

JAN 25 1993

DEPT. OF ECOLOGY

Results of Ground Water and
Soil Stockpile Sampling
August and December 1992
Former Unocal Bulk Plant 0138
Coupeville, Washington

January 22, 1993

adependent Action Report Review
Site Name: Unocal # 10138
Site Name: Unocal # 0138 Ro Tigo Inc. #: 361/ Date of Report: 1-2.70 County:
County: Date Report Rec'd: 1.25-43
Comments (e.g.free prod
inant migration, PCS treated?):
GW monitoring will continue. Fluctualing levels of BTEX in MWs.
in MWs.
The state of the s

January 22, 1993

Geotechnical,
Geoenvironmental and
Geologic Services

Unocal P.O. Box 76 Seattle, Washington 98111

Attention: Dr. Mark Brearley

Results of Ground Water and Soil Stockpile Sampling August and December 1992 Former Unocal Bulk Plant 0138 Coupeville, Washington File No. 0161-205-R04

INTRODUCTION

This report summarizes the results of GeoEngineers' August and December 1992 sampling and testing of ground water and soil stockpile sampling at the site of former Unocal Bulk Plant 0138 in Coupeville, Washington. The former bulk plant is located southwest of the intersection between Coveland Street and Alexander Street in Coupeville, Washington. The site location relative to surrounding physical features is shown on the Vicinity Map, Figure 1. The approximate locations of the on- and off-site monitoring wells and exploratory borings are shown on the Location Map, Figure 2. The general layout of the site prior to removal of the facilities and the approximate locations of on-site monitoring wells are shown on the Site Plan, Figure 3.

PREVIOUS STUDIES

GeoEngineers has conducted environmental studies at the site since 1989. GeoEngineers observed the removal of one semiburied 6,000-gallon diesel storage tank from the site in September 1989. Soil samples were taken from the final limits of the excavation and analyzed for petroleum-related contaminants. Petroleum-related contaminants either were not detected or the detected concentrations were less than current MTCA (Model Toxics Control Act) Method A cleanup levels.

GeoEngineers, Inc. 8410 154th Avenue N.E. Redmond, WA 98052 Telephone (206) 861-6000 Fax (206) 861-6050

GeoEngineers explored subsurface conditions at the site in November 1989 by drilling six exploratory borings and excavating three test pits. Ground water monitoring wells (MW-1 through MW-6) were completed in the exploratory borings at the approximate locations shown in Figures 2 and 3. Concentrations of petroleum hydrocarbons greater than MTCA Method A cleanup levels were detected in boring soil samples obtained from depths of 3 feet, 20.5 feet and 23 feet in MW-1, MW-4 and MW-5, respectively. Petroleum-related contaminants were detected at concentrations greater than MTCA Method A cleanup levels in ground water samples obtained from MW-1, MW-4 and MW-5. The compound EDC (1,2-dichloroethane) was detected at a concentration exceeding the MTCA Method A cleanup level in the ground water sample obtained from monitoring well MW-4.

GeoEngineers observed the removal of one 550-gallon heating oil tank and the associated product lines, and the completion of five remedial excavations at the site between August and October 1990. A GeoEngineers representative was present to observe site activities and obtain soil samples from the limits of the excavations.

A GeoEngineers representative observed the completion of one boring (B-1), five on-site monitoring wells (MW-7 through MW-11) and two off-site monitoring wells (MW-12 and MW-13) and the excavation of approximately 850 cubic yards of contaminated soil at the site between March and July 1991. Petroleum hydrocarbon-related contamination was not detected in the soil samples obtained from the borings. Petroleum-related contaminants were detected at concentrations greater than MTCA Method A cleanup levels in ground water samples obtained from on-site monitoring wells MW-5, MW-8, MW-9, MW-10 and MW-11. Petroleum-related contaminants either were not detected or were detected at concentrations less than MTCA Method A cleanup levels in ground water samples obtained from on-site monitoring wells MW-2, MW-6 and MW-7 and off-site monitoring wells MW-12 and MW-13.

The results of our previous site studies indicate that soil contamination remains at depth in areas near MW-5, MW-11, north of the former aboveground storage tanks, north of the former loading rack and east of the former office building. It appears that most of the shallow subsurface soil containination was removed during remedial excavation activities at the site in 1990 and 1991.

GeoEngineers began quarterly ground water quality monitoring at the site in April 1991. Results of initial monitoring indicated ground water contamination in monitoring wells MW-5, MW-9, MW-10 and MW-11.

The results of our previous site studies and ground water monitoring are presented in our reports dated October 6, 1989, January 30, 1990, November 2, 1990, September 17, 1991, March 18, 1992, March 20, 1992 and August 17, 1992. A summary of ground water chemical analytical results and combustible vapor concentrations measured in the well casings during past reporting periods is presented in Table 1.

least four consecutive sampling events; therefore, these wells were last sampled in February 1992. Monitoring wells MW-8 and MW-10 were last sampled in May 1992. If water quality on or around the site appears to change, additional monitoring wells will be added to the quarterly ground water sampling events.

Ground water samples were obtained from on-site monitoring wells MW-5, MW-9 and MW-11 and off-site monitoring well MW-12 on August 28, 1992. The ground water samples were submitted to ATI (Analytical Technologies, Inc.) for analysis of one or more of the following: fuel hydrocarbons by modified EPA Method 8015, BETX (benzene, ethylbenzene, toluene and xylenes) by EPA Method 8020 and dissolved lead by EPA Method 7421.

Ethylbenzene, xylenes and fuel hydrocarbons (quantified as gasoline and diesel) were detected at concentrations greater than the MTCA Method A cleanup levels in the ground water sample obtained from MW-5. The concentrations of benzene and toluene in the ground water sample obtained from MW-5 were less than the MTCA Method A cleanup levels. BETX and fuel hydrocarbons in the remaining samples either were not detected or were detected at concentrations less than the MTCA Method A cleanup levels. Dissolved lead was not detected in the ground water sample obtained from monitoring well MW-9. Laboratory reports are provided in Attachment B.

DECEMBER 1992 FIELD MEASUREMENTS

A GeoEngineers representative measured the depth to the ground water table and the concentrations of combustible vapors in on-site monitoring wells MW-5 through MW-11 and off-site monitoring wells MW-12 and MW-13 on December 1, 1992. Monitoring well MW-2 could not be located at the time of our site visit. The ground water table elevations ranged from 76.39 feet to 91.43 feet at the time of our December 1992 measurements. Ground water elevation data was calculated relative to a temporary datum with an assumed elevation of 100.00 feet. Ground water elevations beneath the site are variable as a result of perched water conditions. Based on surface topography and general trends in the measured ground water elevations, it appears that the ground water flow direction is toward the north. Ground water elevations measured during our December 1992 site visit are shown in Figure 3. The concentrations of combustible vapors measured in the well casings in December 1992 ranged from less than 400 ppm to 760 ppm (Table 1). Our field procedures are described in Attachment A.

DECEMBER 1992 GROUND WATER QUALITY

GeoEngineers obtained ground water samples from on-site monitoring wells MW-5, MW-9 and MW-11 and off-site monitoring well MW-12 on December 1, 1992. The ground water samples were submitted to ATI for chemical analysis of fuel hydrocarbons and BETX.

Ethylbenzene, xylenes and fuel hydrocarbons (quantified as gasoline and diesel) were detected at concentrations greater than MTCA Method A cleanup levels in the ground water sample obtained from monitoring well MW-5. Benzene and toluene were detected at concentrations less than Method A cleanup levels in the sample obtained from MW-5. BETX and fuel hydrocarbons either were not detected or were detected at concentrations less than MTCA Method A cleanup levels in the ground water samples obtained from monitoring wells MW-9, MW-11 and MW-12.

SOIL STOCKPILE SAMPLING

Approximately 850 cubic yards of contaminated soil were excavated during remedial activities conducted in 1991 and stockpiled on the site. The stockpile was spread for treatment by aeration in June 1991 and tilled weekly by A.L. Sleister and Sons Construction, Inc. from July to October 1991. A GeoEngineers representative obtained six samples (911002-1 through 911002-6) from the aerating soil on October 2, 1991. The samples were submitted to an analytical laboratory for analysis of one or more of the following: BETX by EPA Method 8020, fuel hydrocarbons by modified EPA Method 8015 and TPH by EPA Method 418.1. The results of analytical testing are summarized in Table 2.

TPH was detected at concentrations greater than MTCA Method A cleanup levels in five of the six samples. TPH was detected at a concentration less than the MTCA Method A cleanup level in the remaining sample (911002-1). BETX and fuel hydrocarbons were not detected in the soil samples. The portion of the aerating soil represented by sample 911002-1 (approximately 140 cubic yards) was used to grade the northwest portion of the site. The remaining soil (approximately 700 cubic yards) was tilled by A.L. Sleister and Sons Construction between October 2 and October 12, 1991.

Four samples (911012-1 through 911012-4) were obtained from the aerating soil on October 12, 1991 and submitted to the chemical laboratory for analysis of petroleum-related contaminants by EPA Method 418.1. Petroleum-related contaminants were detected at concentrations greater than the Method A cleanup level in two of the four samples. The 700 cubic yards of aerating soil was stockpiled and covered in the southwest portion of the site between November 1991 and July 1992.

The contaminated soil stockpile was spread for treatment by aeration and tilled by A.L. Sleister and Sons Construction in August 1992. A GeoEngineers representative obtained four samples from the aerating soil on August 28, 1992 and submitted the samples for analysis of petroleum-related contaminants by EPA Method 418.1. Petroleum-related contaminants were detected at concentrations less than the MTCA Method A cleanup level in the soil samples. The treated soil will be used for grading at the site in the near future. Soil stockpile sampling techniques are described in Attachment A. Laboratory reports for the October 1991 and August 1992 stockpile samples are included in Attachment B.

ADDITIONAL SITE ACTIVITIES

A water sample (Drum-1) was obtained on December 1, 1992 for disposal purposes from the purge water generated during our December 1992 sampling event. The sample was submitted to the chemical laboratory for analysis of BETX by EPA Method 8020 and fatty oils and grease by EPA Method 413.2. Concentrations of detected contaminants were within METRO requirements for water disposal. During our future sampling events, purge water generated at the site will be disposed of by GeoEngineers at a METRO disposal facility. Laboratory reports for the ground water and purge water samples are included in Attachment B.

The remaining aboveground structures were removed from the site during November 1992. Joe Hall Construction, Inc. dismantled the five aboveground storage tanks and associated aboveground product piping. GeoEngineers was not present to observe site demolition activities.

DISCUSSION

Concentrations of ethylbenzene, xylenes and fuel hydrocarbons have been greater than MTCA Method A cleanup levels in the ground water samples obtained from monitoring well MW-5 from April 1991 to December 1992. Detected concentrations of benzene and toluene in samples from MW-5 obtained in August and December 1992 were less than the MTCA Method A cleanup levels; however, the concentrations of contaminants in site ground water historically have fluctuated.

Detected concentrations of benzene, ethylbenzene, xylenes and fuel hydrocarbons quantified as gasoline in ground water samples from MW-9 have historically been greater than MTCA Method A cleanup levels. Concentrations of BETX and fuel hydrocarbons quantified as gasoline in the ground water obtained from MW-9 have decreased significantly in the past year and were not detected during the August and December 1992 sampling events.

Concentrations of BETX and fuel hydrocarbons generally have decreased in the ground water samples obtained from MW-11. Benzene has been detected in ground water obtained from MW-11 once since our initial ground water sampling event in April 1991. Detected concentrations of ethylbenzene have been at or below the MTCA Method A cleanup level in MW-11, but appear to fluctuate with time. Concentrations of toluene have decreased to below detection limits in the MW-11 ground water samples. Concentrations of xylenes are currently less than the MTCA Method A cleanup level, but appear to fluctuate in the ground water samples obtained from MW-11.

BETX and fuel hydrocarbons either have never been detected or have been detected at concentrations less than MTCA Method A cleanup levels during the last four consecutive sampling events in the remaining monitoring wells.

Based on our observations and a review of laboratory data, there appears to be no general or seasonal trend in the concentrations of ground water contaminants. Table 1 summarizes the field measurements and chemical analytical data from the beginning of our sampling at the site to our most recent sampling event.

FUTURE MONITORING

We will continue to obtain ground water samples from monitoring wells MW-5, MW-9 and MW-11 on a quarterly basis to monitor for petroleum-related contaminants. Additionally, ground water samples will be obtained from monitoring well MW-12 on a quarterly basis to monitor downgradient water quality. Because of changes in Ecology guidance, we recommend using Ecology-specified analytical procedures for gasoline- and diesel-range TPH. Ground water from monitoring wells MW-5 and MW-12 will be submitted to the chemical laboratory for analysis by WTPH-G (Washington Total Petroleum Hydrocarbons-Gasoline), BETX and WTPH-D (Washington Total Petroleum Hydrocarbons-Diesel). Ground water from monitoring wells MW-9 and MW-11 will be submitted to the chemical laboratory for analysis by WTPH-G/BETX. The results of our sampling events will be summarized in reports prepared twice per year for Unocal.

We appreciate the opportunity to provide these continued services to Unocal. Please contact us if you have questions regarding this letter.

Yours very truly,

GeoEngineers, Inc.

Barbara J. Sherupski Staff Geologist

James A. Miller, P.E.

Principal

BJS:JAM:vvv

Document ID: 0161205.GW

Attachments

Two copies submitted

cc: Mr. Joseph Hickey
Washington State Dept. of Ecology
3190 - 160th Ave. S.E.
Bellevue, WA 98008-5452

TABLE 1 (Page 1 of 5)
CHEMICAL ANALYTICAL DATA¹
GROUND WATER MONITORING WELLS

		Ground	Combustible	Volatii	e Aromati	Volatile Aromatic Hydrocarbons ⁴	rbons ⁴	Fuel Hydr	Fuel Hydrocarbons ⁵
Monitoring		Water Table	Vapor		(EPA Met	(EPA Method 8020)		(Modified EPA	(Modified EPA Method 8015)
Well	Date	Elevation ²	Concentrations ³		Š	, (l/g/l)		, w	(mg/l)
Number	Measured	(feet)	(mdd)	В	ш	F	×	Gasoline	Diesel
MW-16	11/22/897,8	69.16	760	5.3	1.5	2.2	8.4	ı	:
	09/24/90	ı	1	<0.5	<0.5	<0.5	<0.5	ı	Ţ
MW-2	04/25/91	76.01	<400	<0.5	<0.5	<0.5	<0.5	1	1
	08/02/91	76.42	1,500	<0.5	<0.5	<0.5	<0.5	⊽	. ∇
	11/06/91	75.71	<400	<0.5	<0.5	<0.5	<0.5	⊽	⊽
	02/27/92	76.94	<400	<0.5	<0.5	<0.5	<0.5	⊽	⊽
	05/28/92	76.79	<400	1	1	ı	1	ı	1
	08/27/92	76.53	3,500	ı	1	I	t	ı	ı
MW-36	11/22/898	89.78	>10,000	<0.5	1.6	2.9	1.4	1	1
MW-46	11/22/897,8	68.24	>10,000	5.4	2.7	1.5	12	i	1
MW-5	11/22/898	67.85	>10,000	<0.5	130	<0.5	160	. 1	1
	09/26/907	86.49	ı	7	0.003	⊽	⊽	ı	1
	04/25/91	78.38	<400	=	&	370	069	8	98
	08/01/91	77.48	2,500	<0.5	160	ล	280	7	۲
	11/05/91	76.83	<400	<0.5	150	24	044	37	7
34)	02/27/927,9	78.28	ı	8.6	400	88	780	81	Ŋ
	05/28/927,9	78.06	<400	7.5	400	8	260	14	Ŋ
	08/27/92	76.75	400	6.0	22	9.1	190	11	m
	12/01/92	73.39	260	1.8	160	9.4	360	8	80

Notes appear on page 5 of 5.

