Gc]`UbX'; fci bXk UhYf'5ggYgga Ybh

@/@9||cb F]W(`UbXžKUg\]b[hcb

for K Ug\]b[hcb GhLhY 8YdUfha YbhcZ9Wt c[m

A UfVX ** ž'&\$%

Earth Science + Technology

Soil and Groundwater Assessment

L&L Exxon Richland, Washington

for Washington State Department of Ecology

March 6, 2013

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Soil and Groundwater Assessment

L&L Exxon Richland, Washington

File No. 0504-081-00

March 6, 2013

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program–Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Norm Hepner, PE

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Prepared by:

Scott Lathen, PE Staff Environmental Engineer

Reviewed by:

hilli

Bruce D. Williams Principal

CW:JER:BDW:amw:tlm

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2013 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	SCOPE OF SERVICES	2
4.0	FIELD ACTIVITIES	3
4.2. 4.3. 4.4.	General Subsurface Conditions Field Screening and Sampling Monitoring Well Installation Groundwater Sampling	4 4 5
5.0	CHEMICAL ANALYTICAL RESULTS	5
	Soil Chemical Analytical Results Groundwater Chemical Analytical Results	6 6
6.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	7
6.2. 6.3. 6.4.	Subsurface Conditions Chemical Analytical Results Contaminant Distribution MTCA Method B Calculations Recommendations	7 8 8
7.0	LIMITATIONS	8
8.0	REFERENCES	9
LIST	OF TABLES	
Table Table	e 1. Summary of Chemical Analytical Results – Soil Samples e 2. Summary of Chemical Analytical Results – PAHs in Soil Samples e 3. Summary of Chemical Analytical Results – Groundwater e 4. Summary of Chemical Analytical Results – PAHs in Groundwater Samples	
LIST	OF FIGURES	
-	re 1. Vicinity Map re 2. Site Plan	
APPI	ENDICES	
Арре	endix A. Field Procedures and Boring Logs Figure A-1 – Key to Exploration Logs Figures A-2 through A-7 – Logs of Borings Figures A-8 through A-10 – Logs of Monitoring Wells endix B. Chemical Analytical Laboratory Reports endix C. MTCA Method B Cleanup Level Calculations	

Appendix D. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes subsurface exploration, groundwater monitoring well installation and groundwater monitoring activities conducted at the former L&L Exxon site located at 1315 Lee Boulevard in Richland, Washington (herein referred to as "site"). The site is located approximately as shown in the attached Vicinity Map, Figure 1.

Environmental activities at the site currently are managed by the Washington State Department of Ecology (Ecology). This report describes field activities, observations, and chemical analytical results associated with soil and groundwater samples collected at the site, and provides recommendations for further assessment. The purpose of the assessment activities described herein was to identify the source and extent of remnant contamination in soil and shallow groundwater beneath the site, if any, associated with operation of three former underground storage tanks (USTs).

2.0 SITE DESCRIPTION AND BACKGROUND

The site was the location of the former L&L Exxon service station, which closed in 1999. Former site features removed at the time of closure included (shown on Site Plan, Figure 2):

- Two 6,000-gallon gasoline USTs (designated as UST-1 and UST-2, respectively), installed in the late 1950s, located on the north side of the property;
- One 4,000-gallon gasoline UST (designated as UST-3), installed in 1979, located south of the 6,000-gallon USTs;
- Two 500-gallon USTs (waste oil and heating oil, designated as UST-4 and UST-5 respectively) located near the south side of the building; and
- Four fuel dispensers and associated subsurface piping, located on the north side of the property west of the USTs.

The site is located in a generally commercial area and currently operates as a used car dealership and maintenance shop. Four historical groundwater monitoring wells (HW-A through HW-D) and a blower, reportedly included as a component of an in-situ remediation system, are located at the site. However, these monitoring wells are in poor condition (including missing caps, caps paved with asphalt) or inaccessible (HW-D was located beneath a storage unit) and are not serviceable to collect future groundwater samples. According to historical assessment and remediation reports, the groundwater flow gradient is toward the east. Existing and historical site features, including former USTs and dispensers and current monitoring wells, are depicted on Figure 2.

Based on a file review of previous environmental reports and interviews with the current property owner and former contractors, the following environmental activities have occurred since 1999:

- 1. Removal of the USTs and the associated fueling systems;
- Excavation of petroleum-contaminated soil to a depth of about 12 feet below ground surface (bgs);

- 3. Installation of four groundwater monitoring wells; and
- 4. In-situ remediation using microbial injection beneath the existing building supplemented with air injection.

Additional details from previous reports and interviews are included in the File Review (GeoEngineers, 2012A)

3.0 SCOPE OF SERVICES

Based on results of the file review, additional soil and groundwater assessment was required to close the site. Assessment actions included subsurface soil sampling near former dispenser and UST locations and installation of groundwater monitoring wells. Recommended assessment steps are designed to confirm if soil and/or groundwater contamination at the site requires further remedial action and/or an environmental covenant. The scope of services performed by GeoEngineers during implementation of the assessment included the following:

- Prepared a Health and Safety Plan (HASP) for field activities.
- Coordinated underground utility location services using the state one-call system and a private locating service.
- Prepared a draft work plan for sampling activities and submit to Ecology for review. The work plan included a sampling and analysis plan (SAP).
- Conducted a subsurface assessment at the site. The assessment included air-rotary drilling of six soil borings (B-1 through B-6). Borings were advanced near the location of the former USTs and dispensers. Advanced three additional borings and constructed groundwater monitoring wells (MW-1 through MW-3). Wells were screened based on groundwater conditions observed in the field.
- Soil samples were collected continuously during drilling at approximate 5-foot depth intervals using split-spoon samplers. Select sub-samples were field-screened using visual observations, water sheen, and headspace vapor measurements with a photoionization detector (PID) to assess possible presence of petroleum-related contaminants.
- Developed monitoring wells using surging and bailing/pumping.
- Submitted one soil sample from each boring to TestAmerica Laboratories Inc. (TestAmerica) located in Spokane Valley, Washington for chemical analysis. One sample, collected within the vadose zone of each boring and exhibiting the greatest indications of petroleum contamination based on field-screening measurements, was submitted for chemical analysis (see below). The remaining samples were held at the laboratory or GeoEngineers' Spokane office for potential analysis.
- Nine soil samples were analyzed for gasoline-, diesel-, and oil-range petroleum hydrocarbons (GRPH, DRPH, and ORPH, respectively) using Northwest Methods NWTPH-Gx and NWTPH-Dx, benzene, toluene, ethylbenzene, and total xylenes (BTEX), 1,2-Dichloroethane (EDC), methyl-tert-butyl-ether (MTBE) and n-hexane using Environmental Protection Agency (EPA) Method 8260C, 1,2-Dibromoethane (EDB) using EPA Method 8011, lead using EPA Method 6010C, and polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270C. Two soil samples were

further analyzed for fractionalized petroleum hydrocarbons (aliphatics and aromatics) using Northwest VPH and EPH methods. Samples were analyzed on standard turn-around-time.

- Collected groundwater samples from each well using low-flow/low-stress sampling techniques.
- Submitted groundwater samples to a qualified laboratory for chemical analysis. Samples were analyzed for GRPH using Northwest Method NWTPH-Gx; DRPH using Northwest Method NWTPH-Dx, BTEX, EDC, MTBE and n-hexane using EPA Method 8260B; EDB using EPA Method 8011; lead using EPA Method 6010C, and PAHs using EPA Method 8270C-SIM.
- Investigation-derived waste (IDW) was drummed, labeled, and stored on-site pending results of analytical testing.
- Entered data results information into Ecology's Environmental Information Management (EIM) database.

4.0 FIELD ACTIVITIES

4.1. General

Advanced Underground Utility Locating, Inc. of Spokane, Washington conducted a private utility locate of the site on September 24, 2012. Environmental West Explorations (Environmental West) of Spokane, Washington, advanced nine borings (B-1 through B-6 and MW-1 through MW-3) to depths of between 15 and 23 feet using air rotary drilling methods on September 26 and 27, 2012. Borings MW-1 through MW-3 were completed as monitoring wells. Boring locations are presented in Figure 2 and summarized by the following:

- Soil boring B-1 was drilled near the historical location of UST-1. This boring was located near the reported northern limits of historical remediation efforts.
- Soil boring B-2 was drilled near the historical location of UST-3 near the reported southern limits of historical remedial efforts.
- Soil boring B-3 was drilled in the approximate location of the former fuel dispensers.
- Soil boring B-4 was drilled in an inferred upgradient location relative to the former fueling system (dispenser islands and USTs). This boring is reportedly located near the western limits of former remediation activities.
- Soil boring B-5 was drilled as a "step-out" boring northwest of boring B-1 after field screening indicated the likely presence of soil contamination in boring B-1.
- Soil boring B-6 was advanced near the historical location of USTs 4 and 5.
- Monitoring wells MW-1 and MW-2 were drilled and constructed downgradient from the historical fuel system near the eastern property boundary.
- Monitoring well MW-3 was constructed near the western property boundary in an inferred upgradient location relative to the former fueling system.

Soil cuttings and decontamination/development water were placed in 55-gallon steel drums, labeled, and stored behind the building.

Boring logs associated with the borings are provided in Appendix A.

4.2. Subsurface Conditions

Soil conditions generally were consistent within the nine soil borings described herein. Brown, fine to medium sand with silt was observed in borings B-1, B-2, B-3, B-5, MW-2 and MW-3 to depths of about 5 to 10 feet bgs. The sand was underlain by gravel with varying quantities of sand and silt to the completed depth of the borings at 15 to 23 feet. In borings B-4, B-6, and MW-1, gravel was observed from each recovered sample.

Groundwater was encountered during drilling operations in borings B-1, B-2, MW-1, MW-2 and MW-3, at depths that ranged from about 16 to 18 feet in depth. Groundwater was encountered under unconfined (water table) conditions.

4.3. Field Screening and Sampling

Soil samples from each boring were field-screened for the potential presence of petroleum contamination by visual examination, headspace vapor monitoring with a photoionization detector (PID), and water-sheen testing. Procedures for field-screening and sampling are provided in Appendix A. No sheens were observed on soil samples collected from borings B-1, B-4, B-5, B-6, MW-1 and MW-3. Slight sheens were observed from soil samples collected from borings B-2, B-3 and MW-2. No petroleum-stained soil was observed.

Headspace vapors were not detected while screening soil samples collected from borings B-4, B-6 and MW-3. Headspace vapor measurements for each soil sample are included with the boring logs in Appendix A. Headspace vapors were detected from the remaining borings as summarized below:

- Headspace vapor measurements were detected in samples from boring B-1 collected at 15 and 20 feet bgs with concentrations of 169 ppm and 253 ppm, respectively. Headspace vapors were not detected from shallower sample depths.
- Headspace vapor measurements were detected in boring B-2 from samples collected at 5, 15 and 20 feet bgs. Headspace vapor measurements from this boring did not exceed 10 ppm.
- Boring B-3 headspace vapors were detected from each sample at concentrations of 1,181 ppm at 5 feet bgs, 123 ppm at about 10 feet bgs, and less than 10 ppm at 15 feet bgs.
- Headspace vapors were detected in boring B-5 at about 15 feet bgs with a maximum concentration of 293 ppm. Headspace vapors were not detected at shallower depths.
- Monitoring well MW-1 headspace vapors were only detected from the sample obtained at about 15 feet bgs. Headspace vapors were detected at a concentration of 284 ppm.
- A single headspace vapor measurement of less than 5 ppm was detected from MW-2 at a depth of about 15 feet bgs).

Nine soil samples collected from the unsaturated zone (one sample from each of the nine borings) were submitted to TestAmerica for analysis using the methods described in **Section 3.0**; chemical analytical results are discussed in **Section 5.0**. Due to the coarse nature of the subsurface conditions, poor sample recovery was common throughout the drilling resulting in insufficient sample volume to run chemical analyses at some depths. The samples submitted for analysis

were selected based on sufficient sample volume, field screening evidence of contamination and proximity to the groundwater interface.

4.4. Monitoring Well Installation

Three monitoring wells, designated MW-1 through MW-3, were installed in the approximate locations presented in Figure 2. Well construction details for monitoring wells MW-1 through MW-3 are provided in Figures A-8 through A-10 of Appendix A, respectively. The monitoring wells were installed using air rotary drilling techniques and constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) casing and 0.010-inch slot Schedule 40 PVC well screen surrounded by a sand filter pack and bentonite seal. The installed well screens extend from depths of about 8 to 23 feet in each of the monitoring wells.

Monitoring wells MW-1 through MW-3 were completed with flush-mount surface monuments. Lockable compression caps were installed to seal the top of the PVC well casings. A concrete surface seal was constructed around each monument at the ground surface to divert surface water away from the well casings.

4.5. Groundwater Sampling

Following installation and development of monitoring wells MW-1 through MW-3, static depth to groundwater was measured on October 19, 2012 using an electronic water level indicator. Depths ranged from 17.52 feet (MW-3) to 17.57 feet (MW-1) below the top of well casing. GeoEngineers used surveying equipment to measure the relative elevation of the top of the PVC well casing. Top of casing elevation and groundwater elevation were measured relative to a site specific datum set at 100.00 feet. Relative groundwater elevations ranged between 80.29 feet at MW-1 to 80.36 feet at MW-2. Based on the relative groundwater elevations, groundwater flow direction was generally to the south.

Monitoring wells were purged and sampled on October 19, 2012 using standard low-flow sampling methodology. A peristaltic pump equipped with disposable tubing was used to purge and sample each well. Groundwater water quality parameters generally were measured at 3-minute intervals during well purging. Groundwater samples were collected when each water quality parameter had stabilized in conformance with the criteria presented in Appendix A. Groundwater samples were submitted to TestAmerica for analysis using the methods described in **Section 3.0**; chemical analytical results are discussed in **Section 5.0**.

Purge water generated during groundwater sampling was drummed, labeled and stored behind the building pending analytical results for profiling and disposal.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Soil Chemical Analytical Results

Nine soil samples collected from the unsaturated zone (one sample from each of the nine borings) were submitted to TestAmerica for the chemical analyses described in **Section 3.0**. TestAmerica's laboratory report is included in Appendix B; chemical analytical results are summarized and compared to MTCA Method A cleanup levels for Unrestricted Land Use in Summary of Chemical

Analytical Results – Soil Samples, Table 1 and Summary of Chemical Analytical Results – PAHs in Soil Samples, Table 2. Chemical analytical results for the submitted soil samples are summarized by the following:

- GRPH were detected in soil samples collected from borings B-1. B-3, B-5, MW-1, and MW-2 at concentrations ranging between 198 milligrams per kilogram (mg/kg) and 4,200 mg/kg. The detected concentrations from these borings exceed the MTCA Method A cleanup level of 30 mg/kg (when benzene is present) and 100 mg/kg (when benzene is not present). GRPH were either not detected or detected at concentrations less than MTCA Method A cleanup levels in samples analyzed from the B-2, B-4, B-6 and MW-3.
- DRPH, ORPH, EDB, and lead were either not detected or detected at concentrations less than MTCA Method A cleanup levels in samples analyzed from each of the borings.
- Volatile organic compounds (VOCs) were detected in samples collected from borings B-1, B-3, B-5, MW-1 and MW-2 at concentrations exceeding MTCA Method A cleanup levels. Benzene exceeded cleanup levels only in MW-1; toluene was detected at a concentration greater than cleanup levels only from boring B-3; ethylbenzene exceeded cleanup levels in borings B-3 and B-5; and total xylenes exceeded cleanup levels in borings B-1. B-3, B-5, MW-1 and MW-2. BTEX was either not detected or detected at concentrations less than MTCA Method A cleanup levels from the remaining borings. MTBE, EDC and n-hexane were either not detected or detected at concentrations less than MTCA cleanup levels.
- Total naphthalenes (naphthalene, 1-methylnaphthalene and 2-methylnaphthalene) concentrations exceeded MTCA Method A cleanup levels in soil samples from borings B-1, B-5, MW-1 and MW-2. Other PAHs were either not detected or detected at concentrations less than MTCA Method A cleanup levels.

Additionally, samples from B-3 at 5 feet and from B-5 at 15 feet were analyzed for aliphatic and aromatic hydrocarbons. Aliphatic and aromatic hydrocarbon results are summarized in Table 1.

5.2. Groundwater Chemical Analytical Results

5.2.1. General

Groundwater samples were collected on October 19, 2012 from monitoring wells MW-1 through MW-3. Groundwater samples were submitted to TestAmerica for the chemical analyses described in **Section 3.0**. TestAmerica's laboratory report is included in Appendix B. Chemical analytical results are tabulated and compared to MTCA Method A cleanup levels in Summary of Chemical Analytical Results - Groundwater, Table 3 and Summary of Chemical Analytical Results – PAHs in Groundwater Samples, Table 4.

5.2.2. Contaminants of Concern

Groundwater analytical results for the project contaminants of concern are summarized by the following:

GRPH were detected at a concentration of 3,740 micrograms per liter (µg/L) in the sample collected from MW-1 and at a concentration of 19,500 µg/L in the sample collected from MW-2. These concentrations exceed the MTCA Method A cleanup level of 800 µg/L (when

benzene is present). GRPH were not detected in samples collected from monitoring well MW-3.

- DRPH were detected from MW-1 and MW-2 at concentrations, 2.40 milligrams per liter (mg/L) and 2.32 mg/L respectively, greater than the MTCA Method A cleanup level (0.5 mg/L). DRPH and ORPH were not detected from MW-3 and ORPH were not detected from MW-1 and MW-2.
- Benzene was detected at a concentration of 178 µg/L in the sample collected from MW-1, which exceeds the MTCA Method A cleanup level of 5 µg/L. Benzene was either not detected or detected at concentrations less than the MTCA Method A cleanup levels in samples collected from the remaining monitoring wells. Toluene (2,400 µg/L), ethylbenzene (834 µg/L), and total xylenes (3,702 µg/L) exceeded their respective MTCA Method A cleanup levels. Toluene, ethylbenzene and total xylenes were either not detected or detected at concentrations less than MTCA Method A cleanup levels from MW-1.
- MTBE, EDC, hexane, EDB and lead were either not detected or detected at concentrations less than MTCA Method A cleanup levels.
- Total naphthalenes were detected in monitoring wells MW-1 and MW-2 at concentrations (178 µg/L and 256 µg/L) greater than MTCA Method A cleanup levels (160 µg/L). Additional PAHs were either not detected or detected at concentrations less than MTCA Method A cleanup levels.

6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1. Subsurface Conditions

Monitoring well installation activities were conducted September 26 and 27, 2012 at the former L&L Exxon site located at 1315 Lee Boulevard in Richland, Washington. Nine soil borings (B-1 through B-6 and MW-1 through MW-3) were advanced to depths between 15 and 23 feet. Three borings were completed as groundwater monitoring wells (MW-1 through MW-3).

Observed native soil conditions generally consisted of brown, fine sand with silt to between 5 to 10 feet bgs underlain by gravel. Groundwater was encountered during drilling at depths of about 16 to 18 feet.

Soil samples from each boring were field-screened for the potential presence of petroleum contamination by headspace vapor monitoring with a PID (among other methods). Field screening results indicated elevated PID measurements in borings B-1, B-3, B-5, and MW-1.

6.2. Chemical Analytical Results

Chemical analytical results are summarized by the following:

- GRPH were detected at concentrations greater than MTCA Method A cleanup levels in the soil samples collected from borings B-1, B-3, B-5, MW-1 and MW-2.
- BTEX compounds were detected at concentrations greater than MTCA Method A cleanup levels in the soil samples collected from borings B-1, B-3, B-5, MW-1 and MW-2 and from monitoring wells MW-1 and MW-2.

- Total naphthalenes were detected at concentrations greater than MTCA Method A cleanup levels in soil samples from borings B-1, B-5, MW-1 and MW-2 and in groundwater samples from monitoring wells MW-1 and MW-2.
- Laboratory results associated with the remaining contaminants of concern were either not detected or detected at concentrations less than respective MTCA Method A cleanup levels.

6.3. Contaminant Distribution

Contaminants were observed in the general area of the reported historical remediation activities. Based on the locations of chemical analytical results exceeding MTCA cleanup levels, subsurface soil contamination is concentrated in the northeast corner of the property. This area formerly contained three USTs and the fuel dispensers. Field screening and chemical analytical results did not indicate the presence of contamination in borings B-2 and B-4, bounding the potential extents of the contaminated area to the south and west, respectively. COC concentrations were greater than MTCA cleanup levels from the shallow soil sample (5 feet bgs) collected from boring B-3. According to the interviews conducted during the file review, this area was previously excavated to 12 feet bgs. Soil samples collected from borings B-1, B-5, MW-1 and MW-2 were collected at depths (15 to 16 feet bgs) near the groundwater interface.

6.4. MTCA Method B Calculations

Using the EPH and VPH analytical results obtained from borings B-3 and B-5, MTCA Method B cleanup levels were calculated using Ecology's MTCATPH spreadsheet version 11.1. Based on the analytical results from B-3, the calculated Method B cleanup level is 2,782 mg/kg. The Method B cleanup level is 3,359 mg/kg based on the analytical results from boring B-5. GRPH concentrations detected in borings B-3 and B-5 both exceeded the Method B cleanup level calculated from boring B-3 analytical results. Boring B-5 GRPH concentrations exceeded the Method B calculation based on boring B-3 analytical results. GRPH from the remaining borings were detected at concentrations less than either Method B calculation. MTCA Method B calculation summaries are included in Appendix C.

6.5. Recommendations

The observed petroleum contamination observed represents residual impact associated with former service station UST operation. As a result, we recommend that:

- Prepare a draft and final Interim Action Plan. The plan will detail the preferred remediation alternative.
- Continue the quarterly groundwater monitoring program currently planned for the site, including monitoring of natural attenuation parameters.

7.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this

report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to "Report Limitations and Guidelines for Use", Appendix D for additional information pertaining to use of this report.

8.0 REFERENCES

GeoEngineers, Inc. 2012A. File Review.

GeoEngineers, Inc. 2012B. Sampling and Analysis Plan, Soil and Groundwater Assessment,

Summary of Chemical Analytical Results - Soil Samples¹

Former L&L Exxon, 1315 Lee Boulevard **Richland**, Washington

Samp	le Number	B-1	B-2	B-3	B-4	B -5	B -6	MW-1	MW-2	MW-3	
Date	e Sampled	09/26/12	09/26/12	09/27/12	09/27/12	09/27/12	09/27/12	09/27/12	09/27/12	09/26/12	MTCA Method A
Sample Depth	(feet bgs)	15	5	5	5	16	15.5	15.5	15	6	Cleanup Levels ²
GRPH ³ (mg/kg)		573	<7.05	4,200	7.04	3,030	<19.4	198	812	<9.58	30/100
DRPH ⁴ (mg/kg)		66.5	<12.3	1,220	<10.7	113	<10.6	133	96.7	<12.6	2,000
ORPH ⁴ (mg/kg)		<38.0	<30.9	42.3	<26.8	<27.2	<26.4	<27.6	<25.6	<31.6	2,000
MTBE ⁵ (mg/kg)		<0.00602	<0.00846	<0.00674	<0.00544	<0.00552	<0.00760	<0.00568	<0.00497	<0.0115	0.1
Benzene ⁵ (mg/kg)		<0.00602	<0.00705	0.0146	<0.00453	0.0221	<0.00634	0.0303	<0.00414	<0.00958	0.03
Ethylbenzene ⁵ (mg/kg)		1.04	<0.141	22.3	<0.0906	45.4	<0.127	1.77	7.50	<0.192	6
Toluene ⁵ (mg/kg)		0.363	<0.141	10.4	<0.0906	5.01	<0.127	0.246	3.83	<0.192	7
Total Xylenes ⁵ (mg/kg)		14.2	<2.12	261	<1.39	289	<1.90	11.4	56.3	<0.383	9
1,2-Dichloroethane (EDC) ⁵ (mg/kg)		<0.100	<0.141	<0.112	<0.0906	<0.0920	<0.127	<0.0946	<0.0829	<2.87	NE
1,2-Dibromoethane (EDB) ⁶ (µg/kg)		<1.00	<1.18	<1.12	<1.04	<1.09	<1.06	<1.05	<1.01	<0.192	5
Hexane ⁵ (mg/kg)		0.115	<0.141	0.535	<0.0906	<0.0920	<0.127	0.510	0.197	<1.26	NE
C5-C6 Aliphatics (mg/kg)				1.6 (<74)		28 ('<55)					NE
C6-C8 Aliphatics (mg/kg)	1			130 (81)		200 (160)					NE
C8-C10 Aliphatics (mg/kg)] [630 (160)		490 (140)					NE
C10-C12 Aliphatics (mg/kg)	VPH ⁷			470 (320)		280 (190)					NE
C8-C10 Aromatics (mg/kg)	VPH			200 (480)		52 (270)					NE
C10-C12 Aromatics (mg/kg)] [180 (570)		31 (240)					NE
C12-C13 Aromatics (mg/kg)] [100 (180)		14 (64)					NE
Total VPH (mg/kg)	1			1,700 (1,800)		1,100 (1,100)					NE
C10-C12 Aliphatics (mg/kg)				160 (200)		55 (68)					NE
C12-C16 Aliphatics (mg/kg)	1			76 (100)		22 (31)					NE
C16-C21 Aliphatics (mg/kg)	1			13 (18)		<5.7					NE
C21-C34 Aliphatics (mg/kg)	1			7.2 (11)		<5.7					NE
C10-C12 Aromatics (mg/kg)	EPH ⁸			290 (350)		24 (26)					NE
C12-C16 Aromatics (mg/kg)] [80 (110)		13 (16)					NE
C16-C21 Aromatics (mg/kg)] [11 (16)		<5.7					NE
C21-C34 Aromatics (mg/kg)				7.4 (11)		<5.7					NE
Lead ⁹ (mg/kg)		3.03	6.63	12.80	4.99	1.80	<1.51	2.02	<1.57	6.47	250

Notes:

 $^1\!\text{Samples}$ analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

²Washington State Model Toxics Control Act (MTCA) Method A Unrestricted Land Use cleanup levels. Bold font indicates analyte concentrations in excess of respective cleanup levels.

³Gasoline-range petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx. GRPH cleanup levels are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

⁴Diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively) analyzed using Northwest Method NWTPH-Dx.

⁵Volatile organic compounds (VOCs) analyzed using Environmental Protection Agency (EPA) Method 8260C. Total Xylenes includes o-xylene and m,p-xylene.

⁶1,2-Dibromoethane (EDB) analyzed using EPA Method 8011.

⁷Volatile petroleum hydrocarbons (VPH) analyzed using Northwest Method NWTPH/VPH. Values in parentheses were analyzed out of hold-time.

⁸Extractable petroleum hydrocarbons (EPH) analyzed using Northwest Method NWTPH/EPH. Values in parentheses were analyzed out of hold-time.

⁹Total lead analyzed using EPA Method 6010C.

mg/kg = milligrams per kilogram; μg/kg = micrograms per kilogram; bgs = below ground surface; NE = Not Established; MTBE=methyl tertiary-butyl ether

http://projects/sites/0050408100/Final/Assessment Report/[L and L Exxon Assessment Report Tables.xlsx]Table 4

Summary of Chemical Analytical Results - PAHs in Soil Samples¹

Former L&L Exxon, 1315 Lee Boulevard

Richland, Washington

	Sample Number		B-1	B-2	B-3	B-4	B-5	B-6	MW-1	MW-2	MW-3	MTCA Method	
	Date Sampled		09/26/12	09/26/12	09/27/12	09/27/12	09/27/12	09/27/12	09/27/12	09/27/12	09/26/12	A Cleanup	
Sa	mple Depth (feet bgs)	TEF	15	5	5	5	16	15.5	15.5	15	6	Levels ²	
Carcinogenic PAHs ⁴	Benzo(a)anthrancene	0.1	<0.0102	<0.0123	<0.0114	<0.0104	<0.0110	<0.0105	<0.107	<0.0102	<0.0128	NE	
	Benzo(a)pyrene	1.0	<0.0102	<0.0123	<0.0114	<0.0104	<0.0110	<0.0105	<0.107	<0.0102	<0.0128	0.1	
	Benzo(b)fluoranthene	0.1	<0.0102	<0.0123	<0.0114	<0.0104	<0.0110	<0.0105	<0.107	<0.0102	<0.0128	NE	
	Benzo(k)fluoranthene	0.1	<0.0102	<0.0123	<0.0114	<0.0104	<0.0110	<0.0105	<0.107	<0.0102	<0.0128	NE	
	Chrysene	0.01	<0.0102	<0.0123	<0.0114	<0.0104	<0.0110	<0.0105	<0.107	<0.0102	<0.0128	NE	
	Dibenz(a,h)anthracene	0.1	<0.0061	<0.00737	<0.00686	<0.00625	<0.00659	<0.00629	<0.00645	<0.00612	<0.00755	NE	
	Indeno(1,2,3-cd)pyrene	0.1	<0.0102	<0.0123	<0.0114	<0.0104	<0.0110	<0.0105	<0.107	<0.0102	<0.0128	NE	
Carcinogenic PAH TEQ ²			0.0075	0.0090	0.0084	0.0076	0.0081	0.0077	0.0758	0.0075	0.0094	0.1	
Non-carcinogenic PAHs ⁴	Acenaphthene		<0.0102	<0.0123	<0.0114	<0.0104	0.0176	<0.0105	<0.0107	<0.0102	<0.0128	NE	
	Acenaphthylene		<0.0102	<0.0124	<0.0114	<0.0104	<0.0110	<0.0105	<0.0107	<0.0102	<0.0128	NE	
	Anthracene		0.0163	<0.0125	<0.0114	<0.0104	0.0147	<0.0105	0.0186	<0.0102	<0.0128	NE	
	Benzo(ghi)perylene		<0.0102	<0.0126	<0.0114	<0.0104	<0.0110	<0.0105	<0.0107	<0.0102	<0.0128	NE	
	Fluoranthene		0.0115	<0.0127	<0.0114	<0.0104	<0.0110	<0.0105	<0.0107	<0.0102	<0.0128	NE	
	Fluorene		0.0258	<0.0128	<0.0114	<0.0104	0.0220	<0.0105	<0.0107	0.0156	<0.0128	NE	
	1-Methylnaphthalene		1.94	<0.0129	<0.0114	<0.0104	2.01	<0.0105	4.60	1.48	<0.0128		
	2-Methylnaphthalene		3.50	<0.0130	<0.0114	0.0153	3.85	<0.0105	8.92	2.74	<0.0128	5 ⁵	
	Naphthalene		2.14	<0.0131	<0.0114	<0.0104	2.30	<0.0105	6.15	1.50	<0.0128		
	Phenanthrene		0.0420	<0.0132	<0.0114	<0.0104	0.0425	<0.0105	0.0501	0.0313	<0.0128	NE	
	Pyrene		0.0156	<0.0133	<0.0114	<0.0104	0.0117	<0.0105	0.0122	<0.0102	<0.0128	NE	

Notes:

¹Samples analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

²Toxic equivalency (TEQ) calculated using the toxic equivalency factor (TEF) found in WAC 173-340-900 Table 708-2. Soil and groundwater carcinogenic PAHs were not detected, half the

reporting limit was used to calculate the cPAH TEQ.

³Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup level (CUL).

⁴Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270C.

⁵Cleanup level for total naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene).

Bolding indicates the analyte was detected at concentrations greater than MTCA Method A CULs.

mg/kg = millgrams per kilogram; μ g/kg = micrograms per kilogram; NE = Not Established; ND = Not Detected.

Summary of Chemical Analytical Results - Groundwater¹

Former L&L Exxon, 1315 Lee Boulevard Richland, Washington

	N	Ionitoring Well a	and Date Sampl	ed
	MW-1	MW-2	MW-3	Duplicate-1
	10/19/12	10/19/12	10/19/12	10/19/12
Depth to Groundwater ³ (feet)	17.67	17.53	17.52	NA
Groundwater Elevation ⁴ (feet)	80.29	80.36	80.31	NA
Petroleum-range Hydrocarbons	•	•	•	
Gasoline-range petroleum hydrocarbons ⁵ (µg/L)	3,740	19,500	<90.0	5,080
Diesel-range petroleum hydrocarbons ⁷ (mg/L)	2.40	2.32	<0.149	2.44
Oil-range petroleum hydrocarbons ⁷ (mg/L)	<0.299	<0.305	<0.298	<0.298
Method EPA 8260C (μg/l)				
Methyl tert-butyl ether	<0.500	<0.500	<0.500	<0.500
Benzene	178	0.990	<0.200	261
Toluene	100	2,400	<0.500	98
Ethylbenzene	16.5	834	<0.500	184
m,p-Xylene	334	2,720	<0.500	433
o-Xylene	139	982	<0.500	180
1,2-Dichloroethane (EDC)	<0.500	<0.500	<0.500	<0.500
Hexane	4.53	6.66	<1.00	4.36
Method EPA 8011 (µg/I)	•	-	-	-
1,2-Dibromoethane (EDB)	<0.0100	<0.0100	<0.0100	<0.0100
Method EPA 6010C (mg/L)	•	-	-	-
Lead	<0.0150	<0.0150	<0.0150	<0.0150

Notes:

¹Samples analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

²Washington State Model Toxics Control Act Method A cleanup levels for groundwater.

³Groundwater elevation measured from the top of the PVC well casing using an eltronic water level indicator.

⁴Groundwater elevations measured relative to a site specific datum set at an elevation of 100 feet.

⁵Gasoline-range petroleum hydrocarbons analyzed using Northwest Method NWTPH-Gx.

 6 Washington State Model Toxics Control Act (MTCA) Method A cleanup level for gasoline-range petroleum hydrocarbons is 1,000 μ g/l, if benzene is not detected; otherwise the cleanup level is 800 μ g/l.

⁵Diesel- and oil-range petroleum hydrocarbons analyzed using Northwest Method NWTPH-Dx.

⁸Cleanup level for total xylenes.

NE = not established; $\mu g/l$ = micrograms per liter; mg/l = milligrams per liter

Summary of Chemical Analytical Results - PAHs in Groundwater Samples¹

Former L&L Exxon, 1315 Lee Boulevard

Richland, Washington

				Groundwat	er Sample ID		Groundwater MTCA
		TEF ²	MW-1	MW-2	MW-3	Duplicate-1	Method A CUL
Carcinogenic PAHs ⁴ (µg/L)	Benzo(a)anthrancene	0.1	<0.095	<0.019	<0.0095	<0.095	NE
	Benzo(a)pyrene	1.0	<0.190	<0.038	< 0.019	<0.190	0.1
	Benzo(b)fluoranthene	0.1	<0.095	<0.019	<0.0095	<0.095	NE
	Benzo(k)fluoranthene	0.1	<0.095	<0.019	<0.0095	<0.095	NE
	Chrysene	0.01	<0.095	<0.019	<0.0095	<0.095	NE
	Dibenz(a,h)anthracene	0.1	<0.095	<0.019	<0.0095	<0.095	NE
	Indeno(1,2,3-cd)pyrene	0.1	<0.095	<0.019	<0.0095	<0.095	NE
Carcinogenic PAH TEQ ²		-	0.1192	0.0238	0.0119	0.1192	0.1
Non-carcinogenic PAHs ⁴	Acenaphthene	-	0.19	0.11	<0.0095	0.18	NE
(µg/L)	Acenaphthylene	-	<0.095	0.048	<0.0095	<0.095	NE
	Anthracene	-	<0.095	0.021	<0.0095	<0.095	NE
	Benzo(ghi)perylene	-	<0.095	<0.019	<0.0095	<0.095	NE
	Fluoranthene	-	<0.095	<0.019	<0.0095	<0.095	NE
	Fluorene	-	0.20	0.062	<0.0095	0.18	NE
	1-Methylnaphthalene	-	30	37	<0.0095	31	
	2-Methylnaphthalene		38	49	<0.012	41	160 ⁵
	Naphthalene		110	170	0.16	120	
	Phenanthrene		0.13	0.087	<0.0095	0.14	NE
	Pyrene		<0.095	<0.019	<0.0095	<0.095	NE

Notes:

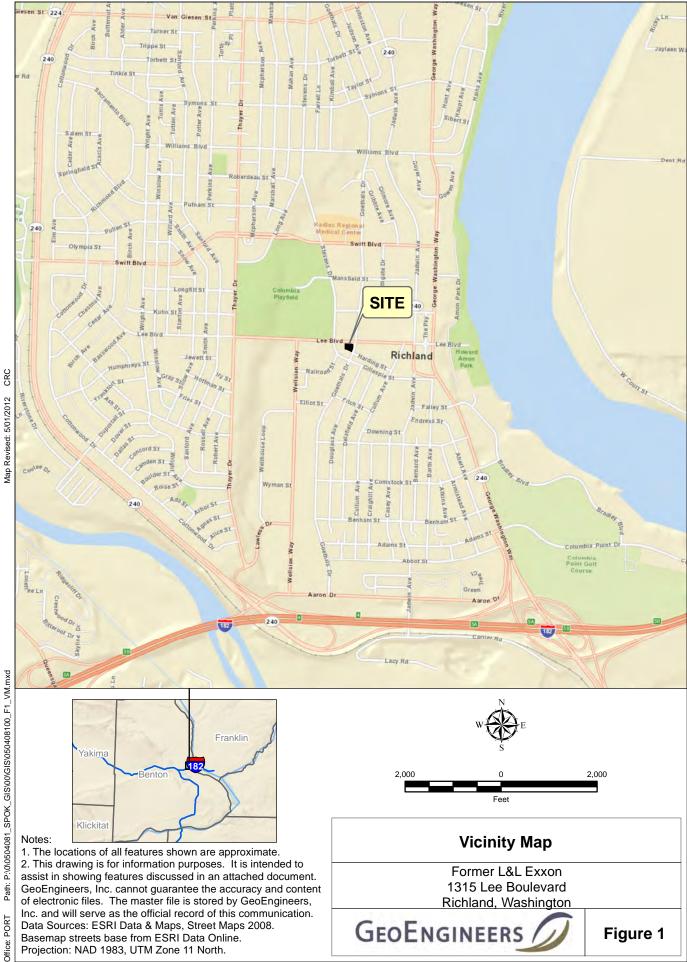
¹Samples analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

²Toxic equivalency (TEQ) calculated using the toxic equivalency factor (TEF) found in WAC 173-340-900 Table 708-2. Groundwater carcinogenic

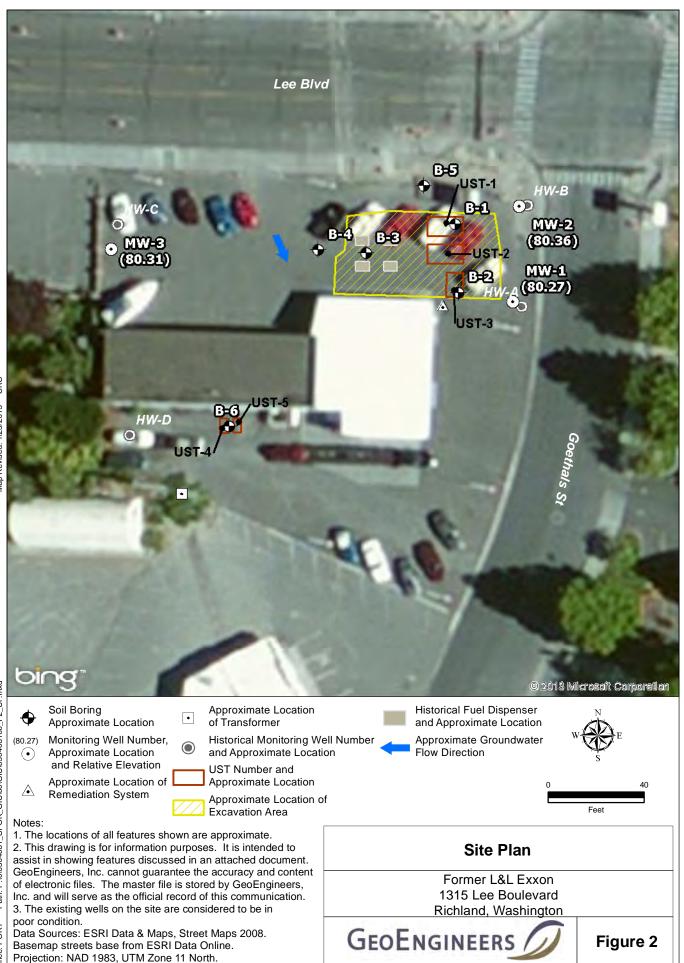
PAHs were not detected, half the reporting limit was used to calculate the cPAH TEQ.

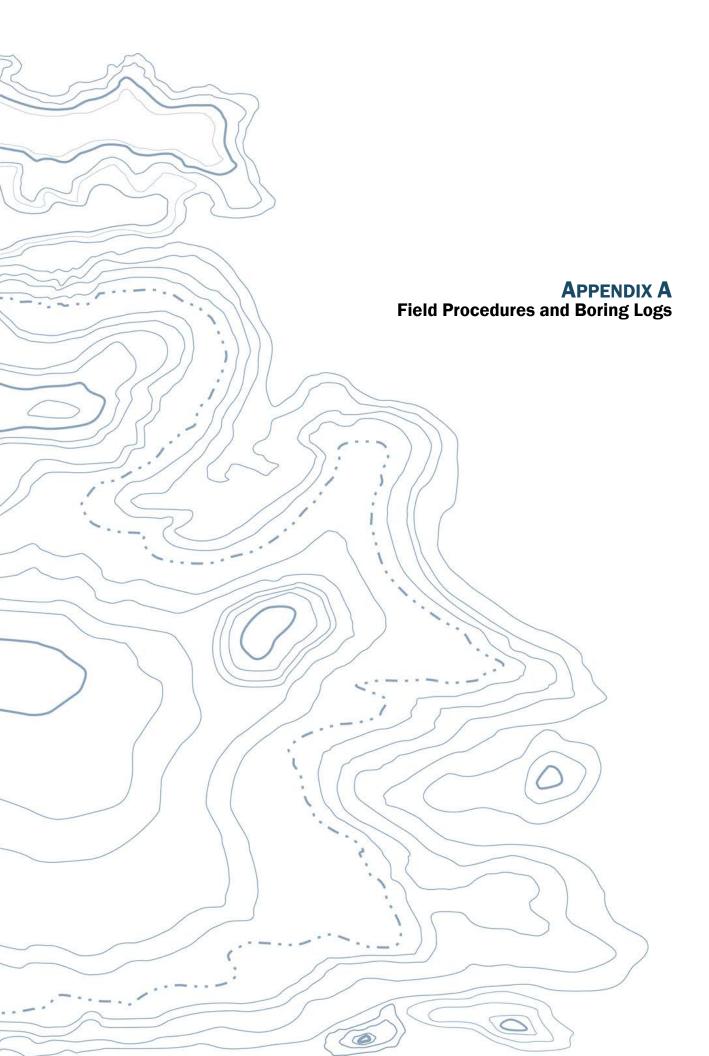
³Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup level (CUL).

⁴Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270C.


⁵Cleanup level for total naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene).

Bolding indicates the analyte was detected at concentrations greater than MTCA Method A CULs.


mg/kg = millgrams per kilogram; $\mu g/kg = micrograms$ per kilogram; NE = Not Established; ND = Not Detected.



P:\0\0504081_SPOK_GIS\00\GIS\050408100_F1_VM.mxd Path: |

APPENDIX A FIELD PROCEDURES AND BORING LOGS

General

Subsurface conditions at the L&L Exxon site were explored on September 26 and 27, 2012 by advancing nine borings (borings B-1 through B-6 and MW-1 through MW-3) at the approximate locations shown on Figure 2. The borings were advanced between 15 and 23 feet below existing site grade using an air rotary drill rig. Borings B-1 through B-6 were abandoned after reaching the full extent of each boring; borings were abandoned by placing bentonite chips in the boring. Borings MW-1 through MW-3 were completed as groundwater monitoring wells, as described in this appendix.

Field methods generally were performed in compliance with the project Sampling and Analysis Plan (SAP) dated May 16, 2012 (GeoEngineers, 2012B).

Soil Sample Collection

Where practicable, Environmental Protection Agency (EPA) 5035 sampling methods were used to collect the soil samples for gasoline-range petroleum hydrocarbon (GRPH), volatile organic compound (VOC) and fractionalized petroleum hydrocarbon analyses. For analysis of other parameters, soil was placed in laboratory-supplied sample bottles and filled to minimize headspace. Soil samples were stored in a chilled cooler until delivery to the analytical laboratory.

The air rotary drilling operations were monitored by staff from our firm who examined and classified the soil encountered, obtained soil samples, and maintained a continuous log of exploration. Soil encountered in the borings was classified in general accordance with ASTM International (ASTM) D 2488 and the classification chart listed in Key to Exploration Logs, Figure A-1. Logs of the borings are presented in Figures A-2 through A-10. The logs are based on interpretation of the field data and indicate the depth at which subsurface materials or their characteristics change, although these changes might actually be gradual.

Field Screening of Soil Samples

GeoEngineers' field representative performed field-screening tests on soil samples obtained from the borings. Field screening results were used as a general guideline to assess areas of possible petroleum-related contamination. The field screening methods used include: (1) visual screening; (2) water-sheen screening; and (3) headspace-vapor screening using a MiniRAE Photo Ionization Detector (PID) calibrated to isobutylene on the day of testing.

Visual screening consisted of observing soil for stains indicative of metal- or petroleum-related contamination. Water-sheen screening involved placing soil in a pan of water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheens observed are classified as follows:

No Sheen (NS)	No visible sheen on the water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
Moderate Sheen (MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. Headspace vapor screening targeted volatile petroleum hydrocarbon compounds. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 parts per million (ppm), with a resolution of +/-2 ppm.

Field screening results can be site specific. The effectiveness of field screening can vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of contaminants.

Monitoring Well Construction and Development

Monitoring wells MW-1 through MW-3 were constructed using approximate 2-inch-diameter Schedule 40 PVC pipe and well screen material with a 0.010-inch slot size. Processed 10-20 Colorado silica sand was used as filter pack. Bentonite chips were used as impermeable backfill. At the ground surface, the wells were protected by steel flush-mount monuments. Well construction details for monitoring wells MW-1 through MW-3 are presented graphically in Figures A-8 through A-10, respectively.

After installation, monitoring wells were developed by a combination of pumping and surging until purge water was relatively clear and free of suspended sediment.

Groundwater Elevations

Depths to groundwater were measured relative to the monitoring well casing rim using an electric water level indicator. The probe of the water level indicator was decontaminated between wells using a detergent wash, followed by two distilled water rinses.

Low-Flow Sampling Procedures

Groundwater sampling was performed consistent with the EPA's low-flow groundwater sampling procedure, as described by EPA (1996) and Puls and Barcelona (1996). Monitoring well purging and sampling activities were accomplished using a peristaltic pump with disposable tubing. During purging activities, water quality parameters, including pH, conductivity, temperature, turbidity, oxidation-reduction potential and dissolved oxygen, were measured using an In-Situ Troll 9500 multi-parameter meter equipped with a flow-through cell; measurements were recorded approximately every three minutes. The meter calibration was verified at the beginning of each work day consistent with manufacturer recommendations prior to purging and sampling activities.

Groundwater samples were collected after (1) water quality parameters had stabilized; or (2) a maximum purge time of 60 minutes was achieved. During purging and sampling, purge rate was not allowed to exceed 500 milliliters per minute. Water quality parameter stabilization criteria include the following:

- Turbidity: ±10 percent or ±10 nephelometric turbidity units (NTU);
- Dissolved oxygen: ±10 percent;
- Conductivity: ±3 percent;
- pH: ±0.1 unit;
- Temperature: ±3 percent; and
- Oxidation reduction potential: ±10 percent or ±10 millivolts (mV).

After groundwater quality stabilization criteria were reached, the pump's discharge tubing was disconnected from the flow-through cell and groundwater samples were collected for analysis.

Each sample was pumped directly into sample containers supplied by the laboratory. Groundwater samples collected for chemical analysis were kept cool during on-site storage and transport to the laboratory. Chain-of-custody procedures were observed during transport of the groundwater samples.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	СС	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

Groundwater Contact

- Measured groundwater level in exploration, well, or piezometer Groundwater observed at time of exploration
- Perched water observed at time of exploration
- Measured free product in well or piezometer

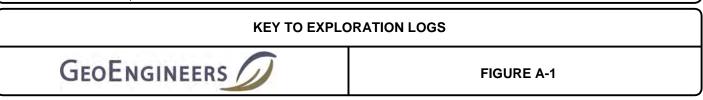
Graphic Log Contact

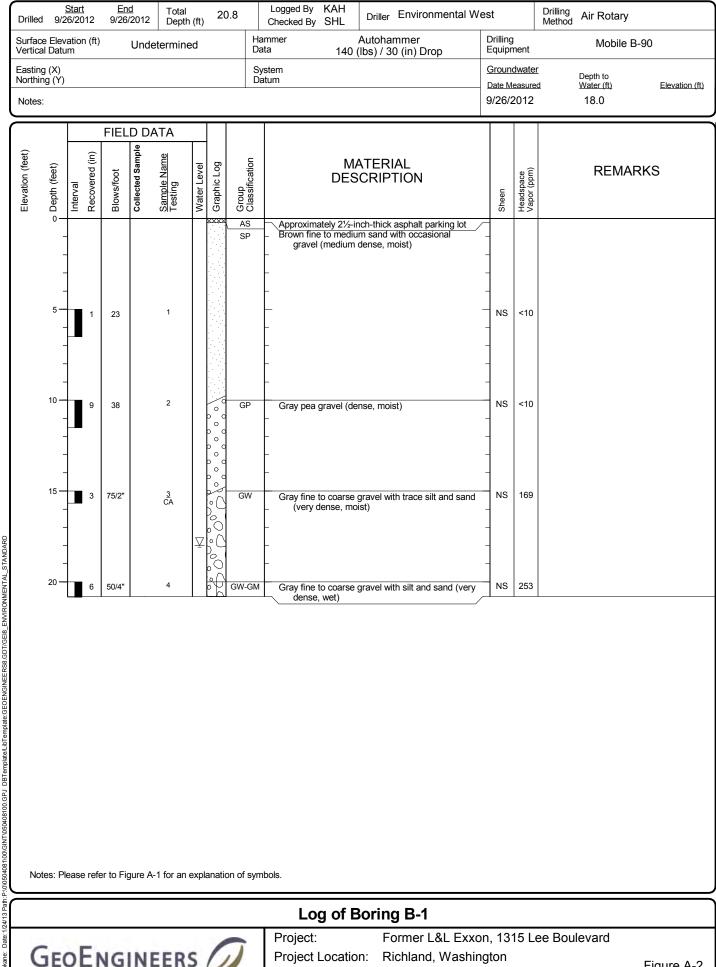
Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Material Description Contact

Distinct contact between soil strata or geologic units Approximate location of soil strata


change within a geologic soil unit

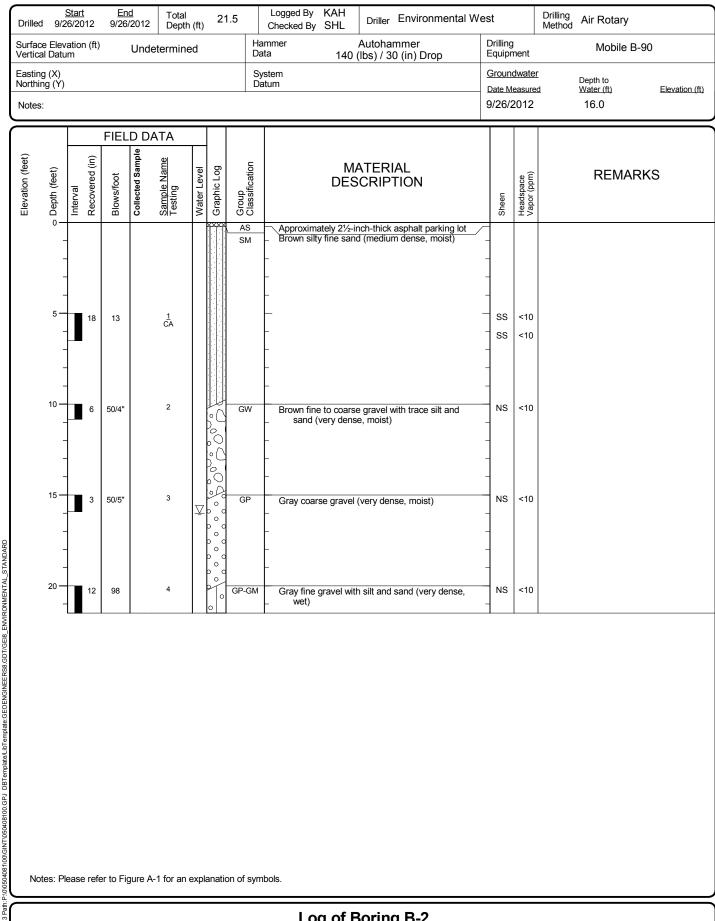

Laboratory / Field Tests

%F	Percent fines
AL	Atterberg limits
CA	Chemical analysis
СР	Laboratory compaction test
CS	Consolidation test
DS	Direct shear
HA	Hydrometer analysis
MC	Moisture content
MD	Moisture content and dry density
OC	Organic content
PM	Permeability or hydraulic conductivity
PP	Pocket penetrometer
PPM	Parts per million
SA	Sieve analysis
тх	Triaxial compression
UC	Unconfined compression
VS	Vane shear
	Sheen Classification
NS	No Visible Sheen
SS	Slight Sheen

- **Moderate Sheen**
- **Heavy Sheen**
- Not Tested

ons for a proper understanding of subsurface the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Project Number:


Richland, Washington

0504-081-00

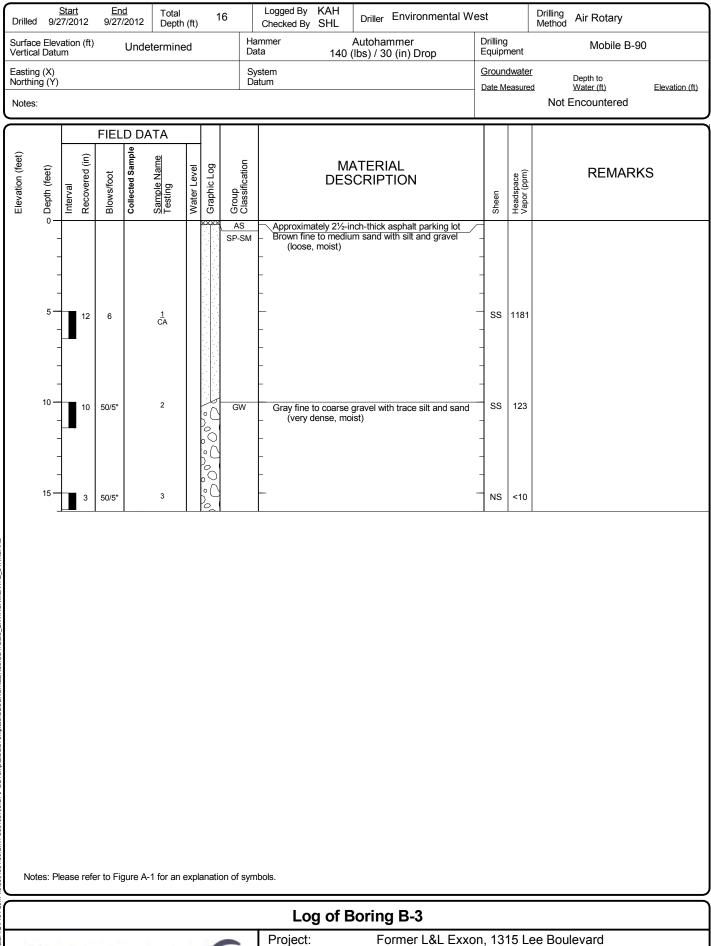
1/24/13 Pat

GEOENGINEERS

Figure A-2 Sheet 1 of 1

GEOENGINEERS

1/24/13 Pat


kane: Date:

Log of Boring B-2

Project:

Former L&L Exxon, 1315 Lee Boulevard Project Location: Richland, Washington Project Number: 0504-081-00

Figure A-3 Sheet 1 of 1

GEOENGINEERS

Project:

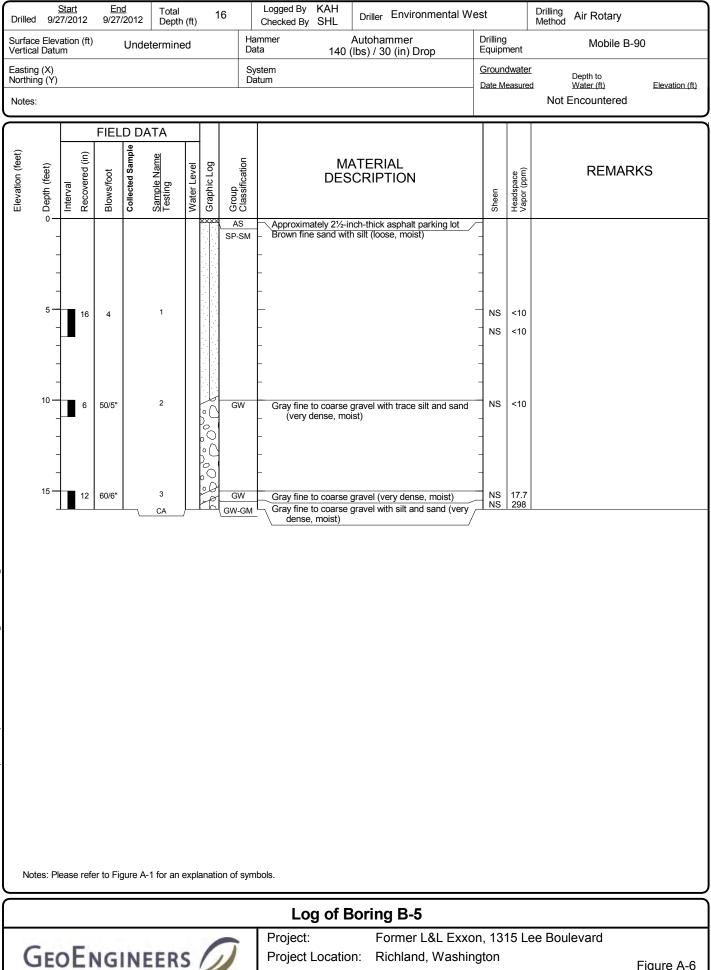

Project Location: Richland, Washington Project Number: 0504-081-00

Figure A-4 Sheet 1 of 1

<form></form>	Drilled	9/2	<u>Start</u> 7/20	12	<u>En</u> 9/27/	<u>d</u> 2012	Total Depth	(ft)	15	5.5	Logged By KAH Checked By SHL Driller Environmental We	st		Drilling Method Air Rotary
Note: No	Surface Vertica	e Elev al Datu	ation m	ı (ft)		Und	etermine	ed			ammer Autohammer ata 140 (lbs) / 30 (in) Drop	Drilling Equipr	l nent	Mobile B-90
Wight Image: Sector	Northir	ng (Y)								S) Da	iystem Vatum			Depth to <u>Water (ft)</u> <u>Elevation (ft)</u>
0 0 <th></th> <th></th> <th></th> <th></th> <th>FIEL</th> <th></th> <th>ATA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					FIEL		ATA							
Image: state	Elevation (feet)		Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log			Sheen	Headspace Vapor (ppm)	REMARKS
		-		6	91		1 CA				Approximately 2½-inch-thick asphalt parking lot Gray fine to coarse gravel with silt and sand (very dense, moist)	- - - - NS -	<10	
		- - 10		12	50/5"		2				- - - - -	- - NS -	<10	
Notes: Please refer to Figure A-1 for an explanation of symbols.														
Log of Boring B-4	Not	Notes: Please refer to Figure A-1 for an explanation of symbols.												

