< 1.0 U					< 2.0 U	< 1.0 U			
2-Chlorotoluene	μg/L	160	< 2.0 U	-	-			< 2.0 U	< 1.0 U					< 2.0 U	< 1.0 U			-
4-Chlorotoluene	μg/L	160	< 2.0 U					< 2.0 U	< 1.0 U					< 2.0 U	< 1.0 U			
4-Methyl-2-pentanone	μg/L	640	< 10 U	-	-			< 10 U	NA					< 10 U	NA			-
Acetone	μg/L	7200	< 25 U	-	-			< 25 U	NA	-				< 25 U	NA			-
cis-1,2-Dichloroethene (cDCE)	μg/L	16	< 2.0 U	-	-	< 1.0 U		4.9	3			3.7		82	85			89
Hexachlorobutadiene	μg/L	8	< 2.0 U	-	-			< 2.0 U	< 2.0 U					< 2.0 U	< 2.0 U			-
Isopropylbenzene (cumene)	µg/L	800	91	-	-	-		< 2.0 U	< 1.0 U	-		-		< 2.0 U	< 1.0 U			-
m,p-Xylenes	μg/L	1600	8,800	-	-	350		< 4.0 U	< 2.0 U			5.4 J		< 4.0 U	< 2.0 U			< 2.0 U
Methyl tert-butyl ether (MTBE)	μg/L	20	< 2.0 U	-	-		-	< 2.0 U	< 1.0 U	-	-			< 2.0 U	< 1.0 U			_
n-Butylbenzene	μg/L	400	< 2.0 U		-		-	< 2.0 U	< 1.0 U	-		-		< 2.0 U	< 1.0 U		-	-
n-Propylbenzene	μg/L	800	310					< 2.0 U	< 1.0 U					< 2.0 U	< 1.0 U			-
o-Xylene	μg/L	1600	3,200		-	130		< 2.0 U	< 1.0 U			2.1		< 2.0 U	< 1.0 U			< 1.0 U
p-lsopropyltoluene	μg/L	-	6.1	-			-	< 2.0 U	< 1.0 U	-	-		-	< 2.0 U	< 1.0 U		-	_
sec-Butylbenzene	μg/L	800	9.5					< 2.0 U	< 1.0 U					< 2.0 U	< 1.0 U			-
Styrene	μg/L	1600	< 2.0 U					< 2.0 U	< 1.0 U	-				< 2.0 U	< 1.0 U		-	-
tert-Butylbenzene	μg/L	800	< 2.0 U					< 2.0 U	< 1.0 U				-	< 2.0 U	< 1.0 U			-
Tetrachloroethene (PCE)	μg/L	5	< 2.0 U			1.1		62	53			42		840	920			970
trans-1,2-Dichloroethene	μg/L	160	< 2.0 U			< 1.0 U		< 2.0 U	<1.0 U			< 1.0 U		4.1	< 20 U	-		3.5
Trichloroethene (TCE)	μg/L	5	< 2.0 U			< 1.0 U		8.3	4.9			5.1		66	79			86
Vinyl Chloride	μg/L	0.2	< 0.20 U			< 0.40 U		< 0.20 U	< 0.4 U			< 0.40 U		0.96	< 0.4 U			< 0.40 U

					City Right-	of-way Wells		
Monitoring Well Lo	cation				М	W-9		
Sample Date	•		11/10/2023	05/01/2024	08/20/2024	11/13/2024	03/26/2025	06/25/2025
Analyte	Unit	MTCA ⁶						
Petroleum Hydrocarbons ¹	-			•	•	•		
GRPH	μg/L	800	240	< 50 U	54	59 J	< 54 U	< 90 U ⁷
BTEX ²								
Benzene	μg/L	5	41	< 2.0 U	< 0.4 U	< 0.4 U	< 0.40 U	< 0.40 U
Toluene	μg/L	1000	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 0.57 U ⁷	< 1.0 U
Ethylbenzene	μg/L	700	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (Total)	μg/L	1000	< 3.0 U	< 4 U	< 2.0 U	< 3.0U	0.75 J	< 3.0 U
Metals ³								
Lead (dissolved)	μg/L	15	_			-		-
PAHs ⁴								
Naphthalene	μg/L	160	_	< 2.0 U	< 2.0 U	-		-
VOCs ⁵								
1,2,4-Trimethylbenzene	μg/L	80	_	< 2.0 U	< 1.0 U			
1,2-Dibromoethane (EDB)	μg/L	0.01	-	< 0.010 U				
1,2-Dichloroethane (EDC)	μg/L	5	_	< 2.0 U	< 1.0 U			
1,3,5-Trimethylbenzene	μg/L	80	-	< 2.0 U	< 1.0 U			
2-Chlorotoluene	μg/L	160	-	< 2.0 U	< 1.0 U			
4-Chlorotoluene	μg/L	160		< 2.0 U	< 1.0 U			-
4-Methyl-2-pentanone	μg/L	640	-	< 10 U	NA			-
Acetone	μg/L	7200		< 25 U	NA			-
cis-1,2-Dichloroethene (cDCE)	μg/L	16	-	< 2.0 U	< 1.0 U	-		1.3
Hexachlorobutadiene	μg/L	8		< 2.0 U	< 2.0 U			-
Isopropylbenzene (cumene)	μg/L	800	-	< 2.0 U	< 1.0 U	-		-
m,p-Xylenes	μg/L	1600		< 4.0 U	< 2.0 U			< 2.0 U
Methyl tert-butyl ether (MTBE)	μg/L	20	_	< 2.0 U	< 1.0 U	-		-
n-Butylbenzene	μg/L	400		< 2.0 U	< 1.0 U			-
n-Propylbenzene	μg/L	800		< 2.0 U	< 1.0 U	-		-
o-Xylene	μg/L	1600		< 2.0 U	< 1.0 U			< 1.0 U
p-lsopropyltoluene	μg/L			< 2.0 U	< 1.0 U			
sec-Butylbenzene	μg/L	800		< 2.0 U	< 1.0 U			
Styrene	μg/L	1600		< 2.0 U	< 1.0 U	-		
tert-Butylbenzene	μg/L	800	-	< 2.0 U	< 1.0 U			
Tetrachloroethene (PCE)	μg/L	5	-	6.1	4.9			15
trans-1,2-Dichloroethene	μg/L	160	-	< 2.0 U	< 1.0 U			< 1.0 U
Trichloroethene (TCE)	μg/L	5	-	< 2.0 U	0.5 J			2.2
Vinyl Chloride	μg/L	0.2		< 0.20 U	< 0.4 U			< 0.40 U

Notes:

All results in micrograms per liter unless otherwise stated.

¹Gasoline-range petroleum hydrocarbons analyzed using Northwest Method NWTPH-Gx.

^{2,5} Volatile organic compounds analyzed using United States Environmental Protection Agency (EPA) Method 8260D.

³Metals analyzed using EPA Method 6010D.

⁴Polycyclic aromatic hydrocarbons analyzed using the EPA Method 8270 E

 6 Model Toxics Control Act (MTCA) Method A/B Cleanup Levels (CUL) for Groundwater

 $^{7} \mbox{Analyte}$ was not deemed above the reported sample quantitation limit due to blank contamination.

J = Analyte was detected at a concentration between the laboratory method detection limit (MDL) and reporting limit (RL) and the concentration is an estimated value OR the number is an estimated value.

TPHs - Total Petroleum Hydrocarbons

U = Analyte was not detected.

UJ = Analyte was not deemed above the reported sample quantitation limit due to trip blank contamination.

"--" = not analyzed.

µg/L - micrograms per liter

Bold indicates analyte was detected.

bold with grey shading indicates analyte was detected at concentration greater than the MTCA Method A cleanup level.

 $\textit{Italics} \ \ \text{notes} \ \ \text{Ecology} \ \ \text{and} \ \ \text{Aspect} \ \ \text{data} \ \ \text{as} \ \ \text{reported} \ \ \text{to} \ \ \text{GeoEngineers} \ \ \text{on} \ \ \text{April} \ \ 15,2025$

Table 3

Chemical Analytical Results - Sump Water

Stillwater Holdings Chevron Site Walla Walla, Washington

			Sample location	n Building 106						Marcus Whitman Hotel						
			Sample Date	11/8/2024	3/28/2024	8/16/2024	11/14/2024	3/27/2025	6/26/2025	11/8/2023	3/28/2024	8/16/2024	11/14/2024	3/27/2025	6/26/2025	
			Sample Identification	106HS-110823	106 Sump	106Sump	106Sump	BLG 106 Sump	BLG 106 Sump	MWH Sump-110823	MWH Sump	MHWSump	MHWSump	Marcus Whitman Sump	Marcus Whitman Sump	
Analyte	Unit	Walla Walla POTW Discharge Limits	MTCA Method A Cleanup Level for Groundwater ⁴													
Petroleum Hydrocarbons ¹	•															
GRPH	μg/L	1000	800	6,900	9,900	2,000	2,700	750	< 65 U ⁵	54,000	17,000	< 54 U	< 54 U	3,600	1,000	
Volatile Organic Compounds (VOCs) ²																
Benzene	μg/L	10	5	420	270	71	67	36	< 0.40 U	1,700	640	0.18 J	< 0.093 U	290	5.1	
Toluene	μg/L	NE	1000	980	1,400	240	310	110	< 1.0 U	4,300	1,900	0.64 J	< 0.45 U	66	1.1	
Ethylbenzene	μg/L	NE	700	46	160	45	49	15	< 1.0 U	110	28	< 0.2 U	< 0.2 U	15	0.49 J	
Xylenes (Total)	μg/L	NE	1000	780	1,320	420	490	160	< 3.0 U	6,900	2,540	1.07 J	< 0.44 U	860	20	
BTEX Total ³	μg/L	200	NE	2,226	3,150	776	916	321	< 5.4 U	13,010	5,108	1.89	<1.813 U	1,231	26.69 J	

Notes:

Samples collected by GeoEngineers during the June 2025 groundwater assessment and analyzed by Eurofins Environment Testing Northwest located in Spokane Valley, Washington are dated 06/24/25 - 06/25/25. Sample Locations are shown on Figure 2.

Results reported in micrograms per liter unless otherwise stated.

NE = Not established

U - Analyte not detected at or above Reporting Limit (RL) shown

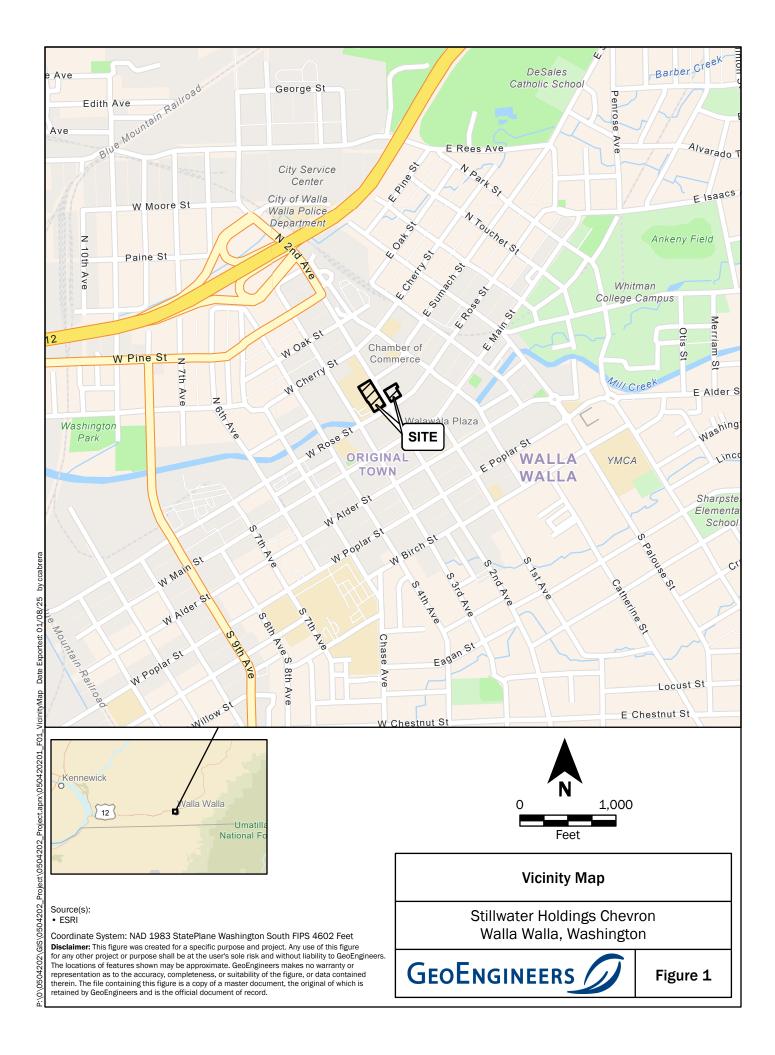
Results in **bold** indicate TPH or VOCs were detected.

