

Remedial Investigation/ Feasibility Study Port of Tacoma Parcel 88 1621 Marine View Drive Tacoma, Washington

Prepared for Port of Tacoma

February 20, 2013 17652-00

Remedial Investigation/Feasibility Study Port of Tacoma Parcel 88 1621 Marine View Drive Tacoma, Washington

Prepared for Port of Tacoma

February 20, 2013 17652-00

Prepared by Hart Crowser, Inc.

Mark Dagel, LHG Senior Project Manager mark.dagel@hartcrowser.com

Willi B. abali

William B. Abercrombie Senior Principal William.Abercrombie@hartcrowser.com

CONTENTS	<u>Page</u>
1.0 INTRODUCTION	1
2.0 LOCATION AND SETTING	1
3.0 SITE HISTORY	2
3.1 Ownership 3.2 Land Use 3.3 Environmental Investigations 3.4 Site Listing and Hazard Ranking	2 2 3 4
4.0 PRE-CLEANUP ENVIRONMENTAL CONDITIONS	4
<i>4.1 Main Fill Area 4.2 Metals Contamination Area 4.3 Upland Portion of the Site</i>	4 5 6
5.0 PREVIOUS CLEANUP ACTIVITIES	6
5.1 UST Removals (1990s) 5.2 Rubble Removal and Other Cleanup Activities (2006) 5.3 Port of Tacoma Cleanup (2010)	6 7 7
6.0 CONCEPTUAL SITE MODEL	8
7.0 CONTAMINANTS OF CONCERN	9
8.0 SITE CLEANUP STANDARDS	10
8.1 Soil Cleanup Standards 8.2 Groundwater Cleanup Standards	10 11
9.0 CURRENT NATURE AND EXTENT OF CONTAMINATION	12
10.0 FEASIBILITY STUDY	13
10.1 Threshold Requirements 10.2 Other Requirements	13 14

11.0 CONCLUSIONS

12.0 REFERENCES

15

TABLES

- 1 Post-Cleanup Soil Monitoring Results
- 2 Post-Cleanup Groundwater Monitoring Results

FIGURES

- 1 Vicinity Map
- 2 Current Site Plan
- 3 Pre-Cleanup Soil Petroleum Hydrocarbon Results
- 4 Pre-Cleanup Soil Metals Results
- 5 Pre-Cleanup Groundwater Petroleum Hydrocarbons Results
- 6 Pre-Cleanup Groundwater Metals Results
- 7 1997 and 2006 Cleanup Activities
- 8 Relationship Between Pre-Cleanup Petroleum Impacts and Remedial Excavation Elevations
- 9 Relationship Between Pre-Cleanup Metals Impacts and Remedial Excavation Elevations
- 10 Post-Cleanup Sample Locations

APPENDIX A BORING LOGS (RD-CS-1, -2, AND -3; AND MW-201 AND -202)

APPENDIX B

LABORATORY REPORTS (RD-CS-1, -2, AND -3; AND MW-201 AND -202)

REMEDIAL INVESTIGATION/FEASIBILITY STUDY PORT OF TACOMA PARCEL 88 1621 MARINE VIEW DRIVE TACOMA, WASHINGTON

1.0 INTRODUCTION

We prepared this Remedial Investigation/Feasibility Study (RI/FS) Report on behalf of the Port of Tacoma (Port) for submittal to the Washington State Department of Ecology (Ecology) pursuant to Section VII(C) of Agreed Order DE8400. This report was prepared in accordance with WAC 173-340-350 and documents the nature and extent of contamination at Parcel 88 (the Site) and recommended cleanup actions.

Information on the Site, including physical characteristics, past ownership and land uses, and previous environmental investigations and cleanups is presented in the Environmental Assessment Report (Hart Crowser 2010) and the Previous Cleanup Activities Report (Hart Crowser 2011); these documents are incorporated by reference into this RI/FS and pertinent information is summarized within this document.

2.0 LOCATION AND SETTING

The Site is referred to as Parcel 88 (Facility Site # 34114562) and is generally located at Pierce County Tax Parcel 0421313048, at the street address of 1621 Marine View Drive, Port of Tacoma, Tacoma, WA 98422, but also includes portions of Pierce County Tax Parcels 0421313049 and 0420062130 where contaminants were found to have been spread (Figure 1).

A large portion of the Site now lies within the Port's recently completed Parcel 88 Combined Habitat Mitigation Area. The mitigation area includes constructed tidal channels connected to Hylebos Creek, adjacent intertidal marsh and vegetated shorelands in the southwestern portion of the Site, and upland habitat in the south central and southeastern portions of the Site. This area is bounded to the south by Hylebos Creek (a tributary to Commencement Bay via the Hylebos Waterway), to the west by Morningside Drain and Marine View Drive, and to the north and east by steep slopes (Figure 2).

Native soil at the Site consists of alluvium at the lowest elevations (lower area) and glacial outwash deposits on the slopes. The alluvium was deposited by rivers and streams and typically consists of granular and fine-grained soils ranging

from silty sand to sandy silt with occasional gravel and wood. Zones of coarser sand and gravel also occur locally in the alluvium. The glacial outwash soils are typically granular and include poorly- to well-graded sand and gravel to silty sand and gravel.

Groundwater elevations indicate that groundwater flows southerly to southwesterly from the uplands north and east of the property (recharge areas) toward Hylebos Creek and Morningside Drain (discharge areas).

3.0 SITE HISTORY

3.1 Ownership

The Port has owned the Site since 2006. From 1996 until it was sold to the Port, the Site was owned by Michael Parsons and/or Marine View, Inc., a business in which Mr. Parsons held an interest. From the 1960s to 1996, the Site was owned by William Fjetland, Camille Fjetland, and/or business interests in which one or both of these individuals held an interest. Before that, the ownership of the Site is unknown. Available records indicate that a number of entities operated at the Site before the Port's ownership. These entities are listed in the IRAR (Hart Crowser 2011).

3.2 Land Use

Before the 1950s, the Site was undeveloped land. Approximately 9 acres in the southwest corner of tax parcel 0421313048 were lowlands abutting Hylebos Creek, and the rest of the Site consisted of steep slopes and upland ridgelines and bluffs. From the 1950s through 2006, the Site was used as a sand and gravel mine and an inert solid waste recycling facility. During that time, a significant volume of material (soil, concrete, asphalt, wood waste, and metal debris) was imported and used as fill at the Site, primarily in the 9-acre lowlands. This fill raised the grade substantially over much of the lowlands; in places, the post-fill surface elevation was 20 feet or more above the original surface elevation.

Historical aerial photos indicate that aggregate mining began at the top of the bluffs on adjacent property to the north, and progressed southward along the bluffs. Sometime between 1965 and 1970, the use of lower (western) portion of the Site began. Soil/fill stockpiles appeared in the lower portion of the Site in a 1970 photo, and by 1973 some mining into the hillside in the northeast corner of the lower portion of the Site was evident. Also, a network of roads was evident on the eastern portion of the Site and there was evidence of mining

activities extending onto the Site from neighboring property in the 1970 aerial photo.

By 1978 the lower portion of the Site was well established; the Maintenance Building had been constructed and there were clear working road systems within the area, including a road along Hylebos Creek leading from the active western portion of the Site to a ravine in the south-central portion of the Site (Figure 3).

Aerial photographs from 1978 through 2006 show material management activities on the lower portion of the Site and progressively more-extensive mining activities on the moderate hillsides in the east/southeast/south-central portions of the Site. The log cabin (office) appears in the lower portion of the Site in photos from 1978 and 2002, but is gone in a 2006 photo; a second support building appears between the Maintenance Building and the log cabin in 1985 and 1989 photos but is gone by 1998; and a residence in the southcentral ravine is evident in the 1992 photo but is gone by 1998. These photos also show that materials management activities in the lower portion of the Site during this time were not static, and there were changes in material stockpile locations, equipment staging areas, and active access roads.

In the eastern portion of the Site, active mining across the hilltops is depicted in aerial photos from 1978 through 2004. Aerial photos from 2002 suggest that activities on the hillside in the east-central portion of the Site included, at that time, construction debris recycling (stockpiling and crushing). Photos from 1998 through 2004 indicate that some fill material (appearing to be concrete rubble) was placed on hillsides on the east side of the Site. By 2006, nearly all of this area shows re-establishing vegetation, and active mining was limited to what later became the steep east-west ravine in the center of the Site.

The Port purchased the Site in May 2006. Thereafter, site activities were limited to removal of recycled material stockpiles and equipment the previous owner had left on the lower portion of the Site; temporary use of the lower portion of the Site by the neighboring tenant for truck turnaround and scales; and occasional use of the lower portion of the property by Port maintenance for temporary staging.

3.3 Environmental Investigations

Several Environmental Site Assessments (ESAs) and other investigations were performed between 1993 and 2000, before the Port purchased the property. These assessments were documented in the following reports: ATEC Associates

(1993 and 1996), Parametrix (1993), Optimum Environment (1996, 2000a, and 2000b), and Neuston Consulting (1997).

In 2005, Phase I and Phase II ESAs were conducted on behalf of the Port pursuant to the Port's possible purchase of the property from Parsons (GeoEngineers 2005). These assessments summarized the reports listed above and included the results of a limited field investigation that involved analysis of soil and groundwater samples.

In 2009 additional environmental investigations were undertaken on behalf of the Port to better characterize the nature and extent of contamination in the lower portion of the Site before cleanup and redevelopment (Hart Crowser 2010).

3.4 Site Listing and Hazard Ranking

In 2007 Ecology issued an Early Notice Letter to the Port indicating that an Initial Investigation of the Site by the Tacoma-Pierce County Health Department had resulted in listing the Site on Ecology's Confirmed or Suspected Contaminated Site List with a Facility Site Identification Number of 34114562. In July 2008, the Tacoma-Pierce County Health Department completed a Site Hazard Assessment; the resulting Site ranking was 3. On May 10, 2011, the Port and Ecology entered into Agreed Order DE8400 under the MTCA to complete remedial action at the Site.

4.0 PRE-CLEANUP ENVIRONMENTAL CONDITIONS

As described below, several environmental cleanups have been conducted at the Site. Conditions before these cleanups are documented in detail in reports by Hart Crowser (2011) and GeoEngineers (2005).

The primary areas of environmental contamination before Site cleanup were the Main Fill Area (MFA) and the Metals Contamination Area (MCA). Both areas are located in the lower area of the Site. In addition, an area in the north central upland portion of the Site was also used to store concrete and asphalt debris/rubble for reprocessing and sale. Historical environmental site conditions are shown on Figures 3 through 6 and are summarized below.

4.1 Main Fill Area

Before the 2010 Port cleanup, much of the MFA was underlain by a thick prism of fill. The fill composition was variable, consisting primarily of soil and

manmade debris (mostly concrete, asphalt and wood waste, but also including creosote-treated pilings, brick, glass, plastic, and metal). Some areas of the Site were underlain by fill consisting mostly or entirely of wood chips. Historically, several USTs and ASTs were located within the MFA and activities including equipment maintenance, vehicle fueling, and debris/rubble stockpiling took place here.

Fill and soil in the MFA were impacted by petroleum hydrocarbons, as evidenced by analytical results and by the observations of sheen and odor documented in the 2005 ESA report and the 2009 investigation report. Petroleum impacts were generally confined to the fill prism, but did extend into the underlying soil in a few areas. Diesel detections ranged from 6.4 to 5,900 milligrams per kilogram (mg/kg), and motor oil detections ranged from 62 to 5,000 mg/kg.

Fill and soil in some parts of the MFA were also impacted by metals. Arsenic concentrations ranged to 153 mg/kg. In a few locations, copper and lead were also elevated, ranging up 154 mg/kg and 303 mg/kg, respectively.

Groundwater impacts within the MFA were limited. Petroleum hydrocarbons were detected in groundwater from only one of the 13 sampling locations (MW-2). The maximum concentrations detected for DRO and ORO were 1,900 ug/L and 750 ug/L, respectively. Copper and mercury concentrations were also elevated (4 ug/L and 0.05 ug/L in samples from MW-109 and P-1, respectively).

4.2 Metals Contamination Area

Before the 2010 cleanup activities, the MCA was underlain by several feet of slag-bearing sand and gravel fill. The fill was placed over native materials to form a flat building lot for the residence that was once on the Site and to form the base for the unpaved roadway between the MCA and the MFA. In some locations in the MCA, the fill contained pebble-size and larger pieces of slag that were used to fill former drainage pathways, providing a more solid base for roads while allowing natural flows to continue to Hylebos Creek.

Arsenic and lead were detected at elevated concentrations (maximum of 523 and 314 mg/kg, respectively) in every sample of the fill material in the MCA. Other metals, including copper and zinc, were detected in a number of soil samples at elevated concentrations within the fill in this area. Only low levels of metals were detected in groundwater samples from the MCA.

4.3 Upland Portion of the Site

An area in the north central upland portion of the Site was previously used to store concrete and asphalt debris/rubble for reprocessing and sale. GeoEngineers (2005) estimated there was about 26,000 cubic yards of material.

GeoEngineers (2005) collected two samples of the concrete and asphalt debris/rubble to analyze for petroleum hydrocarbons and metals. Neither dieselrange organics (DRO) nor gasoline-range organics were detected in either sample. Oil-range organics (ORO) was detected in one sample at 470 mg/kg. The detection of ORO without DRO is consistent with the documented presence of asphalt. No elevated metals were detected in either sample. The rubble was later removed.

Because a relatively low concentration of ORO was detected in the debris/rubble, and because heavy-range petroleum fractions like asphalt are relatively immobile, groundwater impacts in the uplands were judged to be very unlikely. Therefore, groundwater monitoring wells were not installed in the upland portion of the Site. Subsequent groundwater monitoring in lowland wells (MW-107 and MW-108) downgradient from the former location of the debris/rubble did not detect petroleum hydrocarbons. These results support the conclusion that that there were no groundwater impacts associated with the concrete and asphalt debris/rubble.

5.0 PREVIOUS CLEANUP ACTIVITIES

Previous cleanup activities at the Site consisted of several tank closures in the 1990s, a number of pre-sale cleanup actions conducted by Parsons in 2006, and the Port's major cleanup in 2010. These activities are described in detail in Hart Crowser (2011), shown on Figure 7, and summarized below.

5.1 UST Removals (1990s)

In 1991 four USTs were removed from the lower area of the Site by employees of Portside Recycling, which was the operator at the time (ATEC Associates 1993). Little additional information is available regarding these USTs or this removal action, but the ATEC report indicates that no soil assessment was completed at the time of the removals.

In 1997 West Pac Environmental, Inc. of Seattle removed three additional USTs and an associated pump island from the MFA. These tanks were located northwest of the Maintenance Building. The associated UST Site Assessment

was completed by Neuston Consulting of Burien, Washington (Neuston Consulting 1997). The last known use of the USTs reported was for diesel truck and heavy equipment fueling, and at the time of removal they were estimated to be over 25 years old. Approximately 100 tons of contaminated soil were excavated and disposed of off site, and post-excavation samples documented that remaining soil did not exceed the MTCA Method A level for diesel.

5.2 Rubble Removal and Other Cleanup Activities (2006)

Before the Port purchased the property in 2006, the previous owner removed about 30,000 thousand cubic yards of debris from the Site. This material included unprocessed concrete and asphalt rubble from the upland portion of the property; about 4,000 tons of glass, window frames, and wood debris from the near the Maintenance Building; and about 5,000 cubic yards of scattered debris including wood, plastic, metal, rubber, and building remains from within the MCA and MFA. The previous owner also contracted Environmental Chemical Solutions of Gig Harbor, Washington, to remove approximately 25 cubic yards of petroleum-contaminated surficial soil from two 15-square-foot areas between the Maintenance Building and the former log cabin office building in the MFA.

5.3 Port of Tacoma Cleanup (2010)

As described above, the remaining areas of environmental contamination at the time of the Port's 2010 cleanup actions and redevelopment were the MFA and the MCA, which occupied the lower portion of the Site.

The cleanup approach for the MFA involved mass excavation of the entire fill prism down to native material except along the eastern hillside where some untreated wood waste was left in place. During the MFA excavation, a UST was discovered and removed along with two extensive areas of petroleum-impacted native soil. All soil exhibiting field indications of petroleum impacts (sheen, odor, etc.) was removed. Figure 8 shows the relationship between the extent of the pre-cleanup petroleum impacts and the extent of the remedial excavation. This figure demonstrates that the lateral and vertical extent of the excavation encompassed the impacted soil. Post-excavation soil samples further confirmed that contaminated material was successfully removed from the MFA (Figure 10).

The cleanup approach for the MCA involved excavation of slag-bearing fill. The fill was removed down to native material or to the elevation where the precleanup sampling indicated there was no longer impacted material. Figure 9 shows the relationship between the extent of the pre-cleanup metal impacts and the extent of the fill removal. This figure demonstrates that the lateral and vertical extent of the removal encompassed the impacted fill. Post-excavation samples further confirmed that contaminated material was successfully removed from the MCA (Figure 10).

Uncontaminated concrete rubble from the MFA was crushed and hauled offsite for beneficial reuse and all contaminated fill and soil from the Site was disposed of at LRI Landfill (LRI) in Graham, Washington.

6.0 CONCEPTUAL SITE MODEL

A conceptual site model identifies the potential sources of contamination at a Site and describes that pathways through which receptors may be exposed to them.

As discussed in Section 4.0, the sources of the petroleum contamination at the Site appear to have been leaks and spills of petroleum and/or imported fill material that was contaminated with petroleum products. The distribution of petroleum impacts was highly variable and generally localized, which is consistent with these suspected sources. The source of the metals contamination in the MCA was clearly imported fill. The likely source of the elevated levels of metals in the MFA was imported soil or other debris.

Before the Port's 2010 cleanup actions, impacted media at the Site consisted primarily of the contaminated fill itself along with underlying native soil in some locations (e.g., the southeast and southwest overexcavation areas). Groundwater impacts were highly localized and found only in the MFA.

The MFA and MCA are not currently a source of drinking water, and are now largely located below the high tide level, precluding future groundwater development. Development of groundwater along the shoreline of the MFA and MCA is similarly not practicable for several reasons:

 A large portion of the Site, including the MFA and MCA and surrounding land, is now a mitigation area providing restored native habitat for terrestrial plants and animals and aquatic organisms. The Port developed the Site to mitigate for habitat lost during construction of other Port-related projects; as such, the Port is required to maintain these areas as habitat in perpetuity (a restrictive covenant filed with Pierce County—record number 201005260144—restricts use to only natural resources restoration and access for incidental maintenance of overhead electrical transmission lines). Accordingly, the Site is fenced and gated and is only accessible to maintenance workers.

- 2. Topography, stratigraphy, and water table elevation data from the precleanup monitoring well network indicate that groundwater in this vicinity is hydraulically connected to the adjacent surface water (the tidal waters of the Hylebos Waterway), such that pumping in these areas would induce intrusion of tidally influenced surface water. As presented in Table 2, postcleanup sampling of two new wells installed along the shoreline documented exceedances of the state drinking water criteria for specific conductivity (SC) and total dissolved solids (TDS) of 700 uS/cm and 500 mg/L, respectively. In well MW-201, SC and TDS exceeded criteria in two out of two sampling rounds, ranging to 1,300 uS/cm and 871 mg/L, respectively. In well MW-202, SC and TDS exceeded criteria in one out of three sampling rounds, ranging to 1,490 uS/cm and 978 mg/L, respectively.
- 3. In addition, shoreline wells MW-201 and -202 also exceed drinking water criteria adopted by the Tacoma-Pierce County Health Department (Environmental Health Code, Chapter 3) for SC and TDS. These criteria are based on the state's standards and the exceedances mentioned above also apply to the local standards.

Based on the site characteristics outlined above, current and potential future exposure pathways at the Site are:

- Exposure of maintenance workers to remaining contaminants in soil/sediments;
- Exposure of terrestrial organisms (plants, soil invertebrates, and wildlife) to remaining contaminants in soil;
- Exposure of benthic marine organisms to remaining contaminants in soil/sediments that now lie below the high tide level; and
- Exposure of aquatic organisms to surface water, if the surface water contacts contaminated groundwater discharging to surface water (e.g., via seeps).

7.0 CONTAMINANTS OF CONCERN

Pre-cleanup investigations included the analysis of soil and groundwater samples for petroleum hydrocarbons, carcinogenic polynuclear aromatic hydrocarbons (cPAHs), polychlorinated biphenyls (PCBs), and metals (GeoEngineers 2005; Hart Crowser 2010 and 2011). Based on the analytical results, DRO, and ORO, and metals (arsenic, lead, copper, mercury, and zinc) were identified as contaminants of concern (COCs) in soil and groundwater at the MFA. At the MCA, the contaminants of concern were metals (arsenic, lead, copper, and zinc) in soil.

8.0 SITE CLEANUP STANDARDS

As defined in WAC 173-340-700, cleanup standards consist of cleanup levels for hazardous substances present at the Site along with the location where these cleanup levels must be met (point of compliance). A cleanup level is the concentration of a hazardous substance in soil, water, air, or sediment that is determined to be protective of human health and the environment under specified exposure conditions.

8.1 Soil Cleanup Standards

The following cleanup levels for soil—including for portions of the Site that were excavated to below the high tide level and are now periodically inundated—are based on the conceptual site model described in Section 6.0:¹

- Method A soil cleanup levels apply to DRO, ORO, arsenic, mercury, and lead. These standards address the exposure pathway from soil/sediment to humans.
- Method B cleanup levels apply to copper and zinc (which do not have Method A levels). These standards address the exposure pathway from soil/sediment to humans.
- Sediment quality standards listed in WAC 173-204-320 apply to metals and the relevant toxic components of DRO and ORO (polynuclear aromatic hydrocarbons [PAHs]) in the portions of the Site that now lie below high tide. These standards apply to address exposure to benthic organisms.

Cleanup levels for soil/sediment are presented in Table 1.

¹ The Site does not pose a threat of significant adverse effects to terrestrial ecological receptors; therefore, soil cleanup levels based on this pathway were not developed. Under the terrestrial ecological evaluation procedures outlined in WAC 173-340-7491(1)(a) and -7492(2)(c)(i), the Site may be removed from further ecological consideration if no hazardous substances listed in Table 749-2 are or will be present in the soil above the point of compliance established under WAC 173-340-7490(4). Post-cleanup monitoring documented in the IRAR (Hart Crowser 2011) and in this RI/FS demonstrates that these conditions have been met.

