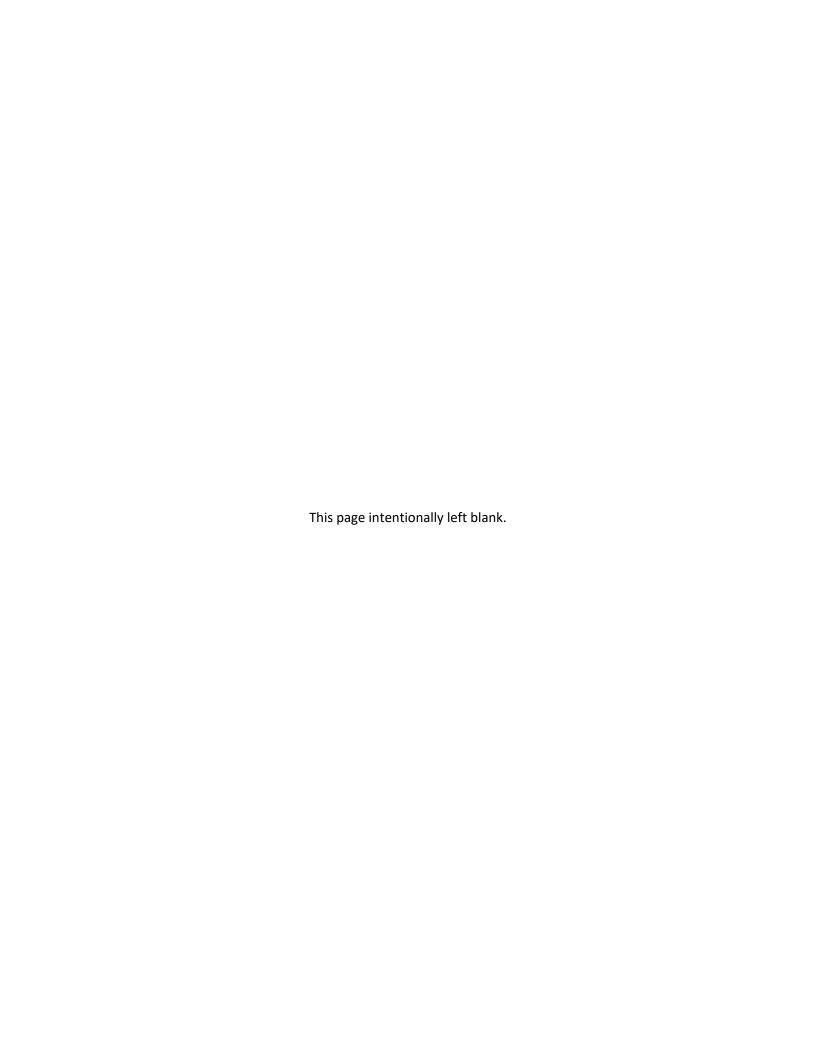
PORT OF FRIDAY HARBOR ALBERT JENSEN AND SONS INC. BOATYARD AND MARINA FRIDAY HARBOR, WA

MODEL TOXICS CONTROL ACT (MTCA)
AGREED ORDER NO. DE 18071

REMEDIAL INVESTIGATION REPORT – UPLAND AREA

Prepared for

The Port of Friday Harbor Friday Harbor, WA



Prepared by

September 26, 2025

Table of Contents

1.	INTRODUCTION1-1						
	1.1	Site D	escription and Background	1-1			
	1.2	2 General Site Information					
	1.3		rable Populations and Overburdened Communities				
	1.4	Repor	t Organization	1-2			
2.	SITE HISTORY AND LAND USE						
	2.1		ical Ownership and Land Use				
	2.2		nt Conditions and Land Use				
		2.3.1	Boatyard				
		2.3.2	Marina				
		2.3.3	Undeveloped Upland and Shoreline Areas	2-5			
3.	UPLAND FIELD INVESTIGATIONS						
	3.1	Invest	igation Areas	3-1			
	3.2	Previo	ous Investigations				
		3.2.1	Phase I Environmental Assessment				
		3.2.2	2018 Initial Site Investigation				
		3.2.3	2018 Upland Site Investigation				
		3.2.3	2020 IOSA/MTC Test Pits				
	3.3		to 2024 Investigation Activities				
		3.3.1	Upland Soil Sampling				
		3.3.2	Monitoring Well Installation and Sampling				
		3.3.3	Intertidal Porewater Sampling				
		3.3.3	Tidal Study				
		3.3.4	Data Quality Review				
4.	CONCEPTUAL SITE MODEL						
	4.1		at Features				
	4.2	0, , 0 0,					
	4.3		tial Sources				
		4.3.1	Ship Rail Work Area				
		4.3.2	Boat Lift Work Area				
		4.3.3	Former Dumping Area				
		4.3.4	Former Above Ground Storage Tank				
		4.3.5	Shop Floor Drain				
	4.4	4.3.6	Former Orcas Power and Light Company Padport Pathways				
	4.4	4.4.1	Soil				
		4.4.1	Groundwater				
	4.5		tial Receptors				
5.	DRFI	IMINAR	RY CLEANUP STANDARDS	5_4			
J .	5.1		d Soil Exposure Pathways				
	5.1	5.1.1	Human Health				
		5.1.2	Ecological Health				
	5.2	_	st Beneficial Use of Site Groundwater				
	5.3	Upland Soil and Groundwater PCULs5					
	5.3	·					

6. NATURE AND EXTENT OF CONTAMINATION				6-1
	6.1	Soil and	oil and Groundwater Contaminants of Interest	
	6.2	Indicat	Indicator Hazardous Substances	
		6.2.1	Metals	6-2
		6.2.2	Petroleum	6-3
		6.1.3	Polychlorinated Biphenyls	6-3
		6.1.4	Dioxins/Furans	6-3
		6.1.5	Polycyclic Aromatic Hydrocarbons	6-4
		6.1.6	Pesticides	6-4
		6.1.6	Tributyltin	
		6.1.7	Volatile Organic Compounds	6-4
7. REMEDIA		DIAL IN	VESTIGATION CONCLUSIONS	7-1
	7.1		ufficiency	
_			,	
8.	KEFEF	KENCES.		8-1
Table	es			
Table	3-1.	Moi	nitoring Well Construction Details	
Table 3-2.			Monitoring Well Gauging Data	
Table 3-3.		Sum	Summary of Upland Soil Data – Total Petroleum Hydrocarbons and Metals	
Table 3-4.		Sum	Summary of Upland Soil Data – Tributyltin, Dioxin/Furans, and PCBs	
Table 3-5.		Sum	Summary of Upland Soil Data – Polycyclic Aromatic Hydrocarbons	
Table 3-6.		Sum	Summary of Upland Soil Data – Pesticides	
Table 3-7.		Sum	Summary of Upland Soil Data – VOCs	
Table 3-8.		Sum	Summary of Ship Rail Work Area Sediment Samples	
Table	3-9.	Stor	mwater Pond Sediment Samples	
Table	3-10.	Sum	nmary of Upland Groundwater Data	
Table	5-1.	Prel	iminary Cleanup Levels for Soil	
Table	5-2.	Prel	iminary Cleanup Levels for Groundwater	
Table	6-1.	Soil	Contaminants of Interest	
Table 6-2.		Gro	Groundwater Contaminants of Interest	
Table	6-3.	Sun	nmary of Indicator Hazardous Substances	
Table 7-1.		Сор	Copper and Zinc Distribution in BLWA Shoreline Soil and Groundwater	

Page | iv September 2025

Figures

igure 1-1.	Location and Vicinity Map
igure 1-2.	Upland and Sediment Areas
igure 2-1a.	Historical Site Features
igure 2-1b.	Current Site Features
igure 2-2.	Overview of Historical Site Facility Uses
igure 2-3.	Historical Site Facility Uses, Facing North Toward Shipyard Cove
igure 3-1.	Sampling Location Map
igure 3-2.	Net Groundwater Flow
igure 4-1.	Geologic Cross Sections - Plan
igure 4-2.	Geologic Cross Sections – Section 1
igure 4-3.	Geologic Cross Sections – Section 2
igure 4-4.	Geologic Cross Sections – Section 3
igure 4-5.	Geologic Cross Sections – Section 4
igure 4-6.	Geologic Cross Sections – Section 5
igure 6-1.	Extent of Arsenic in Soil and Groundwater
igure 6-2.	Extent of Copper in Soil and Groundwater
igure 6-3.	Extent of Mercury in Soil and Groundwater
igure 6-4.	Extent of Nickel in Soil and Groundwater
igure 6-5.	Extent of Zinc in Soil and Groundwater
igure 6-6.	Extent of Total Petroleum Hydrocarbons (Diesel and Oil Range) in Soil and Groundwater
igure 6-7.	Extent of cPAHs in Soil and Groundwater
igure 6-8.	Extent of Tributyltin in Soil and Groundwater
igure 7-1.	Lateral and Vertical Extent of Copper
igure 7-2.	Lateral and Vertical Extent of Zinc
igure 7-3.	Lateral and Vertical Extent of all IHSs Exceeding PCULs

Appendices

Appendix A	Boring and Monitoring Well Logs
Appendix B	Analytical Laboratory Reports
Appendix C	Tidal Study
Appendix D	Terrestrial Ecological Evaluation

Page | v September 2025

This page intentionally left blank.

Page | vi September 2025

Abbreviations and Acronyms

μg/kg micrograms per kilogram
ADA American With Disability Act

BLWA boat lift work area

BTEX benzene, toluene, ethylbenzene, and xylene

cm centimeter

COC Constituent of Concern
CoC contaminant of concern
COI Constituent of Interest

COPC Contaminant of Potential Concern

cPAH carcinogenic polycyclic aromatic hydrocarbon

CRETE Consulting Inc.
CSL cleanup screening level
DCAP Draft Cleanup Action Plan
DDD Dichlorodiphenyldichloroethane

DDT Dichlorodiphenyltrichloroethane

DMMP Dredged Material Management Program

Ecology Department of Ecology FDA Former Dumping Area FS Feasibility Study

ft bgs feet below ground surface IOSA Islands' Oil Spill Association

Jensen Albert Jensen and Sons Boatyard and Marina

L-E Leon Environmental, LLC
mg/kg milligrams per kilogram
MNR monitored natural recovery
mS/cm milliSiemens/centimeter
MTC Marine Technical Center
MTCA Model Toxics Control Act

NPDES National Pollutant Discharge Elimination System

OHW ordinary high water

OPALCO Orcas Power and Light Company
Order Agreed Order No. DE 18071
PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl
PoFH Port of Friday Harbor
ppt parts per trillion

PQL practical quantitation limit
RI Remedial Investigation
SCO sediment cleanup objective
SCUM Sediment Cleanup User's Manual

SGC silica gel cleanup Shipyard Cove Shipyard Cove Marina

SL screening level SLR sea level rise

SMA sediment management area
SMS Sediment Management Standards

Page | vii September 2025

SQS Sediment Quality Standard

SRWA ship rail work area

TEE Terrestrial Ecological Evaluation

TBT tributyltin

TEQ toxicity equivalent
Town Town of Friday Harbor

TPH total petroleum hydrocarbon
USDA U.S. Department of Agriculture
VOC volatile organic compound

WAC Washington Administrative Code

WDNR Washington State Department of Natural Resources

Page | viii September 2025

Engineer's Certification

I certify that the Upland Remedial Investigation for the Albert Jensen and Sons Inc. Boatyard and Marina Site (located at 1293 Turn Point Road, San Juan Island, WA 98250) was completed by me or by a person under my direct supervision.

Work for this project was performed in accordance with generally accepted professional practices for the nature and condition of work completed in the same or similar localities, at the time the work was performed. No other warranty, express or implied, is made.

DRAFT

Grant Hainsworth P.E., Principal Washington State PE Number: 33192

Expiration Date: 6/5/2027

Page | ix September 2025

1. INTRODUCTION

The mutual objective of the State of Washington, Department of Ecology (Ecology) and the Port of Friday Harbor (PoFH) under Agreed Order No. DE 18071 (Order) is to provide for remedial action at Albert Jensen and Sons Inc. (Cleanup Site ID 14759) (Site or Jensen's) where there has been a release or threatened release of hazardous substances. The work under the Order involves conducting a Remedial Investigation (RI) and Feasibility Study (FS), conducting interim actions if required or agreed to by Ecology, and preparing a preliminary Draft Cleanup Action Plan (DCAP) to select a cleanup alternative. The purpose of the RI/FS, and preliminary DCAP for the Site, is to provide sufficient data, analysis, and evaluations to enable Ecology to select a cleanup alternative for the Site.

The goal of this project is to clean up the historical contamination at Jensen's and to revitalize and expand existing uses at this industrial facility, which serves as a community and economic hub. The mandate from the Friday Harbor community is to honor the Site's history and its central role in shaping the Friday Harbor community, while providing: environmental restoration; commercial boatyard services; and a platform to provide the economic opportunity local businesses need to thrive.

This RI Report has been prepared to satisfy requirements of the Agreed Order and Washington Administrative Code (WAC) Sections 173-340-350(6) and 173-204-550(6). The Order requires the PoFH to address both upland and in-water Site contamination. This RI Report documents the nature and extent of contamination in the upland portion of the Site. A separate RI Report will document the nature and extent of contamination in the sediment portion of the Site. The respective information will be used to develop the FS Report and DCAP for both the upland and sediment in accordance with WAC 173-340-356 through 173-340-390.

1.1 Site Description and Background

The Site is located at 1293 Turn Point Road on the southern shore of Shipyard Cove of the Salish Sea, on San Juan Island, San Juan County. Turn Point Road provides a direct connection from the Town of Friday Harbor (Town) to the Site, which is located approximately 1.5 miles southeast of downtown. Turn Point Road continues to the east to Kansas Cove, and then becomes Pear Point Road as it follows the Island's southern shoreline to circle back to the Town. The Site is located entirely within Shipyard Cove, a relatively shallow embayment that faces northward on the eastern side of San Juan Island. Shipyard Cove is generally protected by Brown Island; however, the Site is exposed to roughly 2.5 miles of fetch from a northerly direction (Figure 1-1). For the purpose of performing the RI/FSs, and development of DCAPs, the division between upland and sediment portions of the Site is the High Tide Line (HTL). Based on available tidal records, the HTL is defined based on the highest astronomical tide: 9.2 feet Mean Lower-Low Water (MLLW; Figure 1-2).

The PoFH purchased the Site from Albert Jensen and Sons, Inc. with the intent to address existing environmental concerns. The Site encompasses an upland area of approximately 4.8 acres with 652 linear feet of shoreline and approximately 5 acres of aquatic lands currently managed under a Port Management Agreement (PMA No. 20-080023) with the Washington State Department of Natural Resources (WDNR). The Site is partially developed and is currently underutilized due to impaired Site conditions. Surrounding land uses include industrial, commercial, and residential development. The Port also owns and operates Shipyard Cove Marina and a barge ramp, which are located immediately to the northwest of Jensen's. Residential properties with private docks extend along the shoreline to the northeast of Jensen's.

The Port operates Jensen's and Shipyard Cove Marina as a single facility that it refers to as Jensen's Shipyard Cove Facility. Shipyard Cove Marina has been identified by Ecology as a separate state cleanup

Page | 1-1 September 2025

site (Cleanup Site ID 17287) and will be cleaned up under a separate process from Jensen's (Ecology 2025).

1.2 General Site Information

Albert Jensen and Sons, Inc. Boatyard and Marina 1293 Turn Point Road Friday Harbor, WA 98250 Section 13, Township 35N, Range 3W Parcel 351341005000

The project coordinator for the Port of Friday Harbor is: Todd Nicholson 204 Front Street Friday Harbor, WA 98250 360-378-2688 toddn@portfridayharbor.org

1.3 Vulnerable Populations and Overburdened Communities

The Site is not located within a likely vulnerable population or overburdened community as it does not satisfy any of the test criteria outlined in Ecology guidance (Ecology 2024a):

- 1. The Site is not located in a census tract that ranks a 9 or 10 on the Environmental Health Disparities Index from the Washington State Department of Health's EHD Map¹
- 2. The Site is not located in a census tract that is at or above the 80th Washington state percentile of the Demographic Index from the U.S. Environmental Protection Agency's EJ Screen²
- 3. The Site is not located in a census tract that is at or below the 80th Washington state percentile of the Supplemental Demographic Index from the U.S. Environmental Protection Agency's EJ Screen

1.4 Report Organization

In accordance with the Agreed Order and WAC 173-204-550(6), the remaining sections of this report provide the following:

- Section 2 summary of relevant Site history and land uses
- Section 3 summary of previous environmental investigations
- Section 4 identification of applicable exposure pathways, and proposed cleanup standards for the upland portion of the Site
- Section 5 a conceptual Site model (CSM) for the upland portion of the Site
- Section 6 summary of the nature and extent of upland contamination
- Section 7 RI conclusions

Page | 1-2 September 2025

¹ https://fortress.wa.gov/doh/wtnibl/WTNIBL/Map/EHD

² EPA's online EJ Screen tool was not active at time of this draft report. The tool was accessed through this non-EPA link: https://pedp-ejscreen.azurewebsites.net/

2. SITE HISTORY AND LAND USE

2.1 Historical Ownership and Land Use

Over a century of industrial uses have contributed to legacy contamination at this historical maritime Site. The Site was first developed as a shipyard before 1941. Anecdotal evidence suggests that operations began as early as 1910. Originally, wooden boats were manufactured at the Site, but when wooden boats were phased out in the middle of the 20th century, the Site use moved from shipbuilding to boat repair and maintenance.

According to Ecology (Ecology 2024), the San Juan Historical Society reports that in the early 1940s a local entrepreneur started a shipyard business employing 15 men year-round who built wooden boats for fishing, towing and other uses. A large part of the business focused on hauling local fishing boats out of the water and lined up along the beach for winter maintenance and repairs. The business repaired, serviced and returned boats to the water one at a time until all were ready for the start of fishing season. During World War 2, the shipyard held a contract to build military barges. The Site also contained a log dump for San Juan Island logging industry. Logs would be branded on the end, dumped into the water and formed into log booms to be towed to lumber mills around Puget Sound.

Additional facilities, including a marina extending from the central shoreline into deeper intertidal and subtidal areas, and an upland fill area along the western property boundary extending from the upland into shallow intertidal areas, were built sometime between 1941 and 1972. Activities at the shipyard that likely contributed to increased contamination concentrations include the application and removal of antifouling paints, mechanical, and general maintenance work both over water and land, and treatment of wooden boats using pesticides. Also present on Site was a former underground gasoline storage tank, a machine shop that was also used for hazardous chemical storage, a small dump site, and a marine railway.

Figure 2-1a illustrates the approximate location of known historical site features. Images from the San Juan Historical Society which depict prior Site facilities are provided in Figures 2-2 and 2-3.

Page | 2-1 September 2025

Figure 2-2. Overview of historical Site facility uses (Ecology 2024).

Page | 2-2 September 2025

Figure 2-3. Historical Site facility uses, facing north, toward Shipyard Cove (Ecology 2024).

2.2 Current Conditions and Land Use

Jensen's is partially developed and is still used as a boat maintenance facility and shipyard (Figure 2-1). Based on the needs of the Friday Harbor community, the Port plans to maintain and expand current facility operations.

The Site consists of three distinct areas: a boatyard, a marina, and an undeveloped upland and shoreline area. Jensen's is zoned as Rural Industrial which allows for light industrial, light manufacturing, seasonal residential, public, and some institutional uses. While this RI is focused on the upland portion of the Site, the following sections provide a brief summary of the current conditions and land use in each of these areas for context. Further details concerning the sediment portion of the Site will be presented in the sediment area RI.

2.3.1 Boatyard

The existing boatyard is located in the southwestern portion of the parcel. It encompasses approximately 1.5 acres of level work areas including boat storage, a laydown area, and a wash pad. Four buildings are associated with current boatyard operations: an office/retail building, a machine shop, a storage building, and a water treatment building through which stormwater collected from the BLWA is circulated and then discharged via an outfall. At the back of the office/retail building is a septic system drain field that is connected to interior bathrooms. The shop building is used for small equipment maintenance and repair (e.g., small engine repair). A small quantity of fuel and lubricants are stored in this building. The boatyard infrastructure also includes a 35-ton travel lift. The Port is in the process of removing the travel lift pier and replacing it with a new haul out pier located in the adjacent Shipyard Cove Marina section of the

Page | 2-3 September 2025

Port's larger Jensen's Shipyard Cove Facility. The Port may propose this work as an Interim Action under the Order in the future.

The marine services currently provided at the boatyard include haul-out, pressure wash, bottom paint, light mechanical, chandlery and parts, and boat storage. Water from the wash pad and boat maintenance activities is collected and disposed offsite. The boatyard area has several areas where maintenance was deferred by the prior owner and ongoing releases from the degraded structures (e.g., visible sheen associated with the creosote pilings) have been observed. The Port is working to address these issues as work under the Order proceeds. For example, the Port installed sleeves around the boat lift pier pilings, which are reducing the extent to which piling creosote is exposed to marine waters.

The shoreline along the active boatyard area is characterized by vertical structures and steep berms. The boat lift consists of two piers supported by creosote-treated piling (the boat lift pier), ecology blocks, and a concrete wall. A deteriorating overwater dock and the main walkway pier are located immediately east of the existing boat pullout area. The shoreline at this location is a stacked ecology block bulkhead, through which uncharacterized upland fill material is sloughing into intertidal areas. Along the western property line, a fill area partially contained by a failing creosote-treated bulkhead extends from the upland out into intertidal area. This bulkhead is in an advanced state of failure, acting as a source of creosote-treated wood debris and allowing uncharacterized fill to spill into intertidal areas. The intertidal areas here are barren of vegetation except for sparce, non-native species.

The Port plans to continue implementing Site improvements that are consistent with the existing boatyard uses, including improving paved working areas to expand upon existing uses.

2.3.2 Marina

Jensen's continues to operate an active marina that occupies the deeper intertidal and subtidal areas of the Site. The existing marina consists of approximately 30 slips, shown on Figure 2-1b.

The original marina included: a concrete floating breakwater; a system of solid-decking floats built primarily from treated-wood and open-cell Styrofoam float boxes; creosote-treated wood piles and dolphins; an elevated pier and wave wall constructed of creosote-treated wood; treated-wood and metal ramps connecting the float and elevated pier system; covered multi-slip moorage and an individual boathouse built with metal roofs and side walls; and a main walkway pier constructed of treated-wood.

Marina infrastructure underwent extensive repair and replacement under federal, state, and local emergency authorizations in 2021 after a winter storm drastically damage an already failing marina. The Port obtained 'after-the-fact' permits for this repair and replacement work after the most critical marina infrastructure was restored. Of the original marina infrastructure, only the original main walkway pier and portions of the concrete breakwater remain. Nearly all of the permitted reconstruction work is complete. In addition to the original main walkway pier, current marina structures include a new system of floats and floating finger piers consisting of steel piles and fully grated floats, and various standalone piles and dolphins. Replacement covered moorage has been completed using steel frames and transparent polycarbonate roofing. The permitted replacements for the original covered moorage were built without side walls and features clear roofs to allow light penetration.

The entire shoreline area, extending from intertidal elevations out to at least shallow subtidal depths, is heavily impacted with a substantial volume of debris, including concrete, tires, metal (motors, small parts, etc.), plastic, and other general rubbish. Within the former boathouse areas, there appears to be

Page | 2-4 September 2025

some debris present on the seafloor, including tires that can be observed from the marina floats. The Port intends to remove much of this debris as mitigation for subsequent permitted actions throughout the larger Jensen's Shipyard Cove Facility.

2.3.3 Undeveloped Upland and Shoreline Areas

The undeveloped area in the eastern portion of the property consists of approximately 2 acres of open grassy field and gravel parking areas. This area slopes moderately from Turn Point Road toward the waterfront and terminates at a low bank.

A derelict boat building structure located near the shoreline east of the current boatyard area was removed by the Port in 2023, shown on Figure 2-1a. Four rails (two rails per pair), which appear to be composed of deteriorating 10-inch x 10-inch creosote-treated timbers, extend from the intertidal area waterward of the derelict boat building structure out to subtidal elevations (Figure 2-1a). It is not clear how far the rails extend, because they dive under the sediments at approximately 85 feet from the waterward edge of the concrete pad. The marine rails were originally used to launch boats and were later used to pull out boats for repair. These derelict structures are likely sources of contamination to upland, intertidal, and subtidal areas. The concrete pad at this location was added later and is not original to the marine rail system.

The undeveloped area also contains the remnants of a small derelict cabin (Figure 2-1a), a small oil storage building further east, and a shallow dug well. An underground storage tank was formerly located in the field south of the oil storage building. The upper shoreline area appears to be composed of upland fill material and garbage (metal, plastic, concrete, wood waste, etc.), which is consistent with historical descriptions of the area being used as a dump. The garbage and fill material from the upper shoreline are emerging from the bank as it descends to upper intertidal elevations. There appears to be a remnant shoreline timber (some treated) structure, possibly an old pier or ramp, which has left a debris pile extending from the upper shoreline down to intertidal elevations. These observations are generally consistent with the images Ecology obtained from the San Juan Historical Society, which are provided as Figures 2-2 and 2-3 (Ecology 2024).

Page | 2-5 September 2025

3. UPLAND FIELD INVESTIGATIONS

3.1 Investigation Areas

The Site has been divided into the following key subareas for the purposes of conducting past remedial investigation activities. The general location of each area may be found on Figure 2-1b. Further details of each area are provided in the discussion of the Site CSM (Section 6).

- Ship Rail Work Area: The ship rail work area (SRWA) includes rail lines east of the pier and the
 old boat building structure. The SRWA has a lower elevation than the surrounding upland,
 including high intertidal elevations with abundant pickleweed.
- Boat Lift Work Area: The boat lift work area (BLWA) is an approximately 100-foot-wide area
 along the shoreline, immediately west of the SRWA and extending west to the western property
 line. The adjacent shoreline, from west to east, includes the small fill area that projects into the
 water, the berm area with an outfall, the boat pullout, the old overwater deck, and the marina
 pier.
- Former Debris Dumping Area: The former dumping area (FDA) is located to the east of the SRWA along the shoreline.
- IOSA/MTC Area: An area located east of the SRWA and close to the FDA. This area was
 identified in the past for potential development of a new headquarters building for the Islands'
 Oil Spill Association (IOSA) and, more recently, as the location of a potential Marine Trades
 Center (MTC).
- Former Above Ground Storage Tank: It is suspected that an Above Ground Storage Tank (AST) was formerly located south of the central former shop building. There is no documentation regarding the size or contents of the former AST.
- **Shop Floor Drain**: The shop building includes a 3-inch diameter floor drain near the northwest corner of the building. The drain was used to dispose of liquids from the machine shop.
- **Stormwater Pond**: Wash water within the working areas of the BLWA was collected, treated, and then discharged to a stormwater detention pond. The stormwater pond was located in the southwest portion of the property, west of the shop building. The pond was removed from service in 2021 and the area was re-graded.
- Former Orcas Power and Light Company Pad: A former Orcas Power and Light Company (OPALCO) storage area is located in the western portion of the Site. The pad is the building foundation of an OPALCO building that burnt down.
- **Wooded Hillside Area Along Turn Point Road**: The wooded hillside area is south of the OPALCO pad area, the stormwater pond, and the shop building.

3.2 Previous Investigations

Previous environmental investigations related to the upland portion of the Site are summarized below. This work has included soil, groundwater, and stormwater pond solids sampling. The investigation activities performed for the Site also included some investigation (e.g., soil sampling) conducted on the Shipyard Cove Marina Site, prior to its establishment as a separate MTCA cleanup site. Investigation activities and data relevant to the Shipyard Cove Marina Site are not included herein and will be reported under the cleanup process for that new site.

3.2.1 Phase I Environmental Assessment

A Phase I Environmental Site Assessment (ESA) was conducted at the Site in November 2017. The resulting Phase I ESA report (Whatcom Environmental Services 2017) concluded there was potential for site soil to be impacted by metals, petroleum, and solvents based on evidence of boatyard related uses.

Page | 3-1 September 2025

3.2.2 2018 Initial Site Investigation

Fifteen soil samples were collected in January 2018 to characterize Site soil. The soil samples were analyzed by ALS Laboratory Group (ALS) for the following:

- Diesel- and oil-range total petroleum hydrocarbons (TPH) by NWTPH-Dx
- Gasoline range TPH by NWTPH-Gx
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021
- Naphthalenes, carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and semi-volatile organic compounds by EPA Method 8270
- Lead, arsenic, cadmium, chromium, copper and zinc by EPA Method 6020
- Mercury by EPA Method 7471
- Polychlorinated biphenyl Aroclors (PCBs) by EPA Method 8082A
- Dioxins and furans by EPA Method 1613

The results identified concentrations of metals (primarily copper and lead), petroleum, and cPAHs that exceeded preliminary screening levels (Whatcom Environmental Services 2018).

The initial investigation included one composite sample of sediment from the former stormwater pond (Whatcom 2018). This sample was analyzed by ALS for the following:

- Lead, arsenic, cadmium, chromium, copper and zinc by EPA Method 6020
- Mercury by EPA Method 7471

The initial investigation also included a sample collected directly from the floor drain in the shop building. This sample and one sample collected within the SRWA (SRWA-3) were analyzed for volatile organic compounds by EPA Method 8260, in addition to the analyses listed above for soil. The results of the initial investigation are included on Tables 3-3 through 3-10. Investigation boring logs are included in Appendix A.

3.2.3 2018 Upland Site Investigation

Additional soil sampling was performed in July and August 2018 to further characterize the lateral and vertical extent of chemicals detected by the initial investigation. This work included 25 soil borings (56 samples). These soil samples were analyzed by ALS Laboratory Group (ALS) for the following (Whatcom Environmental Services 2018):

- Diesel- and oil-range TPH by NWTPH-Dx
- Gasoline range TPH by NWTPH-Gx
- BTEX constituents by EPA Method 8021
- Naphthalenes and cPAHs by EPA Method 8270E-SIM
- Lead, arsenic, cadmium, chromium, copper and zinc by EPA Method 6020
- Mercury by EPA Method 7471
- PCBs by EPA Method 8082A
- Dioxins and furans by EPA Method 1613

This investigation also included the installation and sampling of six groundwater monitoring wells (MW-1 through MW-6). All groundwater samples were analyzed by ALS for the following:

- Diesel- and oil-range TPH by NWTPH-Dx (with silica gel cleanup)
- Gasoline range TPH by NWTPH-Gx
- BTEX constituents by EPA Method 8021
- Naphthalenes and cPAHs by EPA Method 8270E-SIM

Page | 3-2 September 2025

 Dissolved arsenic, cadmium, chromium, lead, mercury, copper, and zinc by EPA Method 200.8/245.1

As part of this investigation, one sediment sample was also collected from the stormwater pond (Whatcom 2018) and was analyzed for the following:

- Toxicity Characteristic Leaching Procedure (TCLP) by EPA Method 1311
- Standard Fish Bioassay by Ecology Method 80-12

Well construction details are included on Table 3-1. Measured groundwater elevations from recent quarterly groundwater sampling events is included on Table 3-2. Analytical results from the 2018 Upland Site Investigation are included on Tables 3-3 through 3-10. Investigation boring and well construction logs are included in Appendix A.

