Kennedy/Jenks Consultants

32001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 253-835-6400 FAX: 253-952-3435

Soil Vapor Extraction (SVE) System Construction Report

4 December 2012

Prepared for

Washington State Department of Ecology

Central Regional Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902

K/J Project No. 1196016.00

Table of Contents

List of Tables.			ii
List of Figures	and Ch	arts	ii
List of Append	lices		ii
Section 1:	Intro	oduction	1-1
	1.1	Background	1-1
	1.2	Objectives of SVE System	
	1.3	SVE System Design/Bidding Process	
	1.4	Health and Safety	
	1.5	Permits	1-2
Section 2:	SVE	System Construction and Startup	2-1
	2.1	SVE Well Construction	
		2.1.1 Preliminary Field Activities	
		2.1.2 SVE Well Construction	
	2.2	SVE System Construction	
		2.2.1 System Trenching/Piping and SVE Well Construction2.2.2 SVE Utility Building Construction, Piping, and Equipment	
	2.3	Resident Engineer Services	
	2.4	Investigation-Derived Waste	
	2.5	System Startup and Performance Testing	2-5
		2.5.1 System Startup	
		2.5.2 System Performance Testing	2-6
		2.5.3 Multiple SVE Well Testing: General Performance	2-6
		2.5.4 Individual SVE Well Testing: Pressure Radius of	
		Influence (ROI)	2-7
Section 3:		System Operations, Monitoring, Sampling Results	2.4
		Data Analyses	
	3.1	System Operation	
	3.2 3.3	System MonitoringGAC Treatment System Soil Vapor Samples	
	5.5	3.3.1 Mass Removal Estimate	
		3.3.2 Post-Startup – Indoor and Outdoor Ambient Air/Subslab	
		Sampling	3-3
Section 4:	Con	clusions	4-1
	4.1	SVE System Soil Vapor Analytical Data	
	4.2	System Operation and Adjustment Recommendations	4-1
References			1

Table of Contents (cont'd)

List of Tables

- 1 Remediation System Analytical Data
- 2 Indoor and Ambient Air Analytical Data
- 3 Subslab Soil Gas Analytical Data

List of Figures and Charts

- 1 Site Map
- 2 SVE Well Locations
- 3 Indoor Air Monitoring Locations
- 4 SVE Well Radius of Influence

List of Appendices

- A City of Yakima Construction Permits
- B Record Drawings
- C Boring and Well Construction Logs
- D Site Photographs
- E Construction Records
- F Import Backfill Laboratory Analytical Reports and Chain-of-Custody Documentation
- G Performance Testing and Startup Measurements
- H Pressure Radius of Influence Testing
- Graphs, SVE Influent Laboratory Analytical Reports, and Chain-of-Custody Documentation
- J Follow-Up Indoor Air Sampling Laboratory Analytical Reports and Chain-of-Custody Documentation, and Field Logs

Section 1: Introduction

This Soil Vapor Extraction (SVE) System Construction Report (Report) documents the construction and system startup/performance testing of the Frank Wear SVE system at the former Frank Wear Dry Cleaners Site located in Yakima, Washington (site).

Field activities described in this report were conducted in general accordance with 1) Specifications for Installation of Soil Vapor Extraction System, Frank Wear Site, Yakima, WA (Project Manual) (Washington State Department of Ecology 2012) and 2) Final Soil Vapor Extraction System, Interim Action Plan (Plan) (Kennedy/Jenks Consultants 2012).

1.1 Background

The site was historically used as a dry cleaner from the early 1940s to 2000. During many of those years, the dry cleaner used tetrachloroethene (PCE) as the dry cleaning solvent. As a result of the past dry cleaning operations, PCE has been detected in soil and groundwater at and adjacent to the site. PCE was also detected in soil vapor samples during a Soil Vapor Survey conducted in 1995 (AGRA Earth and Environmental 1995). A building located adjacent to the site is currently operated as a childcare center (Buckle My Shoe Early Learning Center). The location of the former Frank Wear Cleaners building and childcare center is shown on Figure 1.

In September and October 2011, a vapor intrusion study was performed at the childcare center to evaluate if PCE or other volatile organic compounds (VOCs) may be migrating into the building occupied by children and onsite staff. The vapor intrusion study consisted of sampling indoor air vapors at several locations in the building and outdoor ambient air on two occasions (24 September 2011 and 20 October 2011) and measuring the subslab soil vapor concentrations at several locations below the building (25 September 2011). The results of the investigation were summarized in the *Vapor Intrusion Study Report* (Kennedy/Jenks Consultants 2011) which concluded indoor air PCE concentrations at the childcare center exceeded Model Toxics Control Act (MTCA) Method B indoor air cleanup levels. The report recommended that a SVE system be constructed at the site to mitigate vapor intrusion of PCE into the childcare center.

1.2 Objectives of SVE System

The objectives for operation of the SVE system were to: 1) mitigate soil vapor intrusion of chemicals of concern (COCs) into the childcare center by creating subslab depressurization (SSD), and 2) physically remove residual COC mass from subsurface and groundwater. Three SVE wells were installed along the perimeter of the Buckle My Shoe Early Learning Center building to create an effective SSD footprint under the building and two additional SVE wells were installed in areas where PCE was historically detected in soil and groundwater.

1.3 SVE System Design/Bidding Process

Kennedy/Jenks Consultants assisted the Washington State Department of Ecology (Ecology) with preparation of technical plans and specifications for the construction of the SVE system.

Two separate bid packages were prepared for the SVE system construction; one for procurement of the SVE equipment and a second for the construction of the SVE facility. Bidding was performed by Ecology for both projects under an Ecology public works contracts for the equipment procurement in December 2011 and for construction in February 2012. The bid for providing the SVE equipment was awarded to Maple Leaf Environmental (currently newterra, Ltd.) and Anderson Environmental Contractors (Anderson) of Kelso, Washington was awarded the construction bid.

Kennedy/Jenks Consultants designed the SVE wells for use with the SVE system. The SVE wells were installed by Major Drilling Group of Portland, Oregon in March 2012.

1.4 Health and Safety

Kennedy/Jenks Consultants prepared a site-specific health and safety plan (HASP) for use by Kennedy/Jenks employees during construction and sampling field activities. Anderson prepared their own HASP for their employees and conducted daily safety briefings prior to field activities to discuss scope of work and health and safety considerations relevant to the day's activities.

1.5 Permits

The City of Yakima required two permits for the project: 1) a new building construction permit and 2) an electrical permit, which were obtained by the contractor. Initially, the Yakima Regional Clean Air Agency (YRCAA) indicated that an air discharge permit would be required for the SVE system discharge and a permit application was submitted on behalf of Ecology on 27 January 2012 by Kennedy/Jenks Consultants. Following a meeting between Ecology and YRCAA, it was decided that the SVE system discharge would not require a permit. Consequently, no permit was issued to Ecology. Copies of the City of Yakima permits (excluding the air permit application) are presented in Appendix A.

Section 2: SVE System Construction and Startup

This section describes the construction and initial startup operation and monitoring of the SVE system Startup of the SVE system was conducted in late June and early July 2012.

2.1 SVE Well Construction

The SVE wells (SVE-01 through SVE-05) were installed by Major Drilling Group between 26 and 28 March 2012. Three wells were constructed at the northern, northwestern, and southwestern corners of the existing childcare center building to induce SSD. Two additional wells were located north of the childcare center and west, respectively, near areas of higher groundwater concentrations as reported in the Plan. SVE well locations are shown on Figure 2 and on Drawing C-02 in the Record Drawings presented in Appendix B. SVE well construction logs are presented in Appendix C.

2.1.1 Preliminary Field Activities

Preliminary SVE system construction activities consisted of utility locates, establishing construction limits and installing security fencing, and preparing measurement take-offs. Kennedy/Jenks Consultants contacted Applied Professional Services (APS) to locate underground utilities prior to performing drilling activities for SVE wells. In addition, Washington 8-1-1 was contacted to locate utilities on public property immediately adjacent to the site.

2.1.2 SVE Well Construction

Drilling for the SVE well construction was performed using sonic drilling techniques, using a 6-inch inside diameter (ID) borehole. Boreholes were completed to a depth of approximately 20 feet below ground surface (bgs). Soil samples were collected continuously using grab sampling techniques and attempts were made to collect soil samples for analysis using a split-spoon sampler at 5-foot intervals. Portions of the soil samples retrieved during drilling were screened for organic vapors using a photoionization detector [PID; 11.7 electron volts (eV)] and tested for the presence of iridescent sheen. Soils encountered were visually classified using the Unified Soil Classification System (USCS), and observations were recorded on Boring and Well Construction Logs (see Appendix C).

The SVE wells were constructed inside the 6-inch (ID) sonic borehole using 4-inch-diameter Schedule 40 polyvinyl chloride (PVC) casing and 0.020-inch machine-slotted screen, and packed with 10/20 sand. Each well was completed with an upper and lower screened interval separated by a 2-foot blank section of PVC casing from approximately 13 feet to 15 feet bgs. In general, the upper and lower vertical screened intervals of the SVE wells measured approximately 5 feet in length, typically from 8 feet to 13 feet bgs and 15 feet to 20 feet bgs, respectively. The annular space adjacent to the blank section for 13 to 15 feet was surrounded by 20/40 silica sand to reduce short-circuiting between the slotted screen sections.

2.2 SVE System Construction

The SVE system was constructed from late April to early July 2012 with primary system components in operational condition by end of June 2012. Construction activities were performed by Anderson. Total Control Electric of Yakima, Washington, served as the electrical subcontractor to Anderson. Photographs of the system construction activities are provided in Appendix D.

2.2.1 System Trenching/Piping and SVE Well Construction

To connect the SVE wells to the system, trenches were excavated and piping was installed outside the childcare center building. For each SVE well, a drop pipe was installed with a rubber packer placed within the 2-foot blanked section of the well (i.e., to permit extraction from lower screened interval). The 2-inch diameter Schedule 40 PVC pipe was installed inside the 4-inch well. The 2-inch drop pipe was slotted from 15 feet 20 feet bgs. A 2-inch by 4-inch diameter Tri-seal rubber packer was placed around the 2-inch pipe at 13 to 15 feet bgs to seal the upper zone from the lower zone. This construction provided the option to isolate the upper and lower screen intervals for soil vapor extraction.

Both pipes tee to 2-inch diameter Schedule 80 PVC piping between approximately 3 and 4 feet underground and route to the SVE utility building. The 2-inch pipe was extended to the surface to allow access for water level measurements and sealed to the top of the 4-inch well pipe by 2-inch reducing tee with bentonite chips. The wellhead was completed with a threaded cap on the 2-inch extension and encased in a standard well monument and protective concrete apron. The well heads were constructed to allow adjustment of extraction vapor from the upper and/or lower screen intervals from inside the SVE utility building (i.e., valves for adjustment are located inside the building). Subsurface piping was placed in trenches and bedded with sand to provide protection around the pipe. The sand was covered with 5/8-inch crushed surface top course (CSTC) material. Subsurface piping from SVE wells were extended up on the outside of the SVE building and penetrated through the wall of the building. Exposed piping was secured in a protective box lined with 6-inch thick R19 insulation. Piping in the SVE utility building was affixed to and supported by Unistrut anchor supports.

2.2.2 SVE Utility Building Construction, Piping, and Equipment

SVE system components, supplied by newterra of Brockville, Ontario, were delivered to the site as skid mounted units. The primary components of the SVE system were assembled inside an 8-foot by 12-foot insulated wood building (SVE utility building) constructed on a concrete secondary containment pad, which includes the following:

- A 6-inch Schedule 80 PVC extraction manifold supporting two pipes from each SVE well (upper and lower zone piping).
 - Piping from each SVE well at the manifold is equipped with a vacuum gauge, flow control ball valve, ½-inch ball valve sample port for soil vapor sample collection, and a ¼-inch plug port for flow measurements via a hot-wire anemometer.

- A 140-gallon vacuum rated vapor liquid separator (VLS) to eliminate moisture from the SVE system.
 - Standard features include 6-inch inlet and outlet ports, 4-inch cleanout, sight glass with encased float switches, ¾-horsepower (hp) transfer pump, and manual drain. Condensate collected in the 140-gallon moisture separator will be transferred to a 165-gallon high density polyethylene (HDPE) tank for increased holding times. This tank contains additional float switches to notify personnel when disposal is required. A submersible pump and hose are located in the SVE utility building to pump condensate from the holding tank into a transfer container.
- A vapor extraction blower to create a negative pressure in the SVE wells.
 - The blower skid consists of a Rotron regenerative blower, model EN808BA72MXL with a 7.5 hp, 480-volt, 3-phase motor, 6-inch flanged connection to a Solberg inlet filter/silencer reduced to 3-inch Schedule 80 PVC blower inlet piping and 3-inch steel discharge piping. The inlet piping to the blower contains a spring-operated vacuum relief valve set at 6 inches mercury (Hg), a 0 to 100-inch water column (WC) vacuum gauge, temperature gauge, 0 to 2-inch WC differential pressure gauge for air flow rate determination via chart, and a 0.5 to 2 pounds per square inch differential (psid) pressure switch to alarm when the system has low vacuum. The blower is capable of 175 standard cubic feet per minute (SCFM) at 60 inches WC.
- Granular activated carbon (GAC) to treat extracted soil vapor prior to venting to the atmosphere.
 - The vapor-phase GAC filter system consists of two 2,000-pound units aligned in series on a concrete pad external to the SVE utility building. The GAC filtration system is positioned upstream of the blower to reduce potential negative effects on adsorption performance due to an increase in temperature across the blower. The system includes 0 to 60-inch WC vacuum gauges and sample ports are provided upstream, between, and downstream of the GAC vessels.
- Electronic monitoring and controlling equipment capable of sensing system faults, powering off in the event of a system fault, and notifying specified persons of system fault events through an autodialer.
 - The autodialer notification alarms include high level VLS float switch, high level discharge tank, high-high level discharge tank, low pressure switch, etc. The system also includes a timer for selecting desired operational periods.
- Noise barriers and muffling controls to reduce the potential noise emissions.
 - Vibrations are reduced by placing the blower on a steel skid plate and bolting to the floor. A 6-inch flanged Solberg silencer/filter is piped to the inlet of the blower. The manifold, blower, and moisture separator are contained inside a constructed 8-foot by 12-foot wood utility building with insulation that further reduces noise.

- A 3-inch discharge piping to vent GAC-treated soil gas, which exits the SVE utility building and terminates with a rain guard at approximately 15 feet above ground surface.
- Five subslab monitoring points installed by Kennedy/Jenks Consultants in the concrete floor of the Buckle My Shoes Early Learning Center building to monitor system performance for negative pressures below the building slab.
 - Monitoring points were completed using the Vapor Pin kits supplied by Cox Colin and Associates, Inc. The locations of subslab monitoring points are shown in Figure 3.

2.3 Resident Engineer Services

During construction activities, Kennedy/Jenks Consultants provided resident engineering services to review, approve, and document construction activities and for general adherence to technical specifications. During construction activities, excavated soil was hauled offsite, imported soil was compaction tested, and poured concrete was tested for strength. Weigh tickets for excavated soil transported for disposal, soil compaction test results, and concrete break strength test results are presented in Appendix E.

2.4 Investigation-Derived Waste

During SVE construction activities, the following investigation-derived waste (IDW) was generated:

- Drilling Soil Cuttings: Soil cuttings were generated during advancement of soil borings and construction of SVE wells. Soil cuttings were transferred to labeled, 55-gallon steel drums and stored onsite pending characterization and disposal. Drums were transported offsite along with IDW generated by Hart-Crowser during additional monitoring well installation.
- Residual Soil: Residual soil was generated during SVE trenching activities. The
 residual soil was stored onsite on plastic sheeting and covered with plastic sheeting to
 prevent exposure to the elements. Anderson characterized the excavated soil in
 accordance with the specifications and the waste was disposed of at a subtitle D waste
 facility, Waste Connections WASCO County Landfill (WASCO), located in The Dalles,
 Oregon. Residual soils were transported to WASCO by D&R Dietrich Sons Truck
 Hauling. Landfill weigh disposal receipts are presented in Appendix E.
- Impacted Import Material for Backfill: The Contractor provided three types of imported material for backfill: bedding sand, 1-1/4-inch crushed stone base course (CSBC) for general trench backfill, and 5/8-inch CSTC for structural backfill. These materials were sampled in accordance with the project manual specifications to confirm the material being delivered to the site were free of contaminants. To maintain construction progress, Anderson chose to continue construction activities, including trench backfilling, prior to receiving analytical results for the fill materials.

The analytical results of the CSBC used to backfill pipe trenches contained carcinogenic polycyclic aromatic hydrocarbons (cPAHs) at concentrations above MTCA Method A cleanup levels. Following discovery that the backfill contained unacceptable

concentrations of cPAHs, Ecology directed Anderson to conduct sampling along trench sections where CSBC was placed to determine the amount of material that would require removal and replacement with clean material. Over a series of several sampling events, Anderson characterized the trench backfill for semivolatile organic compounds (SVOCs), removed the material as directed, and replaced the trench material with clean structural fill (CSTC). Analytical results for imported material are provided in Appendix F. Tables 1 through 4 in Appendix F summarize the results of the additional imported backfill sampling. Figures 2, 3, and 4 (Appendix F) show the locations of samples collected and materials removed. Impacted imported material that was removed was stockpiled separately from native excavated soil, covered with plastic liner, and disposed of at the Contractor's cost. This material was transferred by D&R Dietrich and Sons trucking for disposal at WASCO. Landfill weigh disposal receipts are presented in Appendix E.

• Condensate Water: Accumulated moisture (if any) will be temporarily contained in the 140-gallon VLS and transferred by a float controlled ¾-hp pump to a 160-gallon HDPE tank within the SVE utility building. When the condensate has approached approximately 80 gallons in the HDPE holding tank and requires disposal, an alarm will trigger and the autodialer system will notify Ecology and Kennedy/Jenks Consultants. If condensate water is produced, it will be sampled and characterized, then transported offsite to an appropriate waste disposal facility. After 4 months of operation, no condensate water has been generated requiring disposal.

2.5 System Startup and Performance Testing

2.5.1 System Startup

Substantial completion of construction activities occurred by 22 June 2012 and a site walk to identify punch list items was conducted on 25 June 2012. The blower motor was bumped to confirm correct rotation. The air dilution valve and flow control valves were opened to each SVE well to minimize work load on the blower motor. The SVE system was started to evaluate operating conditions, i.e. no excessive vibrations, no leaks, or other construction-related issues. Leaks were observed at the SVE well ball valves and eliminated by tightening unions.

SVE utility building electrical components such as lighting, outlets, and heat trace were tested for proper installation and functionality. A checklist of equipment startup operation was completed for newterra equipment and finalized with the installation of a phone line for the autodialer. The checklist included testing system controls and alarms. The equipment checklist was sent to newterra to validate the warranty on 24 October 2012. On 25 October 2012, newterra acknowledged receipt of the checklist and confirmed equipment warranty had been validated upon receipt of the checklist.

Additional startup operations consisted of determining safe operating limits of the SVE system by adjusting the SVE well and air dilution valves. Flow rates, vacuum pressures, and discharge temperatures were noted during various adjustments between extraction from upper and lower zones. The SVE well air extraction valves and the air dilution valve were systematically closed to determine the number of wells that could be operated before the blower motor was overworked. The following operating limits were observed during the ambient conditions upon startup:

- The air dilution valve should be completely open or the system shut off during reconfiguration of SVE well extraction conditions (when extraction is changed from upper to lower zone wells) to avoid overworking the blower.
- No less than three SVE wells should be operated in either the upper or lower zones at any time to avoid blower overload.
- The vacuum at the blower inlet should not exceed 50 inches WC and the discharge temperature should not exceed 140 degrees Fahrenheit to avoid possible damage to discharge piping.

2.5.2 System Performance Testing

On 22 June 2012, baseline pressure and depth-to-water measurements were taken of both the upper and lower zones of each SVE well prior to starting the system. These measurements were later used to compare the responses of the targeted area under varying SVE system operating conditions and to determine the radii of influence of individual SVE wells.

2.5.3 Multiple SVE Well Testing: General Performance

Performance testing to establish general system operations consisted of testing four configurations:

- 1. Extracting from five SVE wells in the upper zone only
- 2. Extracting from five SVE wells in the lower zone only
- 3. Extracting from three SVE wells in the upper zone only: SVE-3, SVE-4, SVE-5
- 4. Extracting from three SVE wells in the lower zone only: SVE-3, SVE-4, SVE-5.

As the SVE wells were brought online, the valves for each well were fully opened to provide a baseline for initial comparison and the air dilution valve was fully closed. Extracting all five SVE wells from the upper zone produced the highest extraction flow rate and the lowest vacuum pressure (i.e. the lowest duty on the blower). Extracting from wells SVE-3, SVE-4, and SVE-5 adjacent to the childcare center building in the upper zone produced slightly more extraction flow rate and had less vacuum pressure. Extracting the three SVE wells from the lower zone only produced the same extraction flow rate as operating all five SVE wells from the lower zone only but had a considerable increase in vacuum pressure. Pressure was measured in each of the five subslab monitoring points for each test. These measurements ranged from negative (vacuum) 0.022 inch WC to negative 0.168 inch WC. SSD values in the range of 0.025 to 0.035 inch WC vacuum are generally considered sufficient to maintain downward pressure gradients and mitigate vapor intrusion [US Environmental Protection Agency (EPA) 1993]. Additional data collected during testing include pressure measurements temperature and contaminant concentrations prior to and after the GAC units. The data from these tests are tabulated on field sheets presented in Appendix G. In general, operation in the upper zone in either the three or five well configuration produced higher negative vacuum pressures under the childcare center building foundation (i.e. increased SSD).

2.5.4 Individual SVE Well Testing: Pressure Radius of Influence (ROI)

On 28 June 2012, testing began on each individual SVE well operating from the lower zone first and then the upper zone. Only one well was tested at a time and valves were closed on the remaining SVE wells. The air dilution valve was initially fully opened during each test and then slowly closed until a targeted vacuum was reached at the SVE well inlet piping to the manifold. In general, each well was tested at 20, 30, and 40 inches WC and the corresponding extraction flow rates. Monitoring wells were identified for each SVE well test that ranged from 15.5 feet to 67 feet distance from the operating well. Test caps were placed on the monitoring wells and baseline ambient pressures were measured to compare vacuums induced from operating the SVE well at the predetermined vacuums. The apparent effective pressure ROI is given as the distance at which the response pressure (positive or negative) has decreased to approximately 0.01 inch WC (Hinchee 1996). The apparent effective ROI for the operation of the system between 20 and 40 inches WC at the manifold from either the upper or lower zones can be determined by establishing the furthest distance from the operating SVE well a vacuum response of 0.01 inch WC is measured. The pressure ROI data are collated for each of the SVE wells and presented in Appendix H. Figure 4 shows the approximate ROI for each SVE well operating at 20 inches WC as measured at the manifold.

Section 3: SVE System Operations, Monitoring, Sampling Results and Data Analyses

This section summarizes the initial monitoring and sampling results of the Frank Wear SVE system operation.

3.1 System Operation

On 3 July 2012, the primary components of the Frank Wear SVE system were activated and extracted soil gas was treated using the GAC treatment system and then vented to the atmosphere. The system was configured to extract soil gas from the upper zone of wells SVE-3, SVE-4, and SVE-5. The system was operated in this manner to produce the greatest subslab depressurization of the adjacent Buckle My Shoe Early Learning Center and to reduce the initial effort of the blower motor until further monitoring had occurred. During the first months of operation, the following operating parameters were:

- For each individual well piping at the extraction manifold, flow measurements were made using a hot-wire anemometer. Total flow was also measured at the blower inlet.
- Partial vacuum measurements were recorded from vacuum gauges for each individual well, between the GAC vessels, and at the blower inlet to assess pressure drop through the system.
- A PID was used to measure approximate VOCs concentrations in the extracted soil vapor. Measurements were made for individual wells at the extraction manifold, prior to GAC treatment (i.e., total influent), between GAC vessels, and at the effluent to assess conditions of extracted soil vapor and allow for qualitative correlation to laboratory analytical data (see below).
- Temperature was measured at the blower discharge and at the discharge piping transition to PVC.
- Soil vapor samples were collected at the influent (total influent), between the GAC vessels (i.e., midpoint), and the effluent port and submitted for chemical analyses. Soil vapor sampling and chemical analyses are discussed in Section 3.2.3.

3.2 System Monitoring

Over a three-month period (July through September 2012), the Frank Wear SVE system has operated continually with only minor shut-downs. System performance monitoring sheets completed during this time are presented in Appendix G. A summary of system monitoring observations are as follows:

 Individual well manifold vacuum measurements have remained relatively stable, varying between 17 and 22 inches WC per well.

- Extraction rates have remained relatively stable for each SVE well, varying between
 60 to 70 SCFM for SVE-3, 105 to 111 SCFM for SVE-4, and 98 to 104 SCFM for SVE-5.
- No condensate water has been collected from the air-water moisture separator.
- Monitoring of VOC concentrations before, in-between, and after the treatment by the SVE GAC treatment unit by PID occurred on two of four field observations. Concentrations ranged from 2.7 to 6.6 parts per million (ppm).
- Using the monitoring points (SS-1 through SS-5) in the floor slab of the childcare facility to measure SSD, vacuum beneath the floor slab ranged from 0.033 to 0.162 inch WC, which is sufficient to maintain negative pressure and mitigate vapor intrusion into the building.

3.3 GAC Treatment System Soil Vapor Samples

Bi-weekly soil vapor samples were collected from the SVE system during the first three months of operation, on the following dates:

- 3 July 2013 samples: Influent 1A, Inbetween 1B, Effluent 1C
- 30 July 2012 samples: FW-Influent-001, FW-Inbtwn-070, FW-effluent
- 13 August 2012 samples: FW-Influent-323, FW-Inbtwn-219, FW-effluent-217
- 28 August 2012 samples: FW-Influent-067, FW-Inbtwn-219, FW-Effluent-355
- 12 September 2012 samples: FW-Influent-101, FW-Inbtwn-105, FW-Effluent-102
- 25 September 2012 samples: FW-Influent-074, FW-Inbtwn-241, FW-Effluent-245.

Soil vapor samples were collected from the SVE GAC treatment system at the influent, inbetween, and effluent sampling ports of the GAC vessels into pre-cleaned, evacuated 400 milliliter (mL) SummaTM canisters using a short piece of Tygon tubing connecting the sampling barb on the SummaTM canister to the barb(s) on each ½-inch ball valve on the SVE system. Samples were analyzed for VOCs by modified EPA Method TO-15 at H&P Mobile Geochemistry (H&P), of Carlsbad, California.

On 3 July 2012, PCE was detected at concentrations of 7,700 micrograms per cubic meter (μ g/m³) in the influent soil vapor sample, 24 μ g/m³ in the midpoint sample, and 17 μ g/m³ in the effluent sample. Benzene, toluene, and acetone were also detected in each of the influent, midpoint, and effluent samples. Benzene was detected at concentrations of 92 μ g/m³ in the influent and 23 μ g/m³ at the effluent of the treatment system during the 3 July 2012 sampling event. The source of benzene, toluene and acetone are uncertain, but likely associated with past industrial activities at this location.PCE concentrations significantly decreased in the five subsequent soil vapor samples collected from the influent port, ranging from 110 to 380 μ g/m³. PCE concentrations have decreased in subsequent samples collected from the midpoint and effluent ports to concentrations below the laboratory reporting limit (6.9 μ g/m³).

Benzene was also detected in influent, midpoint, and effluent samples collected during subsequent sampling events at the following concentrations ranges:

- Influent: Benzene ranges from 32 to 100 μg/m³
- Midpoint: Benzene ranges from 28 to 430 μg/m³
- Effluent: Benzene ranges from 23 to 190 μg/m³.

Additional VOCs detected in the influent, midpoint, and effluent samples including constituents such as chloroform, ethylbenzene, xylenes, dichlorodifluoromethane, etc., will be monitored during future SVE system operation.

Analytical results for all SVE system samples are summarized in Table 1. Laboratory analytical reports for SVE system samples are presented in Appendix I. Influent soil vapor PCE and benzene concentrations have been graphed and are provided in Appendix I.

3.3.1 Mass Removal Estimate

Cumulative mass removal of PCE over time were estimated using influent vapor sample analytical results and measured air flow rates. A graph of the estimated cumulative PCE mass removal is provided in Appendix I. PCE mass removal was calculated as the product of the influent VOC concentrations (i.e., sum of detected PCE concentrations) averaged between sampling events, the average influent flow rate of 250 cubic feet per minute (CFM), and the time accumulated since the previous sampling event. For the purpose of this evaluation, measured airflow rates and concentrations were assumed to be constant between sampling events. For the initial three months of system operation, PCE mass removal is estimated at approximately 2.8 pounds (including the 25 September 2012 sampling event).

3.3.2 Post-Startup – Indoor and Outdoor Ambient Air/Subslab Sampling

In September and October 2011, Kennedy/Jenks Consultants conducted a vapor intrusion study at the Buckle My Shoe Early Learning Center to evaluate if vapor intrusion of PCE and other VOCs were potentially occurring. Analytical results indicated PCE concentrations inside the childcare facility were above MTCA Method B indoor air cleanup levels. After startup of the SVE system, Kennedy/Jenks Consultants performed follow-up indoor air, outdoor air, and subslab soil vapor sampling to monitor the effects of the SVE and SSD on the childcare center building. Indoor and outdoor ambient air and subslab soil vapor analytical results are presented in Tables 2 and 3, respectively. Laboratory analytical reports for indoor air, outdoor ambient air, and subslab soil vapor samples are presented in Appendix J.

Indoor air and outdoor ambient air, and subslab soil vapor samples were collected during similar times as the SVE system soil vapor samples, on the following dates:

- 7 July 2012 samples: Indoor air and outdoor ambient air sampling
- 13 August 2012 samples: Indoor air and outdoor ambient air, and subslab soil vapor sampling

 12 September 2012 samples: Indoor air and outdoor ambient air, and subslab soil vapor sampling.

Samples were collected using certified, pre-cleaned, 6-liter SummaTM canisters. A description of the indoor and outdoor sampling locations is provided on the completed Field Indoor Air Sampling Logs presented in Appendix J. Field notes obtained during subslab soil vapor sample collection are provided on the completed Subslab and Soil Vapor Survey Log Sheets presented in Appendix J.

On 6 July 2012, indoor air and outdoor ambient air samples were collected over a 12-hour time period and analyzed for VOCs by EPA Method TO-15 with selected compounds analyzed in selective ion monitoring (SIM) mode at Air Toxics, Ltd. (ATL) of Folsom, California. Indoor air PCE concentrations (ranging from 0.25 µg/m³ to 0.29 µg/m³) were significantly below indoor air PCE concentrations measured in 2011 (5.7 to 6.6 µg/m³), and below the MTCA Method B indoor air cleanup level of 0.42 µg/m³. Chloroform concentrations were similar to concentrations measured in 2011. As noted in the Vapor Intrusion Study Report (Kennedy/Jenks Consultants 2011), occupants reported that bleach and tap water are used daily for cleaning surfaces on the main floor. These potential sources may contribute small concentrations of chloroform to indoor air (Kennedy/Jenks Consultants 2011). During monthly sampling events conducted on 13 August 2012 and 12 September 2012, PCE concentrations decreased in indoor air and were not detected at or above the laboratory reporting limit. During these same months, benzene was detected in indoor air at concentrations ranging from 0.46 to 4.4 µg/m³, above the MTCA Method B indoor air cleanup level of 0.32 µg/m³. Since benzene was detected at similar concentrations in the upwind outdoor air samples collected at the site during the same sampling events, these indoor air concentrations appear to be attributed to ubiquitous benzene commonly associated with industrial and urban areas. Indoor air analytical results for PCE and other VOCs are presented in Table 2.

Outdoor ambient air samples were also collected in July, August, and September 2012, over a 12-hour sampling period and analyzed for VOCs by EPA Method TO-15 by ATL. Outdoor ambient air analytical results are presented in Table 2. With the exception of benzene, outdoor ambient air concentrations of VOCs are below MTCA Method B cleanup levels. Benzene was detected in outdoor ambient air at concentrations ranging from 0.40 and 0.64 µg/m³.

In addition to indoor and outdoor ambient air samples, subslab soil vapor samples were collected from below the floor slab of the childcare facility in August and September 2012. Subslab pressure monitoring points were installed during SVE system construction activities by drilling holes through the floor slab at five locations (SS-1 through SS-5, see Figure 2), inserting 1/4-inch tubing into the void space, and sealing the tubing in place with neat cement. A valve was placed on the end of the tubing and closed between monitoring events. In August 2012, two of these pressure monitoring points (SS-1 and SS-3) were used to collect subslab soil vapor samples. Locations SS-1 and SS-3 were selected for subslab soil vapor sampling based on their proximity to indoor air sample locations.

Connector tubing was used to join monitoring point tubing to the sampling train. The sampling train was tested for leaks by conducting a shut-in test, which consisted of applying a vacuum on the sampling train (vacuum gauge, SummaTM canister, and connector fittings) and observing if vacuum loss occurred over a period of 60 seconds. Then, the subslab monitoring points were tested for leaks by placing a shroud over the subslab monitoring point. Helium was introduced

into the shroud and concentrations were maintained at approximately 70 to 90 percent while purging and sampling each subslab sampling location. The dead-volume of the connecting tubing and sampling train was purged by removing approximately 200 milliliters of air from the probe. The purge air was immediately tested using a portable helium meter to evaluate the probe for potential leaks. Subslab soil vapor samples were then collected using individually certified 6-liter Summa[™] canisters. The valve on the sample tubing was closed upon completion of sampling; tubing was recessed into the slab and covered until the next sampling event.

Because helium was detected in subslab soil vapor samples collected in August 2012, monitoring points were abandoned and reinstalled prior to sampling in September 2012. The previous monitoring points were abandoned by sealing the hole with neat cement to match the original condition of the floor slab. New holes were drilled through the floor slab adjacent to the abandoned locations, and permanent subslab Vapor PinsTM were installed to replace each of the five monitoring points. Following the same steps as above, subslab soil vapor samples were collected in September 2012, and monitoring points were temporarily capped after completion of sampling.

Subslab and soil vapor samples were analyzed for VOCs by modified EPA Method TO-15 and for helium by ASTM Method 1945-46 by H&P. PCE was detected in subslab soil vapor samples at concentrations ranging from 14 to 450 μ g/m³ during the August and September 2012 sampling events. Though PCE concentrations were above the draft MTCA Method B screening level for subslab soil gas (4.2 μ g/m³), concentrations were significantly less than those measured in 2011 (3,600 to 50,000 μ g/m³). Benzene was also detected in subslab soil vapor at concentrations ranging from 0.47 to 4.3 μ g/m³. [Note: Recently the inhalation cancer potency factor (CPFi) was decreased and the MTCA Method B air cleanup level changed from 0.42 μ g/m³ to 9.6 μ g/m³. It is anticipated that the MTCA Method B soil gas screening level would go up proportionally].

In addition to PCE and benzene, chloroform and methylene chloride have been detected in subslab soil vapor at concentrations above their respective draft MTCA Method B screening levels for subslab soil gas. These concentrations will be monitored during continued SVE system operation for significant trends. Subslab soil vapor analytical results are presented in Table 3.

Benzene concentrations in outdoor ambient air were similar to indoor air when first measured in August 2012. Though indoor air benzene concentrations increased in September 2012, concentrations are likely attributed to outdoor ambient air or an indoor source, as indoor air benzene concentrations are slightly higher than subslab soil vapor concentrations. PCE concentrations in indoor air and subslab soil vapor have significantly decreased since 2011. These concentrations will be monitored during continued SVE system operation for significant trends.

Section 4: Conclusions

We understand that Ecology plans to continue operation and monitoring of the SVE system at the site to assess influent VOC concentrations and PCE mass removal over time. The SVE system is operating as designed and is effectively inducing a negative pressure below the Buckle My Shoes Early Learning Center building. In doing so, the SVE system appears to be effective at mitigating intrusion of PCE vapors to childcare facility. This section discusses the system vapor analytical data and provides recommendations for future adjustments to the system configuration.

4.1 SVE System Soil Vapor Analytical Data

During the four months of operation, there have been six sampling and performance monitoring events of the SVE system. Samples collected using Summa canisters show an initial influent vapor PCE concentration at 7,700 μ g/m³ that declined to 260 μ g/m³ in the following sampling events. These subsequent sampling events show influent PCE concentrations ranging from 110 to 380 μ g/m³. In-between and effluent PCE concentrations were generally not detected at or above the laboratory reporting limit indicating the vapor treatment unit is operating as designed. A continued decline in the PCE concentrations to an asymptotic level is expected over time. However, continued monitoring and more data points are necessary to show if an asymptotic level have been reached given the current operating configuration. Future monitoring can probably be reduced in frequency to once a month for the next three months and then possibly quarterly thereafter.

Indoor air sampling, as well as subslab soil vapor sampling at the Buckle My Shoes Early Learning Center before and after SVE installation show that PCE concentrations have significantly decreased as SSD is achieved under the floor slab. Elevated PCE concentration in indoor air should continue to be mitigated through future operation of SVE system (as long as PCE mass remains in the subsurface).

4.2 System Operation and Adjustment Recommendations

Over the four months of operations, the system has remained relatively stable in the current configuration with wells SVE-3, SVE-4, and SVE-5 extracting from the upper screened interval. The existing monitoring data suggest that the continued operation of these wells (with vapor removal from the upper section) may provide the best opportunities for sub-slab depressurization for the adjacent Buckle My Shoe Early Learning Center.

Future adjustments to the system may include operating from the lower zone and/or inclusion of additional SVE wells to target areas with elevated residual PCE concentrations that are below the water table or have not been subjected to SVE. Initial system testing suggests that all three wells adjacent to the Buckle My Shoe Early Learning Center (SVE-3, SVE-4, and SVE-5) should continue to be operated to provide the greatest vacuum (SSD) below the childcare center. Adjustments to the SVE system, including the addition of wells SVE-1 and/or SVE-2 or extracting from different depth intervals could be performed; however, maintaining an adequate a negative pressure (approximately 0.025 inches WC or more) below the childcare center should be the primary goal.

Kennedy/Jenks Consultants

Vapor extraction from either the deeper zone or a combination of the deeper zone and the shallow zone may be performed if groundwater levels have dropped to adequate levels (i.e., approximately 17.5 feet below grade or more) to expose approximately half of the lower screened interval of the SVE wells. Since, extraction of soil vapor from the lower interval (that is typically saturated) and extraction from wells SVE-1 and SVE-2 could greatly increase PCE mass removal rates from the site, we recommend that performance testing be performed to assess if these additional activities can be performed while maintaining adequate negative pressure below the childcare center.

References

- AGRA Earth and Environmental, Inc. 1995. Soil Vapor Survey, Frank Wear Cleaners, 106 South Third Avenue, Yakima, Washington. January 1995.
- Hinchee, R., Leeson, A. 1996. Principles and Practices of Bioventing, Volume II: Bioventing Design.
- Kennedy/Jenks Consultants. 2011. Vapor Intrusion Study Report, Former Frank Wear Cleaners Site. 4 November.
- Kennedy/Jenks Consultants. 2012. Final Soil Vapor Extraction System, Interim Action Plan, Former Frank Wear Cleaners Site, Yakima, Washington. 13 March.
- U.S. Environmental Protection Agency. 1993. Radon Reduction Techniques for Existing Detached Houses, Technical Guidance for Active Soil Depressurization Systems. EPA/625/R-93/011.
- Washington State Department of Ecology. 2012. Soil Vapor Extraction System, Frank Wear Site, Yakima, WA.

Tables

Table 1: Remediation System Analytical Data

			Removal Efficiency for Tetrachloro- ethene	Tetrachloro- ethene	Chloroform	Benzene	1,2-Dichloro- ethane	Trichloro- ethene	Toluene	Ethyl- benzene	m,p-Xylene	o-Xylene
MTCA Meth	od B Soil Gas Screen		NA	4.2	1.1	32	0.96	1	220,000	46,000	4,600	4,600
	Influent 1A	7/3/2012		7,700	<25	92	<21	<27	49	<22	<44	<22
	FW-Influent-001	7/30/2012		260	9.6	66	<4.1	<5.5	66	8.7	35	11
Influent	FW-Influent-323	8/13/2012		110	5.9	32	<4.1	<5.5	29	<4.4	<8.8	<4.4
Influent	FW-Influent-067	8/28/2012		380	25	100	<4.1	<5.5	35	<4.4	<8.8	<4.4
•	FW-Influent-101	9/12/2012		260	19	32	<4.1	<5.5	120	6.6	17	6.9
·	FW-Influent-074	9/25/2012		210	20	39	<4.1	<5.5	16	<4.4	<8.8	<4.4
	Inbetween 1B	7/3/2012		24	<4.9	260	<4.1	<5.5	7.2	<4.4	<8.8	<4.4
•	FW-Inbtwn-070	7/30/2012		<6.9	<4.9	230	<4.1	<5.5	8.4	<4.4	<8.8	<4.4
Midpoint	FW-Inbtwn-219	8/13/2012		<6.9	<4.9	370	<4.1	<5.5	4.4	<4.4	<8.8	<4.4
wiiapoiiti	FW-Inbtwn-219	8/28/2012		<6.9	<4.9	28	<4.1	<5.5	<3.8	<4.4	<8.8	<4.4
	FW-Inbtwn-105	9/12/2012		<6.9	<4.9	51	<4.1	<5.5	5.0	<4.4	<8.8	<4.4
	FW-Inbtwn-241	9/25/2012		<6.9	<4.9	430	<4.1	<5.5	26	<4.4	15	6.3
	Effluent 1C	7/3/2012	99.8%	17	<4.9	23	<4.1	<5.5	6.8	<4.4	<8.8	<4.4
	FW-effluent	7/30/2012	97.3%	<6.9	<4.9	37	<4.1	<5.5	17	<4.4	<8.8	<4.4
Effluent	FW-effluent-217	8/13/2012	93.7%	<6.9	<4.9	84	<4.1	<5.5	<3.8	<4.4	<8.8	<4.4
•	FW-Effluent-355	8/28/2012	98.2%	<6.9	<4.9	190	<4.1	<5.5	56	<4.4	9.2	<4.4
•	FW-Effluent-102	9/12/2012	97.3%	<6.9	<4.9	130	<4.1	<5.5	280	19	45	18
	FW-Effluent-245	9/25/2012	96.7%	<6.9	<4.9	150	<4.1	<5.5	17	<4.4	52	18

Table 1: Remediation System Analytical Data

			Dichloro- difluoro- methane	Chloro- methane	Dichloro- tetrafluoro- ethane	Vinyl chloride	Bromo- methane	Chloro- ethane	Trichloro- fluoro- methane	Acetone	1,1-Dichloro- ethene	1,1,2- Trichloro- trifluoro- ethane
MTCA Meth	od B Soil Gas Screen	ing Level ^(a)	8,000	140	NA	28	230	NA	32,000	NA	NA	1,400,000
	Influent 1A	7/3/2012	<25	<10	<35	<13	<79	<40	<28	180	<20	<39
	FW-Influent-001	7/30/2012	6.6	6.3	<7.1	<2.6	<16	<8.0	<5.6	280	<4.0	<7.7
Influent	FW-Influent-323	8/13/2012	< 5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	66	<4.0	<7.7
Influent	FW-Influent-067	8/28/2012	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	140	<4.0	<7.7
	FW-Influent-101	9/12/2012	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	100	<4.0	<7.7
	FW-Influent-074	9/25/2012	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	37	<4.0	<7.7
	Inbetween 1B	7/3/2012	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	190	<4.0	<7.7
	FW-Inbtwn-070	7/30/2012	14	<2.1	<7.1	<2.6	<16	<8.0	<5.6	940	<4.0	<7.7
Midpoint	FW-Inbtwn-219	8/13/2012	12	<2.1	<7.1	<2.6	<16	<8.0	<5.6	1,200	<4.0	<7.7
Midpoint	FW-Inbtwn-219	8/28/2012	5.1	<2.1	<7.1	<2.6	<16	<8.0	<5.6	120	<4.0	<7.7
	FW-Inbtwn-105	9/12/2012	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	88	<4.0	<7.7
	FW-Inbtwn-241	9/25/2012	12	<2.1	<7.1	<2.6	<16	<8.0	<5.6	1,000	<4.0	<7.7
	Effluent 1C	7/3/2012	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.6	490	<4.0	<7.7
	FW-effluent	7/30/2012	5.6	<2.1	<7.1	<2.6	<16	<8.0	<5.6	1,300	<4.0	<7.7
Effluent	FW-effluent-217	8/13/2012	8.8	<2.1	<7.1	<2.6	<16	<8.0	<5.6	350	<4.0	<7.7
	FW-Effluent-355	8/28/2012	21	<2.1	<7.1	<2.6	<16	<8.0	<5.6	640	<4.0	<7.7
	FW-Effluent-102	9/12/2012	20	<2.1	<7.1	<2.6	<16	<8.0	<5.6	580	<4.0	<7.7
	FW-Effluent-245	9/25/2012	21	<2.1	<7.1	<2.6	<16	<8.0	<5.6	550	<4.0	<7.7

Table 1: Remediation System Analytical Data

			Methylene chloride	Carbon disulfide	trans-1,2- Dichloro- ethene	1,1-Dichloro- ethane	2- Butanone	cis-1,2- Dichloro- ethene	1,1,1- Trichloro- ethane	Carbon tetrachloride	1,2-Dichloro- propane	Bromo- dichloro- methane
MTCA Meth	od B Soil Gas Screeni	ing Level ^(a)	530	32,000	NA	32,000	NA	160	48,000	17	180	0.33
	Influent 1A	7/3/2012	<18	<32	<40	<21	<150	<20	<28	<32	<47	<34
•	FW-Influent-001	7/30/2012	7.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
Influent	FW-Influent-323	8/13/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
Influent	FW-Influent-067	8/28/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Influent-101	9/12/2012	<3.5	<6.3	<8.0	<4.1	45	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Influent-074	9/25/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
	Inbetween 1B	7/3/2012	<3.5	<6.3	<8.0	<4.1	34	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Inbtwn-070	7/30/2012	3.6	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
Midnaint	FW-Inbtwn-219	8/13/2012	<3.5	<6.3	<8.0	<4.1	33	<4.0	<5.5	<6.4	<9.4	<6.8
Midpoint	FW-Inbtwn-219	8/28/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Inbtwn-105	9/12/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Inbtwn-241	9/25/2012	3.8	<6.3	<8.0	<4.1	31	<4.0	<5.5	<6.4	<9.4	<6.8
	Effluent 1C	7/3/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-effluent	7/30/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
Effluent	FW-effluent-217	8/13/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Effluent-355	8/28/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Effluent-102	9/12/2012	9.3	6.5	<8.0	<4.1	130	<4.0	<5.5	<6.4	<9.4	<6.8
•	FW-Effluent-245	9/25/2012	<3.5	<6.3	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8

Table 1: Remediation System Analytical Data

			cis-1,3- Dichloro- propene	4-Methyl-2- pentanone	trans-1,3- Dichloro- propene	1,1,2- Trichloro- ethane	2- Hexanone	Dibromo- chloro- methane	1,2- Dibromo- ethane	1,1,1,2- Tetrachloro- ethane	Chloro- benzene	Styrene	Bromoform
MTCA Meth	od B Soil Gas Screeni	ing Level ^(a)	63	NA	NA	16	NA	0.45	NA	3.4	80	140	230
	Influent 1A	7/3/2012	<23	<41	<23	<28	<41	<43	<39	<35	<23	<22	<52
-	FW-Influent-001	7/30/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
Influent	FW-Influent-323	8/13/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
Influent	FW-Influent-067	8/28/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
·-	FW-Influent-101	9/12/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
-	FW-Influent-074	9/25/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
	Inbetween 1B	7/3/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
·	FW-Inbtwn-070	7/30/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
Midpoint -	FW-Inbtwn-219	8/13/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
wiiapoiiit	FW-Inbtwn-219	8/28/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
	FW-Inbtwn-105	9/12/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
·	FW-Inbtwn-241	9/25/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
·	Effluent 1C	7/3/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
·	FW-effluent	7/30/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
Effluent	FW-effluent-217	8/13/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
·-	FW-Effluent-355	8/28/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
-	FW-Effluent-102	9/12/2012	<4.6	11	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	4.9	<10
	FW-Effluent-245	9/25/2012	<4.6	<8.3	<4.6	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10

Table 1: Remediation System Analytical Data

			1,1,2,2- Tetrachloro- ethane	4- Ethyltoluene	1,3,5- Trimethyl- benzene	1,2,4- Trimethyl- benzene	1,3- Dichloro- benzene	1,4-Dichloro- benzene	1,2- Dichloro- benzene	1,2,4- Trichloro- benzene	Hexachloro- butadiene
MTCA Meth	od B Soil Gas Screeni	ng Level ^(a)	4.3	NA	270	270	NA	37,000	640	9,100	11
	Influent 1A	7/3/2012	<35	<25	<25	<25	<61	<61	<61	<38	<54
-	FW-Influent-001	7/30/2012	<7.0	<5.0	<5.0	12	<12	<12	<12	<7.5	<11
Influent	FW-Influent-323	8/13/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
Influent	FW-Influent-067	8/28/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-Influent-101	9/12/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-Influent-074	9/25/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
	Inbetween 1B	7/3/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
·-	FW-Inbtwn-070	7/30/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
Midwalat	FW-Inbtwn-219	8/13/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
Midpoint -	FW-Inbtwn-219	8/28/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-Inbtwn-105	9/12/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-Inbtwn-241	9/25/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
	Effluent 1C	7/3/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-effluent	7/30/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
Effluent	FW-effluent-217	8/13/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-Effluent-355	8/28/2012	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
-	FW-Effluent-102	9/12/2012	<7.0	<5.0	<5.0	6.1	<12	<12	<12	<7.5	<11
-	FW-Effluent-245	9/25/2012	<7.0	<5.0	<5.0	6.1	<12	<12	<12	<7.5	<11

Notes:

All units are in micrograms per cubic meter ($\mu g/m^3$), unless otherwise noted.

Detected concentrations are shown in boldface.

⁽a) Screening levels published in Table B-1 of Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*; Review Draft, October 2009.