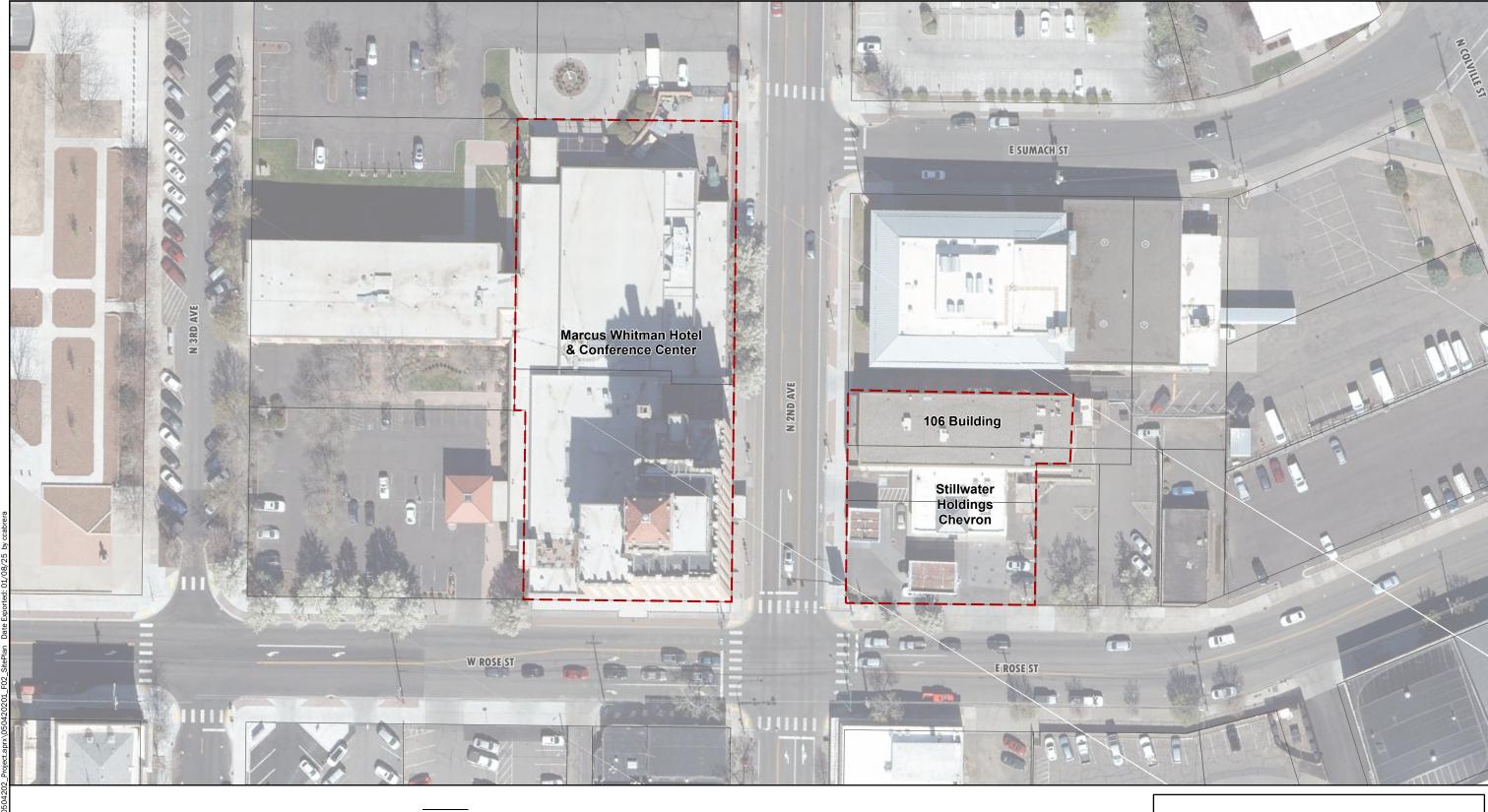
Results in **bold** and highlighted grey are detected above the MTCA Method A cleanup level.

Italics notes Ecology and Aspect data as reported to GeoEngineers on April 15, 2025

¹Gasoline-range petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx.

² Volatile organic compounds analyzed using United States Environmental Protection Agency (EPA) Method 8260D.


³BTEX = Benzene, Toluene, Ethylbenzene and Xylenes (total).

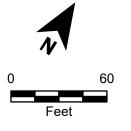

⁴Model Toxics Control Act (MTCA) Method A/B Cleanup Levels (CUL) for Groundwater

 $^{^{5}}$ Analyte was not deemed above the reported sample quantitation limit due to blank contamination.

J = Analyte was detected at a concentration between the laboratory method detection limit (MDL) and reporting limit (RL) and the concentration is an estimated value OR the number is an estimated value.

Figures

Source(s):

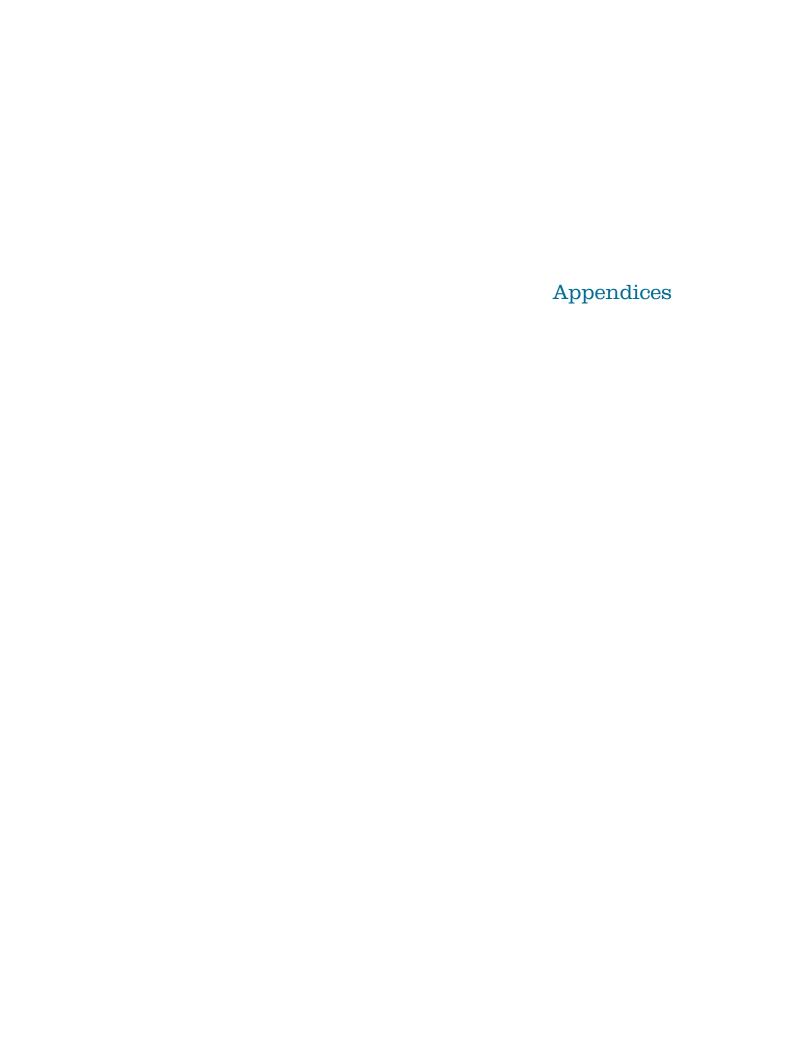

Walla Walla GIS

Coordinate System: NAD 1983 StatePlane Washington South FIPS 4602 Feet

Disclaimer: This figure was created for a specific purpose and project. Any use of this figure for any other project or purpose shall be at the user's sole risk and without liability to GeoEngineers. The locations of features shown may be approximate. GeoEngineers makes no warranty or representation as to the accuracy, completeness, or suitability of the figure, or data contained therein. The file containing this figure is a copy of a master document, the original of which is retained by GeoEngineers and is the official document of record.

Site Buildings

Walla Walla Tax Parcel



Site Plan

Stillwater Holdings Chevron Walla Walla, Washington

Figure 2

Appendix A Field Assessment Procedures

Appendix A Field Assessment Procedures

STANDARD PROCEDURES

This section contains standard procedures for field data collection that were conducted during groundwater sampling activities at the Stillwater Holdings Chevron cleanup site located at 7 East Rose Street in Walla Walla, Washington.

Monitoring Well Sampling

Groundwater samples were collected from groundwater monitoring wells AMW-01 through AMW-04, MW-2 through MW-9 and analyzed as described below. Depth to groundwater relative to the top of the polyvinyl chloride (PVC) well casing was measured to the nearest 0.01 foot using an electronic interface probe and recorded in the field notes.

Following depth to groundwater measurement, a groundwater sample was collected from each monitoring well consistent with the U.S. Environmental Protection Agency's (EPA's) low-flow groundwater sampling procedure, as described in EPA (2017) and Puls and Barcelona (1996). Dedicated tubing and a peristaltic pump was used for groundwater purging and sampling. During purging activities, water quality parameters, including pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), turbidity and temperature were measured using a multi-parameter meter equipped with a flow-through cell. Depth to water also was measured and recorded when groundwater quality parameters were recorded. Each monitoring well was purged until parameters stabilized, or a maximum of 30 minutes, whichever occurred first, before collecting the sample. Stability was defined as the following:

- pH: ± 0.1 pH units;
- Conductivity: ± 3 percent micro-Siemens per centimeter (µS/cm);
- ORP: ± 10 millivolts (mV);
- D0: ± 0.3 milligrams per Liter (mg/L);
- Turbidity: less than 10 nephelometric turbidity units (NTUs) or \pm 10 percent NTUs when turbidity is greater than 10 NTUs; and
- Temperature: ± 3 percent degrees Celsius.

Field water quality measurements and depth-to-water measurements were recorded on a well purging-field water quality measurement form. Groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Chain-of-Custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the Quality Assurance Project Plan (QAPP) included in the Work Plan (GeoEngineers 2024).

Sump Sampling

Water samples were collected from sumps located in the Marcus Whitman sub-basement and the 106 Building basement, dedicated tubing and a peristaltic pump. Low flow (<200 milliliters per minute) were used to reduce degassing of VOC samples. Water samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory.

Chain-of-Custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the QAPP.

REFERENCES

- Puls, R. W. and M.J. Barcelona. 1996. "Low-flow (Minimal Drawdown) Ground-water Sampling Procedures." EPA Ground Water Issue. April. p.1-9.
- U.S. Environmental Protection Agency (EPA). 2017. Region 1, "Low Stress (Low-Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells." EPA SOP No. GW4, Revision No. 4., September 19, 2017.

Appendix B

Data Validation Report and Chemical Analytical Laboratory Report

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125

www.geoengineers.com

Project: Stillwater Holdings Chevron – Environmental Services

June 2025 Groundwater Samples

File: 0504-202-01

Date: July 28, 2025

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A data validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of water samples collected as part of the June 2025 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Stillwater Holdings Chevron facility located at 7 East Rose Street, in Walla Walla, Washington.

Objective and Quality Control Elements

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates

Validated Sample Delivery Groups

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1. SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

LABORATORY SDG	SAMPLES VALIDATED
590-31692-1	AMW-01-062525, DUP-062525, AMW-02-062525, AMW-03-062525, AMW-04-062525, MW-2-062425, MW-3-062425, MW-4-062425, MW-5-062525, MW-6-062425, MW-7-062525, MW-8-062525, MW-9-062525, Building 106-062625, Marcus Whitman-062625, Trip Blank

Chemical Analysis Performed

Eurofins Environment Testing, Inc. (Eurofins), located in Spokane, Washington, performed laboratory analyses on the samples using the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx; and
- Volatile Organic Compounds (VOCs) by Method EPA8260D

Data Validation Summary

The results for each of the QC elements are summarized below.

