

Monte Cristo Mining Area Remedial Investigation Phase 3 Characterization of Aquatic Sampling Reaches Reconnaissance Report

Prepared for Washington State Department of Ecology

March 29, 2013 17800-35

This page is intentionally left blank for double-sided printing.

Monte Cristo Mining Area Remedial Investigation Phase 3 Characterization of Aquatic Sampling Reaches Reconnaissance Report

Prepared for Washington State Department of Ecology

March 29, 2013 17800-35

Prepared by Hart Crowser, Inc.

Michelle Havey

Michelle Havey Project Manager Fisheries Biologist

Michael Bailey

Michael J. Bailey, CEO, PE Principal in Charge

120 Third Avenue South, Suite 110 Edmonds, Washington 98020-8411 Fax 425.778.9417 Tel 425.775.4682 This page is intentionally left blank for double-sided printing.

CO	NTENTS	<u>Page</u>
INT	RODUCTION	1
SIT	E DESCRIPTION AND OPERATIONAL HISTORY	3
Gla	cier Creek Watershed	4
	ventysix Gulch Watershed den Creek Watershed	4 5
SIT	E INVESTIGATION ACTIVITIES	5
Soι	uth Fork Sauk River	6
Gla	cier Creek Watershed	16
Sev	ventysix Gulch Watershed	18
DE	BRIEF WITH ECOLOGY	20
LES	SSONS LEARNED FOR FUTURE SAMPLING	21
REF	FERENCES	23
TAE	BLES	
1	Daily Activities Summary	2
2	Project Team Roles and Responsibilities	3
3	Detailed Sampling Reach Measurements	7
4	Inorganic Substrate Components for HC-SFSR-07	8
5	Inorganic Substrate Components for HC-SFSR-07 Alt	10
6	Inorganic Substrate Components for HC-SFSR-09	11
7	Inorganic Substrate Components for HC-MCL-01	13
8	Inorganic Substrate Components for HC-SFSR-03	15
9	Inorganic Substrate Components for HC-GS-05	17
10	Inorganic Substrate Components for HC-76-02	19

CONTENTS (Continued)

FIGURES

1	Vicinity	Мар
I	vicinity	Ma

- 2 USGS Darrington, WA, Flow Data
- 3 Downstream Aquatic Reconnaissance Stations
- 4 Upstream Aquatic Reconnaissance Stations

APPENDIX A SITE PHOTOGRAPHS AND RAPID BIOASSESSMENT PROTOCOL FIELD FORMS

MONTE CRISTO MINING AREA REMEDIAL INVESTIGATION PHASE 3 CHARACTERIZATION OF AQUATIC SAMPLING REACHES RECONNAISSANCE REPORT

INTRODUCTION

Hart Crowser staff conducted a site reconnaissance in the Monte Cristo Mining Area (MCMA) near Granite Falls, Washington (Figure 1), from October 23 through October 25, 2012. Hart Crowser performed this initial investigation for the Washington State Department of Ecology (Ecology) under Contract No. C1100144. Work was conducted in general accordance with the Ecology Statement of Work (SOW) and project Sampling and Analysis Plan (SAP) prepared by Hart Crowser (Hart Crowser 2011). The purpose of the reconnaissance was to identify and characterize potential aquatic sampling reaches in the South Fork Sauk River (SFSR) and two of its headwater tributaries, Glacier Creek and Seventysix Gulch.

Aquatic sampling reaches were intended to coincide with surface water, pore water, and sediment sampling conducted by Cascade Earth Sciences (CES) as part of the Monte Cristo Mining Area Engineering Evaluation/Cost Analysis (EECA; CES 2010). At each location, Hart Crowser conducted a habitat characterization of an approximately 100-meter section of stream that included multiple habitats (e.g., riffles, pools). In addition, we documented riparian vegetation, flow velocity, took site photographs, and drew a sketch of the stream reach and its surroundings. Hart Crowser characterized a total of seven potential aquatic sampling stream reaches during the reconnaissance. This report summarizes the results of the initial site reconnaissance of potential aquatic stations.

The objectives of this initial investigation were to:

- Locate potential aquatic sampling stream reaches;
- Characterize the physical habitat conditions of the stream reach and document the riparian plants and any macroinvertebrates and animals present at and in the vicinity of the site; and
- Collect general water quality parameters at each site.

A site reconnaissance for aquatic sampling reaches was conducted from October 23 through October 25, 2012. Table 1 summarizes activities completed during this reconnaissance in chronological order. Table 2 presents the project team members and their roles and responsibilities for this investigation.

Day	Activity	Observations
Day 1	Mobilization	Macroinvertebrates
	Drove to Barlow Pass	observed at HC-SFSR-
	Located and characterized the first aquatic	07 and HC-SFSR-09;
	station (HC-SFSR-07) approximately	not visible at HC-MCL-
	3/4 mile northeast of Barlow Pass	01
	 Located and characterized an appropriate 	
	sampling reach for HC-SFSR-09	
	Located and characterized HC-MCL-01	
	Drove to Darrington to stay for the night	
Day 2	 Traveled to Monte Cristo Townsite via 	Macroinvertebrates
	helicopter	present at HC-GC-05
	 Hiked to Glacier Creek Watershed 	and HC-76-02
	Located and characterized HC-GC-05	
	(lower Glacier Creek station)	
	Conditions too snowy to reach HC-GC-01	
	(upper Glacier Creek station)	
	 Hiked to Seventysix Gulch Watershed 	
	Located and characterized HC-76-02	
Day 3	Hiked down the South Fork Sauk River	Macroinvertebrates
	Located and characterized HC-SFSR-03	present at HC-SFSR-03
	Picked up from the Townsite	and HC-SFSR-07 Alt
	Drove back to the stations visited on the first	
	day to collect flow data	
	 Identified and characterized an alternate 	
	sampling reach for HC-SFSR-07	
	Demobilization	

Table 1 – Daily Activities Summary

Project Role	Personnel Assignment	Roles/Responsibilities	
Ecology Project	Mary Monahan	Client Project Manager	
Manager	Ecology		
	(509) 454-7840		
Program	Mike Bailey	Ensures that all work is carried out in	
Manager	Hart Crowser	accordance with contractual obligations	
	(206) 324-9530	and the Delivery Order statement of work.	
		Assists the Project Manager as needed	
		with technical decisions and in resolving	
		issues. Final reviewer.	
Project/Task	Michelle Havey	Overall responsibility for execution of the	
Manager	Hart Crowser	Work Plan. Coordinate with Client, Field	
	(206) 324-9530	Manager, and Program Manager as	
		necessary to resolve issues.	
Corporate Health	Echo Summers	Overall responsibility for review and	
and Safety	Hart Crowser	answering questions regarding health and	
Officer (HSO)	(206) 324-9530	safety.	
Field Manager	Michelle Havey	Ensures that field activities are conducted	
and Site Safety	Hart Crowser	in accordance with project specifications.	
Coordinator	(206) 324-9530	Coordinates field activities with Project	
(SSC)		and Program Managers.	

Table 2 – Project Team Roles and Responsibilities

SITE DESCRIPTION AND OPERATIONAL HISTORY

The MCMA is located at the headwaters of the South Fork Sauk River (SFSR) (Figure 1). Three smaller watersheds, Weden Creek, Glacier Creek, and Seventysix Gulch, form the headwaters of the SFSR approximately 6 miles upstream of Monte Cristo Lake. The MCMA is comprised of approximately 54 abandoned mines, facilities, and prospects scattered throughout the three watersheds. The principal commodities produced were gold and silver, with an estimated 310,000 tons of ore produced between 1889 and the closure of most of the mines in 1907. Today the area is a popular destination and is accessible to hikers by a washed-out dirt road which runs south from Barlow Pass on the Mountain Loop Highway; the road crosses over and follows along the SFSR to the Anote Cristo Townsite (Townsite). There is currently no vehicular access to the area. Each watershed is described in further detail below.

Glacier Creek Watershed

The Glacier Creek Watershed is characterized by rock, snow, and ice. The low elevation portions of the watershed contain forested areas with a shrubdominated understory. Forested vegetation is dominated by grand fir (*Abies grandis*), subalpine fir (*Abies lasiocarpa*), and cedar (*Thuja plicata*), with understory vegetation consisting of blueberry (*Vaccinium* sp.) and huckleberry (*Vaccinium* sp.), with devil's club (*Oplopanax horridus*), vine maple (*Acer circinatum*), and salmonberry (*Rubus spectabilis*) being common near drainages and seeps. High-elevation areas are dominated by rock, snow (seasonally), and ice, with small forested stands and low-growing shrubs, such as mountainheather (*Phyllodoce* sp. and *Cassiope* sp.), lichen, and moss. Talus slopes and rocky outcrops are common features in this watershed.

Glacier Creek flows in a northerly and westerly direction into the SFSR from its headwaters (Figure 1). Snowmelt serves as the primary water source for Glacier Creek. Some of the snowmelt likely enters the creek as groundwater base flow and seasonal seeps.

Mining activity in the Glacier Creek Watershed is described in the Monte Cristo Mining Area Remedial Investigation Phase 2 Summary Report (Hart Crowser 2012).

Seventysix Gulch Watershed

The Seventysix Gulch Watershed is characterized by a predominantly forested landscape interspersed with rock, snow, and ice. Dominant vegetation is similar to the Weden Creek and Glacier Creek watersheds, and consists of an overstory of Douglas-fir (*Pseudotsuga menziesii*), true firs (*Abies* sp.), hemlock (*Tsuga* sp.), and cedar within an understory of shrubs. Evidence of historical timber harvest can be observed near established trails. High elevation areas contain a combination of forest stands, talus slopes, and rocky outcrops.

Seventysix Gulch generally flows in a northerly direction into the South Fork Sauk River (Figure 1). Snowmelt serves as the primary water source for Seventysix Gulch, which is reported to go dry during the late summer months (personal communication, US Forest Service volunteer, July 2011). Groundwater base flow and seasonal seepage likely contribute to surface water flows during the spring and early summer. Silver Lake, a popular destination for recreational users, is located just west of Seventysix Gulch watershed, over Poodle Dog Pass. Mining activity in the Seventysix Gulch Watershed is described in the Monte Cristo Mining Area Remedial Investigation Phase 2 Summary Report (Hart Crowser 2012).

Weden Creek Watershed

Weden Creek is the third component of the SFSR headwaters. The Weden Creek Watershed was not visited during this reconnaissance, so it is not discussed further in this report. In the event that future observations and sampling in Weden Creek are necessary to characterize water quality in the SFSR, we anticipate work would be similar to that discussed herein.

SITE INVESTIGATION ACTIVITIES

A site reconnaissance to identify aquatic sampling reaches was conducted from October 23 through October 25, 2012. Before the reconnaissance, locations of interest were identified based on elevated arsenic levels in surface water and sediment samples previously collected by CES for the Monte Cristo Mining Area EECA. The GPS coordinates for these point locations were loaded onto a handheld GPS and used by the field team for navigating to the intended sampling reaches. Once on site, the field team assessed the sampling location and identified an appropriate 100-meter sampling reach either near or including the original CES sampling location.

During the site reconnaissance, photographs and GPS data points were taken at the sample locations shown on Figure 1. Additionally, physical characterization/ water quality and Habitat Assessment datasheets from the EPA Rapid Bioassessment Protocol (RBP) were completed (Appendix A). The RBP is described in Barbour et al. (1999). We are using the RBP to characterize the MCMA sampling reaches because the protocols were designed to provide pertinent, cost-effective information for water quality management purposes.

During our site reconnaissance, we examined bank stability, instream features, riparian vegetation, on-site wildlife (macroinvertebrates, fish, reptiles, amphibians, birds, and mammals), or signs of wildlife in the area. We also observed proximity to human activities (i.e., trails, roads, or clear-cuts) and readily visible impacts on the stream reach. Photographs were taken at each location to document vegetation, wildlife use, and other relevant site features. Stream reach sketches are presented with the RBP datasheets in Appendix A, along with site photographs.

Because the reconnaissance occurred in late fall, the river level was higher and the flow much faster than we would expect to encounter for a late summer sampling trip. As shown in Figure 2, the USGS gage located on the Sauk River in Darrington, Washington, measured markedly higher flows in the latter half of October than in September and early October. Many of the locations we visited were not easily wadeable at the time of the reconnaissance, but we expect all of these sites to be easily accessible and wadeable during the 2013 field sampling.

South Fork Sauk River

HC-SFSR-07

On October 23, 2012, we identified and sampled HC-SFSR-07 as the first location on the site reconnaissance. After driving over Barlow Pass on the Mountain Loop Highway, the field team used a GPS to navigate to the CES station SFSR-07, which was located under a bridge approximately 0.5 miles northeast of the Pass along the highway. The RBP advises that locally modified sites (e.g., bridge areas) should be avoided, if possible, unless attempting to assess their effects. To avoid the bridge, we backtracked on the highway about 200 meters and parked in a small pullout on the east side of the road. We were able to access the left bank of the river from this location and set up a sampling reach just upstream of the bridge. Photographs, field datasheets, and site sketches for this site can be found on pages A-1 through A-8 in Appendix A.

First, we marked the upper and lower extent of the sampling reach with the Trimble GPS. Then, we measured the length, width (average), and slope of the stream reach using a laser rangefinder and slope inclinometer. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality, and instream feature measurements can be found in Table 3.

The riparian zone was dominated by western hemlock (*Tsuga heterophylla*), with some red alder (*Alnus rubra*) and devil's club (*Oplopanax horridus*) along the banks as well. There was only one piece of large woody debris (LWD) within the reach. We observed minimal aquatic vegetation (estimated 5 percent of the reach) in the form of attached algae on some of the larger boulders. The substrate was dominated by boulders and cobbles (Table 4), with very little gravel and sand.

	HC-SFSR-07	HC-SFSR-07-ALT	HC-SFSR-09	HC-MCL-01	HC-MCL-road	HC-SFSR-03	HC-GC-05	HC-76-02
Latitude	985454.57	986460.66	994798.89	993634.99		972878.32	968210.9	967630.98
Longitude	1410822.23	1411410.96	1414518.14	1412950.32		1415093.9	1423445.15	1422128.01
Altitude (ft)	2,142	2,172	1,800	1,954		2,448	2,873	2,931
Slope (deg)	5	4	6	0		3	9	13
Rivermile	7.2	7.4	9.7	9.1		3.9	2.0	1.2
Instream Features								
Length (m)	94	94	84	101		91	104	87
Width (m)	20	16	20	43		15	5	2
Area (m ²)	1,880	1,504	1,680	4,343		1,365	520	174
Depth (m)	1	0.3	0.5	0.3		0	0.2	0
Velocity (m/sec)	0.7	0.41	0.51	0.34		0	0.56	0.381
LWD (m ²)	0.4	2	0	3		8	30	20
LWD density (m ² /km ²)	0.21	1.33	0	0.68		5.86	57.69	115
High water (m)	2	0.3	5	0.25		1.5	4	1
Stream Morphology								
Riffle (%)	10	30	5	0		60	50	5
Run (%)	40	65	15	100		15	0	0
Pool (%)	10	0	15	0		25	20	35
Cascade (%)	40	5	65	0		0	30	60
Water Quality								
Temperature (deg C)	5.55	6.11	5.95	5.73	7.08	5.4	2.97	4.7
Specific Conductance (mS/cm)	0.031	0.034	0.034	0.03	0.034	0.023	0.022	0.021
Dissolved Oxygen (mg/L)	31.47 ^a	10.93	12.53	30.57 ^a	8.64	11.8	12.21	11.45
рН	7.29	7.28	6.94	6.96	6.82	7.07	7.4	6.92
Turbidity (NTU)	0.94	0.64	0.75	7.19	4.59	0.39	1.15	1.06

Table 3 – Detailed Sampling Reach Measurements

Note:

(a) Measurement is outside the expected range; likely an instrument error.