Project: Former L&L Exxon, 1315 Lee Boulevard Project Location: Richland, Washington Figure A-5 Sheet 1 of 1 Project Number: 0504-081-00

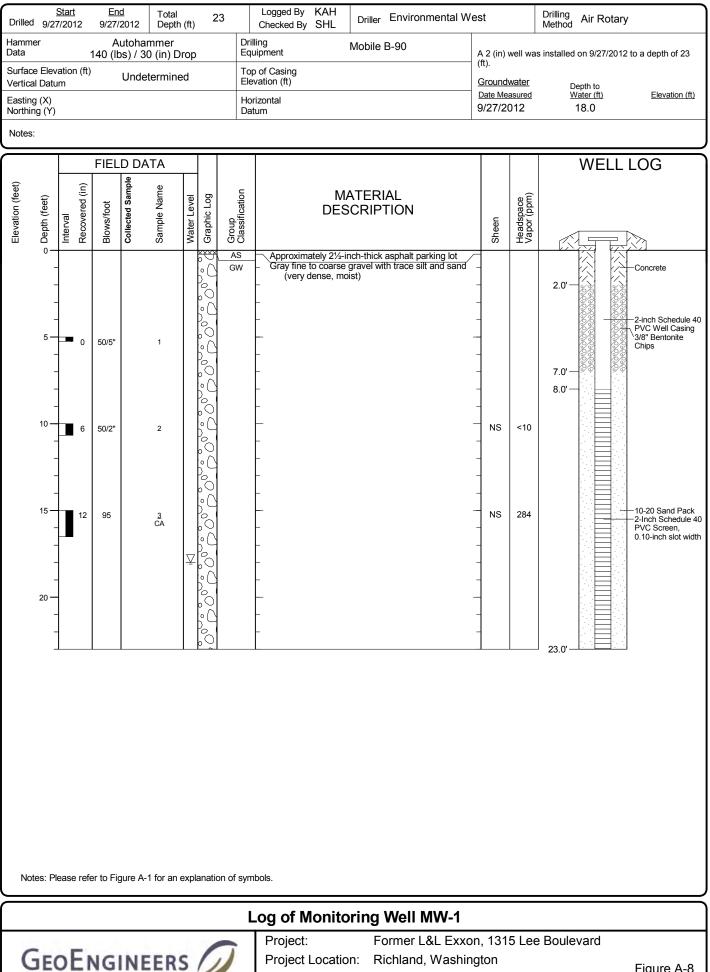
Project Number:

Richland, Washington

0504-081-00

B:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD DBTemplate/ 050408100.GPJ 50408 1/24/13 Pat kane: Date:

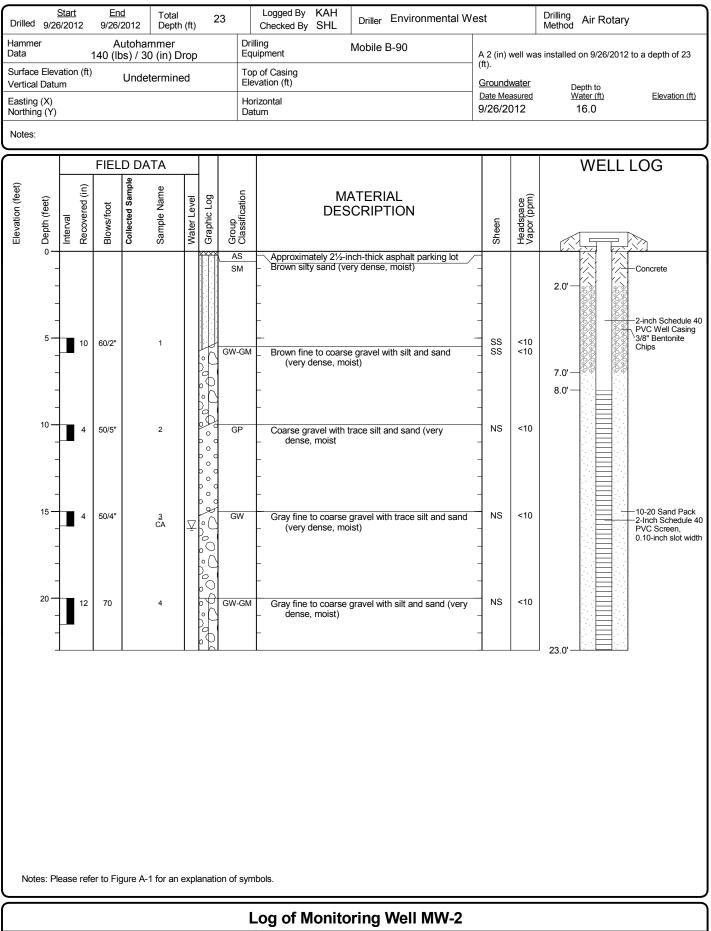
Figure A-6 Sheet 1 of 1


Drilled 9/2	<u>Start</u> 27/20 ⁻		<u>Ene</u> 9/27/		Total Depth	(ft)	1		Logged By KAH Checked By SHL Driller Environmental We			Drilling Method Air Rotary
Surface Elev /ertical Datu	/ation um	(ft)		Und	etermine	ed			ammer Autohammer ata 140 (lbs) / 30 (in) Drop	Drilling Equipr	nent	Mobile B-90
Easting (X) Northing (Y) Notes:								S <u>i</u> Di	/stem atum	Ground Date M	dwater easured	Depth to <u>Water (ft)</u> <u>Elevation (ft</u> Not Encountered
Elevation (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	B Group Classification	Approximately 21/2-inch-thick asphalt parking lot	Sheen	Headspace Vapor (ppm)	REMARKS
5		4	50/3"		1		000000000000000000000000000000000000	GW-GM	 Brown fine to coarse gravel with silt and sand (very dense, moist) - -<	- - - NS -	<10	
 		5	50/5"		2			GW	Gray fine to coarse gravel with trace sand and silt (very dense, moist)	- NS 	<10	
15 —		10	50/5"		<u>3</u> CA		0,000	GW	Gray fine to coarse gravel with trace silt and sand (very dense, moist)	- NS	<10	
Notes: P	lease	refe	r to Fig	jure A	-1 for an	expla	anatic	on of syn				
									Log of Boring B-6			

Project Number:

Richland, Washington 0504-081-00

Figure A-7 Sheet 1 of 1


Project Number:

Richland, Washington

0504-081-00

::GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_WEL DBTemplate/ 050408100.GPJ 50408 1/24/13 Pat Date:

> Figure A-8 Sheet 1 of 1

GEOENGINEERS

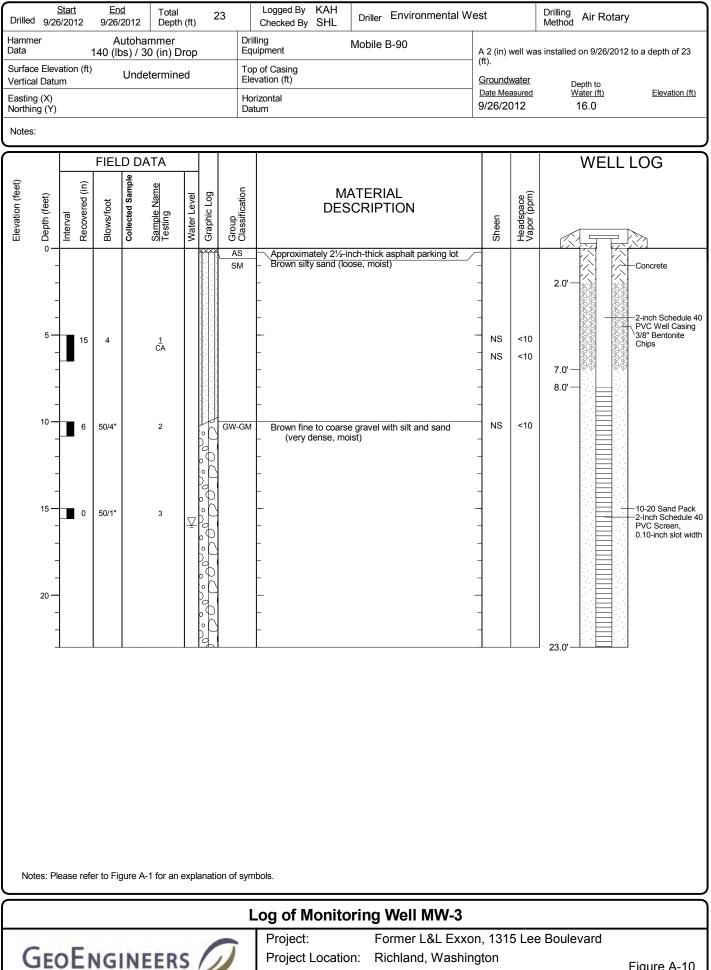
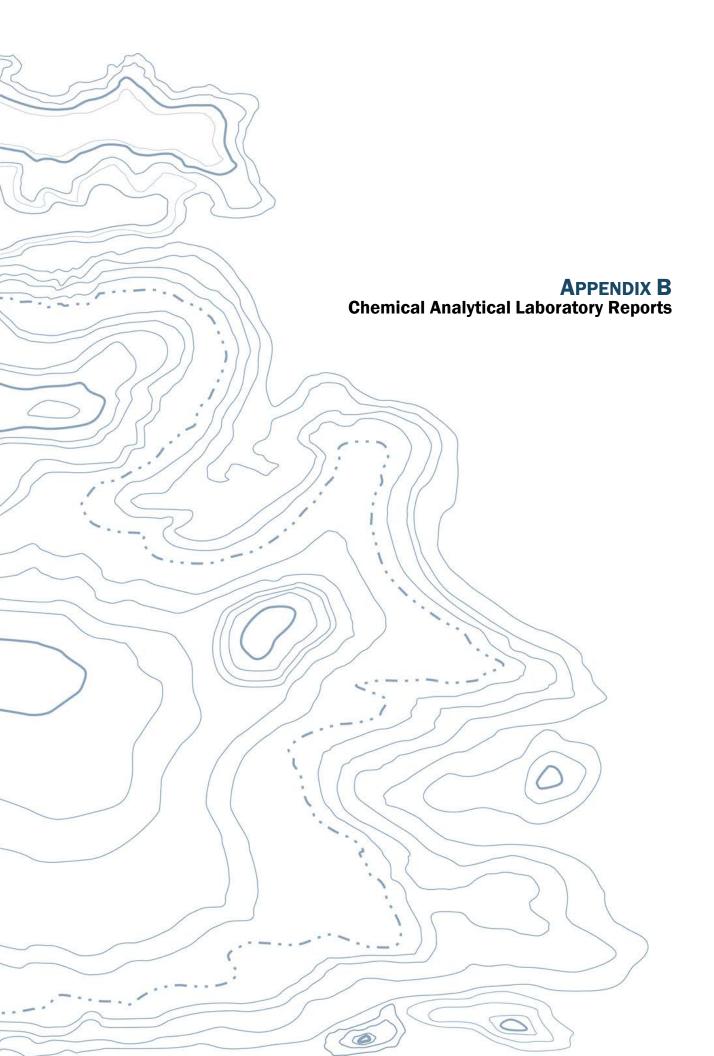

Project Number:

Figure A-9 Sheet 1 of 1

Former L&L Exxon, 1315 Lee Boulevard

Richland, Washington

0504-081-00



Project Number:

0504-081-00

ne: Date:124/13 Path:P:\0/0504081000GINT/050408100.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_WEL

Figure A-10 Sheet 1 of 1

APPENDIX B CHEMICAL ANALYTICAL LABORATORY REPORTS

Samples

Chain-of-custody procedures were followed during the transport of the field samples to TestAmerica Laboratories, Inc. located in Spokane Valley, Washington. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix.

Analytical Data Review

The laboratory maintains an internal quality assurance/quality control (QA/QC) program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike (MS) recoveries, matrix spike duplicate (MSD) recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted the following exceptions in their laboratory report associated with project soil samples, dated January 2, 2013.

- EPH: the results exceeded the calibration range. The samples were re-extracted out of hold-time and re-analyzed. Both the data exceeding the calibration range and the data extracted out of hold-time were reported by the laboratory. The original data exceeding the calibration range was used to conduct the Method B calculations.
- VPH: the samples were initially run within the holding time but had to be re-analyzed outside of the holding time due to needed dilutions. Both the initial sample results and the sample results obtained outside of holding times were reported by the laboratory.

The laboratory did not note any exceptions in their laboratory report associated with project groundwater samples, dated November 6, 2012.

Analytical Data Review Summary

We reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of data quality goals. Based on our review, in our opinion, the quality of the analytical data is acceptable for the intended use.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SVJ0004

Client Project/Site: 0504-081-00 Client Project Description: L&L Exxon

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Scott Lathem

tandi

Authorized for release by: 1/2/2013 10:36:12 AM

Randee Decker Project Manager Randee.Decker@testamericainc.com

Review your project results through TOTOLACCESS Have a Question?

LINKS

PAsk-The Expert

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	21
Chronicle	34
Certification Summary	39
Method Summary	40
Chain of Custody	41

Job ID: SVJ0004

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 10/2/2012 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.1° C.

Except:

It is noted on the Chain-of-Custody (COC) that no MeOH containers were provided for sample SVJ0004-14 (580-35243-2). The sample has been logged in for VPH with the _M extraction method per client request.

The container labels for the following samples SVJ0004-07 (580-35243-1), SVJ0004-14 (580-35243-2) did not match the information listed on the Chain-of-Custody (COC). The container labels list a date of 9/26/12. The Chain-of-Custody (COC) lists a date of 9/27/12. The samples were logged in per the Chain-of-Custody (COC).

Additional labels (Spokane labels) were added to the pre-tared methanol VOA containers for this sample. The sample has been logged in for analysis.

GC/MS VOA - Method NWTPH/VPH

Due to the high concentration of C6-C8 Aliphatics, C8-C10 Aliphatics, C10-C12 Aliphatics, and C10-C12 Aromatics, the matrix spike / matrix spike duplicate (MS/MSD) for analysis batch 122447 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Surrogate recovery for the following samples (580-35243-1MS), (580-35243-1MSD), SVJ0004-07 (580-35243-1), SVJ0004-14 (580-35243-2) was outside control limits. Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

The following sample SVJ0004-14 (580-35243-2) was prepared outside of preparation holding time because it was not recieved by the lab until 10/2/2012. Sampling date was 9/27/2012.

The following samples (580-35243-1MS), (580-35243-1MSD), SVJ0004-07 (580-35243-1), SVJ0004-14 (580-35243-2) required a dilution which was performed outside of the analytical holding time.

Reanalysis of the following samples (580-35243-1MS), (580-35243-1MSD), SVJ0004-07 (580-35243-1), SVJ0004-14 (580-35243-2) was performed outside of the analytical holding time. Per client request, the out of hold data will be reported as primary.

Internal standard responses were outside of acceptance limits for the following samples (580-35243-1MS), (580-35243-1MSD), SVJ0004-14 (580-35243-2). The samples show evidence of matrix interference.

No other analytical or quality issues were noted.

GC Semi VOA - Method NWTPH/EPH

In analysis batch 122487, the laboratory control sample (LCS) and the laboratory control sample duplicate (LCSD) for preparation batch 122001 exceeded control limits for the following analytes: C8-C10, C10-C12, 12-16 Aliphatics, C10-C12 and C16-C21 Aromatics.

In addition, the RPD for C8-C10 and C10-12 Aliphatics did not meet acceptance criteria, most likely due to human error at the bench/spiking event level.

All affected samples from this preparation batch have been re-extracted out of hold, with both sets of data reported, per client request.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Job ID: SVJ0004 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Organic Prep - Method 3550B

Reanalysis of the following samples SVJ0004-07 (580-35243-1), SVJ0004-14 (580-35243-2) was performed outside of the analytical holding time. The samples were re-extracted out of hold due to failing QC samples.

No other analytical or quality issues were noted.

Matrix

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Client: Geo Engineers - Spokane Project/Site: 0504-081-00

Client Sample ID

B-1(15)

B-2(5)

B-3(5)

B-4(5)

B-5(16)

B-6(15.5)

MW-1(15.5)

MW-2(15)

MW-3(6)

Lab Sample ID

SVJ0004-02

SVJ0004-04

SVJ0004-07

SVJ0004-10

SVJ0004-14

SVJ0004-17

SVJ0004-19

SVJ0004-21

SVJ0004-22

TestAmerica Job ID: SVJ0004

Received

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

09/28/12 16:30

Collected

09/26/12 11:24

09/26/12 12:38

09/27/12 10:42

09/27/12 12:03

09/27/12 13:52

09/27/12 15:36

09/27/12 09:24

09/26/12 15:11

09/26/12 17:10

4
5
8
9

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description	
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	
Semivolatil	es	
Qualifier	Qualifier Description	
M4	The sample required a dilution due to matrix interference. Because of this dilution, the matrix spike concentrations in the sample were	
	reduced to a level where the recovery calculation does not provide useful information. See Blank Spike (LCS).	
R1	The RPD between the primary and confirmatory analysis exceeded 40%. Per method 8000B, the higher value was reported.	
GC VOA		8
Qualifier	Qualifier Description	
x	Surrogate is outside control limits	(
E	Result exceeded calibration range.	
н	Sample was prepped or analyzed beyond the specified holding time	
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not	
	applicable.	
E	MS or MSD exceeds the control limits	

GC Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
*	RPD of the LCS and LCSD exceeds the control limits
Н	Sample was prepped or analyzed beyond the specified holding time

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: B-1(15)

Date Collected: 09/26/12 11:24 Date Received: 09/28/12 16:30

p-Terphenyl-d14

Lab Sample	ID:	SVJ0004-02
		Matrix: Soil

Percent Solids: 97.1

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	573		5.02		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
Methyl tert-butyl ether	ND		0.00602		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
Benzene	ND		0.00502		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
Ethylbenzene	1.04		0.100		mg/kg dry	¢.	10/01/12 13:13	10/01/12 18:49	1.00
Toluene	0.363		0.100		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
o-Xylene	4.80		0.201		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
m,p-Xylene	9.44		0.401		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg dry	₽	10/01/12 13:13	10/01/12 18:49	1.00
Xylenes (total)	14.2		1.50		mg/kg dry	₽	10/01/12 13:13	10/01/12 18:49	1.00
Hexane	0.115		0.100		mg/kg dry	¢	10/01/12 13:13	10/01/12 18:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		42.4 - 163				10/01/12 13:13	10/01/12 18:49	1.00
Toluene-d8	113		45.8 - 155				10/01/12 13:13	10/01/12 18:49	1.00
4-bromofluorobenzene	156		41.5 - 162				10/01/12 13:13	10/01/12 18:49	1.00
Method: EPA 8011 - EDB by EP	A Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.2-Dibromoethane	ND		1.00		ug/kg dry	— <u> </u>	10/02/12 10:05	10/02/12 18:11	1.00

Method: EPA 8270C - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

99.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	2.14		0.203		mg/kg dry	\	10/01/12 12:47	10/02/12 12:15	20.0
2-Methylnaphthalene	3.50		0.203		mg/kg dry	₽	10/01/12 12:47	10/02/12 12:15	20.0
1-Methylnapthalene	1.94		0.203		mg/kg dry	¢	10/01/12 12:47	10/02/12 12:15	20.0
Acenaphthylene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Acenaphthene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Fluorene	0.0258		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Phenanthrene	0.0420		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Anthracene	0.0163		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Fluoranthene	0.0115		0.0102		mg/kg dry	₽	10/01/12 12:47	10/02/12 17:52	1.00
Pyrene	0.0156		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Benzo (a) anthracene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Chrysene	ND		0.0102		mg/kg dry	₽	10/01/12 12:47	10/02/12 17:52	1.00
Benzo (b) fluoranthene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Benzo (k) fluoranthene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Benzo (a) pyrene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Dibenzo (a,h) anthracene	ND		0.00610		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Benzo (ghi) perylene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 17:52	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	79.4		54 - 129				10/01/12 12:47	10/02/12 17:52	1.00
2-FBP	86.6		64.2 - 121				10/01/12 12:47	10/02/12 17:52	1.00

Method: NWTPH-Dx - Semivolatile	Petroleum P	roducts by I	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	66.5		15.2		mg/kg dry	\ ↓	10/04/12 08:09	10/05/12 12:48	1.00
Heavy Oil Range Hydrocarbons	ND		38.0		mg/kg dry	¢	10/04/12 08:09	10/05/12 12:48	1.00

27.5 - 140

TestAmerica Spokane

10/01/12 12:47 10/02/12 17:52

1.00

Client Sample ID: B-1(15)							Lab Sam	ple ID: SVJ0	004-02
Date Collected: 09/26/12 11:24								-	rix: Soi
Date Received: 09/28/12 16:30								Percent Soli	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP			50 _ 150				10/04/12 08:09	10/05/12 12:48	1.00
n-Triacontane-d62	124		50 - 150				10/04/12 08:09	10/05/12 12:48	1.00
Nethod: EDA CO10C Metals Con		040/7000 6	erice Methode I	Duan hu I					
Method: EPA 6010C - Metals Cor Analyte	-	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lead	3.03		1.56		mg/kg dry	- -	10/05/12 06:18	10/08/12 16:23	1.00
-									
Client Sample ID: B-2(5)							Lab Sam	ple ID: SVJ0	
Date Collected: 09/26/12 12:38									rix: Soi
Date Received: 09/28/12 16:30								Percent Soli	ds: 80.2
- Method: EPA 8260C - NWTPH-G>	x and Volatile (Drganic Co	mpounds by EP	A Metho	d 8260C				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		7.05		mg/kg dry	\ ₽	10/01/12 13:13	10/01/12 19:13	1.00
Methyl tert-butyl ether	ND		0.00846		mg/kg dry	¢	10/01/12 13:13	10/01/12 19:13	1.0
Benzene	ND		0.00705		mg/kg dry	¢	10/01/12 13:13	10/01/12 19:13	1.0
Ethylbenzene	ND		0.141		mg/kg dry	¢.	10/01/12 13:13	10/01/12 19:13	1.0
Toluene	ND		0.141		mg/kg dry	¢	10/01/12 13:13	10/01/12 19:13	1.0
o-Xylene	ND		0.282		mg/kg dry	₽	10/01/12 13:13	10/01/12 19:13	1.0
m,p-Xylene	ND		0.564		mg/kg dry	с	10/01/12 13:13	10/01/12 19:13	1.0
1,2-Dichloroethane (EDC)	ND		0.141		mg/kg dry	¢	10/01/12 13:13	10/01/12 19:13	1.0
			2.12			¢			
Xylenes (total) Hexane	ND ND		0.141		mg/kg dry mg/kg dry	 ¢	10/01/12 13:13 10/01/12 13:13	10/01/12 19:13 10/01/12 19:13	1.0 1.0
			0					10/01/12 10/10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	103		42.4 - 163				10/01/12 13:13	10/01/12 19:13	1.0
Toluene-d8	111		45.8 - 155				10/01/12 13:13	10/01/12 19:13	1.0
4-bromofluorobenzene	108		41.5 - 162				10/01/12 13:13	10/01/12 19:13	1.0
- Method: EPA 8011 - EDB by EPA	A Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND				ualla dai	— —	10/02/12 10:05	10/02/12 18:23	1.00
=	ND		1.18		ug/kg dry	245	10/02/12 10:00	10/02/12 10.25	
							10/02/12 10:00	10/02/12 10:23	
	ar Aromatic Co		by GC/MS with S		Ion Monito	ring			Dil Fa
Analyte	ar Aromatic Co Result	mpounds I Qualifier	by GC/MS with S		Ion Monitor Unit	ring D	Prepared	Analyzed	
Analyte Naphthalene	ar Aromatic Co Result ND		by GC/MS with S 		Ion Monitor Unit mg/kg dry	ring — D — x	Prepared 10/01/12 12:47	Analyzed	1.0
Analyte Naphthalene 2-Methylnaphthalene	ar Aromatic Co Result ND ND		by GC/MS with S - RL - 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry	ring — D #	Prepared 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40	1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene	ar Aromatic Co Result ND ND ND		by GC/MS with S 		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry	ring — D ¤	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene	ar Aromatic Co Result ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring — D ¤ ¤	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene	ar Aromatic Co Result ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene	ar Aromatic Co Result ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D a a a a a a a a a a a a a	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	ar Aromatic Co Result ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene	Ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry	ring D X X X X X X X X X X X X X X X X X X	Prepared 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40 10/02/12 12:40	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: EPA 8270C - Polynuclea Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene	Ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND		by GC/MS with S RL 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123		Ion Monitor Unit mg/kg dry mg/kg dry		Prepared 10/01/12 12:47 10/01/12 12:47	Analyzed 10/02/12 12:40 10/02/12 12:40	Dil Fac 1.00 1.0

Client Sample ID: B-2(5) Date Collected: 09/26/12 12:38 Date Received: 09/28/12 16:30

Lab Sample ID: S	VJ0004-04
	Matrix: Soil

Percent Solids: 80.2

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzo (a,h) anthracene	ND		0.00737		mg/kg dry	¢	10/01/12 12:47	10/02/12 12:40	1.00
Benzo (ghi) perylene	ND		0.0123		mg/kg dry	¢	10/01/12 12:47	10/02/12 12:40	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	70.0		54 _ 129				10/01/12 12:47	10/02/12 12:40	1.00
2-FBP	70.8		64.2 - 121				10/01/12 12:47	10/02/12 12:40	1.00
p-Terphenyl-d14	95.4	roducts by	27.5 - 140				10/01/12 12:47	10/02/12 12:40	1.00
p-Terphenyl-d14 Method: NWTPH-Dx - Semivola Analyte	atile Petroleum P	roducts by Qualifier	/ NWTPH-Dx RL	MDL	Unit	D	Prepared	Analyzed	1.00 Dil Fac
Method: NWTPH-Dx - Semivola	atile Petroleum P	-	/ NWTPH-Dx	MDL	Unit mg/kg dry	— D			
Method: NWTPH-Dx - Semivola Analyte	atile Petroleum P	-	/ NWTPH-Dx RL	MDL			Prepared	Analyzed	Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	atile Petroleum P Result	Qualifier	/ NWTPH-Dx RL 12.3	MDL	mg/kg dry	— 	Prepared	Analyzed	Dil Fac 1.00 1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons	atile Petroleum P Result ND ND	Qualifier	/ NWTPH-Dx RL 12.3 30.9	MDL	mg/kg dry	— 	Prepared 10/04/12 08:09 10/04/12 08:09	Analyzed 10/05/12 13:06 10/05/12 13:06	Dil Fac

Method: EPA 6010C - Metals Co	ntent by EPA 6010/7000 Series	6 Methods, I	Prep by EPA 3050E			
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Anal

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.63	1.78	mg/kg dry	¢	10/05/12 06:18	10/08/12 17:18	1.00

Client Sample ID: B-3(5)

Date Collected: 09/27/12 10:42

Date Received: 09/28/12 16:30

4-bromofluorobenzene

Lab Sample ID: SVJ0004-07 Matrix: Soil Percent Solids: 86.1

10/01/12 13:13 10/01/12 19:36

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.00674		mg/kg dry	\$	10/01/12 13:13	10/01/12 19:36	1.00
Benzene	0.0146		0.00561		mg/kg dry	₽	10/01/12 13:13	10/01/12 19:36	1.00
1,2-Dichloroethane (EDC)	ND		0.112		mg/kg dry	¢	10/01/12 13:13	10/01/12 19:36	1.00
Hexane	0.535		0.112		mg/kg dry	¢.	10/01/12 13:13	10/01/12 19:36	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		42.4 - 163				10/01/12 13:13	10/01/12 19:36	1.00
Toluene-d8	118		45.8 - 155				10/01/12 13:13	10/01/12 19:36	1.00

41.5 - 162

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C - RE1

505 ZX

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	4200		281		mg/kg dry	⇒	10/01/12 13:13	10/02/12 10:44	50.0
Ethylbenzene	22.3		5.61		mg/kg dry	₽	10/01/12 13:13	10/02/12 10:44	50.0
Toluene	10.4		5.61		mg/kg dry	₽	10/01/12 13:13	10/02/12 10:44	50.0
o-Xylene	86.1		11.2		mg/kg dry	¢	10/01/12 13:13	10/02/12 10:44	50.0
m,p-Xylene	175		22.5		mg/kg dry	₽	10/01/12 13:13	10/02/12 10:44	50.0
Xylenes (total)	261		84.2		mg/kg dry	¢	10/01/12 13:13	10/02/12 10:44	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane			42.4 - 163				10/01/12 13:13	10/02/12 10:44	50.0
Toluene-d8	111		45.8 - 155				10/01/12 13:13	10/02/12 10:44	50.0
4-bromofluorobenzene	118		41.5 - 162				10/01/12 13:13	10/02/12 10:44	50.0

1.00

Client: Geo Engineers - Spokane Project/Site: 0504-081-00

Client Sample ID: B-3(5) Date Collected: 09/27/12 10:42

Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-07 Matrix: Soil

Percent Solids: 86.1

5

6

Method: EPA 8011 - EDB by EPA Metho	d 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	R1	1.12		ug/kg dry	<u>₩</u>	10/02/12 10:05	10/02/12 18:35	1.00
– Method: EPA 8270C - Polynuclear Arom	atic Co	mpounds by	GC/MS with S	elected	Ion Monito	ring			

Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0114	n	ng/kg dry	\\\	10/01/12 12:47	10/02/12 13:04	1.00
2-Methylnaphthalene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
1-Methylnapthalene	ND		0.0114	n	ng/kg dry	₽	10/01/12 12:47	10/02/12 13:04	1.00
Acenaphthylene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Acenaphthene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Fluorene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Phenanthrene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Anthracene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Fluoranthene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Pyrene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Benzo (a) anthracene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Chrysene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Benzo (b) fluoranthene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Benzo (k) fluoranthene	ND		0.0114	n	ng/kg dry	₽	10/01/12 12:47	10/02/12 13:04	1.00
Benzo (a) pyrene	ND		0.0114	n	ng/kg dry	₽	10/01/12 12:47	10/02/12 13:04	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0114	n	ng/kg dry	₽	10/01/12 12:47	10/02/12 13:04	1.00
Dibenzo (a,h) anthracene	ND		0.00686	n	ng/kg dry	₽	10/01/12 12:47	10/02/12 13:04	1.00
Benzo (ghi) perylene	ND		0.0114	n	ng/kg dry	¢	10/01/12 12:47	10/02/12 13:04	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80.2		54 - 129				10/01/12 12:47	10/02/12 13:04	1.00
2-FBP	83.0		64.2 - 121				10/01/12 12:47	10/02/12 13:04	1.00
p-Terphenyl-d14	113		27.5 - 140				10/01/12 12:47	10/02/12 13:04	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	1220		11.5		mg/kg dry	¢	10/04/12 08:09	10/05/12 13:58	1.00
Heavy Oil Range Hydrocarbons	42.3		28.7		mg/kg dry	¢	10/04/12 08:09	10/05/12 13:58	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	90.5		50 - 150				10/04/12 08:09	10/05/12 13:58	1.00
n-Triacontane-d62	126		50 _ 150				10/04/12 08:09	10/05/12 13:58	1.00