TABLE 1 (Page 2 of 5)

3	ļ	Combusti	ble	Volatile	Aromati	Volatile Aromatic Hydrocarbons ⁴	rbons ⁴	Fuel Hydr	Fuel Hydrocarbons ⁵
Monitoning		Water Table	Vapor		(EPA Met	(EPA Method 8020)	_	(Modified EPA	(Modified EPA Method 8015)
Well	Date	Elevation ²	Concentrations ³		3	(//B//)		(//Gm)	(V6
Number	Measured	(feet)	(mdd)	В	ш	⊥	×	Gasoline	Diesel
MW-6	11/22/89 ⁸	68.44	009	<0.5	<0.5	<0.5	<0.5	ı	1
	206/92/60	86.51	<400	7	۲	. ₩	7	ı	ı
	04/25/91	78.94	000'6	<0.5	<0.5	<0.5	<0.5	ı	- 1
	08/01/91	78.08	850	<0.5	<0.5	<0.5	<0.5	7	⊽
	11/05/91	77.45	<400	<0.5	<0.5	<0.5	<0.5	7	7
	02/27/92	78.73	ŧ	<0.5	<0.5	<0.5	<0.5	⊽	⊽
	05/28/92	78.62	<400	1	1	1	ı	ı	1
	08/27/92	00.77	<400	1	1	ı	ı	ŧ	ı
	12/01/92	76.48	<400	1	1	ı	1	ı	1
MW-7	04/25/91	80.82	<400	<0.5	<0.5	<0.5	<0.5	\	1
-	08/02/91	79.21	<400	<0.5	<0.5	<0.5	<0.5	V	7
	11/05/91	78.71	<400	<0.5	<0.5	<0.5	<0.5	7	⊽
	02/27/92	79.54	<400	<0.5	<0.5	<0.5	<0.5	₹	7
	05/28/92	79.79	<400	ı	. 1	1	- 1	1	1
	08/27/92	78.87	<400	ļ	ı	ı	1	. 1	1
	12/01/92	78.18	<400	ı	ı	1	1	1	1
MW-8	04/25/91	79.59	<400	52	38	10	130	7	⊽
	08/02/91	78.96	<400	<0.5	<0.5	<0.5	<0.5	▼ .	7
-	11/05/91	78.21	<400	<0.5	<0.5	<0.5	<0.5	7	7
	02/27/92	79.61	<400	<0.5	<0.5	<0.5	<0.5	7	₹
	05/28/92	79.39	<400	ı	1	1	ı	1	ı
	08/27/92	78.76	<400	ı	1	1	l.	1	ı
	12/01/92	78.02	<400	1	1	:	1	ı	1

Notes appear on page 5 of 5.

TABLE 1 (Page 3 of 5)

_	18015)		<u>s</u>			<u>8</u>																	
ocarbon	A Method	(mg/l)	Diesel	<u>^</u>	▽	-	₹	∇	<u>~</u>	7	₹	<u>^</u>	7	7		1		₹	Q	7	٧	<u>^</u>	~
Fuel Hydrocarbons ⁵	(Modified EPA Method 8015)	LL)	Gasoline	٧	7	80	-	₹	⊽	⊽	⊽	v √	⊽	· V	1	ı	2	~	4	7	9	₹	· 1>
arbons ⁴	_		×	140	<0.5	06	5	<0.5	7	3.1	<0.5	<0.5	<0.5	<0.5	ì	1	32	32	32	2.2	108	23	2.1
Volatile Aromatic Hydrocarbons ⁴	(EPA Method 8020)	(V6n)	—	=	<0.5	12	<0.5	<0.5	<u>~</u>	<0.5	<0.5	<0.5	<0.5	<0.5	1	1	98	2.1	<0.5	<0.5	<0.5	<0.5	<0.5
e Aromati	(EPA Met	3	ш	84	<0.5	180	8	<0.5	V	1.9	<0.5	<0.5	<0.5	<0.5	1	1	ß	12	೫	2.5	4.5	3.1	1.5
Volatil			В	22	<0.5	360	22	<0.5	٧	85	<0.5	<0.5	<0.5	<0.5	1	1	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	<0.5
Combustible	Vapor	Concentrations ³	(mdd)	<400	<400	5,500	<400	<400	<400	<400	3,200	<400	2,000	<400	<400	<400	400	800	<400	< 400	<400	<400	<400
Ground	Water Table	Elevation ²	(feet)	87.51	81.98	87.15	85.44	83.25	30.62	77.91	96.08	75.82	83.20	84.49	83.85	80.77	92.23	89.89	88.45	93.68	91.85	90.61	91.43
		Date	Measured	04/25/91	11/05/91	02/27/92	05/28/92	08/27/92	12/01/92	04/25/91	08/01/91	11/05/91	02/27/92	05/28/92	08/27/92	12/01/92	04/25/91	08/01/91	11/05/91	02/27/92 ^{7,9}	05/28/927,9	08/27/92	12/01/92
	Monitoring	Well	Number	WW-9						MW-10						\$ 7	MW-11						

Notes appear on page 5 of 5.

TABLE 1 (Page 4 of 5)

Well Number Me		Water Table	Vapor		FPA Mot	(FPA Method 8020)	2	Modified EDA Mothed Source	Venicoris Mottod 9045
je	Date	Elevation ²	Concentrations ³			(/g/l)		(שוממווופת בנג)	(mg/l)
	Measured	(feet)	(mdd)	В	Е	T	×	Gasoline	Diesel
	05/17/91	78.82	<400	<0.5	4	1.1	5.9	7	٧
-	08/02/91	77.24	<400	<0.5	<0.5	<0.5	<0.5	<u>v</u>	٧
-	11/05/91	76.49	<400	<0.5	<0.5	<0.5	<0.5	~	⊽
	02/28/92	77.75	ı	<0.5	<0.5	<0.5	<0.5	٧	7
8	05/28/92	77.56	<400	<0.5	<0.5	<0.5	<0.5	⊽	7
8	08/27/92	77.21	<400	<0.5	<0.5	<0.5	<0.5	٧	7
12	12/01/92	76.61	<400	<0.5	<0.5	<0.5	<0.5	7	7
MW-13 05	05/17/91	1	<400	<0.5	<0.5	<0.5	<0.5	2	⊽
8	08/02/91	76.81	<400	<0.5	<0.5	<0.5	<0.5		V
-	11/05/91	76.31	<400	<0.5	<0.5	<0.5	<0.5	7	٧
8	02/28/92	77.52	ı	<0.5	<0.5	<0.5	<0.5	V	
8	05/28/92	77.33	<400		1	1	1	1	· , t
	08/27/92	76.82	<400	1		1	1		!
12	12/01/92	76.73	<400	1	ı		ı	ı	ı

TABLE 1 (Page 5 of 5)

Notes:

Current chemical analyses conducted by Analytical Technologies, inc. Laboraticity reports for August and December 1992 samples are attached. Eground water table elevations calculated using laser-level data obtained on 0827/92. The manhole cover located northeast of the atter-Intersection of Alexander and Coreland Streets was used as a temporary benchmark with an assumed elevation of 100.00 feet.

Combustible vapors measured in monitoring well castrgs using a Bacharach TLV Sniffer calibrated to hexane.

⁴B = bertzerre, E = ethylbenzene, T = totuene, X = total xylerre

Fruel hydrocarbons quantified to a gasoline or diesel standard.

Swontbring wells MW-1, MW-3 and MW-4 were abandoned during on-site excavation activities.

the ground water sample obtained from MW-5. TPH either was not detected or was detected at concentrations less than the MTCA Method A deanup level Zample also analyzed for helogenated volatile organic compounds by EPA Method 8010. EDC (1,2-dichloroethans) was detected at 20 µg/l on 11/22/89 and et 23 µg/l on 01/18/90 in ground water samples from MW4, greater than the MTCA Method A cleanup level of 5 µg/l. Halogenated voluities organic Bample also analyzed for TPH (total petroleum hydrocarbons) by EPA Method 418.1. TPH was detacted at a concentration of 20 mg/l on 11/22/89 in compounds either were not detected or were detected at concentrations less than MTCA cleanup levels in the remaining ground water samples. (1 mg/l) in the remaining monitoring wells.

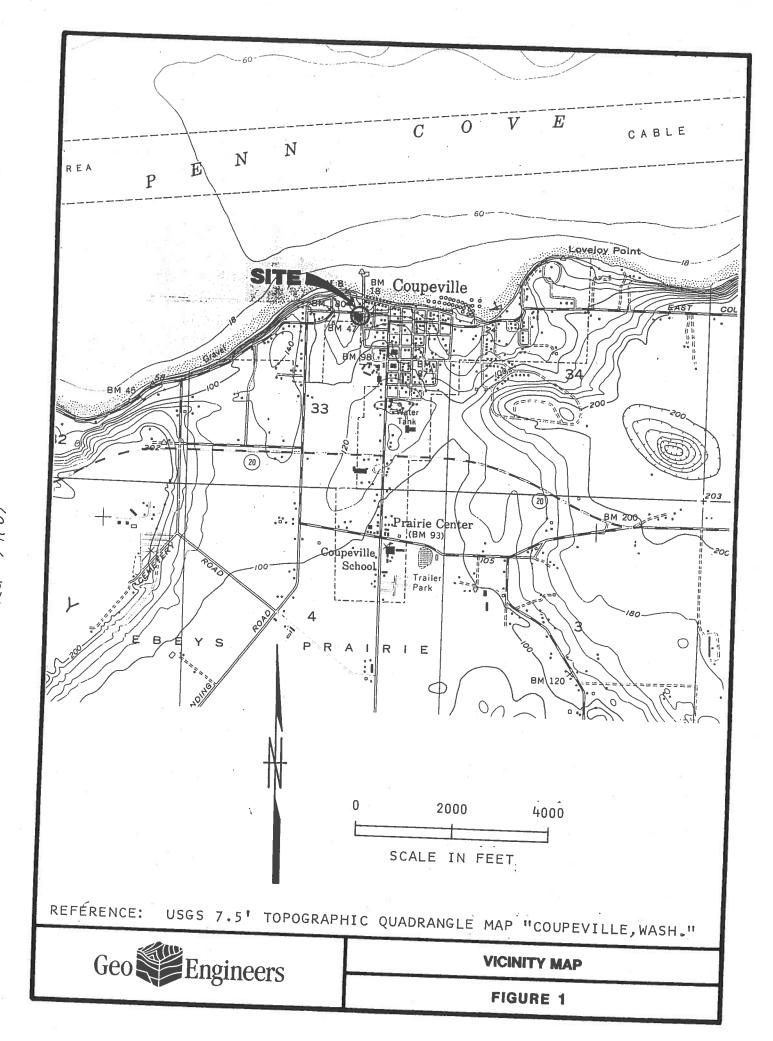
02/28/92, greater than the MTCA Method A cleanup level of 5 µg/f. Total and/or dissolved lead were not detected in the remaining ground water samples. Sample also stratized for total and/or dissolved lead by EPA Method 7421. Total lead was detected at 10 µg/l in the ground water sample from MW-5 on ppm = parts per millon; µg/l = micrograms per liter; mg/l = milligrams per iller, "-" = not tested or measured.

TABLE 2 SUMMARY OF FIELD SCREENING RESULTS AND CHEMICAL ANALYTICAL DATA¹ SOIL STOCKPILE

Al		Field Screenin	ng Results ³	Fuel Hydrocarbons4	carbons4		BE	BETX ⁵		Total Petroleum
Soil		Headsbace		(Modified EPA Method 8015)	Wethod 8015)	<u> </u>	PA Met	(EPA Method 8020)	6	Hydrocarbons
Sample	Date	Vapors		(mg/kg)	kg)		bw)	(mg/kg)	`	(EPA Method 418.1)
Number ²	Sampled	(mdd)	Sheen	Gasoline	Diesel	8	ш	 -	×	(marka)
911002-1	10/02/91	<100, <100	SS'SS	\$	\ \ 55	1				(B.1.611)
911002-2	10/02/91	<100, <100	SS, SS	ı	1	1	ı			0.00
911002-3	10/02/91	<100, <100	SS, MS	\ \ \ \ \	<5	<.025	<.025	<.025	× 025	330
911002-4	10/02/91	<100, <100	MS, SS	1	1	ı	1		} 1	**************************************
911002-5	10/02/91	<100, <100	SS, SS	<5	\ \ \	ı	ı	ı		200
911002-6	10/02/91	<100, <100	SS, MS	1	1	V 025	7005	7	30.	S2 88
911012-1	10/12/91	1	1	1	1	1	201	20.7	7.00	022
911012-2	10/12/91	1	ı	Ī	ı	-				082
911012-3	10/12/91	1	ı	1	ı				ı	26
911012-4	10/12/91	1	Ĺ	1	1	ı				200
920828-1	08/28/92	ı	NS, NS	1		1		1		20
920828-2	08/28/92	ı	NS, NS	ı	ı	1	ı	ı		3 6
920828-3	08/28/92	ı	NS, NS	1	1	ı	1	ı		8 6
920828-4	08/28/92	1	NS, NS	1	ı	ı	ı	1		3 8
MTCA Method A cleanup level	A cleanup level			100	200	0.5	8	8	8	27
			(0)					2	23	200

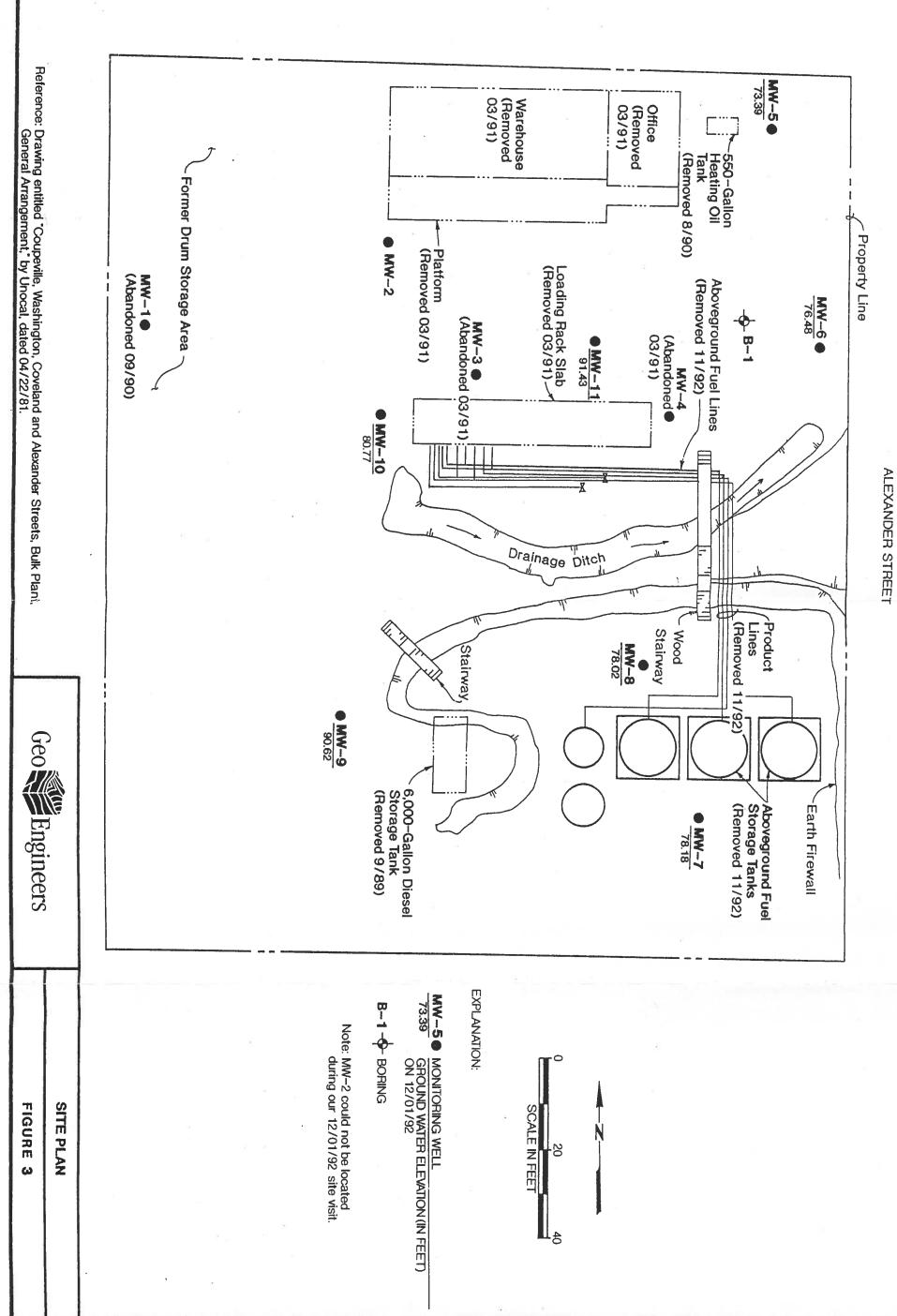
Notes:

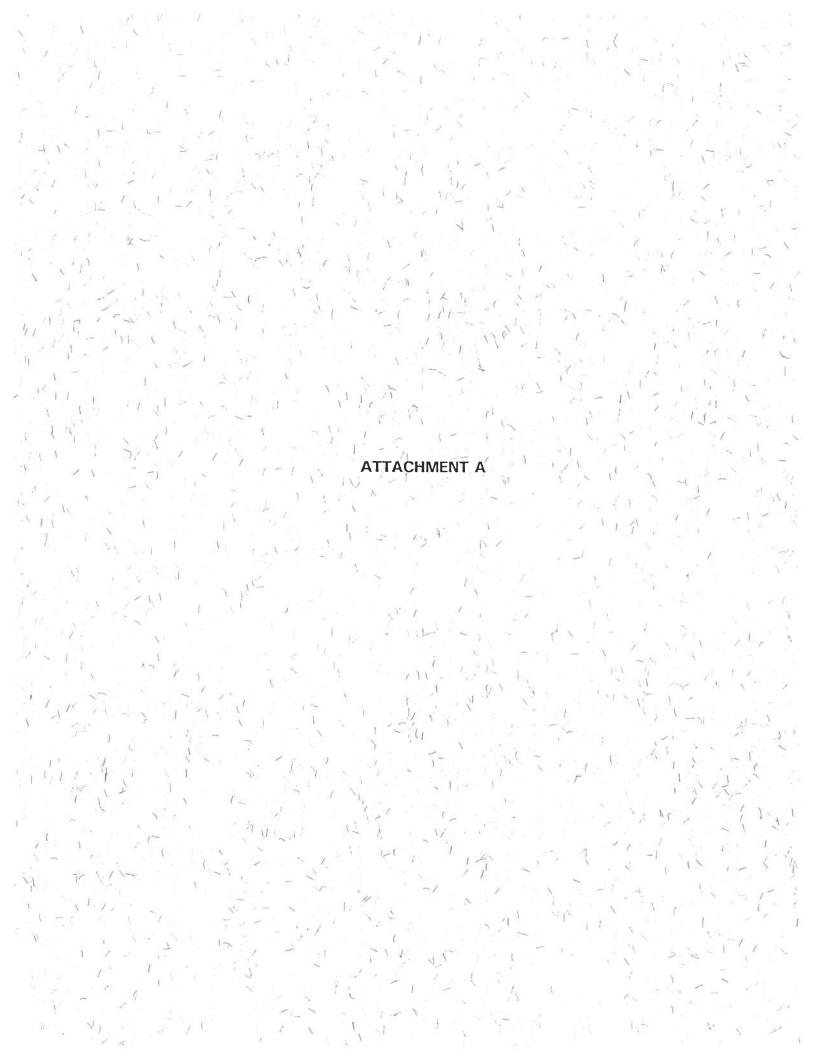
1Soil samples analyzed by Analytical Technologies, Inc. of Renton, Washington. Chemical analytical data sheets for the serating soil samples are included in Attachment B of this report. 2 Soil sample numbers represent two discrete soil samples. Discrete samples either were composited in the field or were composited at the analytical laboratory. Sampling techniques are described in Attachment A of this report.


