EES ENVIRONMENTAL CONSULTING, INC. 240 N. Broadway, Suite 203, Portland OR 97227 (503) 847-2740 www.ees-environmental.com

Technical Memorandum

To:	Mark Conan
From:	Paul Ecker LHG, and Chris Rhea
Date:	03-05-2013
Subject:	Final Site Characterization Report and Request for No Further Action
	Determination
	Plaid Pantries Store #23
	Vancouver, Washington
	Ecology Voluntary Cleanup Program File #SW1166
	EES Project #E-839

EES Environmental Consulting, Inc. (EES) is providing this status report regarding the successful completion of additional characterization activities conducted between April 2012 and January 2013 at the former Plaid Pantries, Inc. (Plaid) Store #23 site located at 5210 East Fourth Plain Boulevard (Figure 1). Site activities were conducted in accordance with the Work Plan for Supplemental Site Characterization, dated December 6, 2011, as approved by Plaid and the Washington Department of Ecology (Ecology). The purpose of the characterization is to satisfy Ecology's administrative requirements for site closure. EES believes the specified characterization work is complete and regulatory "No Further Action" closure criteria have been achieved.

BACKGROUND

The subject site is currently occupied by a commercial strip mall and paved parking lot area located along a commercial thoroughfare in Vancouver, Washington (Figure 2). The subject property is owned by M&P Properties. Plaid was a tenant and operated the site as a retail gasoline station and convenience store between 1982 and early 2002. The Underground Storage Tank (UST) Site Number Plaid registered with Ecology was 11397. During Plaid's operations, only gasoline is known to have been stored and dispensed at the site. Leaded gasoline may have been dispensed at the site during phase-out of that product in the 1980s. EES understands that Plaid did not store or dispense other hydrocarbons such as diesel fuel, bulk motor oil, or bulk solvents at any time during its site operations.

Prior to Plaid's operations, the site was occupied continuously as a gasoline service station since the early 1960s. The nature and volume of fuel and other products used and stored at the site by others have not been determined by EES, although the facility appears to have been operated as a Chevron service station during much or all of its operations prior to Plaid. The pre-Plaid service station building was located near the southwestern margin of the existing site building and was demolished during site redevelopment in the early 1980s. Current and historical site infrastructure is illustrated on Figure 2.

ECOLOGY REQUEST FOR FURTHER ACTION

In an Opinion Letter dated October 31, 2011 (Attachment A), Ecology indicated that further site characterization and administrative actions were necessary to support Plaid's request for a No Further Action (NFA) determination. The supplemental data gathering and clarification tasks as specified are intended to demonstrate whether interim remedial actions undertaken by Plaid to date have resulted in adequate cleanup of the site. The interim actions completed to date were intended to result in a permanent solution and to achieve cleanup requirements as defined under the Model Toxics Control Act (MTCA).

SUPPLEMENTAL SITE CHARACTERIZATION

During April 2012, EES conducted the following activities as required by the site work plan. Findings were detailed in a Technical Memorandum dated September 25, 2012 and are summarized below.

PHYSICAL EXAMINATION OF GEOPHYSICAL ANOMALIES

In accordance with the work plan, four-inch diameter air-knife excavation techniques were used at specific locations where a prior (2005) geophysical survey had identified two subsurface anomalies that Ecology suspected may represent USTs from pre-Plaid site operations (Figures 2 and 3). A third small anomaly was also evaluated as summarized below.

- Anomaly A (borings VAC-1, VAC-2, and VAC-3). The total depth of each of these three borings was between 5 and 5.4 feet. A small piece of metal pipe was found at 1.5 feet depth, and a small piece of cast iron pipe and several pieces of broken concrete debris were found at a depth of one foot in boring VAC-1. No debris was found in boring VAC-2. A large broken piece of concrete was found in boring VAC-3 at a depth of four feet. Direct observation of air-knife borings at Anomaly A confirmed that the anomaly was attributed to shallow piping and debris and not caused by the presence of a UST. A private utility locator was called to the site in an effort to trace these pipes. The locator confirmed that these were relic features not currently in use and each not greater than approximately 10-feet in length. Soils surrounding the piping were observed and field-screened using a photo-ionization detector (PID). No indication of fuel contamination was identified based on these field observations.
- Anomaly B (borings VAC-4, VAC-5, and VAC-6). The total depth of each of the three borings was five feet. A four inch diameter metal pipe was found at a depth of 1 foot below ground surface (bgs) in VAC-4 and at a depth of 1.1 feet bgs in VAC-6. No piping was found in VAC-5. The pipe encountered in VAC-4 and VAC-6 is aligned with a cleanout plug observed at the Plaid building and a storm water catch basin

on East 4th Plain Boulevard. No other pipes or debris were found in these borings. Air-knife borings at Anomaly B confirmed that the anomaly was attributed to shallow drainage piping and not caused by the presence of a UST. Soils surrounding the piping were observed and field-screened using a PID. No indication of fuel contamination was identified based on these field observations.

Although Ecology did not express concern regarding Anomaly C, three borings (VAC-7A, VAC-7B, and VAC-7C) were advanced approximately three feet apart from each other as requested by the property owner's representative. A concrete surface was encountered at 1.5 feet bgs in all three borings, which the air knife could not penetrate. The location of this concrete surface is consistent with a remnant building foundation or other historical structural feature. Soils above this feature were observed and field-screened using a PID. No indication of fuel contamination was identified based on these field observations.

Characterization of the geophysical anomalies identified no evidence of UST features, nor were fuel impacts identified or suspected based on field observations. This supplemental site characterization task requested by Ecology has been completed, and no further work to resolve this issue appears warranted.

CONFIRMATION SOIL SAMPLING

Confirmation soil sampling was conducted using direct-push drilling techniques at three locations where elevated gasoline and/or BTEX compounds historically were detected in soil, as specifically requested by Ecology (Figure 3):

- Boring location B-22 adjacent to Dames & Moore/Pemco soil boring B-7/P2, near the southwest property corner;
- Boring location B-23 adjacent to PNG soil boring B-6, near the southwest corner of the former Plaid UST pit; and
- Boring location B-24 adjacent to PNG soil boring B-13, near the west end of the former southern fuel dispenser island associated with pre-Plaid operations.

As specified in the work plan, borings B-22 and B-24 were advanced to 15 feet bgs and boring B-23 was advanced to 10 feet bgs. Copies of boring logs are provided as Attachment B. Soil cores were field screened for the potential presence of contaminants. Since no indication of contamination was detected through field screening, one soil sample from the base of each boring was submitted for laboratory analysis for gasoline range hydrocarbons by Method NWTPH-Gx, volatile organic compounds (VOCs) by EPA Method 8260B, and total lead by EPA Method 6020.

No gasoline range hydrocarbons or VOCs were detected in any of the soil samples. Total lead concentrations ranged from 4.8 to 6.9 milligrams per kilogram (mg/kg) (Table 1). The lead concentrations detected in soil are consistent with the typical background concentration for lead in soil, and are not indicative of leaded fuel release(s). Laboratory analytical reports are provided in Attachment C.

Characterization of these three locations identified no evidence of detectable gasoline or related lead or volatile constituent impacts. This supplemental site characterization task requested by Ecology has been completed, and no further work to resolve this issue appears warranted.

WELLHEAD SURVEYING

In accordance with Ecology's request, Plaid's seven-well network was surveyed by Centerline Concepts Land Surveying, Inc., using a licensed Professional Land Surveyor. The survey verified well locations and top of casing elevations relative to mean sea level as referenced to a local USGS benchmark. A copy of Centerline's survey map is provided as Attachment D. Wellhead elevations are incorporated into the groundwater elevation data summary table (Table 2).

CONFIRMATION GROUNDWATER MONITORING

As stated in the work plan, confirmation groundwater monitoring was conducted on a quarterly basis for one year (April 2012 through January 2013). Groundwater samples were specified for collection from down-gradient monitoring wells MW-6 and MW-7 only when depth to water in these wells exceeds 14 feet during the monitoring period.

WATER LEVEL MEASUREMENT

The depth to groundwater in each site monitoring well was measured using an electronic water level probe. The probe was lowered into the well until it contacted the water surface, indicated by an audible tone. Using the water level probe tape, the depth to the water surface was measured to the nearest one-hundredth of a foot from the north edge of the rim of each well casing. Water levels measured in each well, and the corresponding mean sea level elevation of the water surface, are summarized in Table 2.

Based on the 2012 wellhead and boundary survey, well MW-5 was determined to have been installed off-site to the west of the subject property. No access to MW-5 was possible after July 2012, and monitoring data were not obtained from this well during subsequent events. Ecology was informed of this issue and approved eliminating MW-5 from the monitoring program.

GROUNDWATER MONITORING RESULTS

During the April and July 2012 and January 2013 site activities, depth to groundwater in all site wells was shallower than 14 feet bgs. Specifically, depth to groundwater during these periods ranged from 10.89 to 13.00 feet bgs in MW-6 and MW-7 (Table 2). Therefore, no confirmation groundwater samples were collected during these three quarterly events. However, during October 2012, depth to water in monitoring well MW-6 was deeper than 14 feet. Therefore, monitoring wells MW-6 and MW-7 were sampled during this seasonal low-water period. A discussion of the October 2012 groundwater sampling event is provided in the section below.

Water table maps for April, July, and October 2012, and January 2013 are provided as Figures 4 through 7, respectively, and indicate that groundwater flow is generally to the west/southwest (consistent with prior observations at the site). Specifically, the most recent water table

EES ENVIRONMENTAL CONSULTING, INC.

measurements indicate a potentiometric surface sloping to the southwest at a gradient of 0.005 vertical feet per horizontal foot, as measured between monitoring wells MW-3 and MW-6.

GROUNDWATER SAMPLING - OCTOBER 2012

On October 9, 2012, static water levels were measured in each well relative to the surveyed topof-casing elevation. Depth to water in monitoring well MW-6 exceeded 14 feet. Therefore, monitoring wells MW-6 and MW-7 were sampled during this seasonal low-water period.

MONITORING WELL PURGING AND SAMPLING

Pre-sampling well purging of MW-6 and MW-7 was conducted using a peristaltic pump with new high-density polyethylene tubing. Groundwater was extracted during purging from each well at a rate of approximately 100 milliliters per minute. As purging progressed, field parameters including temperature, conductivity, dissolved oxygen, pH, and oxygen reduction potential were measured at approximately 150 second intervals within a flow-through cell. Final field parameter measurements collected as purging concluded are summarized in Table 3. After field parameters stabilized, the groundwater sample was collected directly from the peristaltic pump tubing and placed into laboratory-supplied containers. Groundwater sample containers were placed in a cooler containing ice, and were transported to Apex Labs, Tigard, Oregon for analysis.

GROUNDWATER SAMPLE TESTING RESULTS

Two groundwater samples (one each from monitoring wells MW-6 and MW-7) and one quality control travel blank were submitted to Apex Labs. The travel blank was held pending analysis of the two groundwater samples. As no quality control issues were identified for the MW-6 and MW-7 groundwater samples, the travel blank was not analyzed. Each groundwater sample was tested for the following analytical parameters:

- Gasoline-range hydrocarbons by method NWTPH-Gx;
- Select volatile organic compounds by US Environmental Protection Agency Method 8260C; and
- Total and dissolved lead by US Environmental Protection Agency Method 6020.

Groundwater analytical testing results are summarized in Table 4 and on Figure 8 for gasoline and benzene. The Apex Labs laboratory report is included in Attachment C.

FUEL HYDROCARBON TESTING RESULTS

Fuel hydrocarbons were not detected in the groundwater sample collected from monitoring well MW-6. A gasoline-range hydrocarbons concentration of 106 micrograms per liter was detected in monitoring well MW-7. This gasoline-range hydrocarbon concentration is well below the Ecology MTCA Method A groundwater cleanup level of 1,000 micrograms per liter. Use of this cleanup level is considered valid as benzene was not detected, and ethylbenzene, toluene,

and xylene concentrations did not exceed 1% of the gasoline mixture for this sample or elsewhere among various samples collected historically at the site.

VOLATILE GASOLINE CONSTITUENT TESTING RESULTS

Low levels of volatile gasoline constituents were detected in the groundwater samples collected from both monitoring well MW-6 and MW-7. Detected analytes included benzene, ethylbenzene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene. Detected concentrations are summarized in Table 4. None of the gasoline constituents detected in groundwater exceeded Ecology MTCA Method A groundwater cleanup levels.

TOTAL AND DISSOLVED LEAD TESTING RESULTS

Neither total nor dissolved lead was detected in the groundwater samples collected from monitoring wells MW-6 and MW-7.

SUMMARY AND CONCLUSIONS

In accordance with the work plan, EES has completed additional characterization activities at the former Plaid Store #23 site located at 5210 East Fourth Plain Boulevard. Activities included confirmation of three geophysical anomalies using air knife techniques and physical observation, confirmation soil sampling in three borings using direct-push drilling, wellhead surveying, and confirmation quarterly groundwater monitoring. Specifically, the following confirmation activities were performed:

- Previously identified geophysical anomalies were determined to have been caused by remnant pipe and debris features and a storm sewer line based on direct observation during "air-knife" excavation in these specific locations. A third anomaly was determined to be a buried concrete surface that appears to be a remnant footing or other structural component associated with historical site construction. No evidence of fuel impacts or fuel-related infrastructure was observed at any of the three anomaly locations. No further characterization work is necessary to address this issue.
- Soil samples collected from three additional borings were observed and submitted for laboratory analyses. Based on this work, no evidence of gasoline-related contaminants was encountered within the unsaturated zone, extending to depths of up to 15 feet at these locations. No further characterization work is necessary to address this issue.
- Groundwater level measurements in April and July 2012 and January 2013 determined that groundwater levels were shallower than 14 feet in all site monitoring wells. In accordance with the work plan, groundwater samples were not collected for analysis during these events. The most recent groundwater measurements indicate that the upper water table at the site sloped to the southwest at a gradient of 0.005 vertical feet per horizontal foot, which is generally consistent with prior trends.
- Groundwater level measurements in October 2012 determined that the water table was deeper than 14 feet in monitoring wells MW-6 and MW-7. Therefore, in

accordance with the work plan, groundwater samples were collected for analysis from these two wells. Low levels of gasoline-range hydrocarbons and related volatile organic constituents were detected in the groundwater samples collected from monitoring wells MW-6 and MW-7, but at concentrations below Ecology MTCA Method A groundwater cleanup levels. No further groundwater characterization is necessary to address this issue.

Based on the information provided herein, it is our professional opinion that the supplemental site characterization activities achieved the requirements of the Ecology-approved work plan and no identified site impacts exceed MTCA Method A cleanup levels. Therefore, on behalf of Plaid, we recommend a No Further Action Determination be issued for the site, to be followed by decommissioning of the site monitoring well network (including off-site well MW-5).