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	470	E	1.5	mg/Kg	₩ 	10/10/12 17:02	10/10/12 22:06	1
C10-C12 Aliphatics	320	н	74	mg/Kg	₽	10/10/12 17:02	10/15/12 21:36	50
C10-C12 Aromatics	180	E	1.5	mg/Kg	₽	10/10/12 17:02	10/10/12 22:06	1
C10-C12 Aromatics	570	н	74	mg/Kg	¢	10/10/12 17:02	10/15/12 21:36	50
C12-C13 Aromatics	100	E	1.5	mg/Kg	₽	10/10/12 17:02	10/10/12 22:06	1
C12-C13 Aromatics	180	н	74	mg/Kg	¢	10/10/12 17:02	10/15/12 21:36	50
C8-C10 Aliphatics	630	E	1.5	mg/Kg	¢	10/10/12 17:02	10/10/12 22:06	1
C8-C10 Aliphatics	160	н	74	mg/Kg	₽	10/10/12 17:02	10/15/12 21:36	50
C8-C10 Aromatics	200	E	1.5	mg/Kg	₽	10/10/12 17:02	10/10/12 22:06	1
C8-C10 Aromatics	480	н	74	mg/Kg	₽	10/10/12 17:02	10/15/12 21:36	50
C5-C6 Aliphatics	1.6		1.5	mg/Kg	₽	10/10/12 17:02	10/10/12 22:06	1
C5-C6 Aliphatics	ND	Н	74	mg/Kg	¢	10/10/12 17:02	10/15/12 21:36	50

Client Sample ID: B-3(5) Date Collected: 09/27/12 10:42

Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-07 Matrix: Soil

Percent Solids: 89.2

5 6 7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C8 Aliphatics	130	E	1.5		mg/Kg	<u></u>	10/10/12 17:02	10/10/12 22:06	
C6-C8 Aliphatics	81	Н	74		mg/Kg	¢	10/10/12 17:02	10/15/12 21:36	50
Total VPH	1700	E	10		mg/Kg	₽	10/10/12 17:02	10/10/12 22:06	1
Total VPH	1800	н	520		mg/Kg	¢	10/10/12 17:02	10/15/12 21:36	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BFB - PID	182	X	60 - 140				10/10/12 17:02	10/10/12 22:06	1
BFB - PID	107		60 - 140				10/10/12 17:02	10/15/12 21:36	50
4-Bromofluorobenzene	1031	X	60 - 140				10/10/12 17:02	10/10/12 22:06	1
4-Bromofluorobenzene	109		60 - 140				10/10/12 17:02	10/15/12 21:36	50
Method: NWTPH/EPH - Northwest - E	Extractable	Petroleum	Hydrocarbons	(GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	160	*	5.5		mg/Kg	\$	10/09/12 16:51	10/16/12 08:36	1
C12-C16 Aromatics	76		5.5		mg/Kg	¢	10/09/12 16:51	10/16/12 08:36	1
C16-C21 Aromatics	13	*	5.5		mg/Kg	¢	10/09/12 16:51	10/16/12 08:36	1
C21-C34 Aromatics	7.2		5.5		mg/Kg	¢	10/09/12 16:51	10/16/12 08:36	1
C10-C12 Aliphatics	290	*	5.5		mg/Kg	₽	10/09/12 16:51	10/16/12 08:36	1
C12-C16 Aliphatics	80	*	5.5		mg/Kg	₽	10/09/12 16:51	10/16/12 08:36	1
C16-C21 Aliphatics	11		5.5		mg/Kg	₽	10/09/12 16:51	10/16/12 08:36	1
C21-C34 Aliphatics	7.4		5.5		mg/Kg	¢	10/09/12 16:51	10/16/12 08:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	84		60 - 140				10/09/12 16:51	10/16/12 08:36	1
o-Terphenyl	84		60 - 140				10/09/12 16:51	10/16/12 08:36	1
Method: NWTPH/EPH - Northwest - E	Extractable	Petroleum	Hydrocarbons	(GC) - R	E				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	200	н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C12-C16 Aromatics	100		5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C16-C21 Aromatics	18	Н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C21-C34 Aromatics	11	н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C10-C12 Aliphatics	350	н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C12-C16 Aliphatics	110	н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C16-C21 Aliphatics	16	Н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
C21-C34 Aliphatics	11	н	5.5		mg/Kg	¢	10/17/12 16:59	10/20/12 18:29	1
							D	A	04.5-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
Surrogate	%Recovery 81	Qualifier	Limits 60 - 140				10/17/12 16:59	10/20/12 18:29	Dil Fac

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ₽ mg/kg dry 1.72 10/05/12 06:18 10/08/12 16:26 Lead 12.8 1.00

Client Sample ID: B-4(5)

Date Collected: 09/27/12 12:03 Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-10 Matrix: Soil

Percent Solids: 92.8

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	7.04		4.53		mg/kg dry	\ ↓	10/01/12 13:13	10/02/12 13:09	1.00
Methyl tert-butyl ether	ND		0.00544		mg/kg dry	₽	10/01/12 13:13	10/02/12 13:09	1.00
Benzene	ND		0.00453		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
Ethylbenzene	ND		0.0906		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
Toluene	ND		0.0906		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
o-Xylene	ND		0.181		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
m,p-Xylene	0.371		0.363		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
1,2-Dichloroethane (EDC)	ND		0.0906		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
Xylenes (total)	ND		1.36		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
Hexane	ND		0.0906		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:09	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		42.4 - 163				10/01/12 13:13	10/02/12 13:09	1.00
Toluene-d8	111		45.8 - 155				10/01/12 13:13	10/02/12 13:09	1.00
4-bromofluorobenzene	106		41.5 - 162				10/01/12 13:13	10/02/12 13:09	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.04		ug/kg dry	<u></u>	10/02/12 10:05	10/02/12 18:47	1.00

Method: EPA 8270C - Pol	vnuclear Aromatic Com	nounds by GC/MS with	Selected Ion Monitoring
	ynucical Aromatic Con	ipounds by como mun	ociceted for monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0104		mg/kg dry	<u></u>	10/01/12 12:47	10/02/12 13:28	1.00
2-Methylnaphthalene	0.0153		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
1-Methylnapthalene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Acenaphthylene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Acenaphthene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Fluorene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Phenanthrene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Anthracene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Fluoranthene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Pyrene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Benzo (a) anthracene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Chrysene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Benzo (b) fluoranthene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Benzo (k) fluoranthene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Benzo (a) pyrene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0104		mg/kg dry	¢	10/01/12 12:47	10/02/12 13:28	1.00
Dibenzo (a,h) anthracene	ND		0.00625		mg/kg dry	⇔	10/01/12 12:47	10/02/12 13:28	1.00
Benzo (ghi) perylene	ND		0.0104		mg/kg dry	₽	10/01/12 12:47	10/02/12 13:28	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72.2		54 - 129				10/01/12 12:47	10/02/12 13:28	1.00
2-FBP	78.8		64.2 - 121				10/01/12 12:47	10/02/12 13:28	1.00
p-Terphenyl-d14	115		27.5 - 140				10/01/12 12:47	10/02/12 13:28	1.00
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	/ NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		10.7		mg/kg dry	<u></u>	10/04/12 08:09	10/05/12 14:15	1.00
Heavy Oil Range Hydrocarbons	ND		26.8		mg/kg dry	¢	10/04/12 08:09	10/05/12 14:15	1.00

							Lab Sam	ple ID: SVJ0	
Date Collected: 09/27/12 12:03									rix: Soi
Date Received: 09/28/12 16:30								Percent Soli	ds: 92.8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	110		50 - 150				10/04/12 08:09	10/05/12 14:15	1.00
n-Triacontane-d62	130		50 - 150				10/04/12 08:09	10/05/12 14:15	1.00
			00 - 100						
Method: EPA 6010C - Metals Content									
Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.99		1.70		mg/kg dry	¢	10/05/12 06:18	10/08/12 16:30	1.00
Client Sample ID: B-5(16)							Lab Sam	ple ID: SVJ0	004-14
Date Collected: 09/27/12 13:52								Mat	rix: Soi
Date Received: 09/28/12 16:30								Percent Soli	
Method: EPA 8260C - NWTPH-Gx and Analyte		Organic Co Qualifier	ompounds by El RL		d 8260C Unit	D	Prenared	Apalyzod	Dil Fac
Analyte	ND	Quaimer	<u>RL</u>	MDL		- D	Prepared	Analyzed	1.00
Methyl tert-butyl ether					mg/kg dry		10/01/12 13:13	10/01/12 20:24	
Benzene	0.0221		0.00460		mg/kg dry	¢ ×	10/01/12 13:13	10/01/12 20:24	1.00
1,2-Dichloroethane (EDC)	ND		0.0920		mg/kg dry	¢ 	10/01/12 13:13	10/01/12 20:24	1.00
Hexane	ND		0.0920		mg/kg dry	¢	10/01/12 13:13	10/01/12 20:24	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	103		42.4 - 163				10/01/12 13:13	10/01/12 20:24	1.0
Toluene-d8	133		45.8 - 155				10/01/12 13:13	10/01/12 20:24	1.0
4-bromofluorobenzene	278	ZX	41.5 - 162				10/01/12 13:13	10/01/12 20:24	1.00
Method: EPA 8260C - NWTPH-Gx and Analyte Gasoline Range Hydrocarbons		Qualifier	$-\frac{RL}{230}$		Unit mg/kg dry	- D	Prepared 10/01/12 13:13	Analyzed	Dil Fac 50.0
Ethylbenzene	45.4		4.60		mg/kg dry	¢	10/01/12 13:13	10/02/12 11:08	50.0
Toluene	43.4		4.00			¢	10/01/12 13:13	10/02/12 11:08	50.0
	5.01		4 60						
	5.01		4.60 0.20		mg/kg dry				
o-Xylene	82.6		9.20		mg/kg dry	¢	10/01/12 13:13	10/02/12 11:08	50.0
o-Xylene m,p-Xylene	82.6 206		9.20 18.4		mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08	50.0 50.0
o-Xylene	82.6		9.20		mg/kg dry	¢	10/01/12 13:13	10/02/12 11:08	50.0 50.0
o-Xylene m,p-Xylene Xylenes (total)	82.6 206	Qualifier	9.20 18.4		mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08	50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total)	82.6 206 289		9.20 18.4 69.0		mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08	50.0 50.0 50.0 Dil Fac
o-Xylene m,p-Xylene Xylenes (total) Surrogate	82.6 206 289 %Recovery		9.20 18.4 69.0 <i>Limits</i>		mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed	50.0 50.0 50.0 Dil Fa o 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate 2 Dibromofluoromethane	82.6 206 289 %Recovery 102		9.20 18.4 69.0 <u>Limits</u> 42.4 - 163		mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08	50.0 50.0 50.0 Dil Fac 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate 2 Dibromofluoromethane Toluene-d8 4-bromofluorobenzene	82.6 206 289 %Recovery 102 111 115		9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155		mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08	50.0 50.0 50.0 Dil Fac 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8	82.6 206 289 %Recovery 102 111 115 hod 8011		9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155	MDL	mg/kg dry mg/kg dry	¢	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Method	82.6 206 289 %Recovery 102 111 115 hod 8011		9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162	MDL	mg/kg dry mg/kg dry mg/kg dry	×	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08	50.0 50.0 50.0 <i>Dil Fac</i> 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate 2 Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND	Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09		mg/kg dry mg/kg dry mg/kg dry <u>Unit</u> ug/kg dry	* * •	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed	50.0 50.0 <i>Dil Fac</i> 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Method: Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND	Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Ion Monitor	- D 	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59	50.0 50.0 Dil Fao 50.0 50.0 50.0 Dil Fao 1.00
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND pmatic Co Result	Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with RL	Selected	mg/kg dry mg/kg dry mg/kg dry Unit Unit	⇒ ⇒ ⇒ → →	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed	50.0 50.0 50.0 50.0 50.0 50.0 50.0 Dil Fac
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Method: Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry	- D 	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11	50.0 50.0 50.0 50.0 50.0 50.0 50.0 Dil Fac Dil Fac
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30 3.85	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220	Selected	mg/kg dry mg/kg dry mg/kg dry mg/kg dry ug/kg dry Unit mg/kg dry mg/kg dry	⇒ ⇒ ⇒	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30 3.85 2.01	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220 0.220	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry mg/kg dry	⇒ ⇒ ⇒ ⇒	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate 9 Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND matic Co Result 2.30 3.85 2.01 ND	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220 0.220 0.0110	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry		10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11 10/11/12 16:59	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30 3.85 2.01 ND 0.0176	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220 0.220 0.220 0.0110 0.0110	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11 10/11/12 16:59 10/11/12 16:59	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate 9 Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30 3.85 2.01 ND 0.0176 0.0220	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220 0.220 0.220 0.0110 0.0110 0.0110	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	⇒ ⇒ ⇒ ⇒ ⇒	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11 10/11/12 16:59 10/11/12 16:59	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30 3.85 2.01 ND 0.0176	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220 0.220 0.220 0.0110 0.0110	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11 10/11/12 16:59 10/11/12 16:59	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA Meth Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Aro Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	82.6 206 289 %Recovery 102 111 115 hod 8011 Result ND omatic Co Result 2.30 3.85 2.01 ND 0.0176 0.0220	Qualifier ompounds Qualifier	9.20 18.4 69.0 <u>Limits</u> 42.4 - 163 45.8 - 155 41.5 - 162 <u>RL</u> 1.09 by GC/MS with <u>RL</u> 0.220 0.220 0.220 0.220 0.0110 0.0110 0.0110	Selected	mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	⇒ ⇒ ⇒ ⇒ ⇒	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 RE1 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 10/02/12 11:08 Analyzed 10/02/12 18:59 Analyzed 10/12/12 10:11 10/12/12 10:11 10/12/12 10:11 10/11/12 16:59 10/11/12 16:59	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Client Sample ID: B-5(16) Date Collected: 09/27/12 13:52

Date Received: 09/28/12 16:30

C12-C13 Aromatics

C12-C13 Aromatics

C8-C10 Aliphatics

C8-C10 Aliphatics

C8-C10 Aromatics

C8-C10 Aromatics

C5-C6 Aliphatics

C5-C6 Aliphatics

C6-C8 Aliphatics

C6-C8 Aliphatics

Total VPH

Total VPH

Lab Sample ID: SV	J0004-14
Ν	Aatrix: Soil

Percent Solids: 90.9

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	0.0117		0.0110		mg/kg dry	\ ↓	10/01/12 12:47	10/11/12 16:59	1.00
Benzo (a) anthracene	ND		0.0110		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Chrysene	ND		0.0110		mg/kg dry	☆	10/01/12 12:47	10/11/12 16:59	1.00
Benzo (b) fluoranthene	ND		0.0110		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Benzo (k) fluoranthene	ND		0.0110		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Benzo (a) pyrene	ND		0.0110		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0110		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Dibenzo (a,h) anthracene	ND		0.00659		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Benzo (ghi) perylene	ND		0.0110		mg/kg dry	¢	10/01/12 12:47	10/11/12 16:59	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	107		54 _ 129				10/01/12 12:47	10/11/12 16:59	1.00
2-FBP	106		64.2 - 121				10/01/12 12:47	10/11/12 16:59	1.00
p-Terphenyl-d14	135		27.5 - 140				10/01/12 12:47	10/11/12 16:59	1.00
Method: NWTPH-Dx - Semivola	atile Petroleum P	roducts by	NWTPH-Dx						
		Products by Qualifier	NWTPH-Dx RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte				MDL	Unit mg/kg dry	— D	Prepared	Analyzed	Dil Fac
Analyte Diesel Range Hydrocarbons	Result		RL	MDL			· · · · · · · · · · · · · · · · · · ·		
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Result 113	Qualifier	RL	MDL	mg/kg dry	— 	10/04/12 08:09	10/05/12 14:33	1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	Result 113 ND	Qualifier	RL 10.9 27.2	MDL	mg/kg dry	— 	10/04/12 08:09 10/04/12 08:09	10/05/12 14:33 10/05/12 14:33	1.00 1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP n-Triacontane-d62	Result 113 ND %Recovery	Qualifier	RL 10.9 27.2 Limits	MDL	mg/kg dry	— 	10/04/12 08:09 10/04/12 08:09 Prepared	10/05/12 14:33 10/05/12 14:33 <i>Analyzed</i>	1.00 1.00 <i>Dil Fac</i>
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP n-Triacontane-d62	Result 113 ND %Recovery 106 129	Qualifier Qualifier	RL 10.9 27.2 Limits 50 - 150 50 - 150		mg/kg dry	— 	10/04/12 08:09 10/04/12 08:09 Prepared 10/04/12 08:09	10/05/12 14:33 10/05/12 14:33 Analyzed 10/05/12 14:33	1.00 1.00 <i>Dil Fac</i> 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP n-Triacontane-d62 Method: NWTPH/VPH - Northw	Result 113 ND %Recovery 106 129 rest - Volatile Pet	Qualifier Qualifier	RL 10.9 27.2 Limits 50 - 150 50 - 150)	mg/kg dry	— 	10/04/12 08:09 10/04/12 08:09 Prepared 10/04/12 08:09	10/05/12 14:33 10/05/12 14:33 Analyzed 10/05/12 14:33	1.00 1.00 <i>Dil Fac</i> 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP n-Triacontane-d62 Method: NWTPH/VPH - Northw Analyte	Result 113 ND %Recovery 106 129 rest - Volatile Pet	Qualifier Qualifier roleum Hyu Qualifier	- RL 10.9 27.2 - Limits 50 - 150 50 - 150 drocarbons (GC)	mg/kg dry mg/kg dry		10/04/12 08:09 10/04/12 08:09 Prepared 10/04/12 08:09 10/04/12 08:09	10/05/12 14:33 10/05/12 14:33 Analyzed 10/05/12 14:33 10/05/12 14:33	1.00 1.00 Dil Fac 1.00 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP n-Triacontane-d62 Method: NWTPH/VPH - Northw Analyte C10-C12 Aliphatics	Result 113 ND %Recovery 106 129 rest - Volatile Pet Result	Qualifier Qualifier Troleum Hyr Qualifier H E	RL 10.9 27.2 <i>Limits</i> 50 - 150 50 - 150 drocarbons (GC RL)	mg/kg dry mg/kg dry Unit	☆ ☆ D	10/04/12 08:09 10/04/12 08:09 Prepared 10/04/12 08:09 10/04/12 08:09 Prepared	10/05/12 14:33 10/05/12 14:33 Analyzed 10/05/12 14:33 10/05/12 14:33 Analyzed	1.00 1.00 <i>Dil Fac</i> 1.00 1.00 Dil Fac
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	Result 113 ND %Recovery 106 129 rest - Volatile Pet Result 280	Qualifier Qualifier Troleum Hyr Qualifier H E	RL 10.9 27.2)	mg/kg dry mg/kg dry Unit mg/Kg	☆	10/04/12 08:09 10/04/12 08:09 Prepared 10/04/12 08:09 10/04/12 08:09 10/04/12 08:09 Prepared 10/10/12 17:02	10/05/12 14:33 10/05/12 14:33 Analyzed 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33 10/05/12 14:33	1.00 1.00 <i>Dil Fac</i> 1.00 1.00 Dil Fac

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
BFB - PID	35 X	60 - 140	10/10/12 17:02	10/11/12 00:44	1
BFB - PID	88	60 - 140	10/10/12 17:02	10/15/12 20:43	25
4-Bromofluorobenzene	496 X	60 - 140	10/10/12 17:02	10/11/12 00:44	1
4-Bromofluorobenzene	108	60 - 140	10/10/12 17:02	10/15/12 20:43	25

2.2

55

2.2

55

2.2

55

2.2

55

2.2

55

15

390

14 HE

64 H

490 HE

52 H E

140 H

270 H

28 H

ND H

160 H

1100 H

1100 HE

200 HE

₽

₽

₽

₽

₽

₽

₽

₽

¢

₽

₽

¢

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/11/12 00:44

10/15/12 20:43

10/11/12 00:44

10/15/12 20:43

10/11/12 00:44

10/15/12 20:43

10/11/12 00:44

10/15/12 20:43

10/11/12 00:44

10/15/12 20:43

10/11/12 00:44

10/15/12 20:43

1

25

1

25

1

25

1

25

1

25

1

25

mg/Kg

Matrix: Soil

Lab Sample ID: SVJ0004-14

6

Client Sample ID: B-5(16) Date Collected: 09/27/12 13:52 Date Received: 09/28/12 16:30

Method: NWTPH/EPH - Northwest -	Extractable	Petroleum	Hydrocarbons ((GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	55	*	5.7		mg/Kg	<u>*</u>	10/09/12 16:51	10/16/12 08:59	1
C12-C16 Aromatics	22		5.7		mg/Kg	⇔	10/09/12 16:51	10/16/12 08:59	1
C16-C21 Aromatics	ND	*	5.7		mg/Kg	¢	10/09/12 16:51	10/16/12 08:59	1
C21-C34 Aromatics	ND		5.7		mg/Kg	¢.	10/09/12 16:51	10/16/12 08:59	1
C10-C12 Aliphatics	24	*	5.7		mg/Kg	¢	10/09/12 16:51	10/16/12 08:59	1
C12-C16 Aliphatics	13	*	5.7		mg/Kg	¢	10/09/12 16:51	10/16/12 08:59	1
C16-C21 Aliphatics	ND		5.7		mg/Kg	¢.	10/09/12 16:51	10/16/12 08:59	1
C21-C34 Aliphatics	ND		5.7		mg/Kg	₽	10/09/12 16:51	10/16/12 08:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	89		60 - 140				10/09/12 16:51	10/16/12 08:59	1
o-Terphenyl	74		60 - 140				10/09/12 16:51	10/16/12 08:59	1

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) - RE

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	68	Н	5.7		mg/Kg	₩ ₩	10/17/12 16:59	10/20/12 18:52	1
C12-C16 Aromatics	31	н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
C16-C21 Aromatics	ND	н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
C21-C34 Aromatics	ND	Н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
C10-C12 Aliphatics	26	н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
C12-C16 Aliphatics	16	н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
C16-C21 Aliphatics	ND	Н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
C21-C34 Aliphatics	ND	н	5.7		mg/Kg	¢	10/17/12 16:59	10/20/12 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	88		60 - 140				10/17/12 16:59	10/20/12 18:52	1
o-Terphenyl	87		60 - 140				10/17/12 16:59	10/20/12 18:52	1

Method: EPA 6010C - Metals Conte	ent by EPA 6	010/7000 S	eries Method	s, Prep by E	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1.80		1.63		mg/kg dry	<u></u>	10/05/12 06:18	10/08/12 16:37	1.00

Client Sample ID: B-6(15.5)

Date Collected: 09/27/12 15:36

Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-17 Matrix: Soil Percent Solids: 94

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	19.4		6.34		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:33	1.00
Methyl tert-butyl ether	ND		0.00760		mg/kg dry	₽	10/01/12 13:13	10/02/12 13:33	1.00
Benzene	ND		0.00634		mg/kg dry	₽	10/01/12 13:13	10/02/12 13:33	1.00
Ethylbenzene	ND		0.127		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:33	1.00
Toluene	ND		0.127		mg/kg dry	₽	10/01/12 13:13	10/02/12 13:33	1.00
o-Xylene	ND		0.253		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:33	1.00
m,p-Xylene	ND		0.507		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:33	1.00
1,2-Dichloroethane (EDC)	ND		0.127		mg/kg dry	₽	10/01/12 13:13	10/02/12 13:33	1.00
Xylenes (total)	ND		1.90		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:33	1.00
Hexane	ND		0.127		mg/kg dry	¢	10/01/12 13:13	10/02/12 13:33	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		42.4 - 163				10/01/12 13:13	10/02/12 13:33	1.00

Dibromofluoromethane

Client Sample ID: B-6(15.5 ate Collected: 09/27/12 15:36 ate Received: 09/28/12 16:30	,							ple ID: SVJ0 Mat Percent So	rix: Soi
Method: EPA 8260C - NWTPH	-Gx and Volatile (Organic Co	mpounds by EP	A Metho	d 8260C (Co	ontin	ued)		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8			45.8 - 155				10/01/12 13:13	10/02/12 13:33	1.0
4-bromofluorobenzene	104		41.5 - 162				10/01/12 13:13	10/02/12 13:33	1.0
Method: EPA 8011 - EDB by E	EPA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.06		ug/kg dry	₽	10/02/12 10:05	10/02/12 19:12	1.0
Method: EPA 8270C - Polynuc			-	elected	Ion Monitor	ing			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
2-Methylnaphthalene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
1-Methylnapthalene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Acenaphthylene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Acenaphthene	ND		0.0105		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:17	1.0
Fluorene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Phenanthrene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Anthracene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Fluoranthene	ND		0.0105		mg/kg dry	\$	10/01/12 12:47	10/02/12 14:17	1.0
Pyrene	ND		0.0105		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:17	1.0
Benzo (a) anthracene	ND		0.0105		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:17	1.0
Chrysene	ND		0.0105		mg/kg dry	\$	10/01/12 12:47	10/02/12 14:17	1.0
Benzo (b) fluoranthene	ND		0.0105		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:17	1.0
Benzo (k) fluoranthene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Benzo (a) pyrene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Indeno (1,2,3-cd) pyrene	ND		0.0105		mg/kg dry	\$	10/01/12 12:47	10/02/12 14:17	1.0
Dibenzo (a,h) anthracene	ND		0.00629		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Benzo (ghi) perylene	ND		0.0105		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:17	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	78.4		54 - 129				10/01/12 12:47	10/02/12 14:17	1.0
2-FBP	80.8		64.2 - 121				10/01/12 12:47	10/02/12 14:17	1.0
p-Terphenyl-d14	109		27.5 - 140				10/01/12 12:47	10/02/12 14:17	1.0
Method: NWTPH-Dx - Semivol	atile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	ND		10.6		mg/kg dry	\	10/04/12 08:09	10/05/12 14:50	1.0
Heavy Oil Range Hydrocarbons	ND		26.4		mg/kg dry	☆	10/04/12 08:09	10/05/12 14:50	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-FBP	110		50 _ 150				10/04/12 08:09	10/05/12 14:50	1.0
n-Triacontane-d62	129		50 - 150				10/04/12 08:09	10/05/12 14:50	1.0
Method: EPA 6010C - Metals C	Content by EPA 6	010/7000 S	eries Methods, I	Prep by I	EPA 3050B				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		1.51		mg/kg dry	¢	10/05/12 06:18	10/08/12 17:22	1.0

Client Sample ID: MW-1(15.5)

Date Collected: 09/27/12 09:24 Date Received: 09/28/12 16:30

_

Lab Sample ID: SVJ0004-19 Matrix: Soil

Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	198		4.73		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Methyl tert-butyl ether	ND		0.00568		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Benzene	0.0303		0.00473		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Ethylbenzene	1.77		0.0946		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Toluene	0.246		0.0946		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
o-Xylene	3.30		0.189		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
m,p-Xylene	8.12		0.378		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
1,2-Dichloroethane (EDC)	ND		0.0946		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Xylenes (total)	11.4		1.42		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Hexane	0.510		0.0946		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	103		42.4 - 163				10/01/12 13:13	10/01/12 21:12	1.00
Toluene-d8	114		45.8 - 155				10/01/12 13:13	10/01/12 21:12	1.00
4-bromofluorobenzene	116		41.5 - 162				10/01/12 13:13	10/01/12 21:12	1.00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	1.05	ug/kg dry	¢	10/02/12 10:05	10/02/12 19:24	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	6.15		0.215		mg/kg dry	- ¤	10/01/12 12:47	10/02/12 17:28	20.0
2-Methylnaphthalene	8.92		0.215		mg/kg dry	₽	10/01/12 12:47	10/02/12 17:28	20.0
1-Methylnapthalene	4.60		0.215		mg/kg dry	₽	10/01/12 12:47	10/02/12 17:28	20.0
Acenaphthylene	ND		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Acenaphthene	ND		0.0107		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:41	1.00
Fluorene	ND		0.0107		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:41	1.00
Phenanthrene	0.0501		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Anthracene	0.0186		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Fluoranthene	ND		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Pyrene	0.0122		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Benzo (a) anthracene	ND		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Chrysene	ND		0.0107		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:41	1.00
Benzo (b) fluoranthene	ND		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Benzo (k) fluoranthene	ND		0.0107		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:41	1.00
Benzo (a) pyrene	ND		0.0107		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:41	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0107		mg/kg dry	¢.	10/01/12 12:47	10/02/12 14:41	1.00
Dibenzo (a,h) anthracene	ND		0.00645		mg/kg dry	₽	10/01/12 12:47	10/02/12 14:41	1.00
Benzo (ghi) perylene	ND		0.0107		mg/kg dry	¢	10/01/12 12:47	10/02/12 14:41	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	88.4		54 _ 129				10/01/12 12:47	10/02/12 14:41	1.00
2-FBP	95.4		64.2 - 121				10/01/12 12:47	10/02/12 14:41	1.00
p-Terphenyl-d14	109		27.5 - 140				10/01/12 12:47	10/02/12 14:41	1.00
Method: NWTPH-Dx - Semivola	atile Petroleum F	Products by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	133		11.1		mg/kg dry	<u></u>	10/04/12 08:09	10/05/12 15:25	1.00
Heavy Oil Range Hydrocarbons	ND		27.6		mg/kg dry	₽	10/04/12 08:09	10/05/12 15:25	1.00

