

March 30, 2012

Mr. Steve Teel Washington State Department of Ecology Southwest Regional Office, Toxics Cleanup Program P.O. Box 47775 Olympia, Washington 98504-7775

Subject: Supplemental Site Assessment Summary Report

Cowlitz BP (Cowlitz Food and Fuel) /
Former Texaco Service Station No. 21-1556
101 Mulford Road, Toledo, Washington

Dear Mr. Teel:

SAIC Energy, Environment & Infrastructure, LLC (SAIC), on behalf of Chevron Environmental Management Company (CEMC), prepared this report that summarizes the results of supplemental site assessment activities performed at the above-referenced site (the Site) in Toledo, Washington (Figure 1).

The objectives of the supplemental site assessment activities were:

- Installation of one new groundwater monitoring well (MW-120) in the inactive station portion of the Site, to allow collection of additional groundwater monitoring data to further evaluate the effectiveness of the October 2010 interim remedial action excavation in this portion of the site; and
- Performance of a Tier 1 vapor intrusion (VI) assessment to determine whether
 petroleum contamination in soil and groundwater in the active station portion of the
 Site poses a threat to indoor air quality in the existing service station building
 and/or Mrs. Beesley's restaurant.

Supplemental site assessment activities were generally performed in accordance with the procedures described in SAIC's *Work Plan for Supplemental Site Assessment Activities* (Final Work Plan), dated September 2, 2011, which was approved by the Washington State Department of Ecology (Ecology) by letter dated September 7, 2011. Where deviations in the scope or methods utilized have occurred, a description and justification for the change are provided in this report.

MONITORING WELL INSTALLATION

Installation of monitoring well MW-120 was performed between October 26 and 28, 2011. Drilling and well installation activities were performed by Cascade Drilling L. P. (Cascade Drilling) of Woodinville, Washington, with oversight by SAIC.

Soil Boring and Sampling

Soil boring techniques utilized for installation of this monitoring well included use of an air-knife vacuum truck rig to clear from ground surface to at least 8 feet below ground surface (bgs), followed by use of a hollow-stem auger (HSA) drill rig to advance the boring beyond 8 feet bgs. Use of the air-knife rig, or similar "soft-dig" boring method between 0 and 8 feet bgs is a best practice required by CEMC to avoid potential damage to subsurface utilities or other infrastructure.

During soil boring activities, an SAIC geologist was present on site to log soils and collect soil samples for field-screening and laboratory analysis. Soil sampling in the upper 8 feet of the boring was performed using a stainless steel hand auger at a sampling interval of approximately 2 feet. Below 8 feet bgs, soil samples were collected using a split-spoon sampler at a sampling interval of approximately 2.5 feet. Soil samples were classified in accordance with the Unified Soil Classification System. In addition, each sample was field screened for the presence of petroleum constituents by visual and olfactory observation, headspace vapor measurements using a photo-ionization detector (PID), and sheen testing. Based on field screening results, three of the soil samples collected were submitted to Lancaster Laboratories, Inc. for the following analyses:

- Total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) by Washington State Department of Ecology (Ecology) Method NWTPH-Gx;
- TPH as diesel-range organics (DRO) and heavy oil-range organics (HRO) by Ecology Method NWTPH-Dx extended with silica-gel cleanup;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8021B;
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by USEPA Method 8270 with selective ion monitoring; and
- Lead by USEPA Method 6020.

Soil Sampling Results – MW-120 Installation

A summary of analytical results for soil samples collected during installation of monitoring well MW-120 is included in Table 1, and a complete laboratory analytical report for these samples is included as Attachment A.

As these results indicate, none of the requested analytes were detected at concentrations exceeding their respective MTCA Method A cleanup levels. However, for the bottommost sample collected (MW-120-18), the method detection limit achieved by the

laboratory was greater than the Method A cleanup level for benzene. The laboratory noted that the reporting limits for this sample were raised due to foaming of the sample.

Monitoring Well Construction and Development

Following completion of soil sampling activities, the boring for MW-120 was completed as a 2-inch-diameter monitoring well. Based on historical groundwater elevation data, and the lithology encountered during advancement of the boring, the well was constructed with a screen interval from 4 to 17 feet bgs. Additional well construction details are presented in the boring log for MW-120, which is included in Attachment B.

SAIC returned to the Site on November 4, 2011 to develop the new monitoring well. Development consisted of alternately surging and pumping the well with an electric submersible pump until the discharge from the pump was visibly clear and free of sediment. Approximately 36 gallons of water were extracted from the well during the development procedure, which equates to approximately 20 well casing volumes, based on groundwater elevation conditions at the time of development.

Monitoring Well Sampling

Groundwater sample collection from monitoring well MW-120 was not included in the scope of work performed under this work plan. Groundwater sampling at this monitoring well will be included as part of future groundwater monitoring events, which will be performed on a quarterly basis by Gettler-Ryan, Inc., on behalf of CEMC. The first quarterly sampling of monitoring well MW-120 was performed from November 7 to 9, 2011. Results of that sampling event were reported in the *Fourth Quarter 2011 Groundwater Monitoring and Sampling Report*, dated February 28, 2012, which was prepared by SAIC.

Monitoring Well Surveying

Groundwater elevation measurements at the Site were previously made relative to an arbitrary site elevation datum set at 100.00 feet. Therefore, in order to comply with current Ecology guidelines for groundwater elevation data reporting, SAIC subcontracted GeoDimensions, a land-surveying firm licensed to practice in the State of Washington, to resurvey the Site. Survey fieldwork was completed on December 1, 2011, and included a location survey of all monitoring wells and major features at the Site. Monitoring well elevation measurements were made to the nearest 0.01 foot at the ground surface (top of well-box lid) and at the top of the well casing, relative to the North American Vertical Datum of 1988 (NAVD88) elevation datum. An updated site map is included as Figure 2.

TIER 1 VI ASSESSMENT

VI assessment activities at the Site were initiated in response to Ecology comments on SAIC's *Draft - Feasibility Study Report* (February 8, 2011). In the comments, Ecology suggested that additional consideration of the potential risk for vapor intrusion to the existing service station building and Mrs. Beesley's restaurant was necessary to complete the exposure pathway evaluation of the FS. To address this comment, CEMC and SAIC

proposed performance of a VI assessment to be consistent with Ecology's October 2009 draft guidance document, *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology VI guidance).

Per the Ecology VI guidance, a preliminary VI assessment was performed, which indicated that conditions on the active station portion of the Site created the potential for a VI pathway to exist, and that further evaluation in the form of a Tier 1 assessment was warranted. Additional information regarding performance of the preliminary VI assessment can be found in the Final Work Plan.

Because the contaminant distribution at the Site is known to include vadose-zone soil impacts, Ecology VI guidance required use of measured soil-vapor concentrations for the Tier 1 assessment. To accomplish this, the Final Work Plan proposed installation and sampling of four pairs of soil-vapor sampling probes (designated SVSP-1A/B through SVSP-4A/B) to be installed in the vicinity of the service station building and Mrs. Beesley's restaurant, with each pair consisting of a shallow probe installed to a depth of approximately 5 feet bgs and a deeper probe installed to a depth of approximately 10 feet bgs. The location of the soil-vapor sampling probes was selected to ensure that the probes would be located along the south side of each building, closest to the area of known petroleum contamination at the Site.

Soil-Vapor Sampling Probe Installation

Soil-vapor sampling probe installation was performed by Cascade Drilling on October 27 and 28, 2011, with oversight and assistance by SAIC. Construction and installation of the soil-vapor sampling probes were generally conducted in accordance with the methods described in the Final Work Plan, with the exception that none of the four proposed deep probes were able to be installed due to cobbles encountered beyond 6 feet bgs that could not be removed or bypassed. Therefore, only the four shallow sampling probes (SVSP-1A, SVSP-2A, SVSP-3A and SVSP-4A) were installed.

Note: Attachment B contains logs for each of the seven borings advanced for soil-vapor sampling probe installation (SVSP-1A through SVSP-4A). No boring was advanced for the proposed SVSP-4B sampling probe, due to the difficulties encountered during attempts to install the other three deep sampling probes. Because only the shallow probes were successfully installed for each of the proposed pairs, the letter designation of the probe ID has been dropped for future reference. Therefore, the completed sampling probes are hereafter simply referred to as SVSP-1, SVSP-2, SVSP-3 and SVSP-4.

The soil boring for each soil-vapor sampling probe was advanced using a combination of post-hole digger and hand-auger excavation techniques. During boring advancement, soil samples were collected at approximate 2-foot intervals for classification and field screening analysis by an SAIC geologist. For each of the borings completed as a soil-vapor sampling probe, two soil samples were submitted to Lancaster Laboratories, Inc. for the following analyses:

- TPH as GRO by Ecology Method NWTPH-Gx;
- TPH as DRO and HRO by Ecology Method NWTPH-Dx extended with silica-gel cleanup;
- BTEX by USEPA Method 8021B; and
- Grain-size analysis by ASTM Method D422.

A summary of soil sampling analytical results is presented in Table 1 and a complete copy of the laboratory analytical report is included in Attachment A. Results of the sampling analyses indicate that none of the soil samples collected during soil-vapor sample probe installation contained any of the requested analytes at concentrations exceeding MTCA Method A cleanup levels.

Each soil-vapor sampling probe was constructed using a single 6-inch-long, 0.5-inch-diameter, double-woven stainless steel wire screen with a 0.0057-inch (0.15-millimeter) screen pore size, supplied by AMS, Inc. The casing section of each probe was constructed of ¼-inch outside diameter (O.D.) rigid-wall nylon tubing, which was connected to the screen by a Swagelok® compression fitting. The above-grade end of each probe casing was fitted with a stainless-steel Swagelok® on/off control valve, to prevent short-circuiting of ambient air into the probes.

To complete installation of the soil-vapor sampling probes, the screen interval of each probe was centrally placed within a filterpack consisting of approximately 18-inches of 10/20 Colorado silica sand. Approximately 12 inches of dry, granular bentonite was then placed above the filterpack, after which the borehole was filled with pre-hydrated granular bentonite (minimum thickness of 24 inches) to approximately 18 inches bgs. The remaining boring depth was completed with a cement seal (approximately 12-inches thick) and fitted with a 12-inch-diameter traffic-rated flush-mount well vault. Boring logs are included in Attachment B.

Soil-Vapor Sample Collection

SAIC returned to the Site on December 1, 2011 to collect samples from each of the newly installed soil-vapor sampling probes. The sampling event was scheduled to allow sufficient time for equilibration of subsurface conditions following probe installation, and to ensure that sampling was not performed immediately following a significant rain event.

Weather on the day of the sampling event consisted of no precipitation, but relatively foggy conditions, with temperatures around 40 degrees Fahrenheit, and no appreciable wind. Data gathered from weather stations in Olympia, Chehalis, Kelso, and Vancouver confirm that weather in the southwest Washington region on the day of sampling consisted of temperatures ranging from the high twenties to mid-forties, with wind generally less than 5 knots. Barometric pressure trends for Olympia and Vancouver show atmospheric pressure peaking early and then dropping steadily on the day of the sampling event. Cumulative rain records indicate that there was no precipitation on the day of the sampling

event, or within the preceding 24 hours, with the exception of a minor accumulation (less than 0.05 inch) reported from the Vancouver area.

Weather data plots generated using the University of Washington website; http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html, are included in Attachment C.

Water level measurements made on the day of the sampling event indicate that groundwater elevation ranged from approximately to 6.3 to 8.3 feet bgs in the vicinity of the active service station. Water elevation data are presented in Table 2.

Soil-vapor samples were collected in 1-liter Summa air-sampling canisters (Summa canisters) provided by Air Toxics Ltd. (Air Toxics) laboratory of Folsom, California. Each Summa canister used for sample collection was individually certified (100-percent certified) to contain less than the reporting limit for each of the target compounds. Prior to sample collection, the initial vacuum of each Summa canister was measured to verify that the canister had not leaked or been inadvertently opened prior to the sampling event, and the initial vacuum was recorded on the canister's identification tag and on a field data form specific to the sampling location.

Following the initial canister vacuum check, each sampling canister was fitted with a sampling manifold, to allow the sampling canister to be connected to another canister used for purging the sampling probe and sample collection train. The manifold was also equipped with a filter and a flow restrictor that was calibrated to provide a sampling flow rate of approximately 167 milliliters per minute (mL/min).

After connecting the sampling manifold and purge canister, a preliminary leak check of the system was performed. With the inlet to the manifold tightly capped, the purge canister was opened momentarily and then shut, thereby applying a vacuum to the sampling manifold. Initial vacuum readings were then recorded from the two vacuum gauges on the sampling manifold. After a period of approximately 5 minutes, the vacuum readings of each gauge were checked again to verify that the initial vacuum levels had been maintained, indicating that there were no leaks present. Each canister/manifold combination was checked and verified to be leak-free by this method prior to being used for sample collection.

Following completion of the preliminary leak check, the sampling manifold was connected to the soil-vapor sampling probe using rigid-wall ¼-inch O.D. nylon tubing. Swagelok® compression fittings were used to make connections from the nylon tubing to the control valve and sampling manifold inlet.

As a secondary check for leaks or short circuiting, helium was used as a tracer gas to test for ambient air leakage into the sampling system. To accomplish this, the entire soil-vapor sampling train (soil-vapor sampling probe, sampling manifold, sampling canister, and purge canister) was covered by a shroud, into which laboratory-grade helium gas was pumped to create, and maintain, a helium-rich environment throughout the duration of the sample collection. During the duration of the sampling, the concentration of helium inside the shroud was monitored using a Mark 9822 helium detector, in order to maintain a

concentration of at least 10 percent helium in the sampling shroud. Figure 4 shows a typical example of the sampling equipment configuration, including the leak-detection tracer gas shroud.

Prior to collecting soil-vapor samples, each soil-vapor sampling probe was purged to remove stagnant and/or ambient air from the sample collection train. The purge volume used was based on the volume of air contained within the inner diameter of the soil-vapor sampling probe and all tubing connected to the inlet of the sampling canister. The sand pack volume of the soil-vapor sampling probe was not included in the purge volume calculation, as it is assumed that the soil-vapor concentration in the sand pack would be in equilibrium with the surrounding soil. At least three purge volumes were extracted from each soil-vapor sampling probe prior to sample collection, which equates to a purge time of approximately one minute, assuming use of 10 feet of ¼-inch O.D. (0.15-inch I.D.) tubing.

Following completion of the purge cycle, the valve on the sampling canister was opened to begin sample collection, and the start time and initial canister vacuum were recorded on the field data form. Collection of each sample required approximately 10 minutes, during which time the sampling technician periodically checked the canister vacuum to verify that the canister was filling at the expected rate. The sampling technician also monitored and maintained the concentration of helium leak-detection gas within the sampling shroud. Sample collection was stopped when the vacuum gauge on the sampling canister indicated that approximately 3 inches of mercury vacuum remained in the sampling canister. Once sample collection was complete, the final canister vacuum was recorded on the canister identification tag and also on the field data form.

In order to verify sample collection and laboratory quality assurance and quality control (QA/QC), one equipment blank and one duplicate soil-vapor sample were collected. The QA/QC equipment blank was collected by passing laboratory-certified nitrogen through a representative length of nylon tubing, stainless-steel Swagelok[®] valve, and a sample collection manifold, into a 1-liter Summa canister. The QA/QC duplicate sample was collected using a duplicate-sampling manifold, which allowed two sample collection canisters to be filled simultaneously in a parallel configuration. The duplicate sample was collected at the SVSP-2 location.

Soil-vapor samples were submitted to Air Toxics for the following analyses:

- BTEX, methyl tert-butyl ether (MTBE), and naphthalene by USEPA Method TO-15 (Low Level); and
- Oxygen, carbon dioxide, methane, nitrogen, and helium by ASTM D1946.