Attachments Tables Figures Attachment A – Ecology Opinion Letter Attachment B – Boring Logs Attachment C – Laboratory Analytical Reports Attachment D – Wellhead Survey Map

TABLES

- Table 1
 Soil Analytical Results Gasoline and Related Constituents
- Table 2 Groundwater Elevation Data
- Table 3
 Groundwater Field Parameters Summary
- Table 4Groundwater Analytical Results Summary Gasoline and Related
Constituents

							Former		. #23			
							Vancou	ver, Washin	gton			
Location	Date	Depth ^a	Field Headspace ^b	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	MTBE	Naphthalene	EDB
Temporary Borir	ngs											
EES Additional S	ite Characteriz	ation										
B22-15/16	04/19/2012	15-16	NA	2 U	0.02 U	0.02 U	0.02 U	0.06 U	0.025 U	0.05 U	0.05 U	0.05 U
B23-15	04/19/2012	15.0	NA	2 U	0.02 U	0.02 U	0.02 U	0.06 U	0.025 U	0.05 U	0.05 U	0.05 U
B24-10	04/19/2012	10.0	NA	2 U	0.02 U	0.02 U	0.02 U	0.06 U	0.025 U	0.05 U	0.05 U	0.05 U
PEMCO Offsite I	nvestigation											
B-5/P4 (PEMCO)	1992	10-11	NA	-	ND	0.003	ND	0.002	-	-	-	-
B-5/P4 (PEMCO)	1992	15-16	NA	-	ND	0.003	ND	ND	-	-	-	-
B-6/P3 (PEMCO)	1992	10-11	NA	-	ND	0.006	0.002	0.011	-	-	-	-
B-6/P3 (PEMCO)	1992	15-16	NA	-	ND	ND	ND	ND	-	-	-	-
B-7/P2 (PEMCO)	1992	10-11	NA	-	ND	0.005	ND	0.006	-	-	-	-
B-7/P2 (PEMCO)	1992	15-16	NA	-	1.9	2.8	0.17	1.0	-	-	-	-
PNG Site Check												
B-1	02/19/1998	12.0	NA	20 U ^h	-	-	-	-	-	-	-	-
B-2	02/19/1998	12.0	NA	20 U ^h	-	-	-	-	-	-	-	-
B-3	02/19/1998	12.0	NA	20 U ^h	-	-	-	-	-	-	-	-
B-4	02/19/1998	13.0	NA	20 U ^h	-	-	-	-	-	-	-	-
B-5	02/19/1998	13.0	NA	20 U ^h	-	-	-	-	-	-	-	-
B-6	02/19/1998	10.0	NA	4,400	3.0	170	75	430	-	-	-	-
Stockpile	02/19/1998	Composite	e NA	20 U	-	-	-	-	-	-	-	-
PNG Well Install	ation											
MW-1	01/29/2002	15.0	NA	236	0.20 U	0.20 U	0.20 U	0.30	0.10 U	0.10 U	0.21	0.10 U
MW-2	01/29/2002	13.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
MW-3	01/29/2002	13.5	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
MW-4	01/29/2002	13.0	NA	2.6	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.20 U	0.10 U
MW-5	01/29/2002	13.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
MW-6	01/29/2002	12.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
PNG Site Investig	gation											
B-7	01/21/2002	14.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
B-8	01/21/2002	14.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
B-9	01/21/2002	14.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
B-11	01/21/2002	14.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	-	-	-	-
B-12	01/21/2002	14.0	NA	2.0 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.20 U	0.10 U
PNG Monitoring	Well Installati	on										
MW7/5	03/09/2005	5.0	NA	1.0 U	-	-	-	-	-	-	-	-
MW7/10	03/09/2005	10.0	NA	1.0 U	-	-	-	-	-	-	-	-
MW7/12.5	03/09/2005	12.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U
DB (IDW soil)	03/09/2005	Composite	e NA	20 U ^h	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U

Table 1 Soil Analytical Results - Gasoline and Related Constituents (mg/Kg) Former Plaid Pantry #23

EDC	1,2,4-TMB	1,3,5-TMB	Lead
0.05 U	0.05 U	0.05 U	4.8
0.05 U	0.05 U	0.05 U	6.9
0.05 U	0.05 U	0.05 U	4.8
-	_	-	_
-	-	-	_
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	_	-	-
_	-	_	_
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	20 U
0.10 U	-	-	-
-	-	-	-
-	-	-	-
0.10 U	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
0.10 U	-	-	-
-	-	-	-
-	-	-	-
0.05 U	0.05 U	0.05 U	-
0.05 U	0.05 U	0.05 U	-

Table 1Soil Analytical Results - Gasoline and Related Constituents (mg/Kg)Former Plaid Pantry #23

Vancouver, Washington

Location	Date	Depth ^a	Field Headspace ^b	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	MTBE	Naphthalene	EDB	EDC	1,2,4-TMB	1,3,5-TMB	Lead
PNG Site Investig	ation															
B13/5	03/09/2005	5.0	NA	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-
B13/12.5	03/09/2005	12.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
B13/15	03/09/2005	15.0	NA	1,700	-	-	-	-	-	-	-	-	-	-	-	-
B14/12.5	03/09/2005	12.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
B14/15	03/09/2005	15.0	NA	2.0	-	-	-	-	-	-	-	-	-	-	-	-
B15/5	03/09/2005	5.0	NA	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-
B15/12.5	03/09/2005	12.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
B15/18	03/09/2005	18.0	NA	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-
B16/12.5	03/09/2005	12.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
B16/18	03/09/2005	18.0	NA	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-
B20/5	03/09/2005	5.0	NA	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-
B20/13.5	03/09/2005	13.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
B21/5	03/09/2005	5.0	NA	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-
B21/13.5	03/09/2005	13.5	NA	1.0 U	0.03 U	0.05 U	0.05 U	1.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
UST Decomission	ing Confirmat	ory Samp	les													
Final Sidewall Sar	mples															
North Wall/11	10/05/2006	11.0	5.6 ^c	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	0.05 U ^g	0.05 U	0.05 U	0.05 U	-
North Wall/12	10/05/2006	12.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
South Wall/12	10/04/2006	12.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
East Wall/12	10/04/2006	12.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
West Wall/12.5	10/04/2006	12.5	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
West Wall/13	10/06/2006	13.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
West Wall/14	10/06/2006	14.0	1 U ^c	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
NE Corner/8	10/05/2006	8.0	12.2 ^c	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
NE Corner/12	10/05/2006	12.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
SW Corner/12	10/06/2006	12.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
NW Corner/14	10/06/2006	14.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
Final Floor Sampl	les															
Floor-T1/13.5	10/05/2006	13.5	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
Floor-T2/13 5	10/05/2006	13.5	111	2 0					-			0.05 µ ^g	0.05.11	0.05.11	0.05.11	_
Floor-T3/1/	10/06/2006	14.0	1 U ^C	2 0					_		0.05 U	0.05 0	0.05 0	0.05 0	0.05 0	_
11001-13/14	10/00/2000	14.0	10	20	0.02 0	0.02 0	0.02 0	0.00 0	-	0.05 0	0.05 0	-	-	-	-	-
Final Pump Island	d Samples															
Pipe/1.5	10/04/2006	1.5	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
PI East/3	10/04/2006	3.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
PI West/3	10/04/2006	3.0	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
Excavated PCS Sa	mples															
T2-T3/10.5	10/03/2006	10.5	576 [°]	140	0.02 U	0.03	0.14	0.78	-	0.05 U	1.3	0.05 U ^g	0.05 U	4.0	0.8	5.42
North Wall/11	10/04/2006	11.0	131 [°]	4	0.02 U	0.02 U	0.02 U	0.06 U	-	0.1 U	-	-	-	-	-	-
North Wall/12.5	10/04/2006	12.5	10	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
Clean Stocknile S	ample (1 cubi	vard re-	used fill)													
Overburden Pile	מוויףוב (ד נמטונ	yaru re-l	1 U	2 U	0.02 U	0.02 U	0.02 U	0.06 U	-	0.05 U	0.05 U	-	-	-	-	-
	4						-		• • -			- f				
MTCA Method A	u		NA	30/100 [°]	0.03	7	6	9	0.05	0.1	5	0.005'	NA	NA	NA	250

EES Environmental Consulting, Inc.

Table 1

Soil Analytical Results - Gasoline and Related Constituents (mg/Kg)

Former Plaid Pantry #23

Vancouver, Washington

Notes:

^a Depth indicates feet below pavement surface

^b Field headspace screening for volatile organic compounds using GasTech Explosimeter Model GT303, values in parts per million vapor

- ^c Organic odor and gray discoloration were observed in the field
- ^d Model Toxics Control Act Cleanup Amendments, Method A Soil Cleanup Levels For Unrestricted Land Uses (WDOE, October 12, 2007)

^e Per MTCA, cleanup values for gasoline are either (1) a default value of 30 mg/Kg where benzene is < 0.03 mg/Kg, or (2) a value of 100 mg/Kg where benzene is not detected and the sum of ethylbenzene + toluene + xylenes is < 1% of the gasoline concentration

^f EDB cleanup level for soil is based on groundwater protection where groundwater is used for drinking water

^g Compound was not detected but the Method Reporting Limit exceeds the MTCA standard

^h Gasoline by Method NWTPH-HCID

mg/Kg = Milligrams per kilogram

Gasoline by Method NWTPH-Gx

BTEX Volatile Compounds by EPA Method 8021B; all other Volatile Compounds by EPA Method 8260B

PCE = Tetrachloroethene

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

U = Undetected at method detection limit shown

- = Not analyzed for this parameter

NA = Not applicable

ND = Not detected above laboratory reporting limit

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
	· ·		(feet below TOC)	(feet)
MW-1	180.00	01/29/2002	12.70	167.30
		03/10/2005	15.31	164.69
		03/14/2005	15.35	164.65
		10/10/2006	14.71	165.29
		01/30/2007	11.57	168.43
		04/30/2007	12.17	167.83
		07/23/2007	13.76	166.24
		10/29/2007	14.84	165.16
		01/09/2008	12.79	167.21
		04/14/2008	12.54	167.46
		09/05/2008	14.43	165.57
		12/17/2008	15.07	164.93
		03/11/2009	14.31	165.69
		06/09/2009	14.17	165.83
		09/10/2009	15.26	164.74
		12/01/2009	15.11	164.89
		03/01/2010	13.18	166.82
		06/07/2010	12.64	167.36
		09/13/2010	13.99	166.01
		12/01/2010	13.26	166.74
		04/19/2012	11.46	168.54
		07/20/2012	12.73	167.27
		10/09/2012	14.38	165.62
		01/07/2013	11.49	168.51
MW-2	180.47	01/29/2002	12.99	167.48
		03/10/2005	15.62	164.85
		03/14/2005	15.66	164.81
		10/10/2006	14.98	165.49
		01/30/2007	11.81	168.66
		04/30/2007	12.41	168.06
		07/23/2007	14.02	166.45
		10/29/2007	15.16	165.31
		01/09/2008	13.12	167.35
		04/14/2008	12.78	167.69
		09/05/2008	14.66	165.81
		12/17/2008	15.32	165.15
		03/11/2009	14.62	165.85
		06/09/2009	14.46	166.01
		09/10/2009	15.59	164.88
		12/01/2009	15.44	165.03
		03/01/2010	13.47	167.00

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-2 (cont'd)		06/07/2010	12.92	167.55
		09/13/2010	14.26	166.21
		12/01/2010	13.57	166.90
		04/19/2012	11.70	168.77
		07/20/2012	12.99	167.48
		10/09/2012	14.66	165.81
		01/07/2013	11.75	168.72
MW-3	179.49	01/29/2002	12.00	167.49
	1/0/10	03/10/2005	14.67	164.82
		03/14/2005	14.73	164.76
1		10/10/2006	14.06	165.43
1		01/30/2007	10.87	168.62
		04/30/2007	11.49	168.00
		07/23/2007	13.08	166.41
		10/29/2007	14.22	165.27
		01/09/2008	12.09	167.40
		04/14/2008	11.84	167.65
		09/05/2008	13.80	165.69
		12/17/2008	14.45	165.04
		03/11/2009	13.61	165.88
		06/09/2009	13.47	166.02
		09/10/2009	14.64	164.85
		12/01/2009	14.48	165.01
		03/01/2010	12.46	167.03
		06/07/2010	11.95	167.54
		09/13/2010	13.29	166.20
		12/01/2010	12.54	166.95
		04/19/2012	10.78	168.71
		07/20/2012	12.05	167.44
		10/09/2012	13.70	165.79
		01/07/2013	10.79	168.70
MW-4	180.57	01/29/2002	13.47	167.10
		03/10/2005	15.95	164.62
		03/14/2005	15.99	164.58
		10/10/2006	15.38	165.19
		01/30/2007	12.22	168.35
		04/30/2007	12.82	167.75
		07/23/2007	14.43	166.14
		10/29/2007	15.55	165.02
		01/09/2008	13.36	167.21

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-4 (cont'd)		04/14/2008	13.15	167.42
		09/05/2008	15.15	165.42
		12/17/2008	15.75	164.82
		03/11/2009	14.92	165.65
		06/09/2009	14.80	165.77
		09/10/2009	15.91	164.66
		12/01/2009	15.71	164.86
		03/01/2010	13.79	166.78
		06/07/2010	13.22	167.35
		09/13/2010	14.61	165.96
		12/01/2010	13.86	166.71
		04/19/2012	12.12	168.45
		07/20/2012	13.38	167.19
		10/09/2012	15.04	165.53
		01/07/2013	12.13	168.44
MW-5	180.50	01/29/2002	13.51	166.99
		03/10/2005	NA	NA
		03/14/2005	16.06	164.44
		10/10/2006	NA	NA
		01/30/2007	12.42	168.08
		04/30/2007	13.00	167.50
		07/23/2007	14.54	165.96
		10/29/2007	15.58	164.92
		01/09/2008	13.58	166.92
		04/14/2008	13.36	167.14
		09/05/2008	15.23	165.27
		12/17/2008	15.82	164.68
		03/11/2009	15.09	165.41
		06/09/2009	14.95	165.55
		09/10/2009	15.98	164.52
		12/01/2009	15.79	164.71
		03/01/2010	14.00	166.50
		06/07/2010	13.42	167.08
		09/13/2010	14.77	165.73
		12/01/2010	14.01	166.49
		04/19/2012	12.29	168.21
		07/20/2012	13.56	166.94
		10/09/2012	NM	-
		01/07/2013	NM	-
MW-6	179.72	01/29/2002	12.88	166.84

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-6 (cont'd)		03/10/2005	15.51	164.21
		03/14/2005	15.54	164.18
		10/10/2006	14.92	164.80
		01/30/2007	11.84	167.88
		04/30/2007	12.45	167.27
		07/23/2007	13.99	165.73
		10/29/2007	15.01	164.71
		01/09/2008	12.92	166.80
		04/14/2008	12.81	166.91
		09/05/2008	14.72	165.00
		12/17/2008	15.30	164.42
1		03/11/2009	14.51	165.21
		06/09/2009	14.37	165.35
		09/10/2009	15.42	164.30
		12/01/2009	15.21	164.51
		03/01/2010	13.38	166.34
		06/07/2010	12.78	166.94
		09/13/2010	14.20	165.52
		12/01/2010	13.38	166.34
		04/19/2012	11.71	168.01
		07/20/2012	13.00	166.72
		10/09/2012	14.60	165.12
		01/07/2013	11.71	168.01
MW-7	179.28	01/29/2002	NA	NA
		03/10/2005	14.77	164.51
		03/14/2005	14.81	164.47
		10/10/2006	NA	NA
		01/30/2007	11.04	168.24
		04/30/2007	11.66	167.62
		07/23/2007	13.23	166.05
		10/29/2007	14.32	164.96
		01/09/2008	12.13	167.15
		04/14/2008	12.00	167.28
		09/05/2008	13.94	165.34
		12/17/2008	14.56	164.72
		03/11/2009	13.73	165.55
		06/09/2009	13.62	165.66
		09/10/2009	14.71	164.57
		12/01/2009	14.51	164.77
		03/01/2010	12.59	166.69
		06/07/2010	11.99	167.29

Well	TOC	Date	Depth to	Groundwater
Identification	Elevation (feet) ^a	Measured	Water	Elevation ^a
			(feet below TOC)	(feet)
MW-7 (cont'd)		09/13/2010	13.42	165.86
		12/01/2010	12.56	166.72
		04/19/2012	10.92	168.36
		07/20/2012	12.20	167.08
		10/09/2012	13.83	165.45
		01/07/2013	10.89	168.39

Notes:

^aVertical datum was established relative to Mean Sea Level by a licensed surveyor on

04/23/2012, based on a local benchmark using the NAVD 88 datum.

