Richardson's Arrwauge

KIM M. EAFON, YAKIMA COUNTY CLERK

SUPERIOR COURT OF WASHINGTON FOR YAKIMA COUNTY

STATE OF WASHINGTON, DEPARTMENT OF ECOLOGY,

 \mathbf{v}_{*}

6

8

9

10

11

12

13

Plaintiff,

CITY OF YAKIMA, YAKIMA COUNTY, and RALPH RICHARDSON,

Defendants.

97 2 01053 5

CONSENT DECREE

		Table of Contents	
14			Page
15	I. II.	INTRODUCTION	3
16	ш. Ш.	JURISDICTION . PARTIES BOUND .	4
	IV.	DEFINITIONS	
17	V. VI.	STATEMENT OF FACTS	6
18	VII.	WORK TO BE PERFORMED DESIGNATED PROJECT COORDINATORS	7
	VIII.	PERFORMANCE	10
19	IX. X.	ACCESS SAMPLING, DATA REPORTING, AND AVAILABILITY PROCEESS DEPORTS	11
20	XI.	FROURESS REPORTS	10
	XII. XIII.	RETENTION OF RECORDS	10
21	XII. XIV.	TRANSFER OF INTEREST IN PROPERTY RESOLUTION OF DISPUTES	. 13
22	XV.	AMENDMENT OF CONSENT DECREE	1.4
23	XVI. XVII.	EXTENSION OF SCHEDULE	. 15
رد	XVIII.	OTHER ACTIONS	. 16 17
24	XIX. XX.	INDEMNIFICATION	10
5	XXI.	COMPLIANCE WITH APPLICABLE LAWS REMEDIAL AND INVESTIGATIVE COSTS	
	XXII.	IMPLEMENTATION OF REMEDIAL ACTION	20
6	XXIII. XXIV.	FIVE YEAR REVIEW PUBLIC PARTICIPATION	. 21

ATTORNEY GENERAL OF WASHINGTON

Ecology Division PO Box 40117 Olympia, WA 98504-0117 FAX (360) 438-7743

1	XXV. XXVI.	DURATION OF DECREE
2	XXVII. XXVIII.	EFFECTIVE DATE
3		Exhibit A - Site Diagram
4		Exhibit B - Cleanup Action Plan Exhibit C - Restrictive Covenant
5		Exhibit D - Implementation Schedule Exhibit E - Ground Water Sampling Data Submittal
6		Requirements
7		
8		
9	·	
10		
11		
12		
13		
14		
15		
16		
17	•	
18		
19		
20		
21		
22		
23		
24		
25		
26		

I. <u>INTRODUCTION</u>

- In entering into this Consent Decree (Decree), the mutual objective of the Α. Washington State Department of Ecology ("Ecology" or "Department"), and the Defendants (Yakima Air Terminal and Richardson's Airways) is to provide for remedial action at a facility where there has been a release or threatened release of hazardous substances. This Decree requires the Defendants to undertake the following remedial actions:
 - Conduct long-term groundwater monitoring at the Richardson's (1) Airways facility (the "Site") in accordance with the Cleanup Action Plan ("CAP") attached to this Decree as Exhibit B.
 - (2) File a restrictive covenant, attached as Exhibit C, with Yakima County, or other appropriate entity, within 120 days of the effective date of this Decree.

Ecology has determined that these actions are necessary to protect public health and the environment.

- В. The Complaint in this action is being filed simultaneously with this Decree. An answer has not been filed, and there has not been a trial on any issue of fact or law in this case. However, the parties wish to resolve the issues raised by Ecology's Complaint. In addition, the parties agree that settlement of these matters without litigation is reasonable and in the public interest and that entry of this Decree is the most appropriate means of resolving these matters.
- **C**.. In signing this Decree, the Defendants agree to its entry and agree to be bound by its terms.
- $\mathbf{D}_{\cdot \cdot}$ By entering into this Decree, the parties do not intend to discharge nonsettling parties from any liability they may have with respect to matters alleged in the Complaint. The parties retain the right to seek reimbursement, in whole or in part, from any liable persons for sums expended under this Decree.

1

2

7 8

9

10

11 12

13

14

15 16

17

18

19 20

21 22

23

25 26

ATTORNEY GENERAL OF WASHINGTON Ecology Division PO Box 40117 Olympia, WA 98504-0117 FAX (360) 438-7743

- E. This Decree shall not be construed as proof of liability or responsibility full any releases of hazardous substances or cost for remedial action nor an admission of any facts; provided, however, that the Defendants shall not challenge the jurisdiction of Ecology in any proceeding to enforce this Decree.
- F. The Court is fully advised of the reasons for entry of this Decree, and good cause having been shown: IT IS HEREBY ORDERED, ADJUDGED, AND DECREED AS FOLLOWS:

II. JURISDICTION

- A. This Court has jurisdiction over the subject matter and over the parties pursuant to chapter 70.105D RCW, the Model Toxics Control Act (MTCA).
- B. Authority is conferred upon the Washington State Attorney General by RCW 70.105D.040(4)(a) to agree to a settlement with any potentially liable person if, after public notice and hearing, Ecology finds the proposed settlement would lead to a more expeditive cleanup of hazardous substances. RCW 70.105D.040(4)(b) requires that such a settlement be entered as a consent decree issued by a court of competent jurisdiction.
- C. Ecology has determined that a release or threatened release of hazardous substances has occurred at the Site which is the subject of this Decree.
- D. Ecology has given notice to the Defendants, as set forth in RCW 70.105D 020(15), of Ecology's determination that the Defendants are potentially liable persons for the Site and that there has been a release or threatened release of hazardous substances at the Site.
- E. The actions to be taken pursuant to this Decree are necessary to protect public health, welfare, and the environment.
- F. The Defendants have agreed to undertake the actions specified in this Decree and consent to the entry of this Decree under the MTCA.

III. PARTIES BOUND

This Decree shall apply to and be binding upon the signatories to this Decree (parties), their successors and assigns. The undersigned representative of each party hereby certifies that he or she is fully authorized to enter into this Decree and to execute and legally bind such party to comply with the Decree. The Defendants agree to undertake all actions required by the terms and conditions of this Decree and not to contest state jurisdiction regarding this Decree. No change in ownership or corporate status shall alter the responsibility of the Defendants under this Decree. The Defendants shall provide a copy of this Decree to all agents, contractors, and subcontractors retained to perform work required by this Decree and shall ensure that all work undertaken by such contractors and subcontractors will be in compliance with this Decree.

IV. <u>DEFINITIONS</u>

Except for as specified herein, all definitions in WAC 173-340-200 apply to the terms in this Decree.

- A. <u>Site</u>: The Site, referred to as Richardson's Airways, is located at the Yakima Regional Airport, Yakima, Washington. The Site is located on a portion of the Yakima Regional Airport which is administered by the Yakima Air Terminal. The Site is more particularly described in <u>Exhibit A</u> to this Decree, which is a detailed site diagram. Historically the area where the contamination has been found refers to the "washdown site."
- B. Parties: Refers to the Washington State Department of Ecology, Yakima Air Terminal, and Richardson's Airways, Inc. The Yakima Air Terminal shall be understood to include the City of Yakima and Yakima County, co-owners of the Yakima Regional Airport.
 - C. Defendants: Refers to Yakima Regional Airport and Richardson's Airways, Inc.
- D. <u>Consent Decree</u> or <u>Decree</u>: Refers to this Consent Decree and each of the exhibits to the Decree. All exhibits are integral and enforceable parts of this Consent

Decree. The terms "Consent Decree" or "Decree" shall include all exhibits to the Con-Decree.

E. <u>Point of Compliance</u>: The points of compliance for soil at the facility shall be the contiguous contaminated area in its entirety. These points were chosen so that the Site shall not be deemed clean until MTCA Method B cleanup levels, which are protective of groundwater, or other appropriate cleanup levels yet to be determined, are met throughout the Site.

V. STATEMENT OF FACTS

Ecology makes the following findings of fact without any express or implied admissions by Defendants.

- A. Yakima Air Terminal presently maintains and owns property on which Richardson's Airways, Inc. operated. The Yakima Air Terminal property is owned jointly by the City of Yakima and Yakima County.
- B. The Yakima Air Terminal is an "owner or operator" as defined in RCW 70.105D.020(11) of a "facility" as defined in RCW 70.105D.020(4).
- C. Richardson's Airways, Inc. is an "owner or operator" as defined in RCW 70.105D.020(11) of a "facility" as defined in RCW 70.105D.020(4).
- D. Mr. Ralph Richardson operated Richardson's Airways, Inc., an aerial pesticide applicator service, on the Site for approximately 38 years between 1954 and 1992. Operations of the facility included filling an applicator airplane spray tank with pesticide solution, then upon completion of aerial spraying washing, cleaning or rinsing the airplane tank at the "washdown site." Waste water from the cleaning procedure was allowed to seep into the surrounding soils and drain into nearby catch basins.
- E. Surface soil samples were taken at the "washdown site" in 1989 by Technico & Environmental Services Co., and in 1992 and in 1993 by CH2M-Hill, all environmental consultants retained by the Defendants. Laboratory results of the sampling confirm that

hazardous substances (pesticides) are present at levels which exceed single-substance cleanup levels, Method B soil, protective of groundwater (WAC 173-340-740(3)(a)(ii)(A)). The results of these sampling activities are on file, and may be reviewed, at the Central Regional Office of the Washington State Department of Ecology in Yakima, Washington.

- F. The substances found at the facility as described above are "hazardous substances" as defined by RCW 70.105D.020(7).
- G. Based on the presence of these hazardous substances at the Site and all factors known to the Department, there is a release or threatened release of hazardous substances from the Site, as defined by RCW 70.105D.020(19).
- H. Pursuant to RCW 70.105D.030(1) and RCW 70.105D.050, the Department may require potentially liable persons to investigate or conduct other remedial action with respect to the release or threatened release of hazardous substances from the Site.
- I. By letter dated July 25, 1991, Ecology notified each of the Defendants of its status as a "potentially liable person" under RCW 70.105D.040 after notice and opportunity to comment.
- J. Based upon site-specific data, Ecology has identified long-term groundwater monitoring at the Site to be protective of human health and the environment.

VI. WORK TO BE PERFORMED

This Decree contains a program designed to protect public health, welfare and the environment from the known release, or threatened release, of hazardous substances or contaminants at, on, or from the Site.

A. The Defendants shall conduct groundwater monitoring at the Richardson's Airways facility in Yakima, Washington for a period of at least five (5) years. The monitoring will be conducted as described in the Cleanup Action Plan for the Richardson's Airways facility, attached to this Decree as Exhibit B.

22

23

24

25

 $1 \parallel$

- B. The Defendants shall monitor the site groundwater for all organochlorine pesticides and all organophosphorus pesticides found at the facility and identified in the RI/FS.
- C. In the event that any of the monitored contaminants are detected in the groundwater above the laboratory practical quantification limit (PQL), the Defendants shall immediately notify the Ecology site manager.
- D. Upon receipt of a notification that a PQL has been attained or exceeded, the Department shall evaluate the information. If further information is necessary to assess the nature and extent of the contamination, the Department may require the Defendants to prepare and submit a groundwater monitoring parameter exceedence report within 60 days, unless an alternative deadline is specified in writing by the Department. The report shall assess the cause and significance of the exceedence and shall propose a response. Based on the evaluation of the report, the Department may specify responses to be implemented by the Defendants at the facility.
- E. The schedule for implementing this Decree and the Cleanup Action Plan is outlined in Exhibit B. The implementation schedule becomes effective on the effective date of this Decree.
- F. Within 120 days of the effective date of this Decree, the Defendants shall record the deed restriction, attached as Exhibit C, with the Yakima County Assessor, or other appropriate county entity, and return the signed copy to the Ecology site manager.
- G. Within 15 days after the effective date of this Decree, the Defendants shall submit the name of the contractor who will implement the groundwater monitoring aspect of the CAP.
- H. Within 30 days after the effective date of this Decree, the Defendants shall provide a draft Sampling and Analysis Plan for groundwater monitoring as described in WAC 173-340-820. Analytical methods and testing shall be in accordance with WAC 17

340-830. If a Sampling and Analysis Plan exists from past sampling activities at the Site, it may be modified to reflect the requirements of this Decree, and submitted for Ecology review and approval.

- I. Within 30 days of the effective date of this Decree, the Defendants shall submit a draft Quality Assurance/Quality Control Plan (QA/QC) for groundwater sampling and laboratory analysis of groundwater. If a QA/QC Plan exists from past sampling activities at the Site, it may be modified to reflect the requirements of this Decree, and submitted for Ecology review and approval.
- J. Within 15 days after the effective date of this Decree, the Defendants shall submit the name of the project coordinator who shall be Ecology's contact at the Site.
- K. In accordance with WAC 173-340-840(5), groundwater sampling data shall be submitted according to Exhibit E: GROUND WATER SAMPLING DATA SUBMITTAL REQUIREMENTS. These submittals shall be provided to Ecology as required under the schedule established in provision E, above.
- L. The Defendants agree not to perform any remedial actions outside the scope of this Decree, unless the parties agree to amend the scope of work to cover these actions.

 All work conducted under this Decree shall be done in accordance with ch. 173-340 WAC unless otherwise provided herein.

VII. DESIGNATED PROJECT COORDINATORS

The project coordinator for Ecology is:

Donald Abbott
Washington Department of Ecology
15 West Yakima Ave., Suite 200
Yakima, WA 98902
Phone: (509) 454-7834

25

26

The project coordinator for the Defendants is:

Bob Clem Revived Yakima Air Terminal 2400 West Washington Avenue Yakima, WA 98903 Phone: (509) 575-6149

Each project coordinator shall be responsible for overseeing the implementation of this Decree. The Ecology project coordinator will be Ecology's designated representative at the Site. To the maximum extent possible, communications between Ecology and the Defendants and all documents, including reports, approvals, and other correspondence concerning the activities performed pursuant to the terms and conditions of this Decree, shall be directed through the project coordinators. The project coordinators may designate, in writing, working level staff contacts for all or portions of the implementation of the remedial work required by this Decree. The project coordinators may agree to minor modifications to the work to be performed without formal amendments to this Decree.

Minor modifications will be documented in writing by Ecology.

Any party may change its respective project coordinator. Written notification shall be given to the other parties at least ten (10) calendar days prior to the change.

VIII. PERFORMANCE

All work performed pursuant to this Decree shall be under the direction and supervision, as necessary, of a professional engineer or hydrogeologist, or equivalent, with experience and expertise in hazardous waste site investigation and cleanup. Any construction work must be under the supervision of a professional engineer. The Defendants shall notify Ecology in writing as to the identity of such engineer(s) or hydrogeologist(s), or others, and of any contractors and subcontractors to be used in carrying out the terms of this Decree, in advance of their involvement at the Site.

FAX (360) 438-7743

IX. ACCESS

Ecology or any Ecology-authorized representatives shall have the authority to enter and freely move about all property at the Site at all reasonable times for the purposes of, inter alia: inspecting records, operation logs, and contracts related to the work being performed pursuant to this Decree; reviewing the Defendants' progress in carrying out the terms of this Decree; conducting such tests or collecting such samples as Ecology may deem necessary; using a camera, sound recording, or other documentary type equipment to record work done pursuant to this Decree; and verifying the data submitted to Ecology by the Defendants. All parties with access to the Site pursuant to this paragraph shall comply with approved health and safety plans.

X. SAMPLING, DATA REPORTING, AND AVAILABILITY

With respect to the implementation of this Decree, the Defendants shall make the results of all sampling, laboratory reports, and/or test results generated by it, or on its behalf available to Ecology and shall submit these results in accordance with Section XI of this Decree.

In accordance with WAC 173-340-840(5), ground water sampling data shall be submitted according to Appendix E: GROUND WATER SAMPLING DATA SUBMITTAL REQUIREMENTS. These submittals shall be provided to Ecology in accordance with Section XI of this Decree.

If requested by Ecology, the Defendants shall allow split or duplicate samples to be taken by Ecology and/or its authorized representatives of any samples collected by the Defendants pursuant to the implementation of this Decree. The Defendants shall notify Ecology seven (7) days in advance of any sample collection or work activity at the Site. Ecology shall, upon request, allow split or duplicate samples to be taken by the Defendants or its authorized representatives of any samples collected by Ecology pursuant to the implementation of this Decree, provided it does not interfere with the Department's

1

sampling. Without limitation on Ecology's rights under section IX, Ecology shall ended to notify the Defendants prior to any sample collection activity.

XI. PROGRESS REPORTS

The Defendants shall submit to Ecology written quarterly progress reports which describe the actions taken during the previous quarter to implement the requirements of this Decree. The progress reports shall include the following:

- A. All data shall be reported in graphical form with concentration over time in addition to reporting in tables, unless sampling results show non-detects at the method detection limit and then the results may be submitted in tables only;
- B. Detailed description of any deviations from required tasks not otherwise documented in project plans or amendment requests;
- C. Description of all deviations from the schedule during the current sampling period and any deviations in the upcoming sampling period;
- D. For any deviations in schedule, a plan for recovering lost time and maintaining compliance with the schedule;
- E. A list of deliverables for the upcoming sampling period if different from the schedule.

All monitoring reports shall be submitted within 45 days of the sampling event.

Unless otherwise specified, progress reports and any other documents submitted pursuant to this Decree shall be sent by certified mail, return receipt requested, to Ecology's project coordinator.

XII. RETENTION OF RECORDS

The Defendants shall preserve, during the pendency of this Decree and for ten (10) years from the date this Decree is no longer in effect as provided in section XXV, all records, reports, documents, and underlying data in its possession relevant to the implementation of this Decree and shall insert in contracts with project contractors and

subcontractors a similar record retention requirement. Upon request of Ecology, the Defendants shall make all non-archived records available to Ecology and allow access for review. All archived records shall be made available to Ecology within a reasonable period of time.

XIII. TRANSFER OF INTEREST IN PROPERTY

No voluntary or involuntary conveyance or relinquishment of title, easement, leasehold, or other interest in any portion of the Site shall be consummated without provision for continued operation and maintenance of any containment system, treatment system, and monitoring system installed or implemented pursuant to this Decree.

Prior to transfer of any legal or equitable interest in all or any portion of the property, and during the effective period of this Decree, the Defendants shall serve a copy of this Decree upon any prospective purchaser, lessee, transferee, assignee, or other successor in interest of the property; and, at least thirty (30) days prior to any transfer, The Defendants shall notify Ecology of said contemplated transfer.

XIV. RESOLUTION OF DISPUTES

- A. In the event a dispute arises as to an approval, disapproval, proposed modification, or other decision or action by Ecology's project coordinator, the parties shall utilize the dispute resolution procedure set forth below.
- (1) Upon receipt of the Ecology project coordinator's decision, the Defendants have fourteen (14) days within which to notify Ecology's project coordinator of their objection to the decision.
- (2) The parties' project coordinators shall then confer in an effort to resolve the dispute. If the project coordinators cannot resolve the dispute within fourteen (14) days, Ecology's project coordinator shall issue a written decision.

26

25

- (3) The Defendants may then request Ecology management review of decision. This request shall be submitted in writing to the Toxics Cleanup Program Manager within seven (7) days of receipt of Ecology's project coordinator's decision.
- (4) Ecology's Program Manager shall conduct a review of the dispute and shall issue a written decision regarding the dispute within thirty (30) days of the Defendants' request for review. The Program Manager's decision shall be Ecology's final decision on the disputed matter.
- B. If Ecology's final written decision is unacceptable to the Defendants, the Defendants have the right to submit the dispute to the Court for resolution. The parties agree that one judge should retain jurisdiction over this case and shall, as necessary, resolve any dispute arising under this Decree. In the event the Defendants present an issue to the Court for review, the Court shall review the action or decision of Ecology on the basis of whether such action or decision was arbitrary and capricious and render a decision based such standard of review.
- C. The parties agree to only utilize the dispute resolution process in good faith and agree to expedite, to the extent possible, the dispute resolution process whenever it is used. Where either party utilizes the dispute resolution process in bad faith or for purposes of delay, the other party may seek sanctions.

Implementation of these dispute resolution procedures shall not provide a basis for delay of any activities required in this Decree, unless Ecology agrees in writing to a schedule extension or the Court so orders.

XV. AMENDMENT OF CONSENT DECREE

This Decree may only be amended by a written stipulation among the parties to this Decree that is entered by the Court or by order of the Court. Such amendment shall become effective upon entry by the Court. Agreement to amend shall not be unreasonably withheld by any party to the Decree.

The Defendants shall submit any request for an amendment to Ecology for approval. Ecology shall indicate its approval or disapproval in a timely manner after the request for amendment is received. If the amendment to the Decree is substantial, Ecology will provide public notice and opportunity for comment. Reasons for the disapproval shall be stated in writing. If Ecology does not agree to any proposed amendment, the disagreement may be addressed through the dispute resolution procedures described in section XIV of this Decree.

XVI. EXTENSION OF SCHEDULE

A. An extension of schedule shall be granted only when a request for an extension is submitted in a timely fashion, generally at least 30 days prior to expiration of the deadline for which the extension is requested, and good cause exists for granting the extension. All extensions shall be requested in writing. The request shall specify the reason(s) the extension is needed.

An extension shall only be granted for such period of time as Ecology determines is reasonable under the circumstances. A requested extension shall not be effective until approved by Ecology or the Court. Ecology shall act upon any written request for extension in a timely fashion. It shall not be necessary to formally amend this Decree pursuant to section XV when a schedule extension is granted.

- B. The burden shall be on the Defendants to demonstrate to the satisfaction of Ecology that the request for such extension has been submitted in a timely fashion and that good cause exists for granting the extension. Good cause includes, but is not limited to, the following.
- (1) Circumstances beyond the reasonable control and despite the due diligence of the Defendants, including delays caused by unrelated third parties or Ecology, such as (but not limited to) delays by Ecology in reviewing, approving, or modifying documents submitted by the Defendants; or

OI

- (2) Acts of God, including fire, flood, blizzard, extreme temperature. storm, or other unavoidable casualty; or
 - (3) Endangerment as described in section XVII.

However, neither increased costs of performance of the terms of the Decree nor changed economic circumstances shall be considered circumstances beyond the reasonable control of the Defendants.

