Remedial Investigation/Feasibility Study

Former Shell Oil Tank Farm Anacortes, Washington Ecology Agreed Order No. DE-08TCPHQ-5474

for Washington State Department of Ecology on Behalf of Port of Anacortes

February 3, 2014

Remedial Investigation/Feasibility Study

Former Shell Oil Tank Farm Anacortes, Washington Ecology Agreed Order No. DE-08TCPHQ-5474

for

Washington State Department of Ecology on Behalf of Port of Anacortes

February 3, 2014

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Remedial Investigation/Feasibility Study

Former Shell Oil Tank Farm Anacortes, Washington Ecology Agreed Order No. DE-08TCPHQ-5474

File No. 5147-012-02

February 3, 2014

Prepared for:

Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504-7600

Attention: Sandra Caldwell

On Behalf of:

Port of Anacortes First and Commercial Avenue P.O. Box 297 Anacortes, Washington 98221

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Robert S. Trahan Environmental Geologist

111

John M. Herzog, PhD Principal

RST:AJ:JMH:csv

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1.0	NTRODUCTION	1
1.1.	Statement of Objectives	1
1.2.	Report Organization	1
2.0	SITE DESCRIPTION AND BACKGROUND	2
2.1	Pito Decoription	n
2.1.	listorical Operations and Site Uses	∠ つ
2.2.	Drevious Environmental Studies	2 2
2.3.	2 1 Soil Canditions	ວ ວ
2	2.2 Groundwater Conditions	с С
21	S.z. Groundwater conditions	л Л
2.4.	Exposure Pathways and Recentors	ч Л
2.3.		ч Л
2	5.2. Groundwater	т Д
26	2. aroundwater	т Л
2.0.		-
3.0	REMEDIAL INVESTIGATION	5
3.1.	Cleanup Standards	5
3	1.1. Proposed Cleanup Levels	5
3	1.2. Point of Compliance	6
3.2.	Soil Investigations and Results	6
3	2.1. Preliminary Environmental Site Assessment (Hart Crowser, 1987)	7
3	2.2. Environmental Due Diligence Investigation (Floyd Snider, 2005)	7
3	2.3. Cap Sante Marine Area Remedial Investigation (Landau, 2007a)	7
3	2.4. Soil Characterization Study (GeoEngineers, 2008)	8
3	2.5. Remedial Investigation Data Report (GeoEngineers, 2012a)	8
3.3.	Groundwater Investigations and Results	9
3.4.	errestrial Ecological Evaluation	9
3.5.	Remedial Investigation – Summary of Findings	9
4.0	EASIBILITY STUDY 1	.0
4.1.	Conceptual Site Model1	0
4	1.1. Soil	0
4	1.2. Groundwater1	1
4.2.	Basis for Cleanup Action1	1
4	2.1. Cleanup Standards1	1
4	2.2. Locations and Media Requiring Cleanup Action Evaluation1	2
4	2.3. Cleanup Action Objectives1	2
4.3.	dentification and Description of Cleanup Action Alternatives1	3
4	3.1. Alternative 1 – Engineering and Institutional Controls1	3
4	3.2. Alternative 2 – In-Situ Soil Treatment1	4
4	3.3. Alternative 3 – Partial Removal with In-Situ Soil Treatment1	5
4	3.4. Alternative 4 – Complete Removal1	6
4.4.	/ITCA Evaluation Criteria1	7

4.4.1.	Threshold Requirements	17
4.4.2.	Other Requirements	18
4.4.3.	MTCA Disproportionate Cost Analysis	18
4.5. Evaluati	on of Cleanup Action Alternatives	20
4.5.1.	Threshold Requirements	20
4.5.2.	MTCA Disproportionate Cost Analysis	20
4.5.3.	Reasonable Restoration Time Frame	21
4.6. Preferre	d Cleanup Action Alternative	21
5.0 LIMITAT	IONS	
6.0 REFERE	NCES	22

LIST OF TABLES

- Table 1. Remedial Investigation Sampling and Analysis Summary
- Table 2. Proposed Final Soil Cleanup Levels
- Table 3. Proposed Final Groundwater Cleanup Levels
- Table 4. Soil Remediation Technology Screening
- Table 5. Description of Cleanup Action Alternatives
- Table 6. Evaluation of Cleanup Action Alternatives
- Table 7. Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Soil Investigation Sampling Locaitons
- Figure 4. Groundwater Investigation Sampling Locations
- Figure 5. Summary of Remedial Investigation Findings
- Figure 6. Cross-Section A-A'
- Figure 7. Cross-Section B-B'
- Figure 8. Disproportionate Cost Analysis

APPENDICES

- Appendix A. Terrestrial Ecological Evalluation
- Appendix B. Remedial Alternative Conceptual-Level Cost Estimates
 - Table B-1 Cost Estimate Proposed Cleanup Action Alternative 1, Engineering and Institutional Controls
 - Table B-2 Cost Estimate Proposed Cleanup Action Alternative 2, In-Situ Soil Treatment
 - Table B-3 Cost Estimate Proposed Cleanup Action Alternative 3, Partial Removal With In-Situ Soil Treatment
 - Table B-4 Cost Estimate Proposed Cleanup Action Alternative 4, Complete Removal

ATTACHMENTS

- Attachment 1. Independent Remedial Action Completion Report
- Attachment 2. Remedial Investigation Data Report

LIST OF ABBREVIATIONS AND ACRONYMS

AST	Above ground storage tank
ASTM	American Society for Testing and Materials
BETX	Benzene, ethylbenzene, toluene and xylenes
BGS	Below ground surface
CAP	Cleanup Action Plan
Clearcreek	Clearcreek Contractors, Inc.
CAOs	Cleanup action objectives
cm	Centimeter
cm/s	Centimeters per second
cPAHs	Carcinogenic polycyclic aromatic hydrocarbons
CSM	Conceptual Site Model
DCA	Disproportionate cost analysis
DMMP	Dredged Material Management Program
Ecology	Washington State Department of Ecology
EPH	Extractable petroleum hydrocarbons
FS	Feasibility Study
GeoEngineers	GeoEngineers, Inc.
GeoEngineers MTCA	GeoEngineers, Inc. Model Toxics Control Act
GeoEngineers MTCA mg/kg	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram
GeoEngineers MTCA mg/kg mg/L	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter
GeoEngineers MTCA mg/kg mg/L MLLW	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water
GeoEngineers MTCA mg/kg mg/L MLLW PAHs	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Terrestrial Ecological Evaluation
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Terrestrial Ecological Evaluation Toxicity equivalent
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE TEQ TPH	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Terrestrial Ecological Evaluation Toxicity equivalent Total petroleum hydrocarbons
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE TEQ TPH	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Port of Anacortes Terrestrial Ecological Evaluation Toxicity equivalent Total petroleum hydrocarbons Remedial Investigation
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE TEQ TPH RI UST	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Port of Anacortes Terrestrial Ecological Evaluation Toxicity equivalent Total petroleum hydrocarbons Remedial Investigation Underground Storage Tank
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE TEQ TPH RI UST	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Port of Anacortes Terrestrial Ecological Evaluation Toxicity equivalent Total petroleum hydrocarbons Remedial Investigation Underground Storage Tank Volatile petroleum hydrocarbons
GeoEngineers MTCA mg/kg mg/L MLLW PAHs PCBs Port TEE TEQ TPH RI UST VPH VOCs	GeoEngineers, Inc. Model Toxics Control Act Milligram per kilogram Milligrams per liter Mean lower low water Polycyclic aromatic hydrocarbons Polychlorinated biphenyls Port of Anacortes Port of Anacortes Terrestrial Ecological Evaluation Toxicity equivalent Total petroleum hydrocarbons Remedial Investigation Underground Storage Tank Volatile petroleum hydrocarbons

1.0 INTRODUCTION

This document presents the Remedial Investigation/Feasibility Study (RI/FS) for the Former Shell Oil Tank Farm Site (Site) located in Anacortes, Washington. The Site is formally referenced in the Washington State Department of Ecology (Ecology) databases as the Former Shell Oil Tank Farm Site (Ecology Facility Site Identification No. 4781157) and is generally located between 13th Street and 14th East of Commercial Avenue in Anacortes, Washington (Figure 1). The Site is subject to cleanup actions by the Port of Anacortes (Port) in accordance with the requirements of Agreed Order No. DE-08TCPHQ-5474 (Agreed Order; Ecology, 2008). Completion of the RI/FS is a requirement of the Agreed Order scope of work.

Preliminary investigation and remediation activities (removal of stained surficial soil) were completed at the Site in the late 1980s when bulk fuel storage and distribution operations ceased. Subsequent environmental investigations were completed at or in the vicinity of the Site from 2005 through 2012 to evaluate soil and groundwater conditions (Floyd|Snider, 2005; Landau, 2007a; GeoEngineers, 2008 and GeoEngineers, 2013). The results of these environmental investigations identified elevated concentrations of petroleum hydrocarbons (gasoline and diesel), carcinogenic polycyclic aromatic hydrocarbons (cPAHs), volatile organic compounds (benzene) and metals (cadmium) is soil at the Site.

The purpose of this report is to present the results of the RI activities completed at the Site and provide a FS evaluation of cleanup alternatives for addressing residual contamination.

1.1. Statement of Objectives

The objectives of this document are to: (1) summarize the results of historical data and RI activities completed to evaluate the environmental conditions at the Site and (2) present an evaluation of cleanup alternatives to address contaminants identified at the Site.

1.2. Report Organization

This report is organized as follows:

- Section 1.0 introduces the document with a brief description of the Site, and the objective and organization of the RI/FS report.
- Section 2.0 describes the Site history, previous environmental studies performed and soil, groundwater and sediment conditions at the Site. In addition, this section summarizes current and future land use, exposure pathways and receptors for Site contamination, and the regulatory framework for Site investigation and cleanup.
- Section 3.0 describes the development of cleanup standards and the results of the RI completed within and near the Site.
- Section 4.0 presents the Site FS.
- Section 5.0 presents the limitations for use of this report.
- Section 6.0 presents the references used in preparing this report.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1. Site Description

Historically, bulk fuel and distribution facilities (former Shell Oil Tank Farm) operated at the property located between 13th and 14th Streets on Q Avenue (Figure 2). To the east of the former Shell Oil Tank Farm, historical fuel supply lines were routed across Q Avenue through a bulkhead and along a pier that extended into Fidalgo Bay. The pipelines terminated near the end of the historical fuel dock, which was located approximately at the location of the present day B-Dock (Figure 2). Currently, the area occupied by the former Shell Oil Tank Farm is generally flat, surfaced with crushed rock, and has been used as a parking lot for vehicles and boat trailers since the late 1980s. Although all above ground structures associated with the historical bulk storage and distribution operations have been removed, it is unknown if the historical fuel supply lines have been removed.

Adjacent properties include a McDonald's restaurant to the west that was constructed in the 1970s. The McDonald's property was the location of a former Shell automotive service station from the mid-1940s to 1966. The property south of the former Shell Oil Tank Farm (across 14th Street) was a transformer storage facility for Puget Sound Power and Light from the 1940s until 1970 when the current power distribution station (substation) was constructed. A Safeway grocery store is located north of the former Shell Oil Tank Farm, across 13th Street. Parking lots and commercial buildings on Port property and the Cap Sante Boat Haven are located east of the former Shell Oil Tank Farm across Q Avenue (Figure 2). Q Avenue is an arterial thoroughfare used for local, commercial and truck traffic.

2.2. Historical Operations and Site Uses

The area occupied by the former Shell Oil Tank Farm was originally a portion of the Fidalgo Bay tide flats, which were filled to the current grade (up to the former bulkhead just east of Q Avenue shown on Figure 2) between 1925 and 1929. This area was acquired by the Port in 1929 and subsequently leased to the Shell Oil Company in 1930 for use as a bulk fuel storage and distribution facility that primarily handled gasoline and diesel fuels. Prior to 1947, the area east of Q Avenue (east of the former Shell Oil Tank Farm) consisted of tide flats. From 1930 to approximately 1947, the historic fuel supply lines hung from historic fuel pier over the tide flats east of Q Avenue. In the late 1940s to early 1950s, the area east of Q Avenue was filled with dredged material from the adjacent federal waterway, and a second bulkhead was constructed farther to the east near the current shore of Fidalgo Bay (Figure 2). During this time, the hanging fuel lines were re-configured as underground lines. The former Shell Oil Tank Farm operated as a bulk fuel storage facility under Shell and various bulk product distributors until 1987. Bulk fuel storage and distribution operations ended in 1987 and the facility was reportedly decommissioned, including removal of all tanks, and associated piping and structures.

Additional information regarding the Site use history is presented in the Shell Work Plan (GeoEngineers, 2009). The approximate locations of the historical pump house, fill stand, underground storage tank (UST), gasoline and diesel above ground storage tanks (ASTs), and associated product supply lines are shown on Figure 2. Also shown on Figure 2 are historic visual observations of contamination observed in the vicinity of the former Shell Oil Tank Farm.

2.3. Previous Environmental Studies

Previous environmental investigations completed within and adjacent to the former Shell Oil Tank Farm include:

- Preliminary Environmental Site Assessment in 1987 (Hart Crowser, 1987);
- Limited Due Diligence Investigation in 2005 (Floyd | Snider, 2005);
- Cap Sante Marine Area Remedial Investigation in 2007 (Landau, 2007a);
- Soil Characterization Study in 2007 (GeoEngineers, 2008); and
- Remedial Investigation in 2011/2012 (GeoEngineers, 2013).

Detailed information regarding investigations completed prior to May 2007 is presented in the Shell Work Plan (GeoEngineers, 2009) and Cap Sante Work Plan (Landau, 2007b). Reports summarizing GeoEngineers' 2007 and 2011/2012 environmental studies are presented in Attachments 1 and 2, respectively. A list of soil samples and analytical tests performed for each of the site investigations is presented in Table 1.

The environmental setting for the Site with respect to soil and groundwater conditions based on the results of these studies is summarized in the following sections.

2.3.1. Soil Conditions

Based on subsurface information obtained during previous studies, subsurface geology consists of dredged fill material overlying native marine sediment (silt and silty sand) and glacial deposits. The dredged fill material at the Site generally consist of fine to medium sand with varying amounts of silt and gravel and extend from the ground surface to depths of approximately 5 feet to 12 feet below ground surface (bgs).

2.3.2. Groundwater Conditions

Based on subsurface information obtained during previous studies, measured depth to groundwater at the Site ranges from approximately 3 to 6 feet bgs (approximately elevation 6.5 to 9.5 feet mean lower low water [MLLW]). Observed groundwater flow direction is predominantly to the east toward Fidalgo Bay. Based on the results of tidal studies completed in the vicinity of the Site (i.e. Former Cap Sante Marine Lease Area; Landau, 2007a), tidal influence on groundwater levels and flow direction at the Site appears to be limited with a 0.8-foot fluctuation in groundwater levels in near shore wells during a high-low tide cycle. Measured fluctuation in groundwater levels away from the shore (approximately 100 to 200 feet) is on the order of approximately 0.1 foot.

In accordance with WAC 173-340-720(2)(d), groundwater is classified as a potential future source of drinking water because it is present in sufficient quantity, contains less than 10,000 milligrams per liter (mg/L) total dissolved solids and is not too deep to recover. However, because (1) of the proximity to marine surface water; (2) groundwater does not serve as a current source of drinking water; (3) the surface water is not classified as a suitable domestic water supply source; (4) there are known points of entry of the groundwater into surface water; and (5) potentially contaminated groundwater will not migrate to groundwater that is a current or potential future source of drinking water, Site groundwater qualifies as a non-potable water source.

2.4. Current and Likely Future Land Use

The current and anticipated future use of the former Shell Oil Tank Farm is as a vehicle and boat trailer parking lot supporting the Cap Sante Boat Haven trailer boat launch facility located east of Q Avenue. Q Avenue serves as a major thoroughfare and truck route for the City of Anacortes. The alignment of the historic fuel supply lines east of Q Avenue is an asphalt-paved road that provides access to the Former Cap Sante Marine Lease Area and Cap Sante Boat Haven. There currently are no plans to change the uses of the Site in the foreseeable future.

2.5. Exposure Pathways and Receptors

Fuel released from the former USTs, ASTs and/or other historic operations at the Site have resulted in direct impacts to soil and secondary impacts to groundwater. Surface water and sediments have the potential for impacts through the migration of contaminants in groundwater to the marine environment of Fidalgo Bay. Potential exposure pathways related to these media are discussed below.

2.5.1. Soil

The following potential exposure pathways and receptors existed for contaminants in Site soil:

- Contact (dermal, incidental ingestion or inhalation) by visitors, workers (including workers excavating soil) and potential future residents or other Site users with hazardous substances in soil;
- Contact (dermal, incidental ingestion or inhalation) by terrestrial wildlife with hazardous substances in soil; and
- Leaching to groundwater.

2.5.2. Groundwater

The following are potential exposure pathways and receptors for contaminants in Site groundwater:

- Groundwater to surface water, exposure of aquatic receptors to impacted groundwater that may discharge to Fidalgo Bay, resulting in acute or chronic effects; and
- Ingestion by Site visitors of aquatic organisms affected by the discharge of impacted groundwater to Fidalgo Bay.

As described in Section 2.3.2, human ingestion of hazardous substances released from the Site in groundwater was not a potential exposure pathway because groundwater at the Site, or potentially affected by Site soil, is not a current or reasonable future source of drinking water.

2.6. Regulatory Framework

In 2008, the Port entered into Agreed Order No. DE-08TCPHQ-5474 with Ecology. Work to be performed under the Agreed Order included completing the scope of remedial investigation activities outlined in the Ecology-approved Shell Work Plan. In addition, the requirements of the Agreed Order include preparation of RI/FS and Cleanup Action Plan (CAP) documents for the Site. This RI/FS and a separate CAP will complete the work requirements described in the Agreed Order.

3.0 REMEDIAL INVESTIGATION

3.1. Cleanup Standards

Cleanup standards consist of: (1) cleanup levels that are protective of human health and the environment, and (2) the point of compliance at which the cleanup levels must be met. Preliminary cleanup levels were developed in the Shell Work Plan as part of the RI planning activities. This process identified potential exposure pathways for human and environmental impacts based on the planned land use. Proposed cleanup standards for remedial alternative evaluation are presented below. Final cleanup standards will be established during preparation of the CAP.

3.1.1. Proposed Cleanup Levels

3.1.1.1. SOIL

Preliminary soil cleanup levels for the Site were developed as part of the Ecology-approved Shell Work Plan and are based on MTCA Method A values for unrestricted land use, MTCA Method B standard formula values for the protection of human health and MTCA Method B soil concentrations protective of surface water calculated using Ecology's fixed-parameter, three-phase partitioning model (MTCASGL Workbook; WAC 173-340-747(4)(b)). Preliminary soil cleanup levels developed for the Shell Work Plan considered:

- Concentrations established under applicable state and federal laws;
- Concentrations protective of terrestrial ecological receptors;
- Concentrations protective of direct human contact with soil;
- Concentrations protective of groundwater; and
- Concentrations protective of surface water.

Because Site conditions do not meet any of the criteria in WAC 173-340-741(2), a terrestrial evaluation is not required. A copy of the completed Terrestrial Ecological Evaluation Process – Primary Exclusions Documentation Form is presented in Appendix A.

In addition to these criteria, natural background soil metals concentrations in Washington state (Ecology, 1994) were considered in accordance with (WAC) 173-340-705(6) and WAC 173-340-709 where the lowest applicable regulatory criteria, adjusted for natural background metals concentrations, were selected as the preliminary soil cleanup levels. Details regarding the sources/derivation of each of the regulatory criteria are presented in the Shell Work Plan.

For this RI/FS report, the preliminary soil cleanup levels developed for the Shell Work Plan have been adopted as the proposed final soil cleanup levels for the Site and are presented in Table 2.

3.1.1.2. GROUNDWATER

Preliminary groundwater cleanup levels for the Site were developed as part of the Ecology-approved Shell Work Plan. As indicated above, groundwater at, or potentially affected by the Site contamination is not currently used for drinking water and is not a reasonable future source of drinking water because of its proximity to marine surface water. Therefore, the following potential exposure pathways for Site groundwater were considered for developing preliminary cleanup levels:

- Human ingestion of marine organisms contaminated by releases of affected Site groundwater to adjacent marine surface water; and
- Acute or chronic effects to aquatic organisms contaminated by releases from exposure to constituents in groundwater discharging to adjacent marine surface water.

The most conservative (lowest) published values were selected from the following regulatory criteria:

- MTCA Method A Cleanup Levels Groundwater WAC 173-340-720(3) and Chapter 173-340 Table 720-1;
- Water Quality Standards for Surface Waters of the State of Washington (Chapter 173-201A);
- National Recommended Water Quality Criteria (Section 304 of the Clean Water Act);
- National Toxics Rule (40 CFR Part 131.36); and
- MTCA Method B Surface Water Cleanup Levels (WAC 173-340-730[3][b][iii]).

Because cleanup levels protective of marine surface water have not been established for petroleum hydrocarbons, gasoline-, diesel- and heavy oil-range hydrocarbon cleanup levels for groundwater were referenced from MTCA Table 720-1 (MTCA Method A), in accordance with WAC 173-340-730(3)(b)(iii)(C). Details regarding the sources/derivation of each of the regulatory criteria are presented in the Shell Work Plan.

For this RI/FS report, the preliminary groundwater cleanup levels developed for the Shell Work Plan have been adopted as the proposed final groundwater cleanup levels for the Site and are presented in Table 3.

3.1.2. Point of Compliance

Under MTCA, the point of compliance is the point or location on a site where the cleanup levels must be attained. This section describes the proposed points of compliance for soil and groundwater.

3.1.2.1. SOIL

The standard point of compliance for the proposed human health based-direct contact soil cleanup levels presented in Table 2 is throughout the soil column from the ground surface to 15 feet bgs, in accordance with WAC 173-340-740(6)(d).

3.1.2.2. GROUNDWATER

Because the proposed final groundwater cleanup levels shown in Table 3 are based on protection of marine surface water and not protection of groundwater as drinking water, the proposed conditional point of compliance for the groundwater cleanup levels presented in Table 3 is where groundwater discharges to Fidalgo Bay.

3.2. Soil Investigations and Results

This section presents a summary of the RI soil investigation activities conducted at the Site. RI field study locations completed between 1987 and 2011 are shown on Figure 3. Soil investigation

activities and chemical analytical results are summarized in the following sections (Sections 3.2.1 through 3.2.5).

3.2.1. Preliminary Environmental Site Assessment (Hart Crowser, 1987)

A Preliminary Environmental Site Assessment by Hart Crowser in 1987 was completed on behalf of the Port to evaluate subsurface conditions at the Site (Hart Crowser, 1987). During this study, soil conditions were evaluated by completing two boring (MW-1 and MW-2). A total of two soil samples were submitted for chemical analysis of diesel- and heavy oil-range petroleum hydrocarbons.

Results of the 1987 soil investigation indicated the presence of diesel-range petroleum hydrocarbons in the central portion of the Site at a depth of approximately 5.5 to 6 feet below ground surface (bgs) at boring location MW-2.

3.2.2. Environmental Due Diligence Investigation (Floyd | Snider, 2005)

An environmental due diligence investigation by Floyd | Snider was completed in 2005 on behalf of the Port to evaluate the extent of soil and groundwater contamination at the Site (Floyd | Snider, 2005). During this investigation, soil samples were obtained from seven locations (SHL01 through SHL07) in the vicinity of the former Shell Oil Tank Farm. In addition, soil samples were also obtained from fourteen locations (CSM01 through CSM14) east of the Site in the vicinity of the historical fuel supply lines (current location of the parking/boat staging area south of the Cap Sante Marine Lease Area). A total of 24 soil samples were analyzed for petroleum hydrocarbon identification, gasoline-, diesel-, and/or heavy oil-range petroleum hydrocarbons, and/or BETX.

Results of the 2005 soil investigation identified gasoline- and diesel-range petroleum hydrocarbon contamination in soil samples obtained from borings SHL01, SHL02, SHL03 and SHL-05 located in the central portion of the former Shell Oil Tank Farm at depths ranging from approximately 4 feet and 9 feet bgs. Additionally, gasoline- and diesel-range petroleum hydrocarbons were detected at concentrations exceeding preliminary soil cleanup levels in soil samples obtained from boring CSM13 located at the southwestern portion of the former Cap Sante Marine Lease Area, north of the historic fuel supply line alignment. However, RI activities completed by GeoEngineers in 2011 (see Section 3.2.5) shown that contaminated soil at this location is not likely the result of releases from the historical fuel supply lines (i.e., contaminants were not detected in soil samples obtained between boring CSM13 and the approximate location of the historical fuel supply lines).

3.2.3. Cap Sante Marine Area Remedial Investigation (Landau, 2007a)

In 2007, Landau completed an RI field study on behalf of the Port to delineate the extent of petroleum-impacted soil within the Cap Sante Marine Lease Area associated with releases from two USTs (Landau, 2007a). As part of this investigation, borings SB-10, SB-13 and SB-14 were completed south of the Cap Sante Marine Lease Area in the vicinity of the historic fuel supply lines At this location, a total of nine soil samples obtained and analyzed for diesel-, and heavy oil-range petroleum hydrocarbons and volatile organic compounds (VOCs).

Results of the 2007 soil investigation identified gasoline-range petroleum hydrocarbon contamination south of the historical fuel supply line in boring SB-13 at a depth of approximately 5

to 6 feet bgs. However, RI activities completed by GeoEngineers in 2011 (see Section 3.2.5) shown that contaminated soil at this location is not likely the result of releases from the historical fuel supply lines (i.e., contaminants were not detected in soil samples obtained between boring SB-13 and the approximate location of the historical fuel supply lines).

3.2.4. Soil Characterization Study (GeoEngineers, 2008)

In 2007, GeoEngineers completed a shallow soil investigation on behalf of the Port to evaluate soil conditions in the vicinity of a planned construction excavation to re-route a storm drain located within 13th Street (GeoEngineers, 2008). Soil samples were obtained from four test pits explorations (TP-1 through TP-4) completed within the new planned storm drain alignment spanning the western portion of the Site. A total of five soil samples were submitted for chemical analysis of gasoline-, diesel- and oil-range petroleum hydrocarbons, BETX, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and/or metals (arsenic, cadmium, chromium, lead and mercury).

Results of the this investigation identified a single metal exceedance (cadmium) at the southwest corner of the former Shell Oil Tank Farm in test pit TP-1 at a depth of approximately 6 feet bgs. This exceedance was below the planned elevation of the new sewer line being installed as part of the City of Anacortes 13th Street sewer re-route project.

Results of the shallow soil investigation are presented in the Independent Remedial Action Completion Report (Attachment 1).

3.2.5. Remedial Investigation Data Report (GeoEngineers, 2013)

In 2011, GeoEngineers completed an RI field study on behalf of the Port to further evaluate the extent of petroleum- and PAH-impacted soil previously identified at the Site (GeoEngineers, 2013). Soil samples were obtained from thirty six boring locations (GEI-1 through GEI-35 and GEI-MW-1) within former Shell Soil Tank Farm and adjacent to the historical fuel supply lines. A total of 89 soil samples (including duplicate samples) were analyzed for gasoline-, diesel-, and heavy oil-range petroleum hydrocarbons, VOCs, PAHs, polychlorinated biphenyls (PCBs) and/or metals (cadmium and/or lead).

Results of the this soil investigation provided additional delineation of the lateral and vertical extent of contaminated soil associated with historic soil sample locations MW-2, SHL01 through SHL03, SHL05, CSM13, SB-13, SB-14 and TP-1 in which contaminants (petroleum hydrocarbons, PAHs and/or metals) were detected at concentrations greater than preliminary soil cleanup levels. Based on the sample results, gasoline- and diesel-range petroleum hydrocarbons, cPAHs and benzene were detected at concentrations exceeding preliminary soil cleanup levels in the central and southern portions of the former Shell Oil Tank Farm at depths ranging between approximately 2.5 and 10 feet bgs. Gasoline-range petroleum hydrocarbons and PAHs exceeding preliminary soil cleanup levels detected in the vicinity of SB-13 and SB-14 appear to be limited in extent and occur between approximately 3 and 10 feet bgs. Gasoline- and diesel-range petroleum hydrocarbons exceeding preliminary soil cleanup levels from the vicinity of SB-13 and SB-14 appear to be limited in extent and occur between 8 and 14 feet bgs. However, soil sample results from the 2011 investigation indicate that there is no direct connection between the historic fuel line and the observed contamination in the vicinity of CSM13, SB-13 and SB-14.

Results of the 2011 soil investigation as well as the soil investigation results from previous environmental studies are presented the RI Data Report (Attachment 2).

3.3. Groundwater Investigations and Results

Groundwater monitoring activities were completed by Hart Crowser in 1987, Floyd|Snider in 2005 and GeoEngineers in 2012. Groundwater monitoring activities during these investigations included measurements of groundwater levels and collection of groundwater samples for chemical analysis. Additionally, field parameters, including pH, temperature, conductivity, dissolved oxygen, turbidity and oxidation reduction potential were measured during the 2012 groundwater investigation (GeoEngineers, 2013). Groundwater samples obtained from monitoring wells MW-1, MW-2 and GEI-MW-1 through GEI-MW-7, and borings SHL01 through SHL07, CSM01 through CSM03, CSM12 and CSM13 (grab samples) were analyzed for gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, PAHs, BETX, methyl tert-butyl ether (MTBE), ethylene dibromide (EDB), ethylene dichloride (EDC), n-hexane cadmium and/or lead.

Results of the 1987 and 2005 groundwater investigations indicated gasoline-range petroleum hydrocarbons and lead at concentrations exceeding preliminary groundwater cleanup levels in water samples obtained from monitoring wells MW-1 and MW-2 and grab sample locations SHL01 and SHL04 within the former Shell Oil Tank Farm. Gasoline- and diesel-range petroleum hydrocarbons were also detected at concentrations exceeding preliminary groundwater cleanup levels in a water sample obtained from grab sample location CSM-12 located in the general vicinity of the historical fuel supply lines. However, as previously discussed, the historical fuel supply lines do not appear to be a source for the observed contamination at this location.

During the 2012 sampling event, contaminants (petroleum hydrocarbons, BETX, PAHs cadmium and lead) were not detected in groundwater samples obtained from monitoring wells MW-1 through MW-7 located within or down gradient of identified petroleum hydrocarbon, benzene, cPAH, and/or cadmium exceedances in soil at the Site.

Groundwater investigation results for recent and previous sampling events are presented in the RI Data Report (Attachment 2). Groundwater sampling locations are shown on Figure 4.

3.4. Terrestrial Ecological Evaluation

As indicated in Section 3.1.1, a terrestrial ecological evaluation (TEE) was not required for the Site because the Site does not meet any of the criteria in WAC 173-340-7491(1). Copies of the forms documenting this determination for the Site are presented in Appendix A.

Based on this evaluation, human contact and soil leaching to groundwater remain as the only applicable, potential exposure pathways for soil contamination at the Site.

3.5. Remedial Investigation – Summary of Findings

Several remedial investigations have been completed (as described above) to evaluate contamination in soil and groundwater related to historic Site use, and petroleum releases from former ASTs, USTs and/or historic fuel lines. The results of the RI indicate the presence of petroleum constituents at concentrations exceeding preliminary soil cleanup levels in the central and southern portions of the former Shell Oil Tank Farm associated with releases from the former

ASTs, USTs, product lines and/or historic operations. Additionally, recent investigations indicate that groundwater at the Site is not impacted by contaminants identified in soil.

Based on the results of the soil and groundwater sampling, potential exposure pathways for human contact with contaminated soil and leaching/migration of contamination from soil to groundwater are present.

As agreed to with Ecology, the contamination identified in the vicinity of CSM13, SB-13 and SB-14 located east of Q Avenue will be addressed as part of the Cap Sante Marine site cleanup action (GeoEngineers, 2012) since they are located within the Cap Sante Marine study area and there is no specific evidence that the contamination is associated with the historic fuel lines from the former Shell Oil Tank Farm.

Current Site conditions and the approximate extent of contaminants identified are shown on Figure 5 and in generalized geologic cross-section on Figures 6 and 7.

4.0 FEASIBILITY STUDY

4.1. Conceptual Site Model

The Conceptual Site Model (CSM) is a model of the potential contaminant sources, release mechanisms, and transport mechanisms currently present at the Site. The CSM also identifies potential receptors and associated exposure pathways for Site contaminants. The CSM does not quantify potential risks to human health or the environment posed by Site-related contamination. It is intended to focus remedial actions (site investigations, monitoring, cleanup actions, etc.) on those areas of the Site that may warrant further consideration.

Petroleum hydrocarbons and benzene contamination identified within and adjacent to the former Shell Oil Tank Farm were likely the result of releases from ASTs, USTs, product piping and/or historic operations. The approximate location of the former ASTs, USTs and product lines and the estimated extent of petroleum-related contaminated soil are shown on Figure 2. Following release, petroleum-related contamination was then potentially transported downgradient of the former Shell Oil Tank Farm beneath portions of Q Avenue and 14th Streets. Data indicate that the contamination has not migrated to the eastern side of Q Avenue. Vertical and horizontal transport may have been facilitated by groundwater flow and water level fluctuations however, groundwater within and downgradient of the petroleum-related contaminant plume is currently not adversely impacted based on the results of recent groundwater samples obtained from the Site.

The sources of the localized areas cPAH- and cadmium-impacted soil is not known but are either suspected to have been deposited during the 1940s and 1950s when the tide flat was in filled with dredge material or the result of historic site operations.

The current condition of Site media of concern is described below.

4.1.1.Soil

As discussed in Section 2.3.1 of this report, soil types consist of dredged fill material from the surface to depths of approximately 5 to 12 feet bgs overlying native marine sediments and glacial

deposits. The unsaturated zone extends from ground surface to 5 feet bgs, and the top of the saturated zone begins at approximately 5 feet bgs. Contaminants including gasoline-, diesel- and heavy oil-range hydrocarbons, benzene, cPAHs and metals (cadmium) have been detected at concentrations exceeding preliminary soil cleanup levels at depths ranging from approximately 2.5 to 14 feet bgs.

Based on the geology, hydrogeology and the distribution of remaining contaminants at the Site, the potential exposure pathways to contaminated soil at the Site include:

- Direct contact (dermal, incidental ingestion or inhalation) with contaminated soil by site visitors, workers, future residents and/or other site users;
- Leaching/migration of contamination from soil to groundwater.

4.1.2. Groundwater

Depth to groundwater at the Site is approximately 4 to 6 feet bgs, and the flow direction is predominantly east toward Fidalgo Bay. Based on the Landau's 2007 tidal evaluation (Landau, 2007a), tidal influence on groundwater levels and flow direction appears to be limited to the near shore areas.

Historic groundwater samples obtained from the central portion of the former Shell Oil Tank Farm identified diesel-range hydrocarbons and lead. However, recent groundwater results show that concentrations of these contaminants as well as, other contaminants detected in soil are less than preliminary groundwater cleanup levels. Because groundwater at the Site is not a potential source of drinking water and contaminants have not been detected at concentrations exceeding preliminary groundwater cleanup levels, human ingestion of hazardous substances in groundwater, exposure of aquatic organisms to hazardous substances and human consumption of marine organisms are not potential exposure pathways.

4.2. Basis for Cleanup Action

This section presents the basis for the site-wide cleanup action. There are two distinct elements that form the basis for the cleanup action: (1) the site-specific cleanup standards, and (2) the locations and media requiring cleanup action evaluation.

4.2.1. Cleanup Standards

Cleanup standards consist of: (1) cleanup levels that are protective of human health and the environment, and (2) the point of compliance at which the cleanup levels must be met, and (3) additional regulatory requirements, specified in applicable state and federal laws, that apply to a cleanup action because of the type of action and/or the location of the site. Preliminary site-specific cleanup levels for soil and groundwater were developed during preparation of the Shell Work Plan (GeoEngineers, 2009). As discussed in Section 3.1, the preliminary cleanup levels developed in the Shell Work Plan have been adopted as the proposed final cleanup levels in this FS, for the purpose of developing cleanup action objectives and alternatives for the Site. The proposed points of compliance presented in Section 3.1 have also been adopted. Additional regulatory requirements potentially applicable to the cleanup action will be presented and evaluated in the CAP.

The proposed final soil cleanup levels are presented in Table 2. The proposed final groundwater cleanup levels are presented in Table 3. Cleanup action objectives for the Site are presented in Section 4.2.3.

4.2.2. Locations and Media Requiring Cleanup Action Evaluation

Based on the results of the RI (Section 3.0), soil within the former Shell Oil Tank Farm requires evaluation of cleanup action alternatives based on the presence of gasoline-, diesel- and heavy oil-range hydrocarbons, benzene, PAHs and/or cadmium at concentrations exceeding cleanup levels protective of human health and the environment.

The existing groundwater sampling data confirm that the contaminated soil at the Site is not adversely impacting groundwater. Therefore the primary medium of concern at the Site is soil. The estimated total in-situ volume of impacted soil requiring cleanup action (i.e., the volume exceeding soil cleanup levels) is estimated to be approximately 4,000 in-place cubic yards. The impacted soil is distributed approximately as follows:

- Petroleum Hydrocarbon and Benzene Contamination Area approximately 3,500 in-place cubic yards
- PAH Contamination Area approximately 425 in-place cubic yards
- Cadmium Contamination Area approximately 25 in-place cubic yards

Because of the similarity in physical characteristics, natural resources, accessibility and likely release mechanisms, these areas of the Site warrant similar approaches to cleanup. Cleanup approaches are discussed further in Section 4.3 – Identification and Description of Cleanup Action Alternatives.

4.2.3. Cleanup Action Objectives

The cleanup action objective of the proposed cleanup action is to eliminate, reduce, or otherwise control to the extent feasible and practicable, unacceptable risks to human health and the environment posed by hazardous substances in soil at the Site in accordance with the MTCA Cleanup Regulation (WAC 173-340) and other applicable regulatory requirements. Specifically, the objective of the cleanup action is to mitigate risks associated with the following potential receptors and exposure routes:

- Direct contact (dermal, incidental ingestion or inhalation) with contaminated soil by site visitors, workers, future residents and/or other site users, and
- Leaching/migration of contamination from soil into groundwater.

The cleanup goal is to mitigate these risks by meeting the proposed soil and groundwater cleanup standards identified in Section 3.1. The proposed final cleanup levels, which were derived from regulatory criteria, are considered to be protective of human health and ecological receptors.

4.3. Identification and Description of Cleanup Action Alternatives

Table 4 presents the results of a screening evaluation of potentially applicable remediation technologies for the cleanup action. Based on the screening evaluation, selected technologies are carried forward for use in the development of cleanup action alternatives.

The general response actions considered in the screening evaluation include no action, institutional controls/access control, soil containment, soil removal and disposal, soil removal with ex-situ soil treatment, and in-situ soil treatment. The potential remediation technologies for soil were screened on the basis of effectiveness, implementability, and relative cost. The screening process determined the most appropriate technologies that warrant development into cleanup action alternatives for further evaluation. Remediation technologies were screened out from further consideration if they were unable to meet MTCA threshold requirements, if they had limited effectiveness or implementability, and/or if another technology was similarly effective and implementable but had a significantly lower cost.

Remediation technologies and process options for Site cleanup that were retained through the screening evaluation, as summarized in Table 4, were used to develop four cleanup action alternatives to address contaminated media at the Site. Each alternative addresses contaminated media with one or a combination of technologies appropriate for Site conditions. Cleanup action alternatives selected for evaluation represent a reasonable range of potentially applicable cleanup options to provide a basis for evaluation. The design parameters used to develop these cleanup action alternatives are based on engineering judgment and current knowledge of Site conditions. The final design for the selected alternative may require additional characterization and analysis to better define the scope and costs associated with the final cleanup action. Cleanup action alternatives were developed to be generally consistent with the current and anticipated future land uses at the Site; however, some of the alternatives are more compatible with preserving the existing Site use than others. Components of the cleanup action alternatives evaluated for the Site are described below and are summarized in Table 5.

4.3.1. Alternative 1 – Engineering and Institutional Controls

Remedial Alternative 1 relies on the use of engineering controls that currently exist at the Site combined with institutional controls to prevent human exposure to soil in which contaminant concentrations exceed cleanup levels. This alternative requires the least amount of remediation construction and has the lowest costs related to confirmational monitoring of soil and groundwater contaminant concentrations and administrative costs associated with developing the components of the institutional controls. The remedy under this alternative would be subject to confirmational monitoring and periodic review by Ecology to ensure long-term protectiveness.

Alternative 1 has the following components:

- Maintain existing protective concrete, asphalt and soil to isolate Site contaminants from human contact.
- Confirmational groundwater monitoring on a quarterly basis for at least one year following the cleanup action to verify that contaminant concentrations do not exceed groundwater cleanup levels, confirm plume stability and monitor natural attenuation performance. Additional

groundwater monitoring may be necessary if initial groundwater monitoring indicates the potential for contaminant transfer from remaining contaminated soil to groundwater over time.

- Institutional controls in the form of environmental covenants, signage, and other notification measures would be utilized as appropriate to address residual inorganic contaminants and any remaining organic contaminants remaining in place in areas of the Site.
- Additional response actions would be implemented should the remedy be determined to not be effective.

4.3.2. Alternative 2 – In-Situ Soil Treatment

Remedial Alternative 2 utilizes all of the cleanup action components described above for Alternative 1, with the addition of the injection of chemical reagents through soil mixing technologies to chemically oxidize petroleum-related compounds within the readily accessible portion of the Site (i.e., gravel surface within the former Shell Oil Tank Farm) and to enhance bioremediation of petroleum-related compounds in the less accessible portions of the Site (i.e., beneath the sidewalk and asphalt surfaces of the Q Avenue and the 14th Street). Prevention of exposure to residual contaminants (i.e., inorganic contaminants and/or organic contaminants not addressed by in-situ soil treatment activities) will rely on the use of institutional and engineering controls and groundwater monitoring. The remedy under this alternative would be subject to periodic review by Ecology to ensure long-term protectiveness.

Alternative 2 has the following components:

- Maintain existing protective concrete, asphalt and/or soil caps within the sidewalk and the Q Avenue and the 14th Street to isolate Site contaminants from human contact.
- Injection of chemical oxidant into the subsurface soil through soil mixing technologies to desorb and destroy petroleum-related compounds in soil within the easily accessible portion of the Site (gravel surface within the former Shell Oil Tank Farm) followed by injection of an oxygen releasing material to stimulate naturally occurring microbes for enhancing biological degradation of residual organic contaminants remaining in place beneath the sidewalk and asphalt surfaces of the Q Avenue and the 14th Street. Treatment of organic contaminants in these less accessible portions of the Site would rely on groundwater as a transport mechanism to carry the chemical reagent and/or to expand the zone of bioremediation conditions. Overall contaminant mass reduction will be evaluated after the in-situ soil treatment using supplemental soil samples collected at the Site.
- Confirmational groundwater monitoring on a quarterly basis for at least one year following the cleanup action to verify that contaminant concentrations do not exceed groundwater cleanup levels, confirm plume stability and monitor attenuation performance. Additional groundwater monitoring may be necessary if initial groundwater monitoring indicates the potential for contaminant transfer from remaining contaminated soil to groundwater over-time.
- Institutional controls in the form of environmental covenants, signage, and other notification measures would be utilized as appropriate to address residual inorganic contaminants and any remaining organic contaminants remaining in place in areas of the Site following in-situ treatment.

 Additional response actions would be implemented should the remedy be determined to be not effective.

4.3.3. Alternative 3 – Partial Removal with In-Situ Soil Treatment.

Remedial Alternative 3 utilizes the cleanup action components described above for Alternative 1, with the addition of excavation and off-site disposal of contaminated soil within the readily accessible portion of the Site (i.e., gravel surface within the former Shell Oil Tank Farm) followed by placement of a chemical reagent within the backfill to enhance bioremediation of petroleum-related compounds in the less accessible portions of the Site (i.e., beneath the sidewalk and asphalt surfaces of the Q Avenue and the 14th Street). Excavated soil exceeding soil cleanup levels would be disposed of at an off-site, permitted landfill. Prevention of exposure to residual contaminants (i.e., inorganic contaminants and/or organic contaminants not addressed by in-situ soil treatment activities) will rely on the use of institutional and engineering controls and groundwater monitoring. The remedy under this alternative would be subject to periodic review by Ecology to ensure long-term protectiveness.

Alternative 3 has the following components:

- Excavate approximately 3,000 in-place cubic yards of contaminated soil (approximately 75% of the total volume) in addition to approximately 1,000 in-place cubic yards of overburden within the readily accessible portion of the Site (i.e., gravel surface within the former Shell Oil Tank Farm) boundary using commonly available excavation techniques. Due to insufficient space to cost effectively segregate, stockpile and test the overburden soil for reuse and geotechnically unsuitable nature of the material (i.e., high silt content), it is assumed that all excavated soil will be transported from the Site for permitted disposal.
- Existing utility infrastructure (power, phone, sewer, water, etc.) would remain undisturbed and protected in-place during remedial excavation activities. In addition, excavation slopes and/or shoring would be required to protect adjacent utilities, sidewalks and roads.
- Confirmation soil samples will be obtained during remedial excavation activities to verify the successful removal of contaminants in accessible portions of the Site and to document residual contaminant concentrations along the excavation sidewall along 14th Street and Q Avenue.
- Transport excavated soil to an approved landfill facility. Excavated soil would be characterized for disposal as required by MTCA and the selected disposal facility. The contaminated soil is expected to designate as non-dangerous waste suitable for disposal at a Subtitle D landfill.
- During backfilling activities, an oxygen releasing material would be placed in lifts throughout the saturated and/or smear zone to stimulate naturally occurring microbes to enhance biological degradation of organic contaminants remaining in-place beneath the sidewalk and asphalt surfaces of the 14th Street and the Q Avenue. Treatment of organic contaminants in these inaccessible portions of the Site would rely on groundwater as a transport mechanism to carry the chemical reagent and/or to expand the zone of bioremediation conditions beyond the limits of excavation.
- Confirmational groundwater monitoring on a quarterly basis for at least one year following the cleanup action to verify that contaminant concentrations do not exceed groundwater cleanup

levels, confirm plume stability and monitor attenuation performance. Additional groundwater monitoring may be necessary if initial groundwater monitoring indicates the potential for contaminant transfer from remaining contaminated soil to groundwater over-time.

- Institutional controls in the form of environmental covenants, signage, and other notification measures would be utilized as appropriate to address residual inorganic contaminants and any remaining organic contaminants remaining in-place in areas of the Site following in-situ treatment.
- Additional response actions would be implemented should the remedy be determined to not be effective.

4.3.4. Alternative 4 – Complete Removal

Alternative 4 achieves complete removal of soil that exceeds cleanup levels. Contaminated soil exceeding cleanup levels within the former Shell Oil Tank Farm and within the adjacent sidewalk and asphalt surfaces of 14th Street and Q Avenue would be excavated to the extent practicable and disposed of at an off-site, permitted landfill.

Alternative 4 includes the following components:

- Excavate to the extent practicable approximately 4,000 in-place cubic yards of contaminated soil in addition to 2,000 in-place cubic yards of overburden soil using commonly available excavation techniques. Due to insufficient space to cost effectively segregate, stockpile and test the overburden soil for reuse and geotechnically unsuitable nature of the material (i.e., high silt content), it is assumed that all excavated soil will be transported from the Site for permitted disposal.
- Existing utility infrastructure (power, phone, sewer, water, etc.), and asphalt and concrete surfaces would need to be temporality relocated and/or demolished and restored to facilitate removal of the contaminated soil. During construction local, commercial and truck traffic for Q Avenue would be rerouted to nearby arterial roads, street and pedestrian traffic for 14th Street in the vicinity of the Site would also be rerouted.
- Transport excavated soil to an approved landfill facility. Excavated soil would be characterized for disposal as required by MTCA and the selected disposal facility. The contaminated soil is expected to designate as non-dangerous waste suitable for disposal at a Subtitle D landfill.
- Confirmation soil samples will be obtained during remedial excavation activities to verify the successful removal of contaminants from the Site.
- Backfill excavated areas with clean imported fill and restore original Site topography and restore damaged or rerouted infrastructure (utilities, sidewalks and roads).
- Confirmation groundwater monitoring will be performed on a quarterly basis for at least one year following the cleanup action to verify that contaminant concentrations do not exceed groundwater cleanup levels.
- If necessary, develop institutional controls in the form of environmental covenants, signage, and other notification measures to address any remaining contaminated soil left in place in areas of the Site where excavation is found to be impracticable during construction.

4.4. MTCA Evaluation Criteria

This section presents a description of the threshold requirements for cleanup actions under MTCA and the additional criteria used in this FS to evaluate the cleanup action alternatives.

4.4.1. Threshold Requirements

Cleanup actions performed under MTCA must comply with several threshold requirements. Cleanup action alternatives that do not comply with these requirements are not considered suitable cleanup actions under MTCA. As provided in WAC 173-340-360(2)(a), cleanup actions must:

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

4.4.1.1. PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT

Cleanup actions performed under MTCA must ensure that human health and the environment are protected.

4.4.1.2. COMPLIANCE WITH CLEANUP STANDARDS

Compliance with cleanup standards requires, in part, that cleanup levels are met at the applicable points of compliance. If a remedial action does not comply with cleanup standards, the remedial action is an interim action, not a cleanup action. Where a cleanup action involves containment of soils with hazardous substance concentrations exceeding cleanup levels at the point of compliance, the cleanup action may be determined to comply with cleanup standards, provided the requirements specified in WAC 173-340-740(6)(f) are met.

4.4.1.3. COMPLIANCE WITH APPLICABLE STATE AND FEDERAL LAWS

Cleanup actions conducted under MTCA must comply with applicable state and federal laws. The term "applicable state and federal laws" includes legally applicable requirements and those requirements that Ecology determines to be relevant and appropriate as described in WAC 173-340-710.

4.4.1.4. PROVISION FOR COMPLIANCE MONITORING

The cleanup action must allow for compliance monitoring in accordance with WAC 173-340-410. Compliance monitoring consists of protection monitoring, performance monitoring and confirmational monitoring. Protection monitoring is conducted to confirm that human health and the environment are adequately protected during the construction, operation, and maintenance phases of a cleanup action. Performance monitoring is conducted to confirm that the cleanup action has attained cleanup standards and/or, if applicable, remediation levels or other performance standards. Confirmational monitoring is conducted to confirm the long-term effectiveness of the cleanup action once cleanup standards and/or, if applicable, remediation levels or other performance standards have been attained.

4.4.2. Other Requirements

Under MTCA, when selecting from the cleanup action alternatives that meet the threshold requirements described above, the alternatives must be further evaluated against the following additional criteria:

- Use permanent solutions to the maximum extent practicable (WAC 173-340-360[2][b][i]): MTCA Cleanup Regulation requires that when selecting from cleanup action alternatives that fulfill the threshold requirements, the selected action shall use permanent solutions to the maximum extent practicable (WAC 173-340-360[2][b][i]). MTCA specifies that the permanence of these qualifying alternatives shall be evaluated by balancing the costs and benefits of each of the alternatives using a "disproportionate cost analysis" in accordance with WAC 173-340-360(3)(e). The criteria for conducting a disproportionate cost analysis are described in Section 4.4.3 below.
- Provide a reasonable restoration time frame (WAC 173-340-360[2][b][ii]): In accordance with WAC 173-340-360(2)(b)(ii), selected cleanup actions must provide for a reasonable restoration time frame. The MTCA Cleanup Regulation lists factors to be considered in evaluating whether a cleanup action provides for a reasonable restoration time frame (WAC 173-340-360[4][b]).
- Consideration of Public Concerns (WAC 173-340-360[2][b][iii]): Ecology will consider public comments submitted during the RI/FS process in making its preliminary selection of an appropriate cleanup action alternative. This preliminary selection is subject to further public review and comment when the proposed remedy is published in the Cleanup Action Plan.

4.4.3. MTCA Disproportionate Cost Analysis

The MTCA disproportionate cost analysis (DCA) is used to evaluate which of the cleanup action alternatives that meet the threshold requirements are permanent to the maximum extent practicable. This analysis involves comparing the costs and benefits of the alternatives and selecting the alternative whose incremental costs are not disproportionate to the incremental benefits. The evaluation criteria for the DCA are specified in WAC 173-340-360(2) and (3), and include protectiveness, permanence, cost, long-term effectiveness, management of short-term risks, implementability, and consideration of public concerns.

As outlined in WAC 173-340-360(3)(e), the MTCA Cleanup Regulation provides a methodology that uses the criteria below to determine whether the costs associated with each cleanup action alternative are disproportionate relative to the incremental benefit of the alternative over the next lowest cost alternative. The comparison of benefits relative to costs may be quantitative, but will often be qualitative. When possible for this FS, quantitative factors such as mass of contaminant removed or percentage of area of impacts remaining were compared to costs for the alternatives evaluated, but many of the benefits associated with the criteria described below were necessarily evaluated qualitatively. Costs are disproportionate to benefits if the incremental costs of the more permanent alternative exceed the incremental degree of benefits achieved over the lower-cost alternative (WAC 173-340-360[e][i]). Where two or more alternatives are equal in benefits, Ecology selects the less costly alternative (WAC 173-340-360[e][ii][c]).

The MTCA criteria used in the DCA are described below.

4.4.3.1. PROTECTIVENESS

The overall protectiveness of a cleanup action alternative is evaluated based on several factors. First, the extent to which human health and the environment are protected and the degree to which overall risk at a site is reduced are considered. Both on-site and off-site reductions in risk resulting from implementing the alternative are considered.

4.4.3.2. PERMANENCE

MTCA specifies that when selecting a cleanup action alternative, preference shall be given to actions that are "permanent solutions to the maximum extent practicable." Evaluation criteria include the degree to which the alternative permanently reduces the toxicity, mobility or mass of hazardous substances, including the effectiveness of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment processes, and the characteristics and quantity of treatment residuals generated.

4.4.3.3. COST

The analysis of cleanup action alternative costs under MTCA includes all costs associated with implementing an alternative, including design, construction, confirmational monitoring, and institutional controls. Costs are intended to be comparable among different alternatives to assist in the overall analysis of relative costs and benefits of the alternatives. The costs to implement an alternative include the cost of construction, the net present value of any long-term costs, and Port administrative costs. Long-term costs include operation and maintenance costs, monitoring costs, equipment replacement costs, and the cost of maintaining institutional controls. Unit costs used to develop cost estimates for the cleanup action alternatives in this FS were derived using a combination of published engineering reference manuals (i.e., R.S. Means), construction cost estimates solicited from applicable vendors and contractors, review of actual costs incurred during similar, applicable projects, and professional judgment.

4.4.3.4. LONG-TERM EFFECTIVENESS

Long-term effectiveness is a parameter that expresses the degree of certainty that the cleanup action alternative will be successful in maintaining compliance with cleanup standards over the long-term performance of the cleanup action. The MTCA Cleanup Regulation contains a specific preference ranking for different types of technologies that is to be considered as part of the comparative analysis. The ranking gives the highest preference to technologies such as reuse/recycling, treatment, immobilization/solidification, and disposal in an engineered, lined, and monitored facility. Lower preference rankings are given to technologies such as on-site isolation/containment with attendant engineered controls, and institutional controls and monitoring.

4.4.3.5. MANAGEMENT OF SHORT-TERM RISKS

Evaluation of this criterion considers the relative magnitude and complexity of actions required to maintain protection of human health and the environment during implementation of the cleanup action. Cleanup actions carry short-term risks, such as potential mobilization of contaminants during construction, or safety risks typical of large construction projects. Some short-term risks can be managed through the use of best practices during project design and construction, while

other risks are inherent to project alternatives and can offset the long-term benefits of an alternative.

4.4.3.6. IMPLEMENTABILITY

Implementability is an overall metric expressing the relative difficulty and uncertainty of implementing the cleanup action. Evaluation of implementability includes consideration of technical factors such as the availability of mature technologies and experienced contractors to accomplish the cleanup work. It also includes administrative factors associated with permitting and completing the cleanup.

4.4.3.7. CONSIDERATION OF PUBLIC CONCERNS

The public involvement process under MTCA is used to identify potential public concerns regarding cleanup action alternatives. The extent to which an alternative addresses those concerns is considered as part of the evaluation process. This includes concerns raised by individuals, community groups, local governments, tribes, federal and state agencies, and other organizations that may have an interest in or knowledge of the site. In particular, the public concerns for this Site would generally be associated with environmental concerns and performance of the cleanup action, which are addressed under other criteria such as protectiveness and permanence.

4.5. Evaluation of Cleanup Action Alternatives

Each alternative is evaluated with respect to the MTCA evaluation criteria described in Section 4.4 and then compared to the other alternatives relative to its expected performance under each criterion. The components of the four Alternatives are described above in Section 4.3 and are summarized in Table 5. A MTCA DCA was completed to determine which cleanup action alternative that otherwise meets threshold requirements is permanent to the maximum extent practicable. The results of the detailed alternatives evaluation and DCA are presented in Tables 6 and 7, and illustrated in Figure 8.

4.5.1. Threshold Requirements

All of the alternatives developed for the Site meet the four MTCA threshold requirements described for cleanup actions:

- Protection of human health and the environment;
- Compliance with cleanup standards;
- Compliance with applicable state and federal regulations; and
- Provision for compliance monitoring.

4.5.2. MTCA Disproportionate Cost Analysis

The DCA compares cleanup costs and benefits and allows selection of a cleanup action alternative that provides the greatest benefits relative to cost. Cleanup Action Alternatives 1 through 4 were evaluated based on the MTCA DCA criteria described in Section 4.4.3. The alternatives were ranked on a scale of 1 (lowest) to 10 (highest) for each of the DCA criteria. Each of the DCA criteria was assigned a weighting factor as determined by Ecology, that ranged between 10 percent and

30 percent (the sum of the weighting factors equaled 100 percent). Results of the DCA are as follows:

- Alternative 1: 4.2 (out of 10) benefit ranking; estimated cleanup cost of \$400,000.
- Alternative 2: 6.5 (out of 10) benefit ranking; estimated cleanup cost of \$2,120,000.
- Alternative 3: 7.8 (out of 10) benefit ranking; estimated cleanup cost of \$3,000,000.
- Alternative 4: 8.6 (out of 10) benefit ranking; estimated cleanup cost of \$4,130,000.

The high ranking of Alternative 4, and to a lesser degree Alternative 3, is due to the higher level of contaminant mass removal achieved through excavation and disposal of contaminated soil with these Alternatives. Alternative 2 has a lower ranking than Alternative 3 due to the lower degree of immediate contaminant mass removal and uncertainty in short-term and long-term risks associated with in-situ treatment technologies. Alternative 1 is the least protective of each of the alternatives evaluated given the short- and long-term risks associated with leaving the contaminant mass in place.

However, the marginal gains in protectiveness and permanence resulting from Alternative 4 are determined to be disproportionately more costly given the higher potential for short-term risks and greater complexities related to implementability in comparison to Alternative 3. As a result, Alternative 3 is the alternative with the highest overall ranking.

Detailed scoring of Alternatives 1 through 4 are presented in Table 6. A summary of the relative benefits ranking and disproportionate cost analysis is presented in Table 7. A comparison of the relative benefits ranking and disproportionate cost analysis is shown on Figure 8. Conceptual-level cost estimates for the cleanup action alternatives are presented in Table B-1 through B-4 of Appendix B.

4.5.3. Reasonable Restoration Time Frame

The restoration time frame, which includes project design, contracting and construction, for all of the proposed Remedial Alternatives is expected to be on the order of one to three years. However, it should be noted that there are unknowns and intangibles related to the restoration timeframe for Alternative 2. There is a lag time between in-situ treatment and verification of that the treatment was successful in achieving the site cleanup objectives. Furthermore, multiple treatment events may be required before the Site cleanup objectives are met. Acceptable restoration timeframes cannot be predicted with certainty for Alternative 2.

Alternatives 1 through 3 would require monitoring of contaminant concentrations in groundwater for a period of approximately five to ten years to ensure long-term effectiveness of the Cleanup Action.

4.6. Preferred Cleanup Action Alternative

Based on the comparative analysis summarized in Section 4.5 and Tables 6 and 7, the preferred cleanup action alternative for the Site is Alternative 3. This alternative will result in:

Significant reduction in contaminant mass from the Site through remedial excavation activities;

- Enhancing the biological degradation and ultimate attenuation of organic contaminants in soil located beneath the sidewalk and asphalt surfaces of the Q Avenue and 14th Street through the placement of oxygen releasing material during backfilling activities; and
- Reduction of human health risks to Site users and terrestrial wildlife.

Although some of the contamination will be left in place above soil cleanup levels as part of Alternative 3, exposure to these contaminants is prevented through the use of engineering controls in the form or soil capping by concrete and asphalt paved surfaces and institutional controls in the form of environmental covenants, signage, and other notification measures at the Site.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of the Port of Anacortes, their authorized agents and regulatory agencies in their evaluation of the Former Shell Tank Farm Site located in Anacortes, Washington. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions express or implied should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

6.0 REFERENCES

- Floyd | Snider, 2005, "Limited Environmental Due Diligence Investigation Report, Former Shell Oil Tank Farm, Cap Sante Marine Lease Area," prepared for the Port of Anacortes, November 8, 2005.
- GeoEngineers, Inc., 2008, "Independent Remedial Action Completion Report, Former Shell Tank Farm, Storm Drain Re-Route, 13th Street and Q Avenue, Anacortes, Washington," GEI File No. 5147-012-00 prepared for the Port of Anacortes, April 18, 2008.
- GeoEngineers, Inc., 2009, "Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm," GEI File No. 5147-012-01 prepared for the Washington State Department of Ecology on behalf of Port of Anacortes, September 1, 2009.
- GeoEngineers, Inc., 2012, "Draft Cleanup Action Plan, Cap Sante Marine, Anacortes, Washington, Agreed Order No. DE-07TCPHQ-4197," GEI File No. 5147-005-08, prepared for the Port of Anacortes, December 28, 2012.
- GeoEngineers, Inc., 2013, "Remedial Investigation Data Report, Former Shell Tank Farm, Anacortes, Washington," GEI File No. 5147-012-02, prepared for the Washington State Department of Ecology on behalf of Port of Anacortes, January 15, 2013.

- Hart Crowser & Associates, Inc., 2000, "Dredge Material Characterization, Cap Sante Marina, Anacortes Washington," prepared for Cap Sante Marina, June 16, 2000.
- Hart Crowser & Associates, Inc., 1987, "Preliminary Environmental Site Assessment, Petroleum Bulk Storage Facility, Anacortes Washington," prepared for Port of Anacortes, May 27, 1987.
- Landau Associates (2007a), "Landau Associates, Investigation Data Report, Cap Sante Marine Lease Area, Anacortes, Washington," prepared for the Port of Anacortes, August 21, 2007.
- Landau Associates (2007b), "Work Plan, Remedial Investigation/Feasibility Study and Interim Action, Cap Sante Marine Lease Area, Anacortes, Washington," prepared for the Port of Anacortes, June 19, 2007.
- Washington State Department of Ecology, 1994, "Natural Background Soil Metals Concentrations in Washington State," Toxics Cleanup Program, Department of Ecology Publication No. 94-115, October 1994.
- Washington State Department of Ecology, 2008, "Agreed Order No. DE-08TCPHQ-5474 for Remedial Investigation/Feasibility Study and Draft Cleanup Action Plan – Former Shell Soil Tank Farm, In the Matter of Remedial Action by: Port of Anacortes," Filed July 13, 2008.

