APPENDIX C

2003 ASB SAMPLING DATA

The attached investigation data for ASB sludges and underlying native sands were generated during 2003 as part of Supplemental RI/FS investigations.

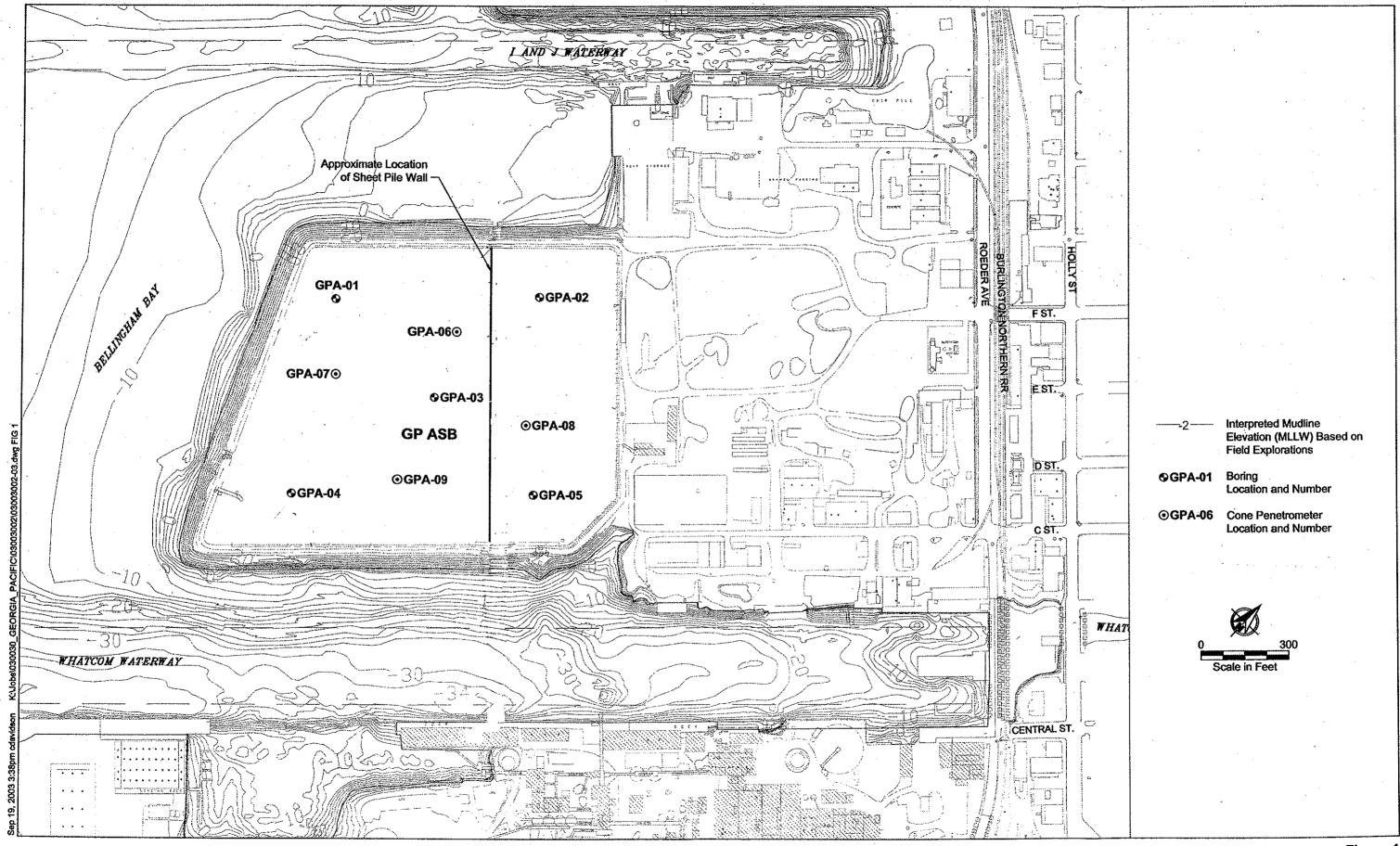


Figure 1
Exploration Plan

Table C-1
2003 Chemical Sampling Data for ASB Sludges and
Underlying Native Sands

								Onc	lerlying Nati	ve Janus										
Location ID		GPA-01	GPA-01	GPA-01	GPA-02	GPA-02	GPA-02	GPA-02	GPA-03	GPA-03	GPA-03	GPA-03	GPA-04	GPA-04	GPA-04	GPA-04	GPA-05	GPA-05	GPA-05	GPA-05
Core Subsample	Α	B1	B2	С	A	B1	B2	С	Α	B1	B2	C	A	B1	B2	С	Α	₿1	B2	С
Sample Date	07/29/2003			07/29/2003	07/25/2003	07/25/2003	07/28/2003	07/28/2003	07/28/2003	07/28/2003	07/28/2003	07/28/2003	07/29/2003	07/29/2003	07/29/2003	07/29/2003	07/30/2003	07/30/2003	07/30/2003	07/30/2003
Est. Mudline (ft MLLW)	-0.4	-0.4	-0.4	-0.4	-7	-7	-7	-7	-10.6	-10.6	-10.6	-10.6	-6.1	-6.1	-6.1	-6.1	-2.8	-2.8	-2.8	-2.8
5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1														. 1	
Depths below Mudline		_]	***************************************						***************************************		and a second					,	i l
Sample Top	0	6.5	13	26	0 '	2.1	4	9	0	2.7	5.5	12	0	4.5	8.5	18.5	0	7.5	14	19
Sample Bottom	6	11.5	19	32	2.1	4	6.5	14	2.6	5	9	17.5	4	7	13.5	23.5	6.5	13	17.5	23
Est. Elevation (MLLW)							4													
Sample Top	-0.4	-6.9	-13.4	-26.4	-7	-9.1	-11	-16	-10.6	-13.3	-16.1	-22.6	-6.1	-10.6	-14.6	-24.6	-2.8	-10.3	-16.8	-21.8
Sample Bottom	-6.4	-11.9	-19.4	-32.4	-9.1	-11	-13.5	-21	-13.2	-15.6	-19.6	-28.1	-10.1	-13.1	-19.6	-29.6	-9.3	-15.8	-20.3	-25.8
Conventionals								L				1	, ,,,,,		10.0		-0.0	70.0		
Total organic carbon (%)	33.0	34.0	2.2	0.4	31.0	28.0	32.0	0.6	29.0	31.0	2.7	0.3	44.0	42.0	1.0	0.3	28.0	2.0	0.4	0.6
Total solids (%)	7.1	11.7	62.8	91.1	15.4	24.7	33.1	90.0	10.4	15.1	71.9	82.9	10.6	16.9	77.3	79.5	29.0	70.8	79.5	79.8
Ammonia (mg/kg)	3,900				4,900				4,300				11,000				200			
Sulfide (mg/kg)	1,100				950				750				9,700				5,200	**		
Grain Size			. i.	-L			L	L			L		0,700		L		0,200			·
Percent Fines	44.3%	82.8%	48.8%	33.3%	50.9%	79.4%	39.1%	10.3%	61.3%	64.0%	19.9%	9.9%	86.9%	96.3%	17.6%	18.2%	18.6%	28.8%	21.4%	11.6%
Metals (mg/kg)							1	10.070			10.070	1	00.070	00.070	17.070	10.270	10.070	20.070		11.070
Antimony	20 U	10 U	2 U	2 U	9 U	6 U	6 U	2 U	20 U	10 U	2 U	2 U	10 U	8 U	2 U	2 U	6 U	2 U	2 U	2 U
Arsenic	20 U	9 U	2 U	1 U	8 U	5 U	5 U	1 U	10 U	9 U	2 U	10	10 U	7 U	2 U	1 U	5 U	2 U	1 U	1 U
Cadmium	18.0	18.0	1.3	0.4	13.0	8.5	14.5	0.3	21.0	9.0	0.9	0.1 U	9.0	11.0	0.7	0.3	3.5	2.1	0.5	0.3
Copper	75	91	23	14	69	88	122	9	75	70	16	10	82	104	13	11	30	26	11	14
Lead	10 U	40	8	3	20	54	206	3	20	40	6	3	50	40	5	3	12	30	3	3
Mercury	1.1	7.0	0.60	0.02 U	2.6	6.0	20.2	0.13	1.9	5.3	0.48	0.02 U	7.7	5.1	0.33	0.04	0.40	0.68	0.05	0.02 U
Nickel	30	41	27	20	27	45	84	14	40	25	18	24	28	39	15	21	14	28	19	23
Silver	1 U	0.5 U	0.1 U	0.08 U	0.5 U	0.3 U	0.3 U	0.08 U	0.7 U	0.5 U	0.09 U	0.08 U	0.6 U	0.4 U	0.09 U	0.08 U	0.3 U	0.1 U	0.08 U	0.08 U
Zinc	616	667	78	29	438	474	3,500	23	544	422	109	32	501	659	37	28	179	82	28	31
PCBs (µg/kg)		1					0,000				100	i					370	02	20	
Total PCBs	6.4 UY	32 UY	6.2 UY	6.1 U	6.4 U	6.3 UY	6.4 UY	6 U	6.4 UY	6.4 UY	6 U	6.1 U	6.4 UY	6.4 UY	5.9 U	5.9 U	6.3 UY	6.1 UY	6.0 U	6.2 U
Pesticides (µg/kg)		1	0.201	0.10	0.70	0.001	0.401		0.401	0.4 0 1		0.10	0.401	0.4 01	0.80	3.90	0,5 0 1	0.101	0.00	- 0.2 0
4,4'-DDD	0.089 U	0.089 U	0.086 U	0.084 U	0.089 U	0.088 U	0.089 UY	0.084 U	0.089 U	0.089 U	0.084 U	0.085 U	0.090 U	0.089 U	0.082 U	0.082 U	0.088 U	0.084 U	0.083 U	0.086 U
4,4'-DDE	0.077 U	0.077 U	0.075 U	0.073 U	0.077 UY	0.077 UY	0.000 UY	0.073 U	0.0077	0.077 U	0.073 U	0.000 U	0.036 UY	0.077 UY	0.002 U	0.002 U	0.000 U	0.073 U	0.003 U	0.000 U
4,4'-DDT	0.14 U	0.14 UY	0.13 U	0.13 U	0.14 U	0.14 UY	0.14 UY	0.13 U	0.14 U	0.14 U	0.073 U	0.13 U	0.14 U	0.077 UT	0.07 7 U	0.13 U	0.14 U	0.013 UY	0.072 U	0.073 U
LPAHs (µg/kg)			1	0.100	<u></u>	0.11.01	0.1101	0.10 0		0.170	0.300	1	V.14 0	0.140	0.100	0.100	0.14 0	0.10 07	0.100	<u> </u>
Naphthalene	7,800	5,600	260	5.0 U	15,000	34,000	26 U	100	5,700	6,600	610	45	4,800	6,400	120	26	1,500	250	76	120
Acenaphthylene	940	510	29	4.4 U	860	5,900	23 U	4.4 U	500	630	82	4.5 U	460	770	4.5 U	4.5 U	100	26	4.5 U	4.5 U
Acenaphthene	240	240	20	5.0 U	350	2,200	26 U	5.0 U	240	480	45	5.1 U	190	460	5.0 U	5.0 U	24 U	32	5.1 U	5.1 U
Fluorene	270	260	23	6.5 U	130	1,200	34 U	6.5 U	200	320	41	6.7 U	140	620	6.6 U	6.6 U	32 U	25	6.6 U	6.7 U
Phenanthrene	3,400	2,800	290	4.4 U	1,500	30,000	200	93	1,500	2,800	580	60	2,600	10,000	170	28	130	190	46	40
Anthracene	280	250	24	4.6 U	130	3,500	24 U	4.6 U	170	300	67	4.7 U	240	1,200	4.6 U	4.7 U	23 U	25	4.7 U	4.7 U
2-Methylnaphthalene	270	300	41	4.8 U	300	1,800	25 U	4.8 U	270	390	45	4.9 U	210	770	4.8 U	4.8 U	23 U	40	4.7 U	4.9 U
HPAHs (µg/kg)						1,000		1.0 0				1	<u>-</u>	110	4.00	1.00		10	4.00	1.00
Fluoranthene	2,600	2,100	280	5.8 U	920	32,000	210	94	960	1,900	610	69	2,100	8,800	180	26	100	180	44	28
Pyrene	1,900	1,800 M	240	10 U	700	32,000	220	86	700	1,700	490	54	2,200	11,000	160	23	110	150 M	39	24
Benzo(a)anthracene	140 M	25 U	5.1 U	5.0 U	25 U	2,600	26 U	5.0 U	26 U	26 U	54 M	5.1 U	25 U	82 U	20 M	5.0 U	24 U	24 M	5.1 U	5.1 U
Chrysene	300 M	30 U	6.1 U	5.9 U	30 U	4,700	31 U	5.9 U	30 U	31 U	99 M	6.1 U	30 U	97 U	36 M	6.0 U	29 U	34 M	6.0 U	6.1 U
Benzo(b)fluoranthene	320 M	350 M	51 M	7.9 U	39 U	3,800	41 U	7.8 U	40 U	240	110 M	8.0 U	460 M	4,800 M	40 M	7.9 U	39 U	31 M	8.0 U	8.0 U
Benzo(k)fluoranthene	260 M	310 M	43 M	11 U	55 U	5,300	57 U	11 U	56 U	220	94 M	11 U	410 M	5,500 M	39 M	11 U	54 U	25 M	11 U	11 U
Benzo(a)pyrene	250 M	300 M	22 M	3.8 U	19 U	4,200	20 U	3.8 U	20 U	200 M	98 M	3.9 U	320 M	3,000 M	38 M	3.9 U	19 U	3.9 U	3.9 U	3.9 U
Indeno(1,2,3-cd)pyrene	30 U	29 U	5.9 U	5.8 U	29 U	4,900	30 U	5.7 U	29 U	30 U	67 M	5.9 U	29 U	94 U	31 M	5.8 U	28 U	5.8 U	5.8 U	5.9 U
Dibenzo(a,h)anthracene	29 U	28 U	5.7 U	5.6 U	28 U	1,600 M	29 U	5.7 U	28 U	29 U	5.6 U	5.7 U	28 U	94 U	5.6 U	5.6 U	27 U	5.6 U	5.6 U	5.9 U
Benzo(g,h,i)perylene	27 U	26 UY	5.3 U	5.2 U	26 U	4,900	23 U	5.2 U	27 U	27 UY	5.2 UY	23	26 UY	85 UY	3.0 U	5.0 U	25 U	5.2 U	5.0 U	5.7 U
Total CPAHs (B[a]P equiv.)	332	374	33 E	10 U	46 U	6,547	- 48 U	16 U	46 U	255	133	5 E	415	4,057	52 E	10 U	44 U	24 U	10 U	10 U
Chlorinated Hydrocarbons (µg/k		·····		100	10.0	V,V71	-700	100	700	200	100		710	7,001	V2 L	100	77 0	270	100	10.0
1,3-Dichlorobenzene	24 U	23 U	4.7 U	4.6 U	23 U	250 U	24 U	4.6 U	24 U	24 U	4.6 U	4.7 U	23 U	75 U	4.6 U	4.7 U	23 U	4.6 U	4.7 U	4.7 U
1,4-Dichlorobenzene	26 U	25 U	5.1 U	5.0 U	25 U	270 U	26 U	5.0 U	26 U	26 U	5.0 U	5.1 U	25 U	82 U	5.0 U	5.0 U	24 U	5.0 U	5.1 U	5.1 U
1,2-Dichlorobenzene	26 U	25 U	5.1 U	5.0 U	25 U	270 U	26 U	5.0 U	26 U	26 U	5.0 U	5.1 U	25 U	82 U	5.0 U	5.0 U	24 U	5.0 U	5.1 U	5.1 U
1,2,4-Trichlorobenzene	25 U	24 U	4.9 U	4.8 U	25 U	260 U	25 U	4.8 U	25 U	25 U	4.8 U	4.9 U	25 U	79 U	4.8 U	4.8 U	23 U	4.8 U	4.9 U	4.9 U
Hexachlorobenzene	0.99 UY	0.99 UY	0.96 U	0.94 U	0.99 UY	0.98 UY	0.99 UY	0.93 U	0.99 U	1.8 P	0.93 U	0.94 U	1.0 UY	0.99 U	0.91 U	0.91 U	0.98 UY	0.94 UY	0.93 U	0.96 U
	0.00 01	0.0001	0.000	U.54 U	0.55 01	10 06'0	0.5501	v.ჟა U	V.55 U	1.0 P	U.93 U	0.94 0	1.001	0.89 0	0.810	0.810	10.50.01	V.84 U I	, v.93 U	0.80 0

Table C-1
2003 Chemical Sampling Data for ASB Sludges and
Underlying Native Sands

									criying ,tac											
Location ID	GPA-01	GPA-01	GPA-01	GPA-01	GPA-02	GPA-02	GPA-02	GPA-02	GPA-03	GPA-03	GPA-03	GPA-03	GPA-04	GPA-04	GPA-04	GPA-04	GPA-05	GPA-05	GPA-05	GPA-05
Core Subsample	Α	B1	B2	C	A	B1	B2	С	Α	B1	B2	С	A	B1	B2	С	Α	B1	B2	С
Sample Date	07/29/2003	07/29/2003	07/29/2003	07/29/2003	07/25/2003	07/25/2003	07/28/2003	07/28/2003	07/28/2003	07/28/2003	07/28/2003	07/28/2003	07/29/2003	07/29/2003	07/29/2003	07/29/2003	07/30/2003	07/30/2003	07/30/2003	07/30/2003
Phthalates (µg/kg)																				*
Dimethylphthalate	26 U	25 U	5.1 U	5.0 U	25 U	270 U	26 U	5.0 U	26 U	26 U	5.0 U	5.1 U	25 U	82 U	5.0 U	5.0 U	24 U	5.0 U	5.1 U	5.1 U
Diethylphthalate	43 U	43 U	8.6 U	8.4 U	42 U	460 U	44 U	31	43 U	43 U	50	8.6 U	43 U	140 U	8.5 U	8.5 U	41 U	8.5 U	8.6 U	8.6 U
Di-n-butylphthalate	29 U	28 U	5.7 U	5.6 U	28 U	300 U	29 U	5.5 U	28 U	29 U	5.6 U	5.7 U	28 U	91 U	5.6 U	27	27 U	5.6 U	5.6 U	5.7 U
Butylbenzylphthalate	25 U	24 U	4.9 U	160	24 U	260 U	25 U	21	25 U	25 U	4.8 U	4.9 U	2,800	210,000	4.8 U	4.8 U	23 U	4.8 U	95	4.9 U
bis(2-Ethylhexyl)phthalate	23,000	3,600	130	240	1,000	1,800	94 U	240	1,400	3,600	160 M	74	4,600	300,000	160	94	580	170	250	110
Di-n-octylphthalate	41 U	40 U	8.0 U	84	39 U	430 U	41 U	7.8 U	40 U	41 U	7.9 U	8.0 U	1,100	52,000	7.9 U	7.9 U	39 U	7.9 U	8.0 U	8.0 U
Phenols (µg/kg)			***************************************	•——				J								,	***************************************		L	4
Phenol	910	560	6.5 U	6.3 U	1,900	1,200	210	6.3 U	1,000	520	36	6.5 U	350	100 U	6.4 U	6.4 U	1,300	73	6.4 U	24
2-Methylphenol	34 U	33 U	6.7 U	6.5 U	270	350 U	34 U	6.5 U	33 U	34 U	6.5 U	6.7 U	33 U	110 U	6.6 U	6.6 U	210 M	6.6 U	6.6 U	6.7 U
4-Methylphenol	59,000	42,000	540	6.5 U	170,000	47,000	34 U	140	98,000	48,000	1,100	70	26,000	7,700	160	44	37,000	1,100	150	670
2,4-Dimethylphenol	47 U	47 U	9.4 U	9.2 U	46 U	500 U	48 U	9.2 U	47 U	47 U	9.2 U	9.4 U	47 U	150 U	9.3 U	9.3 U	45 U	9,3 U	9.3 U	9.4 U
Pentachlorophenol	220 U	210 U	43 U	42 U	210 U	2,300 U	220 U	42 U	210 U	220 U	42 U	43 U	210 U	690 U	42 U	42 U	200 U	42 U	42 U	43 U
Miscellaneous (µg/kg)			*		***************************************			·				J				·		Å		-1
Benzyl alcohol	99 U	98 U	20 U	19 U	96 U	1,000 ป	99 U	19 U	98 U	99 U	19 U	20 U	97 U	310 U	19 U	19 U	94 U	19 U	19 U	20 U
Benzoic acid	820 U	810 U	160 U	160 U	790 U	8,600 U	820 U	160 U	810 U	820 U	160 U	160 U	800 U	2,600 U	160 U	160 U	780 U	160 U	160 U	160 U
Hexachlorobutadiene	0.99 U	0.99 U	0.96 U	0.94 U	0.99 U	0.98 U	0.99 U	0.93 U	0.99 U	0.99 U	0.93 U	0.94 U	1.0 U	0.99 U	0.91 U	0.91 U	0.98 U	0.94 U	0.93 U	0.96 U
n-Nitrosodiphenylamine	35 U	34 U	6.9 U	6.7 U	34 U	360 U	35 U	6.7 U	34 U	35 U	6.7 U	6.8 U	34 U	110 U	6.8 U	6.8 U	33 U	6.8 U	6.8 U	6.9 U

Notes:

Sampling performed by Anchor Environmental during 2003.

Table C-2.
Dioxin/Furan Concentrations of ASB Sludge Composite

Location ID	GPA	-CMP1	
Sample Date	07/2	5/2003	
	Concentration	E-PATONO I	
Dioxin/Furan Congeners	(ng/kg)	TEF	TEC ^[1]
2,3,7,8-TCDD	14.4	1.0	14.4
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	72.8	0.5	36.4
2,3,4,7,8-PeCDF	29.3	0.5	14.7
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	377	0.1	37.7
1,2,3,4,7,8-HxCDF	26.2	0.1	2.6
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	329	0.1	32.9
1,2,3,6,7,8-HxCDF	9.6 J	0.1	1.0
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	309	0.1	30.9
1,2,3,7,8,9-HxCDF	1.68 U	0.1	0.1
2,3,4,6,7,8-HxCDF	10.9 J	0.1	1.1
2,3,7,8-Tetrachlorodibenzofuran	364	0.1	36.4
1,2,3,7,8-Pentachlorodibenzofuran	22.0 J	0.05	1.1
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	1,930	0.01	19.3
1,2,3,4,6,7,8-HpCDF	27.0	0.01	0.3
1,2,3,4,7,8,9-HpCDF	3.2 J	0.01	0.0
OCDD	1,580	0.001	1.6
OCDF	35.2	0.001	0.0
Heptachlorodibenzofuran (HpCDF)	71.4 J		
Heptachlorodibenzo-p-dioxin (HpCDD)	3,100		
Hexachlorodibenzofuran (HxCDF)	151 J	THE PROPERTY OF THE PROPERTY O	
Hexachlorodibenzo-p-dioxin (HxCDD)	24,760 J		
Pentachlorodibenzofuran (PeCDF)	281 J		
Pentachlorodibenzo-p-dioxin (PeCDD)	19,650 J		
Tetrachlorodibenzo-p-dioxin (TCDD)	20,500 J		
Total TCDF	1,370 J	- Parameters	
Total TEC		Laboration	230.4

Notes:

1. TEC represents the concentration of dioxin/furan congeners expressed as the equivalent concentration of 2,3,7,8-TCDD, expressed in units of ng/kg or parts per trillion.

APPENDIX A

FIELD EXPLORATION METHODS AND ANALYSIS

This appendix documents the processes Anchor used in determining the nature of the soils underlying the project site addressed by this report. The discussion includes information on the following subjects:

- Explorations and Their Location;
- Determining Depth to Mudline;
- The Use of Piston Cores;
- The Use of Auger Borings;
- Standard Penetration Test (SPT) Procedures; and
- The Use of Cone Penetrometer Probes.

EXPLORATIONS AND THEIR LOCATION

Explorations for this project included five hollow-stem auger borings (GPA-01 through GPA-05) and four cone penetrometers (GPA-06 through GPA-09). The exploration logs within this appendix show our interpretation of the drilling, sampling, and testing data. They indicate the depth where the soils change. Note that the change may be gradual. In the field, we classified the samples taken from the explorations according to the methods presented on Figure A-1, Key to Exploration Logs. This figure also provides a legend explaining the symbols and abbreviations used in the logs. Figure 1 shows the location of explorations, located using a portable WAAS-enabled GPS.

DETERMINING DEPTH TO MUDLINE

At each exploration location, a lead-line was dropped from the barge and the elevation of the mudline was calculated by subtracting the measured distance from the mudline to the water surface from the elevation of the ASB pool, which was a constant 20 feet, MLLW during the exploration work.

THE USE OF PISTON CORES

To characterize the upper soft soils, cores were collected from five stations located adjacent to borings GPA-01 through GPA-05 using a piston core fitted with a clear polycarbonate core tube (2.875-inch inner diameter). Core lengths of 4 to 8 feet were used to permit retrieval of the full thickness of Unit A soil. Prior to sampling, all core tubes were washed with a standard detergent (e.g., Alconox®) and rinsed with site water as specified in PSEP protocols. During storage and transport, core tubes were capped at both ends to prevent contamination.

The corer was driven into the soil with drive rods. Penetration and recovery were assessed using Velcro® placed on the outside of the core tube. The corer was retrieved slowly and steadily to avoid agitating the sample. As the corer was lifted out of the water, a plug was be inserted in the bottom of the core tube to prevent soil from slipping out the bottom. After the corer head was removed from the core tube, an expansion plug was inserted into the top of the core tube to seal the core sample until processing. Care was taken to keep the core in a vertical position until it was processed.

Each core was evaluated for acceptability using criteria provided in the Sampling and Analysis Plan:

- At least 5 cm of overlying water is present
- The overlying water is not excessively turbid
- The soil surface is relatively undisturbed
- At least 80 percent core recovery versus penetration is achieved.

All soil cores met the above criteria.

Results from piston core logging were used to characterize the upper soils in the ASB. The interface between the Unit A and Unit B soils was visually identified and measured in the piston core and noted on the field logs.

THE USE OF AUGER BORINGS

With depths ranging from 29 to 46 below the mudline, five hollow-stem auger explorations were advanced from July28 to July 30, 3003. The borings used a 3-3/8-inch inside diameter hollow-stem

auger and were advanced with barge-mounted drill rig subcontracted by Anchor. An engineering geologist from Anchor continuously observed the drilling. Detailed field logs were prepared of each boring. Using the Standard Penetration Test (SPT) and thin-walled Shelby tubes, we obtained continuous samples throughout the depth of the exploration.

The boring logs are presented among Figures A-3 through A-7 at the end of this appendix.

Standard Penetration Test (SPT) Procedures

This test is an approximate measure of soil density and consistency. To be useful, the results must be used with engineering judgment in conjunction with other tests. The SPT (as described in ASTM D 1587) was used to obtain disturbed samples. This test employed a large-diameter split-spoon sampler. Using a 140-pound hammer, free-falling 30 inches, the sampler was driven into the soil for the length of the sample interval. The number of blows required to drive the sampler over the last 12 inches of the first 18-inch interval was recorded as the Standard Penetration Resistance. This resistance, or blow count, measures the relative density of granular soils and the consistency of cohesive soils. The blow counts are plotted on the boring logs at their respective sample depths.

Soil samples are recovered from the split-barrel sampler, field classified, and placed into watertight jars. They were then taken to ARI for further testing.

In the Event of Hard Driving

Occasionally very dense materials preclude driving a total 18-inch sample. When this happened, the penetration resistance was entered on logs as follows:

Penetration less than six inches. The log indicates the total number of blows over the number of inches of penetration.

Penetration greater than six inches. The blow count noted on the log is the sum of the total number of blows completed after the first six inches of penetration. This sum is expressed over the number of inches driven that exceed the first 6 inches. The number of blows needed to drive the first six inches is not reported. For example, a blow count series

of 12 blows for 6 inches, 30 blows for 6 inches, and 50 (the maximum number of blows counted within a 6-inch increment for SPT) for 3 inches would be recorded as 80/9.

THE USE OF CONE PENETROMETER PROBES

A cone penetrometer was also deployed from the barge at four locations to evaluate subgrade conditions for this study. The probes were advanced by ConeTec to depths ranging from 15 to 27 feet below the mudline, at which depth the soil was sufficiently dense that the resistance of the cone caused the barge to lift. An explanation key for the cone penetrometers is presented on Figure A-2.

The cone provided information to interpret the density and consistency of the soils. A direct correlation exists between the tip resistance of the cone and the bearing capacity in the soil. Another direct correlation exists between the friction registered on the cone sleeve and the friction characteristics of the soil. The cone logs provide guidelines for interpretation of soil type based on the recommendations of Robertson.

Logs of cone penetrometer probes are presented in Figures A-8 through A-11.

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual—manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance.

Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSF
Very loose	0 - 4	Very soft	0 - 2	<0.125
Loose	4 - 10	Soft	2 - 4	0.125 - 0.25
Medium dense	10 — 30	Medium stiff	4 - 8	0.25 - 0.5
Dense	30 - 50	Stiff	8 - 15	0.5 - 1.0
Very dense	>50	Very stiff	15 — 30	1.0 - 2.0
		Hard	>30	>2.0

Moisture

Dry Little perceptible moisture

Damp Some perceptible moisture, probably below optimum

Moist Probably near optimum moisture content

Wet - Much perceptible moisture, probably above optimum

Minor Constituents	Estimated Percentage
Not identified in description	0 - 5
Slightly (clayey, silty, etc.)	5 – 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 – 50 , ,

Legends

Sampling Test Symbols

BORING SAMPLES

Split Spoon

Shelby Tube

Cuttings

Core Run

* No Sample Recovery

P Tube Pushed, Not Driven

TEST PIT SAMPLES

Grab (Jar)

Bag

Shelby Tube

Test Symbols

NS No Sheen

SS Slight Sheen

MS Moderate Sheen

HS Heavy Sheen

TCD Triaxial Consolidated Drained

QU Unconfined Compression

DS Direct Shear

K Permeability

PP Pocket Penetrometer
Approximate Compressive Strength in TSF

TV Torvane Appraximate Shear Strength in TSF

CBR California Bearing Ratio

MD Moisture Density Relationship

AL Atterberg Limits

Water Content in Percent
Liquid Limit
Natural
Plastic Limit

PID Photoionization Detector Reading

CA Chemical Analysis

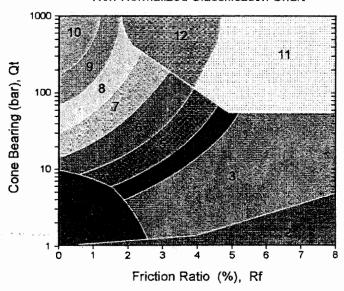
OT In Situ Density Test

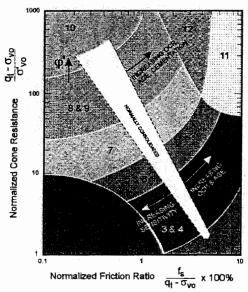
Groundwater Observations

Surface Seal

Groundwater Level on Date (ATD) At Time of Drilling

Observation Well Tip ar Slotted Section


Groundwater Seepage (Test Pits)

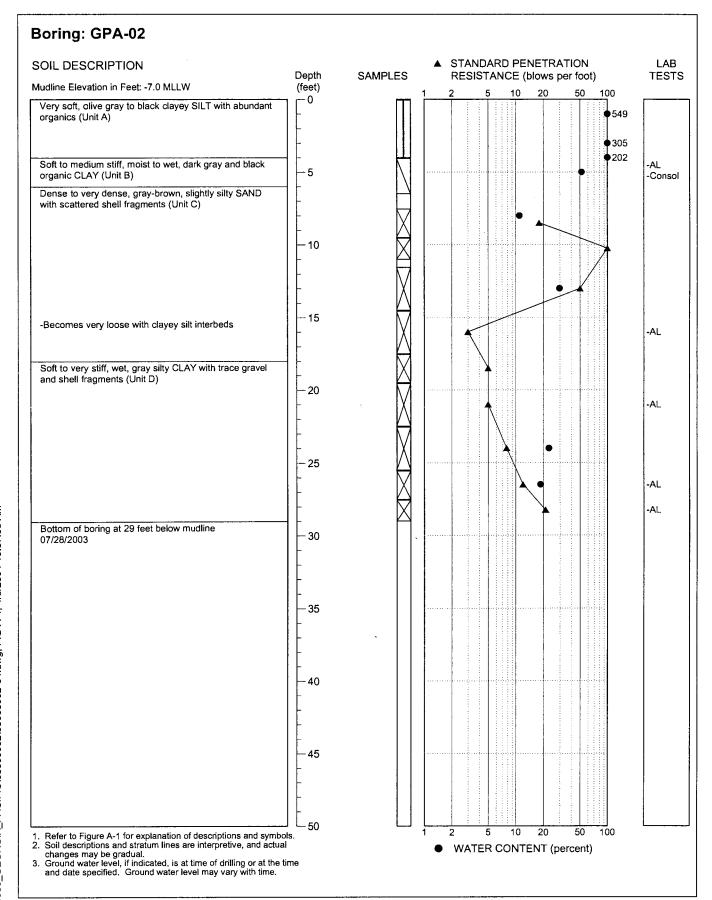

CPT Classification Chart

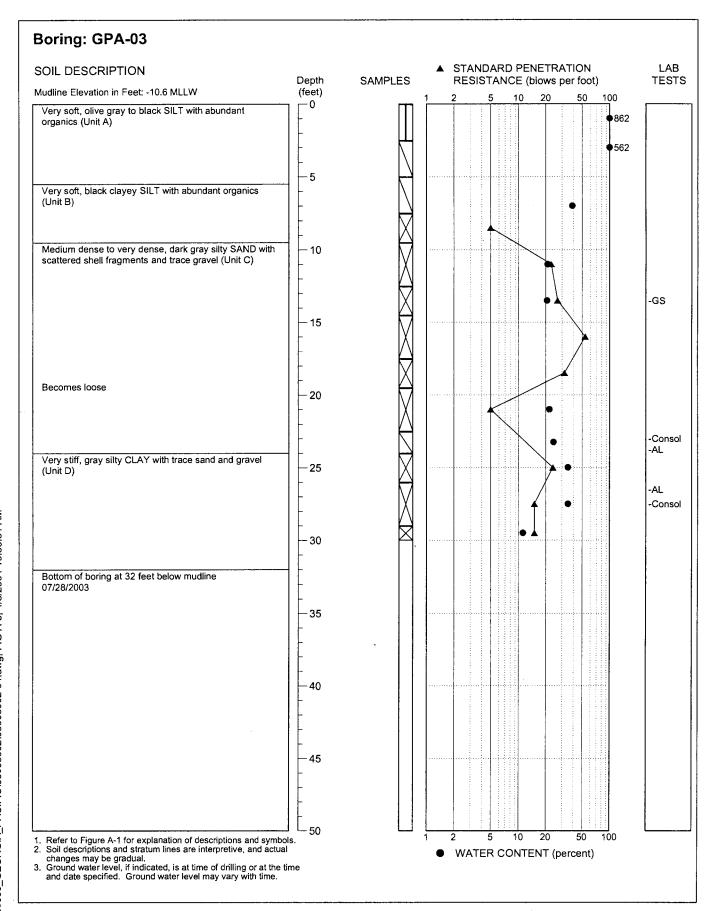
(after Robertson 1990)

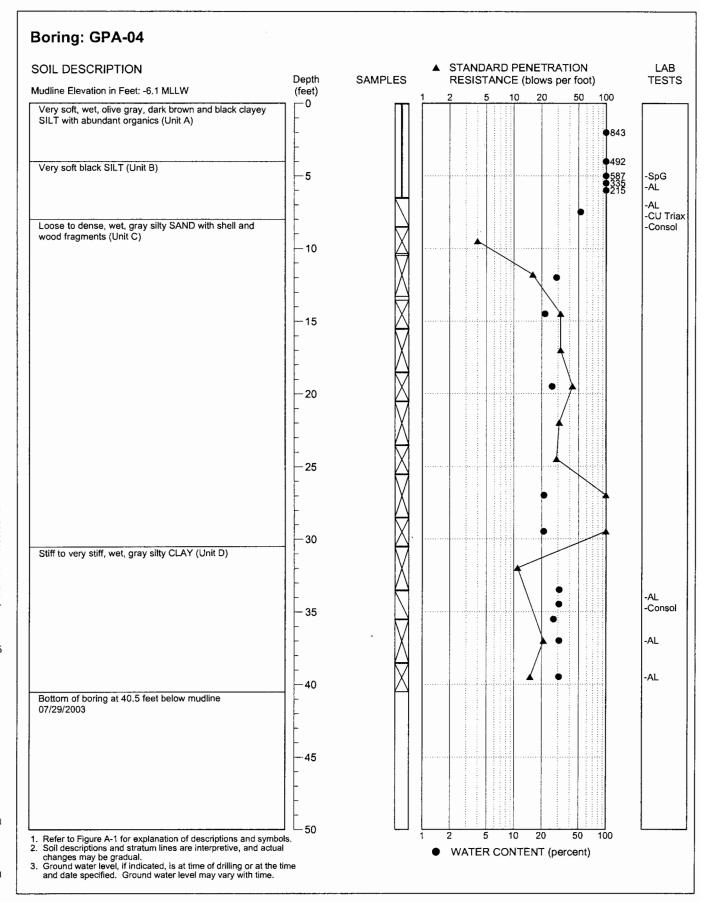
Non-Normalized Classification Chart

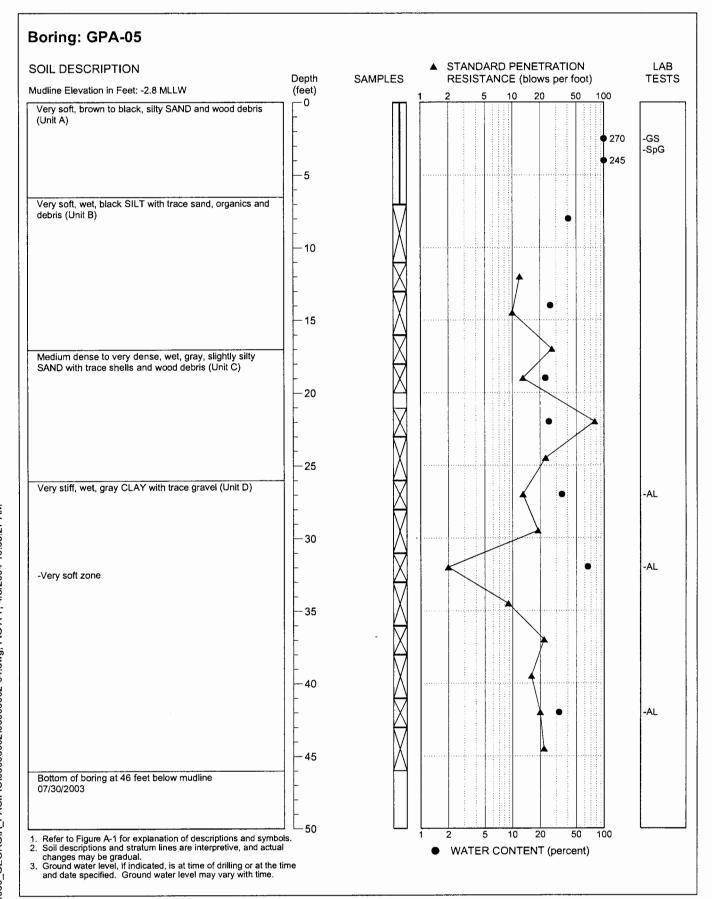
Normalized Classification Chart

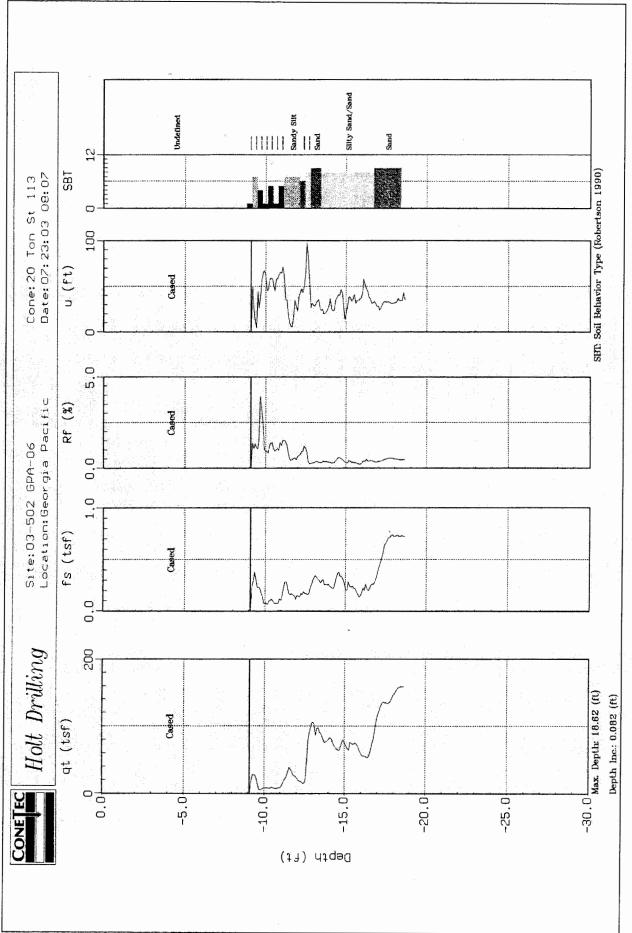
Zone	Q _t /N	Soil Behaviour Type
	2:	sensitive fine grained
2 3		organic material
3 B	1 1 1 1 1 1 1	- Clay
4 4	1.5	sitty clay to clay
	2	clayey silt to silty clay
6 8	2:5	sandy silt to clavey silt
7	. 3	sity sand to sandy sitt
8	4	sand to silty sand
9 %	5	sand
10 %	1.16	gravelly sand to sand
		very stiff fine grained *
12 ×	2	sand to clayey sand

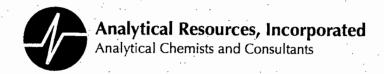

Geotechnical and Environmental
In Situ Testing Contractors


10/20/03 K:\Jobs\030030_GEORGIA_PACIFIC\03003002\FIG A-2.cdr


K:\Jobs\030030_GEORGIA_PACIFIC\03003002\03003002-04.dwg, FIG A-3, 4/8/2004 10:39:07 AM







Appendix B

Geotechnical Laboratory Data Test Logs

August 29, 2003

Mr. John Verduin Anchor Environmental, Inc. 1423 Third Avenue Suite 300 Seattle, WA 98101

Subject: 030030-02 GP ASB; ARI Project No.: FT20

Dear Mr. Verduin;

Samples from the referenced project were analyzed and the results are on the following pages. Please call me to discuss any questions, or comments you may have on the data or its presentation.

Best Regards, Analytical Resources, Incorporated

Harold Benny

Geotechnical Division Manager

Harold Benny

Client: Anchor Environmental, Inc.

ARI Project No.: FT20

Client Project: 030030-02 GP ASB

Case Narrative

- 1. Twenty four samples were received for testing on August 12, 2003. All samples were received in good condition.
- 2. The moisture content for all samples was measured according to ASTM D2216. The results are presented in a table.

3. Three samples were tested for grain size distribution according to ASTM D422 using a set of standard sieves. The data is presented in summary tables and plots.

4. Nine samples were tested for grain size by washing over a #200 sieve according to ASTM D1140. The results are presented in a table. It's important to note that all of sample GPA-04 4-6 would have passed through the #200 sieve. Those particles that were retained on the sieve were oven-dried agglomerations that would not break apart.

5. Two samples were tested for specific gravity according to ASTM D854. The data is presented in a table. Both samples had low specific gravity values, one was exceptionally low.

6. The Atterberg limits were measured for fourteen samples according to ASTM D4318. The data is presented in summary tables and plots. One sample, with an unusually low specific gravity also had unusually high Atterberg Limits.

7. There were no other anomalies to the samples or testing.

Approved by:

Title

Geotechnical Division Manager

Date: 7/1/03

Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 Tukwila WA 98168

206-695-6200 206-695-6201 (fax)

Chain of Custody Record & Laboratory Analysis Request

Turn Around Requested: _

Page ___ of ____

Report to: John VERDUIN				A		WATER CONTENT AT TERBERGE LIMIT SORLIER GRAWITY GRAIN SIZE MILLUM GRAIN SIZE #ZOUNGEST									
1		Proj Name:				<u> </u>			• Ana	lys	equested		- 1		Notes/Comments
Company: ANCH				30-02		5	M	ā	M	Ø					
Address: 1423 3	SE ALE	Sampler: 4AN FORO			1	-3	1	6	*		ļ				
SUITE 300	98101				<u> </u>	Š	386	7	17	범					
Phone: 287-9	130	Shipping Me	thod:			52 63		TE	5	1					
Fax: 287-9	131	AirBill:	- C	C. famala	Na Car	THE PERSON	WATER CONTENT AT TERBERG LIMIT		RAII	\$.				
	nple ID	Sample Date	Sample Time	Sample Matrix	No Con- tainers	3	\$	V	P	3					
ALL SA	MPLES					\boxtimes									
GPA-01	20-22						X								
11	22-29						X								
7)	25-27									X					
11	30-32									X					
	32-34								X						
1)	36-39 41-44						X								
11	41-44						X								٠.
G-PA-02	14.547.5 22.5-25.5						X X			X					
11	ZZ.5-ZS.5						X							_	
N	27.5-29						X								
G-PA-03	19.5-22.5									X					
n	19.5-22.5								X						
И	29-32		_				X								
G-PA-04	4-6						X	\times		X					
11	13.5-16.5									X					
11	25.5-26.4									\times			:		
11	28.5-29.4									X					
4)	35.5-38.5						X					-			
(1	30.5-40.5						X	İ							
Relinquished:		Received by)	1	Specia	Instru	ctions	/Notes						
(Signature)	- Vagai	(Signature)	نمك	-51											
Printed name:	VERDUN	Printed name	e: AN l	Level	,										
Company:	^	Company:	/									N	umber of	f Cool	ers:
MUCH	012	HI										C	ooler Ter	np(s):	
Date: 8/12/03	Time: 12:45pm	Date:	183	Time:	5								OC Seals		t?
		-0/47				L						10	ornes int	acti	

Limits of Liability: Analytical Resources, Inc. (ARI) will perform all requested services in accordance with appropriate methodology follow ARI Standard Operating Procedures and Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the invoiced amount for said services. The acceptance by the client of a proposal for services by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the client.

Please sign here if you would like these samples disposed of after expiration of standard archive times (60 days for waters 90 days for soils, sediments per contract). If you do not want these samples discarded we will begin charging you for storage after the disposal date. Samples to be discarded after expiration:

Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 Tukwila WA 98168

206-695-6200 206-695-6201 (fax)

Chain of Custody Record & Laboratory Analysis Request

Page **2** of **2**

Turn Around Requested: ______

Report to: LEQUIN	Proj Name:							Ара	ily @s F	Request	ed			Notes/Comments
Company: ANCHOR	Proj Numbe	::03Q	73/1-00	2	5	MARR CANTENTI ATTERBER LIMIT SPELIFIC GRANTY GRAIN SIZE #200								
Address:	Sampler:					7	\$. 1	#					
] ₹	306	R	4	, K			.		
Phone:	Shipping M	ethod:			7	o Be	K	1	S	1				
Fax:	AirBill:				LIE	15	3	₩ 2	4	1		-		
Sample iD	Sample Date	Sample Time	Sample Matrix	No Con- tainers	\X	A-	R	Z	K					
GPA-05 18-21	,								X					
26-28						X								
3/-33						X								
43-96						X								
0-6,5							X	X						
GPA-05 36-38										X				
28-31										×				
21-23										Y			1:	
41-43										4				
38-41										Y				
33-36										4				
GPH 04 23.5-25	\$									×				
308-33.	S									7				,
GPA 01 39-41										7				
9.5 12.5					<u> </u>					7				
28-26										4				
						,								
11														
Relinquished:	Received	> /	$\overline{}$	//	Specie	al Instru	ıctions	/Notes						
Relinquished:	Signature). 	L 1	S)	21 11 15 (1)	3000013	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•					
Printed name:	Printed nar	ne:			1									
JOHN VEROUIN	1500	IAU	166-6	L										
Сомрану; Сомрану;											Num	ber of C	coolers:	
enctor HRI											Cool	er Temp	o(s):	
												COC	Seals in	tact?
Date: / 12/03 Time: Date: Time: Time: 12:45 2/02/83 12:45												Bott	les Intar	17

Limits of Liability: Analytical Resources, Inc. (ARI) will perform all requested services in accordance with appropriate methodology follow ARI Standard Operating Procedures and Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the invoiced amount for said services. The acceptance by the client of a proposal for services by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the client.