- C. Ecology may extend the schedule for a period not to exceed ninety (90) days, except where an extension is needed as a result of:
- (1) Delays in the issuance of a necessary permit which was applied for in a timely manner; or
 - (2) Other circumstances deemed exceptional or extraordinary by Ecology;
 - (3) Endangerment as described in section XVII.

Ecology shall give the Defendants written notification in a timely fashion of any extensions granted pursuant to this Decree.

XVII. <u>ENDANGERMENT</u>

In the event Ecology determines that activities implementing or in noncompliance with this Decree, or any other circumstances or activities, are creating or have the potential to create a danger to the health or welfare of the people on the Site or in the surrounding area or to the environment, Ecology may order the Defendants to stop further implementation of this Decree for such period of time as needed to abate the danger or may petition the Court for an order as appropriate. During any stoppage of work under this section, the obligations of the Defendants with respect to the work under this Decree which is ordered to be stopped shall be suspended and the time periods for performance of that work, as well as the time period for any other work dependent upon the work which is

stopped, shall be extended, pursuant to section XVI of this Decree, for such period of time as Ecology determines is reasonable under the circumstances.

In the event the Defendants determine that activities undertaken in furtherance of this Decree or any other circumstances or activities are creating an endangerment to the people on the Site or in the surrounding area or to the environment, the Defendants may stop implementation of this Decree for such period of time necessary for Ecology to evaluate the situation and determine whether the Defendants should proceed with implementation of the Decree or whether the work stoppage should be continued until the danger is abated. The Defendants shall notify Ecology's project coordinator as soon as possible, but no later than twenty-four (24) hours after such stoppage of work, and thereafter provide Ecology with documentation of the basis for the work stoppage. If Ecology disagrees with the Defendants' determination, it may order the Defendants to resume implementation of this Decree. If Ecology concurs with the work stoppage, the Defendants' obligations shall be suspended and the time period for performance of that work, as well as the time period for any other work dependent upon the work which was stopped, shall be extended, pursuant to section XVI of this Decree, for such period of time as Ecology determines is reasonable under the circumstances. Any disagreements pursuant to the clause shall be resolved through the dispute resolution procedures in section XIV.

XVIII. OTHER ACTIONS

Ecology reserves its rights to institute remedial action(s) at the Site and subsequently pursue cost recovery, and Ecology reserves its rights to issue orders and/or penalties or take any other enforcement action pursuant to available statutory authority under the following circumstances:

(1) Where the Defendants fail, after notice, to comply with any requirement of this Decree;

- (2) In the event or upon the discovery of a release or threatened release not addressed by this Decree;
- (3) Upon Ecology's determination that action beyond the terms of this Decree is necessary to abate an emergency situation which threatens public health or welfare or the environment; or
- (4) Upon the occurrence or discovery of a situation beyond the scope of this Decree as to which Ecology would be empowered to perform any remedial action or to issue an order and/or penalty, or to take any other enforcement action. This Decree is limited in scope to the geographic site described in Exhibit A and to those contaminants which Ecology knows to be at the Site when this Decree is entered.

Ecology reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances from Richardson's Airways.

Ecology reserves the right to take any enforcement action whatsoever, including a cost recovery action, against potentially liable persons not party to this Decree.

XIX. INDEMNIFICATION

The Defendants agree to indemnify and save and hold the state of Washington, its employees, and agents harmless from any and all claims or causes of action for death or injuries to persons or for loss or damage to property arising from or on account of acts or omissions of the Defendants, their officers, employees, agents, or contractors in entering into and implementing this Decree. However, the Defendants shall not indemnify the state of Washington, nor save nor hold its employees and agents harmless from any claims or causes of action arising out of the negligent acts or omissions of the state of Washington, or the employees or agents of the state, in implementing the activities pursuant to this Decree.

26

XX. COMPLIANCE WITH APPLICABLE LAWS

- A. All actions carried out by the Defendants pursuant to this Decree shall be done in accordance with all applicable federal, state, and local requirements, including requirements to obtain necessary permits, except as provided in paragraph B of this section.
- B. Pursuant to RCW 70.105D.090(1), the substantive requirements of chapters 70.94, 70.95, 70.105, 75.20, 90.48, and 90.58 RCW, and of any laws requiring or authorizing local government permits or approvals for the remedial action under this Decree that are known to be applicable at the time of entry of the Decree have been included in Exhibit B, the Cleanup Action Plan, and are binding and enforceable requirements of the Decree.

The Defendants have a continuing obligation to determine whether additional permits or approvals addressed in RCW 70.105D.090(1) would otherwise be required for the remedial action under this Decree. In the event either the Defendants or Ecology determine that additional permits or approvals addressed in RCW 70.105D.090(1) would otherwise be required for the remedial action under this Decree, they shall promptly notify the other party of this determination. Ecology shall determine whether Ecology or the Defendants shall be responsible to contact the appropriate state and/or local agencies. If Ecology so requires, the Defendants shall promptly consult with the appropriate state and/or local agencies and provide Ecology with written documentation from those agencies of the substantive requirements those agencies believe are applicable to the remedial action. Ecology shall make the final determination on the additional substantive requirements that must be met by Defendant and on how the Defendants must meet those requirements. Ecology shall inform the Defendants in writing of these requirements. Once established by Ecology, the additional requirements shall be enforceable requirements of this Decree. The Defendants shall not begin or continue the remedial action potentially subject to the additional requirements until Ecology makes its final determination.

Ecology shall ensure that notice and opportunity for comment is provided to the public and appropriate agencies prior to establishing the substantive requirements under this section.

C. Pursuant to RCW 70.105D.090(2), in the event Ecology determines that the exemption from complying with the procedural requirements of the laws referenced in RCW 70.105D.090(1) would result in the loss of approval from a federal agency which is necessary for the state to administer any federal law, the exemption shall not apply, and the Defendants shall comply with both the procedural and substantive requirements of the laws referenced in RCW 70.105D.090(1), including any requirements to obtain permits.

XXI. REMEDIAL AND INVESTIGATIVE COSTS

The Defendants agree to pay costs incurred by Ecology pursuant to this Decree.

These costs shall include work performed by Ecology or its contractors for, or on, the Site under Ch. 70.105D RCW both prior to and subsequent to the issuance of this Decree for investigations, remedial actions, and Decree preparation, negotiations, oversight and administration. Ecology costs shall include costs of direct activities and support costs of direct activities as defined in WAC 173-340-550(2). The Defendants agree to pay the required amount within ninety (90) days of receiving from Ecology an itemized statement of costs that includes a summary of costs incurred, an identification of involved staff, and the amount of time spent by involved staff members on the project. A general statement of work performed will be provided upon request. Itemized statements shall be prepared quarterly. Failure to pay Ecology's costs within ninety (90) days of receipt of the itemized statement will result in interest charges.

XXII. IMPLEMENTATION OF REMEDIAL ACTION

If Ecology determines that the Defendants have failed, without good cause, to implement the remedial action, Ecology may, after notice to the Defendants, perform any or all portions of the remedial action that remain incomplete. If Ecology performs all of

portions of the remedial action because of the Defendants' failure to comply with its obligations under this Decree, the Defendants shall reimburse Ecology for the costs of doing such work in accordance with section XXI, provided that the Defendants are not obligated under this section to reimburse Ecology for costs incurred for work inconsistent with or beyond the scope of this Decree.

XXIII. FIVE YEAR REVIEW

As remedial action, including ground water monitoring, continues at the Site, the parties agree to review the progress of remedial action at the Site, and to review the data accumulated as a result of site monitoring as often as is necessary and appropriate under the circumstances. At least once every five years the parties shall meet to discuss the status of the Site and the need, if any, of further remedial action at the Site. Ecology reserves the right to require further remedial action at the Site under appropriate circumstances. This provision shall remain in effect for the duration of the Decree.

XXIV. PUBLIC PARTICIPATION

Ecology shall maintain the responsibility for public participation at the Site.

However, the Defendants shall cooperate with Ecology and, if agreed to by Ecology, shall:

- A. Prepare drafts of public notices and fact sheets at important stages of the remedial action, such as the submission of work plans, Remedial Investigation/Feasibility Study reports and engineering design reports. Ecology will finalize (including editing if necessary) and distribute such fact sheets and prepare and distribute public notices of Ecology's presentations and meetings;
- B. Notify Ecology's project coordinator prior to the preparation of all press releases and fact sheets, and before major meetings with the interested public and local governments. Likewise, Ecology shall notify the Defendants prior to the issuance of all press releases and fact sheets, and before major meetings with the interested public and local governments;

- C. Participate in public presentations on the progress of the remedial action at the Site. Participation may be through attendance at public meetings to assist in answering questions, or as a presenter;
- D. In cooperation with Ecology, arrange and/or continue information repositories to be located at the Yakima Valley Regional Library at 102 North 3rd Street, Yakima, Washington, and at Ecology's Central Regional Office located at 15 West Yakima Avenue, Yakima, Washington. At a minimum, copies of all public notices, fact sheets, and press releases; all quality-assured ground water, surface water, soil sediment, and air monitoring data; remedial actions plans, supplemental remedial planning documents, and all other similar documents relating to performance of the remedial action required by this Decree shall be promptly placed in these repositories.

XXV. <u>DURATION OF DECREE</u>

This Decree shall remain in effect and the remedial program described in the December shall be maintained and continued until the Defendants have received written notification from Ecology that the requirements of this Decree have been satisfactorily completed.

XXVI. CLAIMS AGAINST THE STATE

The Defendants hereby agree that they will not seek to recover any costs accrued in implementing the remedial action required by this Decree from the state of Washington or any of its agencies; and further, that the Defendants will make no claim against the State Toxics Control Account, with the exception of the Local Toxics Control Account, for any costs incurred in implementing this Decree. Except as provided above, however, the Defendants expressly reserve their right to seek to recover any costs incurred in implementing this Decree from any other potentially liable person.

XXVII. EFFECTIVE DATE

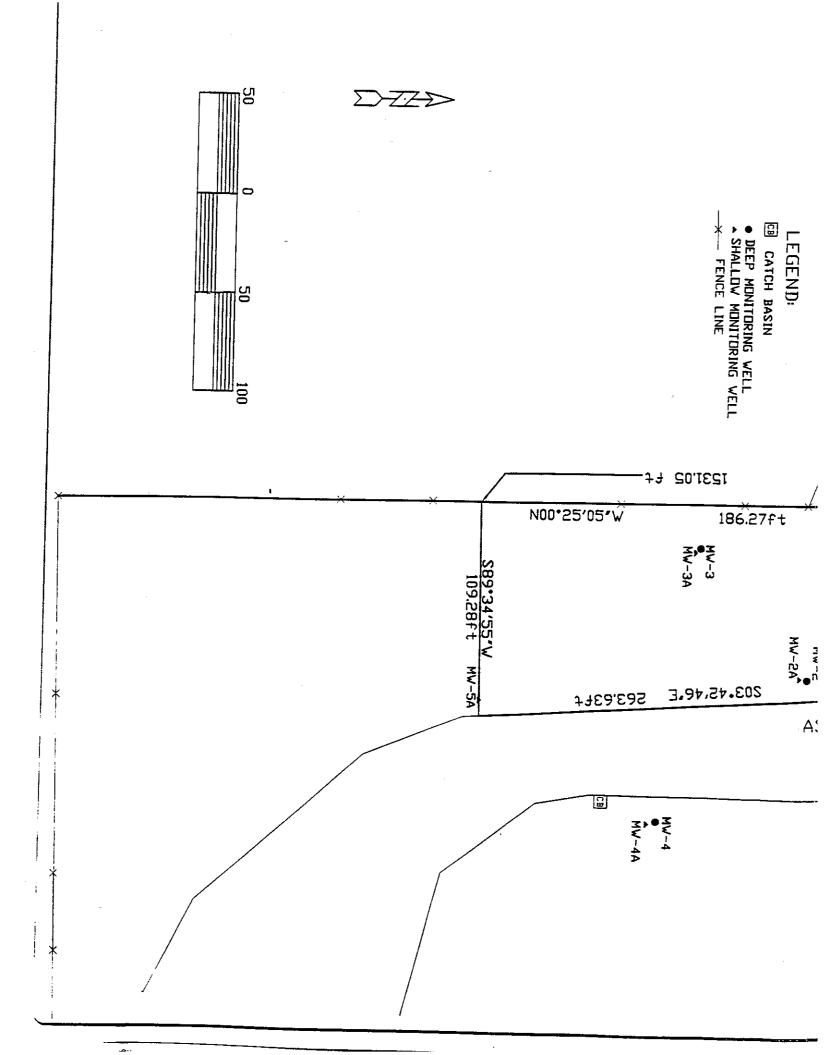
This Decree is effective upon the date it is entered by the Court.

XXVIII. PUBLIC NOTICE AND WITHDRAWAL OF CONSENT

This Decree has been the subject of public notice and comment under RCW 70.105D 040(4)(a) As a result of this process, Ecology has found that this Decree will lead to a more expeditious cleanup of hazardous substances at the Site.

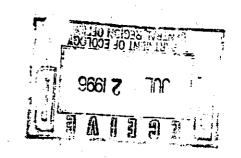
If the Court withholds or withdraws its consent to this Decree, it shall be null and void at the option of any party and the accompanying Complaint shall be dismissed without costs and without prejudice. In such an event, no party shall be bound by the requirements of this Decree.

MARY EURG
Program Manager
Toxics Cleanup Program
Department of Ecology
Date 2.2597


STEVEN J. THIELE
Assistant Attorney General
State of Washington
Department of Ecology
Date 1 - 7 - 7

1	
2	CITY OF YAKIMA YAKIMA COUNTY
3	
4	Raymond L. Paoletta 4/1/97 Date Date Date
5	City Attorney Date Quity Houseting Attorney Date
6	Date S/7/27
7	Date
8	
- 9	Date Date
10	
11	Date Date
12	
13	Date Date
14	RICHARDSON'S AIRWAYS, INC.
15	
16	RALPH RICHARDSON, pro se
17	Dated
18	DATED this $\frac{979}{4}$ day of $\frac{MAy}{}$, 1997
19	DATED this 7 day of 7 , 1997
20	Show M. Hackett, L.
21	JUDGE
22	Yakima County Superior Court
23	
24	
25	
26	

EXHIBIT A


SITE MAP

Richardsons Airways

					e.	j .
						:
						:
•						
						100 100 100 100 100 100 100 100 100 100
						Many disamenta de la deservación de la constanta de la constan
						construction and second
						Ì
						manana sa spannigiĝi escentro e
						on tale pare adjustments of the
				. •		Pande Pande
						e de la constante de la consta
	í					
						H. Beer

CLEANUP ACTION PLAN (CAP)

FOR

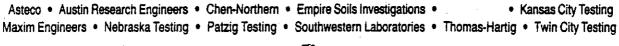
RICHARDSON AIRWAY INC., WASHDOWN SITE,
2400 WEST WASHINGTON AVENUE, YAKIMA, WASHINGTON

Prepared for:
Potential Liable Persons
Richardson Airway, Inc.

Prepared by:

MAXIM TECHNOLOGIES, INC.

Engineering and Environmental Consultants


402 East Yakima Avenue Suite 750

Yakima, Washington, 98901

(509) 577-8592

(509) 577-8520 FAX

APRIL, 1996

		5
	÷	
	•	

TABLE OF CONTENTS

1.0	INTF	RODUCTION		,	
	1.1	Site Description			. 1
	1.2	Site History			2
2.0	REG	ULATORY REQUIREMENTS			4
	2.1	Selection of Cleanup Actions			4
	2.2	Substantial and Disproportionate Costs			6
3.0	CON	TAMINANT AND SITE CHARACTERIZATION			7
	3.1	Distribution of Organochlorine Pesticides in	the Sui	<u>bsurface</u>	7
	3.2	Physicochemical Properties of the Contamin			8
		High adsorption capacities of the site soils			8
		Low solubility of the pesticides at the site			8
	3.3	Hydrogeologic Characteristics of the Site			9
		Low infiltration rate			9
		Low hydraulic conductivities of the site soil			9
		Comparison of hydraulic characteristics			9
		Lack of preferential flow paths			10
4.0	DISC	USSION			11
5.0	CON	CLUSIONS			12

60	WOF	RK TO BE PERFORMED	13
٠	6.1	Background	13
	6.2	Monitoring Well Network	13
٠	6.3	Field Sampling Plan	14
	6.4	Reporting Requirements	15
REFE	RENC	ES	
APPI	ENDIX	A	

Location of Monitoring Wells

Location Map

Attachment - Groundwater Flux Calculations

Figure 1 -

Figure 2 -

1.0 INTRODUCTION

At the request of Potential Liable Persons (PLPs) for the Richardson Airway site in Yakima, Maxim Technologies Inc. (Maxim), prepared a groundwater monitoring Cleanup Action Plan (CAP) for the Richardson Airway Inc., washdown site. The PLPs for this site include Mr. Ralph Richardson, the City of Yakima represented by Mr. Raymond L. Paolella, and Yakima County represented by Mr. Terry Austin. The CAP was prepared in accordance with agreement reached at the October 19, 1995 meeting between Mr. Don Abbott, Washington Department of Ecology (Ecology) Site Manager, Richardson Airway PLPs and Ms. Rachel Tauman, Maxim's Project Manager. The CAP will be attached to the Model Toxics Control Act (MTCA) Consent Decree that will be negotiated between Ecology and the PLPs.

1.1 Site Description

Richardson Airway, Inc., is located at the Yakima Airport at 2400 West Washington Avenue, in Yakima, Washington. The Yakima Airport is managed by the Yakima Air Terminal. The Yakima Air Terminal property (809 acres) is owned jointly by the City of Yakima and Yakima County. Richardson Airway, Inc., was an areal pesticide application service and aircraft storage facility that had leased property from the Yakima Air Terminal from 1953 to 1992. The Richardson Airway site is situated immediately west of an inactive north-south trending taxiway. Richardson Airway's operation was conducted from two active aircraft "T" hangars, an office and shop complex, and a metal shed for equipment storage. The total area leased by Richardson Airway was approximately 157,000 square feet. The area used by Richardson Airway subject to this Work Plan is the washdown site located southeast of the office complex and "T" hangars. The site encompasses approximately 17,000 square feet (CH2MHILL, 1993-Figure 1).

Richardson Airway, Inc., Work Plan January, 1996 Page 2

1.2 Site History

At the washdown site, agricultural chemicals (pesticides and herbicides) were added to aerial spray equipment and the spray equipment was rinsed directly onto the soil. Soil contamination above MTCA Method B/protective of groundwater criteria was reported subsequent to sampling of the site soil by Ecology in 1988.

In 1992-1993, a Remedial Investigation/Feasibility Study (RI/FS) was conducted at the site in order to assess potential threats attributable to contamination from past activities. The RI/FS confirmed that the soil was contaminated with low concentrations of pesticides and herbicides. Two groundwater monitoring wells, in the washdown area, were constructed and screened in the gravel section between 9 and 19 ft below grade. The wells intersected contaminated soil in the upper 9 ft. Two rounds of groundwater sampling indicated the groundwater in the gravel section at the site was not contaminated.

The conclusion reached from the analysis of data collected during the RI/FS was that, due to the low concentrations and low mobility of the pesticides and herbicides in the soil, the recommended cleanup should be to contain the soil in place with an impermeable cap or no action. Both cleanup alternatives incorporate groundwater monitoring and institutional controls to limit public access.

In 1995, the site and the RI/FS were reviewed by Ecology and Maxim. During the review, several data gaps became apparent. These data gaps and the data collected to fill them are described below:

 Pesticide contamination in shallow groundwater. Because the wells were screened mostly between 9 and 19 ft below grade in the gravel section and below the zone of contaminated soil, it was not known whether pesticides: Richardson Airway, Inc., Work Plan January, 1996 Page 3

were present in groundwater in the overlying silt zone. Because the gravel section has hydraulic conductivities and groundwater flux estimated to be three (3) orders of magnitude greater than the overlying silt zone (Freeze and Cherry 1979; Appendix A), it was important to separately analyze the upper silty interval, between 4 and 9 ft below grade. To accomplish this, additional groundwater monitoring wells were drilled and screened between 4 and 9 ft (Maxim, 1995b)

Petroleum and volatile organic compounds in groundwater were not analyzed. The presence of petroleum hydrocarbons in the soil immediately up-gradient of the site was a cause of concern as petroleum hydrocarbons are able to mobilize otherwise immobile pesticides present in the soil column. To fill this data gap, additional groundwater samples were collected and tested for petroleum hydrocarbons and volatile organic constituents (VOCs) in addition to pesticides.

Analyses of the above described additional data determined that the groundwater both in the shallow silt zone and the deeper gravel zone was not contaminated with pesticides, petroleum hydrocarbons, or VOCs.

The conclusion from the additional data collected during 1995 was that, due to the low concentrations of pesticides in the soil, their absence from groundwater, the lack of down-gradient receptors, and the inaccessibility of this site to the public, a monitoring program would be an effective method of protecting human health and the environment at the site.

Richardson Airway, Inc., Work Plan January, 1996 Page 4

2.0 REGULATORY REQUIREMENTS

2.1 Selection of Cleanup Actions

Under WAC 173-340-360(2), the threshold requirements of protectiveness and meeting cleanup standards must be attained by the selected action. The following alternative types of treatment were identified in the RI/FS (CH2MHILL, 1993):

- 1. <u>Institutional controls and groundwater monitoring.</u> If it can be demonstrated that institutional controls inhibit direct contact exposure and the current soil conditions do not act as a source of cross contamination to other media at unacceptable levels, then the threshold requirements are met.
- Paving of the washdown site and groundwater monitoring. A pavement cap would prevent direct contact and provide assurance of limited future site use. Paving of the area would serve as an engineering barrier to isolate the remaining contaminated soils from direct contact. It would also remove the possibility of incident precipitation mobilizing the contained contaminants.
- 3. Excavation and Removal of all affected soil to a local sanitary landfill. If it is determined that MTCA Method B cleanup levels are the applicable standards for the site, then this action would meet the threshold requirements.
- 4. Excavation and removal/local sanitary landfill "hot spots" only. This alternative could be consistent with threshold criteria depending on the definition of "hot spots". It could reduce risk by removing the most contaminated soil and also serve to minimize the potential that the washdown site soils would act as a source for contaminant migration or cross media contamination in the future.

