

BIOASSAY TESTING RESULTS

PORT OF FRIDAY HARBOR REMEDIAL INVESTIGATION FRIDAY HARBOR, WASHINGTON

Prepared for

Leon Environmental 8047 Burke Ave N Seattle, WA 98103

Prepared by

EcoAnalysts, Inc.
Port Gamble Environmental Laboratory
4770 NE View Drive
PO Box 216
Port Gamble, Washington 98364

EcoAnalysts Report ID

PG1785.01

Submittal Date

June 23, 2023

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated. This document is uncontrolled when printed or accessed from electronic distribution.

PREPARED BY:

Marisa Seibert

Project Manager / Laboratory Manager

Julia Levengood

Project Manager/ Senior Aquatic Toxicologist

QA Review:

Mary Ann Rempel-Hester

Report ID: PG1785.01 i of iv EcoAnalysts, Inc.

CONTENTS

1.	INTRODUCTION	1
2.	METHODS	
2.1	Sample Collection	
2.2	Sample Grain Size and Reference Comparison	1
2.3	Bulk Sample Porewater Ammonia and Water Quality Measurements	2
2.4	10-day Amphipod Bioassay	4
2.5	20-day Juvenile Polychaete Bioassay	5
2.6	Larval Developmental Bioassay	6
2.7	Data Analysis and QA/QC	7
3.	RESULTS	8
3.1	10-day Amphipod Bioassay	8
3.2	20-day Juvenile Polychaete Bioassay	14
3.3	Larval Development Bioassay	21
4.	DISCUSSION	26
4.1	Amphipod Test Suitability Determination	26
4.2	Juvenile Polychaete Test Suitability Determination	27
4.3	Larval Test Suitability Determination	28
5.	SUMMARY	29
6.	REFERENCES	30

TABLES

Table 2-1. Sample and Reference Grain Size Comparison	2
Table 2-2. Reference Station Coordinates	2
Table 2-3: Bulk and Mock Sediment Porewater Measurements	3
Table 2-4. Threshold Ammonia Concentrations for Benthic Test Species	4
Table 2-5. Ammonia and Sulfide Analysis Schedule	4
Table 3-1. Test Results for <i>Eohaustorius estuarius</i>	8
Table 3-2. Water Quality Summary for Eohaustorius estuarius	10
Table 3-3. Ammonia Summary for <i>Eohaustorius estuarius</i>	11
Table 3-4. Sulfide Summary for <i>Eohaustorius estuarius</i>	12
Table 3-5. Test Condition Summary for Eohaustorius estuarius	13
Table 3-6. Test Results for Neanthes arenaceodentata	15
Table 3-7. Water Quality Summary for Neanthes arenaceodentata	17
Table 3-8. Ammonia Summary for <i>Neanthes arenaceodentata</i>	
Table 3-9. Sulfide Summary for Neanthes arenaceodentata	19
Table 3-10. Test Condition Summary for Neanthes arenaceodentata	20
Table 3-11. Test Results for Mytilus galloprovincialis	22
Table 3-12. Water Quality Summary for <i>Mytilus galloprovincialis</i>	24
Table 3-13. Ammonia and Sulfide Summary for Mytilus galloprovincialis	24
Table 3-14. Test Condition Summary for Mytilus galloprovincialis	25
Table 4-1. SMS Comparison for <i>Eohaustorius estuarius</i>	26
Table 4-2. SMS Comparison for Neanthes arenaceodentata	27
Table 4-3. SMS Comparison for <i>Mytilus galloprovincialis</i>	28
Table 5-1. Summary of SMS Evaluation	29

APPENDICES

Appendix A: Test Data, Statistical Comparisons, and Reference-Toxicant Test Results

Appendix B: Chain of Custody Forms, Logs, and Pre-Test Documents

ACRONYMS AND ABBREVIATIONS

AFDW: Ash-free dry weight

CSL: Cleanup Screening Level

°C: Degrees Celsius

EC₅₀: Effective Concentration that results in a 50% reduction in a sub-lethal endpoint

g: Grams

LC₅₀: Lethal Concentration that results in a 50% reduction in survival

L: Liter

μm: Micrometer mg: Milligram

mg/ind/day: Milligrams per Individual per Day

mg/L: Milligrams per liter

MIG: Mean Individual Growth Rate

mL: Milliliter mm: Millimeter

NELAP: National Environmental Laboratory Accreditation Program

NOEC: No Observed Effect Concentration

OR: Oregon

ppt: parts per thousand

PSEP: Puget Sound Estuary Protocols (PSEP 1995)

SCO: Sediment Cleanup Objective

SCU: Sediment Cleanup Unit

SCUM: Sediment Cleanup User's Manual

SD: Standard Deviation

SMS: Sediment Management Standards

SMARM: Sediment Management Annual Review Meeting

SOP: Standard operation procedure

UIA: Un-ionized ammonia

USACE: United States Army Corps of Engineers

USEPA: United States Environmental Protection Agency

WA: Washington State

WDOE: Washington (State) Department of Ecology

Report ID: PG1785.01 iv of iv EcoAnalysts, Inc.

1. INTRODUCTION

EcoAnalysts conducted biological toxicity testing on samples collected by Leon Environmental as part of a remedial sediment investigation at Albert Jensen and Sons Boatyard and Marina located in the Port of Friday Harbor, Washington. Sediments were evaluated for biological effects according to guidance outlined in the Washington State Department of Ecology (WDOE), the Sediment Cleanup User's Manual (SCUM; WDOE 2021), and modifications made through the DMMP annual review process (Sediment Management Annual Review Meetings [SMARM] updates).

All biological testing was performed in strict compliance with Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments (PSEP 1995). This report presents the results of the toxicity testing portion of the sediment investigation.

2. METHODS

This section summarizes the test methods followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the Sediment Cleanup User's Manual (SCUM; WDOE 2021), and the various updates presented during the Sediment Management Annual Review Meeting (SMARM). Sediment toxicity was evaluated using three standard PSEP bioassays; the 10-day amphipod test, the 20-day juvenile polychaete survival and growth test, and the benthic larval development test.

2.1 Sample Collection

Samples were collected by Leon Environmental personnel on March 20^{th} , 21^{st} , and 23^{rd} , 2023 and were received at the EcoAnalysts laboratory on March 24^{th} , 2023. Reference sediment CARR18-23-REF, CARR40-23-REF, and CARR62-23-REF were collected from Carr Inlet, Washington on May 10^{th} , 2023, and received the same day. Sediment samples were stored in a walk-in cold room at $4 \pm 2^{\circ}$ C in the dark. All tests were conducted within the eight-week holding time.

Native *Eohaustorius estuarius* sediment from Yaquina Bay, Oregon was provided by Northwest Amphipod for use as the control sediment treatment for the amphipod and juvenile polychaete tests.

2.2 Sample Grain Size and Reference Comparison

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare the chemical and biological responses of project sediments. The percent fines value is defined as the amount of sediment that passes through a 62.5-µm sieve, expressed as a percentage of the total sample analyzed (PSEP 1986). This value can also be derived from the sum of the silt and clay fractions of the sample when determined by conventional particle-size determination (Plumb 1981). The reference sediment grain size should have a percent fines value within 20% of the corresponding test sediment to which it is being compared to (WDOE 2021).

Wet-sieve grain size results for the reference sediments was conducted in the field (at the time of collection) and confirmed in the laboratory upon receipt. The percent-fines determination of the project sediments is summarized in Table 2-1.

Report ID: PG1785.01 1 of 30 EcoAnalysts, Inc.

Table 2-1. Sample and Reference Grain Size Comparison

Sample ID	Laboratory ID	Compared To	Percent Fines
CARR18-23-REF	P230510.02		18
CARR40-23-REF	P230510.03		40
CARR62-23-REF	P230510.04		62
SED-07G:0-10	P230324.01	CARRAG 22 REE	12
SED-11G:0-10	P230324.02	CARR18-23-REF	26
SED-01G:0-10	P230324.06		34
SED-27G:0-10	P230324.08	CARRAO 33 REE	44
SED-15G:0-10	P230324.04	CARR40-23-REF	50
SED-03G:0-10	P230324.05		50
SED-14G:0-10	P230324.03	CARRCA 22 REF	58
SED-05G:0-10	P230324.07	CARR62-23-REF	64

Test samples were compared to each reference collected from Carr Inlet for the purposes of evaluating the sediment under the sediment management standards. The percent fines of the reference sediment were within the \leq 20% objective for the project sample.

Station coordinates for the reference sample are summarized in Table 2-2.

Table 2-2. Reference Station Coordinates

Station	Sample ID	Latitude	Longitude
CARR	CARR40-23-REF	47.33300	-122.66409
New Site	CARR18-23-REF	47.33642	-122.66318
New Site 2	CARR62-23-REF	47.33366	-122.66342

2.3 Bulk Sample Porewater Ammonia and Water Quality Measurements

Prior to testing, bulk sediment porewater ammonia concentrations and salinity were measured to determine whether any methods modifications or supplemental testing would be required (Table 2-3). Bulk sediments are homogenized test samples that have not been further processed for bioassay testing. The bulk porewater analysis represents a potential worst-case scenario for ammonia and sulfide exposure. In the actual solid phase test exposures, the sediment is established with overlying water (175mL sediment/775mL overlying water) and aeration and allowed to acclimate until test initiation on the subsequent day. A different setup is prepared for the sediment larval test that includes 18g sediment and 900mL of overlying water that is agitated for 10 seconds and allowed to settle for four hours before test initiation. Test mockups were performed for both the solid phase and larval sediment test to get a better idea of ammonia and sulfide levels in the test exposures for those samples with ammonia and/or sulfide exceedances in the bulk sediment. The results of the pretest sediment analyses are summarized in Table 2-3.

Report ID: PG1785.01 2 of 30 EcoAnalysts, Inc.

Table 2-3: Bulk and Mock Sediment Porewater Measurements

Sample ID	Sample Type	Total Ammonia ^{1,3} (mg/L)	Unionized Ammonia ^{1,3} (mg/L)	Total Sulfide (μg/L as S)	Hydrogen Sulfide² (mg/L as H₂S)	Salinity	рН
SED-01G: 0-10		7.72	0.069 - 0.093	ND	ND	31	7.5
SED-03G: 0-10		3.39	0.030 - 0.041	ND	ND	31	7.5
SED-05G: 0-10		5.99	0.043 - 0.058	7	0.0013 - 0.0014	31	7.4
SED-07G: 0-10	Bulk	29.1	0.517- 0.692	26	0.0021 - 0.0024	31	7.8
SED-11G: 0-10	Sediment	23.6	0.334 - 0.448	ND	ND	30	7.7
SED-14G: 0-10		9.94	0.089 - 0.120	ND	ND	31	7.5
SED-15G: 0-10		6.46	0.046 - 0.062	18	0.0032 - 0.0037	31	7.4
SED-27G: 0-10		12.4	0.140 - 0.188	25	0.0030 - 0.0035	31	7.6
SED-07G: 0-10	Mock Solid Phase - Porewater	7.17	0.069			29	7.4
SED-01G: 0-10		0.00	0.000			28	7.9
SED-03G: 0-10		0.00	0.000			28	7.9
SED-05G: 0-10		0.00	0.000			28	7.8
SED-07G: 0-10	Mock	0.108	0.002			28	7.9
SED-11G: 0-10	Larval	0.185	0.004			28	7.9
SED-14G: 0-10		0.00	0.000			28	7.9
SED-15G: 0-10		0.00	0.000	13	0.0010	28	7.9
SED-27G: 0-10		0.098	0.002	ND	ND	28	7.8

¹Unionized Ammonia Purging triggers: >0.04 mg/L for larval, >0.8 mg/L Eoh and >0.46 mg/L Neanthes (Inouye et al. 2015)

ND= not detected

Bold values exceed purging triggers for larval sediment test

Bold and Italicized values exceed purging triggers for larval and *Neanthes* test

Potential effects-based concentrations summarized in Table 2-4 were used to estimate which sample(s) may have sufficiently elevated ammonia and/or sulfides present to produce negative biological effects in the target test organisms. Bulk porewater ammonia exceeded trigger values in all samples for the larval test but only SED-07G for the polychaete test. No amphipod trigger values were exceeded. Two samples, SED-15G and SED-27G, exceeded hydrogen sulfide values for the larval tests in the bulk porewater (Inouye, Hoffman, & Fox, 2015), but there were no exceedances of the polychaete or amphipod trigger values. A test mock-up was performed on the samples with exceedances to determine whether ammonia and sulfide levels in the test exposure would also exceed threshold values. Based on measurements gathered from the mock test chambers, all measurements were below trigger values and no purging was necessary.

Report ID: PG1785.01 3 of 30 EcoAnalysts, Inc.

 $^{^2}$ Hydrogen Sulfide Purging triggers: >0.0025 mg/L larval, >0.122 mg/L Eoh and >3.4 mg/L Neanthes (Inouye et al. 2015)

³ Estimated values at test temperatures of 16 and 20°C

Table 2-4. Threshold Ammonia Concentrations for Benthic Test Species

Parameter	Amphipod (Eohoustorius estuarius)	Polychaete	Larval (Bivalve)
Total Ammonia	<60 mg/L ¹ 75.1 mg/L ²	129.4 mg/L ²	3.7 mg/L ²
Unionized Ammonia	0.8 mg/L ³ Purging Trigger	0.46 ³ mg/L Purging Trigger	0.04 mg/L ³ Purging Trigger
Hydrogen Sulfide	0.122 ³ mg/L Purging Trigger	3.4 mg/L ³ Purging Trigger	0.0025 mg/L ³ Purging Trigger

¹ EPA 1994

In addition to standard water quality testing, ammonia and total sulfides was measured on surrogate chambers for each test sample, as indicated in Table 2-5.

Table 2-5. Ammonia and Sulfide Analysis Schedule

Bioassay	Overlying water	Porewater
Amphipod	Days 0, 10	Days 0 and 10
Neanthes	Days 0, 20	Days 0 and 20
Larval	Days 0, Final	Not Applicable

2.4 10-day Amphipod Bioassay

The 10-day amphipod acute toxicity test was conducted with *Eohaustorius estuarius*. The test was conducted with organisms supplied by Northwest Amphipod in Newport, Oregon. The test organisms were held in native sediment from Yaquina Bay, Oregon. They were acclimated to then held at $15 \pm 2^{\circ}$ C prior to test initiation. The native sediment was also used as a control treatment sediment in the test. This matrix has been used successfully in prior tests with this species and is known to support positive organism health and survival.

The amphipod bioassay was conducted as 10-day static exposures with five replicates for each test treatment, reference treatment, and control. Two centimeters of sediment (approximately 175 mL) were placed into each 1-L glass chamber with 775 mL of overlying water. Trickle-flow aeration was provided through glass pipettes, and care was taken to avoid disturbing the sediment surface. Test chambers were placed into randomly assigned positions and allowed to equilibrate to test conditions overnight.

Prior to the test initiation, water quality measurements were taken in a surrogate replicate for each test treatment and included dissolved oxygen, temperature, salinity, and pH. Ammonia and sulfide concentrations were measured in both porewater and overlying water following the schedule in Table 2-5. These measurements were made from a sacrificial surrogate chamber for each test treatment. Sediment porewater was extracted via centrifugation. During the test, water quality was monitored daily in one surrogate replicate per treatment. All water quality instruments were calibrated daily or on their recommended schedule. Records of instrument calibration were retained in the laboratory logs.

To initiate the test, organisms were randomly allocated to each of the test chambers. Initial stocking densities were 20 organisms per test chamber. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. No food was provided during the 10-day exposure for the amphipod test.

Report ID: PG1785.01 4 of 30 EcoAnalysts, Inc.

² Mean NOEC (Internal Lab Derived)

³ Inouye et al. 2015

At test termination, sediment from each test chamber was sieved through a 0.5-mm screen to recover all organisms. The number of surviving and dead amphipods was then enumerated.

2.5 20-day Juvenile Polychaete Bioassay

The 20-day polychaete survival and growth test was conducted with juvenile polychaete worms (*Neanthes arenaceodentata*). Test organisms were obtained from Aquatic Toxicology Support in Bremerton, Washington and held in seawater at 20°C (Neanthes were cultured in water-only and were not held in sediment prior to testing). Native sediment of the amphipod *Eohaustorius estuarius* from Yaquina Bay, Oregon was provided by Northwestern Aquatic Sciences for use as the control treatment sediment for the test. This coarse sand control sediment has been routinely tested in conjunction with this species at this laboratory and results from historical testing have demonstrated acceptable organism health and sediment quality.

The polychaete bioassay was conducted as a 20-day static-renewal test, with overlying exchanges of 300 mL of water occurring every third day. Each test treatment, reference treatment, and control consisted of five replicates of 1-L glass chambers, which were filled with two centimeters of sediment (approximately 175 mL) and 775 mL of overlying water. Trickle-flow aeration was provided through glass pipettes, and care was taken to avoid disturbing the sediment surface. Test chambers were then randomly assigned positions and allowed to equilibrate to test conditions overnight.

Prior to the test initiation, water quality measurements were taken in a surrogate chamber for each test treatment and included dissolved oxygen, temperature, salinity, and pH. Ammonia and sulfide concentrations were measured in both porewater and overlying water following the schedule in Table 2-5. These measurements were made from a sacrificial surrogate chamber for each test treatment. Sediment porewater was extracted via centrifugation. During the test, water quality was monitored daily in one surrogate replicate per treatment. All water quality instruments were calibrated daily or on their recommended schedule. Records of instrument calibration were retained in the laboratory logs.

To initiate the test, organisms were randomly allocated to each of the test chambers. Initial stocking densities were five worms per test chamber. During the test, organisms were fed a diet of 40-mg of TetraMin® slurry every other day (approximately 8-mg dry weight per worm). Pre-test initial biomass was determined by taking dry weight and ash-free dry weight (AFDW) measurements of three replicates of five worms each on Day 0.

At test termination, sediment from each test chamber was sieved through a 0.5-mm screen. All worms were recovered, enumerated, rinsed in deionized water (to remove salt), and transferred to preweighed aluminum foil weigh boats. After drying in an oven at approximately 60°C for at least 24 hours, each weigh-boat was removed, cooled in a desiccator and weighed to obtain dry weight measurements. They were then heated to 550°C for two hours to determine the ashed weight. AFDW were calculated to correct for the influence of sediment grain size differences between treatments:

AFDW=Dry weight-Ashed weight

Both dry weight and AFDW were used to determine individual worm weight and growth rates. The dry weight growth rate is calculated using the following equation:

 $G = (DWTt_2 - DWTt_1) \div (t_2 - t_1)$

Where: $DWTt_2$ = individual dry weight of surviving adults at test termination

DWTt₁ = mean individual dry weight of organisms at test initiation

 $t_2 - t_1 = duration of test (e.g. days)$

Report ID: PG1785.01 5 of 30 EcoAnalysts, Inc.

The AFDW growth rate is calculated using the following equations:

AFDW = (Final Dry Weight – Final Ashed Weight) ÷ #Survivors

 $G = (AFDWt_2 - AFDWt_1) \div (t_2 - t_1)$

Where: AFDW t_2 = individual ash-free dry weight of surviving adults at test termination

AFDWt₁ = mean individual ash-free dry weight of organisms at test initiation

t2 - t1 = duration of test (e.g. days)

2.6 Larval Developmental Bioassay

The bivalve larval development test was conducted with the mussel, $Mytilus\ galloprovincialis$. Adult organisms were obtained from Taylor Shellfish in Shelton, Washington and were held under flowing natural seawater at $12\pm2^{\circ}C$ prior to spawning induction. Adult mussels were fed during the holding period a marine algal suspension ad libitum. The control treatment consisted of a clean seawater-only control. The reference treatment was compared against the control to determine test acceptability criteria.

The larval development bioassay was conducted as a static exposure with five replicates for each test treatment, reference treatment, and control. Approximately 18 g (± 1 g) of sediment was placed into each 1-L glass chamber with 900 mL of overlying water. Test chambers were then shaken for 10 seconds and placed into randomly assigned positions and allowed to settle for approximately 4 hours. The larval test was aerated throughout the test. Air was provided through glass pipettes, and care was taken to avoid disturbing the sediment surface.

Prior to the test initiation, water quality measurements were taken in the surrogate chamber for each test treatment and included dissolved oxygen, temperature, salinity, and pH. Ammonia and sulfide concentrations were measured in the overlying water following the schedule in Table 2-5. These measurements were made from a sacrificial surrogate chamber for each test treatment. During the test, water quality was monitored daily in one surrogate replicate per treatment. All water quality instruments were calibrated daily or on their recommended schedule. Records of instrument calibration were retained in the laboratory logs.

To obtain gametes for testing, adult mussels to be spawned were placed in clean seawater at 16°C (culture temperature) for approximately 30 – 60 minutes in the presence of dense marine algal suspension. The mussels were then transferred to containers with culture water adjusted to 20 -23°C for the purpose of inducing the release of gametes. The animals were held at the shocking temperature and were monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs were transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and subsamples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber.

Though not strictly necessary as flocculent material was not listed as a concern in the SAP, all test treatments were resuspended prior to test termination to improve recovery of larvae trapped in the

Report ID: PG1785.01 6 of 30 EcoAnalysts, Inc.

debris. At approximately 40 hours from test initiation, the water, larvae and settled sediment were homogenized by gentle mixing using a perforated plunger. The contents were then allowed to settle until the test was terminated.

The protocol calls for test termination when 95% of the embryos in the control have reached the prodissoconch I stage (approximately 48-60 hours). At termination, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 10% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% ethanol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae. Abnormal larvae included abnormally shaped prodissoconch I larvae and all early-stage larvae.

2.7 Data Analysis and QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For Sediment Cleanup Objective (SCO) and Cleanup Screening Level (CSL) suitability determinations, comparisons were made according to the Sediment Management Standards (SMS; WDOE 2019) and Fox et al. (1998), using BioStat software. Data reported as percent mortality were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Growth data with unequal variance were log10 transformed prior to analysis. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980). A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to ammonia concentrations that would possibly be present in the sediments.

Statistical analyses of all dose-response tests were performed using CETIS Comprehensive Toxicity Data Analysis and Database Software version 2.1.4.3. Comparisons between the lab control and each test concentration were performed following recommended USEPA decision matrices (USEPA 2002).

Report ID: PG1785.01 7 of 30 EcoAnalysts, Inc.

3. RESULTS

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. All data, laboratory bench sheets, and statistical analyses are provided in Appendix A while chain of custody forms and pre-test documents are supplied in Appendix B.

3.1 10-day Amphipod Bioassay

The bioassay test with *E. estuarius* had 16% mortality in the native sediment control, which did not meet the performance criterion of ≤10% mortality for SMS evaluations. Mean mortality for CARR18-23-REF was 14% and for both CARR40-23-REF and CARR62-23-REF the mean mortality was 15%, which met the performance criteria (≤25% mortality SMS) and indicated that the reference sediment was acceptable for suitability determination. Insufficient time was available to rerun the test within holding time. The results were discussed with the client and WDOE and the decision was made to not rerun the bioassay test.

All endpoint results are summarized in Table 3-1. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-2 through Table 3-5.

Water quality parameters were within the acceptable limits throughout the duration of the test (Table 3-2).

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The reference-toxicant test control met the test acceptability criterion and the LC₅₀ value was within control chart limits for total ammonia and unionized ammonia (±2 standard deviations from the laboratory historical mean). Ammonia concentrations observed in the *E. estuarius* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 3-3; compare to NOEC of 1.52 mg/L unionized ammonia). Therefore, ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects if observed in the test treatments. Measured initial and final sulfide concentrations within the overlying water and porewater were below the trigger value of 0.122 mg/L hydrogen sulfide for *E. estuarius* (Inouye et al. 2015).

Table 3-1. Test Results for *Eohaustorius estuarius*

Treatment	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Mortality	Mean Percentage Mortality	SD
	1	20	17	3	15		
	2	20	15	5	25		
Control	3	20	17	3	15	16.0	5.5
	4	20	18	2	10		
	5	20	17	3	15		
	1	20	18	2	10		
	2	20	18	2	10		
CARR18-23-REF	3	20	18	2	10	14.0	8.9
	4	20	14	6	30		
	5	20	18	2	10		

Report ID: PG1785.01 8 of 30 EcoAnalysts, Inc.

Treatment	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Mortality	Mean Percentage Mortality	SD
	1	20	15	5	25		
	2	20	18	2	10		
CARR40-23-REF	3	20	18	2	10	15.0	7.1
	4	20	18	2	10		
	5	20	16	4	20		
	1	20	15	5	25		
	2	20	19	1	5		
CARR62-23-REF	3	20	15	5	25	15.0	9.4
	4	20	18	2	10		
	5	20	18	2	10		
	1	20	15	5	25		
	2	20	13	7	35		
SED-07G:0-10	3	20	13	7	35	22.0	14.0
	4	20	18	2	10		
	5	20	19	1	5		
	1	20	13	7	35		
	2	20	16	4	20		
SED-11G:0-10	3	20	17	3	15	18.0	10.4
	4	20	18	2	10		
	5	20	18	2	10		
	1	20	18	2	10		
	2	20	16	4	20		
SED-14G:0-10	3	20	14	6	30	20.0	7.9
	4	20	17	3	15		
	5	20	15	5	25		
	1	20	15	5	25		
	2	20	19	1	5		
SED-15G:0-10	3	20	16	4	20	13.0	10.4
	4	20	17	3	15		
	5	20	20	0	0		
	1	20	16	4	20		
	2	20	14	6	30		
SED-03G:0-10	3	20	12	8	40	28.0	13.0
	4	20	12	8	40	1	
	5	20	18	2	10	1	
	1	20	19	1	5		
	2	20	15	5	25	1	
CED 04C-0 40	3	20	19	1	5	12.0	9.1
SED-01G:0-10	4	20	16	4	20	13.0	
	5	20	18	2	10		

Treatment	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Mortality	Mean Percentage Mortality	SD
	1	20	17	3	15		
	2	20	17	3	15		
SED-05G:0-10	3	20	16	4	20	18.0	4.5
	4	20	15	5	25		
	5	20	17	3	15		
	1	20	17	3	15		
	2	20	16	4	20		
SED-27G:0-10	3	20	16	4	20	19.0	7.4
	4	20	18	2	10		
	5	20	14	6	30		

Table 3-2. Water Quality Summary for *Eohaustorius estuarius*

Treatment		Dissolved Oxygen (mg/L) ≥5.1 mg/L		Temperature (°C) 15 ± 1°C		Salinity (ppt) 28 ± 1 ppt			pH 7 - 9 units			
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	8.3	8.2	8.4	15.6	15.4	15.9	28	28	28	8.1	8.0	8.1
CARR18-23-REF	8.2	7.8	8.3	15.6	15.3	16.4	28	28	28	8.1	7.9	8.2
CARR40-23-REF	8.2	8.0	8.3	15.8	15.5	16.0	28	28	28	8.2	8.0	8.4
CARR62-23-REF	8.2	8.1	8.4	15.6	15.3	16.0	28	28	28	8.0	8.0	8.1
SED-07G:0-10	8.2	7.9	8.3	15.7	15.5	16.1	28	28	28	8.2	8.0	8.3
SED-11G:0-10	8.2	8.1	8.3	15.6	15.4	16.0	28	28	28	8.3	8.1	8.5
SED-14G:0-10	8.2	8.1	8.3	15.6	15.4	15.9	28	28	28	8.2	8.0	8.3
SED-15G:0-10	8.2	8.1	8.3	15.6	15.3	16.2	28	28	28	8.1	7.9	8.2
SED-03G:0-10	8.1	7.9	8.2	15.9	15.6	16.2	28	28	28	8.0	7.9	8.2
SED-01G:0-10	8.2	8.1	8.3	15.7	15.4	15.9	28	28	28	8.1	8.0	8.3
SED-05G:0-10	8.2	7.9	8.3	15.6	15.4	15.8	28	28	29	8.2	8.0	8.3
SED-27G:0-10	8.2	8.1	8.3	15.6	15.4	15.8	28	28	28	8.2	8.0	8.3

Table 3-3. Ammonia Summary for *Eohaustorius estuarius*

		O	verlying		Porewater			
Treatment	Total Am (mg/L [*] NOEC = mg/	Total) = 89.1	Unionized Ammonia (mg/L) NOEC = 1.52 ¹ Trigger Value = 0.8 mg/L ²		Total Ammonia (mg/L Total) NOEC = 89.1 mg/L ¹		Unionized Ammonia (mg/L) NOEC = 1.52 ¹ Trigger Value = 0.8 mg/L ²	
	Da	у	Da	ay	Da	у	Da	ay
	0	10	0	10	0	10	0	10
Control	0.00	0.353	0.000	0.012	0.0415	0.00	0.000	0.000
CARR18-23-REF	0.690	0.190	0.015	0.008	3.28	2.49	0.028	0.022
CARR40-23-REF	0.587	0.00	0.016	0.000	2.61	3.38	0.028	0.047
CARR62-23-REF	0.00	0.00	0.000	0.000	1.18	0.648	0.010	0.009
SED-07G:0-10	3.87	5.17	0.104	0.278	14.0	8.47	0.152	0.119
SED-11G:0-10	2.75	8.65	0.092	0.714	8.56	21.7	0.116	0.601
SED-14G:0-10	1.39	2.97	0.037	0.157	2.92	5.87	0.025	0.052
SED-15G:0-10	0.536	0.607	0.011	0.026	1.83	1.70	0.010	0.019
SED-03G:0-10	0.0857	0.00	0.002	0.000	1.02	0.437	0.007	0.005
SED-01G:0-10	0.335	0.173	0.009	0.009	1.76	0.788	0.012	0.014
SED-05G:0-10	0.372	0.206	0.010	0.011	2.30	0.353	0.020	0.003
SED-27G:0-10	0.992	2.23	0.026	0.117	3.85	4.23	0.033	0.037

¹NOEC derived from concurrent reference-toxicant test;

²Inouye et al. 2015.

Table 3-4. Sulfide Summary for *Eohaustorius estuarius*

		Ov	erlying			Pore	ewater		
Treatment		Sulfides ng/L)	Hydroger (mg Trigger Valu mg/	/L) ue = 0.122	Total S (mg		Hydrogen Sulfide (mg/L) Trigger Value = 0.122 mg/L ¹		
		Day	Da	У	Da	ny	Da	У	
	0	10	0 10		0	10	0	10	
Control	0.013	ND	0.0008	ND	0.002	ND	0.0004	ND	
CARR18-23-REF	0.019	ND	0.0015	ND	0.020	0.033	0.0035	0.0056	
CARR40-23-REF	ND	0.002	ND	0.0001	ND	NM	ND	NM	
CARR62-23-REF	ND	0.000	ND	0.0000	ND	0.004	ND	0.0005	
SED-07G:0-10	0.009	0.003	0.0006	0.0001	0.026	ND	0.0037	ND	
SED-11G:0-10	ND	ND	ND	ND	0.002	0.009	0.0002	0.0005	
SED-14G:0-10	ND	0.004	ND	0.0001	0.205	0.007	0.0354	0.0012	
SED-15G:0-10	ND	0.000	ND	0.0000	0.010	0.008	0.0025	0.0011	
SED-03G:0-10	ND	0.002	ND	0.0001	0.011	ND	0.0023	ND	
SED-01G:0-10	ND	ND	ND	ND	0.015	ND	0.0031	ND	
SED-05G:0-10	ND	ND	ND	ND	0.081	0.000	0.0140	0.0000	
SED-27G:0-10	ND 0.001 ND		0.0000	ND	ND	ND	ND		

¹Inouye et al. 2015. Trigger value is for porewater water, overlying value not specified for *Eohaustorius*

NM = not measured; insufficient volume for analysis

ND = not detected; measurement below detection limit

Table 3-5. Test Condition Summary for *Eohaustorius estuarius*

	Test Conditions: PSEP <i>E. estuarius</i>					
Data Sampled	March 20, 21, and 23, 2	023 (test samples)				
Date Sampled	May 10, 2023 (refer					
Date Received	March 24, 2023 (t					
	May 10, 2023 (refer					
Test Dates	May 12 – 22, 2023					
Sample Storage Conditions	4°C, da					
Days of Holding	53 Days (test s					
Recommended: ≤8 weeks (56 days) Source of Control Sediment	2 Days (reference					
	Yaquina Ba	•				
Test Species	Eohaustorius e					
Supplier	Northwest Amphipo	·				
Date Acquired	May 10, 2					
Age Class	Immature: 3					
Test Procedures	PSEP 1995 with SMARM revisi					
Test Location	EcoAnalysts Port Gan	nble Laboratory				
Test Type/Duration	10-Day st	atic				
Control Water	North Hood Canal seawa	ter, 0.45µm filtered				
Test Lighting	50 – 100 foot candles (am	bient and constant)				
Test Chamber	1-Liter Glass C	Chamber				
Replicates per Treatment	5 + 2 surro (one used for WQ measureme	=				
Organisms per Replicate	20					
Exposure Volume	175 mL sediment/	775 mL water				
Feeding	None					
Water Renewal	None					
Test Dissolved Oxygen	Recommended: ≥ 5.1 mg/L	Observed: 7.8 – 8.4 mg/L				
Test Temperature	Recommended: 15 \pm 1 $^{\circ}$ C	Observed: 15.3 – 16.4°C				
Test Salinity	Recommended: 28 ± 1 ppt	Observed: 28 – 29 ppt				
Test pH	Recommended: 7 - 9	Observed: 7.9 – 8.5				
	Recommended:	Observed:				
Control Performance Standard	Control ≤ 10% mortality (SMS)	16% mortality; Fail				
Reference Performance Standard	Recommended: Reference ≤ 25% mortality (SMS)	Observed: CARR18-23-REF, 14%; Pass CARR40-23-REF, 15%; Pass CARR62-23-REF, 15%; Pass				
Reference Toxicant LC ₅₀ (total ammonia)	LC ₅₀ = 124.5	5 mg/L				
Mean; Acceptable Range (total ammonia)	161.3; 68.4 – 3	380 mg/L				
NOEC (total ammonia)	89.1 mg	:/L				
NOEC (unionized ammonia)	1.52 mg /L					
Deviations from Test Protocol	Control mortality					

Report ID: PG1785.01 13 of 30 EcoAnalysts, Inc.

3.2 20-day Juvenile Polychaete Bioassay

The bioassay test with *N. arenaceodentata* was validated with 0% mortality in the control, meeting the test survival acceptability criterion of ≤10% (WDOE 2021). Mean individual growth rate (MIG) in the control was 1.592 mg/ind/day (dry weight) and 1.251 mg/ind/day (AFDW), meeting the test acceptability criterion of ≥0.38 mg/ind/day AFDW (WDOE 2021). Mean mortality in all reference treatments was 0%. Mean individual growth rate for the reference samples was between 1.702 − 1.998 mg/ind/day (dry weight) and 1.412 − 1.648 mg/ind/day (AFDW). When compared to the control, MIG expressed as dry weight for the references was between 1.07 and 1.26 mg/ind/day. The MIG expressed as AFDW when comparing to the control to the references was between 1.13 and 1.32 mg/ind/day. These ratios met the reference performance standard of ≥0.80 (WDOE 2021). A summary of the test results for all samples is shown in Table 3-6. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-7 through Table 3-10.

Mortality in the project sediment was 0%. Mean individual growth (as dry weight) in the test treatments ranged between 0.885 and 1.660 mg/ind/day. Mean individual growth in the AFDW assessment, which removes variability caused by gut contents, ranged between 0.737 and 1.343 mg/ind/day as AFDW.

Water quality parameters were within the acceptable limits throughout the duration of the test (Table 3-7). Initial mean individual biomass (pretest) of the test organisms met the minimum required growth criterion of 0.25 – 1.0 mg/individual at 1.223 mg/ind dry weight and 0.529 mg/ind AFDW (Kendall 1996). Replicate 5 of reference CARR40-23-REF was inadvertently stocked with 6 animals. The organism count was adjusted for statistical analysis. This deviation should not affect the test results.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The reference-toxicant test control met the test acceptability criterion and the LC_{50} value was within control chart limits for total ammonia and unionized ammonia (± 2 standard deviations from the laboratory historical mean). Ammonia concentrations observed in the *N. arenaceodentata* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 3-8; compare to NOEC of 2.36 mg/L unionized ammonia). Sulfide concentrations were below the trigger value of 3.4 mg/L hydrogen sulfide (Inouye et al. 2015) (Table 3-9). Neither ammonia nor sulfides contributed to mortality in the test treatment.

Report ID: PG1785.01 14 of 30 EcoAnalysts, Inc.