Soil-Vapor Sampling Results

A summary of soil vapor sampling results is presented in Table 2, and complete copies of the laboratory analytical reports are included in Attachment D.

Results of the TO-15 analyses indicate that benzene was present in both of the samples collected at SVSP-2 (SVSP-2-120111 and Duplicate-120111), each at a concentration of 340 micrograms per cubic meter ($\mu g/m^3$), which exceeds the draft Method B soil gas screening level for this compound (3.2 $\mu g/m^3$). Benzene was also detected in the samples collected at SVSP-3 and SVSP-4, which are located to the south of the Mrs. Beesley's restaurant building. However benzene detections at these locations did not exceed the draft screening level.

None of the other compounds analyzed for were confirmed to be present at concentrations exceeding their respective draft screening levels. However, the concentration of naphthalene in samples collected at SVSP-2 could not be confirmed below the screening level due to the presence of high level non-target species in these samples, which resulted in interference and an elevated reporting limit for these samples.

Results of the ASTM D1946 analyses indicate that helium was not detected in any of the samples collected. These results suggest that there were no leaks of atmospheric ambient air into any of the samples collected, either through sample-train connections or due to short-circuiting between the vapor probes and the ground surface.

Oxygen concentration results for samples collected at SVSP-1 and SVSP-2, which ranged from 4.3 to 7.6 percent, were sufficiently high to suggest that vadose zone oxygen content in the vicinity of the active service station building is favorable to promote biodegradation of BTEX constituents, which are known to biodegrade significantly in the vapor phase.

For the laboratory QA/QC sample (Duplicate-120111), analytical results correlated well with the results for SVSP-2-120111. The field QA/QC sample (Equipment Blank) was found to contain relatively low levels of toluene and m,p-xylene. Toluene and m,p-xylene were also detected in the soil-vapor samples collected at SVSP-2, SVSP-3 and SVSP-4, but at significantly greater concentrations than in the Equipment Blank. Therefore, the detections of toluene and m,p-xylene at these three locations is not likely attributable to equipment or sampling procedures.

Johnson and Ettinger Modeling

Per Ecology VI guidance, in cases where Tier 1 soil gas sampling results exceed screening levels, Ecology allows use of the Johnson and Ettinger Model (JEM) to evaluate the potential for vapor intrusion into existing or proposed buildings, prior to requiring performance of a Tier II assessment. To accomplish this, the JEM model is used to predict the maximum indoor air concentration that would result from a worst-case measured soil vapor sampling result. The predicted indoor air concentration can then be compared to the indoor air cleanup levels presented in Table B-1 of the Ecology VI guidance. In situations where the indoor air concentration predicted is less than the indoor air cleanup level, further VI assessment would not be necessary.

Based on the analytical results for soil-vapor samples collected at SVSP-2, which contained benzene at a concentration of 340 μ g/m³, SAIC used the JEM to predict the maximum concentration of benzene that could be expected in the existing service station

building. A technical memorandum presenting the methodology and results of the modeling exercise is included as Attachment E.

Results of the modeling suggest that current maximum levels of benzene measured in soil gas would not result in benzene concentrations in indoor air of the existing service station building in excess of cleanup levels, based on an adult worker exposure scenario (i.e., Method C). However, additional VI assessment would likely be warranted under a different future land use with a more conservative exposure scenario. Additional discussion of the JEM modeling results in included in the attached memorandum, and in the Conclusions section of this report.

CONCLUSIONS

On the inactive service station portion of the Site, the supplemental site assessment activities were successful in completing installation of monitoring well MW-120. With the exception of the inconclusive laboratory results for benzene in soil sample MW-120-18, soil sampling data collected during installation of this well indicate that this area does not contain petroleum hydrocarbon impacts in excess of cleanup levels. Future groundwater monitoring data from this location will be used to evaluate the effectiveness of past remedial actions in this portion of the Site.

In the vicinity of the active service station building, shallow soil samples did not contain petroleum constituents at concentrations in excess of screening levels; however, soil-vapor sampling results did indicate the presence of benzene in soil vapor at a concentration exceeding the Ecology draft screening level. Vadose zone oxygen concentrations measured at sampling probes in this area of the Site suggest that conditions are favorable for significant biodegradation of BTEX constituents, and further VI assessment performed using the JEM indicates that maximum indoor air concentrations in the existing service station building would not exceed indoor air cleanup levels based on an adult worker exposure scenario. If land use at the Site changes in the future such that a more conservative exposure scenario is applicable, further VI assessment may be warranted.

Soil sampling data collected in the vicinity of Mrs. Beesley's restaurant indicate that shallow soil samples did not contain petroleum constituents at concentrations exceeding cleanup levels. Results of the soil-vapor sampling in this area were also in compliance with Ecology draft screening-levels for soil gas. Based on these results, it appears that subsurface contamination at the Site is not likely to pose a VI threat to this building.

March 30, 2012 Page 10 of 10

If you have any questions or comments regarding the activities described by, or the information presented within, this summary report, please contact me at (425) 482-3323 or via email at russell.s.shropshire@saic.com.

Sincerely,

SAIC Energy, Environment & Infrastructure, LLC

Russell S. Shropshire, PE Senior Project Engineer

Enclosures:

Figure 1 – Vicinity Map

Figure 2 – Site Map

Figure 3 – Site Map – Active Station Property

Table 1 – Summary of Soil Sampling Analytical Results

Table 2 – Summary of Groundwater Elevation Data

Table 3 – Summary of Vapor Sampling Analytical Results

Attachment A - Laboratory Analytical Reports - Soil

Attachment B – Boring Logs

Attachment C – Weather Data Plots

Attachment D - Laboratory Analytical Reports - Vapor

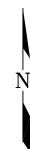
Attachment E – Johnson and Ettinger Vapor Modeling Memorandum

cc: Mr. Mark Horne – CEMC

Mr. Charles Vineyard – Property Owner

Mr. John Houlihan – Houlihan Law

REPORT LIMITATIONS

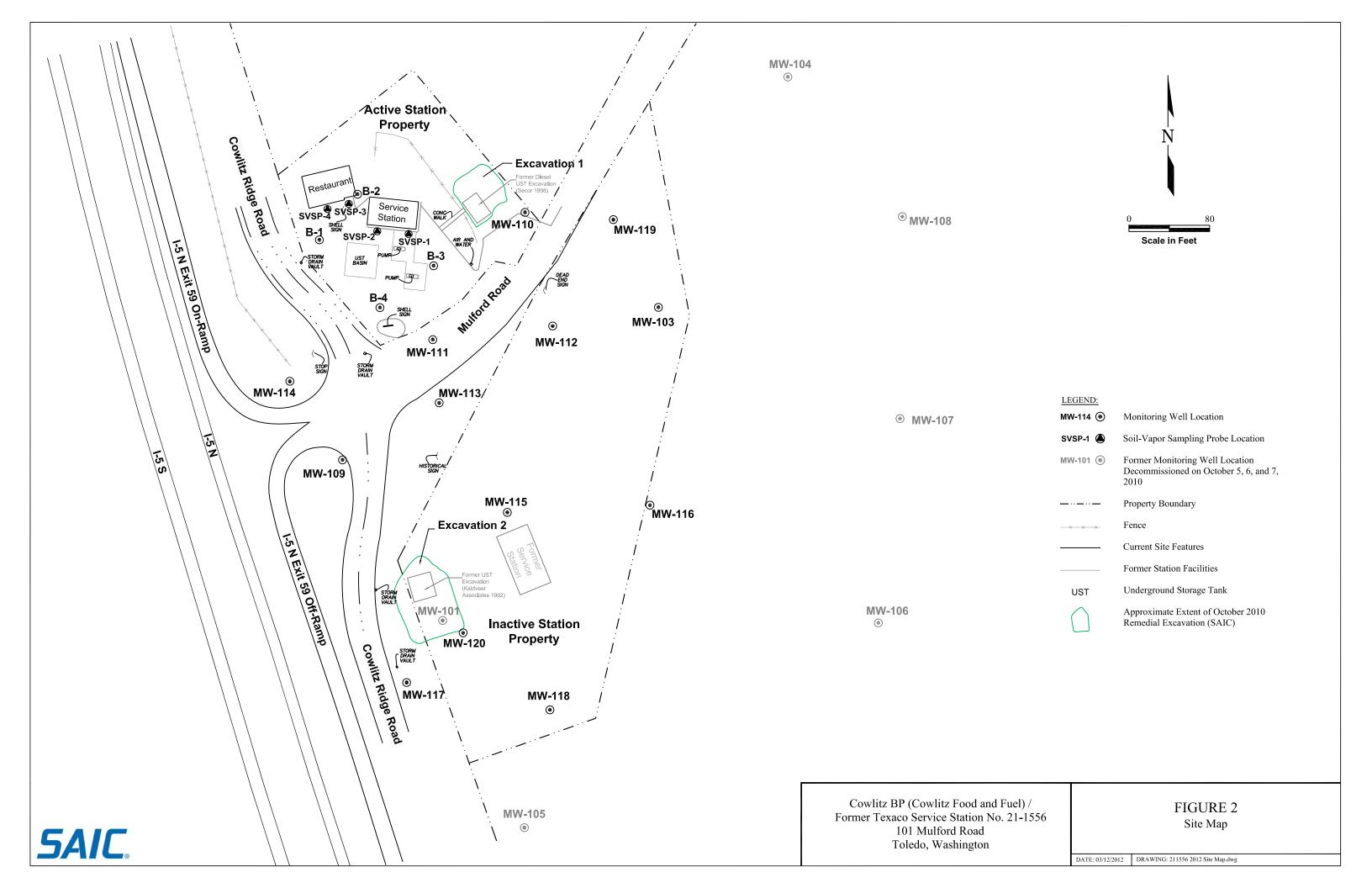

This technical document was prepared on behalf of Chevron and is intended for its sole use and for use by the local, state or federal regulatory agency that the technical document was sent to by SAIC. Any other person or entity obtaining, using, or relying on this technical document hereby acknowledges that they do so at their own risk, and that SAIC shall have no responsibility or liability for the consequences thereof.

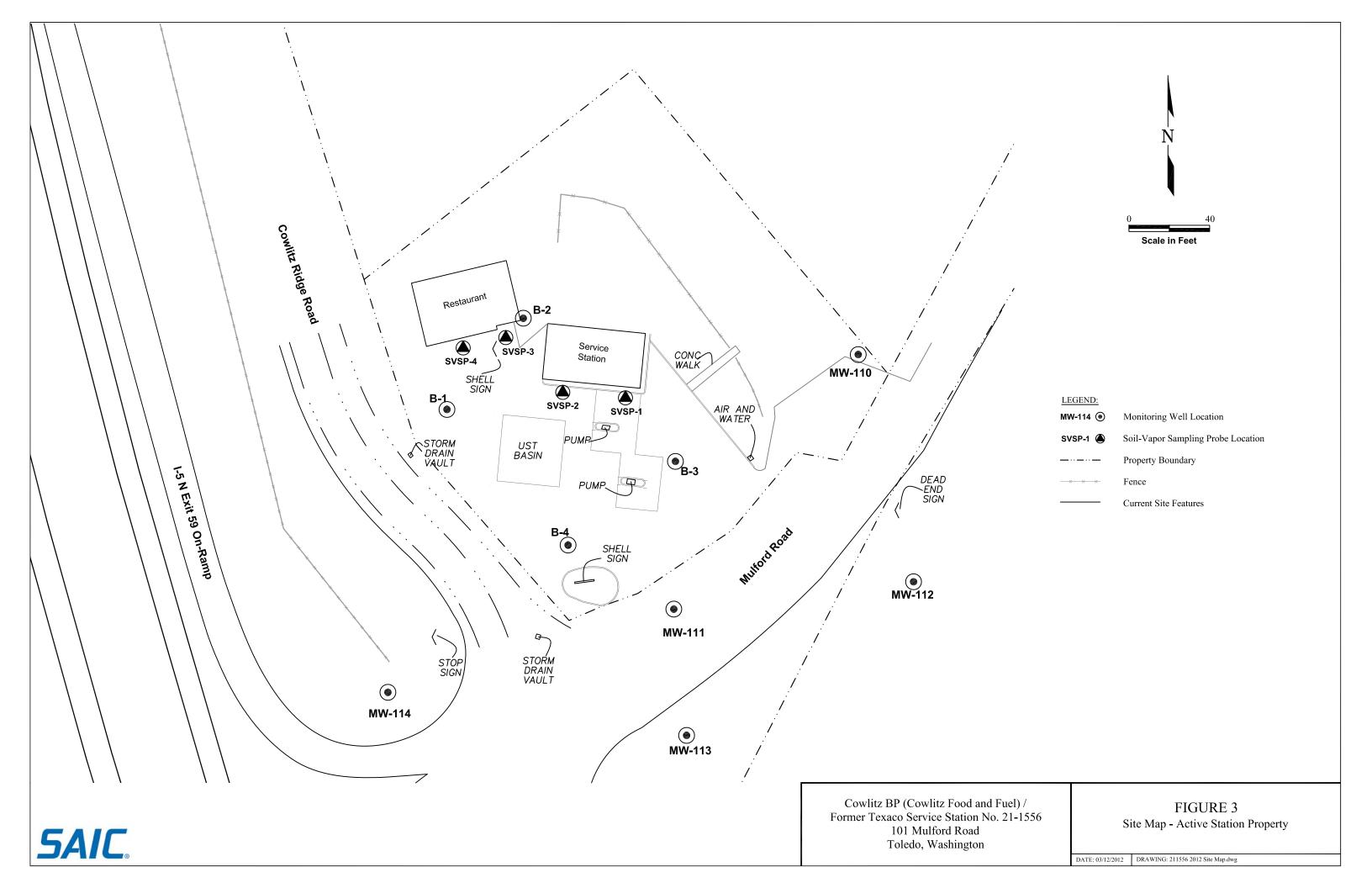
Site history and background information provided in this technical document are based on sources that may include interviews with environmental regulatory agencies and property management personnel and a review of acquired environmental regulatory agency documents and property information obtained from CEMC and others. SAIC has not made, nor has it been asked to make, any independent investigation concerning the accuracy, reliability, or completeness of such information beyond that described in this technical document.

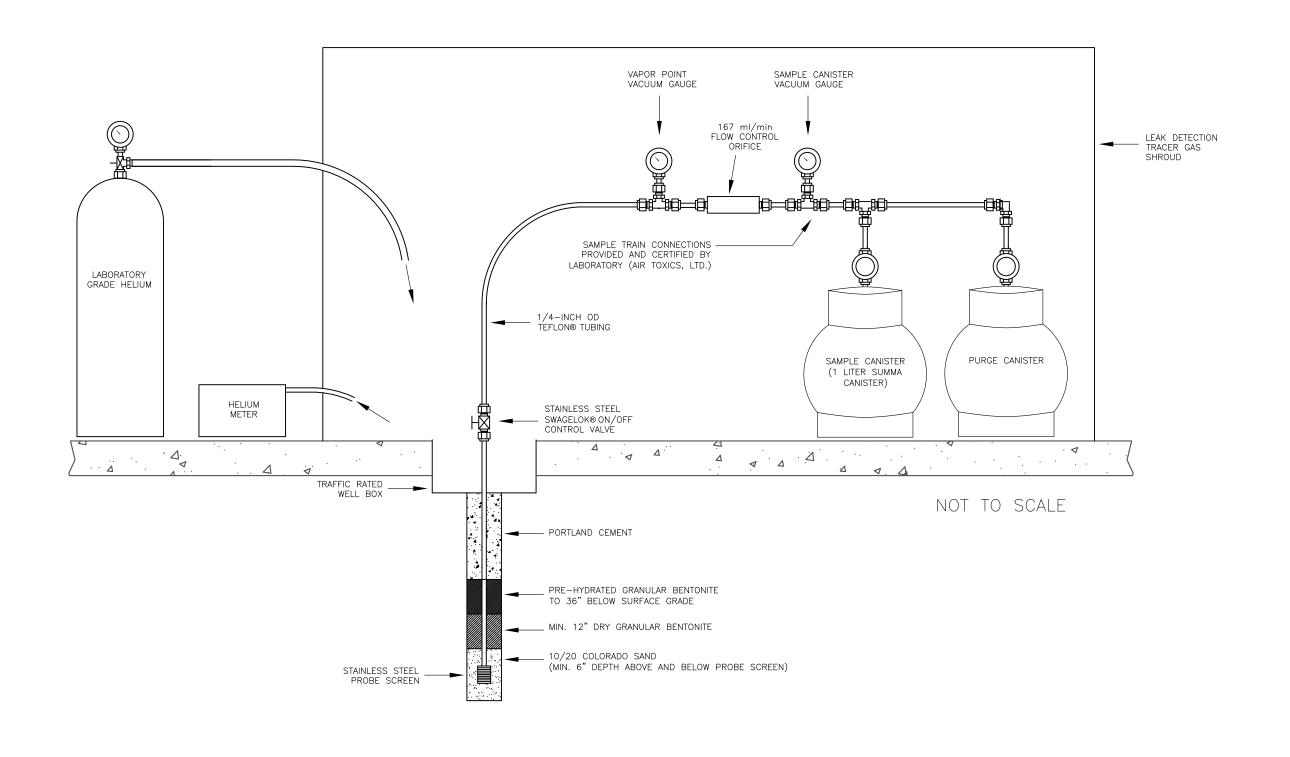
Recognizing reasonable limits of time and cost, this technical document cannot wholly eliminate uncertainty regarding the vertical and lateral extent of impacted environmental media.