3.2.3 2020 IOSA/MTC Test Pits

On October 19, 2020, a small backhoe was used to excavate eight test pits within the IOSA/MTC Area located on the eastern side of the Site (Figure 3-1). The objective of this investigation was to further characterize an area that had been identified for potential development. The area is bounded to the west by the SRWA and the FDA along the shoreline to the north.

The test pits were dug as trenches of approximately 6 to 14 feet in length and varied in depth between 6.5 and 12 feet. Buried debris was encountered at three of the test pit locations (IOSA-TP5, IOSA-TP6, IOSA-TP7). The debris was concentrated in the area referred to as the FDA in earlier project documents. Following examination of the walls and bottom of the test pit, and examination of the excavated soil and debris, samples were collected from the sidewalls and bottom of each test pit. Each excavated test pit was subsequently backfilled with the trench spoils to approximately match the initial grade. Soil samples were submitted to Friedman & Bruya, Inc. for metals analysis by EPA Methods 6020 and 7471. One sample at IOSA-TP5 (from 5 feet below grade), where what appeared to be a small boat fuel tank was observed, was submitted for NWTPH-Dx, -Gx, and BTEX analyses. Initially the uppermost sample (1 foot below grade) was submitted for analysis, with other deeper samples placed on hold pending analysis. Additional samples from IOSA-TP-3, IOSA-TP-5, and IOSA-TP6 were subsequently analyzed based on copper or zinc concentrations that exceeded preliminary screening levels. Results of the test pit investigation are included on Table 3-3.

3.3 2022 to 2024 Investigation Activities

In accordance with the RI Work Plan (Leon and CRETE 2022), additional environmental investigations were conducted to fill identified data gaps. Field logs and analytical reports for these investigations are provided in Appendices A, and B. Well construction details and measured groundwater elevations are shown on Tables 3-1 and 3-2, respectively. A summary of available soil and groundwater datais provided on Tables 3-3 through 3-10. Six sampling stations within the SRWA fall below the HTL. For completeness, the data is included in the Upland RI dataset, but is presented separately on Table 3-8.

3.3.1 Upland Soil Sampling

The following soil sampling activities were performed in July 2022 to further characterize the nature and extent of contamination in selected areas of the Site, in accordance with the RI Work Plan. Direct push soil borings were completed in accordance with the methods described in the RI Work Plan (Leon and CRETE 2022). Sampling locations are shown on Figure 3-1. Selected soil samples from each boring were retained for laboratory analysis. The analytical suite selected for each sample was based on the sample location relative to known impacts, and Property history (potential impacts). Soil samples were analyzed by Friedman and Bruya, Inc., and Frontier Analytical Laboratory (dioxin/furans only) for the following:

Page | 3-3 September 2025

- Metals by EPA Method 6020
- PCBs by EPA Method 8082A
- cPAHs by EPA Method 8270E and EPA Method 8270E-SIM
- Diesel- and oil-range TPH by NWTPH-Dx extended
- Organochlorine Pesticides by EPA Method 8081B
- Dioxins and furans by EPA Method 1613
- Organotin compounds by EPA Method 8270E-SIM

Boat Lift Work Area

Four borings (BLWA-10, -11 -12, -13) were performed to further characterize subsurface conditions in the BLWA.

Ship Rail Work Area

Seven borings (SWRA-8, -9, -10, -11, -12, -14, -15) were completed to 10 feet bgs to better define metals, TPH, and PAH impacts observed along the eastern and southeastern portion of the SRWA.

Above Ground Storage Tank Area

Three borings (AST-2, AST-3, AST-4) were completed to depths ranging approximate 5 to 15 feet bgs near the former AST to refine the extent of TPH impacts. Borings in this area were completed within or closely adjacent to the septic system drain field that is attached to the office/retail building bathrooms.

Shop Floor Drain and Outfall

One boring (SFD-4) was advanced to 15 feet bgs in an area downgradient of the floor drain and MW-1 to further characterize petroleum and metals impacts in close proximity to the drain.

3.3.2 Monitoring Well Installation and Sampling

Three new groundwater monitoring wells (MW-7, MW-8, and MW-9) were installed at the Site (Figure 3-1). Each well location boring was continuously logged to record lithology and determine appropriate screen depth. Wells were screened with a 10-foot screen, with screened depth based on field determination of water table elevation at location. Soil samples were collected at each monitoring well boring in accordance with the procedures described in the RI Work Plan (Leon and CRETE 2022); as -briefly summarized above for the other completed soil borings. Well completion details are provided in Table 3-1. Groundwater gauging data for 2022 to 2024 sampling events are provided in Table 3-2.

Groundwater samples were analyzed by Friedman and Bruya, Inc., Brooks Applied Laboratory and Analytical Resources LLC. Brooks Applied Laboratory provided analysis of total and dissolved metals by EPA Method 1638 which uses inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) modified using a Closed-Vessel Hotblock Digestion sample preparation. This method allows for low detection limits even with dilution. Groundwater analyses included the following:

- Metals by EPA Methods 6020B and 1638
- PCBs by EPA Method 8082A
- cPAHs by EPA Method 8270D and EPA Method 8270-SIM
- Diesel- and oil-range TPH by NWTPH-Dx extended
- Organochlorine pesticides by EPA Method 8081B
- Dioxins and furans by EPA Method 1613
- Organotin compounds by EPA Method 8270E-SIM

3.3.3 Intertidal Porewater Sampling

In Spring and Summer 2024, attempts were made to sample porewater from the intertidal area immediately downgradient of MW-3, MW-7, and MW-8. The object of this investigation activity was to characterize porewater in the groundwater/surface-water transition zone.

Page | 3-4 September 2025

Stainless steel Solinst 615 temporary piezometer sampling devices were installed at three locations downgradient of nearshore wells MW-3 (SPZ-1), MW-7 (SPZ-2), and MW-8 (SPZ-3). The devices had an approximately 5-inch-long screen and were driven into the ground using a post-hole driver just beyond the target depth (2.5 to 3 ft bgs). The piezometers were installed on April 9,2024 during low tides and sampling efforts were made during subsequent low tides on April 10 and April 11, 2024. A peristaltic pump and silicone tubing were used to pump water from each of the piezometers. At this time, there was insufficient water recovery for sample collection at all three temporary piezometer locations and the devices were removed.

On June 24-26, 2024, additional attempts were made to collect porewater samples in the intertidal shoreline area extending across the BLWA and SRWA. The same methods used for the April 2024 event were repeated at similar locations downgradient of MW-3 (SPZ-1), MW-7 (SPZ-2), and MW-8 (SPZ-3). The piezometers were installed on June 24, 2024 during low tide period and sampling was attempted during low tides on June 25 and June 26, 2024. One water sampled was collected from location SPZ-1 on June 25, 2024. Insufficient water was collected from SPZ-2, and SPZ-3. At the completion of this work, the piezometers were left in-place.

On June 30, 2024, intertidal porewater sampling was re-attempted at the three previously installed piezometer locations. At this time, a sample was successfully collected from SPZ-1 using the previously installed piezometer. Sampling from SPZ-2 was unsuccessful and the piezometer device was removed. An open borehole remained after device removal and sample tubing was placed in the borehole 12 to 14 inches bgs. The borehole partially collapsed, but recharge was sufficient to allow for collection of a sample. Because this sample was not obtained using the piezometer device, it was given the unique identification number MP-1. Sampling from SPZ-3 was unsuccessful and the sampling device was removed.

The data obtained from this sampling activity are included on Table 3-6.

3.3.3 Tidal Study

A tidal study was completed in August 2022 to accomplish the following objectives:

- Determine if the Site monitoring wells are tidally influenced.
- If tidally influenced, estimate tidal lag times for each monitoring well to determine when groundwater sampling should be performed relative to low tide.
- Define net groundwater flow conditions

The tidal study was conducted from August 5-16, 2022 during a time period including negative and non-negative low tides, allowing for observation across a full tidal response. Six monitoring wells and the nearest NOAA-monitored tidal station (ID# 94469880 in Friday Harbor, WA) were used to measure tidal variations. The wells were selected based on distance from the shoreline (within 100 feet of surface water) and to provide coverage from east to west through the Site.

Calculated tidal efficiencies (i.e., magnitude of the tidal fluctuation of groundwater at a monitoring well expressed as a percentage of the tidal fluctuation in the adjacent water body) ranged from 2 percent at well MW-3 (within the SRWA), to 17 percent at MW-7 (near top of bank within the BLWA). While measured tidal efficiencies were relatively low for all wells, the wells near the top of bank within the BLWA (MW-7, -8 and -9) exhibited the most significant tidal influence (efficiencies ranging 8 to 17 percent). These wells also exhibited the greatest specific conductivity showing influence of marine

Page | 3-5 September 2025

water. The net groundwater flow direction was determined to be to the north towards the Salish Sea (Figure 3-1). The methods and results of the tidal study are provided in Appendix C.

3.3.4 Data Quality Review

A data quality assurance review was completed for the analyses performed for the 2022 to 2024 investigation activities. The following sections summarize the conclusions of this review.

Sample custody, preservation, holding times, and completeness

The samples were properly preserved and sample custody was maintained from sample collection to receipt at the laboratory. Samples were analyzed within the required method holding times with the following exceptions:

- Soil sample SRWA-11 0-2.5' for EPA Method 8270E.
- Groundwater sample MW8-0623 for EPA Method 8270E-SIM

Laboratory reports were complete and contained results for the samples and analyses requested on the chain-of-custody forms.

Laboratory reporting limits

Laboratory reporting limits were acceptable for the respective laboratory methods.

Method blank analysis

Method blanks were analyzed at the required frequency. In general method blanks did not contain levels of target analytes above the laboratory reporting limits. The following samples were flagged with "B" qualifier for detection of target analyte in associated method blanks:

- Groundwater sample from July 2022 (BLWA-11) for benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno[1,2,3-cd]pyrene
- Groundwater sample from June 2023 (DUP02-0623) for Dibutyltin ion
- Groundwater samples from June 2023 (MW8-0623, MW4-0623, DUP02-0623, MW9-0623) for 234678-HPCDD and OCDD
- Groundwater sample from September 2022 (MW8) for Phenanthrene
- Groundwater samples from April 2023 (MW1-0423, MW2-0423, MW3-0423, MW4-0423, MW5-0423, MW6-0423, MW7-0423, MW8-0423, MW9-0423, DUP01-0423, DUP03-0423) for OCDD

Matrix spike analysis

Matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD) were within the control limits specified by the laboratory, or method. Matrix spike and matrix spike duplicates failed for analyses of several metals and pesticides, however the laboratory control samples passed acceptance criteria, or analytes were not detected and therefore resulting data are acceptable.

Laboratory duplicate analysis

The relative percent difference (RPD) values or difference values for laboratory duplicate samples met the control limits specified by the laboratory or method.

Field duplicate analysis

Field duplicates were collected at the frequency specified in the QAPP (Leon and CRETE 2022). The RPD for field duplicates were less than 50 percent for all analyses.

Laboratory Data Validation

The laboratory QA/QC data and assigned qualifiers were within acceptable ranges of tolerance, and the analytical data are acceptable for use as described by the data quality objectives.

Page | 3-6 September 2025

4. CONCEPTUAL SITE MODEL

This section presents the CSM for the Site which summarizes the physical site characteristics, contaminant sources, fate and transport of contamination, exposure pathways, and potential receptors.

4.1 Habitat Features

The Site is located within Shipyard Cove, a relatively shallow embayment that faces northward on the eastern side of San Juan Island, immediately southeast of downtown Friday Harbor. Topography of the upland area is shown in Figure 2-1b. The shoreline along the active boatyard area is characterized by either vertical structures or steep berms. The eastern side of the property, especially waterward of the former boat building structure, is less developed. The shoreline is composed of fill and debris (e.g., concrete rubble, metal, plastic, wire, treated and untreated wood) with contaminated soil known to exist in the active boatyard areas.

The undeveloped portions of the Site are dominated by open grassy areas; other native vegetation is limited. Native trees and shrubs (a mix of evergreen and deciduous species) are found on the hillside east of the boatyard, near Turn Point Road, and in limited patches along the shoreline. Native plants present include Douglas fir (Pseudotsuga menziesii) and Pacific madrone (Arbutus menziesii), as well as native rose (rosa sp.) and ocean spray (Holodiscus discolor).

4.2 Geology and Hydrogeology

Surface soil in the central portion of the Site (inland of the BLWA and SRWA) generally consists of silty sand or sand-silt mixtures that extend approximately 10 to 15 ft bgs. Closer to the shoreline, soils are coarser, consisting predominantly of sand and gravel. Surface soil in the eastern portion of the Site consists of a shallow layer of sand and gravel (up to approximately 3 ft bgs) that is underlain by silty sand and sand-silt mixtures. Based on boring logs, small areas of silt and clay have also been identified. Geologic cross sections are presented in Figures 4-1 through 4-6.

Evidence of fill materials was observed during the site investigations. In most areas of the Site where fill was observed, it was difficult to differentiate the fill from the native material, suggesting that most of the fill was derived locally, potentially from on-site grading from the southern portion of the site. Significant fill was present in the BLWA where The maximum fill thickness was about 4 to 6 feet near the shoreline. Fill appears to be limited in the SRWA where fill is limited to the upper foot. In the FDA, fill is up to 5 feet thick and contains significant debris but with a limited lateral extent as observed during subsurface investigations and review of the 1941 aerial photograph.

The shallow water bearing zone is present in a gravelly sand unit that consists of both native and fill materials. Groundwater is tidally influenced and the prevailing flow of groundwater is to the north towards the Salish Sea. Based on the results of the tidal study, the average hydraulic gradient is low (0.005 based on MW-2/MW-8) and the average elevation of shallow groundwater across the Site is approximately 6 ft MLLW (Figure 2-3). Slight mounding of groundwater was observed behind the bulkhead at the east side of the BLWA.

4.3 Potential Sources

There are no current releases or ongoing sources of contamination at the Site. Marina operations, including boat maintenance, continue to occur at the Site under best management practices to control potential releases to the environment. The following sections describe physical conditions and potential historical sources for upland subareas.

Page | 4-1 August 2025

4.3.1 Ship Rail Work Area

The SRWA includes rail lines east of the pier and the old boat building structure. The SRWA has a lower elevation than the surrounding upland, including high intertidal elevations with abundant pickleweed. This rail lines were used to transport boats during ship building and maintenance which is the likely historical source of contamination in the SRWA. Potential sources of metals include paint stripping operations, and possibly impacted fill used to develop the SRWA. TPH-DRO and cPAH may be associated with historical boat maintenance and drainage of boat bilge water (Shannon & Wilson 2019). Due to topography (the SRWA is at a generally lower elevation), it may have also collected stormwater runoff, soil and debris eroded from adjacent upland areas. There are currently no active operations within the SWRA.

4.3.2 Boat Lift Work Area

The BLWA is an approximately 100-foot-wide area along the shoreline, immediately west of the SRWA and extending west to the western property line. The adjacent shoreline, from west to east, includes a small fill area that projects into the water, a bermed area with an outfall, the boat pullout, an old overwater deck, and the marina pier. Potential sources of metals, TPH-DRO, and cPAHs in this area are similar to those of the SRWA and include paint stripping, paint applications, draining boat bilges, use of treated wood, and possibly impacted fill materials (Shannon and Wilson 2019). Boat maintenance operations are currently conducted in these areas, with best management practices to minimize the potential for contaminant releases.

4.3.3 Former Dumping Area

The FDA is located to the east of the SRWA along the shoreline. This shoreline area was formerly used for dumping of miscellaneous boat parts or debris. Debris observed during investigation activities has included tires, plastic, metal parts, two engine blocks, hoses, cables, a large battery, and other metal and wood debris. No sheen or staining has been noted in the FDA. A former cabin was located about 50 feet east of the FDA and a former oil shed was located adjacent to the FDA. The former owner indicated that the shed contained 300-gallon gasoline and diesel ASTs and a 300-gallon waste oil tank. During the Phase 1 ESA a waste oil AST along with several smaller diesel, gasoline, and waste oil drums were observed. No evidence of spills or overtopping were noted in or around the building and concrete flooring was present throughout the shed for containment in the event of a spill (Whatcom 2017).

To the south and southeast of the FDA is a large grassy area that formerly included a residence. A water well may be present near the southern edge of the grassy area but no well information was provided in previous documents. A UST was also formerly located near the western edge of the grassy area. The former UST was used to fuel equipment and was removed in the 1980's. The former owner indicated that the former UST contained gasoline. Soil and groundwater sampling in this area suggest that no contamination is present.

4.3.4 Former Above Ground Storage Tank

A former AST may have been located south of the central former shop building. There is no documentation regarding the size or contents of the former AST. Soil sampling results suggest that the AST may have contained a heavier fuel such as heating oil.

4.3.5 Shop Floor Drain

The shop building was described as a machine shop building in previous Site documents, indicating potential presence of lubricants and cleaning solvents. A 3-inch diameter floor drain is present near the northwest corner of the building. The drain was used to dispose of liquids. Prior investigations indicate the drain appeared to flow to a holding tank or drum underground. The former owner noted that the

Page | 4-2 August 2025

tank or drum may have been perforated or may have contained a drain line for the contents to drain, but the destination of the contents was unclear. The tank or drum was not removed as part of previous investigations. A sample of material collected from the drain contained TPH-Dx and metals (arsenic, cadmium, chromium, copper, lead, mercury, zinc) at concentrations exceeding the PCULs. Tetrachloroethene was detected at a concentration below the most stringent PCUL (Table 3-10).

4.3.6 Former Orcas Power and Light Company Pad

The former OPALCO storage area is located in the western portion. The pad is the building foundation of an OPALCO building that burnt down, possibly contributing to cPAHs. Shipyard activities, paint-stripping, and stored creosote-treated wood are possible sources of contamination.

4.4 Transport Pathways

The following sections discuss potential release and transport mechanisms of these contaminants.

4.4.1 Soil

Infiltration of stormwater may leach contaminants from the vadose zone (primarily the upper 1 to 2 feet of soil) to groundwater. In addition, exposed surface soil near the shoreline may release contamination to marine sediment and surface water through erosion. During the regional dry season, exposed soil may be released to marine sediment and surface water as dust.

4.4.1 Groundwater

The hydraulic gradient of groundwater is toward surface water (Shipyard Cove). Impacted groundwater may discharge to the Cove, potentially impacting marine sediment and surface water.

4.5 Potential Receptors

Ecological and human receptors could be directly or indirectly exposed to contaminants in soil, sediment, and surface water as follows:

- Ecological See Section 5.1.3 for Terrestrial Ecological Evaluation Exemption
- Ecological Organisms using the Site for habitat, including benthic invertebrates, fish, birds, and mammals
 - o Direct exposure Contact with or ingestion of pore water, surface water, or sediment
 - o Indirect exposure Consumption of benthic invertebrates or fish
- Human People using Site for recreation or food, including fishermen (tribal and recreational)
 and kayakers
 - Direct exposure Incidental ingestion or dermal contact with sediment, soil, or surface water
 - o Indirect exposure Consumption of seafood
- Human Workers performing Site improvements
 - Direct contact with or ingestion of soil Direct contact (incidental ingestion and dermal contact) could occur in areas where soil is exposed, such as on the bank, or where soil could become exposed during construction.
 - Direct contact with or ingestion of groundwater Direct contact (incidental ingestion and dermal contact) could occur in areas where groundwater becomes exposed during construction.

These receptors and exposure pathways are evaluated in Section 5.1.

Page | 4-3 August 2025

5. PRELIMINARY CLEANUP STANDARDS

This section identifies exposure pathways applicable to the Site upland and preliminary cleanup levels (PCULs) for upland soil and groundwater.

5.1 Upland Soil Exposure Pathways

5.1.1 Human Health

Boat owners, trespassers, and other public users of the property may be exposed to surface soil through incidental contact or dust. Boatyard workers may be exposed to surface soil through incidental contact or dust. Site construction workers may be exposed to soil and, groundwater during earthwork activities, such as utility installation or cleanup action construction, due to incidental contact or dust.

Exposures for each of these scenarios are anticipated to be incidental but the exposure pathway is complete. Personal protective equipment used by boatyard workers may help mitigate exposure. Similarly, construction workers will use personal protective equipment during earthwork to protect from the types and concentrations of contaminants that are present. Preliminary cleanup levels developed for the Site (Table 4-1) address these exposure pathways.

5.1.2 Ecological Health

The Site consists of riparian and intertidal habitat that bird species are expected to utilize. Bird species would be exposed to chemicals through incidental ingestion and direct contact with Site soil while consuming prey. Similarly, semi-aquatic terrestrial mammals like raccoon, muskrat, and river otter may be present on Site or in the vicinity are also expected to be exposed to chemicals through incidental ingestion of and direct contact with Site soil. These exposure pathways are expected to be incidental due to the low habitat quality at and adjacent to the Site. No bird or mammal surveys have been performed at the Site.

5.1.2.1 Terrestrial Ecological Evaluation

MTCA includes procedures for performing a Terrestrial Ecological Evaluation (TEE) to characterize existing or potential threats to terrestrial plants or animals exposed to hazardous substances in soil. The Site does not meet any of the exclusions from conducting a TEE. However, the Site also does not meet the criteria for performing a site-specific TEE. Therefore, a simplified TEE was performed in accordance with the procedures in WAC 173-340-7492.

The site is zoned rural industrial and therefore only potential exposures to wildlife (e.g., small mammals, birds) need to be considered [WAC 173-340-7492(2)(b)]. The simplified TEE consists of three steps: 1) exposure analysis, 2) pathways analysis, and 3) contaminants analysis. The exposure and pathways analyses concluded there are complete pathways by which soil biota, plants or wildlife may be exposed to soil contamination. Therefore, a contaminant analysis was performed in which soil chemistry data was compared to the concentrations listed in MTCA Table 749-2 for priority contaminants of ecological concern. For the purposes of the TEE, only soil collected within six feet of the surface was considered.

All applicable soil chemistry data were first evaluated to determine whether the maximum detected concentrations of any hazardous substance exceeded the values for an industrial or commercial site listed in MTCA Table 749-2. Arsenic, copper, dioxin toxicity equivalent (TEQ), furan TEQ, lead, mercury, and zinc have maximum concentrations that exceed the TEE criteria and therefore were identified as chemicals of potential ecological concern. Many detected chemicals, particularly polycyclic aromatic hydrocarbons (PAHs) do not have values in Table 749-2. However, the maximum concentration of the one PAH with a value in that table, benzo(a)pyrene, was less than 1% of the screening value and it is unlikely that any of the other PAHs represent an ecological concern for terrestrial wildlife at this site.

Page | 5-4 August 2025

The chemicals identified as chemicals of potential ecological concern were further evaluated using statistical techniques. Upper confidence limits (UCLs) on the mean concentrations were calculated using ProUCL (v5.1) software. Only five samples were analyzed for dioxins and furans, which is not enough data to calculate reliable UCLs.

The 95% UCLs for copper and lead were above the values in MTCA Table 749-2, but the UCLs for arsenic, mercury, and zinc were not. Additional evaluation of individual results was conducted in consideration of MTCA requirements for compliance monitoring. None of the arsenic and mercury concentrations exceeded the Table 749-2 values by more than two times and less than 10% of the results exceeded the Table 749-2 values. Therefore, arsenic and mercury are not considered to be chemicals of ecological concern. Several zinc results exceeded the Table 749-2 value by more than two times, so zinc is still considered to be a chemical of ecological concern, along with copper, lead, and dioxins/furans.

Based on the results of this simplified TEE, the numeric criteria from MTCA Table 749-2 have been incorporated into the PCULs for this Site (Table 5-1) and were used to evaluate soil contaminant concentrations within the top six feet of soil at the Site (Section 6). The simplified TEE is included as Appendix D.

5.2 Highest Beneficial Use of Site Groundwater

The WAC 173-340-720(1)(a) states that, "Groundwater cleanup levels shall be based on estimates of the highest beneficial use and the reasonable maximum exposure expected to occur under both current and potential future Site use conditions." It is proposed that groundwater within the Site is classified as non-potable in accordance with WAC 173-340-720(2), as follows:

- Neither the Site nor groundwater in its vicinity is a current source of drinking water.
- Under WAC 173-340-720(2)(b), neither the Site nor groundwater in its vicinity is a potential
 future source of drinking water because groundwater contains natural background levels of
 specific conductivity above the state and local secondary maximum contaminant level of 0.7
 milliSiemens/centimeter (mS/cm) (WAC 246-290-310(3)(a) and San Juan County code 8.06.260.
- Site groundwater will not migrate into groundwater that is a current or potential source of drinking water
- A domestic supply well would not be placed in the vicinity of the Site (WAC-173-340-720(2)(d)). State and local codes prohibit the construction of drinking water wells in the vicinity of the Site via WAC 246-290-130(1) which requires drinking water supplies to come from the highest quality source (which at the Site is the municipal water supply system) and via WAC 290-135(2)(b) which specifies a minimum 100-foot drinking water well setback from surface water, roads, utilities, and buildings.

In summary, groundwater is not currently used as a drinking water source and is not suitable for future use as a potential source because of existing saline conditions. In addition, pumping of groundwater may cause further saline water intrusion into the groundwater zones beneath the Site. Based on this evaluation, the highest beneficial use of groundwater is protection of surface water.

5.3 Upland Soil and Groundwater PCULs

Based on the consideration of exposure pathways, soil PCULs include the following criteria obtained from the January 2025 version of the MTCA CLARC Tables:

- MTCA Method B Direct Contact values cancer and non-cancer endpoints
- Criteria protective of vadose zone soil leaching to marine surface water and sediment via groundwater

Page | 5-5 August 2025

 Criteria for simplified TEEs for industrial/commercial land use for priority contaminants of ecological concern

In addition, chemical concentrations in surface soil were compared to MTCA SMS Sediment Cleanup Objective (SCO) values to evaluate transport of contaminated surface soil to marine sediment via erosion. It is noted that TEE criteria are generally less stringent than the other criteria that have been identified for this Site. The selected PCUL for each chemical analyte (Table 5-1) represents the most stringent value, adjusted as needed based on natural background concentrations and/or practical quantitation limits (PQLs).

Based on the proposed classification of groundwater as non-potable (Section 4.1), the following PCULs are proposed for groundwater for protection of surface water:

- State and federal criteria for protection of human health (marine surface water)
- State and federal criteria for protection of aquatic life (marine surface water)

Groundwater PCULs are summarized on Table 5-2.

5.3 Points of Compliance

Points of compliance for upland soil and upland groundwater are identified to inform this RI and will be used to evaluate remedial alternatives in the FS. In this RI, the soil point of compliance for protection of groundwater is throughout the Site. The protection of direct contact exposure is throughout the Site to a depth of 15 feet bgs. The conditional point of compliance in groundwater is at the point of discharge to surface water.

Page | 5-6 August 2025

6. NATURE AND EXTENT OF CONTAMINATION

This section describes the nature and extent of contamination in upland soil and groundwater and the development of Site Indicator Hazardous Substances (IHSs).

6.1 Soil and Groundwater Contaminants of Interest

Indicator hazardous substances (IHSs) are defined by WAC 173-340-200 as a subset of hazardous substances present during any phase of remedial action for the purpose of characterizing the site or establishing cleanup requirements for that site. For the purposes of the RI/FS for this Site, the IHSs are the contaminants for which the effectiveness of remedial alternatives will be evaluated in the FS. For this RI, the first step in developing IHSs was to first develop a list of Constituents of Interest (COIs). COIs were selected based on having at least one detected value exceeding the most stringent PCUL.

The identified soil COIs (Table 6-1) are:

- cPAH Total Toxic Equivalent Concentration (TEQ)
- Dioxins/Furans
- Metals
 - o Arsenic
 - o Cadmium
 - o Chromium
 - o Copper
 - o Lead
 - o Mercury
 - o Zinc
- Pesticides
 - Dichlorodiphenyldichloroethane (DDD)
 - Dichlorodiphenyltrichloroethane (DDT)
- TPH-Dx
- Total PCB Aroclors
- Tributyltin (TBT)

Groundwater COIs (Table 6-2) are:

- cPAH Total Toxic Equivalent Concentration (TEQ)
- Dioxins/Furans
- Metals
 - o Arsenic
 - o Cadmium
 - o Chromium
 - o Copper
 - o Lead
 - Mercury
 - o Nickel
 - o Zinc
- Tributyltin (TBT)

Page | 6-1 August 2025

6.2 Indicator Hazardous Substances

IHSs in the upland area were determined based on frequency and magnitude of PCUL exceedances of COIs in upland soil and groundwater. Tables 3-2 through 3-6 provide a summary of Site upland soil and groundwater COIs, including the following parameters for each detected constituent by media:

- Number of sampled locations and number of samples
- Number of detections
- Detection frequency (number of detections / total number of samples)
- Maximum detected concentration
- Frequency of exceedance (number of exceedances / total number of samples)
- Maximum magnitude of exceedance (maximum detected concentration / screening level)

In accordance with WAC 173-340-703(2), the following approach was considered in this RI to guide selection of IHSs:

- (2) **Approach**. If the department considers this approach appropriate for a particular site, the factors evaluated when eliminating individual hazardous substances from further consideration shall include:
 - (a) The toxicological characteristics of the hazardous substance that influence its ability to adversely affect human health or the environment relative to the concentration of the hazardous substance at the site, including consideration of essential nutrient requirements;
 - (b) The chemical and physical characteristics of the hazardous substance which govern its tendency to persist in the environment;
 - (c) The chemical and physical characteristics of the hazardous substance which govern its tendency to move into and through environmental media;
 - (d) The natural background concentrations of the hazardous substance;
 - (e) The thoroughness of testing for the hazardous substance at the site;
 - (f) The frequency that the hazardous substance has been detected at the site; and
 - (g) Degradation by-products of the hazardous substance.

6.2.1 Metals

Extensive soil and groundwater sampling and analysis for metals has been performed. Copper is the most prevalent metal COI in soil and groundwater. Copper exceeds the PCUL for the protection of marine surface water (adjusted to background concentration of 36 milligrams per kilogram [mg/kg]) in at 39 locations, with exceedances mostly focused within the BLWA and SRWA. At five of these locations, surface soil (0 to 1 ft bgs) has concentrations of copper exceeding MTCA Method B criteria for protection of human health (3,200 mg/kg) with concentrations ranging 3,500 to 8,800 mg/kg. Copper also exceeds TEE criteria for industrial Sites (220 mg/kg) in surface soil at 12 of these locations.

Arsenic, mercury, and zinc show a similar pattern with soil and groundwater impacts (predominantly exceedances of the PCULs for protection of marine surface water) concentrated in surface soil within the BLWA and SRWA. The following summarizes selection of these metals as IHSs:

- Arsenic exceedances are co-located with copper except for two samples: SRWA-4 at 3.5' and MW-4 at 11'. Therefore, Arsenic is only an IHS at locations SRWA-4 and MW-4.
- Mercury exceedances are co-located with copper except one sample (SRWA-13 at 3-5').
 Therefore, mercury is an IHS only at location SRWA-13.
- Zinc exceedances are co-located with copper exceedances except for three samples (FDA-3 at 2.5', TP-5, and TP-6). Therefore, zinc is an IHS only at locations FDA-3, TP-5, and TP-6.

Page | 6-2 August 2025

Nickel exhibits a similar pattern to arsenic, mercury and zinc in Site groundwater (PCUL exceedances focused in/near the BLWA and SRWA), however there are no exceedances in available soil data. Nickel has not been retained as an IHS.