Combustible vapors measured using a Bacharach TLV Sniffer calibrated to hexane. Field screening techniques are described in Attachement A of this report.

fruel hydrocarbons quantified to a gasoline or diesel standard.

⁵B=benzene, E=ethylbenzene, T=toluene, X=xylenes


ppm≠parts per million, mg/f/g≠milligrams per kilogram, "--"=not sampled or measured,


NS=no sheen, SS=slight sheen, MS=moderate sheen

Pier

0/61-205-804 815:110 5/13/91

ATTACHMENT A

FIELD METHODS

GROUND WATER SAMPLING PROGRAM

Ground water samples were collected from the on-site monitoring wells MW-5, MW-9 and MW-11 and off-site monitoring well MW-12 by GeoEngineers on August 28 and December 1, 1992. Ground water parameters (temperature, pH and specific conductance) were obtained during purging at approximately 1-2 gallon intervals using a Hydac meter. Wells were sampled when the ground water parameters stabilized to within 10 percent for three consecutive readings and after at least three well volumes of water were removed from each well casing.

The water samples were collected with disposable polyethylene bailers. A new bailer and cord were used to sample each monitoring well to minimize the possibility of cross-contamination. The water samples were transferred to 250-milliliter glass bottles and 40-milliliter septum vials in the field. In addition, the MW-9 sample obtained on August 28, 1992 was transferred to a preserved 500-milliliter plastic polyethylene container for analysis of lead. The MW-9 sample was filtered by the chemical laboratory. Chain-of-custody procedures were followed and samples were kept cool with blue ice during transport of the samples to the analytical laboratory.

GROUND WATER ELEVATIONS

The depth to the shallow ground water surface relative to the monitoring well casing rims was measured on August 27 and December 1, 1992. An electric interface probe was used to measure the depth to water. Depth to water was measured to the nearest 0.01 foot. Ground water elevations were calculated by subtracting the depth to water from the casing rim elevations. The casing rim elevations were resurveyed during our August 1992 site visit. The ground water table elevations measured on August 27 and December 1, 1992 are summarized in Table 1. The ground water table elevations measured in December 1992 are shown in Figure 3.

COMBUSTIBLE VAPOR CONCENTRATIONS

Combustible vapor concentrations were measured in each monitoring well casing on August 27 and December 1, 1992 using a Bacharach TLV Sniffer calibrated to hexane. The measurements were obtained by lowering a tube connected to the TLV Sniffer to within 1 foot of the water table, and covering the top of the well casing to trap any vapors present. The lower threshold of significance for the Bacharach TLV Sniffer in this application is 400 ppm (parts per million), or 3.6 percent of the lower explosive limit of hexane. The combustible vapor concentrations measured on August 27 and December 1, 1992 are summarized in Table 1.

SOIL STOCKPILE SAMPLING

Twelve discrete soil samples were obtained from the on-site aerating soil by a GeoEngineers' representative on October 2, 1991. The samples were obtained from the top 1-2 feet of the soil. One half of each sample was placed directly into clean glass jars supplied by the analytical laboratory and the other half was field screened using visual analysis, combustible vapor analysis and sheen screening. The twelve samples were combined into six composite samples (911002 1 through 911002-6) at the analytical laboratory.

Four composite samples (91 012-1 through 911012-4) were obtained from the on-site aerating soil by a GeoEngineers' representative on October 12, 1991. No information on sampling techniques or field screening is available for these soil samples.

Four composite soil samples (920828-1 through 920828-4) were obtained from the on-site aerating soil by a GeoEngineers' representative on August 28, 1992 using a stainless steel hand-augering device. The hand auger was decontaminated between samples using a TSP (trisodium phosphate) detergent and distilled water rinse. For each composite, one discrete sample was obtained from 6 to 12 inches in the soil and a second discrete sample was obtained from a depth greater than 1 foot. Each discrete soil sample was field screened using visual analysis and sheen screening. The two samples were composited by gently mixing in a plastic bag and the composite sample was transferred to clean glass jars supplied by the analytical laboratory. Field screening results are summarized in Table 2 of this report. Laboratory data sheets for the aerating soil samples are attached.

FIELD SCREENING OF SOIL SAMPLES

A GeoEngineers representative conducted field screening on soil samples obtained from the aerating soil to detect evidence of petroleum hydrocarbons or other regulated compounds. The field screening methods used included (1) visual examination, (2) sheen screening and/or (3) combustible vapor screening using a TLV Sniffer calibrated to hexane. The results of field screening are included in Table 2.

Visual screening consists of inspecting the soil for stains indicative of the presence of regulated compounds. Visual screening is generally more effective in detecting the presence of heavy petroleum hydrocarbons such as motor oil, or when concentrations of other regulated substances are great. Sheen screening and combustible vapor screening are more sensitive methods that have been effective in detecting the presence of regulated substances at concentrations less than regulatory cleanup guidelines.

Sheen screening involves placing soil in water and observing the water surface for signs of sheen.

Sheens are classified as follows:

NS - No Sheen

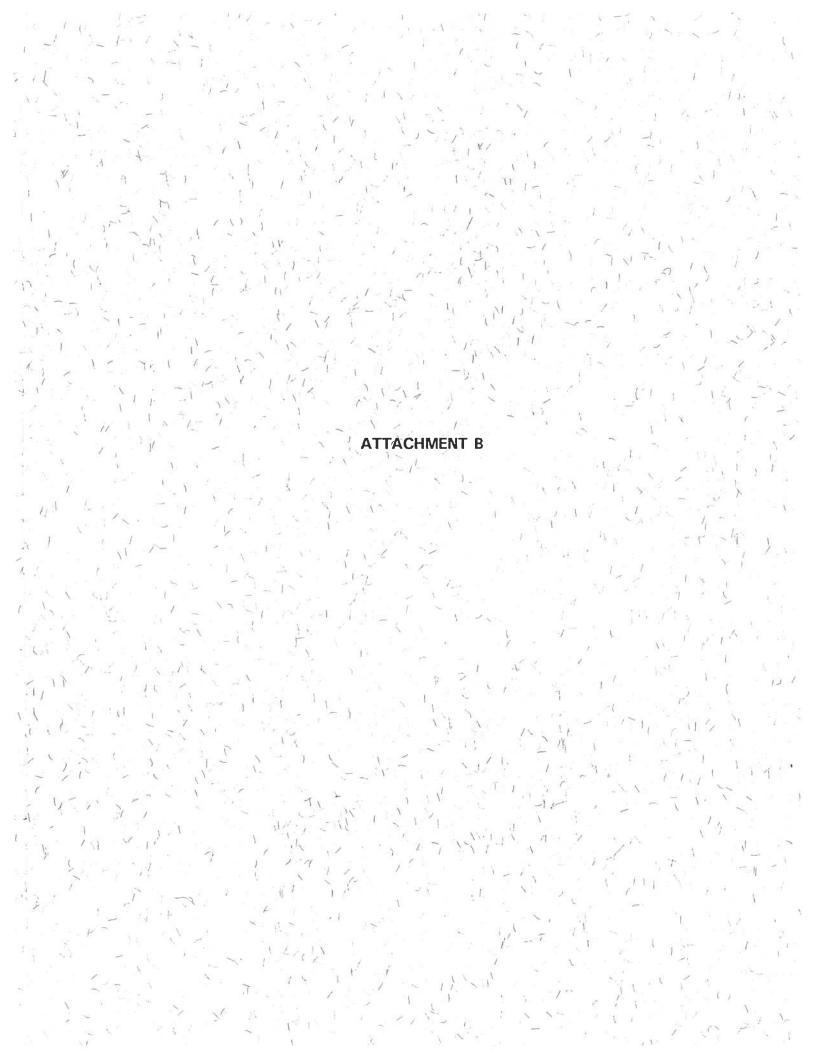
No visible sheen on water surface.

SS - Slight Sheen

Light colorless film, spotty to globular; spread is irregular, not rapid; areas of no sheen remain; film dissipates rapidly.

MS - Moderate Sheen

Light to heavy film, may have some color or iridescence,


globular to stringy; spread is irregular to flowing.

HS - Heavy Sheen

Heavy colorful film with iridescence; stringy, spread is rapid, sheen flows off the sample; most of water surface is covered.

Combustible vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The tip of the TLV Sniffer is inserted into the bag, and the instrument measures the concentration of combustible/organic vapor in the sample headspace. The TLV Sniffer measures vapor concentrations in ppm (parts per million). The lower threshold of significance for the Bacharach TLV Sniffer in this application is 100 ppm.

Field screening results are site-specific and vary with soil type, soil moisture content, temperature and type of contaminant.

ATTACHMENT B

CHEMICAL ANALYTICAL PROGRAM

ANALYTICAL METHODS

Samples from this project were analyzed by ATI (Analytical Technologies, Inc.) of Renton, Washington. Chain-of-custody procedures were followed during transport of the samples to the analytical laboratory. All samples were kept cool prior to and during transport to the chemical analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. A total of 11 water samples and 14 soil samples were analyzed using one or more of the following methods:

Analyte	Technique/Equipment	Method
BETX	Gas Chromatography/ Photoionization Detector	EPA 8020
Fuel Hydrocarbons	Gas Chromatography/ Flame Ionization Detector	Modified EPA 8015
ТРН	Infrared Spectrophotometry	EPA Method 418.1
Lead	Atomic Absorption/ Graphite Furnace	EPA Method 7421

ANALYTICAL DATA REVIEW

Data Quality Goals

ATI maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of surrogate percent recovery, matrix spike recovery and duplicate recovery to evaluate the validity of analytical results. ATI also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods.

Data Quality Review

Surrogates. Surrogates were added to all samples prior to extraction and analysis for organic compounds to monitor sample handling procedures, matrix effects and purging efficiency. Surrogate recoveries for EPA Method 8020 and modified EPA Method 8015 were within recommended limits.

Matrix Spike/Matrix Spike Duplicates (MS/MSD). Matrix spikes and matrix spike duplicates were analyzed in all tests performed to monitor matrix effects. MS/MSD recoveries and relative percent differences for all but the lead analysis (MW-9, August 28, 1992) were within recommended control limits. The sample analyzed for dissolved lead was diluted prior to analysis. The MS percent recovery for the sample was out of limits because of matrix interference and dilution. Because the MS percent recovery was out of limits, the RPD (relative percent difference) could not be calculated for that sample.

Holding Times. All samples were extracted and analyzed within the recommended holding times.

Trip Blanks. Trip blanks were prepared at the analytical testing laboratory and taken into the field during the August and December 1992 monitoring well sampling events. Trip blanks were analyzed for BETX by EPA Method 8020 to monitor for cross-contamination of water samples during transport to the laboratory. BETX was not detected in either trip blank.

SUMMARY

Quality control goals were met by ATI for the analyses performed for this project except one deviation:

The MS recovery in the lead analysis was out of limits and the RPD not calculated. Based on the other analytical QC results, the data are acceptable for use.

The Drum-1 sample (12/01/92) was submitted for analysis of BETX by EPA Method 8020 and Fatty Oils/Grease by EPA Method 413.2. The Drum-1 sample was analyzed for BETX and 418.1 (TPH) instead of 413.2. ATI added a narrative to the sample batch that details the differences between the requested analysis and the analysis performed. Based on our review of the analytical data, it is our opinion that the data are of acceptable quality for use on this project.

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 John H. Taylor, Jr., Laboratory Manager Frederick W. Grothkopp, Technical Director

GeoEngineers

DEC 1 8 1992

ATI I.D. # 9212-008

December 17, 1992

GeoEngineers, Inc. 8410 154th Ave. N.E. Redmond, WA 98052

Attention : Barbara Sherupski

Project Number: 0161-205-R04

Project Name : Unocal - Coupeville

On December 2, 1992, Analytical Technologies, Inc., received six samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Senior Project Manager
DMM/hal/ff

SAMPLE CROSS REFERENCE SHEET

CLIENT ·: GEOENGINEERS, INC.

PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL - COUPEVILLE

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
		· · · · · · · · · · · · · · · · · · ·	:
9212-008-1	MW-5	12/01/92	WATER
9212-008-2	MW-9	12/01/92	WATER
9212-008-3	MW-11	12/01/92	WATER
9212-008-4	MW-12	12/01/92	WATER
9212-008-5	DRUM-1	12/01/92	WATER
9212-008-6	TRIP BLANK	N/A	WATER

---- TOTALS ----

MATRIX # SAMPLES
----WATER 6

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT : GEOENGINEERS, INC.

PROJECT # : GEOENGINEERS,

PROJECT NAME : UNOCAL - COUPEVILLE

M			
ANALYSIS	 TECHNIQUE	REFERENCE	LAB
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
PETROLEUM HYDROCARBONS	IR	WA DOE WTPH-418.1 MODIFIED	R

ATI - Renton SD = ATI - San Diego ATI - Phoenix PHX = PNR = ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

CASE NARRATIVE

CLIENT

: GEOENGINEERS, INC.

PROJECT #

: 0161-205-R04

PROJECT NAME : UNOCAL - COUPEVILLE

CASE NARRATIVE: VOLATILE ORGANICS ANALYSIS

Six water samples were received by ATI on December 1, 1992, for BETX analysis by EPA method 8020.

Sample 9212-008-2 (MW-9) foamed extensively in the sparge tube during analysis. Therefore, a two fold dilution factor was required.

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX : EPA METHOD :	GEOENGINEERS, INC. 0161-205-R04 UNOCAL - COUPEVILLE METHOD BLANK WATER 8020 (BETX)	DATE SAMPLED DATE RECEIVE DATE EXTRACT DATE ANALYZE UNITS DILUTION FAC	D : ED : D : TOR :	Contract to
COMPOUND		RESULT		THE COLUMN
ETHYLBENZENE TOLUENE		<0.5 <0.5 <0.5 <0.5		
SUR	ROGATE PERCENT RECOVERY		LI	MITS
BROMOFLUOROBENZ	ENE	88	76	- 120

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX :	GEOENGINEERS, IN 0161-205-R04 UNOCAL - COUPEVE METHOD BLANK WATER 8020 (BETX)	ILLE I	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : N/A : 12/04/92 : ug/L : 1
COMPOUND]	RESULT	*BDOQ8
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		•	<0.5 <0.5 <0.5 <0.5	
SUR	ROGATE PERCENT R	ECOVERY		LIMITS
BROMOFLUOROBENZ	ENE	9	93	76 - 120

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX :	GEOENGINEERS, INC. 0161-205-R04 UNOCAL - COUPEVILLE MW-5 WATER 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 12/02/92 D : N/A : 12/04/92 : ug/L
COMPOUND	THE LEW	RESULT	тазрам
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		1.8 160 9.4 360 D7	
		*	
SUR	ROGATE PERCENT RECOVERY	Kantonia manda and	LIMITS
BROMOFLUOROBENZ	ENE	103	76 - 120

D7 = Value from a 100 fold diluted analysis.