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	50
Cobble	64–256 mm (2.5"–10")	40
Gravel	2–64 mm (0.1"–2.5")	9
Sand	0.06–2 mm (gritty)	1
Silt	0.004–0.06 mm	0
Clay	<0.004 mm (slick)	0

Table 4 – Inorganic Substrate Components for HC-SFSR-07

Based on the slope (5 percent) and the channel form, this reach can be classified as an A type stream (based on Rosgen 1994), which is considered high gradient. The high gradient habitat assessment field data sheet requires rating 10 habitat parameters based on four conditional categories: optimal, suboptimal, marginal, and poor. In general, this sampling reach would be considered optimal for habitat quality. The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Optimal
- 2. Embeddedness: Optimal
- 3. Velocity/Depth Regime: Suboptimal
- 4. Sediment Deposition: Optimal
- 5. Channel Flow Status: Suboptimal
- 6. Channel Alteration: Optimal
- 7. Frequency of Riffles (or bends): Optimal
- 8. Bank Stability (each bank scored separately) Suboptimal (both banks)
- 9. Vegetative Protection (by bank): Optimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (both banks)

In addition, we conducted a brief qualitative survey to determine the presence/absence of macroinvertebrates. By turning over 4 or 5 large cobbles along the left bank, we observed a number of mayflies (Ephemeroptera) and a few small casemaker caddisflies (Limnephilidae/Uenoidae).

This stream reach has several deep pools and fast water, making it unwadeable at the time of the reconnaissance. The narrow channel may, in fact, mean that this reach is not easily wadeable even in late-summer, low-flow conditions. Therefore, we planned to identify and characterize an alternate reach nearby at the end of the reconnaissance, time permitting.

HC-SFSR-07 ALT

From the road, we identified a potential alternative location to HC-SFSR-07 just downstream of the bridge that appeared to be more suitable for the RBP field work planned in 2013. There was extra time on the last day of the reconnaissance, so we were able to complete a physical characterization and habitat assessment for this alternate location, HC-SFSR-07 Alt. This alternative reach is located approximately 230 meters downstream of the bridge. We were able to park on the side of the highway and scramble down a steep embankment down to the right bank of the river. Even with the higher flow conditions, we were still able to wade across the stream to access the left bank. Photographs, field datasheets, and site sketches for this site can be found on pages A-9 through A-18, in Appendix A.

First, we marked the upper and lower extent of the sampling reach with the Trimble GPS. Then, we measured the length, width (average), and slope of the stream reach using a laser rangefinder and slope inclinometer. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality, and instream feature measurements can be found in Table 3 (page 7).

As shown in Photographs 3 through 6 (Appendix A), the riparian zone was densely forested. The riparian zone was dominated by red alder, western hemlock, western redcedar (*Thuja plicata*), and subalpine fir (*Abies lasiocarpa*). There were a couple of pieces of LWD within the reach and minimal aquatic vegetation (3 percent of the reach) was observed in the form of attached algae on some of the larger boulders. The substrate was dominated by cobble, with boulders and gravel (Table 5).

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	30
Cobble	64–256 mm (2.5"–10")	50
Gravel	2–64 mm (0.1"–2.5")	19
Sand	0.06–2 mm (gritty)	1
Silt	0.004–0.06 mm	0
Clay	<0.004 mm (slick)	0

Table 5 – Inorganic Substrate Components for HC-SFSR-07 Alt

Based on the slope (4 percent) and the channel form, this reach can be classified as an A type stream (based on Rosgen 1994), which is considered high gradient. In general, this sampling reach would be considered optimal for habitat quality. The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Optimal
- 2. Embeddedness: Optimal
- 3. Velocity/Depth Regime: Suboptimal
- 4. Sediment Deposition: Suboptimal
- 5. Channel Flow Status: Optimal
- 6. Channel Alteration: Optimal
- 7. Frequency of Riffles (or bends): Optimal
- 8. Bank Stability (each bank scored separately): Optimal (both banks)
- 9. Vegetative Protection (by bank): Optimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (both banks)

In addition, we conducted a brief qualitative survey to determine the presence/ absence of macroinvertebrates. There were casemaker caddisflies and mayflies under every cobble we overturned.

Overall, this alternate sampling reach appears to be a better option for conducting the RBP near the CES sample location, SFSR-07. This reach should be easily wadeable, ideal for electrofishing and collection of macroinvertebrates, and accessible from the road.

HC-SFSR-09

From the road, we scoped out three or four potential reaches near the CES sample location, SFSR-09. Ultimately, we selected a reach approximately 300 meters downstream of the CES station based on access from the road and wadeability for ease of sampling in 2013. There was a pullout/roadside camping area where we were able to park and access the right bank of the river. Because of the high flow conditions, we were not able to wade across to the left bank, but lower flow conditions should allow for wading in this reach in late summer. Photographs, field datasheets, and site sketches for this site can be found on pages A-19 through A-28 in Appendix A. An orange staining was visible on many of the boulders and cobbles throughout this reach, especially in Photograph 7 (Appendix A).

First, we marked the upper and lower extent of the sampling reach with the Trimble GPS. Then, we measured the length, width (average), and slope of the stream reach using a laser rangefinder and slope inclinometer. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality, and instream feature measurements can be found in Table 3 (page 7).

As shown in Photographs 8 and 10 (Appendix A), the left bank showed signs of significant erosion. The riparian zone was dominated by deciduous trees and shrubs: red alder, big leaf maple (*Acer macrophyllum*), and black twinberry (*Lonicera involucrata*). There no LWD visible within the reach and minimal aquatic vegetation (3 percent of the reach) in the form of attached algae on some of the larger boulders. The substrate was dominated by cobble and boulders, but gravel, sand, and silt were present as well (Table 6).

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	45
Cobble	64–256 mm (2.5"–10")	40
Gravel	2-64 mm (0.1"–2.5")	5
Sand	0.06–2 mm (gritty)	5
Silt	0.004–0.06 mm	5
Clay	<0.004 mm (slick)	0

Table 6 – Inorganic Substrate Components for HC-SFSR-09

Based on the slope (6 percent) and the channel form, this reach can be classified as an A type stream (based on Rosgen 1994), which is considered high gradient. In general, this sampling reach would be considered suboptimal for habitat quality. The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Suboptimal
- 2. Embeddedness: Optimal
- 3. Velocity/Depth Regime: Suboptimal
- 4. Sediment Deposition: Optimal
- 5. Channel Flow Status: Marginal
- 6. Channel Alteration: Optimal
- 7. Frequency of Riffles (or bends): Marginal
- 8. Bank Stability (each bank scored separately): Marginal (left bank); Suboptimal (right bank)
- 9. Vegetative Protection (by bank): Suboptimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (left bank); Suboptimal (right bank)

In addition, we conducted a brief qualitative survey to determine presence/ absence of macroinvertebrates. On the cobbles we overturned, we observed very few mayflies and no casemaker caddisflies, as seen at other sites.

HC-MCL-01

Driving south along the road from HC-SFSR-09, we were able to navigate to the approximate location of the CES sample station, MCL-01. This was the only Monte Cristo Lake locations where CES sampled sediment, surface water, and pore water. At the time of CES' sampling (August 2008), arsenic concentrations were 338 milligrams per kilogram (mg/Kg), 68.5 micrograms per liter (μ g/L), and 2820 μ g/L, respectively. Because the water level was elevated, we were unable to wade to the exact sample location, but were able to do a physical characterization and habitat assessment (with limited mobility) along the east shore of Monte Cristo Lake. The substrate of the lake is silt, so a boat or raft will be necessary for sampling in 2013. There was a small shoulder pullout on the road we were able to park in and access the east shore of the lake. Photographs, field datasheets, and site sketches for this site can be found on pages A-29 through A-38 in Appendix A. In addition to the main lake station, we measured water quality parameters in still water next to a submerged log by the

roadside. There appeared to be no measurable flow from the still water into the main lake through the channel (identified in Photographs 11, 12, and 14, Appendix A).

Because of the silty substrate, our mobility was very limited. Therefore, we were unable to collect GPS coordinates for the upper or lower extent of the intended sampling reach. Consequently, we were only able to estimate the length and width (average) of the sampling reach using a laser rangefinder; there was no measurable slope. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality (for both the main lake and the roadside station), and instream feature measurements can be found in Table 3 (page 7).

As shown in Photographs 11 and 12 (Appendix A), the riparian zone was dominated by shrubs: black twinberry (*Lonicera involucrata*), willow (probably Schouler's willow; *Salix scouleriana*), vine maple (*Acer circinatum*), and western redcedar. There were several submerged pieces of LWD visible within the reach and some rooted emergent aquatic vegetation in the form of scouring-rush (horsetail; *Equisetum hyemale*) along the east bank. From our vantage point, the substrate appeared to be solely comprised of silt (Table 7).

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	0
Cobble	64–256 mm (2.5"–10")	0
Gravel	2–64 mm (0.1"–2.5")	0
Sand	0.06–2 mm (gritty)	0
Silt	0.004–0.06 mm	100
Clay	<0.004 mm (slick)	0

Table 7 – Inorganic Substrate Components for HC-MCL-01

Based on the slope (<1 percent) and the channel form, this reach can be classified as a DA type stream (based on Rosgen 1994), which is considered low gradient. In general, this sampling reach would be considered marginal for habitat quality. The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Poor
- 2. Pool Substrate Characterization: Suboptimal
- 3. Pool Variability: Poor
- 4. Sediment Deposition: Poor
- 5. Channel Flow Status: Optimal
- 6. Channel Alteration: Optimal
- 7. Channel Sinuosity: Marginal
- 8. Bank Stability (each bank scored separately) Optimal (both banks)
- 9. Vegetative Protection (by bank): Optimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (both banks)

There were no cobbles to overturn to look for macroinvertebrates, but we would expect to find macroinvertebrates within the sediment during future sampling.

HC-SFSR-03

On October 25, 2012, we hiked north along the old Forest Service road from the Townsite to the CES sample station, SFSR-03. Using the Trimble GPS, we were able to navigate to the CES sample station and establish our sampling reach right there. The sampling reach is located downstream of the Silvertip Campground and just upstream of the Hops Hill Campground and an eroding slope of the Forest Service road (Photograph 15, Appendix A). Photographs, field datasheets, and site sketches for this site can be found on pages A-39 through A-48 in Appendix A.

First, we marked the upper and lower extent of the sampling reach with the Trimble GPS. Then, we measured the length, width (average), and slope of the stream reach using a laser rangefinder and slope inclinometer. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality, and instream feature measurements can be found in Table 3 (page 7).

As shown in Photographs 15 and 17 (Appendix A), the right bank showed signs of erosion adjacent to the old Forest Service road. The riparian zone was dominated by deciduous trees and shrubs: red alder, black twinberry, and red-osier dogwood (*Cornus stolonifera*). There was LWD in the upstream portion of the reach along the left bank and in the pool on the right bank in the downstream portion of the reach. There was a notable amount of aquatic vegetation (40 percent of the reach) in the form of attached algae on the

submerged cobble. The substrate was dominated by cobble, followed by gravel, and few boulders (Table 8).

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	5
Cobble	64–256 mm (2.5"–10")	74
Gravel	2–64 mm (0.1"–2.5")	20
Sand	0.06–2 mm (gritty)	1
Silt	0.004–0.06 mm	0
Clay	<0.004 mm (slick)	0

Table 8 – Inorganic Substrate Components for HC-SFSR-03

Based on the slope (3 percent) and the channel form, this reach can be classified as a B type stream (based on Rosgen 1994), which is considered high gradient. In general, this sampling reach would be considered optimal for habitat quality. In fact, there was a flag on the right bank in the upstream portion of the sample reach marking a bull trout (*Salvelinus confluentus*) redd that had been identified on October 23, 2012 (Photograph 19, Appendix A). The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Optimal
- 2. Embeddedness: Optimal
- 3. Velocity/Depth Regime: Optimal
- 4. Sediment Deposition: Suboptimal
- 5. Channel Flow Status: Marginal
- 6. Channel Alteration: Optimal
- 7. Frequency of Riffles (or bends): Optimal
- 8. Bank Stability (each bank scored separately): Optimal (both banks)
- 9. Vegetative Protection (by bank): Optimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (both banks)

In addition, we conducted a brief qualitative survey to determine presence/ absence of macroinvertebrates. On the cobbles we overturned, we observed a mite (Hydracarina), a few casemaker caddisflies, and possibly a green rock worm (Rhyachophilidae) or net spinner caddisfly (Hydropsychidae).

Glacier Creek Watershed

HC-GC-05

On the morning of October 24, 2012, we planned to drive back to Barlow Pass and hike in to the Monte Cristo Townsite at daybreak so that we had most of the day to hike to the Glacier Creek and Seventysix Gulch sites. However, we experienced car trouble and ended up taking a helicopter in late morning from Darrington, WA, to the Townsite. From there, we hiked southeast on the Glacier Basin Trail until we were approximately even with the lowest Glacier Basin CES aquatic station, GC-05. We scrambled down the hillside and the steep bank to drop down onto the left stream bank. At the CES station, the stream consisted mostly of steep cascades with no visible sediment for sample collection, so we moved downstream approximately 100 meters and marked the sample reach moving downstream from that point (Photograph A20). Photographs, field datasheets, and site sketches for this site can be found on pages A49 through A58 in Appendix A.

First, we marked the upper and lower extent of the sampling reach with the Trimble GPS. Then, we measured the length, width (average), and slope of the stream reach using a laser rangefinder and slope inclinometer. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality, and instream feature measurements can be found in Table 3 (page 7).

As shown in Photographs 20, 22, and 23 (Appendix A), both banks have a wide band of boulders with no vegetation suggesting high flows move through this section of the stream. The riparian vegetation present (set back from the stream) is dominated by western hemlock, subalpine fir, and noble fir (*Abies procera*). It appears LWD is highly mobile and a dynamic feature in this portion of Glacier Creek. There was a LWD jam (shown in Photographs 21 and 22, Appendix A) in the upstream portion of the sampling reach, but virtually no aquatic vegetation (<1 percent of the reach) in the form of attached algae on boulders; further evidence that this stream is very dynamic and subject to significant debris and substrate transport most likely with seasonal storms. The substrate was dominated by cobble and boulders, with some gravel (Table 9).

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	30
Cobble	64–256 mm (2.5"–10")	65
Gravel	2–64 mm (0.1"–2.5")	4
Sand	0.06–2 mm (gritty)	1
Silt	0.004–0.06 mm	0
Clay	<0.004 mm (slick)	0

Table 9 – Inorganic Substrate Components for HC-GC-05

Based on the slope (9 percent) and the channel form, this reach can be classified as an A type stream (based on Rosgen 1994), which is considered high gradient. In general, this sampling reach would be considered optimal for habitat quality. The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Suboptimal
- 2. Embeddedness: Optimal
- 3. Velocity/Depth Regime: Marginal
- 4. Sediment Deposition: Optimal
- 5. Channel Flow Status: Suboptimal
- 6. Channel Alteration: Optimal
- 7. Frequency of Riffles (or bends): Optimal
- 8. Bank Stability (each bank scored separately): Suboptimal (both banks)
- 9. Vegetative Protection (by bank): Optimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (both banks)

We neglected to conduct the qualitative survey to determine presence/absence of macroinvertebrates. Based on the presence of macroinvertebrates at all other sample locations, we would expect macroinvertebrates to be present at this location as well.

HC-GC-01

Originally, we had planned to continue up the Glacier Basin Trail to scope out the CES reference station, GC-01, at the very upstream extent of Glacier Creek.