Table 3-6. Test Results for Neanthes arenaceodentata

		Neuralagu		Mean		Individua	al Growt	h Rate (mg/	'ind/day)	
Treatment	Rep	Number Initiated	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD
	1	5	5		1.180			0.876		
	2	5	5		1.531			1.136		
Control	3	5	5	0	1.778	1.592	0.27	1.401	1.251	0.248
	4	5	5		1.593			1.343		
	5	5	5		1.876			1.499		
	1	5	5		1.421			1.207		
	2	5	5		1.854			1.652		
CARR18-23-REF	3	5	5	0	2.338	1.702	0.41	1.992	1.412	0.410
	4	5	5		1.315			0.949		
	5	5	5		1.582			1.262		
	1	5	5		1.767			1.442		
	2	5	5		1.619			1.389		
CARR40-23-REF	3	5	5	0	1.882	1.828	0.21	1.613	1.523	0.131
	4	5	5		1.703			1.469		
	5	6	6		2.169			1.703		
	1	5	5		2.162			1.770		
	2	5	5		2.191			1.803		
CARR62-23-REF	3	5	5	0	2.190	1.998	0.29	1.871	1.648	0.283
	4	5	5		1.921			1.631		
	5	5	5		1.524			1.168		
	1	5	5		1.521			1.351		
	2	5	5		1.483			1.174		
SED-07G:0-10	3	5	5	0	1.361	1.423	0.12	1.130	1.208	0.133
	4	5	5		1.505			1.339		
	5	5	5		1.246			1.047		
	1	5	5		0.726			0.562		
	2	5	5		1.054			0.906		
SED-11G:0-10	3	5	5	0	1.128	0.885	0.28	0.971	0.737	0.258
	4	5	5		1.053			0.873		
	5	5	5		0.465			0.372		
	1	5	5		0.996			0.697		
	2	5	5		1.407			1.169		
SED-14G:0-10	3	5	5	0	1.270	70 1.370	70 0.34	1.154		0.346
	4	5	5		1.922			1.658		
	5	5	5		1.257			1.017		

Report ID: PG1785.01 15 of 30 EcoAnalysts, Inc.

		Number		Mean		Individua	al Growt	h Rate (mg/	'ind/day)	
Treatment	Rep	Initiated	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD
	1	5	5		0.834			0.611		
	2	5	5		1.839			1.471		
SED-15G:0-10	3	5	5	0	1.787	1.556	0.60	1.533	1.280	0.574
	4	5	5		2.277			2.004		
	5	5	5		1.045			0.783		
	1	5	5		1.388			1.174		
	2	5	5		1.087			0.812		
SED-03G:0-10	3	5	5	0	1.153	1.413	0.30	0.939	1.174	0.302
	4	5	5		1.648			1.464		
	5	5	5		1.789			1.482		
	1	5	5		1.476			1.214		
	2	5	5		1.740			1.437		
SED-01G:0-10	3	5	5	0	1.198	1.660	0.33	0.831	1.343	0.338
	4	5	5		2.023			1.713]	
	5	5	5		1.864			1.521		
	1	5	5		1.807			1.579		
	2	5	5		1.533			1.274		
SED-05G:0-10	3	5	5	0	1.189	1.519	0.32	0.824	1.274	0.372
	4	5	5		1.860			1.699		
	5	5	5		1.204			0.993		
	1	5	5		0.808			0.602		
	2	5	5		0.761			0.558	1.035	
SED-27G:0-10	3	5	5	0	1.474	4 1.261	0.46	1.210		0.435
	4	5	5		1.815			1.542		
	5	5	5		1.450			1.264		

Table 3-7. Water Quality Summary for Neanthes arenaceodentata

Treatment		lved Ox (mg/L) 4.6 mg/			Temperature (°C) 20 ± 1°C			Salinity (ppt) 28 ± 2 ppt			pH 7 - 9 units		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	
Control	7.3	7.0	7.7	20.6	19.3	21.2	28	28	28	7.9	7.8	8.0	
CARR18-23-REF	7.3	6.9	7.6	20.5	19.2	21.3	28	28	29	8.0	7.9	8.1	
CARR40-23-REF	7.1	6.9	7.8	20.5	19.2	21.4	28	28	29	8.0	7.8	8.3	
CARR62-23-REF	7.3	7.1	7.6	20.4	19.3	21.1	28	28	29	8.0	7.9	8.2	
SED-07G:0-10	7.2	6.9	7.6	20.5	19.2	21.3	28	28	29	8.1	8.0	8.2	
SED-11G:0-10	7.3	7.0	7.6	20.4	19.3	21.2	28	28	29	8.2	8.0	8.4	
SED-14G:0-10	7.3	6.9	7.7	20.4	19.3	21.2	28	28	29	8.0	7.9	8.2	
SED-15G:0-10	7.1	6.8	7.6	20.6	19.2	21.4	28	28	29	8.0	7.8	8.1	
SED-03G:0-10	7.4	7.1	7.6	20.5	19.4	21.2	28	28	29	8.1	7.9	8.2	
SED-01G:0-10	7.2	6.8	7.6	20.5	19.3	21.1	28	28	29	8.0	7.9	8.2	
SED-05G:0-10	7.4	7.0	7.6	20.5	19.4	21.2	28	28	29	8.2	7.9	8.3	
SED-27G:0-10	7.3	7.1	7.6	20.5	19.3	21.1	29	28	29	8.1	7.9	8.2	

Table 3-8. Ammonia Summary for Neanthes arenaceodentata

		Ove	rlying			Porev	water		
Treatment	(mg/L	mmonia . Total) 130 mg/L ¹	(mg NOEC Trigger Va	Ammonia g/L) = 2.36 ¹ alue = 0.46 g/L ²	(mg/L	mmonia Total) 30 mg/L ¹	Unionized Ammonia (mg/L) NOEC = 2.36 ¹ Trigger Value = 0.46 mg/L ²		
	Day		D	ау	D	ay	Da	ау	
	0	20	0	20	0	20	0	20	
Control	0.00	1.40	0.000	0.041	0.0415	1.62	0.000	0.015	
CARR18-23-REF	0.690	0.0926	0.040	0.003	3.28	0.395	0.040	0.002	
CARR40-23-REF	0.587	0.139	0.040	0.005	2.61	1.61	0.040	0.024	
CARR62-23-REF	0.00	0.0591	0.014	0.002	1.18	0.277	0.014	0.002	
SED-07G:0-10	3.87	0.0467	0.217	0.002	14.0	1.67	0.217	0.010	
SED-11G:0-10	2.75	5.78	0.165	0.329	8.56	6.82	0.165	0.065	
SED-14G:0-10	1.39	0.140	0.035	0.005	2.92	3.27	0.035	0.020	
SED-15G:0-10	0.536	0.153	0.014	0.005	1.83	1.17	0.014	0.004	
SED-03G:0-10	0.0857	0.0238	0.010	0.001	1.02	0.894	0.010	0.007	
SED-01G:0-10	0.335	0.0530	0.017	0.002	1.76	2.28	0.017	0.014	
SED-05G:0-10	0.372	0.0202	0.028	0.001	2.30	0.734	0.028	0.003	
SED-27G:0-10	0.992	0.0712	0.047	0.003	3.85	1.25	0.047	0.007	

¹NOEC (concurrent reference-toxicant test derived); ²Inouye et al. 2015.

Table 3-9. Sulfide Summary for Neanthes arenaceodentata

		Over	lying			Por	ewater		
Treatment	Total Su (mg/L		(m _i Trigger V	n Sulfide g/L) alue = 3.4 g/L ¹		ulfides Total)	Hydrogen Sulfide (mg/L) Trigger Value = 3.4 mg/L ¹		
	Da	У	D	ay	Da	ay	Day	у	
	0	20	0	20	0	20	0	20	
Control	0.013	0.001	0.001	0.000	0.002	0.005	0.000	0.001	
CARR18-23-REF	0.019	0.003	0.001	0.000	0.020	0.000	0.003	0.000	
CARR40-23-REF	ND	ND	ND	ND	ND	0.012	ND	0.001	
CARR62-23-REF	ND	0.001	ND	0.000	ND	0.006	ND	0.002	
SED-07G:0-10	0.009	0.007	0.000	0.000	0.026	0.014	0.003	0.004	
SED-11G:0-10	ND	0.003	ND	0.000	0.002	ND	0.000	ND	
SED-14G:0-10	ND	0.006	ND	0.000	0.205	0.058	0.031	0.015	
SED-15G:0-10	ND	0.002	ND	0.000	0.010	ND	0.002	ND	
SED-03G:0-10	ND	ND	ND	ND	0.011	0.016	0.002	0.004	
SED-01G:0-10	ND	0.003	ND	0.000	0.015	ND	0.003	ND	
SED-05G:0-10	ND	ND	ND	ND	0.081	0.031	0.012	0.011	
SED-27G:0-10	ND	0.003	ND	0.000	ND	0.008	ND	0.002	

 $^{^{1}\}mbox{lnouye}$ et al. 2015. Trigger value for porewater. Overlying water trigger not available.

ND = not detected; measurement below detection limit

Table 3-10. Test Condition Summary for Neanthes arenaceodentata

Test Conditions: PSEP N. arenaceodentata									
Data Sampled	March 20, 21, and 23, 2023 (test samples)								
Date Sampled	May 10, 2023 (refe								
Date Received	March 24, 2023 (
	May 10, 2023 (reference samples)								
Test Dates	May 12 – June 1, 2023								
Sample Storage Conditions	4°C, da								
Days of Holding	53 Days (test	• •							
Recommended: ≤8 weeks (56 days)	2 Days (referen								
Source of Control Sediment	Yaquina B								
Test Species	Neanthes areno								
Supplier	Aquatic Toxicol								
Date Acquired	May 11,								
Age Class	Juvenile; 2 – 3 weeks	-							
Test Procedures	PSEP 1995 with SMARM revis	•							
Test Location	EcoAnalysts Port Ga	mble Laboratory							
Test Type/Duration	20-Day statio	renewal							
Control Water	North Hood Canal seawa	ater, 0.45µm filtered							
Test Lighting	50 – 100 foot candles (ar	nbient and constant)							
Test Chamber	1-Liter Glass	Chamber							
Replicates per Treatment	5 + 2 surro (one used for WQ measurem	_							
Organisms per Replicate	5	<u> </u>							
Exposure Volume	175 mL sediment/	775 mL water							
Feeding	40 mg/jar every other day (8	mg/ind every other day)							
Water Renewal	Water renewed every third day (1/3	3 volume of exposure chamber)							
Test Dissolved Oxygen	Recommended: > 4.6 mg/L	Observed: 6.8 – 7.8 mg/L							
Test Temperature	Recommended: 20 ± 1 °C	Observed: 19.2 – 21.4 °C							
Test Salinity	Recommended: 28 ± 2 ppt	Observed: 28 – 29 ppt							
Test pH	Recommended: 7 - 9	Observed: 7.8 – 8.4							
Initial Biomass	Recommended: 0.5 - 1.0 mg Minimum: 0.25 mg	1.223 mg (dry weight) 0.529 mg (AFDW)							
Control Performance Standard	Recommended: Control < 10% mortality	Observed: 0%; Pass							
	Recommended: ≥ 0.38 mg/ind/day (as AFDW)	Observed: 1.251 mg/ind/day: Pass							
Reference Performance Standard	Recommended: MIG _{Reference} /MIG _{Control} ≥ 0.80 (SMS)	Observed: 1.07 – 1.26 (dry weight), 1.13 – 1.32 (AFDW): Pass							
Reference Toxicant LC ₅₀ (total ammonia)	LC ₅₀ = 155.	1 mg/L							
Mean; Acceptable Range (total ammonia)	171.6; 122 –	241 mg/L							
NOEC (total ammonia)	130 mg/L								
NOEC (unionized ammonia)	2.36 mg/L								
Deviations from Test Protocol	CARR40-23-REF Replicate 5 stocked with 6 animals								

Report ID: PG1785.01 20 of 30 EcoAnalysts, Inc.

3.3 Larval Development Bioassay

The larval development test with *M. galloprovincialis* was validated by 1.02 proportion normal survivorship (defined as the mean number of normal larvae within the control divided by the stocking density) in the seawater control. These values were within the control acceptability criterion of ≥0.70 (WDOE 2021). A summary of the test results for all samples is shown in Table 3-11. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-12 through Table 3-14.

Mean number normal for all reference treatments ranged from 0.70-0.76 of the seawater control response, meeting the reference acceptability criteria (N_R/N_C) of ≥ 0.65 (defined as the number of normal larvae in the reference sample divided by the number of normal larvae in the control). The test mean chamber stocking density (measured at test initiation) was 27.9 embryos/mL and was within the test objective of 20-40 embryos/mL.

Mean number normal for all test samples ranged from 212.8 - 229.4 and 1.06 - 1.14 of the seawater control response.

Water quality parameters were within acceptable limits throughout the test.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The reference-toxicant test control met the test acceptability criterion and the EC_{50} value was within control chart limits (± 2 standard deviations from the laboratory historical mean). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested.

While the hydrogen sulfide for sample SED-03G:0-10 (0.0038 mg/L) was slightly above the purge trigger of 0.0025 mg/L on Day 2, no observed effects in the *M. galloprovincialis* test were seen for this sample (Table 3-13), indicating that sulfides were not a likely driver of any observed toxicity (Inouye et al. 2015). All ammonia values were below the NOEC from the concurrent reference toxicant test (0.065 mg/L unionized ammonia) and the purging trigger value of 0.04 mg/L unionized ammonia.

Report ID: PG1785.01 21 of 30 EcoAnalysts, Inc.

Table 3-11. Test Results for Mytilus galloprovincialis

Treatment	Rep	Number Normal	Number Abnormal	Mean # Normal (N)	SD	Control Normal Survival Nc/I	Reference Normal Survival Relative to Control N _R /N _C	Performance Standard	
	1	269	21						
	2	282	2						
Seawater Control	3	295	2	284.0	10.5	1.02		≥0.70; Meets Criterion	
	4	293	2					Wieets Criterion	
	5	281	3						
	1	219	6						
	2	209	1				vs Seawater	> 0 CF	
CARR18-23-REF	3	173	1	200.8	27.5		Control:	≥0.65; Meets Criterion	
	4	171	4				0.71	Wieets Criterion	
	5	232	1						
	1	226	2						
	2	197	0				vs Seawater	. 0 65	
CARR40-23-REF	3	182	4	216.0	26.7		Control:	≥0.65; Meets Criterion	
	4	225	3				0.76	Meets Criterion	
	5	250	2						
	1	187	2						
	2	180	1	199.6			vs Seawater	. 0 65	
CARR62-23-REF	3	222	2		28.3		Control:	≥0.65; Meets Criterion	
	4	237	1				0.70	Wieets Criterion	
	5	172	0						
	1	231	1						
	2	211	9						
SED-07G:0-10	3	226	10	216.6	12.6				
	4	199	2						
	5	216	3						
	1	211	0						
	2	188	4						
SED-11G:0-10	3	194	1	224.2	37.5	See Sec	ction 4.3 for Larval Te Determination	st Suitability	
	4	269	2				Determination		
	5	259	0						
	1	211	12						
	2	209	4						
SED-14G:0-10	3	232	3	212.8					
	4	222	3						
	5	190	3						

Report ID: PG1785.01 22 of 30 EcoAnalysts, Inc.

Treatment	Rep	Number Normal	Number Abnormal	Mean # Normal (N)	SD	Control Normal Survival N _C /I	Reference Normal Survival Relative to Control N _R /N _C	Performance Standard
	1	215	13					
	2	249	1					
SED-15G:0-10	3	184	2	223.4	25.1			
	4	234	2					
	5	235	2					
	1	224	4					
	2	242	9					
SED-03G:0-10	3	229	4	228.4	13.0			
	4	238	6					
	5	209	5					
	1	239	4					
	2	229	6					
SED-01G:0-10	3	231	4	229.4	15.4			
	4	244	9					
	5	204	4					
	1	247	2					
	2	224	5					
SED-05G:0-10	3	226	6	223.4	15.6			
	4	215	12					
	5	205	2					
	1	271	0					
	2	183	10					
SED-27G:0-10	3	220	5	219.4	36.8			
	4	237	2					
	5	186	3					

I = Mean Initial count (Stocking density); 279

N_C = Mean Control Normal

N_R = Mean Reference Normal

Table 3-12. Water Quality Summary for Mytilus galloprovincialis

Treatment		lved Ox (mg/L) 5.0 mg/		Temperature (°C) 16 ± 1°C				Salinity (ppt) 8 ± 1 pp		7.	its	
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Seawater Control	8.0	7.7	8.3	16.9	16.6	17.3	28	28	28	7.9	7.9	7.9
CARR18-23-REF	8.2	8.1	8.2	16.1	16.0	16.2	28	28	28	8.0	7.9	8.0
CARR40-23-REF	7.7	7.3	8.2	16.9	16.7	17.1	28	28	28	7.9	7.9	8.0
CARR62-23-REF	7.9	7.7	8.1	17.0	16.9	17.1	28	28	28	7.9	7.9	8.0
SED-07G:0-10	8.0	7.8	8.2	15.9	15.8	16.0	28	28	28	7.9	7.9	8.0
SED-11G:0-10	7.1	6.3	8.1	16.8	16.4	17.0	28	28	28	7.9	7.8	7.9
SED-14G:0-10	8.0	7.8	8.1	16.3	16.0	16.7	28	28	28	7.9	7.9	8.0
SED-15G:0-10	7.9	7.8	8.1	16.1	15.9	16.3	28	28	28	7.9	7.9	8.0
SED-03G:0-10	8.1	8.0	8.1	16.1	16.0	16.3	28	28	28	7.9	7.9	8.0
SED-01G:0-10	7.5	6.5	8.2	17.2	17.0	17.4	28	28	28	7.9	7.9	7.9
SED-05G:0-10	8.1	8.0	8.1	16.0	15.8	16.2	28	28	28	7.9	7.9	8.0
SED-27G:0-10	8.0	7.9	8.1	16.3	16.1	16.7	28	28	28	8.0	7.9	8.0

Table 3-13. Ammonia and Sulfide Summary for Mytilus galloprovincialis

Treatment	Total Ar (mg/L NOEC = 3	Total)	(mg NOEC = 0. Trigger Va	Ammonia g/L) 065 mg/L ¹ alue = 0.04 g/L ²		Sulfides . Total)	Hydrogen Sulfide (mg/L) Trigger Value = 0.0025 mg/L ²		
	Da	ау	Day		D	ay	Da	ıy	
	0	2	0	2	0	2	0	2	
Seawater Control	0.00	0.00	0.000	0.000	ND	0.012	ND	0.0009	
CARR18-23-REF	0.00	0.00	0.000	0.000	ND	ND	ND	ND	
CARR40-23-REF	0.00	0.00	0.000	0.000	0.004	ND	0.0003	ND	
CARR62-23-REF	0.00	0.00	0.000	0.000	ND	0.001	ND	0.0001	
SED-07G:0-10	0.0162	0.00	0.000	0.000	0.010	0.002	0.0008	0.0002	
SED-11G:0-10	0.0614	0.00	0.001	0.000	0.015	ND	0.0011	ND	
SED-14G:0-10	0.00	0.00	0.000	0.000	0.008	ND	0.0006	ND	
SED-15G:0-10	0.00	0.00	0.000	0.000	ND	0.011	ND	0.0008	
SED-03G:0-10	0.00	0.00	0.000	0.000	0.006	0.051	0.0005	0.0038	
SED-01G:0-10	0.00	0.00	0.000	0.000	0.005 ND		0.0004	ND	
SED-05G:0-10	0.00	0.00	0.000	0.000	0.013	ND	0.0010	ND	
SED-27G:0-10	0.00	0.00	0.000	0.000	ND	ND 0.000		0.0000	

¹NOEC (concurrent reference-toxicant test derived)

Bold = above trigger value

²Inouye et al. 2015 ND = Non-detect

Table 3-14. Test Condition Summary for Mytilus galloprovincialis

Test Conditions: PSEP M. galloprovincialis						
Date Sampled March 20, 21, and 23, 2023 (test samples)						
Dute Jumpled	May 10, 2023 (reference samples)					
Date Received	March 24, 2023 (test samples) May 10, 2023 (reference samples)					
Test Dates	, , ,	May 12 – 14, 2023				
Sample Storage Conditions	4°C, d	lark				
Holding Time	53 Days (tes	t samples)				
Recommended: < 8 weeks (56 days)	2 Days (referer	nce samples)				
Test Species	Mytilus gallo	provincialis				
Supplier	Taylor Shellfish,	Shelton, WA				
Date Acquired	May 1,	2023				
Age Class	<4-h old e	mbryos				
Test Procedures	PSEP 1995 with SMARM revi	isions, SOP No. SED005.07				
Test Location	EcoAnalysts Port Ga	amble Laboratory				
Test Type/Duration	48-60 Hour static test	t (Actual: 48 hours)				
Control Water	North Hood Canal sea water, 0.45µm filtered					
Test Lighting	50 – 100 foot candles (14hr light: 10hr dark)					
Test Chamber	1-Liter Glass Chamber					
Replicates per Treatment	5 + 1 surrogate (used for WQ measurements throughout the test)					
Exposure Volume	18 g sediment/ 900 mL water					
Feeding	None					
Water Renewal	None					
Test Dissolved Oxygen	Recommended: >5.0 mg/L	Observed: 6.3 – 8.3 mg/L				
Test Temperature	Recommended: 16 \pm 1 $^{\circ}$ C	Observed: 15.8 – 17.4 °C				
Test Salinity	Recommended: 28 \pm 1 ppt	Observed: 28 ppt				
Test pH	Recommended: 7.5 – 9	Observed: 7.8 – 8.0				
Stocking Density	Recommended: 20 – 40 Observed: 27.9 embry					
Control Performance Standard	Recommended: Observed:					
(SMS)	Control normal survival ≥ 0.70 Seawater Control 1.02;					
Reference Performance Standard	Recommended: Reference normal survival relative	Observed: 0.70 – 0.76; Pass				
(SMS)	to controls ≥ 0.65					
Reference Toxicant Endpoint	Total Ammonia	Unionized Ammonia				
Reference Toxicant EC ₅₀	EC ₅₀ = 4.42 mg/L EC ₅₀ = 0.099 mg/L					
Mean; Acceptable Range	6.88; 3.60 – 13.2 mg/L					
NOEC Combined Proportion Normal	3.02 mg/L 0.065 mg/L					
Deviations from Test Protocol	Resuspension					

4. DISCUSSION

Sediments were evaluated using SMS criteria. The SMS criteria are derived from the Washington Department of Ecology's SMS document (WDOE 2013). Comparisons were made for each treatment against the reference sample using BioStat software. Two numerical comparisons were made under SMS: the Sediment Cleanup Objectives (SCO) and the Cleanup Screening Level (CSL).

4.1 Amphipod Test Suitability Determination

Under the SMS program, a treatment will fail SCO if mean mortality in the test sediment is >25% and the difference between mean mortality in the treatment compared to mean mortality in the reference is statistically significant (p < 0.05). Treatments fail the CSL if mean mortality in the test treatment \geq 30% relative to the reference sediment and the difference is statistically significant.

Project sediments passed the SCO and CSL criteria for the amphipod test with the exception of SED-03G:0-10, which failed the SCO criteria, as shown in Table 4-1. The control survival was below the acceptability criterion for the sediment test, and was at the acceptability criterion in the concurrent *E. estuarius* reference toxicant test (90%). Because of this, the overall health of the organisms used to initiate the test is suspect and may have contributed to the SED-03G:0-10 failure. Pete Adolphson at WDOE was consulted about the results, and indicated that, based on the control performance and the larval results available at the time, the SED-03G:0-10 results may be anomalous and thus not considered an SCO failure for the amphipod test (Personal communication, WDOE, Pete Adolphson, 2023).

Table 4-1. SMS Comparison for Echaustorius estuarius

Treatment	Mean Mortality (%)	Compared To:	Statistically Less Than Reference? (P=0.05)	Mortality Comparison to Reference M _{T-} M _R (%)	Fails SCO? ¹ > 25 % (Absolute)	Fails CSL? ² ≥ 30 % (M _{T-} M _R)
Control	16					
CARR18-23-REF	14					
CARR40-23-REF	15					
CARR62-23-REF	15					
SED-07G:0-10	22	CARR18-23-REF	No	8	No	No
SED-11G:0-10	18	CARR18-23-REF	No	4	No	No
SED-01G:0-10	13	CARR40-23-REF	No	-2	No	No
SED-27G:0-10	19	CARR40-23-REF	No	4	No	No
SED-15G:0-10	13	CARR40-23-REF	No	-2	No	No
SED-03G:0-10	28	CARR40-23-REF	Yes	13	Yes ³	No
SED-14G:0-10	20	CARR62-23-REF	No	5	No	No
SED-05G:0-10	18	CARR62-23-REF	No	3	No	No

¹SCO: Statistical Significance and M_T >25%

Report ID: PG1785.01 26 of 30 EcoAnalysts, Inc.

 $^{^2}$ CSL: Statistical Significance and M_T-M_R≥30%

³Result qualified. See text above.

M_T = Treatment Mortality

M_R = Reference Mortality

4.2 Juvenile Polychaete Test Suitability Determination

A test treatment fails SCO criteria if MIG is statistically lower in the test treatment, relative to the reference, and the ratio of the MIG in the test treatment is <0.70 that of the reference. The treatments will fail CSL criteria if the MIG is significantly lower than the reference treatment and the ratio between the MIG of the treatment and the MIG of the reference is <0.50.

Project sediment passes the SCO and CSL criteria for the juvenile polychaete test with the exception of SED-11G:0-10, SED14G:0-10 and SED-27G:0-10, which failed the SCO criteria and were statistically less than the reference, as shown in Table 4-2.

Table 4-2. SMS Comparison for Neanthes arenaceodentata

Treatment	MIG (mg/ind/day) AFDW	Compared To:	Statistically Less than Reference? (p=0.05)	MIG Relative to Reference MIG _T /MIG _R	Fails SCO? ¹ < 0.70	Fails CSL? ² < 0.50
Control	1.251					
CARR18-23-REF	1.412					
CARR40-23-REF	1.523					
CARR62-23-REF	1.648					
SED-07G:0-10	1.208	CARR18-23-REF	No	0.86	No	No
SED-11G:0-10	0.737	CARR18-23-REF	Yes	0.52	Yes	No
SED-01G:0-10	1.343	CARR40-23-REF	No	0.88	No	No
SED-27G:0-10	1.035	CARR40-23-REF	Yes	0.68	Yes	No
SED-15G:0-10	1.280	CARR40-23-REF	No	0.84	No	No
SED-03G:0-10	1.174	CARR40-23-REF	Yes	0.77	No	No
SED-14G:0-10	1.139	CARR62-23-REF	Yes	0.69	Yes	No
SED-05G:0-10	1.274	CARR62-23-REF	No	0.77	No	No

¹SCO: Statistical Significance and MIG_T/MIG_R<0.70

²CSL: Statistical Significance and MIG_T/MIG_R <0.50

 MIG_T = Treatment Mean Individual Growth Rate

 $[\]mathsf{MIG}_\mathsf{R}$ = Reference Mean Individual Growth Rate

4.3 Larval Test Suitability Determination

Larval test treatments fail SCO criteria if the number of normal larvae in the test treatment is significantly lower (p < 0.10) than that of the reference and if the ratio between the normal larval development in the test treatment is less than 0.85 of the normal development in the reference. Treatments fail CSL criteria if the number of normal larvae in the test treatment is significantly lower (p < 0.10) than that of the reference and if the ratio between the normal larval development in the test treatment is less than 0.70 of the normal development in the reference. Project sediment passes the SCO and CSL criteria for larval development, as show in (Table 4-3).

Table 4-3. SMS Comparison for Mytilus galloprovincialis

Treatment	Mean Number Normal	Compared To:	Statistically Less Than Reference? (p=0.10)	Normal Survival Comparison to Reference N _T /N _R	Fails SCO? ¹	Fails CSL? ²
Seawater Control	284.0					
CARR18-23-REF	200.8					
CARR40-23-REF	216.0					
CARR62-23-REF	199.6					
SED-07G:0-10	216.6	CARR18-23-REF	No	1.08	No	No
SED-11G:0-10	224.2	CARR18-23-REF	No	1.12	No	No
SED-01G:0-10	229.4	CARR40-23-REF	No	1.06	No	No
SED-27G:0-10	219.4	CARR40-23-REF	No	1.02	No	No
SED-15G:0-10	223.4	CARR40-23-REF	No	1.03	No	No
SED-03G:0-10	228.4	CARR40-23-REF	No	1.06	No	No
SED-14G:0-10	212.8	CARR62-23-REF	No	1.07	No	No
SED-05G:0-10	223.4	CARR62-23-REF	No	1.12	No	No

 $^{^{1}\,}SCO$: Statistical Significance and (N_T/N_R) <0.85

Report ID: PG1785.01 28 of 30 EcoAnalysts, Inc.

 $^{^2}$ CSL: Statistical Significance and (N_T/N_R) <0.70

 N_T =Treatment Mean Number Normal

N_R =Reference Mean Number Normal

5. SUMMARY

A summary of the biological tests conducted on the sediments evaluated under the SMS sediment quality criteria is provided in Table 5-1. Project sediment passes the SCO and CSL performance criteria for the larval tests performed. The amphipod test failed the SCO criteria for SED-03G:0-10 but passed performance criteria for CSL, though the results are qualified and WDOE's determination may differ. The polychaete test failed SCO criteria for SED-11G:0-10, SED-14:0-10 and SED-27G:0-10 but passed performance criteria for CSL. The larval test passed SCO and CSL criteria for all samples.

Table 5-1. Summary of SMS Evaluation

Treatment	Sediment Cleanup Objectives			Cleanup Screening Levels			
	Amphipod	Polychaete	Larval	Amphipod	Polychaete	Larval	
SED-07G:0-10	Pass	Pass	Pass	Pass	Pass	Pass	
SED-11G:0-10	Pass	Fail	Pass	Pass	Pass	Pass	
SED-01G:0-10	Pass	Pass	Pass	Pass	Pass	Pass	
SED-27G:0-10	Pass	Fail	Pass	Pass	Pass	Pass	
SED-15G:0-10	Pass	Pass	Pass	Pass	Pass	Pass	
SED-03G:0-10	Fail ¹	Pass	Pass	Pass	Pass	Pass	
SED-14G:0-10	Pass	Fail	Pass	Pass	Pass	Pass	
SED-05G:0-10	Pass	Pass	Pass	Pass	Pass	Pass	

¹Results qualified, see section 4.1. WDOE determination may differ.

Report ID: PG1785.01 29 of 30 EcoAnalysts, Inc.

6. REFERENCES

- CETIS. 2022. CETIS™ Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- Inouye, L.; E. Hoffman; D. Fox. 2015. DMMP Clarification Paper: Modifications to Ammonia and Sulfide Triggers for Purging and Reference Toxicant Testing for Marine Bioassays. Final Paper August 14, 2015. Prepared by Laura Inouye (Ecology), Erika Hoffman (EPA) and David Fox (Corps) for the DMMP agencies.
- Kendall, D. 1996. PSDDA/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size, and Feeding Protocol. Prepared by David Kendall (Corps) for the PSDDA/SMS agencies.
- Lee, D.R. 1980. Reference toxicants in quality control of aquatic bioassays: Aquatic invertebrate bioassays. In Buikema AL Jr, Cairns J Jr, eds, Proceedings, 2nd Annual Symposium on Aquatic Toxicology. STP 715. American Society for Testing and Materials, Philadelphia, PA, pp 188–199.
- PSEP 1986. Recommended Protocols for measuring conventional sediment variables in Puget Sound. Prepared by Tetra Tech, Inc. for U.S. Environmental Protection Agency and Puget Sound Water Quality Authority. Tetra Tech Inc., Bellevue, WA.
- PSEP 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- Plumb, R.H. 1981. Procedures for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-81-1. U.S. Army Corps of Engineers, Vicksburg, MS.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012
- WDOE 2013. Sediment Management Standards. Chapter 173-204 WAC. Toxics Cleanup Program.

 Washington State Department of Ecology. Olympia, Washington. Publication No. 13-09-055. Revised February 2013, Effective September 2013.
- WDOE 2021. Sediment Cleanup User's Manual (SCUM). Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Toxics Cleanup Program. Washington State Department of Ecology. Olympia, Washington. Publication No. 12-09-057. Third Revision December 2021.
- Word, Jay. "Summary of the call". Received by Marisa Seibert, 24 May, 2023.

Report ID: PG1785.01 30 of 30 EcoAnalysts, Inc.