TOC = Top of casing

NA = Not applicable

NM = Not measured

Table 3Field ParametersFormer Plaid Pantry No. 23

			Oxidation			_
		Dissolved	Reduction	Ferrous	nH	Specific
Well	Data	Oxygen	Potential	Iron (Fe 2+), dissolved	(unitless)	Conductance
Identification	Date	(mg/L)	FOLEIILIAI	(mg/L)	(unitiess)	(ms/cm)
		DRI ^a	(111)	HACH ^b	DRI	DRI ^a
			DRI			
MW-1	01/30/2007	4.4	122	<0.1	6.7	0.330
	04/30/2007	3.7	56	<0.1	7.6	0.358
	07/23/2007	3.2	100	<0.1	2.7	0.362
	10/29/2007	0.6	72	<0.1	8.0	0.459
	01/09/2008	3.3	82	<0.1	8.3	0.361
	04/14/2008	5.2	91	<0.1	6.4	0.370
	09/05/2008	2.5	2	<0.1	6.4	0.451
	12/17/2008	4.0	144	<0.1	6.9	0.364
	03/11/2009	4.7	140	<0.1	7.0	0.432
	06/09/2009	4.1	102	<0.1	6.5	0.308
	09/10/2009	3.7	100	<0.1	6.9	0.348
	12/01/2009	3.8	23	<0.1	7.3	0.295
	03/01/2010	5.0	19	<0.1	7.0	0.252
	06/07/2010	5.8	234	-	6.7	0.263
	09/13/2010	3.2	84	<0.1	7.3	0.353
	12/01/2010	3.4	151	<0.1	6.9	0.326
NAVAL D	01/20/2007	2 7	150	<i>-</i> 0 1	60	0.200
10100-2	01/30/2007	2.7	159	<0.1	0.0	0.309
	04/30/2007	5.4 2.6	90	<0.1	7.0	0.310
	07/23/2007	3.0	141	<0.1	7.8 0.2	0.280
	10/29/2007	2.9	122	<0.1	8.Z	0.342
	01/09/2008	2.9	132	<0.1	8.3 C.C	0.306
	04/14/2008	3.4	48	<0.1	0.0	0.270
	12/17/2008	5.0 1 E	136	<0.1	0.0	0.315
	12/17/2008	1.5	120	<0.2	7.2	0.361
	05/11/2009	1.0	124	<0.1	7.4 6.7	0.349
	00/09/2009	2.0	92	<0.1	0.7	0.249
	12/01/2009	1.7	00 25	<0.1	7.1	0.199
	12/01/2009	2.4	25	0.2	7.5	0.194
	05/01/2010	5.5	42	0.5	7.5 6.2	0.250
	00/07/2010	5.4 2.6	119	-	0.5	0.225
	09/13/2010	5.0 2.0	0U 1E7	0.2	7.5	0.231
	12/01/2010	2.0	157	<0.1	0.9	0.257
MW-3	01/30/2007	5.1	111	<0.1	6.8	0.262
	04/30/2007	6.3	74	<0.1	7.5	0.285
	07/23/2007	4.7	160	<0.1	7.5	0.341
	10/29/2007	3.9	97	<0.1	8.1	0.290
	01/09/2008	3.3	120	<0.1	8.3	0.093
	04/14/2008	3.7	73	<0.1	6.2	0.279
	09/05/2008	5.1	189	<0.1	6.2	0.302
	12/17/2008	5.9	155	<0.1	6.7	0.277
	03/11/2009	5.5	141	<0.1	6.9	0.311
	06/09/2009	4.9	90	<0.1	6.5	0.220
	09/10/2009	5.1	108	<0.1	6.7	0.215
	12/01/2009	3.7	39	<0.1	7.2	0.173

Table 3Field ParametersFormer Plaid Pantry No. 23

		Discolud	Oxidation	Ferrous		Specific
\A/-!!		Owwaan	Reduction	renuus	рН	Conductorias
vveil	Date	(mg/l)	Potential	(mg/l)	(unitless)	(mc/cm)
Identification		(mg/L)	(mV)	(mg/L)	DRI ^a	(ms/cm)
		DRIª	DRI ^a	HACH		DRI⁴
MW-3 (cont'd)	03/01/2010	2.7	37	<0.1	7.4	0.296
	06/07/2010	2.8	110	-	6.8	0.122
	09/13/2010	3.6	80	<0.1	7.0	0.276
	12/01/2010	4.0	144	<0.1	7.0	0.108
MW-4	01/30/2007	59	141	<0.1	67	0.678
	04/30/2007	6.6	49	<0.1	77	0.409
	07/23/2007	3.0	115	<0.1	7.7	0.403
	10/29/2007	9.2	03	<0.1	9.7 8.0	0.415
	01/00/2008	J.0	1/2	<0.1	0.0 Q 2	0.328
	01/03/2008	4.0	97	<0.1	6.5	0.338
	04/14/2008 09/05/2000	2.0 2.0	07	<0.1	0.Z G /	0.455
	12/17/2008	3.0 2 E	150	<u>>0.1</u>	0.4 6 7	0.41/
	12/11/2008	5.5 1 2	120	<u.1< td=""><td>0.7</td><td>0.502</td></u.1<>	0.7	0.502
	05/11/2009	4.2	157	<0.1	7.0 C F	0.555
	06/09/2009	4.3	83 102	<0.1	0.5	0.210
	09/10/2009	4.6	103	<0.1	0.8	0.227
	12/01/2009	3.8	42	0.4	7.2	0.218
	03/01/2010	3.3	40	0.2	7.4	0.252
	06/07/2010	3.1	95	-	7.0	0.243
	09/13/2010	2.9	59	0.2	7.2	0.304
	12/01/2010	2.5	151	0.4	6.8	0.297
MW-5	01/30/2007	4.5	185	<0.1	6.7	0.359
	04/30/2007	5.2	91	<0.1	7.6	0.327
	07/23/2007	3.8	79	<0.1	7.6	0.344
	10/29/2007	3.7	183	<0.1	7.9	0.341
	01/09/2008	3.0	207	<0.1	8.0	0.391
	04/14/2008	3.3	122	<0.1	6.3	0.314
	09/05/2008	4.0	206	<0.1	6.2	0.359
	12/17/2008	4.8	140	<0.1	6.7	0.368
	03/11/2009	2.6	144	<0.1	6.9	0.334
	06/09/2009	2.5	106	<0.1	6.3	0.284
	09/10/2009	3.9	104	<0.1	6.6	0.281
	12/01/2009	3.0	28	<0.1	7.0	0.280
	03/01/2010	3.4	66	<0.1	6.9	0.269
	06/07/2010	4.4	244	-	6.7	2.890
	09/13/2010	2.7	126	<0.1	7.7	0.364
	12/01/2010	2.5	208	<0.1	6.8	0.365
MW-6	01/30/2007	5.5	-43	0.8	7.1	0.105
	04/30/2007	6.7	-27	2.6	7.7	0.161
	07/23/2007	1.9	-144	4.2	8.1	0.387
	10/29/2007	5.0	-180	3.6	8.5	0.404
	01/09/2008	3.0	-133	2.5	8.6	0.251
	04/14/2008	3.4	-129	3.0	6.3	0.181
	09/05/2008	21.9	8	<0.1	10.3	3.680

Table 3Field ParametersFormer Plaid Pantry No. 23

Vancouver, Washington

Well Identification	Date	Dissolved Oxygen (mg/L) DRI ^a	Oxidation Reduction Potential (mV) DRIª	Ferrous Iron (Fe 2+), dissolved (mg/L) HACH ^b	pH (unitless) DRIª	Specific Conductance (ms/cm) DRI ^a
MW-6 (cont'd)	12/17/2008	19.4	-29	<0.1	10.3	2.230
- (,	03/11/2009	18.8	8	<0.1	10.7	1.359
	06/09/2009	14.2	-31	<0.1	10.1	0.702
	09/10/2009	12.8	-59	<0.1	10.2	0.621
	12/01/2009	12.6	-89	<0.1	10.4	0.553
	03/01/2010	12.2	-33	NM	11.1	0.453
	06/07/2010	11.3	18	-	9.1	0.432
	09/13/2010	8.0	11	0.4	9.8	0.412
	12/01/2010	7.8	86	0.4	8.5	0.363
	10/09/2012	4.2	106	0.0	7.6	0.427
MW-7	01/30/2007	1.9	93	<0.1	6.9	0.242
	04/30/2007	1.2	59	0.1	7.5	0.235
	07/23/2007	0.8	5	<0.1	7.4	0.201
	10/29/2007	5.5	-82	<0.1	7.9	0.187
	01/09/2008	3.6	150	<0.1	8.4	0.182
	04/14/2008	2.7	36	<0.1	6.1	0.203
	09/05/2008	1.9	-3	<0.1	7.2	0.042
	12/17/2008	0.8	25	<0.1	7.3	0.686
	03/11/2009	1.0	109	<0.1	7.0	0.463
	06/09/2009	0.8	67	<0.1	6.5	0.508
	09/10/2009	0.4	-82	<0.1	7.3	0.538
	12/01/2009	0.1	-68	1.2	7.7	0.380
	03/01/2010	2.0	34	1.0	7.5	0.421
	06/07/2010	2.0	78	-	6.9	0.640
	09/13/2010	1.0	48	0.6	7.4	0.259
	12/01/2010	2.8	118	0.5	6.9	0.299
	10/09/2012	1.6	131	0.2	6.7	0.279

NOTES:

^a DRI = Direct-Read Instrument

^b HACH = Colorimetric "Hach" Field Kit

mg/L = Milligrams per liter

mV = Millivolts

ms/cm = Millisiemens per centimeter

NM = Not measured

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
Temporary	Borings	stigation																
Dames & IV	01/28/1995	ND	ND	ND	ND	ND	ND	ND	_	_	_	_	_	_	_		-	_
P-1 P-2	04/28/1995		ND		290 J	/1 ^j	300 j	1 200	_					_				
P-2	04/28/1995		ND				390 ND	1,300	_					_				
P_/	04/28/1995		ND				ND	ND	_	_				_			_	_
	04/20/1999	NB	ND	ND	ND	ND	ND	ND										
PNG Site Ci	neck (1998)	250.00			0 5 11													
B-1	02/19/1998	250 U	-	-	0.5 U	1.0 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	317	-
B-3	02/19/1998	420	- 	- 620 JJ ^a	0.5 0	1.0 U	1.0	4.0	-	-	-	-	-	-	-	-	167	-
B-2	02/19/1998	26,000	630 0	630 0	240	25,000	10,000	63,000	-	-	-	-	-	-	-	-	269	-
PNG Site In	vestigation (2002)																
B-7	01/21/2002	423	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-8	01/21/2002	0 08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-9	01/21/2002	112,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-11	01/21/2002	80 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-12	01/22/2002	107,000	25,100 °	1,220 e	50 U	6,240	2,740	20,190	50 U	50 U	50 U	50 U	6,900	2,160	722	-	-	-
PNG Site In	vestigation (2005)																
B-13	03/09/2005	510	-	-	2.0	74	12	53	1.0 U	1.0 U	1.0 U	1.0 U	4.0	1.0	3.0 ^c	-	-	-
B-14	03/09/2005	36,000	4,300 ^e	250 U	1.0	1,400	1,500	5,400	1.0 U	1.0 U	1.0 U	1.0 U	590	400	150	-	-	-
B-15	03/09/2005	19,000	170 ^e	250 U	120	1.0 U	130	62	1.0 U	1.0 U	1.0 U	1.0 U	110	64	20 [°]	-	-	-
B-16	03/09/2005	540	170 ^e	250 U	5.0	2.0	67	61	1.0 U	1.0 U	1.0 U	1.0 U	32	6.0	5.0	-	-	-
B-17	03/09/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
B-18	03/09/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
B-19	03/09/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
B-20	03/09/2005	50 U	54 U	216 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.1 ^c	-	-	-
B-21	03/09/2005	50 U	54 U	216 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
Manitaring																		
N/1/1	01/20/2002	171	620 LI ^a	620 LI ^a		0.62		1 O U ^a	1 0	0.01.U ^D	1011	1011	2.2	1011	0 02 11 ^c		1011	1011
10100-1	01/29/2002	50 11	50 U	200 11		1.0.11	1.0 U	2.0.1	1.0	1011	1.0 0	1.0 0	2.2	1.0 0	0.02 0	-	1.0 0	1.0 0
	03/14/2003	100 11	30 0	200 0	1.0 0	1.0 0	1.0 0	3.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1011	-	-	-
	01/30/2007	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	04/30/2007	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	10/23/2007	100 U	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	10/29/2007	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	01/09/2008	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	04/14/2008	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	12/17/2008	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	12/17/2008	100 U	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	05/11/2009	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	00/09/2009	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	09/10/2009	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	12/01/2009	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	-	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
	03/01/2010	100 0	-	-	1.0 0	1.0 0	1.0 0	3.0 0	1.4	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-
	06/07/2010	100 0	-	-	0.35 0	1.0 0	1.0 0	3.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-
	09/13/2010	100 0	-	-	0.35 0	1.0 0	1.0 0	3.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-
	12/01/2010	100 0	-	-	0.35 U	1.0 U	1.0 U	3.U U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-2	01/29/2002	80 U	-	-	0.5 U ^a	0.5 U ^a	0.5 U ^a	1.0 U ^a	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	2.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
MW-2 (con't)	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
, , , , , , , , , , , , , , , , , , ,	09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-3	01/29/2002	80 U	-	-	0.5 U ^a	0.5 U ^a	0.5 U ^a	1.0 U ^a	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 0	1.0 U	3.0 U	1.0 0	1.0 0	1.0 U	1.0 0	1.0 U	1.0 U	1.0 0	-	-	-
MW-4	01/29/2002	80 U	-	-	0.5 U ^a	0.60 ^d	0.5 U ^a	1.0 U ^a	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 0	-	-	0.35 0	1.0 0	1.0 0	3.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-
	09/13/2010	100 0	-	-	0.35 0	1.0 0	1.0 0	3.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-
	12/01/2010	100 0	-	-	0.35 U	1.0 U	1.0 U	3.U U	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	1.0 0	-	-	-
MW-5	01/29/2002	80 U	-	-	0.5 U ^a	0.5 U ^a	0.5 U ^a	1.0 U ^d	-	-	-	-	-	-	-	-	-	-
	03/14/2005	50 U	50 U	200 U	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	07/23/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/29/2007	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	01/09/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
MW-5 (con't)	04/14/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	_	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
- (09/05/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	12/01/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-6	01/29/2002	5,530	630 U ^a	630 U ^a	523	4.6	558	536	5.0 U	0.01 U ^D	5.0 U	5.0 U	376	114	43.4 ^c	-	1.6	1.0 U
	03/14/2005	13,000	4,700 ^e	100 ^e	420	880	1,300	2,370	1.0 U	1.0 U	1.0 U	1.0 U	1,200	440	180 ^c	-	-	-
MW-50 (dup)	03/14/2005	22,000	4,800		610	1,200	1,900	3,330	1.0 U	1.0 U	1.0 U	1.0 U	1,500	560	440	35 L	-	-
	01/30/2007	100 U	-	-	1.5	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	01/30/2007	100 U	-	-	1.5	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	4.4	1.0 U	3.2	3.1	-	1.0 U	1.0 U	1.0 U	3.7	1.0 U	1.0 U	-	-	-
MW-50 (dup)	04/30/2007	100 U	-	-	4.3	1.0 U	3.1	2.9	-	1.0 U	1.0 U	1.0 U	3.4	1.0 U	1.0 U	-	-	-
	07/23/2007	1,800	-	-	63	1.0 U	17	64	-	1.0 U	1.0 U	1.0 U	45	45	33	-	-	-
MW-50 (dup)	07/23/2007	1,900	-	-	68	1.0 U	19	75	-	1.0 U	1.0 U	1.0 U	52	51	36	-	-	-
	10/29/2007	810	-	-	40	17	11	43	-	1.0 U	1.0 U	1.0 U	6.8	1.6	2.3	-	-	-
MW-50 (dup)	10/29/2007	580	-	-	32	24	12	59	-	1.0 U	1.0 U	1.0 U	8.3	2.1	2.8	-	-	-
	01/09/2008	940	-	-	58	1.0 U	72	155	-	1.0 U	1.0 U	1.0 U	68	16	11	-	-	-
MW-50 (dup)	01/09/2008	2,700	-	-	100	10 U	220	457	-	10 U	10 U	10 U	180	34	22	-	-	-
	04/14/2008	700	-	-	17	150	50	240	-	1.0 U	1.0 U	1.0 U	33	8.0	5.4	-	-	-
MW-50 (dup)	04/14/2008	1,600	-	-	24	270	72	330	-	1.0 U	1.0 U	1.0 U	46	11	7.5	-	-	-
	09/05/2008	120	-	-	3.5	3.8	11	15	-	1.0 U	1.0 U	1.0 U	2.5	1.4	2.0	-	-	-
MW-50 (dup)	09/05/2008	120	-	-	3.2	3.2	10	13	-	1.0 U	1.0 U	1.0 U	1.8	1.0 U	3.5	-	-	-
	12/17/2008	100 U	-	-	1.0 U	1.0	1.2	7.0	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	12/17/2008	100 U	-	-	1.0 U	1.0	1.2	7.1	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	03/11/2009	720	-	-	18	20	73	110	-	1.0 U	1.0 U	1.0 U	6.9	1.0 U	1.0 U	-	-	-
MW-50 (dup)	03/11/2009	450	-	-	19	22	80	119	-	1.0 U	1.0 U	1.0 U	7.9	1.0 U	1.1	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	2.6	1.0 U	1.0 U	-	-	-
	09/10/2009	100 U	-	-	1.0 U	1.0 U	1.7	8.4	-	1.0 U	1.0 U	1.0 U	2.8	1.0 U	1.0 U	-	-	-
MW-50 (dup)	09/10/2009	100 U	-	-	1.0 U	1.1	1.9	10	-	1.0 U	1.0 U	1.0 U	2.6	1.0 U	1.0 U	-	-	-
	12/01/2009	160	-	-	3.2	1.0 U	19	26	-	1.0 U	1.0 U	1.0 U	6.0	1.0 U	1.0 U	-	-	-
MW-50 (dup)	12/01/2009	140	-	-	4.0	1.0 U	24	34	-	1.0 U	1.0 U	1.0 U	8.0	1.0 U	1.0 U	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
MW-50 (dup)	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
MW-50 (dup)	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.45	1.0 U	2.5	1.6 ⁿ	1.0 U	1.0 U	1.0 U	1.0 U	7.4	1.5	1.2	1.0 U	-	-
MW-50 (dup)	09/13/2010	110	-	-	0.60	1.0 U	3.3	1.8 ⁿ	1.0 U	1.0 U	1.0 U	1.0 U	5.4	1.1	1.1	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
MW-50 (dup)	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/09/2012	100 U	-	-	1.0	1.0 U	1.0	1.5 U	-	0.01 U	0.5 U	1.0 U	0.57	1.3	1.8	-	1.0 U	1.0 U
MW-7	01/29/2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	03/14/2005	63,000	5,500 ^e	250 U	16 E	5,800	3,100	16,100	1.0 U	1.0 U	1.0 U	1.0 U	2,400	600	270 ^c	-	-	-
	01/30/2007	100 U	-	-	1.0 U	3.4	1.5	13	-	1.0 U	1.0 U	1.0 U	1.9	1.0 U	1.0 U	-	-	-
	04/30/2007	100 U	-	-	1.0 U	1.3	1.5	6.6	-	1.0 U	1.0 U	1.0 U	2.8	1.0 U	1.0 U	-	-	-
	07/23/2007	610	-	-	1.0 U	44	36	170	-	1.0 U	1.0 U	1.0 U	32	8.3	2.2	-	-	-
	10/29/2007	20,000	-	-	4.3	1,600	680	2,860	-	1.0 U	1.0 U	1.0 U	1,000	720	120	-	-	-
	01/09/2008	100 U		-	1.0 U	3.4	1.7	13		1.0 U	1.0 U	1.0 U	3.4	1.0 U	1.0 U		-	-