Please sign here if you would like these samples disposed of after expiration of standard archive times (60 days for waters 90 days for soils, sediments per contract). If you do not want these samples discarded we will begin charging you for storage after the disposal date.

Samples to be discarded after expiration:

Moisture Content

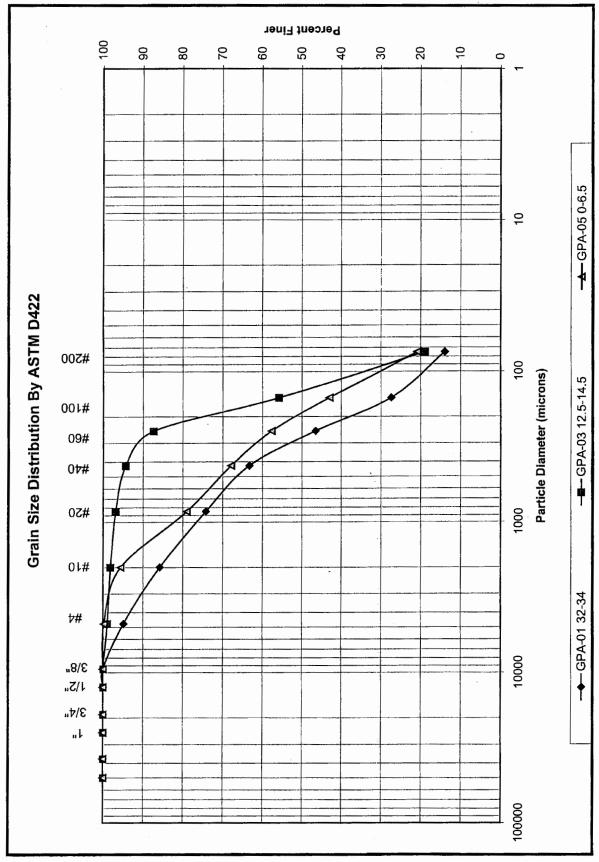
Boring Number	Depth (ft)	Moisture Content (%)				
GPA-01	20-22	43.4				
GPA-01	22-24	40.8				
GPA-01	25-27	33.9				
GPA-01	30-32	17.6				
GPA-01	32-34	13.6				
GPA-01	36-39	36.0				
GPA-01	41-44	23.3				
GPA-02	14.5-17.5	29.8				
GPA-02	22.5-25.5	22.9				
GPA-02	27.5-29	18.6				
GPA-03	19.5-22.5	21.9				
GPA-03	12.5-14.5	20.7				
GPA-03	29-32	11.2				
GPA-04	4-6	586.7				
GPA-04	13.5-15.5	21.8				
GPA-04	25.5-26.4	21.2				
GPA-04	28.5-29.4	21.1				
GPA-04	35.5-38.5	30.9				
GPA-04	38.5-40.5	30.8				
GPA-05	18-21	22.9				
GPA-05	26-28	34.6				
GPA-05	31-33	66.2				
GPA-05	43-46	32.2				
GPA-05	0-6.5	270.2				

Moisture content by ASTM D2216.

Anchor Environmental 030030-02 GP ASB

Percent Finer Than Indicated Size, By ASTM D422

#200	13.9	18.9	20.8
#100	27.4	55.8	42.9
09#	46.5	87.4	57.6
#40	63.3	94.3	8.79
#20	74.2	96.8	79.0
#10	82.8	98.2	92.6
#	94.8	98.9	96.8
3/8"	100.0	100.0	100.0
1/2"	100.0	100.0	100.0
3/4"	100.0	100.0	100.0
1	100.0	100.0	100.0
1.5"	100.0	100.0	100.0
2"	100.0	100.0	100.0
3,	100.0	100.0	100.0
Moisture Content (%)	31.3	27.7	217.7
Depth (ft)	32-34	12.5-14.5	0-6.5
Sample ID	GPA-01	GPA-03	GPA-05


Supplemental RI/FS and EIS Addendum Whatcom Waterway Site

Appendix B Page 6 of 42 March 2004 030030-02

Percent Retained in Each Size Fraction, By ASTM D422

									r
Sieve Size (microns)	>4750	>4750 4750-2000 2000-850 850-425 425-250 250-150 150-75	2000-850	850-425	425-250	250-150	150-75	<75	
GPA-01	0.0	14.2	14.2 11.6	10.9	15.8	19.1	13.5	13.9	
GPA-03	0.0	1.8	1.3	2.5	6.9	31.6	36.9	18.9	
GPA-05	0.0	4.4	16.6	11.2	10.2	14.7	22.1	20.8	,

Anchor Environmental

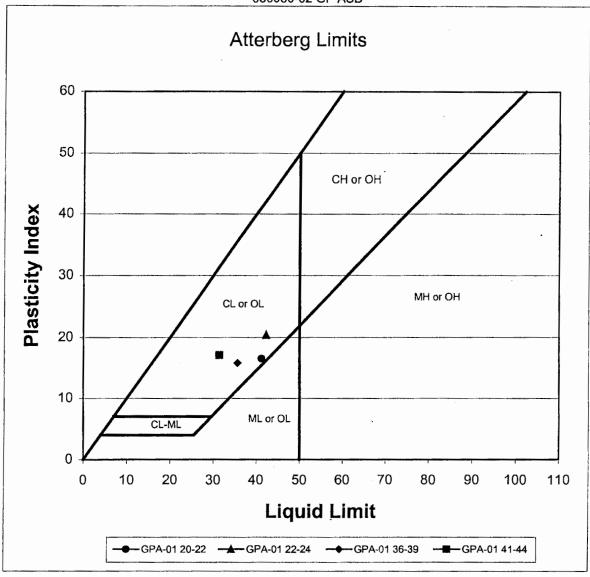
030030-02 GP ASB

Sample Identification	Moisture Content (%)	Percent Fines (-#200 Sieve)
GPA-01 25-27	33.9	95.1
GPA-01 30-32	17.6	24.2
GPA-02 14.5-17.5	29.8	76.4
GPA-03 19.5-22.5	21.9	23.5
GPA-04 4-6	586.7	8.3
GPA-04 13.5-15.5	21.8	25.6
GPA-04 25.5-26.4	21.2	10.9
GPA-04 28.5-29.4	21.1	11.0
GPA-05 18-21	22.9	18.6

FT20

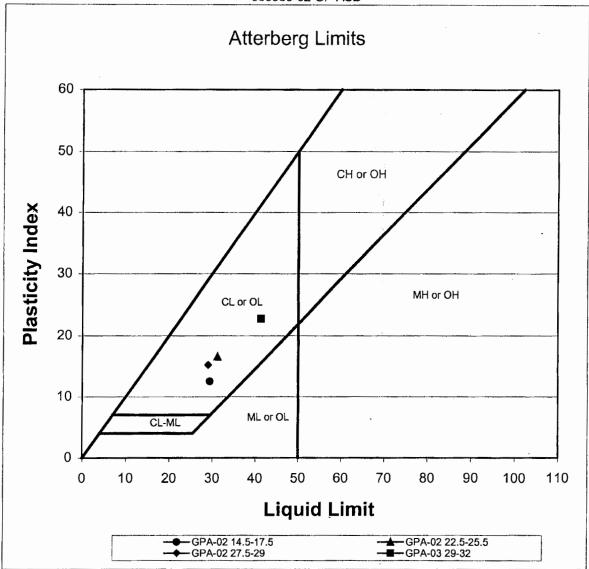
Note - Sample GPA-04 @ 4-6' baked into a large block and could not be adequately broken down. Visually, this entire sample should have passed the #200 sieve.

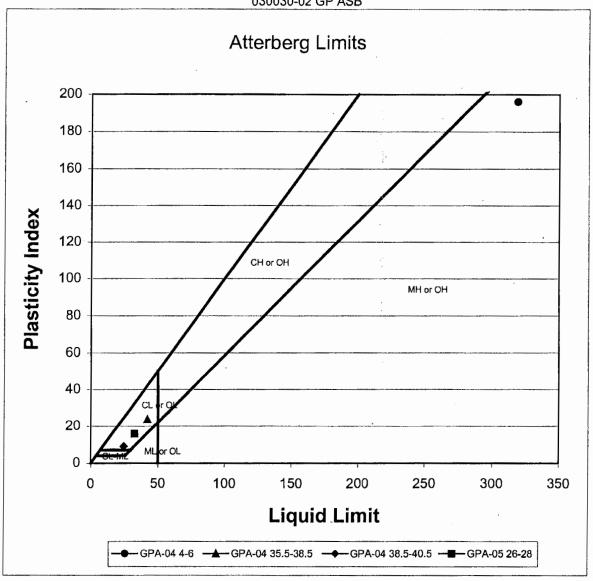
Specific Gravity of Soil Solids

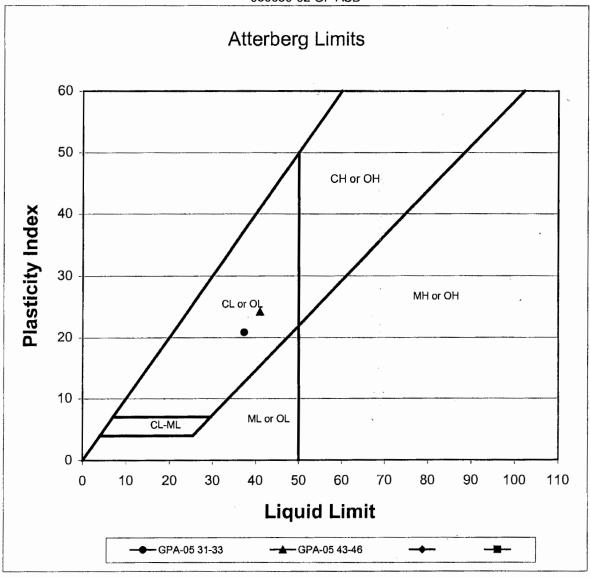

Sample Number	Specific Gravity	
GPA-04 4-6	1.148	
GPA-05 0-6.5	2.371	

Specific Gravity procedure was performed according to ASTM D-854.

FT20


:: ::


Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GPA-01 20-22	20-22	16.5	41.2	24.6	CL
GPA-01 22-24	22-24	20.4	42.2	21.8	CL
GPA-01 36-39	36-39	15.8	35.6	19.8	CL.
GPA-01 41-44	41-44	17.1	31.4	14.3	CL


Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GPA-02 14.5-17.5	14.5-17.5	12.5	29.5	16.9	CL
GPA-02 22.5-25.5	22.5-25.5	16.6	31.2	14.6	CL
GPA-02 27.5-29	27.5-29	15.2	29.0	13.8	ÇL
GPA-03 29-32	29-32	22.7	41.3	18.6	CL

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GPA-04 4-6	4.0-6.0	196.0	318.9	122.9	MH or OH
GPA-04 35.5-38.5	35.5-38.5	23.8	42.1	18.3	CL
GPA-04 38.5-40.5	38.5-40.5	8.9	24.4	15.5	CL
GPA-05 26-28	26-28	15.8	32.6	16.8	CL

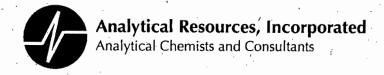
Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GPA-05 31-33	31-33	20.9	37.4	16.5	CL
GPA-05 43-46	43-46	24.2	41.0	16.8	CL

September 9, 2003

Mr. John Verduin, PE Anchor Environmental, LLC 1423 3rd Avenue, Suite 300 Seattle, WA 98101

Subject: GE ABS,

ARI Project No.: FT74


Dear Mr. Verduin;

Attached are the results of the analyses you requested on the subject project. Please call with any questions or comments you may have on the data or its presentation.

Best Regards, Analytical Resources, Incorporated

Harold Benny
Harold Benny

Geotechnical Division Manager

Client: Anchor Environmental, Inc. ARI Project No.: FT74

Client Project: GP ABS

Case Narrative

1 Four sediment core samples were received on August 19, 2003. All samples were received in good condition. The cores were extruded and logged. From this information, additional testing was specified by Anchor.

2. The samples were tested for one dimensional consolidation according to ASTM D2434. Plots of settlement versus load and void ratio versus load, and a summary table are provided. Sample 03 @ 22.5-24 began to swell when first inundated with water. Sample 04 @ 6.5-8.5 began to consolidate when the seating load was applied. When it was inundated with water, the sample began to swell, ending at about its initial height. Sample 04 @ 33.5 swelled when inundated with water.

3. A consolidated, undrained triaxial strength test was run according to ASTM D4767. A summary table and plots are provided. The sample failed with a bulge at the top (the softest part of the sample).

4. The Atterberg limits were measured according to ASTM D4318. Plots of the data are provided. Sample GPA-04-6.5-8.5 was a dark brown highly organic material with a liquid limit over 300 and a plasticity index over 200. Classification of this material as OH assumes that it is a soil. This soil may not have formed from naturally occurring processes.

5. There were no perceived anomalies to the samples or testing.

Approved by:

Title:

Geotechnical Division Manager

Date

FT74

Relog for Geotech Testing Chain of Custody Record & Laboratory Analysis Request

Page ____ of _____

Turn Around Requested: 4 wk

Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 Tukwila WA 98168 206-695-6200 206-695-6201 (fax)

Report to: John	Verduin	Proj Name:	G.P.	A31	3	Analyses Requested								Notes/Comments		
		Proj Numbe		20030			Ĭ.Ť									
Address: Sea		Sampler:				\	1 3	2	×							
						80	ر ح	3	1,1							
Phone:		Shipping Me	thod:			1	Take	Consolidation	15 A							
Fax:		AirBill:				3	#	7.	3							
Sam	ple ID	Sample Date	Sample Time	Sample Matrix	No Con- tainers	62	A	0	S							
6.PA-02	4-6.5	7/28/03	NA	50:1	4		X	X								
GPA-03 GPA-04	22.5-24	7/28/03	NA	K	4	×	X	×								
GPA-04	6.5-8.5	7/29/03	NA	1c	9	×	X	X	X							\circ
GPA-04	335-35.5	7/29/05	NA	l,	4	×	X	X								()
						-										
																ı/X
					,								Ti	\mathcal{I}		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
													$\overline{\Delta}$,		/ 0
			1.	P .	Lea			-				$\sqrt{\lambda}$	۲۷			
			(6.	10/	[-			0	1/0			- //	
		-	δ,	my	())	1	7	4	
		$\overline{\ }$	<u>, </u>	<i>\p</i> ' '	10 V				8			/		_		Ψ'
		/			10 /		•	_5	/		-/	A			(P)	
	()		0/	122		}	ᆫ	7			/-	-	\angle		\vdash	
		,	<i>S</i>	Ju.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			,		-		\nearrow	-4	2		
			-/2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>- 1</u>	Dec										
		70		XU	N .	\										
		9	X-C	0	182											
			(3	0	`											
								<u></u>								
Relinquished:		Received by	:			Specia	il Instri	uctions	/Notes	5						
(Signature)		(Signature)	HBe	427		C	ms	al P	Tri	Δ¥	if	f	055	ble	0	n 02
Printed name:		Printed nam														n W John
Company:		Company:			V	erd	win.	8	iele	3		[Numbe	er of Co	polers:	
													- 1		Temp(
Date:	Time:	Date:	,	Time:					*				Γ		eals Int	
		8/19	7/13						<u> </u>				1		s Intact	

Limits of Liability: Analytical Resources, Inc. (ARI) will perform all requested services in accordance with appropriate methodology follow ARI Standard Operating Procedures and Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the invoiced amount for said services. The acceptance by the client of a proposal for services by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the client.

Please sign here if you would like these samples disposed of after expiration of standard archive times (60 days for waters 90 days for soils, sediments per contract). If you do not want these samples discarded we will begin charging you for storage after the disposal date.

Samples to be discarded after expiration:

Core Logs

Client:	Anchor Environmental	Date: August 7, 2003
Project No	FT74	Sample Extruded by: _HB
Core No	GPA-02	Sample Logged by: HB
Sample No	NA	Type: Shelby Tube
Depth of Samp	ole4-6.5	Diameter of Sample 2.85
Sample Recov	very25"	Sample Photograph: Yes X No

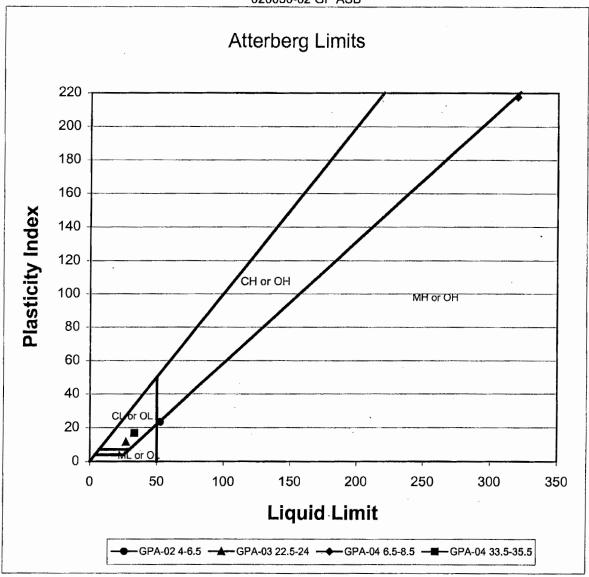
Specimen Saved	Water Content	Test Type	Depth (ft)	Sketch	Classification and Description
Jar 1	Content	Турс	4.0		Top of Recovery Wet, Soft, Dark Gray Silty Clay Possibly Slough
Jar 2			4.5		
Jar 3					↓
Jar 4			5.0		Moist, Firm, Dark Gray Clay/Silt
Jar 5					1" Black Silt Layer
Jar 6	52.0	Consol	5.5	The state of the s	1" light Brown Silt/Clay Layer 1" Black Silty Fine Sand Layer
Jar 7		Limits	-		1" Light Gray Sandy Layer
Jar 8			6.0		½ inch Gray Sandy Layer, with Shell Fragments
Jar 9					Bottom of Recovery
- - -		:	· -		. Bottom of Necovery
- - -			6.5		
- -			-		
- - -			- - -		
_					

Client:	Anchor Environmental	Date: August 19, 2003
Project No.	FT74	Sample Extruded by: HB
Core No.	GPA-03	Sample Logged by: HB
Sample No.	NA	Type: Shelby Tube
Depth of Sam	ole 22.5-24	Diameter of Sample 2.85
Sample Recov	very 24"	Sample Photograph: Yes X No

Specimen Saved	Water Content	Test Type	Depth (ft)	Sketch	Classification and Description
-		· ·	22.5		Top of Recovery Moist, Gray Fine Sand
- - - -			23.0		
	24.5		23.5		
-			24		· · · · · · · · · · · · · · · · · · ·
-	34.9	Consol Atterberg Limits	24.5		Clay, Grading to Clayey Silt
- - -			-		Bottom of Recovery
~			-		
_			-		

Client: Anchor Environmental	Date: August 19, 2003
Project No. FT74	Sample Extruded by: HB
Core No. GPA-04	Sample Logged by: HB
Sample No. NA	Type: Shelby Tube
Depth of Sample 6.5-8.5	Diameter of Sample 2.85
Sample Recovery24"	Sample Photograph: Yes X No

Specimen Saved	Water Content	Test	Depth	Sketch	Classification and Description
Saved	Content	Туре	(ft)		T (B
<u> </u>			6.5		Top of Recovery
- 1			4		Moist, Medium Soft Brown Organic Silt
<u> </u> -			_	}	
├ 1			-		
- !		_			
<u> </u>		TV = 0			
<u> </u>			7.0		
L 1					
Ļ			1		
_			1	i I	·
_	335	Consol	1		
L					
Ļ [7.5		
_	215.1	CU Triax	1		
L		&			
L		Atterberg			
		Limits	_		·
					<u> </u>
L l			8		3 Thin Sand Layers
L		PP=0.25			Moist Brown Silt
L I			4		Sand
	32.6				Brown Silty Fine Sand
_			4.		Moist Gray Sand
_			_	-	
	,		8.5		
_			1		Bottom of Recovery
_			4		
_	i		1	<u> </u>	
_			1		
_			1		
_					
_					
_			1		
_					
_					
_			,		
			4		


Client: Anchor Environmental Date: August 19, 2003 Sample Extruded by: HB Project No. FT74 Core No. GPA-04 Sample Logged by: HB Sample No. NA Type: ___ Shelby Tube Diameter of Sample ____ 33.5-35.5 Depth of Sample Sample Recovery 24" Sample Photograph: Yes X No

Specimen Saved	Water Content	Test Type	Depth (ft)	Sketch	Classification and Description
- Cavea	Contont	1,400	33.5		Top of Recovery Moist Gray Sand Grading to Silty Sand
-			-		
-			34.0		\
-			-		Moist Gray Firm Clay
-			34.5		
- - -	30.8	Consol Atterberg	-		
-		Limits TV = 2.5	35.0		
- -	26.9	PP = 0.75	35.5		•
-			-		Bottom of Recovery
- -			-		
- -			-		
-			-		
-			-		

Atterberg Limits ASTM D4318

Anchor Environmental 020030-02 GP ASB

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GPA-02 4-6.5	4-6.5	23.4	52.5	29.1	ОН
GPA-03 22.5-24	22.5-24	11.5	26.9	15.4	CL
GPA-04 6.5-8.5	6.5-8.5	217.7	319.9	102.2	OH*
GPA-04 33.5-35.5	33.5-35.5	16.8	33.3	16.5	CL

FT74

One Dimensional Consolidation

ASTM D2435 (Method "B")

Project Number:	FT74	Job Name:	GP ASB
Boring / Sample	GPA-02 @ 6'	Job Number	020030-02
Sample Initial Height	0.8830	Job Location	NA
Initial Dial Indicator	0.3930	DI after Seating load	0.391

S _o	S ₉₀	S ₁₀₀	S _f	t ₉₀	Sample	Drainage	Cv	Load	Strain
	90	0 100)[(min)	Height	Path	(ft²/day)	(tsf)	Ratio
0.3888	0.3831	0.3825	0.3818	1.50	0.8738	0.4369	0.108	0.03125	0.0127
0.3812	0.3756	0.3750	0.3735	2.00	0.8655	0.4328	0.079	0.0625	0.0221
0.3673	0.3510	0.3492	0.3460	2.00	0.8380	0.4190	0.074	0.25	0.0532
0.3438	0.3265	0.3246	0.3240	4.00	0.8160	0.4080	0.035	0.5 ·	0.0781
0.3215	0.2985	0.2959	0.2955	3.80	0.7875	0.3938	0.035	1	0.1104
0.2910	0.2575	0.2538	0.2505	3.00	0.7425	0.3713	0.039	2	0.1614
0.2480	0.2120	0.2080	0.2095	3.50	0.7015	0.3508	0.030	4	0.2078
0.2130	0.2167	0.2171	0.2178	0.75	0.7098	0.3549	0.142	1	0.1984
0.2195	0.2296	0.2307	0.2308	3.50	0.7228	0.3614	0.032	0.25	0.1837
0.2313	0.2465	0.2482	0.2472	14.00	0.7392	0.3696	0.008	0.0625	0.1651

Sample Parameters

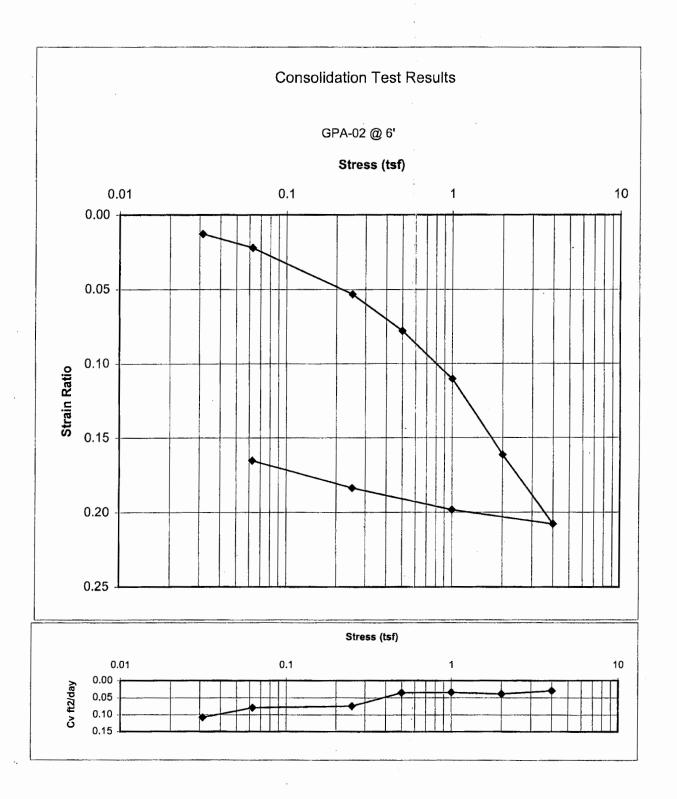
Initial Moisture Content, %	52	Final Moisture Content, %	40
Initial Dry Unit Weight, lb/ft ³	68	Final Dry Unit Weight, lb/ft3	81
Initial Void Ratio	1.43	Final Void Ratio	1.04
Initial Saturation	0.96	Final Saturation	1.03

The following equations were used to calculate the values shown in the table above:

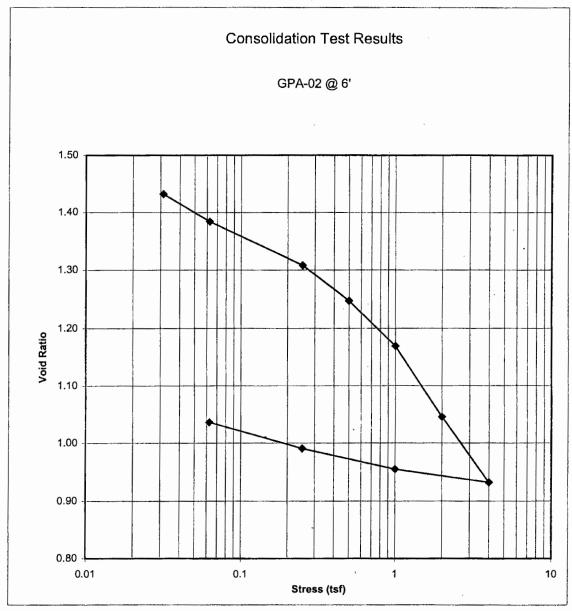
$$Cv = T H^2/t_{90}$$

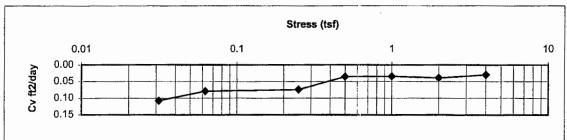
Where:

T = the time factor for 90% consolidation


 \mbox{H} = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)


 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.


- 1. The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.
- 2. The sample was organic silt.

Project Number:	FT74	Job Name:	GP ASB
Boring / Sample	GPA-03 @ 22.5-24'	Job Number	020030-02
Sample Initial Height	0.8864	Job Location	NA
Initial Dial Indicator	0.4618	DI after Seating load	0.4632

S ₀	S ₉₀	S ₁₀₀	S _f	t ₉₀ (min)	Sample Height	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.4608	0.4596	0.4595	0.4595	0.50	0.8827	0.4414	0.330	0.03125	0.0026
0.4595	0.4586	0.4585	0.4579	0.40	0.8811	0.4406	0.411	0.0625	0.0044
0.4567	0.4543	0.4540	0.4536	1.50	0.8768	0.4384	0.109	0.125	0.0093
0.4518	0.4490	0.4487	0.4480	0.50	0.8712	0.4356	0.322	0.25 ·	0.0156
0.4446	0.4410	0.4406	0.4398	0.60	0.8630	0.4315	0.263	0.5	0.0248
0.4345	0.4291	0.4285	0.4275	0.80	0.8507	0.4254	0.192	1	0.0387
0.4185	0.4088	0.4077	0.4071	1.50	0.8303	0.4152	0.097	2	0.0617
0.4037	0.3908	0.3894	0.3875	1.10	0.8107	0.4054	0.127	4	0.0838
0.3820	0.3610	0.3587	0.3575	2.00	0.7807	0.3904	0.065	8	0.1177
0.3515	0.3282	0.3256	0.3250	1.80	0.7482	0.3741	0.066	16	0.1543
0.3250	0.3212	0.3208	0.3318	0.40	0.7550	0.3775	0.302	4	0.1467
0.3360	0.3408	0.3413	0.3418	1.70	0.7650	0.3825	0.073	1	0.1354
0.3436	0.3504	0.3512	0.3520	2.20	0.7752	0.3876	0.058	0.25	0.1239
0.3528	0.3597	0.3605	0.3607	5.00	0.7839	0.3920	0.026	0.0625	0.1141

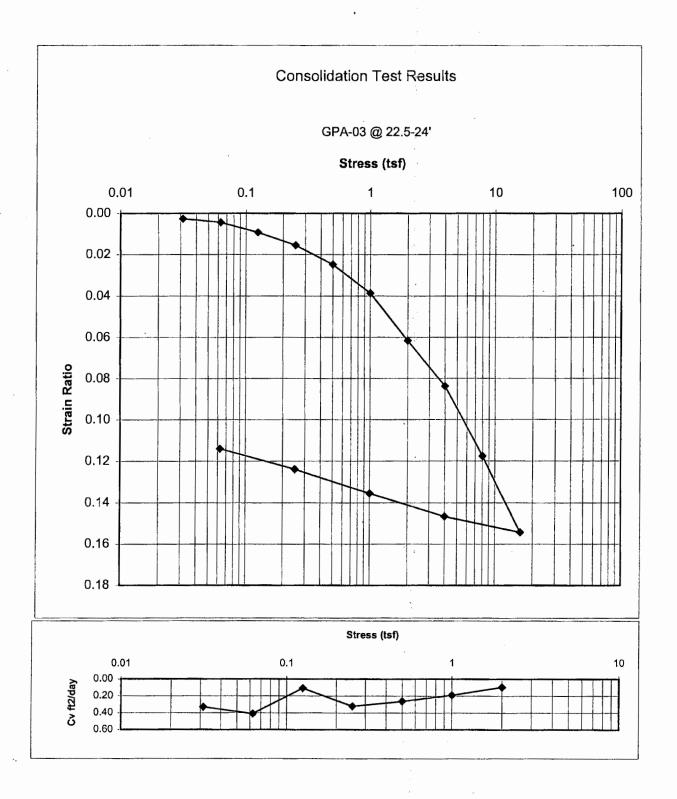
Sample Parameters

Initial Moisture Content, %	35	Final Moisture Content, %	26
Initial Dry Unit Weight, lb/ft ³	88	Final Dry Unit Weight, lb/ft ³	102
Initial Void Ratio	0.92	Final Void Ratio	0.70
Initial Saturation	0.92	Final Saturation	1.02

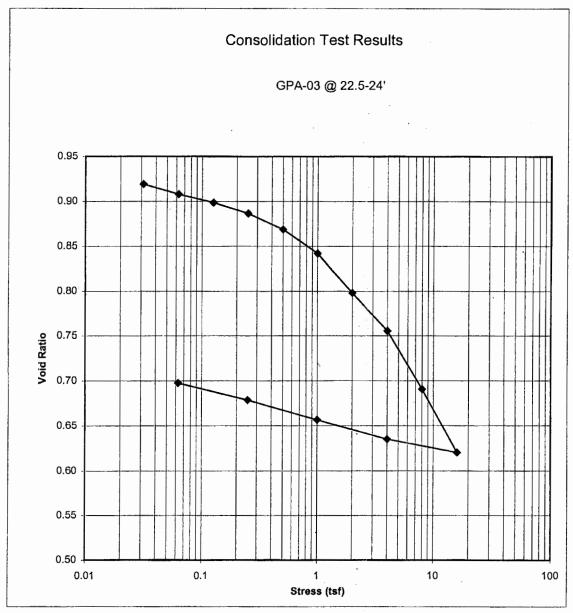
The following equations were used to calculate the values shown in the table above:

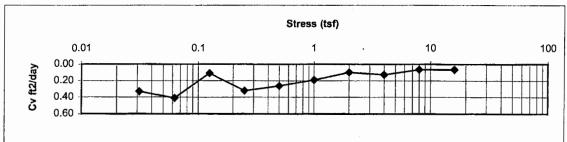
$$Cv = T H^2/t_{90}$$

Where:


T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2 $(S_0 + S_{100})/2$ (for double drainage paths)


 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.


- 1. The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.
- 2. The sample was clay.

Project Number:	FT74	Job Name:	GP ASB
Boring / Sample	GPA-04 @ 6.5-8.5	Job Number	020030-02
Sample Initial Height	0.8955	Job Location	NA
Initial Dial Indicator	0.4490	DI after Seating load	0.4595

S ₀	S ₉₀	S ₁₀₀	Sf	t ₉₀ (min)	Sample Height	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.4530	0.4450	0.4441	0.4417	0.5	0.8777	0.4389	0.327	0.03125	0.0082
0.4407	0.4343	0.4336	0.4315	0.5	0.8675	0.4338	0.319	0.0625	0.0195
0.4314	0.4210	0.4198	0.4163	1.2	0.8523	0.4262	0.128	0.125	0.0365
0.4135	0.3983	0.3966	0.3910	1.5	0.8270	0.4135	0.097	0.25 ·	0.0648
0.3860	0.2430	0.2271	0.2060	225	0.6420	0.3210	0.000	0.5	0.2714
0.2074	0.2161	0.2171	0.2180	23	0.6540	0.3270	0.004	0.125	0.2580
0.2183	0.2465	0.2496	0.2505	260	0.6865	0.3433	0.000	0.03125	0.2217
						,			

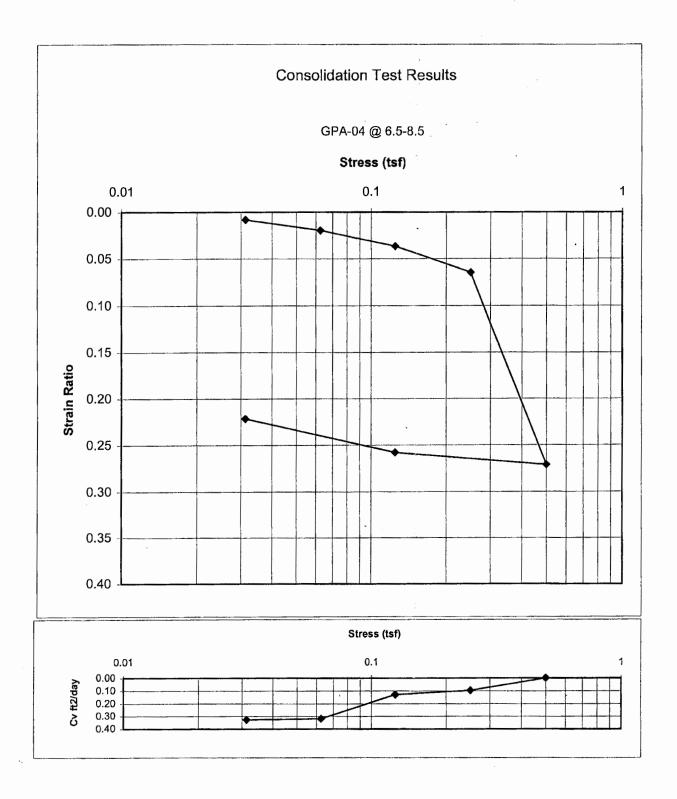
Sample Parameters

Initial Moisture Content, %	335	Final Moisture Content, %	281
Initial Dry Unit Weight, lb/ft ³	15	Final Dry Unit Weight, lb/ft ³	19
Initial Void Ratio	10.40	Final Void Ratio	7.60
, Initial Saturation	0.85	Final Saturation	0.98

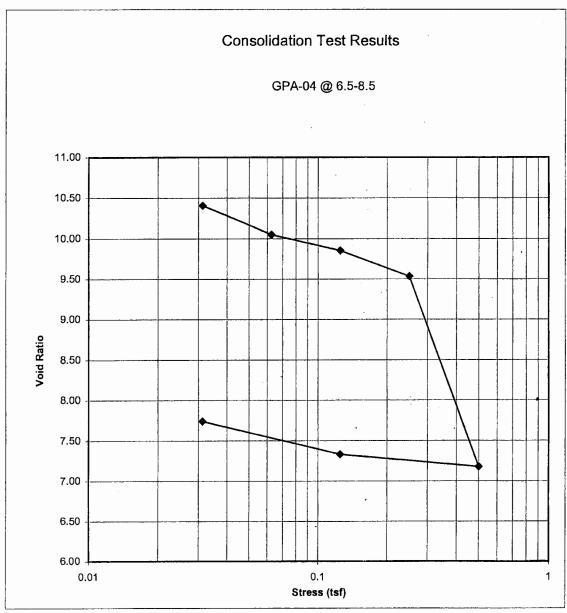
The following equations were used to calculate the values shown in the table above:

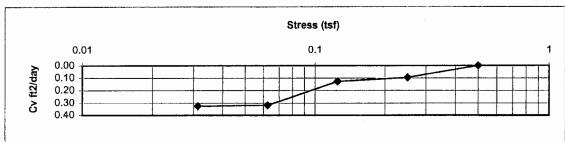
$$Cv = T H^2/t_{90}$$

Where:


T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2 $(S_0 + S_{100})/2$ (for double drainage paths)


t₉₀ = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.


- 1. The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.
- 2. The sample was an organic silt.

Project Number:	FT74	Job Name:	GP ASB
Boring / Sample	GPA-04 @ 33.5	Job Number	020030-02
Sample Initial Height	0.8867	Job Location	NA
Initial Dial Indicator	0.4627	DI after Seating load	0.4644

S ₀	S ₉₀	S ₁₀₀	S _f	t ₉₀ (min)	Sample Height	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.4639	0.4625	0.4623	0.4624	7.0	0.8847	0.4424	0.024	0.0625	0.0003
0.4626	0.4611	0.4609	0.4605	1.0	0.8828	0.4414	0.165	0.125	0.0025
0.4597	0.4574	0.4571	0.4550	1.5	0.8773	0.4387	0.109	0.25	0.0087
0.4543	0.4463	0.4454	0.4460	10.5	0.8683	0.4342	0.015	0.5 ·	0.0188
0.4443	0.4300	0.4284	0.4284	17.0	0.8507	0.4254	0.009	1	0.0387
0.4252	0.4090	0.4072	0.4050	22.0	0.8273	0.4137	0.007	2	0.0651
0.4063	0.3673	0.3630	0.3673	19.0	0.7896	0.3948	0.007	4	0.1076
0.3623	0.3370	0.3342	0.3370	13.0	0.7593	0.3797	0.009	8	0.1418
0.3330	0.3084	0.3057	0.3084	9.0	0.7307	0.3654	0.013	16	0.1740
0.3042	0.3078	0.3082	0.3092	0.7	0.7315	0.3658	0.162	4	0.1731
0.3126	0.3196	0.3204	0.3207	10.5	0.7430	0.3715	0.011	1	0.1601
0.3210	0.3325	0.3338	0.3325	32.0	0.7548	0.3774	0.004	0.25	0.1468
0.3327	0.3420	0.3430	0.3430	29.0	0.7653	0.3827	0.004	0.0625	0.1350
						٧			

Sample Parameters

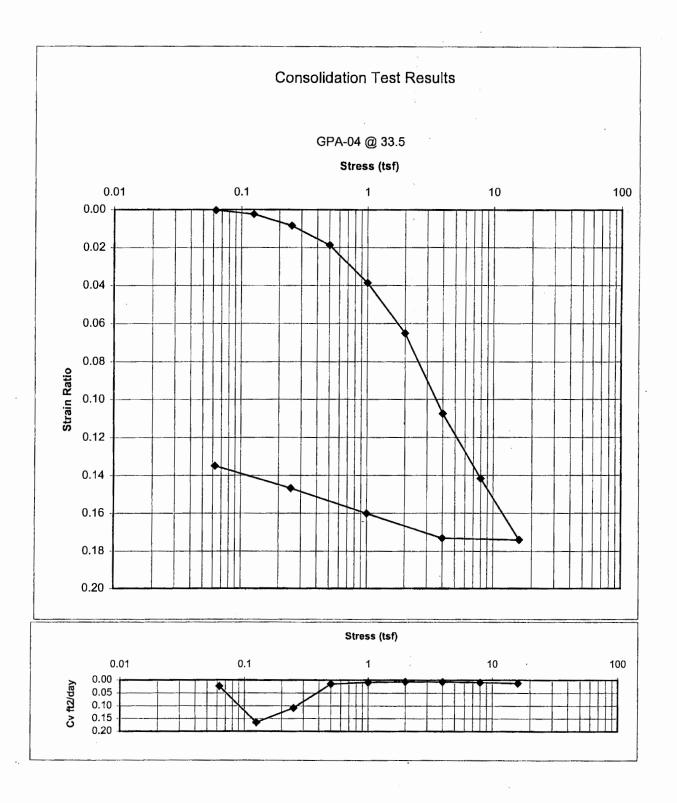
Initial Moisture Content, %	31	Final Moisture Content, %	23
Initial Dry Unit Weight, lb/ft ³	93	Final Dry Unit Weight, lb/ft ³	109
Initial Void Ratio	0.85	Final Void Ratio	0.59
Initial Saturation	0.99	Final Saturation	1.07

The following equations were used to calculate the values shown in the table above:

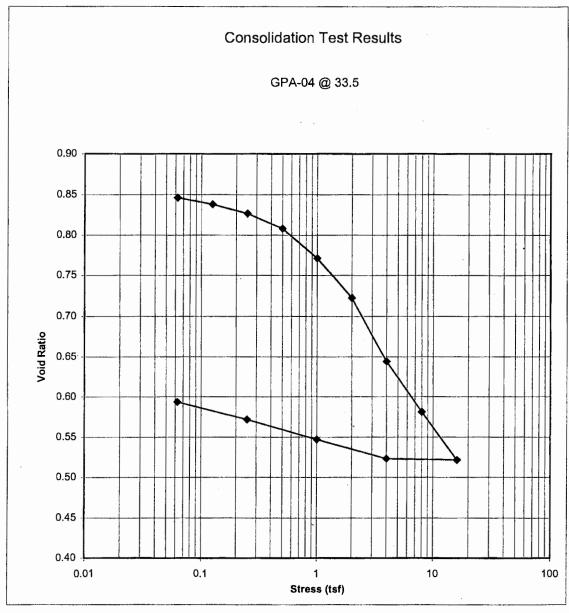
$$Cv = T H^2/t_{po}$$

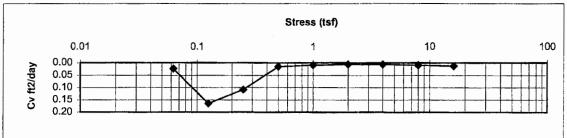
Where:

T = the time factor for 90% consolidation


H = average of initial and final heights of the sample at each load, divided by 2

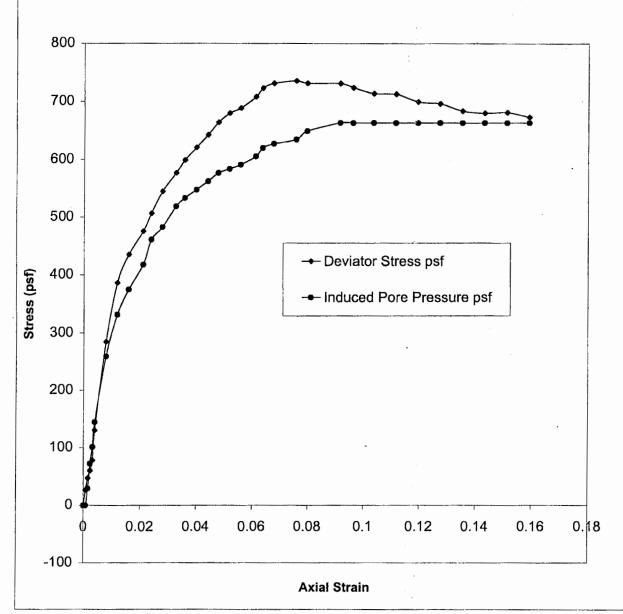
 $(S_0 + S_{100})/2$ (for double drainage paths)


 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.


- 1. The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.
- 2. The sample was clay.