APPENDIX A. TEST DATA, STATISTICAL ANALYSES, AND REFERENCE TOXICANT TEST RESULTS

1. EOHAUSTORIUS ESTUARIUS 10-DAY TEST

- 1.1 EOHAUSTORIUS ESTUARIUS TEST DATA
- 1.2 EOHAUSTORIUS ESTUARIUS STATISTICAL RESULTS
- 1.3 EOHAUSTORIUS ESTUARIUS REFERENCE TOXICANT TEST RESULTS

2. NEANTHES ARENACEODENTATA 20-DAY SOLID-PHASE TEST

- 2.1 NEANTHES ARENACEODENTATA TEST DATA
- 2.2 NEANTHES ARENACEODENTATA STATISTICAL RESULTS
- 2.3 NEANTHES ARENACEODENTATA REFERENCE TOXICANT TEST RESULTS

3. MYTILUS GALLOPROVINCIALIS WATER-COLUMN TEST

- 3.1 MYTILUS GALLOPROVINCIALIS TEST DATA
- 3.2 MYTILUS GALLOPROVINCIALIS STATISTICAL RESULTS
- 3.3 MYTILUS GALLOPROVINCIALIS REFERENCE TOXICANT TEST RESULTS

APPENDIX B. CHAIN-OF-CUSTODY FORMS, LOGS, AND PRE-TEST DOCUMENTS

APPENDIX A. TEST DATA, STATISTICAL ANALYSES, AND REFERENCE TOXICANT TEST RESULTS

1. Eohaustorius estuarius 10-day Test

1.1 Eohaustorius estuarius Test Data

Version T.6 GENERAL

_	GENERAL							
Client	Leon Environmental							
Project	Port of Friday Harbor							
Project Number	PG1785							
Project Manager	J. Levengood, M. Seibert							
Date Oldest Sample Collected	3/20/2023							
Sample Holding Time	53							
Test Start Date	05/12/23							
Test Species	Eohaustorius estuarius							
Organism Supplier	Northwest Amphipod							
Organism Acquired	5/10/2023							
Organism Acclimation	2							
Organism Age	Mature, 3 - 5 mm							
Test Type/Duration	10-day solid phase							
Test Protocol	PSEP 1995							
Regional Protocol	SCUM 2019							
Laboratory Location	Port Gamble							
Test Location	Bath 3							
Sample Treatment	reference sample press sieved 2mm Sample SED-11G:0-10 press sieved 2mm							
Control Sediment Source	Yaquina Bay, OR							
Water Batch	FSW051023.01							
Test Lighting	Continuous							
Test Chamber	1 L mason jars							
Replicates Per Treatment	5 replicates + 2 surr							
Organisms per Replicate	20							
Exposure Volume	2 cm sediment/ 900 mL water							
Feeding Information	None							
Test Dissolved Oxygen	> 5.1							
Test Temperature	15 ± 1							
Test Salinity	28 ± 1							
Test pH	8 ± 1							
Water Renewal Info	None							

		Test Parameters	
		Min	Max
	DO:	5.1	
hest emp	Temp:	14	16
	Sal:	27	29
	pH:	7	9

Note: input lowest and highest decimal for temp

TEST START TIME/INITIALS:	1409 MS/MK
TEST END TIME:	0950 DM/SZ

	CLIENT SAMPLE ID	LAB ID
1	Control	P230510.01
2	CARR18-23-REF	P230510.02
3	CARR40-23-REF	P230510.03
4	CARR62-23-REF	P230510.04
5	SED-07G:0-10	P230324.01
6	SED-11G:0-10	P230324.02
7	SED-14G:0-10	P230324.03
8	SED-15G:0-10	P230324.04
9	SED-03G:0-10	P230324.05
10	SED-01G:0-10	P230324.06
11	SED-05G:0-10	P230324.07
12	SED-27G:0-10	P230324.08
13		
14		
15		
16		
17		
18	•	
19	•	
20		

CLIENT				PROJECT			SPECIES		LOCATION		PROTOCOL		
Leon Environmental				Port of Friday I	Harbor		Eohaustorius estuai	rius	Port Gamble / Bath	3	PSEP 1995 , SCUM 2019		
PROJECT NUMBER				TEST TYPE/DU	RATION		WATER DESCRIPTION	DN	TEST START DATE		TEST END DATE		
PG1785				10-day solid ph	nase		FSW051023.01		May 12, 2023 May 22, 2023				
							DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН			
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5.1	14 - 16	27 - 29	7 - 9	Notes		
Control	0	Surr	18	MS	05/12/23	8	8.4	15.4	28	8.0			
Control	1	Surr	18	NL	05/13/23	9	8.3	15.6	28	8.1			
Control	2	Surr	18	LG	05/14/23	9	8.3	15.8	28	8.1			
Control	3	Surr	18	SZ	05/15/23	8	8.2	15.4	28	8.0			
Control	4	Surr	18	LG	05/16/23	8	8.3	15.4	28	8.1			
Control	5	Surr	18	SZ	05/17/23	8	8.3	15.5	28	8.1			
Control	6	Surr	18	LG	05/18/23	8	8.3	15.5	28	8.1			
Control	7	Surr	18	MS	05/19/23	9	8.2	15.9	28	8.1			
Control	8	Surr	18	NL	05/20/23	9	8.3	15.6	28	8.1			
Control	9	Surr	18	NL	05/21/23	9	8.2	15.7	28	8.1			
Control	10	Surr	18	DM	05/22/23	9	8.4	15.5	28	8.1			
CARR18-23-REF	0	Surr	4	MS	05/12/23	8	8.3	15.4	28	7.9			
CARR18-23-REF	1	Surr	4	NL	05/13/23	9	7.8	16.4	28	8.0			
CARR18-23-REF	2	Surr	4	LG	05/14/23	9	8.2	15.6	28	8.0			
CARR18-23-REF	3	Surr	4	SZ	05/15/23	8	8.2	15.3	28	8.0			
CARR18-23-REF	4	Surr	4	LG	05/16/23	8	8.2	15.4	28	8.1			
CARR18-23-REF	5	Surr	4	SZ	05/17/23	8	8.2	15.4	28	8.1			
CARR18-23-REF	6	Surr	4	LG	05/18/23	8	8.3	15.4	28	8.1			
CARR18-23-REF	7	Surr	4	MS	05/19/23	9	8.1	16.2	28	8.2			
CARR18-23-REF	8	Surr	4	NL	05/20/23	9	8.2	15.6	28	8.2			
CARR18-23-REF	9	Surr	4	NL	05/21/23	9	8.3	15.5	28	8.2			
CARR18-23-REF	10	Surr	4	DM	05/22/23	9	8.2	15.8	28	8.2			

			PROJECT			SPECIES		LOCATION		PROTOCOL
			Port of Friday	Harbor		Eohaustorius estua	rius	Port Gamble / Bath	3	PSEP 1995 , SCUM 2019
			TEST TYPE/DU	IRATION		WATER DESCRIPTION	ON	TEST START DATE		TEST END DATE
			10-day solid pl	hase		FSW051023.01		May 12, 2023		May 22, 2023
							WATER QUALITY	DATA		
	ı	T				DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН	
DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5.1	14 - 16	27 - 29	7 - 9	Notes
0	Surr	62	MS	05/12/23	8	8.3	15.5	28	8.0	
1	Surr	62	NL	05/13/23	9	8.3	15.7	28	8.1	
2	Surr	62	LG	05/14/23	9	8.1	16.0	28	8.1	
3	Surr	62	SZ	05/15/23	8	8.0	15.8	28	8.0	
4	Surr	62	LG	05/16/23	8	8.2	15.7	28	8.1	
5	Surr	62	SZ	05/17/23	8	8.1	15.8	28	8.1	
6	Surr	62	LG	05/18/23	8	8.2	15.7	28	8.2	
7	Surr	62	MS	05/19/23	9	8.2	16.0	28	8.2	
8	Surr	62	NL	05/20/23	9	8.2	15.9	28	8.3	
9	Surr	62	NL	05/21/23	9	8.2	15.7	28	8.3	
10	Surr	62	DM	05/22/23	9	8.3	15.8	28	8.4	
0	Surr	28	MS	05/12/23	8	8.4	15.3	28	8.0	
1	Surr	28	NL	05/13/23	9	8.3	15.5	28	8.0	
2	Surr	28	LG	05/14/23	9	8.2	15.9	28	8.0	
3	Surr	28	SZ	05/15/23	8	8.1	15.5	28	8.0	
4	Surr	28	LG	05/16/23	8	8.3	15.4	28	8.0	
5	Surr	28	SZ	05/17/23	8	8.1	15.7	28	8.0	
6	Surr	28	LG	05/18/23	8	8.2	15.5	28	8.0	
7	Surr	28	MS	05/19/23	9	8.2	15.8	28	8.1	
8	Surr	28	NL	05/20/23	9	8.3	15.6	28	8.1	
9	Surr	28	NL	05/21/23	9	8.1	16.0	28	8.1	
10	Surr	28	DM	05/22/23	9	8.3	15.6	28	8.1	
	0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8	0 Surr 1 Surr 2 Surr 3 Surr 4 Surr 5 Surr 6 Surr 7 Surr 8 Surr 10 Surr 10 Surr 2 Surr 2 Surr 3 Surr 5 Surr 6 Surr 7 Surr 9 Surr 10 Surr 1 Surr 2 Surr 3 Surr 4 Surr 5 Surr 9 Surr	0 Surr 62 1 Surr 62 2 Surr 62 3 Surr 62 4 Surr 62 5 Surr 62 6 Surr 62 8 Surr 62 9 Surr 62 9 Surr 62 10 Surr 62 10 Surr 62 1 Surr 28 2 Surr 28 3 Surr 28 4 Surr 28 5 Surr 28 6 Surr 28 7 Surr 28 8 Surr 28 9 Surr 28 9 Surr 28	DAY REP JAR # TECHNICIAN	Port of Friday Harbor TEST TYPE/DURATION 10-day solid phase DAY REP JAR # TECHNICIAN Date 0 Surr 62 MS 05/12/23 1 Surr 62 NL 05/13/23 2 Surr 62 LG 05/14/23 3 Surr 62 SZ 05/15/23 4 Surr 62 LG 05/16/23 5 Surr 62 LG 05/18/23 6 Surr 62 LG 05/18/23 7 Surr 62 MS 05/19/23 8 Surr 62 LG 05/18/23 9 Surr 62 MS 05/19/23 10 Surr 62 MS 05/12/23 10 Surr 62 NL 05/21/23 10 Surr 62 NL 05/21/23 10 Surr 62 DM 05/22/23 11 Surr 28 MS 05/12/23 12 Surr 28 LG 05/14/23 3 Surr 28 SZ 05/15/23 4 Surr 28 LG 05/16/23 5 Surr 28 LG 05/16/23 6 Surr 28 LG 05/16/23 6 Surr 28 LG 05/16/23 6 Surr 28 LG 05/16/23 7 Surr 28 LG 05/16/23 6 Surr 28 LG 05/16/23 6 Surr 28 LG 05/16/23 7 Surr 28 LG 05/16/23 8 Surr 28 NL 05/20/23 8 Surr 28 NL 05/19/23 8 Surr 28 NL 05/19/23 8 Surr 28 NL 05/19/23 8 Surr 28 NL 05/20/23	Port of Friday Harbor TEST TYPE/DURATION 10-day solid phase TECHNICIAN Date Meter	Port of Friday Harbor Echaustorius estua	Port of Friday Harbor Eohaustorius estuarius	Port of Friday Harbor Echaustorius estuarius Port Gamble Bath	Port of Friday Harbor Echoustorius estuarius Port Gamble / Bath 3

CLIENT				PROJECT			SPECIES		LOCATION		PROTOCOL
Leon Environmental				Port of Friday	Harbor		Eohaustorius estua	rius	Port Gamble / Bath	3	PSEP 1995 , SCUM 2019
PROJECT NUMBER				TEST TYPE/DU	RATION		WATER DESCRIPTION	ON	TEST START DATE		TEST END DATE
PG1785				10-day solid pl	nase		FSW051023.01		May 12, 2023		May 22, 2023
							•	WATER QUALITY	DATA		
			T				DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH	
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5.1	14 - 16	27 - 29	7 - 9	Notes
SED-07G:0-10	0	Surr	43	MS	05/12/23	8	8.3	15.5	28	8.0	
SED-07G:0-10	1	Surr	43	NL	05/13/23	9	8.2	15.6	28	8.1	
SED-07G:0-10	2	Surr	43	LG	05/14/23	9	7.9	16.1	28	8.1	
SED-07G:0-10	3	Surr	43	SZ	05/15/23	8	8.2	15.5	28	8.1	
SED-07G:0-10	4	Surr	43	LG	05/16/23	8	8.2	15.5	28	8.2	
SED-07G:0-10	5	Surr	43	SZ	05/17/23	8	8.2	15.7	28	8.2	
SED-07G:0-10	6	Surr	43	LG	05/18/23	8	8.2	15.7	28	8.3	
SED-07G:0-10	7	Surr	43	MS	05/19/23	9	8.1	16.0	28	8.3	
SED-07G:0-10	8	Surr	43	NL	05/20/23	9	8.2	15.8	28	8.3	
SED-07G:0-10	9	Surr	43	NL	05/21/23	9	8.2	15.9	28	8.3	
SED-07G:0-10	10	Surr	43	DM	05/22/23	9	8.1	15.9	28	8.3	
SED-11G:0-10	0	Surr	37	MS	05/12/23	8	8.3	15.4	28	8.1	
SED-11G:0-10	1	Surr	37	NL	05/13/23	9	8.3	15.5	28	8.2	
SED-11G:0-10	2	Surr	37	LG	05/14/23	9	8.1	16.0	28	8.2	
SED-11G:0-10	3	Surr	37	SZ	05/15/23	8	8.2	15.4	28	8.2	
SED-11G:0-10	4	Surr	37	LG	05/16/23	8	8.3	15.5	28	8.2	
SED-11G:0-10	5	Surr	37	SZ	05/17/23	8	8.2	15.6	28	8.3	
SED-11G:0-10	6	Surr	37	LG	05/18/23	8	8.2	15.5	28	8.3	
SED-11G:0-10	7	Surr	37	MS	05/19/23	9	8.2	15.8	28	8.4	
SED-11G:0-10	8	Surr	37	NL	05/20/23	9	8.2	15.6	28	8.4	
SED-11G:0-10	9	Surr	37	NL	05/21/23	9	8.2	15.9	28	8.4	
SED-11G:0-10	10	Surr	37	DM	05/22/23	9	8.2	15.9	28	8.5	

CLIENT				PROJECT			SPECIES		LOCATION		PROTOCOL
Leon Environmental				Port of Friday	Harbor		Eohaustorius estua	rius	Port Gamble / Bath	3	PSEP 1995 , SCUM 2019
PROJECT NUMBER				TEST TYPE/DU	IRATION		WATER DESCRIPTION	ON	TEST START DATE		TEST END DATE
PG1785				10-day solid pl	hase		FSW051023.01		May 12, 2023		May 22, 2023
				•				WATER QUALITY	DATA		•
	T	ı	I				DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН	
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5.1	14 - 16	27 - 29	7 - 9	Notes
SED-14G:0-10	0	Surr	45	MS	05/12/23	8	8.3	15.4	28	8.0	
SED-14G:0-10	1	Surr	45	NL	05/13/23	9	8.3	15.5	28	8.1	
SED-14G:0-10	2	Surr	45	LG	05/14/23	9	8.1	15.8	28	8.1	
SED-14G:0-10	3	Surr	45	SZ	05/15/23	8	8.2	15.4	28	8.1	
SED-14G:0-10	4	Surr	45	LG	05/16/23	8	8.2	15.4	28	8.2	
SED-14G:0-10	5	Surr	45	SZ	05/17/23	8	8.2	15.6	28	8.2	
SED-14G:0-10	6	Surr	45	LG	05/18/23	8	8.2	15.5	28	8.3	
SED-14G:0-10	7	Surr	45	MS	05/19/23	9	8.1	15.9	28	8.3	
SED-14G:0-10	8	Surr	45	NL	05/20/23	9	8.2	15.7	28	8.3	
SED-14G:0-10	9	Surr	45	NL	05/21/23	9	8.2	15.9	28	8.3	
SED-14G:0-10	10	Surr	45	DM	05/22/23	9	8.1	15.7	28	8.3	
SED-15G:0-10	0	Surr	17	MS	05/12/23	8	8.3	15.3	28	7.9	
SED-15G:0-10	1	Surr	17	NL	05/13/23	9	8.1	15.6	28	8.0	
SED-15G:0-10	2	Surr	17	LG	05/14/23	9	8.1	15.7	28	8.0	
SED-15G:0-10	3	Surr	17	SZ	05/15/23	8	8.1	15.4	28	8.0	
SED-15G:0-10	4	Surr	17	LG	05/16/23	8	8.2	15.4	28	8.0	
SED-15G:0-10	5	Surr	17	SZ	05/17/23	8	8.1	15.6	28	8.1	
SED-15G:0-10	6	Surr	17	LG	05/18/23	8	8.2	15.5	28	8.1	
SED-15G:0-10	7	Surr	17	MS	05/19/23	9	8.1	16.2	28	8.2	
SED-15G:0-10	8	Surr	17	NL	05/20/23	9	8.2	15.6	28	8.2	
SED-15G:0-10	9	Surr	17	NL	05/21/23	9	8.2	15.5	28	8.2	
SED-15G:0-10	10	Surr	17	DM	05/22/23	9	8.2	15.6	28	8.2	

CLIENT				PROJECT			SPECIES		LOCATION		PROTOCOL
Leon Environmental				Port of Friday	Harbor		Eohaustorius estua	rius	Port Gamble / Bath	3	PSEP 1995 , SCUM 2019
PROJECT NUMBER				TEST TYPE/DU	IRATION		WATER DESCRIPTION	ON	TEST START DATE		TEST END DATE
PG1785				10-day solid pl	hase		FSW051023.01		May 12, 2023		May 22, 2023
				•				WATER QUALITY	DATA		
		ı	I				DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН	
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5.1	14 - 16	27 - 29	7 - 9	Notes
SED-03G:0-10	0	Surr	67	MS	05/12/23	8	8.2	15.6	28	7.9	
SED-03G:0-10	1	Surr	67	NL	05/13/23	9	8.1	15.8	28	7.9	
SED-03G:0-10	2	Surr	67	LG	05/14/23	9	8.0	16.2	28	7.9	
SED-03G:0-10	3	Surr	67	SZ	05/15/23	8	7.9	15.9	28	7.9	
SED-03G:0-10	4	Surr	67	LG	05/16/23	8	8.0	15.8	28	8.0	
SED-03G:0-10	5	Surr	67	SZ	05/17/23	8	8.1	16.1	28	8.0	
SED-03G:0-10	6	Surr	67	LG	05/18/23	8	8.1	15.8	28	8.1	
SED-03G:0-10	7	Surr	67	MS	05/19/23	9	8.1	16.1	28	8.1	
SED-03G:0-10	8	Surr	67	NL	05/20/23	9	8.1	16.0	28	8.1	
SED-03G:0-10	9	Surr	67	NL	05/21/23	9	8.2	16.0	28	8.2	
SED-03G:0-10	10	Surr	67	DM	05/22/23	9	8.2	15.8	28	8.2	
SED-01G:0-10	0	Surr	51	MS	05/12/23	8	8.3	15.4	28	8.0	
SED-01G:0-10	1	Surr	51	NL	05/13/23	9	8.3	15.6	28	8.0	
SED-01G:0-10	2	Surr	51	LG	05/14/23	9	8.1	15.8	28	8.0	
SED-01G:0-10	3	Surr	51	SZ	05/15/23	8	8.1	15.5	28	8.0	
SED-01G:0-10	4	Surr	51	LG	05/16/23	8	8.1	15.5	28	8.1	
SED-01G:0-10	5	Surr	51	SZ	05/17/23	8	8.1	15.8	28	8.1	
SED-01G:0-10	6	Surr	51	LG	05/18/23	8	8.1	15.7	28	8.1	
SED-01G:0-10	7	Surr	51	MS	05/19/23	9	8.1	15.9	28	8.2	
SED-01G:0-10	8	Surr	51	NL	05/20/23	9	8.2	15.7	28	8.2	
SED-01G:0-10	9	Surr	51	NL	05/21/23	9	8.2	15.9	28	8.3	
SED-01G:0-10	10	Surr	51	DM	05/22/23	9	8.1	15.9	28	8.3	

CLIENT				PROJECT			SPECIES		LOCATION		PROTOCOL
Leon Environmental				Port of Friday	Harbor		Eohaustorius estua	rius	Port Gamble / Bath	3	PSEP 1995 , SCUM 2019
PROJECT NUMBER				TEST TYPE/DU	RATION		WATER DESCRIPTION	ON	TEST START DATE		TEST END DATE
PG1785				10-day solid pl	nase		FSW051023.01		May 12, 2023		May 22, 2023
				1				WATER QUALITY	/ DATA		
	I						DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH	
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5.1	14 - 16	27 - 29	7 - 9	Notes
SED-05G:0-10	0	Surr	35	MS	05/12/23	8	8.3	15.4	28	8.0	
SED-05G:0-10	1	Surr	35	NL	05/13/23	9	8.2	15.6	28	8.0	
SED-05G:0-10	2	Surr	35	LG	05/14/23	9	7.9	15.7	29	8.0	
SED-05G:0-10	3	Surr	35	SZ	05/15/23	8	8.1	15.4	28	8.0	
SED-05G:0-10	4	Surr	35	LG	05/16/23	8	8.3	15.4	29	8.1	
SED-05G:0-10	5	Surr	35	SZ	05/17/23	8	8.2	15.5	28	8.2	
SED-05G:0-10	6	Surr	35	LG	05/18/23	8	8.2	15.5	29	8.2	
SED-05G:0-10	7	Surr	35	MS	05/19/23	9	8.2	15.7	28	8.3	
SED-05G:0-10	8	Surr	35	NL	05/20/23	9	8.2	15.6	28	8.3	
SED-05G:0-10	9	Surr	35	NL	05/21/23	9	8.1	15.8	28	8.3	
SED-05G:0-10	10	Surr	35	DM	05/22/23	9	8.3	15.6	28	8.3	
SED-27G:0-10	0	Surr	48	MS	05/12/23	8	8.3	15.4	28	8.0	
SED-27G:0-10	1	Surr	48	NL	05/13/23	9	8.3	15.6	28	8.1	
SED-27G:0-10	2	Surr	48	LG	05/14/23	9	8.1	15.8	28	8.1	
SED-27G:0-10	3	Surr	48	SZ	05/15/23	8	8.2	15.4	28	8.1	
SED-27G:0-10	4	Surr	48	LG	05/16/23	8	8.3	15.4	28	8.2	
SED-27G:0-10	5	Surr	48	SZ	05/17/23	8	8.1	15.7	28	8.2	
SED-27G:0-10	6	Surr	48	LG	05/18/23	8	8.2	15.5	28	8.2	
SED-27G:0-10	7	Surr	48	MS	05/19/23	9	8.1	15.8	28	8.2	
SED-27G:0-10	8	Surr	48	NL	05/20/23	9	8.3	15.5	28	8.3	
SED-27G:0-10	9	Surr	48	NL	05/21/23	9	8.2	15.7	28	8.3	
SED-27G:0-10	10	Surr	48	DM	05/22/23	9	8.2	15.6	28	8.3	

CLIENT	PROJECT				PROJECT NO. PROJECT MANAGER			LOCATION PRO		PROTOCOL			SPECIES		
Leon Environmental	Port of Frid	day Harb	or		PG1785	J. Levengood, M.	Seibert	Port Gamble / Ba	ath 3	PSEP 1995			Eohaustorius est	uarius	
Observation Key						l	ENDPOINT DATA	A & OBSERVATIO	NS	I					
#FOS = Num Floating on Water Surface #E = Num Emerged from Sediment #M = Number of Mortalities or Molts L = Anoxic Surface				Technician	NL	LG	SZ	LG	SZ	LG	MS	NL	NL	DM	
G = Growth D = No Air Flow (Measure DO) N = Normal TC = Too Cloudy to Observe				Date	05/13/23	05/14/23	05/15/23	05/16/23	05/17/23	05/18/23	05/19/23	05/20/23	05/21/23	05/22/23	
CLIENT ID	REP	Jar#	Initial #	Day	1	2	3	4	5	6	7	8	9	10	Comments
Control	1	64	20		N	2M	2M	2M	1M	1M	2M	N	N	N	
Control	2	72	20		N	1E	2M	1M	1M	1M	2M	2M	2M	2M	
Control	3	1	20		1E	1E	N	1M	N	2M	1M,1E	1M	N	N	
Control	4	38	20		N	N	N	N	N	N	N	N	N	N	
Control	5	22	20		N	2E	2M	3M	3M	3M	3M	N	N	N	
CARR18-23-REF	1	54	20		N	N	N	N	N	N	N	N	N	N	
CARR18-23-REF	2	24	20		N	1FOS	N	N	N	N	N	N	N	N	
CARR18-23-REF	3	30	20		N	1E	1M	1M	1M	1M	1M	N	N	N	
CARR18-23-REF	4	65	20		N	2FOS	1M	N	N	N	1M	N	N	N	
CARR18-23-REF	5	7	20		N	1E	1FOS	1M	1M	1M	1M	1M	N	N	
CARR40-23-REF	1	53	20		N	N	N	N	N	1M	N	N	N	N	
CARR40-23-REF	2	8	20		N	N	N	N	N	N	N	N	N	N	
CARR40-23-REF	3	39	20		N	N	N	N	N	N	N	N	N	N	
CARR40-23-REF	4	10	20		N	N	N	N	1M	1M	1M	1M	N	N	
CARR40-23-REF	5	14	20		N	1E	N	1M	4M	4M	4M	4M	N	N	

CLIENT	PROJECT	PROJECT			DJECT PROJE			PROJECT NO.	PROJECT MANA	GER	LOCATION		PROTOCOL SPECIES					
Leon Environmental	Port of Frid	day Harb	oor		PG1785	J. Levengood, M.	Seibert	Port Gamble / Ba	ath 3	PSEP 1995			Eohaustorius est	uarius				
Observation Key	1						ENDPOINT DATA	A & OBSERVATIO	NS									
#FOS = Num Floating on Water Surface #E = Num Emerged from Sediment #M = Number of Mortalities or Molts L = Anoxic Surface				Technician	NL	LG	SZ	LG	SZ	LG	MS	NL	NL	DM				
G = Growth D = No Air Flow (Measure DO) N = Normal TC = Too Cloudy to Observe				Date	05/13/23	05/14/23	05/15/23	05/16/23	05/17/23	05/18/23	05/19/23	05/20/23	05/21/23	05/22/23				
CLIENT ID	REP	Jar#	Initial #	Day	1	2	3	4	5	6	7	8	9	10	Comments			
CARR62-23-REF	1	26	20		N	1E	N	N	N	N	N	N	N	N				
CARR62-23-REF	2	19	20		N	N	N	N	N	N	N	N	N	N				
CARR62-23-REF	3	3	20		N	2E	N	2M	N	N	N	1M	N	N				
CARR62-23-REF	4	40	20		N	1FOS	N	1M	N	N	N	N	N	N				
CARR62-23-REF	5	15	20		N	N	N	N	N	N	N	N	N	N				
SED-07G:0-10	1	63	20		N	1M	N	1M	N	1M	N	N	1FOS	N				
SED-07G:0-10	2	55	20		N	N	N	1E	N	N	N	N	N	N				
SED-07G:0-10	3	50	20		N	N	N	N	N	1FOS	N	1FOS	N	N				
SED-07G:0-10	4	46	20		N	N	N	N	N	N	1FOS	N	1FOS	N				
SED-07G:0-10	5	20	20		N	3FOS	N	N	N	N	2FOS	N	N	N				
SED-11G:0-10	1	16	20		4FOS	4FOS, 2M	2FOS, 3M	2M	2M, 1FOS, L	1FOS, 2M, L	1M	1FOS,1M	1M	1M				
SED-11G:0-10	2	47	20		3FOS	4FOS, 1M	1FOS, 1M	N	1FOS	2FOS	3FOS	1M,1FOS	1FOS	N				
SED-11G:0-10	3	61	20		N	N	N	N	N	N	N	N	N	N				
SED-11G:0-10	4	56	20		N	N	N	N	N	N	N	N	N	N				
SED-11G:0-10	5	44	20		N	N	N	N	N	N	N	N	N	N				

CLIENT	PROJECT				PROJECT NO.	PROJECT MANA	GER	LOCATION		PROTOCOL			SPECIES		
Leon Environmental	Port of Frid	day Harb	oor		PG1785	J. Levengood, M.	Seibert	Port Gamble / Ba	ith 3	PSEP 1995			Eohaustorius est	uarius	
Observation Key	1					1	ENDPOINT DATA	A & OBSERVATIO	NS						
#FOS = Num Floating on Water Surface #E = Num Emerged from Sediment #M = Number of Mortalities or Molts L = Anoxic Surface				Technician	NL	LG	SZ	LG	SZ	LG	MS	NL	NL	DM	
G = Growth D = No Air Flow (Measure DO) N = Normal TC = Too Cloudy to Observe				Date	05/13/23	05/14/23	05/15/23	05/16/23	05/17/23	05/18/23	05/19/23	65/20/23	05/21/23	62/22/23	
CLIENT ID	REP	Jar#	Initial #	Day	1	2	3	4	5	6	7	8	9	10	Comments
SED-14G:0-10	1	41	20		N	4FOS	N	N	G	N	N	N	N	1FOS	
SED-14G:0-10	2	9	20		N	N	N	N	G	N	N	N	N	N	
SED-14G:0-10	3	33	20		N	N	N	N	N	N	N	N	N	N	
SED-14G:0-10	4	68	20		N	4FOS	1FOS	N	N	N	N	N	N	N	
SED-14G:0-10	5	58	20		N	N	N	N	G	N	N	N	N	N	
SED-15G:0-10	1	71	20		N	1FOS	N	N	N	N	N	N	1FOS	2FOS	
SED-15G:0-10	2	66	20		N	N	N	N	N	N	N	N	1FOS	N	
SED-15G:0-10	3	36	20		N	N	N	1M	1M	1M	N	N	N	N	
SED-15G:0-10	4	23	20		N	5FOS	N	N	N	N	N	N	N	N	
SED-15G:0-10	5	49	20		N	N	1M	N	N	N	N	N	N	N	
SED-03G:0-10	1	31	20		N	N	N	N	1M	N	N	N	N	N	
SED-03G:0-10	2	13	20		N	1FOS	N	N	N	N	N	N	N	1FOS	
SED-03G:0-10	3	21	20		N	1E	N	N	N	N	N	N	N	N	
SED-03G:0-10	4	32	20		1FOS	1FOS	N	N	N	N	N	N	N	N	
SED-03G:0-10	5	57	20		N	N	N	N	N	N	N	N	N	N	

CLIENT	PROJECT				PROJECT NO.	PROJECT MANA	GER	LOCATION		PROTOCOL			SPECIES		
Leon Environmental	Port of Frid	day Harb	or		PG1785	J. Levengood, M.	Seibert	Port Gamble / Ba	ith 3	PSEP 1995			Eohaustorius est	uarius	
Observation Key	1					I	ENDPOINT DATA	A & OBSERVATION	NS	I					
#FOS = Num Floating on Water Surface #E = Num Emerged from Sediment #M = Number of Mortalities or Molts L = Anoxic Surface				Technician	NL	LG	SZ	LG	SZ	LG	MS	NL	NL	DM	
G = Growth D = No Air Flow (Measure DO) N = Normal TC = Too Cloudy to Observe				Date	05/13/23	05/14/23	05/15/23	05/16/23	05/17/23	05/18/23	05/19/23	65/20/23	05/21/23	65/22/23	
CLIENT ID	REP	Jar#	Initial #	Day	1	2	3	4	5	6	7	8	9	10	Comments
SED-01G:0-10	1	59	20		N	1M	1M	N	N	1M	1M	N	N	N	
SED-01G:0-10	2	5	20		N	1E	N	1M	N	N	N	N	N	N	
SED-01G:0-10	3	12	20		N	N	N	N	N	N	N	N	N	N	
SED-01G:0-10	4	27	20		N	N	N	N	N	N	N	N	N	N	
SED-01G:0-10	5	42	20		N	N	N	N	N	N	N	N	N	N	
SED-05G:0-10	1	11	20		1FOS	N	G	N	G	N	1FOS	N	N	N	
SED-05G:0-10	2	70	20		N	N	N	N	G	G	G	G	N	N	
SED-05G:0-10	3	29	20		N	1FOS	1FOS, G	G	G	G	1FOS	N	N	N	
SED-05G:0-10	4	52	20		N	1FOS	G	G	G	G	G	G	G,1E	G,1FOS	
SED-05G:0-10	5	2	20		N	N	N	1M	N	N	1FOS, 1E	N	N	N	
SED-27G:0-10	1	34	20		N	N	N	N	N	1M	1M	N	N	N	
SED-27G:0-10	2	6	20		N	1FOS	N	1E	N	1FOS, 1E	1FOS	N	N	N	
SED-27G:0-10	3	25	20		N	1FOS	N	N	N	1M	N	N	1M	N	
SED-27G:0-10	4	69	20		N	N	N	N	N	N	N	N	N	N	
SED-27G:0-10	5	60	20		N	2FOS	1FOS	N	N	N	N	N	N	2FOS	

CLIENT					PROJECT N	UMBER		
Leon Environmental		Port of Fr	iday Harbor		PG1785			
PROJECT MANAGER		SPECIES						
J. Levengood, M. Seib	ert	Eohaustor	ius estuarius					
				Date Recove	ered:	5/22/2023		
Sample ID	Rep	Jar#	# Initiated	# Alive	# Dead	Initials	# Missing or Dead	Comments
Control	1	64	20	17	0	SZ	3	
Control	2	72	20	15	1	DM	5	
Control	3	1	20	17	0	SZ	3	
Control	4	38	20	18	0	DM	2	
Control	5	22	20	17	0	SZ	3	
CARR18-23-REF	1	54	20	18	0	DM	2	
CARR18-23-REF	2	24	20	18	0	SZ	2	
CARR18-23-REF	3	30	20	18	0	DM	2	
CARR18-23-REF	4	65	20	14	0	SZ	6	
CARR18-23-REF	5	7	20	18	0	DM	2	
CARR40-23-REF	1	53	20	15	0	SZ	5	
CARR40-23-REF	2	8	20	18	0	DM	2	
CARR40-23-REF	3	39	20	18	1	SZ	2	
CARR40-23-REF	4	10	20	18	0	DM	2	
CARR40-23-REF	5	14	20	16	0	SZ	4	
CARR62-23-REF	1	26	20	15	2	DM	5	
CARR62-23-REF	2	19	20	19	0	SZ	1	
CARR62-23-REF	3	3	20	15	0	SZ	5	
CARR62-23-REF	4	40	20	18	0	SZ	2	
CARR62-23-REF	5	15	20	18	0	DM	2	
SED-07G:0-10	1	63	20	15	0	SZ	5	
SED-07G:0-10	2	55	20	13	0	DM	7	
SED-07G:0-10	3	50	20	13	2	SZ	7	
SED-07G:0-10	4	46	20	18	0	DM	2	
SED-07G:0-10	5	20	20	19	0	SZ	1	
SED-11G:0-10	1	16	20	13	1	DM	7	
SED-11G:0-10	2	47	20	16	1	DM	4	
SED-11G:0-10	3	61	20	17	0	SZ	3	
SED-11G:0-10	4	56	20	18	0	SZ	2	
SED-11G:0-10	5	44	20	18	0	DM	2	

CLIENT	PROJECT			PROJECT N	UMBER			
Leon Environmental		Port of Fr	iday Harbor		PG1785			
PROJECT MANAGER		SPECIES						
J. Levengood, M. Seib	ert	Eohaustor	ius estuarius					
				Date Recove	ered:	5/22/2023		
Sample ID	Rep	Jar#	# Initiated	# Alive	# Dead	Initials	# Missing or Dead	Comments
SED-14G:0-10	1	41	20	18	0	SZ	2	
SED-14G:0-10	2	9	20	16	0	SZ	4	
SED-14G:0-10	3	33	20	14	0	DM	6	
SED-14G:0-10	4	68	20	17	0	DM	3	
SED-14G:0-10	5	58	20	15	0	SZ	5	
SED-15G:0-10	1	71	20	15	0	SZ	5	
SED-15G:0-10	2	66	20	19	0	SZ	1	
SED-15G:0-10	3	36	20	16	0	SZ	4	
SED-15G:0-10	4	23	20	17	1	DM	3	
SED-15G:0-10	5	49	20	20	0	SZ	0	
SED-03G:0-10	1	31	20	16	1	SZ	4	
SED-03G:0-10	2	13	20	14	0	DM	6	
SED-03G:0-10	3	21	20	12	1	SZ	8	
SED-03G:0-10	4	32	20	12	1	DM	8	
SED-03G:0-10	5	57	20	18	0	SZ	2	
SED-01G:0-10	1	59	20	19	0	SZ	1	
SED-01G:0-10	2	5	20	15	0	DM	5	
SED-01G:0-10	3	12	20	19	0	SZ	1	
SED-01G:0-10	4	27	20	16	0	SZ	4	
SED-01G:0-10	5	42	20	18	0	DM	2	
SED-05G:0-10	1	11	20	17	0	SZ	3	
SED-05G:0-10	2	70	20	17	0	DM	3	
SED-05G:0-10	3	29	20	16	0	SZ	4	
SED-05G:0-10	4	52	20	15	0	DM	5	
SED-05G:0-10	5	2	20	17	0	SZ	3	
SED-27G:0-10	1	34	20	17	0	SZ	3	
SED-27G:0-10	2	6	20	16	0	DM	4	
SED-27G:0-10	3	25	20	16	0	SZ	4	
SED-27G:0-10	4	69	20	18	0	DM	2	
SED-27G:0-10	5	60	20	14	2	SZ	6	

CLIENT		PROJECT			PROJECT NUM	IBER	SPECIES		
Leon Environmental		Port of Frida	y Harbor		PG1785		Eohaustorius est	uarius	
					Survival Statis	tics	N	Nortality Statisti	cs
Sample ID	Rep	# Initiated	# Alive	% Survival	Mean Survival (%)	SD	% Mortality	Mean Mortality (%)	SD
Control	1	20	17	85			15	_	
Control	2	20	15	75			25		
Control	3	20	17	85			15		
Control	4	20	18	90			10		
Control	5	20	17	85	84.0	5.5	15	16.0	5.5
CARR18-23-REF	1	20	18	90			10		
CARR18-23-REF	2	20	18	90			10		
CARR18-23-REF	3	20	18	90			10		
CARR18-23-REF	4	20	14	70			30		
CARR18-23-REF	5	20	18	90	86.0	8.9	10	14.0	8.9
CARR40-23-REF	1	20	15	75			25		
CARR40-23-REF	2	20	18	90			10		
CARR40-23-REF	3	20	18	90			10		
CARR40-23-REF	4	20	18	90			10		
CARR40-23-REF	5	20	16	80	85.0	7.1	20	15.0	7.1
CARR62-23-REF	1	20	15	75			25		
CARR62-23-REF	2	20	19	95			5	-	
CARR62-23-REF	3	20	15	75			25	-	
CARR62-23-REF	4	20	18	90			10	-	
CARR62-23-REF	5	20	18	90	85.0	9.4	10	15.0	9.4
SED-07G:0-10	1	20	15	75			25		
SED-07G:0-10	2	20	13	65			35	-	
SED-07G:0-10	3	20	13	65			35	-	
SED-07G:0-10	4	20	18	90			10	-	
SED-07G:0-10	5	20	19	95	78.0	14.0	5	22.0	14.0
SED-11G:0-10	1	20	13	65			35		
SED-11G:0-10	2	20	16	80			20	-	
SED-11G:0-10	3	20	17	85			15		
SED-11G:0-10	4	20	18	90			10		
SED-11G:0-10	5	20	18	90	82.0	10.4	10	18.0	10.4
SED-14G:0-10	1	20	18	90			10		
SED-14G:0-10	2	20	16	80			20		
SED-14G:0-10	3	20	14	70			30		
SED-14G:0-10	4	20	17	85			15		
SED-14G:0-10	5	20	15	75	80.0	7.9	25	20.0	7.9
SED-15G:0-10	1	20	15	75			25		
SED-15G:0-10	2	20	19	95			5		
SED-15G:0-10	3	20	16	80			20		
SED-15G:0-10	4	20	17	85			15		
SED-15G:0-10	5	20	20	100	87.0	10.4	0	13.0	10.4

SED-03G:0-10	1	20	16	80			20		
SED-03G:0-10	2	20	14	70			30		
SED-03G:0-10	3	20	12	60			40		
SED-03G:0-10	4	20	12	60			40		
SED-03G:0-10	5	20	18	90	72.0	13.0	10	28.0	13.0
SED-01G:0-10	1	20	19	95			5		
SED-01G:0-10	2	20	15	75			25		
SED-01G:0-10	3	20	19	95			5		
SED-01G:0-10	4	20	16	80			20		
SED-01G:0-10	5	20	18	90	87.0	9.1	10	13.0	9.1
SED-05G:0-10	1	20	17	85			15		
SED-05G:0-10	2	20	17	85			15		
SED-05G:0-10	3	20	16	80			20		
SED-05G:0-10	4	20	15	75			25		
SED-05G:0-10	5	20	17	85	82.0	4.5	15	18.0	4.5
SED-27G:0-10	1	20	17	85			15		
SED-27G:0-10	2	20	16	80			20		
SED-27G:0-10	3	20	16	80			20		
SED-27G:0-10	4	20	18	90			10		
SED-27G:0-10	5	20	14	70	81.0	7.4	30	19.0	7.4