Opinions and recommendations presented in this technical document apply only to site conditions and features as they existed at the time of SAIC's site visits or site work and cannot be applied to conditions and features of which SAIC is unaware and has not had the opportunity to evaluate.

All sources of information on which SAIC has relied in making its conclusions (including direct field observations) are identified by reference in this technical document or in appendices attached to this technical document. Any information not listed by reference or in appendices has not been evaluated or relied upon by SAIC in the context of this technical document. The conclusions, therefore, represent our professional opinion based on the identified sources of information.


Cowlitz BP (Cowlitz Food and Fuel) /
Former Texaco Service Station No. 21-1556
101 Mulford Road
Toledo, Washington


FIGURE 1 Vicinity Map


FILE NAME:

211556_VM.dwg

10/05/2011

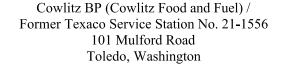


FIGURE 4
Typical Sampling Equipment Setup

DATE: 03/12/2012 DRAWING: 211556_SVSP_RSS.dwg

Table 1
Summary of Soil Sampling Analytical Results
Cowlitz BP (Cowlitz Food and Fuel) / Former Texaco Service Station No. 21-1556
101 Mulford Road, Toledo, Washington

Sample ID	Depth (Feet)	Date Sampled	TPH- GRO	TPH- DRO	TPH- HRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3-cd) pyrene	Total cPAHs	Lead
MW-120-4	4	10/26/2011	< 1.7	< 3.8	< 13	< 0.0087	< 0.0087	< 0.0087	< 0.026	0.0016	0.0020	0.0057	< 0.00084	0.0087	0.0014	< 0.00084	< 0.021	4.60
MW-120-8	8	10/28/2011	27	< 3.5	< 12	< 0.0054	0.013	< 0.035	0.045	0.0064	0.0052	0.0066	0.0024	0.0059	0.00083	0.0035	0.0308	4.95
MW-120-18	18	10/28/2011	< 28	< 5.5	< 18	< 0.14	< 0.14	< 0.14	< 0.42	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0030	< 0.0061	< 0.0061	< 0.0945	15.2
SVSP-1A-2	2	10/27/2011	< 1.3	< 3.2	< 11	< 0.0066	< 0.0066	< 0.0066	< 0.020									
SVSP-1A-6	6	10/27/2011	< 1.8	4.7	< 15	< 0.0092	< 0.0092	< 0.0092	< 0.028									
SVSP-2A-2	2	10/27/2011	< 1.1	< 3.4	15	< 0.0054	< 0.0054	< 0.0054	< 0.016									
SVSP-2A-6	6	10/27/2011	< 1.3	< 3.9	< 13	< 0.0067	0.011	< 0.0067	< 0.020									
SVSP-3A-2	2	10/27/2011	< 1.1	< 3.3	< 11	< 0.0057	< 0.0057	< 0.0057	< 0.017									
SVSP-3A-6	6	10/27/2011	< 1.3	< 3.9	< 13	< 0.0064	< 0.0064	0.011	0.057									
SVSP-4A-2	2	10/27/2011	< 1.1	5.9	82	< 0.0056	< 0.0056	< 0.0056	< 0.017									
SVSP-4A-6	6	10/27/2011	< 1.4	< 3.6	< 12	0.0076	0.039	< 0.0072	< 0.022									
MTCA Met	hod A Clea	anup Levels	30	2000	2000	0.03	7	6	9		S	See Total all Car	cinogenic PAH	s (Total cPA	Hs)		0.1	250

Notes:

All results reported in milligrams per kilogram (mg/kg) dry weight.

Analytical results in bold indicate concentrations exceeding MTCA Method A cleanup levels.

Table 2
Summary of Groundwater Elevation Data
Cowlitz BP (Cowlitz Food and Fuel) / Former Texaco Service Station No. 21-1556
101 Mulford Road, Toledo, Washington

Monitoring Well ID	Top of Well Casing Elevation (Feet)	Ground Surface Elevation (Feet)	Depth to Water from Top of Casing (Feet)	Groundwater Elevation (Feet)	Depth to Water from Ground Surface (Feet)
MW-110	108.89	109.22	7.98	100.91	8.31
MW-111	107.12	107.32	6.12	101.00	6.32
B-1	107.74	108.06	6.32	101.42	6.64
B-2	108.99	109.30	7.49	101.50	7.80
B-3	108.46	108.92	7.02	101.44	7.48
B-4	107.68	108.02	6.30	101.38	6.64

Notes:

- Elevation measurement relative to North American Vertical Datum of 1988 (NAVD88)
- Depth to water measurement made on December 1, 2012

Table 3
Summary of Vapor Sampling Analytical Results
Cowlitz BP (Cowlitz Food and Fuel) / Former Texaco Service Station No. 21-1556
101 Mulford Road, Toledo, Washington

Sample Location	Sample ID	Date	Benzene	Toluene	Ethylbenzene	m,p-Xylene	0-Xylene	MTBE	Naphthalene	Oxygen	Nitrogen	Carbon Dioxide	Methane	Helium
			$(\mu g/m^3)$	(μg/m ³)	(%)	(%)	(%)	(%)	(%)					
SVSP-1	SVSP-1-120111	12/1/2011	< 0.45	< 0.53	< 0.61	< 0.61	< 0.61	< 0.50	< 3.7	7.6	82	10	< 0.00014	< 0.070
SVSP-2	SVSP-2-120111	12/1/2011	340	17	34	210	19	<10	< 73	4.4	87	8.0	0.60	< 0.070
SVSP-2	Duplicate -120111	12/1/2011	340	19	26	130	< 16	<13	< 95	4.3	87	8.0	0.60	< 0.070
SVSP-3	SVSP-3-120111	12/1/2011	1.0	5.0	1.6	6.8	3.9	< 0.52	< 3.8	1.4	92	6.4	0.24	< 0.072
SVSP-4	SVSP-3-120111	12/1/2011	1.4	3.7	0.77	3.0	1.4	< 0.49	< 3.5	1.4	93	4.8	0.63	< 0.068
QA/QC	Equipment Blank	12/2/2011	< 0.48	0.78	< 0.66	0.77	< 0.66	< 0.54	< 4.0	0.75	99	< 0.015	< 0.00015	< 0.076
Ecology Method B Soil	Gas Screening Leve	els - Draft	3.2	22,000	4,600	460	460	96	14	NA	NA	NA	NA	NA

Notes:

Analytical results in bold indicate concentrations exceeding draft Method B soil gas screening levels.

Attachment A: Laboratory Analytical Reports - Soil

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

December 01, 2011

Project: 211556

Submittal Date: 11/01/2011 Group Number: 1274239 PO Number: 0015089649 Release Number: HORNE State of Sample Origin: WA

Client Sample Description	Lancaster Labs (LLI) #
MW-120-4 Grab Soil Sample	6456452
SVSP-2A-2 Grab Soil Sample	6456453
SVSP-2A-6 Grab Soil Sample	6456454
SVSP-3A-2 Grab Soil Sample	6456455
SVSP-4A-2 Grab Soil Sample	6456456
SVSP-3A-6 Grab Soil Sample	6456457
SVSP-1A-2 Grab Soil Sample	6456458
SVSP-4A-6 Grab Soil Sample	6456459
SVSP-1A-6 Grab Soil Sample	6456460
MW-120-8 Grab Soil Sample	6456461
MW-120-18 Grab Soil Sample	6456462
Trip Blank Methanol Sample	6456463

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC SAIC Attn: Mike Lange

COPY TO

ELECTRONIC SAIC Attn: Russ Shropshire

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Lawrence M. Taylor Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-120-4 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456452 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/26/2011 11:30 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1204M

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Semivolatiles	SW-846 82	70C SIM	mg/kg	mg/kg	
10722	Benzo(a)anthracene		56-55-3	0.0016	0.00084	1
10722	Benzo(a)pyrene		50-32-8	0.0020	0.00084	1
10722	Benzo(b) fluoranthen	e	205-99-2	0.0057	0.00084	1
10722	Benzo(k)fluoranthen	e	207-08-9	N.D.	0.00084	1
10722	Chrysene		218-01-9	0.0087	0.00042	1
10722	Dibenz(a,h)anthrace	ne	53-70-3	0.0014	0.00084	1
10722	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.00084	1
GC Vol	latiles	ECY 97-602	2 NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	2	n.a.	N.D.	1.7	34.64
GC Vol	latiles	SW-846 802	21B	mg/kg	mg/kg	
08179	Benzene		71-43-2	N.D.	0.0087	34.64
08179	Ethylbenzene		100-41-4	N.D.	0.0087	34.64
08179	Toluene		108-88-3	N.D.	0.0087	34.64
08179	Total Xylenes		1330-20-7	N.D.	0.026	34.64
GC Pet	croleum	ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	1	n.a.	N.D.	3.8	1
	HRO C24-C40 w/Si Ge		n.a.	N.D.	13	1
The :	reverse surrogate, ca	apric acid, w	as present at .	:1%.		
Metals	3	SW-846 602	20	mg/kg	mg/kg	
06135	Lead		7439-92-1	4.60	0.0128	2
Wet Cl	nemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	20.6	0.50	1
	"Moisture" represen 103 - 105 degrees C as-received basis.					

General Sample Comments

State of Washington Lab Certification No. C259 Carcinogenic PAHs have been reported for this sample.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10722	PAH SIM 8270 Soil Microwave	SW-846 8270C SIM	1	11306SLH026	11/16/2011 04:	24 Gregory J Drahovsky	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-120-4 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456452 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/26/2011 11:30 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1204M

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10810	BNA Soil Microwave SIM PAH	SW-846 3546	1	11306SLH026	11/03/2011 13:00	Kelli M Barto	1
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH Gx	- 1	11308A31A	11/05/2011 02:06	Laura M Krieger	34.64
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011 02:06	Laura M Krieger	34.64
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/26/2011 11:30	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011 11:10	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011 17:30	David S Schrum	1
06135	Lead	SW-846 6020	1	113051026002A	11/09/2011 18:41	Choon Y Tian	2
11026	SW SW846 ICP-MS Digest	SW-846 3050B	1	113051026002	11/02/2011 11:50	James L Mertz	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011 19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-2A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456453 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 10:30 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

2A2SV

CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor					
2 NWTPH-Gx	mg/kg	mg/kg						
n.a.	N.D.	1.1	24					
21B	mg/kg	mg/kg						
71-43-2	N.D.	0.0054	24					
100-41-4	N.D.	0.0054	24					
108-88-3	N.D.	0.0054	24					
1330-20-7	N.D.	0.016	24					
2 NWTPH-Dx	mg/kg	mg/kg						
n.a.	N.D.	3.4	1					
n.a.	15	11	1					
The reverse surrogate, capric acid, was present at <1%.								
method blank as	ssociated with the samples	as						
	2 NWTPH-Gx n.a. 21B 71-43-2 100-41-4 108-88-3 1330-20-7 2 NWTPH-Dx n.a. n.a. vas present at	CAS Number Result 2 NWTPH-Gx mg/kg n.a. N.D. 21B mg/kg 71-43-2 N.D. 100-41-4 N.D. 108-88-3 N.D. 1330-20-7 N.D. 2 NWTPH-Dx mg/kg n.a. N.D. n.a. 15 vas present at <1%.	CAS Number Dry Result Method Detection Limit 2 NWTPH-Gx n.a. mg/kg mg/kg mg/kg 1.1 21B mg/kg mg/kg mg/kg 71-43-2 N.D. 0.0054 100-41-4 N.D. 0.0054 108-88-3 N.D. 0.0054 103-30-20-7 N.D. 0.016 0.0054 0.0016 2 NWTPH-Dx mg/kg mg/kg mg/kg n.a. N.D. 3.4 n.a. 15 3.4 11					

The reverse surrogate, capric acid, was present at <1%. Target analytes were detected in the method blank associated with the samples as noted on the QC Summary. The following corrective action was taken: The sample was re-extracted outside of the method required holding time, and the method blank results are within the acceptance limits. The hold time had expired prior to the second extraction so all results are reported from the original extract. Similar results were obtained in both extracts.

