

MEMORANDUM

Project No.: 080190-004

May 1, 2012

 To:
 Dave Shaw, Successor to Walker Chevrolet

 Michael Bond, Gardner Bond Trabolsi, PLLC

 From:
 Doug Hillman, LHG

 Principal Hydrogeologist

 Joe Morrice, LHG

 Associate Hydrogeologist

Re:Data Gaps InvestigationFormer Walker Chevrolet and Morrell's Dry Cleaners, VCP Site SW1039

This memorandum presents results of a data gaps investigation at the Morrell's Dry Cleaners (Morrell's) in Tacoma, Washington. The subject property (Property) is defined by Pierce County tax parcel number 2030120030 owned by the former Walker Chevrolet Company and includes street addresses 608 and 610 North First Street in the City of Tacoma (Figure 1). Morrell's operates a retail dry cleaners in space leased at 608 North First Street. The Morrell's Dry Cleaners Site (Site) includes the Property and any off-property soil or groundwater confirmed or suspected of being impacted by contaminant releases at the Property. The environmental investigations described in this memorandum are being completed through the Voluntary Cleanup Program (VCP) administrated by the Department of Ecology (Ecology). The Site was accepted into the Voluntary Cleanup Program (VCP) by Ecology in June 2009 and assigned identification number SW1039.

The Site has been the subject of environmental investigations to delineate the nature and extent of a chlorinated solvent release from the dry cleaning operation. Results of soil and groundwater investigations were reported to Ecology in a Remediation Investigation (RI) report (Aspect Consulting, 2011a). Ecology provided an opinion letter dated September 26, 2011 identifying data gaps in the delineation of solvent impacts to soil, groundwater, and indoor air quality, providing comments on selection of soil and groundwater cleanup levels, and requesting additional investigation to address the data gaps before proceeding to a Focused Feasibility Study (FFS) to develop a remedial action for the Site. A scope of work for data gaps investigations was presented to Ecology in a letter dated November 29, 2011. This memorandum presents results of the completed scope of work.

The following sections provide a summary of hydrogeologic conditions at the Site, findings based on work presented in this memorandum, a summary of the completed scope of work, results of the data

May 1, 2012

gap investigation, and revised cleanup levels and identification of constituents of concern (COCs) planned for use in the FFS.

Hydrogeologic Conditions

This section summarizes hydrogeologic conditions at the Site to provide context for investigation results presented in this memorandum. Groundwater at the Site occurs in perched, coarser-grained water bearing zones interbedded with finer grained silts. An upper perched water bearing zone occurs in sands between approximately 55 and 70 feet below ground surface (bgs). The upper water bearing zone appears to be laterally continuous across the southern and central portions of the Site, but disappears before reaching Tacoma Avenue North and North First Street. Deeper water bearing zones occur in sand layers between depths of about 110 and 145 feet bgs. Soils in between the two water bearing zones were generally described as dry during drilling, indicating that the upper water bearing zone is perched on underlying fine-grained soils and is not directly connected to the deeper water bearing zones.

Groundwater flow direction in the upper water bearing zone is generally southwest to northeast across the Site. The wells tapping the deeper water bearing zone are screened at different elevations, with deeper wells showing lower water levels, making interpretation of flow directions in this zone less certain. Groundwater flow direction in the deeper water bearing zone is expected to be generally to the north toward Commencement Bay. Water level data indicate downward hydraulic gradients between the upper and deeper water bearing zones and within the deeper water bearing zone, although water quality data indicate that downward contaminant migration is limited.

Findings and Recommendations

Based on the results of the data gaps investigation described in this memorandum and previous Site characterization investigations we make the following findings and recommendations:

- The silt and silty sand unit on which the upper water bearing zone is perched is effective at limiting migration of chlorinated volatile organic compounds (VOCs) to deeper water bearing zones. This conclusion is based on the two to three order of magnitude decrease in VOC concentrations between upper water bearing zone wells MW-2 and MW-8 and the deeper wells.
- With the installation of new deep well MW-14D the deeper water bearing zone is now sufficiently characterized for the purpose of understanding the nature and extent of contamination at the Site and for proceeding with the FFS.
- The soil to indoor air pathway for volatilization of PCE and TCE is likely complete and will be addressed as part of the FFS. The soil vapor data indicate that PCE and TCE in soil may be acting as a source, impacting indoor air at Morrell's and the Thriftway office and could also be impacting indoor air at the building to the north. Additional indoor air sampling will likely be required to assess whether indoor air at the adjacent building is affected.
- Interpreting the indoor air data from Morrell's and the Thriftway office is complicated by the historic use of chlorinated solvents at Morrell's. Although we understand that chlorinated solvents use by Morrell's was discontinued in 2009, PCE and TCE from the

previous use of chlorinated solvents may be present in building materials and could be degassing and contributing to the exceedances of indoor air cleanup levels. Regardless, soil vapor is likely a significant contributor to the indoor air quality and will need to be addressed in the FFS.

- Lead is not retained as a COC for the Site. Lead was not detected in groundwater and only low concentrations of lead, well below applicable cleanup level, were detected in soil.
- Groundwater cleanup levels are established based on Model Toxics Control Act (MTCA) Method A cleanup levels and, where Method A values are not established, on Federal drinking water maximum contaminant levels (MCLs). With this change, the applicable cleanup level for carbon tetrachloride is 5 micrograms per liter (µg/L), based on the MCL. All detections of carbon tetrachloride in groundwater at the Site are less than 5 µg/L and this constituent is no longer included as a COC.
- The remaining unaddressed data gap is the vertical extent of PCE- and TCE-impacted soil beneath the building housing Morrell's. Limited access and the developed nature of the property limits assessment activities at this time; this data gap will be addressed during implementation of remedial measures developed through the FFS.

We recommend proceeding with the FFS to address COCs in soil, groundwater, and air.

Completed Scope of Work

This section describes the scope of work completed to address identified data gaps at the Site. The scope of work was described in the Aspect proposal dated December 14, 2011 and developed based on Ecology's September 2011 opinion letter requesting further action and agreed to in the response letter to Ecology dated November 29, 2011.

Install Deep Well to Further Define Lower Water Bearing Zone

Between January 30 and February 2, 2012 Aspect Consulting oversaw the installation of one deep monitoring well (MW-14D) in the City of Tacoma right-of-way on North First Street (Figure 1). The purpose of this well was to better characterize water quality in the lower water bearing zone west-northwest of well MW-8D.

Drilling and well construction work was performed by Major Drilling of Pacific, Washington using sonic drilling methods. The well boring was advanced to a total depth of 145 feet bgs. An Aspect Consulting geologist logged soil descriptions and determined at what depth to screen the well. The well was constructed with 20 feet of 2-inch-diameter schedule 40 PVC screen between depths of about 123 and 143 feet bgs, with a 2-inch-diameter schedule 40 PVC riser extending from the top of the screen to near ground surface. The well was completed with a flush mount surface monument and lockable well cap. The well drilling and construction log is provided in Attachment A.

Soils encountered during drilling were similar to those from other Site borings, consisting of about 33 feet of silty sand and gravel (interpreted as till) overlying about 45 feet of predominantly sand and gravel (interpreted as advance outwash). Underlying the outwash was a sequence of primarily silt and silty sand, with limited thicknesses of sands and gravels. Water in the lower water bearing zone was encountered at a depth of about 130 feet bgs at time of drilling; following well construction the

water level stabilized at a depth of about 134 feet bgs. The well was developed with a Waterra pump until water turbidity was minimized.

Groundwater Sampling for VOCs and Lead

On February 6, 2012 Aspect Consulting collected groundwater samples from five wells tapping the upper water bearing zone (MW-1, MW-2, MW-5, MW-7, and MW-8) and four wells tapping the lower water bearing zone (MW-8D, MW-12D, MW-13D, and MW-14D). All samples were analyzed for lead by EPA Method 200.8 and VOCs by EPA Method 8260C by Freidman and Bruya of Seattle, Washington. Laboratory certificates of analysis are provided in Attachment B. The purposes of this sampling and analysis were to:

- Confirm results of previous rounds of groundwater quality sampling for VOCs;
- Characterize water quality in the lower water bearing zone tapped by new well MW-14D; and
- Assess whether a previous detection of lead in a groundwater grab sample from soil boring DC PLAS-2-W (located near well MW-2) reflects groundwater conditions at the Site.

Recent previous groundwater sampling rounds were preformed with passive diffusion bags to minimize production of well purge water requiring disposal. However, because groundwater samples from the current sampling round were also analyzed for lead, active pumping methods were required. Groundwater samples were collected using a bladder pump with disposable bladders and tubing; non-disposable pump components were decontaminated between wells.

Although originally planned for sampling, well MW-11 was not sampled this round. This well is located in a walk-in food storage cooler in the Thriftway grocery store, upgradient from the Morrell's site. We decided not to sample this well using the bladder pump due to the potential hazard of handling purge water in a food storage area.

Shallow Soil Sampling for VOCs and Lead

On March 8, 2012 eight shallow soil borings (DP-10 through DP-17) were advanced near the east and south boundaries of the Morrell's parcel and in the Thriftway parking lot (Figure 2). Soil samples from the borings were analyzed for total lead by EPA Method 200.8. Samples from the borings near Morrell's (DP-10, DP-12, DP-13, and DP-14) were also analyzed for VOCs by EPA Method 8260C.

The purposes of the shallow soil boring sampling and analysis were to:

- Provide additional soil quality data on chlorinated VOCs near Morrell's;
- Delineate a naphthalene detection in soil at boring DP-08; and
- Assess whether soil has been impacted by lead.

The borings were drilled with a direct-push drill rig operated by Major Drilling. An Aspect Consulting geologist logged soil descriptions and collected samples for laboratory analysis. Boring depths ranged from 7 to 10 feet bgs. Soil boring logs are provided in Attachment A. May 1, 2012

Indoor Air and Soil Vapor Sampling

Indoor air and soil vapor sampling were performed to assess whether indoor air at the building housing Morrell's has been impacted by chlorinated VOCs and whether chlorinated VOCs in soil vapor could adversely impact indoor air in the adjacent building to the north.

Indoor air samples were collected from Morrell's and the Thriftway office using six liter Summa canisters equipped with 8-hour flow controllers to provide a time-averaged sample. A background air sample was also collected using a Summa canister placed in the parking lot across North First Avenue.

Soil vapor samples (VP-1 through VP-3) were collected from below the pavement in the alleyway between Morrell's and the retail building to the north (Figure 2). Location VP-2 was at the "hotspot" outside the door form Morrell's to the alley previously identified in a Gore Sorber® survey. Locations VP-1 and VP-3 were about 20 feet northwest and southeast of VP-2, respectively. Soil vapor samples were collected from beneath the concrete slab in the alley using stainless steel vapor sampling points installed to a depth of about 12 inches. Samples were collected from beneath a shroud filled with a known concentration of helium gas to test for leakage of air into the sampling assembly and ensure the collected samples are representative of soil vapor conditions. Helium was not detected in two of the samples; the detected helium concentration in the third sample was less than 2 percent of the concentration beneath the shroud, indicating no significant leakage.

Soil vapor and indoor air samples were analyzed by Air Toxics, Ltd. of Folsom, California for PCE, TCE, DCE, vinyl chloride, benzene, toluene, ethylbenzene, xylenes, and naphthalene by modified EPA Method TO-15. Laboratory certificates of analysis are provided in Attachment B.

Investigation Results

This section summarizes results of the data gaps investigation, including groundwater elevations, soil and groundwater quality, and indoor air and soil vapor quality.

Groundwater Level Data

Water level data measured at Site wells during the data gaps investigation and previous investigations are summarized on Table 1. Data from wells tapping the upper, perched water bearing zone are contoured on Figure 3. The water levels are relatively steady throughout the year, with a maximum variation over time of less than 2 feet. Groundwater flow direction in the upper water bearing zone also varies little, with flow predominantly to the northeast.

Depth to water in the deeper wells (MW-8D, MW-12D, MW-13D, and MW-14D) is highly dependent on the total well depth, with lower water levels measured in deeper wells. This relationship between well depth and water level is consistent with a downward hydraulic gradient. Because the deeper wells are screened at different depths (total depths range from 116 to 145 feet bgs, as shown on Table 1) it is not reasonable to contour these data to evaluate flow direction in the deeper water bearing zones. It is worth noting that for the two wells screened at nearly identical depths (MW-13D and MW-14D) the water level in MW-14D, located further south, is higher by about 4 feet. This implies a generally northward flow, although any eastward or westward component of flow is uncertain.

Groundwater Quality Data

Groundwater quality results are summarized on Table 2 and shown on Figure 1 with previously reported groundwater quality data. Results are consistent with previous data, with the highest concentrations of chlorinated VOCs in the uppermost water bearing unit at MW-2 and MW-8, near the Morrell's dry cleaners. PCE, TCE, and *cis*-1,2-DCE were detected at concentrations below cleanup levels in the new deep well MW-14D. These constituents were either not detected or detected at concentrations below cleanup levels at deep wells MW-12D and MW-13D; in December 2010 PCE was detected in these wells at concentrations slightly exceeding the cleanup level.

Lead was not detected in groundwater indicating the historical detection in a groundwater grab sample from soil boring DC PLAS-2-W does not represent groundwater conditions at the Site.

Soil Quality Data

Soil quality results are summarized on Table 3 and shown on Figure 2 with previously reported soil quality data. PCE was detected in soil at a concentration exceeding the cleanup level at one location (DP-10) immediately south of Morrell's. Chlorinated VOCs were not detected in any other soil samples collected during this investigation.

Very low concentrations of lead, consistent with natural background, were detected in soil. The maximum concentration was 2.8 mg/kg, well below the cleanup level of 250 mg/kg.

Naphthalene was not detected in any of the soil samples from the current investigation. Based on these data and data from prior investigations the area of soil impacted with naphthalene is limited to the upper 3 to 4 feet of soil in the immediate vicinity of exploration DP-08.

Indoor Air and Soil Vapor Data

Indoor air sample results from Morrell's and the Thriftway office are summarized on Table 4 and soil vapor sample results from the alley north of Morrell's are summarized on Table 5. Indoor air sample results were corrected for background concentrations by subtracting the concentration detected in the background sample from the indoor air samples. Concentrations of PCE and TCE in both indoor air samples exceed MTCA Method B cleanup levels for indoor air. Vinyl chloride, *cis*-1,2,-DCE, and *trans*-1,2-DCE were not detected in indoor air.

The BTEX compounds were detected in indoor air at concentrations below cleanup levels. The achievable detection limit for naphthalene exceeded the indoor air cleanup level; however, given the limited extent of naphthalene detected in soil it is expected that naphthalene is not adversely affecting indoor air.

Soil vapor data should not be compared directly to indoor air cleanup levels. Instead, following Ecology's vapor intrusion guidance (Ecology, 2009) soil vapor data were compared to screening levels equal to ten times the indoor air cleanup level, conservatively assuming a 10 fold attenuation of vapor concentrations across the building slab. The PCE soil vapor concentrations exceed the screening level at the three vapor sampling points. Detected concentrations of TCE also exceeded the screening level at locations VP-1 and VP-3. The sample from VP-2 needed to be diluted by the lab due to the high concentration of PCE. As a result the detection limits for TCE, *cis*-1,2-DCE, vinyl chloride, benzene, and naphthalene for this sample exceeded their respective screening levels. Based

May 1, 2012

on the lack of detections of *cis*-1,2-DCE, vinyl chloride, and benzene in soil samples and the other soil vapor samples, and the limited extent of naphthalene-impacted soil it is unlikely that concentrations of these constituents in soil vapor at VP-2 exceed screening levels for protection of indoor air quality.

Cleanup Levels and Selection of COCs

Soil and groundwater screening levels based on MTCA Method A and Method B cleanup levels were presented in the RI Report. In Ecology's Further Action letter it was noted that mixing of Method A and Method B cleanup levels within a given medium (e.g., groundwater) is not allowed. The Further Action letter further stated that applicable Method A cleanup levels should be used, and where no Method A cleanup level has been established that existing Applicable or Relevant and Appropriate Requirements (ARARs) are to be used. This section provides a summary of proposed cleanup levels for use in the FFS and identifies constituents of concern (COCs) based on those constituents detected at the Site at concentrations exceeding cleanup levels.

MTCA Method A soil cleanup levels for unrestricted land use for constituents detected at the Site are summarized in Table 6. Method A soil cleanup levels are not available for *cis*-1,2-DCE, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, p-isopropyltoluene, tert-butylbenzene, and secbutylbenzene; no ARARs for these constituents in soil were identified.

Method A groundwater cleanup levels for constituents detected at the Site are summarized in Table 7. Method A groundwater cleanup levels are not available for *cis*-1,2-DCE, *trans*-1,2-DCE, chloroethane, chloroform, acetone, and carbon tetrachloride. Federal MCLs are established ARARs for *cis*-1,2-dichloroethene, *trans*-1,2-dichloroethene, chloroform, and carbon tetrachloride and will be applied as the groundwater cleanup levels for these constituents (see Table 7).

Indoor air cleanup levels are summarized in Table 8. These were selected as the more stringent value of the MTCA Method B carcinogen or non-carcinogen air cleanup levels.

COCs in soil, groundwater, and air were identified based on a comparison of detected contaminant concentrations from environmental investigations to the cleanup levels. The comparisons of detected soil contaminant concentrations to cleanup levels are shown in Table 6. Contaminants in soil with concentrations exceeding the cleanup levels include:

- PCE
- TCE
- Naphthalene

The comparisons of detected groundwater contaminant concentrations to cleanup levels are shown in Table 7. Contaminants in groundwater with concentrations exceeding the cleanup levels include:

- PCE
- TCE
- *cis*-1,2-DCE

May 1, 2012

• Vinyl Chloride

The comparisons of detected indoor air contaminant concentrations to cleanup levels are shown in Table 8. Contaminants in air with concentrations exceeding the cleanup levels include:

- PCE
- TCE

With completion of this scope of work, Site data gaps are essentially addressed and the Site characterization data are suitable for proceeding to a FFS to address the identified COCs.

References

Aspect Consulting, 2011a, Remedial Investigation Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, February 18, 2011.

- Aspect Consulting, 2011b, Morrell's Dry Cleaners, Further Action Letter Response, VCP SW1039. November 29, 2011.
- Ecology, 2009, Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Review Draft, Publication No. 09-09-047, October 2009.

Ecology, 2011, Further Action at the following Site: Morrell's Dry Cleaners, September 26, 2011.

Limitations

Work for this project was performed and this memorandum prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of David Shaw, Successor to Walker Chevrolet for specific application to the referenced property. This memorandum does not represent a legal opinion. No other warranty, expressed or implied, is made.