However, the snowfall and limited daylight would have made it difficult to hike up to GC-01, do the reconnaissance, and make it back to the Forest Service cabin before dark. Therefore, we elected to skip reconnaissance of the reference site on that trip.

Seventysix Gulch Watershed

HC-76-02

After sampling HC-GC-05, we hiked back down the Glacier Basin Trail to where it cuts across to the Seventysix Gulch Watershed on the Sunday Falls Trail. We dropped down to the stream where the Sunday Falls bridge had collapsed into the creek. Using the Trimble GPS, we walked downstream and were able to navigate to the CES sample station and establish our sampling reach to include it. Photographs, field datasheets, and site sketches for this site can be found on pages A-59 through A-68 in Appendix A.

First, we marked the upper and lower extent of the sampling reach with the Trimble GPS. Then, we measured the length, width (average), and slope of the stream reach using a laser rangefinder and slope inclinometer. Water quality measurements were collected using a Horiba U52 MultiMeter. A summary of all detailed location information, water quality, and instream feature measurements can be found in Table 3 (page 7).

The stream is confined in a narrow valley with steep hillsides and a forested riparian zone (see Photographs 25 and 27, Appendix A). The riparian vegetation was dominated by western hemlock, subalpine fir, and devil's club. There was LWD across the channel and along the bank in several places (Photographs 24 and 26, Appendix A) in the upstream portion of the reach along the left bank and in the pool on the right bank in the downstream portion of the reach. There was a notable amount of moss on top of boulders and along the banks (Photographs 24, 25, and 27, Appendix A), but only modest coverage in the form of attached algae on the submerged cobble (10 percent of the reach). The substrate was dominated by boulders and cobble, with some gravel and a small deposit of sand in a pool at the downstream end of the reach (Table 10).

Substrate	Diameter	Percent Composition
Bedrock		0
Boulder	>256 mm (10")	55
Cobble	64–256 mm (2.5"–10")	40
Gravel	2–64 mm (0.1"–2.5")	4
Sand	0.06–2 mm (gritty)	1
Silt	0.004–0.06 mm	0
Clay	<0.004 mm (slick)	0

Table 10 – Inorganic Substrate Components for HC-76-02

Based on the slope (13 percent) and the channel form, this reach can be classified as an Aa+ type stream (based on Rosgen 1994), which is considered high gradient. In general, this sampling reach would be considered optimal for habitat quality. The conditions assessed in the field for each habitat parameter are listed below:

- 1. Epifaunal Substrate/Available Cover: Optimal
- 2. Embeddedness: Optimal
- 3. Velocity/Depth Regime: Suboptimal
- 4. Sediment Deposition: Optimal
- 5. Channel Flow Status: Optimal
- 6. Channel Alteration: Optimal
- 7. Frequency of Riffles (or bends): Optimal
- 8. Bank Stability (each bank scored separately): Suboptimal (both banks)
- 9. Vegetative Protection (by bank): Optimal (both banks)
- 10. Riparian Vegetative Zone Width (by bank): Optimal (both banks)

This stream may be ephemeral based on the narrow width (2 meters) and shallow depth (0.3 meters) at the time of sampling. If this stream goes dry during low-flow conditions in late summer that will affect the macroinvertebrate and fish communities present (personal communication, Karen Adams, November 9, 2012). An alternate site may need to be located to conduct RBP sampling in this watershed. We did, in fact, observe mayflies and casemaker caddisflies under every cobble we overturned during our qualitative macroinvertebrate survey.

DEBRIEF WITH ECOLOGY

Following our site reconnaissance, Hart Crowser (Michelle Havey) and Ecology managers (Jason Shira and Mary Monahan) met with Karen Adams, a stream ecologist with Ecology. During this meeting, Jason provided Karen with the Monte Cristo site background on the mining history, sampling and cleanup efforts to-date, and planned clean-up efforts for the near future. Karen provided a description of how her team uses the Ecology Quality Assurance Monitoring Plan (QAMP) protocols and some of the differences from the EPA RBP. After seeing photographs of the sample reaches from the aquatic site reconnaissance, she offered valuable suggestions for planning the upcoming 2013 aquatic sampling.

One objective of the QAMP is to provide baseline information from "reference condition" streams within a given ecoregion. In order to identify appropriate reference streams/conditions, the QAMP requires detailed physical habitat observations at numerous major and minor transects within a sample reach. Everyone present at the meeting agreed this level of detail is beyond the needs of the Monte Cristo monitoring because each site will primarily be monitored for changes in biological condition; the hydrology and physical habitat are not expected to change as a result of the removal action.

For macroinvertebrate sampling in Monte Cristo Lake, Karen suggested using a Petite Ponar grab sampler because the size is manageable and it can be deployed from the bank. Because it would be extremely time consuming, this method is only feasible if we do not need to sample an area equivalent to the stream samples (i.e., an area of 8 square feet [sf]).

For macroinvertebrate sampling in the stream reaches, she suggested using a 500 micron mesh kick net instead of a Serber sampler because they are easier to work with in streams with larger substrate. She recommended using the QAMP protocol, which consists of eight randomly selected sample locations starting at the downstream end of the sample reach and zigzagging from bank to bank to get an 8-sf composite sample for the reach.

Ecology uses the Rhithron lab to process macroinvertebrate samples, which is the lab Hart Crowser had identified. We should be able to request the same protocol and reporting requirements that Ecology uses for the QAMP, which is identification of individuals down to the lowest practical taxonomic level. She also suggested we may want to analyze the body burden on macroinvertebrates as a compliment to the sediment chemistry and sediment bioassays. Karen recommended choosing a subset of the sites (one or two in the headwaters and one in the lower SFSR) to collect seasonal replicates to meet the QAMP replicate requirements in case these sites are ever compared to the QAMP ecoregion streams. Ideally, these sites would be monitored for 10 years with progress evaluation in Year 5 to discuss whether we are meeting our goals, any changes that need to be made to achieve those goals, and anticipated future progress.

LESSONS LEARNED FOR FUTURE SAMPLING

The site reconnaissance was successful in locating and characterizing six of the seven desired aquatic sampling reaches. During the reconnaissance, it became obvious that sampling will require a significant level of effort to complete all of the protocols at each aquatic station. The field crew needs to be 3 to 4 people, and each station will take a full day including transport to and from the site. We also identified certain sections of the RBP protocol that are not sufficient, where sections of the QAMP protocol are more appropriate. For example, the physical characterization, habitat quality assessment, and fish sampling protocols from the RBP are appropriate for the needs of this project, but in the future we will use the periphyton, benthic macroinvertebrate, sediment and water sampling protocols from the QAMP.

The remote nature of the MCMA watersheds is a challenge for conducting field work. Outlined below are some of the problems encountered and planned solutions for future sampling trips.

- Photo point locations should be established in Year 1 and revisited at each monitoring effort. In addition, GPS coordinates should be collected for significant instream features (i.e., large boulders, LWD, etc.) so we can monitor site changes over time.
- Sample handling times will be difficult to plan/schedule around. A schedule will need to be coordinated with the helicopter and personnel at Hart Crowser to ensure samples are shipped to the lab within the required holding time.
- For the three stations along the Mountain Loop Highway, we will want to be based out of Darrington, Washington, so we can transport samples each night and keep them on ice until shipping. The 45- to 60-minute drive each way is equivalent to the amount of time camping adds to field work (e.g., preparing meals and getting ready in the morning and evening). We will

camp at the Townsite campground for the other four stations and will need to arrange a sample pickup after two days.

In Glacier Basin, the trail up to the reference station (HC-GC-01) has an elevation gain of approximately 2,000 feet over 2 miles, which will be challenging with all of the field sampling gear: Swoffer flow meter; water quality meter; electrofishing backpack; nets; and cooler bags for surface water, sediment, periphyton, and macroinvertebrate samples. Ideally, this should be the first or second site sampled because people will still be "fresh" for the challenging hike.

Based on the discussion with Karen Adams, we recommend sampling the following sites as early as possible in the 2013 field season:

- HC-SFSR-07 Alt;
- HC-GC-01; and
- HC-76-02.

To capture the peak of the macroinvertebrate community and wadeable flows, we recommend the full sampling of all seven aquatic stations in late August/early September.

A separate site reconnaissance trip was planned to establish sampling locations for both site-specific terrestrial exposure analysis and background. The purpose was to identify 8 to 10 waste rock sampling locations at the three mine sites: Justice Mine and Mystery Mine in Glacier Creek Watershed, and Sheridan Mine in Seventysix Gulch Watershed. In addition, we proposed to identify 8 to 10 background sampling locations with similar soil composition and plant communities as the waste rock samples. Due to the late season start, this trip was canceled for 2012 as a result of inclement weather. This reconnaissance is now tentatively planned to coincide with an early-season, truncated aquatic sampling trip in June, 2013.

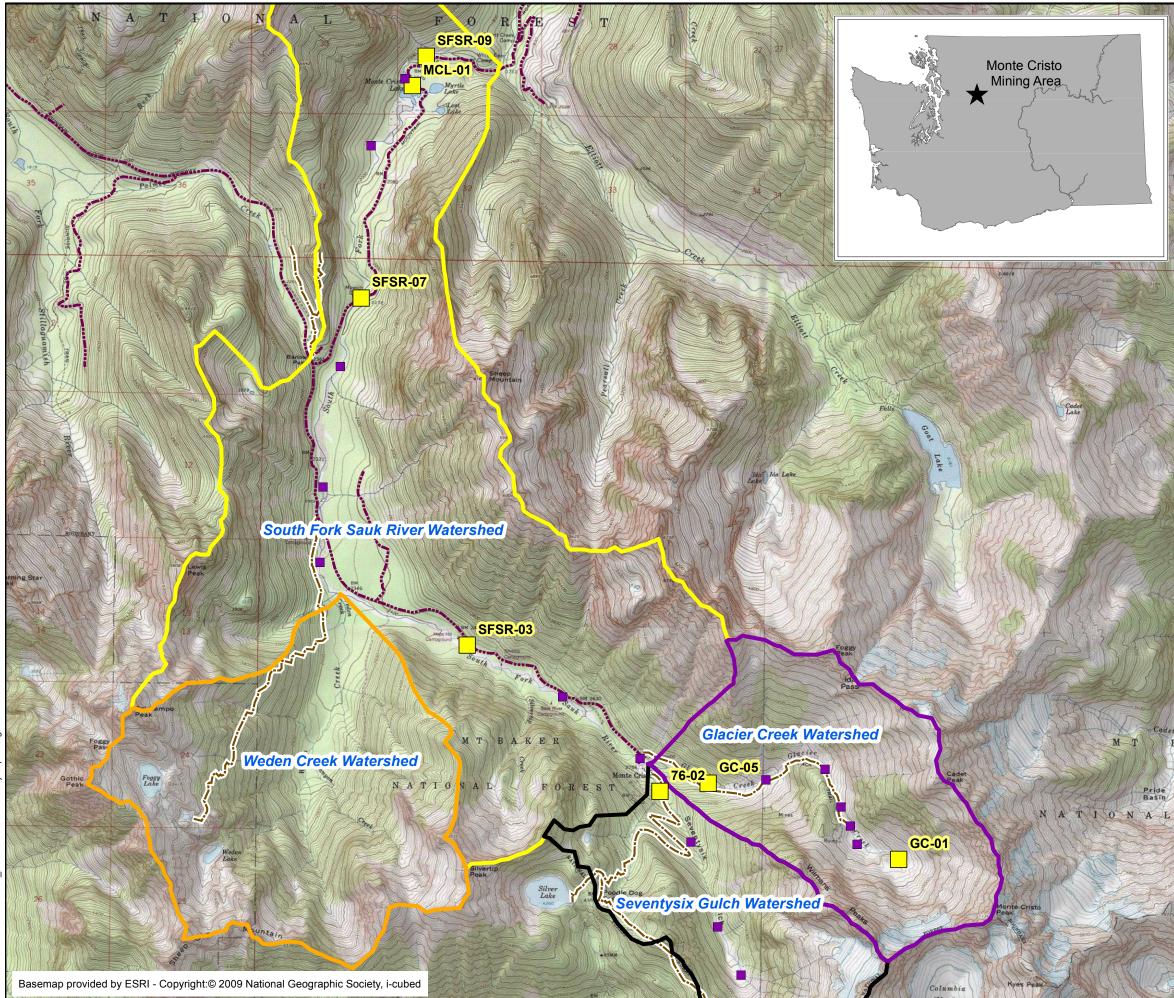
REFERENCES

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. US Environmental Protection Agency; Office of Water; Washington, DC.

CES 2010. Engineering Evaluation/Cost Analysis, Monte Cristo Mining Area, Mt. Baker-Snoqualmie National Forest, Snohomish County, Washington. April 2010.

Hart Crowser 2011. Monte Cristo Mining Area Phase I Spatial Analysis Summary Report. Prepared for the Washington State Department of Ecology. April 20, 2011.

Hart Crowser 2012. Monte Cristo Mining Area Phase 2 Summary Report. Prepared for the Washington State Department of Ecology. May 31, 2012.


Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena Vol. 22: 169-199.

W:\CLIENTS.WP\17800-35\Ph 3 Recon Report 3-29-2013\MC Recon Report 03-29-2013.doc

This page is intentionally left blank for double-sided printing.

FIGURES

This page is intentionally left blank for double-sided printing.

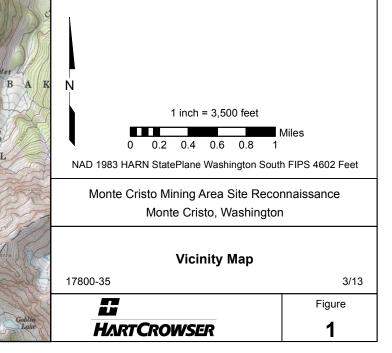
CES Aquatic Sampling Locations

Pride Basin

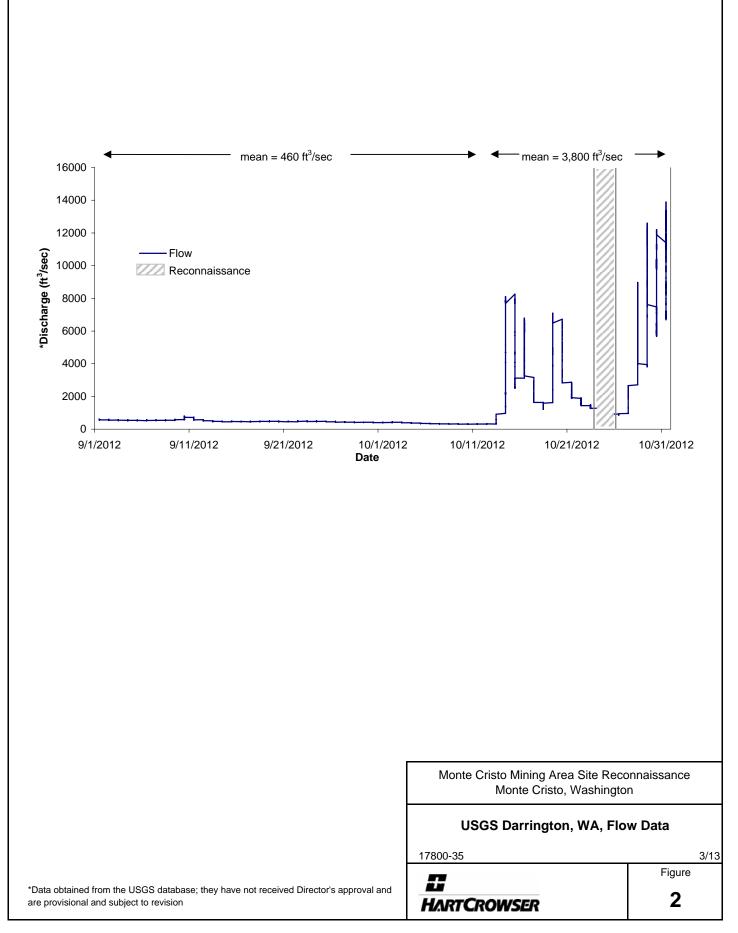
Sample - included in site reconnaissance