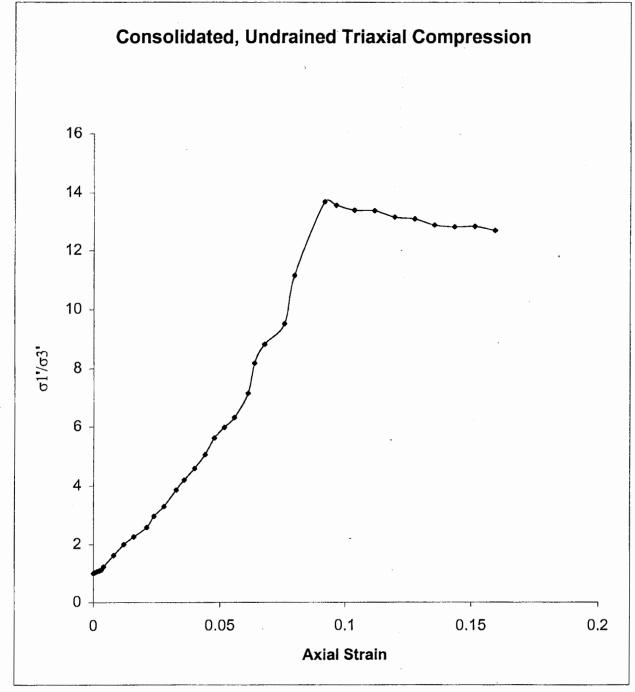
Consolidated, Undrained Triaxial Compression

ASTM D4767

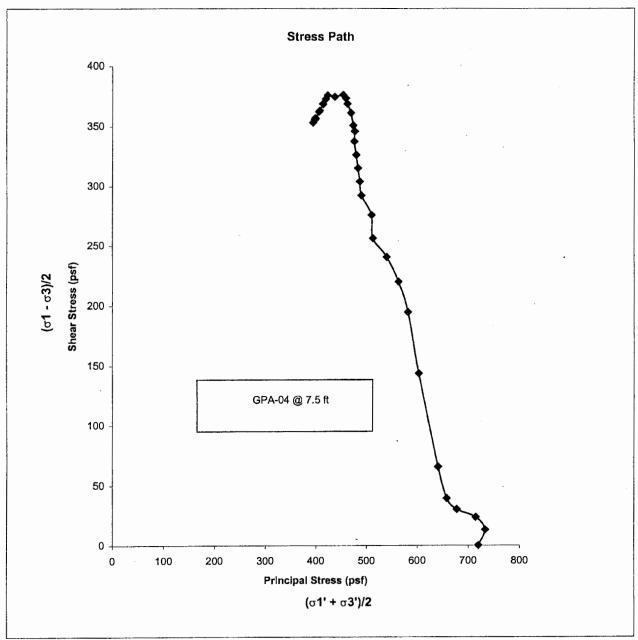


Consolidated Undrained Triaxial Compression Test

Γ		/2		Γ	Ī	Γ	Γ	-	Γ	Τ	Г	1	_			Γ	Γ		Γ	Γ	Γ	Г	Γ			_	Γ	Γ.	Ī	_	_	Г	<u> </u>		Γ	Γ-	_	Г	
		(6,1+6,3)/2		720	733	715	678	658	641	603	582	563	240	512	510	490	487	483	479	476	477	474	469	462	459	454	437	423	419	414	414	407	405	389	397	398	394		
		(01-03)/2		0	13	24	30	39	65	143	194	220	240	256	276	292	304	315	326	337	346	351	361	369	373	376	374	376	372	368	368	363	362	356	355	356	353		
		م'1/م'3		-	1.04	1.07	1.09	1.13	1.23	1.62	1.99	2.26	2.57	2.95	3.29	3.86	4.20	4.59	5.05	5.61	5.97	6.31	7.14	8.16	8.80	9.50	11.14	13.68	13.55	13.38	13.36	13.14	13.08	12.86	12.80	12.81	12.67		
		۵'1	bst	720	746	738	708	269	902	745	775	781	778	992	782	778	786	793	800	807	816	818	823	823	824	821	802	788	781	771	770	157	753	741	737	738	730		
		6'3	pst	720	720	691	648	619	976	461	389	346	302	259	238	202	187	173	158	144	137	130	115	101	94	98	72	28	58	28	28	28	28	28	88	28	28		
peonpul	Pore	Pressure	bst	0	0	53	72	101	4	259	331	374	418	461	482	518	533	547	562	976	583	290	605	619	626	634	648	662	662	662	662	662	662	662	662	662	662		
		٥٥	bsi	0.0	0.0	0.2	0.5	0.7	1.0	1.8	2.3	2.6	2.9	3.2	3.4	3.6	3.7	3.8	3.9	4.0	4.1	4.1	4.2	4.3	4.4	4.4	4.5	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6		
	Pore	Pressure	psi	15.0	15.0	15.2	15.5	15.7	16.0	16.8	17.3	17.6	17.9	18.2	18.4	18.6	18.7	18.8	18.9	19.0	19.1	19.1	19.2	19.3	19.4	19.4	19.5	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6		
	Corrected	Stress	pst	0	26	47	09	78	130	284	386	435	475	909	544	929	669	620	642	663	629	688	208	722	730	734	230	730	723	713	712	669	969	683	680	681	672		
	Deviator	Stress	psf	0	26	47	09	78	131	286	386	439	480	512	551	584	209	630	652	675	692	701	722	737	746	752	.749	751	745	736	737	726	724	713	711	713	706		
	Corrected	Arrea	ft^2	0.0381	0.0381	0.0382	0.0382	0.0382	0.0383	0.0384	0.0386	0.0387	0.0389	0.0390	0.0392	0.0394	0.0395	0.0397	0.0399	0.0400	0.0402	0.0404	0.0406	0.0407	0.0409	0.0412	0.0414	0.0419	0.0422	0.0425	0.0429	0.0433	0.0437	0.0441	0.0445	0.04489	0.045315		
		Strain Ratio		0	0.001	0.002	0.002	0.003	0.004	0.008	0.012	0.016	0.021	0.024	0.028	0.033	0.036	0.040	0.044	0.048	0.052	0.056	0.061	0.064	0.068	0.076	0.080	0.032	960.0	0.103	0.111	0.119	0.127	0.135	0.143	0.151	0.159		
		Load Cell	lbs	0	1	1.8	2.3	3	2	11	15	17	18.7	20	21.6	23	24	25	58	27	27.8	28.3	29.3	30	30.5	31	31	31.5	31.4	31.3	31.6	31.4	31.6	31.4	31.6	32	32		
-			.001	0	5	10	15	20	25	20	75	100	132	130	175	205	225	251	277	300	325	320	384	8	425	475	200	575	604	650	8	750	800	850	006	920	1000		
		FT24		GPA-04	7.5	20	15	0.002	0	0	6.309	0.0381	6.299	6.284																									
		Project Number	Units	# Sample #	Depth	Cell pressure	Back Pressure	Strain Rate	Initial Platten Height	Initial Load Cell Reading	Initial Length	Initial Area	Height after Saturation	Height after Consolidation																									



Consolidated, Undrained Triaxial Compression


Sample	Depth	Water (Content	Void	Ratio	Satur	ation	Unit V	Veight		Pressure			
Number	feet	Initial	Final	Initiai	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Cell	Back		
GPA-04	7.5	215.1	188.6	2.943	2.548	1.030	1.043	70.3	24.4	5	20	15		

Sample	Depth	Water (Content	Void	Ratio	Satur	ation .	Unit \	Veight		Pressure	
Number	Feet	Initial	Final	Initial	Final	Initlal	Final	Initial Wet	Initial Dry	Consol	Cell	Back
GPA-04	7.5	215.1	188.6	2.943	2.548	1.030	1.043	70.3	24.4	5.0	20.0	15.0

Appendix C

Chemistry Data

Sample ID: GPA-025D-A SAMPLE

Lab Sample ID: FS37A LIMS ID: 03-10320

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03
Date Analyzed: 08/20/03 14:06
Instrument/Analyst: FINN8/Van

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 5.20 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 85.3%

pH: 7.3

CAS Number	Analyte	μg/kg
108-95-2	Phenol	1,900
54 1 -73-1	1,3-Dichlorobenzene	96 U
106-46-7	1,4-Dichlorobenzene	96 U
100-51-6	Benzyl Alcohol	96 U
95-50-1	1,2-Dichlorobenzene	96 Ü
95-48-7	2-Methylphenol	270
106-44-5	4-Methylphenol	80,000 E
105-67-9	2,4-Dimethylphenol	96 U
65-85-0	Benzoic Acid	960 U
120-82-1	1,2,4-Trichlorobenzene	96 U
91-20-3	Naphthalene	8,400 E 📝
87-68 - 3	Hexachlorobutadiene	96 U
91-57-6	2-Methylnaphthalene	300
131-11-3	Dimethylphthalate	96 U
208-96-8	Acenaphthylene	860
33-32-9	Acenaphthene	350
34-66-2	Diethylphthalate	96 U
36-73-7	Fluorene	130
36-30-6	N-Nitrosodiphenylamine	96 U
L18-74-1	Hexachlorobenzene	96 Ŭ
37-86-5	Pentachlorophenol	480 U
35-01-8	Phenanthrene	1,500
20-12-7	Anthracene	130
34-74-2	Di-n-Butylphthalate	96 U
06-44-0	Fluoranthene	920
29-00-0	Pyrene	700
35-68-7	Butylbenzylphthalate	96 U
6-55-3	Benzo (a) anthracene	96 U
17-81-7	bis(2-Ethylhexyl)phthalate	1,000 B
18-01-9	Chrysene	96 U
17-84-0	Di-n-Octyl phthalate	96 U
05-99-2	Benzo(b) fluoranthene	96 U
07-08-9	Benzo(k) fluoranthene	96 U
0-32-8	Benzo (a) pyrene	96 U
93-39-5	Indeno(1,2,3-cd)pyrene	96 U
3-70-3	Dibenz (a, h) anthracene	96 U
91-24-2	Benzo(g,h,i)perylene	96 Ŭ

Semivolatile Surrogate Recovery

61.2% 2-Fluorobiphenyl 80.4% d5-Nitrobenzene 86.0% d4-1,2-Dichlorobenzene 55.2% d14-p-Terphenyl 82.4% 2-Fluorophenol 86.4% d5-Phenol 2,4,6-Tribromophenol 87.7% d4-2-Chlorophenol 73.3%

PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

VALIDATED

Lab Sample ID: FS37A LIMS ID: 03-10320 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 15:57 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-025D-A DILUTION

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 5.20 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 30.0
Percent Moisture: 85.3%
pH: 7.3

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	2,900 U R
541-73-1	1,3-Dichlorobenzene	2,900 U
106-46-7	1,4-Dichlorobenzene	2,900 U
100-51-6	Benzyl Alcohol	2,900 U
95-50-1	1,2-Dichlorobenzene	2,900 U
95-48-7	2-Methylphenol	2,900 U 🗸
106-44-5	4-Methylphenol	170,000
105-67-9	2,4-Dimethylphenol	2,900 U R
65-85-0	Benzoic Acid	
120-82-1	1,2,4-Trichlorobenzene	29,000 U 2,900 U
91-20-3	Naphthalene	15,000
87-68-3	Hexachlorobutadiene	2,900 U R
91-57-6	2-Methylnaphthalene	2,900 U
131-11-3	Dimethylphthalate	2,900 U
208-96-8	Acenaphthylene	2,900 U
83-32-9	Acenaphthene	2,900 U
84-66-2	Diethylphthalate	2,900 U
86-73-7	Fluorene	2,900 U
86-30-6	N-Nitrosodiphenylamine	2,900 U
118-74-1	Hexachlorobenzene	2,900 U
87-86-5	Pentachlorophenol	14,000 U
85-01-8	Phenanthrene .	2,900 U
120-12-7	Anthracene	2,900 U
84-74-2	Di-n-Butylphthalate	2,900 U
206-44-0	Fluoranthene	2,900 U
129-00-0	Pyrene	2,900 U
85-68-7	Butylbenzylphthalate	2,900 U
56-55-3	Benzo(a)anthracene	2,900 U
117-81-7	bis(2-Ethylhexyl)phthalate	2,900 U
218-01-9	Chrysene	2,900 U
117-84-0	Di-n-Octyl phthalate	2,900 U
205-99-2	Benzo(b)fluoranthene	2,900 U
207-08-9	Benzo(k)fluoranthene	2,900 U
50-32-8	Benzo(a)pyrene	2,900 U
193-39-5	Indeno(1,2,3-cd)pyrene	2,900 U
53-70-3	Dibenz(a,h)anthracene	2,900 U
191-24-2	Benzo(g,h,i)perylene	2,900 U V

Semivolatile Surrogate Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophenol	D	d4-2-Chlorophenol	D

VALIDATED
PSEP LEVEL 4 (Full)

FO

Quality by Design
October 8, 2003

Sample ID: GPA-025D-B SAMPLE

Lab Sample ID: FS37B LIMS ID: 03-10321

Matrix: Sediment

Data Release Authorized: Reported: 08/27/03

Date Extracted: 08/07/03 Date Analyzed: 08/20/03 17:18 Instrument/Analyst: FINN8/LJR

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 0.48 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 77.2%

pH: 7.5

CAS Number	Analyte	μg/kg
108-95-2	Phenol	1,200
541-73-1	1,3-Dichlorobenzene	1,000 U
106-46-7	1,4-Dichlorobenzene	1,000 U
100-51-6	Benzyl Alcohol	1,000 U
95-50-1	1,2-Dichlorobenzene	1,000 U
95-48-7	2-Methylphenol	1,000 U
106-44-5		47,000
105-67-9	2,4-Dimethylphenol	1,000 U
65-85-0	Benzoic Acid	10,000 U
120-82-1	1,2,4-Trichlorobenzene	1,000 U
91-20-3	Naphthalene	34,000
87-68-3	Hexachlorobutadiene	1,000 U
91-57-6	2-Methylnaphthalene	1,800
131-11-3	Dimethylphthalate	1,000 U
208-96-8	Acenaphthylene	5,900
83-32-9	Acenaphthene	2,200
84-66-2	Diethylphthalate	1,000 U
8 6-73- 7	Fluorene	1,200
86 - 30-6	N-Nitrosodiphenylamine	1,0 0 0 U
118-74-1	Hexachlorobenzene	1,000 U
87-86-5	Pentachlorophenol	5,2 0 0 U
85-01-8	Phenanthrene .	30,000
120-12-7	Anthracene	3,500
84-74-2	Di-n-Butylphthalate	1,00 0 U
206-44-0	Fluoranthene	32,000
129-00-0	Pyrene	32,000
35-68 -7	Butylbenzylphthalate	1,000 U
6-55-3	Benzo(a) anthracene	2,600
L17-81-7	bis(2-Ethylhexyl)phthalate	1,800 B
218-01-9	Chrysene	4,700
117-84-0	Di-n-Octyl phthalate	1,000 U
205-99-2	Benzo(b) fluoranthene	3,800
107-08-9	Benzo(k) fluoranthene	5,300
0-32-8	Benzo(a)pyrene	4,200
93-39-5	Indeno(1,2,3-cd)pyrene	NV
3-70-3	Dibenz (a, h) anthracene	NV
91-24-2	Benzo(g,h,i)perylene	NV .

Semivolatile Surrogate Recovery

d5-Nitrobenzene 72.0% 2-Fluorobiphenyl 68.0% 73.6% d14-p-Terphenyl d4-1,2-Dichlorobenzene 58.8% 67.2% d5-Phenol 2-Fluorophenol 73.9% 75.2% 2,4,6-Tribromophenol d4-2-Chlorophenol 67.5%

VALIDATED **PSEP LEVEL 4 (Full)**

> Quality by Design October 8, 2003

Sample ID: GPA-025D-B REANALYSIS

Lab Sample ID: FS37B

LIMS ID: 03-10321 Matrix: Sediment

Data Release Authorized Reported: 08/27/03

Date Extracted: 08/07/03 Date Analyzed: 08/27/03 14:12 Instrument/Analyst: NT6/LJR

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 0.48 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 77.2%
pH: 7.5

CAS Number	Analyte	μg/kg
108-95-2	Phenol	1,300
541-73-1	1,3-Dichlorobenzene	1,000 U
106-46-7	1,4-Dichlorobenzene	1,000 U
100-51-6	Benzyl Alcohol	1,000 U
95-50-1	1,2-Dichlorobenzene	1,000 U
95-48-7	2-Methylphenol	1,000 U
106-44-5	4-Methylphenol	56,000
105-67-9	2,4-Dimethylphenol	1,000 U
55-85-0	Benzoic Acid	10,000 U
120-82-1	1,2,4-Trichlorobenzene	1,000 U
91-20-3	Naphthalene	40,000
37-68-3	Hexachlorobutadiene	1,000 U
91-57-6	2-Methylnaphthalene	2,300
131-11-3	Dimethylphthalate	1,000 U
208-96-8	Acenaphthylene	6,500
33-32-9	Acenaphthene	2,500
34-66-2	Diethylphthalate	1,000 U
36-73-7	Fluorene	1,700
36-30-6	N-Nitrosodiphenylamine	1,000 U
18-74-1	Hexachlorobenzene	1,000 ប
37-86-5	Pentachlorophenol	5,200 U
35-01-8	Phenanthrene	32,000
20-12-7	Anthracene	3,200
34-74-2	Di-n-Butylphthalate	1,600 Y
06-44-0	Fluoranthene	37,000
.29-00-0	Pyrene	35,000
5-68 -7	Butylbenzylphthalate	1,300 Y
6-55-3	Benzo(a) anthracene	3,700
.17-8 1-7	bis(2-Ethylhexyl)phthalate	2,100 B
18-01-9	Chrysene	5,000
17-84-0	Di-n-Octyl phthalate	1,000 U
05-99-2	Benzo(b) fluoranthene	5,400
07-08-9	Benzo(k) fluoranthene	6,200
0-32-8	Benzo(a)pyrene	4,400
93-39-5	Indeno(1,2,3-cd)pyrene	4,900
3-70-3	Dibenz(a,h)anthracene	1,600 M
91-24-2	Benzo(g,h,i)perylene	4,900

Semivolatile Surrogate Recovery

79.2% 82.8% 2-Fluorobiphenyl d5-Nitrobenzene d4-1,2-Dichlorobenzene 110% 61.6% d14-p-Terphenyl 79.2% 2-Fluorophenol 76.3% d5-Phenol 83.5% d4-2-Chlorophenol 74.9% 2,4,6-Tribromophenol

PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

VALIDATED

Sample ID: GPA-025D-D SAMPLE

μg/kg

19 U

19 U

19 U

19 U

19 U

Lab Sample ID: FS37C LIMS ID: 03-10322 QC Report No: FS37-Anchor Environmental

Matrix: Sediment

Project: Georgia Pacific ASB 020030

Data Release Authorized: Reported: 08/26/03

Date Sampled: 07/28/03 Date Received: 07/31/03

Date Extracted: 08/07/03
Date Apalyzed: 08/18/03 19:

Sample Amount: 26.1 g-dry-wt

Date Analyzed: 08/18/03 19:33 Instrument/Analyst: FINN8/PK

CAS Number

207-08-9

193-39-5

50-32-8

53-70-3

191-24-2

Analyte

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 22.5%
pH: 7.8

GPC Cleanup: NO

108-95-2 Phenol 19 U 1,3-Dichlorobenzene 541-73-1 19 U 106-46-7 1,4-Dichlorobenzene 19 U 100-51-6 Benzyl Alcohol 19 U 95-50-1 1,2-Dichlorobenzene 19 U 95-48-7 2-Methylphenol 19 IJ 106-44-5 4-Methylphenol 140 105-67-9 2,4-Dimethylphenol 19 U 65-85-0 Benzoic Acid 190 U 120-82-1 1,2,4-Trichlorobenzene 19 U 100 91-20-3 Naphthalene 87-68-3 Hexachlorobutadiene 19 U 91-57-6 2-Methylnaphthalene 19 U 131-11-3 Dimethylphthalate 19 U 208-96-8 Acenaphthylene 19 U 83-32-9 Acenaphthene 19 U 84-66-2 Diethylphthalate 31 86-73-7 Fluorene 19 U N-Nitrosodiphenylamine 86-30-6 19 U 118-74-1 Hexachlorobenzene 19 U 87-86-5 Pentachlorophenol 96 U Phenanthrene 85-01-8 93 120-12-7 Anthracene 19 U Di-n-Butylphthalate 84-74-2 19 U 206-44-0 Fluoranthene 94 129-00-0 86 Pyrene 85-68-7 Butylbenzylphthalate 21 56-55-3 Benzo(a) anthracene 19 U 240 U 117-81-7 bis(2-Ethylhexyl)phthalate -240-218-01-9 Chrysene 19 U Di-n-Octyl phthalate 117-84-0 19 U 205-99-2 Benzo(b) fluoranthene 19 U

Semivolatile Surrogate Recovery

Benzo(k) fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz (a, h) anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

VALIDATED
PSEP LEVEL 4 (Full)

d5-Nitrobenzene	64.0%	2-Fluorobiphenyl	73.0%
d14-p-Terphenyl	74.8%	d4-1,2-Dichlorobenzene	59.8%
d5-Phenol	71.9%	2-Fluorophenol	78.3%
2,4,6-Tribromophenol	113%	d4-2-Chlorophenol	71.4%

Quality by Design October 8, 2003

Sample ID: GPA-035D-A SAMPLE

Lab Sample ID: FS37D

LIMS ID: 03-10323 Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 12:33 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

oject: Georgia Pacific . 020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.09 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 88.8% pH: 6.9

CAS Number	Analyte	$\mu { t g}/{ t k}{ t g}$
108-95-2	Phenol	1,000
541-73-1	1,3-Dichlorobenzene	98 U
106-46-7	1,4-Dichlorobenzene	98 U
100-51-6	Benzyl Alcohol	98 U
95-50-1	1,2-Dichlorobenzene	98 U
95-48-7	2-Methylphenol	98 U
106-44-5	4-Methylphenol	53,000 E
105-67-9	2,4-Dimethylphenol	98 U
65-85-0	Benzoic Acid	98 0 U
120-82-1	1,2,4-Trichlorobenzene	98 U
91-20-3	Naphthalene	5,700
87-68-3	Hexachlorobutadiene	98 U
91-57-6	2-Methylnaphthalene	270
131-11-3	Dimethylphthalate	98 U
208-96-8	Acenaphthylene	500
83-32-9	Acenaphthene	240
84-66-2	Diethylphthalate	98 U
86-73-7	Fluorene	200
86-30-6	N-Nitrosodiphenylamine	98 U
118-74-1	Hexachlorobenzene	98 U
87-86-5	Pentachlorophenol	49 0 U
85-01-8	Phenanthrene	1,500
120-12-7	Anthracene	170
84-74-2	Di-n-Butylphthalate	98 U
206-44-0	Fluoranthene	960
129-00-0	Pyrene	700
85-68-7	Butylbenzylphthalate	98 U
56-55-3	Benzo(a) anthracene	98 U
11 7-81- 7	bis(2-Ethylhexyl)phthalate	1,400 B
218-01-9	Chrysene	98 U
117-84-0	Di-n-Octyl phthalate	98 U
205-99-2	Benzo(b)fluoranthene	98 U
207-08-9	Benzo(k)fluoranthene	98 U
50-32-8	Benzo(a)pyrene	98 U
193-39-5	Indeno(1,2,3-cd)pyrene	98 U
53-70-3	Dibenz(a,h)anthracene	98 U
191-24-2	Benzo(g,h,i)perylene	98 U

Semivolatile Surrogate Recovery

2-Fluorobiphenyl d5-Nitrobenzene 85.2% 78.8% d14-p-Terphenyl 75.6% d4-1,2-Dichlorobenzene 66.4% 93.3% 2-Fluorophenol 55.7% d5-Phenol 79.2% d4-2-Chlorophenol 74.4% 2,4,6-Tribromophenol

Quality by Design

PSEP LEVEL 4 (Full)

October 8, 2003

VALIDATED

Sample ID: GPA-035D-A DILUTION

Lab Sample ID: FS37D LIMS ID: 03-10323

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 16:39 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.09 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 88.8% pH: 6.9

CAS Number	Analyte	μg/kg
108-95-2	Phenol	2,000 U R
541-73-1	1,3-Dichlorobenzene	2,000 U
106-46-7	1,4-Dichlorobenzene	· 2,000 U
100-51-6	Benzyl Alcohol	2,000 U
95-50-1	1,2-Dichlorobenzene	2,000 U
95-48-7	2-Methylphenol	2,000 U V
106-44-5	4-Methylphenol	98,000
105-67-9	2,4-Dimethylphenol	2,000 U 🤼
65-85-0	Benzoic Acid	20,000 U 1
120-82-1	1,2,4-Trichlorobenzene	2,000 U
91-20-3	Naphthalene	7,600
87-68-3	Hexachlorobutadiene	2,000 U
91-57-6	2-Methylnaphthalene	2,000 U
131-11-3	Dimethylphthalate	2,000 U
208-96-8	Acenaphthylene	2,000 U
83-32-9	Acenaphthene	2,000 U
84-66-2	Diethylphthalate	2,000 U
86-73-7	Fluorene	2,000 U
86-30-6	N-Nitrosodiphenylamine	2,000 U
118-74-1	Hexachlorobenzene	2,000 U
87-86-5	Pentachlorophenol	9,800 U
85-01-8	Phenanthrene	2,000 U
120-12-7	Anthracene	2,000 U
84-74-2	Di-n-Butylphthalate	2,000 U
206-44-0	Fluoranthene	2,000 U
129-00-0	Pyrene	2,000 Ū
85-68-7	Butylbenzylphthalate	2,000 U
56-55-3	Benzo(a) anthracene	2,000 U
117-81-7	bis(2-Ethylhexyl)phthalate	2,000 U
218-01-9	Chrysene	2,000 U
117-84-0	Di-n-Octyl phthalate	2,000 U
205-99-2	Benzo(b)fluoranthene	2,000 U
207-08-9	Benzo(k)fluoranthene	2,000 U
50-32-8	Benzo(a)pyrene	2,000 U
193-39-5	Indeno(1,2,3-cd)pyrene	2,000 U
53-70-3	Dibenz(a,h)anthracene	2,000 U
191-24-2	Benzo(g,h,i)perylene	2,000 U 🎶

Semivolatile Surrogate Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophenol	D	d4-2-Chlorophenol	D
_ / _ / 0			

VALIDATED PSEP LEVEL 4 (Full) JA Quality by Design October 8, 2003

000026

Page 1 of 1

Lab Sample ID: FS37E LIMS ID: 03-10324 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 13:17 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-035D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 87.4%

pH: 7.1

CAS Number	Analyte	μg/k	g
108-95-2	Phenol	520	
541-73-1	1,3-Dichlorobenzene	99 1	U
106-46-7	1,4-Dichlorobenzene	99 1	U
100-51-6	Benzyl Alcohol	99 1	U
95-50-1	1,2-Dichlorobenzene	99 1	ũ
95-48-7	2-Methylphenol	99 1	IJ
106-44-5	4-Methylphenol	32,000 1	e <i>R</i>
105-67-9	2,4-Dimethylphenol	99 T	J
65-85-0	Benzoic Acid	990 t	J
120-82-1	1,2,4-Trichlorobenzene	99 T	J
91-20-3	Naphthalene	6,600	
87-68-3	Hexachlorobutadiene	99 T	J
91-57-6	2-Methylnaphthalene	390	
131-11-3	Dimethylphthalate	99 t	J
208-96-8	Acenaphthylene	630	
83-32-9	Acenaphthene	480	
84-66-2	Diethylphthalate	99 t	J
86-73-7	Fluorene	320	
86-30-6	N-Nitrosodiphenylamine	99 T	J
118-74-1	Hexachlorobenzene	99 T	J
87-86-5	Pentachlorophenol	490 U	J
85-01-8	Phenanthrene	2,800	
120-12-7	Anthracene	300	
84-74-2	Di-n-Butylphthalate	99 U	J
206-44-0	Fluoranthene	1,900	
129-00-0	Pyrene	1,700	,
85-68-7	Butylbenzylphthalate	99 U	Г
56-55-3	Benzo(a) anthracene	99 U	ſ
117-81-7	bis(2-Ethylhexyl)phthalate	3,600 B	
218-01-9	Chrysene	99 U	
117-84-0	Di-n-Octyl phthalate	99 U	r
205-99-2	Benzo(b) fluoranthene	240	
207-08-9	Benzo(k) fluoranthene	220	
50-32-8	Benzo(a)pyrene	200 M	
193-39-5	Indeno(1,2,3-cd)pyrene	99 U	
53-70-3	Dibenz(a,h)anthracene	99 U	
191-24-2	Benzo(g,h,i)perylene	400 Y	
	Comircolatile Currecate Reservery		

Semivolatile Surrogate Recovery

76.8% d5-Nitrobenzene 2-Fluorobiphenyl 82.0% 98.4% d4-1,2-Dichlorobenzene d14-p-Terphenyl 66.0% 89.1% d5-Phenol 2-Fluorophenol 72.0% 72.5% 2,4,6-Tribromophenol d4-2-Chlorophenol 78.4%

PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

VALIDATED

Sample ID: GPA-035D-B DILUTION

Lab Sample ID: FS37E

LIMS ID: 03-10324 Matrix: Sediment

Data Release Authorized

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/22/03 17:27 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 87.4% pH: 7.1

ua/ka

CAS Number	Analyte	$\mu g/kg$	
108-95-2	Phenol	2,000 U	R
541-73-1	1,3-Dichlorobenzene	2,000 U	1
106-46-7	1,4-Dichlorobenzene	2,000 U	1
100-51-6	Benzyl Alcohol	2,000 U	
95-50-1	1,2-Dichlorobenzene	2,000 U	
95-48-7	2-Methylphenol	2,000 U U	
106-44-5	4-Methylphenol	48,000	_
105-67-9	2,4-Dimethylphenol	2,000 U K	
65-85-0	Benzoic Acid	20,000 U	
120-82-1	1,2,4-Trichlorobenzene	2,000 U	
91-20-3	Naphthalene	9,800	
87-68-3	Hexachlorobutadiene	2,000 U	
91-57-6	2-Methylnaphthalene	2,000 U	
131-11-3	Dimethylphthalate	2,000 U	
208-96-8	Acenaphthylene	2,000 U	
83-32-9	Acenaphthene	2,000 U	
84-66-2	Diethylphthalate	2,000 U	
86-73-7	Fluorene	2,000 U	
86-30-6	N-Nitrosodiphenylamine	2,000 U	
118-74-1	Hexachlorobenzene	2,000 U	
87-86-5	Pentachlorophenol	9,900 U	
85-01-8	Phenanthrene	3,100	
120- 1 2-7	Anthracene	2,000 U	
84-74-2	Di-n-Butylphthalate	2,000 U	
206-44-0	Fluoranthene	2,000	
129-00-0	Pyrene	2,000 U	
85-68-7	Butylbenzylphthalate	2,000 U	
56-55-3	Benzo(a)anthracene	2,000 U	
117-81-7	bis(2-Ethylhexyl)phthalate	3,100 B	
218-01-9	Chrysene	2,000 U	
117-84-0	Di-n-Octyl phthalate	2,000 U	
205-99-2	Benzo(b)fluoranthene	2,000 U	
207-08-9	Benzo(k)fluoranthene	2,000 U	
50-32-8	Benzo(a)pyrene	2,000 U	
193-39-5	Indeno(1,2,3-cd)pyrene	2,000 U	
53-70-3	Dibenz(a,h)anthracene	2,000 U	
191-24-2	Benzo(g,h,i)perylene	2,000 U	,

Semivolatile Surrogate Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophenol	D	d4-2-Chlorophenol	D

VALIDATED PSEP LEVEL 4 (Full) Quality by Design October 8, 2003

Lab Sample ID: FS37F LIMS ID: 03-10325

Matrix: Sediment

Data Release Authorized:

191-24-2

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/18/03 21:56 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-035D-C SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 26.0 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 29.5%
pH: 7.6

CAS Number Analyte μg/kg 108-95-2 Phenol 36 541-73-1 1,3-Dichlorobenzene 19 U 106-46-7 1,4-Dichlorobenzene 19 U 100-51-6 Benzyl Alcohol 19 U 95-50-1 1,2-Dichlorobenzene 19 U 95-48-7 2-Methylphenol 19 U 106-44-5 4-Methylphenol 1,100 105-67-9 2,4-Dimethylphenol 19 U 65-85-0 Benzoic Acid 190 U 120-82-1 1,2,4-Trichlorobenzene 19 U 91-20-3 Naphthalene 610 87-68-3 Hexachlorobutadiene 19 U 91-57-6 2-Methylnaphthalene 45 131-11-3 Dimethylphthalate 19 U 208-96-8 Acenaphthylene 82 83-32-9 Acenaphthene 45 84-66-2 Diethylphthalate 50 86-73-7 Fluorene 41 86-30-6 N-Nitrosodiphenylamine 19 U 118-74-1 Hexachlorobenzene 19 U 87-86-5 Pentachlorophenol 96 U 85-01-8 Phenanthrene 580 120-12-7 Anthracene 67 84-74-2 Di-n-Butylphthalate 19 U 206-44-0 Fluoranthene 610 129-00-0 Pyrene 490 85-68-7 Butylbenzylphthalate 19 U 56-55-3 Benzo (a) anthracene 54 M 117-81-7 bis (2-Ethylhexyl) phthalate -160 M 160 U 218-01-9 Chrysene 99 M 117-84-0 Di-n-Octyl phthalate .19 U 205-99-2 Benzo (b) fluoranthene 110 M 207-08-9 Benzo(k) fluoranthene 94 M 50-32-8 Benzo(a)pyrene 98 M 193-39-5 Indeno (1, 2, 3-cd) pyrene 67 M 53-70-3 Dibenz(a,h)anthracene 19 U

Semivolatile Surrogate Recovery

Benzo(g,h,i)perylene

d5-Nitrobenzene 69.6% 2-Fluorobiphenyl 74.4% d14-p-Terphenyl 77.1% d4-1,2-Dichlorobenzene 64.2% 74.2% d5-Phenol 2-Fluorophenol 72.4% 2,4,6-Tribromophenol 108% d4-2-Chlorophenol 78.0% Quality by Design October 8, 2003

VALIDATED PSEP LEVEL 4 (Full)

51 Y

000029

Sample ID: GPA-035D-D SAMPLE

Lab Sample ID: FS37G

LIMS ID: 03-10326 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/19/03 13:24 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 18.2%

pH: 7.7

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	20 U
541-73-1	1,3-Dichlorobenzene	20 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	20 Ŭ
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	20 U
106-44-5	4-Methylphenol	70
105-67-9	2,4-Dimethylphenol	20 Ŭ
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	45
87-68-3	Hexachlorobutadiene	20 U
91-57-6	2-Methylnaphthalene	20 U
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	20 U
83-32-9	Acenaphthene	20 Ŭ
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	20 U
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	. 20 U
87-86-5	Pentachlorophenol	98 U
85-01-8	Phenanthrene	60
120-12-7	Anthracene	20 U
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	69
129-00-0	Pyrene	54
85-68-7	Butylbenzylphthalate	20 U
56-55-3	Benzo(a) anthracene	20 U .
117-81-7	bis(2-Ethylhexyl)phthalate	-74 744
218-01-9	Chrysene	20 U
117-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b)fluoranthene	20 U
207-08-9	Benzo(k) fluoranthene	20 U
50-32-8	Benzo(a)pyrene	20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20 U
53-70-3	Dibenz(a,h)anthracene	20 U
191-24-2	Benzo(g,h,i)perylene	23

Semivolatile Surrogate Recovery

PSEP LEVEL 4 (Full)

Quality by Design

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	64.3%
d14-p-Terphenyl	67.6%	d4-1,2-Dichlorobenzene	53.4%
d5-Phenol	72.9%	2-Fluorophenol	88.2%
2,4,6-Tribromopheno	1 98.3%	d4-2-Chlorophenol	70.9%

October 8, 2003

Lab Sample ID: FS37H LIMS ID: 03-10327

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 14:15 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-015D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 5.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 92.3% pH: 6.8

CAS Number	Analyte	μg/kg
108-95-2	Phenol	910
541-73-1	1,3-Dichlorobenzene	99 U
106-46-7	1,4-Dichlorobenzene	99 U
100-51-6	Benzyl Alcohol	99 U
95-50-1	1,2-Dichlorobenzene	99 U
95-48-7	2-Methylphenol	99 U
106-44-5	4-Methylphenol	43,000 E 🥂
105-67-9	2,4-Dimethylphenol	99 U
65-85-0	Benzoic Acid	990 U
120-82-1	1,2,4-Trichlorobenzene	99 U
91-20-3	Naphthalene	7,800
87-68-3	Hexachlorobutadiene	99 U
91-57-6	2-Methylnaphthalene	270
131-11-3	Dimethylphthalate	99 U
208-96-8	Acenaphthylene	940
83-32-9	Acenaphthene	240
84-66-2	Diethylphthalate	99 Ŭ
86-73-7	Fluorene	270
86-30-6	N-Nitrosodiphenylamine	99 U
118-74-1	Hexachlorobenzene	99 U
87-86-5	Pentachlorophenol	490 U
85-01-8	Phenanthrene	3,400
120-12-7	Anthracene	280
84-74-2	Di-n-Butylphthalate	99 U
206-44-0	Fluoranthene	2,600
129-00-0	Pyrene	1,900
85-68-7	Butylbenzylphthalate	99 U
56-55-3	Benzo (a) anthracene	140 M
117-81-7	bis(2-Ethylhexyl)phthalate	23,000 BE R
218-01-9	Chrysene	300 M
117-84-0	Di-n-Octyl phthalate	99 U
205-99-2	Benzo (b) fluoranthene	320 M
207-08-9	Benzo(k) fluoranthene	260 M
50-32-8	Benzo(a)pyrene	250 M
193-39-5	Indeno(1,2,3-cd)pyrene	99 U
53-70-3	Dibenz(a,h)anthracene	99 U
191-24-2	Benzo(g,h,i)perylene	99 U

Semivolatile Surrogate Recovery

84.0% 2-Fluorobiphenyl 84.8% d5-Nitrobenzene 75.2% d4-1,2-Dichlorobenzene 68.4% d14-p-Terphenyl 93.9% 2-Fluorophenol 77.9% d5-Phenol 66.1% d4-2-Chlorophenol 76.5% 2,4,6-Tribromophenol

PSEP LEVEL 4 (Full)

Quality by Design

October 8, 2003

000031

Sample ID: GPA-015D-A DILUTION

Lab Sample ID: FS37H LIMS ID: 03-10327

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030 Date Sampled: 07/29/03 Date Received: 07/31/03

Data Release Authorized: Reported: 08/26/03

Sample Amount: 5.06 g-dry-wt

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 18:14 Instrument/Analyst: FINN8/PK

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 92.3% pH: 6.8

GPC Cleanup: NO

Analyte CAS Number μg/kg 108-95-2 Phenol 2,000 U 1,3-Dichlorobenzene 2,000 U 541-73-1 106-46-7 1,4-Dichlorobenzene 2,000 U Benzyl Alcohol 2,000 U 100-51-6 95-50-1 1,2-Dichlorobenzene 2,000 U 2-Methylphenol 2,000 U 95-48-7 59,000 106-44-5 4-Methylphenol 2,4-Dimethylphenol 2,000 U 105-67-9 Benzoic Acid 20,000 U 65-85-0 1,2,4-Trichlorobenzene 2,000 U 120-82-1 12,000 91-20-3 Naphthalene Hexachlorobutadiene 2,000 U 87-68-3 91-57-6 2-Methylnaphthalene 2,000 U 131-11-3 Dimethylphthalate 2,000 U 208-96-8 Acenaphthylene 2,000 U 83-32-9 Acenaphthene 2,000 U 84-66-2 Diethylphthalate 2,000 U 2,000 U 86-73-7 Fluorene N-Nitrosodiphenylamine 2,000 U 86-30-6 118-74-1 Hexachlorobenzene 2,000 U 9,900 U Pentachlorophenol 87-86-5 Phenanthrene 3,600 85-01-8 2,000 U Anthracene 120-12-7 Di-n-Butylphthalate 2,000 U 84-74-2 Fluoranthene 2,200 206-44-0 Pyrene 2,300 129-00-0 Butylbenzylphthalate 2,000 U 85-68-7 Benzo (a) anthracene 2,000 U 56-55-3 bis (2-Ethylhexyl) phthalate 34,000 B 117-81-7 Chrysene 2,000 U 218-01-9 Di-n-Octyl phthalate 2,000 U 117-84-0 Benzo (b) fluoranthene 205-99-2 2,000 U Benzo(k) fluoranthene 2,000 U 207-08-9 Benzo(a)pyrene 2,000 U 50-32-8 Indeno(1,2,3-cd)pyrene 2,000 U 193-39-5 53-70-3 Dibenz (a,h) anthracene 2,000 U 191-24-2 Benzo(g,h,i)perylene 2,000 U

Semivolatile Surrogate Recovery

D 2-Fluorobiphenyl D d5-Nitrobenzene d4-1,2-Dichlorobenzene D D d14-p-Terphenyl D 2-Fluorophenol D d5-Phenol d4-2-Chlorophenol 2,4,6-Tribromophenol

VALIDATED **PSEP LEVEL 4 (Full)** Z D Quality by Design October 8, 2003

Sample ID: GPA-015D-B SAMPLE

Lab Sample ID: FS37I LIMS ID: 03-10328

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 15:01 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 5.12 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 88.7%

pH: 7.4

108-95-2 Phenol 541-73-1 1,3-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 100-51-6 Benzyl Alcohol 95-50-1 1,2-Dichlorobenzene	560 98 U 98 U 98 U 98 U 98 U
106-46-7 1,4-Dichlorobenzene 100-51-6 Benzyl Alcohol	98 U 98 U 98 U
100-51-6 Benzyl Alcohol	98 U 98 U
	98 U
95-50-1 1,2-Dichlorobenzene	
	98 U
95-48-7 2-Methylphenol	
106-44-5 4-Methylphenol	30,000 E R
105-67-9 2,4-Dimethylphenol	98 U
65-85-0 Benzoic Acid	980 U
120-82-1 1,2,4-Trichlorobenzene	98 U
91-20-3 Naphthalene	5,600
87-68-3 Hexachlorobutadiene	98 U
91-57-6 2-Methylnaphthalene	300
131-11-3 Dimethylphthalate	98 U
208-96-8 Acenaphthylene	510
83-32-9 Acenaphthene	240
84-66-2 Diethylphthalate	98 U
86-73-7 Fluorene	260
86-30-6 N-Nitrosodiphenylamine	98 U
118-74-1 Hexachlorobenzene	98 U
87-86-5 Pentachlorophenol	490 U
85-01-8 Phenanthrene	2,800
120-12-7 Anthracene	250
84-74-2 Di-n-Butylphthalate	98 U
206-44-0 Fluoranthene	2,100
129-00-0 Pyrene	1,800 M
85-68-7 Butylbenzylphthalate	98 U
56-55-3 Benzo(a) anthracene	98 U
117-81-7 bis(2-Ethylhexyl)phthalate	3,600 B
218-01-9 Chrysene	98 U
117-84-0 Di-n-Octyl phthalate	98 U
205-99-2 Benzo(b) fluoranthene	350 M
207-08-9 Benzo(k) fluoranthene	310 M
50-32-8 Benzo(a)pyrene	300 M
193-39-5 Indeno(1,2,3-cd)pyrene	98 U R
53-70-3 Dibenz(a,h)anthracene	98 Ü <i>R</i>
191-24-2 Benzo(g,h,i)perylene	240 Y T

Semivolatile Surrogate Recovery

72.4% d5-Nitrobenzene 2-Fluorobiphenyl 87.6% 152% d14-p-Terphenyl d4-1,2-Dichlorobenzene 62.8% d5-Phenol 89.1% 2-Fluorophenol 66.7% 2,4,6-Tribromophenol 73.1% d4-2-Chlorophenol 76.3%

VALIDATED **PSEP LEVEL 4 (Full)**

Page 1 of 1

Lab Sample ID: FS37I LIMS ID: 03-10328 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 19:02 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-015D-B DILUTION

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 5.12 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 88.7%

pH: 7.4

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	2,000 U R
541-73-1	1,3-Dichlorobenzene	2,000 U
106-46-7	1,4-Dichlorobenzene	2,000 U
100-51-6	Benzyl Alcohol	2,000 U
95-50-1	1,2-Dichlorobenzene	2,000 U .
95-48-7	2-Methylphenol	2,000 U 🕊
106-44-5	4-Methylphenol	42,000
105-67-9	2,4-Dimethylphenol	2,000 U 🥂
65-85-0	Benzoic Acid	20,000 U
120-82-1	1,2,4-Trichlorobenzene	2,000 U
91-20-3	Naphthalene	7,600
87-68-3	Hexachlorobutadiene	2,000 U
91-57-6	2-Methylnaphthalene	2,000 U
131-11-3	Dimethylphthalate	2,000 U
208-96-8	Acenaphthylene	2,000 U
83-32-9	Acenaphthene	2,000 U
84-66-2	Diethylphthalate	2,000 U
86-73-7	Fluorene	2,000 U
86-30-6	N-Nitrosodiphenylamine	2,000 U
118-74-1	Hexachlorobenzene	2,000 U
87-86-5	Pentachlorophenol	9,800 U
85-01-8	Phenanthrene	3,000
120-12-7	Anthracene	2,000 U
84-74-2	Di-n-Butylphthalate	2,000 U
206-44-0	Fluoranthene	2,100
129-00-0	Pyrene	2,300
85-68-7	Butylbenzylphthalate	2,000 U
56-55-3	Benzo(a) anthracene	2,000 U
117-81-7	bis(2-Ethylhexyl)phthalate	2,000 B
218-01-9	Chrysene	2,000 U
117-84-0	Di-n-Octyl phthalate	2,000 U
205-99-2	Benzo(b) fluoranthene	2,000 U
207-08-9	Benzo(k) fluoranthene	2,000 U
50-32-8	Benzo(a) pyrene	2,000 U
193-39-5	Indeno(1,2,3-cd)pyrene	2,000 U
53-70-3	Dibenz(a,h)anthracene	2,000 U
191-24-2	Benzo(g,h,i)perylene	2,000 U R

Semivolatile Surrogate Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophenol	D	d4-2-Chlorophenol	D

VALIDATED **PSEP LEVEL 4 (Full)** Quality by Design

October 8, 2003

Sample ID: GPA-015D-C SAMPLE

Lab Sample ID: FS37J LIMS ID: 03-10329

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 14:09 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 37.2%
pH: 7.5

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	20 U
541-73-1	1,3-Dichlorobenzene	20 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	20 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	20 U
106-44-5	4-Methylphenol	540
105-67-9	2,4-Dimethylphenol	20 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	260
87-68-3	Hexachlorobutadiene	20 U
91-57-6	2-Methylnaphthalene	41
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	29
83-32-9	Acenaphthene	20
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	23
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	98 U
85-01-8	Phenanthrene .	290
120-12-7	Anthracene	24
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	280
1 29-00 -0	Pyrene	240
35-68 -7	Butylbenzylphthalate	20 U
56-55-3	Benzo(a)anthracene	20 U
117-81-7	bis(2-Ethylhexyl)phthalate	- 130 - /30
218-01-9	Chrysene	20 U
L17-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b) fluoranthene	51 M
207-08-9	Benzo(k)fluoranthene	43 M
50-32-8	Benzo(a)pyrene	22 M
93-39-5	Indeno(1,2,3-cd)pyrene	20 U
33-70-3	Dibenz(a,h)anthracene	20 U
91-24-2	Benzo(g,h,i)perylene	20 U

Semivolatile Surrogate Recovery

d5-Nitrobenzene

68.3%

2-Fluorobiphenyl

65.7%

Quality by Design

October 8, 2003

 d14-p-Terphenyl
 66.4%
 d4-1,2-Dichlorobenzene
 57.7%

 d5-Phenol
 72.7%
 2-Fluorophenol
 82.3%

 2,4,6-Tribromophenol
 90.7%
 d4-2-Chlorophenol
 72.6%

000035

Page 1 of 1

Sample ID: GPA-015D-D SAMPLE

Lab Sample ID: FS37K QC Report No: FS37-Anchor Environmental LIMS ID: 03-10330 Project: Georgia Pacific ASB Matrix: Sediment

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 14:57 Instrument/Analyst: FINN8/PK

Data Release Authorized

Reported: 08/26/03

GPC Cleanup: NO

Sample Amount: 26.1 g-dry-wt Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 19.8%

pH: 7.9

CAS Number	Analyte	μg/kg	
108-95-2	Phenol	19 U	
541-73-1	1,3-Dichlorobenzene	19 U	
106-46-7	1,4-Dichlorobenzene	19 U	
100-51-6	Benzyl Alcohol	19 U	
95-50-1	1,2-Dichlorobenzene	19 U	
95-48-7	2-Methylphenol	. 19 U	
106-44-5	4-Methylphenol	19 U .	
105-67-9	2,4-Dimethylphenol	19 U	
65-85-0	Benzoic Acid	190 U	
120-82-1	1,2,4-Trichlorobenzene	19 U	
91-20-3	Naphthalene	19 U	
87-68-3	Hexachlorobutadiene	19 U	
91-57-6	2-Methylnaphthalene	19 U	
131-11-3	Dimethylphthalate	19 U	
208-96-8	Acenaphthylene	19 U	
83-32-9	Acenaphthene	19 U	
84-66-2	Diethylphthalate	19 U	
86- 7 3-7	Fluorene	19 U	
36-30-6	N-Nitrosodiphenylamine	19 U	
118-74-1	Hexachlorobenzene	19 U	
37-86-5	Pentachlorophenol	96 U	
35-01-8	Phenanthrene	19 U	
120-12-7	Anthracene	19 U	
34-74-2	Di-n-Butylphthalate	19 U	
206-44-0	Fluoranthene	19 U	
L29-00-0	Pyrene	19 U	
35-68-7	Butylbenzylphthalate	160	
56-55-3	Benzo(a)anthracene	19 U	
L17-81-7	bis(2-Ethylhexyl)phthalate	-240 - 24	00
218-01-9	Chrysene	19 U	
17-84-0	Di-n-Octyl phthalate	84	
205-99-2	Benzo(b)fluoranthene	19 U	
207-08-9	Benzo(k) fluoranthene	19 U	
50-32-8	Benzo (a) pyrene	19 U	
93-39-5	Indeno(1,2,3-cd)pyrene	19 U	
3-70-3	Dibenz(a,h)anthracene	19 U	
91-24-2	Benzo(g,h,i)perylene	19 U	