Attachments:	Table 1 – Groundwater Elevation Data
	Table 2 – Groundwater Sample Results
	Table 3 – Soil Sample Results
	Table 4 – Indoor Air Sample Results
	Table 5 – Sub-Slab Vapor Sample Results
	Table 6 – Soil Cleanup Levels
	Table 7 – Groundwater Cleanup Levels
	Table 8 – Indoor Air Cleanup Levels
	Figure 1 – Groundwater Quality Data
	Figure 2 – PCE Concentrations in Soil
	Figure 3 – Groundwater Elevation Contour Map, February 2012
	Attachment A – Well Construction and Boring Logs
	Attachment B – Laboratory Certificates of Analysis

V:\080190 Stadium Thriftway LLC\Deliverables\Data Report\DataGapsResultsMemo.docx

Table 1 - Groundwater Elevation Data

Morrell's Dry Cleaner, Former Walker Chevrolet Property, Tacoma, Washington

		Screened Interval	Top of Casing	Depth to	Groundwater
Well ID	Date	in Feet bgs	Elevation	Water	Elevation
MW-1	2/27/2008	50 to 65	275.25	52.32	222.93
	10/2/2008			53.09	222.16
	5/11/2009			53.68	221.57
	12/22/2010			53.61	221.64
	2/6/2012			52.93	222.32
MW-2	2/27/2008	50 to 65	273.14	51.50	221.64
	10/2/2008			51.84	221.30
	5/12/2009			52.42	220.72
	12/22/2010			52.44	220.70
	2/6/2012			51.77	221.37
MW-3	2/27/2008	52 to 67	272.77	dry	dry
	10/2/2008			dry	dry
	5/11/2009			dry	dry
MW-4	2/27/2008	49 to 64	273.01	dry	dry
	10/2/2008			dry	dry
	5/11/2009			dry	dry
MW-5	2/27/2008	50 to 65	273.13	50.87	222.26
	10/2/2008			51.65	221.48
	5/11/2009			52.28	220.85
	12/22/2010			52.21	220.92
	2/6/2012			51.60	221.53
MW-6	2/27/2008	49 to 64	272.55	dry	dry
	10/2/2008			dry	dry
	5/11/2009			dry	dry
MW-7	2/27/2008	50 to 65	274.44	52.90	221.54
	10/2/2008			53.08	221.36
	5/11/2009			53.69	220.75
	12/22/2010			53.73	220.71
	2/6/2012			52.98	221.46
MW-8	10/2/2008	51 to 61	273.14	52.68	220.46
	5/12/2009			53.28	219.86
	12/22/2010			53.32	219.82
	2/6/2012			52.58	220.56
MW-8D	5/11/2009	96 to 116	273.11	112.56	160.55
	12/22/2010			112.58	160.53
	2/6/2012			112.52	160.59
MW-9	5/11/2009	60 to 70	273.78	dry	dry
	12/22/2010			dry	dry
	2/6/2012			dry	dry
MW-10	5/11/2009	60 to 70	274.45	dry	dry
	12/22/2010			dry	dry
	2/6/2012			dry	dry
MW-11	5/12/2009	53 to 63	273.52	52.20	221.32
	12/22/2010			52.24	221.28
MW-12D	12/22/2010	113 to 123	272.72	129.96	142.76
	2/6/2012			129.80	142.92
MW-13D	12/22/2010	125 to 145	271.96	137.88	134.08
	2/6/2012	100		137.43	134.53
MW-14D	2/6/2012	123 to 143	272.46	134.02	138.44

All measurements are in feet

bgs - below ground surface

Table 2 - Groundwater Sample Results

Morrell's Dry Cleaner, Former Walker Chevrolet Property, Tacoma, Washington

		Metals					VC	DCs				
					cis-	trans-	Vinyl			Carbon		Τ
Well ID	Date	Lead	PCE	TCE	1,2-DCE	1,2-DCE	Chloride	Chloroethane	Chloroform	Tetrachloride	Acetone	
MW-1	8/28/07	NA	1.3	<1	<1	<1	<0.2	<1	<1	<1	<10	Τ
	1/30/08	NA	<1	<1	<1	<1	<0.2	<1	<1	<1	<10	
	10/2/08	NA	<1	<1	<1	<1	<0.2	<1	<1	<1	<10	
	5/11/09	NA	<1	<1	<1	<1	<0.2	<1	<1	<1	<10	
	12/22/10	NA	<1	<1	<1	<1	<0.2	<1	<1	<1	14	
	2/6/12	<1	<1	<1	<1	<1	<0.2	<1	<1	<1	<10	
MW-2	8/28/07	NA	2,900	(Note 1)	7,100	7.4	19	8.1	1	1.0	<10	Τ
	1/30/08	NA	1,400	520	2,000	3	<0.2	<1	2.5	<1	<10	
	10/2/08	NA	1,900	880	2,300	5.3	3.1	1.0	3.5	1.0	<10	
	5/12/09	NA	1,600	930	2,400	5.7	2.7	<1	4.0	<1	<10	
	12/22/10	NA	2,100	1,100	2,100	4.8	2.7	<1	5.0	<1	16	
	2/6/12	<1	1,600	810	1400	<100	<20	<100	<100	<100	<1,000	
MW-5	1/22/08	NA	67	3	13	<1	<0.2	<1	2.1	3.3	<10	
	1/30/08	NA	31	1.1	4.5	<1	<0.2	<1	1.8	2.0	<10	
	10/2/08	NA	75	3.2	17	<1	<0.2	<1	1.9	1.2	<10	
	5/11/09	NA	17	1.1	44	<1	<0.2	<1	<1	<1	<10	
	12/22/10	NA	190	14	41	<1	<0.2	<1	2.9	3.2	15	
	2/6/12	<1	140	8.7	25	<1	<0.2	<1	<1	<1	<10	
MW-7	1/22/08	NA	6.6	<1	<1	<1	<0.2	<1	<1	<1	<10	
	1/30/08	NA	1.5	<1	<1	<1	<0.2	<1	<1	1.5	<10	
	10/2/08	NA	<1	<1	<1	<1	<0.2	<1	<1	1.5	<10	
	5/11/09	NA	1.1	<1	<1	<1	<0.2	<1	<1	2.0	<10	
	12/22/10	NA	1.4	<1	<1	<1	<0.2	<1	<1	3.3	11	
	2/6/12	<1	<1	<1	<1	<1	<0.2	<1	<1	2.2	<10	
MW-8	4/22/08	NA	1,300	780	2,400	6.3	0.2	<1	2.5	<1	<10	
	10/2/08	NA	680	390	3,600	7.6	6.9	<1	2.5	<1	<10	
	5/12/09	NA	780	370	2,600	3.7	2.0	<1	2.5	<1	<10	
	12/22/10	NA	470	150	1,800	3.3	1.4	<1	2.2	<1	10	
	2/6/12	<1	960	610	1,600	<100	<20	<100	<100	<100	<1,000	⊥
MW-8D	5/11/09	NA	<1	<1	11	<1	<0.2	<1	<1	1.9	<10	
	12/22/10	NA	<1	<1	21	<1	<0.2	<1	<1	2.0	13	
	2/6/12	<1	<1	<1	26	<1	<0.2	<1	<1	1.8	<10	⊥
MW-11	5/12/09	NA	<1	2.3	<1	<1	<0.2	<1	1.9	1.4	<10	
	12/22/10	NA	<1	4.6	<1	<1	<0.2	<1	2.0	2.8	12	
	2/6/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	╇
MW-12D	12/22/10	NA	6.1	<1	22	<1	<0.2	<1	<1	<1	12	
	2/6/12	<1	<1	<1	17	<1	<0.2	<1	<1	<1	<10	⊥
MW-13D	12/22/10	NA	14	3.2	30	<1	<0.2	<1	<1	<1	18	
	2/6/12	<1	4.2	2.4	28	<1	<0.2	<1	<1	<1	<10	╀
MW-14D	2/6/12	<1	4.2	3.3	28	<1	<0.2	<1	<1	<1	<10	T

Notes:

1) For the sample collected from MW-2 on 8/28/07, the lab reported 1,800 µg/L benzene and <1 µg/L TCE. This is likely an error;

apparently the gas chromatograph peak identified by the lab as benzene was actually a TCE peak.

All values are in units of µg/L

VOCs - volatile organic compounds

PCE - tetrachloroethene

TCE - trichloroethene cis-1,2-DCE - cis-1,2-dichloroethene trans-1,2-DCE - trans-1,2-dichloroethene NS - not sampled **BOLD** signifies exceedence of groundwater screening levels (see Table 7)

Benzene
2.2
<1
<1
<1
<0.35
< 0.35
(Note 1)
<1
<1
<1
<0.35
<35
<1
~1
~1
<1
11
~0.35
~0.00
~1
<
<1
<1
<0.35
<0.35
<1
<1
<1
<0.35
<35
<1
<0.35
<0.35
<1
<0.35
NS
<0.35
<0.35
<0.35
<0.35
<0.35

 Morrell's
 Dry Cleaner, Former Walker Chevrolet Property, Tacoma, Washington

			Metals		VOCs								
	Sample						Total	1,2,4-	1,3,5-	tert-	sec-		
Boring ID	Depth (ft)	Date	Lead	PCE	TCE	cis-1,2-DCE	Xylenes	Trimethylbenzene	Trimethylbenzene	Butylbenzene	Butylbenzene	p-Isopropyltoluene	Naphthalene
DP-01	1	10/21/10	NA	2.1	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
	2	10/21/10	NA	1.0	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
DP-02	1	10/21/10	NA	0.8	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
DP-04	2	10/20/10	NA	1.8	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
DP-05	3	10/20/10	NA	1.4	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
	6	10/20/10	NA	0.54	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
DP-07	2	10/21/10	NA	3	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	2.5	10/21/10	NA	36	0.14	0.11	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
DP-08	3	10/20/10	NA	<0.025	<0.03	< 0.05	1.16	76	26	0.43	1.8	12	28
	4.5	10/20/10	NA	<0.025	<0.03	< 0.05	<0.15	0.49	0.35	<0.05	0.14	0.10	0.22
DP-09	3	10/20/10	NA	<0.025	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	6	10/20/10	NA	0.13	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DP-10	8.5	02/08/12	1.70	0.24	<0.03	< 0.05	<0.15	0.054	<0.05	0.083	0.94	0.21	<0.05
DP-11	4	02/08/12	1.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-12	5.5	02/08/12	1.75	<0.025	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	0.13	<0.05	< 0.05
DP-13	7	02/08/12	1.66	<0.025	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
DP-14	7	02/08/12	2.08	<0.025	<0.03	< 0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
DP-15	4	02/08/12	1.33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-16	4	02/08/12	2.81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-17	4	02/08/12	1.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

All values are in units of mg/kg VOCs - volatile organic compounds PCE - tetrachloroethene TCE - trichloroethene cis-1,2-DCE - cis-1,2-dichloroethene trans-1,2-DCE - trans-1,2-dichloroethene

BOLD signifies exceedence of soil screening levels (see Table 6)

Table 4 - Indoor Air Sample Results

Morrell's Dry Cleaners, Former Walker Chevrolet Property, Tacoma, Washington

Constituent	Cleanup Level ⁽²⁾	Outdoor (Background)	Morrells ⁽³⁾	Thriftway Office ⁽³⁾
Tetrachloroethene	0.42	0.42	22	15
Trichloroethene	0.1	<0.17	9.0	5.7
cis-1,2-Dichloroethene	16	<0.12	<0.14	<0.14
trans-1,2-Dichloroethene	32	<0.63	<0.72	<0.69
Vinyl chloride	0.28	<0.040	<0.047	<0.045
Benzene	0.32	2.0	0.2	0.2
Ethylbenzene	460	1.7	0.3	0.5
Toluene	2,200	6.3	1.0	2.7
Xylenes (total)	46	7.9	2.1	3.3
Naphthalene	1.4	<4.1	<4.8	<4.6

Notes:

1) All concentrations are in units of micrograms per cubic meter (ug/m³).

2) Values in this column based on the most stringent MTCA Method B air cleanup level.

3) Analytical results corrected by subtracting background results from indoor air results.

Table 5 - Sub-Slab Vapor Sample Results

Morrell's Dry Cleaners, Former Walker Chevrolet Property, Tacoma, Washington

Constituent	Screening Level (2)	VP-1 Results	VP-2 Results	VP-3 Results
Tetrachloroethene	4.2	270	150,000	380
Trichloroethene	1.0	1.1	<230	1.9
cis-1,2-Dichloroethene	160	<0.72	<170	<1.2
trans-1,2-Dichloroethene	320	<0.72	<170	<1.2
Vinyl chloride	2.8	<0.47	<110	<0.78
Benzene	3.2	<0.58	<140	<0.97
Ethylbenzene	4,600	<0.79	<180	1.8
Toluene	22,000	0.69	<160	6.0
Xylenes (total)	460	4.1	<180	9.3
Naphthalene	14	<4.8	<900	<8.0
Helium (%)		0.56	<0.086	<0.086

Notes:

1) All concentrations are in units of micrograms per cubic meter (ug/m³).

2) Values in this column were obtained by multiplying the most stringent MTCA Method B air cleanup level by 10, to conservatively account for soil vapor attenuation across the floor slab in accordance with Ecology's *Guidance for Evaluating Soil Vapor Instrusion in Washington State (Ecology, 2009).*

Table 6 - Soil Cleanup Levels

Morrell's Dry Cleaner, Former Walker Chevrolet Property, Tacoma, Washington

	MTCA Method A Cleanup	
	Level	Maximum Detected
Constituent	(Unrestricted Land Use)	Concentration
Tetrachloroethene	0.05	36
Trichloroethene	0.03	0.85
cis-1,2-Dichloroethene	NE	0.11
Total Xylenes	9	1.16
Naphthalene	5	28
1,2,4-Trimethylbenzene	NE	76
1,3,5-Trimethylbenzene	NE	26
p-Isopropyltoluene	NE	12
tert-Butylbenzene	NE	76
sec-Butylbenzene	NE	1.8
Lead	250	2.81

Notes:

All values are in units of mg/kg Highlighted constituents - retained as Constituents of Concern NE- Not Established

Table 7 - Groundwater Cleanup Levels

Morrell's Dry Cleaner, Former Walker Chevrolet Property, Tacoma, Washington

	MTCA Method A		Selected Cleanup	Maximum Detected
Constituent	Cleanup Level	Federal MCL	Level	Concentration
Benzene	5	5	5	2.2
Tetrachloroethene	5	5	5	2,900
Trichloroethene	5	5	5	1,100
cis-1,2-Dichloroethene	NE	70	70	7,100
trans-1,2-Dichloroethene	NE	100	100	7.6
Vinyl Chloride	0.2	2	0.2	19
Chloroethane	NE	NE	NE	8.1
Chloroform	NE	80	7.2	5
Acetone	NE	NE	NE	18
Carbon Tetrachloride	NE	5	5	3.3

Notes:

All values are in units of $\mu\text{g/L}$

Highlighted constituents - retained as Constituents of Concern

NE- Not Established

MCL - Maximum Contaminant Level

Table 8 - Indoor Air Cleanup Levels

Morrell's Dry Cleaners, Former Walker Chevrolet Property, Tacoma, Washington

Constituent	Cleanup Level	Maximum Detected Concentration
Tetrachloroethene	0.42	22
Trichloroethene	0.1	9
cis-1,2-Dichloroethene	16	<0.14
trans-1,2-Dichloroethene	32	<0.72
Vinyl chloride	0.28	<0.047
Benzene	0.32	0.2
Ethylbenzene	460	0.3
Toluene	2,200	1
Xylenes (total)	46	2.1
Naphthalene	1.4	<4.8

Notes:

All concentrations are in units of micrograms per cubic meter (ug/m³).

Cleanup levels are the more stringent of the MTCA Method B carcinogen or non-carcinogen air cleanup levels.

Highlighted constituents - retained as Constituents of Concern

ATTACHMENT A

Well Construction and Boring Logs

	-raction	ines ⁽⁵⁾		GW	Well-graded gravel and gravel with sand, little to no fines	Terms D	Describing Ro Density Very Loose	elative Dens SPT ⁽²⁾ blows/fo	sity and Consistency ot
00 Sieve	⁽¹⁾ of Coarse F No. 4 Sieve	≦5% FI	00000000000000000000000000000000000000	GP	Poorly-graded gravel and gravel with sand, little to no fines	Grained Soils	Loose Medium Dense Dense Very Dense	4 to 10 10 to 30 30 to 50 >50	FC = Fines Content G = Grain Size M = Moisture Content A = Atterberg Limits C = Consolidation
ned on No. 20	Aore than 50% Retained on I	5 Fines ⁽⁵⁾		GM	Silty gravel and silty gravel with sand	Fine- Grained Soils	Consistency Very Soft Soft Medium Stiff Stiff	SPT ⁽²⁾ blows/fo 0 to 2 2 to 4 4 to 8 8 to 15	DD = Dry Density K = Permeability Str = Shear Strength Env = Environmental DD = Dry temperature
% ⁽ Àetai	Gravels - I	≧15%		GC	Clayey gravel and clayey gravel with sand		Very Stiff Hard	15 to 30 >30	
lore than 50%	raction	ines ⁽⁵⁾	<u> </u>	SW	Well-graded sand and sand with gravel, little to no fines	Descriptive 1 Boulders Cobbles	Ferm Size Ra Larger 3" to 12	ange and Sieve than 12" 2"	Number_
ned Soils - M	e of Coarse F . 4 Sieve	≦5% Fi		SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel Coarse Grav Fine Gravel Sand	3" to N vel 3" to 3 3/4" to No. 4 (lo. 4 (4.75 mm) /4" No. 4 (4.75 mm) (4.75 mm) to No. 2	200 (0.075 mm)
Coarse-Grai	0% ⁽¹⁾ br More Passes No	Fines ⁽⁵⁾		SM	Silty sand and silty sand with gravel	Coarse San Medium Sar Fine Sand Silt and Clay	d No. 4 (nd No. 10 No. 40 Smalle	(4.75 mm) to No. 1) (2.00 mm) to No.) (0.425 mm) to No er than No. 200 (0.1	0 (2.00 mm) 40 (0.425 mm) o. 200 (0.075 mm) 075 mm)
	Sands - 5	≧15% F		SC	Clayey sand and clayey sand with gravel	⁽³⁾ Estimate Percentage by Weight	ed Percentag	ge lifier	Moisture Content Dry - Absence of moisture, dusty, dry to the touch
eve				ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	<5 5 to 15	Trace Sligh clave	e itly (sandy, silty, ev. gravelly)	Slightly Moist - Perceptible moisture Moist - Damp but no visible water
No. 200 Sie	ts and Clays			CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	15 to 30 30 to 49	Sanc grave Very clave	dy, silty, clayey, elly) (sandy, silty, av, gravelly)	Very Moist - Water visible but not free draining Wet - Visible free water, usually from below water table
More Passes	Sil			OL	Organic clay or silt of low plasticity	Sampler Type	Blows/6" or portion of 6"	Symbols	Cement grout surface seal Bentonite
s - 50% ⁽¹⁾	/S Moro			МН	Elastic silt, clayey silt, silt with micaceous or diato- maceous fine sand or silt	2.0" OD Split-Spoon Sampler (SPT)	Continuous Pu	pler Type scription Ish	(4) Grout seal Filter pack with
Grained Soil	Silts and Clar			сн	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample Grab Sample	3.0" OD Thin-W (including Shell	/all Tube Sampler by tube)	Grouted Groute
Fine	-			он	Organic clay or silt of medium to high plasticity	(1) Percentage by	 Portion not rec dry weight d Penetration Test 	overed	 (5) Combined USCS symbols used for fines between 5% and 15% as
Highly	Organic Soils			PT	Peat, muck and other highly organic soils	(2) (SF I) Standard Perenation Fest fines between 5% and 15% (ASTM D-1586) estimated in General Accordance with with Standard Practice for Standard Practice for Description and Identification of Soils (ASTM D-2488) (3) In General Accordance with standard Practice for Description and Identification of Soils (ASTM D-2488) Soils (ASTM D-2488)			estimated in General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488)
						(4) Depth of grou	ndwater ⊻ A ⊻ S	ATD = At time of d Static water level (c	rilling BGS = below ground date) surface