Table 1

Remedial Investigation Sampling and Analysis Summary

Former Shell Oil Tank Farm Site Anacortes, Washington

Sample	Sample	Sample	Sample	Sampled	Petroleum Hydrocarbons				Volatile Organic	Polycyclic Aromatic Polychlorinated Hydrocarbons Biphenyls	Metals							
Location	Identification	(feet)	Date	Ву	HCID	Gasoline- Range	Diesel- Range	Heavy Oil- Range	Compounds (VOCs)	(PAHs)	(PCBs)	Arsenic	Cadmium	Chromium	Lead	Mercury		
Soil Investigation																		
MW-1	MW-1 S-4 ²	10.0 - 11.5	4/21/1987	Hart Crowser			Х	Х							Х			
MW-2	MW-2 S-2 ²	5.0 - 6.5	4/22/1987	Hart Crowser			Х								Х			
SHL01	SHL01-S1	8.0 - 8.5	8/24/2005	Floyd Snider		Х	Х	Х	Х									
	SHL02-S1	4.0 - 5.0	8/24/2005	Floyd Snider		Х	Х	Х	Х									
SHL02	SHL02-S2	5.0 - 6.0	8/24/2005	Floyd Snider		Х	Х	Х	Х									
	SHL02-S3	8.0 - 9.5	8/24/2005	Floyd Snider	Х	Х	Х	Х	Х									
SHI 03	SHL03-S1	4.0 - 5.5	8/24/2005	Floyd Snider	Х													
511205	SHL03-S2	5.5 - 6.2	8/24/2005	Floyd Snider		Х	Х	Х	Х									
SHI 04	SHL04-S1	2.0 - 3.5	8/24/2005	Floyd Snider	Х													
511204	SHL04-S2	9.5	8/24/2005	Floyd Snider		Х	Х	Х	Х									
	SHL05-S1	2.0 - 3.5	8/24/2005	Floyd Snider		Х	Х	Х	Х									
SHL05	SHL05-S2	4.4 - 6.2	8/24/2005	Floyd Snider		Х	Х	Х	Х									
	SHL05-S3	8.0 - 10.0	8/24/2005	Floyd Snider		Х	Х	Х	Х									
SHL06	SHL06-S1	4.0 - 6.0	8/26/2005	Floyd Snider	Х													
SHL07	SHL07-S1	4.0 - 5.1	8/26/2005	Floyd Snider	Х													
CSM01	CSM01-S1	4.0 - 5.0	8/24/2005	Floyd Snider	Х		Х	Х										
CSIMICT	CSM01-S2	4.0 - 5.0	8/24/2005	Floyd Snider	Х													
CSM02	CSM02-S1	8.0 - 8.7	8/24/2005	Floyd Snider	Х		Х	Х										
C6M03	CSM03-S1	4.0 - 5.0	8/24/2005	Floyd Snider	Х		Х	Х										
031003	CSM03-S2	8.0 - 9.0	8/24/2005	Floyd Snider		Х	Х	Х	Х									
0420	CSM04-S1	4.5 - 5.8	8/25/2005	Floyd Snider	Х													
031004	CSM04-S2	10.3 - 12	8/25/2005	Floyd Snider	Х													
CSM12	CSM12-S1	5.0 - 6.0	8/26/2005	Floyd Snider	Х		Х	Х										
031112	CSM12-S2	10.0 - 11.0	8/26/2005	Floyd Snider	Х	Х	Х	Х	Х									
CSM13	CSM13-S1	5.0 - 5.5	8/26/2005	Floyd Snider	Х													
CSIMIT2	CSM13-S2	10.5 - 11.5	8/26/2005	Floyd Snider	Х	Х	Х	Х	Х									
	SB-10 (0-0.5)	0.0 - 0.5	5/24/2007	Landau		Х	Х	Х	Х	Х					Х			
SB-10	SB-10 (1-2)	1.0 - 2.0	5/24/2007	Landau		Х	Х	Х	Х	Х					Х			
	SB-10 (5-6)	5.0 - 6.0	5/24/2007	Landau		Х	Х	Х	Х	Х					Х			
	SB-13 (0.5-1.5)	0.5 - 1.5	5/25/2007	Landau		Х	Х	Х	Х	Х					Х			
SB-13	SB-13 (1.5-3)	1.5 - 3	5/25/2007	Landau		Х	Х	Х	Х	Х					Х			
	SB-13 (5-6)	5-6	5/25/2007	Landau		Х	Х	Х	Х	Х					Х			

GEOENGINEERS

Sample	Sample	Sample	Sample	Sampled		Petroleum I	lydrocarbons		Volatile Organic	Polycyclic Aromatic Hydrocarbons	Polychlorinated Biphenvls	Metals					
Location	Identification	(feet)	Date	Ву	HCID	Gasoline- Range	Diesel- Range	Heavy Oil- Range	Compounds (VOCs)	(PAHs)	(PCBs)	Arsenic	Cadmium	Chromium	Lead	Mercury	
Soil Investigation																	
	SB-14 (0.5-1.5)	0.5 - 1.5	5/25/2007	Landau		Х	Х	Х	Х	Х					Х		
SB-14	SB-14 (8-9)	8 - 9	5/25/2007	Landau		Х	Х	Х	Х	Х					Х		
	SB-14 (9-10)	9 - 10	5/25/2007	Landau		Х	Х	Х	Х	Х					Х		
TP_1	TP-1-6.0	6.0 - 6.5	11/30/2007	GeoEngineers		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
11-1	TP-1-8.0	7.5 - 8.5	11/30/2007	GeoEngineers									Х				
TP-2	TP-2-4.0	4.0 - 4.5	11/30/2007	GeoEngineers		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
TP-3	TP-3-8.0	7.5 - 8.0	11/30/2007	GeoEngineers		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
TP-4	TP-4-2.0	2.0 - 2.5	11/30/2007	GeoEngineers		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
GEL 1	GEI-1-5.0	5.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GLI-I	GEI-1-7.5	7.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEL 2	GEI-2-5.0	5.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GLI-2	GEI-2-7.5	7.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-3-2.5	2.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-3	GEI-3-10.0	10.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-3-18.0	18.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
CEL 4	GEI-4-5.0	5.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-4	GEI-4-10.0	10.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-5-2.5	2.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-5	GEI-5-10.0	10.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-5-17.0	17.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
CEL 6	GEI-6-5.0	5.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-O	GEI-6-10.0	10.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-7-2.5	2.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-7	GEI-7-5.0	5.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-7-7.5	7.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
CELS	GEI-8-2.5	2.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-O	GEI-8-7.5	7.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-9-2.5	2.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-9	GEI-9-7.5	7.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-9-10.0	10.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-10-5.0	5.0	9/27/2011	GeoEngineers		Х	Х	Х	Х								
GEI-TO	GEI-10-7.5	7.5	9/27/2011	GeoEngineers		Х	Х	Х	Х								
	GEI-11-5.0	5.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х	Х				Х		
	GEI-11-10.0	10.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	X	Х				Х		

Sample	Sample	Sample	Sample	Sampled		Petroleum I	Hydrocarbons		Volatile Organic Hydr	Polycyclic Aromatic Hydrocarbons	c Polychlorinated Biphenyls	Metals					
Location	Identification	(feet)	Date	Ву	HCID	Gasoline- Range	Diesel- Range	Heavy Oil- Range	Compounds (VOCs)	(PAHs)	(PCBs)	Arsenic	Cadmium	Chromium	Lead	Mercury	
Soil Investigation																	
	GEI-12-7.5	7.5	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
GEI-12	GEI-12-12.0	12.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
	GEI-12-15.0	15.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
	GEI-13-5.0	5.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х		Х		
CEI 12	GEI-13-7.5	7.5	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х		Х		
GEI-13	GEI-13-12.5	12.5	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х		Х		
	GEI-13-15.0	15.0	9/28/2011	GeoEngineers		Х											
	GEI-14-5.0	5.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х		Х		
GEI-14	GEI-14-8.0	8.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х		Х		
	GEI-14-10.0	10.0	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х		Х		
CEL 15	GEI-15-5.0	5.0	9/28/2011	GeoEngineers									Х				
GEI-15	GEI-15-10.0	10.0	9/28/2011	GeoEngineers		Х			Х				Х				
	GEI-15A-5.0	5.0	9/28/2011	GeoEngineers									Х				
GEI-IDA	GEI-15A-10.0	10.0	9/28/2011	GeoEngineers		Х			Х				Х				
05116	GEI-16-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
GEI-10	GEI-16-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
	GEI-17-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
GEI-17	GEI-17-14.0	14.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
	GEI-17-17.5	17.5	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
	GEI-18-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
GEI-18	GEI-18-12.5	12.5	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
	GEI-18-15.0	15.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
05110	GEI-19-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
GEI-19	GEI-19-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
	GEI-20-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
GEI-20	GEI-20-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
	GEI-21-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
GEI-21	GEI-21-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
	GEI-21-15.0	15.0	9/29/2011	GeoEngineers						Х							
	GEI-22-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
GEI-22	GEI-22-12.5	12.5	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х		
	GEI-22-15.0	15.0	9/29/2011	GeoEngineers						Х							
	GEI-23-7.5	7.5	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
GEI-23	GEI-23-12.5	12.5	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х		
	GEI-23-15.0	15.0	9/29/2011	GeoEngineers			Х	Х									

Sample	Sample	Sample	Sample	Sampled		Petroleum I	Hydrocarbons		Volatile Organic Domession de (VOOs)	Polychlorinated Binhenvis	Metals					
Location	Identification	(feet)	Date	Ву	HCID	Gasoline- Range	Diesel- Range	Heavy Oil- Range	Compounds (VOCs)	(PAHs)	(PCBs)	Arsenic	Cadmium	Chromium	Lead	Mercury
Soil Investigation																
CEI 24	GEI-24-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х	
GEI-24	GEI-24-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х	
GEI 25	GEI-25-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х	
GLI-25	GEI-25-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х	
GEI 26	GEI-26-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GEI-20	GEI-26-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
	GEI-27-7.5	7.5	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х	Х				Х	
GEI-27	GEI-27-11.0	11.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х	Х				Х	
	GEI-27-13.0	13.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х	Х				Х	
	GEI-28-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GEI-28	GEI-28-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
	GEI-29-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GLI-29	GEI-29-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GEI-30	GEI-30-7.5	7.5	9/28/2011	GeoEngineers		Х	Х	Х	Х	Х			Х			
GEI-31	GEI-31-7.5	7.5	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GEI-32	GEI-32-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
	GEI-33-5.0	5.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GEI-33	GEI-33-10.0	10.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
	GEI-33-14.0	14.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
CEI 34	GEI-34-12.0	12.0	9/29/2011	GeoEngineers		Х	Х	Х	Х	Х					Х	
GLI-34	GEI-34-15.0	15.0	9/29/2011	GeoEngineers						Х						
GEI-35	GEI-35-15.0	15.0	9/29/2011	GeoEngineers		Х	Х	Х	Х						Х	
GELMW/1	GEI-MW-1-7.5	7.5	2/9/2012	GeoEngineers		Х										
GEHNW-1	GEI-MW-1-12.5	12.5	2/9/2012	GeoEngineers		Х			Х	Х						
Groundwater Investig	gation															
MW-12	MW-1	NA	4/23/1987	Hart Crowser					Х						Х	
MW-22	MW-2	NA	4/23/1987	Hart Crowser					Х						Х	
SHL01	SHL01-W1	NA	8/24/2005	Floyd Snider		Х	Х	Х	Х							
SHL02	SHL02-W1	NA	8/24/2005	Floyd Snider		Х	Х	Х	Х							
SHL03	SHL03-W1	NA	8/24/2005	Floyd Snider		Х	Х	Х	Х							
SHL04	SHL04-W1	NA	8/24/2005	Floyd Snider		Х	Х	Х	Х							
SHL05	SHL05-W1	NA	8/24/2005	Floyd Snider		Х	Х	Х	Х							
SHL06	SHL06-W1	NA	8/26/2005	Floyd Snider		Х	Х	Х	Х							
SHL07	SHL07-W1	NA	8/26/2005	Floyd Snider		Х	Х	Х	Х							
CSM12	CSM12-W1	NA	8/26/2005	Floyd Snider		Х	Х	Х	X							

Sample	Sample	Sample	Sample	Sampled	Petroleum Hydrocarbons				Volatile Organic	Polycyclic Aromatic	Polychlorinated Binhonyle	Metals							
Location	Identification	(feet)	Date	Ву	HCID	Gasoline- Range	Diesel- Range	Heavy Oil- Range	y Oil- nge	(PAHs)	(PCBs)	Arsenic	Cadmium	Chromium	Lead	Mercury			
Groundwater Investig	ation																		
CSM13	CSM13-W1	NA	8/26/2005	Floyd Snider		Х	Х	Х	Х										
GEI-MW-1	GEI-MW-1	NA	3/6/2012	GeoEngineers		Х	Х	Х	Х	Х					Х				
GEI-MW-2	GEI-MW-2	NA	3/6/2012	GeoEngineers		Х	Х	Х	Х	Х					Х				
GEI-MW-3	GEI-MW-3	NA	3/6/2012	GeoEngineers		Х	Х	Х	Х	Х					Х				
GEI-MW-4	GEI-MW-4	NA	3/6/2012	GeoEngineers		Х	Х	Х	Х	Х					Х				
GEI-MW-5	GEI-MW-5	NA	3/6/2012	GeoEngineers		Х	Х	Х	Х	Х					Х				
GEI-MW-6	GEI-MW-6	NA	3/6/2012	GeoEngineers		X	Х	X	X	Х					Х				
GEI-MW-7	GEI-MW-7	NA	3/6/2012	GeoEngineers		X	Х	X	X	Х					Х				

Table 2

Proposed Final Soil Cleanup Levels

Former Shell Oil Tank Farm Site

Anacortes, Washington

	Soil
Constituent	Cleanup Level
	(mg/kg)
Petroleum Hydrocarbons	
Gasoline-Range	30/100 ¹
Diesel-Range	2,000
Heavy Oil-Range	2,000
Volatile Organic Compounds (VOCs)	
Benzene	0.13
Ethylbenzene	18.0
Toluene	109
Total Xylenes	9
Methyl tert-butyl ether (MTBE)	560
Ethylene Dibromide (EDB)	0.012
ethylene dichloride (EDC)	0.179
Tetrachloroethylene (PCE)	0.01
Trichloroethylene (TCE)	0.044
(cis) 1,2-Dichloroethene (DCE)	NE
1,1,1-Trichloroethane	13,957
Vinyl Chloride	0
Trichlorofluoromethane (freon)	24,000
Carbon tetrachloride	0.015
Polycyclic Aromatic Hydrocarbons (PAHs)	
Naphthalene	140
2-Methylnaphthalene	3,200
1-Methylnaphthalene	NE
Benzo(a)anthracene	0.13
Chrysene	0.14
Benzo(b)fluoranthene	0.43
Benzo(k)fluoranthene	0.43
Benzo(a)pyrene	0.137
Indeno(1,2,3-cd)pyrene	1.3
Dibenz(a,h)anthracene	0.65
Total cPAHs (TEQ)	0.137
Metals	
Arsenic	20
Cadmium	1.2
Chromium	120,000
Lead	250
Mercury	0.07
Polychlorinated Biphenyls (PCBs)	
Total PCBs	0.1

Notes:

 $^{1}\mbox{Cleanup}$ level is 30 mg/kg when benzene is present.

NE = not established

mg/kg = milligrams per kilogram

TEQ = toxicity equivalency
Table 3

Proposed Final Groundwater Cleanup Levels

Former Shell Oil Tank Farm Site

Anacortes, Washington

Constituent	Groundwater
Constituent	
Petroleum Hydrocarbons	(*8/ -/
Gasoline-Range	800/1.000 ¹
Diesel-Range	500
Heavy Oil-Range	500
Volatile Organic Compounds (VOCs)	
Benzene	23.00
Ethylbenzene	15000.0
Toluene	2100
Total Xylenes	1,000
Methyl tert-butyl ether (MTBE)	20
Ethylene Dibromide (EDB)	2.000
ethylene dichloride (EDC)	37.000
Tetrachloroethylene (PCE)	0.39
Trichloroethylene (TCE)	6.700
(cis) 1,2-Dichloroethene (DCE)	NE
1,1,1-Trichloroethane	420,000
Vinyl Chloride	2
Trichlorofluoromethane (freon)	NE
Carbon tetrachloride	1.600
Polycyclic Aromatic Hydrocarbons (PAHs)	
Naphthalene	NE
2-Methylnaphthalene	NE
1-Methylnaphthalene	4,900
Benzo(a)anthracene	0
Chrysene	0
Benzo(b)fluoranthene	0
Benzo(k)fluoranthene	0.018
Benzo(a)pyrene	0.018
Indeno(1,2,3-cd)pyrene	0
Dibenz(a,h)anthracene	0.018
Total cPAHs (TEQ)	0.100
Metals	
Arsenic	8
Cadmium	8.8
Chromium	240,000
Lead	10
Mercury	0.2
Polychlorinated Biphenyls (PCBs)	
Total PCBs	0.1

Notes:

 $^1\mbox{Cleanup}$ level is 800 $\mu\mbox{g/L}$ when benzene is present.

NE = not established

 μ g/L = microgram per liter

TEQ = toxicity equivalency

Table 4

Soil Remediation Technology Screening

Former Shell Oil Tank Farm Site

Anacortes, Washington

General Response Action	Remediation Technology	Process Option	Description	Effectiveness	Implementability	Relative Cost	Summary of Screening
No Action	No Action	None	No institutional controls or treatment.	Not effective for protecting human health and environment.	Implementable but not acceptable to the general public or government agencies.	None	Generally used as a baseline for comparison.
	Institutional Controls	Deed Notification / Restriction	Implement deed notification to inform future owners of the presence of potentially hazardous substances at the site and /or implement deed restriction to restrict certain specific future site activities.	Effectiveness for protection of human health would depend on enforcement of and compliance with deed restrictions	Technically implementable. Specific legal requirements and authority would need to be met.	Low capital	Potentially applicable in combination with other technologies.
Institutional / Engineering Controls	Engineering Controls	Passive Soil Venting / Vapor Intrusion Prevention	This engineering control involves constructing a barrier between soil contaminated with VOCs and indoor space through the use of passive soil vents installed below the building foundation and/or installation of vapor barrier material during construction of new floor slab and/or basement walls.	Effective for eliminating migration pathway from soil to indoor air. Passive venting allows some mass removal by providing a preferential path for vapor containing VOCs.	Technically implementable using common building construction products and methods.	Low capital.	Applicable for areas where new building is constructed where VOCs are left in place in subsurface soil.
	Access Controls	Fencing / Warning Signage	Construct or maintain existing site fencing and signage to control site access by the general public thereby reducing potential exposure to contaminants	Effective for reducing exposure risk to the general public provided fencing and signage is maintained in the long term.	Technically implementable but not consistent with current and proposed future land use.	Low capital.	Not consistent with current and future land use.
Soil Containment	Capping	Surface Cap	Installation of surface cap over contaminated soil areas to prevent or reduce contaminant migration and to prevent exposure. Multiple-component cap may include asphalt or concrete paving, synthetic membranes, low permeability soil caps over geotextiles in landscaped areas, and existing or new buildings or structures.	Effective for preventing direct contact exposure (i.e. dermal contact or ingestion). Limits infiltration and leachate formation, but less effective than source removal options for protection of groundwater.	Technically implementable. The selected capping technology must be consistent with proposed future land use. Existing asphalt and concrete pavement and concrete building foundations currently cap a significant volume of shallow impacted soil.	Low capital	Potentially applicable in combination with other technologies.
Soil Removal / Removal Disposal		Excavation	Excavation of impacted material using common excavation methods for upland soil removal. Excavation at the site will likely require shoring methods to allow excavation near buildings and dewatering techniques to allow dry excavation.	Effective for complete range of contaminant groups. Loss of effectiveness where impacted soil is inaccessible due to presence of structures (i.e., roads, buildings, foundations, etc.).	Technically implementable in most areas of contaminated soil.	Moderate to high capital. Negligible O&M.	Potentially applicable in areas not occupied by buildings. Retained.
Off-Site Management	Land disposal	Permitted Subtitle D Landfill	Disposal of impacted soil at a permitted, off-site Subtitle D landfill.	Effective for most contaminant groups.	Technically implementable. Impacted soil must be profiled and meet land disposal restrictions. Pretreatment of excavated material may be required to meet land disposal restrictions.	Moderate to high capital depending on types of waste present. Negligible O&M	Common disposal option for excavated soils, where appropriate.

General Response Action	Remediation Technology	Process Option	Description	Effectiveness	Implementability	Relative Cost	Summary of Screening	
Ex-Situ Soil Treatment		Stabilization	Contaminants are physically bound or enclosed within a stabilized mass or chemical reactions are induced between stabilizing agent and contaminants to reduce their mobility.	Stabilization is a common and effective technology for reducing the leachability of metals in soil, when TCLP concentrations prohibit non-hazardous disposal.	Technically implementable. However most processes result in moderate increase in volume.	Moderate capital. Low O&M. Moderate cost relative to other ex-situ physical/chemical options. Significant cost savings for disposal.	Not warranted for known Site contaminant levels.	
	Chemical Treatment	Thermal Desorption	Wastes are heated within a continuous flow reactor to 320 to 560 ° C to volatilize organic contaminants. A carrier gas or vacuum system transports volatilized organics to the gas treatment system.	Effective for VOCs, SVOCs and fuels. Fine grained soils increase treatment time as a result of binding of contaminants to soil.	Technically implementable. However, particles size screening, dewatering to achieve acceptable moisture content, and off-gas treatment may be required. Special permitting may be required.	High capital. High O&M. Lower cost than incineration.	High cost relative other ex- situ technologies. Extensive preparation for treatment will be required and requires significant space and time and potentially special permits.	
	Biological Treatment	Biopiles	Excavated soils are mixed with soil amendments and placed on a treatment area that includes leachate collection systems and some form of aeration.	Solid-phase (soil) process is most effective for non- halogenated VOCs and fuel hydrocarbons.	Difficult to implement. Treatment area may require complete enclosure. Addition of amendment material results in volumetric increase in treated material. Leachate and off-gas may require treatment.	Moderate capital and O&M. Moderate cost relative to other ex-situ biological options	Difficult to implement and requires space that is not readily available.	
		Biological Treatment	Composting	Controlled biological process by which excavated soils are mixed with bulking agents and organic amendments to enhance microorganism conversion of organic contaminants to innocuous, stabilized byproducts.	Most effective for treatment of fuels and PAHs. Moderately effective for treatment of halogenated VOCs.	Difficult to implement. Treatment area may require complete enclosure. Addition of amendment material results in volumetric increase in treated material. Off-gas may require treatment.	Moderate capital and O&M. Moderate cost relative to other ex-situ biological options	Difficult to implement and generally not cost effective for volatile compounds compared to other in-situ technologies. Requires space that is not readily available.
In-Situ Soil Treatment	Biological Treatment		Bioventing	Oxygen is supplied through direct low-flow air injection into residual contamination in soil.	Effective in higher permeability soil for petroleum hydrocarbons and VOCs amenable to aerobic bioremediation. Degradation is relatively slow. Ineffective for inorganics and non-degradable organic constituents.	Technically implementable. Monitoring of off- gasses at ground surface may be required. Venting requires infrastructure of air injection piping, blower, controls, etc.	Moderate capital and O&M. Low cost relative to other in- situ options.	Implementation requires long time period. Not effective for metals or other recalcitrant contaminants.
		Bioremediation	Stimulation of naturally occurring microbes by circulating water-based solutions through contaminated soils to enhance in-situ biological degradation of organic contaminants or immobilize inorganic contaminants by injection and/or mixing a bioremediation product (solid or liquid) directly into the soil, generally using common drilling/tilling methods.	Effective at treating the specific contaminants found at the Site with the exception of metals or recalcitrant organic contaminants.	Technically implementable. May be implemented with standard construction equipment.	Moderate capital and O&M. Moderate cost relative to other in-situ options.	Longer time frame. Not effective for metals or recalcitrant organic contaminants.	

General Response Action	Remediation Technology	Process Option	Description	Effectiveness	Implementability	Relative Cost	Summary of Screening
In-Situ Soil Treatment	Biological Treatment	Natural Attenuation	Natural biotransformation processes such as volatilization, biodegradation, adsorption, and chemical reactions with soil materials can reduce contaminant concentrations to acceptable levels.	Moderate effectiveness. Effective for petroleum hydrocarbons.	Moderate implementability.	low capital. Low O&M. Low cost relative to other in-situ options	Longer time frame. Not effective for metals or recalcitrant organic contaminants.
In-Situ Soil Treatment (Continued)	Physical / Chemical Treatment	Soil Flushing	The extraction of contaminants from soil with aqueous solution accomplished by passing fluid and/or surfactant through in-place soils using an injection or infiltration process. Extraction fluids must be recovered from underlying aquifer.	Effective for VOCs and inorganic chemicals. Presence of fine grained soils limits effectiveness. Effectiveness relies on ability to capture and treat flushed contaminants.	Technically implementable. However, there has been little commercial application. Regulatory concerns over potential to wash contaminants beyond fluid capture zones and introduction of surfactants in to the subsurface make permitting difficult.	High capital and O&M. High cost relative to other in-situ options	High cost relative to other in-situ soil treatment technologies.
		Chemical Oxidation	Contaminant destruction by injecting or mixing chemical oxidizers directly into the contaminated soil to destroy chemical contaminants in place generally using common drilling/tilling methods.	Effectiveness at treating the specific contaminants found at the Site with the exception of metals or recalcitrant organic contaminants.	Technically implementable. May be implemented with standard construction equipment.	Moderate capital and O&M. Moderate cost relative to other in-situ options.	longer time frame. Not effective for metals or recalcitrant organic contaminants.
		Soil Vapor Extraction	Vacuum is applied through extraction pipes to create a pressure/concentration gradient in impacted areas, which induces gas-phase volatiles to diffuse through soil to extraction wells. The process includes a system for treating off-gas. Air flow also induces aerobic bioremediation of petroleum hydrocarbons and degradable VOCs.	Effective for volatile petroleum hydrocarbons and VOCs in granular soils. Presence of fine grained soils reduces effectiveness. Not significantly effective for heavier hydrocarbons or in low permeability soil. Ineffective for inorganics and non- volatile organic constituents.	Technically implementable. Typical application involves numerous extraction wells, conveyance piping, and large scale vacuum blowers. Installation under existing building would require installation using horizontal directionally drilled wells, significantly reducing implementability.	High capital and O&M. High cost relative to other in-situ options	High cost relative to other in-situ soil treatment technologies.

Notes:

Shaded Process Options are retained.

Table 5Description of Cleanup Action AlternativesFormer Shell Oil Tank Farm Site

Anacortes, Washington

Contaminants of			Cleanup Action Alternative Components			
Concern	Matrix	trix Objective	Alternative 1 - Engineering and Institutional Controls	Alternative 2 - In-Situ Soil Treatment	Alternative 3 - Partial Removal with In-Situ Soil Treatment	Alternative 4 - Complete Removal
Gasoline-, Diesel-, Heavy Oil-Range Hydrocarbons, Benzene, cPAHs and Cadmium	Soil	 Prevent direct human contact with soil containing contaminants exceeding proposed cleanup levels. Prevent potential leaching/migration of soil contaminants into groundwater. 	 Leave in place soil with contaminant concentrations exceeding cleanup levels. Maintain existing protective concrete, asphalt and/or soil surfaces isolating Site contaminants from human contact. Monitor groundwater conditions quarterly for at least one year and annually (or as agreed upon with Ecology) for approximately ten years to evaluate contaminant concentrations, plume stability and natural attenuation performance. Implement deed notifications to inform future owners of the presence of potentially hazardous substances at the Property and /or Implement deed restrictions to restrict certain specific site activities. 	 Maintain existing protective concrete, asphalt and/or soil surfaces outside of the in- situ treatment area to isolate Site contaminants from human contact. Injection of a chemical oxidant and an oxygen releasing material to break down and/or enhance bioremediation/degradation of organic contaminants and/or immobilize inorganic contaminants. Monitor groundwater conditions quarterly for at least one year following treatment and then annually (or as agreed upon with Ecology) for approximately ten years to evaluate contaminant concentrations, plume stability and natural attenuation performance. Develop institutional controls in the form of environmental covenants, signage, and other notification measures to address any remaining contaminated soil remaining in place in areas of the Site following in-situ treatment. 	 Excavate contaminated soil within the property boundary to the extent practicable using commonly available excavation techniques. Transport excavated soil to an approved landfill facility. Protect or relocate existing utility infrastructure (power, phone, sewer, water, etc.) during construction. Placement of an oxygen releasing material within backfill layers to enhances bioremediation/ degradation of organic contaminants remaining in-place in adjacent rights-or-way. Monitor groundwater conditions quarterly for at least one year following treatment and then annually (or as agreed upon with Ecology) for approximately ten years to evaluate contaminant concentrations, plume stability and natural attenuation performance. Develop institutional controls in the form of environmental covenants, signage, and other notification measures to address any remaining contaminated soil remaining in place in areas of the Site following remedial excavation and in-situ treatment. 	 Excavate contaminated soil using commonly available excavation techniques. Transport excavated soil to an approved landfill facility. Protect or relocate existing utility infrastructure (power, phone, sewer, water, etc.) during construction. Reroute vehicular and pedestrian traffic around the Site during construction. Backfill and restore the Site to current conditions.
Estimated	d Alternative (Cost (+50%/-30%, rounded) ¹	\$400,000	\$2,120,000	\$3,000,000	\$4,130,000
Estimate	ed Volume of (Contaminated Soil Removed	0 Cubic Yards	0 Cubic Yards	4,500 In-Place Cubic Yards	9,000 In-Place Cubic Yards
	Estimated Tir	neframe to Closure	5-10 Years	5-10 Years	5-10 Years	2-3 Years

Notes:

¹ Alternative cost estimates are presented in Appendix B.

Table 6

Evaluation of Cleanup Action Alternatives

Former Shell Oil Tank Farm Site

Anacortes, Washington

Evaluation Criteria	Alternative 1 - Engineering and Institutional Controls	Alternative 2 - In-Situ Soil Treatment	Alternative 3 - Partial Removal with In-Situ Soil Treatment
Compliance with MTCA Three	eshold Criteria		•
Protection of Human Health and the Environment	Yes - Alternative would protect human health and the environment through a combination of engineering and institutional controls.	Yes - Alternative would protect human health and the environment through a combination of engineering and institutional controls and soil treatment.	Yes - Alternative would protect human health and the environment through a combination of engineering and institutional controls, source removal and limited soil treatment.
Compliance With Cleanup Standards	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes institutional controls to prevent exposure to contaminants in the subsurface. Compliance would rely on long-term monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes in-situ soil treatment and institutional controls (if necessary) to prevent exposure to contaminants in the subsurface. Compliance would rely on verification soil sampling, long-term groundwater monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes partial source removal, in- situ soil treatment and institutional controls (if necessary) to prevent exposure to contaminants. Compliance would rely on verification soil sampling, long-term groundwater monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.
Compliance With Applicable State and Federal Regulations	Yes - Alternative complies with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations.
Provision for Compliance	Yes - Alternative includes provisions for compliance	Yes - Alternative includes provisions for compliance	Yes - Alternative includes provisions for compliance
Monitoring	monitoring.	monitoring.	monitoring.
Restoration Time Frame			
Restoration Time Frame	Restoration time frame is short. Primary cleanup action components have already been implemented. The time frame for long-term groundwater monitoring is unknown. Potential future maintenance of institutional controls will extend the restoration time frame of this alternative.	Restoration time frame is moderate. Primary cleanup action components have already been implemented. In-situ soil treatment is expected to achieve cleanup objectives in 3-5 years. The time frame for long-term monitoring is unknown and depends on the effectiveness of the treatment. Potential future maintenance of institutional controls may extend the restoration time frame of this alternative.	Restoration time frame is moderate. Primary cleanup action components have already been implemented. Partial source removal followed by in-situ soil treatment is expected to achieve cleanup objectives in 3-5 years. Potential future maintenance of institutional controls may extend the restoration time frame of this alternative.
Relative Benefits Ranking (Scored from 1-lowest to 10-highest)		
Protectiveness	Score = 3 Achieves a moderate-low level of overall protectiveness as a result of institutional and engineering controls. Protectiveness would rely on maintenance of institutional and engineering controls to prevent exposure. Existing environmental risks are not significantly reduced.	Score = 7 Achieves a medium-high level of overall protectiveness as a result of in-situ soil treatment. However, this alternative would leave in place both organic and inorganic contaminants in soil, and protectiveness would rely on maintenance of institutional controls to prevent the overall exposure.	Score = 8 Achieves a medium-high level of overall protectiveness as a result of partial soil removal followed by in-situ soil treatment. However, this alternative would leave contaminants in soil, and overall protectiveness would rely on maintenance of institutional controls to prevent exposure.
Permanence	Score = 3	Score = 7	Score = 8
	Achieves a medium-low level of permanence, primarily through the use of the paved road surfaces and soil cap. This alternative relies on natural attenuation methods to achieve a reduction of mass. Future development may require modification of the remedy.	Achieves a medium-high level of permanence through permanent reduction of toxicity and mobility of Site contaminants through the use of capping beneath paved surfaces, as with Alternative 1, and in-situ soil treatment within the property boundary. This alternative provides for reduction of mass in accessible portions of the Site. Inorganic contaminants would require maintenance of institutional controls to prevent exposure.	Achieves a medium-high level of permanence through permanent reduction of toxicity and mobility of Site contaminants through the removal and capping. This alternative provides for enhanced reduction of mass across the Site.

Alternative 4 - Complete Removal
Yes - Alternative would protect human health and the
environment through complete source removal.
Yes - Alternative is expected to comply with cleanup standards
to the greatest extent practicable. All contaminant
exceedance will be removed to the extent practical.
Yes - Alternative complies with applicable state and federal
regulations.
-
Yes - Alternative includes provisions for compliance
monitoring.
Restoration time frame is short. Full source removal is
expected to achieve cleanup objectives in 2-3 years

Score = 10

Achieves a high level of overall protectiveness as a result of full source removal of the soil that poses risk to human and ecological receptors at the Site.

Score = 10

Achieves a high level of permanent reduction of mass, toxicity, and mobility of hazardous substances at the Site through soil excavation. This alternative would reduce to the extent feasible the need to perform additional actions.

Evaluation Criteria	Alternative 1 - Engineering and Institutional Controls	Alternative 2 - In-Situ Soil Treatment	Alternative 3 - Partial Removal with In-Situ Soil Treatment
Relative Benefits Ranking	(Scored from 1-lowest to 10-highest) Continued		
Long-Term Effectiveness	Score = 3 This Alternative achieves a medium-low level of long-term effectiveness. The use of existing paved surfaced and soil cap provide for long-term reduction of risk to human health, but leaves soil at the Site exceeding cleanup levels. The use of institutional controls reduces the risk to human health and the environment from the residual contamination left in place. Future development may require modification of the remedy.	Score = 6 This Alternative achieves a medium level of long-term effectiveness. The use of in-situ soil treatment within the property boundary provides for long-term reduction of risk to human health and the environment. However, this alternative would leave in place inorganic contaminants in soil within the property boundary and in soil beneath the adjacent rights-of-way exceeding cleanup levels and potentially leave organic contaminants in place due to incomplete treatment. The use of institutional controls reduces the risk to human health and the environment from the residual contamination left in place. Future development may require modification of the remedy.	Score = 7 This Alternative achieves a medium level of long-term effectiveness. Source removal within the property boundary provides for immediate reduction of risk to human health and the environment and in-situ soil treatment allows for further reduction of contaminant mass over time However, this alternative leaves contamination in soil beneath the adjacent rights-of-way exceeding cleanup levels. The use of institutional controls reduces the risk to human health and the environment from the residual contamination left in place. Future development may require modification of the remedy.
Management of Short- Term Risks	Score = 10 Short-term risks are low with this alternative due to the lack of construction activities involved in completing the components of the alternative. The capping components are already in place.	Score = 5 Short-term risks are moderately-high with this alternative. The in-situ soil treatment included in this Alternative is not expected to pose significant risks to the public. However, may require multiple rounds of treatment to meet the cleanup objectives.	Score = 8 Short-term risks are moderately low with this alternative. The soil removal included in this Alternative involves is not expected to pose significant risks to the public.
Technical and Admin. Implementability	Score = 8 Readily implemented. No active cleanup activities required. Administrative implementability of institutional controls is high.	Score = 7 Moderate challenge to implement. No active cleanup activities required beyond the property boundary. Administrative implementability of institutional controls is high.	Score = 8 Moderate challenge to implement. No active cleanup activities required beyond the property boundary. Excavation of contaminated soil a large volume of soil, but utilizes standard excavation methods. Administrative implementability of institutional controls is high.
Consideration of Public Concerns	Score = 3 Residual contamination remaining in place could result in concerns by the public and nearby property owners.	Score = 6 Organic soil contamination within the property boundary is addressed by this Alternative. However, residual organic contaminants beneath the adjacent rights-of-way and inorganic contaminants (metals) within the property boundary following implementation of the cleanup action could result in concerns by the public and nearby property owners. In addition, use of an oxidation product in the vicinity of marine water may cause public concern. The remaining contaminated soil left in place would require maintenance of institutional controls and impose limitations on future use and development of the property.	Score = 8 Soil contamination within the property boundary is addressed by this Alternative. However, residual organic contaminants beneath the adjacent rights-of-way following implementation of the clean action could result in concerns by the public and nearby property owners. The remaining contaminated soil left in place would require maintenance of institutional controls and impose limitations on future use and development of the property.

Alternative 4 - Complete Removal

Score = 10 Removes hazardous substances from the Site to the greatest degree feasible and utilizes approved off-site disposal facilities for final disposition. Score = 4 Short-term risks associated with this alternative would be moderately high. This alternative involves selective structure modification of the surface roads and buried utilities to access contaminated soil. Score = 4 Difficult to implement due to the design and coordination associated with shoring and rerouting of utilities in adjacent rights-of-way. Cleanup alternative does not require development of institutional controls. Score = 8 Soil contamination would be removed to the extent practical

Soil contamination would be removed to the extent practical under this alterative. Concerns by the public and nearby property owners could result from the temporary closure and rerouting of surface streets and buried utilities. However, closure and rerouting of surface streets and buried utilities would be on a short term basis.

Table 7

Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives

Former Shell Oil Tank Farm Site

Anacortes, Washington

Remedial Alternative	Alternative 1 - Engineering and Institutional Controls	Alternative 2 - In-Situ Soil Treatment	Alternative 3 - Partial Removal with In-Situ Soil Treatment	Alternative 4 - Complete Removal
Evaluation				
Compliance with MTCA Threshold Criteria	Yes	Yes	Yes	Yes
Restoration Time Frame	1-2 years	2-3 years	2-3 years	2-3 years
Relative Benefits Ranking ¹				
Protectiveness (weighted as 30%)	0.9	2.1	2.4	3
Permanence (weighted as 20%)	0.6	1.4	1.6	2
Long-Term Effectiveness (weighted as 20%)	0.6	1.2	1.4	2
Management of Short-Term Risks (weighted as 10%)	1	0.5	0.8	0.4
Technical and Administrative Implementability (weighted as 10%)	0.8	0.7	0.8	0.4
Consideration of Public Concerns (weighted as 10%)	0.3	0.6	0.8	0.8
Total of Scores	4.2	6.5	7.8	8.6
Disproportionate Cost Analysis				
Probable Remedy Cost (+50%/-30%, rounded)	\$400,000	\$2,120,000	\$3,000,000	\$4,130,000
Costs Disproportionate to Incremental Benefits	No	No	No	Yes
Practicability of Remedy	Practicable	Practicable	Practicable	Practicable
Remedy Permanent to Maximum Extent Practicable	Yes	Yes	Yes	Yes
Overall Alternative Ranking	3rd	2nd	1st	-

Note:

¹ Weightings were established by Ecology as referenced in their Opinion Letter dated December 28, 2009.

ON JAN 14, 2013 - 14:34 TMICHAUD IED BY MODIFI 88 S S-SECT DWG\TAB:CF P:\5\5|470|2\CAD\RIFS\5|470|2-02 CRoss-Sect

P:\5\5147012\CAD\5147012-02 Fig 9.DWG\TAB:PORTRAIT MODIFIED BY TMICHAUD ON AUG 03, 2012 - 16:34

Terrestrial Ecological Evaluation Process-Simplified or Site-Specific Evaluation?

Documentation Form

	Terrestrial Concern	Response (Circle One)
*1	Is the site is located on or directly adjacent to an area where management or land use plans will maintain or restore <u>native</u> or <u>semi-native</u> vegetation?	Yes /No
*2a	Is the site used by a <u>threatened or endangered</u> <u>species?</u>	Yes /No
*2b	Is the site used by a <u>wildlife species classified by the</u> <u>state department of fish and wildlife as a "priority</u> <u>species" or "species of concern"</u> _under Title 77 RCW?	Yes No
*2c	Is the site used by <u>a plant species classified by the</u> Washington state department of Natural Resources <u>natural heritage program as "endangered,"</u> <u>"threatened," or "sensitive"</u> under Title 79 RCW.	Yes /No
*3	Is the site (area where the contamination is located) located on a property that contains at least ten acres of <u>native vegetation</u> within 500 feet of the area where the contamination is located?	Yes No
4	Has the department determined that the site may present a risk to significant wildlife populations?	Yes No

*1 This includes for example, green-belts, protected wetlands, forestlands, locally designated environmentally sensitive areas, open space areas managed for wildlife, and some parks or outdoor recreation areas. This does not include park areas used for intensive sport activities such as baseball or football.

*2a What are the threatened or endangered species in Washington state?

*2b Which plant species are classified as threatened, endangered, or sensitive? Where can I find out more information about this topic?

*2c For plants, "used" means that a plant species grows at the site or has been found growing at the site. For animals, "used" means that individuals of a species have been observed to live, feed or breed at the site.

*3 For this analysis, do not include native vegetation beyond the property boundary.

The following sources shall be used in making this determination: Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, and L.C. Hitchcock, C.L. Hitchcock, J.W. Thompson and A. Cronquist, 1955-1969, <u>Vascular Plants of the Pacific Northwest(</u>5 volumes). Areas planted with native species for ornamental or landscaping purposes shall not be considered to be native vegetation. [WAC 173-340-7491(2)(c)(i)]

(Here's a link to the <u>Seattle Public Library</u> and the <u>Washington State</u> <u>Library</u> to borrow a copy of Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, or you may purchase it through your favorite bookseller. Here's an additional link to a useful online <u>Field Guide to Selected Rare</u> <u>Plants of Washington</u> developed by the Washington State Department of Natural Resources' Natural Heritage Program (WNHP) and the Spokane District of the U.S.D.I. Bureau of Land Management (BLM) which contains fact sheets for 139 vascular plant species and one lichen species.
Here is an aid to calculating area and an aerial photo depicting a site, its 500 foot boundary and several labeled circles identifying various areas for reference in judging the area of native vegetation within the 500 foot radius.

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

Terrestrial Ecological Evaluation Process- Simplified Evaluation

Documentation Form

Criteria # (Concern)	Criteria	Response (Circle One)
1 (exposure)	Is the total area of soil contamination at the site less than or equal to 350 square feet	Yes (End TEE) No
2 (exposure)	Does land use at the site and surrounding area make substantial wildlife exposure unlikely based on completion of <u>Table 749-1</u> ?	Yes (End TEE)/ No
3 (pathway)	Is there a potential exposure pathway from soil contamination to soil biota, plants, or wildlife?	Yes / No (End TEE)
4 (contaminant)	Are the hazardous substances at your site listed in <u>Table 749-2</u> and is (or will) their location in the soil at your site be at a depth not exceeding the point of compliance, and at concentrations that do not exceed the values provided in <u>Table 749-2</u> .	Yes (End TEE) / No Note: You must perform bioassays for contaminants at your site if no table value is provided.
5 (contaminant)	Will hazardous substances listed in <u>Table 749-2</u> be present in the soil at your site within 6 feet of the ground surface at concentrations likely to be toxic, or with the potential to bioaccumulate, based on bioassays using methods approved by the department.	Yes / No (End TEE)

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

Table 749-1

Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) <u>undeveloped land</u> on the site or within 500 area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre).) feet of any
1) From the table below, find the number of points corresponding to the area and enter this number in the field to the right.	
Area (acres) Points 0.25 or less 4 0.5 5 1.0 6 1.5 7 2.0 8 2.5 9 3.0 10 3.5 11 4.0 or more 12	6
2) Is this an <u>industrial</u> or <u>commercial</u> property? If yes, enter a score of 3. If no, enter a score of 1	1
3) ^a Enter a score in the box to the right for the habitat quality of the site, using the following rating system ^b . High=1, Intermediate=2, Low=3	3
4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of $2^{\underline{c}}$	2
5) Are there any of the following soil contaminants present: Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4.	4
6) Add the numbers in the boxes on lines 2-5 and enter this number in the box to the right. If this number is larger than the number in the box on line 1, the simplified evaluation may be ended.	10

Notes for Table 749-1

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.

[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

Table B-1

Cost Estimate - Proposed Cleanup Action Alternative 1

Engineering and Institutional Controls

Former Shell Oil Tank Farm Site

Anacortes, Washington

Description	QTY	Unit	Unit Cost	Total	Notes
Capital Costs	•	=			•
Institutional Controls					
Institutional Control Plan	1	LS	\$25,000	\$25,000	Describe controls/implementation
Groundwater Use Restriction	1	LS	\$20,000	\$20,000	Legal fees
Site Information Database	1	LS	\$2,500	\$2,500	Setup data management system
			SUBTOTAL	\$47,500	-
Annual Operation & Maintenance (C	0&M) Cos	ts			
Site Monitoring and Reporting					
Quarterly Groundwater Sampling and Reporting	4	QTR	\$5,000	\$20,000	Sample 5 wells per quarter for one year summerize quartely groundwater monitoring results in a single report
Annual Groundwater Sampling and Reporting	10	YR	\$9,500	\$95,000	Sample 5 wells per year for ten years - summerize annual monitoring events in separate reports (ten annual events)
Groundwater Sample Laboratory Analysis	84	EA	\$610	\$51,240	and/or Metals. Includes duplicate sample per sampling event.
Cap Inspection	10	YR	\$3,000	\$30,000	
Site Information Database	3	EA	\$1,000	\$3,000	
Update			SUBTOTAL	\$199.240	
Periodic Costs				,, .	
Off-Site Treatment/Disposal					
Wastewater Testing/Discharge	300	GAL	\$1	\$300	Disposal fee for purge water generated
			SUBTOTAL	\$300	
Monitoring Well Abandonment/De	ecommiss	sioning			
Monitoring Well Decommissioning by Licensed Driller	1	LS	\$5,000	\$5,000	Decomission 5 wells following completion of groundwater monitoring
Differ			SUBTOTAL	\$5,000	
Cleanup Alternative Cost Summary					
Capital Costs				\$47,500	
O&M Costs				\$199,240	
Periodic Costs				\$5,300	
c	LEANUP A	LTERNAT	TIVE SUBTOTAL	\$252,040	
Contingency (30%)				\$75,612	% of Cleanup Alternative Subtotal
Project Planning, Management ar	nd Suppor	t (15%)		\$49,148	% of Cleanup Alternative Subtotal with Contingancy
Port Administration Cost (6%)				\$19,659	% of Cleanup Alternative Subtotal with Contingancy
Total Estimated Cleanup Action Alte	ernative C	ost		\$396.459	

Notes:

QTY = quantity LS = lump sum QTR = quarter YR = year EA = each GAL = gallon TPH = gasoline-, diesel- and heavy oil-range petroleum hydrocarbons PAH = polycyclic aromatic hydrocarbons

VOC = volatile organic compounds

Table B-2

Cost Estimate - Proposed Cleanup Action Alternative 2

In-Situ Soil Treatment

Former Shell Oil Tank Farm Site

Anacortes, Washington

Description	QTY	Unit	Unit Cost	Total	Notes
Capital Costs					
Preperation/Planning and Treatab	ility Testing				
Project Preperation, Planning and Treatability Testing	1	LS	\$25,000	\$25,000	
Mobilization/Demobilization			SUBTOTAL	\$25,000	
Mobilization/Site Controls/Demobilization	1	LS	\$150,000	\$150,000	Basis: Preliminary contractor quote - assumes mobilization/demobilization cost for two round of treatment
			SUBTOTAL	\$150,000	
In-Situ Treatment					
Purchase of Chemical Oxidant	212,800	LB	\$2	\$425,600	Basis: Preliminary contractor quote for two rounds of treatment
Purchase of Oxygen Releasing Material	34,580	LB	\$1	\$34,580	Basis: Preliminary contractor quote for two rounds of treatment
In-Situ Treatment using Soil Mixing Technology	1	LS	\$246,050	\$246,050	Basis: Preliminary contractor quote for two rounds of treatment
			SUBTOTAL	\$706,230	
Verification Soil Sampling and Ana	lyses				
Soil Sampling	1	LS	16,000	16,000	Geoprobe sampling on a 25'x25' grid over an area of 20,000 square feet for two rounds of sampling Chemical analysis of TPH_PAH_VOC
Soil Laboratory Analysis	70	EA	\$600	\$42,000	and/or Metals. Assume 25' by 25' sample grid spacing. Includes 10% duplicate samples. For two rounds of
			SUBTOTAL	\$58,000	Samping.
Annual Operation & Maintenance (O	&M) Costs				
Site Monitoring and Reporting					
Quarterly Groundwater Sampling and Reporting	4	QTR	\$5,000	\$20,000	Sample 5 wells per quarter for one year summerize quartely groundwater monitoring results in a single report
Annual Groundwater Sampling and Reporting	10	YR	\$9,500	\$95,000	Sample 5 wells per year for ten years - summerize annual monitoring events in separate reports (ten annual events)
Groundwater Sample Laboratory Analysis	84	EA	\$610	\$51,240	Chemical analysis of TPH, PAH, VOC and/or Metals. Includes duplicate sample per sampling event.
Site Information Database	5	EA	\$1,000	\$5,000	
			SUBTOTAL	\$171,240	
Periodic Costs					
Reporting Cleanup Action Report	1	EA	\$50,000 SUBTOTAL	\$50,000 \$50,000	

Description	QTY	Unit	Unit Cost	Total	Notes
Periodic Costs Continued		-			
Off-Site Treatment/Disposal					
Soil cuttings from soil sampling activities	2	EA	\$80	\$160	Disposal fee for soil cuttings per 55- gallon drum
Wastewater Testing/Discharge	300	GAL	\$1	\$300	Disposal fee for purge water generated
			SUBTOTAL	\$460	
Monitoring Well Abandonment/De	commissio	ning			
Monitoring Well					Decomission 5 wells following
Decommissioning by Licensed	1	LS	\$5,000	\$5,000	completion of groundwater monitoring
Driller			r		completion of groundwater monitoring
			SUBTOTAL	\$5,000	
Cleanup Alternative Cost Summary		_			
Capital Costs				\$939,230	
0&M Costs				\$171,240	
Periodic Costs				\$55,460	
CLE	ANUP ALTE	RNATIVE	SUBTOTAL	\$1,165,930	
Construction Management and Fie	eld Monitori	ing (10 %))	\$93,923	% of Capital Cost
Contractor Overhead (20%)				\$187,846	% of Capital Cost
Contingency (30%)				\$349,779	% of Cleanup Alternative Subtotal
Project Planning, Design, Manager	ment and S	upport (1	L 5%)	\$227,356	% of Cleanup Alternative Subtotal with
					Contingancy
Port Administration Cost (6%)				\$90,943	% of Cleanup Alternative Subtotal with
					Contingancy
Total Estimated Cleanup Action Alter	rnative Cos	it i		\$2,115,777	

Notes:

QTY = quantity

CY = cubic yard

TON = tons

LS = lump sum

- QTR = quarter
- YR = year EA = each

GAL = gallon

TPH = gasoline-, diesel- and heavy oil-range petroleum hydrocarbons

PAH = polycyclic aromatic hydrocarbons

VOC = volatile organic compounds

Table B-3

Cost Estimate - Proposed Cleanup Action Alternative 3

Partial Source Removal With In-Situ Soil Treatment

Former Shell Oil Tank Farm Site Anacortes, Washington

Description	QTY	Unit	Unit Cost	Total	Notes
Capital Costs					
Mobalization/Demobalization					
Mobilization/Site Controls/Demobilization	1	LS	\$127,004	\$127,004	Assume 10% of Overall Capital Cost
			SUBTOTAL	\$127,004	
Monitoring Well Abandonment/Dec	commissio	oning			
Monitoring well Decommissioning by Licensed Driller	1	LS	\$3,500	\$3,500	Decomission four wells prior to soil removal
			SUBTOTAL	\$3,500	
Soil Removal, Backfill, and Paveme	nt Restor	ation			
Shoring	350	LF	\$500	\$175,000	Assume temporary sheet pile in Q Avenue and 14th Street. Average depth of 30 feet.
Excavation Dewatering	1	LS	\$175,000	\$175,000	Unit cost based on average of three Cap Sante Marine Interim Action bids.
Wastewater Treatment	1	LS	\$16,000	\$16,000	Unit cost based on average of three Cap Sante Marine Interim Action bids.
Excavate Soil (0'-14' bgs)	4,800	CY	\$6	\$28,800	Excavate overburden and contaminated soil. Assume 20% expansion above in- place volume. Cost includes excavation and stockpile. Unit cost for excavation based on average of three Cap Sante Marine Interim Action bids.
Contaminated Soil (non-haz) Transport and Disposal at Approved Off-Site Facility	7,680	TON	\$60	\$460,800	Assume 1.6 ton/cy. Cost includes loading and hauling.
Purchase, Place and Compact General Backfill Material	7,680	TON	\$46	\$349,440	Assume 1.6 ton/cy. Cost includes purchase, filling and compaction. Unit cost based on average of three Cap Sante Marine Interim Action bids.
			SUBTOTAL	\$1,205,040	
Monitoring Well Installation					
Monitoring well Installation by Licensed Driller	1	LS	\$10,000	\$10,000	Install four replacement wells following soil removal and backfilling
			SUBTOTAL	\$10,000	5
Site Survey					
Post-Construction (As-Built) Surveys	1	LS	\$15,000	\$15,000	
			SUBTOTAL	\$15,000	
In-Situ Treatment					
Purchase of Oxygen Releasing Material (ORC)	9,000	LB	\$1	\$9,000	Basis: Preliminary contractor quote
Placement of Oxygen Releasing Material (ORC)	1	LS	\$5,000	\$5,000	Basis: Preliminary contractor quote
			SUBTOTAL	\$14,000	

Description	QTY	Unit	Unit Cost	Total	Notes
Verification Soil Sampling and Anal	yses				
Soil Laboratory Analysis	60	EA	\$600	\$36,000	Chemical analysis of TPH, PAH, VOC and/or Metals. Assume base samples on 25' by 25' grid spacing and sidewall sample on 40 linear foot spacing. Includes 10% duplicate samples.
			SUBTOTAL	\$36,000	
Annual Operation & Maintenance (08	M) Costs	i			
Site Monitoring					
Quarterly Groundwater Sampling and Reporting	4	QTR	\$5,000	\$20,000	Sample 5 wells per quarter for one year - summerize quartely groundwater monitoring results in a single report.
Annual Groundwater Sampling and Rporting	10	YR	\$9,500	\$95,000	Sample 5 wells per year for ten years - summerize annual monitoring events in separate reports (ten annual events).
Groundwater Sample Laboratory Analysis	84	EA	\$610	\$51,240	Chemical analysis of TPH, PAH, VOC and/or Metals. Includes duplicate sample per sampling event.
Site Information Database	5	EA	\$1,000	\$5,000	
Update			SUBTOTAL	\$171,240	
Periodic Costs			000101112	+1.1,2.10	
Reporting					
Cleanup Action Report	1	EA	\$50,000 SUBTOTAL	\$50,000 \$50,000	
Off-Site Treatment/Disposal					
Monitoirng Well Soil Cuttings Disposal	6	EA	\$80	\$480	Disposal fee for soil cuttings per 55- gallon drum
Wastewater Testing/Discharge	300	GAL	\$1	\$300	Disposal fee for purge water generated
			SUBTOTAL	\$780	
Monitoring Well Abandonment/Dec	ommissi	oning			
Monitoring Well Decommissioning by Licensed Driller	1	LS	\$5,000	\$5,000	Decomission 5 wells following completion of groundwater monitoring
			SUBTOTAL	\$5,000	
Cleanup Alternative Cost Summary					
Capital Costs				\$1,410,544	
0&M Costs				\$171,240	
Periodic Costs			:	\$55,780	
CLEA		SUBTOTAL	\$1,637,564		
Construction Management and Fiel	a Monito	ring (10%)	\$141,054	% of Capital Cost
Contractor Overnead (20%)				\$282,109	
Contingency (30%) Project Planning Management and	Support	(15%)		\$491,269	% of Cleanup Alternative Subtotal
r roject rianning, management and	Jupport	(10/0)		\$319,325	Contingancy
Port Administration Cost (6%)				\$127,730	% of Cleanup Alternative Subtotal with Contingancy
Total Estimated Cleanup Action Alter	native Co	st		\$2,999,051	

Notes:

QTY = quantity CY = cubic yard TON = tons LS = lump sum QTR = quarter YR = year EA = each GAL = gallon TPH = gasoline-, diesel- and heavy oil-range petroleum hydrocarbons PAH = polycyclic aromatic hydrocarbons

VOC = volatile organic compounds

Table B-4

Cost Estimate - Proposed Cleanup Action Alternative 4

Complete Source Removal

Former Shell Oil Tank Farm Site Anacortes, Washington

Description	QTY	Unit	Unit Cost	Total	Notes
Capital Costs					
Mobalization/Demobalization					
Mobilization/Site Controls/Demobilization	1	LS	\$192,297	\$192,297	Assume 10% of Overall Capital Cost
Controloy Domobilization			SUBTOTAL	\$192,297	
Demolition					
Asphalt Demolition and Disposal	148	SY	\$12	\$1,748	Assumes asphalt surfaces at ~6" thick
Concrete Demolition and Disposal	19	CY	\$149	\$2,759	Includes concrete foundations, and sidewalks
			SUBTOTAL	\$4,507	
Monitoring Well Abandonment/De	commissio	oning			
Monitoring well Decommissioning by Licensed Driller	1	LS	\$3,500	\$3,500	Decomission four wells prior to soil removal
			SUBTOTAL	\$3,500	
Soil Removal, Backfill, and Paveme	ent Restor	ation			
Shoring	350	LF	\$500	\$175,000	Assume temporary sheet pile in Q Avenue and 14th Street. Average depth of 30 feet.
Excavation Dewatering	1	LS	\$175,000	\$175,000	Unit cost based on average of three Cap Sante Marine Interim Action bids.
Wastewater Treatment	1	LS	\$16,000	\$16,000	Unit cost based on average of three Cap Sante Marine Interim Action bids.
Excavate Soil (0'-14' bgs)	7,200	CY	\$6	\$43,200	Assume 20% expansion above in-place volume. Cost includes excavation and stockpile. Unit cost for excavation based on average of three Cap Sante Marine Interim Action bids.
Contaminated Soil (non-haz) Transport and Disposal at Approved Off-Site Facility	11,520	TON	\$60	\$691,200	Assume 1.6 ton/cy. Cost includes loading and hauling.
Purchase, Place and Compact General Backfill Material	11,520	TON	\$46	\$524,160	Assume 1.6 ton/cy. Cost includes purchase, filling and compaction. Unit cost based on average of three Cap Sante Marine Interim Action bids.
			SUBTOTAL	\$1,624,560	
Surface Restoration Pavement and Subgrade Restoration	2,100	SY	\$40	\$84,000	Assumes pavement surfaces at ~6" thick
Litility Alteration and Replacement			SUBIOIAL	\$84,000	
Remove, Bypass, and/or Replace utilities in project area	1	LS	\$150,000	\$150,000	
			SUBTOTAL	\$150,000	
Monitoring Well Installation Monitoring well Installation by	1	LS	\$10,000	\$10,000	Install four replacement wells following
			SUBTOTAL	\$10,000	
Site Survey					
Post-Construction (As-Built) Surveys	1	LS	\$15,000 	\$15,000	
			SUBTOTAL	\$15,000	

Description	QTY	Unit	Unit Cost	Total	Notes
Capital Costs Continued					
Verification Soil Sampling					
Soil Laboratory Analysis					Chomical analysis of TPH PAH V/OC
					and/or Metals. Assume base samples
	69	EA	\$600	\$41,400	on 25' by 25' grid spacing and sidewall
					sample on 40 linear foot spacing.
					Includes 10% duplicate samples
			SUBTOTAL	\$41,400	
Annual Operation & Maintenance (08	&M) Costs	6			
Site Monitoring and Reporting					
					Sample 5 wells per quarter for one year
Quarterly Groundwater Sampling	4	QTR	\$5,000	\$20,000	- summerize quartely groundwater
and Reporting					monitoring results in a single report
					Chemical analysis of TPH, PAH, VOC
Groundwater Sample Laboratory	24	EA	\$610	\$14,640	and/or Metals. Includes duplicate
Analysis					sample per sampling event.
Site Information Database Update	2	EA	\$1,000	\$2,000	
			SUBTOTAL	\$36,640	
Periodic Costs					
Cleanup Action Report	1	FΔ	\$50,000	\$50,000	
Cleanup Action Report	1	LA	SUBTOTAL	\$50,000	
Off-Site Treatment/Disposal				+00,000	
Monitoirng Well Soil Cuttings	6	-	*••	¢ 100	Disposal fee for soil cuttings per 55-
Disposal	6	EA	\$80	\$480	gallon drum
Wastewater Testing/Discharge	100	GAL	\$1	\$100	Disposal fee for purge water generated
			SUBTOTAL	\$580	
Monitoring Woll Abandonment (De	ommical	oning	SUBIUIAL	\$00U	
Monitoring Well	20111111551	uning			
Decommissioning by Licensed	1	LS	\$5,000	\$5,000	Decomission 5 wells following
Driller					completion of groundwater monitoring
			SUBTOTAL	\$5,000	
Cleanup Alternative Cost Summary					
Capital Costs				\$2,125,264	
U&M Costs Reviedie Costs				\$36,640 \$55,500	
		RNATIVE	SUBTOTAL	\$2,217 484	
Construction Management and Fie	ld Monito	\$212,526	% of Capital Cost		
Contractor Overhead (20%)	Contractor Overhead (20%)				% of Capital Cost
Contingency (30%)				\$665,245	% of Cleanup Alternative Subtotal
Project Planning, Management and	l Support	(15%)		\$432,409	% of Cleanup Alternative Subtotal with Contingancy
Port Administration Cost (6%)				\$172,964	% of Cleanup Alternative Subtotal with
. ,					Contingancy
Total Estimated Cleanup Action Alter	native Co	st		\$4,125,682	

Notes:

QTY = quantity CY = cubic yard

TON = tons

LS = lump sum

QTR = quarter YR = year

EA = each

GAL = gallon

TPH = gasoline-, diesel- and heavy oil-range petroleum hydrocarbons

PAH = polycyclic aromatic hydrocarbons

VOC = volatile organic compounds

INDEPENDENT REMEDIAL ACTION COMPLETION REPORT FORMER SHELL TANK FARM STORM DRAIN RE-ROUTE 13^{TH} STREET AND Q AVENUE ANACORTES, WASHINGTON

APRIL 18, 2008

FOR PORT OF ANACORTES

Independent Remedial Action Completion Report Former Shell Tank Farm Storm Drain Re-Route 13th Street and Q Avenue Anacortes, Washington File No. 5147-012-00

April 18, 2008

Prepared for:

Port of Anacortes First and Commercial Avenue P.O. Box 297 Anacortes, Washington 98221

Attention: Bob Elsner

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 (206) 728-2674

James Roth

James G. Roth, LG, LHG Associate Hydrogeologist

FOR

10

John M. Herzog, Ph.D. Principal

RST:JGR:JMH:bmw SEAT:\5\5147012\00\Finals\514701200R.doc

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2008 by GeoEngineers, Inc. All rights reserved.

TABLE OF CONTENTS

Page No.

INTRODUCTION	1
SITE BACKGROUND	1
PURPOSE AND SCOPE	2
SITE CHARACTERIZATION GENERAL SURFACE AND SUBSURFACE CONDITIONS	2 2 2 3
SOIL ANALYTICAL RESULTS	3
STORM DRAIN EXCAVATION MONITORING	3
CONCLUSIONS	4
LIMITATIONS	4

List of Tables

Table 1.	Summary of Field Screening and Soil Chemical Analytical Data
	Petroleum Hydrocarbons, BETX and Volatile Organic Compounds
Table 2.	Summary of Soil Chemical Analytical Data
	Non-Carcinogenic Polycyclic Aromatic Hydrocarbons
Table 3.	Summary of Soil Chemical Analytical Data
	Carcinogenic Polycyclic Aromatic Hydrocarbons
Table 4.	Summary of Soil Chemical Analytical Data
	Polychlorinated Biphenyls and Metals

List of Figures

Figure 1. Vicinity Map Figure 2. Site Plan

APPENDICES

Appendix A – Field Procedures

APPENDIX A FIGURES

Figure A-1. Key to Exploration Log A-1 Figure A-2 through A-5. Logs of Test Pits

Appendix B – Chemical Analytical Program

INDEPENDENT REMEDIAL ACTION COMPLETION REPORT FORMER SHELL TANK FARM STORM DRAIN RE-ROUTE 13TH STREET AND Q AVENUE ANACORTES, WASHINGTON FOR PORT OF ANACORTES

INTRODUCTION

This document presents the Independent Remedial Action Completion Report for the re-route of a City of Anacortes (City) storm drain line at the Former Shell Tank Farm Site (Site) located at the intersection of 13th Street and Q Avenue in Anacortes, Washington. The Site is owned by the Port of Anacortes (Port) and is currently used for vehicle and boat trailer parking. The Port and Ecology are in the process of completing an Agreed Order for environmental investigation and cleanup at the Site. Cleanup is being required by Ecology to address soil and groundwater contamination resulting from historical bulk fuel handling at the Site. The Site is shown relative to its surrounding features in the Vicinity Map on Figure 1. The general layout of the Site and historic facilities are shown on the Site Plan on Figure 2.

As a source control measure, the City re-routed a 12-inch-diameter storm drain line across the western portion of the Site. The storm drain line, originally located in 13th Street between Commercial Avenue and Q Avenue was re-routed to address a non-functioning section of the storm drain system that discharges into the Cap Sante Boat Haven. The independent remedial action consisted of excavating soil from approximately 280 feet of trench along the west edge of the Site for the installation of the new storm drain line. This report documents the results of site characterization activities completed at the Site prior to excavation activities. Site characterization and construction excavation activities were completed at the Site between November 30 and December 21, 2007. The independent remedial action was completed as part of the Fidalgo Bay component of the Puget Sound Initiative.

SITE BACKGROUND

Site background and history are described in the document "Limited Environmental Due Diligence Investigation Report, Former Shell Oil Tank Farm, Cap Sante Marine Lease Area" by Floyd Snider, dated November 2005. According to the report, the Port acquired the Site in 1929 and leased it to the Shell Oil Company (Shell) and various distributors of gasoline and diesel fuel. Site facilities included three 25,000 gallon aboveground storage tanks (ASTs) that contained and gasoline and diesel. Product lines connected the ASTs and pump house to a historical pier located east of the Site across Q Avenue. Historically, gasoline and diesel were pumped from the pier to the bulk fuel facility for storage and distribution. In the 1950s, two additional 12,500 gallon ASTs and one 4,000 gallon underground storage tank (UST) were installed at the Site. Gasoline, diesel and stove oil were reportedly stored in the ASTs and dry cleaning solvent was stored in the UST. The Site was operated as a bulk fuel handling facility until it was closed in approximately 1985 and the aboveground structures were demolished. The approximate locations of the historical pump house, fill stand, UST, ASTs and associated product supply lines are shown in Figure 2.

Subsurface explorations completed at the Site for the 2005 environmental study identified petroleumrelated contaminants in soil and groundwater in the vicinity of the ASTs and product supply lines and downgradient (east) of the Site.