											Column A or	WQ Sheet M	UST be sorte	d Smallest to	Largest			
CLIENT			PROJECT				PROJECT NUMBE	R			SPECIES							
Leon Environmenta	al		Port of Friday	y Harbor			PG1785				Eohaustorius	estuarius						
Calibration Standa	rds Temperature	: 20.6	Date:	5/12/2023	Tech:	NL	Ammonia Meter	10	Sulfide Mete	1								
NH ₃ sample tempe	rature should be	within +/- 1°C	of standard	temp at time	and date of a	nalvsis												
		•				ıvieasurea			Caiculatea									· '
						Total			Total									· '
				NH 3		Dissolved			Dissolved	Test							Undissociated	· '
		Overlying/	Total NH 3	sample	WQ/Temp	Sulfide	Sulfide Sample	Sulfide	Sulfide	salinity		Test temp			Unionized		Sulfide	· '
Sample	Day	Porewater	(mg/L)	temp	Meter	(μg/L as S)	Volume (ml)	Multiplier	(μg/L as S)	(ppt)	Test pH	(c) ·	Temp (K)	NH 2 pKa s	NH 3 (mg/L)	H ₂ SpK _a *	(µg/L as H , S)	· · · · · · · · · · · · · · · · · · ·
Sourced	Sourced		Record	Record	Record	Record	Record	Record	Calculated	Sourced	Sourced	Sourced	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
Control	0	Overlying	0	19.8	T17	13	10	1	13	28	8.0	15.4	288.55	9.26	0.000	6.67	0.809	
CARR18-23-REF	0	Overlying	0.690	19.7	T17	19	10	1	19	28	7.9	15.4	288.55	9.26	0.015	6.67	1.465	
CARR40-23-REF	0	Overlying	0.587	19.8	T17	ND	10	1	ND	28	8.0	15.5	288.65	9.26	0.016	6.67	ND	í
CARR62-23-REF	0	Overlying	0	19.6	T17	ND	10	1	ND	28	8.0	15.3	288.45	9.26	0.000	6.67	ND	
SED-07G:0-10	0	Overlying	3.87	20.0	T17	9	10	1	9	28	8.0	15.5	288.65	9.26	0.104	6.67	0.558	
SED-11G:0-10	0	Overlying	2.75	20.0	T17	ND	10	1	ND	28	8.1	15.4	288.55	9.26	0.092	6.67	ND	
SED-14G:0-10	0	Overlying	1.39	20.0	T17	ND	10	1	ND	28	8.0	15.4	288.55	9.26	0.037	6.67	ND	
SED-15G:0-10	0	Overlying	0.536	20.0	T17	ND	10	1	ND	28	7.9	15.3	288.45	9.26	0.011	6.67	ND	
SED-03G:0-10	0	Overlying	0.0857	20.0	T17	ND	10	1	ND	28	7.9	15.6	288.75	9.26	0.002	6.67	ND	
SED-01G:0-10	0	Overlying	0.335	20.0	T17	ND	10	1	ND	28	8.0	15.4	288.55	9.26	0.009	6.67	ND	
SED-05G:0-10	0	Overlying	0.372	19.9	T17	ND	10	1	ND	28	8.0	15.4	288.55	9.26	0.010	6.67	ND	
SED-27G:0-10	0	Overlying	0.992	20.0	T17	ND	10	1	ND	28	8.0	15.4	288.55	9.26	0.026	6.67	ND	
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					1
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					i .
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15					
	0	Overlying								0	0.0	0.0	273.15		·			

10 Day SP Test Day 0 Porewater Ammonia

CLIENT			PROJECT				PROJECT NUMBE	·R			SPECIES							
Leon Environmenta	I		Port of Frida	v Harbor			PG1785				Eohaustorius	s estuarius						
Calibration Standar	ds Temperature	20.6	Date:	5/12/2023	Tech:	NL	Ammonia Meter	: 10	Sulfide Meter:	1								
NH ₃ sample temper									,		1							[
14113 Sumple temper	ature snould be	Within 1/- 1	c or standard	temp at time	c and date or t	Measured			Calculated									1
						Total			Total									1
				NH ₃		Dissolved			Dissolved	Porewater					Unionized		Undissociated	1
		Overlying/	Total NH 3	sample	WQ/Temp	Sulfide	Sulfide Sample	Sulfide	Sulfide (µg/L	salinity	Porewater	Test temp			NH ₃		Sulfide	1
Sample	Dav	Porewater	(mg/L)	temp	Meter	(μg/L as S)	Volume (ml)	Multiplier	as S)	(ppt)	pH	(C)	Temp (K)	NH₃pKa⁵	(mg/L)	11 C-V *	(μg/L as H , S)	1
		Porewater	Record			Record	Record	Record	Calculated			Sourced	Calculated	Calculated	Calculated	Calculated	(μg/L as H ₂ S) Calculated	Netes
Sourced Control	Sourced	Porewater	0.0415	Record 21.1	Record M8/T17		10	Record 1	Calculated	Record 29	Record 7.4	15.4	288.55	9.26	0.000	6,67	0.416	Notes
	0					2			20									
CARR18-23-REF	0	Porewater	3.28	21.3	M8/T17	20	10	1	20	28	7.5 7.6	15.4	288.55	9.26	0.028	6.67	3.469	
CARR40-23-REF CARR62-23-REF	0	Porewater	2.61	21.4	M8/T17	ND	10	1	ND	29		15.5	288.65	9.26		6.67	ND	
	0	Porewater	1.18	21.1	M8/T17	ND 26	10	1	ND 26	29	7.5	15.3	288.45	9.26	0.010	6.67	ND 2.672	
SED-07G:0-10	0	Porewater	14.0	21.1	M8/T17	26	10	1	26	30	7.6	15.5	288.65	9.26	0.152	6.67	3.673	
SED-11G:0-10	0	Porewater	8.56	20.5	M8/T17	2	10	1	2	29	7.7	15.4	288.55	9.26	0.116	6.67	0.233	
SED-14G:0-10	0	Porewater	2.92	20.4	M8/T17	205	10	1	205	29	7.5	15.4	288.55	9.26	0.025	6.67	35.413	
SED-15G:0-10	0	Porewater	1.83	20.0	M8/T17	10	10	1	10	29	7.3	15.3	288.45	9.26	0.010	6.67	2.494	
SED-03G:0-10	0	Porewater	1.02	20.4	M8/T17	11	10	1	11	29	7.4	15.6	288.75	9.26	0.007	6.67	2.276	
SED-01G:0-10	0	Porewater	1.76	20.5	M8/T17	15	10	1	15	29	7.4	15.4	288.55	9.26	0.012	6.67	3.122	<u> </u>
SED-05G:0-10	0	Porewater	2.30	20.4	M8/T17	81	10	1	81	29	7.5	15.4	288.55	9.26	0.020	6.67	13.993	<u> </u>
SED-27G:0-10	0	Porewater	3.85	20.3	M8/T17	ND	10	1	ND	29	7.5	15.4	288.55	9.26	0.033	6.67	ND	<u> </u>
	0	Porewater										0.0	273.15					<u> </u>
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					ļ
	0	Porewater										0.0	273.15					ļ
	0	Porewater										0.0	273.15					ļ
	0	Porewater										0.0	273.15					<u> </u>
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15					1
	0	Porewater										0.0	273.15					
	0	Porewater										0.0	273.15		•			
	0	Porewater										0.0	273.15		•			
	0	Porewater										0.0	273.15		·			
	0	Porewater										0.0	273.15					

10 Day SP Test Day 10 Overlying Ammonia

CLIENT			PROJECT				PROJECT NUMBER	R		SPECIES								
Leon Environmenta	al		Port of Friday	y Harbor			PG1785			Eohaustorius	estuarius							
Calibration Standa	rds Temperature	: 20.1	Date:	5/22/2023	Tech:	LG	Ammonia Meter:	10	Sulfide Meter:	1								
NH ₃ sample tempe	erature should be	within +/- 1°C	of standard	temp at time	and date of a													
						Measurea			Calculatea									
						Total			Total									
				NH ₃		Dissolved			Dissolved								Undissociated	
		Overlying/	Total NH 3	sample	WQ/Temp	Sulfide	Sulfide Sample	Sulfide	Sulfide (µg/L	Test salinity		Test temp			Unionized NH 3	H ₂ S	Sulfide	
Sample	Day	Porewater	(mg/L)	temp	Meter	(μg/L as S)	Volume (ml)	Multiplier	as S)	(ppt)	Test pH	(C)	Temp (K)	NH ₃ pKa ^s	(mg/L)	pK a*	$(\mu g/L as H_2 S)$	
Sourced	Sourced		Record	Record	Record	Record	Record	Record	Calculated	Sourced	Sourced	Sourced	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
Control	10	Overlying	0.353	19.3	T17	ND	10	1	ND	28	8.1	15.5	288.65	9.26	0.012	6.67	ND	
CARR18-23-REF	10	Overlying	0.190	19.3	T17	ND	10	1	ND	28	8.2	15.8	288.95	9.26	0.008	6.67	ND	
CARR40-23-REF	10	Overlying	0.00	19.2	T17	2	10	1	2	28	8.4	15.8	288.95	9.26	0.000	6.67	0.051	
CARR62-23-REF	10	Overlying	0.00	19.4	T17	0	10	1	0	28	8.1	15.6	288.75	9.26	0.000	6.67	0.000	
SED-07G:0-10	10	Overlying	5.17	19.2	T17	3	10	1	3	28	8.3	15.9	289.05	9.26	0.278	6.66	0.095	
SED-11G:0-10	10	Overlying	8.65	19.1	T17	ND	10	1	ND	28	8.5	15.9	289.05	9.26	0.714	6.66	ND	
SED-14G:0-10	10	Overlying	2.97	19.1	T17	4	10	1	4	28	8.3	15.7	288.85	9.26	0.157	6.67	0.127	
SED-15G:0-10	10	Overlying	0.607	19.3	T17	0	10	1	0	28	8.2	15.6	288.75	9.26	0.026	6.67	0.000	
SED-03G:0-10	10	Overlying	0.00	19.1	T17	2	10	1	2	28	8.2	15.8	288.95	9.26	0.000	6.67	0.079	
SED-01G:0-10	10	Overlying	0.173	19.3	T17	ND	10	1	ND	28	8.3	15.9	289.05	9.26	0.009	6.66	ND	
SED-05G:0-10	10	Overlying	0.206	19.6	T17	ND	10	1	ND	28	8.3	15.6	288.75	9.26	0.011	6.67	ND	
SED-27G:0-10	10	Overlying	2.23	19.2	T17	1	10	1	1	28	8.3	15.6	288.75	9.26	0.117	6.67	0.032	
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
	10	Overlying								0	0.0	0.0	273.15					
•	10	Overlying							ļ	0	0.0	0.0	273.15					
	10	Overlying					-		ļ	0	0.0	0.0	273.15					
-	10	Overlying							ļ	0	0.0	0.0	273.15					
	10	Overlying			ļ	ļ			ļ	0	0.0	0.0	273.15					
	10	Overlying					-		ļ	0	0.0	0.0	273.15					
	10	Overlying			1	1			ļ	0	0.0	0.0	273.15					
	10	Overlying			1	1	1		1	0	0.0	0.0	273.15					
	10	Overlying			ļ	ļ			ļ	0	0.0	0.0	273.15					
	10	Overlying			1	1			ļ	0	0.0	0.0	273.15					
	10	Overlying			1	1	1		1	0	0.0	0.0	273.15					
	10	Overlying	l		l	l				0	0.0	0.0	273.15					

CLIENT			PROJECT				PROJECT NUMBER	•		SPECIES								
Leon Environmental			Port of Friday	v Harbor			PG1785	•		Eohaustoriu:	s estuarius							
Calibration Standard	ls Temperature:		Date:	5/22/2023	Tech:	LG	Ammonia Meter:	10	Sulfide Meter:	1	Cottadinas							
NH ₃ sample tempera				-, , -			runnoma meteri		Juniue Meter		1							
ivii3 sample tempera	iture siloulu be w	vicinii +/- 1 C	oi stailuai u te	emp at time a	and date or ar	ivieasurea			Calculatea									
						Total			Total									
				NH 3		Dissolved			Dissolved	Porewater							Undissociated	
		Overlying/	Total NH 3	sample	WQ/Temp	Sulfide	Sulfide Sample	Sulfide	Sulfide (µg/L	salinity	Porewater	Test temp			Unionized	H ₂ S	Sulfide	
Sample	Day	Porewater	(mg/L)	temp	Meter	(μg/L as S)	Volume (ml)	Multiplier	as S)	(ppt)	pН	(c)	Temn (K)	NH , pKa s	NH ₃ (mg/L)	pK ,*	(µg/L as H , S)	
Sourced	Sourced		Record	Record	Record	Record	Record	Record	Calculated	Record	Record	Sourced	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
Control	10	Porewater	0	20.6	T17/9	ND	10	1	ND	27	7.4	15.5	288.65	9.26	0.000	6.67	ND	111111
CARR18-23-REF	10	Porewater	2.49	20.4	T17/9	33	10	1	33	29	7.5	15.8	288.95	9.26	0.022	6.66	5.627	
C. D. A. D. D. D. F.	40		2.20	20.2	747/0		40					45.0	200.05	0.05	0.047	6.67		101 101 101 101 101 101
CARR40-23-REF	10	Porewater	3.38	20.3	T17/9	NM	10	1	NM	28	7.7	15.8	288.95	9.26	0.047	6.67	NM	Not enough PW for sulfide reading-LG 5/22/23
CARR62-23-REF	10	Porewater	0.648	20.5	T17/9	4	10	1	4	29	7.7	15.6	288.75	9.26	0.009	6.67	0.462	
SED-07G:0-10	10	Porewater	8.47	20.0	T17/9	ND	10	1	ND	29	7.7	15.9	289.05	9.26	0.119	6.66	ND	
SED-11G:0-10	10	Porewater	21.7	20.0	T17/9	9	10	1	9	28	8.0	15.9	289.05	9.26	0.601	6.66	0.550	
SED-14G:0-10	10	Porewater	5.87	20.2	T17/9	7	10	1	7	29	7.5	15.7	288.85	9.26	0.052	6.66	1.197	
SED-15G:0-10	10	Porewater	1.70	20.3	T17/9	8	10	1	8	29	7.6	15.6	288.75	9.26	0.019	6.67	1.131	
SED-03G:0-10	10	Porewater	0.437	20.0	T17/9	ND	10	1	ND	29	7.6	15.8	288.95	9.26	0.005	6.66	ND	
SED-01G:0-10	10	Porewater	0.788	20.3	T17/9	ND	10	1	ND	29	7.8	15.9	289.05	9.26	0.014	6.66	ND	
SED-05G:0-10	10	Porewater	0.353	20.3	T17/9	0	10	1	0	29	7.5	15.6	288.75	9.26	0.003	6.67	0.000	
SED-27G:0-10	10	Porewater	4.23	20.0	T17/9	ND	10	1	ND	29	7.5	15.6	288.75	9.26	0.037	6.67	ND	
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater			1]						0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater										0.0	273.15					
	10	Porewater			1]						0.0	273.15					
	10	Porewater			1]						0.0	273.15					
	10	Porewater				1					1	0.0	273.15					
	10	Porewater			1]						0.0	273.15					
	10	Porewater			ļ	1						0.0	273.15					
	10	Porewater			ļ	1						0.0	273.15					
	10	Porewater			ļ	1						0.0	273.15					
	10	Porewater			l			l				0.0	273.15					

Eohaustorius estuarius Statistical Results 1.2

Project Name:	Port of Friday	Harbor Eohs

Sample:	x1	Ref Samp:	x2
Samp ID:	SED-07G:0-10	Ref ID:	CARR18-23-REF
Alias:	P230324.01	Alias:	P230510.02
Replicates:	5	Replicates:	5
Mean:	0.22	Mean:	0.14
SD:	0.14	SD:	0.089
Tr Mean:	2.549	Tr Mean:	2.078
Trans SD:	0.958	Trans SD:	0.594

Shapiro-Wilk Results:	Levene's Results:	Test Results:
-----------------------	-------------------	---------------

Residual Mean:	0	Test Residual Mean:	0.801	Statistic:	Student's t
Residual SD:	0.517	Test Residual SD:	0.339	Balanced Design:	Yes
SS:	5.081	Ref. Residual Mean:	0.425	Transformation:	ArcSin
K:	5	Ref. Residual SD:	0.356		
b:	2.165	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9228	Calculated Value:	1.7131	Alternate:	x1 > x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: Distributed: Yes Experimental Alpha Level: 0.05 Yes Homogeneous:

Calculated Value: 0.9342 Override Option: N/A Critical Value: >= 1.860 Yes Accept Null Hypothesis:

Power: Min. Difference for Power:

Shipiro-Wilk Levene's Levene's Mann-Replicate Reference Reference Test Reference Whitney Residuals Rankits Residuals Number Data Test Data Data Data Residuals Ranks 0.266 0.266 0.266 0.25 2.866 0.1 1.812 0.317 -1.267 0.843 0.843 -0.736 -0.266 0.35 3.392 0.1 1.812 0.35 0.1 0.1 0.3 3 4 3.392 1.812 0.736 1.062 -0.266 1.812 3.14 0.05 1.281 0.1 1.812 1.267 0.266 -0.266

5 -0.266 0.317 0.843 0.843 10 1.062 Project Name: Port of Friday Harbor Eohs

9

10

Ref Samp: Sample: CARR18-23-REF SED-11G:0-10 Ref ID: Samp ID: P230324.02 P230510.02 Alias: Alias: Replicates Replicates 0.18 Mean: Mean: 0.14 SD: 0.104 SD: 0.089 Tr Mean: N/A Tr Mean: N/A Trans SD: N/A Trans SD:

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean: 0 Test Residual Mean: 0.494 Statistic: Mann-Whitney Residual SD: 0.406 Test Residual SD: 0.355 Balanced Design: SS. 3.136 Ref. Residual Mean: 0.425 Transformation: rank-order Ref. Residual SD: K: 0.356 1.559 Deg. of Freedom: Experimental Hypothesis Alpha Level: 0.05 Alpha Level: 0.1 Null: x1 <= x2 Calculated Value: 0.7755 Calculated Value: 0.308 Alternate: x1 > x2

 Critical Value:
 <= 0.842</td>
 Critical Value:
 >= 1.860

 Mann-Whitney N1:
 Mann-Whitney N2:

 Normally
 Variances
 Degrees of Freedom:

 Distributed:
 No
 Homogeneous:
 Yes
 Experimental Alpha Level:
 0.05

 Coverride Option:
 Not Invoked
 17
 2 21.000
 > 221.000
 > 221.000

5 5

0.203

1.032

1.062

Min. Difference for Power:

9

10

Override Option: Not Invoked Critical Value: >= 21
Accept Null Hypothesis: Yes
Power:

Trans. Levene's Levene's Shipiro-Replicate Reference Reference Test Reference Whitney Wilk Number Data Test Data Data Data Residuals Residuals Ranks Rankits Residuals 0.35 10 0.1 1 032 0.266 3 5 -0 548 3.5 0.2 0.203 0.266 -0.548 8 0.1 3.5 3.5 0.15 0.1 3.5 0.14 0.266 3.5 -0.266 0.1 3.5 0.3 9 0.548 1.062 3.5 -0.266 3.5 3.5 5 0.1 3.5 0.1 3.5 0.548 0.266 -0.266 -0.266 6 -0.14 Project Name: Port of Friday Harbor- Eoh

Sample: x1

Samp ID: SED-01G:0-10 Alias: P230324.06

 Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Min. Difference for Power:

Replicates: 5

Mean: 0.15 SD: 0.071 Tr Mean: 2.173 Trans SD: 0.506

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.603	Statistic: Student's t
Residual SD:	0.407	Test Residual SD:	0.278	Balanced Design: Yes
SS:	3.151	Ref. Residual Mean:	0.433	Transformation: ArcSin
K:	5	Ref. Residual SD:	0.146	
b:	1.668	Deg. of Freedom:	8	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2
Calculated Value:	0.8827	Calculated Value:	1.2097	Alternate: x1 > x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05
				Calculated Value: -0.535
Override Option:	N/A			Critical Value: >= 1.860
				Accept Null Hypothesis: Yes
				Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.05	1.281	0.25	2.866	0.679	0.693			-0.679
2	0.25	2.866	0.1	1.812	0.905	0.361			-0.679
3	0.05	1.281	0.1	1.812	0.679	0.361			-0.361
4	0.2	2.563	0.1	1.812	0.602	0.361			-0.361
5	0.1	1.812	0.2	2.563	0.149	0.39			-0.361
6									-0.149
7									0.39
8									0.602
9									0.693
10									0.905

Duniont Names	Doct of Friday	. Hashas Faka
Project Name:	POIL OF FIIDAY	Harbor Eohs

10

Sample:	x1	Ref Samp:	x2
Samp ID:	SED-27G:0-10	Ref ID:	CARR40-23-REF
Alias:	P230324.08	Alias:	P230510.03
Replicates:	5	Replicates:	5
Mean:	0.19	Mean:	0.15
SD:	0.074	SD:	0.071
Tr Mean:	2.46	Tr Mean:	2.173
Trans SD:	0.49	Trans SD:	0.506

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	0.355	Statistic:	Student's t
Residual SD:	0.323	Test Residual SD:	0.288	Balanced Design:	Yes
SS:	1.984	Ref. Residual Mean:	0.433	Transformation:	ArcSin
K:	5	Ref. Residual SD:	0.146		
b:	1.343	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9094	Calculated Value:	0.5424	Alternate:	x1 > x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 8
Distributed: Yes Homogeneous: Yes Experimental Alpha Level: 0.05
Calculated Value: 0.9995

 Override Option:
 N/A
 Critical Value:
 >= 1.860

 Accept Null Hypothesis:
 Yes

0.693

Power: Min. Difference for Power:

Shipiro-Wilk Levene's Trans. Levene's Mann-Whitney Replicate Reference Reference Test Reference Test Trans. Number Data Test Data Data Data Residuals Residuals Ranks Rankits Residuals 2.22 0.25 2.866 0.24 0.693 0.15 -0.647 -0.361 0.2 2.563 0.1 1.812 0.104 0.361 0.361 0.361 0.39 0.2 2.563 0.1 0.104 -0.361 3 1.812 0.1 0.3 0.1 0.2 0.647 0.68 -0.361 -0.24 4 5 1.812 1.812 2.563 3.14 6 0.104 0.104 8 0.39 0.68

Project Name:	Port of Friday	Harbor Fob

Sample:	x1	Ref Samp:	x2
Samp ID:	SED-15G:0-10	Ref ID:	CARR40-23-REF
Alias:	P230324.04	Alias:	P230510.03
Replicates:	5	Replicates:	5
Mean:	0.13	Mean:	0.15
SD:	0.104	SD:	0.071
Tr Mean:	1.786	Tr Mean:	2.173
Trans SD:	1.162	Trans SD:	0.506

Shapiro-Wilk Results:	Levene's Results:	Test Results:

Residual Mean:	0	Test Residual Mean:	0.916	Statistic:	Approximate t
Residual SD:	0.582	Test Residual SD:	0.549	Balanced Design:	Yes
SS:	6.426	Ref. Residual Mean:	0.433	Transformation:	ArcSin
K:	5	Ref. Residual SD:	0.146		
b:	2.42	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.911	Calculated Value:	1.9024	Alternate:	x1 > x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: Distributed: No Experimental Alpha Level: 0.05 Yes Homogeneous: Calculated Value: -0.6829

Override Option: N/A Critical Value: >= 2.015 Accept Null Hypothesis: Yes

Power: Min. Difference for Power:

Trans. Levene's Levene's Shipiro-Replicate Reference Reference Reference Whitney Wilk Residuals Rankits Residuals Number Data Test Data Data Data Residuals Ranks -1.786 -0.505 -0.361 -0.361 0.25 2.866 0.25 2.866 1.08 0.693 0.361 0.361 0.361 0.505 0.777 0.05 1.281 0.1 1.812 2.563 2.22 0.2 0.1 1.812 0.15 0.434 0.1 1.812

2 3 4 5 6 7 0 0 0.2 2.563 1.786 0.39 -0.361 0.39 0.434 8 0.693 0.777 10 1.08

Project Name:	Port of Friday Harbor Eohs

10

Sample:	x1	Ref Samp:	x2
Samp ID:	SED-03G:0-10	Ref ID:	CARR40-23-REF
Alias:	P230324.05	Alias:	P230510.03
Replicates:	5	Replicates:	5
Mean:	0.28	Mean:	0.15
SD:	0.13	SD:	0.071
Tr Mean:	2.953	Tr Mean:	2.173
Trans SD:	0.774	Trans SD:	0.506

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	0.613	Statistic:	Student's t
Residual SD:	0.424	Test Residual SD:	0.36	Balanced Design:	Yes
SS:	3.418	Ref. Residual Mean:	0.433	Transformation:	ArcSin
K:	5	Ref. Residual SD:	0.146		
b:	1.738	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.8833	Calculated Value:	1.0337	Alternate:	x1 > x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: Experimental Alpha Level: Calculated Value: 0.05 Distributed: Yes Homogeneous: Yes 1.8877 >= 1.860

Override Option: N/A Critical Value: Accept Null Hypothesis: No

Min. Difference for Power:

0.693

Shipiro-Levene's Trans. Levene's Mann-Reference Whitney Replicate Test Reference Reference Wilk Trans. Test Number Data Test Data Data Data Residuals Residuals Ranks Residuals 0.2 2.563 0.25 2.866 0.39 0.693 -1.141 0.3 3.14 0.1 1.812 0.186 0.361 -0.39 0.361 0.361 0.39 -0.361 -0.361 -0.361 0.4 1.812 0.673 3 3.626 0.1 0.4 0.1 0.673 1.141 4 5 3.626 0.1 1.812 1.812 0.2 2.563 6 0.186 0.39 8 0.673 0.673 Project Name: Port of Friday Harbor- Eoh

Sample: x1

Samp ID: SED-14G:0-10 Alias: P230324.03

 Ref Samp: x2

Ref ID: CARR62-23-REF

Alias: P230510.04 Replicates: 5

Mean: 0.15 SD: 0.094 Tr Mean: 2.128 Trans SD: 0.708

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.403	Statistic: Studen	t's t
Residual SD:	0.404	Test Residual SD:	0.266	Balanced Design: Yes	
SS:	3.103	Ref. Residual Mean:	0.591	Transformation: ArcSin	
K:	5	Ref. Residual SD:	0.255		
b:	1.68	Deg. of Freedom:	8		
				Experimental Hypot	thesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x	2
Calculated Value:	0.91	Calculated Value:	1.1362	Alternate: x1 > x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Free	dom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha L	.evel: 0.05
					alue: 0.9969
Override Option:	N/A			Critical V	alue: >= 1.860
·				Accept Null Hypoth	esis: Yes
				Po	ower:
				Min. Difference for Po	ower:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.1	1.812	0.25	2.866	0.708	0.738			-0.846
2	0.2	2.563	0.05	1.281	0.043	0.846			-0.708
3	0.3	3.14	0.25	2.866	0.62	0.738			-0.315
4	0.15	2.22	0.1	1.812	0.301	0.315			-0.315
5	0.25	2.866	0.1	1.812	0.346	0.315			-0.301
6									0.043
7									0.346
8									0.62
9									0.738
10									0.738

Sample:	x1	Ref Samp:	x2
Samp ID:	SED-05G:0-10	Ref ID:	CARR62-23-REF
Alias:	P230324.07	Alias:	P230510.04
Replicates:	5	Replicates:	5
Mean:	0.18	Mean:	0.15
SD:	0.045	SD:	0.094
Tr Mean:	2.418	Tr Mean:	2.128
Trans SD:	0.291	Trans SD:	0.708

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	0.238	Statistic:	Approximate t
Residual SD:	0.351	Test Residual SD:	0.12	Balanced Design:	Yes
SS:	2.346	Ref. Residual Mean:	0.591	Transformation:	ArcSin
K:	5	Ref. Residual SD:	0.255		
b:	1.462	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9111	Calculated Value:	2.8001	Alternate:	x1 > x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Degrees of Freedom: Experimental Alpha Level: Calculated Value: Critical Value: 5 0.05 0.8471 >= 2.015 Normally Distributed: Variances Yes Homogeneous: No

Override Option: N/A Accept Null Hypothesis: Yes

Power: Min. Difference for Power:

Replicate	Test		Trans.	Reference	Trans. Reference		Levene's Test	Levene's Reference		Mann- Whitney		Shipiro- Wilk
Number	Data		Test Data	Data	Data		Residuals	Residuals		Ranks	Rankits	Residuals
1		0.15	2.22	0.25		2.866	0.198		0.738			-0.846
2		0.15	2.22	0.05		1.281	0.198		0.846			-0.315
3		0.2	2.563	0.25		2.866	0.146		0.738			-0.315
4		0.25	2.866	0.1		1.812	0.448		0.315			-0.198
5		0.15	2.22	0.1		1.812	0.198		0.315			-0.198
6												-0.198
7												0.146
8												0.448
9												0.738
10												0.738

1.3 Eohaustorius estuarius Reference Toxicant Test Results

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival Organism: Eohaustorius estuarius Material: Total Ammonia

Protocol: EPA/600/R-94/025 (1994) Endpoint: Proportion Survived Source: Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2019	Aug	27	14:25	149.5	-11.76	-0.1766			16-1141-7710	18-3800-2446	EcoAnalysts
2	11.0	Oct	18	14:40	206.9	45.69	0.5817			10-1139-9672	04-6029-5418	EcoAnalysts
3	2020	Feb	11	11:30	141.8	-19.48	-0.3001			09-3507-3124	12-7490-3807	EcoAnalysts
4	-10	Mar	3	10:50	123.7	-37.52	-0.6175			01-7038-2185	20-8945-2710	EcoAnalysts
5		Apr	10	14:35	148.2	-13.02	-0.1963			15-3093-6458	02-4348-5257	EcoAnalysts
6		Jun	12	14:25	244.4	83.19	0.9699			17-6535-4072	07-7299-7620	EcoAnalysts
7		Jul	10	14:19	210.4	49.12	0.62			21-2712-7178	15-5267-1443	EcoAnalysts
8			31	13:31	200.1	38.86	0.5033			19-0166-9324	03-8578-2577	EcoAnalysts
9		Sep	1	11:50	136.2	-25.01	-0.393			02-9531-4833	11-6890-2134	EcoAnalysts
10		Oct	2	13:55	191.4	30.16	0.3998			10-8959-5787	01-2752-4170	EcoAnalysts
11			23	10:35	190.7	29.48	0.3914			09-8256-6636	12-6068-0049	EcoAnalysts
12		Nov	13	15:42	264.7	103.5	1.156	(+)		12-1804-8521	19-5275-8749	EcoAnalysts
13	2021	Jun	29	16:15	144.4	-16.86	-0.2574			07-6082-1836	05-1033-0371	EcoAnalysts
14		Jul	13	13:45	225.7	64.41	0.7835			15-1767-0094	07-8834-3646	EcoAnalysts
15		Aug	6	15:40	233.3	72.08	0.8615			13-1244-3040	10-3339-7021	EcoAnalysts
16	2022	Jun	28	14:55	169.4	8.142	0.1148			02-4574-4479	16-9394-6529	EcoAnalysts
17		Aug	23	15:40	214.4	53.14	0.664			13-3970-9795	17-9108-7239	EcoAnalysts
18		Sep	30	14:50	37.97	-123.3	-3.372	(-)	(-)	13-9618-4863	18-1195-4011	EcoAnalysts
19	4-	Nov	1	15:42	112	-49.24	-0.8495			18-4264-0694	03-2825-9179	EcoAnalysts
20	2023	Mar	27	14:52	110.7	-50.52	-0.8763			00-4639-3907	16-8783-1532	EcoAnalysts
21		May	12	14:18	124.5	-36.81	-0.6041			04 7700 0000	00-8061-3184	FooApolyete

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival Organism: Echaustorius estuarius Material: Unionized Ammonia
Protocol: EPA/600/R-94/025 (1994) Endpoint: Proportion Survived Source: Reference Toxicant-REF

Quality	Cantral	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2019	Aug	27	14:25	1.888	-0.1433	-0.1962			18-5396-1387	02-7188-5010	EcoAnalysts
2		Oct	18	14:40	2.025	-0.00655	-0.00867			01-8678-8913	10-6861-7593	EcoAnalysts
3	2020	Feb	11	11:30	1.153	-0.8779	-1.519	(-)		20-1044-3853	15-7919-2486	EcoAnalysts
4	117	Mar	3	10:50	2	-0.03156	-0.04202			02-4224-7585	10-8613-3376	EcoAnalysts
5		Apr	10	14:35	1.532	-0.4992	-0.7568			03-6100-0320	17-4770-7985	EcoAnalysts
6		Jun	12	14:25	2.515	0.4838	0.5733			12-0347-2631	12-6656-5651	EcoAnalysts
7	11.	Jul	10	14:19	2.036	0.004736	0.00625			19-2747-2298	11-5216-9625	EcoAnalysts
8			31	13:31	2.604	0.5731	0.6668			00-3001-9040	12-3550-9219	EcoAnalysts
9		Sep	1	11:50	2.15	0.1185	0.1521			20-8197-8748	01-8924-2597	EcoAnalysts
10		Oct	2	13:55	2.192	0.1613	0.205			11-7285-1322	05-0028-0196	EcoAnalysts
11			23	10:35	2.014	-0.01758	-0.02333			06-9998-7880	19-7260-2994	EcoAnalysts
12		Nov	13	15:42	2.846	0.8147	0.9049			18-9101-0953	11-1982-6601	EcoAnalysts
13	2021	Jun	29	16:15	2.193	0.1616	0.2054			19-9925-7350	18-0084-5381	EcoAnalysts
14		Jul	13	13:45	2.706	0.6751	0.7699			19-3066-6785	16-4976-7245	EcoAnalysts
15		Aug	6	15:40	3.994	1.963	1.815	(+)		10-9355-9036	08-0099-3943	EcoAnalysts
16	2022	Jun	28	14:55	2.257	0.2256	0.2825			15-1320-8403	14-1461-4017	EcoAnalysts
17	4	Aug	23	15:40	2.789	0.7575	0.8505			19-4730-2098	12-6509-7347	EcoAnalysts
18		Sep	30	14:50	0.6533	-1.378	-3.043	(-)	(-)	18-5906-4045	01-7092-5166	EcoAnalysts
19		Nov	1	15:42	1.868	-0.1634	-0.2251			18-6321-3380	11-1992-4810	EcoAnalysts
20	2023	Mar	27	14:52	1.614	-0.4169	-0.6163			00-2990-2720	12-5002-5640	EcoAnalysts
21		May	12	14:18	1.648	-0.3831	-0.5608			02-8407-4452	15-9902-1861	EcoAnalysts

CETIS Summary Report

Report Date: Test Code/ID: 16 May-23 12:42 (p 1 of 1) P220819.48 / 01-7728-8936

Reference To	oxicant 96-h Acı	ute Surv	ival Test								Ec	oAnal	ysts
Batch ID: Start Date: Ending Date: Test Length:	The second second second		Test Type: Protocol: Species: Taxon:	Survival EPA/600/R-94/025 (1994) Eohaustorius estuarius Malacostraca				Anal Dilu Brin Sou	ent: L	Marisa Seibert Laboratory Seav Not Applicable Northwest Ampl		Age:	
Sample ID: Sample Date Receipt Date Sample Age:	: 19 Aug-22		Code: Material: CAS (PC): Client:	P220819.48 Total Ammonia Internal Lab				Proj Sou Stati	rce: F	Reference Toxic Reference Toxic P220819.48			
Multiple Com	parison Summ	ary											
Analysis ID	Endpoint		Comp	parison Method			1	NOEL	LOEL	TOEL	PMSD		
17-7082-1184	Proportion Sur	vived		r Exact Test				89.1	163	120.5	44		
Point Estima	te Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/L	95% LCL	95% UCL		
	Proportion Sur	vived	Linea	r Interpolation (IC	CPIN)			EC15 EC20 EC25 EC40 EC50	92.13 96.18 100.4 114.2 124.5	12.92 28.73 41.82 77.83 93.8	105.6 109.6 113.8 127.3 137.1		
Proportion S	urvived Summa	ary											
Conc-mg/L	Code	Cour	it Mean	95% LCL	95% UCL	Min		Max	Std Er	r Std Dev	CV%	%Ef	fect
0 23.7 42.7 89.1 163 330	D	3 3 3 3 3	0.900 0.900 0.866 0.800 0.166 0.000	0 0.6516 7 0.7232 0 0.3697 7 0.0232	0.9000 1.1480 1.0100 1.2300 0.3101 0.0000	0.9000 0.8000 0.8000 0.6000 0.1000 0.0000		0.9000 1.0000 0.9000 0.9000 0.2000 0.0000	0.0000 0.0577 0.0333 0.1000 0.0333 0.0000	0.1000 0.0577 0.1732 0.0577	0.00% 11.11% 6.66% 21.65% 34.64%	0.00 0.00 3.70 11.1 81.4 100.	% % 1% 8%
Proportion S	urvived Detail							MD	5: C502	0D62E0F69D53	37AA7A7BF	03920)F77
Conc-mg/L	Code	Rep	1 Rep 2	Rep 3									
0 23.7 42.7 89.1 163 330	D	0.900 0.900 0.900 0.900 0.200 0.000	00 0.900 00 0.800 00 0.800 00 0.600 00 0.200	0 0.9000 0 1.0000 0 0.9000 0 0.9000 0 0.1000									
Proportion S	urvived Binom	ials											
Conc-mg/L	Code	Rep	1 Rep 2	Rep 3									
0 23.7 42.7 89.1 163 330	D	9/10 9/10 9/10 9/10 9/10 2/10 0/10	9/10 8/10 8/10 6/10 2/10 0/10	9/10 10/10 9/10 9/10 1/10 0/10									