Table 2: Indoor and Ambient Air Analytical Data

			Tetrachloro- ethene	Chloroform	Benzene	1,2-Dichloro- ethane	Trichloro- ethene	Toluene	Ethyl Benzene	m,p-Xylene
MTCA Method	d B Indoor Air Cleanup L	Level ^(a)	0.42	0.11	0.32	0.096	0.1	2,200	460	46
	BMS-U1-092411	9/25/2011	5.7	1.3		<0.17	<0.22			
Upstairs (Kitchen)	BMS-U1-102011	10/20/2011	6.1	2.9		<0.14	0.086			
	BMS-M1-092411	9/25/2011	6.3	1.4		0.15	<0.19			•
NE Comer New/	BMS-M1-102011	10/20/2011	6.0	2.3		<0.14	0.08			
NE Corner Nap/	BMS-M1-070612	7/6/2012	0.29	2.9		0.34	0.071			
Play Area	BMS-M1-081312	8/13/2012	<0.25	1.8	0.50	0.25	0.083	3.8	0.30	0.78
	BMS-M1-091212	9/12/2012	<0.24	1.2	4.4	<0.14	0.058	3.8	0.34	1.2
Decembles Deals	BMS-M2-092411	9/25/2011	6.2	1.3		<0.14	0.27			•
Reception Desk	BMS-M2-102011	10/20/2011	6.2	2.4		<0.15	0.083			
	BMS-M3-092411	9/25/2011	6.6	1.3		0.15	<0.18			•
C Carner Nen/	BMS-M3-102011	10/20/2011	6.5	2.7		<0.14	0.085			
S Corner Nap/	BMS-M3-070612	7/6/2012	0.25	2.7		0.33	0.067			
Play Area	BMS-M3-081312	8/13/2012	<0.25	1.8	0.46	0.23	0.077	3.8	0.26	0.75
	BMS-M3-091212	9/12/2012	<0.24	1.1	1.0	<0.14	0.032	2.8	0.31	1.0
	AMB-UPWIND-092411	9/25/2011	< 0.23	<0.84		<0.14	<0.18			
Upwind Ambient	AMB-UPWIND-070612	7/6/2012	<0.26	<0.94		<0.16	0.048			
Air	AMB-UPWIND-081312	8/13/2012	<0.27	<0.98	0.40	<0.16	0.068	1.1	0.20	0.46
	AMB-UPWIND-091212	9/12/2012	<0.25	<0.89	0.64	<0.15	<0.030	1.6	0.19	0.58
Upwind Ambient Air along North										
Wall	AMB-NWALL-092411	9/25/2011	< 0.25	< 0.90		<0.15	< 0.20			

Table 2: Indoor and Ambient Air Analytical Data

			o-Xylene	Freon 12	Freon 114	Chloro- methane	1,3- Butadiene	Bromo- methane	Chloro- ethane	Freon 11	Ethanol
MTCA Method	d B Indoor Air Cleanup L	.evel ^(a)	46	80	NA	1.4	0.08	2.3	NA	320	NA
Upstairs (Kitchen)	BMS-U1-092411	9/25/2011 10/20/2011									
	BMS-M1-092411 BMS-M1-102011	9/25/2011 10/20/2011									
NE Corner Nap/ Play Area	BMS-M1-070612	7/6/2012			4.0	4.0	0.44		0.5		4 400 5
,	BMS-M1-081312 BMS-M1-091212	8/13/2012 9/12/2012	0.33 0.42	2.1 2.0	<1.3 <1.2	1.2 0.83	<0.41 <0.40	<3.6 <0.70	<2.5 <2.4	1.2 1.1	1,100 E 160 E
Reception Desk	BMS-M2-092411 BMS-M2-102011	9/25/2011 10/20/2011									
	BMS-M3-092411 BMS-M3-102011	9/25/2011 10/20/2011									
S Corner Nap/ Play Area	BMS-M3-070612 BMS-M3-081312	7/6/2012 8/13/2012	0.30	2.4	<1.3	1.1	<0.41	<3.6	<2.5	1.5	840 E
•	BMS-M3-091212	9/12/2012	0.35	2.4	<1.2	1.1	<0.41	<0.70	<2.5 <2.4	1.3	170 E
Upwind Ambient	AMB-UPWIND-092411 AMB-UPWIND-070612	9/25/2011 7/6/2012									
Air	AMB-UPWIND-081312 AMB-UPWIND-091212	8/13/2012 9/12/2012	0.17 0.22	2.5 2.2	<1.4 <1.3	1.0 0.90	<0.44 <0.40	<3.9 <0.71	<2.6 <2.4	1.3 1.2	12 3.2
Upwind Ambient Air along North Wall	AMB-NWALL-092411	9/25/2011									

Table 2: Indoor and Ambient Air Analytical Data

			Freon 113	Acetone	2-Propanol	Carbon Disulfide	3-Chloro- propene	Methylene Chloride	Hexane	2- Butanone	Tetra- hydrofuran
MTCA Metho	d B Indoor Air Cleanup I	Level ^(a)	14,000	NA	NA	320	NA	5.3	NA	NA	NA
	BMS-U1-092411	9/25/2011									
Jpstairs (Kitchen)	BMS-U1-102011	10/20/2011									
	BMS-M1-092411	9/25/2011									
	BMS-M1-102011	10/20/2011									
NE Corner Nap/	BMS-M1-070612	7/6/2012									
Play Area	BMS-M1-081312	8/13/2012	<1.4	30	41	<2.9	<2.9	<1.3	< 0.66	<2.8	<2.8
	BMS-M1-091212	9/12/2012	<1.4	22	18	<2.8	<2.8	<1.2	< 0.63	<2.6	<2.6
	BMS-M2-092411	9/25/2011									
Reception Desk	BMS-M2-102011	10/20/2011									
	BMS-M3-092411	9/25/2011									
	BMS-M3-102011	10/20/2011									
S Corner Nap/	BMS-M3-070612	7/6/2012									
Play Area	BMS-M3-081312	8/13/2012	<1.4	32	41	<2.9	<2.9	<1.3	0.78	3.0	<2.8
	BMS-M3-091212	9/12/2012	<1.4	23	35	<2.8	<2.8	<1.2	< 0.63	<2.6	<2.6
	AMB-UPWIND-092411	9/25/2011									
Upwind Ambient	AMB-UPWIND-070612	7/6/2012									
Air	AMB-UPWIND-081312	8/13/2012	<1.5	9.2	<2.5	<3.1	<3.1	<1.4	<0.71	<3.0	<3.0
	AMB-UPWIND-091212	9/12/2012	<1.4	7.4	<2.2	<2.8	<2.9	<1.3	<0.64	<2.7	<2.7
Upwind Ambient Air along North Wall	AMB-NWALL-092411	9/25/2011									

Table 2: Indoor and Ambient Air Analytical Data

				Carbon	2,2,4- Trimethyl-			1,2-Dichloro		Bromo- dichloro-
			Cyclohexane	Tetrachloride	pentane	Heptane	Styrene	propane	1,4-Dioxane	methane
MTCA Method	d B Indoor Air Cleanup L	.evel ^(a)	NA	0.17	NA	NA	4.4	1.8	NA	0.0033
	BMS-U1-092411	9/25/2011								
Upstairs (Kitchen)	BMS-U1-102011	10/20/2011								
	BMS-M1-092411	9/25/2011								
	BMS-M1-102011	10/20/2011								
NE Corner Nap/	BMS-M1-070612	7/6/2012								
Play Area	BMS-M1-081312	8/13/2012	<0.64	<1.2	<4.4	0.84	1.1	<0.86	< 0.67	<1.2
	BMS-M1-091212	9/12/2012	< 0.62	<1.1	<4.2	3.3	<0.76	<0.83	<0.64	<1.2
	BMS-M2-092411	9/25/2011								
Reception Desk	BMS-M2-102011	10/20/2011								
	BMS-M3-092411	9/25/2011								
00 11 /	BMS-M3-102011	10/20/2011								
S Corner Nap/	BMS-M3-070612	7/6/2012								
Play Area	BMS-M3-081312	8/13/2012	< 0.64	<1.2	<4.4	0.98	1.0	<0.86	< 0.67	<1.2
	BMS-M3-091212	9/12/2012	< 0.62	<1.1	<4.2	1.8	<0.76	<0.83	<0.64	<1.2
	AMB-UPWIND-092411	9/25/2011								
Upwind Ambient	AMB-UPWIND-070612	7/6/2012								
Air	AMB-UPWIND-081312	8/13/2012	< 0.69	<1.3	<4.7	<0.82	<0.86	< 0.93	< 0.72	<1.3
	AMB-UPWIND-091212	9/12/2012	< 0.63	<1.2	<4.3	<0.75	<0.78	<0.84	<0.66	<1.2
Upwind Ambient Air along North Wall	AMB-NWALL-092411	9/25/2011								

Table 2: Indoor and Ambient Air Analytical Data

			cis-1,3- Dichloro- propene	4-Methyl-2- pentanone	1,1,2- Trichloro- ethane	1,1,2,2- Tetrachloro- ethane	trans-1,2- Dichloro- ethene	Methyl tert- butyle ether		2- Hexanone	Dibromo- chloro- methane
MTCA Method	d B Indoor Air Cleanup L	Level ^(a)	0.63	NA	0.16	0.043		9.6	0.63	NA	0.0045
	BMS-U1-092411	9/25/2011							<0.95		
Upstairs (Kitchen)	BMS-U1-102011	10/20/2011							<0.77		
	BMS-M1-092411	9/25/2011							<0.80		
NE O	BMS-M1-102011	10/20/2011							<0.81		
NE Corner Nap/	BMS-M1-070612	7/6/2012							<0.85		
Play Area	BMS-M1-081312	8/13/2012	<0.85	<0.77	<0.20	<0.26	<0.74	<0.67	<0.85	<3.8	<1.6
	BMS-M1-091212	9/12/2012	<0.81	<0.73	<0.20	<0.24	<0.71	<0.64	<0.81	<3.7	<1.5
December Deals	BMS-M2-092411	9/25/2011							<0.81		
Reception Desk	BMS-M2-102011	10/20/2011							<0.82		
	BMS-M3-092411	9/25/2011							<0.75		
C Carner Nen/	BMS-M3-102011	10/20/2011							<0.78		
S Corner Nap/ Play Area	BMS-M3-070612	7/6/2012							<0.82		
Play Alea	BMS-M3-081312	8/13/2012	<0.85	<0.77	<0.20	<0.26	<0.74	<0.67	<0.85	<3.8	<1.6
	BMS-M3-091212	9/12/2012	<0.81	<0.73	<0.20	<0.24	<0.71	<0.64	<0.81	<3.7	<1.5
	AMB-UPWIND-092411	9/25/2011							<0.78		
Upwind Ambient	AMB-UPWIND-070612	7/6/2012							<0.88		
Air	AMB-UPWIND-081312	8/13/2012	<0.91	<0.82	<0.22	<0.28	<0.80	<0.72	<0.91	<4.1	<1.7
	AMB-UPWIND-091212	9/12/2012	<0.83	<0.75	<0.20	<0.25	<0.72	<0.66	<0.83	<3.7	<1.6
Upwind Ambient Air along North Wall	AMB-NWALL-092411	9/25/2011							<0.84		

Table 2: Indoor and Ambient Air Analytical Data

			1,2- Dibromo- ethane	Chloro- benzene	Bromoform	Cumene	Propyl- benzene	4-Ethyl- toluene	1,3,5- Trimethyl- benzene	1,2,4- Trimethyl- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene
MTCA Metho	d B Indoor Air Cleanup L	.evel ^(a)	NA	8	2.3	180	NA	NA	2.7	2.7	NA	370
	BMS-U1-092411	9/25/2011		<0.96								
Upstairs (Kitchen)	BMS-U1-102011	10/20/2011		<0.78								
	BMS-M1-092411	9/25/2011		<0.81								
NE Corner Nap/	BMS-M1-102011	10/20/2011		<0.82								
Play Area	BMS-M1-070612	7/6/2012		<0.86								
Play Alea	BMS-M1-081312	8/13/2012	<1.4	<0.86	<1.9	<0.92	< 0.92	< 0.92	<0.92	< 0.92	<1.1	<1.1
	BMS-M1-091212	9/12/2012	<1.4	<0.82	<1.8	<0.88	<0.88	<0.88	<0.88	<0.88	<1.1	<1.1
Reception Desk	BMS-M2-092411	9/25/2011		<0.82								
Reception Desk	BMS-M2-102011	10/20/2011		<0.83								
	BMS-M3-092411	9/25/2011		<0.76								
S Corner Nap/	BMS-M3-102011	10/20/2011		<0.80								
Play Area	BMS-M3-070612	7/6/2012		<0.83								
Flay Alea	BMS-M3-081312	8/13/2012	<1.4	<0.86	<1.9	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	<1.1	<1.1
	BMS-M3-091212	9/12/2012	<1.4	<0.82	<1.8	<0.88	<0.88	<0.88	<0.88	<0.88	<1.1	<1.1
	AMB-UPWIND-092411	9/25/2011		<0.79								
Upwind Ambient	AMB-UPWIND-070612	7/6/2012		<0.89								
Air	AMB-UPWIND-081312	8/13/2012	<1.5	<0.92	<2.1	<0.99	<0.99	<0.99	<0.99	<0.99	<1.2	<1.2
	AMB-UPWIND-091212	9/12/2012	<1.4	<0.84	<1.9	<0.90	< 0.90	< 0.90	<0.90	<0.90	<1.1	<1.1
Upwind Ambient Air along North Wall	AMB-NWALL-092411	9/25/2011		<0.85								

Table 2: Indoor and Ambient Air Analytical Data

			alpha- Chloro- toluene	1,2- Dichloro- benzene	1,2,4- Trichloro- benzene	Hexachloro- butadiene	1,1,1,2- Tetrachloro- ethane ^(b)	Vinyl Chloride	1,1-Dichloro- ethene	1,1-Dichloro- ethane	cis-1,2- Dichloro- ethene	1,1,1- Trichloro- ethane
MTCA Method B Indoor Air Cleanup Level ^(a)		NA	64	91	0.63	0.34	0.28	NA	320	16	4,800	
Upstairs (Kitchen)	BMS-U1-092411	9/25/2011		<1.2			<7.2				<0.16	<0.23
	BMS-U1-102011	10/20/2011		<1.0			<5.8				<0.13	<0.18
	BMS-M1-092411	9/25/2011		<1.0			<6.0				<0.14	<0.19
NEO N. /	BMS-M1-102011	10/20/2011		<1.1			<6.1				<0.14	<0.19
NE Corner Nap/	BMS-M1-070612	7/6/2012		<1.1			<6.4				<0.15	<0.20
Play Area	BMS-M1-081312	8/13/2012	< 0.97	<1.1	<6.9	<10	<6.4	<0.048	< 0.074	<0.15	<0.15	<0.20
	BMS-M1-091212	9/12/2012	< 0.93	<1.1	<6.6	<9.5	<6.1	<0.046	< 0.071	<0.14	<0.14	<0.20
D (1 D)	BMS-M2-092411	9/25/2011		<1.1			<6.1				<0.14	<0.20
Reception Desk	BMS-M2-102011	10/20/2011		<1.1			<6.2				<0.14	<0.20
	BMS-M3-092411	9/25/2011		<0.99			<5.7				<0.13	<0.18
C Comer New/	BMS-M3-102011	10/20/2011		<1.0			<5.9				<0.14	<0.19
S Corner Nap/	BMS-M3-070612	7/6/2012		<1.1			<6.2				<0.14	<0.20
Play Area	BMS-M3-081312	8/13/2012	<0.97	<1.1	<6.9	<10	<6.4	<0.048	< 0.074	<0.15	<0.15	<0.20
	BMS-M3-091212	9/12/2012	<0.93	<1.1	<6.6	<9.5	<6.1	<0.046	<0.071	<0.14	<0.14	<0.20
	AMB-UPWIND-092411	9/25/2011		<1.0			<5.9				<0.14	<0.19
Upwind Ambient	AMB-UPWIND-070612	7/6/2012		<1.2			<6.6				<0.15	<0.21
Air	AMB-UPWIND-081312	8/13/2012	<1.0	<1.2	<7.4	<11	<6.9	<0.051	<0.080	<0.16		
	AMB-UPWIND-091212	9/12/2012	<0.95	<1.1	<6.8	<9.8	<6.3	<0.047	< 0.072	<0.15	<0.14	<0.20
Upwind Ambient Air along North Wall	AMB-NWALL-092411	9/25/2011		<1.1			<6.3				<0.14	<0.20

Notes

- (a) Cleanup levels published in Table B-1 of Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*; Review Draft, October 2009.
- (b) 1,1,1,2-Tetrachloroethane is not on the standard TO-15 list for the laboratory; therefore, it could not be analyzed at a low level reporting limit.

All units are in micrograms per cubic meter (µg/m³), unless otherwise noted.

Detected concentrations are shown in **boldface**.

"E" indicates the instrument calibration range was exceeded.

Table 3: Subslab Soil Gas Analytical Data

			Helium ^(b) (%)	Tetrachloro ethene	- Chloroform	Benzene	1,2- Dichloro- ethane	Trichloro- ethene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene
MTCA Method B Su	bslab Soil Gas Screen	ing Level ^(a)	NA	4.2	1.1	3.2	0.96	1	22,000	4,600	460	460
	BMS-SS-1-092511	9/25/2011	<1.0	3,600	7.5	<3.2	<4.1	<5.5	11	<4.4	<8.8	<4.4
NE Corner Nap/ Play Area Main Floor Sink Area	BMS-SS-1-081312	8/13/2012	0.8	450	<0.49	0.47	<0.82	<1.1	2.7	<0.88	2.8	1.1
	BMS-SS-1-091212	9/12/2012	0.2	57	1.9	4.3	<0.82	<1.1	29	6.1	21	7.6
	BMS-SS-2-092511	9/25/2011	<1.0	45,000	27	<3.2	<4.1	<5.5	19	<4.4	<8.8	<4.4
Reception Area	BMS-SS-3-092511	9/25/2011	<1.0	50,000	16	<3.2	<4.1	<5.5	15	<4.4	<8.8	<4.4
SE Corner Nap/	BMS-SS-4-081312	8/13/2012	1.8	110	1.4	0.60	<0.82	<1.1	5.7	1.3	5.8	1.8
Play Area	BMS-SS-4-091212	9/12/2012	4.8	14	2.4	0.94	<0.82	<1.1	25	4.4	11	4.5

Table 3: Subslab Soil Gas Analytical Data

MTCA Method B Sui	bslab Soil Gas Screen	ing Level ^(a)	Dichloro- difluoro- methane	Chloro- methane	Dichloro- tetrafluoro- ethane	Vinyl chloride 2.8	Bromo- methane	Chloro- ethane	Trichloro- fluoro- methane 3,200	Acetone NA	1,1- Dichloro- ethene	1,1,2- Trichloro- trifluoro- ethane	Methylene chloride	Carbon disulfide
	BMS-SS-1-092511	9/25/2011	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.7	130	<4.0	<7.7	<3.5	7.2
NE Corner Nap/ Play Area	BMS-SS-1-081312	8/13/2012	<2.0	<0.41	<1.4	<0.26	<0.79	<0.54	1.4	5.4	<0.80	<3.1	0.97	<0.63
	BMS-SS-1-091212	9/12/2012	2.7	2.3	<1.4	<0.26	0.84	<0.54	3.7	55	<0.80	<1.5	8.5	30
Main Floor Sink Area	BMS-SS-2-092511	9/25/2011	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.7	100	<4.0	<7.7	<3.5	<6.3
Reception Area	BMS-SS-3-092511	9/25/2011	<5.0	<2.1	<7.1	<2.6	<16	<8.0	<5.7	60	<4.0	<7.7	<3.5	<6.3
SE Corner Nap/ Play Area	BMS-SS-4-081312	8/13/2012	<2.0	<0.41	<1.4	<0.26	<0.79	<0.54	<1.1	11	<0.80	<3.1	6,200	<0.63
	BMS-SS-4-091212	9/12/2012	2.4	<0.41	<1.4	<0.26	<0.79	<0.54	1.5	23	<0.80	<1.5	1,300	<0.63

Table 3: Subslab Soil Gas Analytical Data

			trans-1,2- Dichloro- ethene	1,1- Dichloro- ethane	2- Butanone	cis-1,2- Dichloro- ethene		Carbon tetrachloride			cis-1,3- Dichloro- propene	4-Methyl-2- pentanone	trans-1,3- Dichloro- propene
MTCA Method B Subslab Soil Gas Screening Level ^(a)		NA	3,200	NA	160	48,000	1.7	18	0.033	6.3	NA	NA	
	BMS-SS-1-092511	9/25/2011	<8.0	<4.1	33	<4.0	<5.5	<6.4	<9.4	<6.8	<4.6	13	<4.6
NE Corner Nap/ Play Area	BMS-SS-1-081312	8/13/2012	<0.80	<0.82	2.7	<0.80	<1.1	<0.64	<0.94	<1.4	<0.92	<1.7	<0.92
	BMS-SS-1-091212	9/12/2012	<0.80	<0.82	5.6	<0.80	<1.1	0.95	<0.94	<1.4	<0.92	<1.7	<0.92
Main Floor Sink Area	BMS-SS-2-092511	9/25/2011	<8.0	<4.1	41	<4.0	<5.5	<6.4	<9.4	<6.8	<4.6	13	<4.6
Reception Area	BMS-SS-3-092511	9/25/2011	<8.0	<4.1	<30	<4.0	<5.5	<6.4	<9.4	<6.8	<4.6	<8.3	<4.6
SE Corner Nap/ Play Area	BMS-SS-4-081312	8/13/2012	<0.80	<0.82	1.8	<0.80	<1.1	<0.64	<0.94	<1.4	<0.92	<1.7	<0.92
	BMS-SS-4-091212	9/12/2012	<0.80	<0.82	7.1	<0.80	<1.1	<0.64	<0.94	<1.4	<0.92	21	<0.92

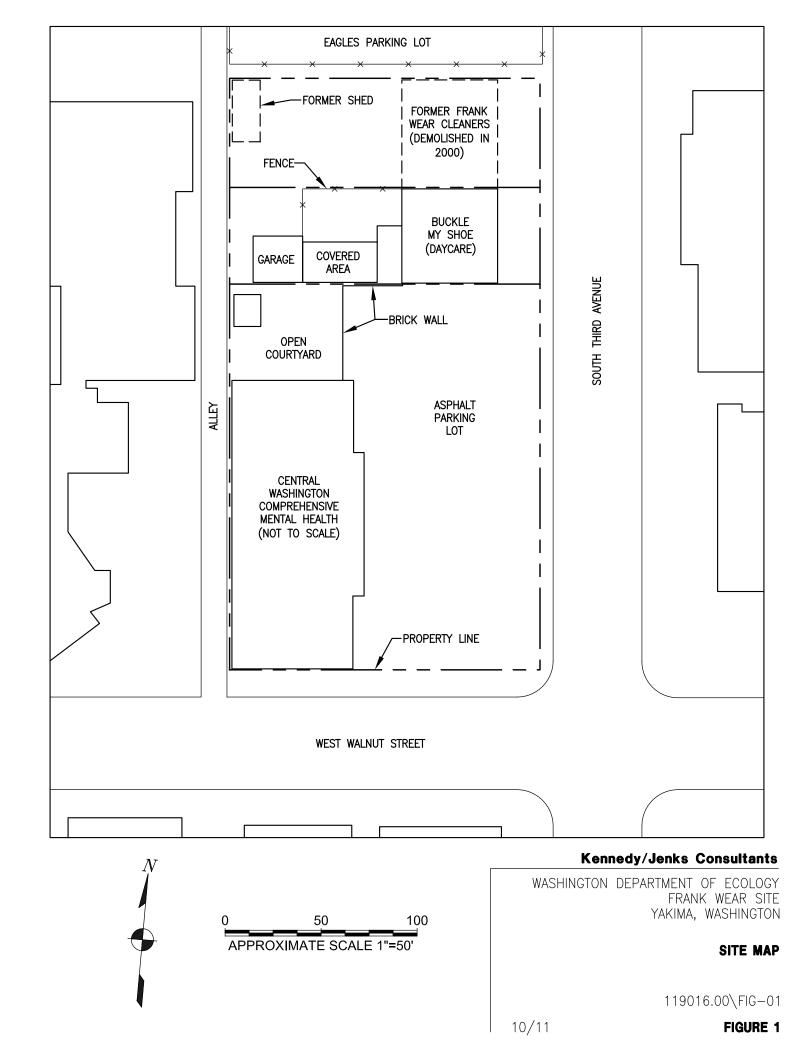
Table 3: Subslab Soil Gas Analytical Data

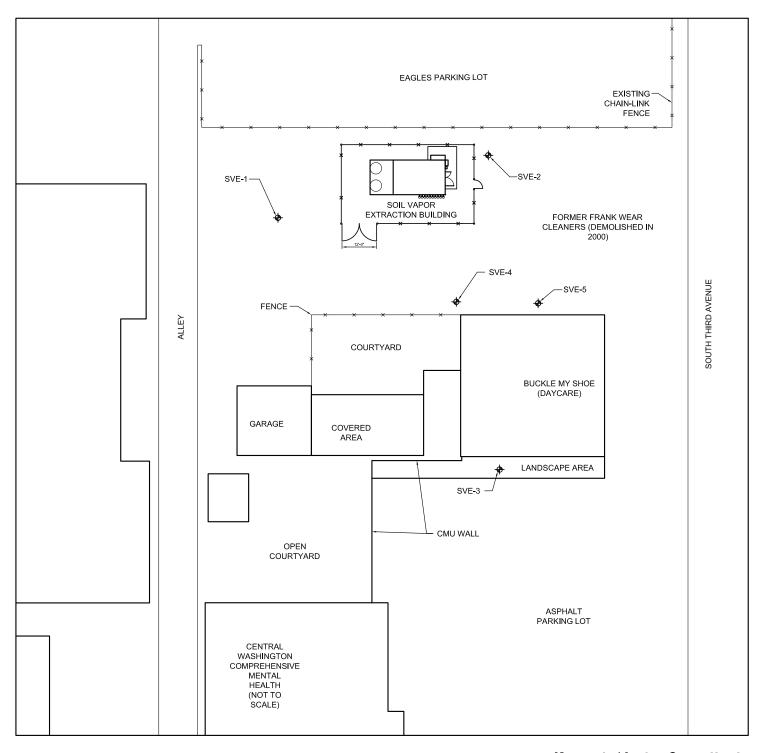
			1,1,2- Trichloro- ethane	2- Hexanone	Dibromochloro methane	1,2- o- Dibromo- ethane	1,1,1,2- Tetrachloro- ethane	Chloro- benzene	Styrene	Bromoform
MTCA Method B Subslab Soil Gas Screening Level ^(a)		1.6	1.6 NA 0.045 NA 3.4 80		44	23				
NE Corner Nap/ Play Area	BMS-SS-1-092511	9/25/2011	<5.5	11	<8.6	<7.8	<7.0	<4.7	<4.3	<10
	BMS-SS-1-081312	8/13/2012	<1.1	<1.7	<1.7	<1.6	<1.4	<0.94	0.99	<2.1
	BMS-SS-1-091212	9/12/2012	<1.1	2.5	<1.7	<1.6	<1.4	<0.94	1.4	<2.1
Main Floor Sink Area	BMS-SS-2-092511	9/25/2011	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
Reception Area	BMS-SS-3-092511	9/25/2011	<5.5	<8.3	<8.6	<7.8	<7.0	<4.7	<4.3	<10
SE Corner Nap/	BMS-SS-4-081312	8/13/2012	<1.1	<1.7	<1.7	<1.6	<1.4	<0.94	<0.86	<2.1
Play Area	BMS-SS-4-091212	9/12/2012	<1.1	<1.7	<1.7	<1.6	<1.4	<0.94	2.3	<2.1

Table 3: Subslab Soil Gas Analytical Data

			1,1,2,2- Tetrachloro- ethane	4- Ethyltoluene	1,3,5- Trimethyl- benzene	1,2,4- Trimethyl- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	1,2- Dichloro- benzene	1,2,4- Trichloro- benzene	Hexachloro- butadiene
ITCA Method B Subslab Soil Gas Screening Level ^(a)		0.43	NA	27	27	NA	3,700	640	910	1.1	
	BMS-SS-1-092511	9/25/2011	<7.0	<5.0	<5.0	5.8	<12	<12	<12	<7.5	<11
NE Corner Nap/ Play Area	BMS-SS-1-081312	8/13/2012	<1.4	<1.0	<1.0	3.3	<1.2	<1.2	<1.2	<1.5	<4.3
	BMS-SS-1-091212	9/12/2012	<1.4	1.7	2.0	7.9	<1.2	<1.2	<1.2	<1.5	<4.3
Main Floor Sink Area	BMS-SS-2-092511	9/25/2011	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
Reception Area	BMS-SS-3-092511	9/25/2011	<7.0	<5.0	<5.0	<5.0	<12	<12	<12	<7.5	<11
SE Corner Nap/ Play Area	BMS-SS-4-081312	8/13/2012	<1.4	<1.0	<1.0	3.0	<1.2	<1.2	<1.2	<1.5	<4.3
	BMS-SS-4-091212	9/12/2012	<1.4	2.3	1.1	3.9	<1.2	<1.2	<1.2	<1.5	<4.3

Notes:


All units are in micrograms per cubic meter (µg/m³), unless otherwise noted.

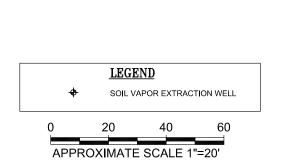

Detected concentrations are shown in **boldface**.

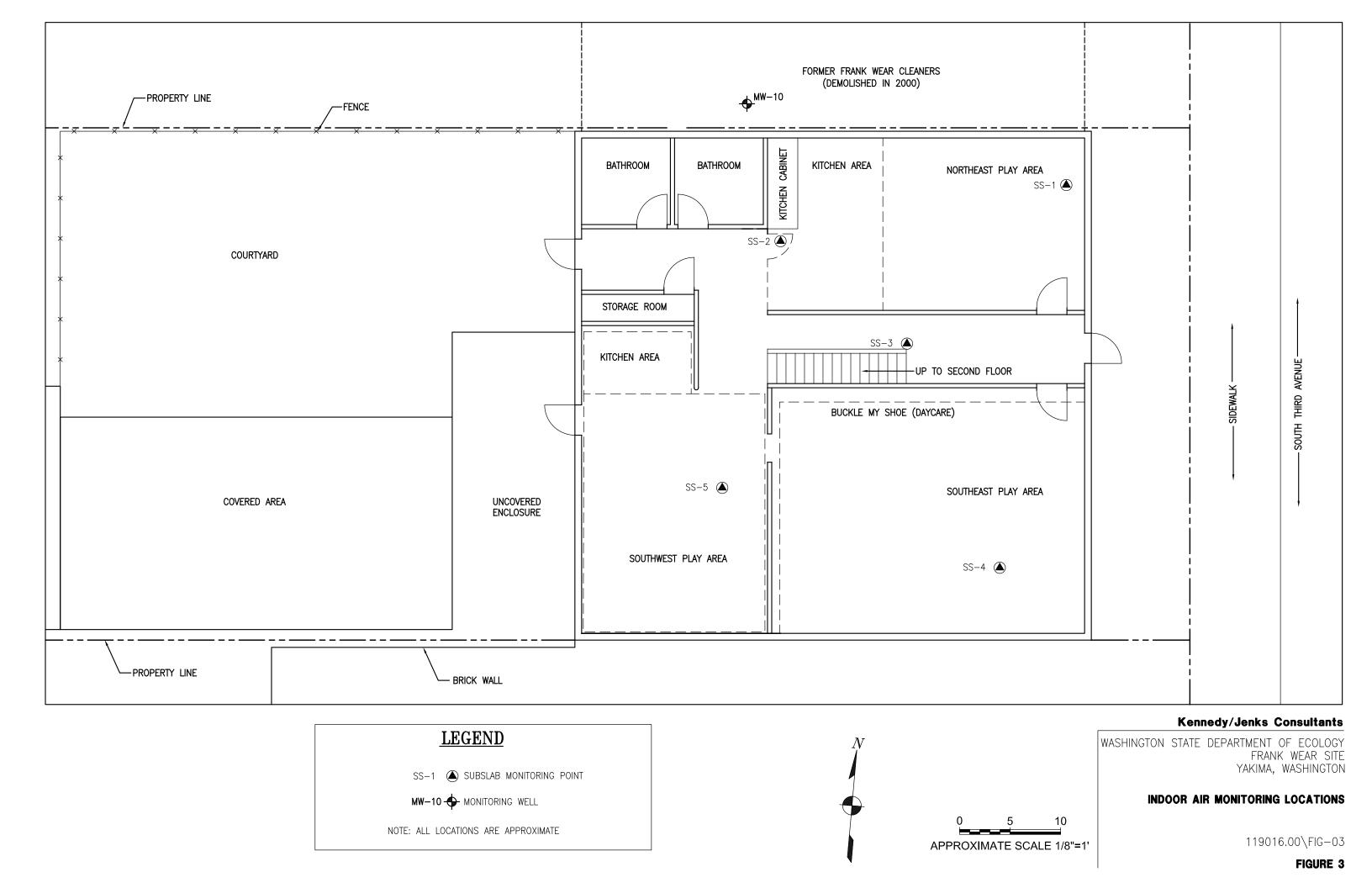
⁽a) Screening levels published in Table B-1 of Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*; Review Draft, October 2009.

⁽b) Helium was used as a leak check compound during soil gas sampling. Results are presented in units of percent.

Figures

Kennedy/Jenks Consultants


WASHINGTON STATE DEPARTMENT OF ECOLOGY FRANK WEAR SITE YAKIMA, WASHINGTON


SVE WELL LOCATIONS

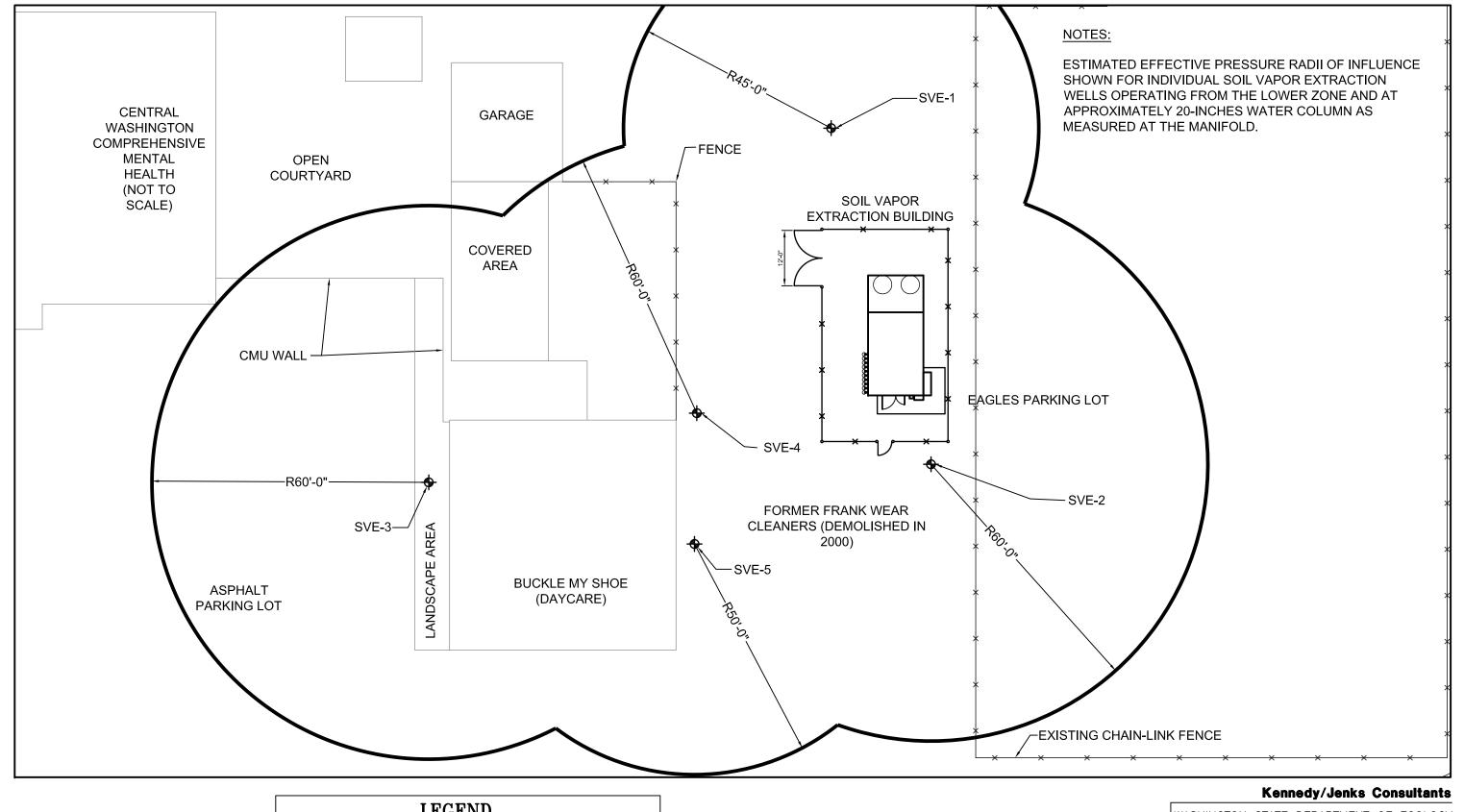

119016.00\FIG-02

FIGURE 2

LEGEND

SVE 1 - SOIL VAPOR EXTRACTION WELL

NOTE: ALL LOCATIONS ARE APPROXIMATE

APPROXIMATE SCALE 1"=20'

WASHINGTON STATE DEPARTMENT OF ECOLOGY FRANK WEAR SITE YAKIMA, WASHINGTON

SVE WELL RADIUS OF INFLUENCE

119016.00\FIG-04

FIGURE 4

Appendix A

City of Yakima Construction Permits

Department of Community and Economic Development Office of Code Administration 129 North Second Street, 2nd Floor Yakima, Washington 98901

Invoice

Date:

18-APR-12

985

Invoice No.:

ANDERSON ENVIRONMENTAL CONTRACTING 705 COLORADO ST

KELSO

WA 98626

Application No.: BLD-12-0328

Project:

Permit Type:

Commercial Building New

Parcel No.:

18132441442

Subdivision:

Block/Lot:

CBD/N

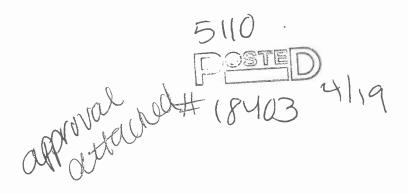
Site Address:

106 S 3RD AVE

Description	Fee Amount	Paid/Credit	Balance Due	Account
State Surcharge	\$4.50	\$0.00	\$4.50	000-000-000-0000-23729-901
Building Permit	\$180.37	\$0.00	\$180.37	000-000-141-0000-32210-BLG
Building Plan Review	\$117.24	\$0.00	\$117.24	000-000-141-0000-34583-G34

Total Fee Amount:

\$302.11


Total Paid/Credits:

\$0.00

Balance Due:

\$302.11

Payment due upon receipt.

025521

City of Yakima
-Business Liverse -85.30
-Street Break Permit 50.00

\$ 135.80

5110

POSTED 4/25 # 18534 4/25

DOX 3-1220

ANDERSON ENVIRONMENTAL CONTRACTING, LLC KELSO, WA 98626

025521

Brett M 4/23/12

City of Yakima City Treasurer 129 N Second St, 2nd Floor Yakima, WA 98901

Check: 25521 Date: 4/27/2012 Vendor: YAK02

			Prior			
<u>Invoice</u>	P.O. Num.	Invoice Amt	<u>Balance</u>	Retention	Discount	Amt. Paid
120425	12-026	135.80	135.80	0.00	0.00	135.80
		====		===	=	===
		135.80	135.80	0.00	0.00	135.80

25521

4/27/2012

************135.80

City of Yakima City Treasurer 129 N Second St, 2nd Floor Yakima, WA 98901

City of Yakima City Treasurer 129 N Second St, 2nd Floor Yakima, WA 98901

Check: 25521 Date: 4/27/2012

Vendor: YAK02

			Prior			
<u>Invoice</u>	<u>P.O. Num.</u>	Invoice Amt	<u>Balance</u>	<u>Retention</u>	Discount	Amt. Paid
120425	12-026	135.80	135.80	0.00	0.00	135.80
				==	==	
		135.80	135.80	0.00	0.00	135.80

DEPARTMENT OF COMMUNITY AND ECONOMIC DEVELOPMENT

ENGINEERING PERMIT

129 NORTH SECOND STREET, 2ND FLOOR YAKIMA, WASHINGTON 98901 (509) 575-6126

PERMIT NUMBER: STRBK-12-116 **EXPIRATION DATE:** 07/07/2012

PARCEL NUMBER: 18132441442 LOT SIZE: 16 ACRE

LEGAL DESCRIPTION: YAKIMA: LOT 3 BLK 252

ONLINE ACCESS CODE: 003652468

106 S 3RD AVE ENGINEERING - STREETBREAK/CURB/SIDEWALK PERMIT

PROJECT: PROVIDING SUBSURFACE ELECTRIC CONDUIT FROM POLE ON WEST SIDE OF ALLEY TO NEW CONSTRUCTION FOR TEMP EQUIP BUILDING

NAME

APPLICANT:

ANDERSON ENVIRONMENTAL CONTRACTING

ADDRESS 705 COLORADO ST, KELSO, WA 98626

PHONE (360) 577-9194

CONTRACTOR: ANDERSON ENVIRONMNTL **CNTRG LLC**

LIC: ANDEREC005PD EXP:03/20/2014

705 COLORADO ST, KELSO, WA 98626

(360) 577-9194

PARCELS

PARCEL NUMBER: 18132441442

LOT SIZE:

PARCEL OWNER: STOFFERS GREGORY

PARCEL OWNER: STOFFERS GREGORY A & SONIA

PARCEL NUMBER: 18132441442

LOT SIZE:

FEE SUMMARY

\$50.00

PROJECT: PROVIDING SUBSURFACE ELECTRIC CONDUIT FROM

STREET BREAK/CURB CUT

\$50.00

POLE ON WEST SIDE OF ALLEY TO NEW CONSTRUCTION FOR TEMP EQUIP BUILDING

TOTAL FEES PAID:

The above-referenced paid fees may not include all applicable fees for your project. Any and all outstanding fees must be paid in full prior to obtaining a final inspection.

CONDITIONS

A violation of any local, state or federal regulation, statute, code, standard, or policy at this location will constitute a violation of permit conditions and wil be subject to STOP WORK ORDER, INSPECTION HOLD, CERTIFICATE OF OCCUPANCY HOLD, NO OCCUPANCY NOTICE OR CEASE AND DESIST ORDER until such time as the violation(s) is corrected.

- 1. The applicant shall comply with the applicable sections of Titles 8, 12, 14 and 15 of the City of Yakima Municipal Code, applicable City of Yakima Standard Details, and the applicant provisions denoted below.
- 2. Applicant shall be responsible for all costs and expenses incident to the performing of this work and will also be responsible for any loss or damage that may be directly caused by the performing of this work.
- 3. A copy of this permit shall be kept in the possession of the person performing this work.
- 4. The Applicant shall maintain the required Insurance forms and certificates for the entire time that any work is performed subject to this Permit.
- 5. Open cuts in streets shall be filled, compacted and patched by the Permittee within 48 hours after completion of work, unless the inspector agrees, in advance, to a longer time period.
- 6. The contractor shall furnish and maintain signs, barricades, lights, flares or any other appurtenance necessary to protect the public or when directed by the Street Inspector in accordance with the MUTCD, Sec. VI.
- 7. All work shall be performed to the satisfaction of the City Engineer. If said work is not completed or approved. the City Engineer will hire the work done and the applicant shall pay all costs, in full.
- 8. This permit is valid for 180 calendar days from date of issue.
- 9. The responsible party shall insure that the street break inspector is notified three (3) working days in advance of starting work and keep the inspector informed on the progress of work so inspections can be made. Work accomplished without proper notification shall be redone with proper inspection.
- 10. Sidewalk & driveway approaches may be removed & installed by the property owner, following all City specifications. A fully licensed contractor must do any work involving the roadway or curb and gutter.
- 11. Backfill around or under infrastructure shall be 100% select (5/8 minus) full depth of trench and compact to 95% of ASTM 1557.
- 12. Driveway location shall be as limited by YMC 15.06.065.
- 13. If applicant proposes to restrict the traffic to any section of street or alley, the applicant is required to complete and submit for review/approval a Temporary Right of Way Use form and discuss traffic control issues with the Street Inspector.

DEPARTMENT OF COMMUNITY AND ECONOMIC DEVELOPMENT

ENGINEERING PERMIT

129 NORTH SECOND STREET, 2ND FLOOR YAKIMA, WASHINGTON 98901 (509) 575-6126

PERMIT NUMBER: STRBK-12-116
EXPIRATION DATE: 07/07/2012

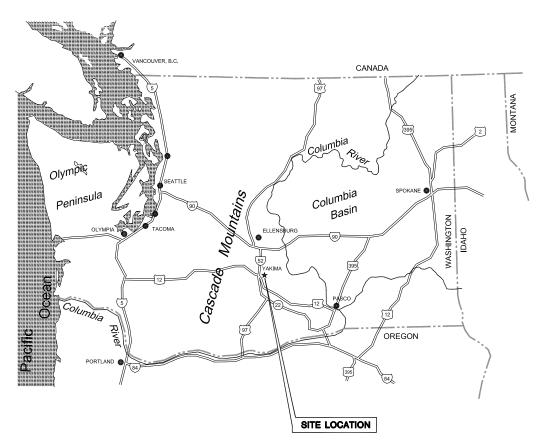
PARCEL NUMBER: 18132441442 LOT SIZE: .16 ACRE

LEGAL DESCRIPTION: YAKIMA: LOT 3 BLK 252

ONLINE ACCESS CODE: 003652468

106 S 3RD AVE ENGINEERING - STREETBREAK/CURB/SIDEWALK PERMIT

PROJECT: PROVIDING SUBSURFACE ELECTRIC CONDUIT FROM POLE ON WEST SIDE OF ALLEY TO NEW CONSTRUCTION FOR TEMP EQUIP BUILDING


The information contained in this application is correct and true. I understand that approval of this application will be based on the information contained herein and no work is authorized that is not stated here. I understand that the work performed must conform to City standards and specifications and that condition and fees are subject to change without notice.