VALIDATED Semivolatile Surrogate Recovery **PSEP LEVEL 4 (Full)** 60.2% d5-Nitrobenzene 2-Fluorobiphenyl 64.9% Quality by Design 70.4% d4-1,2-Dichlorobenzene 60.2% d14-p-Terphenyl October 8, 2003 72.2% 2-Fluorophenol 73.1% d5-Phenol 110% d4-2-Chlorophenol 70.2% 2,4,6-Tribromophenol

Sample ID: GPA-025D-A SAMPLE

Lab Sample ID: FS37A

LIMS ID: 03-10320 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/20/03 14:06 Instrument/Analyst: FINN8/Van

GPC Cleanup: NO

020030 Date Sampled: 07/25/03

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 5.20 g-dry-wt

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 85.3% pH: 7.3

CAS Number Analyte μg/kg 108-95-2 1,900 Phenol 1,3-Dichlorobenzene 96 U 541-73-1 96 U 106-46-7 1,4-Dichlorobenzene Benzyl Alcohol 96 U 100-51-6 96 U 1,2-Dichlorobenzene 95-50-1 270 2-Methylphenol 95-48-7 4-Methylphenol 80,000 E 106-44-5 2,4-Dimethylphenol 96 U 105-67-9 65-85-0 Benzoic Acid 960 U 1,2,4-Trichlorobenzene 96 U 120-82-1 Naphthalene 8,400 E 91-20-3 96 U 87-68-3 Hexachlorobutadiene 2-Methylnaphthalene 300 91-57-6 96 U Dimethylphthalate 131-11-3 860 Acenaphthylene 208-96-8 350 83-32-9 Acenaphthene Diethylphthalate 96 U 84-66-2 86-73-7 Fluorene 130 N-Nitrosodiphenylamine 96 U 86-30-6 96 U Hexachlorobenzene 118-74-1 480 U Pentachlorophenol 87-86-5 1,500 Phenanthrene 85-01-8 120-12-7 Anthracene 130 Di-n-Butylphthalate 96 U 8**4-**74-2 206-44-0 920 Fluoranthene 700 129-00-0 Pyrene 96 U Butylbenzylphthalate 85-68-7 96 U Benzo(a) anthracene 56-55-3 1,000 B 117-81-7 bis (2-Ethylhexyl) phthalate Chrysene 96 U 218-01-9 117-84-0 Di-n-Octyl phthalate 96 U Benzo (b) fluoranthene 96 U 205-99-2 Benzo(k) fluoranthene 96 U 207-08-9 Benzo(a)pyrene 96 U 50-32-8 96 U Indeno(1,2,3-cd)pyrene 193-39-5 53-70-3 Dibenz (a, h) anthracene 96 II Benzo(g,h,i)perylene 96 U 191-24-2

Semivolatile Surrogate Recovery

61.2% 2-Fluorobiphenyl 80.4% d5-Nitrobenzene 55.2% 86.0% d4-1,2-Dichlorobenzene d14-p-Terphenyl 86.4% 82.48 2-Fluorophenol d5-Phenol 87.7% d4-2-Chlorophenol 73.3% 2,4,6-Tribromophenol

VALIDATED PSEP LEVEL 4 (Full) FD

Page 1 of 1

LIMS ID: 03-10320

Lab Sample ID: FS37A QC Report No: FS37-Anchor Environmental

> Project: Georgia Pacific ASB 020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Matrix: Sediment Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 15:57 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample Amount: 5.20 g-dry-wt

Sample ID: GPA-025D-A

DILUTION

Final Extract Volume: 0.5 mL Dilution Factor: 30.0 Percent Moisture: 85.3% pH: 7.3

CAS Number Analyte μg/kg 108-95-2 2,900 U Phenol 1,3-Dichlorobenzene 541-73-1 2,900 U 106-46-7 1,4-Dichlorobenzene 2,900 U 100-51-6 Benzyl Alcohol 2,900 U 1,2-Dichlorobenzene 2,900 U 95-50-1 95-48-7 2-Methylphenol 2,900 U 106-44-5 4-Methylphenol 170,000 105-67-9 2,4-Dimethylphenol 2,900 U Benzoic Acid 65-85-0 29,000 U 120-82-1 1,2,4-Trichlorobenzene 2,900 U 91-20-3 Naphthalene 15,000 87-68-3 Hexachlorobutadiene 2,900 U 91-57-6 2-Methylnaphthalene 2,900 U Dimethylphthalate 2,900 U 131-11-3 208-96-8 Acenaphthylene 2,900 U 83-32-9 Acenaphthene 2,900 U 84-66-2 Diethylphthalate 2,900 U 2,900 U 86-73-7 Fluorene N-Nitrosodiphenylamine 2,900 U 86-30-6 118-74-1 Hexachlorobenzene 2,900 U 87-86-5 Pentachlorophenol 14,000 U 85-01-8 Phenanthrene 2,900 U 120-12-7 Anthracene 2,900 U 84-74-2 Di-n-Butylphthalate 2,900 U 206-44-0 Fluoranthene 2,900 U 2,900 U 129-00-0 Pyrene 85-68-7 Butylbenzylphthalate 2,900 U 56-55-3 Benzo(a) anthracene 2,900 U 117-81-7 bis(2-Ethylhexyl)phthalate 2,900 U 218-01-9 Chrysene 2,900 U Di-n-Octyl phthalate 117-84-0 2,900 U Benzo(b) fluoranthene 205-99-2 2,900 U Benzo(k) fluoranthene 2,900 U 207-08-9 Benzo(a)pyrene 2,900 U 50-32-8 Indeno(1,2,3-cd)pyrene 2,900 U 193-39-5 2,900 U 53-70-3 Dibenz (a, h) anthracene 2,900 U 191-24-2 Benzo(g,h,i)perylene

Semivolatile Surrogate Recovery

d5-Nitrobenzene D 2-Fluorobiphenyl D d14-p-Terphenyl D d4-1,2-Dichlorobenzene D D 2-Fluorophenol D d5-Phenol D d4-2-Chlorophenol 2,4,6-Tribromophenol

VALIDATED **PSEP LEVEL 4 (Full)** Quality by Design

October 8, 2003

Sample ID: GPA-025D-B SAMPLE

Lab Sample ID: FS37B

LIMS ID: 03-10321 Matrix: Sediment

Data Release Authorized:

Reported: 08/27/03

Date Extracted: 08/07/03
Date Analyzed: 08/20/03 17:18
Instrument/Analyst: FINN8/LJR

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 0.48 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 77.2%
pH: 7.5

CAS Number Analyte μg/kg R 108-95-2 Pheno1 1,200 541-73-1 1,3-Dichlorobenzene 1,000 U 106-46-7 1,4-Dichlorobenzene 1,000 U 100-51-6 Benzyl Alcohol 1,000 U 95-50-1 1,2-Dichlorobenzene 1,000 U 95-48-7 2-Methylphenol 1,000 U 4-Methylphenol 106-44-5 47,000 105-67-9 2,4-Dimethylphenol 1,000 U 65-85-0 Benzoic Acid 10,000 U 120-82-1 1,2,4-Trichlorobenzene 1,000 U 91-20-3 Naphthalene 34,000 Hexachlorobutadiene 87-68-3 1,000 U 2-Methylnaphthalene 91-57-6 1,800 131-11-3 Dimethylphthalate 1,000 U 208-96-8 Acenaphthylene 5,900 83-32-9 Acenaphthene 2,200 84-66-2 Diethylphthalate 1,000 U 86-73-7 Fluorene 1,200 N-Nitrosodiphenylamine 86-30-6 1,000 U Hexachlorobenzene 118-74-1 1,000 U 87-86-5 Pentachlorophenol 5,200 U 85-01-8 Phenanthrene 30,000 120-12-7 Anthracene 3,500 84-74-2 Di-n-Butylphthalate 1,000 U 206-44-0 Fluoranthene 32,000 129-00-0 Pyrene 32,000 85-68-7 Butylbenzylphthalate 1,000 U Benzo (a) anthracene 2,600 56-55-3 117-81-7 bis(2-Ethylhexyl)phthalate 1,800 B Chrysene 218-01-9 4,700 Di-n-Octyl phthalate 117-84-0 1,000 U Benzo (b) fluoranthene 205-99-2 3,800 Benzo(k) fluoranthene 207-08-9 5,300 50-32-8 Benzo (a) pyrene 4,200 193-39-5 Indeno(1,2,3-cd)pyrene NV Dibenz (a, h) anthracene 53-70-3 NV Benzo(g,h,i)perylene NV

Semivolatile Surrogate Recovery

d5-Nitrobenzene 72.0% 2-Fluorobiphenyl 68.0% 73.6% d14-p-Terphenyl d4-1,2-Dichlorobenzene 58.8% 67.2% 73.9% d5-Phenol 2-Fluorophenol 75.2% 2,4,6-Tribromophenol d4-2-Chlorophenol 67.5%

VALIDATED PSEP LEVEL 4 (Full)

Sample ID: GPA-025D-B REANALYSIS

Lab Sample ID: FS37B

LIMS ID: 03-10321 Matrix: Sediment

Data Release Authorized

Reported: 08/27/03

Date Extracted: 08/07/03 Date Analyzed: 08/27/03 14:12 Instrument/Analyst: NT6/LJR

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 0.48 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 77.2%

pH: 7.5

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	1,300
541-73-1	1,3-Dichlorobenzene	1,000 U
106-46-7	1,4-Dichlorobenzene	1,000 U
100-51-6	Benzyl Alcohol	1,000 U
95-50-1	1,2-Dichlorobenzene	1,000 U
95-48-7	2-Methylphenol	1,000 U
106-44-5	4-Methylphenol	56,000
105-67-9	2,4-Dimethylphenol	1,000 U
65-85-0	Benzoic Acid	10,000 U
120-82-1	1,2,4-Trichlorobenzene	1,000 U
91-20-3	Naphthalene	40,000
87-68-3	Hexachlorobutadiene	1,000 U
91-57-6	2-Methylnaphthalene	2,300
131 -1 1-3	Dimethylphthalate	1,000 U
208-96-8	Acenaphthylene	6,500
83-32-9	Acenaphthene	2,500
84-66-2	Diethylphthalate	1,000 U
86-73-7	Fluorene	1,700
86-30-6	N-Nitrosodiphenylamine	1,000 U
118-74-1	Hexachlorobenzene	1,000 U
37-86-5	Pentachlorophenol	5,200 U
35-01-8	Phenanthrene	32,000
L 20-12- 7	Anthracene	3,200
34-74-2	Di-n-Butylphthalate	1,600 Y
206-44-0	Fluoranthene	37,000
L29-00-0	Pyrene	35,000
35-68- 7	Butylbenzylphthalate	1,300 Y
6-55-3	Benzo(a) anthracene	3,700
17-81-7	bis(2-Ethylhexyl)phthalate	2,100 B
218-01-9	Chrysene	5,000
17-84-0	Di-n-Octyl phthalate	1,000 U
205 -9 9-2	Benzo(b)fluoranthene	5,400
07-08-9	Benzo(k)fluoranthene	6,200
0-32-8	Benzo(a)pyrene	4,400
.93-39-5	Indeno(1,2,3-cd)pyrene	4,900
3-70-3	Dibenz(a,h)anthracene	1,600 M
91-24-2	Benzo(g,h,i)perylene	4,900

Semivolatile Surrogate Recovery

82.8% d5-Nitrobenzene 2-Fluorobiphenyl 79.2% d4-1,2-Dichlorobenzene d14-p-Terphenyl 110% 61.6% d5-Phenol 79.28 2-Fluorophenol 76.3% 2,4,6-Tribromophenol 83.5% d4-2-Chlorophenol 74.9%

PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

Sample ID: GPA-025D-D SAMPLE

Lab Sample ID: FS37C LIMS ID: 03-10322 QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

ct: Georgia Pacific A 020030

Data Release Authorized: AS Reported: 08/26/03

Date Sampled: 07/28/03
Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/18/03 19:33 Sample Amount: 26.1 g-dry-wt

Instrument/Analyst: FINN8/PK

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.5%

GPC Cleanup: NO

pH: 7.8

CAS Number	Analyte	μ g/kg	
108-95-2	Phenol	19 U	
541-73-1	1,3-Dichlorobenzene	19 U	
106-46-7	1,4-Dichlorobenzene	19 U	
100-51-6	Benzyl Alcohol	19 U	
95-50-1	1,2-Dichlorobenzene	19 U	
95-48-7	2-Methylphenol	19 U	
106-44-5	4-Methylphenol	140	
105-67-9	2,4-Dimethylphenol	19 U	
65-85-0	Benzoic Acid	190 U	
120-82-1	1,2,4-Trichlorobenzene	19 U	
91-20-3	Naphthalene	100	
87-68-3	Hexachlorobutadiene	19 U	
91-57-6	2-Methylnaphthalene	19 U	
131-11-3	Dimethylphthalate	19 U	
208-96-8	Acenaphthylene	19 U	
83-32-9	Acenaphthene	19 U	
84-66-2	Diethylphthalate	31	
86-73-7	Fluorene	19 U	
86-30-6	N-Nitrosodiphenylamine	19 U	
118-74-1	Hexachlorobenzene	19 U	
87-86-5	Pentachlorophenol	96 U	
85-01-8	Phenanthrene	93	
120-12-7	Anthracene	19 U	
84-74-2	Di-n-Butylphthalate	19 U	
206-44-0	Fluoranthene	94	
129-00-0	Pyrene	86	
85-68-7	Butylbenzylphthalate	21	
56-55-3	Benzo(a) anthracene	19 U	
117-8 1- 7	bis(2-Ethylhexyl)phthalate	240 240	u
218-01-9	Chrysene	19 U	
117-84-0	Di-n-Octyl phthalate	19 U	
205-99-2	Benzo(b) fluoranthene	19 U	
207-08-9	Benzo(k) fluoranthene	19 U	
50-32-8	Benzo(a)pyrene	19 U	
193-39-5	Indeno(1,2,3-cd)pyrene	19 U	
53-70-3	Dibenz(a,h)anthracene	19 U	
191-24-2	Benzo(g,h,i)perylene	19 U	

Semivolatile Surrogate Recovery

VALIDATED
PSEP LEVEL 4 (Full)

d5-Nitrobenzene	64.0%	2-Fluorobiphenyl	73.0%
d14-p-Terphenyl	74.8%	d4-1,2-Dichlorobenzene	59.8%
d5-Phenol	71.9%	2-Fluorophenol	78.3%
2,4,6-Tribromophenol	113%	d4-2-Chlorophenol	71.48

Sample ID: GPA-035D-A SAMPLE

Lab Sample ID: FS37D LIMS ID: 03-10323

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 12:33 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.09 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 88.8%
pH: 6.9

CAS Number	Analyte	μg/kg	
108-95-2	Phenol	1,000	
541-73-1	1,3-Dichlorobenzene	98 U	
106-46-7	1,4-Dichlorobenzene	98 U	
100-51-6	Benzyl Alcohol	98 U	
95-50-1	1,2-Dichlorobenzene	98 U	
95-48-7	2-Methylphenol	98 U	
106-44-5	4-Methylphenol	53,000 E	R
105-67-9	2,4-Dimethylphenol	98 U	
65-85-0	Benzoic Acid	980 U	
120-82-1	1,2,4-Trichlorobenzene	98 U	
91-20-3	Naphthalene	5,700	
87-68-3	Hexachlorobutadiene	98 U	
91-57-6	2-Methylnaphthalene	270	
131-11-3	Dimethylphthalate	98 U	
208-96-8	Acenaphthylene	5 0 0	
83-32-9	Acenaphthene	240	
84-66-2	Diethylphthalate	98 U	
86-7 3-7	Fluorene	200	
86-30-6	N-Nitrosodiphenylamine	98 U	
118-74-1	Hexachlorobenzene	98 U	
87-86-5	Pentachlorophenol	490 U	
85-01-8	Phenanthrene	1,500	
120-12-7	Anthracene	170	
84-74-2	Di-n-Butylphthalate	98 U	
206-44-0	Fluoranthene	960	
129-00-0	Pyrene	700	
85-68-7	Butylbenzylphthalate	98 U	
56-55-3	Benzo(a) anthracene	98 U	
117-81-7	bis(2-Ethylhexyl)phthalate	1,400 B	
218-01-9	Chrysene	98 U	
117-84-0	Di-n-Octyl phthalate	98 U	
205-99-2	Benzo(b) fluoranthene	98 U	
207-08-9	Benzo(k)fluoranthene	98 U	
50-32-8	Benzo(a)pyrene	98 U	
193-39-5	Indeno(1,2,3-cd)pyrene	98 U	
53-70-3	Dibenz(a,h)anthracene	98 U	
191-24-2	Benzo(g,h,i)perylene	98 U	
	Gardan labila Gummanata Danasan		

Semivolatile Surrogate Recovery

85.2% 2-Fluorobiphenyl 78.8% d5-Nitrobenzene 75.6% d4-1,2-Dichlorobenzene 66.4% d14-p-Terphenyl d5-Phenol 93.3% 2-Fluorophenol 55.7% 79.2% d4-2-Chlorophenol 74.48 2,4,6-Tribromophenol

Quality by Design October 8, 2003

PSEP LEVEL 4 (Full)

VALIDATED

000025

Sample ID: GPA-035D-A DILUTION

Lab Sample ID: FS37D

LIMS ID: 03-10323 Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 16:39 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.09 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 88.8%

pH: 6.9

CAS Number	Analyte	μg/kg
108-95-2	Phenol	2,000 U /
541-73-1	1,3-Dichlorobenzene	2,000 U
106-46-7	1,4-Dichlorobenzene	· 2,000 U
100-51-6	Benzyl Alcohol	2,000 U
95-50-1	1,2-Dichlorobenzene	2,000 U
95-48 <i>-</i> 7	2-Methylphenol	2,000 U V
106-44-5	4-Methylphenol	98,000
105-67-9	2,4-Dimethylphenol	2,000 U <i>R</i>
65-85-0	Benzoic Acid	20,000 U 1
120-82-1	1,2,4-Trichlorobenzene	2,000 U
91-20-3	Naphthalene	7,600
37-68-3	Hexachlorobutadiene	2,000 U \
91-57-6	2-Methylnaphthalene	2,000 U
131-11-3	Dimethylphthalate	2,000 U
208-96-8	Acenaphthylene	2,000 U
33-32-9	Acenaphthene	2,000 U
34-66-2	Diethylphthalate	2,000 U
36-73-7	Fluorene	2,00 0 U
36-30-6	N-Nitrosodiphenylamine	2,000 U
118-74-1	Hexachlorobenzene	2,000 U
37-86 - 5	Pentachlorophenol	9,800 U
35-01-8	Phenanthrene	2,000 U
L20-12-7	Anthracene	2,000 U
34-74-2	Di-n-Butylphthalate	2,000 U
206-44-0	Fluoranthene	2,000 U
29-00-0	Pyrene	2,000 U
35-68-7	Butylbenzylphthalate	2,000 U
6-55-3	Benzo(a) anthracene	2,000 U
17-81-7	bis(2-Ethylhexyl)phthalate	2,000 U
18-01-9	Chrysene	2,000 U
17-84-0	Di-n-Octyl phthalate	2,000 U
05-99-2	Benzo(b) fluoranthene	2,000 U
07-08-9	Benzo(k)fluoranthene	2,000 U
0-32-8	Benzo(a)pyrene	2,000 U
93-39-5	Indeno(1,2,3-cd)pyrene	2,000 U
3-70-3	Dibenz(a,h)anthracene	2,000 U
91-24-2	Benzo(g,h,i)perylene	2,000 U

Semivolatile Surrogate Recovery

D 2-Fluorobiphenyl d5-Nitrobenzene D D d4-1,2-Dichlorobenzene D d14-p-Terphenyl D 2-Fluorophenol D d5-Phenol d4-2-Chlorophenol 2,4,6-Tribromophenol

VALIDATED **PSEP LEVEL 4 (Full)**

Lab Sample ID: FS37E LIMS ID: 03-10324

Matrix: Sediment

Data Release Authorized: MReported: 08/26/03

Date Extracted: 08

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 13:17 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-035D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 87.4%

pH: 7.1

CAS Number	Analyte	$\mu { m g/kg}$	
108-95-2	Phenol	520	
541-73-1	1,3-Dichlorobenzene	99 U	
106-46-7	1,4-Dichlorobenzene	99 U	
100-51-6	Benzyl Alcohol	99 U	
95-50-1	1,2-Dichlorobenzene	99 U	
95-48-7	2-Methylphenol	99 U	
106-44-5	4-Methylphenol	32,000 E	R
105-67-9	2,4-Dimethylphenol	99 U	
65-85-0	Benzoic Acid	990 U	
120-82-1	1,2,4-Trichlorobenzene	99 U	
91-20-3	Naphthalene	6,600	
87-68-3	Hexachlorobutadiene	99 U	
91-57-6	2-Methylnaphthalene	390	
131-11-3	Dimethylphthalate	99 U	
208-96-8	Acenaphthylene	630	
83-32-9	Acenaphthene	480	
84-66-2	Diethylphthalate	99 U	
86-73-7	Fluorene	320	
86-30-6	N-Nitrosodiphenylamine	99 U	
118-74-1	Hexachlorobenzene	99 U	
87-86-5	Pentachlorophenol	49 0 U	
85-01-8	Phenanthrene	2,800	
120-12-7	Anthracene	300	
84-74-2	Di-n-Butylphthalate	99 U	
206-44-0	Fluoranthene	1,900	
129-00-0	Pyrene	1,700	
85-68-7	Butylbenzylphthalate	99 U	
56-55-3	Benzo(a) anthracene	99 U	
117-81-7	bis(2-Ethylhexyl)phthalate	3,600 B	
218-01-9	Chrysene	99 U	
117-84-0	Di-n-Octyl phthalate	99 U	
205-99-2	Benzo(b) fluoranthene	240	
207-08-9	Benzo(k) fluoranthene	220	
50-32-8	Benzo(a)pyrene	200 M	
193-39-5	Indeno(1,2,3-cd)pyrene	99 U	
53-70-3	Dibenz(a,h)anthracene	99 U	
191-24-2	Benzo(g,h,i)perylene	400 Y	

Semivolatile Surrogate Recovery

76.8% d5-Nitrobenzene 2-Fluorobiphenyl 82.0% 98.4% d4-1,2-Dichlorobenzene d14-p-Terphenyl 66.0% 89.1% 72.0% 2-Fluorophenol d5-Phenol 72.5% 2,4,6-Tribromophenol d4-2-Chlorophenol 78.4%

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FS37E LIMS ID: 03-10324

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 17:27

Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-035D-B DILUTION

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 5.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 87.4% pH: 7.1

CAS Number	Analyte	μg/kg
108-95-2	Phenol	2,000 U R
541-73-1	1,3-Dichlorobenzene	2,000 U
106-46-7	1,4-Dichlorobenzene	2,000 U
100-51-6	Benzyl Alcohol	2,000 U
95-50-1	1,2-Dichlorobenzene	2,000 U
95-48-7	2-Methylphenol	2,000 U W
106-44-5	4-Methylphenol	48,000
105-67-9	2,4-Dimethylphenol	2,000 U K
65-85-0	Benzoic Acid	20,000 U
120-82-1	1,2,4-Trichlorobenzene	2,000 U
91-20-3	Naphthalene	9,800
87-68-3	Hexachlorobutadiene	2,000 U
91-57-6	2-Methylnaphthalene	2,000 U
131-11-3	Dimethylphthalate	2,000 U
208-96-8	Acenaphthylene	2,000 U
83-32-9	Acenaphthene	2,000 U
84-66-2	Diethylphthalate	2,000 Ŭ
86-73-7	Fluorene	2,000 U
86-30-6	N-Nitrosodiphenylamine	2,000 U
118-74-1	Hexachlorobenzene	2,000 U
87-86-5	Pentachlorophenol	9,900 U
85-01-8	Phenanthrene	3,100
120-12-7	Anthracene	2,000 U
84-74-2	Di-n-Butylphthalate	2,000 U
206-44-0	Fluoranthene	2,000
129-00-0	Pyrene	2,000 U
85-68-7	Butylbenzylphthalate	2,000 U
56-55-3	Benzo(a) anthracene	2,000 U
117-81-7	bis(2-Ethylhexyl)phthalate	3,100 B
218-01-9	Chrysene	2,000 U
117-84-0	Di-n-Octyl phthalate	2,000 U
205-99-2	Benzo(b)fluoranthene	2,000 U
207-08-9	Benzo(k)fluoranthene	2,000 U
50-32-8	Benzo(a)pyrene	2,000 U
193-39-5	Indeno(1,2,3-cd)pyrene	2,000 U
53-70-3	Dibenz(a,h)anthracene	2,000 U
191-24-2	Benzo(g,h,i)perylene	2,000 U 🖤

Semivolatile Surrogate Recovery

D D 2-Fluorobiphenyl d5-Nitrobenzene D d4-1,2-Dichlorobenzene D d14-p-Terphenyl D 2-Fluorophenol D d5-Phenol d4-2-Chlorophenol D D 2,4,6-Tribromophenol

VALIDATED PSEP LEVEL 4 (Full) Quality by Design

October 8, 2003

Sample ID: GPA-035D-C SAMPLE

Lab Sample ID: FS37F LIMS ID: 03-10325

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized: Reported: 08/26/03

Date Sampled: 07/28/03 Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/18/03 21:56 Instrument/Analyst: FINN8/PK

Sample Amount: 26.0 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: NO

Dilution Factor: 1.00 Percent Moisture: 29.5% pH: 7.6

CAS Number	Analyte	μg/kg	
108-95-2	Phenol	36	
541-73-1	1,3-Dichlorobenzene	19 U	
106-46-7	1,4-Dichlorobenzene	19 U	
100-51-6	Benzyl Alcohol	19 U	
95-50-1	1,2-Dichlorobenzene	19 U	
95-48-7	2-Methylphenol	19 U	
106-44-5	4-Methylphenol	1,100	
105-67-9	2,4-Dimethylphenol	19 U	
65-85-0	Benzoic Acid	190 U	
120-82-1	1,2,4-Trichlorobenzene	19 U	
91-20-3	Naphthalene	610	
87-68-3	Hexachlorobutadiene	19 U	
91-57-6	2-Methylnaphthalene	45	
131-11-3	Dimethylphthalate	19 U	
208-96-8	Acenaphthylene	82	
83-32-9	Acenaphthene	45	
84-66-2	Diethylphthalate	50	
86-73-7	Fluorene	41	
86-30-6	N-Nitrosodiphenylamine	19 U	
118-74-1	Hexachlorobenzene	19 U	
87-86-5	Pentachlorophenol	96 U	
85-01-8	Phenanthrene	580	
120-12-7	Anthracene	67	
84-74-2	Di-n-Butylphthalate	19 U	
206-44-0	Fluoranthene	610	
129-00-0	Pyrene	490	
85-68-7	Butylbenzylphthalate	19 U	
56-55-3	Benzo(a) anthracene	54 M	
117-81-7	bis(2-Ethylhexyl)phthalate	-160 M	160 U
218-01-9	Chrysene	99 M	
117-84-0	Di-n-Octyl phthalate	19 U	
205-99-2	Benzo(b) fluoranthene	110 M	
207-08-9	Benzo(k) fluoranthene	94 M	
50-32-8	Benzo(a)pyrene	98 M	
193-39-5	Indeno(1,2,3-cd)pyrene	67 M	
53-70-3	Dibenz(a,h)anthracene	19 U	
191-24-2	Benzo(g,h,i)perylene	51 Y	ACULATING MINE A PROGRAMMENT
<u>-</u> .	2 1 1 1 1		VALIDATED
	Semivolatile Surrogate Recovery		PSEP LEVEL 4 (Full)

Semivolatile Surrogate Recovery

Quality by Design October 8, 2003

d5-Nitrobenzene	69.6%	2-Fluorobiphenyl	74.4%
d14-p-Terphenyl	77.1%	d4-1,2-Dichlorobenzene	64.2%
d5-Phenol	74.2%	2-Fluorophenol	72.4%
2,4,6-Tribromophenol	108%	d4-2-Chlorophenol	78.0%

Page 1 of 1

Lab Sample ID: FS37G LIMS ID: 03-10326

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 13:24 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-035D-D SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 18.2%
pH: 7.7

CAS Number Analyte μg/kg 108-95-2 Phenol 20 U 1,3-Dichlorobenzene 541-73-1 20 U 106-46-7 1,4-Dichlorobenzene 20 U 100-51-6 Benzyl Alcohol 20 U 95-50-1 1,2-Dichlorobenzene 20 U 95-48-7 2-Methylphenol 20 U 106-44-5 4-Methylphenol 70 105-67-9 2,4-Dimethylphenol 20 U 65-85-0 Benzoic Acid 200 U 120-82-1 1,2,4-Trichlorobenzene 20 U 91-20-3 Naphthalene 45 87-68-3 Hexachlorobutadiene 20 U 91-57-6 2-Methylnaphthalene 20 II 131-11-3 Dimethylphthalate 20 U 208-96-8 Acenaphthylene 20 U 83-32-9 Acenaphthene 20 U 84-66-2 Diethylphthalate 20 U 86-73-7 Fluorene 20 U 86-30-6 N-Nitrosodiphenylamine 20 U 118-74-1 Hexachlorobenzene 20 U 87-86-5 Pentachlorophenol 98 U 85-01-8 Phenanthrene 60 120-12-7 Anthracene 20 U 84-74-2 Di-n-Butylphthalate 20 U 206-44-0 Fluoranthene 69 129-00-0 Pyrene 54 Butylbenzylphthalate 85-68-7 20 U 56-55-3 Benzo(a) anthracene 20 U 744 117-81-7 bis(2-Ethylhexyl)phthalate -74 218-01-9 Chrysene 20 U 117-84-0 Di-n-Octyl phthalate 20 U 205-99-2 Benzo(b) fluoranthene 20 U Benzo(k) fluoranthene 207-08-9 20 U Benzo(a) pyrene 50-32-8 20 U 193-39-5 Indeno(1,2,3-cd)pyrene 20 U 53-70-3 Dibenz(a,h)anthracene 20 U 191-24-2 Benzo(g,h,i)perylene 23

Semivolatile Surrogate Recovery

d5-Nitrobenzene 66.0% 2-Fluorobiphenyl 64.3% d14-p-Terphenyl 67.6% d4-1,2-Dichlorobenzene 53.4% d5-Phenol 72.9% 2-Fluorophenol 88.2% 2,4,6-Tribromophenol 98.3% d4-2-Chlorophenol 70.9%

PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

Sample ID: GPA-015D-A SAMPLE

Lab Sample ID: FS37H LIMS ID: 03-10327

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized: Reported: 08/26/03

Date Sampled: 07/29/03 Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 14:15

Sample Amount: 5.06 g-dry-wt Final Extract Volume: 0.5 mL

Instrument/Analyst: FINN8/PK

Dilution Factor: 1.00 Percent Moisture: 92.3% pH: 6.8

GPC Cleanup: NO

CAS Number	Analyte	μ g/kg	
108-95-2	Phenol	910	
541-73-1	1,3-Dichlorobenzene	99 U	
106-46-7	1,4-Dichlorobenzene	99 U	
100-51-6	Benzyl Alcohol	99 U	
95-50-1	1,2-Dichlorobenzene	99 U	
95-48-7	2-Methylphenol	. 99 U	
106-44-5	4-Methylphenol	43,000 E	F
105-67-9	2,4-Dimethylphenol	99 U	
55-85-0	Benzoic Acid	990 U	
120-82 - 1	1,2,4-Trichlorobenzene	99 U	
91-20-3	Naphthalene	7,800	
37-68-3	Hexachlorobutadiene	99 U	
91-57-6	2-Methylnaphthalene	270	
131-11-3	Dimethylphthalate	99 U	
208-96-8	Acenaphthylene	940	
33-32-9	Acenaphthene	240	
34-66-2	Diethylphthalate	99 U	
36-73-7	Fluorene	270	
86-30-6	N-Nitrosodiphenylamine	99 U	
18-74-1	Hexachlorobenzene	99 U	
37-86-5	Pentachlorophenol	490 U	
5-01-8	Phenanthrene	3,400	
20-12-7	Anthracene	280	
4-74-2	Di-n-Butylphthalate	99 U	
06-44-0	Fluoranthene	2,600	
29-00-0	Pyrene	1,900	
5-68-7	Butylbenzylphthalate	99 U	
6-55-3	Benzo(a) anthracene	140 M	
17-81-7	bis(2-Ethylhexyl)phthalate	23,000 BE	,
18-01-9	Chrysene	300 M	-
17-84-0	Di-n-Octyl phthalate	99 U	
05-99-2	Benzo(b) fluoranthene	320 M	
07-08-9	Benzo(k) fluoranthene	. 260 M	
0-32-8	Benzo (a) pyrene	250 M	
93-39-5	Indeno(1,2,3-cd)pyrene	99 U	
3-70-3	Dibenz (a, h) anthracene	99 U	
91-24-2	Benzo(g,h,i)perylene	99 U	

Semivolatile Surrogate Recovery

VALIDATED PSEP LEVEL 4 (Full)

d5-Nitrobenzene 84.0% 2-Fluorobiphenyl 84.8% 75.2% d4-1,2-Dichlorobenzene d14-p-Terphenyl 68.4% 93.9% d5-Phenol 2-Fluorophenol 77.9% 66.1% 2,4,6-Tribromophenol d4-2-Chlorophenol 76.5%

Quality by Design October 8, 2003

000031

Sample ID: GPA-015D-A DILUTION

Lab Sample ID: FS37H

LIMS ID: 03-10327 Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 18:14 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 5.06 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 92.3%

pH: 6.8

CAS Number	Analyte	μg/kg
108-95-2	Phenol	2,000 U R
541-73-1	1,3-Dichlorobenzene	2,000 U
106-46-7	1,4-Dichlorobenzene	2,000 U
100-51-6	Benzyl Alcohol	2,000 U
95-50-1	1,2-Dichlorobenzene	2,000 U
95-48-7	2-Methylphenol	2,000 U 🗸
106-44-5	4-Methylphenol	59,000
105-67-9	2,4-Dimethylphenol	2, 0 00 U R
65-85-0	Benzoic Acid	20,000 U
120-82-1	1,2,4-Trichlorobenzene	2,000 U
91-20-3	Naphthalene	12,000
87-68-3	Hexachlorobutadiene	2,000 U
91-57-6	2-Methylnaphthalene	2,000 U
131-11-3	Dimethylphthalate	2,000 U
208-96-8	Acenaphthylene	2, 0 00 U
83-32-9	Acenaphthene	2,000 U
84-66-2	Diethylphthalate	2,000 U
86-73-7	Fluorene	2,000 U
86-30-6	N-Nitrosodiphenylamine	2,000 U
118-74-1	Hexachlorobenzene	2,000 U
87-86-5	Pentachlorophenol	9,900 U
85-01-8	Phenanthrene	3,600
120-12-7	Anthracene	2,000 U
84-74-2	Di-n-Butylphthalate	2,000 U
206-44-0	Fluoranthene	2,200
129-00-0	Pyrene	2,300
85-68-7	Butylbenzylphthalate	2,000 U
56-55-3	Benzo(a) anthracene	2,000 U 🗸
117-81-7	bis(2-Ethylhexyl)phthalate	34,000 B
218-01-9	Chrysene	2,000 U R
117-84-0	Di-n-Octyl phthalate	2,000 U
205-99-2	Benzo(b) fluoranthene	2,000 U
207-08-9	Benzo(k) fluoranthene	2,000 U
50-32-8	Benzo(a)pyrene	2,000 U
193-39-5	Indeno(1,2,3-cd)pyrene	2,000 U
53-70-3	Dibenz(a,h)anthracene	2,000 U
191-24-2	Benzo(g,h,i)perylene	2,000 U 🕊

Semivolatile	Surrogate	Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophen	ol D	d4-2-Chlorophenol	D

VALIDATED **PSEP LEVEL 4 (Full)** Quality by Design October 8, 2003

Sample ID: GPA-015D-B SAMPLE

Lab Sample ID: FS37I LIMS ID: 03-10328

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 15:01 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 5.12 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 88.7%
pH: 7.4

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	560
541-73-1	1,3-Dichlorobenzene	98 U
106-46-7	1,4-Dichlorobenzene	98 U
100-51-6	Benzyl Alcohol	98 U
95-50-1	1,2-Dichlorobenzene	98 Ü
95-48-7	2-Methylphenol	98 U
106-44-5	4-Methylphenol	30,000 E R
105-67-9	2,4-Dimethylphenol	98 U
65-85-0	Benzoic Acid	980 U
120-82-1	1,2,4-Trichlorobenzene	98 U
91-20-3	Naphthalene	5,600
87-68-3	Hexachlorobutadiene	98 U
91-57-6	2-Methylnaphthalene	300
131-11-3	Dimethylphthalate	98 U
208-96-8	Acenaphthylene	510
83-32-9	Acenaphthene	240
84-66-2	Diethylphthalate	98 U
86-73-7	Fluorene	260
86-30-6	N-Nitrosodiphenylamine	98 U
118-74-1	Hexachlorobenzene	98 U
87-86-5	Pentachlorophenol	490 U
85-01-8	Phenanthrene	2,800
120-12-7	Anthracene	250
84-74-2	Di-n-Butylphthalate	98 Ŭ
206-44-0	Fluoranthene	2,100
129-00-0	Pyrene	1,800 M
85-68-7	Butylbenzylphthalate	98 U
56-55-3	Benzo(a) anthracene	98 U
117-81-7	bis(2-Ethylhexyl)phthalate	3,600 B
218-01-9	Chrysene	98 U
117-84-0	Di-n-Octyl phthalate	98 U
205-99-2	Benzo(b) fluoranthene	350 M
207-08-9	Benzo(k) fluoranthene	3 10 M
50-32-8	Benzo(a)pyrene	300 M
193-39-5	Indeno(1,2,3-cd)pyrene	98 U R
53~70-3	Dibenz(a,h)anthracene	98 Ú R
191-24-2	Benzo(g,h,i)perylene	240 Y J

Semivolatile Surrogate Recovery

72.4% d5-Nitrobenzene 2-Fluorobiphenyl 87.6% 152% d4-1,2-Dichlorobenzene d14-p-Terphenyl 62.8% d5-Phenol 89.1% 2-Fluorophenol 66.7% 2,4,6-Tribromophenol 73.1% d4-2-Chlorophenol 76.3%

VALIDATED
PSEP LEVEL 4 (Full)

Lab Sample ID: FS37I LIMS ID: 03-10328 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 19:02 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-015D-B DILUTION

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 5.12 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 20.0 Percent Moisture: 88.7% pH: 7.4

CAS Number	Analyte	μg/kg
108-95-2	Phenol	2,000 U R
541-73-1	1,3-Dichlorobenzene	2,000 U
106-46-7	1,4-Dichlorobenzene	2,000 U
100-51-6	Benzyl Alcohol	2,000 U
95-50-1	1,2-Dichlorobenzene	2,000 U .
95-48-7	2-Methylphenol	2,000 U V
106-44-5	4-Methylphenol	42,000
105-67-9	2,4-Dimethylphenol	2,000 U <i>R</i>
65-85-0	Benzoic Acid	20,000 U /
120-82-1	1,2,4-Trichlorobenzene	2,000 U
91-20-3	Naphthalene	7,600
87-68-3	Hexachlorobutadiene	2,000 U
91-57-6	2-Methylnaphthalene	2,000 U
131-11-3	Dimethylphthalate	2,000 U
208-96-8	Acenaphthylene	2,000 U
83-32-9	Acenaphthene	2,000 U
84-66-2	Diethylphthalate	2,000 U
86-73-7	Fluorene	2,000 U
86-30-6	N-Nitrosodiphenylamine	2,000 U
118-74-1	Hexachlorobenzene	2,000 U
87-86-5	Pentachlorophenol	9,800 U
85-01-8	Phenanthrene	3,000
120-12-7	Anthracene	2,000 U
84-74-2	Di-n-Butylphthalate	2,000 U
206-44-0	Fluoranthene	2,100
129-00-0	Pyrene	2,300
85-68-7	Butylbenzylphthalate	2,000 U
56-55-3	Benzo(a) anthracene	2,000 U
117-81-7	bis(2-Ethylhexyl)phthalate	2,000 B
218-01-9	Chrysene	2,000 U
117-84-0	Di-n-Octyl phthalate	2,000 U
205-99-2	Benzo(b)fluoranthene	2,000 U
207-08-9	Benzo(k)fluoranthene	2,000 U
50-32-8	Benzo(a)pyrene	2,000 U 🕨
193-39-5	Indeno(1,2,3-cd)pyrene	2,000 U
53-70-3	Dibenz(a,h)anthracene	2,000 U
191-24-2	Benzo(g,h,i)perylene	2,000 U R

Semivolatile Surrogate Recovery

d5-Nitrobenzene D 2-Fluorobiphenyl D d14-p-Terphenyl D d4-1,2-Dichlorobenzene D d5-Phenol D 2-Fluorophenol D 2,4,6-Tribromophenol D d4-2-Chlorophenol D

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FS37J LIMS ID: 03-10329

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 14:09 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Sample ID: GPA-015D-C SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 37.2% pH: 7.5

CAS Number	Analyte	μg/kg
108-95-2	Phenol	20 U
541-73-1	1,3-Dichlorobenzene	20 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	20 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	20 U
106-44-5	4-Methylphenol	540
105-67-9	2,4-Dimethylphenol	20 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	260
87-68-3	Hexachlorobutadiene	20 U
91-57-6	2-Methylnaphthalene	41
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	29
83-32-9	Acenaphthene	20
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	23
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	98 U
85-01-8	Phenanthrene	290
120-12-7	Anthracene	24
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	280
129-00-0	Pyrene	240
85-68-7	Butylbenzylphthalate	20 U
56-55-3	Benzo(a)anthracene	20 U
117-81-7	bis(2-Ethylhexyl)phthalate	-130 4
218-01-9	Chrysene	20 U
117-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b)fluoranthene	51 M
207-08-9	Benzo(k)fluoranthene	43 M
50-32-8	Benzo(a)pyrene	22 M
193-39-5	Indeno(1,2,3-cd)pyrene	20 U
53-70-3	Dibenz(a,h)anthracene	20 U
191-24-2	Benzo(g,h,i)perylene	20 U.