Client Sample ID: MW-1(15.5)							Lab Sam	ple ID: SVJ0	
Date Collected: 09/27/12 09:24									rix: Soi
Date Received: 09/28/12 16:30								Percent Soli	as: 89.9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-FBP	102		50 - 150				10/04/12 08:09	10/05/12 15:25	1.00
n-Triacontane-d62	126		50 - 150				10/04/12 08:09	10/05/12 15:25	1.00
-									
Method: EPA 6010C - Metals Conte	-								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	2.02		1.67		mg/kg dry	<u>Å</u>	10/05/12 06:18	10/08/12 17:26	1.00
Client Sample ID: MW-2(15)							Lab Sam	ple ID: SVJ0	004-21
Date Collected: 09/26/12 15:11									rix: Soi
Date Received: 09/28/12 15:11								Percent Soli	
-									
Method: EPA 8260C - NWTPH-Gx a		-				_	- ·		
Analyte		Qualifier		MDL	Unit	- D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.00497		mg/kg dry	¢ ~	10/01/12 13:13	10/01/12 21:36	1.00
Benzene	ND		0.00414		mg/kg dry	¢.	10/01/12 13:13	10/01/12 21:36	1.00
Toluene	3.83		0.0829		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:36	1.00
1,2-Dichloroethane (EDC)	ND		0.0829		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:36	1.00
Hexane	0.197		0.0829		mg/kg dry	¢	10/01/12 13:13	10/01/12 21:36	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	102		42.4 - 163				10/01/12 13:13	10/01/12 21:36	1.0
Toluene-d8	117		45.8 - 155				10/01/12 13:13	10/01/12 21:36	1.00
4-bromofluorobenzene	159		41.5 - 162				10/01/12 13:13	10/01/12 21:36	1.00
_									
- Method: EPA 8260C - NWTPH-Gx a Analyte							Prepared	Analyzed	Dil Fac
Analyte	Result	Organic Co Qualifier	RL		Unit	D	Prepared	Analyzed	
Analyte Gasoline Range Hydrocarbons	Result 812		RL 82.9		Unit mg/kg dry	- D	10/01/12 13:13	10/02/12 11:33	20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene	Result 812 7.50		RL 82.9 1.66		Unit mg/kg dry mg/kg dry	- D #	10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33	20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene	Result 812 7.50 17.8		RL 82.9 1.66 3.32		Unit mg/kg dry mg/kg dry mg/kg dry	- D *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene	Result 812 7.50		RL 82.9 1.66		Unit mg/kg dry mg/kg dry	- D #	10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene	Result 812 7.50 17.8		RL 82.9 1.66 3.32		Unit mg/kg dry mg/kg dry mg/kg dry	- D *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene	Result 812 7.50 17.8 38.5	Qualifier	RL 82.9 1.66 3.32 6.63		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	- D * * * * * * * * * * * * * * * * * * *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total)	Result 812 7.50 17.8 38.5 56.3	Qualifier	RL 82.9 1.66 3.32 6.63 24.9		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	- D * * * * * * * * * * * * * * * * * * *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 Dil Fac
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate	Result 812 7.50 17.8 38.5 56.3 %Recovery	Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	- D * * * * * * * * * * * * * * * * * * *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 <i>Prepared</i>	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane	Result 812 7.50 17.8 38.5 56.3 %Recovery 103	Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	- D * * * * * * * * * * * * * * * * * * *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112	Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	- D * * * * * * * * * * * * * * * * * * *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 Dil Fa 0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011	Qualifier Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162	MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry		10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	Dil Fac 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011	Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155	MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	- D * * * * * * * * * * * * * * * * * * *	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND	Qualifier Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01	MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry		10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry	D x	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result	Qualifier Qualifier	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ RL	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit	D D D D D D	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 Prepared 10/02/12 10:05 Prepared	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 Analyzed 10/02/12 19:36	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ RL 0.255	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit Unit mg/kg dry	D D D D T T T T T T T T T T T T T	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/02/12 10:05 Prepared 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:35	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnaphthalene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry	$-\frac{D}{\alpha}$	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/02/12 10:05 Prepared 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:05 10/02/12 15:05	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnapthalene 1-Methylnapthalene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74 1.48	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry Unit mg/kg dry mg/kg dry mg/kg dry	$-\frac{\mathbf{D}}{\mathbf{a}}$	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/02/12 10:05 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:35 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74 1.48 ND	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255 0.255 0.255 0.0102	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry		I0/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 12:47 10/02/12 10:05 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:35 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 18:17	20. 20. 20. 20. 20. 20. 20. 20.
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnapthalene 1-Methylnapthalene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74 1.48	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry Unit mg/kg dry mg/kg dry mg/kg dry	$-\frac{\mathbf{D}}{\mathbf{a}}$	10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/02/12 10:05 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:35 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74 1.48 ND	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255 0.255 0.255 0.0102	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry lon Monitor Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry		I0/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 12:47 10/02/12 10:05 Prepared 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:35 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 18:17	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnaphthalene 1-Methylnapthalene Acenaphthylene Acenaphthylene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74 1.48 ND ND	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255 0.255 0.255 0.0102 0.0102	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit ug/kg dry Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		IO/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:35 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 15:05 10/02/12 18:17 10/02/12 18:17	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Analyte Gasoline Range Hydrocarbons Ethylbenzene o-Xylene m,p-Xylene Xylenes (total) Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8011 - EDB by EPA I Analyte 1,2-Dibromoethane Method: EPA 8270C - Polynuclear Analyte Naphthalene 2-Methylnapthalene 1-Methylnapthalene Acenaphthylene Acenaphthylene	Result 812 7.50 17.8 38.5 56.3 %Recovery 103 112 111 Method 8011 Result ND Aromatic Co Result 1.50 2.74 1.48 ND 0.0156	Qualifier Qualifier Qualifier mpounds	RL 82.9 1.66 3.32 6.63 24.9 Limits 42.4 - 163 45.8 - 155 41.5 - 162 RL 1.01 by GC/MS with \$ 0.255 0.255 0.255 0.255 0.0102 0.0102 0.0102	MDL MDL Selected	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	D arrow of the second secon	I0/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 13:13 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47 10/01/12 12:47	10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 11:33 10/02/12 15:35 10/02/12 15:05 10/02/12 15:05 10/02/12 18:17 10/02/12 18:17 10/02/12 18:17 10/02/12 18:17 10/02/12 18:17	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

Client Sample ID: MW-2(15) Date Collected: 09/26/12 15:11

Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-21 Matrix: Soil

Percent Solids: 97.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	ND		0.0102		mg/kg dry	\	10/01/12 12:47	10/02/12 18:17	1.00
Benzo (a) anthracene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Chrysene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Benzo (b) fluoranthene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Benzo (k) fluoranthene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Benzo (a) pyrene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Dibenzo (a,h) anthracene	ND		0.00612		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Benzo (ghi) perylene	ND		0.0102		mg/kg dry	¢	10/01/12 12:47	10/02/12 18:17	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67.8		54 - 129				10/01/12 12:47	10/02/12 18:17	1.00
2-FBP	78.0		64.2 - 121				10/01/12 12:47	10/02/12 18:17	1.00
p-Terphenyl-d14	106		27.5 - 140				10/01/12 12:47	10/02/12 18:17	1.00
Method: NWTPH-Dx - Semivolati	ile Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	96.7		10.2		mg/kg dry	\	10/04/12 08:09	10/05/12 16:00	1.00
Heavy Oil Range Hydrocarbons	ND		25.6		mg/kg dry	¢	10/04/12 08:09	10/05/12 16:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	115		50 - 150				10/04/12 08:09	10/05/12 16:00	1.00
2-FBP							10/04/12 08:09	10/05/12 16:00	1.00
2-FBP n-Triacontane-d62	136		50 - 150						
n-Triacontane-d62		010/7000 S		Prep by	EPA 3050B				
	ntent by EPA 6	010/7000 S Qualifier			EPA 3050B Unit	D	Prepared	Analyzed	Dil Fac
n-Triacontane-d62 Method: EPA 6010C - Metals Co	ntent by EPA 6		eries Methods, I			– D	Prepared 10/05/12 06:18	Analyzed	Dil Fac
n-Triacontane-d62 Method: EPA 6010C - Metals Co Analyte Lead	ntent by EPA 6 Result		eries Methods, I RL		Unit		10/05/12 06:18	10/08/12 17:29	1.00
n-Triacontane-d62 Method: EPA 6010C - Metals Co Analyte	ntent by EPA 6 Result		eries Methods, I RL		Unit		10/05/12 06:18	10/08/12 17:29	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		9.58		mg/kg dry	\\\\	10/01/12 13:13	10/01/12 22:00	1.00
Methyl tert-butyl ether	ND		0.0115		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
Benzene	ND		0.00958		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
Ethylbenzene	ND		0.192		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
Toluene	ND		0.192		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
o-Xylene	ND		0.383		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
m,p-Xylene	ND		0.767		mg/kg dry	¢.	10/01/12 13:13	10/01/12 22:00	1.00
1,2-Dichloroethane (EDC)	ND		0.192		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
Xylenes (total)	ND		2.87		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
Hexane	ND		0.192		mg/kg dry	¢	10/01/12 13:13	10/01/12 22:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		42.4 - 163				10/01/12 13:13	10/01/12 22:00	1.00
Toluene-d8	111		45.8 - 155				10/01/12 13:13	10/01/12 22:00	1.00
4-bromofluorobenzene	111		41.5 - 162				10/01/12 13:13	10/01/12 22:00	1.00

Client Sample Results

TestAmerica Job ID: SVJ0004

Lab Sample ID: SVJ0004-22

6

Matrix: Soil

Percent Solids: 78.7

Client: Geo Engineers - Spokane Project/Site: 0504-081-00 Client Sample ID: MW-3(6) Date Collected: 09/26/12 17:10 Date Received: 09/28/12 16:30

Method: EPA 8011 - EDB by EPA M	ethod 8011						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	1.26	ug/kg dry	<u>\$</u>	10/02/12 10:05	10/02/12 20:13	1.00

Method: EPA 8270C - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0126		mg/kg dry	₽	10/01/12 12:47	10/02/12 15:29	1.00
2-Methylnaphthalene	ND		0.0126		mg/kg dry	₽	10/01/12 12:47	10/02/12 15:29	1.00
1-Methylnapthalene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Acenaphthylene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Acenaphthene	ND		0.0126		mg/kg dry	₽	10/01/12 12:47	10/02/12 15:29	1.00
Fluorene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Phenanthrene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Anthracene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Fluoranthene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Pyrene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Benzo (a) anthracene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Chrysene	ND		0.0126		mg/kg dry	₽	10/01/12 12:47	10/02/12 15:29	1.00
Benzo (b) fluoranthene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Benzo (k) fluoranthene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Benzo (a) pyrene	ND		0.0126		mg/kg dry	₽	10/01/12 12:47	10/02/12 15:29	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0126		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Dibenzo (a,h) anthracene	ND		0.00755		mg/kg dry	¢	10/01/12 12:47	10/02/12 15:29	1.00
Benzo (ghi) perylene	ND		0.0126		mg/kg dry	₽	10/01/12 12:47	10/02/12 15:29	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71.6		54 - 129				10/01/12 12:47	10/02/12 15:29	1.00
2-FBP	74.0		64.2 - 121				10/01/12 12:47	10/02/12 15:29	1.00
p-Terphenyl-d14	99.0		27.5 - 140				10/01/12 12:47	10/02/12 15:29	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 12.6 ₽ Diesel Range Hydrocarbons 10/04/12 08:09 10/05/12 16:17 1.00 mg/kg dry ₽ Heavy Oil Range Hydrocarbons ND 31.6 mg/kg dry 10/04/12 08:09 10/05/12 16:17 1.00 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-FBP 108 50 - 150 10/04/12 08:09 10/05/12 16:17 1.00 n-Triacontane-d62 50 - 150 10/04/12 08:09 10/05/12 16:17 1.00 124

Method: EPA 6010C - Metals Conte	ent by EPA 60	010/7000 Se	ries Methods	, Prep by E	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.47		1.96		mg/kg dry	<u> </u>	10/05/12 06:18	10/08/12 17:33	1.00

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 12J0003-BLK1										Client	Sample ID: Metho	od Blank
Matrix: Soil											Prep Ty	oe: Tota
Analysis Batch: 12J0003											Prep Batch: 12	J0003_F
	Bla	ank	Blank									
Analyte	Res	sult	Qualifier	RL		MDL	Unit	Γ)	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons		ND		5.00			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.00
Methyl tert-butyl ether		ND		0.00600			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.00
Benzene		ND		0.00500			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.00
Ethylbenzene		ND		0.100			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.00
Toluene		ND		0.100			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.0
o-Xylene		ND		0.200			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.0
m,p-Xylene		ND		0.400			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.0
Naphthalene		ND		0.200			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.0
1,2-Dichloroethane (EDC)		ND		0.100			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.00
Xylenes (total)		ND		1.50			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.0
Hexane		ND		0.100			mg/kg	wet	10/	01/12 13:1	3 10/01/12 15:39	1.0
							- 0					
			Blank							_		
Surrogate		<u> </u>	Qualifier	Limits						Prepared	Analyzed	Dil Fa
Dibromofluoromethane		102		42.4 - 163						01/12 13:1		1.0
Toluene-d8		111		45.8 - 155						01/12 13:1		1.0
4-bromofluorobenzene		107		41.5 - 162					10/	01/12 13:1	3 10/01/12 15:39	1.0
Lab Sample ID: 12J0003-BS1									Clien	t Sampl	e ID: Lab Control	Sample
Matrix: Soil											Prep Ty	
Analysis Batch: 12J0003											Prep Batch: 12	
				Spike	LCS	LCS					%Rec.	
Analyte				Added	Result			Unit	D	%Rec	Limits	
Gasoline Range Hydrocarbons				50.0	45.7			mg/kg wet		91.4	74.4 - 124	
								5 5				
	LCS											
Surrogate	%Recovery	Quali	fier									
Dibromofluoromethane				Limits								
	103			<i>Limits</i> 42.4 - 163								
Toluene-d8	103 112											
				42.4 - 163								
Toluene-d8 4-bromofluorobenzene	112			42.4 - 163 45.8 - 155					Clien	t Sampl	e ID: Lab Contro	Sample
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2	112			42.4 - 163 45.8 - 155					Clier	it Sampl	e ID: Lab Contro Prep Tvi	
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil	112			42.4 - 163 45.8 - 155					Clien	it Sampl	Prep Ty	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2	112			42.4 - 163 45.8 - 155 41.5 - 162	105	1.05			Clien	it Sampl	Prep Ty Prep Batch: 12	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike		LCS		Unit			Prep Ty Prep Batch: 12 %Rec.	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added	Result			Unit ma/ka wet	D	%Rec	Prep Ty Prep Batch: 12 %Rec. Limits	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500	Result 0.480			mg/kg wet	D	%Rec 96.1	Prep Ty Prep Batch: 12 %Rec. Limits 79 - 127	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500	Result 0.480 0.472			mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5	Prep Ty Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500	Result 0.480 0.472 0.482			mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4	Prep Tyl Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500	Result 0.480 0.472 0.482 0.488			mg/kg wet mg/kg wet mg/kg wet mg/kg wet	D	%Rec 96.1 94.5 96.4 97.5	Prep Tyj Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 0.500	Result 0.480 0.472 0.482 0.488 0.494			mg/kg wet mg/kg wet mg/kg wet mg/kg wet	D	%Rec 96.1 94.5 96.4 97.5 98.8	Prep Tyj Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene m,p-Xylene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 0.500 1.00	Result 0.480 0.472 0.482 0.488 0.494 0.968			mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4 97.5 98.8 96.8	Prep Tyl Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117 86.1 - 116	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene m,p-Xylene Naphthalene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 0.500 1.00 0.500	Result 0.480 0.472 0.482 0.488 0.494 0.968 0.616			mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4 97.5 98.8 96.8 123	Prep Tyj Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117 86.1 - 116 58.8 - 130	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene m,p-Xylene	112			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 0.500 1.00	Result 0.480 0.472 0.482 0.488 0.494 0.968			mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4 97.5 98.8 96.8	Prep Tyl Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117 86.1 - 116	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene m,p-Xylene Naphthalene	112	LCS		42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 0.500 1.00 0.500	Result 0.480 0.472 0.482 0.488 0.494 0.968 0.616			mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4 97.5 98.8 96.8 123	Prep Tyj Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117 86.1 - 116 58.8 - 130	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene m,p-Xylene Naphthalene Xylenes (total) Surrogate	112 108 LCS			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 1.00 0.500 1.00 1.	Result 0.480 0.472 0.482 0.488 0.494 0.968 0.616			mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4 97.5 98.8 96.8 123	Prep Tyj Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117 86.1 - 116 58.8 - 130	oe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 12J0003-BS2 Matrix: Soil Analysis Batch: 12J0003 Analyte Methyl tert-butyl ether Benzene Ethylbenzene Toluene o-Xylene m,p-Xylene Naphthalene Xylenes (total)	112 108			42.4 - 163 45.8 - 155 41.5 - 162 Spike Added 0.500 0.500 0.500 0.500 0.500 1.00 0.500 1.00 1.	Result 0.480 0.472 0.482 0.488 0.494 0.968 0.616			mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	<u>D</u>	%Rec 96.1 94.5 96.4 97.5 98.8 96.8 123	Prep Tyj Prep Batch: 12 %Rec. Limits 79 - 127 75.9 - 123 80.7 - 112 77.3 - 126 85.3 - 117 86.1 - 116 58.8 - 130	oe: Tota

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 12J0003-BS3						C	lient	Sample	e ID: Lab Control Sample
Matrix: Soil									Prep Type: Tota
Analysis Batch: 12J0003			Spike	LCS	LCS				Prep Batch: 12J0003_I %Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Hexane			0.500	0.440		mg/kg wet		87.9	50 - 150
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane	100		42.4 - 163						
Toluene-d8	107		45.8 - 155						
4-bromofluorobenzene	108		41.5 - 162						

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 12J0011-BLK1												Client S	ample ID:		
Matrix: Soil													Pre	ep Type	: Total
Analysis Batch: 12J0011													Prep Bato	:h: 12J0	011_P
	B	Blank	Blank												
Analyte	R		Qualifier		RL		MDL			D		repared	Analyz		Dil Fac
1,2-Dibromoethane		ND			1.00			ug/kg \	wet	-	10/02	2/12 10:05	10/02/12	17:46	1.00
Lab Sample ID: 12J0011-BS1										Cli	ent	Sample	ID: Lab Co	ontrol S	ample
Matrix: Soil													Pre	ер Туре	: Total
Analysis Batch: 12J0011													Prep Bato	:h: 12J0	011_P
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane				5.00		5.18			ug/kg wet			104	60 - 140		
Lab Sample ID: 12J0011-BS2										Cli	ent	Sample	ID: Lab Co	ontrol S	ample
Matrix: Soil													Pre	ер Туре	: Total
Analysis Batch: 12J0011													Prep Bato		
-				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane				5.00		5.06			ug/kg wet			101	60 - 140		
Lab Sample ID: 12J0011-MS1												Client	Sample ID	: Matrix	Spike
Matrix: Soil													Pre	ер Туре	: Total
Analysis Batch: 12J0011													Prep Bato	h: 12J0	011_P
-	Sample	Sam	ple	Spike	Matr	ix Spike	Matri	ix Spike	e				%Rec.		
Analyte	Result	Qual	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane	ND			5.79		4.63			ug/kg dry		¢	80.0	60 _ 140		
Lab Sample ID: 12J0011-MSD1									С	lien	t Sa	mple ID	: Matrix Sp	oike Du	olicate
Matrix: Soil														ер Туре	
Analysis Batch: 12J0011													Prep Bato		
-	Sample	Sam	ple	Spike	ıtrix Sp	oike Dup	Matri	ix Spike	e Dur				%Rec.		RPD
Analyte	Result	Qual	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	ND			5.56		4.83			ug/kg dry		₽.	86.8	60 - 140	4.12	20

Method: EPA 8270C - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 12J0002-BLK1 Matrix: Soil							Client Sa	mple ID: Metho Prep Typ	
Analysis Batch: 12J0002								Prep Batch: 12	
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
1-Methylnapthalene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Acenaphthylene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Acenaphthene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Fluorene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Phenanthrene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Anthracene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Fluoranthene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Pyrene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Benzo (a) anthracene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Chrysene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Benzo (b) fluoranthene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Benzo (k) fluoranthene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Benzo (a) pyrene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Dibenzo (a,h) anthracene	ND		0.00600		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
Benzo (ghi) perylene	ND		0.0100		mg/kg wet		10/01/12 12:47	10/01/12 15:05	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	99.8		54 - 129				10/01/12 12:47	10/01/12 15:05	1.00

Lab Sample ID: 12J0002-BS1
Matrix: Soil

Analysis Batch: 12J0002

2-FBP

p-Terphenyl-d14

Analysis Batch: 12J0002							Prep Bat	ch: 12J0002_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.133	0.109		mg/kg wet		82.0	59 - 100	
Fluorene	0.133	0.115		mg/kg wet		86.5	52.8 - 115	
Chrysene	0.133	0.120		mg/kg wet		90.0	61.4 - 122	
Indeno (1,2,3-cd) pyrene	0.133	0.126		mg/kg wet		94.5	61.5 - 147	

64.2 - 121

27.5 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	79.2		54 _ 129
2-FBP	74.0		64.2 - 121
p-Terphenyl-d14	95.0		27.5 - 140

77.6

100

Lab Sample ID: 12J0002-BSD1 Matrix: Soil

Analysis Batch: 12J0002							Prep Bat	ch: 12J0	002_P
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	0.133	0.132		mg/kg wet		99.0	59 - 100	18.8	35
Fluorene	0.133	0.135		mg/kg wet		102	52.8 - 115	16.0	35
Chrysene	0.133	0.133		mg/kg wet		100	61.4 - 122	10.5	35

TestAmerica Spokane

Page 23 of 44

Prep Type: Total

1.00

1.00

Prep Type: Total

10/01/12 12:47 10/01/12 15:05

10/01/12 12:47 10/01/12 15:05

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Prep Type: Total

Method: EPA 8270C - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

27.5 - 140

Lab Sample ID: 12J0002-BSD1						Client	Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Soil									Pre	p Type:	Total
Analysis Batch: 12J0002									Prep Batc	h: 12J0	002_P
			Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Indeno (1,2,3-cd) pyrene			0.133	0.145		mg/kg wet		109	61.5 - 147	13.8	35
	LCS Dup	LCS Dup									
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	94.2		54 - 129								
2-FBP	91.2		64.2 _ 121								

Lab Sample ID: 12J0002-MS1 Matrix: Soil

Analysis Batch: 12J0002

p-Terphenyl-d14

Analysis Batch: 12J0002									Prep Bat	ch: 12J0002_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		0.148	0.133		mg/kg dry	×	90.0	30 - 120	
Fluorene	ND		0.148	0.153		mg/kg dry	☆	104	30 - 140	
Chrysene	0.00344		0.148	0.147		mg/kg dry	☆	97.2	30 - 133	
Indeno (1,2,3-cd) pyrene	ND		0.148	0.140		mg/kg dry	\$	95.0	30 - 140	

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	82.6		54 - 129
2-FBP	82.0		64.2 - 121
p-Terphenyl-d14	103		27.5 - 140

106

Lab Sample ID: 12J0002-MSD1 Matrix: Soil Analysis Batch: 12J0002

Analysis Batch: 12J0002									Prep Bate	ch: 12J0	002_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		0.147	0.134		mg/kg dry	\ ☆	91.0	30 - 120	0.822	35
Fluorene	ND		0.147	0.154		mg/kg dry	¢	104	30 - 140	0.678	35
Chrysene	0.00344		0.147	0.142		mg/kg dry	¢	94.2	30 - 133	3.34	35
Indeno (1,2,3-cd) pyrene	ND		0.147	0.147		mg/kg dry	¢	100	30 - 140	4.85	35

	Matrix Spike Dup	Matrix Spike	Dup
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	86.0		54 _ 129
2-FBP	86.0		64.2 - 121
p-Terphenyl-d14	102		27.5 - 140

Lab Sample ID: 12J0069-BLK1 Matrix: Soil

Analysis Batch: 12J0069

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		10/10/12 09:35	10/11/12 13:46	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		10/10/12 09:35	10/11/12 13:46	1.00
1-Methylnapthalene	ND		0.0100		mg/kg wet		10/10/12 09:35	10/11/12 13:46	1.00
Acenaphthylene	ND		0.0100		mg/kg wet		10/10/12 09:35	10/11/12 13:46	1.00

TestAmerica Spokane

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 12J0069_P

Method: EPA 8270C - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 12J0069-BLK1									Client S	Sample ID: Metho	
Matrix: Soil										Prep Typ	
Analysis Batch: 12J0069	Blank	Blank								Prep Batch: 12	10069 ⁻ h
Analyte		Qualifier	RL		MDL Un	it	D	Р	repared	Analyzed	Dil Fac
Acenaphthene	ND		0.0100			/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Fluorene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Phenanthrene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Anthracene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Fluoranthene	ND		0.0100			/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Pyrene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Benzo (a) anthracene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Chrysene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Benzo (b) fluoranthene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Benzo (k) fluoranthene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Benzo (a) pyrene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Dibenzo (a,h) anthracene	ND		0.00600		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
Benzo (ghi) perylene	ND		0.0100		mg	/kg wet		10/1	0/12 09:3	5 10/11/12 13:46	1.00
	Blank	Blank									
Surrogate	%Recovery	Qualifier	Limits					Ρ	repared	Analyzed	Dil Fac
Nitrobenzene-d5	96.6		54 - 129				-	10/1	0/12 09:3	5 10/11/12 13:46	1.00
2-FBP	94.4		64.2 - 121					10/1	0/12 09:3	5 10/11/12 13:46	1.00
p-Terphenyl-d14 _	127		27.5 - 140					10/1	0/12 09:3	5 10/11/12 13:46	1.00
Lab Sample ID: 12J0069-BS1							CI	ient	Sample	e ID: Lab Control	Sample
Matrix: Soil									•	Prep Typ	
Analysis Batch: 12J0069										Prep Batch: 12	
			Spike	LCS	LCS					%Rec.	_
Analyte			Added	Result	Qualifier	- Unit		D	%Rec	Limits	
Naphthalene			0.133	0.126		mg/kg we	t	_	94.5	59 - 100	
Fluorene			0.133	0.143		mg/kg we	t		108	52.8 - 115	
Chrysene			0.133	0.137		mg/kg we	t		103	61.4 - 122	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	81.8		54 - 129
2-FBP	90.4		64.2 - 121
p-Terphenyl-d14	113		27.5 - 140

Lab Sample ID: 12J0069-BSD1 Matrix: Soil Analysis Batch: 12J0069

Indeno (1,2,3-cd) pyrene

Client Sample ID: Lab Control Sample Dup Prep Type: Total Prep Batch: 12J0069 P

105 61.5 - 147

Analysis Datch. 1230009							Ргер Бац	II. 12JU	703 ⁻ -
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	 0.133	0.117		mg/kg wet	_	88.0	59 - 100	7.12	35
Fluorene	0.133	0.138		mg/kg wet		104	52.8 - 115	3.79	35
Chrysene	0.133	0.133		mg/kg wet		100	61.4 - 122	2.96	35
Indeno (1,2,3-cd) pyrene	0.133	0.133		mg/kg wet		99.5	61.5 - 147	5.38	35

0.133

0.140

mg/kg wet

Method: EPA 8270C - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 12J0069-BSD1						Client	t San	ple ID:	Lab Contro	I Sampl	e Du
Matrix: Soil									Pre	p Type:	Tota
Analysis Batch: 12J0069									Prep Batc		
	LCS Dup	LCS Dup									
Surrogate	%Recovery	•	Limits								
Nitrobenzene-d5	64.8		54 - 129	_							
2-FBP	83.6		64.2 - 121								
p-Terphenyl-d14	109		27.5 - 140								
Lab Sample ID: 12J0069-MS1								Client	Sample ID	: Matrix	Spik
Matrix: Soil									Pre	p Type:	Tota
Analysis Batch: 12J0069									Prep Batc	h: 12J0	069_
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Naphthalene	0.0293		0.145	0.159		mg/kg dry	¢	89.8	30 - 120		
Fluorene	0.0367		0.145	0.159		mg/kg dry	¢	84.7	30 - 140		
Chrysene	0.374		0.145	0.370	M4	mg/kg dry	¢	-2.97	30 - 133		
ndeno (1,2,3-cd) pyrene	0.198		0.145	0.283		mg/kg dry	¢	58.4	30 _ 140		
	Matrix Spike	Matrix Spike									
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	74.0		54 - 129	_							
2-FBP	90.0		64.2 - 121								
p-Terphenyl-d14	94.0		27.5 - 140								
Lab Sample ID: 12J0069-MSD1						Clie	ent Sa	ample II	D: Matrix Sp	oike Dup	licat
Matrix: Soil									Pre	p Type:	Tota
Analysis Batch: 12J0069									Prep Batc	h: 12J0	069_
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Naphthalene	0.0293		0.145	0.174	_	mg/kg dry	¢	99.8	30 - 120	8.96	З
Fluorene	0.0367		0.145	0.182		mg/kg dry	¢	99.8	30 - 140	13.0	3
Chrysene	0.374		0.145	0.552	M4	mg/kg dry	¢	123	30 - 133	39.6	3
ndeno (1,2,3-cd) pyrene	0.198		0.145	0.341		mg/kg dry	\$	98.8	30 - 140	18.9	:
Ма	trix Spike Dup	Matrix Spike I	Dup								
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	80.0		54 - 129	_							
	92.0		64.2 - 121								
2-FBP			27.5 - 140								
2-FBP p-Terphenyl-d14	98.0		27.0 - 140								
	98.0		27.0 - 140								

Lab Sample ID: 12J0027-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e: Total
Analysis Batch: 12J0027							F	Prep Batch: 12J	0027_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		10.0		mg/kg wet		10/04/12 08:09	10/05/12 12:14	1.00
Heavy Oil Range Hydrocarbons	ND		25.0		mg/kg wet		10/04/12 08:09	10/05/12 12:14	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued)

Lab Sample ID: 12J0027-BLK1

Matrix: Soil

Client Sample ID: Method Blank

Prep Type: Total

5 6 7 8 9

									1100 131	
Analysis Batch: 12J0027									Prep Batch: 12	J0027_P
	Bla	nk Blank								
Surrogate	%Recove	ry Qualifier	Lim	its			P	repared	Analyzed	Dil Fac
2-FBP	1	10	50 -	150			10/0	04/12 08:0	9 10/05/12 12:14	1.00
n-Triacontane-d62	1.	20	50 -	150			10/0	04/12 08:0	9 10/05/12 12:14	1.00
Lab Sample ID: 12J0027-BS1							Client	t Sample	e ID: Lab Control	
Matrix: Soil									Prep Ty	
Analysis Batch: 12J0027									Prep Batch: 12	J0027_P
			Spike		LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons			83.3	86.8		mg/kg wet		104	73 - 133	
	LCS L	cs								
Surrogate	%Recovery Q	ualifier	Limits							
2-FBP	112		50 - 150							
n-Triacontane-d62	126		50 _ 150							
Lab Sample ID: 12J0027-MS1									Client Sample II	D: B-2(5)
Matrix: Soil									Prep Ty	be: Total
Analysis Batch: 12J0027									Prep Batch: 12	J0027_P
	Sample S	ample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.	
Analyte	Result Q	ualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons	ND		104	82.4		mg/kg dry	<u> </u>	79.3	70.1 - 139	
	Matrix Spike M	latrix Spike								
Surrogate	%Recovery Q	-	Limits							
2-FBP	103	·	50 - 150							
n-Triacontane-d62	120		50 - 150							
Lab Sample ID: 12J0027-DUP1									Client Sample II	D: B-2(5)
Matrix: Soil									Prep Ty	be: Total
Analysis Batch: 12J0027									Prep Batch: 12	J0027_P
	Sample S	ample		Duplicate	Duplicate					RPD
Analyte	Result Q	ualifier		Result	Qualifier	Unit	D		RP	D Limit
Diesel Range Hydrocarbons	ND			ND		mg/kg dry	<u></u>			40
Heavy Oil Range Hydrocarbons	ND			ND		mg/kg dry	¢			40
	Duplicate D	uplicate								