I have read, and agree to abide by the conditions of this permit including all conditions of zoning, building codes, and State and Federal laws.									
SIGNATURE OF OWNER OR AGENT:	-		DATE:						
PRINTED NAME: .		_							
ISSUED BY:	Ellena Hazen	_	DATE ISSUED	: 05/08/2012					

Appendix B

Record Drawings

WASHINGTON STATE DEPARTMENT OF ECOLOGY FRANK WEAR SOIL VAPOR EXTRACTION SYSTEM YAKIMA, WASHINGTON

REGIONAL MAP

DRAWING INDEX

GENERAL SHEETS

COVER SHEET LEGEND, ABBREVIATIONS, NOTES, AND SYMBOLS

ENLARGED SITE PLAN

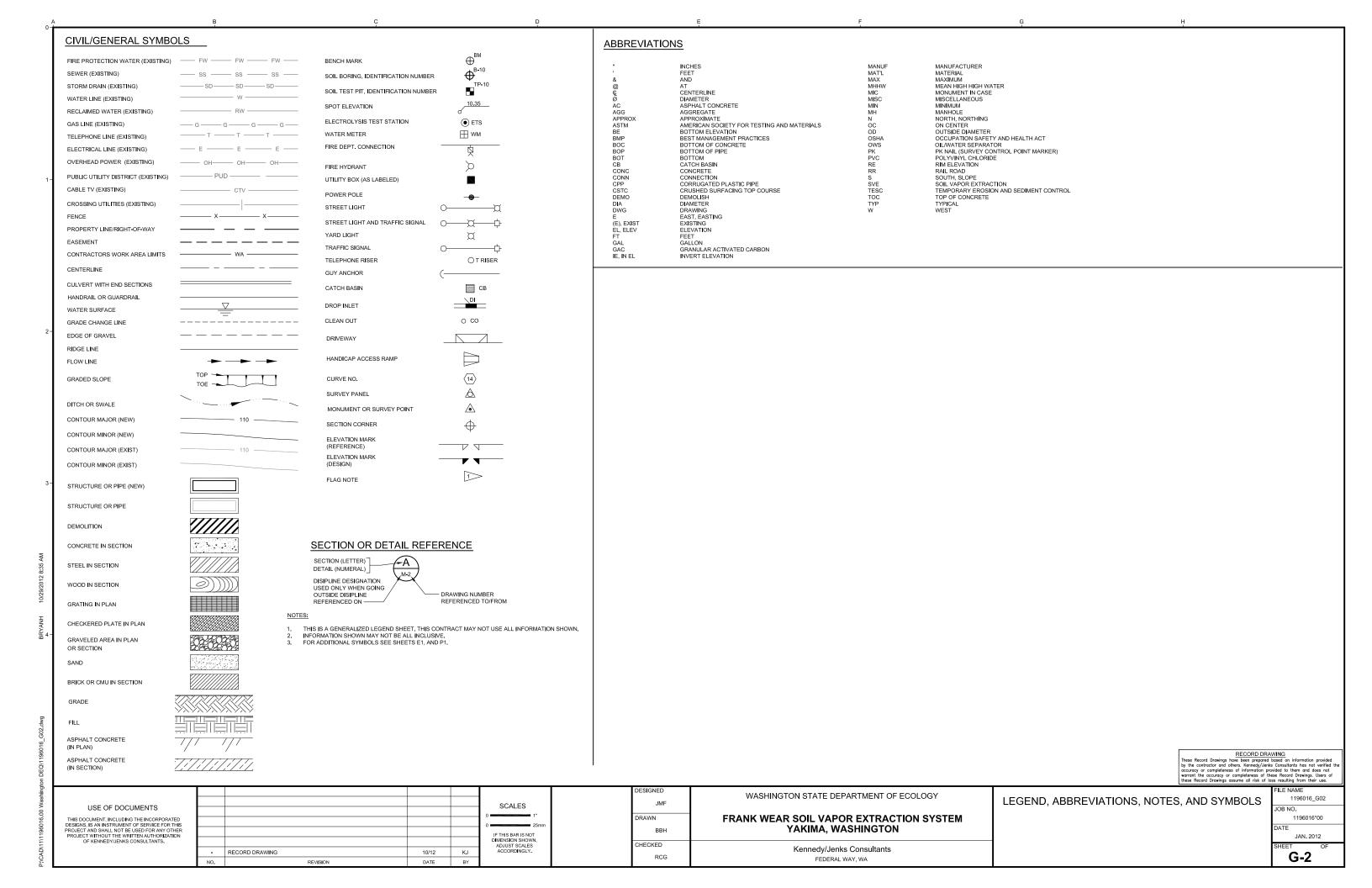
DETAILS EQUIPMENT BUILDING

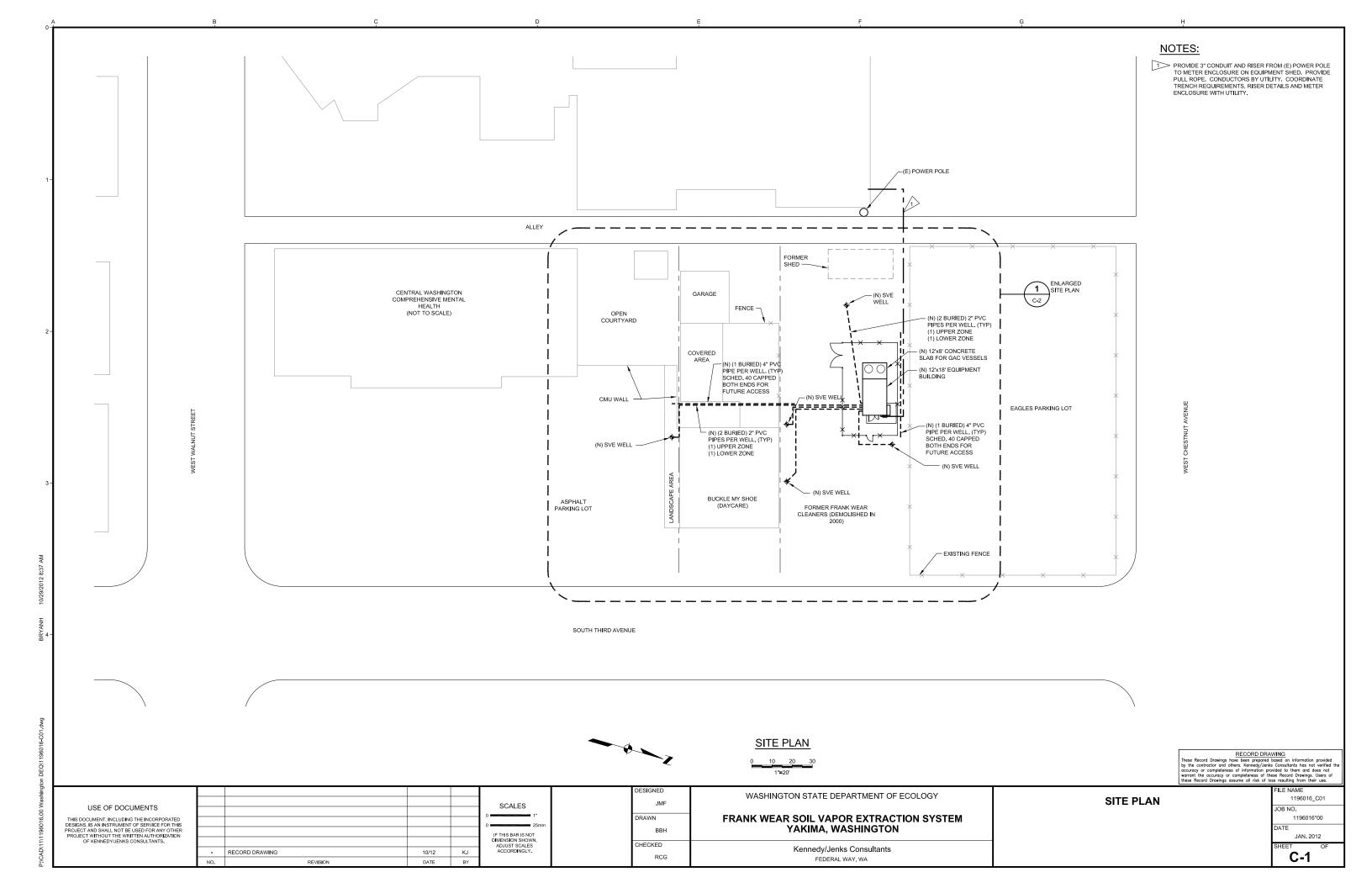
EQUIPMENT BUILDING MECHANICAL PLAN AND SECTIONS

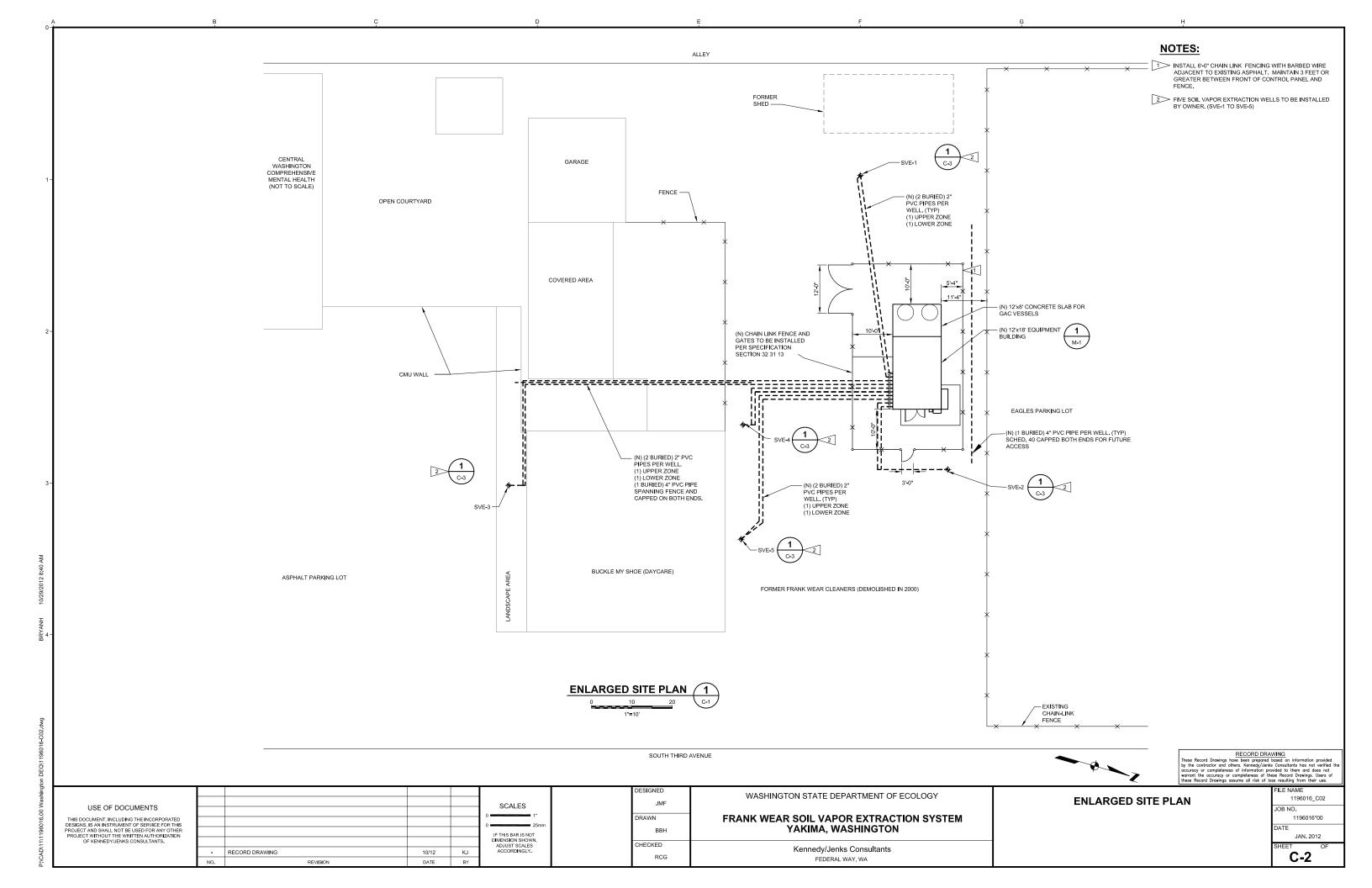
ELECTRICAL LEGEND, ABBREVIATIONS AND SYMBOLS

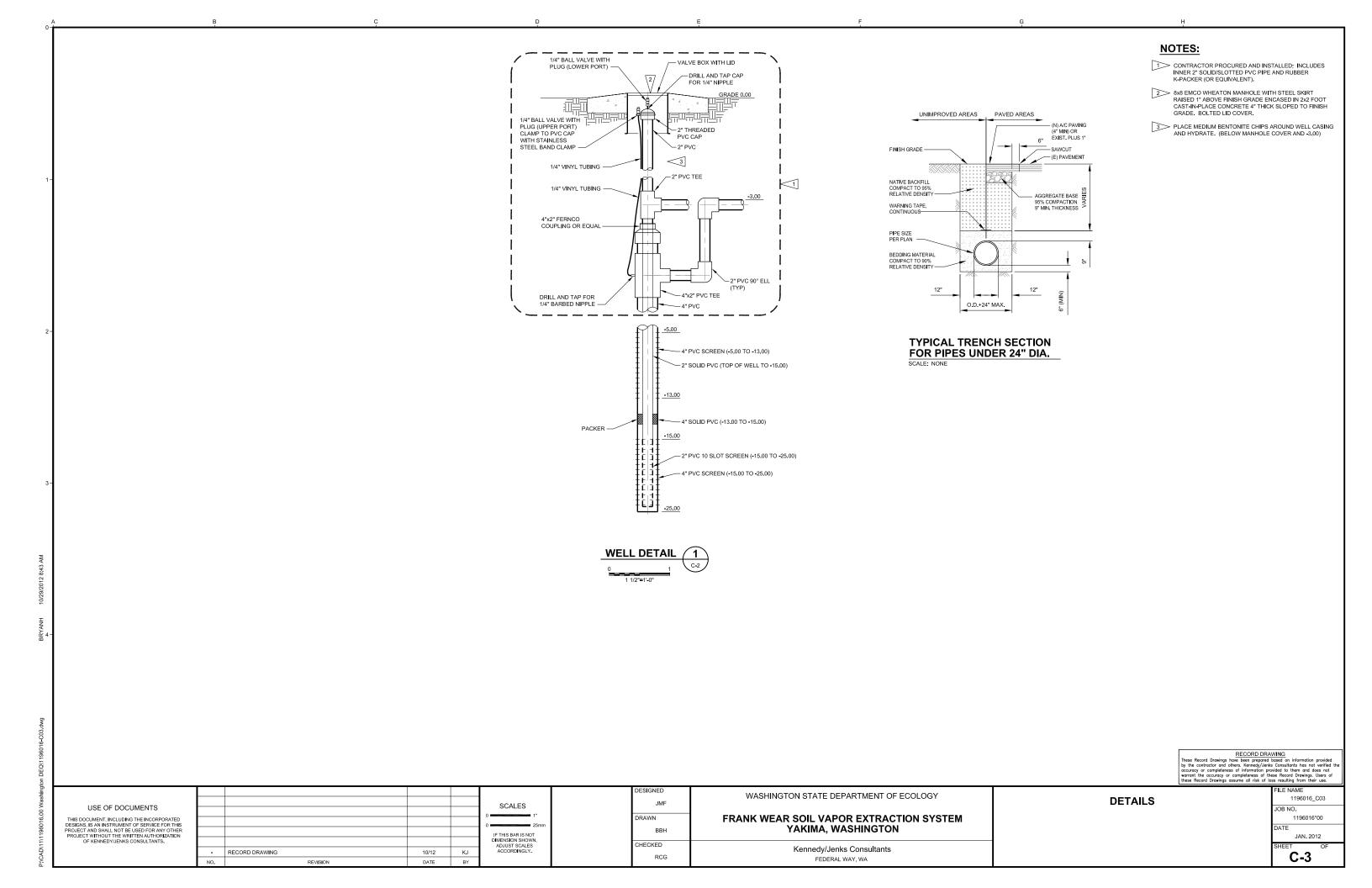
ELECTRICAL SINGLE LINE DIAGRAM AND EQUIPMENT BUILDING

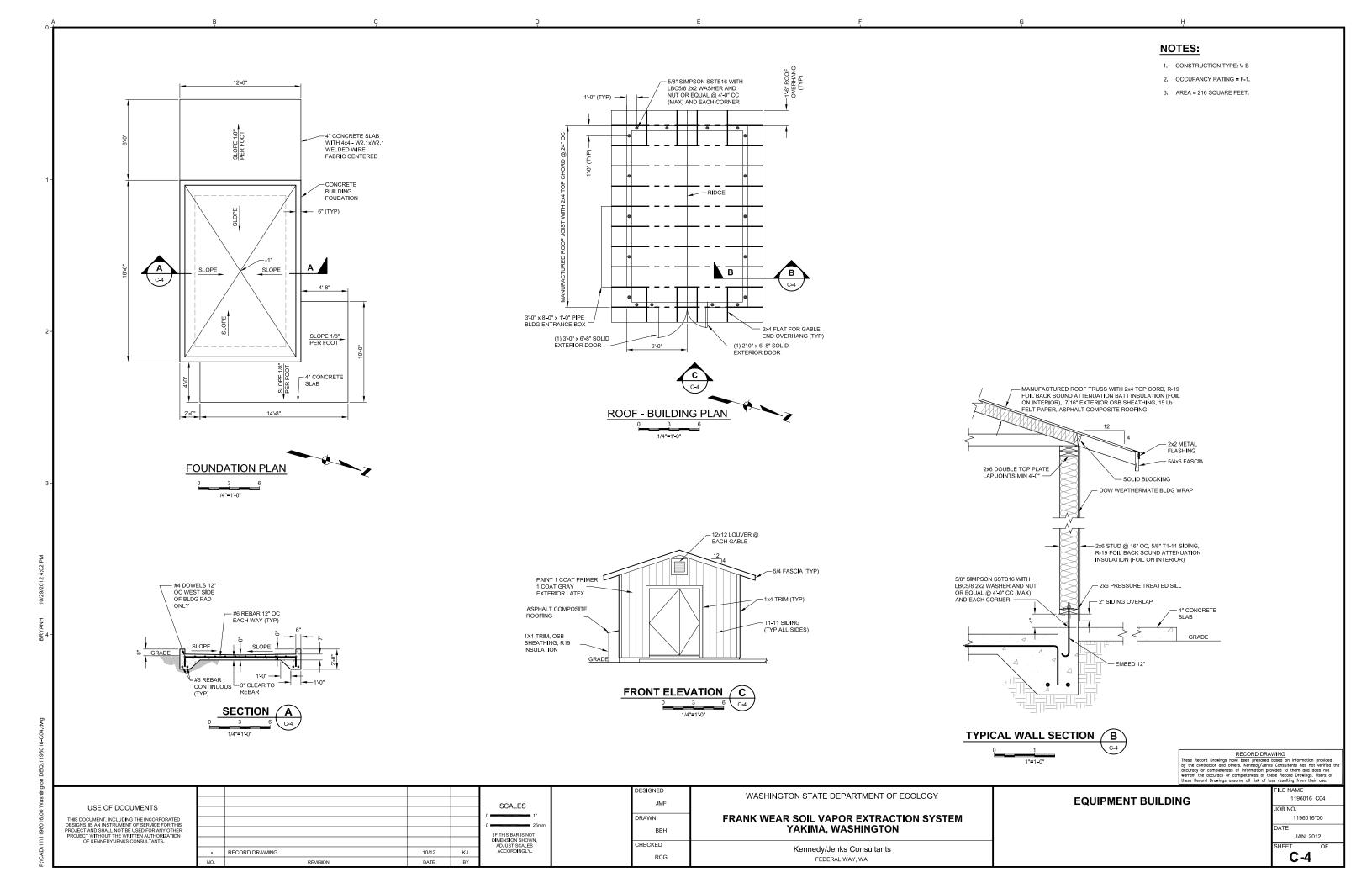
ELECTRICAL DETAILS AND SCHEDULES

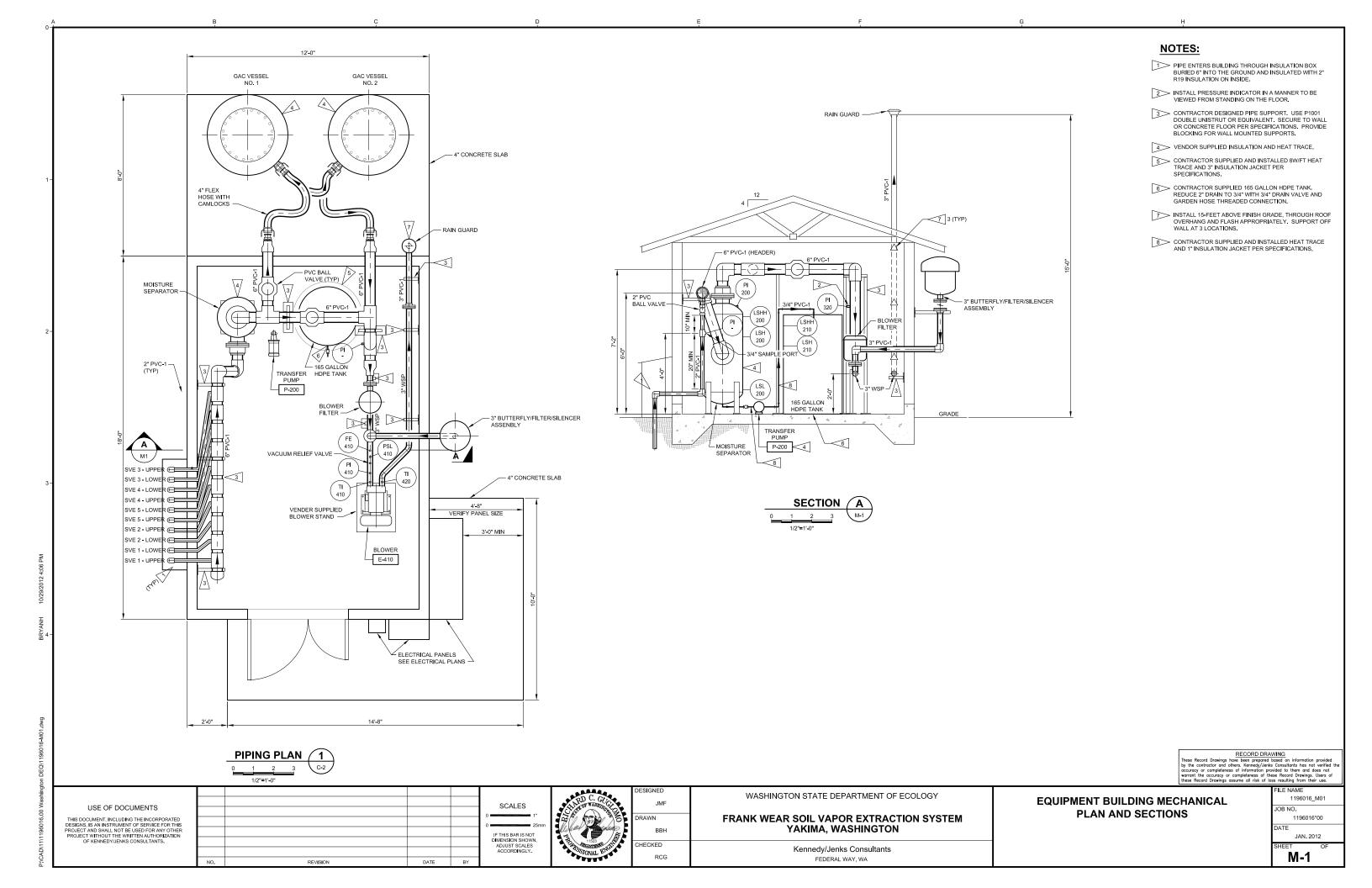

PROCESS AND INSTRUMENTATION DIAGRAM LEGEND

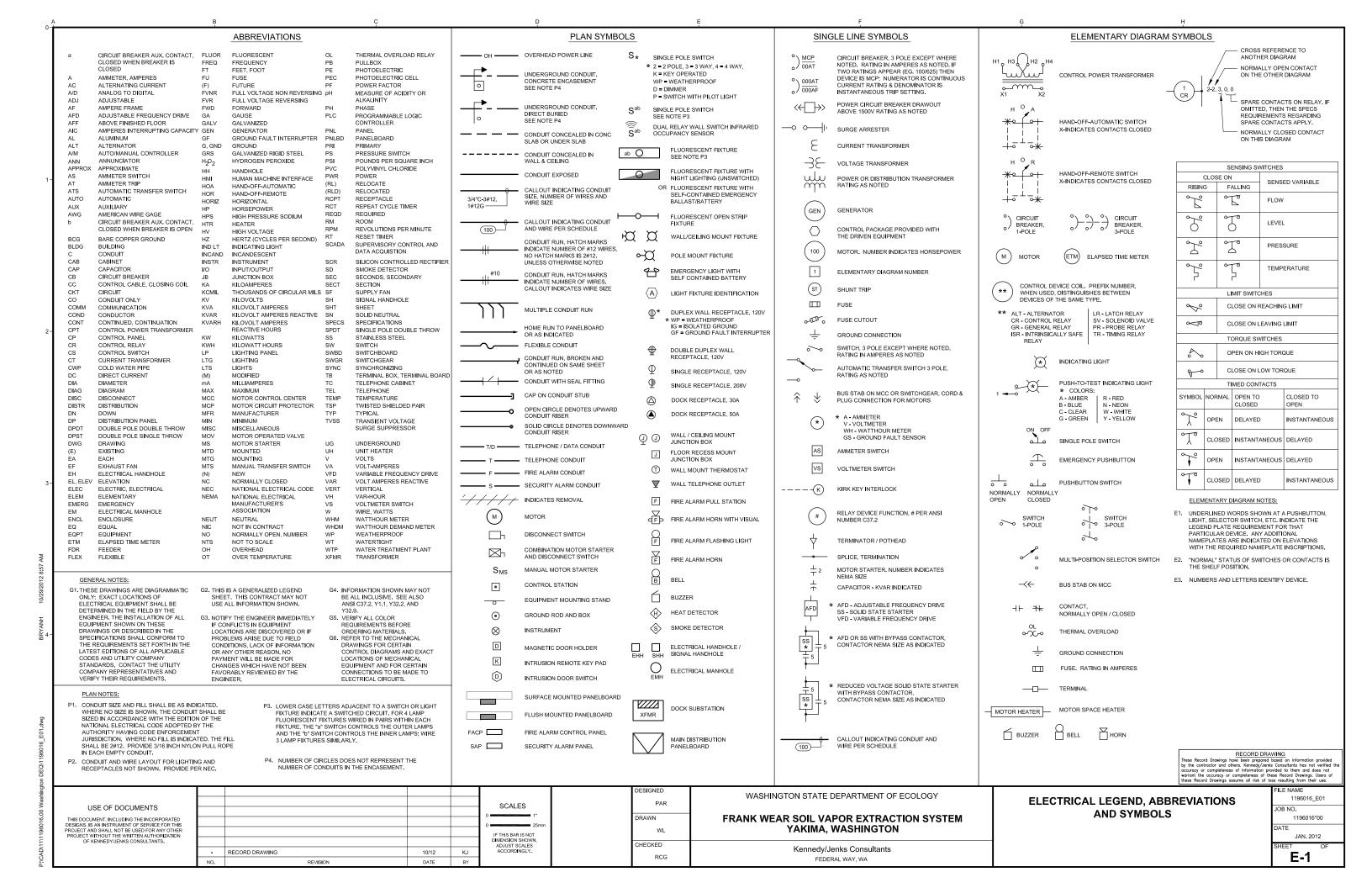

PROCESS AND INSTRUMENTATION DIAGRAM

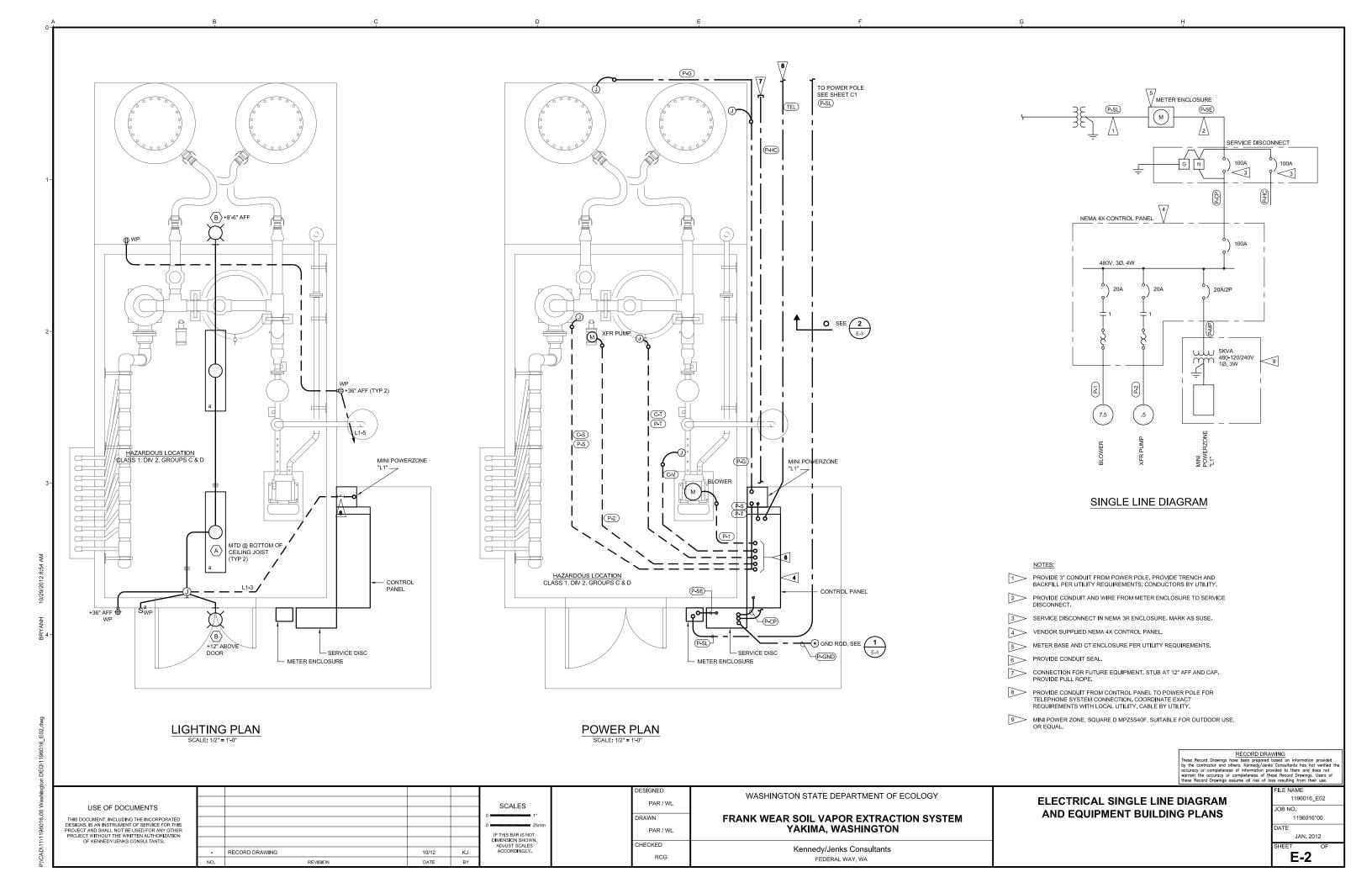



VICINITY MAP


WASHINGTON STATE DEPARTMENT OF ECOLOGY 1196016 G01 **COVER SHEET** JMF SCALES USE OF DOCUMENTS THIS DOCUMENT, INCLUDING THE INCORPORATED DESIGNS, IS AN INSTRUMENT OF SERVICE FOR THIS PROJECT AND SHALL NOT BE USED FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION FRANK WEAR SOIL VAPOR EXTRACTION SYSTEM YAKIMA, WASHINGTON IF THIS BAR IS NOT DIMENSION SHOWN ADJUST SCALES ACCORDINGLY. JAN. 2012 CHECKED Kennedy/Jenks Consultants **G-1**

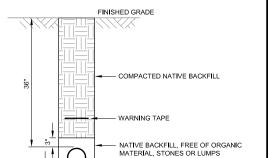






3 LIGHTING
5 RECEPTACLES
PHASE SUBTOTALS (KVA):
TOTAL KVA:

TOTAL AMPERES:


LOAD SUMMARY										
EQUIPMENT	CONNE	CTED LOAD	DEMAND	CALCULATED LOAD						
	HP	AMPERES	FACTOR	AMPERES						
BLOWER E-410	7.5	11.0	1.00	11.0						
PUMP P-200	0.5	1.0	1.00	1.0						
				0.0						
TRANSFORMER		8.3	0.80	6.7						
25% OF LARGEST MOTOR		2.8	1.00	2.8						
480/277V, 3-PHASE, 4-WIRE			TOTALS:	21						

	LIGHTING FIXTURE SCHEDULE									
SYMBOL	DESCRIPTION	CATALOG NO.	VOLTAGE	VA	LAMP TYPE	MOUNTING	MANUFACTURER			
A	INDUSTRIAL FLUORESCENT SUITABLE FOR CLASS 1 DIV 2 LOCATION	380-T8-2L-4-120	120	64	32W T8	CEILING	LDPI LIGHTING			
В	WALLPACK, COMPACT FLUORESCENT	TWS-32TRT-120-LPI	120	35	32W TRT	WALL	LITHONIA			

	CONDUIT AND WIRE SCHEDULE									
NUMBER	FROM	ТО	SIZE	POWER	CONTROL	SIGNAL	COMMENTS			
	POWER									
P-SL	UTILITYTRANSFORMER	METER ENCLOSURE	3"				CONDUIT ONLY. CONDUCTORS BY UTILITY			
P-SE	METER ENCLOSURE	SERVICE DISCONNECT	2"	4 #2, #2G						
P-GND	SERVICE DISCONNECT	GROUND ROD BOX	3/4"	1 #4			BARE COPPER			
P-CP	SERVICE DISCONNECT	CONTROL PANEL	2"	4 #2, #2G						
P-HC	SERVICE DISCONNECT	STUB UP LOCATION FOR FUTURE USE	2"				CONDUIT ONLY. PROVIDE PULL ROPE			
	MOTOR CONTROL									
P-1	CONTROL PANEL	BLOWER E-410	3/4"	3 #12, #12G	2#14					
P-2	CONTROL PANEL	PUMP P-200	3/4"	3 #12, #12G	2#14					
P-MP	CONTROL PANEL	MINI POWER ZONE	3/4"	2 #12, #12G						
	LIGHTING AND HEAT TRACE									
P-LGT	MINI POWERZONE	LIGHTING	3/4"	2 #12, #12G						
P-RCP	MINI POWERZONE	RECEPTACLES	3/4"	2 #12, #12G						
P-S	MINI POWERZONE	SEPARATOR HEAT TRACING	3/4"	2 #12, #12G			8W/FT, SELF-REGULATING			
P-T	MINI POWERZONE	TANK HEAT TRACING	3/4"	2 #12, #12G			8W/FT, SELF-REGULATING			
P-G	MINI POWERZONE	GAC UNIT HEAT TRACING	3/4"	3 #12, #12G			8W/FT, SELF-REGULATING			
	INSTRUMENTATION									
C-T	CONTROL PANEL	LSH-210 AND LSHH-210	3/4"		4#14					
C-S	CONTROL PANEL	LSL-200, LSH-200, AND LSHH-200	3/4"		6#14					
C-V	CONTROL PANEL	VACUUM RELIEF SWITCH	3/4"		2#14					
ΓEL	CONTROL PANEL	TELEPHONE CONNECTION	2"				CONDUIT ONLY. CABLE BY UTILITY			

CAST IRON TRAFFIC COVER EMBOSSED "GROUND ROD"-CAST IRON GRADE RING. ADJUST TO FINISHED GRADE-PRECAST CONCRETE BOX --9" MIN DIA GROUND CONNECTOR BURNDY TYPE GAR, GD OR GK BARE COPPER GROUNDING CONDUCTOR PEA GRAVEL COMPACTED EARTH CONDUIT-GROUND ROD 3/4"X10'-0" COPPER-CLAD STEEL — 10-3/8" MIN DIA

GROUND ROD & BOX INSTALLATION NOT TO SCALE

- 3" CONDUIT

E-2

 $\binom{2}{}$ E-2

NOTES: 1. ALL DIMENSIONS ARE MINIMUMS.

3" (TYP)

TYPICAL UNDERGROUND CONDUIT SECTION

NOT TO SCALE

RECORD DRAWING

These Record Drawings have been prepared based on information provided by the contractor and others. Kennedy (Alex Consultants has not verified th occuracy or completeness of information provided to them and does not worrout the occuracy or completeness of these Record Drawings. Users of these Record Drawings assume all risk of loss resulting from their use.

FRANK WEAR SOIL VAPOR EXTRACTION SYSTEM YAKIMA, WASHINGTON

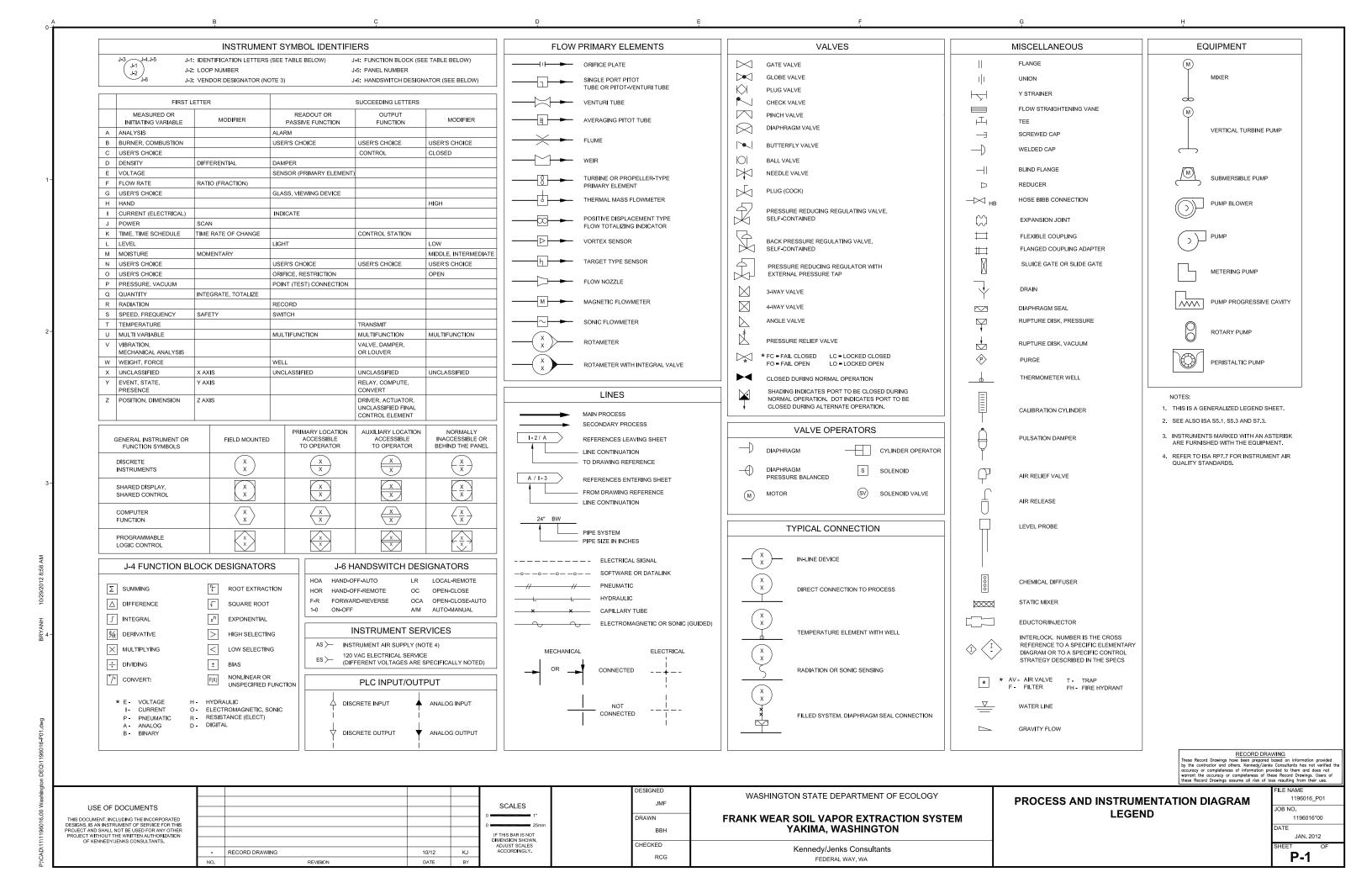
WASHINGTON STATE DEPARTMENT OF ECOLOGY

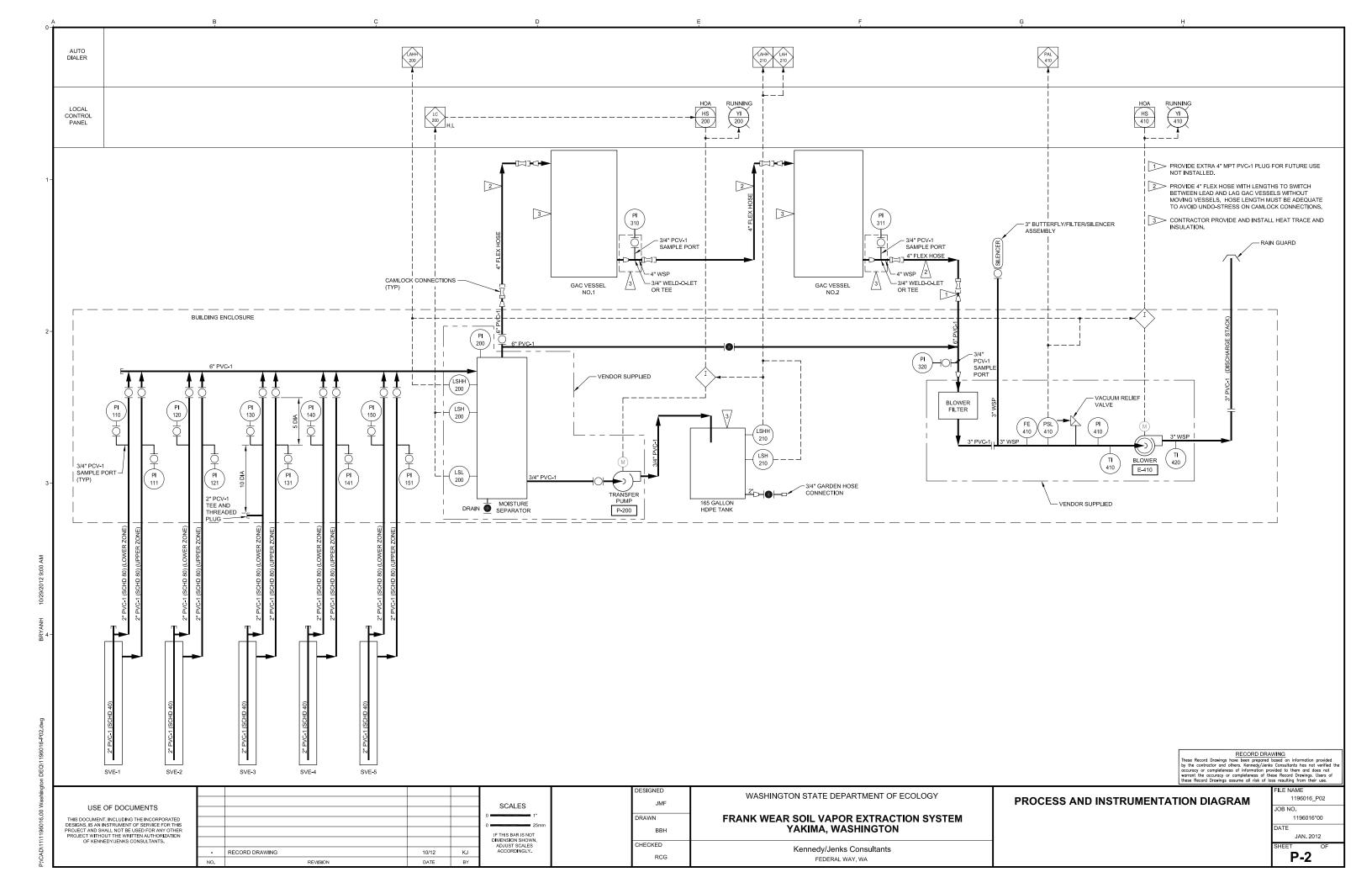
1196016_E03 JOB NO. 1196016*00 JAN. 2012

E-3

USE OF DOCUMENTS

THIS DOCUMENT, INCLUDING THE INCORPORATED DESIGNS, IS AN INSTRUMENT OF SERVICE FOR THIS PROJECT AND SHALL NOT BE USED FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF KENNEDYJJENKS CONSULTANTS.


SCALES IF THIS BAR IS NOT DIMENSION SHOWN, ADJUST SCALES ACCORDINGLY. 10/12 DATE


PAR DRAWN WL CHECKED

RCG

Kennedy/Jenks Consultants FEDERAL WAY, WA

ELECTRICAL DETAILS AND SCHEDULES

Appendix C

Boring and Well Construction Logs

nhole	Well Name SVE-1	
DRILLER	- Ton Runo	
Kaleb Charters	Project Name WA-DOE - Frank Wear	
DRILL BIT(S) SIZE 8" / 6"	Project Number1196016*07	
CASING FROM TO FT. N/A N/A		
	ELEVATION AND DATUM	
0 / 13 8 / 15	DATE STARTED DATE COMPLETED 3/28/12	
FROM TO FT.	INITIAL WATER DEPTH (FT)	
FROM TO FT.	N/A	
	LOGGED BY J. Sawdey	
FROM TO FT.	SAMPLING METHODS WELL COMPLETION	
FROM TO FT.	Split Spoon ■ SURFACE HOUSING	
0 3.5	□ STAND PIPE FT.	
PID USCS		
(ppm) LITHOLOGY LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS	
Well-	graded GRAVEL with sand	
Gray,	gray-brown, brown, sandy gravel with cobbles and	
bould	lers, up to 4" cobbles in cuttings, medium to coarse	
Sanu,	completely unconsolidated, very dry.	
' / -		
\$ \ \ \ \ \		
↓ ↓ ↓		
0.0 I I GW ⊢ -	e as above	
\ ' \	, as above	
' / -		
Trace	es of clay (<5%)	
Trace	es of silt (<5%)	
↓ ↓ ↓		
01	pove, with no clay and more silt (10%)	
	Name Name	

- NOTES

 1. bgs = below ground surface
 2. PID (ppm) = photoionization detector as recorded in parts per million
 3. No split spoons collected from this well / lithology determined by boring cuttings
 4. Sonic drilling advanced to 20.5' bgs. 10/20 Silica Sand used to place bottom of well at 20' bgs.

F-40.1 (6-87) (3-88) (8-90)

	<u> </u>							
BORING LOCATION Gravel parkir	ng lot, N of SVE-5	and SVE-4, adjac	ent to fe	ence		Well Name		SVE-2
DRILLING COMPANY Major Drilling		· •	DRILLER		narters		WA-	DOE - Frank Wear
DRILLING METHOD(S) Sonic			DRILL BIT(S) SIZE 8" / 6"			Project Name Project Number	***	1196016*07
ISOLATION CASING N/A			FROM N	то I/A	FT. N/A	ELEVATION AND DATE	UM	TOTAL DEPTH
BLANK CASING 4" Schedule 40 PVC				TO	7.75 FT. 14.75	DATE STARTED		19.8 ft. bgs
SLOTTED CASING	40 PVC; 20-slot		FROM 7.75	ТО	2.75 FT.	3/27/12 INITIAL WATER DEPTH	H (FT)	3/28/12
SIZE AND TYPE OF FILTER			FROM	4.75 TO 7	FT. 19.75	N/A LOGGED BY		
SEAL 3/8" Bentonite			FROM	то 3.5	FT.	J. Saw SAMPLING METHODS		WELL COMPLETION
GROUT Cement	е опрэ		FROM	ото О	FT.	Split Spoon		■ SURFACE HOUSING □ STAND PIPE FT.
SAMPLES	SAMPLE NUMBER	WELL CONSTRUCTION	PID (ppm) LITHO	USC LOC	s	SAMPLE DESCRIPTION AND DRILLING REMARKS		
50 for 1" - SS 0.125	Top 20/40 Silica Sand @ 12.75' Bottom 20/40 Silica Sand @ 14.75'		0.0	GW GW	Predde sandy cobbi sandy uncor	y, up to 50% sand in p e bits, up to 4" round s ranging from very fir	wnish g places, ed cobl ne to co slightly sand an	dampening with depth
NOTES 1. bgs = below groun		a recorded in parts p						
 DID (nnm) = nhoto 	nonization detector a	e recorded in norte n	or million					

2. PID (ppm) = photoionization detector as recorded in parts per million3. Sonic drilling advanced to 19.75' bgs. Split spoon sample collected from 19.75' to 21.75' bgs

F-40.1 (6-87) (3-88) (8-90)

Boring & Well Construction Log

Kennedy/Jenks Consultants

<u> </u>			ioti aotioi i	_09						J	
BORING LOCATION Adjacent to S side of childcare building							Well Name		SVE-3		
DRILLING COMPANY Major Drilling						DRILLER Kaleb Charters			Project Name WA-DOE - Frank Wear		DOE - Frank Wear
DRILLING METHOD(S) Sonic					DRIL	DRILL BIT(S) SIZE 8" / 6"			Project Number		1196016*07
					FROM TO FT.			N/A FT.	ELEVATION AND DATU	М	TOTAL DEPTH
BLANK CASING 4" S	G Schedu	le 40 F	PVC			FROM TO FT. 0 / 13 8 / 15			DATE STARTED		20.0 ft. bgs
SLOTTED CAS	SING		PVC; 20-slot		FROM TO FT. 8 / 15 13 / 20			FT.	3/27/12 3/27/12 INITIAL WATER DEPTH (FT)		
SIZE AND TYP	E OF FIL	TER PAC			FROM TO FT. 7 20.33			FT.	LOGGED BY		
SEAL	' Bento				FROM TO FT.				J. Sawo SAMPLING METHODS	dey	WELL COMPLETION
GROUT	nent	ille Ci	пръ		FRO		ТО	FT.	Split Spoon	■ SURFACE HOUSING □ STAND PIPE FT.	
SAMPLE							1	3.3			3 TAND FIFE 11.
	PENETR. RESIST. BLOWS/6'	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	PID (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	N AND D	PRILLING REMARKS
- SS 0.5	50 for 6	5- - - 10- - - - - - - - - - - - - - - -	Top 20/40 Silica Sand @ 13' Bottom 20/40 Silica Sand @ 15'		0.0		GW/	Predd predo with s cobbluncor	hattered boulder mate es up to 6", very well g isolidated, very dry	brown p to 20 erial, a graded	n, dark gray in part, 0%, and up to 20% sand, nd large rounded I, completely
NOTES			_						e as above, damp in pla minately brown	aces,	COIDI CHANGE LU

bgs = below ground surface
 PID (ppm) = photoionization detector as recorded in parts per million
 Sonic drilling advanced to 20.4' bgs. Split spoon sample collected from 20.4' to 22.4' bgs. 10/20 Silica Sand used to place bottom of well at 20' bgs.

Boring & Well Construction Log

Kennedy/Jenks Consultants

BORING LOCATION Adjacent to N s	Well NameSVE-4							
DRILLING COMPANY Major Drilling	DRILLER Kaleb Charters			Project Name WA-DOE - Frank Wear		DOF - Frank Wear		
DRILLING METHOD(S) Sonic	DRILL BIT(S) SIZE 8" / 6"			Project Number		1196016*07		
ISOLATION CASING N/A	FROM TO F			ELEVATION AND DATE	JM	TOTAL DEPTH		
BLANK CASING	FROM	TO	FT.	bgs		20.0 ft. bgs		
4" Schedule 40 SLOTTED CASING	PVC		0 / 13 FROM	8 /	/ 15 FT.	DATE STARTED 3/26/12		DATE COMPLETED 3/27/12
4" Schedule 40			8 / 15	13 /	20	INITIAL WATER DEPTH	H (FT)	
SIZE AND TYPE OF FILTER PA 10/20 and 20/40			FROM TO FT. 7 20.0		LOGGED BY			
SEAL			FROM TO FT.		J. Sawdey SAMPLING METHODS WELL COMPLETION			
3/8" Bentonite (nips		3.5 FROM	ТО	FT.	Split Spoon		■ SURFACE HOUSING
Cement SAMPLES	1	T	0	1	3.5	орис ороси		☐ STAND PIPE FT.
TYPE RECOV. PENETR. (FEET) RESIST. DEPTH (FEET) BLOWS/6*	SAMPLE NUMBER	WELL CONSTRUCTION	PID (ppm) LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND DRILLING REMARKS		
- SS 1 50 for 6" 10 - SS 0.5 1 50 for 6" 10 - SS 0.5 1 50 for 3"			0.0	GW/	Light and cobble grade	20% predominately ves up to 4" and large d, completely uncons	y-brow very find shatte solidate and ve ands (~	n, gravel with ~20% silt e to fine sand, with red boulders, very well ed, dry ery fine sands (<5%), 40%), well graded, dry

NOTES

1. bgs = below ground surface
2. PID (ppm) = photoionization detector as recorded in parts per million
3. Sonic drilling advanced to 20' bgs. Split spoon sample collected from 20' to 22' bgs.