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX :	GEOENGINEERS, INC. 0161-205-R04 UNOCAL - COUPEVILLE MW-9 WATER 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACT DATE ANALYZE UNITS DILUTION FAC	ED : 12/02/92 FED : N/A ED : 12/04/92 : ug/L
COMPOUND	TOTAL SERVICE.	RESULT	(SVC 39)
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<1.0 <1.0 <1.0 <1.0	
SUR	ROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZ	ENE	99	76 - 120

^{*} See case narrative.

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX :	GEOENGINEERS, 0161-205-R04 UNOCAL - COUP MW-11 WATER 8020 (BETX)	PEVILLE	DATE SAMPLED DATE RECEIVE DATE EXTRACT DATE ANALYZE UNITS DILUTION FAC	ED : 12/02/ PED : N/A ED : 12/04/ : ug/L CTOR : 1	/92
COMPOUND	* . 29	22.94	RESULT		Mich
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES			<0.5 1.5 <0.5 2.1		
SUR	ROGATE PERCENT	RECOVERY		LIMITS	
BROMOFLUOROBENZ	ENE		97	76 - 120	0

CLIENT : GEOENGIN PROJECT # : 0161-205 PROJECT NAME : UNOCAL - CLIENT I.D. : MW-12 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BE	-R04 COUPEVILLE	DATE SAMPLEI DATE RECEIVE DATE EXTRACT DATE ANALYZE UNITS DILUTION FAC	ED : 12/02/92 FED : N/A ED : 12/03/92 : ug/L
	TOUGE	RESULT	77(J84)
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SURROGATE PE	RCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE		91	76 - 120

PROJECT # : 0161 PROJECT NAME : UNOC. CLIENT I.D. : DRUM SAMPLE MATRIX : WATE		DATE SAMPLED DATE RECEIVE DATE FXTRACT DATE ANALYZE UNITS DILUTION FAC	D: 12/02/92 ED: N/A D: 12/04/92 : ug/L
COMPOUND	* Warram	RESULT	THE FRANK
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 44 21 86	
SURROGAT	E PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE		103	76 - 120

PROJECT # : 0161 PROJECT NAME : UNOCA CLIENT I.D. : TRIP SAMPLE MATRIX : WATER		DATE EX DATE AN UNITS	CEIVED : TRACTED : ALYZED :	: N/A : 12/02/92 : N/A : 12/04/92 : ug/L : 1
COMPOUND	1971 889	RESULT		2 = 89
ETHYLBENZENE TOLUENE	 	<0.5 <0.5		
SURROGAT	E PERCENT RECOVERY		" " - T - SH	LIMITS
BROMOFLUOROBENZENE		94	\$10 U	76 - 120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : 9212-008-4

PROJECT # : 0161-205-R04 DATE EXTRACTED : N/A

PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/03/92

EPA METHOD : 8020 (BETX) UNITS : ug/L

COMPOUND		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5	20.0 20.0 40.0	16.7 17.0 36.3	84 85 91	16.6 16.7 36.3	83 84 91	1 2 0
CONTROL LIMITS					% REC			RPD
BENZENE TOLUENE TOTAL XYLENES					72 -	112 113 110		20 20 20
SURROGATE RECOVE	RIES		SPIKE		DUP.	SPIKE	LIMIT	S
BROMOFLUOROBENZENE			97		94		76 -	120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : 9212-019-1

PROJECT # : 0161-205-R04 DATE EXTRACTED : N/A

PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/04/92

EPA METHOD : 8020 (BETX) UNITS : ug/L

SAMPLE MATRIX :	: WATER							
COMPOUND	6381 m	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES		15.6 12.1 22.7	20.0 20.0 40.0	36.1 33.0 64.0	103 105 103	37.4 32.5 61.4	109 102 97	4 2 4
CONTROL I	LIMITS				% REC	. ====		RPD
BENZENE TOLUENE TOTAL XYLENES					72 -	112 113 110		20 20 20
SURROGATI	E RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	S
BROMOFLUOROBENZ	ZENE		99		91		76 -	120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

SAMPLE I.D. # : BLANK SPIKE

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04 DATE EXTRACTED : N/A

PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/03/92

EPA METHOD : 8020 (BETX) UNITS : ug/L

	COMPOUND	end ent sek Linear	797,9	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
* 17.	BENZENE TOLUENE TOTAL XYLENES			<0.5 <0.5 <0.5	20.0 20.0 40.0	17.3 17.5 36.4	87 88 91	17.6 18.7 37.6	88 94 94	2 7 3
	CONTROL	LIMITS					% REC	. 20 0		RPD
	BENZENE TOLUENE TOTAL XYLENES			70			78 -	111 111 114		20 20 20
	SURROGAT	E RECOVER	ES		SPIKE		DUP.	SPIKE	LIMIT	S
	BROMOFLUOROBEN	ZENE			94		92		76 -	12J

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : BLANK SPIKE PROJECT # : 0161-205-R04 DATE EXTRACTED : N/A

DATE EXTRACTED : N/A

PROJECT # : 0161-205-R04
PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/04/92

EPA METHOD : 8020 (BETX) UNITS : uq/L

COMPOUND	55-864 - 6 5-313-94-27 - 66 5-4-31-31-31	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	ŘPD
BENZENE TOLUENE TOTAL XYLENES	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.5 <0.5 <0.5	20.0 20.0 40.0	21.1 20.6 41.3	106 103 103	21.5 21.1 42.1	108 106 105	2 2 2
CONTROL LI	MITS				% REC	. nown		RPD
BENZENE TOLUENE TOTAL XYLENES					78 -	111 111 114		20 20 20
SURROGATE	RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	S
BROMOFLUOROBENZE	NE		90		92		76 -	120

CASE NARRATIVE

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL - COUPEVILLE

CASE NARRATIVE: FUEL HYDROCARBONS ANALYSIS

The samples associated with this accession number were analyzed by a modification of EPA method 8015. This method involves the extraction of 25 ml of water into 5 ml of methylene chloride, during the extract with anhydrous sodium sulfate, and injection of the extract into a GC/FID. Calibration and quantitation was performed against gasoline and diesel fuel standards.

The reporting level for diesel in a water sample analyzed by a Modified 8015 test has been recently raised to 5 mg/L. A reporting level of 1 mg/L was confirmed on these samples by analyzing for gasoline, then concentrating the extract by a factor of five, and reanalyzing.

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04 PROJECT NAME : UNOCAL - COUPEVILLE CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER METHOD : 8015 (MODIFIED)		A /04/92 /04/92 /L
COMPOUND	RESULT	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	C12 - C24	
SURROGATE PERCENT REC	COVERY	'S
O-TERPHENYL	81 68 -	144

ATI I.D. # 9212-008-1

PROJECT # : 0161-205 PROJECT NAME : UNOCAL - CLIENT I.D. : MW-5 SAMPLE MATRIX : WATER METHOD : 8015 (MO)	COUPEVILLE OIFIED)	DATE ANALYZED UNITS DILUTION FACTO	: 12/02/92 : 12/04/92 : 12/04/92 : mg/L R : 1
COMPOUND		RESULT	uniséma.
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION	USING	32 C7 - C12 GASOLINE	in anotons dis governon met e dispersive trav
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION	USING	8 C12 - C24 DIESEL	
SURROGATE	PERCENT RECOVERY		LIMITS
O-TERPHENYL		98	68 - 144

ATI I.D. # 9212-008-2

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: 0161-205- : UNOCAL - : MW-9 X : WATER	R04 COUPEVII	LLE	DA' DA' DA' UN	TE RECT TE EXT TE ANA TTS	RACTED LYZED		12/0: 12/0: 12/0: mg/L	2/92 4/92 4/92
COMPOUND									
FUEL HYDROCAL HYDROCARBON I									
FUEL HYDROCAL HYDROCARBON (RBONS RANGE QUANTITATION	USING		<1 C1: DI	2 - C2 ESEL	4			
	SURROGATE	PERCENT	RECOVERY				LIM	ITS	
O-TERPHENYL				72			68	- 14	4

O-TERPHENYL

ATI I.D. # 9212-008-3

68 - 144

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

METHOD : 8015 (MODIFIE	EVILLE	DATE ANALYZED UNITS DILUTION FACTOR	: 12/02/92 : 12/04/92 : 12/04/92 : mg/L : 1
COMPOUND			* *320 (Q10)4233
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USIN	G	<1 C7 - C12 GASOLINE	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USIN	G ,	C12 - C24	
SURROGATE PERC	ENT RECOVERY	ere a pod dag ar sa L	IMITS

98

ATI I.D. # 9212-008-4

CLIENT : GEOENGINE PROJECT # : 0161-205-: PROJECT NAME : UNOCAL - CLIENT I.D. : MW-12 SAMPLE MATRIX : WATER METHOD : 8015 (MOD	R04 COUPEVILLE	DATE RECEIVED	: 12/02/92 : 12/04/92 : 12/04/92 : mg/L
COMPOUND	дори	RESULT	- VINGELY
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION	USING	<1 C7 - C12 GASOLINE	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION	USING	<1 C12 - C24 DIESEL	
SURROGATE	PERCENT RECOVERY		LIMITS
O-TERPHENYL		87	68 - 144

FUEL HYDROCARBONS QUANTITATED USING DIESEL

ATI I.D. # 9212-008

FUEL HYDROCARBON ANALYSIS CONTINUING CALIBRATION STANDARDS SUMMARY

	PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: 0 : U : 4	EOENGINEE: 161-205-R NOCAL - C 00 PPM CC ATER	04 OUPEVILLE		DATE DATE DATE	SAMPLE RECEIV EXTRAC ANALYZ	JED CTED	:	N/A N/A N/A 12/04/92
145	METHOD		015 (MODI	FIED)		UNITS	TION FA	ACTOR	•	% (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	COMPOUND	gt.		e comple		% DIE	FEKENC	CE		
	FUEL HYDROCARE	ONS	QUANTITA'	TED USING GAS	OLINE	6				

14

FUEL HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : 9212-008-4
PROJECT # : 0161-205-R04 DATE EXTRACTED : 12/04/92
PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/04/92
METHOD : 8015 (MODIFIED) UNITS : mg/L

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD	
				Ni	rain -	LX:				
FUEL HYDROCARBONS										
(GASOLINE)	<1.0	<1.0	NC	50.0	49.8	100	47.2	94	5	
CONT	TROL LIMI	TS				% REC			RPD	
GASOLINE						64 -	118		20	
SURI	ROGATE RE	COVERIES	}	SPIKE		DUP.	SPIKE	LIMIT	.s	
O-TERPHENYL				101		91		68 -	144	

NC = Not Calculable.

FUEL HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : BLANK SPIKE
PROJECT # : 0161-205-R04 DATE EXTRACTED : 12/04/92
PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/04/92

METHOD : 8015 (MODIFIED) UNITS : mg/L

		n n med		1 bi II						
COMPOUND	5 1 5 A.I.	E spir di		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKÉD RESULT	DUP. % REC.	RPD
FUEL HYDRO (GASOLINE)				<1.0	50.0	46.0	92	53.8	108	16
	CONTROL	LIMITS					% REC	•		RPD
GASOLINE							52 -	124		20
1 8	SURROGAT	re recov	/ERIE	ES	SPIKE		DUP.	SPIKE	LIMIT	S
O-TERPHENY	YL				79		104		68 -	144

CASE NARRATIVE

CLIENT : GEOENGINEERS, INC.

PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL - COUPEVILLE

TOTAL PETROLEUM HYDROCARBONS (418.1) ANALYSIS

This sample was submitted for an oil and grease analysis by EPA 413.2. This sample was inadvertently tested for total petroleum hydrocarbons by EPA 418.1. This method is identical to EPA 413.2, except that silica gel is added to the extract to remove non-petroleum based oils and fats prior to reading on the IR spectrophotometer. Unless non-petroleum organic material is suspected in the sample, the tests are equivalent.

9212-008-5

METHOD BLANK

ATI I.D. # 9212-008

3.8

<1.0

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

PROJECT # : PROJECT NAME :	GEOENGINEERS, INC. 0161-205-R04 UNOCAL - COUPEVILLE WA DOE WTPH-418.1 MODIFIE	DATE EXTRACTED : 12/04/92 DATE ANALYZED : 12/04/92 UNITS : mg/L D SAMPLE MATRIX : WATER	
	mom v	METER MATERIAL SECTION	
ATI I.D. #		L TOTAL OLEUM PETROLEUM OCARBONS HYDROCARBONS *	

3.9

<1.0

DRUM-1

^{*} Reanalyzed after second aliquot of silica gel added.

PETROLEUM

ATI I.D. # 9212-008

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : ICV
PROJECT # : 0161-205-R04 DATE EXTRACTED : N/A
PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 12/04/92
METHOD : WA DOE WTPH-418.1 MODIFIED UNITS : mg/L
SAMPLE MATRIX : WATER

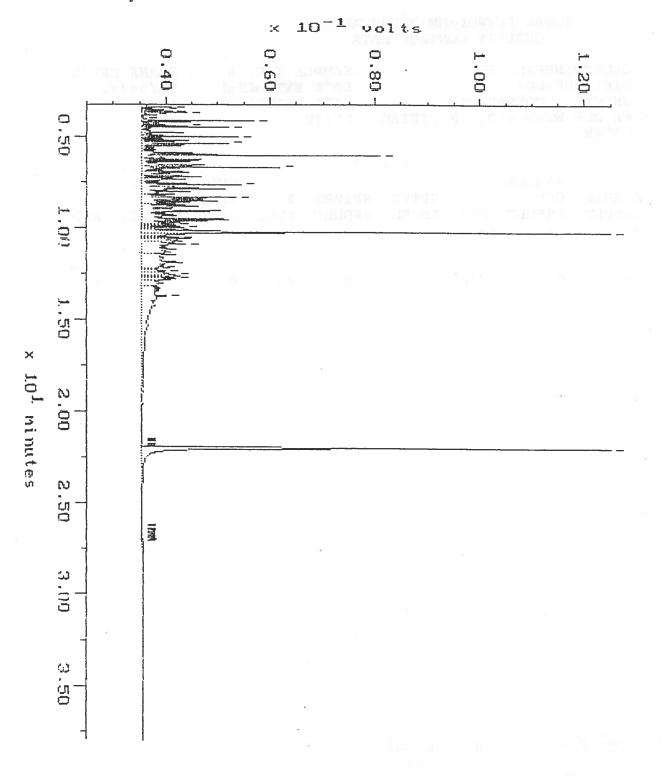
SAMPLE DUP. DUP.
SAMPLE DUP. SPIKE SPIKED % SPIKED %
COMPOUND RESULT RESULT RPD ADDED RESULT REC. RESULT REC. RPD

HYDROCARBONS N/A N/A N/A 100 101 101 N/A N/A

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

DD O TD OFF STREET	ANALYZED :	12/04/92 12/04/92 mg/L
--------------------	------------	------------------------------

	COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
33	PETROLEUM HYDROCARBONS	<20	N/A	N/A	10	7.8	78	8.3	83	6