Vancouver, Washington

Location	Date	Gasoline	Diesel	Heavy/Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	EDB	EDC	MTBE	1,2,4-TMB	1,3,5-TMB	Naphthalene	Hexane	Total Lead	Dissolved Lead
MW-7 (con't)	04/14/2008	100 U	-	-	1.0 U	2.3	1.9	11	-	1.0 U	1.0 U	1.0 U	1.9	1.0 U	1.0 U	-	-	-
	09/05/2008	16,000	-	-	3.4	1,700	750	3,300	-	1.0 U	1.0 U	1.0 U	590	210	160	-	-	-
	12/17/2008	3,900	-	-	1.0 U*	240	180	1,150	-	1.0 U ⁱ	1.0 U ⁱ	1.0 U'	170	69	25	-	-	-
	03/11/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	1.4 c	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	06/09/2009	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	09/10/2009	9,400	-	-	1.1	320	360	1,660	-	1.0 U	1.0 U	1.0 U	270	61	53	-	-	-
	12/01/2009	8,300	-	-	1.0 U	860	560	2,900	-	1.0 U	1.0 U	1.0 U	440	120	46	-	-	-
	03/01/2010	100 U	-	-	1.0 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	06/07/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	09/13/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-
	12/01/2010	100 U	-	-	0.35 U	1.0 U	1.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-
	10/09/2012	106	-	-	0.25 U	1.0 U	6.6	17	-	0.01 U	0.5 U	1.0 U	9.3	1.3	1.8	-	1.0 U	1.0 U
MTCA Method	ΙΑ ^τ	800/1,000 ^g	500	500	5.0	1,000	700	1,000	5.0	0.01	5.0	20	NA	NA	160	NA	15	15

Notes:

^a TPH by Method NWTPH-HCID

^b EDB by EPA Method 8011

^c Naphthalene by EPA Method 8270C SIM

^d BTEX by EPA Method 8021B

^e Weathered or degraded fuel detected, not indicative of diesel or heavy oil

^f Model Toxics Control Act Cleanup (MTCA) Amendments (WDOE, October 12, 2007)

^g Per MTCA, values for gasoline are for benzene present (Gx < 800 ug/L) versus no benzene present (Gx < 1,000 ug/L)

^h Results for o-Xylene only, Result for m,p-Xylene was below the reporting limit.

ⁱ Results obtained from non-diluted sample; all other data from this sample obtained from a dilution.

^j BTEX by EPA Method 8020

Volatile Compounds by EPA Method 8260B unless otherwise noted

TPH by Method NWTPH-Gx (gasoline) and NWTPH-Dx (non-gasoline) unless otherwise noted

PCE = Tetrachloroethene

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

ug/L = Micrograms per liter

c = Lab qualifier - o-Xylene concentration (1.4 ug/L may be due to carryover from the previously analyzed sample. Result for m,p-Xylene was below the reporting limit.)

U = Undetected at method reporting limit shown

E = Some laboratory carryover possible; see laboratory analytical report

L = The reported concentration was generated from a library search

- = Not tested

NA = Not applicable

ND = Not detected

Values in bold indicate compound was detected at a concentration exceeding the most stringent MTCA Method A standard

FIGURES

Figure 1	Site Vicinity Map
Figure 2	Historic Site Features and Prior Sample Locations
Figure 3	Supplemental Soil Sampling Locations
Figure 4	Water Table Elevations and Flow Direction (4/19/2012)
Figure 5	Water Table Elevations and Flow Direction (7/20/2012)
Figure 6	Water Table Elevations and Flow Direction (10/9/2012)
Figure 7	Water Table Elevations and Flow Direction (1/7/2013)
Figure 8	Gasoline and Benzene in Groundwater

Attachment A

Ecology Opinion Letter

STATE OF WASHINGTON

PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

October 31, 2011

Mr. Terry Pyle Plaid Pantries, Inc 10025 SW Allen Boulevard Beaverton, Oregon 97005

Re: Further Action at the following Site:

- Site Name: Plaid Pantry 23
- Site Address: 5210 East Fourth Plain Boulevard, Vancouver, Washington
- Facility/Site No.: 78978458
- VCP Project No.: SW1166

Dear Mr. Pyle:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Plaid Pantry 23 facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

- Total petroleum hydrocarbons in the gasoline-range (TPH-G) into the Soil and Groundwater.
- Volatile Organic Compounds (VOCs) into the Soil and Groundwater.
- Metals into the Groundwater.

Mr. Terry Pyle October 31, 2011 Page 2

Enclosure A includes a detailed description and diagram of the Site, as currently known to Ecology.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that the parcel(s) associated with this Site are affected by other sites.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- 1. PNG Environmental, Inc., Environmental Assessment, Plaid Pantry No. 23, 5210 East Fourth Plain Boulevard, Vancouver, Washington, dated November 5, 1997.
- 2. PNG Environmental, Inc., Site Check, Plaid Pantries #23, 5210 East Fourth Plain Boulevard, Vancouver, Washington, dated March 31, 1998.
- 3. PNG Environmental, Inc., Site Characterization Report, Plaid Pantry No. 23, 5210 East Fourth Plain Boulevard, Vancouver, Washington, dated April 9, 2002.
- 4. GeoPotential Environmental & Exploration Geophysics, Subsurface Mapping Survey, dated March 2005.
- 5. Rengenesis [Proposal], Application of ORC Advanced to Accelerate Natural Attenuation of Contaminants of Concern (COCs) at the Former Plaid Pantry Site, Vancouver, Washington, dated April 6, 2005.
- 6. PNG Environmental, Inc., Site Investigation Report, September 26, 2005, Plaid Pantry # 23, dated September 26, 2005 (PNG 2005).
- 7. PNG Environmental, Inc., UST Decommissioning and Site Assessment Report, Former Plaid Pantry #23, 5210 East Fourth Plain Boulevard, Vancouver, Washington, dated January 24, 2007.
- 8. PNG Environmental, Inc., In-Situ Remedial Actions and Monitoring Summary Report, January – December 2009, Plaid Pantries Store # 23, Vancouver, Washington, dated February 20, 2009.
- 9. PNG Environmental, Inc., Groundwater Monitoring Summary Report, January 2009 March 2010, dated April 12, 2010.
- 10. PNG Environmental, Inc., Final Site Characterization and Closure Report, Plaid Pantries Store # 23, Vancouver, Washington, dated March 4, 2011.

Mr. Terry Pyle October 31, 2011 Page 3

Those documents are kept in the Central Files of the Southwest Regional Office of Ecology (SWRO) for review by appointment only. You can make an appointment by calling the SWRO resource contact at (360) 407-6365.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

1. Characterization of the Site.

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action. The Site is described above and in **Enclosure A**.

The Site is located at 5210 East Fourth Plain Boulevard in Vancouver, Washington. The Site was operated as a Plaid Pantry convenience store and refueling station from 1982 to 2002. Plaid Pantry operated three gasoline underground storage tanks (USTs) at the Site during that time: one 10,000-gallon and two 12,000-gallon single-wall steel tanks with single-wall distribution piping. From 1998 to 2002, when the USTs were removed from service, the USTs were out of compliance with *WAC 173-360-310 Upgrading requirements for existing UST systems* by not being upgraded with a lining and/or cathodic protection.

In 1991, PEMCO conducted an environmental assessment of the adjacent, down-gradient Gramor parcel west of the Site and found VOC soil contamination. Laboratory analytical results for boring B-7 indicated benzene was present in the soil at 1.9 milligrams per kilogram (mg/kg) and above the MTCA Method A Soil Cleanup Level (CUL) for unrestricted land uses of 0.03 mg/kg; TPH-G was not analyzed for. A follow on investigation by Dames and Moore in 1995 found benzene in groundwater at 290 micrograms per liter (μ g/L) and total xylenes at 1,300 μ g/L. MTCA Method A Groundwater CULs for benzene and total xylenes were 5 μ g/L and 1,000 μ g/L, respectively, and there was no mention if TPH-G was not the source of the contamination and notified the Ecology. In January 1997, Ecology notified Plaid Pantry that their Site was placed on the *Confirmed and Suspected Contaminated Sites* list.

In November 1997, PNG Environmental, Inc. (PNG) provided an Environmental Assessment of the Site and concluded that there could be multiple off-Site sources to explain the contamination on the Gramor parcel. In February 1998, PNG conducted a Site Check of the Plaid Pantry parcel and concluded there were TPH-G and VOCs present in the groundwater at location boring B-5. Analytical results indicated total lead was also present in the
> groundwater at three locations, all above the MTCA Method A CUL of 15 μ g/L; the highest lead concentration was 317 μ g/L at B-1. Also during their investigation, the driller penetrated a fuel distribution line at the location of B-6. The investigation advanced at total of six borings using direct-push methods and found TPH-G and VOCs in the Site soil at one location, B-6, at 10 feet below ground surface (bgs). PNG estimated a release of eight gallons of gasoline. The B-6 soil sample had the highest reported TPH-G soil concentration at the Site with a concentration of 4,400 mg/kg; the MTCA Method A Soil CUL for TPH-G was 30 mg/kg due to benzene being present at the Site (see Figure 3, Table 1, and Table 2). PNG installed two soil vapor extraction (SVE) wells at B-6 to remediate petroleumcontaminated soil (PCS). Ecology was notified of a leaking UST (LUST) at the Site (LUST identification number 4379070).

From 2002 to 2010, PNG conducted activities at the Site, including a Site Characterization in 2005, UST decommissioning activities (removing three USTs and associated piping) in 2006, in-situ remedial actions by injecting oxygenating compounds in solution into the subsurface in June 2008, and groundwater monitoring activities from 2007 to 2010. During the UST decommissioning and removal, three USTs and associated piping were removed and disposed of. PNG collected soil samples from the excavation pit side walls and floor. The excavation soil samples submitted for analysis indicated the contamination was removed (see Figure 5).

The 2008 in-situ remedy action involved the injection of 3,125 pounds of a RegenOx[®]/ORC-A[dvanced][™] mix of material blended with 5,000 gallons of water into 35 locations in the southwestern corner of the parcel. The oxygen reducing compound (ORC) mix was injected between 10 feet and 20 feet bgs (see Figure 4). The injection was conditionally rule authorized under an Ecology Underground Injection Control Program Well registration Letter dated May 1, 2008, which authorized the injection of ORC blended material into the subsurface and required the meeting of groundwater quality standards under Chapter 173-200 WAC.

From 2007 to 2010, PNG conducted quarterly groundwater monitoring at six monitoring wells on the Site. The last four quarters indicated the constituents of concern (COCs) were at all wells were either not detected at the laboratory reporting limit or were not detected above their applicable MTCA Method A CUL (see Table 2).

Based on a review of the available information, Ecology has the following comments:

 In April 2002, North Creek Analytical, Inc. (NCA) performed a forensic analysis of soil and water samples from the Site to differentiate similarities and differences of the samples to establish dates of the releases for samples collected from MW1 and B12. NAC found that there appeared to be at least two separate release events temporally separated by 10 years; however, NCA could not make a determination as to whether the releases were attributable to separate sources. The forensic analysis also discussed the presence of gasoline range organics at 121 parts per billion (ppb) and

tetrachloroethene at 1.81 ppb in the groundwater at MW-1. Tetrachloroethene is a notable COC often associated with parts cleaning operations. Although this halogenated hydrocarbon is not found in commercial gasoline, diesel, or lube oil, it is often a contaminant of waste oil.

The findings of the March 2005 *Subsurface Mapping Survey* (found in Appendix A in PNG 2005) indicated there were two large subsurface anomalies, one metal object (MO) and one ground penetrating radar (GPR) anomaly (see Figure 3[IM]). GPR and hand-held metal detectors identified the MO, and the size of the MO was estimated to be 11 feet long by 3 feet wide; it was located near monitoring well MW-1 (just outside the footprint of the former service station). There was no narrative discussing the GPR anomaly; however, it was identified in Figure 3[IM] as being near the historic service station UST location.

During the 2005 UST removal, a single, uncapped, steel fuel distribution pipe was uncovered at the bottom of the UST excavation pit. It was attributed to being part of the historic UST system; the pipe was reported to enter into the excavation's north sidewall in the general direction towards the historic UST and GPR location. PNG reported the pipe to have been severed and removed, and the remaining portion capped in place in the northern excavation wall.

WAC 173-340-740 (b) requires a cleanup action be conducted to address all areas where the concentration of hazardous substances in the soil exceeds cleanup levels at the relevant point of compliance. The information discussed above indicates that the area around MW-1 was not thoroughly characterized nor was any remedial action applied at that location. TPH-G soil contamination above the MTCA cleanup level remains at MW-1. The source of that contamination was not determined. The information seems to indicate the MO as a potential source near MW-1 and future releases cannot be ruled out. Per WAC 173-360-395, if previously closed or abandoned USTs pose a current or potential threat to human health and the environment, Ecology can require that the UST be decommissioned and/or removed. The Ecology database does not contain any information on the historic USTs.

Available information indicates characterization of the MO near MW-1 and the GPR anomaly are warranted. The true nature of both anomalies should characterized by physical examination, and if they are confirmed as the historic UST and waste oil tank, they should be removed per WAC 173-360-395.

Analytical data also indicates PCS above the MTCA Method A CULs remains at 15 feet bgs at the Site. TPH-G and benzene were identified above their applicable MTCA Method A CULs. Areas of concern are B7/P2, where the benzene

concentration in the soil was above the MTCA CUL, and B-6¹ and B-13, where the TPH-G concentration was above the MTCA CUL. Soil sample analytical results indicated the PCS was removed from the UST excavation; however, no confirmation soil sample was collected from the southwest corner of the UST excavation near B-6, the location with the highest TPH-G concentration. Confirmation soil samples should be collected from B7/P2 at 15 to 16 feet bgs, B-6 at 10 feet bgs, and B-13 at 15 feet bgs. The COCs for the soil at these locations will be TPH-G, BTEX, and lead.

If any USTs are confirmed present, they will need to be characterized and decommissioned; confirmation soil and groundwater samples will be needed. Due to the potential for the MO anomaly to be a former waste oil UST, the soil and groundwater should be analyzed for applicable constituents listed on MTCA Table 830-1. The COCs for the Site groundwater near MW-1 will be TPH-G, TPH-D, TPH-O, benzene, toluene, ethylbenzene, and total xylenes (BTEX), ethylene dibromide (EDB) (via EPA Method 8011), ethylene dichloride (EDC), methyl tertiary-butyl ether (MTBE), total lead, carcinogenic polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and halogenated VOCs. The COCs for the Site soil around MW-1 will be TPH-G, TPH-D, TPH-O, BTEX, and lead. If EDB, EDC, MTBE, carcinogenic PAHs, PCBs, and halogenated VOCs are present in the groundwater then those COCs will have to be evaluated for also. The COCs for the Site groundwater near the historic UST location will be TPH-G, TPH-D, TPH-O, BTEX, EDB (via EPA Method 8011), EDC, MTBE, and total lead. The COCs for the Site soil around the historic UST location will be TPH-G, TPH-D, TPH-O, BTEX, and lead. If EDB, EDC, MTBE are present in the groundwater then those COCs will have to be evaluated for also.