DATA PACKAGE COMPLETENESS

Eurofins provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

CHAIN-OF-CUSTODY DOCUMENTATION

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

HOLDING TIMES AND SAMPLE PRESERVATION

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample cooler arrived at the laboratory within the appropriate temperatures of between two and six degrees Celsius.

SURROGATE RECOVERIES

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits.

METHOD AND TRIP BLANKS

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 590-31692-1: (NWTPH-Gx) There was a positive result for gasoline-range hydrocarbons detected above the method detection limit, but below the reporting limit in the method blank extracted 7/1/2025. The positive results for gasoline-range hydrocarbons were qualified as non-detected (U) in Samples MW-9-062525, Building 106-062625, and Trip Blank.

(VOCs) There was a positive result for toluene detected above the method detection limit, but below the reporting limit in the method blank extracted 6/30/2025. The positive results for toluene were qualified as non-detected (U) in Samples AMW-03-062525, MW-2-062425, MW-4-062425, and MW-7-062525.

Trip Blanks

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the analytes of interest were detected in the trip blank, with the following exception:

SDG 590-31692-1: (NWTPH-Gx) There was a positive result for gasoline-range hydrocarbons detected above the method detection limit, but below the reporting limit in the trip blank, Sample Trip Blank. The positive results for this target analyte were qualified as non-detected (U) in this sample due to method blank contamination.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG 590-31692-1: (VOCs) The laboratory performed an MS/MSD sample set on Sample MW-7-062525. The percent recoveries for m,p-Xylene and vinyl chloride were greater than the control limits in the MS/MSD

Data Validation Report July 28, 2025 Page 4

extracted on 6/30/2025. The positive result for m,p-Xylene was qualified as estimated (J) in this sample. There were no positive results for vinyl chloride in this sample; therefore, no qualification was required.

LABORATORY CONTROL SAMPLES/LABORATORY CONTROL SAMPLE DUPLICATES

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG 590-31692-1: (VOCs) The percent recoveries for vinyl chloride were greater than the control limits in the LCS/LCSD extracted on 6/30/2025. There were no positive results for this target analyte in the associated field samples; therefore, no qualifications were required.

FIELD DUPLICATES

In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for water samples is 30 percent.

SDG 590-31692-1: One field duplicate sample pair, AMW-01-062525 and DUP-062525, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of tetrachloroethene. The positive result and reporting limit for this target analyte were qualified as estimated (J and UJ, accordingly) in this sample pair.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD and field duplicate RPD values, with the exception noted above.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2. SUMMARY OF QUALIFIED SAMPLES

SAMPLE ID	ANALYTE	QUALIFIER	REASON
AMW-01-062525	Tetrachloroethene	UJ	Field Duplicate Precision
DUP-062525	Tetrachloroethene	J	Field Duplicate Precision
AMW-03-062525	Toluene	U	Method Blank Contamination
MW-2-062425	Toluene	U	Method Blank Contamination
MW-4-062425	Toluene	U	Method Blank Contamination
MW-7-062525	m,p-Xylene	J	MS/MSD Recovery
WW-7-062525	Toluene	U	Method Blank Contamination
MW-9-062525	Gasoline-range hydrocarbons	U	Method Blank Contamination
Building 106-062625	Gasoline-range hydrocarbons	U	Method Blank Contamination
Trip Blank	Gasoline-range hydrocarbons	U	Method Blank Contamination

References

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA). Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

11

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Melissa Roskamp GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Generated 7/7/2025 1:18:53 PM

JOB DESCRIPTION

Stillwater Chevron Holdings

JOB NUMBER

590-31692-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 7/7/2025 1:18:53 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

Eurofins Spokane is a laboratory within Eurofins Environment Testing Northwest, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 35

7/7/2025

9

3

4

_

7

8

9

10

15

Client: GeoEngineers Inc Project/Site: Stillwater Chevron Holdings Laboratory Job ID: 590-31692-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	18
Chronicle	27
Certification Summary	31
Method Summary	32
Chain of Custody	33
Receint Checklists	35

3

4

R

9

10

46

Case Narrative

Client: GeoEngineers Inc

Project: Stillwater Chevron Holdings

Job ID: 590-31692-1 Eurofins Spokane

Job Narrative 590-31692-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/26/2025 2:48 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.3°C.

Gasoline Range Organics

Method NWTPH_Gx_MS: The method blank for analytical batch 590-54894 contained Gasoline above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or reanalysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS VOA

Method 8260D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 590-54876 recovered outside control limits for the following analytes: Vinyl chloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D: The method blank for analytical batch 590-54876 contained Toluene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-54876 recovered above the upper control limit for trans-1,2-Dichloroethene and Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are:AMW-01-062525 (590-31692-1), AMW-02-062525 (590-31692-2), AMW-03-062525 (590-31692-3), AMW-04-062525 (590-31692-4), MW-2-062425 (590-31692-5), MW-3-062425 (590-31692-6), MW-4-062425 (590-31692-7), MW-5-062525 (590-31692-8), MW-6-062425 (590-31692-9) and MW-7-062525 (590-31692-10).

Method 8260D: The following sample was diluted due to the nature of the sample matrix: DUP-062525 (590-31692-13). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

Job ID: 590-31692-1

Page 4 of 35 7/7/2025

Sample Summary

Client: GeoEngineers Inc

590-31692-15

590-31692-16

Project/Site: Stillwater Chevron Holdings

Building 106-062625

Trip Blank

Lab Sample ID Client Sample ID Matrix Collected Received 590-31692-1 AMW-01-062525 Water 06/25/25 11:10 06/26/25 14:48 590-31692-2 AMW-02-062525 Water 06/25/25 09:10 06/26/25 14:48 590-31692-3 AMW-03-062525 Water 06/25/25 10:05 06/26/25 14:48 590-31692-4 AMW-04-062525 Water 06/25/25 08:25 06/26/25 14:48 590-31692-5 MW-2-062425 Water 06/24/25 11:35 06/26/25 14:48 MW-3-062425 590-31692-6 Water 06/24/25 10:50 06/26/25 14:48 MW-4-062425 Water 06/26/25 14:48 590-31692-7 06/24/25 12:45 MW-5-062525 Water 06/26/25 14:48 590-31692-8 06/25/25 12:20 590-31692-9 MW-6-062425 Water 06/24/25 13:45 06/26/25 14:48 590-31692-10 MW-7-062525 Water 06/25/25 14:50 06/26/25 14:48 590-31692-11 MW-8-062525 Water 06/25/25 13:45 06/26/25 14:48 590-31692-12 MW-9-062525 Water 06/25/25 13:05 06/26/25 14:48 590-31692-13 DUP-062525 Water 06/25/25 12:00 06/26/25 14:48 Marcus Whitman-062625 Water 590-31692-14 06/26/25 08:55 06/26/25 14:48

Water

Water

06/26/25 09:35

06/26/25 00:00

06/26/25 14:48 06/26/25 14:48

Job ID: 590-31692-1

1

E

6

6

9

10

11

4.0

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Qualifiers

	IS '		

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

EDL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA

Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) Method Detection Limit MDL

Estimated Detection Limit (Dioxin)

 ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Spokane

Xylenes, Total

Project/Site: Stillwater Chevron Holdings

Client Sample ID: AMW-01-062525

Date Collected: 06/25/25 11:10 Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-1

07/01/25 18:10

100

Matrix: Water

Job ID: 590-31692-1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 40 Benzene 3000 9.3 ug/L 07/01/25 18:10 100 cis-1,2-Dichloroethene ND 1.0 0.23 ug/L 06/30/25 19:51 Ethylbenzene 930 100 20 ug/L 07/01/25 18:10 100 200 28 ug/L 07/01/25 18:10 100 m,p-Xylene 4000 100 16 ug/L 07/01/25 18:10 100 o-Xylene 1600 Tetrachloroethene ND 1.0 0.22 ug/L 06/30/25 19:51 1800 100 31 ug/L 07/01/25 18:10 100 Toluene trans-1,2-Dichloroethene ND 0.20 ug/L 06/30/25 19:51 1.0 Trichloroethene ND 1.0 0.20 ug/L 06/30/25 19:51 Vinyl chloride ND 0.40 0.13 ug/L 06/30/25 19:51

Surrogate	%Recovery Qualifie	er Limits	Prepared Analyz	ed Dil I
1,2-Dichloroethane-d4 (Surr)	84 Qualific	80 - 120	06/30/25	
, , ,			*****	
1,2-Dichloroethane-d4 (Surr)	91	80 - 120	07/01/25	
4-Bromofluorobenzene (Surr)	99	76 - 120	06/30/25	19:51
4-Bromofluorobenzene (Surr)	104	76 - 120	07/01/25	18:10 1
Dibromofluoromethane (Surr)	86	80 - 123	06/30/25	19:51
Dibromofluoromethane (Surr)	99	80 - 123	07/01/25	18:10 1
Toluene-d8 (Surr)	98	80 - 120	06/30/25	19:51
Toluene-d8 (Surr)	104	80 - 120	07/01/25	18:10 1

300

44 ug/L

5700

Method: NWTPH-Gx - Northwest	- Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	24000		15000	5400	ug/L			07/01/25 18:10	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		68.7 - 141			_		07/01/25 18:10	100

Client Sample ID: AMW-02-062525

Date Collected: 06/25/25 09:10

Lab Sample ID: 590-31692-2 **Matrix: Water** Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2100		40	9.3	ug/L			07/01/25 18:55	100
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 20:13	1
Ethylbenzene	630		10	2.0	ug/L			07/01/25 18:33	10
m,p-Xylene	1000		200	28	ug/L			07/01/25 18:55	100
o-Xylene	610		100	16	ug/L			07/01/25 18:55	100
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 20:13	1
Toluene	590		10	3.1	ug/L			07/01/25 18:33	10
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 20:13	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 20:13	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 20:13	1
Xylenes, Total	1600		300	44	ug/L			07/01/25 18:55	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		80 - 120			-		06/30/25 20:13	1
1,2-Dichloroethane-d4 (Surr)	89		80 - 120					07/01/25 18:33	10
1,2-Dichloroethane-d4 (Surr)	91		80 - 120					07/01/25 18:55	100

Eurofins Spokane

Page 7 of 35 7/7/2025

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Stillwater Chevron Holdings

Client Sample ID: AMW-02-062525

Date Collected: 06/25/25 09:10 Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-2

Matrix: Water

Job ID: 590-31692-1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared Analy	zed Dil Fac
4-Bromofluorobenzene (Surr)	104	76 - 120	06/30/25	5 20:13
4-Bromofluorobenzene (Surr)	100	76 - 120	07/01/2	5 18:33 10
4-Bromofluorobenzene (Surr)	106	76 - 120	07/01/25	5 18:55 100
Dibromofluoromethane (Surr)	88	80 - 123	06/30/28	5 20:13 1
Dibromofluoromethane (Surr)	96	80 - 123	07/01/25	5 18:33 10
Dibromofluoromethane (Surr)	102	80 - 123	07/01/25	5 18:55 100
Toluene-d8 (Surr)	96	80 - 120	06/30/25	5 20:13 1
Toluene-d8 (Surr)	104	80 - 120	07/01/25	5 18:33 10
Toluene-d8 (Surr)	108	80 - 120	07/01/25	5 18:55 100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	8400		150	54	ug/L			06/30/25 20:13	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 104 68.7 - 141 06/30/25 20:13

Client Sample ID: AMW-03-062525

Date Collected: 06/25/25 10:05

Lab Sample ID: 590-31692-3 **Matrix: Water**

Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	22		0.40	0.093	ug/L			06/30/25 20:35	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 20:35	1
Ethylbenzene	12		1.0	0.20	ug/L			06/30/25 20:35	1
m,p-Xylene	3.7		2.0	0.28	ug/L			06/30/25 20:35	1
o-Xylene	1.7		1.0	0.16	ug/L			06/30/25 20:35	1
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 20:35	1
Toluene	1.6	В	1.0	0.31	ug/L			06/30/25 20:35	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 20:35	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 20:35	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 20:35	1
Xylenes, Total	5.5		3.0	0.44	ug/L			06/30/25 20:35	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87	80 - 120		06/30/25 20:35	1
4-Bromofluorobenzene (Surr)	108	76 - 120		06/30/25 20:35	1
Dibromofluoromethane (Surr)	90	80 - 123		06/30/25 20:35	1
Toluene-d8 (Surr)	105	80 - 120		06/30/25 20:35	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline	130	J	150	54	ug/L			06/30/25 20:35	1