PURPOSE AND SCOPE

The purpose of the independent remedial action activities was to assist the Port in evaluating environmental conditions within the alignment of the storm drain re-route at the Site for protection of the environment and management of excavated materials. GeoEngineers' specific scope of services included the following:

- 1. Complete four test pit explorations to depths of approximately 8 feet below the ground surface (bgs) at the approximate locations shown in Figure 2. Document soil and groundwater conditions observed in each exploration.
- **2.** Field screen soil encountered in the test pits for evidence of petroleum hydrocarbons and volatile organic compounds (VOCs) using visual, water sheen and headspace vapor methods.
- **3.** Submit one or two soil samples from each test pit for chemical analysis of the following: gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-G, diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx with acid/silica gel cleanup, VOCs including benzene, ethylbenzene, toluene and xylenes (BETX) by EPA Method 8260, polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270 SIM, polychlorinated biphenyls (PCBs) by EPA Method 8082 and metals (lead, arsenic, cadmium, chromium and mercury) by EPA Methods 6010/7471. Analytical parameters were selected based on the historical site use and existing environmental data for the site.
- **4.** Evaluate the soil chemical analytical results relative to preliminary MTCA Method A and Method B soil cleanup levels for the Site.
- **5.** Observe soil and groundwater conditions during construction excavation activities for installation of the storm drain. Perform field screening of soil from the storm drain re-route excavation for petroleum hydrocarbons and VOCs.
- 6. Document offsite disposal of excess soil removed from the storm drain trench excavation.

SITE CHARACTERIZATION

GENERAL

Test pits TP-1 through TP-4 were completed near the west edge of the Site to evaluate the potential presence of petroleum hydrocarbons, VOCs, PAHs, PCBs and metals in soil along the storm drain reroute alignment. The test pits were completed to depths of approximately 8 feet bgs, the estimated maximum depth of the storm line trench. Soil samples from the test pits were field screened for the potential presence of petroleum hydrocarbons and VOCs and selected soil samples were submitted for chemical analyses. The test pits were backfilled immediately after soil samples were obtained. Soil sampling and field screening methods are described in Appendix A.

SURFACE AND SUBSURFACE CONDITIONS

The Site is surfaced with crushed rock and is used as a parking lot for vehicles and boat trailers. Soil encountered beneath the crushed rock surface consisted of fill material including silt, sand and occasional gravel. Soil conditions encountered in the test pits are shown on the test pit logs (Figures A-2 through A-5). Groundwater was encountered in three of the test pits at approximately 7 feet bgs. Based on our experience at the nearby Cap Sante Marine Site, groundwater flow at the subject Site is assumed to be generally to the east toward Fidalgo Bay.

FIELD SCREENING RESULTS

Field screening methods including visual, water sheen and headspace vapor methods were used to evaluate the potential presence of petroleum hydrocarbons and VOCs in soil samples obtained from the test pits. Evidence of petroleum hydrocarbons and VOCs was not observed during field screening of soil samples. Field screening results are presented in Table 1 and Figures A-2 through A-5.

SOIL ANALYTICAL RESULTS

Five discrete soil samples (TP-1-6.0, TP-1-8.0, TP-2-4.0, TP-3-8.0 and TP-4-2.0) obtained from the test pits at the Site were submitted to CCI Analytical of Everett, Washington for chemical analysis. The samples were analyzed for gasoline-range petroleum hydrocarbons, diesel- and heavy oil-range petroleum hydrocarbons, VOCs including BETX, PAHs, PCBs and metals (lead, arsenic, cadmium, chromium and mercury). The samples were selected for analysis to provide representative data on soil conditions for a range of depths along the storm drain alignment (the last number in the sample name represents the depth of the sample below the ground surface). Sample TP-1-8.0 was a follow-up sample submitted for analysis based on a detection of cadmium in the sample obtained at a depth of 6 feet bgs from TP-1.

Petroleum hydrocarbons, BETX and PCBs were not detected in the soil samples. PAHs either were not detected or were detected at concentrations less then preliminary MTCA soil cleanup levels. Lead, arsenic, cadmium, chromium and mercury either were not detected or were detected at concentrations less then preliminary MTCA soil cleanup levels, with one exception. Cadmium was detected at a concentration of 6.4 milligrams per kilogram (mg/kg) in sample TP-1-6.0, which exceeds the MTCA Method A cleanup level of 2 mg/kg. Cadmium was not detected in TP-1-8.0, the follow-up sample obtained two feet below sample TP-1-6.0. Chemical analytical results are presented in Tables 1 through 4. A copy of the laboratory report is presented in Appendix B.

STORM DRAIN EXCAVATION MONITORING

GeoEngineers conducted environmental monitoring of the storm drain trench excavation at the Site from December 17 to December 21, 2007. Clearcreek Contractors excavated approximately 280 lineal feet of trench at the Site to depths of approximately 5 to 6 feet bgs. GeoEngineers conducted soil field screening on soil removed from the trench excavation to evaluate the potential presence of contaminants at concentrations of regulatory concern. Field screening evidence of petroleum hydrocarbons was not observed in the storm drain re-route trench or the excavation for Manhole No. 1 in the southwest portion of the Site. Groundwater was not encountered during the storm drain trench excavation activities.

Based on the results of the chemical analyses for the soil samples obtained from the four site characterization test pits and field screening observations during trench excavation, soil excavated from the storm drain trench at the Site between December 17 and 21, 2007 was considered clean and suitable for use as excavation backfill. All of the excavated soil was used to backfill the storm drain trench with the exception of approximately 40 cubic yards that was excess. The excess soil was transported offsite for placement as clean fill at another Port property.

GeoEngineers staff also observed excavations north and west of the Site that were completed in December 2007 and January 2008 for installation of the storm drain line and Manholes No. 2 and No. 3 in 13th Street. Field screening evidence of petroleum-contaminated soil was observed in the excavations for Manhole No. 2 and Manhole No. 3 at depths of 6 to 7 feet bgs and 9 to 11 feet bgs, respectively. Field screening evidence of petroleum-contaminated soil was not observed in the section of storm drain trench that extended from the northwest corner of the Site to Manhole No. 2 located in approximately the center of 13th Street.

CONCLUSIONS

Field observations, field screening results, and soil chemical analytical data obtained during the November 2007 Site characterization and December 2007 storm drain installation at the Site indicate that shallow soils along the storm drain re-route alignment on Port property are not contaminated relative to preliminary MTCA cleanup levels, with one exception. Contaminants of concern including petroleum hydrocarbons, VOCs, PAHs, PCBs, lead, arsenic. chromium and mercury either were not detected or were detected at concentrations less than the preliminary MTCA cleanup levels for the Site. Cadmium was detected at a concentration exceeding the preliminary MTCA cleanup level in one soil sample from 6 feet bgs in test pit TP-1 (south portion of the storm drain alignment). The sample with the cadmium exceedance was obtained from soil slightly below the bottom of the storm drain trench and was not excavated during construction activities. It is our opinion that the cadmium-impacted soil represented by TP-1-6 is limited in extent. Cadmium was not detected in a sample obtained two feet below the location of the cadmium exceedance and in three other samples collected along the storm drain re-route alignment. Field observations obtained during the December 2007 and January 2008 storm drain installation activities in the 13th Street corridor indicate that shallow soils along the storm drain re-route alignment in 13th Street are contaminated with petroleum hydrocarbons. Because of the limited nature of the December 2007 field activities, it was unable to be determined whether the observed contamination in the 13th Street corridor was related to the Site or was a separate and distinct release. The Port intends to complete future site characterization studies to delineate the nature and extent of contaminants at the Site and will implement appropriate cleanup actions based on those studies.

LIMITATIONS

This report has been prepared for the exclusive use of Port of Anacortes, their authorized agents and regulatory agencies. This report is not intended for use by others and the information contained herein is not applicable to other sites. No other party may rely on the product of our services unless we agree in advance, and in writing, to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Interpretation of soil conditions for this study is based on site observations, field screening results and chemical analysis of a limited number of soil samples. It is always possible that contamination not identified by our study exists in portions of the Site that were not sampled or analyzed.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with our general agreement with the Port of Anacortes (Contract No. 72-00-07) and generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

This document and any attachments are only a copy of a master document. The master hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

TABLE 1 SUMMARY OF FIELD SCREENING AND SOIL CHEMICAL ANALYTICAL DATA PETROLEUM HYDROCARBONS, BETX AND VOLATILE ORGANIC COMPOUNDS FORMER SHELL TANK FARM STORM DRAIN RE-ROUTE ANACORTES, WASHINGTON

	_		Field Screening Petroleum Hydrocarbons ³						Volatile			
	Sample		Results	3 ²	(mg/kg)			BETX				Organic
Sample	Depth	Date	Headspace		Gasoline-	Diesel-	Oil-		(mg/kg	a)		Compounds
Number ¹	(feet bgs)	Sampled	Vapors (ppm)	Sheen	Range	Range	Range	Benzene	Ethlybenzene	Toluene	Xylenes	(mg/kg)
TP-1-6.0	6.0	11/30/2007	<1	NS	<3	<50	1,300	<0.01	<0.01	<0.01	<0.02	ND
TP-2-4.0	4.0	11/30/2007	<1	NS	<3	<25	<50	<0.01	<0.01	<0.01	<0.02	ND
TP-3-8.0	8.0	11/30/2007	<1	NS	<3	<25	<50	<0.01	<0.01	<0.01	<0.02	ND
TP-4-2.0	2.0	11/30/2007	<1	NS	<3	<25	<50	<0.01	<0.01	<0.01	<0.02	ND
MTCA Method A Cleanup Level			100	2,000	2,000	0.03	6	7	9	varies		

Notes:

¹The approximate sample locations are shown in Figure 2.

²A description of field screening methods is presented in Appendix A.

³Analyzed by Ecology Methods NWTPH-Gx and NWTPH-Dx with silica gel cleanup.

⁴BETX analyzed by EPA Method 8260.

⁵Volatile organic compounds analyzed by EPA Method 8260. Chemical analytical results are presented in Appendix B.

NS=no sheen

ND=non detect

bgs = below ground surface

ppm = parts per million

mg/kg = milligrams per kilogram < = less than

Shading indicates analyte was detected at a concentration exceeding the MTCA Method A cleanup level.

Chemical analyses conducted by CCI Analytical Laboratory of Everett, Washington.

TABLE 2 SUMMARY OF SOIL CHEMICAL ANALYTICAL DATA NON-CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS FORMER SHELL TANK FARM STORM DRAIN RE-ROUTE ANACORTES, WASHINGTON

	Sample		Non-Carcinogenic Polycyclic Aromatic Hydrocarbons ² (mg/kg)								
Sample	Depth	Date	Naph-	Acenaph-	Acenaph-		Phenan-	Anthra-	Fluoran-		Benzo(g,h,i)-
Number ¹	(feet bgs)	Sampled	thalenes	thylene	thene	Fluorene	threne	cene	thene	Pyrene	perylene
TP-1-6.0	6.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.03	0.07
TP-2-4.0	4.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TP-3-8.0	8.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TP-4-2.0	2.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MTCA Method B C	Cleanup Level		5 ³	NE	4,800	3,200	NE	24,000	3,200	2,400	NE

Notes:

¹The approximate sample locations are shown in Figure 2.

²Analyzed by EPA Method 8270 SIM.

³MTCA Method A cleanup level for unrestricted land use.

bgs = below ground surface

mg/kg = milligrams per kilogram

NE = not established

Shading indicates analyte was detected at a concentration exceeding the MTCA cleanup level.

Chemical analyses conducted by CCI Analytical Laboratory of Everett, Washington.

TABLE 3 SUMMARY OF SOIL CHEMICAL ANALYTICAL DATA CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS FORMER SHELL TANK FARM STORM DRAIN RE-ROUTE ANACORTES, WASHINGTON

	Sample		Carcinogenic Polycyclic Aromatic Hydrocarbons ² (mg/kg)							
Sample	Depth	Date	Benzo(a)-		Benzo(b)-	Benzo(k)-	Benzo(a)-	Indeno(1,2,3-	Dibenz(a,h)-	Total cPAHs
Number ¹	(feet bgs)	Sampled	anthracene	Chrysene	fluoranthene	fluoranthene	pyrene	-cd)Pyrene	anthracene	(TEQ) ³
TP-1-6.0	6.0	11/30/2007	<0.02	0.06	0.04	0.02	0.04	0.03	0.03	0.06
TP-2-4.0	4.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TP-3-8.0	8.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TP-4-2.0	2.0	11/30/2007	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MTCA Method B	Cleanup Leve		0.137	0.137	0.137	0.137	0.137	0.137	0.137	0.137

Notes:

¹The approximate sample locations are shown in Figure 2.

²Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) analyzed by EPA Method 8270 SIM.

³Calculated using the toxicity equivalency (TEQ) methodology specified in WAC 173-340-708(8). cPAHs that were not detected were assigned

a value of one-half the detection limit for these calculations.

bgs = below ground surface

mg/kg = milligrams per kilogram

NE = not established

Shading indicates analyte was detected at a concentration exceeding the MTCA cleanup level. Chemical analyses conducted by CCI Analytical Laboratory of Everett, Washington.

TABLE 4 SUMMARY OF SOIL CHEMICAL ANALYTICAL DATA POLYCHLORINATED BIPHENYLS AND METALS FORMER SHELL TANK FARM STORM DRAIN RE-ROUTE ANACORTES, WASHINGTON

Sample			Polychlorinated		Ν	Metals ³ (mg/kg)				
Sample Number ¹	Depth (feet bgs)	Date Sampled	Biphenyls ² (mg/kg)	Arsenic	Cadmium	Chromium	Lead	Mercury		
TP-1-6.0	6.0	11/30/2007	<0.1	8.1	6.4	21	28	0.02		
TP-1-8.0	8.0	11/30/2007			<1					
TP-2-4.0	4.0	11/30/2007	<0.1	<5	<1	31	5.2	<0.02		
TP-3-8.0	8.0	11/30/2007	<0.1	5.4	<1	32	5.8	0.03		
TP-4-2.0	2.0	11/30/2007	<0.1	<5	<1	11	<5	<0.02		
MTCA Method A Cleanup Level			1	20	2	2,000	250	2		

Notes:

¹The approximate sample locations are shown on Figure 2.

²Polychlorinated biphenyls analyzed using EPA Method 8082.

³Metals analyzed using EPA Method 6010 or EPA Method 7471.

bgs = below ground surface.

mg/kg = milligrams per kilogram.

"--" = not analyzed.

Shading indicates analyte was detected at a concentration exceeding the MTCA cleanup level.

Chemical analyses performed by CCI Analytical Laboratories, Everett, Washington.

NOTES:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Site Plan

Former Shell Tank Farm Anacortes, Washington

GEOENGINEERS

Figure 2

APPENDIX A FIELD PROCEDURES

APPENDIX A FIELD PROCEDURES

GENERAL

GeoEngineers monitored the completion of four test pits completed by Clearcreek Contractors. The test pits were completed on November 30, 2007. The approximate exploration locations are shown in Figure 2. A representative from our staff selected the exploration locations, examined and classified the soils encountered, and prepared a detailed log of each exploration. Soils encountered were visually classified in general accordance with ASTM D-2488-94, which is described in Figure A-1. The logs are presented in Figures A-2 through A-5.

TEST PIT EXCAVATION SOIL SAMPLING

Test pit explorations were completed to approximately 8 feet bgs using a backhoe. Soil samples were obtained from the backhoe bucket using a stainless steel trowel. A portion of each sample was placed in a laboratory-prepared sample jar for potential chemical analysis. The sample containers were completely filled to minimize headspace. The remaining portion of each sample was used for field screening. The sampling equipment was decontaminated prior to each use with a Liqui-Nox® soap solution, a tap water initial rinse and a distilled water final rinse.

Select samples were submitted for chemical analysis, based on field screening results and/or the sample location relative to potential sources of contamination. Samples submitted for chemical analysis are denoted by "CA" on the logs. The soil samples were placed in a cooler with ice for transport to the laboratory. Standard chain-of-custody procedures were followed in transporting the soil samples to the laboratory.

FIELD SCREENING OF SOIL SAMPLES

Soil samples obtained from the excavations were evaluated for the potential presence of petroleum contamination and VOCs using field screening. Field screening results can be used as a general guideline to delineate areas of potential petroleum-related and VOC contamination in soils. In addition, screening results are often used as a basis for selecting soil samples for chemical analysis. The screening methods that were used included visual screening, water sheen screening and headspace vapor screening.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive screening methods that can be effective in detecting petroleum hydrocarbons and VOCs at concentrations less than regulatory cleanup levels.

Water sheen testing involves placing soil in water and observing the water surface for signs of sheen. The results of water sheen testing on soil samples from the test pits are presented in Table 1 and Figures A-2 through A-5. Sheens are classified as follows:

Classification	Description
No Sheen (NS)	No visible sheen on water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly.

Classification	Description
Moderate Sheen (MS)	Light to heavy sheen, may have some color/iridescence; spread is irregular to flowing; few remaining areas of no sheen on water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening may identify volatile organic compounds and involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a photoionization detector (PID) is inserted into the bag. The PID measures the concentration of photoionizable gases and vapors in the sample headspace in parts per million (ppm) and is calibrated to isobutylene. The PID is designed to quantify vapors at concentrations of 1 to 2,000 ppm.

Field screening results are site-specific. The effectiveness of field screening results varies with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen does not necessarily indicate the presence or absence of petroleum hydrocarbons or other contaminants.

	SOIL CLASSIFICATION CHART						ADDITIONAL MATERIAL SYMBOLS			
М	AJOR DIVISI	ONS	SYME GRAPH	BOLS LETTER	TYPICAL DESCRIPTIONS	SYM GRAPH	BOLS	TYPICAL DESCRIPTIONS		
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		сс	Cement Concrete		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		AC	Asphalt Concrete		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		CR	Crushed Rock/ Quarry Spalls		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		тѕ	Topsoil/		
MORE THAN 50%	SAND	CLEAN SANDS	• • • • • • • • • • • • • • • • • • •	SW	WELL-GRADED SANDS, GRAVELLY SANDS		1			
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		Measure	d groundwater level in on, well, or piezometer		
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Groundw	ater observed at time of		
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Perched v	water observed at time of		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		Measured	d free product in well or		
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		p.0201101			
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Stratigra	aphic Contact		
NORE THAN 50% ASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Distinct of geologic	contact between soil strat units		
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		Gradual o geologic	change between soil strat units		
			hin	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY]	Approxim change w	nate location of soil strata vithin a geologic soil unit		
н	GHLY ORGANIC S	SOILS	k k	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS					
DTE: Multiple	e symbols are u	sed to indicate bo	rderline or o	dual soil cl	lassifications		aborator	y / Field Tests		
	Sample	<u>r Symbol De</u>	escripti	ons		%F AL CA	Percent f Atterberg	ines limits analysis		
	Sta	ndard Penetrat	tion Test	(SPT)		CP CS	Laborato Consolid	ry compaction test ation test		
	She	elby tube		. ,		DS HA MC	Hydrome Moisture	ear ter analysis content		
	Pis	ton				MD OC	Moisture Organic o	content and dry density content		
	Dire	ect-Push				PM PP	Permeab Pocket p	ility or hydraulic conducti enetrometer		
	Bul	k or grab				SA TX UC	Sieve ana Triaxial c Unconfin	alysis ompression ed compression		
Blow	count is reco	orded for driver	n sampler	s as the	number	VS	Vane she	ar		
dista	nce noted).	See exploration	n log for h	ammer	weight	NS	No Visibl	e Sheen		
and drop.					of the	SS MS	Slight Sh Moderate	een 9 Sheen		
drill r	ig.		asing the	weight		HS NT	Heavy Sh Not Teste	een ed		
	roador must -	ofor to the diase-	cion in the	roport to:-	t and the loss of overlanding	for a properties de	rotopdice -	f subsurface conditions		
Description	s on the logs ap ive of subsurfac	pply only at the sp ce conditions at o	becific explo other locatio	oration loc ons or time	cations and at the time the expose.	plorations were m	ade; they a	re not warranted to be		
				KEY T	O EXPLORATION LO	OGS				
C		GINEE		1			IGURE	Δ-1		
		GINEE								

4701

Sheet 1 of 1

APPENDIX B CHEMICAL ANALYTICAL PROGRAM AND DATA

APPENDIX B CHEMICAL ANALYTICAL PROGRAM AND DATA

SAMPLES

Chain-of-custody procedures were followed during the transport of the field samples to the accredited analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control (QC) records are included in this appendix.

ANALYTICAL DATA REVIEW

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory reports. Any data quality exceptions documented by the accredited laboratory were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

ANALYTICAL DATA REVIEW SUMMARY

Based on our data quality review and the qualifications indicated, it is our opinion that the analytical data are of acceptable quality for their intended use in this report.

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 10:25

 CCIL SAMPLE #:
 -03

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	ND	3	1	MG/KG	12/4/2007	DLC
TPH-Diesel Range	NWTPH-DX	ND	50	2	MG/KG	12/4/2007	EBS
TPH-Oil Range	NWTPH-DX	1300	100	2	MG/KG	12/4/2007	EBS
Dichlorodifluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Vinyl Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichlorofluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acetone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Methylene Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acrylonitrile	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Methyl T-Butyl Ether	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Butanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Cis-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Carbon Tetrachloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromodichloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Methyl-2-Pentanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Toluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

425 356-2600

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 10:25

 CCIL SAMPLE #:
 -03

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Cis-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Hexanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,3-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Tetrachloroethylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromoethane	EPA-8260	ND	5	1	UG/KG	12/3/2007	GAP
Chlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Ethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
m,p-Xylene	EPA-8260	ND	20	1	UG/KG	12/3/2007	GAP
Styrene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
o-Xylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromoform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Isopropylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Propyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3,5-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
T-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,4-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
S-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
P-Isopropyltoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3 Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,4-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Butylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromo 3-Chloropropane	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,2,4-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Hexachlorobutadiene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

425 356-2600

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 10:25

 CCIL SAMPLE #:
 -03

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Naphthalene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Naphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
1-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
2-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluorene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Phenanthrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluoranthene	EPA-8270 SIM	0.03	0.02	1	MG/KG	12/6/2007	RAL
Pyrene	EPA-8270 SIM	0.03	0.02	1	MG/KG	12/6/2007	RAL
Benzo[A]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Chrysene	EPA-8270 SIM	0.06	0.02	1	MG/KG	12/6/2007	RAL
Benzo[B]Fluoranthene	EPA-8270 SIM	0.04	0.02	1	MG/KG	12/6/2007	RAL
Benzo[K]Fluoranthene	EPA-8270 SIM	0.02	0.02	1	MG/KG	12/6/2007	RAL
Benzo(A)Pyrene	EPA-8270 SIM	0.04	0.02	1	MG/KG	12/6/2007	RAL
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	0.03	0.02	1	MG/KG	12/6/2007	RAL
Dibenz[A,H]Anthracene	EPA-8270 SIM	0.03	0.02	1	MG/KG	12/6/2007	RAL
Benzo[G,H,I]Perylene	EPA-8270 SIM	0.07	0.02	1	MG/KG	12/6/2007	RAL
PCB-1016	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1221	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1232	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1242	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1248	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1254	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1260	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
Arsenic	EPA-6010	8.1	52	41	MG/KG	12/3/2007	CEO
Cadmium	EPA-6010	6.4	1	4	MG/KG	12/3/2007	CEO
Chromium	EPA-6010	21	1	4	MG/KG	12/3/2007	CEO
Lead	EPA-6010	28	5	4	MG/KG	12/3/2007	CEO
Mercury	EPA-7471	0.02	0.02	1	MG/KG	12/3/2007	CEO

CERTIFICATE OF ANALYSIS							
CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151					
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336					
CLIENT CONTACT: JIM ROTH CLIENT PROJECT ID: 5147-012-00 CLIENT SAMPLE ID: 11/30/2007 10:25 TP-1-6.0 CCIL SAMPLE #: -03							

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
NOTE: CHROMATOGRAM INDICA	TES SAMPLE CO	ONTAINS PRODU	JCT WHICH IS LIF	KELY LUBE OI	L.		

DATA RESULTS

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Cal to

CCIL SAMPLE #: -04

CERTIFICATE OF ANALYSIS							
CLIENT: GEOENGINEI 600 STEWAR SUITE 1700	ERS, INC. T ST. PLAZA 600 BUILDING,	DATE: CCIL JOB #:	2/1/2008 0711151				
SEATTLE, WA 98101		DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336				
CLIENT CONTACT: CLIENT PROJECT ID: CLIENT SAMPLE ID:	JIM ROTH 5147-012-00 11/30/2007 10:30 TP-1-8.0						

DATA RESULTS							
ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Cadmium	EPA-6010	ND	1	4	MG/KG	1/31/2008	CEO

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Par Bagun

8620 Holly Drive Suite 100 Everett, WA 98208 425 356-2600 FAX 425 356-2626 Seattle 206 292-9059

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 10:45

 CCIL SAMPLE #:
 -06

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	ND	3	1	MG/KG	12/4/2007	DLC
TPH-Diesel Range	NWTPH-DX	ND	25	1	MG/KG	12/4/2007	EBS
TPH-Oil Range	NWTPH-DX	ND	50	1	MG/KG	12/4/2007	EBS
Dichlorodifluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Vinyl Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichlorofluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acetone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Methylene Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acrylonitrile	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Methyl T-Butyl Ether	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Butanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Cis-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Carbon Tetrachloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromodichloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Methyl-2-Pentanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Toluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

FAX 425 356-2626

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 10:45

 CCIL SAMPLE #:
 -06

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Cis-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Hexanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,3-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Tetrachloroethylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromoethane	EPA-8260	ND	5	1	UG/KG	12/3/2007	GAP
Chlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Ethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
m,p-Xylene	EPA-8260	ND	20	1	UG/KG	12/3/2007	GAP
Styrene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
o-Xylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromoform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Isopropylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Propyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3,5-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
T-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,4-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
S-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
P-Isopropyltoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3 Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,4-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Butylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromo 3-Chloropropane	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,2,4-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Hexachlorobutadiene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 10:45

 CCIL SAMPLE #:
 -06

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Naphthalene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Naphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
1-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
2-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluorene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Phenanthrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[A]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Chrysene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[B]Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[K]Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo(A)Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Dibenz[A,H]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[G,H,I]Perylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
PCB-1016	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1221	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1232	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1242	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1248	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1254	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1260	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
Arsenic	EPA-6010	ND	5	4	MG/KG	12/3/2007	CEO
Cadmium	EPA-6010	ND	1	4	MG/KG	12/3/2007	CEO
Chromium	EPA-6010	31	1	4	MG/KG	12/3/2007	CEO
Lead	EPA-6010	5.2	5	4	MG/KG	12/3/2007	CEO
Mercury	EPA-7471	ND	0.02	1	MG/KG	12/3/2007	CEO

CERTIFICATE OF ANALYSIS							
CLIENT: GEOENGINEE 600 STEWART SUITE 1700	RS, INC. ⁻ ST. PLAZA 600 BUILDING,	DATE: CCIL JOB #:	2/1/2008 0711151				
SEATTLE, WA	98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336				
CLIENT CONTACT: CLIENT PROJECT ID: CLIENT SAMPLE ID: CCIL SAMPLE #:	JIM ROTH 5147-012-00 11/30/2007 10:45 TP-2-4.0 -06						

DATA RESULTS							
					UNITS**	ANALYSIS DATE	ANALYSIS BY

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES. ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Cal the

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 11:55

 CCIL SAMPLE #:
 -12

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	ND	3	1	MG/KG	12/4/2007	DLC
TPH-Diesel Range	NWTPH-DX	ND	25	1	MG/KG	12/3/2007	EBS
TPH-Oil Range	NWTPH-DX	ND	50	1	MG/KG	12/3/2007	EBS
Dichlorodifluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Vinyl Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichlorofluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acetone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Methylene Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acrylonitrile	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Methyl T-Butyl Ether	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Butanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Cis-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Carbon Tetrachloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromodichloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Methyl-2-Pentanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Toluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

FAX 425 356-2626

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 11:55

 CCIL SAMPLE #:
 -12

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Cis-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Hexanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,3-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Tetrachloroethylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromoethane	EPA-8260	ND	5	1	UG/KG	12/3/2007	GAP
Chlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Ethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
m,p-Xylene	EPA-8260	ND	20	1	UG/KG	12/3/2007	GAP
Styrene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
o-Xylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromoform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Isopropylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Propyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3,5-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
T-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,4-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
S-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
P-Isopropyltoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3 Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,4-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Butylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromo 3-Chloropropane	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,2,4-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Hexachlorobutadiene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

425 356-2600

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 11:55

 CCIL SAMPLE #:
 -12

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Naphthalene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Naphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
1-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
2-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluorene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Phenanthrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[A]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Chrysene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[B]Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[K]Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo(A)Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Dibenz[A,H]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[G,H,I]Perylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
PCB-1016	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1221	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1232	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1242	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1248	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1254	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1260	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
Arsenic	EPA-6010	5.4	5	4	MG/KG	12/3/2007	CEO
Cadmium	EPA-6010	ND	1	4	MG/KG	12/3/2007	CEO
Chromium	EPA-6010	32	1	4	MG/KG	12/3/2007	CEO
Lead	EPA-6010	5.8	5	4	MG/KG	12/3/2007	CEO
Mercury	EPA-7471	0.03	0.02	1	MG/KG	12/3/2007	CEO

```
425 356-2600
```


CERTIFICATE OF ANALYSIS							
CLIENT: GEOENGINEE 600 STEWART SUITE 1700	RS, INC. ⁻ ST. PLAZA 600 BUILDING,	DATE: CCIL JOB #:	2/1/2008 0711151				
SEATTLE, WA	98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336				
CLIENT CONTACT: CLIENT PROJECT ID: CLIENT SAMPLE ID: CCIL SAMPLE #:	JIM ROTH 5147-012-00 11/30/2007 11:55 TP-3-8.0 -12						

DATA RESULTS							
ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS By
* "ND" INDICATES ANALYTE ANALYZED FOD BLIT	NOT DETECTED AT LEVEL /		PEDODTINIC LIMIT IS CIVEN				

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Cal to

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 12:05

 CCIL SAMPLE #:
 -13

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	ND	3	1	MG/KG	12/4/2007	DLC
TPH-Diesel Range	NWTPH-DX	ND	25	1	MG/KG	12/3/2007	EBS
TPH-Oil Range	NWTPH-DX	ND	50	1	MG/KG	12/3/2007	EBS
Dichlorodifluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Vinyl Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichlorofluoromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acetone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Methylene Chloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Acrylonitrile	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Methyl T-Butyl Ether	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Butanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Cis-1,2-Dichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Chloroform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Carbon Tetrachloride	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trichloroethene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromomethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromodichloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Trans-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Methyl-2-Pentanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
Toluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

FAX 425 356-2626

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 12:05

 CCIL SAMPLE #:
 -13

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Cis-1,3-Dichloropropene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2-Trichloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Hexanone	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,3-Dichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Tetrachloroethylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Dibromochloromethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromoethane	EPA-8260	ND	5	1	UG/KG	12/3/2007	GAP
Chlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,1,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Ethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
m,p-Xylene	EPA-8260	ND	20	1	UG/KG	12/3/2007	GAP
Styrene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
o-Xylene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromoform	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Isopropylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,1,2,2-Tetrachloroethane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichloropropane	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Bromobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Propyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
2-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3,5-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
4-Chlorotoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
T-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,4-Trimethylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
S-Butyl Benzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
P-Isopropyltoluene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,3 Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,4-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
N-Butylbenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2-Dibromo 3-Chloropropane	EPA-8260	ND	50	1	UG/KG	12/3/2007	GAP
1,2,4-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Hexachlorobutadiene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP

FAX 425 356-2626

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	

 CLIENT CONTACT:
 JIM ROTH

 CLIENT PROJECT ID:
 5147-012-00

 CLIENT SAMPLE ID:
 11/30/2007
 12:05

 CCIL SAMPLE #:
 -13

DATA RESULTS

ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
Naphthalene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
1,2,3-Trichlorobenzene	EPA-8260	ND	10	1	UG/KG	12/3/2007	GAP
Naphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
1-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
2-Methylnaphthalene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Acenaphthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluorene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Phenanthrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[A]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Chrysene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[B]Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[K]Fluoranthene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo(A)Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Dibenz[A,H]Anthracene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
Benzo[G,H,I]Perylene	EPA-8270 SIM	ND	0.02	1	MG/KG	12/6/2007	RAL
PCB-1016	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1221	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1232	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1242	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1248	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1254	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
PCB-1260	EPA-8082	ND	0.1	1	MG/KG	12/4/2007	RAL
Arsenic	EPA-6010	ND	5	4	MG/KG	12/3/2007	CEO
Cadmium	EPA-6010	ND	1	4	MG/KG	12/3/2007	CEO
Chromium	EPA-6010	11	1	4	MG/KG	12/3/2007	CEO
Lead	EPA-6010	ND	5	4	MG/KG	12/3/2007	CEO
Mercury	EPA-7471	ND	0.02	1	MG/KG	12/3/2007	CEO

CERTIFICATE OF ANALYSIS				
CLIENT: GEOENGINEE 600 STEWART SUITE 1700	RS, INC. ⁻ ST. PLAZA 600 BUILDING,	DATE: CCIL JOB #:	2/1/2008 0711151	
SEATTLE, WA	98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336	
CLIENT CONTACT: CLIENT PROJECT ID: CLIENT SAMPLE ID: CCIL SAMPLE #:	JIM ROTH 5147-012-00 11/30/2007 12:05 TP-4-2.0 -13			

DATA RESULTS							
ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
	IT NOT DETECTED AT LEVEL A		DEDODTINIC I IMIT IS CIVEN				

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Cal to

CERTIFICATE OF ANALYSIS

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700	DATE: CCIL JOB #:	2/1/2008 0711151
SEATTLE, WA 98101	DATE RECEIVED: WDOE ACCREDITATION #:	11/30/2007 C1336

CLIENT CONTACT: JIM ROTH CLIENT PROJECT ID: 5147-012-00

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

CCIL SAMPLE ID	METHOD	SUR ID	SPIKE AMOUNT	% RECV
0711151-03		ТЕТ	250 PPB	68
0711151-03		C25	5 PPM	112
0711151-03	EPA-8260	1 2-Dichloroethane-d4		106
0711151-03	EPA-8260			100
0711151-03	EPA-8260	4-Bromofluorobenzene	100 PPB	106
0711151-03	EPA-8270 SIM			83
0711151-03	EPA-8082		170 PPB	0J Q1
0711151-03	EPA-8082	DCB	170 PPB	84
0744454.00		TET		70
0711151-06		IFI C25	250 PPB	73
0711151-06				04
0711151-06	EPA-8260	T,2-Dichloroethane-d4	100 PPB	108
0711151-06	EPA-8260	I oluene-d8	100 PPB	102
0711151-06	EPA-8260	4-Bromonuorobenzene		117
0711151-06	EPA-8270 SIM	Terpnenyi-d14		107
0711151-06	EPA-8082	ICMX	170 PPB	76
0711151-06	EPA-8082	DCB	170 PPB	80
0711151-12	NWTPH-GX	TFT	250 PPB	62
0711151-12	NWTPH-DX	C25	5 PPM	108
0711151-12	EPA-8260	1,2-Dichloroethane-d4	100 PPB	107
0711151-12	EPA-8260	Toluene-d8	100 PPB	101
0711151-12	EPA-8260	4-Bromofluorobenzene	100 PPB	102
0711151-12	EPA-8270 SIM	Terphenyl-d14	1 PPM	95
0711151-12	EPA-8082	ТСМХ	170 PPB	77
0711151-12	EPA-8082	DCB	170 PPB	72
0711151-13	NWTPH-GX	TFT	250 PPB	87
0711151-13	NWTPH-DX	C25	5 PPM	100
0711151-13	EPA-8260	1,2-Dichloroethane-d4	100 PPB	108
0711151-13	EPA-8260	Toluene-d8	100 PPB	100
0711151-13	EPA-8260	4-Bromofluorobenzene	100 PPB	103
0711151-13	EPA-8270 SIM	Terphenyl-d14	1 PPM	112
0711151-13	EPA-8082	TCMX	170 PPB	99
0711151-13	EPA-8082	DCB	170 PPB	98

CERTIFICATE OF ANALYSIS	
-------------------------	--

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, **SUITE 1700** SEATTLE, WA 98101

DATE:	2/1/2008
CCIL JOB #:	0711151

DATE RECEIVED: 11/30/2007 WDOE ACCREDITATION #: C1336

CLIENT CONTACT: JIM ROTH CLIENT PROJECT ID: 5147-012-00

QUALITY CONTROL RESULTS

BLANK RESULTS

METHOD	RESULT	ASSOCIATED SAMPLES
NWTPH-GX (TPH-Volatile Range)	ND(<3)	0711151 -3, 6, 12, 13
NWTPH-DX (TPH-Diesel Range)	ND(<25)	0711151 -3, 6, 12, 13
NWTPH-DX (TPH-Oil Range)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (Dichlorodifluoromethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Chloromethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Vinyl Chloride)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Bromomethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Chloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Trichlorofluoromethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Acetone)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (1,1-Dichloroethene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Methylene Chloride)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Acrylonitrile)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (Methyl T-Butyl Ether)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Trans-1,2-Dichloroethene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,1-Dichloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (2-Butanone)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (Cis-1,2-Dichloroethene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (2,2-Dichloropropane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Bromochloromethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Chloroform)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,1,1-Trichloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,1-Dichloropropene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Carbon Tetrachloride)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2-Dichloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Benzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Trichloroethene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2-Dichloropropane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Dibromomethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Bromodichloromethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Trans-1,3-Dichloropropene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (4-Methyl-2-Pentanone)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (Toluene)	ND(<10)	0711151 -3, 6, 12, 13
	Page 19	

Everett, WA 98208 425 356-2600

FAX 425 356-2626

CERTIFICATE OF ANALYSIS	
-------------------------	--

CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, **SUITE 1700** SEATTLE, WA 98101

DATE:	2/1/2008
CCIL JOB #:	0711151

DATE RECEIVED: 11/30/2007 WDOE ACCREDITATION #: C1336

CLIENT CONTACT: JIM ROTH CLIENT PROJECT ID: 5147-012-00

QUALITY CONTROL RESULTS

BLANK RESULTS

METHOD	RESULT	ASSOCIATED SAMPLES
EPA-8260 (Cis-1,3-Dichloropropene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,1,2-Trichloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (2-Hexanone)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (1,3-Dichloropropane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Tetrachloroethylene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Dibromochloromethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2-Dibromoethane)	ND(<5)	0711151 -3, 6, 12, 13
EPA-8260 (Chlorobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,1,1,2-Tetrachloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Ethylbenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (m,p-Xylene)	ND(<20)	0711151 -3, 6, 12, 13
EPA-8260 (Styrene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (o-Xylene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Bromoform)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Isopropylbenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,1,2,2-Tetrachloroethane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2,3-Trichloropropane)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Bromobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (N-Propyl Benzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (2-Chlorotoluene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,3,5-Trimethylbenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (4-Chlorotoluene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (T-Butyl Benzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2,4-Trimethylbenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (S-Butyl Benzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (P-Isopropyltoluene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,3 Dichlorobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,4-Dichlorobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (N-Butylbenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2-Dichlorobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2-Dibromo 3-Chloropropane)	ND(<50)	0711151 -3, 6, 12, 13
EPA-8260 (1,2,4-Trichlorobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (Hexachlorobutadiene)	ND(<10)	0711151 -3, 6, 12, 13
	Page 20	

Everett, WA 98208

425 356-2600

CLIENT: GEOENGINEERS, INC. DATE: 600 STEWART ST. PLAZA 600 BUILDING, CCIL JOB #: **SUITE 1700** SEATTLE, WA 98101 DATE RECEIVED: 2/1/2008 0711151

11/30/2007 WDOE ACCREDITATION #: C1336

CLIENT CONTACT: JIM ROTH CLIENT PROJECT ID: 5147-012-00

QUALITY CONTROL RESULTS

BLANK RESULTS

METHOD	RESULT	ASSOCIATED SAMPLES
EPA-8260 (Naphthalene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8260 (1,2,3-Trichlorobenzene)	ND(<10)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Naphthalene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (1-Methylnaphthalene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (2-Methylnaphthalene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Acenaphthylene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Acenaphthene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Fluorene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Phenanthrene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Anthracene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Fluoranthene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Pyrene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Benzo[A]Anthracene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Chrysene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Benzo[B]Fluoranthene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Benzo[K]Fluoranthene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Benzo(A)Pyrene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Indeno[1,2,3-Cd]Pyrene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Dibenz[A,H]Anthracene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8270 SIM (Benzo[G,H,I]Perylene)	ND(<0.02)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1016)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1221)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1232)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1242)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1248)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1254)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-8082 (PCB-1260)	ND(<0.1)	0711151 -3, 6, 12, 13
EPA-6010 (Arsenic)	ND(<5.0)	0711151 -3, 6, 12, 13
EPA-6010 (Cadmium)	ND(<1.0)	0711151 -4
EPA-6010 (Cadmium)	ND(<1.0)	0711151 -3, 6, 12, 13
EPA-6010 (Chromium)	ND(<1.0)	0711151 -3, 6, 12, 13
EPA-6010 (Lead)	ND(<5.0)	0711151 -3, 6, 12, 13
EPA-7471 (Mercury)	ND(<0.02)	0711151 -3, 6, 12, 13
	Page 21	

Everett, WA 98208 425 356-2600

FAX 425 356-2626

CERTIFICATE OF ANALYSIS													
CLIENT: GEOENGINEERS, INC. 600 STEWART ST. PLAZA 600 BUILDING, SUITE 1700 SEATTLE, WA 98101	DATE: CCIL JOB #: DATE RECEIVED:	2/1/2008 0711151 11/30/2007											
	WDOE ACCREDITATION #:	C1336											

CLIENT CONTACT: JIM ROTH CLIENT PROJECT ID: 5147-012-00

QUALITY CONTROL RESULTS

SPIKE/SPIKE DUPLICATE RESULTS

METHOD	ANALYTE	ASSOCIATED SAMPLES	SPIKE AMOUNT	DILUTION FACTOR	SPIKE RECOVERY	SPIKE DUP RECOVERY	RPD
NWTPH-GX	TPH-Volatile Range	0711151 -3, 6, 12, 13	25 MG/KG	1	76 %	75 %	1
NWTPH-DX	TPH-Diesel Range	0711151 -3, 6, 12, 13	125 MG/KG	1	92 %	93 %	1
EPA-8260	1,1-Dichloroethene	0711151 -3, 6, 12, 13	10 UG/KG	1	91 %	85 %	6
EPA-8260	Benzene	0711151 -3, 6, 12, 13	10 UG/KG	1	94 %	92 %	2
EPA-8260	Trichloroethene	0711151 -3, 6, 12, 13	10 UG/KG	1	90 %	87 %	3
EPA-8260	Toluene	0711151 -3, 6, 12, 13	10 UG/KG	1	93 %	90 %	3
EPA-8260	Chlorobenzene	0711151 -3, 6, 12, 13	10 UG/KG	1	96 %	95 %	1
EPA-8270 SIM	Naphthalene	0711151 -3, 6, 12, 13	0.5 MG/KG	1	91 %	100 %	10
EPA-8270 SIM	Acenaphthene	0711151 -3, 6, 12, 13	0.5 MG/KG	1	89 %	99 %	10
EPA-8270 SIM	Pyrene	0711151 -3, 6, 12, 13	0.5 MG/KG	1	113 %	124 %	10
EPA-8270 SIM	Benzo[G,H,I]Perylene	0711151 -3, 6, 12, 13	0.5 MG/KG	1	96 %	109 %	13
EPA-8082	PCB-1016	0711151 -3, 6, 12, 13	0.17 MG/KG	1	114 %	118 %	3
EPA-8082	PCB-1260	0711151 -3, 6, 12, 13	0.17 MG/KG	1	114 %	118 %	3
EPA-6010	Arsenic	0711151 -3, 6, 12, 13	20 MG/KG	1	93 %	96 %	3
EPA-6010	Cadmium	0711151 -4	20 MG/KG	1	101 %	101 %	0
EPA-6010	Cadmium	0711151 -3, 6, 12, 13	20 MG/KG	1	92 %	94 %	2
EPA-6010	Chromium	0711151 -3, 6, 12, 13	20 MG/KG	1	94 %	96 %	2
EPA-6010	Lead	0711151 -3, 6, 12, 13	20 MG/KG	1	93 %	94 %	1
EPA-7471	Mercury	0711151 -3, 6, 12, 13	1 MG/KG	1	92 %	93 %	1

APPROVED BY:

Red Bagun

the second se	

CCI Analytical Laboratories 8620 Holly Drive Everett, WA 98208 Phone (425) 356-2600 (206) 292-9059 Seattle (425) 356-2626 Fax

Chain Of Custody/

CCI Job# (Laboratory Use Only)

4.5

711151

7

	(200) 232 (425) 356 http://www	-2626 Fax w.ccilabs.com	'n .										-					Date	<i>][.</i>	30.	<u>ച</u> Pa	ge	Of	7	<u> </u>	
ſ	THIS SHIP	-017	-02			AN	ALYS	SIS F	REQ	UES	TEL)								,	OTHE	R (Specify)) 			· 1
	REPORT TO COMPANY: (JEOF	ngir	reers												·	W					V					
	MANAGER:	RoH	<u>h</u>												270	270 SI	2			lerbs [+	<u>}</u>		ŀ		
	ADDRESS: 600	H 1702	ł						260			EPA 8	EPA-8	/808;	4		St 🗆	ţ,	1			Ň				
	Seattle Wa										09	EPA 8			s by I	AH) by	8081	Pol		Be	6			S	ШЦ	
	PHONE: 72 - 27L	FAX:		. <u> </u>	<u> </u>					\-826	PA 82	ds by	(water)		ponod	ons (P.	Ŋ EP♪			hi-Vol	016			NER	8	
		E-MAIL	<u>.</u>			1				Ē	s by E	unod) SIM ((lios) (Com	Irocarb		CRA-	5	Ser				NTA	B	
	COMPANY:					1			021	3021	olatife	Com	A 826	A 826	rganic	赴C Hyd	cides	X	Specif	VOA		} .		0 0	Ŭ	
	ATTENTION: ATTENTION:					물	×	X	EPA-8	EPA-	ted V	rganic	by EP	Þ.E	tije O	Aroma	Pesti	TCA-	ther (tals	, , ,				Ē	
	ADDRESS:					돌	TPH-I	-H-L	у by	BE by	ogena	atie	3/EDC	3/EDC	mivola	ycyclic	Å	tals-N	tals 0	LP-Me	R			UMB	ECE	
	SAMPLE I.D.	DATE	TIME	TYPE	LAB#	Ž	Ň	MN	E	F	Hal	<u>§</u>	Ē	ä	Sei	Pol	PC	¥e Xe	Me	₽				Z	Ē	
	1 TP-1-2.0	11-30-07	1015	S	1																			<u>></u>		
ORAT	$TP_{1} = (1,0)$		1020		2																		_	7		0
ORY	2		1075		7		×	×				\times			(\Im	X	X						5	-	
ğ	3. 11-1-6.0		100		4			-	7															Ż		
¥	4. <u>TP-1-8.0</u>	+ +	1050		<u> </u>	1												1			_			2		
	5. TP - 2 - 2.0		1040									\sim				0								5	·	
	6. TP-2-4.0		1045		_6		X	\prec	1			X				3	X							-	-	
	7. TP-2-6.0		1050		7																			د	<u> </u>	
	8 TP-Z-8.0		1055		8						ļ													- 73		
	0 TP. 3-7.0		1140		9																			22		
	· · · · · · · · · · · · · · · · · · ·		1145	+	,0																			5 2		
	10. 11-30 4.00	<u> </u>		Po	id ac		ala	#	1	.3	1	7		1.	<u>ີ</u>	12		<u> </u>	10,	- 57	35	low 1	te			
	SPECIAL INSTRUCTIONS	accents and	processes th	is request on	the terms	and c	:ondit	ions	set fo	orth o	on the	reve	erse s	side.	∽ , By its	s sigr	natur	e her	eon,	Custo	mer acc	epts these to	erms and	conditio	ons.	
	SIGNATURES (Name, Compa	iny, Date, Ti	me):								_				0 i	TI	JRN	ARO	UNE	REC	UESTE	D in Busine	ss Days	Ŕ		
	1. Relinquished By	2 6-E1-	11-30-0-	21	545	-					Orga	anic,	, ме []		a ind 7	orga		-naiy] [ySIS		Spec	ify:	· · · · · · ·			
	Received By: Shawh	Kohina	on CC	FAC 14	30/07	1	549	5			Standa	j d Fuel	ا <u>م</u> کا		N NCA	rbon	Ans	J L alvsig	S			<u>~ (</u>	eg -	-1 (-hem	
	2. Relinquished By:								<u> </u>				5	Ĵ	Š		SAM		-	C	<u>λ γ</u>	Lasurts	k l.	sh h	<u>. 4</u>	1
	Received By:	· •											Standard					·		S.	Maround re	equest less than s	tandard may	incur Rusi	Charges	~~ 7 ~~

LABORATORY COPY

CCI Analytical Laboratories 8620 Holly Drive Everett, WA 98208 Phone (425) 356-2600 (206) 292-9059 Seattle (425) 356-2626 Fax http://www.ccilabs.com

Chain Of Custody/ Laboratory Analysis Request

CCI Job# (Laboratory Use Only)

711151	
--------	--

T

(425) 356 http://ww	-2626 Fax w.ccilabs.con	n															Date	<u>، اا ،</u>	-30	<i>ن</i> ہ	Pag	e	2	Of.	<u></u>		
PROJECT ID: 5747 -	012-0	SU I			AN	IALY	SIS	REC	QUE	STE	D									ОТ	HER	(Spec	;ify)				
COMPANY: LECOE	naine	ens																									
PROJECT MANAGER:	D.H		-												SIM				S								
ADDRESS: 1000 St	unt	St. S	suite 1	700										8270	-8270	82	F		Herb								~
Seatth	Ua										A 826			y EPA	by EP#	81/80			est								<u>s</u>
PHONE: 722-2674	FAX:								260	8260	oy EP	(Ja		nds b	(HAH)	PA 80	P. H					-			1	22	
P.O. NUMBER:					PA-8	/ EPA	l spun	M (wat	()	nodu	arbons	₽ E	8-4		emi-V								3				
INVOICE TO COMPANY:										lles by	loduuc	560 SII	560 (si	ic Co	lydroca	S S	RCR	jt)	A								<u></u>
ATTENTION: SAME								-802	A-802	Volati	nic CC	EPA 82	EPA 82	Organ	natic H	sticide	X	(Spec	S I						1	5	z
ADDRESS:	ΙŢ	Ă	Ş	y EPA	oy EP	nated	Orga	DC by	DC PA	olatile	ic Aror	¥ ₩	MTC/	Other	letais							SEH (
SAMPLEID	DATE	TIME	TVPF	IAR#	Ē	MIP	MTP	<u>a</u>	I BE	aloge	olatile	DB/EI	08/EI	emivo	otycycl	8	etals-	etals	CLP-N								
		Liker				Z	Z	<u> </u>	2		>	ш	ω	S	<u>e</u>		Σ	Σ	F		+			┝──┾╸		2 1	4
1. 1. 1.3-6.0	1-3057	νψου	<u> </u>												~											د 	
2. TP-3-3.0	<u> </u>	1155		12		\mathbf{X}	\times				Х				$\underline{\otimes}$	\times	×							\vdash	>	>	
3. TP.4-2.0		1205]3		$\boldsymbol{\prec}$	X				\times				\mathfrak{O}	×	\times									5	_
4. TP-4-4.0		1210		14				1			`		·												-	z	
= tp-4-60		12.15		15																					(ž	
5. TP.11.4.		10.2	F	16																						2	18
6. <u>IP CI 0.0</u>	-	120																									40
7																									_		_
8																								\vdash		_	
9																											
10.																											
	Po	cd N	am Al	#	/	2	4	2	11)	12	15	2	15		0~	. <	ביע	25	In	w	1A					
CCI Analytical Laboratories, Inc ad	cepts and p	rocesses this	request or	n the terms a	and c	onditi	ions :	set fo	orth o	n the	reve	rse si	ide. E	By its	sign	ature	here	eon, (Custo	mer	accep	ts thes	e term	s and (condil	ions.	
SIGNATURES (Name, Compar	y, Date, Tin	ne):	•							_					TU	JRN/	ROU	JND	REC	UES	TED	n Busi	ness l	Days*	,		
1. Relinquished By:																											
Received By. Shawn &	Received By Shawn Kabuson CCIAL 11/30									10 Standard	L	5	Z	k l	2	1	تً] ا	AY		_(6	<u>نے '</u>		(he	h	
2. Relinquished By:							ì	-uels	5 & F	iyara	ocar (Ana	iysis			_	Zes	JHS								
Received By:				•							:	Standard	P		لينيا		L		* 714			et lace the		ini mav i		h Cha	

Remedial Investigation Data Report

Former Shell Oil Tank Farm Anacortes, Washington Ecology Agreed Order No. DE-08TCPHQ-5474

for

Washington State Department of Ecology on Behalf of Port of Anacortes

April 19, 2013

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Remedial Investigation Data Report

Former Shell Oil Tank Farm Anacortes, Washington Ecology Agreed Order No. DE-08TCPHQ-5474

File No. 5147-012-02

April 19, 2013

Prepared for:

Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504-7600

Attention: Sandra Caldwell

On Behalf of:

Port of Anacortes First and Commercial Avenue P.O. Box 297 Anacortes, Washington 98221

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Robert S. Trahan Environmental Geologist

111

John M. Herzog, PhD Principal

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2013 by GeoEngineers, Inc. All rights reserved.

Table of Contents

LIST	OF ABBREVIATIONS AND ACRONYMS	11
1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	1
2.1.	Site Description	1
2.2.	Historical Operations and Site Uses	2
2.3.	Previous Investigations	2
	2.3.1. Summary of Historic Soil Conditions	2
	2.3.2. Summary of Historic Groundwater Conditions	3
3.0	REMEDIAL INVESTIGATION AND STUDY RESULTS	3
3.1.	Geophysical Investigation	4
	3.1.1. Historic Monitoring Well Survey and Results	5
	3.1.2. Historic UST Survey and Results	5
3.2.	Soil Investigation	5
	3.2.1. Soil Sample Collection and Chemical Analytical Results	5
3.3.	Groundwater Investigation	6
	3.3.1. Groundwater Sample Collection and Chemical Analytical Results	6
4.0	SUMMARY OF RI FIELD INVESTIGATION FINDINGS	7
4.1.	Soil Conditions	7
4.2.	Groundwater Conditions	7
5.0	LIMITATIONS	8
6.0	REFERENCES	8

LIST OF TABLES

Table 1.	Summary of Historic Soil Chemical Analytical Data
Table 2.	Summary of Historic Groundwater Analytical Data
Table 3.	Summary of Soil Investigation Chemical Analytical Data
Table 4.	Summary of Groundwater Investigation Chemical Anaytical Data

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Soil Investigation Sampling Locations
- Figure 4. Groundwater Investigation Sampling Locations
- Figure 5. GeoPhysical Survey
- Figure 6. Soil Investigation Summary, Metals Exceedances
- Figure 7. Soil Investigation Summary, PAH Exceedances
- Figure 8. Soil Investigation Summary, TPH Exceedances
- Figure 9. Soil Investigation Summary, VOC Exceedances
- Figure 10. Cross-Section A-A'
- Figure 11. Cross-Section B-B'

APPENDICES

Appendix A. Geophysical Survey

Appendix B. Field Program

Table B-1. Groundwater Monitoring Well Completion Data

Table B-2. Groundwater Monitoring Well Coordinates

Figure B-1. Exploartion Log Key

Figures B-2 through B-44. Exploration Logs

Appendix C. Historic Exploration Logs

Appendix D. Chemical Analytical Laboratory Reports

Appendix E. Data Verification Reports

LIST OF ABBREVIATIONS AND ACRONYMS

1,1,1-TCA	1,1,1-Trichloroethane
ASTM	American Society for Testing and Materials
BETX	Benzene, ethylbenzene, toluene and xylenes
BGS	Below ground surface
cPAHs	Carcinogenic polycyclic aromatic hydrocarbons
City	City of Anacortes
COPC	Contaminants of potential concern
DCE	[cis] 1,2-Dichloroethene
Ecology	Washington State Department of Ecology
EDB	Ethylene dibromide
EDC	Ethylene dichloride
FS	Feasibility Study
GeoEngineers	GeoEngineers, Inc.
GPR	Ground penetrating radar
HVOCs	Halogenated volatile organic compounds
MH	Megahertz
MTBE	Methyl tert-butyl ether
MTCA	Model Toxics Control Act
mg/kg	Milligram per kilogram
mg/L	Milligrams per liter
MLLW	Mean lower low water
NOAA	National Oceanic and Atmospheric Administration
PAHs	Polycyclic aromatic hydrocarbons
PCBs	Polychlorinated biphenyls
PCE	Tetrachloroethylene
Port	Port of Anacortes
TCE	Trichloroethylene
TCFM	Trichlorofluoromethane
TEQ	Toxicity equivalent
ТРН	Total petroleum hydrocarbons
RI	Remedial Investigation

UST	Underground Storage Tank
VC	Vinyl chloride
VOCs	Volatile organic compounds

1.0 INTRODUCTION

This document presents the results of the Remedial Investigation (RI) field study completed for the Former Shell Oil Tank Farm Site (Site) located in Anacortes, Washington. The Site is formally referenced in the Washington State Department of Ecology (Ecology) databases as the Former Shell Oil Tank Farm Site (Ecology Facility Site Identification No. 4781157) and is generally located between 13th Street and 14th East of Commercial Avenue in Anacortes, Washington (Figure 1). The Site is subject to cleanup actions by the Port of Anacortes (Port) in accordance with the requirements of Agreed Order No. DE-08TCPHQ-5474 (Agreed Order; Ecology, 2008). Completion of the RI is a requirement of the Agreed Order scope of work.

The purpose of the RI field study was to collect data to address data gaps identified in the Ecology-approved Former Shell Oil Tank Farm RI/FS Work Plan (Work Plan; GeoEngineers, 2009) to evaluate the nature and extent of contamination in both soil and groundwater. The results of this RI and previous investigations completed at and in the vicinity of the Site are summarized below.

2.0 BACKGROUND INFORMATION

2.1. Site Description

For the purposes of the RI, the Site is generally divided into two separate areas that are based on the historical use of the property. The two areas are the historical Tank Farm Area and the historical Fuel Supply Line Area. The Tank Farm and Fuel Supply Line Areas are shown relative to the Site on Figure 2.

The historical Tank Farm Area was located between 13th and 14th Streets on Q Avenue. Currently, this portion of the Site is generally flat, surfaced with crushed rock, and has been used as a parking lot for vehicles and boat trailers since the late 1980s. Historically, fuel supply lines were routed off the eastern portion of the Former Tank Farm Area and across Q Avenue through a bulkhead and along a pier that extended into Fidalgo Bay. The pipelines terminated near the end of the historical dock at approximately the location the present day B-Dock (Figure 2). All above ground structures associated with historical operations at the Site have been removed; underground structures at the former Tank Farm have reportedly been removed. However, it is not known whether the historic fuel supply lines remain beneath the ground surface.

Adjacent properties include a McDonald's restaurant to the west that was constructed in the 1970s. The McDonald's property was the site of a Shell automotive service station from the mid-1940s to 1966. The property south of the Tank Farm (across 14th Street) was a transformer storage facility for Puget Sound Power and Light from the 1940s until 1970, when the current power distribution station (substation) was constructed. A Safeway grocery store is located north of the Site, across 13th Street. Parking lots and commercial buildings on Port property and the Cap Sante Boat Haven are located east-northeast of the Site across Q Street (Figure 2).

2.2. Historical Operations and Site Uses

The Tank Farm Area was originally a portion of the Fidalgo Bay tide flats, which were filled to the current grade (up to the former bulkhead just east of Q Avenue shown on Figure 2) between 1925 and 1929. The property was acquired by the Port in 1929 and leased to Shell Oil Company in 1930 for use as a bulk fuel storage and distribution facility that primarily handled gasoline and diesel fuels. Prior to 1947, the area east of Q Avenue (east of the former Tank Farm Area) consisted of tide flats. From 1930 to approximately 1947, the historic fuel supply lines hung from historic fuel pier over the tide flats east of Q Avenue. In the late 1940s to early 1950s, the area east of Q Avenue was filled with dredged material from the adjacent federal waterway, and a second bulkhead was constructed farther to the east near the current shore of Fidalgo Bay (Figure 2). During this time, the hanging fuel lines were re-configured as underground lines. The Site operated as a bulk fuel storage facility under Shell and various bulk product distributors until 1987. Operations on the property ended in 1987 and the bulk terminal was reportedly decommissioned, including removal of all tanks, associated piping, and Site structures.

Additional information regarding the Site use history is presented in the Work Plan (GeoEngineers, 2009). The approximate locations of the historical pump house, fill stand, underground storage tank (UST), gasoline and diesel above ground storage tanks (ASTs), and associated product supply lines are shown on Figure 2.

2.3. Previous Investigations

Previous soil and groundwater investigations completed within and/or adjacent to the Historic Fuel Supply Line and Tank Farm Areas include:

- Preliminary Environmental Site Assessment in 1987 (Hart Crowser, 1987);
- Limited Due Diligence Investigation in 2005 (Floyd | Snider, 2005);
- Cap Sante Marine Area Remedial Investigation in 2007 (Landau, 2007a); and
- Limited Soil Characterization Study in 2007 (GeoEngineers, 2008).

Detailed information regarding these previous investigations is presented in the Former Shell Oil Tank Farm RI/FS Work Plan (Shell Work Plan; GeoEngineers 2009) and Cap Sante Marine RI/FS and Interim Action Work Plan (Cap Sante Work Plan; Landau, 2007b). The results of these previous studies and historical field evidence of observed petroleum contamination at and surrounding the Site are briefly discussed in the following sections.

2.3.1. Summary of Historic Soil Conditions

Contaminants of potential concern (COPCs) identified in soil during previous investigations at the Site at concentrations exceeding MTCA Method A cleanup levels included gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, cPAHs, and cadmium. The petroleum-related exceedances in soil were found near the former UST(s), fill stand, pump house, and near the historic fuel supply lines in the northeast portion of the Site. The petroleum contamination at the Tank Farm portion of the Site was generally encountered at depths ranging from 4 to 9.5 feet below ground surface (bgs). Surficial oily soil identified in the 1987 Hart Crowser investigation within the Tank Farm Area was reportedly excavated. The excavated materials were thought to

comprise less than 10 cubic yards in volume. East of Q Avenue, petroleum-related contamination was identified at exceedances were found at four locations within about 70 feet of the historic fuel supply lines at depths ranging from 0.5 to 11.5 feet bgs. The cadmium detection was thought to be an isolated exceedance at the southwest corner of the Tank Farm Area.

During construction of a new sewer/stormwater line in 2007, field screening evidence of petroleum-impacted soil was observed by the City of Anacortes (City). Field screening evidence of petroleum-impacted soil was encountered at depths ranging from 6 to 11 feet bgs in two manhole/utility line excavations (Figure 2) located within 13th Street northwest of the Site. As reported by the City, an oily sheen was frequently observed in a utility manhole located approximately 50 feet west of Q Avenue in 13th Street and downgradient of the manhole/utility line excavations (Figure 2).

Chemical analytical results for historic soil samples obtained during previous environmental studies are summarized in Table 1.

2.3.2. Summary of Historic Groundwater Conditions

COPCs identified in groundwater during previous investigations completed at the Site at concentrations exceeding MTCA Method A cleanup levels included diesel- and heavy oil-range petroleum hydrocarbons and total lead. Diesel- and/or heavy oil- range hydrocarbons were present in groundwater near the former ASTs, adjacent to the historic fuel supply lines in the northeast portion of the Tank Farm Area, and about 60 feet east of Q Avenue adjacent to the historic fuel supply lines. Total lead was detected in two monitoring wells located in the eastern third of the Tank Farm portion of the Site. The total lead exceedances in the two wells were from 1987 groundwater samples analyzed using an outdated analytical method and was reportedly biased high due to the level of turbidity observed in the water samples collected (Hart Crowser, 1987).

Chemical analytical results for historic groundwater samples obtained during previous environmental studies are summarized in Table 2.

3.0 REMEDIAL INVESTIGATION AND STUDY RESULTS

Geophysical, soil and groundwater investigations were completed in accordance with the Ecology approved Shell Work Plan (GeoEngineers, 2009) to determine the existence of two historic monitoring wells and historic UST, and to further evaluate the nature and extent of contamination identified during previous investigations at the Site. Soil and groundwater investigation locations for this study and previous studies are shown on Figures 3 and 4, respectively.

COPCs for Site soil and groundwater include contaminants previously detected at levels exceeding preliminary cleanup levels, contaminants associated with historic storage and distribution of petroleum products, and dry cleaning solvents. Site COPCs include:

- Gasoline-range hydrocarbons;
- Diesel- and oil-range petroleum hydrocarbons;
- Volatile organic compounds (VOCs) including:

- Benzene, ethylbenzene, toluene and xylenes (BETX); and
- Fuel oxygenates methyl tert-butyl ether (MTBE), ethylene dibromide (EDB), and ethylene dichloride (EDC).
- Halogenated volatile organic compounds (HVOCs; dry cleaning solvents) including:
 - Tetrachloroethylene (PCE);
 - Trichloroethylene (TCE);
 - 1,1,1-trichloroethane (1,1,1-TCA);
 - Trichlorofluoromethane (TCFM);
 - carbon tetrachloride; and
 - Breakdown products of PCE/TCE including dichloroethenes ([cis] 1,2-Dichloroethene; DCE) and vinyl chloride (VC):
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyls (PCBs); and
- Metals (cadmium and lead).

Based on the findings of this RI, historical PAH and petroleum-related exceedances in soil near the historical fuel supply lines are assumed to be not associated with the Shell Site due to the lack of evidence that soil contamination sourced from the historical fuel supply lines. Soil contamination at this location is likely the result of historical property use from an adjacent site (Cap Sante Marine Site) which is subject to cleanup actions by the Port under a separate Agreed Order between the Port and Ecology.