The criteria for selection of a cleanup action at contaminated sites are addressed in MTCA. WAC 173-340-360(5)(d) states "Ecology recognizes that a permanent solutions may not be practicable for all sites. A determination that a cleanup action satisfies the requirement to use permanent solutions to the maximum extent practicable is based upon consideration of a number of factors. The following criteria shall be used to determine whether a cleanup action is permanent to the maximum extent practicable":

- (i) Overall protectiveness of human health and the environment
- (ii) Long term effectiveness
- (iii) Short term effectiveness
- (vi) Permanent reduction of toxicity, mobility and volume
- (v) Ability to implement
- (vi) Cleanup costs
- (vii) Community concerns

A permanent solution for the cleanup at the Richardson Airway washdown site would entail a permanent reduction of toxicity, mobility and volume: This permanent solution was considered but was determined to be inappropriate for the site. Removal of all contaminated soil above the MTCA Method B/protective of groundwater criteria to a landfill was proposed in Alternative 3 above. Complete soil removal would require excavation of the entire site to 10.5 ft below surface, removal of approximately 7000 cubic yards of soil, and transport to and disposal of contaminated soil in a landfill. This removal would be costly yet it would not provide a sufficiently greater degree of protection to justify its cost. The excavation would then be backfilled with clean material. Even this alternative would not constitute a complete permanent solution. Although contaminated soil would be removed from the site, there would not be any permanent reduction of toxicity, mobility and volume of contamination.

2.2 Substantial and Disproportionate Costs

Ecology has chosen institutional controls and long term monitoring as the remedial action provided minimum requirements are met. Requirements for an adequate monitoring plan include additional monitoring wells screened across the water table, repeating all prior groundwater sampling including additional analyses for VOCs and petroleum hydrocarbons, water level measurements, and annual monitoring. In addition, a restrictive covenant and long term restriction on the land title would be executed (Abbott, 1995)

Institutional controls and long term monitoring for the washdown site are an acceptable alternative consistent with regulatory requirements. Although WAC 173-340-360 (4)(a) (vii) considers institutional controls and monitoring the lowest preference of seven cleanup alternatives, it is acceptable under WAC 173-340-360 (5)(vi) which states "a cleanup action shall not be considered practicable if the incremental cost of the cleanup action is substantial and disproportionate to the incremental degree of protection it would achieve over a lower preference cleanup action." The cost of institutional controls and long term monitoring is estimated at \$30,000.00. In comparison, the estimated cost for the higher preference solution consisting of excavation and disposal is estimated to be greater than \$300,000.00. Institutional controls and long term monitoring are a practical alternative for the washdown site. To attain the higher preference solution, the excavation of at least 7000 cubic yards of soils contaminated with low levels of pesticides would be required. The excavated soils would than be removed and transported to a landfill. The excavation subsequently would be backfilled with clean material. The \$300,000.00.

estimated cost of excavation and removal would not be a permanent solution in that the contamination would be moved to another site and future potential liability would result from the disposal. Additionally, excavation and disposal would not provide a significantly greater degree of protection than institutional controls and long term monitoring. The site is not available for public use, and a restrictive covenant will provide that the site will not be disturbed in the future. Pesticides have not been detected in groundwater at, or down-gradient of the site. Therefore, the cleanup cost for complete removal at this site is substantial and disproportionate to the incremental degree of protection it would achieve over institutional controls and long term monitoring.

3.0 CONTAMINANT AND SITE CHARACTERIZATION

The selection of institutional controls and long term monitoring as the remedial action at the Richardson Airway washdown site is supported by technical data collected at this site. The distribution of the pesticides in the subsurface, the physicochemical properties of the contaminants, and the hydrogeological characteristics of the site all support the selected remedy.

3.1 Distribution of Organochlorine Pesticides in the Subsurface

Although organochlorine pesticides at concentrations above the MTCA Method B/protective of groundwater criteria have been measured in the soil of the washdown site, they have not been detected in the groundwater. The three major pesticides present at the site are dieldrin, DDT and endosulfan. Aldrin and its decomposition product dieldrin have been detected in the site soil to a depth of 9.0 ft below surface. DDT and its breakdown products DDE (aerobic environment) and DDD (reducing environment) have been detected to 10.5 ft below surface. Endosulfan has been detected to 9.0 below surface. None of these pesticides, however, has been detected in the groundwater. The lack of groundwater contamination may be attributed to the

immobility of these organochlorine pesticides. This immobility is ascribed to the chemical nature of the contaminants and the hydrogeologic characteristics of the site. Factors contributing to the immobility of chlorinated pesticides at the site are described below.

3.2 Physicochemical Properties of the Contaminants

- High adsorption capacities of the site soils. Organochlorine pesticides such as those present at this site tend to sorb strongly to soils. The clayey nature of the near surface soils further enhances the sorption of the pesticides thus impeding their mobility in the soil column. The physicochemical property found to be most predictive of mobility of chemicals in soil is K_{oc}, the sorption coefficient normalized to organic carbon content. Chemicals with sorption coefficients in the upper hundreds to thousands are generally regarded as immobile in soil (Felsot, 1994). In the case of organochlorine pesticides, the order of magnitude values for K_{oc} range from 10³ cm³/g to 10⁶ cm³/g (Howard, 1991; Hazardous Substances Data Bank 1992). For example, the sorption coefficient for DDT is 2,000,000 cm³/g. These very high values demonstrate that these pesticides will be strongly sorbed to soil. Therefore, their concentrations in groundwater, if any, would probably be below the Practical Quantitation Limits (PQLs) of current detection techniques (Felsot, 1994).
- Low solubility of the pesticides at the site. Solubility also controls the ability of contaminants to migrate. Organochlorine pesticides have very low solubilities in water. The solubility of the pesticides found at the site range from 10⁻³ mg/L to 10⁻¹ mg/L (Howard 1991; Hazardous Substances Data Bank 1992). These concentrations correspond to between one part of contaminant and one hundred parts of contaminant dissolving in one billion parts of water. These very low solubilities decrease the likelihood of migration through groundwater of pesticides that may be sorbed from the soil (Howard, 1991; ADA 1995).

3.3 Hydrogeologic Characteristics of the Site

- Low Infiltration Rate. The site is located in a relatively low precipitation area, approximately 7.6 inches per year (CH2MHILL 1992), which reduces infiltration of moisture into the soil. This site also has a healthy vegetative ground cover which allows much of the precipitation to transpire back to the atmosphere, rather than infiltrate. The low permeability of the fine grained soils combined with the small amounts of infiltrated water restrict the downward migration of contaminants in the unsaturated zone (Fetter, 1993; Felsot 1994).
- The pesticide Low hydraulic conductivities of the contaminated soil. contaminated soil at the washdown site is present between the surface and 10.5 ft below the surface. The soil column is mottled and consists largely of discontinuous layers of silt, silty clay and clay. The lower portion of this interval is saturated by groundwater. Typically, these fine grained soils exhibit low hydraulic conductivity. The saturated hydraulic conductivity of the contaminated interval at the site is estimated to be on the order of 0.1 ft/ day (Freeze and Cherry 1979; Fetter, 1993). The groundwater gradient in the vicinity of the washdown area is 0.004 ft/ft (Maxim, 1995). The effective porosity of the this soil matrix is likely to be in the range of 15% due to the high clay content. Consequently, using Darcy's law, the rate of contaminant transport in the contaminated interval beneath the Richardson washdown area is calculated to be less than one foot per year. This low rate of advective transport by groundwater minimizes the probability that any detectable contaminants in groundwater could migrate from the site before being reduced to undetectable concentrations by dispersion and sorption.
- Comparison of hydraulic characteristics between the upper and lower aquifers.

 The low hydraulic conductivity of the upper aquifer silty interval is in sharp contrast with the underlying aquifer. This contrast can be seen in the soil

samples where there is a sharp contact between the upper and lower aquifers. The underlying aquifer between 9 ft and 19 ft below grade consists of coarse grain sands and gravels. This coarse grain matrix results in a greater hydraulic conductivity and higher groundwater flux than is seen in the overlying fine grain silty aquifer. The hydraulic conductivity of this aquifer is estimated to be 100 ft/day, about three (3) orders of magnitude greater than the 0.1 ft/day estimated for the overlying silt aquifer (Freeze and Cherry, 1979). The groundwater flux in the lower aquifer is estimated to be approximately 1920 cubic ft/day, about three (3) orders of magnitude greater than the 0.960 cubic ft/day estimated for the overlying silt aquifer (Maxim, 1996-Appendix A).

Lack of preferential flow paths. Preferential flow paths in the unsaturated zone, which address the flow of water through macropores characteristic of structured soils, would allow pesticide residues to be found in groundwater within days to weeks after an application. While the most important factors in the mobility of chemicals in the soils are precipitation amounts, infiltration or recharge rates, soil structure, and organic carbon content, preferential flow studies indicate chemicals can move to lower depths very quickly in some circumstances (Felsot, 1994). Such findings are attributed to flow through large, discontinuous macropores even without the soil first being saturated. In these circumstances, a chemical would be detected in groundwater soon after application. The fact that no pesticides were detected in both the shallow (4 ft to 9 ft) and the deeper zones (10 ft to 20 ft), even though pesticides were found in the soil at these depths (to 10.5 ft), suggested that preferential flow is not an operative mechanism at this site (Felsot, 1994). The lack of preferential flow paths, the hydrophobic nature of the material and the sorptive capacities of the soil resulted in the absence of pesticides in the groundwater.

4.0 DISCUSSION

The technical information presented in the previous section supports institutional controls and long term monitoring as an appropriate remedial action at this site. Hydrogeological characteristics of the washdown site combined with the physicochemical properties of the organochlorine pesticides limit the likelihood of contaminant transport at this site. The low hydraulic conductivity of the fine-grained soils and low groundwater gradient minimize the velocity and volume of water moving within the subsurface. This reduced volume and velocity of groundwater hinders the advective transport of contaminants even if the contaminated zone is flooded due to seasonal fluctuations in the water table elevation. The physicochemical characteristics of the pesticides found at this site preclude migration of contamination by any of the available transport mechanisms and render them essentially immobile in this environment. The pesticides adsorb strongly to soils, especially the fine-grained, clayey soils at this site, and are highly hydrophobic (insoluble in water). Thus, there is a low probability that these pesticides will leach from the soil into the groundwater.

These characteristics of high adsorbance and low solubility also explain the extended persistence of organochlorine pesticides in soils at the site. Since the pesticides are strongly sorbed to soil particles and are minimally soluble, they are also less available for microbial metabolism which preferentially attacks dissolved constituents. Consequently, pesticides are extremely persistent. Dieldrin, for instance, has been detected in soil more than seven years after its release (Howard, 1991). The molecules of these organochlorine pesticides simply prefer to remain attached to the surfaces of the soil matrix than to dissolve into the groundwater.

5.0 CONCLUSIONS

Data collected for the RI/FS and additional work performed during the fall of 1995 show that groundwater is not contaminated with pesticides at the Richardson Airway This is true although the soil at this site is contaminated washdown site... concentrations of pesticides which exceed the MTCA Method B/protective of groundwater concentrations. The hydrogeological characteristics of the Richardson Airway site and the inherent chemistry of the pesticides themselves immobilized the pesticides in the site soil. Since there are no down-gradient receptors and the RI/FS and additional data collected show that the groundwater both in the contaminated upper silty interval and the underlying gravel is not contaminated, a remedial action such as excavation is not required. Institutional controls combined with long term monitoring are sufficiently protective of human health and the environment at this site without the complete removal and disposal. Institutional controls will ensure that future use of the site will minimize exposure to the public to the pesticides through direct contact or groundwater use. Monitoring will be required to confirm that no future groundwater contamination occurs. Institutional controls together with a monitoring program constitute an appropriate and effective method of protecting public health and the environment at this site.

6.0 WORK TO BE PERFORMED

This section of the CAP outlines the elements of a long term monitoring program to be implemented at the Richardson Airway washdown site as part of the recommended remedial action.

6.1 Background

Prior to the preparation of the CAP, Maxim drilled two (2) groundwater monitoring wells, MW-2A and MW-3A, completed in the shallow silt zone, in the washdown site, adjacent to the deeper monitoring wells, MW-2 and MW-3. These wells were drilled in the most highly contaminated areas described in the RI/FS. Maxim then sampled pesticides in the two new shallow wells and the four existing deep wells, added analyses for VOCs and petroleum hydrocarbons, measured water level elevations, and prepared groundwater gradient maps (Maxim, 1995a & b). Sample analysis results for pesticides, VOCs, and petroleum hydrocarbons were below detection limits for constituents analyzed. In addition, four (4) new down-gradient monitoring wells, MW-4A, MW-5A, MW-6A, and MW-7A, were completed in the shallow silt zone. Additional work at the site during November 1995, included abandoning the old dry well and the wells at the Burn Pit area, cleanup of the two contaminated catch basins and the removal of the drums from the site. Drums containing contaminated soil were transported to Terrace Heights sanitary landfill subsequent to approval by Yakima County authorities.

6.2 Monitoring Well Network

Figure 2 shows the locations of monitoring wells at the site. The locations of the most recently installed monitoring wells at the washdown site were adjacent to the most contaminated soil at the site. The locations of the newly installed perimeter

wells were chosen based on the flow direction determined from previous sampling events so that any occurrence of pesticide contamination of groundwater would be detected (Maxim, 1995a). Since no groundwater contamination was detected at the site in the area of highest soil contamination, there is no reason to expect groundwater contamination in the down-gradient perimeter wells. If, however, any contamination does occur, Ecology's Site Manager shall be consulted and additional remedial actions will be considered.

6.3 Field sampling Plan

- Evaluate each well to determine the integrity of the well seal and cap to insure no contamination will enter the well from the surface.
- 2. Monitor the wells on a quarterly basis. Obtain quarterly water level measurements in all of the wells in the washdown site and perimeter, accurate to one-hundredth of a foot (0.01 ft). Collect representative groundwater samples from the down-gradient shallow wells (MW-4A, MW-5A, MW-6A, MW-7A) twice a year, in the spring and in the fall during seasonal high water table. Obtain twice a year a representative groundwater sample from the deep perimeter down-gradient well (MW-4). The timing for sampling this well will be concurrent with sampling the shallower wells:
- 3. Analyze groundwater samples for Organochlorine Pesticides per EPA Method 8080.
- 4. Survey newly installed wells to determine the latitude and longitude and report to Ecology in the first quarterly report.
- Perform groundwater monitoring for a period of five years. After two years, evaluate the data with Ecology Site Manager and the PLPs. If groundwater analysis results in the first two years are all below detection limits (ND),

consider reducing the groundwater sampling events. Groundwater monitoring including quarterly water level measurements and the preparation of groundwater flow directions will continue for the five year period. If groundwater flow direction will change at any time during the three remaining years, groundwater sampling will resume.

6.4 Reporting Requirements.

All analytical results shall be reported in the following manner:

- A brief report explaining the procedures used, anything unusual noted during sampling, the condition of each well, and discussion of the data will be submitted within 45 days of each sampling event.
- 2. All detected constituents will be presented in tables and graphically showing changes over time, if appropriate.
- 3. Analytical results will be reported in micrograms per Liter (ppb).
- A water table contour map showing groundwater elevations and flow direction will be prepared for each sampling event.
- 5. Copies of all data sheets received from the laboratory including all QA/QC will be submitted to Ecology as stand alone documents.
- 6. The Ecology Site Manager shall be notified within 5 working days of reported results should pesticides be discovered in any of the monitoring wells.

REFERENCES

Abbott, D. 1995, Personal communications, Mr. Don Abbott, Washington State Department of Ecology-Central Region, Yakima washington. with Rachel Tauman, Maxim Technologies, Inc., Yakima, Washington

ADA, laboratories, 1995., Personal communications ADA Chemical Laboratories, Oklahoma with Rachel Tauman, Maxim Technologies, Inc., Yakima, Washington

CH2M Hill, 1993., RI/FS Draft Report Richardson Airway Inc., Yakima, Washington.

Felsot, A., 1994., Assessment of the expected behavior of pesticides at the Richardson Airway inc., site in Yakima. In: *letter to City of Yakima September 29, 1994.*

Fetter, C. W. 1993, *Contaminant Hydrogeology*. New York: Macmillan Publishing Co.

Freeze, R. A., Cherry, J. A. 1979., Groundwater. Prentice Hall

Hazardous Substances Data Bank. National Library of Medicine. Washington, D.C. 1992.

Hiltbold, A. E. 1986., "Persistence of pesticides in soil." In *Pesticides in soil and water*. 3rd ed., ed. W. D. Gunenzi, 203-222. Madison, Wisconsin: Soil Science Society of America.

Howard, P. H. 1991., Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Volume III: Pesticides. Lewis Publishers.

Maxim Technologies, 1995a., Groundwater Gradient Maps, Richardson Airway Inc., washdown site, Yakima, Washington.

Maxim Technologies, 1995b, Proposal for Soil Remediation, Richardson Airway Inc., Yakima, Washington

Maxim Technologies, 1996., Groundwater Flux Calculations, Richardson Airway Inc., Yakima, Washington

WAC 173-340, 1993, *The Model Toxic Control Act Cleanup Regulations*, Washington State Department of Ecology, Olympia, Washington, p. 173.

APPENDIX A

: ÷

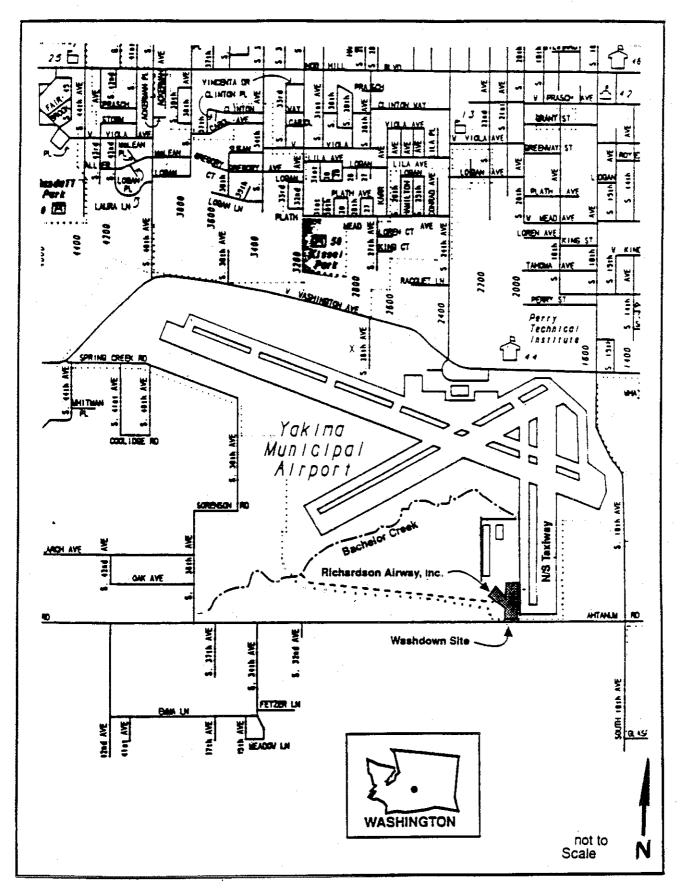
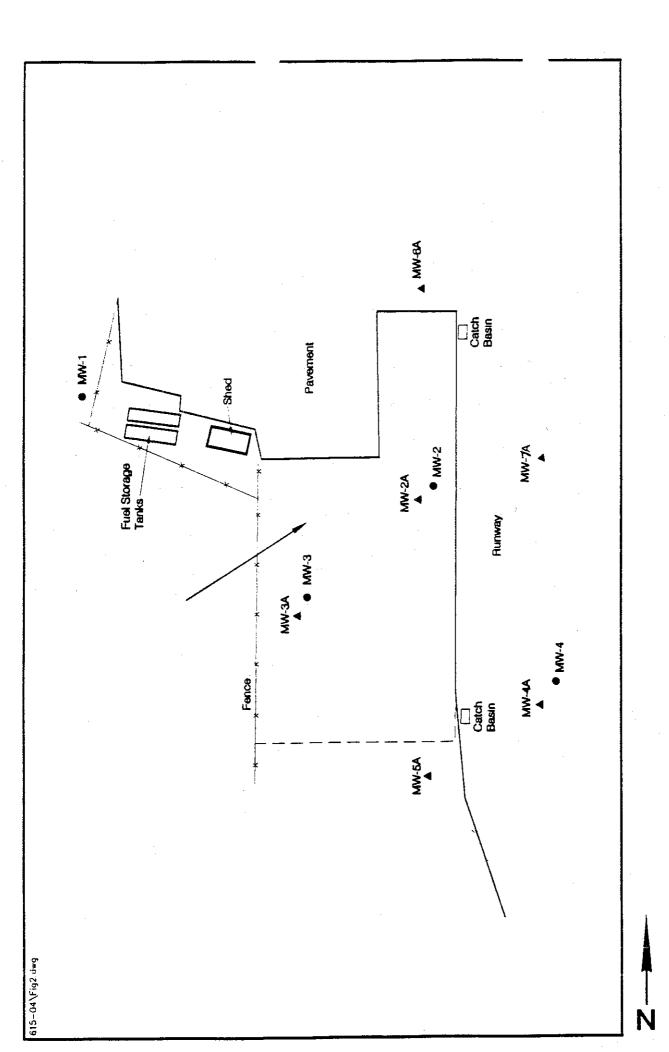



Figure 1
RICHARDSON AIRWAY, INC.
LOCATION - YAKIMA AIR
TERMINAL AND RICHARDSON AIR INC.