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Exploration Log Key

DATE:	DDO IFOTNO
	PROJECT NO.
DESIGNED BY:	
DRAWNBY:	FIGURE NO.
REVISED BY:	A-1

Acrost			Monitori					nit	oring Well Construction Log	ring Well Construction Log		
		C T NG			Proje	ct Numb 80190	er			Well Number MW-14D	Sheet 1 of 3	
Project Name:	Stadium Thri	ftway								Ground Surface Elev		
Location:	Tacoma, WA									Top of Casing Elev.	272.46	
Driller/Method:	Major Drilling - Je	effrey / Sonic G	Geoprobe	e 8140LS - track mounted						Depth to Water (ft BGS) 130) - 2/3/2012	
Sampling Method:	Continuous Core	!								Start/Finish Date1/30/2	2012-2/2/2012	
Depth / Elevation B (feet)	orehole Completion	Sample Type/ID	Tests		PID Blo (ppm) 6		М	late Typ	rial e	Description		Depth (ft)
1 -	Flush mounted steel well monument; thermos cap						K		.0.0	Cleared for utilities using an air vacuum - N	lo Recovery.	- 1
	Cement surface seal						$\left \right\rangle$	3	βS			$\frac{1}{3}$
4 -	1011 0-2 093	0					X	X	\sim			- 4
5 -							X	X	βů			- 5
6 -							X	\$	βS			+ 6
							X	X				
9 -										Moist, brown, very gravelly, very silty SANE up to 5": fine to medium sand. diamict fabri) (SM); cobbles	- 9
10-	2" ID schedule 40						ŀ			·····		-10
	connection, 0'-123'											+11
12-							ŀ	ŀ				+12
14-										Slightly moist, sandy, very gravelly, SILT (M medium sand: cobbles up to 4".	IL); fine to	-14
15-	Bentonite chip seal											- 15
16-	bgs											+16
												-17
19-												- 19
20-										Diamict fabric		-20
21-												+21
23-												$\frac{22}{23}$
24-								ŀ		Moist, brown, gravelly, very silty SAND (SM	1); fine to	-24
25-										medium sand; subangular gravel; diamict fa up to 4".	abric; cobbles	-25
26-									•	Örange-brown. Brown		-26
28-							ļ				00.010 (-27
29-										Moist, brown, slightly silty, gravelly SAND (medium sand; subrounded gravel.	SP-SM); fine to	-29
30-												-30
								ŀ	- 	Moist, gray, gravelly, silty SAND (SM); fine	to medium	+31
33-										Sand; subangular gravel. Brown. Maiat, brown, olighthy gravelly SAND (SD):	/	-33
34-										sand.		+34 -35
36-										1" pockets of pink, slightly silty SAND.		-36
37-							ŀ	•				-37
38-												-38
39-												-39 -40
41-												-41
42-							Ĥ	 111	1	Moist gray with iron stain mottling gravely	verv sandv	-42
43-							ļĻ	Щ		SILT (ML); fine to medium sand; subround	ed gravel;	-43
										Moist, gray, slightly silty, gravelly SAND (Si	P-SM); fine to	44
46-								TT	· 	medium sand.	- ,,	46
47-							ļ	ļļ		Niolist, orange-brown, slightly gravelly SANI	J (SP); trace	47
48+ 49+							· . ·			Moist, brown with iron stain mottling, slight SAND (SM); 1" pockets of silt, fine to medi	ly gravelly, silty um sand,	+48 -49
Sampler Ty	/ne [.]		סוס	Dhot	oioniza	l	i.	<u>.</u>		I subangular fine gravel with cobbles.		⊥
Sampler Type: PID - F				Static	c Water	Level	:010	ונ				
Continuous Co	ore		$\overline{\Delta}$	Wate	r Level	(ATD)				Approved by: JNM		
										Figure No. A - 2		

MONITORING WELL STADIUM THRIFTWAY.GPJ May 1, 2012

	Managet				I	Monit	oring Well Construction Log		
	Aspe	СТ		Proje	ect Numb	er	Well Number	Sheet	
Drain at Nama	CONSULTI Stadium Thri	N G		0	80190		IVIVV-14D	2 OF 3	
Project Name:		ntway					Top of Casing Elev	272.46	
Driller/Method	Maior Drilling - J	leffrey / Sonic	Geoprobe 8	8140I S - tra	ck moun	ted	Depth to Water (ft BGS)	130 - 2/3/2012	
Sampling Metho	od: Continuous Core	e					Start/Finish Date	1/30/2012-2/2/2012	
Depth /	Barahala Campletian	Sample		PID	PID Blows/ Material				Den
Elevation (feet)		Type/ID	Tests	(ppm)	6"	Туре	Description		(ft)
51-							Moist, dark gray brown, slightly g	ravelly SAND (SP);	-51
52-							Moist, red-brown, slightly silty SA	ND (SP-SM); medium	⁷ +52
53-							sand; trace gravel. Gravelly		+53
54+							Moist, yellow-brown SAND (SP);	medium to coarse sand.	J+54
56-									-50
57-									-57
58-									-58
59+							Moist, gray, slightly silty SAND (S	P-SM); fine to medium	+59
60+							Moist, brown to dark brown SANE	D (SP); medium sand.	-/_60
62-	62+								+62
63-							Red-orange, slightly gravelly.		+63
64	64 -								+64
65+		H				http://www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/	Very moist to wet, brown, very sil	ty SAND (SM); fine sand.	+65
66 - 67 -							Grades to fine to medium sand.		-66
68							Wet, dark red-brown, very gravell	y SAND (SP); coarse	+68
69-	69 -								+69
70-									+70
71+							Wet, brown-gray SAND (SP); trac	ce gravel; medium sand.	+71
72-73-						000	Wet, red-brown GRAVEL (GW);	fine to coarse gravel;	-72 - 73
74-							trace silt; trace coarse sand.		↓ 74
75-							(SP); medium sand, fine to coars	g, very gravelly SAND e rounded gravel with	+75
76-							cobbles up to 3"; trace silt; diamic	t fabric.	+76
78-							Brown.		$-\frac{7}{78}$
79-							Dry, gray, gravelly, very sandy SII sand; subrounded to subangular	_T (ML); fine to medium gravel; cobbles up to 4".	-79
81-							Moist, brown-red, slightly gravelly \sand; subrounded gravel; trace si	SAND (SP); medium lt.	81
82-							Slightly moist, gray, gravelly, silty	SAND (SM); fine to	-+82
83+ 84-							gravel.		+83
85-						441			
86-						00000	gravel.		<u>}</u> +86
87+							Wet, red-brown GRAVEL (GP); c	coarse gravel and cobbles.	.+87
88+							Very moist to wet, brown, gravelly diamict fabric, cobbles up to 4".	/, sandy SILT (ML);	
90-		H					Gray.		+90
91-									+91
92+							Madada anna 1 11 1 11 11		-92
93+							to medium sand.	y, siity SAND (SM); fine	-93 - 01
95-									+95
96-									+96
97-							Moist to wet, brown-gray SAND (SP); fine to medium	+97
98+	8+						sand.		+98
	19 ⁺				<u> </u>		Moist, gray-brown, slightly silty, g	ravelly SAND (SP-SM).	- 33
	Type:		PID -	Photoioniza	tion Dete	ector	Logged by:	AET	
	y Core		_ ₹	Static Wate	r Level		Approved by	y: JNM	
			<u>¥</u>	Water Level	(ATD)			A 2	
							Figure No.	H-2	

NAcro et					Monitori					ring Well Construction Log		
					Project Number 080190					Well Number	Sheet 3 of 3	
Proiect Na	ame:	Stadium Thrif	twav			00	50100			Ground Surface Elev	0010	
Location:		Tacoma, WA								Top of Casing Elev.	272.46	
Driller/Me	thod:	Major Drilling - Je	effrey / Sonic (Geoprobe 8	e 8140LS - track mounted					Depth to Water (ft BGS)	130 - 2/3/2012	
Sampling	Method:	Continuous Core	·	·						Start/Finish Date	1/30/2012-2/2/2012	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	Pi (pp	ID om)	Blows/ 6"	s/ Material Type		Description		Depth (ft)
Depth / Elevation (feet) 101- 102- 103- 104- 105- 106- 107- 108- 109- 110- 111- 112- 113- 114- 115- 116- 117- 118- 119- 120- 121- 122- 123- 124- 125- 126- 127- 128- 129- 124- 125- 126- 127- 128- 129- 130- 131- 132- 133- 134- 135- 136- 137- 138- 137- 138- 138- 137- 137- 138- 137- 137- 137- 137- 137- 137- 137- 137		10x20 colorado silica sand filter pack, 121'-143.5' bgs ✓ 2/1/2012 ✓ 2/3/2012 2'' ID schedule 40 PVC 20-slot screen, 123.5'-143.5' bgs Threaded PVC end cap	Sample Type/ID	Tests	P (pp	ID pm)	Blows/ 6"			Description Moist to wet, brown, very sandy C to coarse sand; fine subrounded to Slightly moist, gray and brown mo SILT (ML); fine to medium sand; diamict fabric. Moist, brown and gray mottled, gr fine to medium sand; subrounded Dry to slightly moist, gray with iron sandy SILT (ML); diamict fabric. Moist, brown-gray, slightly silty, very (SP-SM); medium to coarse sand Moist, brown-gray, gravelly, silty S to 3". Slightly moist, gray, gravelly, sandy medium sand; cobbles up to 3". Moist, brown, very silty, sandy GF to 4", angular gravel, fine to coarse Dry to slightly moist, gray, gravelly to medium sand, cobbles up to 4" Moist, brown-gray with orange mo SAND (SM); fine to coarse sand; gravel with cobbles up to 3". Moist to wet, gray-brown, gravelly to coarse sand, fine to coarse sub fabric. Very gravelly. Moist. Wet.	SRAVEL (GP); tr. silt, fine to subangular gravel.	Depth (f) -101 -102 -103 -104 -105 -106 -107 -108 -107 -108 -109 -110 -111 -112 -113 -114 -115 -120 -121 -122 -123 -124 -127 -128 -127 -128 -130 -131 -132 -133 -134 -137 -138 -137 -144 -147 -144 -147 -144 -147 -144 -147 -144 -147 -144 -147 -144 -147 -144 -147 -144 -144
148-												-148
Sampler Type: PID -					Photoior	nizat	ion Dete	ector		Logged by: AET		
O No Recovery ⊻			Static W	/ater	Level			Approved by	y: JNM			
Continuous Core			Water Level (ATD)						Δ_2			
										Figure No.	M-2	

MONITORING WELL STADIUM THRIFTWAY GPJ May 1, 2012

Manaat								Boring Log		
				Pr	roject 080	Number)190		Boring Number Shu DP-10 1 o	eet of 1	
Project Name:	Stadium Thrif	tway			000	/100		Ground Surface Elev	<u> </u>	
Location:	Tacoma, WA									
Driller/Method:	Major Drilling - Da	an / Direct pu	ish - limited	access	Depth to Water (ft BGS) Not encounte	red ATD				
Sampling Method:	Continuous Core							Start/Finish Date2/8/20	12	
Depth / Elevation Bo (feet)	prehole Completion	Sample Type/ID	Tests	F (p	PID opm)	Drive/ Ma Recovery T (inches)	aterial Type	Description	Depth (ft)	
(reet) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	Hydrated bentonite chip backfill		DP-10-8	3.5 4	0.0 0.0 0.0 0.6 142 1.9 217 16			Concrete. Very dense, slightly moist, brown, gravelly, silty S, (SM); fine to medium sand; diamict fabric.	AND - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11	
Sampler Typ	re	PID) - Photoior ⊈ ∑	nization De Static Wa Water Le	etecto ater Lo evel (A	vr (Headsp evel NTD)	ace I	Measurement) Logged by: AET Approved by: JNM Figure No. A - 3	I	

ENV PROBE LOG STADIUM THRIFTWAY GPJ May 1, 2012

Manact				Boring Log								
				Projec 08	t Numbe 0190	er	Boring Number	Sheet				
Project Name:	Stadium Thri	iftway			0100		Ground Surface Elev					
Location:	Tacoma, WA	-										
Driller/Method:	Major Drilling - D	Dan / Direct pu	ush - limited	access			Depth to Water (ft BGS)	Not encountered ATD				
Sampling Method:	Continuous Core	e					Start/Finish Date	2/8/2012				
Depth / Elevation B	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery	Material Type	Description	ı	Dep (ft)			
Sampling Method: Depth / Elevation B 1 - 2 - 3 - 4 - 5 - 6 - 7 -	orehole Completion Hydrated bentonite chip backfill	Sample Type/ID	Tests DP-11-4	PID (ppm) 0.0 0.0 4 0.0 4 0.0 4 0.0 4 0.0 4 0.0 4 0.0	Drive/ Recovery (inches)	Material	Staturinish Date Description Asphalt. Slightly moist, brown, silty, very g diamict fabric; fine to medium sa	y, gravelly SAND (SM); y, gravelly SAND y, gravelly SAND ine to coarse gravel.	Dep (ft - 1 - 2 - 3 - 4 - 5 - 6 - 7			
8 - 9 -				0.6			Refusal at 9 ft BGS.		- 8 - 6			
Sampler Ty	pe:	PI	D - Photoioni ⊈ : ⊻ \	zation Detect Static Water Water Level (or (Heac Level ATD)	Ispace	Measurement) Logged by: Approved b	AET y: JNM				

Manaat							Boring Log	Boring Log		
	Aspe	CT		Project	t Numbe	r	Boring Number	Sheet		
Project Name:	Stadium Thr	NG iftway		080	0190		DP-12 Ground Surface Flow	1011		
Location:	Tacoma, WA	intway								
Driller/Method:	Major Drilling - [Dan / Direct p	ush - limited	access			Depth to Water (ft BGS)	Not encountered ATD	I.	
Sampling Methor	d: Continuous Cor	e					Start/Finish Date	2/8/2012		
Depth / Elevation	Borehole Completion	Sample	Tests	PID (ppm)	Drive/ Recovery	Material	Descriptior	1	Dep	
(feet)		Турело		(PP)	(inches)	туре	Asphalt.		(11)	
1 2 3 4 5 6 7	Hydrated bentonite chip backfill		DP-12-5.	0.0 0.0 0.0 5 242 141			Asphalt. Moist, brown, gravelly, silty SAN sand; fine to coarse gravel. Wet, blue gray, gravelly SAND (S Moist, brown, gravelly, silty SAN sand.	D (SM); fine to medium	- 1 - 2 - 3 - 4 - 5 - 6 - 7	
8 -				17.1					- 8	
9 -				4.0		<u> </u>	Refusal at 9 ft BGS.		9	
	l Type:	PI	D - Photoioni	zation Detecto	or (Head	space	Measurement) Loaaed by:	AET		
Sampler T										
Sampler T	/		— •	Static Water I	مررما					
Sampler T	Core		ע ג ע ג	Static Water L			Approved b	by: JNM		

Aspect							Boring Log		
				Projec 08	t Numbe 0190	r	DP-13	Sheet	
Project Name:	Stadium Thr	iftway					Ground Surface Elev		
Location:	Tacoma, WA								
Driller/Method:	Major Drilling - D	0an / Direct p	ush - limited	access			Depth to Water (ft BGS)	Not encountered ATD	
Sampling Method	: Continuous Core	9					Start/Finish Date	2/8/2012	
Depth / Elevation E (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
Depth / Elevation (feet) E 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 -	Hydrated bentonite chip backfill	Sample Type/ID	DP-13-T	 PID (ppm) 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 	Drive/ Recovery (inches)	Material Type	Asphalt. Moist, brown, gravelly, silty SANE sand; fine to coarse gravel. Brick fragments.	D (SM); fine to medium	Dep (ft - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8
9 -							Refusal at 9 ft BGS.		!
Sampler Ty	 vpe:) - Photoioni	zation Detect	u Head	snace	Measurement) Loaged by:	AET	
	yp c .	PIL	ר - Photoioni ש	Zation Detect	ur (Head	space	weasurement) Logged by:		
			<u> </u>	Static Water I	_evel		Approved h	v: JNM	
Continuous C	ore		∇	Water Level (ATD)			y. OINNI	
					-,		Figure No.	A - 6	

Aspect				Droico	t Number		Boring Log Boring Number Sheet		
	CONSULTI	NG		08	0190		DP-14	1 of 1	
Project Name:	Stadium Thr	iftway					Ground Surface Elev		
Location:	Tacoma, WA								
Driller/Method:	Major Drilling - D	Dan / Direct p	ush - limiteo	access			Depth to Water (ft BGS)	Not encountered ATD	
Sampling Method	: Continuous Core	e			1 1		Start/Finish Date	2/8/2012	_
Elevation E	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Mater Recovery Type	'ial e	Description		Dep (ft)
(feet) 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -	Hydrated bentonite chip backfill		DP-14-				sphalt. lightly moist, brown, gravelly, silt hedium sand, fine to coarse grave	y SAND (SM); fine to el.	-1 -2 -3 -4 -5 -6 -7 -8 -9
Sampler T	ype:	PI	D - Photoior ▼	nization Detect	or (Headspac	e Me	asurement) Logged by:	AET	
Continuous C	Core		Ţ	Water Level (ATD)		Approved by	r: JNM	
							Figure No.	A - 7	

	Aspect						Boring Log		
	CONSULTI	CT NG		Projec 08	ct Numbe 80190	er	Boring Number DP-16	Sheet 1 of 1	
Project Name:	Stadium Thr	iftway					Ground Surface Elev		
Location:	Tacoma, WA								
Driller/Method:	Major Drilling - D	0an / Direct p	oush - limite	d access			Depth to Water (ft BGS)	Not encountered ATE)
Sampling Method	Continuous Core	e					Start/Finish Date	2/8/2012	
Depth / Elevation E (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Descriptio	n	Dep (ft)
$ \begin{array}{c} 1 - \\ 2 - \\ 3 - \\ 4 - \\ 5 - \\ 6 - \\ 7 - \\ 8 - \\ 9 - \\ \end{array} $	Hydrated bentonite chip backfill		DP-16	-4 0.0 -4 0.0 0.0 0.0 0.0 0.0 0.0 0.0			Asphalt. Slightly moist, brown, gravelly, s medium sand; fine to coarse gra	ilty SAND (SM); fine to ivel.	-1 -2 -3 -4 -5 -6 -7 -8 -9
Sampler Ty	/pe:	PI	ID - Photoio L	nization Detect Static Water	tor (Heac Level	lspace	Measurement) Logged by		
Continuous C	ore		$\overline{\Delta}$	Water Level ((ATD)		Approved		
							Figure No.	A-9	

ATTACHMENT B

Laboratory Certificates of Analysis

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

February 16, 2012

Joe Morrice, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr. Morrice:

Included are the results from the testing of material submitted on February 8, 2012 from the Stadium Thriftway 080190, F&BI 202073 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: data@aspectconsulting.com, Parker Wittman ASP0216R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 8, 2012 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202073 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
202073 -01	MW-7-020612
202073 -02	MW-8D-020612
202073 -03	MW-12D-020612
202073 -04	MW-14D-020612
202073 -05	MW-1-020712
202073 -06	MW-2-020712
202073 -07	MW-13D-020712
202073 -08	MW-8-020712
202073 -09	MW-5-020712

Hexachlorobutadiene was detected in the 8260C method blank. The data were flagged as due to laboratory contamination.

All other quality control requirements were acceptable.