In accordance with WAC 173-340-7490(4)(b), the standard point of compliance for soil is 15 feet below the ground surface. This represents a reasonable estimate of the depth of soil that could be excavated and distributed at the soil surface as a result of site development activities. For sites with institutional controls to prevent excavation of deeper soil, a conditional point of compliance may be set at the biologically active soil zone, assumed to extend to a depth of 6 feet, to prevent exposure of terrestrial organisms (WAC 173-340-7490(4)(a)).

For pathways involving exposure of benthic organisms, compliance is assessed within the biologically active zone (WAC 173-204-200(26)), commonly considered to be the upper 10 centimeters (approximately 4 inches).

8.2 Groundwater Cleanup Standards

Cleanup levels for groundwater are presented in Table 2. These cleanup levels were identified based on the conceptual site model presented above in Section 6.0:

- Method A surface water cleanup levels for groundwater address the exposure pathway of metals to aquatic organisms from discharge of groundwater into surface water. As stipulated in WAC 173-340-730[2], Method A surface water cleanup levels are based on state surface water standards (WAC 173-201A), federal water quality criteria under section 304 of the Clean Water Act, and federal surface water criteria under the National Toxics rule (40 CFR Part 131).
- Method A groundwater cleanup levels also address the exposure pathway of petroleum hydrocarbons to aquatic organisms. No numeric standards for total petroleum hydrocarbons exist for surface water; however, Method A refers to a narrative standard of concentrations that will not cause a sheen on surface water.
- As described in Section 6.0, groundwater at the Site is not a current or future source of drinking water. Therefore, the drinking-water based Method A groundwater cleanup levels are not appropriate cleanup levels for this site.

In general, the standard point of compliance for groundwater under MTCA is throughout the site from the top of the saturated zone extending vertically to the lowest point which could potentially be affected by the site. However, where the groundwater cleanup level is based on protection of surface water and the property containing the source of contamination abuts the surface water, a conditional point of compliance may be defined that is located within the surface water as close as technically possible to the point or points where groundwater flows into the surface water (WAC 720(8)(d)(i)). Because the Site meets these criteria, the appropriate point of compliance for groundwater is defined as the point(s) where groundwater flows into surface water.

9.0 CURRENT NATURE AND EXTENT OF CONTAMINATION

As documented in Hart Crowser (2011), contaminated fill and soil that was present in the lower portion of the Site (the MFA and MCA) was removed by the Port in 2010. Post-cleanup soil samples from that effort (along with three additional samples collected subsequently from the unpaved roadway, RD-CS-1, -2, and -3) reflect current site conditions. These samples are shown on Figure 10. Comparing the soil monitoring results to the Site Cleanup Standards, it is clear that the current concentrations of constituents of concern meet the standards (Table 1).² In addition, unprocessed concrete and asphalt rubble stored on the upper portion of the Site was removed in 2006 as a condition of the Port's purchase of the property.

Groundwater impacts at the Site were minor even before the Port's 2010 cleanup and were limited to three wells in the MFA. These three wells were screened within the contaminated fill/soil prism. The Port's 2010 cleanup addressed groundwater impacts through source removal by excavating impacted fill and soil at the Site. With the completion of the habitat mitigation project, groundwater now discharges to the constructed intertidal channels via surface water seeps.

No sheens have been observed in these seeps. In addition, results from groundwater samples collected from post-cleanup wells MW-201 and -202 were below groundwater cleanup levels (Table 2).

So, based on this data, COCs are no longer present at the Site above cleanup levels protective of current and future human health and terrestrial and ecological exposure pathways.

² Arsenic exceeded the soil cleanup level in one sample, RD-CS-2, located on the unpaved roadway. However, because a) the magnitude of this exceedance was low (<2 times the cleanup level); b) the upper 95% confidence limit for arsenic in post-cleanup samples at the Site was less than the cleanup level (4.1 mg/kg versus 20 mg/kg); and c) only one out of 68 samples (1.5%) exceeded the cleanup level, the Site-wide arsenic concentration complies with the cleanup level in accordance with WAC 173-340-740(7)(d)(i), -740(7)(e)(i), and -740(7)(e)(ii), which specify how compliance is to be assessed in cases where one or more confirmation samples exceeds cleanup levels.

10.0 FEASIBILITY STUDY

The purpose of a feasibility study is to develop and evaluate alternatives to enable a cleanup action to be selected for the site. However, if concentrations of hazardous substances do not exceed the cleanup level at a standard point of compliance, no further action is necessary per WAC 173-340-350(8)(a), and a feasibility study would not be required. As summarized above, due to the Port's 2010 cleanup actions, concentrations of hazardous substances at the Site no longer exceed cleanup levels.

In selecting its 2010 cleanup action, the Port considered alternatives ranging in protectiveness from partial removal of impacted soil to complete removal of impacted soil. The Port chose to remove all impacted soil to achieve maximum protectiveness for the subsequent habitat mitigation project and to minimize the need for institutional controls and long-term performance monitoring.

The only remaining cleanup action involves implementing a groundwater performance monitoring program to meet the requirements of WAC 173-340-410(1)(b).

MTCA describes the minimum requirements and procedures for selecting cleanup actions. As detailed in the following paragraphs, the proposed cleanup action for the Site, groundwater monitoring, complies with the provisions of this section.

10.1 Threshold Requirements

WAC 173-340-360[2][a] requires that cleanup actions protect human health and the environment; comply with MTCA cleanup standards, including applicable state and federal laws; and provide for compliance monitoring.

As described in the RI/FS report (Hart Crowser 2012) and summarized above, the Port's cleanup action removed fill and impacted soil that exceeded cleanup levels and provided a potential source to groundwater and surface water. Post cleanup monitoring confirmed that the remaining soil/sediment meets cleanup levels and does not pose a risk to human health or the environment. Initial results indicate that source removal has reduced contaminants in groundwater to below state and federal levels for protection of surface water. The remaining proposed cleanup action is compliance monitoring to confirm that groundwater cleanup levels have been met.

10.2 Other Requirements

WAC 173-340-360[2][b] requires that when selecting from cleanup action alternatives that fulfill the threshold requirements, the selected action shall: a) Use permanent solutions to the maximum extent practicable; b) Provide for a reasonable restoration time frame; and c) Consider public concerns. As described in the following subsections, the Port's cleanup action at the Site fulfills these requirements.

10.2.1 Permanence

Under WAC 173-340-360[3][f][ii], permanence refers to the degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated.

The Port's cleanup action removed fill and impacted soil that exceeded cleanup levels and provided a potential source to groundwater and surface water. The complete removal of contaminated fill and soil from the Site and its disposal in a permitted landfill is considered highly permanent.

10.2.2 Restoration Time Frame

The Port's cleanup action removed fill and impacted soil that exceeded cleanup levels and provided a potential source to groundwater and surface water. Post cleanup monitoring confirmed that the remaining soil/sediment meets cleanup levels and does not pose a risk to human health or the environment. Initial results indicate that source removal has reduced contaminants in groundwater to below state and federal levels for protection of surface water. Because cleanup levels have been met at the site, the MTCA requirement that the selected cleanup action achieve a reasonable restoration time frame has been met. The remaining proposed cleanup action is compliance monitoring in accordance with WAC 173-340-410.

10.2.3 Consideration of Public Concern

Ecology will solicit public comments on the CAP and will modify the cleanup approach as appropriate to take into account public concerns.

11.0 CONCLUSIONS

The Port's 2010 cleanup activities at Parcel 88, along with earlier cleanups at the Site, achieved the following objectives:

- Upland soil at the Site does not pose a risk to human health or terrestrial organisms.
- Soil/sediment in areas that are now below the high tide level do not pose a risk to benthic organisms.
- Groundwater that discharges to surface water does not pose a risk to aquatic organisms.
- Except for groundwater performance monitoring, no further action is required.

12.0 REFERENCES

ATEC Associates (1993). Phase I Environmental Site Assessment, Portside Recycling. April 16, 1993.

ATEC Associates (1996). Phase I Environmental Site Assessment Update, Former Portside Recycling Facility. March 14, 1996.

Environmental Chemical Solutions (2006). Letter from Vin Johnsen (Environmental Chemical Solutions) to Kathy Fendt (Port of Tacoma). Dated May 25, 2006.

GeoEngineers (2005). Phase I and Phase II Environmental Site Assessment and Fill Material Evaluation, 1621 and 1635 Marine View Drive, Parsons Site, Tacoma, Washington. Prepared for the Port of Tacoma. May 27, 2005.

Hart Crowser (2010). Parcel 88 Combined Habitat Mitigation Project Environmental Assessment Report. Prepared for KPFF Consulting Engineers and the Port of Tacoma. April 2, 2010.

Hart Crowser (2011). Previous Cleanup Activities Report For Parcel 88, 1621 Marine View Drive, Tacoma, Washington. Prepared for Port of Tacoma. July 22, 2011. Neuston Consulting (1997). UST Closure and Site Assessment Report. December 30, 1997.

Optimum Environment (1996). Phase II Environmental Assessment. December 1996.

Optimum Environment (2000). Phase I Environmental Site Assessment Update, Prepared for the Marine View Inc., Property. July 2000.

Optimum Environment (2000). Phase I Environmental Assessment for Foran Property. July 2000.

Parametrix (1993). Portside Recycling Surface Water Quality Report. June 1993.

 $L:\Jobs\1765200\RIFS\Final\RI_FS.doc$

	Method A	Method B	Terrestrial Ecological	SMS Sediment				Main	Fill Area			
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	Cleanup Level	Screening Level (a)	Quality Standards	OEX-B-1	OEX-B-2	OEX-B-3	OEX-B-4	OEX-B-5	OEX-B-6	OSD-CS13	OSD-CS14
Petroleum Hydrocarbon:	l											
DRO	2,000	-	200	-	10 U	10 U	10 U	10 U				
ORO	2,000	-	200	-	100 U	100 U	100 U	100 U				
Metals												
Arsenic	20	-	20	57	-	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Copper	-	3,200	100	390	-	17	19	23	14	24	8.2	10
Lead	250	-	220	450	-	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Mercury	2	-	9	0.41	-	0.05 U	0.085	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Zinc	-	24,000	270	410	-	23	23	33	21	29	14	16
cPAHs												
Benzo[a]anthracene	-	1.4	-	0.55 (e)	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Chrysene	-	140	-	0.55 (e)	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Total cPAHs (c)	0.1	-	-	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Total HPAHs (f)	-	-	-	4.8 (e)	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear aromatic hydrocarbons

benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included in the calculation of

total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC

173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values for total HPAHs presented in this table.

	Method A	Method B	Terrestrial Ecological	SMS Sediment	Main Fill Area										
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	Cleanup Level	Screening Level (a)	Quality Standards	OSD-CS15	OSD-CS16	OSD-CS17	OSD-CS18	OSD-CS19	OSD-CS20	OSD-CS21	OSD-CS-22			
Petroleum Hydrocarbon	l														
DRO	2,000	-	200	-	24.1	10 U									
ORO	2,000	-	200	-	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U			
Metals															
Arsenic	20	-	20	57	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U			
Copper	-	3,200	100	390	11	11	9.6	10	7.6	11	13	13			
Lead	250	-	220	450	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U			
Mercury	2	-	9	0.41	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
Zinc	-	24,000	270	410	20	18	15	28	18	18	99	24			
cPAHs															
Benzo[a]anthracene	-	1.4	-	0.55 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Chrysene	-	140	-	0.55 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Total cPAHs (c)	0.1	-	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
Total HPAHs (f)	-	-	-	4.8 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included

total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC 173-404-708[[e]] and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B	Terrestrial Ecological	SMS Sediment		Main F	ïll Area		(SW	ion)	
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	Cleanup Level	Screening Level (a)	Screening Quality	OSD-CS-23	OSD-CS-24	OSD-CS-25	OSD-CS-26	OSD-CS-1	OSD-CS-2	OSD-CS-4
Petroleum Hydrocarbon:	l										
DRO	2,000	-	200	-	10 U	10 U	10 U	10 U	6.2 U	6.2 U	7.1 U
ORO	2,000	-	200	-	100 U	100 U	100 U	100 U	12 U	12 U	20
Metals											
Arsenic	20	-	20	57	5 U	5 U	5 U	5 U	5.7 U	5.9 U	6.1 U
Copper	-	3,200	100	390	12	13	12	7.1	16.6	19.9	15.3
Lead	250	-	220	450	4 U	4 U	4 U	4 U	3	7	13
Mercury	2	-	9	0.41	0.05 U	0.05 U	0.05 U	0.05 U	0.03 U	0.04	0.04
Zinc	-	24,000	270	410	35	20	18	16	26	36	34
cPAHs											
Benzo[a]anthracene	-	1.4	-	0.55 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.005 U	0.011	0.011
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.005 U	0.013	0.014
Chrysene	-	140	-	0.55 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.008	0.019	0.054
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.005 U	0.005 U	0.005 U
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.005 U	0.009	0.016
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.008	0.025	0.050
Total cPAHs (c)	0.1	-	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.001	0.018	0.022
Total HPAHs (f)	-	-	-	4.8 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.017	0.077	0.145

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC

173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B	Terrestrial Ecological	I Sediment						ation)				
Analyte/Sample	Cleanup Level	Cleanup	Screening	Quality										
(mg/kg)	(Unrestricted)	Level	Level (a)	Standards	OSD-CS-5	OSD-CS-7	OSD-CS-8	OSD-CS-9	OEX-SW-1	OEX-SW-2	OEX-SW-3	OEX-SW-4		
Petroleum Hydrocarbon	l													
DRO	2,000	-	200	-	6.5 U	6.5 U	6.2 U	6.3 U	10 U	10 U	10 U	10 U		
ORO	2,000	-	200	-	13 U	13 U	12 U	13 U	100 U	100 U	100 U	100 U		
Metals														
Arsenic	20	-	20	57	6.3 U	6.6 U	5.8 U	5.9 U	5 U	5 U	5 U	5 U		
Copper	-	3,200	100	390	21.5	14.5	17.1	17	12	10	9.9	9.2		
Lead	250	-	220	450	5	3 U	6	13	4 U	4 U	4 U	4 U		
Mercury	2	-	9	0.41	0.03	0.03 U	0.03 U	0.06	0.05 U	0.05 U	0.05 U	0.05 U		
Zinc	-	24,000	270	410	78	24	32	34	18	18	20	15		
cPAHs														
Benzo[a]anthracene	-	1.4	-	0.55 (e)	0.005 U	0.005 U	0.005 U	0.006	0.033 U	0.033 U	0.033 U	0.033 U		
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	0.005 U	0.005 U	0.005 U	0.007	0.033 U	0.033 U	0.033 U	0.033 U		
Chrysene	-	140	-	0.55 (e)	0.005 U	0.005 U	0.005 U	0.011	0.033 U	0.033 U	0.033 U	0.033 U		
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	0.005 U	0.005 U	0.005 U	0.005 U	0.033 U	0.033 U	0.033 U	0.033 U		
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	0.005 U	0.005 U	0.005 U	0.005	0.033 U	0.033 U	0.033 U	0.033 U		
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	0.005 U	0.005 U	0.005 U	0.015	0.033 U	0.033 U	0.033 U	0.033 U		
Total cPAHs (c)	0.1	-	-	-	0.005 U	0.005 U	0.005 U	0.010	0.033 U	0.033 U	0.033 U	0.033 U		
Total HPAHs (f)	-	-	-	4.8 (e)	0.005 U	0.005 U	0.005 U	0.044	0.033 U	0.033 U	0.033 U	0.033 U		

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC 173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B	Terrestrial Ecological	SMS Sediment		Main Fill Area / Overexcavat			Main Fi	II Area (SE C	Overexcavati	on Area)	
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	Cleanup Level	Screening Level (a)	Quality Standards O	OEX-SW-5	OEX-SW-6	OEX-SW-7	OEX2-B1	OEX2-B2	OEX2-B3	OEX2-B4	OEX2-B6	OSD-CS3
Petroleum Hydrocarbon	l												
DRO	2,000	-	200	-	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ORO	2,000	-	200	-	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U
Metals													
Arsenic	20	-	20	57	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Copper	-	3,200	100	390	10	9.9	11	9.9	6.4	8.8	7.8	7	9.6
Lead	250	-	220	450	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Mercury	2	-	9	0.41	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Zinc	-	24,000	270	410	23	20	20	16	16	17	18	15	17
cPAHs													
Benzo[a]anthracene	-	1.4	-	0.55 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Chrysene	-	140	-	0.55 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Total cPAHs (c)	0.1	-	-	-	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Total HPAHs (f)	-	-	-	4.8 (e)	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC 173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B	Terrestrial Ecological	SMS Sediment	Sediment							
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	Cleanup Level	Screening Level (a)	Quality Standards	OSD-CS6	OEX2-SW1	OEX2-SW2	OEX2-SW3	OEX2-SW4	OEX2-SW5	OEX2-SW6	TPH2-SW1
Petroleum Hydrocarbons	1											
DRO	2,000	-	200	-	10 U							
ORO	2,000	-	200	-	100 U							
Metals												
Arsenic	20	-	20	57	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Copper	-	3,200	100	390	11	8.2	14	11	8.9	17	8.8	19
Lead	250	-	220	450	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Mercury	2	-	9	0.41	0.05 U							
Zinc	-	24,000	270	410	20	15	21	16	16	22	17	27
cPAHs												
Benzo[a]anthracene	-	1.4	-	0.55 (e)	0.033 U							
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	0.033 U							
Chrysene	-	140	-	0.55 (e)	0.033 U							
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	0.033 U							
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	0.033 U							
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	0.033 U							
Total cPAHs (c)	0.1	-	-	-	0.033 U	0.033 U	0.033 U		0.033 U	0.033 U		0.033 U
Total HPAHs (f)	-	-	-	4.8 (e)	0.033 U							

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included

total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC 173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B	Terrestrial Ecological	SMS Sediment				Metals Conta	mination Area	_		
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)		Screening Level (a)	Quality Standards	NRDA9-13b	NRDA9-14b	NRDA9-15b	NRDA9-16b	NRDA9-17b	NRDA9-18b	NRDA9-19b	TP-314-S-2
Petroleum Hydrocarbon	1											
DRO	2,000	-	200	-	-	-	-	-	-	-	-	-
ORO	2,000	-	200	-	-	-	-	-	-	-	-	-
Metals												
Arsenic	20	-	20	57	9.5	6 U	5.7 U	5.7 U	17.4	14.4	6.6 U	5.9 U
Copper	-	3,200	100	390	-	-	-	-	-	-	-	23.4
Lead	250	-	220	450	2	2	9	25	18	12	5 U	3
Mercury	2	-	9	0.41	0.03	0.02 U	0.03	0.04	0.04	0.05	0.03	0.03 U
Zinc	-	24,000	270	410	-	-	-	-	-	-	-	36
cPAHs												
Benzo[a]anthracene	-	1.4	-	0.55 (e)	-	-	-	-	-	-	-	-
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	-	-	-	-	-	-	-	-
Chrysene	-	140	-	0.55 (e)	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	-	-	-	-	-	-	-	-
Benzofluoranthenes, total		1.40	-	1.15 (e)	-	-	-	-	-	-	-	-
Total cPAHs (c)	0.1	-	-	-	-	-	-	-	-	-	-	-
Total HPAHs (f)	-	-	-	4.8 (e)	-	-	-	-	-	-	-	-

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom

benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC 173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B		SMS Sediment				Metals Conta	mination Area			
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	up Level Cleanup Screening		TP-315-S-2	TP-317-S-2	TP-318-S-2	TP-319-S-2	TP-320-S-2	TP-321-S-2	TP-322-S-2	TP-323-S-2	
Petroleum Hydrocarbon	1											
DRO	2,000	-	200	-	-	-	-	-	-	-	-	-
ORO	2,000	-	200	-	-	-	-	-	-	-	-	-
Metals												
Arsenic	20	-	20	57	13	6.3 U	9.2 U	6.1 U	7.1	7.1 U	10.6	5.6 U
Copper	-	3,200	100	390	18.8	15.8	18.9	10.8	21.8	16.3	21.8	29.4
Lead	250	-	220	450	7	3	4	2 U	5	3 U	14	4
Mercury	2	-	9	0.41	0.06	0.02 U	0.04 U	0.03 U	0.03 U	0.03 U	0.09	0.02 U
Zinc	-	24,000	270	410	35	20	35	19	30	20	61	42
cPAHs												
Benzo[a]anthracene	-	1.4	-	0.55 (e)	-	-	-	-	-	-	-	-
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	-	-	-	-	-	-	-	-
Chrysene	-	140	-	0.55 (e)	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	-	-	-	-	-	-	-	-
Benzofluoranthenes, total		1.40	-	1.15 (e)	-	-	-	-	-	-	-	-
Total cPAHs (c)	0.1	-	-	-	-	-	-	-	-	-	-	-
Total HPAHs (f)	-	-	-	4.8 (e)	-	-	-	-	-	-	-	-

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom

benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC 173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

	Method A	Method B	Terrestrial Ecological	SMS Sediment	Metals Contamination Area								
Analyte/Sample (mg/kg)	Cleanup Level (Unrestricted)	Cleanup Level	Screening Level (a)	ng Quality		TP-325-S-2	RD-CS-1	RD-CS-2(g)	RD-CS-3				
Petroleum Hydrocarbon													
DRO	2,000	-	200	-	-	-	-	-	-				
ORO	2,000	-	200	-	-	-	-	-	-				
Metals													
Arsenic	20	-	20	57	17.8	18.6	7.7	34.4	6.4 U				
Copper	-	3,200	100	390	36.5	31.3	12.3	26.7	25				
Lead	250	-	220	450	10	14	8	2.5	3 U				
Mercury	2	-	9	0.41	0.03 U	0.05	0.04	0.03 U	0.03				
Zinc	-	24,000	270	410	54	68	22	69.25	29				
cPAHs													
Benzo[a]anthracene	-	1.4	-	0.55 (e)	-	-	-	-	-				
Benzo[a]pyrene	0.1	0.14	12	0.50 (e)	-	-	-	-	-				
Chrysene	-	140	-	0.55 (e)	-	-	-	-	-				
Dibenz(a,h)anthracene	-	0.14	-	0.06 (e)	-	-	-	-	-				
Indeno(1,2,3-cd)pyrene	-	1.4	-	-	-	-	-	-	-				
Benzofluoranthenes, total	-	1.40	-	1.15 (e)	-	-	-	-	-				
Total cPAHs (c)	0.1	-	-	-	-	-	-	-	-				
Total HPAHs (f)	-	-	-	4.8 (e)	-	-	-	-	-				

Notes:

Values exceeding cleanup levels are shaded.