CETIS Summary Report

Report Date: Test Code/ID: 16 May-23 12:43 (p 1 of 1) P220819.48UIA / 02-8407-4452

Reference To	xicant 96-h Acu	te Survi	val Test								Ec	oAnaly	sts
Batch ID: Start Date: Ending Date: Test Length:	16-8633-5109 12 May-23 14:18 : 16 May-23 12:18		Test Type: Protocol: Species: Taxon:	Survival EPA/600/R-94/025 (1994) Eohaustorius estuarius Malacostraca				Analyst: Diluent: Brine: Source:		Marisa Seibert Laboratory Seawater Not Applicable Northwest Amphipod, OR		Age:	
Sample ID: Sample Date: Receipt Date:	: 19 Aug-22		Code: P220819.48U Material: Unionized An CAS (PC):					Proje Sour Stati	rce: R	eference Toxicant eference Toxicant 220819.48UIA			
Sample Age:	266d 14h		Client:	Internal Lab									
Multiple Com	parison Summa	ary											
Analysis ID	Endpoint		Comp	oarison Method			√	NOEL	LOEL	TOEL	PMSD	- 10	
16-0735-8629	Proportion Surv	ived	Fishe	r Exact Test				1.516	1.76	1.633			
Point Estimat	e Summary						П						
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/L	95% LCL	95% UCL		
15-9902-1861	Proportion Surv	ived	Linea	r Interpolation (I	CPIN)			EC15	1.529	0.6088	1.583		
								EC20	1.546	0.8459	1.596		
								EC25	1.562	1.071	1.609		
								EC40	1.613	1.472	1.654		
								EC50	1.648	1.543	1.685		
Proportion Su	urvived Summa	ry											
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std En	r Std Dev	CV%	%Effe	ect
0	D	3	0.900	0.9000	0.9000	0.9000		0.9000	0.0000	0.0000	0.00%	0.00%	
0.642		3	0.900		1.1480	0.8000		1.0000	0.0577		11.11%	0.00%	
0.91		3	0.866		1.0100	0.8000		0.9000	0.0333		6.66%	3.70%	
1.516		3	0.800		1.2300	0.6000		0.9000	0.1000		21.65%	11.11	
1.76		3	0.166		0.3101	0.1000		0.2000	0.0333		34.64%	81.48	
2.815		3	0.000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	-	100.0)0%
Proportion S	urvived Detail							MD:	5: 71C2F	F4569F3CC4A4	1A1E462536	6BC0A	126
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
0	D	0.9000	0.900	0.9000									
0.642		0.9000	0.800	0 1.0000									
0.91		0.9000	0.800	0.9000									
1.516		0.9000	0.600	0.9000									
1.76		0.2000	0.200	0 0.1000									
2.815		0.0000											
Proportion S	urvived Binomia	als											
Conc-mg/L	Code	Rep 1	Rep :	Rep 3									
0	D	9/10	9/10	9/10									
0.642	777	9/10	8/10	10/10									
0.91		9/10	8/10	9/10									
1.516		9/10	6/10	9/10									
1.76		2/10	2/10	1/10									
2.815		0/10	0/10	0/10									

CETIS Test Data Worksheet

Report Date:

16 May-23 12:42 (p 1 of 1)

Test Code/ID: P220819.48 / 01-7728-8936

Reference Toxicant 96-h Acute Survival Test

EcoAnalysts

Start Date: End Date:

12 May-23 14:18 16 May-23 12:18

Species: Eohaustorius estuarius Protocol: EPA/600/R-94/025 (1994)

P220819.48 Sample Code:

Sample Date: 19 Aug-22

Total Ammonia Material:

Sample Source: Reference Toxicant Sample Station: P220819.48

Survived Exposed Conc-mg/L Code Rep Pos Notes D D D 23.7 23.7 23.7 42.7 42.7 42.7 89.1 89.1 89.1

CETIS Test Data Worksheet

Report Date:

16 May-23 12:43 (p 1 of 1)

Test Code/ID:

P220819.48UIA / 02-8407-4452

Reference Toxicant 96-h Acute Survival Test

EcoAnalysts

Start Date: 12 May-23 14:18 End Date: 16 May-23 12:18

Sample Date: 19 Aug-22

Species: Eohaustorius estuarius
Protocol: EPA/600/R-94/025 (1994)

Material: Unionized Ammonia

Sample Code: P220819.48UIA
Sample Source: Reference Toxicant
Sample Station: P220819.48UIA

Conc-mg/L	Code	Rep	Pos	# Exposed	# Survived	Notes
0	D	1	17	10	9	
0	D	2	5	10	9	
0	D	3	6	10	9	
0.642		1	11	10	9	
0.642		2	3	10	8	
0.642		3	14	10	10	
0.91		1	9	10	9	
0.91		2	2	10	8	
0.91		3	7	10	. 9	
1.516		1	15	10	9	
1.516		2	13	10	6	
1.516		3	16	10	9	
1.76		1	18	10	2	
1.76		2	12	10	2	
1.76		3	4	10	1	
2.815		1	1	10	0	
2.815		2	8	10	0	
2.815		3	10	10	0	

Un-ionized Ammonia Calculator

CLIENT:	Leon Environmental	Date of Test:	May 12, 2023
PROJECT:	Port of Friday Harbor	Test Type:	Eohaustorius estuarius
COMMENTS	P220819 49 49 1		

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

		Mod NH3T (mg/L)	salinity (ppt)	pН	temp (C)	temp (K)	pKa ^s	NH ₃ U (mg/
	Target / Sample Name	Actual	Actual	Actual	Actual	Calculated	Calculated	Calculate
onic strength:pKa ^s	Example 3.5	2.000	10.0	7.5	5.0	278.15	9.2520	0.008
1 9.26	1							
2 9.27	2 20	23.7	28	8.0	15.6	288.75	9.2555	0.642
3 9.28	3 40	42.7	28	7.9	15.4	288.55	9.2555	0.910
4 9.29	4 80	89.1	28	7.8	15.4	288.55	9.2555	1.516
5 9.30	5 160	163	29	7.6	15.4	288.55	9.2557	1.760
6 9.32	6 320	330	29	7.5	15.3	288.45	9.2557	2.815
7 9.33	7							
8 9.34	8							
	9							
9.35	10							
934	11							
9.32	12							
930	13							
9.26	14							
9.26	15							
1 2 3 4 5 6 7 8	16		-					
$y = 0.0003x^2$	17							
+ 0.0091x +	18							
9.2502	19				1			
	20							
	21							
	22	+	1	+		-		-
	23			1	1			+
	24			-	-	1		-
		_						
	25	_	-	-				_
	26			-		-		
	27			-			-	+
	28					_		_
	29			-		-		_
	30			-				
	31							
	32							-
	33		1					
	34			-				
	35			1				
	36							
	37							
	38			6				
	39							
	40							
	41			1				
	42			1				
	43					1 1	1	

1) Incorrect number-ms 5/16

OR Man

Ammonia Reference Toxicant Test Water Quality Data Sheet

CLIENT	PROJECT			Laboratory	PROTOCOL
Leon Environmental	Port of Friday Harbor	Eohaustorius estu	arius	Port Gamble .	PSEP, SCUM
P20819.48	22E31S6086	DILUTION PREP INITIALS:		1	
CHAMBER SIZE/TYPE Pint Jar	EXPOSURE VOLUME 250 ml	TEST START DATE INITIALS S 12 23 MK/	1918	5/10/23	1218 CG

WATER QUALITY DATA

TEOT	ONDIT	ONO			DO	(mg/L)	TE	MP(C)	SA	L (ppt)		рН	TECHNICIAN		AMMO	AIV	A Maria	
TEST	CONDITI	ONS			>	5.1	1	5 <u>+</u> 1	28	3 <u>+</u> 1	7	- 9	TECHNICIAN					- 1
	CONCEN	TRATION	DAY	REP		D.O.		ГЕМР.	SA	LINITY		рН	WQ TECH/ DATE	Al	MMONIA	Tech		
SAMPLE ID	value	units	DAT	KEP	meter	mg/L	meter	°C	meter	ppt	meter	unit	WQ TECH BATE	METER	mg/L	reen		
Def Text emments	0	ma/l	0	Stock	8	7.9	8	15.6	8	28	8	6.8	MS 5/12	10		MK		
Ref.Toxammonia	0	mg/L	4	1	9	7.)	9	16.0	9	28	9	7.8	MS 5/16					
Def Tay, emmania	20	ma/l	0	Stock	8	7.9	8	15.9	8	28	8	6.0	MS 5/12	0	23.7	MK		
Ref.Toxammonia	20	mg/L	4	1	9	7.1	9	16.0	9	28	9	7.9	MS 5/16					
Ref.Toxammonia	40	mg/L	0	Stock	8	8.0	8	15.4	8	28	8	7.9	MS 5/12	10	42.7	MK		
Rei. Toxammonia	40	IIIg/L	4	1	9	7.5	9	15.8	9	28	9	7.9	MS 5/10					
Ref.Toxammonia	80	mg/L	0	Stock	8	8.0	8	15.4	8	28	8	7.8	MS 5/12	lo	89.1	MK		
Nei. Toxammonia	00	mg/L	4	1	9	7.6	9	15.7	9	28	9	7.9	MS5/16	3				
Ref.Toxammonia	160	ma/l	0	Stock	8	7.9	8	15.4	8	29	8	7. (MS 5/12	6	163	MK		
Rei. Toxaminonia	100	mg/L	4	1	9	7.8	9	15.6	9	28	9	7.9	MS 5/16					
Ref.Toxammonia	320	ma/l	0	Stock	8	7.9	8	15,3	8	29	8	75	MS 5/12	lo	330	MK		
Rei. 10xaminonia	320	mg/L	4	1	_					_	-	_						

OMF-MS 5/12

Ammonia Re ence Toxicant Test Water Qualit ata Sheet

PROJECT BROWN SPECIES

Echaustorius estuarius

CLIENT PROJECT PROJECT MANAGER LABORATORY PROTOCOL

Leon Environmental Port of Friday Harbor J. Levengood/ M. Seibert Port Gamble . PSEP, SCUM

Leon Environmenta		_		OFFI			1/105		rengood/ N	i. Goldert	FU	it Gan	DIC .	FOLI	, SCUIVI
E STELLER	421325	_	SUF	KVIVA	L &	BEHA	VIOR	DAY 2	IA		DAY 3			DAY 4	
OBSERVAT N = Normal LOE = Loss of equilible Q = Quinscent DC = Discoloration	olum			DATE 5/13/23			5114123		DATE S	istr		DATE 5/16/23			
NB = No body F = Floating on surface		NITIAL ORGAN	IISMS	TECHNICIAN NL		TECHNICIAN SZ			TECHNICIAN						
SAMPLEID	CONC.	REP	INITIAL NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS
		1	10	9	1	3F05	a	0	N	9	0	2	9	0	N
Ref.Tox Ammonia	0 mg/L	2	10	9	1	2FOS	a	0	3605	9	0	N	9	0	170s
		3	10	9		2505	a	0	2P05	9	0	1 Fos	9	0	1 Pos
Ref.Tox Ammonia		1	10	10	Ø	3F05	a	l	460	9	0	2FOS	9	0	11200
	20 mg/L	2	10	9	1	IFOS	9	0	N	8	١	z Fos	8	٥	1 FDS
		3	10	10	O	2500	10	0	IFOS	10	0	N	10	0	N
Ref.Tox Ammonia	40 mg/L	1	10	10	O	4805	9	1	2505	9	٥	1FOS	9	0	N
		2	D	9	1	4505	9	D	3P0	9	0	3Fos	8	(3 PO
		3	10	10	0	3805	9	l	3P05	9	0	2 Pos	9	0	280
		1	10	10	0	350)	9	l	4 800	9	0	1 Fos	9	0	1005
Ref.Tox Ammonia	80 mg/L	2	10	9	1	5FOS	9	0	3 POS	7	2	5Fos	6	1	2 FOS
		3	10	9	1	5FOS	9	0	4FOS	9	0	SFos	a	0	1 FOS
		1	10	8	2	1805	5	3	10	2	3	10	Z	0	20
Ref.Tox Ammonia	160 mg/L	2	10	7	3	30	5	Z	30	3	2	3Q	z	1	20
		3	10	8	2	IPOS	4	4	10	4	0	7	1	3	10
		1	10	0	10	_									
Ref.Tox Ammonia	320 mg/L	2	10	0	10	_					/				
		3	10	1	9	10	0	1	-	/			/	1	

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P220819.4B	
Date Prepared:	5 12/23	
Technician Initials:	MK	

Eoh NH₃ RT

Assumptions in Model

Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Date:

5/11/2023

Measurement:

8,340

Te	st Solutions	Volume of stock to reach desired					
Measured Concentration	Desired Concentration	Volume	concentration				
mg/L	mg/L	mL	mL stock to increase				
			SALT WATE				
23.7	20	750	2.698				
42.7	40	750	5.396				
89-1	80	750	10.791				
[63	160	750	21.583				
330	320	750	43.165				
			50 A 50 C 12 C 1				
			SCHOOL STATE (1884)				

1 16 2 1 3 2 4 10 5 11 6 6 7 14 8 13 9 12	
2 1 3 2 4 10 5 11 6 6 7 14 8 13	
9 12	
0 12	
10 15	•
11 18	
12 9	
13 8	
14 4	
13 8 14 4 15 7	
16 17	
16 17 17 3	
18 5	

P220819.48 Foh NH3 RT

st

2.1 Neanthes arenaceodentata Test Data

GENERAL

i		ſ			
Client	Leon Environmental			Test Parameters	
Project	Port of Friday Harbor			Min	Max
Project Number	PG1785		DO:	4.6	
Project Manager	Julia Levengood/Marisa Seibert	Note: input lowest and highest decimal for temp	Temp:	18.5	21.4
Date Oldest Sample Collected	3/20/2023		Sal:	26	30
Sample Holding Time	53		pH:	7	9
Test Start Date	05/12/23				
Test Species	Neanthes arenaceodentata				
Organism Supplier	Aquatic Toxicology Support	Temp Hobo ID	TEST ST	ART TIME/INITIALS:	0940 MK
Organism Acquired	5/11/2023	NA		TEST END TIME:	1028 SZ/MS
Organism Acclimation	1				
Organism Age	Juvenile (2-3 weeks post emergence)			CLIENT SAMPLE ID	LAB ID
Test Type/Duration	20-Day Solid Phase		1	Control	P230510.01
Test Protocol	PSEP 1995		2	CARR18-23-REF	P230510.02
Regional Protocol	SCUM 2019		3	CARR40-23-REF	P230510.03
Laboratory Location	Port Gamble		4	CARR62-23-REF	P230510.04
Test Location	Bath 2		5	SED-07G:0-10	P230324.01
Sample Treatment	reference sed press sieved 2mm Sample SED-11G:0-10 press sieved 2mm		6	SED-11G:0-10	P230324.02
Control Sediment Source	Yaquina Bay, OR		7	SED-14G:0-10	P230324.03
Water Batch	FSW051023.01		8	SED-15G:0-10	P230324.04
Test Lighting	Continuous		9	SED-03G:0-10	P230324.05
Test Chamber	1 L glass jars		10	SED-01G:0-10	P230324.06
Replicates Per Treatment	5 replicates + 2 surrogates		11	SED-05G:0-10	P230324.07
Organisms per Replicate	5		12	SED-27G:0-10	P230324.08
Exposure Volume	2 cm sediment/ 775 mL water	Food Batch ID	13		
Feeding Information	40 mg Tetramin/Replicate every other day	251523 454GR	14		
Test Dissolved Oxygen	> 4.6		15		
Test Temperature	20 ± 1		16		
Test Salinity	28 ± 2		17		
Test pH	8 ± 1		18		
Water Renewal Info	Renewed every third day		19		
,			20		

2.2 Neanthes arenaceodentata Statistical Results

Sample: x1

Samp ID: SED-07G:0-10 Alias: P230324.01

 Ref Samp: x2

Ref ID: CARR18-23-REF Alias: P230510.02

Replicates: 5 Mean: 1.412 SD: 0.41

Tr Mean: 0.378 Trans SD: 0.073

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.021	Statistic: Ap	proximate t
Residual SD:	0.035	Test Residual SD:	0.011	Balanced Design: Ye	S
SS:	0.024	Ref. Residual Mean:	0.058	Transformation: Lo	g10 (x + 1.0)
K:	5	Ref. Residual SD:	0.033		
b:	0.152	Deg. of Freedom:	8		
		_		Experimental H	Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1	>= x2
Calculated Value:	0.9697	Calculated Value:	2.3202	Alternate: x1	< x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of	Freedom: 5
Distributed:	Yes	Homogeneous:	No	Experimental Alp	ha Level: 0.05
				Calculat	ed Value: 0.9868
Override Option:	N/A			Critic	cal Value: >= 2.015
·				Accept Null Hy	pothesis: Yes
					Power:
				Min. Difference f	or Power:

1 1.351 0.371 1.207 0.344 0.028 0.034 -0.088 2 1.174 0.337 1.652 0.424 0.006 0.046 -0.034 3 1.13 0.328 1.992 0.476 0.015 0.098 -0.032 4 1.339 0.369 0.949 0.29 0.026 0.088 -0.023 5 1.047 0.311 1.262 0.354 0.032 0.023 -0.015 6 -0.006 7 0.026 0.028 0.028					Trans.	Levene's	Levene's	Mann-		Shipiro-
1 1.351 0.371 1.207 0.344 0.028 0.034 -0.088 2 1.174 0.337 1.652 0.424 0.006 0.046 -0.034 3 1.13 0.328 1.992 0.476 0.015 0.098 -0.032 4 1.339 0.369 0.949 0.29 0.026 0.088 -0.023 5 1.047 0.311 1.262 0.354 0.032 0.023 -0.015 6 -0.006 -0.006 -0.028 -0.028 -0.028 -0.028 9 0.046 -0.046 -0.032 -0.032 -0.032 -0.032	Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
2 1.174 0.337 1.652 0.424 0.006 0.046 -0.034 3 1.13 0.328 1.992 0.476 0.015 0.098 -0.032 4 1.339 0.369 0.949 0.29 0.026 0.088 -0.023 5 1.047 0.311 1.262 0.354 0.032 0.023 -0.015 6 -0.006 -0.006 -0.028 -0.028 -0.028 9 0.046 -0.046 -0.046 -0.046	Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
3 1.13 0.328 1.992 0.476 0.015 0.098 -0.032 4 1.339 0.369 0.949 0.29 0.026 0.088 -0.023 5 1.047 0.311 1.262 0.354 0.032 0.023 -0.015 6 -0.006 -0.006 -0.028 0.028 9 0.046 0.046	1	1.351	0.371	1.207	0.344	0.028	0.034			-0.088
4 1.339 0.369 0.949 0.29 0.026 0.088 -0.023 5 1.047 0.311 1.262 0.354 0.032 0.023 -0.015 6 -0.006 7 0.026 8 0.028 9 0.046	2	1.174	0.337	1.652	0.424	0.006	0.046			-0.034
5 1.047 0.311 1.262 0.354 0.032 0.023 -0.015 6 -0.006 7 0.028 9 0.046	3	1.13	0.328	1.992	0.476	0.015	0.098			-0.032
6 -0.006 7 0.026 8 0.028 9 0.046	4	1.339	0.369	0.949	0.29	0.026	0.088			-0.023
7 0.026 8 0.028 9 0.046	5	1.047	0.311	1.262	0.354	0.032	0.023			-0.015
8 0.028 9 0.046	6									-0.006
9 0.046	7									0.026
	8									0.028
10 0.098	9									0.046
	10									0.098

Sample: x1

Samp ID: SED-11G:0-10 Alias: P230324.02

 Ref Samp: x2

Ref ID: CARR18-23-REF Alias: P230510.02

Replicates: 5
Mean: 1.412

SD: 0.41 Tr Mean: 1.412 Trans SD: 0.41

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	0.216	Statistic:	Student's t	
Residual SD:	0.222	Test Residual SD:	0.09	Balanced Design:	Yes	
SS:	0.939	Ref. Residual Mean:	0.328	Transformation:	No Transform	ation
K:	5	Ref. Residual SD:	0.184			
b:	0.945	Deg. of Freedom:	8			
				Experimen	tal Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value:	0.9518	Calculated Value:	1.2176	Alternate:	x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860			
Normally		Variances		Degrees	s of Freedom:	8
Distributed:	Yes	Homogeneous:	Yes	Experimenta	l Alpha Level:	0.05
				Calc	culated Value:	3.1187
Override Option:	N/A				Critical Value:	>= 1.860
				Accept Nu	II Hypothesis:	No
					Power:	
				Min. Differen	ice for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.562	0.562	1.207	1.207	0.175	0.205			-0.463
2	0.906	0.906	1.652	1.652	0.169	0.24			-0.365
3	0.971	0.971	1.992	1.992	0.234	0.58			-0.205
4	0.873	0.873	0.949	0.949	0.136	0.463			-0.175
5	0.372	0.372	1.262	1.262	0.365	0.15			-0.15
6									0.136
7									0.169
8									0.234
9									0.24
10									0.58

Sample: x1

Samp ID: SED-01G:0-10 Alias: P230324.06

 Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Replicates: 5
Mean: 1.523

SD: 0.13 Tr Mean: 1.523 Trans SD: 0.13

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.257	Statistic:	Student's t
Residual SD:	0.166	Test Residual SD:	0.178	Balanced Design:	Yes
SS:	0.524	Ref. Residual Mean:	0.108	Transformation:	No Transformation
K:	5	Ref. Residual SD:	0.049		
b:	0.702	Deg. of Freedom:	8		
				Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9413	Calculated Value:	1.7977	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimenta	l Alpha Level: 0.05
				Calc	culated Value: 1.1119
Override Option:	N/A				Critical Value: >= 1.860
				Accept Nu	Il Hypothesis: Yes
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	1.214	1.214	1.442	1.442	0.129	0.081			-0.512
2	1.437	1.437	1.389	1.389	0.094	0.134			-0.134
3	0.831	0.831	1.613	1.613	0.512	0.09			-0.129
4	1.713	1.713	1.469	1.469	0.37	0.054			-0.081
5	1.521	1.521	1.703	1.703	0.178	0.18			-0.054
6									0.09
7									0.094
8									0.178
9									0.18
10									0.37

Sample: x1

Samp ID: SED-27G:0-10 Alias: P230324.08

Replicates: 5 Mean: 1.035 SD: 0.434 Tr Mean: 0.3 Trans SD: 0.096

Shapiro-Wilk Results:

Ref Samp: x2

Ref ID: CARR40-23-REF

Alias: P230510.03 Replicates: 5

Mean: 1.523 SD: 0.13 Tr Mean: 0.401 Trans SD: 0.022

Test Results:

Residual Mean:	0	Test Residual Mean:	0.081	Statistic: Approximate t
Residual SD:	0.045	Test Residual SD:	0.03	Balanced Design: Yes
SS:	0.039	Ref. Residual Mean:	0.018	Transformation: Log10 (x + 1.0)
K:	5	Ref. Residual SD:	0.008	
b:	0.192	Deg. of Freedom:	8	
		-		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value:	0.9562	Calculated Value:	4.5396	Alternate: x1 < x2

Levene's Results:

Critical Value: <= 0.842 Critical Value: >= 1.860

Normally Distributed: Yes

Override Option: N/A

Variances Homogeneous: No

Degrees of Freedom: 4 Experimental Alpha Level: 0.05 Calculated Value: 2.3011 Critical Value: >= 2.132 Accept Null Hypothesis: No

Power: Min. Difference for Power:

			•	Trans.	Levene's	Levene's	Mann-	•	Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.602	0.205	1.442	0.388	0.096	0.014			-0.108
2	0.558	0.193	1.389	0.378	0.108	0.023			-0.096
3	1.21	0.344	1.613	0.417	0.044	0.016			-0.023
4	1.542	0.405	1.469	0.393	0.105	0.009			-0.014
5	1.264	0.355	1.703	0.432	0.055	0.03			-0.009
6									0.016
7									0.03
8									0.044
9									0.055
10									0.105

Sample: x1

Samp ID: SED-15G:0-10 Alias: P230324.04

Replicates: 5
Mean: 1.28
SD: 0.574
Tr Mean: 0.346
Trans SD: 0.113

Ref Samp: x2

Ref ID: CARR40-23-REF

Alias: P230510.03 Replicates: 5

Mean: 1.523 SD: 0.13 Tr Mean: 0.401 Trans SD: 0.022

Shapiro-Wilk Results:	Levene's Results:	Test Results:
Residual Mean: 0	Test Residual Mean:	0.094 Statistic: Approximate t
Residual SD: 0.0	753 Test Residual SD:	0.042 Balanced Design: Yes
SS: 0.0	053 Ref. Residual Mean:	0.018 Transformation: Log10 (x + 1.0)
K: 5	Ref. Residual SD:	0.008
b: 0.2	Deg. of Freedom:	8
		Experimental Hypothesis
Alpha Level: 0.0	05 Alpha Level:	0.1 Null: $x1 >= x2$
Calculated Value: 0.9	9679 Calculated Value:	3.9361 Alternate: x1 < x2
Critical Value: <=	= 0.842 Critical Value:	>= 1.860
Normally	Variances	Degrees of Freedom: 4
Distributed: Ye	es Homogeneous:	No Experimental Alpha Level: 0.05
	_	Calculated Value: 1.0672
Override Option: N/A	Α	Critical Value: >= 2.132
		Accept Null Hypothesis: Yes
		Power:
		Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.611	0.207	1.442	0.388	0.139	0.014			-0.139
2	1.471	0.393	1.389	0.378	0.046	0.023			-0.095
3	1.533	0.404	1.613	0.417	0.057	0.016			-0.023
4	2.004	0.478	1.469	0.393	0.131	0.009			-0.014
5	0.783	0.251	1.703	0.432	0.095	0.03			-0.009
6									0.016
7									0.03
8									0.046
9									0.057
10									0.131

Sample: x1

Samp ID: SED-03G:0-10 Alias: P230324.05

Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	0.049	Statistic:	Approximate	t
Residual SD:	0.03	Test Residual SD:	0.027	Balanced Design:	Yes	
SS:	0.017	Ref. Residual Mean:	0.018	Transformation:	Log10 (x + 1	.0)
K:	5	Ref. Residual SD:	0.008			
b:	0.128	Deg. of Freedom:	8			
				Experimen	tal Hypothesis	;
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value:	0.9723	Calculated Value:	2.3655	Alternate:	x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860			
Normally		Variances		Degrees	s of Freedom:	5
Distributed:	Yes	Homogeneous:	No	Experimenta	l Alpha Level:	0.05
				Calc	culated Value:	2.3247
Override Option:	N/A				Critical Value:	>= 2.015
				Accept Nu	II Hypothesis:	No
					Power:	
				Min. Differen	ce for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	1.174	0.337	1.442	0.388	0.003	0.014			-0.076
2	0.812	0.258	1.389	0.378	0.076	0.023			-0.046
3	0.939	0.288	1.613	0.417	0.046	0.016			-0.023
4	1.464	0.392	1.469	0.393	0.058	0.009			-0.014
5	1.482	0.395	1.703	0.432	0.061	0.03			-0.009
6									0.003
7									0.016
8									0.03
9									0.058
10									0.061

Sample: x1

Samp ID: SED-14G:0-10 Alias: P230324.03

Replicates: 5

Mean: 1.139

SD: 0.347

Tr Mean: 1.139

Trans SD: 0.347

Ref Samp: x2

Ref ID: CARR62-23-REF

Alias: P230510.04

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.226	Statistic: Student's t	
Residual SD:	0.205	Test Residual SD:	0.238	Balanced Design: Yes	
SS:	8.0	Ref. Residual Mean:	0.199	Transformation: No Transformat	ion
K:	5	Ref. Residual SD:	0.174		
b:	0.869	Deg. of Freedom:	8		
				Experimental Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 >= x2	
Calculated Value:	0.9441	Calculated Value:	0.1998	Alternate: x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Freedom: 8	
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.	05
				Calculated Value: 2.	5479
Override Option:	N/A			Critical Value: >=	= 1.860
·				Accept Null Hypothesis: N	0
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.697	0.697	1.77	1.77	0.442	0.121			-0.481
2	1.169	1.169	1.803	1.803	0.03	0.154			-0.442
3	1.154	1.154	1.871	1.871	0.015	0.222			-0.122
4	1.658	1.658	1.631	1.631	0.519	0.018			-0.018
5	1.017	1.017	1.168	1.168	0.122	0.481			0.015
6									0.03
7									0.121
8									0.154
9									0.222
10									0.519

Sample: x1

Samp ID: SED-05G:0-10 Alias: P230324.07

 Ref Samp: x2

Ref ID: CARR62-23-REF Alias: P230510.04

Replicates: 5 Mean: 1.649 SD: 0.283

Tr Mean: 1.649 Trans SD: 0.283

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.292	Statistic: Stu	ıdent's t
Residual SD:	0.215	Test Residual SD:	0.179	Balanced Design: Yes	S
SS:	0.874	Ref. Residual Mean:	0.199	Transformation: No	Transformation
K:	5	Ref. Residual SD:	0.174		
b:	0.902	Deg. of Freedom:	8		
				Experimental H	lypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1	>= x2
Calculated Value:	0.9303	Calculated Value:	0.8334	Alternate: x1	< x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of I	Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alp	ha Level: 0.05
				1	ed Value: 1.7925
Override Option:	N/A			Critic	cal Value: >= 1.860
,				Accept Null Hy	pothesis: Yes
					Power:
				Min. Difference for	or Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	1.579	1.579	1.77	1.77	0.305	0.121			-0.481
2	1.274	1.274	1.803	1.803	0	0.154			-0.45
3	0.824	0.824	1.871	1.871	0.45	0.222			-0.281
4	1.699	1.699	1.631	1.631	0.425	0.018			-0.018
5	0.993	0.993	1.168	1.168	0.281	0.481			0
6									0.121
7									0.154
8									0.222
9									0.305
10									0.425

2.3	Neanthes arenaceodentata Reference Toxicant Test Results

Report Date:

22 May-23 16:32 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival

Protocol: All Protocols

Organism: Neanthes arenaceodentata Endpoint: Proportion Survived

Material: Source:

Total Ammonia Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

Quality	Control	Data
Quanty	Control	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2021	Aug	6	14:30	212.3	40.73	1,257	(+)		11-8491-1883	13-1741-3410	
2		Sep	3	14:56	174.6	3.015	0.1028				08-9597-1962	
3			10	14:57	183	11.4	0.3797				20-6870-7441	
4			17	15:48	180.3	8.693	0.2916				04-8745-8681	
5		Oct	5	15:15	231.4	59.81	1.764	(+)			00-2140-6841	
3			12	13:47	201.4	29.88	0.9471				18-2584-6722	
7	1	Nov	12	11:27	203	31,43	0.9923				15-7918-2076	
3	y.c.	Dec	20	11:01	177.1	5.556	0.188				10-2366-5665	
9	2022	Арг	15	15:04	141.8	-29.74	-1.123	(-)			11-6627-6169	
10	117	May	13	15:24	137.2	-34.32	-1.317	(-)			03-9703-0259	
1		Jun	21	15:45	174.9	3.377	0.115				14-3666-1506	
2		Aug	23	14:08	159.1	-12.46	-0.4449				05-7032-3472	
13		Sep	29	15:28	137.1	-34.43	-1.322	(-)			03-3541-8621	
4	11	Oct	25	13:00	172.8	1.264	0.04332				14-4985-7148	
15		Nov	22	18:45	149.4	-22.12	-0.8145				07-0185-4884	
16	1	Dec	14	15:25	214.8	43.28	1.327	(+)			14-3636-0481	
17	2023	Jan	13	13:15	141.2	-30.39	-1.15	(-)			16-2148-2454	
18			13	16:33	159.7	-11.91	-0.4243				05-3063-2004	
19		Apr	5	14:55	130.4	-41.22	-1.621	(-)			18-7983-9604	
20		May	11	15:18	196.6	25.06	0.8042				13-5560-2707	
21			17	15:25	155.1	-16.49	-0.5962				14-8576-5468	

Report Date:

+2s Action Limit: 3.95

22 May-23 16:39 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival Organism: Neanthes arenaceodentata Material: Unionized Ammonia Protocol: All Protocols Endpoint: Proportion Survived Source: Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test **Proportion Survived Endpoint**

+1s Warning Limit:

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2021	Aug	6	14:30	3.47	0.9467	1.423	(+)		17-3928-7243	16-3530-0376	EcoAnalysts
2		Sep	3	14:56	2.643	0.1205	0.2084			00-9699-3848	20-5821-4212	EcoAnalysts
3			10	14:57	3.06	0.5369	0.8617				10-1825-7993	
4			17	15:48	2.883	0.3599	0.5956			02-1817-2962	14-0572-3774	EcoAnalysts
5		Oct	5	15:15	3.097	0.5737	0.9152				08-2878-7495	The state of the s
6			12	13:47	1.696	-0.827	-1.774	(-)			16-5756-9380	The state of the s
7		Nov	12	11:27	2.719	0.1963	0.3347				01-8554-2307	and the state of t
8	4	Dec	20	11:01	3.244	0.7209	1.122	(+)			10-7291-5872	
9	2022	Арг	15	15:04	2.108	-0.4153	-0.8033				03-7517-0691	
10	11	May	13	15:24	1.848	-0.6745	-1.389	(-)		03-9000-1315	01-4943-0350	EcoAnalysts
11		Jun	21	15:45	2.443	-0.08029	-0.1445				15-1612-6650	
12		Aug	23	14:08	3.798	1.276	1.828	(+)			01-5439-6552	
13		Sep	29	15:28	2.077	-0.4457	-0.8681			01-5105-1781	06-0424-1990	EcoAnalysts
14		Oct	25	13:00	2.154	-0.3687	-0.7056				02-8812-8427	
15		Nov	22	18:45	2.416	-0.1065	-0.1927				00-9445-7280	The second secon
16	15	Dec	14	15:25	2.43	-0.09238	-0.1666				04-1997-4862	Control of the State of the State of St
17	2023	Jan	13	13:15	2.265	-0.2582	-0.4822				19-0621-5617	
18			13	16:33	2.497	-0.026	-0.04627				11-6659-5325	
19		Apr	5	14:55	1.792	-0.7306	-1.527	(-)			19-4497-2018	
20		May	11	15:18	3.026	0.5027	0.8115	- 2.5			21-4632-4439	
21			17	15:25	2.482	-0.04118	-0.0735				04-4158-4695	and the second of the second o

CETIS Summary Report

Report Date: Test Code/ID: 22 May-23 16:32 (p 1 of 1) P220819.51 / 09-5506-2214

								lest	ode/ID	5	P220	0819.51 / 09	-5506-221
Reference T	oxicant 96-h Ac	cute Surv	ival Test										oAnalysts
Batch ID: Start Date: Ending Date Test Length:	09-6886-3005 17 May-23 15 : 21 May-23 13 : 94h	:25 :48	Test Type: Protocol: Species: Taxon:	Survival PSEP (1995) Neanthes aren Polychaeta	aceodentata			Dilt Brit	alyst: uent: ne: urce:	Lab	risa Seibert oratory Seav Applicable uatic Toxicolo		Age;
Sample ID:	17-4036-7086	E e	Code:	P220819.51				Pro	ject:	Ref	erence Toxic	ant	
Sample Date	: 19 Aug-22		Material:	Total Ammonia	1				irce:		erence Toxic		
Receipt Date	: 19 Aug-22	19	CAS (PC):						tion:		20819.51	ant.	
Sample Age:	: 271d 15h	-	Client:	Internal Lab					7.4		11/07/67		
Multiple Con	nparison Sumn	nary			*								
Analysis ID	Endpoint		Comp	oarison Method	i.		1	NOEL	LOE	L	TOEL	PMSD	
00-4239-2449	Proportion Su	rvived	Fishe	r Exact Test				130	185		155.1		
Point Estima	ite Summary												-
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/l		95% LCL	95% UCL	
	Proportion Su	rvived		nial/Graphical	-		*	EC50	155.		130	185	1
Proportion S	Survived Summ	anı						2000	100.		100	103	
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Man	044	-5.5	CtdD	O1 /0/	
0	D	3	1.000		1.0000	Min 1,0000	-	Max 1.0000	Std I	_	Std Dev	CV%	%Effect
69.4		3	1.000	7	1.0000	1.0000		1.0000	0.00		0.0000	0.00%	0.00%
130		3	1.000		1.0000	1.0000		1.0000	0.000		0.0000	0.00%	0.00%
185		3	0.000		0.0000	0.0000		0.0000	0.000		0.0000		100.00%
294		3	0.000	00,000,000	0.0000	0.0000		0.0000	0.000		0.0000		100.00%
451		3	0.000		0.0000	0.0000		0.0000	0.000		0.0000	-	100.00%
Proportion S	urvived Detail							MD	5: 965	3D55	DAB0D98FD	DFACA78C0	947AC83
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3								1.17.17.17.10.00	
0	D	1,0000	1.000										
69.4		1.0000	1.000	0 1.0000									
130		1.0000											
185		0.0000											
294		0.0000											
451		0.0000											
Proportion S	urvived Binom	ials										_	
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
0	D	10/10	10/10				_			-			
69.4	3	10/10	10/10										
130		10/10	10/10	10/10									
185		0/10	0/10	0/10									
294		0/10	0/10	0/10									
13.		0/10	0/10	UTIO									