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted:	MW-7-020612 02/08/12 02/13/12	2	Client: Project: Lab ID:	Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202073 202073-01
Date Analyzed:	02/13/12		Data File:	202073-01.044
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		97	60	125
		Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		
ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-8D-020612 02/08/12 02/13/12 02/13/12 Water		Client: Project: Lab ID: Data File:	Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202073 202073-02 202073-02.047 ICPMS1
Units.	ug/L (nnh)		Operator	ΔΡ
Internal Standard: Holmium	%	6 Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Co	oncentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-12D-0206	12	Client:	Aspect Consulting, LLC
Date Received:	02/08/12		Project:	Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12		Lab ID:	202073-03
Date Analyzed:	02/13/12		Data File:	202073-03.048
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		94	60	125
	C	Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-14D-0206	12	Client:	Aspect Consulting, LLC
Date Received:	02/08/12		Project:	Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12		Lab ID:	202073-04
Date Analyzed:	02/13/12		Data File:	202073-04.049
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		96	60	125
	C	Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-1-02071	2	Client:	Aspect Consulting, LLC
Date Received:	02/08/12		Project:	Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12		Lab ID:	202073-05
Date Analyzed:	02/13/12		Data File:	202073-05.051
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		98	60	125
		Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-2-02071	2	Client:	Aspect Consulting, LLC
Date Received:	02/08/12		Project:	Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12		Lab ID:	202073-06
Date Analyzed:	02/13/12		Data File:	202073-06.052
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		98	60	125
		Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-13D-0207	712	Client:	Aspect Consulting, LLC
Date Received:	02/08/12		Project:	Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12		Lab ID:	202073-07
Date Analyzed:	02/13/12		Data File:	202073-07.053
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		94	60	125
	(Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received:	MW-8-020712 02/08/12	2	Client: Project:	Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12		Lab ID: Data Filo:	202073-08 202073-08 054
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		91	60	125
		Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-5-020712 02/08/12 02/13/12 02/13/12 Water	2	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202073 202073-09 202073-09.055 ICPMS1
Units:	ug/L (ppb)		Operator:	AP
Internal Standard: Holmium		% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Stadium Thriftway 080190, F&BI 202073
Date Extracted:	02/13/12	Lab ID:	I2-101 mb
Date Analyzed:	02/13/12	Data File:	I2-101 mb.042
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	94	60	125
	Concentration		
Analyte:	ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-7-02061	2	Client:	Aspect Consulting, 1	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-01	
Date Analyzed:	02/08/12		Data File:	020823.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /				
a .		04 D	Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-o	14	104	57	121	
Toluene-d8		100	63	127	
4-Bromofluorobenze	ne	101	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dichl	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		<0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	nzene	<1
Trichlorofluorometh	ane	<1	Ethylber	izene	<1
Acetone		<10	1,1,1,2-T	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Methylene chloride		<5	o-Xvlene		<1
Methyl t-butyl ether (MTBE)		<1	Styrene		<1
trans-1.2-Dichloroet	hene	<1	Isopropylbenzene		<1
1.1-Dichloroethane		<1	Bromofor	rm	<1
2.2-Dichloropropane		<1	n-Propyl	benzene	<1
cis-1.2-Dichloroethe	ne	<1	Bromobe	nzene	<1
Chloroform		<1	1 3 5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1 1 2 2-T	etrachloroethane	<1
1 2-Dichloroethane (EDC)	<1	1, 2, 2, 2 1 2 3-Tri	chloropropane	<1
1 1 1-Trichloroethar	100) 10	<1	2-Chloro	toluene	<1
1 1-Dichloropropene		<1	4-Chloro	toluene	<1
Carbon tetrachloride	د	2.2	tert-Buty	lbenzene	<1
Benzene	2	<0.35	1 2 4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1 2-Dichloropropage		<1	n-Isonror	vltoluene	<1
Bromodichlorometh:	ane	<1	1 3-Dich	lorobenzene	<1
Dibromomethane	une	<1	1,0 Dich	lorobenzene	<1
A-Mothyl-2-poptapor	20	<10	1,4-Dichi 1,2-Dichi	lorobonzono	<1
cis 1 2 Dichloroprop	ie opo	<10	1,2-Dichi 1 2 Dibri	omo 3 chloropropano	<10
Taluana	ene	<1	1, 2 - DIDIO 1 9 4 Tri	shlorohonzono	<10
trans 1 2 Dichlorony	onono	<1	1,2,4-111 Hovochi	probutadiana	<1
1 1 2 Trichlanasthar	opene	<1	Nonhtha	lono	<1
2 Hoveners	le	<1 <10	1 9 9 T	ahlarahanzana	<1
2-mexanone		<10	1,2,3-111	cinorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-8D-020	612	Client:	Aspect Consulting, I	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway (080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-02	
Date Analyzed:	02/08/12		Data File:	020824.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /				
~			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-o	14	105	57	121	
Toluene-d8		102	63	127	
4-Bromofluorobenze	ne	102	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		<0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	ane	<1	Ethylber	izene	<1
Acetone		<10	1,1,1,2-T	'etrachloroethane	<1
1.1-Dichloroethene		<1	m.p-Xvle	ene	<2
Methylene chloride		<5	o-Xvlene		<1
Methyl t-butyl ether	· (MTBE)	<1	Styrene		<1
trans-1.2-Dichloroet	hene	<1	Isopropy	lbenzene	<1
1.1-Dichloroethane		<1	Bromofo	rm	<1
2.2-Dichloropropane		<1	n-Propyl	benzene	<1
cis-1.2-Dichloroethe	ne	26	Bromobe	nzene	<1
Chloroform		<1	1 3 5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1,1,2,2-T	'etrachloroethane	<1
1 2-Dichloroethane (EDC)	<1	1, 1, 2, 2, 1 1 2 3-Tri	chloropropane	<1
1 1 1-Trichloroethar	100) 10	<1	2-Chloro	toluene	<1
1 1-Dichloropropene		<1	∠ Chloro	toluene	<1
Carbon tetrachloride	a.	18	tert-Buty	vlhenzene	<1
Benzene	5	<0.35	1 2 4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lhenzene	<1
1 2-Dichloropropane		<1	n-Isopror	vltoluene	<1
Bromodichloromethe	ane	<1	1 3-Dich	lorobenzene	<1
Dibromomethane	anc	<1	1,3-Dichi 1 4-Dichi	lorobenzene	<1
A-Mothyl-2-poptapor	20	<1	1,4-Dichi 1,2-Dichi	lorobonzono	<1
cis 1 2 Dichloroprop	ie opo	<10	$1, \mathcal{L}$ -Dithi 1 2 Dibr	omo 3 chloropropopo	<10
Teluene	ene	<1	$1, \mathcal{L}$ -DIDI 1, 2, 4 Tri	ohlorohonzono	<10
trans 1.2 Dichlorony	onono	<1	1,4,4-1fl Llovochl	arobutadiana	<1
1 1 2 Trichlanasthar	opene	<1 21	nexacili Nonhtha	lono	<1
1, 1, 2 - 1 field of the fie	le	<i .10</i 		nene shlanah ammana	<1
2-mexanone		<10	1,2,3-111	cinorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: MW-12D-020612		Client:	Aspect Consulting, 1	LLC	
Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-03	
Date Analyzed:	02/08/12		Data File:	020825.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /		-		
_			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-	d4	103	57	121	
Toluene-d8		101	63	127	
4-Bromofluorobenze	ne	100	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dichl	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	ane	<1	Ethylber	nzene	<1
Acetone		<10	1,1,1,2-T	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Methylene chloride		<5	o-Xylene		<1
Methyl t-butyl ether (MTBE)		<1	Styrene		<1
trans-1,2-Dichloroet	hene	<1	Isopropy	lbenzene	<1
1,1-Dichloroethane		<1	Bromofo	rm	<1
2,2-Dichloropropane	•	<1	n-Propyl	benzene	<1
cis-1,2-Dichloroethe	ne	17	Bromobe	enzene	<1
Chloroform		<1	1,3,5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1,1,2,2-T	'etrachloroethane	<1
1,2-Dichloroethane	(EDC)	<1	1,2,3-Tri	chloropropane	<1
1,1,1-Trichloroetha	ne	<1	2-Chloro	toluene	<1
1,1-Dichloropropene		<1	4-Chloro	toluene	<1
Carbon tetrachlorid	е	<1	tert-Buty	ylbenzene	<1
Benzene		< 0.35	1,2,4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1,2-Dichloropropane	•	<1	p-Isoprop	oyltoluene	<1
Bromodichlorometh	ane	<1	1,3-Dich	lorobenzene	<1
Dibromomethane		<1	1,4-Dichl	lorobenzene	<1
4-Methyl-2-pentanon	ne	<10	1,2-Dichl	lorobenzene	<1
cis-1,3-Dichloroprop	ene	<1	1,2-Dibro	omo-3-chloropropane	<10
Toluene		<1	1,2,4-Tri	chlorobenzene	<1
trans-1,3-Dichlorop	ropene	<1	Hexachle	orobutadiene	<1
1,1,2-Trichloroetha	ne	<1	Naphtha	llene	<1
2-Hexanone		<10	1,2,3-Tri	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-14D-02	0612	Client:	Aspect Consulting, I	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway (080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-04	
Date Analyzed:	02/08/12		Data File:	020826.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /				
~			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-o	14	101	57	121	
Toluene-d8		101	63	127	
4-Bromofluorobenze	ne	101	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	4.2
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	ane	<1	Ethylber	izene	<1
Acetone		<10	1.1.1.2-T	'etrachloroethane	<1
1 1-Dichloroethene		<1	m n-Xvle	ne	<2
Methylene chloride		<5	o-Xvlene		<1
Methyl t-butyl ether	(MTBE)	<1	Styrene		<1
trans-1 2-Dichloroet	hene	<1	Isoprony	lhenzene	<1
1 1-Dichloroethane	nene	<1	Bromofo	rm	<1
2 2-Dichloropropage		<1	n-Pronyl	honzono	<1
2,2-Dichlorootho	20	28	Bromobo	nzono	<1
Chloroform	lic	∠0 ∠1	1 3 5-Tri	mothylbonzono	<1
2-Butanono (MFK)		<1	1,3,5-111 1 1 9 9-T	atrachloroothano	<1
1.2 Dichloroothano (FDC)	<10	$1, 1, 2, 2^{-1}$ 1 9 9 Tri	chloropropapo	<1
1,2-Dichloroothare		<1	2 Chloro	toluono	<1
1,1,1-111010eullai	le	<1	2-Chloro	toluono	<1
Carbon totrachlorid		<1	4-CIII010	llhonzono	<1
Carbon tetracinorius	5	<0.25	1.9.4 Tri	mothylbonzono	<1
Trichloroothono		< 0.33	1, 2, 4-111	lhenzene	<1
1 9 Dishlarananana		J.J	sec-Duty		<1
1,2-Dichloropropane		<1	p-isoprop	Dynoiuene	<1
Bromodicniorometha	ane	<1	1,3-Dicn	lorobenzene	<1
Dibromomethane		<1	1,4-Dich	lorobenzene	<1
4-Methyl-2-pentanor	ne	<10	1,2-Dich	lorobenzene	<1
cis-1,3-Dichloroprop	ene	<1	1,2-Dibro	omo-3-chloropropane	<10
Toluene		<1	1,2,4-Tri	chlorobenzene	<1
trans-1,3-Dichloropr	opene	<1	Hexachle	probutadiene	<1
1,1,2-Trichloroethar	ne	<1	Naphtha	llene	<1
2-Hexanone		<10	1,2,3-Tri	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-02071	2	Client:	Aspect Consulting, 1	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-05	
Date Analyzed:	02/08/12		Data File:	020827.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 41 /				
G		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-o	14	102	57	121	
Toluene-d8		102	63	127	
4-Bromofluorobenze	ne	100	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dichl	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	ane	<1	Ethylber	nzene	<1
Acetone		<10	1,1,1,2-T	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Methylene chloride		<5	o-Xvlene		<1
Methyl t-butyl ether	(MTBE)	<1	Styrene		<1
trans-1.2-Dichloroet	hene	<1	Isopropy	lbenzene	<1
1.1-Dichloroethane		<1	Bromofo	rm	<1
2.2-Dichloropropane		<1	n-Propyl	benzene	<1
cis-1.2-Dichloroethe	ne	<1	Bromobe	nzene	<1
Chloroform		<1	1.3.5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1.1.2.2-T	etrachloroethane	<1
1.2-Dichloroethane (EDC)	<1	1.2.3-Tri	chloropropane	<1
1.1.1-Trichloroethar	22 <i>0)</i>	<1	2-Chloro	toluene	<1
1.1-Dichloropropene		<1	4-Chloro	toluene	<1
Carbon tetrachloride	e e e e e e e e e e e e e e e e e e e	<1	tert-Buty	lbenzene	<1
Benzene	-	< 0.35	1.2.4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1 2-Dichloropropane		<1	p-Isopror	vltoluene	<1
Bromodichlorometh:	ane	<1	1 3-Dich	lorobenzene	<1
Dibromomethane		<1	1 4-Dich	lorobenzene	<1
A-Methyl-2-pentanor	סר	~10	1 2-Dich	lorobenzene	<1
cis-1 3-Dichloroprop	ano	<10	1.2-Dibr	omo-3-chloropropano	<10
Toluono		<1	1,6-DIDI 1 9 1_Tri	chlorobonzono	<1
trang_1 2 Dichloropy	onono	<1	1,2,4-111 Hovochle	orobutadiona	<1
1 1 2 Trichlanasthar	opene	<1	Nonhtha	lono	<1 21
2 Hoveners	le	<1 <10	1 9 9 T	ablarabanzana	<1
2-mexanone		<10	1,Z,J-1r1	cinorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-2-02071	12	Client:	Aspect Consulting,	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-06 1/100	
Date Analyzed:	02/08/12		Data File:	020829.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /		-		
a .		0/ D	Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-c	14	102	57	121	
Toluene-d8		100	63	127	
4-Bromofluorobenzei	ne	101	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<100	1,3-Dichl	loropropane	<100
Chloromethane		<1,000	Tetrachle	oroethene	1,600
Vinyl chloride		<20	Dibromo	chloromethane	<100
Bromomethane		<100	1,2-Dibro	omoethane (EDB)	<100
Chloroethane		<100	Chlorobe	nzene	<100
Trichlorofluorometh	ane	<100	Ethylben	izene	<100
Acetone		<1,000	1,1,1,2-T	etrachloroethane	<100
1,1-Dichloroethene		<100	m,p-Xyle	ene	<200
Methylene chloride		<500	o-Xylene		<100
Methyl t-butyl ether	(MTBE)	<100	Styrene		<100
trans-1,2-Dichloroet	hene	<100	Isopropy	lbenzene	<100
1,1-Dichloroethane		<100	Bromofor	rm	<100
2,2-Dichloropropane		<100	n-Propyl	benzene	<100
cis-1,2-Dichloroether	ne	1,400	Bromobe	nzene	<100
Chloroform		<100	1,3,5-Tri	methylbenzene	<100
2-Butanone (MEK)		<1,000	1,1,2,2-T	etrachloroethane	<100
1,2-Dichloroethane (EDC)	<100	1,2,3-Tri	chloropropane	<100
1,1,1-Trichloroethan	ie	<100	2-Chloro	toluene	<100
1,1-Dichloropropene		<100	4-Chloro	toluene	<100
Carbon tetrachloride	è.	<100	tert-Buty	lbenzene	<100
Benzene		<35	1,2,4-Tri	methylbenzene	<100
Trichloroethene		810	sec-Buty	lbenzene	<100
1,2-Dichloropropane		<100	p-Isoprop	oyltoluene	<100
Bromodichlorometha	ane	<100	1,3-Dichl	lorobenzene	<100
Dibromomethane		<100	1,4-Dichl	lorobenzene	<100
4-Methyl-2-pentanor	ne	<1,000	1,2-Dichl	lorobenzene	<100
cis-1,3-Dichloroprop	ene	<100	1,2-Dibro	omo-3-chloropropane	<1,000
Toluene		<100	1,2,4-Tri	chlorobenzene	<100
trans-1,3-Dichloropr	opene	<100	Hexachle	orobutadiene	<100
1,1,2-Trichloroethan	ie	<100	Naphtha	lene	<100
2-Hexanone		<1,000	1,2,3-Tri	chlorobenzene	<100

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-13D-02	0712	Client:	Aspect Consulting, 1	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	202073-07	
Date Analyzed:	02/08/12		Data File:	020828.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	8 41 /		-		
_			Lower	Upper	
Surrogates:	_	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-c	14	103	57	121	
Toluene-d8		101	63	127	
4-Bromofluorobenzer	ne	103	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dichl	oropropane	<1
Chloromethane		<10	Tetrachle	oroethene	4.2
Vinyl chloride		<0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	nzene	<1
Trichlorofluorometh	ane	<1	Ethylben	zene	<1
Acetone		<10	1.1.1.2-T	etrachloroethane	<1
1.1-Dichloroethene		<1	m.p-Xvle	ne	<2
Methylene chloride		<5	o-Xvlene		<1
Methyl t-butyl ether	(MTBE)	<1	Styrene		<1
trans-1.2-Dichloroet	hene	<1	Isopropy	lbenzene	<1
1.1-Dichloroethane		<1	Bromofor	rm	<1
2.2-Dichloropropane		<1	n-Propyl	benzene	<1
cis-1 2-Dichloroethe	ne	28	Bromobe	nzene	<1
Chloroform		~0 <1	1 3 5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1,0,0 111 1 1 2 2-T	etrachloroethane	<1
1 2-Dichloroethane (EDC)	<1	1, 1, 2, 2 1 1 2 3-Tri	chloropropane	<1
1 1 1-Trichloroethan		<1	2-Chlorot	toluene	<1
1 1-Dichloropropene		<1	2 Chlorot 4-Chlorot	toluene	<1
Carbon tetrachloride	2	<1	tert-Buty	Ibenzene	<1
Renzene	-	<0.35	1 9 4-Tri	methylbenzene	<1
Trichloroethene		<0.00 2 A	soc-Buty	lhonzono	<1
1 2-Dichloronronane		~1	n-Isonror	vltoluene	<1
Bromodichlorometh:	ano	<1	1 3-Dichl	orobenzene	<1
Dibromomothano	ane	<1	1,5-Dichi 1 4-Dichi	orobonzono	<1
A Mothyl 2 poptopor	20	<1	1,4-Dichi 1 2 Dichi	orobonzono	<1
4-Methyl-2-pentalion	ie opo	<10	1,2-Dicili 1 2 Dibre	on openizene	<1
Teluene	ene	<1	1,2-DIDIC 1.2.4 Tri	shlarahanzana	<10
trong 1 2 Dishlar	onono	< <u>1</u>	1,2,4-1rl		<1
1 1 9 Tutol-1-1-1	opene	<1	Hexachio		<1
1, 1, 2-1richloroethan	ie	<1	Naphtha	iene	<1
z-Hexanone		<10	1,2,3-Tri	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date Received: $02/08/12$ Project:Stadium Thriftway 080190, F&BI 202073Date Extracted: $02/08/12$ Lab ID: $202073-08 1/100$ Date Analyzed: $02/08/12$ Data File: $020830.D$ Matrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JSSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichloroethane<1001,3-Dichloroethane<100Chloromethane<1001,2-Dibromoethane<100Chloromethane<1001,2-Dibromoethane<100Chlorobenzene<1001,1,1,2-Dithloroethane<100Chlorobenzene<1001,2-Dibromoethane<100Chlorobenzene<1001,1,1,2-Dithloroethane<100Trichlorofluoromethane<1001,1,1,2-Tetrachloroethane<100Trichlorofluoromethane<100m,p-Xylene<100Acetone<1,0001,1,1,2-Tetrachloroethane<1001,1-Dichloropthane<100Styrene<1001,2-Dichloroethene<100Bromoform<1001,2-Dichloroethene<100Bromoform<1001,1-Dichloroptopane<100Bromoform<1001,2-Dichloroethene<100Bromofo	Client Sample ID:	MW-8-02071	12	Client:	Aspect Consulting,	LLC
Date Extracted: $02/08/12$ Lab ID: $202073 \cdot 08 1/100^{-1}$ Date Analyzed: $02/08/12$ Data File: $020830.D$ Matrix:WaterInstrument:GCMS4Units: ug/L (ppb)Operator:JSSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationug/L (ppb)Compounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Analyzed:02/08/12Data File:02/0830.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JSSurrogates:% Recovery:Limit:Limit:1.2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationug/L (ppb)Compounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	Date Extracted:	02/08/12		Lab ID:	202073-08 1/100	
Matrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JSSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichloroethane<100	Date Analyzed:	02/08/12		Data File:	020830.D	
Units:ug/L (pp)Operator:J SSurrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d4106571211obuen-d8102631274-Bromofluorobenzene10160133ConcentrationCompounds:ug/L (ppb)Dichlorodifluoromethane<100	Matrix:	Water		Instrument:	GCMS4	
Surrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	Units:	ug/L (ppb)		Operator:	JS	
LowerUpper1.2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichloroethane<100		0 41 /				
Surrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d4106571211 oluene-d8102631274-Bromofluorobenzene10160133ConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	_			Lower	Upper	
1,2-Dichloroethane-d410657121Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	Surrogates:		% Recovery:	Limit:	Limit:	
Toluene-d8102631274-Bromofluorobenzene10160133ConcentrationConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	1,2-Dichloroethane-c	4	106	57	121	
4-Bromofluorobenzene10160133Compounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100	Toluene-d8		102	63	127	
Concentration Compounds:Concentration ug/L (ppb)Compounds:Concentration ug/L (ppb)Dichlorodifluoromethane<100	4-Bromofluorobenzer	ne	101	60	133	
Compounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<100			Concentration			Concentration
Dichlorodifluoromethane<1001,3-Dichloropropane<100Chloromethane<1,000	Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Chloromethane<1,000Tetrachloroethene960Vinyl chloride<20	Dichlorodifluoromet	hane	<100	1,3-Dichl	loropropane	<100
Vinyl chloride<20Dibromochloromethane<100Bromomethane<100	Chloromethane		<1,000	Tetrachl	oroethene	960
Brownomethane<1001,2-Dibromoethane (EDB)<100Chloroethane<100	Vinyl chloride		<20	Dibromo	chloromethane	<100
Chloroethane<100Chlorobenzene<100Trichlorofluoromethane<100	Bromomethane		<100	1,2-Dibro	omoethane (EDB)	<100
Trichlorofluorom ethane<100Ethylbenzene<100Acetone<1,000	Chloroethane		<100	Chlorobe	enzene	<100
Acetone<1,0001,1,1,2-Tetrachloroethane<1001,1-Dichloroethene<100	Trichlorofluorometh	ane	<100	Ethvlber	nzene	<100
1,1-Dichloroethene<100m,p-Xylene<200Methylene chloride<500	Acetone		<1.000	1.1.1.2-T	'etrachloroethane	<100
Methylene chloride<500o-Xylene<100Methyl t-butyl ether (MTBE)<100	1.1-Dichloroethene		<100	m.p-Xvle	ene	<200
Methyl t-butyl ether (MTBE)<100Styrene<100trans-1,2-Dichloroethene<100	Methylene chloride		<500	o-Xvlene		<100
Intens/1 conditionIntensitytrans-1,2-Dichloroethene<100	Methyl t-butyl ether	(MTBE)	<100	Styrene		<100
1.1-Dichloroethane<100Bromoform<1001.1-Dichloroethane<100	trans-1.2-Dichloroet	hene	<100	Isopropy	lbenzene	<100
2,2-Dichloropropane<100n-Propylbenzene<100 $2,2$ -Dichloropropane<100	1.1-Dichloroethane		<100	Bromofor	rm	<100
cis-1,2-Dichloroethene1,600Bromobenzene<100Chloroform<100	2.2-Dichloropropane		<100	n-Propyl	benzene	<100
Chloroform<1001,3,5-Trimethylbenzene<1002-Butanone (MEK)<1,000	cis-1.2-Dichloroethe	ne	1.600	Bromobe	enzene	<100
2-Butanone (MEK)<1,000	Chloroform		<100	1.3.5-Tri	methylbenzene	<100
1,2-Dichloroethane (EDC)<100	2-Butanone (MEK)		<1.000	1.1.2.2-T	'etrachloroethane	<100
1,1,1-Trichloroethane<1002-Chlorotoluene<1001,1-Dichloropropene<100	1.2-Dichloroethane (EDC)	<100	1.2.3-Tri	chloropropane	<100
1,1-Dichloropropene<1004-Chlorotoluene<100Carbon tetrachloride<100	1.1.1-Trichloroethan)e	<100	2-Chloro	toluene	<100
Carbon tetrachloride<100tert-Butylbenzene<100Benzene<35	1.1-Dichloropropene		<100	4-Chloro	toluene	<100
Benzene<351,2,4-Trimethylbenzene<100Trichloroethene610sec-Butylbenzene<100	Carbon tetrachloride	<u>)</u>	<100	tert-Buty	lbenzene	<100
Trichloroethene610sec-Butylbenzene<100	Benzene		<35	1.2.4-Tri	methylbenzene	<100
	Trichloroethene		610	sec-Buty	lbenzene	<100
1.2-Dichloropropane <100 p-Isopropyltoluene <100	1.2-Dichloropropane		<100	p-Isopror	ovltoluene	<100
Bromodichloromethane <100 1.3-Dichlorobenzene <100	Bromodichlorometha	ane	<100	1.3-Dich	lorobenzene	<100
Dibromomethane <100 1.4-Dichlorobenzene <100	Dibromomethane		<100	1.4-Dich	lorobenzene	<100
4-Methyl-2-pentanone <1.000 1.2-Dichlorobenzene <100	4-Methyl-2-pentanor	ne	<1.000	1.2-Dichl	lorobenzene	<100
cis-1.3-Dichloropropene <100 1.2-Dibromo-3-chloropropane <1.000	cis-1.3-Dichloroprope	ene	<100	1.2-Dibro	omo-3-chloropropane	<1.000
Toluene <100 1.2.4-Trichlorobenzene <100	Toluene		<100	1.2.4-Tri	chlorobenzene	<100
trans-1.3-Dichloropropene <100 Hexachlorobutadiene <100	trans-1.3-Dichloropr	opene	<100	Hexachle	probutadiene	<100
1.1.2-Trichloroethane <100 Naphthalene <100	1.1.2-Trichloroethan	e	<100	Naphtha	lene	<100
2-Hexanone <1,000 1,2,3-Trichlorobenzene <100	2-Hexanone		<1,000	1,2,3-Tri	chlorobenzene	<100