Site Map Richardson Airway Inc. Washdown Site Yakima, Washington

FIGURE 2

Shallow Monitoring Well

Deep Monitoring Well

Direction of Groundwater Flow

MAXIM 615.04

8

Darcian Flow

Q=KAdh

Cross sectional Area (A)
Estimated Length 25 Cross Section from 71/FS Foure 2-1
L= 171 ft

Saturated Thickness of Aguster (B)

Upper Aguster 0-1044 268

3-1044

Lower Ann 3er 30 pt , 100 pt

A = LB

Coss-sutional Area of Upper Aquistr A= 171ft (10ft) = 1710ft2

Cross-sectional Area of Lower Aquist:

A= 171 ft (20ft): 2420 ft2

Az: 171 ft (50ft): 2550 ft4

Az: 171 ft (100ft): 17, 100 ft2

Hydraulic Gradient (dh/d1)

dh = Difference in voter Livels Tetween MW-1; MW-4

dl = Distance Telween Mw-10 Mw-4 Estimated from work Plan Figure 2, 1 g/10-95

dh = 1047.52/1-1044.25/4 6.07×10-3

1h 1046.17-1045.14 2 234×10-3

dh ava = 474×10-3

dh avg = 4/20 x/3 3

Hydranlie Gradient of Upper Aquiser is not determined because a datum has not yet been established for the wells completed in this aquiser

MAXIM

Groundwater Flux:

Upper Aquise
$$Q = \frac{l_{sol}}{d_{sol}} \left(\frac{l_{sol}}{l_{sol}} \right) 17/0 ft^{2} \left(420 co^{-3} \right) = 0.960 ft^{2}/d$$

$$= 351 ft^{2}/gr$$

$$= 2620 gal/gr$$

EXHIBIT C

RESTRICTIVE COVENANT Richardsons Airways

AFTER RECORDING RETURN TO:

RESTRICTIVE COVENANT Yakima Air Terminal Yakima, Washington

The property that is the subject of this Restrictive Covenant is the subject of a remedial action under chapter 70 105D RCW. The cleanup action to be performed at Richardson's Airways ("Site") is described in the Cleanup Action Plan ("CAP") which is an appendix of Consent Decree No. DE_______ The Site is legally described as follows:

Commencing at the northwest corner of sec. 2, T. 12 N., R. 18 E.W.M.; thence south 89°53'29" east along the north line of the NW¼ of said section a distance of 2013.08 feet; thence south 00°25'05" east a distance of 1531.05 feet to a point in the north-south fence line west of the north-south runway, said point being the true point of beginning. Thence north 00°25'05" east along said fence line, and the extension thereof a distance of 186.27 feet; thence north 89°02'42" east a distance of 62.17 feet; thence north 03°01'46" east a distance of 77.20 feet; thence north 88°54'21" east a distance of 27.33 feet; thence south 03°42'46" east a distance of 263.63 feet; thence south 89°34'55" west a distance of 109.28 feet to the point of beginning.

Situate in the City of Yakima, Washington, Yakima County, state of Washington.

The remedial action undertaken to clean up the property (hereafter the "cleanup action") is described in the Remedial Investigation/Feasibility Study ("RI/FS") submitted by the Yakima Air Terminal and Richardson's Airways, Inc. to the Washington State Department of Ecology's ("Ecology") Central Regional Office. This document is on file at Ecology's Central Regional Office in Yakima, Washington. This Restrictive Covenant is required by Ecology as defined in WAC 173-340-440 because the cleanup action resulted in residual concentrations of pesticide products which exceed Model Toxics Control Act cleanup levels for soil protective of groundwater established under WAC 173-340-720(2) and 740(2).

The undersigned, City and County of Yakima, are owners as tenants in common of real property in the County of Yakima, state of Washington, hereafter referred to as the "Site". The pesticide contamination that is the subject of this Restrictive Covenant is described in the above-referenced report. The property owners make the following declaration as to limitations, restrictions, and uses to which the Site may be put, and specify that such declarations shall constitute covenants to run with the land, as provided by law, and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Site.

Section 1: Pesticide-contaminated soil is located at the "washdown" portion of the property, which location is described above, in meets and bounds, and in the above-mentioned RI/FS.

Remediation or removal of the contaminated soil must be addressed before the owners or successor owners alter, modify, or remove any portion of the identified site in any manner that exposes the contamination. Any plans for alteration, modification, or removal that may expose the contamination shall be submitted to and approved by Ecology or its successor agency prior to such actions.

Section 2: The integrity of monitoring wells placed on the property for the purpose of groundwater monitoring shall be maintained during the period that monitoring is required in Consent Decree No. Should future construction activities on the property require abandonment or removal of monitoring wells, such removal or abandonment shall not occur without the prior written approval of Ecology. Said monitoring wells shall be replaced in a manner approved by Ecology.

<u>Section 3:</u> The owners of the property shall not plow, disc, till, or disturb the surface of the Site. The owners shall maintain a vegetative cover on the Site in order to reduce the fugitive dust from the Site. This cover may be "weeds," or any native or exotic vegetation which will grow without the application of irrigation water. The vegetative cover may be mowed.

Section 4: The owners of the property must give written notice to Ecology, or to its successor agency, of the owner's intent to convey any interest in the property. No conveyance of title, easement, lease, or other interest in the property shall be consummated by the property owners without adequate and complete provision for continued groundwater monitoring and compliance with this Restrictive Covenant. Copies of this Restrictive Covenant shall be furnished to any transferee of such real property interest.

Section 5: The owners or successor owners shall allow authorized representatives of Ecology, or its successor agency, the right to enter the property at reasonable times for the purpose of evaluating compliance with the Cleanup Action Plan and carrying out its duties under chapter 70.105D RCW. Duties include but are not limited to the right to take samples, inspect remedial actions conducted at the property relating to the contamination identified in the above-referenced RI/FS, and to inspect records that are related to the cleanup action.

<u>Section 6:</u> Until the Method B cleanup levels, which are protective of groundwater, are attained in the soil, this property shall not be utilized for residential use.

Section 7: The owners of the Site and any successor owners reserve the right under WAC 173-340-440 to record an instrument which provides that this Restrictive Covenant shall no longer be of any further force or effect. However, such an instrument may be recorded only with the consent of Ecology, or its successor agency. Ecology, or its successor agency, may consent to the recording of such an instrument only after appropriate public notice and comment.

Section 8: The owners shall obtain approval from Ecology, or its successor agency, prior to the construction of any well on the property and prior to the withdrawal of any groundwater from

the property. The owners may pump or remove groundwater from the monitoring wells installed on site only for the purpose of purging and collecting groundwater samples for analysis.

Section 9: The owners must notify and obtain approval from Ecology, or its successor agency, prior to any use of the property that is inconsistent with the terms of this Restrictive Covenant, or the Consent Decree and its attachments and amendments. Ecology, or its successor agency, may approve any inconsistent use only after public notice and comment.

SITE OWNER	
Yakima Air Terminal	
Date	
SITE OWNER	
Richardson's Airways, Inc.	
Date	

f:\ \Richair\covent Rch

-

EXHIBIT D

IMPLEMENTATION SCHEDULE Richardsons Airways

				•				
		·				·		
			·					
•	* 1							
							e e	

EXHIBIT D IMPLEMENTATION SCHEDULE RICHARDSON'S AIRWAYS

Week From Effective Date of Decree	
Name Project coordinator	
Draft QA/QC Plan	
Ecology Review	
Final QA/QC Plan	
Draft Sampling and Analysis Plan (S&A)	
Ecology Review	
Final S & A Plan	
Draft Public Participation Plan (PPP)	
Ecology Review	
Final PPP	
File Deed Restriction	
Comence sampling	
	. !

			,		
		·			
	·				
·					
·					

EXHIBIT E

GROUNDWATER SAMPLING DATA SUBMITTAL REQUIREMENTS
Richardsons Airways

			•				
						• .	
					÷		
							e
				٠			
		•					
÷							

January 27, 1993

TO:

Persons Collecting Ground Water and Other Data at MTCA Sites:

FROM:

Carol Fleskes, Program Manager

Toxics Cleanup Program

SUBJECT:

Cleanup Information No. 91-1: Ground Water, Soil, Sludge,

and Sediment Data (Environmental Data)

Purpose

The purpose of this memorandum is to establish consistency and procedures for organizing, reporting, transmitting, and storing and retrieving surface water, ground water, soil, sludge, and sediment data (environmental data). These procedures will improve Ecology's ability to cleanup contaminated sites by making meaningful data readily available to the public, legislature, management, project managers, and site workers.

Applicability

These procedures apply to all environmental data collection activities required by the Model Toxics Control Act and Regulations. Exceptions may be made for low risk sites as determined by the Ecology project Banager.

Background

Currently, very little of the environmental data collected for the state at toxic cleamup sites is available in a readily usable form. With only a few exceptions, these data are submitted to the department in the form: of voluminous paper reports. This form precludes the staff from performing rapid, accurate and many times meaningful analysis of spatial and temporal trands of the data. In addition, the evaluation of environmental data cannot always be effective because of missing and/or improper pertinent information.

This procedure establishes appropriate methods to ensure that data submitted to Ecology is encoded, stored, and presented in a magnetic media formet (diskette) so that data can be consistently used by our staff. This procedure will reduce data analysis time when compared to using laborious, time consuming hand methods of the past. Today, at most of the larger sites and many of the smaller sites, these data are processed using computers: by the FIP's and consultants. This procedure will generally require the data-be-rearranged and in somecases additional data items collected...

± .≂Ω₂

The results of receiving digital data in a consistent man. , will allow exchange of environmental date with EPA and between Ecology programs. This format is a super set of that developed by EPA. It is being used by other Ecology Programs.

Standardization of the data will mean that a broad range of computational, statistical, graphical and modeling software will be readily available to summarize and analyze the data. Standardized report will be available for the first time in the program.

Responsibilities

The attached procedures shall be required for all of the environmental data collection activities as follows:

o Directly by TCP

o By any contractors or consultants tasked by TCP

o By "potentially liable parties" acting under terms of a consent decree or order

Implementation of the procedures shall be by incorporation of the appropriate language into contracts, work plans, orders, consent decrees or other appropriate documents by the site project manager or contract officer.

Data shall be entered into the Ecology data base by a data administrator. There is an inter-program team that established new parameters. At this time, Bill Myers at headquarters is acting in this capacity and as the TCP representative to the team.

Depending on the availability of a wide area network, the data would be directly or indirectly available to staff and other data users. At this time, the Site Cleanup Section is developing-links-from the present data_____ base program to other statistical, graphical and analytical software packages.

Also attached is a model letter which is sent, along with a diskette, to... anyone using our format to submit environmental data. These diskettes are also available to scaff. To obtain a copy call Bill at the talephone number shown on the letter. . . .

KC: Attachments ""

> week and the same of the back ste mannetal and siere . . :26---...... 3.........

o at.... " in " tas

And the second second second second

SITE DESCRIPTION AND SAMPLE DATA SUBMITTAL REQUIREMENTS

1. Media

Required data must be submitted on HS-DOS'(version 5) or compatibly-formatted diskettes. The diskettes may be 5 1/4 inch (or 3 1/2 inch) either: double sided, double density; or double sided, high density:

2. Data Formats

The SITE DESCRIPTION FILE. FIELD SAMPLE FILE and the LABORATORY SAMPLE FILE are quote, comma delimited ASCII files used as the standard former for transferring sample data to and from Ecology (LOTUS WKI files and Ashton Tate DBF files may be substituted for ASCII files). The files will include the fields in the format and order listed (C-Character, N-Numeric, D-date(Character may be substituted in non DBF or WKI format).

The following Appendices are attached to standardize information entered into required files (see following appendices):

- A. Matrix Codes
- B. Sample Source Codes
- C. Collection Method Codes
- D. Chemical Data Dictionary (Standardizes Spelling, STORET P-codes.. etc entered into the SAMPLE ANALYSIS FILE.
- E. Laboratory Qualifiers
- F. State Plane Zones (N or S)
 (NOTE: Copy of RGW 58.20 provided for reference)
- G: County Fips Codes
- H. Hydrologic Unit Map

Submittal

:,:3⁻2:.

Computer diskattes containing the SITE DESCRIPTION FILE, FIELD SAMPLE FILE and/or the LABORATORY SAMPLE FILE, clearly labeled for Project and Originator shall be submitted in duplicate, along with a backup hards or copy of the diskatte contents.

ATTICE

February-17.71393

1-205

FIELD DEFINITIONS FOR SITE DESCRIPTION FILE

*Wells and Borings must include all Fields except as noted optional. Underlined Fields are required for all stations.

			DEFINITION
FIELD	TTPE	WIDTE	
REP DATE	.	10	Reporting data (mm/dd/yyyy).
REP NAME	C	48	Reporting entity, data submitted by.
PRJ NAME	C	48	Project, site, or facility name:
STA TYPE	c	12	Station type (Ground water, Surface wtr. Sediment, Soil, Sludge, Biological or Air).
STA_USE ,	c	1	Well use (USGS codes) O-observation, W-water withdrawal, X-waste disposal, D-drain, T-test hole, E-geothermal, P-oil/gas, U-unused, R-recharge, Z-destroyed.
WTR_USE	c	1.	Water use (USGS codes) W-water quality/level monitoring, D-devacering, N-industrial, S-stock supply, B-bottling, I-irrigation, Q-aquaculture, U-unused, C-commercial supply, H-domestic supply P-public supply, J-industrial cooling, F-fire protection, Z-other.
DATA_REL	c	1	Data Reliability (USGS codes) C-field checked. L-poor location. U-unchecked.
STA ID	С	12	Well ID number.
PRI STA	C	15	Ecology primary station code. To be obtained from Ecology TCF.
SEC_STAL	G	12	Additional station code (previous well numbers, alternate or other: well designations).
SEC_STA2	. G-	12.	Additional station code (if any):
SEC STAI	C	12	Additional station code (if any).
STATE PIPS	C	2	State FIPS code (WA-53).
			IUED:

FIELD	TYPE	WIDTH	DEFINITION
COUNTYFIPS	C	3	County FIPS code (use state county code, Appendix F).
STATE CHAR	C	2	State (WA).
COUNTYCHAR	¢	16	County.
OUN NAME	c	30	Monitoring well owner name.
OWN DT	D	8	Date of ownership of well (mm/dd/yyyy).
OWN ADD	C	60	Address of owner.
DRILLER	С	30	Name of Driller.
	*		
STA DESC	С	48	Activity Site, Sample location, or Well location description (for example: "East of Bldg. 2" or "SE corner, intersection 6th & Seneca").
LOC METHD	c .	- 48	Method of determination of station location coordinates (Note: survey to known horizontal datum is required).
LAT	N	8	Latitude OPTIONAL (degrees-minutes-seconds-tenths).
LONG	n	9	Longitude OPTIONAL (degrees-minutes-seconds-tenths).
STPCO NORT	Я	12	Northerly state plane coordinates REQUIRED (nearest ft).
STPCO EAST	N	12	Easterly state plane coordinates REQUIRED (nearest ft).
STPCO ZONE	G	1	State plane coordinates: state plane : :: zone REQUIRED (N or S).
LAND_NET	G **	20 🕆	Land net location of well (Township, Range, Section, 1/4-1/4 Sec.). Use USGS 1/4-1/4 section alphabetic designator A through R OPTIONAL.

SITE DESCRIPTION FILE CONTINUED ...

February 17, 1993

CONTRACTOR CONTRACTOR STREET

FIELD	TYPE	VIDIA	DEFINITION
		 -	
UTH_NORTH	H	9	UTM grid system coordinates: North (meters) OPTIONAL.
UTM_EAST	н	8	UTM grid system coordinates: East (meters) OPTIONAL.
UTH_ZONE	G	2	UTM grid zone.
HAP NAME	c	24	Name of USGS map and scale covering: the sampling location(e.g., Yakima-100K, 1977).
BORE_DEF	N	8	Depth of original hole drilled if applicable (nearest 0.01 ft).
WELL_DEP	N	8	Well depth (nearest 0.01 ft).
WTR_ELEVI	N	8	Water level elevation at time of installation (nearest 0.01 ft).
WLEV_DAT1	ַ	10	Date of water level elevation measurement (nm/dd/yyyy).
HEAS ELEV	Я	8	Heasuring point (reference point) elevation (nearest 0.01 ft).
MEAS DESC	c .	48	Measuring point description.
DATUM	С	48	Measuring point datum (The source of the altitude used to survey in the sampling location altitude i.e. City of Tacoma Sever Survey 1921).
LEA COM	c	240 .	Comments, depth and water level data.
ALTITUDE	N	8	Approximate land surface elevation XXXX.XX (ft) at the Station Location.
DEPTOWIR1	n	8	Water depth at time of install. (nearest 0.01 ft).
CONST_DT	. D	10	Date of installation (mm/dd/yyyy);
HOREIST	č	1.	More than one open interval (Y/H).

SITE DESCRIPTION FILE CONTINUED ...

\$.I.

FIELD	TYPE	AIDIR	DEFINITION
UP_DEPTH	H	5	Depth to top of open interval (ft below measuring point).
TOM_DELIH	N .	8	Depth to bottom of open interval (ft below measuring point).
CONST_COM	C	240	Comments, construction details.
HTD_CON	c	1	Hethod of construction (USGS WATSTORE codes) A-main rotary, B-bored/augured, C-cable tool, D-dug, H-hydraulic rotary, J-jetted, P-main percussion, T-trenching, V-driven, W-drive wash, R-reverse rotary, X-mud rotary, Z-other.
FILT_LEN	H	5	Length of filter pack (nearest 0.01 ft).
FILT_MAT	c	48	Type of filter pack material and size of material (e.g., Sand 200 _ mesh).
DIA_BOR	N	8	Boring diameter (In).
DIA_CAS	N	8	Casing diameter (in).
CAS_HAT	C	1	Casing material (USGS WATSTORE codes) B-brick, C-concrete, D-copper, F-teflon/fluorocarbon, G-galvanized iron, I-wrought iron, M-other metal, P-pvc/plastics, R-rock/stone, S-steel, T-tile, - W-wood, U-coated steel, Z-other.
DIA_OPN	Я	6	Diameter of open interval (in). To any
LEN_OPN	Н	6	Length of open interval (nearest: 0.01 ft).
TYP_OPH	G	1	Type of open interval (USGS WATSTORE: codes) P-perforated/slotted screen; L-louvered/shuttered screen,

STEE DESCRIPTION FILE CONTINUES: ...

FIELD	TYPE	VIDTE	DEFINITION
TAL OHL	c	1	Material type, open interval (USGS WATSTORE codes) R-stainless stael, F-teflon/fluorocarbon, G-galvanized iron, P-pvc/plastic, B-brass/bronze, W-wrought iron, S-stael, T-tile, G-concrete, M-other metal, Z-other.
INT_COMM	С	240	Comments, open interval.
LOG_AVAIL	c	1	Well log data available? (Y/N).
TYP_LOG	C	10	Type of well log (USGS WATSTORE codes) A-time, B-collar, C-caliper, D-driller, E-electric, F-fluid conduction, G-geologist, H-magnetic, I-induction, J-gamma ray, K-dip meter, L-lateral log, M-microlog, N-neutron, O-microlateral log, P-photo/video, Q-radioactive, S-sonic, T-temperature, U-gamma gamma, V-fluid velocity, X-core, Z-other.
LOC DOC	С	240	Log data source documents (e.g. Remedial Investigation Report).
OTHER_DOC	c	240	Other data source documents.
roc_roc	C	60	Location of well log (e.g. Ecology Southwest Regional Office).
AQUI_TEST	С	1	Aquifer testing performed (Y/N).
PUMP_DATA	c	240	Pump data such as: Type, Manufacturer, Horsepower, and depth set .
ANDAT AVAL	c	1	Analytical or Statistical data available (Y/N).
PROGRAM	c	9	Ecology program (TCP, WQFA, WQ, other).
GEN_COMM	C	240	General comments.
HUCODE	c	8	See US Geological Survey Hydrologic - Unit Map 1974-Washington.
AGE_USE	C		Agency use (USGS codes) A=Active, I=inactive, O=inventory only.

** END OF SITE DESCRIPTION FILE ***

FIELD DE FIELD : IONS FOR

*All	de Require		
yie:	TT:	VIDIE	INITION
PRI		15	assigned by Ecology TCP Program.
STA_		12	te well ID no. or other signation.
•	4K 1/11	12	rveyed coordinates reported in
Y_L:	\$ C	12	ne State Plane Coordinates (to nearest foot).
STP:		1	- North: S - South.
יס"םי		5	ear of Reference datum either 1929 = 1983 and which system L Lat Long r S for State Plane Coordinate ystem.
roc_t		48	Reference datum from Map or survey A.g., 1983 North American Datum (see Appendix F, RCW 58.20)
DEPT		8	Sapth to water (in 0.01 ft) at time of sampling.
UP_DE		7	sapth (nearest 0.01 ft) to the top of the interval sampled (e.g. Top of well screen or core interval).
LOW_		7	Depth (nearest 0.01 ft) to the bottom of the interval sampled (e.g. Bottom of well screen or core interval).
WTR_F		8	Water level elevation (in 0.01 ft) at the time of sampling.
ACEDIC	* *	8	Agency requesting sampling data
SAMP!	r	8	Date of well sampling (mm/dd/yyyy):
SAMP		4	Time of well sampling in military time.
SAMP	'n.	8	Sample ID code or no.

TETI DUD:

1-211

Pobruszy 17, 1993

FIELD	TTTE	WIDTH	DEFINITION
FILTERED	L	1	Was the sample field filtered?
Yes(Y) or			No(N)
ANALYSIS_HTHOD	c	15	EPA Analysis method descriptions (i.e EPA Method 601).
HEAS_ELEV	N	8	Surveyed elevation of the measuring point used to determine water level depths and elevations. (nearest 0.01 ft).
MEAS_DESC	С	48	Description of the well measuring point used (e.g., top of casing, file mark on casing, etc.).
DATUM	С	48	Vertical datum used to reference elevations (e.g., MSL and source/date of information).
HATRIX	c	2	Type of sample; water, sediment, soil, other (from Appendix A).
SOURCE_COD	c ,	2	Physical environment sampled (from Appendix 5).
COLLECTMET	c	2	Collection method code (from Appendix C).
FIELD_PH	N	5	The pH value taken at time of sampling (e.g. 11.67)
FIELD_COND	N	7	The conductivity value in unhos.
FIELD_TEMP	N	5	The field temperature of the sample degrees celsius.
PURGE_METH	C	1	Purging method: B = Bail. P= Pump
PURGE_VOL	c	2	Number of boring volumes removed prior to sampling (liquid).
PRJ_NAME	C	48	Project, site, or facility name.