- = not available or not applicable.

(a) Terrestrial ecological screening levels are based on MTCA Table 749-2.

(b) Cleanup level based on chromium (III).

(c) Total cPAH values calculated using Toxicity Equivalency Factors

in accordance with WAC 173-340-708(e).

(e) Sediment Quality Standard shown is expressed on a dry weight basis

assuming a total organic carbon carbon content of 0.5 percent.

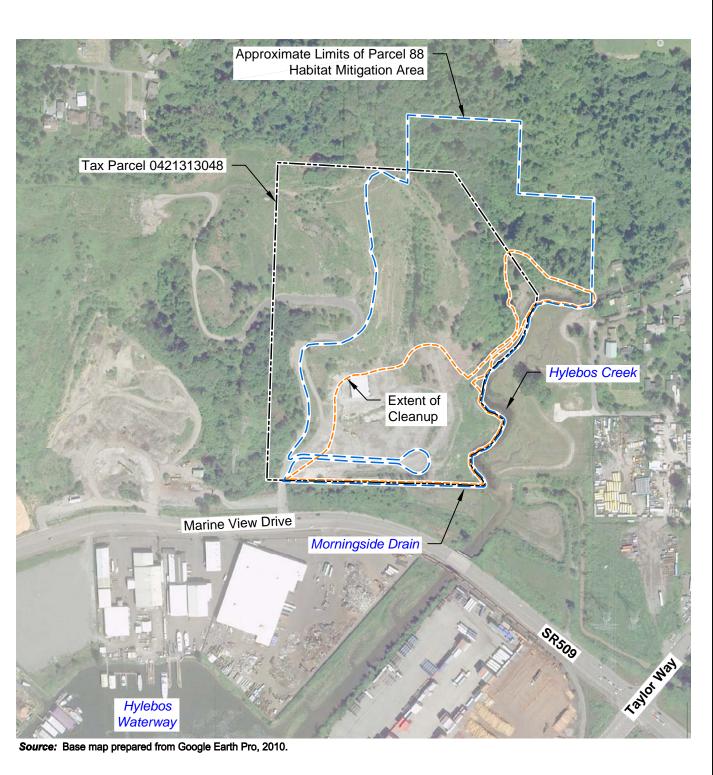
(f) Total HPAH values presented represent the sum of the high molecular weight polynuclear arom benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Fluoranthene and pyrene, which are included total HPAHs under SMS (WAC 173-204-320), are not identified as cPAHs under MTCA (WAC

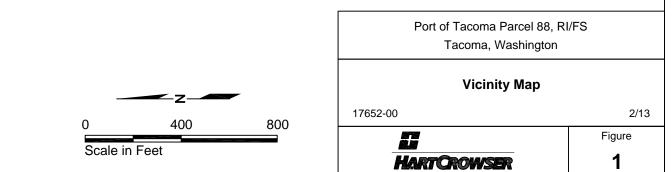
173-340-708([e]) and, therefore, were not routinely analyzed. They are not included in the values presented in this table.

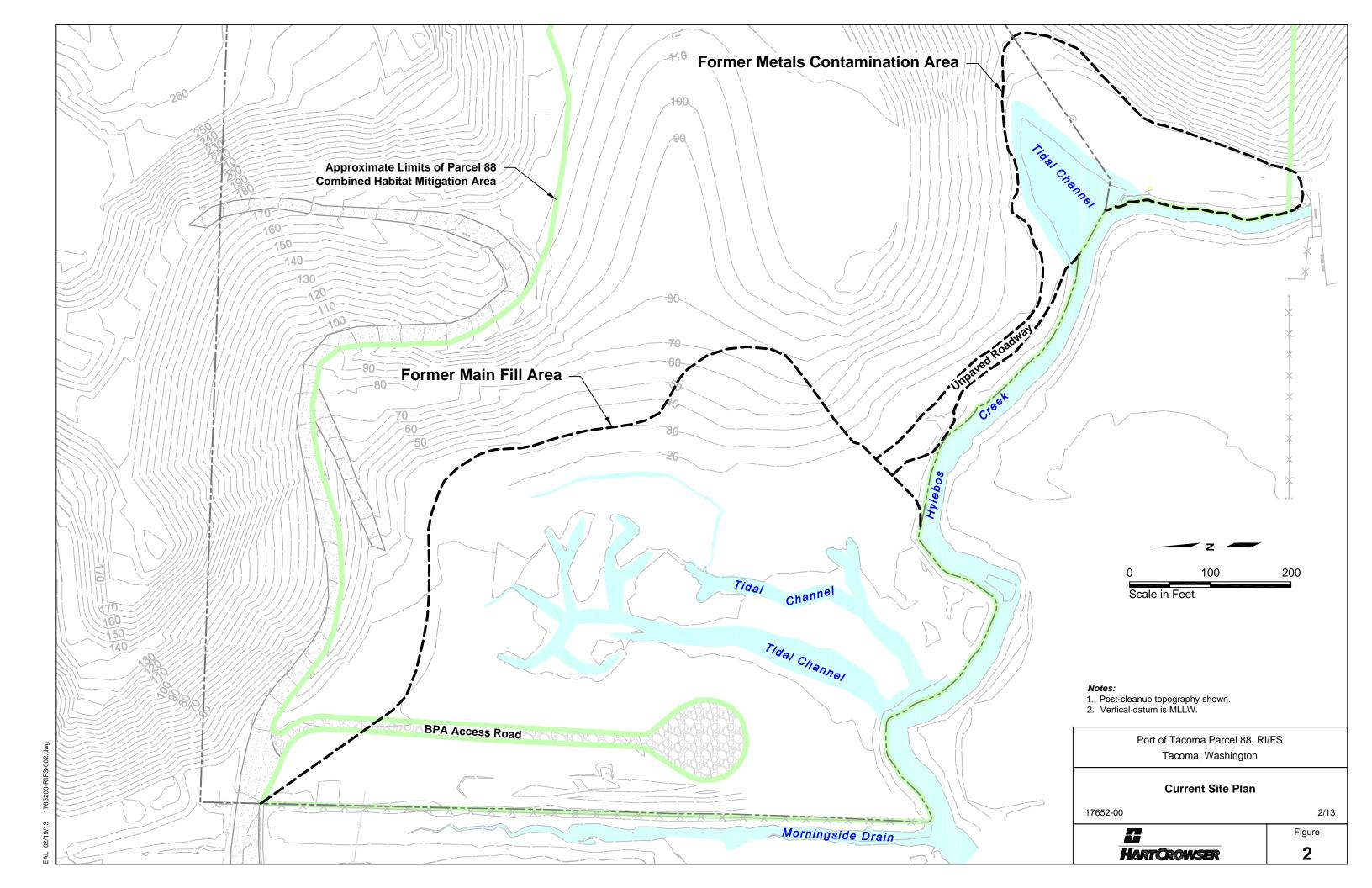
Table 2 - Post-Cleanup Groundwater Monitoring Results

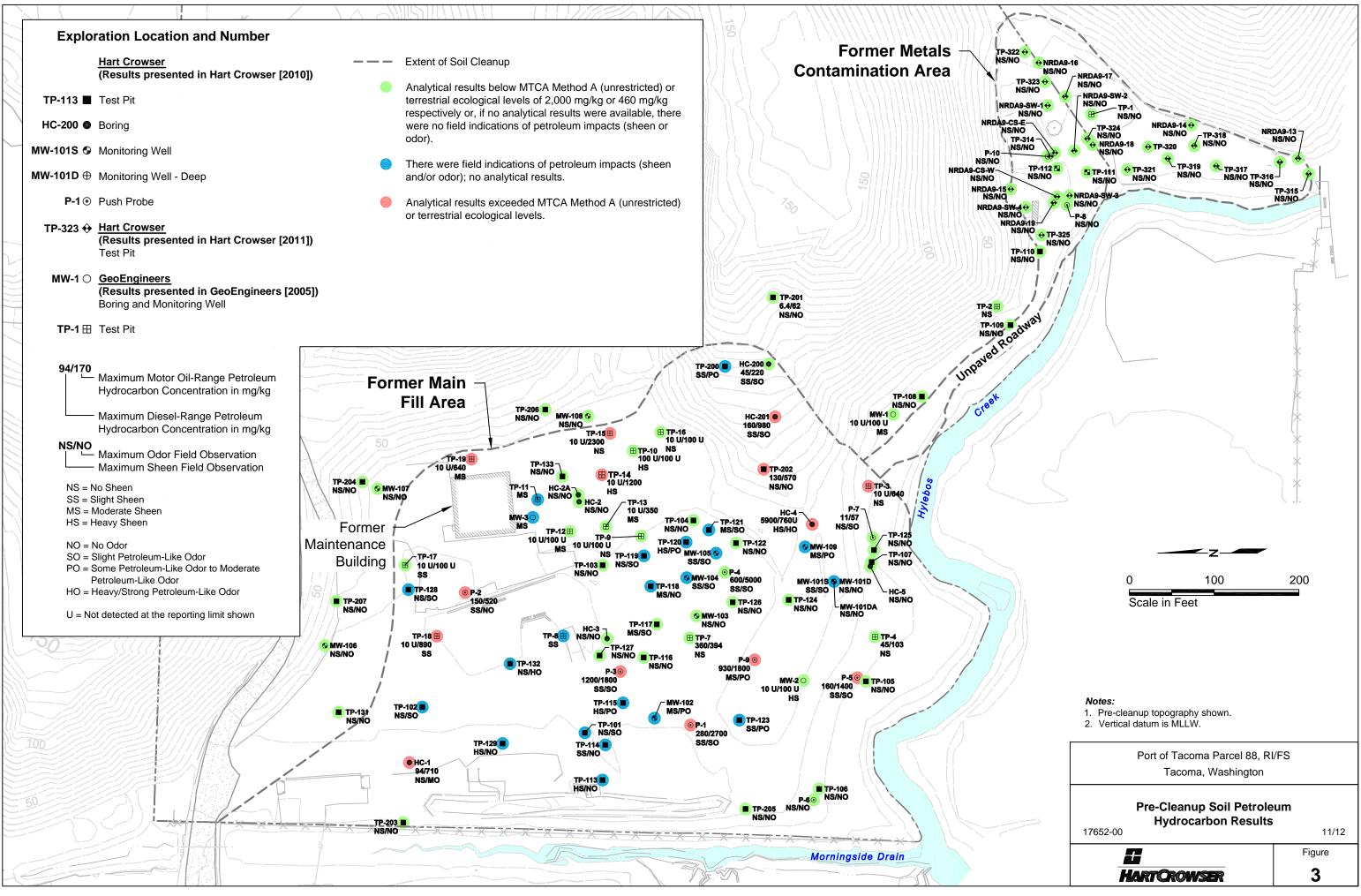
Analyte/Sample (ug/L unless otherwise noted)	Lowest Surface Water Criterion for Aquatic Life (a)	Secondary MCL (WAC 246-290-310)	MW-201		MW-202		
Petroleum Hydrocarbons							
DRO	Narrative criterion;		100	U	100 L	U	
ORO	no sheen		200	U	200 L	U	
Metals							
Arsenic, dissolved	36		0.9		17.6		
Copper, dissolved	2.4		0.5		0.5 L	U	
Lead, dissolved	8.1		0.1	U	0.1 L	U	
Mercury, total	0.025		0.01	U	0.01 L	U	
Zinc, dissolved	81		4	U	4 L	U	
Conventionals							
pH (standard units)			6.62		6.56		
Temperature (deg. C)			14.66		15.19		
Specific conductivity (uS/cm)		700	1,300 (9/7/12) 979 (10/10/12)		642 (9/7/12) 525 (10/10/12) 1,490 (12/18/12) 1,110 (12/18/12; lab)		
Total dissolved solids (mg/L)		500	871 (9/7/12) 656 (10/10/12)		430 (9/7/12) 354 (10/10/12) 978 (12/18/12) 826 (12/18/12; lab)	_	
Dissolved oxygen (mg/L)			0.04		0.04		
ORP (mV)			-99		-38		

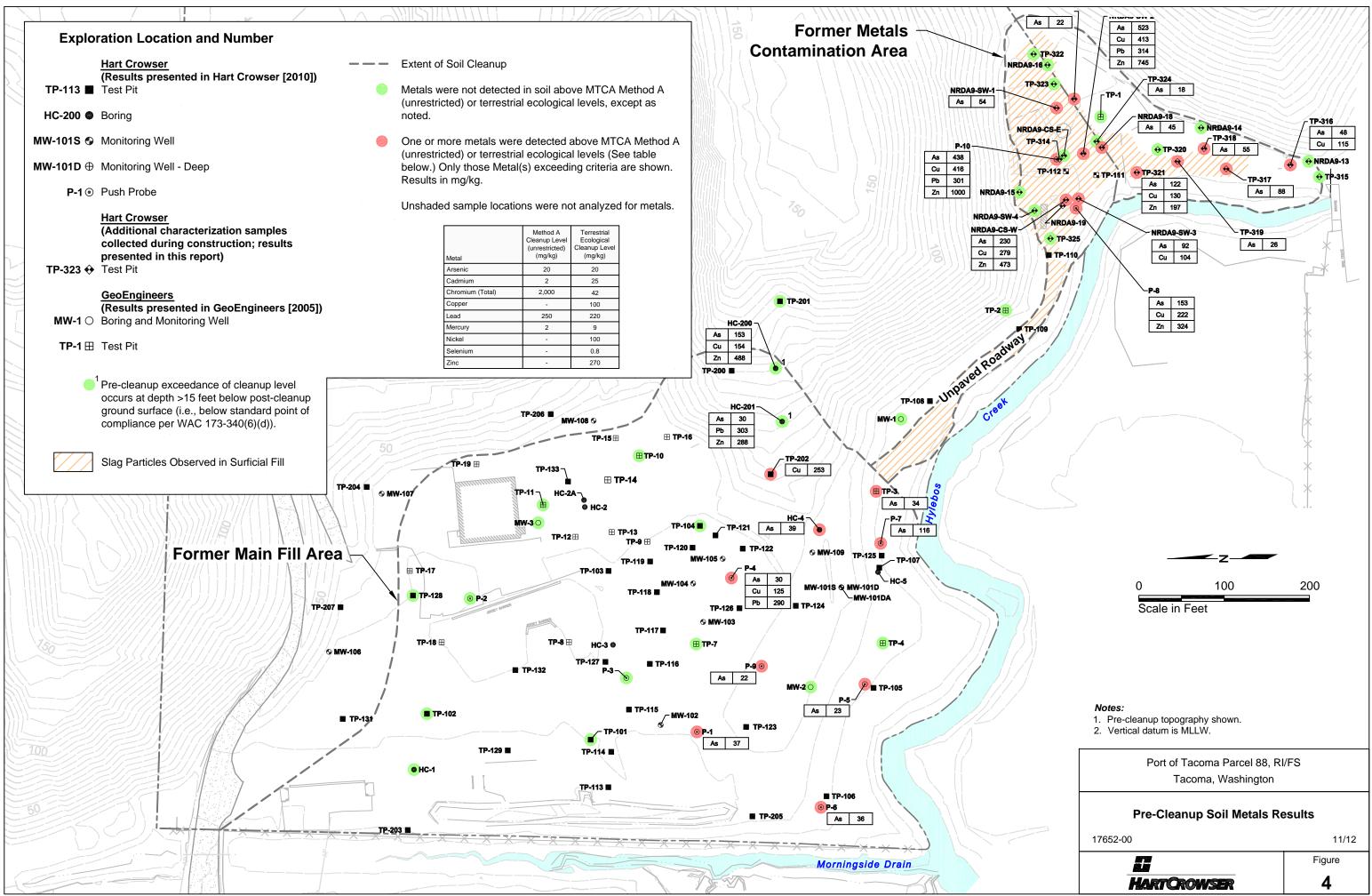
Notes:

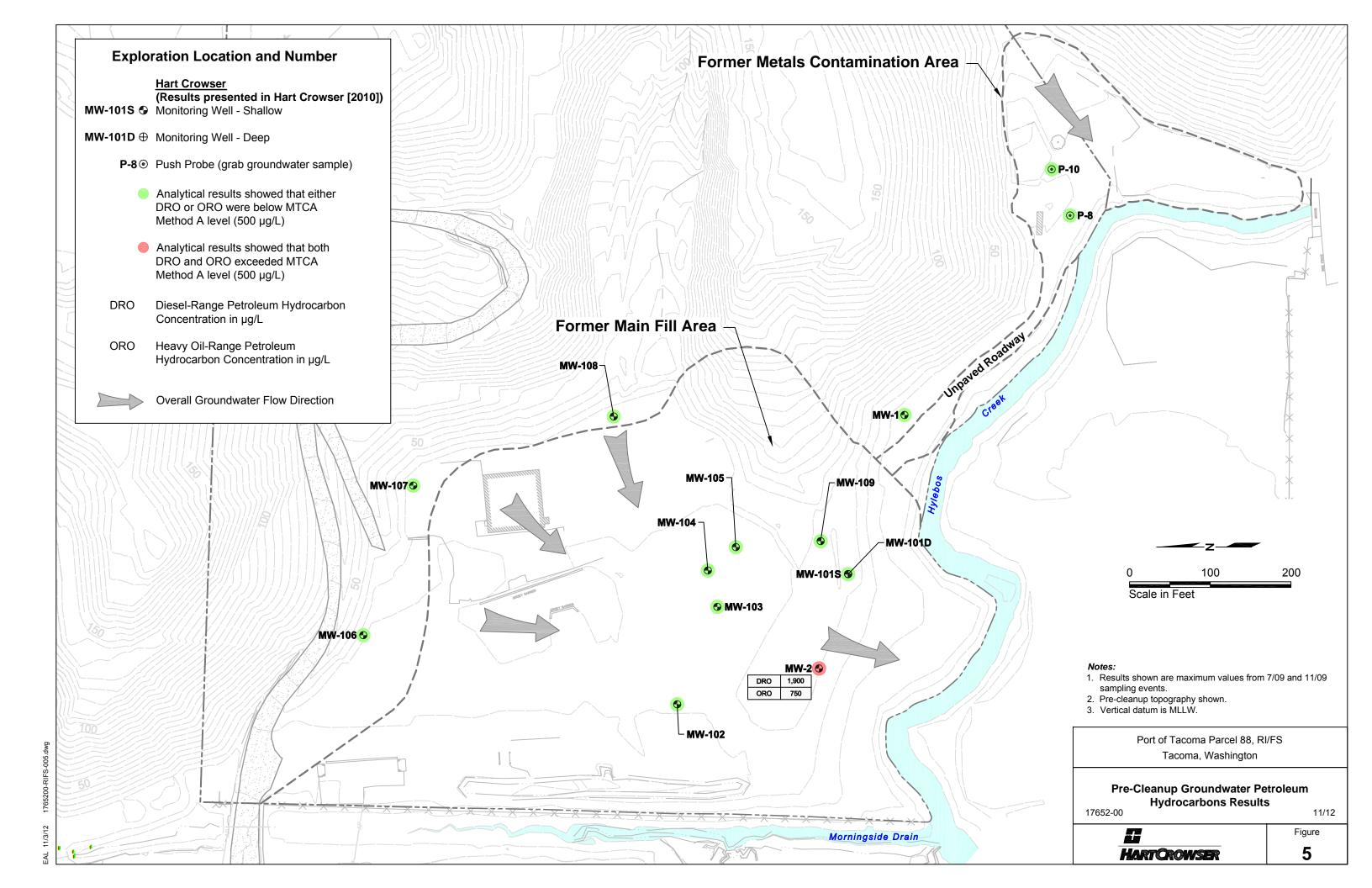

Values exceeding criteria are bolded.

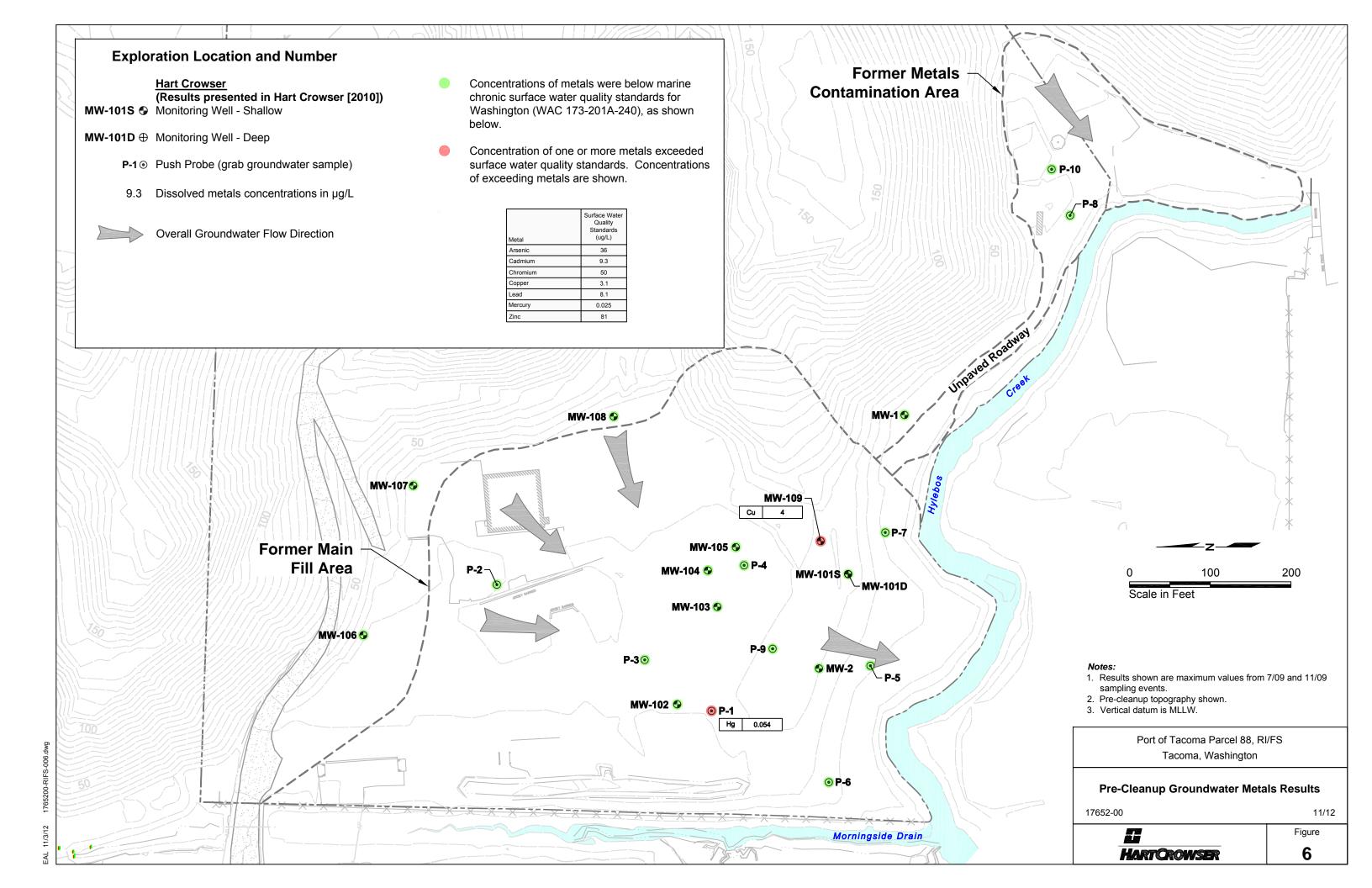

- = not available or not applicable.