2. PNG provided four quarters of groundwater analytical results where COC concentrations were below the applicable MTCA Method A CULs or not detected; however, Ecology noted that COC concentrations at MW-7 indicated a rebound effect in September and December 2009. There was also a demonstrated pattern where COC concentrations increased above the applicable MTCA Method A CULs when the depth to groundwater at that well was measured at 14 feet bgs or deeper. Groundwater sampling events for the last four quarters were above 13.50 feet bgs and followed the variable concentration pattern consistently displayed at the well. Ecology recommends that downgradient wells MW-6 and MW-7 be sampled again

¹ Because of the limited release of TPH-G caused by the push probe penetration into the fuel distribution pipeline at the B-6 location, PNG singularly remediated the soil at this location via a SVE system; however, no operational or performance reports, field logs, results tables, SVE well installation logs, analytical results, or soil confirmation samples were provided to Ecology for review to demonstrate compliance with MTCA. Once a remedial action is determined to have remediated the Site media to comply with the MTCA cleanup standards, Ecology requires that confirmation sample analytical results demonstrate the affected media concentrations are below the applicable MTCA CULs before a no further action opinion will be provided.

> when the groundwater depth is below 14 feet bgs to confirm that the implemented remedy is permanent (see Table 2, Table 4, and Figure 9). Ecology recognizes the variable nature of the groundwater table and suggests that the depth to water be evaluated for the next year, if the groundwater table does not reach the desired depth, Ecology will accept the available groundwater data as representative of Site conditions.

> Please note that Ecology requires *at least* four consecutive quarters of clean groundwater monitoring analytical results to demonstrate compliance with the MTCA cleanup regulations. The reason for this is to determine any seasonal variations or long-term patterns in the contaminant concentration fluctuations, so that Ecology can determine whether the implemented remedy is permanent.

- 3. PNG used an arbitrary vertical datum for this Site investigation. MTCA requires the use of United States Geological Survey (USGS) datum as a basis for all elevations. Please calibrate all elevation points used in the investigation to a known USGS datum point per WAC 173-340-840 General Submittal Requirements.
- 4. Please provide Ecology with an updated work plan for the remedial activities identified above for review and approval to ensure that the proposed activities will likely meet the substantive requirements of MTCA.
- 5. MTCA requires the submittal of three copies of a plan or report. Please submit two bound hard copies and one electronic copy (portable document format [pdf]) for future plans or reports provided to Ecology for review per *WAC 173-340-840 General Submittal Requirements.*
- 6. In accordance with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), all data generated for Independent Remedial Actions shall be submitted <u>simultaneously</u> in both a written and electronic format. For additional information regarding electronic format requirements, see the website http://www.ecy.wa.gov/eim. Be advised that according to the policy, any reports containing sampling data that are submitted for Ecology review are considered incomplete until the electronic data has been entered. Please ensure that data generated during on-site activities is submitted pursuant to this policy. Data must be submitted to Ecology in this format for Ecology to issue a No Further Action determination. Please be sure to submit all soil and groundwater data collected to date, as well as any future data, in this format. Data collected prior to August 2005 (effective date of this policy) is not required to be submitted; however, you are encouraged to do so if it is available. Be advised that Ecology requires up to two weeks to process the data once it is received.

2. Establishment of cleanup standards.

Ecology has determined the cleanup levels and points of compliance you established for the Site do not meet the substantive requirements of MTCA.

Applicable MTCA Method A CULs for soil and groundwater shall be used to characterize the Site. Standard points of compliance are being used for the Site. The point of compliance for protection of groundwater will be established in the soils throughout the Site. For soil cleanup levels based on human exposure via direct contact or other exposure pathways where contact with the soil is required to complete the pathway, the point of compliance shall be established in the soils throughout the Site from the ground surface to 15 feet bgs. In addition, the point of compliance for the groundwater is established throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.

3. Selection of cleanup action.

Ecology has determined the cleanup action you selected for the Site does not meet the substantive requirements of MTCA.

The affected Site media must be fully characterized prior to selecting any final cleanup action. For a Site cleanup action to qualify for a no further action opinion, it must meet one or more of the minimum cleanup requirements in WAC 173-340-360(2). MTCA requires the use of permanent solutions to the maximum extent practicable. If permanent solutions are not part of the remedy, it will be necessary to develop a feasibility study based on the information collected in the characterization phase. The feasibility study should include all practicable methods of treatment in addressing the Site cleanup. Please note that monitored natural attenuation is a cleanup alternative that must be approved by Ecology before implementation.

4. Cleanup.

Ecology has determined the cleanup you performed does not meet any cleanup standards at the Site.

The Site was not fully characterized prior to initiating cleanup activities. PNG decommissioned and removed three USTs from the Site. PNG excavated approximately 590 tons of PCS from the Site and disposed of it the Wasco County Landfill in Oregon. PNG applied ORCs to the UST excavation floor and sidewalls prior to backfilling the excavation. Finally, PNG injected approximately 3,000 pounds of ORCs into subsurface soil and groundwater to help remove residual groundwater impacts. Soil sample analytical results indicated the PCS was removed from the UST excavation; however, no confirmation soil

sample was collected from the southwest corner of the UST excavation near B-6, the location with the highest TPH-G concentration.

After a review of the available data, Ecology determined the CSM was not developed enough to define the Site nor did the analytical data define the Site. MTCA defines a Site as wherever the contamination has come to lie. Laboratory analytical results indicated a source of the Site contamination near the Plaid Pantry USTs or fuel dispenser pad; however, there was speculation that more than one source was responsible for the Site contamination. A review of the groundwater gradient history would suggest the UST excavation or fuel pad was an unlikely source for the soil contamination at MW-1.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecologysupervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. See RCW 70.105D.030(1)(i).

Contact Information

Thank you for choosing to clean up the Site under the Voluntary Cleanup Program (VCP). After you have addressed our concerns, you may request another review of your cleanup. Please do not hesitate to request additional services as your cleanup progresses. We look forward to working with you.

For more information about the VCP and the cleanup process, please visit our web site: <u>www.</u> <u>ecy.wa.gov/programs/tcp/vcp/vcpmain.htm</u>. If you have any questions about this opinion, please contact me by phone at (360) 407-7404 or e-mail at erad461@ecy.wa.gov.

Sincerely,

Eugene Radcliff, L.G.

Site Manager SWRO Toxics Cleanup Program

GER/ksc:Plaid Pantry 23 FA Opinion

Enclosures (10):	A – Description and Diagrams of the Site				
	Figure 1	Site Vicinity Map			
	Figure 3[IM]	2005 Mapping Survey Interpretation Map			
	Figure 3	Historical Site Features			
	Figure 4	ISCO Injection Locations			
	Figure 5	UST Decommissioning Confirmation Soil Sample Locations			
		(October 2006)			
	Figure 7	Groundwater Elevation Contour Map for September 2010			
	Figure 9	Gasoline & Benzene in Groundwater			
	Table 1	Soil Analytical Results			
	Table 2	Groundwater Analytical Results Summary			
	Table 4	Groundwater Elevation Data for MW-7 [modified]			

By certified mail: (7009 3410 0000 1272 3670)

 cc: Ms. Louise Piacentini and Mr. Gene McIntosh, C/O M & P Properties Mr. Bryan DeDoncker, Clark County Health Mary Shaleen-Hansen – Ecology Mr. Scott Rose – Ecology Ms. Dolores Mitchell – Ecology (without enclosures)

Enclosure A

Description and Diagrams of the Site

Attachment B

Boring Logs

									L0 		WELL		G NUI	MBF	B22	
EE ENV		/IENTAL C	CONS	SULT	ING, INC					Former Fault			0 1101		<u></u>	
240 (503 www	5 NE 10 3) 847- w.ees-0	6th Aven 2740 environm	ue, F ienta	Portla al.co	and, OR 9 m	€7212		 ∧ =	•	-22	PROJECT NAME: F PROJECT NUMBER LOCATION: Vancou LOGGED BY: CH REVIEWED BY: PE DATE: 4/10/12	Plaid Pantry : 839-04 uver, WA	y #23			
	SAM		FO	RM/			_				ION					
SAMPLE TYPE	Blow	PID (ppm)	REC %	First Water	LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE	STRATA	SOIL TYPE	(USCS Classification, Depth Interva Plasticity, Shapes, Mineral Compo Consistency, Molsture, Odor, Geol	al, Color, Grain Size, sition, Density or logical Interpretation)	BC CONS			WELL N DETAI	ίL
		0				-			ML	Sandy silt, 0'-5', brown, ~8 20% fine sand, local tree r increase sand content with	30% low plastic fines, roots and wood debris, n depth, moist, no odor.					
		0								Note: Air knife to 5' bgs. W observed air knife boring a samples.	/ohlers Environmental and collected soil					
		0				5+			SP/	Sand with silt, 5'-16', brow sand, 10-15% low plastic f medium subangular grave	n, 80% fine to medium fines, local trace fine to I, moist, no odor.					
		0				10 -										
		0		z		-				Wet at ~12'						
	Grab 0 B22-15/16															
Grab				<u>라이라</u>		Backfill boring with hydrate	ed bentonite and topsoil.									
						20-										
						25-										
						30-										
DRILLI	NG CO	NTRACTO	R: M ect F	lajor [Push	Drilling				CO SU	ORDINATES: X530.81, Y RFACE ELEVATION: 180.	396.33 19' MSL	TIME	DATE	 E 	DTW	
SAMPL DRILLI DRILLI	NG STA	ART DATE:	'acro 4-´ 4-19-	0 Core 19-12 -12	•				SIT	SING ELEVATION: E DATUM: NAVD 88						

		WELL/BORING NUMBER B23
EES ENVIRONMENTAL CONSULTING, INC. 2405 NE 16th Avenue, Portland, OR 97212 (503) 847-2740 www.ees-environmental.com	PROJE PROJE PROJE PROJE PROJE LOCAT LOCAT LOGG REVIE DATE:	ECT NAME: Plaid Pantry #23 ECT NUMBER: 839-04 TION: Vancouver, WA ED BY: CH WED BY: PE 4/19/12
SAMPLE INFORMATION		BOREHOLE/WELL
SAMPLE Blow TYPE Counts PID (ppm) % First LAB LAB SAMPLE G G G	STRATA UUSCS Classification, Depth Interval, Color, Gra Plasticity, Shapes, Mineral Composition, Densi Consistency, Molsture, Odor, Geological Interp	ty or retation)
TYPE Counts PID (ppm) Water LD. N IS S I 0 <	3 Consistency, Molsture, Odor, Geological Interp. 0 0'-0.2') Asphalt. 9 0	relation)
DRILLING CONTRACTOR: Major Drilling DRILLING METHOD: Direct Push SAMPLING METHOD: Macro Core DRILLING START DATE: 4-19-12 DRILLING END DATE: 4-19-12	COORDINATES: X618.34, Y399.98 SURFACE ELEVATION: 180.31' MSL CASING ELEVATION: SITE DATUM: NAVD 88 	

Attachment C

Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

April 26, 2012

Paul Ecker EES Environmental Consulting, Inc. 2405 NE 16th Ave Portland, OR 97212

Dear Mr. Ecker:

Included are the results from the testing of material submitted on April 20, 2012 from the Plaid 23, PO 839-04, F&BI 204296 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures EES0426R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 20, 2012 by Friedman & Bruya, Inc. from the EES Environmental Consulting Plaid 23, PO 839-04, F&BI 204296 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	EES Environmental Consulting
204296-01	B22-15/16
204296-02	B23-15
204296-03	B24-10

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/12 Date Received: 04/20/12 Project: Plaid 23, PO 839-04, F&BI 204296 Date Extracted: 04/20/12 Date Analyzed: 04/20/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
B22-15/16 204296-01	< 0.02	< 0.02	< 0.02	<0.06	<2	(Linit 50-132) 95
B23-15 204296-02	<0.02	< 0.02	< 0.02	<0.06	<2	96
B24-10 204296-03	<0.02	< 0.02	< 0.02	< 0.06	<2	96
Method Blank 02-0663 MB	< 0.02	< 0.02	< 0.02	<0.06	<2	93

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B22-15/16 04/20/12 04/20/12 04/24/12 Soil	Client: Project: Lab ID: Data File: Instrument:	EES Environmental Consulting Plaid 23, PO 839-04, F&BI 204296 204296-01 204296-01.031 ICPMS1
Units:	mg/kg (ppm)	Uperator:	AP
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	97	60	125
Analyte	Concentration		
Analyte.	ing/kg (ppin)		
Lead	4.77		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B23-15 04/20/12 04/20/12 04/24/12 Soil mg/kg (nnm)	Client: Project: Lab ID: Data File: Instrument: Operator:	EES Environmental Consulting Plaid 23, PO 839-04, F&BI 204296 204296-02 204296-02.032 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		
Lead	6.86		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	B24-10 04/20/12 04/20/12 04/24/12 Soil	Client: Project: Lab ID: Data File: Instrument:	EES Environmental Consulting Plaid 23, PO 839-04, F&BI 204296 204296-03 204296-03.033 ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	98	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Lead	4.80		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	Method Blank NA 04/20/12 04/24/12	Client: Project: Lab ID: Data File:	EES Environmental Consulting Plaid 23, PO 839-04, F&BI 204296 I2-262 mb I2-262 mb.017
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
Internal Standard: Holmium	% Recovery: 94	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/12 Date Received: 04/20/12 Project: Plaid 23, PO 839-04, F&BI 204296

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 204266-02 (Duplicate)

		(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	81	66-121
Toluene	mg/kg (ppm)	0.5	90	72-128
Ethylbenzene	mg/kg (ppm)	0.5	91	69-132
Xylenes	mg/kg (ppm)	1.5	93	69-131
Gasoline	mg/kg (ppm)	20	105	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 04/26/12 Date Received: 04/20/12 Project: Plaid 23, PO 839-04, F&BI 204296

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 204283-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	3.18	100	100	64-139	0

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	100	83-118

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\mathsf{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

eattle, WA 98119-2029 h. (206) 285-8282 ax (206) 283-5044	Friedman & Bruya, Inc. 3012 16th Avenue West						824-10	71-52	B22-15/16	Sample ID		City, State, ZIP Portan	Company EES Address 2405 NE 16	Send Report To Pirul
Received t Relinquish Received b	Relinquish						03	120	01AB	Lab ID		- Fax	The	Sch
y; ed by: y;							-	_	4/19/12	Date Sampled			•	Ę
- and	ATURE						7.00	- 1100	1000	Time Sampled		1112		
						•	<u> </u>		Soil	Sample Typ		REMA	PLA	SAMP
DO	Les P						Z	У	5	e containers		ARKS	12 2 3 201 MANUE	LERS (sign
Ó	S INT									TPH-Diesel				atur
	t NAN			 		 	\succ	X	X	TPH-Gasoline				()
	で同			 			\times		X	BTEX by 8021B				
	٤			 						VOCs by 8260	A			1
				 		 				HFS	NAL			- *
K							X	×	X	Total Ph	SES		80	
S. K				 							REQ		9-0	Ş
ump 81	2 OMI									· · · · · · · · · · · · · · · · · · ·	UES		۲ م ۲	
les 1	N AN		1-	·							TED			
·ece			<u>+</u>											X
Ved			<u>+</u>									spos shurn ill ca	USH_	TUR
at 6												samples with instr samples	ges author	MAROUN
°C 2 2	1702		2		*1 •					Notes		ays uctions	ized by	D TIME

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, October 31, 2012

Paul Ecker EES Environmental Inc 240 N Broadway Ste 115 Portland, OR 97227

RE: Plaid Pantry #23 / 839-04

Enclosed are the results of analyses for work order <u>A12J274</u>, which was received by the laboratory on 10/10/2012 at 12:40:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38
	ANALYTICAL REPORT FOR SAMPLES	

SAMPLE INFORMATION							
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
MW-7	A12J274-02	Water	10/09/12 10:05	10/10/12 12:40			
MW-6	A12J274-03	Water	10/09/12 10:41	10/10/12 12:40			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

1,4-Difluorobenzene (Sur)

Notes

EES Environmental Inc	Project:	Plaid Pantry #23	
240 N Broadway Ste 115	Project Number:	839-04	Reported:
Portland, OR 97227	Project Manager:	Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx Reporting MDL Result Limit Method Analyte Dilution Date Analyzed Units MW-7 (A12J274-02) Matrix: Water Batch: 1210336 **Gasoline Range Organics** 0.106 ----0.100 10/11/12 16:29 mg/L 1 NWTPH-Gx (MS) Surrogate: 4-Bromofluorobenzene (Sur) Recovery: 94 % Limits: 50-150 % .. 1,4-Difluorobenzene (Sur) 89 % Limits: 50-150 % MW-6 (A12J274-03) Matrix: Water Batch: 1210336 Gasoline Range Organics ND 0.100 1 10/11/12 16:57 NWTPH-Gx (MS) --mg/L Surrogate: 4-Bromofluorobenzene (Sur) Recovery: 95 % Limits: 50-150 %