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 68.7 - 141 06/30/25 20:35 108

Eurofins Spokane

Project/Site: Stillwater Chevron Holdings

Client Sample ID: AMW-04-062525

Date Collected: 06/25/25 08:25 Date Received: 06/26/25 14:48 Lab Sample ID: 590-31692-4

Matrix: Water

Job ID: 590-31692-1

Method: SW846 8260D - Volat	ile Organic Compo								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	190		4.0	0.93	ug/L			07/01/25 19:17	10
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 20:56	1
Ethylbenzene	110		10	2.0	ug/L			07/01/25 19:17	10
m,p-Xylene	220		20	2.8	ug/L			07/01/25 19:17	10
o-Xylene	130		10	1.6	ug/L			07/01/25 19:17	10
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 20:56	1
Toluene	92		10	3.1	ug/L			07/01/25 19:17	10
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 20:56	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 20:56	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 20:56	1
Xylenes, Total	350		30	4.4	ug/L			07/01/25 19:17	10

ogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil F
2-Dichloroethane-d4 (Surr)	82	80 - 120		06/30/25 20:56	
2-Dichloroethane-d4 (Surr)	90	80 - 120		07/01/25 19:17	1
Bromofluorobenzene (Surr)	107	76 - 120		06/30/25 20:56	
-Bromofluorobenzene (Surr)	94	76 - 120		07/01/25 19:17	1
ibromofluoromethane (Surr)	88	80 - 123		06/30/25 20:56	
ibromofluoromethane (Surr)	100	80 - 123		07/01/25 19:17	1
oluene-d8 (Surr)	97	80 - 120		06/30/25 20:56	
oluene-d8 (Surr)	96	80 - 120		07/01/25 19:17	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline	3300		150	54	ug/L			06/30/25 20:56	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)			68.7 - 141			_		06/30/25 20:56	1

Client Sample ID: MW-2-062425

Date Collected: 06/24/25 11:35

Lab Sample ID: 590-31692-5

Matrix: Water

Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	310		4.0	0.93	ug/L			07/01/25 19:39	10
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 21:39	1
Ethylbenzene	74		1.0	0.20	ug/L			06/30/25 21:39	1
m,p-Xylene	36		2.0	0.28	ug/L			06/30/25 21:39	1
o-Xylene	ND		1.0	0.16	ug/L			06/30/25 21:39	1
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 21:39	1
Toluene	1.4	В	1.0	0.31	ug/L			06/30/25 21:39	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 21:39	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 21:39	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 21:39	1
Xylenes, Total	36		3.0	0.44	ug/L			06/30/25 21:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		80 - 120			-		06/30/25 21:39	1
1,2-Dichloroethane-d4 (Surr)	91		80 - 120					07/01/25 19:39	10
4-Bromofluorobenzene (Surr)	108		76 - 120					06/30/25 21:39	1

Eurofins Spokane

Page 9 of 35 7/7/2025

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-2-062425

Date Collected: 06/24/25 11:35 Date Received: 06/26/25 14:48 Lab Sample ID: 590-31692-5

Matrix: Water

Job ID: 590-31692-1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	ed Dil Fac
4-Bromofluorobenzene (Surr)	99	76 - 120	07/01/25 1	19:39 10
Dibromofluoromethane (Surr)	90	80 - 123	06/30/25 2	1:39 1
Dibromofluoromethane (Surr)	100	80 - 123	07/01/25 1	19:39 10
Toluene-d8 (Surr)	105	80 - 120	06/30/25 2	1:39 1
Toluene-d8 (Surr)	98	80 - 120	07/01/25 1	19:39 10

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	700		150	54	ug/L			06/30/25 21:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		68.7 - 141			_		06/30/25 21:39	1

Client Sample ID: MW-3-062425

Lab Sample ID: 590-31692-6

Date Collected: 06/24/25 10:50 Matrix: Water Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	69		0.40	0.093	ug/L			06/30/25 22:01	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 22:01	1
Ethylbenzene	170		10	2.0	ug/L			07/01/25 20:01	10
m,p-Xylene	270		20	2.8	ug/L			07/01/25 20:01	10
o-Xylene	320		10	1.6	ug/L			07/01/25 20:01	10
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 22:01	1
Toluene	97	В	1.0	0.31	ug/L			06/30/25 22:01	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 22:01	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 22:01	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 22:01	1
Xylenes, Total	590		30	4.4	ug/L			07/01/25 20:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		80 - 120			-		06/30/25 22:01	1
1,2-Dichloroethane-d4 (Surr)	87		80 - 120					07/01/25 20:01	10
4-Bromofluorobenzene (Surr)	106		76 - 120					06/30/25 22:01	1
4-Bromofluorobenzene (Surr)	97		76 - 120					07/01/25 20:01	10
Dibromofluoromethane (Surr)	90		80 - 123					06/30/25 22:01	1
Dibromofluoromethane (Surr)	97		80 - 123					07/01/25 20:01	10
Toluene-d8 (Surr)	96		80 - 120					06/30/25 22:01	1
Toluene-d8 (Surr)	99		80 - 120					07/01/25 20:01	10
Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prodi	icts (GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
=							•	<u>-</u>	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	3400		150	54	ug/L			06/30/25 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		68.7 - 141			-		06/30/25 22:01	1

Eurofins Spokane

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-4-062425

Date Collected: 06/24/25 12:45

Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.48		0.40	0.093	ug/L			06/30/25 22:22	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 22:22	1
Ethylbenzene	ND		1.0	0.20	ug/L			06/30/25 22:22	1
m,p-Xylene	1.2	J	2.0	0.28	ug/L			06/30/25 22:22	1
o-Xylene	ND		1.0	0.16	ug/L			06/30/25 22:22	1
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 22:22	1
Toluene	0.46	JB	1.0	0.31	ug/L			06/30/25 22:22	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 22:22	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 22:22	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 22:22	1
Xylenes, Total	1.2	J	3.0	0.44	ug/L			06/30/25 22:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		80 - 120			-		06/30/25 22:22	1
4-Bromofluorobenzene (Surr)	107		76 - 120					06/30/25 22:22	1
Dibromofluoromethane (Surr)	92		80 - 123					06/30/25 22:22	1
Toluene-d8 (Surr)	107		80 - 120					06/30/25 22:22	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		150	54	ug/L			06/30/25 22:22	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	107		68.7 - 141					06/30/25 22:22	1	

Client Sample ID: MW-5-062525

Date Collected: 06/25/25 12:20

Date Received: 06/26/25 14:48

Lab	Sample	ID:	590-3	1692-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	670		4.0	0.93	ug/L			07/01/25 20:44	10
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 22:44	1
Ethylbenzene	980		100	20	ug/L			07/01/25 21:05	100
m,p-Xylene	4600		200	28	ug/L			07/01/25 21:05	100
o-Xylene	2200		100	16	ug/L			07/01/25 21:05	100
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 22:44	1
Toluene	5300		100	31	ug/L			07/01/25 21:05	100
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 22:44	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 22:44	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 22:44	1
Xylenes, Total	6900		300	44	ug/L			07/01/25 21:05	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		80 - 120			-		06/30/25 22:44	1
1,2-Dichloroethane-d4 (Surr)	86		80 - 120					07/01/25 20:44	10
1,2-Dichloroethane-d4 (Surr)	84		80 - 120					07/01/25 21:05	100
4-Bromofluorobenzene (Surr)	96		76 - 120					06/30/25 22:44	1
4-Bromofluorobenzene (Surr)	106		76 - 120					07/01/25 20:44	10
4-Bromofluorobenzene (Surr)	103		76 - 120					07/01/25 21:05	100
Dibromofluoromethane (Surr)	83		80 - 123					06/30/25 22:44	1

Eurofins Spokane

Page 11 of 35

9

4

6

8

10

11

12

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-5-062525

Lab Sample ID: 590-31692-8 Date Collected: 06/25/25 12:20

Matrix: Water Date Received: 06/26/25 14:48

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		80 - 123		07/01/25 20:44	10
Dibromofluoromethane (Surr)	95		80 - 123		07/01/25 21:05	100
Toluene-d8 (Surr)	98		80 - 120		06/30/25 22:44	1
Toluene-d8 (Surr)	96		80 - 120		07/01/25 20:44	10
Toluene-d8 (Surr)	101		80 - 120		07/01/25 21:05	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	36000	1500	540	ug/L			07/01/25 20:44	10

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106	68.7 - 141		07/01/25 20:44	10

Client Sample ID: MW-6-062425

Date Collected: 06/24/25 13:45

Lab Sample ID: 590-31692-9

Matrix: Water

Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	36		4.0	0.93	ug/L			07/01/25 21:27	10
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 23:05	1
Ethylbenzene	63		10	2.0	ug/L			07/01/25 21:27	10
m,p-Xylene	350		20	2.8	ug/L			07/01/25 21:27	10
o-Xylene	130		10	1.6	ug/L			07/01/25 21:27	10
Tetrachloroethene	1.1		1.0	0.22	ug/L			06/30/25 23:05	1
Toluene	96		10	3.1	ug/L			07/01/25 21:27	10
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 23:05	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 23:05	1
Vinyl chloride	ND	*+	0.40	0.13	ug/L			06/30/25 23:05	1
Xylenes, Total	470		30	4.4	ug/L			07/01/25 21:27	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		80 - 120		06/30/25 23:05	1
1,2-Dichloroethane-d4 (Surr)	90		80 - 120		07/01/25 21:27	10
4-Bromofluorobenzene (Surr)	104		76 - 120		06/30/25 23:05	1
4-Bromofluorobenzene (Surr)	93		76 - 120		07/01/25 21:27	10
Dibromofluoromethane (Surr)	91		80 - 123		06/30/25 23:05	1
Dibromofluoromethane (Surr)	100		80 - 123		07/01/25 21:27	10
Toluene-d8 (Surr)	100		80 - 120		06/30/25 23:05	1
Toluene-d8 (Surr)	104		80 - 120		07/01/25 21:27	10

Mothod: NWTDH_G	x - Northwest - Volatile	• Petroleum	Producte (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	2600		1500	540	ug/L			07/01/25 21:27	10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	93		68.7 - 141			-		07/01/25 21:27	10	

Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-7-062525

Client: GeoEngineers Inc

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 590-31692-10

Date Collected: 06/25/25 14:50 Matrix: Water Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.2		0.40	0.093	ug/L			06/30/25 23:27	1
cis-1,2-Dichloroethene	3.7		1.0	0.23	ug/L			06/30/25 23:27	1
Ethylbenzene	1.4		1.0	0.20	ug/L			06/30/25 23:27	1
m,p-Xylene	5.4	F1	2.0	0.28	ug/L			06/30/25 23:27	1
o-Xylene	2.1		1.0	0.16	ug/L			06/30/25 23:27	1
Tetrachloroethene	42		1.0	0.22	ug/L			06/30/25 23:27	1
Toluene	2.8	В	1.0	0.31	ug/L			06/30/25 23:27	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 23:27	1
Trichloroethene	5.1		1.0	0.20	ug/L			06/30/25 23:27	1
Vinyl chloride	ND	F1 *+	0.40	0.13	ug/L			06/30/25 23:27	1
Xylenes, Total	7.4		3.0	0.44	ug/L			06/30/25 23:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		80 - 120			_		06/30/25 23:27	1
4-Bromofluorobenzene (Surr)	104		76 - 120					06/30/25 23:27	1
Dibromofluoromethane (Surr)	93		80 - 123					06/30/25 23:27	1
Toluene-d8 (Surr)	106		80 - 120					06/30/25 23:27	1

Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Proc	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	150		150	54	ug/L			06/30/25 23:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		68.7 - 141			-		06/30/25 23:27	1