Alternate - not visited by HC

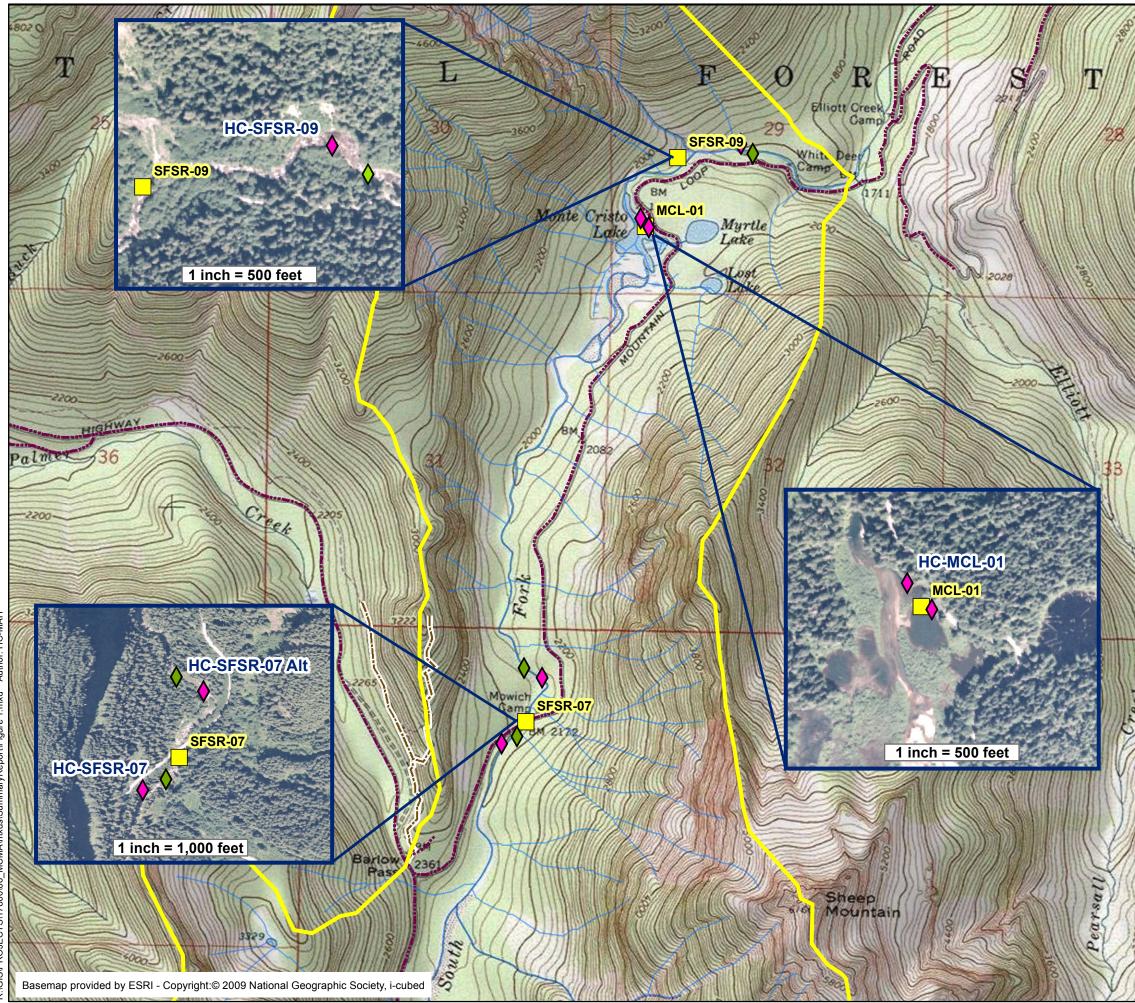
Features

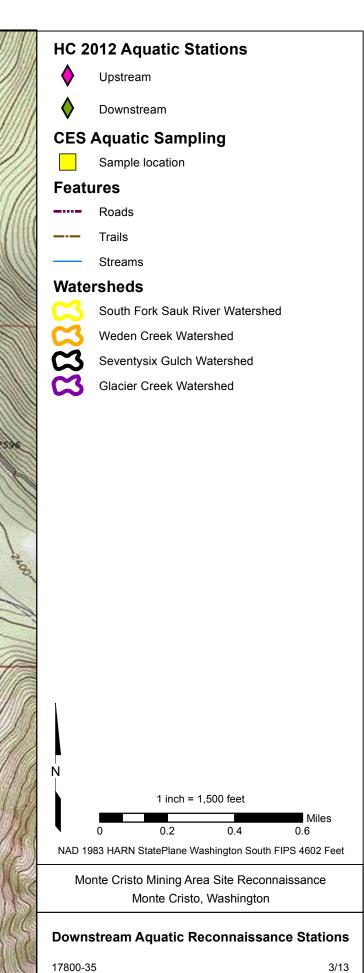

- ----- Roads
- Trails ____

Watersheds

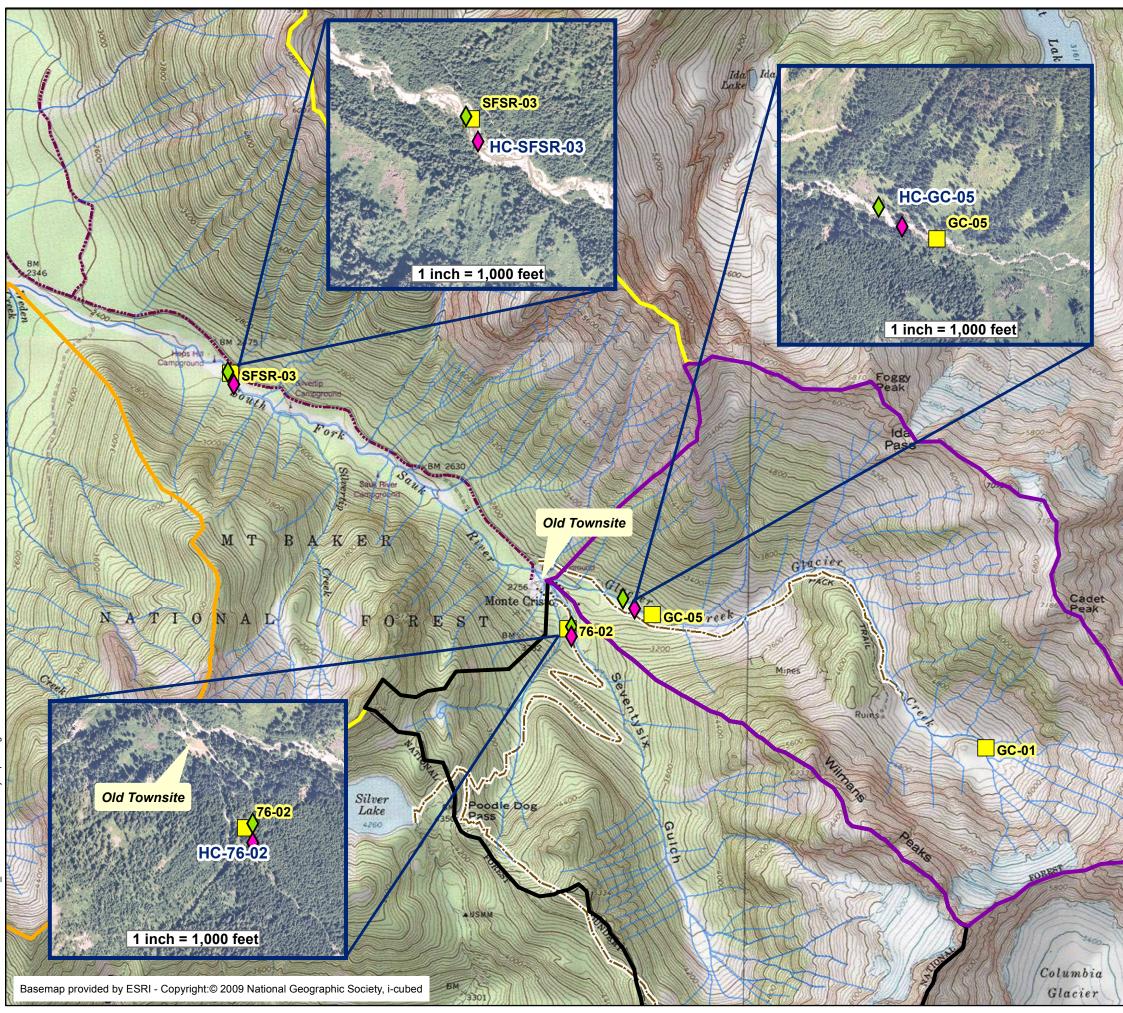


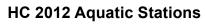
South Fork Sauk River Watershed


- Weden Creek Watershed
- Seventysix Gulch Watershed
- Glacier Creek Watershed



This page is intentionally left blank for double-sided printing.




This page is intentionally left blank for double-sided printing.

II HARTCROWSER

Upstream

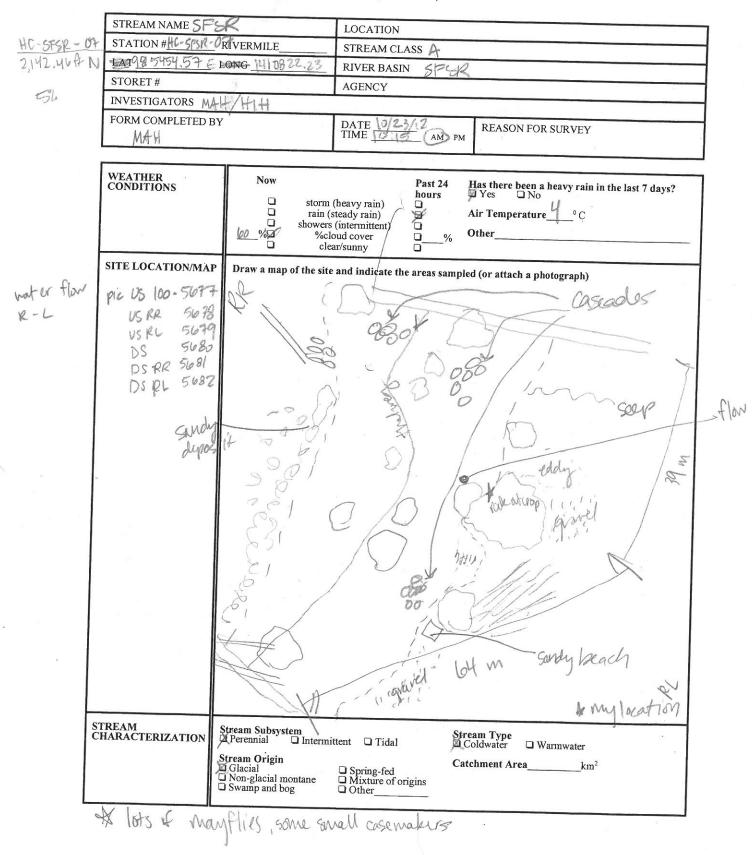
Downstream

 \diamond

CES	Aquatic Sampling	
	Sample location	
Featu	ires	
	Roads	
	Trails	
	Streams	
Wate	rsheds	
	South Fork Sauk River Watersh	ed
3	Weden Creek Watershed	
	Seventysix Gulch Watershed	
3	Glacier Creek Watershed	
I		
N 		
	1 inch = 2,000 feet	
		Miles
		.6
NAD 19	83 HARN StatePlane Washington South	n FIPS 4602 Feet
Mor	nte Cristo Mining Area Site Recor	nnaissance
	Monte Cristo, Washington	1
Upstr	eam Aquatic Reconnaissan	ce Stations
7800-35	5	3/13
		Figure
H	ARTCROWSER	4

APPENDIX A SITE PHOTOGRAPHS AND RAPID BIOASSESSMENT PROTOCOL FORMS

CONTENTS


South Fork Sauk River – HC-SFSR-07	A-1
South Fork Sauk River – HC-SFSR-07 Alt	A-9
South Fork Sauk River – HC-SFSR-09	A-19
Monte Cristo Lake – HC-MCL-01	A-29
South Fork Sauk River – HC-SFSR-03	A-39
Glacier Creek – HC-GC-05	A-49
Seventysix Gulch – HC-76-02	A-59

Page

Hart Crowser 17800-35

South Fork Sauk River HC-SFSR-07

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

			and the second se		
WATERSHED FEATURES	Predominant Surrounding ↓ Forest □ Co. □ Field/Pasture □ Ind □ Agricultural □ Oth □ Residential	lustrial	Local Watershed NPS Poll No evidence Some por Obvious sources Local Watershed Erosion	BANK	100-961
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type	e and record the domin Shrubs Welfun humlouk	nant species present Grasses	20015	6
INSTREAM FEATURES 23 19 27	NSTREAM EATURES Estimated Reach Length 103 ml Y Canopy Cover M Partly open Partly shaded Shaded 1% Estimated Stream Width 22 ml ml High Water Mark 2 ml ml 1% Sampling Reach Area 22.66 ml ml Proportion of Reach Represented by Stree Morphology Types Proportion of Reach Represented by Stree			maded I Shaded m resented by Stream im <u>40 %</u> 6(ydd 4(y 7) Mo	
LARGE WOODY DEBRIS	LWD m ² Density of LWD	0,25 m × 1,0 m²/km² (LWD/ re			с 2
AQUATIC VEGETATION	Indicate the dominant typ Rooted emergent Floating Algae dominant species present Portion of the reach with	Attached Algae	5685	Free floating	
WATER QUALIT	Temperature <u>9.55</u> Specific Conductance <u>0</u> Dissolved Oxygen <u>31</u> pH <u>7 29</u> Turbidity <u>0.94</u> MT WQ Instrument Used <u>1</u>	c .031 mS/cm 47 mg/L 4	Water Odors A Normal/None - Sewag Petroleum - C Fishy - C Water Surface Oils	Chemical Diher	
SEDIMENT/ SUBSTRATE	Odors Normal Sewag Chemical Anaet Other Oils Absent Slight D	obic None	Looking at stones which are the undersides black	□ Paper fiber ∑ Sand Other are not deeply embedded c in color?	
INORGAN	C SUBSTRATE COMPONENTS hould add up to 100%)		ORGANIC SUBSTRATE Co (does not necessarily add	OMPONENTS up to 100%)	
Substrate Type	Diameter % Composit Sampling R	tion in Substrate teach Type	Characteristic	% Composition in Sampling Area	_
Bedrock	um (10") 58 5	Detritus	sticks, wood, coarse plant materials (CPOM)	5	
	mm (2.5"-10")	40 Muck-Mud	black, very fine organic (FPOM)	a Manufacture and a second sec	

Marl

grey, shell fragments

40

ſ

0

(")

2-64 mm (0.1"-2.5")

0.06-2mm (gritty)

0.004-0.06 mm < 0.004 mm (slick)

Gravel

Sand

Silt

Clay

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME	LOCATION			
STATION # RIVERMILE	STREAM CLASS			
LATLONG	RIVER BASIN			
STORET #	AGENCY			
INVESTIGATORS				
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY		

	Habitat		Conditio	on Category	2
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat.	Less than 20% stable habitat; lack of habitat i obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I rau	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are mor than 75% surrounded by fine sediment.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
	SCORE	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.		Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	both lower banks, and minimal amount of	available channel; or <25% of channel		Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 (11)	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Т			Condition	Category	
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ndm	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated product than sampling trach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eval	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	stubble height remaining.	removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone - meters: little or no riparian vegetation due human activities.
	SCORE (LB)	Left Bank (0) 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score _____

Photograph 1 – View of the upper portion of the sampling reach from the midpoint boulder.