Boring & Well Construction Log

Kennedy/Jenks Consultants

Doning & Wen Constitution Log		rtorinoay/oorii	ks oonsultants	
BORING LOCATION Adjacent to N side of childcare building		Well Name	SVE-5	
DRILLING COMPANY	DRILLER			
Major Drilling	Kaleb Charters	Project Name WA-DOE - Frank Wear		
DRILLING METHOD(S)	DRILL BIT(S) SIZE			
Sonic	8" / 6"	Project Number119	96016*07	
ISOLATION CASING	FROM TO FT.	ELEVATION AND DATUM TOTAL	AL DEPTH	
N/A	N/A N/A	bgs	20.0 ft. bgs	
BLANK CASING 4" Schedule 40 PVC	FROM TO FT. 0 / 13 8 / 15	ŭ	E COMPLETED	
SLOTTED CASING		3/26/12	3/26/12	
4" Schedule 40 PVC; 20-slot	FROM TO FT. 8 / 15 13 / 20	INITIAL WATER DEPTH (FT)		
SIZE AND TYPE OF FILTER PACK	FROM TO FT.	N/A		
10/20 and 20/40 Silica Sand	7 20.5	LOGGED BY		
SEAL	FROM TO FT.	J. Sawdey		
3/8" Bentonite Chips	3.5 7	SAMPLING METHODS WELI	L COMPLETION	
GROUT	FROM TO FT.	Split Spoon ■ St	URFACE HOUSING	
Cement	0 3.5		TAND PIPE FT.	
SAMPLES WELL CONSTRUCTION				
PECOV PENETR. DEPTH SAMPLE NUMBER	PID (ppm) LITHOLOGY USCS LOG	SAMPLE DESCRIPTION AND DRILLIN	NG REMARKS	
TYPE RECOV. RESIST. (FEET) BLOWS/6"	(55.11)			
	SM SM South	SAND		
	SM Dark	brown, motled brown and gray, si	ilty sand, somewhat	
50 for 2"	\	y, some gravel, dry		
	Well-	graded GRAVEL with silt and sa	nd	
- -		brown, dark gray, gravel with <5°		
	♦ Glay,	arse sand, large (upto 4") rounded	d cophles damp-dry	
	`	noc sand, large (apto 4) rounded	a cobbico, damp ary	
5- 1 34 5-	-0.1 			
- SS 1 50 for 4"	4			
	k			
	·` ∦			
	r i i i			
- 10- 10- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	0.0 SW/			
- SS 0.5 ⁵⁰ for 5.5"		e as above, more silt (~25%) and		
- SS 0.5 ^{30 101 5.5}	GM conte	nt, large broken cobbles up to 6",	, ary	
	——			
Top 20/40				
- Silica Sand @				
Bottome 20/40 Silica Sand @	0.1			
	<u>□.</u>			
- ss 0.1 50 for 5" 15'				
		as above, more silty (~40-50%),	, with traces of sand	
- 	\(\) - (<5%))		
<u> 20</u>	0.1			

NOTES

1. bgs = below ground surface
2. PID (ppm) = photoionization detector as recorded in parts per million
3. Sonic drilling advanced to 20.5' bgs. Split spoon sample collected from 20.5' to 22.5' bgs. 10/20 Silica Sand used to place bottom of well at 20' bgs.

Appendix D

Site Photographs

Photo 1 – Anderson Environmental Contractors (AEC) mobilizing to the site and securing with fence. 4/23/12

Photo 2 - Excavating around SVE wells. 4/23/12

Photo 3 - Excavating SVE well trench from SVE-5. 4/24/12

Photo 5 - Excavation by hand to SVE-3 on the southern side of the childcare center building. 4/25/12

Photo 6 - Stockpiled spoils covered and weighed down. 4/25/12

Photo 7 - Childcare center courtyard fenced-off prior to excavation. 4/26/12

Photo 8 - Excavating in childcare center courtyard for SVE-3. 4/26/12

Photo 9 - Trench approximately 2 feet in depth with temporary shoring. 4/26/12

Photo 10 - Security fencing around SVE-3. 4/27/12

Photo 11 - Preparing pipe connections for SVE-3 well configuration. 4/27/12

Photo 12 - Trenching to SVE-4 and SVE-5 looking east. 4/28/12

Photo 13 - Backfilling and compacting trench in childcare center courtyard. 4/28/12

Photo 14 - Completed trench to SVE-3 with additional 4-inch PVC from wood fence and cored through concrete wall on south. 4/29/12

Photo 15 - Completed courtyard. 4/29/12

Photo 16 - Excavation for trenches to SVE-2, SVE-3, SVE-4, and SVE-5 completed. Spoils on lined and covered stockpiles. Imported beddings, sand and 1-1/4-inch backfill material onsite. 4/30/12

Photo 17 - Schedule 80 PVC 2-inch piping to SVE wells. Pipes on pressure test. 4/30/12

Photo 18 - Measuring placement of 2-inch drop pipe for lower zone SVE operation. 5/01/12

Photo 19 - SVE well pipe connection showing the lower zone 2-inch piping above and the upper zone 4-inch annular space piping below. 5/01/12

Photo 20 - Tubing to measure pressure and/or vapors from upper zone 4-inch annular space. 5/01/12

Photo 21 - Bedding piping within the trench. 5/01/12

Photo 22 - SVE-1 trench backfilled and compacted. 5/02/12

Photo 23 - Pressure testing of all upper and lower zone SVE well piping. 5/02/12

Photo 24 - Excavating for utilities: Electrical and communications. 5/03/12

Photo 25 - Preparing well for completion with concrete monument. 5/03/12

Photo 26 - Utility trench with 4-inch Schedule 40 PVC spare for future groundwater recirculation lines. 5/04/12

Photo 27 - Secured construction site. 5/04/12

Photo 28 - Excavating for SVE utility building foundation. 5/07/12

Photo 29 - Foundation with 12-inch crushed base course and formwork for concrete pour. 5/08/12

Photo 30 - Reinforced steel, #6 bar on 1 foot centers for SVE utility building foundation. 5/08/12



Photo 31 - Pouring concrete slab for SVE utility building foundation. 5/08/12

Photo 32 - Slump test, entrained air, and concrete test cylinders. 5/08/12

Photo 33 – Finishing for SVE utility building foundation. 5/08/12

Photo 34 - Removing forms and compaction around SVE utility building foundation. 5/14/12

Photo 35 - Preparing piping for manifold/SVE utility building entrance. 5/15/12

Photo 36 - Dowelled and epoxied #4 bar for GAC unit equipment slab. 5/15/12

Photo 37 - Preparing for SVE utility building walls. 5/16/12

Photo 38 - SVE utility building walls. 5/17/12

Photo 39 – SVE utility building with vapor barrier. 5/18/12

Photo 40 - SVE 2-inch piping spaced for utility building entrance and manifold. 5/22/12

Photo 41 - AEC collecting confirmation samples of import material trench fill for chemical analysis. 5/22/12

Photo 42 - Forming for GAC unit equipment slab. 5/23/12

Photo 43 - Constructing SVE utility building roof. 5/30/12

Photo 44 - Constructing utility building SVE manifold. 5/30/12

Photo 45 - Z-flashing on utility building and caulking. 5/31/12

Photo 46 - SVE manifold and moisture separator. 5/31/12

Photo 47 – GAC unit equipment pad poured. 5/31/12

Photo 48 - Backfill material removed due to results of chemical analysis. 5/22/12

Photo 49 - Replacing removed contaminated 1-1/4-inch base course with clean 5/8-inch structural fill. 6/05/12

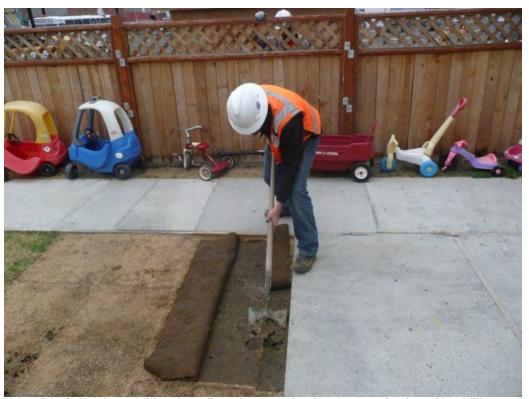


Photo 50 - Collecting additional confirmation samples for characterization of backfill material. 6/05/12

Photo 51 - Collecting additional confirmation samples for characterization of backfill material. 6/05/12

Photo 52 - Preparing to cross alleyway with utility trench. 6/06/12

Photo 53 - Equipment and piping extent constructed inside SVE utility building. 6/07/12

Photo 54 – GAC cans to be placed on concrete pad outside of utility building. Bedding sand and 5/8-inch crushed stone top course or structural fill. 6/08/12

Photo 55 – GAC units position on concrete pad and connected. 6/14/12

Photo 56 – Box extended to cover piping transition from above ground to below and protected with insulation inside. 6/14/12

Photo 57 – Spare conduit stubbed up to connect electrical to service disconnect panel. 6/15/12

Photo 58 – Meter box, service panel, and SVE control panel. 6/15/12

Photo 59 - Playground trench re-excavated to remove impacted 1-1/4-inch CSBC. Chemical analysis detected polycyclic aromatic hydrocarbons (PAHs) in previous confirmation samples. 6/15/12

Photo 60 – Power company installing new transformers for service to SVE system. 6/21/12

Photo 61 - Fence installed around SVE utility building. 6/21/12

Photo 62 – Concrete entrance pad poured. 6/21/12

Photo 63 – Installing subslab monitoring point SS-4 inside the childcare center. 6/22/12

Photo 64 - Installing subslab monitoring point SS-5 inside the childcare center. 6/22/12

Photo 65 - View down SS monitoring point to soil under childcare center foundation. 6/22/12

Photo 66 - Re-excavating second half of playground to remove impacted 1-1/4-inch import to clean 5/8-inch material on northern side of fence. Chemical analysis detected PAHs in previous confirmation samples. Replacing with clean 5/8-inch CSTC. 6/26/12

Photo 67 - Insulation and foilback inside SVE utility building. 6/27/12

Photo 68 - Water in discharge tank after testing pump and floats on Vapor Liquid Separator (VLS). Caution tape and "HOT" labels on piping. 7/3/12

Photo 69 - Completed labeling and testing of extraction manifold. 7/12/12

Photo 70 - VLS and double bubble foil insulation. 7/12/12

Photo 71 - SVE blower, inlet filter, and discharge temperature gauge. 7/12/12

Photo 72 – Control panel located on exterior of SVE utility building. 7/12/12

Photo 73 - Transformer and air dilution valve on exterior of SVE utility building. 7/12/12

Photo 74 – GAC cans with insulation over heat trace. 7/12/12

Appendix E

Construction Records

PLSA ENGINEERING & SURVEYING 1120 W LINCOLN AVE YAKIMA, WASHINGTON 98902

LETTER OF TRANSMITTAL

	(509) FAX (50	5 75-69 9	90 i993		1	DATE 6	5/9/12.	JOB NO. /2080
A	UDERSON I	ENVIRO	NMENT	AL.	_	RE 10	06 S. 36	DAVE -YAKIMA
70	5 COL	00 10	~ ST				<u> </u>	19121911
1	ELSO WA	406	066			_		
		. 4						
E ARE S	SENDING YOU	X Atta	ached [Under separa	te cover via			the following items:
	☐ Shop drawi							☐ Specifications
	☐ Copy of lett	er	☐ Chan	ge order	<u> </u>			
OPIES	DATE	NO.				DE:	SCRIPTION	
<u>!</u>	_			AR FIELD				
	_		MOIST	URE / DENS	ITY RES	7701	<i>J</i>	
ESE AR	E TRANSMITTE		ked below:					
	For approv							copies for approval
	For your u				as noted			copies for distribution
	☐ For review		ment					corrected prints
								NED AFTER LOAN TO US
ARKS							T KIN 13 KE TUK	INED AFTER LUAIN TO US
		_						
Y TO_							11	10
					SIGI	NED:	144 6	1m

PLSA Engineering and Surveying

m-vil PACIFUL

1120 West Lincoln Ave. Yakima, WA 98902 (509) 575-6990

Project:	ANDERSON	ENVIRONMENTAL
Job #:	120,40	
Date:	5/2/12	
Perform	ed By: TC	

Nuclear Relative Density Test Data ASTM D2922

	I REDUCH!	BACKALL							
Test Number	<u>L</u>					T	Τ		
Location	NORTH OF SOUTH SYSTEM	ENST OF WEST SYSTEM							
Elevation	top of F	ILL			 		†		
Mode / Depth	P/611_				1	 			
% Oversize			-		 		 	 	
Soil Description	CRUSHER) 	<u> </u>						
Wet Density	136.7	135.0			 		 		<u> </u>
Dry Density	128.2	127.4			 		 		
% Moisture	6.6	6.0				 	 		
Max Obt. Density	133.3						 	 	 i
Opt. Moisture %	6.0						 -	 	
% Relative Comp.	96.2	95.6						 	

Standard Count	Remarks:	BACKFILL OF FILTER SYSTEM TRENCHES. TO CHUSHED ROCK
Density:		ADDED & COMPACTED IN SHALLOW LIFTS. COMPACTION
Moisture:		REGULARIMENTS MET.

PLSA ENGINEERING 1120 West Lincoln Yakima, WA 98902 (509) 575-6990

Technician: Method: Sample Origin:

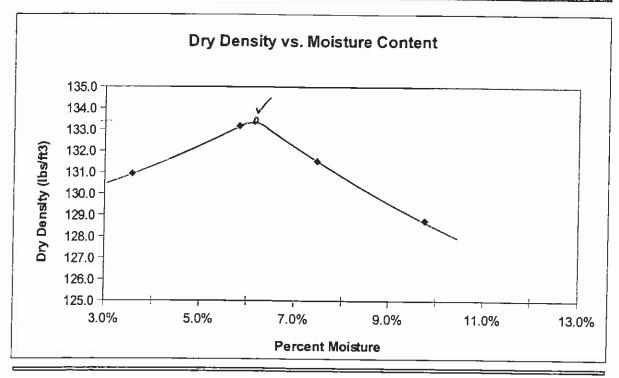
DISST CRUSHED RULL

Max Density: Opt. Moisture: 133 3

Project:
Job Number:
Date:

ANDERSON EMPVIEON

Notes:


MENCH BACKFILL

Moisture - Density Determination Proctor

Est. Moisture Content	3 3	5	7	9	THE LAND AND THE THE PARTY OF MANY
Vol. Of Proctor Mold (ft³)	.075	.075	.075	.075	
Wt. Wet Soil + Mold (lbs)	24.75	25.15	25.18	25.18	
Wt. Mold (lbs)	14.58	14.58	14.58	14.58	
Wt. Wet Soil (lbs)	10.17	10.57	10.60	10.60	
Wet Density (lbs/ft³)	135.6	140.9	141.3	141.3	
Dry Density (lbs/ft³)	130.9	133.2	131.5	128.8	

Moisture Determination

Can #		2	3	4	200 St 620 / Stor Ac
Wt. Damp Soil + Tare(g)	505.3	506.5	504.0	505.7	En passing and
Wt. Dry Soil + Tare (g)	487.9	478.6	469.0	460.7	1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a
Wt. Moisture (g)	17.4	27.9	35.0	45.0	
Wt. Tare (g)	LESSING PROPERTY.	en complete	MALES STREET	Lancas (Co.)	S
Wt. Dry Soil (g)	487.9	478.6	469.0	460. 7	
% Moisure	3.6%	5.8%	7.5%	9.8%	

CENTRAL PRE-MIX CONCRETE CO. FIELD CONCRETE TEST REPORT

ROJECT:		Ando	erson Envir	onmental				DATE:	05/	/09/12
ONTRACTOR:		Ande	erson Envir	onmental				TIME: 10:00		0:00
OCATION OF PLACEME	ENT:	: 106 S. 3rd Ave						TRUCK NO: 43		43
YPE OF PLACEMENT:			c	hute				TICKET NO:	24	54970
IX DESCRIPTION:			31	5060						
EQUIRED STRENGTH:	5000	PSI@ 28	DAYS	CEMENT-	BRAND:		Lafarge I-I	I CONO	C. TEMP:	65
DMIXTURES:	Zyla630		oz		ASH:		Flyash - F	AII	R TEMP:	
	AT60	OZ		Adva195	•		-		WIND:	
	D-400		oz						PLANT:	24
	Т	otal Load	<u> </u>						-	
	Batched			Moist	tures		Free Water			
AGGREGATE			1 1/2			1 1/2	0	Con	c. + Pot	45.15
	10640		3/4	-0.5		3/4	-53	Po	ot Wt.	7.58
	2160		3/8	-0.5		3/8	-11	Vo	olume	0.250
SAND	9440		Sand	2.5		Sand	230			
CEMENT		3912					Total			
FLY ASH	FLY ASH 688						165.9			
WATER(GAL.X 8.3	33)	1676.0								
WATER ADDED										
ADMIXTURES		0.0								
AGGREGATE		28516.0								
						T. (7 0 3 74 D 1	20	
						LC	DAD SIZE: _	7.0 YARI	JS	
	3.25	·								
	1.5	i				Т	ESTED AT J	OBSITE	nm	
	27.11	Yield YD	3 7.03	7		•	LOTED III 0	OBBITE		
W/C	0.40		<u> </u>	_		TES	TED AT PLA	NTSITE		
OWINDER	1 405	DATE	1 5	A.T.C.	E01		Tot	AL LOAD	1 /////	T. L. O.A.D.
CYLINDER NUMBER	AGE DAYS	DATE RECEIVED		ATE STED	ENI ARE		1017	AL LOAD		T LOAD P.S.I.
464	7	5/10/2012		5/2012	12.5		6	6985		330
465	28			/2012						
466	28			/2012						
467	28		6/6	/2012						
REMARKS:										

SIGNATURE:

62-76

Cure Temps.

nm

** DUPLICATE TICKET **

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626 Site 40
Ticket 098065
Date In 05/17/12
Time In 14:16
Date Out 05/17/12
Time Out 14:31:21

Weighmaster NANCY Origin WASH ST

· 田田

Ref. YAKIMA

Grid

DESCRIPTION

Scale 1 Gross Wt. 102840 LB Vehicle TRAIL
Scale 1 Tare Wt. 38860 LB Roll-Off

Net Wt.

63980 LB

TON

31.99

OTHER SOILS per TON

PO #

2042-12-039

NOTE

DRIVER

DIETRICH 8503

BY SIGNING THIS, I CERTIFY THAT THIS DISPOSAL MATERIAL ORIGINATED IN THE COUNTY/STATE AS STATED ABOVE. I ALSO CERTIFY THAT TO THE BEST OF MY KNOWLEDGE THIS LOAD CONTAINS NO HAZARDOUS WASTE.

Signature _____

258.67 Tans.

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site 40 Ticket 098080 Date In 05/18/12 Time In 07:00 Date Out 05/18/12 Time Out 07:30:19

Weighmaster Linda Origin WASH ST

77 Sept. 19 1

Ref. YAKIMA

Grid

DESCRIPTION

Scale 1 Gross Wt. 104280 LB Scale 1 Tare Wt. 39180 LB Vehicle TRAIL

Roll-Off

Net Wt. 65100 LB

TON 32.55

OTHER SOILS per TON

PO # 2042-12-039

NOTE

DRIVER

DIETRICH 8503

Signature			

** DUPLICATE TICKET **

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site 40 Ticket 098081 Date In 05/18/12 Time In 07:00 Date Out 05/18/12 Time Out 07:26:33

Weighmaster Linda Origin WASH ST Ref. YAKIMA

Grid

DESCRIPTION

Scale 1 Gross Wt. 104600 LB

Vehicle TRAIL

Scale 1 Tare Wt. 39940 LB

Roll-Off

Net Wt.

64660 LB

TON 32.33

OTHER SOILS per TON

PO # 2042-12-039

NOTE

DRIVER

DIETRICH 8504

Signature		
Signature		

** DUPLICATE TICKET **

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site 40 Ticket 098079 Date In 05/18/12 Time In 06:59 Date Out 05/18/12 Time Out 07:14:51

Weighmaster Linda Origin WASH ST Ref. YAKIMA

Grid

DESCRIPTION

Scale 1 Gross Wt. 104920 LB Scale 1 Tare Wt. 39940 LB Vehicle TRAIL

Roll-Off

Net Wt. 64980 LB

TON 32.49

OTHER SOILS per TON

PO # 2042-12-039

NOTE

DRIVER DIETRICH 8508

Signature				

** DUPLICATE TICKET **

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site 40 Ticket 098115 Date In 05/18/12 Time In 10:09 Date Out 05/18/12 Time Out 10:42:09

Weighmaster Linda Origin WASH ST Ref. YAKIMA

Grid

DESCRIPTION

Scale 1 Gross Wt. 105820 LB Scale 1 Tare Wt. 39420 LB

Vehicle TRAIL

Roll-Off

Net Wt.

66400 LB

TON

33.20

OTHER SOILS per TON

PO # 2042-12-039

NOTE

DRIVER

DIETRICH 8509

Signature			

000679

ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site Ticket 098057 Date In 05/17/12 Time In 13:09 Date Out 05/17/12

Weighmaster NANCY Origin WASH ST Time Out 13:25:06 Ref. YAKIMA

DESCRIPTION

Scale 1 Gross Wt. 102280 LB

Vehicle TRAIL

Scale 1 Tare Wt. 39680 LB

Roll-Off

Net Wt.

62600 LB

TON

31.30

Grid

OTHER SOILS per TON

PO #

2042-12-039

NOTE

DRIVER

DIETRICH 8508

Signature			
Sidnatille			

** DUPLICATE TICKET **

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site 40
Ticket 098061
Date In 05/17/12
Time In 13:36
Date Out 05/17/12
Time Out 14:01:26

Weighmaster NANCY Origin WASH ST

Ref. YAKIMA

32.13

Grid

DESCRIPTION

Scale 1 Gross Wt. 103720 LB Vehicle TRAIL
Scale 1 Tare Wt. 39460 LB Roll-Off
Net Wt. 64260 LB TON

OTHER SOILS per TON

PO # 2042-12-039

NOTE

DRIVER DIETRICH 8504

000679 ANDERSON ENVIRONMENTAL BRETT MACDONALD 705 COLORADO STREET KELSO WA 98626

Site Site 40 Ticket 098073 Date In 05/17/12 Time In 14:59 Date Out 05/17/12 Time Out 15:34:03

Weighmaster NANCY Origin WASH ST Ref. YAKIMA Grid

32.68

DESCRIPTION

Scale 1 Gross Wt. 104480 LB Vehicle TRAIL Roll-Off Scale 1 Tare Wt. 39120 LB TON 65360 LB Net Wt.

OTHER SOILS per TON

PO#

2042-12-039

NOTE

DRIVER DIETRICH 8509

Signature

Appendix F

Import Backfill Laboratory Analytical Reports and Chain-of-Custody Documentation

TABLE 1: Initial import sampling results with 1-1/4-inch crushed stone base course ("Pit Run") identified has having contaminants.

Sample ID	Benzo(a)- anthracene	Benzo(a)- anthracene	Chrysene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(a)-pyrene	Indeno(1,2,3- cd)pyrene	Dibenz(a,h)- anthracene	Total cPAHs (μg/kg) ^(a)	Total cPAHs (μg/kg) ^{(a)(b)}
Pit Run Backfill	48	48	82	100	33	66	68	<40	91.72	93.72
TEFs	0.1	0.1	0.01	0.1	0.1	1	0.1	0.1	(c)	(c)

TABLE 2: Second test of import material from five locations in trench collected 5/23/12. Sample locations approximately 6 inches below ground surface. See Figure 2.

Analyzed by Valley Environmental. RL at 0.01 milligrams per kilogram (mg/kg).

Sample ID	Benzo(a)- anthracene	Benzo(a)- anthracene	Chrysene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(a)-pyrene	Indeno(1,2,3-cd)- pyrene	Dibenz(a,h)- anthracene	Total cPAHs (µg/kg) ^(a)	Total cPAHs (μg/kg) ^{(a)(b)}
S1	<10	<10	<10	<10	<10	<10	<10	<10	0	75.5
S2	84	84	84	105	23	56	57	<10	83.74	88.74
S3	22	22	11	17	10	10	10	<10	16.01	21.01
S4	160	160	254	293	67	175	156	37	248.84	248.84
S5	<10	<10	<10	<10	<10	<10	<10	<10	0	75.5
TEFs	0.1	0.1	0.01	0.1	0.1	1	0.1	0.1	(c)	(c)

TABLE 3: Third test of import material from five locations in trench collected 6/5/12. Sample locations approximately 6 inches below ground surface. See Figure 3.

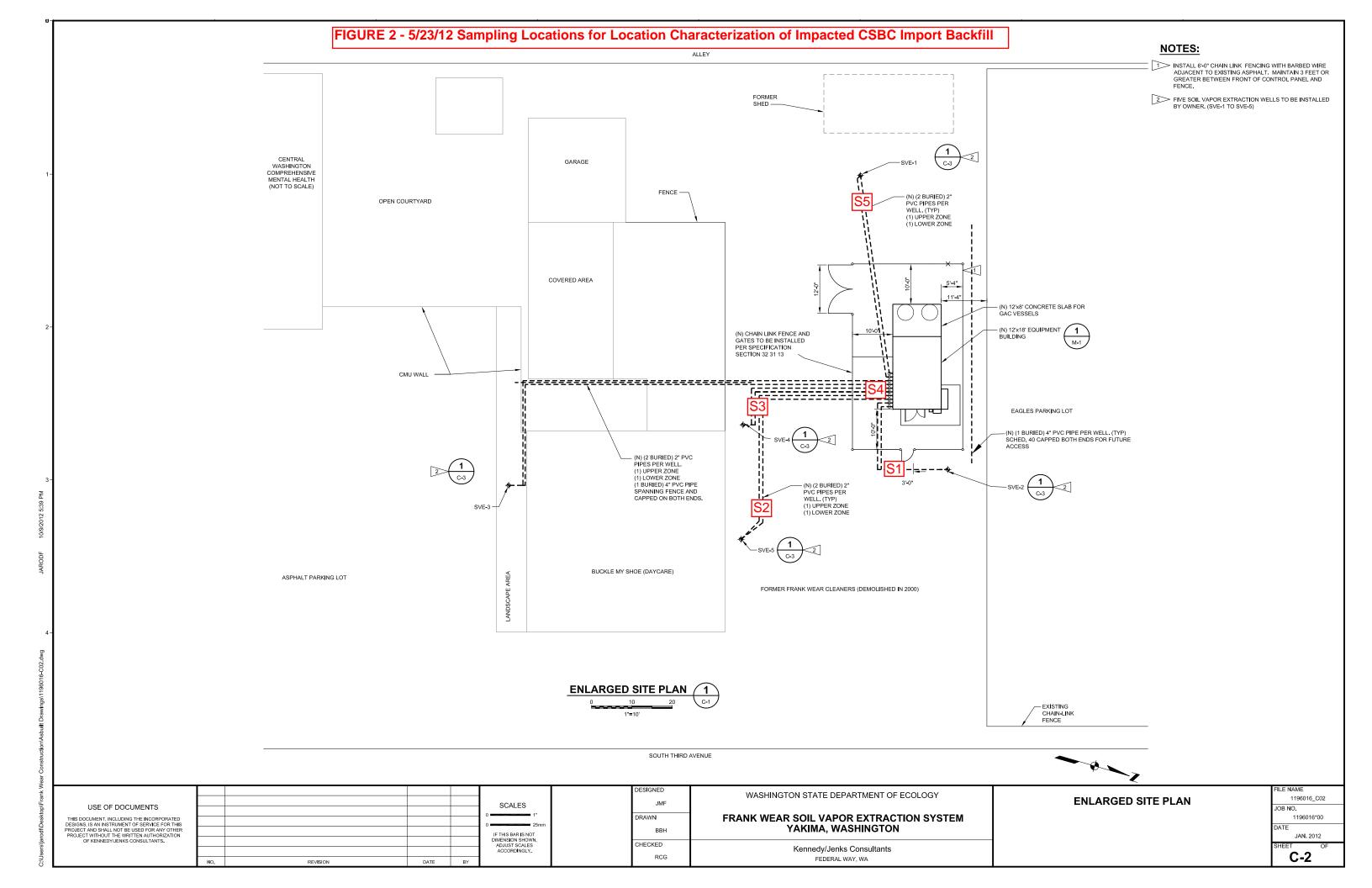
Analyzed by Valley Environmental. RL at 0.01 mg/kg.

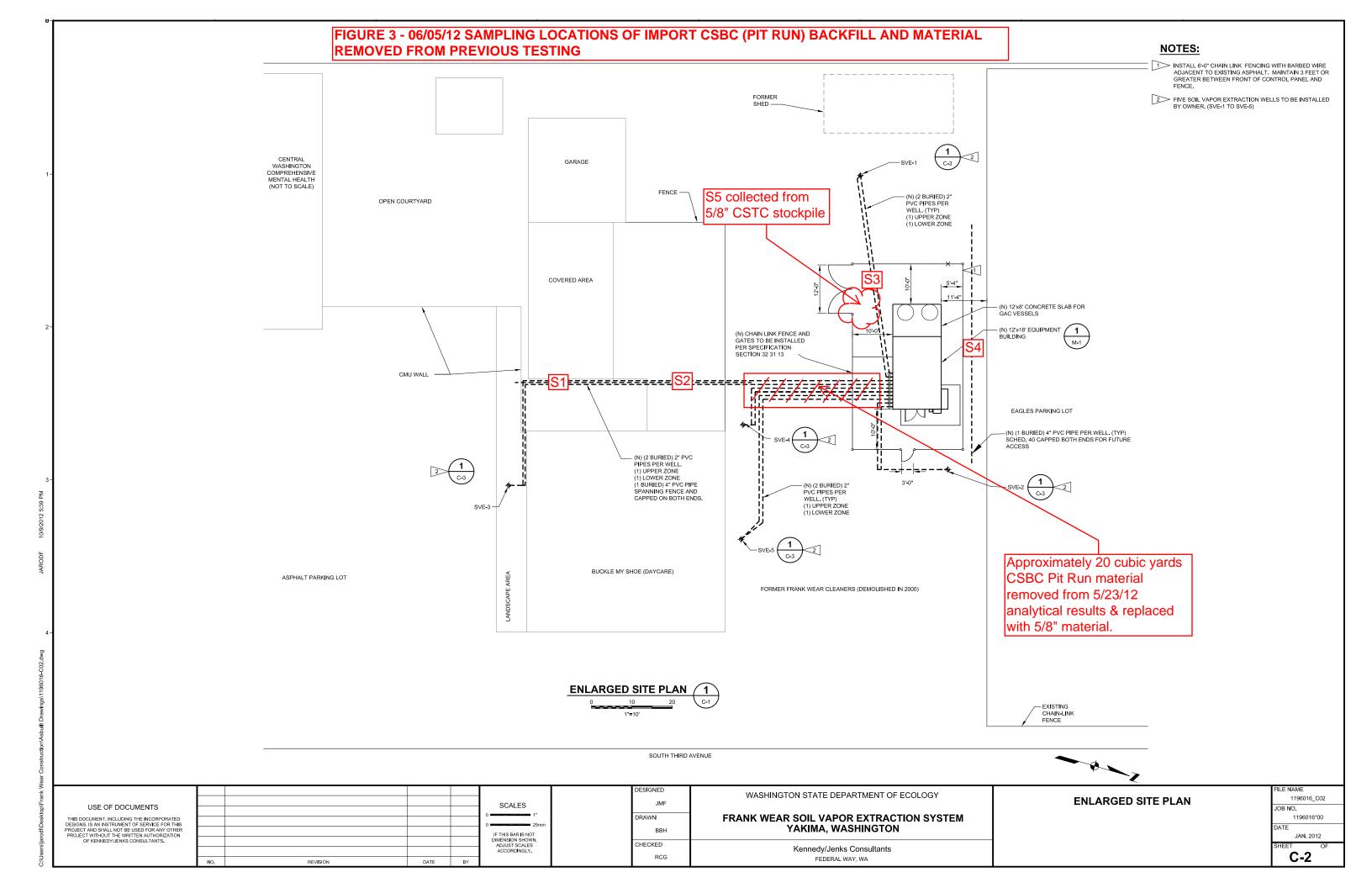
Sample ID	Benzo(a)- anthracene	Benzo(a)- anthracene	Chrysene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(a)-pyrene	Indeno(1,2,3- cd)pyrene	Dibenz(a,h)- anthracene	Total cPAHs (µg/kg) ^(a)	Total cPAHs (μg/kg) ^{(a)(b)}
S1	324	324	422	510	512	359	295	67	534.02	534.02
S2	<10	<10	<10	<10	<10	<10	<10	<10	0	75.5
S3	70	70	68	71	49	68	53	11	94.08	94.08
S4	144	144	181	208	138	146	120	25	211.31	211.31
S5 ^(d)	<10	<10	<10	<10	<10	<10	<10	<10	0	75.5
TEFs	0.1	0.1	0.01	0.1	0.1	1	0.1	0.1	(c)	(c)

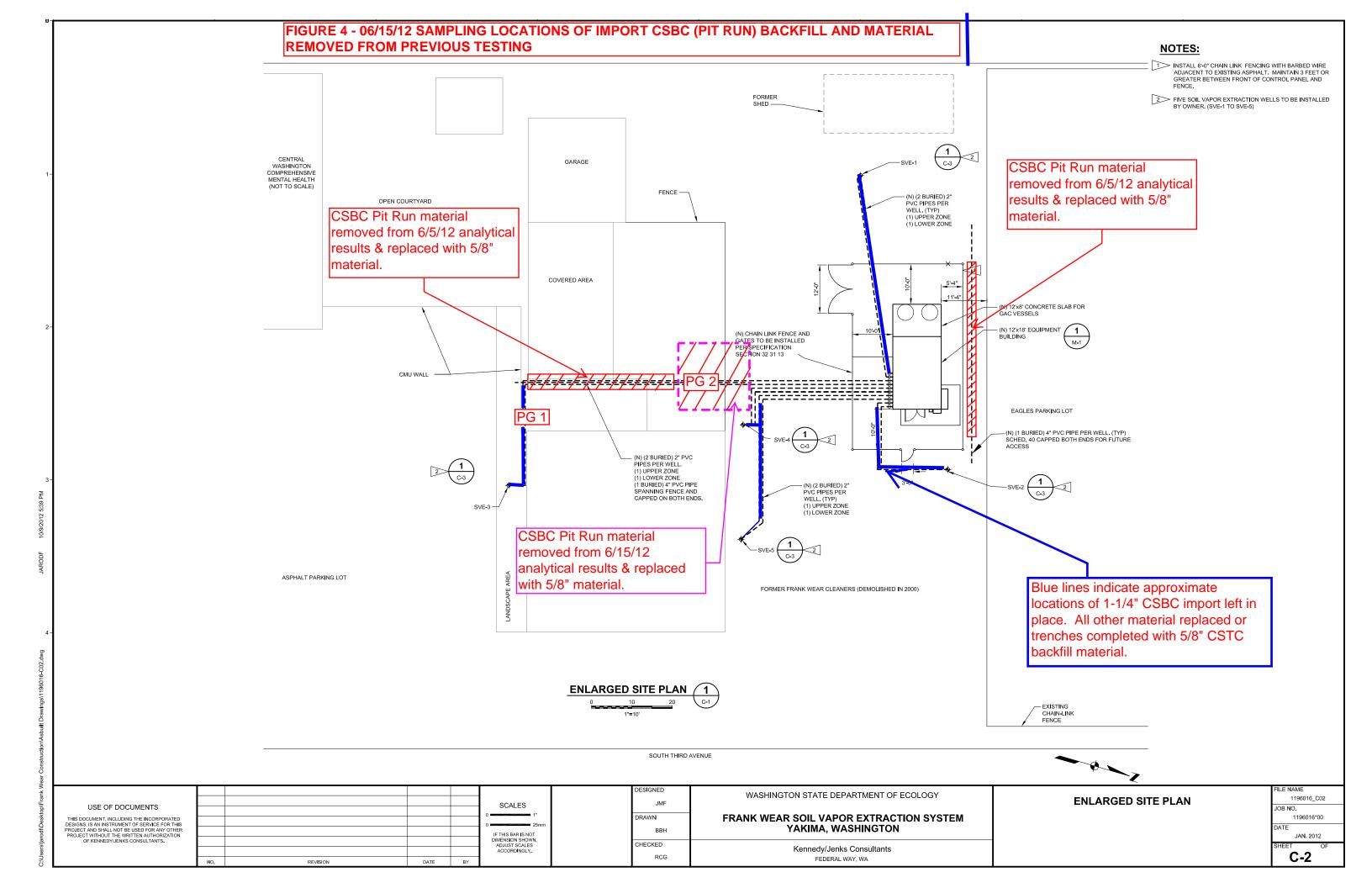
TABLE 4: Fourth test of import material from two locations in trench of the daycare playground collected 6/15/12. Sample locations approximately 6 inches below ground surface. See Figure 4. Sample locations approximately 6 inches below ground surface and either side of removed material. Analyzed by Valley Environmental. RL at 0.01 mg/kg.

Sample ID	Benzo(a)- anthracene	Benzo(a)- anthracene	Chrysene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(a)-pyrene	Indeno(1,2,3-cd)- pyrene	Dibenz(a,h)- anthracene	Total cPAHs (μg/kg) ^(a)	Total cPAHs (μg/kg) ^{(a)(b)}
PG1	56	56	49	62	27	47	<10	13	63.29	63.2905
PG2	172	172	248	251	251	178	148	40	266.68	266.68
TEFs	0.1	0.1	0.01	0.1	0.1	1	0.1	0.1	(c)	(c)

Notes:


- (a) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalencey factors (TEFs) prior to summation (per WAC 173-340-708). TEFs used are shown for each cPAH.
- (b) Nondetectable concentrations were assigned values of 1/2 that of the analytical method detection limit (MDL)
- Nondetectable concentrations considered to be equal to zero for Total cPAH calculation.
- (d) Sample S5 in Table 3 is representative of clean import backfill material remaining in the trench exvations (see Figure 3 in Appedix F).


Total cPAH concentrations that exceed the MTCA Method A soil cleanup level are highlighted yellow.


μg/kg = micrograms per kilogram

RL = laboratory reporting limit

cPAH = carcinogenic polycyclic aromatic hydrocarbons

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-2362-1

TestAmerica Sample Delivery Group: 12-026

Client Project/Site: DOE-Yakima

or:

Anderson Environmental Contracting LLC 705 Colorado Street Kelso, Washington 98626

Attn: Brett MacDonald

Vannsa Fran

Authorized for release by: 5/11/2012 4:44:10 PM

Vanessa Frahs
Project Manager I
vanessa.frahs@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 250-2362-1 SDG: 12-026

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	20
QC Association	41
Certification Summary	44
Method Summary	45
Chain of Custody	46
Receipt Checklists	47

2

4

5

7

10

11

Sample Summary

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
250-2362-1	Pipe Bedding	Solid	04/27/12 15:00	05/01/12 15:00
250-2362-2	Pit Run Backfill	Solid	04/27/12 15:20	05/01/12 15:00

4

5

6

8

9

10

11

Case Narrative

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima SDG: 12-026

Job ID: 250-2362-1

Laboratory: TestAmerica Portland

Narrative

Receipt

The samples were received on 5/1/2012 3:00 PM; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 5.20 C.

GC/MS VOA

Method(s) 8260B: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for 5 analytes to recover outside criteria for this method when a full list spike is utilized. The LCS associated with batch 4508 had 1 analyte outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) precision for batch 4508 was outside control limits for Vinyl chloride. The associated laboratory control sample and MS/MSD met acceptance recovery criteria.

Method(s) 8260B: The method blank for preparation batch 4508 contained Hexachlorobutadiene above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C: The laboratory control sample (LCS), the matric spike(MS) and the matrix spike duplicate (MSD) for batch 110923(8270 analytical batch 111038) exceeded control limits for the following analytes: 2,4-Dichlorophenol, 2,4-Dimethylphenol, 2-Methylphenol, 3&4 Methylphenol and Phenol. These analytes were biased high in the spikes and were not detected in the associated samples; therefore, the data have been reported.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

GC Semi VOA

Method(s) 8081A: The continuing calibration verification (CCV) for DDE and DDD associated with batch 4748 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 8081A: The following sample(s) was diluted due to the nature of the sample matrix: Pit Run Backfill (250-2362-2). Elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: Detected Hydrocarbons appear to be due to creosote or similar product as well as oil.Pit Run Backfill (250-2362-2)

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

TestAmerica Job ID: 250-2362-1

3

4

_

7

8

4.6

11

Definitions/Glossary

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1 SDG: 12-026

Qualifiers

GC/MS VOA

	Qualifier	Qualifier Description			
	*	LCS or LCSD exceeds the control limits			
	В	Compound was found in the blank and sample.			
	F	RPD of the MS and MSD exceeds the control limits			
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.			
COMMO Compi MOA					

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
F	MS or MSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
00 0	

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Compound was found in the blank and sample.

Glossary

J

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CNF	Contains no Free Liquid				
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample				
EDL	Estimated Detection Limit				
EPA	United States Environmental Protection Agency				
MDL	Method Detection Limit				
ML	Minimum Level (Dioxin)				
ND	Not detected at the reporting limit (or MDL or EDL if shown)				
PQL	Practical Quantitation Limit				
QC	Quality Control				
RL	Reporting Limit				
RPD	Relative Percent Difference, a measure of the relative difference between two points				
TEF	Toxicity Equivalent Factor (Dioxin)				
TEQ	Toxicity Equivalent Quotient (Dioxin)				

3

6

Q

9

10

11

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Pipe Bedding Date Collected: 04/27/12 15:00

Lab Sample ID: 250-2362-1

Matrix: Solid

1	
1	6
1	
1	
1	

Date Received: 05/01/12 15:00	ъ	Ovelië - :-	ъ.		l lmi4	_	Da !	Percent Solids: 94.0
Analyte		Qualifier	RL 	MDL		D	Prepared	Analyzed Dil Fa
Acetone	ND		2500	500	ug/Kg	‡	05/02/12 16:53	05/03/12 14:46
Benzene	ND		100	20	ug/Kg	₩.	05/02/12 16:53	05/03/12 14:46
Bromobenzene	ND		100	20	ug/Kg		05/02/12 16:53	05/03/12 14:46
Bromochloromethane	ND		100	24	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
Bromodichloromethane	ND		100	15	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
Bromoform	ND		500	100	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
Bromomethane	ND		500	28	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
2-Butanone (MEK)	ND		1000	300	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
n-Butylbenzene	ND		500	52	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
sec-Butylbenzene	ND		100	20	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
tert-Butylbenzene	ND		100	13	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
Carbon disulfide	ND		1000	39	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
Carbon tetrachloride	ND		100	19	ug/Kg	*	05/02/12 16:53	05/03/12 14:46
Chlorobenzene	ND		100	19	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
Chloroethane	ND		100	22	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
Chloroform	ND		100	16	ug/Kg	\$	05/02/12 16:53	05/03/12 14:46
Chloromethane	ND		500	15	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
2-Chlorotoluene	ND		100	13	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
4-Chlorotoluene	ND		100	18	ug/Kg		05/02/12 16:53	05/03/12 14:46
1,2-Dibromo-3-Chloropropane	ND		500	100	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
Dibromochloromethane	ND		100	17	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
1,2-Dibromoethane	ND		100	17	ug/Kg	φ.	05/02/12 16:53	05/03/12 14:46
Dibromomethane	ND		100	21		₩	05/02/12 16:53	05/03/12 14:46
1,2-Dichloroethane	ND		100	16	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
1,3-Dichlorobenzene	ND		100	17	ug/Kg	-	05/02/12 16:53	05/03/12 14:46
1,4-Dichlorobenzene	ND		100	29	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
Dichlorodifluoromethane	ND		500		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
1,1-Dichloroethane	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 14:46
1,1-Dichloroethene	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
cis-1,2-Dichloroethene	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
trans-1,2-Dichloroethene	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 14:46
1,2-Dichloropropane	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
1,3-Dichloropropane	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
2,2-Dichloropropane	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 14:46
1,1-Dichloropropene	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
cis-1,3-Dichloropropene	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 14:46
trans-1,3-Dichloropropene	ND		100		ug/Kg	.	05/02/12 16:53	05/03/12 14:46
Ethylbenzene	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
Hexachlorobutadiene	ND		400		ug/Kg ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
2-Hexanone	ND	*	1000		ug/Kg ug/Kg	ф	05/02/12 16:53	05/03/12 14:46
	ND ND		200		ug/Kg ug/Kg	т Ф		
Isopropylbenzene					• •	₩	05/02/12 16:53 05/02/12 16:53	05/03/12 14:46
p-Isopropyltoluene	ND		200		ug/Kg			05/07/12 17:50
4-Methyl-2-pentanone (MIBK)	ND		500		ug/Kg	‡	05/02/12 16:53	05/03/12 14:46
Methyl tert-butyl ether	ND		100		ug/Kg	‡	05/02/12 16:53	05/03/12 14:46
Methylene Chloride	ND		500		ug/Kg		05/02/12 16:53	05/03/12 14:46
Naphthalene	ND		200		ug/Kg	\$	05/02/12 16:53	05/03/12 14:46
N-Propylbenzene	ND		100		ug/Kg	Ψ.	05/02/12 16:53	05/03/12 14:46
Styrene	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 14:46
1,1,1,2-Tetrachloroethane	ND		100		ug/Kg	*	05/02/12 16:53	05/03/12 14:46
1,1,2,2-Tetrachloroethane	ND		100		ug/Kg	₩.	05/02/12 16:53	05/03/12 14:46
Tetrachloroethene	ND		100	27	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46

Client: Anderson Environmental Contracting LLC

Client Sample ID: Pipe Bedding Date Collected: 04/27/12 15:00

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lah Samn	le ID	. 250	-2362-1

Matrix: Solid

Percent Solids: 94.0

Date Received: 05/01/12 15:00							Percent Soli	ds: 94.0
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND	100	15	ug/Kg	<u> </u>	05/02/12 16:53	05/03/12 14:46	1
1,2,3-Trichlorobenzene	ND	500	100	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46	1
1,2,4-Trichlorobenzene	ND	100	25	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46	1
1,1,1-Trichloroethane	ND	100	21	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46	1
1,1,2-Trichloroethane	ND	100	24	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
Trichloroethene	ND	100	21	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
Trichlorofluoromethane	ND	100	22	ug/Kg	φ.	05/02/12 16:53	05/03/12 14:46	1
1,2,3-Trichloropropane	ND	100	21	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
1,2,4-Trimethylbenzene	ND	100	46	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
1,3,5-Trimethylbenzene	ND	100	24	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
Vinyl chloride	ND	500	100	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
m,p-Xylene	ND	200	36	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
o-Xylene	ND	100	23	ug/Kg	₩	05/02/12 16:53	05/03/12 14:46	1
1,2-Dichlorobenzene	ND	100	14	ug/Kg	₽	05/02/12 16:53	05/03/12 14:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 125	05/02/12 16:	53 05/03/12 14:46	1
1,2-Dichloroethane-d4 (Surr)	103		75 - 125	05/02/12 16:	53 05/07/12 17:50	1
4-Bromofluorobenzene (Surr)	97		75 - 125	05/02/12 16:	53 05/03/12 14:46	1
4-Bromofluorobenzene (Surr)	97		75 - 125	05/02/12 16:	53 05/07/12 17:50	1
Dibromofluoromethane (Surr)	94		75 - 125	05/02/12 16:	53 05/03/12 14:46	1
Dibromofluoromethane (Surr)	99		75 - 125	05/02/12 16:	53 05/07/12 17:50	1
Toluene-d8 (Surr)	101		75 - 125	05/02/12 16:	53 05/03/12 14:46	1
Toluene-d8 (Surr)	104		75 ₋ 125	05/02/12 16:	53 05/07/12 17:50	1

Client Sample ID: Pit Run Backfill Lab Sample ID: 250-2362-2 Date Collected: 04/27/12 15:20 **Matrix: Solid**

Date Received: 05/01/12 15:00

Percent Solids: 94.6

Buto Recorded Coronia 12 10:00	THE TOTAL CONTROL OF THE							
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	2500	500	ug/Kg	*	05/02/12 16:53	05/03/12 15:08	1
Benzene	ND	100	20	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Bromobenzene	ND	100	20	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Bromochloromethane	ND	100	24	ug/Kg	≎	05/02/12 16:53	05/03/12 15:08	1
Bromodichloromethane	ND	100	15	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Bromoform	ND	500	100	ug/Kg	≎	05/02/12 16:53	05/03/12 15:08	1
Bromomethane	ND	500	28	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
2-Butanone (MEK)	ND	1000	300	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
n-Butylbenzene	ND	500	52	ug/Kg	≎	05/02/12 16:53	05/03/12 15:08	1
sec-Butylbenzene	ND	100	20	ug/Kg	*	05/02/12 16:53	05/03/12 15:08	1
tert-Butylbenzene	ND	100	13	ug/Kg	≎	05/02/12 16:53	05/03/12 15:08	1
Carbon disulfide	ND	1000	39	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Carbon tetrachloride	ND	100	19	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
Chlorobenzene	ND	100	19	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Chloroethane	ND	100	22	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Chloroform	ND	100	16	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
Chloromethane	ND	500	15	ug/Kg	≎	05/02/12 16:53	05/03/12 15:08	1
2-Chlorotoluene	ND	100	13	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
4-Chlorotoluene	ND	100	18	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
1,2-Dibromo-3-Chloropropane	ND	500	100	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
Dibromochloromethane	ND	100	17	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
1,2-Dibromoethane	ND	100	17	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1