Field investigations and chemical analytical results of samples obtained are summarized in Sections 3.1 through 3.3. A detailed description of field investigation and sampling methodology is presented in the Shell Work Plan (GeoEngineers, 2009). Chemical analytical results for the soil and groundwater investigations were screened against the preliminary cleanup levels established for the Site. Soil and groundwater results from previous environmental studies are summarized in Tables 1 and 2, respectively. Soil and groundwater results from this RI are summarized in Tables 3 and 4, respectively.

3.1. Geophysical Investigation

Documentation for the removal of a historic 2,000- and/or 4,000-gallon UST within the Tank Farm Area was not identified during our review of historical records and reports. Similarly, there is no record of whether historic monitoring wells MW-1 and MW-2 at the Site were removed or decommissioned. Based on this uncertainty, a geophysical survey was completed by GeoRecon on August 8, 2011 to evaluate whether the UST and monitoring wells remain at the Site. Geophysical methods used to search for the UST and historic monitoring wells included ground penetrating radar (GPR) and electromagnetic surveying.

The areas of interest in which the geophysical survey was completed are shown on Figure 5. A copy of GeoRecon's survey report and GPR survey transects are presented in Appendix A. Survey results are summarized below.

3.1.1. Historic Monitoring Well Survey and Results

A Garrett GTI 2500 magnetometer was used to complete a survey within a 20-foot radius of the suspected locations of monitoring wells MW-1 and MW-2 to detect any potentially buried metal well monuments. No evidence of the buried monuments was identified during the electromagnetic survey.

3.1.2. Historic UST Survey and Results

A GSSI SIR 3000 GPR utilizing a 400 megahertz (MH) antenna was to complete a survey measuring approximately 46 feet by 46 feet centered on the suspected location of the UST using a grid spacing of approximately 3 feet. Based on the results of this survey, GPR anomalies indicative of a UST was not identified. The GPR survey did however show evidence of an excavation and backfill measuring approximately 12 feet long by 6 feet wide near the suspected location of the historic UST thus indicating that the tank had been previously removed.

3.2. Soil Investigation

Subsurface soil conditions were evaluated by completing direct-push borings GEI-1 through GEI-35 between November 27 and November 29, 2011, hollow stem auger borings MW-GEI-1 through MW-GEI-7 on February 15 and February 16, 2012, and by reviewing boring logs from previous studies. Based on soils encountered during this RI and previous studies, the subsurface conditions generally consist of fill material generally consisting of 5 to 10 feet of silty sand with varying amounts of silt and gravel overlying marine deposits generally consisting of silt and silty sand.

Field procedures and exploration logs for this RI Data Report are presented in Appendix B. Copies of historical exploration logs are presented in Appendix C. Soil sample collection and chemical analytical results are summarized below.

3.2.1. Soil Sample Collection and Chemical Analytical Results

Discrete soil samples from borings GEI-1 through GEI-35 and MW-GEI-1 were screened in the field for evidence of petroleum hydrocarbons and VOCs. Samples were obtained at approximately 2.5-foot depth intervals for possible chemical analysis. Field evidence of potential petroleum-related contamination (moderate to heavy sheen and/or elevated head space vapor measurements greater than 20 ppm) was identified in shallow soil samples obtained from borings GEI-5 and GEI-8 between approximately 1 and 3 feet bgs. Deeper field screening evidence of petroleum-related contamination was identified in soil samples obtained from borings GEI-3, GEI-5, GEI-7, GEI-9, GEI-11 through GEI-13, GEI-17, GEI-18 and GEI-33 at depths ranging between approximately 3 and 17 feet bgs. Field screening evidence of petroleum-related contamination was not observed in soil samples obtained from other RI field study locations.

A total of 89 soil samples (including duplicate samples) were submitted to OnSite Environmental, Inc. (OnSite) located in Redmond, Washington for one or more COPC listed in Section 3.0. Soil samples were selected based on field screening results and location relative to potential sources of contamination identified in our historical review. Concentrations of the following analytes were detected at concentrations greater than the associated preliminary cleanup levels:

- Gasoline-range petroleum hydrocarbons exceeded the preliminary cleanup level of 30 milligrams per kilogram (mg/kg) in soil samples obtained at boring locations GEI-13 and GEI-14 at depths of 12.5 feet and 8 feet bgs, respectively;
- Diesel-range petroleum hydrocarbons exceeded the preliminary cleanup level of 2,000 mg/kg in soil samples obtained at boring locations GEI-3, GEI-5, GEI-7, GEI-8 and GEI-11 at depths ranging from 2.5 feet to 10 feet bgs;
- Heavy oil-range petroleum hydrocarbons exceeded the preliminary cleanup level of 2,000 mg/kg in soil samples obtained at boring location GEI-23 at a depth of 12.5 feet bgs;
- Benzene exceeded the preliminary cleanup level of 0.13 mg/kg in soil samples obtained at boring locations GEI-5 and GEI-13 at depths of 5 feet and 12.5 feet bgs, respectively; and
- Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene exceeded the preliminary cleanup level of 0.137 mg/kg in soil samples obtained at boring locations GEI-21, GEI-22, GEI-34 and MW-GEI-1 at depths ranging from 2.5 feet to 10 feet bgs.

All other analytes, including dry cleaning solvents, PCBs and metals either were not detected or were detected at concentrations less than their associated preliminary cleanup levels in soil samples submitted for chemical analysis.

Chemical analytical results for soil samples obtained during this RI field investigation are summarized in Table 3. Copies of the chemical analytical laboratory reports and data validation reports are presented in Appendix D and E, respectively.

3.3. Groundwater Investigation

The groundwater investigation included the installation and development of seven monitoring wells (GEI-MW-1 through GEI-MW-7), measuring groundwater levels and collection of groundwater samples at the Site. Monitoring well locations were selected in consultation with Ecology based on the soil investigation results summarized above. In general, monitoring wells are located downgradient of contaminants detected in soil at concentrations exceeding preliminary cleanup levels.

Details of the installation, development and surveying of monitoring wells GEI-MW-1 through GEI-MW-7 are presented in Appendix B. Groundwater sample collection and chemical analytical results are summarized below.

3.3.1. Groundwater Sample Collection and Chemical Analytical Results

Monitoring wells GEI-MW-1 through GEI-MW-7 were sampled on March 6, 2012. Monitoring well GEI-MW-7 was sampled during hours of low tide. Predicted low tide at the Site was 4.8 feet MLLW at 9:02 based on the U.S. National Oceanic and Atmospheric Administration (NOAA) tidal chart for Guemes Channel. Prior to sampling, groundwater levels were measured in each monitoring well using an electric water level indicator (e-tape) to the nearest 0.01 foot relative to the surveyed casing rim elevations. Measured groundwater elevations in monitoring wells GEI-MW-1 through GEI-MW-7 ranged between 6.50 and 9.58 feet MLLW. Based on the measured groundwater elevations, the inferred predominant groundwater flow direction is to the east toward Cap Sante

Waterway, with one exception. There appears to be a localized high in the groundwater table in the vicinity of GEI-MW-6. This localized high is likely being influence by a stormwater pond located northwest of monitoring well GEI-MW-6.

A total of 8 groundwater samples (including one duplicate sample) were submitted to OnSite for one or more COPC listed in Section 3.0. Concentrations of gasoline-range hydrocarbons, xylenes, PAHs and lead were detected in groundwater at locations GEI-MW-1 through GEI-MW-3 and GEI-MW-6. However, COPCs were not detected at concentrations exceeding preliminary groundwater cleanup levels in any of the groundwater samples submitted for chemical analysis.

Chemical analytical results for groundwater samples obtained during this RI are summarized in Table 4. Copies of the chemical analytical laboratory reports and data validation reports are presented in Appendix D and E, respectively.

4.0 SUMMARY OF RI FIELD INVESTIGATION FINDINGS

4.1. Soil Conditions

Soil encountered during this RI and previous studies generally consist of native marine deposits overlain by approximately 5 to 10 feet of dredged fill material, sourcing from the adjacent federal water way placed during the late 1940s to early 1950s.

Contaminants including gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, benzene, cPAHs and cadmium were detected in soil at concentrations exceeding preliminary soil cleanup levels in the vicinity of the historical Tank Farm Area. Other contaminants including dry cleaning solvents, PCBs and metals (lead) either were not detected, or were detected at concentrations less than their associated preliminary soil cleanup levels.

The approximate horizontal extent of metal (cadmium), PAHs, petroleum hydrocarbons and VOC exceedances associated with the Site, based on the field screening and chemical analytical results of this RI field investigation and previous environmental studies, are shown Figures 6 through 9, respectively. Subsurface conditions and the approximate vertical extent of soil contamination are shown in generalized geologic cross-sections on Figures 10 and 11. As previously stated, there is no direct evidence that the exceedances of PAHs and petroleum hydrocarbons in soil east of the Tank Farm Area were the result of releases from the historical fuel supply lines. Soil contamination at this location is, however, likely the result of historical property use of the Cap Sante Marine Site (adjacent site subject to cleanup actions by the Port).

4.2. Groundwater Conditions

The inferred groundwater flow direction for the Site is east toward Fidalgo Bay and ranges in elevation from approximately 6 to 8 feet MLLW.

Historically, petroleum hydrocarbons and metals (lead) were detected at concentrations exceeding preliminary groundwater cleanup levels in groundwater samples obtained from the Tank Farm Area. However, recent groundwater sample results indicate that groundwater at the Site is not impacted (i.e., petroleum hydrocarbons, PAHs and VOCs as well as other contaminants, including

dry cleaning solvents, PCBs and metals (cadmium) either were not detected or were detected at concentrations less than preliminary groundwater cleanup levels in all monitoring wells sampled).

5.0 LIMITATIONS

This report has been prepared for the exclusive use of the Port of Anacortes, their authorized agents and regulatory agencies in their evaluation of the Former Shell Tank Farm Site located in Anacortes, Washington. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

6.0 REFERENCES

- Floyd | Snider, Inc., 2008, "Limited Environmental Due Diligence Report, Former Shell Oil Tank Farm, Cap Sante Marine Lease Area," prepared for Port of Anacortes, November 8, 2008.
- GeoEngineers, Inc., 2009, "Work Plan, Remedial Investigation/Feasibility Study, Former Shell Soil Tank Farm, Prepared for the Washington State Department of Ecology." GEI File No. 5147-012-01, September 1, 2009.
- GeoEngineers, Inc., 2008, "Independent Remedial Action Completion Report, Former Shell Tank Farm, Storm Drain Re-Route, 13th Street and Q Avenue, Anacortes, Washington, Prepared for Port of Anacortes." GEI File No. 5147-012-00, April 18, 2008.
- Hart Crowser, Inc., 1987, "Preliminary Environmental Site Assessment, Petroleum Bulk Storage Facility, Anacortes Washington, Prepared for Port of Anacortes," May 27, 1987.
- Landau Associates (Landau, 2007a), "Work Plan, Remedial Investigation/Feasibility Study and Interim Action, Cap Sante Marine Lease Area, Anacortes, Washington," prepared for the Port of Anacortes, June 19, 2007.
- Landau Associates (Landau, 2007b), "Ecology Review Draft, Investigation Data Report, Cap Sante Marine Lease Area, Anacortes, Washington," Prepared for Port of Anacortes, July 25, 2007.
- Washington State Department of Ecology, 2008, "Agreed Order for Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm," Agreed Order No. DE-08TCPHQ-5474, June 6, 2008.

Table 1 Summary of Historic Soil Chemical Analytical Data Former Shell Oil Tank Farm

Anacortes, Washington

0			641.01.61	CHI 02 C1	611.03.63	611.03.63	CUI 02 C1	611 03 63	CHI 04 C1	611.04.63		CHI OF CO		CHI 06 61	
Sample ID	MW-1 S-4	MW-2 S-2	SHLUI-SI Flowd Smidor	SHLU2-SI	SHLU2-52	SHLU2-53	SHLU3-SL Eloyd Spidor	SFILU3-52	SHL04-SL Floyd Spidor	SILU4-52	SHLUD-SL Flowd Smidor	SHLUD-52	SHLUD-53	SHLU0-SL Eloyd Spidor	
Study	1987	1987	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	Preliminary Soil
Sample Date	4/21/1987	4/22/1987	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/26/2005	Cleanup Level ³
Sample Interval (ft bgs)	10 - 11.5	5 - 6.5	8 - 8.5	41004	41035	8 - 9.5	4 - 5.5	5.5 - 6.2	2 - 3.5	9.5	2 - 3.5	4.4 - 6.2	8-10	4-6	
Petroleum Hydrocarbons by NWTPH-HCI	D. NWTPH-G or NW	[PH-Dx (mg/kg)													
HCID	-					G, D, HO	ND		ND					ND	NE
Gasoline-Range	-	-	26 UJ	1,600 J	1,100 J	2,200 J		58 J		21 UJ	13 UJ	2,100 J	84 J		30/100 ⁴
Diesel-Range	20 U	3,300	7.6 U	22,000	510	5,100		11		110	120	1,100	180		2,000
Oil-Range	20 U		21	1,200 U	720	620 U		20		150	11 U	64 U	92		2,000
Volatile Organic Compounds (VOCs) by E	PA 8260 (mg/kg)											·			
Benzene	-	-	0.064 UJ	0.036 UJ	0.024 UJ	0.04 UJ		0.027 UJ		0.053 UJ	0.032 UJ	0.037 UJ	0.029 UJ		0.013
Ethylbenzene	-	-	0.13 UJ	0.67 J	0.66 J	1.8 J		0.11 J		0.11 UJ	0.065 UJ	1.7J	0.057 UJ		109
Toluene	-	-	0.13 UJ	0.071 UJ	0.048 UJ	0.1 J		0.053 UJ		0.11 UJ	0.065 UJ	0.074 UJ	0.057 UJ		18
Xylenes	-	-	0.26 UJ	0.4 J	0.36 J	0.001 J		0.064 J		0.21 UJ	0.13 UJ	1.1 J	0.11 UJ		9
Methyl tert-butyl ether (MTBE)	-	-					-	-	-	-	-	-		-	560
Ethylene Dibromide (EDB)	-	-						-						-	0.012
1,2-Dichloroethane (EDC)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.179
Tetrachloroethylene (PCE)	-	-						-						-	0.01
Trichloroethylene (TCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.044
1,1,1-Trichloroethane	-	-	-	-	-	-	-	-	-	-	-	-		-	13,957
Vinyl Chloride	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Trichlorofluoromethane (freon)	-	-	-	-	-	-	-	-	-	-	-	-		-	24,000
Carbon tetrachloride	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Polycyclic Aromatic Hydrocarbons (PAHs	s) by EPA 8270SIM	(mg/kg)		-					-		-		-	-	
Naphthalenes	-	-	-	-	-	-	-	-	-	-	-	-	-	-	140
Benzo(a)anthracene	-	-	-	-	-	-	-	-	-	-	-	-		-	0.13
Chrysene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.137
Benzo(b)fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-			0.43
Benzo(k)fluoranthene		-													0.43
Benzo(a)pyrene	-	-						-		-	-			-	0.14
Indeno(1,2,3-cd)pyrene	-	-						-		-	-				0.65
Dibenz(a,h)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3
Total cPAHs (TEQ) ⁵		-													0.137
Metals by EPA 6000/7000 Series (mg/k	kg)	-													
Arsenic		-													20
Cadmium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2
Chromium	-	-					-	-		-					120,000
Lead	10 U	10 U					-	-		-	-				250
Mercury	-	-					-	-		-	-	-			0.07
Polychlorinated Biphenyls (PCBs) by EP/	A 8280 (mg/kg)	1													
Total PCBs															0.1

Notes:

¹Sample locations are shown on Figures 4 Through 7.

²Sample was not analyzed with current EPA Methods so results should be considered estimates. Results listed for Heavy Oil are for "total oil and grease."

³Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

 $^4\mbox{Gasoline}$ cleanup level is 30 mg/kg if benzene is present.

⁵Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Sample ID ¹	SHL07-S1	CSM01-S1	CSM01-S2	CSM02-S1	CSM03-S1	CSM03-S2	CSM04-S1	CSM04-S2	CSM12-S1	CSM12-S2	CSM13-S1	CSM13-S2	SB-10	SB-10	
Study	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Floyd Snider,	Landau,	Landau,	Breliminary Soil
Study	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2007b	2007b	Cleanun Level ³
Sample Date	8/26/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/25/2005	8/25/2005	8/26/2005	8/26/2005	8/26/2005	8/26/2005	5/24/2007	5/24/2007	Cicanup Level
Sample Interval (ft bgs)	4 - 5.1	4 - 5	4 - 5	8 - 8.7	4 - 5	8 - 9	4.5 - 5.8	10.3 - 12	5 - 6	10 - 11	5 - 5.5	10.5 - 11.5	0 - 0.5	1-2	
Petroleum Hydrocarbons by NWTPH-HC	ID, NWTPH-G or NWT	PH-Dx (mg/kg)	_		-	-							_		
HCID	ND	D, HO	ND	D, HO	HO		ND	ND	HO	D, HO	ND	D			NE
Gasoline-Range	-		-	-	-	15 UJ	-	-	-	34 UJ		110 J	3 U	3.1 U	30/100 ⁴
Diesel-Range	-	180		87	85	32 U	-	-	110 U	800	-	16,000	8.9	5.3 U	2,000
Oil-Range	-	1,300	-	330	280	140		-	440	1,900	-	1,100 U	160	17	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)				-	-									
Benzene	-	-	-	-	-	0.037 UJ	-	-	-	0.084 U		0.095 U	0.0005 U	0.0006 U	0.013
Ethylbenzene	-	-	-	-	-	0.074 UJ	-	-	-	0.17 UJ	-	0.19 UJ	0.0005 U	0.0006 U	109
Toluene	_	-			-	0.074 UJ	-	-	-	0.17 UJ	-	0.19 UJ	0.0005 U	0.0006 U	18
Xylenes	-					0.15 UJ			-	0.34 UJ	-	0.38 UJ	0.0005 U	0.0006 U	9
Methyl tert-butyl ether (MTBE)	-		-					-		-		-			560
Ethylene Dibromide (EDB)	-		-					-	-	-	-	-			0.012
1,2-Dichloroethane (EDC)	-		-					-	-	-	-	-			0.179
Tetrachloroethylene (PCE)	-		-					-		-		-			0.01
Trichloroethylene (TCE)	-		-					-	-	-	-	-			0.044
1,1,1-Trichloroethane	-		-					-		-		-			13,957
Vinyl Chloride	-		-					-	-	-	-	-			0.015
Trichlorofluoromethane (freon)	-		-					-		-		-			24,000
Carbon tetrachloride	-		-		-			-	-	-	-	-			0.015
Polycyclic Aromatic Hydrocarbons (PAH	s) by EPA 8270SIM	(mg/kg)		·											
Naphthalenes	-		-					-	-		-		0.0062 U	0.0066 U	140
Benzo(a)anthracene	-		-		-			-	-	-	-	-	0.0094	0.0066 U	0.13
Chrysene	-		-					-	-	-	-	-	0.039	0.0066 U	0.137
Benzo(b)fluoranthene	-		-					-	-	-	-	-	0.018	0.0066 U	0.43
Benzo(k)fluoranthene	-		-					-	-		-		0.0062 U	0.0066 U	0.43
Benzo(a)pyrene	-												0.014	0.0066 U	0.14
Indeno(1,2,3-cd)pyrene	-		-					-	-		-		0.0062 U	0.0066 U	0.65
Dibenz(a,h)anthracene	-		-				-	-	-	-		-	0.0062 U	0.0066 U	1.3
Total cPAHs (TEQ) ⁵	-								-		-		0.0171	ND	0.137
Metals by EPA 6000/7000 Series (mg/	kg)														
Arsenic									-	-		-		-	20
Cadmium												-			1.2
Chromium			-					-		-	-	-			120,000
Lead								-		-		-	2	2 U	250
Mercury								-			-				0.07
Polychlorinated Biphenyls (PCBs) by EP	A 8280 (mg/kg)														
Total PCBs															0.1

¹Sample locations are shown on Figures 4 Through 7.

²Sample was not analyzed with current EPA Methods so results should be considered estimates. Results listed for Heavy Oil are for "total oil and grease."

³Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

⁴Gasoline cleanup level is 30 mg/kg if benzene is present.

⁵Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Sample ID ¹	SB-10	SB-13	SB-13	SB-13	SB-14	SB-14	SB-14	TP-1-6.0	TP-1-8.0	TP-2-4.0	TP-3-8.0	TP-4-2.0	
Study	Landau,	Landau,	Landau,	Landau,	Landau,	Landau,	Landau,	GeoEngineers,	GeoEngineers,	GeoEngineers,	GeoEngineers,	GeoEngineers,	Preliminary Soil
	2007b	2007b	2007b	2007b	2007b	2007b	2007b	2008a	2008a	2008a	2008a	2008a	Cleanup Level ³
Sample Date	5/24/2007	5/25/2007	5/25/2007	5/25/2007	5/25/2007	5/25/2007	5/25/2007	11/30/2007	11/30/2007	11/30/2007	11/30/2007	11/30/2007	-
Sample Interval (ft bgs)	5-6	0.5 - 1.5	1.5 - 3	5-6	0.5 - 1.5	8-9	9 - 10	6 - 6.5	7.5 - 8	4 - 4.5	7.5 - 8	2 - 2.5	
Petroleum Hydrocarbons by NWTPH-HC	ID, NWTPH-G or NW	TPH-Dx (mg/kg)	1	1	1	1			1		1	1	1
HCID	-	-	-			-		-		-	-		NE
Gasoline-Range	3.4 U	4.3 U	4.2 U	23	5.1 U	650	11 U	3 U	-	3 U	3 U	3 U	30/1004
Diesel-Range	24	21	5.4 U	100	5.3 U	48	11	50 U	-	25 U	25 U	25 U	2,000
Oil-Range	220	170	11 U	230	11	120	60	1,300		50 U	50 U	50 U	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)		1						1	-	1		1
Benzene	0.0007 U	0.0008 U	0.0008 U	0.0019 U	0.0012 U	0.074 U	0.0013 U	0.01 U		0.01 U	0.01 U	0.01 U	0.013
Ethylbenzene	0.0007 U	0.0008 U	0.0008 U	0.0019 U	0.0012 U	0.074 U	0.0013 U	0.01 U		0.01 U	0.01 U	0.01 U	109
Toluene	0.0007 U	0.0008 U	0.0008 U	0.0019 U	0.0012 U	0.074 U	0.0013 U	0.01 U	-	0.01 U	0.01 U	0.01 U	18
Xylenes	0.0012	0.0008 U	0.0008 U	0.0019 U	0.0012 U	0.074 U	0.0013 U	0.02 U		0.02 U	0.02 U	0.02 U	9
Methyl tert-butyl ether (MTBE)		-											560
Ethylene Dibromide (EDB)	-	-				-							0.012
1,2-Dichloroethane (EDC)	-	-				-							0.179
Tetrachloroethylene (PCE)	-					-							0.01
Trichloroethylene (TCE)	-	-				-	-						0.044
1,1,1-Trichloroethane		-											13,957
Vinyl Chloride		-			-		-						0.015
Trichlorofluoromethane (freon)							-						24,000
Carbon tetrachloride	-		-		-	-	-						0.015
Polycyclic Aromatic Hydrocarbons (PAH	ls) by EPA 8270SIM	(mg/kg)		•	•	•						•	
Naphthalenes	0.01	0.0092	0.0064 U	0.069	0.0066 U	0.016	0.029	0.02 U		0.02 U	0.02 U	0.02 U	140
Benzo(a)anthracene	0.019	0.073	0.0064 U	0.14	0.0066 U	0.0072	0.06	0.02 U		0.02 U	0.02 U	0.02 U	0.13
Chrysene	0.039	0.11	0.0064 U	0.16	0.0066 U	0.01	0.073	0.06		0.02 U	0.02 U	0.02 U	0.137
Benzo(b)fluoranthene	0.027	0.16	0.0064 U	0.17	0.0066 U	0.0091	0.072	0.04		0.02 U	0.02 U	0.02 U	0.43
Benzo(k)fluoranthene	0.0071	0.057	0.0064 U	0.069	0.0066 U	0.0065 U	0.038	0.02		0.02 U	0.02 U	0.02 U	0.43
Benzo(a)pyrene	0.018	0.082	0.0064 U	0.12	0.0066 U	0.0065	0.062	0.04	-	0.02 U	0.02 U	0.02 U	0.14
Indeno(1,2,3-cd)pyrene	0.0071	0.029	0.0064 U	0.066	0.0066 U	0.0065 U	0.034	0.03		0.02 U	0.02 U	0.02 U	0.65
Dibenz(a,h)anthracene	0.0064 U	0.0072	0.0064 U	0.017	0.0066 U	0.0065 U	0.0078	0.03	-	0.02 U	0.02 U	0.02 U	1.3
Total cPAHs (TEQ) ⁵	0.0244	0.1179	ND	0.173	ND	0.009205	0.08391	0.06	-	ND	ND	ND	0.137
Metals by EPA 6000/7000 Series (mg/	/kg)				•								
Arsenic	-						-	8.1		5 U	5.4	5 U	20
Cadmium						-		6.4	1U	1 U	1 U	1 U	1.2
Chromium						-		21		31	32	11	120,000
Lead	7	9	5 U	26	2	3	6	28		5.2	5.8	5 U	250
Mercury		-				-		0.02	-	0.02 U	0.03	0.02 U	0.07
Polychlorinated Biphenyls (PCBs) by EF	PA 8280 (mg/kg)	1					1	1					
Total PCBs	-							0.1 U		0.1 U	0.1 U	0.1 U	0.1
J										1			

¹Sample locations are shown on Figures 4 Through 7.

²Sample was not analyzed with current EPA Methods so results should be considered estimates. Results listed for Heavy Oil are for "total oil and grease."

³Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

⁴Gasoline cleanup level is 30 mg/kg if benzene is present.

⁵Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Table 2

Summary of Historic Groundwater Chemical Analytical Data

Former Shell Oil Tank Farm

Anacortes, Washington

Sample ID ¹	MW-1 ²	MW-2 ²	SHL01-W1	SHL02-W1	SHL03-W1	SHL04-W1	SHL05-W1	SHL06-W1	SHL07-W1	CSM01-W1	CSM02-W1	CSM03-W1	CSM12-W1	CSM13-W1	Preliminary
Study	Hart Crowser, 1987	Hart Crowser, 1987	Floyd Snider, 2005	Groundwater Cleanup Level ³											
Sample Date	4/23/1987	4/23/1987	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/24/2005	8/26/2005	8/26/2005	8/24/2005	8/24/2005	8/24/2005	8/26/2005	8/26/2005	•
Petroleum Hydrocarbons by NWTPH-H	CID, NWTPH-G or NWT	PH-Dx (µg/kg)													
Gasoline-Range	-	-	250 U	670	500	520	250 U	800/1,000 ⁴							
Diesel-Range	-	-	250 U	5,600	250 U	7,200	250 U	250 U	250 U	260	330	370	1,900	250 U	500
Oil-Range	-	-	500 U	1,000	500 U	1,000 U	500 U	500 U	500 U	500 U	500 U	500 U	5,000	500 U	500
Volatile Organic Compounds (VOCs) by	EPA 8260 (µg/kg)							-							
Benzene	3	1 U	1.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	23
Ethylbenzene	-	-	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2,100
Toluene	24	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	15,000
Xylenes	49	1 U	1 U	1 U	1.6	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1,000
Metals by EPA 6000/7000 Series (µg,	/kg)											•			
Arsenic			-	-	-			-		-			-	-	8
Cadmium			-	-	-			-		-			-		8.8
Chromium	-		-	-	-	-	-	-		-	-		-		240,000
Lead	40	100	-	-	-	-	-	-	-	-	-	-	-	-	10
Mercury															0.2

Notes:

¹Sample locations are shown on Figures 11 and 12.

²Sample was not analyzed with current EPA Methods so results should be considered estimates. Results listed for Heavy Oil are for "total oil and grease."

³Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

⁴Gasoline cleanup level is 800 mg/kg if benzene is present.

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Table 3

Summary of Soil Investigation Chemical Analytical Data

Former Shell Oil Tank Farm Anacortes, Washington

Samula ID ¹	GEL1-5.0	GFL1-7 5	GEL-2-5 0	GFL-2-7 5	GFL3-2 5	GEL3-10 0	DUP-1	GEI-3-18 0	GEL-4-5 0	GEL4-10 0	GFL-5-2 5	GEL5-10.0	GEL5-17 0	
Sample Date	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	(GEI-3-10.0)	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	Preliminary Soil
Sample Date	5	7.5	5	7.5	25	10	10	18	5	10	25	10	17	
Field Screening	5	1.5	5	1.5	2.5	10	10	10	5	10	2.5	10	11	
Sheen	NS	NS	NS	NS	NS	HS	HS	SS	SS	NS	SS	HS	SS	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	<1	230	230				-	-		NE
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (mg/kg))												
Gasoline-Range	9.1 U	7.3 U	8.7 U	6.9 U	6.8 UJ	12 U		7.6 U	6.1 UJ	5.8 UJ	12 U	11 U	7.2 UJ	30/100
Diesel-Range	38 U	32 U	36 U	31 U	53	4,300	4,500	200	740	29 U	7,400	3,200	32	2,000
Oil-Range	75 U	64 U	72 U	62 U	270	300 U	330 U	64 U	57 U	58 U	600 U	68 U	56 U	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)				•		•	•	•	•				
Benzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.024 U		0.02 U	0.02 UJ	0.02 UJ	0.16	0.13	0.02 UJ	0.13
Ethylbenzene	0.091 U	0.073 U	0.087 U	0.069 U	0.068 UJ	0.12 U		0.076 U	0.061 UJ	0.058 UJ	0.60 U	0.55 U	0.072 UJ	18
Toluene	0.091 U	0.073 U	0.087 U	0.069 U	0.068 UJ	0.3		0.076 U	0.061 UJ	0.058 UJ	3.3	3.3	0.12J	109
Xylenes	0.091 U	0.073 U	0.087 U	0.069 U	0.068 UJ	0.54		0.076 U	0.061 UJ	0.058 UJ	5.2	1.6	0.072 UJ	9
Methyl tert-butyl ether (MTBE)	-	-	-	-		-					-	-		560
Ethylene Dibromide (EDB)	-	-	-	-	-	-				-	-	-	-	0.012
1,2-Dichloroethane (EDC)	-	-	-	-	-	-				-	-	-	-	0.179
Tetrachloroethylene (PCE)	-	-	-	-						-	-	-	-	0.01
Trichloroethylene (TCE)	-	-	-	-	-		-			-	-	-	-	0.044
(cis) 1,2-Dichloroethene (DCE)	-	-	-	-						-	-	-	-	
1,1,1-Trichloroethane	-	-	-	-	-		-			-	-	-	-	13,957
Vinyl Chloride	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Trichlorofluoromethane (freon)	-	-	-	-	-					-	-	-	-	24,000
Carbon tetrachloride	-	-	-	-	-					-	-	-	-	0.015
Polycyclic Aromatic Hydrocarbons (PAH	is) by EPA 8270SIM (mg/kg)												
Naphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	140
2-Methylnaphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	3,200
1-Methylnaphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	NE
Benzo(a)anthracene	-	-	-	-	-	-	-	-			-	-		0.13
Chrysene	-	-	-	-	-					-	-	-	-	0.14
Benzo(b)fluoranthene	-	-	-	-	-	-	-	-	-	-	-		-	0.43
Benzo(k)fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.43
Benzo(a)pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.137
Indeno(1,2,3-cd)pyrene							-							1.3
Dibenz(a,h)anthracene							-							0.65
Iotal cPAHs (TEQ)		-	-	-	-		-	-	-	-	-	-	-	0.137
Metals by EPA 6000/7000 Series (mg/	'kg)													
Cadmium														1.2
	-												-	250
Polychiorinated Biphenyls (PCBs) by EP	'A 8280 (mg/kg)				[1	[[
I OTAL PUBS	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1

Notes:

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Sample ID ¹	GEI-6-5.0	GEI-6-10.0	GEI-7-2.5	GEI-7-5.0	GEI-7-7.5	GEI-8-2.5	GEI-8-7.5	GEI-9-2.5	GEI-9-7.5	DUP-2 (GEI-9-7.5)	GEI-9-10.0	GEI-10-5.0	GEI-10-7.5	Preliminary Soil
Sample Date	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	9/27/2011	Cleanup Level ²
Sample Depth	5	10	2.5	5	7.5	2.5	7.5	2.5	7.5	7.5	10	5	7.5	
Field Screening														
Sheen	NS	NS	NS	HS	NS	MS	NS	NS	HS	NS	NS	NS	NS	NE
Headspace Vapors (ppm)	-		<1	450	<1	35	10	8	550	550	<1	<1	<1	NE
Petroleum Hydrocarbons by NWTPH-G o	r NWTPH-Dx (mg/kg	()												
Gasoline-Range	5.3 U	5.2 U	6.2 UJ	13 U	7.1 U	4.8 U	5.8 U	6.7 UJ	13 U		6.3 U	5.6 U	6.6 U	30/100
Diesel-Range	28 U	28 U	54	4,200	32 U	4,400	38	29 U	900	950	30 U	28 U	29 U	2,000
Oil-Range	56 U	56 U	140	69	63 U	61 U	60 U	59 U	58 U	60 U	60 U	56 U	59 U	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)				-					-		-		
Benzene	0.02 U	0.02 U	0.02 UJ	0.025 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.025 U	-	0.02 U	0.02 U	0.02 U	0.13
Ethylbenzene	0.053 U	0.052 U	0.062 UJ	0.13 U	0.071 U	0.048 U	0.058 U	0.067 UJ	0.13 U		0.063 U	0.056 U	0.066 U	18
Toluene	0.053 U	0.052 U	0.062 UJ	0.18	0.071 U	0.048 U	0.058 U	0.067 UJ	5.4		0.063 U	0.056 U	0.066 U	109
Xylenes	0.053 U	0.052 U	0.062 UJ	1	0.071 U	0.048 U	0.058 U	0.067 UJ	4.5		0.063 U	0.056 U	0.066 U	9
Methyl tert-butyl ether (MTBE)			0.0011 UJ	0.065 U	0.0010 U	0.055 U	0.0011 U	0.0012 UJ	0.053 U		0.0010 U	0.00091 U	0.0011 U	560
Ethylene Dibromide (EDB)	-	-	0.0011 UJ	0.065 U	0.0010 U	0.055 U	0.0011 U	0.0012 UJ	0.053 U		0.0010 U	0.00091 U	0.0011 U	0.012
1,2-Dichloroethane (EDC)	-	-	0.0011 UJ	0.065 U	0.0010 U	0.055 U	0.0011 U	0.0012 UJ	0.053 U		0.0010 U	0.00091 U	0.0011 U	0.179
Tetrachloroethylene (PCE)								0.0012 UJ	0.053 U	-	0.0010 U	0.00091 U	0.0011 U	0.01
Trichloroethylene (TCE)	-	-	-	-	-	-	-	0.0012 UJ	0.053 U	-	0.0010 U	0.00091 U	0.0011 U	0.044
(cis) 1,2-Dichloroethene (DCE)	-	-			-		-	0.0012 UJ	0.053 U	-	0.0010 U	0.00091 U	0.0011 U	
1,1,1-Trichloroethane	-	-	-	-	-	-	-	0.0012 UJ	0.053 U		0.0010 U	0.00091 U	0.0011 U	13,957
Vinyl Chloride	-	-					-	0.0012 UJ	0.053 U		0.0010 U	0.00091 U	0.0011 U	0.015
Trichlorofluoromethane (freon)								0.0012 UJ	0.053 U	-	0.0010 U	0.00091 U	0.0011 U	24,000
Carbon tetrachloride		-	-	-		-	-	0.0012 UJ	0.053 U		0.0010 U	0.00091 U	0.0011 U	0.015
Polycyclic Aromatic Hydrocarbons (PAH	ls) by EPA 8270SIM ((mg/kg)	1				1	1						
Naphthalene	-	-					-							140
2-Methylnaphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	3,200
1-Methylnaphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	NE
Benzo(a)anthracene							-							0.13
Chrysene	-	-					-	-	-					0.14
Benzo(b)fluoranthene							-							0.43
Benzo(k)fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.43
Benzo(a)pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.137
Indeno(1,2,3-cd)pyrene														1.3
Dibenz(a,h)anthracene														0.65
Total cPAHs (TEQ) ³	-	-					-	-	-					0.137
Metals by EPA 6000/7000 Series (mg/	kg)	1	1		T	T.	1	1	1	T	T.	T	r	
Cadmium							-	-	-					1.2
Lead		-	-	-	-	-	-	-	-	-	-	-	-	250
Polychlorinated Biphenyls (PCBs) by EP	A 8280 (mg/kg)	1	1		1	ſ	1	1	1	1	ſ	1		
Total PCBs	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Sample ID ¹	GEI-11-5.0	DUP-3 (GEI-11-5 0)	GEI-11-10.0	GEI-12-7.5	GEI-12-12.0	GEI-12-15.0	GEI-13-5.0	GEI-13-7.5	GEI-13-12.5	GEI-13-15.0	GEI-14-5.0	GEI-14-8.0	GEI-14-10.0	Preliminary Soil
Sample Date	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	Cleanup Level ²
Sample Depth	5	5	10	7.5	12	15	5	7.5	12.5	15	5	8	10	
Field Screening		•					•		•					
Sheen	MS	MS	NS	NS	MS	NS	NS	MS	NS	NS	NS	SS	NS	NE
Headspace Vapors (ppm)	280	280	35	<1	120	<1	<1	4	<1	<1	<1	250	<1	NE
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (mg/kg	;)												
Gasoline-Range	13 U		6 U	5.5 U	12 U	16 UJ	5.1 U	6.3 U	56 J	6.9 UJ	6.2 UJ	45 J	6.3 U	30/100
Diesel-Range	2,200	2,600	29 U	30 U	380	33 U	27 U	890	240	-	48 U	700	31 U	2,000
Oil-Range	920	1,200	59 U	60 U	62	66 U	54 U	200	63 U	-	88	220	62 U	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)			-	-	-						-		
Benzene	0.05		0.02 U	0.02 U	0.025 U	0.016 UJ	0.02 U	0.02 U	0.65		0.02 UJ	0.025	0.02 U	0.13
Ethylbenzene	0.13 U		0.060 U	0.055 U	0.12 U	0.16 UJ	0.051 U	0.063 U	0.049 U		0.062 UJ	0.056 U	0.063 U	18
Toluene	2.5		0.060 U	0.055 U	0.12 U	0.16 UJ	0.051 U	0.063 U	0.049 U	-	0.062 UJ	0.056 U	0.063 U	109
Xylenes	2.1		0.060 U	0.055 U	0.12 U	0.16 UJ	0.051 U	0.063 U	0.14	-	0.062 UJ	0.056 U	0.063 U	9
Methyl tert-butyl ether (MTBE)	0.058 U		0.001 U	0.001 U	0.0093 U	0.0013 UJ				-	-	-	-	560
Ethylene Dibromide (EDB)	0.058 U		0.001 U	0.001 U	0.0093 U	0.0013 UJ	-		-	-	-	-	-	0.012
1,2-Dichloroethane (EDC)	0.058 U	-	0.001 U	0.001 U	0.0093 U	0.0013 UJ	-	-	-	-	-		-	0.179
Tetrachloroethylene (PCE)				0.001 U	0.0093 U	0.0013 UJ	-	-	-	-	-			0.01
Trichloroethylene (TCE)				0.001 U	0.0093 U	0.0013 UJ	-	-	-	-	-	-	-	0.044
(cis) 1,2-Dichloroethene (DCE)	-	-	-	0.001 U	0.0093 U	0.0013 UJ	-	-	-	-	-	-		-
1,1,1-Trichloroethane	-	-	-	0.001 U	0.0093 U	0.0013 UJ	-	-	-	-			-	13,957
Vinyl Chloride				0.001 U	0.0093 U	0.0013 UJ					-			0.015
Trichlorofluoromethane (freon)				0.001 U	0.0093 U	0.0013 UJ	-	-	-	-			-	24,000
Carbon tetrachloride				0.001 U	0.0093 U	0.0013 UJ	-	-	-	-			-	0.015
Polycyclic Aromatic Hydrocarbons (PA	ls) by EPA 8270SIM ((mg/kg)					1		1					
Naphthalene	0.37		0.0078 U	0.026	0.026	0.14	0.013	0.12	0.021		0.0083	0.028	0.0083 U	140
2-Methylnaphthalene	3.1		0.0078 U	0.029	0.019	0.0087 U	0.069	0.18	0.0083 U		0.026	0.044	0.0083 U	3,200
1-Methylnaphthalene	2.8		0.011	0.027	0.021	0.0087 U	0.016	0.082	0.0083 U		0.0078	0.027	0.0083 U	NE
Benzo(a)anthracene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.025	-	0.0074 U	0.0075 U	0.0083 U	0.13
Chrysene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.023	-	0.0074 U	0.0075 U	0.0083 U	0.14
Benzo(b)fluoranthene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.019	-	0.0074 U	0.0075 U	0.0083 U	0.43
Benzo(k)fluoranthene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.023	-	0.0074 U	0.0075 U	0.0083 U	0.43
Benzo(a)pyrene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.036	-	0.0074 U	0.0075 U	0.0083 U	0.137
Indeno(1,2,3-cd)pyrene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.018	-	0.0074 U	0.0075 U	0.0083 U	1.3
Dibenz(a,h)anthracene	0.082 U		0.0078 U	0.0080 U	0.0080 U	0.0087 U	0.0072 U	0.0080 U	0.0083 U		0.0074 U	0.0075 U	0.0083 U	0.65
Total cPAHs (TEQ)	0.006		0.0059	0.006	0.006	0.0066	0.0054	0.006	0.045	-	0.0056	0.0057	0.0063	0.137
Metals by EPA 6000/7000 Series (mg/	/kg)													
Cadmium			-				0.54	0.6 U	0.63 U	-	0.56 U	0.56 U	0.62 U	1.2
	6.2 U		5.8 U	6 U	6 U	U C.ơ	5.5	60	6.3 U		5.6 U	5.6 U	6.2 U	250
Polychlorinated Biphenyls (PCBs) by EP	A 8280 (mg∕kg)	1	0.050.11				[1				ГГ	<u>.</u>
I OTAI PCBS	0.062 0		0.058 0						-				-	0.1

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Sample ID ¹	GEI-15-5.0	GEI-15-10.0	GEI-15A-5.0	GEI-15A-10.0	GEI-16-5.0	DUP-4 (GEI-16-5.0)	GEI-16-10.0	GEI-17-10.0	GEI-17-14.0	GEI-17-17.5	GEI-18-5.0	GEI-18-12.5	GEI-18-15.0	Preliminary Soil
Sample Date	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	Cleanup Level ²
Sample Depth	5	10	5	10	5	5	10	10	14	17.5	5	12.5	15	
Field Screening		•			•	•	•	•				•		
Sheen	NS	NS	NS	NS	SS	SS	NS	NS	HS	NS	NS	MS	NS	NE
Headspace Vapors (ppm)	<1	<1	<1	3	<1	<1	<1	<1	<1	<1	<1	<1	<1	NE
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (mg/kg)												
Gasoline-Range	-	5.7 UJ		5.7 U	11 U		5.4 U	9.9 U	26	14 U	7.5 U	13 U	13 U	30/100
Diesel-Range	-	-	-	-	43 U	29 U	28 U	39 U	53	32 U	32 U	32 U	87	2,000
Oil-Range		-	-		85 U	58 U	56 U	78 U	57 U	63 U	64 U	64 U	290	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)	-				-	-	-						
Benzene		0.02 UJ	-	0.02 U	0.022 U	-	0.02 U	0.02 U	0.027 U	0.027 U	0.02 U	0.026 U	0.026 U	0.13
Ethylbenzene	-	0.057 UJ	-	0.057 U	0.11 U	-	0.054 U	0.099 U	0.13 U	0.14 U	0.075 U	0.13 U	0.13 U	18
Toluene		0.057 UJ		0.057 U	0.11 U		0.054 U	0.099 U	0.13 U	0.14 U	0.075 U	0.13 U	0.13 U	109
Xylenes	-	0.057 UJ	-	0.057 U	0.11 U	-	0.054 U	0.099 U	0.13 U	0.14 U	0.075 U	0.13 U	0.13 U	9
Methyl tert-butyl ether (MTBE)	-	-	-	-	-	-	-	-	-	-	-			560
Ethylene Dibromide (EDB)			-			-	-	-	-	-	-			0.012
1,2-Dichloroethane (EDC)			-			-	-	-	-	-	-			0.179
Tetrachloroethylene (PCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01
Trichloroethylene (TCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	0.044
(cis) 1,2-Dichloroethene (DCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	-	-	-	-	-	-	-	-	-	-	-	-	-	13,957
Vinyl Chloride			-	-	-	-	-	-	-	-	-	-	-	0.015
Trichlorofluoromethane (freon)			-		-	-	-	-		-	-			24,000
Carbon tetrachloride	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Polycyclic Aromatic Hydrocarbons (PAH	is) by EPA 8270SIM ((mg/kg)				-	-	-						
Naphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	140
2-Methylnaphthalene			-			-			-		-			3,200
1-Methylnaphthalene			-	-	-	-	-	-		-	-	-		NE
Benzo(a)anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.13
Chrysene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.14
Benzo(b)fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	0.43
Benzo(k)fluoranthene			-			-			-		-			0.43
Benzo(a)pyrene			-		-	-	-	-		-	-			0.137
Indeno(1,2,3-cd)pyrene			-	-	-	-	-	-	-	-	-	-	-	1.3
Dibenz(a,h)anthracene		-	-	-	-		-	-	-	-				0.65
Total cPAHs (TEQ) ³			-	-	-				-	-				0.137
Metals by EPA 6000/7000 Series (mg/	′kg)				<u> </u>	<u>.</u>	•	•		<u> </u>				
Cadmium	0.54 U	0.6 U	0.77	0.9	-	-	-	-	-	-	-	-	-	1.2
Lead			-	-	8.5 U		5.6 U	7.8 U	5.7 U	6.3 U	6.3 U	6.4 U	24	250
Polychlorinated Biphenyls (PCBs) by EF	PA 8280 (mg/kg)													
Total PCBs	-	-	-	-	-	-	-	-	-	-	-	-		0.1

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Sample ID ¹	GEI-19-5.0	GEI-19-10.0	GEI-20-5.0	GEI-20-10.0	GEI-21-5.0	GEI-21-10.0	GEI-21-15.0	GEI-22-5.0	GEI-22-12.5	GEI-22-15.0	GEI-23-7.5	GEI-23-12.5	GEI-23-15.0	Preliminary Soil
Sample Date	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	Cleanup Level ²
Sample Depth	5	10	5	10	5	10	15	5	12.5	15	7.5	12.5	15	-
Field Screening														
Sheen	NS	NS	NS	NS	NS	SS	NS	NS	NS	NS	NS	SS	NS	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NE
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (mg/kg	()												
Gasoline-Range	12 U	10 U	11 U	11 U	11 U	8 U		7.3 U	12 U	-	12 U	21 UJ	-	30/100
Diesel-Range	92	39 U	41 U	42 U	41 U	650	-	33 U	1,300	-	45 U	1,300	32 U	2,000
Oil-Range	330	77 U	81 U	82 U	81 U	1,400	-	65 U	1,700	-	160	2,700	63 U	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)										-			
Benzene	0.024 U	0.021 U	0.022 U	0.023 U	0.021 U	0.02 U		0.02 U	0.024 U		0.024 U	0.072 J	-	0.13
Ethylbenzene	0.12 U	0.1 U	0.11 U	0.11 U	0.11 U	0.08 U		0.073 U	0.12 U		0.12 U	0.21 UJ	-	18
Toluene	0.12 U	0.1 U	0.11 U	0.11 U	0.11 U	0.08 U		0.073 U	0.12 U		0.12 U	0.21 UJ	-	109
Xylenes	0.12 U	0.1 U	0.11 U	0.11 U	0.11 U	0.08 U		0.073 U	0.12 U		0.12 U	0.21 UJ	-	9
Methyl tert-butyl ether (MTBE)	-	-			-			-	-			-	-	560
Ethylene Dibromide (EDB)		-	-		-			-	-			-	-	0.012
1,2-Dichloroethane (EDC)								-	-			-		0.179
Tetrachloroethylene (PCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01
Trichloroethylene (TCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	0.044
(cis) 1,2-Dichloroethene (DCE)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	-	-	-	-	-	-	-	-	-	-	-	-	-	13,957
Vinyl Chloride					-			-	-			-	-	0.015
Trichlorofluoromethane (freon)					-									24,000
Carbon tetrachloride	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Polycyclic Aromatic Hydrocarbons (PAH	is) by EPA 8270SIM	(mg/kg)	1											
Naphthalene	-	-	0.02	0.011 U	0.02	0.59	0.0082 UJ	0.0087 U	1.2	0.01 UJ	-	-	-	140
2-Methylnaphthalene		-	0.011 U	0.011 U	0.011 U	0.26	0.0082 UJ	0.0087 U	0.98	0.01 UJ	-	-	-	3,200
1-Methylnaphthalene		-	0.011 U	0.011 U	0.011 U	0.28	0.0082 UJ	0.016	0.97	0.01 UJ	-	-	-	NE
Benzo(a)anthracene			0.011 U	0.011 U	0.011 U	2.5	0.0082 UJ	0.0087 U	0.54	0.011 J	-	-	-	0.13
Chrysene		-	0.011 U	0.011 U	0.011 U	2.5	0.0082 UJ	0.0087 U	0.53	0.011 J	-	-	-	0.14
Benzo(b)fluoranthene			0.011 U	0.011 U	0.011 U	1.4	0.0082 UJ	0.0087 U	0.32	0.01 UJ	-	-	-	0.43
Benzo(k)fluoranthene		-	0.011 U	0.011 U	0.011 U	1.6	0.0082 UJ	0.0087 U	0.36	0.01 UJ		-		0.43
Benzo(a)pyrene			0.011 U	0.011 U	0.011 U	2.3	0.0082 UJ	0.0087 U	0.51	0.011 J	-	-		0.137
Indeno(1,2,3-cd)pyrene		-	0.011 U	0.011 U	0.011 U	0.35	0.0082 UJ	0.0087 U	0.077	0.01 UJ				1.3
Dibenz(a,h)anthracene		-	0.011 U	0.011 U	0.011 U	1.2	0.0082 UJ	0.0087 U	0.26	0.01 UJ	-	-	-	0.65
Total cPAHs (TEQ) ³		-	0.008	0.008	0.008	3.03	0.006	0.007	0.67	0.014	-	-	-	0.137
Metals by EPA 6000/7000 Series (mg/	'kg)													-
Cadmium					-			-	-			-	-	1.2
Lead	21	7.7 U	8.1 U	8.4 U	8.1 U	19		6.5 U	32		9 U	100	-	250
Polychlorinated Biphenyls (PCBs) by EP	A 8280 (mg/kg)	1	1	1	1	1	1	1	1	1	r	1		1
Total PCBs		-			-			-	-			-	-	0.1

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Sample ID ¹	GEI-24-5.0	GEI-24-10.0	GEI-25-5.0	GEI-25-10.0	GEI-26-5.0	GEI-26-10.0	GEI-27-7.5	GEI-27-11.0	GEI-27-13.0	GEI-28-5.0	GEI-28-10.0	GEI-29-5.0	GEI-29-10.0	Preliminary Soil
Sample Date	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	Cleanup Level ²
Sample Depth	5	10	5	10	5	10	7.5	11	13	5	10	5	10	
Field Screening														
Sheen	NS	NS	NS	NS	NS	NS	NS	MS	NS	NS	NS	NS	NS	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	<1	<1	<1	10	<1	<1	<1	<1	<1	NE
Petroleum Hydrocarbons by NWTPH-G o	r NWTPH-Dx (mg/kg)												
Gasoline-Range	12 U	12 U	8.7 U	12 U	8.4 U	9.5 U	8.8 U	17 U	11 U	5.9 U	8.2 U	5.4 U	6.4 U	30/100
Diesel-Range	88	42 U	67	44 U	33 U	38 U	35 U	35 U	52	31 U	34 U	28 U	64	2,000
Oil-Range	250	85 U	240	100	66 U	76 U	97 U	190	180	63	69 U	56 U	170	2,000
Volatile Organic Compounds (VOCs) by I	EPA 8260 (mg/kg)											-		
Benzene	0.024 U	0.024 U	0.02 U	0.025 U	0.02 U	0.02 U	0.02 U	0.017 U	0.022 U	0.02 U	0.02 U	0.02 U	0.022 U	0.13
Ethylbenzene	0.12 U	0.12 U	0.087 U	0.12 U	0.084 U	0.095 U	0.088 U	0.17 U	0.11 U	0.059 U	0.082 U	0.054 U	0.064 U	18
Toluene	0.12 U	0.12 U	0.087 U	0.12 U	0.084 U	0.095 U	0.088 U	0.17 U	0.11 U	0.059 U	0.082 U	0.054 U	0.064 U	109
Xylenes	0.12 U	0.12 U	0.087 U	0.12 U	0.084 U	0.095 U	0.088 U	0.17 U	0.11 U	0.059 U	0.082 U	0.054 U	0.064 U	9
Methyl tert-butyl ether (MTBE)	-					-	0.0017 U	0.0016 U	0.0015 U	-	-		-	560
Ethylene Dibromide (EDB)	-						0.0017 U	0.0016 U	0.0015 U	-	-	-	-	0.012
1,2-Dichloroethane (EDC)	-						0.0017 U	0.0016 U	0.0015 U	-	-	-	-	0.179
Tetrachloroethylene (PCE)	-								-	-		-	-	0.01
Trichloroethylene (TCE)														0.044
(cis) 1,2-Dichloroethene (DCE)	-								-	-		-	-	-
1,1,1-Trichloroethane	-	-	-	-	-	-	-	-	-	-	-	-	-	13,957
Vinyl Chloride	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Trichlorofluoromethane (freon)	-	-	-	-	-	-	-	-	-	-	-	-	-	24,000
Carbon tetrachloride	-	-	-	-	-	-	-	-	-	-	-	-	-	0.015
Polycyclic Aromatic Hydrocarbons (PAH	s) by EPA 8270SIM ((mg/kg)				-	-	-						
Naphthalene	-	-	-		0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.012	0.0092 U	0.0075 U	0.034	140
2-Methylnaphthalene					0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	ND	3,200
1-Methylnaphthalene		-			0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	ND	NE
Benzo(a)anthracene			-	-	0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	0.015	0.13
Chrysene	-	-	-		0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	0.017	0.14
Benzo(b)fluoranthene	-	-	-	-	0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	0.011	0.43
Benzo(k)fluoranthene	-	-	-	-	0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	0.012	0.43
Benzo(a)pyrene	-	-			0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	0.016	0.137
Indeno(1,2,3-cd)pyrene	-				0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	ND	1.3
Dibenz(a,h)anthracene	-	-	-	-	0.0089 U	0.01 U	0.0093 U	0.0094 U	0.01 U	0.0082 U	0.0092 U	0.0075 U	0.011	0.65
Total cPAHs (TEQ) ³		-	-	-	0.007	0.008	0.007	0.007	0.008	0.006	0.007	0.006	0.021	0.137
Metals by EPA 6000/7000 Series (mg/	kg)													
Cadmium		-									-	-		1.2
Lead	22	8.5 U	22	8.7 U	6.6 U	7.6 U	7 U	7 U	7.7 U	6.2 U	6.9 U	5.6 U	14 U	250
Polychlorinated Biphenyls (PCBs) by EP	A 8280 (mg/kg)													
Total PCBs	-						0.07 U	0.07 U	0.077 U	-	-			0.1

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Sample ID ¹	GEI-30-7.5	GEI-31-7.5	GEI-32-5.0	GEI-33-5.0	GEI-33-10.0	GEI-33-14.0	GEI-34-12.0	GEI-34-15.0	GEI-35-15.0	GEI-MW-1-7.5	GEI-MW-1-12.5	Preliminary Soil
Sample Date	9/28/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	9/29/2011	2/9/2012	2/9/2012	Cleanup Level ²
Sample Depth	7.5	7.5	5	5	10	14	12	15	15	7.5	12.5	•
Field Screening			•							•		
Sheen	NS	NS	NS	SS	HS	NS	NS	NS	NS	NS	NS	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	200	32	<1	<1	<1	<1	<1	NE
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (mg/kg)										
Gasoline-Range	5.5 U	7 U	6.4 U	16 U	13 U	13 U	5.9 U		6.9 U	7.4 U	5.4 U	30/100
Diesel-Range	29 U	31 U	31 U	220	700	66	29 U		30 U	-		2,000
Oil-Range	58 U	62 U	62 U	74	73 U	63 U	59 U		61 U	-		2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)			•	•	•	•	•	•			
Benzene	0.02 U	0.02 U	0.02 U	0.016 U	0.027 U	0.026	0.02 U		0.02 U	-	0.02 U	0.13
Ethylbenzene	0.055 U	0.07 U	0.064 U	0.16 U	0.13 U	0.13 U	0.059 U		0.069 U		0.054 U	18
Toluene	0.055 U	0.07 U	0.064 U	0.16 U	0.13 U	0.13 U	0.059 U	-	0.069 U	-	0.054 U	109
Xylenes	0.055 U	0.07 U	0.064 U	0.16 U	0.23	0.13 U	0.059 U	-	0.069 U	-	0.054 U	9
Methyl tert-butyl ether (MTBE)	-	-	-	-	-	-	-	-	-	-	-	560
Ethylene Dibromide (EDB)	-	-	-	-	-	-	-	-	-	-	-	0.012
1,2-Dichloroethane (EDC)												0.179
Tetrachloroethylene (PCE)	-	-	-	-	-	-	-	-		-		0.01
Trichloroethylene (TCE)	-	-	-	-	-	-	-	-	-	-	-	0.044
(cis) 1,2-Dichloroethene (DCE)	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	-	-	-	-	-	-	-	-	-	-	-	13,957
Vinyl Chloride	-	-	-	-	-	-	-	-	-	-	-	0.015
Trichlorofluoromethane (freon)	-	-	-	-	-	-		-	-	-		24,000
Carbon tetrachloride	-	-	-	-	-	-	-	-	-	-	-	0.015
Polycyclic Aromatic Hydrocarbons (PAH	is) by EPA 8270SIM ((mg/kg)										
Naphthalene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.2	0.0074 U			0.05	140
2-Methylnaphthalene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.03	0.0074 U	-	-	0.037 U	3,200
1-Methylnaphthalene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.015	0.0083 U	0.017	0.0074 U		-	0.037 U	NE
Benzo(a)anthracene	0.0095	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.38	0.0074 U			0.47	0.13
Chrysene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.37	0.0074 U			0.55	0.14
Benzo(b)fluoranthene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.23	0.0074 U			0.47	0.43
Benzo(k)fluoranthene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.27	0.0074 U			0.16	0.43
Benzo(a)pyrene	0.0092	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.41	0.0074 U			0.48	0.137
Indeno(1,2,3-cd)pyrene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.058	0.0074 U			0.073	1.3
Dibenz(a,h)anthracene	0.0078 U	0.0082 U	0.0082 U	0.0087 U	0.0082 U	0.0083 U	0.24	0.0074 U	-	-	0.37	0.65
Total cPAHs (TEQ) ³	0.012	0.006	0.006	0.007	0.006	0.006	0.53	0.006		-	0.52	0.137
Metals by EPA 6000/7000 Series (mg/	íkg)											
Cadmium	5.8 U		-						-	-		1.2
Lead		6.1 U	6.2 U	6.5 U	6.1 U	6.2 U	25		6.1			250
Polychlorinated Biphenyls (PCBs) by EF	A 8280 (mg/kg)		•							•		
Total PCBs	-	-	-	-	-	-	-	-	-	-	-	0.1

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. ppm = parts per million

mg/kg = milligrams per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Table 4

Summary of Groundwater Investigation Chemical Analytical Data

Former Shell Oil Tank Farm

Anacortes, Washington

Sample ID ¹	GEI-MW-1	GEI-MW-2	GEI-MW-3	GEI-MW-4	GEI-MW-5	GEI-MW-6	GEI-MW-7	Dup (GEI-MW-7)	Trip Blank	
Sample Date	3/6/2012	3/6/2012	3/6/2012	3/6/2012	3/6/2012	3/6/2012	3/6/2012	3/6/2012	3/6/2012	Preliminary
Depth to Water (feet)	5.88	5.26	5.37	5.34	5.10	2.94	5.15	5.15		Groundwater
Top of Casing Elevation (feet MLLW)	14.16	12.98	13.09	12.98	12.67	12.52	11.65	11.65	-	Cleanup Level
Groudwater Elevation (feet MLLW)	8.28	7.72	7.72	7.64	7.57	9.58	6.50	6.50	-	
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (µg/kg)									
Gasoline-Range	100 U	190	230	100 U		800/1,000 ³				
Diesel-Range	260 U	260 U	260 U	260 U	260 U	270 U	250 U	260U		500
Oil-Range	410 U	410 U	410 U	410 U	410 U	440 U	410 U	410 U		500
Volatile Organic Compounds (VOCs) by	EPA 8260 (µg/kg)									
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	23
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2,100
Toluene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	15,000
Xylenes	1.0 U	1.3	1.0 U	1.0 U	1,000					
Methyl tert-butyl ether (MTBE)	-		0.20 U	-	-	-	-	-	0.20 U	20
Ethylene Dibromide (EDB)	-	-	0.20 U	-	-	-	-	-	0.20 U	2.000
1,2-Dichloroethane (EDC)	-	-	0.20 U	-	-	-	-	-	0.20 U	37
Tetrachloroethylene (PCE)			0.20 U						0.20 U	0.39
Trichloroethylene (TCE)			0.20 U		-				0.20 U	6.7
(cis) 1,2-Dichloroethene (DCE)	-		0.20 U					-	0.20 U	
1,1,1-Trichloroethane	-		0.20 U		-				0.20 U	420,000
Vinyl Chloride	-		0.20 U		-			-	0.20 U	2.4
Trichlorofluoromethane (freon)	-		0.20 U		-			-	0.20 U	
Carbon tetrachloride	-		0.20 U		-			-	0.20 U	1.6
Polycyclic Aromatic Hydrocarbons (PAH	is) by EPA 8270SIM ((µg/kg)								
Naphthalene	0.095 U	0.23	0.30	0.094 U	0.095 U	0.095 U	0.094 U	0.094 U	-	4900
2-Methylnaphthalene	0.095 U	0.095 U	0.095 U	0.094 U	0.095 U	0.095 U	0.094 U	0.094 U	-	-
1-Methylnaphthalene	0.095 U	0.095 U	1.3	0.094 U	0.095 U	0.095 U	0.094 U	0.094 U		
Benzo(a)anthracene	0.0095 U	0.015	0.010	0.0094 U	0.0095 U	0.0095	0.0094 U	0.0094 U	-	0.018
Chrysene	0.0095 U	0.011	0.0095 U	0.0094 U	0.0095 U	0.0095 U	0.0094 U	0.0094 U	-	0.018
Benzo(b)fluoranthene	0.0095 U	0.0095 U	0.0095 U	0.0094 U	0.0095 U	0.0095 U	0.0094 U	0.0094 U		0.018
Benzo(k)fluoranthene	0.0095 U	0.0095 U	0.0095 U	0.0094 U	0.0095 U	0.0095 U	0.0094 U	0.0094 U	-	0.018
Benzo(a)pyrene	0.0095 U	0.0095 U	0.0095 U	0.0094 U	0.0095 U	0.0095 U	0.0094 U	0.0094 U		0.018
Indeno(1,2,3-cd)pyrene	0.0095 U	0.0095 U	0.0095 U	0.0094 U	0.0095 U	0.0095 U	0.0094 U	0.0094 U	-	0.018
Dibenz(a,h)anthracene	0.0095 U	0.0095 U	0.0095 U	0.0094 U	0.0095 U	0.0095 U	0.0094 U	0.0094 U		0.018
Total cPAHs (TEQ) ³	0.0072	0.0083	0.0077	0.0071	0.0072	0.0076	0.0071	0.0071		0.1
Metals by EPA 6000/7000 Series (µg/	kg)									
Cadmium	4.4 U				-		-	-		8.8
Lead	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.4	1.1 U	1.1 U		10

Notes:

¹Sample locations are shown on Figures 4 Through 7.

²Preliminary soil cleanup levels referenced from GeoEngineers' Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm dated Sepember 1, 2009.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) by EPA method 8270 SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations.

MLLW = Mean Lower Low Water

ppm = parts per million

µg/kg = micrograms per kilograms

U = Not detected above laboratory reporting limit

J = Estimated Value

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Figure 2 of September 2005 by Floyd Snider. Imagery date: 2011.

- Soil Sample Location No PAH Sample Data

Figure 2 of September 2005 by Floyd Snider. Imagery date: 2011.

- (Gasoline, Diesel and/or Heavy Oil)

Figure 2 of September 2005 by Floyd Snider. Imagery date: 2011.

ON APR 04, 2012 - 17:40 TMICHAUD Ä B 88 NO SEC WG\TAB:CF SEC SS P:\5\5|470|2\CAD\5|470|2-02

Underground Storage Tank Location:

Date: August 24, 2011 Job: J11-830/64

To: Geo Engineers 8410 154th Ave NE Redmond, WA 98052

Your File Number 5147-021-02

Property: Former Shell Tank Farm, Port of Anacortes Anacortes, WA

Results: A GSSI SIR 3000 utilizing with a 400 MH antenna Ground Penetrating Radar (GPR) was used to scan a 14 by 14 metre (45.9 by 45.9 feet) area surrounding the approximate location of a reported Underground Storage Tank (UST). Figure 1 attached to this report shows the scanned traverses.

No evidence of a UST was found.

An area was found that may show evidence of an excavation that may have resulted from the UST removal.. The GPR image over the area is shown below. The location of the scan is shown on Figure 1.

The collected GPR data are presented on the attached CD.

An attempt was made to locate two monitoring well monument casings with electromagnet methods. The monument casings were not found, an may have been removed during grading operations on the lot.

The information presented in this report is based upon geophysical measurements made by generally accepted methods and field procedures, and our interpretation of these data. The presented information is based upon our best estimate of subsurface conditions considering the geophysical results and all other information available to us. These results are interpretive in nature and are considered to be a reasonably accurate presentation of the existing conditions within the limitations of the method or methods employed.