Photograph 2 – View of the lower portion of the sampling reach from the midpoint boulder.

Hart Crowser 17800-35

South Fork Sauk River HC-SFSR-07 Alt

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

NAT 986460.60 E	ENG 1411410.96	STREAM CLASS A 476 GRADE RIVER BASIN
STORET #		AGENCY
INVESTIGATORS M4	14/414	
FORM COMPLETED BY	the second se	DATE 10/25/12 REASON FOR SURVEY
WEATHER CONDITIONS	$\begin{array}{c c} & & rain (.) \\ \hline & & showers \\ \underline{(6)} & & \% \end{array}$	Past 24 hours (heavy rain) (steady rain) s (intermittent) loud cover ear/sunny
SITE LOCATION/MAP	Draw a map of the site	e and indicate the areas sampled (or attach a photograph)
SEE ATTAULED	5817: La 5817: La 5819: La 5820: STA 5821: LO 5821: Lo 5823: Y 5823: Lo 5825: Lo 5825: Lo	SIG: METHOD PROTOS DOKING DES, FROM START BOULDE S FROM START BOULDER B II ART BOULDER AND ACROSS TO RB OKING D.S. FROM MIDPOINT RB II LB II LB II DOKING U.S. II DOKING U.S. (END LOG IN BOTTOM ARGE CASEMAKER CADDIS
SC	Stream Subsystem Perennial Interm Stream Origin Glacial Non-glacial montane	nittent

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

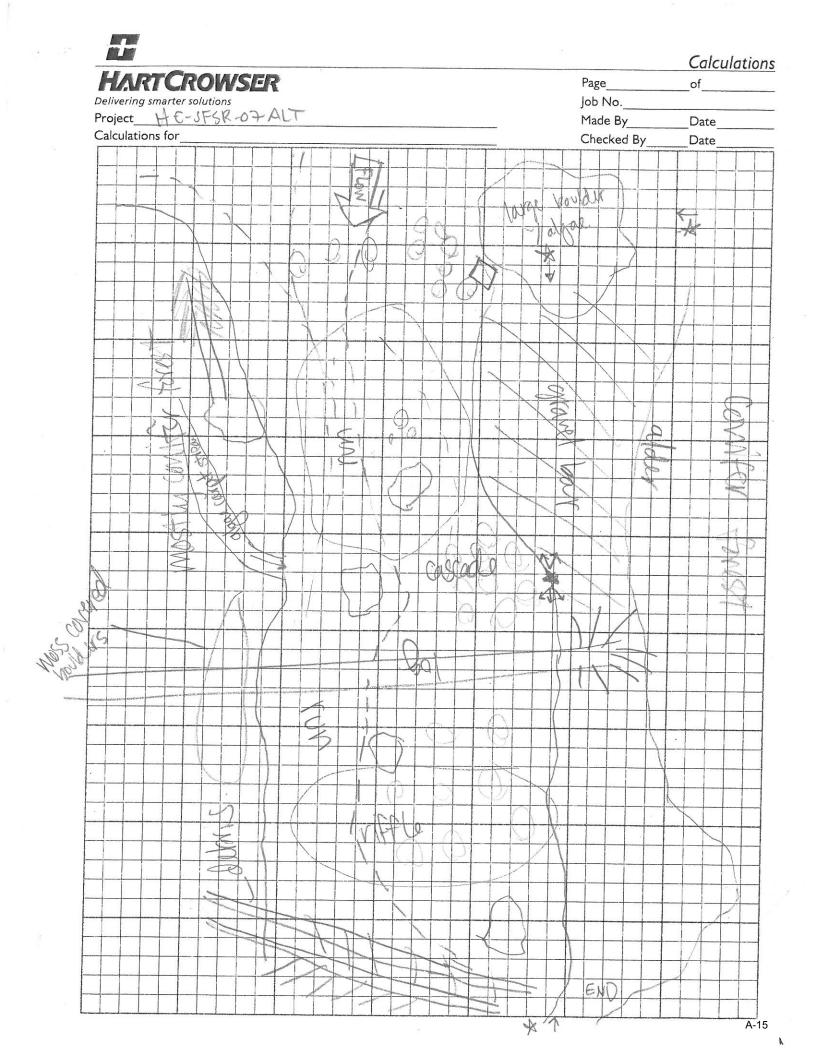
	Substrate Type	Diamet	ter	% Composition in Sampling Reach	Type	sticks, wood, coarse plant	Sampling Area
Ś		(should a	add up to 1		Substrate	ORGANIC SUBSTRATE C (does not necessarily add Characteristic	OMPONENTS up to 100%) OG % Composition in
SEDIMENT/ Odors Detroleum Detroleum SUBSTRATE Normal Sewage Petroleum Detroleum C Other Other Looking at stones while				 Sludge Sawdust Relict shells Looking at stones which are the undersides blac 	N € □ Paper fiber □ Sand Other a are not deeply embedded, k in color?		
	WATER QU	UALITY	Indicate the dominant type and record the dominant species present □ Rooted submergent □ Rooted floating □ Free floating □ Rooted emergent □ Rooted submergent □ Rooted floating □ Free floating □ Floating Algae ☑ Attached Algae □ Rooted floating □ Free floating □ dominant species present				Globs □ Flecks red) bid □ Turbid □ Other
	aquatic vegetati A-V	ON) Free floating
	LARGE WC	DODY	Area in kr Estimated	$\frac{n^{2} (m^{2} x 1000)}{(m^{2} x 1000)}$ $\frac{1}{(m^{2} x 1000)} = \frac{1}{(m^{2} x 1000)}$ $\frac{1}{(m^{2} x 1000)} = \frac{1}{(m^{2} x 1000)}$ $\frac{1}{(m^{2} x 1000)} = \frac{1}{(m^{2} x 1000)}$	_m eef/sec	Morphology Types Riffle % A Pool % % Channelized Yes Dam Present Yes	Anno ANO
(RIPARIAN VEGETATIO 18 meter but INSTREAM FEATURES	ffer) RV	Indicate th Trees dominant Estimated Sampling	haded \Box Shaded $\boxed{3}_{m}$ resented by Stream			
F	watershe features		Predomina Forest Field/Pas Agriculta Resident	ural U Other	se al	Local Watershed NPS Pol No evidence Some p Obvious sources Local Watershed Erosion None Moderate	

			the second se		
Bedrock		φ	Detritus	sticks, wood, coarse plant materials (CPOM)	2
Boulder	> 256 mm (10")	30 30			
Cobble	64-256 mm (2.5"-10")	50	Muck-Mud	black, very fine organic (FPOM)	a
Gravel	2-64 mm (0.1"-2.5")	20		(-1
Sand	0.06-2mm (gritty)	<1	Marl	grey, shell fragments	1
Silt	0.004-0.06 mm	6			Ø
Clav	< 0.004 mm (slick)	¢			

A-6 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

LOCATION	
STREAM CLASS	
RIVER BASIN	
AGENCY	
	-
DATE REASON FOR SURVEY	
	STREAM CLASS RIVER BASIN AGENCY DATE REASON FOR SURVEY


	Habitat		Conditio	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
leters to be evalua	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
агап	SCORE	20, 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
4	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.		Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	both lower banks, and minimal amount of	available channel; or <25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET-HIGH GRADIENT STREAMS (BACK)

			Condition	Category	
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ing reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ampli	SCORE (20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
c val	SCORE (LB)	Left Bank (10) 9	8 7 6	5 4 3	2 1 0
to be	SCORE(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE(LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score _____

Photograph 3 – View of the upper portion of the sampling reach from the upstream end.

Photograph 4 – View of the upper portion of the sampling reach from the midpoint boulder.

Photograph 5 – View of the lower portion of the sampling reach from the midpoint boulder.

Photograph 6 – View of the lower portion of the sampling reach from the downstream end.

Hart Crowser 17800-35

South Fork Sauk River HC-SFSR-09

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

	STREAM NAME		LOCATION	
HC-SFSK-		RIVERMILE		
1800 Ft		-ONG 1414518,14	STREAM CLASS	
,	STORET #		AGENCY	
	INVESTIGATORS MA.	H/HIH		
	FORM COMPLETED BY		DATE 10/23/12 TIME 1400 AM PM	REASON FOR SURVEY
	WEATHER CONDITIONS	Now	Past 24 hours	Has there been a heavy rain in the last 7 days?
15 29 33 55 21	а — А 1 — Д	75 % rain (s showers % %	(heavy rain) (intermittent) (intermittent) (heavy rain) (intermittent) (heavy rain)	Air Temperature 7.5 ° C Other
21	SITE LOCATION/MAP	Draw a map of the site	and indicate the areas sampl	ed (or attach a photograph)
	Pics from US fB 100-9697 across to 1.B DS to 1.B 100-5698 DS to RB 100-5699		5 5 - 1	eu (or attach a photograph)
	DS to RB 100-5189		e stalled	\sim
	DS to 189 100-5700		, Labela	
	0.2 0 KA Inc. 0 100		Stor	
		S	L.	
Water Flori L-R	from DS across to LP3 100-5702 up to LB 100-5703 from DS to US 100-5703 DS up RB 5704	8		
	From DS to US 100-5703			
	DS up 126 5704			
6				
Γ	STREAM	Stream Subsystem	£4	ream Type
		Stream Subsystem Perennial Intermi Stream Origin Glacial Non-glacial montane Swamp and bog	3.5.5	ream Type Coldwater □ Warmwater atchment Areakm ²
-	photo # 100-569 100-570	16 large stained	builder @ Us on @ DS and	d of HC-SESR-09
	100 mg 1 0	Nie	V ··· v··	
	to uncouple of w	autills		

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

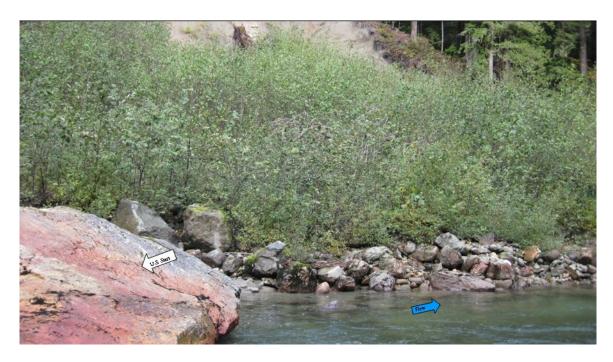
PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES		Predomina Forest Field/Pas Agricultu Resident	ural U Other	11	Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy								
RIPARIAN VEGETATIO (18 meter buff	N fer)	Indicate the dominant type and record the dominant species present Wrees Shrubs Grasses Herbaceous dominant species present alder big vot maybe, black twintering											
INSTREAM FEATURES		Estimated Reach Length 92 m Wow Canopy Cover Partly shaded Shaded Estimated Stream Width 22 m Partly open Partly shaded Shaded Sampling Reach Area m² Proportion of Reach Represented by Stream Area in km² (m²x1000) km² Proportion of Reach Represented by Stream Estimated Stream Depth 0.5 m² Riffle % Run 15 % Surface Velocity (at thalweg) 1.66 m/see Ft/sec Channelized Yes No Dam Present Yes No											
LARGE WOO DEBRIS	ODY	LWD m ² Density of LWD m ² /km ² (LWD/ reach area)											
AQUATIC VEGETATIC	DN	Indicate the dominant type and record the dominant species present Rooted emergent Rooted submergent Rooted floating Free floating Ploating Algae Attached Algae SFSR - 67 Pic dominant species present SFSR - 67 Pic Portion of the reach with aquatic vegetation 3 %											
WATER QU	ALITY	Temperature 5.95 ° C Water Odors Specific Conductance 0.034 mS/cm Petroleum Chemical Dissolved Oxygen 12.53 mg/L Petroleum Other pH_0.94 Slick Sheen Globs Flecks Turbidity 0.75 NTU Urbidity (if not measured) Other WQ Instrument Used Hor i ba U-52 Opaque Stained Other											
SEDIMENT SUBSTRAT	Y E	Odors Norma Chemi Other Oils Absen	ical 🛛 Anaerobic	Petroleum None	Deposits Sludge Sawdust Paper fiber Sand Relict shells Looking at stones which are not deeply embedded, are the undersides black in color? e Yes No								
INOF	RGANIC SUB	STRATE (add up to 1	COMPONENTS		ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)								
Substrate Type	Diame		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area							
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	2							
Cobble	> 256 mm (10 64-256 mm (2	.5"-10")	40	Muck-Mud	black, very fine organic (FPOM)	ø							
Sand Silt	2-64 mm (0.1' 0.06-2mm (gr 0.004-0.06 mi < 0.004 mm (s	itty) n	5550	Marl	grey, shell fragments	Ø							

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME	LOCATION									
STATION # RIVERMILE	STREAM CLASS									
LATLONG	RIVER BASIN									
STORET #	AGENCY									
INVESTIGATORS										
FORM COMPLETED BY	DATE REASON FOR SURVEY									

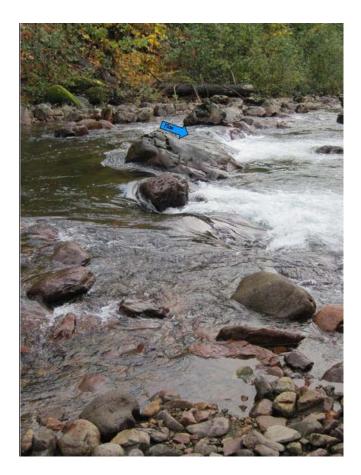
	Habitat		Condition Category													
	Parameter	Optimal	Suboptimal	Marginal	Poor											
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.											
	SCORE	20 19 18 17 16	15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											
teach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are mor than 75% surrounded by fine sediment.											
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).											
	SCORE	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											
	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	A 10	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.											
2	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											
	5. Channel Flow Status	both lower banks, and minimal amount of	available channel; or <25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.											
S	CORE	20 19 18 17 16	15 14 13 12 11	10 9 7 6	5 4 3 2 1 0											


Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

T			Condition	Category						
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor					
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutnents; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.					
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.					
-	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.					
	SCORE (LB)	Left Bank 10 9	8 7 6	5 (4) 3	2 1 0					
	SCORE (RB)	Right Bank 10 9	8 (7) 6	5 4 3	2 1 0					
A ALAULTS	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.					
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
	SCORE (RB)	Right Bank 10 9	(8) 7 6	5 4 3	2 1 0					
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone « meters: little or no riparian vegetation due t human activities.					
	SCORE (LB)	Left Bank 10 9		5 4 3	2 1 0					
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0					