0/10

0/10

0/10

451

CETIS Test Data Worksheet

Start Date:

End Date:

Report Date: Test Code/ID:

22 May-23 16:32 (p 1 of 1) P220819.51 / 09-5506-2214

EcoAnalysts

Reference Toxicant 96-h Acute Survival Test

17 May-23 15:25

Species: Neanthes arenaceodentata

Sample Code: P220819.51 Sample Source: Reference Toxicant

21 May-23 13:48 Protocol: PSEP (1995) Sample Date: 19 Aug-22

Material: Total Ammonia

Sample Station: P220819.51

				# E	# Su	
Conc-mg/L	Code	Rep	Pos	#Exposed	# Survived	Notes
0	D	1	8	10	10	
0	D	2	3	10	10	
0	D	3	13	10	10	
69.4		1	6	10	10	
69.4		2	17	10	10	
69.4		3	2	10	10	
130		1	14	10	10	
130		2	11	10	10	
130		3	10	10	10	
185		1	7	10	0	
185		2	1	10	0	
185		3	12	- 10	0	
294		1	9	10	0	
294		2	16	10	0	
294		3	4	10	0	
451		1	5	10	0	
451		2	18	10	0	
451		3	15	10	0	

CETIS Summary Report

Report Date: Test Code/ID: 22 May-23 16:39 (p 1 of 1) P220819.51UIA / 00-3123-8899

								Test C	ode/ID	:	P220819	5.51UIA / 00	-3123-8899
Reference To	xicant 96-h Ac	ute Survi	val Test									Ec	oAnalysts
Batch ID:	09-6886-3005		Test Type:	Survival				Ana	lyst:	Julia	a Levengood		
Start Date:	17 May-23 15:		Protocol:	PSEP (1995)				Dile	ent:	Lab	oratory Seav	vater	
	21 May-23 13:	48 5	Species:	Neanthes aren	aceodentata			Brit	ne:	Not	Applicable		
Test Length:	94h		Taxon:	Polychaeta				Sou	irce:	Aqu	atic Toxicolo	gy Support	Age:
Sample ID:	02-5299-8094		Code:	P220819.51UI	A			Pro	ject:	Refe	erence Toxic	ant	
Sample Date:			Material:	Unionized Amn	nonia			Sou	irce:	Refe	erence Toxic	ant	
Receipt Date:			CAS (PC):					Sta	tion:	P22	0819.51UIA		
Sample Age:	271d 15h	(Client:	Internal Lab									
Multiple Com	parison Summ	nary											
Analysis ID	Endpoint		Comp	oarison Method			1	NOEL	LOE	L	TOEL	PMSD	
04-7169-2923	Proportion Sur	rvived	Fishe	r Exact Test				2.357	2.61	3	2.482	-	17
Point Estimat	te Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/	L	95% LCL	95% UCL	
04-4158-4695	Proportion Sur	rvived	Binon	nial/Graphical				EC50	2.48		2.357	2.613	. 1
Proportion S	urvived Summ	ary					-						
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std	Err	Std Dev	CV%	%Effect
0	D	3	1.000		1.0000	1.0000		1.0000	0.00	200	0.0000	0.00%	0.00%
1.764		3	1.000		1.0000	1.0000		1.0000	0.00	00	0.0000	0.00%	0.00%
2.357		3	1.000		1.0000	1.0000		1.0000	0.00		0.0000	0.00%	0.00%
2.613		3	0.000	8 F 35 5 5 5 5 1	0.0000	0.0000		0.0000	0.00		0.0000		100.00%
3.02		3	0.000		0.0000	0.0000		0.0000	0.00		0.0000		100.00%
3.688	7.75.777.0	3	0.000	0.0000	0.0000	0.0000		0.0000	0.00	00	0.0000	344	100.00%
Proportion S	urvived Detail							ME	5: 484	9E37	9B8690C2C	32EDFE370	44689F9
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
0	D	1.0000	1.000	0 1.0000									
1.764		1.0000	1.000	0 1.0000									
2.357		1.0000	1.000	0 1.0000									
2.613		0.0000	0.000	0.0000									
3.02		0.0000	0.000	0.0000									
3.688		0.0000	0.000	0.0000									
Proportion S	urvived Binom	ials											
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
0	D	10/10	10/10	10/10									
1.764		10/10	10/10	10/10									
2.357		10/10	10/10	10/10									
2.613		0/10	0/10	0/10									
3.02		0/10	0/10	0/10									
1 T T			5,10	- 10									

3.688

0/10

0/10

CETIS Test Data Worksheet

Start Date:

End Date:

Report Date:

22 May-23 16:39 (p 1 of 1)

EcoAnalysts

Test Code/ID:

P220819.51UIA / 00-3123-8899

Reference Toxicant 96-h Acute Survival Test

17 May-23 15:25 21 May-23 13:48

Species: Neanthes arenaceodentata

Protocol: PSEP (1995)

Sample Code: P220819.51UIA

Sample Source: Reference Toxicant

ample Da	te: 19/	Aug-22		Material: Unionized Ammonia		Sample Station: P220819.51UIA
Conc-mg/L	Code	Rep	Pos	#Exposed	#Survived	Notes
() D	1	17	10	10	
() D	2	10	10	10	
() D	3	4	10	10	
1.764	l I	1	12	10	10	
1.764	1	2	6	10	10	
1.764		3	9	10	10	
2.357		1	14	10	10	
2.357		2	5	10	10	
2.357		3	18	10	10	
2.613	3	1	15	10	0	
2.613	3	2	16	10	0	
2.613	3	3	1	10	0	
3.02	2	1	11	10	0	
3.02	2	2	13	10	0	
3.02	2	3	2	10	0	
3.688	3	1	3	10	0	
3.688	3	2	7	10	0	
3.688	3	3	8	10	0	

Un-ionized Ammonia Calculator

CLIENT:	Leon Environmental	Date of Test:	May 17, 2023
PROJECT:	Port of Friday Harbor	Test Type:	Neanthes arenaceodentata
COMMENTS:	P220819.51		

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

lonic str	ength:pKa
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34

Sample	Mod	NH3T (mg/L)	salinity (ppt)	pН	temp (C)	temp (K)	pKa ^s	NH ₃ U (mg/l
Target / Sample Name		Actual	Actual	Actual	Actual	Calculated	Calculated	Calculated
Example 3.5		2.000	10.0	7.5	5.0	278.15	9.2520	0.008
								11
50		69.4	28	7.8	20.9	294.05	9.2555	1.764
100		130	28	7.7	20.9	294.05	9.2555	2.357
200		185	29	7.5	20.9	294.05	9.2557	2.613
300		294	29	7.4	20.9	294.05	9.2557	3.020
400		451	29	7.3	20.9	294.05	9.2557	3.688
		1	2 2 3					
							1	
								1112
	-							
	-							10.
	1							
	15.						H	17
					11 11 1			
	1.5							
			4				111	
							1 1	
-								
								-
	-							
			1					
	-							
			-					
	-			_	-			
		-						
	-							-
	-	-						-
								+
1								
								_
					-			

Organia.

Ammonia Reference Toxicant Test Survival Data Sheet

Leon Environmental	Project Port of Friday Harbor	SPECIES Neanthes arena	aceodentata	Port Gamble .	PROTOCOL PSEP, SCUM
P220819.51	22E3156086	TEST START DATE 17May23	1525 DM	DAY END DATE 21May23	1348 NL
снамвек size/түре Glass pint jar	EXPOSURE VOLUME 250 mL				

WATER QUALITY DATA

77-59.7	CONDIT	TONE			DC	(mg/L)	TE	EMP(C)	SA	L (ppt)		рН	TECHNICIAN		AMMO	NIA		SULFIDE	S
1.001.4	OUNDII	IONS			>	4.6	2	0 <u>+</u> 1	3	0 ± 2		7 - 9	TECHNICIAN						
CLIENT/ENVIRON ID	CONCE	NTRATION	DAY	REP		D.O.		TEMP.	S	ALINITY		pH	WO TEST DATE	Al	MMONIA		s	ULFIDES	-
CLIENT/ENVIRONID	value	units	DAT	REP	meter	mg/L	meter	°c	meter	ppt	meter	unit	WQ TECH/ DATE	METER	mg/L	Tech	meter	mg/L	Tech
Ref.Toxammonia	0	mg/L	0	Stock	8	7.6	8	21.0	8	28	8	7.9	MS 5/17	10	0.466	NL			
Tres. Fox. difficing		mg/L	4	1	9	6.8	9	21.0	9	28	9	79	NL 5 21						
Ref.Toxammonia 50	50	mg/L	0	Stock	8	7.5	8	20.9	8	28	8	7.8	NS 5/17	10	19.4	NL		1	
rtei. rox. ammonia		mg/L	4	1	9	6.7	9	21.1	9	28	9	7.9	NL 5/2]						
Ref.Toxammonia	ef.Toxammonia 100 n	00 mg/L	0	Stock	В	1.5	8	20.9	8	28	8	7.7	MS 5/17	10	130	NL			
rtci. i ox. ammonia	100	mg/L	4	1	9	6.7	9	21.0	9	29	9	7.8	NL 5/21						
Ref.Toxammonia	200	mg/L	0	Stock	В	7.5	8	20.9	8	29	8	75	MS 5/17	10	185	NL		156	
Troil Tox. diffinionia	200	mg/L	4	1	9	5,5	9	21.0	9	29	9	7.6	NL 5/21						
Ref.Toxammonia	300 mg	ma/l	0	Stock	8	7.5	8	20.9	8	29	8	7A	MS 5/17	b	294	NL		9114	
Tion Toxaminoma		300	300 mg/L	4	1	-													
Def Terraneous is	400		0	Stock	В	7,5	0	20.9	В	29	в	73	MS5/17	10	451	NL		HS.	
Ref.Toxammonia	400	mg/L	4	1	_													TE	

Ammonia Reference Toxicant Test Surviva, Data Sheet

SPECIES

Neanthes arenaceodentata

CLIENT

Leon Environmental

PROJECT

TEST ID

PROJECT MANAGER

LABORATORY

PROTOCOL

Port of Friday Harbor

P208 11. 51

J. Levengood/ M. Seibert

Port Gamble . PSEP, SCUM

			SUF	RVIVA	L & E	BEHA	VIOF	DA	TA												
	OBSERVATION KEY			5/18/23				DAY 2	2		DAY 3	3		DAY 4	1						
N = Normal LOE = Loss of equilibium Q = Quiescent DC = Discoloration NB = No body		L#OF	DATE 5/19/23				DATE 5	5/20/23			5 21 23										
F = Floating on surfa		ORGANISMS			US		9.333	MS		I P	JL		NL NL								
CLIENT/ENVIRON ID	CONC.	REP	INITIAL NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS						
		1	10	10	0	Ν	(0	0	N	10	0	N	10	0	N						
Ref.Tox Ammonia	O mg/L	2	10	10	O	N	(0)	0	N	10	٥	N	10	0	N						
		3	10	10	0	N	0)	0	N	10	0	N	10	0	N						
		1	10	io	0	N	(0)	0	2	10	0	N	10	0	N						
Ref.Tox Ammonia	50 mg/L	2	10	10	0	N	10	0	N	10	0	N	10	0	N						
		3	10	lo	0	N	10	0	N	10	0	N	10	0	N						
	100 mg/L	100 mg/L	100 mg/L	1	10	10	0	N	(0)	0	N	10	0	N	10	0	N				
Ref.Tox Ammonia				100 mg/L	2	10	10	0	N	10	O	N	16	0	N						
		3	0)	10	0	N	10	0	N	10	D.	N	10	0	N						
		1	10	lo	٥	Q	9	1	Q	5	4	Q	0	5	-						
Ref.Tox Ammonia	200 mg/L	2	10	(o	٥	Q	10	0	Q	le	4	Q	0	4	-						
		3	10	10	0	Q	10	0	Q	5	5	Q	0	5	_						
		1	10	10	0	0	0	10	-	-	_	_									
Ref.Tox Ammonia 300 mg/	300 mg/L	2	10	10	0	۵	3	7	0	0	3	-		/							
		3	10	10	0	Q	0	10	_	_	_	_									
		1	10	1/2	95	a	0	5	_												
Ref.Tox Ammonia 400 mg/L	400 mg/L	400 mg/L	2	10	10	0	Q	0	10	_					/						
	3	10	10	0	Q	0	ØJ	-				/	,								

DIE-65/18/23

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P220819.51	
Date Prepared:	5/17/23	
Technician Initials:	mg /	

Neanthes NH₃ RT

Assumptions in Model
Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Date: Measurement:

5/11/2023

8340

Solutions	Volume of stock to reach desired				
Desired Concentration	Volume		ntration		
mg/L	mL	mL stock	to increase		
0.00		FRESH WATER (mL)	SALT WATER (mL)		
50	750		6.74		
100	750	(Cara)	13.49		
200	750	是就是認知的行為	26.98		
300	750	直线 连连线 人名	40.47		
400	750		53.96		
	Desired Concentration mg/L 0.00 50 100 200 300	Desired Concentration Volume mg/L mL O.○○ 50 50 750 100 750 200 750 300 750	Desired Concentration Volume Volume of stock concentration mg/L mL mL stock O.OO FRESH WATER (mL) 50 750 100 750 200 750 300 750		

Odiluted concentration - new value 185 mg/L-1955/17

	1	7	
		12	
	2	15	
	4	16	_
	5	3	
	6	8	
	7	5	
	8	14	
	9	18	
	10	10	-
	11	1	
	12	4	
	13	11	Winds-1
	14	17	
1	15	9	
	16	13	
	17	6	
	18	2	
- 1			

N.a. 143 RT P22 081951

Mytilus galloprovincialis Water-Column Test 3.

3.1 *Mytilus galloprovincialis* Test Data

GENERAL

Client	Leon Environmental			
Project	Port of Friday Harbor			
Project Number	PG1785			
Project Manager	J. Levengood/ M. Seibert			
Date Sample Collected (Oldest Sample)	3/20/2023			
Sample Holding Time	53			
Test Start Date	05/12/23			
Test End Date	05/14/23			
Test Species	Mytilus galloprovincialis			
Organism Supplier	Taylor Shellfish			
Date Organism Acquired	5/1/2023			
Organism Acclimation Time (Days)	11			
Organism Batch	TS050123.01			
Test Type	Larval Sediment Test			
Test Protocol	PSEP 1995			
Regional Protocol	SCUM 2019			
Laboratory Location	Port Gamble			
Test Location	Bath 1			
Sample Treatment	reference sed press sieved 2mm and SED- 11G:0-10 press sieved 2mm			
UV Light Treatment	No			
Resuspension	Yes			
Aeration from test initiation	Yes			
Control Sediment Source (if applicable)	Yaquina Bay, OR			
Water Batch	FSW051223.01			
Test Lighting	14:10 L:D			
Test Chamber	1L glass chamber			
Replicates Per Treatment	5			
Exposure Volume	18g sediment/900 mL seawater			
Test Dissolved Oxygen	> 5			
Test Temperature	16 ± 1			
Test Salinity	28 ± 1			
Test pH	8.25 ± 0.75			

	Test Parameters							
		Min	Max					
	DO:	5						
hest emp	Temp:	15	17					
	Sal:	27	29					
	pH:	7.5	9					

Note: input lowest and highest decimal for temp

TEST START TIME:	15:35
TEST END TIME:	16:13

	CLIENT SAMPLE ID	LAB ID
Control 1	Control	P230510.01
Control 2 (if used) or reference	CARR18-23-REF	P230510.02
3	CARR40-23-REF	P230510.03
4	CARR62-23-REF	P230510.04
5	SED-07G:0-10	P230324.01
6	SED-11G:0-10	P230324.02
7	SED-14G:0-10	P230324.03
8	SED-15G:0-10	P230324.04
9	SED-03G:0-10	P230324.05
10	SED-01G:0-10	P230324.06
11	SED-05G:0-10	P230324.07
12	SED-27G:0-10	P230324.08
13		
14		
15		
16		
17		
18		
19		
20	·	
21		·

6/23/2023 Larval PSEP T.4.xlsx Setup Page 1

Sediment Larval Test

CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	LABORATORY	PROTOCOL	
Leon Environmental	Port of Friday Harbor	PG1785	J. Levengood/ M. Seibert	Port Gamble . Bath 1	PSEP 1995 . SCUM 2019	

TEST ORGANISM SPAWNING DATA

SPECIES			TEST START DATE			
Mytilus galloprovinciali	s		12-May-23			
SUPPLIER			ORGANISM BATCH			
Taylor Shellfish		TS050123.01				
SPAWNING METHOD		INITIAL SPAWNING TIME	FINAL SPAWNING TIME			
Heat Shock		1149	1335			
MALES	FEMALES	SPERM VIABILITY	EGG CONDITION			
2	6	Good	Good			
BEGIN FERTILIZATION	END FERTILIZAT	TION	CONDITION OF EMBRYOS			
1335		1535	Good			

SEDIMENT TREATMENT	T TREATMENT							
reference sed press sieved 2mm	ce sed press sieved 2mm and SED-11G:0-10 press sieved 2mm							
TEST CHAMBERS								
1L glass chamber								
EXPOSURE VOLUME	INITIALS							
18g sediment/900 mL seawater	SZ/MS							
TIME OF SHAKE	INITIALS							
1034	SZ/MS							
TIME OF INITIATION	INITIALS							
15:35	NL/DM/MS							
ROSE BENGAL LOT #	FORMALIN LOT #							
5135	220304-50							

SPECIAL CONDITIONS

UV LIGHT EXPOSURE (YES/NO)	AERATION FROM TEST INITIATION (YES/NO)
No	Yes
RESUSPENSION (YES/NO)	OTHER (EXPLAIN)
Yes	

EMBRYO DENSITY CALCULATIONS

No. of embryos in 1 mL of 100x diluted stock 190.3	
mL of original embryo stock added to each test chamber 1.42	

Sediment Larval Test WQ Data Sheet

CLIENT	PROJECT SPECIES						LOCATION PROTOCOL					
Leon Environmental		Port of Friday Harbor		Mytilus galloprovincialis		Port Gamble / Bath 1		PSEP 1995 , SCUM 2019				
PROJECT MANAGER TES			TEST TYPE		Proiect Number PG1785			TEST START DATE TIME May 12, 2023 15:35	TIME	TEST END DATE	TIME	INITIALS
J. Levengood/ M. Seibert	Larval Sediment Test		May 14, 2023	16:13					NL			
					WATER QUALITY DATA							
	T	1	I				DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН		
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5	15 - 17	27 - 29	7.5 - 9	Resuspension Time	Notes
Control	0	Surr	8	MS	05/12/23	8	8.3	16.8	28	7.9		
Control	1	Surr	8	NL	05/13/23	9	8.0	16.6	28	7.9		
Control	2	Surr	8	NL	05/14/23	8	7.7	17.3	28	7.9	8:30	
CARR18-23-REF	0	Surr	63	MS	05/12/23	8	8.2	16.0	28	7.9		
CARR18-23-REF	1	Surr	63	NL	05/13/23	9	8.2	16.1	28	8.0		
CARR18-23-REF	2	Surr	63	NL	05/14/23	8	8.1	16.2	28	8.0	8:30	
CARR40-23-REF	0	Surr	37	MS	05/12/23	8	8.2	16.7	28	7.9		
CARR40-23-REF	1	Surr	37	NL	05/13/23	9	7.3	16.9	28	8.0		
CARR40-23-REF	2	Surr	37	NL	05/14/23	8	7.7	17.1	28	7.9	8:30	
CARR62-23-REF	0	Surr	46	MS	05/12/23	8	8.1	16.9	28	7.9		
CARR62-23-REF	1	Surr	46	NL	05/13/23	9	7.7	17.0	28	8.0		
CARR62-23-REF	2	Surr	46	NL	05/14/23	8	8.0	17.1	28	7.9	8:30	
SED-07G:0-10	0	Surr	21	MS	05/12/23	8	8.1	15.8	28	7.9		
SED-07G:0-10	1	Surr	21	NL	05/13/23	9	8.2	16.0	28	8.0		
SED-07G:0-10	2	Surr	21	NL	05/14/23	8	7.8	16.0	28	7.9	8:30	

Sediment Larval Test WQ Data Sheet

CLIENT		PROJECT			SPECIES			LOCATION		PROTOCOL		
Leon Environmental		Port of Fri	day Harbor		Mytilus gallo	provincialis		Port Gamble / Bath	1	PSEP 1995, SCUM	2019	
PROJECT MANAGER		TEST TYPE			Proiect Num	ber		TEST START DATE	TIME	TEST END DATE	TIME	INITIALS
J. Levengood/ M. Seibert		Larval Se	ediment T	est	PG1785			May 12, 2023	15:35	May 14, 2023	16:13	NL
								WATER QUALITY DATA				
	ı	T	T				DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH		
SAMPLE ID	DAY	REP	JAR#	TECHNICIAN	Date	Meter	> 5	15 - 17	27 - 29	7.5 - 9	Resuspension Time	Notes
SED-11G:0-10	0	Surr	11	MS	05/12/23	8	8.1	16.9	28	7.9		
SED-11G:0-10	1	Surr	11	NL	05/13/23	9	6.3	16.4	28	7.9		
SED-11G:0-10	2	Surr	11	NL	05/14/23	8	7.0	17.0	28	7.8	8:30	
SED-14G:0-10	0	Surr	38	MS	05/12/23	8	8.1	16.0	28	7.9		
SED-14G:0-10	1	Surr	38	NL	05/13/23	9	8.0	16.2	28	8.0		
SED-14G:0-10	2	Surr	38	NL	05/14/23	8	7.8	16.7	28	7.9	8:30	
SED-15G:0-10	0	Surr	59	MS	05/12/23	8	8.1	15.9	28	7.9		
SED-15G:0-10	1	Surr	59	NL	05/13/23	9	7.8	16.2	28	8.0		
SED-15G:0-10	2	Surr	59	NL	05/14/23	8	7.9	16.3	28	7.9	8:30	
SED-03G:0-10	0	Surr	23	MS	05/12/23	8	8.1	16.0	28	7.9		
SED-03G:0-10	1	Surr	23	NL	05/13/23	9	8.1	16.1	28	8.0		
SED-03G:0-10	2	Surr	23	NL	05/14/23	8	8.0	16.3	28	7.9	8:30	
SED-01G:0-10	0	Surr	53	MS	05/12/23	8	8.2	17.0	28	7.9		
SED-01G:0-10	1	Surr	53	NL	05/13/23	9	6.5	17.2	28	7.9		
SED-01G:0-10	2	Surr	53	NL	05/14/23	8	7.9	17.4	28	7.9	8:30	
SED-05G:0-10	0	Surr	24	MS	05/12/23	8	8.1	15.8	28	7.9		
SED-05G:0-10	1	Surr	24	NL	05/13/23	9	8.1	16.1	28	8.0		
SED-05G:0-10	2	Surr	24	NL	05/14/23	8	8.0	16.2	28	7.9	8:30	
SED-27G:0-10	0	Surr	52	MS	05/12/23	8	8.1	16.1	28	7.9		
SED-27G:0-10	1	Surr	52	NL	05/13/23	9	7.9	16.7	28	8.0		
SED-27G:0-10	2	Surr	52	NL	05/14/23	8	8.0	16.2	28	8.0	8:30	

CLIENT			PROJECT				PROJECT NUMBER
Leon Environmental			Port of Friday Har	bor			PG1785
PROJECT MANAGER			TEST TYPE				SPECIES
J. Levengood/ M. Seibe	rt		Larval Sediment T	est			Mytilus galloprovincialis
			LARVAL ENDPO	DINT DATA			
Sample ID	Rep	# Normal	# Abnormal	Total	Date	Tech	Comments / QA Counts
Stocking Density	1			304	05/15/23	MK	
Stocking Density	2			275	05/15/23	MK	
Stocking Density	3			284	05/15/23	MK	
Stocking Density	4			256	05/15/23	MK	
Stocking Density	5			276	05/15/23	MK	
Control	1	269	21	290	05/15/23	MK	
Control	2	282	2	284	05/15/23	MK	
Control	3	295	2	297	05/15/23	MK	
Control	4	293	2	295	05/15/23	MK	
Control	5	281	3	284	05/15/23	MK	QA: N:273, A:2, %diff: 0.33 SZ
CARR18-23-REF	1	219	6	225	05/15/23	MK	
CARR18-23-REF	2	209	1	210	05/15/23	MK	
CARR18-23-REF	3	173	1	174	05/15/23	MK	
CARR18-23-REF	4	171	4	175	05/15/23	MK	
CARR18-23-REF	5	232	1	233	05/15/23	MK	
CARR40-23-REF	1	226	2	228	05/15/23	MK	
CARR40-23-REF	2	197	0	197	05/15/23	MK	
CARR40-23-REF	3	182	4	186	05/15/23	MK	QA: N:176, A:5, %diff: 0.61 SZ
CARR40-23-REF	4	225	3	228	05/15/23	MK	
CARR40-23-REF	5	250	2	252	05/15/23	MK	
CARR62-23-REF	1	187	2	189	05/15/23	MK	
CARR62-23-REF	2	180	1	181	05/15/23	MK	
CARR62-23-REF	3	222	2	224	05/15/23	MK	
CARR62-23-REF	4	237	1	238	05/15/23	MK	
CARR62-23-REF	5	172	0	172	05/15/23	MK	
SED-07G:0-10	1	231	1	232	05/15/23	MK	
SED-07G:0-10	2	211	9	220	05/15/23	МК	
SED-07G:0-10	3	226	10	236	05/15/23	МК	
SED-07G:0-10	4	199	2	201	05/15/23	МК	QA: N:198, A:1, %diff: 0.49 SZ
SED-07G:0-10	5	216	3	219	05/15/23	МК	
SED-11G:0-10	1	211	0	211	05/15/23	MK	
SED-11G:0-10	2	188	4	192	05/15/23	MK	
SED-11G:0-10	3	194	1	195	05/15/23	MK	
SED-11G:0-10	4	269	2	271	05/15/23	MK	
SED-11G:0-10	5	259	0	259	05/15/23	MK	

CLIENT			PROJECT				PROJECT NUMBER
Leon Environmental			Port of Friday Harl	bor			PG1785
PROJECT MANAGER			TEST TYPE				SPECIES
J. Levengood/ M. Seibe	rt		Larval Sediment To	est			Mytilus galloprovincialis
			LARVAL ENDPO	DINT DATA			·
Sample ID	Rep	# Normal	# Abnormal	Total	Date	Tech	Comments / QA Counts
SED-14G:0-10	1	211	12	223	05/15/23	MK	
SED-14G:0-10	2	209	4	213	05/15/23	MK	
SED-14G:0-10	3	232	3	235	05/15/23	MK	
SED-14G:0-10	4	222	3	225	05/15/23	MK	
SED-14G:0-10	5	190	3	193	05/15/23	MK	QA: N:186, A:5, %diff: 1.1 SZ
SED-15G:0-10	1	215	13	228	05/15/23	MK	
SED-15G:0-10	2	249	1	250	05/15/23	MK	
SED-15G:0-10	3	184	2	186	05/15/23	MK	
SED-15G:0-10	4	234	2	236	05/15/23	MK	
SED-15G:0-10	5	235	2	237	05/15/23	MK	
SED-03G:0-10	1	224	4	228	05/15/23	MK	QA: N:223, A:4, %diff: 0.01 SZ
SED-03G:0-10	2	242	9	251	05/16/23	MK	
SED-03G:0-10	3	229	4	233	05/16/23	MK	
SED-03G:0-10	4	238	6	244	05/16/23	MK	
SED-03G:0-10	5	209	5	214	05/16/23	MK	
SED-01G:0-10	1	239	4	243	05/15/23	MK	
SED-01G:0-10	2	229	6	235	05/16/23	MK	
SED-01G:0-10	3	231	4	235	05/16/23	MK	
SED-01G:0-10	4	244	9	253	05/16/23	MK	
SED-01G:0-10	5	204	4	208	05/16/23	MK	
SED-05G:0-10	1	247	2	249	05/15/23	MK	
SED-05G:0-10	2	224	5	229	05/16/23	MK	
SED-05G:0-10	3	226	6	232	05/16/23	MK	
SED-05G:0-10	4	215	12	227	05/16/23	MK	
SED-05G:0-10	5	205	2	207	05/16/23	MK	QA: N:201, A:6, %diff: 1.9 SZ
SED-27G:0-10	1	271	0	271	05/15/23	MK	
SED-27G:0-10	2	183	10	193	05/16/23	MK	
SED-27G:0-10	3	220	5	225	05/16/23	MK	
SED-27G:0-10	4	237	2	239	05/16/23	MK	
SED-27G:0-10	5	186	3	189	05/16/23	MK	

CLIENT					PROJECT			PROJECT NUMB	FR			
Leon Environmental					Port of Friday Harbor			PG1785	LIN			
PROJECT MANAGER					TEST TYPE			SPECIES				
J. Levengood/ M. Seibe	ert				Larval Sediment Test			Mytilus gallopro	vincialis			
					ENDROINT DATA							
				LARVAL EI	NDPOINT DATA							
Sample ID	Rep	Normal	Abnormal	Total	Mean # Normal	SD	Average Control Normal Survival (Nc/I)	# Normal Relative to Control	Average # Normal Relative to Control	Average # Normal Relative to Reference (1)		
Stocking Density	1			304								
Stocking Density	2			275								
Stocking Density	3			284								
Stocking Density	4			256			_					
Stocking Density	5			276	279	17.3						
Control	1	269	21	290								
Control	2	282	2	284								
Control	3	295	2	297								
Control	4	293	2	295								
Control	5	281	3	284	284.0	10.5	1.02			1.41		
CARR18-23-REF	1	219	6	225				0.77				
CARR18-23-REF	2	209	1	210				0.74				
CARR18-23-REF	3	173	1	174				0.61				
CARR18-23-REF	4	171	4	175				0.60				
CARR18-23-REF	5	232	1	233	200.8	27.5	0.72	0.82	0.71			
CARR40-23-REF	1	226	2	228				0.80		•		
CARR40-23-REF	2	197	0	197				0.69				
CARR40-23-REF	3	182	4	186				0.64				
CARR40-23-REF	4	225	3	228				0.79				
CARR40-23-REF	5	250	2	252	216.0	26.7		0.88	0.76	1.08		
CARR62-23-REF	1	187	2	189			=	0.66				
CARR62-23-REF	2	180	1	181	-			0.63				
CARR62-23-REF	3	222	2	224				0.78				
CARR62-23-REF	4	237	1	238				0.83				
CARR62-23-REF	5	172	0	172	199.6	28.3		0.61	0.70	0.99		
SED-07G:0-10	1	231	1	232				0.81		•		
SED-07G:0-10	2	211	9	220				0.74				
SED-07G:0-10	3	226	10	236				0.80				
SED-07G:0-10	4	199	2	201				0.70				
SED-07G:0-10	5	216	3	219	216.6	12.6		0.76	0.76	1.08		
SED-11G:0-10	1	211	0	211				0.74				
SED-11G:0-10	2	188	4	192				0.66				
SED-11G:0-10	3	194	1	195				0.68				
SED-11G:0-10	4	269	2	271				0.95				
SED-11G:0-10	5	259	0	259	224.2	37.5		0.91	0.79	1.12		

CLIENT					PROJECT			PROJECT NUMB	ER				
Leon Environmental					Port of Friday Harbor			PG1785					
PROIFCT MANAGER					TEST TYPE			SPECIES					
J. Levengood/ M. Seib	ert				Larval Sediment Test			Mytilus gallopro	vincialis				
				LARVAL EI	NDPOINT DATA								
Sample ID	Rep	Normal	Abnormal	Total	Mean # Normal	SD	Average Control Normal Survival (Nc/I)	# Normal Relative to Control	Average # Normal Relative to Control	Average # Normal Relative to Reference (1)			
SED-14G:0-10	1	211	12	223		•	_	0.74		•			
SED-14G:0-10	2	209	4	213				0.74					
SED-14G:0-10	3	232	3	235				0.82					
SED-14G:0-10	4	222	3	225				0.78					
SED-14G:0-10	5	190	3	193	212.8	15.7		0.67	0.75	1.06			
SED-15G:0-10	1	215	13	228			_	0.76					
SED-15G:0-10	2	249	1	250				0.88					
SED-15G:0-10	3	184	2	186				0.65					
SED-15G:0-10	4	234	2	236				0.82					
SED-15G:0-10	5	235	2	237	223.4	25.1		0.83	0.79	1.11			
SED-03G:0-10	1	224	4	228			_	0.79					
SED-03G:0-10	2	242	9	251				0.85					
SED-03G:0-10	3	229	4	233				0.81					
SED-03G:0-10	4	238	6	244				0.84					
SED-03G:0-10	5	209	5	214	228.4	13.0		0.74	0.80	1.14			
SED-01G:0-10	1	239	4	243			_	0.84					
SED-01G:0-10	2	229	6	235				0.81					
SED-01G:0-10	3	231	4	235				0.81					
SED-01G:0-10	4	244	9	253				0.86					
SED-01G:0-10	5	204	4	208	229.4	15.4		0.72	0.81	1.14			
SED-05G:0-10	1	247	2	249				0.87					
SED-05G:0-10	2	224	5	229				0.79					
SED-05G:0-10	3	226	6	232				0.80					
SED-05G:0-10	4	215	12	227				0.76					
SED-05G:0-10	5	205	2	207	223.4	15.6		0.72	0.79	1.11			
SED-27G:0-10	1	271	0	271				0.95					
SED-27G:0-10	2	183	10	193				0.64					
SED-27G:0-10	3	220	5	225				0.77					
SED-27G:0-10	4	237	2	239			,	0.83					
SED-27G:0-10	5	186	3	189	219.4	36.8		0.65	0.77	1.09			

Sediment Larval Test Day 0 Ammonia

CLIENT			PROJECT				PROJECT NUMBER				SPECIES							
Leon Environmental		20.0	Port of Frida	•	L .		PG1785				Mytilus galloprovincialis							
Calibration Standards T	•		Date:	5/12/2023			Ammonia Meter:	10			Sulfide Meter:	1						
NH ₃ sample tempe	erature should be	within +/- 1°	of standard	temp at time	and date of	analysis <i>ıvıeasurea</i>			caiculatea									
						Total			Total									
				NH ₃		Dissolved	Sulfide		Dissolved	Test							Undissociated	
		Overlying/	Total NH 3	sample	WQ/Temp	Sulfide	Sample	Sulfide	Sulfide	salinity		Test temp			Unionized		Sulfide	
Sample	Day	Porewater	(mg/L)	temp	Meter	(μg/L as S)	Volume (ml)	Multiplier	(μg/L as S)	(ppt)	Test pH	(C)	Temp (K)	pKa ⁵	NH ₃ (mg/L)	H , S pKa*	(µg/L as H , S)	
Sourced	Sourced		Record	Record	Record	Record	Record	Record	Calculated	Sourced	Sourced	Sourced	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
Control	0	Overlying	0.00	20.5	T17	ND	10	1	ND	28	7.9	16.8	289.95	9.26	0.000	6.65	ND	
CARR18-23-REF	0	Overlying	0.00	20.5	T17	ND	10	1	ND	28	7.9	16.0	289.15	9.26	0.000	6.66	ND	
CARR40-23-REF	0	Overlying	0.00	21.6	T17	4	10	1	4	28	7.9	16.7	289.85	9.26	0.000	6.65	0.294	
CARR62-23-REF	0	Overlying	0.00	21.5	T17	ND	10	1	ND	28	7.9	16.9	290.05	9.26	0.000	6.65	ND	
SED-07G:0-10	0	Overlying	0.0162	20.3	T17	10	10	1	10	28	7.9	15.8	288.95	9.26	0.000	6.67	0.760	
SED-11G:0-10	0	Overlying	0.0614	20.4	T17	15	10	1	15	28	7.9	16.9	290.05	9.26	0.001	6.65	1.096	
SED-14G:0-10	0	Overlying	0.00	22.8	T17	8	10	1	8	28	7.9	16.0	289.15	9.26	0.000	6.66	0.604	
SED-15G:0-10	0	Overlying	0.00	21.3	T17	ND	10	1	ND	28	7.9	15.9	289.05	9.26	0.000	6.66	ND	
SED-03G:0-10	0	Overlying	0.00	20.5	T17	6	10	1	6	28	7.9	16.0	289.15	9.26	0.000	6.66	0.453	
SED-01G:0-10	0	Overlying	0.00	20.3	T17	5	10	1	5	28	7.9	17.0	290.15	9.26	0.000	6.64	0.364	
SED-05G:0-10	0	Overlying	0.00	21.6	T17	13	10	1	13	28	7.9	15.8	288.95	9.26	0.000	6.67	0.988	
SED-27G:0-10	0	Overlying	0.00	21.1	T17	ND	10	1	ND	28	7.9	16.1	289.25	9.26	0.000	6.66	ND	