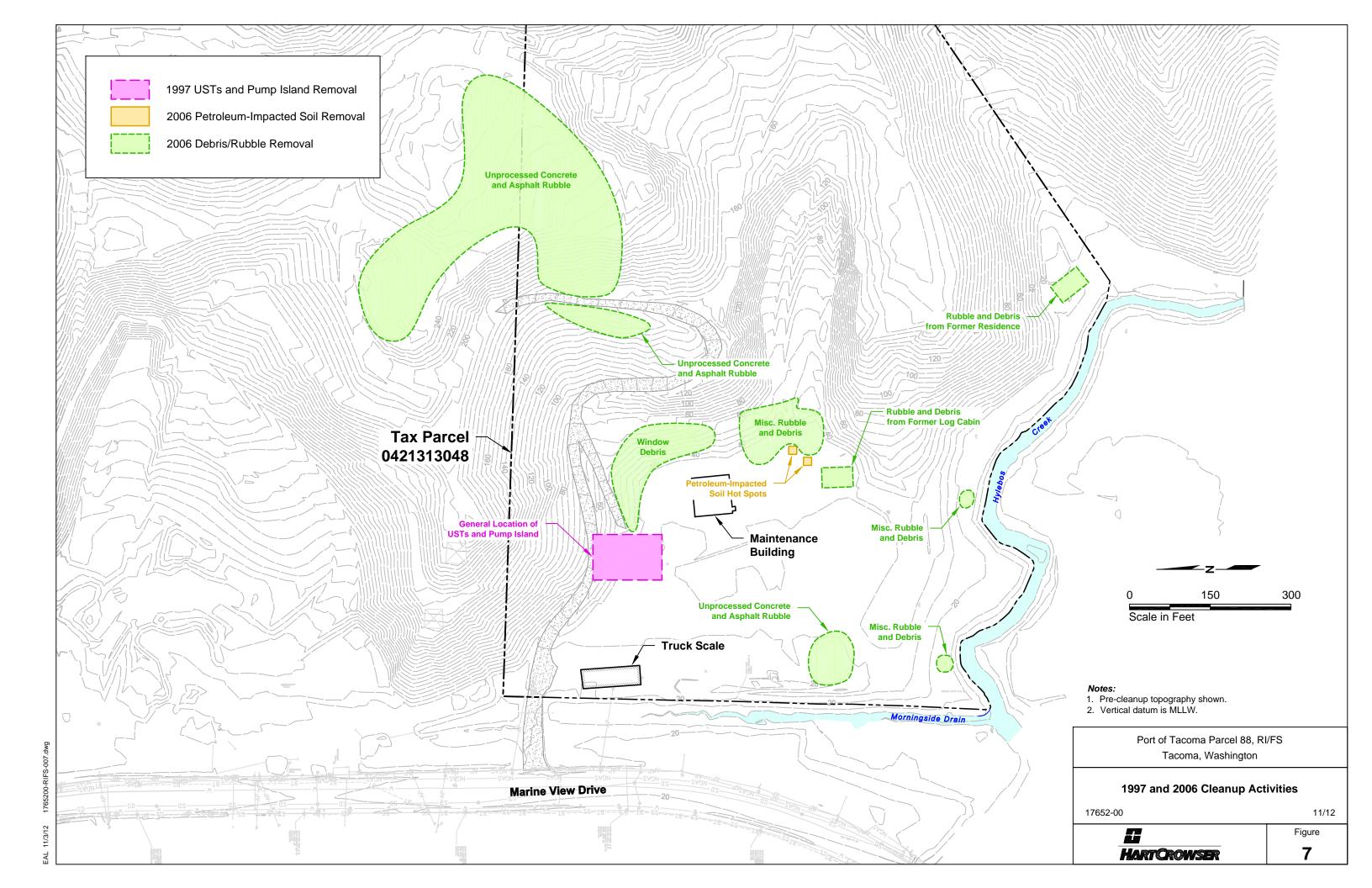

(a) Chapter 173-201A WAC; Clean Water Act §304; and National Toxics Rule, 40 CFR 131

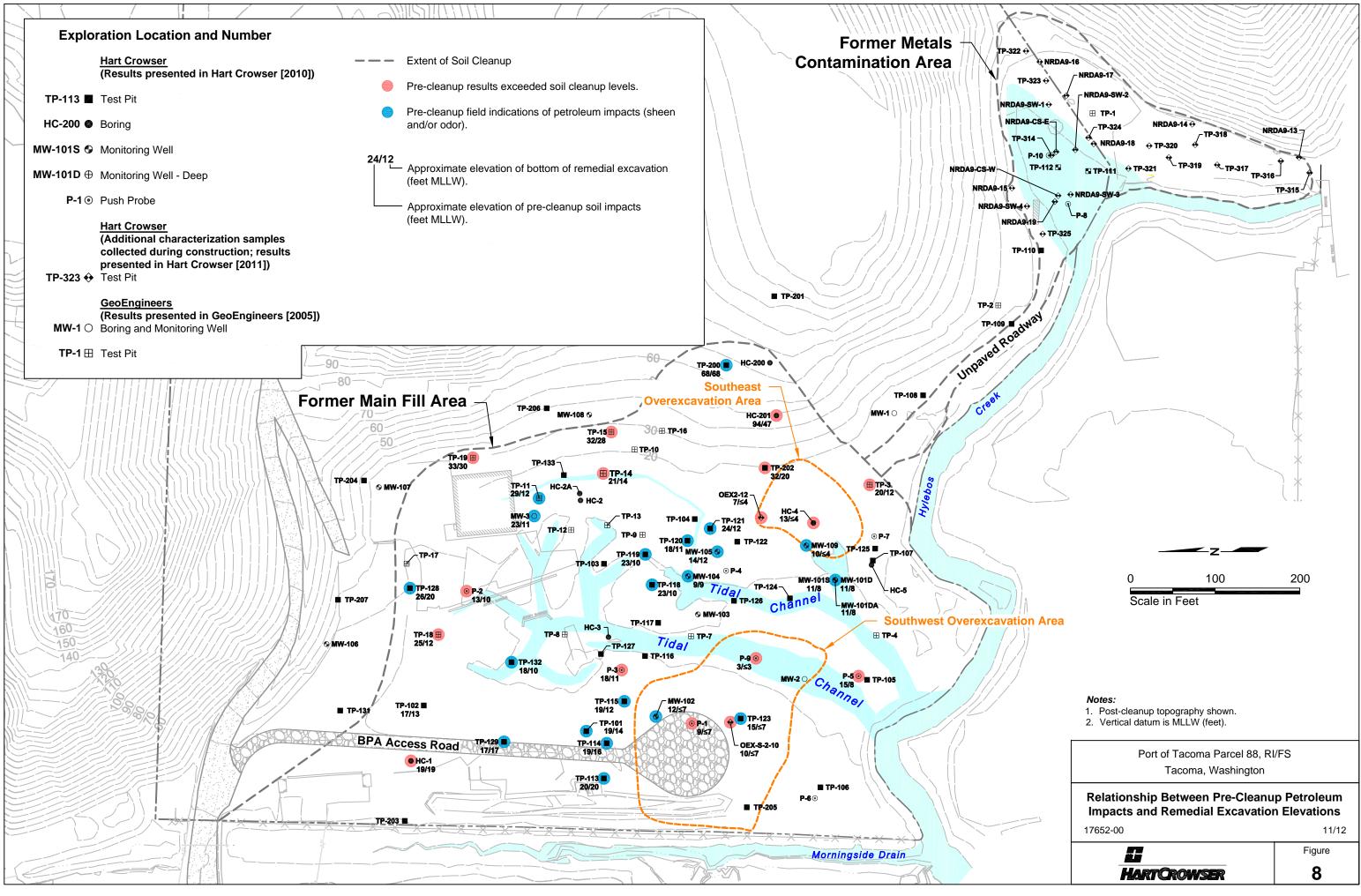

Results shown are for petroleum hydrocarbons and total mercury samples collected on 9/7/12 and for dissolved metals samples collected on 10/12/12. (Dissolved metals samples collected on 9/7/12 were inadvertently filtered twice and not preserved; therefore, they were recollected on 10/10/12.)

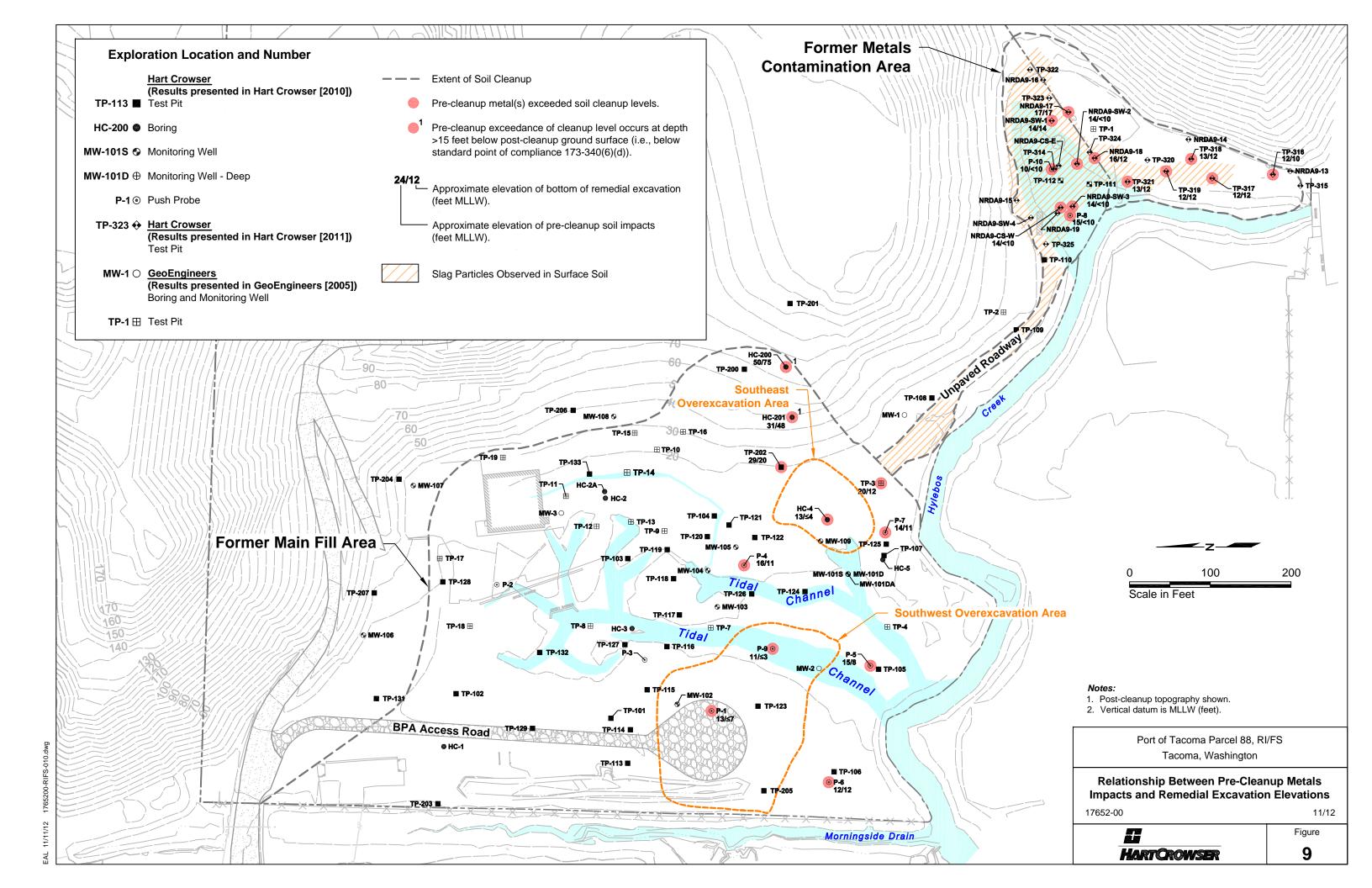

Conventionals were measured in the field except where noted. Field TDS was estimated using the relationship TDS=0.67 x specific conductivity.

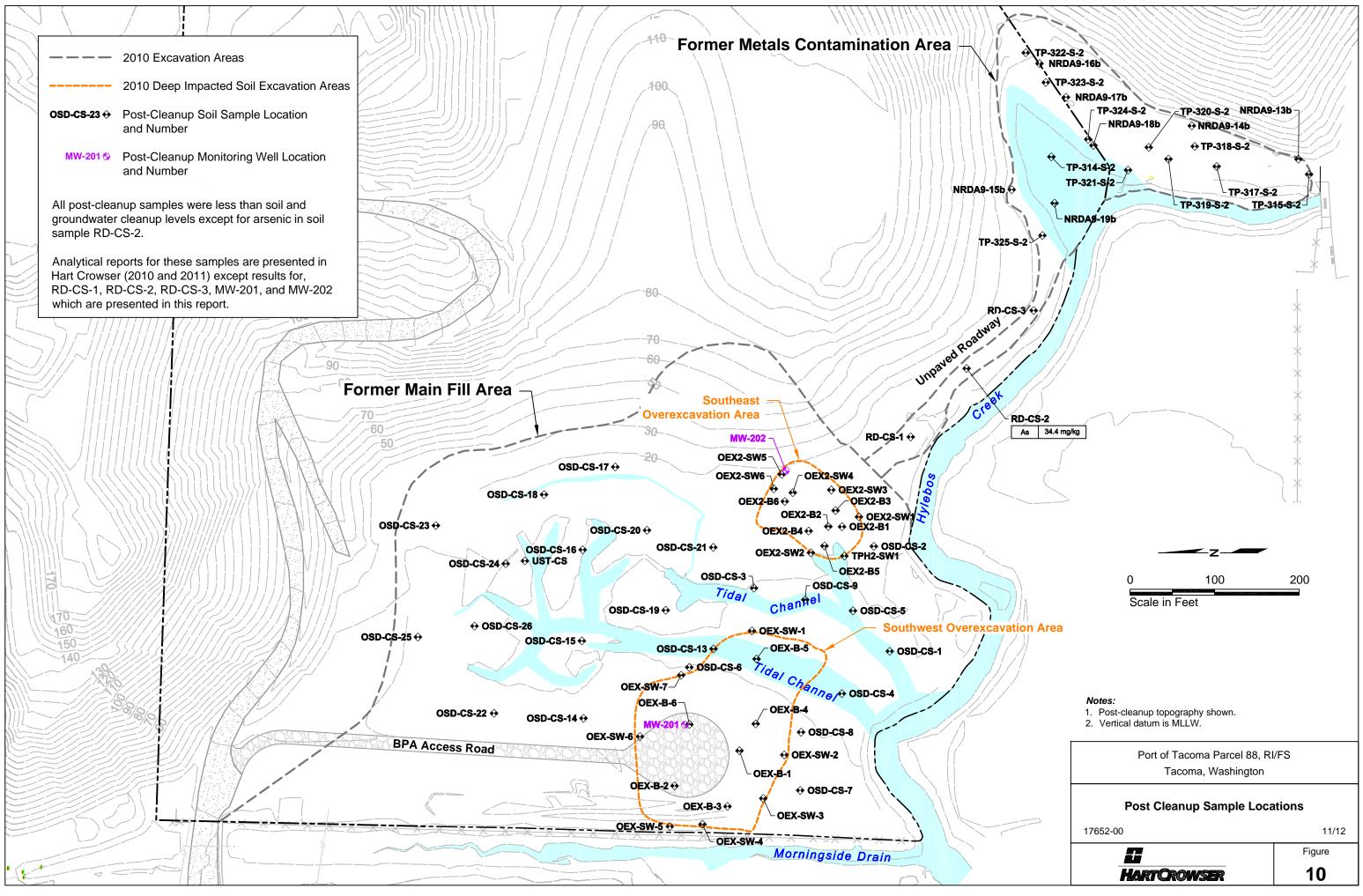












APPENDIX A BORING LOGS (RD-CS-1, -2, AND -3; AND MW-201 AND -202) Hand-Auger Log RD-CS-1

Location: N 47.258832 E -122.354005 Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS 1984 Vertical Datum: NA

Drill Equipment: Hand Auger Hammer Type: Hole Diameter: inches Logged By: P. Cordell Reviewed By: M. Dagel

	USCS C Class	Braphic Log	Soil Descriptions	Depth in Feet	Sample	LAB TESTS
	SM/ML		Weeds and grass at surface over (medium dense), moist, gray-brown, gravelly, silty SAND with frequent roots. Becomes looser and finer with depth.	0		
	5M/ML		(Loose), moist, gray-brown, silty SAND to sandy SILT with scattered roots. (NATIVE)		S-1	-CA
		:	Bottom of Boring at 0.9 Feet. Started 12/12/11.			
SIRATAPROBE LOG 1765200-HA.GPJ HC_CORP.GDT 1/25/12			Completed 12/12/11.			

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

Hand-Auger Log RD-CS-2

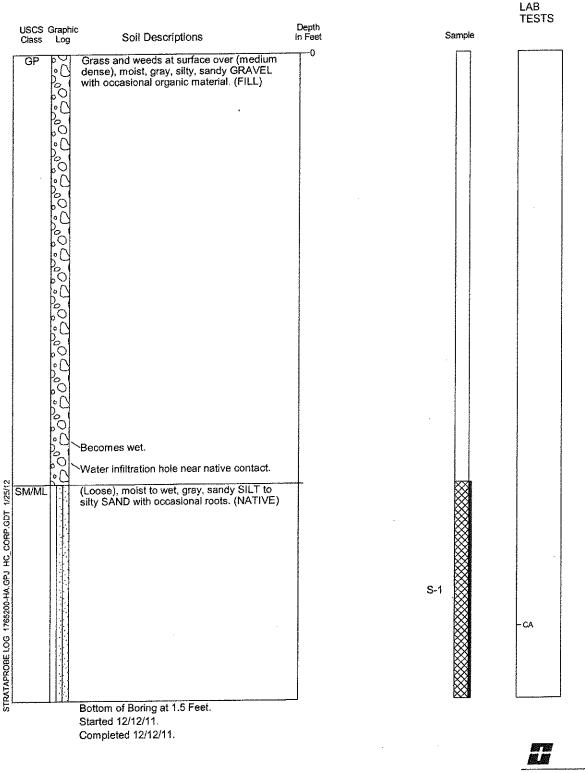
Location: N 47.258603 E -122.353717 Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS 1984 Vertical Datum: NA

Drill Equipment: Hand Auger Hammer Type: Hole Diameter: inches Logged By: P. Cordell Reviewed By: M. Dagel

LAB TESTS Depth in Feet USCS Graphic Class Log Sample Soil Descriptions -0 Grass at surface over (loose), moist, gray with occasional orange mottling, sandy SILT to silty SAND, with scattered roots. (REWORKED/DISTURBED NATIVE) SM/ML (Loose), moist, gray, sandy SILT to silty SM/ML SAND, with scattered roots. (NATIVE) S-1 ĊA Bottom of Boring at 0.9 Feet. Started 12/12/11. Completed 12/12/11. STRATAPROBE LOG 1765200-HA.GPJ HC_CORP.GDT 1/25/12

> HartCrowser 12/11 17652-00 Figure A-3

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

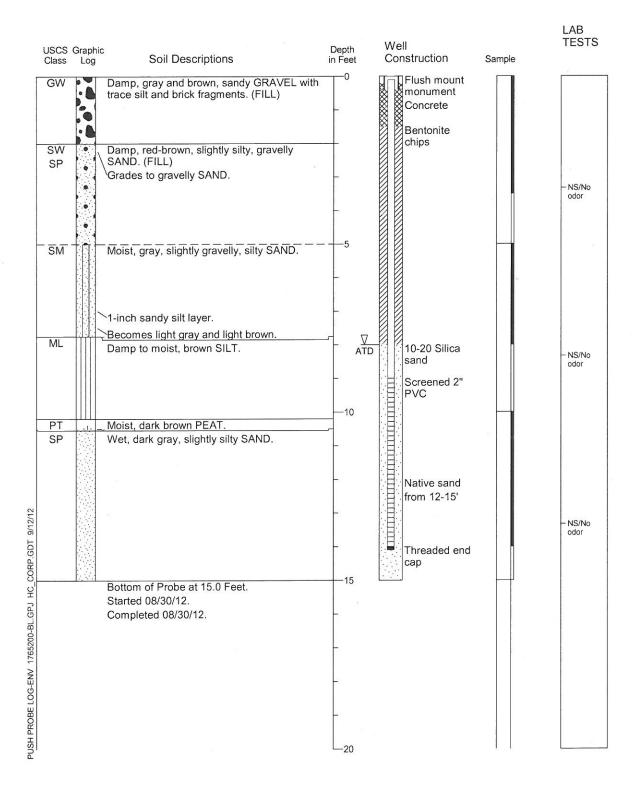

supported by laboratory testing (ASTM D 2487).