90 %

Limits: 50-150 %

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project:	Plaid Pantry #23	
240 N Broadway Ste 115	Project Number	839-04	Reported:
Portland, OR 97227	Project Manager	Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

		RBCA	Compound	s (BTEX+) by E	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW-7 (A12J274-02)			Matrix: Wa	ater Bat	ch: 1210336			
Benzene	ND	0.125	0.250	ug/L	1	10/11/12 16:29	EPA 8260B	
Toluene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	6.62	0.250	0.500	"	"	"	"	
Xylenes, total	16.6	0.750	1.50	"	"	"	"	
Naphthalene	1.78	1.00	2.00	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
n-Propylbenzene	1.05	0.250	0.500	"	"	"	"	
1,2,4-Trimethylbenzene	9.34	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	1.31	0.500	1.00	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr	r)	Re	covery: 100 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			107 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)		103 %	Limits: 80-120 %	"	"	"	
MW-6 (A12J274-03)			Matrix: Wa	ater Bat	ch: 1210336			
Benzene	1.03	0.125	0.250	ug/L	1	10/11/12 16:57	EPA 8260B	
Toluene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	1.03	0.250	0.500	"	"	"	"	
Xylenes, total	ND	0.750	1.50	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Isopropylbenzene	1.68	0.500	1.00	"	"	"	"	
n-Propylbenzene	6.76	0.250	0.500	"	"	"	"	
1,2,4-Trimethylbenzene	0.570	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr	r)	Re	covery: 101 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			106 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)		102 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

J

J

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B SIM

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW-7 (A12J274-02)			Matrix: Wa	ater Bato	h: 1210488			
1,2-Dibromoethane (EDB)	ND		0.0100	ug/L	1	10/16/12 18:47	EPA 8260B SIM	
Surrogate: Dibromofluoromethane (Surr)		Reco	wery: 107 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			104 %	Limits: 80-120 %		"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 80-120 %	"	"	"	
MW-6 (A12J274-03)			Matrix: Wa	ater Bato	:h: 1210488			
1,2-Dibromoethane (EDB)	ND		0.0100	ug/L	1	10/16/12 19:39	EPA 8260B SIM	
Surrogate: Dibromofluoromethane (Surr)		Reco	wery: 108 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %		"	"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)							
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW-7 (A12J274-02)			Matrix: Wate	r				
Batch: 1210698								
Lead	ND		1.00	ug/L	1	10/24/12 15:36	EPA 6020	
MW-6 (A12J274-03)			Matrix: Wate	r				
Batch: 1210698								
Lead	ND		1.00	ug/L	1	10/24/12 15:40	EPA 6020	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020 (ICPMS)												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
MW-7 (A12J274-02)			Matrix: Water	•								
Batch: 1210670												
Lead	ND		1.00	ug/L	1	10/26/12 11:30	EPA 6020 (Diss)					
MW-6 (A12J274-03)			Matrix: Water									
Batch: 1210670												
Lead	ND		1.00	ug/L	1	10/26/12 11:33	EPA 6020 (Diss)					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project:	Plaid Pantry #23	
240 N Broadway Ste 115	Project Number:	839-04	Reported:
Portland, OR 97227	Project Manager:	Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B							Wa	ter				
Blank (1210336-BLK1)					Prepared: 10	/11/12 12:57	Analyzed:	10/11/12 10	5:00			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 94 %	Limits:	50-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %		50-150 %		"					
LCS (1210336-BS2)					Prepared: 10	/11/12 12:57	Analyzed:	10/11/12 1:	5:32			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.463		0.100	mg/L	1	0.500		93	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 96 %	Limits:	50-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			88 %		50-150 %		"					
Duplicate (1210336-DUP1)					Prepared: 10	/11/12 14:57	Analyzed:	10/11/12 18	8:52			
QC Source Sample: Other (A12J280-0	2)											
NWTPH-Gx (MS)												
Gasoline Range Organics	38.9		5.00	mg/L	50		35.5			9	30%	
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 94 %	Limits:	50-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %		50-150 %		"					
Duplicate (1210336-DUP2)					Prepared: 10	/11/12 14:57	Analyzed:	10/12/12 0	0:04			
QC Source Sample: Other (A12J280-0	8)											
NWTPH-Gx (MS)												
Gasoline Range Organics	72.4		10.0	mg/L	100		76.1			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 95 %	Limits:	50-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %		50-150 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B							Wat	er				
Blank (1210336-BLK1)				Pre	epared: 10/	/11/12 12:57	Analyzed:	10/11/12 10	5:00			
EPA 8260B												
Benzene	ND	0.125	0.250	ug/L	1							
Toluene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
m,p-Xylene	ND	0.500	1.00	"	"							
o-Xylene	ND	0.250	0.500	"	"							
Xylenes, total	ND	0.750	1.50	"	"							
Naphthalene	ND	1.00	2.00	"	"							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Isopropylbenzene	ND	0.500	1.00	"	"							
n-Propylbenzene	ND	0.250	0.500	"	"							
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
Surr: Dibromofluoromethane (Surr)		Rec	overy: 100 %	Limits: 80)-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %	80	-120 %		"					
Toluene-d8 (Surr)			106 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (1210336-BS1)				Pre	epared: 10/	/11/12 12:57	Analyzed:	10/11/12 15	5:03			
EPA 8260B												
Benzene	20.6	0.125	0.250	ug/L	1	20.0		103	70-130%			
Toluene	19.9	0.500	1.00	"	"	"		99	"			
Ethylbenzene	19.8	0.250	0.500	"	"	"		99	"			
m,p-Xylene	40.9	0.500	1.00	"	"	40.0		102	"			
o-Xylene	20.4	0.250	0.500	"	"	20.0		102	"			
Xylenes, total	61.3	0.750	1.50	"	"	60.0		102	"			
Naphthalene	17.8	1.00	2.00	"	"	20.0		89	"			
Methyl tert-butyl ether (MTBE)	20.4	0.500	1.00	"	"	"		102	"			
Isopropylbenzene	19.7	0.500	1.00	"	"	"		98	"			
n-Propylbenzene	20.1	0.250	0.500	"	"	"		100	"			
1,2,4-Trimethylbenzene	20.7	0.500	1.00	"	"	"		104				
1,3,5-Trimethylbenzene	20.0	0.500	1.00	"	"	"		100				
1,2-Dibromoethane (EDB)	20.1	0.250	0.500	"	"	"		101				
1,2-Dichloroethane (EDC)	17.4	0.250	0.500	"	"	"		87	"			

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project:	Plaid Pantry #23	
240 N Broadway Ste 115	Project Number:	839-04	Reported:
Portland, OR 97227	Project Manager:	Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B	6						Wat	er				
LCS (1210336-BS1)				Pre	epared: 10/	11/12 12:57	Analyzed:	10/11/12 15	:03			
Surr: Dibromofluoromethane (Surr)		Rece	overy: 100 %	Limits: 80	-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			103 %	80	-120 %		"					
Toluene-d8 (Surr)			105 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (1210336-DUP1)				Pre	epared: 10/	11/12 14:57	Analyzed:	10/11/12 18	:52			
QC Source Sample: Other (A12J280	-02)											
EPA 8260B												
Benzene	2910	6.25	12.5	ug/L	50		2860			2	30%	
Toluene	1430	25.0	50.0	"	"		1430			0.1	30%	
Ethylbenzene	1320	12.5	25.0	"	"		1310			1	30%	
m,p-Xylene	3660	25.0	50.0	"	"		3640			0.7	30%	
o-Xylene	1010	12.5	25.0	"	"		1000			0.3	30%	
Xylenes, total	4670	37.5	75.0	"	"		4640			0.6	30%	
Naphthalene	516	50.0	100	"	"		489			5	30%	
Methyl tert-butyl ether (MTBE)	ND	25.0	50.0	"	"		ND				30%	
Isopropylbenzene	53.0	25.0	50.0	"	"		53.5			0.9	30%	
n-Propylbenzene	222	12.5	25.0	"	"		218			2	30%	
1,2,4-Trimethylbenzene	1780	25.0	50.0	"	"		1730			3	30%	
1,3,5-Trimethylbenzene	519	25.0	50.0	"	"		497			4	30%	
1,2-Dibromoethane (EDB)	ND	12.5	25.0	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Rece	overy: 100 %	Limits: 80	-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %	80	-120 %		"					
Toluene-d8 (Surr)			106 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80	-120 %		"					
Duplicate (1210336-DUP2)				Pre	epared: 10/	11/12 14:57	Analyzed:	10/12/12 00	:04			
QC Source Sample: Other (A12J280	-08)											
EPA 8260B												
Benzene	5960	12.5	25.0	ug/L	100		6320			6	30%	
Toluene	6800	50.0	100	"	"		7160			5	30%	
Ethylbenzene	1810	25.0	50.0	"	"		1900			5	30%	
m,p-Xylene	7870	50.0	100	"	"		8200			4	30%	
o-Xylene	3570	25.0	50.0	"	"		3720			4	30%	
Xylenes, total	11400	75.0	150	"			11900			4	30%	

Apex Laboratories

Philip Neverberg

EES Environmental Inc	Project: Plaid Pantry #23	
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210336 - EPA 5030B							Wat	er				
Duplicate (1210336-DUP2)				P	repared: 10/	11/12 14:57	Analyzed:	10/12/12 0):04			
QC Source Sample: Other (A12J280	-08)											
Naphthalene	783	100	200	ug/L	"		819			4	30%	
Methyl tert-butyl ether (MTBE)	ND	60.0	100	"	"		ND				30%	
Isopropylbenzene	ND	50.0	100	"	"		51.0			***	30%	
n-Propylbenzene	180	25.0	50.0	"	"		194			7	30%	
1,2,4-Trimethylbenzene	2010	50.0	100	"	"		2080			3	30%	
1,3,5-Trimethylbenzene	534	50.0	100	"	"		547			2	30%	
1,2-Dibromoethane (EDB)	ND	25.0	50.0	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND	25.0	50.0	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Rec	overy: 100 %	Limits: 8	0-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %	8	0-120 %		"					
Toluene-d8 (Surr)			107 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	8	0-120 %		"					
Matrix Spike (1210336-MS1)				P	repared: 10/	11/12 14:57	Analyzed:	10/12/12 0	1:01			
QC Source Sample: Other (A12J280	-01)				1							
EPA 8260B												
Benzene	1870	2.50	5.00	ug/L	20	400	1400	118	70-130%			
Toluene	542	10.0	20.0	"	"	"	145	99	"			
Ethylbenzene	2020	5.00	10.0	"	"	"	1550	117	"			
m,p-Xylene	4930	10.0	20.0	"	"	800	4170	95	"			
o-Xylene	1590	5.00	10.0	"	"	400	1150	110	"			
Xylenes, total	6520	15.0	30.0	"	"	1200	5320	100	"			
Naphthalene	857	20.0	40.0	"	"	400	532	81	"			
Methyl tert-butyl ether (MTBE)	380	10.0	20.0	"	"	"	ND	95	"			
Isopropylbenzene	474	10.0	20.0	"	"	"	72.2	100	"			
n-Propylbenzene	689	5.00	10.0	"		"	291	99	"			
1.2.4-Trimethylbenzene	2870	10.0	20.0	"		"	2390	122	"			
1.3.5-Trimethylbenzene	1090	10.0	20.0			"	668	106	"			
1.2-Dibromoethane (EDB)	364	5.00	10.0	"		"	ND	91	"			
1,2-Dichloroethane (EDC)	337	5.00	10.0	"	"	"	ND	84	"			
Surr: Dibromofluoromethane (Surr)		Rec	overy: 101 %	Limits: 8	80-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			103 %	8	0-120 %		"					
Toluene-d8 (Surr)			105 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	8	0-120 %		"					

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project: Plaid Pant	ry #23
240 N Broadway Ste 115	Project Number: 839-04	Reported:
Portland, OR 97227	Project Manager: Paul Ecker	10/31/12 17:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Orga	anic Co	mpounds	by EPA 82	60B SIM					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210488 - EPA 5030B	1						Wat	ter				
Blank (1210488-BLK1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 1	8:22			
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	ND		0.0100	ug/L	1							
Surr: Dibromofluoromethane (Surr)		Re	covery: 108 %	Limits:	80-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			105 %		80-120 %		"					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			100 %		80-120 %		"					
LCS (1210488-BS1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 1	7:30			
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	0.526		0.0100	ug/L	1	0.500		105	70-130%			
Surr: Dibromofluoromethane (Surr)		Re	covery: 104 %	Limits:	80-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			103 %		80-120 %		"					
Toluene-d8 (Surr)			100 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			99 %		80-120 %		"					
Duplicate (1210488-DUP1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 1	9:13			
QC Source Sample: MW-7 (A12J274	-02)											
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	ND		0.0100	ug/L	1		ND				30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 107 %	Limits:	80-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %		80-120 %		"					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			<i>99 %</i>		80-120 %		"					
Matrix Spike (1210488-MS1)					Prepared: 1	0/16/12 16:00	Analyzed:	10/16/12 2	0:05			
QC Source Sample: MW-6 (A12J274	-03)											
EPA 8260B SIM												
1,2-Dibromoethane (EDB)	0.519		0.0100	ug/L	1	0.500	ND	104	70-130%			
Surr: Dibromofluoromethane (Surr)		Re	covery: 107 %	Limits:	80-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			103 %		80-120 %		"					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			99 %		80-120 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director
39-04 Reported:
aul Ecker 10/31/12 17:38
39-(aul∶

QUALITY CONTROL (QC) SAMPLE RESULTS

		Total Metals by EPA 6020 (ICPMS)										
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210698 - EPA 3015A							Wa	ter				
Blank (1210698-BLK1)				Pre	pared: 10/2	23/12 13:21	Analyzed:	10/24/12 14	4:19			
EPA 6020												
Lead	ND		1.00	ug/L	1							
LCS (1210698-BS1)				Prej	pared: 10/2	23/12 13:21	Analyzed:	10/24/12 14	4:22			
EPA 6020												
Lead	55.2		1.00	ug/L	1	55.6		99	80-120%			
Duplicate (1210698-DUP1)				Pre	pared: 10/2	23/12 13:21	Analyzed:	10/24/12 14	4:52			
QC Source Sample: Other (A12J247-	06)											
EPA 6020												
Lead	1.39		1.00	ug/L	1		1.38			0.8	20%	
Matrix Spike (1210698-MS1)				Pre	pared: 10/2	23/12 13:21	Analyzed:	10/24/12 14	4:55			
QC Source Sample: Other (A12J247-	06)											
EPA 6020												
Lead	54.9		1.00	ug/L	1	55.6	1.38	96	75-125%			
Matrix Spike (1210698-MS2)				Pre	pared: 10/2	23/12 13:21	Analyzed:	10/24/12 1:	5:05			
QC Source Sample: Other (A12J247-0	08)											
EPA 6020												
Lead	52.7		1.00	ug/L	1	55.6	ND	95	75-125%			

Apex Laboratories

Philip Neverberg

Philip Nerenberg, Lab Director

Project: Plaid Pantry #23	
Project Number: 839-04	Reported:
Project Manager: Paul Ecker	10/31/12 17:38
	Project: Plaid Pantry #23 Project Number: 839-04 Project Manager: Paul Ecker

QUALITY CONTROL (QC) SAMPLE RESULTS

	Dissolved Metals by EPA 6020 (ICPMS)											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1210670 - Matrix Match	ed Dire	ct Inject	t				Wat	ter				
Blank (1210670-BLK1)				Pre	pared: 10/2	2/12 17:23	Analyzed:	10/25/12 18	3:09			
EPA 6020 (Diss)												
Lead	ND		1.00	ug/L	1							
LCS (1210670-BS1)				Pre	pared: 10/2	2/12 17:23	Analyzed:	10/25/12 18	3:12			
EPA 6020 (Diss)												
Lead	53.9		1.00	ug/L	1	55.6		97	80-120%			
Duplicate (1210670-DUP1)				Pre	pared: 10/2	2/12 17:23	Analyzed:	10/25/12 18	3:44			
QC Source Sample: Other (A12J273-02)											
EPA 6020 (Diss)												
Lead	ND		5.00	ug/L	5		ND				20%	
Matrix Spike (1210670-MS1)				Pre	pared: 10/2	2/12 17:23	Analyzed:	10/25/12 19	9:12			
QC Source Sample: Other (A12J318-01)											
EPA 6020 (Diss)												
Lead	59.2		5.00	ug/L	5	55.6	ND	106	75-125%			
Matrix Spike (1210670-MS2)				Pre	pared: 10/2	2/12 17:23	Analyzed:	10/25/12 19	9:48			
QC Source Sample: Other (A12J319-05)											
EPA 6020 (Diss)												
Lead	56.0		5.00	ug/L	5	55.6	ND	101	75-125%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