Cadmium exceeds the soil PCUL for protection of marine surface water (1.1 mg/kg) at eight locations within the BLWA and SRWA. There are also three additional exceedances in surface soil near the shop floor drain and OPALCO Pad. Chromium exceeds TEE criteria (135 mg/kg) for chromium at just one location in surface soil near the shop floor drain; there are no exceedances of the other PCULs for chromium. The exceedance frequency of cadmium, and chromium in Site groundwater are much lower than other metals (exceedances in 5 percent or less of the total number of samples). Also, cadmium and chromium are co-located with exceedances of copper and, therefore, have not been retained as IHSs.

Lead exceeds the PCUL based on industrial site TEE criteria (220 mg/kg) at 16 locations, and leaching pathway criteria for protection of surface water at just 3 locations. While lead is co-located with copper, exceedances are driven by the TEE and human health criteria instead of the marine surface water pathway. Therefore, lead has been retained as an IHS.

Available soil and groundwater data for all metals is summarized in Tables 3-3 and 3-10, respectively. The distribution in soil and groundwater of arsenic, copper, mercury, and zinc is illustrated in Figures 6-1 through 6-5.

6.2.2 Petroleum

TPH-G has been analyzed in 18 soil samples, but has only been detected at 1 location (BLWA-10) at a concentration (7 mg/kg) below the most stringent PCUL (100 mg/kg). Benzene, toluene, ethylbenzene, and xylenes (BTEX) have not been detected at the Site. TPH-Dx (sum of diesel and oil range TPH) has been analyzed in 81 samples. TPH-Dx was detected at concentrations exceeding the most stringent PCUL (2,000 mg/kg) in soil at three locations and only in soil up to 5 ft bgs (Table 3-3). TPH-Dx also exceeds the PCUL in one sample that was collected directly from the shop floor drain (SFD-3); these data reflect concentrations in drain solids, not soil. TPH-Dx has not been detected at concentrations above applicable PCULs in Site groundwater (Table 3-10). TPH-Dx has been retained as an IHS. The distribution of TPH-Dx in soil and groundwater is illustrated in Figure 6-6.

6.1.3 Polychlorinated Biphenyls

PCB Aroclor data have been collected at 11 locations within the BLWA and SRWA. Soil at seven of these locations, at depths up to 5 ft bgs, exceed the PCUL based on MTCA Method B for protection of human health (Table 3-4). There were no detections of PCBs in groundwater (Table 3-4). While PCBs in surface soil are co-located with metals exceeding both direct-contact and leaching pathway PCULs, because they are an organic compound and may require a different remedial technology than metals, PCBs have been retained as IHSs for the RI/FS.

6.1.4 Dioxins/Furans

Dioxins/furans data have been collected at six locations within the BLWA and SRWA. Dioxin and furan concentrations [evaluated as total 2,3,7,8-TCDD equivalence (TEQ)] exceeded direct-contact and leaching pathway PCULs (both adjusted to the PQL; Table 3-4). Dioxins/furans were also detected at concentrations above the PCUL (adjusted to the PQL) in Site groundwater (Table 3-10). Similar to metals, the impacts are focused in the BLWA and SRWA. Dioxin/furans have been retained as an IHS.

Page | 6-3 August 2025

6.1.5 Polycyclic Aromatic Hydrocarbons

Extensive soil sampling and analysis for PAHs has been performed. CPAH TEQ exceeds applicable PCULs in both soil and groundwater (Tables 3-5 and 3-10). CPAH TEQ exceedances are widespread in soil up to 5 ft bgs, with vadose zone impacts focused in the BLWA and SRWA (Table 3-5). CPAHs have not been detected at concentrations above the PCULs in groundwater (Table 3-10). CPAHs have been retained as Site IHS. The individual cPAH benzo(a)pyrene has not been retained. The distribution of cPAHs in soil and groundwater is illustrated in Figure 6-7.

6.1.6 Pesticides

Soil at eight locations within the BLWA and SRWA have been analyzed for full suite of pesticides. DDD and DDT were detected above PCULs for protection of marine surface water at only two locations (Table 3-6). Neither compound was detected in groundwater. DDT has been retained as a Site IHS. Cleanup alternatives for DDT will address DDD, therefore DDD has not been retained.

6.1.6 Tributyltin

Soil at seven locations within the BLWA and SRWA have also been analyzed for organotins. Tributyltin (TBT) has been detected above the soil PCUL for the protection of marine surface water (adjusted to the PQL) at six of these locations (Table 3-4). TBT has also been detected in groundwater in the BLWA at concentrations exceeding the PCUL. TBT is commonly associated with boat maintenance (e.g., antifouling paint) and therefore has been retained as a Site IHS. The distribution in soil and groundwater is illustrated in Figure 6-8.

6.1.7 Volatile Organic Compounds

Soil at two locations was analyzed for volatile organic compounds. Sample Shop Floor Drain-3 (SFD-3) was collected directly from within the floor drain in the shop building. Tetrachloroethylene (PCE) was detected in SFD-3 at a concentration (0.017 mg/kg), lower than the most stringent PCUL for protection of marine surface water (0.029 mg/kg). Sample SRWA-3 was collected from the intertidal area within the SRWA. Six VOCs were detected in this sample (Table 3-7) at concentrations below the most stringent PCULs. VOCs are not retained as IHSs for this Site.

Page | 6-4 August 2025

7. REMEDIAL INVESTIGATION CONCLUSIONS

The Site has had over 100 years of industrial uses that contributed to legacy contamination. Historical shipyard activities represent the primary source of contamination, including the application and removal of antifouling paints, mechanical, and general maintenance work both over water and land, and treatment of wooden boats using pesticides. A former underground gasoline storage tank, a machine shop used for hazardous chemical storage, a small dump area, and a marine railway also represent historical sources.

Based on the investigation activities described in this report, the proposed IHSs for the Site are metals (i.e., arsenic, copper, mercury, nickel, zinc), TPH-Dx (soil only), and TBT. The IHSs will be used to develop and evaluate the effectiveness of remedial alternatives in the FS, however, the FS will also consider the extent of all COIs at the Site. Based on the results summarized in this RI, chemicals exceeding PCULs in upland soil and groundwater generally coincide with boat maintenance areas (i.e., BLWA, SRWA). In these areas, the highest concentrations contaminants are found within the top 1 foot of soil (Figures 6-1 through 6-7). Based on this, stormwater infiltration and leaching of contaminants (particularly metals) from vadose zone soil (primarily the upper 1 foot of soil) to groundwater is a key transport pathway to evaluate in the FS. To further illustrate this, Table 7-1 shows the observed distribution of copper and zinc in soil and groundwater in representative locations in the BLWA. TPH-Dx has only been observed at concentrations exceeding the PCUL in vadose zone soil. However, it has not been detected in groundwater and its presence in soil is isolated to a couple locations in the BLWA and SRWA where draining of bilge water and other boat maintenance may have occurred and several locations close to the shop building where storage of lubricants and other materials may have occurred.

7.1 Data Sufficiency

The data and information presented in this RI Report was reviewed to assess sufficiency of the data for completing the next step in the Site cleanup process: the FS. Figures 7-1 and 7-2 have been prepared to provide a combined illustration of lateral and vertical extents of PCUL exceedances for the two most prevalent IHSs, copper and zinc. In addition, Figure 7-3 was prepared to provide a combined illustration of lateral and vertical PCUL exceedances for all site IHSs. Based on these figures, the lateral extent of contamination has been well characterized. In some locations, the vertical extent of IHSs exceeding PCULs has not been fully characterized. However, these figures do show that the majority of exceedances are within surface soil (upper 1-foot bgs) and clearly show a decline in concentration with respect to depth. The existing data and conceptual site model provide sufficient understanding of contaminated media and exposure pathways of concern and, importantly, are sufficient to complete the following key FS tasks:

- 1. Delineate areas requiring remediation
- 2. Identify remedial technologies applicable to Site COIs and physical conditions
- 3. Assemble an appropriate range of remedial alternatives
- 4. Develop feasibility level cost estimates for the disproportionate cost analysis

Additional data is expected to be required to support remedial design including chemistry data that will provide a more detailed understanding of the vertical extent of contamination, where needed.

Page | 7-1 August 2025

8. REFERENCES

- CRETE Consulting, February 2021. Draft Summary of IOSA/MTC Test Pitting and Data, Port of Friday Harbor Jensen's Marina.
- CRETE Consulting, December 23, 2004. Re: Port of Friday Harbor Shipyard Cove Marina Property, Port of Friday Harbor, Shipyard Cove.
- Ecology 2021. Sediment Cleanup User's Manual (SCUM), Third Revision. Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Publication No. 12-09-057.
- Ecology 2024. Implementation Memorandum No. 25: Identifying Likely Vulnerable Population and Overburden Communities under the Cleanup Regulations. Washington State Department of Ecology. Publication No. 24-09-044. January 2024.
- Essency Environmental, LLC, November 2020. Critical Areas Report, Jensen Marine Trades Center Port of Friday Harbor. Friday Harbor, Washington.
- Fairbanks Environmental Services, Inc., June 2020. Port of Friday Harbor Albert Jensen and Sons Boatyard and marina Eelgrass and Macroalgae Survey. Friday Harbor, Washington.
- Leon Environmental, LLC (L-E), August 2019. Intertidal and Subtidal Conceptual Site Model and Data Gaps Report, Jenson and Sons Boatyard and Marina. Friday Harbor, Washington.
- L-E and Reid Middleton, Inc. (RM), April 2020. Port of Friday Harbor, Jenson's / Shipyard Cove Master Plan. Friday Harbor, Washington.
- L-E and CRETE Consulting, July 2022. Port of Friday Harbor Albert Jensen and Sons Inc. Boatyard and Marina, Remedial Investigation Work Plan, Friday Harbor, Washington.
- Marine Surveys & Assessments, July 2021 (Amended November 2021). Jensen Marina Habitat Survey Report. Friday Harbor, Washington.
- Port of Friday Harbor (PoFH), April 2018. Port of Friday Harbor Albert Jensen & Son Boatyard & Marina Master Plan. Friday Harbor, Washington.
- Shannon and Wilson, August 2019. Draft Conceptual Site Model and Data Gaps Report, Former Jenson Shipyard, Friday Harbor, Washington.
- Whatcom Environmental Services, November 21, 2017. Phase I Environmental Site Assessment, Jensen's Shipyard, 1293 Turn Point Road, Friday Harbor, Washington.
- Whatcom Environmental Services, April 2, 2018. Draft Initial Investigation Report, Jensen's Shipyard, 1293 Turn Point Road, Friday Harbor, Washington.
- Whatcom Environmental Services, October 15, 2018. Draft Remedial Investigation Report, Jensen's Shipyard and Marina, 1293 Turn Point Road, Friday Harbor, Washington.

Page | 8-1 August 2025

Tables

This page intentionally left blank.

Table 3-1. Monitoring Well Construction Details Jensen's Shipyard and Marina Port of Friday Harbor

Well ID	Construction Date	Well Tag ID	Well Diameter (inches)	Туре	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Total Well Depth (ft bgs)	Elevation	Top of PVC Elevation (ft MLLW)	Northing (NAD 83)	Easting (NAD 83)
MW-1	7/30/2018	BKF-620	2		4.5	14.5	15	14.3	13.9	563866.164	1115539.121
MW-2	7/30/2018	BKF-621	2		4.5	14.5	15	11.8	11.3	563927.765	115534.623
MW-3	8/1/2018	BKF-625	2		3	12.5	13	10.5	10.2	563889.166	1115676.466
MW-4	7/21/2018	BKF-622	2	Flush	4.5	14.5	15	13.8	13.4	563970.725	1115384.588
MW-5	8/1/2018	BKF-624	2	Mount	4.5	14.5	15	16.7	16.4	563912.345	1115827.778
MW-6	7/31/2018	BKF-623	2	WOUTE	29	39	39.5	34.8	34.2	563762.497	1115680.988
MW-7	7/28/2022	BPK-577	2		3	13	15	11.1	10.8	564026.750	1115475.080
MW-8	7/28/2022	BPK-578	2		2	12	15	11.6	11.2	563989.710	1115557.750
MW-9	7/28/2022	BPK-578	2		3	13	15	11.5	11.3	563977.800	1115646.030

Notes:

bgs - feet below ground surface

ft - feet

MLLW = feet mean low low water

Table 3-2. Monitoring Well Gauging Data Jensen's Shipyard and Marina

Well ID	M	W-1	M۱	N-2	MV	V-3 ¹	M\	N-4	M	W-5	M	W-6	MV	N-7	M	N-8	M	W-9
Top of PVC (ft MLLW)	13	3.9	11	1.3	10	0.2	13	3.4	1	6.4	3	4.2	10).8	1:	1.2	1:	1.5
Total Well Depth (ft bgs)	1	15	1	.5	1	13	1	.5	1	15	4	10	1	.3	1	13	1	12
Dates of Sampling Event	Depth to Water (ft BTOC)	Elevation (ft MLLW)																
9/6/2022-9/8/2022	8.2	5.7	5.9	5.4	4.8	5.4	8.4	5.0	13.1	3.3	28.6	5.6	6.4	4.4	6.0	5.2	5.8	5.7
12/6/2022-12/8/2022	7.9	6.0	5.7	5.6	4.0	6.2	8.1	5.3	11.6	4.8	28.4	5.8	5.9	4.9	5.5	5.7	5.5	6.0
4/11/2023-4/12/2023	7.9	6.0	5.5	5.8	4.2	6.0	8.0	5.4	11.2	5.2	28.1	6.1	5.9	4.9	5.7	5.5	5.5	6.0
6/5/2023-6/7/2023	8.1	5.8	5.8	5.5	4.6	5.6	8.3	5.1	12.2	4.2	28.3	5.9	6.0	4.8	5.7	5.5	5.1	6.4
9/25/2023-9/27/2023	8.1	5.8	5.7	5.6	4.7	5.5	8.1	5.3	11.8	4.6	28.5	5.7	5.7	5.1	5.6	5.6	5.5	6.0
12/12/2023-12/14/2023	7.5	6.4	5.4	5.9	3.8	6.4	7.8	5.6	7.6	8.8	28.0	6.2	5.8	5.0	5.0	6.2	4.8	6.7
4/9/2024-4/11/2024	7.9	6.0	5.8	5.5			8.1	5.3	10.7	5.7	28.1	6.1	6.4	4.4	6.0	5.2	5.9	5.6
6/24/2024-6/26/2024	8.0	5.9	5.7	5.6			8.2	5.2	11.8	4.5	28.4	5.8	6.2	4.6	5.6	5.6	5.4	6.1

Notes:

bgs - below ground surface

BTOC - below top of casing

ft - feet

MLLW - mean lower low water

Note:

1. MW-3 was damaged prior to April 2024 quarterly monitoring event.

Table 3-3. Summary of Uplands Soil Data – Total Petroleum Hydrocarbons and Metals Jensen's Shipyard and Marina

			TP	Н					Metals	5			
			(mg/	'kg)					(mg/kg	;)			
Sample ID	Date												
		NWTPH-Gx	NWTPH-Dx	NWTPH-Dx	Total Dx (Diesel +	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
			Diesel Range	Oil Range	Oil)	7.1.50.110	caamam		обрре.	2000	···c·cu·,	· · · · · ·	Ziiie
Surface Rail Work Area (SRWA)													
SRWA-1 3-6in	1/24/2018	NA	180	1100	1,280	30	0.54	29	2,400	920.0	13	NA	840
SRWA-6 2-6in	8/1/2018	NA	120	640	760	16	0.64	36	220	1200.0	2.8	NA	1,100
SRWA-6 3ft SRWA-7 2-6in	8/1/2018 8/1/2018	NA NA	25 U 170	50 U	ND 860	5 9.1	0.21 U	20 25	920	11.0 160.0	0.02 U	NA NA	32 400
SRWA-7 3ft	8/1/2018	NA	40	230	270	4.3	0.38	19	63	110.0	0.1	NA	140
MW-3 2-6in MW-3 5.5ft	8/1/2018 8/1/2018	NA NA	25 U 25 U	280 50 U	280 ND	13 5.6	0.74 0.21 U	29 28	400 82	190.0 25.0	1.3 0.16	NA NA	310 110
SRWA-8 0-1'	7/26/2022	5 U	50 U	360	360	7.14	1 U	10.4	87.3	49.9	0.30	NA NA	79.1
SRWA-8 2-3'	7/26/2022	NA	NA	NA	NA	3.62	1 U	20.4	12.6	3.0	0.1 U	NA	20.3
SRWA-8 4-5' SRWA-9 2.5-5'	7/26/2022 7/26/2022	NA 5 U	NA 50 U	NA 250 U	NA ND	3.93 2.94	1 U	21.1 7.78	26.8 8.32	3.2 2.2	0.1 U	NA NA	36.1 18.6
SRWA-10 3-5'	7/28/2022	5 U		250 U	ND	6.30	1 U	12.1	34.1	16.1	0.1 U	NA	51.7
SRWA-10 5-7.5'	7/28/2022	NA	NA	NA	NA	1.71	1 U	12.2	14.3	2.7	0.1 U	NA	35.5
SRWA-11 0-2.5' SRWA-14 0-1'	7/26/2022 7/26/2022	NA 5 U	NA 50 U	NA 250 U	NA ND	3.24 2.91	1 U	16.8 5.13	69.3 59.1	75.0 115.0	0.15	NA NA	105 52.4
SRWA-14 1-2'	7/26/2022	5 U	50 U	250 U	ND	2.30	1 U	6.96	14.3	2.6	0.1 U	NA	28.7
SRWA-15 0-0.5' Boat Lift Work Area (BLWA)	7/26/2022	5 U	50 U	250 U	ND	1.80	1 U	7.68	12.5	35.1	0.1 U	NA	26.7
BLWA-1 0-3in	1/24/2018	NA	160	470	630	12	1.3	35	6,700	700.0	0.81	NA	950
BLWA-2 0-3in	1/24/2018	NA	170	300	470	7.1	0.94	20	6,100	350.0	0.39	NA	1,700
BLWA-3 2-6in BLWA-3 2ft	7/30/2018 7/30/2018	NA NA	25 U 25 U	50 U	ND ND	3.5	0.2 U	28 15	180 32	150.0 3.0	0.032 0.028	NA NA	99 29
BLWA-4 2-6in	7/30/2018	NA	25 U	81	81	5.2	0.43	21	680	150.0	0.17	NA	260
BLWA-4 5ft BLWA-5 2-6in	7/30/2018 7/30/2018	NA NA	25 U 91	50 U 180	ND 271	3.9 10	0.19 U 0.81	17 29	86 1,100	540.0 270.0	0.18	NA NA	110 390
BLWA-5 2-6in BLWA-5 2ft	7/30/2018	NA NA	25 U	50 U	ND	3.1	0.81 0.19 U	15	28	3.2	0.36	NA NA	390
BLWA-6 2-6in	7/30/2018	NA	95	260	355	9.7	1.2	31	9,300	760.0	1.1	NA	1,400
BLWA-6 2ft BLWA-6 5ft	7/30/2018 7/30/2018	NA NA	350 1,400	710 940	1,060 2,340	150 3.7	2.6 0.19 U	78 18	3,500 84	3400.0 560.0	0.31	NA NA	3,800 72
BLWA-6 10 ft	7/30/2018	NA NA	25 U	50 U	ND	4.6	0.19 U	11	20	1.9	0.02 U	NA	47
BLWA-7 2-6in BLWA-7 2ft	7/30/2018 7/30/2018	NA NA	25 U 25 U	180 50 U	180 ND	13 3.7	1.8 0.19 U	30 21	2100 50	340.0 3.0	0.92 0.02 U	NA NA	630 39
BLWA-7 5ft	7/30/2018	NA NA	25 U	50 U	ND	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
BLWA-8 2-6in	7/30/2018	NA NA	25 U 25 U	56 290	56 290	5.1 6.2	0.48 0.23	19 23	1100 170	470.0 200.0	0.18 0.12	NA NA	350 110
BLWA-8 2ft BLWA-8 5ft	7/30/2018 7/30/2018	NA NA	25 U	98	98	NA	NA	NA	NA	200.0 NA	NA	NA NA	NA
BLWA-9 2-6in	7/30/2018	NA	61	160	221	5.7	0.96	25	2900	310.0	1.5	NA	690
BLWA-9 2ft BLWA-9 5ft	7/30/2018 7/30/2018	NA NA	25 U 25 U	50 U	ND ND	3.3 NA	0.19 U NA	18 NA	49 NA	11.0 NA	0.048 NA	NA NA	92 NA
MW-2 6in	7/30/2018	NA	32	160	192	7.2	2.3	27	2,100	230.0	0.64	NA	540
MW-2 7ft BLWA-10 0-1'	7/30/2018 7/28/2022	NA NA	25 U NA	50 U NA	ND NA	6.2 2.70	0.67	12 11.4	24 350	29.0 73.3	0.024 0.1 U	NA NA	37 92.7
BLWA-10 3-5'	7/28/2022	7.0	50 U	250 U	ND	5 U	1 U	16.3	54.2	98.1	0.1 U	NA	58.5
BLWA-10 5-6' BLWA-11 0-2.5'	7/28/2022 7/25/2022	NA 5 U	NA 50 U	NA 250 U	NA ND	3.41 2.83	1 U	8.90 10.8	112 125	94.1 42.3	0.1 U 0.16	NA NA	65.3 101
BLWA-11 0-2.5	7/25/2022	NA NA	NA NA	NA NA	NA	2.05	1 U	6.23	18.1	3.6	0.10 U	8.59	16.7
BLWA-11 5-7'	7/25/2022	NA	NA	NA	NA	3.99	1 U	15.8	150	181.0	NA	NA	67.9
BLWA-12 0-2' BLWA-12 3-5'	7/25/2022 7/25/2022	5 U NA	50 U NA	250 U NA	ND NA	6.84 3.66	1 U	17.0 14.4	629 82.0	147.0 31.4	0.80	NA NA	291 58.8
BLWA-12 5-7'	7/25/2022	NA	NA	NA	NA	2.32	1 U	15.1	36.8	8.7	0.1 U	10.3	25.2
BLWA-13 0-2' BLWA-13 3-5'	7/27/2022	5 U NA	50 U NA	250 U NA	ND NA	3.48 1.85	1 U	9.97 8.82	295 20.9	57.8 1.8	0.28 0.1 U	NA NA	140 17.9
MW-7 2-3'	7/27/2022	NA	NA	NA	NA	1.59	1 U	8.50	15.9	1.8	0.1 U	NA	18.0
MW-7 3-5' MW-7 10-11'	7/27/2022	5 U NA	NA U	250 U NA	ND NA	1.98 4.01	1 U	8.82 10.3	18.5 39.3	5.5 70.8	0.1 U	NA 13.7	54.1 61.9
MW-8 4-5'	7/28/2022	5 U	61 x	440	440	2.08	1 U	10.4	58.3	64.9	0.23	NA	156
MW-8 5-7' MW-9 0-2.5'	7/28/2022 7/27/2022	NA 5 U	NA 50 U	NA 250 U	NA ND	2.44 2.59	1 U	9.43 8.69	43.6 173	2.5 35.0	0.1 U	NA NA	31.6 83.4
MW-9 2.5-5'	7/27/2022	NA NA	NA NA	NA NA	NA	1.21	1 U	4.60	24.1	5.2	0.1 U	NA NA	32.4
MW-9 5-7'	7/27/2022	NA	NA	NA	NA	2.29	1 U	7.63	80.7	165.0	0.22	7.33	67.4
Former Dumping Area (FDA) FDA-1 2ft	1/24/2018	NA	25 U	50 U	ND	3.5	0.5 U	41	16	6.4	0.028	NA	30
FDA-2 0-6in	1/24/2018	NA	25 U	50 U	ND 430	8.7	0.5 U	21	79	52.0	0.02 U	NA NA	270
FDA-3 2.5ft MW-5 2-6in	1/24/2018 7/31/2018	NA NA	25 U 25 U	420 96	420 96	3.5 4.9	0.5 U 0.7	22 39	29 140	190.0 120.0	0.16	NA NA	220 190
MW-5 10ft	7/31/2018	NA	25 U	50 U	ND	2.4	0.22 U	18	14	2.1	0.02 U	NA	26
Former Underground Storage Tank (UST) UST-1 5ft	1/24/2018	NA	25 U	50 U	ND	NA	NA	NA	NA	NA	NA	NA	NA
UST-2 3ft	1/24/2018	NA	25 U	50 U	ND	NA	NA	NA	NA	NA	NA	NA	NA
Former Above Ground Storage Tank (AST) AST-1 2ft	7/30/2018	NA	8,000	10,000	18,000	3.3	0.2 U	17	40	27.0	0.037	NA	100
AST-2 7.5-10'	7/26/2022	5 U	50 U	250 U	ND	2.21	1 U	9.49	18.1	2.7	0.1 U	NA	17.9
AST-2 10-12' AST-3 5-7'	7/26/2022 7/28/2022	NA 5 U	NA 50 U	NA 250 U	NA ND	2.30 4.56	1 U 2.01	10.8 17.1	18.8 110	3.8 73.9	0.1 U	NA NA	20.0 47.0
AST-3 8-10'	7/28/2022	NA	NA	NA	NA	4.84	1 U	9.30	8.66	1.7	0.1 U	NA	22.2
AST-4 1-2' AST-4 4-5'	7/29/2022 7/29/2022	37 5 U	5,300	2,200 250 U	7,500 ND	3.05 1.62	1 U	9.27 7.15	53.3 17.8	95.4 3.0	0.16 0.1 U	NA NA	91.4 20.2
AST-5-0-1'	4/12/2023	NA NA	50 U	250 U	ND	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA
AST-5-1-2'	4/12/2023	NA NA	50 U	250 U	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA
AST-5-3-4' AST-6-0-1'	4/12/2023 4/12/2023	NA NA	50 U 50 U	250 U 250 U	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AST-6-1-2'	4/12/2023	NA	50 U	250 U	ND	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
AST-6-3-4' AST-7-0-1'	4/12/2023 4/12/2023	NA NA	50 U 50 U	250 U 250 U	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AST-7-1-2'	4/12/2023	NA	50 U	250 U	ND	NA	NA	NA	NA	NA	NA	NA	NA
AST-7-3-4' Shop Floor Drain And Outfall	4/12/2023	NA	50 U	250 U	ND	NA	NA	NA	NA	NA	NA	NA	NA
SFD-1 3.5ft	1/24/2018	NA	190	50 U	190	2.2	0.5 U	19	56	2.9	0.02 U	NA	100
SFD-2 3.5ft SFD-3***	1/24/2018 1/24/2018	NA NA	25 U 5,300	50 U	ND 13,100	1.9	0.5 U	12 350	29 8,800	1.9 10,000	0.021 0.25	NA NA	29 7 100
MW-1 12ft	7/30/2018	NA NA	25 U	50 U		3.4	0.2 U	18	32	4.4	0.25 0.02 U	NA NA	7,100 30
MW-1 15ft	7/30/2018	NA	25 U	50 U	ND	2.1	0.2 U	12	23	1.8	0.02 U	NA NA	24
SFD-4 0-1.5' SFD-4 1.5-3'	7/25/2022 7/25/2022	5 U NA	50 U NA	250 U NA	ND NA	2.41 1.95	1.37 1 U	10.0 11.9	172 19.7	71.8 2.4	0.21 0.1 U	NA NA	150 19.9
Storm Water Pond											1		
SWP-1 1-3'	7/25/2022 7/25/2022	NA NA	NA NA	NA NA	NA NA	3.41 1.46	1 U	14.6 9.83	51.2 17.6	10.6 2.0	0.085 0.1 U	NA NA	41.3 17.8
SWP-1 3-5'	7/23/2022					_							

Table 3-3. Summary of Uplands Soil Data – Total Petroleum Hydrocarbons and Metals Jensen's Shipyard and Marina

			(TPI mg/l				Metals (mg/kg)							
Sample ID	Date	NWTPH-Gx	NWTPH-D		NWTPH-D Oil Range		Total Dx (Diesel + Oil)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
OPALCO Pad 1-4in	1/24/2018	NA	25	U	130		130	7.1	2.2	40	1,100	530	0.15	NA	2,300
OPALCO-2 2-6in	7/31/2018	NA	25	U	50	U	ND	4.8	0.92	17	68	54.0	0.026	NA	2,600
OPALCO-2 5ft	7/31/2018	NA	25	U	50	U	ND	3.2	0.19 U	16	45	2.1	0.02 U	NA	250
OPALCO-3 2-6in	7/31/2018	NA	25	U	50	U	ND	7.1	1.1	30	1,300	990	0.34	NA	720
OPALCO-3 4ft	7/31/2018	NA	25	U	50	U	ND	4.1	0.19 U	16	44	4.5	0.025	NA	39
OPALCO-4 2-6in	7/31/2018	NA	25	U	50	U	ND	5.5	0.19 U	18	120	50.0	0.67	NA	74
OPALCO-4 5ft	7/31/2018	NA	25	U	50	U	ND	3.3	0.19 U	15	34	2.2	0.02 U	NA	31
MW-4 2-6in	7/31/2018	NA	25	U	120		120	7.9	0.79	43	590	390	0.22	NA	620
MW-4 11ft	7/31/2018	NA	25	U	50	U	ND	8.4	0.23 U	64	31	3.4	0.02 U	NA	45
Misc. Upgradient Area	T			,						r		1		1	
MW-6 2-6in	7/31/2018	NA	25	U	50	U	ND	4	0.19 U	19	28	13.0	0.027	NA	65
MW-6 40ft	7/31/2018	NA	25	U	50	U	ND	3	0.2 U	14	16	1.5	0.02 U	NA	23
Eastern Uplands Undeveloped Area - Test Pits	40/40/2022												4		
IOSA-TP1-1-1020	10/19/2020	NA	NA		NA		NA	2.4	1 U	NA	11	5.0	1 U	15.4	28
IOSA-TP2-1-1020	10/19/2020	NA	NA		NA		NA	2.51	1 U	NA	10	5.8	1 U	7.4	16
IOSA-TP3-1-1020	10/19/2020	NA	NA		NA NA		NA	NA 1.05	1 U	NA	61 14	56.4 4.3	1 U	11.9	208
IOSA-TP3-3-1020	10/19/2020	NA	NA				NA	1.85	_	NA		12.2		10.9	23
IOSA-TP4-1-1020	10/19/2020	NA	NA		NA NA	-	NA	2.33	1 U	NA	19		1 U	10.5	71
IOSA-TP5-1-1020	10/19/2020	NA	NA		NA		NA	NA	1 U	NA NA	57	248	1 U	13.9	287
IOSA-TP5-3-1020	10/19/2020	NA	NA FO		NA 250		NA	NA 2.02	1 U	NA NA	30	46.4		15.9	95
IOSA-TP5-5-1020	10/19/2020	NA	50 NA	U	250	U	ND NA	3.92 2.4	1 U	NA NA	37 34	80.7	1 U	13.6 9.43	115
IOSA-TP6-1-1020	10/19/2020	NA	NA NA		NA		NA NA				15	3.2			182
IOSA-TP3-1-1020	10/19/2020	NA			NA			NA 2.02	1 U	NA NA		_		16.6	19.6
IOSA-TP7-1-1020	10/19/2020	NA	NA		NA	-	NA	2.03	1 U	NA	20	20.8	1 U	9.81	35
IOSA-TP8-1-1020	10/19/2020	NA	NA		NA		NA	2.21	1 U	NA	13	8.1	1 0	9.04	40
PCULs									I			1	T		1
Background				{				7.3	0.77	48	36	24	0.07	48	85
PQL				_				0.2	0.2	1	1	0.20	0.2	0.2	1
Human Health (0 to 15 feet)		100	2,000	_	2000		2,000	0.67*	80	1.20E+05	3,200	250		1,600	24,000
Marine Surface Water (vadose zone)				_				2.9	1.1	4.90E+06	1.4*	1600	0.026**	10*	100
TEE (0 to 6 feet)		12,000	15,000					20	36	135	550	220	9	1,850	570
MTCA SMS Benthic SCO								57	5.10	260	390	450	0.41		410
Summary Statistics	1								1	T	•	1	1	1	1
# Samples		18	82		82		81	96	100	88	100	100	99	16	100
# Detections		2	17		27		28	95	26	88	100	100	51	16	100
# Non-Detects		16	65		55		54	1	74	0	0	0	48	0	0
Detection Frequency		11%	21%		33%		35%	99%	26%	100%	100%	100%	52%	100%	100%
Maximum Detected Value		37	8,000		10,000		18,000	22	57	350	8,800	10,000	1	16.6	7,100
# Exceedances of Most Stringent PCUL		2	3		3		4	13	10	1	37	19	33	0	36
Exceedance Frequency		11.1%	3.7%	T	3.7%		4.9%	13.5%	10.0%	1.1%	37.0%	19.0%	33.3%	0.0%	36.0%

Notes:

mg/kg - milligrams per kilogram

ND - indicates calculated sum of analytes that were not detected at level above respective reporting limits

BOLD - indicates that the concentration in the sample exceeds the respective detection limit (quantified value)

Pink shaded cell indicates saturated zone Tan shaded cell indicates vadose zone

Value above Background SL

Value above PQL

Value above Human Health (0 to 15 feet) SL

Value above Marine Surface Water (vadose zone) SL

Value above TEE (0 to 6 feet) SL

ND concentration with reporting limit greater than PCUL

NA - indicates sample was not analyzed for the constituent

PQL - practical quantitation limit

U - indicates analyte was not detected at level above the indicated reporting limit

 $[\]ensuremath{^{*}}$ The screening level defaults to the background value.