Total Score _____


		27	CR	0	W	Ser	P												Pa	ige_			(Calcu	
Pro	ject		, cer si 1 C ~	SF	SR	-00	1												jo M	ade F	» Зу			Date	
Ca	culatio	ons f	or	- Search -			£				,					-			C	neck	ed By	,	יי ו	Date	
Γ					Τ		T	T		As	141	T			T	-	11		1	1	4	T	<u> </u>	TT	1
							\neg			11	Ń		-			-		Auron	masses	-	N-				
											N	V	1				17	- CAR		1		18		+-+-	
											8	-					15	A.C.	10	K		尔		11	1
												1						1		1	1				C
		1			1				4		2								1-	la	R	14	2		
								L	1	14		~					4	1	<u>_</u>	11		1			
		A		_				A	1.6										1		11	A	4		
		11	INO		Å		\geq	¥	6	10	2				•					\setminus		V	4		
		11	969.	44	CA			+	1		+	0				1000	\square			1			1		
				<u>:</u>	4		15			$A \downarrow$						$\left \right $				4					
-			$\left \cdot \right $	4	1			-) -		-	<u> </u>				\mathbb{M}		1	bl					
			4	-+-		14-	15	<u></u>	+	$\mid \mid \mid$	10		+								Û	-	/		
			1	-+	18	際			4		-4-		+	0		7	0	1		/	05				
-		11	+		12	+	- 78	7	1		7		0			1		Air	+->		Ø		1		
<u> </u>			R	-+-	E B	1		/			10					M	hY		4	1	-5	1			
				Í	27	1	1	4	+-()	P	+	0				XA	4-	-	\mathbb{H}	_	+	4-1		>
							X						19		-	A	14	1	1/	E)	\vee		-	
							1-	1	6			$\left(\right)$	+	7	1	M	A		/	-0-	1	4-		-	
										}	1	100		4		A	Phan	A		· .	X		P	-	┝──┤
		Ń			+	1	X	1			1-	-	6			\mathbb{N}	1	X		A	×	-	-		
					/			1		0	X	17			17	P	and a	1		1	-		11	_	
			1		1		1-	N		9	\neg	Ŕ	Ô	X	1			1.	1			-	150	1	
				1				1				10	1		\uparrow				17		1	VO	4.5 2.1	4-	
				And an other			1		N		1	1	ÌΥ[1		1	11		OND		1-	F	-	
						. 30	(4)		/ \			7	0			1		11	F	8,38		1		r	
	F			1	V	NA C				(T		0	1/			1				F		-	
	1-th						/								1		-		- and the second	and the second			1		
				X		X	1		/					X				E	/			1			
					1			-	/		1		K							and a second		-			
		N/			Y		6.6			_	Sila and		4						and the second second		20 Part				
	10	60	-		4	- de	N.	4		12.	1			_			41			1					
				X		(p			CK	p	4								4						
			X	1			+-			X			1	4			X	4	1						
H	-	X			$\left \right $					4				N.	-		\square	1	Q.					_	
\vdash	T				1				A	\mathbf{I}				1			-	X	A		$\left - \right $				
\vdash				+	+		-	11	()	4	V			1			1-	Y	4		+			+	
\vdash			-	-	$\left - \right $		$\left - \right $	H			$\left - \right $	1	non-	4	4	Y	4		1					\rightarrow	
-+-	+		+	+	+	+	1	4				ant .		4	-	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-		-	X	+			+	·
					+		Z	÷			19	-1	The support of the support	000	5CA	×	· -	- and a second		4		11	nnei	17	
		-+-		+		\mathbf{A}	A		2	-			2	1		1.	11	-			- GPP	风川	· V V ····		
	+					$\exists \uparrow$		-	4	10	$\left - \right $	-4	2-	+6	-	4-	\oplus	-	- march		+	+		++	
										1				+							+	-+		++	

Photograph 7 – View across to the left bank from the upstream end of the sampling reach.

Photograph 8 – View of the large pool (along the left bank) at the upper end of the sampling reach.

Photograph 9 – View across to the left bank from the downstream end of the sampling reach.

Photograph 10 – View of the lower portion of the sampling reach from the downstream end; eroding slope along the left bank.

Hart Crowser 17800-35

Monte Cristo Lake HC-MCL-01

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

HC-Main | 19154 A

0%

	STREAM NAME	5	LOCATION			
RO	STATION #	RIVERMILE	STREAM CLA	SS		
N	LAT 1936 34 99 E	LONG 14/2-950.32	RIVER BASIN	and the second se		and the second sec
	STORET #		AGENCY	and the second second second		
	INVESTIGATORS		•			
	FORM COMPLETED BY	ζ.	DATE 10/23 TIME 1000	АМ РМ	REASON FOR SURVEY	······································
	WEATHER CONDITIONS	a rain (s a showers 30 % a % a % a % a % a % a % a % a % a %	(heavy rain) steady rain) (intermittent) oud cover	Air	s there been a heavy rain Yes □ No Temperature_(//_º Ç her	in the last 7 days?
	SITE LOCATION/MAP DS 5706		ar/sunny	areas sampled (or attach a photograph)	
	US 5707 VS 5708 actoss 69					
v						
	-					
ST. CH	1	Stream Subsystem Perennial Internation Stream Origin Glacial Non-glacial montane Swamp and bog	ittent	Catch	n Type dwater 🗖 Warmwater ment Areakn	n ²

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

-

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

					the second se	and the second						
	WATERSHE FEATURES	D	Forest Field/Pas Agricult Resident	ural Other ial		Local Watershed NPS Poll No evidence Some po Obvious sources Local Watershed Erosion	lution tential sources					
	RIPARIAN VEGETATIO (18 meter but	DN ffer)	Indicate tl Trees dominant	Indicate the dominant type and record the dominant species present Trees Grasses Herbaceous dominant species present Herbaceous								
	detectable channel ?	en en in in in in in in in in in in in in in	Estimated Sampling Area in ki		ec tt/sec	Canopy Cover Partly open Partly s High Water Mark 0.24 Proportion of Reach Rep Morphology Types Riffle% R Pool% Channelized Yes Dam Present Yes	5_m					
redo em	LARGE WO DEBRIS	DODY	LWD Density o	3 <i>t</i>ll m ² f LWDm ² /	km² (LWD/ re	ach area)						
10/25/12	AQUATIC VEGETATI	ION	Indicate the dominant type and record the dominant species present A Rooted emergent Floating Algae dominant species present Attached Algae D Rooted floating D Rooted floating D Free floating									
radside RB	mulide	1 26 105	Portion of	of the reach with aquatic	vegetation	%						
\$ 5.73°C	0- 0	uality U	Specific Dissolve pH Turbidit	ature <u>6.11</u> °C Conductance <u>0.040</u> d Oxygen <u>12.76</u> 97 ry <u>101 – sedimen</u> trument Used	ng/L vi kickeg	B Normal/None Sewag	Globs Globs Flecks					
	SEDIMEN SUBSTRA	Τ/	Odors Norm: Chem Other	al Q Sewage ical Q Anaerobic	 Petroleum None 	Deposits NONE Sludge Sawdust Relict shells Looking at stones which are the undersides black	□ Paper fiber □ Sand Other					
	INO	RGANIC SUE	STRATE	COMPONENTS		ORGANIC SUBSTRATE C (does not necessarily add	OMPONENTS up to 100%)					
	Substrate Type	(should Diame	add up to 1 eter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area					
	Bedrock	> 256 mm (10	u)	- and the second	Detritus	sticks, wood, coarse plant materials (CPOM)	15					
	Boulder Cobble	 > 256 mm (10 64-256 mm (2 2-64 mm (0.1) 	.5"-10")	-	Muck-Mud	black, very fine organic (FPOM)						
	Gravel			_	Marl	grey, shell fragments	and the second sec					
	Sand	0.06-2mm (gr		100								
	Silt	0.004-0.06 mi		100	2							
	Clay	< 0.004 mm (slick)	r								

A-6

7.09 0.034 9.64 6.92 4.59 the enty

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME	-	LOCATION	
STATION #	RIVERMILE	STREAM CLASS	
LAT	LONG	RIVER BASIN	
STORET #		AGENCY	
INVESTIGATORS			
FORM COMPLETED	ВҮ	DATE 10/23/12 TIME 10/0 AM PM	REASON FOR SURVEY

	Habitat		Conditio	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
-	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	30-50% mix of stable habitat; well-suited for full colonization potential, adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
each	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Farameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock no root mat or vegetation.
uate	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
s to be evalu	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
mete	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 (2) 1 0
rara	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
pling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
sam	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eval	SCORE (LB)	Left Bank (0) 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank (10) 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0

Total Score _____

Calculati	HA	V R	7	$\overline{\mathbf{C}}$	RC)V	V	5/4	R																Pa	ige_				с	Talci f	
	Peliveri	ing s	smai	rter	solu	ition	5		1	t an				1	1.5		00	1					s'		Jo	bΝ	lo					
	roject	t <u>H</u>	-[-	M	CL	-0	1		()	10	- W	na	10-	1.0	Kl	-	KB				-				M	ade	By_			C		
				or			T		1				1	Т		T	T								CI	heck	ked	By_		C	ate_	
			-	1								-	目	a	V.				_		_					_				ļ		
			+	+	_ _	1			_				1		-+											_		_		1		
		-		-			-	_		_			1	4				-+	-										_	1		
				1	20-	11	+-			_ _	-	-	<	4	-	-		_														
		A	1	13	-	4							_							+		_				X	+					
	\rightarrow	1	10	-	5	4	-	d						+	+		-	_			/-		-		1-	1-						
		1		1	-		1	SO VI			-			+	-+					-6	GN	K	4		-	1	+	-				
	-	-	-0	1	1	Ne	10	19	3-	+	+			-		+	-+-	+		_	1			1		+-	1			$\left - \right $		
	Circiano	annegarau	-	0		R	1	0			-		+		- -								+	+			1					
		1	+	1	1	12	4	+		+	+		+	-+-	+	+		-			+	-+	+	+	1-	+		1		$\left - \right $		
	V	-	-		120	A			+	+	+		_	+			X			-+-	+-		+		12	2			-			_
	$\overline{\Lambda}$	h	1	-	1		-3			+	+		-	+	+	1	-			-		_		+						4		
		R	2		\uparrow	\mathbf{T}	1-	+	1	+			+	+-				X	-		-			12	5	0			X	4		
	Ì	1	1-X	-			1	+		1		+		1	-									1	1	3) d		
			$\overline{\left\langle \cdot \right\rangle}$	1 per		(Z)	n	5	1	11	1	1	1	1	+	1			+	1	1		+	+	No.	<u> </u>	1			X	<u>r</u>	
						and the second	-	1	1	11	1	1	Ť	1	1-		-			1	T	1	1	\uparrow	1							
				1			1			1	V		1						1-		1		1	+	RT						Y	+
					M		Γ			1	1		1	1				1	1	1			1		Sit					-	1	
					Y I																-				\$)						1
						1				1			1		1										\$	1						/
						And Address								1								1				1						
						V			1							1						1										
							10		15	6	<u> </u>	ļ	<u> </u>	1_		-	X	_		1		1										
	+		G	_			7	12-		1 /	10.000	ļ			_	_			1	<u> </u>		1						1		St		
		_	-	8.1 1				X		K_	6	<u> </u>		-			_	\			-									1-	6	
	+			~	2				14	1	E.	-	-					1			-	<u> </u>	Ý.					_			X	
	+-+		_	_		~				Re		4,	<u>†</u>					1	-		-			_						\sum		
	++				4	21				1	7	12	Z	·		-			-	–	-			\rightarrow	_	_					1	
	++	-	-+			1									+		+	+	N.		-											
		$-\dagger$	+	\neg			2				. `	T				+		-	<u> </u>							1				_	A	++
	+	-	+	-+			2	1				1					+		+							-	1				\rightarrow	
	$\uparrow \uparrow$		-	.			_	K					1		1		1		\vdash		1					-	-+	4				
								t							1			\square		-											+	/
			1							-				1	\mathbf{f}	1	1	†	1				7	ी	+	-+			+			<u>├</u>
															1		1		1										\neg		-	
															Ń			1								-						
															1	1											+		+			
																	1			A									+	1		
							T											1									1					
					_							Ţ							1	EL.												
		_																	-	K												
																		C		1	-											

1

Photograph 11 – View of the upper portion of the main lake from the midpoint.

Photograph 12 – View of the left bank directly across from the midpoint.

Photograph 13 – View of the lower portion of the main lake from the midpoint; water quality collected on the right bank.

Photograph 14 – View of the roadside back-water just east of the main lake sampling reach; collected water quality on the far bank.

This page is intentionally left blank for double-sided printing.

Hart Crowser 17800-35

South Fork Sauk River HC-SFSR-03 This page is intentionally left blank for double-sided printing.

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

2448 ft

STREAM NAME		LOCATION	
STATION # HC -SFSR-0		STREAM CLASS	3% grade
1 HAT 972878.32 EI	ONG 1415093,90	RIVER BASIN	-) is strate
STORET #		AGENCY	
INVESTIGATORS	H/HIH		
FORM COMPLETED BY		DATE 10/25/12	REASON FOR SURVEY
MAH		TIME 1000 AM	PM
WEATHER CONDITIONS	Now	Past 24	Has there been a heavy rain in the last 7 days?
	storm	(heavy rain) hours	WIES LINO
32 <u>-</u>		steady rain)	Air Temperature C
-	<u>40</u> %X %cl	s (intermittent) boud cover boud cover bound cover bound bo bound bound	Other
SITE LOCATION/MAP	Draw a map of the site	e and indicate the areas sar	npled (or attach a photograph)
		FROM RB	AACEDES TO START PT.
			LOVE LOWER LEFT)
520	57102:	~	ON LO JUST D.S. OF SMART
SER ATTACHED SKETCH).S. FROM	
all a	rtby: R	C.B. Feom	START
St			
	5705.		LEDO FLAG 2100 DS. R.B.
		ILL TEAT REDI	
	5168. 20	OKING U.S. A	EOM R.B. / BT REDD MARKER
s :	5767: 600	KING US FR	on 20m mark
	5770: 200	KING DS	u u
	5771: LB		ιι ιχ
	5772! RB		1
	5773: LOUKI	NG DS FROM	80 m marle
	5751. 105	and he	
	5773. 63	ING US Feo	m 80 m mark
	5777;	11	II IR
	5778;	1 x	N RB
		IG US FROM	GND
REAM	Stream Subsystem Perennial 🛛 Interm	ittent 📮 Tidal	Stream Type
	Stream Origin	- 1 1141	· · · ·
	Glacial Non-glacial montane Swamp and bog	 Spring-fed Mixture of origins Other 	Catchment Areakm ²
	5780: LB (a		Saw addis fly cases green reck wor or net spinner addis ? and a u
5	5781 : RB	-ROM END	or not spinner cedd is ? and a u
ç	782: BT R	EDD	under a few rocks "