^{4.} Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

Hand-Auger Log RD-CS-3

Location: N 47.258404 E -122.353446 Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS 1984 Vertical Datum: NA

Drill Equipment: Hand Auger Hammer Type: Hole Diameter: inches Logged By: P. Cordell Reviewed By: M. Dagel


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

Push Probe Log MW-201

Location: Latitude: 47.259457 Longitude: -122.355385 Approximate Ground Surface Elevation: NA Feet Horizontal Datum: NA Vertical Datum: WGS 84

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 4 inches Logged By: P. Cordell Reviewed By: M. Dagel

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time

Hand-Auger Log MW-202

Location: Latitude: 47.259136 Longitude: -122.354281 Approximate Ground Surface Elevation: NA Feet Horizontal Datum: NA Vertical Datum: WGS 84

Drill Equipment: Hand Auger Sample Type: Grab Hole Diameter: 3 inches Logged By: P. Cordell Reviewed By: M. Dagel

USCS G	Graphic Log	c Soil Descriptions	Depth in Feet	Well Construction Sample	LAB TESTS
		Dark brown, gravelly, silty SAND with abundant wood. (FILL)	0	Concrete	– NS/Organi
SW SP	•	Wet, dark gray, silty SAND.		7 Chips 10-20 Silica	odor
		Grades to wet, dark gray, slilghtly silty SAND to SAND with trace silt.	5	Screened 3/4"	- Organic sheer/No odor
ML		Moist, gray SILT.	-	Slip cap	
		Bottom of Probe at 6.0 Feet. Started 08/30/12. Completed 08/30/12.			
		Note: Pre-pack well screen. Sand pack is enclosed by a stainless steel screen.	_		
			_		
			-10		
			-		
		κ.			
			-		
			-15		
			Ē		
			F		
			-		
			L_20	I L	L

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

APPENDIX B LABORATORY REPORTS (RD-CS-1, -2, AND -3; AND MW-201 AND -202)

HARTCROWSER

soils

December 20, 2011

Mark Dagel Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Parcel 88 ARI Job No.: UA85

geotechnical • environmental • natural resources

Dear Mark;

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received three soil samples on December 12, 2011. The samples were received in good condition with a cooler temperature of 4.1 °C.

The samples were analyzed for Total Metals, as requested on the COC.

The matrix spike is out of control low for zinc with RPDs for copper and zinc outside of the +/- 20% control limits. All other QC is in control and no further corrective action was taken.

There were no other anomalies associated with the analyses of these samples.

Sincerely,

ANALY/CAL RESOURCES, INC.

Kelly Bottem

Client Services Manager kellyb@arilabs.com 206/695-6211 Enclosures

cc: eFile UA85

KFB/kb

U Hau		and and				1			Analytical Resources, Incorporated
ARI Client Company:	Phone:	Phone:	206 374	62.55 1	Date:	111 -	Ice Present?		Analytical Chemists and Consultants 4611 South 134th Place, Suite 100
Client Contact: Mark Dasci					No. of Coolers:		Cooler Temps: U. \)	lukwila, WA 98168 206-695-6200 206-695-6201 (fax)
-	88				70			- 10	Notes/Comments
Client Project #: 17652 - のご	amplers:	PRC			30E 4	.ht K			
Sample ID	Date	Time	Matrix	No Containers	42W #	Mercur			
RD-25-1	11/21/21	1120	Soil	-	X	X			
R0-65-2	-	1100	_	2	X	X			* A15/14504
RD-65-3	>	Ohal	\rightarrow		\times	X			Normal and
Comments/Special Instructions	Relinquished by	111	1	Received by	7		Relinguished by:		Received by:
Cadminen	Printed Name:	1742	1	(Signature)			(Signature)		(Signature)
Chromium Copper	N	(sodel			10 laardser	deen	Printed Name.		Printed Name
Nickel	Hart	- Crowser		Company:	P.C.		. Company.		Company
Sciencom	1/1	In 1305	5	Uate & Time	T	1270	Date & Time:		Date & Time.

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Rece	eipt F	orm	
ARI Client Hart Crouser	Project Name DarCel	38		
COC No(s) (NA)	Delivered by: Fed-Ex UPS Courie	And De	livered Other	
Assigned ARI Job No UIA85	Tracking No		/	
Preliminary Examination Phase:				
Were intact, properly signed and dated custody seals attached to the Were custody papers included with the cooler?			YES	N9 NO
Were custody papers properly filled out (ink, signed, etc.)			YES	NO
Temperature of Cooler(s) (°C) (recommended 2 0-6 0 °C for chemi	stry). 4,1		\smile	
If cooler temperature is out of compliance fill out form 00070F		Temp Gun I	D#. 909	41619
Cooler Accepted by.	Date (2/12/1) Time	1200	5	
	d attach all shipping documents		1	6
Log-In Phase:	**************************************			
Was a temperature blank included in the cooler? Bubble Wrap		ock Paper	YES Other:_	(NO
Was sufficient ice used (if appropriate)?		NA	TES	NO
Were all bottles sealed in individual plastic bags?			YES	NO
Did all bottles arrive in good condition (unbroken)?			ES	NO
Were all bottle labels complete and legible?			YES	NO
Did the number of containers listed on COC match with the number	of containers received?		VES	NO
Did all bottle labels and tags agree with custody papers?			ESW	(NO)
Were all bottles used correct for the requested analyses?			YES	NO
Do any of the analyses (bottles) require preservation? (attach prese	rvation sheet, excluding VOCs)	(NA)	YES	NO
Were all VOC vials free of air bubbles?		(NA	YES	NO
Was sufficient amount of sample sent in each bottle?		<u> </u>	(ES)	NO
Date VOC Trip Blank was made at ARI.		(NA	\sum	
Was Sample Split by ARI : (NA) YES Date/Time	Equipment:	~	Split by:	

Samples Logged by.

Date: 12/12/11 ** Notify Project Manager of discrepancies or concerns **

ÅV

_ Time: _

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
RC-C3-1	RID-CS-1		
RC-CS-2	RD-CS-2		······································
RC-CS-3	RD-CS-3		
Additional Notes, Discrepanci	es, & Resolutions:		
1	1-1		
Small Air Bubbles Peabubl		Small → "sm"	
	Dies' LARGE Air Bubbles	Small → "sm" Peabubbles → "pb"	
Small Air Bubbles Peabubl	LARGE Air Bubbles		

Revision 014

Split by:_____

1445

Sample ID Cross Reference Report

ARI Job No: UA85 Client: Hart Crowser, Inc Project Event: 17652-00 Project Name: Parcel 88

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	RD-CS-1	UA85A	11-28414	Soil	12/12/11 11:20	12/12/11 13:05
2.	RD-CS-2	UA85B	11-28415	Soil	12/12/11 11:00	12/12/11 13:05
3.	RD-CS-3	UA85C	11-28416	Soil	12/12/11 10:40	12/12/11 13:05

Printed 12/12/11

Sample ID: RD-CS-1 SAMPLE

Lab Sample ID: UA85A LIMS ID: 11-28414 Matrix: Soil Data Release Authorized: Reported: 12/16/11 QC Report No: UA85-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

Percent Total Solids: 74.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/14/11	6010B	12/15/11	7440-38-2	Arsenic	6.3	7.7	
3050B	12/14/11	6010B	12/15/11	7440-43-9	Cadmium	0.3	0.3	U
3050B	12/14/11	6010B	12/15/11	7440-47-3	Chromium	0.6	15.1	
3050B	12/14/11	6010B	12/15/11	7440-50-8	Copper	0.3	12.3	
3050B	12/14/11	6010B	12/15/11	7439-92-1	Lead	3	8	
CLP	12/14/11	7471A	12/15/11	7439-97-6	Mercury	0.02	0.04	
3050B	12/14/11	6010B	12/15/11	7440-02-0	Nickel	1	8	
3050B	12/14/11	6010B	12/15/11	7782-49-2	Selenium	6	6	U
3050B	12/14/11	6010B	12/15/11	7440-66-6	Zinc	1	22	

Sample ID: RD-CS-2 SAMPLE

Lab Sample ID: UA85B LIMS ID: 11-28415 Matrix: Soil Data Release Authorized: Reported: 12/16/11 QC Report No: UA85-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

Percent Total Solids: 76.8%

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
12/14/11	6010B	12/15/11	7440-38-2	Arsenic	6.2		
12/14/11	6010B	12/15/11	7440-43-9	Cadmium			
12/14/11	6010B	12/15/11	7440-47-3	Chromium	0.6		
12/14/11	6010B	12/15/11	7440-50-8	Copper	0.2		
12/14/11	6010B	12/15/11	7439-92-1	Lead	2	3	
12/14/11	7471A	12/15/11	7439-97-6	Mercury	0.03	0.03	U
12/14/11	6010B	12/15/11	7440-02-0	Nickel	1		U
12/14/11	6010B	12/15/11	7782-49-2	Selenium	6		U
12/14/11	6010B	12/15/11	7440-66-6	Zinc	1	127	0
	Date 12/14/11 12/14/11 12/14/11 12/14/11 12/14/11 12/14/11 12/14/11 12/14/11	DateMethod12/14/116010B12/14/116010B12/14/116010B12/14/116010B12/14/116010B12/14/117471A12/14/116010B12/14/116010B	DateMethodDate12/14/116010B12/15/1112/14/116010B12/15/1112/14/116010B12/15/1112/14/116010B12/15/1112/14/116010B12/15/1112/14/117471A12/15/1112/14/116010B12/15/1112/14/116010B12/15/1112/14/116010B12/15/1112/14/116010B12/15/11	DateMethodDateCAS Number12/14/116010B12/15/117440-38-212/14/116010B12/15/117440-43-912/14/116010B12/15/117440-47-312/14/116010B12/15/117440-50-812/14/116010B12/15/117439-92-112/14/116010B12/15/117439-92-112/14/117471A12/15/117439-97-612/14/116010B12/15/117440-02-012/14/116010B12/15/117782-49-2	DateMethodDateCAS NumberAnalyte12/14/116010B12/15/117440-38-2Arsenic12/14/116010B12/15/117440-43-9Cadmium12/14/116010B12/15/117440-47-3Chromium12/14/116010B12/15/117440-50-8Copper12/14/116010B12/15/117439-92-1Lead12/14/116010B12/15/117439-97-6Mercury12/14/117471A12/15/117440-02-0Nickel12/14/116010B12/15/117782-49-2Selenium	DateMethodDateCAS NumberAnalyteRL12/14/116010B12/15/117440-38-2Arsenic6.212/14/116010B12/15/117440-43-9Cadmium0.212/14/116010B12/15/117440-47-3Chromium0.612/14/116010B12/15/117440-50-8Copper0.212/14/116010B12/15/117439-92-1Lead212/14/116010B12/15/117439-97-6Mercury0.0312/14/117471A12/15/117440-02-0Nickel112/14/116010B12/15/117782-49-2Selenium6	DateMethodDateCAS NumberAnalyteRLmg/kg-dry12/14/116010B12/15/117440-38-2Arsenic6.244.412/14/116010B12/15/117440-43-9Cadmium0.20.312/14/116010B12/15/117440-47-3Chromium0.615.812/14/116010B12/15/117440-50-8Copper0.237.512/14/116010B12/15/117439-92-1Lead2312/14/116010B12/15/117439-97-6Mercury0.030.0312/14/117471A12/15/117440-02-0Nickel11212/14/116010B12/15/117782-49-2Selenium6612/14/116010B12/15/117782-49-2Selenium66

Sample ID: RD-CS-2 DUPLICATE

Lab Sample ID: UA85B LIMS ID: 11-28415 Matrix: Soil Data Release Authorized Reported: 12/16/11

QC Report No: UA85-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q
Arsenic	6010B	44.4	39.4	11.9%	+/- 20%	
Cadmium	6010B	0.3	0.2 U	40.0%	+/- 0.2	L
Chromium	6010B	15.8	15.8	0.0%	+/- 20%	
Copper	6010B	37.5	30.6	20.3%	+/- 20%	*
Lead	6010B	3	2 U	40.0%	+/- 2	L
Mercury	7471A	0.03 U	J.33 U	0.0%	+/- 0.03	L
Nickel	6010B	12	11	8.7%	+/- 20%	
Selenium	6010B	6 U	6 U	0.0%	+/- 6	L
Zinc	6010B	127	68	60.5%	+/- 20%	*

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Lab Sample ID: UA85B LIMS ID: 11-28415 Matrix: Soil Data Release Authorized Reported: 12/16/11 Sample ID: RD-CS-2 MATRIX SPIKE

QC Report No: UA85-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	* Recovery	Q
Arsenic	6010B	44.4	285	249	96.6%	
Cadmium	6010B	0.3	64.5	62.3	103%	
Chromium	6010B	15.8	76.7	62.3	97.8%	
Copper	6010B	37.5	96.4	62.3	94.5%	
Lead	6010B	3	245	249	97.2%	
Mercury	7471A	0.03 U	0.34	0.299	114%	
Nickel	6010B	12	68	62.3	89.9%	
Selenium	6010B	6 U	235	249	94.4%	
Zinc	6010B	127	126	62.3	-1.6%	N

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Sample ID: RD-CS-3 SAMPLE

Lab Sample ID: UA85C LIMS ID: 11-28416 Matrix: Soil Data Release Authorized: Reported: 12/16/11 Percent Total Solids: 75.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/14/11	6010B	12/15/11	7440-38-2	Arsenic	6.4	<i>C</i> A	
3050B	12/14/11	6010B	12/15/11	7440-43-9	Cadmium	0.3	6.4 0.3	U U
3050B	12/14/11	6010B	12/15/11	7440-47-3	Chromium	0.6	18.1	0
3050B	12/14/11	6010B	12/15/11	7440-50-8	Copper	0.3	25.0	
3050B	12/14/11	6010B	12/15/11	7439-92-1	Lead	3	3	U
CLP	12/14/11	7471A	12/15/11	7439-97-6	Mercury	0.03	0.03	U
3050B	12/14/11	6010B	12/15/11	7440-02-0	Nickel	1	12	
3050B	12/14/11	6010B	12/15/11	7782-49-2	Selenium	6	6	U
3050B	12/14/11	6010B	12/15/11	7440-66-6	Zinc	1	29	Ū

Sample ID: LAB CONTROL

Lab Sample ID: UA85LCS LIMS ID: 11-28414 Matrix: Soil Data Release Authorized: Reported: 12/16/11 QC Report No: UA85-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
· · · · · · · · · · · · · · · · · · ·					36
Arsenic	6010B	192	200	96.0%	
Cadmium	6010B	50.5	50.0	101%	
Chromium	6010B	49.0	50.0	98.0%	
Copper	6010B	50.8	50.0	102%	
Lead	6010B	194	200	97.08	
Mercury	7471A	0.52	0.50	104%	
Nickel	6010B	46	50	92.0%	
Selenium	6010B	189	200	94.5%	
Zinc	6010B	47	50	94.0%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

Sample ID: METHOD BLANK

Lab Sample ID: UA85MB LIMS ID: 11-28414 Matrix: Soil Data Release Authorized Reported: 12/16/11

QC Report No: UA85-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	0
					maryce	<u></u>	mg/kg-ary	Q
3050B	12/14/11	6010B	12/15/11	7440-38-2	Arsenic	5	5	U
3050B	12/14/11	6010B	12/15/11	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/14/11	6010B	12/15/11	7440-47-3	Chromium	0.5	0.5	U
3050B	12/14/11	6010B	12/15/11	7440-50-8	Copper	0.2	0.2	U
3050B	12/14/11	6010B	12/15/11	7439-92-1	Lead	2	2	U
CLP	12/14/11	7471A	12/15/11	7439-97-6	Mercury	0.02	0.02	U
3050B	12/14/11	6010B	12/15/11	7440-02-0	Nickel	1	1	U
3050B	12/14/11	6010B	12/15/11	7782-49-2	Selenium	5	5	U
3050B	12/14/11	6010B	12/15/11	7440-66-6	Zinc	1	1	U

HARTCROWSER

March 19, 2012

Mark Dagel Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Parcel 88 ARI Job No.: UM07

geotechnical • environmental • natural resources

Dear Mark;

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received three soil samples on December 12, 2011. The samples were received in good condition with a cooler temperature of 4.1 °C.

The samples were originally analyzed for Total Metals, as requested on the COC and reported under UA85.

At the request of Hart Crowser, Inc, sample RD-CS-2 was homogenized and analyzed for total metals three times. Mercury was analyzed outside of the method recommended holding time.

There were no other anomalies associated with the analyses of these samples.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager kellyb@arilabs.com 206/695-6211 Enclosures

cc: eFile UM07

KFB/kb

UABS	iurn-aroun	lurn-around Requested:			Page:	1	of /		Analytical Resources, Incorporated
ARI Client Company: Hart (nows -	35	Phone: Z	206 324	02557	Date: 12/1	11/21	Ice Present?		4611 South 134th Place, Suite 100 Tubuita WA 03150
Client Contact: Nerk Dage/					No. of Coolers:	-	Cooler Temps: 4, /)	206-695-6200 206-695-6201 (fax)
Ment Project Name.	60				705	116	Analysis Requested		Notes/Comments
Client Project #: 17652 - OC	Samplers:	PAC			0E 4	ht (
Sample ID	Date	Time	Matrix	No. Containers	/4.2W	Mercut			
RD-25-1	12/12/11	1120	Seil	-	X	X			
R0-66-2	. 1	1100	-	2	X	X			*aislucht
RD-65-3	2	Ohol	>	-	X	>			J.C.W.C.W.
						-			
						+			
						+			
A ISENIC DECIDIONS	(Signature)	R-JC-	0	Received by: (Signature)	Z		Retinguished by.		Received by
Chronivan (Chronivan)	Printed Name	Condel		Printed Name:	4100 maller	Deen	Printed Name		Printed Name
Level ,	Company/	t Couse	3	1	1901		Company		Comparty:
Selevion / Date & Time	Date & Timp	In 130	1305	Date & Time	3	1200	Date & Time.		Date & Time

State services. The acceptance for the critering of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or consistence of the contrary in any contract, purchase order or contrary in any contrary provision to the contrary in any contrary provision in the co

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt Fo	orm	
ARI Client <u>Hart Crouser</u> COC No(s) <u>NA</u> Assigned ARI Job No <u>UIAE5</u> Preliminary Examination Phase:	Project Name <u>Diract</u> 85 Delivered by Fed-Ex UPS Courier Fand Delive Tracking No	Ired Other	NA
Were intact, properly signed and dated custody seals attached to Were custody papers included with the cooler?	· · · · · · · · · · · · · · · · · · ·		NO NO NO
If cooler temperature is out of compliance fill out form 00070F Cooler Accepted by	Temp Gun ID# Date: 12/12/11 Time: 1305	9094	11419
Complete custody forms	and attach all shipping documents		
Was a temperature blank included in the cooler?		YES	(NO
Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags?	NA NA	YES	NO
Did all bottles arrive in good condition (unbroken)?		(ES (YES	NO

Date 12/12/11 ** Notify Project Manager of discrepancies or concerns **

....

Equipment.

.....

. ...

Time:

Did the number of containers listed on COC match with the number of containers received?

Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) .

Date VOC Trip Blank was made at ARI...

Date/Time:

Did all bottle labels and tags agree with custody papers?

Was Sample Split by ARI : (NA)

Samples Logged by.

Were all bottles used correct for the requested analyses?

YES

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
RC-C3-1	RD-CS-1		
RC-CS-2	RD-CS-2		
RC-CS-3	RD-CS-3		
ditional Notes, Discrepanci	es, & Resolutions:		
	ite 12/12/11		
A./ Da Small Air Bubbles Zmm 2-4 mi	Hes' LARGE AF Bubbles	Small → "sm"	
Small Air Bubbles Peabubb	Hes' LARGE Al Bubbles	Small → "\$m" Peabubbles → "pb"	
Small Air Bubbles Peabubb	Hes' LARGE AF Bubbles		

0016F 3/2/10

Cooler Receipt Form

Revision 014

NO

NO

NO

NO

NO

NO

ES

YES

YES

ES'

Split by:

(NA)

NA

NÀ

1445

Sample ID Cross Reference Report

ARI Job No: UM07 Client: Hart Crowser, Inc Project Event: 17652-00 Project Name: Parcel 88

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	RD-CS-2	UM07A	12-4333	Soil	12/12/11 11:00	12/12/11 13:05
2.	RD-CS-2	UM07B	12-4334	Soil	12/12/11 11:00	12/12/11 13:05
3.	RD-CS-2	UM07C	12-4335	Soil	12/12/11 11:00	12/12/11 13:05

Printed 03/13/12 Page 1 of 1

Subject: Re: Additional analyses requested from archived sample From: Kelly Bottem <kellyb@arilabs.com> Date: 3/13/2012 9:13 AM To: Mark Dagel <Mark.Dagel@hartcrowser.com>, 'Login' <login@arilabs.com>

```
Login please pull this sample and let me know if we have it. \ensuremath{\kappa}
```

On 3/12/2012 2:36 PM, Mark Dagel wrote:

Hi Kelly--We're interested in having three additional soil aliquots from an archived soil sample jar re-run for metals (same analytes/methods as original analysis). Our goal is to evaluate heterogeneity of results within this sample container. We'd like the contents of the container homogenized and then three aliquots taken and analyzed. The sample is UA85B (our sample RD-CS-2), collected on 12/12/11. Please let me know if you see any problems with this approach and an approximate schedule for completion. Thanks --Mark

Mark Dagel

Hart Crowser

1700 Westlake Avenue North, Suite 200

Seattle, Washington 98109

206.826.4534 (direct)

206.473.2514 (cell)

206.324.9530 (receptionist)

206.826.4480 (conference call-in number)

206.328.5581 (fax)

Kelly Frances Bottem, Client Services Manager Analytical Resources, Inc. 4611 S. 134th Place, Suite 100 Tukwila, WA 98168-3240 Website: <u>http://www.arilabs.com</u> Direct Phone: 206-695-6211 E-Mail: <u>kellyb@arilabs.com</u> Fax: 206-695-6201 Cell: 206-228-1385

"Never interrupt someone doing something you said couldn't be done" - Amelia Earhart

***Before printing, think about ENVIRONMENTAL responsibility

This correspondence contains confidential information from Analytical Resources, Inc. (ARI) The information contained herein is

Lab Sample ID: UM07A LIMS ID: 12-4333 Matrix: Soil Data Release Authorized: Reported: 03/19/12

Percent Total Solids: 77.5%

Sample ID: RD-CS-2 SAMPLE

QC Report No: UM07-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	03/13/12	6010B	03/15/12	7440-38-2	Arsenic	6.2	32.3	
3050B	03/13/12	6010B	03/15/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	03/13/12	6010B	03/15/12	7440-47-3	Chromium	0.6	16.9	
3050B	03/13/12	6010B	03/15/12	7440-50-8	Copper	0.2	23.1	
3050B	03/13/12	6010B	03/15/12	7439-92-1	Lead	2	2	υ
CLP	03/13/12	7471A	03/16/12	7439-97-6	Mercury	0.03	0.03	U
3050B	03/13/12	6010B	03/15/12	7440-02-0	Nickel	1	12	
3050B	03/13/12	6010B	03/15/12	7782-49-2	Selenium	6	6	U
3050B	03/13/12	6010B	03/15/12	7440-66-6	Zinc	1	54	