Client: Anderson Environmental Contracting LLC

Client Sample ID: Pit Run Backfill

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: 250-2362-2
	Matrix: Solid

Matrix: Solid
Percent Solids: 94.6

Date Received: 05/01/12 15:00								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		100	21	ug/Kg		05/02/12 16:53	05/03/12 15:08	1
1,2-Dichloroethane	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
1,3-Dichlorobenzene	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 15:08	1
1,4-Dichlorobenzene	ND		100	29	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
Dichlorodifluoromethane	ND		500		ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
1,1-Dichloroethane	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 15:08	1
1,1-Dichloroethene	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
cis-1,2-Dichloroethene	ND		100	28	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
trans-1,2-Dichloroethene	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 15:08	1
1,2-Dichloropropane	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
1,3-Dichloropropane	ND		100		ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
2,2-Dichloropropane	ND		100		ug/Kg	-	05/02/12 16:53	05/03/12 15:08	· · · · · · · · · · · · · · · · · · · ·
1,1-Dichloropropene	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
cis-1,3-Dichloropropene	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
trans-1,3-Dichloropropene	ND		100		ug/Kg		05/02/12 16:53	05/03/12 15:08	· - · · · · · · · 1
Ethylbenzene	ND		100		ug/Kg	*	05/02/12 16:53	05/03/12 15:08	1
Hexachlorobutadiene	ND		400		ug/Kg	*	05/02/12 16:53	05/03/12 15:08	1
2-Hexanone	ND	*	1000		ug/Kg		05/02/12 16:53	05/03/12 15:08	 1
Isopropylbenzene	ND ND		200		ug/Kg ug/Kg		05/02/12 16:53	05/03/12 15:08	1
p-Isopropyltoluene	ND ND		200	11	ug/Kg ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
	ND		500				05/02/12 16:53	05/03/12 15:08	' 1
4-Methyl-2-pentanone (MIBK)			100	100	ug/Kg	₩			
Methyl tert-butyl ether	ND			13	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Methylene Chloride	ND		500	14	ug/Kg	-	05/02/12 16:53	05/03/12 15:08	
Naphthalene	ND		200		ug/Kg		05/02/12 16:53	05/03/12 15:08	1
N-Propylbenzene	ND		100	21	ug/Kg	*	05/02/12 16:53	05/03/12 15:08	1
Styrene	ND		100		ug/Kg		05/02/12 16:53	05/03/12 15:08	
1,1,1,2-Tetrachloroethane	ND		100		ug/Kg		05/02/12 16:53	05/03/12 15:08	1
1,1,2,2-Tetrachloroethane	ND		100		ug/Kg		05/02/12 16:53	05/03/12 15:08	1
Tetrachloroethene	ND		100		ug/Kg	<u></u> .	05/02/12 16:53	05/03/12 15:08	1
Toluene	ND		100		ug/Kg		05/02/12 16:53	05/03/12 15:08	1
1,2,3-Trichlorobenzene	ND		500	100	ug/Kg	₩.	05/02/12 16:53	05/03/12 15:08	1
1,2,4-Trichlorobenzene	ND		100		ug/Kg		05/02/12 16:53	05/03/12 15:08	1
1,1,1-Trichloroethane	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
1,1,2-Trichloroethane	ND		100		ug/Kg	₩.	05/02/12 16:53	05/03/12 15:08	1
Trichloroethene	ND		100	21	ug/Kg		05/02/12 16:53	05/03/12 15:08	1
Trichlorofluoromethane	ND		100		ug/Kg	₩.	05/02/12 16:53	05/03/12 15:08	1
1,2,3-Trichloropropane	ND		100	21	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
1,2,4-Trimethylbenzene	ND		100		ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
1,3,5-Trimethylbenzene	ND		100	24	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Vinyl chloride	ND		500	100	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
m,p-Xylene	ND		200	36	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
o-Xylene	ND		100	23	ug/Kg	₽	05/02/12 16:53	05/03/12 15:08	1
1,2-Dichlorobenzene	ND		100	14	ug/Kg	₩	05/02/12 16:53	05/03/12 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 125				05/02/12 16:53	05/03/12 15:08	1
4-Bromofluorobenzene (Surr)	94		75 - 125				05/02/12 16:53	05/03/12 15:08	1
Dibromofluoromethane (Surr)	96		75 - 125				05/02/12 16:53	05/03/12 15:08	1
Toluene-d8 (Surr)	103		75 ₋ 125				05/02/12 16:53	05/03/12 15:08	1

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Client Sample ID: Pipe Bedding Date Collected: 04/27/12 15:00

Lab Sample ID: 250-2362-1

	Matrix: Solid
_	-4.0-11-104.0

te Collected: 04/27/12 15:00								watri	ix: Solia	
te Received: 05/01/12 15:00								Percent Soli	ds: 94.0	
alyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
enol	ND	*	110	16	ug/Kg	\$	05/09/12 10:16	05/10/12 11:18	1	

Date Received: 05/01/12 15:00 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Percent Soli Analyzed	Dil Fac
Phenol	ND	*	110			_	05/09/12 10:16	05/10/12 11:18	1
Bis(2-chloroethyl)ether	ND		110		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
2-Chlorophenol	ND		110		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
1,3-Dichlorobenzene	ND		53		ug/Kg	ф	05/09/12 10:16	05/10/12 11:18	1
1,4-Dichlorobenzene	ND		53		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Benzyl alcohol	ND		110		ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
1,2-Dichlorobenzene	ND		58		ug/Kg		05/09/12 10:16	05/10/12 11:18	1
2-Methylphenol	ND	*	110		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
3 & 4 Methylphenol	ND	*	210		ug/Kg	*	05/09/12 10:16	05/10/12 11:18	1
N-Nitrosodi-n-propylamine	ND		110		ug/Kg	.	05/09/12 10:16	05/10/12 11:18	1
Hexachloroethane	ND		110		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Nitrobenzene	ND		110	36		₽	05/09/12 10:16	05/10/12 11:18	1
	ND		110			· · · · · · · · · · · · · · · · · · ·	05/09/12 10:16	05/10/12 11:18	1
Isophorone	ND ND		110		ug/Kg	т Ф	05/09/12 10:16	05/10/12 11:18	1
2-Nitrophenol 2,4-Dimethylphenol	ND ND	*	110		ug/Kg ug/Kg		05/09/12 10:16	05/10/12 11:18	1
Benzoic acid	ND		2600		ug/Kg ug/Kg	· · · · · · · · · · · · · · ·	05/09/12 10:16	05/10/12 11:18	1
	ND ND		110		ug/Kg ug/Kg	т Ф	05/09/12 10:16	05/10/12 11:18	1
Bis(2-chloroethoxy)methane	ND ND	*	110		• •	₩			1
2,4-Dichlorophenol					ug/Kg		05/09/12 10:16	05/10/12 11:18	
1,2,4-Trichlorobenzene	ND ND		53		ug/Kg	~ ⇔	05/09/12 10:16	05/10/12 11:18	1
Naphthalene			21		ug/Kg		05/09/12 10:16	05/10/12 11:18	1
4-Chloroaniline	ND		110		ug/Kg	.	05/09/12 10:16	05/10/12 11:18	1
Hexachlorobutadiene	ND		53		ug/Kg	*	05/09/12 10:16	05/10/12 11:18	1
4-Chloro-3-methylphenol	ND		110		ug/Kg	*	05/09/12 10:16	05/10/12 11:18	1
2-Methylnaphthalene	ND		21		ug/Kg		05/09/12 10:16	05/10/12 11:18	1
Hexachlorocyclopentadiene	ND		110		ug/Kg	÷	05/09/12 10:16	05/10/12 11:18	1
2,4,6-Trichlorophenol	ND		160		ug/Kg	₩.	05/09/12 10:16	05/10/12 11:18	1
2,4,5-Trichlorophenol	ND		110		ug/Kg		05/09/12 10:16	05/10/12 11:18	1
2-Chloronaphthalene	ND		21		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
2-Nitroaniline	ND		110		ug/Kg	₽ .	05/09/12 10:16	05/10/12 11:18	1
Dimethyl phthalate	ND		110	5.3	ug/Kg	 	05/09/12 10:16	05/10/12 11:18	1
Acenaphthylene	ND		21		ug/Kg	₽ .	05/09/12 10:16	05/10/12 11:18	1
2,6-Dinitrotoluene	ND		110	16	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
3-Nitroaniline	ND		110	16	ug/Kg	 	05/09/12 10:16	05/10/12 11:18	1
Acenaphthene	ND		21		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
2,4-Dinitrophenol	ND		1100		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
4-Nitrophenol	ND		1100	260	ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
Dibenzofuran	ND		110	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
2,4-Dinitrotoluene	ND		110	16	ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
Diethyl phthalate	ND		210	16	ug/Kg		05/09/12 10:16	05/10/12 11:18	1
4-Chlorophenyl phenyl ether	ND		110	16	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Fluorene	ND		21	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
4-Nitroaniline	ND		110	21	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
4,6-Dinitro-2-methylphenol	ND		1100	110	ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
N-Nitrosodiphenylamine	ND		53	5.3	ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
4-Bromophenyl phenyl ether	ND		110	16	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Hexachlorobenzene	ND		53	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Pentachlorophenol	ND		210	21	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Phenanthrene	ND		21	5.3	ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
Anthracene	ND		21	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Di-n-butyl phthalate	ND		530	53	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Fluoranthene	ND		21		ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1

TestAmerica Portland 5/11/2012

TestAmerica Job ID: 250-2362-1

Client: Anderson Environmental Contracting LLC

Client Sample ID: Pipe Bedding

Date Collected: 04/27/12 15:00

Project/Site: DOE-Yakima

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

%Recovery Qualifier

111

138

84

86

74

78

Lab Sample ID: 250-2362-1

Matrix: Solid

Date Received: 05/01/12 15:00							Percent Soli	ds: 94.0
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	ND	21	5.3	ug/Kg	₩	05/09/12 10:16	05/10/12 11:18	1
Butyl benzyl phthalate	ND	210	53	ug/Kg	\$	05/09/12 10:16	05/10/12 11:18	1
3,3'-Dichlorobenzidine	ND	210	32	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Benzo[a]anthracene	ND	21	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Chrysene	ND	26	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Bis(2-ethylhexyl) phthalate	ND	630	53	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Di-n-octyl phthalate	ND	530	5.3	ug/Kg	\$	05/09/12 10:16	05/10/12 11:18	1
Benzo[a]pyrene	ND	32	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Indeno[1,2,3-cd]pyrene	ND	42	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Dibenz(a,h)anthracene	ND	42	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Benzo[g,h,i]perylene	ND	26	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Carbazole	ND	110	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
1-Methylnaphthalene	ND	32	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Benzo[b]fluoranthene	ND	21	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
Benzo[k]fluoranthene	ND	26	5.3	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1
bis (2-chloroisopropyl) ether	ND	260	16	ug/Kg	₽	05/09/12 10:16	05/10/12 11:18	1

Limits

36 - 145

38 - 149

38 - 141

42 - 140

28 - 143

42 - 151

Prepared Analyzed Dil Fac 05/09/12 10:16 05/10/12 11:18 05/09/12 10:16 05/10/12 11:18 05/09/12 10:16 05/10/12 11:18 05/09/12 10:16 05/10/12 11:18 05/09/12 10:16 05/10/12 11:18

05/09/12 10:16

Client Sample ID: Pit Run Backfill Date Collected: 04/27/12 15:20 Date Received: 05/01/12 15:00

Surrogate

Phenol-d5

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Lab Sample ID: 250-2362-2 **Matrix: Solid**

05/10/12 11:18

Percent Solids: 94.6

Date Received: 05/01/12 15:00								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND	*	100	15	ug/Kg	*	05/09/12 10:16	05/10/12 12:26	1
Bis(2-chloroethyl)ether	ND		100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
2-Chlorophenol	ND		100	15	ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	1
1,3-Dichlorobenzene	ND		50	15	ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	1
1,4-Dichlorobenzene	ND		50	15	ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	1
Benzyl alcohol	ND		100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
1,2-Dichlorobenzene	ND		55	15	ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	1
2-Methylphenol	ND	*	100	15	ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	1
3 & 4 Methylphenol	ND	*	200	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
N-Nitrosodi-n-propylamine	ND		100	15	ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	1
Hexachloroethane	ND		100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
Nitrobenzene	ND		100	34	ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	1
Isophorone	ND		100	5.0	ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	1
2-Nitrophenol	ND		100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
2,4-Dimethylphenol	ND	*	100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
Benzoic acid	ND		2500	750	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
Bis(2-chloroethoxy)methane	ND		100	5.0	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
2,4-Dichlorophenol	ND	*	100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
1,2,4-Trichlorobenzene	ND		50	15	ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	1
Naphthalene	ND		20	5.0	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
4-Chloroaniline	ND		100	15	ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	1
Hexachlorobutadiene	ND		50	15	ug/Kg	φ.	05/09/12 10:16	05/10/12 12:26	1

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Client: Anderson Environmental Contracting LLC

Client Sample ID: Pit Run Backfill

Date Collected: 04/27/12 15:20

Project/Site: DOE-Yakima

bis (2-chloroisopropyl) ether

Lab Sample ID: 250-2362-2

Matrix: Solid

Percent Solids: 94.6

		Percent Solid	s: 94.6
it D	Prepared	Analyzed	Dil Fac
Kg	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg 🌣	05/09/12 10:16	05/10/12 12:26	1
Kg [⇔]	05/09/12 10:16	05/10/12 12:26	1
Kg	05/09/12 10:16	05/10/12 12:26	1
K K K K K K K K		9	9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26 9 05/09/12 10:16 05/10/12 12:26

4-Chlorophenyl phenyl ether	ND	100	15 ug/kg	**	05/09/12 10:16	05/10/12 12:26	
Fluorene	ND	20	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
4-Nitroaniline	ND	100	20 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
4,6-Dinitro-2-methylphenol	ND	1000	100 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
N-Nitrosodiphenylamine	ND	50	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
4-Bromophenyl phenyl ether	ND	100	15 ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	
Hexachlorobenzene	ND	50	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Pentachlorophenol	ND	200	20 ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	
Phenanthrene	67	20	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Anthracene	5.7 J	20	5.0 ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	
Di-n-butyl phthalate	ND	500	50 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Fluoranthene	150	20	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Pyrene	150	20	5.0 ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	
Butyl benzyl phthalate	ND	200	50 ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	
3,3'-Dichlorobenzidine	ND	200	30 ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	
Benzo[a]anthracene	48	20	5.0 ug/Kg	\$	05/09/12 10:16	05/10/12 12:26	
Chrysene	82	25	5.0 ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	
Bis(2-ethylhexyl) phthalate	ND	600	50 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Di-n-octyl phthalate	ND	500	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Benzo[a]pyrene	66	30	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Indeno[1,2,3-cd]pyrene	68	40	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	

Dibenz(a,h)anthracene	ND	40	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Benzo[g,h,i]perylene	62	25	5.0 ug/Kg	₩	05/09/12 10:16	05/10/12 12:26	
Carbazole	8.9 J	100	5.0 ug/Kg	☼	05/09/12 10:16	05/10/12 12:26	
1-Methylnaphthalene	ND	30	5.0 ug/Kg	₽	05/09/12 10:16	05/10/12 12:26	
Benzo[b]fluoranthene	100	20	5.0 ug/Kg	☼	05/09/12 10:16	05/10/12 12:26	
Benzo[k]fluoranthene	33	25	5.0 ug/Kg	☼	05/09/12 10:16	05/10/12 12:26	

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	82		36 - 145	05/09/12 10:16	05/10/12 12:26	1
Phenol-d5	135		38 - 149	05/09/12 10:16	05/10/12 12:26	1
Nitrobenzene-d5	83		38 - 141	05/09/12 10:16	05/10/12 12:26	1
2-Fluorobiphenyl	85		42 - 140	05/09/12 10:16	05/10/12 12:26	1

250

15 ug/Kg

05/10/12 12:26

05/09/12 10:16

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Pit Run Backfill Date Collected: 04/27/12 15:20 Date Received: 05/01/12 15:00

Lab Sample ID: 250-2362-2

Matrix: Solid

Percent Solids: 94.6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	69		28 - 143	05/09/12 10:16	05/10/12 12:26	1
Terphenyl-d14	78		42 - 151	05/09/12 10:16	05/10/12 12:26	1

Client: Anderson Environmental Contracting LLC

Gasoline Range Hydrocarbons

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

ND

Client Sample ID: Pipe Bedding	Lab Sample ID: 250-2362-1
Date Collected: 04/27/12 15:00	Matrix: Solid
Date Received: 05/01/12 15:00	Percent Solids: 94.0

Date Received: 05/01/12 15:00							Percent Son	us: 94.0
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND ND	4.0	1.3	mg/Kg	\	05/02/12 09:23	05/03/12 15:15	1
0	0/ B					D	A I I	D# 5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	92	50 - 150	05/02/12 09:23	05/03/12 15:15	1

Client Sample ID: Pit Run Backfill							Lab	Sample ID: 25	0-2362-2
Date Collected: 04/27/12 15:20								Matı	ix: Solid
Date Received: 05/01/12 15:00								Percent Sol	ids: 94.6
Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	96	50 - 150	05/02/12 09:23	05/03/12 14:14	1

4.0

1.3 mg/Kg

□ 05/02/12 09:23

05/03/12 14:14

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8081A - Organochlorine Pesticides (GC)

Client Sample ID: Pipe Bedding Date Collected: 04/27/12 15:00 Date Received: 05/01/12 15:00

Lab Sample ID: 250-2362-1

Matrix: Solid

Percent Solids: 94.0

Date Received: 05/01/12 15:00								Percent Soli	ds: 94.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		7.1	3.5	ug/Kg	₩	05/08/12 09:21	05/08/12 13:25	1
4,4'-DDE	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
4,4'-DDT	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Aldrin	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
alpha-BHC	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
alpha-Chlordane	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
beta-BHC	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Chlordane (technical)	ND		160	79	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
delta-BHC	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Dieldrin	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Endosulfan I	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Endosulfan II	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Endosulfan sulfate	ND		7.1	3.5	ug/Kg	\$	05/08/12 09:21	05/08/12 13:25	1
Endrin	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Endrin aldehyde	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Endrin ketone	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
gamma-BHC (Lindane)	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
gamma-Chlordane	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Heptachlor	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Heptachlor epoxide	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Methoxychlor	ND		7.1	3.5	ug/Kg	₽	05/08/12 09:21	05/08/12 13:25	1
Toxaphene	ND		210	110	ug/Kg	\$	05/08/12 09:21	05/08/12 13:25	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 82 30 - 140 05/08/12 09:21 05/08/12 13:25

Client Sample ID: Pit Run Backfill Date Collected: 04/27/12 15:20

Lab Sample ID: 250-2362-2 **Matrix: Solid**

Date Received: 05/01/12 15:00 Percent Solids: 94.6 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ₩ 4,4'-DDD 05/08/12 09:21 05/09/12 11:42 ND 14 6.9 ug/Kg 2 4,4'-DDE ND 14 6.9 ug/Kg ₩ 05/08/12 09:21 05/09/12 11:42 2 4,4'-DDT ₩ ND 6.9 05/08/12 09:21 05/09/12 11:42 2 14 ug/Kg ä Aldrin ND 14 05/08/12 09:21 05/09/12 11:42 2 6.9 ug/Kg 2 alpha-BHC ND 14 05/08/12 09:21 05/09/12 11:42 6.9 ug/Kg ä alpha-Chlordane ND 14 05/08/12 09:21 05/09/12 11:42 2 ug/Kg ND 14 05/08/12 09:21 2 beta-BHC 6.9 ug/Kg 05/09/12 11:42 Chlordane (technical) ND 310 05/08/12 09:21 05/09/12 11:42 2 ug/Kg delta-BHC ND 14 6.9 ug/Kg 05/08/12 09:21 05/09/12 11:42 2 ä Dieldrin ND 14 ug/Kg 05/08/12 09:21 05/09/12 11:42 2 Endosulfan I ND 14 05/08/12 09:21 05/09/12 11:42 2 6.9 ug/Kg ₩ 2 Endosulfan II ND 14 6.9 ug/Kg 05/08/12 09:21 05/09/12 11:42 Endosulfan sulfate ND 14 ug/Kg 05/08/12 09:21 05/09/12 11:42 2 6.9 Endrin ND 14 6.9 ug/Kg 05/08/12 09:21 05/09/12 11:42 2 Endrin aldehyde ND 14 6.9 ug/Kg 05/08/12 09:21 05/09/12 11:42 2 Endrin ketone ND 14 6.9 05/08/12 09:21 05/09/12 11:42 2 ug/Kg gamma-BHC (Lindane) ND 14 05/08/12 09:21 05/09/12 11:42 2 6.9 ug/Kg ND 2 gamma-Chlordane 14 ug/Kg 05/08/12 09:21 05/09/12 11:42 6.9 ā Heptachlor ND 14 6.9 05/08/12 09:21 05/09/12 11:42 2 ug/Kg ND 05/09/12 11:42 2 Heptachlor epoxide 14 6.9 05/08/12 09:21 ug/Kg Methoxychlor ND 14 6.9 ug/Kg 05/08/12 09:21 05/09/12 11:42

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima

SDG: 12-026

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Client Sample ID: Pit Run Backfill Date Collected: 04/27/12 15:20 Date Received: 05/01/12 15:00						Lab	Sample ID: 250 Matri Percent Soli	x: Solid
Analyte Toxaphene	Result ND	Qualifier	- RL 420	 Unit ug/Kg	<u> </u>	Prepared 05/08/12 09:21	Analyzed 05/09/12 11:42	Dil Fac
Surrogate Tetrachloro-m-xylene	%Recovery	Qualifier	Limits 30 - 140			Prepared 05/08/12 09:21	Analyzed 05/09/12 11:42	Dil Fac

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

Surrogate

DCB Decachlorobiphenyl (Surr)

DCB Decachlorobiphenyl (Surr)

TestAmerica Job ID: 250-2362-1

Analyzed

05/08/12 09:03 05/09/12 12:32

Prepared

SDG: 12-026

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

%Recovery Qualifier

114

101

Client Sample ID: Pipe Bedding Date Collected: 04/27/12 15:00							Lab	Sample ID: 250)-2362-1 x: Solid
Date Received: 05/01/12 15:00								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		35	18	ug/Kg	<u> </u>	05/08/12 09:03	05/09/12 12:10	1
PCB-1221	ND		71	35	ug/Kg	₽	05/08/12 09:03	05/09/12 12:10	1
PCB-1232	ND		35	18	ug/Kg	₩	05/08/12 09:03	05/09/12 12:10	1
PCB-1242	ND		35	18	ug/Kg	₽	05/08/12 09:03	05/09/12 12:10	1
PCB-1248	ND		35	18	ug/Kg	₽	05/08/12 09:03	05/09/12 12:10	1
PCB-1254	ND		35	18	ug/Kg	₩	05/08/12 09:03	05/09/12 12:10	1
PCB-1260	ND		35	18	ug/Kg	₽	05/08/12 09:03	05/09/12 12:10	1

Limits

15 - 150

— Client Sample ID: Pit Run Backfill							Lab	Sample ID: 250)-2362-2
Date Collected: 04/27/12 15:20								•	x: Solid
Date Received: 05/01/12 15:00								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		35	18	ug/Kg	*	05/08/12 09:03	05/09/12 12:32	1
PCB-1221	ND		70	35	ug/Kg	₽	05/08/12 09:03	05/09/12 12:32	1
PCB-1232	ND		35	18	ug/Kg	₽	05/08/12 09:03	05/09/12 12:32	1
PCB-1242	ND		35	18	ug/Kg	₽	05/08/12 09:03	05/09/12 12:32	1
PCB-1248	ND		35	18	ug/Kg	₩	05/08/12 09:03	05/09/12 12:32	1
PCB-1254	ND		35	18	ug/Kg	₩	05/08/12 09:03	05/09/12 12:32	1
PCB-1260	ND		35	18	ug/Kg	₽	05/08/12 09:03	05/09/12 12:32	1
Surrogate	%Recovery	Qualifier	l imits				Prepared	Analyzed	Dil Fac

15 - 150

5

7

8

4 (

Dil Fac

11

Client Sample Results

Client: Anderson Environmental Contracting LLC

1-Chlorooctadecane

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Client Sample ID: Pipe Bedding Date Collected: 04/27/12 15:00 Date Received: 05/01/12 15:00							Lab	Sample ID: 250 Matri Percent Soli	x: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		13	1.3	mg/Kg	<u> </u>	05/07/12 11:54	05/07/12 17:29	1
RRO (nC25-nC36)	4.9	JB	26	2.8	mg/Kg	₽	05/07/12 11:54	05/07/12 17:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	89		50 - 150				05/07/12 11:54	05/07/12 17:29	1
Client Sample ID: Pit Run Backfill							Lab	Sample ID: 250	-2362-2
Date Collected: 04/27/12 15:20								Matri	x: Solid
Date Received: 05/01/12 15:00								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	8.1	J	13	1.3	mg/Kg	₩	05/07/12 11:54	05/07/12 17:48	1
RRO (nC25-nC36)	33	В	26	2.8	mg/Kg	₽	05/07/12 11:54	05/07/12 17:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

50 - 150

05/07/12 11:54 05/07/12 17:48

Client Sample Results

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 6020 - Metals (ICP/MS)

Client Sample ID: Pipe Bedding							Lab	Sample ID: 250	-2362-1
Date Collected: 04/27/12 15:00								Matri	x: Solid
Date Received: 05/01/12 15:00								Percent Soli	ds: 94.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		1.0	0.092	mg/Kg	₩	05/02/12 17:21	05/03/12 00:47	20
Arsenic	1.7	В	1.0	0.015	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Beryllium	0.39	J	21	0.10	mg/Kg	₽	05/02/12 17:21	05/03/12 18:12	200
Cadmium	0.026	J	1.0	0.023	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Chromium	13		2.1	0.35	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Copper	18		2.1	1.1	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Nickel	15		2.1	0.54	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Lead	2.6		1.0	0.18	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Antimony	0.079	J	1.0	0.031	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Selenium	0.072	J	1.0	0.042	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Thallium	ND		1.0	0.11	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20
Zinc	46	В	10	1.5	mg/Kg	₽	05/02/12 17:21	05/03/12 00:47	20

Client Sample ID: Pit Run Backfill							Lab	Sample ID: 250)-2362-2
Date Collected: 04/27/12 15:20								Matri	x: Solid
Date Received: 05/01/12 15:00								Percent Soli	ds: 94.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.11	J	1.0	0.091	mg/Kg	₩	05/02/12 17:21	05/03/12 01:00	20
Arsenic	1.2	В	1.0	0.014	mg/Kg	₽	05/02/12 17:21	05/03/12 01:00	20
Beryllium	0.36	J	2.1	0.010	mg/Kg	₩	05/02/12 17:21	05/03/12 18:22	20
Cadmium	0.048	J	1.0	0.023	mg/Kg	₽	05/02/12 17:21	05/03/12 01:00	20
Chromium	5.3		2.1	0.35	mg/Kg	₽	05/02/12 17:21	05/03/12 01:00	20
Copper	23		2.1	1.0	mg/Kg	₩	05/02/12 17:21	05/03/12 01:00	20
Nickel	10		2.1	0.53	mg/Kg	₽	05/02/12 17:21	05/03/12 01:00	20
Lead	6.7		1.0	0.18	mg/Kg	₩	05/02/12 17:21	05/03/12 01:00	20
Antimony	0.14	J	1.0	0.031	mg/Kg	₩	05/02/12 17:21	05/03/12 01:00	20
Selenium	0.18	J	1.0	0.041	mg/Kg	₩	05/02/12 17:21	05/03/12 01:00	20
Thallium	ND		1.0	0.11	mg/Kg	₩	05/02/12 17:21	05/03/12 01:00	20
Zinc	63	В	10	1.5	mg/Kg	₽	05/02/12 17:21	05/03/12 01:00	20

Client Sample Results

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

General Chemistry

İ	Client Sample ID: Pipe Bedding	Lab Sample ID: 250-2362-1
	Date Collected: 04/27/12 15:00	Matrix: Solid
l	Date Received: 05/01/12 15:00	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	6.0		0.010	0.010	%	 		05/02/12 09:32	1
Percent Solids	94		0.010	0.010	%			05/02/12 09:32	1

Client Sample ID: Pit Run Backfill Date Collected: 04/27/12 15:20							Lal	o Sample ID: 250 Matri	0-2362-2 ix: Solid
Date Received: 05/01/12 15:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	5.4		0.010	0.010	%			05/02/12 09:32	1
Percent Solids	95		0.010	0.010	%			05/02/12 09:32	1

QC Sample Results

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 250-4487/1-A

Matrix: Solid

Chloromethane

1,3-Dichlorobenzene

Client Sample ID: Method Blank Prep Type: Total/NA

05/03/12 11:07

05/03/12 11:07

05/02/12 16:53

05/02/12 16:53

TestAmerica Job ID: 250-2362-1

Analysis Batch: 4508								Prep Bato	h: 4487
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		2500	490	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
Benzene	ND		98	20	ug/Kg		05/02/12 16:53	05/03/12 11:07	1

Bromobenzene ND 98 20 ug/Kg 05/02/12 16:53 05/03/12 11:07 Bromochloromethane ND 98 24 ug/Kg 05/02/12 16:53 05/03/12 11:07 Bromodichloromethane ND 98 ug/Kg 05/02/12 16:53 05/03/12 11:07 Bromoform ND 490 98 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 490 Bromomethane 28 ug/Kg 05/02/12 16:53 05/03/12 11:07 2-Butanone (MEK) ND 980 290 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 490 ug/Kg n-Butylbenzene 51 05/02/12 16:53 05/03/12 11:07 ND 98 20 ug/Kg 05/02/12 16:53 05/03/12 11:07

sec-Butylbenzene tert-Butylbenzene ND 98 ug/Kg 05/02/12 16:53 05/03/12 11:07 Carbon disulfide ND 980 ug/Kg 05/02/12 16:53 05/03/12 11:07 Carbon tetrachloride ND 98 05/02/12 16:53 05/03/12 11:07 19 ug/Kg Chlorobenzene ND 98 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND Chloroethane 98 05/02/12 16:53 05/03/12 11:07 22 ug/Kg 98 Chloroform ND 16 ug/Kg 05/02/12 16:53 05/03/12 11:07

490

98

15 ug/Kg

17 ug/Kg

2-Chlorotoluene ND 98 13 ug/Kg 05/02/12 16:53 05/03/12 11:07 4-Chlorotoluene ND 98 18 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 490 1,2-Dibromo-3-Chloropropane 98 ug/Kg 05/02/12 16:53 05/03/12 11:07 Dibromochloromethane ND 98 17 ug/Kg 05/02/12 16:53 05/03/12 11:07 1,2-Dibromoethane ND 98 17 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 98 05/02/12 16:53 Dibromomethane 21 ug/Kg 05/03/12 11:07 ND 98 1,2-Dichloroethane 16 ug/Kg 05/02/12 16:53 05/03/12 11:07

ND

ND

1 4-Dichlorobenzene ND 98 28 ug/Kg 05/02/12 16:53 05/03/12 11:07 Dichlorodifluoromethane ND 490 25 ug/Kg 05/02/12 16:53 05/03/12 11:07 1,1-Dichloroethane ND 98 05/02/12 16:53 05/03/12 11:07 19 ug/Kg 1,1-Dichloroethene ND 98 16 ug/Kg 05/02/12 16:53 05/03/12 11:07 cis-1,2-Dichloroethene ND 98 05/02/12 16:53 05/03/12 11:07 28 ug/Kg ND 98 trans-1,2-Dichloroethene 20 ug/Kg 05/02/12 16:53 05/03/12 11:07

1.2-Dichloropropane ND 98 16 ua/Ka 05/02/12 16:53 05/03/12 11:07 1,3-Dichloropropane ND 98 17 ug/Kg 05/02/12 16:53 05/03/12 11:07 2,2-Dichloropropane ND 98 17 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 98 1,1-Dichloropropene 15 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 98 05/02/12 16:53 05/03/12 11:07 cis-1,3-Dichloropropene ug/Kg

ND 98 05/02/12 16:53 05/03/12 11:07 trans-1,3-Dichloropropene 15 ug/Kg Ethylbenzene 98 05/02/12 16:53 05/03/12 11:07 ND 18 ug/Kg Hexachlorobutadiene 59.0 390 ug/Kg 05/02/12 16:53 05/03/12 11:07 18 2-Hexanone ND 980 220 ug/Kg 05/02/12 16:53 05/03/12 11:07 Isopropylbenzene ND 200 35 ug/Kg 05/02/12 16:53 05/03/12 11:07

ug/Kg p-Isopropyltoluene ND 200 11 05/02/12 16:53 05/03/12 11:07 4-Methyl-2-pentanone (MIBK) ND 490 05/02/12 16:53 05/03/12 11:07 98 ug/Kg ND Methyl tert-butyl ether 98 13 ug/Kg 05/02/12 16:53 05/03/12 11:07 Methylene Chloride ND 490 14 ug/Kg 05/02/12 16:53 05/03/12 11:07 ND 200 Naphthalene 24 05/02/12 16:53 05/03/12 11:07

ug/Kg N-Propylbenzene ND 98 21 ug/Kg 05/02/12 16:53 05/03/12 11:07 Styrene ND 98 05/02/12 16:53 05/03/12 11:07 18 ug/Kg 1,1,1,2-Tetrachloroethane ND 98 05/02/12 16:53 05/03/12 11:07 18 ug/Kg

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 250-4487/1-A

Matrix: Solid

Analysis Batch: 4508

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 4487

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		98	24	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
Tetrachloroethene	ND		98	27	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
Toluene	ND		98	15	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,2,3-Trichlorobenzene	ND		490	98	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,2,4-Trichlorobenzene	ND		98	25	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,1,1-Trichloroethane	ND		98	21	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,1,2-Trichloroethane	ND		98	24	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
Trichloroethene	ND		98	21	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
Trichlorofluoromethane	ND		98	22	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,2,3-Trichloropropane	ND		98	21	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,2,4-Trimethylbenzene	ND		98	45	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,3,5-Trimethylbenzene	ND		98	24	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
Vinyl chloride	ND		490	98	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
m,p-Xylene	ND		200	35	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
o-Xylene	ND		98	23	ug/Kg		05/02/12 16:53	05/03/12 11:07	1
1,2-Dichlorobenzene	ND		98	14	ug/Kg		05/02/12 16:53	05/03/12 11:07	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 125	05/02/12 16:53	05/03/12 11:07	1
4-Bromofluorobenzene (Surr)	93	75 - 125	05/02/12 16:53	05/03/12 11:07	1
Dibromofluoromethane (Surr)	96	75 - 125	05/02/12 16:53	05/03/12 11:07	1
Toluene-d8 (Surr)	102	75 - 125	05/02/12 16:53	05/03/12 11:07	1

LCS LCS

Spike

Lab Sample ID: LCS 250-4487/2-A

Matrix: Solid

Analysis Batch: 4508

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 4487

%Rec.

Added	Result	Qualifier U	nit	D '	%Rec	Limits
9470	11500	uç	g/Kg		121	65 - 150
1890	2180	ug	g/Kg		115	80 - 120
1890	1890	ug	g/Kg		100	80 - 120
1890	2040	uç	g/Kg		108	80 - 120
1890	2070	uç	g/Kg		109	80 - 140
1890	1860	uç	g/Kg		98	75 - 150
1890	1990	uç	g/Kg		105	65 _ 130
9470	11300	uç	g/Kg		119	70 - 125
1890	1980	uç	g/Kg		104	80 - 150
1890	1960	uç	g/Kg		103	80 - 135
1890	1970	uç	g/Kg		104	80 - 130
3790	4560	uç	g/Kg		120	65 - 140
1890	2090	uç	g/Kg		110	70 - 130
1890	2110	uç	g/Kg		111	80 - 125
1890	2000	uç	g/Kg		106	75 - 125
1890	2040	uç	g/Kg		108	80 - 120
1890	1950	uç	g/Kg		103	40 - 150
1890	1910	uç	g/Kg		101	80 - 120
1890	1890	uç	g/Kg		100	80 - 125
1890	1880	นดู	g/Kg		99	60 - 130
1890	2000	นดู	g/Kg		105	75 ₋ 125
	9470 1890 1890 1890 1890 1890 1890 1890 9470 1890 1890 1890 1890 1890 1890 1890 189	9470 11500 1890 2180 1890 1890 1890 2040 1890 2070 1890 1860 1890 1990 9470 11300 1890 1980 1890 1960 1890 1970 3790 4560 1890 2090 1890 2110 1890 2000 1890 1950 1890 1910 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890 1890	9470 11500 ug 1890 2180 ug 1890 1890 ug 1890 2040 ug 1890 2070 ug 1890 1860 ug 1890 1990 ug 9470 11300 ug 1890 1980 ug 1890 1960 ug 1890 1970 ug 1890 1970 ug 1890 2090 ug 1890 2090 ug 1890 2000 ug 1890 2040 ug 1890 2040 ug 1890 1950 ug	9470 11500 ug/Kg 1890 2180 ug/Kg 1890 1890 ug/Kg 1890 2040 ug/Kg 1890 2070 ug/Kg 1890 1860 ug/Kg 1890 1990 ug/Kg 1890 1990 ug/Kg 1890 1980 ug/Kg 1890 1980 ug/Kg 1890 1960 ug/Kg 1890 1970 ug/Kg 1890 1970 ug/Kg 1890 1970 ug/Kg 1890 2090 ug/Kg 1890 2090 ug/Kg 1890 2110 ug/Kg 1890 2000 ug/Kg 1890 2000 ug/Kg 1890 2000 ug/Kg 1890 1950 ug/Kg	9470 11500 ug/Kg 1890 2180 ug/Kg 1890 1890 ug/Kg 1890 2040 ug/Kg 1890 2070 ug/Kg 1890 1860 ug/Kg 1890 1990 ug/Kg 9470 11300 ug/Kg 1890 1980 ug/Kg 1890 1960 ug/Kg 1890 1970 ug/Kg 1890 1970 ug/Kg 1890 1970 ug/Kg 1890 2090 ug/Kg 1890 2110 ug/Kg 1890 2000 ug/Kg 1890 1950 ug/Kg	9470 11500 ug/Kg 121 1890 2180 ug/Kg 115 1890 1890 ug/Kg 100 1890 2040 ug/Kg 108 1890 2070 ug/Kg 109 1890 1860 ug/Kg 98 1890 1990 ug/Kg 105 9470 11300 ug/Kg 119 1890 1980 ug/Kg 104 1890 1960 ug/Kg 103 1890 1970 ug/Kg 104 3790 4560 ug/Kg 120 1890 2090 ug/Kg 110 1890 2000 ug/Kg 111 1890 2000 ug/Kg 111 1890 2000 ug/Kg 110 1890 2040 ug/Kg 111 1890 1950 ug/Kg 106 1890 1950 ug/Kg 106 1890 1950 ug/Kg 101 1890 1950 ug/Kg 106 1890 1950 ug/Kg 108 1890 1950 ug/Kg 103

TestAmerica Job ID: 250-2362-1

Client: Anderson Environmental Contracting LLC Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 250-4487/2-A

Matrix: Solid

Analysis Batch: 4508

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 4487

raidiyolo Datom 1000	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
1,2-Dibromoethane	1890	2120	ug/Kg		112	80 - 125
Dibromomethane	1890	2030	ug/Kg		107	80 - 120
1,2-Dichloroethane	1890	2010	ug/Kg		106	80 - 120
1,3-Dichlorobenzene	1890	1850	ug/Kg		98	80 - 125
1,4-Dichlorobenzene	1890	1830	ug/Kg		97	75 _ 120
Dichlorodifluoromethane	1890	2050	ug/Kg		108	75 - 120
1,1-Dichloroethane	1890	2160	ug/Kg		114	80 - 120
1,1-Dichloroethene	1890	2270	ug/Kg		120	75 ₋ 125
cis-1,2-Dichloroethene	1890	2060	ug/Kg		109	75 - 125
trans-1,2-Dichloroethene	1890	2180	ug/Kg		115	75 - 125
1,2-Dichloropropane	1890	2230	ug/Kg		118	80 - 125
1,3-Dichloropropane	1890	2150	ug/Kg		114	75 _ 130
2,2-Dichloropropane	1890	2160	ug/Kg		114	70 - 130
1,1-Dichloropropene	1890	2220	ug/Kg		117	80 - 125
cis-1,3-Dichloropropene	1890	2220	ug/Kg		117	80 - 125
trans-1,3-Dichloropropene	1890	2260	ug/Kg		119	65 - 145
Ethylbenzene	1890	2030	ug/Kg		107	80 - 125
Hexachlorobutadiene	1890	2270	ug/Kg		120	80 - 150
2-Hexanone	9470	11500	* ug/Kg		122	55 - 120
Isopropylbenzene	1890	1990	ug/Kg		105	80 - 130
p-Isopropyltoluene	1890	1960	ug/Kg		104	80 - 120
4-Methyl-2-pentanone (MIBK)	9470	10900	ug/Kg		115	50 - 120
Methyl tert-butyl ether	1890	2010	ug/Kg		106	75 ₋ 125
Methylene Chloride	1890	2040	ug/Kg		108	75 - 125
Naphthalene	1890	2060	ug/Kg		109	80 - 130
N-Propylbenzene	1890	2010	ug/Kg		106	80 - 120
Styrene	1890	2080	ug/Kg		110	80 - 125
1,1,1,2-Tetrachloroethane	1890	2110	ug/Kg		111	80 - 130
1,1,2,2-Tetrachloroethane	1890	1900	ug/Kg		101	70 ₋ 135
Tetrachloroethene	1890	2120	ug/Kg		112	80 - 125
Toluene	1890	2190	ug/Kg		116	80 - 120
1,2,3-Trichlorobenzene	1890	1990	ug/Kg		105	80 - 145
1,2,4-Trichlorobenzene	1890	2060	ug/Kg		109	85 _ 150
1,1,1-Trichloroethane	1890	2130	ug/Kg		112	80 - 125
1,1,2-Trichloroethane	1890	2080	ug/Kg		110	80 - 125
Trichloroethene	1890	2120	ug/Kg		112	80 - 125
Trichlorofluoromethane	1890	1920	ug/Kg		101	55 - 150
1,2,3-Trichloropropane	1890	1860	ug/Kg		98	65 - 125
1,2,4-Trimethylbenzene	1890	1960	ug/Kg		104	80 - 135
1,3,5-Trimethylbenzene	1890	1970	ug/Kg		104	80 _ 135
Vinyl chloride	1890	560	ug/Kg		30	10 - 140
m,p-Xylene	3790	4080	ug/Kg		108	80 - 120
o-Xylene	1890	1970	ug/Kg		104	80 - 125
1,2-Dichlorobenzene	1890	1890	ug/Kg		100	80 _ 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		75 - 125
4-Bromofluorobenzene (Surr)	98		75 ₋ 125
Dibromofluoromethane (Surr)	103		75 ₋ 125

QC Sample Results

Client: Anderson Environmental Contracting LLC

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 250-4487/2-A

Lab Sample ID: 250-2374-C-25-A MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 4508

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 4487

LCS LCS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 75 - 125 108

> Client Sample ID: Matrix Spike Prep Type: Total/NA

487

Analysis Batch: 4508									Prep Type Prep E	Batch: 448
_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	ND		22700	26900		ug/Kg	-	118	60 - 145	
Benzene	ND		4550	5190		ug/Kg	₩	114	80 - 125	
Bromobenzene	ND		4550	4540		ug/Kg	₩	100	70 - 130	
Bromochloromethane	ND		4550	4740		ug/Kg	₽	104	80 - 130	
Bromodichloromethane	ND		4550	4870		ug/Kg	₽	107	80 _ 135	
Bromoform	ND		4550	4510		ug/Kg	₽	99	70 _ 130	
Bromomethane	ND		4550	4370		ug/Kg	₽	96	70 - 130	
2-Butanone (MEK)	ND		22700	26500		ug/Kg	₽	117	70 - 145	
n-Butylbenzene	ND		4550	4770		ug/Kg	₽	105	70 - 140	
sec-Butylbenzene	ND		4550	4590		ug/Kg	\$	101	70 _ 135	
tert-Butylbenzene	ND		4550	4610		ug/Kg	₽	101	80 _ 135	
Carbon disulfide	ND		9090	10500		ug/Kg	₽	115	70 - 130	
Carbon tetrachloride	ND		4550	5090		ug/Kg	₽	112	70 - 125	
Chlorobenzene	ND		4550	5050		ug/Kg	₽	111	70 _ 130	
Chloroethane	ND		4550	4390		ug/Kg	₽	97	70 _ 130	
Chloroform	ND		4550	4800		ug/Kg	₽	106	80 - 125	
Chloromethane	ND		4550	4330		ug/Kg	₽	95	40 - 150	
2-Chlorotoluene	ND		4550	4450		ug/Kg	₽	98	80 - 125	
4-Chlorotoluene	ND		4550	4440		ug/Kg	\$	98	70 _ 130	
1,2-Dibromo-3-Chloropropane	ND		4550	4100		ug/Kg	₽	90	60 - 145	
Dibromochloromethane	ND		4550	4980		ug/Kg	₽	110	80 _ 130	
1,2-Dibromoethane	ND		4550	5150		ug/Kg	₽	113	80 - 130	
Dibromomethane	ND		4550	4790		ug/Kg	₽	105	75 - 125	
1,2-Dichloroethane	ND		4550	4780		ug/Kg	₽	105	75 - 120	
1,3-Dichlorobenzene	ND		4550	4370		ug/Kg	*	96	80 - 130	
1,4-Dichlorobenzene	ND		4550	4310		ug/Kg	₩	95	80 - 120	
Dichlorodifluoromethane	ND		4550	4600		ug/Kg	₩	101	65 ₋ 135	
1,1-Dichloroethane	ND		4550	5090		ug/Kg	₩	112	80 - 125	
1,1-Dichloroethene	ND		4550	5330		ug/Kg	₩	117	70 - 130	
cis-1,2-Dichloroethene	ND		4550	4900		ug/Kg	₩	108	75 - 120	
trans-1,2-Dichloroethene	ND		4550	4960		ug/Kg	₩	109	70 - 130	
1,2-Dichloropropane	ND		4550	5270		ug/Kg	₩	116	80 - 130	
1,3-Dichloropropane	ND		4550	5050		ug/Kg	₩	111	75 - 130	
2,2-Dichloropropane	ND		4550	4970		ug/Kg	₩	109	70 - 130	
1,1-Dichloropropene	ND		4550	5450		ug/Kg	₩	120	80 - 125	
cis-1,3-Dichloropropene	ND		4550	5420		ug/Kg	₩	119	80 - 130	
trans-1,3-Dichloropropene	ND		4550	5540		ug/Kg	*	122	70 - 145	
Ethylbenzene	ND		4550	4820		ug/Kg	₩	106	80 - 125	
Hexachlorobutadiene	ND		4550	5110		ug/Kg	₩	112	45 - 150	
2-Hexanone	ND	*	22700	27600		ug/Kg	*	122	65 - 150	
Isopropylbenzene	ND		4550	4710		ug/Kg	₩	104	80 - 130	
p-Isopropyltoluene	47	J	4550	4610		ug/Kg	₽	100	70 - 140	

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1 SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 250-2374-C-25-A MS

Matrix: Solid

Analysis Batch: 4508

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 4487

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Methyl-2-pentanone (MIBK)	ND		22700	26400		ug/Kg	*	116	60 - 150	
Methyl tert-butyl ether	ND		4550	4740		ug/Kg	₽	104	70 - 130	
Methylene Chloride	ND		4550	4780		ug/Kg	≎	105	70 - 120	
Naphthalene	ND		4550	4610		ug/Kg	₩	101	70 - 130	
N-Propylbenzene	ND		4550	4830		ug/Kg	≎	106	70 - 130	
Styrene	ND		4550	4920		ug/Kg	≎	108	85 - 120	
1,1,1,2-Tetrachloroethane	ND		4550	5190		ug/Kg	₩	114	80 - 130	
1,1,2,2-Tetrachloroethane	ND		4550	4470		ug/Kg	≎	98	70 - 130	
Tetrachloroethene	ND		4550	5250		ug/Kg	≎	115	75 - 140	
Toluene	ND		4550	5210		ug/Kg	₩	115	70 - 130	
1,2,3-Trichlorobenzene	ND		4550	4220		ug/Kg	≎	93	70 - 130	
1,2,4-Trichlorobenzene	ND		4550	4460		ug/Kg	≎	98	70 - 150	
1,1,1-Trichloroethane	ND		4550	5040		ug/Kg	₩	111	80 - 125	
1,1,2-Trichloroethane	ND		4550	4980		ug/Kg	≎	110	80 - 130	
Trichloroethene	ND		4550	5020		ug/Kg	₩	110	80 - 125	
Trichlorofluoromethane	ND		4550	4310		ug/Kg	₩	95	70 - 130	
1,2,3-Trichloropropane	ND		4550	4340		ug/Kg	≎	96	70 - 130	
1,2,4-Trimethylbenzene	ND		4550	4560		ug/Kg	₩	100	70 - 130	
1,3,5-Trimethylbenzene	ND		4550	4600		ug/Kg	₽	101	75 - 140	
Vinyl chloride	ND		4550	2020		ug/Kg	₩	44	10 - 140	
m,p-Xylene	ND		9090	9590		ug/Kg	₩	105	75 - 135	
o-Xylene	ND		4550	4740		ug/Kg	₩	104	70 - 130	
1,2-Dichlorobenzene	ND		4550	4520		ug/Kg	₩	99	80 - 120	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 125
4-Bromofluorobenzene (Surr)	91		75 - 125
Dibromofluoromethane (Surr)	99		75 - 125
Toluene-d8 (Surr)	104		75 - 125

Lab Sample ID: 250-2374-C-25-B MSD

Matrix: Solid

Analysis Batch: 4508

Client Sample	D: Matrix Spike Duplicate
	Pren Tyne: Total/NA

i manyone zanom nece										P	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		23000	27600		ug/Kg	<u> </u>	120	60 - 145	3	25
Benzene	ND		4610	5320		ug/Kg	₽	116	80 - 125	3	25
Bromobenzene	ND		4610	4600		ug/Kg	₽	100	70 - 130	1	25
Bromochloromethane	ND		4610	4840		ug/Kg	₩	105	80 - 130	2	25
Bromodichloromethane	ND		4610	4960		ug/Kg	₽	108	80 - 135	2	25
Bromoform	ND		4610	4570		ug/Kg	₽	99	70 - 130	1	25
Bromomethane	ND		4610	4480		ug/Kg	₽	97	70 - 130	2	25
2-Butanone (MEK)	ND		23000	27100		ug/Kg	₽	118	70 - 145	2	25
n-Butylbenzene	ND		4610	4900		ug/Kg	₽	106	70 - 140	3	25
sec-Butylbenzene	ND		4610	4860		ug/Kg	₽	105	70 - 135	6	25
tert-Butylbenzene	ND		4610	4770		ug/Kg	₽	103	80 - 135	3	25
Carbon disulfide	ND		9210	10700		ug/Kg	₽	116	70 - 130	2	25
Carbon tetrachloride	ND		4610	5180		ug/Kg	₽	112	70 - 125	2	25
Chlorobenzene	ND		4610	5180		ug/Kg	⇔	112	70 ₋ 130	3	25