 $[\]ensuremath{^{**}}$ The screening level defaults to the PQL value.

^{***}Shop Floor Drain-3 (SFD-3) was comprised of solids collected directly from the inside of a floor drain within the shop building, at an approximate depth of 1.5 ft below the floor surface.

Table 3-4. Summary of Uplands Soil Data – Tributyltin, Dioxin/Furans, and PCBs Jensen's Shipyard and Marina

Sample ID	Date	Dioxins/ Furans TEQ (ng/kg)	Tributyltin (TBT) (ug/kg)	Total PCB Aroclors (mg/kg)
Surface Rail Work Area (SRWA)				
SRWA-8 0-1'	7/26/2022	25.39	7.22	0.08
SRWA-9 2.5-5'	7/26/2022	0.01	3.86 U	0.02 U
SRWA-10 3-5'	7/28/2022	1.62	9.86	NA
SRWA-11 0-2.5'	7/26/2022	NA	55.50	NA
SRWA-14 0-1'	7/26/2022	13.39	2.18 J	0.19
SRWA-14 1-2'	7/26/2022	NA	NA	0.02 U
Boat Lift Work Area (BLWA)				
BLWA-11 0-2.5'	7/25/2022	NA	NA	0.46
MW-7 3-5'	7/27/2022	NA	NA	0.02 U
MW-8 4-5'	7/28/2022	NA	NA	0.14
MW-9 0-2.5'	7/27/2022	20.73	38.5	0.02
PCULs				
Background		5.20E-06		
PQL		0.5	3.86	0.002
Human Health (0 to 15 feet)		0.000013*		0.5
Marine Surface Water (vadose zone)		0.00000025*	1.7*	1.10E-05
TEE (0 to 6 feet)				2
MTCA SMS Benthic SCO			-	0.13
Summary Statistics				
# Samples		5	6	8
# Detections		5	5	5
# Non-Detects		0	1	3
Detection Frequency		100%	83%	63%
Maximum Detected Value		25.4	56	0.5
# Exceedances of Most Stringent PCUL		5	5	5
Exceedance Frequency		100%	83%	63%

Notes:

mg/kg - milligrams per kilogram

* The screening level defaults to the PQL value.

ug/kg - micrograms per kilogram ng/kg - nanograms per kilogram

NA - indicates sample was not analyzed for the constituent

PQL - practical quantitation limit

ND - indicates calculated sum of analytes that were not detected at level above respective reporting limits

J - reported concentration is an estimate.

 $\ensuremath{\mathsf{U}}$ - indicates analyte was not detected at level above the indicated reporting limit

BOLD - indicates that the concentration in the sample exceeds the respective detection limit (quantified value)

Pink shaded cell indicates saturated zone

Tan shaded cell indicates vadose zone

Value above Background SL

Value above PQL

Value above Human Health (0 to 15 feet) SL

Value above Marine Surface Water (vadose zone) SL

Value above TEE (0 to 6 feet) SL

Table 3-5. Summary of Upland Soil Data – Polycyclic Aromatic Hydrocarbons Jensen's Shipyard and Marina

Port of Friday Harbor		
		cPAHs (μg/kg)
Sample ID	Date	Total cPAH
		TEQ (ND=0)
Surface Rail Work Area (SRWA)		(145-0)
SRWA-1 3-6in	1/24/2018	0.725
SRWA-6 2-6in	8/1/2018	1.445
SRWA-6 3ft	8/1/2018	0.02 U
SRWA-7 2-6in	8/1/2018	0.073
SRWA-7 3ft MW-3 2-6in	8/1/2018 8/1/2018	0.213 0.112
MW-3 5.5ft	8/1/2018	0.004
SRWA-8 0-1'	7/26/2022	0.01
SRWA-9 2.5-5'	7/26/2022	0.01 U
SRWA-10 3-5'	7/28/2022	0.048
SRWA-11 0-2.5'	7/26/2022	0.099
SRWA-14 0-1'	7/26/2022	0.072
SRWA-14 1-2' Boat Lift Work Area (BLWA)	7/26/2022	0.01 U
BLWA-1 0-3in	7/30/2018	NA
BLWA-2 0-3in	7/30/2018	NA
BLWA-3 2-6in	7/30/2018	0.528
BLWA-3 2ft	7/30/2018	0.02 U
BLWA-4 2-6in	7/30/2018	0.097
BLWA-4 5ft	7/30/2018	0.059
BLWA-5 2-6in	7/30/2018	0.528
BLWA-5 2ft	7/30/2018	0.02 U
BLWA-6 2-6in BLWA-6 2ft	7/30/2018 7/30/2018	0.705 0.02 U
BLWA-6 5ft	7/30/2018	0.02 U
BLWA-6 10 ft	7/30/2018	0.02 U
BLWA-7 2-6in	7/30/2018	0.248
BLWA-7 2ft	7/30/2018	0.02 U
BLWA-7 5ft	7/30/2018	NA
BLWA-8 2-6in	7/30/2018	0.121
BLWA-8 2ft BLWA-8 5ft	7/30/2018 7/30/2018	0.041 NA
BLWA-9 2-6in	7/30/2018	0.86
BLWA-9 2ft	7/30/2018	0.02 U
BLWA-9 5ft	7/30/2018	NA
MW-2 6in	7/30/2018	0.12
MW-2 7ft	7/30/2018	0.07
BLWA-10 0-1'	7/28/2022	0.08
BLWA-11 0-2.5'	7/25/2022	0.575
BLWA-12 0-2' BLWA-13 0-2'	7/25/2022	0.122 0.142
MW-7 3-5'	7/27/2022 7/27/2022	0.142 0.01 U
MW-8 4-5'	7/28/2022	0.05 U
MW-9 0-2.5'	7/27/2022	0.046
Former Dumping Area (FDA)		
MW-5 2-6in	7/31/2018	0.068
MW-5 10ft	7/31/2018	0.02 U
Former Above Ground Storage Tank (AST)	= /00 /00 + 0	2.22
AST-1 2ft	7/30/2018	0.02 U
Shop Floor Drain And Outfall MW-1 12ft	7/30/2018	0.02 U
MW-1 15ft	7/30/2018	0.02 U 0.02 U
Former Orcas Power and Light Company (OPALCO) Pad	.,30,2020	
OPALCO-2 2-6in	7/31/2018	0.026
OPALCO-2 5ft	7/31/2018	0.02 U
OPALCO-3 2-6in	7/31/2018	0.094
OPALCO-3 4ft	7/31/2018	0.02 U
OPALCO 4 5th	7/31/2018	0.033 0.02 U
OPALCO-4 5ft MW-4 2-6in	7/31/2018 7/31/2018	0.02 U 0.109
MW-4 11ft	7/31/2018	0.109 0.02 U
Misc. Upgradient Area	.,, 2020	
MW-6 2-6in	7/31/2018	0.02 U
MW-6 40ft	7/31/2018	0.02 U
PCULs		0.03
PQL Human Health (0 to 15 feet)		0.02 0.19
Marine Surface Water (vadose zone)		0.00031*
TEE (0 to 6 feet)		300
MTCA SMS Benthic SCO		1600**
Summary Statistics		
# Samples # Detections		54 25
# Detections # Non-Detects		29
Detection Frequency		46%
Maximum Detected Value		1.45
# Exceedances of Most Stringent PCUL		31
		F70/
Exceedance Frequency		57%

All units in mg/kg - milligrams per kilogram

NA - indicates sample was not analyzed for the constituent

PQL - practical quantitation limit

U - indicates analyte was not detected at level above the indicated reporting limit

BOLD - indicates that the concentration in the sample exceeds the respective detection limit (quantified value)

Pink shaded cell indicates saturated zone Tan shaded cell indicates vadose zone Value above Background SL Value above PQL Value above Human Health (0 to 15 feet) SL Value above Marine Surface Water (vadose zone) SL

 $[\]ensuremath{^{*}}$ The screening level defaults to the PQL value.

 $[\]hbox{**Dry-weight basis Marine Apparent Effects Threshold (AET) for benzo(a) pyrene.}\\$

Table 3-6. Summary of Uplands Soil Data - Pesticides Jensen's Shipyard and Marina

Sample ID	Date	DDD (mg/kg	;)	DDE (mg/kg		DD' (mg/	-	Total DDx (mg/kg)
Surface Rail Work Area (SRWA)								
SRWA-8 0-1'	7/26/2022	0.01	U	0.01	U	0.01	U, ca	ND
SRWA-9 2.5-5'	7/26/2022	0.01	C	0.01	U	0.01	U	ND
SRWA-10 3-5'	7/28/2022	0.01	U	0.01	U	0.01 U		ND
SRWA-14 0-1'	7/26/2022	0.01	U	0.01	U	0.023 ca		0.023
SRWA-14 1-2'	7/26/2022	0.01	C	1.01	U	0.01	U	ND
SRWA-15 0-0.5'	7/26/2022	0.01	U	0.01	U	0.01 U, ca		ND
Boat Lift Work Area (BLWA)								
MW-9 0-2.5'	7/27/2022	0.01	U	0.01	U	0.01	U	ND
PCULs								
Background								
PQL		0.01		0.01		0.0	1	0.01
Human Health (0 to 15 feet)		4.2		2.9		2.9)	
Marine Surface Water (vadose zone)		0.000007	73*	0.000001	5*	0.0000	16*	
TEE (0 to 6 feet)								1.0
MTCA SMS Benthic SCO								
Summary Statistics								
# Samples		7		7		7		7
# Detections		0		0		1		1
# Non-Detects		7		7		6		6
Detection Frequency		0%		0%		14%		14%
Maximum Detected Value		0.01		1.01		0.02		0.02
# Exceedances of Most Stringent PCUL		1		0		2		2
Exceedance Frequency		14%		0%		29%	6	29%

Notes:

mg/kg - milligrams per kilogram

ca - The calibration results for the analyte were outside of acceptance criteria with a detection for the analyte in the sample. The value reported is an estimate

NA - indicates sample was not analyzed for the constituent

PQL - practical quantitation limit

Value above TEE (0 to 6 feet) SL

ND - indicates calculated sum of analytes that were not detected at level above respective reporting limits

 $\mbox{\bf U}$ - indicates analyte was not detected at level above the indicated reporting limit

BOLD - indicates that the concentration in the sample exceeds the respective detection limit (quantified value)

Pink shaded cell indicates saturated zone
Tan shaded cell indicates vadose zone
Value above Background SL
Value above PQL
Value above Human Health (0 to 15 feet) SL
Value above Marine Surface Water (vadose zone) SL

^{*} The screening level defaults to the PQL value.

Table 3-7. Summary of Uplands Data - VOCs Jensen's Shipyard and Marina Port of Friday Harbor

Volatile Organic Compounds (VOCs) (mg/kg)	Most Stringent PCUL ¹	Shop Floor Drain-3 (SFD-3) ² 1/24/2018	SRWA-: 1/24/20:	
Dichlorodifluoromethane	16,000	0.01 U	0.01	U
Chloromethane	0.5	0.01 U	0.01	U
Vinyl Chloride	0.002	0.01 U	0.01	U
Bromomethane	4.4	0.01 U	0.01	U
Chloroethane	0.1	0.01 U	0.01	U
Carbon Tetrachloride	0.05	0.01 U	0.01	U
Trichlorofluoromethane	24,000	0.01 U	0.01	U
Carbon Disulfide	8,000	0.01 U	0.01	U
Acetone	72,000	0.05 U	0.05	U
1,1-Dichloroethane	180	0.01 U	0.01	U
Methylene Chloride	0.43	0.02 U	0.02	U
Acrylonitrile	0.02	0.05 U	0.02	U
Methyl tert-butyl ether (MTBE)	560	0.01 U	0.01	U
Trans-1,2-Dichloroethylene	5.2	0.01 U	0.01	U
1,1-Dichloroethane	180	0.01 U	0.01	U
Methyl ethyl ketone (2-butanone)	48,000	0.01 U	0.01	U
cis-1,2-Dichloroethylene	160	0.03 U	0.03	U
Chloroform				
	2.9 370	0.01 U	0.01	U
1,1,1-Trichloroethane		0.01 U	0.01	U
1,2-Dichloroethane (EDC)	0.35	0.01 U	0.01	U
Trichloroethylene (TCE)	0.0044	0.01 U	0.01	<u>U</u>
1,2-Dichloropropane	0.05	0.01 U	0.01	<u>U</u>
Dibromomethane	800	0.01 U	0.01	<u>U</u>
Dichlorobromomethane	0.013	0.01 U	0.01	U
Trans-1,3-Dichloropropene	0.05	0.01 U	0.01	U
Methyl isobutyl ketone	6400	0.05 U	0.01	U
Cis-1,3-Dichloropropene	0.05	0.01 U	0.01	U
1,1,2-Trichloroethane	0.05	0.01 U	0.01	U
2-Hexanone	400	0.05 U	0.05	U
1,3-Dichloropropane	1,600	0.01 U	0.01	U
Tetrachloroethylene	0.029	0.017	0.01	U
Dibromochloromethane	0.05	0.01 U	0.01	U
Ethylene dibromide (EDB)	0.5	0.005 U	0.01	U
Chlorobenzene	1.7	0.01 U	0.01	U
1,1,1,2-Tetrachloroethane	38	0.01 U	0.01	U
Styrene	16,000	0.01 U	0.01	U
Bromoform	0.078	0.01 U	0.01	U
Isopropylbenzene (cumene)	8,000	0.01 U	0.01	U
1,1,2,2-Tetrachloroethane	0.05	0.01 U	0.01	U
1,2,3-Trichloropropane	0.05	0.01 U	0.01	U
Bromobenzene	640	0.01 U	0.01	U
n-Propylbenzene	8,000	0.01 U	0.017	
2-Chlorotoluene	1,600	0.01 U	0.01	U
1,3,5-Trimethylbenzene	800	0.01 U	0.24	
4-Chlorotoluene	1,600	0.01 U	0.01	U
1,2,4-Trimethylbenzene	800	0.01 U	0.61	
sec-Butylbenzene	8,000	0.01 U	0.033	
P-Isopropyltoluene		0.01 U	0.033	
n-Butylbenzene	4,000	0.01 U	0.055	
1,2-Dibromo-3-chloropropane	0.5	0.05 U	0.05	U
1,2,3-Trichlorobenzene	64	0.01 U	0.01	U

Notes:

All units in mg/kg - milligrams per kilogram

- 1. Detected VOC conentrations do not exceed most stringent PCULs. See Table 5-1 for basis of PCULs.
- 2. Shop Floor Drain-3 (SFD-3) is a sample of material collected from directly inside the floor drain in the shop building.

Table 3-8. Summary of Ship Rail Work Area Sediment Samples Jensen's Shipyard and Marina Port of Friday Harbor

			TF (mg			Metals (mg/kg)									
Sample ID	Date	NWTPH-Gx	NWTPH-Dx Diesel Range	NWTPH-Dx Oil Range	Total Dx (Diesel + Oil)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc		
SRWA-2 3-6in	1/24/2018	NA	91	220	311	14	0.5 U	18	1,100	1000	6.3	NA	330		
SRWA-3 0-6in	1/24/2018	NA	3,900	940	4,840	17	0.5 U	21	690	90.0	0.54	NA	580		
SRWA-4 6in	8/1/2018	NA	79	190	269	54	0.39	35	2,000	1800	11	NA	450		
SRWA-4 3.5ft	8/1/2018	NA	25 U	50 U	ND	7.7	0.22 U	24	35	15	0.098	NA	64		
SRWA-5 2-6in	8/1/2018	NA	25 U	72	72	12	0.32	20	420	940	0.33	NA	460		
SRWA-5 3.5 ft	8/1/2018	NA	25 U	50 U	ND	4.2	1.5	11	43	21.0	0.04	NA	58		
SRWA-5 5ft	8/1/2018	NA	25 U	50 U	ND	5.1	0.23 U	20	16	3.6	0.02 U	NA	55		
SRWA-13 0-0.5'	7/26/2022	5 U	50 U	250 U	ND	11.9	1 U	11.7	2,140	170	1.5	NA	519		
SRWA-13 0.5-1'	7/26/2022	NA	NA	NA	NA	10.6	1 U	12.7	919	389	3.5	NA	317		
SRWA-15 0-0.5'	7/26/2022	NA	NA	NA	NA	6.56	1 U	8.71	20.8	12	0.30	NA	32		
MTCA SMS Benthic SCO:						57	5.1	260	390	450	0.41		410		

Table 3-7. Summary of Ship Rail Work Area Sediment Samples

Jensen's Shipyard and Marina

Port of Friday Harbor

		cPAI (µg/k	_	Dioxins/	Tributyltin	Total PCB				Total DDx
Sample ID	Date	Benzo(a)pyrene	Total cPAH TEQ (ND=0)	Furans TEQ (pg/g)	(μg/kg)	Aroclors (mg/kg)	DDD (mg/kg)	DDE (mg/kg)	DDT (mg/kg)	(mg/kg)
SRWA-2 3-6in	1/24/2018	0.14	0.18	NA	NA	NA	NA	NA	NA	NA
SRWA-3 0-6in	1/24/2018	0.22	0.30	NA	NA	NA	NA	NA	NA	NA
SRWA-4 6in	8/1/2018	0.50	0.66	NA	NA	NA	NA	NA	NA	NA
SRWA-4 3.5ft	8/1/2018	0.02 U	0.02 U	NA	NA	NA	NA	NA	NA	NA
SRWA-5 2-6in	8/1/2018	0.17	0.23	NA	NA	NA	NA	NA	NA	NA
SRWA-5 3.5 ft	8/1/2018	0.06	0.07	NA	NA	NA	NA	NA	NA	NA
SRWA-5 5ft	8/1/2018	0.02 U	0.02 U	NA	NA	NA	NA	NA	NA	NA
SRWA-13 0-0.5'	7/26/2022	NA	NA	103	497	1.41	NA	NA	NA	NA
SRWA-13 0.5-1'	7/26/2022	NA	NA	NA	NA	0.30	NA	NA	NA	NA
SRWA-15 0-0.5'	7/26/2022	0.01 U	0.01 U	0.36	0.62	ND	0.01 U	0.01 U	0.01 U, ca	ND
MTCA SMS Benthic SCO:		1,600*				0.13				

Notes:

mg/kg - milligrams per kilogram

PQL - practical quantitation limit

NA - indicates sample was not analyzed for the constituent

ND - indicates calculated sum of analytes that were not detected at level above respective reporting limits

U - indicates analyte was not detected at level above the indicated reporting limit

BOLD - indicates that the concentration in the sample exceeds the respective detection limit (quantified value)

Blue shaded cell indicates that the concentration in the sample exceeds the MTCA SMS Benthic SCO

^{* -} Dry-weight basis Marine Apparent Effects Threshold (AET)

Table 3-9. Stormwater Pond Sediment Samples Jensen's Shipyard and Marina Port of Friday Harbor

	PCUL	Stormwater Pond	Storm Sed-1	
Metals (EPA-6020/7471) (mg/kg)	Marine Surface Water (vadose zone) 1,2			
Arsenic	2.9	10	NA	
Cadmium	1.1	10	NA	
Chromium	4900000	43	NA	
Copper	1.4	12,000	NA	
Lead	1600	450	NA	
Mercury	0.03	0	NA	
Zinc	100	2,400	5	U
TCLP Metals (EPA-1311) (mg/L)	Toxicity Characteristic Criteria			
Arsenic	5	NA	<0.025	U
Barium	100	NA	1	
Cadmium	1	NA	<0.025	U
Chromium	5	NA	<0.026	U
Lead	5	NA	0.36	
Mercury	0	NA	<0.026	U
Selenium	1	NA	<0.026	U
Silver	5	NA	<0.026	U
Bioassay (Ecology 80-12)		NA	Not Dangerous	

Notes:

mg/kg - milligrams per kilogram

NA - indicates sample was not analyzed for the constituent

U - indicates analyte was not detected at level above the indicated reporting limit

BOLD - indicates that the concentration in the sample exceeds the respective detection limit (quantified value)

Blue shaded cell indicates that the concentration in the sample exceeds listed PCUL

1. Most stringent PCUL derived for screening upland soil for purpose of comparison. Note that sediment deposited in lined pond comprised of concentrated solids from treatment of stormwater collected in the BLWA boat maintenance/wash areas. Material is collected and disposed offsite annually and is not subject to the same transport pathways as upland soil.

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Tort or mady marbor	1		ī									
	Most Stringent PCUL	Well ID					MW-	1				
	PCOL .	Date	8/28/18	2/19/20	9/8/22	12/8/22 ^K	4/11/23	6/6/23	9/26/23	12/13/23	4/10/24	6/25/24
Water Quality Parameters						-	•			•	-	
Specific Conductivity		mS/cm	0.364	0.856	0.364	0.779	0.796	0.796	0.610	1.218	0.986	1.282
Turbidity		NTU	7.8	46.07	6.14	8.63	3.08	3.08	6.71	5.57	69.5	14.6
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	200.8, 245.1)											
		tals Method:	200.8/245.1	6020B	6020B/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	NA	10.10	12.60	6.99	5.68	6.06	8.48	6.72	11.80	3.99
Cadmium, Total	7.9	ug/L	NA	1 L	1 L	0.061 U	0.061 U	0.061 U	0.061 U	0.066 J	0.061 U	0.061 U
Chromium, Total	50	ug/L	NA	1.52	10 L	1.72 U	1.72 U	1.72 U	1.72 U	1.72 U	1.72 U	1.72 U
Copper, Total	3.1	ug/L	NA	3.74	7.33	14.3	1.39	2.47	2.80	3.37	3.63	1.87
Lead, Total	8.1	ug/L	NA	1 L	1 L	1.83	0.082	0.199	0.225	0.484	0.422	0.167 J
Mercury, Total	0.025	ug/L	NA	0.2 L	0.2 L	0.00271	0.00166	0.00246	0.00185	0.00207	0.0054	0.00137
Nickel	8.2	ug/L	NA	1.57	NA	NA	NA	NA	2.04 J	4.91	2.91 J	6.77
Zinc, Total	81	ug/L	NA	5 L	5 L	8.91 J	7.07 U	7.07 U	7.07 U	10.3 J	7.07 U	12.1 U
Arsenic, Dissolved	8	ug/L	12	9.56	11.1	6.88	5.52	5.95	6.70	4.82	5.80	2.31
Cadmium, Dissolved	7.9	ug/L	1 U	1 L	1 L	0.061 U	0.061 U	0.061 U	0.061 U	0.061 U	0.061 U	0.061 U
Chromium, Dissolved	50	ug/L	2 U	1 L	10 L	1.72 U	1.72 U	1.72 U	1.72 U	1.82 J	1.72 U	1.72 U
Copper, Dissolved	3.1	ug/L	8.0	2.5 L	5 L	2.25	5.40	15.8	1.69	1.45	0.659	1.05 J
Lead, Dissolved	8.1	ug/L	1 U	1 L	1 L	0.282	0.319	1.96	0.061 U	0.061 U	0.061 U	0.091 U
Mercury, Dissolved	0.025	ug/L	2 U	0.2 L	0.2 L	0.00064	0.00066	0.00261	0.00080	0.00035 J	0.00052	0.00093
Nickel, Dissolved	8.2	ug/L	NA	0.2 L	NA	NA	NA	NA	1.76 J	4.80	2.39 J	6.57
Zinc, Dissolved	81	ug/L	3.2	5 L	5 L	7.07 U	7.07 U	9.65 J	7.07 U	7.07 U	7.07 U	12.1 U
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80	021 and 8260)											
NWTPH-Gx Gasoline Range	1,700	ug/L	50 U	NA	100 L	NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	180	160 ×	77 x	NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA	50 L	NA	NA	NA	NA	NA	NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)											
Benzo(a)pyrene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02 U		NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02 U		NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.015	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA	NA	NA	NA	0.0066	NA	NA	NA	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