.

APPENDIX B FIELD PROGRAM

Soil Investigation

Soil conditions were evaluated during soil exploration activities using a truck mounted direct-push and hollow stem auger (HAS) drill rig owned and operated by Cascade Drilling Inc. The explorations were completed to depths ranging from approximately 12 feet to 20 feet below the existing ground surface (bgs). A GeoEngineers representative selected the exploration locations, examined and classified the soils encountered and prepared a detailed log of each exploration. Soils encountered were visually classified in general accordance with American Society for Testing and Materials (ASTM) D 2488-94 (described in Figure B-1). Exploration logs are presented in Figures B-2 through B-44.

Hollow Stem Auger Explorations

Representative soil samples were obtained from HAS exploration GEI-MW-1 at selected depths using a 1-inch-diameter, SPT split-barrel sampler. The sampler was driven a maximum of 18 inches by a 140-pound weight falling a vertical distance of approximately 30 inches. The number of blows needed to advance the sampler the final 12 inches or other specified distance is indicated to the left of the corresponding sample notation on the boring log. Soil from the middle section of the split-barrel sampler was placed in containers provided by the testing laboratory for potential chemical analysis. The remaining portion of the sample was placed in a plastic bag for field screening. The sampling equipment was decontaminated before each sampling attempt with a Liqui-Nox® solution wash and distilled water rinse.

Direct-Push Explorations

Representative soil samples were obtained from direct-push explorations GEI-1 through GEI-35 at selected depths from the sample tube. The sampler was driven a maximum of 60 inches using a pneumatic hammer. A portion of each sample was placed in a laboratory-prepared sample jar for possible chemical analysis. The sample containers were completely filled to minimize headspace. The remaining portion of each sample was used for field screening. The sampling equipment was decontaminated before each sampling attempt with a Liqui-Nox® solution wash and distilled water rinse.

Soil Sample Collection and Handling

Soil samples obtained from the explorations for chemical analysis were transferred to laboratoryprepared sample jars. Sample containers were filled to minimize headspace. The samples were placed in a cooler with ice pending transport to the analytical laboratory. Chain-of-custody procedures were followed in transporting the samples to the laboratory.

Samples that were submitted for chemical analysis are denoted in our exploration logs with "CA." Chemical analytical results for these samples are summarized in Tables 3 and 4. Copies of the analytical reports are presented in Appendix D.

Field Screening of Soil Samples

Soil samples obtained from the explorations were evaluated for evidence of possible contamination using field screening techniques. Field screening results can be used as a general guideline to delineate areas of possible petroleum- or volatile organic compound (VOC)-related contamination in soils. In addition, screening results are often used as a basis for selecting soil samples for chemical analysis. The screening methods employed included: (1) visual examination, (2) water sheen testing, and (3) headspace vapor testing using a photoionization detector (PID).

Visual screening consists of observing the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Sheen screening is a more sensitive screening method that can be effective in detecting petroleum-based products.

Water sheen testing involves placing soil in water and observing the water surface for signs of sheen. The results of water sheen testing on soil samples from the explorations are presented on boring log figures B-2 through B-44. Sheens are classified as follows:

No Sheen (NS)	No visible sheen on water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly.
Moderate Sheen (MS)	Light to heavy sheen, may have some color/iridescence; spread is irregular to flowing; few remaining areas of no sheen on water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic bag. Air is captured in the bag, and the bag is shaken to expose the soil to the air trapped in the bag. The probe of the PID is inserted into the bag. The PID measures the concentration of photoionizable gases and vapors in the sample bag headspace. The PID is designed to quantify photoionizable gases and vapors up to 2,000 parts per million (ppm), and is calibrated with isobutylene. A lower threshold of significance of 1 ppm is used in application.

Field screening results are site- and boring-specific. The results may vary with temperature, moisture content, soil lithology, organic content and type of contaminant. The presence or absence of sheen does not necessarily confirm the presence or absence of contaminants in a sample.

Groundwater Investigation

Monitoring wells were installed using a truck mounted and hollow stem auger (HAS) drill rig owned and operated by Cascade Drilling Inc. HAS borings were completed at the Site to depths ranging from approximately 15 feet to 20 feet bgs. A GeoEngineers representative selected the exploration locations, examined and classified the soils encountered from the drill cuttings and prepared a detailed log of each exploration. Drill cuttings were visually classified in general accordance with American Society for Testing and Materials (ASTM) D 2488-94 (described in Figure B-1). Exploration and monitoring well construction logs are presented in Figures B-2 through B-8.

Monitoring Well Construction

Groundwater monitoring wells GEI-MW-1 through GEI-MW-6 were completed to approximately 15 feet bgs. Groundwater monitoring well GEI-MW-7 was completed to approximately 20 feet bgs. Monitoring wells GEI-MW-1 through GEI-MW-6 were constructed with 2-inch diameter, flush-threaded Schedule 40 polyvinyl chloride (PVC) casing with 10-foot machine-slotted PVC screens (0.010-inch slot). Monitoring well GEI-MW-7 was constructed with a 2-inch diameter, flush-threaded Schedule 40 PVC casing with 15-foot machine-slotted PVC screens (0.010-inch slot). The top of each well screen were positioned approximately 5 feet below the ground surface.

Following placement of the well screen and casing in the borehole, a filter pack was installed around the well screen. The filter pack was extended from the bottom of the well to a minimum of 1 foot above the top of the screen. Filter pack material consisted of commercially prepared 2-12 silica sand. A bentonite seal at least 1-foot thick was placed above the sand pack to about 1.5 feet bgs. The surface of monitoring wells were completed with a concrete seal and concrete pad extending from the top of the bentonite seal to slightly above the ground surface. Steel flush-mount monuments were cemented in place from the surface to a depth of about 1.5 feet bgs at each well location.

A summary of monitoring well construction details is provided in Table B-1 and on exploration logs presented in Figures B-2 through B-44.

Monitoring Well Development

Each well was developed to stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. Well development was completed between February 15 and 16, 2012, in advance of sampling. Well development involved gently surging the well screens with a decontaminated stainless steel bailer several times. Development continued until a minimum of 5 casing volumes of water were removed and turbidity of the discharged water is relatively low. The goal of well development was to reduce the turbidity of the water to approximately 25 nephelometric turbidity units (NTUs). Up to 10 well volumes of water was removed from each of the wells in an effort to attain the 25 NTU goal.

Water that was removed from the well during well development activities is stored on Site in the in labeled and sealed 55-gallon drums, pending off-site disposal.

Surveying

VERTICAL CONTROLS

Existing permanent survey benchmarks established by the Port were used to determine the elevation of the post-construction groundwater monitoring wells. Elevations were surveyed using a laser level, which has an accuracy of 0.01 feet. Each monitoring well casing rim and ground surface elevation was surveyed by GeoEngineers relative to the temporary or permanent benchmark.

The vertical datum for the Site was derived from running levels to the US Coast and Geodetic (USCGS) 2-inch brass disk set in the vertical wall at the northeast corner of the Old Train Depot located at 7th Street and R Avenue (National Geodetic Survey designation – PID – TR0689; MLLW – Elevation 16.98 feet; NAVD 88 – Elevation 16.33 feet).

Temporary benchmark used:

"BM-1A" – Sixty D nail set on north face of piling at the northeast corner of the T-dock of Cap Sante Marina. Elevation is 13.0 feet MLLW.

HORIZONTAL CONTROLS

GeoEngineers recorded the boring/monitoring well sampling locations using hand-held Trimble GeoXT global positioning system (GPS) unit. The horizontal survey data are referenced to the Washington State Plane North Coordinate System (NAD83) and in latitude and longitude.

Monitoring Well Coordinates and casing rim elevations are summarized in Table B-2.

Depth to Groundwater Measurements

The depth to groundwater was measured in the mentoring wells using a decontaminated electronic water level indicator (e-tape).

Groundwater elevations were calculated by subtracting the top of casing elevations from the depth to groundwater measurements.

Groundwater Sample Collection and Handling

Groundwater samples were collected for chemical analytical testing using a peristaltic pump and disposable polyethylene tubing using low-flow/low-turbidity sampling techniques on March 6, 2012. A Horiba U-22 water quality measuring system (with flow-through-cell) was used to monitor water quality parameters during purging. The water quality parameters monitored during sampling included; electrical conductivity, dissolved oxygen, pH, salinity, total dissolved solids, turbidity, oxidation-reduction potential and temperature. Ambient groundwater conditions were considered to be achieved once these parameters varied by less than 10 percent on three consecutive measurements.

Groundwater samples obtained were transferred to laboratory-prepared sample jars. Sample containers were filled to minimize headspace. The samples were placed in a cooler with ice pending transport to the analytical laboratory. Chain-of-custody procedures were followed in transporting the samples to the laboratory.

Underground Utility Locate

Prior to drilling activities, a "One Call" and private utility locate was conducted within a 20-foot radius of each boring location to identify any subsurface utilities and/or potential underground physical hazards. Utility locate records are on file with GeoEngineers and available upon request.

Investigative Wastes

Soil cuttings, decontamination rinse water, development water and purge water are stored on site in sealed and labeled four 55-gallon drums located on the western portion of the Site pending permitted disposal.

Table B-1

Groundwater Monitoring Well Completion Data

Former Shell Oil Tank Farm Anacortes, Washington

Monitoring Well ¹	Date Installed	Installed By	Ecology Well Identification	Ground Elevation (feet)	Top of Casing Elevation (feet)	Bottom of Casing Elevation (feet)	Total Well Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Screen Specifications
GEI-MW-1	2/9/2012	GeoEngineers	BHM-142	14.59	14.16	-0.84	15	2	5 to 15	2-inch Schedule 40 PVC
	2/0/2012	CooEngineero		12.4	12.08	2.02	15	2	E to 1E	0.010-inch slot 2-inch Schedule 40 PVC
GEI-IVIW-2	2/9/2012	GeoEngineers		13.4	12.90	-2.02	15	2	5 10 15	0.010-inch slot
GEI-MW-3	2/9/2012	GeoEngineers	BHM-143	13.46	13.09	-1.91	15	2	5 to 15	2-inch Schedule 40 PVC 0.010-inch slot
GEI-MW-4	2/9/2012	GeoEngineers	BHM-144	13.36	12.98	-2.02	15	2	5 to 15	2-inch Schedule 40 PVC
										2-inch Schedule 40 PVC
GEI-MW-5	2/10/2012	GeoEngineers	BHM-146	13.05	12.67	-0.33	13	2	5 to 15	0.010-inch slot
GEI-MW-6	2/9/2012	GeoEngineers	BHM-145	12 84	12 52	-0.48	13	2	5 to 15	2-inch Schedule 40 PVC
	2/0/2012	deorngineero	Brim 140	12.04	12.02	0.40	10	2	0 10 10	0.010-inch slot
GEI-MW-7	2/10/2012	GeoEngineers	BHM-147	11.99	11.65	-8.35	20	2	5 to 20	2-inch Schedule 40 PVC
	, ==, == ==							_		0.010-inch slot

Notes:

¹Monitoring well locations are shown on Figure 11.

All borings were installed using hollow-stem auger (HAS) drilling methods.

All elevations referenced to Mean Lower Low Water (MLLW).

bgs = below ground surface

PVC = polyvinyl chloride

Table B-2

Groundwater Monitoring Well Coordinates

Former Shell Oil Tank Farm Anacortes, Washington

				Latitude and Longitude Coodinates		Washington State Planes	North Coordinates (NAD83)
Monitoring Well ¹	Date Installed	Installed By	Ecology Well Identification	Latitude (DMS)	Longitude (DMS)	Northing (feet)	Easting (feet)
GEI-MW-1	2/9/2012	GeoEngineers	BHM-142	48°30'39.7616"	-122°36'41.5280"	556175.46	1209423.71
GEI-MW-2	2/9/2012	GeoEngineers	BHM-141	48°30'39.8984"	-122°36'40.3647"	556187.51	1209502.34
GEI-MW-3	2/9/2012	GeoEngineers	BHM-143	48°30'41.0678"	-122°36'40.3484"	556305.95	1209506.17
GEI-MW-4	2/9/2012	GeoEngineers	BHM-144	48°30'41.7669"	-122°36'40.3141"	556376.73	1209510.12
GEI-MW-5	2/10/2012	GeoEngineers	BHM-146	48°30'41.3563"	-122°36'39.0529"	556333.16	1209594.05
GEI-MW-6	2/9/2012	GeoEngineers	BHM-145	48°30'43.5422"	-122°36'37.6383"	556552.42	1209694.39
GEI-MW-7	2/10/2012	GeoEngineers	BHM-147	48°30'42.4281"	-122°36'35.3598"	556436.01	1209845.16

Notes:

¹Monitoring well locations are shown on Figure 11.

NAD83 = 1983 North American Datum

Key to Explo ation Logs Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imoly field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following: Density/consistency, moisture, coldr, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in bdrings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

SANO or GRAVEL	Standard Penetration	SILT on CLAY	Standard Geostastics	Aporoximate
Density	Hesistance in Blows/Foot	Consistency	Resistance in Blows/Foot	Shear Strength
Very lopse	0 - 4	Very soft	0 - 2	10 156
Loose	4 - 10	Soft	2 - 4	0.125 - 0.25
Medium dense	10 - 30	Medium stiff	4 - 8	0.25 - 0.5
Veou dese	30 - 50	Stiff	8 ~ 15	0.5 - 1.0
very dense	>50	Very stiff	15 - 30	1.0 - 2.0
		Hard	>30	>2.0

Moisture

....

••••

Moie	tupo						
11013		Minor Constituents	Estimated				
Dry	Little perceptible moisture		Percentage				
Cano	Some ceorentities and	Not identified in description	0 - 5				
Moist	probably below optimum	Slightly (clayey, silty, etc.)	5 - 12				
Wet	moisture content	Clayey, silty, sandy, gravelly	12 - 30				
	probably above optimum	Very (clayey, silty, etc.)	30 - 50				

Legends

Sampl BORING S	ing AMPLES
\boxtimes	Split Spoon
\square	Shelby Tube
	Cuttings
	Cane - Run
4 X	√o Sample Recovery
PI	ube Pushed. Not Driven
TEST PIT	SAMPLES
🛛 G	rab (Jar)
🛛 в	ag
🖸 s	helby Tube

Tes s	t Symbols Grain Size Classification
CN	Consolidation
τυυ	Triaxial Unconsolidated Undrained
TCU	Triaxial Consolidated Undrained
TCD	Triaxial Consolidated Drained
ឲប	Unconfined Compression
DS	Direct Shear
к	Permeability
РР	Pocket Penetrometer
TV	Approximate Compressive Strength in TSF Torvane
CBR	Approximate Shear Strength in TSF California Bearing Ratio
MO	Moisture Censity Relationship
AL	Atterberg Limits
	Mater Content in Percent Liquid Limit Natural Plastic Limit

)

J-1919 May 1987 HART-CROWSER & associates.inc. Figure A-1

Boring Log and Construction Data for Monitoring Well MW-1

Geologic Log Depth Feet Ground Surface Elevation in Feet 0 Loose to medium dense, moist to wet, gray, silty, fine to medium SAND with scattered gravel and snell fragments. (FILL) 5 Loose to medium dense, wet, slightsilty, fine to medium SAND with scattered shell fragments. 10-Soft, wet, dark gray SILT with scattered shell and wood fragments. Medium dense, wet, gray, silty, gravelly SAND with scattered shell 15~ fragments. Hard, moist, blue-green SILT. Bottom of Boring at 16.2 Feet. Completed 4/21/87. 20

d Water Level

[™]6-inch φ Steel Monument Cement Volclay Grout

10-inch ø Borehole 2-inch PVC Riser Pipe

Colorado Silica Sand

2-inch ϕ PVC Screen (0.020-inch Slot Size)

NOTES:

- Soil descriptions are interpretive and actual changes may be gradual.
- 2. Water Level is for date indicated and may vary with the time of year. ATD: At Time of Drilling

J-1919 April 1987 HART-CROWSER & associates inc. Figure A-2

Monitoring Well Design Casing Stickup in Feet 2.45'

Boring Log and Construction Data for Monitoring Well MW-2

Geologic Log

5

Monitoring Well Design Casing Stickup in Feet 2.3'

NOTES:

- Soil descriptions are interpretive and actual changes may be gradual.
- 2. Water Level is for date indicated and may vary with the time of year. ATD: At Time of Drilling

J-1919 April 1987 HART-CROWSER & associates inc. Figure A-3

FLOY	′D∣S	NIDER	Floyd Snider Boring _CSM01 Date_August 24, 2005 Sheel Job	A CSMSHELL
Obs. Well Ins	stall. Yes	\mathbb{X}	Ground Surface Elevation Approx. 12' MLLW	0.0
SAMPLE ID	PID (ppm) From	H SAMPLE RECOVERY (FT)	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
		0-	4-inches asphalt over 3-inches crushed base course gravel.	
		1	ML Dark brown, dry, sandy SILT with rounded gravels.	
		4	Soil transitions from dry to moist.	
CSM01-S1	4.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	CL Gray, moist to wet, silty CLAY.	
		8	SP Gray, wet, silty SAND with trace gravel.	
CSM01-S2	10.0 11	.8	Fine fibers of wood and layers of decayed organic matter to depth of 11 feet.	
			Bottom of Boring at 12' Note: Water sample CSM01-W1 collected from temporary well point.	

Driven Interval

Į

Į

Į

U

L

U

E

ĺ

----- Recovery

I,

FLOYD SNIDER Obs. Well Install. Yes 🔀	Floyd Snider Boring CSM02 Date_August 24, 2005 Sheet JobFormer Shell Tank Farm Due Diligence Job No. POA Logged By Woltman/Satterberg_weather Sunny, 75 degrees F Drilled ByCascade Drilling Drill Type/Method Geoprobe Sampling Method Direct Push, 4-Ft Cores ATD Water Level Depth_ Ground Surface Elevation Approx. 12' MLLW Mater Level Depth_	10f1 CSMSHELL 8.0'
SAMPLE ID PID SAMPLE ID (PPM) From To (T)	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
CSM02-S1 8.0 8.7 0	staining, sheen, scrap, slag, etc. 2-inches asphalt over 5-inches crushed base course gravel. SW Dark gray to brown, dry to moist, very gravelly SAND. SW Dark gray, moist, slightly silty, slightly gravelly SAND. ML Gray to brown, moist, sandy SILT with wood fibers. CL Dark gray, moist to wet, silty CLAY with abundant wood fibers. Sand lenses and abundant wood debris. Sand lenses and reduction in organic material below depth 10 feet. Bottom of Boring at 12' Note: Water sample CSM02-W1 collected from temporary well point.	
14		

FLOY	DISN	IDER	Floyd Snider Boring _CSM03 Date_August 24, 2005 Sheet JobFormer_Shell Tank Farm Due Diligence Job No. POA Logged By Woltman/Satterberg_Weather_Sunny, 75 degrees F Drilled ByCascade Drilling Drill Type/MethodGeoprobe Sampling Method _Direct Push, 4-Ft Cores Bottom of Boring _12' ATD Water Level Depth.	10f1 CSMSHELL 8.0'
Obs. Well Ins	tall. Yes 🔀	3	Ground Surface Elevation Approx. 12' MLLW	
SAMPLE ID	PID (ppm) From To	SAMPLE RECOVERY (FT)	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
		0	6-inches asphalt over 6-inches crushed base course gravel.	
			SW Dark brown to light gray, dry, slightly silty, very gravelly SAND.	
		3	ML Light gray, dry to moist, slightly gravelly, sandy SILT with wood fibers and faint organic odor.	
CSM03-S1	4.0 5.0	4	Faint hydrocarbon odor.	
		6	CL Gray, moist, silty CLAY.	
			SP Dark brown to gray, moist to wet, slightly silty, slightly clayey SAND.	
CSM03-S2	8.0 9.0		CL Dark brown to gray, wet, slightly sandy, silty CLAY with wood fibers and fuel odor.	
			No wood fibers below depth 9 feet.	
		13	Bottom of Boring at 12' Note: Water sample CSM03-W1 collected from temporary well point.	
		14		

IJ

IJ

Í.

ind.

L

Ī

.

c

I

FLOY	(D S	NIDER	Floyd Snider Boring_CSM04 Date_August 25, 2005 Shee JobCap Sante Marine Phase 2 Due Diligence Job No. PO Logged By Woltman/Satterberg_WeatherSunny, 80 degrees F Drilled ByCascade Drilling Drill Type/Method Geoprobe Sampling Method Direct Push, 4-Ft Cores Bottom of Boring_12' ATD Water Logel Degrees	t_1_ot_1 A CSMSHELL
Obs. Well In	stall. Yes	X	Ground Surface Elevation Approx. 12' MLLW	4.5
SAMPLE ID	PID (ppm) From T	SAMPLE RECOVERY O (FT)	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
			Asphalt. SW Brown, dry, silty, very gravelly SAND with scattered wood debris.	
		3	CL Dark gray, moist, sandy silty CLAY with large wood chunk at depth 1.5 feet.	
CSM04-S1	4.5 5.		ML Dark gray, wet, sandy clayey SILT with abundant shell fragments.	No Sheen
		9		
		10	Dark gray, wet, slightly silty, slightly gravelly SAND with abundant shell fragments and decayed organic odor. Challow white instead of the standard sta	
CSM04-S2	10.3 12.		ML Gray to brown, moist to wet, sandy, clayey SILT with decayed organic odor.	
			Bottom of Boring at 12' Note: Water sample CSM04-W1 collected from temporary well point.	

FLOY	D	S	N	IDER	byd Snider ring CSM12 [CSM12] Cap Sante Marine Phase gged By Woltman/Satterberg v lled By Cascade Drilling Il Type/Method Geoprobe mpling Method Direct Push, 4- ttom of Boring 12'	Date August 26, 2005 Shee 2 Due Diligence Job No. PO. Veather Sunny, 65 degrees F Ft Cores ATD Water Level Depth	t_1ot_1A CSMSHELL
Obs. Well Ins	tall.	Yes	X	1	ound Surface Elevation Approx.	12' MLLW	
SAMPLE ID	PID (ppm)	DEF From	TH To	SAMPLE RECOVERY (FT)	DESCRIPTION: color, texture, m MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odo staining, sheen, scrap, slag, etc	ioisture r,	Sheen Test
				0 1 2 3 	Asphalt with abundant of SW Light brown to gray, mo	gravel. ist to wet, slightly silty, gravelly	
CSM12-S1		5.0	6.0	6	ML Light gray to brown, wet	t, sandy SILT.	
				8 9 10	Wood fibers present in Wood fibers present in A	recovered soil. nd with wood debris and oil odor.	
CSM12-S2		10.0	11.0		Bottom of Boring at 12' Notes: 1) Water sample CSM12 well point.	2-W1 collected from temporary	Sheen on Sample

F.

F.

ſ,

ŀ

.

FLOYDISNIDER	Floyd Snider Boring _CSM13	<u>1</u> <u>=LL</u>
Obs. Well Install. Yes	Ground Surface Elevation Approx. 12' MLLW	
SAMPLE ID PID From To RECOVERY	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	lest
0- - 1- 2	SW Light brown to gray, dry, silty, very gravelly SAND. SW Dark gray, moist to wet, slightly silty to silty SAND with abundant shell fragments.	
CSM13-S1 5.0 5.5	SW Brown, wet, slightly silty, slightly gravelly SAND with scattered wood fibers and lenses of fine gray sand. Image: Second state of the scattered wood fibers and lenses of fine gray sand.	
CSM13-S2 10.5 11.5 11.5 11	Faint petroleum odor and large wood debris. CL Dark gray to olive, moist, silty CLAY with scattered organic debris and scattered shell fragments. Bottom of Boring at 12' Notes: 1) Water sample CSM13-W1 collected from temporary well point.	

Ĺ

а____

FLOYDISNIDER	Floyd Snider Boring _CSM13 Date_August 26, 2005 Sheet JobCap Sante Marine Phase 2 Due Diligence Job No. POA C Logged By Woltman/Satterberg_Weather_Sunny, 65 degrees F Drilled ByCascade Drilling Drill Type/Method Geoprobe Sampling Method Direct Push, 4-Ft Cores Bottom of Boring _12' ATD Water Level Depth_4.	Lof1 SMSHELL 0'
Obs. Well Install. Yes	Ground Surface Elevation Approx. 12' MLLW	
SAMPLE ID PID (ppm) From To RECOVERY	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
	SW Light brown to gray, dry, silty, very gravelly SAND.	
2	SW Dark gray, moist to wet, slightly silty to silty SAND with abundant shell fragments.	s)
3— - 4▼	SW Brown, wet, slightly slity, slightly gravelly SAND with scattered wood fibers and lenses of fine gray sand.	
CSM13-S1 5.0 5.5 5-		
7		
9	Faint petroleum odor and large wood debris.	
CSM13-S2 10.5 11.5 11.5	CL Dark gray to olive, moist, silty CLAY with scattered organic debris and scattered shell fragments.	
	Bottom of Boring at 12' Notes: 1) Water sample CSM13-W1 collected from temporary well point.	

r L

Name of Street, or other

			Floyd Snider Boring SHL01 Date August 24 2005	
1			Job Former Shell Tank Farm Due Diligence	
FLOY	$D \perp S$	NIDER	Logged By Woltman/Satterberg, Weather Sunny, 65 degrees F	<u>UA COMOREL</u>
	0		Drilled By Cascade Drilling	
			Drill Type/Method _Geoprobe	
			Sampling Method <u>Direct Push, 4-Ft Cores</u>	·····
Obs Well Inst			Ground Surface Fig. 12 Approv. 10' MILLIN	h_4.9'
		280	Glound Surface Elevation Approx. 12 MLLW	
SAMPLE ID	PID From	H SAMPLE RECOVERY	MAJOR CONSTITUENT. MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor.	Sheen Test
			staining, sheen, scrap, slag, etc.	
		0-		_
		-	FILL.	
		2—		
		3		
		4-		
		L I		
		6		
			GW- Gray, moist to wet, SAND with varrying amounts of gravel,	ļ
			and scattered wood debits:	
		8		
SHLUT-ST	8.0 8.	5 ▲ ⊥	Slight gas/diesel odor at top of sample.	No Sheen
		9		
		10	Contact with olive-green, sandy SILT at bottom of	
		11-+		
		12		
			Bottom of Boring at 12'	
			Noto: Water generals Of the second	
		13	well point.	
		14		

FLOY	(D)	SN	IDER	Floyd Sn Boring_SH JobFc Logged By Drilled By Drill Type/M Sampling N Bottom of B	ider HL02 Date <u>August 24, 2005</u> Sheet prmer Shell Tank Farm Due Diligence Job No. POA Woltman/Satterberg Weather Sunny, 70 degrees F Cascade Drilling Method <u>Geoprobe</u> Method <u>Direct Push, 4-Ft Cores</u> Boring <u>12'</u> ATD Water Level Depth-	10f1 A CSMSHELL 4.5'
Obs. Well In	stall.	Yes 🔀]	Ground Su	rface Elevation Approx. 12' MLLW	
SAMPLE ID	PID (ppm) Fr	DERTH rom To	SAMPLE RECOVERY (FT)	USCS Symbol	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
			0	sw	Light brown to gray, dry, gravelly SAND with scattered brick and shell fragments. Light fuel odor.	·
				SP	Light brown, dry, silty SAND.	
			- 2	SM	Light to dark brown-gray, moist, silty SAND.	
			3			
SHL02-S1	4	.0 5.0			Diesel odor in sample.	
SHL02-S2	5	.0 6.0	6	SM	Dark gray to black, wet, slightly gravelly SAND with shell fragments. Strong diesel odor.	
SHL02-S3	8	.0 9.5	8 9	SM- ML	Dark gray, wet, silty, clayey SAND grading to gray, silty CLAY. Slight odor in sample.	
			10	SW	Light gray, wet, gravelly SAND with shell fragments. Slight odor in soil.	
			12			
			13		Bottom of Boring at 12' Note: Water sample SHL02-W1 collected from temporary well point.	
			14			

Subsample for Analysis

Ĩ

Ύζ

Comments of the

FLOY	/DIS	SN I	IDER	Floyd Snider Boring_SHL03Date_August 24, 2005S JobFormer Shell Tank Farm Due DiligenceJob No. Logged By Woltman/Satterberg_WeatherSunny, 70 degrees. Drilled ByCascade Drilling Drillet ByCascade Drilling Drill Type/Method_Geoprobe Sampling Method_Direct Push_4-Ft Cores	heet1of1 POA CSMSHELL F
				Bottom of Boring _12' ATD Water Level De	pth_5.5'
Obs. Well In	stali. Yes	\mathbb{K}		Ground Surface Elevation Approx. 12' MLLW	
SAMPLE ID	PID (ppm) From	TH To	SAMPLE RECOVERY (FT)	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
			0	SW Light brown to gray, gravelly SAND with shell fragments.	
			1	CL Light brown, dry, slightly sandy, silty CLAY with trace gra	vel.
			2	SW Light brown, dry, slightly silty, slightly gravelly SAND with shell fragments.	_
			3	ML Brown, dry, clayey SILT with some sand, large gravels, shell fragments, and brown reduced veins of organic mat	ter.
SHL03-S1	4.0	5.5	4		
SHL03-S2	5.5	6.2		SW Dark gray, wet, slightly gravelly SAND with abundant she fragments.	I
			7	ML Dark gray, wet, clayey SILT with trace sand. Fuel odor on soil.	
			9	SP Dark gray, wet, slightly gravelly to gravelly SAND with abundant shell fragments.	
				ML Dark gray, wet slightly clayey, sandy SILT.	_
с. 			12		
			13	Bottom of Boring at 12' Note: Water sample SHL03-W1 collected from temporary well point.	
			14		

FLOY	′ D + S	S N	IDER	Floyd Snider Boring SHL04 Date August 24, 2005 Shee Job	8.0'
Obs. Well Ins	stall. Yes]	Ground Surface Elevation Approx. 12' MLLW	<u> </u>
SAMPLE ID	PID (ppm) From	атн то	SAMPLE RECOVERY (51)	DESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
			0	SW Light gray to brown, dry, silty, gravelly SAND.	3
			-	GW- Light gray, dry, silty, sandy GRAVEL. GM	
SHL04-S1	2.0	3.5	2— 	CL Light to dark brown, moist, slightly sandy, silty CLAY with scattered gravel.	
			5	SP Brown to gray, moist, clayey, gravelly SAND with shell fragments. Slight fuel odor.	No Sheen
				ML Brown to gray, moist to wet, clayey SILT with some sand, shell fragments, and decaying wood. Fuel/petroleum odor on soil.	No Sheen
SHL04-S2	9.5	10.5	10	SP Gray, wet SAND. Fuel/petroleum odor on sample.	
			12	Bottom of Boring at 12' Note: Water sample SHL04-W1 collected from temporary well point.	

Ω

D

D

D

U

Ū

U

D

FLOY	D	9	ŝN	IDER	oyd Snider oring _SHL05	ust 24, 2005 Sheet 1 of 1 ence Job No. POA CSMSHELL Sunny, 75 degrees F
Obs. Well Ins	tall.	Yes]	ound Surface Elevation Approx. 12' MLLV	V
SAMPLE ID	PID (ppm)	DEF From	этн То	SAMPLE RECOVERY (FT)	BESCRIPTION: color, texture, moisture MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
					SW Light brown, dry, silty, gravelly SAI fragments.	ND with trace shell
				2—	Abundant shell fragments.	
SHL05-S1		2.0	3.5		ML Light gray, dry, sandy SILT with bla on black bands.	ack banding. Fuel odor
				4-	GW Dark gray, dry, sandy GRAVEL wit odor on sample.	h shell fragments. Fuel
				5	CL Gray to olive-green, moist, sandy, fragments. Slight fuel odor on san	silty CLAY with shell nple.
SHL05-S2		4.4	6.2	X _	Large wood fragment at depth 5.4	feet.
				/ <u>/</u> 6—	Heavy fuel odor at depth 5.9 feet.	
				-	SW Gray, moist to wet, slightly silty, gra inclusions and scattered shell frag	avelly SAND with clay ments.
SHL05-S3		8.0	10.0	- 10	Slight to strong fuel odor througho	ut sample. No Sheen
				11		
				[[] _	Bottom of Boring at 12'	
				13—	Note: Water sample SHL05-W1 co well point.	llected from temporary
				14		

Floyd Ishider Date August 26, 2005 Shee_1otot			
ODS. Well install. Yes Mathematical Survey ADD Water Level Depth 5.0' SMPLE ID PD DETTH remer SAMPLE Prom To SAMPLE RECOVERY B2SCRIPTION: cook, (usture, monture) MACCE CONSTRUCTS Sold of MACCE CONSTRUCTS Sincen Test SMPLE ID PD DETTH RECOVERY B2SCRIPTION: cook, (usture, monture) MACCE CONSTRUCTS Sincen Test Sincen Test SHLOE-S1 4.0 6.0 SP 3-inches gravel over dark brown, dry, slightly clayey, slightly sandy SILT With trace gravel. Sincen Test SHLOE-S1 4.0 6.0 SP Dark gray, wet, slightly slity SAND with abundant shell fragments. SP Dark gray, wet, slightly slity SAND with abundant shell fragments. SHLOE-S1 4.0 6.0 SP Dark gray, wet, slightly slity SAND with abundant shell fragments. SP SHLOE-S1 4.0 6.0 SP Dark gray, wet, slightly slity SAND with abundant shell fragments. SP	FLOYDISNI	Floyd Snider Boring _SHL06 Date_August 26, 2005 Sheet_ JobFormer Shell Tank Farm Due Diligence Job No. POA (Logged By Woltman/Satterberg_Weather_Sunny, 70 degrees F Drilled ByCascade Drilling Drill Type/Method _Geoprobe Sampling Method _Direct Push, 4-Ft Cores	1of1_ CSMSHELL
SAMPLE ID	Obs Well Install Voc NA	ATD Water Level Depth_5.	.0'
SAMPLEID PD Data (17) SAMPLE Description Color, Mature, monture MONSICE SUBSTANCES Color, Management Sheen Test Sheen Test Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Image: Color Mature, monture MONSICE SUBSTANCES Color, Management Sheen Test Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Sheen Test Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Sheen Test Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Sheen Test Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Image: Color Mature, monture (PP) Sheen Test Image: Color Mature, monture (PP) Image: Co		Glound Surface Elevation Approx. 12' MLLW	
SHL06-S1 4.0 6.0 SP 3-inches gravel over dark brown, dry, silty, gravelly SAND. SHL06-S1 4.0 6.0 ML Dark brown to gray, dry, slightly clayey, slightly sandy SILT with increasing clay content at bottom of unit. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with increasing clay content at bottom of unit. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Light to dark gray, wet SAND with abundant shell fragments. 9 10 11 12 SP Light to dark gray, wet SAND with abundant shell fragments. 11 12 13 Beitom of Boring at 12' Net: Water sample SHL06-W1 collected from temporary	SAMPLE ID PID S (ppm) From To RE	AMPLE DESCRIPTION: color, texture, moisture COVERY SE MAJOR CONSTITUENT. MAJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
SHL06-S1 4.0 6.0 SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly sity SAND with abundant shell fragments. SHL06-S1 1.0 6 SP 10 10 11 12 12 Bottom of Boring at 12' Net: Water sample SHL06-W1 collected from temporary		0 SP 3-inches gravel over dark brown, dry, silty, graveliy SAND.	
SHL06-S1 4.0 6.0 6.0 Gray, moist to wet, sandy SiLT with increasing clay content at bottom of unit. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. 10 10 10 11 11 11 12 Bottom of Boring at 12' Note: Water sample SHL06-W1 collected from temporary		1 ML Dark brown to gray, dry, slightly clayey, slightly sandy SILT with trace gravel.	
SHL06-S1 4.0 6.0 AL Gray, moist to wet, sandy SiLT with increasing clay content at bottom of unit. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. 9 9 10 11 12 10 11 12 Bottom of Boring at 12' Note: Water sample SHL06-W1 collected from temporary Note: Water sample SHL06-W1 collected from temporary		2 6-inch layer of light brown, dry, poorly graded sand.	
SHL06-S1 4.0 6.0 SP Dark gray, wet, slightly slity SAND with abundant shell 7 - - SP Light to dark gray, wet SAND with abundant shell fragments. 8 SP Light to dark gray, wet SAND with abundant shell fragments. 10 - - 11 - - 12 Bottom of Boring at 12' Note: Water sample SHL06-W1 collected from temporary well collected from temporary		ML Gray, moist to wet, sandy SILT with increasing clay content at bottom of unit.	
6 SP Dark gray, wet, slightly silty SAND with abundant shell 7 7 8 SP 10 10 11 11 12 Bottom of Boring at 12' Note: Water sample SHL06-W1 collected from temporary well print	SHL06-S1 4.0 6.0		
SP Light to dark gray, wet SAND with abundant shell fragments.		6 SP Dark gray, wet, slightly silty SAND with abundant shell fragments. 7 7	
10 11 12 12 13 Bottom of Boring at 12' Note: Water sample SHL06-W1 collected from temporary well point		8	
12 Bottom of Boring at 12' 13 Note: Water sample SHL06-W1 collected from temporary			
		Bottom of Boring at 12' Note: Water sample SHL06-W1 collected from temporary	

Driven Interval

Π

Π

0

Π

Ū

Π

0

Π

Π

Π

------ Recovery

— Subsample for Analysis

FLOYDISNIDER	Floyd Snider Boring SHL07 Date August 26, 2005 Shender Job Former Shell Tank Farm Due Diligence Job No. PC Logged By Woltman/Satterberg Weather Sunny, 70 degrees F Drilled By Cascade Drilling Drill Type/Method Geoprobe Sampling Method Direct Push, 4-Ft Cores	et1of1 DA CSMSHELL
Obs. Well Install. Yes	Ground Surface Elevation Approx. 12' MLLW	5.5'
SAMPLE ID PID From To (FT)	DESCRIPTION: color, texture, moisture AJOR CONSTITUENT. NON-SOIL SUBSTANCES: Odor, staining, sheen, scrap, slag, etc.	Sheen Test
	SW 3-inches sandy GRAVEL over 3-inches dry, brown, silty SAND with gravel over 6-inches dry, light brown, gravelly SAND. SP Dark gray, moist, slightly gravelly SAND with silty clay inclusions.	
SHL07-S1 4.0 5.1 4.0 5.1 5	ML Dark gray, moist to wet, slightly clayey, sandy SILT. SP Dark gray, wet, slightly gravelly, SAND with abundant shell fragments and silt inclusions.	
7		
	Bottom of Boring at 12' Note: Water sample SHL07-W1 collected from temporary well point.	

Driven Interval Recovery Subsample for Analysis www.uccustoners.com

	SO	IL CLASSIF	ICATIO	N CHA	RT	ADDIT		ATERIAL SYMBOL	
М	AJOR DIVISI	ONS	SYME GRAPH	BOLS LETTER	TYPICAL DESCRIPTIONS	SYM GRAPH	BOLS	DLS TYPICAL ETTER DESCRIPTIONS	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		сс	Cement Concrete	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		AC	Asphalt Concrete	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		CR	Crushed Rock/ Quarry Spalls	
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		тѕ	Topsoil/	
MORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS				
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	\sum	Measure	d groundwater level in on, well, or piezometer	
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Groundw	ater observed at time of	
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	- =	Perched	water observed at time of	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		Measured	free product in well or er	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS				
SOILS			- 	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Stratigra	aphic Contact	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Distinct of geologic	contact between soil stra units	
	SILTS AND LIQUID LIMIT GREATER THAN 50 CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY		Gradual ogeologic	change between soil stra units	
			Hiph	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		Approxin change w	nate location of soil strata rithin a geologic soil unit	
н	GHLY ORGANIC	SOILS		РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS				
Blow of blc dista and c A "P"	Sample 2.4 2.4 Sta She Pis Pis Dire Sub Count is reco Sub required nce noted). Sub Sub required nce noted. Sub	r Symbol De inch I.D. split I ndard Penetrat elby tube ton ect-Push k or grab orded for driver to advance sat See exploration	escription barrel tion Test of tion Test of tion Test of tion Test of tion Test of tion Test of tion Test of tion Test of tion Test of tion Test of	ons (SPT) s as the inches (i ammer	number or weight of the	%F AL CA CP CS DS HA MC OC PM PP SA TX US VS NS SS MS	Percent f Atterberg Chemica Laborato Consolid Direct sh Hydrome Moisture Organic o Permeab Pocket p Sieve ana Triaxial c Unconfin Vane she Sheen C No Visibl Slight Sh Moderate	y / rieid rests ines ines i limits analysis ry compaction test ation test ear ter analysis content content and dry density content ility or hydraulic conduct enetrometer alysis ompression ed compression ar Classification e Sheen een	
drill r NOTE: The Description representat	ig. e reader must r s on the logs a ive of subsurfa	efer to the discus oply only at the sp ce conditions at o	sion in the secific explo ther locatic	report tex pration loo ns or time KEY T	t and the logs of explorations for ations and at the time the expl es. O EXPLORATION LC	NT or a proper unde orations were m	Not Teste	f subsurface conditions. re not warranted to be	
-									
C	BOEN	IGINEE	RS /	1		F	IGURE	A-1	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 7, 2011

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1109-195

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on September 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 7, 2011 Samples Submitted: September 28, 2011 Laboratory Reference: 1109-195 Project: 5147-012-02

Case Narrative

Samples were collected on September 27, 2011 and received by the laboratory on September 28, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Method 5035A VOA vials were not provided for samples GEI-3-2.5, GEI-5-17.0, GEI-7-2.5 and GEI-9-2.5. These samples were therefore extracted from 8-ounce jars for analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Method 5035A VOA vials were not provided for samples GEI-7-2.5 and GEI-9-2.5. The samples were therefore extracted from 8-ounce jars and analyzed.

Some MTCA Method A cleanup levels are non-achievable for samples GEI-7-5.0, GEI-8-2.5, and GEI-9-7.5 due to the necessary dilution of the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: October 7, 2011 Samples Submitted: September 28, 2011 Laboratory Reference: 1109-195 Project: 5147-012-02

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-1-5.0	09-195-02	Soil	9-28-11	9-28-11	
GEI-1-7.5	09-195-03	Soil	9-28-11	9-28-11	
GEI-2-5.0	09-195-07	Soil	9-28-11	9-28-11	
GEI-2-7.5	09-195-08	Soil	9-28-11	9-28-11	
GEI-3-2.5	09-195-11	Soil	9-28-11	9-28-11	
GEI-3-10.0	09-195-14	Soil	9-28-11	9-28-11	
GEI-3-18.0	09-195-16	Soil	9-28-11	9-28-11	
GEI-4-5.0	09-195-19	Soil	9-28-11	9-28-11	
GEI-4-10.0	09-195-21	Soil	9-28-11	9-28-11	
GEI-5-2.5	09-195-23	Soil	9-28-11	9-28-11	
GEI-5-10.0	09-195-26	Soil	9-28-11	9-28-11	
GEI-5-17.0	09-195-28	Soil	9-28-11	9-28-11	
GEI-6-5.0	09-195-31	Soil	9-28-11	9-28-11	
GEI-6-10.0	09-195-33	Soil	9-28-11	9-28-11	
GEI-7-2.5	09-195-35	Soil	9-28-11	9-28-11	
GEI-7-5.0	09-195-36	Soil	9-28-11	9-28-11	
GEI-7-7.5	09-195-37	Soil	9-28-11	9-28-11	
GEI-8-2.5	09-195-40	Soil	9-28-11	9-28-11	
GEI-8-7.5	09-195-42	Soil	9-28-11	9-28-11	
GEI-9-2.5	09-195-45	Soil	9-28-11	9-28-11	
GEI-9-7.5	09-195-47	Soil	9-28-11	9-28-11	
GEI-9-10.0	09-195-48	Soil	9-28-11	9-28-11	
GEI-10-5.0	09-195-51	Soil	9-28-11	9-28-11	
GEI-10-7.5	09-195-52	Soil	9-28-11	9-28-11	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-1-5.0					
Laboratory ID:	09-195-02					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.091	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.091	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.091	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.091	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	9.1	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	68-124				
Client ID:	GEI-1-7.5					
Laboratory ID:	09-195-03					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.073	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.073	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.073	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.073	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	7.3	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				
Client ID:	GEI-2-5.0					
Laboratory ID:	09-195-07					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.087	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.087	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.087	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.087	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	8.7	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	68-124				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-2-7.5					
Laboratory ID:	09-195-08					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.069	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.069	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.069	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.069	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	6.9	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Client ID:	GEI-3-2.5					
Laboratory ID:	09-195-11					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.068	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.068	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.068	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.068	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	6.8	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	GEI-3-10.0					
Laboratory ID:	09-195-14					
Benzene	ND	0.024	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.12	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	0.30	0.12	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	0.54	0.12	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.60	EPA 8021	10-5-11	10-5-11	U1
Gasoline	ND	12	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-3-18.0					
Laboratory ID:	09-195-16					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.076	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.076	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.076	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.076	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	7.6	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	68-124				
Client ID:	GEI-4-5.0					
Laboratory ID:	09-195-19					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.061	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.061	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.061	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.061	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	6.1	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-124				
Client ID:	GEI-4-10.0					
Laboratory ID:	09-195-21					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.058	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.058	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.058	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.058	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.8	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-5-2.5					
Laboratory ID:	09-195-23					
Benzene	0.16	0.025	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.60	EPA 8021	10-5-11	10-6-11	U1
Ethyl Benzene	3.3	0.12	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	5.2	0.12	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	1.2	EPA 8021	10-5-11	10-6-11	U1
Gasoline	ND	12	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	GEI-5-10.0					
Laboratory ID:	09-195-26					
Benzene	0.13	0.023	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.55	EPA 8021	10-5-11	10-6-11	U1
Ethyl Benzene	3.3	0.11	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	1.6	0.11	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.11	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	11	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	68-124				
Client ID:	GEI-5-17.0					
Laboratory ID:	09-195-28					
Benzene	ND	0.020	EPA 8021	10-5-11	10-7-11	
Toluene	ND	0.072	EPA 8021	10-5-11	10-7-11	
Ethyl Benzene	0.12	0.072	EPA 8021	10-5-11	10-7-11	
m,p-Xylene	ND	0.072	EPA 8021	10-5-11	10-7-11	
o-Xylene	ND	0.072	EPA 8021	10-5-11	10-7-11	
Gasoline	ND	7.2	NWTPH-Gx	10-5-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-6-5.0					
Laboratory ID:	09-195-31					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.053	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.053	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.053	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.053	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.3	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				
Client ID:	GEI-6-10.0					
Laboratory ID:	09-195-33					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.052	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.052	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.052	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.052	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.2	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				
Client ID:	GEI-7-2.5					
Laboratory ID:	09-195-35					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.062	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.062	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.062	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.062	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	6.2	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-7-5.0					
Laboratory ID:	09-195-36					
Benzene	ND	0.025	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.13	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	0.18	0.13	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	1.0	0.13	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.65	EPA 8021	10-5-11	10-6-11	U1
Gasoline	ND	13	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Client ID:	GEI-7-7.5					
Laboratory ID:	09-195-37					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.071	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.071	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.071	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.071	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	7.1	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Client ID:	GEI-8-2.5					
Laboratory ID:	09-195-40					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.048	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.048	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.048	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.048	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	4.8	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-8-7.5					
Laboratory ID:	09-195-42					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.058	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.058	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.058	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.058	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.8	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Client ID:	GEI-9-2.5					
Laboratory ID:	09-195-45					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.067	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.067	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.067	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.067	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	6.7	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				
Client ID:	GEI-9-7.5					
Laboratory ID:	09-195-47					
Benzene	ND	0.025	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.13	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	5.4	0.13	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	4.5	0.13	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	2.6	EPA 8021	10-5-11	10-6-11	U1
Gasoline	ND	13	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-9-10.0					
Laboratory ID:	09-195-48					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.063	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.063	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.063	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.063	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	6.3	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Client ID:	GEI-10-5.0					
Laboratory ID:	09-195-51					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.056	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.056	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.056	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.056	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.6	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	68-124				
Client ID:	GEI-10-7.5					
Laboratory ID:	09-195-52					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.066	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.066	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.066	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.066	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	6.6	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	68-124				

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-1-5.0					
Laboratory ID:	09-195-02					
Diesel Range Organics	ND	38	NWTPH-Dx	10-5-11	10-5-11	
Lube Oil Range Organics	ND	75	NWTPH-Dx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	GEI-1-7.5					
Laboratory ID:	09-195-03					
Diesel Range Organics	ND	32	NWTPH-Dx	10-5-11	10-5-11	
Lube Oil Range Organics	ND	64	NWTPH-Dx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	GEI-2-5.0					
Laboratory ID:	09-195-07					
Diesel Range Organics	ND	36	NWTPH-Dx	10-5-11	10-5-11	
Lube Oil Range Organics	ND	72	NWTPH-Dx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	GEI-2-7.5					
Laboratory ID:	09-195-08					
Diesel Range Organics	ND	31	NWTPH-Dx	10-5-11	10-5-11	
Lube Oil Range Organics	ND	62	NWTPH-Dx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	GEI-3-2.5					
Laboratory ID:	09-195-11			40.0.44	40.0.44	
Diesel Range Organics	53	30	NWTPH-DX	10-6-11	10-6-11	
	2/0	59	NW IPH-DX	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	108	50-150				
Client ID:	GEL2 10.0					
Laboratory ID:	00-105 14					
Labulatury ID.	190-190-14	20		10 6 11	10 6 11	
Diesei Kange Organics	43UU ND	29		10-6-11	10-0-11	114
		300	INVVIPH-DX	10-0-11	10-0-11	UΊ
Surroyate:	reicent Recovery					
о-тегрпенуг	100	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-3-18.0					
Laboratory ID:	09-195-16					
Diesel Range Organics	200	32	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	64	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	GEI-4-5.0					
Laboratory ID:	09-195-19					
Diesel Range Organics	740	29	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	57	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	130	50-150				
Client ID:	GEI-4-10.0					
Laboratory ID:	09-195-21					
Diesel Range Organics	ND	29	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics		58	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	103	50-150				
Client ID:	GEL 5-2 5					
Laboratory ID:	00-105-23					
Diosol Pango Organico	7/00	59		10 6 11	10 7 11	
Lubo Oil Pongo Organics	7400 ND	50		10-0-11	10-7-11	114
Surrogate:	Percent Recovery	Control Limits		10-0-11	10-7-11	01
o-Terphenyl		50-150				
0-reiphenyi	33	30-730				
Client ID:	GEI-5-10.0					
Laboratory ID:	09-195-26					
Diesel Range Organics	3200	29	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	68	NWTPH-Dx	10-6-11	10-6-11	U1
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	110	50-150				
, ,						
Client ID:	GEI-5-17.0					
Laboratory ID:	09-195-28					
Diesel Range Organics	58	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	62	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	64	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-6-5.0					
Laboratory ID:	09-195-31					
Diesel Range Organics	32	28	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	56	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	GEI-6-10.0					
Laboratory ID:	09-195-33					
Diesel Range Organics	ND	28	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	56	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	GEI-7-2.5					
Laboratory ID:	09-195-35					
Diesel Range Organics	54	28	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	140	56	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	GEI-7-5.0					
Laboratory ID:	09-195-36					
Diesel Range Organics	4200	29	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	69	57	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	GEI-7-7.5					
Laboratory ID:	09-195-37					
Diesel Range Organics	ND	32	NW IPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics		63	NW IPH-DX	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	83	50-150				
Client ID:						
Laboratory ID:	00 105 40					
Labulatury ID.	4400	20		10 6 11	10 6 11	
Diesei Kange Organics	44UU ND	∠8 61		10-6-11	10-0-11	114
		01		10-0-11	10-0-11	UT
Surioyale.	reicenii Recovery					
o-reipnenyi	120	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-8-7.5					
Laboratory ID:	09-195-42					
Diesel Range Organics	38	30	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	60	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	86	50-150				
Client ID:	GEI-9-2.5					
Laboratory ID:	09-195-45					
Diesel Range Organics	ND	29	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	59	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits		10011	10 0 11	
o-Ternhenvl	77	50-150				
o respiciny		00 100				
Client ID:	GEI-9-7 5					
	09-195-47					
Diosol Pango Organico	<u>00 100 47</u>	20		10 6 11	10 6 11	
		29		10-0-11	10-0-11	
Surrogato:	Porcont Pocovory	Control Limite		10-0-11	10-0-11	
o Torphonyl		50 150				
0-Terphenyi	100	50-150				
Client ID:	GEI-9-10 0					
Laboratory ID:	00-105-//8					
Diosol Pango Organico		20		10 6 11	10 6 11	
		50		10-0-11	10-0-11	
Surragata:	Doroont Booovory	Control Limito		10-0-11	10-0-11	
Surrogale.						
0-Terprienyi	95	50-150				
Client ID:	GEI-10-5 0					
Laboratory ID:	00-105-51					
Discol Dange Organice	09-190-01	20		10 6 11	10 6 11	
Luba Oil Panga Organica		20		10-0-11	10-0-11	
		Control Limito		10-0-11	10-0-11	
Surrogale.						
0-Terprienyi	70	50-150				
Client ID:						
	GEI-10-7.5					
	09-195-52			10.0.11	40.0.44	
Diesel Range Organics	ND	29	NW IPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics		59	NW I PH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o- i erphenyl	97	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-7-2.5					
Laboratory ID:	09-195-35					
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	70	63-127				
Toluene-d8	85	65-129				
4-Bromofluorobenzene	95	55-121				
Client ID:	GEI-7-5.0					
Laboratory ID:	09-195-36					
Methyl t-Butyl Ether	ND	0.065	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.065	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.065	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	84	63-127				
Toluene-d8	84	65-129				
4-Bromofluorobenzene	93	55-121				
Client ID:	GEI-7-7.5					
Laboratory ID:	09-195-37					
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-4-11	10-4-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	70	63-127				
Toluene-d8	87	65-129				
4-Bromofluorobenzene	95	55-121				
Client ID:	GEI-8-2.5					
Laboratory ID:	09-195-40					
Methyl t-Butyl Ether	ND	0.055	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.055	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.055	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	63-127				
Toluene-d8	85	65-129				
4-Bromofluorobenzene	80	55-121				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-8-7.5					
Laboratory ID:	09-195-42					
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	63-127				
Toluene-d8	96	65-129				
4-Bromofluorobenzene	102	55-121				
Client ID:	GEI-9-2.5					
Laboratory ID:	09-195-45					
Vinyl Chloride	ND	0.0012	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.0012	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.0012	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.0012	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0012	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	63-127				
Toluene-d8	97	65-129				
4-Bromofluorobenzene	87	55-121				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-9-7.5					
Laboratory ID:	09-195-47					
Vinyl Chloride	ND	0.053	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.053	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.053	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.053	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.053	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.053	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.053	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.053	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.053	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.053	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	63-127				
Toluene-d8	85	65-129				
4-Bromofluorobenzene	83	55-121				
Client ID:	GEI-9-10.0					
Laboratory ID:	09-195-48					
Vinyl Chloride	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	

EPA 8260

10-6-11

10-6-11

1,2-Dibromoethane	ND	0.0010
Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	87	63-127
Toluene-d8	87	65-129
4-Bromofluorobenzene	77	55-121

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

4-Bromofluorobenzene

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-10-5.0					
Laboratory ID:	09-195-51					
Vinyl Chloride	ND	0.00091	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.00091	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.00091	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.00091	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.00091	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.00091	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.00091	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.00091	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.00091	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.00091	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	99	65-129				
4-Bromofluorobenzene	87	55-121				
Client ID:	GEI-10-7.5					
Laboratory ID:	09-195-52					
Vinyl Chloride	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.0011	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	98	65-129				

55-121

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1005S1					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.050	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.050	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.050	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.050	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.0	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				
Laboratory ID:	MB1005S2					
Benzene	ND	0.020	EPA 8021	10-5-11	10-5-11	
Toluene	ND	0.050	EPA 8021	10-5-11	10-5-11	
Ethyl Benzene	ND	0.050	EPA 8021	10-5-11	10-5-11	
m,p-Xylene	ND	0.050	EPA 8021	10-5-11	10-5-11	
o-Xylene	ND	0.050	EPA 8021	10-5-11	10-5-11	
Gasoline	ND	5.0	NWTPH-Gx	10-5-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	68-124				
Laboratory ID:	MB1005S3					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.050	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.050	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.050	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.050	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	5.0	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-19	95-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA	4	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	4	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	4	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	4	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	4	NA	NA	30	
Surrogate:											
Fluorobenzene						114	118	68-124			
Laboratory ID:	09-19	95-11									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA	4	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	4	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	4	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	4	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	4	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	4	NA	NA	30	
Surrogate:											
Fluorobenzene						106	108	68-124			
Laboratory ID:	09-19	95-35									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA	4	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	4	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	4	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	4	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	4	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						97	100	68-124			

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-19	95-11									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	1.02	1.05	1.00	1.00	ND	102	105	79-121	3	10	
Toluene	1.03	1.06	1.00	1.00	ND	103	106	83-121	3	14	
Ethyl Benzene	1.00	1.03	1.00	1.00	ND	100	103	83-123	3	9	
m,p-Xylene	0.994	1.03	1.00	1.00	ND	99	103	84-123	4	10	
o-Xylene	0.990	1.01	1.00	1.00	ND	99	101	82-124	2	10	
Surrogate:											
Fluorobenzene						101	103	68-124			
Laboratory ID:	09-19	95-35									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	0.997	1.01	1.00	1.00	ND	100	101	79-121	1	10	
Toluene	1.01	1.02	1.00	1.00	ND	101	102	83-121	1	14	
Ethyl Benzene	0.979	0.985	1.00	1.00	ND	98	99	83-123	1	9	
m,p-Xylene	0.978	0.984	1.00	1.00	ND	98	98	84-123	1	10	
o-Xylene	0.964	0.956	1.00	1.00	ND	96	96	82-124	1	10	
Surrogate:											
Fluorobenzene						102	102	68-124			

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

						Date	Dat	е	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB1005S	1							
Diesel Range Organics	ND		25	NWTPH-D	Эх	10-5-11	10-5-	11	
Lube Oil Range Organics	ND		50	NWTPH-D	Эх	10-5-11	10-5-	11	
Surrogate:	Percent Reco	overy	Control Limits						
o-Terphenyl	111		50-150						
Laboratory ID:	MB1006S	1							
Diesel Range Organics	ND		25	NWTPH-D)х	10-6-11	10-6-	11	
Lube Oil Range Organics	ND		50	NWTPH-D	Эx	10-6-11	10-6-	11	
Surrogate:	Percent Reco	overy	Control Limits						
o-Terphenyl	111		50-150						
				Per	cent	Recovery		RPD	
Analyte	Res	sult		Reco	overv	Limits	RPD	l imit	Flags
		Jun		11001	Jiory	Linito		Linit	riago
	09-10	25-03							
)						
Diocol Pango Organico			· · · · · · · · · · · · · · · · · · ·				ΝΙΔ	ΝΔ	
<u>Surragata:</u>		ND							
Surroyale.				07	07	E0 1E0			
o-Terphenyi				97	97	50-150			
Laboratory ID:	09-19	95-36							
	ORIG	DUF)						
Diesel Range Organics	3690	3610)				2	NA	
Lube Oil	60.3	59.8	6				1	NA	
Surrogate:									
o-Terphenyl				112	118	50-150			
Laboratory ID:	09-19	95-47							
	ORIG)						
Diesel Range Organics	773	728					6	NA	
Lube Oil Range Organics	лл NП						NΔ	NΔ	
Surrogate:							1 1/ 1	1 1/ 1	
o-Ternhenvl				106	100	50-150			
				100	100	50-150			

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Matrix:	Soil						
Units:	mg/kg						
					Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:		MB1004S1					
Methyl t-Butyl Ether		ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dichloroethane		ND	0.0010	EPA 8260	10-4-11	10-4-11	
1,2-Dibromoethane		ND	0.0010	EPA 8260	10-4-11	10-4-11	
Surrogate:		Percent Recovery	Control Limits				
Dibromofluoromethane		74	63-127				
Toluene-d8		87	65-129				
4-Bromofluorobenzene		97	55-121				
Laboratory ID:		MB1006S1					
Vinyl Chloride		ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	•	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether		ND	0.0010	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	е	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane		ND	0.0010	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride		ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane		ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichloroethene		ND	0.0010	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene		ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane		ND	0.0010	EPA 8260	10-6-11	10-6-11	
Surrogate:		Percent Recovery	Control Limits				
Dibromofluoromethane		95	63-127				
Toluene-d8		98	65-129				
4-Bromofluorobenzene		91	55-121				

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	04S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0482	0.0548	0.0500	0.0500	96	110	70-130	13	19	
Benzene	0.0416	0.0426	0.0500	0.0500	83	85	70-125	2	15	
Trichloroethene	0.0453	0.0472	0.0500	0.0500	91	94	70-122	4	14	
Toluene	0.0458	0.0439	0.0500	0.0500	92	88	73-120	4	16	
Chlorobenzene	0.0521	0.0490	0.0500	0.0500	104	98	74-109	6	12	
Surrogate:										
Dibromofluoromethane	9				69	79	63-127			
Toluene-d8					80	81	65-129			
4-Bromofluorobenzene	9				90	87	55-121			
Laboratory ID:	SB10	06S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0516	0.0538	0.0500	0.0500	103	108	70-130	4	19	
Benzene	0.0476	0.0480	0.0500	0.0500	95	96	70-125	1	15	
Trichloroethene	0.0471	0.0469	0.0500	0.0500	94	94	70-122	0	14	
Toluene	0.0479	0.0477	0.0500	0.0500	96	95	73-120	0	16	
Chlorobenzene	0.0497	0.0482	0.0500	0.0500	99	96	74-109	3	12	
Surrogate:										
Dibromofluoromethane	e				87	87	63-127			
Toluene-d8					91	90	65-129			
4-Bromofluorobenzene	9				82	82	55-121			

Date of Report: October 7, 2011 Samples Submitted: September 28, 2011 Laboratory Reference: 1109-195 Project: 5147-012-02

% MOISTURE

Date Analyzed: 10-5&6-11

Client ID	Lab ID	% Moisture
GEI-1-5.0	09-195-02	33
GEI-1-7.5	09-195-03	22
GEI-2-5.0	09-195-07	30
GEI-2-7.5	09-195-08	20
GEI-3-2.5	09-195-11	15
GEI-3-10.0	09-195-14	14
GEI-3-18.0	09-195-16	22
GEI-4-5.0	09-195-19	13
GEI-4-10.0	09-195-21	13
GEI-5-2.5	09-195-23	14
GEI-5-10.0	09-195-26	15
GEI-5-17.0	09-195-28	19
GEI-6-5.0	09-195-31	11
GEI-6-10.0	09-195-33	11
GEI-7-2.5	09-195-35	11
GEI-7-5.0	09-195-36	13
GEI-7-7.5	09-195-37	21
GEI-8-2.5	09-195-40	10
GEI-8-7.5	09-195-42	17
GEI-9-2.5	09-195-45	15
GEI-9-7.5	09-195-47	14
GEI-9-10.0	09-195-48	16
GEI-10-5.0	09-195-51	11
GEI-10-7.5	09-195-52	15

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Turnaround Request Check One) Check One) Check One) Check One) Same Day 1 Day Sampled Sampled Sampled Sampled Sampled Sampled II 2 25 Solut II 2 25 Solut II 2 30 Solut II 3 45 Solut II 1 45 Solut
Image: Second
Visibility (PALLs)

Reviewed/Date	Received	Relinquished	Received ON	Relinquished	The first	Received	Relinquished	Signature	20 461-4-7.5	19 GE1-4-5.0	18 GEI-4-2.5	17 461-3-20.0	16 961-3-18,0	15 GE1-3-14,0	14 461-3-10.0	13 GE1-3-7.5	12 GEI-3-5.0	11 GE1-3-2.5	Lab ID Sample Identification	ABHIJIT JOSHI	ROBERT TRAILAN	FORMER SHLL TANK FARM	1012-02-02	Company:	Phone (425) 883-3881 • www.onsite-env.com	IAGE NE OSIN Street - Redmond WA GOUD	OnSite
Reviewed/Date			280	Speak missenja	Speco, messen		2 E	Company	V 1540 V	1535	1530	5051	1500	1430	1425	1420	5141	9 27 11 1410 SolL	Date Time Sampled Sampled Matrix	(olher)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
3			8291 11896	84.91 1/34/6	an 9/20/11 1302		Shh1 11 82 10	Date Time		メメ			5 Х Х		× ×			XX	NUMD NWTP NWTP NWTP Volatile Haloge	H-HCII H-Gx/E H-Gx/E H-Gx H-Dx es 8260 enated	ontair DETEX DB Volatile 8270E	ers 8260B				Laboratory Numbe	Custody
Chromalograms with linal report						- Added in		Comments/Special Instructions		×			×		×			×	(with Ic PAHs 8 PCBs 1 Organe Organe Chlorir Total P TCLP	w-lave 3270D/ 3082 ochlorin pphosph aated A CRA / Metals	I PAHs SIM (Ic ne Pes norus F cid He MTCA) pw-level) ticides 80 resticides rbicides Metals (081A 8270D/ 3151A circle or	SIM ne)		a	
						(4 LS) & - WAVE	1.1. 02 (2)			X			X		× ×			×	нем () <u>Ic</u> Na % Moi	bil and bht bht	bale	nes				09-195	Page 2 of 6

Data Package: Level III 🗍 Level IV 🗍 Electronic Data Deliverables (EDDs) [i _____

