

Soil Assessment

Frenchies' Fill-N-Food Moxee, Washington

for

Washington State Department of Ecology

May 21, 2012

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Soil Assessment

Frenchies' Fill-N-Food Moxee, Washington

File No. 0504-075-00

May 21, 2012

Reviewed by:

onathan E. Rudders, LHG Senior Hydrogeologist

Prepared for:

Washington Department of Ecology Toxics Cleanup Program - Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Norm Hepner, PE, Environmental Engineer

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Prepared by:

Scott H. Lathen, PF

Staff Environmental Engineer

Reviewed by:

Bruce D. Williams

Principal

SHL:JRH:JHB:jrm:tlm:csv:mlh:jlr

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright@ 2012 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1
2
3
3
3
3
4
4
6
6

LIST OF TABLES

Table 1. Summary of Chemical Analytical Results - Soil

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Boring Locations

Figure 3. Cleanup Level Exceedance Locations

Figure 4. Proposed Monitoring Well Locations

APPENDICES

Appendix A. Field Procedures and Boring Logs

Figure A-1 – Key to Exploration Logs

Figures A-2 through A-14 - Logs of Borings

Appendix B. Representative Site Photographs

Appendix C. Chemical Analytical Laboratory Reports

Appendix D. Site Specific Cleanup Level Calculation

Appendix E. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes soil assessment activities conducted at the Frenchies' Fill-N-Food site located at 106 East Moxee Avenue located in Moxee, Washington (herein referred to as "site"). The site is located approximately as shown in the attached Vicinity Map, Figure 1.

Environmental activities at the site currently are managed by the Washington State Department of Ecology (Ecology). This report describes field activities and observations with chemical analytical results from soil samples collected at the site, and provides recommendations for further assessment. The purpose of the assessment activities described herein was to evaluate if prior site remedial activities and subsequent contaminant attenuation were sufficient to warrant a No Further Action (NFA) designation for the site and, if not, to identify appropriate investigative and/or remedial activities for observed site conditions.

2.0 SITE DESCRIPTION AND BACKGROUND

The site, currently being used as a bakery and hair salon, formerly was operated as a gasoline station and auto service center. The adjacent property to the west is occupied by a preschool facility named Kid's Korner. The adjacent property to the south is a grass field. East Moxee Avenue and North Spokane Street bound the property to the north and east, respectively.

During January 1994, Cayuse Environmental (Cayuse) and their excavation contractor removed three 4,000-gallon and one 6,000-gallon gasoline underground storage tanks (USTs) from the site. The associated UST removal report (Cayuse 1994) indicated the four USTs were located south of the "store" building (assumed to be the existing building on site) and the associated fuel lines ran from the tanks to fuel dispensers located north of the store. The four USTs removed in 1994 reportedly were installed during the mid-1980s and replaced four previously-installed gasoline USTs at the site. Precise UST and dispenser locations were not provided by Cayuse.

Cayuse performed an environmental assessment of the UST excavation in 1994. Twelve in-situ soil samples, one water sample, and three soil stockpile samples were collected from various locations at the site. Soil samples contained concentrations of gasoline-range petroleum hydrocarbons (GRPH) greater than Model Toxics Control Act (MTCA) Method A cleanup criteria. Groundwater was encountered about 10 feet below grade during excavation activities. Laboratory results indicated a grab sample collected from groundwater accumulated in the excavation contained GRPH concentrations greater than MTCA Method A cleanup criteria.

The Cayuse report indicated approximately 1,800 cubic yards of petroleum-impacted soil were excavated and stockpiled on a lot located directly south of the site following UST removal activities. According to the Cayuse report the extent of soil contamination was not defined. The stockpile was removed from the site after the report was prepared; however stockpile removal and disposal activities were not documented.

The Cayuse report concluded that the extent of site contamination was unknown and recommended excavating a number of test pits and installing three monitoring wells to assess the boundaries of petroleum-impacted soil. Documentation of these recommended activities was not

identified. Additional details regarding site background and history are included in the technical memorandum "Frenchies' Fill-N-Food, File Review Summary" (GeoEngineers 2012A).

The suspected contamination sources at the site include former USTs, dispensers, underground fuel piping, and the former service station. The contaminants of potential concern (COPCs) include GRPH, volatile organic compounds (VOCs), naphthalenes, and lead in both soil and groundwater.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Sampling and Analysis Plan (SAP), dated February 1, 2012 (GeoEngineers, 2012B) based on a file review of site environmental activities performed to date. The SAP was designed to assess if residual soil, groundwater, and/or soil vapor contamination is located at the site and further remedial action and/or an environmental covenant was warranted. The scope of services performed by GeoEngineers during implementation of the SAP included:

- Prepared a Health and Safety Plan (HASP) for sampling activities.
- Drilled 13 soil borings using direct-push drilling methods at the locations described below and presented in Boring Locations, Figure 2. The borings were drilled to depths between 8 to 16 feet below ground surface (bgs).
- Collected soil samples in 4-foot acrylic sleeves continuously during drilling. Select sub-samples were field-screened using visual observations, water sheen methods, and headspace vapor measurements with a photoionization detector (PID) to assess the possible presence of petroleum-related contaminants. At least one sample from each 4-foot sleeve was retained for potential chemical analysis.
- Submitted 12 soil samples to TestAmerica Laboratories, Inc. (TestAmerica) of Spokane, Washington for chemical analysis. Soil samples were analyzed for GRPH using Northwest Method NWTPH-Gx; benzene, toluene, ethylbenzene, xylenes (BTEX), methyl tertiary-butyl ether (MTBE), n-hexane, 1,2-dichloroethane (EDC) using Environmental Protection Agency (EPA) Method 8260C; 1,2-dibromoethane (EDB) using EPA Method 8011; naphthalenes (including naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) using EPA Methods 8260C and 8270; and lead using EPA Method 6010C. Two soil samples (collected from borings DP-3 and DP-8) were additionally analyzed for fractionalized petroleum hydrocarbons (aliphatics and aromatics) using Northwest VPH and EPH methods.
- Contained soil cuttings and decontamination water. The investigation-derived waste (IDW) was drummed separately, labeled, and stored on-site pending results of analytical testing.
- Subcontracted Able Cleanup Technologies, Inc. of Spokane, Washington to dispose IDW at Graham Road Landfill in Spokane County, Washington.
- Entered data results information into Ecology's Environmental Information Management database.
- Analyzed assessment data to evaluate if the site requires further investigative and/or remedial actions.

4.0 FIELD ACTIVITIES

4.1. General

A private utility locate of the site and adjacent areas was conducted on February 28, 2012. Environmental West Explorations (Environmental West) of Spokane, Washington, advanced 13 borings (B-1 through B-13) to depths of about 8 to 16 feet bgs using a direct-push Geoprobe drill rig on February 29, 2012. Boring locations are presented in Figure 2 and summarized by the following:

- Seven borings (DP-1 through DP-5, DP-9, and DP-10) were drilled between the existing structure on the site and the adjacent preschool, generally near the northwest corner of the building.
- Two borings (DP-7 and DP-8) were drilled north of the building.
- Two borings (DP-6 and DP-13) were drilled south of the building.
- Two borings, DP-11 and DP-12, were drilled to the south and west of the daycare building, respectively.

Boreholes were backfilled with bentonite and the surface was patched with cold patch asphalt as needed. Soil cuttings and decontamination water were placed in 55-gallon steel drums, labeled, and stored near the south side of the existing building.

Boring logs associated with borings DP-1 to DP-13 are provided in Appendix A. Representative site photographs demonstrating site conditions at the time of our assessment are provided in Appendix B.

4.2. Subsurface Conditions

Observed native soil conditions generally consisted of interbedded brown silt with fine sand and brown fine sand with silt. Fill material was observed in each boring except DP-4, at thicknesses that ranged from 1 foot (DP-2, DP-5, and DP-10) to $13\frac{1}{2}$ feet (DP-13). In borings DP-1 and DP-13, fill material consisted of brown silt with sand and gravel. Elsewhere fill consisted of brown gravel with sand. Groundwater was encountered in each boring during drilling at depths that ranged from 10 to $11\frac{1}{2}$ feet bgs. In several borings, the fine sand with silt layer was encountered roughly from 6 to 12 feet bgs, and in most borings, a silt layer was encountered at the base of the borings.

4.3. Field Screening and Sampling

Soil samples from each boring were field-screened for the potential presence of petroleum contamination by visual examination, headspace vapor monitoring with a PID, and water-sheen testing. Procedures for field-screening and sampling are provided in Appendix A. Headspace vapors were not detected and only slight sheens were observed on soil from borings DP-6, DP-7, and DP-11 through DP-13. Headspace vapor measurements ranged between 30 parts per million (ppm) and 2,060 ppm and slight to heavy sheens were observed from the remaining borings. Stained soil also was observed from soil samples collected from boring DP-1, DP-3, DP-5, and DP-13. Field screening indications of contaminated soil were observed both above and below the static water level. Twelve soil samples from depths ranging between $2\frac{1}{2}$ to 11 feet bgs were

submitted to TestAmerica for chemical analysis; chemical analytical results are discussed below. Soil samples were collected from the vadose zone or near the groundwater interface.

5.0 CHEMICAL ANALYTICAL RESULTS

Twelve soil samples were analyzed by TestAmerica for GRPH, BTEX, MTBE, n-hexane, EDB, EDC, naphthalenes and lead concentrations by the methods listed in **Section 3.0**. TestAmerica's laboratory report is included in Appendix C; chemical analytical results are summarized in Soil Chemical Analytical Results, Table 1. Chemical analytical results are compared to Model Toxics Control Act (MTCA) Method A cleanup levels for Unrestricted Land Use and are summarized by the following:

- GRPH was detected at concentrations greater than MTCA Method A cleanup levels of 100 milligrams per kilogram (mg/kg) (30 mg/kg if benzene is present) in soil samples from borings DP-2 through DP-5 and DP-8 through DP-10. GRPH concentrations exceeding cleanup levels ranged from 65.2 mg/kg in the sample collected from DP-9 to 23,200 mg/kg in the sample collected from DP-8. GRPH was either not detected or detected at concentrations less than MTCA Method A cleanup levels in samples collected from the remaining borings.
- VOCs (BTEX, MTBE, n-hexane, and/or naphthalenes) were detected at concentrations greater than MTCA Method A cleanup levels from borings DP-3 through DP-5, DP-8 and DP-10. Note that the reporting limit (RL) for benzene was reported by TestAmerica at concentrations greater than the MTCA cleanup level (0.03 mg/kg) for samples from borings DP-6 and DP-7. VOCs were either not detected or detected at concentrations less than MTCA Method A cleanup levels in samples collected from the remaining borings.
- EDB and EDC were not detected in the 12 soil samples submitted for laboratory analysis. TestAmerica reported the RL for EDB in the sample collected from boring DP-5 at a concentration greater than the MTCA cleanup level (5 micrograms per kilogram).
- Lead was either not detected or detected at concentrations less than the MTCA Method A cleanup level in the analyzed samples.
- Samples collected from borings DP-3 and DP-8 were additionally analyzed for fractionalized petroleum hydrocarbons (aliphatics and aromatics). Total VPH was detected at concentrations of 1,700 mg/kg and 8,500 mg/kg from the samples collected for borings DP-3 and DP-8, respectively.
- Based on our evaluation of fractionalized petroleum hydrocarbons using Ecology's MTCATPH11.1 program, we calculated a site-specific MTCA Method B cleanup level for total petroleum hydrocarbons of 2,419 mg/kg using analytical results from DP-3. The cleanup level was exceeded in samples collected from borings DP-3, DP-4 and DP-8. A summary of our calculations is provided in Appendix D.

6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Soil assessment activities were conducted on February 29, 2012 at the Frenchies' Fill-N-Food site located at 106 East Moxee Avenue in Moxee, Washington. Thirteen direct-push soil borings were

advanced to depths ranging from about 8 to 16 feet bgs. Shallow native soil conditions at the site generally consists of interbedded silt and fine sand. Overlying fill material is composed primarily of silt or gravel (depending on location) and ranges from about 1 to $13\frac{1}{2}$ feet in observed thickness. Groundwater was encountered in the borings at about 10 to 11 feet bgs.

GRPH were detected at concentrations greater than MTCA Method A cleanup levels in soil samples collected from borings DP-2 through DP-5 and DP-8 through DP-10. VOCs were detected at concentrations greater than MTCA Method A cleanup levels in soil samples collected from borings DP-3 through DP-5, DP-8, and DP-10. Soil borings with samples exceeding MTCA Method A cleanup levels generally were located near and surrounding the northwest corner of the existing bakery/hair salon building, as shown in Cleanup Level Exceedance and Proposed Exploration Locations, Figure 3. Although information regarding the locations of equipment associated with former service station operations is limited, the source of the observed contamination could have been the former dispensers and associated piping that transported petroleum from the USTs to the dispensers. As shown in Figure 3, samples from four borings with an exceedance of cleanup level were collected from the vadose zone (above the groundwater table), and suggests that residual source material exists in this portion of the site. Samples from three borings with exceedances were collected near the groundwater table, which suggest that groundwater transport of site contamination could be occurring. Note that, based on area groundwater flow conditions, a westerly or southwesterly groundwater flow direction is anticipated within shallow aquifer underlying the site, though this has not been confirmed with site specific information.

Based on these considerations, additional assessment at the site appears warranted. Existing data gaps consist of the following:

- Groundwater elevation and flow distribution across the site, including any seasonal variation in groundwater flow associated with fluctuations in recharge or irrigation operations.
- Presence and extent of existing groundwater contamination at and potentially downgradient of the source area(s).
- The lateral extent of soil contamination exceeding cleanup levels to the northwest of DP-10, south of DP-2, between DP-8 and DP-7, and north-northeast of DP-8. However, the data gap can be addressed during performance of a soil removal-based remedial action.

To address the groundwater-based data gaps outlined above, the recommended next phase of investigation include the following components.

- Install four 2-inch-diameter polyvinyl chloride (PVC) groundwater monitoring wells screened across the groundwater table in the locations presented in Proposed Monitoring Well Locations, Figure 4. Monitoring wells should be installed using conventional hollow-stem auger drilling methods.
 - MW-1 is intended to be an up-gradient monitoring well, for the purpose of establishing background groundwater quality entering the site.
 - MW-2 and MW-3 are proposed to be sited directly downgradient of potential source areas, to assess the potential presence and magnitude of site impacts to groundwater quality.

- MW-4 is a proposed down-gradient monitoring well to evaluate if site contamination could be exiting site boundaries via groundwater transport.
- Initiate a quarterly groundwater monitoring program during which samples collected from site monitoring wells should be analyzed for: GRPH using Northwest Method NWTPH-Gx; BTEX, MTBE, n-hexane, and EDC using EPA Method 8260C; EDB using EPA Method 8011; naphthalenes (including naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) using EPA Methods 8260C and 8270; and lead using EPA Method 6010C. Compounds that are not detected during the first groundwater monitoring event, and were not detected in the soil samples described herein, should be removed from the analytical suite during subsequent events.

7.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to "Report Limitations and Guidelines for Use", Appendix E for additional information pertaining to use of this report.

8.0 REFERENCES

Cayuse Environmental, 1994. Letter to Mr. Jay LaCourisere entitled "Notification of tank removal and contaminated soil removal at 106 Moxee Avenue, Moxee, WA. January 14.

GeoEngineers, Inc. 2012A. Memorandum, Frenchies Fill-N-Food, File Review Summary. January 24.

GeoEngineers, Inc. 2012B. Sampling and Analysis Plan, Soil and Groundwater Assessment, Frenchies Fill-N-Food, Moxee, Washington. February 1.