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

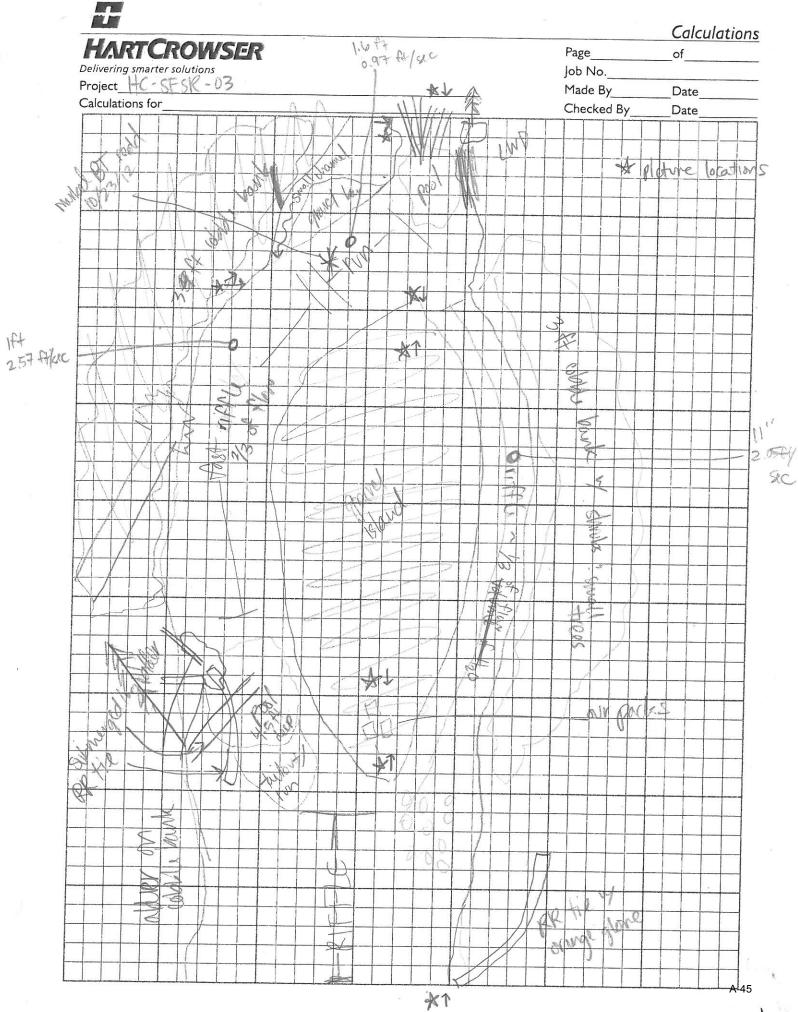
1.6			
WATERSHED FEATURES	Predominant Surrounding Landus Forest Commercia Field/Pasture Industrial Agricultural Other Residential	Ĩ	ocal Watershed NPS Pollution No evidence Some potential sources Obvious sources ocal Watershed Erosion None Moderate Heavy
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and re A Trees dominant species present	cord the dominant os Gr DER, RED-	species present rasses Herbaceous -0516R DQ. 1000, BLACK TWINBER
INSTREAM FEATURES	Estimated Reach Length <u>100</u> Estimated Stream Width <u>16</u> Sampling Reach Area <u>1600</u> Area in km ² (m ² x1000) Estimated Stream Depth <u>0.10</u> Surface Velocity <u>2.3</u> m/set (at thalweg)	_m H _m ² H _km ² H _m b	Canopy Cover Partly open □ Partly shaded □ Shaded High Water Mark <u>1.5</u> m Proportion of Reach Represented by Stream Morphology Types WRun_15_% Prool_25% Channelized □ Yes Mo Dam Present □ Yes No
LARGE WOODY DEBRIS	LWDm ² Density of LWDm ² /	km² (LWD/ reach a	area)
AQUATIC VEGETATION	Indicate the dominant type and r Rooted emergent Roo Floating Algae Atta dominant species present Portion of the reach with aquatic	ched Algae	
WATER QUALITY	Temperature 5.40 ° C Specific Conductance 0.023 w Dissolved Oxygen 11.80 wg/ pH 7.07 Turbidity 0.39 NTU WQ Instrument Used Ho R.6	S/cm L	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Globs Slick Sheen Globs None Other Turbidity (if not measured) Turbid Clear Slightly turbid Turbid Opaque Stained Other
SEDIMENT/ SUBSTRATE	Odors Sewage Ochemical Anaerobic Other Oils Absent Slight Moderate	Petroleum None e Profuse	Deposits NOVE Sludge Sawdust Paper fiber Sand Relict shells Other Looking at stones which are not deeply embedded, are the undersides black in color? Yes No
INORGANIC SU (shoul	JBSTRATE COMPONENTS d add up to 100%)	OR(GANIC SUBSTRATE COMPONENTS does not necessarily add up to 100%)

INO	(should add up to 1	00%)		(does not necessarily add u	ip to 100%)		
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock		0	Detritus	sticks, wood, coarse plant materials (CPOM)	5		
Boulder	> 256 mm (10")	5					
Cobble	64-256 mm (2.5"-10")	一种同日	Muck-Mud	black, very fine organic (FPOM)	0		
Gravel	2-64 mm (0.1"-2.5")	20					
Sand	0.06-2mm (gritty)	<	Marl	grey, shell fragments	O		
Silt	0.004-0.06 mm	0			Ū.		
Clay	< 0.004 mm (slick)	0					

A-6 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME	LOCATION	
STATION # RIVERMILE	STREAM CLASS	
LAT LONG	RIVER BASIN	
STORET #	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY


	Habitat		Conditio	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat i obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
in a sum bing i caci	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are mor than 75% surrounded by fine sediment.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	4. Sediment Deposition	sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
-	SCORE	20 19 18 17 16	13 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	both lower banks, and minimal amount of	available channel; or <25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
5	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

		Condition	Category	
Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
5. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
SCORE (LB)	Left Bank (10) 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.		Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	meters: little or no riparian vegetation due human activities.
SCORE (LB)	Left Bank (10) 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score _____

A

Photograph 15 – View of the upper portion of the sampling reach from the upstream end.

Photograph 16 – View of the middle portion of the reach from the upstream end of the gravel island.

Photograph 17 – View of the middle portion of the sampling reach from the downstream end of the gravel island.

Photograph 18 – View of the lower portion of the sampling reach from the downstream end.

Photograph 19 – View of the bull trout red-flagged on 10/23/12; located on the right bank in the upper 30 meters of the sampling reach.

Hart Crowser 17800-35

Glacier Creek HC-GC-05 This page is intentionally left blank for double-sided printing.

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME LOCATION STATION #HC-GE-SRIVERMILE STREAM CLASS 90 and 2873 H. N 04AT968210.90 ELONG 1423445.15 **RIVER BASIN** Charles STORET # AGENCY **INVESTIGATORS** ALAL FORM COMPLETED BY DATE 10/24 TIME 12 15 MAH 12. AM PM REASON FOR SURVEY 9% WEATHER CONDITIONS Now Past 24 Has there been a heavy rain in the last 7 days? hours storm (heavy rain) Air Temperature 4,5° C rain (steady rain) 0, Á showers (intermittent) Z %cloud cover Other % % clear/sunny SITE LOCATION/MAP Draw a map of the site and indicate the areas sampled (or attach a photograph) pic from DS und boking US 5733 across to LB 34 "Three that denotes end 35 RB 26 5737 up the RB BSTART BONLOER (LONGER RH CORNER) LOOKING D.5 5740 PDAM FROM MS, LOG LOOKING D.S., LB 5741 D.S. RB 5742 D.S. FROM DAM 5743 STREAM CHARACTERIZATION Stream Subsystem Perennial Intermittent ITidal Stream Type Coldwater U Warmwater Stream Origin Glacial Non-glacial montane Catchment Area km² Spring-fed
 Mixture of origins
 Other_____ □ Swamp and bog A forgot to check for invertis

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form I

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

PEATURES Industrial Obvious sources Precision Other Local Watershed Erosion Heavy Indicate the dominant type and record the dominant species present Indicate the dominant species present Herbaccous VEGETATION (18 meter buffer) Indicate the dominant type and record the dominant species present Herbaccous INSTREAM FEATURES Estimated Reach Length I/I/I m Canopy Cover Partly shaded Shaded NSTREAM FEATURES Estimated Stream Width m High Water Mark m m Sampling Reach Area m ² Proportion of Reach Represented by Stream Morphology Types No Run d % Surface Velocity m/scc Channelized Yes No LARGE WOODY LWD m ² /km ² (LWD/reach area) No AQUATIC VEGETATION Indicate the dominant type and record the dominant species present Portion of the reach with aquatic vegetation (1%) % Pree floating Originand species present Provide Code Sinomal/None Sewage Portion of the reach with aquatic vegetation (1%) % Sinomal/None Sewage Specific Conductance O.OZZ Water Odors	(shour	A Composition in	Substrate	Characteristic	% Composition in
PEATURES □ Friedd/Pasture □ Arg:cultural Residential □ Industrial □ Other □ Other □ Shoulds □ Obvious sources □ Local Watershell Ecosion □ Grasses RPARIAN (IS meter buffer) Indicate the dominant type and record the dominant species present □ Shoulds □ Othious sources □ Grasses □ Herbaccous □ Grasses INSTREAM FEATURES Estimated Reach Length Estimated Stream With FEATURES 11/4 m···· Ø Proportion of Reach Represented by Stream Area in km² (m²x1000) km² 11/4 m···· Ø Proportion of Reach Represented by Stream Morphology Types 0 are 56 A06 VEGETATION (at thalweg) Estimated Stream Depth 2 m² m² Proportion of Reach Represented by Stream Morphology Types 0 are 56 A06 VEGETATION (at thalweg) Surface Velocity (at thalweg) m/sec Channelized 0 Yes 0 are 56 A06 LARGE WOODY LWD 2 m² m²/Km² (LWD/ reach area) No AQUATIC VEGETATION Indicate the dominant type and record the dominant species present 0 Fried submergent 0 Rooted submergent 0 Rooted submergent 0 Rooted Stream 0 Dissolved Oxygen 1 Floating Algae 9 Attached Algae 0 Dimer 1 Floating Algae 9 None Water Odors 0 None WATER QUALITY Temperature 2 M? ° C Specific Conductance 0.072 m//cm 0 Dissolved Oxygen 1 Floating Algae 0 None Stevage 0 None Deneical 0 Fried 0 Dimer 0 Chemical 0 Rooted S TrONN SEDIMENT/ SUBSTRATE 0 Other Odors 0 None Sewage 0 None Derooisto 0 None Deposits 0 Stad	INORGANIC SU	BSTRATE COMPONENTS		ORGANIC SUBSTRATE C (does not necessarily add	OMPONENTS up to 100%)
FEATURES Industrial Obvious sources Agricultural Other Local Watershed Erosion Agricultural Other Grasses Herbaccous dominant species present Indicate the dominant type and record the dominant species present Herbaccous Urces dominant species present Indicate the dominant species present Herbaccous INSTREAM Estimated Reach Length III // m // frame Canopy Cover Partly shaded Shaded FEATURES Estimated Stream Width m High Water Mark m m Sampling Reach Area m² Proportion of Reach Represented by Stream Marchology Types Surface Velocity m/scc Channelized Yes No LARGE WOODY LWD m² Rooted abmergent Rooted floating Pree floating Rooted energent Rooted abmergent Rooted floating Pree floating Pree floating MATER QUALITY Temperature 2.97 ° C System of the quality reget of the dominant species present Rooted floating Pree floating Dissolved Oxygen 2.21 wg/L Water Odors Swomal/None Sewage	BUBSTRATE BULDERS I CORBLES STAIN	Image: Sewage Image: Chemical Image: Chemical	□ None	 Sludge Sawdust Relict shells Looking at stones which are the undersides blac 	Paper fiber Sand Other h are not deeply embedded
FEATURES Industrial Industrial Obvious sources Agricultural Other Local Watershed Erosion None RIPARIAN VEGETATION (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (19 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate the dominant type and record the dominant species present (18 meter buffer) Indicate	WATER QUALITY	Specific Conductance 0.072 Dissolved Oxygen 12.21 mg pH 7.40 Turbidity 1.15 NTU	1/1	Normal/None Sewag Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu) Clear Slightly tur Opaque Stained	Chemical Other Globs □ Flecks red) bid □ Turbid □ Other
FEATURES Indicate the dominant type and record the dominant species present Indicate the dominant type and record the dominant species present Indicate the dominant species present Indicate the dominant species present INSTREAM FEATURES Indicate the dominant species present Indicate the dominant type and record the dominant species present Indicate the dominant species present Indicate the dominant species present INSTREAM FEATURES Estimated Reach Length IIII mm Canopy Cover IPartly open Partly shaded Shaded Marce in km² (m²x1000) km² m² Proportion of Reach Represented by Stream Morphology Types Proportion of Reach Represented by Stream Morphology Types Run % Surface Velocity m/sec M/sec Channelized Yes No	AQUATIC	Density of LWDm ² / ₄ Indicate the dominant type and re Rooted emergentRoot Floating Algae JAttac dominant species present Portion of the reach with aquatic	ecord the domi ed submergent ched Algae	nant species present) Free floating
FEATURES Field/Pasture Industrial Obvious sources Agricultural Other Local Watershed Erosion	(18 meter buffer)	dominant species present M1. F Estimated Reach Length 114 Estimated Stream Width 5 Sampling Reach Area	_m ² _m _m	ant species present Grasses Grasses	haded \Box Shaded m resented by Stream $un = \frac{4}{3}\%$ $\sim 12\%$ ASC ASC $\Im(No)$
WATERSHED Predominant Surrounding Landuse Local Watershed NPS Pollution	WATERSHED FEATURES	☐ Forest ☐ Commercial ☐ Field/Pasture ☐ Industrial ☐ Agricultural ☐ Other	e	 No evidence Some point Obvious sources Local Watershed Erosion 	otential sources

	(should add up to]	.00%)		(does not necessarily and	-F · · · · ·		
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock		Ø	Detritus	sticks, wood, coarse plant materials (CPOM)	8		
Boulder	> 256 mm (10")	30			0		
Cobble	64-256 mm (2.5"-10")	65	Muck-Mud	black, very fine organic (FPOM)	6		
Gravel	2-64 mm (0.1"-2.5")	5		(,	Y.		
Sand	0.06-2mm (gritty)	41	Marl	grey, shell fragments	1h		
Silt	0.004-0.06 mm				P		
Clay	< 0.004 mm (slick)	6			/		

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1

A-6

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME	LOCATION						
STATION # RIVERMILE	STREAM CLASS						
LAT LONG	RIVER BASIN						
STORET #	AGENCY						
INVESTIGATORS							
FORM COMPLETED BY	DATE REASON FOR SURVEY						

	Habitat		Conditio	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	adequate habitat for	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
rarameters to be evaluated in sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ated	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
neters to be evalu	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low). FS, SS	Dominated by 1 velocity/ depth regime (usually slow-deep).
aran	SCORE	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1 0
	4. Sediment Deposition	sediment deposition.	bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	both lower banks, and minimal amount of	available channel; or <25% of channel	available channel, and/or	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

A-7

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

		Condition	Category	Condition Category											
Habitat Parameter	Optimal	Suboptimal	Marginal	Poor											
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.											
SCORE	20/19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											
7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water o shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.											
SCORE	20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											
 SCORE 8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE(LB) SCORE(RB) 9. Vegetative Protection (score each bank) 	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has erosional scars.											
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0											
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0											
9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	stubble height remaining.	removed to 5 centimeters or less in average stubble height.											
SCORE (LB)	Left Bank 10 2	8 7 6	5 4 3	2 1 0											
SCORE (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0											
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts lawns, or crops) have not impacted zone.		Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zono meters: little or no riparian vegetation du human activities.											
SCORE (LB)	Left Bank (10) 9	8 7 6	5 4 3												
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0											