Wet Ch	nemistry	ASTM D422		% Passing	% Passing	
07103	75 mm		n.a.	100	0.50	1
07103	37.5 mm		n.a.	100	0.50	1
07103	19 mm		n.a.	96.2	0.50	1
07103	4.75 mm		n.a.	57.2	0.50	1
07103	3.35 mm		n.a.	47.3	0.50	1
07103	2.36 mm		n.a.	41.5	0.50	1
07103	1.18 mm		n.a.	25.5	0.50	1
07103	0.6 mm		n.a.	15.8	0.50	1
07103	0.3 mm		n.a.	8.8	0.50	1
07103	0.15 mm		n.a.	6.5	0.50	1
07103	0.075 mm		n.a.	5.4	0.50	1
07103	0.064 mm		n.a.	5.0	0.50	1
07103	0.05 mm		n.a.	4.0	0.50	1
07103	0.02 mm		n.a.	2.5	0.50	1
07103	0.005 mm		n.a.	1.0	0.50	1
07103	0.002 mm		n.a.	N.D.	0.50	1
07103	0.001 mm		n.a.	N.D.	0.50	1
Wet Ch	nemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	11.5	0.50	1

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-2A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456453 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 10:30 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

2A2SV

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH- Gx	. 1	11308A31A	11/05/2011 02	2:42	Laura M Krieger	24
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011 02	2:42	Laura M Krieger	24
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011 10	0:30	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	113130008A	11/17/2011 11	1:31	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH- Dx 06/97	1	113130008A	11/09/2011 17	7:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011 13	3:30	Luz M Groff	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011 19	9:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-2A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456454 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 11:00 by AL Chevron

6001 Bollinger Canyon Rd L4310

Drv

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

2A6SV

CAT No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C12		n.a.	N.D.	1.3	25.71
GC Vo	latiles	SW-846 802	1B	mg/kg	mg/kg	
08179	Benzene		71-43-2	N.D.	0.0067	25.71
	Ethylbenzene		100-41-4	N.D.	0.0067	25.71
08179	Toluene		108-88-3	0.011	0.0067	25.71
08179	Total Xylenes		1330-20-7	N.D.	0.020	25.71
GC Pe	troleum	ECY 97-602	NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
	DRO C12-C24 w/Si Gel		n.a.	N.D.	3.9	1
	HRO C24-C40 w/Si Gel		n.a.	N.D.	13	1
	reverse surrogate, cap		s present at <	1%.		
Wet C	hemistry	ASTM D422		% Passing	% Passing	
07103	75 mm		n.a.	100	0.50	1
07103	37.5 mm		n.a.	100	0.50	1
07103	19 mm		n.a.	100	0.50	1
07103	4.75 mm		n.a.	99.9	0.50	1
	3.35 mm		n.a.	99.8	0.50	1
	2.36 mm		n.a.	99.7	0.50	1
	1.18 mm		n.a.	99.7	0.50	1
	0.6 mm		n.a.	96.2	0.50	1
	0.3 mm		n.a.	90.2	0.50	1
	0.15 mm		n.a.	78.0	0.50	1
	0.075 mm		n.a.	61.3	0.50	1
	0.064 mm		n.a.	57.0	0.50	1
	0.05 mm		n.a.	50.0	0.50	1
	0.02 mm		n.a.	34.0	0.50	1
	0.005 mm		n.a.	19.0	0.50	1
	0.002 mm		n.a.	11.0	0.50	1
07103	0.001 mm		n.a.	6.5	0.50	1
Wet C	hemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	23.2	0.50	1
	"Moisture" represent	s the loss in	weight of the	sample after oven dr	rying at	

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-2A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456454 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 11:00 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

2A6SV

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH	- 1	11308A31B	11/07/2011	20:32	Carrie E Miller	25.71
08179	BTEX by 8021	SW-846 8021B	1	11308A31B	11/07/2011	20:32	Carrie E Miller	25.71
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011	11:00	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011	08:59	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011	17:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011	13:30	Luz M Groff	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-3A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456455 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 14:00 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

3A2SV

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	2	n.a.	N.D.	1.1	26.11
GC Vo	latiles	SW-846 802	21B	mg/kg	mg/kg	
	Benzene		71-43-2	N.D.	0.0057	26.11
	Ethylbenzene		100-41-4	N.D.	0.0057	26.11
	Toluene		108-88-3	N.D.	0.0057	26.11
08179	Total Xylenes		1330-20-7	N.D.	0.017	26.11
GC Pe	troleum	ECY 97-602	NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	1	n.a.	N.D.	3.3	1
	HRO C24-C40 w/Si Ge		n.a.	N.D.	11	1
The	reverse surrogate, c	apric acid, wa	as present at <	:1%.		
Wet C	hemistry	ASTM D422		% Passing	% Passing	
07103			n.a.	100	0.50	1
	37.5 mm		n.a.	100	0.50	1
	19 mm		n.a.	98.7	0.50	1
	4.75 mm		n.a.	58.7	0.50	1
	3.35 mm		n.a.	51.1	0.50	1
	2.36 mm		n.a.	45.6	0.50	1
	1.18 mm		n.a.	28.7	0.50	1
	0.6 mm		n.a.	17.6	0.50	1
	0.3 mm		n.a.	11.9	0.50	1
	0.15 mm		n.a.	9.2	0.50	1
	0.075 mm		n.a.	7.5	0.50	1
	0.064 mm		n.a.	7.0	0.50	1
	0.05 mm		n.a.	6.0	0.50	1
	0.02 mm		n.a.	3.0	0.50	1
	0.005 mm		n.a.	1.0	0.50	1
	0.002 mm		n.a.	N.D.	0.50	1
07103	0.001 mm		n.a.	N.D.	0.50	1
Wet C	hemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	9.0	0.50	1
	"Moisture" represer	ts the loss in	n weight of the	e sample after ove	en drying at	

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-3A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456455 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 14:00 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

3A2SV

			_					
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	9	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH Gx	- 1	11308A31A	11/05/2011 0	3:19	Laura M Krieger	26.11
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011 0	3:19	Laura M Krieger	26.11
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011 1	L4:00	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011 0	09:21	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011 1	L7:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011 1	L3:30	Luz M Groff	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011 1	L9:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-4A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456456 LLI Group # 1274239

Account # 11255

Project Name: 211556

Collected: 10/27/2011 14:10 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

4A2SV

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	2	n.a.	N.D.	1.1	26.53
GC Vo	latiles	SW-846 802	21B	mg/kg	mg/kg	
08179	Benzene		71-43-2	N.D.	0.0056	26.53
08179	Ethylbenzene		100-41-4	N.D.	0.0056	26.53
08179	Toluene		108-88-3	N.D.	0.0056	26.53
08179	Total Xylenes		1330-20-7	N.D.	0.017	26.53
GC Pe	troleum	ECY 97-602	NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	1	n.a.	5.9	3.2	1
02214	HRO C24-C40 w/Si Ge	1	n.a.	82	11	1
The	reverse surrogate s	anric acid wa	s present at	_19		

The reverse surrogate, capric acid, was present at <1%. The reverse surrogate, capric acid, was present at <1%.

Target analytes were detected in the method blank associated with the samples as

noted on the QC Summary. The following corrective action was taken: The sample was re-extracted outside of the method required holding time, and the method blank results are within the acceptance limits. The hold time had

expired prior to the second extraction so all results are reported from the original extract. Similar results were obtained in both extracts.

Wet C	hemistry	ASTM D422		% Passing	% Passing	
07103	75 mm	110111 0111	n.a.	100	0.50	1
07103	37.5 mm			100	0.50	1
			n.a.			1
07103	19 mm		n.a.	68.6	0.50	1
07103	4.75 mm		n.a.	37.3	0.50	1
07103	3.35 mm		n.a.	32.4	0.50	1
07103	2.36 mm		n.a.	29.0	0.50	1
07103	1.18 mm		n.a.	22.3	0.50	1
07103	0.6 mm		n.a.	15.6	0.50	1
07103	0.3 mm		n.a.	10	0.50	1
07103	0.15 mm		n.a.	7.2	0.50	1
07103	0.075 mm		n.a.	5.9	0.50	1
07103	0.064 mm		n.a.	5.0	0.50	1
07103	0.05 mm		n.a.	4.0	0.50	1
07103	0.02 mm		n.a.	1.5	0.50	1
07103	0.005 mm		n.a.	0.50	0.50	1
07103	0.002 mm		n.a.	N.D.	0.50	1
07103	0.001 mm		n.a.	N.D.	0.50	1
Wet C	hemistry	SM20 2540	G	8	%	
00111	Moisture		n.a.	5.9	0.50	1

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-4A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456456 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 14:10 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

4A2SV

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ıe	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH Gx	- 1	11308A31A	11/05/2011	03:54	Laura M Krieger	26.53
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011	03:54	Laura M Krieger	26.53
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011	14:10	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011	11:53	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011	17:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011	13:30	Daniel S Smith	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-3A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456457 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 14:20 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

3A6SV

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	.2	n.a.	N.D.	1.3	24.75
GC Vo	latiles	SW-846 802	1B	mg/kg	mg/kg	
	Benzene		71-43-2	N.D.	0.0064	24.75
	Ethylbenzene		100-41-4	0.011	0.0064	24.75
	Toluene		108-88-3	N.D.	0.0064	24.75
08179	Total Xylenes		1330-20-7	0.057	0.019	24.75
GC Pe	troleum	ECY 97-602	NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	:1	n.a.	N.D.	3.9	1
02214	HRO C24-C40 w/Si Ge	:1	n.a.	N.D.	13	1
The	reverse surrogate, c	apric acid, wa	s present at «	:1%.		
Wet C	hemistry	ASTM D422		% Passing	% Passing	
	75 mm		n.a.	100	0.50	1
	37.5 mm		n.a.	75.1	0.50	1
07103	19 mm		n.a.	71.1	0.50	1
	4.75 mm		n.a.	61.4	0.50	1
	3.35 mm		n.a.	59.4	0.50	1
	2.36 mm		n.a.	55.2	0.50	1
	1.18 mm		n.a.	47.5	0.50	1
	0.6 mm		n.a.	41.5	0.50	1
	0.3 mm		n.a.	37.4	0.50	1
	0.15 mm		n.a.	33.7	0.50	1
	0.075 mm		n.a.	29.6	0.50	1
	0.064 mm		n.a.	28.0	0.50	1
	0.05 mm		n.a.	24.0	0.50	1
07103	0.02 mm		n.a.	17.0	0.50	1
07103	0.005 mm		n.a.	10.5	0.50	1
	0.002 mm		n.a.	8.0	0.50	1
07103	0.001 mm		n.a.	7.5	0.50	1
Wet C	hemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	22.6	0.50	1
	"Moisture" represer	ts the loss in	weight of the	e sample after ove	en drying at	

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-3A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456457 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 14:20 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

3A6SV

			_					
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH Gx	- 1	11308A31A	11/05/2011 (05:42	Laura M Krieger	24.75
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011 0	05:42	Laura M Krieger	24.75
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011 1	14:20	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011 1	10:48	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011 1	17:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011 1	13:30	Daniel S Smith	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011 1	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-1A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456458 LLI Group # 1274239

Account # 11255

Project Name: 211556

Collected: 10/27/2011 15:00 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1A2SV

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	.2	n.a.	N.D.	1.3	30.73
GC Vo	latiles	SW-846 80	21B	mg/kg	mg/kg	
08179	Benzene		71-43-2	N.D.	0.0066	30.73
	Ethylbenzene		100-41-4	N.D.	0.0066	30.73
08179	Toluene		108-88-3	N.D.	0.0066	30.73
08179	Total Xylenes		1330-20-7	N.D.	0.020	30.73
GC Pe	troleum	ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	1	n.a.	N.D.	3.2	1
	HRO C24-C40 w/Si Ge		n.a.	N.D.	11	1
The	reverse surrogate, c	apric acid, w	as present at	<1%.		
Wet C	hemistry	ASTM D422		% Passing	% Passing	
07103	75 mm		n.a.	100	0.50	1
07103	37.5 mm		n.a.	100	0.50	1
07103	19 mm		n.a.	78.5	0.50	1
	4.75 mm		n.a.	20.8	0.50	1
07103	3.35 mm		n.a.	16.7	0.50	1
07103	2.36 mm		n.a.	14.1	0.50	1
07103	1.18 mm		n.a.	11.4	0.50	1
	0.6 mm		n.a.	8.3	0.50	1
07103	0.3 mm		n.a.	4.6	0.50	1
07103	0.15 mm		n.a.	3.1	0.50	1
	0.075 mm		n.a.	2.5	0.50	1
	0.064 mm		n.a.	2.0	0.50	1
	0.05 mm		n.a.	1.5	0.50	1
	0.02 mm		n.a.	0.50	0.50	1
07103	0.005 mm		n.a.	N.D.	0.50	1
07103	0.002 mm		n.a.	N.D.	0.50	1
07103	0.001 mm		n.a.	N.D.	0.50	1
Wet C	hemistry	SM20 2540	G	%	%	
	Moisture		n.a.	6.4	0.50	1
	"Moisture" represen	its the loss i	n weight of th	e sample after over	drying at	

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-1A-2 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456458 LLI Group # 1274239

11255

Project Name: 211556

Collected: 10/27/2011 15:00 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1A2SV

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH Gx	- 1	11308A31A	11/05/2011	06:18	Laura M Krieger	30.73
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011	06:18	Laura M Krieger	30.73
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011	15:00	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011	09:42	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011	17:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011	13:30	Daniel S Smith	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-4A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456459 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 15:15 by AL Chevron

6001 Bollinger Canyon Rd L4310

Drv

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

4A6SV

CAT No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	2	n.a.	N.D.	1.4	30.42
GC Vo	latiles	SW-846 802	1B	mg/kg	mg/kg	
08179	Benzene		71-43-2	0.0076	0.0072	30.42
08179	Ethylbenzene		100-41-4	N.D.	0.0072	30.42
08179	Toluene		108-88-3	0.039	0.0072	30.42
08179	Total Xylenes		1330-20-7	N.D.	0.022	30.42
GC Pe	troleum	ECY 97-602	NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	1	n.a.	N.D.	3.6	1
02214	HRO C24-C40 w/Si Ge	1	n.a.	N.D.	12	1
The	reverse surrogate, ca	apric acid, wa	s present at «	:1%.		
Wet C	hemistry	ASTM D422		% Passing	% Passing	
07103	75 mm		n.a.	100	0.50	1
07103	37.5 mm		n.a.	81.7	0.50	1
07103	19 mm		n.a.	71.5	0.50	1
	4.75 mm		n.a.	43.4	0.50	1
	3.35 mm		n.a.	39.2	0.50	1
	2.36 mm		n.a.	36.7	0.50	1
	1.18 mm		n.a.	29.4	0.50	1
	0.6 mm		n.a.	23.1	0.50	1
	0.3 mm		n.a.	18.0	0.50	1
	0.15 mm		n.a.	14.9	0.50	1
07103	0.075 mm		n.a.	12.7	0.50	1
	0.064 mm		n.a.	11.5	0.50	1
	0.05 mm		n.a.	10.0	0.50	1
	0.02 mm		n.a.	7.5	0.50	1
	0.005 mm		n.a.	2.5	0.50	1
	0.002 mm		n.a.	1.0	0.50	1
07103	0.001 mm		n.a.	0.50	0.50	1
Wet C	hemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	15.8	0.50	1
	"Moisture" represen	ts the loss in	n weight of th	e sample after over	n drying at	

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-4A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456459 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 15:15 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

4A6SV

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH	- 1	11308A31B	11/07/2011	21:44	Carrie E Miller	30.42
08179	BTEX by 8021	SW-846 8021B	1	11308A31B	11/07/2011	21:44	Carrie E Miller	30.42
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011	15:15	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113130008A	11/17/2011	10:26	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113130008A	11/09/2011	17:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011	13:30	Daniel S Smith	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SVSP-1A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456460 LLI Group # 1274239

Account # 11255

Project Name: 211556

Collected: 10/27/2011 16:20 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1A6SV

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	.2	n.a.	N.D.	1.8	31.34
GC Vo	latiles	SW-846 802	21B	mg/kg	mg/kg	
	Benzene		71-43-2	N.D.	0.0092	31.34
	Ethylbenzene		100-41-4	N.D.	0.0092	31.34
	Toluene		108-88-3	N.D.	0.0092	31.34
08179	Total Xylenes		1330-20-7	N.D.	0.028	31.34
GC Pe	troleum	ECY 97-602	NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	:1	n.a.	4.7	4.4	1
02214	HRO C24-C40 w/Si Ge	:1	n.a.	N.D.	15	1
The	reverse surrogate, c	apric acid, wa	as present at 1	L%.		
Wet C	hemistry	ASTM D422		% Passing	% Passing	
	75 mm		n.a.	100	0.50	1
	37.5 mm		n.a.	100	0.50	1
07103	19 mm		n.a.	100	0.50	1
	4.75 mm		n.a.	100	0.50	1
	3.35 mm		n.a.	99.9	0.50	1
	2.36 mm		n.a.	99.8	0.50	1
	1.18 mm		n.a.	99.2	0.50	1
	0.6 mm		n.a.	93.5	0.50	1
	0.3 mm		n.a.	84.3	0.50	1
	0.15 mm		n.a.	68.9	0.50	1
	0.075 mm		n.a.	53.8	0.50	1
	0.064 mm		n.a.	50.0	0.50	1
	0.05 mm		n.a.	43.0	0.50	1
	0.02 mm		n.a.	29.0	0.50	1
	0.005 mm		n.a.	13.0	0.50	1
	0.002 mm		n.a.	8.5	0.50	1
07103	0.001 mm		n.a.	4.5	0.50	1
Wet C	hemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	31.9	0.50	1
	"Moisture" represer	ts the loss in	n weight of the	e sample after ove	en drying at	

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SVSP-1A-6 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456460 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/27/2011 16:20 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1A6SV

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH- Gx	- 1	11308A31A	11/05/2011	06:54	Laura M Krieger	31.34
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011	06:54	Laura M Krieger	31.34
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/27/2011	16:20	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPHDx modified	- 1	113130008A	11/17/2011	10:04	Elizabeth J Marin	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH- Dx 06/97	- 1	113130008A	11/09/2011	17:30	David S Schrum	1
07103	Grain Size to 1 um	ASTM D422	1	11323710301A	11/19/2011	13:30	Daniel S Smith	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-120-8 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456461 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/28/2011 09:30 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1208M

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Semivolatiles	SW-846 82	70C SIM	mg/kg	mg/kg	
10722	Benzo(a)anthracene		56-55-3	0.0064	0.00077	1
10722	Benzo(a)pyrene		50-32-8	0.0052	0.00077	1
10722	Benzo(b) fluoranthen	e	205-99-2	0.0066	0.00077	1
10722	Benzo(k)fluoranthen	e	207-08-9	0.0024	0.00077	1
10722	Chrysene		218-01-9	0.0059	0.00038	1
	Dibenz(a,h)anthrace	ne	53-70-3	0.00083	0.00077	1
10722	Indeno(1,2,3-cd)pyr	ene	193-39-5	0.0035	0.00077	1
GC Vol	latiles	ECY 97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C1	2	n.a.	27	2.1	46.61
GC Vol	latiles	SW-846 80	21B	mg/kg	mg/kg	
08179	Benzene		71-43-2	N.D.	0.0054	23.31
08179	Ethylbenzene		100-41-4	N.D.	0.035	23.31
08179	Toluene		108-88-3	0.013	0.0054	23.31
08179	Total Xylenes		1330-20-7	0.045	0.016	23.31
GC Pet	croleum	ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
02214	DRO C12-C24 w/Si Ge	1	n.a.	N.D.	3.5	1
02214	HRO C24-C40 w/Si Ge	1	n.a.	N.D.	12	1
The :	reverse surrogate, ca	apric acid, w	was present at 1	1%.		
Metals	3	SW-846 60	20	mg/kg	mg/kg	
06135	Lead		7439-92-1	4.95	0.0115	2
Wet Cl	nemistry	SM20 2540	G	%	%	
00111	Moisture		n.a.	13.1	0.50	1
	"Moisture" represen 103 - 105 degrees Cas-received basis.					