** END OF FIELD SAMPLE FILE ***

February 17, 1993

FIELD DEFINITIONS FOR LABORATORY SAMPLE FILE

*All Fields Required

PIELD	TTPE	AIDIR	DEFINITION
PRI_STA	c	15	Ecology Monitoring Well No. will be assigned by Ecology TCP Programs
STA_ID	. ℃	12	Site well ID no. or other designation.
SAMPLE_DAT	D	8	Date of well sampling (mm/dd/yyyy).
ANALYZ_DAT	۵	8	Date the sample was analyzed (mm/dd/yyyy)
SAMPLE_ID	С	8	Sample ID code or no.
LAB_NAME	С	10	Laboratory performing analysis.
LABSAMP_ID	С	10	Sample number assigned by the laboratory.
CONSTITUEN	С	30	Chemical constituent names as defined in Ecology's Chemical Dictionary (see attached Appendix D)
CAS_ID	С	12	Chemical Abstract Systems ID (see Appendix D).
P_CODE	c	5	STORET Parameter Code (see Appendix D).
RESULT	H	12	Detected chemical concentration result.
UNITS	C	10	Units of measurement (e.g., µg/Kg).
QUAL	C	4	Contract Laboratory Program chemical data qualifiers (such as U, J, R, UJ, etc.). Non-Contract Lab Program qualifiers, such as less-than signs ("<") orasterisks, are not acceptable (see Appendix E).
QA_QUAL	c	4	Qualifier associated with QA Review of Lab report (See Appendix E).
LIMIT	G	10	Lab instrument detection limit.

LABORATORY RAMPIR FILE CONTINUED

FIELD	TYPE	AIDIR	DEFINITION
DILUTION	N	6	Amount the sample was reduced and diluted to accommodate analysis (i.e. 10X,20X).
FILTERED	: L	1	Was the sample lab filtered? Yes(Y) or No(N)
ANALYSIS_HTHO) C	15	EPA Analysis method descriptions (i.e EPA Method 601).
HATRIX	C	2	Type of sample: water, sediment, soil, other (from Appendix A).
Prj_name	C	48	Project, site, or facility name.

THE END OF TAROPATORY SAMPLE PILE ***

APPENDIX A: MATRIX CODES 10 Water - Total 11 Water-Dissolved 40 Sediment/Soil 45 Semi-Solid/Sludge 70 Sediment for EF Toxicity 80 Oil/Solvent 00 Other APPENDIX B: SAMPLE SOURCE CODES AND DESCRIPTIONS 00 Unspecified source 01 Unknown liquid media (drum/tank) 02 Unknown liquid media (spill area) 03 Unknown liquid media (waste pond) 10 · Water (general) 12 Ambient stream/river 13 Lake/reservoir 14 Estuary/ocean 15 Spring/seepage 16 Rain 17 Surface runoff/pond (general) 18 Irrigation canal/return flow 20 Well (general) 21 Well (industrial/agricultural) 22 Well (drinking water supply) 23 Well (test/observation/monitoring) 24 Drinking water intake 25 Drinking water (at tap) 30 Effluent wastewater (general) 31 Municipal effluent 32 Municipal implant waters 33 Sewage runoff/leachate 34 Industrial effluent 35 Industrial implant waters

38	Taugettt Lamott\boug\tescuste
40	Sediment (general)
42	Bottom sediment of deposit
44	Sludge (general)
45	Sludge (waste pond)
46	Sludge (drum/tank)
48	Soil (general)
49	Soil (spill/contaminated area

O Bore hole material

36

37

Industrial surface runoff/pond

Industrial waste pond

Sample Source Codes and Descriptions (continued)

60	Air (general)
61.	inhiant sir
62	Source of effluenc air
63	Industrial or workroom air
64	Hi-vol filter
70	Tissue (general)
71	Fish cissue
72	Shellfish tissue
73	Bird tissue
74	Mannal tissue
75	Macroinvertebrate
76	Algae
77	Periphyton
78	Plant/vegetation
80	Oil/solvenc (general)
81	Oil (transformer/capacitor)
82	011/solvent (drug/cank)
83	Oll/solvent (spill area)
84	Oll/solvent (wasta pond)
90	Commercial product formulation
95	Well drill water
96	Wall drill mud
97	Well sealing material
98	Gravel pack material
70	•

APPENDIX C:	COLLECTION HETHOD CODES	
0 0	Unknown	
10	Hand grab	
11	Plastic bucket	
12	Stainless steel bucket	
13	Brass kemmerer	
14	PVC kemmerer	
15	D.O. dunker	
16	DH 48/DH 49 Integrating sampler	
17	Van Dorn bottle	
18	Glass dip tube	
19 *	Other .	•
4.7	Other	*
20	Automatic sampler (general)	or code with the code of the
21	ISCO auto sampler	
22	•	
23	Manning auto sampler	
	Hydrostar or similar pump	
24	Submersible pump (electric)	•
25	Well point sampler (pump)	
26	Stainless steel bailer (hand)	•
27	PVC bailer	•
28	Teflon bailer	
29	Peristaltic pump	•
30	Dredge (unspecified)	
31	Dredge (Peterson)	
32	Dredge (Van Dorn)	
33	Dredge (Van Veen)	
34	Core	
35	Freeze core	<i>:</i>
36-	Bladder Pump	
J 0	Blatter Fump	at a second of the second of t
40	Hacroinvertebrate (unspecified)	
41	Picked by hand	
42	Kick net	
43	Surber	
44	Modified Hess type sampler	_
45	Rock basket	
46	Hester Dendy sampler	
. 50	Fish (unspecified)	• • <u>•</u> ,
51	Plak (shookdook ''	
52	Fish (netting)	4985434 77 L 17 L
53	Fish (hook & line)	gae ···
5 4 ::	Fish (modernt)	THE STATE OF THE
	tran (borson)	SCHIBULES - FLOR
60	Periphyton (unspecified)	•= •••
61	Rock scraping	de la financia de la faga
62	Glass slides	1275 C 10 C 10 C
46	. 04635 644046	entrange of the second of the
	a • • • • • • • • • • • • • • • • • • •	

: :

COMP_NAME	THK NO	STORET_NO	CAS_NO	UNITS
4 4 4 6 9	527.00	77562	630205	µg/L
1,1,1,2-Tetrachioroethane	1.00	34506	71558	ugh
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	2.00	34516	79345	pg/L
1,1,2,2-Tetrachioroethene	75.05	34475	127184	µg/L.
1,1,2-Trichloro2.2,1 trifluoroethane	3.00	77652	76131	ugh:
	4.00	34511	79005	ugh.
1,1,2-Trichloroethane	5.00	34496	75343	ugit
	6.00	34501	75354	hay-
1,1-Dichloroethene 1,1-Dichloroethylene	6.01	34501	75354	µgh.
1,1-Dichloropropene	546.00	77168	563586	part.
1,2,3-Trichlorobenzene	534.00	77613	87616	µ g/L
1.2.3-Trichloropropane	441.00	81610	96184	ugh.
1,2,3-Tricitionapropane	85.00	73 275	99354	porke
1,2,4-Trichlorobenzene	7.00	34551	120821	par-
, <u> </u>	536.00	7 7222	9 5636	µ g∧
1,2,4-Trimethylbenzene	100.00			_
1,2,4-Trinitrobenzene	8.00	77651	106934	har-
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	9.00	34535	95501	HOV-
•— ,	10.00	34531	107062	HOL-
1,2-Dichloroethane	68.01	34423	75092	μ α/L
1,2-Dichloromethane	11.00	34541	7 887 5	pol
1,2-Dichloropropane	482.00	81527	629141	HOL
1,2-Diethoxyethane	548.00	77340	135013	MOV
1,2-Diethylbenzene	77.02	77135	95476	por.
1,2-Dimethylbenzene 1,2-Dimethylhydrazine	582.00	73562	540738	µgA
1,2-Diphenylhydrazine	84.00	34345	122667	Har
1,3,5-Trimethylbenzene	541.00	77226	108678	MOA.
1,3,5-Trinitrobenzene	156.00	73 275	9 9354	μα/Κα
1,3-Dichlorobenzene	12.00	34566	541731	Mar-
1,3-Dichloropropene	544.00	34561	54275 6	μ ολ
1,3-Diethylbenzene	549.00	77348	141935	pgf
1,3-Dimethylbenzene	67.01	77134	108383	pg.L.
1,4-Dichlorobenzene	13.00	34571	106467	µgh
1,4-Diethylbenzene	5 50.00	77345	105055	pal.
1,4-Dimethylbenzene	475.03	77133	106423	<i>pol</i>
1.4-Dioxane	583.00	82388	123911	mg/L
1-Methylethyl ester carbamic acid	574.00	73615	615532	μολ: μολ:::
1-Methylnapthalene	211.00	77418	90120	pgA:
2 Methoxy-5-nitroaniline	584.00	73622	99558	
2 Methyleniine	5 85.00 *	77142_	95534	110k
2 Methylaniline hydrochloride	588.00	73649	636215	har-
2.Z.4-Trimethylpentane	545.00		5408401 5 94207	pol
2.2-Dichloropropane	547.00	77170	4901513	ugh_
2,3,4,5-Tetrachloropheno	1553.00	77767	+901013	No. of Lot
2,3,6-Trichiore benzeneacetic acid	575.00	85347	1746016	µol
2,3,7,8-TCDD	87.02	34875	1/40010	

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
2.3,7,8-Tetrachlorodibenzo-p-dioxin	87.00	34675	1746016	<i>µ</i> g/L
2,3-Dichloropropylene	88.00	77166	78886	MOA.
2.4,5-T Methyl Ester	89.00	39740	93785	JOA_
2.4,5-TB	554.00	82650	93801	JOKO
2,4,5-TP (Silvex)	91.00	39760	93721	POA_
2,4,5-TP Methyl Ester	90.00			
2,4,5-Trichlorophenol	14.00	77687	95954	ush
-2,4,5-Trichlorophenoxyacetic acid	319.00	39740	93765	سماوير
2,4,6-Trichlorophenol	15.00	34621	88062	/QA
2.4,6-Trimethyl-1-1,3,5-Trioxane	92.00	7 7322	123637	Mar-
2 .4-D	9 3.00	39730	94757	HOA
2,4-D Methyl Ester	93.01	3 9730	94757	HOA
2,4-DB (Water, Total)	5 55.00	38745	94828	MB/L
2,4-Dichlorophenol	16.00	34601	120832	µg/L_
2.4-Dichlorophenoxy butyric acid	235.00		94826	ugh_
2,4-Dimethylphenol	17.00	34606	105679	Mar-
2,4-Dinitrophenot	18.00	34616	51285	HIGA.
2,4-Dinitrataluene	19.00	34611	121142	MSA.
2,4-Toluenedismine	587.00	78888	95807	MGA
2,5-Dinitrotoluene	94.00	77637	619158	45h
2,8-Dinitrotoluene	20.00	34628	606202	ugh_
2-Butanone	376.03	81595	78933	HOAL.
2-Chloroethyl vinyl ether	22.00	34576	110758	HOR.
2-Chloronaphthalene	23.00	34581	91587	ug/L_
2-Chlorophenol	24.00	34588	95578	₽BA
2-Chlorotoluene	535.00	38680	9 5498 "	μgA.=
2-Cyclohexene-1-one	488.00	930697		_
2-Ethyl hexanoic acid	196.00	82114	149575	Mari-
2-Hexanone	25.00	77103	591786	port.
2-Methyl-2H-benzotriazole	576.00	85813	29385431	µgA
2-Methyl-4,6-dinitrophenol	96.00	34657	534521	
2-Methyl-4-chlorophenoxyacetic acid	36 7.02 9 5.00	39151 78133	94746	hay-
2-Methyl-4-pentanone		78133 34606	108101	
2-Methyl-p-creeci	17.01 25.00	77416	105679 91576	HOLL
2-Methylnsphthalene	27.00	77152	9 5487	HOA.
2-Methylphenois 2-Nitroanilines	28.00	30195	8 8744	parties.
2-Nitrophenoi -	29.00	34591	88755	**************************************
2-Pentanone :	97.00	77060	107879	-
2-chlore-1-hydroxybenzene	24.02	34588	95978	***
3.3'-Dichlorobenzidine	98.00	34631	91941	- 11-0-5
3,3-Dimethoxybenzidine	588.00.=	• • • • • • • • • • • • • • • • • • • •	199904	polici
3,3-Dimethylbenzidine	589.00	73580	119937	
3.4-Benzofluoranthene	99.00:	34230	205992	
3.4-Dichlorobenzyi	571.005		1966581	44
N-methylcarbarna +				-24
3.5-Dichierabanasie ecid:-	240.00= ·		51365±: ·	
3-Chiore octanes	528.00 E		:*: ī	3.00°
	•		* # 19 45 B	- vidin

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

01121130			CAR NO.	UNITS :
COMP_NAME	1HK_NO	STORET_NO	CAS_NO	UMIS
	30.00	78300	99092	ugh
3-Nitroaniline	208.01	39360	72548	HOA.
4,4'-DDD	209.01	39365	72559	MOAL.
4,4'-DDE	210.01	39370	50293	JOA
4,4'-DDT	592.00	101611		MOA.
4,4-Methylene	332.00			
bis(n,n-dimethyi) an+	96.01	34657	534521	pgA
4,6-Dinitro-2-methylphenol	101.00	82225	88857	ugh
4,6-Dinitrophenol	570.00			pg/
4,7-Methanoisobenzofuran-1(3H)	570.00	•		,
-one+	102.00			
4-Bromophenoxybenzene	103.00	34636	101553	ug/L.
4-Bromophenyi phenyi ether	590.00	• • • • • • • • • • • • • • • • • • • •	3165933	HOL
4-Chloro-2-methyl analine	530.00			
hydrochi +	591.00	· ·	9 5692	µgA
4-Chloro-2-methyl aniline	31.00	34452	5 9507	µg/
4-Chloro-3-methylphenol	31.01	34452	5 9507	port.
4-Chloro-m-cresol	464.00	78303	106478	mg/Kg
4-Chloroaniline	33.00	34641	7005723	49A
4-Chlorophenyl phenyl ether	540.00	77277	106434-	HSA
4-Chiorotoluene	34.00	78133	108101	µgA
4-Methyl-2-pentanone	17.02	34606	105679 .	ust
4-Methyl-o-cresol	35.00	77146	106445	µgA
4-Methyiphenoi	35.00	73278	100016	Jaka
4-Nitroaniline	37.00	34646	100027	pol.
4-Nitrophenol	104.00	04043		
5-Bromopyrimidine	256.00	-	•	JOA
5-Hydroxy Dicamba	281.01	39033	1912249	µgA
AAtrex	38.00	34205	83329	MSA
Acenaphthene	39.00	34200	208968	MA
Acensphthylene	385.02	81815	30560191	μ ελ .
Acephate	40.00	81552	67641	pol
Acetone	215.00	79193	6247659	115h
Acifluorien	105.00	34210	107028	pg.
Acrolein.	593.00	38576	79061 -	jel
Acrylamide	106.00	34215	107131	JOA.
Acrylonitrile	273.00	77825	15972608	
Alachier	273.01	77825	15972608	
Alanex	274.00	39053	116063 -,	
Aldicarb	320.00	82587	1646884	
Aldicarb sulfone	318.00	82586	1646873,	
Aldicarb suifoxide	107.00	39330	309002	- polici
Aldrin	453.00	00410	471341	
Alicalinity as CaCO3, Total	248.00	00410	471341	mak
Alicelinity, Total (CaCO3)	611.00	01519	12587461	
Alpha Particle - Activity, gross	511,00	01106	7429906	
Aluminum, Dissolved	510.00	01105	7429906	
Aluminum, Total	108.00	01104	7429905	- 194
Aluminum, Total Recoverable	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- 3ip-

February 47, 1993

APPENDIX D: CHEMICAL DIGIONARY

01/27/93

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
Barrary.	351.01	3 8685	5 5389	HQAL
Baytex Benefin	283.01	39002	1861401	pg/L
	283.02	3 9002	1851401	Mar-
Benfluralin Beniata	285.01	38705	17804352	µgA.i
Benomyl	285.00	38705	17804352	pol
Bensuiide	288.01	82197	741582	Harti
Bentazon	286.00	38710	25057890	ugh_
Benzialanthracene	130.01	34526	56553	ugh
Benzene -	41.00	34030	71432	por.
Benzene	572.00	٠	-	• •
1-chloro-4-(methylsulfony +		•		_
Benzidine	125.00	39120	92875	μαΛ.
Benzo(a)anthracene	130.00	34526	56553	µQ/L
Benzo(a)pyrene	126.00	34247	50328	μα . L.
Benzo(b)fluoranthene	127.00	34230	205992	ugh.
Benzo(b/k)fluoranthene	5 31.00	34242	207089	µgA
Benzolg,h,ilperyiene	1 28.00	34521	191242	Har.
Benzo(ghi)perylene	128.01	34521	191242	Har-
Benzo(k)fluoranthene	129.00	34242	207089	µg/
Benzoic acid	42.00	77247	65850	poli-
Benzoi	41.01	34030	71432 98077	uga
Benzotrichloride	596.00	47	100516	μ ολ μ ολ
Benzyi alcohol	43.00	77147	100515	ugh
Benzyl chloride	597.00	73520	7440417	µg/L_
Beryllium, Dissolved	515.00	01010	7440417	μg/L
Beryllium, Total	514.00	01012	7440417	usit.
Beryllium, Total Recoverable	131.00-	00998_	12587472	pCIA.
Beta Particle Activity, gross	612.00	85817	741582	µg/L
Betasan	288.00	82197 00425	471341	mg/L.
Bicarbonate as CaCO3	454.00	00440	71 523	mgA.
Bicarbonate as HCO3	133.00	38454	141662	µgA
Bidrin	328.01	78 883	42576023	una
Bifenox	382.01 499.00	00310	100100	mgA
Biochemical Oxygen Demand	44.00	34278	111911	μα λ
Bis(2-chloroethoxy)methane	45.00	34273	111444	ugh.
Bis(2-chloroethyl)ether	46.00	34283	108601	and a
Bis(2-chloroisopropyi)ether	577.00	103321		
Bis(2-ethylhexyl) ester	377.00			4
hexanedici + -	140.00	39100	117817	μολ
Biel2-ethylhexyliphthalate	598.00	34268	542881	pal:_
Bisichioromethyi)ether	465.01	34596	117840	
Sistn-octyliphthalate	134.00	01020	7440428	police.
Serve	313.02	70314	1897456	//2
Bravo	289.00	82198	31440 9	/ Pal
Bromacii Bromest	386.01	38855	300765	polici.
Bromide(dissolved)	135.00	82298	24959679	1/8/
Bromobenzane	542.00	81555	108861	
At Attendance and seasons and				

February 17, 1993...

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS-
Ametryn	275.00	82184	834128	ugh:
Amiben	275.00	82051	133904	POA_
Aminocaris -	277.00	38404	2032599	PBA.
Aminotriazole	278.00	73509	61825	HOA:
Amitrale	278.01	73509	61825	µgA.≞
Ammonia-N, Total as-N	109.00	00610	17778880	mg/L_
Aniline	110.00	77089	62533	μgA.=
Anion Balance	111.00	1 22		
Anthracene	112.00	34220	120127	μ αΛ Ξ
Antimony, Dissolved	524.00	01095	7440360	μg/L
Antimony, Total	113.00	01097	7440360	µg/L
Antimony, Total Recoverable	21.00	01268	7440360	µg/L
Aquatin	105.01	34210	107028	µg/L∷:
Aramite	5 94.00		140578	µg/L
Arocior 1016	114.00	34671	12674112	µg/L
Arocior 1221	115.00	39488	1104282	por.
Arocior 1232	116.00	39492	11141165	POA_
Arocior 1242	117.00	39496	53469219	μαλ .
Arocior 1248	118.00	39500	12672298	por.
Arocior 1254	119.00	39504	11097691	HOL.
Arocior 1260	120.00	39508	11096825	Have:
Arsenic, Dissolved	3 22.00	01000	7440382	μ ολ :
Arsenic, Inorganic (dissolved)	121.00	01000	7440382	μοΛ .:
Arsenic, Total	137.00	01002	7440382	pol.
Arsenic, Total Recoverable	122.00	00978	7440382	HOL:
Asbestos	123.00	34225	1332214	#BA.
Atraton	280.00	82185	1610179	/10A=
Atrazine	281.00	3 9033	1912249	ug/ti-
Avadex	532.00	73386	2303164	mg/Kg
Avenge	330.01	78882	43222486	poli
Azinphos-Ethyl	282.00	81292	2842719	µgA_
Azinphos-Methyl (Guthion)	359.01	39580	86500	µgA.
Azobenzene	595.00	77625	103333	µg/
Azodrin	383.01	81890	6923224	pol:
SFB .	459.00	04.000	600701	% X:
BHC.	132.00	81283	608731	#pl:=
800	499.01	. 00310		· · · · · · · · · · · · · · · · · · ·
Balan	283.00	39002	1861401	MOL.
Banvei -	284.00	82052	1918009 7440393 -	ref.
Barium, Dissolved	508.00	01 005 01 007	7440383	
Barium, Total	509.00	-	7440383	-
Barium, Total Recoverable	124.00	01 009 3 87 10	25057890	pol:
Basagran	286.01		3 3245 39	2000
Basain -	354.01"	79194	8 8857	Marin.
Besanite:	337.01	81287 38537	114261	
Savoa	424.01 207.03-	812 93	5 6724	
Baymbe	307.02	· 01433	30727	