POIL OF FITUAL HARDON	,														
	Most Stringent PCUL	Well ID								MW-2					
	1 001	Date	8/28/18	2/19/20 ^E		9/6/22	9/6/2	2	12/6/22	4/12/23 ^L	6/5/23	9/27/23	12/12/23	4/11/24	6/26/24
Water Quality Parameters															
Specific Conductivity		mS/cm	5.854	8.158		2.634	2.634		6.32	6.202	6.202	10.365	7.676	5.666	7.760
Turbidity		NTU	2.9	3.09		1.70	1.70		0.02	1.30	1.30	3.98	3.22	1.28	2.71
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	A 200.8, 245.1)														
	Me	etals Method:	200.8/245.1	6020B		1638/1631E	6020B/1631E	E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	NA	7.47	J	0.38 J	4.92		0.48 J	0.40 J	0.45 J	0.46	0.56	J 0.22 J	0.27 J
Cadmium, Total	7.9	ug/L	NA	1	UJ	0.061 U	1	U	0.061 L	J 0.061 U	0.061 U	0.205	0.061	U 0.061 L	0.061 U
Chromium, Total	50	ug/L	NA	5.4		5.06 J	10	U	5.72 J	2.36 J	2.88 J	9.71	18.2	5.12 J	4.27 J
Copper, Total	3.1	ug/L	NA	3.505		1.56	5	U	9.60	2.99	4.33	16.1	6.31	2.23	5.87
Lead, Total	8.1	ug/L	NA	1	U	0.156	1	U	0.304	0.07 J	0.115 J	0.294	0.228	0.179	0.200
Mercury, Total	0.025	ug/L	NA	0.2	U	0.00165	0.2	U	0.0399	0.00204	0.00447	0.00278	0.00336	0.000565	0.00216
Nickel	8.2	ug/L	NA	4.35		NA	NA		NA	NA	NA	31.1	5.59	1.23 J	2.31 J
Zinc, Total	81	ug/L	NA	5	U	7.07 U	5	U	8.12 J	7.07 U	7.07 U	14.5	7.07	U 7.07 L	12.1 U
Arsenic, Dissolved	8	ug/L	1 U	8.155		0.308 J	3.76		0.455 J	0.444 J	0.382 J	0.343	0.46	J 0.162 L	0.299 J
Cadmium, Dissolved	7.9	ug/L	1 U	1	UJ	0.061 U	1	U	0.061 L	J 0.061 U	0.061 U	0.192	0.061	U 0.061 L	0.061 U
Chromium, Dissolved	50	ug/L	2 U	2.17		3.37	5.25		4.29 J	1.72 U	1.72 U	1.72 l	2.81	J 1.72 L	1.72 U
Copper, Dissolved	3.1	ug/L	2 U	2.5	U	1.03	5	U	4.21	1.46	2.51	3.04	3.45	0.51 L	2.56
Lead, Dissolved	8.1	ug/L	1 U	1	U	0.095	1	U	0.265	0.061 U	0.061 U	0.061 l	0.061	U 0.061 L	0.091 U
Mercury, Dissolved	0.025	ug/L	2 U	0.2	UJ	0.00120	0.2	U	0.0191	1.20	3.24	0.00087	0.00195	0.00013 L	0.00092
Nickel, Dissolved	8.2	ug/L	NA	4.6		NA	NA		NA	NA	NA	28.9	5.11	1.21 U	2.34 J
Zinc, Dissolved	81	ug/L	2.5 U	5	U	7.07 U	5	U	7.07 L	J 7.07 U	7.07 U	12.4	7.07	U 7.07 L	12.1 U
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (8	021 and 8260)														
NWTPH-Gx Gasoline Range	1,700	ug/L	200	NA		100 U	NA		NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	210	115	Х	220 x	NA		NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA	50	U	NA	NA		NA	NA	NA	NA	NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	70 SIM)														
Benzo(a)pyrene	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.02 U	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA	NA		NA	NA		NA	0.0052 U	NA	NA	NA	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA	NA		NA	NA		NA	0.04	NA	NA	NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Port of Friday Harbor		1											
	Most Stringent PCUL	Well ID						MW-3					
	1 002	Date	8/28/18	2/19/20	9/7/22		12/6/22	4/10/23	6/5/23	9/25/23 ^s	12/14/23	1Q2024	2Q2024
Water Quality Parameters													
Specific Conductivity		mS/cm	4.839	6.611	13.176	13.176	23.4	6.215	6.215	20.965	34.712	NA	NA
Turbidity		NTU	2.8	31.66	6.17	6.17	23.7	2.30	2.30	4.35	30.4	NA	NA
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EP	A 200.8, 245.1)												
	M	etals Method:	200.8/245.1	6020B	1638/1631E	6020B/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	NA	9.56	1.43	21.00	0.81	1.01	0.67 J	0.81	3.06	NA	NA
Cadmium, Total	7.9	ug/L	NA	1 U	1.10	10 U	1.55	0.156 J	0.592	2.07	4.12	NA	NA
Chromium, Total	50	ug/L	NA	73.8	53.2	56.3	17.0	4.5 J	3.0 J	24.3	99.9	NA	NA
Copper, Total	3.1	ug/L	NA	29.4	15.5	20.0	9.37	7.63	4.66	8.16	41.5	NA	NA
Lead, Total	8.1	ug/L	NA	9.42	5.89	10 U	2.30	0.943	0.700	2.65	16.7	NA	NA
Mercury, Total	0.025	ug/L	NA	0.2 U	0.0254	0.2 U	0.0145	0.0073	0.00717	0.01335	0.0981	NA	NA
Nickel	8.2	ug/L	NA	3.83	NA	NA	NA	NA	NA	61.35	21.3	NA	NA
Zinc, Total	81	ug/L	NA	53.9	250	135	336	63.1	169	403.5	728	NA	NA
Arsenic, Dissolved	8	ug/L	2.3	7.81 J	0.68 J	16.8	0.653 J	0.914	0.602 J	0.534 J	0.711	NA	NA
Cadmium, Dissolved	7.9	ug/L	1 U	1 U	1.06	10 U	1.52	0.105 J	0.553	2.01	4.14	NA	NA
Chromium, Dissolved	50	ug/L	5.0	2.56	3.82 J	3.72	3.88 J	1.72 L	J 1.72 L	J 1.72 L	4.81	NA	NA
Copper, Dissolved	3.1	ug/L	3.2	21.6	7.73	6.08	7.47	6.30	3.90	5.47	12.0	NA	NA
Lead, Dissolved	8.1	ug/L	1 U	1.71	0.193	10 U	0.444	0.061 L	0.102 J	0.262	0.595	NA	NA
Mercury, Dissolved	0.025	ug/L	2 U	0.2 U	0.00607	0.2 U	0.00787 J	0.00551	0.00544	0.00375	0.00714	NA	NA
Nickel, Dissolved	8.2	ug/L	NA	2.68	NA	NA	NA	NA	NA	55.7	17.7	NA	NA
Zinc, Dissolved	81	ug/L	9.8	47.8	239	100	322	58.0	160	401	738	NA	NA
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (8	3021 and 8260)												
NWTPH-Gx Gasoline Range	1,700	ug/L	50 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	130 U	50 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA	50 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 82	70 SIM)												
Benzo(a)pyrene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.02 u	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA	NA	NA	NA	NA	0.0052 L	J NA	NA	NA	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA	NA	NA	NA	NA	0.04	NA	NA	NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Port of Friday narbor																
	Most Stringent PCUL	Well ID								MW	<i>I</i> -4					
	FCOL	Date	8/28/18	2/19	/20	9/8/22		12/8/22		4/11/23 P	6/6/23 ^Q		9/27/23	12/13/23 ^T	4/11/24	6/26/24
Water Quality Parameters				•		•		•			•		•		•	
Specific Conductivity		mS/cm	0.351	0.88	35	0.287		0.374		1.118	1.118		0.605	0.681	0.895	0.821
Turbidity		NTU	4.7	12.3	.7	1.44		2.13		1.35	1.35		1.36	1.74	1.58	1.06
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	200.8, 245.1)															
	Me	tals Method:	200.8/245.1	602	ЭВ	6020B/163	1E	1638/1631E		1638/1631E	1638/1631	:	1638/1631E	1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	NA	2.9	7	5.72		0.84		0.93	1.01		1.33	0.68	1.00	0.98
Cadmium, Total	7.9	ug/L	NA	1	U	1	U	0.061	U	0.061 U	0.061	U	0.061	U 0.061	U 0.061 L	0.061 U
Chromium, Total	50	ug/L	NA	4.4	3	10	U	2.43	J	1.84 J	3.03	J	1.72	U 10.9	6.16	2.85 J
Copper, Total	3.1	ug/L	NA	10.	9	11.5		4.92		3.655	6.31		4.45	3.54	4.90	4.14
Lead, Total	8.1	ug/L	NA	4.0	2	1	U	0.678		0.4015	0.841		0.364	0.5135	1.28	0.756
Mercury, Total	0.025	ug/L	NA	0.2	2 U	0.2	U	0.00108		0.001015	0.0024		0.00143	0.00091	0.00102	0.000110
Nickel	8.2	ug/L	NA	10.	4	NA		NA		NA	NA		3.72	18.3	5.05	4.07
Zinc, Total	81	ug/L	NA	11.	1	5.41		7.07	U	7.07 U	7.07	U	7.26	J 7.07	U 7.07 L	12.1 U
Arsenic, Dissolved	8	ug/L	1.1	2.0	6	3.03		0.760		0.9345	0.943		1.42	0.683	J 0.920	0.920
Cadmium, Dissolved	7.9	ug/L	1 l	J 1	U	1	U	0.061	U	0.061 U	0.061	U	0.061	U 0.061	U 0.061 L	0.061 U
Chromium, Dissolved	50	ug/L	2 l	1.8	8	10	U	1.72	U	1.72 U	1.72	U	1.72	U 3.54	J 1.72 L	1.72 U
Copper, Dissolved	3.1	ug/L	3.2	2.6	5	5	U	4.67		2.86	3.715		3.72	2.85	1.92	2.14
Lead, Dissolved	8.1	ug/L	1 l	J 1	U	1	U	0.429		0.061 U	0.1055	J	0.061	U 1.47	0.061 L	0.091 U
Mercury, Dissolved	0.025	ug/L	2 (J 0.2	2 U	0.2	U	0.00053		0.00068	2.415		0.00090	0.00053	0.00013	0.00066
Nickel, Dissolved	8.2	ug/L	NA	7.0	5	NA		NA		NA	NA		3.58	J 17.55	2.71	2.64
Zinc, Dissolved	81	ug/L	3	5	U	5	U	7.07	U	7.07 U	7.07	U	7.07	U 7.07	U 7.07 L	12.1 U
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80	021 and 8260)															
NWTPH-Gx Gasoline Range	1,700	ug/L	50 l	J NA	١	NA		NA		NA	NA		NA	NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	130 l	J 50	U	NA		NA		NA	NA		NA	NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA	50	U	NA		NA		NA	NA		NA	NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)															
Benzo(a)pyrene	1.00E-02	ug/L	0.02 l	J NA	١	NA		NA		NA	NA		NA	NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02 l	J NA	1	NA		NA		NA	NA		NA	NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02 l	J NA	١	NA		NA		NA	NA		NA	NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02 l	J NA	1	NA		NA		NA	NA		NA	NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02 l	J NA	١	NA		NA		NA	NA		NA	NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02 l	J NA	١ -	NA		NA		NA	NA		NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02 l	J NA	\	NA		NA		NA	NA		NA	NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	ND(<0.02)	N/	١	NA		NA		NA	NA		NA	NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA	N/	\	NA		NA		NA	NA		NA	NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA	N/	١	NA		NA		0.0137	0.193	U	NA	NA	0.193 U	NA NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA	N/	\	NA		NA		0.05	NA		NA	NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

POIL OF FIIUAY HAIDOI			T												
	Most Stringent PCUL	Well ID							MV	V-5					
		Date	8/29/18		2/19/20	9/7/22		12/7/22	4/12/23	6/7/23	9/27/23	12/12/23	4/10/24	6,	5/25/24
Water Quality Parameters															
Specific Conductivity		mS/cm	0.513		0.422	0.402		0.372	0.405	0.405	0.413	0.289	0.352	(0.427
Turbidity		NTU	48.0		22.34	28.0		30.7	11.0	11.0	15.6	13.7	63.7		41.4
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	A 200.8, 245.1)														
	Me	tals Method:	200.8/245.1		6020B	6020B/163	1E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	163	38/1631E
Arsenic, Total	8	ug/L	NA		1.07	1.00	U	1.07	1.90	1.20	1.37	1.38	2.63		2.02
Cadmium, Total	7.9	ug/L	NA		1 U	1	U	0.061	J 0.061 L	0.061 U	0.061 U	0.061 U	0.061 l	J (0.061 U
Chromium, Total	50	ug/L	NA		1.48	1	U	3.38	J 2.2 J	1.72 U	1.72 U	4.44 J	8.55		4.93 J
Copper, Total	3.1	ug/L	NA		5.87	5	U	19.8	9.59	5.93	4.26	25.2	21.4		18.4
Lead, Total	8.1	ug/L	NA		1 U	1	U	1.14	0.801	0.575	0.265	1.30	5.09		3.09
Mercury, Total	0.025	ug/L	NA		0.2 U	0.2	U	0.00694	0.00976	0.00759	0.00404	0.0117	0.0173	0	0.0121
Nickel	8.2	ug/L	NA		3.52	NA		NA	NA	NA	2.58 J	5.89	10.9		7.32
Zinc, Total	81	ug/L	NA		5.85	5	U	7.07	J 7.07 L	8.48 J	7.07 U	9.64 J	19.1	J	16.2 J
Arsenic, Dissolved	8	ug/L	1.2		1 U	1	U	0.686	J 0.579 J	1.20	0.794	0.930	0.615) (0.560 J
Cadmium, Dissolved	7.9	ug/L	1	U	1 U	1	U	0.061	J 0.061 L	0.061 U	0.061 U	0.061 U	0.061 l	J (0.061 U
Chromium, Dissolved	50	ug/L	2	U	1 U	1	U	1.72	J 1.72 L	1.72 U	1.72 U	2.07 J	1.72 l	J	1.72 U
Copper, Dissolved	3.1	ug/L	2	U	3.07	5	U	13.5	5.24	5.93	2.28	22.3	10.1		8.60
Lead, Dissolved	8.1	ug/L	1	U	1 U	1.67		0.201	0.061 L	0.575	0.061 U	0.086 J	0.061 l	J (0.091 U
Mercury, Dissolved	0.025	ug/L	2	U	0.2 U	0.2	U	0.00013	0.00339	7.59	0.00169	0.00846	0.00174	0.	0.00154
Nickel, Dissolved	8.2	ug/L	NA		2.61	NA		NA	NA	NA	2.35 J	4.08	3.41	ı	3.68
Zinc, Dissolved	81	ug/L	2.5	U	5 U	5	U	7.07	J 7.07 L	8.48 J	7.07 U	7.07 U	7.07 l	J	12.1 U
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80	021 and 8260)														
NWTPH-Gx Gasoline Range	1,700	ug/L	50	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
NWTPH-Dx Diesel Range	2,100	ug/L	130	U	50 U	NA		NA	NA	NA	NA	NA	NA		NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA		50 U	NA		NA	NA	NA	NA	NA	NA		NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)														
Benzo(a)pyrene	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Chrysene	1.60E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.02	U	NA	NA		NA	NA	NA	NA	NA	NA		NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA		NA	NA		NA	NA	NA	NA	NA	NA		NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA		NA	NA		NA	0.0052 L	NA	NA	NA	NA		NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA		NA	NA		NA	0.1	NA	NA	NA	NA		NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Tore or rinday flansor		1																	 (
	Most Stringent PCUL	Well ID									M\	W-6	j						
	PCOL	Date	8/29/18		2/19/20		9/6/22		12/7/22		4/12/23		6/7/23		9/26/23		12/12/23	4/10/24	6/25/24
Water Quality Parameters				•				•		•				•					
Specific Conductivity		mS/cm	0.513		0.352		0.153		0.17		0.197		0.197		0.180		0.150	0.212	0.233
Turbidity		NTU	381		3.76		12.8		2.7		0.9		0.9		1.3		6.3	0.14	4.39
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	200.8, 245.1)																		
	Me	tals Method:	200.8/245.1		6020B		6020B/1631E		1638/1631E		1638/1631E	1	.638/1631E		1638/1631E		1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	NA		1.00	U	1.00	U	0.18	J	0.21	J	0.20	J	0.21	J	0.20 J	0.28	0.22 U
Cadmium, Total	7.9	ug/L	NA		1	U	1	U	0.061	U	0.061 l	U	0.061	U	0.061	U	0.061 U	0.061 U	0.061 U
Chromium, Total	50	ug/L	NA		1	U	10	U	3.93	J	2.04	J	1.72	U	1.72	U	1.81 J	1.72 U	1.72 U
Copper, Total	3.1	ug/L	NA		2.5	U	5	U	1.91		0.522	J	1.08		0.881	J	0.505 U	0.627	1.25 J
Lead, Total	8.1	ug/L	NA		1	U	1	U	0.237		0.061 l	U	0.061	U	0.061	U	0.061 U	0.061 U	0.091 U
Mercury, Total	0.025	ug/L	NA		0.2	U	0.2	U	0.00046		0.00046		0.00209		0.00063		0.00072	0.0003	0.00053
Nickel	8.2	ug/L	NA		1.99		NA		NA		NA		NA		1.21	U	1.21 U	1.21 U	1.21 U
Zinc, Total	81	ug/L	NA		5	U	5	U	7.07	U	7.07 l	U	7.07	U	7.07	U	7.07 U	7.07 U	12.1 U
Arsenic, Dissolved	8	ug/L	1	U	1	U	1	U	0.19	J	0.201	J	0.174	J	0.192	J	0.212 J	0.218	0.248 J
Cadmium, Dissolved	7.9	ug/L	1	U	1	U	1	U	0.061	U	0.061 l	U	0.061	U	0.061	U	0.061 U	0.061 U	0.061 U
Chromium, Dissolved	50	ug/L	2	U	1	U	1.30		1.72	U	1.72 l	U	1.72	U	1.72	U	1.77 J	1.72 U	1.72 U
Copper, Dissolved	3.1	ug/L	2	U	2.5	U	5	U	2.13		0.505 L	U	0.712	J	1.11		0.841 J	0.659	1.2 J
Lead, Dissolved	8.1	ug/L	1	U	1	U	1	U	0.172		0.061 U	U	0.061	U	0.061	U	0.061 U	0.061 U	0.091 U
Mercury, Dissolved	0.025	ug/L	2	U	0.2	U	0.2	U	0.00031	J	0.00038	J	0.00163		0.00032	J	0.0003 J	0.00013 U	0.00058
Nickel, Dissolved	8.2	ug/L	NA		2.04		NA		NA		NA		NA		1.21	U	1.21 U	1.21 U	1.21 U
Zinc, Dissolved	81	ug/L	2.5	U	5.97		5	U	7.07	U	7.07 l	U	7.07	U	7.07	U	10.7 J	7.07 U	12.1 U
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80)21 and 8260)																		
NWTPH-Gx Gasoline Range	1,700	ug/L	50	U	NA		100	U	NA		NA		NA		NA		NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	130	U	50	U	50	U	NA		NA		NA		NA		NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA		50	U	NA		NA		NA		NA		NA		NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)																		
Benzo(a)pyrene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	ND(<0.02)		NA		NA		NA		NA		NA		NA		NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA		NA		NA		NA		NA		NA		NA		NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA		NA		NA		NA		0.0052 L	U	NA		NA		NA	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA		NA		NA		NA		0.0		NA		NA		NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Port of Friday Harbor													-
	Most Stringent PCUL	Well ID							MW-7				
	1002	Date	9/7/22 ^F	Ģ	9/7/22 ^F		12/7/22	4/11/23	6/6/23	9/26/23	12/13/23	4/11/24	6/26/24
Water Quality Parameters						•		-			•		
Specific Conductivity		mS/cm	34.935		34.935		36.2	38.750	38.750	38.723	27.189	34.192	39.724
Turbidity		NTU	5.01		5.01		22.4	14.50	14.50	12.60	14.2	52.6	8.14
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	200.8, 245.1)							-					
	Me	etals Method:	1638/1631E		6020B/1631E		1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	1.19		48.05		0.96	0.59 J	0.72 J	0.91 J	0.21 J	1.88	1.02 J
Cadmium, Total	7.9	ug/L	1.25		10	U	0.921	1.67	1.96	1.83	0.061 U	1.11	1.01
Chromium, Total	50	ug/L	186.5		178		119	138	285	612	1.77 J	1030	150
Copper, Total	3.1	ug/L	11.8		50	U	13.5	36.8	20.1	33.3	0.841 J	29.9	13.1
Lead, Total	8.1	ug/L	0.881		10	U	3.42	3.45	7.26	9.13	0.061 U	22.4	5.72
Mercury, Total	0.025	ug/L	0.1195		0.2	U	0.018	0.0168	0.0168	0.0456	0.0003 J	0.0379	0.0235
Nickel	8.2	ug/L	NA		NA		NA	NA	NA	816	1.21 U	60.1	60.3
Zinc, Total	81	ug/L	401.5		323		478	699	620	637	10.7 J	562	464
Arsenic, Dissolved	8	ug/L	1.04		46.4		0.735	0.538 J	0.501 J	0.565 J	0.562 J	0.599	0.710 J
Cadmium, Dissolved	7.9	ug/L	1.26		10	U	0.959	1.67	1.83	1.89	0.061 U	1.16	1.12
Chromium, Dissolved	50	ug/L	119.5		107		7.31	8.17	17.1	63.3	18.2	12.4	10.8 J
Copper, Dissolved	3.1	ug/L	10.8		50	U	19.2	33.1	18.9	23.8	6.31	6.82	9.54
Lead, Dissolved	8.1	ug/L	0.3285		10	U	0.856	0.417	0.328	0.591	0.228	0.332	0.34 J
Mercury, Dissolved	0.025	ug/L	0.0		0.2	U	0.0117	0.0138	0.0143	0.0203	0.00336	0.00615	0.0103
Nickel, Dissolved	8.2	ug/L	NA		NA		NA	NA	NA	788	5.59	51.9	59.1
Zinc, Dissolved	81	ug/L	398.5		313		449	664	601	636	7.07 U	520	466
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80)21 and 8260)												
NWTPH-Gx Gasoline Range	1,700	ug/L	100	U	NA		NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	50	U	NA		NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA		NA		NA	NA	NA	NA	NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)												
Benzo(a)pyrene	1.00E-02	ug/L	0.02	U	NA		NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02	U	NA		NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02	U	NA		NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02	U	NA		NA	NA	NA	NA	NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02	U	NA	_	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02	U	NA	_	NA	NA	NA	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02	U	NA	_	NA	NA	NA	NA	NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.02	U	NA	_	NA	NA	NA	NA	NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	0.1	U	NA	_	NA	NA	NA	NA	NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	0.0052	U	NA		NA	0.0052 U	NA	NA	NA	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	3.23		NA		1.53	0.0	NA	NA	NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

POIL OF FIIDAY HAIDOF	•	7									
	Most Stringent PCUL	Well ID					MW-8				
	1 602	Date	9/8/22	9/8/22	12/8/22	4/10/23	6/5/23	9/25/23	12/14/23	4/9/24	6/24/24
Water Quality Parameters											
Specific Conductivity		mS/cm	34.705	34.705	37.9	42.671	42.671	42.706	39.820	36.155	39.749
Turbidity		NTU	2.07	2.07	38.6	15.30	15.30	26.90	22.7	27.9	28.8
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	A 200.8, 245.1)										
	Me	etals Method:	1638/1631E	6020B/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E	1638/1631E
Arsenic, Total	8	ug/L	1.49	43.40	1.13	0.97	1.12	1.19 J	1.18	1.08 J	1.73 J
Cadmium, Total	7.9	ug/L	2.28	10	J 1.16	2.26	1.96	2.70	1.42	1.38	1.46
Chromium, Total	50	ug/L	64.4	65.4	98.1	277	177	2010	936	588	917
Copper, Total	3.1	ug/L	44.2	50	18.9	47.2	36.2	96.7	82.7	101	78.0
Lead, Total	8.1	ug/L	0.466	10	1.06	1.18	1.16	1.69	1.09	8.38	5.47
Mercury, Total	0.025	ug/L	0.0102	0.2	J 0.00991	0.0109	0.0137	0.0122	0.0121	0.0109	0.014
Nickel	8.2	ug/L	NA	NA	NA	NA	NA	799	547	328	386
Zinc, Total	81	ug/L	233	196	197	261	261	346	303	257	232
Arsenic, Dissolved	8	ug/L	1.54	46.7	0.973	0.756	0.977	0.881 J	0.945	0.743 J	0.892 J
Cadmium, Dissolved	7.9	ug/L	2.30	10	1.15	2.63	1.74	2.53	1.38	1.37	1.46
Chromium, Dissolved	50	ug/L	48.5	46.7	17.7	2.41	6.84	12.9 J	6.39	4.29 U	28.8
Copper, Dissolved	3.1	ug/L	57.1	50	18.5	21.2	25.3	76.1	28.2	43.4	45.6
Lead, Dissolved	8.1	ug/L	0.434	10	0.745	0.344	0.435	0.301 J	0.152 U	0.180	0.227 U
Mercury, Dissolved	0.025	ug/L	0.00878	0.2	0.00875	0.00782	0.0104	0.00868	0.00765	0.00531	0.00666
Nickel, Dissolved	8.2	ug/L	NA	NA	NA	NA	NA	689	521	294	381
Zinc, Dissolved	81	ug/L	242	190	208	275	240	327	219	233	227
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80	021 and 8260)										
NWTPH-Gx Gasoline Range	1,700	ug/L	100	U NA	NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	50	U NA	NA	NA	NA	NA	NA	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)										
Benzo(a)pyrene	1.00E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	1.60E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L		U NA	NA	NA	NA	NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.02	U NA	NA	NA	NA	NA	NA	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	0.1	U NA	NA	NA	NA	NA	NA	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	0.00915	NA	0.0184	0.0547	0.193 U		NA	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	0.87	NA	1.48	0.04	89.8	NA	NA	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

1 of Corriday Harbor																			
	Most Stringent PCUL	Well ID									MW-9								
	PCOL	Date	9/6/22 ^G		9/6/22 ^G		12/6/22		4/10/23 ^M		6/7/2023 R		9/25/23	12	2/14/23		4/9/24		6/24/24
Water Quality Parameters																			
Specific Conductivity		mS/cm	37.987		37.987		47.1		45.734		45.734		43.766	4	12.628		41.255		45.272
Turbidity		NTU	2.12		2.12		3.81		1.48		1.48		1.44		1.55		1.74		1.65
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	200.8, 245.1)																		
	Me	etals Method:	1638/1631E		6020B/1631E		1638/1631E		1638/1631E		1638/1631E	1	.638/1631E	163	88/1631		1638/1631E		1638/1631E
Arsenic, Total	8	ug/L	1.79		53.60		1.77		1.77		1.84		2.11		1.97		1.34	J	1.89
Cadmium, Total	7.9	ug/L	0.485		10	U	0.343		0.387		0.987		0.524		0.862		0.373	J	0.334 J
Chromium, Total	50	ug/L	1.72	U	10 ا	U	2.37	J	1.72	U	4.29 U	J	4.29 U		5.46	J	4.29	U	4.29 U
Copper, Total	3.1	ug/L	15.1		50 l	U	14.1		13.5		16.8		18.0		17.5		13.4		19.3
Lead, Total	8.1	ug/L	1.59		ا 10	U	2.97		1.37		1.31		2.60		3.74		2.99		1.57
Mercury, Total	0.025	ug/L	0.155		0.2	U	0.042		0.0334		0.0404		0.206	C	0.0432		0.0379		0.0513
Nickel	8.2	ug/L	NA		NA		NA		NA		NA		3.03 U		6.7	J	3.03	U	3.03 U
Zinc, Total	81	ug/L	137		114		137		121		217		148		496		152		133
Arsenic, Dissolved	8	ug/L	1.88		53.6		1.48		1.58		2.01		1.98		1.73	J	1.84		2.08
Cadmium, Dissolved	7.9	ug/L	0.438		10	U	0.324		0.371		1.05		0.43 J		0.826		0.38	J	0.317 J
Chromium, Dissolved	50	ug/L	1.72	U	20.1		4.38	J	1.72	U	4.29 U	J	4.29 U		4.29	U	4.29	U	4.29 U
Copper, Dissolved	3.1	ug/L	14.5		100	U	11.4		10.7		17.2		15.4		13.1		10.9		15.9
Lead, Dissolved	8.1	ug/L	1.28		10	U	1.13		0.751		1.44		1.33		0.988		0.849		0.985
Mercury, Dissolved	0.025	ug/L	0.138		0.2	U	0.0394		0.029		0.0445		0.182	C	0.0385		0.0288		0.0415
Nickel, Dissolved	8.2	ug/L	NA		NA		NA		NA		NA		3.03 U		4.07		3.03	U	3.03 U
Zinc, Dissolved	81	ug/L	137		131		130		117		212		151		240		141		135
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (80	021 and 8260)																		
NWTPH-Gx Gasoline Range	1,700	ug/L	100	U	NA		NA		NA		NA		NA		NA		NA		NA
NWTPH-Dx Diesel Range	2,100	ug/L	50	U	NA		NA		NA		NA		NA		NA		NA		NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA		NA		NA		NA		NA		NA		NA		NA		NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 827	0 SIM)																		
Benzo(a)pyrene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
Benzo(a)anthracene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
Benzo(b)fluoranthene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
Benzo(k)fluoranthene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
Chrysene	1.60E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	0.02	U	NA		NA		NA		NA		NA		NA		NA		NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	0.02	U	NA		NA	J	NA		NA		NA		NA		NA		NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	0.1	U	NA		NA		NA		NA		NA		NA		NA		NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	0.0052	U	NA		NA		0.0107		0.193 U	J	NA		NA		NA		NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	3.16		NA		1.76		0.02		NA		NA		NA		NA		NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Port of Filliay Harbor	•	1	-	1	7			•	ī	•		-	•	1	
	Most Stringent PCUL	Well ID	SPZ-1	SPZ-1	MP-1	SFD-4	SWP-1	BLWA-11	BLWA-13	AST-2	AST-2 (DUP)	AST-3	SRWA-9	SRWA-9	SRWA-10
	1 602	Date	6/25/24	7/30/24	7/30/24	7/25/22	7/25/22	7/25/22	7/27/22	7/26/22	7/26/22	7/28/22	7/26/22	7/26/22	7/28/22
Water Quality Parameters															
Specific Conductivity		mS/cm	45.431	32.621	31.372	NA	NA	NA	NA	0.550	0.550	1.952	NA	NA	NA
Turbidity		NTU	60.4	15.5	7.71	NA	NA	NA	NA	95.52	95.52	143	NA	NA	NA
Total and Dissolved Metals (EPA 6020B, 1631E, 1638, EPA	A 200.8, 245.1)														
	Me	etals Method:	1638/1631E	1638/1631E	1638/1631E	1638	1638	1638	1638	1638	1638	1638	6020B, 1631E	1638	1638
Arsenic, Total	8	ug/L	2.41	5.03	3.36	39.60	52.70	12.30	6.51	6.37	NA	5.22	5.00 U	39.70	4.28
Cadmium, Total	7.9	ug/L	0.171	0.152 U	0.223 J	1.79	0.781	0.477	1.02	0.195	NA	0.378	1 U	1.55	0.186
Chromium, Total	50	ug/L	29.9	5.98	4.29 U	67.8	357	28.4	13.5	13.5	NA	24.1	2.85	631	21.9
Copper, Total	3.1	ug/L	40.6	15.2	23.6	520	1110	238	171	74.5	NA	139	5.37	617	63.7
Lead, Total	8.1	ug/L	54.6	13.4	7.24	115	89.2	50.9	70.6	12.9	NA	27.1	1 U	324	26.0
Mercury, Total	0.025	ug/L	0.117	0.0432	0.0172	0.376	0.253	0.0227	0.155	0.0783	NA	0.0282	0.022	2.88	0.0535
Nickel	8.2	ug/L	20.2	6.97	4.56	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Total	81	ug/L	35.8 J	30.3 U	183	199	511	134	502	12.3 J	NA	64.3	5 U	719	76.4
Arsenic, Dissolved	8	ug/L	1.46	3.19	2.01	11.5	0.241 J	4.25	2.88	2.28	NA	0.694 J	NA	0.366 J	0.237
Cadmium, Dissolved	7.9	ug/L	0.152 L	0.152 U	0.168 J	0.061 U	0.061 U	0.247 J	0.811	0.061 U	NA	0.061 L	J NA	0.061 U	J 0.061 U
Chromium, Dissolved	50	ug/L	4.29 L	J 4.29 U	4.29 U	1.72 U	1.72 U	4.29 U	4.29 U	1.72 U	NA	5.03	NA	1.72 U	J 1.72 U
Copper, Dissolved	3.1	ug/L	2.27 L	J 2.27 U	9.69	8.46	1.91	2.63	76.9	0.698 J	NA	2.03	NA	4.68	3.47
Lead, Dissolved	8.1	ug/L	0.398 J	0.235	0.63	0.376	0.04 U	0.102 J	24.5	0.262	NA	0.98	NA	0.108 J	0.087 J
Mercury, Dissolved	0.025	ug/L	0.00013 L	0.00043	0.00071	0.00068	0.00063	0.00088	0.060	0.00032 J	NA	0.00098	NA	0.00265	0.0269
Nickel, Dissolved	8.2	ug/L	9.28	6.45	3.03 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved	81	ug/L	30.3 L	30.3 U	162	7.48 J	7.07 U	21.2 J	433	7.07 U	NA	7.07 L	J NA	7.07 U	8.89 J
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (8	021 and 8260)														
NWTPH-Gx Gasoline Range	1,700	ug/L	NA	NA	NA	100 U	NA	100 U	100 U	290	290	100 L	J 100 U	NA	NA
NWTPH-Dx Diesel Range	2,100	ug/L	NA	NA	NA	160 x	NA	63 x	50 U	290 x	290	x 290 x	130 x	NA	NA
NWTPH-Dx Diesel Range with SGC	2,100	ug/L	NA	NA	NA	50 U	NA	50 U	50 U	NA	NA	50 L	J NA	NA	NA
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 82	70 SIM)														
Benzo(a)pyrene	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.17	0.080	NA	NA	NA	0.02 U	NA	NA
Benzo(a)anthracene	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.2	0.068	NA	NA	NA	0.02 U	NA	NA
Benzo(b)fluoranthene	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.16 fb	0.13	NA	NA	NA	0.02 U	NA	NA
Benzo(k)fluoranthene	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.44	0.043	NA	NA	NA	0.02 U	NA	NA
Chrysene	1.60E-02	ug/L	NA	NA	NA	NA	NA	0.53	0.069	NA	NA	NA	0.02 U	NA	NA
Dibenz(a,h)anthracene	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.03 fb	0.02 U	NA	NA	NA	0.02 U	NA	NA
Indeno[1,2,3-cd]pyrene	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.14 fb	0.074	NA	NA	NA	0.02 U	NA	NA
cPAH Equivalent (TEQ)	1.00E-02	ug/L	NA	NA	NA	NA	NA	0.27	0.11	NA	NA	NA	0.02 U	NA	NA
Total PCB Aroclors (EPA 8082A)	0.1	ug/L	NA	NA	NA	NA	NA	0.1 U	NA	NA	NA	NA	0.1 U	NA	NA
Tributyltin (EPA 8270E-SIM)	7.40E-03	ug/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0052 U	NA	NA
Dioxins/Furans (EPA 1613) TEQ	1.59E-02	pg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	361.1	NA	NA

Table 3-10. Summary of Upland Groundwater Data Jensen's Shipyard and Marina

Most Stringent PCUL Date	# Detections	# Non-Detects	Detect Frequency	Max Concentration (ug/L)	# PCUL Exceedances	Exceedance	Max PCUL
Water Quality Parameters# SamplesSpecific ConductivitymS/cmTurbidityNTU	# Detections	# Non-Detects		Concentration			
Specific Conductivity mS/cm Turbidity NTU # Samples #	# Detections	# Non-Detects					Eveneda:
Turbidity NTU			rrequericy	(ug/L)		Frequency	Exceedance
,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Exocedanices	rrequericy	Factor
ITotal and Dissolved Metals (FPA 6020B, 1631F, 1638, FPA 200,8, 245,1)						1	
						1	
Metals Method:							
Arsenic, Total 8 ug/L 93.00	88.00	5.00	94.6%	53.60	13	14%	6.7
Cadmium, Total 7.9 ug/L 93	42	51	45.2%	10	4	4%	1.27
Chromium, Total 50 ug/L 93	65	28	69.9%	2,010	24	26%	40.2
Copper, Total 3.1 ug/L 93	85	8	91.4%	1,110	77	83%	358.1
Lead, Total 8.1 ug/L 93	72	21	77.4%	324	19	20%	40.0
Mercury, Total 0.025 ug/L 93	78	15	83.9%	2.9	38	41%	115.2
Nickel 8.2 ug/L 43	35	8	81.4%	816	14	33%	99.51
Zinc, Total 81 ug/L 93	57	36	61.3%	728	38	41%	8.99
Arsenic, Dissolved 8 ug/L 98	91	7	92.9%	53.6	9	9%	6.70
Cadmium, Dissolved 7.9 ug/L 98	34	64	34.7%	10	4	4%	1.27
Chromium, Dissolved 50 ug/L 98	37	61	37.8%	119.5	3	3%	2.39
Copper, Dissolved 3.1 ug/L 98	80	18	81.6%	100	61	62%	32.26
Lead, Dissolved 8.1 ug/L 98	51	47	52.0%	24.5	5	5%	3.02
Mercury, Dissolved 0.025 ug/L 98	75	23	76.5%	7.6	35	36%	303.6
Nickel, Dissolved 8.2 ug/L 43	33	10	76.7%	788	12	28%	96.1
Zinc, Dissolved 81 ug/L 98	47	51	48.0%	738	34	35%	9.11
Total Petroleum Hydrocarbons (NWTPH-Dx) and BTEX (8021 and 8260)							
NWTPH-Gx Gasoline Range 1,700 ug/L 19	3	16	15.8%	290	0	0%	
NWTPH-Dx Diesel Range 2,100 ug/L 25	12	13	48.0%	290	0	0%	
NWTPH-Dx Diesel Range with SGC 2,100 ug/L 10	0	10	0%	50	0	0%	
cPAH Semi-Volatile Organic Compounds (EPA 8270D, 8270 SIM)							
Benzo(a)pyrene 1.00E-02 ug/L 12	2	10	17%	0.17	12	100%	17.0
Benzo(a)anthracene 1.00E-02 ug/L 12	2	10	17%	0.20	12	100%	20.0
Benzo(b)fluoranthene 1.00E-02 ug/L 12	2	10	17%	0.16	12	100%	16.0
Benzo(k)fluoranthene 1.00E-02 ug/L 12	2	10	17%	0.44	12	100%	44.0
Chrysene 1.60E-02 ug/L 12	2	10	17%	0.53	12	100%	33.1
Dibenz(a,h)anthracene 1.00E-02 ug/L 12	1	11	8%	0.03	12	100%	3.0
Indeno[1,2,3-cd]pyrene 1.00E-02 ug/L 12	2	10	17%	0.14	12	100%	14.0
cPAH Equivalent (TEQ) 1.00E-02 ug/L 10	3	7	30%	0.27	10	100%	27.2
Total PCB Aroclors (EPA 8082A) 0.1 ug/L 5	0	5	0%	0.10	0	0%	
Tributyltin (EPA 8270E-SIM) 7.40E-03 ug/L 18	6	12	33%	0.19	9	50%	26.08
Dioxins/Furans (EPA 1613) TEQ 1.59E-02 pg/L 17	17	0	100%	361.10	14	82%	22710.7

Table 3-6. Summary of Upland Groundwater Data

Jensen's Shipyard and Marina

Port of Friday Harbor

NA - indicates value not available; not analyzed

BOLD - indicates that the concentration in the sample exceeds the respective reporting limit (quantified value)

Blue shaded cell indicates that the concentration in the sample exceeds the above listed applicable screening level.