General Sample Comments

State of Washington Lab Certification No. C259 Carcinogenic PAHs have been reported for this sample.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10722	PAH SIM 8270 Soil Microwave	SW-846 8270C SIM	1	11306SLH026	11/20/2011 20:43	Linda M	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-120-8 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456461 LLI Group # 1274239

11255

Project Name: 211556

Collected: 10/28/2011 09:30 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

1208M

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10810	BNA Soil Microwave SIM PAH	SW-846 3546	1	11306SLH026	11/03/2011	13:00	Kelli M Barto	1
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH Gx	- 1	11308A31B	11/07/2011	22:20	Carrie E Miller	46.61
08179	BTEX by 8021	SW-846 8021B	1	11308A31A	11/05/2011	07:30	Laura M Krieger	23.31
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/28/2011	09:30	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	113140009A	11/11/2011	23:51	Glorines Suarez- Rivera	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH Dx 06/97	- 1	113140009A	11/10/2011	18:00	David S Schrum	1
06135	Lead	SW-846 6020	1	113051026002A	11/09/2011	18:43	Choon Y Tian	2
11026	SW SW846 ICP-MS Digest	SW-846 3050B	1	113051026002	11/02/2011	11:50	James L Mertz	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-120-18 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456462 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/28/2011 09:40 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

18120

No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit	Dilution Factor
					Detection Limit	
GC/MS S	Semivolatiles	SW-846 82	270C SIM	mg/kg	mg/kg	
10722 E	Benzo(a)anthracene		56-55-3	N.D.	0.0061	5
10722 E	Benzo(a)pyrene		50-32-8	N.D.	0.0061	5
10722 F	Benzo(b)fluoranthene	9	205-99-2	N.D.	0.0061	5
10722 F	Benzo(k)fluoranthene	9	207-08-9	N.D.	0.0061	5
10722			218-01-9	N.D.	0.0030	5
10722 I	Dibenz(a,h)anthracer	ne	53-70-3	N.D.	0.0061	5
10722 J	Indeno(1,2,3-cd)pyre	ene	193-39-5	N.D.	0.0061	5
Report	ting limits were rai	sed due to	interference from	om the sample mat	trix.	
GC Vola	atiles	ECY 97-60	02 NWTPH-Gx	mg/kg	mg/kg	
02006 N	NWTPH-Gx soil C7-C12	2	n.a.	N.D.	28	381.88
Report	ting limits were rai	sed due to	sample foaming.			
GC Vola	atiles	SW-846 80	021B	mg/kg	mg/kg	
08179 E	Benzene		71-43-2	N.D.	0.14	381.88
08179 F	Ethylbenzene		100-41-4	N.D.	0.14	381.88
08179 T	Toluene		108-88-3	N.D.	0.14	381.88
08179 T	Total Xylenes		1330-20-7	N.D.	0.42	381.88
Report	ting limits were rai	sed due to	sample foaming.			
GC Petr	roleum	ECY 97-60	02 NWTPH-Dx	mg/kg	mg/kg	
Hydroca	arbons	modified				
-	DRO C12-C24 w/Si Gel		n.a.	N.D.	5.5	1
	HRO C24-C40 w/Si Gel		n.a.	N.D.	18	1
	everse surrogate, ca				10	±
THE TE	everse surrogace, ea	pric acia,	was present at .	10.		
Metals		SW-846 60	020	mg/kg	mg/kg	
06135 I	Lead		7439-92-1	15.2	0.0181	2
Wet Che	emistrv	SM20 2540) G	%	%	
	Moisture		n.a.	45.2	0.50	1
	"Moisture" represent	s the loss				_
	103 - 105 degrees Ce					
	as-received basis.					

General Sample Comments

State of Washington Lab Certification No. C259 Carcinogenic PAHs have been reported for this sample.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT Analysis Name Method Trial# Batch# Analysis Analyst Dilution No. Date and Time Factor

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-120-18 Grab Soil Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456462 LLI Group # 1274239 Account # 11255

Project Name: 211556

Collected: 10/28/2011 09:40 by AL Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

18120

			-					
CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
10722	PAH SIM 8270 Soil Microwave	SW-846 8270C SIM	1	11306SLH026	11/20/2011	21:16	Linda M Hartenstine	5
10810	BNA Soil Microwave SIM PAH	SW-846 3546	1	11306SLH026	11/03/2011	13:00	Kelli M Barto	1
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH-Gx	- 1	11308A31B	11/07/2011	19:13	Carrie E Miller	381.88
08179	BTEX by 8021	SW-846 8021B	1	11308A31B	11/07/2011	19:13	Carrie E Miller	381.88
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201130626049	10/28/2011	09:40	Client Supplied	n.a.
02214	NWTPH-Dx soil w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	113140009A	11/12/2011	00:33	Glorines Suarez- Rivera	1
07024	DRO Alternate Soil Extraction	ECY 97-602 NWTPH- Dx 06/97	1	113140009A	11/10/2011	18:00	David S Schrum	1
06135	Lead	SW-846 6020	1	113051026002A	11/09/2011	18:46	Choon Y Tian	2
11026	SW SW846 ICP-MS Digest	SW-846 3050B	1	113051026002	11/02/2011	11:50	James L Mertz	1
00111	Moisture	SM20 2540 G	1	11308820009A	11/04/2011	19:16	Scott W Freisher	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Trip Blank Methanol Sample

Facility# 211556

101 Mulford Road-Toledo, WA

LLI Sample # SW 6456463 LLI Group # 1274239

11255

Project Name: 211556

Collected: 10/26/2011 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 11/01/2011 09:45 Reported: 12/01/2011 14:20

556TB

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	latiles EG	Y 97-602	NWTPH-Gx	mg/kg	mg/kg	
02006	NWTPH-Gx soil C7-C12		n.a.	N.D.	1.0	25
GC Vol	Latiles SV	V-846 802	1B	mg/kg	mg/kg	
08179	Benzene		71-43-2	N.D.	0.0050	25
08179	Ethylbenzene		100-41-4	N.D.	0.0050	25
08179	Toluene		108-88-3	N.D.	0.0050	25
08179	Total Xylenes		1330-20-7	N.D.	0.015	25

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
02006	NWTPH-Gx soil C7-C12	ECY 97-602 NWTPH	- 1	11308A31A	11/05/2011 (01:31	Laura M Krieger	25
	BTEX by 8021 GC-5g Field Preserved MeOH	SW-846 8021B SW-846 5035	1 1	11308A31A 201130626049	11/05/2011 (10/26/2011 (Laura M Krieger Client Supplied	25 n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1274239

Reported: 12/01/11 at 02:20 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 11306SLH026	Sample numbe	r(s): 645	6452,64564	161-645646	2			
Benzo(a) anthracene	N.D.	0.00067	mg/kg	89		74-112		
Benzo(a)pyrene	N.D.	0.00067	mg/kg	91		70-109		
Benzo(b) fluoranthene	N.D.	0.00067	mg/kg	95		60-126		
Benzo(k) fluoranthene	N.D.	0.00067	mg/kg	96		65-130		
Chrysene	N.D.	0.00033	mg/kg	92		79-111		
Dibenz(a,h)anthracene	N.D.	0.00067	mg/kg	95		49-135		
Indeno(1,2,3-cd)pyrene	N.D.	0.00067	mg/kg	94		53-128		
Batch number: 11308A31A	Sample numbe	r(s): 645	6452-64564			,6456460-645	6461,64	56463
Benzene	N.D.	0.0020	mg/kg	90	89	76-118	1	30
Ethylbenzene	N.D.	0.0020	mg/kg	93	93	77-115	1	30
NWTPH-Gx soil C7-C12	N.D.	1.0	mg/kg	99	95	67-119	4	30
Toluene	N.D.	0.0020	mg/kg	91	93	80-120	2	30
Total Xylenes	N.D.	0.0050	mg/kg	95	96	78-115	1	30
Batch number: 11308A31B	Sample numbe	r(s): 645	6454,64564	159,645646	1-6456462			
Benzene	N.D.	0.0020	mg/kg	90	89	76-118	1	30
Ethylbenzene	N.D.	0.0020	mg/kg	93	93	77-115	1	30
NWTPH-Gx soil C7-C12	N.D.	1.0	mg/kg	99	95	67-119	4	30
Toluene	N.D.	0.0020	mg/kg	91	93	80-120	2	30
Total Xylenes	N.D.	0.0050	mg/kg	95	96	78-115	1	30
Batch number: 113130008A	Sample numbe	r(s): 645	6452-64564	160				
DRO C12-C24 w/Si Gel	N.D.	3.0	mg/kg	72		60-120		
HRO C24-C40 w/Si Gel	11	10.	mg/kg					
Batch number: 113140009A	Sample numbe	r(s): 645	6461-64564	162				
DRO C12-C24 w/Si Gel	N.D.	3.0	mg/kg	60		60-120		
HRO C24-C40 w/Si Gel	N.D.	10.	mg/kg					
Batch number: 113051026002A	Sample numbe	r(s): 645	6452,64564	161-645646	2			
Lead	0.0138	0.0101	mg/kg	97		84-112		
Batch number: 11308820009A	Sample numbe	r(s): 645	6452-64564	162				
Moisture	_			100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

MS MSD MS/MSD KPD DKG DUP DUP DUP	MS	MSD	MS/MSD	RPD	BKG	DUP	DUP	Dup RP
-----------------------------------	----	-----	--------	-----	-----	-----	-----	--------

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Group Number: 1274239 Client Name: Chevron

Reported: 12/01/11 at 02:20 PM <u>Analysis Name</u> %REC <u>Limits</u> RPD <u>MAX</u> RPD Max_ Conc Conc Batch number: 11306SLH026 Sample number(s): 6456452,6456461-6456462 UNSPK: 6456452 Benzo(a)anthracene 87 93 66-114 30 Benzo(a) pyrene Benzo(b) fluoranthene 87 93 57-117 30 83 92 26-142 9 30 Benzo(k)fluoranthene 109 117 49-145 75 Chrysene 69 41-126 Dibenz(a,h)anthracene 56 57 29-138 2 Indeno(1,2,3-cd)pyrene 57 25-136 Sample number(s): 6456452-6456460 BKG: P456395 Batch number: 113130008A DRO C12-C24 w/Si Gel 200* (1) 3.6 HRO C24-C40 w/Si Gel N.D. 0 (1) Batch number: 113140009A Sample number(s): 6456461-6456462 BKG: 6456461 DRO C12-C24 w/Si Gel N.D. N.D. 0 (1) 20 HRO C24-C40 w/Si Gel N.D. N.D. 0 (1) 20 Sample number(s): 6456452,6456461-6456462 UNSPK: P455594 BKG: P455594 Batch number: 113051026002A 160 (2) 346 (2) 75-125 20 Lead 20 29.5 15 31.7 Sample number(s): 6456452-6456462 BKG: 6456452 Batch number: 11308820009A 22.7 10 15

Surrogate Quality Control

20.6

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAH SIM 8270 Soil Microwave

Batch number: 11306SLH026

Moisture

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
6456452	113	107	120
6456461	134	103	109
6456462	82	80	85
Blank	101	101	110
LCS	98	99	105
MS	106	85	103
MSD	113	104	111
Limits:	53-152	66-118	63-129

Analysis Name: NWTPH-Gx soil C7-C12

Batch number: 11308A31A

	Trifluorotoluene-F	Trifluorotoluene-P
6456452	80	79
6456453	92	91
6456455	84	81
6456456	91	89
6456457	83	78
6456458	93	91
6456460	78	74
6456461		90
6456463	100	101

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

	Name: Chevron ed: 12/01/11 at	- 02•20 PM	Group Number: 1274239
Keborce	su: 12/01/11 at	. 02:20 FM	Surrogate Quality Control
Blank	104	98	5 ~ 1
LCS	115	102	
LCSD	107	105	
Limits:	61-122	73-117	
	Name: NWTPH-Gx sc mber: 11308A31B	oil C7-C12	
	Trifluorotoluene-F	Trifluorotoluene-P	
6456454	87	80	
6456459	98	86	
6456461	94		
6456462	87	79	
Blank	112	105	
LCS	115	102	
LCSD	107	105	
Limits:	61-122	73-117	
Analysis	Name: NWTPH-Dx so	oil w/Si Gel	
	mber: 113130008A	,	
	Orthoterphenyl		
	, ,		
6456452	88		
6456453	85		
6456454	66		
6456455	88		
6456456 6456457	79 87		
6456458	82		
6456459	89		
6456460	87		
Blank	76		
DUP	90		
LCS	90		
Limits:	50-150		
Analysis	Name: NWTPH-Dx so	oil w/Si Gel	
	mber: 113140009A	.,	
	Orthoterphenyl		
	· ·		
6456461	70		
6456462	60		
Blank DUP	76 79		
LCS	79 74		
цсь	/ =		
Limits:	50-150		

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron Northwest Region Analysis Request/Chain of Custody

45	Lancaster	Laboratories
7.	Where quality is a	science.

Lancaster Laboratories Where quality is a science.					Acc	ı.#: <u>İ</u>	125	<u>5</u>	Samp	For La le #: <u>(</u>	ncaste	r Lab	oratorie	s use	only	SCR#:	221652
WBS#NWRTB-211556-8-LAR Facility #: 211556			··· ····		Matrix					Analy Prese							vative Codes
Site Address: 101 Multira Roud Torce	ad Consultant:_	SAIC			Potable NPDES	ontainers	8260 🗆 Naphth 🗀			Extended Rng. Silica Gel Cleanup	Method 60.20	ntification	8270		7		T = Thiosulfate B = NaOH O = Other orting needed owest detection limits 8260 compounds
Consultant Phone #: 425-482-3323 Sampler: A Lalvich / 6 Cisnus		Time Collected	Grab	_		Oil ☐ Air ☐ Total Number of Co	BTEX) MTBE 8021 X 8	8260 full scan	Uxygenates	Www TPH D Silica Ge	Lead Total M Diss.	NWTPH H HCID	CPAHS USEPA	Marshore Las 1	227	8021 MTBE Colored Confirm MT Confirm high Confirm all I	onfirmation BE + Naphthalene hest hit by 8260
na. 3 . 170 U	10/21	1120	V	Ż		u		_	TV	10	V		tř	7	†	Comments /	Remarks