Client Sample ID: MW-8-062525 Lab Sample ID: 590-31692-11

Date Collected: 06/25/25 13:45 **Matrix: Water** Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			07/01/25 18:04	1
cis-1,2-Dichloroethene	89		1.0	0.23	ug/L			07/01/25 18:04	1
Ethylbenzene	ND		1.0	0.20	ug/L			07/01/25 18:04	1
m,p-Xylene	ND		2.0	0.28	ug/L			07/01/25 18:04	1
o-Xylene	ND		1.0	0.16	ug/L			07/01/25 18:04	1
Tetrachloroethene	970		100	22	ug/L			07/03/25 19:57	100
Toluene	ND		1.0	0.31	ug/L			07/01/25 18:04	1
trans-1,2-Dichloroethene	3.5		1.0	0.20	ug/L			07/01/25 18:04	1
Trichloroethene	86		1.0	0.20	ug/L			07/01/25 18:04	1
Vinyl chloride	ND		0.40	0.13	ug/L			07/01/25 18:04	1
Xylenes, Total	ND		3.0	0.44	ug/L			07/01/25 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 120			_		07/01/25 18:04	1
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					07/03/25 19:57	100
4-Bromofluorobenzene (Surr)	95		76 - 120					07/01/25 18:04	1

Eurofins Spokane

07/03/25 19:57

07/01/25 18:04

07/03/25 19:57

07/01/25 18:04

76 - 120

80 - 123

80 - 123

80 - 120

106

106

106

100

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-8-062525

Date Collected: 06/25/25 13:45 Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-11

Matrix: Water

Job ID: 590-31692-1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120		07/03/25 19:57	100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1100	В	150	54	ug/L			07/01/25 18:04	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		68.7 - 141		07/01/25 18:04	1

Client Sample ID: MW-9-062525

Date Collected: 06/25/25 13:05

Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-12

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Welliou: Syvo46 6260D - Volati	lie Organic Compo	ounus by GC	IVIO						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			07/01/25 18:25	1
cis-1,2-Dichloroethene	1.3		1.0	0.23	ug/L			07/03/25 20:18	1
Ethylbenzene	ND		1.0	0.20	ug/L			07/01/25 18:25	1
m,p-Xylene	ND		2.0	0.28	ug/L			07/01/25 18:25	1
o-Xylene	ND		1.0	0.16	ug/L			07/01/25 18:25	1
Tetrachloroethene	15		1.0	0.22	ug/L			07/03/25 20:18	1
Toluene	ND		1.0	0.31	ug/L			07/01/25 18:25	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			07/01/25 18:25	1
Trichloroethene	2.2		1.0	0.20	ug/L			07/03/25 20:18	1
Vinyl chloride	ND		0.40	0.13	ug/L			07/01/25 18:25	1
Xylenes, Total	ND		3.0	0.44	ug/L			07/01/25 18:25	1

Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		80 - 120		07/01/25 18:25	1
1,2-Dichloroethane-d4 (Surr)	97	80 - 120		07/03/25 20:18	1
4-Bromofluorobenzene (Surr)	95	76 - 120		07/01/25 18:25	1
4-Bromofluorobenzene (Surr)	93	76 - 120		07/03/25 20:18	1
Dibromofluoromethane (Surr)	115	80 - 123		07/01/25 18:25	1
Dibromofluoromethane (Surr)	104	80 - 123		07/03/25 20:18	1
Toluene-d8 (Surr)	114	80 - 120		07/01/25 18:25	1
Toluene-d8 (Surr)	109	80 - 120		07/03/25 20:18	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products	(GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	90	J B	150	54	ug/L		_	07/01/25 18:25	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		68.7 - 141		07/01/25 18:25	1

Client Sample ID: DUP-062525

Date Collected: 06/25/25 12:00

Lab Samp	le ID: 59	0-31692-13
----------	-----------	------------

Matrix: Water Date Received: 06/26/25 14:48

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier Prepared Analyzed Dil Fac 2900 40 9.3 ug/L 07/01/25 19:09 100 Benzene

Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Client Sample ID: DUP-062525

Lab Sample ID: 590-31692-13 Date Collected: 06/25/25 12:00

Matrix: Water

07/01/25 19:09

07/01/25 18:47

07/01/25 19:09

Date Received: 06/26/25 14:48

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Client: GeoEngineers Inc

Method: SW846 8260D - Volati	le Organic Comp	ounds by GC/M	S (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		10	2.3	ug/L			07/01/25 18:47	10
Ethylbenzene	810		100	20	ug/L			07/01/25 19:09	100
m,p-Xylene	4000		200	28	ug/L			07/01/25 19:09	100
o-Xylene	1500		100	16	ug/L			07/01/25 19:09	100
Tetrachloroethene	6.0	J	10	2.2	ug/L			07/01/25 18:47	10
Toluene	1800		100	31	ug/L			07/01/25 19:09	100
trans-1,2-Dichloroethene	ND		10	2.0	ug/L			07/01/25 18:47	10
Trichloroethene	ND		10	2.0	ug/L			07/01/25 18:47	10
Vinyl chloride	ND		4.0	1.3	ug/L			07/01/25 18:47	10
Xylenes, Total	5500		300	44	ug/L			07/01/25 19:09	100
Surrogate	%Recovery	Qualifier L	imits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	8	0 - 120			_		07/01/25 18:47	10
1,2-Dichloroethane-d4 (Surr)	106	8	0 - 120					07/01/25 19:09	100
4-Bromofluorobenzene (Surr)	106	7	6 - 120					07/01/25 18:47	10
4-Bromofluorobenzene (Surr)	95	7	6 - 120					07/01/25 19:09	100
Dibromofluoromethane (Surr)	107	8	0 - 123					07/01/25 18:47	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	26000	В	15000	5400	ug/L			07/01/25 19:09	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		68.7 - 141			-		07/01/25 19:09	100

80 - 123

80 - 120

80 - 120

110

105

109

Client Sample ID: Marcus Whitman-062625

Lab Sample ID: 590-31692-14 Date Collected: 06/26/25 08:55 **Matrix: Water** Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	5.1		0.40	0.093	ug/L			07/01/25 19:30	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			07/01/25 19:30	1
Ethylbenzene	0.49	J	1.0	0.20	ug/L			07/01/25 19:30	1
m,p-Xylene	6.0		2.0	0.28	ug/L			07/01/25 19:30	1
o-Xylene	14		1.0	0.16	ug/L			07/01/25 19:30	1
Tetrachloroethene	ND		1.0	0.22	ug/L			07/01/25 19:30	1
Toluene	1.1		1.0	0.31	ug/L			07/01/25 19:30	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			07/01/25 19:30	1
Trichloroethene	ND		1.0	0.20	ug/L			07/01/25 19:30	1
Vinyl chloride	ND		0.40	0.13	ug/L			07/01/25 19:30	1
Xylenes, Total	20		3.0	0.44	ug/L			07/01/25 19:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120			_		07/01/25 19:30	1
4-Bromofluorobenzene (Surr)	99		76 - 120					07/01/25 19:30	1
Dibromofluoromethane (Surr)	96		80 - 123					07/01/25 19:30	1
Toluene-d8 (Surr)	103		80 - 120					07/01/25 19:30	1

Eurofins Spokane

Page 15 of 35

100

10

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Client Sample ID: Marcus Whitman-062625

Lab Sample ID: 590-31692-14 Date Collected: 06/26/25 08:55 **Matrix: Water**

Date Received: 06/26/25 14:48

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac 150 Gasoline 54 ug/L 07/01/25 19:30 1000 Surrogate Qualifier Limits Dil Fac %Recovery Prepared Analyzed 68.7 - 141 4-Bromofluorobenzene (Surr) 99 07/01/25 19:30

Client Sample ID: Building 106-062625

Lab Sample ID: 590-31692-15 Date Collected: 06/26/25 09:35 **Matrix: Water**

Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			07/01/25 19:52	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			07/01/25 19:52	1
Ethylbenzene	ND		1.0	0.20	ug/L			07/01/25 19:52	1
m,p-Xylene	ND		2.0	0.28	ug/L			07/01/25 19:52	1
o-Xylene	ND		1.0	0.16	ug/L			07/01/25 19:52	1
Tetrachloroethene	ND		1.0	0.22	ug/L			07/01/25 19:52	1
Toluene	ND		1.0	0.31	ug/L			07/01/25 19:52	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			07/01/25 19:52	1
Trichloroethene	ND		1.0	0.20	ug/L			07/01/25 19:52	1
Vinyl chloride	ND		0.40	0.13	ug/L			07/01/25 19:52	1
Xylenes, Total	ND		3.0	0.44	ug/L			07/01/25 19:52	1
Surrogato	% Pacayary	Ovalifian	Limite				Propared	Analyzod	Dil Eso

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 120		07/01/25 19:52	1
4-Bromofluorobenzene (Surr)	94		76 - 120		07/01/25 19:52	1
Dibromofluoromethane (Surr)	105		80 - 123		07/01/25 19:52	1
Toluene-d8 (Surr)	114		80 - 120		07/01/25 19:52	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) Analyte Result Qualifier RL MDL Unit

D Prepared Analyzed Dil Fac 150 07/01/25 19:52 Gasoline 65 J B 54 ug/L

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 94 68.7 - 141 07/01/25 19:52

Client Sample ID: Trip Blank

Date Collected: 06/26/25 00:00

Lab Sample ID: 590-31692-16 **Matrix: Water** Date Received: 06/26/25 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			07/01/25 20:13	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			07/01/25 20:13	1
Ethylbenzene	ND		1.0	0.20	ug/L			07/01/25 20:13	1
m,p-Xylene	ND		2.0	0.28	ug/L			07/01/25 20:13	1
o-Xylene	ND		1.0	0.16	ug/L			07/01/25 20:13	1
Tetrachloroethene	ND		1.0	0.22	ug/L			07/01/25 20:13	1
Toluene	ND		1.0	0.31	ug/L			07/01/25 20:13	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			07/01/25 20:13	1
Trichloroethene	ND		1.0	0.20	ug/L			07/01/25 20:13	1

Eurofins Spokane

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Client Sample ID: Trip Blank Lab Sample ID: 590-31692-16

Date Collected: 06/26/25 00:00 Matrix: Water

Date Received: 06/26/25 14:48

Method: SW846 8260D - Volat	ile Organic Comp	ounds by (GC/MS (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.40	0.13	ug/L			07/01/25 20:13	1
Xylenes, Total	ND		3.0	0.44	ug/L			07/01/25 20:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		80 - 120			-		07/01/25 20:13	1
4-Bromofluorobenzene (Surr)	93		76 - 120					07/01/25 20:13	1
Dibromofluoromethane (Surr)	111		80 - 123					07/01/25 20:13	1
Toluene-d8 (Surr)	112		80 - 120					07/01/25 20:13	1

Metho	od: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyt	e	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoli	ne	66	J B	150	54	ug/L			07/01/25 20:13	1
Surrog	ate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Brom	nofluorobenzene (Surr)	93		68.7 - 141			=		07/01/25 20:13	1

Job ID: 590-31692-1

Client: GeoEngineers Inc Project/Site: Stillwater Chevron Holdings

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-54876/10

Matrix: Water Analysis Batch: 54876 Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

	IVID	IND							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			06/30/25 17:41	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			06/30/25 17:41	1
Ethylbenzene	ND		1.0	0.20	ug/L			06/30/25 17:41	1
m,p-Xylene	ND		2.0	0.28	ug/L			06/30/25 17:41	1
o-Xylene	ND		1.0	0.16	ug/L			06/30/25 17:41	1
Tetrachloroethene	ND		1.0	0.22	ug/L			06/30/25 17:41	1
Toluene	0.323	J	1.0	0.31	ug/L			06/30/25 17:41	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			06/30/25 17:41	1
Trichloroethene	ND		1.0	0.20	ug/L			06/30/25 17:41	1
Vinyl chloride	ND		0.40	0.13	ug/L			06/30/25 17:41	1
Xylenes, Total	ND		3.0	0.44	ug/L			06/30/25 17:41	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		80 - 120		06/30/25 17:41	1
4-Bromofluorobenzene (Surr)	99		76 - 120		06/30/25 17:41	1
Dibromofluoromethane (Surr)	99		80 - 123		06/30/25 17:41	1
Toluene-d8 (Surr)	107		80 - 120		06/30/25 17:41	1