QC Sample Results

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima SDG: 12-026

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 250-2374-C-25-B MSD

Matrix: Solid

o-Xylene

Client Sample ID:	Matrix Spike Duplicate
	Prep Type: Total/NA

TestAmerica Job ID: 250-2362-1

Matrix: Solid										ype: To	
Analysis Batch: 4508	Comple	Sample	Spike	MeD	MSD				Pre %Rec.	p Batch	: 4487 RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroethane	ND		4610	4710		ug/Kg	— -	102	70 - 130	7	25
Chloroform	ND		4610	4880		ug/Kg		106	80 - 125	2	25
Chloromethane	ND		4610	4470		ug/Kg	₽	97	40 - 150	3	25
2-Chlorotoluene	ND		4610	4640		ug/Kg	₩	101	80 - 125	4	25
4-Chlorotoluene	ND		4610	4600		ug/Kg	ф.	100	70 - 130	4	25
1,2-Dibromo-3-Chloropropane	ND		4610	4440		ug/Kg	₽	96	60 - 145	8	25
Dibromochloromethane	ND		4610	4890		ug/Kg	₽	106	80 - 130	2	25
1,2-Dibromoethane	ND		4610	5220		ug/Kg		113	80 - 130	1	25
Dibromomethane	ND		4610	4750		ug/Kg	₽	103	75 - 125	1	25
1,2-Dichloroethane	ND		4610	4810		ug/Kg	₽	104	75 ₋ 120	1	25
1,3-Dichlorobenzene	ND		4610	4570		ug/Kg		99	80 - 130	4	25
1,4-Dichlorobenzene	ND		4610	4550		ug/Kg	₽	99	80 - 120	6	25
Dichlorodifluoromethane	ND		4610	4910		ug/Kg	₽	107	65 ₋ 135	7	25
1,1-Dichloroethane	ND		4610	5180		ug/Kg	.	112	80 - 125	2	25
1,1-Dichloroethene	ND		4610	5430		ug/Kg	₽	118	70 - 130	2	25
cis-1,2-Dichloroethene	ND		4610	4990		ug/Kg	₽	108	75 - 120	2	25
trans-1,2-Dichloroethene	ND		4610	5180		ug/Kg		112	70 - 130	4	25
1,2-Dichloropropane	ND		4610	5320		ug/Kg	₽	116	80 - 130	1	25
1,3-Dichloropropane	ND		4610	5200		ug/Kg	₽	113	75 - 130	3	25
2,2-Dichloropropane	ND		4610	5190		ug/Kg		113	70 - 130	4	25
1,1-Dichloropropene	ND		4610	5490		ug/Kg	₽	119	80 - 125	1	25
cis-1,3-Dichloropropene	ND		4610	5470		ug/Kg	₽	119	80 - 130	1	25
trans-1,3-Dichloropropene	ND		4610	5530		ug/Kg	.	120	70 - 145	0	25
Ethylbenzene	ND		4610	4970		ug/Kg	₽	108	80 - 125	3	25
Hexachlorobutadiene	ND		4610	5370		ug/Kg	₽	117	45 - 150	5	25
2-Hexanone	ND	*	23000	28300		ug/Kg		123	65 - 150	3	25
Isopropylbenzene	ND		4610	4860		ug/Kg	₽	105	80 - 130	3	25
p-Isopropyltoluene	47	Л	4610	4880		ug/Kg	₽	105	70 - 140	6	25
4-Methyl-2-pentanone (MIBK)	ND		23000	26800		ug/Kg		116	60 - 150	1	25
Methyl tert-butyl ether	ND		4610	4840		ug/Kg	₽	105	70 ₋ 130	2	25
Methylene Chloride	ND		4610	4870		ug/Kg	₽	106	70 - 120	2	25
Naphthalene	ND		4610	5110		ug/Kg		111	70 - 130	10	25
N-Propylbenzene	ND		4610	4990		ug/Kg	₽	108	70 - 130	3	25
Styrene	ND		4610	5000		ug/Kg	₽	109	85 ₋ 120	2	25
1,1,1,2-Tetrachloroethane	ND		4610	5130		ug/Kg		111	80 - 130	-	25
1,1,2,2-Tetrachloroethane	ND		4610	4620		ug/Kg	₽	100	70 - 130	3	25
Tetrachloroethene	ND		4610	5330		ug/Kg	₽	116	75 ₋ 140	2	25
Toluene	ND		4610	5360		ug/Kg	.	116	70 - 130	3	25
1,2,3-Trichlorobenzene	ND		4610	4840		ug/Kg	₽	105	70 - 130	14	25
1,2,4-Trichlorobenzene	ND		4610	4930		ug/Kg ug/Kg	₽	107	70 - 150 70 - 150	10	25
1,1,1-Trichloroethane	ND		4610	5110		ug/Kg		111	80 - 125	1	25
1,1,2-Trichloroethane	ND		4610	5050		ug/Kg ug/Kg	₽	110	80 - 130	1	25
Trichloroethene	ND		4610	5250		ug/Kg ug/Kg	₽	114	80 ₋ 135	4	25
Trichlorofluoromethane	ND		4610	4580		ug/Kg ug/Kg	 \$	99	70 - 130	6	25
1,2,3-Trichloropropane	ND ND		4610	4470		ug/Kg ug/Kg	т Ф	99	70 ₋ 130	3	25
1,2,4-Trimethylbenzene	ND ND		4610	4800		ug/Kg ug/Kg	т Ф	104	70 - 130 70 - 130	5	25
1,3,5-Trimethylbenzene	ND		4610	4840		ug/Kg ug/Kg	.	104	70 - 130 75 - 140	5	25
Vinyl chloride	ND ND		4610	1330	E	ug/Kg ug/Kg	₩	29	75 - 140 10 - 140	5 41	25 25
•	ND ND		9210	9970	•		₩		75 ₋ 135		
m,p-Xylene	ND		9210	9970		ug/Kg		108	10 - 100	4	25

105

70 - 130

4840

ug/Kg

4610

ND

TestAmerica Job ID: 250-2362-1 SDG: 12-026

Client: Anderson Environmental Contracting LLC

Lab Sample ID: 250-2374-C-25-B MSD

Project/Site: DOE-Yakima

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 4487

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	ND		4610	4660		ug/Kg	\$	101	80 - 120	3	25

MSD MSD %Recovery Qualifier Limits

Surrogate 75 - 125 1,2-Dichloroethane-d4 (Surr) 102 4-Bromofluorobenzene (Surr) 95 75 - 125 Dibromofluoromethane (Surr) 100 75 - 125 Toluene-d8 (Surr) 107 75 - 125

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-110923/1-A Client Sample ID: Method Blank

Matrix: Solid

Matrix: Solid

Analysis Batch: 4508

Prep Type: Total/NA Prep Batch: 110923

Analysis Batch: 111038 MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte Phenol ND 100 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 ND 100 05/10/12 10:33 Bis(2-chloroethyl)ether 05/09/12 10:16 ug/Kg 2-Chlorophenol ND 100 ug/Kg 05/09/12 10:16 05/10/12 10:33 1,3-Dichlorobenzene ND 50 05/09/12 10:16 05/10/12 10:33 15 ug/Kg 1,4-Dichlorobenzene ND 50 ug/Kg 05/09/12 10:16 05/10/12 10:33 Benzyl alcohol ND 100 05/09/12 10:16 05/10/12 10:33 15 ua/Ka 1,2-Dichlorobenzene ND 55 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 2-Methylphenol ND 100 ug/Kg 05/09/12 10:16 05/10/12 10:33 15 3 & 4 Methylphenol ND 200 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 N-Nitrosodi-n-propylamine ND 100 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 Hexachloroethane ND 100 05/10/12 10:33 15 ug/Kg 05/09/12 10:16 Nitrobenzene ND 100 ug/Kg 05/09/12 10:16 05/10/12 10:33 Isophorone ND 100 ug/Kg 05/09/12 10:16 05/10/12 10:33 5.0 ug/Kg 05/10/12 10:33 2-Nitrophenol ND 100 05/09/12 10:16 ND 100 2,4-Dimethylphenol 05/09/12 10:16 05/10/12 10:33 15 ua/Ka Benzoic acid ND 2500 750 ug/Kg 05/09/12 10:16 05/10/12 10:33 Bis(2-chloroethoxy)methane ND 100 05/09/12 10:16 05/10/12 10:33 5.0 ug/Kg 2,4-Dichlorophenol ND 100 ug/Kg 05/09/12 10:16 05/10/12 10:33 1,2,4-Trichlorobenzene ND 50 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 Naphthalene ND 20 5.0 ug/Kg 05/09/12 10:16 05/10/12 10:33 100 4-Chloroaniline ND 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 ND 50 05/09/12 10:16 05/10/12 10:33 Hexachlorobutadiene 15 ug/Kg 100 4-Chloro-3-methylphenol ND 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 ND 20 05/09/12 10:16 05/10/12 10:33 2-Methylnaphthalene 5.0 ug/Kg ND 100 05/09/12 10:16 05/10/12 10:33 Hexachlorocyclopentadiene 10 ug/Kg 2,4,6-Trichlorophenol ND 150 ug/Kg 05/09/12 10:16 05/10/12 10:33 15 2,4,5-Trichlorophenol ND 100 05/09/12 10:16 05/10/12 10:33 15 ug/Kg 2-Chloronaphthalene ND 20 5.0 ug/Kg 05/09/12 10:16 05/10/12 10:33 2-Nitroaniline ND 100 ug/Kg 05/09/12 10:16 05/10/12 10:33 ND 100 05/09/12 10:16 05/10/12 10:33 Dimethyl phthalate 5.0 ug/Kg ND Acenaphthylene 20 5.0 ug/Kg 05/09/12 10:16 05/10/12 10:33 2,6-Dinitrotoluene ND 100 05/09/12 10:16 05/10/12 10:33 15 ua/Ka 3-Nitroaniline ND 100 15 ug/Kg 05/09/12 10:16 05/10/12 10:33 Acenaphthene ND 20 05/09/12 10:16 05/10/12 10:33

> TestAmerica Portland 5/11/2012

5.0 ug/Kg

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-110923/1-A

Matrix: Solid

Analysis Batch: 111038

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 110923

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	ND		1000	200	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
4-Nitrophenol	ND		1000	250	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Dibenzofuran	ND		100	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
2,4-Dinitrotoluene	ND		100	15	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Diethyl phthalate	28.8	J	200	15	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
4-Chlorophenyl phenyl ether	ND		100	15	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Fluorene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
4-Nitroaniline	ND		100	20	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
4,6-Dinitro-2-methylphenol	ND		1000	100	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
N-Nitrosodiphenylamine	ND		50	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
4-Bromophenyl phenyl ether	ND		100	15	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Hexachlorobenzene	ND		50	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Pentachlorophenol	ND		200	20	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Phenanthrene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Anthracene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Di-n-butyl phthalate	ND		500	50	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Fluoranthene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Pyrene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Butyl benzyl phthalate	ND		200	50	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
3,3'-Dichlorobenzidine	ND		200	30	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Benzo[a]anthracene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Chrysene	ND		25	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Bis(2-ethylhexyl) phthalate	ND		600	50	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Di-n-octyl phthalate	ND		500	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Benzo[a]pyrene	ND		30	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Indeno[1,2,3-cd]pyrene	ND		40	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Dibenz(a,h)anthracene	ND		40	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Benzo[g,h,i]perylene	ND		25	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Carbazole	ND		100	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
1-Methylnaphthalene	ND		30	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Benzo[b]fluoranthene	ND		20	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
Benzo[k]fluoranthene	ND		25	5.0	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
bis (2-chloroisopropyl) ether	ND		250	15	ug/Kg		05/09/12 10:16	05/10/12 10:33	1
	MP	MP							

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	93		36 - 145	05/09/12 10:16	05/10/12 10:33	1
Phenol-d5	127		38 - 149	05/09/12 10:16	05/10/12 10:33	1
Nitrobenzene-d5	90		38 - 141	05/09/12 10:16	05/10/12 10:33	1
2-Fluorobiphenyl	85		42 - 140	05/09/12 10:16	05/10/12 10:33	1
2,4,6-Tribromophenol	75		28 - 143	05/09/12 10:16	05/10/12 10:33	1
Terphenyl-d14	75		42 - 151	05/09/12 10:16	05/10/12 10:33	1

Lab Sample ID: LCS 580-110923/2-A

Matrix: Solid

Analysis Batch: 111038

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Phenol	999	1500	*	ug/Kg		150	66 - 126
Bis(2-chloroethyl)ether	1010	986		ug/Kg		98	57 ₋ 122

QC Sample Results

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-110923/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 110923

TestAmerica Job ID: 250-2362-1

Analysis Batch: 111038 LCS LCS Spike %Rec. Result Qualifier Analyte Added Unit %Rec Limits 2-Chlorophenol 1000 1010 101 ug/Kg 65 - 1251,3-Dichlorobenzene 1000 897 ug/Kg 90 64 - 124 1000 1,4-Dichlorobenzene 920 ug/Kg 92 62 _ 132 Benzyl alcohol 1000 1120 ug/Kg 112 42 - 147 1,2-Dichlorobenzene 1000 915 91 68 - 118 ug/Kg 2-Methylphenol 999 1370 137 ug/Kg 56 - 121 3 & 4 Methylphenol 998 1620 163 61 - 126ug/Kg N-Nitrosodi-n-propylamine 998 915 ug/Kg 92 52 - 127 Hexachloroethane 1000 914 ug/Kg 91 56 - 131 Nitrobenzene 1000 1200 ug/Kg 120 59 - 134 Isophorone 1000 1010 101 53 - 118ug/Kg 2-Nitrophenol 999 1000 ug/Kg 100 58 - 128 2,4-Dimethylphenol 998 1430 ug/Kg 143 58 - 133 Benzoic acid 5020 5190 ug/Kg 103 10 - 130 1000 Bis(2-chloroethoxy)methane ug/Kg 97 63 - 1282,4-Dichlorophenol 998 1300 130 59 - 124 ug/Kg 1,2,4-Trichlorobenzene 1000 89 63 - 128 885 ug/Kg 1000 Naphthalene 993 ug/Kg 99 64 - 129 4-Chloroaniline 1000 1180 118 20 - 181 ug/Kg Hexachlorobutadiene 1000 890 89 59 _ 134 ug/Kg 4-Chloro-3-methylphenol 1000 1270 127 58 - 128 ug/Kg 2-Methylnaphthalene 1000 1010 ug/Kg 101 65 - 125 Hexachlorocyclopentadiene 998 809 ug/Kg 81 30 - 132 2,4,6-Trichlorophenol 1010 1160 ug/Kg 116 66 _ 131 2,4,5-Trichlorophenol 1010 1120 ug/Kg 111 64 - 1242-Chloronaphthalene 1000 960 ug/Kg 96 69 - 129 2-Nitroaniline 1000 98 58 - 133 976 ug/Kg 1000 95 Dimethyl phthalate 948 ug/Kg 65 - 125Acenaphthylene 999 1020 ug/Kg 102 69 - 1292,6-Dinitrotoluene 1000 1070 ug/Kg 107 65 - 125 3-Nitroaniline 1000 1060 106 ug/Kg 80 - 165Acenaphthene 1000 1000 ug/Kg 100 65 - 130 2,4-Dinitrophenol 4990 4980 ug/Kg 100 53 - 168 4-Nitrophenol 5010 4510 ug/Kg 90 47 - 172 Dibenzofuran 1000 949 95 70 - 125 ug/Kg 2,4-Dinitrotoluene 1000 1050 ug/Kg 105 57 - 122 Diethyl phthalate 1000 995 ug/Kg 99 64 - 129 1000 106 65 - 130 4-Chlorophenyl phenyl ether 1060 ug/Kg Fluorene 1000 1030 ug/Kg 102 68 - 128 4-Nitroaniline 1000 864 86 ug/Kg 70 - 1504,6-Dinitro-2-methylphenol 5000 5180 ug/Kg 104 38 - 143 998 N-Nitrosodiphenylamine 958 96 88 - 153 ug/Kg 4-Bromophenyl phenyl ether 1000 1030 103 64 - 134 ug/Kg Hexachlorobenzene 1000 938 ug/Kg 94 61 - 136 Pentachlorophenol 999 930 ug/Kg 93 29 - 124 Phenanthrene 1000 978 ug/Kg 98 65 - 125 Anthracene 1000 965 ug/Kg 97 73 - 123 Di-n-butyl phthalate 1000 979 ug/Kg 98 69 - 124 1000 Fluoranthene 1030 ug/Kg 102 61 - 121Pyrene 1000 1030 103 54 - 134 ug/Kg

2

5

8

9

4 4

12

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-110923/2-A

Matrix: Solid

Analysis Batch: 111038

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 110923

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Butyl benzyl phthalate	1000	933		ug/Kg		93	65 - 140	
3,3'-Dichlorobenzidine	2000	2100		ug/Kg		105	73 - 163	
Benzo[a]anthracene	1000	976		ug/Kg		98	64 - 124	
Chrysene	1000	990		ug/Kg		99	71 - 126	
Bis(2-ethylhexyl) phthalate	1010	949		ug/Kg		94	64 - 144	
Di-n-octyl phthalate	1000	919		ug/Kg		92	58 - 148	
Benzo[a]pyrene	1000	982		ug/Kg		98	68 - 128	
Indeno[1,2,3-cd]pyrene	1000	1030		ug/Kg		103	59 - 139	
Dibenz(a,h)anthracene	999	1010		ug/Kg		101	57 - 142	
Benzo[g,h,i]perylene	1000	1000		ug/Kg		100	57 - 142	
Carbazole	999	943		ug/Kg		94	88 - 158	
1-Methylnaphthalene	1000	999		ug/Kg		100	48 - 148	
Benzo[b]fluoranthene	1000	1010		ug/Kg		101	66 - 136	
Benzo[k]fluoranthene	1000	1010		ug/Kg		101	63 - 143	

999

1130

ug/Kg

113

44 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorophenol	93		36 - 145
Phenol-d5	118		38 - 149
Nitrobenzene-d5	88		38 - 141
2-Fluorobiphenyl	83		42 - 140
2,4,6-Tribromophenol	84		28 - 143
Terphenyl-d14	74		42 - 151

Lab Sample ID: 250-2362-1 MS

Matrix: Solid

Analysis Batch: 111038

bis (2-chloroisopropyl) ether

Client Sample ID: Pipe Bedding

Prep Type: Total/NA Prep Batch: 110923

Analysis Batch: 111038	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Phenol	ND		1050	1590		ug/Kg	<u></u>	151	66 - 126
Bis(2-chloroethyl)ether	ND		1060	1130		ug/Kg	₽	107	57 ₋ 122
2-Chlorophenol	ND		1060	1180		ug/Kg	₩	112	65 ₋ 125
1,3-Dichlorobenzene	ND		1060	909		ug/Kg	₩.	86	64 - 124
1,4-Dichlorobenzene	ND		1050	936		ug/Kg	₩	89	62 - 132
Benzyl alcohol	ND		1050	1290		ug/Kg	₩	122	42 _ 147
1,2-Dichlorobenzene	ND		1060	962		ug/Kg	₩	91	68 - 118
2-Methylphenol	ND	*	1050	1560	F	ug/Kg	≎	148	56 - 121
3 & 4 Methylphenol	ND	*	1050	1880	F	ug/Kg	₽	179	61 - 126
N-Nitrosodi-n-propylamine	ND		1050	1070		ug/Kg	₩.	102	52 - 127
Hexachloroethane	ND		1060	1040		ug/Kg	≎	98	56 ₋ 131
Nitrobenzene	ND		1050	1300		ug/Kg	₩	124	59 ₋ 134
Isophorone	ND		1060	1180		ug/Kg	₩	111	53 - 118
2-Nitrophenol	ND		1050	1100		ug/Kg	₩	104	58 - 128
2,4-Dimethylphenol	ND	*	1050	1540	F	ug/Kg	₩	146	58 ₋ 133
Benzoic acid	ND		5290	1570	J	ug/Kg	₽	30	10 - 130
Bis(2-chloroethoxy)methane	ND		1060	1110		ug/Kg	₩	105	63 - 128
2,4-Dichlorophenol	ND	*	1050	1350	F	ug/Kg	₽	129	59 ₋ 124
1,2,4-Trichlorobenzene	ND		1050	934		ug/Kg	₩	89	63 - 128
Naphthalene	ND		1050	1090		ug/Kg	₩	104	64 - 129

QC Sample Results

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 250-2362-1 MS

Matrix: Solid

Client Sample ID: Pipe Bedding
Prep Type: Total/NA
Prep Batch: 110923

TestAmerica Job ID: 250-2362-1

Analysis Batch: 111038 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier D %Rec Analyte Unit Limits 1050 ₩ 4-Chloroaniline ND 1240 118 ug/Kg 20 - 181 Hexachlorobutadiene ND 1060 1010 ug/Kg Ö 96 59 - 134 ND 1060 ₩ 4-Chloro-3-methylphenol 1270 ug/Kg 120 58 - 128 ď 2-Methylnaphthalene ND 1060 1070 ug/Kg 101 65 - 125 ₩ Hexachlorocyclopentadiene ND 1050 874 83 30 - 132 ug/Kg Ü 2,4,6-Trichlorophenol ND 1060 118 66 - 131 1250 ug/Kg ₽ 1060 ug/Kg 2,4,5-Trichlorophenol ND 1230 116 64 _ 124 Ø 2-Chloronaphthalene ND 1060 1010 ug/Kg 96 69 - 129₩ 2-Nitroaniline ND 1050 968 ug/Kg 92 58 - 133 ₽ Dimethyl phthalate ND 1050 1000 ug/Kg 95 65 - 125 ₽ Acenaphthylene ND 1050 1070 ug/Kg 101 69 - 129 ₽ 104 65 - 125 2,6-Dinitrotoluene ND 1050 1090 ug/Kg ď 103 3-Nitroaniline ND 1050 1080 ug/Kg 80 - 165 Ø Acenaphthene ND 1060 1050 100 ug/Kg 65 - 1305270 Ö 85 2,4-Dinitrophenol ND 4480 ug/Kg 53 - 168 ₩ 4-Nitrophenol NΩ 5280 4470 85 47 - 172 ug/Kg Ø Dibenzofuran ND 1060 1000 95 70 - 125 ug/Kg 1050 Ä 106 2 4-Dinitrotoluene NΩ 1120 ug/Kg 57 - 122 Diethyl phthalate ND 1060 1030 Ö 97 64 - 129 ug/Kg 1060 ₩ 106 4-Chlorophenyl phenyl ether ND 1120 65 - 130ug/Kg Ä Fluorene ND 1060 1060 ug/Kg 100 68 - 128 ug/Kg ₩ 4-Nitroaniline ND 1050 906 86 70 - 150 ₩ 4,6-Dinitro-2-methylphenol ND 5270 5230 ug/Kg 99 38 - 143 ug/Kg N-Nitrosodiphenylamine ND 1050 1030 ₩ 98 88 - 153 ₽ 4-Bromophenyl phenyl ether ND 1060 1120 ug/Kg 106 64 - 134ď Hexachlorobenzene ND 1060 1000 ug/Kg 95 61 - 136 ND Ä 1050 90 29 - 124 Pentachlorophenol 952 ug/Kg Phenanthrene 1050 1050 ₩ 100 65 - 125 ND ug/Kg ND 96 Anthracene 1050 1020 ug/Kg 73 - 123₩ Di-n-butyl phthalate ND 1050 1030 ug/Kg 98 69 - 124 ₽ ND 1060 1070 101 Fluoranthene ug/Kg 61 - 121 Ö Pyrene ND 1060 1070 ug/Kg 102 54 - 134 ₽ Butyl benzyl phthalate ND 1060 958 ug/Kg 91 65 - 140Ä 3,3'-Dichlorobenzidine ND 2110 2170 ug/Kg 103 73 - 163 ď Benzo[a]anthracene ND 1050 1040 98 64 - 124 ug/Kg ₩ Chrysene ND 1050 1040 ug/Kg 99 71 - 126 ₽ Bis(2-ethylhexyl) phthalate ND 1060 995 ug/Kg 94 64 - 144 ₽ Di-n-octyl phthalate ND 1060 90 58 - 148 952 ug/Kg ND Ü Benzo[a]pyrene 1050 1040 ug/Kg 98 68 - 128 ND Ä Indeno[1,2,3-cd]pyrene 1050 1050 100 59 - 139 ug/Kg ď Dibenz(a,h)anthracene ND 1050 1060 ug/Kg 101 57 - 142 ₩ ND 1050 101 Benzo[g,h,i]perylene 1060 ug/Kg 57 - 142Carbazole ND 1050 1020 ug/Kg Ö 96 88 - 158 ø ND 101 1-Methylnaphthalene 1060 1060 ug/Kg 48 - 148 Benzo[b]fluoranthene ND 1050 1070 ug/Kg ₩ 102 66 - 136 1060 103 Benzo[k]fluoranthene NΩ 1080 ug/Kg 63 - 143 bis (2-chloroisopropyl) ether ND 1050 1190 ug/Kg 113 44 - 140

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 250-2362-1 MS

Matrix: Solid

Analysis Batch: 111038

Client Sample ID: Pipe Bedding Prep Type: Total/NA

Prep Batch: 110923

MS	MS	
%Recovery	Qualifier	Limits
80		36 - 145
108		38 - 149
85		38 - 141
82		42 - 140
83		28 - 143
72		42 - 151
	%Recovery 80 108 85 82 83	80 108 85 82 83

Lab Sample ID: 250-2362-1 MSD

Matrix: Solid

Analysis Batch: 111038

Client Sample ID: Pipe Bedding Prep Type: Total/NA

Analysis Batch: 111038	Samuela.	Sample	Cmiles	MCD	MSD				Prep I %Rec.	Batch: 1	1 <mark>10923</mark> RPD
Analyte	•	Qualifier	Spike Added		Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	Limit
Phenol	ND		1010	1590		ug/Kg	— ö	157	66 - 126	0	26
Bis(2-chloroethyl)ether	ND		1020	1190	'	ug/Kg	₽	116	57 ₋ 122	5	60
2-Chlorophenol	ND		1020	1210		ug/Kg		119	65 - 125	2	27
1,3-Dichlorobenzene	ND		1020	940		ug/Kg ug/Kg		93	64 - 124	3	60
1,4-Dichlorobenzene	ND		1020	1060		ug/Kg ug/Kg		105	62 - 132	13	32
Benzyl alcohol	ND		1020	1280		ug/Kg ug/Kg	₽	126	42 - 147	0	60
1,2-Dichlorobenzene	ND		1020	983		ug/Kg ug/Kg		97	68 - 118	2	60
2-Methylphenol	ND	*	1010	1590	F	ug/Kg ug/Kg		156	56 ₋ 121	2	25
3 & 4 Methylphenol	ND		1010	1860		ug/Kg ug/Kg		184	61 - 126	1	27
N-Nitrosodi-n-propylamine	ND		1010	1090		ug/Kg ug/Kg		107	52 - 127		28
Hexachloroethane	ND ND		1020	1040		ug/Kg ug/Kg	₩	107	56 - 131	0	60
Nitrobenzene	ND ND		1020	1220		ug/Kg ug/Kg		120	50 - 131 59 - 134	7	60
	ND		1020	1160		ug/Kg ug/Kg	 \$	115	53 - 118		60
Isophorone	ND ND		1020	1040			₩	103	58 ₋ 128	1 5	60
2-Nitrophenol	ND ND	*	1010	1450	_	ug/Kg	₩	143	58 ₋ 133	6	60
2,4-Dimethylphenol						ug/Kg					
Benzoic acid	ND		5090	2340	J	ug/Kg	₩	46	10 - 130	39	60
Bis(2-chloroethoxy)methane	ND ND		1020	1040	_	ug/Kg	₩	103	63 - 128	6	60
2,4-Dichlorophenol			1010	1330		ug/Kg	¥	132	59 - 124	1	60
1,2,4-Trichlorobenzene	ND		1010	866		ug/Kg	₩	85	63 - 128	8	28
Naphthalene	ND		1020	1010		ug/Kg		100	64 - 129	8	26
4-Chloroaniline	ND		1020	1190		ug/Kg	 .	117	20 - 181	5	60
Hexachlorobutadiene	ND		1020	911		ug/Kg	\$	90	59 - 134	10	60
4-Chloro-3-methylphenol	ND		1020	1240		ug/Kg	#	122	58 - 128	2	27
2-Methylnaphthalene	ND		1020	1010		ug/Kg		99	65 - 125	6	27
Hexachlorocyclopentadiene	ND		1010	802		ug/Kg	‡	79	30 - 132	9	60
2,4,6-Trichlorophenol	ND		1020	1120		ug/Kg	#	110	66 - 131	11	60
2,4,5-Trichlorophenol	ND		1020	1180		ug/Kg	‡	115	64 - 124	5	60
2-Chloronaphthalene	ND		1020	960		ug/Kg	₩	95	69 - 129	5	25
2-Nitroaniline	ND		1020	950		ug/Kg	₽	94	58 - 133	2	60
Dimethyl phthalate	ND		1020	921		ug/Kg	‡	91	65 - 125	8	60
Acenaphthylene	ND		1010	1000		ug/Kg	₩	99	69 - 129	6	28
2,6-Dinitrotoluene	ND		1020	1020		ug/Kg	₩	100	65 - 125	7	60
3-Nitroaniline	ND		1020	1040		ug/Kg	₩	102	80 - 165	4	60
Acenaphthene	ND		1020	992		ug/Kg	₩	98	65 - 130	6	27
2,4-Dinitrophenol	ND		5070	4400		ug/Kg	₩	87	53 - 168	2	60
4-Nitrophenol	ND		5090	4360		ug/Kg	₩	86	47 - 172	2	33
Dibenzofuran	ND		1020	913		ug/Kg	₽	90	70 - 125	9	60

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 250-2362-1 MSD

Matrix: Solid

Analysis Batch: 111038

Client Sample ID: Pipe Bedding Prep Type: Total/NA

Prep Batch: 110923

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	ND		1020	1040		ug/Kg	\$	102	57 - 122	7	31
Diethyl phthalate	ND		1020	944		ug/Kg	₩	93	64 - 129	9	26
4-Chlorophenyl phenyl ether	ND		1020	1040		ug/Kg	*	102	65 - 130	7	60
Fluorene	ND		1020	977		ug/Kg	₩	96	68 - 128	8	31
4-Nitroaniline	ND		1020	802		ug/Kg	₩	79	70 - 150	12	60
4,6-Dinitro-2-methylphenol	ND		5070	5120		ug/Kg	₩	101	38 - 143	2	60
N-Nitrosodiphenylamine	ND		1010	980		ug/Kg	₩	97	88 - 153	5	60
4-Bromophenyl phenyl ether	ND		1020	1050		ug/Kg	₩	104	64 - 134	6	60
Hexachlorobenzene	ND		1020	954		ug/Kg	₩	94	61 - 136	5	60
Pentachlorophenol	ND		1010	896		ug/Kg	₩	88	29 - 124	6	68
Phenanthrene	ND		1020	989		ug/Kg	₩	97	65 - 125	6	28
Anthracene	ND		1020	975		ug/Kg	₩	96	73 - 123	4	27
Di-n-butyl phthalate	ND		1020	970		ug/Kg	₩	96	69 - 124	6	60
Fluoranthene	ND		1020	1030		ug/Kg	₩	101	61 - 121	4	36
Pyrene	ND		1020	1010		ug/Kg	₩	99	54 - 134	6	31
Butyl benzyl phthalate	ND		1020	896		ug/Kg	₩	88	65 - 140	7	60
3,3'-Dichlorobenzidine	ND		2030	2090		ug/Kg	₩	103	73 - 163	4	60
Benzo[a]anthracene	ND		1020	988		ug/Kg	₽	97	64 - 124	5	27
Chrysene	ND		1020	981		ug/Kg	₩	97	71 - 126	6	26
Bis(2-ethylhexyl) phthalate	ND		1020	965		ug/Kg	₩	94	64 - 144	3	60
Di-n-octyl phthalate	ND		1020	908		ug/Kg	₩	89	58 - 148	5	31
Benzo[a]pyrene	ND		1020	954		ug/Kg	₩	94	68 - 128	8	30
Indeno[1,2,3-cd]pyrene	ND		1020	1010		ug/Kg	₩	100	59 - 139	4	29
Dibenz(a,h)anthracene	ND		1010	1010		ug/Kg	₩	99	57 - 142	6	30
Benzo[g,h,i]perylene	ND		1020	992		ug/Kg	₩	98	57 - 142	7	28
Carbazole	ND		1010	958		ug/Kg	₩	94	88 - 158	6	60
1-Methylnaphthalene	ND		1020	982		ug/Kg	₩	97	48 - 148	8	30
Benzo[b]fluoranthene	ND		1020	978		ug/Kg	₩	96	66 - 136	9	31
Benzo[k]fluoranthene	ND		1020	1020		ug/Kg	₩	100	63 - 143	6	31
bis (2-chloroisopropyl) ether	ND		1010	1320		ug/Kg	\$	130	44 - 140	10	60

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorophenol	63		36 - 145
Phenol-d5	128		38 - 149
Nitrobenzene-d5	89		38 - 141
2-Fluorobiphenyl	81		42 - 140
2,4,6-Tribromophenol	85		28 - 143
Terphenyl-d14	71		42 - 151

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 250-4441/1-A

Matrix: Solid

Analysis Batch: 4509

Client Sample ID: Method Blank
Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		3.8	1.2	mg/Kg		05/02/12 09:23	05/02/12 17:49	1

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: MB 250-4441/1-A Client Sample ID: Method Blank **Matrix: Solid**

Prep Type: Total/NA

Prep Batch: 4441

MB MB

Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 50 - 150 05/02/12 09:23 05/02/12 17:49 a,a,a-Trifluorotoluene (fid) 101

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 250-4441/2-A **Matrix: Solid**

Analysis Batch: 4509

Analysis Batch: 4509

Prep Type: Total/NA

Prep Batch: 4441

Spike LCS LCS %Rec. Result Qualifier Added Analyte Unit D %Rec Limits Gasoline Range Hydrocarbons 24.2 26.0 mg/Kg 107 70 - 130

LCS LCS

%Recovery Qualifier Limits Surrogate 50 - 150 a,a,a-Trifluorotoluene (fid) 113

Lab Sample ID: 250-2362-2 MS Client Sample ID: Pit Run Backfill

Matrix: Solid

Analysis Batch: 4534

Prep Type: Total/NA

Prep Batch: 4441

Sample Sample Spike MS MS Added Qualifier Result Qualifier Result Unit D %Rec Limits Analyte 109 65 - 130 Gasoline Range Hydrocarbons ND 24.4 26.5 mg/Kg

MS MS

Limits Surrogate %Recovery Qualifier 50 - 150 a,a,a-Trifluorotoluene (fid) 96

Lab Sample ID: 250-2362-1 DU Client Sample ID: Pipe Bedding

Matrix: Solid

Analysis Batch: 4534

Prep Type: Total/NA Prep Batch: 4441

RPD

Sample Sample DU DU Result Qualifier Result Qualifier RPD Analyte Unit D Limit Gasoline Range Hydrocarbons ND ND NC 40 mg/Kg

DU DU

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 50 - 150 93

Lab Sample ID: 250-2373-A-3-B DU **Client Sample ID: Duplicate**

Matrix: Solid

Analysis Batch: 4509

Prep Type: Total/NA Prep Batch: 4441

וות ווח Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit D Limit Gasoline Range Hydrocarbons ND ND mg/Kg NC 40

DU DU

%Recovery Surrogate Qualifier Limits a,a,a-Trifluorotoluene (fid) 99 50 - 150

> TestAmerica Portland 5/11/2012

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 250-4662/1-A

Matrix: Solid

Analysis Batch: 4749

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 4662

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		6.7		ug/Kg	— <u>-</u>	05/08/12 09:21	05/08/12 14:16	1
4,4'-DDE	ND		6.7		ug/Kg		05/08/12 09:21	05/08/12 14:16	1
4,4'-DDT	ND		6.7		ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Aldrin	ND		6.7		ug/Kg		05/08/12 09:21	05/08/12 14:16	1
alpha-BHC	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
alpha-Chlordane	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
beta-BHC	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Chlordane (technical)	ND		150	75	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
delta-BHC	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Dieldrin	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Endosulfan I	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Endosulfan II	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Endosulfan sulfate	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Endrin	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Endrin aldehyde	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Endrin ketone	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
gamma-BHC (Lindane)	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
gamma-Chlordane	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Heptachlor	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Heptachlor epoxide	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Methoxychlor	ND		6.7	3.3	ug/Kg		05/08/12 09:21	05/08/12 14:16	1
Toxaphene	ND		200	100	ug/Kg		05/08/12 09:21	05/08/12 14:16	1

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Tetrachloro-m-xylene
 82
 30 - 140
 05/08/12 09:21
 05/08/12 14:16
 1

Lab Sample ID: LCS 250-4662/2-A

Matrix: Solid

Analysis Batch: 4749

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 4662

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	33.3	29.0		ug/Kg		87	50 - 130	
4,4'-DDE	33.3	28.0		ug/Kg		84	50 - 130	
4,4'-DDT	33.3	28.0		ug/Kg		84	50 - 130	
Aldrin	33.3	28.6		ug/Kg		86	50 ₋ 130	
alpha-BHC	33.3	25.6		ug/Kg		77	50 - 130	
alpha-Chlordane	33.3	26.1		ug/Kg		78	50 - 130	
beta-BHC	33.3	27.6		ug/Kg		83	50 - 130	
delta-BHC	33.3	27.1		ug/Kg		81	50 - 130	
Dieldrin	33.3	28.8		ug/Kg		86	50 - 130	
Endosulfan I	33.3	28.0		ug/Kg		84	50 - 130	
Endosulfan II	33.3	26.2		ug/Kg		79	50 - 130	
Endosulfan sulfate	33.3	28.0		ug/Kg		84	50 - 130	
Endrin	33.3	28.4		ug/Kg		85	50 - 130	
Endrin aldehyde	33.3	24.0		ug/Kg		72	50 - 130	
Endrin ketone	33.3	30.6		ug/Kg		92	50 - 130	
gamma-BHC (Lindane)	33.3	26.1		ug/Kg		78	50 - 130	
gamma-Chlordane	33.3	26.9		ug/Kg		81	50 - 130	
Heptachlor	33.3	29.2		ug/Kg		88	50 - 130	

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 250-4662/2-A

Matrix: Solid

Analysis Batch: 4749

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 4662

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Heptachlor epoxide	33.3	28.2		ug/Kg		85	50 - 130
Methoxychlor	33.3	30.5		ug/Kg		92	50 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 30 - 140 82

Client Sample ID: Pit Run Backfill

Prep Batch: 4662

Lab Sample ID: 250-2362-2 MS **Matrix: Solid** Prep Type: Total/NA Analysis Patch: 4740

Analysis Batch: 4749									Prep Bat	tch: 4662
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	ND		34.7	35.6		ug/Kg	\$	103	40 - 140	
4,4'-DDE	ND		34.7	36.3		ug/Kg	₩	105	40 - 140	
4,4'-DDT	ND		34.7	32.6		ug/Kg	₩	94	40 - 140	
Aldrin	ND		34.7	25.3	J	ug/Kg	₽	73	40 - 140	
alpha-BHC	ND		34.7	24.4	J	ug/Kg	₩	70	40 - 140	
alpha-Chlordane	ND		34.7	26.5	J	ug/Kg	₩	76	40 - 140	
beta-BHC	ND		34.7	28.2		ug/Kg	₽	81	40 - 140	
delta-BHC	ND		34.7	28.0		ug/Kg	₽	81	40 _ 140	
Dieldrin	ND		34.7	29.8		ug/Kg	₽	86	40 - 140	
Endosulfan I	ND		34.7	24.9	J	ug/Kg	₩	72	40 - 140	
Endosulfan II	ND		34.7	24.9	J	ug/Kg	₽	72	40 - 140	
Endosulfan sulfate	ND		34.7	25.8	J	ug/Kg	₽	74	40 - 140	
Endrin	ND		34.7	26.0	J	ug/Kg	₽	75	40 - 140	
Endrin aldehyde	ND		34.7	27.1	J	ug/Kg	₽	78	40 - 140	
Endrin ketone	ND		34.7	30.4		ug/Kg	₽	88	40 - 140	
gamma-BHC (Lindane)	ND		34.7	26.8	J	ug/Kg	₩	77	40 - 140	
gamma-Chlordane	ND		34.7	16.4	J	ug/Kg	₩	47	40 - 140	
Heptachlor	ND		34.7	25.2	J	ug/Kg	₽	73	40 - 140	
Heptachlor epoxide	ND		34.7	28.0		ug/Kg	₽	81	40 - 140	
Methoxychlor	ND		34.7	39.1		ug/Kg	₩	113	40 - 140	

MS MS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 30 - 140 80

Lab Sample ID: 250-2362-2 MSD Client Sample ID: Pit Run Backfill Prep Type: Total/NA

Matrix: Solid Analysis Batch: 4749

										• •	
Analysis Batch: 4749									Pre	p Batch:	4662
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	ND		35.1	38.8		ug/Kg	\$	110	40 - 140	9	40
4,4'-DDE	ND		35.1	39.7		ug/Kg	₽	113	40 - 140	9	40
4,4'-DDT	ND		35.1	34.9		ug/Kg	₽	99	40 - 140	7	40
Aldrin	ND		35.1	27.2	J	ug/Kg	₽	78	40 - 140	7	40
alpha-BHC	ND		35.1	26.0	J	ug/Kg	₽	74	40 - 140	6	40
alpha-Chlordane	ND		35.1	28.3		ug/Kg	₽	81	40 - 140	7	40
beta-BHC	ND		35.1	30.6		ug/Kg	₽	87	40 - 140	8	40
delta-BHC	ND		35.1	30.6		ug/Kg	≎	87	40 - 140	9	40
Dieldrin	ND		35.1	35.2		ug/Kg	₽	100	40 - 140	17	40

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 250-2362-2 MSD

Matrix: Solid

Analysis Batch: 4749

Client Sample ID: Pit Run Backfill

Prep Type: Total/NA

Prep Batch: 4662

Alialysis Datell. 4143									FIE	p battii.	. 4002
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endosulfan I	ND		35.1	25.9	J	ug/Kg	\	74	40 - 140	4	40
Endosulfan II	ND		35.1	26.9	J	ug/Kg	₽	77	40 - 140	8	40
Endosulfan sulfate	ND		35.1	28.9		ug/Kg	₽	82	40 - 140	11	40
Endrin	ND		35.1	28.8		ug/Kg	₽	82	40 - 140	10	40
Endrin aldehyde	ND		35.1	30.8		ug/Kg	₽	88	40 - 140	13	40
Endrin ketone	ND		35.1	31.6		ug/Kg	₽	90	40 - 140	4	40
gamma-BHC (Lindane)	ND		35.1	28.5		ug/Kg	₽	81	40 - 140	6	40
gamma-Chlordane	ND		35.1	17.0	J	ug/Kg	₽	48	40 - 140	4	40
Heptachlor	ND		35.1	27.4	J	ug/Kg	₽	78	40 - 140	8	40
Heptachlor epoxide	ND		35.1	29.8		ug/Kg	₽	85	40 - 140	6	40
Methoxychlor	ND		35.1	39.1		ug/Kg	₽	111	40 - 140	0	40
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

30 - 140

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

80

Lab Sample ID: MB 250-4658/1-A

Matrix: Solid

Tetrachloro-m-xylene

Analysis Batch: 4755

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 4658

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		33	17	ug/Kg		05/08/12 09:03	05/09/12 12:55	1
PCB-1221	ND		67	33	ug/Kg		05/08/12 09:03	05/09/12 12:55	1
PCB-1232	ND		33	17	ug/Kg		05/08/12 09:03	05/09/12 12:55	1
PCB-1242	ND		33	17	ug/Kg		05/08/12 09:03	05/09/12 12:55	1
PCB-1248	ND		33	17	ug/Kg		05/08/12 09:03	05/09/12 12:55	1
PCB-1254	ND		33	17	ug/Kg		05/08/12 09:03	05/09/12 12:55	1
PCB-1260	ND		33	17	ug/Kg		05/08/12 09:03	05/09/12 12:55	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 15 - 150 DCB Decachlorobiphenyl (Surr) 103 05/08/12 09:03 05/09/12 12:55

Lab Sample ID: LCS 250-4658/2-A

Matrix: Solid

Analysis Batch: 4755

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 4658

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	167	167		ug/Kg	_	100	50 - 150	
PCB-1260	167	167		ug/Kg		100	50 _ 150	

LCS LCS

%Recovery Qualifier Surrogate Limits 15 - 150 DCB Decachlorobiphenyl (Surr) 103

TestAmerica Job ID: 250-2362-1 Project/Site: DOE-Yakima SDG: 12-026

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 250-2362-1 MS

Matrix: Solid

Analysis Batch: 4755

Client Sample ID: Pipe Bedding Prep Type: Total/NA

Prep Batch: 4658

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND		177	175		ug/Kg	\	99	20 - 150
PCB-1260	ND		177	176		ug/Kg	₩	100	20 - 150

MS MS

Sample Sample

ND

Result Qualifier

Surrogate %Recovery Qualifier I imits DCB Decachlorobiphenyl (Surr) 103 15 - 150

Lab Sample ID: 250-2362-1 MSD Client Sample ID: Dine Redding

Spike

Added

175

MSD MSD

174

177

Result Qualifier

Unit

ug/Kg

ug/Kg

D

775

%Rec

100

101

Matrix: Solid

Analyte

PCB-1016

Analysis Batch: 4755

Offerit Gample ID. I the Dedding	,
Prep Type: Total/NA	¥.