Orange shaded cell indicates that the ND value exceeds the above listed applicable screening level.

Total cPAH is the sum of detected values based on the toxic equivalency factor (TEQ) per WAC 173- 340-708(8)(e)

ug/L - micrograms per liter

ug/L - micrograms per liter

mS/cm - milliSiemens per centimeter

U - indicates that the value is a laboratory reporting limit

J - reported concentration is an estimate.

SGC - Silica Gel Cleanup

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

fb - The analyte was detected in the method blank.

Field duplicates detections are shown as an average with the parent sample detection.

cPAH - carcinogenic polycyclic aromatic hydrocarbons

Table 5-1. Preliminary Cleanup Levels for Soil Jensen's Shipyard and Marina

|--|

			Huma	an Health	Marine Surface Water	TEE	Sediment		Modify	ing Factors		
			Method B, Direct Contact,	Method B, Direct Contact, Non-	Protective of Groundwater to Marine Surface Water, Vadose	Industrial or	MTCA SMS	Most Stringent	Natural	Practical Quantitation	Most Stringent	
Parameter Group	CAS#	Chemical Analyte	Cancer	Cancer	Zone	Commercial Site	Benthic SCO	PCUL	Background	Limit (PQL)	PCUL	Basis for Preliminary Aggregate PCUL
	7440-38-2	Arsenic	6.7E-01	2.4E+01	2.9E+00	20	57	6.7E-01	7.3	0.2		Natural Background
	7440-43-9			8.0E+01	1.1E+00	36	5.7	1.1E+00	0.77	0.2		Protective of Groundwater to Marine Surface Water, Vadose Zone
		Chromium (III)		1.2E+05	4.9E+06	135	260	1.4E+02	48	1		Simplified TEE for Industrial or Commercial Site
Metals (mg/kg)	7440-50-8	Copper	3.2E+03		1.4E+00	550	390	1.4E+00	36	1		Natural Background
		Lead		2.5E+02	1.6E+03	220	450	2.2E+02	24	0.2		Simplified TEE for Industrial or Commercial Site
	7439-97-6	Mercury			2.6E-02	9	0.41	2.6E-02	0.07	0.2		Practical Quantitation Limit (PQL)
	7440-02-0	Nickel	1.6E+03		1.1E+01	1,850		1.1E+01	48	0.2		Natural Background
	7440-66-6		2.4E+04		1.0E+02	570	410	1.0E+02	85	1		Protective of Groundwater to Marine Surface Water, Vadose Zone
	12674-11-2		5.6E+00	1.4E+01	6.4E-03			6.4E-03		0.002		Protective of Groundwater to Marine Surface Water, Vadose Zone
CB Aroclors (mg/kg)	11097-69-1		1.6E+00	5.0E-01	2.7E-04			2.7E-04		0.002		
22 7 11 001010 (1118/ 118/	11096-82-5			5.0E-01				5.0E-01		0.002		Method B, Direct Contact, Non-Cancer
	1336-36-3	Total PCB Aroclors		5.0E-01	1.1E-05	2	0.13	1.1E-05		0.002	2.00E-03	Practical Quantitation Limit (PQL)
xin/Furan Congeners												
(ng/kg)	1746-01-6	2,3,7,8 TCDD	9.3E-05	1.3E-05	2.5E-08			2.5E-08	0.0000052	0.5		Practical Quantitation Limit (PQL)
		Gasoline range	100			12,000		1.0E+02		5		Method B, Direct Contact, Cancer
roleum Hydrocarbons		Diesel range	2,000			15,000		2.0E+03		10		Method B, Direct Contact, Cancer
(mg/kg)		Oil range	2,000					2.0E+03		50		Method B, Direct Contact, Cancer
		Total Diesel and Oil Range	2,000					2.0E+03		50	2.00E+03	Method B, Direct Contact, Cancer
		Benz[a]anthracene					1.3			0.02		see cPAH TEQ
		Benzo(b)fluoranthene								0.02		see cPAH TEQ
	207-08-9	Benzo(k)fluoranthene								0.02		see cPAH TEQ
cPAHs (mg/kg)	50-32-8	Benzo(a)pyrene	1.9E-01	2.4E+01	3.1E-04	300	1.6	3.1E-04		0.02	2.00E-02	Y Y
	218-01-9	Chrysene					1.4			0.02		see cPAH TEQ
	-	Dibenzo(a,h)anthracene					0.23			0.02		see cPAH TEQ
	193-39-5	Indeno(1,2,3-cd)pyrene					0.6			0.02		see cPAH TEQ
		Total cPAH TEQ	1.9E-01	2.4E+01	3.1E-04		1.6	3.1E-04		0.02		Practical Quantitation Limit (PQL)
	83-32-9	Acenaphthene	4.8E+03		3.1E+00		0.5	5.0E-01		0.002	5.00E-01	MTCA SMS Benthic SCO
	120-12-7	Anthracene	2.4E+04		4.7E+01		0.96	9.6E-01		0.002	9.60E-01	MTCA SMS Benthic SCO
	191-24-2	Benzo(g,h,i)perylene					0.67	6.7E-01		0.002		MTCA SMS Benthic SCO
	86-73-7	Fluorene	3.2E+03		1.6E+00		0.54	5.4E-01		0.002		MTCA SMS Benthic SCO
Other PAHs (mg/kg)	90-12-0	1-Methylnaphthalene	5.6E+03	2.0E+01				2.0E+01		0.002		Method B, Direct Contact, Non-Cancer
	91-57-6	2-Methylnaphthalene	3.2E+02				0.67	6.7E-01		0.002		MTCA SMS Benthic SCO
	91-20-3	Naphthalene	1.6E+03		1.4E+02		2.1	2.1E+00		0.002	2.10E+00	MTCA SMS Benthic SCO
	85-01-8	Phenanthrene					1.5			0.002		
	129-00-0		2.4E+03		1.1E+01		2.6	2.6E+00		0.002		MTCA SMS Benthic SCO
	62-53-3	Aniline	5.6E+02	1.8E+02				1.8E+02		0.5		Method B, Direct Contact, Non-Cancer
	103-33-3	Azobenzene		9.1E+00				9.1E+00		0.5		Method B, Direct Contact, Non-Cancer
	92-87-5	Benzidine	2.4E+02	8.2E-04	6.4E-07			6.4E-07		0.5		Practical Quantitation Limit (PQL)
	65-85-0	Benzoic acid	3.2E+05				0.65	6.5E-01		0.5		MTCA SMS Benthic SCO
	100-51-6	Benzyl alcohol	8.0E+03				0.57	5.7E-01		0.1		MTCA SMS Benthic SCO
		Bis(2-chloroethoxy)methane	2.4E+02					2.4E+02		0.01		Method B, Direct Contact, Cancer
		Bis(2-chloroethyl)ether		9.1E-01	3.3E-04			3.3E-04		0.025		Practical Quantitation Limit (PQL)
		Bis(chloromethyl)ether		4.5E-03	7.4E-05			7.4E-05		0.025		Practical Quantitation Limit (PQL)
	-	Bis(2-chloro-1-methylethyl)ether	3.2E+03	1.4E+01	2.1E+00			2.1E+00		0.01	2.10E+00	Protective of Groundwater to Marine Surface Water, Vadose Zone
		Bis(2-ethylhexyl) phthalate	1.6E+03	7.1E+01	1.0E-01		1.3	1.0E-01		0.16		Practical Quantitation Limit (PQL)
	-	Butyl benzyl phthalate	1.6E+04	5.3E+02	3.6E-03		0.063	3.6E-03		0.03		Practical Quantitation Limit (PQL)
	-	4-Chloroaniline	3.2E+02	5.0E+00				5.0E+00		1		Method B, Direct Contact, Non-Cancer
	59-50-7	4-Chloro-3-methylphenol (chlorocreso	8.0E+03		5.0E-01			5.0E-01		0.13		Protective of Groundwater to Marine Surface Water, Vadose Zone
	91-58-7	2-Chloronaphthalene (beta-)	6.4E+03		5.4E+00			5.4E+00		0.13		Protective of Groundwater to Marine Surface Water, Vadose Zone
	95-57-8	2-Chlorophenol	4.0E+02		2.0E-01			2.0E-01		0.1		
	84-74-2	Dibutyl phthalate	8.0E+03		2.8E-01	200	1.4	2.8E-01		0.03	2.80E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	95-50-1	1,2-Dichlorobenzene	7.2E+03		9.3E+00		0.035	3.5E-02		0.01	3.50E-02	MTCA SMS Benthic SCO

Table 5-1. Preliminary Cleanup Levels for Soil Jensen's Shipyard and Marina
Port of Friday Harbor

Port	ОТ	Friday	Harbor

			Huma	an Health	Marine Surface Water	TEE	Sediment		Modify	ing Factors		
					Protective of							
			Method B,	7	Groundwater to Marine	Simplified TEE for		Most		Practical	Most	
			Direct Contact,	Contact, Non-	Surface Water, Vadose	Industrial or	MTCA SMS	Stringent	Natural	Quantitation	Stringent	
Parameter Group	CAS#	Chemical Analyte	Cancer	Cancer	Zone	Commercial Site	Benthic SCO	PCUL	Background	Limit (PQL)	PCUL	Basis for Preliminary Aggregate PCUL
	541-73-1	1,3-Dichlorobenzene			2.3E-02			2.3E-02		0.01	2.30E-02	Protective of Groundwater to Marine Surface Water, Vadose Zone
	106-46-7	1,4-Dichlorobenzene	5.6E+03	1.9E+02	3.3E+00	-	0.11	1.1E-01		0.01	1.10E-01	MTCA SMS Benthic SCO
	91-94-1	3,3'-Dichlorobenzidine		2.2E+00	2.2E-04	-		2.2E-04		0.1	1.00E-01	Practical Quantitation Limit (PQL)
	120-83-2	2,4-Dichlorophenol	2.4E+02		6.9E-02			6.9E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
	103-23-1	Di(2-ethylhexyl)adipate	4.8E+04	8.3E+02				8.3E+02		0.1	8.30E+02	Method B, Direct Contact, Non-Cancer
	84-66-2	Diethyl phthalate	6.4E+04		1.1E+00		0.2	2.0E-01		0.1	2.00E-01	MTCA SMS Benthic SCO
	131-11-3	Dimethyl phthalate			2.8E+00	-	0.071	7.1E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
	105-67-9	2,4-Dimethylphenol	1.6E+03		1.3E+00	-	0.029	2.9E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
	528-29-0	1,2-Dinitrobenzene	8.0E+00					8.0E+00		0.1	8.00E+00	Method B, Direct Contact, Cancer
	99-65-0	1,3-Dinitrobenzene	8.0E+00					8.0E+00		0.1	8.00E+00	Method B, Direct Contact, Cancer
nor SVOCs (mg/kg)	100-25-4	1,4-Dinitrobenzene	8.0E+00					8.0E+00		0.1	8.00E+00	Method B, Direct Contact, Cancer
ner SVOCs (mg/kg)	534-52-1	4,6-Dinitro-o-cresol (DNOC)	6.4E+00		1.3E-01			1.3E-01		0.5	5.00E-01	Practical Quantitation Limit (PQL)
	51-28-5	2,4-Dinitrophenol	1.6E+02		4.0E-01	-		4.0E-01		0.3	4.00E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	121-14-2	2,4-Dinitrotoluene	1.6E+02	3.2E+00	2.8E-03	-		2.8E-03		0.05	5.00E-02	Practical Quantitation Limit (PQL)
	606-20-2	2,6-Dinitrotoluene	2.4E+01	6.7E-01				6.7E-01		0.05	6.70E-01	Method B, Direct Contact, Non-Cancer
	117-84-0	Di-n-octyl phthalate	8.0E+02				6.2	6.2E+00		0.1	6.20E+00	MTCA SMS Benthic SCO
	123-91-1	1,4-Dioxane	2.4E+03	1.0E+01				1.0E+01		0.1	1.00E+01	Method B, Direct Contact, Non-Cancer
	122-66-7	1,2-Diphenylhydrazine		1.3E+00	6.8E-04			6.8E-04		0.01	1.00E-02	Practical Quantitation Limit (PQL)
	118-74-1	Hexachlorobenzene	6.4E+01	6.3E-01	8.0E-06	31	0.022	8.0E-06		0.01	1.00E-02	Practical Quantitation Limit (PQL)
	87-68-3	Hexachlorobutadiene	8.0E+01	1.3E+01	2.1E-04		0.011	2.1E-04		0.01	1.00E-02	Practical Quantitation Limit (PQL)
	77-47-4	Hexachlorocyclopentadiene	4.8E+02		3.2E-02			3.2E-02		0.03	3.20E-02	Protective of Groundwater to Marine Surface Water, Vadose Zone
	67-72-1	Hexachloroethane	5.6E+01	2.5E+01	1.6E-04			1.6E-04		0.01	1.00E-02	Practical Quantitation Limit (PQL)
	78-59-1	Isophorone	1.6E+04	1.1E+03	5.8E-01			5.8E-01		0.01	5.80E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	95-48-7	2-Methylphenol (o-cresol)	4.0E+03				0.063	6.3E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
	108-39-4	3-Methylphenol (m-cresol)	4.0E+03					4.0E+03		0.1		Method B, Direct Contact, Cancer
	106-44-5	4-Methylphenol (p-cresol)	8.0E+03				0.67	6.7E-01		0.1		MTCA SMS Benthic SCO
	88-74-4	2-Nitroaniline	8.0E+02					8.0E+02		0.05	8.00E+02	Method B, Direct Contact, Cancer
	100-01-6	4-Nitroaniline	3.2E+02	5.0E+01				5.0E+01		1		Method B, Direct Contact, Non-Cancer
	98-95-3	Nitrobenzene	1.6E+02		6.4E-01			6.4E-01		0.01		Protective of Groundwater to Marine Surface Water, Vadose Zone
	62-75-9	n-Nitrosodimethylamine	6.4E-01	3.7E-03	1.5E-03			1.5E-03		0.01		Practical Quantitation Limit (PQL)
	86-30-6	n-Nitrosodiphenylamine		2.0E+02	3.9E-02		0.028	2.8E-02		0.01		
	621-64-7	n-Nitrosodi-n-propylamine		1.4E-01	5.5E-04			5.5E-04		0.01		Practical Quantitation Limit (PQL)
	87-86-5	Pentachlorophenol	4.0E+02	2.5E+00	3.2E-05	11	0.36	3.2E-05		0.05		
		Phenol	2.4E+04		5.4E+02		0.42	4.2E-01		0.1		MTCA SMS Benthic SCO
		Pyridine	8.0E+01					8.0E+01		0.1		Method B, Direct Contact, Cancer
	58-90-2	2,3,4,6-Tetrachlorophenol	2.4E+03					2.4E+03		0.0063		Method B, Direct Contact, Cancer
		1,2,4-Trichlorobenzene	8.0E+02	3.4E+01	1.4E-03		0.031	1.4E-03		0.01		Practical Quantitation Limit (PQL)
		2,4,5-Trichlorophenol	8.0E+03		2.2E+01			2.2E+01		0.1		Protective of Groundwater to Marine Surface Water, Vadose Zone
		2,4,6-Trichlorophenol	8.0E+01	9.1E+01	3.3E-03			3.3E-03		0.1		Practical Quantitation Limit (PQL)
	67-64-1	Acetone	7.2E+04					7.2E+04		5		Method B, Direct Contact, Cancer
	107-02-8	Acrolein	4.0E+01		4.4E-03			4.4E-03		0.02		Practical Quantitation Limit (PQL)
		Acrylonitrile	8.0E+01	1.9E+00	1.2E-04			1.2E-04		0.02		Practical Quantitation Limit (PQL)
	100-52-7	Benzaldehyde	8.0E+03	2.5E+02	1.2L-04 			2.5E+02		0.02		Method B, Direct Contact, Non-Cancer
	71-43-2	Benzene	3.2E+02	1.8E+01	8.8E-03			8.8E-03		0.02		Practical Quantitation Limit (PQL)
		Bromobenzene	6.4E+02		0.0E-U3 			6.4E+02		0.05		Method B, Direct Contact, Cancer
		Bromoform	1.6E+03	1.3E+02	7.8E-02			7.8E-02		0.05		Protective of Groundwater to Marine Surface Water, Vadose Zone
			1.6E+03 1.1E+02	1.3E+U2 	7.8E-02 4.4E+00			4.4E+00		0.05		Protective of Groundwater to Marine Surface Water, Vadose Zone
		Bromomethane 2-Butoxyethanol (EGBE)								0.05		
		, , ,	8.0E+03					8.0E+03 4.0E+03		0.05		Method B, Direct Contact, Cancer
		n-Butylbenzene	4.0E+03									Method B, Direct Contact, Cancer
		sec-Butylbenzene	8.0E+03					8.0E+03		0.05		Method B, Direct Contact, Cancer
	98-06-6	tert-Butylbenzene	8.0E+03					8.0E+03		0.05	8.UUE+U3	Method B, Direct Contact, Cancer

Table 5-1. Preliminary Cleanup Levels for Soil Jensen's Shipyard and Marina Port of Friday Harbor

FOIL OF FILLAY HAIDO	-		Huma	an Health	Marine Surface Water	TEE	Sediment		Modify	ing Factors		
Daniel de Carre	C4C#	Chamical Araba	Method B, Direct Contact, Cancer	Method B, Direct Contact, Non- Cancer	Protective of Groundwater to Marine Surface Water, Vadose Zone	Simplified TEE for Industrial or Commercial Site	MTCA SMS Benthic SCO	Most Stringent	Natural Background	Practical Quantitation Limit (PQL)	Most Stringent	
Parameter Group	CAS #	Chemical Analyte				Commercial Site		PCUL		, , ,	PCUL	Basis for Preliminary Aggregate PCUL
	56-23-5	Carbon tetrachloride	3.2E+02	1.4E+01	2.9E-03			2.9E-03		0.05		1 1 1
	108-90-7	Chlorobenzene	1.6E+03		1.7E+00			1.7E+00		0.05	1.70E+00 1.00E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	75-00-3	Chloroethane	8.0E+02	 3.2E+01	2.9E+00			0.0E+00		0.1 0.05		Practical Quantitation Limit (PQL) Protective of Groundwater to Marine Surface Water, Vadose Zone
	67-66-3	Chloroform						2.9E+00				Practical Quantitation Limit (PQL)
	74-87-3 107-05-1	Chloromethane 3-Chloro-1-propene (allyl chloride)		 4.8E+01				0.0E+00 4.8E+01		0.5 0.5		Method B, Direct Contact, Non-Cancer
	95-49-8	2-Chlorotoluene	1.6E+03	4.00-01				1.6E+03		0.05		Method B. Direct Contact, Non-Cancer
	106-43-4	4-Chlorotoluene	1.6E+03					1.6E+03		0.05		Method B, Direct Contact, Cancer
	124-48-1	Dibromochloromethane	1.6E+03	1.2E+01	1.0E-02			1.0E-02		0.05	5.00E-02	Practical Quantitation Limit (PQL)
	96-12-8	1,2-Dibromo-3-chloropropane	1.6E+01	2.3E-01	1.02-02			2.3E-01		0.5		Practical Quantitation Limit (1 QL)
	74-95-3	Dibromomethane	8.0E+02					8.0E+02		0.05		Method B, Direct Contact, Cancer
	75-27-4	Dichlorobromomethane	1.6E+03	1.6E+01	1.3E-02			1.3E-02		0.001		
	75-71-8	Dichlorodifluoromethane	1.6E+04					1.6E+04		0.5		Method B, Direct Contact, Cancer
	75-34-3	1,1-Dichloroethane	1.6E+04	1.8E+02				1.8E+02		0.002	1	Method B, Direct Contact, Non-Cancer
	107-06-2	1,2-Dichloroethane (EDC)	4.8E+02	1.1E+01	3.5E-01			3.5E-01		0.002		Protective of Groundwater to Marine Surface Water, Vadose Zone
	75-35-4	1,1-Dichloroethylene	4.0E+03		2.6E+01			2.6E+01		0.001		Protective of Groundwater to Marine Surface Water, Vadose Zone
	156-59-2	cis-1,2-Dichloroethylene	1.6E+02					1.6E+02		0.001	-	Method B, Direct Contact, Cancer
	156-60-5	trans-1,2-Dichloroethylene	1.6E+03		5.2E+00			5.2E+00		0.001	5.20E+00	Protective of Groundwater to Marine Surface Water, Vadose Zone
	78-87-5	1,2-Dichloropropane	3.2E+03	2.7E+01	1.6E-02			1.6E-02		0.05	5.00E-02	Practical Quantitation Limit (PQL)
	142-28-9	1,3-Dichloropropane	1.6E+03					1.6E+03		0.05		
VOCs (mg/kg)		cis-1,3-Dichloropropene						0.0E+00		0.05	1	Practical Quantitation Limit (PQL)
		trans-1,3-Dichloropropene						0.0E+00		0.05	1	Practical Quantitation Limit (PQL)
		Ethylbenzene	8.0E+03		1.8E-01			1.8E-01		0.02		, , , , , , , , , , , , , , , , , , ,
		Ethyl ether	1.6E+04					1.6E+04		0.001	1	Method B, Direct Contact, Cancer
		Ethylene dibromide (EDB)	7.2E+02	5.0E-01				5.0E-01		0.001	5.00E-01	Method B, Direct Contact, Non-Cancer
	50-00-0	Formaldehyde	1.6E+04	8.9E+00				8.9E+00		0.001	8.90E+00	Method B, Direct Contact, Non-Cancer
	110-54-3	n-Hexane	4.8E+03					4.8E+03		0.001	4.80E+03	Method B, Direct Contact, Cancer
	591-78-6	2-Hexanone	4.0E+02					4.0E+02		0.5	4.00E+02	Method B, Direct Contact, Cancer
	98-82-8	Isopropylbenzene (cumene)	8.0E+03					8.0E+03		0.5	8.00E+03	Method B, Direct Contact, Cancer
	78-93-3	Methyl ethyl ketone (2-butanone)	4.8E+04					4.8E+04		0.5	4.80E+04	Method B, Direct Contact, Cancer
	108-10-1	Methyl isobutyl ketone	6.4E+03					6.4E+03		0.5	6.40E+03	Method B, Direct Contact, Cancer
	1634-04-4	Methyl tert-butyl ether (MTBE)		5.6E+02				5.6E+02		0.5	5.60E+02	Method B, Direct Contact, Non-Cancer
	75-09-2	Methylene chloride	4.8E+02	9.4E+01	4.3E-01			4.3E-01		0.2	4.30E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	103-65-1	n-Propylbenzene	8.0E+03					8.0E+03		0.05	8.00E+03	Method B, Direct Contact, Cancer
	100-42-5	Styrene	1.6E+04					1.6E+04		0.05	1.60E+04	Method B, Direct Contact, Cancer
	630-20-6	1,1,1,2-Tetrachloroethane	2.4E+03	3.8E+01				3.8E+01		0.05	3.80E+01	Method B, Direct Contact, Non-Cancer
	79-34-5	1,1,2,2-Tetrachloroethane	1.6E+03	5.0E+00	1.7E-03			1.7E-03		0.05	5.00E-02	Practical Quantitation Limit (PQL)
	127-18-4	Tetrachloroethylene (PCE)	4.8E+02	4.8E+02	2.9E-02			2.9E-02		0.001	2.90E-02	Protective of Groundwater to Marine Surface Water, Vadose Zone
	109-99-9	Tetrahydrofuran	7.2E+04					7.2E+04		0.001	7.20E+04	Method B, Direct Contact, Cancer
	108-88-3	Toluene	6.4E+03		7.2E-01			7.2E-01		0.02	7.20E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	87-61-6	1,2,3-Trichlorobenzene	6.4E+01					6.4E+01		0.25		Method B, Direct Contact, Cancer
	71-55-6	1,1,1-Trichloroethane	1.6E+05		3.7E+02			3.7E+02		0.002		Protective of Groundwater to Marine Surface Water, Vadose Zone
	79-00-5	1,1,2-Trichloroethane	3.2E+02	1.8E+01	5.0E-03			5.0E-03		0.05	5.00E-02	Practical Quantitation Limit (PQL)
	79-01-6	Trichloroethylene (TCE)	4.0E+01	1.2E+01	4.4E-03			4.4E-03		0.001	4.40E-03	Protective of Groundwater to Marine Surface Water, Vadose Zone
	75-69-4	Trichlorofluoromethane	2.4E+04					2.4E+04		0.5	2.40E+04	Method B, Direct Contact, Cancer
	96-18-4	1,2,3-Trichloropropane	3.2E+02	6.3E-03				6.3E-03		0.05		Practical Quantitation Limit (PQL)
	76-13-1	Trichlorotrifluoroethane	2.4E+06					2.4E+06		0.001		Method B, Direct Contact, Cancer
	526-73-8	1,2,3-Trimethylbenzene	8.0E+02					8.0E+02		0.05	8.00E+02	Method B, Direct Contact, Cancer
	95-63-6	1,2,4-Trimethylbenzene	8.0E+02					8.0E+02		0.05	8.00E+02	Method B, Direct Contact, Cancer
	108-67-8	1,3,5-Trimethylbenzene	8.0E+02					8.0E+02		0.05	1	Method B, Direct Contact, Cancer
		Vinyl acetate	8.0E+04					8.0E+04		0.05		Method B, Direct Contact, Cancer
	75-01-4	Vinyl chloride	2.4E+02	6.7E-01	1.1E-03			1.1E-03		0.002	2.00E-03	Practical Quantitation Limit (PQL)

Table 5-1. Preliminary Cleanup Levels for Soil Jensen's Shipyard and Marina

			Huma	an Health	Marine Surface Water	TEE	Sediment		Modify	ing Factors		
					Protective of						Ī	
			Method B,	Method B, Direct	Groundwater to Marine	Simplified TEE for		Most		Practical	Most	
			Direct Contact,	Contact, Non-	Surface Water, Vadose	Industrial or	MTCA SMS	Stringent	Natural	Quantitation	Stringent	
Parameter Group	CAS#	Chemical Analyte	Cancer	Cancer	Zone	Commercial Site	Benthic SCO	PCUL	Background	Limit (PQL)	PCUL	Basis for Preliminary Aggregate PCUL
	1330-20-7	Total xylenes	1.6E+04		9.4E-01			9.4E-01		0.002	9.40E-01	Protective of Groundwater to Marine Surface Water, Vadose Zone
	309-00-2	Aldrin	2.4E+00	5.9E-02	4.0E-08	0.17		4.0E-08		0.002	1.70E-03	Practical Quantitation Limit (PQL)
	319-84-6	alpha-BHC (alpha-HCH)	7.2E+01	1.6E-01	1.9E-06			1.9E-06		0.002	1.70E-03	Practical Quantitation Limit (PQL)
	319-85-7	beta-BHC (beta-HCH)		5.6E-01	6.5E-05			6.5E-05		0.002	1.70E-03	Practical Quantitation Limit (PQL)
	63-25-2	Carbaryl	8.0E+03	-	1.8E-02			1.8E-02		0.002	1.80E-02	Protective of Groundwater to Marine Surface Water, Vadose Zone
	5103-71-9	cis-Chlordane (alpha)	4.0E+01	-				4.0E+01		0.002	4.00E+01	Method B, Direct Contact, Cancer
	5103-74-2	trans-Chlordane (gamma)	4.0E+01	-				4.0E+01		0.002	4.00E+01	Method B, Direct Contact, Cancer
	57-74-9	Chlordane		-		1		1.0E+00		0.002	1.00E+00	Simplified TEE for Industrial or Commercial Site
	2921-88-2	Chlorpyrifos	8.0E+01		8.4E-04			8.4E-04		0.002	1.70E-03	Practical Quantitation Limit (PQL)
	72-54-8	DDD	4.0E+01	4.2E+00	7.3E-06			7.3E-06		0.010	1.00E-02	Practical Quantitation Limit (PQL)
	72-55-9	DDE	4.0E+01	2.9E+00	1.5E-06			1.5E-06		0.010	1.00E-02	Practical Quantitation Limit (PQL)
	50-29-3	DDT	4.0E+01	2.9E+00	1.6E-05			1.6E-05		0.010	1.00E-02	Practical Quantitation Limit (PQL)
		Total DDT/DDD/DDE				1		1.0E+00		0.010	1.00E+00	Simplified TEE for Industrial or Commercial Site
Pesticides (mg/kg)	333-41-5	Diazinon	5.6E+01		5.3E-02			5.3E-02		0.003	5.30E-02	Protective of Groundwater to Marine Surface Water, Vadose Zone
resticides (ilig/kg)	60-57-1	Dieldrin	4.0E+00	6.3E-02	3.6E-08			3.6E-08		0.003	3.30E-03	Practical Quantitation Limit (PQL)
	959-98-8	Endosulfan I			1.2E-03			1.2E-03		0.003	3.30E-03	Practical Quantitation Limit (PQL)
	33213-65-9	Endosulfan II			1.2E-03			1.2E-03		0.003	3.30E-03	Practical Quantitation Limit (PQL)
	1031-07-8	Endosulfan sulfate	4.8E+02	-	2.0E+00			2.0E+00		0.003	2.00E+00	Protective of Groundwater to Marine Surface Water, Vadose Zone
	72-20-8	Endrin	2.4E+01	-	4.4E-04	0.4		4.4E-04		0.003	3.30E-03	Practical Quantitation Limit (PQL)
	7421-93-4	Endrin aldehyde		-	2.4E-03			2.4E-03		0.003	3.30E-03	Practical Quantitation Limit (PQL)
	76-44-8	Heptachlor	4.0E+01	2.2E-01	6.6E-08			6.6E-08		0.0001	1.00E-04	Practical Quantitation Limit (PQL)
	1024-57-3	Heptachlor epoxide	1.0E+00	1.1E-01	4.9E-07			4.9E-07		0.0001	1.00E-04	Practical Quantitation Limit (PQL)
	58-89-9	Lindane (gamma-BHC)	2.4E+01	9.1E-01	5.0E-03			5.0E-03		0.0005	5.00E-03	Protective of Groundwater to Marine Surface Water, Vadose Zone
	121-75-5	Malathion	1.6E+03		4.6E-04			4.6E-04		0.0001	4.60E-04	Protective of Groundwater to Marine Surface Water, Vadose Zone
	72-43-5	Methoxychlor	4.0E+02		3.2E-02			3.2E-02		0.017	3.20E-02	Protective of Groundwater to Marine Surface Water, Vadose Zone
	2385-85-5	Mirex	1.6E+01	5.6E-02	7.1E-03			7.1E-03		0.003	7.10E-03	Protective of Groundwater to Marine Surface Water, Vadose Zone
	8001-35-2	Toxaphene	7.2E+00	9.1E-01	6.1E-05			6.1E-05		1	1.00E+00	Practical Quantitation Limit (PQL)
Organotins (mg/kg)	1461-22-9	Tributyltin			1.7E-03			1.7E-03		0.00386	3.86E-03	Practical Quantitation Limit (PQL)

Notes and Abbreviations:

cPAHs - carcinogenic polycyclic aromatic hydrocarbons

ECY - Washington Department of Ecology

pCULs - preliminary cleanup levels

MTCA - Model Toxics Control Act

NRWQC - National Recommended Water Quality Criteria

ng/kg - Nanogram per kilogram

mg/kg - Milligram per kilogram

TEE - Terrestrial Ecological Evaluation

WAC - Washington Administrative Code

- 1. Soil PCULs protective of human health and groundwater are from Ecology's January 2025 Master CLARC Table
- $2.\,Soil\,TEE\,criteria\,are\,from\,MTCA\,Table\,749-2\,and\,apply\,to\,soil\,in\,top\,6\,ft\,below\,ground\,surface\,only.$
- 3. Soil criteria protective of marine sediment via erosion pathway apply to erodible surface soil only and are based on the sediment cleanup objectives (SCOs) based on dry-weight apparent effects thresholds (AETs) for Marine Sediment per Ecology's Sediment Cleanup Users Manual (SCUM) Table 8-1
- 4. Lead PCUL for protection of human health is based on MTCA Method A Value in absence of a Method B value.