COMP_NAME	THK NO	STORET_NO	CAS_NO	UNITS.
Bromochloromethane	533.00	32105	124481	usa.
Bromodichloromethane	47.00	32101	75274	Mar.
Bromeform	48.00	32104	75252	49A
Bromomethane	49.00	34413	74839	MOA.
Bromoxynii (Water, Whole)	556.00	70979	1689845	pal
Butachior, Water/Whole/Recoverable	6 33.00	30235	23184669	MAL.
Butanone	375.02	81595	78 933	HOL
Butyl benzyl phthalate	136.00	34292	85687	pot-
Butylate	290.00	81410	2008415	ush-
Butyibenzenes, Total	292.01	45049		ugh_
C3-Alkylbenzenes, Total	291.00	45048		HOL
C4-Alkyibenzenes, Total	2 92.00	45049	•	ugh
CEC	161:01	81356		100G
CIPC	3 05.01	81322	101213	havr "
COD	492.01	81319		ω α Λ-
Cadmium, Dissolved	406.00	01025	7440439	μα/L.
Cadmium, Total	407.00	01027	7440439	110h
Cadmium; Total Recoverable	138.00	01113	7440438	110h
Calcium	521.00	00910	7440702	mgA as CoCC3
Calcium, Dissolved	520.00	00915	7440702	mgA.
Calcium, Total	141.00	00916	7440702	mg/L
Camphor (ACN)	287.00	81324	76222	ugh_
Captan	293.00	39640	133062	MOA.
Carbaryi	294.00	77700	63252	MA.
Carbazole	329.00	77571	86748	MA.
Carbendazim -	295.00	3 8735 -	10605217	HOL-
Carbofuran	296.00	81405	1 563862 7 5150	MOR.
Carbon disulfide	50.00	77041	5 6235	µgA.
Carbon tetrachionde	51.00	32102	7 440440	ugh
Carbon, Total Organic	250.00	00680 00445	3812326	mg/L
Carbonate as CO3	142.00	00430	471341	mgA.
Carbonate as CaCO3	455.00	3 9786	786196	µg/L
Carbophenothion	297.00	7 0987	5234684	ing.
Carboxin	13 9.00 143.00	/036/	3204004	-
Cation Belance	161.00	81356		reg/100G
Cation Exchange Capacity	492.00	81319	•••	·
Chemical Oxygen Demand	276.01	82051	133904	190A ·
Chloramben	144.00=	39350	57749	
Chlorians—	298.00	81281	143500	404
Chlordeon -	299.00	77953	6164983	
Chlordimeform Chloride, Total	145.00	00940	16887006	met
Chlorine, Total Residual	146.00	50060	7782505	meti
Chlorobenzene	52.00	34301	108907	Mal.
Chlorobenzilste:	300.00	39460	510156 .	# #
Chlorocyclohexane	86.00	77217	542187	Jak-
Chlorodistomomethane»	58.01**	32105	124481	
Chlorostians	53.00=	34311	75003	

	JHK_NO	STORET_NO	CAS_NO	UNITS
COMP_NAME	01114_14	-	_	
	82.03	39175	75014	:31.
Chloroethene	82.02	39175	75014	μαΛ.
Chloroethylene	54.00	32106	67663	MOVE
Chloroform	55.00	34418	74873	μgA:
Chloromethane	301.00	38423	2675776	HOL
Chloroneb	303.00	77548	76062	HOL.
Chloropicrin	305.00	81322	101213	pg/L
Chloroprophsm	302.00	38429	5836102	HBL
Chloropropylate	313.01	70314	1897456	µg/L
Chlorethalonii	304.00	77969	2921882	ugh
Chlorpyrifos	314.02	39770	1861321	pal.
Chloritist	506.01	01032	18540299	µg/L
Chromium VI	516.00	01030	7 440473	POPL
Chromium, Dissolved	506.00	01032	18540299	µg/L
Chromium, Hexavalent	491.00	01034	7440473	pg/L
Chromium, Total	147.00	01118	7440473	pg/L
Chromium, Total Recoverable	148.00	34320	218019	μ α Λ.
Chrysene	74.03	77128	100425	µg/L
Cinnamene	306.00	82565	7700178	ug/L.
Clodrin	307.01	81293	56724	µg/L:
Co-Rai	149.00	01037	7440484	µg/L
Cobalt	505.01	31616		#/100ml
Coliform, Fecal	150.00	31628		#/100ml
Coliform, Total	599.00		00080	std. units
Color	449.02		00094	µmhos/cm
Conductivity	408.00	01040	7440508	µg/L.
Copper, Dissolved	442.00	01042	7440508-	µg/
Copper, Total	152.00	01119	7440508	μg/L.
Copper, Total Recoverable	600.00		-	std. units
Corresivity	307.00	81 293	5 6724	µg/L
Coumaphos	308.00	39140	8801589	<i>μ</i> gΛ_
Creosote	306.01	82565	7700176	μg/L.
Cratoxyphos	309.00	77223	9 8828	μe/L
Cumene	310.00	81757	21725462	
Cyanazine	153.00	78248	57125	µgΛ.
Cyanide Displayed Std Method	279.00	00723	57125	٠٠٠٠٠
Cyanide, Dissolved Std Method	311.00	81892	1134232	HOR_
Cyclosts	254.00	81570	110827	118A-
Cyclohexane D-D Mix -	441.01	81610	96184	pol-
	315.00	38761	96128	HOL_
DBCP" DCNA-	316.00	38447	99309	µgh.
DCOD	168.01	80116		meA
DCPA	314.01	39770	1861321	μgA:-
DDD	208.00	39360	72548	µgA
DDE	209.00	39355	72559	µgA
DDT	210.00	39370	50293	µg/
DDVP	317.00~	7 3071	62737	"pol:
UNIT		the second second		•

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
DEF	324.00	81295	78488	μgΛ.
OMPA	336.00	81285	299854	Mark-
ONSP	337.00	81287	88857	Mar-
DNOC	338.00	34657	534521	ugh:
DO	169.01	00299	7782447	mgA
Daconii	313.00	70314	1897456	MOA:
Dacthal	314.00	39770	1861321	Har.
Dalapon	312.00	38432	75990	µgA_
Dasanit-	350.01	38684	115902	ugA
Demeton	325.00	3 9560	8065483	<i>1</i> 124
Devrinol	387.01	79195	1529999	Mg/L.
Oi-n-butyiphthalate	155.00	39110	84742	µg/L
Di-n-octylphthalate	465.00	34596	117840	HOA.
Diallate	5 32.01	7 3386	2303164	mg/Kg
Diazinon	158.00	3 9570	333415	µg/L
Dibenz(a.h)anthracene	159.01	3 4556	5 3703	μ αΛ.
Dibenz(a,h)anthracene-d	14557.00	7 9040	53703	mg/Kg
Dibenzo(a,h)anthracene	159.00	34556	53703	HOR.
Dibenzofuran	57.00	81302	132549	494
Dibromochloromethane	58.00	32105	124481	HOL-
Dibromochloropropane	315.01	38761	96128	yor.
Dibromodichloromethane	489.00	77779	594183	HOA.
Dibromomethane	160.00	81522	106934	μ αΛ .
Dicamba	284.01	82052	1918009	uga
Dichloran	316.01	38447	9 9309	µg/L.
Dichlorobromomethane	47.01	32101	7 5274	µg/L
Dichlorodifiuoromethane	162.00	34668	75718-	pol-
Dichloromethane	6 8.02	34423	75092	hay-
Dichloroprop	244.00	30190	120365	μ α/ L.
Dichlorvos (DDVP)	317.01	73071	62737	MOVE
Dicofol ·	3 27.00	39780	115322	HOL
Dicrotophos	328.00	38454	141662	HOL
Dicyclopropyi methanone	5 79.00		·	Har
Dieldrin	164.00	39380	60571	<i>j</i> ol
Diesei	472.00	78939	68476346	µgA
Diethyl ether	165.00	81576	60297	pol:
Diethylphthalata	59.00	34336	84662	HOL
Diethylphthalata-d4	558.00 -	20000	00000	غ
Difenson:	397.01	39022	80331	HOL
Difenzoquat	330.00	78882	43222486	µgh
Disopropyi ether	154.00 =	81577	108203	HOL
Dimecron •	414.01	78881 48314	13171216	HOF-
Dimethosts	331.00 40.02 ±	4 63 14 81552	60515 67 64 1	HOA
Dimethyl katone	168.00	815 80	624 920	μgA
Dimethyldisuifide	60.00	3 434 1	131113	pg/ pg/
Dimethylphthalate	314.03	3 9770	1861321	HOL.
Dimethyltserachierophthaiata	338.01	3 4657	534521	
Dinitro-o-cresci -	ة للكاتب		7 377 4.	

01/27/93			040 810	4.55
COMP_NAME	THK NO	STORET_NO	CAS_NO	UNITS
	337.02	81287	88857	µgh_
Dinoseb	332.00	38783	78342	µg/L
Diexatrion	87.01	34675	1746016	ugh
Diaxin	333.00	78004	957517	ugh
Diphenamide	167.00	77587	101848	48h
Diphenoloxide	334.00	78885	85007	ugh_
Diquat	601.00			ugh:-
Direct Black 38	602.00		2802482	µg/L
Direct Blue 6	603.00		16071866	µg/L
Direct Brown 95.::	168.00		80116	mg/L
Dissolved COD	169.00	00299	7782447	mg/L-
Dissolved Cxygen	170.00	00679	7440440	q/100GAL
Dissolved TOC	642.00			Mart.
Disutoton suifone	171.00	81888	298044	μg/L.
Disulfoton (Di-Syston)	643.01	81030	2497078	hav-
Disulfoton sulfoxide	365.01	38831	8018017	<i>μ</i> φΛ
Dithane	446.01	38917	137304	hall-
Dithiocarbamate	335.00	39650	330541	MOVE.
Diuron	312.01	38432	75990	hay-
Dowpon	304.01	77969	2921882	pal
Duraban	339.00	81294	944229	pol.
Dyfonate	340.00	39014	5 2686	µg/L
Dylox	449.01	00094		/mhos/cm
EC	8.01	77651	106934	μg/L
ED8	344.00	81290	2104645	nay-
EPN	345.00	81894	759944	pal.
EPTC	341.00-	34361	959988	_µg/L-
Endosulfan	341.01	34361	9 59988	, μοΛ
Endosulfan i	342.00	34356	33213659	
Endosuifan II	172.00	34351	1031078	µgr
Endosulfan Sulfate	343.00	38926	145733	por.
Endothali	174.00	39390	7 2208	por.
Endrin	173.00	34366	7421934	µg/L
Endrin Aldehyde	490.00	78008	5349470	5 µsr.
Endrin Ketone,	333.01	78004	957517	HOA.
Enide	604.00	106898	• "	HOA.
Epichlorohydrin	345.01	81894	759944	pol.
Eptam	428.01	38542	2625945	O MOA
Etazine	346.00	77004	64175	pol-
Ethanol	74.04	77128	100425) of
Ethenyibenzene	175.00	39398	563122	JOL
Ethion	634.00-	81758	131944	A Maria
Ethoprop	176.00	81585	141786	JOA.
Ethyl acetate	605.00		140885	/DL
Ethyl acrylate:	346.01	77004	64175	pol.
Ethyl alcohol	95.01	78133	105101	
Ethyl isopropyl ketone	411.01	39034	72560	pal.
Ethylen			-	4
			•	•

APPENDIX D: CHE 01/27/93

TIONAR'

COMP_NAME	•	RET_NO	ÇAS_NO	UNITS
Ethylbenzene	į.	71	100414	μα/L
Ethyles) dibromide	† 7	31	106934	ugh_
Ethyles dictione	•	5 31	107062	ugh.
Ethylesa glycol		23	107211	µgh_
Ethylena thioures		∄ 28	96457	HOR -
Ethylidane thiourss		328	96457	µga_
Evik .		: 184	834128	HOAL
Fecal Caliform, MF		31816		100mi
Fenamishos		38929	22224926	ugh.
Fenanciol				µg/L
Fensulathion	•	38684	115902	uga.
Fenthian		38685	5 5389	nav-
Fenuran		38468	101428	μα Λ :
Ferba: 1		38806	14484641	µg/L
Ferric 3+)		01045	7439896	µg/L_
Ferror 3(2+)	?	01045	7439896	μ οΛ
Fluch ratio	3	79194	3324539	µgh
Flüoranthene	is a	34376	206440	ugh.
Fluorene	•	34381	86737	mar
Fluore sceintSodium:	•		518478	_
Fluori le	*	00950	16984488	mg/L
Fluorreturon	•	38811	2164172	por.
Fluric Ine)		59756604	pol-
Foaming Agents	ď	01288		mg/L
Folex		39019	150505	- HOVE
Folos: C.		46351	133073	pol-
Fonosos	:	81294	944229	Hall.
Form 3lde - 118	. .	71880	50000	mg/L::
Freor 11	3	77652	76131	polici
Freor, 12. sion	ا ق	. 34668	75718	pg/L
Furacian	2 31	81405	1563662	µg/L
Furazelic	(30	67458		ughi.
Furius a			*******	µgA
Funn 🕸		00077	60568050 9 6111 5	Mar.
Gard-Will	10.183	38877		4-4-
Gard 🗯	438.01	38559	5915413 6 842596	# OL
Gascin:	471.00		1610179	pal. pal. pal.
Gest %	280.01	82185 79 743	1071836	real de
Glypt≋ _	358.00	- 77004	84175	ing
Grain 1	346.02	39580	86500	end ?
Guth	359.00	00900	471341	mgA: CoCO3
Harding tal	248.00	39410	76448	and the
Heptaix	181.00 180.00	39420	1024573	100 Z.
Hepf to cook	182.00	81589	25339564	· · ·
Hep 🚳	183.00	39700	118741	100 m
Here of means	183.00. =	34391	87683	INA
Hear at stadior a	03.00 -	- 135 1		

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
Ususahlamanulahanaa	132.01	81283	608731	µg/L
Hexachiorocyciohexane Hexachiorocyciohexane (aipha)	265.04	39337	319848	ugh
Hexachlorocyclopentadiene	64.00	34386	77474	pg/L.
Hexachloroethane	65.00	34396	67721	Martin.
Hexazinone	360.00	38815	51235042	19A
Hydram	394.02	82199	2212671	POR_
Hydrazine	184.00	81313	302012	mg/L
Hydrocarbons, Total	473.00	81336		mg /L ∴
Hydrocarbons, Total Fuel	462.00			
Hydrocarbons, Total Petroleum	461.00	46116	14280309	.mg/ <u>t.:"</u>
Hydroxide:	185.00	71830	14280309	mg/k
Hydroxide as CaCO3	456.00		•	<u>.</u>
Hyvar	289.01	82198	314409	have
IPC	423.01	39052	122429	ugh.
Imidan	361.00	39800	732116	part.
Indeno(1,2,3-cd)pyrene	186.00	34403	193395	har-
IntStd: 2.4,6-Tribromophenol	559.00	34719	118796	Har.
IntStd: Hexabromobenzane	560.00			
ion Balance	451.00			% –
loxynii	561.00		16898341	mar_
Iron, Dissolved	323.00	01048	7439896	ust
Iron, Total	188.00	01045	7439896	pol.
Iron, Total Recoverable	362.00	00980	7439896	hay"
Isobutyibenzene	552.00	77334	538932	μα Λ
Isophorone	66.00	34408	78591	μα/ Ε
Isopropyl carbanilate	423.02	39052	122429	ush.
Isopropyibenzene (Cumene)	309.01	77223	98828	pol
Karmex	335.01	39650	330541	ush
Kepone	298.01	81281	143500	µg/L_
Kerb	419.01	39080	23950585	mg/Kg.
Kerosene	383.00	78 878	8008206	µg/L
Kjeldahi-N, Total	249.00	00625	17778880	mg/Las N
Langüer Index	500.00			
Lead, Dissolved	402.00	01049	7439921	<i>ysh</i>
Lead. Organic	483.00			ч • ч
Lead, Total	403.00	01051	7439921	μ 9 /
Lead, Total Recoverable	189.00	01114	7439921	pol
Lindane	357.01	39340	58899	101-
Linuron	364.00	39530	330552	- الور
Lithlum	466.00	01130	7439932	police.
Lorsban	304.02	77969	2921882	1982 -
MBAS.	233.01	34790	7429905	made.
MCPA	367.00	39151	94748	/OL
MCPA Dimethylamine Salt	367.01	39151	94748	104
MCPB	368.00	38486	94815	ستأور
MCPP (Water, Total)	562.00	38491	93652	pgl
MEK	376.01	81595	78933	pol.