Lab Sample ID: LCS 590-54876/1005

Matrix: Water

cis-1,2-Dichloroethene Ethylbenzene m,p-Xylene o-Xylene Tetrachloroethene Toluene

trans-1,2-Dichloroethene Trichloroethene Vinyl chloride

Analyte Benzene

Analysis Batch: 54876

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	e LCS	LCS				%Rec
Added	d Result	Qualifier	Unit	D	%Rec	Limits
10.0	10.8		ug/L	_	108	80 - 120
10.0	10.6		ug/L		106	80 - 122
10.0	10.6		ug/L		106	80 - 122
10.0	9.95		ug/L		99	80 - 125
10.0	9.10		ug/L		91	80 _ 130
10.0	10.6		ug/L		106	80 _ 139
10.0	11.8		ug/L		118	80 - 129
10.0	11.4		ug/L		114	73 _ 137
10.0	9.22		ug/L		92	80 - 123
10.0	15.9	*+	ug/L		159	50 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		80 - 120
4-Bromofluorobenzene (Surr)	104		76 - 120
Dibromofluoromethane (Surr)	92		80 - 123
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: LCSD 590-54876/6

Matrix: Water

Analysis Batch: 54876

Client Sample ID: Lab	Control Sample Dup
	Prop Type: Total/NA

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	10.5		ug/L		105	80 - 120	3	15
cis-1,2-Dichloroethene	10.0	10.6		ug/L		106	80 - 122	0	17
Ethylbenzene	10.0	10.3		ug/L		103	80 - 122	3	35

Eurofins Spokane

Page 18 of 35

_

3

4

6

0

9

11

12

trol Sample Dun

Project/Site: Stillwater Chevron Holdings

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-54876/6

Matrix: Water

Analysis Batch: 54876

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 590-31692-1

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m,p-Xylene	10.0	9.74		ug/L		97	80 - 125	2	35
o-Xylene	10.0	9.05		ug/L		91	80 - 130	1	35
Tetrachloroethene	10.0	10.1		ug/L		101	80 - 139	4	20
Toluene	10.0	11.4		ug/L		114	80 - 129	3	35
trans-1,2-Dichloroethene	10.0	11.5		ug/L		115	73 - 137	1	18
Trichloroethene	10.0	8.96		ug/L		90	80 - 123	3	14
Vinyl chloride	10.0	15.5	*+	ug/L		155	50 - 150	2	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		80 - 120
4-Bromofluorobenzene (Surr)	103		76 - 120
Dibromofluoromethane (Surr)	93		80 - 123
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: 590-31692-10 MS Client Sample ID: MW-7-062525 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54876

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	2.2		10.0	12.0		ug/L		98	80 - 120
cis-1,2-Dichloroethene	3.7		10.0	15.3		ug/L		115	80 - 122
Ethylbenzene	1.4		10.0	12.2		ug/L		108	80 - 122
m,p-Xylene	5.4	F1	10.0	12.9	F1	ug/L		75	80 - 125
o-Xylene	2.1		10.0	11.2		ug/L		92	80 - 130
Tetrachloroethene	42		10.0	53.4	4	ug/L		109	80 - 139
Toluene	2.8	В	10.0	13.5		ug/L		106	80 - 129
trans-1,2-Dichloroethene	ND		10.0	12.7		ug/L		127	73 - 137
Trichloroethene	5.1		10.0	14.9		ug/L		97	80 - 123
Vinyl chloride	ND	F1 *+	10.0	16.8	F1	ug/L		168	50 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		80 - 120
4-Bromofluorobenzene (Surr)	106		76 - 120
Dibromofluoromethane (Surr)	91		80 - 123
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: 590-31692-10 MSD Client Sample ID: MW-7-062525 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 54876

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	2.2		10.0	11.6		ug/L		94	80 - 120	4	15
cis-1,2-Dichloroethene	3.7		10.0	14.8		ug/L		111	80 - 122	3	17
Ethylbenzene	1.4		10.0	11.8		ug/L		104	80 - 122	3	35
m,p-Xylene	5.4	F1	10.0	12.9	F1	ug/L		76	80 - 125	0	35
o-Xylene	2.1		10.0	10.9		ug/L		89	80 - 130	3	35
Tetrachloroethene	42		10.0	53.1	4	ug/L		106	80 - 139	0	20
Toluene	2.8	В	10.0	13.2		ug/L		103	80 - 129	2	35

Eurofins Spokane

Page 19 of 35

Project/Site: Stillwater Chevron Holdings

Job ID: 590-31692-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-31692-10 MSD

Matrix: Water

Analysis Batch: 54876

Client Sample ID: MW-7-062525

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
trans-1,2-Dichloroethene	ND		10.0	12.4		ug/L		124	73 - 137	2	18
Trichloroethene	5.1		10.0	14.8		ug/L		96	80 - 123	1	14
Vinyl chloride	ND	F1 *+	10.0	16.7	F1	ug/L		167	50 - 150	1	26

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		80 - 120
4-Bromofluorobenzene (Surr)	105		76 - 120
Dibromofluoromethane (Surr)	90		80 - 123
Toluene-d8 (Surr)	106		80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54892

Lab Sample ID: MB 590-54892/10

MR MR

	INID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.093	ug/L			07/01/25 16:41	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			07/01/25 16:41	1
Ethylbenzene	ND		1.0	0.20	ug/L			07/01/25 16:41	1
m,p-Xylene	ND		2.0	0.28	ug/L			07/01/25 16:41	1
o-Xylene	ND		1.0	0.16	ug/L			07/01/25 16:41	1
Tetrachloroethene	ND		1.0	0.22	ug/L			07/01/25 16:41	1
Toluene	ND		1.0	0.31	ug/L			07/01/25 16:41	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			07/01/25 16:41	1
Trichloroethene	ND		1.0	0.20	ug/L			07/01/25 16:41	1
Vinyl chloride	ND		0.40	0.13	ug/L			07/01/25 16:41	1
Xylenes, Total	ND		3.0	0.44	ug/L			07/01/25 16:41	1

мв мв

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	94		80 - 120		07/01/25 16:41	1
	4-Bromofluorobenzene (Surr)	98		76 - 120		07/01/25 16:41	1
	Dibromofluoromethane (Surr)	105		80 - 123		07/01/25 16:41	1
İ	Toluene-d8 (Surr)	101		80 - 120		07/01/25 16:41	1

Lab Sample ID: LCS 590-54892/1005

Matrix: Water

Analysis Batch: 54892

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	10.9		ug/L		109	80 - 120	
cis-1,2-Dichloroethene	10.0	9.60		ug/L		96	80 - 122	
Ethylbenzene	10.0	10.2		ug/L		102	80 - 122	
m,p-Xylene	10.0	10.0		ug/L		100	80 - 125	
o-Xylene	10.0	8.20		ug/L		82	80 - 130	
Tetrachloroethene	10.0	11.4		ug/L		114	80 - 139	
Toluene	10.0	11.7		ug/L		117	80 - 129	
trans-1,2-Dichloroethene	10.0	12.0		ug/L		120	73 - 137	
Trichloroethene	10.0	9.57		ug/L		96	80 - 123	
Vinyl chloride	10.0	11.5		ug/L		115	50 - 150	

Page 20 of 35

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-54892/1005

Lab Sample ID: LCSD 590-54892/6

Matrix: Water

Analysis Batch: 54892

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	84		80 - 120
4-Bromofluorobenzene (Surr)	84		76 - 120
Dibromofluoromethane (Surr)	94		80 - 123
Toluene-d8 (Surr)	104		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 54892

Matrix: Water

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	10.7		ug/L		107	80 - 120	1	15
cis-1,2-Dichloroethene	10.0	9.72		ug/L		97	80 - 122	1	17
Ethylbenzene	10.0	10.3		ug/L		103	80 - 122	0	35
m,p-Xylene	10.0	9.37		ug/L		94	80 - 125	7	35
o-Xylene	10.0	8.19		ug/L		82	80 - 130	0	35
Tetrachloroethene	10.0	11.0		ug/L		110	80 - 139	4	20
Toluene	10.0	11.6		ug/L		116	80 - 129	1	35
trans-1,2-Dichloroethene	10.0	12.1		ug/L		121	73 - 137	1	18
Trichloroethene	10.0	9.46		ug/L		95	80 - 123	1	14
Vinyl chloride	10.0	10.9		ug/L		109	50 - 150	6	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	85		80 - 120
4-Bromofluorobenzene (Surr)	88		76 - 120
Dibromofluoromethane (Surr)	93		80 - 123
Toluene-d8 (Surr)	102		80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 54893

Matrix: Water

Lab Sample ID: MB 590-54893/11

MB MB

Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.40	0.093	ug/L			07/01/25 17:21	1
cis-1,2-Dichloroethene	ND	1.0	0.23	ug/L			07/01/25 17:21	1
Ethylbenzene	ND	1.0	0.20	ug/L			07/01/25 17:21	1
m,p-Xylene	ND	2.0	0.28	ug/L			07/01/25 17:21	1
o-Xylene	ND	1.0	0.16	ug/L			07/01/25 17:21	1
Tetrachloroethene	ND	1.0	0.22	ug/L			07/01/25 17:21	1
Toluene	ND	1.0	0.31	ug/L			07/01/25 17:21	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			07/01/25 17:21	1
Trichloroethene	ND	1.0	0.20	ug/L			07/01/25 17:21	1
Vinyl chloride	ND	0.40	0.13	ug/L			07/01/25 17:21	1
Xylenes, Total	ND	3.0	0.44	ug/L			07/01/25 17:21	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		80 - 120		07/01/25 17:21	1
4-Bromofluorobenzene (Surr)	94		76 - 120		07/01/25 17:21	1
Dibromofluoromethane (Surr)	111		80 - 123		07/01/25 17:21	1

Eurofins Spokane

Page 21 of 35

2

3

4

6

8

10

11

17

Job ID: 590-31692-1 Project/Site: Stillwater Chevron Holdings

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-54893/11

Matrix: Water

Analysis Batch: 54893

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 111 80 - 120 07/01/25 17:21

Lab Sample ID: LCS 590-54893/1006

Matrix: Water

Analysis Batch: 54893

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 10.0 10.7 ug/L 107 80 - 120 cis-1,2-Dichloroethene 10.0 9.78 98 80 - 122 ug/L Ethylbenzene 10.0 9.56 ug/L 96 80 - 122 m,p-Xylene 10.0 8.98 ug/L 90 80 - 125 o-Xylene 10.0 9.16 ug/L 92 80 - 130 Tetrachloroethene 10.0 10.9 ug/L 109 80 - 139 Toluene 10.0 11.1 ug/L 111 80 - 129 12.0 trans-1,2-Dichloroethene 10.0 ug/L 120 73 - 137 Trichloroethene 10.0 10.1 101 ug/L 80 - 123 Vinyl chloride 10.0 50 - 150 11.1 ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		80 - 120
4-Bromofluorobenzene (Surr)	93		76 - 120
Dibromofluoromethane (Surr)	109		80 - 123
Toluene-d8 (Surr)	102		80 - 120

Lab Sample ID: LCSD 590-54893/7

Matrix: Water

Analysis Batch: 54893

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	10.4		ug/L		104	80 - 120	2	15
cis-1,2-Dichloroethene	10.0	9.79		ug/L		98	80 - 122	0	17
Ethylbenzene	10.0	9.44		ug/L		94	80 - 122	1	35
m,p-Xylene	10.0	8.75		ug/L		87	80 - 125	3	35
o-Xylene	10.0	9.19		ug/L		92	80 - 130	0	35
Tetrachloroethene	10.0	10.8		ug/L		108	80 - 139	2	20
Toluene	10.0	11.4		ug/L		114	80 - 129	3	35
trans-1,2-Dichloroethene	10.0	11.8		ug/L		118	73 - 137	2	18
Trichloroethene	10.0	9.96		ug/L		100	80 - 123	2	14
Vinyl chloride	10.0	10.7		ug/L		107	50 - 150	3	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	95		76 - 120
Dibromofluoromethane (Surr)	105		80 - 123
Toluene-d8 (Surr)	105		80 - 120