Total Score _____

A-8 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 2

H	N	27	rC	R	0	И	IS	E	R																Pa	ge_						lcul	
Delive Proje	ering	g sn	nart	er so	oluti	ions																			Jol	N	o						
Proje	ect_	-	+(- ($\pi($	1	05	>																	Ma	ide	By				Dat	te	
Calcu	ulati	ons	foi	-			-					e De artegina													Cł	iecł	ked	By_				e	
													t	10	N										1		Τ	1	-		1		T
													6	ľ									0			and the second	Valenter	and the second		1	T	1	T
																		-		apata Correct	-	sion from		501	1		-	F	-	1	1	1	T
													1		1	7				1					-	T	1	T		1	1	1	t
						and the	ļ	-	1	D	6	1	ud	1	1			-	+		T		-			1	11	T		1	1	1	T
		1	_			7		~	-)	<u> </u>	1 mars		p		1		X						1		d	1	1			T	1		-
					_		1.1	9		0	1				1	-				1)		(-				15	S	1	1	1		
		_	N		_		X	1	2	\geq	1	1	1			1				4				1			Re	1	1				
-		1	-				1	and	24	-		1-	1		2	1		1	Vi	4	K	\square		V	$\lfloor c$		je .	1/	10	-			
4	-16	5	_	1				1		5	1	1	1)	1/2	S.	1	1		Y		1	1		ļ	$ \rangle$	Y	4	/	10	2			
	_	-			-		~		16	0		1	_	1	1	1/		1		1	1	1,		1	4	2	1	1		4			
	_ -	_	_		-	2	12	~	1	37	25	Ľ.	(-	-	1	11	A	R			10	j	_	20	-	1		F	-			
						1º		N		4	42,		Dr	1	1	-	N	M	10		-	+	0	1	5	/		1	30.				
					- Ch	31	1	N.S.		4		5	H	0	4	1	4	1	tat	- Contraction	-	1	p)	2	-		and the second		1_	_	1	\square	
			+	4			200		=	_	L-	-	1	-	- And		F	-		1	DC	K	1	2		-	8	1	<u> </u>	<u> </u>	<u> </u>	$\left \right $	
· -					4	4				/		-	- comme		-	-			6	2	-		Ľ		1	A	4		-	1	<u> </u>		
		+	1	-	Activation of the local division of the loca	University 4.4			-	4	Q	2	~	2000		Come Come			A COLOR	and the second		1			1	3	2		4	Ľ	<u> </u>		_
		-			+-	+	-1	14	-	10	R	K	\geq	<		N	- Sur			-	37	A		1		2	-		$\left \right $				- 20
	-		+	-		+		A	\neg	Ø	1	1	-	100	N	X		Streaments		X	$\frac{1}{T}$	1	\vdash	1									
-+	+	+-			+		+	- Al	+	SP	11		1		-	1	1		. (/	1	-	_	0	Y	1	_	7				-
		+	+-		1	Ne	~	1	2		1		1	<u></u>		7-		1				-	/	-		2			4				
	1-	+		+		1	1		1	tt	2	an I	$\langle $	+		K		1	51	2	1	-	\leftarrow	-1					Y				
	1		1				10		1	11	21	11	1	(S			1.	1	1		1				1	5						
N					-	T		R.	A	V		Z	X		L		17	-6		71		1		7	5		1				-+		
VI.		T	T	1		1		TV.	À.	-1	1	Y	1	1	- Stager .	/	15			\uparrow							+		1		-+		
M/	N	0	T	Τ				1	1	1		1	1	1		/	D	-9	1					1	()	+	\neg	+			_	
W/I	$\backslash \land$		1							S.	1		-	-	7		Ò		1		-		5	1		4	+		\square				-
		6/1	///	Protection of					31	1	1	(10	1	/		/	1							0	3	1	-				
1.	VY	11	V.					17	31			/	IAT	Jur .		1	2						<	=				1	1	1	-		-
_		1	X	1	A								07			5	-tr		T		/					1		V			1		-
N		N		1	A	-			9		-	/	1		14	ノ	1				/			T									
		N.	1	1	1	12	_		1	A L		1.8 100	1		7	Å	11			/								/					
	IV	5	Ľ	A	1	R.		_		1		11	-			14	1	1	4	_/													
111	N I		-	11	94 1	+	_	4-		1	_	1		1	A	4	1	and the second design	00						_								
KP	11	Λ		-		-		_	_	μ		1		6/1	VA				0	4					2	1		1.					
性				6	1	-		4_		4_	-	/	_	2		1			5				-	-	E	2		1		C	3		
4+4		A,		1.1	10	12)	-	-	XV	2		/		2	4		16	1	4				3	- 6					4	4	4	
		~			0	1	/	1	0	jan ja	4	-	A	-	0			- 1.4.7	-	-			_		Anna -	-			\downarrow	\downarrow	4	17	-
			5		N/	-	4	1×	A	1		4	-	0	4			1	2	+		_		-	200	-			4	-	20	-	_
-	6		1			1		F	1	1	4	-()			_		6	2		-				5				-	2	-		4
	-/		$\left(\right) \right)$	5	/	1	1	1	6	14	-	-	1	1		+			1				+						4	0	e -	_	+
4		3	j.	2			1	1/	12		-11	P			4	-		41	1							+		_	4	\perp	42	-	-

2.85

Photograph 20 – View of the upstream end of the sampling reach from the right bank.

Photograph 21 – View of the large woody debris jam approximately 30 meters down from the upstream end of the reach.

Photograph 22 – View of the lower portion of the sampling reach from the large woody debris dam.

Photograph 23 – View of the lower portion of the sampling reach from the downstream end.

This page is intentionally left blank for double-sided printing.

Hart Crowser 17800-35

Seventysix Gulch HC-76-02 This page is intentionally left blank for double-sided printing.

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

10

	STREAM NAME		LOCATION						
	STATION # 46-76-02	RIVERMILE							
N	147-167630.98 EI		RIVER BASIN Swentysix (all h						
/	STORET #		AGENCY						
	INVESTIGATORS	Att/H/H							
	FORM COMPLETED BY		DATE 0/24/12 TIME 500 AM PM						
[WEATHER CONDITIONS	Now	Past 24 Has there been a heavy rain in the last 7 days? hours IVes INo						
		rain (s showers %%cle	(heavy rain) steady rain) (intermittent) bud cover ar/sunny Air Temperature 2.5 °C Other						
	SITE LOCATION/MAP	Draw a map of the site	and indicate the areas sampled (or attach a photograph)						
	Ż	VNS	: LOOKING OP GLACER BASIN RA						
		5746	DEPOSITIONAL POOL @ D.S. END						
			, VIEW OF D.S. END FROM LB GRAVEL BE						
	ATTACHED	01	VIEW U.S. FROM D.S. END (HANS ON C						
	111.0.	5749:1	I FROM D.S. FROM MIDRIGACH PT. ON LB						
			JIEW U.S. II						
e		751+2:	WIGH FROM LB TO BALDRE START (
		5753: 1	NEW DS. FROM US END						
		t755-R	B FROM M.S.						
	2	5758: L	B FROM U.S.						
		5759: (ADDIS						
		5759: C	ANAM						
1									
ST CH	REAM IARACTERIZATION	Stream Subsystem Perennial D Intermi	ttent 🗆 Tidal Stream Type Coldwater 🗅 Warmwater						
	Sec. 1	Stream Origin d Glacial I Non-glacial montane I Swamp and bog	Catchment Areakm ²						

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERSHED FEATURES	Predominant Surrounding Landuse Forest	Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record Trees dominant species present	PINE FIR, W. HEMILDER
INSTREAM FEATURES	Estimated Reach Length <u>45</u> m Estimated Stream Width <u>2</u> m Sampling Reach Area <u>m²</u> Area in km ² (m ² x1000) kn Estimated Stream Depth <u>0.3</u> n Surface Velocity <u>125 m/sec</u> (at thalweg) <u>At/sec</u>	High Water Markm Proportion of Reach Represented by Stream Morphology Types Riffle % Run% Pool% Channelized Pes No
LARGE WOODY DEBRIS	Denong of	(LWD/ reach area)
AQUATIC VEGETATION	Indicate the dominant type and record Rooted emergent Rooted s Floating Algae Attached dominant species present Portion of the reach with aquatic veg	l Algae
WATER QUALITY	Temperature 4.70 ° C Specific Conductance 0.021 mS Dissolved Oxygen 11.45 mg/l pH 6.92 Turbidity 1.06 MTU WQ Instrument Used Horiba	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Slick Sheen Globs None Other Turbidity (if not measured) Turbid Clear Slightly turbid Other Opaque Stained Other
SEDIMENT/ SUBSTRATE RED/BRN STAINING		etroleum lone □ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No
INORGANIC SU	BSTRATE COMPONENTS	ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)

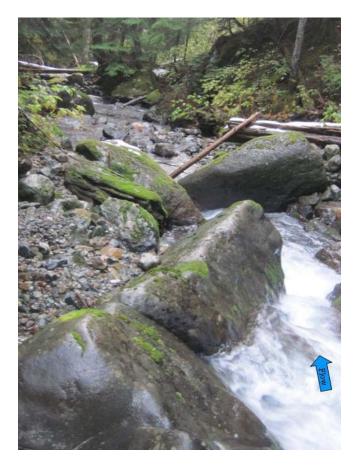
INC	RGANIC SUBSTRATE (should add up to 1	COMPONENTS 00%)	(does not necessarily add up to 100%)							
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area					
Bedrock			Detritus	sticks, wood, coarse plant materials (CPOM)						
Boulder	> 256 mm (10")	55			A					
Cobble	64-256 mm (2.5"-10") 40		Muck-Mud	black, very fine organic (FPOM)	6					
Gravel	2-64 mm (0.1"-2.5")	5.		, ,	Y					
Sand	0.06-2mm (gritty)	2190	Marl	grey, shell fragments	h					
Silt	0.004-0.06 mm	0	_		Y					
Clay	< 0.004 mm (slick)	0								

A-6 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME	LOCATION					
STATION # RIVERMILE	STREAM CLASS					
LATLONG	RIVER BASIN					
STORET #	AGENCY					
INVESTIGATORS						
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY				

	Habitat		Conditio	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
in sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ated i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aran	SCORE	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ľ	4. Sediment Deposition	sediment deposition.	formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
*	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	both lower banks, and minimal amount of	available channel; or <25% of channel	available channel, and/or	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0


Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 2

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

Т			Condition	Category	
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	5. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	7. Frequency of Riffles (or bends) BENDS	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
Idm	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader man sampung i carm	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potentia to any great extent; more than one-half of the potential plant stubble height remaining.	stubble height remaining.	removed to 5 centimeters or less in average stubble height.
	SCORE (LB)	Left Bank (10) 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts lawns, or crops) have nor impacted zong.		Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	meters: little or no riparian vegetation due human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE (RB)	Right Bank (10)	8 7 6	5 4 3	2 1 0

Total Score _____

		V.	V	27	C	R	0	W.	SI	E R																	Pag	ze						alcu	
	De	live	ring	sma	arte	r sol	lutio	ons																			Job	N	o.				- ''-		
	Pr	ojec	:t	HI	<u>C -</u>	71	0-	0	and a				1														Ma	de	By				Da	te	
	Ca	lcul	atio	ons	for							-	T	-													Ch	eck	ed	By			Da	te	
									N				1	Y	2	6					1	1			a contractor	areat 11						-			
		1					1		1	X			1	\int	dip	Y	-	5			1						1	1	1	1-	1	+	+	-	
								X					T	1	1	VI		1						1					-					-	\dashv
								V	1			T			(AP	3	and a second		-	1		-	-		Annu Martan	5				1	-	+	+		+
						1	X	1		1	3	1	2	- 1		P	3			- tert		1			†				1	+		+-	-	+	+
		1					V	V		1	1	1	(7			1									+	-			==	-	+
						1	T		1	X	1	†	K	-1	15	è)	_	Minth .											-	1	+	-			+
		1	1		1	X			9	70			+	-	A.	2	1		-											+	+-	1	-	+	-
		T		+-	+		1		34	1	+		-	and and	-	5	1		}							~			-	-		+	_		2
	-	-	-		+	0	\rightarrow	- Toron	2	X		17	T	+			A		-(S		2						*				1_			
	-	+-	+		+-		+	<u>- 16</u>	V -	+>		7	t		-	$-\parallel$	2	2		VV	1	0				6	N, 4	$\overline{}$			1	\downarrow	1_	1	
	-	+	+	+	+	-	1	20		1	$\left - \right $			-		4	Sum	1		\mathcal{O}	18				0	V						1	1		
					+	+	-	10	1	12	$\left - \right $		1	1	1	4	20		1.(U	()	11	4	0	/									T	
	-	<u> </u>			+-	1	4	N	4					00	3	-	Yal-	1<	2	24	11	10	R	1							-		+	-	-0
			-			-	1	1		1						1	5	N		0	0	1					-	1		(West Married				T	-
		<u></u>		<u> </u>	1	1	1		1	\square			-	1					~	1	-7	1	alon							/	/		1	in the second	T
		-			2	R	1		1.											¥	4	A		/									K	1	T
				1		1		12		10										T	X	Trade	\sum										1	T	1
				1			1		C. Down	~										7	1/40	1	T			T		-		Antima Maria	-		1	+	+
*			~		1													and the second		1	1		-	1	1	1			1	~			1	-	+
			1	1						1 PI	0-1	Ø	17	with the	-				S			S	À.	1	F.	2		_	-+	-		R	1	+-	1
				1		1	K		10	N	1				1	T			J.	A	Å	13		25	10	XX.	V/	7		/				1	+-
					1		1				1						- -	1	1	5 11		Ê	扩	4ª		1	1	-	-	-		-	/	F	1
						1									1-	1	\top	+	d	-	5	T	1	Y	8	X	4-			-+	-			-	1
				1	and and a second	1	1	1	1.			1		-	1	1-	+	-	J.	19 (Ar.	1	Y	1	110	X	1		+		500	-	2		~	-
		İ	-		1	1		N	1	$\left - \right $					1		+	1	1	N				ì-	4	+		1	Ċ		H	X	2		1
			1		1		1	1-	2	$\left \right $					+	+-	+	8	N.	No.	+	5	4	K	1	V	X	A	V	8	IN	~	2	-	-
		-		The start		1	and the second	7	-									-	- 1	1-	4		-	$\left \right $	-1	X	X	-		1	2	<u>\</u>	9	8*	/
			0		1		+	-un and	-			-				-	-	13	200	L	X	/-		1	K	X	X	=1)	4		4	\leq	Z	2	_
	\vdash		1	H		1	~			-		-+			-	+		\$	1	4	F	-		1	44	11	/	A,			1	1	1	12 m	7
						1		~					-			-	11	5	3(NA.) PALA	1		-14	-	1	/	_	1	51	-	S	-
	┟──┼				>		1	0	1			-			<u> </u>		Th	100	1	1	41	1	_		1	1	4	11	4	_		X	1		
		+	-+			-	No.		2	$ \rightarrow $		_	_			-	-	10	1	00000	\perp	4)	1	L	A	11						1	
			5					1										and a		-	1	Concertainte	V.	(000		X	1 AN	1.4			M	3		1
		_	-	2	-	-	~		1									-					1	Je -	1	1	1/	N	X			N N	22		
			-		1	4			WORKSOLAGE	2							1	_	\downarrow		4	-	L	1 mil	1		1/	1	-	1	T	1	S.	T	
			5		_	1	20						-				-	1	E	1	K		1	1	Y?	12	31	al la	Martin Carlos				A	- Second	and the second
			X	1				>				1							V		t	T		216	11	1	1	1	-		2	T	1		
		_		-	No.	1	-		1											1	V		11		N		Y	K		M	25	S		\uparrow	
						1	6q.		th American I	2								1			~	1	1	-	T	Τ	K	2	1	X	T	K	T	-	
	_							State No. of Long					3	1	0 5	~	-				1		1		1	a special	T	an and the		free-	4	-	Ì		
									- Maria	-		100	e.]	V	V	N	N.	P.	e radent		10 2000000		2-3-0000 //1	17	1	1	1	7	1	T	R	T	1	1	
						T	T		1			WC.	200	Í			1	1	1	1	1	1	-	#-	+)	1	-0	A ALA	14	1		11	1	2
ſ					T	Ì				1	1	T					İ	1	-	1	1			R	1	K	ed.	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			+	+1	4	-	1
					1	-			-	1-	+	1	1	+						-			-	-	17	-		1	1000	1000	1	1		-+	
ſ											1	\top	-	+	\neg			-		+	-	1			17			\vdash	F	+	1	/-		-	
F		1			-							1-		-+-							1			-	-		1	1	1	11	1/	1			

Photograph 24 – View of the upper portion of the sampling reach from the upstream end.

Photograph 25 – View of the upper portion of the sampling reach from the midpoint.

Photograph 26 – View of the lower portion of the sampling reach from the midpoint.

Photograph 27 – View of the lower portion of the sampling reach from the downstream end.