Sediment Larval Test Day 2 Ammonia

CLIENT			PROJECT				PROJECT NUMBER				SPECIES							
Leon Environmental			Port of Frida	ay Harbor			PG1785				Mytilus gall	oprovincialis						
Calibration Standards 1	emperature:	21.1	Date:	5/14/2023	Tech:	NL/LG	Ammonia Meter:	10			Sulfide Meter:	1						
NH ₃ sample tempe	rature should be v	within +/- 1°C	of standard te	mp at time a	nd date of an	alysis	•											
						ivieasurea			Caiculatea									
						Total			Total									
				NH ₃		Dissolved	Sulfide		Dissolved	Test							Undissociated	
		Overlying/	Total NH 3	sample	WQ/Temp	Sulfide	Sample	Sulfide	Sulfide	salinity		Test temp			Unionized		Sulfide	
Sample	Day	Porewater	(mg/L)	temp	Meter	(μg/L as S)	Volume (ml)	Multiplier	(μg/L as S)	(ppt)	Test pH	(C)	Temp (K)	pKa ^s	NH ₃ (mg/L)	H ₂ S pKa*	$(\mu g/L as H_2 S)$	
Sourced	Sourced		Record	Record	Record	Record	Record	Record	Calculated	Sourced	Sourced	Sourced	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
Control	2	Overlying	0.00	20.1	T17	12	10	1	12	28	7.9	17.3	290.45	9.26	0.000	6.64	0.864	
CARR18-23-REF	2	Overlying	0.00	20.1	T17	ND	10	1	ND	28	8.0	16.2	289.35	9.26	0.000	6.66	ND	
CARR40-23-REF	2	Overlying	0.00	20.1	T17	ND	10	1	ND	28	7.9	17.1	290.25	9.26	0.000	6.64	ND	
CARR62-23-REF	2	Overlying	0.00	20.2	T17	1	10	1	1	28	7.9	17.1	290.25	9.26	0.000	6.64	0.073	
SED-07G:0-10	2	Overlying	0.00	20.1	T17	2	10	1	2	28	7.9	16.0	289.15	9.26	0.000	6.66	0.151	
SED-11G:0-10	2	Overlying	0.00	20.1	T17	ND	10	1	ND	28	7.8	17.0	290.15	9.26	0.000	6.64	ND	
SED-14G:0-10	2	Overlying	0.00	20.1	T17	ND	10	1	ND	28	7.9	16.7	289.85	9.26	0.000	6.65	ND	
SED-15G:0-10	2	Overlying	0.00	20.2	T17	11	10	1	11	28	7.9	16.3	289.45	9.26	0.000	6.66	0.821	
SED-03G:0-10	2	Overlying	0.00	20.1	T17	51	10	1	51	28	7.9	16.3	289.45	9.26	0.000	6.66	3.806	
SED-01G:0-10	2	Overlying	0.00	20.1	T17	ND	10	1	ND	28	7.9	17.4	290.55	9.26	0.000	6.64	ND	
SED-05G:0-10	2	Overlying	0.00	20.1	T17	ND	10	1	ND	28	7.9	16.2	289.35	9.26	0.000	6.66	ND	
SED-27G:0-10	2	Overlying	0.00	20.1	T17	0	10	1	0	28	8.0	16.2	289.35	9.26	0.000	6.66	0.000	

Mytilus galloprovincialis Statistical Results 3.2

Sample: x1

Samp ID: SED-07G Alias: P230324.01

Replicates: 5
Mean: 216.6
SD: 12.621
Tr Mean: 216.6
Trans SD: 12.621

Ref Samp: x2

Ref ID: CARR18-23-REF Alias: P230510.02

Min. Difference for Power:

Replicates: 5
 Mean: 200.8
 SD: 27.535
 Tr Mean: 200.8
 Trans SD: 27.535

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	9.52	Statistic:	Approximate t
Residual SD:	13.898	Test Residual SD:	6.783	Balanced Design:	Yes
SS:	3670	Ref. Residual Mean:	23.04	Transformation:	No Transformation
K:	5	Ref. Residual SD:	9.729		
b:	59.185	Deg. of Freedom:	8		
		-		Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	-	x1 >= x2
Calculated Value:	0.9545	Calculated Value:	2.549	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 6
Distributed:	Yes	Homogeneous:	No		l Alpha Level: 0.1
2.000.00.	. 55	lgeegeege.			culated Value: -1.1664
Override Option:	N/A				Critical Value: >= 1.440
					Il Hypothesis: Yes
					Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	231	231	219	219	14.4	18.2			-29.8
2	211	211	209	209	5.6	8.2			-27.8
3	226	226	173	173	9.4	27.8			-17.6
4	199	199	171	171	17.6	29.8			-5.6
5	216	216	232	232	0.6	31.2			-0.6
6									8.2
7									9.4
8									14.4
9									18.2
10									31.2

Sample: x1

Samp ID: SED-11G Alias: P230324.02

Replicates: 5
Mean: 224.2
SD: 37.466
Tr Mean: 224.2
Trans SD: 37.466

Ref Samp: x2

Ref ID: CARR18-23-REF Alias: P230510.02

Replicates: 5
 Mean: 200.8
 SD: 27.535
 Tr Mean: 200.8
 Trans SD: 27.535

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	31.84	Statistic:	Student's t
Residual SD:	21.334	Test Residual SD:	11.682	Balanced Design:	Yes
SS:	8647.6	Ref. Residual Mean:	23.04	Transformation:	No Transformation
K:	5	Ref. Residual SD:	9.729		
b:	87.422	Deg. of Freedom:	8		
				Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.8838	Calculated Value:	1.2944	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimenta	l Alpha Level: 0.1
				Calc	culated Value: -1.1253
Override Option:	N/A				Critical Value: >= 1.397
				Accept Nu	Il Hypothesis: Yes
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	211	211	219	219	13.2	18.2			-36.2
2	188	188	209	209	36.2	8.2			-30.2
3	194	194	173	173	30.2	27.8			-29.8
4	269	269	171	171	44.8	29.8			-27.8
5	259	259	232	232	34.8	31.2			-13.2
6									8.2
7									18.2
8									31.2
9									34.8
10									44.8

Sample: x1

Samp ID: SED-01G:0-10 Alias: P230324.06

Replicates: 5
Mean: 229.4
SD: 15.437
Tr Mean: 229.4
Trans SD: 15.437

Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Replicates: 5
 Mean: 216
 SD: 26.711
 Tr Mean: 216
 Trans SD: 26.711

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	10.32	Statistic:	Student's t
Residual SD:	14.156	Test Residual SD:	10.255	Balanced Design:	Yes
SS:	3807.2	Ref. Residual Mean:	21.2	Transformation:	No Transformation
K:	5	Ref. Residual SD:	12.317		
b:	59.917	Deg. of Freedom:	8		
		_		Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.943	Calculated Value:	1.5179	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimenta	l Alpha Level: 0.1
				Cald	culated Value: -0.9712
Override Option:	N/A				Critical Value: >= 1.397
·				Accept Nu	Il Hypothesis: Yes
					Power:
				Min. Differen	ce for Power:

Wilk
Residuals
-34
-25.4
-19
-0.4
1.6
9
9.6
10
14.6
34

Sample: x1

Samp ID: SED-27G Alias: P230324.08

Replicates: 5
Mean: 219.4
SD: 36.787
Tr Mean: 219.4
Trans SD: 36.787

Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Min. Difference for Power:

Replicates: 5
Mean: 216

SD: 26.711 Tr Mean: 216 Trans SD: 26.711

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	27.92	Statistic:	Student's t	
Residual SD:	20.859	Test Residual SD:	19.465	Balanced Design:	Yes	
SS:	8267.2	Ref. Residual Mean:	21.2	Transformation:	No Transform	ation
K:	5	Ref. Residual SD:	12.317			
b:	87.686	Deg. of Freedom:	8			
		_		Experimen	tal Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value:	0.93	Calculated Value:	0.6523	Alternate:	x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860			
Normally		Variances		Degrees	s of Freedom:	8
Distributed:	Yes	Homogeneous:	Yes	1	l Alpha Level:	
				•	ulated Value:	
Override Option:	N/A				Critical Value:	>= 1.397
'				Accept Nu	II Hypothesis:	Yes
					Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	271	271	226	226	51.6	10			-36.4
2	183	183	197	197	36.4	19			-34
3	220	220	182	182	0.6	34			-33.4
4	237	237	225	225	17.6	9			-19
5	186	186	250	250	33.4	34			0.6
6									9
7									10
8									17.6
9									34
10									51.6

Sample: x1

Samp ID: SED-15G Alias: P230324.04

Replicates: 5
Mean: 223.4
SD: 25.126
Tr Mean: 223.4
Trans SD: 25.126

Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Replicates: 5
Mean: 216

SD: 26.711 Tr Mean: 216 Trans SD: 26.711

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	19.12	Statistic:	Student's t
Residual SD:	16.826	Test Residual SD:	13.203	Balanced Design:	Yes
SS:	5379.2	Ref. Residual Mean:	21.2	Transformation:	No Transformation
K:	5	Ref. Residual SD:	12.317		
b:	70.656	Deg. of Freedom:	8		
				Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9281	Calculated Value:	0.2576	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental	l Alpha Level: 0.1
				Calc	culated Value: -0.4512
Override Option:	N/A				Critical Value: >= 1.397
·				Accept Nu	Il Hypothesis: Yes
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	215	215	226	226	8.4	10			-39.4
2	249	249	197	197	25.6	19			-34
3	184	184	182	182	39.4	34			-19
4	234	234	225	225	10.6	9			-8.4
5	235	235	250	250	11.6	34			9
6									10
7									10.6
8									11.6
9									25.6
10									34

Sample: x1

Samp ID: SED-03G Alias: P230324.05

Replicates: 5
Mean: 228.4
SD: 12.973
Tr Mean: 228.4
Trans SD: 12.973

Ref Samp: x2

Ref ID: CARR40-23-REF Alias: P230510.03

Min. Difference for Power:

Replicates: 5
Mean: 216

SD: 26.711 Tr Mean: 216 Trans SD: 26.711

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	9.52	Statistic:	Student's t
Residual SD:	13.625	Test Residual SD:	7.417	Balanced Design:	Yes
SS:	3527.2	Ref. Residual Mean:	21.2	Transformation:	No Transformation
K:	5	Ref. Residual SD:	12.317		
b:	58.143	Deg. of Freedom:	8		
				Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9584	Calculated Value:	1.8165	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	ı	Alpha Level: 0.1
					ulated Value: -0.9337
Override Option:	N/A				Critical Value: >= 1.397
				Accept Nu	Il Hypothesis: Yes
					Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	224	224	226	226	4.4	10			-34
2	242	242	197	197	13.6	19			-19.4
3	229	229	182	182	0.6	34			-19
4	238	238	225	225	9.6	9			-4.4
5	209	209	250	250	19.4	34			0.6
6									9
7									9.6
8									10
9									13.6
10									34

Sample: x1

Samp ID: SED-14G:0-10 Alias: P230324.03

 Ref Samp: x2

Ref ID: CARR62-23-REF Alias: P230510.04

Replicates: 5

Mean: 199.6

SD: 28.307

Tr Mean: 199.6

Trans SD: 28.307

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	11.36	Statistic:	Approximate t
Residual SD:	14.861	Test Residual SD:	9.295	Balanced Design:	Yes
SS:	4196	Ref. Residual Mean:	23.92	Transformation:	No Transformation
K:	5	Ref. Residual SD:	9.279		
b:	63.234	Deg. of Freedom:	8		
				Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9529	Calculated Value:	2.1385	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 6
Distributed:	Yes	Homogeneous:	No	Experimenta	l Alpha Level: 0.1
					culated Value: -0.9113
Override Option:	N/A				Critical Value: >= 1.440
·				Accept Nu	Il Hypothesis: Yes
					Power:
				Min. Differen	ice for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	211	211	187	187	1.8	12.6			-27.6
2	209	209	180	180	3.8	19.6			-22.8
3	232	232	222	222	19.2	22.4			-19.6
4	222	222	237	237	9.2	37.4			-12.6
5	190	190	172	172	22.8	27.6			-3.8
6									-1.8
7									9.2
8									19.2
9									22.4
10									37.4

Sample: x1

Samp ID: SED-05G Alias: P230324.07

Replicates: 5
Mean: 223.4
SD: 15.598
Tr Mean: 223.4
Trans SD: 15.598

Ref Samp: x2

Ref ID: CARR62-23-REF Alias: P230510.04

Min. Difference for Power:

Replicates: 5
Mean: 199.6
SD: 28.307
Tr Mean: 199.6
Trans SD: 28.307

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	10.72	Statistic:	Approximate t
Residual SD:	14.83	Test Residual SD:	9.983	Balanced Design:	Yes
SS:	4178.4	Ref. Residual Mean:	23.92	Transformation:	No Transformation
K:	5	Ref. Residual SD:	9.279		
b:	62.475	Deg. of Freedom:	8		
				Experimen	tal Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9341	Calculated Value:	2.1657	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	s of Freedom: 6
Distributed:	Yes	Homogeneous:	No	_	l Alpha Level: 0.1
				Calc	culated Value: -1.6466
Override Option:	N/A				Critical Value: >= 1.440
,				Accept Nu	II Hypothesis: Yes
					Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	247	247	187	187	23.6	12.6			-27.6
2	224	224	180	180	0.6	19.6			-19.6
3	226	226	222	222	2.6	22.4			-18.4
4	215	215	237	237	8.4	37.4			-12.6
5	205	205	172	172	18.4	27.6			-8.4
6									0.6
7									2.6
8									22.4
9									23.6
10									37.4

Mytilus galloprovincialis Reference Toxicant Test Results 3.3

Report Date:

16 May-23 10:07 (1 of 1)

Bivalve Larval Survival and Development Test

All Matching Labs

Test Type

Test Type: Development-Survival

Organism: Mytilus galloprovincialis

Material:

Total Ammonia

Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Proportion Normal

Source:

Reference Toxicant-REF

Bivalve Larval Survival and Development Test

Mean: 6.883 Sigma: NA Count: 20 CV: 33.30% -1s Warning Limit: 4.98 +1s Warning Limit: 9.52 -2s Action Limit: 3.6 +2s Action Limit: 13.2

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2022	Aug	10	16:57	9.323	2.44	0.936			20-5736-9281	08-2934-0504	EcoAnalysts
2			24	16:43	4.439	-2.444	-1.353	(-)		10-4871-9595	11-0042-4049	EcoAnalysts
3		Sep	2	14:54	3.311	-3.571	-2.257	(-)	(-)	16-0701-8534	00-0124-1152	EcoAnalysts
4			20	16:02	9.267	2.385	0.9176			11-7896-9547	00-7476-6700	EcoAnalysts
5			28	16:31	5.182	-1.701	-0.8756			10-3818-0354	11-9896-8834	EcoAnalysts
6		Oct	21	14:16	7.804	0.9218	0.3877			05-2022-4267	03-4308-3965	EcoAnalysts
7			24	15:17	6.15	-0.7328	-0.3472			01-4864-2336	19-5269-5566	EcoAnalysts
8			27	17:02	4.776	-2.107	-1.127	(-)		12-4527-0974	13-7457-7890	EcoAnalysts
9		Nov	30	14:32	7.166	0.2831	0.1243			11-2220-4195	10-4569-3704	EcoAnalysts
10		Dec	7	17:43	7.159	0.2762	0.1214			19-4874-8030	20-9525-0017	EcoAnalysts
11	2023	Jan	13	15:30	9.078	2.195	0.8538			14-2219-3979	18-3945-1944	EcoAnalysts
12		Feb	9	15:28	9.246	2.364	0.9106			00-8572-7368	10-5325-0783	EcoAnalysts
13			17	14:30	12.4	5.515	1.815	(+)		20-3891-7103	06-7296-3936	EcoAnalysts
14		Mar	14	15:15	8.955	2.073	0.8119			00-9622-9067	21-3408-3763	EcoAnalysts
15			28	15:46	5.455	-1.428	-0.7171			02-2233-3890	16-3797-4494	EcoAnalysts
16			28	15:47	6.941	0.05798	0.02588			01-6969-0938	06-4639-7696	EcoAnalysts
17			31	16:52	8.774	1.891	0.7489			21-2826-5425	10-8042-3972	EcoAnalysts
18			31	16:54	4.818	-2.065	-1.1	(-)		13-8989-7877	05-5295-3514	EcoAnalysts
19		Apr	11	16:37	7.809	0.9266	0.3896			14-1713-1401	15-2064-5147	EcoAnalysts
20			12	15:13	6.298	-0.5842	-0.2736			21-2394-6995	12-4981-2785	EcoAnalysts
21		May	12	15:35	4.42	-2.463	-1.366	(-)		02-3839-1595	05-0285-3181	EcoAnalysts

Report Date:

16 May-23 10:10 (1 of 1)

Bivalve Larval Survival and Development Test

All Matching Labs

Organism: Mytilus galloprovincialis Material: Unionized Ammonia Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Proportion Normal Source:

Reference Toxicant-REF

Bivalve Larval Survival and Development Test Combined Proportion Normal Endpoint

0.1308 20 -2s Action Limit: 0.0509 Count: -1s Warning Limit: 0.0816 Mean: +2s Action Limit: 0.336 Sigma: NA CV: 50.00% +1s Warning Limit: 0.21

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2022	Jun	3	16:12	0.2219	0.09112	1.12	(+)		21-4199-4121	20-5427-8206	EcoAnalysts
2			28	16:05	0.188	0.05722	0.7685			19-3785-6817	00-8378-9623	EcoAnalysts
3		Aug	10	16:57	0.1651	0.03433	0.4937			09-3839-8015	12-5640-2017	EcoAnalysts
4			24	16:43	0.1359	0.005056	0.08034			00-7678-9875	07-1760-4646	EcoAnalysts
5		Sep	2	14:54	0.04851	-0.0823	-2.101	(-)	(-)	13-9573-6141	09-4475-1376	EcoAnalysts
6			20	16:02	0.1767	0.04593	0.6374			13-8303-2046	02-4939-5521	EcoAnalysts
7			28	16:31	0.04973	-0.08108	-2.049	(-)	(-)	14-4835-8902	06-7637-8760	EcoAnalysts
8	1	Oct	21	14:16	0.1071	-0.02372	-0.4239			20-9426-4253	15-1656-6246	EcoAnalysts
9			24	15:17	0.1096	-0.02122	-0.3749			18-7734-9147	06-4748-9707	EcoAnalysts
10			27	17:02	0.1156	-0.01522	-0.262			01-3898-0369	19-9850-5740	EcoAnalysts
11		Dec	7	17:43	0.09634	-0.03448	-0.648			15-6747-3203	15-5237-0673	EcoAnalysts
12	2023	Jan	13	15:30	0.1703	0.03951	0.559			14-6111-3358	19-5184-9524	EcoAnalysts
13		Feb	9	15:28	0.1664	0.03555	0.5092			11-1705-9064	00-9866-2896	EcoAnalysts
14			17	14:30	0.2912	0.1604	1.695	(+)		05-8051-1741	00-4535-0428	EcoAnalysts
15		Mar	28	15:46	0.1275	-0.00334	-0.05477			08-8126-4059	10-2993-2407	EcoAnalysts
16			28	15:47	0.1637	0.03286	0.4747			03-3638-8838	12-4289-2851	EcoAnalysts
17			31	16:52	0.1949	0.06408	0.8445			14-3337-1963	13-8011-4764	EcoAnalysts
18			31	16:54	0.06349	-0.06732	-1.531	(-)		01-2022-2925	11-3364-1842	EcoAnalysts
19		Apr	11	16:37	0.1673	0.03653	0.5217			13-1124-3474	18-0348-0749	EcoAnalysts
20			12	15:13	0.1148	-0.01602	-0.2767			18-5662-1396	07-7214-9910	EcoAnalysts
21		May	12	15:35	0.09858	-0.03223	-0.5991			08-2245-0872	03-4589-6060	EcoAnalysts

CETIS Summary Report

Report Date: Test Code/ID: 16 May-23 10:06 (p 1 of 1) P220819.49 / 02-3839-1595

Rivalve I and	-74											
Divalve Laive	al Survival and I	Development Tes	t								Ec	oAnalysts
Batch ID: Start Date:	00-1859-9057 12 May-23 15:3		EPA/600/R-9	5/136 (1995)				115.2		sa Seibert oratory Seav	vater	
	14 May-23 13:4		Mytilus gallop	rovincialis			Brin			Applicable		
Test Length:	46n	Taxon:	Bivalvia				Sou	irce:	Taylo	or Shellfish		Age:
Sample ID:	00-5084-2631	Code:	P220819.49				Pro	ject:	Refe	rence Toxic	ant	
Sample Date:		Material:	Total Ammon	ia						rence Toxic	ant	
Receipt Date:		CAS (PC)					Stat	tion:	P220	0819.49		
Sample Age:	266d 16h	Client:	Internal Lab									
Multiple Com	parison Summa	ary										
Analysis ID	Endpoint		nparison Metho			1	NOEL	LOEL		TOEL	PMSD	
11-9289-6992	Combined Prop	ortion Norma Dun	nett Multiple Cor	mparison Tes	t		3.02	5.93		4.232	28.6%	
Point Estimat	te Summary											
Analysis ID	Endpoint	Poi	nt Estimate Met	hod		1	Level	mg/L		95% LCL	95% UCL	
05-0285-3181	Combined Prop	ortion Norma Line	ar Interpolation	(ICPIN)			EC15	2.559			4.332	
							EC20	3.022		0.9264	4.193	
							EC25	3.227		1.62	4.353	
							EC40	3.907		2.749	4.846	
							EC50	4.42		3.37	5.24	
Test Acceptal	bility				TAC	Li	mits					
Analysis ID	Endpoint	Attr	ibute	Test Stat	Lower		Upper	Overla	ар	Decision		
11-9289-6992	Combined Prop	ortion Norma PMS	SD	0.2863	<<		0.25	No		Above Crit	eria	
Combined De	surface of the con-	VE CONTRACTOR				_						
Compined Pr	oportion Norma	I Summary										
Conc-mg/L	oportion Norma Code	al Summary Count Mea	n 95% LCI	95% UCL	Min		Max	Std E	rr	Std Dev	CV%	%Effect
Conc-mg/L 0				95% UCL	Min 0.8000		Max 1.0000	Std Ei 0.0595		Std Dev 0.1030	CV% 11.63%	%Effect
Conc-mg/L 0 1.46	Code	3 0.88 3 0.91	57 0.6298						5			
Conc-mg/L 0 1.46 3.02	Code	Count Mea 3 0.88 3 0.91 3 0.72	57 0.6298 43 0.5455 38 0.3737	1.1420 1.2830 1.0740	0.8000		1.0000	0.0595	7	0.1030	11.63%	0.00%
Conc-mg/L 0 1.46 3.02 5.93	Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22	57 0.6298 43 0.5455 38 0.3737 86 0.1056	1.1420 1.2830 1.0740 0.3515	0.8000 0.7429		1.0000 1.0000	0.0595	5 7 4	0.1030 0.1485	11.63% 16.24%	0.00% -3.23%
Conc-mg/L 0 1.46 3.02 5.93 11.8	Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315	1.1420 1.2830 1.0740	0.8000 0.7429 0.6286		1.0000 1.0000 0.8857	0.0595 0.0857 0.0814	5 7 4	0.1030 0.1485 0.1409	11.63% 16.24% 19.47%	0.00% -3.23% 18.28%
Conc-mg/L 0 1.46 3.02 5.93 11.8	Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315	1.1420 1.2830 1.0740 0.3515	0.8000 0.7429 0.6286 0.2000		1.0000 1.0000 0.8857 0.2857	0.0595 0.0857 0.0814 0.0286	5 7 4 6 5	0.1030 0.1485 0.1409 0.0495	11.63% 16.24% 19.47% 21.65%	0.00% -3.23% 18.28% 74.19% 98.92%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3	Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 3 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3	Code D	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 3 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Processing Conc-mg/L	Code D oportion Norma	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Proconc-mg/L 0 1.46	Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 H Detail Rep 1 Rep	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Proconc-mg/L 0 1.46	Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Priconc-mg/L 0 1.46 3.02	Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 1.000	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 5.93	Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 1.00 0.6571 0.88	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Procedure of the conc-mg/L 0 1.46 3.02 5.93 11.8	Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 1.00 0.6571 0.88 0.2000 0.20	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3	Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 1.00 0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	-3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3	Code D oportion Norma Code D	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 1.00 0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000 00 0.0000	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Comb	Code D oportion Norma Code D	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 1.00 0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 0 1.46 0 1.46 0 1.46 0 1.46 0	Code D oportion Norma Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 Il Detail Rep 1 Rep 1.0000 0.80 1.0000 1.00 0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00 Il Binomials Rep 1 Rep 40/40 28/3	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3 5 30/35	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process 1.46 3.02 5.93 11.8 18.3 Combined Process 1.46 0 1.46 0 1.46 0 1.46	Code D oportion Norma Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 Il Detail Rep 1 Rep 1.0000 0.80 1.0000 0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.02 Il Binomials Rep 1 Rep 40/40 28/3 39/39 35/3	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3 5 30/35 5 26/35	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process Conc-mg/L 0 1.46 3.02 1.46 3.02 1.46 3.02	Code D oportion Norma Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 3 0.00 1 Detail Rep 1 Rep 1.0000 0.80 1.0000 0.20 0.0000 0.02 0.0000 0.02 0.0000 0.00 Il Binomials Rep 1 Rep 40/40 28/3 39/39 35/3 23/35 31/3	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3 5 30/35 5 26/35 5 22/35	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%
Conc-mg/L 0 1.46 3.02 5.93 11.8 18.3 Combined Process 1.46 3.02 5.93 11.8 18.3 Combined Process 1.46 0 1.46 0 1.46 0 1.46	Code D oportion Norma Code D oportion Norma Code	Count Mea 3 0.88 3 0.91 3 0.72 3 0.22 3 0.00 3 0.00 Il Detail Rep 1 Rep 1.0000 0.80 1.0000 0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.02 Il Binomials Rep 1 Rep 40/40 28/3 39/39 35/3	57 0.6298 43 0.5455 38 0.3737 86 0.1056 95 -0.0315 00 0.0000 2 Rep 3 00 0.8571 00 0.7429 57 0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3 5 30/35 5 26/35 5 22/35 10/35	1.1420 1.2830 1.0740 0.3515 0.0505	0.8000 0.7429 0.6286 0.2000 0.0000		1.0000 1.0000 0.8857 0.2857 0.0286 0.0000	0.0595 0.0857 0.0814 0.0286 0.0095 0.0000	5 7 4 6 5 5	0.1030 0.1485 0.1409 0.0495 0.0165 0.0000	11.63% 16.24% 19.47% 21.65% 173.21%	0.00% -3.23% 18.28% 74.19% 98.92% 100.00%

CETIS Summary Report

Report Date: Test Code/ID: 16 May-23 10:10 (p 1 of 1) P220819.49UIA / 08-2245-0872

Bivalve Larva	al Survival and De	evelopment Test								Ec	oAnalysts
Batch ID: Start Date: Ending Date: Test Length:	00-1859-9057 12 May-23 15:35 14 May-23 13:45 46h	Protocol:	Development-S EPA/600/R-95/ Mytilus gallopro Bivalvia	136 (1995)			Analy Dilue Brine Source	nt: Lab : Not	isa Seibert oratory Seav Applicable lor Shellfish	vater	Age:
Sample ID: Sample Date: Receipt Date:	300.1	Code: Material: CAS (PC):	P220819.49UIA Unionized Amn				Proje Source Statio	e: Ref	erence Toxic erence Toxic 20819.49UIA	ant	
Sample Age:		Client:	Internal Lab								
Multiple Com	parison Summar	у									
Analysis ID	Endpoint	Com	parison Method			1	NOEL	LOEL	TOEL	PMSD	5
00-9013-8386	Combined Propo	rtion Norma Dunr	ett Multiple Com	parison Test			0.065	0.127	0.09086	28.6%	
Point Estimat	te Summary										
Analysis ID	Endpoint	Poin	t Estimate Meth	od		1	Level	mg/L	95% LCL	95% UCL	
	Combined Propo						EC15	0.05494		0.09924	
2.00-03-010-023	12-11-11-11-11-11-11-11-11-11-11-11-11-1						EC20	0.06506	0.0147	0.09647	
							EC25	0.07057	0.02483	0.0995	
							EC40	0.08729	0.05491	0.1092	
							EC50	0.09858	0.0723	0.1168	
Test Accepta	bility				TAC	- 1	imits				
Analysis ID	Endpoint	Attri	bute	Test Stat		L	Upper	Overlap	Decision		
	Combined Propo		20.732	0.2863	<<	_	0.25	No	Above Cri	teria	
	oportion Normal							Do.			
Conc-mg/L	Code	Count Mea	n 95% LCL	95% UCL	Min		Max	Std Err	Std Dev	CV%	%Effect
0	D	3 0.88	57 0.6298	1.1420	0.8000		1.0000	0.0595	0.1030	11.63%	0.00%
0.025		3 0.91	43 0.5455	1.2830	0.7429		1.0000	0.0857	0.1485	16.24%	-3.23%
0.065		3 0.72	38 0.3737	1.0740	0.6286		0.8857	0.0814	0.1409	19.47%	18.28%
0.127		3 0.22		0.3515	0.2000		0.2857	0.0286	0.0495	21.65%	74.19%
0.253		3 0.00		0.0505	0.0000		0.0286	0.0095	0.0165	173.21%	98.92%
0.396		3 0.00		0.0000	0.0000		0.0000	0.0000	0.0000		100.00%
Combined Pr	roportion Normal	Detail	. 4	10-10-1		-	MD5	: 1591C79	9734DEC8D6	02FBBEBE	063916273
Conc-mg/L	Code	Rep 1 Rep	2 Rep 3								
0	D	1.0000 0.80									1
The second		The Ties of Control									
U.UZO		1.0000 1.00	00 0.7429								
0.025		1.0000 1.00									
0.065		0.6571 0.88	0.6286								
0.065 0.127		0.6571 0.88 0.2000 0.20	0.6286 00 0.2857								
0.065 0.127 0.253		0.6571 0.88 0.2000 0.20 0.0000 0.02	0.6286 00 0.2857 86 0.0000								
0.065 0.127		0.6571 0.88 0.2000 0.20	0.6286 00 0.2857 86 0.0000								
0.065 0.127 0.253 0.396	roportion Normal	0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00	0.6286 00 0.2857 86 0.0000								
0.065 0.127 0.253 0.396	roportion Normal Code	0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00 Binomials Rep 1 Rep	0.6286 00 0.2857 86 0.0000 00 0.0000								
0.065 0.127 0.253 0.396		0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00 Binomials	0.6286 00 0.2857 86 0.0000 00 0.0000								
0.065 0.127 0.253 0.396 Combined Pr	Code	0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00 Binomials Rep 1 Rep	0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3 5 30/35								
0.065 0.127 0.253 0.396 Combined Pr Conc-mg/L 0 0.025	Code	0.6571 0.88 0.2000 0.20 0.0000 0.02 0.0000 0.00 Binomials Rep 1 Rep 40/40 28/3	0.6286 0.2857 0.0000 0.0000 0.0000 2 Rep 3 5 30/35 5 26/35								
0.065 0.127 0.253 0.396 Combined Pr Conc-mg/L 0 0.025 0.065	Code	0.6571 0.88 0.2000 0.20 0.0000 0.00 Binomials Rep 1 Rep 40/40 28/3 39/39 35/3 23/35 31/3	0.6286 0.2857 0.0000 0.0000 0.0000 2 Rep 3 5 30/35 5 26/35 5 22/35								
0.065 0.127 0.253 0.396 Combined Pr Conc-mg/L 0 0.025	Code	0.6571 0.88 0.2000 0.20 0.0000 0.00 0.0000 0.00 Binomials Rep 1 Rep 40/40 28/3 39/39 35/3	0.6286 00 0.2857 86 0.0000 00 0.0000 2 Rep 3 5 30/35 5 26/35 5 22/35 10/35								

CETIS Test Data Worksheet

Report Date:

16 May-23 10:05 (p 1 of 1) P220819.49 / 02-3839-1595

Test Code/ID:

EcoAnalysts

Bivalve Larval Survival and Development Test

14 May-23 13:45

12 May-23 15:35

Species: Mytilus galloprovincialis

Protocol: EPA/600/R-95/136 (1995)

Sample Date: 19 Aug-22

Start Date:

End Date:

Material: Total Ammonia

Sample Code: P220819.49

Sample Source: Reference Toxicant Sample Station: P220819.49

Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	9	35	41	41	40	
0	D	2	12	35	29	29	28	
0	D	3	3	35	30	30	30	
1.46		1	15	35	40	40	39	
1.46		2	2	35	35	35	35	
1.46		3	11	35	27	27	26	
3.02		1	10	35	23	23	23	
3.02		2	7	35	32	32	31	
3.02		3	5	35	25	25	22	
5.93		1	13	35	19	19	7	
5.93		2	14	35	26	26	7	
5.93		3	16	35	34	34	10	
11.8		1	17	35	45	45	0	
11.8		2	4	35	36	36	1	
11.8		3	1	35	25	25	0	
18.3		1	6	35	30	30	0	
18.3		2	8	35	27	27	0	
18.3		3	18	35	37	37	0	

CETIS Test Data Worksheet

Report Date: Test Code/ID: 16 May-23 10:09 (p 1 of 1)

P220819.49UIA / 08-2245-0872

Bivalve Larval Survival and Development Test

EcoAnalysts

Start Date: End Date: 14 May-23 13:45

12 May-23 15:35

Species: Mytilus galloprovincialis Protocol: EPA/600/R-95/136 (1995) Material: Unionized Ammonia

Sample Code: P220819.49UIA Sample Source: Reference Toxicant Sample Station: P220819.49UIA

ample Date	: 19 A	ug-22		Material: Un	ionized Ammonia		Sample Station: F	P220819.49UIA
Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	4	35	41	41	40	
0	D	2	10	35	29	29	28	
0	D	3	17	35	30	30	30	
0.025		1	3	35	40	40	39	
0.025		2	16	35	35	35	35	
0.025		3	15	35	27	27	26	
0.065	100	1	2	35	23	23	23	
0.065		2	6	35	32	32	31	
0.065		3	7	35	25	25	22	
0.127		1	11	35	19	19	7	
0.127		2	18	35	26	26	7	
0.127		3	12	35	34	34	10	
0.253		1	1	35	45	45	0	
0.253		2	5	35	36	36	1	
0.253		3	14	35	25	25	0	
0.396	IEI	1	9	35	30	30	0	
0.396		2	8	35	27	27	0	
0.396		3	13	35	37	37	0	

Un-ionized Ammonia Calculator

CLIENT:	Leon Environmental	Date of Test:	May 12, 2023	
PROJECT:	Port of Friday Harbor	Test Type:	M. sp.	
COMMENTS:	P220819 49			

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

		Sample	Mod	NH3T (mg/L)	salinity (ppt)	pН	temp (C)	temp (K)	pKa ^s	NH ₃ U (mg/L
	Ta	arget / Sample Name	PE)	Actual	Actual	Actual	Actual	Calculated	Calculated	Calculated
onic strength:pKa ^s		Example 3.5		2,000	10.0	7.5	5.0	278.15	9.2520	0.008
1 9.26	1									
2 9.27	2	1.5	1	1.46	28	7.8	15.6	288.75	9.2555	0.025
3 9.28	3	3		3.02	28	7.9	15.6	288.75	9.2555	0.065
4 9.29	4	6		5.93	28	7.9	15.5	288.65	9.2555	0.127
5 9.30	5	12		11.8	28	7.9	15.5	288.65	9.2555	0.253
6 9.32	6	18		18.3	28	7.9	15.6	288.75	9.2555	0.396
7 9.33	7									
8 9.34	8									
	9									
0.36	10									
9.34	11									
9.32	12									
9.35 9.34 9.35 9.32 9.30 9.30 9.20 9.26	13									
9.28 9.27	14									
9.26	15									
1 2 3 4 5 6 7 8	16							P. 14	1	
$y = 0.0003x^2$	17									
+ 0.0091x +	18									
9.2502	19									
	20									
***	21									
	22									-
	23									
	24									
	25						1			
	26									
	27						1			
	28									
	29									
	30									
	31						-			-
	32						1			_
	33		1							
	34					-	-			
	35						100	- 4		1 1 1 1 1 1 1
	36									
	37						1			
	38									+
	39									
	40						1			
	41				-		1			
	41									
										-
	43					-	+			
	44						-			-
	45									