Table 1

Summary of Chemical Analytical Results - Soil¹

Frenchies Fill-n-Food Moxee, Washington

Sam	ple Number	DP-1	DP-2	DP-3	DP-4	DP-5	DP-6	DP-7	DP-8	DP-9	DP-10	DP-11	DP-12	
Da	te Sampled	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	02/29/12	MTCA Method A
Sample Dept	h (feet bgs)	10-10.5	10.5-11	6.5-7	9.5-10	11-11.5	10-10.5	9.5-10	7-8	2.5-3	6.5-7.5	10-11	10-11	Cleanup Levels ²
GRPH ³ (mg/kg)		20.0	167	5,630	5,090	286	<12.9	<13.7	23,200	65.2	512	<8.48	<9.69	30/100
MTBE ⁴ (mg/kg)		<0.0402	<0.0481	<0.485	<0.705	<0.0463	<0.0774	<0.0824	<0.736	<0.0441	<0.0667	<0.0509	<0.0581	0.1
Benzene ⁴ (mg/kg)		<0.0201	<0.0240	<0.242	0.847	0.113	<0.0129	<0.0137	0.380	0.0286	<0.0334	<0.0254	<0.0291	0.03
Ethylbenzene ⁴ (mg/kg)		<0.134	<0.160	16.5	24.5	<0.154	<0.258	<0.275	77.8	0.391	0.653	<0.170	<0.194	6
Toluene ⁴ (mg/kg)		<0.134	<0.160	<1.62	4.91	<0.154	<0.258	<0.275	7.37	<0.147	<0.222	<0.170	<0.194	7
Total Xylenes ⁴ (mg/kg)		<2.01	<2.40	43.3	94.3	<2.32	<3.87	<4.12	445	<2.20	<3.34	<2.54	<2.91	9
2-Methylnaphthalene ⁵ (mg/kg)		<0.0120	<0.0132	12.4	3.16	1.13	<0.0156	<0.0159	8.74	0.117	1.79	<0.0135	<0.0141	5
1-Methylnaphthalene ⁵ (mg/kg)		<0.0120	<0.0132	4.57	1.21	0.438	<0.0156	<0.0159	3.30	0.0421	0.709	<0.0135	<0.0141	5
Naphthalene ⁵ (mg/kg)		<0.268	<0.321	38.5	19.6	0.827	<0.516	<0.550	108	0.637	5.32	<0.339	<0.388	5
1,2-Dichloroethane (EDC) ⁴ (mg/kg)		<0.134	<0.160	<1.62	<2.35	<0.154	<0.258	<0.275	<2.45	<0.147	<0.222	<0.170	<0.194	NE
1,2-Dibromoethane (EDB) ⁶ (µg/kg)		<1.21	<1.22	<1.21	<1.38	<12.4	<1.62	<1.57	<1.28	<1.17	<1.28	<1.32	<1.40	5
Hexane ⁴ (mg/kg)		<0.134	<0.160	<1.62	7.36	0.574	<0.258	<0.275	5.57	<0.147	<0.222	<0.170	<0.194	NE
C5-C6 Aliphatics (mg/kg)				<27	-	-			<74	-				NE
C6-C8 Aliphatics (mg/kg)				180		-			1,600	-				NE
C8-C10 Alphatics (mg/kg)				370	-	-			1,800	-				NE
C10-C12 Alphatics (mg/kg)	VPH ⁷	-		470	-	1	-	-	1,700	1	-	-		NE
C8-C10 Aromatics (mg/kg)	VPH			230	-	-			1,400					NE
C10-C12 Aromatics (mg/kg)				370		-			1,600				-	NE
C12-C13 Aromatics (mg/kg)		1	-	100	-	-	-	1	370		-	-	-	NE
Total VPH (mg/kg)				1,700		-			8,500				-	NE
C10-C12 Aliphatics (mg/kg)				340	-	-			410	-				NE
C12-C16 Aliphatics (mg/kg)				85		-			96	-			-	NE
C16-C21 Aliphatics (mg/kg)				14	-	-			14	-				NE
C21-C34 Alphatics (mg/kg)		1	-	<6.1	-	1	-	1	<6.3	1	-	-	-	NE
C10-C12 Aromatics (mg/kg)	EPH ⁸			300	-	-			450					NE
C12-C16 Aromatics (mg/kg)				85					140					NE
C16-C21 Aromatics (mg/kg)				9.8					13					NE
C21-C34 Aromatics (mg/kg)				<6.1		-			<6.3					NE
Lead ⁹ (mg/kg)		13.1	2.95	8.86	4.25	6.28	<2.27	<2.12	11.1	27.6	5.72	2.46	3.28	250

Notes:

https://projects.geoengineers.com/sites/0050407500/Final/Report/[0504-075-00 Table 1.xlsx]Soil

 $^{^1\!\}text{Samples}$ analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

²Washington State Model Toxics Control Act (MTCA) Method A Unrestricted Land Use cleanup levels. Bold font indicates analyte concentrations in excess of respective cleanup levels.

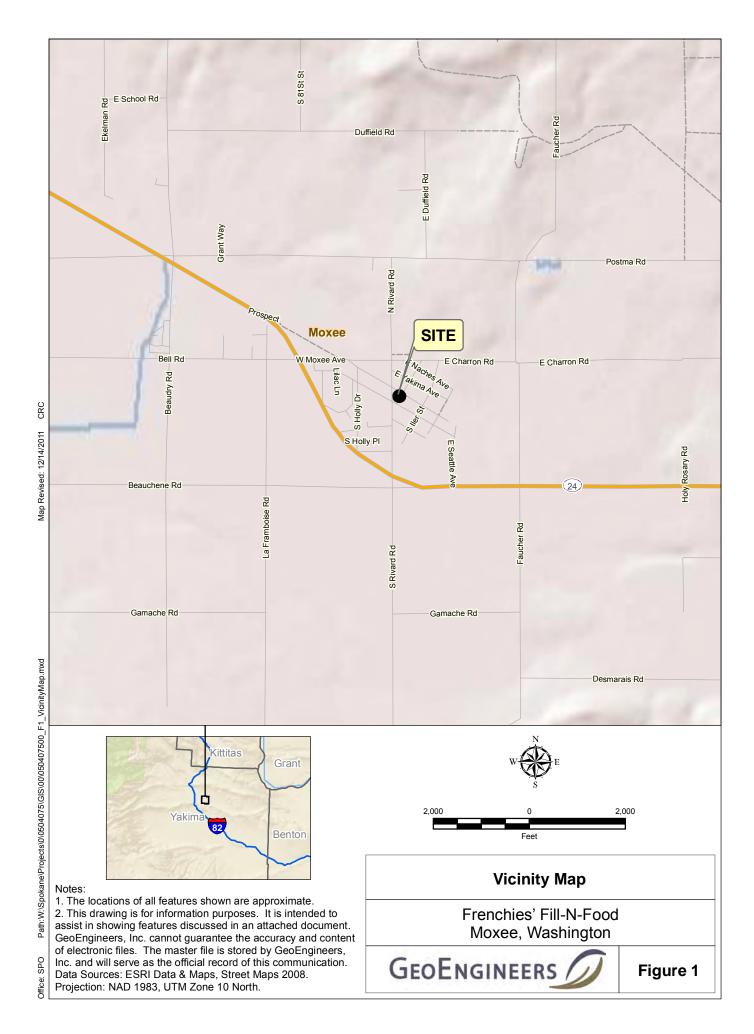
³Gasoline-range petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx. GRPH cleanup levels are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

⁴Volatile organic compounds (VOCs) analyzed using Environmental Protection Agency (EPA) Method 8260C. Total Xylenes includes o-xylene and m,p-xylene.

⁵Naphthalene concentration analyzed using EPA Method 8260C. 1-methylnaphthalene and 2-methylnaphthalene analyzed by EPA Method 8270. MTCA Method A cleanup level (5 mg/kg) refers to the sum of naphthalene,

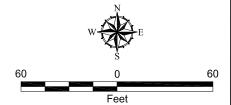
¹⁻methylnaphthalene and 2-methylnaphthalene.

⁶1,2-Dibromoethane (EDB) analyzed using EPA Method 8011.


⁷Volatile petroleum hydrocarbons (VPH) analyzed using Nprthwest Method NWTPH/VPH.

 $^{^{8}}$ Extractable petroleum hydrocarbons (EPH) analyzed using Nprthwest Method NWTPH/EPH.

⁹Total lead analyzed using EPA Method 6010C.


 $mg/kg = milligrams per kilogram; \mu g/kg = micrograms per kilogram; bgs = below ground surface; NE = Not Established; MTBE=methyl tertiary-butyl ether$

Legend

Approximate Location of Direct-Push Boring

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

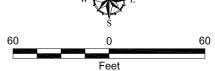
Reference: Aerial photo provided by ESRI Bing Maps Aerial.

Boring Locations

Frenchies' Fill-N-Food Moxee, Washington

Figure 2

Direct-Push Boring with no Cleanup Level Exceedance


Direct-Push Boring with Contaminant Soil Concentration in Vadose Zone that Exceeded Cleanup Levels

Direct-Push Boring with Contaminant Soil Concentration near the Groundwater Table that Exceeded Cleanup Levels

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- 3. Soil sample contaminant concentrations were referenced to Model Toxics Control Act Method A Cleanup Levels for Unrestricted Land Use to establish exceedance locations.
- 4. Interpreted limits of Vadose Zone contamination based on laboratory and field screening results.

Reference: Aerial photo provided by ESRI Bing Maps Aerial.

Cleanup Level Exceedance Locations

Frenchies' Fill-N-Food Moxee, Washington

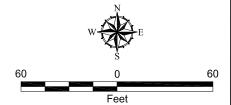


Figure 3

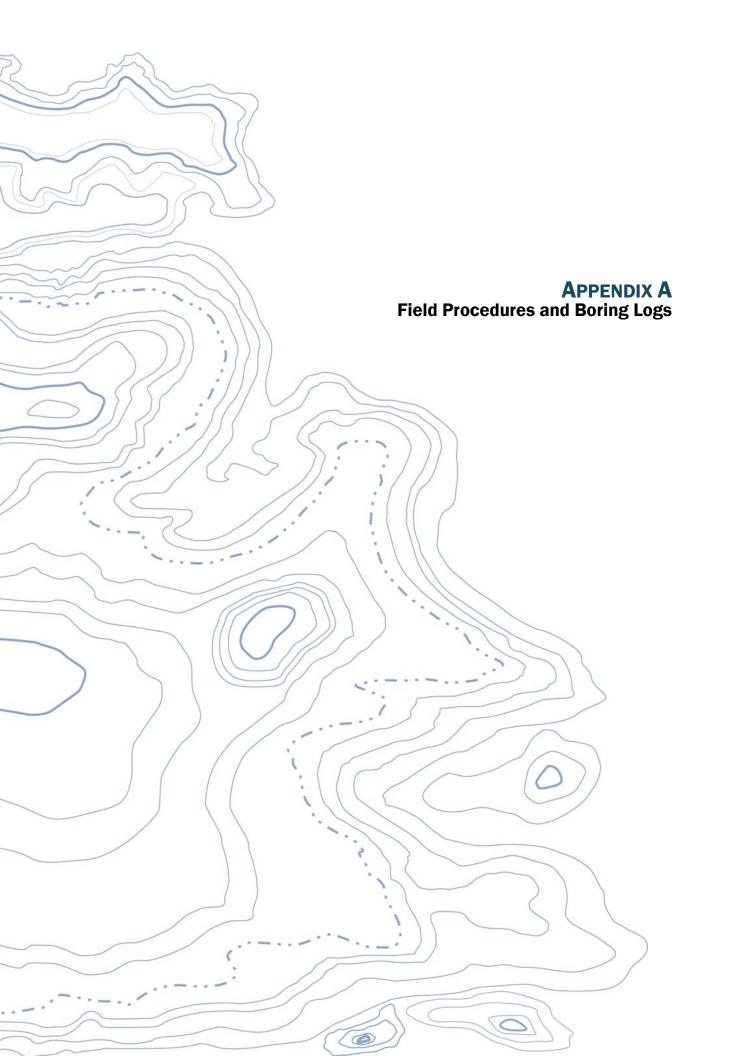
Legend

- Previous Direct-Push Boring Locations

Proposed Monitoring Well Location

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Aerial photo provided by ESRI Bing Maps Aerial.


Proposed Monitoring Well Locations

Frenchies' Fill-N-Food Moxee, Washington

Figure 4

APPENDIX A FIELD METHODS

General

Field methods performed in compliance with the project Sampling and Analysis Plan (SAP) (GeoEngineers 2012B).

Soil Sample Collection

Environmental Protection Agency (EPA) 5035 sampling methods were used to collect the soil samples for gasoline-range petroleum hydrocarbon (GRPH), volatile organic compound (VOC) and fractionalized petroleum hydrocarbon analyses. The soil for analysis of other parameters were placed in laboratory-supplied sample bottles and filled to minimize headspace. All soil samples were stored in a chilled cooler until delivery to the analytical laboratory.

Subsurface conditions at the Frenchies' Fill-N-Food site were explored at select locations on February 29, 2012 by advancing 13 borings (DP-1 to DP-13) at the approximate locations shown on Figure 2. The borings were advanced about 8 to 16 feet below existing site grade using a direct-push drill rig. Boring locations were established in the field by taping from existing site features. Consequently, exploration locations should be considered accurate to the degree implied by the method used.

The direct-push boring operations were monitored by staff from our firm who examined and classified the soil encountered; obtained soil samples and maintained a continuous log of exploration. Soil encountered in the borings was classified in general accordance with ASTM D 2488 and the classification chart listed in Key to Exploration Logs, Figure A-1. Logs of the borings are presented in Figures A-2 through A-14. The logs are based on interpretation of the field data and indicate the depth at which subsurface materials or their characteristics change, although these changes might actually be gradual.

Field Screening of Soil Samples

GeoEngineers' field representative performed field-screening tests on soil samples obtained from the borings. Field screening results were used as a general guideline to assess areas of possible petroleum-related contamination. The field screening methods used include: (1) visual screening; (2) water-sheen screening; and (3) headspace-vapor screening using a MiniRAE Photo Ionization Detector (PID) calibrated to isobutylene on the day of testing.

Visual screening consisted of observing soil for stains indicative of metal- or petroleum-related contamination. Water-sheen screening involved placing soil in a pan of water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheens observed are classified as follows:

No Sheen (NS)	No visible sheen on the water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.

Moderate Sheen (MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. Headspace vapor screening targeted volatile petroleum hydrocarbon compounds. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 parts per million (ppm), with a resolution of +/- 2 ppm.

Field screening results can be site specific. The effectiveness of field screening can vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of contaminants.

SOIL CLASSIFICATION CHART

М	AJOR DIVISI	ONS	SYM	BOLS	TYPICAL
IVI	AJON DIVISI			LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
00120	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
			Hyh	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
Н	HIGHLY ORGANIC SOILS				PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Shelby tube

Piston

Direct-Push

Bulk or grab

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

A "P" indicates sampler pushed using the weight of the drill rig.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	СС	Cement Concrete
33	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

Groundwater Contact

Ţ

Measured groundwater level in exploration, well, or piezometer

Groundwater observed at time of exploration

Perched water observed at time of exploration

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Material Description Contact

Distinct contact between soil strata or geologic units

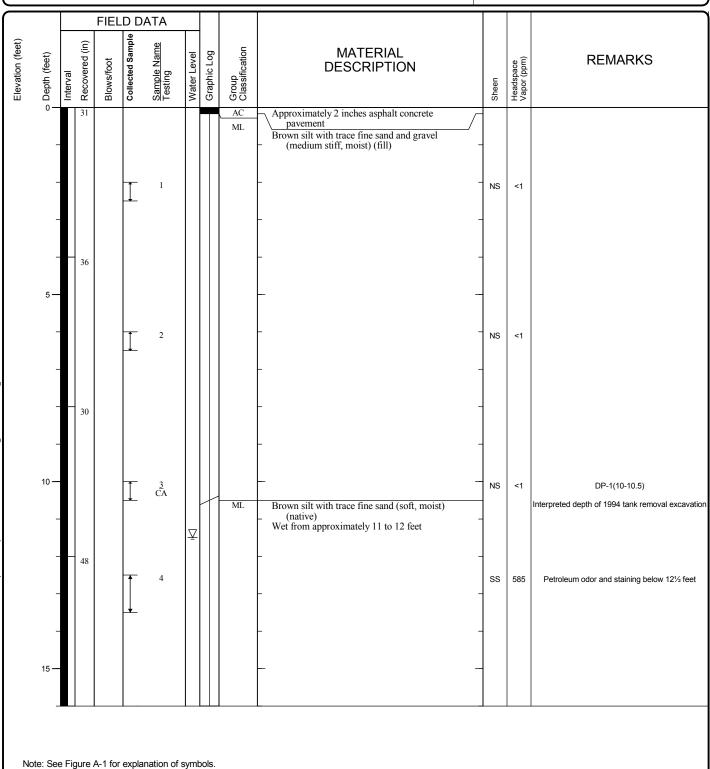
Approximate location of soil strata change within a geologic soil unit

Laboratory / Field Tests

%F Percent fines AL Atterberg limits CA Chemical analysis CP Laboratory compaction test cs Consolidation test DS **Direct shear** HA Hydrometer analysis MC Moisture content MD Moisture content and dry density oc Organic content PM Permeability or hydraulic conductivity PP Pocket penetrometer PPM Parts per million

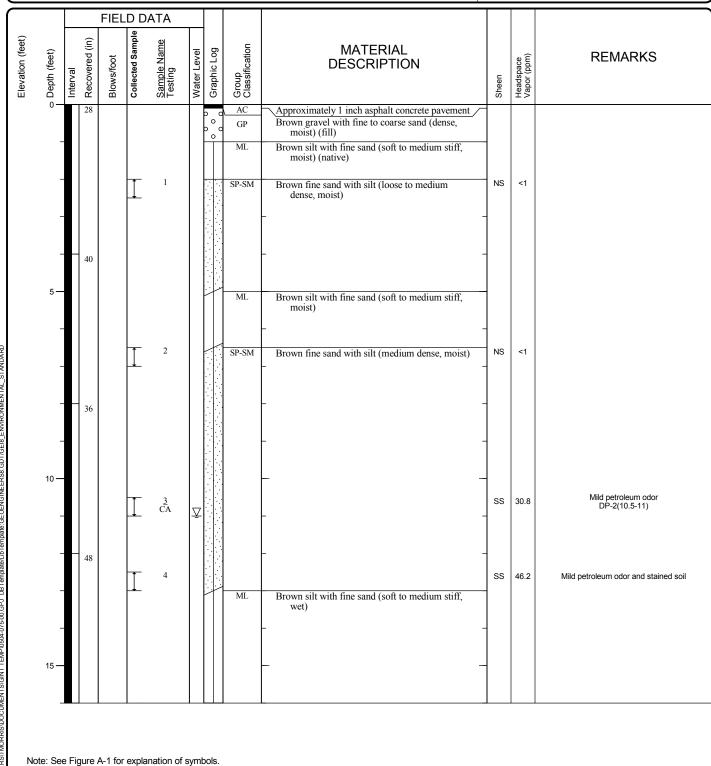
SA Sieve analysis
TX Triaxial compression
UC Unconfined compression
VS Vane shear