LEX Environmental lac Project: Project Number: Project													
240 R Broadway Ste 115 Project Namber: 839-04 Reported: 10/31/12 17:38 SAMPLE PREPARATION INFORMATION SAMPLE PREPARATION INFORMATION Casoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-6x Project Manager: Paul Ecker Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Eakorn Factor Batch: 1210336 Altz/274-02 Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Proj: EPA 50308 Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor A12274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 A12274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 Altor 12/0368 Altor 12/0368 Ini	EES Environmental I	nc											
Protiand, OR 97227 Project Manager. Paul Ecker 10/31/2 17.38 SAMPLE PREPARATION INFORMATION Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx Prep: EPA 50308 Sample Default. RL. Prep Lab Number Matrix Method Sampled Prepared Initial/Final RL. Prep A121274-02 Water NWTPH-Gx (MS) 10/09/12 10:41 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 A121274-02 Water NWTPH-Gx (MS) 10/09/12 10:41 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 A121274-02 Water FPA \$200B Sampled Prepared Initial/Timal Initial/Timal RL. Prep Lab Number Matrix Method Sampled Prepared Initial/Timal Initi	240 N Broadway Ste 1	15		Reporte	ed:								
SAMPLE PREPARATION INFORMATION Prep: Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx Prep: EPA 5030B Sample Default RI. Prep Lab Number Matrix Method Sampled Prepured Initial/Final Initial/Final Factor Batch: 1210236 A121274.02 Water NWTPH-Gx (MS) 10/09/12 10.05 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 A121274.03 Water NWTPH-Gx (MS) 10/09/12 10.41 10/11/12 14:57 SmL/SmL 1.00 Prep: EPA 5030B Sampled Prepared Initial/Final Factor Batch: 120274.02 Water EPA 8260B 10/09/12 10.05 10/11/12 14:57 SmL/SmL 1.00 A121274.02 Water EPA 8260B 10/09/12 10.41 10/11/12 14:57 SmL/SmL 1.00 A121274.02 Water EPA 8260B 10/09/12 10.41 10/11/12 14:57 SmL/SmL 1.00 A121274.03 Water EPA 8260B SIM 10/09/12 10.41 10/16/12 1	Portland, OR 97227			Project Manager: P	aul Ecker		10/31/12	17:38					
Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx Prop: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Satch: 1210336 A121274-02 Water NWTPH-Gx (MS) 10/09/12 10.41 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 A121274-02 Water NWTPH-Gx (MS) 10/09/12 10.41 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 A121274-02 Water NWTPH-Gx (MS) 10/09/12 10.41 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Prep: EPA 5030B Sampled Prepared Initial/Final Initial/Final Factor A121274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 A121274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 A121274-02 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 SmL/SmL<	SAMPLE PREPARATION INFORMATION												
Prop: EPA 5030B Itab Number Matrix Method Sampled Sample Prepared Default Initial/Final RL Prep Initial/Final I.00 Prep: EPA 5030B Lab Number Matrix Method Sampled Prepared Sample Default RI.Prep Iab Number Matrix Method Sampled Prepared Initial/Final Factor Iab Number Matrix Method Sampled Prepared Initial/Final Factor Iab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Iab Number Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Volatile Organic Compounds by EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 SmL/SmL SmL/SmL 1.00 A122724.02	Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx												
Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Bath:: 1210336 Al21274-02 Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Al21274-03 Water NWTPH-Gx (MS) 10/09/12 10:41 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Feb: EPA 5030B Sample Default RI:Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Bath:: 1210336 Al21274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 Al21274-02 Water EPA 8260B 10/09/12 10:41 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 Al21274-02 Water EPA 8260B SIM 10/09/12 10:41 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 Al21274-02 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 <td< td=""><td>Prep: EPA 5030B</td><td></td><td></td><td></td><td></td><td>Sample</td><td>Default</td><td>RL Prep</td></td<>	Prep: EPA 5030B					Sample	Default	RL Prep					
Batch: 1210336 A121274-02 Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 5mL/5mL 5mL/5mL 1.00 RBCA Compounds (BTEX+) by EPA 8260B Prep: EPA 5030B Sample Default RL/5mL SIMJ/5mL <th colspan="4</td> <td>Lab Number</td> <td>Matrix</td> <td>Method</td> <td>Sampled</td> <td>Prepared</td> <td>Initial/Final</td> <td>Initial/Final</td> <td>Factor</td>	Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A12J274-02 Water NWTPH-Gx (MS) 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 A12J274-03 Water NWTPH-Gx (MS) 10/09/12 10:41 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 RBCA Compounds (BTEX+) by EPA 8260B Prop: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sample Default RL Prep Batch: 1210336 A A A121274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 Volatile Organic Compounds by EPA 8260B SIM Prep: EPA 5030B Volatile Organic Compounds by EPA 8260B SIM Initial/Final Initial/Final Finital/Final Prep: EPA 5030B Colspan= 42000 SIM 10/09/12 10:05 IO/16/12 16:00 SmL/SmL SmL/SmL Finital/Final Finit	Batch: 1210336												
A12J274-03 Water NWTPH-Gx (MS) 10/09/12 10:41 10/11/12 14:57 SmL/SmL SmL/SmL SmL/SmL 1.00 RBCA Compounds (BTEX+) by EPA 8260B Prep: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor A12J274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Volatile Organic Compounds by EPA 8260B SIM 10/09/12 10:41 10/11/12 14:57 SmL/SmL 5mL/SmL 1.00 Prep: EPA 5030B Sampled Prepared Initial/Final Initial/Final Factor Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210488 Nater EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 SmL/SmL 1.00 A121274-02 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 SmL/SmL 5mL/SmL 1.00	A12J274-02	Water	NWTPH-Gx (MS)	10/09/12 10:05	10/11/12 14:57	5mL/5mL	5mL/5mL	1.00					
RBCA Compounds (BTEX+) by EPA 8260B Prep: EPA 5030B Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final RL Prep Factor Batch: 1210336 A121274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 A121274-02 Water EPA 8260B 10/09/12 10:41 10/11/12 14:57 SmL/SmL SmL/SmL 1.00 Volatile Organic Compounds by EPA 8260B SIM Volatile Organic Compounds by EPA 8260B SIM Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210488 A121274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 SmL/SmL SmL/SmL 1.00 Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Final	A12J274-03	Water	NWTPH-Gx (MS)	10/09/12 10:41	10/11/12 14:57	5mL/5mL	5mL/5mL	1.00					
Prog: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210336 - <			RB	CA Compounds (B	TEX+) by EPA 8260B								
Lab NumberMatrixMethodSampledPreparedInitial/FinalInitial/FinalFactorBatch: 1210336	Prep: EPA 5030B					Sample	Default	RL Prep					
Batch: 1210336 A12J274-02 Water EPA 8260B 10/09/12 10:05 10/11/12 14:57 5mL/5mL 5mL/5mL 1.00 A12J274-03 Water EPA 8260B 10/09/12 10:41 10/11/12 14:57 5mL/5mL 5mL/5mL 1.00 Volatile Organic Compounds by EPA 8260B SIM Prep: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 121048B A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 A12J274-02 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 A12J274-03 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 5mL/5mL 1.00 Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210690 A12J274-02	Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A12J274-02 A12J274-03 Water EPA 8260B EPA 8260B 10/09/12 10:05 10/09/12 10:41 10/11/12 14:57 10/11/12 14:57 SmL/SmL SmL/SmL SmL/SmL SmL/SmL 1.00 Volatile Organic Compounds by EPA 8260B SIM Prep: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210488 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 SmL/SmL SmL/SmL 1.00 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 SmL/SmL SmL/SmL 1.00 Total Metals by EPA 6020 (ICPMS) Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00	Batch: 1210336												
A12J274-03 Water EPA 8260B 10/09/12 10:41 10/11/12 14:57 5mL/5mL 5mL/5mL 1.00 Volatile Organic Compounds by EPA 8260B SIM Prep: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210488 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-02 Water EPA 6020 10/09/12 10:21 10:23/12 1	A12J274-02	Water	EPA 8260B	10/09/12 10:05	10/11/12 14:57	5mL/5mL	5mL/5mL	1.00					
Volatile Organic Compounds by EPA 8260B SIM Prep: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 A121274-03 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 Matrix Method Sampled Prepared Initial/Final Factor Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210698 Sampled Prepared Initial/Final Factor Batch: 1210698 A121274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A121274-02 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12127	A12J274-03	Water	EPA 8260B	10/09/12 10:41	10/11/12 14:57	5mL/5mL	5mL/5mL	1.00					
Prep: EPA 5030B Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210488 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 A12J274-03 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 Total Metals by EPA 6020 (ICPMS) Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 Sample Default RL Prep A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Lab Number	Volatile Organic Compounds by EPA 8260B SIM												
Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210488 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 A12J274-03 Water EPA 8260B SIM 10/09/12 10:01 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 Total Metals by EPA 6020 (ICPMS) Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Lab Number Matrix Method Sam	Prep: EPA 5030B					Sample	Default	RL Prep					
Batch: 1210488 SmL/5mL SmL/5mL SmL/5mL 1.00 A12J274-02 Water EPA 8260B SIM 10/09/12 10:05 10/16/12 16:00 SmL/5mL SmL/5mL 1.00 Mater EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 SmL/5mL SmL/5mL 1.00 Total Metals by EPA 6020 (ICPMS) Total Metals by EPA 6020 (ICPMS) Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Matrix Matched Direct Inject Sample Sample Default RL Prep Lab Number Matrix Method	Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A12J274-02 A12J274-03 Water EPA 8260B SIM 10/09/12 10:05 10/09/12 10:41 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 Total Metals by EPA 6020 (ICPMS) Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Dissolved Metals by EPA 6020 (ICPMS) Prep: Matrix Matched Direct Inject Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final 1.00 Dissolved Metals by EPA 6020 (ICPMS) Prep: Matrix Matched Direct Inject Sampled Prepared Initial/Final Initial/Final Factor Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Initial/Final Initial/Final Initial/Final Initial/Final <td>Batch: 1210488</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Batch: 1210488												
A12J274-03 Water EPA 8260B SIM 10/09/12 10:41 10/16/12 16:00 5mL/5mL 5mL/5mL 1.00 Total Metals by EPA 6020 (ICPMS) Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Dissolved Metals by EPA 6020 (ICPMS) Prep: Matrix Method Sampled Prepared Initial/Final Factor Matrix Matched Direct Inject Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210670 Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210670 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL	A12J274-02	Water	EPA 8260B SIM	10/09/12 10:05	10/16/12 16:00	5mL/5mL	5mL/5mL	1.00					
Total Metals by EPA 6020 (ICPMS) Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 Initial/Final Factor Initial/Final Factor A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Dissolved Metals by EPA 6020 (ICPMS) Prep: Matrix Matched Direct Inject Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210670 Sampled Prepared Initial/Final 45mL/50mL 1.00 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/1	A12J274-03	Water	EPA 8260B SIM	10/09/12 10:41	10/16/12 16:00	5mL/5mL	5mL/5mL	1.00					
Prep: EPA 3015A Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210698 1210698 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-02 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Matrix Method Sampled Prepared Initial/Final Factor 1.00 Matrix Matched Direct Inject Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210670 Sample Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210670 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/12 17:23 45mL/50mL 45mL/50mL				Total Metals by EF	PA 6020 (ICPMS)								
Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Dissolved Metals by EPA 6020 (ICPMS) Dissolved Metals by EPA 6020 (ICPMS) Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210670 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00	Prep: EPA 3015A					Sample	Default	RL Prep					
Batch: 1210698 A12J274-02 Water EPA 6020 10/09/12 10:05 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Use of the text of the text of	Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A12J274-02 A12J274-03 Water EPA 6020 10/09/12 10:05 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 45mL/50mL 45mL/50mL 1.00 Dissolved Metals by EPA 6020 (ICPMS) Prep: Matrix Matched Direct Inject Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210670 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00	Batch: 1210698												
A12J274-03 Water EPA 6020 10/09/12 10:41 10/23/12 13:21 45mL/50mL 45mL/50mL 1.00 Dissolved Metals by EPA 6020 (ICPMS) Prep: Matrix Matched Direct Inject Sample Default RL Prep Lab Number Matrix Method Sampled Prepared Initial/Final Factor Batch: 1210670 Mater EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00	A12J274-02	Water	EPA 6020	10/09/12 10:05	10/23/12 13:21	45mL/50mL	45mL/50mL	1.00					
Dissolved Metals by EPA 6020 (ICPMS)Prep: Matrix Matched Direct InjectSampleDefaultRL PrepLab NumberMatrixMethodSampledPreparedInitial/FinalInitial/FinalFactorBatch:1210670A12J274-02WaterEPA 6020 (Diss)10/09/12 10:0510/22/12 17:2345mL/50mL45mL/50mL1.00A12J274-03WaterEPA 6020 (Diss)10/09/12 10:4110/22/12 17:2345mL/50mL45mL/50mL1.00	A12J274-03	Water	EPA 6020	10/09/12 10:41	10/23/12 13:21	45mL/50mL	45mL/50mL	1.00					
Prep: Matrix Matched Direct InjectSampleDefaultRL PrepLab NumberMatrixMethodSampledPreparedInitial/FinalInitial/FinalFactorBatch: 1210670A12J274-02WaterEPA 6020 (Diss)10/09/12 10:0510/22/12 17:2345mL/50mL45mL/50mL1.00A12J274-03WaterEPA 6020 (Diss)10/09/12 10:4110/22/12 17:2345mL/50mL45mL/50mL1.00			D	issolved Metals by	EPA 6020 (ICPMS)								
Lab Number Matrix Method Sampled Prepared Initial/Final Initial/Final Factor Batch: 1210670	Prep: Matrix Matcl	ned Direct	Inject			Sample	Default	RL Prep					
Batch: 1210670 A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00	Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A12J274-02 Water EPA 6020 (Diss) 10/09/12 10:05 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00 A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00	Batch: 1210670												
A12J274-03 Water EPA 6020 (Diss) 10/09/12 10:41 10/22/12 17:23 45mL/50mL 45mL/50mL 1.00	A12J274-02	Water	EPA 6020 (Diss)	10/09/12 10:05	10/22/12 17:23	45mL/50mL	45mL/50mL	1.00					
	A12J274-03	Water	EPA 6020 (Diss)	10/09/12 10:41	10/22/12 17:23	45mL/50mL	45mL/50mL	1.00					

Apex Laboratories

Philip Nevenberg

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Env 240 N Br	ironmental Inc oadway Ste 115	Project: Project Number:	Plaid Pantry #23 : 839-04	Reported:
Portland,	OR 97227	Project Manager:	Paul Ecker	10/31/12 17:38
		Notes and De	efinitions	
Qualifie	<u>rs:</u>			
J	Estimated Result . Result detected below the lo	west point of the calibrati	ion curve, but above the specified MDL.	
Notes ar	nd Conventions:			
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the repo	rting limit		
NR	Not Reported			
dry	Sample results reported on a dry weight basis.	Results listed as 'wet' or w	vithout 'dry'designation are not dry weight corrected.	
RPD	Relative Percent Difference			
MDL	If MDL is not listed, data has been evaluated to	the Method Reporting Li	mit only.	
WMSC	Water Miscible Solvent Correction has been app	plied to Results and MRL	s for volatiles soil samples per EPA 8000C.	
Batch QC	In cases where there is insufficient sample prov Dup) is analyzed to demonstrate accuracy and p	ided for Sample Duplicate precision of the extraction	es and/or Matrix Spikes, a Lab Control Sample Duplicate (LC and analysis.	S
Blank Policy	Apex assesses blank data for potential high bias chemistry and HCID analyses which are assesses biased high if they are less than ten times the le- blank for organic analyses.	down to a level equal to donly to the MRL. Samp vel found in the blank for	¹ / ₂ the method reporting limit (MRL), except for conventional ple results flagged with a B or B-02 qualifier are potentially inorganic analyses or less than five times the level found in th	ie
	For accurate comparison of volatile results to th and soil sample results should be divided by 1/5	e level found in the blank 50 of the sample dilution t	c; water sample results should be divided by the dilution factor to account for the sample prep factor.	,
	Results qualified as reported below the MRL m qualifications are not applied to J qualified resu	ay include a potential high lts reported below the MF	h bias if associated with a B or B-02 qualified blank. B and B- RL.	02
	QC results are not applicable. For example, % I Spikes, etc.	Recoveries for Blanks and	Duplicates, % RPD for Blanks, Blank Spikes and Matrix	

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project: Pla	laid Pantry #23	
240 N Broadway Ste 115	Project Number: 839	39-04	Reported:
Portland, OR 97227	Project Manager: Pau	aul Ecker	10/31/12 17:38

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

May 18, 2012

Paul Ecker EES Environmental Consulting, Inc. 2405 NE 16th Ave Portland, OR 97212

Dear Mr. Ecker:

Included are the additional results from the testing of material submitted on April 20, 2012 from the Plaid 23 PO 839-04, F&BI 204296 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EES0518R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 20, 2012 by Friedman & Bruya, Inc. from the EES Environmental Consulting Plaid 23, PO 839-04, F&BI 204296 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	EES Environmental Consulting
204296-01	B22-15/16
204296-02	B23-15
204296-03	B24-10

The samples were requested outside of the holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	B22-15/16 ht	t	Client:	EES Environmental	Consulting
Date Received:	04/20/12		Project:	Plaid 23 PO 839-04,	F&BI 204296
Date Extracted:	05/16/12		Lab ID:	204296-01	
Date Analyzed:	05/17/12		Data File:	051708.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppm)	Operator:	JS	
			Lowor	Lippor	
Surrogates.		% Recovery:	Limit	Limit [.]	
1 2-Dichloroethane	-d4	100 1000 100	62	142	
Toluene-d8	u i	100	0 <i>≈</i> 55	14£ 145	
4-Bromofluorobenz	ene	106	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		<0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-T	'etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Methylene chloride	<u>!</u>	< 0.5	o-Xylene)	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	rm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propyl	lbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	methylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1,1,2,2-T	'etrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	chloropropane	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlorio	de	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	methylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
Toluene	-	< 0.05	1,2,4-Tri	chlorobenzene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	alene	< 0.05
2-Hexanone		< 0.5	1,2,3-Tri	chlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	B23-15 ht		Client:	EES Environmental	Consulting
Date Received:	04/20/12		Project:	Plaid 23 PO 839-04, 1	F&BI 204296
Date Extracted:	05/16/12		Lab ID:	204296-02	
Date Analyzed:	05/17/12		Data File:	051709.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	ı)	Operator:	JS	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1.2-Dichloroethane	-d4	99	62	142	
Toluene-d8		101	55	145	
4-Bromofluorobenz	ene	104	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	<0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber	nzene	< 0.05
Acetone		<0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Methylene chloride		<0.5	o-Xylene	<u>)</u>	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	rm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propy	lbenzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
2-Butanone (MEK)		<0.5	1,1,2,2-T	etrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	ichloropropane	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlorid	de	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	imethylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromom ethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	< 0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
Toluene		< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	alene	< 0.05
2-Hexanone		<0.5	1,2,3-Tri	ichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	B24-10 ht		Client:	EES Environmental	Consulting
Date Received:	04/20/12		Project:	Plaid 23 PO 839-04,	F&BI 204296
Date Extracted:	05/16/12		Lab ID:	204296-03	
Date Analyzed:	05/17/12		Data File:	051719.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	ı)	Operator:	JS	
			Lower	Upper	
Surrogates:		% Recovery	Limit	Limit	
1 2-Dichloroethane	-d4	98	62	142	
Toluene-d8	ui	101	55	145	
4-Bromofluorobenz	ene	107	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	<0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Methylene chloride		< 0.5	o-Xylene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	rm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propy	lbenzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	methylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1,1,2,2-T	etrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	chloropropane	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlorid	de	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	methylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	< 0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
Toluene		< 0.05	1,2,4-Tri	chlorobenzene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	alene	< 0.05
2-Hexanone		< 0.5	1,2,3-Tri	chlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blar	ık	Client:	EES Environmental	Consulting
Date Received:	Not Applical	ole	Project:	Plaid 23 PO 839-04, 1	F&BI 204296
Date Extracted:	05/15/12		Lab ID:	02-0787 mb	
Date Analyzed:	05/16/12		Data File:	051621.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppm)	Operator:	JS	
	0 0 11		-		
a .		0/ D	Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	102	62	142	
Toluene-d8		101	55	145	
4-Bromofluorobenz	zene	104	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		<0.5	1.2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		< 0.5	1.1.1.2-T	'etrachloroethane	< 0.05
1.1-Dichloroethene		< 0.05	m.p-Xvle	ene	< 0.1
Methylene chloride	<u>.</u>	< 0.5	o-Xvlene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1.2-Dichloroe	ethene	< 0.05	Isopropy	lbenzene	< 0.05
1.1-Dichloroethane		< 0.05	Bromofo	rm	< 0.05
2.2-Dichloropropan	е	< 0.05	n-Propyl	benzene	< 0.05
cis-1.2-Dichloroeth	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1.3.5-Tri	methylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1.1.2.2-T	'etrachloroethane	< 0.05
1.2-Dichloroethane	(EDC)	< 0.05	1.2.3-Tri	chloropropane	< 0.05
1.1.1-Trichloroetha	ine	< 0.05	2-Chloro	otoluene	< 0.05
1.1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlori	de	< 0.05	tert-But	vlbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	methylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometl	nane	< 0.05	1.3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1.4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	< 0.5	1.2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1.2-Dibr	omo-3-chloropropane	< 0.5
Toluene		< 0.05	1.2.4-Tri	chlorobenzene	< 0.25
trans-1,3-Dichloror	propene	< 0.05	Hexachl	orobutadiene	< 0.25
1,1,2-Trichloroetha	ine	< 0.05	Naphtha	alene	< 0.05
2-Hexanone		< 0.5	1,2,3-Tri	chlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Date of Report: 05/18/12 Date Received: 04/20/12 Project: Plaid 23 PO 839-04, F&BI 204296

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 205190-03 (Matrix Spike)

				Percent				
	Reporting	Spike	Sample	Recovery	Acceptance			
Analyte	Units	Level	Result	MS	Criteria			
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	11	10-142			
Chloromethane	mg/kg (ppm)	2.5	<0.5	38	10-126			
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	37	10-138			
Bromomethane	mg/kg (ppm)	2.5	< 0.5	47	10-163			
Chloroethane	mg/kg (ppm)	2.5	<0.5	53	10-176			
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	45	10-176			
Acetone	mg/kg (ppm)	12.5	<0.5	69	10-163			
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	54	10-160			
Methylene chloride	mg/kg (ppm)	2.5	<0.5	64	10-156			
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	<0.05	72	21-145			
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	<0.05	64 66	14-137			
1,1-Dicitioroethane	mg/kg (ppm)	2.3	<0.05	54	19-140			
cis 1.2 Dichloroothono	mg/kg (ppm)	2.0	< 0.05	54 66	25 1 25			
Chloroform	mg/kg (ppili)	2.5	<0.05	68	21-145			
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.00	70	19-147			
1.2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	<0.05	70	12-160			
1.1.1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	59	10-156			
1.1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	64	17-140			
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	63	9-164			
Benzene	mg/kg (ppm)	2.5	< 0.03	68	29-129			
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	63	21-139			
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	68	30-135			
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	71	23-155			
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	70	23-145			
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	75	24-155			
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	70	28-144			
Toluene	mg/kg (ppm)	2.5	< 0.05	67	35-130			
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	<0.05	70	26-149			
1,1,2-1 richloroethane	mg/kg (ppm)	2.5	<0.05	69	30-142			
2-Hexanone	mg/kg (ppm)	12.5	<0.5	/5 71	15-166			
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.05	71	31-137 20-133			
Dibromochlor omethane	mg/kg (ppm)	2.5	<0.025	79	20-155			
1.2-Dibromoethane (FDB)	mg/kg (ppili)	2.5	<0.05	70	28-142			
Chlorobenzene	mg/kg (ppm)	2.5	<0.05	68	32-129			
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	72	32-137			
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	72	31-143			
m,p-Xylene	mg/kg (ppm)	5	< 0.1	71	34-136			
o-Xylene	mg/kg (ppm)	2.5	< 0.05	74	33-134			
Styrene	mg/kg (ppm)	2.5	< 0.05	74	35-137			
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	75	31-142			
Bromoform	mg/kg (ppm)	2.5	< 0.05	73	21-156			
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	73	23-146			
Bromobenzene	mg/kg (ppm)	2.5	<0.05	71	34-130			
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	<0.05	75	18-149			
1,1,2,2-1etrachioroethane	mg/kg (ppm)	2.5	<0.05	70	28-140			
2. Chloretalion opi opane	mg/kg (ppm)	2.3	< 0.05	72	23-144			
2-Chlorotoluene	mg/kg (ppm)	2.0	<0.05	73	31-134			
tert-Butylbenzene	mg/kg (ppin)	2.5	<0.05	74 77	30-137			
1.2.4.Trimethylbenzene	mg/kg (ppm)	2.5	<0.05	75	10-182			
sec-Butylbenzene	mg/kg (ppm)	2.5	<0.05	75	23-145			
p-Isopropyltoluene	mg/kg (ppm)	2.5	<0.05	77	21-149			
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	71	30-131			
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	70	29-129			
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	71	31-132			
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.5	74	11-161			
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	75	22-142			
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	70	19-142			
Naphthalene	mg/kg (ppm)	2.5	< 0.05	75	14-157			
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	77	20-144			

ENVIRONMENTAL CHEMISTS

Date of Report: 05/18/12 Date Received: 04/20/12 Project: Plaid 23 PO 839-04, F&BI 204296

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	Percent				
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)		
Dichlorodifluoromethane	mg/kg (ppm)	2.5	34	35	10-146	3		
Chloromethane	mg/kg (ppm)	2.5	63	62	27-133	2		
Vinyl chloride	mg/kg (ppm)	2.5	69	69	22-139	0		
Bromomethane	mg/kg (ppm)	2.5	67	68	38-114	1		
Chloroethane	mg/kg (ppm)	2.5	67	61	20-153	9		
Trichlorofluoromethane	mg/kg (ppm)	2.5	68	63	10-196	8		
Acetone	mg/kg (ppm)	12.5	70	76	52-141	4		
1 1-Dichloroethene	mg/kg (ppm)	25	73	73	47-128	0		
Methylene chloride	mg/kg (ppm)	2.5	70	81	42-132	2		
Methylene chloride Methyl t hutyl ether (MTPE)	mg/kg (ppm)	2.5	70	01	42-102 CO 199	2		
trans 12 Disbloresthere	mg/kg (ppm)	2.3	79	01 70	67 197	2		
1 1 Dishlawathawa	mg/kg (ppm)	2.5	11	79	07-127	3		
	mg/kg (ppm)	2.5	80 70	00 70	66-115	0		
z,z-Dichloropropane	mg/kg (ppm)	2.5	12	73	57-133	1		
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	88	89	72-113	1		
Chloroform	mg/kg (ppm)	2.5	84	86	66-120	2		
2-Butanone (MEK)	mg/kg (ppm)	12.5	89	90	57-123	1		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	83	84	56-135	1		
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	87	90	62-131	3		
1,1-Dichloropropene	mg/kg (ppm)	2.5	88	90	69-128	2		
Carbon tetrachloride	mg/kg (ppm)	2.5	81	80	60-139	1		
Benzene	mg/kg (ppm)	2.5	90	91	68-114	1		
Trichloroethene	mg/kg (ppm)	2.5	82	84	68-114	2		
1.2-Dichloropropane	mg/kg (nnm)	2.5	90	93	72-127	3		
Bromodichloromethane	mg/kg (ppm)	2.5	87	88	72-130	1		
Dibromomethane	mg/kg (nnm)	25	87	89	70-120	2		
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	94	97	45-145	3		
cis-1 3-Dichloropropene	mg/kg (ppm)	25	91	92	75-136	1		
Teluene	mg/kg (ppm)	2.5	80	00	66 126	1		
trang 12 Dichlerennenen	mg/kg (ppili)	2.5	00	50	79 1 2 9	1		
1 1 2 Trichlorosthone	mg/kg (ppm)	2.3	90	90	72-132	0		
1,1,2-THCHOIDELHADE	mg/kg (ppm)	2.3	90	91	73-113	1		
2-Hexanone	mg/kg (ppm)	12.5	94	94	33-152	0		
1,3-Dichloropropane	mg/kg (ppm)	2.5	92	94	72-130	Z		
Tetrachloroethene	mg/kg (ppm)	2.5	96	97	72-114	1		
Dibromochloromethane	mg/kg (ppm)	2.5	89	90	74-125	1		
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	93	93	74-132	0		
Chlorobenzene	mg/kg (ppm)	2.5	88	90	76-111	2		
Ethylbenzene	mg/kg (ppm)	2.5	92	93	64-123	1		
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	88	90	69-135	2		
m,p-Xylene	mg/kg (ppm)	5	93	94	78-122	1		
o-Xylene	mg/kg (ppm)	2.5	97	99	77-124	2		
Styrene	mg/kg (ppm)	2.5	97	97	74-126	0		
Isopropylbenzene	mg/kg (ppm)	2.5	97	98	76-127	1		
Bromoform	mg/kg (ppm)	2.5	90	91	56-132	1		
n-Propylbenzene	mg/kg (nnm)	2.5	95	97	74-124	2		
Bromobenzene	mg/kg (ppm)	2.5	91	93	72-122	2		
1 3 5-Trimethylbenzene	mg/kg (nnm)	2.5	95	98	76-126	3		
1 1 2 2-Tetrachloroethane	mg/kg (nnm)	25	89	91	56-143	2		
1.2.3 Trichloropropane	mg/kg (ppm)	2.5	88	92	61-137	ž A		
2 Chlorotoluono	mg/kg (ppm)	2.5	02	06	74 191	2		
4 Chlorotoluono	mg/kg (ppm)	2.5	03		74-121	3		
4-Cillorotoiuelle	mg/kg (ppm)	2.3	93	90	73-122	2		
	mg/kg (ppm)	2.5	99	101	73-130	2		
1,2,4-1 rimetnyibenzene	mg/kg (ppm)	2.5	96	97	76-125	1		
sec-Butylbenzene	mg/kg (ppm)	2.5	97	99	71-130	Z		
p-isopropyitoiuene	mg/kg (ppm)	2.5	99	100	70-132	1		
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	91	92	75-121	1		
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	89	89	74-117	0		
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	92	93	76-121	1		
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	91	90	61-136	1		
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	99	101	70-129	2		
Hexachlorobutadiene	mg/kg (ppm)	2.5	91	89	50-153	2		
Naphthalene	mg/kg (ppm)	2.5	96	97	60-125	1		
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	99	101	62-130	2		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\mathsf{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Feattle, WA 98119-2029 7h. (206) 285-8282 Fax (206) 283-5044	3012 16th Avenue West	Friedman & Bruva, Inc.					824-10	71-523	B22-15/16	Sample ID		City, State, ZIP Portune Phone (50)847 - 274	Company <u>L</u> <u></u> Address 2405 NE //	Send Report To PAul
Relinquish Received b	Relinquish				 		03	120	OIAB	Lab ID		o Fax	I Ave	Sch
ed by:	led by O	SIG					4		4/19/12	Date Sampled			•	E.
and a		VATURE					00	-1100	1000	Time Sampled		1212		
							<		Soil	Sample Typ		REMA	PLA	SAMF
DO C	CAN	PR					۲	٦	5	e containers		ARKS	12 23	LERS (sign ECT NAME
Ó	6	TNI								TPH-Diesel	Π			NO
	5	NAN			 		X	X	X	TPH-Gasoline				
	K	E			 		7.	\frown	X	BTEX by 8021B				
	é			·	 		<u> </u>			VOCs by 8260	A			1
						 				HFS	VALY		 	_ `
M					 		X	×	X	Total Ph	SES		80	
S. K	P	0			 						REQ		9-0	PQ
dim 78	2	OMI	- 1		 					· · · · · · · · · · · · · · · · · · ·	UES		7	
les	'	ÄN	-		 						TED		1 	
.ece		\sim				 							Rush	X
Ved					 							sAu spos sturn ill ca	USH_	TUR
at 6	Y/a/ic	DATE										samples with instr ll with instr	ges author	http://www.invariant.com/ NAROUNI NAROUNI NAROUNI
2° 2°	100	TIME			- - -					Notes		ays uctions	ized by	D TIME

Attachment D

Wellhead Survey Map

NOTES:

- 1. THE VERTICAL DATUM FOR THIS REPORT IS BASED UPON A FOUND BENCHMARK POINT ID 206, BENCHMARK DESCRIPTION HAZEL-99, ELEVATION= 238.04. NAVD 88 DATUM.
- 2. THE HORIZONTAL COORDINATE SYSTEM USED FOR THIS REPORT IS AN ASSUMED LOCAL COORDINATE SYSTEM.
- 3. THE HORIZONTAL LOCATION OF THE WELLS SHOWN HEREON IS THE CENTER OF THE EXISTING WELLS.
- 4. THE ELEVATION SHOWN FOR THE RIM OF THE WELLS SHOWN HEREON WERE TAKEN ON THE NORTH EDGE OF THE RIM AS INSTRUCTED.
- 5. THE ELEVATION SHOWN FOR THE TOP OF CASE SHOWN HEREON WERE TAKEN ON THE NORTH EDGE OF THE TOP OF CASE AS INSTRUCTED.