Eurofins Spokane

Page 22 of 35

Job ID: 590-31692-1

Client: GeoEngineers Inc Project/Site: Stillwater Chevron Holdings

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-54938/10

Matrix: Water

cis-1,2-Dichloroethene

Analyte

Benzene

Ethylbenzene

Tetrachloroethene

Trichloroethene

Xylenes, Total

m,p-Xylene

o-Xylene

Toluene

Analysis Batch: 54938

Client Sample ID: Method Blan	k
Prep Type: Total/N	Α

07/03/25 19:36

07/03/25 19:36

Client Sample ID: Lab Control Sample

MB MB Dil Fac Result Qualifier RL MDL Unit D Prepared Analyzed ND0.40 0.093 ug/L 07/03/25 19:36 ND 1.0 0.23 ug/L 07/03/25 19:36 ND 1.0 0.20 ug/L 07/03/25 19:36 ND 2.0 0.28 ug/L 07/03/25 19:36 ND 1.0 0.16 ug/L 07/03/25 19:36 ND 1.0 0.22 ug/L 07/03/25 19:36 ND 1.0 0.31 ug/L 07/03/25 19:36

0.20 ug/L

0.44 ug/L

MB MB

ND

ND

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 120	_		07/03/25 19:36	1
4-Bromofluorobenzene (Surr)	99		76 - 120			07/03/25 19:36	1
Dibromofluoromethane (Surr)	104		80 - 123			07/03/25 19:36	1
Toluene-d8 (Surr)	107		80 - 120			07/03/25 19:36	1

1.0

3.0

Lab Sample ID: LCS 590-54938/1005

Matrix: water							Prep	Type: To	tai/NA	
Analysis Batch: 54938										
	Spike	LCS	LCS				%Rec			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Benzene	10.0	11.1		ug/L		111	80 - 120			
cis-1,2-Dichloroethene	10.0	10.2		ua/L		102	80 - 122			

10.0	11.1	ug/L	111	80 - 120	
10.0	10.2	ug/L	102	80 - 122	
10.0	10.3	ug/L	103	80 - 122	
10.0	9.73	ug/L	97	80 - 125	
10.0	8.63	ug/L	86	80 - 130	
10.0	10.4	ug/L	104	80 - 139	
10.0	10.8	ug/L	108	80 - 129	
10.0	9.91	ug/L	99	80 - 123	
	10.0 10.0 10.0 10.0 10.0	10.0 10.2 10.0 10.3 10.0 9.73 10.0 8.63 10.0 10.4 10.0 10.8	10.0 10.2 ug/L 10.0 10.3 ug/L 10.0 9.73 ug/L 10.0 8.63 ug/L 10.0 10.4 ug/L 10.0 10.8 ug/L	10.0 10.2 ug/L 102 10.0 10.3 ug/L 103 10.0 9.73 ug/L 97 10.0 8.63 ug/L 86 10.0 10.4 ug/L 104 10.0 10.8 ug/L 108	10.0 10.2 ug/L 102 80 - 122 10.0 10.3 ug/L 103 80 - 122 10.0 9.73 ug/L 97 80 - 125 10.0 8.63 ug/L 86 80 - 130 10.0 10.4 ug/L 104 80 - 139 10.0 10.8 ug/L 108 80 - 129

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		80 - 120
4-Bromofluorobenzene (Surr)	92		76 - 120
Dibromofluoromethane (Surr)	101		80 - 123
Toluene-d8 (Surr)	93		80 - 120

Lab Sample ID: LCSD 590-54938/6

Matrix: Water

Analysis Batch: 54938

Client Sample	ID: Lab	Contro	I Sample Dup
		Duam 1	Sense Total/NIA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	10.7		ug/L		107	80 - 120	4	15
cis-1,2-Dichloroethene	10.0	10.1		ug/L		101	80 - 122	1	17
Ethylbenzene	10.0	10.2		ug/L		102	80 - 122	1	35
m,p-Xylene	10.0	9.30		ug/L		93	80 - 125	5	35
o-Xylene	10.0	8.35		ug/L		83	80 - 130	3	35
Tetrachloroethene	10.0	10.0		ug/L		100	80 - 139	4	20
Toluene	10.0	10.9		ug/L		109	80 - 129	1	35

Eurofins Spokane

Page 23 of 35

Job ID: 590-31692-1

Client: GeoEngineers Inc

Project/Site: Stillwater Chevron Holdings

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-54938/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 54938

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethene	10.0	9.53		ug/L		95	80 - 123	4	14

	LCSD	LCSD		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	89		80 - 120	
4-Bromofluorobenzene (Surr)	95		76 - 120	
Dibromofluoromethane (Surr)	99		80 - 123	
Toluene-d8 (Surr)	100		80 - 120	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-54875/10 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 54875

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 150 06/30/25 17:41 Gasoline ND 54 ug/L

	MB I	MB					
Surrogate	%Recovery (Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		68.7 - 141	_		06/30/25 17:41	1

Lab Sample ID: LCS 590-54875/1009 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 54875

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Gasoline 1000 1060 ug/L 106 80 - 120

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 111 68.7 - 141

Lab Sample ID: LCSD 590-54875/1020 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54875

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Gasoline 1000 991 ug/L 99 80 - 120

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 68.7 - 141 113

Lab Sample ID: 590-31692-10 MS Client Sample ID: MW-7-062525

Matrix: Water

Analysis Batch: 54875

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline	150		1000	1110		ug/L	_	96	55.6 - 126	

Eurofins Spokane

Prep Type: Total/NA

Project/Site: Stillwater Chevron Holdings

Job ID: 590-31692-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: 590-31692-10 MS Client Sample ID: MW-7-062525 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54875

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 115 68.7 - 141

Client Sample ID: MW-7-062525 Lab Sample ID: 590-31692-10 MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54875

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline	150		1000	1130		ug/L		98	55.6 - 126	2	20

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 68.7 - 141 113

Lab Sample ID: MB 590-54891/10 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54891

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND	150	54 ug/L			07/01/25 16:41	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		68.7 - 141		07/01/25 16:41	1

Lab Sample ID: LCS 590-54891/1009 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54891

_	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline	 1000	959		ua/l	_	96	80 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		68 7 _ 141

Lab Sample ID: LCSD 590-54891/1020

Matrix: Water

Analysis Batch: 54891

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	RPD	Limit
Gasoline	1000	986	ua/	L	99	80 - 120	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		68.7 - 141

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: MB 590-54894/11 **Matrix: Water**

Analysis Batch: 54894

Analyte

Gasoline

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB MDL Unit Dil Fac Result Qualifier RL D Prepared Analyzed 67.8 J 150 54 ug/L 07/01/25 17:21

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 07/01/25 17:21 4-Bromofluorobenzene (Surr) 94 68.7 - 141

Lab Sample ID: LCS 590-54894/1010 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 54894

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Gasoline 1000 1030 ug/L 103 80 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 68.7 - 141 103

Lab Sample ID: LCSD 590-54894/1051 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 54894

LCSD LCSD RPD Spike %Rec Analyte Added Qualifier RPD Result Unit %Rec Limits Limit Gasoline 1000 1050 ug/L 105 80 - 120 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 110 68.7 - 141

Project/Site: Stillwater Chevron Holdings

Client Sample ID: AMW-01-062525

Date Collected: 06/25/25 11:10 Date Received: 06/26/25 14:48 Lab Sample ID: 590-31692-1

Lab Sample ID: 590-31692-3

Lab Sample ID: 590-31692-4

Lab Sample ID: 590-31692-5

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 19:51	JSP	EET SPK
Total/NA	Analysis	8260D		100	43 mL	43 mL	54892	07/01/25 18:10	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	54891	07/01/25 18:10	JSP	EET SPK

Client Sample ID: AMW-02-062525 Lab Sample ID: 590-31692-2

Date Collected: 06/25/25 09:10

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 20:13	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	54892	07/01/25 18:33	JSP	EET SPK
Total/NA	Analysis	8260D		100	43 mL	43 mL	54892	07/01/25 18:55	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 20:13	JSP	EET SPK

Client Sample ID: AMW-03-062525

Date Collected: 06/25/25 10:05

Date Received: 06/26/25 14:48

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 20:35	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 20:35	JSP	EET SPK

Client Sample ID: AMW-04-062525

Date Collected: 06/25/25 08:25

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 20:56	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	54892	07/01/25 19:17	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 20:56	JSP	EET SPK

Client Sample ID: MW-2-062425

Date Collected: 06/24/25 11:35

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 21:39	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	54892	07/01/25 19:39	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 21:39	JSP	EET SPK

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-3-062425

Date Collected: 06/24/25 10:50

Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-6

Job ID: 590-31692-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 22:01	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	54892	07/01/25 20:01	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 22:01	JSP	EET SPK

Client Sample ID: MW-4-062425

Date Collected: 06/24/25 12:45

Date Received: 06/26/25 14:48

Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 22:22	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 22:22	JSP	EET SPK

Client Sample ID: MW-5-062525

Date Collected: 06/25/25 12:20

Date Received: 06/26/25 14:48

	Lab Sa	mple ID:	590-31692-8
--	--------	----------	-------------

Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260D	Run	Dil Factor	Initial Amount 43 mL	Final Amount 43 mL	Batch Number 54876	Prepared or Analyzed 06/30/25 22:44	Analyst JSP	_ Lab EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	54892	07/01/25 20:44	JSP	EET SPK
Total/NA	Analysis	8260D		100	43 mL	43 mL	54892	07/01/25 21:05	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	54891	07/01/25 20:44	JSP	EET SPK

Client Sample ID: MW-6-062425

Date Collected: 06/24/25 13:45

Date Received: 06/26/25 14:48

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 23:05	JSP	EET SPK
Total/NA	Analysis	8260D		10	43 mL	43 mL	54892	07/01/25 21:27	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	54891	07/01/25 21:27	JSP	EET SPK

Client Sample ID: MW-7-062525

Date Collected: 06/25/25 14:50

Date Received: 06/26/25 14:48

Lab	Sample	ID:	590-31692-10

Lab Sample ID: 590-31692-9

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54876	06/30/25 23:27	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54875	06/30/25 23:27	JSP	EET SPK

Client Sample ID: MW-8-062525	Lab Sample ID: 590-31692-11
Date Collected: 06/25/25 13:45	Matrix: Water
Date Received: 06/26/25 14:48	

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		100	43 mL	43 mL	54938	07/03/25 19:57	JSP	EET SPK

Project/Site: Stillwater Chevron Holdings

Client Sample ID: MW-8-062525

Date Collected: 06/25/25 13:45 Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-11

Lab Sample ID: 590-31692-13

Lab Sample ID: 590-31692-14

Lab Sample ID: 590-31692-15

Lab Sample ID: 590-31692-16

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 590-31692-1

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 54893 Analysis 8260D 43 mL 43 mL 07/01/25 18:04 JSP EET SPK Total/NA Analysis **NWTPH-Gx** 1 43 mL 43 mL 54894 07/01/25 18:04 JSP **EET SPK**

Client Sample ID: MW-9-062525

Date Collected: 06/25/25 13:05 Date Received: 06/26/25 14:48

Lab Sample ID: 590-31692-12 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54938	07/03/25 20:18	JSP	EET SPK
Total/NA	Analysis	8260D		1	43 mL	43 mL	54893	07/01/25 18:25	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54894	07/01/25 18:25	JSP	EET SPK

Client Sample ID: DUP-062525

Date Collected: 06/25/25 12:00

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		10	43 mL	43 mL	54893	07/01/25 18:47	JSP	EET SPK
Total/NA	Analysis	8260D		100	43 mL	43 mL	54893	07/01/25 19:09	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		100	43 ml	43 ml	54894	07/01/25 19:09	JSP	FFT SPK

Client Sample ID: Marcus Whitman-062625

Date Collected: 06/26/25 08:55

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54893	07/01/25 19:30	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54894	07/01/25 19:30	JSP	EET SPK

Client Sample ID: Building 106-062625

Date Collected: 06/26/25 09:35

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54893	07/01/25 19:52	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54894	07/01/25 19:52	JSP	EET SPK

Client Sample ID: Trip Blank

Date Collected: 06/26/25 00:00

Date Received: 06/26/25 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	54893	07/01/25 20:13	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	54894	07/01/25 20:13	JSP	EET SPK

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Stillwater Chevron Holdings

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-31692-1

4

3

4

Q

Q

10

11

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-31692-1

Project/Site: Stillwater Chevron Holdings

Laboratory: Eurofins Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-26

3

4

5

8

9

4

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Stillwater Chevron Holdings

Job ID: 590-31692-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	EET SPK
5030C	Purge and Trap	SW846	EET SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