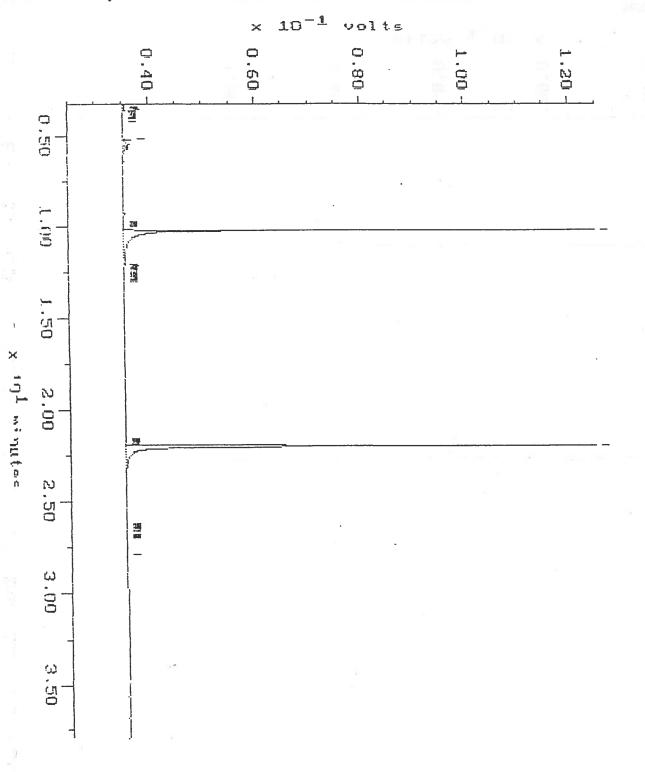

EPA 8015 Modified

Sample: 9212-008-1 Acquired: 04-DEC-92 18:01

Channel: DEMITRI
Method: H:\BRO2\MAXDATA\SERGE-D\FUEL1294

Filename: 1204SD10 Operator: ATI

Inj Vol: 1.99



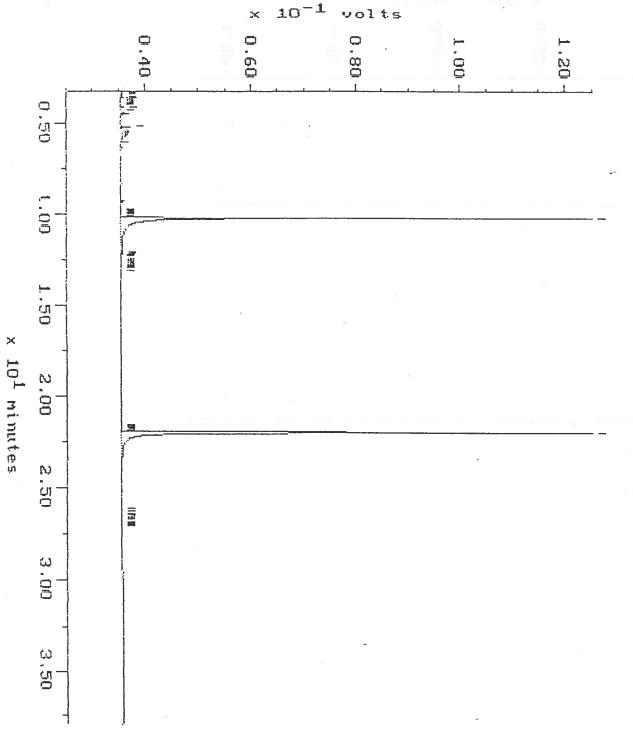
Sample: 9212-003-2 Acquired: 04-DEC-92 18:48

Channel: DEMITRI
Method: H:\BKO2\MAXDATA\SERGE-D\FUEL1204

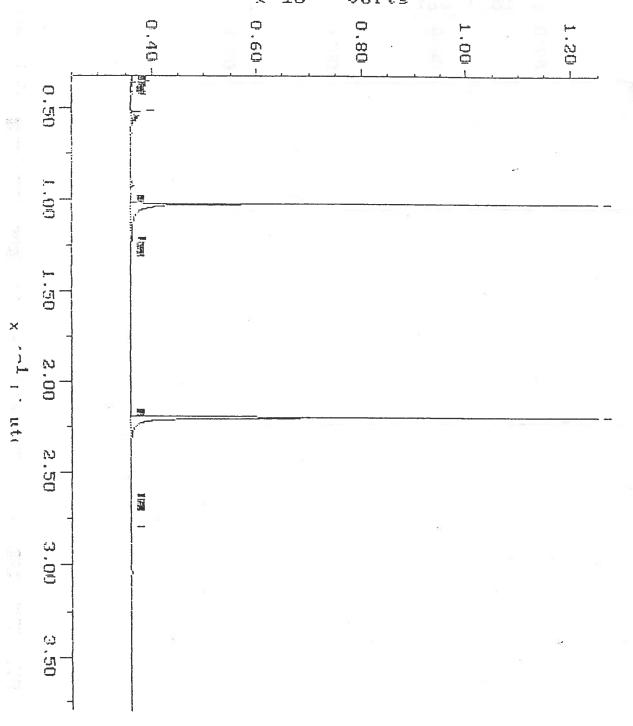
Filename: 12043011 Operator: All

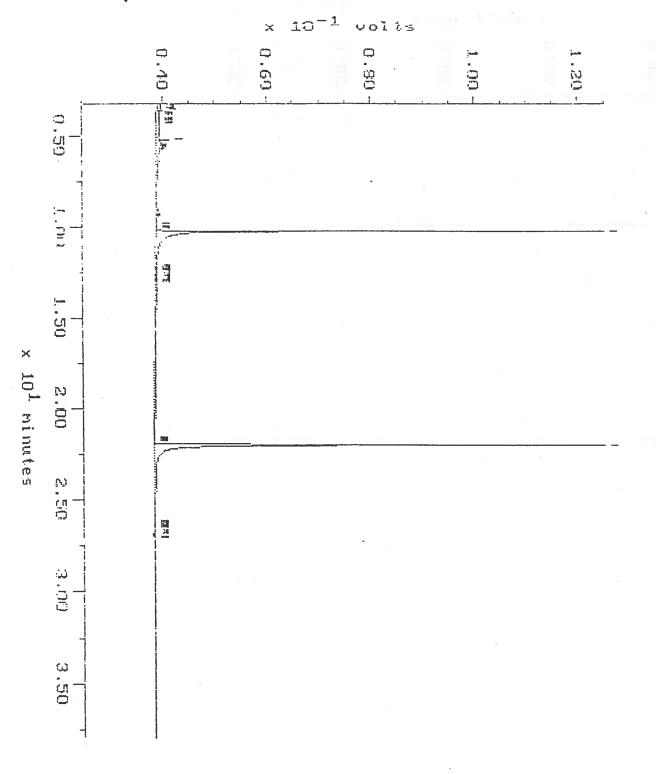
Inj Vol: 1.99

Sample: 9212-908-3 Acquired: 04-DEC-92 19:35


Filename: 1294SD12 Operator: All

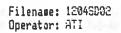
Inj Vol: 1.00

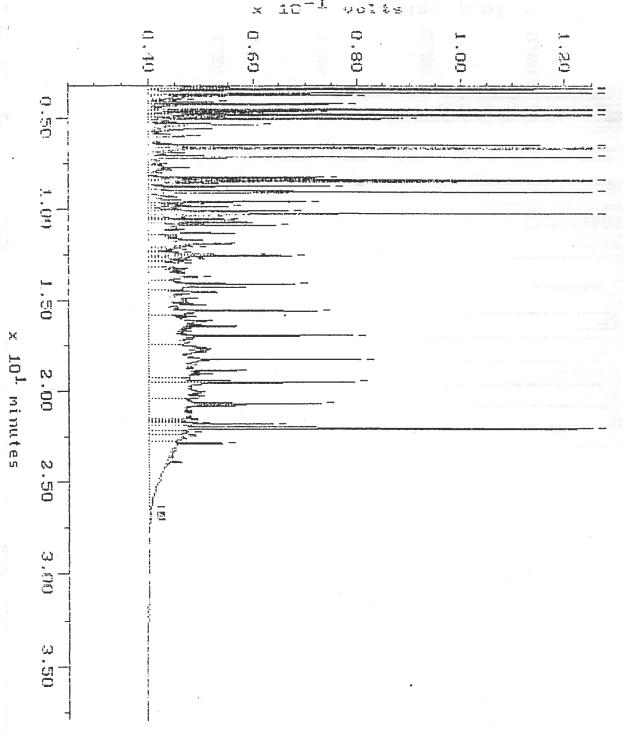

Channel: DEMITRI
Method: H:\BKO2\MAXDATA\SERGE-D\FUEL1204



Sample: 9212-988-4 13:53 Chappel: DEMITRI Hechod: H:\kroz\maxData\SERGE-D\FUEL1294 Filename: 1294SD06 Inj Vol: 1.90

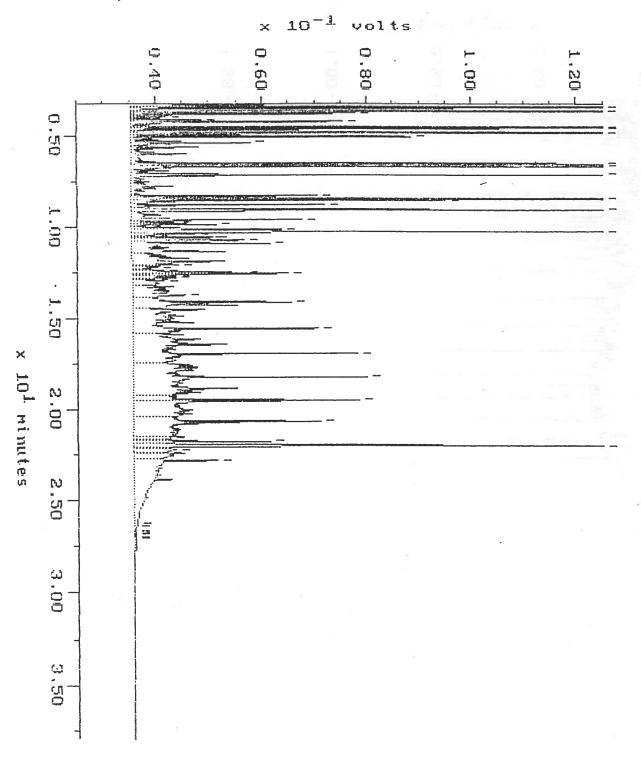
Sample: WRB12-4 Channel: DEMITRI
Acquired: 04-DEC-92 11:30 Method: H:\BRO2\MAXDATA\SERGE-D\FUEL1204
Inj Vol: 1.00


Filename: 12045D03 Operator: ATI



Continuing Calibration

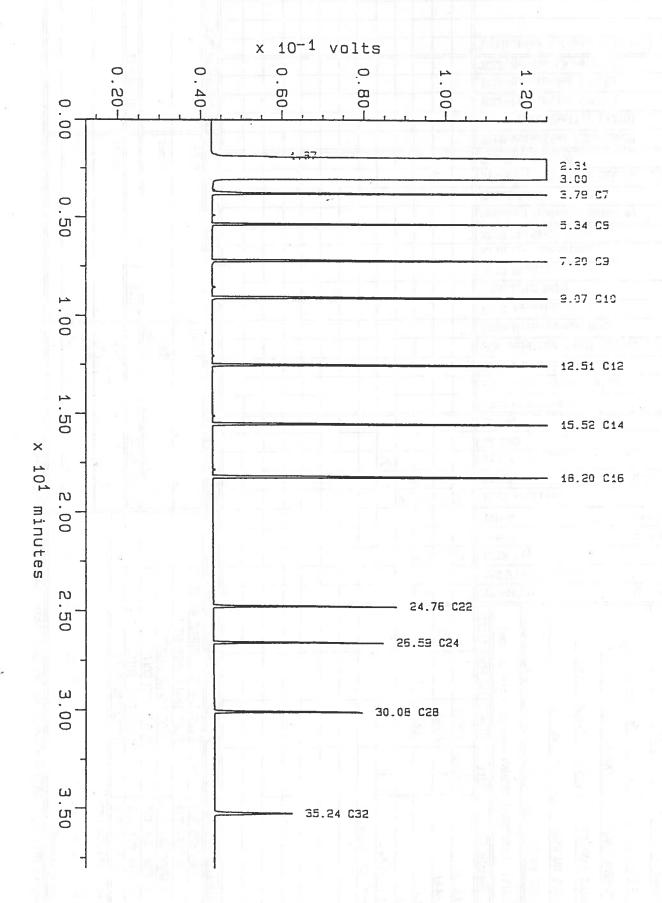
Sample: DG 400 Channel: DEMITRI
Acquired: 04-DED-92 10:45 Method: H:\BRO2\MAXDATA\SERGE-D\FUEL1604
Inj Vol: 1.00



Continuing Calibration

Filename: 1294SD14 Operator: ATI

Sample: DG 400 Channel: DEMITRI
Acquired: 54-DEC-92 21:58 Method: H:\BROZ\MAXDATA\SERGE-D\FUEL1204


Inj Vol: 1.50

Filename: 1102SD02

Inj Val: 1.00

Sample: ALKANE Channel: DEMITRI Filename: 1102
Acquired: O2-NOV-92 12:49 Method: L:\BRO2\MAXDATA\SERGE-D\FUELO902 Operator: ATI

Analytical Technologies, Inc.	lnc.	DATE:	12-192 P	Pageof		ATI ACCESSION	***	13-21	٧.
COMPANY: CAFUS FOR NOW	F NICON STORY								
D: Broad	7.70.0017	FU	FUELS	ORGANIC	COMPOUNDS	METALS	TCLP	OTHER	~
3.4.1.2 /5.4 いる (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	4	Lbh-D MV/OB Lbh-C MV/OB BEIX/Lbh-C compo MV/OB Lbh-HCID MV/OB	8015 modified 418.1 MA/OR 413.2 C.S.F.K.E. / 1.2.5	82A0 CCMS Volatiles 8200 CCMS Semivolatiles 8080 Pesticides/PCBs (by 8080) STD/lo level	8020 Aromatic VOCs 8310 HPLC PAHs 8040 Phenols 8140 OP Pesticides 8150 OC Herbicides	Metals (Indicate below *) Total Lead Priority Pollutant Metals (13) TAL Metals (23)	TCIP-Volatiles (ZHE-8240) TCIP-Semivolatiles (8270) TCIP-Pesticides (8150) TCIP-Herbicides (8150) TCIP-Metals (8 metals)	(A Moisture (please indicate)	Total # of Containers/sample
N. S. S. 12/1/2	1100 Hall	×			•				.(1)
	-	X	ン						(,)
	3	×	Х -		,				**
*	1310 1	×	X						rr;
1	Ą	×	X						Ŋ
L DA IV	۷.	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.							183
1		Ç.							1.116
						A			
								La	
Turnaround Time	Sample Receipt	pt	Relinquished	By:	Relinguished F	By:	Relinguished	By:	
STANDARD TAT /~	TOTAL # CONTAINERS RECVD	CVD //#	, , , , , , , , , , , , , , , , , , ,	, Date:		Date:	-		Date:
1 WEEK TAT	COC SEALS PRESENT?	7	1 A A	1/2/2/	7				
4 WORK DAY TAT	COC SEALS INTACT?	7		Time:		Time:			Time:
2 LIODY DAY TAT	RECEIVED COLDS	7	Received By:	7.11.20	Received By:		Received Bv:		
24 HOUR TAT	RECEIVED VIA:	10000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Date:		Date:			Date:
Special Instructions:			7 (15/21	210				
5/7	TO PARRE SHE	54ERWEN		Time:): (:)	Time:			Time:
* Metals needed:		0100	(10)	100					
	5550 Morehouse Drive, San Diego,	LA 92121	1476-004/61						

September 21, 1992

GeoEngineers

SEP 2 2 1992

GeoEngineers, Inc. 3410 154th Ave. N.E. Redmond, WA 98052

Attention : Barbara J. Sherupski

Project Number: 0161-205-R04

Project Name : Unocal Coupeville

On August 31, 1992, Analytical Technologies, Inc., received five water and four soil samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Please note that per client request, the metals sample was filtered after receipt. The sample had been preserved prior to filtering.

Senior Project Manager

Frederick W. Grothkopp Laboratory Manager

FWG/hal/ff

SAMPLE CROSS REFERENCE SHEET

CLIENT : GEOENGINEERS, INC.

PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL COUPEVILLE

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
		 	1961
9208-259-1	MW-9	08/28/92	WATER
9208-259-2	MW-11	08/28/92	WATER
9208-259-3	MW-5	08/28/92	WATER
9208-259-4	MW-12	08/28/92	WATER
9208-259-5	TRIP BLANK	N/A	WATER
9208 259 6	920828-1	08/28/92	SOIL
9208-259-7	920828-2	08/28/92	SOIL
9208-259-8	920828-3	08/28/92	SOIL
9208-259-9	920828-4	08/28/92	SOIL

---- TOTALS ----

MATRIX # SAMPLES
SOIL 4
WATER 5

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL COUPEVILLE

ANALYSIS	TECHNIQUE	REFERENCE	LAB
ЭЕТХ	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
PETROLEUM HYDROCARBONS	IR	WA DOE WTPH-418.1 MODIFIED	R
MOISTURE	AA/GF GRAVIMETRIC	EPA 7421 . CLP SOW ILMO1.0	R R

ATI - Renton ATI - San Diego ATI - Phoenix ?NR = ATI - Pensacola ATI - Fort Collins FC = SUB = Subcontract

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: GEOENGINEERS, : 0161-205-R04 : UNOCAL COUPEVI : REAGENT BLANK : WATER : 8020 (BETX)		DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : N/A : 09/04/92 : ug/L : 1
COMPOUND	9978.604,		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES			<0.5 <0.5 <0.5 <0.5	
st	JRROGATE PERCENT	RECOVERY		
BROMOFLUOROBEN	NZENE		86	

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: 0161-2 : UNOCAL : REAGEN : WATER	EINEERS, INC. 05-R04 COUPEVILLE T BLANK BETX)	DATE SAMPLED DATE RECEIVE DATE EXTRACT DATE ANALYZE UNITS DILUTION FAC	D : N/A PED : N/A D : 09/05/92 : ug/L
COMPOUND		An Alexan	RESULT	, a quae
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	Ž _a		<0.5 <0.5 <0.5 <0.5	
S	URROGATE	PERCENT RECOVERY		
3ROMOFLUOROBE	NZENE		88	

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: GEOENGINEERS, INC. : 0161-205-R04 : UNOCAL COUPEVILLE : MW-9 : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 08/28/92 : 08/31/92 : N/A : 09/04/92 : ug/L : 1
COMPOUND	. T.DJEET	RESULT	0.00000
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
su	RROGATE PERCENT RECOVERY		
BROMOFLUOROBEN	ZENE	91	

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

PROJECT # : 0 PROJECT NAME : U CLIENT I.D. : M SAMPLE MATRIX : W	EOENGINEERS, INC. 161-205-R04 NOCAL COUPEVILLE W-11 ATER 020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 08/28/92 : 08/31/92 : N/A : 09/04/92 : ug/L : 1
COMPOUND	111261	RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 3.1 <0.5 2.3	
SURRO	GATE PERCENT RECOVERY		

89

BROMOFLUOROBENZENE

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

PROJECT # : 0161-		DATE SAMPLE DATE RECEIV DATE EXTRAC DATE ANALYZ UNITS DILUTION FA	TED : 08/31/92 CTED : N/A MED : 09/05/92 : ug/L
COMPOUND	0.005.34	RESULT	Jule4
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		0.9 84 9.1 190 D	
SURROGATE	PERCENT RECOVERY		
BROMOFLUOROBENZENE		106	

D = Value from a ten fold diluted analysis.

PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: GEOENGINEERS, INC. : 0161-205-R04 : UNOCAL COUPEVILLE : MW-12 : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTEI DATE ANALYZED UNITS DILUTION FACTO	: 08/31/92 D : N/A : 09/04/92 : ug/L
COMPOUND	#AUE 14	RESULT	dimga.
BENZENE THYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	TOTAL STATE OF THE
. su	RROGATE PERCENT RECOVERY		
ROMOFLUOROBEN	ZENE	89	

CLIENT : GEOENGINEER PROJECT # : 0161-205-R0 PROJECT NAME : UNOCAL COUP CLIENT I.D. : TRIP BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	4 EVILLE	DATE RECEIVED : DATE EXTRACTED : DATE ANALYZED :	N/A 08/31/92 N/A 09/04/92 ug/L
COMPOUND	(139f)	RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SURROGATE PERCE	NT RECOVERY		N 772 F
BROMOFLUOROBENZENE		87	

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. #

: 9208-262-6

TROJECT # : 0161-205-R04

DATE EXTRACTED

: N/A

PROJECT NAME : UNOCAL COUPEVILLE

DATE ANALYZED

: 09/04/92

EPA METHOD : 8020 (BETX)

UNITS

: ug/L

SAMPLE MATRIX : WATER

::OMPOUND	90°C 0.002.93	SAMPLE RESULT	SPÍKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE COLUENE TOTAL XYLENES	B. 1	1.21 1.06 0.688	20.0 20.0 40.0	20.1 19.3 37.7	94 91 93	19.5 19.0 36.9	91 90 91	3 2 2

Recovery = (Spiked Result - Sample Result) x 100 Spike Concentration

----- x 100 Average Result

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. #

: 9209-018-1

PROJECT #

: 0161-205-R04

DATE EXTRACTED : N/A

PROJECT NAME

: UNOCAL COUPEVILLE

DATE ANALYZED : 09/05/92

EPA METHOD

: 8020 (BETX)

UNITS

: ug/L

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE	<0.5	20.0	18.3	92	19.2	96	5
TOLUENE	<0.5	20.0	18.9	95	19.8	99	5
TOTAL XYLENES	<0.5	40.0	37.4	94	39.5	99	5

% Recovery = (Spiked Result - Sample Result) x 100 Spike Concentration

RPD (Relative % Difference) = |(Spike Result - Dup. Spike Result)| x 100 Average Result

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04

SAMPLE I.D. # : BLANK SPIKE

DATE EXTRACTED : N/A

PROJECT NAME : UNOCAL COUPEVILLE EPA METHOD : 8020 (BETX)

DATE ANALYZED : 09/04/92 UNITS : ug/L : ug/L

SAMPLE MATRIX : WATER

							====
COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5	20.0 20.0 40.0	19.0 18.8 37.3	95 94 93	18.5 17.9 35.6	93 90 89	3 5 5

% Recovery = (Spiked Result - Sample Result) x 100 Spike Concentration

RPD (Relative % Difference) = |(Spike Result - Dup. Spike Result)| x 100 Average Result

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : BLANK SPIKE

PROJECT # : 0161-205-R04

DATE EXTRACTED : N/A
DATE ANALYZED : 09/05/92
UNITS : ug/L PROJECT NAME : UNOCAL COUPEVILLE EPA METHOD : 8020 (BETX) : ug/L

SAMPLE MATRIX : WATER

COMPOUND	. FOIG 57 (200 57 (200 57 (200 57 (200 57 (200 57 (200 57 (200) 57	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5	20.0 20.0 40.0	18.8 18.1 35.8	94 91 90	20.2 20.2 35.4	101 101 99	7 11 10

% Recovery = (Spiked Result - Sample Result) x 100 Spike Concentration

RPD (Relative % Difference) = |(Spike Result - Dup. Spike Result)| Average Result

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04 PROJECT NAME : UNOCAL COUPEVILLE CLIENT I.D. : REAGENT BLANK SAMPLE MATRIX : WATER TETHOD : 8015 (MODIFIED)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 09/02/92 DATE ANALYZED : 09/02/92 UNITS : mg/L DILUTION FACTOR : 1	
COMPOUND	RESULT	1 (12)
TUEL HYDROCARBONS TYDROCARBON RANGE TYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE	On
TUEL HYDROCARBONS IYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL	
GIRDOGAME, DEDGERM DEGGYEDIA		

SURROGATE PERCENT RECOVERY

-TERPHENYL 119

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04 PROJECT NAME : UNOCAL COUPEVILLE CLIENT I.D. : MW-9 SAMPLE MATRIX : WATER METHOD : 8015 (MODIFIED)	DATE SAMPLED : 08/28/92 DATE RECEIVED : 08/31/92 DATE EXTRACTED : 09/02/92 DATE ANALYZED : 09/03/92 UNITS : mg/L DILUTION FACTOR : 1
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE

<1

C12 - C24

DIESEL

FUEL HYDROCARBONS

HYDROCARBON RANGE HYDROCARBON QUANTITATION USING

SURROGATE PERCENT RECOVERY

O-TERPHENYL 97

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04 PROJECT NAME : UNOCAL COUPEVILLE CLIENT I.D. : MW-11 SAMPLE MATRIX : WATER METHOD : 8015 (MODIFIED)	DATE RECEIVED: DATE EXTRACTED: DATE ANALYZED: UNITS:: DILUTION FACTOR:	09/03/92 mg/L 1
COMPOUND		97.004
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE	
FUEL HYDROCARBONS AYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY		
O-TERPHENYL	99	

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

PROJECT NAM CLIENT I.D. SAMPLE MATR METHOD	: 0161-205-R04 E : UNOCAL COUPEVILLE : MW-5	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 08/28/92 : 08/31/92 : 09/02/92 : 09/03/92 : mg/L : 1
COMPOUND	100 (200)	RESULT	
FUEL HYDROCA HYDROCARBON HYDROCARBON		11 C7 - C12 GASOLINE	
FUEL HYDROCA HYDROCARBON HYDROCARBON		3 C12 - C24	PRO PRESIDENTE DE LA PROPE PROPERTO DE PARTICIPATOR DE PARTICI
	SURROGATE PERCENT RECOVERY		

O-TERPHENYL

94

D 50

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT 'ROJECT # 'ROJECT NAM CLIENT I.D. SAMPLE MATR 'ÆTHOD	E : UNOCAL COUPEVILLE : MW-12	DATE RECEIVED : DATE EXTRACTED : DATE ANALYZED :	08/28/92 08/31/92 09/02/92 09/03/92 mg/L
COMPOUND	#DJ1987793 x 1	RESULT	1900
FUEL HYDROC IYDROCARBON HYDROCARBON		<1 C7 - C12 GASOLINE	
UEL HYDROCARBON HYDROCARBON		<1 C12 - C24 DIESEL	
(2)	SURROGATE PERCENT RECOVERY		

)-TERPHENYL 95

FUEL HYDROCARBON ANALYSIS CONTINUING CALIBRATION STANDARDS SUMMARY

CLIENT : GEOENGINEERS, INC. DATE SAMPLED : N/A
PROJECT # : 0161-205-R04 DATE RECEIVED : N/A
PROJECT NAME : UNOCAL COUPEVILLE DATE EXTRACTED : N/A
CLIENT I.D. : 400 PPM CCV DATE ANALYZED : 09/03/92

SAMPLE MATRIX: WATER

WETHOD: 8015 (MODIFIED)

DILUTION FACTOR

METHOD : 8015 (MODIFIED) DILUTION FACTOR : 1

COMPOUND % DIFFERENCE

FUEL HYDROCARBONS QUANTITATED USING GASOLINE 1

FUEL HYDROCARBONS QUANTITATED USING DIESEL 15

FUEL HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME METHOD SAMPLE MATRIX	: 0161-2 : UNOCAL : 8015 (8015 (MODIFIED)			SAMPLE I.D. # : 9208-262-7 DATE EXTRACTED : 09/02/92 DATE ANALYZED : 09/02/92 UNITS : mg/L				
COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
FUEL HYDROCARBONS (GASOLINE)	<1.0	<1.0	NC	50.0	42.2	84	44.6	89	6

NC = Not Calculable.

```
Recovery = (Spiked Result - Sample Result)

Spike Concentration

Result - Dup. Spike Result |

Average Result
```


FUEL HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : BLANK SPIKE PROJECT # : 0161-205-R04 DATE EXTRACTED : 09/02/92 PROJECT NAME : UNOCAL COUPEVILLE DATE ANALYZED : 09/02/92 METHOD : 8015 (MODIFIED) UNITS : mg/L

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SPIKE	SPIKED RESULT	%. REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
FUEL HYDROCARBONS (GASOLINE)	<1.0	50.0	40.4	81	41.0	82	

% Recovery = (Spiked Result - Sample Result)
Spike Concentration

.

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

ATI I.D. #	CLIENT I.D.	TOTAL PETROLEUM HYDROCARBONS	All	TOTAL PETROLEUM HYDROCARBONS	*
9208-259- 9208-259- 9208-259- 9208-259- REAGENT BLANK	920828-1 920828-2 920828-3 920828-4	59 100 140 69 <20		57 100 130 72 <20	TOUR DESIGNATION

Reanalyzed after second aliquot of silica gel added.

ATI I.D. # 9208-259

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME METHOD SAMPLE MATRIX	: 0161-2 : UNOCAL	SINEERS, 05-R04 COUPEVI WTPH-41	LLE	ODIFIED	SAMPLE DATE EX DATE AN UNITS	TRACTE	D : 09/	01/92	
COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% TEC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
PETROLEUM HYDROCARBONS	N/A	N/A	N/A	100	104	104	N/A	N/A	N/A

N/A

N/A

% Recovery = (Spiked Result - Sample Result) x 100 Spike Concentration RPD (Relative % Difference) = |(Spike Result - Dup. Spike Result)| x 100 Average Result

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : 9208-255-1
PROJECT # : 0161-205-R04 DATE EXTRACTED : 09/01/92
PROJECT NAME : UNOCAL COUPEVILLE DATE ANALYZED : 09/01/92
METHOD : WA DOE WTPH-418.1 MODIFIED UNITS : mg/Kg

SAMPLE MATRIX : SOIL

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	DUP. % SPIKED REC. RESULT	DUP. % REC. R	PD
PETROLEUM AYDROCARBONS (MOTOR OIL)	<20	<20	NC	400	425	106 415	104 2	

IC = Not Calculable.

```
Recovery = (Spiked Result - Sample Result)

Spike Concentration

'PD (Relative % Difference) = |(Spike Result - Dup. Spike Result)|

Average Result
```


PETROLEUM HYDROCARBONS ATI I.D. # 9208-259

113

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : BLANK SPIKE
PROJECT # : 0161-205-R04 DATE EXTRACTED : 09/01/92
PROJECT NAME : UNOCAL COUPEVILLE DATE ANALYZED : 09/01/92
METHOD : WA DOE WTPH-418.1 MODIFIED UNITS : mg/Kg

SAMPLE MATRIX : SOIL

SAMPLE DUP. SPIKE SPIKED % SPIKED %
COMPOUND RESULT RESULT RPD ADDED RESULT REC. RESULT REC. RPD

(MOTOR OIL) <20 N/A N/A 400 447 112 451

% Recovery = (Spiked Result - Sample Result)

Spike Concentration

METALS ANALYSIS

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-205-R04

MATRIX : WATER

PROJECT NAME : UNOCAL COUPEVILLE

ELEMENT

DATE PREPARED

DATE ANALYZED

09/09/92

09/11/92

METALS ANALYSIS DATA SUMMARY

PROJECT # :	GEOENGINEERS, INC. 0161-205-R04 UNOCAL COUPEVILLE		ATRIX : WATER NITS : mg/L	
ATI I.D. #	CLIENT I.D.	LEAD 12 to 1 to 2/4 E		TV M
9208-259-1 REAGENT BLANK	MW-9	<0.015* <0.0030		- (3)

^{*} Sample diluted due to matrix interference.

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME	: GEOENGINER : 0161-205-F : UNOCAL COU	204			MATRIX :	mg/L	
ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	-RPD	SPIKED RESULT	SPIKE ADDED	% REC
EAD	9208-259-1	<0.015	<0.015	NC	0.0324	0.025	130F
LEAD	BLANK SPIKE	<0.0030	N/A	N/A	0.0208	0.025	83

? = Out of limits due to matrix interference.
VC = Not Calculable.

Recovery = (Spike Sample Result - Sample Result)

Spike Concentration x 100

_PD (Relative % Difference) = (Sample Result - Duplicate Result)
Average Result

GENERAL CHEMISTRY ANALYSIS

CLIENT : GEOENGINEERS, INC.

MATRIX : SOIL

MOISTURE

PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL COUPEVILLE

09/02/92

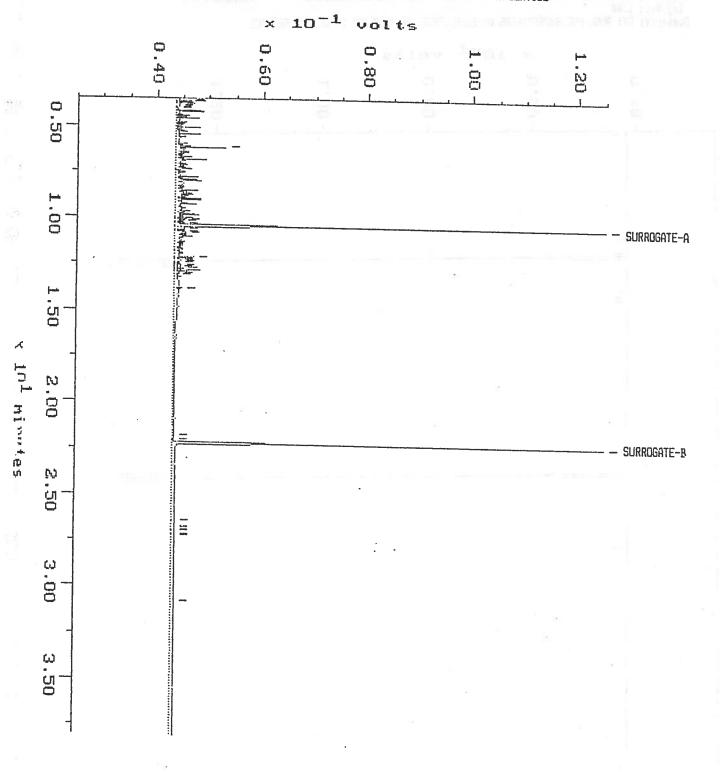
GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. MATRIX : SOIL