Table 5-2. Preliminary Cleanup Levels for Groundwater
Jensen's Shipyard and Marina
Port of Friday Harbor

Fort of Friday Harbo				Protection	of Human Health	(Surface Water)	(ug/L)	Protection	of Marine Aquat	ic Life (Surface Wa	ater) (ug/L)		Modifying F	actors (µg/L)		
Parameter Group CA	CAS#	Chemical	Surface Water Method B Noncancer (Eq. 730-1)	Surface Water Method B Cancer	WA State WQC Human Health Consumption of Organisms 173-201A WAC	WTR Human Health Consumption of Organisms 40 CFR 131.45	NRWQC Human Health Consumption of Organisms CWA §304	WA State WQC Aquatic Life Marine/Acute 173-201A WAC	NRWQC Aquatic Life Marine/Acute CWA §304	WA State WQC Aquatic Life Marine/Chronic 173-201A WAC	NRWQC Aquatic Life Marine/Chronic CWA §304	Minimum of Surface Water Values	Natural Background	Practical Quantitation Limit (PQL)	Most Stringent Criteria for Protection of Marine Surface Water pCUL	Basis
7440	40-38-2	Arsenic	1.8E+01	9.8E-02	1.4E-01	1.4E-01	1.4E-01	6.9E+01	6.9E+01	3.6E+01	3.6E+01	9.8E-02	8.0E+00	0.072	8.00E+00	Natural Background
7440	40-43-9	Cadmium	4.1E+01					4.2E+01	3.3E+01	9.3E+00	7.9E+00	7.9E+00		0.018	7.90E+00	NRWQCAquatic LifeMarine/Chronic CWA §304
7440	40-47-3	Chromium, total												1.72	5.00E+01	MTCA Method A
Metals (µg/L)	40-50-8	Copper	2.9E+03					4.8E+00	4.8E+00	3.1E+00	3.1E+00	3.1E+00		0.18	3.10E+00	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
7439	39-92-1	Lead						2.1E+02	2.1E+02	8.1E+00	8.1E+00	8.1E+00		0.018	8.10E+00	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
7439	39-97-6	Mercury						1.8E+00	1.8E+00	2.5E-02	9.4E-01	2.5E-02		0.00041	2.50E-02	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
7440	40-02-0	Nickel	1.1E+03		1.0E+02	1.0E+02	4.6E+03	7.4E+01	7.4E+01	8.2E+00	8.2E+00	8.2E+00		0.36	8.20E+00	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
	40-66-6	Zinc	1.7E+04		1.0E+03	1.0E+03	2.6E+04	9.0E+01	9.0E+01	8.1E+01	8.1E+01	8.1E+01		2.4	8.10E+01	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
PCB Aroclors (μg/L)	36-36-3	Total PCB Aroclors		1.0E-04		7.0E-06	6.4E-05	1.0E+01		3.0E-02	3.0E-02	7.0E-06		0.1	1.00E-01	Practical Quantitation Limit (PQL)
(μg/L)		2,3,7,8 TCDD	3.6E-07	1.0E-08	6.4E-08		5.1E-09					5.1E-09		0.016	1.59E-02	Practical Quantitation Limit (PQL)
	290-81-5	Gasoline range	-							1.7E+03		1.7E+03		100	1.70E+03	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
Hydrocarbons (μg/L) 68476	176-34-6	Diesel range								2.1E+03		2.1E+03		100	2.10E+03	WA State WQCAquatic LifeMarine/Chronic173-201A WAC
56-!	6-55-3	Benz[a]anthracene			1.6E-04	1.6E-04	1.3E-03			-		1.6E-04		0.01	1.00E-02	Practical Quantitation Limit (PQL)
205-	05-99-2	Benzo(b)fluoranthene			1.6E-04	1.6E-04	1.3E-03					1.6E-04		0.01	1.00E-02	Practical Quantitation Limit (PQL)
207-	07-08-9	Benzo(k)fluoranthene			1.6E-03	1.6E-03	1.3E-02	1	1			1.6E-03		0.01	1.00E-02	Practical Quantitation Limit (PQL)
cPAHs (μg/L)	0-32-8	Benzo(a)pyrene	2.6E+01	3.5E-02	1.6E-05	1.6E-05	1.3E-04	-	-			1.6E-05		0.01	1.00E-02	Practical Quantitation Limit (PQL)
218-	18-01-9	Chrysene			1.6E-02	1.6E-02	1.3E-01					1.6E-02		0.01	1.60E-02	WA State WQC Human Health Consumption of Organisms173-201A WAC
53-7	3-70-3	Dibenzo(a,h)anthracene			1.6E-05	1.6E-05	1.3E-04					1.6E-05		0.01	1.00E-02	Practical Quantitation Limit (PQL)
193-		Indeno(1,2,3-cd)pyrene	-		1.6E-04	1.6E-04	1.3E-03					1.6E-04		0.01	1.00E-02	Practical Quantitation Limit (PQL)
-		Total cPAH TEQ	2.6E+01	3.5E-02	1.6E-05	1.6E-05	1.3E-04					1.6E-05		0.01	1.00E-02	Practical Quantitation Limit (PQL)
		Acenaphthene	6.4E+02		3.0E+01	3.0E+01	9.0E+01					3.0E+01		0.01	3.00E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC
		Anthracene	2.6E+04		1.0E+02	1.0E+02	4.0E+02					1.0E+02		0.01	1.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC
		Fluoranthene	9.0E+01		6.0E+00	6.0E+00	2.0E+01					6.0E+00		0.01	6.00E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC
		Fluorene Naphthalene	3.5E+03 4.9E+03		1.0E+01	1.0E+01 	7.0E+01					1.0E+01 4.9E+03		0.01	1.00E+01 4.90E+03	WA State WQC Human Health Consumption of Organisms173-201A WAC
		Naphthalene Pyrene	2.6E+03		8.0E+00	8.0E+00	3.0E+01					8.0E+00		0.01	8.00E+00	SurfaceWaterMethod BNoncancer(Eq. 730-1) WA State WQC Human Health Consumption of Organisms173-201A WAC
		Bis(2-chloroethyl)ether	2.01.03	8.5E-01	6.0E-02		2.2E+00					6.0E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
		Bis(2-chloro-1-methylethyl)ether	4.2E+04	3.7E+01	9.0E+02	9.0E+02	4.0E+03					3.7E+01		0.25	3.70E+01	SurfaceWaterMethod B Cancer(Eq. 730-2)
		Bis(2-ethylhexyl) phthalate	4.0E+02	3.6E+00	4.6E-02	4.6E-02	3.7E-01					4.6E-02		1.6	1.60E+00	Practical Quantitation Limit (PQL)
		Butyl benzyl phthalate	1.3E+03	8.2E+00	1.3E-02	1.3E-02	1.0E-01					1.3E-02		1	1.00E+00	Practical Quantitation Limit (PQL)
59-	9-50-7	4-Chloro-3-methylphenol (chlorocresol)			3.6E+01		2.0E+03					3.6E+01		10	3.60E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC
91-	1-58-7	2-Chloronaphthalene (beta-)	1.0E+03		1.0E+02	1.0E+02	1.0E+03					1.0E+02		1	1.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC
95-	5-57-8	2-Chlorophenol	9.7E+01		1.7E+01		8.0E+02					1.7E+01		0.1	1.70E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC
84-7	4-74-2	Dibutyl phthalate	2.9E+03		8.0E+00	8.0E+00	3.0E+01					8.0E+00		1	8.00E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC
		1,2-Dichlorobenzene	4.2E+03		8.0E+02	8.0E+02	3.0E+03	-				8.0E+02		0.1	8.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC
		1,3-Dichlorobenzene	-		2.0E+00	2.0E+00	1.0E+01					2.0E+00		0.1	2.00E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC
		1,4-Dichlorobenzene	3.3E+03	2.2E+01	2.0E+02	2.0E+02	9.0E+02					2.2E+01		0.1	2.20E+01	SurfaceWaterMethod B Cancer(Eq. 730-2)
		3,3'-Dichlorobenzidine	4.05.03	4.6E-02	3.3E-03	4.05.04	1.5E-01					3.3E-03		2	2.00E+00	Practical Quantitation Limit (PQL)
	-	2,4-Dichlorophenol	1.9E+02 2.8E+04		1.0E+01 2.0E+02	1.0E+01 2.0E+02	6.0E+01 6.0E+02					1.0E+01		1	1.00E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC
		Diethyl phthalate Dimethyl phthalate	2.8E+U4 		6.0E+02	6.0E+02	2.0E+03					2.0E+02 6.0E+02		1	2.00E+02 6.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC WA State WQC Human Health Consumption of Organisms173-201A WAC
	-	2,4-Dimethylphenol	5.5E+02		9.7E+01		3.0E+03					9.7E+01		3	9.70E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC
	-	4,6-Dinitro-o-cresol (DNOC)			7.0E+00	7.0E+00	3.0E+01					7.0E+00		0.1	7.00E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC
		2,4-Dinitrophenol	3.5E+03		1.0E+02	1.0E+02	3.0E+02					1.0E+02		0.5	1.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC
		2,4-Dinitrotoluene	1.4E+03	5.5E+00	1.8E-01		1.7E+00					1.8E-01		0.5	5.00E-01	Practical Quantitation Limit (PQL)
		1,2-Diphenylhydrazine		3.3E-01	2.0E-02	2.0E-02	2.0E-01					2.0E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
118-		Hexachlorobenzene	2.4E-01	4.7E-04	5.0E-06	5.0E-06	7.9E-05					5.0E-06		0.1	1.00E-01	Practical Quantitation Limit (PQL)
87-0	7-68-3	Hexachlorobutadiene	9.3E+02	3.0E+01	1.0E-02	1.0E-02	1.0E-02		-			1.0E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
77-	7-47-4	Hexachlorocyclopentadiene	3.6E+03		1.0E+00	1.0E+00	4.0E+00					1.0E+00		0.3	1.00E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC
	-	Hexachloroethane	2.1E+01	1.9E+00	2.0E-02	2.0E-02	1.0E-01	1	1			2.0E-02		0.1	1.00E-01	NRWQC Human Health Consumption of Organisms CWA §304
		Isophorone	1.2E+05	1.6E+03	1.1E+02		1.8E+03	-				1.1E+02		0.1	1.10E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC
		Nitrobenzene	1.8E+03		1.0E+02	1.0E+02	6.0E+02					1.0E+02		0.1	1.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC
	-	n-Nitrosodimethylamine	8.0E+02	8.0E-01	3.4E-01		3.0E+00					3.4E-01		0.1	3.40E-01	WA State WQC Human Health Consumption of Organisms173-201A WAC
		n-Nitrosodiphenylamine		9.7E+00	6.9E-01		6.0E+00					6.9E-01		0.1	6.90E-01	WA State WQC Human Health Consumption of Organisms173-201A WAC
		n-Nitrosodi-n-propylamine	1 25,02	8.2E-01	5.8E-02	 2.0F.02	5.1E-01	1 25:01	1.25.01	7.05.00	7.05:00	5.8E-02		0.1	1.00E-01	Practical Quantitation Limit (PQL)
	7-86-5	Pentachlorophenol	1.2E+03	1.5E+00	2.0E-03	2.0E-03	4.0E-02	1.3E+01	1.3E+01	7.9E+00	7.9E+00	2.0E-03		0.5	5.00E-01	Practical Quantitation Limit (PQL)

Table 5-2. Preliminary Cleanup Levels for Groundwater Jensen's Shipyard and Marina Port of Friday Harbor

			Protection of Human Health (Surface Water) (μg,					Protection	of Marine Aquat	ic Life (Surface Wa	ater) (µg/L)		Modifying Factors (μg/L			
						, , , , , , , , , , , , , , , , , , ,				<u> </u>				Most Stringent		
			C	Cf	WA Chata WOO	MATE	NEWCOLL							Criteria for		
			Surface		WA State WQC	WTR	NRWQC Human	WA State WOC	NDWOC	WA State WOS	NDWOC	Minimum of Surface	Natural Practical	Protection of	Basis	
			Water Method B	Water Method B	Human Health Consumption of		Health	WA State WQC Aquatic Life	NRWQC Aquatic Life	WA State WQC Aquatic Life	NRWQC Aquatic Life	Water Values	Background Quantitatio	Marine Surface		
Darameter			Noncancer	Cancer	Organisms	of Organisms	Consumption of Organisms	Marine/Acute	Marine/Acute	Marine/Chronic	Marine/Chronic		Limit (PQL)	Water pCUL		
Parameter Group	CAS#	Chemical	(Eq. 730-1)		173-201A WAC	40 CFR 131.45	CWA §304	173-201A WAC	CWA §304	173-201A WAC	CWA §304					
Стоир	108-95-2		5.6E+05		7.0E+04	7.0E+04	3.0E+05					7.0E+04	- 1	7.00E+04	WA State WQC Human Health Consumption of Organisms173-201A WAC	
		1,2,4-Trichlorobenzene	2.3E+02	2.0E+00	3.7E-02	3.7E-02	7.6E-02					3.7E-02	0.1	1.00E-01	Practical Quantitation Limit (PQL)	
	95-95-4	2,4,5-Trichlorophenol					6.0E+02					6.0E+02	- 1	6.00E+02	NRWQC Human Health Consumption of Organisms CWA §304	
	88-06-2	2,4,6-Trichlorophenol	1.7E+01	3.9E+00	2.8E-01		2.8E+00					2.8E-01	1	1.00E+00	Practical Quantitation Limit (PQL)	
	71-43-2	Benzene	2.0E+03	2.3E+01	1.6E+00		1.6E+01					1.6E+00	1	1.60E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	75-25-2	Bromoform	1.4E+04	2.2E+02	1.2E+01	1.2E+01	1.2E+02					1.2E+01	5	1.20E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	74-83-9	Bromomethane	9.7E+02		2.4E+03		1.0E+04					9.7E+02	5	9.70E+02	SurfaceWaterMethod BNoncancer(Eq. 730-1)	
	56-23-5	Carbon tetrachloride	5.5E+02	4.9E+00	3.5E-01		5.0E+00					3.5E-01	0.5	5.00E-01	Practical Quantitation Limit (PQL)	
	108-90-7	Chlorobenzene	5.0E+03		2.0E+02	2.0E+02	8.0E+02					2.0E+02	1	2.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	67-66-3	Chloroform	6.9E+03	5.6E+01	6.0E+02	6.0E+02	2.0E+03					5.6E+01	1	5.60E+01	SurfaceWaterMethod B Cancer(Eq. 730-2)	
	124-48-1	Dibromochloromethane	1.4E+04	2.1E+01	2.2E+00	2.2E+00	2.1E+01					2.2E+00	0.5	2.20E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	75-27-4	Dichlorobromomethane	1.4E+04	2.8E+01	2.8E+00	2.8E+00	2.7E+01					2.8E+00	0.5	2.80E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	107-06-2	1,2-Dichloroethane (EDC)	1.3E+04	5.9E+01	7.3E+01	7.3E+01	6.5E+02					5.9E+01	0.2	5.90E+01	SurfaceWaterMethod B Cancer(Eq. 730-2)	
	75-35-4	1,1-Dichloroethylene	2.3E+04		4.0E+03	4.0E+03	2.0E+04					4.0E+03	1	4.00E+03	WA State WQC Human Health Consumption of Organisms173-201A WAC	
VOCs (μg/L)	156-60-5	trans-1,2-Dichloroethylene	3.3E+04		1.0E+03	1.0E+03	4.0E+03					1.0E+03	1	1.00E+03	WA State WQC Human Health Consumption of Organisms173-201A WAC	
1	78-87-5	1,2-Dichloropropane	2.5E+04	4.3E+01	3.1E+00		3.1E+01					3.1E+00	1	3.10E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	100-41-4	Ethylbenzene	6.9E+03		3.1E+01	3.1E+01	1.3E+02					3.1E+01	1	3.10E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	75-09-2	Methylene chloride	1.7E+04	5.9E+02	1.0E+02	1.0E+02	1.0E+03					1.0E+02	5	1.00E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	79-34-5	1,1,2,2-Tetrachloroethane	1.0E+04	6.5E+00	3.0E-01	3.0E-01	3.0E+00					3.0E-01	0.2	3.00E-01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	127-18-4	Tetrachloroethylene (PCE)	5.0E+02	1.0E+02	2.9E+00	2.9E+00	2.9E+01					2.9E+00	1	2.90E+00	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	108-88-3	Toluene	1.9E+04		1.3E+02	1.3E+02	5.2E+02					1.3E+02	1	1.30E+02	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	71-55-6	1,1,1-Trichloroethane	9.3E+05		5.0E+04	5.0E+04	2.0E+05					5.0E+04	1	5.00E+04	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	79-00-5	1,1,2-Trichloroethane	2.3E+03	2.5E+01	9.0E-01	9.0E-01	8.9E+00					9.0E-01	0.5	9.00E-01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	79-01-6	Trichloroethylene (TCE)	1.2E+02	4.9E+00	7.0E-01	7.0E-01	7.0E+00					7.0E-01	0.5	7.00E-01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	75-01-4	Vinyl chloride	6.6E+03	3.7E+00	1.8E-01	1.8E-01	1.6E+00					1.8E-01	0.02	1.80E-01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	309-00-2	Aldrin	1.7E-02	8.2E-05	4.1E-08	4.1E-08	7.7E-07	7.1E-01	1.3E+00	1.9E-03		4.1E-08	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	319-84-6	alpha-BHC (alpha-HCH)	1.8E+01	7.9E-03	4.8E-05	4.8E-05	3.9E-04					4.8E-05	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	319-85-7	beta-BHC (beta-HCH)		2.8E-02	1.4E-03	1.4E-03	1.4E-02					1.4E-03	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	63-25-2	Carbaryl							1.6E+00			1.6E+00	0.005	1.60E+00	NRWQC Aquatic LifeMarine/Acute CWA §304	
	12789-03-6	Chlordane			2.2E-05							2.2E-05	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	2921-88-2	Chlorpyrifos						1.1E-02	1.1E-02	5.6E-03	5.6E-03	5.6E-03	0.005	5.60E-03	WA State WQCAquatic LifeMarine/Chronic173-201A WAC	
		DDD	2.4E-02	5.0E-04	7.9E-06	7.9E-06	1.2E-04					7.9E-06	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	72-55-9	DDE	2.4E-02	3.6E-04	8.8E-07	8.8E-07	1.8E-05					8.8E-07	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	50-29-3	DDT	2.4E-02	3.6E-04	1.2E-06	1.2E-06	3.0E-05	1.3E-01	1.3E-01	1.0E-03	1.0E-03	1.2E-06	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
		Diazinon							8.2E-01		8.2E-01	8.2E-01	0.005	8.20E-01	NRWQC Aquatic LifeMarine/Acute CWA §304	
	60-57-1	Dieldrin	2.8E-02	8.7E-05	7.0E-08	7.0E-08	1.2E-06	7.1E-01	7.1E-01	1.9E-03	1.9E-03	7.0E-08	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
Pesticides (µg/L)	959-98-8	Endosulfan I			7.0E+00	7.0E+00	3.0E+01		3.4E-02		8.7E-03	8.7E-03	0.005	8.70E-03	NRWQCAquatic LifeMarine/Chronic CWA §304	
	33213-65-9	Endosulfan II			1.0E+01		4.0E+01		3.4E-02		8.7E-03	8.7E-03	0.005	8.70E-03	NRWQCAquatic LifeMarine/Chronic CWA §304	
		Endosulfan sulfate			1.0E+01		4.0E+01					1.0E+01	0.005	1.00E+01	WA State WQC Human Health Consumption of Organisms173-201A WAC	
		Endrin	2.0E-01		2.0E-03	2.0E-03	3.0E-02	3.7E-02	3.7E-02	2.3E-03	2.3E-03	2.0E-03	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	7421-93-4	Endrin aldehyde			3.5E-02		1.0E+00					3.5E-02	0.005	3.50E-02	WA State WQC Human Health Consumption of Organisms173-201A WAC	
	76-44-8	Heptachlor	1.2E-01	1.3E-04	3.4E-07	3.4E-07	5.9E-06	5.3E-02	5.3E-02	3.6E-03	3.6E-03	3.4E-07	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	1024-57-3	Heptachlor epoxide	3.0E-03	6.4E-05	2.4E-06	2.4E-06	3.2E-05		5.3E-02	-	3.6E-03	2.4E-06	0.005	5.00E-03	Practical Quantitation Limit (PQL)	
	58-89-9	Lindane (gamma-BHC)	6.0E+00	4.5E-02	4.3E-01	4.3E-01	4.4E+00	1.6E-01	1.6E-01			4.5E-02	0.005	4.50E-02	SurfaceWaterMethod B Cancer(Eq. 730-2)	
	72-43-5	Methoxychlor	8.4E+00				2.0E-02				3.0E-02	2.0E-02	0.005	2.00E-02	NRWQC Human Health Consumption of Organisms CWA §304	
1	2385-85-5	Mirex									1.0E-03	1.0E-03	0.0025	2.50E-03	Practical Quantitation Limit (PQL)	
1	8001-35-2	Toxaphene	1.8E-02	4.5E-04	3.2E-05		7.1E-04	2.1E-01	2.1E-01	2.0E-04	2.0E-04	3.2E-05	0.1	1.00E-01	Practical Quantitation Limit (PQL)	
Herbicides		2,4-Dichlorophenoxyacetic acid (2,4-D)					1.2E+04					1.2E+04	60	1.20E+04	NRWQC Human Health Consumption of Organisms CWA §304	
(µg/L)	93-72-1	2-(2,4,5-Trichlorophenoxy)propionic acid (2,4,5-TP)					4.0E+02					4.0E+02	60	4.00E+02	NRWQC Human Health Consumption of Organisms CWA §304	
Organotins																
(µg/L)	688-73-3	Tributyltin						4.2E-01	4.2E-01	7.4E-03	7.4E-03	7.4E-03	0.0052	7.40E-03	WA State WQCAquatic LifeMarine/Chronic173-201A WAC	
Abbreviations an			•							•			. !	•		
CWA - Clean Wat				ng/L - Nanog	gram per liter											
FCV - Washington		of Ecology		-	gram nor liter											

ECY - Washington Department of Ecology

NRWQC - National Recommended Water Quality Criteria

- 1. Based on Washington State Register 24-24-056 effective December 28, 2024.
- 2. PQLs based on lowest available reporting limit from Friedman and Bruya Inc. in Seattle, WA.
- μg/L Microgram per liter MEL - Ecology's Manchester Environmental Laboratory WAC - Washington Administrative Code pCULs - preliminary cleanup levels WQC - Water Quality Criteria PQL - practical quantitation limit WTR - Washington Toxics Rule

^{3.} PQLs for Arsenic, Cadmium, Chromium (total and VI), copper, lead, mercury, nickel, and zinc are based on PQLs from Brooks Applied Laboratory in Seattle, WA for EPA Method 1638M to avoid elemental analysis interferences.

Table 6-1. Soil Contaminants of Interest Jensen's Shipyard and Marina Port of Friday Harbor

		Most Stringent	Maximum Detected	
Parameter Group ¹	Chemical Analyte	PCUL	Concentration	Site COI?
	Arsenic	0.67	150	yes
	Cadmium	1.1	57	yes
	Chromium	135	350	yes
Metals (mg/kg)	Copper	1.4	9,300	yes
Wictais (IIIg/ Kg/	Lead	24	10,000	yes
	Mercury	0.026	13	yes
	Nickel	48	16.6	no
	Zinc	100	7,100	yes
PCB Aroclors (mg/kg)	Total PCB Aroclors	0.002 ²	14.0	yes
Dioxin/Furan		2		
Congeners (ng/kg)	Total Dioxin/Furan TEQ	0.5 2	102.5	yes
	Gasoline range	30/100	37	no
Petroleum	Diesel range	2000	8,000	yes
Hydrocarbons (mg/kg)		2000	10,000	yes
	Total Diesel and Oil Range	2000	18,000	yes
cPAHs (mg/kg)	Benzo(a)pyrene	0.002	1.1	yes
6.73 (8/1.8/	Total cPAH TEQ	0.002	1.45	yes
	Acenaphthene	3.1	0.1	no
	Anthracene	47	0.4	no
	Benzo(g,h,i)perylene		1.0	no
Other PAHs (mg/kg)	Fluorene	1.6	0.1	no
Other FAIIs (IIIg/ kg)	1-Methylnaphthalene	20	0.9	no
	2-Methylnaphthalene	320	1.2	no
	Naphthalene	140	0.1	no
	Pyrene	11	1.9	no
	N-Propyl Benzene	8,000	0.017	no
	1,3,5-Trimethylbenzene	800	0.240	no
\\OCa (ma/ka)	1,2,4-Trimethylbenzene	800	0.610	no
VOCs (mg/kg)	S-Butyl benzene	8,000	0.033	no
	N- Butylbenzene	4,000	0.055	no
	Tetrachloroethylene	0.029	0.017	no
	DDD	0.01	0.04	yes
Pesticides (mg/kg)	DDT	0.01	0.06	yes
	Total DDT/DDD/DDE	0.01	0.1	no
Organotins (ug/kg)	Tributyltin	3.86 ²	56	yes
Organotins (ug/kg)	moutyitiii	5.00	30	yes

Notes:

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram

ng/kg - nanograms per kilogram

^{1.} Compounds that were not detected above practical quantitation limits are not listed including BTEX, other SVOCs, and other VOCs. Refer to Appenix A of the RIWP (Leon and CRETE 2022) for complete tabulation of these parameters.

^{2.} PCUL has been adjusted up to the PQL.

Table 6-2. Groundwater Contaminants of Interest Jensen's Shipyard and Marina Port of Friday Harbor

			Maximum Detected		
Parameter Group ¹	Chemical Analyte	Preliminary PCUL	Concentration	Site COI?	
	Arsenic	8.0	54	yes	
	Cadmium	7.9	10	yes	
	Chromium, total	0.6	2010	yes	
Metals, Dissolved (μg/L)	Copper	3.1	1,110	yes	
ivietais, Dissolveu (μg/L)	Lead	8.1	324	yes	
	Mercury	0.03	3	yes	
	Nickel	8.2	816.0	yes	
	Zinc	81	728	yes	
Petroleum Hydrocarbons	Gasoline range	1,700	290	no	
(µg/L)	Diesel range	2,100	290	no	
	Benzo(a)pyrene	0.01	0.2	yes	
	Benzo(a)anthracene	0.01	0.2	yes	
	Benzo(b)fluoranthene	0.01	0.2	yes	
cDAHc (ug/L)	Benzo(k)fluoranthene	0.01	0.4	yes	
cPAHs (μg/L)	Chrysene	0.01	0.5	yes	
	Dibenzo(a,h)anthracene	0.01	0.03	yes	
	Indeno(1,2,3-cd)pyrene	0.01	0.14	yes	
	Total cPAH TEQ	0.01	0.44	yes	
PCB Aroclors (μg/L)	Total PCB Aroclors	0.1	<0.1	no	
Organotins (μg/L)	Tributyltin	0.0074	0.2	yes	
Dioxin/Furan Congeners					
(pg/L)	Total Dioxin/Furan TEQ	0.0159	361	yes	

Notes:

ug/L - micrograms per liter

pg/L - picograms per liter

cPAH - carcinogenic polycyclic aromatic hydrocarbons

^{1.} Compounds that were not detected above practical quantitation limits are not listed including BTEX, other SVOCs, and other VOCs. Refer to Appenix A of the RIWP (Leon and CRETE 2022) for complete tabulation of these parameters.