Sheen Classification

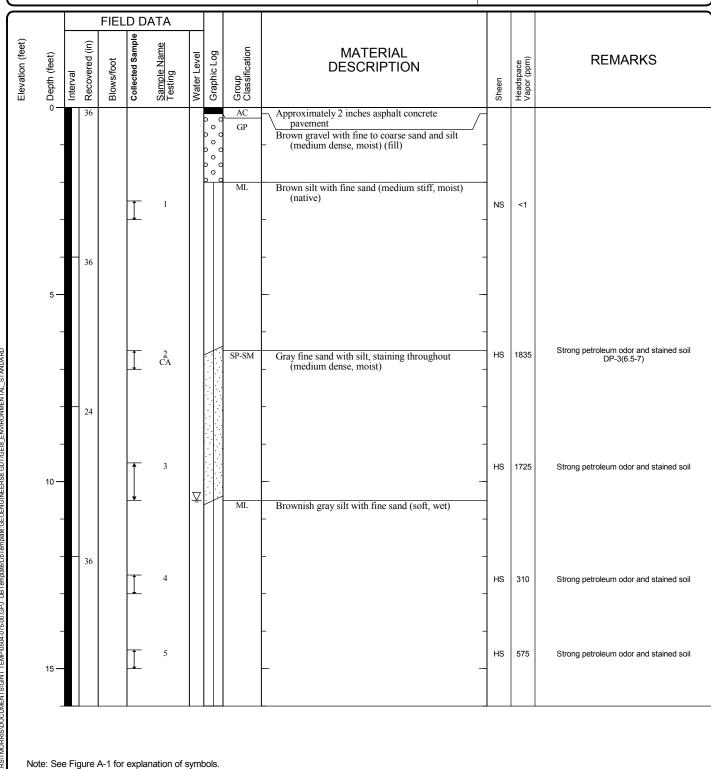

NS No Visible Sheen
SS Slight Sheen
MS Moderate Sheen
HS Heavy Sheen
NT Not Tested

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLORATION LOGS

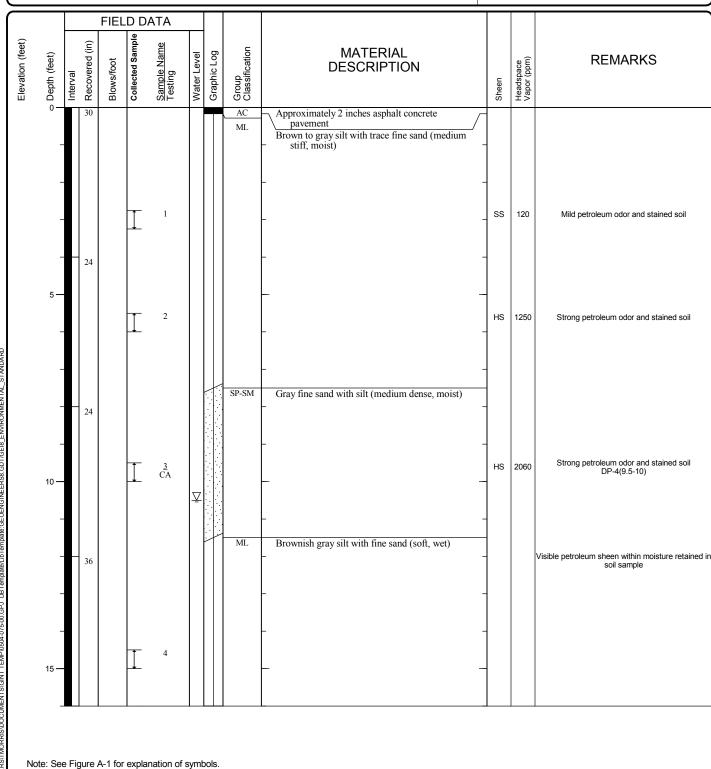


<u>Start</u> Drilled 2/29/2012	End Tota 2/29/2012 Dep	otal 16 epth (ft)	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push	
Surface Elevation (ft) Vertical Datum	Undetermi	nined	Hammer Data	١	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe	
Easting (X) Northing (Y)	1		System Datum	N	Not Applicable	Groundwate	Depth to	<u>ı (ft)</u>
Notes:						2/29/2012	11.5	



<u>Start</u> Drilled 2/29/2012	End Total 2/29/2012 Depth (ft)	16	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undetermined		Hammer Data	1	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)	1		System Datum	1	Not Applicable	Groundwate Date Measure	Depth to
Notes:						2/29/2012	11.0

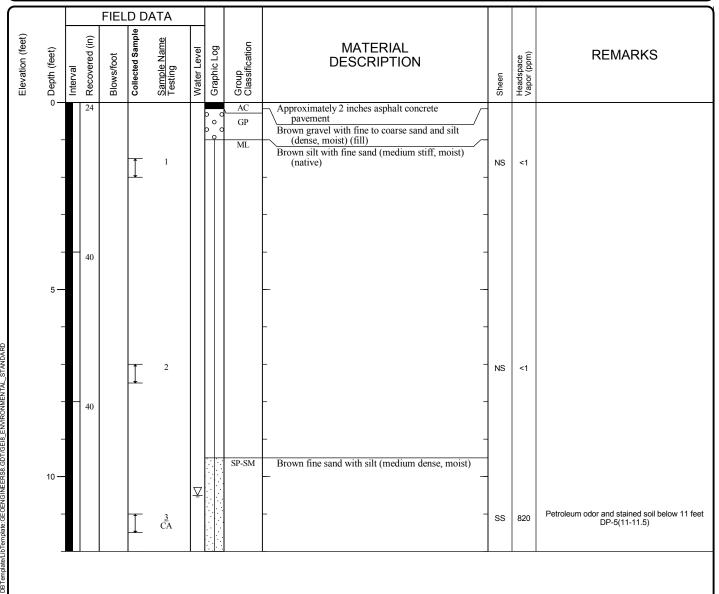
<u>Start</u> Drilled 2/29/2012	End Total 2/29/2012 Depth (ft)	6	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undetermined		lammer Oata	1	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)	1		System Datum	ı	Not Applicable	Groundwate Date Measure	Depth to
Notes:						2/29/2012	10.5



Project: Frenchies' Fill-N-Food
Project Location: Moxee, Washington
Project Number: 0504-075-00

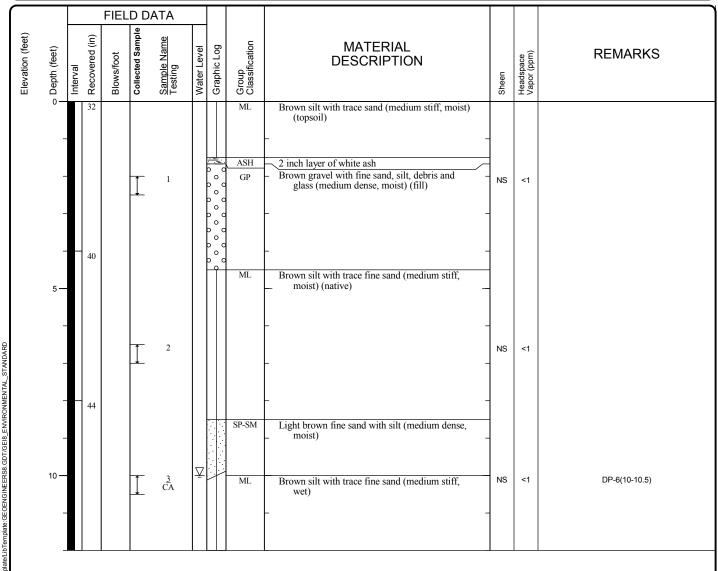
Figure A-4 Sheet 1 of 1

<u>Start</u> Drilled 2/29/2012	End Total 2/29/2012 Depth (ft)	6	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undetermined		lammer Oata	1	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)	1		System Datum	ı	Not Applicable	Groundwate Date Measure	Depth to
Notes:						2/29/2012	10.5

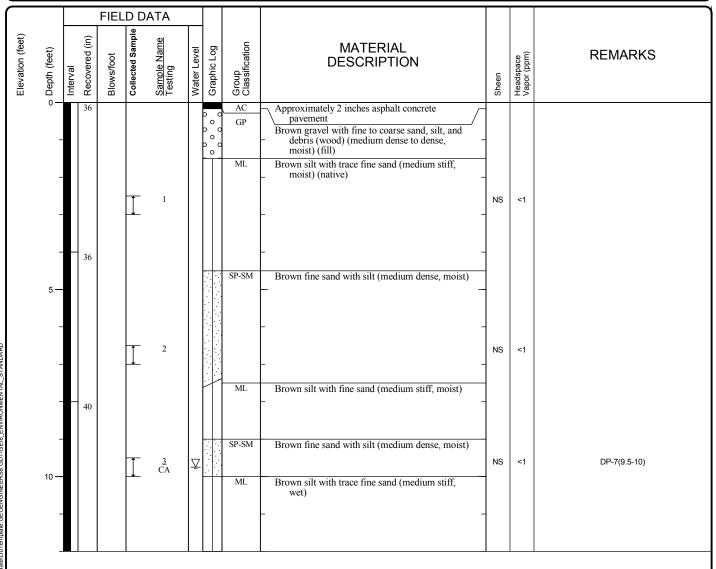


Project: Frenchies' Fill-N-Food
Project Location: Moxee, Washington
Project Number: 0504-075-00

Figure A-5 Sheet 1 of 1

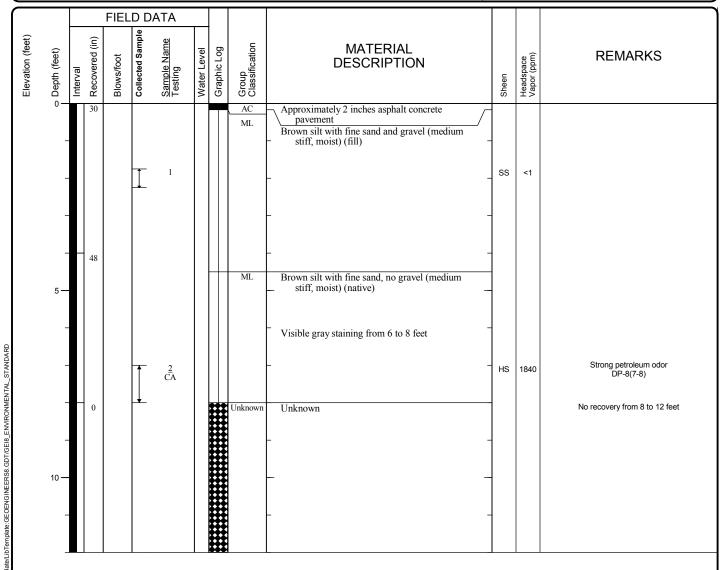

<u>Start</u> Drilled 2/29/2012	End Total Depth (ft)	2	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undetermined	I	Hammer Data	1	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)	1		System Datum	ı	Not Applicable	Groundwate Date Measure	Depth to
Notes:						2/29/2012	10.5

Log of Boring DP-5


<u>Start</u> Drilled 2/29/2012		Total Depth (ft)	12	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push		
Surface Elevation (ft) Vertical Datum	Undeter	rmined		Hammer Data	1	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe		
Easting (X) Northing (Y)	1			System Datum	1	Not Applicable	Groundwate	Depth to		
Notes:							2/29/2012	10.0		

Log of Boring DP-6

<u>Start</u> Drilled 2/29/2012	<u>End</u> 2/29/2012	Total Depth (ft)	12	Logged By Checked By		Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undete	ermined		Hammer Data	1	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)		1		System Datum	ı	Not Applicable	Groundwate Date Measure	Depth to
Notes:							2/29/2012	9.8

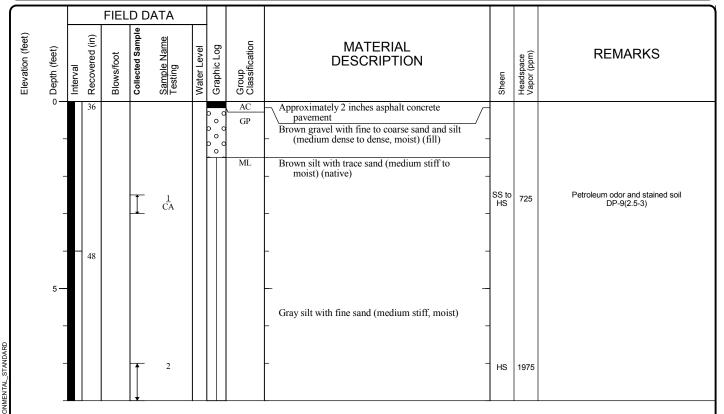


Log of Boring DP-7

Project: Frenchies' Fill-N-Food
Project Location: Moxee, Washington
Project Number: 0504-075-00

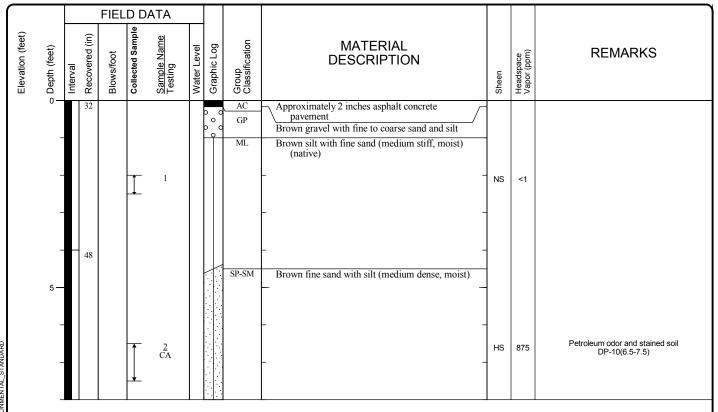
Figure A-8 Sheet 1 of 1

<u>Start</u> Drilled 2/29/2012		otal 12 epth (ft)	Logged By Checked By		Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undetermi	nined	Hammer Data	Not Applicable			Truck-Mounted GeoProbe
Easting (X) Northing (Y)	1		System Datum	1	Not Applicable	Groundwate	Depth to
Notes:							Not encountered

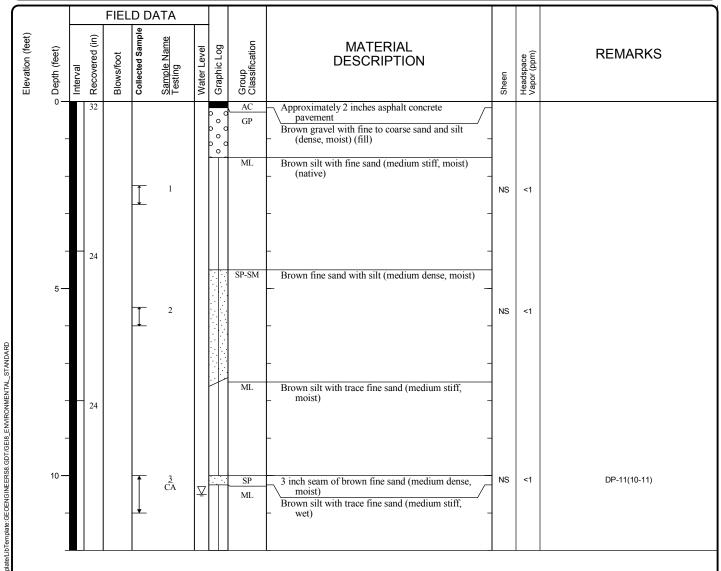


Project: Frenchies' Fill-N-Food
Project Location: Moxee, Washington
Project Number: 0504-075-00

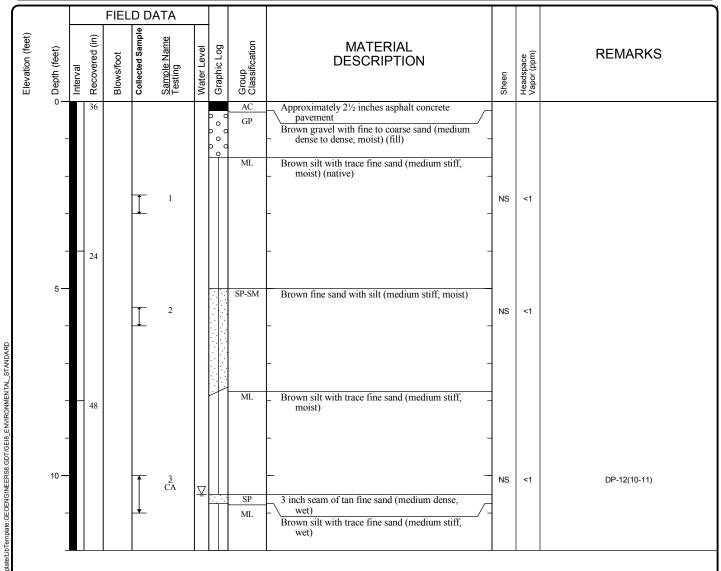
Figure A-9 Sheet 1 of 1


<u>Start</u> Drilled 2/29/2012	<u>End</u> 2/29/2012	Total Depth (ft)	8	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Unde	termined		Hammer Data	١	Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)				System Datum Not Applicable			Groundwate	Depth to
Notes:								Not encountered

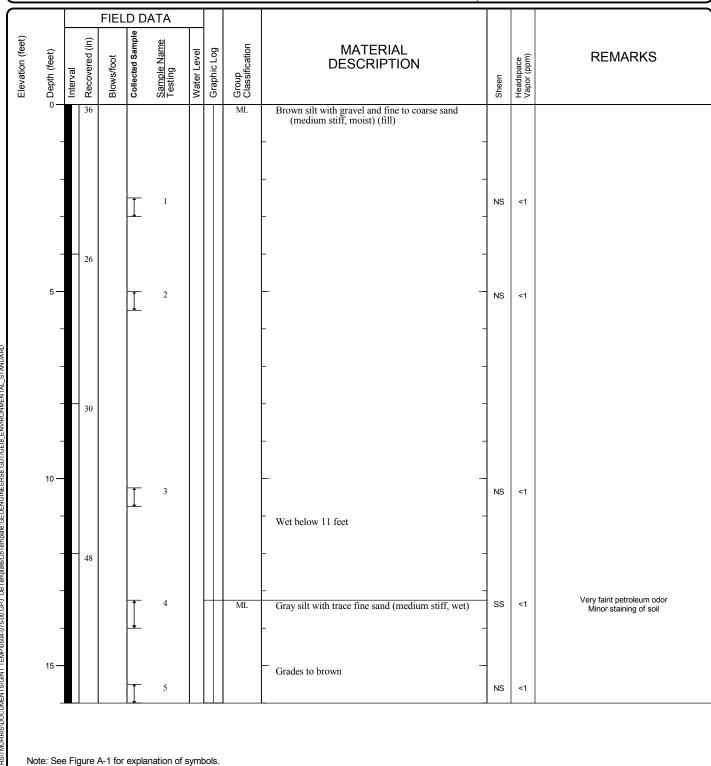
Log of Boring DP-9


<u>Start</u> Drilled 2/29/2012	<u>End</u> 2/29/2012	Total Depth (ft)	8	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data	1	Not Applicable Drill		Truck-Mounted GeoProbe
Easting (X) Northing (Y)		1		System Datum	1	Not Applicable	Groundwate	Depth to
Notes:								Not encountered