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

Sample ID: RD-CS-2 SAMPLE

Lab Sample ID: UM07B LIMS ID: 12-4334 Matrix: Soil Data Release Authorized: Reported: 03/19/12 QC Report No: UM07-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

Percent Total Solids: 77.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
							mg/kg-dry	2
3050B	03/13/12	6010B	03/15/12	7440-38-2	Arsenic	6.0	31.8	
3050B	03/13/12	6010B	03/15/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	03/13/12	6010B	03/15/12	7440-47-3	Chromium	0.6	17.4	
3050B	03/13/12	6010B	03/15/12	7440-50-8	Copper	0.2	22.3	
3050B	03/13/12	6010B	03/15/12	7439-92-1	Lead	2	2	
CLP	03/13/12	7471A	03/16/12	7439-97-6	Mercury	0.02	0.02	U
3050B	03/13/12	6010B	03/15/12	7440-02-0	Nickel	1	12	
3050B	03/13/12	6010B	03/15/12	7782-49-2	Selenium	6	6	υ
3050B	03/13/12	6010B	03/15/12	7440-66-6	Zinc	1	45	Ū

Sample ID: RD-CS-2 SAMPLE

Lab Sample ID: UM07C LIMS ID: 12-4335 Matrix: Soil Data Release Authorized: Reported: 03/19/12 QC Report No: UM07-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 12/12/11 Date Received: 12/12/11

Percent Total Solids: 77.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
	Not the strength							
3050B	03/13/12	6010B	03/15/12	7440-38-2	Arsenic	6.1	29.1	
3050B	03/13/12	6010B	03/15/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	03/13/12	6010B	03/15/12	7440-47-3	Chromium	0.6	17.6	
3050B	03/13/12	6010B	03/15/12	7440-50-8	Copper	0.2	23.7	
3050B	03/13/12	6010B	03/15/12	7439-92-1	Lead	2	2	U
CLP	03/13/12	7471A	03/16/12	7439-97-6	Mercury	0.03	0.03	U
3050B	03/13/12	6010B	03/15/12	7440-02-0	Nickel	1	12	
3050B	03/13/12	6010B	03/15/12	7782-49-2	Selenium	6	6	U
3050B	03/13/12	6010B	03/15/12	7440-66-6	Zinc	1	51	

Sample ID: METHOD BLANK

Lab Sample ID: UM07MB LIMS ID: 12-4333 Matrix: Soil Data Release Authorized Reported: 03/19/12

QC Report No: UM07-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	03/13/12	6010B	03/15/12	7440-38-2	Arsenic	5	5	υ
3050B	03/13/12	6010B	03/15/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	03/13/12	6010B	03/15/12	7440-47-3	Chromium	0.5	0.5	Ū
3050B	03/13/12	6010B	03/15/12	7440-50-8	Copper	0.2	0.2	IJ
3050B	03/13/12	6010B	03/15/12	7439-92-1	Lead	2	2	IJ
CLP	03/13/12	7471A	03/16/12	7439-97-6	Mercury	0.02	0.02	U
3050B	03/13/12	6010B	03/15/12	7440-02-0	Nickel	1	1	U
3050B	03/13/12	6010B	03/15/12	7782-49-2	Selenium	5	5	IJ
3050B	03/13/12	6010B	03/15/12	7440-66-6	Zinc	1	1	U
			00/10/11	,110 00 0	LINC	1	T	

Sample ID: LAB CONTROL

Lab Sample ID: UM07LCS LIMS ID: 12-4333 Matrix: Soil Data Release Authorized: Reported: 03/19/12 QC Report No: UM07-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	o
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Arsenic	6010B	200	200	100%	
Cadmium	6010B	47.5	50.0	95.0%	
Chromium	6010B	52.3	50.0	105%	
Copper	6010B	51.1	50.0	1028	
Lead	6010B	196	200	98.0%	
Mercury	7471A	0.52	0.50	104%	
Nickel	6010B	49	50	98.0%	
Selenium	6010B	200	200	100%	
Zinc	6010B	50	50	. 100%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120% Analytical Resources, Incorporated Analytical Chemists and Consultants

September 24, 2012

Mark Dagel Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Parcel 88 ARI Job No.: VI65 and VK17

ELE & Ware. LARTCROWSER atile Edmonds. Vancourse. Portland Up/orad TPH results + Hg results - x/1 HARTCROWSEI

geotechnical • environmental • natural resources

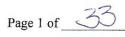
Dear Mark;

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received two water samples on September 7, 2012. The samples were received in good condition with a cooler temperature of 5.9 °C.

The samples were analyzed for NWTPH-Dx, dissolved metals and total mercury as requested on the COC.

There were no anomalies associated with the analyses of these samples.

A copy of this report and all associated raw data will be kept on file at ARI. Should you have any questions regarding these results, please feel free to contact me at your convenience.


Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem Client Services Manager kellyb@arilabs.com 206/695-6211 Enclosures

cc: eFile VI65, VK17

KFB/kb



Sai	Sample Custody Record	tody R	ecor		SUN						Hart Crowser, Inc.
Sampl	Samples Shipped to: A R T	KT		,			574	HARTOROWSER	WSER		Seattle, Washington 98109-6212 Seattle, Washington 98109-6212 Office: 206 2230 6520 5522 906 5502
	00-25911 BOL	00 LAB	3 NUMBER				131	REQUESTED	REQUESTED ANALYSIS		190328.200.328.200.328.208
	PROJECT NAME PARCEL 38	RCEL	88				~ <			NEBS	
HAI	HART CROWSER CONTACT MARK DAGE	ACT MARK	< DAG	EL			6+1- =1+0			IATNOD	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
	SAMPLED BY: PRC and SMF	and Sn	LLN				1410- 1410-			NO. OF	
LAB	LAB NO. SAMPLE ID	DESCRIPTION	-	DATE	TIME	MATRIX				+	
	MW 201		6	9/7/12 11:45 A	1145 A	02H	111			E	
	MW 202		6	9/7/12 1	12:45 P	H20	111			- 7	
										-	
			+								
			-								
			1								
			+								
			-								
RFLI	RFLINDLISHED BY	DATE	DECEN								
	I definicion		KELEIVED BY	ED BY		DATE	SPECIAL SH	SPECIAL SHIPMENT HANDLING OR	G OR		TOTAL NUMBER OF CONTAINERS
SIGNATURE	33	9/11/12	SIGNATURE	SE .			SIURAGE H	SI UKAGE KEQUIREMENTS:	( c	SAMP	SAMPLE RECEIPT INFORMATION
TI PRINT NAME	NAME LEVICED	1 IME	PRINT NAME	ME		TIME	1513	ימינטימי	us raicrical ranges	UVES C	
COMPARY	ANT	1555	_				10 日本本	** Discol and hadred bit	11 011	6000	NOIHION
RELIT	RELINQUISHED BY	DATE	RECEIVED BY	ED BY	T	DATE	5			TEMP	ATURE NT MEI
X	4 Mas	9/4/6				() _p (	COOLER NO.:		STORAGE LOCATION:	00	
2	SIGNATORE Millsop Denniter Millsop	TIME	SIGNATURE	SE		TIME					IUKNAKUUNU IIME:
XX ala			PRINT NAME	ME			See Lab Wo	See Lab Work Order No.		- 48	~
Who who	ANY	(m)	COMPANY				for Other Co	for Other Contract Requirements	ts	172	1
White and	White and Yellow Copies to Lab	Pink to Project Manager	ect Manager	Lab to	o Return Whi	Lab to Return White Copy to Hart Crowser	t Crowser	Gold to Sample Custodian	ug		

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Re	eceipt Form	1
ARI Client: Havt Crowser	Project Name: Pa	rcel 88	
COC No(s):	Delivered by: Fed-Ex UPS	Courier Hand Delivered Oth	
Assigned ARI Job No: VIGS		Course Cano Denterica Oth	
Preliminary Examination Phase:			NA
Were intact, properly signed and dated custody seals atta	ached to the outside of to cooler?	YES	
Were custody papers included with the cooler?		TES	(NO)
Were custody papers properly filled out (ink, signed, etc.)		CTES	NO
		(ES)	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C · If cooler temperature is out of compliance fill out form 000		7.00-	
Cooler Accepted by:	Date: 9/7/12	Temp Gun ID#: <u>9087</u> Fime:	17950
Complete custody	forms and attach all shipping docume	nts	
Log-In Phase:			
Was a temperature blank included in the cooler?			A
What kind of packing material was used? Bubbl		YES	(NO
Was sufficient ice used (if appropriate)?		NA TES	
Were all bottles sealed in individual plastic bags?		THE CES	NO
Did all bottles arrive in good condition (unbroken)?		REG	NO
Were all bottle labels complete and legible?		YES	NO
Did the number of containers listed on COC match with the			NO NO
Did all bottle labels and tags agree with custody papers?			NO
Were all bottles used correct for the requested analyses? .		(YES)	
Do any of the analyses (bottles) require preservation? (atta			NO NO
Were all VOC vials free of air bubbles?		(NA) YES	NO
Was sufficient amount of sample sent in each bottle?		(YES)	
Date VOC Trip Blank was made at ARI			NO
A	Equipment:	Split by:	
Samples Logged by:	_Date:	11 MS	1.1
** Notify Project Ma	anager of discrepancies or concerns *	*	
Sample ID on Bottle Sample ID on COO	C Sample ID on Bottle	Sample ID on CO	c 1
· · · ·			
Additional Notes, Discrepancies, & Resolutions:			
Pur Date			
By: Date: Small Air Bubbles Peabubbles LARGE Air Bubbles	Small > (		
-2mm 2-4 mm > 4 mm			
· · · · · · · · · · · · · · · · · · ·	Peabubbles → "pb"		
	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		

0016F 3/2/10

Cooler Receipt Form

Revision 014

VISS 06223 W 9/24/12

PRESERVATION VENTION 09/07/12     MAI Job No: VIES       Page 1 of 1     Reconstruction       Page 1 of 1     Reconstruction       Inquiry Number: NONE     Forsition       Contact: Daget, Mark     Forsition       Mark     Mark       Contact: Daget, Mark     Forsition       Contact: Daget, Mark     Forsition       Contact: Daget, Mark     Forsition       Contact: Daget, Mark     Forsition       Contact: Daget, Mark     Forsthored       Contact: Daget, Mark	I of 1     ARI Job No: VIES       I of 1     ARI Job No: VIES       I of 1     FERMINENTION 09/07/12       ry Number: NONE     FY Number: NONE       ry Number: NONE     FY Number: NONE       ry Number: NONE     FY Number: NONE       ris Bequested: 09/10/12     FY Number: None       ris Bequested: 100/10/12     FY Number: None       ris Bequested: 100/10/12     FY Number: None       ris Bequested: 100/10/12     FY Number: None       ris Bequested: 100/11/12     FY Number: None       ris Bequested: 100/11/12     FY Number: None       ris Bequested: 100/11/12     FY Number       ris Become     FY Number       ris Become     FY Number       ris Becom     FY Number       ris Becom     FY Number       ris Becom     FY Number       ris Becom     FY Number																							
12 12 12 12 12 12 12 12 12 12	12 12 12 12 12 12 12 12 12 12	<b>PRESEI</b> Page	<b>VVATION VERIFI</b> ( 1 of 1	CATION	1 09'	E/LO/	12				AF	IALYTIC		_			ARI	Job N	0: <b>VI65</b>					
WAD     NH3     COD     FDG     MET     PHEN     PHOS     Sample Site:       Sample Site:     Sample Site:     Sample Site:     Sample Site:     Sample Site:       VAD     NH3     COD     FOG     MET     PHEN     PHOS     TWN       >12     22     22     22     22     22     22     22     22       >12     22     22     22     22     22     22     22       Malytical Protocol     Mass     Phen     Phos     Phen       Mass     Dis     Mass     Na     Phen       Mass     Part     Na     Phen     Phen       Mass     Part     Na     Phen     Phen       Mass     Part     Na     Phen     Phen       Part     Part     Na     Phen     Phen	Wab     NH3     COD     Fordject #: 17652-00       Project : PARCEL 88     Sample Site:     Sample Site:       Supple Site:     Sample Site:     Sample Site:       Sigg No:     Analytical Protocol       Nail Cop     For     Protocol       Nail Cop     Protocol     Protocol       Nail Cop     Protocol     Protocol       Nail Cop     Protocol     Protocol       Nail     Protocol     Protocol       Nail     Protocol     Protocol       Nail     Protocol     Protocol       Pais     Protocol     Protocol	Inqui: Analys Contac	ry Number: NON is Requested: t: Dagel, Mark	E 09/10	1/12						Z	сояро	RATED				PC: VTSF	Kelly R: 09/	07/12					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Client Loggec Sample Valida Delive	:: Hart Crowsel : Hart Crowsel : Set Used: Yes : table Package: rables:	r, Inc s-481 : No													Proj Proj SDG SDG	ect # ect: No: Si	: 17652- PARCEL 8 te:					
197TOTTOTTOTTOTTOTTOTTOTPATAMETER98MW202 $MW202$ $MW202$ $MW202$ $MW202$ $MW202$ $MW201$ $MW202$ $MW201$ $MW201$ $MW201$ $MW201$ $MW202$ </td <td>97     M201     TOT     TOT     TOT     M4201       98     M202     M201     M255     M255     M255       99     M201     M255     M255     M255       99     M201     M255     M255     M257       99     M201     M255     M255     M257       99     M201     M255     M256     M257       99     M201     M255     M256     M1       00     M202     M156     M1     M1       00     M202     M1     M2     M2       M202     M2     M2     M2     M2</td> <td>LOGNUM ARI ID</td> <td></td> <td>CN &gt;12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I PHOS</td> <td></td> <td>N023</td> <td></td> <td></td> <td>AK102F</td> <td>22+ DIV</td> <td></td> <td></td> <td>ADJUS1</td> <td>ED LOT</td> <td></td> <td> F1</td> <td></td>	97     M201     TOT     TOT     TOT     M4201       98     M202     M201     M255     M255     M255       99     M201     M255     M255     M255       99     M201     M255     M255     M257       99     M201     M255     M255     M257       99     M201     M255     M256     M257       99     M201     M255     M256     M1       00     M202     M156     M1     M1       00     M202     M1     M2     M2       M202     M2     M2     M2     M2	LOGNUM ARI ID		CN >12							I PHOS		N023			AK102F	22+ DIV			ADJUS1	ED LOT		 F1	
198 MW202 99 MW201 00 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW20 MW20	198 MW202 99 MW201 00 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW202 MW2	12-1709 VI65A							DI C							+	-		NS 97-7	ন	NUMBI	-		/BY
00 MW201 DIS DIS DIS DIS DIS DIS DIS DIS DIA DIS DIA DIS DIA DIS DIA DIS DIA DIS DIA	199 MW201 100 MW202 100 MW202	12-1709 <b>VI65B</b>	1						TOT	DE.V									ta					
MAZOZ MAZOJ MAZONA MAZON	MW202 MW200	12-1709 <b>VI65C</b>							II C				_				z	_	H				<	X
Samples C & D Altered & preserved	Samples C & D Altered & preserved -NB 09-07-12	12-1710 <b>V165D</b>	1						A IN			_					Z		Ind		MPZH	2 2.0m	04-01 NB	7-17
Samples C & D filtered & preserved in lab.	Samples C & D Ailtered & preserved in lab. -NB 09-07-12		-			_	-	-	191		1	_ ·	_				_		- La	V	PL-24	2.2.0ml	- 04-07	21-2
	-NB 09-07-12										ma	uple	S V	2	J.	Her	la la	Pro Pro	served	in k	2			

VI65:00004W 9/24/12

checked By  $\frac{\partial W}{\partial D}$  bate  $\frac{q/7//2}{2}$ 

## Sample ID Cross Reference Report



ARI Job No: VI65 Client: Hart Crowser, Inc Project Event: 17652-00 Project Name: PARCEL 88

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VISR
1. 2. 3. 4.	MW201 MW202 MW201 MW202	VI65A VI65B VI65C VI65D	12-17097 12-17098 12-17099 12-17100	Water Water	09/07/12 11:45 09/07/12 12:45 09/07/12 11:45 09/07/12 12:45	09/07/12 15:55 09/07/12 15:55 09/07/12 15:55 09/07/12 15:55

Printed 09/07/12 Page 1 of 1

VI65:00005

VI65:22025AU 9/24/10-



# **Data Reporting Qualifiers**

Effective 2/14/2011

## Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

## **Organic Data**

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Page 1 of 3

165:0000



S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte

- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- Analyte signal includes interference from polychlorinated diphenyl ethers.
   (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Page 2 of 3



## **Geotechnical Data**

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting



## ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned Extraction Method: Page 1 of 1

QC Report No: VK17-Hart Crowser, Inc Project: PARCEL 88 17652-00

Matrix: Water Data Release Authorized: NNW Reported: 09/24/12

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	RL	Result
MB-091112 12-17955	Method Blank HC ID:	09/11/12	09/21/12 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 83.7%
VK17A 12-17955	MW201 HC ID:	09/11/12	09/21/12 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 82.5%
VK17B 12-17956	MW202 HC ID:	09/11/12	09/21/12 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 80.3%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.



### CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: VK17-Hart Crowser, Inc Project: PARCEL 88 17652-00

Client ID	OTER	TOT OUT
MB-091112	83.7%	0
LCS-091112	89.38	0
MW201	82.5%	0
MW202	80.3%	0

## LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(50-150) (50-150) Prep Method: SW3510C

Log Number Range: 12-17955 to 12-17956



LAB CONTROL

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Sample ID: LCS-091112 Page 1 of 1 Lab Sample ID: LCS-091112 QC Report No: VK17-Hart Crowser, Inc LIMS ID: 12-17955 Project: PARCEL 88 Matrix: Water 17652-00 Data Release Authorized:

Date Sampled: 09/07/12 Date Received: 09/07/12

Sample Amount: 500 mL Final Extract Volume: 1.0 mL Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery	
Diesel	2.25	3.00	75.0%	

### TPHD Surrogate Recovery

o-Terphenyl 89.3%

Results reported in mg/L

Reported: 09/24/12

Date Extracted: 09/11/12

Date Analyzed: 09/21/12 12:13

Instrument/Analyst: FID/VTS



### TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

Matrix: Water Date Received: 09/07/2	ARI Job: Project: 12	VK17 PARCEL 8 17652-00	8	
ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
12-17955-091112MB1 12-17955-091112LCS 12-17955-VK17A 12-17956-VK17B	Method Blank Lab Control MW201 MW202	500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL	09/11/12 09/11/12 09/11/12 09/11/12

### Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3b.i/20120921.b/0921b006.d ARI ID: VK17MBW1 Method: /chem3/fid3b.i/20120921.b/ftphfid3b.m Client ID: Instrument: fid3b.i Operator: AR Dilution Factor: 1 Report Date: 09/21/2012 Macro: FID:3B091712 FID:3B RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.013	-0.010	22365	20826	======================================	(Tol-C12)	======================================	===== 25.28
C8	1.233	-0.005	9209	18182	WATPHD	(C12-C24)	166764	13.00
C10	2.886	-0.003	1622	421	WATPHM	(C24-C38)	156087	18.46
C12	3.731	-0.002	1537	728	AK102	(C10-C25)	263337	16.84
C14	4.330	-0.002	721	445	AK103	(C25-C36)	139011	16.55
C16	4.850	0.002	1002	138	OR.DIES	(C10-C28)	273373	15.29
C18	5.299	-0.002	958	531				
C20	5.699	0.004	1346	861				
C22	6.048	-0.002	639	471	Ì			
C24	6.375	0.002	367	260	1			
C25	6.532	0.006	1394	2240	İ			
C26	6.665	-0.006	104	55	İ			
C28	6.949	0.000	1145	344	FUEL OIL	(C10-C24)	262109	17.98
C32	7.457	0.004	2165	2551	1			
C34	7.685	0.001	771	450	İ			
Filter Peak	7.944	0.003	1342	609	1			
C36	7.919	0.017	1986	1452	BUNKERC	(C10-C38)	418196	85.26
o-terph	5.391	0.001	985741	630631	JET-A	(C10-C18)	213064	14.80
Triacon Surr	7.216	0.001	1029563	651049	1			

Range Times: NW Diesel(3.783 - 6.423) NW Gas(0.973 - 3.783) NW M.Oil(6.423 - 8.165)

AK102(2.840 - 6.476) AK103(6.476 - 7.952) Jet A(2.840 - 5.351)

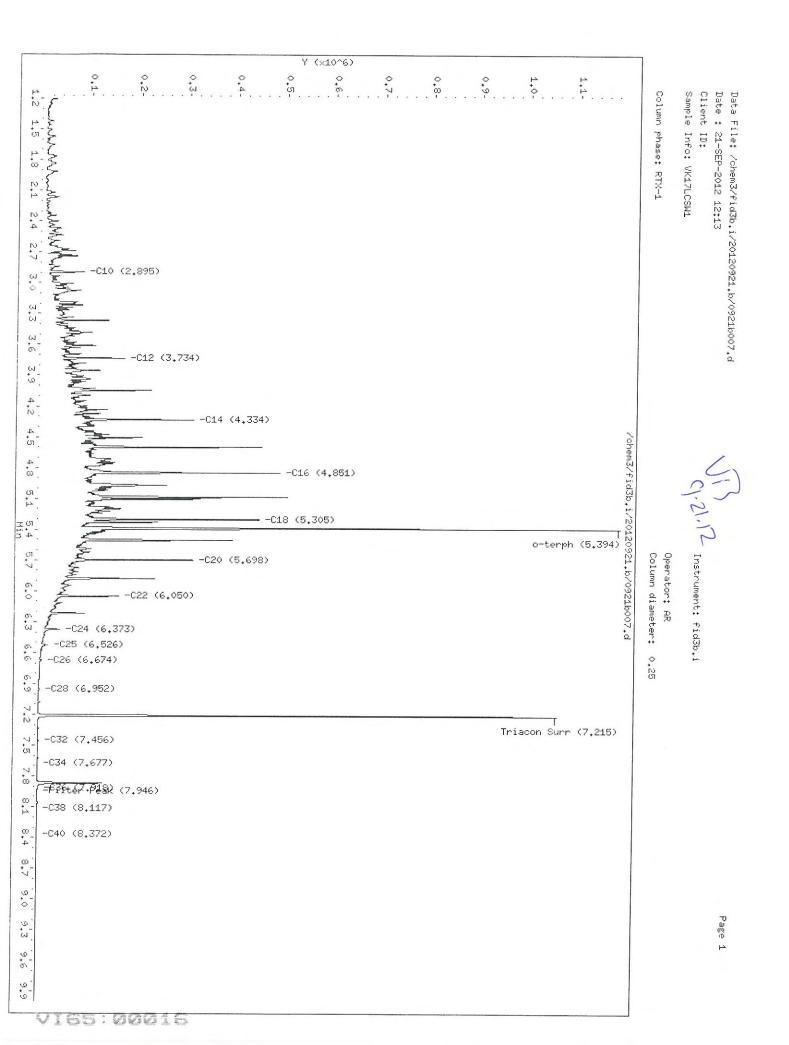
Surrogate	Area	Amount	%Rec
o-Terphenyl	630631	37.7	83.7
Triacontane	651049	44.7	99.4