20 - 150

Prep Batch: 4658 %Rec. RPD Limit Limits RPD 20 - 150 0

40

PCB-1260 ND 175 MSD MSD Surrogate %Recovery Qualifier Limits

DCB Decachlorobiphenyl (Surr) 103 15 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

MB MB

Lab Sample ID: MB 250-4628/1-A

Matrix: Solid

Analysis Batch: 4644

CI	ient	Samp	le ID	: Met	hod E	Blank
----	------	------	-------	-------	-------	-------

Prep Type: Total/NA

Prep Batch: 4628

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		12	1.2	mg/Kg		05/07/12 11:54	05/07/12 16:15	1
RRO (nC25-nC36)	3.50	J	25	2.7	mg/Kg		05/07/12 11:54	05/07/12 16:15	1

MR MR Surrogate %Recovery Qualifier

Limits Prepared Analyzed Dil Fac 50 - 150 05/07/12 11:54 05/07/12 16:15 79

Lab Sample ID: LCS 250-4628/2-A

Matrix: Solid

1-Chlorooctadecane

Analysis Batch: 4644

Client	Sample	ID:	Lab	Control	Sample
			D		F - 4 - 1/8 L A

Prep Type: Total/NA Prep Batch: 4628

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (C10-C25)	 124	123		mg/Kg		100	50 - 150	
RRO (nC25-nC36)	74.1	72.0		mg/Kg		97	50 ₋ 150	

LCS LCS

Surrogate %Recovery Qualifier Limits 50 - 150 1-Chlorooctadecane 87

Lab Sample ID: 250-2556-A-1-A DU

Matrix: Solid

Analysis Batch: 4644

Client Sample	ID: Duplicate	
Pren Tv	ne: Total/NΔ	

ı	The state of the s								
İ		Sample	Sample	DU	DU				RPD
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
	DRO (C10-C25)	2.9	J	ND		mg/Kg	\$	 NC	40
İ	RRO (nC25-nC36)	ND		ND		mg/Kg	₩	NC	40

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 250-2556-A-1-A DU

Lab Sample ID: 250-2556-A-2-A DU

Matrix: Solid

Matrix: Solid

Analysis Batch: 4644

Analysis Batch: 4644

Client Sample ID: Duplicate Prep Type: Total/NA

Prep Batch: 4628

DU DU

Surrogate %Recovery Qualifier 1-Chlorooctadecane 86

Limits 50 - 150

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 4628

RPD

40

RPD

Limit 40

Analyte Result Qualifier Result Qualifier D Unit 77 DRO (C10-C25) 3.4 J ND mg/Kg ₽ RRO (nC25-nC36) ND 3.66 J mg/Kg

DU DU

DU DU

Sample Sample

%Recovery Qualifier Limits

MB MB

Surrogate 1-Chlorooctadecane 88 50 - 150

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 250-4488/1-A

Matrix: Solid

Analysis Batch: 4498

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 4488

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.49	0.043	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Arsenic	0.0241	J	0.49	0.0069	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Cadmium	ND		0.49	0.011	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Chromium	ND		0.98	0.17	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Copper	ND		0.98	0.50	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Nickel	ND		0.98	0.26	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Lead	ND		0.49	0.085	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Antimony	ND		0.49	0.015	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Selenium	ND		0.49	0.020	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Thallium	ND		0.49	0.054	mg/Kg		05/02/12 17:21	05/03/12 00:33	10
Zinc	1.34	J	4.9	0.70	mg/Kg		05/02/12 17:21	05/03/12 00:33	10

Lab Sample ID: MB 250-4488/1-A

Matrix: Solid

Analysis Batch: 4541

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 4488

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Beryllium ND 0.98 0.0049 mg/Kg 05/02/12 17:21 05/03/12 17:55

Lab Sample ID: LCS 250-4488/2-A

Matrix: Solid

Analysis Batch: 4498

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silver	24.2	22.7		mg/Kg		94	80 - 120	
Arsenic	48.3	43.7		mg/Kg		91	80 - 120	
Cadmium	48.3	43.5		mg/Kg		90	80 - 120	
Chromium	48.3	45.0		mg/Kg		93	80 - 120	
Copper	48.3	45.7		mg/Kg		95	80 - 120	

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 250-4488/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 4498** Prep Batch: 4488

LCS LCS

Spike Analyte Added Result Qualifier %Rec Unit Limits Nickel 48.3 44 1 91 80 - 120 mg/Kg Lead 48.3 46.9 mg/Kg 97 80 - 120 Antimony 21.9 91 80 - 120 24.2 mg/Kg Selenium 48.3 44.3 mg/Kg 92 80 - 120 Thallium 24 2 22.3 mg/Kg 92 80 - 120 Zinc 48.3 43.4 mg/Kg 90 80 - 120

Lab Sample ID: LCS 250-4488/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Beryllium

Prep Type: Total/NA **Analysis Batch: 4541** Prep Batch: 4488 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits

22.1

mg/Kg

92

80 - 120

Lab Sample ID: 250-2362-1 MS Client Sample ID: Pipe Bedding **Matrix: Solid** Prep Type: Total/NA

24.2

Analysis Batch: 4498 Prep Batch: 4488 MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₩ Silver ND 26.4 99 75 - 125 26.1 mg/Kg ₽ Arsenic 1.7 B 52.8 53.1 mg/Kg 97 75 - 125Cadmium 0.026 52.8 51.3 mg/Kg ₩ 97 75 - 125 ø Chromium 13 52.8 68.7 mg/Kg 105 75 - 125 52.8 Ö 97 Copper 18 69.5 mg/Kg 75 - 125 ₽ Nickel 15 52.8 72.0 107 75 - 125 mg/Kg ä 2.6 52.8 55.7 100 75 - 125 Lead mg/Kg Antimony 20.0 0.079 26.4 75 75 - 125 mg/Kg Ü Selenium 0.072 52.8 49.9 mg/Kg 94 75 - 125 ₩ Thallium ND 26.4 25.4 96 75 - 125 mg/Kg ₩ Zinc 46 B 52.8 94.5 mg/Kg 92 75 - 125

Lab Sample ID: 250-2362-1 MS Client Sample ID: Pipe Bedding **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 4541

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Beryllium 0.39 J 26.4 27.0 mg/Kg 101 75 - 125

Lab Sample ID: 250-2362-1 MSD Client Sample ID: Pipe Bedding **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 4498 Prep Batch: 4488

	Sample	Sample	Spike	MSD	MSD				%Rec.	-	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	ND		26.4	25.7		mg/Kg	<u> </u>	97	75 - 125	2	40
Arsenic	1.7	В	52.8	52.4		mg/Kg	≎	96	75 - 125	1	40
Cadmium	0.026	J	52.8	51.0		mg/Kg	₩	96	75 - 125	1	40
Chromium	13		52.8	67.6		mg/Kg	\$	103	75 ₋ 125	2	40
Copper	18		52.8	68.5		mg/Kg	₩	95	75 - 125	1	40
Nickel	15		52.8	69.6		mg/Kg	₩	103	75 - 125	3	40
Lead	2.6		52.8	54.3		mg/Kg	₩	98	75 - 125	2	40
Antimony	0.079	J	26.4	20.4		mg/Kg	₩	77	75 - 125	2	40

QC Sample Results

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 250-2362-1 MSD Client Sample ID: Pipe Bedding **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 4498 Prep Batch: 4488

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Selenium	0.072	J	52.8	50.1		mg/Kg	‡	95	75 - 125	0	40
Thallium	ND		26.4	25.1		mg/Kg	₩	95	75 - 125	1	40
Zinc	46	В	52.8	92.3		mg/Kg	₩	88	75 - 125	2	40
	Selenium Thallium	Analyte Result Selenium 0.072 Thallium ND	Analyte Result Qualifier Selenium 0.072 J Thallium ND	Analyte Result Selenium Qualifier Qualifier Added Ad	Analyte Result Selenium Qualifier 0.072 Added J Fesult	Analyte Result Selenium Qualifier Added Added Result Selenium Qualifier Thallium ND 26.4 25.1	Analyte Result Selenium Qualifier Qualifier Added Added Added Selenium Result Qualifier Qualifier Unit Mag/Kg Thallium ND 26.4 25.1 mg/Kg	Analyte Result Selenium Qualifier 0.072 Added J Gentlem Result Qualifier D Gentlem Unit D Gentlem D Gentlem Thallium ND 26.4 25.1 mg/Kg □ mg/Kg	Analyte Result Selenium Qualifier Added Added Added Result Selenium Qualifier Qualifier Unit Unit Unit Unit Medical Selection D MRec Thallium ND 26.4 25.1 mg/Kg \$ 95	Analyte Result Selenium Qualifier Added Added Result Selenium Qualifier Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Analyte Result Selenium Qualifier Added Added Result Selenium Qualifier Unit Unit D %Rec WRec Limits RPD Thallium ND 52.8 50.1 mg/Kg 50.7 75 - 125 0 Thallium ND 26.4 25.1 mg/Kg 50.7 75 - 125 1

Lab Sample ID: 250-2362-1 MSD Client Sample ID: Pipe Bedding **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 4541 Prep Batch: 4488 Sample Sample Spike MSD MSD RPD Result Qualifier Analyte Result Qualifier Added D Limits RPD Limit Unit %Rec Beryllium 0.39 J 26.4 29.3 110 75 - 125 8 40

mg/Kg

Method: D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

Lab Sample ID: 250-2362-1 DU Client Sample ID: Pipe Bedding **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 4442

DU DU RPD Sample Sample RPD Result Qualifier Analyte Result Qualifier Unit D Limit Percent Moisture 6.0 5.5 % 10 20 Percent Solids 94 95 % 0.6 20

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

GC/MS VOA

Prep Batch: 4487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	5030B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	5030B	
250-2374-C-25-A MS	Matrix Spike	Total/NA	Solid	5030B	
250-2374-C-25-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5030B	
LCS 250-4487/2-A	Lab Control Sample	Total/NA	Solid	5030B	
MB 250-4487/1-A	Method Blank	Total/NA	Solid	5030B	

Analysis Batch: 4508

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	8260B	4487
250-2362-2	Pit Run Backfill	Total/NA	Solid	8260B	4487
250-2374-C-25-A MS	Matrix Spike	Total/NA	Solid	8260B	4487
250-2374-C-25-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	4487
LCS 250-4487/2-A	Lab Control Sample	Total/NA	Solid	8260B	4487
MB 250-4487/1-A	Method Blank	Total/NA	Solid	8260B	4487

Analysis Batch: 4656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	8260B	4487

GC/MS Semi VOA

Prep Batch: 110923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	3550B	
LCS 580-110923/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 580-110923/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 111038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	8270C	110923
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	8270C	110923
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	8270C	110923
250-2362-2	Pit Run Backfill	Total/NA	Solid	8270C	110923
LCS 580-110923/2-A	Lab Control Sample	Total/NA	Solid	8270C	110923
MB 580-110923/1-A	Method Blank	Total/NA	Solid	8270C	110923

GC VOA

Г					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	5030B	
250-2362-1 DU	Pipe Bedding	Total/NA	Solid	5030B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	5030B	
250-2362-2 MS	Pit Run Backfill	Total/NA	Solid	5030B	
250-2373-A-3-B DU	Duplicate	Total/NA	Solid	5030B	
LCS 250-4441/2-A	Lab Control Sample	Total/NA	Solid	5030B	
MB 250-4441/1-A	Method Blank	Total/NA	Solid	5030B	

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

GC VOA (Continued)

Analysis Batch: 4509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2373-A-3-B DU	Duplicate	Total/NA	Solid	NWTPH-Gx	4441
LCS 250-4441/2-A	Lab Control Sample	Total/NA	Solid	NWTPH-Gx	4441
MB 250-4441/1-A	Method Blank	Total/NA	Solid	NWTPH-Gx	4441

Analysis Batch: 4534

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	NWTPH-Gx	4441
250-2362-1 DU	Pipe Bedding	Total/NA	Solid	NWTPH-Gx	4441
250-2362-2	Pit Run Backfill	Total/NA	Solid	NWTPH-Gx	4441
250-2362-2 MS	Pit Run Backfill	Total/NA	Solid	NWTPH-Gx	4441

GC Semi VOA

Prep Batch: 4628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	3550B	
250-2556-A-1-A DU	Duplicate	Total/NA	Solid	3550B	
250-2556-A-2-A DU	Duplicate	Total/NA	Solid	3550B	
LCS 250-4628/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 250-4628/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 4644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	NWTPH-Dx	4628
250-2362-2	Pit Run Backfill	Total/NA	Solid	NWTPH-Dx	4628
250-2556-A-1-A DU	Duplicate	Total/NA	Solid	NWTPH-Dx	4628
250-2556-A-2-A DU	Duplicate	Total/NA	Solid	NWTPH-Dx	4628
LCS 250-4628/2-A	Lab Control Sample	Total/NA	Solid	NWTPH-Dx	4628
MB 250-4628/1-A	Method Blank	Total/NA	Solid	NWTPH-Dx	4628

Prep Batch: 4658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
250-2362-1	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	3550B	
LCS 250-4658/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 250-4658/1-A	Method Blank	Total/NA	Solid	3550B	

Prep Batch: 4662

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	3550B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	3550B	
250-2362-2 MS	Pit Run Backfill	Total/NA	Solid	3550B	
250-2362-2 MSD	Pit Run Backfill	Total/NA	Solid	3550B	
LCS 250-4662/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 250-4662/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 4748

_ *					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-2	Pit Run Backfill	Total/NA	Solid	8081A	4662

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1 SDG: 12-026

GC Semi VOA (Continued)

Analysis Batch: 4749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	8081A	4662
250-2362-2 MS	Pit Run Backfill	Total/NA	Solid	8081A	4662
250-2362-2 MSD	Pit Run Backfill	Total/NA	Solid	8081A	4662
LCS 250-4662/2-A	Lab Control Sample	Total/NA	Solid	8081A	4662
MB 250-4662/1-A	Method Blank	Total/NA	Solid	8081A	4662

Analysis Batch: 4755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	8082	4658
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	8082	4658
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	8082	4658
250-2362-2	Pit Run Backfill	Total/NA	Solid	8082	4658
LCS 250-4658/2-A	Lab Control Sample	Total/NA	Solid	8082	4658
MB 250-4658/1-A	Method Blank	Total/NA	Solid	8082	4658

Metals

Prep Batch: 4488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
250-2362-1	Pipe Bedding	Total/NA	Solid	3050B	
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	3050B	
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	3050B	
250-2362-2	Pit Run Backfill	Total/NA	Solid	3050B	
LCS 250-4488/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 250-4488/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 4498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	6020	4488
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	6020	4488
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	6020	4488
250-2362-2	Pit Run Backfill	Total/NA	Solid	6020	4488
LCS 250-4488/2-A	Lab Control Sample	Total/NA	Solid	6020	4488
MB 250-4488/1-A	Method Blank	Total/NA	Solid	6020	4488

Analysis Batch: 4541

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	6020	4488
250-2362-1 MS	Pipe Bedding	Total/NA	Solid	6020	4488
250-2362-1 MSD	Pipe Bedding	Total/NA	Solid	6020	4488
250-2362-2	Pit Run Backfill	Total/NA	Solid	6020	4488
LCS 250-4488/2-A	Lab Control Sample	Total/NA	Solid	6020	4488
MB 250-4488/1-A	Method Blank	Total/NA	Solid	6020	4488

General Chemistry

Analysis Batch: 4442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
250-2362-1	Pipe Bedding	Total/NA	Solid	D2216-80	
250-2362-1 DU	Pipe Bedding	Total/NA	Solid	D2216-80	
250-2362-2	Pit Run Backfill	Total/NA	Solid	D2216-80	

Certification Summary

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1

SDG: 12-026

Laboratory	tory Authority Prog		EPA Region	Certification ID
TestAmerica Portland	Alaska	State Program	10	OR00040
TestAmerica Portland	Alaska (UST)	State Program	10	UST-012
TestAmerica Portland	California	State Program	9	2597
TestAmerica Portland	Oregon	NELAC	10	OR100021
TestAmerica Portland	USDA	Federal		P330-11-00092
TestAmerica Portland	Washington	State Program	10	C586
TestAmerica Seattle	Alaska (UST)	State Program	10	UST-022
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana (UST)	State Program	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	USDA	Federal		P330-11-00222
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

9

4

5

6

8

9

9

Method Summary

Client: Anderson Environmental Contracting LLC

Project/Site: DOE-Yakima

TestAmerica Job ID: 250-2362-1 SDG: 12-026

:-026

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PRT
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SEA
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC)	NWTPH	TAL PRT
8081A	Organochlorine Pesticides (GC)	SW846	TAL PRT
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL PRT
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL PRT
6020	Metals (ICP/MS)	SW846	TAL PRT
D2216-80	Percent Dry Weight (Solids) per ASTM D2216-80	ASTM	TAL PRT

Protocol References:

ASTM = ASTM International

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

4

5

6

8

9

10

11

12

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

CLENT Anderson Environmental Contractive UC REPORT TO: TOS Colarado Street ADDRESS: Vakso, WA 98626 PHONESCA -577-9194 FAX: \$20-577-9198 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral CLENT SAMPLE BY: BENEFIT ANALYSES CLENT SAMPLE BY: BENEFIT ANALYSES TURNAROUND REQUEST In Besides Days* Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral CLENT SAMPLE BY: BENEFIT ANALYSES TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 SAMPLED BY: Bell Mandral TURNAROUND REQUEST Organic Kell Integrate Analyses 19 7 \$ 4 3 2 1 1 1 PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHONESCALL PROJECT NUMBER: 12-026 STEPHO		C	HAIN OF CUSTOD	I KEPUKI	Work Order #:
REPORT TO: 705 Carado Street ADDRESS: Velso, WA 98626 PHONE 360 - 577 - 919 FAX: 360 - 577 - 9198 PROJECT NAME: DOE- Valsima PROJECT NUMBER: 12 - 026 SAMPLED BY: Breft Maddral) CLIENT SAMPLE IDENTIFICATION SAMPLING DATE/TIME PROJECT NOME: SAMPLING DATE/TIME SAMPLING DATE/TIME PROJECT NOME: SAMPLING DATE/TIME PROJE	CLIENT: Anderson Environmental Contrac	the uc			TURNAROUND REQUEST
PHONE SCO - 577 - 919 4 FAX: SCO - 577 - 919 8 PROJECT NAME: DOE- VALIMA PROJECT NUMBER: 12 - 02 C	PEDOPT TO: The Classical Chapt	J	AEC		in Business Days *
PHONE SCO - 577 - 919 YFAX: SCO - 577 - 919	ADDRESS: 160 Cm (100 Specific				
PROJECT NAME: DOE-Valima PROJECT NUMBER: 12-02C PROJECT NUMBER: 12-02C PROJECT NUMBER: 12-02C SAMPLED BY: Breff Maddra 1 CLIENT SAMPLE SAMPLING DATE/TIME PO. NUMBER: 12-02C STD. THER Specify: *Turnaround Requests less than standard may incur Rush Charges. MATRIX # OF LOCATION/ TA (W, S, O) CONT. COMMENTS WO ID PROJECT NUMBER: 12-02C *Turnaround Requests less than standard may incur Rush Charges. MATRIX # OF LOCATION/ TA (W, S, O) CONT. COMMENTS WO ID		· -	(3 00		
PROJECT NUMBER: 12-02C SAMPLED BY: Breff Madamal CLIENT SAMPLE SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SPECIFY: **Turnaround Requests less than standard may incur Rush Charges. MATRIX (W, S, O) CONT. COMMENTS WO ID Prope Bedding 4/21/2012 1500 X X X X X X X X X X X X X X X X X X	PHONE 360-577-9194 FAX: 360-577-9191	8			reduced Hydrocarbon Analyses
SAMPLED BY: Breff Mandral) CLIENT SAMPLE BERNOLUM SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING DATE/TIME SAMPLING CONT. SAMPLING COMMENTS WO ID SAMPLED BY: Breff Mandral) * Turnaround Requests less than standard may incur Rush Charges. MATRIX (W, S, O) CONT. COMMENTS WO ID SAMPLED BY: Breff Mandral) * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Requests less than standard may incur Rush Charges. * Turnaround Rush Charges. * Turnaround Rush Charges. * Turnaround Rush Charges. * Turnaround Rush Charges. * Turnaround Rush Charges. * Turnaround Rush Charges. * Turnaround Rush Charges.			PRESERVA	aive	STD. 4 3 2 1 <1
SAMPLED BY: Breff Mandamal CLIENT SAMPLE BERNOLL SAMPLING DATE/TIME SAMPLING DATE/TIME *Turnaround Requests less than standard may incur Rush Charges. MATRIX (W, S, O) MATRIX (W, S, O) CONT. COMMENTS WO ID Pipe Bedding 4/21/2012 WO ID	PROJECT NUMBER: 12-026		PROTESTED A	NATYSES	OTHER Specify:
CLIENT SAMPLE SAMPLING DATE/TIME SAMPLING COMMENTS WOLD WOLD WATRIX # OF CONT. COMMENTS WOLD WOLD	SAMPLED BY ROLL Mallace ()	on × 8.			- L
IDENTIFICATION DATE/TIME E S SOLUTION (W, S, O) CONT. COMMENTS WOLD WOLD WOLD WOLD WOLD		プ エ グ			MATRIX # OF LOCATION/ TA
Pipe Bedding 4/27/2012 1500 X X X X X X X X X X X X X X X X X X			Section of the second of the s		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5. 200	10 10	VV		0 4
2 Pit Run Backstin 4/27/2012 1520 X X X X X X X X X X X X X X X X X X X	1 & ripe Bedding 4/27/2012 1500	XXX	 		
3 4 5 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Por Run Bolon 4/27/2012, 1520	$\mathbf{x} \times \mathbf{x}$	$ \chi \chi \chi \chi$		15 141
3 4 5 6 7 8	2 111 1503 adc=111 (1017 to 12				
4	3				
5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
5 6 7	4				
6 7 8	5	 			
7				•	
	6				
	7				
	8				
	9				<u> </u>
RELEASED BY: DILL DATE: 5/1/2012 RECEIVED BY: Sam Van	RELEASED BY:	_1 1	DATE: 5/1/2012	RECEIVED BY: Dan Nam	DATE: SILIZ
PRINT NAME: PRINT NAME: BEUM MONTH AT TIME: 10760	PRINT NAME: PRINT NAME: FIRM: F	16C	TIME: 6400		FIRM: A - TIME: 10760
RELEASED BY: Sharm Man DATE: 5-1-12 RECEIVED BY:	RELEASED BY: Spann Man				DATES 11112
PRINT NAME: BRAN VONAN FIRM: TAT TIME: 1500 PRINT NAME:	PRINT NAME: ERAN WOLLIN FIRM: T	(A)	TIME: / 500	PRINT NAME: & JUNIANI OF	TEMP:
HOC PAGE OF	ADDITIONAL REMARKS:			V	1101 1 1

CITA DI OE CHOTODY DEBODT

AL-1000(0408)

5/R/P/L

12

2

ဖ

٥

၈ ပ

Login Sample Receipt Checklist

Client: Anderson Environmental Contracting LLC

Job Number: 250-2362-1

SDG Number: 12-026

Login Number: 2362 List Source: TestAmerica Portland

List Number: 1

Creator: Svabik-Seror, Philip

oreator. Ovable-octor, i milip	
Question	Answer Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
Multiphasic samples are not present.	N/A
Samples do not require splitting or compositing.	N/A
Residual Chlorine Checked.	N/A

4

6

۹ Q

11

40

12

Login Sample Receipt Checklist

Client: Anderson Environmental Contracting LLC

Job Number: 250-2362-1

SDG Number: 12-026

5/11/2012

List Source: TestAmerica Seattle

List Creation: 05/05/12 10:02 AM

List Number: 1 Creator: Gamble, Cathy

Login Number: 2362

oreator. Gamble, Gattry		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Portland

VALLEY Environmental Laboratory 407 N. 1st St., Suite 3

Yakima, WA 98901

(509) 575 - 3999 Fax: (509) 575 - 300	<u> 58</u>				
Sampled At: DOE Yakima	Date Reported: 05/29/12 Date Collected: 05/23/12 Time Collected: 1:00 PM Sampled By: Kelly Kellogg				
AEC	YAK-SP1-	5/23			
Attn: Kelly Kellogg					
705 Colorado St Kelso, WA 98626		MLR revis	sed 5/31/12	<u>Invoice#</u> 21980	
Organochlorine Pesticides and PCB's		Method:	EPA 8081A	Matrix: Soil	
VEL Sample #	52320				
Sample ID	SP1				
Surrogate Standards	% Recovery				
DCB EPA 8081A	70.00/	(20, 120)			
	78.8%	(30-130)			
DCB EPA 8082	84.2%	(30-130)			
Target Compounds Units:	mg/kg				
Aldrin	ND@0.01				
alpha-BHC	ND@0.01				
beta-BHC	ND@0.01				
delta-BHC	ND@0.01				
gamma-BHC (Lindane)	ND@0.01				
alpha-Chlordane	ND@0.01				
gamma-Chlordane	ND@0.01				
4,4'-DDD	ND@0.01				
4,4'-DDE	ND@0.01				
4,4'-DDT	ND@0.01				
Dieldrin	ND@0.01				
Endosulfan-I	ND@0.01				
Endosulfan-II	ND@0.01				
Endosulfan sulfate	ND@0.01				
Endrin	ND@0.01				
Endrin aldehyde	ND@0.01				
Endrin ketone	ND@0.01				
Heptachlor	ND@0.01				
Heptachlor epoxide	ND@0.01				
Methoxychlor	ND@0.01				
Toxaphene	ND@0.01				
Date Analyzed:	5/25/2012				
Analyst:	AAL				
ND = None Detected	11111	Page 1 of 2			

VALLEY Environmental Laboratory

407 N. 1st St., Suite 3 Yakima, WA 98901

(509) 575 - 3999 Fax: (509) 575 - 3068

EPA Method 8082		ated Biphen	yls (PCB's)	
VEL Sample #	52320			
Sample ID	SP1			
	Results			
PCBs: units:	mg/kg			
Aroclor 1016	ND@ 0.1			
Aroclor 1221	ND@ 0.1			
Aroclor 1232	ND@ 0.1			
Aroclor 1242	ND@ 0.1			
Aroclor 1248	ND@ 0.1			
Aroclor 1254	ND@ 0.1			
Aroclor 1260	ND@ 0.1			
	1			
	1			
	1			
	1			
	-			
	-			
	-			
	1			
	l			
	Ī			
	ĺ			
	1			
Date Analyzed	5/25/2012			
Analyst:				
		Page 2 of 2		<u>I</u>
	<u> </u>	1 1150 2 01 2		

VALLEY Environmental Laboratory 201 East D St.

Yakima, WA 98901

(509) 575 - 3999 Fax: (509) 575 - 3068

Washington State DOE Accredited Lab #6 Sampled At: DOE Yakima	Date Reported: 05/31/12 Date Collected: 05/23/12 Time Collected: 1:00 PM Sampled By: Kelly Kellogg					
AEC		YAK-SP1-5/	23			
Attn: Kelly Kellogg						
705 Colorado St		MRL revised	1 5/31/12		Invoice#	
Kelso, WA 98626					21980	
Volatile Organic Chemicals		Method	: EPA 8260B	Matrix:	Matrix: Soil	
VEL Sample #	52320					
Sample ID	SP1		-			
Units	ppm	Limits				
Check Standards - Ave.Recovery:	11					
Ĭ						
1,2-Dichlorobenzene-d4	102.4%	(70-130)				
4-Bromofluorobenzene	94.8%	(70-130)				
Toluene-d8	97.6%	(70-130)				
Dichlorodifluoromethane	ND	0.005				
Chloromethane	ND	0.005				
Vinyl chloride	ND	0.005				
Bromomethane	ND	0.005				
Chloroethane	ND	0.005				
Acetone	ND	0.025				
Acrolein	ND	0.005				
1,1-Dichloroethylene	ND	0.005				
Methylene chloride	ND	0.025				
Acrylonitrile	ND	0.005				
trans-1,2-Dichloroethylene	ND	0.005				
1,1-Dichloroethane	ND	0.005				
Methyl ethyl ketone (MEK)	ND	0.025				
cis-1,2-Dichloroethylene	ND	0.005				
2,2-Dichloropropane	ND	0.005				
Chloroform	ND	0.005				
Bromochloromethane	ND	0.005				
1,1,1-Trichloroethane	ND	0.005				
1,2-Dichloroethane	ND	0.005				
1,1-Dichloropropene	ND	0.005				
Carbon tetrachloride	ND	0.005				
Benzene	ND	0.005				
Trichloroethylene	ND	0.005				
Date Analyzed:	5/25/2012					
Analyst:	AAL					
ND = None Detected		Page 1 of 3				

VALLEY Environmental Laboratory 201 East D St.

Yakima, WA 98901

(509) 575 - 3999 Fax: (509) 575 - 3068

Volatile Organic Compounds (Continued)					
VEL Sample #	52320	game comp			
Sample ID	SP1				
Units	ppm	Limts			
1,2-Dichloropropane	ND	0.005			
Dibromomethane	ND	0.005			
Bromodichloromethane	ND	0.005			
cis-1,3-Dichloropropene	ND	0.005			
Toluene	ND	0.005			
trans-1,3-Dichloropropene	ND	0.005			
1,1,2-Trichloroethane	ND	0.005			
1,3-Dichloropropane	ND	0.005			
Dibromochloromethane	ND	0.005			
Tetrachloroethylene	ND	0.005			
1,2-Dibromoethane	ND	0.005			
Chlorobenzene	ND	0.005			
1,1,1,2-Tetrachloroethane	ND	0.005			
Ethylbenzene	ND	0.005			
m,p-Xylene	ND	0.005			
Styrene	ND	0.005			
o-Xylene	ND	0.005			
Bromoform	ND	0.005			
1,1,2,2-Tetrachloroethane	ND	0.005			
1,2,3-Trichloropropane	ND	0.005			
Bromobenzene	ND	0.005			
n-Propylbenzene	ND	0.005			
2-Chlorotoluene	ND	0.005			
4-Chlorotoluene	ND	0.005			
1,3,5-Trimethylbenzene	ND	0.005			
tert-Butylbenzene	ND	0.005			
1,2,4-Trimethylbenzene	ND	0.005			
sec-Butylbenzene	ND	0.005			
1,3-Dichlorobenzene	ND	0.005			
1,4-Dichlorobenzene	ND	0.005			
4-Isopropyltoluene	ND	0.005			
1,2-Dichlorobenzene	ND	0.005			
n-Butylbenzene	ND	0.005			
1,2-Dibromo-3-chloropropane	ND	0.005			
1,2,4-Trichlorobenzene	ND	0.005			
Naphthalene	ND	0.005			
Date Analyzed:	5/25/2012				
Analyst:	AAL				
			Page 2 of 3		
Fage 2 01 5					

VALLEY Environmental Laboratory 201 East D St.

Yakima, WA 98901

(509) 575 - 3999 Fax: (509) 575 - 3068

509) 575 - 5999 Fax: (509)	Volatile Organic Compounds (Continued)											
VEL Sample #												
Sample ID	SP1											
Units	ppm	Limits										
1,1,1-Trichloroethane	ND	0.005										
1,1,2,2-Tetrachloroethane	ND	0.005										
1,1-Dichloroethene	ND	0.005										
1,2,3-Trichlorobenzene	ND	0.005										
1,2-Dichloroethane	ND	0.005										
2-hexanone	ND	0.025										
Bromoform	ND	0.005										
Carbon disulfide	ND	0.005										
Chlorobenzene	ND	0.005										
cis-1,2-dichloroethene	ND	0.005										
cis-1,3-Dichloropropene	ND	0.005										
Hexachlorobutadiene	ND	0.005										
Isopropylbenzene	ND	0.005										
Methyl Isobutyl ketone (MIBK)	ND	0.025										
methyl-t-butyl ether (MTBE)	ND	0.005										
p-siopropyltoluene	ND	0.005										
tert-Butylbenzene	ND	0.005										
trans-1,2-Dichloroethene	ND	0.005										
Trichlorofluoromethane	ND	0.005										
Date Analyzed:	5/25/2012											
Analyst:	AAL											
			Page 3 of 3									

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

Date Collected	d: 05/23/12									
Lab/Sample No	o: 153-52320		 							
Sample Location			1	_						
•			Date Received: 05/23/12							
			Date Reported: 05/29/12							
			Sample Collected By: Kelly Kellogg							
Send Report To:				LE COMM			x: Solids			
AEC			-	SP1-5/23			· · · · · · · · · · · · · · · · · · ·			
Attn: Kelly Kellogg				7						
705 Colorado St			mrl rev	vised 5/31/	12					
Kelso, WA 98626				riscu didi.	1=					
PAH's		·	3701	T. •	NOT	37411	1 1 1	A 1 4		
DOH# Analytes	Results	Units	MRL	Trigger	MCL	Method	Analyzed			
Acenaphthene	ND ND	mg/kg	0.05			EPA 8270C		AAL		
Acenaphthylene	ND	mg/kg	0.05			EPA 8270C		AAL		
Anthracene	ND	mg/kg	0.05			EPA 8270C		AAL		
Benzo(a)anthracene	ND	mg/kg	0.05			EPA 8270C		AAL		
Benzo(a)pyrene	ND	mg/kg	0.05			EPA 8270C		AAL		
Benzo(b)fluoranthene	ND	mg/kg	0.05			EPA 8270C		AAL		
Benzo(ghi)perylene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Benzo(k)fluoranthene	ND	mg/kg	0.05			EPA 8270C		AAL		
Chrysene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Dibenzo(ah)anthracene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Fluoranthene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Fluorene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Naphthalene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
Phenanthrene	ND	mg/kg	0.05		<u> </u>	EPA 8270C	05/25/12	AAL		
Pyrene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
1-MethylNapthalene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		
2-MethylNapthalene	ND	mg/kg	0.05			EPA 8270C	05/25/12	AAL		

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples.

 $MCL\ (maximum\ contaminant\ level): \ Highest\ level\ recommended\ by\ the\ federal\ government\ for\ public\ water\ systems.$

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

PAH's & TPH's

	PARS&IPRS									
Lab/S	Sample No:	Below	Date	Collected:	05/23/12					
Date	e Received:	05/23/12	Date	Reported:	05/29/12		Supervisor:	BKO		
				mpled By:	Kelly Kell					
	Location:	DOE Yal					Invoice#:			
Send Report To:				Sample I	nformatio	on	Matrix:	Soil		
AEC										
Attn: Kelly Kellogg										
705 Colorado St										
Kelso, WA 98626										
Polynuclear Aromatic	& Petrole	um Hydr	ocarbons							
VEL Samp	le Number:	15352321	15352322	15352323	15352324	15352325				
Sample II	S2	S3	S4	S5						
Sample ID/Location: S1 S2								Date		
Analyte	Units	Results	Results	Results	Results	Results	Method	Analyzed	Analyst	
TPH-HCID-Dx		NONE	NONE	NONE	NONE	NONE	NWTPH-HCID	05/24/12	DCO	
% Surrogate Recovery	%	86.4	93.6	89.1	75.8	79.6	(50-150%)			
Diesel Range	mg/kg	<25	<25	<25	<25	<25	NWTPH-Dx	05/28/12	DCO	
PAH's										
Acenaphthene	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	EPA 8270C	05/25/12	AAL	
Acenaphthylene	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	EPA 8270C	05/25/12	AAL	
Anthracene	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	EPA 8270C	05/25/12	AAL	
Benzo(a)anthracene	mg/kg	< 0.01	0.084	0.022	0.160	< 0.01	EPA 8270C	05/25/12	AAL	
Benzo(a)pyrene	mg/kg	< 0.01	0.056	< 0.01	0.175	< 0.01	EPA 8270C	05/25/12	AAL	
Benzo(b)fluoranthene	mg/kg	< 0.01	0.105	0.017	0.293	< 0.01	EPA 8270C	05/25/12	AAL	
Benzo(ghi)perylene	mg/kg	< 0.01	0.072	< 0.5	0.192	< 0.01	EPA 8270C	05/25/12		
Benzo(k)fluoranthene	mg/kg	< 0.01	0.023	< 0.01	0.067	< 0.01	EPA 8270C	05/25/12		
Chrysene	mg/kg	< 0.01	0.084	0.011	0.254	< 0.01	EPA 8270C	05/25/12		
Dibenzo(ah)anthracene	mg/kg	< 0.01	< 0.01	< 0.01	0.037	< 0.01	EPA 8270C	05/25/12		
Fluoranthene	mg/kg	< 0.01	0.175	0.019	0.435	< 0.01	EPA 8270C	05/25/12		
Fluorene	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	EPA 8270C	05/25/12		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.01	0.057	< 0.01	0.156	< 0.01	EPA 8270C	05/25/12		
Naphthalene	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	EPA 8270C	05/25/12		
Phenanthrene	mg/kg	< 0.01	0.090	< 0.01	0.224	< 0.01	EPA 8270C	05/25/12		
Pyrene	mg/kg	< 0.01	0.169	0.018	0.413	< 0.01	EPA 8270C	05/25/12		
Terphenyl-d14	%	94.0	94.2	94.0	90.3	94.0	(18-137)	surrogate	rec.	

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (always >MDL).

Trigger: DOH Drinking Water response level.

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

			icical Al	uman	c Hyuroc	ai bulis					
	Date Collected	1: 06/05/12									
	Lab/Campla Na	. 152 (0507									
	Lab/Sample No										
	Sample Location	1: 5-1			D. 4 . D						
						eived: 06/05/12					
				Date Reported: 06/12/12 Sample Collected By: K. Kellogg							
G 1	D 4 75					• 00	G •1				
Send	Report To:			+	LE COMM	ENTS Matri	x: Soil				
	AEC			DOE							
	Attn: Kelly Kellogg										
	705 Colorado St										
	Kelso, WA 98626										
	Polynuclear Aromatic Hy	drocarbons									
DOH#	Analytes	Results	Units	MRL	Trigger	MCL Method	Analyzed	Analys			
	Acenaphthene	0.023	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Acenaphthylene	ND	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Anthracene	0.031	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(a)anthracene	0.324	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(a)pyrene	0.359	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(b)fluoranthene	0.51	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(ghi)perylene	0.469	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(k)fluoranthene	0.512	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Chrysene	0.422	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Dibenzo(ah)anthracene	0.067	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Fluoranthene	0.901	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Fluorene	0.012	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Indeno(1,2,3-cd)pyrene	0.295	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Naphthalene	0.024	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Phenanthrene	0.452	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Pyrene	0.452	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	2-MethylNapthalene	0.034	mg/kg	0.01		EPA 8270C	06/11/12	AAL			
	Surrogate Standard	Recovery			Contol Limits						
	Terphenyl-d14	128	%		18-137	EPA 8270C	06/11/12	AAL			

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

 $MCL \ (maximum \ contaminant \ level): \ Highest \ level \ recommended \ by \ the \ federal \ government \ for \ public \ water \ systems.$

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

	Date Collecte	d: 06/05/12									
	T . 1./C 1. N	152 (0500									
	Lab/Sample N										
	Sample Location	n: S-2					0 < 10 = 14 •				
				Date Received: 06/05/12							
				Date Reported: 06/12/12							
				Sample Collected By: K. Kellogg							
Send	Report To:				LE COMM	ENTS	Matri	x: Soil			
	AEC			DOE							
	Attn: Kelly Kellogg										
	705 Colorado St										
	Kelso, WA 98626										
	Polynuclear Aromatic H	ydrocarbons									
DOH	# Analytes	Results	Units	MRL	Trigger	MCL	Method	Analyzed	Analyst		
	Acenaphthene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Acenaphthylene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Anthracene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Benzo(a)anthracene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Benzo(a)pyrene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Benzo(b)fluoranthene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Benzo(ghi)perylene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Benzo(k)fluoranthene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Chrysene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Dibenzo(ah)anthracene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Fluoranthene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Fluorene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Indeno(1,2,3-cd)pyrene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Naphthalene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Phenanthrene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Pyrene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	2-MethylNapthalene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	JAH		
	Surrogate Standard	Recovery			Control Limits						
	Terphenyl-d14	112	%		18-137		EPA 8270C	06/11/12	AAL		

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

 $MCL \ (maximum \ contaminant \ level): \ Highest \ level \ recommended \ by \ the \ federal \ government \ for \ public \ water \ systems.$

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

	Date Collected	•			c Hyaroca						
	T . 1. /C 1 . N .	152 (0500									
-	Lab/Sample No										
_	Sample Location	1: 5-3			D. 4 . D	1	06/05/12				
				Date Received: 06/05/12							
				Date Reported: 06/12/12 Sample Collected By: K. Kellogg							
C	I D t T							C '1			
Send	l Report To:			-	LE COMMI	ENTS	Matri	x: Soil			
	AEC			DOE							
	Attn: Kelly Kellogg										
	705 Colorado St										
	Kelso, WA 98626										
	Polynuclear Aromatic Hy	drocarbons									
DOH	#Analytes	Results	Units	MRL	Trigger	MCL	Method	Analyzed	Analyst		
	Acenaphthene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Acenaphthylene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Anthracene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Benzo(a)anthracene	0.07	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Benzo(a)pyrene	0.068	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Benzo(b)fluoranthene	0.071	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Benzo(ghi)perylene	0.061	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Benzo(k)fluoranthene	0.049	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Chrysene	0.068	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Dibenzo(ah)anthracene	0.011	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Fluoranthene	0.158	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Fluorene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Indeno(1,2,3-cd)pyrene	0.053	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Naphthalene	0.012	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Phenanthrene	0.079	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	Pyrene	0.143	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	2-MethylNapthalene	ND	mg/Kg	0.01			EPA 8270C	06/11/12	AAL		
	G 4 G4 3 3	D									
1	Surrogate Standard	Recovery		1	Control Limits			0.511.11.5			
	Terphenyl-d14	108.4	%		18-137		EPA 8270C	06/11/12	AAL		
II											

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

 $MCL \ (maximum \ contaminant \ level): \ Highest \ level \ recommended \ by \ the \ federal \ government \ for \ public \ water \ systems.$

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

	Date Collected	: 06/05/12									
	Lab/Sample No	: 153-60510									
	Sample Location										
					Date Rec	eived: 06/05/12					
				Date Reported: 06/12/12							
				Sample Collected By: K. Kellogg							
Send	Report To:				LE COMM	• 00	x: Soil				
	AEC			DOE							
	Attn: Kelly Kellogg										
	705 Colorado St										
	Kelso, WA 98626										
	Polynuclear Aromatic Hy	dragarhans									
DOH#	Analytes	Results	Units	MRL	Trigger	MCL Method	Analyzed	Analyst			
	Acenaphthene	ND	mg/Kg	0.01	88	EPA 8270C	06/11/12	AAL			
	Acenaphthylene	ND	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Anthracene	0.014	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(a)anthracene	0.144	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(a)pyrene	0.146	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(b)fluoranthene	0.208	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(ghi)perylene	0.188	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Benzo(k)fluoranthene	0.138	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Chrysene	0.181	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Dibenzo(ah)anthracene	0.025	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Fluoranthene	0.389	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Fluorene	ND	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Indeno(1,2,3-cd)pyrene	0.12	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Naphthalene	0.019	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Phenanthrene	0.176	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Pyrene	0.364	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	2-MethylNapthalene	0.025	mg/Kg	0.01		EPA 8270C	06/11/12	AAL			
	Surrogate Standard	Recovery			Control Limits						
	Terphenyl-d14	103.1	%		18-137	EPA 8270C	06/11/12	AAL			
	1 - 7										

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

							: 06/05/12	Date Collected	
							: 153-60511	Lab/Sample No	
								Sample Location	
		06/05/12	eived:	Date Rec			Swiii-p-0 2-00		
				Date Rep					
		K. Kellogg			Samr				
	x: Soil	Matrix		LE COMM				Report To:	Send
	1. 5011	11200	Litio	JE 001,11.1	DOE			AEC	
					DOL			Attn: Kelly Kellogg	
								705 Colorado St	
								Kelso, WA 98626	
		1	1	1	Т			Polynuclear Aromatic Hy	
-	Analyzed		MCL	Trigger	MRL	Units	Results	Analytes	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Acenaphthene	
	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Acenaphthylene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Anthracene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Benzo(a)anthracene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Benzo(a)pyrene	
	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Benzo(b)fluoranthene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Benzo(ghi)perylene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Benzo(k)fluoranthene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Chrysene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Dibenzo(ah)anthracene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Fluoranthene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Fluorene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Indeno(1,2,3-cd)pyrene	
AAL		EPA 8270C			0.01	mg/Kg	ND	Naphthalene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Phenanthrene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	Pyrene	
AAL	06/11/12	EPA 8270C			0.01	mg/Kg	ND	2-MethylNapthalene	
				Control Limits			Recovery	Surrogate Standard	
AAL	06/11/12	EPA 8270C		18-137		%	92.1	Terphenyl-d14	
_	00/11/12	EFA 8270C		16-137		70	72.1	Terphenyi-u14	

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

 $\textbf{Trigger:} \ \ \text{DOH Drinking Water response level.} \ \ \text{Public Systems in excess of this level must take additional samples.} \ \ \text{Recommended range on packages.}$

 $MCL \ (maximum \ contaminant \ level): \ Highest \ level \ recommended \ by \ the \ federal \ government \ for \ public \ water \ systems.$

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

				. 0	Jijuioc	00 2 /0 0 2					
	Date Collecte	ed: 06/15/12									
	Lab/Sample N	No: 153-61525									
	Sample Location	n: PG1									
		-		Date Received: 06/15/12							
				Date Reported: 06/22/12							
				Samp	ole Collect	ed By:	Kelly Kellogg	g			
Send 1	Report To:			SAMPI	LE COMM	ENTS	Matrix	x: Soil			
	AEC			DOE -	12-026						
	Attn: Kelly Kellogg										
	705 Colorado St										
	Kelso, WA 98626										
	Polynuclear Aromatic H	Iydrocarbons					_				
DOH#	Analytes	Results	Units	MRL	Trigger	MCL	Method	Analyzed	Analyst		
	Acenaphthene	ND	mg/kg	0.01			EPA 8270C	06/20/12	AAL		
	Acenaphthylene	ND	mg/kg	0.01			EPA 8270C	06/20/12	AAL		
	Anthracene	ND	mg/kg	0.01			EPA 8270C	06/20/12	AAL		
	Benzo(a)anthracene	0.056	mg/kg	0.01			EPA 8270C	06/20/12	AAL		
	Benzo(a)pyrene	0.047	mg/kg	0.01			EPA 8270C	06/20/12	AAL		
	Benzo(b)fluoranthene	0.062	mg/kg	0.01			EPA 8270C	06/20/12	AAL		

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

 $MCL \ (maximum \ contaminant \ level): \ Highest \ level \ recommended \ by \ the \ federal \ government \ for \ public \ water \ systems.$

0.052

0.027

0.049

0.013

0.105

ND

ND

ND

0.046

0.105

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By: _

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

EPA 8270C

06/20/12 AAL

06/20/12 AAL

06/20/12 AAL

06/20/12 AAL

06/20/12 AAL

AAL

AAL

AAL

AAL

AAL

AAL

06/20/12

06/20/12

06/20/12

06/20/12

06/20/12

06/20/12

Benzo(ghi)perylene

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Benzo(k)fluoranthene

Dibenzo(ah)anthracene

Indeno(1,2,3-cd)pyrene

2-MethylNapthalene

Washington State Certified Lab #153 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

Date Collecte	ed: 06/15/12								
Lab/Sample N	No: 153-61526								
Sample Location	on: PG2		1						
			Date Received: 06/15/12						
				Date Rep	orted:	06/22/12			
			Samp	ole Collect	ed By:	Kelly Kellogg	g		
Send Report To:			SAMPI	LE COMM	ENTS	Matrix	k: Water		
AEC			DOE -	12-026					
Attn: Kelly Kellogg									
705 Colorado St									
Kelso, WA 98626									
Polynuclear Aromatic H	Iydrocarbons								
DOH# Analytes	Results	Units	MRL	Trigger	MCL	Method	Analyzed	Analyst	
Acanaphthana	0.012	ma/lza	0.01			EDA 9270C	06/20/12	ΑΛΙ	

DOH# Ana	alytes	Results	Units	MRL	Trigger	MCL Method	Analyzed	Analyst
Ace	naphthene	0.012	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ace	naphthylene	ND	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ant	hracene	0.019	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ben	zo(a)anthracene	0.172	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ben	zo(a)pyrene	0.178	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ben	zo(b)fluoranthene	0.251	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ben	zo(ghi)perylene	0.180	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Ben	zo(k)fluoranthene	0.251	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Chr	ysene	0.248	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Dibe	enzo(ah)anthracene	0.040	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Fluc	oranthene	0.483	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Fluc	orene	ND	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Inde	eno(1,2,3-cd)pyrene	0.148	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Nap	hthalene	ND	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Phe	nanthrene	0.290	mg/kg	0.01		EPA 8270C	06/20/12	AAL
Pyre	ene	0.448	mg/kg	0.01		EPA 8270C	06/20/12	AAL
2-M	lethylNapthalene	ND	mg/kg	0.01		EPA 8270C	06/20/12	AAL
	· · ·							

MRL (Method Reporting Level): Indicates the minimum reporting level required and obtained by the laboratory (MDL<MRL<SRL).