	Duplicate	Duplicate	
Surrogate	%Recovery	Qualifier	Limits
2-FBP	101		50 - 150
n-Triacontane-d62	115		50 - 150

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-122121/1-A Matrix: Solid Analysis Batch: 122123	МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		2.0		mg/Kg		10/10/12 17:02	10/10/12 21:40	1
C10-C12 Aromatics	ND		2.0		mg/Kg		10/10/12 17:02	10/10/12 21:40	1
C12-C13 Aromatics	ND		2.0		mg/Kg		10/10/12 17:02	10/10/12 21:40	1

RL

2.0

2.0

2.0

2.0

14

Limits

60 - 140

60 - 140

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

10/10/12 17:02

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC) (Continued)

MB MB

ND

ND

ND

ND

ND

103

91

102

MB MB %Recovery Qualifier

Result Qualifier

Matrix: Solid

C8-C10 Aliphatics

C8-C10 Aromatics

C5-C6 Aliphatics

C6-C8 Aliphatics

Total VPH

Surrogate

BFB - PID

4-Bromofluorobenzene

Analyte

Analysis Batch: 122123

Lab Sample ID: MB 580-122121/1-A

Client Sample ID: Method Blank

Analyzed

10/10/12 21:40

10/10/12 21:40

10/10/12 21:40

10/10/12 21:40

10/10/12 21:40

Prep Type: Total/NA Prep Batch: 122121

7
8
9

Dil Fac

1

1

1

1

1

Dil Fac Prepared Analyzed 10/10/12 17:02 10/10/12 21:40 1 10/10/12 17:02 10/10/12 21:40 1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 122121

Lab Sample ID: MB 580-122121/1-A Matrix: Solid Analysis Batch: 122447

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
C10-C12 Aromatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
C12-C13 Aromatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
C8-C10 Aliphatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
C8-C10 Aromatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
C5-C6 Aliphatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
C6-C8 Aliphatics	ND		2.0		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
Total VPH	ND		14		mg/Kg		10/10/12 17:02	10/15/12 19:50	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BFB - PID	105		60 - 140				10/10/12 17:02	10/15/12 19:50	1

60 - 140

4-Bromofluorobenzene	
 Lab Sample ID: LCS 580-122121/2-A	

Matrix: Solid Analysis Ratch: 122123

Analysis Batch: 122123	Spike	LCS L	cs			Prep Bato %Rec.	n: 122121
Analyte	Added	Result Q	ualifier Unit	D	%Rec	Limits	
C10-C12 Aliphatics	4.00	4.06	mg/Kg		101	70 - 130	
C10-C12 Aromatics	4.00	4.08	mg/Kg		102	70 - 130	
C12-C13 Aromatics	8.00	7.99	mg/Kg		100	70 _ 130	
C8-C10 Aliphatics	8.00	5.66	mg/Kg		71	70 - 130	
C8-C10 Aromatics	16.0	16.7	mg/Kg		105	70 _ 130	
C5-C6 Aliphatics	8.00	5.71	mg/Kg		71	70 - 130	
C6-C8 Aliphatics	4.00	3.03	mg/Kg		76	70 ₋ 130	
Total VPH	64.0	59.5	mg/Kg		93	70 - 130	
LCS	LCS						

Surrogate	%Recovery	Qualifier	Limits
BFB - PID	100		60 - 140
4-Bromofluorobenzene	88		60 - 140

Client Sample ID: Lab Control Sample

10/10/12 17:02

Prep Type: Total/NA Prop Batch: 122121

10/15/12 19:50

Client Sample ID: SVJ0004-07

Client Sample ID: SVJ0004-07

Prep Type: Total/NA

Prep Type: Total/NA

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 580-122121/2-A Matrix: Solid

Matrix: Solid Analysis Batch: 122447						Prep Type: Total/NA Prep Batch: 122121
	Spik	e LCS	LCS			%Rec.
Analyte	Adde	d Result	Qualifier U	Init D	%Rec	Limits
C10-C12 Aliphatics	4.0	0 4.67	m	ng/Kg	117	70 - 130
C10-C12 Aromatics	4.0	0 4.07	m	ng/Kg	102	70 - 130
C12-C13 Aromatics	8.0	0 7.40	m	ng/Kg	92	70 - 130
C8-C10 Aliphatics	8.0	0 7.36	m	ng/Kg	92	70 - 130
C8-C10 Aromatics	16	0 16.3	m	ng/Kg	102	70 - 130
C5-C6 Aliphatics	8.0	0 6.01	m	ng/Kg	75	70 - 130
C6-C8 Aliphatics	4.0	0 3.82	m	ng/Kg	95	70 - 130
Total VPH	64	0 61.5	m	ng/Kg	96	70 - 130
	LCS LCS					

	LUS L	CS .	
Surrogate	%Recovery Q	ualifier	Limits
BFB - PID	103		60 - 140
4-Bromofluorobenzene	97		60 - 140

Lab Sample ID: 580-35243-1 MS Matrix: Solid

Analysis Batch: 122123									Prep Batch: 122121
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
C10-C12 Aliphatics	470	E	4.10	756	E 4	mg/Kg	¢	7053	70 - 130
C10-C12 Aromatics	180	E	4.10	92.9	4 E	mg/Kg	₽	-2061	70 - 130
C12-C13 Aromatics	100	E	8.19	54.1	4 E	mg/Kg	₽	-608	70 - 130
C8-C10 Aliphatics	630	E	8.19	1060	E 4	mg/Kg	₽	5252	70 - 130
C8-C10 Aromatics	200	E	16.4	109	4 E	mg/Kg	₽	-578	70 - 130
C5-C6 Aliphatics	1.6		8.19	13.1	F	mg/Kg	¢	141	70 - 130
C6-C8 Aliphatics	130	E	4.10	223	E 4	mg/Kg	¢	2219	70 - 130
Total VPH	1700	E	65.5	2320	E 4	mg/Kg	¢	907	70 - 130
	MS	MS							

Surrogate	%Recovery	Qualifier	Limits
BFB - PID	71		60 - 140
4-Bromofluorobenzene	1039	X	60 - 140

Lab Sample ID: 580-35243-1 MS Matrix: Solid

Analysis Batch: 122447

Analysis Batch: 122447									Prep Batch: 12	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C12 Aliphatics	320	H	205	699	F	mg/Kg	\ ↓	187	70 - 130	
C10-C12 Aromatics	570	Н	205	927	F	mg/Kg	¢	175	70 - 130	
C12-C13 Aromatics	180	Н	410	597		mg/Kg	¢	102	70 - 130	
C8-C10 Aliphatics	160	Н	410	835	F	mg/Kg	¢	166	70 - 130	
C8-C10 Aromatics	480	Н	819	1510		mg/Kg	¢	126	70 - 130	
C5-C6 Aliphatics	ND	Н	410	320		mg/Kg	¢	78	70 - 130	
C6-C8 Aliphatics	81	Н	205	355	F	mg/Kg	₽	134	70 - 130	
Total VPH	1800	Н	3280	5910		mg/Kg	¢	126	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
BFB - PID	99		60 - 140							

Limits

60 - 140

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC) (Continued)

MS MS

%Recovery Qualifier

111

Lab Sample ID: 580-35243-1 MS

Lab Sample ID: 580-35243-1 MSD

Analysis Batch: 122447

4-Bromofluorobenzene

Matrix: Solid

Matrix: Solid

Surrogate

Client Sample ID: SVJ0004-07

Client Sample ID: SVJ0004-07

Prep Type: Total/NA

Prep Batch: 122121

Prep Type: Total/NA Prep Batch: 122121

2 3 4 5 6 7 8

Client Sample ID: SVJ0004-07	
Prep Type: Total/NA	
Prep Batch: 122121	
A/ D DDD	

Analysis Batch: 122123									Prep	Batch: 1	22121
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C10-C12 Aliphatics	470	E	4.10	706	E 4	mg/Kg	¢	5829	70 - 130	7	25
C10-C12 Aromatics	180	E	4.10	102	4 E	mg/Kg	¢	-1851	70 - 130	9	25
C12-C13 Aromatics	100	E	8.19	61.5	4 E	mg/Kg	₽	-519	70 - 130	13	25
C8-C10 Aliphatics	630	E	8.19	981	E 4	mg/Kg	₽	4256	70 ₋ 130	8	25
C8-C10 Aromatics	200	E	16.4	119	4 E	mg/Kg	₽	-517	70 ₋ 130	9	25
C5-C6 Aliphatics	1.6		8.19	12.3		mg/Kg	₽	130	70 - 130	7	25
C6-C8 Aliphatics	130	E	4.10	205	E 4	mg/Kg	¢	1764	70 _ 130	9	25
Total VPH	1700	Е	65.5	2190	E 4	mg/Kg	₽	718	70 - 130	5	25
						0					

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
BFB - PID	75		60 - 140
4-Bromofluorobenzene	970	X	60 - 140

Lab Sample ID: 580-35243-1 MSD Matrix: Solid Analysis Batch: 122447

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
BFB - PID	101		60 - 140
4-Bromofluorobenzene	112		60 - 140

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-12200	1/1-B						Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 122487								Prep Batch:	122001
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C12-C16 Aromatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C16-C21 Aromatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C21-C34 Aromatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C10-C12 Aliphatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C12-C16 Aliphatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C16-C21 Aliphatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
C21-C34 Aliphatics	ND		5.0		mg/Kg		10/09/12 16:51	10/16/12 07:27	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	85		60 - 140				10/09/12 16:51	10/16/12 07:27	1
o-Terphenyl	77		60 - 140				10/09/12 16:51	10/16/12 07:27	1

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 580-122001/2-B Matrix: Solid

watrix: Solid								Prep Typ	
Analysis Batch: 122487								Prep Ba	tch: 122001
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C12 Aromatics		6.67	ND	*	mg/Kg		67	70 - 130	
C12-C16 Aromatics		20.0	14.2		mg/Kg		71	70 - 130	
C16-C21 Aromatics		40.0	27.7	*	mg/Kg		69	70 ₋ 130	
C21-C34 Aromatics		53.3	48.3		mg/Kg		91	70 ₋ 130	
C10-C12 Aliphatics		6.67	ND	*	mg/Kg		53	70 - 130	
C12-C16 Aliphatics		13.3	8.94	*	mg/Kg		67	70 - 130	
C16-C21 Aliphatics		20.0	16.6		mg/Kg		83	70 - 130	
C21-C34 Aliphatics		40.0	32.5		mg/Kg		81	70 - 130	
	LCS LCS								

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctadecane	80		60 - 140
o-Terphenyl	79		60 - 140

Lab Sample ID: LCSD 580-122001/3-B Matrix: Solid naluaia Datahi 400407

Analysis Batch: 122487							Prep	Batch: 1	22001
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C10-C12 Aromatics	6.67	5.01		mg/Kg		75	70 - 130	12	25
C12-C16 Aromatics	20.0	15.9		mg/Kg		80	70 - 130	11	25
C16-C21 Aromatics	40.0	29.7		mg/Kg		74	70 - 130	7	25
C21-C34 Aromatics	53.3	51.4		mg/Kg		96	70 - 130	6	25
C10-C12 Aliphatics	6.67	ND	*	mg/Kg		72	70 - 130	30	25
C12-C16 Aliphatics	13.3	10.9		mg/Kg		81	70 - 130	19	25
C16-C21 Aliphatics	20.0	18.0		mg/Kg		90	70 ₋ 130	8	25
C21-C34 Aliphatics	40.0	34.9		mg/Kg		87	70 _ 130	7	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctadecane	80		60 - 140
o-Terphenyl	82		60 - 140

Lab Sample ID: MB 580-122690/1-B Matrix: Solid

Analysis Batch: 122934

	MB	INIB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C12-C16 Aromatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C16-C21 Aromatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C21-C34 Aromatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C10-C12 Aliphatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C12-C16 Aliphatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C16-C21 Aliphatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
C21-C34 Aliphatics	ND		5.0		mg/Kg		10/17/12 16:59	10/20/12 16:56	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	100		60 - 140				10/17/12 16:59	10/20/12 16:56	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 122690

5

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 580-122690/1-B								Client Sa	mple ID: Metho	d Blank
Matrix: Solid									Prep Type: 1	Total/NA
Analysis Batch: 122934									Prep Batch:	: 122690
		MB MB								
Surrogate	%Recov	ery Qualifie	r Limits				Р	repared	Analyzed	Dil Fa
o-Terphenyl		93	60 - 140				10/1	7/12 16:59	10/20/12 16:56	1
Lab Sample ID: LCS 580-122690/2-B	•						Client	Sample	ID: Lab Control	Sample
Matrix: Solid									Prep Type: 1	Total/NA
Analysis Batch: 122934									Prep Batch:	122690
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C12 Aromatics			6.67	5.53		mg/Kg		83	70 - 130	
C12-C16 Aromatics			20.0	17.6		mg/Kg		88	70 - 130	
C16-C21 Aromatics			40.0	32.7		mg/Kg		82	70 - 130	
C21-C34 Aromatics			53.3	51.1		mg/Kg		96	70 - 130	
C10-C12 Aliphatics			6.67	ND		mg/Kg		73	70 - 130	
C12-C16 Aliphatics			13.3	11.5		mg/Kg		87	70 - 130	
C16-C21 Aliphatics			20.0	19.5		mg/Kg		97	70 - 130	
C21-C34 Aliphatics			40.0	36.8		mg/Kg		92	70 - 130	
	LCS	LCS								
Surrogate %R	ecovery	Qualifier	Limits							
1-Chlorooctadecane	84		60 - 140							
o-Terphenyl	90		60 - 140							

Lab Sample ID: 12J0038-BLK1 Matrix: Other (L) Analysis Batch: 12J0038		nk Blank							Clie		ample ID: Metho Prep Typ Prep Batch: 12	e: Total
Analyte	Res	ult Qualifier		RL	MDL	Unit		D	Prepa	red	Analyzed	Dil Fac
Lead	I	ND		1.50		mg/kg	g wet	1	0/05/12	06:18	10/08/12 15:49	1.00
Lab Sample ID: 12J0038-BS1 Matrix: Other (L) Analysis Batch: 12J0038			Spike	LC	S LCS	i		Clie	ent Sa	÷	ID: Lab Control Prep Typ Prep Batch: 12. %Rec.	e: Total
Analyte			Added	Resu	t Qua	lifier	Unit	I	D %F	Rec	Limits	
Lead			50.0	49.	8		mg/kg we	et -	9	9.7	80 - 120	
Lab Sample ID: 12J0038-MS1 Matrix: Other (L) Analysis Batch: 12J0038	Sample S	ample	Spike	Matrix Spik	e Mati	rix Spik	œ		C		Sample ID: Matr Prep Typ Prep Batch: 12. %Rec.	e: Total
Analyte	Result C	Qualifier	Added	Resu	t Qua	lifier	Unit	I	D %F	Rec	Limits	
Lead	8.01		49.0	57.	2		mg/kg we	et -		100	75 - 125	

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)

Lab Sample ID: 12J0038-MSD1						Clie	nt Sa	ample ID	D: Matrix Sp	oike Dup	olicate
Matrix: Other (L)									Pre	p Type:	Tota
Analysis Batch: 12J0038									Prep Batc	h: 12J0	038_F
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Lead	8.01		46.7	53.9		mg/kg wet		98.1	75 - 125	6.06	20
Lab Sample ID: 12J0038-DUP1								Clie	ent Sample	ID: Dup	olicate
Matrix: Other (L)									Pre	p Type:	Tota
Analysis Batch: 12J0038									Prep Batc	h: 12J0	038_F
	Sample	Sample		Duplicate	Duplicate						RPI
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Lim
Lead	8.01			8.05		mg/kg wet				0.472	2

Client Sample ID: B-1(15) Date Collected: 09/26/12 11:24

Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.945	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 18:49	CBW	TAL SPK
Total	Prep	EPA 3580		0.971	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 18:11	MS	TAL SPK
Total	Prep	EPA 3550B		0.988	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		20.0	12J0002	10/02/12 12:15	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 17:52	MS	TAL SPK
Total	Prep	EPA 3550B		1.47	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 12:48	MS	TAL SPK
Total	Prep	EPA 3050B		1.01	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 16:23	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: B-2(5) Date Collected: 09/26/12 12:38 Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.933	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 19:13	CBW	TAL SPK
Total	Prep	EPA 3580		0.949	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 18:23	MS	TAL SPK
Total	Prep	EPA 3550B		0.985	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 12:40	MS	TAL SPK
Total	Prep	EPA 3550B		0.990	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 13:06	MS	TAL SPK
Total	Prep	EPA 3050B		0.952	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 17:18	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: B-3(5)

Date Collected: 09/27/12 10:42 Date Received: 09/28/12 16:30

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.828	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 19:36	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.828	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	50.0	12J0003	10/02/12 10:44	CBW	TAL SPK
Total	Prep	EPA 3580		0.961	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 18:35	MS	TAL SPK

TestAmerica Spokane

Lab Sample ID: SVJ0004-02 Matrix: Soil

Percent Solids: 97.1

Lab Sample ID: SVJ0004-04 Matrix: Soil Percent Solids: 80.2

Lab Sample ID: SVJ0004-07

Matrix: Soil

Percent Solids: 86.1

Client Sample ID: B-3(5)

Date Collected: 09/27/12 10:42 Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3550B		0.985	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 13:04	MS	TAL SPK
Total	Prep	EPA 3550B		0.989	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 13:58	MS	TAL SPK
Total/NA	Prep	5035			122121	10/10/12 17:02	EZ	TAL SEA
Total/NA	Analysis	NWTPH/VPH		1	122123	10/10/12 22:06	EZ	TAL SEA
Total/NA	Analysis	NWTPH/VPH		50	122447	10/15/12 21:36	EZ	TAL SEA
Total/NA	Prep	3550B			122001	10/09/12 16:51	RS	TAL SEA
Total/NA	Analysis	NWTPH/EPH		1	122487	10/16/12 08:36	EK	TAL SEA
Total/NA	Prep	3550B	RE		122690	10/17/12 16:59	AA	TAL SEA
Total/NA	Analysis	NWTPH/EPH	RE	1	122934	10/20/12 18:29	EK	TAL SEA
Total	Prep	EPA 3050B		0.990	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 16:26	ICP	TAL SPK
Total/NA	Analysis	D 2216		1	121868	10/08/12 13:35	RM	TAL SEA
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: B-4(5) Date Collected: 09/27/12 12:03 Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-10 Matrix: Soil Percent Solids: 92.8

Lab Sample ID: SVJ0004-14

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.769	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/02/12 13:09	CBW	TAL SPK
Total	Prep	EPA 3580		0.967	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 18:47	MS	TAL SPK
Total	Prep	EPA 3550B		0.967	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 13:28	MS	TAL SPK
Total	Prep	EPA 3550B		0.996	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 14:15	MS	TAL SPK
Total	Prep	EPA 3050B		1.05	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 16:30	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: B-5(16) Date Collected: 09/27/12 13:52 Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.745	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 20:24	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.745	12J0003_P	10/01/12 13:13	CBW	TAL SPK

TestAmerica Spokane

Percent Solids: 90.9

TestAmerica Job ID: SVJ0004

Lab Sample ID: SVJ0004-07

Matrix: Soil Percent Solids: 86.1

Matrix: Soil

> 8 9 10

Client Sample ID: B-5(16)

Date Collected: 09/27/12 13:52 Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	EPA 8260C	RE1	50.0	12J0003	10/02/12 11:08	CBW	TAL SPK
Total	Prep	EPA 3580		0.995	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 18:59	MS	TAL SPK
Total	Prep	EPA 3550B	RE1	0.999	12J0069_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C	RE1	1.00	12J0069	10/11/12 16:59	MS	TAL SPK
Total	Analysis	EPA 8270C	RE1	20.0	12J0069	10/12/12 10:11	MS	TAL SPK
Total	Prep	EPA 3550B		0.989	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 14:33	MS	TAL SPK
Total/NA	Prep	5035			122121	10/10/12 17:02	EZ	TAL SEA
Total/NA	Analysis	NWTPH/VPH		1	122123	10/11/12 00:44	EZ	TAL SEA
Total/NA	Analysis	NWTPH/VPH		25	122447	10/15/12 20:43	EZ	TAL SEA
Total/NA	Prep	3550B			122001	10/09/12 16:51	RS	TAL SEA
Total/NA	Analysis	NWTPH/EPH		1	122487	10/16/12 08:59	EK	TAL SEA
Total/NA	Prep	3550B	RE		122690	10/17/12 16:59	AA	TAL SEA
Total/NA	Analysis	NWTPH/EPH	RE	1	122934	10/20/12 18:52	EK	TAL SEA
Total	Prep	EPA 3050B		0.990	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 16:37	ICP	TAL SPK
Total/NA	Analysis	D 2216		1	121868	10/08/12 13:35	RM	TAL SEA
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: B-6(15.5)

Date Collected: 09/27/12 15:36 Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-17 Matrix: Soil

Percent Solids: 94

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.13	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/02/12 13:33	CBW	TAL SPK
Total	Prep	EPA 3580		0.996	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 19:12	MS	TAL SPK
Total	Prep	EPA 3550B		0.985	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 14:17	MS	TAL SPK
Total	Prep	EPA 3550B		0.993	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 14:50	MS	TAL SPK
Total	Prep	EPA 3050B		0.943	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 17:22	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Lab Sample ID: SVJ0004-14

Matrix: Soil

Percent Solids: 90.9

Client Sample ID: MW-1(15.5)

Date Collected: 09/27/12 09:24 Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.750	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 21:12	CBW	TAL SPK
Total	Prep	EPA 3580		0.945	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 19:24	MS	TAL SPK
Total	Prep	EPA 3550B		0.966	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 14:41	MS	TAL SPK
Total	Analysis	EPA 8270C		20.0	12J0002	10/02/12 17:28	MS	TAL SPK
Total	Prep	EPA 3550B		0.994	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 15:25	MS	TAL SPK
Total	Prep	EPA 3050B		1.00	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 17:26	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: MW-2(15) Date Collected: 09/26/12 15:11 Date Received: 09/28/12 16:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.785	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 21:36	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.785	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	20.0	12J0003	10/02/12 11:33	CBW	TAL SPK
Total	Prep	EPA 3580		0.983	12J0011_P	10/02/12 10:05	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 19:36	MS	TAL SPK
Total	Prep	EPA 3550B		0.995	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		25.0	12J0002	10/02/12 15:05	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 18:17	MS	TAL SPK
Total	Prep	EPA 3550B		0.999	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 16:00	MS	TAL SPK
Total	Prep	EPA 3050B		1.02	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 17:29	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Client Sample ID: MW-3(6) Date Collected: 09/26/12 17:10 Date Received: 09/28/12 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.30	12J0003_P	10/01/12 13:13	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0003	10/01/12 22:00	CBW	TAL SPK
Total	Prep	EPA 3580		0.991	12J0011_P	10/02/12 10:05	MS	TAL SPK

TestAmerica Spokane

Lab Sample ID: SVJ0004-22

Lab Sample ID: SVJ0004-19

Lab Sample ID: SVJ0004-21

Matrix: Soil

Percent Solids: 97.6

Matrix: Soil Percent Solids: 89.9

Matrix: Soil

Percent Solids: 78.7

Client Sample ID: MW-3(6)

Date Collected: 09/26/12 17:10 Date Received: 09/28/12 16:30

Lab Sample ID: SVJ0004-22

Matrix: Soil Percent Solids: 78.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	EPA 8011		1.00	12J0011	10/02/12 20:13	MS	TAL SPK
Total	Prep	EPA 3550B		0.990	12J0002_P	10/01/12 12:47	MS	TAL SPK
Total	Analysis	EPA 8270C		1.00	12J0002	10/02/12 15:29	MS	TAL SPK
Total	Prep	EPA 3550B		0.994	12J0027_P	10/04/12 08:09	CBW	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	12J0027	10/05/12 16:17	MS	TAL SPK
Total	Prep	EPA 3050B		1.03	12J0038_P	10/05/12 06:18	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12J0038	10/08/12 17:33	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	12J0015_P	10/01/12 16:12	MS	TAL SPK
Total	Analysis	TA SOP		1.00	12J0015	10/03/12 15:52	MS	TAL SPK

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane

l estAmerica Job I

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-13
Washington	State Program	10	C569	01-06-13

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-13
California	NELAC	9	1115CA	01-31-13
L-A-B	DoD ELAP		L2236	01-19-13
L-A-B	ISO/IEC 17025		L2236	01-19-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAC	10	WA100007	11-06-12
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-13

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-081-00

TestAmerica Job ID: SVJ0004

Method	Method Description	Protocol	Laboratory
EPA 8260C	NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8270C	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH/VPH	Northwest - Volatile Petroleum Hydrocarbons (GC)	NWTPH	TAL SEA
NWTPH/EPH	Northwest - Extractable Petroleum Hydrocarbons (GC)	NWTPH	TAL SEA
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
D 2216	Percent Moisture	ASTM	TAL SEA
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

ASTM = ASTM International

NWTPH = Northwest Total Petroleum Hydrocarbon

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 4

 11922 E. First Ave, Spokane, WA 99206-5302
 5

 9405 SW Nimbus Ave,Beaverton, OR 97008-7145
 5

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 9

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

THE LEADER IN ENVIRONMENTAL TESTING

							CI	HAIN	OF (CUST	ODY	REP	ORT					Work O	rder #:	<u>STJ000</u>	4
	CLIENT:	ED ENGUN	PAUS					INVOIC	Е ТО: 🤇	SCOTT	T UR	THEN	7]	TURNA	ROUND REQ	UEST
		SCOTT							6	o Or	1CM.	ævs								Business Days *	
		523 E.2																10 7	- ~	Inorganic Analys	
				7-3120				P.O. NUI	MBER		60									Hydrocarbon And	
	PHONE: SO PROJECT NAM	#-363-3125 #: L+LEX	FAX: 509-36	20100				<u>[1.0.1101</u>	MDGA.		ESERVAI							5	4	3 2 1	<1
																		570	·		
	1	MBER: 0504				,		r				VALYSES	. <u></u>			1 ····· T				Specify:	n <i>d Charra</i>
	SAMPLED BY	KANEH	AL		5	No.	2 8	Jes	W ~ 8	2 X X 00	ED6 M	2 <u>2</u>	15 %	II	±				T T		y incur Rush Charges.
τ		NT SAMPLE IIFICATION	SAMPLIN DATE/TIM		NWTTPH-CAN	harpitterth By Nurthet-OK	B718	EVC B2608	ATH BY	1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1	ED6 BY		PAHS 54	HAN	Į.			MATRIX (W, S, O)	# OF CONT.	LOCATIO	
	1 B4115)	9/210/12	1107											 			5			
	2 B-1(1	Ĭ	9/26/12	1124	X	X	X	X	<u>x</u>	X	×	X	X					S			
44	3B-1(20	-20.5)	9/210/12	1159						·				_				S	5		
	4 B-2(9/26/12	1238	X	X	X	X	X	X	X	X	X					S	5		
	5 B-2(1		9/26/12	1247				 										S	l		
	6 B-2(20)	a/26/12	_1356							ļ							S	l		
	7 B-3(5)	9/22/12	1042	X	X_	<u>x</u> _	K	X	K_	X	X	X_	X	X			S	5		
	8 B-3 ((50)	9/27/12	1056		<u> </u>					ļ	<u> </u>				<u> </u>		S	1		
	• B-3 ((15)	9/27/12	طالة			<u> </u>		ļ		<u> </u>			<u> </u>				S			
	10 B-4('s)	912-2/12	- 1203	X	X	X	X	X	X	X	X	<u> </u>	<u> </u>		<u> </u>		S	5		DATE: 9.18-12
	RELEASED BY:	here theel						DATE	q =			RECEIV PRINT N	ED BY:	H-	That	Im		- FIRM	JESH	marin	IME 122
	PRINT NAME: RELEASED BY:	KAMEHA	tl	FIRM: (ET_			DATE		45		RECEIV		<u></u>	Jupo						DATE:
	PRINT NAME:			FIRM:				TIME	2			PRINT 2	IAME:					FIRM	l: 		TIME:
	ADDITIONAL RE	EMARKS:																		38	PAGE L OF 3
			·			<u></u>											<u> </u>				TAL-1000(040
5)																				

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave,Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

							C	НАП	NOF	CUST	rody	(RE	PORT	1			Work O	rder #:	:00700C	Я
	CLIENT:	HED ENGWE	EPIS					INVOI	CE TO:	SCOT		ien						TURNA	ROUND REQ	UEST
	REPORT TO:	SCOTT LAT	teni							\$€¢	en G	WEE	rs !					in	a Business Days *	
	ADDRESS:	523 E 2N	o ave														10 7		Inorganic Analyse	
	PHONE: SO	9-363-3125	FAX: 509-363	-3126				P.O. NL	JMBER:				.					_	4 3 2 Hydrocarbon Anal	
	PROJECT NAI	ME: L+ L EX	X02							PR	ESERVA	TIVE			• ••		5	4	3 2 1	<1
		MBER: 0504-(54	<u> </u>		- —
					~ ~	- 		1	1	REQUE	STED AJ	NALYSE	s i	-1	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		THER	Specify:	
		Y KATELA	SAMPLING		GapH-G	HATACIHAZUA	BTEX BTEX BTEX BTEX	ମ ଜୁମ୍ ଜୁମ୍ ଜୁନ୍		N-HEIVIE	50 N 0	Level .	PRHS COM	TE -	ŧ		MATRIX	# OF	ss than standard may	
		TIFICATION	DATE/TIME		N C	a de la	MA 90	0023	計覧		g D g	53			U I		(W, S, O)	CONT.	COMMEN	
Page	1 B-4 (1	10	9/27/12	1216													S			
42 of	2 B-5(1		9/27/12	1316													S			
ŕ 44	3 B-5(10)	9/27/12	1329							ļ				_		S	1		
	4 3-5(1 1	9/27/12	1352	X	X	X	X	X	Х	X	X	X	×.	X		S	1		
	5 B-6(5)	9/27/12	1454													S	1		
	6 B -6(10)	927/12	1506													S	1		
	7 B-6(5.5)	9/27/12	1536	X	X	X	X	X	X	X	X	X				S	5		
	8 MW-1 ((10)	9/27/12	0859													5	۱		
	· Mui-li	(15.5)	9/27/12	0924	X	<u> </u>	X	X	X	X	X	X	X				5	1		
	10 MW-		9/26/12	1439						Ļ							S	5		
	RELEASED BY:	KATTE HAL		FIRM: (TE	n			DATI		3/12 45		RECEIV	TED BY:	at	Stap	liton	FIRM	Test	fimerica II	чт:9-18-17 ме: 16:20
	RELEASED BY:	KATTE HAL	<u> </u>	the de				DAT		-13			ED BY:	<i>.</i>	/			- Kor		ATE:
	PRINT NAME:			FIRM:				TIM	8:			PRINT	NAME:				FIRM			ME:
1/2/2013	ADDITIONAL RE	EMARKS:																	B.B	PAGE 2 OF 3
013																				TAL-1000(040