Semivolatile Surrogate Recovery

68.3% d5-Nitrobenzene 2-Fluorobiphenyl 65.7% 66.4% d4-1,2-Dichlorobenzene 57.7% d14-p-Terphenyl 72.7% 2-Fluorophenol 82.3% d5-Phenol 90.7% d4-2-Chlorophenol 2,4,6-Tribromophenol 72.6%

PSEP LEVEL 4 (Full) Quality by Design

October 8, 2003

Sample ID: GPA-015D-D SAMPLE

Lab Sample ID: FS37K LIMS ID: 03-10330

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized: Reported: 08/26/03

Date Sampled: 07/29/03 Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 14:57 Instrument/Analyst: FINN8/PK

Sample Amount: 26.1 g-dry-wt Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 19.8% pH: 7.9

GPC Cleanup: NO

CAS Number	Analyte	$\mu { t g}/{ t k}{ t g}$
108-95-2	Phenol	19 U
541-73-1	1,3-Dichlorobenzene	19 Ŭ
106-46-7	1,4-Dichlorobenzene	19 U
100-51-6	Benzyl Alcohol	19 U
95-50-1	1,2-Dichlorobenzene	19 Ŭ
95-48-7	2-Methylphenol	19 U
106-44-5	4-Methylphenol	19 U
105-67-9	2,4-Dimethylphenol	19 U
65-85-0	Benzoic Acid	190 U
120-82-1	1,2,4-Trichlorobenzene	19 U
91-20-3	Naphthalene	19 U
87-68-3	Hexachlorobutadiene	19 U
91-57-6	2-Methylnaphthalene	19 U
131-11-3	Dimethylphthalate	19 U
208-96-8	Acenaphthylene	19 U
83-32-9	Acenaphthene	19 U
84-66-2	Diethylphthalate	19 U
86-73-7	Fluorene	19 U
86-30-6	N-Nitrosodiphenylamine	19 U
118-74-1	Hexachlorobenzene	19 U
87-86 - 5	Pentachlorophenol	96 U
85-01-8	Phenanthrene -	19 U
120-12-7	Anthracene	19 U
84-74-2	Di-n-Butylphthalate	19 Ŭ
206-44-0	Fluoranthene	19 U
129-00-0	Pyrene	19 Ŭ
85-68-7	Butylbenzylphthalate	160
56-55 - 3	Benzo(a) anthracene	19 Ŭ
117-81-7	bis(2-Ethylhexyl)phthalate	-240 2404
218-01-9	Chrysene	19 U
117-84-0	Di-n-Octyl phthalate	84
205-99-2	Benzo(b)fluoranthene	19 U
207-08-9	Benzo(k)fluoranthene	19 U
50-32-8	Benzo(a)pyrene	19 U
193-39-5	Indeno(1,2,3-cd)pyrene	19 U
53-70-3	Dibenz(a,h)anthracene	19 U
191-24-2	Benzo(g,h,i)perylene	19 U

Semivolatile Surrogate Recovery

PSEP LEVEL 4 (Full) Quality by Design October 8, 2003

d5-Nitrobenzene	60.2%	2-Fluorobiphenyl	64.9%
d14-p-Terphenyl	70.4%	d4-1,2-Dichlorobenzene	60.2%
d5-Phenol	72.2%	2-Fluorophenol	73.1%
2,4,6-Tribromophenol	110%	d4-2-Chlorophenol	70.2%

Sample ID: GPA-045D-A SAMPLE

Lab Sample ID: FS37L LIMS ID: 03-10331 Matrix: Sediment QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Data Release Authorized:

020030 Date Sampled: 07/29/03 Date Received: 07/31/03

Reported: 08/26/03

Sample Amount: 5.14 g-dry-wt

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 15:55 Instrument/Analyst: FINN8/PK

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 90.2%
pH: 7.2

GPC Cleanup: NO

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	350
541-73-1	1,3-Dichlorobenzene	97 U
106-46-7	1,4-Dichlorobenzene	97 U
100-51-6	Benzyl Alcohol	97 U
95-50-1	1,2-Dichlorobenzene	97 U
95-48-7	2-Methylphenol	97 U
106-44-5	4-Methylphenol	20,000 E 🥂
105-67-9	2,4-Dimethylphenol	97 Ŭ
65-8 5 -0	Benzoic Acid	97 0 Ŭ
120-82-1	1,2,4-Trichlorobenzene	97 U
91-20-3	Naphthalene	4,800
87-68-3	Hexachlorobutadiene	97 U
91-57-6	2-Methylnaphthalene	210
131-11-3	Dimethylphthalate	97 U
208-96-8	Acenaphthylene	460
83-32-9	Acenaphthene	190
84 -66 - 2	Diethylphthalate	97 U
86-73-7	Fluorene	140
86-30-6	N-Nitrosodiphenylamine	97 U
118-74-1	Hexachlorobenzene	97 U
87-86-5	Pentachlorophenol	490 U
85-01-8	Phenanthrene	2,600
120-12-7	Anthracene	240
84-74-2	Di-n-Butylphthalate	97 U
206-44-0	Fluoranthene	2,100
129-00-0	Pyrene	2,200
85-68-7	Butylbenzylphthalate	2,800 T
56-55-3	Benzo(a) anthracene	97 U
117-81-7	bis(2-Ethylhexyl)phthalate	4,600 B
218-01-9	Chrysene	97 Ŭ
117-84-0	Di-n-Octyl phthalate	1,100
205-99-2	Benzo(b) fluoranthene	460 M
207-08-9	Benzo(k) fluoranthene	410 M
50-32-8	Benzo(a)pyrene	320 M
193-39-5	Indeno(1,2,3-cd)pyrene	97 U <i>R</i>
53-70-3	Dibenz(a,h)anthracene	97 U R _
191-24-2	Benzo(g,h,i)perylene	230 Y J

Semivolatile Surrogate Recovery

2-Fluorobiphenyl d5-Nitrobenzene 63.6% 70.4% d4-1,2-Dichlorobenzene 73.6% d14-p-Terphenyl 56.4% d5-Phenol 81.1% 2-Fluorophenol 75.2% 2,4,6-Tribromophenol 63.2% d4-2-Chlorophenol 70.4%

PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

VALIDATED

000037

Sample ID: GPA-045D-A DILUTION

Lab Sample ID: FS37L LIMS ID: 03-10331

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized: Reported: 08/26/03

Date Sampled: 07/29/03 Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 19:50 Instrument/Analyst: FINN8/PK

Sample Amount: 5.14 g-dry-wt Final Extract Volume: 0.5 mL

Dilution Factor: 20.0 Percent Moisture: 90.2% pH: 7.2

GPC Cleanup: NO

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	1,900 U R
541-73-1	1,3-Dichlorobenzene	1,900 U /
106-46-7	1,4-Dichlorobenzene	1,900 U
100-51-6	Benzyl Alcohol	1,900 U 📗
95-50-1	1,2-Dichlorobenzene	1,900 U
95-48-7	2-Methylphenol	1,900 U 🔱
106-44-5	4-Methylphenol	26,000
105-67-9	2,4-Dimethylphenol	1,900 U <i>R</i>
65-85-0	Benzoic Acid	19,000 U 🕴
120-82-1	1,2,4-Trichlorobenzene	1,900 U
91-20-3	Naphthalene	5,800
87-68-3	Hexachlorobutadiene	1,900 U
91-57-6	2-Methylnaphthalene	1,900 U
131-11-3	Dimethylphthalate	1,900 U
208-96-8	Acenaphthylene	1,900 U
83-32-9	Acenaphthene	1,900 U
84-66-2	Diethylphthalate	1,900 U
86-73-7	Fluorene	1,900 U
86-30-6	N-Nitrosodiphenylamine	1,900 U
118-74-1	Hexachlorobenzene	1,900 U
87-86-5	Pentachlorophenol	9,700 U
85-01-8	Phenanthrene	2,800
120-12-7	Anthracene	1,900 U
84-74-2	Di-n-Butylphthalate	1,900 U
206-44-0	Fluoranthene	2,000
129-00-0	Pyrene	2,200
85-68-7	Butylbenzylphthalate	2,300
56-55-3	Benzo(a)anthracene	1,900 U
117-81-7	bis(2-Ethylhexyl)phthalate	3,100 B
218-01-9	Chrysene	1,900 U
117-84-0	Di-n-Octyl phthalate	1,900 U
205-99-2	Benzo(b) fluoranthene	1,900 U
207-08-9	Benzo(k) fluoranthene	1,900 U
50-32-8	Benzo(a)pyrene	1,900 U
193-39-5	Indeno(1,2,3-cd)pyrene	1,90 0 U
53-70-3	Dibenz (a, h) anthracene	1,900 U
	Benzo(g,h,i)perylene	1,900 U A

Semivolatile Surrogate Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophenol	D	d4-2-Chlorophenol	D

VALIDATED **PSEP LEVEL 4 (Full)**

Sample ID: GPA-045D-B SAMPLE

Lab Sample ID: FS37M

LIMS ID: 03-10332 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 16:37 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

Date Sampled: 07/29/03
Date Received: 07/31/03

020030

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

Sample Amount: 1.59 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 83.4%

pH: 7.7

CAS Number	Analyte	μg/kg
108-95-2	Phenol	310 U
541-73-1	1,3-Dichlorobenzene	310 U
106-46-7	1,4-Dichlorobenzene	310 U
100-51-6	Benzyl Alcohol	310 U
95-50-1	1,2-Dichlorobenzene	310 U
95-48-7	2-Methylphenol	310 U
106-44-5	4-Methylphenol	7,700
105-67-9	2,4-Dimethylphenol	310 U
55-85-0	Benzoic Acid	3,100 U
120-82-1	1,2,4-Trichlorobenzene	310 U
91-20-3	Naphthalene	6,400
37-68-3	Hexachlorobutadiene	310 U
91-57-6	2-Methylnaphthalene	770
131-11-3	Dimethylphthalate	310 U
208-96-8	Acenaphthylene	770
33-32-9	Acenaphthene	460
34-66-2	Diethylphthalate	310 U
36 -7 3-7	Fluorene	620
36-30-6	N-Nitrosodiphenylamine	310 U
18-74-1	Hexachlorobenzene	310 U
37-86-5	Pentachlorophenol	1,600 U
85-01-8	Phenanthrene	10,000
20-12-7	Anthracene	1,200
14-74-2	Di-n-Butylphthalate	310 U
06-44-0	Fluoranthene	8,800
.29-00-0	Pyrene	11,000
5-68-7	Butylbenzylphthalate	160,000 E
6-55-3	Benzo(a)anthracene	310 U
17-81-7	bis(2-Ethylhexyl)phthalate	300,000 BE
18-01-9	Chrysene	310 U
17-84-0	Di-n-Octyl phthalate	39,000 E
05-99-2	Benzo(b) fluoranthene	4,800 M
07-08-9	Benzo(k) fluoranthene	5,500 M
0-32-8	Benzo(a) pyrene	3,000 M
93-39-5	Indeno(1,2,3-cd)pyrene	310 U
3-70-3	Dibenz (a, h) anthracene	310 U
91-24-2	Benzo(g,h,i)perylene	1,900 Y

Semivolatile Surrogate Recovery

VALIDATED PSEP LEVEL 4 (Full)

		•	
d5-Nitrobenzene	75.6%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	86.0%	d4-1,2-Dichlorobenzene	60.0%
d5-Phenol	77.1%	2-Fluorophenol	48.3%
2.4.6-Tribromophenol	56.0%	d4-2-Chlorophenol	69.1%

Quality by Design October 8, 2003

000039

Sample ID: GPA-045D-B DILUTION

Lab Sample ID: FS37M LIMS ID: 03-10332

Matrix: Sediment

Data Release Authorized: #Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 22:11 Instrument/Analyst: FINN8/PK GPC Cleanup: NO QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 1.59 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 100
Percent Moisture: 83.4%
pH: 7.7

CAS Number	Analyte	μ g/kg
108-95-2	Phenol	31,000 U R
541-73-1	1,3-Dichlorobenzene	31,000 U
106-46-7	1,4-Dichlorobenzene	31,000 U
100-51-6	Benzyl Alcohol	31,000 U
95-50 -1	1,2-Dichlorobenzene	31,000 U
95-48-7	2-Methylphenol	31,000 U
106-44-5	4-Methylphenol	31,000 U
105-67-9	2,4-Dimethylphenol	31,000 U
65-85-0	Benzoic Acid	310,000 U
120-82-1	1,2,4-Trichlorobenzene	31,000 U
91-20-3	Naphthalene	31,000 U
87-68-3	Hexachlorobutadiene	31,000 U
91-57-6	2-Methylnaphthalene	31,000 U
131-11-3	Dimethylphthalate	31,000 U
208-96-8	Acenaphthylene	. 31,000 U
83-32-9	Acenaphthene	31,000 U
84-66-2	Diethylphthalate	31,000 U
86-73-7	Fluorene	31,000 U
86-30-6	N-Nitrosodiphenylamine	31,000 U
118-74-1	Hexachlorobenzene	31,000 U
87-86-5	Pentachlorophenol	160,000 U
85-01-8	Phenanthrene	31,000 U
120-12-7	Anthracene	31,000 U
84-74-2	Di-n-Butylphthalate	31,000 U
206-44-0	Fluoranthene	31,000 U
129-00-0	Pyrene	31,000 U 🕏
85-68-7	Butylbenzylphthalate	210,000
56-55-3	Benzo(a) anthracene	31,000 U 🥂
117-81-7	bis(2-Ethylhexyl)phthalate	860,000 B
218-01-9	Chrysene	31,000 U R
117-84 -0	Di-n-Octyl phthalate	52,000
205-99-2	Benzo(b)fluoranthene	31,000 U R
207-08-9	Benzo(k) fluoranthene	31,000 U
50-32-8	Benzo(a) pyrene	31,000 U
193-39-5	Indeno(1,2,3-cd)pyrene	31,000 U
53-70-3	Dibenz(a,h)anthracene	31,000 U
191-24-2	Benzo(g,h,i)perylene	31,000 U R

Semivolatile Surrogate Recovery

d5-Nitrobenzene D 2-Fluorobiphenyl D D d14-p-Terphenyl d4-1,2-Dichlorobenzene D D 2-Fluorophenol D d5-Phenol D d4-2-Chlorophenol 2,4,6-Tribromophenol D

VALIDATED PSEP LEVEL 4 (Full)

1 of 1 Page

Sample ID: GPA-045D-C SAMPLE

Lab Sample ID: FS37N LIMS ID: 03-10333 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 15:44 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.7% pH: 7.8

CAS Number	Analyte	μg/kg	
108-95-2	Phenol	19 U	
541-73-1	1,3-Dichlorobenzene	19 U	
106-46-7	1,4-Dichlorobenzene	19 U	
100-51-6	Benzyl Alcohol	19 U	
95-50-1	1,2-Dichlorobenzene	19 U	
95-48-7	2-Methylphenol	19 U	
106-44-5	4-Methylphenol	160	
105-67-9	2,4-Dimethylphenol	19 U	
65-85-0	Benzoic Acid	190 U	
120-82-1	1,2,4-Trichlorobenzene	19 U	
91-20-3	Naphthalene	120	
87-68-3	Hexachlorobutadiene	19 U	
91-57-6	2-Methylnaphthalene	19 U	
131-11-3	Dimethylphthalate	19 U	
208-96-8	Acenaphthylene	19 U	
83-32-9	Acenaphthene	19 U	
84-66-2	Diethylphthalate	19 U	
86-73-7	Fluorene	19 U	
86-30-6	N-Nitrosodiphenylamine	19 U	
118-74-1	Hexachlorobenzene	19 U	
87-86-5	Pentachlorophenol	97 U	
85-01-8	Phenanthrene	170	
120-12-7	Anthracene	19 U	
84-74-2	Di-n-Butylphthalate	19 U	
206-44-0	Fluoranthene	180	
129-00-0	Pyrene	160	
85-68-7	Butylbenzylphthalate	19 U	
56-55-3	Benzo(a)anthracene	20 M	
117-81-7	bis(2-Ethylhexyl)phthalate	-160	160 U
218-01-9	Chrysene	36 M	
117-84-0	Di-n-Octyl phthalate	19 U	
205-99-2	Benzo(b) fluoranthene	40 M	
207-08-9	Benzo(k)fluoranthene	39 M	
50-32-8	Benzo(a)pyrene	38 M	
193-39-5	Indeno(1,2,3-cd)pyrene	31 M	
53-70-3	Dibenz (a, h) anthracene	19 U	
191-24-2	Benzo(g,h,i)perylene	34 M	

Semivolatile Surrogate Recovery

d5-Nitrobenzene 90.4% 2-Fluorobiphenyl 89.0% 95.2% d4-1,2-Dichlorobenzene 79.2% d14-p-Terphenyl d5-Phenol 92.6% 2-Fluorophenol 103% 2,4,6-Tribromophenol 141% d4-2-Chlorophenol 97.1%

PSEP LEVEL 4 (Full) Quality by Design

VALIDATED

October 8, 2003

000041

VALIDATED

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by GC/MS Page 1 of 1

Sample ID: GPA-045D-D SAMPLE

Lab Sample ID: FS370 LIMS ID: 03-10334

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 16:32 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.7% pH: 8.3

CAS Number	Analyte	μg/kg
108-95-2	Phenol	19 U
541-73-1	1,3-Dichlorobenzene	19 U
106-46-7	1,4-Dichlorobenzene	19 U
100-51-6	Benzyl Alcohol	19 U
95-50-1	1,2-Dichlorobenzene	19 U
95-48-7	2-Methylphenol	19 TJ
106-44-5	4-Methylphenol	44
105-67-9	2,4-Dimethylphenol	19 U
65-85-0	Benzoic Acid	190 U
120-82-1	1,2,4-Trichlorobenzene	19 U
91-20-3	Naphthalene	26
87-68-3	Hexachlorobutadiene	19 U
91-57-6	2-Methylnaphthalene	19 U
131-11-3	Dimethylphthalate	19 U
208-96-8	Acenaphthylene	19 U
83-32-9	Acenaphthene	19 U
84-66-2	Diethylphthalate	19 U
86-73-7	Fluorene	19 U
86-30-6	N-Nitrosodiphenylamine	19 U
118-74-1	Hexachlorobenzene	19 U
87-86-5	Pentachlorophenol	97 U
85-01-8	Phenanthrene	28
120-12-7	Anthracene	19 U
84-74-2	Di-n-Butylphthalate	27
206-44-0	Fluoranthene	26
129-00-0	Pyrene	23
85-68-7	Butylbenzylphthalate	19 U
56-55-3	Benzo(a) anthracene	19 U
117-81-7	bis(2-Ethylhexyl)phthalate	-91 944
218-01-9	Chrysene	19 U
117-84-0	Di-n-Octyl phthalate	19 U
205-99-2	Benzo(b) fluoranthene	19 U
207-08-9	Benzo(k)fluoranthene	19 U
50-32-8	Benzo(a)pyrene	19 U
193-39- 5	Indeno(1,2,3-cd)pyrene	19 Ŭ
53-70-3	Dibenz(a,h)anthracene	19 U
191-24-2	Benzo(g,h,i)perylene	19 U

Semivolatile Surrogate Recovery

PSEP LEVEL 4 (Full) FN 2-Fluorobiphenyl 64.6% d5-Nitrobenzene 65.9% Quality by Design 75.3% d4-1,2-Dichlorobenzene 59.8% d14-p-Terphenyl October 8, 2003 83.7% 74.8% 2-Fluorophenol d5-Phenol 118% d4-2-Chlorophenol 74.6% 2,4,6-Tribromophenol 000042

Sample ID: GPA-055D-A SAMPLE

Lab Sample ID: FS37P LIMS ID: 03-10335 QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized: Reported: 08/26/03

Date Sampled: 07/30/03 Date Received: 07/31/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 17:25

Sample Amount: 5.32 g-dry-wt Final Extract Volume: 0.5 mL

Instrument/Analyst: FINN8/PK

Dilution Factor: 1.00
Percent Moisture: 75.8%
pH: 7.5

GPC Cleanup: NO

CAS Number	Analyte	μg/kg
108-95-2	Phenol	1,300
541-73-1	1,3-Dichlorobenzene	94 U
106-46-7	1,4-Dichlorobenzene	94 U
100-51-6	Benzyl Alcohol	94 U
95-50-1	1,2-Dichlorobenzene	94 U
95-48-7	2-Methylphenol	210 M
106-44-5	4-Methylphenol	29,000 E R
105-67-9	2,4-Dimethylphenol	94 U
65-85-0	Benzoic Acid	940 U
120-82-1	1,2,4-Trichlorobenzene	94 U
91-20-3	Naphthalene	1,500
87-68-3	Hexachlorobutadiene	94 U
91-57-6	2-Methylnaphthalene	94 U
131-11-3	Dimethylphthalate	94 U
208-96-8	Acenaphthylene	100
83-32-9	Acenaphthene	94 U
84-66-2	Diethylphthalate	94 U
86-73-7	Fluorene	94 U
86-30-6	N-Nitrosodiphenylamine	94 U
118-74-1	Hexachlorobenzene	94 U
87-86-5	Pentachlorophenol	470 U
85-01-8	Phenanthrene	130
120-12-7	Anthracene	94 U
84-74-2	Di-n-Butylphthalate	94 U
206-44-0	Fluoranthene	100
129-00-0	Pyrene	110
85-68-7	Butylbenzylphthalate	94 U
56-55-3	Benzo(a) anthracene	94 U
117-81-7	bis(2-Ethylhexyl)phthalate	580 B 580 U
218-01-9	Chrysene	94 U
117-84-0	Di-n-Octyl phthalate	94 U
205-99-2	Benzo(b) fluoranthene	94 U
207-08-9	Benzo(k) fluoranthene	94 U
50-32-8	Benzo(a)pyrene	94 U
193-39-5	Indeno(1,2,3-cd)pyrene	94 U <i>R</i>
53-70-3	Dibenz(a,h)anthracene	94 U R
191-24-2	Benzo(g,h,i)perylene	94 U R

Semivolatile Surrogate Recovery

VALIDATED
PSEP LEVEL 4 (Full)

d5-Nitrobenzene 62.4% 2-Fluorobiphenyl 79.2% d4-1,2-Dichlorobenzene 74.4% d14-p-Terphenyl 52.4% 70.1% 2-Fluorophenol 65.3% d5-Phenol 2,4,6-Tribromophenol 52.5% d4-2-Chlorophenol 65.1%

Sample ID: GPA-055D-A DILUTION

Lab Sample ID: FS37P LIMS ID: 03-10335

Matrix: Sediment
Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 21:24 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

oject: Georgia Pacific A 020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 5.32 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 20.0
Percent Moisture: 75.8%
pH: 7.5

CAS Number	Analyte	μg/kg
108-95-2	Phenol	1,900 U A
541-73-1	1,3-Dichlorobenzene	1,900 U 1
106-46-7	1,4-Dichlorobenzene	1,900 U
100-51-6	Benzyl Alcohol	1,900 U
95-50-1	1,2-Dichlorobenzene	1,900 U
95-48-7	2-Methylphenol	1,900 ប 🛂
106-44-5	4-Methylphenol	37,000
105-67-9	2,4-Dimethylphenol	1,900 U 🏄
65-85-0	Benzoic Acid	19,000 U /
120-82-1	1,2,4-Trichlorobenzene	1,900 U
91-20-3	Naphthalene	1,900 U
37-68-3	Hexachlorobutadiene	1,900 U
91-57-6	2-Methylnaphthalene	1,900 U
131-11-3	Dimethylphthalate	1,900 U
208-96-8	Acenaphthylene	1,900 U
33-32-9	Acenaphthene	1,900 U
34-66-2	Diethylphthalate	1,900 U
36-73-7	Fluorene	1,900 U
36-30-6	N-Nitrosodiphenylamine	1,900 U
118-74-1	Hexachlorobenzene	1,900 U
37-86-5	Pentachlorophenol	9,400 U
35-01-8	Phenanthrene	1,900 U
.20-12-7	Anthracene	1,900 U
14-74-2	Di-n-Butylphthalate	1,900 U
06-44-0	Fluoranthene	1,900 U
29-00-0	Pyrene	1,900 U
5-68-7	Butylbenzylphthalate	1,900 U
6-55-3	Benzo(a)anthracene	1,900 U
17-81-7	bis(2-Ethylhexyl)phthalate	1,900 U
18-01-9	Chrysene	1,900 U
17-84-0	Di-n-Octyl phthalate	1,900 U
05-99-2	Benzo(b)fluoranthene	1,900 U
07-08-9	Benzo(k)fluoranthene	1,900 U
0-32-8	Benzo(a)pyrene	1,900 U 🖖
93-39-5	Indeno(1,2,3-cd)pyrene	1,900 U
3-70-3	Dibenz(a,h)anthracene	1,900 U
91-24-2	Benzo(g,h,i)perylene	1,900 U

Semivolatile Surrogate Recovery

d5-Nitrobenzene	D	2-Fluorobiphenyl	D
d14-p-Terphenyl	D	d4-1,2-Dichlorobenzene	D
d5-Phenol	D	2-Fluorophenol	D
2,4,6-Tribromophenol	D	d4-2-Chlorophenol	D

VALIDATED PSEP LEVEL 4 (Full)

Sample ID: GPA-055D-B SAMPLE

Lab Sample ID: FS37Q

LIMS ID: 03-10336 Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 17:20 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 29.5%
pH: 7.6

CAS Number	Analyte	μ g/kg	
108-95-2	Phenol	73	
541-73-1	1,3-Dichlorobenzene	19 U	
106-46-7	1,4-Dichlorobenzene	19 U	
100-51-6	Benzyl Alcohol	19 U	
95-50- 1	1,2-Dichlorobenzene	19 U	
95-48-7	2-Methylphenol	19 Ü	
106-44-5	4-Methylphenol	1,100	
105-67-9	2,4-Dimethylphenol	19 U .	
65-85-0	Benzoic Acid	190 U	
120-82-1	1,2,4-Trichlorobenzene	19 U	
91-20-3	Naphthalene	250	
87-68-3	Hexachlorobutadiene	19 U	
91-57-6	2-Methylnaphthalene	40	
131-11-3	Dimethylphthalate	19 U	
208-96-8	Acenaphthylene	26	
83-32-9	Acenaphthene	32	
84-66-2	Diethylphthalate	19 U	
86-73-7	Fluorene	25	
86-30-6	N-Nitrosodiphenylamine	19 U	
118-74-1	Hexachlorobenzene	19 U	
87-86-5	Pentachlorophenol	97 Ŭ	
85-01-8	Phenanthrene	190	
120-12-7	Anthracene	25	
84-74-2	Di-n-Butylphthalate	19 U	
206-44-0	Fluoranthene	180	
129-00-0	Pyrene	150 M	
85-68-7	Butylbenzylphthalate	19 U	
56-55-3	Benzo (a) anthracene	24 M	
117-81-7	bis(2-Ethylhexyl)phthalate	-170 170	U
218-01-9	Chrysene	34 M	
117-84-0	Di-n-Octyl phthalate	19 U	
205-99-2	Benzo(b) fluoranthene	31 M	
207-08-9	Benzo(k)fluoranthene	25 M	
50-32-8	Benzo(a)pyrene	19 U	
193-39-5	Indeno(1,2,3-cd)pyrene	19 U	
53-70-3	Dibenz(a,h)anthracene	19 U	
191-24-2	Benzo(g,h,i)perylene	19 U	

Semivolatile Surrogate Recovery

70.1% 2-Fluorobiphenyl 70.8% d5-Nitrobenzene 71.7% d4-1,2-Dichlorobenzene 61.2% d14-p-Terphenyl d5-Phenol 80.7% 2-Fluorophenol 85.8% 2,4,6-Tribromophenol 109% d4-2-Chlorophenol 78.1%

VALIDATED PSEP LEVEL 4 (Full)

Sample ID: GPA-055D-C SAMPLE

Lab Sample ID: FS37R LIMS ID: 03-10337

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 18:08 Instrument/Analyst: FINN8/PK

GPC Cleanup: NO

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 19.3% pH: 7.5

CAS Number	Analyte	$\mu { t g}/{ t k}{ t g}$
108-95-2	Phenol	19 U
541-73-1	1,3-Dichlorobenzene	19 U
106-46-7	1,4-Dichlorobenzene	19 U
100-51-6	Benzyl Alcohol	19 U
95-50-1	1,2-Dichlorobenzene	19 U
95-48-7	2-Methylphenol	19 U
106-44-5	4-Methylphenol	150
105-67-9	2,4-Dimethylphenol	19 U
65-85-0	Benzoic Acid	190 U
120-82-1	1,2,4-Trichlorobenzene	19 U
91-20-3	Naphthalene	76
87-68-3	Hexachlorobutadiene	19 U
91-57-6	2-Methylnaphthalene	19 U
131-11-3	Dimethylphthalate	19 U
208-96-8	Acenaphthylene .	19 Ŭ
83-32-9	Acenaphthene	19 U
84-66-2	Diethylphthalate	19 Ŭ
86-73-7	Fluorene	19 Ŭ
86-30-6	N-Nitrosodiphenylamine	19 U
118-74-1	Hexachlorobenzene	19 U
87-86-5	Pentachlorophenol	97 Ŭ
85-01-8	Phenanthrene	46
120-12-7	Anthracene	19 U
84-74-2	Di-n-Butylphthalate	19 Ŭ
206-44-0	Fluoranthene	44
129-00-0	Pyrene	39
85-68-7	Butylbenzylphthalate	95
56-55-3	Benzo(a) anthracene	19 U 250 250 U
117-81-7	bis(2-Ethylhexyl)phthalate	250 250 u
218-01-9	Chrysene	19 U
117-84-0	Di-n-Octyl phthalate	19 U
205-99-2	Benzo(b)fluoranthene	19 U
207-08-9	Benzo(k)fluoranthene	19 U
50-32-8	Benzo(a)pyrene	19 U
193-39-5	Indeno(1,2,3-cd)pyrene	19 U
53-70-3	Dibenz(a,h)anthracene	19 U
191-24-2	Benzo(g,h,i)perylene	19 U

Semivolatile Surrogate Recovery

d5-Nitrobenzene 60.7% 2-Fluorobiphenyl 65.4% Quality by Design 69.68 d4-1,2-Dichlorobenzene 61.1% d14-p-Terphenyl October 8, 2003 74.6% 2-Fluorophenol 77.0% d5-Phenol d4-2-Chlorophenol 72.0% 108% 2,4,6-Tribromophenol

000046

VALIDATED

PSEP LEVEL 4 (Full)

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by GC/MS Page 1 of 1

Sample ID: GPA-055D-D SAMPLE

Lab Sample ID: FS37S LIMS ID: 03-10338

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030 Date Sampled: 07/30/03

Data Release Authorized: Reported: 08/26/03

Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/19/03 18:56 Instrument/Analyst: FINN8/PK

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 0.5 mL

d5-Nitrobenzene

d14-p-Terphenyl

2,4,6-Tribromophenol

d5-Phenol

Dilution Factor: 1.00 Percent Moisture: 16.1% pH: 7.5

GPC Cleanup: NO

CAS Number	Analyte	μg/kg
108-95-2	Phenol	24
541-73-1	1,3-Dichlorobenzene	20 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	20 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	20 U
106-44-5	4-Methylphenol	670
105-67-9	2,4-Dimethylphenol	20 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	120
87-68-3	Hexachlorobutadiene	20 U
91-57-6	2-Methylnaphthalene	20 U
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene .	20 U
8 3 -32-9	Acenaphthene	20 U
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	20 U
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	9 8 U
85-01-8	Phenanthrene	40
120-12-7	Anthracene	20 U
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	28
129-00-0	Pyrene	24
85-68-7	Butylbenzylphthalate	20 U
56-55-3	Benzo(a)anthracene	20 U
117-81- 7	bis(2-Ethylhexyl)phthalate	-110 U
218-01-9	Chrysene	20 U
117-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b) fluoranthene	20 U
207-08-9	Benzo(k)fluoranthene	20 U
50-32-8	Benzo(a)pyrene	20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20 U
53-70-3	Dibenz(a,h)anthracene	20 U
191-24-2	Benzo(g,h,i)perylene	20 U

Quality by Design October 8, 2003

PSEP LEVEL 4 (Full)

60.5%

57.2%

82.6%

72.0%

000047

VALIDATED

FORM I

Semivolatile Surrogate Recovery

2-Fluorobiphenyl

d4-2-Chlorophenol

2-Fluorophenol

d4-1,2-Dichlorobenzene

61.7%

58.0%

73.4%

99.28

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by GC/MS Page 1 of 1

Sample ID: GPA-02 4.0-6.5 SAMPLE

Lab Sample ID: FT03A LIMS ID: 03-10747

QC Report No: FT03-Anchor Environmental Project: 020030-02

Matrix: Sediment

Georgia Pacific ASB

Data Release Authorized: Reported: 08/21/03

Date Sampled: 07/28/03 Date Received: 07/31/03

Date Extracted: 08/13/03 Date Analyzed: 08/20/03 19:50 Instrument/Analyst: NT2/Van

Sample Amount: 25.2 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: NO

Dilution Factor: 5.00 Percent Moisture: 78.1% pH: 7.8

CAS Number	Analyte	μg/kg
108-95-2	Phenol	210
541-73-1	1,3-Dichlorobenzene	99 U
106-46-7	1,4-Dichlorobenzene	99 U
100-51-6	Benzyl Alcohol	99 U
95-50-1	1,2-Dichlorobenzene	99 U
95-48-7	2-Methylphenol	99 U
106-44-5	4-Methylphenol	99 U .
105-67-9	2,4-Dimethylphenol	99 U
55-85-0	Benzoic Acid	990 U
L20-82-1	1,2,4-Trichlorobenzene	99 U
91-20-3	Naphthalene	99 U
37-68-3	Hexachlorobutadiene	99 U
91-57-6	2-Methylnaphthalene	99 U
131-11-3	Dimethylphthalate	99 U
208-96-8	Acenaphthylene	99 U
33-32-9	Acenaphthene	99 U
34-66-2	Diethylphthalate	99 U
36-73-7	Fluorene	99 U
86-30-6	N-Nitrosodiphenylamine	99 U
118-74-1	Hexachlorobenzene	99 U
37-86-5	Pentachlorophenol	500 U
35-01-8	Phenanthrene	200
20-12-7	Anthracene	99 U
4-74-2	Di-n-Butylphthalate	99 U
06-44-0	Fluoranthene	210
.29-00-0	Pyrene	220
5-68-7	Butylbenzylphthalate	99 U
6-55-3	Benzo(a)anthracene	99 U
17-81-7	bis(2-Ethylhexyl)phthalate	99 U
18-01-9	Chrysene	99 U
17-84-0	Di-n-Octyl phthalate	99 U
05-99-2	Benzo(b)fluoranthene	99 U
07-08-9	Benzo(k)fluoranthene	99 U
0-32-8	Benzo(a)pyrene	99 U
93-39-5	Indeno(1,2,3-cd)pyrene	99 U
3-70-3	Dibenz(a,h)anthracene	99 U
91-24-2	Benzo(g,h,i)perylene	99 U

Semivolatile Surrogate Recovery

VALIDATED **PSEP LEVEL 4 (Full)**

54.0% 53.4% 2-Fluorobiphenyl d5-Nitrobenzene 57.4% d4-1,2-Dichlorobenzene d14-p-Terphenyl 46.4% 54.0% 2-Fluorophenol 55.5% d5-Phenol 58.1% d4-2-Chlorophenol 53.5% 2,4,6-Tribromophenol

Page 1 of 1

Lab Sample ID: FS37A

LIMS ID: 03-10320 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 04:54 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES

Florisil Cleanup: YES

Sample ID: GPA-025D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 12.7 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.3

Percent Moisture: 85.3%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	3.2	< 3.2 Y	T
72-54-8	4,4'-DDD	2.0	< 2.0	1
50-29-3	4,4'-DDT	2.0	< 2.0 U	- 1
118-74-1	Hexachlorobenzene	1.0	< 1.0 Y	- 1
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U	W

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphe	nyl	69.5%
Tetrachlorometa:	xylene	33.5%

VALIDATED **PSEP LEVEL 4 (Full)**

Page 1 of 1

Lab Sample ID: FS37B LIMS ID: 03-10321

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 06:47

Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO Sulfur Cleanup: YES Florisil Cleanup: YES Sample ID: GPA-025D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Sample Amount: 12.7 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.5

Percent Moisture: 77.2%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	5.0	< 5.0 Y	T
72-54-8	4,4'-DDD	2.0	< 2.0	1
50-29-3	4,4'-DDT	3.9	< 3.9 Y	
118-74-1	Hexachlorobenzene	5.4	< 5.4 Y	- 1
87-68-3	Hexachlorobutadiene	0.98	< 0.98 U	U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	45.8%

VALIDATED **PSEP LEVEL 4 (Full)**

Page 1 of 1

Lab Sample ID: FS37C LIMS ID: 03-10322 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 07:25 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO Sulfur Cleanup: YES Florisil Cleanup: YES Sample ID: GPA-025D-D SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 13.4 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 7.8

Percent Moisture: 22.5%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	1.9	< 1.9 U	T
72-54-8	4,4'-DDD	1.9	< 1.9 U	1
50-29-3	4,4'-DDT	1.9	< 1.9 U	
118-74-1	Hexachlorobenzene	0.93	< 0.93 U	- 1
87-68-3	Hexachlorobutadiene	0.93	< 0.93 U	V

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	43.5%
Tetrachlorometaxylene	39.5%

VALIDATED **PSEP LEVEL 4 (Full)**

Lab Sample ID: FS37D LIMS ID: 03-10323

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 08:02 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO
Sulfur Cleanup: YES
Florisil Cleanup: YES

Sample ID: GPA-035D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 6.9 Percent Moisture: 88.8%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	2.0	< 2.0	J
72-54-8	4,4'-DDD	2.0	< 2.0	;
50-29-3	4,4'-DDT	2.0	< 2.0 U	- 1
118-74-1	Hexachlorobenzene	0.99	< 0.99	- 1
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U	ıV

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	23.0%
Tetrachlorometaxylene	NR

VALIDATED
PSEP LEVEL 4 (Full)

Page 1 of 1

QC Report No: FS37-Anchor Environmental

Sample ID: GPA-035D-B

SAMPLE

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Data Release Authorized:

Date Analyzed: 08/21/03 12:09

Instrument/Analyst: ECD3/JBG

Reported: 08/26/03

Matrix: Sediment

Lab Sample ID: FS37E LIMS ID: 03-10324

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

GPC Cleanup: NO

Sulfur Cleanup: YES Florisil Cleanup: YES

Date Extracted: 08/07/03

pH: 7.1 Percent Moisture: 87.4%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	2.0	< 2.0
72-54-8	4,4'-DDD	2.0	< 2.0
50-29-3	4,4'-DDT	2.0	< 2.0 U
118-74-1	Hexachlorobenzene	0.99	1.8
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	105%

VALIDATED **PSEP LEVEL 4 (Full)**

Sample ID: GPA-035D-C SAMPLE

Lab Sample ID: FS37F LIMS ID: 03-10325

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 12:46 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO Sulfur Cleanup: YES Florisil Cleanup: YES QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 13.4 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.6 Percent Moisture: 29.5%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	1.9	< 1.9
72-54-8	4,4'-DDD	1.9	< 1.9
50-29-3	4,4'-DDT	1.9	< 1.9 U
118-74-1	Hexachlorobenzene	0.93	< 0.93
87-68-3	Hexachlorobutadiene	0.93	< 0.93 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	69.8%
Tetrachlorometaxylene	44.5%

VALIDATED PSEP LEVEL 4 (Full)

rage I OI I

Lab Sample ID: FS37G LIMS ID: 03-10326 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 13:23 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO Sulfur Cleanup: YES Florisil Cleanup: YES Sample ID: GPA-035D-D SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 13.2 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.7 Percent Moisture: 18.2%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	1.9	< 1.9 U	F
72-54-8	4,4'-DDD	1.9	< 1.9 U	1
50-29-3	4,4'-DDT	1.9	< 1.9 U	
118-74-1	Hexachlorobenzene	0.94	< 0.94 U	- 1
87-68-3	Hexachlorobutadiene	0.94	< 0.94 U	V

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	40.8%
Tetrachlorometaxylene	37.2%

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FS37H LIMS ID: 03-10327

Matrix: Sediment

Data Release Authorized Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 14:00 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES

Florisil Cleanup: YES

Sample ID: GPA-015D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 6.8

Percent Moisture: 92.3%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	2.0	< 2.0
72-54-8	4,4'-DDD	2.0	< 2.0
50-29-3	4,4'-DDT	2.0	< 2.0 U
118-74-1	Hexachlorobenzene	2.0	< 2.0 Y
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	67.0%
Tetrachlorometaxylene	NR

VALIDATED **PSEP LEVEL 4 (Full)**

Sample ID: GPA-015D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

Lab Sample ID: FS37I LIMS ID: 03-10328

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 14:36

Date Received: 07/31/03

Date Sampled: 07/29/03

020030

Sample Amount: 12.6 g-dry-wt Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

Instrument/Analyst: ECD3/JBG GPC Cleanup: NO

Sulfur Cleanup: YES Florisil Cleanup: YES

pH: 7.4 Percent Moisture: 88.7%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	2.0	< 2.0
72-54-8	4,4'-DDD	2.0	< 2.0
50-29-3	4,4'-DDT	14	< 14 Y
118-74-1	Hexachlorobenzene	3.4	<'3.4 Y
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	71.8%

VALIDATED **PSEP LEVEL 4 (Full)**

Page 1 of 1

Lab Sample ID: FS37J LIMS ID: 03-10329 Matrix: Sediment

Data Release Authorized:
Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 15:13 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO Sulfur Cleanup: YES Florisil Cleanup: YES Sample ID: GPA-015D-C SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03
Date Received: 07/31/03

Sample Amount: 13.1 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.5 Percent Moisture: 37.2%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	1.9	< 1.9
72-54-8	4,4'-DDD	1.9	< 1.9
50-29-3	4,4'-DDT	1.9	< 1.9 U
118-74-1	Hexachlorobenzene	0.96	< 0.96
87-68-3	Hexachlorobutadiene	0.96	< 0.96 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	109%
Tetrachlorometaxylene	58.2%

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FS37K

LIMS ID: 03-10330 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 15:50 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES

Florisil Cleanup: YES

Sample ID: GPA-015D-D SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 13.3 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.9

Percent Moisture: 19.8%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	1.9	< 1.9 U
72-54-8	4,4'-DDD	1.9	< 1.9 U
50-29-3	4,4'-DDT	1.9	< 1.9 U
118-74-1	Hexachlorobenzene	0.94	< 0.94 U
87-68-3	Hexachlorobutadiene	0.94	< 0.94 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	50.0%
Tetrachlorometaxylene	53.5%

VALIDATED PSEP LEVEL 4 (Full)

Lab Sample ID: FS37L

LIMS ID: 03-10331

Matrix: Sediment

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Data Release Authorized Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 16:27 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES Florisil Cleanup: YES

Sample ID: GPA-045D-A

SAMPLE

Sample Amount: 12.5 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.2 Percent Moisture: 90.2%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	5.9	< 5.9 Y
72-54-8	4,4'-DDD	2.0	< 2.0
50-29-3	4,4'-DDT	2.0	< 2.0 U
118-74-1	Hexachlorobenzene	1.5	< 1.5 Y
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

—	
Decachlorobiphenyl	NR
Tetrachlorometaxylene	71.5%

VALIDATED **PSEP LEVEL 4 (Full)**

> Quality by Design October 8, 2003

Page 1 of 1

Lab Sample ID: FS37M

LIMS ID: 03-10332

Matrix: Sediment Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 20:44 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES

Florisil Cleanup: YES

Sample ID: GPA-045D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 12.7 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.7

Percent Moisture: 83.4%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	5.2	< 5.2 Y
72-54-8	4,4'-DDD	2.0	< 2.0
50-29-3	4,4'-DDT	2.0	< 2.0 U
118-7 4- 1	Hexachlorobenzene	0.98	< 0.98
87-68-3	Hexachlorobutadiene	0.98	< 0.98 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	132%
Tetrachlorometaxvlene	58.8%

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FS37N LIMS ID: 03-10333

Matrix: Sediment

Data Release Authorized: Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 21:20 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES Florisil Cleanup: YES Sample ID: GPA-045D-C SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 13.7 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.8

Percent Moisture: 22.7%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	1.8	< 1.8
72-54-8	4,4'-DDD	1.8	< 1.8 U
50-29-3	4,4'-DDT	1.8	< 1.8 U
118-74-1	Hexachlorobenzene	0.91	< 0.91
87-68-3	Hexachlorobutadiene	0.91	< 0.91 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	54.5%
Tetrachlorometaxvlene	58.8%

VALIDATED PSEP LEVEL 4 (Full)

Sample ID: GPA-045D-D SAMPLE

Lab Sample ID: FS370 LIMS ID: 03-10334

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 21:57 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES Florisil Cleanup: YES

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 13.7 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 8.3

Percent Moisture: 17.7%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	1.8	< 1.8 U
72-54-8	4,4'-DDD	1.8	< 1.8 U
50-29-3	4,4'-DDT	1.8	< 1.8 U
118-74-1	Hexachlorobenzene	0.91	< 0.91 U
87-68-3	Hexachlorobutadiene	0.91	< 0.91 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	53.5%
Tetrachlorometaxylene	55.8%

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FS37P

LIMS ID: 03-10335 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03

Date Analyzed: 08/21/03 22:34 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES

Florisil Cleanup: YES

Sample ID: GPA-055D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 12.7 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

pH: 7.5

Percent Moisture: 75.8%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	11	< 11 Y
72-54-8	4,4'-DDD	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
118-74-1	Hexachlorobenzene	3.1	< 3.1 Y
87-68-3	Hexachlorobutadiene	0.98	< 0.98 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	88.2%

VALIDATED **PSEP LEVEL 4 (Full)** Quality by Design October 8, 2003 000074

Sample ID: GPA-055D-B SAMPLE

Lab Sample ID: FS37Q LIMS ID: 03-10336

LIMS ID: 03-10336 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 23:10 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO Sulfur Cleanup: YES

Florisil Cleanup: YES

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 13.3 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 7.6
Percent Moisture: 29.5%

CAS Number	Analyte	RL	Result
72-55-9	4,4'-DDE	1.9	< 1.9
72-54-8	4,4'-DDD	1.9	< 1.9 U
50-29-3	4,4'-DDT	2.5	< 2.5 Y
118-74-1	Hexachlorobenzene	3.4	< 3.4 Y
87-68-3	Hexachlorobutadiene	0.94	< 0.94 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	67.0%
Tetrachlorometaxylene	53.2%

VALIDATED
PSEP LEVEL 4 (Full)

Quality by Design
October 802063

Sample ID: GPA-055D-C SAMPLE

Lab Sample ID: FS37R LIMS ID: 03-10337

Matrix: Sediment

Data Release Authorized Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/21/03 23:47 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES Florisil Cleanup: YES QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 13.5 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.5 Percent Moisture: 19.3%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	1.8	< 1.8 U	T
72-54-8	4,4'-DDD	1.8	< 1.8 U	1
50-29-3	4,4'-DDT	1.8	< 1.8 U	- 1
118-74-1	Hexachlorobenzene	0.93	< 0.93 U	1
87-68-3	Hexachlorobutadiene	0.93	< 0.93 U	J/

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	38.8%
Tetrachlorometaxylene	29 2%

VALIDATED PSEP LEVEL 4 (Full)

Lab Sample ID: FS37S

LIMS ID: 03-10338 Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/07/03 Date Analyzed: 08/22/03 00:23 Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO
Sulfur Cleanup: YES
Florisil Cleanup: YES

Sample ID: GPA-055D-D SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 13.1 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.5 Percent Moisture: 16.1%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	1.9	< 1.9 U	T
72-54-8	4,4'-DDD	1.9	< 1.9 U	,
50-29-3	4,4'-DDT	1.9	< 1.9 U	- 1
118-74-1	Hexachlorobenzene	0.96	< 0.96 U	- 1
87-68-3	Hexachlorobutadiene	0.96	< 0.96 U	V

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	43.8%
Tetrachlorometaxylene	37.8%

VALIDATED PSEP LEVEL 4 (Full)

Page 1 of 1

Lab Sample ID: FT03A LIMS ID: 03-10747

Matrix: Sediment

Data Release Authorized:

Reported: 08/26/03

Date Extracted: 08/13/03 Date Analyzed: 08/22/03 18:04

Instrument/Analyst: ECD3/JBG

GPC Cleanup: NO

Sulfur Cleanup: YES

Florisil Cleanup: YES

Sample ID: GPA-02 4.0-6.5 SAMPLE

QC Report No: FT03-Anchor Environmental

Project: 020030-02

Georgia Pacific ASB

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00

pH: 7.8

Percent Moisture: 78.1%

CAS Number	Analyte	RL	Result	
72-55-9	4,4'-DDE	3.7	< 3.7 Y	I
72-54-8	4,4'-DDD	5.1	< 5.1 Y	,
50-29-3	4,4'-DDT	3.1	< 3.1 Y	- }
118-74-1	Hexachlorobenzene	1.2	< 1.2 Y	- 1
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U	V

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	40.2%

VALIDATED PSEP LEVEL 4 (Full)

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-035D-B SAMPLE

Lab Sample ID: FS37E LIMS ID: 03-10324

Matrix: Sediment

Data Release Authorized:

Date Extracted: 08/07/03

Reported: 08/25/03

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 7.1
Percent Moisture: 87.4%

Date Analyzed: 08/12/03 19:55 Instrument/Analyst: ECD1/YZ GPC Cleanup: NO Sulfur Cleanup: YES

Acid Cleanup: YES

CAS Number Analy

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	270	< 270 Y
11097-69-1	Aroclor 1254	330	< 330 Y
11096-82-5	Aroclor 1260	360	< 360 Y
11104-28-2	Aroclor 1221	4.0	< 40 U
11141-16-5	Aroclor 1232	20	< 20 Ŭ

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	60.5%
Tetrachlorometaxylene	103%

VALIDATED PSEP LEVEL 4 (Full)

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

SAMPLE

Lab Sample ID: FS37F LIMS ID: 03-10325 Matrix: Sediment

Data Release Authorized:

Reported: 08/25/03

Date Extracted: 08/07/03 Date Analyzed: 08/12/03 20:23 Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO Sulfur Cleanup: YES Acid Cleanup: YES

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 13.4 g-dry-wt

Sample ID: GPA-035D-C

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.6 Percent Moisture: 29.5%

CAS Number	Analyte	RL	Result	
12674-11-2	Aroclor 1016	19	< 19 U	F
53469-21-9	Aroclor 1242	19	< 19 U	1
12672-29-6	Aroclor 1248	110	< 110 Y	- 1
11097-69-1	Aroclor 1254	39	< 39 Y	- [
11096-82-5	Aroclor 1260	70	< 70 Y	1
11104-28-2	Aroclor 1221	37	< 37 U	(
11141-16-5	Aroclor 1232	19	< 19 U	J

Reported in µg/kg (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	3	7.0%
Tetrachlorometaxyl	ene 4	2.5%

VALIDATED PSÊP LEVEL 4 (Full) Quality by Design October 8,2003

FORM I

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Data Release Authorized:

Date Analyzed: 08/12/03 20:51

Instrument/Analyst: ECD1/YZ

Date Extracted: 08/07/03

Page 1 of 1

Lab Sample ID: FS37G

LIMS ID: 03-10326

Reported: 08/25/03

Matrix: Sediment

GPC Cleanup: NO Sulfur Cleanup: YES

Acid Cleanup: YES

Sample ID: GPA-035D-D SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03

Date Received: 07/31/03

Sample Amount: 13.2 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.7 Percent Moisture: 18.2%

CAS Number	Analyte	RL	Result	
12674-11-2	Aroclor 1016	19	< 19 U	
53469-21-9	Aroclor 1242	19	< 19 U	
12672-29-6	Aroclor 1248	19	< 19 U	
11097-69-1	Aroclor 1254	19	< 19 U	
11096-82-5	Aroclor 1260	19	< 19 U	
11104-28-2	Aroclor 1221	38	< 38 U	
11141-16-5	Aroclor 1232	19	< 19 U	ı

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobipheny	1	49.0%
Tetrachlorometaxy	lene	39.5%

VALIDATED PSEP LEVEL 4 (Full)

> Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-015D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

Lab Sample ID: FS37H LIMS ID: 03-10327

Matrix: Sediment

Data Release Authorized:

Reported: 08/25/03

020030 Date Sampled: 07/29/03 Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/12/03 21:19

Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO

Sulfur Cleanup: YES Acid Cleanup: YES Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 6.8

Percent Moisture: 92.3%

CAS Number	Analyte	RL	Result	
12674-11-2	Aroclor 1016	20	< 20 U	T
53469-21-9	Aroclor 1242	20	< 20 U	,
12672-29-6	Aroclor 1248	79	< 79 Y	- 1
11097-69-1	Aroclor 1254	53	< 53 Y	- 1
11096-82-5	Aroclor 1260	79	< 79 Y	
11104-28-2	Aroclor 1221	40	< 40 U	
11141-16-5	Aroclor 1232	20	< 20 U	J

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	19.0%
Tetrachlorometaxylene	25.2%

VALIDATED PSEP LEVEL 4 (Full)

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-015D-B SAMPLE

Lab Sample ID: FS37I

LIMS ID: 03-10328 Matrix: Sediment

Data Release Authorized:

Reported: 08/25/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03
Date Received: 07/31/03

Date Extracted: 08/07/03

Date Analyzed: 08/13/03 18:50 Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO

Sulfur Cleanup: YES Acid Cleanup: YES

Sample Amount: 12.6 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 5.00

pH: 7.4

Percent Moisture: 88.7%

CAS Number	Analyte		RL	Result
12674-11-2	Aroclor 1016		99	< 99 U
53469-21-9	Aroclor 1242		99	< 99 U
12672-29-6	Aroclor 1248		1,300	< 1,300 Y
11097-69-1	Aroclor 1254		1,000	< 1,000 Y
11096-82-5	Aroclor 1260		710	< 710 Y
11104-28-2	Aroclor 1221	*	200	< 200 U
11141-16-5	Aroclor 1232		99	< 99 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	70.0%

VALIDATED PSEP LEVEL 4 (Full)

> Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-015D-C SAMPLE

Lab Sample ID: FS37J

LIMS ID: 03-10329 Matrix: Sediment

Data Release Authorized:

Date Analyzed: 08/12/03 22:15

Instrument/Analyst: ECD1/YZ

Reported: 08/25/03

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Date Extracted: 08/07/03

Sample Amount: 13.1 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

GPC Cleanup: NO

Sulfur Cleanup: YES Acid Cleanup: YES

pH: 7.5 Percent Moisture: 37.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	120	< 120 Y
11097-69-1	Aroclor 1254	44	< 44 Y
11096-82-5	Aroclor 1260	160	< 160 Y
11104-28-2	Aroclor 1221	38	< 38 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	51.5%
Tetrachlorometaxylene	49.2%

VALIDATED **PSEP LEVEL 4 (Full)**

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-015D-D

SAMPLE

Lab Sample ID: FS37K LIMS ID: 03-10330

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized:

Date Sampled: 07/29/03

Reported: 08/25/03

Date Received: 07/31/03

Date Extracted: 08/07/03 Date Analyzed: 08/12/03 22:43 Instrument/Analyst: ECD1/YZ

Sample Amount: 13.3 g-dry-wt

GPC Cleanup: NO

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

Sulfur Cleanup: YES Acid Cleanup: YES

pH: 7.9

Percent Moisture: 19.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	< 19 U
11096-82-5	Aroclor 1260	19	< 19 U
11104-28-2	Aroclor 1221	 3.8	< 38 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	62.0%
Tetrachlorometaxylene	56.0%

VALIDATED PSEP LEVEL 4 (Full)

> Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET

PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-045D-A

SAMPLE

Lab Sample ID: FS37L LIMS ID: 03-10331

Matrix: Sediment

Data Release Authorized:

020030 Date Sampled: 07/29/03 Date Received: 07/31/03

Reported: 08/25/03 Date Extracted: 08/07/03

Sample Amount: 12.5 g-dry-wt

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

Date Analyzed: 08/12/03 23:11 Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO

Dilution Factor: 1.00

Final Extract Volume: 2.5 mL

Sulfur Cleanup: YES Acid Cleanup: YES

pH: 7.2 Percent Moisture: 90.2%

CAS Number	Analyte		RL	Result
12674-11-2	Aroclor 1016		20	< 20 U
53469-21-9	Aroclor 1242		20	< 20 Ŭ
12672-29-6	Aroclor 1248		330	< 330 Y
11097-69-1	Aroclor 1254		130	< 130 Y
11096-82-5	Aroclor 1260		370	< 370 Y
11104-28-2	Aroclor 1221	+5.	40	< 40 U
11141-16-5	Aroclor 1232		20	< 20 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	62.8%
Tetrachlorometaxylene	71.0%

VALIDATED PSEP LEVEL 4 (Full) Quality by Design

October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Data Release Authorized:

Date Analyzed: 08/13/03 01:31

Instrument/Analyst: ECD1/YZ

Date Extracted: 08/07/03

Page 1 of 1

Sample ID: GPA-045D-B SAMPLE

Sample Amount: 12.7 g-dry-wt

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

GPC Cleanup: NO

Sulfur Cleanup: YES
Acid Cleanup: YES

Lab Sample ID: FS37M

LIMS ID: 03-10332

Reported: 08/25/03

Matrix: Sediment

pH: 7.7
Percent Moisture: 83.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 Ŭ
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	320	< 320 Y
11097-69-1	Aroclor 1254	160	< 160 Y
11096-82-5	Aroclor 1260	330	< 330 Y
11104-28-2	Aroclor 1221	3.9	< 39 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	66.0%
Tetrachlorometaxylene	65.0%

VALIDATED
PSEP LEVEL 4 (Full)

Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-045D-C SAMPLE

Lab Sample ID: FS37N LIMS ID: 03-10333

Matrix: Sediment

Data Release Authorized:

Reported: 08/25/03

Date Extracted: 08/07/03 Date Analyzed: 08/13/03 01:59 Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO Sulfur Cleanup: YES Acid Cleanup: YES

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 13.7 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.8 Percent Moisture: 22.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	18	< 18 U
53469-21-9	Aroclor 1242	18	< 18 U
12672-29-6	Aroclor 1248	53	< 53 Y
11097-69-1	Aroclor 1254	20	< 20 Y
11096-82-5	Aroclor 1260	56	< 56 Y
11104-28-2	Aroclor 1221	3.5	< 36 U
11141-16-5	Aroclor 1232	18	< 18 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	55.2%
	33.20
Tetrachlorometaxylene	48.0%

VALIDATED PSEP LEVEL 4 (Full)

> Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-045D-D

SAMPLE

Lab Sample ID: FS370 LIMS ID: 03-10334

Matrix: Sediment

Date Extracted: 08/07/03

Date Analyzed: 08/13/03 02:27

Instrument/Analyst: ECD1/YZ

Data Release Authorized:

Reported: 08/25/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Sample Amount: 13.7 g-dry-wt Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

GPC Cleanup: NO

Sulfur Cleanup: YES Acid Cleanup: YES

pH: 8.3

Percent Moisture: 17.7%

CAS Number	Analyte		RL	Result
12674-11-2	Aroclor 1016		18	< 18 U
53469-21-9	Aroclor 1242		18	< 18 U
12672-29-6	Aroclor 1248		18	< 18 U
11097-69-1	Aroclor 1254		18	< 18 U
11096-82-5	Aroclor 1260		18	< 18 U
11104-28-2	Aroclor 1221		36	< 36 U
11141-16-5	Aroclor 1232	• •	18	< 18 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	64.2%
Tetrachlorometaxylene	53.5%

VALIDATED PSEP LEVEL 4 (Full)

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-055D-A

SAMPLE

Lab Sample ID: FS37P LIMS ID: 03-10335

Matrix: Sediment

Data Release Authorized: Reported: 08/25/03

Date Extracted: 08/07/03

Date Analyzed: 08/13/03 02:55

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

ate Received: 07/31/03

Sample Amount: 12.7 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

Instrument/Analyst: ECD1/YZ
GPC Cleanup: NO
Cultur Cleanup: YES

Sulfur Cleanup: YES Acid Cleanup: YES

pH: 7.5 Percent Moisture: 75.8%

CAS Number	Analyte	RL	Result	
12674-11-2	Aroclor 1016	20	< 20 U	J
53469-21-9	Aroclor 1242	20	< 20 U	1
12672-29-6	Aroclor 1248	280	< 280 Y	- 1
11097-69-1	Aroclor 1254	100	< 100 Y	- 1
11096-82-5	Aroclor 1260	94	< 94 Y	- 1
11104-28-2	Aroclor 1221	3 9	< 39 U	
11141-16-5	Aroclor 1232	20	< 20 U	J

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	44.0%
Tetrachlorometaxylene	NR

VALIDATED
PSEP LEVEL 4 (Full)

Quality by Design
October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: FS37Q

LIMS ID: 03-10336 Matrix: Sediment

Data Release Authorized:

Reported: 08/25/03

Date Extracted: 08/07/03

Date Analyzed: 08/13/03 03:23 Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO

Sulfur Cleanup: YES Acid Cleanup: YES

Sample ID: GPA-055D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

02003**0**

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 13.3 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

pH: 7.6 Percent Moisture: 29.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	73	< 73 Y
11097-69-1	Aroclor 1254	33	< 33 Y
11096-82-5	Aroclor 1260	. 71	< 71 Y
11104-28-2	Aroclor 1221	38	< 38 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobipheny:	1 57.0%
Tetrachlorometaxy!	lene 56.0%

VALIDATED PSEP LEVEL 4 (Full)

> Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Page 1 of 1

Lab Sample ID: FS37R

LIMS ID: 03-10337 Matrix: Sediment

Data Release Authorized:

Reported: 08/25/03

Date Extracted: 08/07/03 Date Analyzed: 08/13/03 03:51 Instrument/Analyst: ECD1/YZ

GPC Cleanup: NO Sulfur Cleanup: YES Acid Cleanup: YES Sample ID: GPA-055D-C SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Sample Amount: 13.5 g-dry-wt

Final Extract Volume: 2.5 mL Dilution Factor: 1.00

> pH: 7.5 Percent Moisture: 19.3%

CAS Number	Analyte	RL	Result	
12674-11-2	Aroclor 1016	18	< 18 U	J
53469-21-9	Aroclor 1242	18	< 18 U	1
12672-29-6	Aroclor 1248	18	< 18 U	
11097-69-1	Aroclor 1254	18	< 18 U	1
11096-82-5	Aroclor 1260	18	< 18 U	1
11104-28-2	Aroclor 1221	 37	< 37. U	
11141-16-5	Aroclor 1232	1.8	< 18 U	$\iota \nu$

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decad	chlor	obi	pheny	yl		38.	.5%
Tetra	chlo	rome	etax	ylene	2	34.	08

VALIDATED PSEP LEVEL 4 (Full)

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-055D-D

SAMPLE

Lab Sample ID: FS37S LIMS ID: 03-10338

Matrix: Sediment

Data Release Authorized:

Date Extracted: 08/07/03

Date Analyzed: 08/13/03 04:19

Instrument/Analyst: ECD1/YZ

Reported: 08/25/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03

Date Received: 07/31/03

Sample Amount: 13.1 g-dry-wt

Final Extract Volume: 2.5 mL

Dilution Factor: 1.00

GPC Cleanup: NO

Sulfur Cleanup: YES Acid Cleanup: YES

pH: 7.5 Percent Moisture: 16.1%

CAS Number	Analyte		RL	Re	esu!	lt
12674-11-2	Aroclor 1016		19	<	19	U
53469-21-9	Aroclor 1242		19	<	19	U
12672-29-6	Aroclor 1248		19	<	19	U
11097-69-1	Aroclor 1254		19	<	19	U
11096-82-5	Aroclor 1260		19	<	19	U
11104-28-2	Aroclor 1221		3.8	<	38	U.
11141-16-5	Aroclor 1232		19	<	19	U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	53.0%
Tetrachlorometaxylene	47.2%

VALIDATED PSEP LEVEL 4 (Full) Quality by Design October 8, 2003

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: GPA-02 4.0-6.5

SAMPLE

Lab Sample ID: FT03A LIMS ID: 03-10747

Matrix: Sediment

Data Release Authorized:

Date Extracted: 08/13/03

Date Analyzed: 08/20/03 12:30

Instrument/Analyst: ECD1/YZ

Reported: 08/22/03

GPC Cleanup: NO Sulfur Cleanup: YES

Acid Cleanup: YES

QC Report No: FT03-Anchor Environmental

Project: 020030-02

Georgia Pacific ASB

Date Sampled: 07/28/03 Date Received: 07/31/03

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

pH: 7.8
Percent Moisture: 78.1%

	Result	RL	e	Analyte	CAS Number
T	< 20 U	20	16	Aroclor 1016	12674-11-2
	< 20 U	20	42	Aroclor 1242	53469-21-9
1	< 260 Y	260	48	Aroclor 1248	12672-29-6
j	< 120 Y	120	54	Aroclor 1254	11097-69-1
	< 270 Y	270	60	Aroclor 1260	11096-82-5
1	< 40 U	40	21	Aroclor 1221	11104-28-2
W	< 20 U	20		Aroclor 1232	11141-16-5

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	29.2%

VALIDATED
PSEP LEVEL 4 (Full)

TOTAL METALS

Page 1 of 1

Sample ID: GPA-025D-A

SAMPLE

Lab Sample ID: FS37A LIMS ID: 03-10320

Matrix: Sediment

Data Release Authorized; Reported: 08/07/03

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Percent Total Solids: 14.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
						· · · · · · · · · · · · · · · · · · ·		
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	30	30	UJ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	30	30	Ü
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	1	13	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	1	69	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	10	20	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.3	2.6	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	7	27	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	. 2	2	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	. 4	438	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED **PSEP LEVEL 4 (Full)**

TOTAL METALS Page 1 of 1

Sample ID: GPA-025D-B

SAMPLE

Lab Sample ID: FS37B LIMS ID: 03-10321

Matrix: Sediment

Data Release Authorized: Reported: 08/07/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/25/03 Date Received: 07/31/03

Percent Total Solids: 22.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	20	20	UF
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	20	20	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.8	8.5	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.8	87.5	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	8	54	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.2	6.0	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	4	45	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	1	1	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	3	474	
3050B 3050B 3050B CLP 3050B 3050B	08/05/03 08/05/03 08/05/03 08/05/03 08/05/03 08/05/03	6010B 6010B 6010B 7471A 6010B	08/07/03 08/07/03 08/07/03 08/05/03 08/07/03 08/07/03	7440-43-9 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7440-22-4	Cadmium Copper Lead Mercury Nickel Silver	0.8 0.8 8 0.2 4	8.5 87.5 54 6.0 45	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full)

TOTAL METALS
Page 1 of 1

Lab Sample ID: FS37C

LIMS ID: 03-10322

Matrix: Sediment

Data Release Authorized: Reported: 08/07/03

Percent Total Solids: 84.1%

Sample ID: GPA-025D-D

SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	U 8
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.2	0.3	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.2	8.9	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	2	3	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.05	0.13	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	14	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.3	0.3	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.7	22.8	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED
PSEP LEVEL 4 (Full)

Quality by Design
October 8, 2003

000115

TOTAL METALS
Page 1 of 1

Lab Sample ID: FS37D LIMS ID: 03-10323

Matrix: Sediment

Data Release Authorized:

Reported: 08/07/03

Sample ID: GPA-035D-A SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Percent Total Solids: 9.2%

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
08/05/03	6010B	08/07/03	7440-36-0	Antimony	50	50	ひょ
08/05/03	6010B	08/07/03	7440-38-2	Arsenic	50	50	U
08/05/03	6010B	08/07/03	7440-43-9	Cadmium	2	21	
08/05/03	6010B	08/07/03	7440-50-8	Copper	2	75	
08/05/03	6010B	08/07/03	7439-92-1	Lead	20	20	
08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.5	1.9	
08/05/03	6010B	08/07/03	7440-02-0	Nickel	10	40	
08/05/03	6010B	08/07/03	7440-22-4	Silver	. 3	3	U
08/05/03	6010B	08/07/03	7440-66-6	Zinc	6	544	
	08/05/03 08/05/03 08/05/03 08/05/03 08/05/03 08/05/03 08/05/03	Date Method 08/05/03 6010B 08/05/03 6010B 08/05/03 6010B 08/05/03 6010B 08/05/03 6010B 08/05/03 7471A 08/05/03 6010B 08/05/03 6010B	Date Method Date 08/05/03 6010B 08/07/03 08/05/03 7471A 08/05/03 08/05/03 6010B 08/07/03 08/05/03 6010B 08/07/03 08/05/03 6010B 08/07/03	Date Method Date CAS Number 08/05/03 6010B 08/07/03 7440-36-0 08/05/03 6010B 08/07/03 7440-38-2 08/05/03 6010B 08/07/03 7440-43-9 08/05/03 6010B 08/07/03 7440-50-8 08/05/03 6010B 08/07/03 7439-92-1 08/05/03 7471A 08/05/03 7439-97-6 08/05/03 6010B 08/07/03 7440-02-0 08/05/03 6010B 08/07/03 7440-22-4	Date Method Date CAS Number Analyte 08/05/03 6010B 08/07/03 7440-36-0 Antimony 08/05/03 6010B 08/07/03 7440-38-2 Arsenic 08/05/03 6010B 08/07/03 7440-43-9 Cadmium 08/05/03 6010B 08/07/03 7440-50-8 Copper 08/05/03 6010B 08/07/03 7439-92-1 Lead 08/05/03 7471A 08/05/03 7439-97-6 Mercury 08/05/03 6010B 08/07/03 7440-02-0 Nickel 08/05/03 6010B 08/07/03 7440-22-4 Silver	Date Method Date CAS Number Analyte RL 08/05/03 6010B 08/07/03 7440-36-0 Antimony 50 08/05/03 6010B 08/07/03 7440-38-2 Arsenic 50 08/05/03 6010B 08/07/03 7440-43-9 Cadmium 2 08/05/03 6010B 08/07/03 7440-50-8 Copper 2 08/05/03 6010B 08/07/03 7439-92-1 Lead 20 08/05/03 7471A 08/05/03 7439-97-6 Mercury 0.5 08/05/03 6010B 08/07/03 7440-02-0 Nickel 10 08/05/03 6010B 08/07/03 7440-22-4 Silver 3	Date Method Date CAS Number Analyte RL mg/kg-dry 08/05/03 6010B 08/07/03 7440-36-0 Antimony 50 50 08/05/03 6010B 08/07/03 7440-38-2 Arsenic 50 50 08/05/03 6010B 08/07/03 7440-43-9 Cadmium 2 21 08/05/03 6010B 08/07/03 7440-50-8 Copper 2 75 08/05/03 6010B 08/07/03 7439-92-1 Lead 20 20 08/05/03 7471A 08/05/03 7439-97-6 Mercury 0.5 1.9 08/05/03 6010B 08/07/03 7440-02-0 Nickel 10 40 08/05/03 6010B 08/07/03 7440-22-4 Silver 3 3

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED
PSEP LEVEL 4 (Full)

Quality by Design
October 8, 2003
000116

TOTAL METALS

Page 1 of 1

Sample ID: GPA-035D-B

SAMPLE

Lab Sample ID: FS37E

LIMS ID: 03-10324 Matrix: Sediment

Data Release Authorized

Reported: 08/07/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Percent Total Solids: 13.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	40	40	UF
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	40	40	Ū
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	1	9	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	1	70	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	10	40	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.4	5.3	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	7	25	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	2	2	Ū
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	4	422	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full)

TOTAL METALS
Page 1 of 1

Lab Sample ID: FS37F QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Sample ID: GPA-035D-C

SAMPLE

Date Sampled: 07/28/03 Date Received: 07/31/03

LIMS ID: 03-10325
Matrix: Sediment
Data Release Authorized:

Percent Total Solids: 70.2%

Reported: 08/07/03

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20505	00/05/00	C010D	00/07/00	7440 26 0				
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	/	/	Ud
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	7	7	Ü
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.3	0.9	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.3	15.8	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	3	6	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.06	0.48	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	18	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.4	0.4	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.8	109	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED PSEP LEVEL 4 (Full)

TOTAL METALS
Page 1 of 1

Sample ID: GPA-035D-D SAMPLE

Lab Sample ID: FS37G LIMS ID: 03-10326

Matrix: Sediment

Data Release Authorized:

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

020030

Date Sampled: 07/28/03 Date Received: 07/31/03

Percent Total Solids: 83.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
							19, 19 11	
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	UJ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	Ü
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.2	0.2	Ü
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.2	10.3	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	2	3	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.05	0.05	Ū
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	24	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.3	0.3	Ü
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.7	32.4	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED
PSEP LEVEL 4 (Full)
FO
Quality by Design

October 8, 2003

TOTAL METALS
Page 1 of 1

--9-

Lab Sample ID: FS37H LIMS ID: 03-10327

Matrix: Sediment
Data Release Authorized:

Reported: 08/07/03

Percent Total Solids: 6.6%

Sample ID: GPA-015D-A

SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
						· · · · · · · · · · · · · · · · · · ·		
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	80	80	U T
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	80	80	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	3	18	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	3	75	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	30	30	U
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.7	1.1	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	20	30	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	5	5	Ü
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	9	616	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED
PSEP LEVEL 4 (Full)

TOTAL METALS

Page 1 of 1

Sample ID: GPA-015D-B SAMPLE

Lab Sample ID: FS37I LIMS ID: 03-10328

Matrix: Sediment

Data Release Authorized: Reported: 08/07/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Percent Total Solids: 11.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Anni	Dr	/1	^
me cn	Date	Mechod	Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	40	40	UF
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	40	40	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	2	18	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	2	91	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	20	40	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.4	7.0	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	8	41	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	2	2	Ū
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	5	667	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full)

TOTAL METALS Page 1 of 1 Sample ID: GPA-015D-C SAMPLE

Lab Sample ID: FS37J LIMS ID: 03-10329

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized Reported: 08/07/03

Date Sampled: 07/29/03 Date Received: 07/31/03

Percent Total Solids: 62.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	8	8	 บ ฮ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	8	8	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.3	1.3	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.3	22.6	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	3	8	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.06	0.60	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	2	27	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.5	0.5	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.9	77.8	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full) Quality by Design October 8, 2003 000122

TOTAL METALS
Page 1 of 1

Sample ID: GPA-015D-D

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

SAMPLE

Lab Sample ID: FS37K

LIMS ID: 03-10330

Matrix: Sediment
Data Release Authorized
Reported: 08/07/03

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Percent Total Solids: 79.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	ひず
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.2	0.4	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.2	14.0	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	2	3	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.06	0.06	U
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	20	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.4	0.4	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.7	29.1	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED
PSEP LEVEL 4 (Full)

TOTAL METALS Page 1 of 1 Sample ID: GPA-045D-A

SAMPLE

Lab Sample ID: FS37L LIMS ID: 03-10331

Matrix: Sediment

Project: Georgia Pacific ASB 020030

QC Report No: FS37-Anchor Environmental

Date Sampled: 07/29/03 Date Received: 07/31/03

Data Release Authorized Reported: 08/07/03

Percent Total Solids: 10.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	n-ti-on-	F.O.	50	ロナ
3050B	08/05/03	6010B	08/07/03	7440-38-0	Antimony Arsenic	50 50	50 50	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	2	9	Ü
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	2	82	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	20	50	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.4	7.7	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	9	28	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	3	. 3	U -
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	5	501	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED **PSEP LEVEL 4 (Full)** Quality by Design October 8, 2003

TOTAL METALS

Page 1 of 1

Lab Sample ID: FS37M

LIMS ID: 03-10332

Matrix: Sediment

Data Release Authorized Reported: 08/07/03

Percent Total Solids: 16.6%

Sample ID: GPA-045D-B

SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	30	30	U T
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	30	30	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	1	11	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	1	104	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	10	40	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.3	5.1	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	6	39	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	2	2	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	3	659	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED **PSEP LEVEL 4 (Full)** Quality by Design October 8, 2003

TOTAL METALS

Page 1 of 1

Sample ID: GPA-045D-C

SAMPLE

Lab Sample ID: FS37N LIMS ID: 03-10333

Matrix: Sediment

Data Release Authorized Reported: 08/07/03

Project: Georgia Pacific ASB

QC Report No: FS37-Anchor Environmental

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Percent Total Solids: 76.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	UJ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.3	0.7	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.3	12.7	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	3	5	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.06	0.33	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	15	
3050B	08/05/03	6010B [°]	08/07/03	7440-22-4	Silver	0.4	0.4	Ü
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.8	36.8	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full)

> > Quality by Design October 8, 2003

> > > 000126

TOTAL METALS Page 1 of 1 Sample ID: GPA-045D-D SAMPLE

Lab Sample ID: FS370 LIMS ID: 03-10334

Matrix: Sediment

Data Release Authorized: Reported: 08/07/03

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/29/03 Date Received: 07/31/03

Percent Total Solids: 81.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
							_	
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	UJ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.2	0.3	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.2	11.3	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	2	3	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.04	0.04	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	21	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.4	0.4	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.7	27.6	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full) Quality by Design

October 8, 2003

000127

TOTAL METALS

Page 1 of 1

Sample ID: GPA-055D-A

SAMPLE

Lab Sample ID: FS37P LIMS ID: 03-10335

Matrix: Sediment

Data Release Authorized

Reported: 08/07/03

020030

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

Date Sampled: 07/30/03 Date Received: 07/31/03

Percent Total Solids: 24.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20500	00/05/03	6010B	08/07/03	7440-36-0	Antimony	20	20	UF
3050B	08/05/03		,		Antimony			
3050B	08/05/03	6010B	08/07/03	7440~38-2	Arsenic	20	20	Ü
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.8	3.5	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.8	29.6	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	8	12	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.2	0.4	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	4	14	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	1	1	U.
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	2	179	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full)

TOTAL METALS

Page 1 of 1

Lab Sample ID: FS37Q

LIMS ID: 03-10336 Matrix: Sediment

Data Release Authorized

Reported: 08/07/03

Percent Total Solids: 68.3%

Sample ID: GPA-055D-B SAMPLE

QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte		RL	mg/kg-dry	Q
							_	_	
3050B	08/05/03	6010B	08/07 / 03	7440-36-0	Antimony		7	7	UF
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic		7	7	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium		0.3	2.1	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper		0.3	25.7	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead		3	30	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury		0.06	0.68	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel		1	28	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	er permedia	0.4	0.4	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc		0.8	82.1	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED PSEP LEVEL 4 (Full) FO Quality by Design October 8, 2003 000129

TOTAL METALS

Page 1 of 1

Sample ID: GPA-055D-C

SAMPLE

Lab Sample ID: FS37R LIMS ID: 03-10337

QC Report No: FS37-Anchor Environmental Project: Georgia Pacific ASB

Matrix: Sediment

020030

Data Release Authorized

Reported: 08/07/03

Date Sampled: 07/30/03 Date Received: 07/31/03

Percent Total Solids: 79.9%

						-		
Prep	Prep	-	Analysis					_
Meth	Date	Method	Date	CAS Number	Analyte	RL	mg/kg-dry	<u>Q</u>
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	UJ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	U
3050B	08/05/03	60 1 0B	08/07/03	7440-43-9	Cadmium	0.2	0.5	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.2	11.1	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	2	3	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.04	0.05	
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	19	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.4	0 - 4	Ü
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.7	28.0	

U-Analyte undetected at given RL RL-Reporting Limit

> VALIDATED PSEP LEVEL 4 (Full) Quality by Design October 8, 2003

TOTAL METALS

Page 1 of 1

Sample ID: GPA-055D-D

SAMPLE

Lab Sample ID: FS37S

LIMS ID: 03-10338 Matrix: Sediment QC Report No: FS37-Anchor Environmental

Project: Georgia Pacific ASB

020030

Date Sampled: 07/30/03 Date Received: 07/31/03

Data Release Authorized Reported: 08/07/03

Percent Total Solids: 80.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	ŔĹ	mg/kg-dry	Q
20505	00/05/00	60100	00/07/00	7440 26 0				
3050B	08/05/03	6010B	08/07/03	7440-36-0	Antimony	6	6	UZ
3050B	08/05/03	6010B	08/07/03	7440-38-2	Arsenic	6	6	U
3050B	08/05/03	6010B	08/07/03	7440-43-9	Cadmium	0.2	0.3	
3050B	08/05/03	6010B	08/07/03	7440-50-8	Copper	0.2	13.5	
3050B	08/05/03	6010B	08/07/03	7439-92-1	Lead	2	3	
CLP	08/05/03	7471A	08/05/03	7439-97-6	Mercury	0.06	0.06	U
3050B	08/05/03	6010B	08/07/03	7440-02-0	Nickel	1	23	
3050B	08/05/03	6010B	08/07/03	7440-22-4	Silver	0.3	0.3	U
3050B	08/05/03	6010B	08/07/03	7440-66-6	Zinc	0.7	30:6	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED PSEP LEVEL 4 (Full) FD

TOTAL METALS

Page 1 of 1

Lab Sample ID: FT03A LIMS ID: 03-10747

Matrix: Sediment

Data Release Authorized

Reported: 08/15/03

Percent Total Solids: 21.9%

Sample ID: GPA-02 4.0-6.5

SAMPLE

QC Report No: FT03-Anchor Environmental

Project: 020030-02

Georgia Pacific ASB

Date Sampled: 07/28/03 Date Received: 07/31/03

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/12/03	6010B	08/14/03	7440-36-0	Antimony	20	20	u T
3050B	08/12/03	6010B	08/14/03	7440-38-2	Arsenic	20	20	Ü
3050B	08/12/03	6010B	08/14/03	7440-43-9	Cadmium	0.9	14.5	
3050B	08/12/03	6010B	08/14/03	7440-50-8	Copper	0.9	122	
3050B	08/12/03	6010B	08/14/03	7439-92-1	Lead	9	206	
CLP	08/12/03	7471A	08/14/03	7439-97-6	Mercury	0.6	20.2	
3050B	08/12/03	6010B	08/14/03	7440-02-0	Nickel	4	84	
3050B	08/12/03	601.0B	08/14/03	7440-22-4	Silver	1	1	U
3050B	08/12/03	6010B	08/14/03	7440-66-6	Zinc	3	3,500	

U-Analyte undetected at given RL RL-Reporting Limit

VALIDATED
PSEP LEVEL 4 (Full)
Figure
Quality by Design

SAMPLE DATA

TRIANGLE LABORATORIES, INC. LAB CONTROL SPIKE RECOVERY ANALYSIS AND COMPARISON

Project: 60851 Matrix: SAND Method: 8290

	W145402	₩145409		W145410		
	ID: TLI Blank	ID: TLI LCS		ID: TLI LCSD		Relative
Isomer	Sample	With Spike	Percent	Spike Dup	Percent	Percent
	(pg/g)	(pg/g)	Recovery	(pg/g)	Recovery	Difference
2378-TCDD	ND	37.6	94.0	37.7	94.4	0.42
12378-PeCDD	ND	183	91.5	185	92.4	0.98
123478-HxCDD	ND	200	100	193	96.3	3.77
123678-HxCDD	ND	206	103	210	105	1.92
123789-HxCDD	ND	216	108	215	108	0.0
1234678-HpCDD	ND	206	103	202	101 .	1.96
OCDD	ND	426	107	419	105	1.89
2378-TCDF	ND	40.4	101	41.0	103	1.96
12378-PeCDF	ND	181	90.3	174	86.9	3.84
23478-PeCDF	ND	200	99.8	187	93.3	6.73
123478-HxCDF	ND	204	102	199	99.4	2.58
123678-HxCDF	ND	211	106	206	103	2.87
234678-HxCDF	ND	219	109	219	109	0.0
123789-HxCDF	ND	239	119	234	117	1.69
1234678-HpCDF	ND	216	108	219	110	1.83
1234789-HpCDF	ND	231	116	230	115	0.87
OCDF	ND	406	102	387	96.6	5.44

ND: Not Detected
NA: Not Applicable
[..]: EMPC Value

MILES 4.22.16

GRY_PSUM v1.11

Date: 08/15/03

Processed By:

Percent Recovery QC Limits: 70 to 130 percent.

Relative Percent Difference QC Limits: +/- 20 percent.

Nominal Spike Levels:

TCDD/TCDF.:: 0.4 ng
PeCDD/PeCDF: 2.0 ng
HxCDD/HxCDF: 2.0 ng
HpCDD/HpCDF:: 2.0 ng
OCDD/OCDF.:: 4.0 ng

•		MIT3 Analys			
Data File Sample ID	W145402 TLI Blank	W14601 GPA-SD-C	0	W146006 CleanUp Blk	W145409 TLI LCS
Units Extraction Date Analysis Date Instrument Matrix Extraction Type	08/14/2003 W SAND	pg/g 08/08/20 08/15/20 W SEDIMEN	03 T	pg/g 08/09/2003 08/15/2003 W SAND	pg/g 08/08/2003 08/14/2003 W SAND
Analytes 2378-TCDD 12378-PeCDD 123478-HxCDD 123678-HxCDD 1234678-HxCDD 1234678-HpCDD 0CDD 2378-TCDF 123478-PeCDF 123478-PeCDF 123478-HxCDF 1234678-HxCDF 1234678-HxCDF 1234678-HpCDF 1234789-HpCDF	(0.2) (0.3) (0.3) (0.3) (0.3) (0.5) (0.7) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) (0.3) (0.4) (0.6) (0.2) (0.3) (0.3) (0.3) (0.3) (0.3)	14.4 72.8 377 329 309 1930 1580 364 {22.0} 29.3 26.2 {9.6} {10.9} (0.7) 27.0 {3.2} 35.2 20500 19630 24760 3100 1370 221 130 68.2		(0.1) (0.2) (0.2) (0.1) (0.1) (0.2) (0.4) (0.1) (0.09) (0.1) (0.09) (0.08) (0.09) (0.1) (0.1) (0.2) (0.3) (0.1) (0.2) (0.1) (0.2) (0.1) (0.2) (0.1)	37.6 183 200 206 216 206 426 40.4 181 200 204 211 219 239 216 231 406
Other Standards 37Cl-TCDD	Percent Recovery 69.1	Summary (% 56.7	Rec)	75.6	80.2
Other Standards 13C12-PeCDF 234 13C12-HxCDF 478 13C12-HxCDD 478 13C12-HpCDF 789	Percent Recovery 88.9 73.7 83.8 92.8	Summary (% 56.9 67.5 59.9 45.7	Rec)	74.4 101 95.6 98.7	104 86.5 99.3 116
Other Standards 13C12-HxCDF 789 13C12-HxCDF 234	Percent Recovery 85.2 78.2	Summary (% 58.8 59.3	Rec)	98.8 93.2	101 92.2
Internal Standar 13C12-2378-TCDF 13C12-2378-TCDD	rds Percent Recove 72.9 79.7	ery Summary 54.9 62.0	(% Rec)	75.6 80.6	84.9 93.8

Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 15:10 08/18/2003

TRIANG	LE LAE	BORATO	ORIES,	IN	C.
Sample R	esults	for	Projec	ct (60851
Method	MTM2	Anals	reie (T	1B-1	5)

Page 2 08/18/2003

===========				=======================================
Data File	W145402	W146010	W146006	W145409
Sample ID	TLI Blank	GPA-SD-CMP.1	CleanUp Blk	TLI LCS
Units Extraction Date Analysis Date Instrument Matrix Extraction Type	pg/g 08/08/2003 08/14/2003 W SAND	pg/g 08/08/2003 08/15/2003 W SEDIMENT	pg/g 08/09/2003 08/15/2003 W SAND	pg/g 08/08/2003 08/14/2003 W SAND
Intornal Ctandard	s Porgont Pogo	ery Summary (% Rec	:=====================================	
13C12-PeCDF 123 13C12-PeCDD 123 13C12-HxCDF 678 13C12-HxCDD 678 13C12-HpCDF 678 13C12-HpCDD 678 13C12-OCDD	84.3 98.8 76.5 88.1 80.4 102 94.1	59.4 57.2 64.6 60.8 51.5 55.2 33.2 V	80.3 69.5 99.0 93.0 91.4 105 93.0	97.9 116 88.7 98.0 97.0 121

Printed: 15:10 08/18/2003

Page 3 08/18/2003

Data File W145410 Sample ID TLI LCSD Units pg/g 08/08/2003 Extraction Date Analysis Date 08/14/2003 Instrument W Matrix SAND Extraction Type Analytes 2378-TCDD 37.7 12378-PeCDD 185 193 123478-HxCDD 123678-HxCDD 210 123789-HxCDD 215 1234678-HpCDD 202 OCDD 419 2378-TCDF 41.0 12378-PeCDF 174 23478-PeCDF 187 123478-HxCDF 199 206 123678-HxCDF 234678-HxCDF 219 123789-HxCDF 234 1234678-HpCDF 219 1234789-HpCDF 230 OCDF 387 Other Standards Percent Recovery Summary (% Rec) 37C1-TCDD 76.0 Other Standards Percent Recovery Summary (% Rec) 13C12-PeCDF 234 97.1 13C12-HxCDF 478 79.2 91.9 13C12-HxCDD 478 13C12-HpCDF 789 104 Other Standards Percent Recovery Summary (% Rec) 13C12-HxCDF 789 91.1 13C12-HxCDF 234 85.1 Internal Standards Percent Recovery Summary (% Rec) 76.9 13C12-2378-TCDF 85.4 13C12-2378-TCDD 95.2 13C12-PeCDF 123 13C12-PeCDD 123 106 13C12-HxCDF 678 81.1 13C12-HxCDD 678 90.5 13C12-HpCDF 678 87.5 13C12-HpCDD 678 111 13C12-OCDD 105

{Estimated Maximum Possible Concentration}, (Detection Limit).

TRIANGLE LABORATORIES OF RTP, INC. Sample Results for Project 60851 Method 8290X (DB-225)

Page -1 08/15/2003

Data File

P032525

Sample ID

GPA-SD-CMP.1

Units

pg/g

Extraction Date 08/08/2003

Analysis Date 08/15/2003

Instrument

Ρ

Matrix

SEDIMENT

Extraction Type

Analytes

2378-TCDF

320

Internal Standards Percent Recovery Summary (% Rec)

13C12-2378-TCDF 62.2

Triangle Laboratories, Inc.®

2445 S. Alston Ave. • Durham, North Carolina 27713

Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 21:36 08/15/2003

Appendix D

Data Validation

Quality By Design

Laboratory Quality Assurance Consulting

29 Shipman Street Suite 101 Hilo, Hawaii 96720 Phone: (808) 969-9424 Fax: (808) 969-9094 e-mail: qbdhilo@gte.net

EPA Level 2 DATA VALIDATION REPORT

Project Name: Georgia Pacific ASB Project No. 200300-02 Type of Samples: Filters and Sediments Dates of Sampling: July 28 – 30, 2003

Prepared for

Anchor Environmental, L.L.C. 1423 Third Avenue, Suite 300 Seattle, Washington 98103

SDGs No. FS37 and FT03 QBD Job No. 1141

Reviewed and approved,

Thomas S. Davis, Principal

10/10/03 Date

Contents

Α.	Abbreviations and Acronyms	
	Introduction	
	Laboratory Report and Supporting Documentation	
	Chain-of-Custody	
	Review of Semivolatile Organic Analyses by GC/MS	
	Review of Pesticides Analyses by GC	
G.	Review of Polychlorinated Biphenyl (PCB) Analyses by GC	3 <i>6</i>
H. :	Review of Metals Analyses by ICP and AA	42
	Review of Conventional Wet Chemistry Analyses	
	Tables	
Table 1.	. Sample Identification and Analysis	5
Table 2.		6
Table 3.	. SVOC Data Qualifiers Due to Continuing Calibrations	9
Table 4.	SVOC Data Qualifiers Due to Blank Contamination	10
Table 5.	. SVOC Data Qualifiers Due to Blank Contamination	11
Table 6.	SVOC Data Qualifiers Due to Dilutions and Reanalysis	13
Table 7.	. Pesticide Data Qualifiers Due to Surrogate Deviations	30
Table 8.	. Pesticide Data Qualifiers Due to MS/MSD Deviations	33
Table 9.		
Table 10	Metals Data Qualifiers Due to MS Deviations	43
	Attachments	
Attachm Attachm Attachm	nent 2 Summary Table of Data Qualifier Flags	
Allacilli.	ment 3 Reviewed and/of Revised Laboratory Points	

Anchor Environmental / Georgia Pacific ASB Dates of Sampling: July 28-30, 2003 SDGs: FS37, FT03

A. Abbreviations and Acronyms

Acronym/	······································
Abbreviation	Definition
%D	percent difference
%R	percent recovery
μg/l	micrograms per liter
μg/kg	micrograms per kilogram
AA	atomic absorption
BFB	bromofluorobenzene
BNA	base/neutral/acid compounds
BS	blank spike
BSD	blank spike duplicate
CCB	continuing calibration blank
CCC	calibration check compound
CCS	continuing calibration standard
CCV	continuing calibration verification
CF	calibration factor
CLP	Contract Laboratory Program
COC	chain of custody record
CRA	contract required standard at the CRDL for graphite furnace AA method
CRDL	contract required detection limit
CRI	contract required standard at the CRDL for ICP method
CRQL	contract required quantitation limit
CV	coefficient of variation
CVAA	cold vapor atomic absorption
4,4'-DDD	4,4'-dechlorodiphenyldichloroethane
4,4'-DDE	4,4'-dichlorodiphenyldichloroethylene
4,4'-DDT	4,4'-dichlorodiphenyltrichloroethane
DFTPP	decafluorotriphenylphosphine
DHG	dissolved hydrogen gas
DRO	diesel range organics
DQO	data quality objective
EB	equipment blank
EICP	extracted ion current profile
EPA	U.S. Environmental Protection Agency
ER	equipment rinsate
FB	field blank

Anchor Environmental / Georgia Pacific ASB Dates of Sampling: July 28-30, 2003 SDGs: FS37, FT03

Acronym/	
Abbreviation	Definition
GC/ECD	gas chromatography/electron capture detector
GC/ELCD	gas chromatography/electrolytic conductivity detector (Hall detector)
GC/FID	gas chromatography/flame ionization detector
GC/PID	gas chromatography/photoionization detector
GC/MS	gas chromatography/mass spectrometry
GFAA	graphite furnace atomic absorption
GLP	good laboratory practices
GRO	gasoline range organics
GPC	gel permeation chromatography
HPLC	high-performance liquid chromatography
HRGC	high resolution gas chromatography
HRMS	high resolution mass spectrometry
ICB	initial calibration blank
ICP	inductively coupled plasma
ICS	interference check sample
ICV	initial calibration verification
IDL	instrument detection limit
IR	infrared spectroscopy
IS	internal standards
LCS	laboratory control standard
LCSD	laboratory control standard duplicate
MDL	method detection limit
mg/kg	milligrams per kilogram
mg/l	milligrams per liter
MS	matrix spike
MSA	method of standard addition
MSD	matrix spike duplicate
m/z	mass to charge ratio
NIST	National Institute of Standards and Technology
PAH	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyl
PE	performance evaluation
PEM	performance evaluation mixture
PPB	parts per billion
PPM	parts per million
PPT	parts per trillion
PNA	polynuclear aromatic hydrocarbon

Anchor Environmental / Georgia Pacific ASB Dates of Sampling: July 28-30, 2003 SDGs: FS37, FT03

Acronym/		
Abbreviation	Definition	
PQL	practical quantitation limit	
QA	quality assurance	
QAPP	quality assurance project plan	
QC	quality control	
RL	reporting limit	
RF	response factor	
RIC	reconstructed ion chromatograph	
RPD	relative percent difference	
RRF	relative response factor	
RRT	relative retention time	
RSD	relative standard deviation	
RT	retention time	
SDG	sample delivery group	
SOP	standard operating procedure	
SOW	statement of work	
SVOC	semivolatile organic compound	
SPCC	system performance check compound	
SRM	standard reference material	
TB	trip blank	
TIC	tentatively identified compound	
TPH	total petroleum hydrocarbons	
TPH-G	total petroleum hydrocarbons - gasoline	
TPH-D	total petroleum hydrocarbons - diesel	
UV/VIS	ultraviolet/visible	
VOA	volatile organic analysis	

Anchor Environmental / Georgia Pacific ASB Dates of Sampling: July 28-30, 2003

SDGs: FS37, FT03

B. Introduction

Laboratory Sciences, Inc., d.b.a. *Quality by Design* (QBD), has completed an EPA Level 2 Data Validation on the submitted data packages.

The reporting format and criteria for recommending data qualifying flags for this data set are described in the EPA "Functional Guidelines for Evaluating Organics Analyses," as revised, 1999; and the "Functional Guidelines for Evaluating Inorganics Analyses," as revised, 1994; or using criteria listed in the method referenced. Data may be qualified for any of the following reasons:

- 1. By the laboratory prior to receipt by the reviewer
- 2. Because of laboratory deviation from the designated method
- 3. Because the data may not meet the criteria listed in the reference above
- 4. By the professional judgment of the reviewer

This data validation report consists of several sections, each of which are formatted to follow *Functional Guidelines*, but which also include subsections discussing QBD contacts with the laboratory, other comments, and a summary table of data qualifiers.

The data set consists of two data package of 2,364 pages from Analytical Resources, Inc. in Seattle, Washington, and contains data for the samples shown in Table 1. The data reviewers and senior reviewers are shown in Table 2.

Each data set includes an analytical data package for each sample, copies of the completed COC forms, and a QC data package. The analytical data package includes analytical results, blank sample results, both laboratory and client sample identifications, appropriate dates and times, method reporting limits, method references, surrogate recoveries as appropriate, the laboratory's name and address, and the signature of the person releasing the data. The custody forms include the receipt of the sample and the laboratory's internal tracking. The QC data package includes a tabular list of the laboratory's sample identification, spiking concentrations, recoveries, percentage calculations, and acceptance windows. Raw data were provided which includes chromatograms, instrument print outs, injection logs, and digestion/preparation logs.

Anchor Environmental / Georgia Pacific ASB Dates of Sampling: July 28-30, 2003

SDGs: FS37, FT03

Table 1. Sample Identification and Analysis

Sample Identification	Laboratory Identification	Method 8270C	Method 8081A	Methods 6010B/7471A	Wet Chemistry
GPA-025D-A	FS37A	X	Х	Х	Not Validated
GPA-025D-B	FS37B	X	Х	X	Not Validated
GPA-025D-D	FS37C	X	Х	X	Not Validated
GPA-035D-A	FS37D	X	X	X	Not Validated
GPA-035D-B	FS37E	X	X	X	Not Validated
GPA-035D-C	FS37F	X	X	X	Not Validated
GPA-035D-D	FS37G	Х	Х	X	Not Validated
GPA-035D-A	FS37H	Х	X	X	Not Validated
GPA-035D-B	FS37I	X	X	X	Not Validated
GPA-035D-C	FS37J	X	X	X	Not Validated
GPA-035D-D	FS37K	Х	X	X	Not Validated
GPA-045D-A	FS37L	Х	Х	X	Not Validated
GPA-045D-B	FS37M	Х	X	X	Not Validated
GPA-045D-C	FS37N	X	X	X	Not Validated
GPA-045D-D	FS37O	X	X	X	Not Validated
GPA-055D-A	FS37P	X	X	X	Not Validated
GPA-055D-B	FS37Q	X	X	X	Not Validated
GPA-055D-C	FS37R	X	X	X	Not Validated
GPA-055D-D	FS37S	X	X	X	Not Validated
GPA-PCEWB		Not Validated	Not Validated	Not Validated	Not Validated
GPA-SSEWB		Not Validated	Not Validated	Not Validated	Not Validated
GPA-FBFWB		Not Validated	Not Validated	Not Validated	Not Validated
GPA-04 33.5-35.5	FT03A	X	X	X	Not Validated
GPA-02 4.0-6.5		Not Validated	Not Validated	Not Validated	Not Validated
GPA-04 6.5-8.5		Not Validated	Not Validated	Not Validated	Not Validated
GPA-04 22.5-24.0		Not Validated	Not Validated	Not Validated	Not Validated

Key:

Method 8270C

SVOCs by GC/MS

Method 8081A

Chlorinated pesticides by GC

Method 8082

Polychlorinated biphenyls by GC

Method 6010B

= Metals by ICP

Wet Chemistry

= Grain size, Total Organic Carbon, ammonia, and sulfide

conventional wet chemistry methods

Table 2. Data Package, Reviewer, and Senior Reviewer

Analysis	Number of Pages	SDG Number	Reviewer	Senior Reviewer
8270C	1,518	All	Thomas Davis	Lorraine L. Davis
8081	265	All	Thomas Davis	Lorraine L. Davis
8082	248	All	Thomas Davis	Lorraine L. Davis
6010B/7471A	193	All	Thomas Davis	Lorraine L. Davis
Wet Chemistry	132	All	Thomas Davis	Lorraine L. Davis

SDGs: FS37, FT03

C. Laboratory Report and Supporting Documentation

The laboratory report and supporting documentation were reviewed to determine that the data package supported the level of validation requested. The data package was checked for pagination, appropriate signatures and approvals, an adequate case narrative, and possible subcontracting. The supporting data was checked for completeness and to determine that the information necessary for validation was present. The laboratory documentation was acceptable.