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-5-02071	2	Client:	Aspect Consulting, 1	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/09/12		Lab ID:	202073-09	
Date Analyzed:	02/09/12		Data File:	020914.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /				
G		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-o	14	104	57	121	
Toluene-d8		101	63	127	
4-Bromofluorobenze	ne	100	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluoromet	hane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	140
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	ane	<1	Ethylber	nzene	<1
Acetone		<10	1,1,1,2-T	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Methylene chloride		<5	o-Xvlene		<1
Methyl t-butyl ether	· (MTBE)	<1	Stvrene		<1
trans-1,2-Dichloroet	hene	<1	Isopropy	lbenzene	<1
1.1-Dichloroethane		<1	Bromofo	rm	<1
2.2-Dichloropropane		<1	n-Propyl	benzene	<1
cis-1.2-Dichloroethe	ne	25	Bromobe	nzene	<1
Chloroform		2.3	1.3.5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1.1.2.2-T	etrachloroethane	<1
1.2-Dichloroethane ((EDC)	<1	1.2.3-Tri	chloropropane	<1
1.1.1-Trichloroethar	122 C)	<1	2-Chloro	toluene	<1
1.1-Dichloropropene		<1	4-Chloro	toluene	<1
Carbon tetrachloride	بد	4.6	tert-Buty	lbenzene	<1
Benzene	-	< 0.35	1.2.4-Tri	methylbenzene	<1
Trichloroethene		8 7	sec-Buty	lbenzene	<1
1 2-Dichloropropane		<1	n-Isopror	vltoluene	<1
Bromodichlorometh:	ane	<1	1 3-Dich	lorobenzene	<1
Dibromomethane		<1	1 4-Dich	lorobenzene	<1
4-Methyl-2-pentanor	ne	<10	1, 1 Dich	lorobenzene	<1
cis-1 3-Dichloroprop	ana	<10	1.2-Dibr	omo-3-chloropropano	<10
Toluono		<1	1,6-DIDI 1 9 /_Tri	chlorobonzono	<1
trang_1 2 Dichloropy	onono	<1 ~1	1,2,4-111 Hovochle	orobutadiona	<1
1 1 2 Trichlanasthar	opene	<1	Nonhtha	lono	<1 21
2 Hoveners	le	<1 <10	1 9 9 T	ablarabanzana	<1
2-mexanone		<10	1,2,3-111	cinorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blar	nk	Client:	Aspect Consulting,	LLC
Date Received:	Not Applical	ole	Project:	Stadium Thriftway	080190, F&BI 202073
Date Extracted:	02/08/12		Lab ID:	02-0190 mb	
Date Analyzed:	02/08/12		Data File:	020822.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JS	
	0 11 /				
_			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-c	14	103	57	121	
Toluene-d8		100	63	127	
4-Bromofluorobenzer	ne	101	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
- Diablana diffusanamati	hono	.1	1 9 Diahl		.1
Chlanamathana	nane	<1	T, 3-DICIII	loropropane	<1
		<10	Tetrachi	oroetnene	<1
Vinyl chloride		<0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	nzene	<1
Trichlorofluorometh	ane	<1	Ethylber	izene	<1
Acetone		<10	1,1,1,2-T	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Methylene chloride		<5	o-Xylene		<1
Methyl t-butyl ether	· (MTBE)	<1	Styrene		<1
trans-1,2-Dichloroet	hene	<1	Isopropy	lbenzene	<1
1,1-Dichloroethane		<1	Bromofo	rm	<1
2,2-Dichloropropane		<1	n-Propyl	benzene	<1
cis-1,2-Dichloroether	ne	<1	Bromobe	nzene	<1
Chloroform		<1	1,3,5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1,1,2,2-T	etrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Tri	chloropropane	<1
1,1,1-Trichloroethan	ne	<1	2-Chloro	toluene	<1
1,1-Dichloropropene		<1	4-Chloro	toluene	<1
Carbon tetrachloride	e	<1	tert-Buty	lbenzene	<1
Benzene		< 0.35	1,2,4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1.2-Dichloropropane		<1	p-Isopror	ovltoluene	<1
Bromodichlorometha	ane	<1	1.3-Dich	lorobenzene	<1
Dibromomethane		<1	1.4-Dich	lorobenzene	<1
4-Methyl-2-pentanor	ne	<10	1 2-Dich	orobenzene	<1
cis-1 3-Dichloroprop	ene	<1	1,2 Dibr	omo-3-chloropropane	<10
Toluene		<1	1 2 4-Tri	chlorobenzene	<1
trans-1 3-Dichloropr	onene	<1	Hevachl	robutadiene	1 1 lc
1 1 2-Trichloroothar	opene	~1	Nanhtha	lono	-1
2 - Hovenono		~10	1 9 2 Tri	chlorobonzono	~1
~-1 lexallulle		<10	1,2,0-111	CHIOLODEHZEHE	< <u>1</u>

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 202073-01 (Matrix Spike)								
				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	
Lead	ug/L (ppb)	10	<1	101	104	76-125	3	

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	102	67-135

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 202073-01 (Matrix Spike)

		Dorcont				
	Reporting	Snike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Dichlorodifluoromethane	ug/L (ppb)	50	<10	84	10-172	
Chloromethane	ug/L (ppb)	50	<10	87	25-166	
Vinvl chloride	ug/L (ppb)	50	<0.2	90	36-166	
Bromomethane	ug/L (ppb)	50	<1	87	47-169	
Chloroethane	ug/L (ppb)	50	<1	94	46-160	
Trichlorofluoromethane	ug/L (ppb)	50	<1	92	44-165	
Acetone	ug/L (ppb)	250	<10	105	10-182	
1,1-Dichloroethene	ug/L (ppb)	50	<1	94	60-136	
Methylene chloride	ug/L (ppb)	50	<5	97	67-132	
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	109	74-127	
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	72-129	
1,1-Dichloroethane	ug/L (ppb)	50	<1	104	70-128	
2,2-Dichloropropane	ug/L (ppb)	50	<1	94	36-154	
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	108	71-127	
Chloroform	ug/L (ppb)	50	<1	104	65-132	
2-Butanone (MEK)	ug/L (ppb)	250	<10	112	10-129	
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	09-133	
1,1,1-1 richloroethane	ug/L (ppb)	50	<1	100	00-140	
Carbon tetrachlarida	ug/L (ppb)	50	<1	107	09-155 56 152	
Banzono	ug/L (ppb)	50	۵.2 د0.25	90 107	J0-1J2 76 195	
Trichloroethene	ug/L (ppb)	50	<0.33	08	66-135	
12-Dichloropropage	ug/L (ppb)	50	<1	108	78-125	
Bromodichloromethane	ug/L (ppb)	50	<1	105	61-150	
Dibromomethane	ug/L (ppb)	50	<1	105	66-141	
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	122	10-185	
cis-1.3-Dichloropropene	ug/L (ppb)	50	<1	106	72-132	
Toluene	ug/L (ppb)	50	<1	107	76-122	
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	107	76-130	
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	105	68-131	
2-Hexanone	ug/L (ppb)	250	<10	122	10-185	
1,3-Dichloropropane	ug/L (ppb)	50	<1	108	71-128	
Tetrachloroethene	ug/L (ppb)	50	<1	103	73-129	
Dibromochloromethane	ug/L (ppb)	50	<1	107	70-139	
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	109	69-134	
Chlorobenzene	ug/L (ppb)	50	<1	103	77-122	
Ethylbenzene	ug/L (ppb)	50	<1	106	69-135	
1,1,1,2-1 etrachioroethane	ug/L (ppb)	50	<1	106	/3-13/	
n,p-Aylene	ug/L (ppb)	100	<2	109	09-133	
0-Aylene Stamono	ug/L (ppb)	50	<1	114	08-137	
Isopropulhopzopo	ug/L (ppb)	50	<1	100	65 149	
Bromoform	ug/L (ppb)	50	<1	105	65-142	
n-Pronylbenzene	ug/L (ppb)	50	<1	104	58-144	
Bromobenzene	ug/L (ppb)	50	<1	108	75-124	
1.3.5-Trimethylbenzene	ug/L (ppb)	50	<1	104	66-137	
1.1.2.2-Tetrachloroethane	ug/L (ppb)	50	<1	105	51-154	
1.2.3-Trichloropropane	ug/L (ppb)	50	<1	105	53-150	
2-Chlorotoluene	ug/L (ppb)	50	<1	105	66-127	
4-Chlorotoluene	ug/L (ppb)	50	<1	105	65-130	
tert-Butylbenzene	ug/L (ppb)	50	<1	107	65-137	
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	108	59-146	
sec-Butylbenzene	ug/L (ppb)	50	<1	103	64-140	
p-Isopropyltoluene	ug/L (ppb)	50	<1	106	65-141	
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	102	72-123	
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	101	69-126	
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	101	69-128	
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	97	32-164	
1,2,4-1richlorobenzene	ug/L (ppb)	50	<1	101	76-132	
Hexachiorobutadiene	ug/L (ppb)	50	<1	81	60-143	
Naprinaiene	ug/L (ppb)	50	<1	114	44-164	
1,2,3-1 riciii0robenzene	ug/L (ppb)	50	<1	102	69-148	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
Anglista	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Dichlorodifluoromothano	Units ug/L (ppb)	50	107	100	25 158	(Limit 20)
Chloromethane	ug/L (ppb)	50	107	112	45-156	4
Vinyl chloride	ug/L (ppb)	50	118	113	50-154	4
Bromomethane	ug/L (ppb)	50	117	111	55-143	5
Chloroethane	ug/L (ppb)	50	118	115	58-146	3
Trichlorofluoromethane	ug/L (ppb)	50	120	120	50-150	0
Acetone 1.1 Dichloroothone	ug/L (ppb)	250	115	114	60-155 67 126	1
Methylene chloride	ug/L (ppb)	50	110	107	39-148	4
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	111	110	64-147	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	109	108	68-128	1
1,1-Dichloroethane	ug/L (ppb)	50	112	112	79-121	0
2,2-Dichloropropane	ug/L (ppb)	50	109	110	55-143	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	111	110	80-123	1
2-Butanone (MEK)	ug/L (ppb)	250	111	112	80-121 57-149	1
12-Dichloroethane (EDC)	ug/L (ppb)	50	114	115	73-132	1
1,1,1-Trichloroethane	ug/L (ppb)	50	114	117	83-130	3
1,1-Dichloropropene	ug/L (ppb)	50	113	112	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	115	114	75-158	1
Benzene	ug/L (ppb)	50	107	107	69-134	0
Trichloroethene	ug/L (ppb)	50	101	101	80-120	0
I,2-Dichloropropane	ug/L (ppb)	50	111	110	77-123	1
Dibromomethane	ug/L (ppb)	50	114	115	82-125	1
4-Methyl-2-pentanone	ug/L (ppb)	250	116	115	70-140	1
cis-1,3-Dichloropropene	ug/L (ppb)	50	115	115	82-132	0
Toluene	ug/L (ppb)	50	108	105	72-122	3
trans-1,3-Dichloropropene	ug/L (ppb)	50	119	115	80-136	3
1,1,2-Trichloroethane	ug/L (ppb)	50	109	109	75-124	0
2-Hexanone	ug/L (ppb)	250	132	130	64-152 76 196	2
Tetrachloroethene	ug/L (ppb)	50	102	101	70-120	0
Dibromochloromethane	ug/L (ppb)	50	114	113	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	111	112	82-125	1
Chlorobenzene	ug/L (ppb)	50	106	104	83-114	2
Ethylbenzene	ug/L (ppb)	50	110	108	77-124	2
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	110	109	84-127	1
m,p-Xylene	ug/L (ppb)	100	110	108	83-125	2
Styrene	ug/L (ppb)	50	114	113	85-127	1
Isopropylbenzene	ug/L (ppb)	50	113	112	87-122	1
Bromoform	ug/L (ppb)	50	112	110	74-136	2
n-Propylbenzene	ug/L (ppb)	50	111	109	74-126	2
Bromobenzene	ug/L (ppb)	50	106	106	80-121	0
1,3,5-Trimethylbenzene	ug/L (ppb)	50	111	110	80-126	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	106	105	66-126	1
1,2,3-1 FICHIOFOPFOPARE	ug/L (ppb)	50 50	111	109	07-124 77-197	2
4-Chlorotoluene	ug/L (ppb)	50	112	111	78-128	1
tert-Butylbenzene	ug/L (ppb)	50	111	110	85-127	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	112	111	82-125	1
sec-Butylbenzene	ug/L (ppb)	50	111	109	80-125	2
p-Isopropyltoluene	ug/L (ppb)	50	113	112	82-127	1
1,3-Dichlorobenzene	ug/L (ppb)	50	105	104	85-116	1
1,4-DICHIOFODENZENE 1.2-Dichlorobenzene	ug/L (ppb)	50 50	104	104	84-121 85-116	U 1
1.2-Dibromo-3-chloropropane	ug/L (ppb)	50	104	105	57-141	2
1.2.4-Trichlorobenzene	ug/L (ppb)	50	103	104	72-130	ĩ
Hexachlorobutadiene	ug/L (ppb)	50	94	94	53-141	0
Naphthalene	ug/L (ppb)	50	115	114	64-133	1
1,2,3-Trichlorobenzene	ug/L (ppb)	50	104	107	65-136	3