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 425-420-9200 FAX 420-9210 11922 E. First Ave, Spokane, WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 503-906-9200 FAX 906-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

THE LEADER IN ENVIRONMENTAL TESTING

							U			C021	OD:	I KE	PORT				V	Work O	rder #:	SALAN		
	CLIENT: (GED ENGUR	EBIS					INVOIO	E TO:	SCOT	ΓUA	THEN	J	•					TURNA	ROUND REQ	UEST	
	REPORT TO:	SCOTT LATH	EN							GED	ENIG	(n A	3						in	Business Days *		
	ADDRESS:	523 E. 245	DAVE							~							ŀ	~	-	Inorganic Analys		
		4 31-2 3th -		2 1 6 1											· · · ·				5	4 3 2 Hydrocarbon An	<u> </u>	<1
	PROJECT NA	ME: L+L EX	FAX: 509-363-	5126	1			P.O. NU	MBER:	מס	ESERVA	TTVE						5		Hydrocarbon An		
						1								r	1 1	<u> </u>						
	PROJECT NU	MBER: 0504-1	081-00			1	<u>i</u>			REQUE	STED A	NALYSE	s :					01	THER	Specify:		
	SAMPLED BY	KATTELLA	٤		3	14 X		× ×		W . 0	-						*	Turnaround i		s than standard ma	y incur Rus	h Charges.
ס	CLIE	NT SAMPLE	SAMPLING DATE/TIME		GRPH-	HADOL HADON	BTEK EM BUDD	S C C	ATH Bridge	N-H-02 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			PAHS PAHS Ere Prince	flan	ŧ,			MATRIX (W, S, O)	# OF CONT.	LOCATIC COMMEN		TA WO ID
Page 4	1 MW-2	(15)	9/26/12	1511	X	X	Х	X	χ	X	χ	Χ	X					S	1			
43 of 44	2 MW - 3	3(4)	9/26/12	17 10	X	X	χ	X	χ	χ	X	X	χ					S	5			
44	3 MW - 3	3 (10)	9/26/12	1720														S	1			
	4																					
	5																					
						-										<u> </u>						
	0					+																
	7												1			<u>-</u>						
	8				<u> </u>																	
	9																					
	10																					
	1·	him been				4		DATE	110			RECEIV	ED BY:	11	++-1	1			- 1in	υ Μίζα τ	ATE: 9-2	8-1Z
	PRINT NAME: RELEASED BY:	KATE HALL		firm: G	EI			TIME		15		PRINT		U,	Stacka	on		FIRM:	<u>lest fin</u>			30_
	PRINT NAME:			FIRM:				DATE TIME				PRINT	ED BY: IAME:		,			FIRM:		-	ATE: IME:	
1/2/2013	ADDITIONAL RE	EMARKS:										1			_					TEMP: 3.8		OF 3
013																						1000(0408)

TestAmerica Spokane Sample Receipt Form

Work Order #:SVJ004 Client:	GeoEngir	neers		Р	roject:	+L Exxon
Date/Time Received: 9-18-12 10-20		ву(5				
Samples Delivered By: Shipping Service	ourier Client	Other:_	···· ···	· · · · · · · · · · · · · · · · · · ·		
List Air Bill Number(s) or Attach a photocopy of the	Air Bill:					
Receipt Phase		Yes	No	NA		Comments
Were samples received in a cooler:		\searrow		<u></u>		
Custody Seals are present and intact:		<u>`</u>		\rightarrow		
Are CoC documents present;		2				1977 - 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1
Necessary signatures:		2				
Thermal Preservation Type: Blue Ice Gel	lce MReal Ice	Dry ice	None	Other:		
Temperature by IR Gun: 3.9 °C Thermon	/ meter Serial #815	00 (accepta	ance criteri	a 0-6 °C)	. <u> </u>	
Temperature out of range: Not enough ice	ce melted	w/in 4hrs of	collection		Other:	
Log-in Phase) Date/Time: 101-101 [](175By:	<u>(</u> <u>)</u>	Yes	No	NA		Comments
Are sample labels affixed and completed for each	container	\geq		L		
Samples containers were received intact:	,,,,,,,,,_	\geq		 	<u>,</u>	
Do sample IDs match the CoC		<u>`</u> >				· · · · · · · · · · · · · · · · · · ·
Appropriate sample containers were received for	tests requested	>			· · · _ · ·	
Are sample volumes adequate for tests requested	±	>				······································
Appropriate preservatives were used for the tests	requested	12				
pH of inorganic samples checked and is within m	ethod specification	<u></u>				
Are VOC samples free of bubbles >6mm (1/4" dia	ameter)	X			<u> </u>	
Are dissolved parameters field filtered			<u> </u>	X		
Do any samples need to be filtered or preserved	by the lab	~	<u> </u>	<u>X</u>		
Does this project require quick turnaround analys	sis		<u> </u>	 		
Are there any short hold time tests (see chart bel			<u> </u>	+		
Are any samples within 2 days of or past expirati		<u> </u>	Ι <u>×</u>	<u> </u>	ļ	
Was the CoC scanned		X			 	
Were there Non-conformance issues at login			7			,,_,,_,,_,,_,,,_,,,_,,,,
If yes, was a CAR generated #			<u> </u>	$ \mathcal{P}$		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

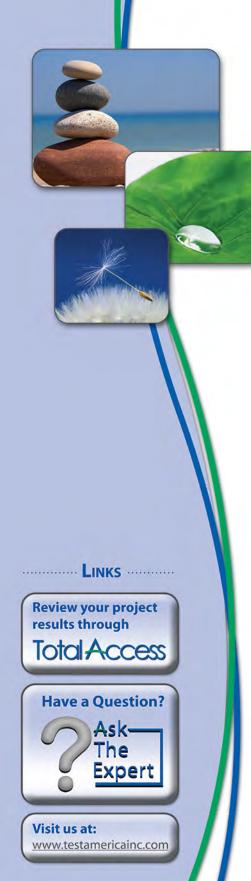
TestAmerica Job ID: SVJ0178

Client Project/Site: 0504-081-00 Client Project Description: L&L Exxon

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Scott Lathem


tandi

Authorized for release by: 11/6/2012 9:16:04 AM

Randee Decker Project Manager Randee.Decker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	11
Chronicle	
Certification Summary	18
Method Summary	19
Chain of Custody	20

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-081-00

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	
SVJ0178-01	MW-1-101912	Water	10/19/12 17:16	10/22/12 13:15	
SVJ0178-02	MW-2-101912	Water	10/19/12 16:18	10/22/12 13:15	
SVJ0178-03	MW-3-101912	Water	10/19/12 18:15	10/22/12 13:15	
SVJ0178-04	Duplicate-1-101912	Water	10/19/12 12:34	10/22/12 13:15	
SVJ0178-05	Trip Blank	Water	10/04/12 00:00	10/22/12 13:15	

4

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description
С	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.		
 Ø	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CNF	Contains no Free Liquid	5	5
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
EDL	Estimated Detection Limit		Ð
EPA	United States Environmental Protection Agency		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
ND	Not detected at the reporting limit (or MDL or EDL if shown)		
PQL	Practical Quantitation Limit		
QC	Quality Control		
RL	Reporting Limit		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
MDA	Minimum detectable activity		
MDC	Minimum detectable concentration		
RER	Relative error ratio		
DER	Duplicate error ratio (normalized absolute difference)		
DLC	Decision level concentration		
RL	Reporting Limit or Requested Limit (Radiochemistry only)		

Client Sample ID: MW-1-101912

Date Collected: 10/19/12 17:16 Date Received: 10/22/12 13:15

Lab Sample ID: SVJ0178-01 Matrix: Water

_____ 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.500		ug/l		10/23/12 11:41	10/23/12 20:38	1.00
Toluene	100		0.500		ug/l		10/23/12 11:41	10/23/12 20:38	1.00
1,2-Dichloroethane (EDC)	ND		0.500		ug/l		10/23/12 11:41	10/23/12 20:38	1.00
Hexane	4.53		1.00		ug/l		10/23/12 11:41	10/23/12 20:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	109		71.2 - 143				10/23/12 11:41	10/23/12 20:38	1.00
Toluene-d8	112		74.1 - 135				10/23/12 11:41	10/23/12 20:38	1.00
4-bromofluorobenzene	106		68.7 - 141				10/23/12 11:41	10/23/12 20:38	1.00

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	3740		900		ug/l		10/23/12 11:41	10/24/12 14:52	10.0
Benzene	178		2.00		ug/l		10/23/12 11:41	10/24/12 14:52	10.0
Ethylbenzene	16.5		5.00		ug/l		10/23/12 11:41	10/24/12 14:52	10.0
m,p-Xylene	334		5.00		ug/l		10/23/12 11:41	10/24/12 14:52	10.0
o-Xylene	139		5.00		ug/l		10/23/12 11:41	10/24/12 14:52	10.0
Xylenes (total)	474		15.0		ug/l		10/23/12 11:41	10/24/12 14:52	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		71.2 - 143				10/23/12 11:41	10/24/12 14:52	10.0
Toluene-d8	110		74.1 _ 135				10/23/12 11:41	10/24/12 14:52	10.0
4-bromofluorobenzene	104		68.7 _ 141				10/23/12 11:41	10/24/12 14:52	10.0

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	38		0.12		ug/L		10/23/12 13:53	11/02/12 15:32	10
1-Methylnaphthalene	30		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Acenaphthylene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Acenaphthene	0.19		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Fluorene	0.20		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Phenanthrene	0.13		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Anthracene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Fluoranthene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Pyrene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Benzo[a]anthracene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Chrysene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Benzo[a]pyrene	ND		0.19		ug/L		10/23/12 13:53	11/02/12 15:32	10
Indeno[1,2,3-cd]pyrene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Dibenz(a,h)anthracene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Benzo[g,h,i]perylene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Benzo[b]fluoranthene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Benzo[k]fluoranthene	ND		0.095		ug/L		10/23/12 13:53	11/02/12 15:32	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	64		20 - 150				10/23/12 13:53	11/02/12 15:32	10

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) - DL

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	110	0.95	ug/L		10/23/12 13:53	11/02/12 16:59	100

Date Collected: 10/19/12 17:16

Client Sample ID: MW-1-101912

TestAmerica Job ID: SVJ0178

Matrix: Water

Dil Fac

Dil Fac

Matrix: Water

1.00

1.00

Lab Sample ID: SVJ0178-01

Lab Sample ID: SVJ0178-02

	8
	9

Dil Fac	
1.00	
1.00	
	Ŏ
Dil Fac	
1.00	9
1.00	

Method: EPA 8011 - EDB by E	PA Method 8011							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
1,2-Dibromoethane	ND		0.0100		ug/l		10/23/12 11:07	10/23/12 15:55
Method: NWTPH-Dx - Semivola	atile Petroleum P	roducts by	NWTPH-Dx - RI	E1				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Diesel Range Hydrocarbons	2.40		0.150		mg/l		10/29/12 10:00	10/29/12 15:37
Heavy Oil Range Hydrocarbons	ND		0.299		mg/l		10/29/12 10:00	10/29/12 15:37
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
2-FBP	71.8		50 - 150				10/29/12 10:00	10/29/12 15:37
n-Triacontane-d62	103		50 - 150				10/29/12 10:00	10/29/12 15:37
Method: EPA 6010C - Total Me	tals by EPA 6010)/7000 Serie	s Methods					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Lead	ND		0.0150		mg/l		11/05/12 08:16	11/05/12 17:25

Client Sample ID: MW-2-101912

Date Collected: 10/19/12 16:18

Date Received: 10/22/12 13:15

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Methyl tert-butyl ether 0.500 ND ug/l 10/23/12 11:41 10/23/12 21:25 1.00 0.200 10/23/12 11:41 10/23/12 21:25 Benzene 0.990 ug/l 1.00 10/23/12 21:25 1,2-Dichloroethane (EDC) ND 0.500 ug/l 10/23/12 11:41 1.00 Hexane 6.66 1.00 ug/l 10/23/12 11:41 10/23/12 21:25 1.00 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed Dibromofluoromethane 108 71.2 - 143 10/23/12 11:41 10/23/12 21:25 1.00 123 74.1 - 135 10/23/12 11:41 10/23/12 21:25 1.00 Toluene-d8 110 68.7 - 141 4-bromofluorobenzene 10/23/12 11:41 10/23/12 21:25 1.00

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	19500		9000		ug/l		10/23/12 11:41	10/24/12 15:39	100
Toluene	2400		50.0		ug/l		10/23/12 11:41	10/24/12 15:39	100
Ethylbenzene	834		50.0		ug/l		10/23/12 11:41	10/24/12 15:39	100
m,p-Xylene	2720		50.0		ug/l		10/23/12 11:41	10/24/12 15:39	100
o-Xylene	982		50.0		ug/l		10/23/12 11:41	10/24/12 15:39	100
Xylenes (total)	3700		150		ug/l		10/23/12 11:41	10/24/12 15:39	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane			71.2 - 143				10/23/12 11:41	10/24/12 15:39	100
Toluene-d8	108		74.1 - 135				10/23/12 11:41	10/24/12 15:39	100
4-bromofluorobenzene	107		68.7 - 141				10/23/12 11:41	10/24/12 15:39	100

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed Acenaphthylene 0.048 0.019 ug/L 10/25/12 12:46 11/02/12 15:54 2 Acenaphthene 0.11 0.019 ug/L 10/25/12 12:46 11/02/12 15:54 2 11/02/12 15:54 2 0.019 ug/L 10/25/12 12:46 Fluorene 0.062 Phenanthrene 0.087 0.019 ug/L 10/25/12 12:46 11/02/12 15:54 2 2 0.021 0.019 ug/L 10/25/12 12:46 11/02/12 15:54 Anthracene Fluoranthene ND 0.019 ug/L 10/25/12 12:46 11/02/12 15:54 2

RL

0.019

0.019

MDL Unit

ug/L

ug/L

D

Prepared

10/25/12 12:46

10/25/12 12:46

Analyte

Pyrene

Benzo[a]anthracene

TestAmerica Job ID: SVJ0178

Client Sample ID: MW-2-101912 Date Collected: 10/19/12 16:18 Date Received: 10/22/12 13:15

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Result Qualifier

ND

ND

Lab Sample ID: SVJ0178-02 Matrix: Water

Analyzed

11/02/12 15:54

11/02/12 15:54

Dil Fac

2

2

	8

Method: EPA 6010C - Total Met Analyte		0/7000 Serie Qualifier	es Methods RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mothody EDA 6010C Total Mat	tale by EDA 6040	17000 Corio	o Mothodo						
n-Triacontane-d62	105		50 - 150				10/29/12 10:00	10/29/12 15:54	1.00
2-FBP	71.3		50 - 150				10/29/12 10:00	10/29/12 15:54	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Heavy Oil Range Hydrocarbons	ND		0.305		mg/l		10/29/12 10:00	10/29/12 15:54	1.00
Diesel Range Hydrocarbons	2.32		0.153		mg/l		10/29/12 10:00	10/29/12 15:54	1.00
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: NWTPH-Dx - Semivola	itile Petroleum P	roducts by	NWTPH-Dx - RI	E1					
1,2-Dibromoethane	ND		0.0100		ug/l		10/23/12 11:07	10/23/12 16:07	1.00
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
- Method: EPA 8011 - EDB by El	PA Method 8011								
1-Methylnaphthalene	37		0.48		ug/L		10/25/12 12:46	11/02/12 16:38	50
2-Methylnaphthalene	49		0.62		ug/L		10/25/12 12:46	11/02/12 16:38	50
Naphthalene	170		0.48		ug/L		10/25/12 12:46	11/02/12 16:38	50
Method: 8270C SIM - Semivolat Analyte	-	<mark>npounds (G</mark> Qualifier	C/MS SIM) - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Terphenyl-d14	67		20 - 150				10/25/12 12:46	11/02/12 15:54	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	ND		0.019		ug/L		10/25/12 12:46	11/02/12 15:54	2
Benzo[b]fluoranthene	ND		0.019		ug/L		10/25/12 12:46	11/02/12 15:54	2
Benzo[g,h,i]perylene	ND		0.019		ug/L		10/25/12 12:46	11/02/12 15:54	2
Dibenz(a,h)anthracene	ND		0.019		ug/L		10/25/12 12:46	11/02/12 15:54	2
Indeno[1,2,3-cd]pyrene	ND		0.019		ug/L		10/25/12 12:46	11/02/12 15:54	2
Benzo[a]pyrene	ND		0.038		ug/L		10/25/12 12:46	11/02/12 15:54	2

Client Sample ID: MW-3-101912

Date Collected: 10/19/12 18:15

Date Received: 10/22/12 13:15

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Analyte	Result	Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	С	90.0	ug/	/I	10/23/12 11:41	10/23/12 21:48	1.00
1,2-Dichloroethane (EDC)	ND		0.500	ug/	/I	10/23/12 11:41	10/23/12 21:48	1.00
Hexane	ND		1.00	ug/	/I	10/23/12 11:41	10/23/12 21:48	1.00
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	109		71.2 - 143			10/23/12 11:41	10/23/12 21:48	1.00
Toluene-d8	110		74.1 - 135			10/23/12 11:41	10/23/12 21:48	1.00
4-bromofluorobenzene	108		68.7 - 141			10/23/12 11:41	10/23/12 21:48	1.00

Lab Sample ID: SVJ0178-03

Matrix: Water

RL

0.500

0.200

0.500

0.500

0.500

0.500

1.50

Limits

71.2 - 143

74.1 - 135

68.7 - 141

MDL

Unit

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

D

Prepared

10/23/12 11:41

10/23/12 11:41

10/23/12 11:41

10/23/12 11:41

10/23/12 11:41

10/23/12 11:41

10/23/12 11:41

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes (total)

Dibromofluoromethane

4-bromofluorobenzene

m,p-Xylene

o-Xylene

Surrogate

Toluene-d8

Methyl tert-butyl ether

Client Sample ID: MW-3-101912 Date Collected: 10/19/12 18:15 Date Received: 10/22/12 13:15

Lab Sample ID: SVJ0178-03 Matrix: Water

Analyzed

10/24/12 16:02

10/24/12 16:02

10/24/12 16:02

10/24/12 16:02

10/24/12 16:02

10/24/12 16:02

10/24/12 16:02

Water 4

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Prepared	Analyzed	Dil Fac
10/23/12 11:41	10/24/12 16:02	1.00
10/23/12 11:41	10/24/12 16:02	1.00
10/23/12 11:41	10/24/12 16:02	1.00

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C - RE1

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

108

108

106

%Recovery

Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.016		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
2-Methylnaphthalene	ND		0.012		ug/L		10/25/12 12:46	11/02/12 15:11	1
1-Methylnaphthalene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Acenaphthylene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Acenaphthene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Fluorene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Phenanthrene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Anthracene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Fluoranthene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Pyrene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Benzo[a]anthracene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Chrysene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Benzo[a]pyrene	ND		0.019		ug/L		10/25/12 12:46	11/02/12 15:11	1
Indeno[1,2,3-cd]pyrene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Dibenz(a,h)anthracene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Benzo[g,h,i]perylene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Benzo[b]fluoranthene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Benzo[k]fluoranthene	ND		0.0095		ug/L		10/25/12 12:46	11/02/12 15:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	65		20 - 150				10/25/12 12:46	11/02/12 15:11	1

Method: EPA 8011 - EDB by EPA Method 8011 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 1,2-Dibromoethane ND ND 0.0100 ug/l D 10/23/12 11:07 10/23/12 16:19

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.149		mg/l		10/29/12 10:00	10/29/12 16:11	1.00
Heavy Oil Range Hydrocarbons	ND		0.298		mg/l		10/29/12 10:00	10/29/12 16:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 2-FBP	%Recovery 73.9	Qualifier	Limits				Prepared	Analyzed	Dil Fac 1.00
		Qualifier							

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Lead ND 0.0150 11/05/12 08:16 11/05/12 17:29 1.00 mg/l

Dil Fac

1.00

Client Sample ID: Duplicate-1-101912

Date Collected: 10/19/12 12:34 Date Received: 10/22/12 13:15 Lab Sample ID: SVJ0178-04 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:11	1.00
Toluene	98.0		0.500		ug/l		10/23/12 11:41	10/23/12 22:11	1.00
1,2-Dichloroethane (EDC)	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:11	1.00
Hexane	4.36		1.00		ug/l		10/23/12 11:41	10/23/12 22:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	110		71.2 - 143				10/23/12 11:41	10/23/12 22:11	1.00
Toluene-d8	113		74.1 - 135				10/23/12 11:41	10/23/12 22:11	1.00
4-bromofluorobenzene	109		68.7 - 141				10/23/12 11:41	10/23/12 22:11	1.00

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	5080		900		ug/l		10/23/12 11:41	10/24/12 16:26	10.0
Benzene	261		2.00		ug/l		10/23/12 11:41	10/24/12 16:26	10.0
Ethylbenzene	184		5.00		ug/l		10/23/12 11:41	10/24/12 16:26	10.0
m,p-Xylene	433		5.00		ug/l		10/23/12 11:41	10/24/12 16:26	10.0
o-Xylene	180		5.00		ug/l		10/23/12 11:41	10/24/12 16:26	10.0
Xylenes (total)	614		15.0		ug/l		10/23/12 11:41	10/24/12 16:26	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	110		71.2 - 143				10/23/12 11:41	10/24/12 16:26	10.0
Toluene-d8	108		74.1 - 135				10/23/12 11:41	10/24/12 16:26	10.0
4-bromofluorobenzene	105		68.7 - 141				10/23/12 11:41	10/24/12 16:26	10.0

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	41		0.12		ug/L		10/25/12 12:46	11/02/12 16:16	10
1-Methylnaphthalene	31		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Acenaphthylene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Acenaphthene	0.18		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Fluorene	0.18		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Phenanthrene	0.14		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Anthracene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Fluoranthene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Pyrene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Benzo[a]anthracene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Chrysene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Benzo[a]pyrene	ND		0.19		ug/L		10/25/12 12:46	11/02/12 16:16	10
Indeno[1,2,3-cd]pyrene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Dibenz(a,h)anthracene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Benzo[g,h,i]perylene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Benzo[b]fluoranthene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Benzo[k]fluoranthene	ND		0.095		ug/L		10/25/12 12:46	11/02/12 16:16	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	62		20 - 150				10/25/12 12:46	11/02/12 16:16	10

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) - DL

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	120	0.95	ug/L		10/25/12 12:46	11/02/12 17:43	100

RL

RL

0.149

0.298

Limits

50 - 150

50 - 150

0.0100

MDL Unit

MDL Unit

ug/l

mg/l

mg/l

D

D

Prepared

10/23/12 11:07

Prepared

10/29/12 10:00

10/23/12 11:41

Result Qualifier

Result Qualifier

ND

2.44

ND

%Recovery Qualifier

72.9

99.7

110

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx - RE1

Date Collected: 10/19/12 12:34

Date Received: 10/22/12 13:15

Diesel Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Analyte

Analyte

Surrogate

n-Triacontane-d62

2-FBP

1,2-Dibromoethane

Client Sample ID: Duplicate-1-101912

Method: EPA 8011 - EDB by EPA Method 8011

TestAmerica Job ID: SVJ0178

Matrix: Water

Dil Fac

Dil Fac

1.00

1.00

Lab Sample ID: SVJ0178-04

Analyzed

10/23/12 16:31

Analyzed

10/30/12 09:29

5	
8	

10/29/12 10:00	10/30/12 09:29	1.00	
Prepared	Analyzed	Dil Fac	
10/29/12 10:00	10/30/12 09:29	1.00	
10/29/12 10:00	10/30/12 09:29	1.00	

Method: EPA 6010C - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0150		mg/l		11/05/12 08:16	11/05/12 17:33	1.00

Client Sample ID: Trip Blank

Date Collected: 10/04/12 00:00

Date Received: 10/22/12 13:15

4-bromofluorobenzene

Lab Sample ID: SVJ0178-05 Matrix: Water

10/23/12 22:35

1.00

Method: EPA 8260C - NWTPH-0	Gx and Volatile (Organic Co	mpounds by EP	A Metho	d 8260C				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	С	90.0		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Methyl tert-butyl ether	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Benzene	ND		0.200		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Toluene	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Ethylbenzene	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
m,p-Xylene	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
o-Xylene	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
1,2-Dichloroethane (EDC)	ND		0.500		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Xylenes (total)	ND		1.50		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Hexane	ND		1.00		ug/l		10/23/12 11:41	10/23/12 22:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		71.2 - 143				10/23/12 11:41	10/23/12 22:35	1.00
Toluene-d8	110		74.1 - 135				10/23/12 11:41	10/23/12 22:35	1.00

68.7 - 141

5 6

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 12J0181-BLK1									Cl	ient S	ample ID: Metho	od Blanl
Matrix: Water											Prep Ty	pe: Tota
Analysis Batch: 12J0181											Prep Batch: 12	J0181_F
	Bla	nk Bla	nk									
Analyte		ult Qua	alifier	RL	MDL	Unit		D	Prep	ared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	I	ND C	90	0.0		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
Methyl tert-butyl ether	I	ND	0.5	00		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
Benzene	I	ND	0.2	00		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
Foluene		ND	0.5	00		ug/l		1()/23/12	2 11:41	10/23/12 14:24	1.0
Ethylbenzene	I	ND	0.5	00		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
m,p-Xylene	I	ND	0.5	00		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
p-Xylene		ND	0.5	00		ug/l		1()/23/12	2 11:41	10/23/12 14:24	1.0
1,2-Dichloroethane (EDC)	I	ND	0.5	00		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
Kylenes (total)	I	ND	1.	50		ug/l		10)/23/12	2 11:41	10/23/12 14:24	1.0
Hexane	l	ND	1.	00		ug/l		1()/23/12	2 11:41	10/23/12 14:24	1.0
	Bla	nk Bla	nk									
Surrogate	%Recov	-	alifier Limits						Prep	ared	Analyzed	Dil Fa
Dibromofluoromethane	1	07	71.2 - 143	3				10	0/23/1	2 11:41	10/23/12 14:24	1.0
Toluene-d8	1	09	74.1 - 135	5				10	0/23/1	2 11:41	10/23/12 14:24	1.0
4-bromofluorobenzene	1	07	68.7 - 141	1				10	0/23/1	2 11:41	10/23/12 14:24	1.0
_ab Sample ID: 12J0181-BS1								Clie	nt Sa	ample	ID: Lab Control	Sampl
Matrix: Water											Prep Ty	
Analysis Batch: 12J0181											Prep Batch: 12	
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result		ifier	Unit	ſ	o %	Rec	Limits	
Gasoline Range Hydrocarbons			1000	922			ug/l			92.2	80 - 120	
							•					
_	LCS L											
Surrogate	%Recovery	Qualifier	Limits									
Dibromofluoromethane	108		71.2 - 143									
Toluene-d8	109		74.1 - 135									
4-bromofluorobenzene	104		68.7 - 141									
Lab Sample ID: 12J0181-BS2								Clie	nt Sa	ample	ID: Lab Control	Sample
Matrix: Water											Prep Ty	pe: Tota
Analysis Batch: 12J0181											Prep Batch: 12	
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qual	ifier	Unit) %	Rec	Limits	
Methyl tert-butyl ether			10.0	9.61			ug/l		_	96.1	80.1 - 128	
Benzene			10.0	10.5			ug/l			105	84.2 - 122	
Foluene			10.0	10.6			ug/l			106	85.8 - 123	
Ethylbenzene			10.0	10.4			ug/l			104	83.6 _ 111	
n,p-Xylene			20.0	21.4			ug/l			107	86.4 - 115	
p-Xylene			10.0	10.8			ug/l			108	90.2 - 116	
Kylenes (total)			30.0	32.2			ug/l			107	91.4 ₋ 114	
,	100 1	<u></u>					÷					
Suma nata	LCS L		1 : :4-									
Surrogate	%Recovery (vualifier										
Dibromofluoromethane	109		71.2 - 143									
Toluene-d8	110		74.1 - 135									
4-bromofluorobenzene	106		68.7 - 141									

5 6

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 12J0181-BS3 Matrix: Water							Client	Sample	e ID: Lab Control Sa Prep Type:	
Analysis Batch: 12J0181									Prep Batch: 12J0	
			Spike	LCS	LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Hexane			10.0	8.81		ug/l		88.1	70 - 130	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	109		71.2 - 143							
Toluene-d8	110		74.1 - 135							
4-bromofluorobenzene	106		68.7 - 141							
Lab Sample ID: 12J0181-DUP1								Client	Sample ID: MW-1-1	01912
Matrix: Water									Prep Type:	Tota
Analysis Batch: 12J0181									Prep Batch: 12J0	181 F
-	Sample	Sample		Duplicate	Duplicate					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limi
Hexane	4.53			4.15		ug/l			8.76	20
Lab Sample ID: 12J0181-DUP1								Client	Sample ID: MW-1-1	01912
Matrix: Water									Prep Type:	
Analysis Batch: 12J0181									Prep Batch: 12J0	
	Sample	Sample		Duplicate	Duplicate					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limi
Gasoline Range Hydrocarbons	3740			3690		ug/l			1.26	35
Benzene	178			173		ug/l			2.68	20
Ethylbenzene	16.5			16.0		ug/l			3.08	20
m,p-Xylene	334			335		ug/l			0.059 8	20
o-Xylene	139			142		ug/l			2.28	20
Xylenes (total)	474			477		ug/l			0.715	20
	Duplicate	Duplicate								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	110		71.2 - 143							
Toluene-d8	108		74.1 - 135							
4-bromofluorobenzene	105		68.7 - 141							

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-123133/1 Matrix: Water Analysis Batch: 123836		мв					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
2-Methylnaphthalene	ND		0.013		ug/L		10/23/12 13:41	11/02/12 14:27	1
1-Methylnaphthalene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Acenaphthylene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Acenaphthene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Fluorene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Phenanthrene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Anthracene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Fluoranthene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1