SDGs: FS37, FT03

D. Chain-of-Custody

The COC documentation associated with this SDG was reviewed to determine that all samples listed on the COC form were reported in the laboratory deliverables, that a date and time of sampling was provided, and that the sample custody trail was complete. Sample condition upon receipt was reviewed to determine that the samples were not compromised during shipping. All custody and shipping documentation was reviewed to determine if GLP were employed when errors occurred. All data reviewed were acceptable, except as noted below.

Discussion:

The COC contained several corrections that were obliterated and written over. GLP stipulates that all corrections be made using a single line strike-through and dated and initialed by the person making the correction.

SDGs: FS37, FT03

E. Review of Semivolatile Organic Analyses by GC/MS

EPA Method 8270C

1. Timeliness and a Check for Errors

The laboratory data packages were reviewed and compared against the COC and supporting documentation to determine that samples were properly preserved and analyzed within the technical holding times, and that no deviations from proper handling and identification occurred. All data reviewed were acceptable.

2. GC/MS Tuning

The DFTPP tunes for all initial and continuing calibrations associated with sample analysis were reviewed. All samples were reviewed to determine that they were associated with an acceptable tune and were analyzed within the appropriate tune time period. All data reviewed were acceptable.

3. Initial and Continuing Calibration

All initial and continuing calibration quality control criteria were reviewed to determine that no TCL analytes had initial calibration percent RSDs or continuing calibration percent differences greater than allowed by the method. All RF, SPCC, and CCC criteria were reviewed for method acceptance. All data reviewed were acceptable, except as noted below.

Table 3. SVOC Data Qualifiers Due to Continuing Calibrations

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-A	Butylbenzlphthalate	Continuing calibration	%D=23.9	%D<20	2,800 J

Discussion:

The laboratory report listed initial calibrations for eleven analytes that had percent RSD results that were out of the criteria of less than 15 percent, but eight of these analytes were not reported in the samples. The remaining four analytes (benzoic acid in two different initial calibrations, benzyl alcohol, and n-nitroso-diphenylamine at were out of criteria at 22.1, 30.5, 21.1, and 46.9 percent. No data qualifier flags are recommended because the associated sample results were non-detect.

The continuing calibrations that were analyzed on August 20, 21, 22, and 27 had several analytes that had percent differences greater than the acceptance criteria of

less than 20 percent. Except for butylbenzlphthalate in Sample GPA-045D-A, all of these calibration exceedences were associated with sample results that were not-detected, sample results that were diluted and subsequently flagged "R" elsewhere in this report, or sample results that have been reported from another day's analysis. This positive result on Sample GPA-045D-A has been flagged "J" to indicate an estimated value.

4. Blanks and Checks for Contamination

The frequency of analysis and the results for instrument and method blank analyses were reviewed. Equipment and field blanks were also evaluated if identified in the group of samples. Either no analytes were detected or, if detected, levels were below the reporting limit, except as noted below.

Table 4. SVOC Data Qualifiers Due to Blank Contamination

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>240 U</td></rl<>	240 U
GPA-035D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>160 U</td></rl<>	160 U
GPA-035D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>74 U</td></rl<>	74 U
GPA-015D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>130 U</td></rl<>	130 U
GPA-015D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>240 U</td></rl<>	240 U
GPA-045D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>160 U</td></rl<>	160 U
GPA-045D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>94 U</td></rl<>	94 U
GPA-055D-A	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>580 U</td></rl<>	580 U
GPA-055D-B	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>170 U</td></rl<>	170 U
GPA-055D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>250 U</td></rl<>	250 U
GPA-055D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>110 U</td></rl<>	110 U

Discussion:

Bis (2-ethylhexyl) phthalate was detected in two of the method blanks associated with all samples. Because this compound is a common laboratory contaminant, data qualifier flags are not used for sample results of less than ten times (10X) the highest associated blank level. Instead, if the sample result was less than the

SDGs: FS37, FT03

blank concentration, and the sample result was less than the reporting limit, then the sample result has been raised to the reporting limit. If the sample result was greater than 10X the blank concentration or was non-detect, no data qualifier flags are recommended.

5. Surrogate Recovery

Surrogate spikes were added to all samples, QC checks, and blanks as required by the referenced method. All data reviewed were acceptable, except as noted below.

Discussion:

A single surrogate, p-terphenyl-d14, was out of the criteria of 36 to 136 percent at 152 percent in the base/neutral fraction of Sample GPA-015D-B. Another single surrogate, 2,4,6-tribromophenol, was out of the criteria of 20 to 139 percent in the acid fraction of Sample GPA-045D-C. *Functional Guidelines* states that "data are not qualified . . . unless two or more semivolatile surrogates, within the same fraction — are out of specification". No data qualifier flags are recommended because the other surrogates were in criteria.

6. Precision and Accuracy

Results for precision (RPD) and accuracy (percent recovery) were reviewed for spikes and duplicate spikes (MS/MSDs, BS/BSDs and/or LCS/LCSDs) to determine that the checks were analyzed at the frequency required by the referenced method and the results met the requirements of the project. All data reviewed were acceptable.

7. Second Source Calibration Checks

The frequency of analysis and percent recoveries of the second source calibration verifications were reviewed. All data reviewed were acceptable.

8. Internal Standards

Internal standard response and retention times were reviewed. All data reviewed were acceptable, except as noted below.

Table 5. SVOC Data Qualifiers Due to Blank Contamination

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-B	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	98 UR
GPA-015D-B	Dibenzo(a,h)anthracene	Internal Standard	%R=17.5	%R=50-200	98 UR
GPA-015D-B	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	240 J

SDGs: FS37, FT03

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-A	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	97 UR
GPA-045D-A	Dibenzo(a,h)anthracene	Internal Standard	%R=17.5	%R=50-200	97 UR
GPA-045D-A	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	230 J
GPA-045D-B	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	310 UR
GPA-045D-B	Dibenzo(a,h)anthracene	Internal Standard	%R=17.5	%R=50-200	310 UR
GPA-045D-B	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	1900 J
GPA-055D-A	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	94 UR
GPA-055D-A	Dibenzo(a,h)anthracene	Internal Standard	%R=17.5	%R=50-200	94 UR
GPA-055D-A	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	94 UR

Discussion:

The internal standard responses in Samples GPA-015D-B, GPA-045D-A, GPA-045D-B, and GPA-055D-A for perylene-d₁₂ were out of the criteria of 50 to 200 percent at 17.5, 21.3, 11.1, and 22.3 percent, respectively. Since the responses were less than 25 percent of the associated continuing calibration standard response, the associated positive results have been flagged "J" to indicate an estimated value, and the non-detect results have been flagged "R" to indicate unusable.

The retention times in Sample GPA-045D-B for chrysene-d₁₂ and perylene-d₁₂ shifted out of the retention time acceptance window for internal standards. After reviewing the chromatogram, QBD concurs that there was a significant hydrocarbon interference and that the analytes were identified and quantitated properly.

9. Target Compound Identification

Retention times and mass spectra were reviewed for the identification of target compounds. All data reviewed were acceptable.

10. Compound Quantitation and Reported Detection Limits

Quantitation was reviewed to determine that calculations were performed in accordance with the referenced method, including the use of appropriate internal standards or external standardization. Data were reviewed against method requirements to determine that results were reported correctly, that no results exceeded the highest calibration standard, and that dilutions were performed and calculated appropriately. Reporting limits were reviewed to determine that the limits were correctly adjusted for dilution and extraction amounts. All data reviewed were acceptable, except as noted below.

Table 6. SVOC Data Qualifiers Due to Dilutions and Reanalysis

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-A	2-Methylphenol	More technically sound data available	Over calibration Range	NA	80,000 R
GPA-025D-A	Naphthalene	More technically sound data available	Over calibration Range	NA	8,400 R
GPA-025D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	4-Methylphenol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	29,000 UR
GPA-025D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	14,000 UR
GPA-025D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-B	Phenol	More technically sound data available	NA	NA	1,200 R
GPA-025D-B	1,3-Dichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	1,4-Dichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Benzyl alcohol	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	1,2-Dichlorobenzene	More technically sound data available	NA	NA	1,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-B	2-Methylphenol	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	4-Methylphenol	More technically sound data available	NA	NA	47,000 R
GPA-025D-B	2,4-Dimethylphenol	More technically sound data available	NA ·	NA	1,000 UR
GPA-025D-B	Benzoic acid	More technically sound data available	NA	NA	10,000 UR
GPA-025D-B	1,2,4-Trichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Naphthalene	More technically sound data available	NA	NA	14,000 R
GPA-025D-B	Hexachlorobutadiene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	2-Methylnaphthalene	More technically sound data available	NA	NA	2,800 R
GPA-025D-B	Dimethylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Acenaphthylene	More technically sound data available	NA	NA	5,900 R
GPA-025D-B	Acenaphthene	More technically sound data available	NA	NA	2,200 R
GPA-025D-B	Diethylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Fluorene	More technically sound data available	NA	NA	1,200 R
GPA-025D-B	n-Nitrosodiphenylamine	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Hexachlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Pentachlorophenol	More technically sound data available	NA	NA	5,200 UR
GPA-025D-B	Phenanthrene	More technically sound data available	NA	NA	30,000 R
GPA-025D-B	Anthracene	More technically sound data available	NA	NA	3,500 R
GPA-025D-B	di-n-Butylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Fluoranthene	More technically sound data available	NA	NA	32,000 R
GPA-025D-B	Pyrene	More technically sound data available	NA	NA	32,000 R
GPA-025D-B	Butylbenzylphthalate	More technically sound data available	NA	NA	1,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-B	Benzo(a)anthracene	More technically sound data available	NA	NA	2,600 R
GPA-025D-B	bis(2-Ethylhexyl) phthalate	More technically sound data available	NA	NA	1,800 R
GPA-025D-B	Chrysene	More technically sound data available	NA ·	NA	4,700 R
GPA-025D-B	Di-n-octylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Benzo(b)fluoranthene	More technically sound data available	NA	NA	3,800 R
GPA-025D-B	Benzo(k)fluoranthene	More technically sound data available	NA	NA	5,300 R
GPA-025D-B	Benzo(a)pyrene	More technically sound data available	NA	NA	4,200 R
GPA-025D-B	Indeno(1,2,3-cd)pyrene	More technically sound data available	NA	NA	NV R
GPA-025D-B	Dibenz(a,h)anthracene	More technically sound data available	NA	NA	NV R
GPA-025D-B	Benzo(g,h,i)perylene	More technically sound data available	NA	NA	NV R
GPA-035D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	53,000 R
GPA-035D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-035D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	7,600 R
GPA-035D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A.D.L.	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,800 UR
GPA-035D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR

Quality by Design

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-A DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B	4-Methylphenol	More technically sound data available	Over calibration Range	NA	32,000 UR
GPA-035D-B DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-035D-B DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Naphthalene	More technically sound data available	Excessive dilution	NA	9,800 UR
GPA-035D-B DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-B DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA:	9,900 UR
GPA-035D-B DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	3,100 R
GPA-035D-B DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 R
GPA-035D-B DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA .	2,000 UR
GPA-035D-B DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	3,200 R
GPA-035D-B DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	43,000 R
GPA-015D-A	bis(2-Ethylhexyl) phthalate	More technically sound data available	Over calibration Range	NA	23,000 R
GPA-015D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID

Target Compound

SDGs: FS37, FT03 Type of Deviation Anomaly Criteria Flag Excessive NA 2,000 UR dilution Excessive 2,000 UR NA dilution Excessive 2.000 UR NA dilution Excessive NA 2,000 UR dilution Excessive NA 2,000 UR dilution Excessive NA 2,000 UR dilution Excessive 20,000 UR NA dilution Excessive NA 2.000 UR dilution Excessive NA 12,000 UR dilution Excessive NA 2,000 UR dilution Excessive NA 2,000 UR dilution Excessive NΑ 2,000 UR dilution Excessive NA 2,000 UR dilution Excessive NΑ 2,000 UR dilution Excessive NA 2,000 UR dilution

Quality by Design

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,200 R
GPA-015D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,300 R
GPA-015D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B	4-Methylphenol	More technically sound data available	Over calibration Range	NA	30,000 R
GPA-015D-B DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-015D-B DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Naphthalene	More technically sound data available	Excessive dilution	NA	7,600 R
GPA-015D-B DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-B DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,900 UR
GPA-015D-B DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	3,000 R
GPA-015D-B DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,100 R
GPA-015D-B DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,300 R
GPA-015D-B DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	2,000 R
GPA-015D-B DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-B DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA:	2,000 UR
GPA-015D-B DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-045D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	20,000 R
GPA-045D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	19,000 UR
GPA-045D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	5,800 R
GPA-045D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	1,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,700 UR
GPA-045D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	2,800 R
GPA-045D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 R
GPA-045D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,200 R
GPA-045D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,300 R
GPA-045D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	3,100 R
GPA-045D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-B	Butylbenzylphthalate	More technically sound data available	Over calibration Range	NA	160,000 R
GPA-045D-B	bis(2-Ethylhexyl) phthalate	More technically sound data available	Over calibration Range	NA	300,000 R
GPA-045D-B	Di-n-octylphthalate	More technically sound data available	Over calibration Range	NA	39,000 R
GPA-045D-B DL	Phenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-B DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	4-Methylphenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	310,000 UR
GPA-045D-B DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Naphthalene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Fluorene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	160,000 UR
GPA-045D-B DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Anthracene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	31,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-B DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Pyrene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Chrysene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL •	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA .	31,000 UR
GPA-045D-B DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-055D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	29,000 R
GPA-055D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	19,000 UR
GPA-055D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	1,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	n-Nitrosodiphenylamine	More technically sound data available	Excessive dilution	NA	1,900 UR
.GPA-055D A.DL.	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,400 UR
GPA-055D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	1,900 UR

SDGs: FS37, FT03

Discussion:

Several samples were diluted and/or re-analyzed due to high levels of analytes. In these instances, the laboratory reported results for the original analysis and for the re-analysis. The results have been condensed to one result per analyte per sample. Therefore, those results that should not be used because more technically sound data are available have been flagged "R" to indicate that the results are unusable.

The laboratory noted that the filament shut-off during the analysis of Sample GPA-025B-B and that the final three analytes were lost. The sample was reanalyzed within the holding time and both sets of results were reported. The results have been condensed to one result per analyte per sample, and, since all other QC measurements are equivalent, the later analysis was chosen for use because it contained a complete set of analytes. Those results that should not be used are available have been flagged "R".

Sample GPA-02 4.0-6.5 was analyzed at a dilution and did not obtain routine reporting limits. After a review of the chromatogram, QBD concurs that the RL was the lowest that could be reasonably attained.

11. Tentatively Identified Compounds

No TICs were reported.

12. System Performance

The performance of the analytical system was reviewed for significant problems such as baseline shifts, loss of resolution, DDT/endrin breakdown, or PCP/benzidine tailing. All data reviewed were acceptable.

13. Field Duplicates

No field duplicates were identified with this group of samples.

14. Laboratory Contact

There was no verbal or written communication with the laboratory.

15. Other Comments

None.

SDGs: FS37, FT03

16. Data Use and Overall Assessment

The analytes qualified with an "R" are unusable. All other data, as qualified, are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results. All data flags are summarized at the end of this report.

SDGs: FS37, FT03

F. Review of Pesticides Analyses by GC

EPA Methods 8081A

1. Timeliness and a Check for Errors

The laboratory data packages were reviewed and compared against the COC and supporting documentation to determine that samples were properly preserved and analyzed within the technical holding times, and that no deviations from proper handling and identification occurred. All data reviewed were acceptable.

2. Initial and Continuing Calibration

All initial and continuing calibration quality control criteria were reviewed to determine that no TCL analytes had initial calibration percent RSDs, continuing calibration percent differences, or DDT/Endrin breakdown checks were greater than allowed by the method. All data reviewed were acceptable, except as noted below.

Discussion:

Several CCVs for 4,4'-DDD and 4,4'-DDE were out of the criteria of %D less than 15 percent on the primary column. No data qualifier flags are recommended because the CCVs on the confirmatory column were acceptable and all sample results were not detected.

3. Blanks and Checks for Contamination

The frequency of analysis and the results for instrument and method blank analyses were reviewed. Equipment and field blanks were also evaluated if identified in the group of samples. Either no analytes were detected or, if detected, levels were below the reporting limit.

4. Surrogate Recovery

Surrogate spikes were added to all samples, QC checks, and blanks as required by the referenced method. All data reviewed were acceptable, except as noted below.

Table 7. Pesticide Data Qualifiers Due to Surrogate Deviations

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-B	4,4'-DDE	TCMX	NR	%R=50-140	5.0 UJ
GFA-025D-B		DCBP	%R=45.8	%K-30-140	
GPA-025D-B	4,4'-DDD	TCMX	NR	%R=50-140	2.0 UJ
GFA-025D-B		DCBP	%R=45.8		2.0 01

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-B	4,4'-DDT	TCMX	NR	%R=50-140	3.9 UJ
OF A-025D-B	4,4 -DD1	DCBP	%R=45.8	/6IX-JU-140	3.9 01
GPA-025D-B	Hexachlorobenzene	TCMX	NR	%R=50-140	5.4 UJ
01 A-023D-B	Tiexacinorobenzene	DCBP	%R=45.8	7010-30-140	3.4 03
GPA-025D-B	Hexachlorobutadiene	TCMX	NR	%R=50-140	0.98 UJ
GI A-025D-B	Tiexaciiioroddiadiene	DCBP	%R=45.8	70IC-30-140	0.98 03
GPA-025D-D	4,4'-DDE	TCMX	%R=43.5	%R=50-140	1.9 UJ
01 A-023D-D	4,4 -DDL	DCBP	%R=39.5	7010-30-140	1.9 03
GPA-025D-D	4,4'-DDD	TCMX	%R=43.5	%R=50-140	1.9 UJ
GFA-023D-D	4,4 -000	DCBP	%R=39.5	76K-30-140	1.9 01
GPA-025D-D	4,4'-DDT	TCMX	%R=43.5	%R=50-140	10111
GFA-023D-D	4,4 -001	DCBP	%R=39.5	70K-30-140	1.9 UJ
GPA=025D-D	Hexachlorobenzene.	TCMX	%R=43.5	%R=50-140	0.02.111
GFA:023D-D	Hexachiorobenzene	DCBP	%R=39.5	%K=30-140 	0.93 UJ
CD 4 025D D	II	TCMX	%R=43.5	0/D 50 140	0.02.111
GPA-025D-D	Hexachlorobutadiene	DCBP	%R=39.5	%R=50-140	0.93 UJ
CD 4 025D 4	4 41 555	TCMX	%R=23.0	%R=50-140	
GPA-035D-A	4,4'-DDE	DCBP	%R=NR		2.0 UJ
CD4 025D 4	441.000	TCMX	%R=23.0	0/7 50 140	20111
GPA-035D-A	4,4'-DDD	DCBP	%R=NR	%R=50-140	2.0 UJ
CDA 025D A	4.43.000	TCMX	%R=23.0	0/D 50 140	20111
GPA-035D-A	4,4'-DDT	DCBP	%R=NR	%R=50-140	2.0 UJ
CD 4 025D 4	TT - 11 - 1	TCMX	%R=23.0	0/D 50 140	0.00.111
GPA-035D-A	Hexachlorobenzene	DCBP	%R=NR	%R=50-140	0.99 UJ
CD 4 025D 4	TY - 11 - 1 - 1'	TCMX	%R=23.0	0/D 50 140	0.00.111
GPA-035D-A	Hexachlorobutadiene	DCBP	%R=NR	%R=50-140	0.99 UJ
OD 1 025D D	4.41.555	TCMX	%R=40.8	0.75 40 140	
GPA-035D-D	4,4'-DDE	DCBP	%R=37.2	%R=50-140	1.9 UJ
		TCMX	%R=40.8		
GPA-035D-D	4,4'-DDD	DCBP	%R=37.2	%R=50-140	1.9 UJ
		TCMX	%R=40.8		
GPA-035D-D	4,4'-DDT	DCBP	%R=37.2	%R=50-140	1.9 UJ
op		TCMX	%R=40.8		
GPA-035D-D	Hexachlorobenzene	DCBP	%R=37.2	%R=50-140	0.94 UJ
		TCMX	%R=40.8		
GPA-035D-D	Hexachlorobutadiene	DCBP	%R=37.2	%R=50-140	0.94 UJ
		TCMX	%R=38.8		
GPA-055D-C	4,4'-DDE	DCBP	%R=29.2	%R=50-140	1.8 UJ

SDGs: FS37, FT03

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-C	4,4'-DDD	TCMX	%R=38.8	%R=50-140	1.8 UJ
G1 A-033D-C	4,4 -000	DCBP	%R=29.2	701(-30-140	1.6 03
GPA-055D-C	4,4'-DDT	TCMX	%R=38.8	%R=50-140	1.8 UJ
GIA 033B-C	1,1 -001	DCBP	%R=29.2	7010 30-140	1.0 03
GPA-055D-C	Hexachlorobenzene	TCMX	%R=38.8	%R=50-140	0.93 UJ
GI II 033D-C	Tiexacinoroccizene	DCBP	%R=29.2	7010-30-140	0.75 03
GPA-055D-C	Hexachlorobutadiene	TCMX	%R=38.8	%R=50-140	0.93 UJ
GITI-033D-C	Trexacmorobutatione	DCBP	%R=29.2	7010-30-140	0.75 03
GPA-055D-D	4.4'-DDE	TCMX	%R=43.8	%R=50-140	1.9 UJ
GI II-033D-D	1,1 -DDE	DCBP	%R=37.8	7010-30-140	1.9 UJ
GPA-055D-D	4,4'-DDD	TCMX	%R=43.8	%R=50-140	1.9 UJ
GI II-033D-D	4,4 -DDD	DCBP	%R=37.8		1.5 03
GPA-055D-D	4,4'-DDT	TCMX	%R=43.8	%R=50-140	1.9 UJ
CITIOS SE E	7,1 1222	DCBP /	%R=37.8		1.503.
GPA-055D-D	Hexachlorobenzene	TCMX	%R=43.8	%R=50-140	0.96 UJ
GITT 033B-B	Trexacinorosciizene	DCBP	%R=37.8	7010 50-140	0.50 03
GPA-055D-D	Hexachlorobutadiene	TCMX	%R=43.8	%R=50-140	0.96 UJ
GITT 033D-D	Trexacinorosatadiene	DCBP	%R=37.8	7010 50-140	0.50 03
GPA-2 4.0-6.5	4,4'-DDE	TCMX	%R=NR	%R=50-140	3.7 UJ
GI A-2 4.0-0.5	4,4 -DDL	DCBP ,	%R=40.2	70IC-30-140	3.7 03
GPA-2 4.0-6.5	4,4'-DDD	TCMX	%R=NR	%R=50-140	5.1 UJ
GI A-2 4.0-0.5		DCBP	%R=40.2	70IC=30=140	5.1 03
GPA-2 4.0-6.5	4,4'-DDT	TCMX	%R=NR	%R=50-140	3.1 UJ
GI A-2 4.0-0.3	ו עע- ד,ד	DCBP	%R=40.2	70K-30-140	3.1 03
GPA-2 4.0-6.5	Hexachlorobenzene	TCMX .	%R=NR	%R=50-140	1.2 UJ
0171-2 4.0-0.3	TEXACITOTOUCHZCHC	DCBP	%R=40.2	/0IX=30-140	1.2 UJ
GPA-2 4.0-6.5	Hexachlorobutadiene	TCMX	%R=NR	%R=50-140	0.99 UJ
OI A-2 4.0-0.3	Trexacillorodutaurene	DCBP	%R=40.2	/01X-JU-14U	0.55 01

Key: NR = Not Reported by Laboratory

Discussion:

The surrogate percent recoveries for DCBP and TCMX in the SRM and DCBP in the matrix spike were out of the criteria of 50 to 140 percent at 47.8, 41.5, and 148 percent, respectively. No data qualifier flags are recommended because surrogates were evaluated separately in the samples.

A single surrogate was out of criteria in Samples GPA-025D-A and GPA-035D-C. Also, the laboratory did not report one of the two surrogates in Samples GPA-035D-B, GPA-015D-A, GPA-015D-B, and GPA 045D-A because of matrix interferences. No data qualifier flags are recommended. because the referenced

SDGs: FS37, FT03

method states that matrix interferences are expected and therefore only one surrogate needs to be acceptable.

Surrogate percent recoveries were out of the criteria of 50 to 140 percent, ranging from 29.2 to 43.8 percent, in Samples GPA-025D-D, GPA-035D-D, GPA-055D-C, and GPA-055D-D. Also, in Sample GPA-025D-B, the surrogate DCBP was not reported by the laboratory because of matrix interference and the surrogate TCMX was out of criteria at 45.8 percent. In Sample GPA-035D-A, DCBP was out of criteria at 23.0 percent and TCMX was not reported. Since the recoveries indicated a low bias, the associated positive results have been flagged "J" to indicate an estimated value, and the non-detect results have been flagged "UJ" to indicate an estimated reporting limit.

5. Precision and Accuracy

Results for precision (RPD) and accuracy (percent recovery) were reviewed for spikes and duplicate spikes (MS/MSDs, BS/BSDs and/or LCS/LCSDs) to determine that the checks were analyzed at the frequency required by the referenced method and the results met the requirements of the project. All data reviewed were acceptable, except as noted below.

Target Compound Sample ID Type of Deviation Anomaly Criteria Flag Affected %R=24.9, %R=50-140 GPA-025D-A 4,4'-DDE MS/MSD 3.2 UJ 26.5 NR **TCMX** 4,4'-DDD %R=50-140 2.0 UJ GPA-025D-A DCBP %R=45.8 TCMX NR GPA-025D-A 4,4'-DDT %R=50-140 2.0 UJ **DCBP** %R=45.8TCMX NR GPA-025D-A Hexachlorobenzene %R=50-140 1.0 UJ **DCBP** %R=45.8 TCMX NR %R=50-140 0.99 UJ GPA-025D-A Hexachlorobutadiene DCBP %R=45.8

Table 8. Pesticide Data Qualifiers Due to MS/MSD Deviations

Discussion:

The percent recovery for 4,4'-DDT was out of criteria of 50 to 140 percent at 24.9 and 26.5 percent in the MS/MSD pair associated with all samples. Since the recoveries indicated a low bias, and the results of the associated LCS were acceptable, only the associated results in the sample spiked, GPA-025D-A, which were non-detect, have been flagged. Because only 4,4'-DDT was spiked into the sample and there are no other target compounds that were spiked that could be used to evaluate the other analytes, all target compounds in the sample have been flagged "UJ" to indicate an estimated reporting limit.

SDGs: FS37, FT03

6. Second Source Calibration Checks

The frequency of analysis and percent recoveries of the second source calibration verifications were reviewed. All data reviewed were acceptable.

7. Target Compound Identification

Retention times were reviewed for the identification of target compounds. All data reviewed were acceptable.

8. Compound Quantitation and Reported Detection Limits

Quantitation was reviewed to determine that calculations were performed in accordance with the referenced method, including the use of external standardization. Data were reviewed against method requirements to determine that results were reported correctly, that no results exceeded the highest calibration standard, and that dilutions were performed and calculated appropriately. Reporting limits were reviewed to determine that the limits were correctly adjusted for dilution and extraction amounts. All data reviewed were acceptable.

9. System Performance

The performance of the analytical system was reviewed for significant problems such as baseline shifts, loss of resolution, peak tailing, or DDT/Endrin breakdown for the initial calibration and all dates of analyses. All data reviewed were acceptable.

10. Field Duplicates

No field duplicates were identified with this group of samples.

SDGs: FS37, FT03

11. Laboratory Contact

There was no verbal or written communication with the laboratory.

12. Other Comments

None.

13. Data Use and Overall Assessment

The data, as qualified, are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results.

Anchor 1141.doc Page 35 October 8, 2003

SDGs: FS37, FT03

G. Review of Polychlorinated Biphenyl (PCB) Analyses by GC

EPA Method 8082

1. Timeliness and a Check for Errors

The laboratory data packages were reviewed and compared against the COC and supporting documentation to determine that samples were properly preserved and analyzed within the technical holding times, and that no deviations from proper handling and identification occurred. All data reviewed were acceptable.

2. Initial and Continuing Calibration

All initial and continuing calibration quality control criteria were reviewed to determine that no TCL analytes had initial calibration percent RSDs or continuing calibration percent differences greater than allowed by the method. All data reviewed were acceptable, except as noted below.

Discussion:

One of the combined Aroclor 1016/1260 CCVs was out of the criteria of a %D less than 15 percent on the primary column. No data qualifier flags are recommended because the CCV on the confirmatory column was acceptable and all associated sample results were not detected.

3. Blanks and Checks for Contamination

The frequency of analysis and the results for instrument and method blank analyses were reviewed. Equipment and field blanks were also evaluated if identified in the group of samples. Either no analytes were detected or, if detected, levels were below the reporting limit.

4. Surrogate Recovery

Surrogate spikes were added to all samples, QC checks, and blanks as required by the referenced method. All data reviewed were acceptable, except as noted below.

Table 9. PCB Data Qualifiers Due to Surrogate Deviations

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
CD4 2 4 0 6 5	A1 1016	TCMX	%R=29.2	%R=50-140	20 UJ
GPA-2 4.0-6.5	Aroclor 1016	DBCP	%R=NR	%K-30-140	20 03
CDA 240.65		TCMX	%R=29.2	%R=50-140	20 UJ
GPA-2 4.0-6.5	Aroclor 1242	DBCP	%R=NR		20 03
GPA-2 4.0-6.5	Amadam 1249	TCMX	%R=29.2	%R=50-140	260 UJ
GFA-2 4.0-0.3	Aroclor 1248	DBCP	%R=NR	70K-3U-14U	200 03

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-2 4.0-6.5	Aroclor 1254	TCMX	%R=29.2	%R=50-140	120 UJ
GF A-2 4.0-0.3	Afociol 1254	DBCP	%R=NR	70IC 30-140	120 03
GPA-2 4.0-6.5	Aroclor 1260	TCMX	%R=29.2	%R=50-140	270 UJ
Of A-2 4.0-0.3	Arocioi 1200	DBCP	%R=NR	7010 30-140	27003
GPA-2 4.0-6.5	Aroclor 1221	TCMX	%R=29.2	%R=50-140	40 UJ
G171-2 4.0-0.3	71100101 1221	DBCP	%R=NR	7011 30 140	1003
GPA-2 4.0-6.5	Aroclor 1232	TCMX	%R=29.2	%R=50-140	20 UJ
GI 71 2 4.0 0.3	Added 1232	DBCP	%R=NR	7010	2003
GPA-025D-D	Aroclor 1016	TCMX	%R=36.8	%R=50-140	19 UJ
GI A-023D-D	Alocioi 1010	DBCP	%R=46.0	7010 30-140	1703
GPA-025D-D	Aroclor 1242	TCMX	%R=36.8	%R=50-140	19 UJ
GI A-023D-D	Alocioi 1242	DBCP	%R=46.0	7010 30-140	1703
GPA-025D-D	Aroclor 1248	TCMX	%R=36.8	%R=50-140 %R=50-140 %R=50-140 %R=50-140 %R=50-140 %R=50-140	19 UJ
G174-023D-D	Adoctor 1240	DBCP	%R=46.0		17.03.
GPA-025D-D	Aroclor 1254	TCMX	%R=36.8	%R=50-140	19 UJ
GI A-023D-D	Addelor 1254	DBCP	%R=46.0	7010 30-140	1703
GPA-025D-D	Aroclor 1260	TCMX	%R=36.8	%R=50-140	19 UJ
GI A-023D-D	Alocioi 1200	DBCP	%R=46.0		1703
GPA-025D-D	Aroclor 1221	TCMX	%R=36.8	9/P=50 1/10	37 UJ
GI 74-023D-D	Addelor 1221	DBCP	%R=46.0	7010 30-110	37 UJ
GPA-025D-D	Aroclor 1232	TCMX	%R=36.8	%P=50-140	19 UJ
OI A-023D-D	Arocioi 1232	DBCP	%R=46.0	70IC 30-140	1703
GPA-035D-C	Aroclor 1016	TCMX	%R=42.5	%R=50-140	19 UJ
GI A-033D-C	Arocioi 1010	DBCP	%R=37.0	70IC-30-140	1903
GPA-035D-C	Aroclor 1242	TCMX	%R=42.5	%R=50-140	19 UJ
GFA-033D-C	Arocioi 1242	DBCP	%R=37.0	76IC-30-140	1903
GPA-035D-C	Aroclor 1248	TCMX	%R=42.5	%R=50-140	110 UJ
GPA-033D-C	Alocioi 1248	DBCP	%R=37.0	76K-30-140	110 03
GPA-035D-C	Aroclor 1254	TCMX	%R=42.5	%R=50-140	39 UJ
GFA-033D-C	Arocioi 1254	DBCP	%R=37.0	76IC-30-140	3903
GPA-035D-C	Aroclor 1260	TCMX	%R=42.5	%R=50-140	70 UJ
GFA-033D-C	Afociol 1200	DBCP	%R=37.0	76K-304140	70 03
GPA-035D-C	Aroclor 1221	TCMX	%R=42.5	%R=50-140	37 UJ
OI W-033D-C	Aluciui 1221	DBCP	%R=37.0	/01C=30=140	37 03
GDA 025D C	Arodor 1222	TCMX	%R=42.5	0/D-50 140	10 111
GPA-035D-C	Aroclor 1232	DBCP	%R=37.0	%R=50-140	19 UJ
CD 4 035D D	A1 1016	TCMX	%R=39.5	0/D-50 140	10.777
GPA-035D-D	Aroclor 1016	DBCP	%R=49.0	%R=50-140	19 UJ

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-D	1 10/0	TCMX	%R=39.5	0/D-50 140	10 111
	Aroclor 1242	DBCP	%R=49.0	%R=50-140	19 UJ
GPA-035D-D	Aroclor 1248	TCMX	%R=39.5	%R=50-140	19 UJ
		DBCP	%R=49.0		
GPA-035D-D	Aroclor 1254	TCMX	%R=39.5	%R=50-140	19 UJ
		DBCP	%R=49.0		
GPA-035D-D	Aroclor 1260	TCMX	%R=39.5	%R=50-140	19 UJ
		DBCP	%R=49.0		
CD 4 025D D	Aroclor 1221	TCMX	%R=39.5	%R=50-140	38 UJ
GPA-035D-D		DBCP	%R=49.0		
GPA-035D-D	Aroclor 1232	TCMX	%R=39.5	%R=50-140	19 UJ
		DBCP	%R=49.0		
GPЛ-015D-A	Arcelor 1016	TCMX	%R=25.2	%R=50-140	20 UJ
		DBCP	%R=19.0		
GPA-015D-A	Aroclor 1242	TCMX	%R=25.2	%R=50-140	20 UJ
		DBCP	%R=19.0		
GPA-015D-A	Aroclor 1248	TCMX	%R=25.2	%R=50-140	79 UJ
		DBCP	%R=19.0		
GPA-015D-A	Aroclor 1254	TCMX	%R=25.2	%R=50-140	53 UJ
		DBCP .	%R=19.0		
GPA-015D-A	Aroclor 1260	TCMX	%R=25.2	%R=50-140	79 UJ
		DBCP	%R=19.0		
GPA-015D-A	Aroclor 1221	TCMX	%R=25.2	%R=50-140	40 UJ
		DBCP	%R=19.0		
GPA-015D-A	Aroclor 1232	TCMX.	%R=25.2	%R=50-140	20 UJ
		DBCP	%R=19.0		
GPA-055D-A	Aroclor 1016	TCMX	%R=NR	%R=50-140	20 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1242	TCMX	%R=NR	%R=50-140	20 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1248	TCMX	%R=NR	%R=50-140	280 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1254	TCMX	%R=NR	%R=50-140	100 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1260	TCMX	%R=NR	%R=50-140	94 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1221	TCMX	%R=NR	%R=50-140	39 UJ
		DBCP	%R=44.0		

SDGs: FS37, FT03

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-A	Aroclor 1232	TCMX	%R=NR	%R=50-140	20 UJ
		DBCP	%R=44.0		
GPA-055D-C	Aroclor 1016	TCMX	%R=34.0	%R=50-140	18 UJ
		DBCP	%R=38.5		
GPA-055D-C	Aroclor 1242	TCMX	%R=34.0	%R=50-140	18 UJ
		DBCP	%R=38.5		
GPA-055D-C	Aroclor 1248	TCMX	%R=34.0	%R=50-140	18 UJ
		DBCP	%R=38.5		
GPA-055D-C	Aroclor 1254	TCMX	%R=34.0	%R=50-140	18 UJ
		DBCP	%R=38.5		
GPA-055D-C	Aroclor 1260	TCMX	%R=34.0	%R=50-140	18 UJ
		DBCP	%R=38.5		
GPΛ-055D-C	Aroclor 1221	TCMX	%R=34.0	%R=50-140	37 UJ
		DBCP	%R=38.5		
GPA-055D-C	Aroclor 1232	TCMX	%R=34.0	%R=50-140	18 UJ
		DBCP	%R=38.5		

Key: NR = Not Reported by Laboratory

Discussion:

The percent recoveries were out of the criteria of 50 to 140 percent at 80.0 percent for the surrogate TCMX in the MS, and DBCP was not reported by the laboratory because of matrix interferences. The surrogate DCBP was 44.2 percent in the MSD. No data qualifier flags are recommended because surrogates were evaluated separately in the samples.

A single surrogate was out of criteria in Samples GPA-025D-B and GPA-015D-C. Also, the laboratory did not report one of the two surrogates in Samples GPA-025D-A, GPA-035D-A, GPA-015D-B, and GPA 055D-D because of matrix interferences. No data qualifier flags are recommended. because the referenced method states that matrix interferences are expected and therefore only one surrogate needs to be acceptable.

Surrogate percent recoveries were out of the criteria of 50 to 140 percent, ranging from 19.0 to 49.0 percent, in Samples GPA-025D-D, GPA0035D-C, GPA035D-D, GPA-015D-A, and GPA 055D-C. In Sample GPA-055D-A, DCBP was out of criteria at 44.0 percent and TCMX was not reported. Since the recoveries indicated a low bias, the associated positive results have been flagged "J" to indicate an estimated value, and the non-detect results have been flagged "UJ" to indicate an estimated reporting limit.

SDGs: FS37, FT03

5. Precision and Accuracy

Results for precision (RPD) and accuracy (percent recovery) were reviewed for spikes and duplicate spikes (MS/MSDs, BS/BSDs and/or LCS/LCSDs) to determine that the checks were analyzed at the frequency required by the referenced method and the results met the requirements of the project. All data reviewed were acceptable, except as noted below.

Discussion:

The sample that was spiked for the MS/MSD, GPA-025D-B, was analyzed at a five-fold dilution and the laboratory did not report the result for the spike. Accuracy was demonstrated through the use of the LCS and the SRM, but there was no demonstration for precision. However, since all field samples were not-detected for PCBs, no data qualifier flags are recommended.

6. Second Source Calibration Checks

The frequency of analysis and percent recoveries of the second source calibration verifications were reviewed. All data reviewed were acceptable.

7. Target Compound Identification

Retention times were reviewed for the identification of target compounds. All data reviewed were acceptable.

8. Compound Quantitation and Reported Detection Limits

Quantitation was reviewed to determine that calculations were performed in accordance with the referenced method, including the use of external standardization. Data were reviewed against method requirements to determine that results were reported correctly, and that dilutions were performed and calculated appropriately. Reporting limits were reviewed to determine that the limits were correctly adjusted for dilution and extraction amounts. All data reviewed were acceptable.

9. System Performance

The performance of the analytical system was reviewed for significant problems such as baseline shifts, loss of resolution, peak tailing, or DDT/Endrin breakdown for the initial calibration and all dates of analyses. All data reviewed were acceptable.

10. Field Duplicates

No field duplicates were identified with this group of samples.

SDGs: FS37, FT03

11. Laboratory Contact

There was no verbal or written communication with the laboratory.

12. Other Comments

None.

13. Data Use and Overall Assessment

The data, as qualified, are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results.

SDGs: FS37, FT03

H. Review of Metals Analyses by ICP and AA

EPA Methods 6010B and 7471A

1. Timeliness and a Check for Errors

The laboratory data packages were reviewed and compared against the COC and supporting documentation to determine that samples were properly preserved and analyzed within the technical holding times, and that no deviations from proper handling and identification occurred. All data reviewed were acceptable.

2. Initial and Continuing Calibration

All initial and continuing calibration quality control criteria were reviewed to determine that the proper number of standards were used and the correlation coefficient criteria was met. All data reviewed were acceptable.

3. Blanks and Checks for Contamination

The frequency of analysis and the results for instrument and method blank analyses were reviewed. Equipment and field blanks were also evaluated if identified in the group of samples. Either no analytes were detected or, if detected, levels were below the reporting limit, except as noted below.

Discussion:

Mercury was detected in the ICB at a level less than the reporting limit. All bracketed samples were either not-detected or had hits that were greater than five-times the blank contamination, so no data qualifier flags are recommended.

4. ICP Interference Check Standard

An ICS was analyzed at a frequency required by the referenced method and was within acceptable criteria.

5. Precision and Accuracy

Results for precision (RPD) and accuracy (percent recovery) were reviewed for spikes and duplicate spikes (MS/MSDs, BS/BSDs and/or LCS/LCSDs) to determine that the checks were analyzed at the frequency required by the referenced method and the results met the requirements of the project. All data reviewed were acceptable, except as noted below.

SDGs: FS37, FT03

Table 10. Metals Data Qualifiers Due to MS Deviations

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-02 4.0-6.5	Antimony	MS	%R=65.9	%R=75-125	20 U
GPA-025D-A	Antimony	MS	%R=65.9	%R=75-125	30 UJ
GPA-025D-B	Antimony	MS	%R=65.9	%R=75-125	20 UJ
GPA-025D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-035D-A	Antimony	MS	%R=65.9	%R=75-125	50 UJ
GPA-035D-B	Antimony	MS	%R=65.9	%R=75-125	40 UJ
GPA-035D-C	Antimony	MS	%R=65.9	%R=75-125	7 UJ
GPA-035D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-015D-A	Antimony	MS	%R=65.9	%R=75-125	80 UJ
GPA-015D-B	Antimony	MS	%R=65.9	%R=75-125	40 UJ
GPA-015D-C	Antimony	MS	%R=65.9	%R=75-125	8 UJ
GPA-015D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-045D-A	Antimony	MS	%R=65.9	%R=75-125	50 UJ
GPA-045D-B	Antimony	MS	%R=65.9	%R=75-125	30 UJ
GPA-045D-C	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-045D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-055D-A	Antimony	MS	%R=65.9	%R=75-125	20 UJ
GPA-055D-B	Antimony	MS	%R=65.9	%R=75-125	7 UJ
GPA-055D-C	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-055D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ

Discussion:

The laboratory did not analyze a MS/MSD pair for this analysis, instead analyzing a MS, LCS, and SRM as measurements of accuracy, and a sample/sample duplicate as a measurement of precision. Unless otherwise noted, all data were acceptable.

The percent recovery for antimony was out of the criteria of 75 to 125 percent at 65.9 percent in the MS associated with all samples. Since the recovery indicated a low bias, and the laboratory noted in the case narrative that antimony recoveries are typically low and that this result was typical of all antimony analyses, the associated results, which were non-detect, have been flagged "UJ" to indicate an estimated reporting limit.

6. Second Source Calibration Checks

The frequency of analysis and percent recoveries of the second source calibration verifications were reviewed. All data reviewed were acceptable.

SDGs: FS37, FT03

7. Sample Duplicates

Sample duplicates were analyzed as required by the referenced method and all RPDs were acceptable.

8. Special Requirements for Mercury by CVAA

All special criteria for CVAA analysis were performed at a frequency required by the referenced method and were within acceptable criteria.

9. ICP Serial Dilution

No serial dilution was performed on samples as a matrix interference check. No data qualifier flags are recommended because EPA 6010B lists this QC check as a recommendation and not as a requirement.

10. Compound Quantitation and Reported Detection Limits

Quantitation was reviewed to determine that calculations were performed in accordance with the referenced method, including the use of external standardization. Data were reviewed against method requirements to determine that results were reported correctly, that no results exceeded the highest calibration standard, and that dilutions were performed and calculated appropriately. Reporting limits were reviewed to determine that the limits were correctly adjusted for dilution and digestion amounts. All data reviewed were acceptable.

11. Field Duplicates

No field duplicates were identified with this group of samples.

12. Laboratory Contact

There was no verbal or written communication with the laboratory.

13. Other Comments

None.

SDGs: FS37, FT03

14. Data Use and Overall Assessment

The data, as qualified, are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results.

I. Review of Conventional Wet Chemistry Analyses

Plumb, 1981; EPA Methods 160.3, 350.1, 376.2; Grain Size

1. Timeliness and a Check for Errors

The laboratory data packages were reviewed and compared against the COC and supporting documentation to determine that samples were properly preserved and analyzed within the technical holding times, and that no deviations from proper handling and identification occurred. All data reviewed were acceptable.

2. Initial and Continuing Calibration

All initial and continuing calibration quality control criteria were reviewed to determine that the proper number of standards were used and the correlation coefficient criteria was met. All data reviewed were acceptable.

3. Blanks and Checks for Contamination

The frequency of analysis and the results for instrument and method blank analyses were reviewed. Equipment and field blanks were also evaluated if identified in the group of samples. Either no analytes were detected or, if detected, levels were below the reporting limit.

4. Precision and Accuracy

Results for precision (RPD) and accuracy (percent recovery) were reviewed for spikes and duplicate spikes (MS/MSDs, BS/BSDs and/or LCS/LCSDs) to determine that the checks were analyzed at the frequency required by the referenced method and the results met the requirements of the project. All data reviewed were acceptable, except as noted below.

Discussion:

The percent recovery for ammonia was out of the criteria in the MS associated with all samples due to high concentrations of analytes in the original sample. Since all other measurements of accuracy (e.g., the LCS, the SRM, and the calibration verifications) were acceptable, no data qualifier flags are recommended.

One of the two matrix spikes for sulfide was 68.0 percent, and the other was 81.8 percent. No acceptance criteria for sulfide was provide to QBD, and it is the reviewer's professional opinion that these are acceptable accuracy measurements for this analyte.

SDGs: FS37, FT03

5. Second Source Calibration Checks

The frequency of analysis and percent recoveries of the second source calibration verifications were reviewed. All data reviewed were acceptable.

6. Sample Duplicates

Sample duplicates were analyzed as required by the referenced method and all RPDs were within laboratory or method criteria.

7. Compound Quantitation and Reported Detection Limits

Quantitation was reviewed to determine that calculations were performed in accordance with the referenced method, including the use of external standardization. Data were reviewed against method requirements to determine that results were reported correctly, that no results exceeded the highest calibration standard, and that dilutions were performed and calculated appropriately. Reporting limits were reviewed to determine that the limits were correctly adjusted for dilution, and digestion or distillation amounts. All data reviewed were acceptable.

8. Field Duplicates

No field duplicates were identified with this group of samples.

9. Laboratory Contact

There was no verbal or written communication with the laboratory.

10. Other Comments

None.

11. Data Use and Overall Assessment

The data are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results.

Attachment 1 Data Qualifier Flag Definitions

Organics

- U = The analyte was analyzed for but not detected above the numerical quantitation limit.
- J = The analyte was analyzed for and was positively identified, but the associated numerical value is an estimated quantity. ¹
- UJ = The analyte was analyzed for but was not detected above the reporting level, but the reporting level is an estimated level.
- R = The data are unusable for all purposes. The analyte was analyzed for, but the target analyte might not be present.
- N = The analysis indicates presumptive evidence of the presence of the analyte.
- NJ = The analysis indicates presumptive evidence of the presence of the analyte, but the numerical value is an estimated quantity.