6

Ŏ

10

10

11

Eurofins Spokane

11922 E 1st Avenue

Chain of Custody Record

💸 eurofins Environment Te tine America **Eurofins Environment Testing America** COC No: of __ 2_ COCs TALS Project # Sampler: Matthew Kaulman For Lab Use Only: Walk-in Client. Lab Sampling: Job / SDG No. Sample Specific Notes: Archive for Months Therm ID No.. 36015 Date/Time:

Spokane WA 99206-5302 phone 509.924.9200 fax 509.924.9290 Regulatory Program DW NPDES RCRA Other Project Manager Melissa Roskamp **Client Contact** Email mroskamp@geoengineers.com Site Contact. Matthew Kaufman Date: GeoEngineers, Inc. Tel/Fax. Carrier. Lab Contact 523 E 2nd Ave **Analysis Turnaround Time** CALENDAR DAYS ✓ WORKING DAYS Spokane, WA 99202 DCE 509.363.3125 Phone FAX 2 weeks Project Name: Stillwater Chevron Holdings 1 week CIS DCE, Site Walla Walla BTEX and GRPH 2 days PO# 0504-202-01 1 day Sample Type Sample Sample # of (C=Comp, Sample Identification Date Time G=Grab) Matrix Cont. 6/25/25 G W 3 х х AMW-01-062525 1110 6/25/25 G W 3 х X AMW-02-062525 0910 6/25/25 G W 3 х Х AMW-03-062525 1005 6/25/25 G W 3 х AMW-04-062525 0825 6/24/25 G W 3 Х х MW-2-062425 1135 6/24/25 W G 3 Х 1050 MW-3-062425 6/24/25 G W 3 x x MW 4-062425 1245 6/25/25 1220 W G 3 MW-5-062525 6/24/25 1345 G W 3 MW-6-062425 6/25/25 1450 G W 6 590-31692 Chain of Custody MW 7-062525 6/25/25 1345 G W 3 MW-8-062525 6/25/25 W 1305 G 3 MW-9-062525 Preservation Used 1= Ice, 2= HCl, 3= H2SO4, 4=HNO3; 5=NaOH, 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Skin Irritant Non-Hazard Poison B Unknown Return to Client Disposal by Lab Special Instructions/QC Requirements & Comments. Custody Seals Intact: ∏ No Custody Seal No. Cooler Temp. (°C) Obs'd: Corr'd: Z , } Received by Relinquished by Company Company: 14148 126/25 Relinquished by: Company Date/fime: Received by Date/Time: Company Relinquished by: Company: Date/Time: Received in Laboratory by: Date/Time[.] Company^{*} Page 33 of 35

Eurofins Spokane

11922 E 1st Avenue

Chain of Custody Record

💸 eurofins Environment Testing America

Spokane, WA 99206-5302 phone 509.924.9200 fax 509 924.9290	Regul	atory Pro	gram [] wo [NPDE	s ſ	RC	:RA	Other											Eurofins Environment Testing America
	Project Ma]														COC No
Client Contact			oengineers	•		Site	Cor	ntact	Matthe	w K	aufm	an	Date	e: 6/2	6/25			*****		of COCs
GeoEngineers, Inc.	Tel/Fax					Lab							Carı							TALS Project #
523 E 2nd Ave		Analysis T	urnaround	Time		İΤ	T							T	Т				Т	Sampler Matthew Kaufman
Spokane, WA 99202	CALEN			RKING DAY	rs	1		, v												For Lab Use Only
509.363.3125 Phone					2000 gg (100 gg	2		Trans DCE,		ĺ				l	-					Walk-in Client:
FAX			2 weeks			z >	:	ans							İ					Lab Sampling:
Project Name: Stillwater Chevron Holdings			1 week			> c	آ	Ĕ					1				Ì			
Site. Walla Walla		;	2 days			e S	급	ğ										ı		Job / SDG No.
PO# 0504-202-01			i day			E	3 5	CIS DCE.												
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y/N) Perform MS/MSD (Y/N)	BTEX and	PCE, TCE,												Sample Specific Notes.
DUP-062525	6/25/25	1200	G	w	3		×													
Marcus Whitman-062625	6/26/25	0855	G	w	3		×	х												
Building 106-062625	6/26/25	0935	G	w	3		x	х												
Trip Blank					1	Ш	×	х												
																			ļ	ļ.
														1						1
							T	1		_		-		T			1			
							-			_				1						
							T			1				1		П	\top	1		
						\sqcap	T			_	\top			T	1	Ħ	1			
							T							\top				\top		
																		T		
Preservation Used 1= Ice, 2= HCI, 3= H2SO4, 4=HNO3,	5=NaOH,	6= Other_			Atantana ara 1 m					1				J						
Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample.	se List any E	EPA Waste	Codes for	the sam	ple in ti		amı	ole D	isposal	(Af	ee m	ay be	ass	esse	d if s	amp	es aı	e ret	aine	d longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison	В	Unkn	own				Retu	n to Client				isoosa	by L	вb		Α	rchive	for	Months
Special Instructions/QC Requirements & Comments.																				
Custody Seals Intact: Yes No	Custody S								Cooler '	Tem	р. (°С): Ob	s'd:_			Corr'		_		Therm ID Noユ につり
Relinquished by:	Company /	9B1		Date/Ti	me 15 14	ug/F	lece	ived	pà. Ci	M	M	ın.		C	ompa 2 	any.	s pc			Date/Time: {126/43 17,018
Relinquished by:	Company			Date/Ti	me.		Rece	ived	by.					C	Compa	any				Date/Time·
Relinquished by	Company.			Date/Ti		- 1			in Labora	atory	by.			C	Compa	any.				Date/Time·
				• P	age 3	4 of	35							L					-	7/7/2025

Job Number: 590-31692-1

Login Number: 31692 List Source: Eurofins Spokane

List Number: 1

Creator: Desimone, Carson

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

7

9

10

1

Appendix C Report Limitations and Guidelines For Use¹

This appendix provides information to help you manage your risks with respect to the use of this report. Please confer with GeoEngineers, Inc. (GeoEngineers) if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

READ THESE PROVISIONS CLOSELY

It is important to recognize that environmental engineering and geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce the risk of misunderstandings or unrealistic expectations that lead to disappointments, claims and disputes.

ENVIRONMENTAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES, PERSONS AND PROJECTS

GeoEngineers has performed this Groundwater Monitoring Assessment of the Stillwater Holdings Chevron cleanup site located at 7 East Rose Street in Walla Walla, Washington (the "Site"). This report has been prepared for the exclusive use of Washington State Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures its services to meet the specific needs of its clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. Use of this report is not recommended for any purpose or project other than as expressly stated in this report.

THIS ENVIRONMENTAL REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

This report has been prepared for the Stillwater Holdings Chevron cleanup site located at 7 East Rose Street in Walla Walla, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this Project. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- Not prepared for you,
- Not prepared for your Project,
- Not prepared for the specific site explored, or
- Completed before Project changes were made.

¹ Developed based on material provided by GBA, GeoProfessional Business Association; www.geoprofessional.org.

If changes to the Project or property occur after the date of this report, GeoEngineers cannot be responsible for any consequences of such changes in relation to this report unless we have been given the opportunity to review our interpretations and recommendations in the context of such changes. Based on that review, we can provide written modifications or confirmation, as appropriate.

RELIANCE CONDITIONS FOR THIRD PARTIES

This report was prepared for the exclusive use of the party(ies) to whom this report is addressed. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. Within the limitations of the agreed Project scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

UNDERSTAND THAT GEOTECHNICAL ISSUES HAVE NOT BEEN ADDRESSED

Unless geotechnical engineering was specifically included in our scope of service, this report does not provide any geotechnical findings, conclusions, or recommendations, including but not limited to, the suitability of subsurface materials for construction purposes.

DO NOT SEPARATE DOCUMENTATION FROM THE REPORT

Environmental reports often include supplemental documentation, such as maps, figures, and table. Do not separate such documentation from the report. Further, do not, and do not permit any other party to redraw or modify any of the supplemental documentation for incorporation into other professionals' instruments of service.

ENVIRONMENTAL REGULATIONS CHANGE AND EVOLVE

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state, or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

UNCERTAINTY MAY REMAIN EVEN AFTER THIS PROJECT IS COMPLETED

Performance of an environmental assessment is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no environmental assessment can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

SUBSURFACE CONDITIONS CAN CHANGE

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, new

information or technology that become available subsequent to the report date, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

SOIL AND GROUNDWATER END USE

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. GeoEngineers will not assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location, or the reuse of such soil and/or groundwater on-site in any instances that we did not recommend, know of, or control.

MOST ENVIRONMENTAL FINDINGS ARE PROFESSIONAL OPINIONS

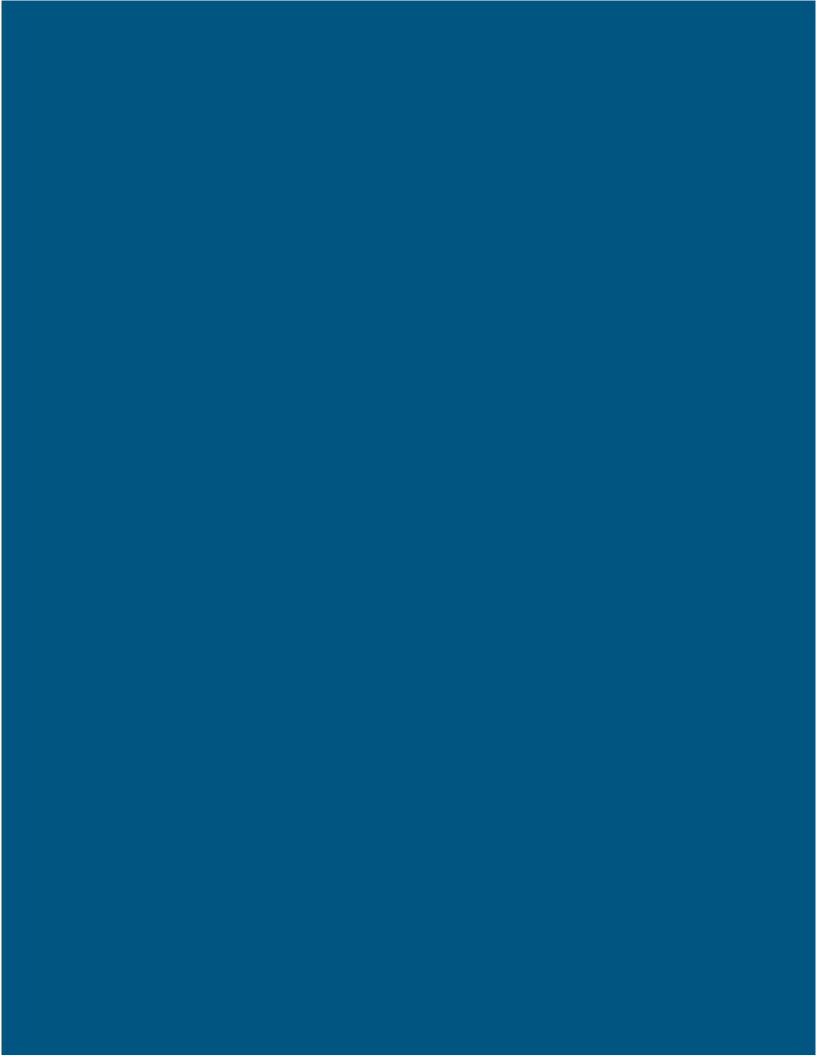
Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied its professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ significantly from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

DO NOT REDRAW THE EXPLORATION LOGS

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design documents. Only photographic or electronic reproduction that preserves the entire original boring log is acceptable, but separating logs from the report can create increase the risk of potential misinterpretation.

BIOLOGICAL POLLUTANTS

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention, or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this Project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.


A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

INFORMATION PROVIDED BY OTHERS

GeoEngineers has relied upon certain data or information provided or compiled by others in the performance of our services. Although we use sources that we reasonably believe to be trustworthy, GeoEngineers cannot warrant or guarantee the accuracy or completeness of information provided or compiled by others.