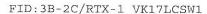
Analyte	RF	Curve Date
o-Terph Surr	16747.9	13-SEP-2012
Triacon Surr	14552.1	13-SEP-2012
Gas	20131.4	14-SEP-2012
Diesel	12832.6	13-SEP-2012
Motor Oil	8456.6	13-SEP-2012
AK102	15633.9	13-SEP-2012
AK103	8399.4	11-AUG-2012
JetA	14399.0	16-FEB-2012
OR Diesel	17876.0	
Bunker C	4904.8	14-SEP-2012
Fuel Oil	14574.0	16-JUN-2012

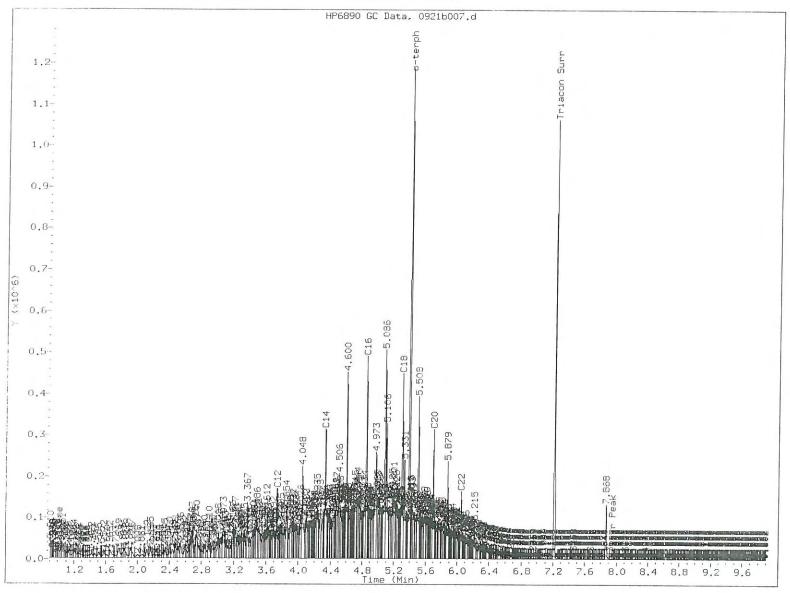
(I) and in

10 (2.886) 12 (3.731) 4 (4.330) 6 (4.850)	/chem3/fi	Column phase: RTX-1	Sample Info: VK17HBW1
12 (3.731) 4 (4.330)	/chem3/fi		844 844
12 (3.731) 4 (4.330)	/chem3/fi		
12 (3.731) 4 (4.330)	/chem3/fi		
4 (4,330)	/chem3/fi		
4 (4,330)	/chem3/fi		
4 (4,330)	∕chem3/fi		
	/chem3/fi		
	∕chem3∕fi		
.6 (4.850)	/chem3/fi		
6 (4,850)	m3∕fi		
	436+1		
8 (5,299)	T		
0 (5.699)	5,391) ²⁰	00	In
	60/q*	erato lumn	Instrument:
2 (6.048)	21600	r‡ AR diame	
4 (6,375) 5 (6,532)	ନ • ଜ	ter ter	fid3b _t i
6 (6,665)		¢ •₽	0 <b>* 1</b>
8 (6,949)		01	
2 (7,457)	(+216)		
≹tě⊀•₽≧3R (7,944) 3 (8,097)			
) (8,368)			
	o-terph () (6,048) (6,048) (6,375) (6,665) (6,665) (6,665) (6,949) Triacon Surr (7 (7,685) ter.PISR (7,944) (8,097)	o-terph (5.331) o-terph (5.331) (6.648) (6.375) (6.653) (6.655) (6.665) (7.665) (7.665) (7.665) (7.665) (7.665) (8.368) (8.368)	(6,665)         (6,665)         (7,457)         (7,685)         (4,7.453)         (7,685)         (8,097)         (8,368)

### Analytical Resources Inc. TPH Quantitation Report


Data file: /chem3/fid3b.i/20120921.b/0921b007.d ARI ID: VK17LCSW1 Method: /chem3/fid3b.i/20120921.b/ftphfid3b.m Client ID: Instrument: fid3b.i Operator: AR Dilution Factor: 1 Report Date: 09/21/2012 Macro: FID:3B091712 FID:3B RESULTS


Compound	RT	Shift	Height	Area	Method	Range	Total Area	
Toluene	1.013	-0.010	22057	20454	WATPHG	(Tol-C12)	======================================	188.57
C8	1.231	-0.007	9299	7617	WATPHD	(C12-C24)	14418930	1123.62
C10	2.895	0.006	81010	71403	WATPHM	(C24-C38)	253348	29.96
C12	3.734	0.002	167908	140053	AK102	(C10-C25)	16921219	1082.34
C14	4.334	0.001	311501	304472	AK103	(C25-C36)	214307	25.51
C16	4.851	0.004	488316	390028	OR.DIES	(C10-C28)	17017459	951.97
C18	5.305	0.004	446903	352496				
C20	5.698	0.003	312514	274800				
C22	6.050	0.001	161437	131740	1			
C24	6.373	0.000	41793	45294	İ			
225	6.526	0.000	18317	20393	Í.			
226	6.674	0.003	6763	7638	1			
228	6.952	0.003	1993	1435	FUEL OIL	(C10-C24)	16894213	1159.20
232	7.456	0.003	1661	530				
234	7.677	-0.007	515	282	Ì			
Filter Peak	7.946	0.005	820	227	İ			
236	7.918	0.016	1400	1840	BUNKERC	(C10-C38)	17147562	3496.08
o-terph	5.394	0.004	1078922	672946		(C10-C18)	12841296	891.82
Friacon Surr	7.215	0.000	1060439	673710				


Range Times: NW Diesel(3.783 - 6.423) NW Gas(0.973 - 3.783) NW M.Oil(6.423 - 8.165) AK102(2.840 - 6.476) AK103(6.476 - 7.952) Jet A(2.840 - 5.351)

Surrogate	Area	Amount	%Rec
o-Terphenyl	672946	40.2	89.3
Triacontane	673710	46.3	102.9

Analyte	RF	Curve Date
o-Terph Surr	16747.9	13-SEP-2012
Triacon Surr	14552.1	13-SEP-2012
Gas	20131.4	14-SEP-2012
Diesel	12832.6	13-SEP-2012
Motor Oil	8456.6	13-SEP-2012
AK102	15633.9	13-SEP-2012
AK103	8399.4	11-AUG-2012
JetA	14399.0	16-FEB-2012
OR Diesel	17876.0	
Bunker C	4904.8	14-SEP-2012
Fuel Oil	14574.0	16-JUN-2012







### MANUAL INTEGRATION

- 1. Baseline correction
- 3. Peak not found

5.) Skimmed surrogate

Analyst:

Date: 9-21.12

### Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3b.i/20120921.b/0921b009.d ARI ID: VK17A Method: /chem3/fid3b.i/20120921.b/ftphfid3b.m Client ID: Instrument: fid3b.i Dilution Factor: 1 Report Date: 09/21/2012 Macro: FID:3B091712 FID:3B RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.027	0.004	11709	======================================	WATPHG		261502	===== 12.99
C8	1.236	-0.002	5262	9238	WATPHD	(C12-C24)	178473	13.91
C10	2.881	-0.009	687	161	WATPHM	(C24-C38)	194073	22.95
C12	3.723	-0.010	1716	2565	AK102	(C10-C25)	262149	16.77
C14	4.336	0.003	422	263	AK103	(C25-C36)	178512	21.25
C16	4.851	0.003	1335	210	OR.DIES	(C10-C28)	280928	15.72
C18	5.302	0.001	1234	482				
C20	5.689	-0.006	2193	1684	1			
C22	6.047	-0.003	1282	1186	1			
C24	6.376	0.003	595	448	Ì			
C25	6.530	0.004	1724	1449	1			
C26	6.672	0.001	199	29	İ			
C28	6.942	-0.007	5623	6357	FUEL OIL	(C10-C24)	260107	17.85
C32	7.456	0.003	1896	2091				
C34	7.678	-0.006	1632	1702	İ			
Filter Peak	7.949	0.007	1011	294	i.			
C36	7.918	0.015	1622	1241	BUNKERC	(C10-C38)	454180	92.60
o-terph	5.391	0.001	1011330	622024		(C10-C18)	213293	14.81
Triacon Surr	7.215	0.000	924160	639506				

Range Times: NW Diesel(3.783 - 6.423) NW Gas(0.973 - 3.783) NW M.Oil(6.423 - 8.165) AK102(2.840 - 6.476) AK103(6.476 - 7.952) Jet A(2.840 - 5.351)

Surrogate	Area	Amount	%Rec
o-Terphenyl	622024	37.1	82.5
Triacontane	639506	43.9	97.7

Analyte	RF	Curve Date
o-Terph Surr	16747.9	13-SEP-2012
Triacon Surr	14552.1	13-SEP-2012
Gas	20131.4	14-SEP-2012
Diesel	12832.6	13-SEP-2012
Motor Oil	8456.6	13-SEP-2012
AK102	15633.9	13-SEP-2012
AK103	8399.4	11-AUG-2012
JetA	14399.0	16-FEB-2012
OR Diesel	17876.0	
Bunker C	4904.8	14-SEP-2012
Fuel Oil	14574.0	16-JUN-2012

4 2.2.2

		Y (x10^6)	٦			
	خر	0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	ഗറ	
	н N	4		olum	Client Sample	Data   Date
	ມ ທີ			edd r	e ID‡	++ Pile++
	÷			Column phase: RTX-1	ID: Info: VK17A	SEP-5
	v. -			2TX-4	(17A	em3/f 2012
						File: /chem3/fid3b.i/20120921.b/0921b009.d : 21-SEP-2012 12:51
	2					1/20
		-C10 (2.881)				26021
	י_ר בי ו.<					1.670
1	۲. ۲.					921b(
0	а` а.	-012 (3,723)				p*60(
	J - 0 -					
1						
		-C14 (4.336)				
4.0	ł	hema				
		-C16 (4.851)				
C+F	1	-C16 (4.851) -C18 (5.302) -C20 (5.689) -C22 (6.047) -C24 (6.376) -C24 (6.76)				
Min 4	. [	o-terph (5.391) 8				
5.7		-C20 (5.689)	0100	Open	Inst	
1 5.0	-	-C22 (6,047)	cordan drameter:	Operator: AR	Instrument: fid3b₊i	
6.3		-C24 (6.376)	amete	BR	it: fi	
	T	-C25 (6,530)	+		id36	
5+5 5		-026 (6,672)	0+20	> ) 1	* ₽.	
6+9	1	-028 (6,942)				
7+2	-[ -{	Triacon Surr (7,215)				
7,5		-032 (7,456)				
7,8	-	-C34 (7,678)				
0.1	1	=Ffft67+Fisk (7,949) -C38 (8,115)				
14 00+4	1	-640 (8,373)				
	1					
8,7 ,7						
0,0	1					п
ຍ  ເມ						Page 1
9.6						H
6,6						

V165:00019

### Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3b.i/20120921.b/0921b010.d ARI ID: VK17B Method: /chem3/fid3b.i/20120921.b/ftphfid3b.m Client ID: Instrument: fid3b.i Dilution: 21-SEP-2012 13:10 Operator: AR Dilution Factor: 1 Report Date: 09/21/2012 Macro: FID:3B091712 FID:3B RESULTS Compound RT Shift Height Proce Wethed T

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
===============	=======	========		===========	=========		=======================================	====
Toluene	1.014	-0.010	22048	19921	WATPHG	(Tol-C12)	499161	24.80
C8	1.233	-0.005	9107	16890	WATPHD	(C12-C24)	178168	13.88
C10	2.892	0.002	1713	863	WATPHM	(C24-C38)	156758	18.54
C12	3.731	-0.002	1663	1074	AK102	(C10-C25)	281475	18.00
C14	4.332	-0.001	832	243	AK103	(C25-C36)	145238	17.29
C16	4.852	0.004	1161	207	OR.DIES	(C10-C28)	290215	16.23
C18	5.301	0.001	1035	585	1			
C20	5.693	-0.002	1595	1575	İ			
C22	6.047	-0.003	879	564	1			
C24	6.376	0.003	462	250				
C25	6.535	0.008	1178	1025	İ			
C26	6.669	-0.002	67	7	1			
C28	6.954	0.005	853	709	FUEL OIL	(C10-C24)	279869	19.20
C32	7.458	0.005	1694	1317				
C34	7.683	-0.001	419	354	i i			
Filter Peak	7.946	0.004	861	170	İ			
C36	7.915	0.012	1504	267	BUNKERC	(C10-C38)	436627	89.02
oterph	5.391	0.001	973027	605048	JET-A	(C10-C18)	241190	16.75
Triacon Surr	7.215	0.000	940154	623902	Ì			

Range Times: NW Diesel(3.783 - 6.423) NW Gas(0.973 - 3.783) NW M.Oil(6.423 - 8.165) AK102(2.840 - 6.476) AK103(6.476 - 7.952) Jet A(2.840 - 5.351)

Surrogate	Area	Amount	%Rec
o-Terphenyl	605048	36.1	80.3
Triacontane	623902	42.9	95.3

Analyte	RF	Curve Date
o-Terph Surr	16747.9	13-SEP-2012
Triacon Surr	14552.1	13-SEP-2012
Gas	20131.4	14-SEP-2012
Diesel	12832.6	13-SEP-2012
Motor Oil	8456.6	13-SEP-2012
AK102	15633.9	13-SEP-2012
AK103	8399.4	11-AUG-2012
JetA	14399.0	16-FEB-2012
OR Diesel	17876.0	
Bunker C	4904.8	14-SEP-2012
Fuel Oil	14574.0	16-JUN-2012

V7} 8. 21. 21.

1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6		) (2,892	N N + + + + + + + + + + + + + + + + + +	3.0	a.a	Υ 4 4 4 5 01 0 	(×10^5)	6.0 	5 5 • 9 •	7 * 5	7 8.4.	00 ( 4 ·	9 9 0 	9 	9+6-	Column phase: RTX-1		Date : 21-SEP-2012 13:10 Client TD+
5 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 Min	-C14 -C16 -C18 -C20 -C22 -C24	(4,332) (4,852) (5,301) (5,693) (6,047) (6,376)									c		oh ()	5.391	/chem3/fid3b,i/20120921,b/0921b010,d	Operator: AR Column diameter:	Instrument: fid3b.i	
6+6 6+9 7+2 7+5 7+8 8+1 8+4 8+7 9+0 9+3 9+6	-C26 -C28 -C32 -C34 -C34 =Ffft -C38	(6,535) (6,669) (6,954) (7,458) (7,683) (7,683) (8,117) (8,369)								Τ,	riaco	n Sur		-7 ,215		* 0+25	3b∗1	Page 1



Sample ID: MW201 SAMPLE

Lab Sample ID: VI65A LIMS ID: 12-17097 Matrix: Water Data Release Authorized MA Reported: 09/17/12 QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7470A	09/11/12	7470A	09/17/12	7439-97-6	Mercury	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

V165:00019th 9/24/2



Sample ID: MW201 MATRIX SPIKE

Lab Sample ID: VI65A LIMS ID: 12-17097 Matrix: Water Data Release Authorized: Reported: 09/17/12 QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

### MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	*	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Mercury	7470A	0.1 U	1.1	1.0	110%	

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked NR-Not Recovered

Percent Recovery Limits: 75-125%

VISS: 00020 AV 9/24/12



Sample ID: MW201 DUPLICATE

Lab Sample ID: VI65A LIMS ID: 12-17097 Matrix: Water Data Release Authorized: Reported: 09/17/12 Lab Sample ID: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

## MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
Mercury	7470A	0.1 U	0.1 U	0.0%	+/- 0.1	L	
Reported in	µg/L						

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

CV165:00821*V 9/24/12



Sample ID: MW202 SAMPLE

Lab Sample ID: VI65B LIMS ID: 12-17098 Matrix: Water Data Release Authorized Reported: 09/17/12

QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
7470A	09/11/12	7470A	09/17/12	7439-97-6	Mercury	0.1	0.1	

U-Analyte undetected at given RL RL-Reporting Limit



#### Sample ID: MW201 SAMPLE

Lab Sample ID: VI65C LIMS ID: 12-17099 Matrix: Water Data Release Authorized Reported: 09/17/12

QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
200.8	09/11/12	200.8	09/13/12	7440-38-2	Arsenic	0.5	0.5	J
200.8	09/11/12	200.8	09/13/12	7440-43-9	Cadmium	0.1	0.1	υJ
200.8	09/11/12	200.8	09/13/12	7440-47-3	Chromium	1	2	J
200.8	09/11/12	200.8	09/13/12	7440-50-8	Copper	0.5	0.5	υJ
200.8	09/11/12	200.8	09/13/12	7439-92-1	Lead	0.1	0.1	υJ
200.8	09/11/12	200.8	09/13/12	7440-66-6	Zinc	4	4	UJ

U-Analyte undetected at given RL RL-Reporting Limit

A 10/8/12



Sample ID: MW201 DUPLICATE

Lab Sample ID: VI65C LIMS ID: 12-17099 Matrix: Water Data Release Authorized Reported: 09/17/12 QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

### MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q
Arsenic	200.8	0.5	0.6	18.2%	+/- 0.5	L
Cadmium	200.8	0.1 U	0.1 U	0.0%	+/- 0.1	L
Chromium	200.8	2	2	0.08	+/- 1	Ĺ
Copper	200.8	0.5 U	0.5 U	0.0%	+/- 0.5	L
Lead	200.8	0.1 U	0.1 U			L
Zinc	200.8	4 U	4 U	0.0%	+/- 4	L
Lead Zinc			0.1 U 4 U	0.08 0.08	+/- 0.1 +/- 4	

Reported in µg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

V185:00024A alouip



Sample ID: MW201 MATRIX SPIKE

Lab Sample ID: VI65C LIMS ID: 12-17099 Matrix: Water Data Release Authorized: Reported: 09/17/12

QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

## MATRIX SPIKE QUALITY CONTROL REPORT

Sample	Spike	Spike		
	-	Added	Recovery	Q
0.5	24.4	25.0	95.6%	
0.1 U	23.6	25.0	94.48	
2	23	25		
0.5 U	24.3	25.0		
0.1 U	25.0	25.0		
4 U	73	80	91.2%	
	0.1 U 2 0.5 U 0.1 U	0.1 U 23.6 2 23 0.5 U 24.3 0.1 U 25.0	0.1 U       23.6       25.0         2       23       25         0.5 U       24.3       25.0         0.1 U       25.0       25.0	0.1 U       23.6       25.0       94.4%         2       23       25       84.0%         0.5 U       24.3       25.0       97.2%         0.1 U       25.0       25.0       100%

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

VIS5:00025 4 24 2



### Sample ID: MW202 SAMPLE

Lab Sample ID: VI65D LIMS ID: 12-17100 Matrix: Water Data Release Authorized Reported: 09/17/12

QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: 09/07/12 Date Received: 09/07/12

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
09/11/12	200.8	09/13/12	7440-38-2	Arsenic	0.5	19.1	5
09/11/12	200.8	09/13/12	7440-43-9	Cadmium	0.1	0.1	υJ
09/11/12	200.8	09/13/12	7440-47-3	Chromium	1	1	U D
09/11/12	200.8	09/13/12	7440-50-8	Copper	0.5	0.5	UJ
09/11/12	200.8	09/13/12	7439-92-1	Lead			UJ
09/11/12	200.8	09/13/12	7440-66-6	Zinc	4	4	UJ
	Date 09/11/12 09/11/12 09/11/12 09/11/12 09/11/12	DateMethod09/11/12200.809/11/12200.809/11/12200.809/11/12200.809/11/12200.8	DateMethodDate09/11/12200.809/13/1209/11/12200.809/13/1209/11/12200.809/13/1209/11/12200.809/13/1209/11/12200.809/13/1209/11/12200.809/13/12	DateMethodDateCAS Number09/11/12200.809/13/127440-38-209/11/12200.809/13/127440-43-909/11/12200.809/13/127440-47-309/11/12200.809/13/127440-50-809/11/12200.809/13/127439-92-1	DateMethodDateCAS NumberAnalyte09/11/12200.809/13/127440-38-2Arsenic09/11/12200.809/13/127440-43-9Cadmium09/11/12200.809/13/127440-47-3Chromium09/11/12200.809/13/127440-50-8Copper09/11/12200.809/13/127439-92-1Lead	Date         Method         Date         CAS Number         Analyte         RL           09/11/12         200.8         09/13/12         7440-38-2         Arsenic         0.5           09/11/12         200.8         09/13/12         7440-43-9         Cadmium         0.1           09/11/12         200.8         09/13/12         7440-47-3         Chromium         1           09/11/12         200.8         09/13/12         7440-50-8         Copper         0.5           09/11/12         200.8         09/13/12         7439-92-1         Lead         0.1           09/11/12         200.8         09/13/12         7439-92-1         Lead         0.1	DateMethodDateCAS NumberAnalyteRLµg/L09/11/12200.809/13/127440-38-2Arsenic0.519.109/11/12200.809/13/127440-43-9Cadmium0.10.109/11/12200.809/13/127440-47-3Chromium1109/11/12200.809/13/127440-50-8Copper0.50.509/11/12200.809/13/127439-92-1Lead0.10.109/11/12200.809/13/127439-92-1Lead0.10.1

U-Analyte undetected at given RL RL-Reporting Limit

A-10/8/12





#### Sample ID: LAB CONTROL

Lab Sample ID: VI65LCS LIMS ID: 12-17098 Matrix: Water Data Release Authorized: Reported: 09/17/12 QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: NA Date Received: NA

## BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7470A	2.2	2.0	110%	
Reported in µg/L					

N-Control limit not met Control Limits: 80-120%

VI55:00027 9/24/12



#### Sample ID: LAB CONTROL

Lab Sample ID: VI65LCS LIMS ID: 12-17100 Matrix: Water Data Release Authorized Reported: 09/17/12 QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: NA Date Received: NA

### BLANK SPIKE QUALITY CONTROL REPORT

Analysis Method	Spike Found	Spike Added	۶ Recovery	Q
200.8	24.6	25.0	08 18	
200.8	24.0			
200.8	24.3	25.0		
200.8	24.9	25.0	99.6%	
200.8	24.4	25.0	97.6%	
200.8	76	80	95.0%	
	Method 200.8 200.8 200.8 200.8 200.8 200.8	Method         Found           200.8         24.6           200.8         24.0           200.8         24.3           200.8         24.9           200.8         24.4	Method         Found         Added           200.8         24.6         25.0           200.8         24.0         25.0           200.8         24.3         25.0           200.8         24.9         25.0           200.8         24.9         25.0           200.8         24.4         25.0	MethodFoundAddedRecovery200.824.625.098.4%200.824.025.096.0%200.824.325.097.2%200.824.925.099.6%200.824.425.097.6%

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

VI65: 00028 Malalla



#### Sample ID: METHOD BLANK

Lab Sample ID: VI65MB LIMS ID: 12-17098 Matrix: Water Data Release Authorized: Reported: 09/17/12 QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
7470A	09/11/12	7470A	09/17/12	7439-97-6	Mercury	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

VI65:00025 9/24/12



### Sample ID: METHOD BLANK

Lab Sample ID: VI65MB LIMS ID: 12-17100 Matrix: Water Data Release Authorized: Reported: 09/17/12

QC Report No: VI65-Hart Crowser, Inc Project: PARCEL 88 17652-00 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	09/11/12	200.8	09/13/12	7440-38-2	Arsenic	0.2	0.2	U
200.8	09/11/12	200.8	09/13/12	7440-43-9	Cadmium	0.1	0.1	U
200.8	09/11/12	200.8	09/13/12	7440-47-3	Chromium	0.5	0.5	U
200.8	09/11/12	200.8	09/13/12	7440-50-8	Copper	0.5	0.5	U
200.8	09/11/12	200.8	09/13/12	7439-92-1	Lead	0.1	0.1	IJ
200.8	09/11/12	200.8	09/13/12	7440-66-6	Zinc	4	4	U

U-Analyte undetected at given RL RL-Reporting Limit

VISS: 00038 964/12,





October 17, 2012

Mark Dagel Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Parcel 88 ARI Job No.: VN00

geotechnical • environmental • natural resources

Dear Mark;

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received two water samples on October 12, 2012. The samples were received in good condition with a cooler temperature of 2.8 °C.