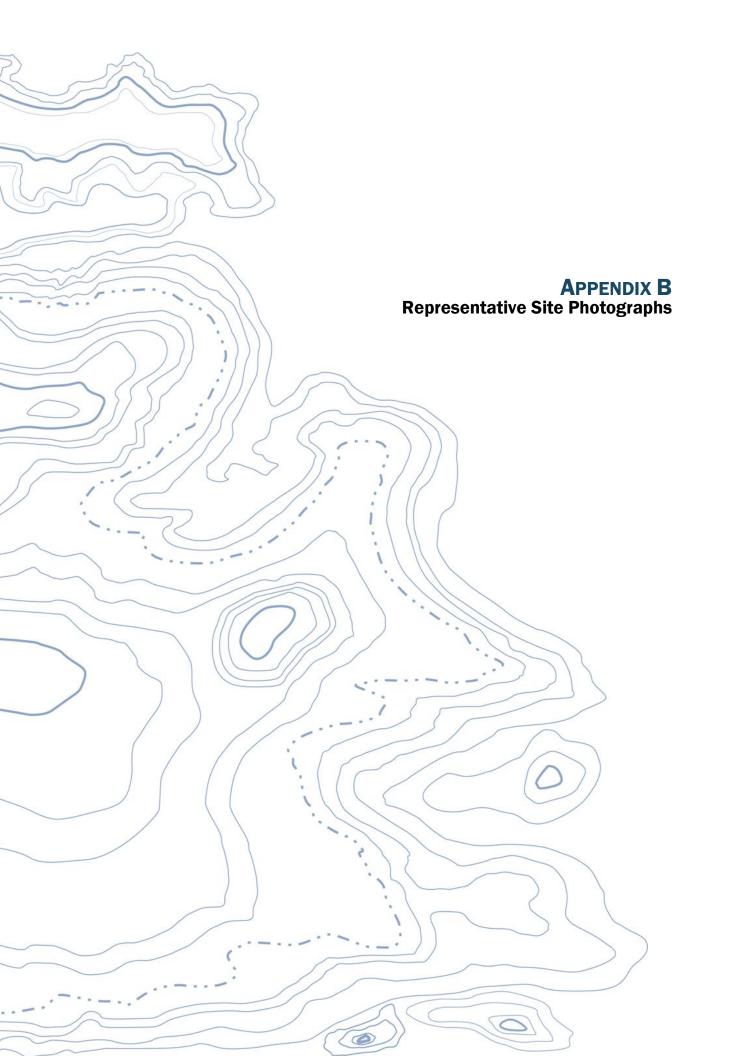
GEOENGINEERS


<u>Start</u> Drilled 2/29/2012		Total Depth (ft)	12	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Direct Push
Surface Elevation (ft) Vertical Datum	Undeter	rmined		Hammer Data Not Applicable			Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)				System Datum Not Applicable		Groundwate	Depth to	
Notes:							2/29/2012	10.5

Log of Boring DP-11


<u>Start</u> Drilled 2/29/2012		Total Depth (ft)	12	Logged By Checked By	KLR SHL	Driller Environmental W	est	Drilling Direct Push
Surface Elevation (ft) Vertical Datum	Undeter	rmined		Hammer Data Not Applicable			Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)				System Datum Not Applicable		Groundwate	Depth to	
Notes:							2/29/2012	10.5

Log of Boring DP-12


<u>Start</u> Drilled 2/29/2012	End Total 2/29/2012 Depth (ft)	Logged I Checked	By KLR By SHL	Driller Environmental W	est/	Drilling Direct Push
Surface Elevation (ft) Vertical Datum	Undetermined	Hammer Data		Not Applicable	Drilling Equipment	Truck-Mounted GeoProbe
Easting (X) Northing (Y)	1	System Datum		Not Applicable	Groundwate Date Measure	Depth to
Notes:						

Project: Frenchies' Fill-N-Food
Project Location: Moxee, Washington
Project Number: 0504-075-00

Figure A-14 Sheet 1 of 1

View of existing site building (view to southwest)

View of existing site building (view to northeast)

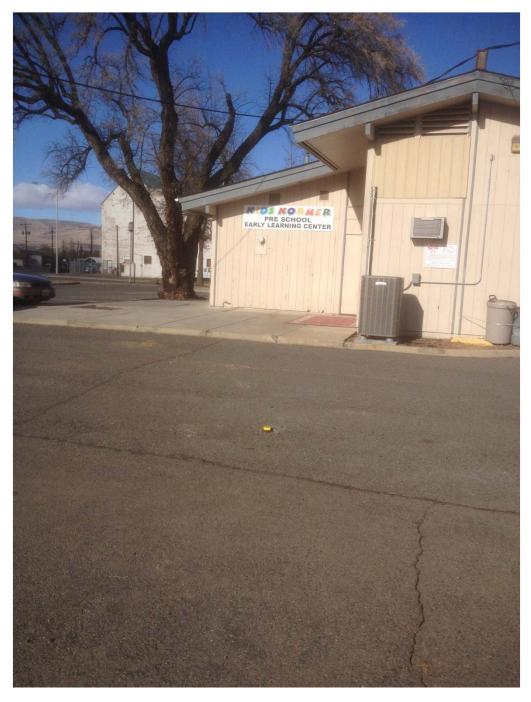
Representative Site Photographs

Frenchies' Fill-N-Food Moxee, Washington

GEOENGINEERS

Figure B-1

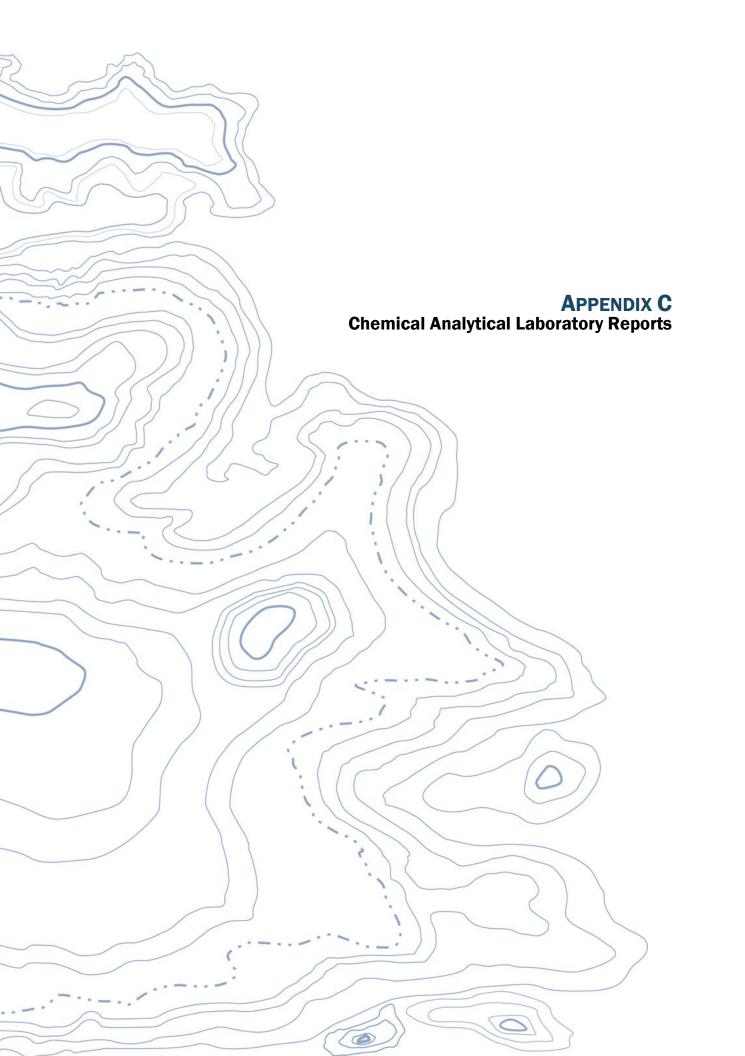
View of adjacent childcare facility and associated outdoor play area (view to northeast)



View of south portion of site (view to northwest)

Representative Site Photographs

Frenchies' Fill-N-Food Moxee, Washington


View of adjacent childcare facility with boring DP-11 in foreground (view to north)

Representative Site Photographs

Frenchies' Fill-N-Food Moxee, Washington

GEOENGINEERS

Figure B-3

APPENDIX C CHEMICAL ANALYTICAL DATA

Samples

Chain-of-custody procedures were followed during the transport of the field samples to TestAmerica Laboratories, Inc. located in Spokane, Washington. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix.

Analytical Data Review

The laboratory maintains an internal quality assurance/quality control (QA/QC) program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted the following exceptions in the laboratory report.

- The surrogate recovery of 4-bromofluorobenzene was outside acceptance limits with respect to samples collected from DP-2, DP-3, DP-4, DP-5, DP-8 and DP-10.
- Sample DP-3(6.5-7) required a dilution. As a result, the surrogate spike concentration in the sample was reduced to a level where the laboratory indicated the recovery calculation did not provide useful information.
- Because of interference, percent recovery of 4-bromofluorobenzene was not calculated for the following samples: DP-3(6.5-7); DP-8(7-8); 580-31626-2 MS; and 580-31626-2 MSD.
- The reporting limit of 1,2-Dibromoethane was raised in sample DP-5(11-11.5) because of sample matrix effects.

Analytical Data Review Summary

We reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of data quality goals. Based on our review, in our opinion, the quality of the analytical data is acceptable for the intended use.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SVC0026

Client Project/Site: 0504-075-00

Client Project Description: Frenchies Fill-n-Food

Revision: 2

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Jon Rudders

tandudedar

Authorized for release by: 4/10/2012 2:28:11 PM

Randee Decker Project Manager

Randee.Decker@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Geo Engineers - Spokane Project/Site: 0504-075-00 TestAmerica Job ID: SVC0026

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	16
Certification Summary	23
Method Summary	24
Chain of Custody	25

3

4

č

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

TestAmerica Job ID: SVC0026

-5
_

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SVC0026-02	DP-1(10-10.5)	Soil	02/29/12 08:15	03/05/12 17:05
SVC0026-04	DP-2(10.5-11)	Soil	02/29/12 09:00	03/05/12 17:05
SVC0026-08	DP-3(6.5-7)	Soil	02/29/12 09:45	03/05/12 17:05
SVC0026-09	DP-4(9.5-10)	Soil	02/29/12 10:50	03/05/12 17:05
SVC0026-10	DP-5(11-11.5)	Soil	02/29/12 11:15	03/05/12 17:05
SVC0026-11	DP-6(10-10.5)	Soil	02/29/12 12:30	03/05/12 17:05
SVC0026-12	DP-7(9.5-10)	Soil	02/29/12 13:00	03/05/12 17:05
SVC0026-13	DP-8(7-8)	Soil	02/29/12 13:35	03/05/12 17:05
SVC0026-14	DP-9(2.5-3)	Soil	02/29/12 13:50	03/05/12 17:05
SVC0026-15	DP-10(6.5-7.5)	Soil	02/29/12 14:15	03/05/12 17:05
SVC0026-16	DP-11(10-11)	Soil	02/29/12 14:50	03/05/12 17:05
SVC0026-17	DP-12 (10-11)	Soil	02/29/12 15:10	03/05/12 17:05

Client: Geo Engineers - Spokane Project/Site: 0504-075-00 TestAmerica Job ID: SVC0026

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Semivolatiles

Qualifier	Qualifier Description
Z3	The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the
	sample was reduced to a level where the recovery calculation does not provide useful information.
RL1	Reporting limit raised due to sample matrix effects.

GC VOA

(Qualifier	Qualifier Description
Ī		Indicates the presence of an interference, recovery is not calculated.
	X	Surrogate is outside control limits
•	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not
		applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

_

4

-

Я

Client Sample Results

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Date Collected: 02/29/12 08:15

Date Received: 03/05/12 17:05

Client Sample ID: DP-1(10-10.5)

TestAmerica Job ID: SVC0026

Lab Sample ID: SVC0026-02

Matrix: Soil

Percent Solids: 81.2

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C Result Qualifier MDL Unit Analyte RL D Prepared Analyzed Dil Fac ₩ 6.70 03/07/12 09:50 03/07/12 14:04 1.00 **Gasoline Range Hydrocarbons** 20.0 mg/kg dry Methyl tert-butyl ether ND 0.0402 03/07/12 09:50 1.00 mg/kg dry 03/07/12 14:04 Benzene ND 0.0201 mg/kg dry ₩ 03/07/12 09:50 03/07/12 14:04 1.00 ND 0.134 03/07/12 09:50 03/07/12 14:04 Ethylbenzene mg/kg dry 1.00 Toluene ND 0.134 mg/kg dry 03/07/12 09:50 03/07/12 14:04 1.00 ND 0.268 03/07/12 09:50 03/07/12 14:04 1.00 o-Xylene mg/kg dry ₩ m,p-Xylene ND 0.536 mg/kg dry 03/07/12 09:50 03/07/12 14:04 1.00 Naphthalene ND 0.268 03/07/12 09:50 03/07/12 14:04 1.00 mg/kg dry ₩ 1,2-Dichloroethane (EDC) ND 0.134 mg/kg dry 03/07/12 09:50 03/07/12 14:04 1.00 ₽ Xylenes (total) ND 2.01 mg/kg dry 03/07/12 09:50 03/07/12 14:04 1.00 03/07/12 09:50 Hexane ND 0.134 mg/kg dry 03/07/12 14:04 1.00 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane 114 42.7 _ 151 03/07/12 09:50 03/07/12 14:04 1.00 112 50.8 - 132 03/07/12 09:50 1.00 Toluene-d8 03/07/12 14:04 4-bromofluorobenzene 116 51 - 136 03/07/12 09:50 03/07/12 14:04 1.00 Method: EPA 8011 - EDB by EPA Method 8011 Analyte MDL Unit D Dil Fac Result Qualifier RL Prepared Analyzed 1,2-Dibromoethane ND 1.21 03/09/12 13:34 03/12/12 11:43 1.00 ug/kg dry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND ND	-	0.0120		mg/kg dry	\	03/07/12 08:35	03/07/12 17:22	1.00
1-Methylnapthalene	ND		0.0120		mg/kg dry	₩	03/07/12 08:35	03/07/12 17:22	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	110		30 - 140				03/07/12 08:35	03/07/12 17:22	1.00
2-FBP	93.0		30 - 140				03/07/12 08:35	03/07/12 17:22	1.00
p-Terphenyl-d14 -	69.2		30 - 150				03/07/12 08:35	03/07/12 17:22	1.00
- Method: EPA 6010C - Tota	I Metals by EPA 6010)/7000 Serie	es Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	13.1		1.74		mg/kg dry	\	03/09/12 09:35	03/14/12 10:43	1.00

Client Sample ID: DP-2(10.5-11)

Lab Sample ID: SVC0026-04

Date Collected: 02/29/12 09:00 Matrix: Soil Date Received: 03/05/12 17:05 **Percent Solids: 75**

Analyte	Result Qualifier	· RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	167	8.02	mg/kg dry	*	03/07/12 09:50	03/07/12 14:27	1.00
Methyl tert-butyl ether	ND	0.0481	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
Benzene	ND	0.0240	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
Ethylbenzene	ND	0.160	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
Toluene	ND	0.160	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
o-Xylene	ND	0.321	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
m,p-Xylene	ND	0.641	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
Naphthalene	ND	0.321	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
1,2-Dichloroethane (EDC)	ND	0.160	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
Xylenes (total)	ND	2.40	mg/kg dry	₩	03/07/12 09:50	03/07/12 14:27	1.00
Hexane	ND	0.160	mg/kg dry	₽	03/07/12 09:50	03/07/12 14:27	1.00

Client Sample Results

Client: Geo Engineers - Spokane

TestAmerica Job ID: SVC0026

Project/Site: 0504-075-00

Client Sample ID: DP-2(10.5-11)

Date Collected: 02/29/12 09:00 Date Received: 03/05/12 17:05 Lab Sample ID: SVC0026-04

Matrix: Soil

Percent Solids: 75

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	113		42.7 - 151	03/07/12 09:50	03/07/12 14:27	1.00
Toluene-d8	113		50.8 - 132	03/07/12 09:50	03/07/12 14:27	1.00
4-bromofluorobenzene	152	ZX	51 - 136	03/07/12 09:50	03/07/12 14:27	1.00

Method: EPA 8011 - EDB by EPA Method 8011

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND ND	1.22	ug/kg dry	₽	03/09/12 13:34	03/12/12 12:20	1.00

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.0132		mg/kg dry	₽	03/07/12 08:35	03/07/12 18:38	1.00
1-Methylnapthalene	ND		0.0132		mg/kg dry	₩	03/07/12 08:35	03/07/12 18:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate Nitrobenzene-d5	%Recovery 116	Qualifier	30 - 140				Prepared 03/07/12 08:35	Analyzed 03/07/12 18:38	1.00
	<u>-</u>	Qualifier							

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	2.95	1.92	mg/kg dry	₩	03/09/12 09:35	03/14/12 10:47	1.00