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

MIBK MSMA 385.00 38935 2183806 µgl Magnesium as CaCO3 519.00 00920 7439954 mgl Magnesium, Dissolved 518.00 00927 7439954 mgl Magnesium, Total 191.00 00927 7439954 mgl Malathion 192.00 38530 38831 8018017 µgl Malathion Manoganese Manoganese, Dissolved Manoganese, Total Manoganese, Total Manoganese, Total Manoganese, Total Recoverable 405.00 Morcury, Dissolved 477.00 Morcury, Total Recoverable 194.00 Morsivjene Mersivjene Mesivjene Motiocarb Methodathion 374.00 78879 Methomidophos 372.00 38950 38900 39051 Methomidophos 372.00 38900 39900 Methomy Meth	COMP_NAME	1HK_NO	STORET_NO	CAS_NO	UNITS :
MSMA 385.00 38935 2183806 pp4 Magnesium as CaCO3 519.00 00920 7439954 mg4 Magnesium, Dissolved 518.00 00927 7439954 mg4 Magnesium, Total 191.00 00927 7439954 mg4 Malathion 192.00 39530 121755 pg4 Mancozeb 365.00 38835 12427382 pg4 Manganese, Dissolved 404.00 01056 7439965 pg4 Manganese, Total 193.00 01055 7439965 pg4 Manganese, Total Recoverable 405.00 01123 7439965 pg4 Marcury, Dissolved 477.00 71890 7439976 pg4 Mercury, Total 476.00 71900 7439976 pg4 Mercury, Total Recoverable 194.00 71901 7439976 pg4 Merbildathion 370.00 77226 108678 pg4 Methylidathion 374.00 78879 950378	MIRK	34.02	78133	108101	und:
Magnesium as CaCO3 519.00 00920 7439954 mgA_		_	38935	2163806	. –
Magnesium, Dissolved 191.00 00925 7439954 mgA.:: Magnesium, Total 191.00 00927 7439954 mgA.:: Malathion 192.00 38530 121755 μgA.:: Mancorab 365.00 38831 8018017 μgA.:: Mancorab 366.00 38835 12427382 μgA.:: Manganese, Dissolved 404.00 01056 7439965 μgA.:: Manganese, Total 193.00 01055 7439965 μgA.:: Manganese, Total 193.00 01055 7439965 μgA.:: Manganese, Total 405.00 01123 7439965 μgA.:: Marcury, Dissolved 477.00 71890 7439976 μgA.:: Mercury, Dissolved 477.00 71890 7439976 μgA.:: Mercury, Total 476.00 71900 7439976 μgA.:: Mercury, Total 476.00 71901 7439976 μgA.:: Mercury, Total 476.00 39019 150505 μgA.:: Methidathion 376.00 39020 8022002 μgA.:: Methidathion 374.00 78879 950378 μgA.:: Methidathion 372.00 38507 10265926 μgA.:: Methidathion 375.00 38507 10265926 μgA.:: Methoxychlor 195.00 39480 72435 μgA.:: Methoxychlor 195.00 39480 72435 μgA.:: Methyl Trithion 197.00 39790 953173 μgA.:: Methyl Trithion 197.00 39790 953173 μgA.:: Methyl Trithion 197.00 39790 953173 μgA.:: Methyl tromide 49.01 34413 74839 μgA.:: Methyl tromide 49.01 34413 74839 μgA.:: Methyl testone 376.00 81595 78933 μgA.:: Methyl testone 376.00 381552 67841 μgA.:: Methyl testone 376.00 376			00920	7439954	
Majnesium, Total 191.00 192.00 39530 121755 μαβ	_		00925	7439954	•
Malathion 192.00 39530 121755 µgA	-		00927	7439954	• -
Mancozab 365.00 38831 8018017 PGA Maneb - 365.00 38835 12427382 Jught Manganese, Dissolved 404.00 01055 7439965 Jught Manganese, Total 193.00 01055 7439965 Jught Manganese, Total Recoverable 405.00 01123 7439976 Jught Marcury, Dissolved 477.00 71890 7439976 Jught Mercury, Total 476.00 71900 7439976 Jught Mercury, Total Recoverable 194.00 71901 7439976 Jught Merphos 369.00 39019 150505 Jught Merphos 369.00 39019 150505 Jught Mestrylene 370.00 77226 108678 Jught Methidathion 374.00 78879 950378 Jught Methomidophos 372.00 38927 10265928 Jught Methomyl Phenois, Total 378.00 39480 <t< td=""><td></td><td>192.00</td><td>39530</td><td>121755</td><td>_</td></t<>		192.00	39530	121755	_
Maneb – 388.00 38835 12427382 µgA Manganese, Dissolved 404.00 01056 7439965 µgA Manganese, Total 193.00 01055 7439965 µgA Manganese, Total Recoverable 405.00 01123 7439965 µgA Marcury, Dissolved 477.00 71890 7439976 µgA Mercury, Total 476.00 71900 7439976 µgA Mercury, Total Recoverable 194.00 71901 7439978 µgA Merphos 369.00 39019 150505 µgA Merphos 370.00 77226 108878 µgA Mestrylene 370.00 78879 950378 µgA Methidathion 374.00 78879 950378 µgA Methomidophos 372.00 38927 10265926 µgA Methomyl 375.00 39480 72435 µgA Methyl Phenois, Total 378.00 45058 1319773 µ		365.00	38831	8018017	
Manganese, Dissolved 404.00 01056 7439965 μgA. Manganese, Total 193.00 01055 7439965 μgA. Manganese, Total Recoverable 405.00 01123 7439965 μgA. Marcury, Marcury, Dissolved 477.00 71890 7439976 μgA. Mercury, Total 476.00 71900 7439976 μgA. Mercury, Total Recoverable 194.00 71901 7439976 μgA. Merphos 369.00 39019 150505 μgA. Merphos 370.00 77226 108878 μgA. Methicarb 374.00 78879 950378 μgA. Methicarb 373.00 38500 2032657 μgA. Methicarb 373.00 38500 2032657 μgA. Methicarb 375.00 39921 16752775 μgA. Methomyd 375.00 39480 72435 μgA. Methoxychlor 195.00 39480 72435 μgA. Methyl Phenols, Total 378.00 45058 1319773 μgA. Methyl Trithion 197.00 39790 953173 μgA. Methyl Trithion 197.00 39790 953173 μgA. Methyl Trithion 197.00 39790 953173 μgA. Methyl Trithion 444.01 78136 25551137 μgA. Methyl Extense 49.01 34418 74873 μgA. Methyl ethyl ketone 49.01 34418 74873 μgA. Methyl ethyl ketone 376.00 81595 78933 μgA. Methyl ethyl ketone 40.03 81595 78933 μgA. Methyl n-buryl ketone 40.03 81595 67641 μgA. Methyl n-buryl ketone 40.03 81595 67641 μgA. Methyl n-buryl ketone 40.03 81595 67641 μgA. Methyl n-buryl ketone 97.01 77060 107879 μgA.	-	366.00	38835	12427382	
Manganese, Total 193.00 01055 7439865 μηλ. Manganese, Total Recoverable 405.00 01123 7439865 μηλ. Matacil 277.01 38404 2032599 μηλ. Mercury, Dissolved 477.00 71890 7439978 μηλ. Mercury, Total 476.00 71900 7439978 μηλ. Mercury, Total Recoverable 194.00 71901 7439978 μηλ. Merphos 369.00 39019 150505 μηλ. Meshylene 370.00 77226 108678 μηλ. Meshylene 371.00 39020 8022002 μηλ. Methidathion 374.00 78879 950378 μηλ. Methidathion 373.00 38500 2032657 μηλ. Methidathion 372.00 38927 10265926 μηλ. Methomidathion 375.00 39051 16752775 μηλ. Methomychlor 195.00 39480 72435 μηλ. Methyl Phenois, Total 378.00 45058 1319773 μηλ. Methyl Phenois, Total 444.01 78136 25551137 μηλ. Methyl bromide 49.01 34413 74839 μηλ. Methyl bromide 49.01 34418 74873 μηλ. Methyl chloride 55.01 34418 74873 μηλ. Methyl chloride 376.00 81595 78933 μηλ. Methyl ethyl katone 376.00 81595 67641 μηλ. Methyl n-butyl katone 376.01 34010 108883 μηλ. Methyl n-butyl katone 97.01 77080 107879 μηλ. Methyl n-butyl katone 97.01 77080 108872 μηλ.		404.00	01056	7439965	POA.
Manganese, Total Recoverable 405.00 01123 7439965 μηΛ.		193.00	01055	7439965	POR.
Mercury, Dissolved 477.00 71890 7439976 µgA		405.00			POR.
Mercury, Total 476.00 71900 7439976 µgA. Mercury, Total Recoverable 194.00 71901 7439978 µgA. Merphos 369.00 39019 150505 µgA. Mesitylene 370.00 77228 108678 µgA. Metasystox 371.00 39020 8022002 µgA. Methidathion 374.00 78879 950378 µgA. Methiocarb 373.00 38500 2032657 µgA. Methiomidophos 372.00 38927 10265926 µgA. Methoxychlor 195.00 39480 72435 µgA. Methoxychlor 195.00 39480 72435 µgA. Methyl Phenols, Total 378.00 45058 1319773 µgA. Methyl Trithion 197.00 39790 953173 µgA. Methyl Trithion 197.00 39790 953173 µgA. Methyl Evolutide 49.01 34413 74839 µgA. Methyl	Matacil	277.01	*		<i>μ</i> gΛ:
Mercury, Total Recoverable 194.00 71901 7439976 µgA	Mercury, Dissolved	477.00			pol
Merphos 369.00 39019 150505 µgA Mesitylene 370.00 77226 108678 µgA Metasystox 371.00 39020 8022002 µgA Methidathion 374.00 78879 950378 µgA Methiocarb 373.00 38500 2032657 µgA Methomidophos 372.00 38927 10265926 µgA Methomyl 375.00 39051 16752775 µgA Methoxychlor 195.00 39480 72435 µgA Methyl Phenois, Total 378.00 45058 1319773 µgA Methyl Trithion 197.00 39790 953173 µgA Methyl Trithion 197.00 34413 74839 µgA	Mercury, Total				par
Mesitylene 370.00 77228 108878 µgA Metasystox 371.00 39020 8022002 µgA Methidathion 374.00 78879 950378 µgA Methiocarb 373.00 38500 2032657 µgA Methomyl 375.00 38927 10265926 µgA Methoxychlor 195.00 39480 72435 µgA Methyl Phenols, Total 378.00 45058 1319773 µgA Methyl Trithion 197.00 39790 953173 µgA Methyl Trithion 197.00 34413 74839 µgA Methyl Trithion 197.00 34413 74839 µgA Methyl Evilyl Ketone 378.00 81595 78933 µgA Methyl isobutyl ketone<	Mercury, Total Recoverable	194.00			MOA.
Metasystox 371.00 39020 8022002 µgl. Methidathion 374.00 78879 950378 µgl. Methidathion 373.00 38500 2032657 µgl. Methomidophos 372.00 38927 10265926 µgl. Methomyi 375.00 39051 16752775 µgl. Methoxychlor 195.00 39480 72435 µgl. Methyi Phenois, Total 378.00 45058 1319773 µgl. Methyi Trithion 197.00 39790 953173 µgl. Methyi Trithion 197.00 39790 953173 µgl. Methyi Trithion 197.00 39790 953173 µgl. Methyi Trithion 197.00 34413 74839 µgl. Methyi Trithion 49.01 34413 74839 µgl. Methyi bromide 49.01 34413 74839 µgl. Methyi ethyi ketone 376.00 81595 78933 µgl. Methyi		3 69.00	· ·		
Methidathion 374.00 78879 950378 µgL Methiocarb 373.00 38500 2032657 µgL Methomidophos 372.00 38927 10285926 µgL Methomyi 375.00 39051 16752775 µgL Methoxychlor 195.00 39480 72435 µgL Methyl Phenois, Total 378.00 45058 1319773 µgL Methyl Trithion 197.00 39790 953173 µgL Methyl Trithion 197.00 39790 953173 µgL Methyl Trithion 197.00 39790 953173 µgL Methyl Sylenes, Total 444.01 78136 25551137 µgL Methyl bromide 49.01 34413 74839 µgL Methyl chloride 55.01 34418 74873 µgL Methyl ethyl ketone 376.00 81595 78933 µgL Methyl isobutyl ketone 34.01 78133 108101 µgL Meth	Mesitylene	370.00			
Methiocarb 373.00 38500 2032657 µgL. Methomidophos 372.00 38927 10265926 µgL. Methomyi 375.00 39051 16752775 µgL. Methoxychlor 195.00 39480 72435 µgL. Methyl Phenois, Total 378.00 45058 1319773 µgL. Methyl Trithion 197.00 39790 953173 µgL. Methyl Sylenes, Total 444.01 78136 25551137 µgL. Methyl bromide 49.01 34413 74839 µgL. Methyl chloride 55.01 34418 74873 µgL. Methyl ethyl ketone 376.00 81595 78933 µgL. Methyl isobutyl ketone 34.01 78133 108101 µgL. Methyl n-butyl ketone 25.01 77103 591788 µgL. Methyl paraoxon 637.00 107879 µgL. Methyl benzene 78.01 34010 108883 µgL. Methyl	Metasystox	371.00			
Methornidophos 372.00 38927 10265926 µgL Methornyi 375.00 39051 16752775 µgL Methoxychlor 195.00 39480 72435 µgL Methyl Phenois, Total 378.00 45058 1319773 µgL Methyl Trithion 197.00 39790 953173 µgL Methyl Xylenes, Total 444.01 78136 25551137 µgL Methyl bromide 49.01 34413 74839 µgL Methyl chloride 55.01 34418 74873 µgL Methyl ethyl ketone 376.00 81595 78933 µgL Methyl isobutyl ketone 34.01 78133 108101 µgL Methyl in-butyl ketone 40.03 81552 67641 µgL Methyl in-propyl ketone 97.01 77103 591788 µgL Methyl paraxxon 637.00 107879 µgL Methyl paraxxon 78.01 34010 108883 µgL Methyle	Methidathion	+ ·			
Methomyl 375.00 39051 16752775 µgL Methoxychlor 195.00 39480 72435 µgL Methyl Phenois, Total 378.00 45058 1319773 µgL Methyl Trithion 197.00 39790 953173 µgL Methyl Xylenes, Total 444.01 78138 25551137 µgL Methyl bromide 49.01 34413 74839 µgL Methyl chloride 55.01 34418 74873 µgL Methyl ethyl ketone 376.00 81595 78933 µgL Methyl isobutyl ketone 34.01 78133 108101 µgL Methyl n-butyl ketone 40.03 81552 67641 µgL Methyl n-butyl ketone 25.01 77103 591786 µgL Methyl parsoxon 837.00 107879 µgL Methyl parsoxon 837.00 34010 108883 µgL Methylene Siue Active 493.00 38260 61734 Substances: <t< td=""><td>Methiocarb</td><td>373.00</td><td>-</td><td></td><td></td></t<>	Methiocarb	373.00	-		
Methoxychlor 195.00 39480 72435 µg/L Methyl Phenois, Total 378.00 45058 1319773 µg/L Methyl Trithion 197.00 39790 953173 µg/L Methyl Xylenes, Total 444.01 78136 25551137 µg/L Methyl bromide 49.01 34413 74839 µg/L Methyl chloride 55.01 34418 74873 µg/L Methyl ethyl ketone 376.00 81595 78933 µg/L Methyl isobutyl ketone 34.01 78133 108101 µg/L Methyl ketone 40.03 81552 67641 µg/L Methyl n-butyl ketone 25.01 77103 591786 µg/L Methyl paraexxon 637.00 107879 µg/L Methylenese 78.01 34010 108883 µg/L Methylenese 198.00 77100 108872 µg/L Methylenese 493.00 38260 61734	Methomidophos	-	= = :		
Methyl Phenois, Total 378.00 45058 1319773 µgA Methyl Trithion 197.00 39790 953173 µgA Methyl Xylenes, Total 444.01 78136 25551137 µgA Methyl bromide 49.01 34413 74839 µgA Methyl chloride 55.01 34418 74873 µgA Methyl ethyl ketone 376.00 81595 78933 µgA Methyl isobutyl ketone 34.01 78133 108101 µgA Methyl ketone 40.03 81552 67641 µgA Methyl n-butyl ketone 25.01 77103 591786 µgA Methyl n-propyl ketone 97.01 77060 107879 µgA Methyl paraoxon 637.00 108883 µgA Methylene Slue Active 198.00 77100 108872 µgA Substances: 493.00 38260 61734	Methomyi	375.00			
Methyl Trithion 197.00 39790 953173 µgA Methyl Xylenes. Total 444.01 78136 25551137 µgA Methyl bromide 49.01 34413 74839 µgA Methyl chloride 55.01 34418 74873 µgA Methyl ethyl ketone 376.00 81595 78933 µgA Methyl isobutyl ketone 34.01 78133 108101 µgA Methyl isobutyl ketone 40.03 81552 67641 µgA Methyl n-butyl ketone 25.01 77103 591786 µgA Methyl n-propyl ketone 97.01 77060 107879 µgA Methyl paraexon 637.00 108883 µgA Methylene Blue Active 198.00 77100 108872 µgA Substances : 493.00 38260 61734	Methoxychlor				
Methyl Xylenes, Total 444.01 78136 25551137 µgA Methyl bromide 49.01 34413 74839 µgA Methyl chloride 55.01 34418 74873 µgA Methyl ethyl ketone 376.00 81595 78933 µgA Methyl isobutyl ketone 34.01 78133 108101 µgA Methyl ketone 40.03 81552 67641 µgA Methyl n-butyl ketone 25.01 77103 591788 µgA Methyl n-propyl ketone 97.01 77060 107879 µgA Methyl paraoxon 637.00 108883 µgA Methylcyclohexane 198.00 77100 108872 µgA Methylene Blue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl Phenois, Total				
Methyl bromide 49.01 34413 74839 µg4. Methyl chloride 55.01 34418 74873 µg4. Methyl ethyl ketone 376.00 81595 78933 µg4. Methyl isobutyl ketone 34.01 78133 108101 µg4. Methyl ketone 40.03 81552 67641 µg4. Methyl n-butyl ketone 25.01 77103 591786 µg4. Methyl n-propyl ketone 97.01 77060 107879 µg4. Methyl paraexon 637.00 34010 108883 µg4. Methylcoclohexane 198.00 77100 108872 µg4. Methylene Slue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl Trithion				
Methyl chloride 55.01 34418 74873 µgA Methyl ethyl ketone 376.00 81595 78933 µgA Methyl isobutyl ketone 34.01 78133 108101 µgA Methyl ketone 40.03 81552 67641 µgA Methyl n-butyl ketone 25.01 77103 591788 µgA Methyl n-propyl ketone 97.01 77060 107879 µgA Methyl paraexon 637.00 108883 µgA Methylcyclohexane 198.00 77100 108872 µgA Methylene Blue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl Xylenes, Total				
Methyl ethyl ketone 376.00 81595 78933 µgA Methyl isobutyl ketone 34.01 78133 108101 µgA Methyl ketone 40.03 81552 67641 µgA Methyl n-butyl ketone 25.01 77103 591786 µgA Methyl n-propyl ketone 97.01 77060 107879 µgA Methyl paraexon 637.00 108883 µgA Methylcyclohexane 198.00 77100 108872 µgA Methylene Blue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl bromide				
Methyl isobutyl ketone 34.01 78133 108101 µg/L Methyl ketone 40.03 81552 67641 µg/L Methyl n-butyl ketone 25.01 77103 591786 µg/L Methyl n-propyl ketone 97.01 77060 107879 µg/L Methyl paraexon 637.00 108883 µg/L Methylbenzene 78.01 34010 108883 µg/L Methylene Slue Active 198.00 77100 108872 µg/L Substances: 493.00 38260 61734	Methyl chloride				
Methyl ketone 40.03 81552 67641 μφλ Methyl n-butyl ketone 25.01 77103 591786 μφλ Methyl n-propyl ketone 97.01 77060 107879 μφλ Methyl paraexon 637.00 μφλ Methylbenzene 78.01 34010 108883 μφλ Methylene Blue Active 198.00 77100 108872 μφλ Substances: 493.00 38260 61734	Methyl ethyl ketone				
Methyl n-butyl ketone 25.01 77103 591786 µg/k Methyl n-propyl ketone 97.01 77060 107879 µg/k Methyl paraexon 637.00 108883 µg/k Methylcyclohexane 198.00 77100 108872 µg/k Methylene Sius Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl isobutyl ketone				
Methyl n-propyl ketone 97.01 77060 107879 #gA Methyl paraexon 637.00 #gA #gA Methylbenzene 78.01 34010 108883 #gA Methylcyclohexane 198.00 77100 108872 #gA Methylene Stus Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl ketone				
Methyl paraexon 637.00 #84 Methylbenzene 78.01 34010 108883 #84 Methylcyclohexane 198.00 77100 108872 #84 Methylene Blue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl n-butyl ketone				
Methylbenzene 78.01 34010 108883 #96 Methylcyclohexane 198.00 77100 108872 #66 Methylene Blue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl n-propyl ketone		77060	107879	• • -
Methylcyclohexane 198.00 77100 108872 Jack Methylene Blue Active 493.00 38260 61734 Substances: 493.00 38260 61734	Methyl paraexon				
Methylene Sius Active Substances: 493.00 38260 61734					<i>μ</i> 9/L
Substances: 493.00 38260 61734		198.00	77100	108872	/gra-
100.00 01529 105074 105				44304	•
Methylene bromide 160.01 81822 108934 pp4					
Methylene chloride 68.00 34423 75092 ppl					A CONTRACTOR OF THE PARTY OF TH
Metolachlor 163.00 51218452 ##6 Metribuzin 379.00 81408 21087849 ##6 Mevinphos 413.01 39610 7786347 ##6 Mexacarbsta 380.00 38507 315184 ##6 Mirex 381.00 39755 2385855 ##6 Modown 382.00 78883 42576023 ##6 Molinetes 394.01 82199 2212871 ##6			34423		Piller
Metribuzin 379.00 81408 21057649 #### Mevinphos 413.01 39610 7786347 #### Mexacarbsta 380.00 38507 315184 #### Mirex 381.00 39755 2385855 #### Modown 382.00 78883 42576023 #### Molinete 394.01 82199 2212671 ####	Transfer Tr		04400		
Mevinphos:: 413.01 38610 7,86347 7,86347 Mexacarbata 380.00 38507 315184 7,86347 Mirex 381.00 39755 2385855 7,86347 Modown:: 382.00 78883 42878023 7,86347 Molinete:: 394.01 82199 2212671 7,86347			-	·	
Mexacarosta 380.00 38507 318164 38164 Mirex 381.00 39755 2385855 pgAr- Modows- 382.00 78883 42876023 pgAr- Molines- 394.01 82199 2212871 pgAr-					
Molerate 381.00 38755 2385655 per 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*** *				-
Molinete: 382.00 /6883 42876023 /6883 Molinete: 394.01 82199 2212671 /6883					parties
MODITURE JUDINI OCIUT CCICUS I					
		34-64 €	4413	<u>4</u> 44499	THE PROPERTY OF THE PARTY OF TH

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS"
	467.00	01060	7439987	<i>μ</i> ηΛ
Molybdenum	372.01	38927	10265926	ugh
Monitor	82.04	38175	75014	MSA.
Monochloroethene	82.01	39175	75014	<i>pgl</i> i
Monochlorosthylene	383.00	81890	6923224	45A.
Monocratophos "	385.01	38935	2163806	/gl i_
Monsodium methyl arsonate	384.00	38511	150685	Mar.
Monuron	613.00	73613	10595956	11st
N-Nitroso-N-methylathylamine	614.00	73609	924163	110h=
N-Nitroso-di-n-butylamine	69.00	34428	621647	Joh
N-Nitroso-di-n-propylamine	615.00	73610	1116547	ush.
N-Nitrosodiethanolamine	616.00	73611	5 5185	μ αλ ∴
N-Nitrosodiethylamine	392.00	34438	6 2759	usk.
N-Nitrosodimethylamine	199.00	34433	8 6306	ugh.
N-Nitrosodiphenylamine	617.00	78 206	930552	ugh
N-Nitrosopyrrolidine	109.01	00610	17778880	mgA_as N
NH3-N, Total	321.01	00630	17778880	mg/L as N
NO3+NO2-N, Total	386.00	38855	3 00765	μ αλ
Naled	70.00	34696	91203	ush
Naphthalene	387.00	79195	1529999	pal.
Napropamide	388.00	38521	5 55373	pol_
Neburon	349.01	38929	22224926	JOL
Nemacure	481.00	01065	7440020	m.
Nickel, Dissolved	483.00	01067	7440020	µgh_
Nickel, Total	200.00	01074	7440020	ugh.
Nickel, Total Recoverable	321.00	00630	1 7778880	mg/Las N
Nitrate+Nitrite-N, Total	452.00	00620	17778880	mg/L as N
Nitrate-N	202.00	00615	17778880	mg/L as N
Nitrita-N	71.00	34447	9 8953	110h
Nitrobenzene	389.00	81303	1836755	pgA.
Nitrofen	618.00	5 9870		pol-
Nitrofurazone	203.00	79753	5 56887	100
Nitroguandine	391.00	77822	6 29925	pol.
Nonadecane	639.00	78064	•	Jugit
Norflurazon, in Water	206.00	5 8366	u u	
OBPA	563.00		2234131	JOL
Octachloronaphthalene	619.00	iii		
Odor	207.00	03582		met
OH & Grease	394.00	82199	2212671	
Ordram	395.00	81815	30560191	196 -
Orthone	396.00	78884	19044883	
Oryzalia	397.00	39022	80331	
Ovex:	398.00	38865	23135220	
Oxamyi Oxydisulioton (Disyston Sulphoxid		81030	2497076	pol-
PAH (Polyaromatic hydrocarbons)	620.00			• • •
PBS (Polybrominated Biphenyis)	621.00		59536651	
	219.01	76012	1335363	• -
PCB		•	,	٠٠ غو ين ٠٠

1-230

February 47, 1993.

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
PCB-1016	114.01	34671	12674112	/5 A
PCB-1221	115.01	39488	1104282	PSA
PCB-1232	116.01	39492	11141165	POA.
PCB-1242	117.01	39496	53469219	HOL_
PCB-1248	118.01	39500	12872296	POR.
PCB-1254	119.01	39504	11097691	ugh
PCB-1260	120.01	39508	11096825	pol
PCE_	75.01	34475	127184	ind-
PCNB	409.00	39029	81316	MOA.
PCP	213.01	39032	87865	MOR
PID Reading	470.00			
Paraquat	399.00	82416	4685147	ush.
Parathion	212,00	39540	56382	MOA
Parathion, Ethyl-	400.00	46315	56382	uga
Parathion, Methyl-	401.00	39600	298000	MOAL
Pebulate, Water, Whole	640.00	79192		ug/L.
Pendimethalin	222.02	79190	40487421	NSA
Penoxalin	222.00	82410	40487421	por_
Pentachlorobenzene	410.00	77793	608935	PSA.
Pentachlorophenol	213.00	39032	87865	ush.
Perchlorate	214.00	04475		_
Perchloroethene	75.03	34475	127184	mh-
Perchloroethylene	75.02	34475	127184	MOR.
Persuifate-N, Total	580.00	20024	7727540	ugh
Perthane	411.00	39034	72560	µg/L_
Phenanthrene	216.00	34461	85018	μολ
Phencapton (Water, Whole)	564.00	81289	2275141	pol.
Phenoi	73.00	34694	108952	pgA_
Phenot, 4-AAP	217.00	77128	108952	
Phenylethylene	74.02	46313	100425 298022	µgA
Phorate	218.00	81291	2310170	µgA.
Phosaione	412.00	39610	778 634 7	µg/L
Phosdrin	413.00	39 800	732116	AND CONTRACTOR
Phosmet	361.01 331.01	46314	60515	pol
Phosphamide	414.00	78881	13171216	μ αλ :=
Phosphamidon Phosphata-P, Diss Ortho	498.00	00671	7723140	mgA:es:P
Phosphate-P, Ortho	205.00	00660	14265442	mattes PO 4
Phosphorodithloic acid.	573.00	39580	88500	ref.
O:D.S-trim+	indea.			
Phosphorous-P, Total	251.00	00665	7723140	mgf. as P
Picioram	257.00	39720	1918021	pal_
Polychlaringted biphenyl	219.00 i	76012	1336363	poli
Potassium, Dissolved	517.00	00935	7440097-	met:
Potassium, Total	220.00	00937	7440087	meL
Princep:	430.01	39055	122348	/el-
Profession	415.00	38872	26399360	pol-
a a man a destino deservo a.		· - —	-	

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

COMP_NAME	HK_NO	STORET_NO	CAS_NO	UNITS
Promotes (416.00	39056	1610180	µg∕L.
Prometryn	417.00	39057	7287196	HOV
Pronamide	419.00	39080	23950585	havr -
Propachior	418.00	38533	1918167	hav-
Propane	420.00	82358	74986	hav-
Propanone	40.01	81552	67641	nov-
Propargite	421.00	82065	2312358	mgÆ∴
Propazine	422.00	39024	139402	µ o∧
Propham -	423.00 -	39052	122429	nov:-
Propoxis	424.00	38537	114261	µgA
Propyibenzenes, Total	291.01	45046		μαΛ
Propylene oxide	622.00	77011	75569	μαΛ
Prowi	222.01	79190	40487421	μαfL
Prowi. Lechate	221.00	79190	40487421	μαΛ
Prowi, Soil	223.00	85793	40487421	μ α/L .
Pyrene	224.00	34469	129000	HOA.
Pyrethrins	425.00	39930	8003347	μαΛ
Radium 226	623.00	09501	13982633	pCI/L
Radium 226 & 228	624.00	11503		pCI/L
Retens	457.00	73076	483658	ugh=
Roneet	311.01	81892	1134232	ugh_
Ronnel	427.00	39357	299843	HOT.
Round-up	426.00	39941	10718 36	μαλ
SCA	225.00			
Secburneton	428.00	38542	26259450	µg/L
Selenium, Dissolved	484.00	01145	7782492	MAL
Selenium, Total	485.00	01147	7782492_	
Selenium, Total Recoverable	225.00	00981	7782492	µg/L
Sencore	379.01	81408	21087649	µgA
Sevin	294.01	77700	63252	µg/L
Siduron	429.00	38548	1982496	Mar.
Silica (SiO2)	227.00	00992	76 31869	µg/L-
Silicate	497.00	00958		mg/L
Silver, Dissolved	495.00	01075	7440224	ug/L
Silver, Total	234.00	01077	7440224	har-
Silver, Total Recoverable	228.00 _	01079	7440224	pg/L
Simazine	430.00 :	39055	122349	. • •
Simetryn	431.00	39054	1014706	μολ. Sar.
Socium Absorption Ratio	501.00	00931	7440235	ush
Socium Chiorete	229.00	00728	7775099	mgA
Sodium. Total	450.00		7440235	und-
Solida, Total Dissolved	247.03			me/L_
Solids, Total Suspended	496.01	74016	G.,	umhosiom=
Specific Conductance (Field)	502.00			hunosiam:
Specific Conductance @ 25C (LAB	151.00			umhos/cm
Specific Conductance(fiELD)	449.00	_ 00094		humana.