Lab Sample ID: MB 580-123133/1-A

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

2 3 4

Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 123836								Prep Batch:	123133
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Benzo[a]anthracene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Chrysene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Benzo[a]pyrene	ND		0.020		ug/L		10/23/12 13:41	11/02/12 14:27	1
Indeno[1,2,3-cd]pyrene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Dibenz(a,h)anthracene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Benzo[g,h,i]perylene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Benzo[b]fluoranthene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
Benzo[k]fluoranthene	ND		0.010		ug/L		10/23/12 13:41	11/02/12 14:27	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	70		20 - 150				10/23/12 13:41	11/02/12 14:27	1

Lab Sample ID: LCS 580-123133/2-A Matrix: Water Analysis Batch: 123836

Analysis Batch: 123836							Prep Batch: 123133
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	2.01	2.05	-	ug/L		102	60 - 125
2-Methylnaphthalene	2.00	2.05		ug/L		102	60 - 125
1-Methylnaphthalene	2.01	2.18		ug/L		109	60 - 125
Acenaphthylene	2.00	2.13		ug/L		106	65 - 125
Acenaphthene	2.00	2.06		ug/L		103	65 - 125
Fluorene	2.02	1.94		ug/L		96	70 - 125
Phenanthrene	2.01	2.32		ug/L		115	75 - 125
Anthracene	2.00	1.99		ug/L		100	50 - 125
Fluoranthene	2.00	2.23		ug/L		111	70 - 125
Pyrene	2.00	2.23		ug/L		112	70 - 125
Benzo[a]anthracene	2.00	2.39		ug/L		119	65 - 125
Chrysene	1.93	2.26		ug/L		117	70 - 125
Benzo[a]pyrene	2.00	1.61		ug/L		80	45 ₋ 125
Indeno[1,2,3-cd]pyrene	2.01	2.41		ug/L		120	75 ₋ 125
Dibenz(a,h)anthracene	2.00	2.00		ug/L		100	75 - 130
Benzo[g,h,i]perylene	2.00	2.18		ug/L		109	75 ₋ 125
Benzo[b]fluoranthene	2.00	1.85		ug/L		92	70 - 125
Benzo[k]fluoranthene	2.00	1.99		ug/L		100	70 - 125
L	CS LCS						

Surrogate%RecoveryQualifierTerphenyl-d1485

_____ Limits ______ 20 _ 150

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 12J0176-BLK1 Matrix: Water Analysis Batch: 12J0176								mple ID: Metho Prep Typ Prep Batch: 12J	e: Total
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/l		10/23/12 11:07	10/23/12 15:18	1.00

1,2-Dibromoethane

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 12J0176-BS1 Matrix: Water					Client	Sample	e ID: Lab C Pre	ontrol Sa ap Type:	
Analysis Batch: 12J0176							Prep Bate		
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane	0.250	0.264		ug/l		106	60 - 140		
Lab Sample ID: 12J0176-BS2					Client	Sample	e ID: Lab C	ontrol S	ample
Matrix: Water							Pre	p Type:	Total
Analysis Batch: 12J0176							Prep Bate	:h: 12J0	176_P
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane	0.250	0.259		ug/l		104	60 - 140		
Lab Sample ID: 12J0176-BSD1				CI	ient Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Water						· · · ·	Pre	ep Type:	Total
Analysis Batch: 12J0176							Prep Bate	h: 12J0	176 P
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit

0.250

0.251

ug/l

100

60 - 140

5.14

20

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 12J0185-BLK1 Matrix: Water											onent a	ample ID: Me	Type: Tota
Analysis Batch: 12J0185												Prep Batch:	
Analysis Batch. 1200105	В	lank	Blank									Frep Batch.	1230105_
Analyte			Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fa
Diesel Range Hydrocarbons		ND		0.125			mg/l			10/2	9/12 10:00	10/29/12 13:3	36 1.0
Heavy Oil Range Hydrocarbons		ND		0.250			mg/l			10/2	9/12 10:00	10/29/12 13:3	36 1.0
	B	lank	Blank										
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed	Dil Fa
2-FBP		69.5		50 - 150						10/2	9/12 10:00	0 10/29/12 13:	36 1.0
n-Triacontane-d62		77.5		50 - 150						10/2	9/12 10:00) 10/29/12 13:	36 1.0
Lab Sample ID: 12J0185-BS1									С	lient	Sample	ID: Lab Cont	rol Sampl
Matrix: Water													Type: Tota
Analysis Batch: 12J0185												Prep Batch:	
				Spike	LCS	LCS						%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Diesel Range Hydrocarbons				2.50	1.98			mg/l			79.3	54.5 - 136	
	LCS	LCS											
Surrogate	%Recovery	Qual	lifier	Limits									
2-FBP	66.4			50 - 150									
n-Triacontane-d62	78.5			50 - 150									

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Lab Sample ID: 12K0024-BLK1 Matrix: Water Analysis Batch: 12K0024								mple ID: Metho Prep Typ Prep Batch: 12k	e: Total
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0300		mg/l		11/05/12 08:16	11/05/12 17:00	1.00

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods (Continued)

Lab Sample ID: 12K0024-BS1							Client	Sample	e ID: Lab Co		
Matrix: Water										р Туре	
Analysis Batch: 12K0024									Prep Batc	h: 12K0	024_P
			Spike	LCS					%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Lead			1.00	0.986		mg/l		98.6	80 - 120		
Lab Sample ID: 12K0024-MS1								Client	Sample ID:	MW-2-1	01912
Matrix: Water									Pre	р Туре	: Total
Analysis Batch: 12K0024									Prep Batc	h: 12K0	024 P
	Sample	Sample	Spike	Matrix Spike	Matrix Spike)			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	ND		1.00	0.918		mg/l		91.8	75 - 125		
Lab Sample ID: 12K0024-MSD1								Client	Sample ID:	MW-2-1	01912
Matrix: Water										р Туре	
Analysis Batch: 12K0024									Prep Batc		
· ·····, ···· ························	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spike	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	ND		1.00	0.960		mg/l		96.0	75 _ 125	4.43	20
Lab Sample ID: 12K0024-DUP1								Client	Sample ID:	MW-2-1	01912
Matrix: Water									Pre	р Туре	: Total
Analysis Batch: 12K0024									Prep Batc	h: 12K0	024 P
-	Sample	Sample		Duplicate	Duplicate				-		RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Lead	ND			ND		mg/l					20

Lab Sample ID: SVJ0178-01

Lab Sample ID: SVJ0178-02

Matrix: Water

Matrix: Water

Client Sample ID: MW-1-101912 Date Collected: 10/19/12 17:16 Date Received: 10/22/12 13:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0181	10/23/12 20:38	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	10.0	12J0181	10/24/12 14:52	CBW	TAL SPK
Total/NA	Prep	3520C	DL		123133	10/23/12 13:53	RD	TAL SEA
Total/NA	Analysis	8270C SIM	DL	100	123836	11/02/12 16:59	AP	TAL SEA
Total/NA	Prep	3520C			123133	10/23/12 13:53	RD	TAL SEA
Total/NA	Analysis	8270C SIM		10	123836	11/02/12 15:32	AP	TAL SEA
Total	Prep	EPA 3580		1.00	12J0176_P	10/23/12 11:07	CBW	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0176	10/23/12 15:55	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series	RE1	0.599	12J0185_P	10/29/12 10:00	CBW	TAL SPK
Total	Analysis	NWTPH-Dx	RE1	1.00	12J0185	10/29/12 15:37	MS	TAL SPK
Total	Prep	Metals		1.00	12K0024_P	11/05/12 08:16	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12K0024	11/05/12 17:25	ICP	TAL SPK

Client Sample ID: MW-2-101912 Date Collected: 10/19/12 16:18 Date Received: 10/22/12 13:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0181	10/23/12 21:25	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	100	12J0181	10/24/12 15:39	CBW	TAL SPK
Total/NA	Prep	3520C			123133	10/25/12 12:46	RD	TAL SEA
Total/NA	Analysis	8270C SIM		2	123836	11/02/12 15:54	AP	TAL SEA
Total/NA	Prep	3520C	DL		123133	10/25/12 12:46	RD	TAL SEA
Total/NA	Analysis	8270C SIM	DL	50	123836	11/02/12 16:38	AP	TAL SEA
Total	Prep	EPA 3580		1.00	12J0176_P	10/23/12 11:07	CBW	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0176	10/23/12 16:07	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series	RE1	0.610	12J0185_P	10/29/12 10:00	CBW	TAL SPK
Total	Analysis	NWTPH-Dx	RE1	1.00	12J0185	10/29/12 15:54	MS	TAL SPK
Total	Prep	Metals		1.00	12K0024_P	11/05/12 08:16	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12K0024	11/05/12 17:03	ICP	TAL SPK

Client Sample ID: MW-3-101912 Date Collected: 10/19/12 18:15 Date Received: 10/22/12 13:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0181	10/23/12 21:48	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	1.00	12J0181	10/24/12 16:02	CBW	TAL SPK

Matrix: Water

Lab Sample ID: SVJ0178-03

Client Sample ID: MW-3-101912

Lab Sample ID: SVJ0178-03 Matrix: Water

Date Collected: 10/19/12 18:15 Date Received: 10/22/12 13:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			123133	10/25/12 12:46	RD	TAL SEA
Total/NA	Analysis	8270C SIM		1	123836	11/02/12 15:11	AP	TAL SEA
Total	Prep	EPA 3580		1.00	12J0176_P	10/23/12 11:07	CBW	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0176	10/23/12 16:19	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series	RE1	0.596	12J0185_P	10/29/12 10:00	CBW	TAL SPK
Total	Analysis	NWTPH-Dx	RE1	1.00	12J0185	10/29/12 16:11	MS	TAL SPK
Total	Prep	Metals		1.00	12K0024_P	11/05/12 08:16	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12K0024	11/05/12 17:29	ICP	TAL SPK

Client Sample ID: Duplicate-1-101912 Date Collected: 10/19/12 12:34 Date Received: 10/22/12 13:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0181	10/23/12 22:11	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	10.0	12J0181	10/24/12 16:26	CBW	TAL SPK
Total/NA	Prep	3520C	DL		123133	10/25/12 12:46	RD	TAL SEA
Total/NA	Analysis	8270C SIM	DL	100	123836	11/02/12 17:43	AP	TAL SEA
Total/NA	Prep	3520C			123133	10/25/12 12:46	RD	TAL SEA
Total/NA	Analysis	8270C SIM		10	123836	11/02/12 16:16	AP	TAL SEA
Total	Prep	EPA 3580		1.00	12J0176_P	10/23/12 11:07	CBW	TAL SPK
Total	Analysis	EPA 8011		1.00	12J0176	10/23/12 16:31	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series	RE1	0.596	12J0185_P	10/29/12 10:00	CBW	TAL SPK
Total	Analysis	NWTPH-Dx	RE1	1.00	12J0185	10/30/12 09:29	MS	TAL SPK
Total	Prep	Metals		1.00	12K0024_P	11/05/12 08:16	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	12K0024	11/05/12 17:33	ICP	TAL SPK

Client Sample ID: Trip Blank Date Collected: 10/04/12 00:00 Date Received: 10/22/12 13:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	12J0181_P	10/23/12 11:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	12J0181	10/23/12 22:35	CBW	TAL SPK

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310 TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane 11/6/2012

_

Lab Sample ID: SVJ0178-04

Lab Sample ID: SVJ0178-05

Matrix: Water

Matrix: Water

1 2 3 4 5 6 7

8 9 10

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C569	01-06-13

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-13
California	NELAC	9	1115CA	01-31-13
L-A-B	DoD ELAP		L2236	01-19-13
L-A-B	ISO/IEC 17025		L2236	01-19-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAC	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-13

Client: Geo Engineers - Spokane Project/Site: 0504-081-00

5
8
9

Method	Method Description	Protocol	Laboratory
EPA 8260C	NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C		TAL SPK
8270C SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SEA
EPA 8011	EDB by EPA Method 8011		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
EPA 6010C	Total Metals by EPA 6010/7000 Series Methods		TAL SPK

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

- TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310
- TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

THE LEADER IN ENVIRONMENTAL TESTING

.....

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420-920

 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-920

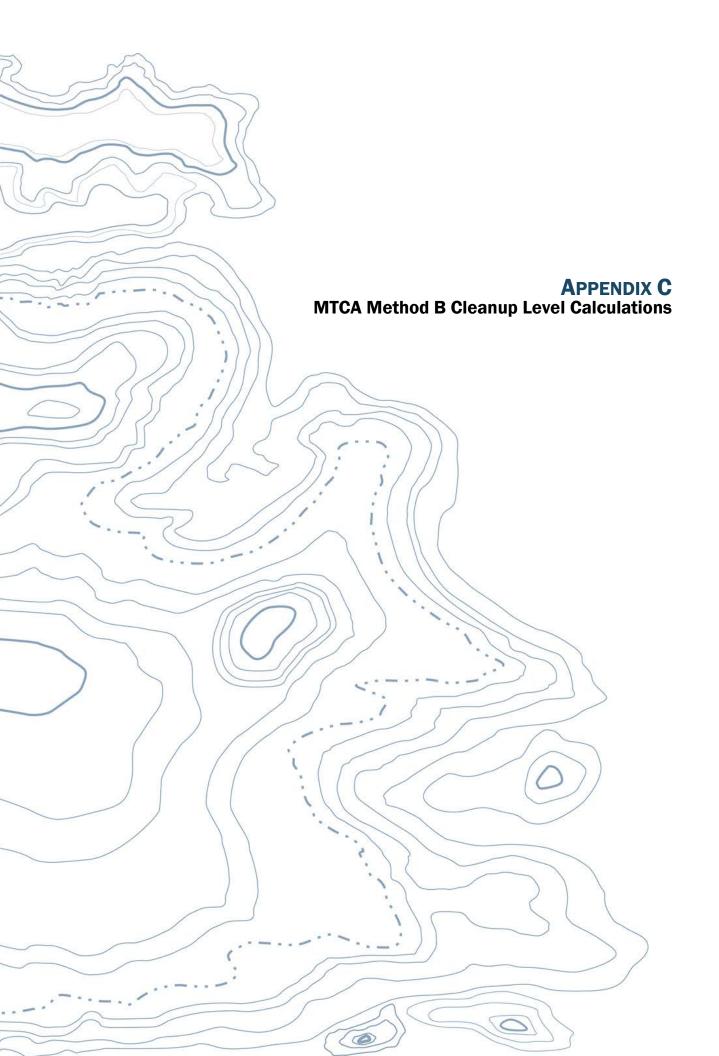
 9405 SW Nimbus Ave,Beaverton, OR 97008-7145
 503-906-920

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-920

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210


 907-563-9200
 FAX 563-9210

							C	HAIN	OF (CUST	ODY	REF	ORT				Work O	rder #:	8100178	
	REPORT TO: ADDRESS:	SLOTT LATT 523 E 200	ten Avie					INVOIO	ETO:	s (0π	LATI	IEN					A	in Organic &	ROUND REQUES Business Days *	
	PHONE: St PROJECT NA	ME: L+L QXX	FAX: 509-363-	312.6				P.O. NU	MBER:	PRI	ESERVAI	IVE	1		·			Petroleum	4 3 2 Hydrocarbon Analyses 3 2 1	
		MBER: 0504-0 XI KATTE HAL			4 1 1 1 1 1		X 2003	200				IALYSEA	S - 210-212] 		i			Specify: ss than standard may incur	Rush Charges.
Ρ	IDEN	NT SAMPLE TIFICATION	SAMPLING DATE/TIME		Carph Nutry	-Hall him	BTE) M	EDC.	MT&E Embruge	N-HEKAU EPASTUDI	EDG BY	Len	MAS 84 68 9270				MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WOID
Page 20 of 21	1-WW-1-	101912	10/19/12	1716	X	X	χ	X	X	X	X	X	X				w	٩	· · · · · · · · · · · · · · · · · · ·	
20 of	2MW-2	-101912	10/19/12	ILdo	N.	X	X	X	X	X	X	X.	X				<u>w</u>	a		
21	3 MW ~3	-101912	10/19/12	1815	X	X	X	X	X	χ	X	X	X				- W	٩		
	+ DWPLICA	TE-1-101912	10/19/12	1234	X.	X	X	X	X	X	X	<u>X</u>	<u>X</u>					9		
	5 THP B	NANK			X		Х	X	X	X				-). 		$ \omega $			
	6																			
	7																			
	8																			
	9	· · · · · · · · · · · · · · · · · · ·																		
	10 RELEASED BY: PRINT NAME: RELEASED BY:	Kun Han	athen	firm: GA				DATE: TIME: DATE	1-1- 1	•		RECEIVE PRINT N RECEIVE	AME:	520	H La	anen	FIRM	GE	Z TIME:	10/19/12 1202
11/6/2012	ADDITIONAL RE	Scott L	athen	FIRM:	SE.	<u></u>		TIME:		315	<u>,</u>	PRINT N	1 1	Ł.	Diachtor	к 	FIRM	: Testf	DATE: MEN'CA TIME: TEMP H.J. PAG	
2012																			-	TAL-1000(0408)

TestAmerica Spokane Sample Receipt Form

ATTN/76					Project:	+1 From
	ient: <u>Gro-Eng</u> ii	HERES_		۱ <u>۲</u>		
Date/Time Received: 1D-22-12 13:15	5	By:\ <u>∠</u>)				
Samples Delivered By: Shipping Service	Client	Other:				
List Air Bill Number(s) or Attach a photocopy of	of the Air Bill:					
Receipt Phase		Yes	No	NA		Comments
Were samples received in a cooler:		_ X				
Custody Seals are present and intact:				<u>۲</u>		
Are CoC documents present:		X			···-	<u>-</u>
Necessary signatures:		Х				
Thermal Preservation Type: Blue Ice	Gel Ice	Dry Ice	None	Other:		
Temperature by IR Gun: 4.3 °C The	rmometer Serial #815	00 (accept	ance cri <u>teri</u>	a 0-6 ℃)	·	
Temperature out of range: Not enough ic	e 🔲 ice meited 🔄	w/in 4hrs of	collection		Other:	
Log-in Phase Date/Time: ():::::::::::::::::::::::::::::::::::	<u>y: ()</u>	Yes	No	NA		Comments
Are sample labels affixed and completed for e	each container	X				
Samples containers were received intact:		X				
Do sample IDs match the CoC		×				
Appropriate sample containers were received	for tests requested	X			a	
Are sample volumes adequate for tests reque	ested	X_	<u></u>			
Appropriate preservatives were used for the t	ests requested	X				
pH of inorganic samples checked and is with	n method specification	<u>X</u>			<u>n</u>	
Are VOC samples free of bubbles >6mm (1/4	" diameter)	X			<u></u>	
Are dissolved parameters field filtered	<u></u>			X		
Do any samples need to be filtered or preser	ved by the lab			X		
Does this project require quick turnaround an	alysis					
Are there any short hold time tests (see char	t below)		X			
Are any samples within 2 days of or past exp	iration					
Was the CoC scanned				ļ		
Were there Non-conformance issues at login	1					
If yes, was a CAR generated #	1911 Survey of the second s			X		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date: 01/02/13 Site Name: L&L Exxon

Sample Name: B-3(5)

2. Enter Soil Concentrat	ion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio	
	mg/kg	%	Restore All Soil Concentration Data cleared
Petroleum EC Fraction			
AL_EC >5-6	1.6	0.08%	
AL_EC >6-8	130	6.19%	REMARK:
AL_EC >8-10	630	29.99%	Enter site-specific information here
AL_EC >10-12	470	22.37%	
AL_EC >12-16	80	3.81%	
AL_EC >16-21	11	0.52%	
AL_EC >21-34	7.4	0.35%	
AR_EC >8-10	200	9.52%	
AR_EC >10-12	180	8.57%	
AR_EC >12-16	76	3.62%	
AR_EC >16-21	13	0.62%	
AR_EC >21-34	7.2	0.34%	
Benzene .	0.0146	0.00%	
Toluene	10.4	0.50%	
Ethylbenzene	22.3	1.06%	
Fotal Xylenes	261	12.43%	
Naphthalene	0.0057	0.00%	
I-Methyl Naphthalene	0.0057	0.00%	
2-Methyl Naphthalene	0.0057	0.00%	
n-Hexane	0.535	0.03%	
MTBE	0.00337	0.00%	
Ethylene Dibromide (EDB)	0.00056	0.00%	
1,2 Dichloroethane (EDC)	0.056	0.00%	
Benzo(a)anthracene	0.0057	0.00%	
Benzo(b)fluoranthene	0.0057	0.00%	
Benzo(k)fluoranthene	0.0057	0.00%	
Benzo(a)pyrene	0.0057	0.00%	
Chrysene	0.0057	0.00%	
Dibenz(a,h)anthracene	0.00343	0.00%	
ndeno(1,2,3-cd)pyrene	0.0057	0.00%	
Sum	2100.56426	100.00%	
3. Enter Site-Specific Hy	drogeological Da	ta	
Fotal soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground Wa	1		
If you adjusted the target TPH gro			
concentration, enter adjusted	500	ug/L	
value here:		-	

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>1/2/2013</u>	
Site Name: <u>L&L Exxon</u>	
Sample Name: <u>B-3(5)</u>	
Measured Soil TPH Concentration, mg/kg:	2,100.564

1. Summary of Calculation Results

		Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,782	1.39E-07	7.55E-01	Pass
Contact: Human Health	Method C	51,046	2.98E-08	4.12E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	49	6.28E-05	2.37E+00	Fail
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	25	NA	NA	Fail

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestrieted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,782.03	51,045.63
Most Stringent Criterion	HI =I	HI =1

	Pro	tective Soil Concentr	ation @Method	Protective Soil Concentration @Method C						
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	ні @		
HI=1	YES	2.78E+03	1.84E-07	1.00E+00	YES	5.10E+04	7.25E-07	1.00E+00		
Total Risk=1E-5	NO	1.51E+05	1.00E-05	5.44E+01	NO	7.04E+05	1.00E-05	1.38E+01		
Risk of Benzene= 1E-6	NO	2.61E+06	1.73E-04	9.39E+02						
Risk of cPAHs mixture= 1E-6	NO	2.60E+04	1.72E-06	9.34E+00	_	NIA				
EDB	NO	4.08E+04	2.69E-06	1.47E+01	NA					
EDC	NO	3.81E+05	2.51E-05	1.37E+02						

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection					
Most Stringent Criterion	III=1				
Protective Ground Water Concentration, ug/L	819.60				
Protective Soil Concentration, mg/kg	48.78				

Ground Water Criteria	Protective	Protective Soil			
	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
H]=1	YES	8.20E+02	5.20E-06	1.00E+00	4.88E+01
Total Risk = 1E-5	NO	1.23E+03	1.00E-05	1.45E+00	9.94E+01
Total Risk = 1E-6	YES	1.90E+02	1.00E-06	2.42E-01	9.09E+00
Risk of cPAHs mixture= 1E-5	NO	2.12E+03	9.24E-05	2.48E+00	100% NAPL
Benzene MCL = 5 ug/L	NO	2.12E+03	9.24E-05	2.48E+00	100% NAPL
MTBE = 20 ug/L	NO	2.12E+03	9.24E-05	2.48E+00	100% NAPL

Note: 100% NAPL is 68000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Cusued Water Criteria	Protectiv	Protective Soil		
Ground Water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	5.00E+02	2.77E-06	6.27E-01	2.54E+01

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u>

Date: 01/09/13

Site Name: L&L Exxon Sample Name: B-5(16)

2. Enter Soil Concentrat	ion Measured		Notes for Data Entry	Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition		ration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		
	mg/kg	%	Restore All Soil Conce	entration Data cleared
Petroleum EC Fraction		•		
AL_EC >5-6	28	1.90%		
AL_EC >6-8	200	13.54%	REMARK:	
AL_EC >8-10	490	33.17%	Enter site-specific information	on here
AL_EC >10-12	280	18.96%		
AL_EC >12-16	22	1.49%		
AL_EC >16-21	3.35	0.23%		
AL_EC >21-34	3.35	0.23%		
AR_EC >8-10	52	3.52%		
AR_EC >10-12	31	2.10%		
AR_EC >12-16	13	0.88%		
AR_EC >16-21	3.35	0.23%		
AR_EC >21-34	3.35	0.23%		
Benzene	0.00317	0.00%		
Toluene	5.01	0.34%		
Ethylbenzene	45.4	3.07%		
Total Xylenes	289	19.57%	4 :	
Naphthalene	2.3	0.16%		
1-Methyl Naphthalene	2.01	0.14%		
2-Methyl Naphthalene	3.85	0.26%		
n-Hexane	0.046	0.00%		
MTBE	0.0038	0.00%		
Ethylene Dibromide (EDB)	0.000545	0.00%		
1,2 Dichloroethane (EDC)	0.046	0.00%		
Benzo(a)anthracene	0.0055	0.00%		
Benzo(b)fluoranthene	0.0055	0.00%		
Benzo(k)fluoranthene	0.0055	0.00%		
Benzo(a)pyrene	0.0055	0.00%		
Chrysene Dibanz(a b)anthragana	0.0055	0.00%		
Dibenz(a,h)anthracene	0.003295 0.0055	0.00% 0.00%		
Indeno(1,2,3-cd)pyrene			┨ ┋	
Sum	1477.10581	100.00%		
2 Entry Site Sussifia The	duagaalaning Da	ta		
<u>3. Enter Site-Specific Hy</u>		1		
Total soil porosity:	0.43	Unitless		
Volumetric water content:	0.3	Unitless		
Volumetric air content:	0.13	Unitless		
Soil bulk density measured:	1.5	kg/L		
Fraction Organic Carbon:	0.001	Unitless		
Dilution Factor:	20	Unitless		
4. Target TPH Ground Wa		<u>if adjusted)</u>		
If you adjusted the target TPH gro		L _		
concentration, enter adjusted	500	ug/L		
value here:			·····	

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: 1/9/2013	
Site Name: <u>L&L Exxon</u>	
Sample Name: <u>B-5(16)</u>	
Measured Soil TPH Concentration, mg/kg:	1,477.106

1. Summary of Calculation Results

Erra anna Bathanan	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	3,359	1.33E-07	4.40E-01	Pass
Contact: Human Health	Method C	64,329	2.86E-08	2.30E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	49	7.11E-05	2.17E+00	Fail
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	19	NA	NA	Fail

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

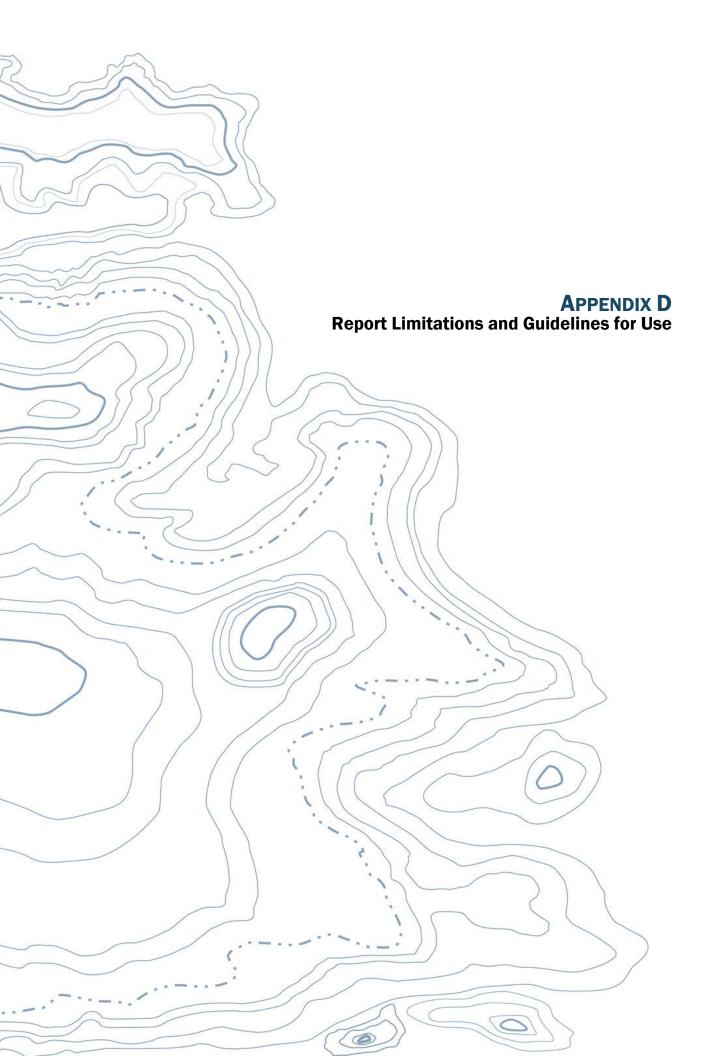
2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	3,359.29	64,328.54
Most Stringent Criterion	HI =1	HI =1

	Protective Soil Concentration @Method B				Protective Soil Concentration @Method C			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc,	RISK @	HI @
	Wost Stringent:		Ine	Wost Stringent?	mg/kg	KINK @	me	
HI =1	YES	3.36E+03	3.02E-07	1.00E+00	YES	6.43E+04	1.25E-06	1.00E+00
Total Risk=1E-5	NO	1.11E+05	1.00E-05	3.31E+01	NO	5.16E+05	1.00E-05	8.02E+00
Risk of Benzene= 1E-6	NO	8.46E+06	7.61E-04	2.52E+03				
Risk of cPAHs mixture= 1E-6	NO	1.89E+04	1.70E-06	5.64E+00		NA		
EDB	NO	2.95E+04	2.65E-06	8.77E+00		INA		
EDC	NO	3.26E+05	2.93E-05	9.70E+01				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Met	hod B): Human Health Protection
Most Stringent Criterion	HI_1


Most Stringent Criterion	HI=1
Protective Ground Water Concentration, ug/L	1135.77
Protective Soil Concentration, mg/kg	49.25

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B				
Ground Water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg	
HI=1	YES	1.14E+03	7.07E-06	1.00E+00	4.92E+01	
Total Risk = 1E-5	NO	1.42E+03	1.00E-05	1.23E+00	7.16E+01	
Total Risk = 1E-6	YES	1.93E+02	1.00E-06	1.76E-01	6.75E+00	
Risk of cPAHs mixture= 1E-5	NO	2.63E+03	1.12E-04	2.29E+00	100% NAPL	
Benzene MCL = 5 ug/L	NO	2.63E+03	1.12E-04	2.29E+00	100% NAPL	
MTBE = 20 ug/L	NO	2.63E+03	1.12E-04	2.29E+00	100% NAPL	

Note: 100% NAPL is 66000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protectiv	Protective Soil		
Ground Water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	5.00E+02	2.79E-06	4.48E-01	1.91E+01

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the L&L Exxon site located at 1315 Lee Boulevard in Richland, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Ecology and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable, but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