Client Sample ID: DP-3(6.5-7) Lab Sample ID: SVC0026-08

Date Collected: 02/29/12 09:45

Matrix: Soil Date Received: 03/05/12 17:05 Percent Solids: 80.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND		0.485		mg/kg dry	\	03/07/12 09:50	03/07/12 14:50	10.0
Benzene	ND		0.242		mg/kg dry	₽	03/07/12 09:50	03/07/12 14:50	10.0
Ethylbenzene	16.5		1.62		mg/kg dry	₩	03/07/12 09:50	03/07/12 14:50	10.0
Toluene	ND		1.62		mg/kg dry	₽	03/07/12 09:50	03/07/12 14:50	10.0
o-Xylene	ND		3.23		mg/kg dry	☼	03/07/12 09:50	03/07/12 14:50	10.0
m,p-Xylene	41.6		6.46		mg/kg dry	₩	03/07/12 09:50	03/07/12 14:50	10.0
Naphthalene	38.5		3.23		mg/kg dry	φ.	03/07/12 09:50	03/07/12 14:50	10.0
1,2-Dichloroethane (EDC)	ND		1.62		mg/kg dry	₽	03/07/12 09:50	03/07/12 14:50	10.0
Xylenes (total)	43.3		24.2		mg/kg dry	₽	03/07/12 09:50	03/07/12 14:50	10.0
Hexane	ND		1.62		mg/kg dry		03/07/12 09:50	03/07/12 14:50	10.0

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
Dibromofluoromethane	115		42.7 - 151	03/07/12 0	9:50	03/07/12 14:50	10.0
Toluene-d8	118		50.8 - 132	03/07/12 0	9:50	03/07/12 14:50	10.0
4-bromofluorobenzene	199	ZX	51 ₋ 136	03/07/12 0	9:50	03/07/12 14:50	10.0

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	5630		808		mg/kg dry	\$	03/07/12 09:50	03/08/12 10:38	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	94.2		42.7 - 151				03/07/12 09:50	03/08/12 10:38	100
Toluene-d8	95.8		50.8 - 132				03/07/12 09:50	03/08/12 10:38	100
4-bromofluorobenzene	96.6		51 ₋ 136				03/07/12 09:50	03/08/12 10:38	100

Client Sample ID: DP-3(6.5-7) Lab Sample ID: SVC0026-08

Date Collected: 02/29/12 09:45 Matrix: Soil Date Received: 03/05/12 17:05 Percent Solids: 80.6

Method: EPA 8011 - EDB by EPA Method 8011									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.21		ug/kg dry	*	03/09/12 13:34	03/12/12 12:32	1.00

1,2-Dibromoethane	ND		1.21		ug/kg dry	*	03/09/12 13:34	03/12/12 12:32	1.00
Method: EPA 8270 mod P	olynuclear Aromatic	c Compoun	ids by GC/MS w	ith Selec	ted Ion Mo	nitori	ng		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	12.4		0.246		mg/kg dry	₩	03/07/12 08:35	03/07/12 19:03	20.0
1-Methylnapthalene	4.57		0.246		mg/kg dry	₩	03/07/12 08:35	03/07/12 19:03	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	192	Z3	30 - 140				03/07/12 08:35	03/07/12 19:03	20.0
2-FBP	108		30 - 140				03/07/12 08:35	03/07/12 19:03	20.0
p-Terphenyl-d14	88.0		30 - 150				03/07/12 08:35	03/07/12 19:03	20.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		27		mg/Kg	\$	03/09/12 11:21	03/13/12 13:53	10
C6-C8 Aliphatics	180		27		mg/Kg	₩	03/09/12 11:21	03/13/12 13:53	10
C10-C12 Aliphatics	470		27		mg/Kg	₩	03/09/12 11:21	03/13/12 13:53	10
C8-C10 Aromatics	230		27		mg/Kg	\$	03/09/12 11:21	03/13/12 13:53	10
C8-C10 Aliphatics	370		27		mg/Kg	☼	03/09/12 11:21	03/13/12 13:53	10
C10-C12 Aromatics	370		27		mg/Kg	₩	03/09/12 11:21	03/13/12 13:53	10
Total VPH	1700		190		mg/Kg	\$	03/09/12 11:21	03/13/12 13:53	10
C12-C13 Aromatics	100		27		mg/Kg	₽	03/09/12 11:21	03/13/12 13:53	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene	165	IX	60 - 140				03/09/12 11:21	03/13/12 13:53	10
BFB - PID	93		60 - 140				03/09/12 11:21	03/13/12 13:53	10
_									
Method: NWTPH/EPH - Northwest			lydrocarbons	` '					
Method: NWTPH/EPH - Northwest - Analyte		Petroleum H Qualifier	lydrocarbons RL	` '	Unit	D	Prepared	Analyzed	Dil Fac
			•	` '	Unit mg/Kg	D	Prepared 03/13/12 15:49	Analyzed 03/20/12 00:06	Dil Fac

C16-C21 Aliphatics	14	6.1	mg/Kg		03/13/12 15:49	03/20/12 00:06	1
C12-C16 Aromatics	85	6.1	mg/Kg	₩	03/13/12 15:49	03/20/12 00:06	1
C12-C16 Aliphatics	85	6.1	mg/Kg	₩	03/13/12 15:49	03/20/12 00:06	1
C21-C34 Aromatics	ND	6.1	mg/Kg	₩	03/13/12 15:49	03/20/12 00:06	1
C16-C21 Aromatics	9.8	6.1	mg/Kg	₩	03/13/12 15:49	03/20/12 00:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	85		60 - 140	 03/13/12 15:49	03/20/12 00:06	1
o-Terphenyl	82		60 - 140	03/13/12 15:49	03/20/12 00:06	1

Method: NWTPH/EPH - Northwest	- Extractable	Petroleum Hy	ydrocarbons (GC) - DI	L				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	340		12		mg/Kg	\	03/13/12 15:49	03/20/12 07:22	2
C10-C12 Aromatics	300		12		mg/Kg	₩	03/13/12 15:49	03/20/12 07:22	2

					3 3				
Method: EPA 6010C - Total Metals	by EPA 6010	/7000 Series	Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	8.86		1.66		mg/kg dry	⇔	03/09/12 09:35	03/14/12 10:51	1.00

10.0

10.0

10.0

Client Sample Results

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

TestAmerica Job ID: SVC0026

Client Sample ID: DP-4(9.5-10)

Lab Sample ID: SVC0026-09

Date Collected: 02/29/12 10:50 Date Received: 03/05/12 17:05

m,p-Xylene

Naphthalene

Xylenes (total)

1,2-Dichloroethane (EDC)

Matrix: Soil Percent Solids: 70.6

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte ₩ 118 03/07/12 09:50 03/07/12 15:14 **Gasoline Range Hydrocarbons** 5090 mg/kg dry 03/07/12 09:50 ND 0.705 03/07/12 15:14 Methyl tert-butyl ether mg/kg dry ä Benzene 0.847 0.353 mg/kg dry 03/07/12 09:50 03/07/12 15:14 ₽ Ethylbenzene 2.35 03/07/12 09:50 03/07/12 15:14 24.5 mg/kg dry ₿ **Toluene** 2.35 mg/kg dry 03/07/12 09:50 03/07/12 15:14 4.91 ₽ 4.70 o-Xylene mg/kg dry 11.4

10.0 10.0 10.0 03/07/12 09:50 03/07/12 15:14 10.0 03/07/12 09:50 03/07/12 15:14 10.0 03/07/12 09:50 03/07/12 15:14 10.0 03/07/12 09:50 03/07/12 15:14 10.0

03/07/12 15:14

ā

₽

03/07/12 09:50

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

2.35 03/07/12 09:50 03/07/12 15:14 Hexane 7.36 mg/kg dry 10.0 Dil Fac %Recovery Qualifier Limits Prepared Surrogate Analyzed Dibromofluoromethane 116 42.7 - 151 03/07/12 09:50 03/07/12 15:14 10.0 Toluene-d8 120 50.8 - 132 03/07/12 09:50 03/07/12 15:14 10.0 4-bromofluorobenzene 155 ZX 51 - 136 03/07/12 09:50 03/07/12 15:14 10.0

9.41

4.70

2 35

35.3

Method: EPA 8011 - EDB by EPA Method 8011

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 1.38 03/09/12 13:34 03/12/12 12:44 1,2-Dibromoethane ug/kg dry 1 00

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

82.9

19.6

ND

94.3

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac ₩ 03/07/12 08:35 03/07/12 19:29 2-Methylnaphthalene 3.16 0.697 mg/kg dry 50.0 1-Methylnapthalene 1.21 0.697 mg/kg dry 03/07/12 08:35 03/07/12 19:29 50.0

Surrogate Qualifier Dil Fac Limits Prepared %Recovery Analyzed Nitrobenzene-d5 410 *Z*3 30 - 140 03/07/12 08:35 03/07/12 19:29 50.0 2-FBP 80.0 30 - 140 03/07/12 08:35 03/07/12 19:29 50.0 p-Terphenyl-d14 70.0 30 - 150 03/07/12 08:35 03/07/12 19:29 50.0

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 4.25 2.15 mg/kg dry ₩ 03/09/12 09:35 03/14/12 10:55 Lead 1 00

Client Sample ID: DP-5(11-11.5)

Lab Sample ID: SVC0026-10

Matrix: Soil

Date Collected: 02/29/12 11:15 Date Received: 03/05/12 17:05 Percent Solids: 77.4

Method: FPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Analyte	Result Qualifier	· RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	286	7.72		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00
Methyl tert-butyl ether	ND	0.0463		mg/kg dry	⇔	03/07/12 09:50	03/07/12 15:37	1.00
Benzene	0.113	0.0232		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00
Ethylbenzene	ND	0.154		mg/kg dry	₽	03/07/12 09:50	03/07/12 15:37	1.00
Toluene	ND	0.154		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00
o-Xylene	ND	0.309		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00
m,p-Xylene	ND	0.618		mg/kg dry	₽	03/07/12 09:50	03/07/12 15:37	1.00
Naphthalene	0.827	0.309		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00
1,2-Dichloroethane (EDC)	ND	0.154		mg/kg dry	⇔	03/07/12 09:50	03/07/12 15:37	1.00
Xylenes (total)	ND	2.32		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00
Hexane	0.574	0.154		mg/kg dry	₩	03/07/12 09:50	03/07/12 15:37	1.00

Client: Geo Engineers - Spokane

Project/Site: 0504-075-00

Client Sample ID: DP-5(11-11.5)

Date Collected: 02/29/12 11:15 Date Received: 03/05/12 17:05

Lab Sample ID: SVC0026-10

TestAmerica Job ID: SVC0026

Matrix: Soil

Percent Solids: 77.4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	115		42.7 - 151	03/07/12 09:50	03/07/12 15:37	1.00
Toluene-d8	114		50.8 - 132	03/07/12 09:50	03/07/12 15:37	1.00
4-bromofluorobenzene	147	ZX	51 - 136	03/07/12 09:50	03/07/12 15:37	1.00

Method: EPA 8011 - EDB by EPA Method 8011

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND RL1	12.4	ug/kg dry	₩	03/09/12 13:34	03/12/12 12:57	10.0

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

80.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	1.13		0.253		mg/kg dry	\	03/07/12 08:35	03/07/12 19:54	20.0
1-Methylnapthalene	0.438		0.253		mg/kg dry	₩	03/07/12 08:35	03/07/12 19:54	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	132		30 - 140				03/07/12 08:35	03/07/12 19:54	20.0
2-FRP	100		30 140				03/07/12 08:35	03/07/12 19:54	20.0

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.28	1.81	mg/kg dry	₩	03/09/12 09:35	03/14/12 10:59	1.00

30 - 150

Client Sample ID: DP-6(10-10.5)

p-Terphenyl-d14

Date Collected: 02/29/12 12:30 Date Received: 03/05/12 17:05

Lab Sample ID: SVC0026-11

Percent Solids: 60.7

Matrix: Soil

20.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		12.9		mg/kg dry	<u> </u>	03/07/12 09:50	03/07/12 16:00	1.00
Methyl tert-butyl ether	ND		0.0774		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
Benzene	ND		0.0129		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
Ethylbenzene	ND		0.258		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
Toluene	ND		0.258		mg/kg dry	☼	03/07/12 09:50	03/07/12 16:00	1.00
o-Xylene	ND		0.516		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
m,p-Xylene	ND		1.03		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
Naphthalene	ND		0.516		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
1,2-Dichloroethane (EDC)	ND		0.258		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
Xylenes (total)	ND		3.87		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:00	1.00
Hexane	ND		0.258		mg/kg dry	₩	03/07/12 09:50	03/07/12 16:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	114		42.7 - 151				03/07/12 09:50	03/07/12 16:00	1.00
Toluene-d8	113		50.8 - 132				03/07/12 09:50	03/07/12 16:00	1.00
4-bromofluorobenzene	118		51 - 136				03/07/12 09:50	03/07/12 16:00	1.00

Method: EPA 8011 - EDB	by EPA Method 8011
Analysta	Popult C

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.62		ug/kg dry	₽	03/09/12 13:34	03/12/12 13:09	1.00

Method: EPA 8270 mod Pol	vnuclear Aromatic Compound	s by GC/MS with Selected Ion	Monitoring
moniour zi /t ozi o mour i or	ynasisai rasinans sompouna		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.0156		mg/kg dry	*	03/07/12 08:35	03/07/12 20:19	1.00
1-Methylnapthalene	ND		0.0156		mg/kg dry	₽	03/07/12 08:35	03/07/12 20:19	1.00

2

TestAmerica Job ID: SVC0026

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Client Sample ID: DP-6(10-10.5)

Date Collected: 02/29/12 12:30 Date Received: 03/05/12 17:05 Lab Sample ID: SVC0026-11

Matrix: Soil

Percent Solids: 60.7

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	89.0		30 - 140	03/07/12 08:35	03/07/12 20:19	1.00
2-FBP	85.2		30 - 140	03/07/12 08:35	03/07/12 20:19	1.00
p-Terphenyl-d14	92.8		30 - 150	03/07/12 08:35	03/07/12 20:19	1.00

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND —	2.27	mg/kg dry	₽	03/09/12 09:35	03/14/12 11:02	1.00

Client Sample ID: DP-7(9.5-10)

Date Collected: 02/29/12 13:00

Date Received: 03/05/12 17:05

Lab Sample ID: SVC0026-12 Matrix: Soil

Percent Solids: 61.6

Analyte	Result	Qualifier	F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		13	.7	mg/kg dry	\	03/07/12 09:50	03/07/12 16:23	1.00
Methyl tert-butyl ether	ND		0.082	4	mg/kg dry	₽	03/07/12 09:50	03/07/12 16:23	1.00
Benzene	ND		0.013	37	mg/kg dry	₽	03/07/12 09:50	03/07/12 16:23	1.00
Ethylbenzene	ND		0.27	5	mg/kg dry	₽	03/07/12 09:50	03/07/12 16:23	1.00
Toluene	ND		0.27	5	mg/kg dry	☼	03/07/12 09:50	03/07/12 16:23	1.00
o-Xylene	ND		0.5	60	mg/kg dry	☼	03/07/12 09:50	03/07/12 16:23	1.00
m,p-Xylene	ND		1.	0	mg/kg dry	₽	03/07/12 09:50	03/07/12 16:23	1.00
Naphthalene	ND		0.5	60	mg/kg dry	☼	03/07/12 09:50	03/07/12 16:23	1.00
1,2-Dichloroethane (EDC)	ND		0.27	5	mg/kg dry	☼	03/07/12 09:50	03/07/12 16:23	1.00
Xylenes (total)	ND		4.	2	mg/kg dry	₽	03/07/12 09:50	03/07/12 16:23	1.00
Hexane	ND		0.27	5	mg/kg dry	₩	03/07/12 09:50	03/07/12 16:23	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	114		42.7 - 151	_			03/07/12 09:50	03/07/12 16:23	1.00
Toluene-d8	111		50.8 - 132				03/07/12 09:50	03/07/12 16:23	1.00
4-bromofluorobenzene	116		51 - 136				03/07/12 09:50	03/07/12 16:23	1.00
Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte		Qualifier	F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.5		ug/kg dry	<u> </u>	03/09/12 13:34	03/12/12 13:45	1.00
- Method: EPA 8270 mod Poly	nuclear Aromatic	c Compour	nds by GC/	MS with Sele	cted Ion Mo	nitori	na		
Analyte		Qualifier	-		Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.01	i9	mg/kg dry	<u></u>	03/07/12 08:35	03/07/12 20:44	1.00

2-Methylnaphthalene	ND	0.0159	mg/kg dry	#	03/07/12 08:35	03/07/12 20:44	1.00
1-Methylnapthalene	ND	0.0159	mg/kg dry	₽	03/07/12 08:35	03/07/12 20:44	1.00
Surrogate	%Recovery	Qualifier Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	100	30 - 140			03/07/12 08:35	03/07/12 20:44	1.00
2-FBP	91.6	30 - 140			03/07/12 08:35	03/07/12 20:44	1.00
p-Terphenyl-d14	81.2	30 - 150			03/07/12 08:35	03/07/12 20:44	1.00

Method: EPA 6010C - Total Metals	by EPA 6010	/7000 Series	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		2.12		mg/kg dry	*	03/09/12 09:35	03/14/12 11:06	1.00

Client: Geo Engineers - Spokane

Project/Site: 0504-075-00

Client Sample ID: DP-8(7-8)

Lab Sample ID: SVC0026-13 Date Collected: 02/29/12 13:35

Matrix: Soil

TestAmerica Job ID: SVC0026

Date Received: 03/05/12 17:05 Percent Solids: 75.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.736		mg/kg dry	<u> </u>	03/07/12 09:50	03/07/12 16:46	10.0
Benzene	0.380		0.368		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:46	10.0
Ethylbenzene	77.8		2.45		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:46	10.0
Toluene	7.37		2.45		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:46	10.0
1,2-Dichloroethane (EDC)	ND		2.45		mg/kg dry	₽	03/07/12 09:50	03/07/12 16:46	10.0
Hexane	5.57		2.45		mg/kg dry	₩	03/07/12 09:50	03/07/12 16:46	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	114		42.7 - 151				03/07/12 09:50	03/07/12 16:46	10.0
Toluene-d8	125		50.8 - 132				03/07/12 09:50	03/07/12 16:46	10.0
4-bromofluorobenzene	345	ZX	51 - 136				03/07/12 09:50	03/07/12 16:46	10.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	23200		1230		mg/kg dry	\	03/07/12 09:50	03/08/12 11:02	100
o-Xylene	45.1		24.5		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:02	100
m,p-Xylene	400		98.1		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:02	100
Naphthalene	108		49.0		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:02	100
Xylenes (total)	445		368		mg/kg dry	₩	03/07/12 09:50	03/08/12 11:02	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	113		42.7 - 151				03/07/12 09:50	03/08/12 11:02	100
Toluene-d8	112		50.8 - 132				03/07/12 09:50	03/08/12 11:02	100
4-bromofluorobenzene	128		51 ₋ 136				03/07/12 09:50	03/08/12 11:02	100