5USP- JA-6 SUSP- JA-6 SUSP- JA-6	10/27	14:20 1500 1515 1620	X X X	X X X	4 4 4		X			, i		
MW-120-8 MW-120-18	10/28	0930 0940		2 In	4) 4) 2 dan		X ,	X	X X 2413			
Turnaround Time Requested (TAT) (please circ		Relinquis	hed by:	EC			Date 10/3/17	Time 150	Received by:		Date	Time
STD. TAT 72 hour 48 hour 24 hour 4 day 5 day	····	Relinquis	-	2	\		Date	Time	Received by:		Date	Time
Data Package Options (please circle if required)		Relinquis	hed by:				Date	Time	Received by:		Date	Time
QC Summary Type I - Full Type VI (Raw Data) Disk / EDD WIP (RWQCB) Standard Format		Relinquis UPS	•	Commerci IEx J	ial Carrier: Other	-			Received by:	1/1/	Date (7. Time
DiskOther.		Tempera	ture Upo	n Receip	t	_C° (,	6-2.	700	Custody Seals Intact?	(Yes) No		

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Increasic Ovelitions

ppb parts per billion

Dry weightbasis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Е	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Ormania Ovalitiana

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Monitoring Well: MW-120

Project: Former Texaco Station No. 211556 Client: Chevron EMC

Location: 101 Mulford Road, Toledo, WA Logged By: A. Lembrick Date Started: 10/26/2011 Date Completed: 10/28/2011 Driller: Cascade Drilling LP Drill Method: Airknife/Hollow-Stem Total Boring Depth: 20 ft Hole Diameter: 8 in Well Depth: 17 ft TOC Elevation: ft

Well Diameter: 2 in Well Screen: 4-17 ft Filter Pack: 2/12 Monterey Sand Well Casing: Sch.40 PVC; 10-Slot

MOISTURE CONTENT	ORGANIC VAPOR (ppm)	"9/SMOTB	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DEPTH (ft)	LITHOLOGY/DESCRIPTION	WE	LL DIAGRAM
						GP		1— 1—	Asphalt. (GP) No soil collected. Mostly cobbles encountered. (SP) Reddish-brown, loose, fine to medium SAND with 10-15% subrounded gravel and 5% silt; (no		Steel Monument Concrete
Moist	0.0		w			SP		2— - - 3—	odor, no sheen)		Hydrated Bentonite Chips
Moist	0.0		w	MW-120-4	G = <1.7 D = <3.8 HO = <13 B = <0.0087			4— - - 5—	Reddish-brown, loose, fine to medium SAND with increasing gravel and 30% cobbles; (no odor, very slight sheen)		Ecology Unique Well ID BHK 028
						GP		6— 6— 7—	(GP) Brown, rounded COBBLES up to 10 inches in diameter with 10% SAND.		
Wet	70.8	17 50	w	MW-120-8	G = 27 D = <3.5 HO = <12 B = <0.0054			8— 8— - - 9—	Brown, loose GRAVEL with 40% cobbles, 5-10% sand and 5% silt; (no odor, no sheen)		
Wet	1.2	50				GP		10 — 	(GP) Brown, dense silty, GRAVEL and cobbles in matrix of 30% silt and 5% coarse sand; (no odor, no sheen)		2/12 Monterey Sand
Wet	0.0	21 22						12— 	Brown, sandy GRAVEL up to 0.5 inches in diameter with 10% silt. (no odor, no sheen) (GP) Dense, COBBLES with brown sand and silt;		
Wet		30				GP		14 — 	(no odor, no sheen) Brown, dense, sandy GRAVEL with 30% cobbles and 15% silt; (no odor, no sheen)		0.010 Inch Slot
Moist	0.0	21 50	X			OL		16—	(OL) Dark brown, organic woody debris; (no odor, no sheen)		
Moist	0.0	21 23 30		MW-120-18	G = <28 D = <5.5 HO = <18			17— - - 18—	Dark brown, very hard, organic, clayey SILT with medium plasticity; (no odor, no sheen)		2/12 Monterey Sand
		- 50	/ \	MW.	HO = <18 B = <0.14			19— - - 20—			Hydrated Bentonite Chips
									Bottom of borehole at 20.0 feet.		

18912 North Creek Parkway Ste. 101 Bothell, WA 98011

Soil-Vapor Sampling Probe: SVSP-1A (SVSP-1)

Project: Former Texaco Station No. 211556 Client: Chevron EMC

Location: 101 Mulford Road, Toledo, WA Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/27/2011 Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 6 ft Hole Diameter: 3.25 in Well Depth: 5.5 ft Well Diameter: 0.25 in Well Screen: 5-5.5 ft Filter Pack: 10/20 Colorado Well Casing: Nylon Tubing

Logged E	By: G. C	Cisne	eros	,	D	rill Method	d: Hand	Auger Well Diameter: 0.25 in	
MOISTURE	ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DЕРТН (ft)	LITHOLOGY/DESCRIPTION	WELL DIAGRAM
Moist	0.0	em.	SVSP-1A-2	G = <1.3 D = <3.2 HO = <11 B = <0.0066	GP SP		1— 3—	Concrete (GP) Brown, medium dense, medium to coarse, sandy GRAVEL with cobbles; (no odor, no sheen) Same as above; (no odor, no sheen) (SP) Brown, medium to coarse, gravelly SAND with increasing silt.	- O.25 inch nylon tubing - Pre-hydrated granular bentonite slurry Ecology Unique Well ID BHK 024
Moist Moist	0.0		SVSP-1A-6	G = <1.8 D = 4.7 HO = <15 B = <0.0092	SM	文章 (100) 工作分析 (100) 工行分析 (1	4— 5— 6—	(SM) Light brown, medium dense, silty, fine SAND with 30% silt and 10% gravel; (no odor, no sheen) (ML) Brown to gray with orange mottle, stiff, sandy SILT with 20% fine sand; (no odor, no sheen)	- Dry granular bentonite - 10/20 Colorado silica sand - 0.75 inch diameter stainless steel screen with 0.0057 inch pore diameter
							6	Bottom of borehole at 6.0 feet.	

Soil Boring: SVSP-1B

Project: Former Texaco Station No. 211556 Client: Chevron EMC

Location: 101 Mulford Road, Toledo, WA

Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/28/2011 Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 7.5 ft

Location: 101 Mulford Road, Toledo, WA						Date Completed: 10/28/2011 Total Boring Depth: 7.5 ft							
ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DEPTH (ft)	LITHOLOGY/DESCRIPTION						
0.0	\$ S			GP	1		(SM) Light brown, medium dense, fine, silty SAND with 30% silt and 10% gravel; (no odor, no sheen)						
0.0				ML		5—	(ML) Brown to gray, stiff, sandy SILT with moderate plasticity; (no odor, no sheen) Grades to cobbly, gravelly SILT.						
	ORGANIC O'O VAPOR (ppm)	ORGANIC VAPOR (ppm)	ORGANIC ORGA	ORGANIC ORGANIC VAPOR (ppm) VAPOR (ppm) SAMP. INTERVAL ANALYTICAL SAMPLE SAMPLE Analyical Results (mg/kg) (mg/kg)	OO ONGANIC OO ONGANIC OO ONGANIC OO O	(3) (3) (4) (4) (5) (5) (5) (6) (7) (7) (1)	OGGANIC ONGANIC ONGANI						

18912 North Creek Parkway Ste. 101 Bothell, WA 98011

Soil-Vapor Sampling Probe: SVSP-2A (SVSP-2)

Project: Former Texaco Station No. 211556 Client: Chevron EMC

Location: 101 Mulford Road, Toledo, WA Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/27/2011 Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 6 ft Hole Diameter: 3.25 in Well Depth: 5.5 ft Well Diameter: 0.25 in Well Screen: 5-5.5 ft Filter Pack: 10/20 Colorado Well Casing: Nylon Tubing

Logged E	By: G. C	Cisne	ros		Di	rill Metho	d: Hand	Auger Well Diameter: 0.25 in		_
MOISTURE	ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DЕРТН (ft)	LITHOLOGY/DESCRIPTION	WE	LL DIAGRAM
Moist	0.3	(3)	SVSP-2A-2	G = <1.1 D = <3.4 HO = 15 B = <0.0054	SP		1	Asphalt. (SP) Brown, medium dense, coarse, cobbly, sandy GRAVEL. Brown, medium dense, cobbly, sandy GRAVEL with coarse sand and 10% cobbles up to 6 inches in diameter; (no odor, no sheen)		Well box - Cement Seal - 0.25 inch nylon tubing - Pre-hydrated granular bentonite slurry Ecology Unique Well ID BHK 025
Moist Moist	0.3		SVSP-2A-6	G = <1.3 D = <3.9 HO = <13 B = <0.0067	ML		4— - 5— -	(ML) Dark brown, stiff, gravelly, sandy SILT with 25% medium to coarse sand and 25% gravel; (no odor, no sheen) Dark brown, stiff, fine, sandy SILT with medium plasticity and roots; (no odor, no sheen)		- Dry granular bentonite - 10/20 Colorado silica sand - 0.75 inch diameter stainless steel screen with 0.0057 inch pore diameter
							6-	Bottom of borehole at 6.0 feet.		

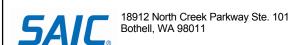
Soil Boring: SVSP-2B

Project: Former Texaco Station No. 211556 Client: Chevron EMC Location: 101 Mulford Road, Toledo, WA

Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/28/2011

Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 7.8 ft

Location:	101 Mulfo	ord R	oad, Tol	edo, WA	D	ate Com	oleted: 1	0/28/2011 Total Boring Depth: 7.8 ft
MOISTURE	ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DЕРТН (ft)	LITHOLOGY/DESCRIPTION
					SP		1	Asphalt (SP) Brown, medium dense, medium to coarse, gravelly, cobbly SAND.
Moist	0.3						3— 	Same as above; (no odor, no sheen) (ML) Dark brown, stiff, sandy SILT with low plasticity and 5% gravel and cobbles; (no odor, no sheen)
Moist					ML		- - 5— - - -	Dark gray, stiff, SILT with moderate plasticity and 10% fine sand that grades to gravelly, cobbly sandy SILT; (no odor, no sheen)
Moist		am					- - 7— - -	Pottom of horobolo at 7.9 fact
							8-	Bottom of borehole at 7.8 feet.


18912 North Creek Parkway Ste. 101 Bothell, WA 98011

Soil-Vapor Sampling Probe: SVSP-3A (SVSP-3)

Project: Former Texaco Station No. 211556 Client: Chevron EMC Location: 101 Mulford Road, Toledo, WA Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/27/2011 Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 5.9 ft Hole Diameter: 3.25 in Well Depth: 5.5 ft Well Diameter: 0.25 in

Well Screen: 5-5.5 ft Filter Pack: 10/20 Colorado Well Casing: Nylon Tubing

MOISTURE	ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DEPTH (ft)	LITHOLOGY/DESCRIPTION	WELL DIAGRAM
Moist	0.0	em,	SVSP-3A-2	G = <1.1 D = <3.3 HO = <11 B = <0.0057	SP		1—	Asphalt. (SP) Brown, medium dense, medium to coarse, gravelly SAND; (no odor, no sheen) Same as above: (no odor, no sheen)	- Cement Seal - 0.25 inch nylon tubing - Pre-hydrated granular bentonite slurry Ecology Unique Well ID BHK 026
Moist Moist			SVSP-3A-6	G = <1.3 D = <3.9 HO = <13 B = <0.0064	ML		4— 5— -	(ML) Dark gray, stiff, sandy SILT with moderate plasticity, 15% fine sand, and 10% large gravel; (no odor, no sheen) Dark gray to dark brown, stiff, gravelly, sandy SILT with moderate plasticity, 25% fine sand, and 5% large gravel; (no odor, no sheen)	- Dry granular bentonite - 10/20 Colorado silica sand - 0.75 inch diameter stainless steel screen with 0.0057 inch pore diameter
			S				6—	Bottom of borehole at 5.9 feet.	personal stell

Soil Boring: SVSP-3B

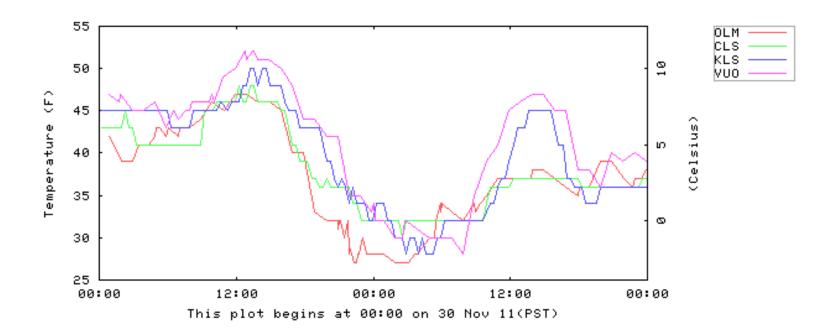
Project: Former Texaco Station No. 211556 Client: Chevron EMC

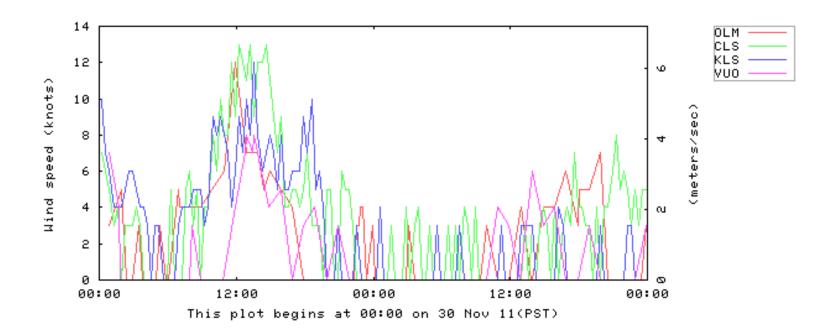
Location: 101 Mulford Road, Toledo, WA

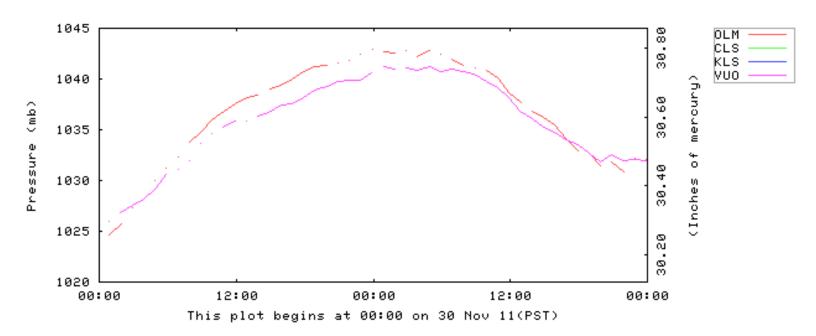
Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/28/2011

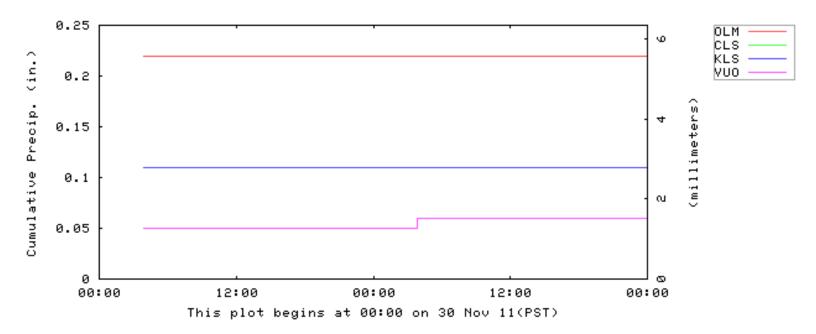
Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 6.2 ft

Location:	101 Multo	ora R	oad, I ole	edo, WA	D	ate Comp	oletea: 1	0/28/2011 Total Boring Depth: 6.2 ft
MOISTURE	ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DЕРТН (ft)	LITHOLOGY/DESCRIPTION
								Asphalt.
Moist	0.0	ans			SP		1—	(SP) Brown, medium dense, medium to coarse, gravelly SAND with cobbles; (no odor, no sheen) Same as above; (no odor, no sheen)
Moist	0.0				ML		4— - 5— - 6—	(ML) Dark gray, stiff, sandy SILT with moderate plasticity and 15% sand; (no odor, no sheen) Grades to gravelly, cobbly, sandy SILT. Refusal on large cobble.
							_	Bottom of borehole at 6.2 feet.