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	123	118	25-158	4
Chloromethane	ug/L (ppb)	50	118	113	45-156	4
Vinyi chioride	ug/L (ppb)	50	125	123	50-154	2
Chloroethane	ug/L (ppb)	50	110	117	58-146	1
Trichlorofluoromethane	ug/L (ppb)	50	110	115	50-150	4
Acetone	ug/L (ppb)	250	108	108	60-155	0
1,1-Dichloroethene	ug/L (ppb)	50	114	114	67-136	0
Methylene chloride	ug/L (ppb)	50	106	108	39-148	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	111	108	64-147	3
trans-1,2-Dichloroethene	ug/L (ppb)	50	111	108	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	110	108	79-121	2
2,2-Dichloropropane	ug/L (ppb)	50	109	113	55-143	4
cls-1,2-Dichloroethene	ug/L (ppb)	50	113	110	80-123	3
2 Butanana (MEK)	ug/L (ppb)	50 250	109	109	80-121 57 140	0
12-Dichloroethane (FDC)	ug/L (ppb)	200 50	110	107	73-132	3
1 1 1-Trichloroethane	ug/L (ppb)	50	110	113	83-130	1
1.1-Dichloropropene	ug/L (ppb)	50	115	112	77-129	3
Carbon tetrachloride	ug/L (ppb)	50	113	112	75-158	1
Benzene	ug/L (ppb)	50	110	108	69-134	2
Trichloroethene	ug/L (ppb)	50	102	101	80-120	1
1,2-Dichloropropane	ug/L (ppb)	50	111	109	77-123	2
Bromodichloromethane	ug/L (ppb)	50	112	110	81-133	2
Dibromomethane	ug/L (ppb)	50	110	108	82-125	2
4-Metnyl-2-pentanone	ug/L (ppb)	250	115	113	70-140	2
Taluana	ug/L (ppb)	50	117	115	02-132 79 199	2
trans-13-Dichloropropene	ug/L (ppb)	50	113	100	80-136	2
1.1.2-Trichloroethane	ug/L (ppb)	50	106	104	75-124	2
2-Hexanone	ug/L (ppb)	250	119	117	64-152	2
1,3-Dichloropropane	ug/L (ppb)	50	110	109	76-126	1
Tetrachloroethene	ug/L (ppb)	50	108	105	76-121	3
Dibromochloromethane	ug/L (ppb)	50	112	110	84-133	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	109	108	82-125	1
Chlorobenzene	ug/L (ppb)	50	106	104	83-114	2
Ethylbenzene	ug/L (ppb)	50	108	106	77-124	2
1,1,1,2-1 etrachioroethane	ug/L (ppb)	50	106	107	84-127	1
o-Yylone	ug/L (ppb)	50	109	107	86-121	2
Styrene	ug/L (ppb)	50	114	112	85-127	2
Isopropylbenzene	ug/L (ppb)	50	112	110	87-122	2
Bromoform	ug/L (ppb)	50	111	107	74-136	4
n-Propylbenzene	ug/L (ppb)	50	112	108	74-126	4
Bromobenzene	ug/L (ppb)	50	109	106	80-121	3
1,3,5-Trimethylbenzene	ug/L (ppb)	50	110	107	80-126	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	104	101	66-126	3
1,2,3-Trichloropropane	ug/L (ppb)	50	106	104	67-124	2
2-Chlorotoluene	ug/L (ppb)	50	110	107	77-127	3
4-Chlorotoluene	ug/L (ppb)	50	111	109	78-128 95-197	2
1.2.4.Trimethylbenzene	ug/L (ppb)	50	110	100	82-125	2
sec-Butylbenzene	ug/L (ppb)	50	109	105	80-125	2
p-Isopropyltoluene	ug/L (ppb)	50	113	110	82-127	ĩ
1.3-Dichlorobenzene	ug/L (ppb)	50	105	103	85-116	2
1,4-Dichlorobenzene	ug/L (ppb)	50	104	102	84-121	2
1,2-Dichlorobenzene	ug/L (ppb)	50	102	100	85-116	2
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	94	96	57-141	2
1,2,4-Trichlorobenzene	ug/L (ppb)	50	100	104	72-130	4
Hexachlorobutadiene	ug/L (ppb)	50	95	98	53-141	3
Naphthalene	ug/L (ppb)	50	105	109	64-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	50	101	104	65-136	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\text{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMSICOC/COC.DOC	Fax (206) 283-5044 Received by: Samples rec	Ph. (206) 285-8282 x ¹⁴⁷ Relinquished by:	Seattle, WA 98/19-2029 Received by: The and the French of	SUIZ 10th Avenue West Relinquished by 17 Amy Tice Aspect	Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY	MW-5-020712 09 4 1355 4 4 X X	MW-8-020712 08 1315 X X	MW-13D-0802071207 1220 X X X	MW-2-020712 06 11120 X X	MW-1-020712 05 2712 1020 X X	MW-14D-020612 04 V 1535 X X X	MW-12D-02061203 1250 X X	MW-8D -020612 02 1 1135 1 X X	MW-7-020612 11AE26/12 1040 Water 5 X X X	Sample ID ID ID Sampled Sa	ANALYSES REQUESTED	City, State, ZIP Seattle, WA 98104 REMARKS Phone # Fax # dissolved sumples were field filtered	company Aspect Consulting PROJECT NAMENO. / PO# PO# Address 401 2nd Ave S, Surlezon Stadium Thriftway 080190	Send Report To JOC MOY rill SAMPLERS (signature)	
	Samples r		F+ BI	Aspect	COMPAN	X	X	X	X	X	λ	×	×	X	HFS, dissolvedled 200.8	LYSES REQUESTEI	ld filtered	0201020 #04	> \	
	received at C	2	· 11 /1. Sr)	- 2/8/12	Y DATE TIME										Notes		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	☐ RUSH ☐ RUSH Rush charges authorized by	Page # 1 of 1 TURNAROUND TIME	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

February 22, 2012

Joe Morrice, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr. Morrice:

Included are the results from the testing of material submitted on February 8, 2012 from the Stadium Thriftway 080190, F&BI 202079 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: data@aspectconsulting.com, Parker Wittman ASP0222R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 8, 2012 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202079 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
202079 -01	DP-10-4.5
202079 -02	DP-10-8.5
202079 -03	DP-11-4
202079 -04	DP-11-8
202079 -05	DP-12-4
202079 -06	DP-12-5.5
202079 -07	DP-13-4
202079 -08	DP-13-7
202079 -09	DP-14-4
202079 -10	DP-14-7
202079 -11	DP-15-4
202079 -12	DP-15-7
202079 -13	DP-16-4
202079 -14	DP-16-7
202079 -15	DP-17-4
202079 -16	DP-17-6

The 8260C calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

The 8260C laboratory control sample and laboratory control sample duplicate failed the relative percent difference for trichlorofluoromethane. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client ID:	DP-10-8.5	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-02
Date Analyzed:	02/13/12	Data File:	202079-02.020
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	92	60	125
A 1.	Concentration		
Analyte:	mg/kg (ppm)		
Lead	1.70		

ENVIRONMENTAL CHEMISTS

Client ID:	DP-11-4	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-03
Date Analyzed:	02/13/12	Data File:	202079-03.023
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	100	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Lead	1.17		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted:	DP-12-5.5 02/08/12 02/09/12	Client: Project: Lab ID [.]	Aspect Consulting, LLC Stadium Thriftway 080190, F&BI 202079 202079-06
Date Analyzed:	02/13/12	Data File:	202079-06.024
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
Internal Standard:	% Recovery:	Lower Limit:	Upper Limit:
Holmium	100	60	125
Analyte:	Concentration mg/kg (ppm)		
Lead	1.75		

ENVIRONMENTAL CHEMISTS

Client ID:	DP-13-7	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-08
Date Analyzed:	02/13/12	Data File:	202079-08.025
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	97	60	125
Analyte	Concentration		
Analyte.	ing/kg (ppin)		
Lead	1.66		

ENVIRONMENTAL CHEMISTS

Client ID:	DP-14-7	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-10
Date Analyzed:	02/13/12	Data File:	202079-10.026
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	95	60	125
A 1.	Concentration		
Analyte:	mg/kg (ppm)		
Lead	2.08		

ENVIRONMENTAL CHEMISTS

Client ID:	DP-15-4	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-11
Date Analyzed:	02/13/12	Data File:	202079-11.027
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	99	60	125
Amplater	Concentration		
Analyte:	mg/kg (ppm)		
Lead	1.33		

ENVIRONMENTAL CHEMISTS

Client ID:	DP-16-4	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-13
Date Analyzed:	02/13/12	Data File:	202079-13.029
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	96	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Lead	2.81		

ENVIRONMENTAL CHEMISTS

Client ID:	DP-17-4	Client:	Aspect Consulting, LLC
Date Received:	02/08/12	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	202079-15
Date Analyzed:	02/13/12	Data File:	202079-15.030
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	96	60	125
	Concentration		
Analyte:	mg/kg (ppm)		
Lead	1.96		

ENVIRONMENTAL CHEMISTS

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Stadium Thriftway 080190, F&BI 202079
Date Extracted:	02/09/12	Lab ID:	I2-94 mb
Date Analyzed:	02/13/12	Data File:	I2-94 mb.018
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	96	60	125
Analyte	Concentration		
Analyte.	mg/kg (ppm)		
Lead	<1		
ENVIRONMENTAL CHEMISTS

Client Sample ID:	DP-10-8.5		Client:	Aspect Consulting, I	LLC
Date Received:	02/08/12		Project:	Stadium Thriftway (080190, F&BI 202079
Date Extracted:	02/09/12		Lab ID:	202079-02	
Date Analyzed:	02/14/12		Data File:	021422.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	ı)	Operator:	JS	
	0 0 11		T	TT	
Comme state av		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-04	100	62	142	
1 oluene-u8		97 170 in	55 05	145	
4-Bromonuorobenz	ene	176 lp	60	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	0.24
Vinyl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	<0.5 ca	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		<0.05 ca	m,p-Xyle	ene	< 0.1
Methylene chloride	:	< 0.5	o-Xylene	•	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	thene	<0.05 ca	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	orm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propyl	benzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	methylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1,1,2,2-T	'etrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	chloropropane	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlorid	de	< 0.05	tert-But	ylbenzene	0.083
Benzene		< 0.03	1,2,4-Tri	methylbenzene	0.054
Trichloroethene		< 0.03	sec-Buty	lbenzene	0.94
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	0.21
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentance	one	< 0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloroprop	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
Toluene		< 0.05	1,2,4-Tri	chlorobenzene	<0.25
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	llene	< 0.05
2-Hexanone		< 0.5	1,2,3-Tri	< 0.25	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	DP-12-5.5		Client:	Aspect Consulting, L	LC	
Date Received:	02/08/12		Project:	Stadium Thriftway 08	30190, F&BI 202079	
Date Extracted:	02/09/12		Lab ID:	202079-06		
Date Analyzed:	02/14/12		Data File:	021423.D		
Matrix:	Soil		Instrument:	GCMS4		
Units:	mg/kg (ppn	ı)	Operator:	JS		
	0 0 11		T	I I		
Cumparatas		0/ Decorrowy	Lower	Upper		
1 9 Disklamathana	-14	% Recovery:				
Taluana de	-04	100	02 55	142		
1 Diuelle-uo	000	97 192	55	140		
4-Dromonuorobenz	ene	125	60	159		
		Concentration			Concentration	
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)	
Dichlorodifluorome	thane	<0.5 ca	1,3-Dich	loropropane	< 0.05	
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025	
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05	
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05	
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05	
Trichlorofluoromet	hane	<0.5 ca	Ethylber	nzene	< 0.05	
Acetone		<0.5	1,1,1,2-T	Tetrachloroethane	< 0.05	
1,1-Dichloroethene		<0.05 ca	m,p-Xyle	ene	< 0.1	
Methylene chloride	•	< 0.5	o-Xylene	<u>ġ</u>	< 0.05	
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05	
trans-1,2-Dichloroe	thene	<0.05 ca	Isopropy	lbenzene	< 0.05	
1,1-Dichloroethane		< 0.05	Bromofo	orm	< 0.05	
2,2-Dichloropropan	e	< 0.05	n-Propy	lbenzene	< 0.05	
cis-1,2-Dichloroethe	ene	< 0.05	Bromobe	enzene	< 0.05	
Chloroform		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05	
2-Butanone (MEK)		< 0.5	1,1,2,2-7	etrachloroethane	< 0.05	
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	ichloropropane	< 0.05	
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05	
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05	
Carbon tetrachlorid	de	< 0.05	tert-But	ylbenzene	< 0.05	
Benzene		< 0.03	1,2,4-Tri	imethylbenzene	< 0.05	
Trichloroethene		< 0.03	sec-Buty	lbenzene	0.13	
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05	
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05	
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05	
4-Methyl-2-pentance	one	< 0.5	1,2-Dich	lorobenzene	< 0.05	
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	<0.5	
Toluene		< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25	
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	< 0.25	
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	alene	< 0.05	
2-Hexanone		< 0.5	1,2,3-Tri	< 0.25		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	DP-13-7		Client:	Aspect Consulting, L	LC
Date Received:	02/08/12		Project:	Stadium Thriftway 08	30190, F&BI 202079
Date Extracted:	02/09/12		Lab ID:	202079-08	
Date Analyzed:	02/14/12		Data File:	021424.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n)	Operator:	JS	
	0 0 11		I orwon	Linnon	
Sumagatag		0/ Deconomy	Lower	Upper	
1 2 Dichloroothono	d4	⁷⁰ Recovery.	LIIIIIL.	LIIIIIL. 149	
Toluono de	-u4	100	02 55	142	
1 Diuelle-uo	000	97 101	55	145	
4-DI UIIIUII UDEIIZ	ene	101	05	159	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		<0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	<0.5 ca	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-7	Cetrachloroethane	< 0.05
1,1-Dichloroethene		<0.05 ca	m,p-Xyl	ene	< 0.1
Methylene chloride	•	< 0.5	o-Xylene	<u>)</u>	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	thene	<0.05 ca	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	orm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propy	lbenzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	Bromob	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
2-Butanone (MEK)		<0.5	1,1,2,2-7	etrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tr	ichloropropane	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlorid	de	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	imethylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentance	one	<0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.5
Toluene		< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	< 0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	alene	< 0.05
2-Hexanone		<0.5	1,2,3-Trichlorobenzene <0.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	DP-14-7		Client:	Aspect Consulting, L	LC
Date Received:	02/08/12		Project:	Stadium Thriftway 0	80190, F&BI 202079
Date Extracted:	02/09/12		Lab ID:	202079-10	
Date Analyzed:	02/14/12		Data File:	021425.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n)	Operator:	JS	
	0 0 11	,	1		
C		0/ D	Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	103	62	142	
Toluene-d8		96	55	145	
4-Bromofluorobenz	ene	103	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	<0.5 ca	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-1	etrachloroethane	< 0.05
1,1-Dichloroethene		<0.05 ca	m,p-Xyle	ene	<0.1
Methylene chloride	•	<0.5	o-Xylene	<u>)</u>	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene		< 0.05
trans-1,2-Dichloroe	thene	<0.05 ca	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	orm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propy	lbenzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1,1,2,2-T	Cetrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	ichloropropane	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlorid	de	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	imethylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentance	one	< 0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	<0.5
Toluene	-	< 0.05	1,2,4-Tri	ichlorobenzene	<0.25
trans-1,3-Dichlorop	oropene	< 0.05	Hexachl	orobutadiene	<0.25
1,1,2-Trichloroetha	ne	< 0.05	Naphtha	alene	< 0.05
2-Hexanone		< 0.5	1,2,3-Tri	<0.25	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Bla	ank	Client:	Aspect Consulting, L	LC
Date Received:	Not Applica	able	Project:	Stadium Thriftway 08	80190, F&BI 202079
Date Extracted:	02/08/12		Lab ID:	02-0172 mb	
Date Analyzed:	02/08/12		Data File:	020807.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	n)	Operator:	JS	
	0 0 11	,	т т	T T	
C		0/ D	Lower	Upper	
Surrogates:	1.	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	99	62	142	
Toluene-d8		98	55	145	
4-Bromofluorobenz	zene	102	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	<0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylbe	nzene	< 0.05
Acetone		<0.5	1.1.1.2-7	Tetrachloroethane	< 0.05
1.1-Dichloroethene		< 0.05	m.p-Xvl	ene	<0.1
Methylene chloride	e.	< 0.5	o-Xvlene	د	< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Styrene	-	< 0.05
trans-1.2-Dichloroe	ethene	< 0.05	Isopropy	lbenzene	< 0.05
1.1-Dichloroethane		< 0.05	Bromofe	orm	< 0.05
2.2-Dichloropropar	e	< 0.05	n-Propy	lbenzene	< 0.05
cis-1.2-Dichloroeth	ene	< 0.05	Bromob	enzene	< 0.05
Chloroform		< 0.05	1.3.5-Tr	imethylbenzene	< 0.05
2-Butanone (MEK)		<0.5	1 1 2 2-7	Tetrachloroethane	<0.05
1 2-Dichloroethane	(EDC)	<0.05	123-Tr	ichloropropane	<0.05
1.1.1-Trichloroetha	ne	< 0.05	2-Chlore	otoluene	< 0.05
1.1-Dichloroproper	ie.	< 0.05	4-Chloro	otoluene	< 0.05
Carbon tetrachlori	de	< 0.05	tert-But	vlbenzene	< 0.05
Benzene	ao	< 0.03	1.2.4-Tr	imethylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	vlbenzene	< 0.05
1.2-Dichloropropar	le	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichloromet	hane	<0.05	1 3-Dich	lorobenzene	<0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<0.5	1,1 Dich	lorobenzene	<0.05
cis-1 3-Dichloropro	nene	<0.05	1,2 Dibr	omo-3-chloropropane	<0.5
Toluene	Polic	<0.05	1.2 4-Tr	ichlorobenzene	<0.25
trans-1 3-Dichloro	oronene	<0.00	Heyachl	orobutadiene	<0.25
1 1 2-Trichloroetha	ne	<0.05	Nanhtha	<0.05	
2-Hevanone		<0.00	1 9 2.Tr	<0.05	
		~0.0	1,~,0 11		NO.WO

ENVIRONMENTAL CHEMISTS

Date of Report: 02/22/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202079

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 202079-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	1.70	106	105	65-126	1

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	108	81-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/22/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202079

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 202063-05 (Matrix Spike)

				Demonst	
	Poporting	Spike	Sample	Percent	Accontance
Analyte	Units	Lovol	Result	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	22	10-142
Chloromethane	mg/kg (ppiii)	2.5	<0.5	50	10-142
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	49	10-138
Bromomethane	mg/kg (ppm)	2.5	<0.5	58	10-163
Chloroethane	mg/kg (ppm)	2.5	< 0.5	66	10-176
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	58	10-176
Acetone	mg/kg (ppm)	12.5	< 0.5	73	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	67	10-160
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	70	10-156
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	74	21-145
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	14-137
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	73	19-140
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	77	10-158
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	25-135
Chloroform	mg/kg (ppm)	2.5	< 0.05	76	21-145
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	76	19-147
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	75	12-160
1,1,1-1 richloroethane	mg/kg (ppm)	2.5	<0.05	12	10-156
1,1-Dichioropropene	mg/kg (ppm)	2.5	< 0.05	77	0.104
Carbon tetrachioride	mg/kg (ppm)	2.5	< 0.03	74	9-104
Trichlereethene	mg/kg (ppm)	2.5	< 0.03	70	29-129
1 2-Dichloropropage	mg/kg (ppm)	2.5	<0.03	73	20-135
Bromodichloromethane	mg/kg (ppm)	2.5	<0.05	80	23-155
Dibromomethane	mg/kg (nnm)	2.5	<0.05	76	23-145
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	82	24-155
cis-1.3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	83	28-144
Toluene	mg/kg (ppm)	2.5	< 0.05	76	35-130
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	81	26-149
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	77	30-142
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	81	15-166
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	31-137
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	78	20-133
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	80	28-150
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	77	28-142
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	75	32-129
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	80	32-137
1,1,1,2-1etrachioroethane	mg/kg (ppm)	2.5	<0.05	//	31-143
ni,p-Aylene	mg/kg (ppm)	5 9 E	<0.1	01	34-130
o-Aylene Stamono	mg/kg (ppm)	2.5	< 0.05	80	33-134
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	79	31-149
Bromoform	mg/kg (ppiii)	2.5	<0.05	79	21-156
n-Propylbenzene	mg/kg (ppm)	2.5	<0.05	83	23-146
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	79	34-130
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	84	18-149
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	74	28-140
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	75	25-144
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	82	31-134
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	83	31-136
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	78	30-137
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	77	10-182
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	85	23-145
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	79	21-149
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	78	30-131
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	76	29-129
1,2-DICHIOTODENZENE	mg/kg (ppm)	2.5	<0.05	79	31-132
1,2-Dibioino-3-Chioropropane	mg/kg (ppm)	2.0	< 0.5	/1	11-101 22 142
1,2,4-111011000enzene	mg/kg (ppm)	۵.0 ۲	< 0.25	01	22-142 10 149
Nanhthalana	mg/kg (ppm)	2.0	< 0.25	10 71	19-142
1.2.3-Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	80	20-144
-,-,		~			~~

ENVIRONMENTAL CHEMISTS

Date of Report: 02/22/12 Date Received: 02/08/12 Project: Stadium Thriftway 080190, F&BI 202079