Inorganics

- U = The analyte was analyzed for but not detected above the numerical quantitation limit. The numerical value may be either a detection limit or a quantitation limit.
- J = The analyte was analyzed for and was positively identified, but the associated numerical value is an estimated quantity.¹
- UJ = The analyte was analyzed for but was not detected above the reporting level, but the reporting level is an estimated level.
- R = The data are unusable for all purposes. The analyte was analyzed for, but the target analyte might not be present.

Anchor 1141.doc October 11, 2003

¹ EPA Region X describes the data as able to be seriously considered for decision making and usable for many purposes.

SDGs: FS37, FT03

Attachment 2 Summary Table of Data Qualifier Flags

Anchor Environmental, L.L.C.

Project Name: Georgia Pacific ASB Project No. 200300-02

Type of Samples: Sediments and Filters Dates of Sampling: July 28 – 30, 2003

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag					
SVOC Data Qualifier Flags										
GPA-015D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	43,000 R					
GPA-015D-A	bis(2-Ethylhexyl) phthalate	More technically sound data available	Over calibration Range	NA ···	23,000 R					
GPA-015D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR					
GPA-015D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR					

Quality by Design

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-015D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,200 R
GPA-015D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	12,000 UR
GPA-015D-A DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,900 UR
GPA-015D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	3,600 R
GPA-015D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,300 R
GPA-015D-B	4-Methylphenol	More technically sound data available	Over calibration Range	NA	30,000 R

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-B	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	240 J
GPA-015D-B	Dibenzo(a,h) anthracene	Internal Standard	%R=17.5	%R=50-200	98 UR
GPA-015D-B	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	98 UR
GPA-015D-B DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-015D-B DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	2,000 R
GPA-015D-B DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-015D-B DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,100 R
GPA-015D-B DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA .	2,000 UR
GPA-015D-B DL	Naphthalene	More technically sound data available	Excessive dilution	NA	7,600 R
GPA-015D-B DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,900 UR
GPA-015D-B DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	3,000 R
GPA-015D-B DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-015D-B DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,300 R
GPA-015D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>130 U</td></rl<>	130 U
GPA-015D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>240 U</td></rl<>	240 U
GPA-025D-A	2-Methylphenol	More technically sound data available	Over calibration Range	NA	80,000 R
GPA-025D-A	Naphthalene	More technically sound data available	Over calibration Range	NA	8,400 R
GPA-025D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	4-Methylphenol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL .	Benzo(a)enthracene	More technically sound data available	Excessive dilution	NA .	2,900 UR
GPA-025D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	29,000 UR
GPA-025D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Butyibenzylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA.	2,900 UR
GPA-025D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	14,000 UR
GPA-025D-A DL .	Phenanthrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,900 UR
GPA-025D-B	1,2,4-Trichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	1,2-Dichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	1,3-Dichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	1,4-Dichlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	2,4-Dimethylphenol	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	2-Methylnaphthalene	More technically sound data available	NA	NA	2,800 R
GPA-025D-B	2-Methylphenol	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	4-Methylphenol	More technically sound data available	NA	NA	47,000 R
GPA-025D-B	Acenaphthene	More technically sound data available	NA	NA	2,200 R
GPA-025D-B	Acenaphthylene	More technically sound data available	NA	NA	5,900 R
GPA-025D-B	Anthracene	More technically sound data available	NA	NA	3,500 R
GPA-025D-B	Benzo(a)anthracene	More technically sound data available	NA	NA	2,600 R

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-B	Benzo(a)pyrene	More technically sound data available	NA	NA	4,200 R
GPA-025D-B	Benzo(b)fluoranthene	More technically sound data available	NA	NA	3,800 R
GPA-025D-B	Benzo(g,h,i)perylene	More technically sound data available	NA	NA	NV R
GPA-025D-B	Benzo(k)fluoranthene	More technically sound data available	NA	NA	5,300 R
GPA-025D-B	Benzoic acid	More technically sound data available	NA	NA	10,000 UR
GPA-025D-B	Benzyl alcohol	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	bis(2-Ethylhexyl) phthalate	More technically sound data available	NA	NA	1,800 R
GPA-025D-B	Butylbenzylphthalate	More technically sound data available	NA	NA ,	1,000 UR
GPA-025D-B	Chrysene	More technically sound data available	NA	NA	4,700 R
GPA-025D-B	Dibenz(a,h)anthracene	More technically sound data available	NA	NA	NV R
GPA-025D-B	Diethylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Dimethylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	di-n-Butylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Di-n-octylphthalate	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Fluoranthene	More technically sound data available	NA	NA	32,000 R
GPA-025D-B	Fluorene	More technically sound data available	NA	NA	1,200 R
GPA-025D-B	Hexachlorobenzene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Hexachlorobutadiene	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Indeno(1,2,3-cd)pyrene	More technically sound data available	NA	NA	NV R
GPA-025D-B	Naphthalene	More technically sound data available	NA	NA	14,000 R
GPA-025D-B	n-Nitrosodiphenyl amine	More technically sound data available	NA	NA	1,000 UR
GPA-025D-B	Pentachlorophenol	More technically sound data available	NA	NA	5,200 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-025D-B	Phenanthrene	More technically sound data available	NA	NA	30,000 R
GPA-025D-B	Phenol	More technically sound data available	NA	NA	1,200 R
GPA-025D-B	Pyrene	More technically sound data available	NA :	NA	32,000 R
GPA-025D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>240 U</td></rl<>	240 U
GPA-035D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	53,000 R
GPA-035D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	I,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-035D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Di n-octylphthalate	More technically sound data available	Excessive dilution	NA .	2,000 UR.
GPA-035D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	7,600 R
GPA-035D-A DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,800 UR
GPA-035D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B	4-Methylphenol	More technically sound data available	Over calibration Range	NA	32,000 UR
GPA-035D-B DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-B DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	20,000 UR
GPA-035D-B DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	3,200 R
GPA-035D-B DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Chrysene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-035D-B DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 R
GPA-035D-B DL	Fluorene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Naphthalene	More technically sound data available	Excessive dilution	NA	9,800 UR
GPA-035D-B DL	n-Nitrosodiphenyl amine .	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,900 UR
GPA-035D-B DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	3,100 R
GPA-035D-B DL	Phenol	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-B DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,000 UR
GPA-035D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>160 U</td></rl<>	160 U
GPA-035D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>74 U</td></rl<>	74 U
GPA-045D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	20,000 R
GPA-045D-A	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	230 J
GPA-045D-A	Butylbenzlphthalate	Continuing calibration	%D=23.9	%D<20	2,800 J
GPA-045D-A	Dibenzo(a,h) anthracene	Internal Standard	%R=17.5	%R=50-200	97 UR
GPA-045D-A	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	97 UR
GPA-045D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DI	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	.1,900 UR
GPA-045D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	19,000 UR
GPA-045D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	3,100 R
GPA-045D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	2,300 R
GPA-045D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	2,000 R
GPA-045D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	1,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA ·	1,900 UR
GPA-045D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	5,800 R
GPA-045D-A DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,700 UR
GPA-045D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	2,800 R
GPA-045D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-045D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	2,200 R
GPA-045D-B	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	1900 J
GPA-045D-B	bis(2-Ethylhexyl) phthalate	More technically sound data available	Over calibration Range	NA	300,000 R
GPA-045D-B	Butylbenzylphthalate	More technically sound data available	Over calibration Range	NA	160,000 R
GPA-045D-B	Dibenzo(a,h) anthracene	Internal Standard	%R=17.5	%R=50-200	310 UR
GPA-045D-B	Di-n-octylphthalate	More technically sound data available	Over calibration Range	NA	39,000 R
GPA-045D-B	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	310 UR
GPA-045D-B DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	4-Methylphenol	More technically sound data available	Excessive dilution	NA	31,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-B DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Anthracene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPΛ-045D-B DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA .	31,000 UR
GPA-045D-B DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	310,000 UR
GPA-045D-B DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Chrysene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Fluorene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Naphthalene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	31,000 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-045D-B DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	160,000 UR
GPA-045D-B DL	Phenanthrene	More technically sound data available	Excessive dilution	NA ·	31,000 UR
GPA-045D-B DL	Phenol	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-B DL	Pyrene	More technically sound data available	Excessive dilution	NA	31,000 UR
GPA-045D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>160 U</td></rl<>	160 U
GPA-045D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>94 U</td></rl<>	94 U
GPA-055D-A	4-Methylphenol	More technically sound data available	Over calibration Range	NA	29,000 R
GPA-055D-A	Benzo(g,h,i)perylene	Internal Standard	%R=17.5	%R=50-200	94 UR ·
GPA-055D-A	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>580 U</td></rl<>	580 U
GPA-055D-A	Dibenzo(a,h) anthracene	Internal Standard	%R=17.5	%R=50-200	94 UR
GPA-055D-A	Indeno(1,2,3-cd)pyrene	Internal Standard	%R=17.5	%R=50-200	94 UR
GPA-055D-A DL	1,2,4-Trichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	1,2-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	1,3-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	1,4-Dichlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	2,4-Dimethylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	2-Methylnaphthalene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	2-Methylphenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Acenaphthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Acenaphthylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(a)anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(a)pyrene	More technically sound data available	Excessive dilution	NA	1,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-A DL	Benzo(b)fluoranthene	More technically sound data available	Excessive dilution	NA ···	1,900 UR
GPA-055D-A DL	Benzo(g,h,i)perylene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzo(k)fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Benzoic acid	More technically sound data available	Excessive dilution	NA	19,000 UR
GPA-055D-A DL	Benzyl alcohol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	bis(2-Ethylhexyl) phthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Butylbenzylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Chrysene	More technically sound data available	Excessive dilution	NA ₂	1,900 UR
GPA-055D-A DL	Dibenz(a,h)anthracene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Diethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Dimethylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	di-n-Butylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Di-n-octylphthalate	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Fluoranthene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Fluorene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Hexachlorobenzene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Hexachlorobutadiene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Indeno(1,2,3-cd)pyrene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Naphthalene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	n-Nitrosodiphenyl amine	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Pentachlorophenol	More technically sound data available	Excessive dilution	NA	9,400 UR
GPA-055D-A DL	Phenanthrene	More technically sound data available	Excessive dilution	NA	1,900 UR

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-A DL	Phenol	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-A DL	Pyrene	More technically sound data available	Excessive dilution	NA	1,900 UR
GPA-055D-B	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>170 U</td></rl<>	170 U
GPA-055D-C	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>250 U</td></rl<>	250 U
GPA-055D-D	Bis (2-ethylhexyl) phthalate	Method blank	MB=75, 110	MD <rl< td=""><td>110 U</td></rl<>	110 U
	Pest	icide Data Qualifier Fla	gs		
GPA-025D-A	4,4'-DDE	MS/MSD	%R=24.9, 26.5	%R=50-140	3.2 UJ
GPA-025D-A	4,4'-DDD	TCMX DCBP	NR %R=45.8	%R=50-140	2.0 UJ
GPA-025D-A	4,4'-DDT	TCMX DCBP	NR %R=45.8	%R=50-140	2.0 UJ
GPA-025D-A	Hexachlorobenzene	TCMX DCBP	NR %R=45.8	%R=50-140	1.0 UJ
GPA-025D-A	Hexachlorobutadiene	TCMX DCBP	NR %R=45.8	%R=50-140	0.99 UJ
GPA-025D-B	4,4'-DDE	TCMX DCBP	NR %R=45.8	%R=50-140	5.0 UJ
GPA-025D-B	4,4'-DDD	TCMX DCBP	NR %R=45.8	%R=50-140	2.0 UJ
GPA-025D-B	4,4'-DDT	TCMX DCBP	NR %R=45.8	%R=50-140	3.9 UJ
GPA-025D-B	Hexachlorobenzene	TCMX DCBP	NR %R=45.8	%R=50-140	5.4 UJ
GPA-025D-B	Hexachlorobutadiene	TCMX DCBP	NR %R=45.8	%R=50-140	0.98 UJ
GPA-025D-D	4,4'-DDE	TCMX DCBP	%R=43.5 %R=39.5	%R=50-140	1.9 UJ
GPA-025D-D	4,4'-DDD	TCMX DCBP	%R=43.5 %R=39.5	%R=50-140	1.9 UJ
GPA-025D-D	4,4'-DDT	TCMX DCBP	%R=43.5 %R=39.5	%R=50-140	1.9 UJ
GPA-025D-D	Hexachlorobenzene	TCMX DCBP	%R=43.5 %R=39.5	%R=50-140	0.93 UJ

exachlorobutadiene 4'-DDE 4'-DDD 4'-DDT exachlorobenzene exachlorobutadiene 4'-DDE 4'-DDE	TCMX DCBP	%R=43.5 %R=39.5 %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %R=40.8	%R=50-140 %R=50-140 %R=50-140 %R=50-140 %R=50-140 %R=50-140 %R=50-140	0.93 UJ 2.0 UJ 2.0 UJ 2.0 UJ 0.99 UJ
4'-DDE 4'-DDT exachlorobenzene exachlorobutadiene 4'-DDE	TCMX DCBP	%R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140 %R=50-140 %R=50-140 %R=50-140 %R=50-140	2.0 UJ 2.0 UJ 2.0 UJ 0.99 UJ
4'-DDD 4'-DDT exachlorobenzene exachlorobutadiene 4'-DDE	DCBP TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP	%R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %R=40.8 %R=37.2	%R=50-140 %R=50-140 %R=50-140 %R=50-140	2.0 UJ 2.0 UJ 0.99 UJ
4'-DDD 4'-DDT exachlorobenzene exachlorobutadiene 4'-DDE	TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP	%R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %R=40.8 %R=37.2	%R=50-140 %R=50-140 %R=50-140 %R=50-140	2.0 UJ 2.0 UJ 0.99 UJ
4'-DDT exachlorobenzene exachlorobutadiene 4'-DDE	DCBP TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP	%R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140 %R=50-140 %R=50-140	2.0 UJ 0.99 UJ 0.99 UJ
4'-DDT exachlorobenzene exachlorobutadiene 4'-DDE	TCMX DCBP TCMX DCBP TCMX DCBP TCMX DCBP	%R=23.0 %R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140 %R=50-140 %R=50-140	2.0 UJ 0.99 UJ 0.99 UJ
exachlorobenzene exachlorobutadiene 4'-DDE	DCBP TCMX DCBP TCMX DCBP TCMX DCBP	%R=NR %R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140 %R=50-140	0.99 UJ
exachlorobenzene exachlorobutadiene 4'-DDE	TCMX DCBP TCMX DCBP TCMX DCBP	%R=23.0 %R=NR %R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140 %R=50-140	0.99 UJ
exachlorobutadiene 4'-DDE	DCBP TCMX DCBP TCMX DCBP	%R=NR %R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140	0.99 UJ
exachlorobutadiene 4'-DDE	TCMX DCBP TCMX DCBP	%R=23.0 %R=NR %R=40.8 %K=37.2	%R=50-140	0.99 UJ
4'-DDE	DCBP TCMX DCBP	%R=NR %R=40.8 %R=37.2		
4'-DDE	TCMX DCBP	%R=40.8 %R=37.2		
	DCBP	%R=37.2	%R=50-140	
			%K=5Ų-140	1 () TIT
4'-DDD	TCMX	0/D 40.0	%R=50-140	1.9 UJ
4'-DDD	1	%R=40.8	%R=50-140	1.0777
	DCBP	%R=37.2		1.9 UJ
4,4'-DDT	TCMX	%R=40.8	%R=50-140	10777
	DCBP	%R=37.2		1.9 UJ
	TCMX	%R=40.8		
exachlorobenzene	DCBP	%R=37.2	%R=50-140	0.94 UJ
	TCMX	%R=40.8		
exachlorobutadiene	DCBP	%R=37.2	%R=50-140	0.94 UJ
	TCMX	%R=38.8		
4'-DDE	DCBP	%R=29.2	%R=50-140	1.8 UJ
	TCMX	%R=38.8		
4'-DDD	DCBP	%R=29.2	%R=50-140	1.8 UJ
	TCMX	%R=38.8		
4'-DDT	1		%R=50-140	1.8 UJ
exachlorobenzene		1	%R=50-140	0.93 UJ
		 		
exachlorobutadiene	1		%R=50-140	0.93 UJ
4'-DDE	i	1	%R=50-140	1.9 UJ
		 		
4,4'-DDD		1	%R=50-140	1.9 UJ
	101111	1	%R=50-140	1.9 UJ
	exachlorobenzene exachlorobutadiene 4'-DDE	exachlorobenzene exachlorobenzene exachlorobutadiene exachlorobutadiene TCMX DCBP TCMX	#Y-DDT DCBP %R=29.2 Exachlorobenzene TCMX	#Y-DDT DCBP %R=29.2 %R=50-140 exachlorobenzene

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-D	Hexachlorobenzene	TCMX	%R=43.8	%R=50-140	0.96 UJ
GFA-033D-D	Hexacillorobelizelle	DCBP	%R=37.8	%K-30-140	0.96 03
GPA-055D-D	Hexachlorobutadiene	TCMX	%R=43.8	%R=50-140	0.96 UJ
GI A-033D-D	Tiexaciiiofobutadielle	DCBP	%R=37.8	76K-30-140	0.96 03
GPA-02 4.0-6.5	4,4'-DDE	TCMX	%R=NR	%R=50-140	3.7 UJ
GI A-02 4.0-0.3	4,4 -DDE	DCBP	%R=40.2	76K-30-140	3.7 03
GPA-02 4.0-6.5	4,4'-DDD	TCMX	%R=NR	%R=50-140	5.1 UJ
GI A-02 4.0-0.5	4,4 -DDD	DCBP	%R=40.2	76K-30-140	5.1 03
GPA-02 4.0-6.5	4,4'-DDT	TCMX	%R=NR	%R=50-140	2 1 111
Of A-02 4.0-0.5	4,4 -DD1	DCBP	%R=40.2	76K-30-140	3.1 UJ
GPA-02 4.0-6.5	Hexachlorobenzene	TCMX	%R=NR	%R=50-140	1.2 UJ
GI A-02 4.0-0.3	Trexaciiiorouenzene	DCBP	%R=40.2	70K-30-140	1.2 UJ
GPA-02 4.0-6.5	Hexachlorobutadiene	TCMX	%R=NR	%R=50-140	0.99 UJ
GFA-02 4.0-0.5	nevacifiorobigamene	DCBP	%R=40.2	76K-10-140_	0.99 01
	Po	CB Data Qualifier Flags			
GPA-015D-A	Aroclor 1016	TCMX	%R=25.2	9/B-50 140	20 UJ
GPA-015D-A	Alocioi 1010	DBCP	%R=19.0	%R=50-140	20 OJ
GPA-015D-A	Aroclor 1242	TCMX	%R=25.2	%R=50-140	20.117
		DBCP	%R=19.0	/010 30-140	20 UJ
GPA-015D-A	A1248	TCMX	%R=25.2	0/D-50 140	70.111
GPA-015D-A	Aroclor 1248	DBCP	%R=19.0	%R=50-140	79 UJ
CDA 015D A	4	TCMX	%R=25.2	%R=50-140	52 III
GPA-015D-A	Aroclor 1254	DBCP	%R=19.0		53 UJ
CDA 015D A	A1 1260	TCMX	%R=25.2	0/D 50 140	70.111
GPA-015D-A	Aroclor 1260	DBCP .	%R=19.0	%R=50-140	79 UJ
CDA 015D A	A 1221	TCMX	%R=25.2	0/D 50 140	40.111
GPA-015D-A	Aroclor 1221	DBCP	%R=19.0	%R=50-140	40 UJ
CDA 015D A	4 1222	TCMX	%R=25.2	0/D 50 140	20.111
GPA-015D-A	Aroclor 1232	DBCP	%R=19.0	%R=50-140	20 UJ
CDA 025D D	A 101 C	TCMX	%R=36.8	0/D 50 140	10777
GPA-025D-D	Aroclor 1016	DBCP	%R=46.0	%R=50-140	19 UJ
CD 4 025D D	1 1242	TCMX	%R=36.8	0/D 50 510	10 ***
GPA-025D-D	Aroclor 1242	DBCP	%R=46.0	%R=50-140	19 UJ
CD 4 025D D	1 1010	TCMX	%R=36.8	0/2 50 510	10
GPA-025D-D	Aroclor 1248	DBCP	%R=46.0	%R=50-140	19 UJ
GD L COST T		TCMX	%R=36.8		
GPA-025D-D	Aroclor 1254	DBCP	%R=46.0	%R=50-140	19 UJ

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
CDA 025D D	A1 1260	TCMX	%R=36.8	0/P-50 140	10.111
GPA-025D-D	Aroclor 1260	DBCP	%R=46.0	%R=50-140	19 UJ
CDA 025D D	A == =1== 1221	TCMX	%R=36.8	0/D=50 140	27.111
GPA-025D-D	Aroclor 1221	DBCP	%R=46.0	%R=50-140	37 UJ
CDA 035D D	A I 1222	TCMX	%R=36.8	0/D-50 140	10 111
GPA-025D-D	Aroclor 1232	DBCP	%R=46.0	%R=50-140	19 UJ
GPA-035D-C	Aroclor 1016	TCMX	%R=42.5	%R=50-140	19 UJ
GPA-035D-C	Aroctor 1016	DBCP	%R=37.0	%K=30-140	1903
CDA 025D C	A == =1 == 1242	TCMX	%R=42.5	0/D-50 140	10.111
GPA-035D-C	Aroclor 1242	DBCP	%R=37.0	%R=50-140	19 UJ
CDA 025D C	A10- 1240	TCMX	%R=42.5	0/D-50 140	11077
GPA-035D-C	Aroclor 1248	DBCP	%R=37.0	%R=50-140	110 UJ
OD 4 00 5D G	1 1 1051	TCMX	%R=42.5	0/2 50 140	20.111
GPA-035D-C	Arocler 1254	DBCP	%R=37.0	%R=50-140	.39 UJ
OD 4 00 5D G	1 1250	TCMX	%R=42.5	%R=50-140	70 UJ
GPA-035D-C	Aroclor 1260	DBCP	%R=37.0		
GPA-035D-C Aroclor 1221	Arcelor 1221	TCMX	%R=42.5	1.,	
	Aroclor 1221	DBCP	%R=37.0	%R=50-140	37 UJ
OD 4 025D G		TCMX	%R=42.5	%R=50-140	19 UJ
GPA-035D-C	Aroclor 1232	DBCP ,	%R=37.0		
CD + CASD D		TCMX	%R=39.5		19 UJ
GPA-035D-D	Aroclor 1016	DBCP	%R=49.0	%R=50-140	
		TCMX	%R=39.5		
GPA-035D - D	Aroclor 1242	DBCP	%R=49.0	%R=50-140	19 UJ
		TCMX .	%R=39.5		
GPA-035D-D	Aroclor 1248	DBCP	%R=49.0	%R=50-140	19 UJ
		TCMX	%R=39.5		
GPA-035D-D	Aroclor 1254	DBCP	%R=49.0	%R=50-140	19 UJ
		TCMX	%R=39.5		
GPA-035D-D	Aroclor 1260	DBCP	%R=49.0	%R=50-140	19 UJ
		TCMX	%R=39.5		
GPA-035D-D	Aroclor 1221	DBCP	%R=49.0	%R=50-140	38 UJ
		TCMX	%R=39.5		
GPA-035D-D	Aroclor 1232	DBCP	%R=49.0	%R=50-140	19 UJ
		TCMX	%R=NR		_
GPA-055D-A	Aroclor 1016	DBCP	%R=44.0	%R=50-140	20 UJ
		TCMX	%R=NR		_
GPA-055D-A	Aroclor 1242	DBCP	%R=44.0	%R=50-140	20 UJ

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
GPA-055D-A	Aroclor 1248	TCMX	%R=NR	%R=50-140	280 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1254	TCMX	%R=NR	%R=50-140	100 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1260	TCMX	%R=NR	%R=50-140	94 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1221	TCMX	%R=NR	%R=50-140	39 UJ
		DBCP	%R=44.0		
GPA-055D-A	Aroclor 1232	TCMX	%R=NR	%R=50-140	20 UJ
	1.000.01	DBCP	%R=44.0		
GPA-055D-C	Aroclor 1016	TCMX	%R=34.0	%R=50-140	18 UJ
0171-0332-0	7 10000 1010	DBCP	%R=38.5	7010 30-140	
GPA-055D-C	Aroclor 1242	TCMX	%R=34.0	%R=50-140	18 UJ
01 A-033D-0	Alociol 1243	DBCP	%R =38.5	70K=,50-140	
CDA 055D C	Aroclor 1248	TCMX	%R=34.0	%R=50-140	18 UJ
GPA-055D-C	Arocior 1248	DBCP	%R=38.5	76K-30-140	18 03
	Arnolog 1254	TCMX	%R=34.0	%R=50-140	10.111
GPA-055D-C	Aroclor 1254	DBCP	%R=38.5	%R=30-140	18 UJ
	1 1260	TCMX	%R=34.0		10.777
GPA-055D-C	Aroclor 1260	DBCP	%R=38.5	%R=50-140	18 UJ
		TCMX	%R=34.0		
GPA-055D-C	Aroclor 1221	DBCP	%R=38.5	%R=50-140	37 UJ
		TCMX	%R=34.0		
GPA-055D-C	Aroclor 1232	DBCP	%R=38.5	%R=50-140	18 UJ
		TCMX ·	%R=29.2		
GPA-02 4.0-6.5	Aroclor 1016	DBCP	%R=NR	%R=50-140	20 UJ
		TCMX	%R=29.2		
GPA-2 4.0-6.5	Aroclor 1242	DBCP	%R=NR	%R=50-140	20 UJ
		TCMX	%R=29.2		
GPA-02 4.0-6.5	Aroclor 1248	DBCP	%R=NR	%R=50-140	260 UJ
		TCMX	%R=29.2		
GPA-02 4.0-6.5	Aroclor 1254	DBCP	%R=NR	%R=50-140	120 UJ
		TCMX	%R=29.2		
GPA-02 4.0-6.5	Aroclor 1260	DBCP	%R=NR	%R=50-140	270 UJ
		TCMX	%R=29.2		
GPA-02 4.0-6.5	Aroclor 1221	DBCP	%R=29.2 %R=NR	%R=50-140	40 UJ
				-	
GPA-02 4.0-6.5	Aroclor 1232	TCMX	%R=29.2	%R=50-140	20 UJ
		DBCP	%R=NR		

Sample ID	Target Compound Affected	Type of Deviation	Anomaly	Criteria	Flag
	Me	etals Data Qualifier Flag	s		
GPA-015D-A	Antimony	MS	%R=65.9	%R=75-125	80 UJ
GPA-015D-B	Antimony	MS	%R=65.9	%R=75-125	40 UJ
GPA-015D-C	Antimony	MS	%R=65.9	%R=75-125	8 UJ
GPA-015D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-025D-A	Antimony	MS	%R=65.9	%R=75-125	30 UJ
GPA-025D-B	Antimony	MS	%R=65.9	%R=75-125	20 UJ
GPA-025D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-035D-A	Antimony	MS	%R=65.9	%R=75-125	50 UJ
GPA-035D-B	Antimony	MS	%R=65.9	%R=75-125	40 UJ
GPA-035D-C	Antimony	MS	%R=65.9	%R=75-125	7 UJ
GPA-035D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-045D-A	Antimony	MS	%R=65.9	%R=75-125	50 UJ
GPA-045D-B	Antimony	MS	%R=65.9	%R=75-125	30 UJ
GPA-045D-C	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-045D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-055D-A	Antimony	MS	%R=65.9	%R=75-125	20 UJ
GPA-055D-B	Antimony	MS	%R=65.9	%R=75-125	7 UJ
GPA-055D-C	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-055D-D	Antimony	MS	%R=65.9	%R=75-125	6 UJ
GPA-02 4.0-6.5	Antimony	MS	%R=65.9	%R=75-125	20 U
	Conventional V	West Chemistry Data Qu	ialifier Flags		
No flags were assig	ned				

Attachment 3 Reviewed and/or Revised Laboratory Forms

October 8, 2003 Anchor 1141.doc

CASE NARRATIVE

Analysis of Samples for the Presence of

Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans by

High-Resolution Chromatography / High-Resolution Mass Spectrometry

Method 8290 Rev. 0 (9/94)

Date:

August 18, 2003

Client ID:

Anchor Environmental

P.O. Number:

020030-02

TLI Project Number:

60851

This report should only be reproduced in full. Any partial reproduction of this report requires written permission from Triangle Laboratories, Inc.

Rev. 11/19/97

WWW.TriangleLabs.com

Overview

The sample and associated QC samples were extracted and analyzed according to procedures described in EPA Method 8290 Rev. 0 (9/94). Any particular difficulties encountered during the sample handling by Triangle Laboratories will be discussed in the QC Remarks section below. This report contains results from only the 8290 dioxin/furan analysis of the sediment sample.

Quality Control Samples

A laboratory method blank, identified as the TLI Blank, was prepared along with the sample.

Laboratory control spike (LCS) and laboratory control spike duplicate (LCSD) samples are extracted and analyzed along with each batch of samples. A report summarizing the analyte recoveries and relative percent differences for these samples is included in the data package.

A clean-up blank was processed along with the sample to prove that contamination was not introduced during the cleanup procedures. The results of this clean-up blank are included with the data package.

Quality Control Remarks

This release of this particular set of Anchor Environmental analytical data by Triangle Laboratories was authorized by the Quality Control Chemist who has reviewed each sample data package following a series of inspections/reviews. When applicable, general deviations from acceptable QC requirements are identified below and comments are made on the effect of these deviations upon the validity and reliability of the results. Specific QC issues associated with this particular project are:

Sample receipt: Six sediment samples were received from Anchor Environmental at 3.0°C in good condition on August 01, 2003 and stored in a refrigerator at 4°C.

Sample Preparation Laboratory: All the samples were composited into one sample prior to extraction.

Mass Spectrometry: None

Data Review: None

Other Comments: No 2,3,7,8-substituted target analytes were detected in the method blank above the target detection limit (TDL).

Method 8290 contains separate criteria for beginning and ending continuing calibrations. When the ending calibration meets criteria established for the beginning calibration, the average response factor from the initial calibration is used. When the ending calibration only meets the less stringent criteria specified for an ending calibration, the average of the response factor from the beginning and ending calibration is used for analyte and internal standard calculations. Affected samples are identified by the listing of both the beginning and ending calibration filename on the sample report.

The analytical data presented in this report are consistent with the guidelines of EPA Method 8290 Rev. 0 (9/94). Any exceptions have been discussed in the QC Remarks section of this case narrative with emphasis on their effect on the data. Should Anchor Environmental have any questions or comments regarding this data package, please feel free to contact one of our Project Scientists at (919) 544-5729.

For Triangle Laboratories, Inc.,

Released by,

Report Preparation Chemist

The total number of pages in the data package is: 48+

Method 8290 Sample Calculations:

Analyte Concentration

The concentration or amount of any analyte is calculated using the following expression.

$$C_{(\sigma)} = \frac{A_{\sigma} * Q_{\beta}}{A_{\beta} * RRF_{(\sigma)} * W}$$

Where:

 $C_{(\sigma)}$ = concentration or amount of a given analyte

 A_{σ} = integrated current for the characteristic ions of the analyte

 A_{β} = integrated current of the characteristic ions of the corresponding

internal standard

 Q_{β} = amount of internal standard added to the sample before extraction RRF_(σ) = mean analyte relative response factor from the initial calibration

W = sample weight or volume

Detection Limits

The detection limit reported for a target analyte that is not detected or presents an analyte response that is less than 2.5 times the background level is calculated by using the following expression. The area of the analyte is replaced by the noise level measured in a region of the chromatogram clear of genuine GC signals. The detection limits represent the maximum possible concentration of a target analyte that could be present without being detected.

$$DL_{(\sigma)} = \frac{2.5 * H * Q_{\beta}}{H_{\beta} * RRF_{(\sigma)} * W}$$

Where:

 $DL_{(\sigma)}$ = estimated detection limit for a target analyte 2.5 = minimum response required for a GC signal

H = sum heights of the noise

 H_{β} = sum of peak heights of the characteristic ions of the corresponding

internal standard

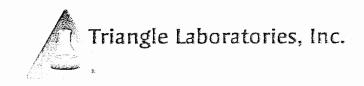
 Q_{β} = amount of internal standard added to the sample before extraction RRF_(σ) = mean analyte relative response factor from the initial calibration

W = sample weight or volume

Data Flags

In order to assist with data interpretation, data qualifier flags are used on the final reports. Please note that all data qualifier flags are subjective and are applied as consistently as possible. Each flag has been reviewed by two independent Chemists and the impact of the data qualifier flag on the quality of the data discussed above. The most commonly used flags are:

- A 'B' flag is used to indicate that an analyte has been detected in the laboratory method blank as well as in an associated field sample. The 'B' flag is used only when the concentration of analyte found in the sample is less than 20 times that found in the associated blank. This flag denotes possible contribution of background laboratory contamination to the concentration or amount of that analyte detected in the field sample.
- An 'E' flag is used to indicate a concentration based on an analyte to internal standard ratio which exceeds the range of the calibration curve. Values which are outside the calibration curve are estimates only.
- An 'I' flag is used to indicate labeled standards have been interfered with on the GC column by coeluting, interferent peaks. The interference may have caused the standard's area to be overestimated. All quantitations relative to this standard, therefore, may be underestimated.
- A 'J' flag is used to indicate a concentration based on an analyte to internal standard ratio which is below the calibration curve. Values which are outside the calibration curve are estimates only.
- A 'PR' flag is used to indicate that a GC peak is poorly resolved. This resolution problem may be seen as two closely eluting peaks without a reasonable valley between the peak tops, overly broad peaks, or peaks whose shapes vary greatly from a normal distribution. The concentrations or amounts reported for such peaks are most likely overestimated.
- A 'Q' flag is used to indicate the presence of QC ion instabilities caused by quantitative interferences.
- An 'RO' flag is used to indicate that a labeled standard has an ion abundance ratio that is outside of the acceptable QC limits, most likely due to a coeluting interference. This may have caused the percent recovery of the standard to be overestimated. All quantitations versus this standard, therefore, may be underestimated.
- An 'S' flag indicates that the response of a specific PCDD/PCDF isomer has exceeded the normal dynamic range of the mass spectrometer detection system. The corresponding signal is saturated and the reported analyte concentration is a 'minimum estimate'. When the 'S' qualifier is used in the reporting of 'totals', there is saturation of one (not


necessarily from a specific isomer) or more saturated signals for a given class of compounds. Results for saturated analytes are reported as greater than the upper calibration limit.

A 'U' flag is used to indicate that a specific isomer cannot be resolved from a large, coeluting interferent GC peak. The specific isomer is reported as not detected as a valid concentration cannot be determined. The calculated detection limit, therefore, should be considered an underestimated value.

A 'V' flag is used to indicate that, although the percent recovery of a labeled standard may be below a specific QC limit, the signal-to-noise ratio of the peak is greater than ten-to-one. The standard is considered reliably quantifiable. All quantitations derived from the standard are considered valid as well.

An 'X' flag is used to indicate that a polychlorodibenzofuran (PCDF) peak has eluted at the same time as the associated diphenyl ether (DPE) and that the DPE peak intensity is at least ten percent of the total PCDF peak intensity. Total PCDF values are flagged 'X' if the total DPE contribution to the total PCDF value is greater than ten percent. All PCDF peaks that are significantly influenced by the presence of DPE peaks are either reported as "estimated maximum possible concentration (EMPC) values without regard to the isotopic abundance ratio, or are included in the detection limit value depending on the analytical method.

TRIANGLE LABORATORIES, INC.

LIST OF CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

<u>Primary NELAP Certificate</u>: Florida Department of Health, #E87769; <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 613, 2,3,7,8-TCDD AND Method 1613, PCDD/PCDF & totals; <u>RCRA</u>, Methods 8280/8290, PCDD/PCDF & totals; <u>CAA</u>, TO-9A, all dioxins/furans AND TO-13A, semi-volatiles. Expires June 30, 2004.

Primary NELAP Certificate: State of New Jersey, Department of Environmental Protection. ID #NC851. CAA, Methods 0023A and MM5 (Sampling Train). Secondary NELAP Certificate: SDWA, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; CWA, Method 1613, PCDD/PCDF & totals; RCRA, Method 8290, PCDD/PCDF & totals. Expires June 30, 2003.

State of Alabama, Department of Environmental Management. Laboratory ID # 40950. 2,3,7,8 TCDD (Dioxin) in drinking water. Expires 31 July 2004.

State of Alaska, Department of Environmental Conservation. Certificate number NC140-03. 2,3,7,8- TCDD (Dioxin) in drinking water. Expires December 21, 2003.

State of Arizona, Department of Health Services. Certificate #AZ0423. Drinking Water for Dioxin, Dioxins in Waste Water and Solid or Hazardous Waste. Expires May 25, 2004.

State of Arkansas, Department of Environmental Quality. Pulp/paper, soil, water, and Hazardous Waste for Dioxin/Furans. Expires 11 February 2004.

<u>Secondary NELAP Certificate</u>: State of California, Department of Health Services, Certificate No. 03213CA. <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 1613, PCDD/PCDF & totals; <u>Hazardous Waste</u>, Methods 8280/8290, PCDD/PCDF & totals. Expires 28 February 2004.

State of Colorado, Department of Public Health and Environment. <u>SDWA</u>, Dioxin by EPA 1613. Expires April 30, 2004.

State of Connecticut, Department of Health Services. Registration #PH-0117. <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 1613, PCDD/PCDF & totals; <u>RCRA</u>, Methods 8280/8290, PCDD/PCDF & totals. Expires September 30, 2003.

C:\MyDocuments\Certlist.doc

Revised 8/14/03 nh

1

Delaware Health and Social Services. Dioxin Certification waived for out-of-state laboratories; accept home-state Certifications.

<u>Primary NELAP Certificates</u>: Florida Department of Health, #E87769; <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 613, 2,3,7,8-TCDD AND Method 1613, PCDD/PCDF & totals; <u>RCRA</u>, Methods 8280/8290, PCDD/PCDF & totals; <u>CAA</u>, TO-9A, all dioxins/furans AND TO-13A, semi-volatiles. Expires June 30, 2004.

Georgia Department of Environmental Quality. SDWA, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; CWA, Method 613, 2,3,7,8-TCDD AND Method 1613, PCDD/PCDF & totals; RCRA, Methods 8280/8290, PCDD/PCDF & totals; CAA, TO-9A, all dioxins/furans AND TO-13A, semi-volatiles; reciprocity based on FL-DOH NELAP Certificate. Certificate # 953, expires June 30, 2004.

Hawaii Department of Health. Certified for Dioxin under the Safe Drinking Water Act. "Accepted" status for regulatory purposes. Expires June 30, 2004.

Idaho Department of Health and Welfare. Dioxin in drinking water, EPA Method 1613. Expires December 31, 2003.

<u>Secondary NELAP Certificate</u>: Illinois Environmental Protection Agency. Accreditation Number #200007, Certificate #000666; Drinking Water, Mcthod 1613, 2,3,7,8-TCDD; Wastewater, Organic, Methods 1613 and 613; Hazardous and Solid Waste, Organic, Methods 8280A and 8290. Expires 30 September 2003.

Indiana Department of Health. Dioxin in drinking water, EPA method 1613. Lab ID # C-NC-01. Expires July 31, 2003.

Secondary NELAP Certificate: State of Kansas, Department of Health and Environment. Cert. #E-10215. SDWA, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; CWA, Method 1613, PCDD/PCDF; RCRA, Methods 8280/8290, PCDD/PCDF & totals. Expires 31 January 2004.

Commonwealth of Kentucky, Department for Environmental Protection. Lab ID #90060. 2,3,7,8 TCDD (Dioxin) in drinking water. Expires December 31, 2003.

Secondary NELAP Certificate: State of Louisiana Department of Environmental Quality. Certificate # 01979. <u>CAA</u>, TO-9A and TO-13A; <u>CWA</u>, Method 1613 PCDDs/PCDFs; <u>RCRA</u>, Methods 8280A & 8290 PCDDs/PCDFs; <u>Misc</u>. Methods 1613, 8280A & 8290. Expires 30 June 2004.

<u>Secondary NELAP Certificate</u>: State of Louisiana Department of Health & Hospitals. Dioxin (2,3,7,8-TCDD) in Drinking Water. Certificate # LA030007. Expires December 31, 2003.

Maine Department of Human Services. Certification #: NC140. <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 1613, PCDD/PCDF. Expires May 30, 2004.

Maryland Department of Health and Mental Hygiene. Certification # 235, SOC 2 (Dioxin). Expires September 30, 2003.

Commonwealth of Massachusetts, Department of Environmental Protection, does not require Certification for Drinking Water Dioxin/Furan analysis.

State of Michigan, Department of Environmental Quality. 2,3,7,8 TCDD by Method 1613. Expires 31 July 2003.

Minnesota Department of Health. The certification program in MN does not include dioxins/furans for CWA, SDWA of RCRA. See U.S. EPA Region V.

Mississippi State Department of Health. Dioxin in drinking water. No expiration date.

Montana Department of Health and Environmental Services. CERT0019. Dioxin in drinking water. Expires December 31, 2003.

State of Nebraska Department of Health. Reciprocal certification through the North Carolina Department of Health and Human services and Florida DOH NELAP Certification. <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 613, 2,3,7,8-TCDD AND Method 1613, PCDD/PCDF & totals; <u>RCRA</u>, Methods 8280/8290, PCDD/PCDF & totals; <u>CAA</u>, TO-9A, all dioxins/furans AND TO-13A, semi-volatiles. Expires July 31, 2004.

State of Nevada, Department of Conservation and Natural Resources. Lab Certificate No. NC-00140-2003-66, expires July 31, 2003. <u>CWA</u>, Method 1613, PCDD/PCDF & totals, expires July 31, 2003.

State of Nevada, Department of Human Resources. Lab Certificate No. NC-00140-2003-66, expires July 31, 2003. <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water, expires July 31, 2003.

Primary NELAP Certificate: State of New Jersey, Department of Environmental Protection. ID #NC851. CAA, Methods 0023A and MM5 (Sampling Train). Secondary NELAP Certificate: SDWA, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; CWA, Method 1613, PCDD/PCDF & totals; RCRA, Method 8290, PCDD/PCDF & totals. Expires June 30, 2003.

State of New Mexico, Environment Department. Safe Drinking Water Act; 2,3,7,8-TCDD by Method 1613. Expires 30 June 2003.

Secondary NELAP Certificate: New York State Department of Health, LAB ID #11026. Potable Water, 2,3,7,8-TCDD, EPA 1613, Serial # 19927; Non-Potable Water, 2,3,7,8-TCDD, EPA 1613, Serial # 19928. Expires 1 April, 2004.

State of North Carolina, Department of Health and Human Services. Certificate # 37751. Dioxin in drinking water. Expires July 31, 2004.

North Dakota State Department of Health and Consolidated Laboratories. Certificate # R-076. Dioxins/Furans in drinking water, non-potable water, solid and hazardous wastes; reciprocal recognition of FL-DOH NELAP Accreditation and Scope. Expires June 30, 2004.

Ohio EPA. Ohio does not offer out-of-state lab certifications; certification by EPA Region 5 is honored.

Oklahoma Department of Environmental Quality. Laboratory #9951. 2,3,7,8 TCDD (Dioxin). Expires August 31, 2004.

Secondary NELAP Certificate: Oregon Environmental Laboratory Accreditation Program. Certificate No:-279313938. SDWA, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; CWA, Method 1613, PCDD/PCDF & totals; RCRA, Methods 8280/8290, PCDD/PCDF & totals; CAA, TO-9A, all dioxins/furans AND TO-13A, semi-volatiles. Expires January 31, 2004.

Secondary NELAP Certificate: Commonwealth of Pennsylvania, Department of Environmental Protection. Environmental Laboratory Registration # 68-1484. Lab ID No. 68-1975. SDWA, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water. Expires March 31, 2004.

State of South Carolina, Department of Health and Environmental Control. <u>Certificate number #99040001</u> (Other parameters). Dioxin/Furans by method 1613B - Safe Drinking Water Act; 2,3,7,8-TCDD for Drinking Water, and Organic extractables for Solid and Hazardous Waste. Reciprocal certification with New York. Expires June 03, 2001. <u>Certificate # 99040002</u> Solid Hazardous Waste-Dioxins/Furans by 8280A and 8290. Expires August 31, 2001. *Renewal pending.

State of Tennessee. Department of Environment and Conservation. ID #02992. Dioxin in Drinking water. Expires February 20, 2005.

Texas Natural Resource Conservation Commission. Certification Number: TX264-2002A. SDWA: Chemistry, Dioxin (2378-TCDD), EPA 1613. Expires January 31, 2004.

U.S. Army Corps of Engineers. Validated to perform EPA SW-846, Method 8290, water and solids. Validation expires May 2, 2004.

Department of the Navy, Naval Facilities Engineering Service Center (NFESC). Letter of Acceptance for analysis of water and solids by Methods 8280 and 8290. Expires June 30, 2003.

U.S. EPA Region V. 2,3,7,8 TCDD (Dioxin) in drinking water by method 1613B. Expires February 03, 2006. [Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin]

U.S. EPA Region VIII, for the State of Wyoming. EPA Method 1613 for Dioxin in drinking water. Expires 20 October 2003.

<u>Secondary NELAP Certificate</u>: State of Utah, Department of Health. ID # TRIA, Account # 9195445729 <u>SDWA</u>, Method 1613, 2,3,7,8-TCDD for Dioxin in Drinking Water; <u>CWA</u>, Method 1613, PCDD/PCDF & totals; <u>RCRA</u>, Methods 8280/8290, PCDD/PCDF & totals. Expires June 30, 2003.

Commonwealth of Virginia, Department of General Services, Division of Consolidated Laboratory Services. ID # 00341. 2,3,7,8-TCDD (Dioxin) in drinking water, EPA Method 1613B. Expires June 30, 2004.

State of Washington, Department of Ecology. Lab Accreditation Number C067. Scope of Accreditation applies to Dioxins (PCDDs/PCDFs) by EPA methods 1613, 8280, and 8290 in potable and non-potable water. Expires September 11, 2003.

State of West Virginia, Department of Health. Certificate No. 9923(C). 2,3,7,8-TCDD (Dioxin) in drinking water, SOC III. Expires December 31, 2003.

State of West Virginia, Department of Environmental Protection. Certificate No. 327. Dioxins/Furans, Methods 8280A/8290/1613B. Expires December 31, 2003.

State of Wisconsin, Department of Natural Resources. Laboratory ID Number 999869530. Certified for 2,3,7,8-TCDD (Dioxin) in drinking water and for PCDD/PCDF. Expires August 31, 2003.

State of Wyoming, see U.S. EPA Region VIII above.

PHARMACEUTICAL

Drug Enforcement Agency (DEA). Registration number RT0195835. Controlled substance registration for schedules 1,2,3,3N,4,5. Expires November 30, 2003.

N.C. Department of Human Resources. Registration number NC-PT 0000 0031. North Carolina controlled substances registration for schedules 1, 2, 2N, 3, 3N, 4, 5, 6. Expires October 31, 2003.

Food & Drug Administration (FDA) Registration. ID #'s 001500 1053481(ATL). Annual registration of drug establishment. Current for 2003.

OTHER

Clinical Laboratory Improvement Amendments (CLIA) Registration. ID # 34D0705123. Department of Health & Human Services, Health Care Financing Administration. Certificate for the Acceptance of Human Specimens for the purposes of performing laboratory examinations or procedures - Chemistry, Toxicology, HCFA. Expires May 30, 2005.

- **U.S. Department of Agriculture Soil Permit.** Permit No. S-56724. Under the authority of the Federal Plant Pest Act, permission is granted to receive foreign soil samples for use in laboratory analysis. Expires March 31, 2007.
- U.S. EPA Large Quantity Hazardous Waste Generator. EPA ID #NCR000137232. Permit indicates that the laboratory is a large generator of hazardous waste. No expiration date.
- U.S. Fish and Wildlife Permit. Number LE027890-1. Authorization to import/export wildlife and/or wildlife products. Expires April 30, 2004.