18912 North Creek Parkway Ste. 101 Bothell, WA 98011


Soil-Vapor Sampling Probe: SVSP-4A (SVSP-4)


Project: Former Texaco Station No. 211556 Client: Chevron EMC Location: 101 Mulford Road, Toledo, WA Logged By: G. Cisneros Date Started: 10/27/2011 Date Completed: 10/27/2011 Driller: Cascade Drilling LP Drill Method: Hand Auger Total Boring Depth: 5.7 ft Hole Diameter: 3.25 in Well Depth: 5.5 ft Well Diameter: 0.25 in Well Screen: 5-5.5 ft Filter Pack: 10/20 Colorado Well Casing: Nylon Tubing


MOISTURE	ORGANIC VAPOR (ppm)	SAMP. INTERVAL	ANALYTICAL SAMPLE	Analyical Results (mg/kg)	U.S.C.S. SYMBOL	GRAPHIC LOG	DEPTH (ft)	LITHOLOGY/DESCRIPTION	WELL DIAGRAM
Moist	0.0	em,	SVSP-4A-2	G = <1.1 D = 5.9 HO = 82 B = <0.0056	SP		1—	Asphalt. (SP) Brown, medium dense, medium to coarse, gravelly SAND with cobbles; (no odor, no sheen)	- Cement Seal - O.25 inch nylon tubing - Pre-hydrated granular bentonite slurry
							3	(ML) Dark gray, stiff, fine sandy, coarse SILT with low plasticity and some roots; (no odor, no sheen)	Ecology Unique Well ID BHK 027
Moist	0.0	an			ML		4		- Dry granular bentonite - 10/20 Colorado silica sand
Moist	0.0	ans.	SVSP-4A-6	G = <1.4 D = <3.6 HO = <12 B = <0.0076			5	Dark gray to dark brown, gravelly, sandy SILT with cobbles; (no odor, no sheen) Bottom of borehole at 5.7 feet.	- 0.75 inch diameter stainless steel screen with 0.0057 inch pore diameter
							6-		

Attachment C: Weather Data Plots

Attachment D: Laboratory Analytical Reports - Vapor

3/20/2012 Mr. Russ Shropshire SAIC 18912 Northcreek Parkway Suite 101 Bothell WA 98011

Project Name: Toledo Project #: 211556

Workorder #: 1112097AR1

Dear Mr. Russ Shropshire

The following report includes the data for the above referenced project for sample(s) received on 12/6/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Kelly Butte

WORK ORDER #: 1112097AR1

Work Order Summary

CLIENT: Mr. Russ Shropshire BILL TO: Mr. Russ Shropshire

SAIC

18912 Northcreek Parkway 18912 Northcreek Parkway

Suite 101 Suite 101

Bothell, WA 98011 Bothell, WA 98011

PHONE: 425-485-5800 **P.O.** # SA10020002-TO46

FAX: PROJECT # 211556 Toledo

DATE RECEIVED: 12/06/2011 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 12/14/2011

DATE REISSUED: 03/20/2012

SAIC

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVSP-1-120111	Modified TO-15	1.4 "Hg	5 psi
02A	SVSP-2-120111	Modified TO-15	1.4 "Hg	5 psi
03A	SVSP-3-120111	Modified TO-15	2.0 "Hg	5 psi
04A	SVSP-4-120111	Modified TO-15	0.2 "Hg	5 psi
05A	Duplicate-120111	Modified TO-15	1.4 "Hg	5 psi
06A	Equipment Blank	Modified TO-15	3.4 "Hg	5 psi
07A	Lab Blank	Modified TO-15	NA	NA
07B	Lab Blank	Modified TO-15	NA	NA
08A	CCV	Modified TO-15	NA	NA
08B	CCV	Modified TO-15	NA	NA
09A	LCS	Modified TO-15	NA	NA
09AA	LCSD	Modified TO-15	NA	NA
09B	LCS	Modified TO-15	NA	NA
09BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>03/20/12</u>

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 SAIC Workorder# 1112097AR1

Six 1 Liter Summa Canister (100% Certified) samples were received on December 06, 2011. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	+- 30% RSD with 2 compounds allowed out to < 40% RSD	30% RSD with 4 compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	<= 30% Difference with four allowed out up to <=40%.; flag and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilutions were performed on samples SVSP-2-120111 and Duplicate-120111 due to the presence of high level non-target species.

THE WORKORDER WAS REISSUED ON 3/20/12 TO CORRECT SAMPLE COLLECTION DATE FOR Equipment Blank DUE TO LABORATORY TRANSCRIPTION ERROR.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.

- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVSP-1-120111

Lab ID#: 1112097AR1-01A
No Detections Were Found.

Client Sample ID: SVSP-2-120111

Lab ID#: 1112097AR1-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	2.8	110	8.9	340
Toluene	2.8	4.6	10	17
Ethyl Benzene	2.8	7.9	12	34
m,p-Xylene	2.8	49	12	210
o-Xylene	2.8	4.4	12	19

Client Sample ID: SVSP-3-120111

Lab ID#: 1112097AR1-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.14	0.32	0.46	1.0
Toluene	0.14	1.3	0.54	5.0
Ethyl Benzene	0.14	0.36	0.62	1.6
m,p-Xylene	0.14	1.6	0.62	6.8
o-Xylene	0.14	0.90	0.62	3.9

Client Sample ID: SVSP-4-120111

Lab ID#: 1112097AR1-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.14	0.43	0.43	1.4
Toluene	0.14	0.98	0.51	3.7
Ethyl Benzene	0.14	0.18	0.59	0.77
m,p-Xylene	0.14	0.70	0.59	3.0
o-Xylene	0.14	0.32	0.59	1.4

Client Sample ID: Duplicate-120111

Lab ID#: 1112097AR1-05A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: Duplicate-120111

Lab ID#: 1112097AR1-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	3.6	100	12	340	
Toluene	3.6	5.2	14	19	
Ethyl Benzene	3.6	6.0	16	26	
m,p-Xylene	3.6	29	16	130	

Client Sample ID: Equipment Blank

Lab ID#: 1112097AR1-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	0.15	0.20	0.57	0.78
m,p-Xylene	0.15	0.18	0.66	0.77

Client Sample ID: SVSP-1-120111 Lab ID#: 1112097AR1-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a120915	Date of Collection: 12/1/11 10:27:00 AM
Dil. Factor:	1.40	Date of Analysis: 12/9/11 07:30 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.14	Not Detected	0.45	Not Detected
Toluene	0.14	Not Detected	0.53	Not Detected
Ethyl Benzene	0.14	Not Detected	0.61	Not Detected
m,p-Xylene	0.14	Not Detected	0.61	Not Detected
o-Xylene	0.14	Not Detected	0.61	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
Naphthalene	0.70	Not Detected	3.7	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: SVSP-2-120111 Lab ID#: 1112097AR1-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a121007	Date of Collection: 12/1/11 1:29:00 PM
Dil. Factor:	28.0	Date of Analysis: 12/10/11 12:11 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	2.8	110	8.9	340
Toluene	2.8	4.6	10	17
Ethyl Benzene	2.8	7.9	12	34
m,p-Xylene	2.8	49	12	210
o-Xylene	2.8	4.4	12	19
Methyl tert-butyl ether	2.8	Not Detected	10	Not Detected
Naphthalene	14	Not Detected	73	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: SVSP-3-120111 Lab ID#: 1112097AR1-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a120916	Date of Collection: 12/1/11 3:12:00 PM
Dil. Factor:	1.44	Date of Analysis: 12/9/11 08:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.14	0.32	0.46	1.0
Toluene	0.14	1.3	0.54	5.0
Ethyl Benzene	0.14	0.36	0.62	1.6
m,p-Xylene	0.14	1.6	0.62	6.8
o-Xylene	0.14	0.90	0.62	3.9
Methyl tert-butyl ether	0.14	Not Detected	0.52	Not Detected
Naphthalene	0.72	Not Detected	3.8	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	109	70-130	

Client Sample ID: SVSP-4-120111 Lab ID#: 1112097AR1-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a120918	Date of Collection: 12/1/11 4:06:00 PM
Dil. Factor:	1.35	Date of Analysis: 12/9/11 10:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.14	0.43	0.43	1.4
Toluene	0.14	0.98	0.51	3.7
Ethyl Benzene	0.14	0.18	0.59	0.77
m,p-Xylene	0.14	0.70	0.59	3.0
o-Xylene	0.14	0.32	0.59	1.4
Methyl tert-butyl ether	0.14	Not Detected	0.49	Not Detected
Naphthalene	0.68	Not Detected	3.5	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: Duplicate-120111 Lab ID#: 1112097AR1-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a121009	Date of Collection: 12/1/11
Dil. Factor:	36.1	Date of Analysis: 12/10/11 01:47 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	3.6	100	12	340
Toluene	3.6	5.2	14	19
Ethyl Benzene	3.6	6.0	16	26
m,p-Xylene	3.6	29	16	130
o-Xylene	3.6	Not Detected	16	Not Detected
Methyl tert-butyl ether	3.6	Not Detected	13	Not Detected
Naphthalene	18	Not Detected	95	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: Equipment Blank Lab ID#: 1112097AR1-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a120919	Date of Collection: 12/2/11 1:05:00 PM
Dil. Factor:	1.51	Date of Analysis: 12/9/11 11:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.15	Not Detected	0.48	Not Detected
Toluene	0.15	0.20	0.57	0.78
Ethyl Benzene	0.15	Not Detected	0.66	Not Detected
m,p-Xylene	0.15	0.18	0.66	0.77
o-Xylene	0.15	Not Detected	0.66	Not Detected
Methyl tert-butyl ether	0.15	Not Detected	0.54	Not Detected
Naphthalene	0.76	Not Detected	4.0	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1112097AR1-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

1711	<u>ODIFIED EPA METHOL</u>	7 10-13 GC/MS FUI	LL SCAIN	
File Name:	a120907	Date of Collection: NA		
Dil. Factor:	1.00	Date	Date of Analysis: 12/9/11 12:05 PM	
Compound	Rpt. Limit (ppbv)			Amount (ug/m3)
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected
Naphthalene	0.50	Not Detected	2.6	Not Detected
Container Type: NA - Not App	olicable			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		110		70-130
Toluene-d8		98		70-130

103

70-130

Client Sample ID: Lab Blank Lab ID#: 1112097AR1-07B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a121006 1.00	три —		D/11 11:31 AM
Compound	Rpt. Limit (ppbv)			Amount (ug/m3)
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected
Naphthalene	0.50	Not Detected	2.6	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: CCV Lab ID#: 1112097AR1-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a120902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/9/11 08:01 AM

Compound	%Recovery
Benzene	81
Toluene	84
Ethyl Benzene	93
m,p-Xylene	96
o-Xylene	96
Methyl tert-butyl ether	102
Naphthalene	81

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1112097AR1-08B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a121002	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/10/11 08:54 AM

Compound	%Recovery
Benzene	79
Toluene	83
Ethyl Benzene	92
m,p-Xylene	95
o-Xylene	97
Methyl tert-butyl ether	106
Naphthalene	82

	Method
%Recovery	Limits
101	70-130
97	70-130
104	70-130
	101 97

Client Sample ID: LCS Lab ID#: 1112097AR1-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a120903 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/9/11 08:42 AM

Compound	%Recovery
Benzene	89
Toluene	93
Ethyl Benzene	102
m,p-Xylene	106
o-Xylene	108
Methyl tert-butyl ether	113
Naphthalene	96

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCSD Lab ID#: 1112097AR1-09AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a120904 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/9/11 09:42 AM

Compound	%Recovery
Benzene	89
Toluene	91
Ethyl Benzene	101
m,p-Xylene	105
o-Xylene	106
Methyl tert-butyl ether	111
Naphthalene	96

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: LCS Lab ID#: 1112097AR1-09B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a121003 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/10/11 09:30 AM

Compound	%Recovery
Benzene	88
Toluene	92
Ethyl Benzene	102
m,p-Xylene	106
o-Xylene	107
Methyl tert-butyl ether	110
Naphthalene	98

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCSD Lab ID#: 1112097AR1-09BB

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a121004	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/10/11 10:06 AM

Compound	%Recovery
Benzene	88
Toluene	92
Ethyl Benzene	100
m,p-Xylene	103
o-Xylene	106
Methyl tert-butyl ether	110
Naphthalene	98

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	106	70-130

3/20/2012 Mr. Russ Shropshire SAIC 18912 Northcreek Parkway Suite 101 Bothell WA 98011

Project Name: Toledo Project #: 211556

Workorder #: 1112097BR1

Dear Mr. Russ Shropshire

The following report includes the data for the above referenced project for sample(s) received on 12/6/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

July Butte

WORK ORDER #: 1112097BR1

Work Order Summary

CLIENT: Mr. Russ Shropshire BILL TO: Mr. Russ Shropshire

SAIC

18912 Northcreek Parkway 18912 Northcreek Parkway

Suite 101 Suite 101

Bothell, WA 98011 Bothell, WA 98011

PHONE: 425-485-5800 **P.O.** # SA10020002-TO46

FAX: PROJECT # 211556 Toledo

DATE RECEIVED: 12/06/2011 **CONTACT:** Kelly Buettner

DATE COMPLETED: 12/08/2011 **DATE REISSUED:** 03/20/2012

SAIC

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVSP-1-120111	Modified ASTM D-1946	1.4 "Hg	5 psi
02A	SVSP-2-120111	Modified ASTM D-1946	1.4 "Hg	5 psi
03A	SVSP-3-120111	Modified ASTM D-1946	2.0 "Hg	5 psi
04A	SVSP-4-120111	Modified ASTM D-1946	0.2 "Hg	5 psi
05A	Duplicate-120111	Modified ASTM D-1946	1.4 "Hg	5 psi
06A	Equipment Blank	Modified ASTM D-1946	3.4 "Hg	5 psi
07A	Lab Blank	Modified ASTM D-1946	NA	NA
07B	Lab Blank	Modified ASTM D-1946	NA	NA
08A	LCS	Modified ASTM D-1946	NA	NA
08AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>03/20/12</u>

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946 SAIC Workorder# 1112097BR1

Six 1 Liter Summa Canister (100% Certified) samples were received on December 06, 2011. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

THE WORK ORDER WAS REISSUED ON 03/20/12 TO CORRECT THE IDENTIFICATION OF SAMPLE EQUIPMENT BLANK DUE TO LABORATORY TRANSCRIPTION ERROR.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: SVSP-1-120111

Lab ID#: 1112097BR1-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.14	7.6
Nitrogen	0.14	82
Carbon Dioxide	0.014	10

Client Sample ID: SVSP-2-120111

Lab ID#: 1112097BR1-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.14	4.4
Nitrogen	0.14	87
Carbon Dioxide	0.014	8.0
Methane	0.00014	0.60