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Ûnits	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	45	41	10-146	9
Chloromethane	mg/kg (ppm)	2.5	65	61	27-133	6
Vinyl chloride	mg/kg (ppm)	2.5	71	65	22-139	9
Bromomethane	mg/kg (ppm)	2.5	77	67	38-114	14
Chloroethane	mg/kg (ppm)	2.5	70	66	20-153	6
Trichlorofluoromethane	mg/kg (ppm)	2.5	89	67	10-196	28 vo
Acetone	mg/kg (ppm)	12.5	83	77	52-141	7
1,1-Dichloroethene Mathylana ablanida	mg/kg (ppm)	2.3	83	70	4/-128	10
Methylene chloride Methyl t butyl other (MTRE)	mg/kg (ppm)	2.3	80	81 76	42-132	16
trans 1.2 Dichlereethene	mg/kg (ppm)	2.5	87	70	67 127	10
1 1-Dichloroethane	mg/kg (ppm)	2.5	88	78	68-115	10
2 2-Dichloropropane	mg/kg (ppm)	2.5	93	83	57-133	12
cis-1.2-Dichloroethene	mg/kg (ppm)	2.5	92	81	72-113	13
Chloroform	mg/kg (ppm)	2.5	89	78	66-120	13
2-Butanone (MEK)	mg/kg (ppm)	12.5	92	81	57-123	13
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	88	77	56-135	13
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	91	77	62-131	17
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	84	69-128	13
Carbon tetrachloride	mg/kg (ppm)	2.5	93	80	60-139	15
Benzene	mg/kg (ppm)	2.5	91	80	68-114	13
Trichloroethene	mg/kg (ppm)	2.5	89	79	68-114	12
1,2-Dichloropropane	mg/kg (ppm)	2.5	92	81	72-127	13
Bromodichloromethane	mg/kg (ppm)	2.5	94	83	72-130	12
Dibromomethane	mg/kg (ppm)	2.5	89	80	70-120	11
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	94	82	45-145	14
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	99	86	75-136	14
Toluene	mg/kg (ppm)	2.5	91	80	66-126	13
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	96	83	72-132	15
1,1,2-1 richloroethane	mg/kg (ppm)	2.5	88	79	/5-113	11
2-Hexanone	mg/kg (ppm)	12.5	93	82	33-152	13
Tatrachleroothono	mg/kg (ppm)	2.0	92	81	72-130	13
Dibromochloromothano	mg/kg (ppm)	2.3	90	02	74 195	10
1 2-Dibromoethane (FDB)	mg/kg (ppm)	2.5	90	80	74-123	14
Chlorobenzene	mg/kg (ppm)	2.5	87	77	76-111	12
Ethylbenzene	mg/kg (ppm)	2.5	94	82	64-123	14
1.1.1.2-Tetrachloroethane	mg/kg (ppm)	2.5	90	79	69-135	13
m,p-Xylene	mg/kg (ppm)	5	95	83	78-122	13
o-Xylene	mg/kg (ppm)	2.5	99	88	77-124	12
Styrene	mg/kg (ppm)	2.5	99	86	74-126	14
Isopropylbenzene	mg/kg (ppm)	2.5	90	80	76-127	12
Bromoform	mg/kg (ppm)	2.5	94	81	56-132	15
n-Propylbenzene	mg/kg (ppm)	2.5	97	85	74-124	13
Bromobenzene	mg/kg (ppm)	2.5	93	81	72-122	14
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	99	87	76-126	13
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	86	75	56-143	14
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	86	75	61-137	14
2-Chlorotoluene	mg/kg (ppm)	2.5	98	85	74-121	14
4-Chiorotoluene	mg/kg (ppm)	2.5	97	86	75-122	12
1.2.4 Trimethylbonzone	mg/kg (ppm)	2.3	92	82	76 195	11
1,2,4-1 rimethylbenzene	mg/kg (ppm)	2.0	90	80	70-120	12
n-IsonronyItoluene	mg/kg (ppm)	2.5	99	81	71-130	12
1 3-Dichlorobenzene	mg/kg (ppm)	2.5	91	81	75-191	19
1 4-Dichlorobenzene	mg/kg (nnm)	2.5	88	78	74-117	12
1.2-Dichlorobenzene	mg/kg (nnm)	2.5	90	82	76-121	9
1.2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	78	73	61-136	7
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	82	82	70-129	0
Hexachlorobutadiene	mg/kg (ppm)	2.5	83	79	50-153	5
Naphthalene	mg/kg (ppm)	2.5	75	75	60-125	0
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	81	82	62-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

pr – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	eceived a	amples 1															ed by	Receiv	4	283-504 COC.DOC	x (206)	Fa
0																₩y: V	uishec	Relinq	2	285-828	. (206) :	Ph
0251 21/8/2		12 M	+te		(Ś	2 5	PI	с С	har	\sum		1	5	hu	S S	ed by	Receiv	-2029	A 98119-	attle, W	Se
DATE TIME	+ YY	COMPAI	À	_			<u>К</u>	JI	IĨ	Р Г Г	Æ			URE		by:	vishec	Relinq	a, Inc. West	& Bruy Avenue	iedman 12 16th	30 30
run 82608,			X							01				030		K		10		+	1- de	
HOLD			MA /			and the					10			й О	Ē	-		В		1-4	P-I-	U
run 82603, lead		740. 1	\times		, · · ·	$\overline{\mathbf{X}}$					in			л С	5			80		+	P-13	V
HOLD			1 Mar			×								80				40		1-1	P-13	A
			X			X				01				950	Q			<u>6</u> ,	01	י <u>ז</u>	P-12	
							-							940	0		m	05A	Ŧ	1	P-12	(τ)
		×		1			-	<u>†</u>	1		†			930	0	<u> </u>		2		$\overset{'}{\otimes}$	P-11	D
			X		<u> </u>				Î.					910	0		· ·	50		1-4	P-11	J
			X			$\overline{\times}$				0				002	0		m	22 A		ال ح ت	P-10	দ
		X								U.			108	0HB		518	iti 2	DIA	0.	14.0	P-10	12
Notes		HOLD	lead (200.8)	HFS	SVOCs by 8270	VOCs by 8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of tainers	con	ole Type	Samp	Time	d S	Date		La	U	bample II		
	D	QUESTE	SES RI	ALY	Ą			11	Н		1				$\left \right $							Π
n samples all with instructions	□ Return													- -			ax #			f	hone #_	Р
AMPLE DISPOSAL se after 30 days	Dispo:									_	RKS	REMA		218	2	5	ŀ	the	Sea	e, ZIP _	ity, Stat	0
arges authorized by	Rush cha	90 0	1080		4	2	₹(3×			Star		670	DU DU	SH	SR	26	Ind	10/AS	ompany ddress_	> 0
RNAROUND TIME	Pag TU		$ \Delta $	\square	\sum	X)		vre)	latu	S (sign	ER	SAMP				6	mr.	MO	Joe	ort To s	end Rej	S
81 75 18	-12	12-08	Ē	2	×	B	ST		F	AN	CH	IPLE	SAM					°-Ő	207	8		
010/2	•	'n																			· . ;	

FORMS\COC\COC.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Roma Inc			on-tl-dd	H-tl-dd	F-01-7	DP-16-4	DD-12-7	DP-15-4	Sample ID		Phone #	City, State, ZIP Sea	Address	Send Report To <u>JOC</u> Company <u>ASPECH</u>	202079
	Received	Relinquis	Received	Relinquis				91	5	4	13	12	11	Lab ID		Fay	the		CONS	
	by:	hed by:	by: P	hed by:	CICN			×					2/8/12	Date Sampled		#			i Hu	.
					ATTIDE			 1130	1120	1105	1055	1050	1040	Time Sampled					2	
				>	_			*					2108	Sample Type			REMA	Stand	PROJE	SAMPLE
		141141		AM	DD			 	1	1	1	-	1	# of containers			RKS	ium T	CT NAME	CHAIN (
		-				_								TPH-Diesel	Π			5	NO)F (
			×-					 						TPH-Gasoline				Ē	γŲς	SUC
		2	s ľ					 						BTEX by 8021B				E		
						 								VOCs by8260				્રેટ	\searrow	, DY
														SVOCs by 8270	ANA			2		2 4
┝	+													HFS	LYS			R	$\overline{\mathcal{T}}$	1 1
			けと	≯					\times		X		X	lead (200.8)	ES R			Ŝ		0
		ķ	$+\alpha$	s) s	3			X		$\left \times \right $		\times		HOLD	EQU			٦	∑ ⊈	2
	Sam	ŀ	7		MD										JEST			C		0
	ples		Ĥ	+											ED					
	rec																	Rust		\$
Ļ	eive						-	 						·		ill ca	SA	t cha	TUR anda USH	Page
	d ai	-	2/2	ビ										-	H	ll wi	MPL: e afte	rges	rd (2	#
	, fil	, [th inst	EDIS	autho	ROUN Week	N
F	†													Note		Inucti	iPOS lays	rized	U US	
	\mathbf{r}		Ň	Ž										Š		ons	AL	by	ME	Ko

2/26/2012 Mr. Eric Marhofer Aspect Consulting LLC 401 Second Avenue South Suite 201 Seattle WA 98104

Project Name: STADIUM THRIFTWAY Project #: Workorder #: 1202273

Dear Mr. Eric Marhofer

The following report includes the data for the above referenced project for sample(s) received on 2/13/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Helly Butte

Kelly Buettner Project Manager

WORK ORDER #: 1202273

Work Order Summary

CLIENT:	Mr. Eric Marhofer Aspect Consulting LLC 401 Second Avenue South Suite 201 Seattle, WA 98104	BILL TO:	Accounts Payable Aspect Consulting LLC 350 Madison Ave N Bainbridge Island, WA 98110
PHONE:	206-838-6582	P.O. #	
FAX:	206-838-5853	PROJECT #	STADIUM THRIFTWAY
DATE RECEIVED:	02/13/2012	CONTACT:	Kelly Buettner
DATE COMPLETED:	02/26/2012		

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	OUTDOOR - 020912	Modified TO-15	4.5 "Hg	5 psi
01B	OUTDOOR - 020912	Modified TO-15	4.5 "Hg	5 psi
02A	MORRELLS - 020912	Modified TO-15	8.0 "Hg	5 psi
02B	MORRELLS - 020912	Modified TO-15	8.0 "Hg	5 psi
03A	THRIFTWAY OFFICE - 020912	Modified TO-15	7.0 "Hg	5 psi
03B	THRIFTWAY OFFICE - 020912	Modified TO-15	7.0 "Hg	5 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>02/26/12</u>

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Aspect Consulting LLC Workorder# 1202273

Three 6 Liter Summa Canister (100% Certified) samples were received on February 13, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with<br 10% of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	 For Full Scan: <!--= 30% Difference with four allowed out up to</li--> <!--=40%.; flag and narrate outliers</li--> For SIM: Project specific; default criteria is <!--= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</li-->
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: OUTDOOR - 020912

Lab ID#: 1202273-01A

No Detections Were Found.

Client Sample ID: OUTDOOR - 020912

Lab ID#: 1202273-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.079	0.62	0.25	2.0
Toluene	0.032	1.7	0.12	6.3
Tetrachloroethene	0.032	0.062	0.21	0.42
Ethyl Benzene	0.032	0.40	0.14	1.7
m,p-Xylene	0.063	1.4	0.27	6.2
o-Xylene	0.032	0.40	0.14	1.7

Client Sample ID: MORRELLS - 020912

Lab ID#: 1202273-02A

No Detections Were Found.

Client Sample ID: MORRELLS - 020912

Lab ID#: 1202273-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.092	0.68	0.29	2.2
Trichloroethene	0.037	1.7	0.20	9.0
Toluene	0.037	1.9	0.14	7.3
Tetrachloroethene	0.037	3.2	0.25	22
Ethyl Benzene	0.037	0.45	0.16	2.0
m,p-Xylene	0.073	1.6	0.32	7.2
o-Xylene	0.037	0.64	0.16	2.8

Client Sample ID: THRIFTWAY OFFICE - 020912

Lab ID#: 1202273-03A

No Detections Were Found.

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: THRIFTWAY OFFICE - 020912

Lab ID#: 1202273-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.088	0.69	0.28	2.2
Trichloroethene	0.035	1.1	0.19	5.7
Toluene	0.035	2.4	0.13	9.0
Tetrachloroethene	0.035	2.2	0.24	15
Ethyl Benzene	0.035	0.52	0.15	2.2
m,p-Xylene	0.070	1.9	0.30	8.1
o-Xylene	0.035	0.71	0.15	3.1

Client Sample ID: OUTDOOR - 020912 Lab ID#: 1202273-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e021823 Date of Collection: 2/9/12 4:10:00 PM Dil. Factor: 1.58 Date of Analysis: 2/19/12 06:15 AM **Rpt.** Limit Amount Rpt. Limit Amount Compound (ppbv) (ug/m3) (ug/m3) (ppbv) Not Detected Naphthalene 0.79 4.1 Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	86	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	123	70-130

Client Sample ID: OUTDOOR - 020912 Lab ID#: 1202273-01B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	e021823sim 1.58	Date of Collection: 2/9/12 4:10:00 PM Date of Analysis: 2/19/12 06:15 AM		/12 4:10:00 PM /12 06:15 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
Benzene	0.079	0.62	0.25	2.0
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Toluene	0.032	1.7	0.12	6.3
Tetrachloroethene	0.032	0.062	0.21	0.42
Ethyl Benzene	0.032	0.40	0.14	1.7
m,p-Xylene	0.063	1.4	0.27	6.2
o-Xylene	0.032	0.40	0.14	1.7
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

	(Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	86	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: MORRELLS - 020912 Lab ID#: 1202273-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e021824	Date of Collection: 2/9/12 4:05:00 PM		
Dil. Factor:	1.83	Date of Analysis: 2/19/12 07:02 AM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.92	Not Detected	4.8	Not Detected

Surrogates	%Recoverv	Method Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	120	70-130

Client Sample ID: MORRELLS - 020912 Lab ID#: 1202273-02B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	e021824sim 1.83	Date of Collection: 2/9/12 4:05:00 PM Date of Analysis: 2/19/12 07:02 AM		/12 4:05:00 PM /12 07:02 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.047	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.14	Not Detected
Benzene	0.092	0.68	0.29	2.2
Trichloroethene	0.037	1.7	0.20	9.0
Toluene	0.037	1.9	0.14	7.3
Tetrachloroethene	0.037	3.2	0.25	22
Ethyl Benzene	0.037	0.45	0.16	2.0
m,p-Xylene	0.073	1.6	0.32	7.2
o-Xylene	0.037	0.64	0.16	2.8
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: THRIFTWAY OFFICE - 020912 Lab ID#: 1202273-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e021825	Date of Collection: 2/9/12 4:00:00 PM		/12 4:00:00 PM
Dil. Factor:	1.75	Date of Analysis: 2/19/12 07:45 AM		/12 07:45 AM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.88	Not Detected	4.6	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	83	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	117	70-130	

Client Sample ID: THRIFTWAY OFFICE - 020912 Lab ID#: 1202273-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	e021825sim 1.75	Date of Collection: 2/9/12 4:00:00 PM Date of Analysis: 2/19/12 07:45 AM		/12 4:00:00 PM /12 07:45 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Benzene	0.088	0.69	0.28	2.2
Trichloroethene	0.035	1.1	0.19	5.7
Toluene	0.035	2.4	0.13	9.0
Tetrachloroethene	0.035	2.2	0.24	15
Ethyl Benzene	0.035	0.52	0.15	2.2
m,p-Xylene	0.070	1.9	0.30	8.1
o-Xylene	0.035	0.71	0.15	3.1
trans-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected

	(,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	81	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: Lab Blank Lab ID#: 1202273-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: Dil. Factor:	e021810 1.00	Date Date	e of Collection: NA e of Analysis: 2/18/	/12 02:33 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Naphthalene	0.50	Not Detected	2.6	Not Detected
Container Type: NA - Not Applicab	le			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		80		70-130
Toluene-d8		95		70-130
4-Bromofluorobenzene		118		70-130

Client Sample ID: Lab Blank Lab ID#: 1202273-04B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	e021810sim 1.00	Date of Collection: NA Date of Analysis: 2/18/12 02:33 PM		/12 02:33 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

Container Type: NA - Not Applicable

······································		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	81	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	109	70-130	

Client Sample ID: CCV Lab ID#: 1202273-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	e021802	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 2/18/12 08:54 AM
Compound			%Recovery
Naphthalene			82
Container Type: NA - Not Ap	plicable		
Surragatas		9/ Beeeverv	Method
Surrogates		%Recovery	Limits
1,2-Dichloroethane-d4		80	70-130
Toluene-d8		96	70-130
4-Bromofluorobenzene		98	70-130

Client Sample ID: CCV Lab ID#: 1202273-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	e021802sim 1.00	Date of Collection: NA Date of Analysis: 2/18/12 08:54 AM	
Compound		%Recovery	
Vinyl Chloride		90	
cis-1,2-Dichloroethene		91	
Benzene		79	
Trichloroethene		82	
Toluene		83	
Tetrachloroethene		84	
Ethyl Benzene		92	
m,p-Xylene		96	
o-Xylene		101	
trans-1,2-Dichloroethene		89	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	81	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 1202273-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	e021807	07 Date of Collection: NA 00 Date of Analysis: 2/18/12 12:08 P	
Dil. Factor:	1.00		
Compound			%Recovery
Naphthalene			167 Q
Q = Exceeds Quality Control	limits.		
Container Type: NA - Not A	pplicable		
			Method
Surrogates		%Recovery	Limits
1,2-Dichloroethane-d4		79	70-130
Toluene-d8		99	70-130
4-Bromofluorobenzene		84	70-130

Client Sample ID: LCSD Lab ID#: 1202273-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	e021808	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 2/18/12 12:49 PM
Compound			%Recovery
Naphthalene			137
Container Type: NA - Not Ap	plicable		
			Method
Surrogates		%Recovery	Limits
1,2-Dichloroethane-d4		79	70-130
Toluene-d8		99	70-130
4-Bromofluorobenzene		92	70-130

Client Sample ID: LCS Lab ID#: 1202273-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: Dil. Factor:	e021807sim 1.00	Date of Collection: NA Date of Analysis: 2/18/12 12:08 PM
Compound		%Recovery
Vinyl Chloride		90
cis-1,2-Dichloroethene		96
Benzene		83
Trichloroethene		87
Toluene		86
Tetrachloroethene		87
Ethyl Benzene		94
m,p-Xylene		99
o-Xylene		103
trans-1,2-Dichloroethene		103

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	80	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: LCSD Lab ID#: 1202273-06BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	e021808sim 1.00	Date of Collection: NA Date of Analysis: 2/18/12 12:49 PM
Compound		%Recovery
Vinyl Chloride		90
cis-1,2-Dichloroethene		95
Benzene		83
Trichloroethene		87
Toluene		86
Tetrachloroethene		86
Ethyl Benzene		93
m,p-Xylene		99
o-Xylene		102
trans-1,2-Dichloroethene		102

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	79	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	99	70-130	

Form 1293 rev.11									
								1-carry	
ne) 1202273	No Nor	Yes 1	C mark	P				I ala.r	Use
ct? Work Order #	Seals Intar	Custody S	Condition	əmp (°C)	-	Air Bill #	le	Shipper Nam	5
			Ĩē	ure) Date/Tim	Received by: (signat		e) Date/Time	ed by: (signature	Relinquish
	-		le e	ure) Date/Tim	Received by: (signat		e) Date/Time	ed by: (signature	Relinquish
ic reporting list	Speer	Protect	3/12 0715	and AAC 2	B. M. H.	200			Keiinquisn
		Notes:	Ξ	lira) Data/Tim	Donational hyve references				
				-					
		£	1600	219/12	733997	020912	YOFAGE-	THEIFIWAY	03AB
-70 -7.5			1605	219/12	34726	1912	15-020	MORRER	OZAARS
· · · · · · · · · · · · · · · · · · ·	(36) -	101 - 1 - 1 - 01 - COV	1610 N	29/12	34470	312	12-020X	ONTROO	8H10
	>			-			3		>
Initial Final Receipt Final	ested	Analyses Reque	of Collection	of Collection	Can #	(Location)	Sample I.D.	Field	Lab I.D.
Canister Pressure/Vacuum		ъ.	Time	Date					
city He	spec	VM THEIFTWAY	Name STATON	Project	32-5052	Fax 70 6	582	1-0-650-65	Phone &
^{sh} Pressurization Gas:	L Rus		#	Project	State WR Zip 98	SEVATILE	Stre 2010ity	1 ZNO AVE S	Address-40
			2. con	ercensultie	vholer @ aspe	Email <u>ema</u>	VUTTNG .	isont lans	Company A
<u>3</u> -				0 0 #		2		Y: (Print and Sign) _	Collected b
round Lab Use Only 1e: Pressurized by:	Turn A		t Info:	Projec			NARMOR	nager Exic	Project Mai
Page of	the	of any kind, related to 1922	, demand, or action Hotline (800) 467-4	igainst any claim, samples. D.O.T.	ify Air Toxics Limited a andling, or shipping of	Collection, F	DY RECC	DF-CUSTO	CHAIN-(
FOLSOM, CA 99830-4719) 985-1000 FAX (916) 985-1020	nd, (916)	to hold harmless, defe	dicates agreement	, nanonal, and nu es no liability with signature also in	le local, state, rederal r Toxics Limited assum moles Relinquishing	all applicab any kind. Ai	CS LI		
BLUE RAVINE ROAD, SUITE B	vith 180 B	shipped in compliance w	that sample is being	sument indicates t	ng signature on this doc	Sampie Relinquishii	-		
				**!>>	runnation N	0,200			

1202273

19993

224224444444444444444444

. 1800

.