Or wason

48 Hour Bivalve Development Reference Toxicant Test

Test ID: P220819.49	Replicates: 3		Study Director: M. Seibert	J. Levengood,	Locat	Location: Bath		
Dilution Water Batch: FSW0S12V3.0V	Organism Batch: T SO50123.	B+C	Associated Test Friday Harbor	t(s): Port of	Organ	nism: M.		
Chamber Size/Type: 30 ml shell vial	Exposure Volume 10 ml							
Toxicant: Ammonium Chloride:	Lot#:	086	Date Prepared:	Initials:				
Target Concentrations See spiking	s: ng worksheet		Quantity of S Target: See spikin	Quantity of Diluent: Target:				
See spiki	ng worksheet		Actual: See spil	king worksheet	Actua	al: 20	om	
		SPAV	VNING DATA	A				
Initial Spawning Time:	Final Spawning Time: 1335		ation Time:	No. of Females:	6	No. of N	Males: 2_	
Embryo	1. 190	2. 10	90	3. 201		Mean:	190196	
Density (count/mL):	100							
Density (count/mL): Stocking Volume Calculat	11 100			=5.68/40				
Stocking Volume Calculat	12 WQ Time	1227	STOCK	Start Time:	535	Initi	als: NUMS	
O Hours Date: 5 D.O. (%)	Control WQ Time	1.5	STOCK 3	Start Time: F	535	Initi	als: NUMS	
Stocking Volume Calculat O Hours Date: 5	12 WQ Time	1.5 B.6	STOCK	Start Time: Fo	35 B.	Initi	18 8.7	
O Hours Date: 5 D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity	Control 8.6 15.9	1.5	STOCK 3 B.7	Start Time: F	35 B.	Initi	als: NUMS	
O Hours Date: 5 D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C)	Control 8.6 15.9	1.5 B.6 IS.6	MC STOCK 3 8,7 15.6	Start Time: F3	8.	Initi	18 8.7 15.6	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Temper	Control 8.6 15.9 4.8 Tature	1.5 B.6 IS.6 28	MC STOCK 3 8.7 15.6 28 7.9	6 8.7 15.5 28	8. 15	Initi	18 8.7 15.6 28	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C)	Control 8.6 15.9 4.8 Tature	1.5 B.6 IS.6 28 7.8	MC STOCK 3 8.7 15.6 28 7.9	6 8.7 15.5 28 7.9	8. 15 2	Initi	18 8.7 15.6 28	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C)	Control 8.6 15.9 7.8 rature 15.4 14.23 WQ Time	1.5 B.6 IS.6 2B 7.8 E: 1012 Lot#: 220	MIC STOCK 3 8.7 15.6 28 7.9 TILL N NL M:8	Start Time: F3 6 8.7 15.5 28 7.9 11 End Time: 13	8. 15 2 7.	Initia 12 7 5 8 9 Initia	18 8.7 15.6 28 7.9	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C)	Control 8.6 15.9 7.8 rature 15.4 14.23 WQ Time	1.5 B.6 IS.6 2B 7.8 E: 1012 Lot#: 220	MC STOCK 3 8,7 15.6 28 7.9 TILE N NL M:8	Start Time: F3 6 8.7 15.5 28 7.9 11 End Time: 13	8. 15 2 7.	Initia 12 7 5 8 9 Initia	18 8.7 15.6 28 7.9	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C) Final Day Date: 5	Control 8.6 15.9 7.8 rature 15.4 14.23 WQ Time	1.5 B.6 IS.6 IS.6 28 7.8 E: 1012 Lot #: 220	MIC STOCK 3 8.7 15.6 28 7.9 TILL N NL M:8	Start Time: F3 6 8.7 15.5 28 7.9 11 End Time: 13	8. 15 2 7. 345 Lot #: 5	Initia 12 7 55 9 Initia 135	18 8.7 15.6 28 7.9	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C)	Control B. 6 IS.9 A 28 7.8 Tature 5.4 Formalin	1.5 B.6 IS.6 IS.6 28 7.8 E: 1012 Lot #: 220	MC STOCK 3 8.7 15.6 28 7.9 THE N NL M:8 0304-50 STOCK 3 8.2	Start Time: F3 6 8.7 15.5 28 7.9 NL End Time: 13 Rose Bengal I	8. 15 2 7. 345 Lot #: 5	Initia 12 7 55 9 Initia 135	18 8.7 15.6 28 7.9	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C) Final Day Date: 5 D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C)	Control B. 6 IS.9 A 28 A.8 Fature 5.4 Formalin Control	1.5 B.6 IS.6 IS.6 28 7.8 E: 1012 Lot #: 220	MIC STOCK 3 8.7 15.6 28 7.9 TILE N NL M:8 0304-50 STOCK 3 8.2 15.9	Start Time: F3 6 8.7 15.5 28 7.9 11 End Time: 13 Rose Bengal I	345 Lot #: 5	Initia 12 7 .5 8 9 Initia 135	18 8.7 15.6 28 7.9 18: NL	
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) PH (7.5-9) Day 1 Temper (16 ± 1°C) Final Day Date: 5	Control B. 6 IS.9 A.8 Tature Formalin Control 8.3	1.5 B.6 IS.6 IS.6 28 7.8 E: 1012 Lot #: 220	MC STOCK 3 8.7 15.6 28 7.9 THE N NL M:8 0304-50 STOCK 3 8.2	Start Time: F3 6 8.7 15.5 28 7.9 NL End Time: 13 Rose Bengal I	345 Lot #: 5	Initial 12 7 12 135 12 1	18 8.7 15.6 28 7.9	

01E-NUS/12

48 Hour Bivalve Development Reference Toxicant Test

Conc.	Rep	Number Normal	Number Abnormal	Date	Initials
	1	40		5/15/23	MS
Control	2	28	1	5/15/23	MS
	3	30	0	5/15/23	MS
	1	39	1	5/15/23	MS
1.5	2	35	0	5/15/23	MS
	3	20	1	5/15/23	MS
	1	23	O	5/15/23	IMS
3	2	31		5/15/23	ms
	3	22	3	5/15/23	MS
	1	7	12	5/15/23	MS
6	2	7	19	5/15/23	Mg
	3	10	24	5/15/23	M
	1	0	45	5/15/23	MS
12	2	Ĭ	35	5/15/23	MS
	3	0	25	5/15/23	MS
	1	О	30	5/15/23	MS
18	2	0	27	5/15/23	MIS
	3	0	37	5/15/23	MS
		Stocking	Density		
Rep			unt	In	it.
1		37		MS	
3		23		MS MS	
3	Mean:	35		10/3	
A Count Checks: 1 conc/rep Ø - 2 2 normal 27 3 abnormal 1	#2 conc/rep # normal 2 # abnormal	1.5-3 5	#3 conc/rep	3 #4 conc/re # normal # abnorm	
ech. Init. 5Z	Tech. Init	SZ	Tech. Init. 52	Tech. Init	t 5Z_
Calc.	0.121. ((26)-(25 25+1))×100 = 0.14 1	. Same count	= 0 % Same (count = 07

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	1220819.49	
Date Prepared:	5/12/23	
Technician Initials:	ME	

Biv / Echino NH₃ RT

Assumptions in Model

Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Date:

5/11/2023

Measurement:

8340

Te	st Solutions		
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentra
mg/L	mg/L	mL	mL stock to increase
			SALT WATER
1.46	1.5	200	0.054
3.02	3	200	0.108
5.93	6	200	0.216
0112 11.B	12	200	0.432
0765 18:3	18	200	0.647
			No. of the Control of

Remeasured. Mr 5/12.

APPENDIX B. CHAIN-OF-CUSTODY FORMS, LOGS, AND PRE-TEST DOCUMENTS

SUBCONTRACT SAPPLE CHAIN OF CUSTODY

				St	JBCONT									#1c		=
Send Report To				PF	ROJECT	Cco Ana		- 1	1	20#		⊠ Arc	chive	AROUND T	IME	
		nvironmental Burke Ave N	_	1		iday Ha sen's M	rbor (Pofl	H)				RUS Rush		s authorized	by:	
City, State, ZIP		tle, WA981			EMARKS		and 3033	88				Ret	pose af urn sar	PLE DISPO ter 30 days nples ith instructi		
								ANAI	YSES	REQUE	STED]
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars							Cooley	temp (12)	No	otes	
SED-07G:0-10		3/20/2023	1002	sediment	1							2	0-3	Bioassay	Hold	1
SED-11G:0-10		3/20/2023	924	sediment	1				1 .			2	0.3	P23032	4.02	
SED-14G:0-10		3/20/2023	1011	sediment	1							2	0.3			
SED-15G:0-10		3/20/2023	1042	sediment	1							4	0.2	P23032	4. 04	
SED-03G:0-10		3/20/2023	1315	sediment	1							1	0.3	P23032	4.05	
SED-01G:0-10		3/20/2023	1445	sediment	1							4	0.7	P23032	4-06	
SED-05G:0-10		3/21/2023	1310	sediment	1							1	0.3	P23032	24.07	
SED-27G:0-10		3/23/2023	842	sediment	1						-	3	0.5	P23032	14.08	+
Friedman & Bruy			SIGNATURE				RINT NAM	VIE .		_	COMPA			DATE	TIME	_
3012 16th Avenue Seattle, WA 98113		Relinquished b	3 gen	a	10	ael Erda	~ 1	rds		Friedm		sruya		3/24/23	10150	
Ph. (206) 285-828		Relinquished	52		10	0.	Edwar		11	Eco				3/24/23	-13	
Fax (206) 283-504	14	Received by: 6	TAL		Sa	rah Z	Ischle			Eco	A			3/24/23	1300	

CHAIN	CUSTODY
-------	---------

Analysts, Inc

estination Cont ite:	EcoAnalysts 5/10/23	PE	nple Originator (Organ RSON WHO COLLEC ress:	V . 6/1	nalysts Lu Zischer	Report Results Contact Name:			Phone:	•	Tel: (360)
m-Around-Time	9: 010 (V)		1000,			Address:			Email:		
ject Name:		Phor	16;	7							
are inlu	Et REference collectio	n Fax				Analyses	K.	Involcing To:			
ilract/PO:		E-ma	0	7.55				Comments or Spec	dal instructions:		
	Sample ID	Matrix	Volume & Type of Container	Date & Time				December	Sample Temp		
CARRI	8-23- REF	Sed	154	5/10/23 14	00	-	-	Preservation	Upon Receipt		LABID
CARRY	0-23-REF	1	151					0	0 .	P23050.	02
CARRO	02-23-REF		154	5/10/23 149				0	0	\$230510	
CARR71	6-23-REF		154	5/10/23 101				0	0	P 730510.	
CARR-	REF	J.		5/10/23 133				0	0	0230510	
			10-	JILOUS 153	NO I		-	0	0	0230510	
							+			L.	
					+					-	
			1			-	-				
					1						
						-					•
							+				
							+				
					1 1		+				
					+++			4			
		111				-					
		102 5			1 1		-				
18:	Relinquished by:	24.00	Received by			elinquished by:					
am	h Zische	Print Name:	arah Zisa	the	Print Name:	инцианей бу		Print Name:	Received by:		Matrix Codes
8	Signatu Signatu		LAN		Signature:	-					FW = Fresh Water
FII	Andrests	Affiliation:	001	1	Affillation:			Signature;			
	. 11	Date/Time:	Exotolys"	V.			-	Affillation:			58 = Salt & Brackish Wate
5/10/	23 1730	11110,		1730	Date/Time:			Date/Time:			SS = Soli & Sediment

Ofeceived sample in lab < 8 his from collectin-sz 5/10/23

STATION COORDINATE LOG For Van Veen

Project: PRF-SED . Collection

Recorder: South Zigable

DATE	TIME	STATION	DROP NO.	LATITUDE	LONGITUDE	DEPTH (_)	RECOVERY DEPTH (cm)	Tidal Height	00000000
5/10	1015	CROZZ	1-2	47.34280	122.69021	170	DEF TH (CIII)		COMMENTS
5/10	1130	CARR	1-8	47.33300	122.66409	30			CARR-REF-1 76%. Knd
5/10	1400	New Sife		47.33642	12.66318	25 32			CHER-REF 2 40% Yings
sho	1452	Now site 2	1-4	41.33366	122.66342	45			CARR-REF-1 76% Fines CARR-REF 3 18% fines CARR-REF 4 62% Fines
					1	-13		-	CARR-REFY 62% Final
	1		-						
			+						
			+ +		V				
			+ +						
			1-1-						
					/				
			+ +						
				-					
			-						· ·
			-		1 11/3				
			-						
	-								
									-10
	1		-						
						711			

Wet-Sieve Procedure for Determining Percent Fines (<63 μm) of Sediment

DATE:			
5/10/23	CLIENT: Vanows	PROJECT:	
Propoduce	12/10/49	Vanous	

Procedure:

- Collect 50 mL of sediment to be analyzed 1.
- Transfer sediment to a #230 (63 μ m) testing sieve 2.
- Rinse sieve thoroughly with a stream of water until water flowing through the sieve is clear 3.
- 4. Transfer all retained material to a 100mL graduated cylinder using a small funnel and DI squirt bottle
- Allow sediment to settle. Record the volume of sediment retained below. 5.

SAMPLE ID:	A) INITIAL VOLUME OF SEDIMENT (mL)	B) VOLUME OF SEDIMENT RETAINED (mL)	A-B=	Multiplier	Estimated Percent Fines
Example	50	22	28	x2 =	56
CROZZ / CARRILO - 23 CARR / CARRITO - 23	50	12	38	x2 =	
CARRETTO-23	30 50	0 20 30	20	x2 =	76
CARRIE CARRIE - 23	50	41	9	x2 =	40
CAPP 62-23	50	19	31	x2 =	18
и				x2 =	(02
				x2 =	
				x2 =	
			142 7 1	x2 =	
				x2 =	
			== 1	x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				·x2 =	
				, x2 =	
015-52 5/11/23				x2 =	

01E-52 5/10/23

Wet-Sieve Procedure for Determining Percent Fines (<63 μm) of Sediment

DATE:	5/5/2023	CLIENT:	Leon Environmental	PROJECT:	Port of Friday Harbor
					2023

Procedure:

- 1. Collect 50 mL of sediment to be analyzed
- 2. Transfer sediment to a #230 (63 µm) testing sieve
- 3. Rinse sieve thoroughly with a stream of water until water flowing through the sieve is clear
- 4. Transfer all retained material to a 100mL graduated cylinder using a small funnel and DI squirt bottle
- 5. Allow sediment to settle. Record the volume of sediment retained below.

SAMPLE ID:	A) INITIAL VOLUME OF SEDIMENT (mL)	B) VOLUME OF SEDIMENT RETAINED (mL)	A - B =	Multiplier	Estimated Percent Fines
Example	50	22	28	x2 =	56
SED-07G: 0-10	50	44	6	x2 =	12
SED-11G: 0-10	50	37	13	x2 =	26
SED-27G: 0-10	50	28	22	x2 =	44
SED-15G: 0-10	50	25	25	x2 =	50
SED-05G: 0-10	50	18	32	x2 =	64
SED-01G: 0-10	50	33	17	x2 =	34
SED-03G: 0-10	50	25	25	x2 =	50
SED-14G: 0-10	50	21	29	x2 =	58
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
				x2 =	
		-		x2 =	
				x2 =	
				x2 =	

CLIENT			PROJECT							SPECIES									
	Leon Enviro	nmental	Port of Frid	lay Harbor						Various									
Calibration Standards Ter		21.3		•	Tech:	NL													
NH ₃ sample tempera	ature should b	e within +/-	1°C of stanc	dard temp at	time and da	te of analysis Measured			Calculated										
		Overlying/	Total NH ₃	NH ₃ sample	WQ/Temp	Total Dissolved Sulfide (μg/L	Sulfide Sample Volume	Sulfide	Total Dissolved Sulfide (μα/L	Porewater salinity	Porewater	Projected test temp			Unionized NH ₃		Undissociated Sulfide	Undissociated Sulfide	
Sample	Material	Porewater	(mg/L)	temp	Meter	as S)	(ml)	Multiplier	as S)	(ppt)	pН	(c) ·	Temp (K)	NH ₃ pKa ^s	(mg/L)	H 2S pKa*	(μg/L as H ₂ S)	(mg/L as H 2 S)	
Record			Record	Record	Record	Record	Record	Record	Calculated	Record	Record	Record	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
SED-01G-10	Bulk	PW	7.72	20.3	M8/T17	ND	10	1.0	ND	31	7.5	16.0	289.15	9.26	0.069	6.66	ND	ND	
SED-03G-10	Bulk	PW	3.39	20.3	M8/T17	ND	10	1.0	ND	31	7.5	16.0	289.15	9.26	0.030	6.66	ND	ND	
SED-05G-10	Bulk	PW	5.99	20.4	M8/T17	7	10	1.0	7	31	7.4	16.0	289.15	9.26	0.043	6.66	1.421	0.0014	
SED-07G-10	Bulk	PW	29.1	20.4	M8/T17	26	10	1.0	26	31	7.8	16.0	289.15	9.26	0.517	6.66	2.394	0.0024	
SED-11G-10	Bulk	PW	23.6	20.4	M8/T17	ND	10	1.0	ND	30	7.7	16.0	289.15	9.26	0.334	6.66	ND	ND	
SED-14G-10	Bulk	PW	9.94	20.4	M8/T17	ND	10	1.0	ND	31	7.5	16.0	289.15	9.26	0.089	6.66	ND	ND	
SED-15G-10	Bulk	PW	6.46	20.4	M8/T17	18	10	1.0	18	31	7.4	16.0	289.15	9.26	0.046	6.66	3.654	0.0037	
SED-27G-10	Bulk	PW	12.4	20.3	M8/T17	25	10	1.0	25	31	7.6	16.0	289.15	9.26	0.140	6.66	3.461	0.0035	

CLIENT			PROJECT								SPECIES									
Leon Environmenta	al		Port of Frid	ay Harbor							N.a.									
Calibration Standards Ten	mperature:	20.7	Date:	5/9/2023	Tech:	MS														
NH ₃ sample tempera	ature should	be within +/	- 1°C of stand	ard temp at	time and da	te of analysis Measurea Total Dissolved	Sulfide Sample		Caiculatea Total Dissolved	Actual	Projected		Projected			Unionized		Undissociated	Undissociated	
		Overlying/	Total NH 3	•	WQ/Temp		Volume	Sulfide	Sulfide	Salinity	Test Salinity		Test Temp			NH ₃		Sulfide	Sulfide	
Sample	Material	Porewater	(mg/L)	Temp	Meter	as S)	(ml)	Multiplier	(μg/L as S)	(ppt)	(ppt)	Actual pH	(c)	Temp (K)	NH₃ pKa⁵	(mg/L)	H ₂ S pKa*	(µg/L as H₂S)	(mg/L as H 2 S)	
Record		Record	Record	Record	Record	Record	Record	Record	Calculated	Record	Record	Record	Record	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
SED-07G: 0-10	Mock	OV	1.29	20.8	M9/T17					28	28	8.0	20.0	293.15	9.26	0.048				
SED-07G: 0-10	Mock	PW	7.17	21.4	M9/T17					29	28	7.4	20.0	293.15	9.26	0.069				

CLIENT			PROJECT								SPECIES									
Calibration Standard	s Temperature:	20.9	Date:	5/8/2023	Tech:	DM														
NH ₃ sample tem	erature should	be within +/-	· 1°C of stand	lard temp at ti	me and date															
						Measurea Total	Sulfide		Caiculatea Total											
						Dissolved	Sample		Dissolved	Actual	Projected		Projected			Unionized		Undissociated	Undissociated	
		Overlying/	Total NH 3	NH_3 Sample	WQ/Temp	Sulfide (µg/L	Volume	Sulfide	Sulfide	Salinity	Test Salinity		Test Temp			NH ₃		Sulfide	Sulfide	
Sample	Material	Porewater	(mg/L)	Тетр	Meter	as S)	(ml)	Multiplier	(μg/L as S)	(ppt)	(ppt)	Actual pH	(C)	Temp (K)	NH ₃ pKa ^s	(mg/L)	H ₂ S pKa*	(μg/L as H ₂ S)	(m g/L as H 2 S)	
Record			Record	Record	Record	Record	Record	Record	Calculated	Record	Record	Record	Record	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated	Notes
SED-01G-10	Mock	Overlying	0.00	20.1	M8/T17		10	1.0		28	28	7.9	16.0	289.15	9.26	0.000				
SED-03G-10	Mock	Overlying	0.00	19.9	M8/T17		10	1.0		28	28	7.9	16.0	289.15	9.26	0.000				
SED-05G-10	Mock	Overlying	0.00	20.4	M8/T17		10	1.0		28	28	7.8	16.0	289.15	9.26	0.000				
SED-07G-10	Mock	Overlying	0.108	20.0	M8/T17		10	1.0		28	28	7.9	16.0	289.15	9.26	0.002				
SED-11G-10	Mock	Overlying	0.185	20.4	M8/T17		10	1.0		28	28	7.9	16.0	289.15	9.26	0.004				
SED-14G-10	Mock	Overlying	0.00	20.0	M8/T17		10	1.0		28	28	7.9	16.0	289.15	9.26	0.000				
SED-15G-10	Mock	Overlying	0.00	20.5	M8/T17	13	10	1	13	28	28	7.9	16.0	289.15	9.26	0.000	6.66	0.981	0.0010	
SED-27G-10	Mock	Overlying	0.098	20.0	M8/T17	ND	10.0	1.0	ND	28	28	7.8	16.0	289.15	9.26	0.002	6.66	ND	ND	•

Pretest Analysis

Sample ID	Sample Type	Grai n Size (% fine s)	Total Ammonia ^{1,3} (mg/L)	Unionized Ammonia ^{1,3} (mg/L)	Total Sulfide (µg/L as S)	Hydrogen Sulfide ² (mg/L as H ₂ S)	Salinity	рН
SED-01G: 0-10		34	7.72	0.069- 0.093	ND	ND	31	7.5
SED-03G: 0-10		50	3.39	0.030 - 0.041	ND	ND	31	7.5
SED-05G: 0-10		64	5.99	0.043 - 0.058	7	0.001	31	7.4
SED-07G: 0-10	Bulk	12	29.1	0.517- 0.692	26	0.002	31	7.8
SED-11G: 0-10	Sediment	26	23.6	0.334 - 0.448	ND	ND	30	7.7
SED-14G: 0-10		58	9.94	0.089 - 0.120	ND	ND	31	7.5
SED-15G: 0-10		50	6.46	0.046 - 0.062	18	0.003 - 0.004	31	7.4
SED-27G: 0-10		44	12.4	0.140 - 0.188	25	0.003	31	7.6
SED-07G: 0-10	Mock Solid Phase - Porewater		7.17	0.069			29	7.4
SED-01G: 0-10			0.00	0.00			28	7.9
SED-03G: 0-10			0.00	0.00			28	7.9
SED-05G: 0-10			0.00	0.00			28	7.8
SED-07G: 0-10	Mock		0.108	0.002			28	7.9
SED-11G: 0-10	Larval		0.185	0.004			28	7.9
SED-14G: 0-10			0.00	0.00			28	7.9
SED-15G: 0-10			0.00	0.00	13	0.001	28	7.9
SED-27G: 0-10			0.098	0.002	ND	ND	28	7.8

¹Unionized Ammonia Purging triggers: >0.04 mg/L for larval, >0.8 mg/L *Eoh* and >0.46 mg/L *Neanthes* (Inouye et al. 2015)

ND= not detected

 $\mbox{\bf Bold}$ values exceed purging triggers for Bivalve test

Bold and Italicized values exceed purging triggers for Bivalve and *Neanthes* test

 $^{^2 \} Hydrogen \ Sulfide \ Purging \ triggers: >0.0025 \ mg/L \ larval, >0.122 \ mg/L \ Eoh \ and >3.4 \ mg/L \ Neanthes \ (Inouye \ et \ al. \ 2015)$

 $^{^{\}rm 3}\,\textsc{Estimated}$ values at test temperatures of 16 and 20°C

From: Peter Leon
To: Jay Word

 Cc:
 Marisa Seibert; Julia Levengood; John Malek

 Subject:
 PoFH: 10-day Amphipod Test Call Summary

 Date:
 Wednesday, May 24, 2023 3:28:53 PM

Thanks Jay! I agree with your summary, although I recommend that in your report you consider elaborating on your hypothesis that the results suggest that the test species you received were not fully healthy (including Pete's concurrence).

From: Jay Word <jword@ecoanalysts.com> Sent: Wednesday, May 24, 2023 2:03 PM

To: Peter Leon <peter@leon-environmental.com>

Cc: Marisa Seibert <mseibert@ecoanalysts.com>; Julia Levengood <jlevengood@ecoanalysts.com>

Subject: Summary of the call

Hello Peter,

I wanted to summarize the call in an email so that we are all on the same page. Let me know if you think I missed anything.

Attendees of the meeting (5.24.23) were Peter Leon (Leon Environmental), Todd Nicholson (Port of Friday Harbor), Bonnie Brooks (WDOE), and Pete Adolphson (WDOE). The call was organized to discuss the poor control performance (84% survival) from the Eoh test. We talked through the summary results that even though the controls did not pass the control performance criterion, all three references passed the reference performance criterion. All sediment treatments, when compared to appropriate reference sediment would pass the SCO and CSL criteria, except for SED-03G:0-10. Sample SED-03G:0-10 had >25% mortality (28%) and was statistically different than CARR-40-23-REF which means it would fail SCO criteria but not CSL. We discussed that the reference toxicant test showed 90% survival (barely passing) but was within the +/- 2 SD of the control chart. In addition to the summary Eoh data we showed the preliminary results from the larval test which showed no SCO or CSL failures.

Pete Adolphson wanted to look at the replicate data from the Eoh test. He thought that, based on all of the evidence at this time, all samples including SED-03G:0-10 should be considered to pass all SCO and CSL criteria. No bioassays need to be rerun but we will need to discuss this and qualify the Eoh result for SED-03G:0-10 in the report.

Jay Word

EcoAnalysts, Inc.

Office: 4729 NE View Drive, PO Box 216, Port Gamble, WA 98364

C: 206.779.9500

linkedin.com/in/jack-jay-word-871ba57

Headquarters: 1420 S. Blaine St., Suite 14 | Moscow, ID 83843

O: 208.882.2588

	0/23	Tin	ne: 1225	5	1000	tch No. VWA65	1023.0	
Organism:	lustoru	US 45	tuari	WS				
Source / S	upplier: MUST	AMP	Nipod	,uc	ī	191		
No. Ordere	d:	No	. Received	d:	Sou	rce Batch:		
1650	+10%		1815+		Colle		stch date, etc.) $5/9/23$	
Condition (of Organis	ms:		Approxima (Days from h	atch, li	ze or Age: fe stage, size	class, etc.):	
Shipper:	dEX			B of L (Tra	_	No.) 17417	Ô	
Condition (of Contain	er:		Received E	-			
Container	D.O. (mg/L)	Temp.	Cond. Sal. (Includ Units)	e (Un		# Dead	% Dead*	Tech. (Initials)
0	0	74	0	- (C	0	0	DM/Ly
*if >10% contac	t lah manga							
n = 10% contac	ı ıab manager							
Notes:								9.22

0 Received on moist sand - 5/10/23 7/27/15 Organism Receipt Log v1.1

Organism Receipt Log v1.1

Page __ of __

Northwest Amphipod, LLC 3101 SE Ferry Slip Rd #803, P.O. Box 542, Newport, OR 97365 Tel: 541-867-7225, nwamphipod@gmail.com

SOLD TO:		Made Della D	120 C 30 G 20 C C C C C C C C C C C C C C C C C C				
EcoAnalysts 4770 NE View P.O. Box 216 Port Gamble W		Marisa Seibert, Brian Hester/Collin Ray/Hillary Eichole Michelle Knowlen, Lauren Brandkamp, Julia Levengoo 360.297.6040 Julia Levengood 360.509.4141					
FedEx# 1817-			P.O. # 2676				
DATE OF SHIPMENT:	5-9-23						
	AN	NIMAL HISTORY					
Species		Age/Size	Number Shipped				
Eohaustorius estuarius		3-5mm	1650 + 10%				
	WATER QUAL	ITY AT TIME OF SHIPMENT					
Temperature (°C): 13-7	pH: 8-0	Salinity (ppt): 30.0	D.O. (mg/L): 8-5				
Other:							
PACKAGED BY: 643	•	DATE:	5-9-23				
FIELD COLLECTION/C Collected 5-8-23 from Yaqu Interstitial WQ: Temp 6.5°C Held at ~15°C in aerated wa	uina Bay, OR C, Salinity 28.0ppt; salii	nity adjusted ∼5 ppt up or down as n	eeded.				
ADDITIONAL COMMENT 4-liters of 0.5 mm sieved ho							

PLEASE RETURN ALL SHIPPING MATERIALS

If you have any questions, please call Yves Nakahama, Gary Buhler or Gerald Irissarri at (541) 867-7225. Thank You.

MAINTENANCE LOG FOR CULTURES

ORGANISM: EONS
LOCATION: Both 3

Batch Number: NWA(51)23.6) Date Received: 51023 Initial # of Organisms: 815 10% mortality = 182

Date		eed /PM	Tub No.	D.O.	Temp (°C)	Cond/ Sal pp+	pН	H₂O Change	Organisms appear healthy (Y/N)	# Mort (per tub)	¹ Cumulative # Mort*	Init.	Comments
5/11 5/12 5/12 5/12 5/13 5/14	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- - - - -	1 2 2 2 2 2	9.0 9.2 8.3 8.4 8.3 8.1 8.6	11.6 11.0 14.9 14.8 15.5 15.4	28 28 28 28 28 28 28 28	8.0 7.9 7.9 8.0 7.9	222 4 4 4	y y y-ish y-ish	4 27 30 10 0 2	- 32 62 72 72 72	MS MS NL NL	1 bath tem 10 13°C-40 1 bath .5°C-109 1 bath .5°C-109

FT = Flow-through

*For all containers and all days for a given batch; if >10% notify lab manager

¹ Cumulative # Mort is the running total of the current day's total mortality + previous cumulative culture mortality since acquired in lab

	1/23	Tim	ne: 0834	ì	Batch No.	51123	3.01	
Organism:	Jeans	us 0	renace	denti	uta		4	
Source / S	upplier: Aq wa	tic Ti	mailgo	y Supi	port	(5)		
No. Ordere	e d: 20	No.	Received:	57. (616)	Source Bat Collection dat	ch: te, hatch	date, etc.):	÷
Condition (of Organis	ms:	Aj (Da	ays from hate	Size or Ag ch, life stage,	size clas	ss, etc.):	
Shipper:	WELL		В	of L (Track				
Condition (of Contain	er:	Re	eceived By				
Container	D.O. (mg/L)	Temp. (°C)	Cond. or Sal. (Include Units)	pH	% Dead*	Tech. (Initials)		
DMP	16.2	19.1	30	- 7,5	5 0		-	DM.
			н					-
if >10% contac	f lah manas							
	i iau manager							
Notes:								L.5'

Aquatic Toxicology Support 1849 Charleston Beach Road West Bremerton, Washington 98312 (360) 813-1202

Order Summary

Emerge Date:
Number Shipped:
Salinity (ppt): Sl
Temperature (°C) 20-3

Date:	กใน	Tim	e: 0830		Ba	tch No.	1772 A1				
Organism:			0000		-	A1505	1723.01				
		earthes	areno	acedor	tat	a					
Source / Si											
	Ao	Justic -	toxicolo	y Sup	port	-					
No. Ordere			Received:	0 1	Sou	rce Batch:					
1	80	18	50+10.	1.		urged 4	tch date, etc.):				
Condition of	of Organis	ms:	A	pproxima Days from h	ate Siz	e or Age:					
9	Good			(Days from hatch, life stage, size class, etc.): 23 days post emerged							
Shipper:				of L (Tra	, ,						
	Counter				N	A					
Condition of	of Contain	er:	R	eceived l	Зу:						
	Go	od			5:	2					
Container	D.O. (mg/L)	Temp.	Cond. of Sal. (Include Units)	L (Un	H its)	# Dead	% Dead*	Tech. (Initials)			
Comp	10.6	20.3	30	1-7:	4	0	_	52/DI			
			19								
*if >10% contac	t lab manager			1.							
Notes:								es Ar			

Aquatic Toxicology Support 1849 Charleston Beach Road West Bremerton, Washington 98312 (360) 813-1202

Order Summary

Species: Neanthes arenaceodentata*	Emerge Date: 24 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Number Ordered:	Number Shipped: 80 1 10%
Date Shipped:	Salinity (ppt):
pH: 7.8	Temperature (°C)
*Smith 1964. CSU Long Beach strain. Feed	Junon arrival

MAINTENANCE LOG FOR CULTURES

ORGANISM: Neuthes Neuthles LOCATION: Both 2

Batch Number: #T5051123.0| Date Received: 5|11\73 | Initial # of Organisms: | 10% mortality = |2

Date	Feed AM/PM	Tub No.	D.O.	Temp (°C)	Cond/	рН	H ₂ O Change	Organisms appear healthy (Y/N)	# Mort (per tub)	¹ Cumulative # Mort*	Init.	Comments
5/14/23			7.1	20.0	30	7.6	2	Y	_		MK	
5/12/23		2	7.2	19.4	31	7.8	N	Y			ME	
5/12/25	-	3	7.2	19.9	30		N	4	_	_	ML	
5/23	-	4	7.3	19.8	30	7.9	N	Y	_	_	MU	
5/12/23		5	7.2	19.3	30	7.8	N	4	_	_	Total	
			1		4 - 4							
	14								h _ 1.			
		/										
-1												

FT = Flow-through

*For all containers and all days for a given batch; if >10% notify lab manager

9/8/22

Culture Maintenance Log V1.3

DIE-DM-5/11/23

¹ Cumulative # Mort is the running total of the current day's total mortality + previous cumulative culture mortality since acquired in lab

Date:	/1/2	3 Tim			Ва	tch No. TS 05	0123				
Organism:		ytilus :	SP.		•						
Source / S	upplier:	Taylo	or Sh	ellFis	h						
No. Ordere	ed: Datch	No.	Received		Coll	arce Batch: ection date, ha	tch date, etc.):				
Condition (of Organis	sms:		Approximate Size or Age: (Days from hatch, life stage, size class, etc.): MIXED AGE ADULTS							
Shipper:	oune	Y		B of L (T	racking						
Condition (of Contain	ier:		Received	i By: Pilber	+ /S.	Zischlu	ž.			
Container	D.O. (mg/L)	Temp. (°C)	Cond. Sal. (Include Units)	ie (U	pH Inits)	# Dead	% Dead*	Tech. (Initials)			
- (0	9.1°C	0	7	0	0	0				
			1 6					~			
*if >10% contac	t lah manana										
Notes:								u,v			

TAYLOR SHELLFISH FA SE 130 LYNCH RD, SHELTON WA 98584 PHONE #: (360) 426-6178	ARMS Harvest Hour	
PHONE #: (360) 426-6178 WASHINGTON STATE CERT #: WA46SP HARVEST DATE:	Harvest Minute	
HARVEST AREA	Refer Date	3
Dept ID FARM CODE:	Hour Refer Minute	
MIZI Tokke	Dozens Tubs	
All Shellstock containers in this 1st have the sharest.	ounds Sacks	

MAINTENANCE LOG FOR CULTURES

ORGANISM: M - Se LOCATION: Bath

Date Received: 5/1/23 Batch Number: 75050 23.0 Initial # of Organisms: 0 6 10% mortality =

Date		eed I/PM	Tub No.	D.O.	Temp (°C)	Cond/ Sal	рН	H₂O Change	Organisms appear healthy (Y/N)	# Mort (per tub)	¹ Cumulative # Mort*	Init.	Comments
5/2/23	-	_	A	7.7	14.5	36	7.7	FT	4	-11:-		M	
523	_	-	B	7.60	14.5	30	7.7	FT	4			NS	
5/2/13	-	-	ć	7.0	14.6	30	7.6	FT.	4			MS	
5/3/13	-	-	A	7.7	139	30	7.5	19	V	0	-	DVV	
5/3/00	-		5	7.7	13.7	30	7.5	P	4	0	_	DM	
533	-		0	7.0	14.3	30	7.4	FT	Y	0	_	DW	
5/7	~	~	A	8.5	13.8	29	7.9	FT	7	0	-	4	
517	-	~	B	8.4	(3.0	za	7.9	FT	Y	0	-	4	
5/7	_	~	4	8.0	13.3	29	7.8	FT	Y	0	-	ua	
5/9	-	V	A	8.5	13.6	30	7.9	FT	Y	0	-	4	
519	-	V	Z	8.2	13.5	30	7.8	FT	У	0	•	4	
5/9	-	V	C	8.1	135	30	7.8	FT	Y	0		4	
5/11	-	-	A	8.3	14.2	30	7.9	FT	7	0	_	4	
5/11	-	-	13	8.3	13.8	30	7.8	FT	4	0	-	4	
5/11	-	-	0	8.2	13.7	30	7.8	FT	7	0	-	4	
5/(2	_		Ā	9.8	12.9	30	7.9	FT	4	0	-	Mg	
5/12	-		В	8.7	(2.5	30	7,9	FT	Y	0	-	119	
5/12	_		C	8.5	12.9	30	7.9	FT	1	0	-	ns	

FT = Flow-through

^{*}For all containers and all days for a given batch; if >10% notify lab manager

1 Cumulative # Mort is the running total of the current day's total mortality + previous cumulative culture mortality since acquired in lab