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
Stirofos	432.00	38877	961115	MOL
Strontium-90	625.00	13501	10098972	pCIA_
Styrene	74.00	77128	100425	ust:
Sulfate, Total	230.00	00945	14808798	med_as SO4
Sulfide, Total	231.00	00745	18498258	meA:
Suifite, Total	232.00	00740	14265453	mgA as SO3
Sumitol	428.02	38542	28259450	POA
Supracide	374.01	7 8879	950378	ug/s=
Surfactants	233.00	03581		mg/L_
Surflan	3 96.01	78884	19044883	ugh
Surrog: 1,2-Dichloroethane-d4	460.00			%
Surrog: 1,4-Bromofluorobenzene	187.00			
Surrog: 1-Bromo-2-floroethane	157.00			
Surrog: 2-Chlorophenoi-d4 (spike)	5 65.00	9 5978		
Surrog: 2-Fluorobiphenyl	479.00			
Surrog: 2-Fluorophenoi	480.00			
Surrog: 4-Chloroaniline-d4	5 66.00			
Surrog: Dibutyichlorendate (spike)	5 67.00			
Surrog: Fluorene-d10 (spike)	568.00			•
Surrog: Nitrobenzene-d5	474.00			
Surrog: Phenoi-d5	5 26.00			
Surrog: Pyrene-d10 (spike)	377.00			
Surrog: Toluene-d8	458.00			% -
Surrog: p-Terphenyl-d14	525.00			
Sutan	290.01	81410	2008415	uga_
Swep	433.00	38555	918189	MOR
Systox	325.01	39560	8065483	pol.
T3	236.00	78166		port.
T4	237.00	51489		19h
TCE	80.01	39180	79016	POL.
TOS	247.01	70300		µg/L
TEPP	435.00	39620	107493	par.
TFH	462.01	2222		
TKN	249.01	00625	17778880	mg/L as N
TOC	250.01	00680	7440440	pol.
TOS (Calculated)	245.00	46110	14900000	
TPH	461.01	46116	14280309	mg/L.
TPN, Total Persulfate Nitrogen	580.01 4 96.00		7727540	
TSS Tabushiness	190.00	•	74016 34014181	english.
Tebuthkron Tedion	434.00	39808	116290	HOL. HOL. HOL.
Temik	274.01.	3 9053	116063 _	
Temperature, 0 C	238.00	00010	0 :	Ca.
Temperature, 0 C	239.00	00011		he:
Terbecil.	204.00	W	5902152	
Terbuthylazine	436.00	38559	5915413	pol: pol::
Terbutya-	437.00	38887	888500	9,000
	701100-	~~~~		

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

01121130				4 10 10 10 1
COMP NAME	JHK_NO	STORET_NO	CAS_NO	UNITS -
-				
Tarashina aham	75.00	34475	127184	µg/L
Tetrachloroethene	75.04	34475	127184	ugh.
Tetrachioroethylene	51.01	32102	5 6235	mar.
Tetrachloromethans	438.00	81849	25167833	HOL
Tetrachiorophenol	581.00	38877	961115	
Tetrachlorvinphos	434.01	39808	116290	har-
Tetradifon	435.01	39620	107493	µgh
Tetraethyldiphosphate	241.00	81607	109999	pg/L
Tetrahydrofuran	522.00	01057	7440280	nov-
Thallium, Dissolved	523.00	01059	7440280	ugh_
Thailium, Total Thailium, Total Recoverable	242.00	00982	7440280	Mart-
	439.01	7 8880	23564069	μ g/L
Thiophanate	243.00			
Thiosulfate	513.00	01100	7440315	NOV
Tin, Dissolved	512.00	01102	7440315	ugh.
Tin, Total	468.00	00983	7440315	por.
Tin, Total Recoverable	469.00	01150	7440328	<i>p</i> g/L
Titanium	76.00	34010	108883	MOV
Toluene	439.00	78880	23564069	mar.
Topsin-MR	478.00	34103		
Total BTEX	72.00	34103	n/a	por.
Total BTX	247.00	70300		μg/L
Total Dissolved Solids (residue)	247.02	70300		μ οΛ .
Total Filterable Residue	503.00	70353		µgA.
Total Organic Halides	486.00	81299		por
Total Organics	253.00	7 0297	K	1/100Gal
Total Solids	252.00	70318 .		% <u>i</u>
Total Solids	494.00	82080		µg/L
Total Trihalomethanes	255.00	39400	8001352	µ g/L
Toxaphene	443.01	81284	1582098	µg/L -
Treflan	440.00	38892	43121433	μ α/L
Triadimeton	551.00	50317		_
Trichlorobenzoic acid	80.00	39180	7 9018	. μg/L
Trichlorpethene	80.02	39180	7 9016	μg/L .
Trichloroethylene	83.00	34488	75694	pgl.
Trichlorofluoromethane	54.01	32106	6 7663	μαλ
Trichloromethane	340.01	39014	52686	10 min
Trichlorophon Trichloropifluoroethane	3.02	81611	26523648	/P/L
Trichiorottinitrobenzenes. Total	258.00	-		: :::::::::::::::::::::::::::::::::::::
Tricyclazole, Water, Whole	641.00	38902	41814782	
Trifluration	443.00	81284	1582098	μ ολ.
Trimethyi Benzenes, Totai	444.00	78135	25551137	/ Colonia
Trimetry phosphate	626.00		51 2561	/P
Trinitrobenzenes, Total	259.00			*
Triphenyi phosphate (Water, Wholi		77881	115866	
Trithion	297.01	39786	786196	μολ
Tritium	627.00	07000	10028178	par-
1 COURT	-			0

COMP_NAME		J i.		STORET_NO	CAS_NO	UNITS
T seadity(Lab)		2 5		82079		NTU
(SMH		28		81314	57147	mg/L_
\ #adium (Dissolv		25		10085	7440622	*
/ Ass		3		38815	51235042	MOR
V serram		4		82200	1929777	ugh_
/ amolate		4		82200	1929777	HOA
\ my acetate		8		77057	108054	HON
Varies chloride		81	• • •	39175	75014	HOL=
Vinya dichloride		4		34511	79005	40/
Varyabanzene		7		77128	100425	ugh.
\ Parie Dissoive		2	. 1			
Vol. > ® Organic €	ads	4.			7 8733	mg/L
Xyla is isomers, to Visit	note	5	\$		8 5795	µg/L_
> √ a isomers, C	hote	Ç			80353	µg/L
VISOZ						_
XVIII 4. Men		6		77134	108383	PBA
XV € - 10, 0•		en. I	,	77135	95476	49A
X 🖟 💎 💮 🗩		4	,	77133	106423	HBV.
≭yi∻ s. Total		2	3	34020	1330207	POA.
Zin issolved		î.	\$	01090	7440668	hav.
Z no otal		•	,	01092	7440666	µgh.
Ziza orai Recover		:	2	01094	7440666	HOV
Zire			つ	38912	12122677	μ α Λ
Zire			3	38917	137304	ugh
Z 4:			1	81291	2310170	ugh -
ZA			3	81285	299854	401
3 B			3	39337	319846	µg/L_
a-& fan		· ·		34361	9 59988	HOL.
3 p 😅 🗳		:		39337	319846	MOL_
aiph zene hexa:	. تُد	g. 4:		39337	319846	HOL.
aloh wdane		ŧ	ra.·	39348	5103719	Har
a.gh sulfan		,	70	34361	9 59988	Mar-
alpic ene			2	39337	319846	ust.
b-6 i		•	4 × ×	39338	319857	MOL_
b-isn			<u></u>	34358	33213659	pol.
bets			33	3 9338	319857	" JOL
bets one hexac			.01	39338	319857	pol.
bets affan-			.01	34356	33213659	#DL
beta no			02	39338	319857	µDL.
city storoethe			သ	77093	156592	#BA_
cia Morostity			.D1	77093	156592	μ 9 λ
cia- nieroprop			30	34704	10061015	µgA
cip-1 aloroprop			31	34704	10061015	- JOA
₫-∰			.00	34259	319868	pol:_
duits			.03=	34259	319868**	
delte ne haxee			.01	34259	319868 *** "	pol-

COMP_NAME	THK NO	STORET_NO	CAS_NO	U NITS
	269.02	34259	319868	سالون
delta-Lindane	357.00	39340	5 8899	HOL.
g-BHC	357.04	39340	5 8899	HOL_
gamma-BHC (Lindane)	357.03	39340	5 8899	MOR.
gamma-Benzene hexachloride	529.00	39065	5103742	HOAL_
gamma-Chiordane	357.02	39340	5 8899	HOR.
gamma-Lindana	549.01	77348	141935	118/L
m-Diethylbenzene	67.04	77134	108383	par-
m-Dimethylbenzene	67.03	77134	108383	Halle
m-Xylene meta-Xylene	67.02	77134	108383	µgA:
	539.00	78483	104518	µgKa.
n-Butylbenzene n-Octacosane	390.00	78116	630024	ugh
n-Octacosane n-Propyibenzene	393.00	77224	103651	par.
o.p'-DDT	270.00	3 9305	789026	hayr
o.p'-TDE	271.00	3 9315	53190	Part.
o-Chloronitrobenzene	6 28.00		88732	MOR
o-Chlorophenol	24.01	34586	95578	have
o-Diethylbenzene	548.01	77340	135013	par.
o-Dimethylbenzene	7 7.03	77135	95478	uar.
o-Phenylenediamine	629.00	73628	106503	μg/L==
o-Toluidine	630.00	77142	95534	par.
o-Xylene	77.01	77135	95476	µg/L-
ortho-Xylene	77.04	77135	95476	pg/L_
p.a.a.a-Tetrachiorotoluene	632.00	_		hav-
p.p'-DDD	208.02	39360	72548	HOV.
p.p'-DDE	209.02	39365	72559	μg/L
p.p'-DDT	210.02	39370	50293	μα
p.p'-TOE	272.00	39360	72548	µg/L
p-Chioro-m-cresol	31.02	34452	59507	HOR.
p-Chloronitobenzene	631.00		100005	μ αΛ
p-Crasoi	3 5.01	77148	106445	HOA
p-Diethylbenzene	550.01	77345	105055	ugh
p-Olmethylbenzene	475.04	77133	106423	
p-isopropyitoluene	5 38.00	77356	9 9876 1 00016	µgA µgKg.
p-Nitrosniine -	36.01	73278	100016	port.
p-Nitrophenoi	37.01	34646	106423	pol.
p-Xylene	475.02	77133		. units
pH	448.00	00400	106423	μολ
para-Xylene	475.01	77133	23950585	meKs:
propyzamide	419.02	39080	135988	µoKe
sec-Butylbenzene	543.00	78485 " 78448	9 8066	paka
tert-Butylbenzene	537.00	34546	156605	upå
trans-1,2-Dichlorosthene	78.00	34546	156605	Hel.
trans-1,2-Dichloroethylene	78.01	3469 9	10061026	und:
trans-1,3-Dichloropropene	79.00	34699 34699	10081028	μ o L
trans-1,3-Dichloropropyiene	79.01	34088	. ,,,,,,,,,	
269	338.40			o,

APPENDIX E: LABORATORY QUALIFIERS

LIST OF QUALIFIERS FOR NUMERIC RESULTS

REMARK CODE	DEFINITION
В	Analyte is found in the blank as well as the sample, indicated possible/probable blank contamination.
J	Estimated value; not accurate.
н	Presence of material verified but not quantified
U or K	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation detection limit.
LU LU	Compound was analyzed for but not detected. The number is the estimated minimum detection limit.
С	The value is one of, or the sum of both, Benzo (b) Fluoranthene and Benzo (k) Fluoranthene.
x	Many background organisms.
Н .	Over holding time. Analysis run.
G	Improper container.
z	Sample low due to interfering substance.
D	Sample high due to interfering substance.
IS	Interfering Substance.
P	Greater than (>).
A	Less than (<).
LHCK	Lab Hatrix Number.
LBK	Lab Blank Number.

APPENDIX & CONTINUED:

Data Qualifier Definitions

For the purpose of this document the following code letters and associated definitions are provided:

dr	- dry weight
vt	- vec weight
R	 The data are unusable (compound may or may not be present). Resampling and reanalysis is necessary for verification.
N .	- Presumptive evidence of presence of material.

- Presumptive evidence of the presence of the material NJ at an estimated quantity.

- The material was analyzed for, but was not detected. W The sample quantitation limit is an estimated quantity.

The reviewer may determine that qualifiers other than those used in this document are necessary to describe or qualify the data. In these instances, it is the responsibility of each reporting entity to thoroughly document/explain the qualifiers used and notify Ecology prior to submition of data packages.

APPENDIX F: COUNTY FIPS CODES

WASHINGTON

001 ADAMS

003 ASOTIN

005 BESTOR

007 CHELAN

009 CLALLAM

011 CLARK

013 COLUMBIA

015 COVILITZ

017 DOUGLAS

019 FERRY

021 FRANKLIN

023 GARFIELD

025 GRANT

027 GRAYS HARBOR

029 ISLAND

February 17, 1993"

- 031 JEFFERSON
- 033 KING
- 035 KITSAP
- 037 KITTITAS
- 039 KLICKITAT
- 041 LEWIS
- 043 LINCOLN
- 045 HASON
- 047 OKANOGAN
- 049 PACIFIC
- 051 PEND OREILLE
- 053 PIERCE
- 055 SAN JUAN
- 057 SKAGIT
- 059 SKAMANIA
- 061 SNOHOMISH
- 063 SPOKANE
- 065 STEVENS
- 067 THURSTON
- 069 WAHKIAKUM
- 071 WALLA WALLA
- 073 WHATCOM
- 075 WHITMAN
- 077 YAKINA

EXHIBIT D

IMPLEMENTATION SCHEDULE Richardsons Airways

EXHIBIT D
IMPLEMENTATION SCHEDULE
RICHARDSON'S AIRWAYS

				-	-			\vdash	-	-			r	H	\vdash	\vdash	L			Г
om Effective Date of D	1 2	4	လ	9	7	6	10	1	12	3 14	15	19	11	18	19 2	20 21	22	23		
Name Contractor									1 1											
Name Project coordinator																			Tea	
Draft QA/QC Plan																				
Ecology Review						33333		+							\dashv					
Final QA/QC Plan																- -				
Draft Sampling and Analysis Plan (S&A)														·						
Ecology Review	: :					9892000														
Final S & A Plan														-						
Draft Public Participation Plan (PPP)														-						
Ecology Review			**			355000														1 [
Final PPP												•								
File Deed Restriction														\dashv						
Comence sampling										-										
	:								1											
																				<u> </u>
																		1		1

u

APPENDIX A

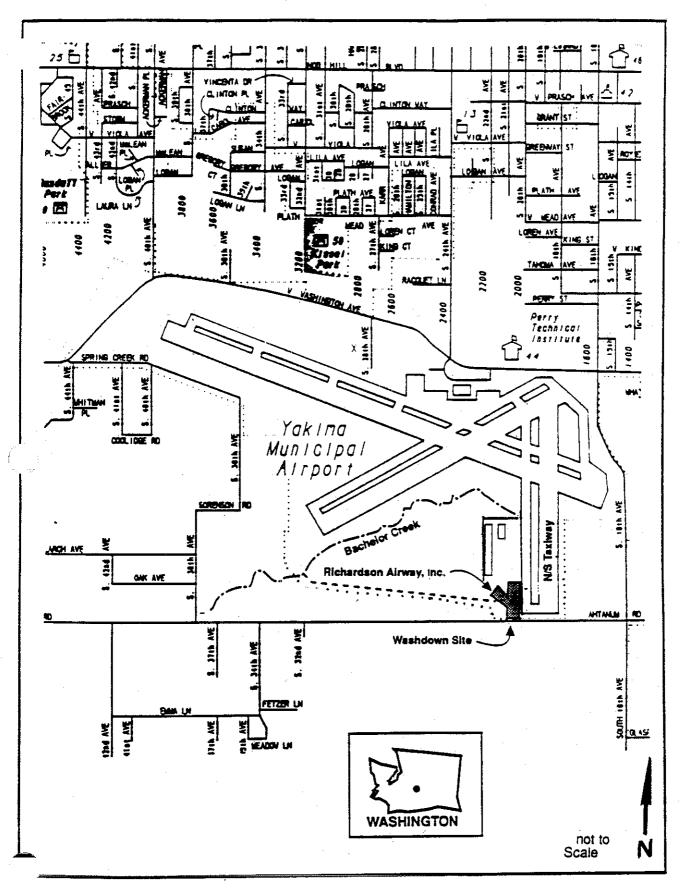
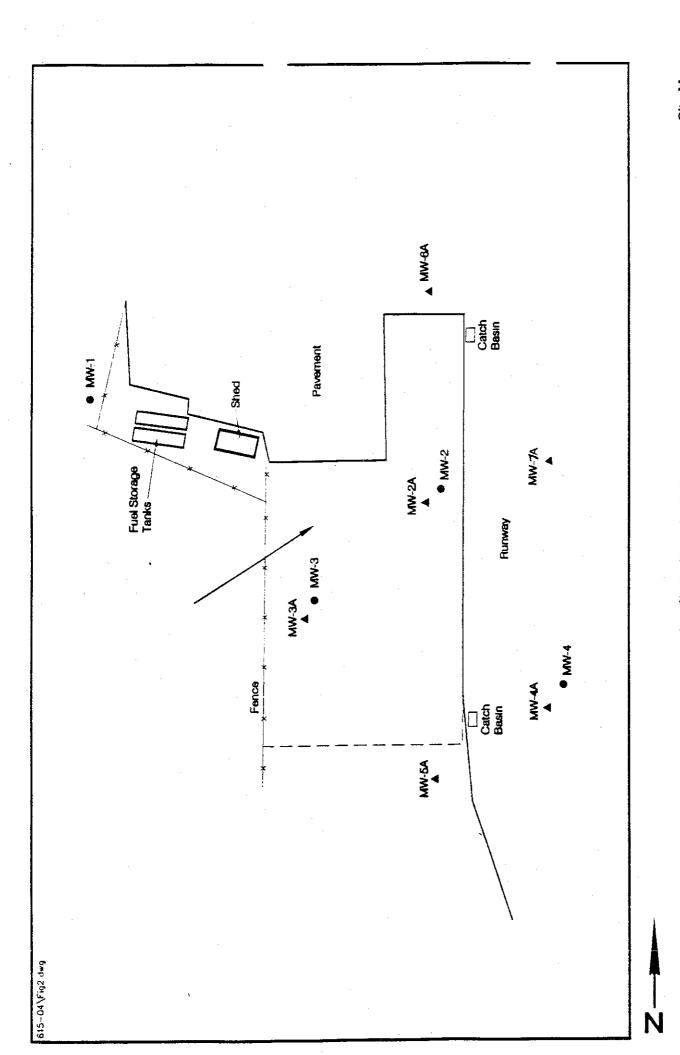



Figure 1
RICHARDSON AIRWAY, INC.
LOCATION - YAKIMA AIR
TERMINAL AND RICHARDSON AIR INC.

Yakima, Washington FIGURE 2 Site Map Richardson Aiway Inc. Washdown Site

Shallow Monitoring Weil

Direction of Groundwater Flow

Deep Monitoring Well

MAXIM 615.04

T

Dercian Flow:

Q = KA dh

Cross sectional Area (A)

Estimated Lingth : Cross section from 21/FS Fine 2-1

L: 171 ff

Saturated Thickness of Aguler (B)

Upper Agniser 0-10ft DES
B=10ft

Lower Ann 34

B: 20 pt, 50 pt, 100 ft

A=LB

Cross-sectional Area of Upper Aquistr A= 171ft (10ft) = 1710ft2

Cross-sectional Area of Lower Aguist
A=171ft (20ft): 2420ft

Az : 171 ft (50 ft) = 2 = 50 ft

Az: 171 H (100H). 17 100 H2

Hydraulic Gradient (dh/dl)

dh: Disservice in voter Livels Tetween MW-1; MU-4

dl: Distance Eclinen Mu-10MW-4 Estimated from work Plan Figure 2, 1 g/ 10-95

dh = 1047.52/1-1044.25/1 = 6.07×10-3

16 = 1046.17-1045.14 = 234×10-2

dh avg = 420 x10 3

Hydranlie Gradient of Upper Aquiler is not determined because a datum has not yet been established for the wells completed in this aguifer

MAXIM