PROJECT # : 0161-205-R04

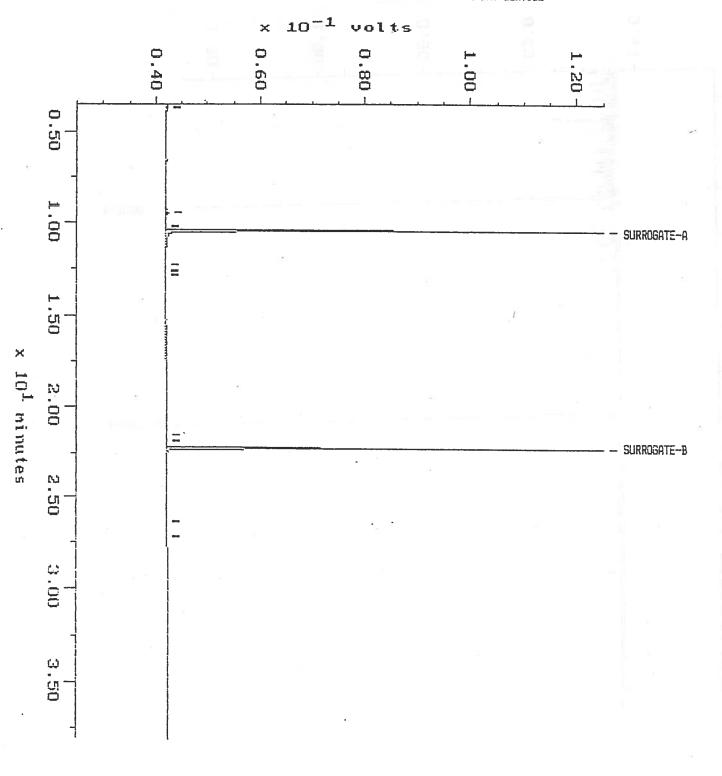
PROJECT NAME : UNOCAL COUPEVILLE INTTS . 2

			MII3 . 6	
ATI I.D. #	CLIENT I.D.	MOISTURE		*.
3 27	and present that Y			
9208-259-6	920828-1	13		
9208-259-7	920828-2	8.4		
9208-259-8	920828-3	7.0		
9208-259-9	920828-4	9.9		

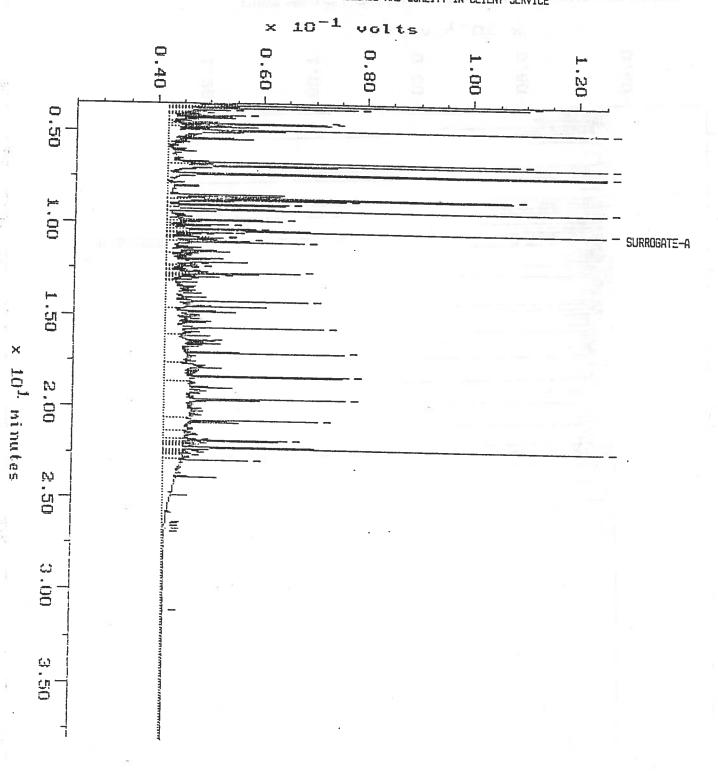


GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

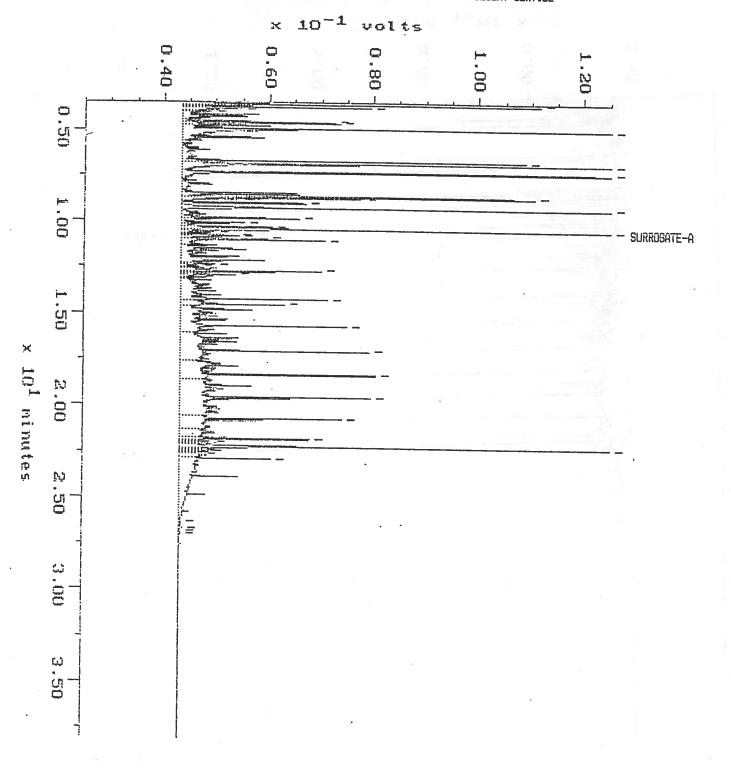
CLIENT PROJECT #	: GEOENGINEERS, 3 : 0161-205-R04	INC.			MATRI	X : SOII	4 5 5 55	
PROJECT NAME	: UNOCAL COUPEVII	LE	UNITS : %					
PARAMETER	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC	
MOISTURE	9208-254-19	15	16	6	N/A	N/A	N/A	

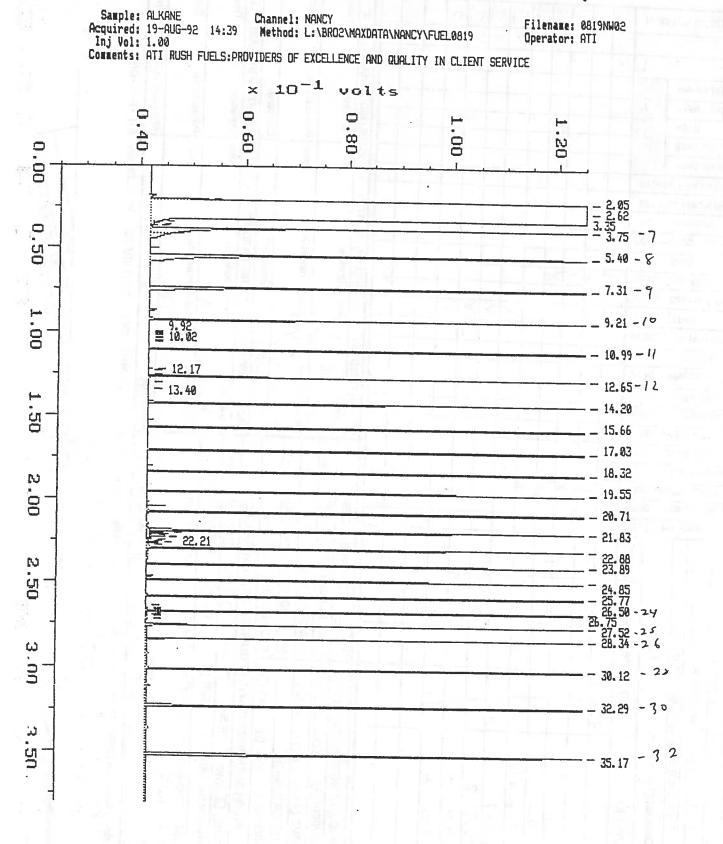

Filename: 0902NN23 Operator: ATI

Sample: 9208-259-3 Channel: NANCY
Acquired: 03-SEP-92 6:40 Method: L:\BRO2\MAXDATA\NANCY\FUEL0902 Dpe
Inj Vol: 1.00
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE


Filename: 0902NW03 Operator: ATI

Sample: WRB92 Channel: NANCY Fi
Acquired: 62-SEP-92 14:28 Method: L:\BRO2\\AXDATA\\NANCY\FUEL0962 Op
Inj Vol: 1.00
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE


Filename: 0902NWC2 Operator: ATI


Sample: DG 400 Channel: NANCY
Acquired: 02-SEP-92 13:37 Method: L:\BRO2\MAXDATA\NANCY\FUEL0902 OF
Inj Vol: 1.00
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

Filename: 0902NW25 Operator: ATI

Sample: DG 400 Channel: MANCY
Acquired: C3-SEP-92 8:15 Method: L:\BRD2\MAXDATA\NANCY\FUEL0902 Or
Inj Vol: 1.00
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

(MZIIJIM)	< T		00	N	<u> </u>	112	jest et		1.	:. ::	Date:	e,	Time:	Date:	Analytical Technologies, Inc.	nr.	
NUMBER OF CONTAINERS	11	J. W.	00			10		+	6	-		6		0.0-1	jies,	Ď.	
전 마이크 크-100m 1				17	2	> >		+-11	انز			M			99	NA I	
10000 COMPOSIL	X			7.4				4-11	D BY			BECEIVED BY: (LAB)			BCh.	-ATI • Pink • ORIGINATOR	
Metals (8)							1	4-41	RELINGUISHED	ru	ame:	. 2		Printed Name	la T	~	
8270 Rethiddes (2)					_		↓ 		힣	Erre:	Printed Name	Company	Signature	8	ly lie	id.	
0728			100	1_			+-+-	+		Signature:	Prim		Sign	Prin	Ang	ATI	
TX3-HZ 0+28						-	+-+	+-1	2. F			6		Date:		- Kut	1/7
8080 Pesticide (4)			1-1-	-			+-+	++1	200	Time:	Date:	- 6	투	ă		Sans	1//.
(E1) stateM Instulled ythoriq			+-+-		$\left\{ -\right\}$	-	+++	11	100				12. A			White, Canary	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
EP TOX Metals (8) EP EXT			++				++		BY							₹	1/1/8
8nutsioM %			┼┼						별		œ ·		la l	96		岩	: B
(ETT DAW) HHHAM (BAC TATA) (H97) 1.814 (H9	1>		+-+			-			RELINQUISHED BY	ë	Printed Name	arry:	RECEIVED Signature:	Printed Name	any.	DISTRIBUTION!:	RECEIVED BY: (1 An-
10C 9060 DOL	1		- 	+	-		11		Ĭ	Signature	Page	Company	Signature	i i	Company	E	S. T. S.
(pagiboM) 2108	+		47	1			1			S.	E.	-			30	- SE	
(Hq1) 1.814 W HO.1 Grease & Oil	_		++	\rightarrow	됳	X	X			Time:	o Date:		Time:	Date:	1	1	Time:
WDOE PAHNH (WAC 173) A	-	+-+	++						188	1 4					-	8	
150 Herbicides		+-	-						٤	2-5	- 3	11			1	474	// =
140 Phosphate Pesticides		11								Signature:	ر يو	D	RECEIVED BY:	¥ jë	7	Sante (206)228-8335 . Pensacola (904)474-1001	1
080 PCB's ONLY	8	1-1	$\dashv \dashv$						-11	2 : a	Printed Name:	È	NE SE	Printed Name	1.//V	acola (:eup
080 Pesticides & PCB's	8	1-1				1-1			-11	Signature:	Palu	Company:	RECEIVE Signature:	N E	Company	See - Crown	
310 HPLC PNA	8				\bot	1-1			41	H 18-4	ع <u>اة (ا</u>		E O	- 10	1	48	
STO GCMS BNA	8				+	+-1			-11	u	KK		×	1	NI	- l · g · (
OF CCW2 Aolatiles	8				_				41	10		- 3	} - _⊊		31	4 (206)228-83	A
NO BETX ONLY		식적	\geq	14	-	+		1-1-	=	RS RS		P		10	<u> </u>	[출출 [
seliteloV otemotA OS		1-1		-	+	+-					돌 정	15	일 본 교	18	7	3 5	/ i.
selfasioV batanagolaH 01	_	-			-					H IN	Z 2	3	THOJECIS ☐ 72 HRS ☐ 1 WK	10	6	1 章 少	Same:
	CAB 10	- 12	1-1	15	ا و	- W	5			# S SAMPLE RECEIPT TOTAL NUMBER OF CONTAINERS	COC SEALS/INTACT? Y/N/NA RECEIVED GOOD COND/COLD	RECEIVED VIA: (P.1477)	-1 1	TAKA - VILLAN BECO	7	J. 3.	De
1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \		1	1	1.1	-			++	1	A SH	A S	A	三星	3	4	18/3	
1	MATRIX	Write r	100	13	7	1	18		-	WBE	SAIN	2	FOR RUS		٠,٠	38.7	,1,5
S EM	M.	3 3	Witer	MATA			V	1-1		N	SEA	2		3	1	7 \$ 37	
N. Suite 101 Renton, WA 98055 (206)228-8333 R. Scillere Collection (1974) 11.0										MINITED IN	8 2	ECE	E E	E	4	ATILAbs: San Diego (619)458-9141 · Phoenix (602)438-1530	<i>j</i>
	TAME			1 1				1	_		0 4	-	S REQUIR	_	L	9 1	
SAMPLED BY:	14.	27								治一	1.1		S D	YES []	P	(대	3 _
WA 98	DATE	8/28/92	+	-	-	-	13			17	Congarille	8	7 =	7	Z	원 5살,	
SAL SAL	0	2								No.	X		(RUSH)	8	/	28.9	5 g
B P C C Bank	- Si	-	++	1.						MA /	日三日	YES 🔯	빞	ĕ ₹	ي .	3 55	- V =
1 1 2 2 2 3 1 0 8		-		IJ				_	-	E	HO HE	YES	S R	DI P	/	2 9	43.P
	∧ ∰		1 1	1/2		11/2	川州			벌	\$ 3 5 5	-	Z K	A IS	11-	51 B	17 E
SW, Suite 101 Rent SPC LDC V SPC CO SPC SAMPLE DISPO OSAI @ \$5.00 each	_		11	1/4	_	ر ا او	나다	1.		PROJECT INFORMATION 1 ASK		5		F I	2	San	Void - 2 100
SER	SAMPLEID		110	4 4	1	20	22			1 3	AE: (ij	PH A	AN T	Z		>
Avenue S MANAGE S: St. S: St. S: St.	\$	0		- 1	12	12	20		l	=		J E	 \ €	H IS	8	N 3 =	
SAMPLE DISPOSAI @\$5.00 each	Ŋ		17	1	222	12	20828 20828			11.1			ĮŽ	ATE	5 — _	S E	
SEO Naches Avenue SW, Suite 101 Renton,WA 98055 (206)228-8335 PROJECT MANAGER: SCILLCKC T SYSCILL ADDRESS: SALL CONTROLL TO THE TOWN SAMPLED BY: SAMPL		MM	- NY	- MM	21	20823					PROJECT NAME: U/O/O/ 100-60-100-100-100-100-100-100-100-100-1	ONGOING PROJECT?	PRIOR AUTH	GREATER THAN 24 HR. NOTICE? YES ☐	٠ کې ټا	ATILAbs: San Diego (619)458-9141 - Phoenix (602)438-1530 - Saattle (206)	
S S S S S S S S S S S S S S S S S S S		2	7	귀 '	92/	9	0		_	لسال	ماماه	-10	1_1_	1-1-	7	#	F
) vi															,	• •	l

October 8, 1991

GeoEngineers

STREET SHEET STREET

GeoEngineers 8410-154th Ave N.E. Redmond, WA 98052

Attention: Chuck Lindsay

Project Number: 0161-205-R04

Project Name: Unocal - Coupeville

On October 3, 1991, Analytical Technologies, Inc., received 6 soil samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Bob A. Olsiewski Project Manager

Frederick W. Grothkopp

Laboratory Manager

FWG/hal/cn

SAMPLE CROSS REFERENCE SHEET

CLIENT : GEOENGINEERS
PROJECT # : 0161-205-R04

PROJECT NAME: UNOCAL - COUPEVILLE

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
_			
9110-040-1	911002-1	10/02/91	SOIL
9110-040-2	911002-2	10/02/91	SOIL
9110-040-3	911002-3	10/02/91	SOIL
9110-040-4	911002-4	10/02/91	SOIL
9110-040-5	911002-5	10/02/91	SOIL
9110-040-6	911002-6	10/02/91	SOIL

---- TOTALS ----

MATRIX # SAMPLES
----SOIL 6

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

PROJECT : 161-005-ROAD
PROJECT NAME CHICAL - OCHERVILLE
CHICAGO PERMIT

ANALYTICAL SCHEDULE

CLIENT : GEOENGINEERS PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL - COUPEVILLE

ANALYSIS	TECHNIQUE	REFERENCE	LAB
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
PETROLEUM HYDROCARBONS	IR	EPA 418.1	R
MOISTURE	GRAVIMETRIC	METHOD 7-2.2	R

R = ATI - Renton SD = ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

VOLATILE ORGANIC COMPOUNDS DATA SUMMARY

CLIENT	: GEOENGINEERS, INC.	DATE SAMPLED	: N/A
PROJECT #	: 0161-205-R04	DATE RECEIVED	: N/A
PROJECT NAME	: UNOCAL - COUPEVILLE		: 10/04/91
CLIENT I.D.	: REAGENT BLANK	DATE ANALYZED	: 10/04/91
SAMPLE MATRIX	: SOIL	UNITS	: mg/Kg
EPA METHOD	: 8020 (BETX)	DILUTION FACTOR	: 1
DECEMBER DAGED	ON DRIV CONTAIN		

RESULTS BASED ON DRY WEIGHT

COMPOUNDS		RESULTS	,,	words.
BENZENE ETHYLBENZENE		<0.025 <0.025		
TOLUENE		<0.025 <0.025 <0.025		
TOTAL XYLENES		<0.025		

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE 98

ATI I.D. # 9110-040-3

VOLATILE ORGANIC COMPOUNDS DATA SUMMARY

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD RESULTS BASED	: 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR % MOISTURE	: 10/02/91 : 10/03/91 : 10/04/91 : 10/05/91 : mg/Kg : 1 : 11
COMPOUNDS	27 (0830)	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	250.0> 850-0> -20-1>	<0.025 <0.025 <0.025 <0.025	144 5 Mil. 144 5 Mil. 144 5 Mil. 144 5 Mil. 144 5 Mil. 144 5 Mil. 144 5 Mil.