Consiste Numerical line, Investigation Numerical line, Investi						Reviewed/Date		Reviewed/Date
Consiste Number Consiste Number 0.9 - 0.2 Construction Environmental Inc. Investigation Environmental Inc. Investigation Investig								Received
Construction Construction<								Relinquished
Construction Interview design Interview design <thinterview design<="" th=""> <thinterview design<="" th=""></thinterview></thinterview>			1658	1896		axe	P	Received
Openancy Conversion Conversio			16:58	appelu	2	Speedy messen	1 miller	Relinquished
Construction Numerical logistic Numerical log	040	11. 140	13:02	9/25/11	YaCa	SPeerly mase	allen	Received
Construction Transverid Regist Transverid Regist Transverid Regist Open 108 Converting C Converting Regist Converting	1.1 10/11/11 Dob (STA)	X	1445	9 28 N		AE	- MANNA	Reinquished
Construe Characterization	structions	Comments/Special Inst	Time	Date		Company	Signature	
Construe					-	V 1650 V	6-2.5	30 GEI-
Consume Consume <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>1630</td><td>- 5-19,0</td><td>29 GE1-</td></t<>					-	1630	- 5-19,0	29 GE1-
Consult Time outside strain Consult Time outside strain Proce uname Sample str	×	X	7	X		1625	041-5-	28 961-
Company					-	1620	- 5-14.0	27 GEI-
Computer Computer Unmanual Request Unmanual Request Hub K Edwards File Market Market Market Image Market Mark	×.	×		X	S	1615	-5-10.0	26 GET.
Computer Construction Intracound Request Intracound Request House REGISTION House Register + Revended Request (Crowd orage) (Crowd orage) Project Name Stame Day (Crowd orage) (Crowd orage) Project Name Stame Day (Crowd orage) (Crowd orage) Project Name Stame Day (Crowd orage) (Crowd orage) Project Name TRANK FARM (Crowd orage) (Crowd orage) Project Name Repart Manage (Crowd orage) (Crowd orage) Project Name TRANK FARM (Crowd orage) (Crowd orage) Project Name Repart Manage (Crowd orage) (Crowd orage) Project Name Repart Manage (Crowd orage) (Crowd orage) Project Name Repart Manage (Crowd orage) (Crowd orage) Project Name (Crowd orage) (Crowd orage) (Crowd orage) Project Name Sampled Nattribution (Crowd orage) Project Name Sampled Nattribution (গ	1610	-5-7.5	12 GEL-
Company: Company: Construction Construct					G	1605	5-5.0	24 961-
Company: Clinet RESIDENTIAL INC. Hart RESIDENTIAL INC. Immanuel Request Hart RESIDENTIAL INC. Immanuel Request Hart RESIDENTIAL INC. Immanuel Request Hart RESIDENT	×	×		×	দ	1600	-5-2.5	23 GEI-
Company: Construction Project Name Fund With Base Project Name Check One) Project Name Same Day Project Name Check One) Project Name Same Day Project Name Check One) Project Name Same Day Project Name Check One) NWTPH-HCKD NWTPH-HOK NWTPH-HOX Volatiles 8260B Semiplicial Bes 8270D/SIM ((twith low-level) PCBs 80822<						1550	0.4-14-0	22 GEI-
Algebra Time of Containers Number of Containers Number of Containers NWTPH-HCiD Number of Containers NUTPH-HCid Number of Containers Number of Containers Number of Containers Number of Containers Number of Containers Numer of Containers Number of C	×	×		X	S	9 27 11 1545 Soll	-4-10.0	21 9E1-
Company Company In monound Request Project Number FAGA NEERS Fractional Inc. In working days Project Number Grad NEERS Fractional Inc. In working days Project Number Grad NEERS Fractional Inc. In working days Project Number Grad NEERS Fractional Inc. In working days Project Number Grad NEERS Fractional Inc. In working days Project Name Same Day 1 Day Project Name Reget Act Project Name Project Number Inf Hanalysis Days Days 3 Days Project Name Reget Act Project Name Project Name Project Name Reget Act Project Name <	Total F TCLP HEM (Leg	PAHs & PCBs Organe Organe Chlorir	Volatile Haloge Semive (with lo		Numb	Date Time Sampled Sampled Matrix	Sample Identification	Lab ID
Company: Company: Turnaround Reguest (in working days) Turnaround Reguest (in working days) Project Number: YH - O(2-O2 Check One) Check One) Project Name: Same Day 1 Day 1 Day Project Manager Riandard (7 Days) 3 Days 3 Days Project Manager Riandard (7 Days) 3 Days 3 Days Project Manager Riandard (7 Days) 3 Days 3 Days Project Manager Riandard (7 Days) 3 Days 3 Days Project Manager Riandard (7 Days) 3 Days 3 Days Project Manager Riandard (7 Days) 3 Days 3 Days Project Manager Research (1 Days) 9 Page 2 Of 9 Mathematic (circles 8081A 9 Page 2 Of 9 9 Mit (ow-risvel) 10 Page 2 Of 9	ARCRA / Metals oil and Ad	8270D/ 8082 ochlorir ophosph	es 8260 enated v olatiles	H-Gx/B	er of C	(other)	HVOL.	ABHUTT
Project Name: Project Name: Projec	greas	SIM (I	DB Volatij 82700 I PAHs	3TEX	contai		TRAHAN	ROBERT
Company: Circle one)	e) 1664	ow-level) aticides 8 Pesticides arbicides	es 82606 D/SIM s)		ners	(TPH analysis 5 Days)	SHELL TANK FARM	FOKNEK Project Manager
Image: Solution of the service of	Circle C	081A 8270D 8151A	3			2 Days 3 Days	7-012-02	SH Z
International Street Redunded Street Add NE Beth Street Redunded WA BEGS Phone: (425) 883-3881 • Www.orsite-env.com (in working days) Company: (Check One)	ona)	/SIM				Same Day 1 Day		Project Number
Environmental Inc. 14640 NE 95m Street - Redmond, WA 98052 (in working days) UII All U CUSLUUY (in working days) Laboratory Number: 09-192						(Check One)	ane: (425) bb3-bbs1 • www.onsite-einv.com	Company:
Page J of 6	09-195		ry Number:	Laborato	 I	Turnaround Request (in working days)	AN NE 95th Street - Redmond, WA 98052	1464
	Page 3 of 6		Y	nsinn		Cham a	nSite	INN. OT

Data Package: Level III i_ Level IV | Electronic Data Deliverables (EDDs) _ ____

Reviewed/Date	Received	Relinquished	Received	Relinquished find Part Part	Received Difference	Relinquished	Signature	40 GE1-8-2.5	39 961-7-12.0	38 951-7-10.0	37 961-7-7.5	36 GEI-7-5,0	35 GE1-7-2.5	34 961-6-14.0	33 GEI-6-10,0	32 481-6-7.5	31 GEI-6-5.0	Lab 10 Sample Identification	ABHIJIT JOSHI	ROBERT TRAHAN	FORMER SHLL TANK FARM	5147-012-02	4EI	Company:	14648 NE 95th Street - Redmond, WA 98052	OnSite
Reviewed/Date			- We	Speed myssensen	Speedy mosen	1 <u>1</u> 20	Company	V 1105 V	12.00	1152	0511	5411	1140	0141	1705	1700	7105 5591 11/22 b	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			8591 11896	16:58	×n 1/28/11 1302	9/28/11 1455	Date Time	XX		5	XXX	5 × ×	- X X	-	J X X	M	XX	Numb NWTP NWTP NWTP Volatile Haloge Semin	Per of (PH-HCI PH-Gx/E PH-Gx PH-Gx PH-Dx es 8260 enated olatiles	ontair D BTEX DB Volatile 8270D	es 8260E	3			Laboratory Numbe	Custody
Chromatograms with final report							Comments/Special Instructions	×			× ×	×	× 		×. ×.		× ×	(with Id PAHs I PCBs Organ Organ Chlorir Total F TCLP HEM (Le	where a270D/ 8082 ochloni pphospi nated A ACRA / Metals ioil and add	I PAHs SIM (IC ne Pes norus P cid He grease) w-level) hicides 8 resticides rbicides Metals i e) 1664	081A 8270DA 8151A circle of	SIM ne)		80 80	Page 4
								X X			XX	××	XXXXX		X		×	M-7	T BE	E	DB,	EDC	- 52	60	-195	of O

Data Package Level III 🗍 Level IV 🗍 Electronic Data Deliverables (EDDs)
Reviewed/Date	Received	Relinquished	Received R.	Reinquished Dist Part	Received 24/2	Relinquished	Signature A	50 961-10-2.5	49 461-9-12.0	48 451-9-10.0	47 GE1-9-7.5	46 GE1-9-5,0	WS GE1-9-2.5	44 961-8-12.0	43 481-8-10.0	42 GEI-8-7.5	41 481-8-5.0	Lab ID Sample Identification	ABHJIT JOSHI	ADJERT TRAHAN	FORMER. SHELL TANK FARA	5147-012-02	Project Number	Company: // // [423] bd5-salb1 - www.onside-env.com	14648 NE 95th Skreet • Redmono WA 98052	IN OnSite
Reviewed/Date			1000	Speed, messenger	Steep Massengen	OCT I	Company	V 1025 V 1	1010	5001	1000	950 1	940 1	1125 1	1120	511	9/27/11 1110 Soil I	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 📋 3 Days	Same Day 🔲 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			0021 118616	9/20/11700	\$/25/11 13:03	9/28/11 1445	Date Time			メメ	× × ×		X X			X X		NWTP NWTP NWTP Volatile Haloge	H-HCII H-Gx/E H-Gx H-Dx es 8260 enated	D BTEX DB Volatile 8270D	s 8260B				Laboratory Number	Custody
Chromatograms with final rep					<pre>/ Fpdax to the state</pre>	V ~ 11 A Was has D	Comments/Special Instructions			X 	× ×		× ×			×		(with ic PAHs & PCBs & Organe Organe Chlorir Total P Total P Total P Total P Total P	w-leve 8270D/ 8082 ochlorin pphospl nated A ACRA / Wetals orl and add ph)	I PAHs) SIM (Io ne Pest norus Pe cid Her MTCA grease	w-level) w-level) cides 80 esticides bicides Metals () 1664	081A 8270D/3 8151A circle o	SIM ne)		0	Page

Data Package: Level III [] Level IV 🗌 Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received (P)	Relinquished	Received	Relinquished	Signature		1	54 451-10-12.0	53 GE1-10-10.0	52 961-10-7,5	SI GE1-10-5,0	Lab 10 Sample Identification	ABHUTIT JOSHI	LOBERT TRAHAN	FORNER SHELL TANK FARM	5147-012-02	Project Number:	Company of	14-LS NE 45th Streat - Reinford VA 94012 Phone (425) 858 - Werk onside Fillward	MA OnSite
Reviewed/Date			- CUNC	Sheeps mussing in	SPeco, messense	GEI	Company			X 1045 V	1040	1035	9/27/11 1030 Soil !!	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 2 Days	Same Day [_] 1 Day	(Check One)	Tu maround Request (in working days)	Chain of
			Optil 1100	9/20/1: 1700	9/25/11 13:03	9/28/11 1445	Date Time					メメ	マメメ	NWTF NWTF NWTF NWTF Volate Halog Semiu	PH-HCI PH-Gx/I PH-Gx PH-Gx PH-Dx enated	D BTEX 0B Volatil	es 8260)/SIM	в			Laboratory Number	Custody
Chromatograms with final report					1 Hours	Y - Mind White 2% (STA)	Comments/Special Instructions					X XX	X X X X X X	(with I PAHs PCBs Organ Organ Chlorn Total I TCLP HEM No PCE	ow-leve 8270D. 8082 iochlori ophosp nated / ACRA / Metals (oil and (oil and))))))))))))))))))))))))))))))))))))	I PAHS SIM (II Ine Pess horus F Acid He greas	i) pow-level icides 6 resticides metals i) 1664 i) 1664 i) 1664 i) 2 i) 2 i 2 i 2 i 2 i 2 i 2 i 2 i 2 i) 3081A s 8270E s 8151A (circle	0/SIM	A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r: 09-195	Page 6 of 6

Data Package Level III 🗍 Level IV ' Electronic Data Deliverables (EDDs)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 14, 2011

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1109-196

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on September 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 14, 2011 Samples Submitted: September 28, 2011 Laboratory Reference: 1109-196 Project: 5147-012-02

Case Narrative

Samples were collected on September 28, 2011 and received by the laboratory on September 28, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection; except for samples GEI-12-15.0, GEI-14-5.0, and GEI-13-15.0 which were extracted from 8-ounce jars and analyzed. The VOA vials were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Sample analysis holding time was exceeded for sample GEI-13-15.0 by approximately 3 hours.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection; except for sample GEI-12-15.0 which was extracted from an 8-ounce jar and analyzed. The VOA vials were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable for sample GEI-11-5.0 due to the necessary dilution of the sample.

PAHs EPA 8270D/SIM Analysis

Sample GEI-14-8.0 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: October 14, 2011 Samples Submitted: September 28, 2011 Laboratory Reference: 1109-196 Project: 5147-012-02

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-11-5.0	09-196-02	Soil	9-28-11	9-28-11	
GEI-11-10.0	09-196-04	Soil	9-28-11	9-28-11	
GEI-12-7.5	09-196-08	Soil	9-28-11	9-28-11	
GEI-12-12.0	09-196-10	Soil	9-28-11	9-28-11	
GEI-12-15.0	09-196-11	Soil	9-28-11	9-28-11	
GEI-13-5.0	09-196-13	Soil	9-28-11	9-28-11	
GEI-13-7.5	09-196-14	Soil	9-28-11	9-28-11	
GEI-13-12.5	09-196-16	Soil	9-28-11	9-28-11	
GEI-13-15.0	09-196-17	Soil	9-28-11	9-28-11	
GEI-14-5.0	09-196-21	Soil	9-28-11	9-28-11	
GEI-14-8.0	09-196-22	Soil	9-28-11	9-28-11	
GEI-14-10.0	09-196-23	Soil	9-28-11	9-28-11	
GEI-15-5.0	09-196-26	Soil	9-28-11	9-28-11	
GEI-15-10.0	09-196-28	Soil	9-28-11	9-28-11	
GEI-15A-5.0	09-196-32	Soil	9-28-11	9-28-11	
GEI-15A-10.0	09-196-34	Soil	9-28-11	9-28-11	
GEI-30-7.5	09-196-38	Soil	9-28-11	9-28-11	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-5.0					
Laboratory ID:	09-196-02					
Benzene	0.050	0.026	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.13	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	2.5	0.13	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	2.1	0.13	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	1.3	EPA 8021	10-5-11	10-6-11	U1
Gasoline	ND	13	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	68-124				
Client ID:	GEI-11-10.0					
Laboratory ID:	09-196-04					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.060	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.060	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.060	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.060	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	6.0	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	68-124				
Client ID:	GEI-12-7.5					
Laboratory ID:	09-196-08					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.055	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.055	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.055	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.055	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	5.5	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-12.0					
Laboratory ID:	09-196-10					
Benzene	ND	0.025	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.12	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.12	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.12	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	12	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	68-124				
Client ID:	GEI-12-15.0					
Laboratory ID:	09-196-11					
Benzene	ND	0.016	EPA 8021	10-5-11	10-11-11	
Toluene	ND	0.16	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.16	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.16	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.16	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	16	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	GEI-13-5.0					
Laboratory ID:	09-196-13					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.051	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.051	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.051	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.051	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	5.1	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-13-7.5					
Laboratory ID:	09-196-14					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.063	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.063	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.063	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.063	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	6.3	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	68-124				
Client ID:	GEI-13-12.5					
Laboratory ID:	09-196-16					
Benzene	0.065	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.049	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.049	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	0.14	0.049	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.049	EPA 8021	10-5-11	10-6-11	
Gasoline	56	4.9	NWTPH-Gx	10-5-11	10-6-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Client ID:	GEI-14-5.0					
Laboratory ID:	09-196-21					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.062	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.062	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.062	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.062	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	6.2	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-14-8.0					
Laboratory ID:	09-196-22					
Benzene	0.025	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.056	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.056	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.056	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.056	EPA 8021	10-5-11	10-6-11	
Gasoline	45	5.6	NWTPH-Gx	10-5-11	10-6-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	68-124				
Client ID:	GEI-14-10.0					
Laboratory ID:	09-196-23					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.063	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.063	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.063	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.063	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	6.3	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	68-124				
Client ID:	GEI-30-7.5					
Laboratory ID:	09-196-38					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.055	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.055	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.055	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.055	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	5.5	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	68-124				

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-5.0					
Laboratory ID:	09-196-02					
Diesel Range Organics	2200	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	920	62	NWTPH-Dx	10-6-11	10-6-11	N1
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	74	50-150				
Client ID:	GFI-11-10.0					
Laboratory ID.	09-196-04					
Diesel Range Organics		20		10-6-11	10-6-11	
Lube Oil Range Organics	ND	59	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits	NWITH DX	10011	10011	
Sunogale.	nn na har an har	50 150				
0-Terphenyi	92	50-150				
Client ID:	CEI 12 7 5					
Laboratory ID:	00 106 09					
	09-190-00			40.0.44	40.0.44	
Diesei Range Organics		30		10-6-11	10-6-11	
			NVVIPH-DX	10-6-11	10-0-11	
Surrogate:	Percent Recovery					
o-Terphenyi	60	50-150				
Client ID:	CEI 12 12 0					
	00 106 10					
	09-190-10			40.0.44	40.0.44	
Diesel Range Organics	380	30		10-6-11	10-6-11	N14
	62	60	NWTPH-DX	10-6-11	10-6-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-lerphenyl	98	50-150				
Client ID:	GEI-12-15.0					
Laboratory ID:	09-196-11					
Diesel Range Organics	ND	33	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	66	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	GEI-13-5.0					
Laboratory ID:	09-196-13					
Diesel Range Organics	ND	27	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	54	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-13-7.5					
Laboratory ID:	09-196-14					
Diesel Range Organics	890	30	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	200	60	NWTPH-Dx	10-6-11	10-6-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	GEI-13-12.5					
Laboratory ID:	09-196-16					
Diesel Range Organics	240	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Client ID:	GEI-14-5.0					
Laboratory ID:	09-196-21					
Diesel Range Organics	ND	48	NWTPH-Dx	10-6-11	10-6-11	U1
Lube Oil	88	56	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	GEI-14-8.0					
Laboratory ID:	09-196-22					
Diesel Range Organics	700	28	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	220	56	NWTPH-Dx	10-6-11	10-6-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
	GEI-14-10.0					
Laboratory ID.	09-190-23	24		10.0.11	10 0 11	
Diesel Range Organics		31		10-6-11	10-6-11	
Lube Oli Kange Organics	Dereent Decovery	02 Control Limito		10-0-11	10-0-11	
Surroyale.						
0-Terphenyi	12	50-750				
Client ID:	GEL-30-7 5					
Laboratory ID.	09-196-38					
Diesel Range Organics	<u>ND</u>	20		10-6-11	10-6-11	
	ND	29 58	NWTPH-Dy	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits		10 0-11	10 0-11	
o-Ternhenvl	70	50-150				
	70	00-700				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-5.0					
Laboratory ID:	09-196-02					
Naphthalene	0.37	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	3.1	0.082	EPA 8270/SIM	10-6-11	10-10-11	
1-Methylnaphthalene	2.8	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Acenaphthylene	0.028	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	0.088	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	0.23	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.21	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	0.017	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	0.012	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	0.016	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Chrysene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Benzo[b]fluoranthene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Benzo(j,k)fluoranthene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Benzo[a]pyrene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Indeno(1,2,3-c,d)pyrene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Dibenz[a,h]anthracene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Benzo[g,h,i]perylene	ND	0.082	EPA 8270/SIM	10-6-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	94	43 - 109				
Pyrene-d10	105	38 - 128				
Terphenyl-d14	87	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-10.0					
Laboratory ID:	09-196-04					
Naphthalene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.011	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	43 - 109				
Pyrene-d10	99	38 - 128				
Terphenyl-d14	88	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-7.5					
Laboratory ID:	09-196-08					
Naphthalene	0.026	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	0.029	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.027	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.010	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 109				
Pyrene-d10	78	38 - 128				
Terphenyl-d14	68	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-12.0					
Laboratory ID:	09-196-10					
Naphthalene	0.026	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	0.019	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.021	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	0.012	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.016	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	0.015	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	0.018	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	43 - 109				
Pyrene-d10	83	38 - 128				
Terphenyl-d14	80	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-15.0					
Laboratory ID:	09-196-11					
Naphthalene	0.014	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	0.012	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	0.011	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0087	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	43 - 109				
Pyrene-d10	79	38 - 128				
Terphenyl-d14	76	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-13-5.0					
Laboratory ID:	09-196-13					
Naphthalene	0.013	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	0.069	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.016	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.0077	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0072	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	43 - 109				
Pyrene-d10	83	38 - 128				
Terphenyl-d14	72	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-13-7.5					
Laboratory ID:	09-196-14					
Naphthalene	0.12	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	0.18	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.082	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	0.015	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.011	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	49	43 - 109				
Pyrene-d10	68	38 - 128				
Terphenyl-d14	62	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-13-12.5					
Laboratory ID:	09-196-16					
Naphthalene	0.021	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.045	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	0.011	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	0.068	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	0.063	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	0.025	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	0.023	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	0.019	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	0.023	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	0.036	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	0.018	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	0.020	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	43 - 109				
Pyrene-d10	66	38 - 128				
Terphenyl-d14	62	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-14-5.0					
Laboratory ID:	09-196-21					
Naphthalene	0.0083	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	0.026	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.0078	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0074	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	43 - 109				
Pyrene-d10	76	38 - 128				
Terphenyl-d14	65	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-14-8.0					
Laboratory ID:	09-196-22					
Naphthalene	0.028	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	0.044	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	0.027	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.0086	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	0.0091	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0075	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	42	43 - 109				Q
Pyrene-d10	59	38 - 128				
Terphenyl-d14	52	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-14-10.0					
Laboratory ID:	09-196-23					
Naphthalene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0083	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	43 - 109				
Pyrene-d10	49	38 - 128				
Terphenyl-d14	46	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-30-7.5					
Laboratory ID:	09-196-38					
Naphthalene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	0.016	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	0.018	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	0.021	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	0.0095	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	0.0092	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0078	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	43 - 109				
Pyrene-d10	50	38 - 128				
Terphenyl-d14	46	33 - 119				

PCBs by EPA 8082

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-5.0					
Laboratory ID:	09-196-02					
Aroclor 1016	ND	0.062	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.062	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.062	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.062	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.062	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.062	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.062	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	67	42-123				
Client ID:	GEI-11-10.0					
Laboratory ID:	09-196-04					
Aroclor 1016	ND	0.058	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.058	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.058	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.058	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.058	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.058	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.058	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	70	42-123				

TOTAL LEAD EPA 6010B

Matrix:	Soil					
Units:	mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-196-02					
Client ID:	GEI-11-5.0					
Lead	ND	6.2	6010B	10-7-11	10-12-11	
Lab ID:	09-196-04 GEL-11-10.0					
Lead	ND	5.8	6010B	10-7-11	10-12-11	
		0.0				
Lab ID:	09-196-08					
Client ID:	GEI-12-7.5					
Lead	ND	6.0	6010B	10-7-11	10-12-11	
Lab ID:	09-196-10					
Client ID:	GEI-12-12.0		_			
Lead	ND	6.0	6010B	10-7-11	10-12-11	
Lab ID:	09-196-11					
Client ID:	GEI-12-15.0					
Lead	ND	6.5	6010B	10-7-11	10-12-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B

Drite: mgxg (ppm) Date Date Date Analyte Result PQL EPA Method Prepared Analyzed Flags Lab ID: 09-196-13 0 55 5.4 60108 10-7-11 10-11-11 Lad 5.5 5.4 60108 10-7-11 10-11-11 Lad 5.5 5.4 60108 10-7-11 10-12-11 Lab ID: 09-196-14 Client ID: GEI-13-7.5 Cadmium ND 0.60 60108 10-7-11 10-12-11 Lad ID: 09-196-16 Cadmium ND 0.63 60108 10-7-11 10-12-11 Lab ID: 09-196-16 Cadmium ND 6.3 60108 10-7-11 10-12-11 Lab ID: 09-196-21 Client ID: GEI-14-5.0 Cadmium ND 5.6 60108 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-5.0 Cadmium ND 5.6 60108 10-	Matrix:	Soil					
Analyte Result POL EPA Method Prepared Analyzed Flags Lab ID: 09-196-13 Cilent ID: GEI-13-5.0	Units:	mg/kg (ppm)			Date	Date	
Lab ID: 09-196-13 Cilent ID: GEI-13-5.0 Cadmium ND 0.54 6010B 10-7-11 10-11-11 Lab ID: 09-196-14 Control	Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
ND 0.54 6010B 10-7-11 10-11-11 Lead 5.5 5.4 6010B 10-7-11 10-11-11 Lab ID: 09-196-14 10-7-11 10-11-11 10-11-11 Lab ID: GEI-13-7.5 Cadmium ND 0.60 6010B 10-7-11 10-12-11 Lead ND 6.0 6010B 10-7-11 10-12-11 10-12-11 Lead ND 6.0 6010B 10-7-11 10-12-11 10-12-11 Lab ID: 09-196-16 Cadmium ND 6.3 6010B 10-7-11 10-12-11 Lead ND 6.3 6010B 10-7-11 10-12-11 Lead ND 6.3 6010B 10-7-11 10-12-11 Lead ND 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Cient ID GEI-14-8.0 Cadmium ND 5.6 6010B 10-7-11 10-12-11 Lead ND 5.6 <t< td=""><td>Lab ID: Client ID:</td><td>09-196-13 GEI-13-5.0</td><td></td><td></td><td></td><td></td><td></td></t<>	Lab ID: Client ID:	09-196-13 GEI-13-5.0					
Lead 5.5 5.4 6010B 10-7-11 10-11-11 Lab ID: 09-196-14	Cadmium	ND	0.54	6010B	10-7-11	10-11-11	
Lab ID: 09-196-14 Client ID: GEI-13-7.5 Cadmium ND 0.60 6010B 10-7-11 10-12-11 Lad ND 6.0 6010B 10-7.11 10-12-11 Lab ID: 09-196-16 Client ID: GEI-13-12.5 Cadmium ND 0.63 6010B 10-7-11 10-12-11 Lab ID: 09-196-26 Client ID: GEI-13-12.5 Cadmium ND 0.63 6010B 10-7-11 10-12-11 Lab ID: 09-196-21 Client ID: GEI-14-5.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Cadmium ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Cadmium ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-8.0 Cadmium ND 5.6 6010B 10-7-11	Lead	5.5	5.4	6010B	10-7-11	10-11-11	
ND 0.60 6010B 10-7-11 10-12-11 Lead ND 6.0 6010B 10-7-11 10-12-11 Lab ID: 09-196-16 Client ID: GEI-13-12.5 Cadmium ND 0.63 6010B 10-7-11 10-12-11 Lab ID: GEI-13-12.5 Cadmium ND 0.63 6010B 10-7-11 10-12-11 Lead ND 6.3 6010B 10-7-11 10-12-11 Lead ND 6.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-21 Client ID: GEI-14-5.0 Cadmium ND 5.6 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 10-12-11 Lab ID: O9-196-22 Client ID: GEI-14-8.0 Cadmium ND 5.6 6010B 10-7-11 10-12-11 Lab ID: O9-196-23 Cilent ID: GEI-14-10.0 Cadmium ND 5.6 6010B 10-7-11 <	Lab ID: Client ID:	09-196-14 GEI-13-7.5					
Lead ND 6.0 6010B 10-7-11 10-12-11 Lab ID: 09-196-16 Cilient ID: GEI-13-12.5	Cadmium	ND	0.60	6010B	10-7-11	10-12-11	
Lab ID: 09-196-16 Client ID: GEI-13-12.5 Cadmium ND 0.63 6010B 10-7-11 10-12-11 Lab ID: 09-196-21 Client ID: GEI-14-5.0 Common MD 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-21 Client ID: GEI-14-5.0 Common MD 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Common MD 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Common MD 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-8.0 Common MD 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Common MD 0.62 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Common MD 0.62 6010B 10-7-11 10-12-11 Lad ND 0.62 6010B 10-7-11 1	Lead	ND	6.0	6010B	10-7-11	10-12-11	
Lead ND 6.3 6010B 10-7-11 10-12-11 Lab ID: 09-196-21 Client ID: GEI-14-5.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11	Lab ID: <u>Client ID:</u> Cadmium	09-196-16 GEI-13-12.5 ND	0.63	6010B	10-7-11	10-12-11	
Lab ID: 09-196-21 Client ID: GEI-14-5.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Client ID: 09-196-22 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Client ID: 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lead ND 0.62 6010B 10-7-11 10-12-11	Lead	ND	6.3	6010B	10-7-11	10-12-11	
ND 0.56 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Client ID: GEI-14-8.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lab ID: 09-196-22 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11	Lab ID: Client ID:	09-196-21 GEI-14-5.0					
Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-22	Cadmium	ND	0.56	6010B	10-7-11	10-12-11	
Lab ID: 09-196-22 Client ID: GEI-14-8.0 Cadmium ND 0.56 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lead ND 6.2 6010B 10-7-11 10-12-11	Lead	ND	5.6	6010B	10-7-11	10-12-11	
ND 0.56 6010B 10-7-11 10-12-11 Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 Client ID: GEI-14-10.0 V V V Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lead ND 6.2 6010B 10-7-11 10-12-11	Lab ID: Client ID:	09-196-22 GEI-14-8.0					
Lead ND 5.6 6010B 10-7-11 10-12-11 Lab ID: 09-196-23 <	Cadmium	ND	0.56	6010B	10-7-11	10-12-11	
Lab ID: 09-196-23 Client ID: GEI-14-10.0 Cadmium ND 0.62 6010B 10-7-11 10-12-11 Lead ND 6.2 6010B 10-7-11 10-12-11	Lead	ND	5.6	6010B	10-7-11	10-12-11	
ND 0.62 6010B 10-7-11 10-12-11 Lead ND 6.2 6010B 10-7-11 10-12-11	Lab ID: Client ID:	09-196-23 GEI-14-10.0					
Lead ND 6.2 6010B 10-7-11 10-12-11	Cadmium	ND	0.62	6010B	10-7-11	10-12-11	
	Lead	ND	6.2	6010B	10-7-11	10-12-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B

Matrix:	Soil					
Units:	mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-196-26					
Client ID:	GEI-15-5.0					
Cadmium	ND	0.54	6010B	10-7-11	10-12-11	
Lab ID:	09-196-28					
Client ID:	GEI-15-10.0					
Cadmium	ND	0.60	6010B	10-7-11	10-12-11	
Lab ID:	09-196-32					
Client ID:	GEI-15A-5.0					
Cadmium	0.77	0.62	6010B	10-7-11	10-12-11	
Lab ID:	09-196-34					
Client ID:	GEI-15A-10.0					
Cadmium	0.90	0.69	6010B	10-11-11	10-12-11	
Lab ID:	09-196-38					
Client ID:	GEI-30-7.5					
Lead	ND	5.8	6010B	10-7-11	10-12-11	

MTBE, EDC, and EDB by EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-5.0					
Laboratory ID:	09-196-02					
Methyl t-Butyl Ether	ND	0.058	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.058	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.058	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	63-127				
Toluene-d8	90	65-129				
4-Bromofluorobenzene	82	55-121				

MTBE, EDC, and EDB by EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-11-10.0					
Laboratory ID:	09-196-04					
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-7-11	10-7-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-7-11	10-7-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	63-127				
Toluene-d8	98	65-129				
4-Bromofluorobenzene	89	55-121				

HALOGENATED VOLATILES by EPA 8260B

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-7.5					
Laboratory ID:	09-196-08					
Vinyl Chloride	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	97	65-129				
4-Bromofluorobenzene	89	55-121				

HALOGENATED VOLATILES by EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-12.0					
Laboratory ID:	09-196-10					
Vinyl Chloride	ND	0.00093	EPA 8260	10-7-11	10-7-11	
Trichlorofluoromethane	ND	0.00093	EPA 8260	10-7-11	10-7-11	
Methyl t-Butyl Ether	ND	0.00093	EPA 8260	10-7-11	10-7-11	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260	10-7-11	10-7-11	
1,1,1-Trichloroethane	ND	0.00093	EPA 8260	10-7-11	10-7-11	
Carbon Tetrachloride	ND	0.00093	EPA 8260	10-7-11	10-7-11	
1,2-Dichloroethane	ND	0.00093	EPA 8260	10-7-11	10-7-11	
Trichloroethene	ND	0.00093	EPA 8260	10-7-11	10-7-11	
Tetrachloroethene	ND	0.00093	EPA 8260	10-7-11	10-7-11	
1,2-Dibromoethane	ND	0.00093	EPA 8260	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	94	65-129				
4-Bromofluorobenzene	102	55-121				

HALOGENATED VOLATILES by EPA 8260B

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-12-15.0					
Laboratory ID:	09-196-11					
Vinyl Chloride	ND	0.0013	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.0013	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.0013	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.0013	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0013	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	96	65-129				
4-Bromofluorobenzene	95	55-121				

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-13-15.0					
Laboratory ID:	09-196-17					
Gasoline	ND	6.9	NWTPH-Gx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				

31

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S3					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.050	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.050	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.050	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.050	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	5.0	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Laboratory ID:	MB1005S4					
Benzene	ND	0.020	EPA 8021	10-5-11	10-6-11	
Toluene	ND	0.050	EPA 8021	10-5-11	10-6-11	
Ethyl Benzene	ND	0.050	EPA 8021	10-5-11	10-6-11	
m,p-Xylene	ND	0.050	EPA 8021	10-5-11	10-6-11	
o-Xylene	ND	0.050	EPA 8021	10-5-11	10-6-11	
Gasoline	ND	5.0	NWTPH-Gx	10-5-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	68-124				

NWTPH-Gx/BTEX QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-19	95-35									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						97	100	68-124			
Laboratory ID:	09-10	06-23									
	ORIG										
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m p-Xvlene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xvlene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						107	107	68-124			
MATRIX SPIKES											
Laboratory ID:	09-19	95-35									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	0.997	1.01	1.00	1.00	ND	100	101	79-121	1	10	
Toluene	1.01	1.02	1.00	1.00	ND	101	102	83-121	1	14	
Ethyl Benzene	0.979	0.985	1.00	1.00	ND	98	99	83-123	1	9	
m,p-Xylene	0.978	0.984	1.00	1.00	ND	98	98	84-123	1	10	
o-Xylene	0.964	0.956	1.00	1.00	ND	96	96	82-124	1	10	
Surrogate:											
Fluorobenzene						102	102	68-124			

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

						Date	Date	e	
nalyte Result PQL Method			Prepared	Analyzed		Flags			
METHOD BLANK									
Laboratory ID:	MB1006S	2							
Diesel Range Organics	ND		25	NWTPH-D	Эx	10-6-11	10-6-	11	
Lube Oil Range Organics	ND		50	NWTPH-D	Эx	10-6-11	10-6-	11	
Surrogate:	Percent Reco	overy	Control Limits						
o-Terphenyl	94		50-150						
				Per	cent	Recovery		RPD	
Analyte	Result		Recovery		Limits	RPD	Limit	Flags	
DUPLICATE									
Laboratory ID:	09-19	96-08							
	ORIG	DUF	þ						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				60	66	50-150			
Laboratory ID:	09-19	96-14							
	ORIG	DUF	0						
Diesel Range Organics	746	445					51	NA	
Lube Oil	165	110	1				40	NA	N1
Surrogate:									
o-Terphenyl				74	70	50-150			

34
PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1006S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	43 - 109				
Pyrene-d10	89	38 - 128				
Terphenyl-d14	90	33 - 119				

35

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

5 5					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-19	96-23									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0596	0.0621	0.0833	0.0833	ND	72	75	39 - 110	4	21	
Acenaphthylene	0.0526	0.0589	0.0833	0.0833	ND	63	71	47 - 124	11	21	
Acenaphthene	0.0557	0.0605	0.0833	0.0833	ND	67	73	50 - 120	8	20	
Fluorene	0.0553	0.0598	0.0833	0.0833	ND	66	72	52 - 126	8	21	
Phenanthrene	0.0526	0.0578	0.0833	0.0833	ND	63	69	41 - 130	9	22	
Anthracene	0.0501	0.0558	0.0833	0.0833	ND	60	67	48 - 124	11	23	
Fluoranthene	0.0532	0.0592	0.0833	0.0833	ND	64	71	40 - 137	11	23	
Pyrene	0.0505	0.0565	0.0833	0.0833	ND	61	68	36 - 139	11	23	
Benzo[a]anthracene	0.0461	0.0528	0.0833	0.0833	ND	55	63	43 - 127	14	21	
Chrysene	0.0457	0.0518	0.0833	0.0833	ND	55	62	41 - 133	13	19	
Benzo[b]fluoranthene	0.0449	0.0515	0.0833	0.0833	ND	54	62	40 - 132	14	25	
Benzo(j,k)fluoranthene	0.0442	0.0510	0.0833	0.0833	ND	53	61	35 - 132	14	25	
Benzo[a]pyrene	0.0405	0.0464	0.0833	0.0833	ND	49	56	37 - 131	14	26	
Indeno(1,2,3-c,d)pyrene	0.0433	0.0506	0.0833	0.0833	ND	52	61	39 - 134	16	23	
Dibenz[a,h]anthracene	0.0457	0.0534	0.0833	0.0833	ND	55	64	40 - 137	16	21	
Benzo[g,h,i]perylene	0.0441	0.0515	0.0833	0.0833	ND	53	62	35 - 135	15	22	
Surrogate:											
2-Fluorobiphenyl						65	70	43 - 109			
Pyrene-d10						58	64	38 - 128			
Terphenyl-d14						57	64	33 - 119			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs by EPA 8082 QUALITY CONTROL

5 5 (1)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1004S1					
Aroclor 1016	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.050	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	73	42-123				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-0	03-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.405	0.404	0.500	0.500	ND	81	81	44-125	0	15	
Surrogate:											
DCB						72	69	42-123			

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	10-7-11		
Date Analyzed:	10-11-11		
Matrix:	Soil		
Units:	mg/kg (ppm)		
Lab ID:	MB1007S3		
Analyta	Method	Result	POI
Analyte	Method	Result	I QL
	C040D	ND	0.50
Cadmium	6010B	ND	0.50
Lead	6010B	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	10-11-11		
Date Analyzed:	10-11-11		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID:	MB1011S1		
Analyte	Method	Result	
Cadmium	6010B	ND	
Lead	6010B	ND	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PQL

0.50

5.0

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-7-11
Date Analyzed:	10-11-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-196-13

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Cadmium	ND	ND	NA	0.50	
Lead	5.15	12.0	80	5.0	С

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-11-11
Date Analyzed:	10-11-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-058-04

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Cadmium	ND	ND	NA	0.50	
Lead	19.5	20.1	3	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-7-11
Date Analyzed:	10-11-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-196-13

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Cadmium	50.0	46.8	94	47.0	94	0	
Lead	250	224	87	240	94	7	

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-11-11
Date Analyzed:	10-11-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-058-04

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Cadmium	50.0	48.2	96	48.5	97	1	
Lead	250	246	91	248	92	1	

43

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1006S1					
Vinyl Chloride	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-6-11	10-6-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Trichloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	63-127				
Toluene-d8	98	65-129				
4-Bromofluorobenzene	91	55-121				
Laboratory ID:	MB1007S2					
Vinyl Chloride	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-7-11	10-7-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	10-7-11	10-7-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-7-11	10-7-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Trichloroethene	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-7-11	10-7-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	93	65-129				
4-Bromofluorobenzene	92	55-121				

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	06S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0516	0.0538	0.0500	0.0500	103	108	70-130	4	19	
Benzene	0.0476	0.0480	0.0500	0.0500	95	96	70-125	1	15	
Trichloroethene	0.0471	0.0469	0.0500	0.0500	94	94	70-122	0	14	
Toluene	0.0479	0.0477	0.0500	0.0500	96	95	73-120	0	16	
Chlorobenzene	0.0497	0.0482	0.0500	0.0500	99	96	74-109	3	12	
Surrogate:										
Dibromofluoromethane					87	87	63-127			
Toluene-d8					91	90	65-129			
4-Bromofluorobenzene					82	82	55-121			
Laboratory ID:	SB10	07S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0455	0.0473	0.0500	0.0500	91	95	70-130	4	19	
Benzene	0.0452	0.0471	0.0500	0.0500	90	94	70-125	4	15	
Trichloroethene	0.0464	0.0472	0.0500	0.0500	93	94	70-122	2	14	
Toluene	0.0455	0.0456	0.0500	0.0500	91	91	73-120	0	16	
Chlorobenzene	0.0479	0.0483	0.0500	0.0500	96	97	74-109	1	12	
Surrogate:										
Dibromofluoromethane					88	87	63-127			
Toluene-d8					89	85	65-129			
4-Bromofluorobenzene					83	82	55-121			

45

NWTPH-Gx QUALITY CONTROL

					Date	Date)	
Analyte	Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB1012S1							
Gasoline	ND	5.0	NWT	FPH-Gx	10-12-11	10-12-	11	
Surrogate:	Percent Recovery	Control Limi	ts					
Fluorobenzene	94	68-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-196-17							

	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate: Fluorobenzene					98	101	68-124			

% MOISTURE

Date Analyzed: 10-4,6,7&12-11

Client ID	Lab ID	% Moisture
GEI-11-5.0	09-196-02	19
GEI-11-10.0	09-196-04	15
GEI-12-7.5	09-196-08	16
GEI-12-12.0	09-196-10	17
GEI-12-15.0	09-196-11	24
GEI-13-5.0	09-196-13	7
GEI-13-7.5	09-196-14	16
GEI-13-12.5	09-196-16	20
GEI-13-15.0	09-196-17	15
GEI-14-5.0	09-196-21	10
GEI-14-8.0	09-196-22	11
GEI-14-10.0	09-196-23	20
GEI-15-5.0	09-196-26	8
GEI-15-10.0	09-196-28	17
GEI-15A-5.0	09-196-32	19
GEI-15A-10.0	09-196-34	28
GEI-30-7.5	09-196-38	14

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed/Date	Received	Relinguished	Received	Relinquished	Buf Part	Received	Relinquished	Signature	10 CE1-12-12.0	9 9 9 - 12 - 10.0	8 961-12-7.5	7 Ge1-12-5.0	6 901-12-2.5	5 661-11-130	4 461-11-100	3 901-11-75	2 961-11-5.0	1 GE1-11-2.5	Lab ID Sample Identification	ABHIJIT JOSHI	KOBERT TRAHAN	FORMER SHELL TANK FARM	S147-012-02	Company (E)	Phone: (425) (433-3881 * www.antile-env.com	14548 NE 95th Streat - Redmond WA 98052	OnSite
Reviewed/Date			36)	SPace daysterne	Yee Oy passing.	2	9C (Company	V JUO V	935	930	576	1 0260	\$ 400	855	020	548	105 CM8 11/82/12	Date Time Sampled Sampled Matrix	(olher)		CIPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
		•	0011 11806	0/28/1 1700	CO: \$1 1/32/h	21 1 200	928 11 1445	Date Time	S X X	5	XX				5 × ×		5 X X		NWTP NWTP NWTP NWTP Volatile Haloge	er of (H-HCII H-Gx/E H-Gx H-Gx H-Dx es 8260 enated	ontain D BTEX DB Volatile	ers				Laboratory Numbe	Custody
Chromatograms with final report						V - Hocher	< >101	Comments/Special Instructions	*		*				XX		XX		(with Ic PAHs & PCBs Organe Organe Chlorir Total F	bathles bw-leve 3270D/ 8062 achlori bphospl hated A RCRA / Metals	I PAHs) SIM (lov ne Pesti norus Pe acid Her MTCA i	v-level) cides 80 sticides 6 bicides 6 Metals (c	81A 8270D/5 3151A circle or	SIM		ä	
							WIN, DI (STA)	C	XXXX		XXX				XX		XX		HEM (FA	grease D EDE , CIS	3 ED	C E, Kel		¢Ϋ	09-196	Page of

Data Package: Level III 🗌 Level IV 📋 Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received P	Relinquished	Curl And	Received	Reinquished	Signature	20 401-14-25	19 401-13-20.0	18 GE1-13-17.5	17 401-13-15:0	16 GEI-13-12.5	15 GE1-13-10.0	14 401-13-7.5	13 951-13-50	12 GE1-13-2.5	11 90-12-15.0	Lab ID Sample Identification	Sampied by	151	FORMER SHELL TANK FALL	NJew Manner	Project Number	Company:	HAVE NE SEN Street • Redmond, WA 98052	MA OnSite
Reviewed/Date			10%5	Sherry million	Strady Pages a		951	Company	V 10DTV	1235	1230	1225	1220	12/15	1210	1205	1 1200	7105 JHP 11 8/10	Date Time Sampled Sampled Matrix	(other)	7	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 🗍 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
-			2027 118K	0/14/4 1700	Core 1 11/2011	9/20/11 13:03	9/23/11 1445	Date Time					メメ		XX	XX		XX	NWTP NWTP NWTP NWTP Volatile Haloge	PH-HCIE PH-Gx/E PH-Gx H-Gx H-Dx es 8260 enated	D B D D D B Volatile	es 8260E	3		-	Laboratory Numbe	Custody
Chromalograms with final report						V. Hoard Intil 1	V - With whith DR (ST	Comments/Special Instructions					X		X	X		X X X X	Semivic (with k PAHs I PCBs Organic Organic Chlonic Total F TCLP HEM (olatiles ow-leve 8270D/ 80822 ochlorin ophosph mated A RCRA / Metals oil and ERC RD I BE	8270D I PAHs SIM (Ic ne Pes horus F Acid He MTCA greass MTCA	VSIM) ww-level) licides 8 lesticides rbicides Metals () 1664 BED	081A 8270D 8151A circle c	/SIM		er:	Page 2 of

Data Package: Level III 📋 Level IV 📋 Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received P	Relinquished	Received Allas	Reinquished	Signature	30 451-15-15.0	29 401-15-12.5	28 451-15-10.0	27 GEI-15-7.5	26 GE1-15-5.0	25 GEI-15-25	24 461-14-13.0	23 451-14-10.0	22 GEI-14-8.0	21 90-14-50	Lab ID Sample Identification	Sampled by	Project Manager Project Manager	SIV7-012-02 Project Name:	Project Number		Environmental Inc.	OnSite
Reviewed/Date			280	SPERA messense	Steen nesser	202	Company	V 1145 V 1	G Ohil	1135 5	1130	1125 1	1120 1	1115	0111	5 5011	9/28/11 1100 501-1	Date Time Sampled Sampled Matrix	(other)	T Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 🛄 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			0011 1186/6	2 more shell	13:03 9/29/11	11/86/0 5441	Date Time								XX	××	XX	NWTP NWTP NWTP NWTP Volatile Haloge Semive	H-HCIE H-Gx/B H-Gx H-Dx es 8260 enaled v	B /olatiles 8260 8270D/SIM	B			Laboratory Number	Custody
Chromalograms with Inal report						X, Added 10/4/11, DB (STA)	Comments/Special Instructions			X		X			XXX	X	X	(with Id PAHs I PCBs Organi Organi Chlorii Total F TCLP HEM (bw-level B270D/S B082 ochiorin phosph nated A ACRA / A Metals oil and a EP PDS	PAHs) SIM (Iow-level e Pesticides & iorus Pesticide cid Herbicides MTCA Metals grease) 1664 D MIU (X) 8061A s 8270D. s 8151A (circle c	/SIM		r: 09-196	Page 3 of 4

Data Package: Level III 📋 Level IV 🗍 Etectronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received P	Relinquished	" the shall	Received	Relinquished	Signaturé	40 951-30 - 13.0 "	39 451-30-10.0	38 961-30-7.5	37 481-30-5.0	36 GE1-30-2.5	35 4E1-15A - 13.0	34 GE1-15A - 10.0	33 GE1-15A-75	32 GE1-15A-5.0	31 GE1-15A-2.5	Lab ID Sample Identification	Sampled by AT	RS T	FORMER SHELL TANK FARM	S147-012-02	Project Number	Company:	Environmental Inc. 14548 NE 95th Street • Redmond, WA 98062 Phone (425) 685-286 • www.onsiseemy.com	MA OnSite
Reviewed/Date			- (98)-	Speeds messangen	a cel messen	Chorn	GEI	Company	. V 1420 V	4 1415	61410	Sohl	[db]	1330	1325	1320	1315	9 28/11 1310 Soll	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			00221 11/2010	9/28/11 1658	CO. 51 11/37/4 20	05-1- 1000	Shirl 11 80 10	Date Time			5 X, X			-					Numb NWTP NWTP NWTP NWTP Volatile Hatoge Semivo	er of C H-HCID H-Gx/B H-Gx H-Dx es 8260 enated \ blatiles i	B 701a111e 8270D	s 8260E	3			Laboratory Numbe	Custody
Chromatograms with final report							X, and white DR (ST	Comments/Special Instructions			X						×		Verification of the second sec	we-level 3270D/S 3082 ochlorin ophosph oated Ad CRA / I Wetals oil and (PAHS) SIM (Io e Pest orus Pr cid Her MTCA \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D}	w-level) acides 80 estucides bickdes Metals () 1664	081A 8270D/ 8151A circle o	/SIM		ar: 0.9 - 1	Page of
							TA)				X	•					X		% Mok	sture						96	4

Data Package: Level III E Level IV Electronic Data Deliverables (EDDs)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 21, 2011

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1109-196B

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on September 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 28, 2011 and received by the laboratory on September 28, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Sample analysis holding time was exceeded for sample GEI-15-10.0 by one week.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-15-10.0	09-196-28	Soil	9-28-11	9-28-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-15-10.0					
Laboratory ID:	09-196-28					
Benzene	ND	0.020	EPA 8021	10-20-11	10-20-11	
Toluene	ND	0.057	EPA 8021	10-20-11	10-20-11	
Ethyl Benzene	ND	0.057	EPA 8021	10-20-11	10-20-11	
m,p-Xylene	ND	0.057	EPA 8021	10-20-11	10-20-11	
o-Xylene	ND	0.057	EPA 8021	10-20-11	10-20-11	
Gasoline	ND	5.7	NWTPH-Gx	10-20-11	10-20-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

Analyzed 10-20-11	Flags
10-20-11	
10-20-11	
10-20-11	
10-20-11	
10-20-11	
10-20-11	
10-20-11	
10-20-11	
	10-20-11 10-20-11 10-20-11 10-20-11 10-20-11

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-13	34-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	ΝA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						100	101	68-124			
SPIKE BLANKS											
Laboratory ID:	SB10	20S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.982	0.969	1.00	1.00		98	97	77-114	1	9	
Toluene	0.998	0.979	1.00	1.00		100	98	80-115	2	9	
Ethyl Benzene	0.975	0.964	1.00	1.00		98	96	80-118	1	9	
m,p-Xylene	0.984	0.964	1.00	1.00		98	96	82-118	2	9	
o-Xylene	0.972	0.958	1.00	1.00		97	96	82-116	1	9	
Surrogate:											
Fluorobenzene						100	99	68-124			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Project Manager KD REWT Lab ID 00 Project Number: SIUT - 012 0 J 5 Company: W Sampled by FOKMEN 0 0 Reviewed/Date Received Relinquished Relinquished Received Relinquished 1 Received N ABHIJIT 6 50 101-0 401-12-5.0 CIEL -961-12 961-12-7.5 5 0 461 a 0 OnSite 1 Environmental Inc. 14548 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com 1 Y 1 1 12 SHELL 1 11-2.5 1 1-5.0 TRAHAN 10 1 1HJJOL HI Sample Identification 1 ١ ١ -02 Signature 13.0 25 100 1 10.0 2.0 5 TANK FARM 0 Sampled 28/11 Date Standard (7 Days) 2 Days (TPH analysis 5 Days) Same Day (in working days) Company AC S SPeeroy 040 (Check One) Reviewed/Date 248 Sampled 0 0 0920 0900 350 048 Sab 200 30 55 Chain of Custody (other) 1 1 Day 3 Days ATE SSENS . Matrix 103 < -S SI N S 5 Number of Containers 5 NWTPH-HCID Laboratory Number: Date 1/20/11 × NWTPH-Gx/BTEX 0 28 11 NWTPH-Gx NWTPH-Dx × × * Time Volatiles 8260B 13:03 700 1445 Halogenated Volatiles 8260B Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) Chromalograms with final × X × **Comments/Special Instructions** × PCBs 8082 × X - Added 10/4/11. DB (STA) Added 10/18/11. DB (3 dow TAT Add 10/13/11 DA (STA Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A ŝ Total RCRA / MTCA Metals (circle one) TCLP Metals 40 01 HEM (oil and grease) 1664 Page X LEAD X × × × 9-MTBE EDB EDC 9 PICE, TCE, (15-1,2 DCE, 1,1,) TEA (C. TERENAULA (NOUS METRONC) CC-SOOD TEMPORING NO -96 \times % Moisture

Data Package. Lavel III Level IV Electronic Data Deliverables (EDDs)

Environmental Inc. 1454 NS 055 1993-3881 • www.onsile-env.com	Turnaround Request (in working days) (Check One)	of Custod	y Number:		Page 2 of 4
Company. 5147-012-072 5	(Check One)			и)	
Project Number	2 Days 3 Days			81A 1270D/SIM 151A Ircle one	
Project Name: FORMER SHELL TANIC FALL	(TPH analysis 5 Days)	ners	as 82608)/SIM)	w-level) hcides 808 estudies 8 rbicides 8 Metals (c) 1664 UM
KT		ntain rex	B Volatilie B270D PAHsj	e Pest brus P id Her ATCA	nrease D NIN
Sampled by	(other)	H-HCID	s 82600 nated V fatiles 8 w-level	270D/S 082 chlorini bhospha sted Ac	$\frac{1}{2} \frac{1}{2} \frac{1}$
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	Numbe NWTPH NWTPH	Volatile Haloger Semivo (with lov	PAHS 8 PCBs 8 Organo Organop Chlorina Total RC	
11 40-1-12-15.0	1105 Jup 11/8/0	- ×	×	×	X
12 GE1-13-2.5	1200	-			
13 951-13-50	1205	XS	*	×	XX
14 401-13-7.5	1210	v X	× -	×	xx
15 GE1-13-10.0	1215	-			
16 961-13-12.5	1220	5 ×	×.		アメ
17 961-13-15.0	1225	1 0-03	GNLY		
18 GE1-13-17-5	1230	-			
19 401-13-20.0	1235	1			
20 4/1-14-2.5	1 10514	-			
Signature	Company	Date	Time	Comments/Special instructions	
Relinquished	401	1 22/6	1441	VIAN	ohuln. DZ(
Received Ail Pan	SPeedy messa	5m 9/22/11	13:03) - How	
Relinquisted	SPesa missen	en ghalu	1700	(X) Addes	2/12/11. 1
Received Criteria	240)	N&K	1200		
Relinquished					
Received					
Reviewed/Date	Reviewed/Date			hromatograms with final rep	

Data Package. Level III [] Level IV [] Electronic Data Deliverables (EDDs)

Bore Same Day Same Day Same	Company: 451	Company: 401	Project Number 5147-012-02	Project Name: FORMER SITELL THANK FART	Project Manager.	Sampled by	Lab ID Sample Identification	21 90-1-14-5.0	22 451-14-20	23 40-14-10.0	24 461-14-13.0	25 951-15-25	26 951-15-5.0	27 GEI-15-75	18 4E1-15-10.0	29 401-15-12.5	30 4E1-15-15.0	Signature	Relinquished	Received	Relinquished	Received	Relinquished	Received	Reviewed/Date
Organization Organization Number of containers Number of containers Number of containers Number of container	Turnaround Request (in working days) (Check One)	(Check One)	2 Days 3 Days	Standard (7 Days)		(other)	Date Time Sampled Sampled Matrix	9:28/11 1100 Soil 1	1 1205 1 5	1110	5111	1120	1125	1130	1135	5 Ohil	V 1145 V 1	Сотралу	202	Seen nesser	Speen mesenge	1000			Reviewed/Date
Chrometagrams with linal report	Laboratory Number			-s 8260B /SIM) ITEX)B Volatiles 8270D//	H-HCIC H-Gx/B H-Gx H-Dx es 8260 enated 1	NWTP NWTP NWTP NWTP Volatile Haloge Semive	XX	XX	XXX					0			Date Time	11/12010 54/11	x 13:03 9/28/11	n nop aheli	9/28/11 1700			
de la companya de la comp	A 09-19	M	81A 3270D/SIN 1151A 2ircle one)	w-level) icides 80 esticides 8 metals (c) 1664	D	wirever 3082 schlorir phosphinated A CRA / in Metals soll and <i>E P</i> <i>AD G</i>	PCBs t PCBs t Organe Organe Chlorir Total R TCLP I HEM (i	X	X	XX					×.			Comments/Special Instructions	X paded ic/4/m. DB (STA)	- I had in halm. DB (3 dow	CH8 CH				Chromatograms with final report

Data Package. Levet III 🗍 Level IV 🗋 Electronic Data Deliverables (EDDs)

Data Package: Level III [] Level IV 🗍 Electronic Data Deliverables (EDDs) []

Reviewed/Date	Received	Relinquished	Received P	neindrinen	Relinquisted	Received Differen	Relinquished	Signaturé	40 481-30 - 13.0 1	39 261-30-10.0	38 951-30 - 7-5	37 261-30-5.0	36 GE1-30-2.5	35 4E1-1574 - 13.0	34 GE1-15A - 10.0	23 GEI-15A-75	32 GEI-15A-50	31 CEI-15A-2.5	Lab ID Sample Identification	Sampled by A J	RS T	FORMER SHELL TANK FARM	S147-012-02	Project Number	Company:	Environmental Inc.	INA OnSite
Reviewed/Dale			- (987:	Speed messensen		Succes thessen	GET	Company	V 1420 V	4 (MI2	1410	lyos	[400]	1330	1325	1320	1315	9/28/11 1310 SOLL	Date Time Sampled Sampled Matrix	(other)]	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 🔲 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			OQLI NIXIO	1/38/11 1658		× 9/28/11 13:03	Shril 11/ 82/00	Date Time			XX								NWTP NWTP NWTP NWTP Volatile Haloge Semive	H-HCIE H-Gx/B H-Gx H-Dx es 8260 enated \	TEX B /olatile	es 8260E				Laboratory Number	Custody
Chromatograms with final rep		P					X-ODDed 10/4	Comments/Special Instructions			7								(with te PAHs & PCBs to Organe Organe Chlorin Total R TCLP (wi-level 3270D/ 3082 Dochlorin ophosph nated Ad ICRA / I Metals	PAHs 5IM (Io ie Pesi orus P cid He MTCA) pw-level) lucides 80 resticides rbicides Metals (081A 8270D/ 8151A circle o	SIM ne)			
							In DR (STR)				X				X		X		6 Moi	EA ADN sture	D กาป	M				09-196	Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 14, 2011

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1109-223

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on September 30, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 28 and 29, 2011 and received by the laboratory on September 30, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The surrogate recovery is outside of control limits on the high end for sample GEI-16-5.0; however, since the sample was non-detect no further action was taken.

The gasoline result for sample GEI-17-14.0 is mainly attributed to a single peak (Naphthalene).