Method : Modified TO-15 Hi/Lo (Sp)-Aspect (Stadium, Tacoma)

CAS Number	Compound	Rpt. Limit (ppbv)	
75-01-4	Vinyl Chloride	0.010	
156-59-2	cis-1,2-Dichloroethene	0.020	
71-43-2	Benzene	0.050	
79-01-6	Trichloroethene	0.020	
108-88-3	Toluene	0.020	_
127-18-4	Tetrachloroethene	0.020	
100-41-4	Ethyl Benzene	0.020	
108-38-3	m,p-Xylene	0.040	
95-47-6	o-Xylene	0.020	
156-60-5	trans-1,2-Dichloroethene	0.10	_
91-20-3	Naphthalene	0.50	

CAS Number	Surrogate	Method Limits	
17060-07-0	1,2-Dichloroethane-d4	0.0-0.0	
2037-26-5	Toluene-d8	0.0-0.0	
460-00-4	4-Bromofluorobenzene	0.0-0.0	

Indoor Air

2/26/2012 Mr. Eric Marhofer Aspect Consulting LLC 401 Second Avenue South Suite 201 Seattle WA 98104

Project Name: STADIUM THRIFTWAY Project #: Workorder #: 1202276A

Dear Mr. Eric Marhofer

The following report includes the data for the above referenced project for sample(s) received on 2/13/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Helly Butte

Kelly Buettner Project Manager

Page 1 of 16

WORK ORDER #: 1202276A

Work Order Summary

CLIENT:	Mr. Eric Marhofer Aspect Consulting LLC 401 Second Avenue South Suite 201 Seattle, WA 98104	BILL TO:	Accounts Payable Aspect Consulting LLC 350 Madison Ave N Bainbridge Island, WA 98110
PHONE:	206-838-6582	P.O. #	
FAX:	206-838-5853	PROJECT #	STADIUM THRIFTWAY
DATE RECEIVED:	02/13/2012	CONTACT:	Kelly Buettner
DATE COMPLETED:	02/26/2012		Tiony Buckliner

VAC (DDEC DDECUDE
VAC./PRES. PRESSURE
8.0 "Hg 5 psi
6.5 "Hg 5 psi
6.5 "Hg 5 psi
NA NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>02/26/12</u>

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Aspect Consulting LLC Workorder# 1202276A

Three 6 Liter Summa Canister (100% Certified) samples were received on February 13, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	+- 30% RSD with 2 compounds allowed out to < 40% RSD	30% RSD with 4 compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	= 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Sample VP-2-020912 was transferred from Low Level analysis to full scan TO-15 (5&20 ppbv) due to high levels of target compounds.

Dilution was performed on samples VP-2-020912 and VP-3-020912 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP-1-020912

Lab ID#: 1202276A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.18	0.21	0.98	1.1
Toluene	0.18	0.50	0.69	1.9
Tetrachloroethene	0.18	40	1.2	270
m,p-Xylene	0.18	0.74	0.79	3.2
o-Xylene	0.18	0.21	0.79	0.92

Client Sample ID: VP-2-020912

Lab ID#: 1202276A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	43	22000	290	150000

Client Sample ID: VP-3-020912

Lab ID#: 1202276A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.30	0.35	1.6	1.9
Toluene	0.30	1.6	1.1	6.0
Tetrachloroethene	0.30	56	2.1	380
Ethyl Benzene	0.30	0.42	1.3	1.8
m,p-Xylene	0.30	1.6	1.3	7.2
o-Xylene	0.30	0.48	1.3	2.1

Client Sample ID: VP-1-020912 Lab ID#: 1202276A-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	e022007 1.83	Date of Collection: 2/9/12 11:30:00 AM Date of Analysis: 2/20/12 12:52 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
Benzene	0.18	Not Detected	0.58	Not Detected
Trichloroethene	0.18	0.21	0.98	1.1
Toluene	0.18	0.50	0.69	1.9
Tetrachloroethene	0.18	40	1.2	270
Ethyl Benzene	0.18	Not Detected	0.79	Not Detected
m,p-Xylene	0.18	0.74	0.79	3.2
o-Xylene	0.18	0.21	0.79	0.92
Naphthalene	0.92	Not Detected	4.8	Not Detected

	, , , , , , , , , , , , , , , , , , ,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	78	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: VP-2-020912 Lab ID#: 1202276A-02A EPA METHOD TO-15 GC/MS

1

File Name: Dil. Factor:	14022115 8.55	Date of Collection: 2/9/12 1:10:00 PM Date of Analysis: 2/21/12 02:02 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	43	Not Detected	110	Not Detected
trans-1,2-Dichloroethene	43	Not Detected	170	Not Detected
cis-1,2-Dichloroethene	43	Not Detected	170	Not Detected
Benzene	43	Not Detected	140	Not Detected
Trichloroethene	43	Not Detected	230	Not Detected
Toluene	43	Not Detected	160	Not Detected
Tetrachloroethene	43	22000	290	150000
Ethyl Benzene	43	Not Detected	180	Not Detected
m,p-Xylene	43	Not Detected	180	Not Detected
o-Xylene	43	Not Detected	180	Not Detected
Naphthalene	170	Not Detected	900	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	123	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: VP-3-020912 Lab ID#: 1202276A-03A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name: Dil. Factor:	e022008 3.05	Date Date	of Collection: 2/9 of Analysis: 2/20	9/12 2:45:00 PM /12 01:39 PM
Compound	Rpt. Limit Amount (ppbv) (ppbv)		Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.30	Not Detected	0.78	Not Detected
trans-1,2-Dichloroethene	0.30	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.30	Not Detected	1.2	Not Detected
Benzene	0.30	Not Detected	0.97	Not Detected
Trichloroethene	0.30	0.35	1.6	1.9
Toluene	0.30	1.6	1.1	6.0
Tetrachloroethene	0.30	56	2.1	380
Ethyl Benzene	0.30	0.42	1.3	1.8
m,p-Xylene	0.30	1.6	1.3	7.2
o-Xylene	0.30	0.48	1.3	2.1
Naphthalene	1.5	Not Detected	8.0	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	75	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: Lab Blank Lab ID#: 1202276A-04A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name: Dil. Factor:	e022006 1.00	Date Date	of Collection: NA of Analysis: 2/20	/12 11:59 AM
Compound	Rpt. Limit (ppbv)	Rpt. Limit Amount (ppbv) (ppbv)		Amount (ug/m3)
Vinyl Chloride	0.10	Not Detected	0.26	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Trichloroethene	0.10	Not Detected	0.54	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
Naphthalene	0.50	Not Detected	2.6	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	77	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	114	70-130

Client Sample ID: Lab Blank Lab ID#: 1202276A-04B EPA METHOD TO-15 GC/MS

1

File Name: Dil. Factor:	14022107 1.00	Date Date	e of Collection: NA e of Analysis: 2/21	/12 10:38 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	5.0	Not Detected	13	Not Detected
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Naphthalene	20	Not Detected	100	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	122	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	90	70-130

Client Sample ID: CCV Lab ID#: 1202276A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	e022002 1.00	Date of Collection: NA Date of Analysis: 2/20/12 08:49 AM
O annu ann d		0/ D = = = = = = =
Compound		%Recovery
Vinyl Chloride		88
trans-1,2-Dichloroethene		88
cis-1,2-Dichloroethene		90
Benzene		84
Trichloroethene		91
Toluene		84
Tetrachloroethene		86
Ethyl Benzene		86
m,p-Xylene		87
o-Xylene		91
Naphthalene		83

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	78	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: CCV Lab ID#: 1202276A-05B EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14022103 1.00	Date of Collection: NA Date of Analysis: 2/21/12 08:41 AM
Compound		%Recovery
Vinyl Chloride		105
trans-1,2-Dichloroethene		101
cis-1,2-Dichloroethene		115
Benzene		106
Trichloroethene		102
Toluene		102
Tetrachloroethene		96
Ethyl Benzene		102
m,p-Xylene		102
o-Xylene		103
Naphthalene		83

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCS Lab ID#: 1202276A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	e022003 1.00	Date of Collection: NA Date of Analysis: 2/20/12 09:45 AM
Compound		%Recovery
Vinyl Chloride		90
trans-1,2-Dichloroethene		100
cis-1,2-Dichloroethene		93
Benzene		88
Trichloroethene		95
Toluene		88
Tetrachloroethene		89
Ethyl Benzene		91
m,p-Xylene		96
o-Xylene		98
Naphthalene		66

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	76	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: LCSD Lab ID#: 1202276A-06AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name:	e022004	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 2/20/12 10:29 AM	
Compound		%Recovery	
Vinyl Chloride		89	
trans-1,2-Dichloroethene		101	
cis-1,2-Dichloroethene		94	
Benzene		89	
Trichloroethene		96	
Toluene		88	
Tetrachloroethene		90	
Ethyl Benzene		92	
m,p-Xylene		94	
o-Xylene		98	
Naphthalene		70	

······································		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	76	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: LCS Lab ID#: 1202276A-06B EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14022104 1.00	Date of Collection: NA Date of Analysis: 2/21/12 09:03 AM
Compound		%Recovery
Vinyl Chloride		111
trans-1,2-Dichloroethene		118
cis-1,2-Dichloroethene		119
Benzene		108
Trichloroethene		107
Toluene		103
Tetrachloroethene		96
Ethyl Benzene		103
m,p-Xylene		105
o-Xylene		104
Naphthalene		97

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: LCSD Lab ID#: 1202276A-06BB EPA METHOD TO-15 GC/MS

-

File Name: Dil. Factor:	14022105 1.00	Date of Collection: NA Date of Analysis: 2/21/12 09:33 AM
Compound		%Recovery
Vinyl Chloride		110
trans-1,2-Dichloroethene		116
cis-1,2-Dichloroethene		116
Benzene		109
Trichloroethene		106
Toluene		102
Tetrachloroethene		97
Ethyl Benzene		104
m,p-Xylene		106
o-Xylene		106
Naphthalene		98

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	96	70-130	

For								Only
1	(None)	Yes No	nod	P			x00x	
Work C	als Intact?	Custody Sea	Condition	emp (°C)		Air Bill #	Shipper Name	5
			Ð	tture) Date/Time	eived by: (signa	Rec	by: (signature) Date/Time	Relinquished
thug is	for leal	Project spec	2/13/12 0715 °	ture) Date/Time	eived by: (signa	The Oqis Rec	by: (signature) Date/Time	Relinquished
		Notes:	e -	turje) Date/Time	eived by: (signa	Rec	by: (stanature) Date/Time	Relinauished
		1		1 1	16.01			
1	- 30	~	145 7	219/12	5		VP-3-020912	07A
16	1-29,G	1420	1310	2912	99 15		WP-2-020912	Aco.
6	or - fring	15 11 (50) + NATH 1	1130 TO-	20/12	13046		VP-1-020912	S P
Final	ed Initial	Analyses Request	of Collection	of Collection	Can #	Location)	Field Sample I.D. (L	Lab I.D.
ster Press	Cani		Time	Date				
-	specify	M THRIFTWAY	Name_STRDIV	Project	5852	Fax <u>206 - 258</u>	830-6782	- うっし-
Pressuri	L Rush		#	Project :	e <u>ww</u> Zip <u>a</u> s	Some Stat	NO MAR S GRE 201 City of	Address 4012
Date:	🙀 Normal			P.O. #_			(Print and Sign)	Collected by:
Pressuri	Time:		t Info:	Project			ger Eak Martorer	Project Mana
Page		hold harmless, defend, any kind, related to the 2	licates agreement to demand, or action, of Hotline (800) 467-492	signature also ind against any claim, of samples. D.O.T. H	es. Relinquishing vir Toxics Limited ling, or shipping c	AD and indemnify <i>I</i> collection, hand	-CUSTODY RECOF	CHAIN-OI
HAVINE R	180 BLUE FOLS	ipped in compliance with ations and ordinances of on, handling or shipping	nat sample is being shi ernational laws, regula respect to the collecti	lotice cument indicates th l, national, and inte nes no liability with	nsportation N gnature on this dc cal, State, Federa dics Limited assur	Sample Trai Relinquishing si all applicable lo any kind. Air To:	oxics LTI	

jiinininii . Maanaanaanaa . Maanaanaa . Caanaanaa . Cainaanaanaa . Maanaanaanaa . Caanaanaanaa . Caanaanaa . Ma

Air Data Laboratory Services Since 1989

Method : Modified TO-15-LL (Sp)-c/t-1,2-DCE, BTEX, PCE, TCE, VC & Naph

1202276

CAS Number	Compound	Rpt. Limit (ppbv)	
75-01-4	Vinyl Chloride	0.10	
156-60-5	trans-1,2-Dichloroethene	0.10	
156-59-2	cis-1,2-Dichloroethene	0.10	
71-43-2	Benzene	0.10	
79-01-6	Trichloroethene	0.10	
108-88-3	Toluene	0.10	
127-18-4	Tetrachloroethene	0.10	
100-41-4	Ethyl Benzene	0.10	
108-38-3	m,p-Xylene	0.10	
95-47-6	o-Xylene	0.10	
91-20-3	Naphthalene	0.50	

CAS Number	Surrogate	Method Limits	
17060-07-0	1,2-Dichloroethane-d4	70-130	
2037-26-5	Toluene-d8	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Soil gas

helium 010

2/24/2012 Mr. Eric Marhofer Aspect Consulting LLC 401 Second Avenue South Suite 201 Seattle WA 98104

Project Name: STADIUM THRIFTWAY Project #: Workorder #: 1202276B

Dear Mr. Eric Marhofer

The following report includes the data for the above referenced project for sample(s) received on 2/13/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

WORK ORDER #: 1202276B

Work Order Summary

CLIENT:	Mr. Eric Marhofer Aspect Consulting LLC 401 Second Avenue South Suite 201 Seattle, WA 98104	BILL TO:	Accounts Payable Aspect Consulting LLC 350 Madison Ave N Bainbridge Island, WA 98110
PHONE:	206-838-6582	P.O. #	
FAX:	206-838-5853	PROJECT #	STADIUM THRIFTWAY
DATE RECEIVED:	02/13/2012	CONTACT:	Kelly Buettner
DATE COMPLETED:	02/24/2012		Tiony Ductator

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	VP-1-020912	Modified ASTM D-1946	8.0 "Hg	5 psi
02A	VP-2-020912	Modified ASTM D-1946	6.5 "Hg	5 psi
03A	VP-3-020912	Modified ASTM D-1946	6.5 "Hg	5 psi
04A	Lab Blank	Modified ASTM D-1946	NA	NA
05A	LCS	Modified ASTM D-1946	NA	NA
05AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

02/24/12 DATE:

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946 Aspect Consulting LLC Workorder# 1202276B

Three 6 Liter Summa Canister (100% Certified) samples were received on February 13, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Helium in air using GC/TCD. The method involves direct injection of 1.0 mL of sample.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VP-1-020912

Lab ID#: 1202276B-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Helium	0.092	0.56

Client Sample ID: VP-2-020912

Lab ID#: 1202276B-02A

No Detections Were Found.

Client Sample ID: VP-3-020912

Lab ID#: 1202276B-03A

No Detections Were Found.

Client Sample ID: VP-1-020912 Lab ID#: 1202276B-01A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9021512b 1.83	Date of Collection: 2/9/12 11:30:00 AM Date of Analysis: 2/15/12 02:31 PM	
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.092	0.56

Client Sample ID: VP-2-020912 Lab ID#: 1202276B-02A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9021513b 1.71	Date of Collection: 2/9/12 1:10:00 PM Date of Analysis: 2/15/12 02:58 PM	
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.086	Not Detected

Client Sample ID: VP-3-020912 Lab ID#: 1202276B-03A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9021514b 1.71	Date of Collection: 2/9/12 2:45:00 PM Date of Analysis: 2/15/12 03:22 PM	
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.086	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1202276B-04A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9021504b 1.00	Date of Collection: NA Date of Analysis: 2/15/12 09:21 AM	
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.050	Not Detected

Client Sample ID: LCS Lab ID#: 1202276B-05A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9021502b	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/15/12 08:27 AM

Compound

%Recovery 94 1

Helium

Client Sample ID: LCSD Lab ID#: 1202276B-05AA NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9021524b	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/15/12 08:43 PM

Compound

%Recovery 94 Helium

For								Only
120	(None)	Yes No	nood	J P (a de la constante de la constan	NOW -	
Work Ord	als Intact?	Custody Sea	Condition	emp (°C)		Air Bill #	lipper Name	IS de I
			Ū	ture) Date/Time	eived by: (signa	Rec	y: (signature) Date/Time	Relinquished b
ak trace	the repr	Project spec	2/13/12 07115	ture) Date/Time	eived by: (signa	The OCIS Rec	y: (signature) Date/Time	Relinquished b
		Notes:	Φ 	ture) Date/Time	eived by: (signa	Rec	v:(vafonature) Date/Time	Belinguished b
			· · · · · · · · · · · · · · · · · · ·		16.1			
-9	- 36		145	2/9/12	1001		VP-3-020912	07A
9- 5	12-29	1100	1310	2912	9915		1P-2-020912	67A
6	30-4-30	15-11-191-1-191	1130 TO-	20/12	13046		VP-1-020912-	6 A
ial Final R	ed	Analyses Request	of Collection	of Collection	Can #	ocation)	Field Sample I.D. (L	Lab LD.
mister Pressu	Ca		Time	Date				
N2	specify	M THEIFTWAY	Name CTRDIV.	Project	-5852	ax 206 - 238	30-6782	hone <u>ეას-</u> ზ
Pressuriz	L Rush		*	Project :	e <u>wh</u> Zip <u>4</u> 8	ATTLE Stat	CANES, STE 201 City S	ddress <u>401 /</u> w
Date:	🕅 Normal			P.O. #_	Lan O anna	Email	rint and Sign)	ollected by: (F
Pressuriza	Time:	-	t Into:	Project		I	er <u>Eak Martofer</u>	roject Manag
Ind Lab Use Only	Turn Δrou							
JE RAVINE RO LSOM, CA 956 5-1000 FAX (9 Page	180 BLU FOI (916) 98	pped in compliance with titions and ordinances of on, handling or shipping hold harmless, defend, any kind, related to the 2	hat sample is being shi smational laws, regula respect to the collecti- licates agreement to demand, or action, of Hotline (800) 467-492	Otice cument indicates th cument indicates th l, national, and inte nes no liability with nes induce allow induced signature allow induced against any claim, against any claim, f samples. D.O.T. H	nsportation N gnature on this dc gnature on this dc cal, State, Federa dcs. Limited assur as. Relinquishing ss. Relinquishing the Toxics Limited ling, or shipping c	Sample Trai Relinquishing si all applicable lo any kind. Air To: of these sampli and indemnify <i>L</i> collection, hand	CUSTODY RECOR	HAIN-OF
				otice	nsportation N	Sample Trai		

jiinininii . Maanaanaanaa . Maanaanaa . Caanaanaa . Cainaanaanaa . Maanaanaanaa . Caanaanaanaa . Caanaanaa . Ma

Air Data Laboratory Services Since 1989

Method : Modified TO-15-LL (Sp)-c/t-1,2-DCE, BTEX, PCE, TCE, VC & Naph

1202276

CAS Number	Compound	Rpt. Limit (ppbv)	
75-01-4	Vinyl Chloride	0.10	
156-60-5	trans-1,2-Dichloroethene	0.10	
156-59-2	cis-1,2-Dichloroethene	0.10	
71-43-2	Benzene	0.10	
79-01-6	Trichloroethene	0.10	
108-88-3	Toluene	0.10	
127-18-4	Tetrachloroethene	0.10	
100-41-4	Ethyl Benzene	0.10	
108-38-3	m,p-Xylene	0.10	
95-47-6	o-Xylene	0.10	
91-20-3	Naphthalene	0.50	

CAS Number	Surrogate	Method Limits	
17060-07-0	1,2-Dichloroethane-d4	70-130	
2037-26-5	Toluene-d8	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Soil gas

helium 010