Method: EPA 8011 - EDB by EPA N	Method 8011						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND —	1.28	ug/kg dry	*	03/09/12 13:34	03/12/12 13:57	1.00

Method: EPA 8270 mod Polynu	clear Aromati	c Compoun	ids by GC/MS w	ith Selec	cted Ion Mo	nitori	ng		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	8.74		0.643		mg/kg dry	₩	03/07/12 08:35	03/07/12 21:10	50.0
1-Methylnapthalene	3.30		0.643		mg/kg dry	₽	03/07/12 08:35	03/07/12 21:10	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	520	Z3	30 - 140				03/07/12 08:35	03/07/12 21:10	50.0
2-FBP	100		30 - 140				03/07/12 08:35	03/07/12 21:10	50.0
p-Terphenyl-d14	90.0		30 - 150				03/07/12 08:35	03/07/12 21:10	50.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		74		mg/Kg	\$	03/09/12 11:21	03/13/12 14:45	20
C6-C8 Aliphatics	1600		74		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
C10-C12 Aliphatics	1700		74		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
C8-C10 Aromatics	1400		74		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
C8-C10 Aliphatics	1800		74		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
C10-C12 Aromatics	1600		74		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
Total VPH	8500		520		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
C12-C13 Aromatics	370		74		mg/Kg	₽	03/09/12 11:21	03/13/12 14:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	217	IX	60 - 140				03/09/12 11:21	03/13/12 14:45	20
BFB - PID	114		60 - 140				03/09/12 11:21	03/13/12 14:45	20

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Prepared

Lab Sample ID: SVC0026-13

Analyzed

Dil Fac

TestAmerica Job ID: SVC0026

Matrix: Soil Percent Solids: 78.7

Client Sample ID: DP-8(7-8)

Date Collected: 02/29/12 13:35 Date Received: 03/05/12 17:05

Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C21-C34 Aliphatics	ND		6.3		mg/Kg	<u>\$</u>	03/13/12 15:49	03/20/12 00:30	1
C16-C21 Aliphatics	14		6.3		mg/Kg	₽	03/13/12 15:49	03/20/12 00:30	1
C12-C16 Aromatics	140		6.3		mg/Kg	₽	03/13/12 15:49	03/20/12 00:30	1
C12-C16 Aliphatics	96		6.3		mg/Kg	φ.	03/13/12 15:49	03/20/12 00:30	1
C21-C34 Aromatics	ND		6.3		mg/Kg	₽	03/13/12 15:49	03/20/12 00:30	1
C16-C21 Aromatics	13		6.3		mg/Kg	₩	03/13/12 15:49	03/20/12 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	79		60 - 140				03/13/12 15:49	03/20/12 00:30	1
o-Terphenyl	91		60 - 140				03/13/12 15:49	03/20/12 00:30	1

Lead		2.03	m	g/kg dry	<u>#</u>	03/09/12 09:35	03/14/12 11:10	1.00
Analyte	Result Qu	ualifier RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Method: EPA 6010C - Total Met	als by EPA 6010/70	000 Series Methods						
C10-C12 Aromatics	450	13	m	g/Kg	₩	03/13/12 15:49	03/20/12 07:49	2
C10-C12 Aliphatics	410	13	m	g/Kg	#	03/13/12 15:49	03/20/12 07:49	2

MDL Unit

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) - DL

Result Qualifier

Client Sample ID: DP-9(2.5-3) Lab Sample ID: SVC0026-14 Date Collected: 02/29/12 13:50 **Matrix: Soil** Date Received: 03/05/12 17:05 Percent Solids: 81.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	65.2		7.34		mg/kg dry	<u> </u>	03/07/12 09:50	03/08/12 11:25	1.00
Methyl tert-butyl ether	ND		0.0441		mg/kg dry	₩	03/07/12 09:50	03/08/12 11:25	1.00
Benzene	0.0286		0.0220		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:25	1.00
Ethylbenzene	0.391		0.147		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:25	1.00
Toluene	ND		0.147		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:25	1.00
o-Xylene	ND		0.294		mg/kg dry	₩	03/07/12 09:50	03/08/12 11:25	1.00
m,p-Xylene	1.49		0.588		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:25	1.00
Naphthalene	0.637		0.294		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:25	1.00
1,2-Dichloroethane (EDC)	ND		0.147		mg/kg dry	₩	03/07/12 09:50	03/08/12 11:25	1.00
Xylenes (total)	ND		2.20		mg/kg dry	₽	03/07/12 09:50	03/08/12 11:25	1.00
Hexane	ND		0.147		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:09	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	114		42.7 _ 151				03/07/12 09:50	03/08/12 11:25	1.00
Toluene-d8	112		50.8 - 132				03/07/12 09:50	03/08/12 11:25	1.00
4-bromofluorobenzene	123		51 - 136				03/07/12 09:50	03/08/12 11:25	1.00
Method: EPA 8011 - EDB by EP	A Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.17		ug/kg dry	-	03/09/12 13:34	03/12/12 14:09	1.00

Method: EPA 8270 mod Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring									
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2-Methylnaphthalene	0.117	0.0122		mg/kg dry	₩	03/07/12 08:35	03/08/12 15:28	1.00	
1-Methylnapthalene	0.0421	0.0122		mg/kg dry	₽	03/07/12 08:35	03/08/12 15:28	1.00	

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Lab Sample ID: SVC0026-14

Client Sample ID: DP-9(2.5-3)

TestAmerica Job ID: SVC0026

Date Collected: 02/29/12 13:50 Date Received: 03/05/12 17:05

Matrix: Soil Percent Solids: 81.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	117		30 - 140	03/07/12 08:35	03/08/12 15:28	1.00
2-FBP	110		30 - 140	03/07/12 08:35	03/08/12 15:28	1.00
p-Terphenyl-d14	123		30 - 150	03/07/12 08:35	03/08/12 15:28	1.00

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Result Qualifier MDL Unit Prepared Analyzed Dil Fac 14.2 03/09/12 09:35 03/14/12 11:26 Lead 27.6 mg/kg dry 1.00

Client Sample ID: DP-10(6.5-7.5)

Lab Sample ID: SVC0026-15 Matrix: Soil

Date Collected: 02/29/12 14:15 Date Received: 03/05/12 17:05

Lead

Percent Solids: 78

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	512		11.1		mg/kg dry	*	03/07/12 09:50	03/07/12 17:33	1.00
Methyl tert-butyl ether	ND		0.0667		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:33	1.00
Benzene	ND		0.0334		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:33	1.0
Ethylbenzene	0.653		0.222		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:33	1.0
Toluene	ND		0.222		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:33	1.0
o-Xylene	ND		0.445		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:33	1.0
m,p-Xylene	3.10		0.890		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:33	1.0
Naphthalene	5.32		0.445		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:33	1.0
1,2-Dichloroethane (EDC)	ND		0.222		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:33	1.0
Xylenes (total)	ND		3.34		mg/kg dry	₩.	03/07/12 09:50	03/07/12 17:33	1.0
Hexane	ND		0.222		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:33	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	110	-	42.7 - 151				03/07/12 09:50	03/07/12 17:33	1.0
Toluene-d8	113		50.8 _ 132				03/07/12 09:50	03/07/12 17:33	1.0
4-bromofluorobenzene	176	ZX	51 ₋ 136				03/07/12 09:50	03/07/12 17:33	1.0
Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.28		ug/kg dry	₽	03/09/12 13:34	03/12/12 14:22	1.0
Method: EPA 8270 mod Polyt	nuclear Aromatic	c Compour	nds by GC/MS w	ith Selec	ted Ion Mo	nitori	na		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	1.79		0.127		mg/kg dry	₩	03/07/12 08:35	03/07/12 22:00	10.
1-Methylnapthalene	0.709		0.127		mg/kg dry	₽	03/07/12 08:35	03/07/12 22:00	10.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	130		30 - 140				03/07/12 08:35	03/07/12 22:00	10.
2-FBP	92.0		30 - 140				03/07/12 08:35	03/07/12 22:00	10.
p-Terphenyl-d14	86.0		30 - 150				03/07/12 08:35	03/07/12 22:00	10.
Method: EPA 6010C - Total Met	tals by EPA 6010)/7000 Serie	es Methods						
Analyte	Result		RL		Unit	D	Prepared	Analyzed	

03/14/12 11:29

1.92

mg/kg dry

03/09/12 09:35

5.72

Client Sample Results

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

TestAmerica Job ID: SVC0026

Lab Sample ID: SVC0026-16

Matrix: Soil

Percent Solids: 72.7

Client Sample ID: DP-11(10-11)

Date Collected: 02/29/12 14:50 Date Received: 03/05/12 17:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		8.48		mg/kg dry	<u> </u>	03/07/12 09:50	03/07/12 17:56	1.0
Methyl tert-butyl ether	ND		0.0509		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:56	1.0
Benzene	ND		0.0254		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:56	1.0
Ethylbenzene	ND		0.170		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:56	1.0
Toluene	ND		0.170		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:56	1.0
o-Xylene	ND		0.339		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:56	1.0
m,p-Xylene	ND		0.678		mg/kg dry		03/07/12 09:50	03/07/12 17:56	1.0
Naphthalene	ND		0.339		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:56	1.0
1,2-Dichloroethane (EDC)	ND		0.170		mg/kg dry	₽	03/07/12 09:50	03/07/12 17:56	1.0
Xylenes (total)	ND		2.54		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:56	1.0
Hexane	ND		0.170		mg/kg dry	₩	03/07/12 09:50	03/07/12 17:56	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	114		42.7 - 151				03/07/12 09:50	03/07/12 17:56	1.0
Toluene-d8	113		50.8 - 132				03/07/12 09:50	03/07/12 17:56	1.0
4-bromofluorobenzene	115		51 - 136				03/07/12 09:50	03/07/12 17:56	1.0
Method: EPA 8011 - EDB by E									
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.32		ug/kg dry	₽	03/09/12 13:34	03/12/12 14:34	1.0
Method: EPA 8270 mod Poly		-	•			nitori	ng		
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND		0.0135		mg/kg dry	₽	03/07/12 08:35	03/07/12 22:25	1.0
1-Methylnapthalene	ND		0.0135		mg/kg dry	*	03/07/12 08:35	03/07/12 22:25	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	66.4		30 - 140				03/07/12 08:35	03/07/12 22:25	1.0
2-FBP	61.4		30 - 140				03/07/12 08:35	03/07/12 22:25	1.0
p-Terphenyl-d14	85.4		30 - 150				03/07/12 08:35	03/07/12 22:25	1.0

Client Sample ID: DP-12 (10-11)

Date Collected: 02/29/12 15:10

Analyte

Lead

Date Received: 03/05/12 17:05

Lab Sample ID: SVC0026-17

Matrix: Soil

Analyzed

03/14/12 11:33

Prepared

03/09/12 09:35

₩

Percent Solids: 70.4

Dil Fac

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND ND	9.69	mg/kg dry	*	03/07/12 09:50	03/07/12 18:19	1.00
Methyl tert-butyl ether	ND	0.0581	mg/kg dry	₩	03/07/12 09:50	03/07/12 18:19	1.00
Benzene	ND	0.0291	mg/kg dry	₩	03/07/12 09:50	03/07/12 18:19	1.00
Ethylbenzene	ND	0.194	mg/kg dry	₽	03/07/12 09:50	03/07/12 18:19	1.00
Toluene	ND	0.194	mg/kg dry	₩	03/07/12 09:50	03/07/12 18:19	1.00
o-Xylene	ND	0.388	mg/kg dry	₽	03/07/12 09:50	03/07/12 18:19	1.00
m,p-Xylene	ND	0.775	mg/kg dry	₽	03/07/12 09:50	03/07/12 18:19	1.00
Naphthalene	ND	0.388	mg/kg dry	₩	03/07/12 09:50	03/07/12 18:19	1.00
1,2-Dichloroethane (EDC)	ND	0.194	mg/kg dry	₽	03/07/12 09:50	03/07/12 18:19	1.00
Xylenes (total)	ND	2.91	mg/kg dry	₽	03/07/12 09:50	03/07/12 18:19	1.00
Hexane	ND	0.194	mg/kg dry	₩	03/07/12 09:50	03/07/12 18:19	1.00

RL

2.02

MDL Unit

mg/kg dry

Result Qualifier

2.46

TestAmerica Job ID: SVC0026

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Client Sample ID: DP-12 (10-11)

Lab Sample ID: SVC0026-17 Date Collected: 02/29/12 15:10

Matrix: Soil

Date Received: 03/05/12 17:05 Percent Solids: 70.4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	113		42.7 - 151	03/07/12 09:50	03/07/12 18:19	1.00
Toluene-d8	112		50.8 - 132	03/07/12 09:50	03/07/12 18:19	1.00
4-bromofluorobenzene	119		51 - 136	03/07/12 09:50	03/07/12 18:19	1.00

Made at EDA 2044 EDD to EDA					
4-bromofluorobenzene	119	51 - 136	03/07/12 09:50	03/07/12 18:19	1.00
Toluene-d8	112	50.8 - 132	03/07/12 09:50	03/07/12 18:19	1.00
Dibromofluoromethane	113	42.7 - 151	03/07/12 09:50	03/07/12 18:19	1.00

Method: EPA 8011 - EDB by EPA Method 8011										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,2-Dibromoethane	ND		1.40		ug/kg dry	₩	03/09/12 13:34	03/12/12 14:46	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.40		ug/kg dry	*	03/09/12 13:34	03/12/12 14:46	1.00
Method: EPA 8270 mod P	olynuclear Aromatic	Compoun	ds by GC/MS w	ith Selec	ted Ion Mo	nitori	ng		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.0141		mg/kg dry	☼	03/07/12 08:35	03/07/12 22:51	1.00
1-Methylnapthalene	ND		0.0141		mg/kg dry	₽	03/07/12 08:35	03/07/12 22:51	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	91.2		30 - 140				03/07/12 08:35	03/07/12 22:51	1.00
THE ODOLLEGING GO									
2-FBP	85.0		30 - 140				03/07/12 08:35	03/07/12 22:51	1.00

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Lead	3.28	2.05	mg/kg dry	, ಘ	03/09/12 09:35	03/14/12 11:37	1.00		

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 12C0025-BLK1

Matrix: Soil

Analysis Batch: 12C0025

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 12C0025_P

	Біапк	Diank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Benzene	ND		0.00500		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Ethylbenzene	ND		0.100		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Toluene	ND		0.100		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
o-Xylene	ND		0.200		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
m,p-Xylene	ND		0.400		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Naphthalene	ND		0.200		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Xylenes (total)	ND		1.50		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00
Hexane	ND		0.100		mg/kg wet		03/07/12 09:50	03/07/12 12:54	1.00

Blank Blank

Diank Blank

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	113	42.7 _ 151	03/07/12 09:50	03/07/12 12:54	1.00
Toluene-d8	110	50.8 - 132	03/07/12 09:50	03/07/12 12:54	1.00
4-bromofluorobenzene	108	51 - 136	03/07/12 09:50	03/07/12 12:54	1.00

Lab Sample ID: 12C0025-BS1

Matrix: Soil

Analysis Batch: 12C0025

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 12C0025_P

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Gasoline Range Hydrocarbons 50.0 48.6 mg/kg wet 97.2 74.4 - 124

	LCS LC	S	
Surrogate	%Recovery Qu	ıalifier	Limits
Dibromofluoromethane	93.6		42.7 - 151
Toluene-d8	95.0		50.8 - 132
4-bromofluorobenzene	91.8		51 - 136

Lab Sample ID: 12C0025-BS2

Matrix: Soil

Analysis Batch: 12C0025

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 12C0025_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.500	0.524		mg/kg wet	_	105	50 - 150	
Benzene	0.500	0.478		mg/kg wet		95.7	50 - 150	
Ethylbenzene	0.500	0.487		mg/kg wet		97.4	50 - 150	
Toluene	0.500	0.499		mg/kg wet		99.8	50 - 150	
o-Xylene	0.500	0.496		mg/kg wet		99.2	50 - 150	
m,p-Xylene	1.00	1.02		mg/kg wet		102	50 - 150	
Naphthalene	0.500	0.535		mg/kg wet		107	50 - 150	
Xylenes (total)	1.50	1.51		mg/kg wet		101	50 - 150	
Hexane	0.500	0.526		mg/kg wet		105	50 - 150	

	LCS LC	S
Surrogate	%Recovery Qu	alifier Limits
Dibromofluoromethane	112	42.7 _ 151
Toluene-d8	113	50.8 - 132
4-bromofluorobenzene	111	51 - 136

6

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 12C0025-MS1

Matrix: Soil

Analysis Batch: 12C0025

Client Sample ID: DP-5(11-11.5) Prep Type: Total

Prep Batch: 12C0025_P

%Rec. Sample Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier %Rec Limits Gasoline Range Hydrocarbons 286 62.6 420 E M7 mg/kg dry ₩ 214 50 - 133

Matrix Spike Matrix Spike Surrogate %Recovery Qualifier Limits Dibromofluoromethane 91.4 42.7 _ 151 Toluene-d8 96.4 50.8 - 132 4-bromofluorobenzene 124 51 - 136