Client Sample ID: SVSP-3-120111

Lab ID#: 1112097BR1-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.14	1.4
Nitrogen	0.14	92
Carbon Dioxide	0.014	6.4
Methane	0.00014	0.24

Client Sample ID: SVSP-4-120111

Lab ID#: 1112097BR1-04A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.14	1.4	
Nitrogen	0.14	93	
Carbon Dioxide	0.014	4.8	
Methane	0.00014	0.63	

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: Duplicate-120111

Lab ID#: 1112097BR1-05A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.14	4.3
Nitrogen	0.14	87
Carbon Dioxide	0.014	8.0
Methane	0.00014	0.60

Client Sample ID: Equipment Blank

Lab ID#: 1112097BR1-06A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.15	0.75
Nitrogen	0.15	99

Client Sample ID: SVSP-1-120111 Lab ID#: 1112097BR1-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120609 1.40		ction: 12/1/11 10:27:00 AM rsis: 12/6/11 03:03 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.14	7.6
Nitrogen		0.14	82
Carbon Dioxide		0.014	10
Methane		0.00014	Not Detected
Helium		0.070	Not Detected

Client Sample ID: SVSP-2-120111 Lab ID#: 1112097BR1-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120610 1.40		ction: 12/1/11 1:29:00 PM /sis: 12/6/11 03:52 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.14	4.4
Nitrogen		0.14	87
Carbon Dioxide		0.014	8.0
Methane		0.00014	0.60
Helium		0.070	Not Detected

Client Sample ID: SVSP-3-120111 Lab ID#: 1112097BR1-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120611 1.44		ction: 12/1/11 3:12:00 PM /sis: 12/6/11 04:17 PM
Compound		Rpt. Limit	Amount
·		(%)	(%)
Oxygen		0.14	1.4
Nitrogen		0.14	92
Carbon Dioxide		0.014	6.4
Methane		0.00014	0.24
Helium		0.072	Not Detected

Client Sample ID: SVSP-4-120111 Lab ID#: 1112097BR1-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120612 1.35		ction: 12/1/11 4:06:00 PN /sis: 12/6/11 06:14 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.14	1.4
Nitrogen		0.14	93
Carbon Dioxide		0.014	4.8
Methane		0.00014	0.63
Helium		0.068	Not Detecte

Client Sample ID: Duplicate-120111 Lab ID#: 1112097BR1-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120614 1.40		ction: 12/1/11 rsis: 12/6/11 07:23 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.14	4.3
Nitrogen		0.14	87
Carbon Dioxide		0.014	8.0
Methane		0.00014	0.60
Helium		0.070	Not Detecte

Client Sample ID: Equipment Blank Lab ID#: 1112097BR1-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120615 1.51		ction: 12/2/11 1:05:00 PM /sis: 12/6/11 07:45 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.15	0.75
Nitrogen		0.15	99
Carbon Dioxide		0.015	Not Detected
Methane		0.00015	Not Detected
Helium		0.076	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1112097BR1-07A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9120605 1.00	Date of Colle	ction: NA ysis: 12/6/11 08:55 AM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.10	Not Detected
Nitrogen		0.10	Not Detected

0.010

0.00010

Not Detected

Not Detected

Container Type: NA - Not Applicable

Carbon Dioxide Methane

Client Sample ID: Lab Blank Lab ID#: 1112097BR1-07B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9120604b	Date of Collection	ction: NA
Dil. Factor:	1.00	Date of Analy	sis: 12/6/11 08:33 AM
		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.050	Not Detected

Client Sample ID: LCS Lab ID#: 1112097BR1-08A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9120602	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/6/11 07:00 AM

Compound	%Recovery
Oxygen	102
Nitrogen	101
Carbon Dioxide	101
Methane	100
Helium	95

Client Sample ID: LCSD Lab ID#: 1112097BR1-08AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9120616	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/6/11 09:00 PM

Compound	%Recovery
Oxygen	100
Nitrogen	101
Carbon Dioxide	101
Methane	99
Helium	96

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page _ / _ of _ /

Project Manager Russ Shapshire Collected by: (Print and Sign) Russ Shrapshire Manager Company SAIC Final Shapshire Shapshire					Project Info: P.O. # Task Order Felicia # 46			round ne:	Lab Use Only Pressurized by:			
								rmal	Date:			
Company 5416 Email Shrepshirer & Saic Lean Address 18912 North Crack Terkin City Both State WA Zip 98011 Phone 475 492 3323 Fax 475 485 5566				Projec	Project # 21155 6			Rush		Pressurization Gas:		
				Projec	Project Name		specify		N ₂ He			
				Date	Time	_ : _			ter Pressure/Vacuum			
Lab I.D.	Field Sample I.D. (Location)		# of	Collection	of Collection			Initial	Final	Receipt	Final (psi)	
ava	SVSP-1-120111	3639	18 12	-01-11	10:27	TO-15 LOW LOVE / 6	15TM	30	3.5			
OZA .	5V5P-2-120111	364	8 12	- 01-11	13:29			30	3.5			
037	SVSP- 3 - 120111	3555	0 1	2-01-11	15:12			30	3			
оЦА	5V5P 4 - 120111	373	91 12	2-01-11	16:06	THE STATE OF THE S		30	3			
05A	Puplicate -120111	207	77 10	2-01-11	*Through graph of the State of the	To a second		30	3.5			
06A	Equipment Blank	39/3	7 12	- 02-11	13:05	V		30	3.5			
				Michigan 9 900 Class Salverer			Arthur grant and an analysis a					
								-	The second second second			
Relinquishe	ed by: (signature) Date/Time 2.5/we/3/1-12 Ped by: (signature) Date/Time and by: (signature) Date/Time	gnature) Date/Time Received by: (signature) Date/Time Received by: (signature) Date/Time To-15 - Report BTEX, MTBE and papit the lenc. ASTM D1946 - Report O2, CO2, CH4, A							Nz			
Lab Use Only	Shipper Name Air Bi	#	Temp	o (°C)	Condition	Epino in the part		ict?		Order #	0 97	

Memorandum

To: Project File – Former Texaco Service Station No. 21-1566, Toledo, Washington

From: Russ Shropshire

Date: March 12, 2012

cc:

Re: Johnson and Ettinger Modeling of December 2011 Soil-Vapor Sampling Results

This memorandum presents the methodology and results of vapor intrusion (VI) modeling that was performed as part of a Tier I VI assessment for the above-referenced site, and which was conducted in accordance with the Washington State Department of Ecology (Ecology) draft guidance document *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, dated October 2009 (hereafter "Ecology VI guidance").

Per the Ecology VI guidance, the Johnson and Ettinger Model (JEM) was used to predict the maximum (i.e., worst case) concentration of benzene that could be expected in indoor air at the existing service station building, based on the results of recent soil-gas sampling at the site. Modeling results were then compared to indoor air cleanup levels, presented in Table B-1 of the Ecology VI guidance, to determine whether additional assessment activities are warranted.

Specific recommendations regarding the use of the JEM in this capacity is presented in Appendix D of the Ecology VI guidance.

Model

For this exercise, an on-line calculator version of the JEM was used, which is available at the United States Environmental Protection Agency website:

http://www.epa.gov/athens/learn2model/part-two/onsite/JnE_lite_forward.html

Use of this specific version of the model is consistent with Ecology VI guidance.

Model Inputs/Assumptions

The following inputs and assumptions were used in this application of the JEM:

General Information

 Soil Gas Sampling Result - 340 micrograms per cubic meter (μg/m³), based on detection of benzene from sample collected at soil vapor sampling probe SVSP-2, during soil gas sampling event performed on December 1, 2011. This result represents the maximum concentration of benzene detected in soil gas at the Site.

- O Depth of Sample Depth of soil gas sample (5.25 feet) is based on construction of SVSP-2, which is screened from 5 to 5.5 feet below ground surface (bgs). This version of the model also includes a simple sensitivity analysis to address uncertainty regarding sample depth. For this exercise it was assumed that the sample collected would be representative of the sample-probe filter-pack depth (4.5 to 6 feet bgs); therefore, +/- 0.75 feet was used as the value by which the sample depth could vary.
- Contaminant of Concern Benzene is considered to be the primary contaminant of concern that would result in the potential for a vapor intrusion risk.
- **Type of Building** Building construction for the existing service station building is believed to be slab on grade.
- Soil Type Based on the boring logs for soil vapor sampling probes SVSP-1 through SVSP-4, soils at this site are predominantly sandy gravel to about 3.5 feet bgs, underlain by silty sand and silt. To be conservative, sand was selected as the modeled lithology.
- Average soil/groundwater temperature As suggested in Appendix D of the Ecology guidance document, 55°F was selected.

• Chemical Properties

o All chemical properties input parameters are based on default values assigned by the model for the selected contaminant of concern, benzene.

• Soil Properties

- O All soil properties input parameters, except for Q_{soil} , are based on default values assigned by the model for the selected soil type, sand.
- O Use of the default soil properties is consistent with Ecology's recommendation for use of the JEM, with the exception that the soil-gas flow rate into the building (Q_{soil}) should be modified for buildings with significantly larger footprints than 100 square meters (1,076 square feet). The existing service station building at this site is approximately 1,674 square feet; therefore, the value for Q_{soil} was modified using the following formula provided in the Ecology VI guidance:

 $Q_{soil} = (5 \text{ Liters/min}) \text{ X (building perimeter in centimeters (cm)/4000 cm)}$

Based on use of building dimensions of 54 feet long by 31 feet wide, the building perimeter would be 5, 182 cm; therefore, the resulting value for Q_{soil} is approximately 6.5 Liters/min.

• Building Properties

- Consistent with Ecology VI guidance recommendations, all building properties input parameters are based on the default values assigned by the model, with the following allowable exceptions:
 - Building dimensions used (building footprint area and subsurface foundation area) are based on actual dimensions of the existing service station building (54 feet long by 31 feet wide or approximately 157 meters²). For this model run, the subsurface foundation area was assumed to be equal to the building footprint area
 - Building mixing height changed to 2.5 meters per Table D-1 of Ecology VI guidance.
- o Actual building foundation slab thickness is unknown; therefore, the default value (0.1 meter or approximately 4 inches) was used.

• Exposure Parameters

All exposure input parameters were left as default values for each model run.
 Exposure parameters have no bearing on indoor air concentrations calculated by the JEM.

Results

The following table provides a summary of the JEM predicted concentration range for benzene in indoor air of the existing service station building, and includes MTCA indoor air cleanup levels for comparison.

Benzene i	dicted Concen n Indoor Air tation Buildin		ndoor Air p Levels	
Low Prediction (µg/m³)	Best Estimate (µg/m³)	High Prediction (µg/m³)	Method B (μg/m³)	Method C (μg/m³)
0.7126	0.7608	0.8148	0.32	3.2

A complete copy of the JEM indoor air simulation results is included as an attachment to this memorandum.

Discussion of Results

As indicated in the summary table above, JEM predicted concentrations of benzene in indoor air range from 0.7126 to 0.8148 $\mu g/m^3$. The range of predicted benzene concentrations is greater than the Method B cleanup level for indoor air, but is below the Method C cleanup level presented in Table B-1 of the Ecology VI guidance.

Given the site's current use as an active service station, comparison to Method C cleanup levels may be more appropriate for evaluation of vapor intrusion to the existing service station building, for the following reasons:

- Method C cleanup levels are based on an adult worker exposure scenario, which is consistent with the current site use exposure conditions; and
- Operations at the site are characterized by the use and storage of petroleum fuels
 containing benzene, such that background concentrations of benzene would be
 expected to be elevated in the vicinity of an active service station environment
 due to automobile exhaust emissions, and benzene volatilization during refueling
 operations.

Under this site use scenario, JEM results suggest that current levels of benzene in soil gas would not result in benzene concentrations in indoor air of the existing service station building in excess of cleanup levels, based on an adult worker exposure scenario (i.e., Method C). Therefore, while site use remains as the location of an active service station, further VI assessment does not appear warranted.

Ecology VI guidance also suggests that future site use be considered in performing a Tier 1 VI Assessment. In this case, it would not be unreasonable to assume that changes in future site use could result in an exposure scenario in which Method C cleanup levels would not be applicable, resulting in an exposure scenario in which Method B cleanup levels for unrestricted land use would be more appropriate. Results of the Tier 1 assessment performed suggest that there would be the potential for a VI risk under this type of future site use scenario, Therefore, if site use were to change in the future; additional assessment or VI mitigation measures may be warranted at that time.

References

- Ecology, 2009. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Redial Action Review Draft. October.
- EPA, 2004. *User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings*. February.

Attachments

• Screening-Level Johnson and Ettinger Model - Indoor Air Simulation Results

INDOOR AIR SIMULATION RESULTS

Screening-Level Johnson and Ettinger Model

Site Name: Former Texaco Service Station No. 21-1556 Report Date: Sun Mar 11 21:43:23 PDT 2012


```
Report Generated From: http://www.epa.gov/athens/learn2model/part-two/onsite/JnE_lite_forward.htm
Type of sample: SOIL GAS Concentration = 340 [\mu g/m^3]
Depth of soil gas sample: 5.25ft +/- 0.75ft
Average soil/ground water temperature:
CHEMICAL PROPERTIES
Chemical of Concern: Benzene CAS Number: 71432
Molecular Weight: 78.11 [g/mole] Henrys Constant: 0.1316031 [unitless]
Diffusivity in Air: 8.800e-2 [cm<sup>2</sup>/sec] Diffusivity in Water: 9.800e-6 [cm<sup>2</sup>/sec]
Unit Risk Factor: 0.0000078 [(\mu q/m^3)^{-1}] Reference Concentration: 0 [mq/m^3]
SOIL PROPERTIES
Soil Type: Sand
                        Total Porosity: 0.375
Unsaturated Zone Moisture Content:
     low= 0.053 best estimate= 0.054 high= 0.055
Capillary Zone Moisture Content: 0.253 Height Soil-Gas Flow Rate into Building: 6.5 [L/min]
                                                     Height of Capillary Rise: 0.17 [m]
BUILDING PROPERTIES
Building Type: Slab-on-Grade Air Exchange Rate: 0.25[hr^{-1}] Building Mixing Height: 2.5[m] Building Footprint Area: 157[m^2]
Subsurface Foundation Area: 157[m<sup>2</sup>] Building Crack Ratio: 0.00038[unitless]
Foundation Slab Thickness: 0.1[m]
EXPOSURE PARAMETERS
Exposure Duration: carcinogens 30 [years] non-carcinogens: 30 [years]
Exposure Frequency: carcinogens 350 [days/year] non-carcinogens: 365 [days/year]
Averaging Time: carcinogens 70 [years] non-carcinogens: 30 [years]
JOHNSON & ETTINGER SIMULATION RESULTS
Effective Diffusion Coefficient (D<sub>eff</sub>): 0.01423[cm<sup>2</sup>/s]
Soil Gas to Indoor Air Attenuation Factor (\alpha_{SG}) = 0.002238
^1\underline{Low\ Indoor\ Air\ Prediction:}} 0.7126 [µg/m³] or 0.2232 [ppbv] Cancer Risk of this concentration: 2.284e-6 Hazard Risk of this concentration: 0.
Best Estimate Indoor Air Prediction: 0.7608[\mu g/m^3] or 0.2383[ppbv] Cancer Risk of this concentration: 2.439e-6 Hazard Risk of this concentration: 0.
^2\underline{High\ Indoor\ Air\ Prediction:} 0.8148[µg/m³] or 0.2552 [ppbv] Cancer Risk of this concentration: 2.612e-6 Hazard Risk of this concentration: 0.
```

Based on parameter analysis: Advection is the dominant mechanism across foundation.

 $^{^1}$ "Low Prediction" concentrations produced with HIGHEST moisture content and DEEPEST depth to contamination. 2 "High Prediction" concentrations produced with LOWEST moisture content and SHALLOWEST depth to contamination.