Table 6-3. Summary of Indicator Hazardous Substances
Jensen's Shipyard and Marina

				Most Restrictive	
Parameter Group ¹	Chemical Analyte	IHS?	Representative HIS	PCUL Pathway	Notes
	Arsenic	Yes		Marine	1
	Cadmium	No	Copper	Marine	2
	Chromium	No	Copper	Marine	2
Metals	Copper	Yes		Marine	
ivietais	Lead	Yes		TEE/HH	4
	Mercury	Yes		Marine	3
	Nickel	No	Copper, Zinc	Marine	
	Zinc	Yes		Marine	5
PCB Aroclors	Total PCB Aroclors	Yes		Marine	
Dioxin/Furan Congeners	Total Dioxin/Furan TEQ	Yes		Marine	
	Diesel Range	No	Total TPH-Dx	TEE/HH	6
TPH	Oil Range	No	Total TPH-Dx	TEE/HH	6
	Total Diesel and Oil Range	Yes		TEE/HH	6
cPAHs	Benzo(a)pyrene	No	Total cPAH TEQ	Marine	7
CFAITS	Total cPAH TEQ	Yes		Marine	7
	DDD	No	DDT	Marine	8
Pesticides	DDE			Marine	
restitives	DDT	Yes		Marine	8
	Total DDT/DDD/DDE	No		Marine	

Notes:

- 1. Arsenic exceedances co-located with copper exceedances except two samples (SRWA-4-3.5' and MW-4-11'). Therefore arsenic is an IHS only at locations SRWA-4 and MW-4.
- 2. Copper always present at concentrations above PCUL when the PCUL for the contaminant was exceeded.
- 3. Mercury exceedances co-located with copper exceedances except one sample (SRWA-13-3-5'). Therefore mercury is an IHS only at location SRWA-13.
- 4. Lead exceedances co-located with copper exceedances. However, lead cleanup driven by TEE and HH whereas copper cleanup driven by marine pathway.
- 5. Zinc exceedances co-located with copper exceedances except for three samples (FDA-3-2.5', TP-5, and TP-6). Therefore zinc is an IHS only at locations FDA-3, TP-5, and TP-6.
- 6. Cleanup of Total TPH-Dx will result in compliance for both diesel and heavy oil ranges.
- 7. Cleanup of total CPAHs will result in compliance for Benzo(a) pyrene.
- 8. DDT always present at concentrations above PCUL when DDD PCUL exceeded.

Table 7-1. Copper and Zinc Distribution in BLWA Shoreline Soil and Groundwater Jensen's Shipyard and Marina

Copper (Soil PCUL=36.4 mg/kg; GW PCUL=3.1 ug/L)

Zinc (Soil PCUL=100 mg/kg; GW PCUL=81 ug/L)

Depth (ft bgs) Soi 0.0-0.5 68 0.5-1.0 1.0-1.5 1.5-2.0 2.0 2.5 5	80	V ² Soil ¹ 9300 3500	GW ²	Soil ¹ 1100 173	GW ²		Soil ¹	GW ²	Soil ¹	GW ²	Soil ¹	GW ²	
0.0-0.5 68 0.5-1.0 1.0-1.5 1.5-2.0				173			260		1400		350		1
1.0-1.5 1.5-2.0	.9	3500											
1.5-2.0	.9	3500				_					83.4		1
	.9								3800				
2025	.9			170							110		
2.0-2.5							18						
2.5-3.0						\vdash							
3.0-3.5	_		-	24.4							22.4		
3.5-4.0 18.	.5	50.2		24.1			54.1		450		32.4		Groundwater
4.0-4.5 4.5-5.0 86		58.3 84	-				110		156				Elevation
4.5-5.0 86 5.0-5.5	•	84	1				110		72				Range
5.5-6.0													During
6.0-6.5		43.6		80.7					31.6		67.4		Tidal
6.5-7.0					15.9							135	Study
7.0-7.5						-							
7.5-8.0	9.	54	45.6					466		227			
8.0-8.5													
8.5-9.0													
9.0-9.5		20							47				
9.5-10.0		20							47				
10.0-10.5 39.	2						61.9						
10.5-11.0	.5						01.9						
11.0-11.5													
11.5-12.0													1
12.0-12.5													J

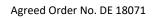
Notes:

ft bgs = feet below ground surface

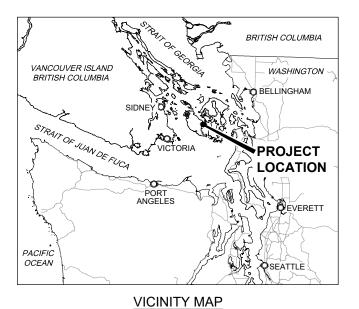
GW = groundwater

- 1. Soil concentrations shown in mg/kg. Some depths of samples adjusted to account for overlapping data.
- 2. Groundwater concentrations in ug/L with shading shown through the entire well screen interval.

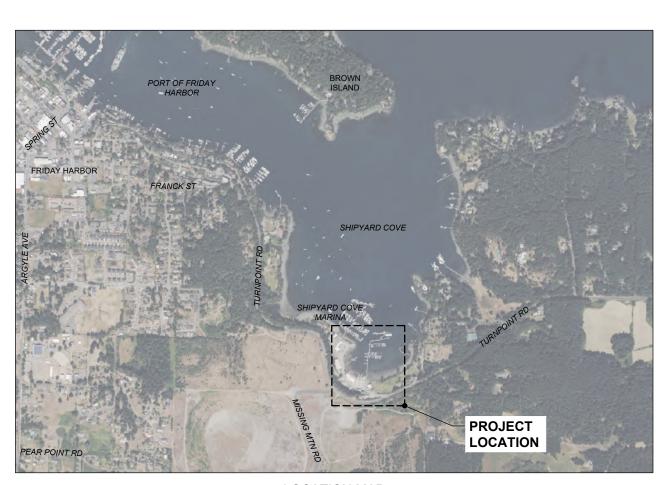
Soil PCUL is based on vadose zone soil protective of groundwater to surface water PCUL.

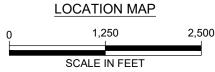

Groundwater PCUL is based on protection of surface water.

Highlighted colors selected based on the the following ranges of concentrations relative to the PCUL:



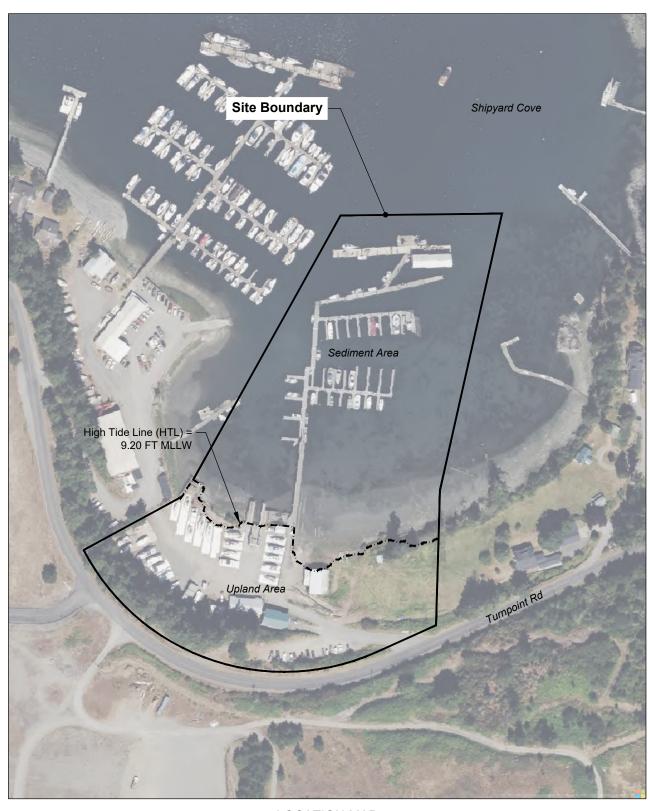
Figures

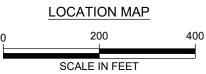



This page intentionally left blank.

ORCAS ISLAND
SHAWING AISLAND
LOPEZ ISLAND
PROJECT
LOCATION

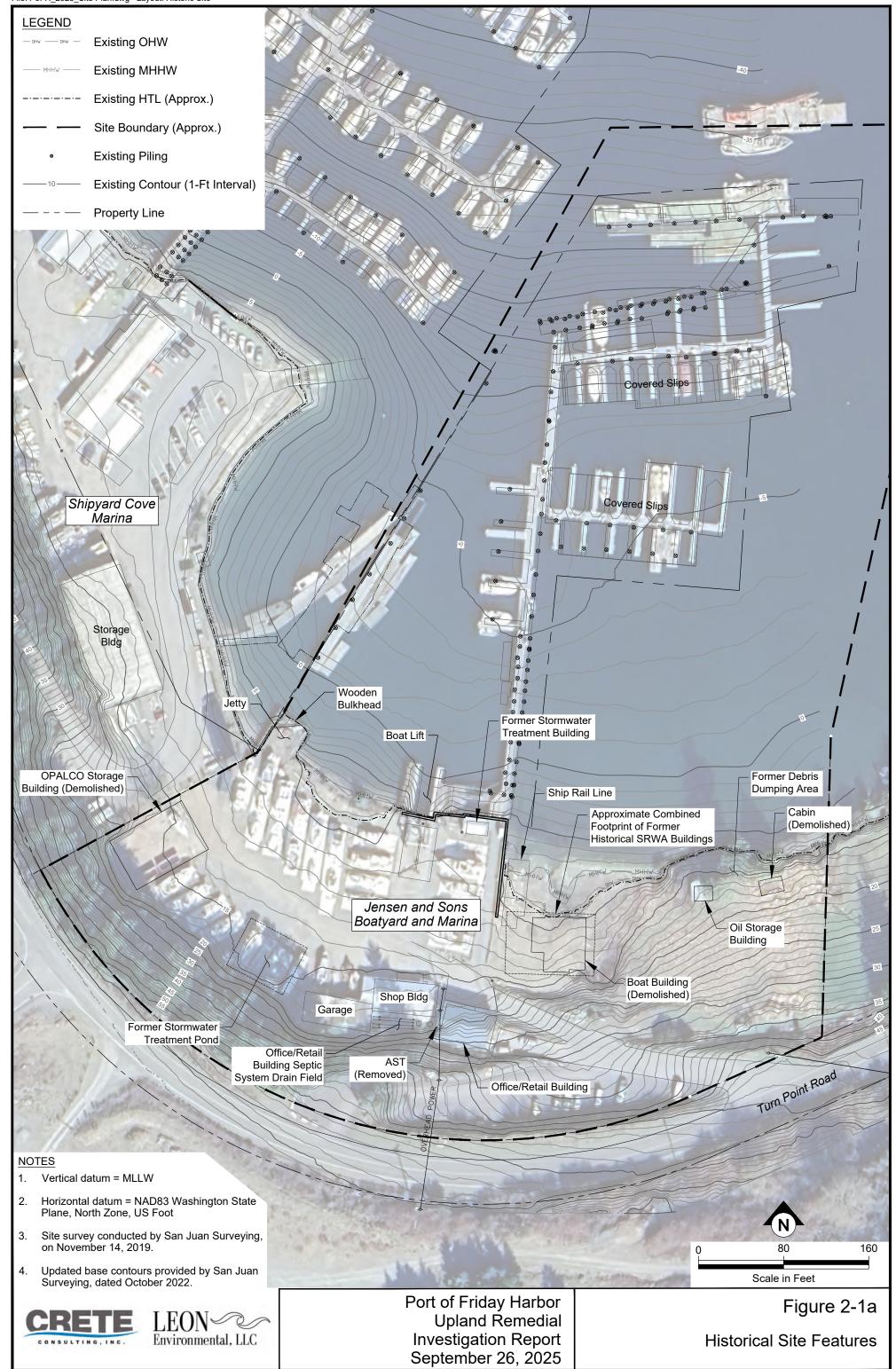
VICINITY MAP - SAN JUAN ISLANDS





Port of Friday Harbor Upland Remedial Investigation Report September 26, 2025

Figure 1-1 Location and Vicinity Map

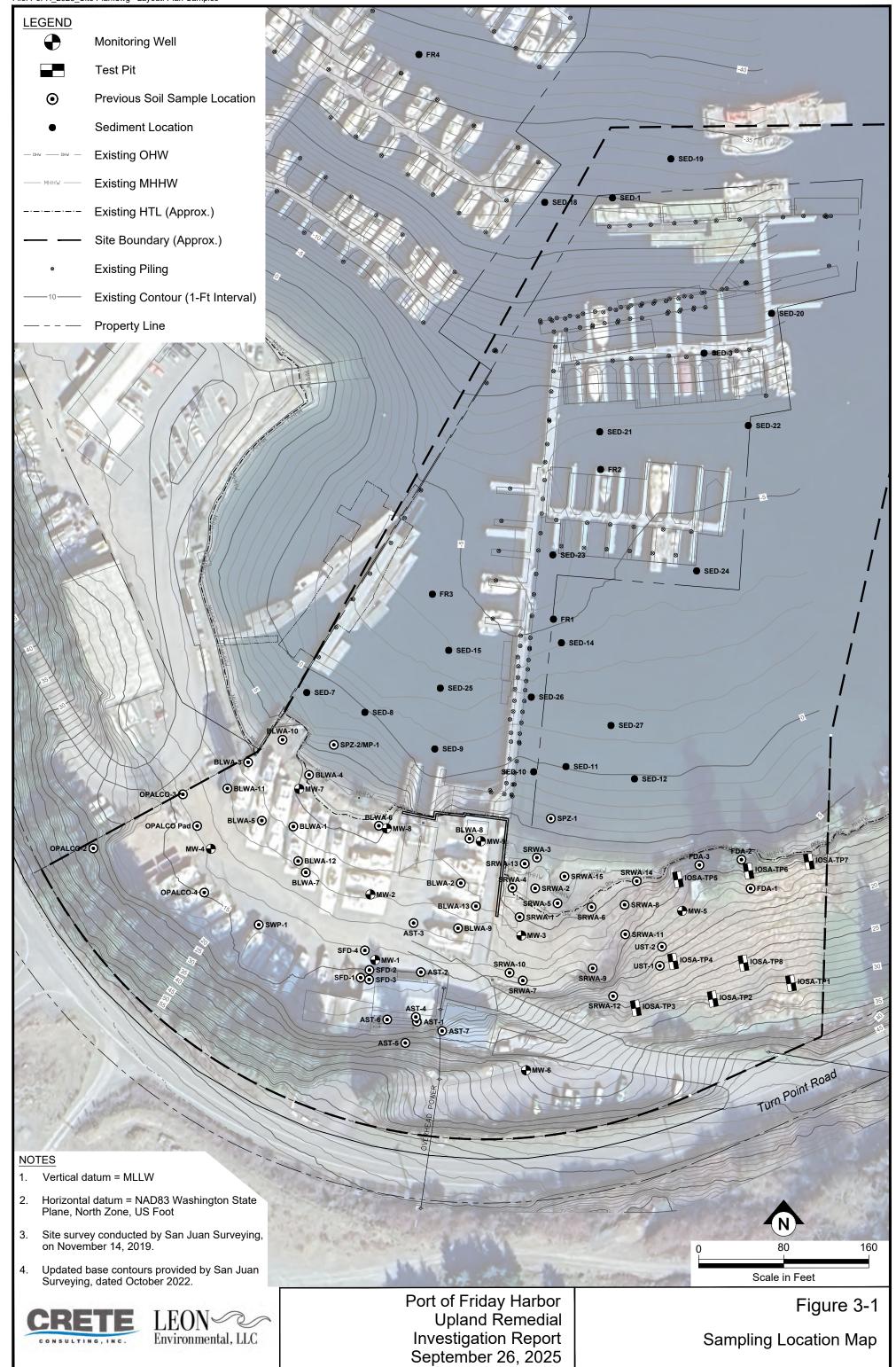


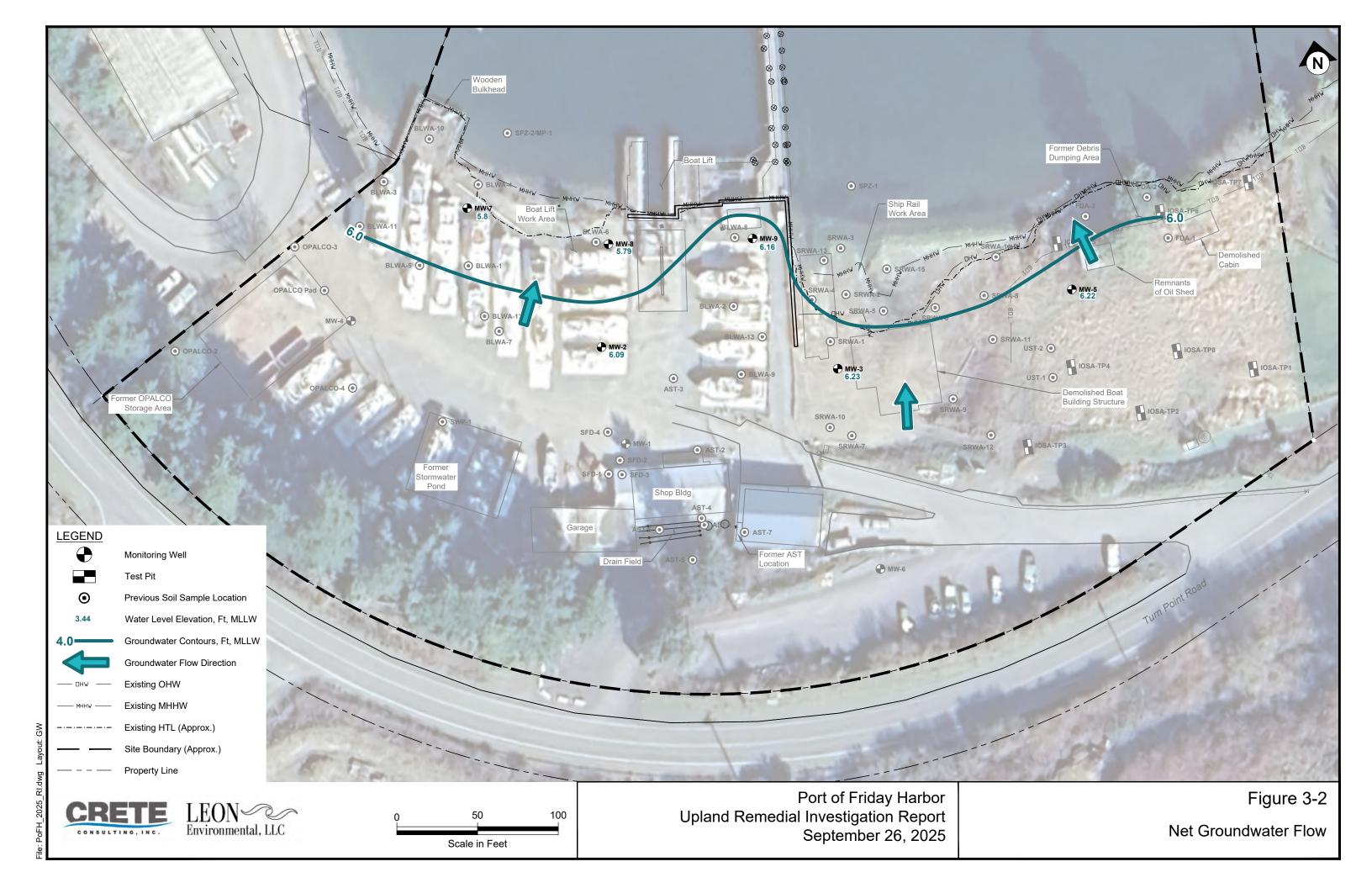
Port of Friday Harbor Upland Remedial Investigation Report September 26, 2025

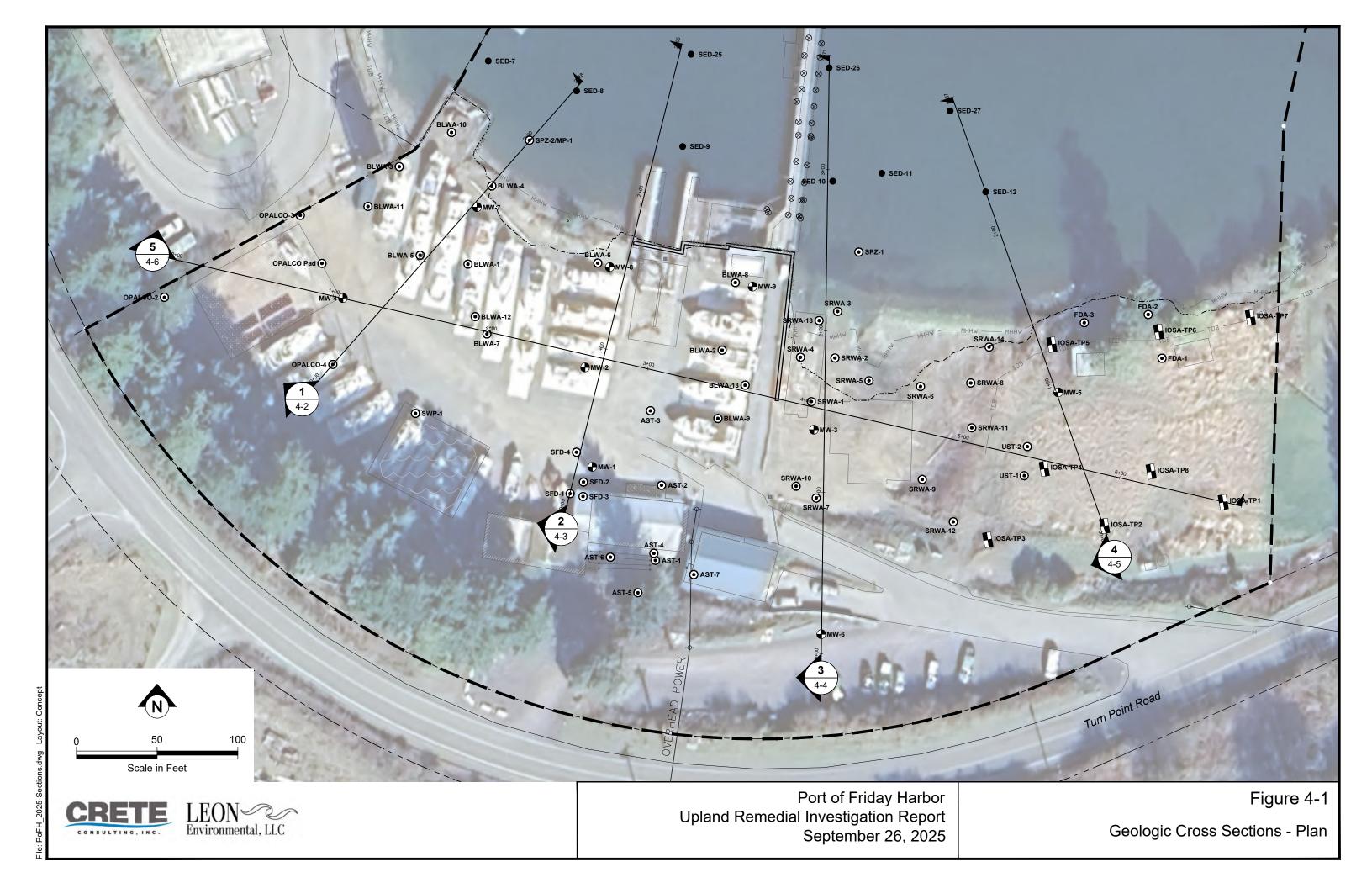
Figure 1-2
Upland and
Sediment Areas

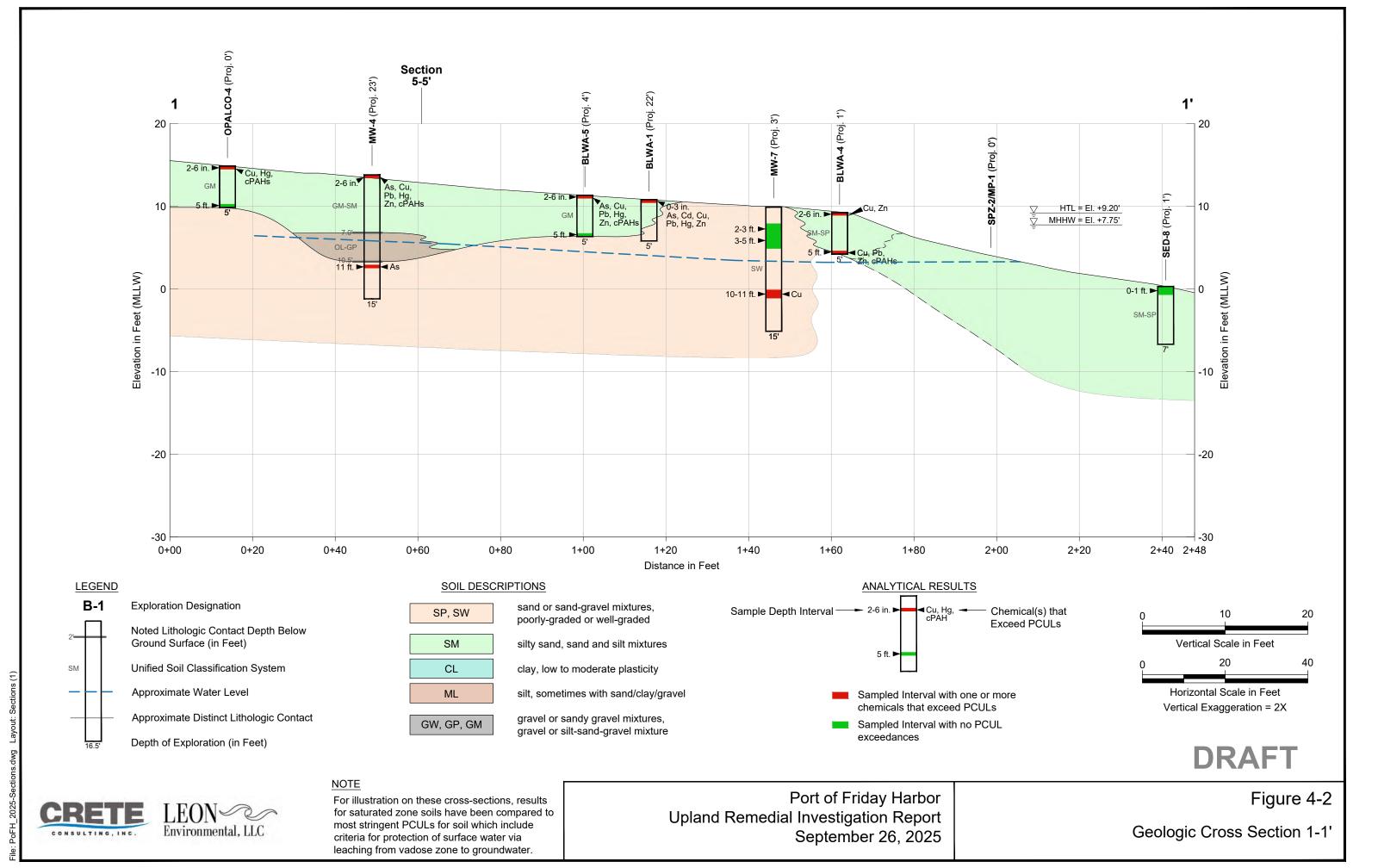
<u>NOTES</u>

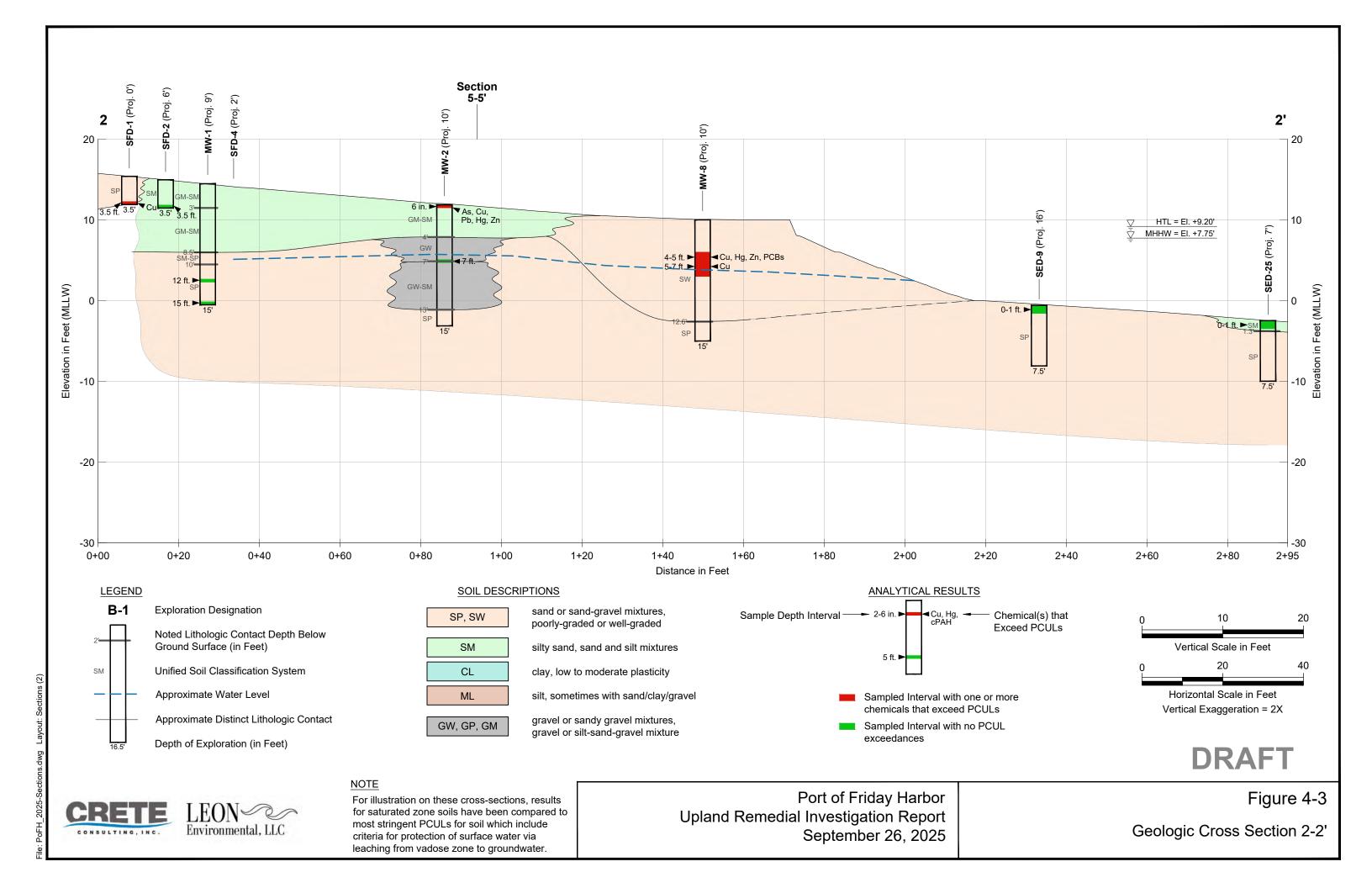
- Vertical datum = MLLW
- Horizontal datum = NAD83 Washington State Plane, North Zone, US Foot
- 3. Site survey conducted by San Juan Surveying, on November 14, 2019.
- 4. Updated base contours provided by San Juan Surveying, dated October 2022.




Port of Friday Harbor Upland Remedial Investigation Report September 26, 2025


Figure 2-1b
Current Site Features


Scale in Feet


160