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE 90

ATI I.D. # 9110-040-6

VOLATILE ORGANIC COMPOUNDS DATA SUMMARY

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD RESULTS BASED	: 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR % MOISTURE	: 10/02/91 : 10/03/91 : 10/04/91 : 10/05/91 : mg/Kg : 1 : 12
COMPOUNDS	874V-38	RESULTS	80M VAXO
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE 94

VOLATILE ORGANIC COMPOUNDS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : 9110-054-1
PROJECT # : 0161-205-R04 DATE EXTRACTED > 10/04/91
PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 10/04/91
EPA METHOD : 8020 (BETX) UNITS : mg/Kg

SAMPLE MATRIX : SOIL

COMPOUNDS	SÁMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE	<0.025	1.00	0.650	65	0.672	67	3
TOLUENE	<0.025	1.00	0.710	71	0.740	74	4
TOTAL XYLENES	<0.025	2.00	1.45	73	1.54	77	6

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT :	GEOENGINEERS, INC.	DATE	SAMPLED	:	N/A
PROJECT # :	0161-205-R04	DATE	RECEIVED	:	N/A
PROJECT NAME :	UNOCAL - COUPEVILLE	DATE	EXTRACTED	:	10/04/91
CLIENT I.D. :	REAGENT BLANK	· DATE	ANALYZED	:	10/04/91
SAMPLE MATRIX :	SOIL	UNIT	S	:	mg/Kg
EPA METHOD :	8015 (MODIFIED)	DILU	TION FACTOR	:	1

COMPOUND		RESULT -	
FUEL HYDROCARBONS		<5	
HYDROCARBON RANGE		C7 - C12	
HYDROCARBON QUANTITATION U	JSING	GASOLINE	
3 11 30 2			
FUEL HYDROCARBONS		<5	
HYDROCARBON RANGE		C12 - C24	
HYDROCARBON QUANTITATION (JSING	DIESEL	

ATI I.D. # 9110-040-1

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT	:	GEOENGINEERS, INC.	DATE	SAMPLED	:	10/02/91
PROJECT #	:	0161-205-R04	DATE	RECEIVED	:	10/03/91
PROJECT NAME	:	UNOCAL - COUPEVILLE	DATE	EXTRACTED	:	10/04/91
CLIENT I.D.	:	911002-1	DATE	ANALYZED	:	10/05/91
SAMPLE MATRIX	:	SOIL	UNIT	S	:	mg/Kg
EPA METHOD	•	8015 (MODIFIED)	DILIT	TON FACTOR	•	1

COMPOUND	RESULT
 FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C12 - C24 DIESEL

ATI I.D. # 9110-040-3

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT	:	GEOENGINEERS, INC.	DATE	SAMPLED	:	10/02/91
PROJECT #	:	0161-205-R04	DATE	RECEIVED	:	10/03/91
PROJECT NAME	:	UNOCAL - COUPEVILLE	DATE	EXTRACTED	:	10/04/91
CLIENT I.D.	:	911002-3	DATE	ANALYZED	:	10/05/91
SAMPLE MATRIX	:	SOIL	UNIT	S	:	mg/Kg
EPA METHOD	:	8015 (MODIFIED)	DILU	TION FACTOR	:	1

COMPOUND	contesta	RESULT	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION	USING	<5 C7 - C12 GASOLINE	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION	USING	<5 C12 - C24 DIESEL	

ATI I.D. # 9110-040-5

FUEL HYDROCARBON ANALYSIS DATA SUMMARY

	GEOENGINEERS, INC.	DATE SAMPLED	: 10/02/91
	0161-205-R04	DATE RECEIVED	: 10/03/91
	UNOCAL - COUPEVILLE	DATE EXTRACTED	: 10/04/91
CLIENT I.D. :		DATE ANALYZED	: 10/05/91
SAMPLE MATRIX:		UNITS	: mg/Kg
EDY MEMBOD .	OO15 (MODIFIED)	DITTIMITANT TIL ATTAN	

EPA METHOD : 8015 (MODIFIED) DILUTION FACTOR : 1

COMPOUND	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C12 - C24 DIESEL

FUEL HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. # : 9110-054-1
PROJECT # : 0161-205-R04 DATE EXTRACTED : 10/04/91
PROJECT NAME : UNOCAL - COUPEVILLE DATE ANALYZED : 10/04/91
EPA METHOD : 8015 (MODIFIED) UNITS : mg/Kg

SAMPLE MATRIX : SOIL

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESEL	<5.0	500	430	86	445	89	3

RPD (Relative % Difference) = |(Spike Result - Dup. Spike Result)|
----- x 100
Average Result

GENERAL CHEMISTRY RESULTS

CLIENT : GEOENGINEERS, INC. DATE EXTRACTED : 10/03/91 PROJECT # : 0161-205-R04 DATE ANALYZED : 10/03/91

PROJECT NAME: UNOCAL - COUPEVILLE MATRIX : SOIL

UNITS : mg/Kg

ATI I.D. #	CLIENT I.D.	PETROLEUM HYDROCARBONS	ATTO MALA
9110-040 9110-040-1 9110-040-2	REAGENT BLANK 911002-1 911002-2	230	MULTONO CARBONIA
9110-040-3 9110-040-4 9110-040-5 9110-040-6	911002-3 911002-4 911002-5 911002-6	330 260 420 220	

GENERAL CHEMISTRY QUALITY CONTROL

CLIENT : GEOENGINEERS, INC. SAMPLE MATRIX : SOIL

PROJECT # : 0161-205-R04

PROJECT NAME: UNOCAL - COUPEVILLE

PARAMETER	UNITS	ATI	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
PETROLEUM HYDROCARBONS	mg/Kg	9110-040-1	170	180	6	420	250	100

DATE (4/14/4/ PAGE OF)

Analytical Technologies, Inc.

иливен о соитыиеня 9110-185 11 2 Metals (8) TOLPONLY 8150 Herbicides (2) 8270 8240 ZH-EXT (4) esticide (4) Chain of Custody LABORATORY NUMBER: Priority Pollutant Metals (13) EP TOX Medis (8) EP EXT enulsioM % ANALYSIS REQUEST XOT 9020 **DOT** 0906 (Modified) 2108 Grease & Oil 413.2 (HGT) 1.814 WDOE PAHHH (WAC 173) Herbicides 0218 0118 Phosphate Pesticides PCB's ONLY 0808 0808 Pesticides & PCB's HPLC PNA 0158 8270 GCMS BNA GCMS Volatiles 8540 BETX ONLY 8020 8050 Aromatic Volatiles 0108 Halogenated Volatiles TIME MATHIX LABID 4 m 3 560 Naches Avenue SW, Sulte 101 Renton, WA 98055 (206)228-8335 J3(1) ☐ Return SAMPLE DISPOSAL INSTRUCTIONS Charles S. Lindsay 20 1230 (230 (230 SAMPLED BY: Ave NE DATE 192101 XATI Disposal @ \$5.00 each 154th , UA PHONE: 86 (- 6000) PROJECT MANAGER: SAMPLEID ADDRESS: 8410 COMPANY: SEI Rod mond 911012 - 3 1 911012-2 911012-1 7110112

PROJECT INFORMATION	SAMPLERECEIPT	RELINQUISHED BY:	1. RELINQUISHED BY:	SELINOUISHED BY:	ВУ: 3.
7	TOTAL NUMBER OF CONTAINERS 8	4	Time: Signature:	Time: Signature:	Time:
PROJECT NAME: Unick of / Course : 16 COC SEALS/INTACT? YANNA	COC SEALS/INTACT? Y/N/NA U	" Malla D. Kush, 0745	45		
PURCHASE ORDER NUMBER:	RECEIVED GOOD COND/COLD \	Printed Name:	Date: Printed Name:	Date: Printed Name:	Date:
ONGOING PROJECT? YES ☑ NO ☐ RECEIVED VIA:	RECEIVED VIA: COLLULAR	Charles Sithle, 10/15	Ų		
PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS	UIRED FOR BUSH PROJECTS	Company: CET	Company:	Company:	
TAT: ACCUMANT TOWARD (RUSH) TO 24HR TO 48 HBS	4HR TET 48 HBS TO 72 HBS TO 1 WK	HECEIVED BY:	1, RECEIVED BY:	2 RECEIVED BY: (LAB)	(LAB) 3.
GREATER THAN 24 HR. NOTICE? YES	7 2	Signatura:	Time: Signature:	Time: Signature:	Time:
		-1 $1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/$	₩O	46	
SPECIAL INSTRUCTIONS.	13 13 g 14 1	Printed Name:	Date: Printed Name:	Date: Printed Name:	Date:
TOTAL STANDS AST	5	U.I'ENNICKIO/14-0	10-		
Composed grans Gradelle		Jetter Mundermany: ATT-WA Company:	Company:	Analytical Technologies, Inc.	ologies, Inc.

GENERAL CHEMISTRY QUALITY CONTROL

CLIENT : GEOENGINEERS, INC.

SAMPLE MATRIX : SOIL

PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL/COUPEVILLE

PARAMETER	UNITS		SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
PETROLEUM HYDROCARBONS	mg/Kg	9110-183-21	8	8	0	260	250	100

% Recovery = (Spike Sample Result - Sample Result)
----- X 100
Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result)

----- X 100

Average Result

GENERAL CHEMISTRY RESULTS

CLIENT : GEOENGINEERS, INC.

PROJECT # : 0161-205-R04

PROJECT NAME : UNOCAL/COUPEVILLE

DATE EXTRACTED : 10/14/91

DATE ANALYZED : 10/14/91

MATRIX : SOIL

UNITS : mg/Kg

ATI I.D. #	CLIENT I.D.	PETROLEUM HYDROCARBONS	
	I A Ma	ENDRING TOWN IN EARL	
9110-185	REAGENT BLANK	<5 ·	
9110-185-1	911012-1	260	
9110-185-2	911012-2	180	
9110-185-3	911012-3	230	
9110-185-4	911012-4	49	

ANALYTICAL SCHEDULE

CLIENT : GEOENGINEERS
PROJECT # : 0161-205-R04

PROJECT NAME: UNOCAL - COUPEVILLE

ANALYSIS	TECHNIQUE	REFERENCE	LAB
8400.040000VIL			
PETROLEUM HYDROCARBONS	IR	EPA 418.1	R

R = ATI - RentonSD = ATI - San Die

SD = ATI - San Diego PHX = ATI - Phoenix

PNR = ATI - Phoenix
PNR = ATI - Pensacola

FC = ATI - Fort Collins

SUB = Subcontract

SAMPLE CROSS REFERENCE SHEET

CLIENT : GEOENGINEERS
PROJECT # : 0161-205-R04

PROJECT NAME: UNOCAL - COUPEVILLE

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX			
9110-185-1	911012-1	10/12/91	SOIL			
9110-185-2	911012-2	10/12/91	SOIL			
9110-185-3	911012-3	10/12/91	SOIL			
9110-185-4	911012-4	10/12/91	SOIL			

---- TOTALS ----

MATRIX # SAMPLES
SOIL 4

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GeoEngineers

October 15, 1991

OCT 17 1991

Reuting CSL

GeoEngineers 8410-154th Ave N.E. Redmond, WA 98052

Attention: Charles S. Lindsay

Project Number: 0161-205-R04

Project Name : Unocal - Coupeville

On October 14, 1991, Analytical Technologies, Inc1, received 4 soil samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Bob A. Olsiewski Project Manager

FWG/hal/cn

Frederick W. Grothkopp Laboratory Manager

Freduichw Dathlyp

Le VOA/A

DATE 10/2/91 PAGE 1_ OF 1 иливен он соитыиены 2. RELINQUISHED BY: Chain of Custody Laboratory NUMBER: 91(0-040 Metals (8) TCLPONLY 8150 Herbicides (2) 8270 8240 ZH-EXT 8080 Pesticide (4) Priority Pollutant Metals (13) EP TOX Metals (8) EP EXT Second RELINGUISHED BY: Moisture % ANALYSIS REQUEST **0**206 XOT 0906 **201** (Modified) 2108 Grease & Oil 413.2 (H9T) 1.81# WDOE PAHHH (WAC 13) RELINQUISHED BY: Herbicides 0218 Phosphate Pesticides 0118 PCB's ONLY 0808 Pesticides & PC8's 0808 HPLC PNA 0158 GCMS BNA 8270 GCMS Volatiles 8540 **BETX ONLY** 8020 Aromatic Volatiles 8020 SAMPI E DECEIPT Halogenated Volables 0108 TIME MATRIX LABID 0 410 ω ١ 560 Naches Avenue SW, Suite 101 Renton, WA 98055 (206)228-8335 Z R ☐ Return SAMPLE DISPOSAL INSTRUCTIONS 124/0 1230 1250 215 542 300 SAMPLED BY: Analytical Technologies, Inc. 10/2/01 DATE Redomina NOIT ANECDMATION ☑ ATI Disposal @ \$5.00 each 300.9-198 GE1 PROJECT MANAGER: SAMPLEID N 911002 -911002-200116 911002 200116 200116 COMPANY: ADDRESS:_ PHONE:

	PHOMECI INFORMATION	SAMPLE RECEIPT	20110	ACLINGOISTICO DI	A DELINGOISHED DI.	3
. ~]	PROJECT NUMBER: 0/61-205-804	TOTAL NUMBER OF CONTAINERS // 2	Signature: Time:	Time: Signature: Time:	Time: Signature:	Lime:
	PROJECT NAME: DADE COLLINITE COC SEALSINT	COC SEALS/INTACT? YANNA	1700			
ات.	PURCHASE ORDER NUMBER:	RECEIVED GOOD COND /COLD	Printed Name: Date:	Date: Printed Name: Date:	Date: Printed Name:	Date:
	ONGOING PROJECT? YES [BL NO []	RECEIVED VIA: (((vura to /2/a)	THE STATE OF THE S		
	PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS	MIRED FOR RUSH PROJECTS	Company: (@E_I /	Company:	Company:	
11,	TAT: (NORMAL) [] 2WKS (RUSH) [] 24HR	4HR 148 HPS 172 HPS 1971 WK	RECEIVED BY: 1,	1, RECEIVED BY:	2 RECEIVED BY: (LAB)	က်
1 -		12	Signature: Time:	Time: Signature: Time:	Пme: Signature:	Time:
1	SPECIAL INSTRUCTIONS:		101014 101014 101014			
			Printed Name: Date:	Date: Printed Name: Date:	Date: Printed Name:	Date:
	H - /		1) PENNING "53.9"	nug	11	
	Composite both Suple Jars Pilor To anolysis, Company:	ars Prior to anolysis.	Company: ATT (()) Company:	Company:	Analytical Technologies, Inc.	<u>5</u>
٠,	ATI Labs: San Diego (619)458-9141 · Phoenix (602)438-1530		Seattle (206)228-8335	DISTRIBUTION: White, Canary - ATI - Pink - ORIGINATOR	ATI . PInk . ORIGINATOR	

PROJECT #

ATI I.D. # 9110-040

GENERAL CHEMISTRY QU' CONTROL

CLIENT : GEOENGINEERS, INC.

: 0161-205-R04

PROJECT NAME : UNOCAL - COUPEVILLE

NALYZED -: 10/05/91

: SOIL

. 2

					<u> </u>		
PARAMETER	ATI I.D.	SAMPL RESULT		7	SPIKED RESULT	SPIKE	% REC
				/			
MOISTURE	9110-050-11	21	21	0	N/A	N/A	N/A

% Recovery = (Spike Sample Result - Sample Result)

X 100

Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result)

----- X 100

Average Result