Lab Sample ID: 12C0025-MS2

Matrix: Soil

Analysis Batch: 12C0025

Client Sample ID: DP-12 (10-11) **Prep Type: Total**

Prep Batch: 12C0025_P

Sample Sample Spike Matrix Spike Matrix Spike %Rec. Qualifier Result Qualifier Added Result Unit %Rec Limits ₩ Methyl tert-butyl ether ND 0.759 1.05 138 50 - 150 mg/kg dry ₽ Benzene ND 0.759 0.970 128 50 - 150 mg/kg dry Ethylbenzene ND 0.759 0.979 mg/kg dry ₩ 129 50 - 150 Toluene ND 0.759 1.01 134 50 - 150 mg/kg dry ₩ o-Xylene ND 0.759 0.980 mg/kg dry 129 50 - 150 m,p-Xylene ND 1.52 2.03 mg/kg dry 134 50 - 150 Ď 50 - 150 Naphthalene ND 0.759 1.06 mg/kg dry 139 Xylenes (total) ND 2.28 3.01 132 50 - 150 mg/kg dry

Matrix Spike Matrix Spike %Recovery Qualifier Surrogate Limits Dibromofluoromethane 110 42.7 - 151 Toluene-d8 112 50.8 - 132 4-bromofluorobenzene 114 51 - 136

Lab Sample ID: 12C0025-DUP1

Matrix: Soil

Analysis Batch: 12C0025

Client Sample ID: Duplicate Prep Type: Total

Prep Batch: 12C0025_P

							•	_
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Gasoline Range Hydrocarbons	ND		ND		mg/kg dry	\$		32.3
Methyl tert-butyl ether	ND		ND		mg/kg dry	₩		20
Benzene	ND		ND		mg/kg dry	₩		20
Ethylbenzene	ND		ND		mg/kg dry	\$		20
Toluene	ND		ND		mg/kg dry	₩		20
o-Xylene	ND		ND		mg/kg dry	₩		20
m,p-Xylene	ND		ND		mg/kg dry	\$		20
Naphthalene	ND		ND		mg/kg dry	₩		20
Xylenes (total)	ND		ND		mg/kg dry	₽		20
Hexane	ND		ND		ma/ka drv	₩		20

	Duplicate Dup	olicate
Surrogate	%Recovery Qua	alifier Limits
Dibromofluoromethane	109	42.7 - 151
Toluene-d8	109	50.8 - 132
4-bromofluorobenzene	109	51 - 136

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 12C0044-BLK1

Matrix: Soil

Analysis Batch: 12C0044

Client Sample ID: Method Blank
Prep Type: Total

Prep Batch: 12C0044_P

Blank Blank te Result Qualifier

 Analyte
 Result
 Qualifier
 RL
 MDL ug/kg wet
 Unit ug/kg wet
 D 03/09/12 13:34
 Prepared Analyzed 03/12/12 11:13
 Dil Fac 03/09/12 13:34

Client Sample ID: Lab Control Sample

Matrix: Soil

Analysis Batch: 12C0044

Lab Sample ID: 12C0044-BS1

Prep Type: Total

Prep Batch: 12C0044_P

 Analyte
 Added 1,2-Dibromoethane
 Result 5.00
 Qualifier 5.00
 Unit ug/kg wet ug/kg wet 113
 D %Rec 60 - 140
 Limits 60 - 140

Spike

Lab Sample ID: 12C0044-BS2 Client Sample ID: Lab Control Sample

LCS LCS

Matrix: Soil

Analysis Batch: 12C0044

Prep Type: Total

Prep Batch: 12C0044_P

 Analyte
 Added 1,2-Dibromoethane
 Result 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Discreption
 Result 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Discreption
 Result 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Discreption
 Result 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Discreption
 Result 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Unit 2,0-Dibromoethane
 Discreption
 Result 2,0-Dibromoethane
 Unit 2,0-Dibromoethane

Lab Sample ID: 12C0044-MS1 Client Sample ID: DP-1(10-10.5)

Matrix: Soil

Analysis Batch: 12C0044

Prep Type: Total

Prep Batch: 12C0044 P

%Rec. Sample Sample Spike Matrix Spike Matrix Spike Result Qualifier Added Result Qualifier Limits Unit 1,2-Dibromoethane ND 6.08 ₩ 113 60 - 140 6 90 ug/kg dry

Lab Sample ID: 12C0044-MSD1 Client Sample ID: DP-1(10-10.5)

Matrix: Soil

Analysis Batch: 12C0044

Prep Type: Total Prep Batch: 12C0044_P

Sample Sample Spike Matrix Spike Dup Matrix Spike Dup %Rec. RPD Added Unit Limits Limit Analyte Result Qualifier Result Qualifier D %Rec RPD 1,2-Dibromoethane ND 6.10 108 60 - 140 6.57 ug/kg dry 4.91 20

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion

Monitoring

Lab Sample ID: 12C0024-BLK1

Matrix: Soil

Analysis Batch: 12C0024

Client Sample ID: Method Blank
Prep Type: Total

Prep Batch: 12C0024_P

	DIAIIK	DIGIIK							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		03/07/12 08:35	03/07/12 16:32	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		03/07/12 08:35	03/07/12 16:32	1.00
1-Methylnapthalene	ND		0.0100		mg/kg wet		03/07/12 08:35	03/07/12 16:32	1.00

	D//-	Disarts				
Surrogate	Blank %Recovery	Blank Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	118		30 ₋ 140	03/07/12 08:35	03/07/12 16:32	1.00
2-FBP	104		30 - 140	03/07/12 08:35	03/07/12 16:32	1.00
p-Terphenyl-d14	81.0		30 - 150	03/07/12 08:35	03/07/12 16:32	1.00

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 12C0024-BS1

Client Sample ID: Lab Control Sample

Prep Type: Total

Analysis Batch: 12C0024

Prep Batch: 12C0024_P

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier U	Jnit D	%Rec	Limits	
Naphthalene	0.133	0.103	n	ng/kg wet	77.5	40 - 120	

Added

30 - 150

 LCS
 LCS

 %Recovery
 Qualifier
 Limits

 111
 30 - 140

 103
 30 - 140

 111
 30 - 150

Lab Sample ID: 12C0024-MS1 Client Sample ID: DP-1(10-10.5)

Result Qualifier

0.122

Unit

mg/kg dry

Matrix: Soil

Analyte

p-Terphenyl-d14

Surrogate
Nitrobenzene-d5

2-FBP

Matrix: Soil

Prep Type: Total

Analysis Batch: 12C0024
Sample Sample Spike Matrix Spike Matrix Spike

63.0

Result Qualifier

Prep Batch: 12C0024_P %Rec.

Limits

30 - 120

%Rec

74.0

₩

Naphthalene	0.00480		0.158
	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	114		30 - 140
2-FBP	93.6		30 - 140

Lab Sample ID: 12C0024-MSD1 Client Sample ID: DP-1(10-10.5)

Matrix: Soil

p-Terphenyl-d14

Analysis Batch: 12C0024

Prep Type: Total Prep Batch: 12C0024_P

	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spike Dur			%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	0.00480		0.164	0.128		mg/kg dry	*	75.1	30 - 120	5.11	35

 Surrogate
 %Recovery
 Qualifier
 Limits

 Nitrobenzene-d5
 116
 30 - 140

 2-FBP
 91.2
 30 - 140

 p-Terphenyl-d14
 71.2
 30 - 150

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-106890/1-A

Matrix: Solid

Prep Type: Total/NA

Applysis Patch: 107109

Analysis Batch: 107109 Prep Batch: 106890

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
C6-C8 Aliphatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
C10-C12 Aliphatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
C8-C10 Aromatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
C8-C10 Aliphatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
C10-C12 Aromatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
Total VPH	ND		14		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
C12-C13 Aromatics	ND		2.0		mg/Kg		03/09/12 11:21	03/13/12 11:41	1
The second secon									

TestAmerica Job ID: SVC0026

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC) (Continued)

MB MB

Lab Sample ID: MB 580-106890/1-A

Matrix: Solid

Analysis Batch: 107109

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Dil Fac

Prep Batch: 106890

Surrogate %Recovery Qualifier Limits Prepared 03/09/12 11:21 4-Bromofluorobenzene 104 60 - 140 BFB - PID 103 60 - 140

03/13/12 11:41 03/09/12 11:21 03/13/12 11:41

Lab Sample ID: LCS 580-106890/2-A

Matrix: Solid

Analysis Batch: 107109

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 106890**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C5-C6 Aliphatics	8.00	8.72		mg/Kg		109	70 - 130	
C6-C8 Aliphatics	4.00	4.45		mg/Kg		111	70 - 130	
C10-C12 Aliphatics	4.00	4.96		mg/Kg		124	70 - 130	
C8-C10 Aromatics	16.0	15.6		mg/Kg		98	70 - 130	
C8-C10 Aliphatics	8.00	9.60		mg/Kg		120	70 - 130	
C10-C12 Aromatics	4.00	3.78		mg/Kg		95	70 - 130	
C12-C13 Aromatics	8.00	6.59		mg/Kg		82	70 - 130	

LCS LCS %Recovery Qualifier Surrogate Limits 60 - 140 4-Bromofluorobenzene 104 BFB - PID 101 60 - 140

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC) - DL

Lab Sample ID: 580-31626-2 MS

Matrix: Solid

Analysis Batch: 107109

Client Sample ID: SVC0026-13 Prep Type: Total/NA

Prep Batch: 106890

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C5-C6 Aliphatics - DL	ND		300	339		mg/Kg	₩	108	70 - 130	
C6-C8 Aliphatics - DL	1600		150	1780	4	mg/Kg	≎	123	70 - 130	
C10-C12 Aliphatics - DL	1700		150	1910	4	mg/Kg	≎	151	70 - 130	
C8-C10 Aromatics - DL	1400		600	1940		mg/Kg	₽	82	70 - 130	
C8-C10 Aliphatics - DL	1800		300	2410	4	mg/Kg	≎	205	70 - 130	
C10-C12 Aromatics - DL	1600		150	1760	4	mg/Kg	₽	88	70 - 130	
C12-C13 Aromatics - DL	370		300	626		mg/Kg	\$	84	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene - DL 157 IX 60 - 140 BFB - PID - DL 60 - 140 113

Lab Sample ID: 580-31626-2 MSD

Matrix: Solid

Analysis Batch: 107109

Client Sample ID: SVC0026-13 Prep Type: Total/NA

Prep Batch: 106890

ı												
ı		Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	C5-C6 Aliphatics - DL	ND		249	280		mg/Kg	*	106	70 - 130	19	25
١	C6-C8 Aliphatics - DL	1600		125	1480	4	mg/Kg	₽	-89	70 - 130	18	25
١	C10-C12 Aliphatics - DL	1700		125	1690	4	mg/Kg	₩	7	70 - 130	12	25
١	C8-C10 Aromatics - DL	1400		498	1550	4	mg/Kg	₽	20	70 - 130	22	25
١	C8-C10 Aliphatics - DL	1800		249	2140	4	mg/Kg	₩	137	70 - 130	12	25

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Method: NWTPH/VPH - Northwest - Volatile Petroleum Hydrocarbons (GC) - DL (Continued)

Spike

Added

Lab Sample ID: 580-31626-2 MSD

Matrix: Solid

Analyte

Analysis Batch: 107109

C10-C12 Aromatics - DL

C12-C13 Aromatics - DL

Client Sample ID: SVC0026-13 Prep Type: Total/NA

Prep Batch: 106890

				RPD		
Unit	D	%Rec	Limits	RPD	Limit	
mg/Kg	₩	-189	70 - 130	23	25	
		· <u></u> - ·				

125 1390 4 1600 mg 370 249 491 4 mg/Kg 70 - 130

MSD MSD

Result Qualifier

MSD MSD

Sample Sample

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene - DL	166	IX	60 - 140
BFB - PID - DL	107		60 - 140

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-107155/1-B

Matrix: Solid

Analysis Batch: 107520

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 107155**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C21-C34 Aliphatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C16-C21 Aliphatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C12-C16 Aromatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C10-C12 Aliphatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C10-C12 Aromatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C12-C16 Aliphatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C21-C34 Aromatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1
C16-C21 Aromatics	ND		5.0		mg/Kg		03/13/12 15:49	03/19/12 22:03	1

мв мв Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctadecane 93 60 - 140 03/13/12 15:49 03/19/12 22:03 03/13/12 15:49 93 60 - 140 03/19/12 22:03 o-Terphenyl

Lab Sample ID: LCS 580-107155/2-B

Matrix: Solid

C16-C21 Aromatics

Analysis Batch: 107520

Client Sample ID: Lab Control Sample

70 - 130

Prep Type: Total/NA **Prep Batch: 107155**

LCS LCS %Rec. Spike Analyte Added Result Qualifier %Rec Limits Unit D C21-C34 Aliphatics 40.0 37.5 mg/Kg 94 70 - 130 C16-C21 Aliphatics 20.0 19.2 96 70 - 130 mg/Kg C12-C16 Aromatics 20.0 16.6 mg/Kg 83 70 - 130 C10-C12 Aliphatics 6.67 5.22 78 70 - 130 mg/Kg 70 - 130 C10-C12 Aromatics 6.67 5.43 mg/Kg 81 70 - 130 C12-C16 Aliphatics 13.3 12.0 mg/Kg 90 C21-C34 Aromatics 53.3 68.2 mg/Kg 128 70 - 130

30.9

mg/Kg

40.0

LCS LCS

Surrogate	%Recovery Qualifier	· Limits
1-Chlorooctadecane	95	60 - 140
o-Terphenyl	89	60 - 140

Client: Geo Engineers - Spokane Project/Site: 0504-075-00

Analyte

Lead

Lead

TestAmerica Job ID: SVC0026

Limits

80 - 120

75 - 125

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

ND

Lab Sample ID: 12C0038-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total**

Analysis Batch: 12C0038 Prep Batch: 12C0038_P Blank Blank

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed ND 1.50 03/09/12 09:35 03/14/12 10:41 Lead mg/kg wet

Lab Sample ID: 12C0038-BS1 Client Sample ID: Lab Control Sample **Matrix: Soil Prep Type: Total** Prep Batch: 12C0038_P **Analysis Batch: 12C0038** LCS LCS Spike

Result Qualifier

51.7

46.9

Unit

mg/kg wet

mg/kg wet

D

%Rec

103

101

Lab Sample ID: 12C0038-MS1 Client Sample ID: Matrix Spike

Added

50.0

Matrix: Soil Prep Type: Total

Analysis Batch: 12C0038 Prep Batch: 12C0038_P Sample Sample Spike Matrix Spike Matrix Spike %Rec. Result Qualifier Result Qualifier Added Unit %Rec Limits

46.3

Lab Sample ID: 12C0038-MSD1 Client Sample ID: Matrix Spike Duplicate **Matrix: Soil Prep Type: Total**

Analysis Batch: 12C0038 Prep Batch: 12C0038 P Spike Matrix Spike Dup Matrix Spike Dup %Rec. Sample Sample **RPD** Analyte Result Qualifier Added Result Qualifier Limits Limit ND 45.0 46.2 102 Lead mg/kg wet 75 - 125 1.70 20

Lab Sample ID: 12C0038-DUP1 **Client Sample ID: Duplicate Matrix: Soil Prep Type: Total**

Prep Batch: 12C0038_P **Analysis Batch: 12C0038** Sample Sample **Duplicate Duplicate** RPD

Result Qualifier Result Qualifier RPD Limit Analyte Unit D ND ND Lead mg/kg wet 20

Certification Summary

Client: Geo Engineers - Spokane

Project/Site: 0504-075-00

Laboratory	Authority	Program	EPA Region	Certification ID	
TestAmerica Spokane	Alaska (UST)	State Program	10	UST-071	
TestAmerica Spokane	Washington	State Program	10	C569	
TestAmerica Seattle	Alaska (UST)	State Program	10	UST-022	
TestAmerica Seattle	California	NELAC	9	1115CA	
TestAmerica Seattle	Florida	Florida NELAC 4		E871074	
TestAmerica Seattle	L-A-B	DoD ELAP		L2236	
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236	
TestAmerica Seattle	Louisiana	NELAC	6	05016	
TestAmerica Seattle	Montana (UST)	State Program	8	N/A	
TestAmerica Seattle	Oregon	NELAC	10	WA100007	
TestAmerica Seattle	USDA	Federal		P330-11-00222	
TestAmerica Seattle	Washington	State Program	10	C553	

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method Summary

Client: Geo Engineers - Spokane

Project/Site: 0504-075-00

TestAmerica Job ID: SVC0026

TAL SEA

TAL SPK

Protocol	Laboratory
	TAL SPK
	TAL SPK
	TAL SPK
NWTPH	TAL SEA
NWTPH	TAL SEA
	TAL SPK

ASTM

Protocol References:

Method

EPA 8260C

NWTPH/VPH

NWTPH/EPH

EPA 6010C

D 2216

TA SOP

EPA 8011 EPA 8270 mod.