The surrogate recovery is outside of the control limits for sample GEI-23-12.5 due to matrix effects. The sample was re-analyzed with similar results.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-31-7.5	09-223-03	Soil	9-28-11	9-30-11	
GEI-32-5.0	09-223-07	Soil	9-28-11	9-30-11	
GEI-33-5.0	09-223-12	Soil	9-28-11	9-30-11	
GEI-33-10.0	09-223-14	Soil	9-28-11	9-30-11	
GEI-33-14.0	09-223-16	Soil	9-28-11	9-30-11	
GEI-20-5.0	09-223-20	Soil	9-29-11	9-30-11	
GEI-20-10.0	09-223-22	Soil	9-29-11	9-30-11	
GEI-21-5.0	09-223-26	Soil	9-29-11	9-30-11	
GEI-21-10.0	09-223-28	Soil	9-29-11	9-30-11	
GEI-22-5.0	09-223-32	Soil	9-29-11	9-30-11	
GEI-22-12.5	09-223-35	Soil	9-29-11	9-30-11	
GEI-26-5.0	09-223-38	Soil	9-29-11	9-30-11	
GEI-26-10.0	09-223-40	Soil	9-29-11	9-30-11	
GEI-28-5.0	09-223-44	Soil	9-29-11	9-30-11	
GEI-28-10.0	09-223-46	Soil	9-29-11	9-30-11	
GEI-29-5.0	09-223-50	Soil	9-29-11	9-30-11	
GEI-29-10.0	09-223-51	Soil	9-29-11	9-30-11	
GEI-16-5.0	09-223-56	Soil	9-29-11	9-30-11	
GEI-16-10.0	09-223-58	Soil	9-29-11	9-30-11	
GEI-17-10.0	09-223-65	Soil	9-29-11	9-30-11	
GEI-17-14.0	09-223-66	Soil	9-29-11	9-30-11	
GEI-17-17.5	09-223-67	Soil	9-29-11	9-30-11	

ANALYTICAL REPORT FOR SAMPLES

Page 1 of 2

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-18-5.0	09-223-70	Soil	9-29-11	9-30-11	
GEI-18-12.5	09-223-72	Soil	9-29-11	9-30-11	
GEI-18-15.0	09-223-73	Soil	9-29-11	9-30-11	
GEI-19-5.0	09-223-77	Soil	9-29-11	9-30-11	
GEI-19-10.0	09-223-79	Soil	9-29-11	9-30-11	
GEI-23-7.5	09-223-86	Soil	9-29-11	9-30-11	
GEI-23-12.5	09-223-88	Soil	9-29-11	9-30-11	
GEI-23-15.0	09-223-89	Soil	9-29-11	9-30-11	
GEI-24-5.0	09-223-91	Soil	9-29-11	9-30-11	
GEI-24-10.0	09-223-93	Soil	9-29-11	9-30-11	
GEI-25-5.0	09-223-97	Soil	9-29-11	9-30-11	
GEI-25-10.0	09-223-99	Soil	9-29-11	9-30-11	
GEI-27-7.5	09-223-104	Soil	9-29-11	9-30-11	
GEI-27-11.0	09-223-105	Soil	9-29-11	9-30-11	
GEI-27-13.0	09-223-106	Soil	9-29-11	9-30-11	
GEI-34-12.0	09-223-112	Soil	9-29-11	9-30-11	
GEI-35-15.0	09-223-119	Soil	9-29-11	9-30-11	

ANALYTICAL REPORT FOR SAMPLES

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-31-7.5					
Laboratory ID:	09-223-03					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.070	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.070	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.070	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.070	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	7.0	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				
Client ID:	GEI-32-5.0					
Laboratory ID:	09-223-07					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.064	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.064	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.064	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.064	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	6.4	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	GEI-33-5.0					
Laboratory ID:	09-223-12					
Benzene	ND	0.016	EPA 8021	10-7-11	10-11-11	
Toluene	ND	0.16	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.16	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.16	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.16	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	16	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-33-10.0					
Laboratory ID:	09-223-14					
Benzene	ND	0.027	EPA 8021	10-7-11	10-10-11	
Toluene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.13	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	0.23	0.13	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	13	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-124				
Client ID:	GEI-33-14.0					
Laboratory ID:	09-223-16					
Benzene	ND	0.026	EPA 8021	10-7-11	10-10-11	
Toluene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.13	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	13	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	GEI-20-5.0					
Laboratory ID:	09-223-20					
Benzene	ND	0.022	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.11	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.11	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.11	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.11	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	11	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-20-10.0					
Laboratory ID:	09-223-22					
Benzene	ND	0.023	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.11	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.11	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.11	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.11	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	11	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-124				
Client ID:	GEI-21-5.0					
Laboratory ID.	09-223-26					
Benzene	ND	0.021	EPA 8021	10-7-11	10-11-11	
Toluene	ND	0.11	EPA 8021	10-7-11	10-11-11	
Ethyl Benzene	ND	0.11	EPA 8021	10-7-11	10-11-11	
m.p-Xvlene	ND	0.11	EPA 8021	10-7-11	10-11-11	
o-Xvlene	ND	0.11	EPA 8021	10-7-11	10-11-11	
Gasoline	ND	11	NWTPH-Gx	10-7-11	10-11-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	68-124				
Client ID:	GEI-21-10 0					
Laboratory ID:	09-223-28					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.080	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.080	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.080	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.080	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	8.0	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-22-5.0					
Laboratory ID:	09-223-32					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.073	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.073	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.073	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.073	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	7.3	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Client ID:	GEI-22-12.5					
Laboratory ID:	09-223-35					
Benzene	ND	0.024	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.12	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.12	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.12	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	12	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	68-124				
Client ID:	GEI-26-5.0					
Laboratory ID:	09-223-38					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.084	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.084	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.084	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.084	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	8.4	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
				Date	Date	
----------------	------------------	----------------	----------	----------	----------	-------
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-26-10.0					
Laboratory ID:	09-223-40					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.095	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.095	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.095	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.095	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	9.5	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	68-124				
Client ID:	GEI-28-5.0					
Laboratory ID:	09-223-44					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.059	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.059	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.059	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.059	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	5.9	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	GEI-28-10.0					
Laboratory ID:	09-223-46					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.082	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.082	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.082	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.082	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	8.2	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	68-124				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-29-5.0					
Laboratory ID:	09-223-50					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.054	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.054	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.054	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.054	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	5.4	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				
Client ID:	GEI-29-10.0					
Laboratory ID:	09-223-52					
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.064	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.064	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.064	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.064	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	6.4	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	76	68-124				
Client ID:	GEI-16-5.0					
Laboratory ID:	09-223-56					
Benzene	ND	0.022	EPA 8021	10-7-11	10-7-11	
Toluene	ND	0.11	EPA 8021	10-7-11	10-7-11	
Ethyl Benzene	ND	0.11	EPA 8021	10-7-11	10-7-11	
m,p-Xylene	ND	0.11	EPA 8021	10-7-11	10-7-11	
o-Xylene	ND	0.11	EPA 8021	10-7-11	10-7-11	
Gasoline	ND	11	NWTPH-Gx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	132	68-124				Q

10

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-16-10.0					
Laboratory ID:	09-223-58					
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.054	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.054	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.054	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.054	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	5.4	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	68-124				
Client ID:	GEI-17-10.0					
Laboratory ID:	09-223-65					
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.099	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.099	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.099	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.099	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	9.9	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	GEI-17-14.0					
Laboratory ID:	09-223-66					
Benzene	ND	0.027	EPA 8021	10-7-11	10-10-11	
Toluene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.13	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Gasoline	26	13	NWTPH-Gx	10-7-11	10-10-11	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-17-17.5					
Laboratory ID:	09-223-67					
Benzene	ND	0.027	EPA 8021	10-7-11	10-10-11	
Toluene	ND	0.14	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.14	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.14	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.14	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	14	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Client ID:	GEI-18-5.0					
Laboratory ID:	09-223-70					
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.075	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.075	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.075	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.075	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	7.5	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-124				
Client ID:	GEI-18-12.5					
Laboratory ID:	09-223-72					
Benzene	ND	0.026	EPA 8021	10-7-11	10-10-11	
Toluene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.13	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.13	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	13	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-18-15.0					
Laboratory ID:	09-223-73					
Benzene	ND	0.026	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.13	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.13	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.13	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.13	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	13	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	68-124				
Client ID:	GEI-19-5.0					
Laboratory ID:	09-223-77					
Benzene	ND	0.024	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	12	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	68-124				
Client ID:	GEI-19-10.0					
Laboratory ID:	09-223-79					
Benzene	ND	0.021	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.10	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.10	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.10	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.10	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	10	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-23-7.5					
Laboratory ID:	09-223-86					
Benzene	ND	0.024	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	12	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	68-124				
Client ID:	GEI-23-12.5					
Laboratory ID:	09-223-88					
Benzene	0.072	0.042	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.21	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.21	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.21	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.21	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	21	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	48	68-124				Q
Client ID:	GEI-24-5.0					
Laboratory ID:	09-223-91					
Benzene	ND	0.024	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	12	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	68-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-24-10.0					
Laboratory ID:	09-223-93					
Benzene	ND	0.024	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	12	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	68-124				
Client ID:	GEI-25-5.0					
Laboratory ID:	09-223-97					
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.087	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.087	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.087	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.087	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	8.7	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	68-124				
Client ID:	GEI-25-10.0					
Laboratory ID:	09-223-99					
Benzene	ND	0.025	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.12	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.12	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	12	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-27-7.5					
Laboratory ID:	09-223-104					
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.088	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.088	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.088	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.088	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	8.8	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	GEI-27-11.0					
Laboratory ID:	09-223-105					
Benzene	ND	0.017	EPA 8021	10-7-11	10-11-11	
Toluene	ND	0.17	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.17	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.17	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.17	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	17	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	68-124				
Client ID:	GEI-27-13.0					
Laboratory ID:	09-223-106					
Benzene	ND	0.022	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.11	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.11	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.11	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.11	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	11	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	115	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-34-12.0					
Laboratory ID:	09-223-112					
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11	
Toluene	ND	0.059	EPA 8021	10-7-11	10-8-11	
Ethyl Benzene	ND	0.059	EPA 8021	10-7-11	10-8-11	
m,p-Xylene	ND	0.059	EPA 8021	10-7-11	10-8-11	
o-Xylene	ND	0.059	EPA 8021	10-7-11	10-8-11	
Gasoline	ND	5.9	NWTPH-Gx	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Client ID:	GEI-35-15.0					
Laboratory ID:	09-223-119					
Benzene	ND	0.020	EPA 8021	10-7-11	10-10-11	
Toluene	ND	0.069	EPA 8021	10-7-11	10-10-11	
Ethyl Benzene	ND	0.069	EPA 8021	10-7-11	10-10-11	
m,p-Xylene	ND	0.069	EPA 8021	10-7-11	10-10-11	
o-Xylene	ND	0.069	EPA 8021	10-7-11	10-10-11	
Gasoline	ND	6.9	NWTPH-Gx	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-31-7.5					
Laboratory ID:	09-223-03					
Diesel Range Organics	ND	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	62	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	83	50-150				
Client ID:	GEI-32-5.0					
Laboratory ID:	09-223-07					
Diesel Range Organics	ND	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	62	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	99	50-150				
Client ID:	GEI-33-5.0					
Laboratory ID:	09-223-12					
Diesel Range Organics	220	33	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil	74	66	NWTPH-Dx	10-6-11	10-6-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	GEI-33-10.0					
Laboratory ID:	09-223-14					
Diesel Range Organics	700	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	73	NWTPH-Dx	10-6-11	10-6-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	GEI-33-14.0					
Laboratory ID:	09-223-16					
Diesel Range Organics	66	31	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	GEI-20-5.0					
Laboratory ID:	09-223-20					
Diesel Range Organics	ND	41	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	81	NW1PH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o- i erphenyl	96	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-20-10.0					
Laboratory ID:	09-223-22					
Diesel Range Organics	ND	42	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	84	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Ternhenvl	66	50-150				
0-Telphenyi	00	00-100				
Client ID:	GEL-21-5 0					
Laboratory ID:	00-223-26					
Dissol Dange Organice	03-223-20	44		10 6 11	10 6 11	
Diesel Range Organics		41		10-6-11	10-6-11	
		01	INVVIPH-DX	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	93	50-150				
Client ID:	GEI-21-10.0					
Laboratory ID:	09-223-28					
Diesel Range Organics	650	34	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	1400	68	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	131	50-150				
Client ID:	GEI-22-5.0					
Laboratory ID:	09-223-32					
Diesel Range Organics	ND	33	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	65	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	GEI-22-12.5					
Laboratory ID:	09-223-35					
Diesel Range Organics	1300	220	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	1700	440	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	126	50-150				
	-					
Client ID:	GEI-26-5.0					
Laboratory ID:	09-223-38					
Diesel Range Organics	<u>ND</u>	33		10-7-11	10-7-11	
Lube Oil Range Organics	ND	66	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits		107.11	107.11	
o_Ternhenvl	105	50-150				
о-тегрпенуг	105	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-26-10.0					
Laboratory ID:	09-223-40					
Diesel Range Organics	ND	38	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	76	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	93	50-150				
Client ID:	GEI-28-5.0					
Laboratory ID:	09-223-44					
Diesel Range Organics	ND	31	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	63	62	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits		10111	10 / 11	
o-Ternhenvl	106	50-150				
0-respicenty	100	00-100				
Client ID:	GEL-28-10.0					
Laboratory ID:	00-223-46					
Discol Bango Organico	09-223-40 ND	24		10 7 11	10 7 11	
Lube Oil Range Organics		54 60		10-7-11	10-7-11	
<u>Surrogata:</u>	Boroont Booovory	Control Limito		10-7-11	10-7-11	
Surroyale.	reicent Recovery					
0-Terphenyi	90	50-750				
Client ID:	GEL-20-5 0					
Laboratory ID:	00-223-50					
Discol Dange Organice	03-223-30	20		10 7 11	10 7 11	
Luba Oil Panga Organics		20		10-7-11	10-7-11	
		<u> </u>		10-7-11	10-7-11	
Surrogate:	Percent Recovery					
o-Terphenyi	104	50-150				
Laboratory ID:	00 222 52					
	09-223-32			10 7 11	40 7 44	
	64	29		10-7-11	10-7-11	
	170	58	NWIPH-DX	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	92	50-150				
Client ID:						
	GEI-16-5.0					
Laboratory ID:	09-223-56					
Diesel Range Organics	ND	43	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	85	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o- I erphenyl	96	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-16-10.0					
Laboratory ID:	09-223-58					
Diesel Range Organics	ND	28	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	56	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	99	50-150				
Client ID:	GEI-17-10.0					
Laboratory ID:	09-223-65					
Diesel Range Organics	ND	39	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	78	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	89	50-150				
Client ID:	GEI-17-14.0					
Laboratory ID:	09-223-66					
Diesel Range Organics	53	29	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	57	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	GEI-17-17.5					
Laboratory ID:	09-223-67					
Diesel Range Organics	ND	32	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	GEI-18-5.0					
Laboratory ID:	09-223-70					
Diesel Range Organics	ND	32	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	GEI-18-12.5					
Laboratory ID:	09-223-72					
Diesel Range Organics	ND	32	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	64	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Surrogate: o-Terphenyl	87	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-18-15.0					
Laboratory ID:	09-223-73					
Diesel Range Organics	87	44	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	290	88	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits			-	
o-Terphenyl	85	50-150				
e respirenzi	00	00 100				
Client ID:	GEI-19-5.0					
Laboratory ID:	09-223-77					
Diesel Range Organics	92	43	NW/TPH-Dy	10-7-11	10-7-11	
Lube Oil	330	85	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits		10111	10 / 11	
o-Ternhenvl	87	50-150				
0-resplicity	07	00-100				
Client ID:	GFI-19-10 0					
Laboratory ID.	09-223-79					
Diesel Range Organics		30		10-7-11	10-7-11	
Lube Oil Range Organics	ND	77	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits		10 1 11	10 / 11	
o-Ternhenvl	89	50-150				
	00	00 100				
Client ID:	GEI-23-7.5					
Laboratory ID:	09-223-86					
Diesel Range Organics	ND	45	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	160	90	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits		-		
o-Terphenvl	79	50-150				
Client ID:	GEI-23-12.5					
Laboratory ID:	09-223-88					
Diesel Range Organics	1300	64	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	2700	130	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
, ,						
Client ID:	GEI-24-5.0					
Laboratory ID:	09-223-91					
Diesel Range Organics	88	44	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	250	88	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	95	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-24-10.0					
Laboratory ID:	09-223-93					
Diesel Range Organics	ND	42	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	85	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	87	50-150				
	-					
Client ID:	GEI-25-5.0					
Laboratory ID:	09-223-97					
Diesel Range Organics	67	37	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	240	75	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	82	50-150				
Client ID:	GEI-25-10.0					
Laboratory ID:	09-223-99					
Diesel Range Organics	ND	44	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	100	87	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
, ,						
Client ID:	GEI-27-7.5					
Laboratory ID:	09-223-104					
Diesel Range Organics	ND	35	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	97	70	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	GEI-27-11.0					
Laboratory ID:	09-223-105					
Diesel Range Organics	ND	35	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	190	70	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	GEI-27-13.0					
Laboratory ID:	09-223-106					
Diesel Range Organics	52	39	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil	180	77	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

5 5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-34-12.0					
Laboratory ID:	09-223-112					
Diesel Range Organics	ND	29	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	59	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	GEI-35-15.0					
Laboratory ID:	09-223-119					
Diesel Range Organics	ND	30	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	61	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

24

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-31-7.5					
Laboratory ID:	09-223-03					
Naphthalene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
1-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthylene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Acenaphthene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Fluorene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Phenanthrene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Anthracene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Fluoranthene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Pyrene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]anthracene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Chrysene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[a]pyrene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270/SIM	10-6-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	43 - 109				
Pyrene-d10	62	38 - 128				
Terphenyl-d14	59	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-32-5.0					
Laboratory ID:	09-223-07					
Naphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	43 - 109				
Pyrene-d10	65	38 - 128				
Terphenyl-d14	62	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-33-5.0					
Laboratory ID:	09-223-12					
Naphthalene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	43 - 109				
Pyrene-d10	76	38 - 128				
Terphenyl-d14	74	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-33-10.0					
Laboratory ID:	09-223-14					
Naphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	0.015	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	0.0098	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	0.037	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	0.062	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	43 - 109				
Pyrene-d10	59	38 - 128				
Terphenyl-d14	57	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-33-14.0					
Laboratory ID:	09-223-16					
Naphthalene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0083	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	43 - 109				
Pyrene-d10	79	38 - 128				
Terphenyl-d14	77	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-20-5.0					
Laboratory ID:	09-223-20					
Naphthalene	0.020	0.011	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	43 - 109				
Pyrene-d10	79	38 - 128				
Terphenyl-d14	78	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-20-10.0					
Laboratory ID:	09-223-22					
Naphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	43 - 109				
Pyrene-d10	74	38 - 128				
Terphenyl-d14	75	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-21-5.0					
Laboratory ID:	09-223-26					
Naphthalene	0.020	0.011	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.011	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	43 - 109				
Pyrene-d10	70	38 - 128				
Terphenyl-d14	72	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-21-10.0					
Laboratory ID:	09-223-28					
Naphthalene	0.59	0.0091	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	0.26	0.0091	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	0.28	0.0091	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	0.70	0.0091	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	0.27	0.0091	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	0.64	0.0091	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	4.1	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Anthracene	1.2	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Fluoranthene	6.2	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Pyrene	6.0	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]anthracene	2.5	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Chrysene	2.5	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[b]fluoranthene	1.4	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Benzo(j,k)fluoranthene	1.6	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]pyrene	2.3	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Indeno(1,2,3-c,d)pyrene	1.0	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Dibenz[a,h]anthracene	0.35	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[g,h,i]perylene	1.2	0.18	EPA 8270/SIM	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	43 - 109				
Pyrene-d10	55	38 - 128				
Terphenyl-d14	62	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-22-5.0					
Laboratory ID:	09-223-32					
Naphthalene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	0.016	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	0.012	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	0.017	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Anthracene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	ND	0.0087	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	43 - 109				
Pyrene-d10	76	38 - 128				
Terphenyl-d14	74	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-22-12.5					
Laboratory ID:	09-223-35					
Naphthalene	1.2	0.012	EPA 8270/SIM	10-7-11	10-8-11	
2-Methylnaphthalene	0.98	0.012	EPA 8270/SIM	10-7-11	10-8-11	
1-Methylnaphthalene	0.97	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthylene	0.21	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Acenaphthene	0.71	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Fluorene	1.1	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Phenanthrene	2.2	0.058	EPA 8270/SIM	10-7-11	10-10-11	
Anthracene	0.38	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Fluoranthene	1.2	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Pyrene	1.2	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]anthracene	0.54	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Chrysene	0.53	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[b]fluoranthene	0.32	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Benzo(j,k)fluoranthene	0.36	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[a]pyrene	0.51	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Indeno(1,2,3-c,d)pyrene	0.23	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Dibenz[a,h]anthracene	0.077	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Benzo[g,h,i]perylene	0.26	0.012	EPA 8270/SIM	10-7-11	10-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	43 - 109				
Pyrene-d10	77	38 - 128				
Terphenyl-d14	82	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-26-5.0					
Laboratory ID:	09-223-38					
Naphthalene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	ND	0.0089	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	43 - 109				
Pyrene-d10	71	38 - 128				
Terphenyl-d14	72	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-26-10					
Laboratory ID:	09-223-40					
Naphthalene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	43 - 109				
Pyrene-d10	67	38 - 128				
Terphenyl-d14	69	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-28-5.0					
Laboratory ID:	09-223-44					
Naphthalene	0.012	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	0.013	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	0.012	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	43 - 109				
Pyrene-d10	81	38 - 128				
Terphenyl-d14	84	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-28-10.0					
Laboratory ID:	09-223-46					
Naphthalene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	ND	0.0092	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	43 - 109				
Pyrene-d10	72	38 - 128				
Terphenyl-d14	74	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-29-5.0					
Laboratory ID:	09-223-50					
Naphthalene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
2-Methylnaphthalene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
1-Methylnaphthalene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Acenaphthylene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Acenaphthene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Fluorene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Phenanthrene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Anthracene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Fluoranthene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Pyrene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]anthracene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Chrysene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]pyrene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[g,h,i]perylene	ND	0.0075	EPA 8270/SIM	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	43 - 109				
Pyrene-d10	75	38 - 128				
Terphenyl-d14	79	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-29-10.0					
Laboratory ID:	09-223-52					
Naphthalene	0.034	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	0.030	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	0.045	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	0.044	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	0.015	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	0.017	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	0.011	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	0.012	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	0.016	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	0.0090	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	0.011	0.0077	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	43 - 109				
Pyrene-d10	82	38 - 128				
Terphenyl-d14	86	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-27-7.5					
Laboratory ID:	09-223-104					
Naphthalene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
2-Methylnaphthalene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
1-Methylnaphthalene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Acenaphthylene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Acenaphthene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Fluorene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Phenanthrene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Anthracene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Fluoranthene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Pyrene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]anthracene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Chrysene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[b]fluoranthene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Benzo(j,k)fluoranthene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]pyrene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Dibenz[a,h]anthracene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[g,h,i]perylene	ND	0.0093	EPA 8270/SIM	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	43 - 109				
Pyrene-d10	77	38 - 128				
Terphenyl-d14	81	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-27-11.0					
Laboratory ID:	09-223-105					
Naphthalene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
2-Methylnaphthalene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
1-Methylnaphthalene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Acenaphthylene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Acenaphthene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Fluorene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Phenanthrene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Anthracene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Fluoranthene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Pyrene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]anthracene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Chrysene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[a]pyrene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270/SIM	10-7-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	43 - 109				
Pyrene-d10	80	38 - 128				
Terphenyl-d14	88	33 - 119				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-27-13.0					
Laboratory ID:	09-223-106					
Naphthalene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	43 - 109				
Pyrene-d10	84	38 - 128				
Terphenyl-d14	87	33 - 119				
PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-34-12.0					
Laboratory ID:	09-223-112					
Naphthalene	0.20	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
2-Methylnaphthalene	0.030	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
1-Methylnaphthalene	0.017	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthylene	0.075	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Acenaphthene	0.026	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Fluorene	0.052	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Phenanthrene	0.47	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Anthracene	0.18	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Fluoranthene	0.89	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Pyrene	0.87	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]anthracene	0.38	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Chrysene	0.37	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[b]fluoranthene	0.23	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Benzo(j,k)fluoranthene	0.27	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[a]pyrene	0.41	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Indeno(1,2,3-c,d)pyrene	0.20	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Dibenz[a,h]anthracene	0.058	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Benzo[g,h,i]perylene	0.24	0.0078	EPA 8270/SIM	10-7-11	10-9-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	43 - 109				
Pyrene-d10	75	38 - 128				
Terphenyl-d14	81	33 - 119				

PCBs by EPA 8082

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-27-7.5					
Laboratory ID:	09-223-104					
Aroclor 1016	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.070	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	69	42-123				
Client ID:	GEI-27-11.0					
Laboratory ID:	09-223-105					
Aroclor 1016	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.070	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.070	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	67	42-123				
Client ID:	GEI-27-13.0					
Laboratory ID:	09-223-106					
Aroclor 1016	ND	0.077	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.077	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.077	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.077	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.077	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.077	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.077	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	67	42-123				

TOTAL LEAD EPA 6010B

Matrix:	Soil					
Units.	mg/kg (ppm)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-223-03					
Client ID:	GEI-31-7.5					
Lead	ND	6.1	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-07 GEI-32-5.0					
Lead	ND	6.2	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-12 GEI-33-5.0					
Lead	ND	6.5	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-14 GEI-33-10.0					
Lead	ND	6.1	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-16 GEI-33-14.0					
Lead	ND	6.2	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-20 GEI-20-5.0					
Lead	ND	8.1	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-22 GEI-20-10.0					
Lead	ND	8.4	6010B	10-11-11	10-12-11	

TOTAL LEAD EPA 6010B

Matrix:	Soil					
Units:	mg/kg (ppm)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-223-26					
Client ID:	GEI-21-5.0					
Lead	ND	8.1	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-28 GEI-21-10.0					
Lead	19	6.8	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-32 GEI-22-5.0					
Lead	ND	6.5	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-35 GEI-22-12.5					
Lead	32	8.8	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-38 GEI-26-5.0					
Lead	ND	6.6	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-40 GEI-26-10.0					
Lead	ND	7.6	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-44 GEI-28-5.0					
Lead	ND	6.2	6010B	10-11-11	10-12-11	

TOTAL LEAD EPA 6010B

Matrix: Units:	Soil ma/ka (ppm)					
ormo.	····g//··g (pp····)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-223-46 GEI-28-10.0					
Lead	ND	6.9	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-50 GEI-29-5.0					
Lead	ND	5.6	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-52 GEI-29-10.0					
Lead	14	5.8	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-56 GEI-16-5.0					
Lead	ND	8.5	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-58 GEI-16-10.0					
Lead	ND	5.6	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-65 GEI-17-10.0					
Lead	ND	7.8	6010B	10-11-11	10-12-11	
Lab ID: Client ID:	09-223-66 GEI-17-14.0					
Lead	ND	5.7	6010B	10-12-11	10-12-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Matrix: Units:	Soil mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-223-67					
Client ID:	GEI-17-17.5					
Lead	ND	6.3	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-70 GEI-18-5.0					
Lead	ND	6.3	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-72 GEI-18-12.5					
Lead	ND	6.4	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-73 GEI-18-15.0					
Lead	24	8.8	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-77 GEI-19-5.0					
Lead	21	8.5	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-79 GEI-19-10.0					
Lead	ND	7.7	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-86 GEI-23-7.5					
Lead	ND	9.0	6010B	10-12-11	10-12-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Matrix:	Soil					
Units:	mg/kg (ppm)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-223-88 GEI-23-12.5					
Lead	100	13	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-91 GEI-24-5.0					
Lead	22	8.8	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-93 GEI-24-10.0					
Lead	ND	8.5	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-97 GEI-25-5.0					
Lead	22	7.5	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-99 GEI-25-10.0					
Lead	ND	8.7	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-104 GEI-27-7.5					
Lead	ND	7.0	6010B	10-12-11	10-12-11	
Lab ID: Client ID:	09-223-105 GEI-27-11.0					
Lead	ND	7.0	6010B	10-12-11	10-12-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Matrix:	Soil					
Units:	mg/kg (ppm)			Data	Data	
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-223-106					
Client ID:	GEI-27-13.0					
Lead	ND	7.7	6010B	10-12-11	10-12-11	
Lab ID:	09-223-112					
Client ID:	GEI-34-12.0					
Lead	25	5.9	6010B	10-12-11	10-12-11	
Lab ID:	09-223-119					
Client ID:	GEI-35-15.0					
Lead	ND	6.1	6010B	10-12-11	10-12-11	

MTBE, EDB, EDC by EPA 8260B

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-27-7.5					
Laboratory ID:	09-223-104					
Methyl t-Butyl Ether	ND	0.0017	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0017	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0017	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	63-127				
Toluene-d8	102	65-129				
4-Bromofluorobenzene	95	55-121				
Client ID:	GEI-27-11.0					
Laboratory ID:	09-223-105					
Methyl t-Butyl Ether	ND	0.0016	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0016	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0016	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	63-127				
Toluene-d8	100	65-129				
4-Bromofluorobenzene	92	55-121				
Client ID:	GEI-27-13.0					
Laboratory ID:	09-223-106					
Methyl t-Butyl Ether	ND	0.0015	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0015	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0015	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	63-127				
Toluene-d8	105	65-129				
4-Bromofluorobenzene	102	55-121				

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-23-15.0					
Laboratory ID:	09-223-89					
Diesel Range Organics	ND	32	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB1007S1						
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11		
Toluene	ND	0.050	EPA 8021	10-7-11	10-7-11		
Ethyl Benzene	ND	0.050	EPA 8021	10-7-11	10-7-11		
m,p-Xylene	ND	0.050	EPA 8021	10-7-11	10-7-11		
o-Xylene	ND	0.050	EPA 8021	10-7-11	10-7-11		
Gasoline	ND	5.0	NWTPH-Gx	10-7-11	10-7-11		
Surrogate:	Percent Recovery	Control Limits					
Fluorobenzene	87	68-124					
Laboratory ID:	MB1007S2						
Benzene	ND	0.020	EPA 8021	10-7-11	10-7-11		
Toluene	ND	0.050	EPA 8021	10-7-11	10-7-11		
Ethyl Benzene	ND	0.050	EPA 8021	10-7-11	10-7-11		
m,p-Xylene	ND	0.050	EPA 8021	10-7-11	10-7-11		
o-Xylene	ND	0.050	EPA 8021	10-7-11	10-7-11		
Gasoline	ND	5.0	NWTPH-Gx	10-7-11	10-7-11		
Surrogate:	Percent Recovery	Control Limits					
Fluorobenzene	98	68-124					
Laboratory ID:	MB1007S3						
Benzene	ND	0.020	EPA 8021	10-7-11	10-10-11		
Toluene	ND	0.050	EPA 8021	10-7-11	10-10-11		
Ethyl Benzene	ND	0.050	EPA 8021	10-7-11	10-10-11		
m,p-Xylene	ND	0.050	EPA 8021	10-7-11	10-10-11		
o-Xylene	ND	0.050	EPA 8021	10-7-11	10-10-11		
Gasoline	ND	5.0	NWTPH-Gx	10-7-11	10-10-11		
Surrogate:	Percent Recovery	Control Limits					
Fluorobenzene	100	68-124					
Laboratory ID:	MB1007S4						
Benzene	ND	0.020	EPA 8021	10-7-11	10-8-11		
Toluene	ND	0.050	EPA 8021	10-7-11	10-8-11		
Ethyl Benzene	ND	0.050	EPA 8021	10-7-11	10-8-11		
m,p-Xylene	ND	0.050	EPA 8021	10-7-11	10-8-11		
o-Xylene	ND	0.050	EPA 8021	10-7-11	10-8-11		
Gasoline	ND	5.0	NWTPH-Gx	10-7-11	10-8-11		
Surrogate:	Percent Recovery	Control Limits					
Fluorobenzene	104	68-124					
Fluorobenzene	104	68-124					

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 11	,				Source	Perce	nt	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
Laboratory ID:	10-03	38-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA		NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						102	91	68-124			
Laboratory ID:	09-22	23-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA		NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						98	100	68-124			
Laboratory ID:	09-22	23-58									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA		NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						92	99	68-124			
Laboratory ID:	09-22	23-65									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA		NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						106	104	68-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB10	07S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.983	1.04	1.00	1.00		98	104	77-114	6	9	
Toluene	0.991	1.04	1.00	1.00		99	104	80-115	5	9	
Ethyl Benzene	0.959	1.00	1.00	1.00		96	100	80-118	4	9	
m,p-Xylene	0.958	1.00	1.00	1.00		96	100	82-118	4	9	
o-Xylene	0.950	0.986	1.00	1.00		95	99	82-116	4	9	
Surrogate:											
Fluorobenzene						103	105	68-124			
Laboratory ID:	SB10	07S2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.984	1.00	1.00	1.00		98	100	77-114	2	9	
Toluene	0.997	0.989	1.00	1.00		100	99	80-115	1	9	
Ethyl Benzene	0.970	0.949	1.00	1.00		97	95	80-118	2	9	
m,p-Xylene	0.974	0.947	1.00	1.00		97	95	82-118	3	9	
o-Xylene	0.958	0.910	1.00	1.00		96	91	82-116	5	9	
Surrogate:											
Fluorobenzene						102	102	68-124			

NWTPH-Dx METHOD BLANK QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1006S2					
Diesel Range Organics	ND	25	NWTPH-Dx	10-6-11	10-6-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Laboratory ID:	MB1007S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Laboratory ID:	MB1007S2					
Diesel Range Organics	ND	25	NWTPH-Dx	10-7-11	10-7-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

NWTPH-Dx DUPLICATE QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

			Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-19	96-08						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			60	66	50-150			
Laboratory ID:	09-22	23-28						
	ORIG	DUP						
Diesel Range Organics	475	400				17	NA	
Lube Oil Range Organics	1040	831				22	NA	
Surrogate:								
o-Terphenyl			131	124	50-150			
Laboratory ID:	09-22	23-56						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			96	100	50-150			
Laboratory ID:	09-22	23-58						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			99	101	50-150			
Laboratory ID:	09-22	3-106						
	ORIG	DUP						
Diesel Range Organics	33.8	33.0				2	NA	
Lube Oil	114	106				7	NA	
Surrogate:								
o-Terphenyl			97	107	50-150			

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1006S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	43 - 109				
Pyrene-d10	89	38 - 128				
Terphenyl-d14	90	33 - 119				

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1007S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-7-11	10-7-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	88	43 - 109				
Pyrene-d10	91	38 - 128				
Terphenyl-d14	92	33 - 119				

61

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-19	96-23									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0596	0.0621	0.0833	0.0833	ND	72	75	39 - 110	4	21	
Acenaphthylene	0.0526	0.0589	0.0833	0.0833	ND	63	71	47 - 124	11	21	
Acenaphthene	0.0557	0.0605	0.0833	0.0833	ND	67	73	50 - 120	8	20	
Fluorene	0.0553	0.0598	0.0833	0.0833	ND	66	72	52 - 126	8	21	
Phenanthrene	0.0526	0.0578	0.0833	0.0833	ND	63	69	41 - 130	9	22	
Anthracene	0.0501	0.0558	0.0833	0.0833	ND	60	67	48 - 124	11	23	
Fluoranthene	0.0532	0.0592	0.0833	0.0833	ND	64	71	40 - 137	11	23	
Pyrene	0.0505	0.0565	0.0833	0.0833	ND	61	68	36 - 139	11	23	
Benzo[a]anthracene	0.0461	0.0528	0.0833	0.0833	ND	55	63	43 - 127	14	21	
Chrysene	0.0457	0.0518	0.0833	0.0833	ND	55	62	41 - 133	13	19	
Benzo[b]fluoranthene	0.0449	0.0515	0.0833	0.0833	ND	54	62	40 - 132	14	25	
Benzo(j,k)fluoranthene	0.0442	0.0510	0.0833	0.0833	ND	53	61	35 - 132	14	25	
Benzo[a]pyrene	0.0405	0.0464	0.0833	0.0833	ND	49	56	37 - 131	14	26	
Indeno(1,2,3-c,d)pyrene	0.0433	0.0506	0.0833	0.0833	ND	52	61	39 - 134	16	23	
Dibenz[a,h]anthracene	0.0457	0.0534	0.0833	0.0833	ND	55	64	40 - 137	16	21	
Benzo[g,h,i]perylene	0.0441	0.0515	0.0833	0.0833	ND	53	62	35 - 135	15	22	
Surrogate:											
2-Fluorobiphenyl						65	70	43 - 109			
Pyrene-d10						58	64	38 - 128			
Terphenyl-d14						57	64	33 - 119			

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

5 5					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-22	23-44									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0713	0.0661	0.0833	0.0833	0.00942	74	68	39 - 110	8	21	
Acenaphthylene	0.0677	0.0606	0.0833	0.0833	ND	81	73	47 - 124	11	21	
Acenaphthene	0.0736	0.0666	0.0833	0.0833	ND	88	80	50 - 120	10	20	
Fluorene	0.0784	0.0692	0.0833	0.0833	ND	94	83	52 - 126	12	21	
Phenanthrene	0.0782	0.0677	0.0833	0.0833	ND	94	81	41 - 130	14	22	
Anthracene	0.0740	0.0644	0.0833	0.0833	ND	89	77	48 - 124	14	23	
Fluoranthene	0.0860	0.0723	0.0833	0.0833	0.0102	91	75	40 - 137	17	23	
Pyrene	0.0796	0.0670	0.0833	0.0833	0.00982	84	69	36 - 139	17	23	
Benzo[a]anthracene	0.0744	0.0658	0.0833	0.0833	ND	89	79	43 - 127	12	21	
Chrysene	0.0726	0.0641	0.0833	0.0833	ND	87	77	41 - 133	12	19	
Benzo[b]fluoranthene	0.0730	0.0676	0.0833	0.0833	ND	88	81	40 - 132	8	25	
Benzo(j,k)fluoranthene	0.0710	0.0636	0.0833	0.0833	ND	85	76	35 - 132	11	25	
Benzo[a]pyrene	0.0709	0.0631	0.0833	0.0833	ND	85	76	37 - 131	12	26	
Indeno(1,2,3-c,d)pyrene	0.0720	0.0642	0.0833	0.0833	ND	86	77	39 - 134	11	23	
Dibenz[a,h]anthracene	0.0727	0.0654	0.0833	0.0833	ND	87	79	40 - 137	11	21	
Benzo[g,h,i]perylene	0.0725	0.0649	0.0833	0.0833	ND	87	78	35 - 135	11	22	
Surrogate:											
2-Fluorobiphenyl						84	77	43 - 109			
Pyrene-d10						84	73	38 - 128			
Terphenyl-d14						89	80	33 - 119			

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

5 5 (1)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1004S1					
Aroclor 1016	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1221	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1232	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1242	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1248	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1254	ND	0.050	EPA 8082	10-4-11	10-5-11	
Aroclor 1260	ND	0.050	EPA 8082	10-4-11	10-5-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	73	42-123				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-0	03-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.405	0.404	0.500	0.500	ND	81	81	44-125	0	15	
Surrogate:											
DCB						72	69	42-123			

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	10-11-11 10-12-11		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID:	MB1011S4		
Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

Lead

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	10-12-11		
Date Analyzed:	10-12-11		
Matrix:	Soil		
Units:	mg/kg (ppm)		
Lab ID:	MB1012S1		
Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-11-11
Date Analyzed:	10-12-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-223-52

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	11.9	12.6	6	5.0	

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-12-11
Date Analyzed:	10-12-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-223-91

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	12.6	13.7	9	5.0	

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-11-11
Date Analyzed:	10-12-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-223-52

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	246	94	244	93	1	

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-12-11
Date Analyzed:	10-12-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-223-91

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	245	93	242	92	1	

MTBE, EDB, EDC by EPA 8260B QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1006S2					
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	10-6-11	10-6-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	63-127				
Toluene-d8	107	65-129				
4-Bromofluorobenzene	106	55-121				

					P	ercent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	06S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0560	0.0605	0.0500	0.0500	112	2 121	70-130	8	19	
Benzene	0.0476	0.0516	0.0500	0.0500	95	103	70-125	8	15	
Trichloroethene	0.0496	0.0534	0.0500	0.0500	99	107	70-122	7	14	
Toluene	0.0482	0.0521	0.0500	0.0500	96	104	73-120	8	16	
Chlorobenzene	0.0503	0.0545	0.0500	0.0500	101	109	74-109	8	12	
Surrogate:										
Dibromofluoromethane					100) 107	63-127			
Toluene-d8					100) 106	65-129			
4-Bromofluorobenzene					99	106	55-121			

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Dat	е	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB1012S1						
Diesel Range Organics	ND	25	NWTPH-Dx	10-12-11	10-12	-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-12-11	10-12	-11	
Surrogate:	Percent Recove	ery Control Limits					
o-Terphenyl	116	50-150					
			Percent	Recovery		RPD	
Analyte	Resu	lt	Recover	y Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	10-053	-01					
	ORIG	DUP					
Diesel Range Organics	ND	ND			NA	NA	
Lube Oil Range Organics	ND	ND			NA	NA	
Surrogate:							
o-Terphenyl			112 12	3 50-150			

% MOISTURE

Date Analyzed: 10-4,6&7-11

Client ID	Lab ID	% Moisture
GEL31-7.5	00-223-03	10
GEI-31-7.5	00 222 03	19
GEI-32-5.0	09-223-07	19
GEI-33-5.0	09-223-12	24
GEI-33-10.0	09-223-14	18
GEI-33-14.0	09-223-16	20
GEI-20-5.0	09-223-20	38
GEI-20-10.0	09-223-22	41
GEI-21-5.0	09-223-26	38
GEI-21-10.0	09-223-28	26
GEI-22-5.0	09-223-32	23
GEI-22-12.5	09-223-35	43
GEI-26-5.0	09-223-38	25
GEI-26-10.0	09-223-40	34
GEI-28-5.0	09-223-44	19
GEI-28-10.0	09-223-46	27
GEI-29-5.0	09-223-50	11
GEI-29-10.0	09-223-52	13
GEI-16-5.0	09-223-56	41
GEI-16-10.0	09-223-58	10
GEI-17-10.0	09-223-65	36
GEI-17-14.0	09-223-66	13
GEI-17-17.5	09-223-67	21
GEI-18-5.0	09-223-70	21
GEI-18-12.5	09-223-72	22
GEI-18-15.0	09-223-73	43
GEI-19-5.0	09-223-77	41
GEI-19-10.0	09-223-79	35

% MOISTURE

Date Analyzed: 10-4,6&7-11

Client ID	Lab ID	% Moisture
GEI-23-7.5	09-223-86	45
GEI-23-12.5	09-223-88	61
GEI-24-5.0	09-223-91	43
GEI-24-10.0	09-223-93	41
GEI-25-5.0	09-223-97	33
GEI-25-10.0	09-223-99	43
GEI-27-7.5	09-223-104	28
GEI-27-11.0	09-223-105	29
GEI-27-13.0	09-223-106	35
GEI-34-12.0	09-223-112	15
GEI-35-15.0	09-223-119	18

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Z - The gasoline result is mainly attributed to a single peak (Naphthalene).

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Hills Jellym	Reinquished	Signature	10 951-32-12.0	9 981-32-100	8 951-32-7.5	7 401-32-5.0	6 401-32-2:5	S 4E1-31-12.0	4 401-31-10.0	3 461-31-7.5	2 981-31-50	1 GE1-31-2.5	Lab ID Sample Identification	Sampled by	Project Name: Project Manager:	Project Number: 951	Company 5147-012-02 N	FINITE Street - Fishmood WA SHIZE Phone: (123) 883-4881 - www.consile-env.izom	INA OnSite
Reviewed/Date			aste	Speedy	Speach	GEI	Company	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1545 5	1540 5	S SESI	1 05.51	1570 1	1202 2	1500 5	1 1455 5	9/28/11 1450 Soir 1	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)	2 Days 3 Days	(Check One)	Turnaround Request (in working days)	Chain of
			9/30/11/350	9.3011 1880	9-50-11 131U	9/30/11 1100	Date Time				××			1	××			NWTP NWTP NWTP NWTP Volatili Halogu	PH-HCID PH-Gx/BTE PH-Gx PH-Gx PH-Dx es 8260B enated Vol olatiles 82	atiles 8260B			Laboratory Number	Custody
Chromalograms with final report			1	1	1 - 1 - 1 - 1 - 1 - 1 - 1	V ALLA IN/W)	Comments/Special Instructions				×				×			(with in PAHs : PCBs Organ Organ Chlorin Total F TCLP	w-level P 8270D/SIM 8082 ochlorine ophosphor nated Acid RCRA / M1 Metals	AHS) A (low-level) Pesticices 8(us Pesticides i Herbicides TCA Metals (081A 8270D/SI 8151A circle one	M		
					11. 14 0111	to be level					×				X			% Mo	E A)	2			09-223	Page 1 of 12

Data Package: Level III | _ Level IV L Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received Q	Reinquished	Received Alloy Lalu	Reinquished	Signature	20 481-20-5.0	19 461-20-25	18 961-33-20.0	17 961-33-18.0	16 1-33-14.0	15 451-33-12.5	14 951-33-10.0	13 961-33-7.5	12 981-33-5.0	11 451-33-2.5	Lab ID Sample Identification	Sampleo by:	S-	FORMER SHELL TANE FARM	5147-012-02 Braiet Name	Protect Number	Contoany	14648 NE 95th Statest - Redmond WA 96052	MA OnSite
			0	LA CA	S		Con	K	9 29 11	K						-	9/28/11	Date Sampled			(TPH	2 Day	Same		Tuma (in v	
eviewed/Date			à	pla	sall	GET	hany	010	5001	1645	1640	1635	1430	1625	1620	1912	1610	Time Sampled	(ather)		ard (7 Days) analysis 5 Da	ся Г1	Day [Check One)	round Requivorking days	Cha
				1. 4			į.	4		4						-	5 B	Matrix			iys)] 3 Days	1 Day		s) est	in o
								5	-	-	5	5	-	S	S	S	-	Numb	er of C	ontain	ers					C
	-	-	0	0	0	2	Da	×	-			X	-	X	-	V	-	NWTP	H-Gx/B	TEX					Lab	SI
			13/2	to	35	30	te			-	-	~			-	~		NWTP	H-Gx						ora	to
			N/	11	11	1		×				×.		×		×		NWTP	H-Dx	_					tory	dy
			25	3	X	=	Time							ľ				Votable	es 8260	В	- 0.00				Nur	
			9	R.	5	9		-	-		-	-	-		-	-	-	Semivo	platiles	Alatile	s 8260E		-		nbe	
Chr							C)	X	-			X		×		X	-	(with lo PAHs &	w-level	PAHs) SIM (Io	w-level)					
omatog						×	mmeri	r								/ ~		PCBs 6	8082				_			
rams w						5	ts/Spe											Organo	ochlorin	e Pest	icides 8	081A				
with fina					-	todad	ciał Ins											Organo	phosph	orus F ¹	bicides	8270D/	SIM			
report						ig/1	tructio				1		1					Total R	CRA/I	MTCA	Metals	circle o	ne)			
						t h	Sul					-				<u> </u>		TCLP	Metals							
						5	-											HEM (d	oil and g	grease) 1664					P
						00		X		-		×	1	\times		X		2	EL	1j)	_				ige
						ALC					-														60	P
						\cup												-							1	of
																									N	N
								~				-		~ 2				%	sture	_					ω	
					_			1				~		X				70 1010	Sture							

Data Package: Level III 🗋 Level IV 🗍 Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received A	Relinquished	Received Low Span	Relinquished	Signature	30 461-21-15.0	29 481-21-12.5	28 961-21-10.0	27 GEI-21-7.5	26 961-21-5.0	21 GE1-21-2.5	24 461-20-150	23 90-12-5	22401-20-100	21 461-20-7.5	Lab ID Sample Identification	Sampled by	Project Manager Project Manager	Project Number:	Company. 5147-012-02 75	HAMA NE SSN Streatt - Reimond, WA 56032 Phone: (422) 88 3-98 81 • www.vonsile-env.com	in OnSite
Reviewed/Date			080	Theoly	Speed	461	Сотралу	V 925 V	920	SIb	910	20b	900	-020	1015 **	40 TOT	9 29 11 1005 SOIL	Date Time Sampled Sampled Matrix	(other)	Standard (7 Days) (TPH analysis 5 Days)	2 Days	Same Day	Turnaround Request (in working days)	Chain of
			9/30/11 1350	9.30.11 1350	23/1 1315	9 30/11 1100	Date Time		5	XX		5 X X			5	5 X X		Numb NWTP NWTP NWTP Volatile Haloge	er of Ci H-HCID H-Gx/B H-Gx H-Dx es 8260 mated V	TEX B /otatiles 82608			Laboratory Number	Custody
Chromatograms with final report						X - Added 10/4/11. DB (STA)	Comments/Special Instructions			×		× ×				×		(with lo PAHs & PCBs & Organo Chlorin Total R TCLP (HEM (c	w-level 3270D/S 3082 ochlorin phosph ated Ac CRA / I Metals oil and s E- A	PAHs) SIM (Iow-level) e Pesticides 80 orus Pesticides cid Herbicides 1 MTCA Metals (grease) 1664	081A 8270D/SI 8151A circle one	M (09-223	Page 3 of 12

Data Package: Level III 🗍 Level IV 🗌 Electronic Data Deliverables (EDDs) []

Normaliant Repart Laboratory Number: Og - 2 Base of the second repart of the second	Reviewed/Date	Received	Reinquished	Received	Reinquished	Received	Relinquished	Signature A	40 901-26-10.0	39 GE1-26-7.5	38 951-26-5.0	31 461-26-2.5	36 GEI-22-15.0	35 461-22-12.5	34 961-22-10.0	33 GEI-22 - 7=5	32 981-22-50	3 461-22-2.5	Lab ID Sample Identification	Sampled by	Project Manager	FORMER SHELL TANK F	5147-012-02	Company GE1	14548 NE 95th Street - Redmond, WA 94052 Phone (425) 853-3881 - www.onsite-onv.lom	MAL OnSite
Contraction of the second seco	Reviewed/Date			SE	in freday	in Sapely	S GEI	Company	V 1435 V	1430	1425	1420	[000]	SSIb	056	Shb	940	929 11 935 5014	Date Time Sampled Sampled Matrix	(other)		TPH analysis 5 Days)	2 Days 3 Days	(Check One)	Turnaround Request (in working days)	Chain
Oroganago with final regulated volumes azous Semivolatiles azous Semivolatiles azous V V V PAHs azous/site sets azous V V V V V V V PAHs azous/site sets azous V V V V V V V PAHs azous/site sets azous V V V V V V V PAHs azous/site sets azous V V V V V V V PAHs azous/site sets azous V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <tr< td=""><td></td><td>and the second second second</td><td></td><td>9/3d11 135</td><td>9-2211 13</td><td>2-20-11 131</td><td>9/20/11 11</td><td>Date Time</td><td>S X X</td><td>5</td><td>5 X X</td><td></td><td>-</td><td>5 X X</td><td>S</td><td></td><td>S X X</td><td>-</td><td>Numb NWTP NWTP NWTP Volatile</td><td>er of Co H-HCID H-Gx/B H-Gx H-Dx es 8260</td><td>Dontaine LEX B</td><td>ers</td><td></td><td></td><td>Laboratory Nur</td><td>of Custody</td></tr<>		and the second second second		9/3d11 135	9-2211 13	2-20-11 131	9/20/11 11	Date Time	S X X	5	5 X X		-	5 X X	S		S X X	-	Numb NWTP NWTP NWTP Volatile	er of Co H-HCID H-Gx/B H-Gx H-Dx es 8260	Dontaine LEX B	ers			Laboratory Nur	of Custody
N	Chromatograms with final report			50	350	15	W X - Add 10/4/11. DR (STA	Comments/Special Instructions	×		× ×						X		Haloge Semive (with Ic PAHs & PCBs & Organe Organe Chlorin Total R TCLP I HEM ((inated V platiles i pw-level 3270D/S 3082 pochlorin ated Ac acRA / I Metals poll and g	olatiles 3270D// PAHs) SIM (lov e Poslii orus Pe id Hert MTCA I grease)	s 82608 SIM v-level) cides 80 sticides 1 detais (1664	081A 8270D/S 8151A circle or	sim (e)	Imber: 09-22	Page 4 of 12

Data Package. Level III 📋 Level IV 📋 Electronic Data Deliverables (EDDs) 🖄 _

Reviewed/Date	Received	Relinquished	Received ()	Relinquished	Received Lola Mark	Relinquished	Signature	50 GEI-29-5.0 A A	49 401-29-2.5	48 90-1-28-15.0	47 461-28-12.5	46 901-28-10.0	45 GE1-28-7.5	44 961-28-5.0	43 4E1-28-2.5	42 481-26-15.0	41 481-26-12.5	Lab ID Sample Identification	A J	Project Manager:	GRHER SHELL TANK FARM	5147-012-02	(E)	Company:	HABAN NE 951h Street • Redmond, WA 98052	OnSite
Reviewed/Date			3000	Louly	Jafely	GEI	Сотралу	N 1495 N	1450	Sh51	1540	1532	1530	1525	1520	1445	9/29 11 1440 Soll	Date Time Sampled Sampled Matrix	(other)		Slandard (7 Days)	2 Days 2 3 Days	Same Day	(Check One)	Turnaround Request (in working days)	Chain of
			9/30/11/350	9.3041 1350	5151 11.153	0/30/11/1000	Date Time	5 × ×				X X		XX			12	NUMD NWTP NWTP NWTP Volatile Haloge Semive	er of C H-HCIC H-Gx/E H-Gx H-Gx es 8260 enaled	ontaine D ITEX DB Volatiles 8270D/	8260B				Laboratory Number	Custody
Chromatograms with final report						X-add 10/4/1	Comments/Special Instructions	X				×		×				(with to PAHs 1 PCBs Organo Organo Chlorin Total F TCLP HEM (bw-leve 8270D/ 8082 ochlorir ophosph nated A RCRA / Metals oil and	I PAHs) SIM (Iow ne Peslic norus Pe cid Hert MTCA N grease)	v-level) cides 80 sticides bicides Metals (1664	081A 8270D) 8151A circle o	SIMI ne)	1		Page
						1.23 (STA)						X						~ Mo	isture						09-223	e 5 of 12

Data Package Level III 🗋 Level IV 🗍 Electronic Data Deliverables (EDDs) 🗌 ____
Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Volume	Ralinguished	Signature	60 451-16-15.0	59 451-16-125	58 4E1-16-10.0	57 961-16-7.5	56 461-16-5.0	55 461-16-2.5	54 GE1-29-15:0	53 451-29-12.5	52 481-29-10.0	51 481-29-7.5	Lab ID Sample Identification	Bampied by	Right Manager:	FORMER SHELL TANK FAR	5147-012-02	Project Number	Company: Company (420) 843 (481 - www.onsile-env.gam	14645 NE 95th Street - Redmond, WA 981062	MA OnSite
Reviewed/Date			1980	falledy	Sapely	961	Company	V 1215 V	1210	1205	12.00	S51	1150	5151	1510	5051	4 x 1 1500 Solu	Date Time Sampled Sampled Matrix :	(other)		M A Standard (7 Days)	2 Days 3 Days	[Same Day	(Check One)	Turnaround Request (in working days)	Chain of
			9/30/11 1350	9-32-11 13.50	6-30-11 1355	an 1 05/b	Date Time			XX		× ×				XX		NWTP NWTP NWTP NWTP Volatili Haloge Semiw	H-HCIC H-Gx/B H-Gx H-Dx enated v enated v) TEX E /ola(ile: 8270D/ PAHs)	s 8260B				Laboratory Number	Gustody
Chromatograms with final rep			1			X- Added 10/4/11.	Comments/Special Instructions									×		PAHs I PCBs Organi Organi Chioni Total F TCLP HEM (achiorin pphosph ated A RCRA / Metals	e Pesli orus Pe cid Herl MTCA I	v-level) cides 80 sticides bicides i Metals (1664	081A 8270D/ 8151A circle o	/SIM			Pag
						DB (STA)				X		×				×		С.	EA.) 					09-223	ge 6 of 12-

Reviewed/Date	Received	Reinquished	Received	Reinquished	Received	Relinquished	Signature A	70 961-18-5.0	69 461-18-2.5	0.0000-1-1-1-1-25 89	67 GE1-17-17.5	66 40-17-14.0	65 451-17-100	64 661-17-7.5	63 961-17-5.0	62 461-17-25	61 401-16-19.0	tab ID Sample Identification	Sampled by	Project Manager	FORMER SHELL TANK FARM	S147-012-02	Project Number	Company:	Environmental Inc.	MA OnSite
T		-	0		4		Con	2								1	1 18 1	Date	Ĩ		Stand	2 Day	Same	(0	Tuma (in y	
leviewed/Date			egg.	hold	need	GEI	npany	1040 V	5601	Shill	1140	1135	1130	1125	1120	1115	1220 SIL	Time Sampled Matrix	(olher)		ard (7 Days) analvsis 5 Davs)	s 🔲 3 Days	Day 📃 1 Day	Check One)	round Request vorking days)	Chain o
								S	-	-	S	5	S	5	S	-	-	Numb	er of C	ontain >	ers					of C
	;		2kg	0	97	9	Date	×			×	×	×					NWTP	H-Gx/B	TEX					abor	Isto
			she	11-02	14	11/06		X		<u>+</u>	×	×	×	-	-			NWTP	H-Dx						atory	dy
6			33	135	130	110	ime	-						-		_	-	Volatile	es 8260 enaled \	∕olat/le	8260P	-			Numi	
0				C,	M	S	_		-									Semive (with to	olatiles ow-level	8270D/ I PAHs) SIM (lo	SIM				ber:	
hromate							Comme										- 9	PCBs	8082							
grams v					. 7	~	nts/Spe											Organ	ochlorii	ne Pesti	cides 80	081A				
vith final					3	E	cial Inst		ļ		-			-				Organo Chlorit	nated A	iorus Pe	bicides	8270D/ 8151A	/SIM			
report						à	truction		-						-		1	Total F	RCRA /	мтса	Vietals (circle o	one)			
					1		S											TCLP	Metals	araasa	1664					
					1	1		\times			×	×	\times	-		-		6	FAI					-		Page
					1	80															_				C	V
					1	5	ų.	<u> </u>	<u> </u>		+	-	<u> </u>												9	or I
					1	TA											_								22	2
						\bigcirc					X	X	×					% Mo	islure						3	

Data Package: Level III [] Level IV] Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received	Retinquished	Received	Relinquished	Signature	80 451-19-12.5	79 961-19-10.0	2-2-4-135 RL	17 461-19-5.0	76 901-19-2.5	75 GE1-18-20.0	74 40-18-17.5	13 GE1-18-15.0	72 461-18-12.5	71 451-18-10.0	Lab ID Sample Identification	Ad	Project Manager:	Project Name SHELL TANK	5147-012-02	Project Number	Company:	Environmental Inc.	UNA OnSite
Reviewed/Date			S ONE	m Solar	Speady Speady	451	Company	V 1300 V	1252	12.50	Shrl	1240	1110	Ilos	0011	1 1055	9 29/11/1050 5016	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)	FARM Tystendard (7 Days)	2 Days 3 Days	Same Day	(Check One)	 Turnaround Request (in working days) 	Chain of
			9/30/11 1350	23011 135G	2151 11-212	9/20/11 1100	Date Time	S	S X X	0	5 1/ ×			S	5 × ×	5 X X	N	Numb NWTP NWTP NWTP Votatile Haloge Semiv. (with k	er of C H-HCII H-Gx/C H-Gx H-Dx es 8266 enated platfiles pw-leve	Containers D BTEX 0B Volatiles 8: 8270D/SIN 1 PAHs)	260B				Laboratory Number:	f Custody
Chromatograms with final report						X - Added W/1/11-DB (STA)	Comments/Special Instructions		×		×				X	×		PAHs I PCBs Organ Organ Chlorir Total F TCLP HEM (3270D/ 8082 pochlori pophospi ated A CCRA / Metals oil and EF	SIM (low-le ne Pesticid: horus Pestic horus Pestic MTCA Mel grease) 16 7_D	evel) es 800 ides 8 des 8 lais (c	81A \$270D/3 1151A ritcle o.	SIM ne)		09-223	Page 8 of 12

Data Package: Level III [] Level IV 🖑 Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Reinquished	Received Q	Reinquished	Received July July	Reinquished	Signature	90 461-24-2.5	89 961-23-15.0	88 451-23-12.5	87 961-23-10.0	86 951-23-7.5	85 961-23-5.0	84 461-23-2.5	83 451-19-20.0	82-951-19-17.5	81 461-19-15.0	Lab ID Sample Identification	A.J.	Project Manager: KST	S147-012-02	Company. GEI	14648 NE 95th Street - Redmond WA 98052 Phone (425) 863-3881 - www.onsite-env.com	in onsite
Reviewed/Date			"OXE	July ally	Laged	CE1	Company	V 1320 V	1620	1615	1610	1605	1600	1550	1315	1310	9 × 11 1305 Soll	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)	2 Days 3 Days	Same Day	(in working days)	Chain of
			9/36/11 1350	9-30-1 13.50	A 3011 1315	CO11 11/05/10	Date Time			5 X X		XX						NWTP NWTP NWTP NWTP Volatile Haloge Semivo	er of G H-HCIC H-Gx/B H-Gx H-Dx es 8260 enated \	TEX B /olatiles 8260E	3		Laboratory Number	Custody
Chromatograms with final rep					1-4000	2 shid 10	Comments/Special Instructions											(with ic PAHs & PCBs & Organo Organo Chlorin Total R TCLP	3270D/S 3082 ochlorin ophosph oated Ad CRA / I Metals	PAHs) SIM (Iow-level) e Peslicides 8 orus Pesticides cid Herbicides MTCA Merals (081A 8270D/S 8151A circle or	SIM ne)		
						14/11.DE (STA)				×		×						HEM (EA slure	grease) 1664			822-6N	Page 7 of 12

Data Package Level III [] Level IV [] Electronic Data Deliverables (EDDs) [] ____

Reviewed/Date	Received	Relinquished	Received C	Relinquished	Received Laloff Han	Relinquished	Signature	100 961-25-12-5	99 GEI-25-10.0	98461-25-7.5	97 961-25-5.0	96 481-25-2.5	as GE1-24-15.0	94 GEI-24-12-5	93 GEI-24-10.0	92 961-24-7.5	91 961-24-5.0	Lab ID Sample Identification	sampled by	PST	FORMER SHELL TANK FARM	S147-012-02	461	Phone: (425) 853-3691 + www.onsite-env.doin	14848 NE 95th Strigt + Redmand, WA 99052	OnSite
Reviewed/Date			Jeon 1	March H	apply C	245	Сотралу	V 1410 V	Idos	1400	1355	1350	1345	1340	1335	1330	9 29 11 1325 501-	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			9/36/11 1350	93011 1350	5121 11-25.16	0 30 11 HOD	Date Time		5 × ×		××		-		X		XX	NWTP NWTP NWTP NWTP Volatil Haloge Semiv	H-HCII H-HCII H-Gx/E H-Gx/E H-Gx H-Dx es 8260 enated olatiles	DB Volatile 82700	ers es 8260E VSIM	3			Laboratory Number	Custody
Chromatograms with final report						X-Added idiyhi	Comments/Special Instructions		×		×				X			PAHS PCBs Organ Organ Chlori Total F TCLP HEM	8270D/ 8082 ochlori ophosp nated A RCRA / Metals (oil and	I PAGS SIM (Id ne Pes horus P acid He MTCA grease) troides 8 estroides Metals e) 1664	081A 8270D/4 8151A (circle o	SIM ne)			Page
						of (STA)	>				×				×		X	% Mo							09-223	10 of -12-

Data Package: Level III 📋 Level IV 🔄 Electronic Data Deliverables (EDDs) 🗠

Reviewed/Date	Received	Relinquished	Received O	Relinquished	Received Day July	Relinquished	Signature	110 981-34 - 7.5	109 GE1-34-5,0	108 461-34-2.5	107951-27-15.0	106 961-27-13.0	05 95-27-11.0	104 951-27-7.5	103 GE1-27-5,0	102 461-27-2.5	101 GE1-25-15.0	Lab ID Sample Identification	Sampled by.	Project Manager Project Manager	S147-012-02	Company: GEI	14648 NE 95ih Street - Redmond, VA 96052 Phone: (425) 983-3881 • www.ortsite-env.com	in Onsite
				1			C	V									9 29 11	Date Sampled	ſ	The sta	20	Sar	Tur (Ir	
Reviewed/Date			280	Jacen	Legel	190	ompany	840	568	830	5741	1720	2141	0141	SOLI	1700	1415	Time Sampled	(other)	ndard (7 Days) 'H analysis 5 Day	ays	ne Day	naround Reques	Cha
				60				4								-	5014	Matrix		s)	3 Days	1 Day	st	in of
								N	~	-	-	S	N	S	N	H	-	Numb	er of C	ontainers				C
	y		2	2	10	0	Date	_				X	X	X	-			NWTP	H-Gx/B	TEX		-	Lab	SI
			32	30	8	30						/						NWTP	H-Gx				orat	O
			11	11	~	1	_					×	X	X				NWTP	H-Dx			-	ory	ly
			22	w	151	10	ime								-		-	Halooe	es 8260	Volatiles 8260B		_	Nun]
			0	N.	N	a	1					-				-		Semivo	latiles	8270D/SIM		-	iber	E.
Chro							Con				-	X	\overline{X}	X				PAHs 8	8270D/	SIM (low-level)				
matog					1	X	nment				interim-	X	×	×				PCBs 8	3082					
ams w						1	s/Spec											Organo	chlorin	e Pesticides 808	1A			
Ith fina						P-10	ial Ins									-		Chlorin	phosph	cid Herbicides 82	51A			1
report						1ª	tructic							-		-	-	Total R	CRA/I	MTCA Metals (cir	cle on	e)		X
						10	SUI		3									TCLP I	Metals					
						12	_											HEM (oil and g	grease) 1664				P
						De.				=		×	X	×				11	FAL)				ge
						80						×	×	×				m	BΕ,	EDB, ED	00		- 60	11_ of
						STA																	22	12
						\sim						\times	\times	\times				% Moi:	sture				ω	

Data Package: Level III 📋 Level IV 🔯 Electronic Data Deliverables (EDDs) 🗍 ____

Reviewed/Date	Received	Relinquished	Received	Reinquished	Received	Reinquished	Signature	120481-35-19.0	119 961-35-15.0	118 981-35-12.5	117 961-35-10.0	116 961-35-7.5	115 481-35-5,0	114 GE1-35-2.5	0-51-48-130 811	112 451-34-12.0	III GE1-34-10.0	Lab ID Sample Identification	Samuad by:	Project Manager:	FORMER SHELL TANK FA	5147-012-02	Company: GET	Phone (425) 883-3881 • www.cnsite-env.com	14648 NE 95th Street • Redmond, WA 98052	MA OnSite
Reviewed/Date			280 1	" Lavely	Alla Speedy	AEI	Company	A 1922 A	1650	1645	1640	1635	1630	1625	558	850	105 5h8 11 1216	Date Time Sampled Sampled Matrix	(cimer)		2M Slandard (7 Days)	Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
			9/30/11 /350	63011 135	5:3011 132	9/30/11 11/00	Date Time		s X X	(J)	N		UN I		-	5 X X	5	NUMP NWTP NWTP NWTP NWTP Volatil Halogu	H-HCIN H-Gx/B H-Gx H-Gx H-Dx es 82600 enated V	rEX B	ers 8260E	3			Laboratory Numb	f Custody
Chromatograms with final report				D'.	S . / . + lane	Xindid	Comments/Special instructions									X		Semiv (with li PAHs PCBs Organ Organ Chloin Total f TCLP	olatiles to bw-level 8270D/S 8082 ochlorin ophosphe riated Ac RCRA / N Metals	3270D/3 PAHs) SIM (lov e Pestin orus Pe ad Hert	SIM v-level) cides 8 sticides bicides	081 A 8270D/ 8151A (circle o	SIM ne)		Der:	
					Land Court	10/2/11.03 (STA)			X							X			CA	prease)					09-223	Page 12-01 12

Data Package: Level III 📋 Level IV 🖓 Electronic Data Deliverables (EDDs) 🗍

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 20, 2011

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1109-223B

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on September 30, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 20, 2011 Samples Submitted: September 30, 2011 Laboratory Reference: 1109-223B Project: 5147-012-02

Case Narrative

Samples were collected on September 28 and 29, 2011 and received by the laboratory on September 30, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: October 20, 2011 Samples Submitted: September 30, 2011 Laboratory Reference: 1109-223B Project: 5147-012-02

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-21-15.0	09-223-30	Soil	9-29-11	9-30-11	
GEI-22-15.0	09-223-36	Soil	9-29-11	9-30-11	
GEI-34-15.0	09-223-113	Soil	9-29-11	9-30-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-21-15.0					
Laboratory ID:	09-223-30					
Naphthalene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
1-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Acenaphthylene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Acenaphthene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Fluorene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Phenanthrene	0.0091	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Anthracene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Fluoranthene	0.015	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Pyrene	0.015	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[a]anthracene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Chrysene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Benzo(j,k)fluoranthene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[a]pyrene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270/SIM	10-18-11	10-19-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	43 - 109				
Pyrene-d10	91	38 - 128				
Terphenyl-d14	83	33 - 119				

4

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-22-15.0					
Laboratory ID:	09-223-36					
Naphthalene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
2-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
1-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Acenaphthylene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Acenaphthene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Fluorene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Phenanthrene	0.024	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Anthracene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Fluoranthene	0.028	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Pyrene	0.025	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[a]anthracene	0.011	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Chrysene	0.011	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[a]pyrene	0.011	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270/SIM	10-18-11	10-19-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	43 - 109				
Pyrene-d10	94	38 - 128				
Terphenyl-d14	81	33 - 119				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-34-15.0					
Laboratory ID:	09-223-113					
Naphthalene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
2-Methylnaphthalene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
1-Methylnaphthalene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Acenaphthylene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Acenaphthene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Fluorene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Phenanthrene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Anthracene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Fluoranthene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Pyrene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Benzo[a]anthracene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Chrysene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Benzo[b]fluoranthene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Benzo(j,k)fluoranthene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Benzo[a]pyrene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Benzo[g,h,i]perylene	ND	0.0074	EPA 8270/SIM	10-18-11	10-20-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	43 - 109				
Pyrene-d10	97	38 - 128				
Terphenyl-d14	87	33 - 119				

Date of Report: October 20, 2011 Samples Submitted: September 30, 2011 Laboratory Reference: 1109-223B Project: 5147-012-02

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1018S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Fluorene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Anthracene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Pyrene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Chrysene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	43 - 109				
Pyrene-d10	93	38 - 128				
Terphenyl-d14	104	33 - 119				

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	18S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0675	0.0662	0.0833	0.0833	81	79	43 - 108	2	27	
Acenaphthylene	0.0829	0.0815	0.0833	0.0833	100	98	52 - 120	2	21	
Acenaphthene	0.0690	0.0682	0.0833	0.0833	83	82	59 - 113	1	17	
Fluorene	0.0752	0.0746	0.0833	0.0833	90	90	64 - 117	1	14	
Phenanthrene	0.0713	0.0713	0.0833	0.0833	86	86	67 - 112	0	12	
Anthracene	0.0807	0.0811	0.0833	0.0833	97	97	59 - 110	0	16	
Fluoranthene	0.0875	0.0877	0.0833	0.0833	105	105	68 - 120	0	15	
Pyrene	0.0786	0.0812	0.0833	0.0833	94	97	66 - 121	3	17	
Benzo[a]anthracene	0.0801	0.0806	0.0833	0.0833	96	97	63 - 114	1	12	
Chrysene	0.0777	0.0780	0.0833	0.0833	93	94	67 - 118	0	12	
Benzo[b]fluoranthene	0.0868	0.0861	0.0833	0.0833	104	103	58 - 125	1	20	
Benzo(j,k)fluoranthene	0.0869	0.0847	0.0833	0.0833	104	102	42 - 134	3	26	
Benzo[a]pyrene	0.0852	0.0875	0.0833	0.0833	102	105	55 - 111	3	19	
Indeno(1,2,3-c,d)pyrene	0.0883	0.0882	0.0833	0.0833	106	106	60 - 125	0	20	
Dibenz[a,h]anthracene	0.0864	0.0859	0.0833	0.0833	104	103	62 - 125	1	19	
Benzo[g,h,i]perylene	0.0835	0.0838	0.0833	0.0833	100	101	61 - 124	0	19	
Surrogate:										
2-Fluorobiphenyl					81	80	43 - 109			
Pyrene-d10					86	89	38 - 128			
Terphenyl-d14					103	97	33 - 119			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

Date of Report: October 20, 2011 Samples Submitted: September 30, 2011 Laboratory Reference: 1109-223B Project: 5147-012-02