The samples were analyzed for dissolved metals as requested on the COC.

The percent differences (%Ds) for chromium were slightly high for the CCALs that bracketed the analyses of these samples. Due to the expedited TAT for these samples, no corrective actions were taken.

There were no further anomalies associated with the analyses of these samples.

A copy of this report and all associated raw data will be kept on file at ARI. Should you have any questions regarding these results, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

1010 Kelly Bottem

Client Services Manager kellyb@arilabs.com 206/695-6211 Enclosures

cc: eFile VN00

KFB/kb

Page 1 of _/3

Sample Custody Record	Istody F	Reco	rd					Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200
Samples Shipped to:	AAT					HART	HARTCROWSER	Seattle, Washington 98109-6212. Office: 206.324.9530 • Fax 206.328.5581
JOB 17652	-00-	I AR NIIMBER	FR			REC	REQUESTED ANALYSIS	
PROJECT NAME	5	0				51 4		IERS
HART CROWSFR CONTACT	J.	M. D.	-			×W.		
	1	5	2			po		COMPOSITING INSTRUCTIONS
SAMPLED BY:	PRC					102210		0.0N
LAB NO. SAMPLE ID	ID DESCRIPTION	TION	DATE	TIME	MATRIX			
MW-20	. 101		21/2/12	0835	4,0	*		Š
MW-202	20		21/21/01	0905	420	×		1 Fill P. Har I
								11110 4 14000
RELINQUISHED BY	DATE	RECE	RECEIVED BY		DATE	SPECIAL SHIPMENT HANDLING OR	HANDLING OR	
W X III	1 color	2	X		4 4	STORAGE REQUIREMENTS:	1ENTS:	CAMPLE PECTIPE INCOMPANY
SIGNATURE Carde	TIME	SGN	SIGNATURE	andona	TIME	* As, Cd, Cr, Cu, Pb and	(, Pb and Zn	DY SEAL
PRINT NAME		-		UNCY		by EPA		
COMPANY	1030	COMPANY	ANY		020			
RELINQUISHED BY	DATE	RECE	RECEIVED BY		DATE			HOD:
						COOLER NO .:	STORAGE LOCATION:	TURNAROUND TIME:
DBINT NAME	TIME	SIGNA	SIGNATURE		TIME			24 HOURS     1 WEEK
		PRIN	PRINT NAME			See Lab Work Order No.	No.	
COMPANY		COMPANY	ANY			for Other Contract Requirements	equirements	
White and Yellow Copies to Lab		Pink to Project Manager		b to Return M	Lab to Return White Copy to Hart Crowser		Gold to Sample Custodian	

	rces, Incorporated ists and Consultants	Cooler Rec	eipt F	orm	1
ARI Client: Hart C		Project Name: Parce	88		
COC No(s):	NA	Delivered by: Fed-Ex UPS Cou	urier Hand Delt	vered Oth	er:
Assigned ARI Job No: Preliminary Examination Phase		Tracking No:			NA
Were custody papers included w Were custody papers properly fi	I dated custody seals attached to with the cooler? lled out (ink, signed, etc.) ecommended 2.0-6.0 °C for chem		(	YES TES YES	NO NO
		<u><i><u><u></u></u><u><u></u><u></u><u></u><u><u></u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></i></u>	Temp Gun IE	- # 908	2795
If cooler temperature is out of co Cooler Accepted by:	Pr /	_Date: 10/12/12Tim	e: <u>630</u>	)#: <u>/00</u> -	-
Log-In Phase:	Complete custody forms a	nd attach all shipping documents			
What kind of packing material		Wallee Gel Packs Baggies Foam			NØ
	priate)?		NA	Es	NO
	ual plastic bags?			YES	NO
	dition (unbroken)?			YES	NO
				YES	NO
		er of containers received?		YES	NO
	the requested analyses?			YES	NO
		servation sheet, excluding VOCs)	NA	YES	NO
	bbles?		NA,	YES	NO
	sent in each bottle?			TES	NO
			(NA)	(Ep	NO
Was Sample Split by ARI : N	•	Equipment:	$\smile$	Split by:	
	<u></u>				
Samples Logged by:	<u>/</u> SDate:	10-123 n Time:	()3	9	
•	** Notify Project Manager	of discrepancies or concerns **			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sampl	e ID on CO	C
	· · · · · · · · · · · · · · · · · · ·				
Additional Notes, Discrepancie					

By: Date:	
Small Air Bubbles Peabubbles' LARGE Air Bubbles - 2mm 2-4 mm > 4 mm	Small → "sm"
-2mm 2-4 mm > 4 mm	Peabubbles → "pb"
	Large $\rightarrow$ "lg"
	Headspace $\rightarrow$ "hs"

-

Cooler Receipt Form

Revision 014

## Sample ID Cross Reference Report



ARI Job No: VN00 Client: Hart Crowser, Inc Project Event: 17652-00 Project Name: Parcel 88

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW-201	VN00A	12-19804		10/12/12 08:35	10/12/12 10:30
2.	MW-202	VN00B	12-19805		10/12/12 09:05	10/12/12 10:30

Printed 10/12/12 Page 1 of 1

VN00:00004



## Data Reporting Qualifiers Effective 2/14/2011

## Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

## Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).



- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Page 2 of 3



## **Geotechnical Data**

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting



Sample ID: MW-201 SAMPLE

Lab Sample ID: VN00A LIMS ID: 12-19804 Matrix: Water Data Release Authorized: Reported: 10/17/12 QC Report No: VN00-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 10/12/12 Date Received: 10/12/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
200.8	10/15/12	200.8	10/16/12	7440-38-2	Arsenic	0.5	0.9	
200.8	10/15/12	200.8	10/15/12	7440-43-9	Cadmium	0.1	0.1	U
200.8	10/15/12	200.8	10/16/12	7440-47-3	Chromium	1	5	T
200.8	10/15/12	200.8	10/15/12	7440-50-8	Copper	0.5	0.5	5
200.8	10/15/12	200.8	10/15/12	7439-92-1	Lead	0.1	0.1	U
200.8	10/15/12	200.8	10/15/12	7440-66-6	Zinc	4	4	U

U-Analyte undetected at given RL RL-Reporting Limit



Lab Sample ID: VN00A LIMS ID: 12-19804 Matrix: Water Data Release Authorized: Reported: 10/17/12 Sample ID: MW-201 DUPLICATE

QC Report No: VN00-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 10/12/12 Date Received: 10/12/12

### MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	200.8	0.9	1.0	10.5%	+/- 0.5	L
Cadmium	200.8	0.1 U	0.1 U	0.0%	+/- 0.1	L
Chromium	200.8	5	5	0.0%	+/- 1	L
Copper	200.8	0.5	0.5 U	0.0%	+/- 0.5	L
Lead	200.8	0.1 U	0.1 U	0.0%	+/- 0.1	L
Zinc	200.8	4 U	4 U	0.0%	+/- 4	L

Reported in  $\mu g/L$ 

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit



Sample ID: MW-201 MATRIX SPIKE

Lab Sample ID: VN00A LIMS ID: 12-19804 Matrix: Water Data Release Authorized: Reported: 10/17/12 QC Report No: VN00-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 10/12/12 Date Received: 10/12/12

#### MATRIX SPIKE QUALITY CONTROL REPORT

Analysis			Spike	8	
Method	Sample	Spike	Added	Recovery	Q
200.8	0.9	28.0	25.0	108%	
200.8	0.1 U	23.6	25.0	94.4%	
200.8	5	29	25	96.0%	
200.8	0.5	24.0	25.0	94.0%	
200.8	0.1 U	26.2	25.0	105%	
200.8	4 U	73	80	91.2%	
	Method 200.8 200.8 200.8 200.8 200.8 200.8	Method         Sample           200.8         0.9           200.8         0.1 U           200.8         5           200.8         0.5           200.8         0.1 U	MethodSampleSpike200.80.928.0200.80.1 U23.6200.8529200.80.524.0200.80.1 U26.2	MethodSampleSpikeAdded200.80.928.025.0200.80.1 U23.625.0200.852925200.80.524.025.0200.80.1 U26.225.0	MethodSampleSpikeAddedRecovery200.80.928.025.0108%200.80.1 U23.625.094.4%200.85292596.0%200.80.524.025.094.0%200.80.1 U26.225.0105%

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%



Lab Sample ID: VN00B LIMS ID: 12-19805 Matrix: Water Data Release Authorized: Reported: 10/17/12 Sample ID: MW-202 SAMPLE

QC Report No: VN00-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: 10/12/12 Date Received: 10/12/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
200.8	10/15/12	200.8	10/15/12	7440-38-2	Arsenic	0.2	17.6	
200.8	10/15/12	200.8	10/15/12	7440-43-9	Cadmium	0.1	0.1	U
200.8	10/15/12	200.8	10/16/12	7440-47-3	Chromium	1	1	U
200.8	10/15/12	200.8	10/15/12	7440-50-8	Copper	0.5	0.5	U
200.8	10/15/12	200.8	10/15/12	7439-92-1	Lead	0.1	0.1	U
200.8	10/15/12	200.8	10/15/12	7440-66-6	Zinc	4	4	U

U-Analyte undetected at given RL RL-Reporting Limit



Lab Sample ID: VN00MB

Data Release Authorized:

LIMS ID: 12-19805 Matrix: Water

Reported: 10/17/12

### Sample ID: METHOD BLANK

QC Report No: VN00-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: NA Date Received: NA

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
10/15/12	200.8	10/15/12	7440-38-2	Arsenic	0.2	0.2	U
10/15/12	200.8	10/15/12	7440-43-9	Cadmium	0.1	0.1	U
10/15/12	200.8	10/15/12	7440-47-3	Chromium	0.5	0.5	U
10/15/12	200.8	10/15/12	7440-50-8	Copper	0.5	0.5	U
10/15/12	200.8	10/15/12	7439-92-1	Lead	0.1	0.1	U
10/15/12	200.8	10/15/12	7440-66-6	Zinc	4	4	U
	Date 10/15/12 10/15/12 10/15/12 10/15/12 10/15/12	DateMethod10/15/12200.810/15/12200.810/15/12200.810/15/12200.810/15/12200.8	DateMethodDate10/15/12200.810/15/1210/15/12200.810/15/1210/15/12200.810/15/1210/15/12200.810/15/1210/15/12200.810/15/1210/15/12200.810/15/12	DateMethodDateCAS Number10/15/12200.810/15/127440-38-210/15/12200.810/15/127440-43-910/15/12200.810/15/127440-47-310/15/12200.810/15/127440-50-810/15/12200.810/15/127439-92-1	DateMethodDateCAS NumberAnalyte10/15/12200.810/15/127440-38-2Arsenic10/15/12200.810/15/127440-43-9Cadmium10/15/12200.810/15/127440-47-3Chromium10/15/12200.810/15/127440-50-8Copper10/15/12200.810/15/127439-92-1Lead	DateMethodDateCAS NumberAnalyteRL10/15/12200.810/15/127440-38-2Arsenic0.210/15/12200.810/15/127440-43-9Cadmium0.110/15/12200.810/15/127440-47-3Chromium0.510/15/12200.810/15/127440-50-8Copper0.510/15/12200.810/15/127439-92-1Lead0.1	DateMethodDateCAS NumberAnalyteRLμg/L10/15/12200.810/15/127440-38-2Arsenic0.20.210/15/12200.810/15/127440-43-9Cadmium0.10.110/15/12200.810/15/127440-47-3Chromium0.50.510/15/12200.810/15/127440-50-8Copper0.50.510/15/12200.810/15/127439-92-1Lead0.10.1

U-Analyte undetected at given RL RL-Reporting Limit



Sample ID: LAB CONTROL

Lab Sample ID: VN00LCS LIMS ID: 12-19805 Matrix: Water Data Release Authorized: Reported: 10/17/12 QC Report No: VN00-Hart Crowser, Inc Project: Parcel 88 17652-00 Date Sampled: NA Date Received: NA

### BLANK SPIKE QUALITY CONTROL REPORT

	Den al la cará a	a :1			
Analyte	Analysis Method	Spike Found	Spike Added	* Recovery	Q
				Recovery	×
Arsenic	200.8	25.8	25.0	103%	
Cadmium	200.8	24.1	25.0	96.4%	
Chromium	200.8	24.2	25.0	96.88	
Copper	200.8	26.8	25.0	107%	
Lead	200.8	26.7	25.0	107%	
Zinc	200.8	83	80	104%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

# Analytical Resources, Incorporated



Analytical Chemists and Consultants

December 26, 2012

Mark Dagel Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Parcel 88 ARI Job No.: VW93

Dear Mark;

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received one water sample on December 18, 2012. The samples were received in good condition with a cooler temperature of 5.9 °C.

The samples were analyzed for TDS, Conductivity and Chloride, as requested on the COC.

There were no anomalies associated with the analyses of these samples.

A copy of this report and all associated raw data will be kept on file at ARI. Should you have any questions regarding these results, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

W. Kelly Bottem

Client Services Manager kellyb@arilabs.com 206/695-6211 Enclosures

cc: eFile VW93

KFB/kb

Page 1 of

/sis Reques
Analy
Laboratory
જ
cord
Rec
ē
ustody Ree

Analytical Resources, Incorporated Analytical Chemists and Consultants	4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments						· · · · ·					Received by: (Signature)	Printed Name:	Company:	Date & Time:
		s: Sidi	Analysis Requested		· · · · · · · · · · · · · · · · · · ·							 		Relinquished by: (Signature)	<u> </u>	Company:	Date & Time:
Page: / of	Date: Date: ICE Present?	No. of Coolers: Coolers: Temps:			4	10107 13 50.4 50.4 50.4	x   x   x			-		 	 -		Tanker greek	TIN	anz, 2-31-21
ssted: Glur	206-324-9532		Se a la la la la la la la la la la la la l	6	PRC	Time Matrix No. Containers	1 0 ² H 0							PLIM Received by: (Signature)	orde() Printed Name	Company:	2 1200 Date & Time:
r: V w 9 3 Turn-around Requested:	Pho	ĺ	1 0	Parcel	samplers:	Date	z_ [12/18/12 /020	•						Joctions Relinquished by: (Signature)	Primed Nage:	company:	Date & Time! 12/16/1
1 6	ARI Client Company:	Client Contact: Mark Dage	Client Project Name:	17652-00	Client Project #: / 75 52 -00	Sample ID	NW-202							Comments/Special Instructions			

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

### Analytical Resources, Incorporated Analytical Chemists and Consultants

# Cooler Receipt Form

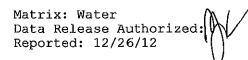
ARI Client: A art c	rowser				
ARI Client: Hart C	·····	Project Name:			<del></del>
COC No(s):	NA	Delivered by: Fed-Ex UPS Courier	Hand Delive	red Other:	<u>.</u>
Assigned ARI Job No:		Tracking No:			NA
Preliminary Examination Phase:					
Were intact, properly signed and dated cust	ody seals attached	to the outside of to cooler?	. N	YES	NOS
Were custody papers included with the cool			١	Ē	NŎ
Were custody papers properly filled out (ink,	, signed, etc.)		Ì	Æ\$	NO
Temperature of Cooler(s) (°C) (recommended	ed 2.0-6.0 °C for ch	nemistry) 5.01		-	
If cooler temperature is out of compliance fil		. Т		# <u>908</u>	1774
Cooler Accepted by:		Date: 12-18-12 Time:			
	lete custody form	is and attach all shipping documents			
Log-In Phase:				· · ··	
-				YES	<b>X</b> (0.)
Was a temperature blank included in the co		rap Wet loe Gel Packs Baggies Foam Bl	ock Paner (		NO
What kind of packing material was used?		<u> </u>	NA	TES	NO
Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic				YES	(NO)
Did all bottles arrive in good condition (unbi	pays?			YES)	NO
Were all bottle labels complete and legible?				YES	NO
Did the number of containers listed on COC				YES	NO
Did the humber of containers inded of out				YES	NÓ
Were all bottles used correct for the reques	ted analyses?	· · · · · · · · · · · · · · · · · · ·		YES	NO
Do any of the analyses (bottles) require pre	eservation? (attach	preservation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?		• • • • • • • • • • • • • • • • • • • •	(NR)	YEŞ	NO
Was sufficient amount of sample sent in ea			1	YES	NO
Date VOC Trip Blank was made at ARI	.,		(A)	·	
Was Sample Split by ARI: (NA) YES	S Date/Time:	Equipment:		Split by:	
5	2.	Date:	1208		
Samples Logged by:	D	Date: lime:	/		

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
oumpie in our potto	• • • • • • • • • • • • • • • •		
			······································
-			
	•		
•. {			
By: Da	ate:		,
Small Air Bubbles Peabubl		Small → "sm"	
	m > 4 m/d	Peabubbles → "pb"	
	• • • • • •	Large → "lg"	-
		Headspace → "hs"	

Revision 014

## Sample ID Cross Reference Report




ARI Job No: VW93 Client: Hart Crowser, Inc Project Event: 17652-00 Project Name: 17652-00 Parcel 88

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW-202	VW93A	12-25085	Water	12/18/12 10:20	12/18/12 12:00

Printed 12/18/12 Page 1 of 1





Project: 17652-00 Parcel 88 Event: 17652-00 Date Sampled: 12/18/12 Date Received: 12/18/12

Client ID: MW-202 ARI ID: 12-25085 VW93A

Analyte	Date Batch	Method	Units	RL	Sample
Conductivity	12/18/12 121812#1	EPA 120.1	umhos/cm	1.00	1,110
Total Dissolved Solids	12/18/12 121812#1	EPA 160.1	mg/L	10.0	826
Chloride	12/18/12 121812#1	EPA 325.2	mg/L	10.0	63.1

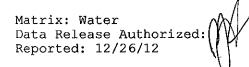
RL Analytical reporting limit

U Undetected at reported detection limit

.



Matrix: Water Data Release Authorized: Reported: 12/26/12


Project: 17652-00 Parcel 88 Event: 17652-00 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank	ID
Conductivity	EPA 120,1	12/18/12	umhos/cm	< 1.00 U	
Total Dissolved Solids	EPA 160.1	12/18/12	mg/L	< 5.0 U	
Chloride	EPA 325.2	12/18/12	mg/L	< 1.0 U	FB

FB Filtration Blank

Water Method Blank Report-VW93





Project: 17652-00 Parcel 88 Event: 17652-00 Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Total Dissolved Solids EPA 160.1	ICVL	12/18/12	mg/L	568	500	113.6%



Matrix: Water Data Release Authorized Reported: 12/26/12

Project: 17652-00 Parcel 88 Event: 17652-00 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Conductivity Ricca #4110724	EPA 120.1	12/18/12	umhos/cm	993	1,000	99.3%
Chloride ERA #411010	EPA 325.2	12/18/12	mg/L	5.1	5.0	102.0%

### REPLICATE RESULTS-CONVENTIONALS VW93-Hart Crowser, Inc



Matrix: Water Data Release Authorized: Reported: 12/26/12 Project: 17652-00 Parcel 88 Event: 17652-00 Date Sampled: 12/18/12 Date Received: 12/18/12

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: VW93A Client	ID: MW-202					
Conductivity	EPA 120.1	12/18/12	umhos/cm	1,110	1,120	0.9%
Total Dissolved Solids	EPA 160.1	12/18/12	mg/L	826	829	0.4%
Chloride	EPA 325.2	12/18/12	mg/L	63.1	62.2	1.4%

MS/MSD RESULTS-CONVENTIONALS VW93-Hart Crowser, Inc



Matrix: Water Data Release Authorized Reported: 12/26/12 Project: 17652-00 Parcel 88 Event: 17652-00 Date Sampled: 12/18/12 Date Received: 12/18/12

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: VW93A	Client ID: MW-202						
Chloride	EPA 325.2	12/18/12	mg/L	63.1	173	100	109.9%