ASTM = ASTM International

NWTPH = Northwest Total Petroleum Hydrocarbon

Percent Moisture

Method Description

EDB by EPA Method 8011

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Northwest - Volatile Petroleum Hydrocarbons (GC)

Total Metals by EPA 6010/7000 Series Methods

Northwest - Extractable Petroleum Hydrocarbons (GC)

Conventional Chemistry Parameters by APHA/EPA Methods

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Page 25 of 27

THE LEADER IN ENVIRONMENTAL TESTING

425-420-9200 FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 509-924-9200 FAX 924-9290 11922 E. First Ave, Spokane, WA 99206-5302 503-906-9200 FAX 906-9210 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

_						C	HAI	OF	CUS.	LODA	KEP	OKI				Work O	rder#:	<i>370003</i>	0
CLIENT: GeoEngine	25	Inc.					INVOI	CE TO:								 •	TURNAI	ROUND REQU	EST
REPORT TO: Joh Rudders ADDRESS: 523 E 2 nd AV Spokar WA	رد)Z.														10 7	Organic &	Business Days * Inorganic Analyses 4 3 2	1 <1
PHONE: 509-363-3125 PROJECT NAME: Frenchies	FAX:	501-363	3126				P.O. NU	MBER:								STD.	Petroleum	Hydrocarbon Analy	ses
PROJECT NAME: Frenchies	₽: 11.	n - Food			1				PF	RESERVAT	TVE		1	7		5	4 [3 2 1	<1
PROJECT NUMBER: 0504 - C	75.	-00			, .	<u> </u>		ļ						İ	<u> </u>	 310	·.		
SAMPLED BY: KLR				Š	55	7 8 8	٦			ESTED AN						1 —		Specify: s than standard may i	cur Rush Charges.
CLIENT SAMPLE IDENTIFICATION		SAMPLING DATE/TIMI		NWTPH .	VOC's	142 Mathy Northware Fee 82.70 c	Lead EPA 60	EDB EPA SOU	EDC	NWTPH- VPH	NWTPH EPH					 MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	
DP-1 (2-2-5)	2/29	1/12	0744																
2 DP-1 (10-10.5)			0815	X	X	X	X	×	X										
, DP-1 (12.5-13.5)			0800							-									
4 DP-2 (10-5-11)			0900	×	X	X	X	X	X										
s DP-2 (12.5-13)			0915																
6 DP-3 (14.5-15)			000								,								
, DP-4 (5.5-6)			1045						<u> </u>										
DP-3(6.5-7)			0945	X	X	X	X	X	X	X	X								
, DP-4 (9-5-10)			1050	X	X	X	X	X	X										
10 DP-5 (11-11-5)		1	1115	X	X	X	X	X	X			_							
RELEASED BY: Ken Kong	deu		FIRM:	G€1	`		DATE	-7-	/12 60		RECEIVE PRINT NA	- 1	at	Sta	illen	FIRM	Test A	dati MBYİCG TIM	3-5-12
RELEASED BY:			-				DATE	::			RECEIVE	DBY:					10	DAT	
PRINT NAME:			FIRM:				TIME	!: 			PRINT NA	AMB:		 		FIRM:	:	TIM TEMP:	1
ADDITIONAL REMARKS:																		4.8	PAGE OF

27

ō

Page 26 (

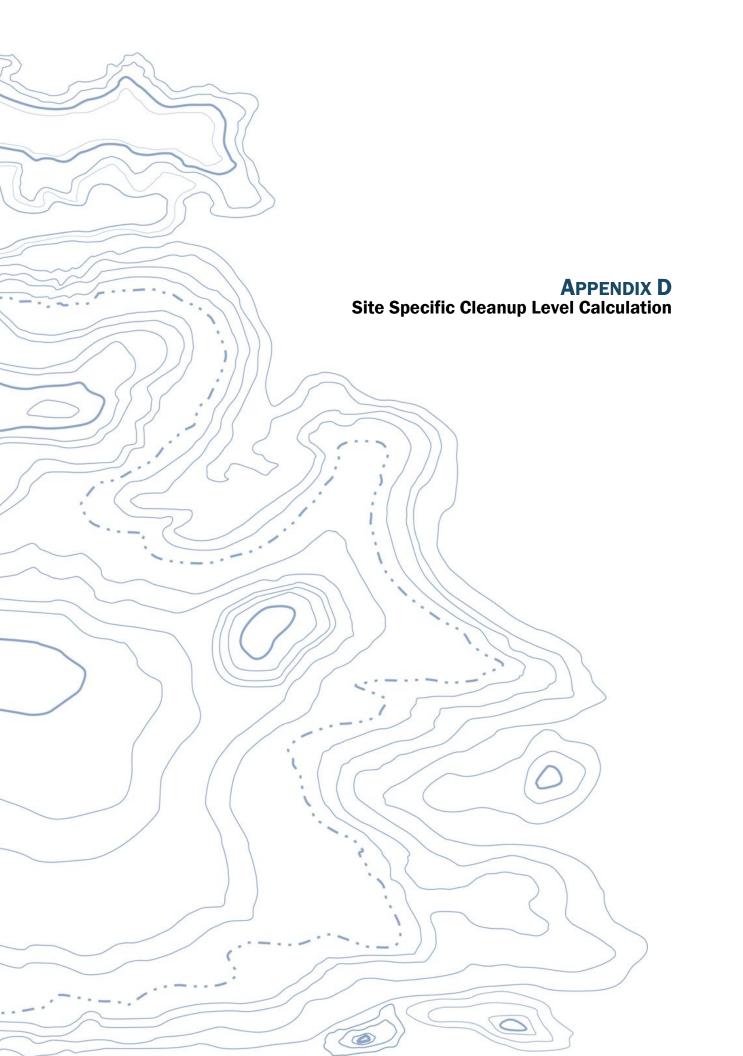
TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

425-420-9200 FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 509-924-9200 FAX 924-9290 11922 E. First Ave, Spokane, WA 99206-5302 503-906-9200 FAX 906-9210 9405 SW Nimbus Ave. Beaverton, OR 97008-7145

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: SNC MORIA TURNAROUND REQUEST GEOEngineers Inc. INVOICE TO: in Business Days * REPORT TO: JON RUSSES ADDRESS: 523 E 2nd Ave Organic & Inorganic Analyses Spokore WA 99202 PHONE: 509-363-3125 FAX: 509-363-3125 P.O. NUMBER: PROJECT NAME: Frenchies Fill-n-Food PRESERVATIVE PROJECT NUMBER: 0504-075-00 REQUESTED ANALYSES EDB, ED SAMPLED BY: KLR Turnaround Requests less than standard may incur Rush Charges. EPA BOIL MATRIX #OF LOCATION/ CLIENT SAMPLE SAMPLING WOD DATE/TIME (W. S. O) CONT. COMMENTS IDENTIFICATION 2/27/12 DP-6 (10-10.5) 1230 DP-7 (9.5-10) 1300 1335 1350 DP-10 (6.5-7) 1415 1450 1510 (13.25-14) 1540 DP-13 (15.5-16) 1550 3/5/12 DATE: RECEIVED BY: PRINT NAME: FIRM: TIME: 1700 PRINT NAME: RECEIVED BY: DATE: RELEASED BY: TIME: PRINT NAME: TIME: PRINT NAME: FIRM: ADDITIONAL REMARKS: TEMP:


* VOC's include BTEX, MTBE, n-hexore, Naphthalorea, &

TAL-1000(0408)

TestAmerica Spokane Sample Receipt Form

Work Order #:SVCX)26 CII	ent: Gpo Engi	neucs		Project: Frenchies	Fill-n-Food	
Date/Time Received: 3-5-12 17	.05	ву(5				-
Samples Delivered By: Shipping Service	Courier l∭Client	Other:_				
List Air Bill Number(s) or Attach a photocopy of the	ne Air Bill;					
Receipt Phase		Yes	No	NA	Comments	
Were samples received in a cooler:		χ				
Custody Seals are present and intact:				X		
Are CoC documents present:		χ				
Necessary signatures:		X				
Thermal Preservation Type: Blue Ice Get	lice	Dry Ice [None []Other:		
Temperature by IR Gun: 4 C Thermo	ometer Serial #81500) (acceptan	ce criteria ()-6 °C)		
The state of the s	☐lce melted ☐w/i	n 4hrs of co	lection []NA □Ot	her:	
Log-in Phase Date/Time: \$\omega_{\infty} \left(\text{in} \cdot \left(\text{g} \cdot \text{g} \cdot \reft(\text{g} \cdot \left(\text{g} \cdot \reft(\text{g} \cdot \text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft(\text{g} \cdot \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \reft) \reft(\text{g} \cdot \reft) \reft) \reft(\text{g} \cdot \ref	<i>0</i> } :	Yes	No	NA.	Comments	
Are sample labels affixed and completed for each	n container	Х				
Samples containers were received intact:		Χ				20
Do sample IDs match the CoC			X		Received sample DP	#(##5). P
Appropriate sample containers were received for	tests requested	X				
Are sample volumes adequate for tests requested	<u>d</u>	X				
Appropriate preservatives were used for the tests	requested	X				
pH of inorganic samples checked and is within m	ethod specification	Χ				
Are VOC samples free of bubbles >6mm (1/4" dia	ameter)			X		
Are dissolved parameters field filtered				X		
Do any samples need to be filtered or preserved	by the lab		X			
Does this project require quick turnaround analys	is		X			
Are there any short hold time tests (see chart bek	ow)		X			1944
Are any samples within 2 days of or past expiration	חיכ		X			
Was the CoC scanned		$\perp \chi$				
Were there Non-conformance issues at login			<u> </u>			
If yes, was a CAR generated #			'	X		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

rece zirjoinew	
Date:	05/07/12
Site Name:	Frenchies Fill and Feed
Sample Name:	DP-3 (6.5-7)
Sample I (allie)	et et i)

2. Enter Soil Concentrate Chemical of Concern	Measured Soil Conc	Comments
		Composition
or Equivalent Carbon Group	dry basis	Ratio
	mg/kg	%
Petroleum EC Fraction	10.5	1 0 000/
AL_EC >5-6	13.5	0.69%
AL_EC >6-8	180	9.22%
AL_EC >8-10	370	18.96%
AL_EC >10-12	470	24.08%
AL_EC >12-16	85	4.36%
AL_EC >16-21	14	0.72%
AL_EC >21-34	3.05	0.16%
AR_EC >8-10	230	11.79%
AR_EC >10-12	370	18.96%
AR_EC >12-16	85	4.36%
AR_EC > 16-21	9.8	0.50%
AR_EC >21-34	3.05	0.16%
Benzene	0.141	0.01%
Γoluene	0.81	0.04%
Ethylbenzene	16.5	0.85%
Total Xylenes	43.3	2.22%
Naphthalene	38.5	1.97%
I-Methyl Naphthalene	12.4	0.64%
2-Methyl Naphthalene	4.57	0.23%
n-Hexane	0.81	0.04%
MTBE	0.243	0.01%
Ethylene Dibromide (EDB)	0.000605	0.00%
1,2 Dichloroethane (EDC)	0.81	0.04%
Benzo(a)anthracene		0.00%
Benzo(b)fluoranthene		0.00%
Benzo(k)fluoranthene		0.00%
Benzo(a)pyrene		0.00%
Chrysene		0.00%
Dibenz(a,h)anthracene		0.00%
Indeno(1,2,3-cd)pyrene		0.00%
Sum	1951.484605	100.00%
2 7 . 61 . 6 . 16 . 7		
3. Enter Site-Specific Hy	arogeological Da	_
Total soil porosity:	0.43	Unitless
Volumetric water content:	0.3	Unitless
Volumetric air content:	0.13	Unitless
Soil bulk density measured:	1.5	kg/L
Fraction Organic Carbon:	0.001	Unitless
Dilution Factor:	20	Unitless
4. Target TPH Ground Wa	ter Concentation (if adjusted)
f you adjusted the target TPH gro	und water	
concentration, enter adjusted	500	ug/L

Clear All Soil Con	centration	Data Ent	try Cells		
Restore All Soil C	Concentrati	on Data	cleared		
AT ATOM TOWN TO A CONTROL BOOK TO	AND DESCRIPTION OF STREET STREET		and and hadronic first and the first of	,	
ARK: site-specific infor	mation here	e			
-					

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750

Site Information

Date: 5/7/2012

Site Name: Frenchies Fill and Feed

Sample Name: <u>DP-3 (6.5-7)</u>

Measured Soil TPH Concentration, mg/kg:

1,951.485

1. Summary of Calculation Results

European Dodhaus	Method/Goal	Protective Soil	With Measur	red Soil Conc	Does Measured Soil
Exposure Pathway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,419	1.43E-07	8.07E-01	Pass
Contact: Human Health	Method C	43,852	2.40E-08	4.45E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	30	2.72E-04	3.29E+00	Fail
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	51	NA	NA	Fail

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,418.90	43,851.72
Most Stringent Criterion	HI =1	HI =1

	Pro	tective Soil Concent	ration @Method	В	Protective S	oil Concentra	tion @Met	hod C
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	НІ @	Most Stringent?	TPH Conc, mg/kg	RISK @	НІ @
HI =1	YES	2.42E+03	1.78E-07	1.00E+00	YES	4.39E+04	5.39E-07	1.00E+00
Total Risk=1E-5	NO	1.36E+05	1.00E-05	5.63E+01	NO	8.14E+05	1.00E-05	1.86E+01
Risk of Benzene= 1E-6	NO	2.51E+05	1.84E-05	1.04E+02				
Risk of cPAHs mixture= 1E-6	NA	NA	NA	NA		NA		
EDB	NO	3.51E+04	2.57E-06	1.45E+01		INA		
EDC	NO	2.45E+04	1.79E-06	1.01E+01				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

Most Stringent Criterion	HI=1
Protective Ground Water Concentration, ug/L	342.74
Protective Soil Concentration, mg/kg	30.01

Ground Water Criteria	Protective	Potable Ground Water	Concentration @M	ethod B	Protective Soil
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	НІ @	Conc, mg/kg
HI=1	YES	3.43E+02	9.17E-06	1.00E+00	3.00E+01
Total Risk = 1E-5	NO	3.67E+02	1.00E-05	1.07E+00	3.28E+01
Total Risk = 1E-6	YES	4.07E+01	1.00E-06	1.20E-01	3.25E+00
Risk of cPAHs mixture= 1E-5	NA	NA	NA	NA	NA
Benzene MCL = 5 ug/L	NO	1.11E+03	1.44E-04	2.91E+00	6.83E+02
MTBE = 20 ug/L	NO	1.12E+03	1.49E-04	2.92E+00	7.10E+02

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protectiv	e Ground Water Conce	entration	Protective Soil
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	5.00E+02	1.54E-05	1.43E+00	5.09E+01

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date:	05/07/12
Site Name:	Frenchies Fill and Feed
Sample Name:	DP-8 (7-8)

on Measured	
Measured Soil Conc	Composition
dry basis	Ratio
	%
mg/kg	
37	0.41%
	17.65%
	19.86%
	18.76%
	1.06%
14	0.15%
3.15	0.03%
	15.45%
1600	17.65%
140	1.54%
13	0.14%
3.15	0.03%
0.38	0.00%
7.37	0.08%
77.8	0.86%
445	4.91%
108	1.19%
3.3	0.04%
8.74	0.10%
5.57	0.06%
0.368	0.00%
0.00064	0.00%
1.225	0.01%
	0.00%
	0.00%
	0.00%
	0.00%
	0.00%
	0.00%
	0.00%
9064.05364	100.00%
drogeological Da	ta
	Unitless
	Unitless
	Unitless
	kg/L
	Unitless
	Unitless
20	
ter Concentation (i	
	dry basis mg/kg 37 1600 1800 1700 96 14 3.15 1400 1600 140 13 3.15 0.38 7.37 77.8 445 108 3.3 8.74 5.57 0.368 0.00064 1.225

lear All Soil Concentra	ation Data Entry Cells	
Restore All Soil Concer	ntration Data cleared	
		Marin at a Personal of
 RK:		•••••
ite-specific information	n here	
	•	

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750

Site Information

Date: 5/7/2012

Site Name: Frenchies Fill and Feed

Sample Name: DP-8 (7-8)

Measured Soil TPH Concentration, mg/kg:

9,064.054

1. Summary of Calculation Results

E P-4h	Method/Goal	Protective Soil	With Measured Soil Conc		Does Measured Soil
Exposure Pathway		TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,883	2.00E-07	3.14E+00	Fail
Contact: Human Health	Method C	54,806	3.32E-08	1.65E-01	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	30	1.40E-04	3.02E+00	Fail
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	34	NA	NA	Fail

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use		
Protective Soil Concentration, TPH mg/kg	2,883.35	54,805.74		
Most Stringent Criterion	HI =1	HI =1		

Soil Criteria	Protective Soil Concentration @Method B				Protective Soil Concentration @Method C			
	Most Stringent?	TPH Conc, mg/kg	RISK @	НІ @	Most Stringent?	TPH Conc, mg/kg	RISK @	ні @
HI =1	YES	2.88E+03	6.38E-08	1.00E+00	YES	5.48E+04	2.01E-07	1.00E+00
Total Risk=1E-5	NO	4.52E+05	1.00E-05	1.57E+02	NO	2.73E+06	1.00E-05	4.98E+01
Risk of Benzene= 1E-6	NO	4.33E+05	9.58E-06	1.50E+02				
Risk of cPAHs mixture= 1E-6	NA	NA	NA	NA	NA			
EDB	NO	1.54E+05	3.40E-06	5.34E+01				
EDC	NO	7.51E+04	1.66E-06	2.61E+01				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

Most Stringent Criterion	HI=1
Protective Ground Water Concentration, ug/L	458.07
Protective Soil Concentration, mg/kg	30,21

Ground Water Criteria	Protective	Protective Soil			
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	ні @	Conc, mg/kg
HI=1	YES	4.58E+02	2.81E-06	1.00E+00	3.02E+01
Total Risk = 1E-5	NO	9.96E+02	1.00E-05	2.02E+00	1.13E+02
Total Risk = 1E-6	YES	1.72E+02	1.00E-06	3.79E-01	1.07E+01
Risk of cPAHs mixture= 1E-5	NA	NA	NA	NA	NA
Benzene MCL = 5 ug/L	NO	1.51E+03	1.14E-04	2.94E+00	4.15E+03
MTBE = 20 ug/L	NO	1.48E+03	9.21E-05	2.87E+00	2.42E+03

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protectiv	Protective Soil		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	5.00E+02	3.13E-06	1.09E+00	3.37E+01

APPENDIX E REPORT LIMITATIONS AND GUIDELINES FOR USE1

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Frenchies' Fill-N-Food site located at 106 East Moxee Avenue located in Moxee, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project.
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

-

Ecology and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable, but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service?

Please let us know by visiting **www. geoengineers.com/feedback**.