% MOISTURE

Date Analyzed: 10-18-11

Client ID	Lab ID	% Moisture
GEI-21-15.0	09-223-30	19
GEI-22-15.0	09-223-36	34
GEI-34-15.0	09-223-113	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Halls Vellow	Relinquished	Signature	10 951-32-12.0	9 961-32-100	8 GE1-32-7.5	7 401-32-5.0	6 401-32-25	5 481-31-120	4 4=1-31-10.0	3 961-31-7.5	2 981-31-50	1 9/1-31-2.5	Lab 10 Sample Identification	Sariyeed by	lsr	FORMER SHELL TANK FARM	Project Number GEI	2 70-710-1 HIG	Company 11.1 And Away www.onsite-enwoord	Inc. 14648 N.E. 55th. Street • Redmond, WA 98052	A OnSite
Reviewed/Date	1		086	Appenty.	Speedy	CEI	Company	1 1 1000 10 1	1545 S	1540 5	5 SESI	1 05.51	1 0721	1505 5	1500 5	1 1455 5	9/28/11 1450 Soir 1	Date Time Sampled Sampled Matrix	(other)	Conta	Standard (7 Days) (TPH analysis 5 Days)	Days 3 Days	I Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
Chromalog		C	9/30/11/250	9.30HI 10320 (2)	5-50-11 1310	9/20/11/100 V	Date Time Comment				XX				××××			NWTF NWTF NWTF Volatil Halogu Semiv (with le PAHs PCBs	H-HCI H-Gx/H H-Gx H-Dx es 826 enated platiles pw-leve 8270D 8082	D 3TEX 0B Volat 827(SIPAH /SIM (les 82600 D/SIM Is) Iow-level)	3			Laboratory Number:	Custody
ams with final report	TAT	Hold 10/18 111. DB (Start	1.1 /	Add 10/17/17, DR (STI	- Maar 11/11/2 4 CM	- Alled in / when me leval	s/Special Instructions				×				×			Organ Organ Chiorn Total F TCLP HEM (ochlorn pophosp nated A ACRA / Metals oil and E 14	ne Pe horus Acid H MTC	slicides 8 Pesticides erbicides A Metals se) 1664	081A : 8270D/5 8151A (circle or	SIM ne)		09-22	Page 1 of 12
				J	1					-	×			-	X			% Mo	isture						cu	

Data Package. Level III 🧻 Level IV 🗌 Electronic Data Deliverables (EDDs)

Meviewed/Date	Received	Relinquished	Received Q	Relinquished	Received Jaky July	Relinquished	Signature	20 4 51 - 20 - 5.0	19 4151-20-2.5	18 961-33-20,0	17 451-33-18.0	16 1-33 - 14.0	15 451-33-12.5	14 951-33-10.0	13 961-33-7.5	12 981-33-5.0	11 451-33-2.5	Lab 10 Sample Identification	Sampled by:	RST	GRHER SHELL TANK FARM	5147-012-02	Company:	14648 NE 95th Street + Padmond, WA 98052 Phone (425) Stig 3891 + www.onsite-env.com	MA onsite
Reviewed/Date			SE	Selly	Seady	GEI	Company	A 1010 A	9 2001 11 1205	V 1645 V	1640	1635	1630	1625	1620	1 1612 1	9/28/11 1610 50-	Date Time Sampled Sampled Matrix	(other)		TPH analysis 5 Days)	2 Days 3 Days	Same Day	(Check One)	Chain o
			9/24/11/350	9:30-11 1350	5-501, 13/S	9 30 11 1100	Date Time	S X X			5	S X X		5 X X		S X X		NWTP NWTP NWTP NWTP Volatik Haloge	er of C H-HCIE H-Gx/B H-Gx H-Dx es 8260 enated V	TEX B /olaules	275 5 5260E SIM	3		Laboratory Numbe	f Custody
Chromatograms with final report						X Add With 28 (s	Comments/Special Instructions	X				×		×		X		(with ld PAHs I PCBs Organi Organi Chlorir Total F TCLP HEM (w-level 3270D/s 8082 ochlorin pphosph nated A RCRA / I Metals pil and s	PAHs) SIM (lov Pestu orus Pe cid Herl MTCA I grease)	v-level) cides 8 sticides picides Metals (1564	081A 8270D, 8151A (circle c	/SIM		Page
						TA	2	· ×				×		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		×		% Mo	sture					9-223	or 12

Data Package: Level III [] Level IV [] Electronic Data Deliverables (EDDs) []

Reviewed/Date	Received	Reinquished	Received Official	Relinquished	Received	Relinguished	Signature	30 461-21-150	29 961-21-12.5	28 961-21-10.0	27 GEI-21-7.5	26 961-21-5.0	21 GE1-21-2.5	24 451-20-150	23 qE1-20-12.5	22461-20-10.0	21 48-20-75	Lab 10 Sample Identification	A	KST	FORMER SHELL TANK FARM	Project Name:	Project Number	Company:	Hada NE 25th Street - Redmond, WA 96052 Phone 14241 R44-1841, www.neste-encrome	An OnSite
Reviewed/Date			ONE	Theaty	Speedy	her	Company	V 925 V	920	516	910	206	900	bret	TOTO IN	to tot	9 29 11 1005 SOIL	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day	(Check One)	Turnaround Request (in working days)	Chain of
			9/30/11 1350	9.30 +1 1350	23011 1315	9 30 11 1100	Date Time			XX		S X X			G	5 × ×		Numb NWTP NWTP NWTP NWTP Volatile Haloge Semive (with lo	H-HCI H-GX/I H-GX/I H-GX H-DX es 826 enated blatiles ow-leve	DB Volatil 8270	es 8260 D/SIM	B			Laboratory Number:	Custody
Chromatograms with linal report				C Added 0/181	×	X - Added 10/4/11	Comments/Special Instructions			×		×						PAHs I PCBs Organic Organic Chlorir Total F	3270D B082 ochlori pphosp nated A ICRA / Metals	SIM (I ne Pes horus I kcid He MTC4	ow-level shouldes & Pesticides arbicides) 3081A s 8270E 6 8151A (circle	D/SII\4			
				111 DIS (500)	~douton-	1. DB (STA)		0		×		7.				×		НЕМ ()	oil and	greas	e) 1664				09-223	Page 3 of 12

Data Package. Level III 📋 Level IV 🔔 Electronic Data Deliverables (EDDs) 🗌 ____

Reviewed/Date	Received	Relinguished	Received Q	Relinquished	Received Relater	Relinquished	Signature V	40 401-26-10.0	39 GE1-26-7.5	38 981-26-50	31 461-26-2.5	36 GEI-22-15.0	35 461-22-12-5	34 961-22-10.0	33 GEI-22 - 7.5	32 961-22-5.0	31 461-22-2.5	Lab ID Sample Identification	- AJ	RST ST	FORMER SHELL TANK FARM	5147-012-02	Company: JEI	Phone: (425) 685-3681 • www.conside-env.com	Environmental Inc.	MMA OnSite
Reviewed/Date			22	Inelly	Sagely	GEI	Company	V 1435 V	143.0	1425	1420	1000	556	950	546	940	9/29/11 935 Soi	Date Time Sampled Sampled Matr	(other)		(TPH analysis 5 Days)	2 Days 📋 3 Da	Same Day 1 Da	(Check One)	Turnaround Request (in working days)	Chain
			9/3/11/350	9-2011 1350	9-2011 1315	111 11 105/1P	Date Time	5 X X	<u></u>	ZXX	-	-	5 X X	5		5 × ×	r 	X NUMB NWTP NWTP NWTP NWTP Volatili Haloge	er of (H-HCI H-Gx/I H-Gx H-Dx es 826 enated	Contain D BTEX 0B	9 0rs	ys 	V		Laboratory Numb	of Custody
Chromatograms with final report				U Added 10/18/11.		- X - Added 10/4/11.	Comments/Special Instructions			X		0	X			X		Semiv (with k PAHs : PCBs Organ Organ Chloru Total F TCLP HEM (blatiles ww-leve 3270D 8082 ochlori ophosp nated / acRA / Metals orl and	8270D I PAHs (SIM (Ic ne Pesi horus P Acid He MTCA	 b)/SIM b) b) b) b) b) c) <lic)< li=""> c) c) c) <l< td=""><td>081A 8270D/3 8151A (circle o</td><td>SIM ne)</td><td></td><td>er:</td><td>Page</td></l<></lic)<>	081A 8270D/3 8151A (circle o	SIM ne)		er:	Page
			Sand litt	J5 (3)		DB (STA)				×		0	×-			X		1% Mo	sture						09-223	4 of 12

Data Package: Level III 📋 Level IV 🗠 Electronic Data Deliverables (EDDs)

eviewed/Date	Received	Relinquished	Received	Reinquished	Received	Relinquished	Signature	50 GEI-29-5.0 1	4 461-29-2.5	18 90=1-28-15.0	17 461-28-12.5	16 GE1-28-10.0	15 GE1-28-7:5	14 GE1-28-5.0	13 GE1-28-2.5	42 451-26-15.0	41 461-26-12.5	ID Sample Identification	Ampled by:	roject Manager:	ARNER SHELL TANK FARM	5147-012-02	Sompany (EI	Phone: (425) 883-3881 • Insuminond, www.seco- Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.	OnSite
Reviewed/Date		(200	Jacky	Safely	GEL	Company	V 1495 V	1450	15451	1540	1535	1530	1525	1520	1445	9/29 11 1440 Solly	Date Time Sampled Sampled Matrix	(olher)	(TELL duranyolo o nayo)	A Slandard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of
			9/30/11/350	9-3041 1350	5181 11-1815	9/30/11 1100	Date Time	5 X X	1			x X		S X X			5	Numb NWTP NWTP NWTP NWTP Volatile Haloge Semivo	er of Co H-HCID H-Gx/BT H-Gx H-Dx es 8260E enated Vo enated Vo	EX Diatiles	8260B				Laboratory Numbe	Custody
Chromatograms with linal report						(ATA) & IN/4/10/ DALLA - X	Comments/Special Instructions	X				×		X				(with Ic PAHs & PCBs I Organc Organc Chlorir Total R TCLP I HEM ((Size of the second seco	Pestic rus Pestic d Herb TCA M Pesse)	-level) ides 80 tiodes 6 tiedes 6 tetals (r	81A 3270D/3 3151A sircle or	5IM		09-223	Page 5 of 12

Dala Package: Level III 🗍 Level IV 📋 Electronic Data Deliverables (EDDs) 🗌 _____

Reviewed/Date	Received	Relinquished	Received	Relinquished Relations	Received	Relinquished	Signature A	60 451-16-15.0	59 451-16-12.5	58 4E1-16-10.0	57 961-16-7.5	56 461-16-5.0	55 961-16-2.5	54 GEI-29-15:0	53 90-12-5	52 GEI-29-10.0	51 481-29-7.5	Lab ID Sample Identification	Sampled by	RST Manager	FORMER SHELL TANK FARM	5147-012-02	Company 4C1	Phone. (425) 883-3881 • www.onstite-anv.com	Environmental Inc.	WWA OnSite
Reviewed/Date			1980	fledy	Sagely	GEI	Company	V 1215 V	1210	1205	1200	S511	1150	1515	1510	5051	9 20 21 1 12 20 Se	Date Time Sampled Sampled Mat	(other)		(TPH analysis 5 Days)	2 Days [] 3 C	Same Day	(Check One)	Turnaround Bequest (in working days)	Chain
		1	9/30/11 1350	9-22-11 13 22	551 11-05-5	an 1 11 05/10	Date Time		5	S X X		S X X				5 × ×	5	Numb NWTP NWTP NWTP NWTP Volatile Hatoge	er of C H-HCIE H-Gx/E H-Gx H-Gx H-Dx es 8250 enated V olatiles	ontain) TEX) B Volatile 8270D	8 rs s 8260E	ays	ay		Laboratory Numbe	of Custody
Chromatograms with final repr						X-Added 10/4/11. DB (STA)	Comments/Special Instructions			×						X		(with k PAHs & PCBs Organ Grganc Chlorir Total F TCLP HEM (ochlorin pphosph ated A RCRA / Metals oil and	BPAHS) SIM (Ior In PAHS) SIM (w-level) cides 8 esticides bicides Metals (081A 8270D/ 8151A (circle c	SIM		0.9-2	Page 6_ of 1
_						2				×	-	\times				X	4	% Mo:	slure						223	12

ļ

	A	Lold Blan	Left Sugar	X Martin	Signature A	-18-5.0	-18-2.5	-17- 14.0 20.0	1-17-17.5	1-17-14.0	1-17-10.0	1-17-75	1-17-5.0	21-17-2.5	51-16-19.0	Sample Identification		4	TR SHELL TANK FARM	-012-02	1	Phone, (425) 803-3001 • www.onsite-env.com	Environmental Inc.	nSite
Reviewed/Date	340	1 dela	Speed	GEI	Company	V 1040 V	1035	Shil	1140	1135	1130	1125	112.0	1115	9 28/11 1220 SIL	Date Time Sampled Sampled Matrix	(other)	(The analysis o bays)	Standard (7 Days)	2 Days 3 Days	L Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
	9/30/11 1353	230-11 135	9.24 1315	9/30/11 1/00	Date	5 メ メ			5 X X	XX	5 × ×					NWTP NWTP NWTP NWTP Votatili Haloge Semive	H-HCID H-Gx/B H-Gx/B H-Gx H-Dx enated V platiles 8	TEX 3 3 3 3 3 3 3 3 2 7 0 1 8 3 3 2 7 0 0 1 8 1 8 3 2 7 0 0 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 18 1 18 1 18 1 18 18	8260B				Laboratory Number	Custody
Chromatograms with final report				V-Durd iduly DR /STA	Comments/Special Instructions	×			×	×.	*					(with Ic PAHs 8 PCBs - Organic Organic Chlorir Total F TCLP HEM (w-level 3270D/S 3082 ochloring phospho hated Ar CRA / M Metals oil and g	PAHs) SIM (low e Pestic orus Pes d Herb ATCA M grease)	Ides 80 Ides 80 Ides 8 Ideas 8 Ietals (d	81A 8270D/3 8151A circle oi	SIM		09-22	Page 7_ot_12_

Data Package: Level III \square Level IV \square Electronic Data Deliverables (EDDs) \square

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	80 461-19-12.5	79 951-19-10.0	78 961-19-7-5	77 961-19-5.0	76 601-19-2.5	15 GE1-18-20.0	74 400-18-17.5	73 GE1-18-15.0	72 461-18-12.5	71 451-18-10.0	Lab ID Sample Identification	A J	RST RST	FORMER SHELL TANK FARM	5147-012-02-	Company GEI	Phune: (425) 883-3691 • www.onsile-env.com	Inc. 14648 NE 95IN Street • Farmond, WA 98052	OnSite
							0	X								1	9 29 1	Date Sampled]	17		Sa	ļ	(i	
Reviewed/Date			DAG	Salay	Speed	SEI	ompany	1300	1255	1250	SHI	1240	1110	lios	1100	1055	1050 5	Time Sampled N	(other)		Indard (7 Days) 24 analysis 5 Days))ays	me Day	(Check One)	n working days)	Chai
								V S	S	5	S	-	-	N	S	5	5	Numb	er of Co	ontaine	ers	3 Days	1 Day			n of (
			9/3du	93011	930-11	9/20/11	Date		メ		XX				XX	XX			H-HCID H-Gx/8 H-Gx H-Gx	rex					Laboratory	ustody
			1350	1350	1315	1100	Time								-			Volatile Haloge Semivo (with lo	nated V nated V Ilatiles I w-level	B /olatiles 3270D/3 PAHs)	8260B SIM				Number	
Chromatograms with final report						X. Added 10/4/11.	Comments/Special Instructions				X				X	×		PAHs E PCBs I Organo Organo Chilorin Total R TCLP I HEM (c	270D/S 1082 ochlorin phosph ated Ac CRA / N Metals oil and g	SIM (low e Pestic orus Pe cid Hert MTCA M grease)	r-level) cides 80 sticides 8 licides 8 detals (r 1664	081A 8270D/3 3151A circle of	SIM ne)			Page
						DB (STA)			×		×				×	X		% Moi:	sture	<u> </u>					09-223	8 of 12

Data Package: Level III [] Level IV [] Electronic Data Deliverables (EDDs) []

Reviewed/Date	Received	Relinquished	Received Q	Relinquished	Received flath Volun	Reinquished	Signature	90 GEI-24-2.5	89 961-23-15.0	88 451-23-12.5	87 GE1-23-10.0	86 951-23-7.5	85 901-23-5.0	84 4E1-23-2.5	83 451-19-20.0	81 951-19-17.5	81 461-19-15.0	Lab ID Sample Identification	Sampled by:	Progri Manager	Project Name	S147-012-02	Company GEI	Phone (425) 883-3381 • www.onsite-env.com	14648 NE 95th Street - Redmond WA 98052	MA OnSite
Reviewed/Date			10xC	12 Sally	Laged	120	Company	V 1320 V	1620	1615	1610	1605	1600	1520	1315	1310	9 29/11/305 5011	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)	Theoretard (7 Dave)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
			9/3/11 1350	9-30-11 1350	23511 1315	9/30/11 11/02	Date Time		8	S X X		5 X X					5	Numb NWTPI NWTPI NWTPI Volatile Haloge Semivo	er of Co H-HCID H-Gx/8 H-Gx H-Dx es 8260 mated \ blatiles i	TEX B Volatiles 82 9270D/Sim	608				Laboratory Number	Custody
Chromalograms with final report				(& Adae - Theft.	that is his his	~ and why his DS	Comments/Special Instructions			×-		×						PCBs & PCBs & Organo Organo Chiorm Total R TCLP I HEM (0	3270D/S 3082 ochlorin phosph ated Ac CRA / I Metals Dil and g	e Pesticide orus Pesticide orus Pesticid MTCA Meta grease) 166	vel) s 808 des 81 des 81 des 81	11A 270D/S 151A rcle on	e)		0	Page
				+ SCOL	TR STA	(STA)			8	×		×						% Moi	sture						9-223	o 12

Data Package Level III ' Level IV [] Electronic Data Deliverables (EDDs) [] ____

Reviewed/Date	Received	Reinquished	Received D	Relinquished	(montany	Received	Relinquished	Signature o M	100 GE1-25-12-5	99 GE1-25-10.0	98 961-25-7.5	97 961-25-5.0	96 481-25-2.5	as GE1-24-15.0	94 451-24-12.5	93 461-24-10.0	92 GE1-24-7-5	91 961-24-5.0	Lab ID Sample Identification	Sampled by	Product Manager: RST	FORMER SHELL TANK FARM	5147-012-02	Protect Number:	Company: Com	14548 NE 95th Street - Redmond, WA 98052	A OnSite
Reviewed/Date			asi:	10 colly	Enclor -	See.	GET	Company	V 1410 V	1405	1400	1355	1350	1345	1340	1335	1330	9 29 11 1325 Sola	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 1 3 Days	Same Day	(Check One)	Turnaround Request (in working days)	Chain of
			7/36/11 1350	930-11 1350	1.5.11.51	0/2011 12/5	9/30/11/11/00	Date Time		メメ		××				X		XX	NWTP NWTP NWTP NWTP Volatik Haloge Semiv	er of G H-HCIC H-Gx/B H-Gx H-Dx enated \ plattles	TEX B Volatiles 8270D/	8260B				Laboratory Number	Custody
Chromatograms with final report [.]						V. March Indu	V-addid while	Comments/Special Instructions		×		×.				X			(with k PAHs (PCBs) Organe Organe Chlorir Total F TCLP HEM (w-level 3270D/S 8082 ochlorin ophosph nated Ad ICRA / I Metals oil and g	PAHs) SIM (lov e Pesta orus Pe cid Hert MTCA I grease)	v-level) cides 80 sticides bicides Metals (1664	081A 8270D/ 8151A circle d	(SIM			Page
						1 1.	DR (STA)			×		~				X		×	% Moi	slure						09-223	100 - H2

Data Package: Level III 🔄 Level IV 🛄 Electronic Data Deliverables (EDDs) 🛄

Reviewed/Date	Received	Relinquished	Received O	Reinquished	Received	Relinquished	Signature	110 GE1-34 - 7.5	109 901-34 - 5,0	108 961-34-2.5	107 951-27 - 15.0	106 951-27-13.0	05 95-27-11.0	104 9=1-27-7.5	103 GE1-27-5,0	102 961-27-2.5	101 961-25-15,0	Lab ID Sample Identification	Samoled by:	Project Number SI47-012-02 Project Name: FOLMER SHELL TANK FARM Project Manager:	Company.	Adde NE 95th Street • Rodmond WA 38052 Phone: 14545 883-3881 • www.onstle-env.com	ANN OnSite
Reviewed/Date			20802	Speedy	L'ally	140	Company	V 840 V 2	835	830	1725	1720 5	5141	0141	sot!	1700	1 105 SIMI 11/18/6	Date Time Sampled Sampled Matrix	(olher)	Same Day 1 Day 2 Days Standard (7 Days) (TPH analysis 5 Days)	(Check One)	Turnaround Request (in working days)	Chain of
			9/2/11 1350	9.3011 125	5181 146.5	9/30/11 11/00	Date Time					XX	× ×	XX				NWTP NWTP NWTP NWTP Volatile Haloge Semiv	1ber of Containers IPH-HCID IPH-Gx/BTEX IPH-Gx IPH-Cx IPH-Dx Itiles 82608 Ogenated Votables 8260B Itiles 8260B			Laboratory Number	Custody
Chromatograms with final report				N		X-Added 10/4/11. DB (STA)	Comments/Special Instructions					XX XX	X X X X	X X X X				Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA / MTCA Metals (circle one) TCLP Metals HEM (oil and grease) 1664 LEAD MTBE, EDB, ED C				r 09-223	Page 11 of 12

Data Package: Level III 🗍 Level IV 🗍 Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Reimquished	Signature	120951-35-19.0	119 961-35-15.0	118 961-35-12.5	117 961-35-10.0	116 961-35-7.5	115 451-35-5,0	114 GE1-35-2.5	113 461-34-15:0	112 951-34-12.0	111 GE1-34-10.0	Lab 10 Sample Identification	Samoled by	RST	FORMER SHELL TANK FARM	5147-012-02	General Minutes	Company:	4648 NE Jush Street - Redmond, WA 88052	MA OnSite
Reviewed/Date			200	Lawly	Va Speedy	UEI	Company	V 1655 V	1620	1645	1640	1635	1630	1625	558	850	1105 Sh8 11/2/6	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (RPH analysis 5 Days)	2 Days 3 Days	Same Day	(Check One)	Turnaround Request (in working days)	Chain of
			9/30/11 1350	G3241 1350	2211 1122	9/30/11 11/00	Date Time		XX							5 X X	5	NWTP NWTP NWTP NWTP NWTP Volatil Halogu	H-HCIE H-Gx/B H-Gx H-Gx H-Dx es 8260 enated 1 olatiles	TEX BB Volatile	s 82601	3			Laboratory Numbe	Custody
Chromatograms with final report			C noo	Siloi Parla U	/ . «)00	X and to le	Comments/Special Instructions		7						0	X		(with le PAHs PCBs Organ Organ Chlorin Total F TCLP HEM (ow-level 8270D/ 8082 ochlorir ophosph nated A RCRA / Metals oil and	I PAHs) SIM (Io ne Pest cod Her MTCA	w-level) dices 8 esticides bicides Metals	081A 8270D/ 8151A (circle o	SIM		1	Page
			141	1 hor 8) 80 4	I were from	(IN DR (STA)			X						0			% Mo	EA,						09-223	e 12_ot 12_

Data Package: Level III \Box Level IV \Box Electronic Data Deliverables (EDDs) \Box _

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 19, 2011

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1110-119

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on October 17, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 19, 2011 Samples Submitted: October 17, 2011 Laboratory Reference: 1110-119 Project: 5147-012-02

Case Narrative

Samples were collected on September 27, 28 and 29, 2011 and received by the laboratory on October 17, 2011. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: October 19, 2011 Samples Submitted: October 17, 2011 Laboratory Reference: 1110-119 Project: 5147-012-02

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
DUP-1	10-119-01	Soil	9-27-11	10-17-11	
DUP-2	10-119-02	Soil	9-27-11	10-17-11	
DUP-3	10-119-03	Soil	9-28-11	10-17-11	
DUP-4	10-119-04	Soil	9-29-11	10-17-11	

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP-1					
Laboratory ID:	10-119-01					
Diesel Range Organics	4500	30	NWTPH-Dx	10-18-11	10-18-11	
Lube Oil Range Organics	ND	330	NWTPH-Dx	10-18-11	10-18-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	DUP-2					
Laboratory ID:	10-119-02					
Diesel Range Organics	950	30	NWTPH-Dx	10-18-11	10-18-11	
Lube Oil Range Organics	ND	60	NWTPH-Dx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	DUP-3					
Laboratory ID:	10-119-03					
Diesel Range Organics	2600	30	NWTPH-Dx	10-18-11	10-18-11	
Lube Oil	1200	60	NWTPH-Dx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
Client ID:	DUP-4					
Laboratory ID:	10-119-04					
Diesel Range Organics	ND	29	NWTPH-Dx	10-18-11	10-18-11	
Lube Oil Range Organics	ND	58	NWTPH-Dx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1018S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-18-11	10-18-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				
			Percent	Recovery	RI	PD
Analyte	Result		Recovery	l imite		mit Flags

Analyte	1.0.	Suit	ILCO.	Juciy	Liiiiti		Emm	i lago
DUPLICATE								
Laboratory ID:	10-1 <i>°</i>	19-02						
	ORIG	DUP						
Diesel Range Organics	793	743				7	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			115	119	50-150			

Date of Report: October 19, 2011 Samples Submitted: October 17, 2011 Laboratory Reference: 1110-119 Project: 5147-012-02

% MOISTURE

Date Analyzed: 10-18-11

Client ID	Lab ID	% Moisture
DUP-1	10-119-01	16
DUP-2	10-119-02	16
DUP-3	10-119-03	17
DUP-4	10-119-04	14

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference
Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature			4 240-4	3 Dup-3	2 Dup-2	1 Dup-1	Lab ID Sample Identification	Asist Service	Robert Tremen	Project Manager	SH7-012.02	Project Number: Projects	Company: Company:	Analylical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
					5	1				9-29-1	928-1	1-22-1	4-27	Date Sampled			sis	20	Sar			
Reviewed/					20	GE1	Company			- 1155	543 1	1000	11425	Time Sampled			ndard (7 Days	ays	ne Day	(Cher	Turnarour (in work	Ch
Date					0					4	-	ŀ	S	Matrix	(other)		s) (TPH analys	X S		dis Dinej	ing days)	ain c
					AT					-	-	-		No. of Cont.			sis 5 Days)	Jays	Day			of Cu
lectronic Data D					(carple	10-17-11	Date					-	-		H-HC H-Gx	ICID GWBTEX			Labora	stody		
olwarahlas (FD				Γ	1630	1630	Time			×	×	×	×	Volatii	H-Dx es 826	108					tory Nur	
Chromati					1		Comme							Semiw (with le IPAHs 7	olatie olatie aw-lev 827.00	s 82:701 = FA44 D/SINA (I	ow-level ow-level)	_	-	nber:	
ograms with fi							nts/Special Ir					-	_	PCHs (Organ	808.2	iona Pres	sticides 8	081A		-		
nal repor							structio	\vdash	-		1	\vdash	-	Chlori	nated	Acid He	erbicides	8151	A	_	10	
Ū							SUI							Total F	RCRA	Mel:als					1	
													-	Total	ADTN	Metals		_		_	-	Pag
											-			HEM	wietal (oil and	s d greas —	e) 1.66 4				9	10
																						of -
										 X	x	X	22	\$% NAC	istuna				-			

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

February 22, 2012

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1202-101

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on February 10, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: February 22, 2012 Samples Submitted: February 10, 2012 Laboratory Reference: 1202-101 Project: 5147-012-02

Case Narrative

Samples were collected on February 9, 2012 and received by the laboratory on February 10, 2012. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: February 22, 2012 Samples Submitted: February 10, 2012 Laboratory Reference: 1202-101 Project: 5147-012-02

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-MW-1-7.5	02-101-0	Soil	2-9-12	2-10-12	
GEI-MW-1-12.5	02-101-0	Soil	2-9-12	2-10-12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-1-7.5					
Laboratory ID:	02-101-03					
Gasoline	ND	7.4	NWTPH-Gx	2-15-12	2-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				
Client ID:	GEI-MW-1-12.5					
Laboratory ID:	02-101-07					
Benzene	ND	0.020	EPA 8021	2-15-12	2-15-12	
Toluene	ND	0.054	EPA 8021	2-15-12	2-15-12	
Ethyl Benzene	ND	0.054	EPA 8021	2-15-12	2-15-12	
m,p-Xylene	ND	0.054	EPA 8021	2-15-12	2-15-12	
o-Xylene	ND	0.054	EPA 8021	2-15-12	2-15-12	
Gasoline	ND	5.4	NWTPH-Gx	2-15-12	2-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	68-124				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-1-12.5					
Laboratory ID:	02-101-07					
Naphthalene	0.050	0.037	EPA 8270/SIM	2-16-12	2-17-12	
2-Methylnaphthalene	ND	0.037	EPA 8270/SIM	2-16-12	2-17-12	
1-Methylnaphthalene	ND	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Acenaphthylene	0.13	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Acenaphthene	ND	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Fluorene	0.19	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Phenanthrene	1.5	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Anthracene	0.35	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Fluoranthene	1.5	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Pyrene	1.4	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[a]anthracene	0.47	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Chrysene	0.55	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[b]fluoranthene	0.47	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Benzo(j,k)fluoranthene	0.16	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[a]pyrene	0.48	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Indeno(1,2,3-c,d)pyrene	0.33	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Dibenz[a,h]anthracene	0.073	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[g,h,i]perylene	0.37	0.037	EPA 8270/SIM	2-16-12	2-17-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	43 - 109				
Pyrene-d10	75	38 - 128				
Terphenyl-d14	78	33 - 119				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0215S1					
Benzene	ND	0.020	EPA 8021	2-15-12	2-15-12	
Toluene	ND	0.050	EPA 8021	2-15-12	2-15-12	
Ethyl Benzene	ND	0.050	EPA 8021	2-15-12	2-15-12	
m,p-Xylene	ND	0.050	EPA 8021	2-15-12	2-15-12	
o-Xylene	ND	0.050	EPA 8021	2-15-12	2-15-12	
Gasoline	ND	5.0	NWTPH-Gx	2-15-12	2-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	68-124				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-10	01-07								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						91 92	68-124			
SPIKE BLANKS										

Laboratory ID:	SB02	215S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	1.06	1.07	1.00	1.00	106	107	77-114	1	9	
Toluene	1.11	1.09	1.00	1.00	111	109	80-115	2	9	
Ethyl Benzene	1.11	1.10	1.00	1.00	111	110	80-118	1	9	
m,p-Xylene	1.15	1.12	1.00	1.00	115	112	82-118	3	9	
o-Xylene	1.12	1.10	1.00	1.00	112	110	82-116	2	9	
Surrogate:										
Fluorobenzene					92	94	68-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: February 22, 2012 Samples Submitted: February 10, 2012 Laboratory Reference: 1202-101 Project: 5147-012-02

NWTPH-Gx CONTINUING CALIBRATION SUMMARY

Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
CCVD0215G-1	5.00	5.38	-8	+/- 20%
CCVD0215G-2	5.00	4.83	3	+/- 20%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

BTEX by EPA 8021B CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
<u> </u>					
Benzene	CCVD0215B-1	50.0	56.3	-13	+/- 15%
Toluene	CCVD0215B-1	50.0	57.1	-14	+/- 15%
Ethyl Benzene	CCVD0215B-1	50.0	56.9	-14	+/- 15%
m,p-Xylene	CCVD0215B-1	50.0	57.2	-14	+/- 15%
o-Xylene	CCVD0215B-1	50.0	56.2	-12	+/- 15%
Benzene	CCVD0215B-2	50.0	52.1	-4	+/- 15%
Toluene	CCVD0215B-2	50.0	52.4	-5	+/- 15%
Ethyl Benzene	CCVD0215B-2	50.0	52.7	-5	+/- 15%
m,p-Xylene	CCVD0215B-2	50.0	52.7	-5	+/- 15%
o-Xylene	CCVD0215B-2	50.0	52.1	-4	+/- 15%

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0216S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Acenaphthene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Fluorene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Phenanthrene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Anthracene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Fluoranthene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Pyrene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Chrysene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	2-16-12	2-17-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	43 - 109				
Pyrene-d10	89	38 - 128				
Terphenyl-d14	89	33 - 119				

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

					F	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	R	eco	very	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB02	16S1									
	SB	SBD	SB	SBD	S	в	SBD				
Naphthalene	0.0660	0.0616	0.0833	0.0833	7	9	74	43 - 108	7	27	
Acenaphthylene	0.0728	0.0687	0.0833	0.0833	8	7	82	52 - 120	6	21	
Acenaphthene	0.0684	0.0652	0.0833	0.0833	8	2	78	59 - 113	5	17	
Fluorene	0.0754	0.0698	0.0833	0.0833	9	1	84	64 - 117	8	14	
Phenanthrene	0.0716	0.0664	0.0833	0.0833	8	6	80	67 - 112	8	12	
Anthracene	0.0720	0.0661	0.0833	0.0833	8	6	79	59 - 110	9	16	
Fluoranthene	0.0733	0.0676	0.0833	0.0833	8	8	81	68 - 120	8	15	
Pyrene	0.0733	0.0668	0.0833	0.0833	8	8	80	66 - 121	9	17	
Benzo[a]anthracene	0.0680	0.0621	0.0833	0.0833	8	2	75	63 - 114	9	12	
Chrysene	0.0741	0.0677	0.0833	0.0833	8	9	81	67 - 118	9	12	
Benzo[b]fluoranthene	0.0706	0.0621	0.0833	0.0833	8	5	75	58 - 127	13	20	
Benzo(j,k)fluoranthene	0.0711	0.0659	0.0833	0.0833	8	5	79	42 - 134	8	26	
Benzo[a]pyrene	0.0699	0.0632	0.0833	0.0833	8	4	76	55 - 111	10	19	
Indeno(1,2,3-c,d)pyrene	0.0730	0.0716	0.0833	0.0833	8	8	86	60 - 125	2	20	
Dibenz[a,h]anthracene	0.0737	0.0697	0.0833	0.0833	8	8	84	62 - 125	6	19	
Benzo[g,h,i]perylene	0.0782	0.0741	0.0833	0.0833	9	4	89	61 - 124	5	19	
Surrogate:											
2-Fluorobiphenyl					8	31	76	43 - 109			
Pyrene-d10					8	86	78	38 - 128			
Terphenyl-d14					8	85	78	33 - 119			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: February 22, 2012 Samples Submitted: February 10, 2012 Laboratory Reference: 1202-101 Project: 5147-012-02

% MOISTURE

Date Analyzed: 2-15-12

Client ID	Lab ID	% Moisture
GEI-MW-1-7.5	02-101-03	24
GEI-MW-1-12.5	02-101-07	11

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received WIDD	Relinquished	Signature	109E1-HW-1-17.5	9 4E1-MW-1-15.0	8 GEI-MW-1-DUR3	7 GEI-MW-1-12.5	6 GE1-MW-1-DUP2	5 GE1 - MW-1-10.0	4 4E1-MW-1-DUP1	3 GE1-NW-1-7.5	2 GE/-MV-1-5.0	1 GEI-MW-1-2.5	Lab ID Sample Identification	Sampled by: ABHIJIT JOSH	Project Manager ROBERT TRAHAN	FORMER SHELL ANK FURM	Project Number: 5147-012-02	461	Phone: (425) 883-3881 • www.onsite-env.com	Inc. 14648 NE 95th Street • Redmond, WA 98052	CANA OnSite
Reviewed/Date					380	GEI	Company	1130 4 1	1125 1	1121 5	1120 5	1116 5	1115 5	1111 5	1110 5	1 1105 1	2 9/12 1100 Soll 1	Date Time Sampled Sampled Matrix N	(other)	ontaine	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of C
					211010 1615	2/10/12/16/5	Date Time				8	2			X) 		NWTP NWTP NWTP NWTP Volatil Haloge	H-HCIE H-Gx/B H-Gx 'H-Dx es 8260 enated V olatiles	B /olatiles 8270D/ PAHs)	s 8260B				Laboratory Number	ustody
Chromatograms with final report						Andded 2/14/12. DB	Comments/Special Instructions											(with in PAHs) PCBs Organ Organ Chlori Total F TCLP HEM	ochlorir ophosph nated A RCRA / Metals (oil and	PAHS) SIM (Iov ne Pesti norus Pe cid Her MTCA grease	w-level) cides 8(esticides bicides Metals (081A 8270D/ 8151A (circle c	/SIM		02	Pageof
					`	(STA)	2			2 1 p	Q				Q)))		% Mc	pisture					-	-101	+

* 9

-

13

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 14, 2012

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-012-02 Laboratory Reference No. 1203-038

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on March 7, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 14, 2012 Samples Submitted: March 7, 2012 Laboratory Reference: 1203-038 Project: 5147-012-02

Case Narrative

Samples were collected on March 6, 2012 and received by the laboratory on March 7, 2012. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: March 14, 2012 Samples Submitted: March 7, 2012 Laboratory Reference: 1203-038 Project: 5147-012-02

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-MW-1	03-038-01	Water	3-6-12	3-7-12	
GEI-MW-2	03-038-02	Water	3-6-12	3-7-12	
GEI-MW-3	03-038-03	Water	3-6-12	3-7-12	
GEI-MW-4	03-038-04	Water	3-6-12	3-7-12	
GEI-MW-5	03-038-05	Water	3-6-12	3-7-12	
GEI-MW-6	03-038-06	Water	3-6-12	3-7-12	
GEI-MW-7	03-038-07	Water	3-6-12	3-7-12	
DUP	03-038-08	Water	3-6-12	3-7-12	
TRIP BLANK	03-038-09	Water		3-7-12	

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-1					
Laboratory ID:	03-038-01					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				
Client ID:	GEI-MW-2					
Laboratory ID:	03-038-02					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	1.3	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	190	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				
Client ID:	GEI-MW-3					
Laboratory ID:	03-038-03					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	230	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-4					
Laboratory ID:	03-038-04					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	GEI-MW-5					
Laboratory ID:	03-038-05					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				
Client ID:	GEI-MW-6					
Laboratory ID:	03-038-06					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	73-121				

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-7					
Laboratory ID:	03-038-07					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	73-121				
Client ID:	DUP					
Laboratory ID:	03-038-08					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				
Client ID:	TRIP BLANK					
Laboratory ID:	03-038-09					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				

6

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-1					
Laboratory ID:	03-038-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
Client ID:	GEI-MW-2					
Laboratory ID:	03-038-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	GEI-MW-3					
Laboratory ID:	03-038-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
						
Client ID:	GEI-MW-4					
Laboratory ID:	03-038-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	GEI-MW-5					
Laboratory ID:	03-038-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	91	50-150				
Client ID:	GEI-MW-6					
Laboratory ID:	03-038-06					
Diesel Range Organics	ND	0.27	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

o (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-7					
Laboratory ID:	03-038-07					
Diesel Range Organics	ND	0.25	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	DUP					
Laboratory ID:	03-038-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-9-12	3-9-12	

		-
Surrogate:	Percent Recovery	Control Limits
o-Terphenyl	94	50-150

VOLATILES EPA 8260B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-3					
Laboratory ID:	03-038-03					
Vinyl Chloride	ND	0.20	EPA 8260	3-9-12	3-9-12	
Trichlorofluoromethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-9-12	3-9-12	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Trichloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
Tetrachloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,2-Dibromoethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	80	68-120				
Toluene-d8	84	73-120				
4-Bromofluorobenzene	92	65-120				

9

VOLATILES EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TRIP BLANK					
Laboratory ID:	03-038-09					
Vinyl Chloride	ND	0.20	EPA 8260	3-9-12	3-9-12	
Trichlorofluoromethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-9-12	3-9-12	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Trichloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
Tetrachloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,2-Dibromoethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	80	68-120				
Toluene-d8	86	73-120				
4-Bromofluorobenzene	90	65-120				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-1					
Laboratory ID:	03-038-01					
Naphthalene	ND	0.095	EPA 8270/SIM	3-8-12	3-8-12	
2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-8-12	3-8-12	
1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]anthracene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Chrysene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	38 - 105				
Pyrene-d10	64	37 - 121				
Terphenyl-d14	73	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-2					
Laboratory ID:	03-038-02					
Naphthalene	0.23	0.095	EPA 8270/SIM	3-8-12	3-8-12	
2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-8-12	3-8-12	
1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]anthracene	0.015	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Chrysene	0.011	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	49	38 - 105				
Pyrene-d10	70	37 - 121				
Terphenyl-d14	73	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-3					
Laboratory ID:	03-038-03					
Naphthalene	0.30	0.095	EPA 8270/SIM	3-8-12	3-8-12	
2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-8-12	3-8-12	
1-Methylnaphthalene	1.3	0.095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]anthracene	0.010	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Chrysene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	3-8-12	3-8-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	56	38 - 105				
Pyrene-d10	65	37 - 121				
Terphenyl-d14	72	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-4					
Laboratory ID:	03-038-04					
Naphthalene	ND	0.094	EPA 8270/SIM	3-12-12	3-12-12	
2-Methylnaphthalene	ND	0.094	EPA 8270/SIM	3-12-12	3-12-12	
1-Methylnaphthalene	ND	0.094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]anthracene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Chrysene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]pyrene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	38 - 105				
Pyrene-d10	66	37 - 121				
Terphenyl-d14	72	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-5					
Laboratory ID:	03-038-05					
Naphthalene	ND	0.095	EPA 8270/SIM	3-12-12	3-12-12	
2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-12-12	3-12-12	
1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]anthracene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Chrysene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	54	38 - 105				
Pyrene-d10	57	37 - 121				
Terphenyl-d14	65	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-6					
Laboratory ID:	03-038-06					
Naphthalene	ND	0.095	EPA 8270/SIM	3-12-12	3-12-12	
2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-12-12	3-12-12	
1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]anthracene	0.0095	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Chrysene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	3-12-12	3-12-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	41	38 - 105				
Pyrene-d10	62	37 - 121				
Terphenyl-d14	65	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-MW-7					
Laboratory ID:	03-038-07					
Naphthalene	ND	0.094	EPA 8270/SIM	3-12-12	3-12-12	
2-Methylnaphthalene	ND	0.094	EPA 8270/SIM	3-12-12	3-12-12	
1-Methylnaphthalene	ND	0.094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]anthracene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Chrysene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]pyrene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270/SIM	3-12-12	3-12-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	38 - 105				
Pyrene-d10	72	37 - 121				
Terphenyl-d14	74	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP					
Laboratory ID:	03-038-08					
Naphthalene	ND	0.094	EPA 8270/SIM	3-8-12	3-8-12	
2-Methylnaphthalene	ND	0.094	EPA 8270/SIM	3-8-12	3-8-12	
1-Methylnaphthalene	ND	0.094	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]anthracene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Chrysene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]pyrene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270/SIM	3-8-12	3-8-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	56	38 - 105				
Pyrene-d10	70	37 - 121				
Terphenyl-d14	69	32 - 112				

TOTAL METALS EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lah ID [.]	03-038-01					
Client ID:	GEI-MW-1					
Cadmium	ND	4.4	200.8	3-9-12	3-9-12	
Lead	ND	1.1	200.8	3-9-12	3-9-12	
Lab ID: Client ID:	03-038-02 GEI-MW-2					
Lead	ND	1.1	200.8	3-9-12	3-9-12	
Lab ID:	03-038-03					
Client ID:	GEI-MW-3					
Lead	ND	1.1	200.8	3-9-12	3-9-12	
Lab ID:	03-038-04					
Client ID:	GEI-MW-4					
Lead	ND	1.1	200.8	3-9-12	3-9-12	
Lab ID:	03-038-05					
Client ID:	GEI-MW-5					
Lead	ND	1.1	200.8	3-9-12	3-9-12	
Lab ID:	03-038-06					
Client ID:	GEI-MW-6					
Lead	1.4	1.1	200.8	3-9-12	3-9-12	

Date of Report: March 14, 2012 Samples Submitted: March 7, 2012 Laboratory Reference: 1203-038 Project: 5147-012-02

TOTAL LEAD EPA 200.8

Matrix: Units:	Water ug/L (ppb)					
•	~ <u>3</u> , = (PP~)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-038-07					
Client ID:	GEI-MW-7					
Lead	ND	1.1	200.8	3-9-12	3-9-12	
Lab ID:	03-038-08					
Client ID:	DUP					
Lead	ND	1.1	200.8	3-9-12	3-9-12	

DISSOLVED METALS EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-038-01					
Client ID:	GEI-MW-1					
Cadmium	ND	4.0	200.8		3-9-12	
Lead	ND	1.0	200.8		3-9-12	
Lab ID [.]	03-038-02					
Client ID:	GEI-MW-2					
Lead	ND	1.0	200.8		3-9-12	
	00.000.00					
Client ID:	03-038-03 GELMW-2					
Lood		1.0	200.8		3-0-12	
Leau		1.0	200.0			
	00,000,04					
Lab ID:						
Client ID:		1.0	200.9		2.0.12	
Lead	ND	1.0	200.8		3-9-12	
Lab ID:	03-038-05					
Client ID:	GEI-MW-5					
Lead	ND	1.0	200.8		3-9-12	
Lab ID:	03-038-06					
Client ID:	GEI-MW-6					
Lead	ND	1.0	200.8		3-9-12	

DISSOLVED LEAD EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-038-07					
Client ID:	GEI-MW-7					
Lead	ND	1.0	200.8		3-9-12	
Lab ID:	03-038-08					
Client ID:	DUP					
Lead	ND	1.0	200.8		3-9-12	
NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

5 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0309W1					
Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Toluene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-9-12	3-9-12	
m,p-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
o-Xylene	ND	1.0	EPA 8021	3-9-12	3-9-12	
Gasoline	ND	100	NWTPH-Gx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	73-121				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-03	38-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						98	87	73-121			
MATRIX SPIKES											
Laboratory ID:	03-03	38-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	53.0	54.6	50.0	50.0	ND	106	109	82-120	3	8	
Toluene	52.7	54.6	50.0	50.0	ND	105	109	84-119	4	8	
Ethyl Benzene	52.9	54.9	50.0	50.0	ND	106	110	84-122	4	9	
m,p-Xylene	52.4	54.3	50.0	50.0	ND	105	109	85-121	4	9	
o-Xylene	52.1	54.1	50.0	50.0	ND	104	108	84-121	4	9	
Surrogate:											
Fluorobenzene						96	95	73-121			

NWTPH-Gx CONTINUING CALIBRATION SUMMARY

Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
CCVD0309G-1	5.00	5.48	-10	+/- 20%
CCVD0309G-2	5.00	5.31	-6	+/- 20%

BTEX by EPA 8021B CONTINUING CALIBRATION SUMMARY

			Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Benzene	CCVD0309B-1	50.0	50.4	-1	+/- 15%
Toluene	CCVD0309B-1	50.0	51.4	-3	+/- 15%
Ethyl Benzene	CCVD0309B-1	50.0	51.8	-4	+/- 15%
m,p-Xylene	CCVD0309B-1	50.0	52.4	-5	+/- 15%
o-Xylene	CCVD0309B-1	50.0	51.5	-3	+/- 15%
Benzene	CCVD0309B-2	50.0	53.4	-7	+/- 15%
Toluene	CCVD0309B-2	50.0	53.8	-8	+/- 15%
Ethyl Benzene	CCVD0309B-2	50.0	53.9	-8	+/- 15%
m,p-Xylene	CCVD0309B-2	50.0	54.0	-8	+/- 15%
o-Xylene	CCVD0309B-2	50.0	53.0	-6	+/- 15%
Benzene	CCVD0309B-3	50.0	54.2	-8	+/- 15%
Toluene	CCVD0309B-3	50.0	54.1	-8	+/- 15%
Ethyl Benzene	CCVD0309B-3	50.0	54.4	-9	+/- 15%
m,p-Xylene	CCVD0309B-3	50.0	54.2	-8	+/- 15%
o-Xylene	CCVD0309B-3	50.0	53.4	-7	+/- 15%

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0308W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	3-9-12	3-9-12	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	03-03	38-02						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			94	96	50-150			

26

NWTPH-Dx (with acid/silica gel clean-up) CONTINUING CALIBRATION SUMMARY

	True	Calc.	Percent	Contol
Lab ID	Value (ppm) Va		Difference	Limits
CCV0309F-V1	100	88.3	11.7	+/-15%
CCV0309F-V2	100	90.5	9.5	+/-15%
CCV0309R-V1	100	90.1	9.9	+/-15%
CCV0309R-V2	100	90.5	9.5	+/-15%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES EPA 8260B METHOD BLANK QUALITY CONTROL

C C				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0309W1					
Vinyl Chloride	ND	0.20	EPA 8260	3-9-12	3-9-12	
Trichlorofluoromethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-9-12	3-9-12	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Trichloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
Tetrachloroethene	ND	0.20	EPA 8260	3-9-12	3-9-12	
1,2-Dibromoethane	ND	0.20	EPA 8260	3-9-12	3-9-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	81	68-120				
Toluene-d8	83	73-120				
4-Bromofluorobenzene	89	65-120				

VOLATILES EPA 8260B MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery	RPD		
Analyte	e Result Spike Level Result		Rec	Recovery Limits		RPD	Limit	Flags			
MATRIX SPIKES											
Laboratory ID:	03-0	38-03									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	9.36	9.46	10.0	10.0	ND	94	95	70-130	1	12	
Benzene	8.80	9.10	10.0	10.0	ND	88	91	75-123	3	11	
Trichloroethene	8.86	8.97	10.0	10.0	ND	89	90	80-117	1	14	
Toluene	9.07	9.28	10.0	10.0	ND	91	93	80-115	2	12	
Chlorobenzene	9.52	9.54	10.0	10.0	ND	95	95	80-117	0	13	
Surrogate:											
Dibromofluoromethane						75	78	68-120			
Toluene-d8						84	83	73-120			
4-Bromofluorobenzene						91	90	65-120			

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0308W1					
Naphthalene	ND	0.10	EPA 8270/SIM	3-8-12	3-8-12	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	3-8-12	3-8-12	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Chrysene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	3-8-12	3-8-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	38 - 105				
Pyrene-d10	72	37 - 121				
Terphenyl-d14	86	32 - 112				

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0312W1					
Naphthalene	ND	0.10	EPA 8270/SIM	3-12-12	3-12-12	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	3-12-12	3-12-12	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Chrysene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	3-12-12	3-12-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	38 - 105				
Pyrene-d10	66	37 - 121				
Terphenyl-d14	70	32 - 112				

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

5						Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level		Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB03	08W1									
	SB	SBD	SB	SBD	:	SB	SBD				
Naphthalene	0.337	0.349	0.500	0.500		67	70	38 - 110	3	35	
Benzo[a]anthracene	0.422	0.455	0.500	0.500		84	91	51 - 124	8	18	
Chrysene	0.390	0.427	0.500	0.500		78	85	53 - 123	9	20	
Benzo[b]fluoranthene	0.395	0.417	0.500	0.500		79	83	53 - 126	5	18	
Benzo(j,k)fluoranthene	0.381	0.427	0.500	0.500		76	85	51 - 126	11	23	
Benzo[a]pyrene	0.387	0.419	0.500	0.500		77	84	52 - 127	8	21	
Indeno(1,2,3-c,d)pyrene	0.371	0.409	0.500	0.500		74	82	49 - 123	10	26	
Dibenz[a,h]anthracene	0.379	0.403	0.500	0.500		76	81	39 - 125	6	31	
Surrogate:											
2-Fluorobiphenyl						66	70	38 - 105			
Pyrene-d10						73	77	37 - 121			
Terphenyl-d14						74	80	32 - 112			
Laboratory ID:	SB03	12W1									
	SB	SBD	SB	SBD	:	SB	SBD				
Naphthalene	0.303	0.311	0.500	0.500		61	62	38 - 110	3	35	
Benzo[a]anthracene	0.389	0.401	0.500	0.500		78	80	51 - 124	3	18	
Chrysene	0.389	0.396	0.500	0.500		78	79	53 - 123	2	20	
Benzo[b]fluoranthene	0.358	0.374	0.500	0.500		72	75	53 - 126	4	18	
Benzo(j,k)fluoranthene	0.372	0.383	0.500	0.500		74	77	51 - 126	3	23	
Benzo[a]pyrene	0.353	0.365	0.500	0.500		71	73	52 - 127	3	21	
Indeno(1,2,3-c,d)pyrene	0.372	0.369	0.500	0.500		74	74	49 - 123	1	26	
Dibenz[a,h]anthracene	0.376	0.386	0.500	0.500		75	77	39 - 125	3	31	
Surrogate:											
2-Fluorobiphenyl						60	62	38 - 105			
Pyrene-d10						70	73	37 - 121			
Terphenyl-d14						71	73	32 - 112			

TOTAL METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Extracted:	3-9-12
Date Analyzed:	3-9-12
Matrix:	Water
Units:	ug/L (ppb)
Lab ID:	MB0309WM1

Analyte	Method	Result	PQL
Cadmium	200.8	ND	4.4
Lead	200.8	ND	1.1

TOTAL METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Extracted:	3-9-12
Date Analyzed:	3-9-12

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 03-038-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Cadmium	ND	ND	NA	4.4	
Lead	ND	ND	NA	1.1	

TOTAL METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Extracted:	3-9-12
Date Analyzed:	3-9-12

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 03-038-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Cadmium	111	104	93	102	92	2	
Lead	111	104	94	104	93	1	
Loud		104	54	104	55		

TOTAL METALS EPA 200.8 CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppb)	Value	Difference	Limits
Cadmium	ICV030912E	50.0	50.1	-0.20	+/- 10%
Lead	ICV030912E	50.0	49.9	0.20	+/- 10%
Cadmium	CCV1030912E	100	99.1	0.90	+/- 10%
Lead	CCV1030912E	100	98.8	1.2	+/- 10%
Cadmium	CCV1030912E	40.0	39.8	0.50	+/- 10%
Lead	CCV1030912E	40.0	39.9	0.25	+/- 10%
Cadmium	CCV2030912E	100	99.1	0.90	+/- 10%
Lead	CCV2030912E	100	98.7	1.3	+/- 10%
Cadmium	CCV2030912E	40.0	40.1	-0.25	+/- 10%
Lead	CCV2030912E	40.0	39.0	2.5	+/- 10%
Cadmium	CCV3030912E	100	101	-1.0	+/- 10%
Lead	CCV3030912E	100	99.4	0.60	+/- 10%
Cadmium	CCV3030912E	40.0	39.9	0.25	+/- 10%
Lead	CCV3030912E	40.0	39.6	1.0	+/- 10%
Cadmium	CCV4030912E	100	99.8	0.20	+/- 10%
Lead	CCV4030912E	100	99.2	0.80	+/- 10%
Cadmium	CCV4030912E	40.0	40.1	-0.25	+/- 10%
Lead	CCV4030912E	40.0	40.0	0	+/- 10%
		100	00.7	4.0	./ 400/
Cadmium	CCV5030912E	100	98.7	1.3	+/- 10%
Lead	CCV5030912E	100	98.8	1.2	+/- 10%
Cadmium	CCV5030912E	40.0	39.8	0.50	+/- 10%
Lead	CCV5030912E	40.0	40.2	-0.50	+/- 10%
2000	001000012L	10.0	10.2	0.00	17 1070
Lead	CCV6030912E	100	97.9	2.1	+/- 10%
Lead	CCV6030912E	40.0	38.6	3.5	+/- 10%

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	3-9-12		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB0309D1		
Analyte	Method	Result	PQL
Cadmium	200.8	ND	4.0
Lead	200.8	ND	1.0

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed:	3-9- ⁻	12
----------------	-------------------	----

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 03-038-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Cadmium	ND	ND	NA	4.0	-
Lead	ND	ND	NA	1.0	

38

DISSOLVED METALS EPA 200.8 **MS/MSD QUALITY CONTROL**

Date Anal	vzed:	3-9-12
	<i>j</i> =••••	•••=

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 03-038-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Cadmium	200	195	98	197	98	1	
Lead	200	186	93	187	94	1	

DISSOLVED METALS EPA 200.8 CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppb)	Value	Difference	Limits
Cadmium	ICV030912E	50.0	50.1	-0.20	+/- 10%
Lead	ICV030912E	50.0	49.9	0.20	+/- 10%
Cadmium	CCV1030912E	100	99.1	0.90	+/- 10%
Lead	CCV1030912E	100	98.8	1.2	+/- 10%
Cadmium	CCV1030912E	40.0	39.8	0.50	+/- 10%
Lead	CCV1030912E	40.0	39.9	0.25	+/- 10%
Cadmium	CCV2030912E	100	99.1	0.90	+/- 10%
Lead	CCV2030912E	100	98.7	1.3	+/- 10%
Cadmium	CCV2030912E	40.0	40 1	-0.25	+/- 10%
Lead	CCV2030912E	40.0	39.0	2.5	+/- 10%
Cadmium	CCV3030912E	100	101	-1.0	+/- 10%
Lead	CCV3030912E	100	99.4	0.60	+/- 10%
Cadmium	CCV/3030012E	40.0	30.0	0.25	±/- 10%
Lead	CCV3030912E	40.0	39.6	1.0	+/- 10%
Lead	CCV4030912E	100	99.2	0.80	+/- 10%
Lead	CCV4030912E	40.0	40.0	0	+/- 10%

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Demondary Brease Innarrow Brease One Same Day Charge Same Day Company Charge Charge Charge	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquisned	Signature A		9 TRIP BLANK	8 DUP	7 GEI-MW-7	6 GEI-MW-6	5 GEI-MW-5	4 GE1-MW-4	3 GEI-MW-3	2 GEI-MW-2	1 GE1-MW-1	Lab ID Sample Identification	ABHIJIT JOSHI	ROBERT TRAHAN	FORMER SHELL PANIC FARM	Project Number, 47-012-02	Company: TEDENGINEERS INC	14548 NE Sath Street + Redmand, WA 96052 Phane: (425) 883-3861 + www.onsite-environm	Environmental Inc.	LINA OnSite
Chornanger and the set of the set	Reviewed/Date					THE OSNOTA	451	Company	-	NA NA VI	V 920 V C	516	1025 0	1115 1	1215 1	1245	1320	17400 Mater 10	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)	Turnaround Request	
PCBs 8082 PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8081A Organophosphorus Pesticides 8151A Chlorinated Acid Herbicides 8151A Total RCRA / MTCA Metals (circle one) TCLP Motals HEM (oil and grease) 1664	Сн		0			+ 048 ZI/L/S	03/7/12 0840 8	Date Time Co		××	4 4			0		X		XX	NWTP NWTP NWTP NWTP Volatile Haloge (with Ic PAHs §	H-HCII H-Gx/E H-Gx/E H-Dx es 8260 enaled olatiles ow-leve 32700/	DITEX DITEX	es 8260E	Ð		Laboratory Indinati.	Intonation Number	Cucanon P
	iromatograms with final report	for dissolved Meta	mula on field	r analura	" the shad I	b be analyzed	See the list o	omments/Special Instructions											PCBs I Organo Organo Chiorir Total R TCLP HEM (I	PA H 8082 pchlori pphosph nated A RCRA / Motals oil and	ne Pessonorus P cid He MTCA grease	icides Bu resticides rbicides Metals (e) 1664	081A 8270D/S 8151A (circle or	SIM	0000	R E U - E U	aßel

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project:	Former Shell Oil Tank Farm – Soil Investigation
GEI File No:	5147-012-02
Date:	March 23, 2012

GENERAL

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of soil samples obtained from Shell Oil Tank Farm Site located in Anacortes, Washington.

Objective and Quality Control (QC) Elements

The objective of the data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards. In accordance with Quality Assurance Project Plan (Appendix C of the Work Plan; GeoEngineers, 2009), the laboratory data was reviewed for following QC elements:

- Chain of Custody
- Holding Times and Sample Preservation
- Surrogates
- Method, Trip and Equipment Blanks
- Laboratory Control Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Sample Results

Chemical Analysis Performed:

Samples obtained during the cleanup action were submitted to a Department of Ecology (Ecology)-certified laboratory - OnSite Environmental, Inc. (OnSite) of Redmond, Washington for one or more of the following analyses:

- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx;
- Diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx with silica gel/sulfuric acid cleanup;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Halogenated volatile organic compounds (HVOCs) by EPA Method 8260B;

- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270SIM;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082; and
- Metals (cadmium and lead) by EPA Method 6010B.

OnSite Sample Data Groups (SDGs):

Following laboratory SDGs were delivered by OnSite and were reviewed by GeoEngineers for QC elements listed above:

1109-195	1110-119
1109-196 (including "B" follow up)	1202-101
1109-223 (including "B" Follow up)	1203-038

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2004) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius.

Holding Times and Sample Preservation

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria and sample preservation exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Recommended holding times and sample preservation was met for all analyses; with the following exceptions:

- SDG 1109-195: (BETX/VOC compounds) Samples GEI-3-2.5, GEI-4-5.0, GEI-4-10.0, GEI-5-17.0, GEI-7-2.5 and GEI-9-2.5 were not sampled in accordance with the EPA sampling method 5035A. There were no positive results for any target analytes in these samples. For this reason, the reporting limits in these samples were qualified as estimated (J/UJ) in these samples.
- SDG 1109-196: (NWTPH-Gx/BTEX Compounds) The 14 day holding time of Sample GEI-13-15.0 was exceeded by 3 hours and the holding time of Sample GEI-15-10.0 was exceeded by 7 days. There were no positive results for any target analytes in the sample. For this reason, the reporting limits in Sample GEI-15-10.0 were qualified as estimated (UJ) in this sample.

- SDG 1109-223B: (PAHs) The 14 day holding times of Samples GEI-21-15.0, GEI-22-15.0, and GEI-34-15.0 were exceeded by 5 days. For this reason, the positive results and reporting limits for any target analytes in these samples were qualified as estimated (J/UJ) in these samples.
- SDG 1109-196: (NWTPH-Gx/BTEX Compounds) Sample GEI-12-15.0, GEI-13-15.0 and GEI-14-5.0 were not sampled in accordance with the EPA sampling method 5035A. There were no positive results for any target analytes in these samples. For this reason, the reporting limits in these samples were qualified as estimated (UJ) in these samples.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits; with the following exceptions:

SDG 1109-223: (NWTPH-Gx/BTEX Compounds) The %R value for the surrogate fluorobenzene was less than the control limit in Sample GEI-23-12.5. For this reason, the positive result for benzene and the remaining target analyte reporting limits were qualified as estimated (J/UJ) in this sample. The %R value for the surrogate fluorobenzene was greater than the control limit in Sample GEI-16-5.0. There were no positive results for any target analytes in the sample. For this reason, no qualifiers were required.

Method, Trip and Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. Method Blanks analyzed at the required frequency. No method blank detections were reported by the testing laboratory and method blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. No trip blanks were analyzed.

Equipment rinsate blanks are analyzed to assess whether sampling equipment decontamination procedures may have introduced measurable concentrations of the analytes of interest into project samples. Equipment rinsate blanks were analyzed with each field sampling event, at a frequency of one per day. No equipment rinsate blanks were analyzed.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample

duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis. LCS/LCSD analyses are discussed in the next section.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Because matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analysis would apply to all samples in the analytical batch instead of just the parent sample.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 project samples, whichever is more frequent. The recovery criteria (%R) for LCS and LCSD analyses are specified in the laboratory documents, as are the relative percent difference (RPD) criteria for LCS/LCSD sample pairs. The frequency criteria were met for all analyses. The %R and RPD values for all target analytes in the LCS/LCSD analyses were within the laboratory control limits.

Field Replicates/Duplicates

Field duplicate samples were obtained and analyzed along with the primary project samples. The duplicate samples were analyzed for the same parameters as the associated primary samples. The RPD between the primary and duplicate samples is used to assess sample heterogeneity and laboratory precision, unless one or more of the samples used has a concentration greater than five times the method reporting limit for that sample. In such cases, the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent, and the RPD control limit for water samples is 35 percent.

- NWTPH-Dx: Four field duplicate sample pairs were analyzed: GEI-3-10.0/DUP-1, GEI-9-7.5/DUP-2, GEI-11-5.0/DUP-3, and GEI-16-5.0/DUP-4. The precision criteria above were met for all target analyte hydrocarbon ranges.
- All analyses: One field duplicate sample pair was analyzed: GEI-MW-7/DUP. The precision criteria above were met for all target analytes in both samples.

Sample Results

The laboratory indicated that several samples were screened before extraction because of the probable effects of natural matrix interference. In cases where certain petroleum hydrocarbon target analytes could not be distinguished because of chromatographic interference, the laboratory raised the reporting limits, and indicated this with a "UI" qualifier. These data points were appropriately taken through the validation process, and these reporting limits were qualified (UI) in GeoEngineer's database.

SDG 1109-196: (NWTPH-Gx) The gasoline chromatography in Samples GEI-13-12.5 and GEI-14-8.0 indicated that the samples exhibited a pattern typical of heavier range petroleum hydrocarbons (i.e., diesel #2 or heavy lubrication oil). The positive results for gasoline were qualified as estimated (J) in order to note the high bias in these samples.

OVERALL ASSESSMENT

The results of this Stage 2A data validation indicate that the laboratory followed the specified analytical methods, the accuracy of the data is acceptable, as demonstrated by the surrogate and LCS/LCSD, and MS/MSD %R values, and the precision of the data also is acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values with the following exception. Selected data (noted above) were qualified as estimated (J/UJ) either because of a holding time outlier, a surrogate %R outlier, or because chromatography did not match the appropriate calibration standard. However, based on the data quality review, it is our opinion that the analytical data, including data qualified as noted above, are of acceptable quality for their intended use.

REFERENCES

- GeoEngineers, Inc., "Work Plan, Remedial Investigation/Feasibility Study, Former Shell Oil Tank Farm," prepared for the Washington State Department of Ecology on behalf of Port of Anacortes, GEI File No. 5147-007-01, September 1, 2009.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," OSWER 9240.1-45, EPA 540-R-04-004. October 2004.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