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By: 🛮 🚄

Performance Testing and Startup Measurements

FRANK WEAR INITIAL LOWER ZONE TESTING - 3 WELLS

DATE/TIME: 6/27/2012		ADJUSTMENT SHEET (Yes/No)?	NO	TROUBLESHOOT SHEET (Yes/No)? NO
		NOTES:	Note any observati	ons, adjustments, or system issues here.
AMBIENT TEMPERATURE (F):	63	,	Ambient temperati	ure significantly lower than inlet temperatures. New HC well
BLOWER INLET VACUUM (in. WC):	46	Keep under 50 in. WC	approx 3' away fro	m SVE-5 has positive pressure of 0.01" WC. MW-10 has a
BLOWER INLET FLOW (CFM):	250		negative pressure o	of -2.7" WC.
BLOWER INLET TEMPERATURE (F):	70			
BLOWER DISCHARGE TEMPERATURE (F):	134	Keep under 160 F		
BLOWER DISCHARGE TEMPERATURE (F) @ PVC:	122.9	Keep under 140 F, located at stee	I/PVC transition	
VLS VACUUM (in. WC):	37.5			
VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):	NA	If above LSHH or LSH - alarm, see	O&M Plan for trou	bleshooting
160 GALLON TANK WATER LEVEL (Gal):	0	Waste characterization/disposal p	er O&M Plan	
LEAD GAC VACUUM (in. WC):	NM			
LAG GAC VACUUM (in. WC):	NM		TAG#	
TOTAL INFLUENT PID (ppm):	10.4	Suma Canister Sample:	NA	
GAC BETWEEN PID (ppm):	NM	Suma Canister Sample:	NA	
GAC EFFLUENT PID (ppm):	13.5	Suma Canister Sample:	NA	

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): LOWER ZONE - 3 WELLS

	S۱	/E-1	SV	SVE-2		SVE-3		/E-4	SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
(FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.90 - 7.90	19.90 - 14.90	12.93 - 7.93	19.43 - 14.93	13.0 - 8.0	20.0 - 13.0	12.93 - 7.93	19.93 - 14.93
MANIFOLD						38		38		37
VACUUM (in WC)						30		30		5/
FLOW (CFM)						14		77		118
PID (ppm)						5.6		23		8
TEMPERATURE (F)						68		68		68
WELL HEAD					0.40	37	0.192	30	0.115	9.3
VACUUM (in WC)					0.40	37	0.192	30	0.113	9.5
DTW (FT from TOC)						19.09		20.00		19.93

	9	SUB SLAB DEPRE	SSURIZATION MO	NOTES: Target sub-slab vacuum >= 0.025 in. H20		
	SS-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure: NM
/ACUUM (in. WC):	-0.037	-0.111	-0.036	-0.044	-0.025	NM = not measured
CONDITION:	ОК	OK	OK	OK	OK	TOC = top of casing
					_	bgs = below ground surface

FRANK WEAR INITIAL LOWER ZONE TESTING - 5 WELLS

DATE/TIME: 6/25/2012		ADJUSTMENT SHEET (Yes/No)?	NO	TROUBLESHOOT SHEET (Yes/No)? NO
		NOTES	Note any observati	one adjustments or system issues here
				ons, adjustments, or system issues here.
AMBIENT TEMPERATURE (F):	82		dilution valve close	d. Relatively high flow rates from SVE-4 and SVE-5 and low
BLOWER INLET VACUUM (in. WC):	38	Keep under 50 in. WC	pressure at SVE-5 v	vell head indicates preferential air flow, possibly from
BLOWER INLET FLOW (CFM): _	250	<u>_</u>	nearby MW-10 or o	other pathways. Pressure/flow testing of pipes on 6/23
BLOWER INLET TEMPERATURE (F): _	85	<u>_</u>	indicated no leaks i	n piping. Pressures measured in upper zone indicate very
BLOWER DISCHARGE TEMPERATURE (F):	145	Keep under 160 F	little flow around u	pper/lower zone seal.
BLOWER DISCHARGE TEMPERATURE (F) @ PVC:	NM	Keep under 140 F, located at stee	I/PVC transition	
VLS VACUUM (in. WC):	29			
VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):	NA	If above LSHH or LSH - alarm, see	O&M Plan for trou	bleshooting
160 GALLON TANK WATER LEVEL (Gal):	0	Waste characterization/disposal p	oer O&M Plan	
LEAD GAC VACUUM (in. WC):	NM			
LAG GAC VACUUM (in. WC):	NM		TAG#	
TOTAL INFLUENT PID (ppm):	42	Suma Canister Sample:	NA	
GAC BETWEEN PID (ppm):	NM	Suma Canister Sample:	NA	
GAC EFFLUENT PID (ppm):	NM	Suma Canister Sample:	NA	

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): LOWER ZONE - 5 WELLS

	SV	'E-1	SV	SVE-2		SVE-3		SVE-4		SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	
SCREEN INTERVAL	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95	
(FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.90 - 7.90	19.90 - 14.90	12.95 - 7.95	19.45 - 14.95	15.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95	
MANIFOLD		30		28		30		29		28	
VACUUM (in WC)		30		20		30		29		20	
FLOW (CFM)		25		32.5		13.5		67		115	
PID (ppm)		6.5		13.3		4.1		31.4		9.3	
TEMPERATURE (F)		82		84		83.1		82.5		81.5	
WELL HEAD	0.06	28	0.25	27	0.26	28	0.16	22	0.11	7	
VACUUM (in WC)	0.06	20	0.25	27	0.26	20	0.16	22	0.11	,	
DTW (FT from TOC)		19.84		18.30		19.09		20.00		19.93	

	9	SUB SLAB DEPRE	SSURIZATION MO	NOTES: Target sub-slab vacuum >= 0.025 in. H20		
	SS-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure: NM
VACUUM (in. WC):	-0.036	-0.168	-0.047	-0.040	-0.022	NM = not measured
CONDITION:	OK	OK	OK	OK	OK	TOC = top of casing
						bgs = below ground surface

FRANK WEAR INITIAL UPPER ZONE TESTING - 3 WELLS

DATE/TIME: 6/27/2012		ADJUSTMENT SHEET (Yes/No)?	NO	TROUBLESHOOT SHEET (Yes/No)?	NO
		NOTES: No	te any observa	ations, adjustments, or system issues here.	
AMBIENT TEMPERATURE (F):	NM				
BLOWER INLET VACUUM (in. WC):	31	Keep under 50 in. WC			
BLOWER INLET FLOW (CFM):	255				
BLOWER INLET TEMPERATURE (F):	74				
BLOWER DISCHARGE TEMPERATURE (F):	128	Keep under 160 F			
BLOWER DISCHARGE TEMPERATURE (F) @ PVC:	122	Keep under 140 F, located at steel/F	VC transition		
VLS VACUUM (in. WC):	21	_			
VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):	NA	If above LSHH or LSH - alarm, see O8	&M Plan for tro	oubleshooting	
160 GALLON TANK WATER LEVEL (Gal):	0	Waste characterization/disposal per	O&M Plan		
LEAD GAC VACUUM (in. WC):	NM				
LAG GAC VACUUM (in. WC):	NM		TAG#		
TOTAL INFLUENT PID (ppm):	4.9	Suma Canister Sample:	NA		
GAC BETWEEN PID (ppm):	5.5	Suma Canister Sample:	NA		
GAC EFFLUENT PID (ppm):	9.6	Suma Canister Sample:	NA		

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): UPPER ZONE - 3 WELLS

	SV	'E-1	SV	SVE-2		SVE-3		SVE-4		/E-5
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
(FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.90 - 7.90	19.90 - 14.90	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD					21.0		21.0		21.0	
VACUUM (in WC)					21.0		21.0		21.0	
FLOW (CFM)					64.0		109.0		104.0	
PID (ppm)					5.9		8.1		9.8	
TEMPERATURE (F)					73.8		72.7		72.9	
WELL HEAD					7.75	1.45	2.30	0.25	4.00	0.125
VACUUM (in WC)					7.75	1.45	2.30	0.25	4.00	0.125
DTW (FT from TOC)					19.09		20.00		19.93	

	9	SUB SLAB DEPRE	ITS	NOTES: Target sub-slab vacuum >= 0.025 in. H20		
	SS-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure: NM
/ACUUM (in. WC):	-0.065	-0.115	-0.057	-0.050	-0.030	NM = not measured
CONDITION:	ОК	OK	OK	OK	OK	TOC = top of casing
·						bgs = below ground surface

FRANK WEAR INITIAL UPPER ZONE TESTING - 5 WELLS

DATE/TIME: 6/25/2012		ADJUSTMENT SHEET (Yes/No)?	NO	TROUBLESHOOT SHEET (Yes/No)? NO
		NOTES: I	Note any observa	ations, adjustments, or system issues here.
AMBIENT TEMPERATURE (F):	82	•	Considerably less	s stress, i.e. vacuum, on the blower at 22.5" WC. Lower zone
BLOWER INLET VACUUM (in. WC):	22.5	Keep under 50 in. WC	oressure measur	ements indicate little bypassing of seals between upper and
BLOWER INLET FLOW (CFM):	285		ower zones.	
BLOWER INLET TEMPERATURE (F):	87	_		
BLOWER DISCHARGE TEMPERATURE (F):	130	Keep under 160 F		
BLOWER DISCHARGE TEMPERATURE (F) @ PVC:	NM	Keep under 140 F, located at stee	/PVC transition	
VLS VACUUM (in. WC):	11	_		
VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):	NA	If above LSHH or LSH - alarm, see	O&M Plan for tro	oubleshooting
160 GALLON TANK WATER LEVEL (Gal):	0	Waste characterization/disposal p	er O&M Plan	
LEAD GAC VACUUM (in. WC):	NM	_		
LAG GAC VACUUM (in. WC):	NM	_	TAG#	
TOTAL INFLUENT PID (ppm):	25.4	Suma Canister Sample:	NA	
GAC BETWEEN PID (ppm):	NM	Suma Canister Sample:	NA	
GAC EFFLUENT PID (ppm):	NM	Suma Canister Sample:	NA	

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): LOWER ZONE - 5 WELLS

	SV	′E-1	SVE-2		SVE-3		SVE-4		SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
(FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.90 - 7.90	19.90 - 14.90	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD	9									
VACUUM (in WC)	9		9		9		9		9	
FLOW (CFM)	69		40		41		74		66	
PID (ppm)	16.2		10.7		22.8		8.7		18.2	
TEMPERATURE (F)	82.5		82.7		83.2		81.8		81.3	
WELL HEAD	0.8									
VACUUM (in WC)	0.8	0.12	6.5	0.27	3.5	0.6	0.8	0.16	1.5	0.1
DTW (FT from TOC)	19.84		18.30		19.09		20.00		19.93	

	9	SUB SLAB DEPRE	SSURIZATION MO	NOTES: Target sub-slab vacuum >= 0.025 in. H20		
	SS-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure: NM
VACUUM (in. WC):	-0.054	-0.110	-0.043	-0.060	-0.035	NM = not measured
CONDITION:	OK	OK	OK	OK	OK	TOC = top of casing
					_	bgs = below ground surface

NOTES: Note any observations, adjustments, or system issues here. AMBIENT TEMPERATURE (F): 77 BLOWER INLET VACUUM (in. WC): 34 BLOWER INLET FLOW (CFM): 249 BLOWER INLET TEMPERATURE (F): 83 BLOWER DISCHARGE TEMPERATURE (F): 132 Keep under 160 F VLS VACUUM (in. WC): 21 VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float): NA If above LSHH or LSH - alarm, see O&M Plan for troubleshooting LEAD GAC VACUUM (in. WC): 23 LAG GAC VACUUM (in. WC): 23 TAG # Need horse issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, or system issues here. NOTES: Note any observations, adjustments, adju	DATE/TIME: 7/3 /17	2 1541	ADJUSTMENT SHEET (Yes/No)?	<u> </u>	TROUBLESHOOT SHEET (Yes/No)? <u> </u>
TAG# Need to infor Secondary containing TAG# Need to infor Secondary containing TAG# Chart TAG# Cha	BLOWER INLET VACU BLOWER INLET BLOWER INLET TEMP BLOWER DISCHARGE TEMPERATUI VLS VACU VLS MOISTURE LEVEL (NA, 1st, 2r 160 GALLON TANK WATEI LEAD GAC VACU LAG GAC VACU TOTAL INFLUEN	### DUM (in. WC): 34 ### PERATURE (F): 83 ### PERATURE (F): 132 ### PERATURE (F): 145 ### PERATURE (F): 155 ### PERA	Keep under 50 in. WC Keep under 160 F Keep under 140 F, located at stee If above LSHH or LSH - alarm, see Waste characterization/disposal p Suma Canister Sample: Suma Canister Sample:	SS gallons Need su Clipbe Alphot transition No O&M Plan for troubleshoot Der O&M Plan TAG# Language Ch 307	from testing f b-pump from 1 could, & chair could more coci ting Drained from 1 act	tome Depot, hose, and/or table. from hdf. clean water

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): 3,4,5 UPPER ZONF

	SV	Æ-1	SVE-2		SV	E-3	S	VE-4	SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	1797.797	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD								 		
VACUUM (in WC)		/ 1	/		18	l ×	19	/ ×	,	\Z
FLOW (CFM)					63		711		99	
PID (ppm)					4.3	X	10-3		7.0	
TEMPERATURE (F)				X	76.3	X	77-8	~	78.3	$\overline{}$
WELL HEAD	/		. /						10.7	
VACUUM (in WC)	/		/.		-7-647	+0.011	-2.276	-0.028	-3.965	17-7
DTW (FT from TOC)					18.45	X	19.32	X	19,425	<u>-0.132</u>

SUB SLAB DEPRESSURIZATION MONITORING POINTS

SS-1 SS-2 SS-3 SS-4 SS-5

VACUUM (in. WC): -0.066 -0.115 -0.050 -0.043 -0.03

CONDITION: 0K 0K 0K 0K

NOTES: Target sub-slab vacuum = 0.005 in. H20

Ambient Pressure: Not Trecocked

TOC = top of casing bgs = below ground surface

DATE/TIME:

14:10

ADJUSTMENT SHEET (Yes/No)?

TROUBLESHOOT SHEET (Yes/No)?

NO

AMBIENT TEMPERATURE (F):

BLOWER INLET VACUUM (in. WC):

Keep under 50 in. WC

NOTES: Note any observations, adjustments, or system issues here.

WATER LEVEL IN 160 GALLON TANK IS FROM FLOAT SYSTEM TESTING WATER WILL BE RELIQUED WING SUBMERSTIBLE FILMS

BLOWER INLET FLOW (CFM):

BLOWER INLET TEMPERATURE (F):

142.2 BLOWER DISCHARGE TEMPERATURE (F):

141.1

Keep under 160 F

BLOWER DISCHARGE TEMPERATURE (F) @ PVC: VLS VACUUM (in. WC):

20.7

Keep under 140 F, located at steel/PVC transition

NIA VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):

43

If above LSHH or LSH - alarm, see O&M Plan for troubleshooting

160 GALLON TANK WATER LEVEL (Gal):

Waste characterization/disposal per O&M Plan

LEAD GAC VACUUM (in. WC): LAG GAC VACUUM (in. WC):

220

TAG#

TOTAL INFLUENT PID (ppm):

Suma Canister Sample: DIA Suma Canister Sample: 10 /A

GAC BETWEEN PID (ppm): GAC EFFLUENT PID (ppm):

Suma Canister Sample: 1/4

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): UPPER ZONE 3,4,55

	SV	SVE-1 SVE		′E-2	SV	E-3	-3 SVE-4			/E-5
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	1292-792	19.92 - 14.92	/12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)					22	×	21.2		21.9	
FLOW (CFM)					64.1	×	105.2	٧.	98.1	×
PID (ppm)					হী, 3	×	5,7		4.6	×
TEMPERATURE (F)					94.3	Х	92.6	X	92.4	×
WELL HEAD VACUUM (in WC)					-7.580	-0.013	-2.357	-0.016	-3.874	-0.Z83
DTW (FT from TOC)			7		17.2		18.0	~	4 18.9	X

SUB SLAB DEPRESSURIZATION MONITORING POINTS

SS-1

SS-2 -0.13

SS-3 -0.063

SS-4 0.059

NOTES: Target sub-slab vacuum = 0.005 in. H20 Ambient Pressure: Not RECORDED

TOC = top of casing

bgs = below ground surface

VACUUM (in. WC): CONDITION:

124

FRANK WEAR SVE SYSTEM - SYSTEM ADJUSTMENT RECORD SHEET

DATE/TIME:	July 17, 2012 14:00	@ 264.75 hrs	NOTES: Note any observations, adjusti	ments, or system issues here.
		reswit		Alarms
	AMBIENT TEMPERATURE (F):	88 92 Munt to Phone		Auxilion
	BLOWER INLET VACUUM (in. WC):	Ø −30 Keep under 50 in. WC		
	BLOWER INLET FLOW (CFM):			E-570P
	BLOWER INLET TEMPERATURE (F):	100 100		
BLO	OWER DISCHARGE TEMPERATURE (F):	98 195 Keep under 160 F		
BLOWER D	DISCHARGE TEMPERATURE (F) @ PVC:	Keep under 140 F, locate	ed at steel/PVC transition	1000 C 10 1
	VLS VACUUM (in. WC):	0-20		100 Sewico disconnect Trippel
VLS MOI	ISTURE LEVEL (NA,1st, 2nd, 3rd Float):	MA If above LSHH or LSH - a	arm, see O&M Plan for troubleshooting	b) flipped both fures
1	60 GALLON TANK WATER LEVEL (Gal):		disposal per O&M Plan	1 (lbber sour lase?
	LEAD GAC VACUUM (in. WC):	0 -24(1)		V
	LAG GAC VACUUM (in. WC):	0-34(1)	TAG #	Cleared Alarma
	TOTAL INFLUENT PID (ppm):	Suma Canister	Sample:	6.500
	GAC BETWEEN PID (ppm):	Suma Canister	Sample:	7 vol
	GAC EFFLUENT PID (ppm):	Suma Canister	Sample:	

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): 5, 4, +3

					_					A second
	SV	E-1	SV	SVE-2		SVE-3		/E-4	SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)	12310	00	0 25	00	0-16	06	0-17	OP	Ø-16	ØØ
FLOW (CFM)										
PID (ppm)			1							
TEMPERATURE (F)			010	NOT	10110	T				
WELL HEAD										
VACUUM (in WC)								-		
DTW (FT from TOC)										

	SI	UB SLAB DEPRES	SURIZATION MO	NITORING POIN	ITS	NOTES: Target sub-slab vacuum = 0,005 in. H20
MACHINA (Sec. MICH.	SS-1	SS-2	SS-3	5S-4	SS-5	Ambient Pressure:
VACUUM (in. WC): CONDITION;		Diet	107 (01	10.4		TOC = top of casing bgs = below ground surface

E/TIME: 5	Lly 18,201	2 0850	774 5	88	ADJUS'	TMENTS	HEET I	(Yes/No)	?		Т	ROUBL	ESHOOT S	HEET (Yes/No)î	, _			
BLOW BLOWER DISCHARG VLS MOISTURE L 160 GALLG	ER INLET VACIBLE INLET TEMPERATE VLS VACIEVEL (NA, 1st, 20) TANK WATHLEAD GAC VACIEVEL	PERATURE (F): UUM (in. WC): FLOW (CFM): PERATURE (F): PERATURE (F): URE (F) @ PVC: UUM (in. WC):	274. 1 773 88 86 NA	75 73 -34 20 . 125 -27	Keepsy Keepsy Keepsy Keepsy T	der 50.10 der 160.10 nder 140.10 -2 LISHH 90 character	284.	NOTES	eel/PV	C transitio	vations, adjust	S7rn		n issues	alar	(m	PN		
	GAC BETW	ENT PID (ppm): EEN PID (ppm): ENT PID (ppm):	111	=	-	Suma-C	aniste	er Sample er Sample er Sample	: -				Cec.	and				alarm tetup stertup	
				SVE V	WELLS -	OPERATION	ON MO	ODETUPE	ERYLO	WER/MIXE	D): 5,4,0	3	_ 7	445	- 441	Smin	afrer 5	starte 1	8:45
7045		E-1	LUDE		/E-2	MED			VE-3	OWED	UPPER	VE-4	OWED	-	S' PPER	VE-5	OWED		
SCREEN INTERVAL (FT from TOC)	UPPER 12.92 - 7.92	19.92 - 14.92	12.96			- 14.96		95 - 7.95		OWER 15 - 14.95	13.0 - 8.0		0 - 15.0		5 - 7.95		5 - 14.95		
MANIFOLD VACUUM (in WC)	8 6	0 0	6	Ø	Ø	Ø	Ø	-19	ø	9	Ø -19.5	Ø	0	0	-19	ø	0		
- Lauren	T. Ø	Ø	0		9		-18	5	0		-19	Ø	MITE	-19		0			
PID (ppm) TEMPERATURE (F)			1																
WELL HEAD																			
VACUUM (in WC)																			
VACUUM (in. WC): CONDITION:	\$\$-1 	SUB SLAB DEPRI		5-3	S	RING POIN		\$\$-5			Target sub-slaint Pressure: TOC = top of colors = below gr	asing		in. H2	0				

DATE/TIME:	July 19, 2012 0815	ADJUSTMENT SE	HEET (Yes/No)?	TROUBLESHOOT SH	HEET (Yes/No)?
BL BLOWER BLOWER DISCH VLS MOISTUR		85.98	NOTES: Note any observation. WC	Alarm Aug Troubleshooting	issues here.
					270
		SVE WELLS - OPERATION	ON MODE (UPPER LOWER/MIXE	0): 5, 4, +3	
	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5

	SV	SVE-1 SVE-2		E-2	SVE-3			VE-4	SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	12 92 - 7 92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)	P, P, P, d	0,0,0,0	0, 9, 9,6	0,0,0,0	P, -19, 0,1X	\$0,0,0,0	0,-19.5,6	0,0,0,0	0, 19, 5,7	0,0,0,0
FLOW (CFM)										
PID (ppm)										
TEMPERATURE (F)										
WELL HEAD										
VACUUM (in WC										
DTW (FT from TOC)										

	SI	JB SLAB DEPRES	SURIZATION MO	NITORING POIN	TS	NOTES: Target sub-slab vacuum = 0.005 in. H20
VACUUM (in. WC): CONDITION:	55-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure: TOC = top of casing bgs = below ground surface

FRANK WEAR SVE SYSTEM - SYSTEM ADJUSTMENT RECORD SHEET

ATE/TIME:	July 23 2012 0835		-02	NOTES: Note any observations	s, adjustments, or system issues h	nere.
ALL THELE	0.2	17.58	2 287,87		To	7370
		Je Tre 55+ 55+	T540 41		Alarn	Alora
	Particular Control of the		Ko under 50 in. WC		Aur lian	1 1
	BLOWER INLET VACUUM (in. WC):	Ø -33	Keep unegr 50 In. WC		hery's	Ausillary
	BLOWER INLET FLOW (CFM):	76 70	84 92			
	BLOWER INLET TEMPERATURE (F): BLOWER DISCHARGE TEMPERATURE (F):	73 117	Kyler und & OBO F		localle shoot	Tro bhislast
	DISCHARGE TEMPERATURE (F) @ PVC:		Keep under 140 F, locate	d at steel/PVC transition	4 RYJET	- Constant
BLOWE	VLS VACUUM (in. WC):	Ø -21.5	8 -21			Wesex
VLS M	OISTURE LEVEL (NA,1st, 2nd, 3rd Float):		If allove LSAH or LSH - al	arm, see O&M Plan for trouble	eshooting	
	160 GALLON TANK WATER LEVEL (Gal):		waste characterization/c	lisposal per O&M Plan		
	LEAD GAC VACUUM (in. WC):		9 -23	740#		
	LAG GAC VACUUM (in. WC):	0 -30		TAG #		
	TOTAL INFLUENT PID (ppm):		Suma Canister S Suma Canister S			
	GAC BETWEEN PID (ppm): GAC EFFLUENT PID (ppm):	M	Suma Canister S			
	GAC EFFECENT FID (ppin).	_	Dulliu Cullister s			

SVE WELLS - OPERATION MODE UPPER LOWER/MIXED): 5, 4, + 3

	SV	E-1	SV	E-2	SVI	E-3	SI	/E-4	SVE-5	
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)	Ø, Ø, Ø	9,9,0	Ø, Ø, Ø	Ø, Ø, Ø	9,-190	0,4,0	\$,-20,0	0,0,0	0,-19,0	0,0,0
FLOW (QFM)	0	Ø	Ø	Ø	-18.5	Ø	-19	Ø	-18.5	Ø
PID (pom)										
TEMPERATURE (F)										
WELL HEAD										
VACUUM (in WC)										
DTW (FT from TOC)						E CONTRACTOR OF THE PARTY OF TH				

	SU	JB SLAB DEPRES	SURIZATION MO	NITORING POIN	ITS	NOTES: Target sub-slab vacuum = 0.005 in. H20
	SS-1	SS-2	SS-3	55-4	SS-5	Ambient Pressure:
VACUUM (in. WC):		A CONTRACTOR OF THE PARTY OF TH				
CONDITION:			101-			TOC = top of casing
						bgs = below ground surface

TE/TIME:	July 24,2	dz 0845	Ø 70 0.	ADJUSTMENT S	SHEET (Yes/No)?		TR	OUBLESHOOT S	HEET (Yes/No)?		
		E 2	10 T5+0	249.57	NOTES	Note any obser	vations adjusts	nants or system	iccupe hore		
	AMBIENT TEN	MPERATURE (F):			NOTES.	. Note any obser	vations, adjusti	nents, or system	issues here.		
BI	OWER INLET VA			Keep under 50 i	n. WC			7.	7		
		T FLOW (CFM):						Aler - Auxilia Tropldesh	IA.	1870 Harm Auxiliary Forlie shou	
	OWER INLET TEN			Kana undar 160	-			Annel	W.	lerm	
	R DISCHARGE TEM ARGE TEMPERAT			Keep under 160 Keep under 140		eel/PVC transitio	n	2-11-1	7)	Auxiliary	
DEOWER DISCH		CUUM (in. WC):						"TOBALICS HO	TOT	Tar ble short	
VLS MOISTUR	RE LEVEL (NA,1st,	2nd, 3rd Float):	NA WA	If above LSHH or			troubleshooting	4 reset	-	()	
160 G	ALLON TANK WA			Waste character	rization/disposa	l per O&M Plan			4	modely pre	HUL JUNE
		CUUM (in. WC):				TAG#				lassiven	er KJ
		JENT PID (ppm):		Suma (Canister Sample:					1715110 [11	or ,
		VEEN PID (ppm):			Canister Sample:				L	o reset	
	GAC EFFLU	JENT PID (ppm):		Suma (Canister Sample:	/					
									Nore:	sensa phone alerm cares	meics +
									" A	alees .	
									NAG.	and the conty	siris
			SVE	WELLS - OPERATION	ON MODE (UPP	ER/LOWER/MIXE	ED):		Locens	colores as	1 smallo
	S	VE-1	S\	VE-2	T SV	/E-3	S\	/E-4	S	VE-5	1 3
ZO	NE UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	
SCREEN INTERV	12 92 - 7 92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95	
MANIFO VACUUM (in W	and the second s	9,9	9,9	0,0	0,0	0,0	4,0	0,0	0,0	9,9	
FLOW (CF										With the late	
PID (pp						State of the state of					
TEMPERATURE WELL HE											
VACUUM (in W											
DTW (FT from TO								THE REAL PROPERTY.			
						PU WATER					
		CUB CLASS									
	SS-1	SUB SLAB DEPRE	SSURIZATION N SS-3	IONITORING POIN			-	vacuum = 0.005	in. H20		
VACUUM (in. W		33-2	33-3	SS-4	SS-5	Ambien	nt Pressure:				
CONDITIO							TOC = top of ca	sing			

bgs = below ground surface

		-			
D.	AT	183	AT	IΑ	ΔE
-	200	~1	8	ш	MA.

Ju	42	5, 2	0/	2	59	00

ADJUSTMENT SHEET (Yes/No)?

TROUBLESHOOT SHEET (Yes/No)?

e 30393 e312.12

NOTES: Note any observations, adjustments, or system issues here.

AMBIENT TEMPERATURE (F): 68

BLOWER INLET VACUUM (in. WC): -31.5 -30,5Keep under 50 in. WC

BLOWER INLET FLOW (CFM):

BLOWER INLET TEMPERATURE (F): 80

BLOWER DISCHARGE TEMPERATURE (F): 135 /52 Keep under 160 F

BLOWER DISCHARGE TEMPERATURE (F) @ PVC: ____

Keep under 140 F, located at steel/PVC transition

VLS VACUUM (in. WC): -21 -20

VLS MOISTURE LEVEL (NA.1st, 2nd, 3rd Float): NA

№ A If above LSHH or LSH - alarm, see O&M Plan for troubleshooting

TAG#

160 GALLON TANK WATER LEVEL (Gal): Ø

Waste characterization/disposal per O&M Plan

LEAD GAC VACUUM (in. WC): -23 -7.2

LAG GAC VACUUM (in. WC): - 29 - 28

Suma Canister Sample:

TOTAL INFLUENT PID (ppm): GAC BETWEEN PID (ppm):

Suma Canister Sample:

GAC EFFLUENT PID (ppm):

Suma Canister Sample:

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED):

	SV	E-1	SV	E-2	SV	E-3	S	VE-4	SI	/E-5
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	12.92 - 7.92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)	Ø,ø	0,0	0/0	0,0	-19,-18	0,0	-19 ,-19	0,0	-19, -18	0 0
FLOW (CFM)					No. of Contract of					
PID (ppm)										
TEMPERATURE (F)										
WELL HEAD										
VACUUM (in WC)										
DTW (FT from TOC)						PER STREET	ET BOOK			

	SU	B SLAB DEPRES	SSURIZATION M	ONITORING POIN	ITS	NOTES: Target sub-slab vacuum = 0.005 in. H20
	SS-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure:
VACUUM (in. WC): CONDITION:	7					TOC = top of casing bgs = below ground surface

DATE/TIME:	July 26, 2012 0800		ADJUSTMENT SHEET (Yes/No)?	TROUBLESHOOT SHEET (Yes/No)?	
	AMBIENT TEMPERATURE (F): BLOWER INLET VACUUM (in. WC): BLOWER INLET FLOW (CFM): BLOWER INLET TEMPERATURE (F): BLOWER DISCHARGE TEMPERATURE (F):	126,94 16 -32 1.15 20	Keep under 50 in. WC	Note any observations, adjustments, or system issues here.	
BLOW	ER DISCHARGE TEMPERATURE (F) @ PVC:	-	Keep under 160 F Keep under 140 F, located at steel/	I/PVC transition	
	VLS VACUUM (in. WC):	-21	neep onder 240 17 located at steely	A C d d listici	
VLS I	MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):	WA	If above LSHH or LSH - alarm, see O		
	160 GALLON TANK WATER LEVEL (Gal):	0	Waste characterization/disposal pe	er O&M Plan	
	LEAD GAC VACUUM (in. WC):				
	LAG GAC VACUUM (in. WC):	-29		TAG #	
	GAC EFFLUENT PID (ppm): GAC EFFLUENT PID (ppm):	#	Suma Canister Sample: Suma Canister Sample: Suma Canister Sample:		

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED):

	SV	/E-1	SV	'E-2	SV	E-3	S	VE-4	SI	/E-5
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	12 92 - 7 92	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)		Ø	0	P	-19	Ø	-19.5	Ø	-19	ø
FLOW (CFM)										Printer State
PID (ppm)					Fig. 1	DELTE-SERVICE		CONTRACT TO STATE OF		
TEMPERATURE (F)										
WELL HEAD										
VACUUM (in WC)										
DTW (FT from TOC)										

	S	UB SLAB DEPRES	SURIZATION MO	NITORING POIN	NTS	NOTES: Target sub-slab vacuum = 0.005 in. H20
	55-1	SS-2	SS-3	SS-4	SS-5	Ambient Pressure:
VACUUM (in. WC): CONDITION:						TOC = top of casing bgs = below ground surface

FRANK WEAR SVE SYSTEM - SYSTEM ADJUSTMENT RECORD SHEET

DATE/TIME:

9-12-12 1445

NOTES: Note any observations, adjustments, or system issues here.

AMBIENT TEMPERATURE (F): BLOWER INLET VACUUM (in. WC):

Keep under 50 in. WC

BLOWER INLET FLOW (CFM): BLOWER INLET TEMPERATURE (F):

49 87 139 BLOWER DISCHARGE TEMPERATURE (F):

Keep under 160 F

BLOWER DISCHARGE TEMPERATURE (F) @ PVC:

Keep under 140 F, located at steel/PVC transition

VLS VACUUM (in, WC): VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float):

NA Ð

If above LSHH or LSH - alarm, see O&M Plan for troubleshooting

160 GALLON TANK WATER LEVEL (Gal): -23.5 LEAD GAC VACUUM (in. WC):

Waste characterization/disposal per O&M Plan

LAG GAC VACUUM (in. WC): TOTAL INFLUENT PID (ppm):

Suma Canister Sample:

se COC + final (at report

GAC BETWEEN PID (ppm):

GAC EFFLUENT PID (ppm):

Suma Canister Sample: Suma Canister Sample:

SVE WELLS - OPERATION MODE (UPPER LOWER/MIXED):

3.4.5- weer zone

			r 						·	
	SV	Æ-1	S\	/E-2	SV	E-3	\$\	/E-4	S\	√E-5
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	1/4/-/4/	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.95
MANIFOLD VACUUM (in WC)	1/1	Ø	Ø	Ø	-19	Ð	-20	Ø	-19.5	Ø
FLOW (CFM)					67.1		109.50		103.70	14/18/91 -
PID (ppm)	1	ſ	1	1	1	1	1	1	<u> </u>	l i
TEMPERATURE (F)					90.8	1	91.5		94.2	886
WELL HEAD										1
VACUUM (in WC)	{									1 1
DTW (FT from TOC)	1	1	\	,	,	ļ ,			1	· ·

SUB SLAB DEPRESSURIZATION MONITORING POINTS

VACUUM (in. WC): CONDITION:

SS-1

NOTES: Target sub-slab vacuum = 0.005 in. H20

Ambient Pressure: 0.045

TOC = top of casing bgs = below ground surface

> New Vapor Pins Installed on 9-12-12 in Am.

Previous SS probes up plastic thing were abandoned using neat cement to match existing cover. Hart-Crowser ansite today for GWM activities — Says DTW = 214' bgs.

FRANK WEAR SVE SYSTEM - SYSTEM ADJUSTMENT RECORD SHEET

DATE/TIME:

NOTES: Note any observations, adjustments, or system issues here.

AMBIENT TEMPERATURE (F):

BLOWER INLET VACUUM (in. WC): Keep under 50 in. WC

1.75 in H20 A 746 - 248 da e 91° F BLOWER INLET FLOW (CFM):

BLOWER INLET TEMPERATURE (F):

139 BLOWER DISCHARGE TEMPERATURE (F): Keep under 160 F

BLOWER DISCHARGE TEMPERATURE (F) @ PVC: Keep under 140 F, located at steel/PVC transition

-21 VLS VACUUM (in. WC):

VLS MOISTURE LEVEL (NA,1st, 2nd, 3rd Float): · NA If above LSHH or LSH - alarm, see O&M Plan for troubleshooting

160 GALLON TANK WATER LEVEL (Gal): NA Waste characterization/disposal per O&M Plan

LEAD GAC VACUUM (in. WC): ~2.3

-29 LAG GAC VACUUM (in. WC):

TOTAL INFLUENT PID (ppm): GAC BETWEEN PID (ppm):

GAC EFFLUENT PID (ppm):

Suma Canister Sample:

Suma Canister Sample:

Suma Canister Sample:

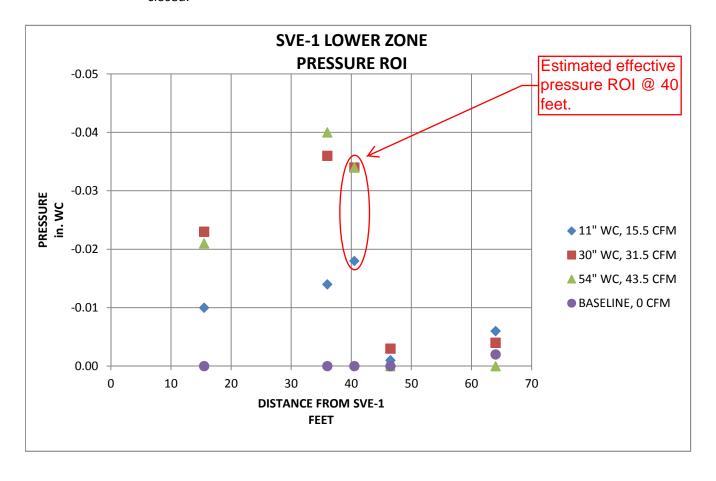
TAG#

Influent Inhon eff-luent

SVE WELLS - OPERATION MODE (UPPER/LOWER/MIXED): _ 4 PORC

	SI	/E-1	SV	Æ-2	SV	E-3	۶۱.	/E-4	. 5\	/E-5
ZONE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
SCREEN INTERVAL (FT from TOC)	1797-797	19.92 - 14.92	12.96 - 7.96	19.96 - 14.96	12.95 - 7.95	19.45 - 14.95	13.0 - 8.0	20.0 - 15.0	12.95 - 7.95	19.95 - 14.9
MANIFOLD	,			, , , , ,	,,	ì	5.0	1		
VACUUM (in WC)	\	\			-19		-20		-19.5	
FLOW (CFM)			ļ		24-36		28-32		28.5-30	
PID (ppm)		ŋ								\ \ \
TEMPERATURE (F)		.			88.5		87	1	84.2	1
WELL HEAD VACUUM (in WC)					- 7.88		-2,46		-4.07	
DTW (FT from TOC)		1		1 1	1797		141.27		14.80	1

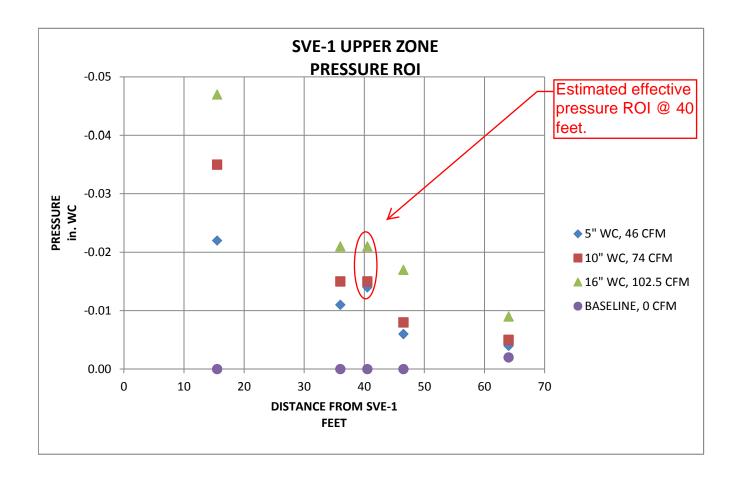
	N-sde	SUB SLAB DEPRES	SURIZATION MO	NITORING POIN	ITS	NOTES: Target sub-slab vacuum = 0.005 in. H20
VACUUM (in. WC):		353 ²⁰ -0.056	SS-3	SS-4 	SS-5	Ambient Pressure:
CONDITION:	 .					TOC = top of casing bgs = below ground surface


Appendix H

Pressure Radius of Influence Testing

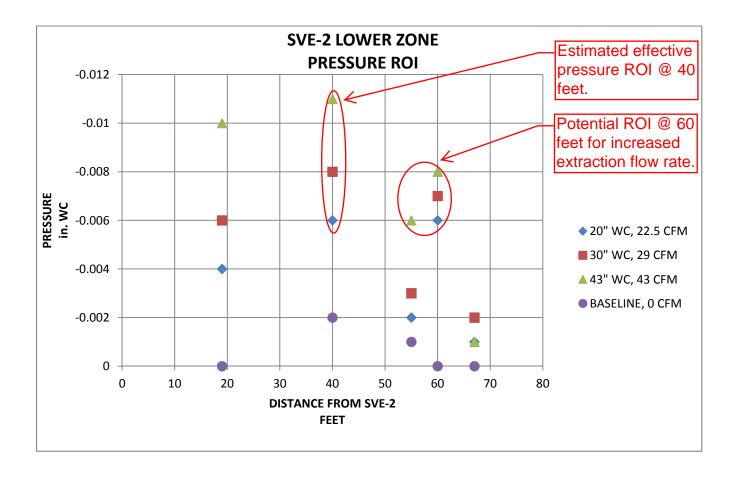
SVE-1 LOWER ZONE

	Distance		Pressure			
	(feet)		(vacuum	n in. WC)		Location
SVE-1						
@ Manifold						
(valve adjusted)	0	0	11	30	54	
MW-2	15.5	0	-0.01	-0.023	-0.021	
MW-?	36	0	-0.014	-0.036	-0.04	Alleyway south
MW-5	40.5	0	-0.018	-0.034	-0.034	Alleyway north
MW-?	46.5	0	-0.001	-0.003	0	4" near fence
SVE-4	64	-0.002	-0.006	-0.004	0	
	Flowrate (CFM)	0	15.5	31.5	43.5	


Notes: Pressures measured with Fluke 922 Micromanometer. The air dilution valve was halfway open to set manifold at 54 in. WC and 43.5 CFM from SVE-1. All other SVE well valves closed.

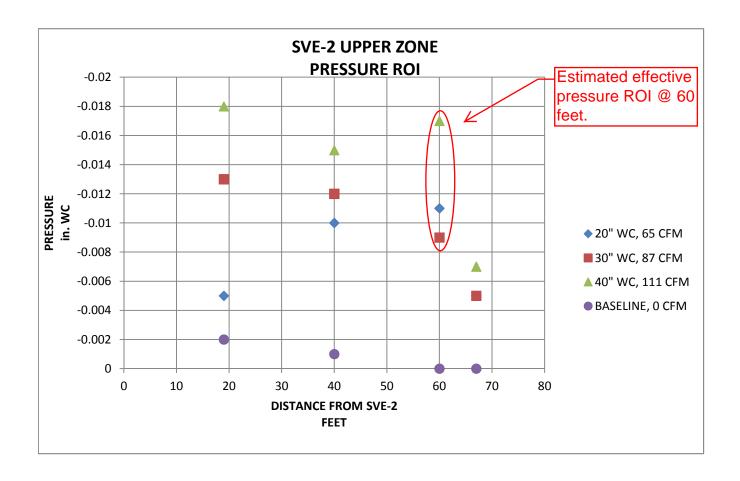
SVE -1 UPPER ZONE

	Distance	Pressure Response				
	(feet)		(vacuum	n in. WC)		Location
SVE-1						
@ Manifold						
(valve adjusted)	0	0	5	10	16	
MW-2	15.5	0	-0.022	-0.035	-0.047	
MW-?	36	0	-0.011	-0.015	-0.021	
MW-5	40.5	0	-0.014	-0.015	-0.021	
MW-?	46.5	0	-0.006	-0.008	-0.017	
SVE-4	64	-0.002	-0.004	-0.005	-0.009	
	Flowrate (CFM)	0	46	74	102.5	


Notes: Air dilution valve full open, unable to achieve 20" WC vacuum.

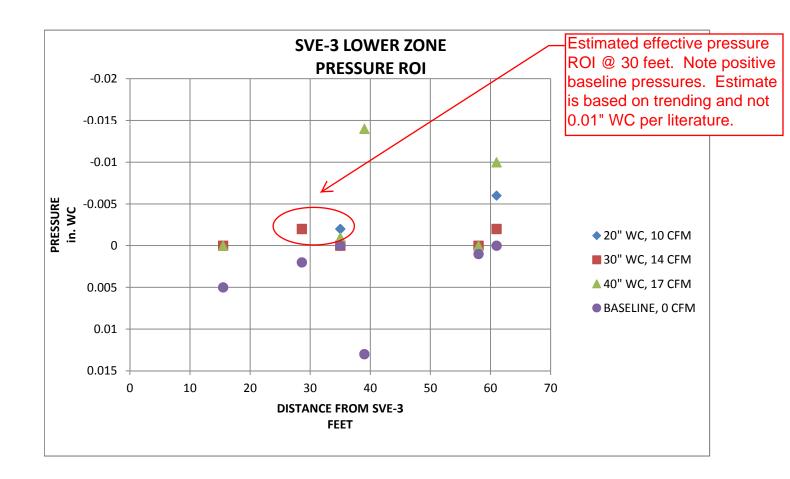
SVE-2 LOWER ZONE

	Distance (feet)		Pressure (vacuum	Location		
	(icct)		(vacuun	1 111. VVC)	1	Location
SVE-2						
@ Manifold						
(valve adjusted)	0	0	20	30	43	
MW-13	19	0	-0.004	-0.006	-0.010	
MW-10	40	-0.002	-0.006	-0.008	-0.011	
SS-2	55	-0.001	-0.002	-0.003	-0.006	
MW-?	60	0	-0.006	-0.007	-0.008	Sidewalk
SS-3	67	0	-0.001	-0.002	-0.001	
	Flowrate (CFM)	0	22.5	29	43	


Notes: Pressures measured with Fluke 922 Micromanometer. All other SVE well valves closed.

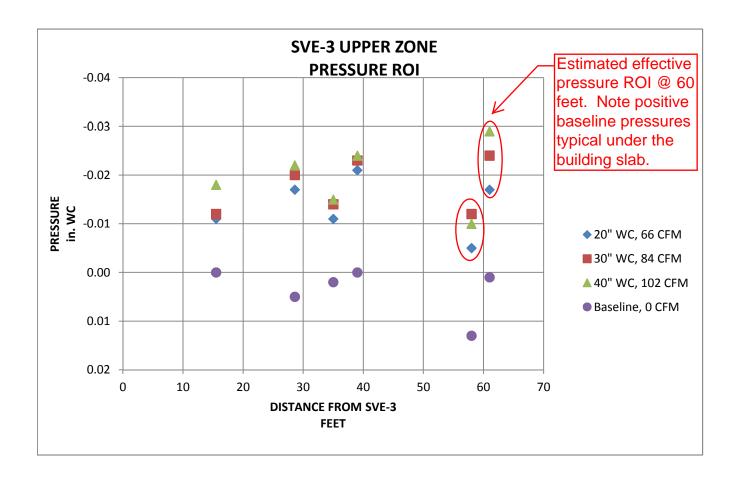
SVE-2 UPPER ZONE

	Distance (feet)		Pressure	Lesstian		
	(leet)		(vacuum	n in. WC)	•	Location
SVE-2						
@ Manifold						
(valve adjusted)	0	0	20	30	40	
MW-13	19	-0.002	-0.005	-0.013	-0.018	
MW-10	40	-0.001	-0.01	-0.012	-0.015	
SS-2	55	NM	NM	NM	NM	
MW-?	60	0	-0.011	-0.009	-0.017	
SS-3	67	0	-0.005	-0.005	-0.007	
	Flowrate (CFM)	0	65	87	111	


Notes:

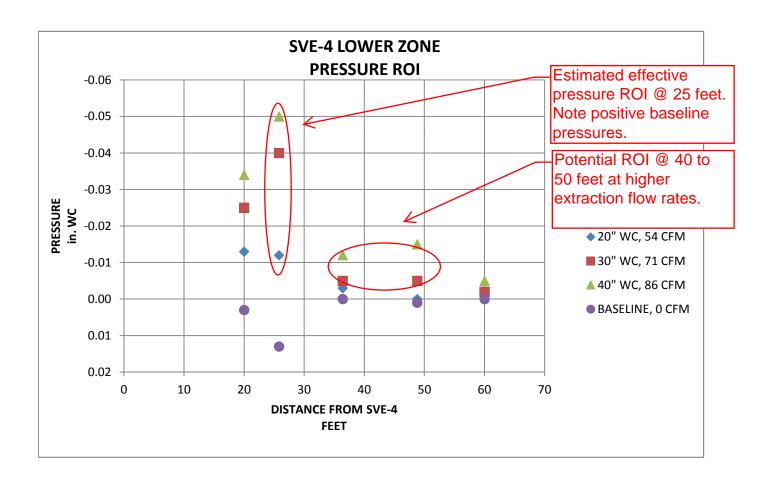
SVE-3 LOWER ZONE

	Distance (feet)		Pressure (vacuum	Location		
SVE-3 @ Manifold (valve adjusted)	0	0	20	30	40	
SS-5	15.5	0.005	0.000	0.000	0.000	
SS-4	28.6	0.002	-0.002	-0.002	NM	
SS-3	35	0	-0.002	0.000	-0.001	
SS-2	39	0.013	NM	NM	-0.014	
SS-1	58	0.001	0.000	0.000	0.000	
MW-10	61	0	-0.006	-0.002	-0.010	
	Flowrate (CFM)	0	10	14	17	


Notes: Pressures measured with Fluke 922 Micromanometer. All other SVE well valves closed.

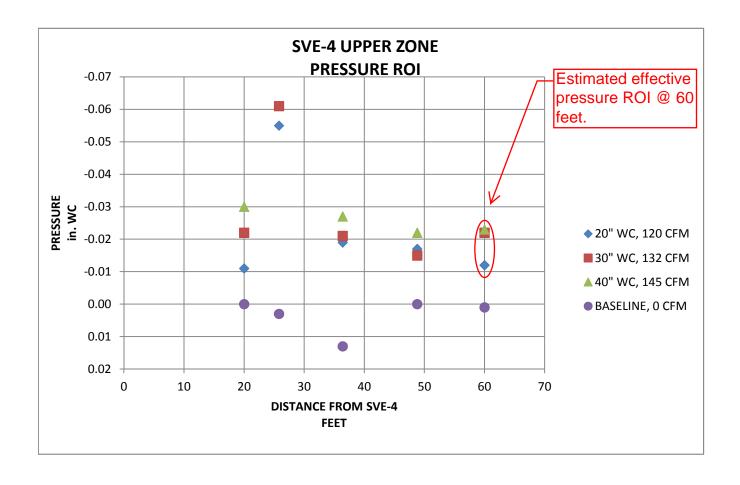
SVE -3 UPPER ZONE

	Distance		Pressure			
	(feet)		(vacuum	n in. WC)		Location
SVE-3						
@ Manifold						
(valve adjusted)	0	0	20	30	40	
SS-5	15.5	0	-0.011	-0.012	-0.018	
SS-4	28.6	0.005	-0.017	-0.02	-0.022	
SS-3	35	0.002	-0.011	-0.014	-0.015	
SS-2	39	0	-0.021	-0.023	-0.024	
SS-1	58	0.013	-0.005	-0.012	-0.01	
MW-10	61	0.001	-0.017	-0.024	-0.029	
	Flowrate (CFM)	0	66	84	102	


Notes:

SVE-4 LOWER ZONE

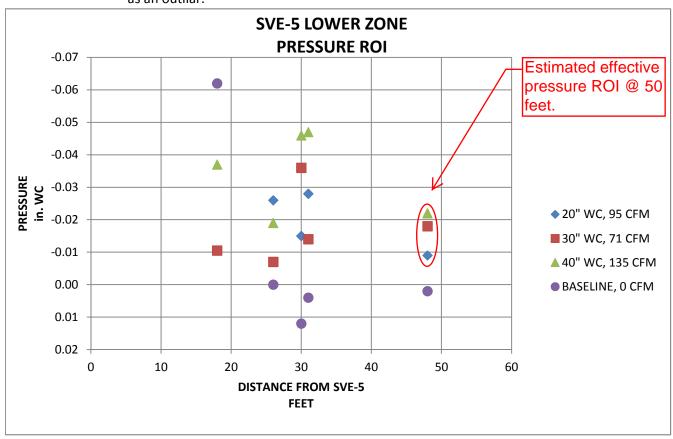
	Distance (feet)		Pressure (vacuum	Location		
SVE-4 @ Manifold						
(valve adjusted)	0	0	20	30	40	
MW-10	20	0.003	-0.013	-0.025	-0.034	
SS-2	25.8	0.013	-0.012	-0.040	-0.050	
SS-3	36.4	0	-0.003	-0.005	-0.012	
SS-1	48.8	0.001	0.000	-0.005	-0.015	
MW-?	60	0	0.000	-0.002	-0.005	Sidewalk
	Flowrate (CFM)	0	54	71	86	


Notes: Pressures measured with Fluke 922 Micromanometer. All other SVE well valves closed.

SVE -4 UPPER ZONE

	Distance	Pressure Response				
	(feet)		(vacuum	Location		
SVE-4						
@ Manifold						
(valve adjusted)	0	0	20	30	40	
MW-10	20	0	-0.011	-0.022	-0.03	
SS-2	25.8	0.003	-0.055	-0.061	-0.191	
SS-3	36.4	0.013	-0.019	-0.021	-0.027	
SS-1	48.8	0	-0.017	-0.015	-0.022	
MW-?	60	0.001	-0.012	-0.022	-0.023	
	Flowrate (CFM)	0	120	132	145	

Notes: The vacuum response pressure of -0.191" WC at SS-2 during the 40" WC, 145 CFM manifold adjustment is inconsistent with trending data and is omitted from the graph below.

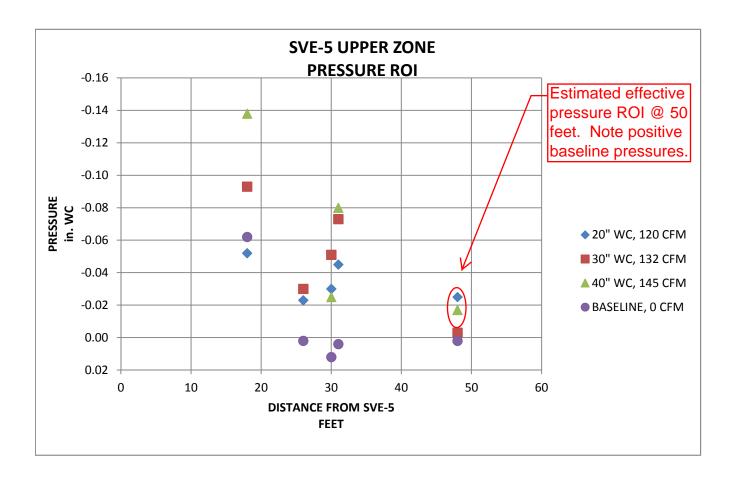


PRESSURE RADIUS OF INFLUENCE TESTING

SVE-5 LOWER ZONE

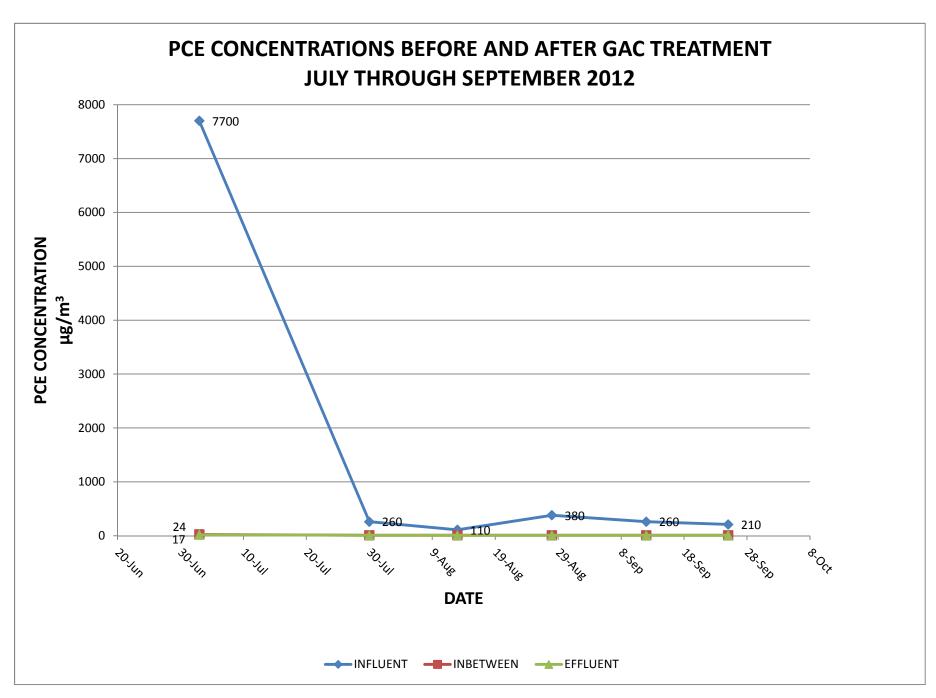
	Distance (feet)		Pressure (vacuum		Location	
SVE-5 @ Manifold				-,		
(valve adjusted)	0	0	20	30	40	
SS-2	18	-0.062	-0.252	-0.011	-0.037	
SS-3	26	0	-0.026	-0.007	-0.019	
MW-?	30	0.012	-0.015	-0.036	-0.046	Sidewalk
SS-1	31	0.004	-0.028	-0.014	-0.047	
MW-13	48	0.002	-0.009	-0.018	-0.022	
	Flowrate (CFM)	0	95	118	135	

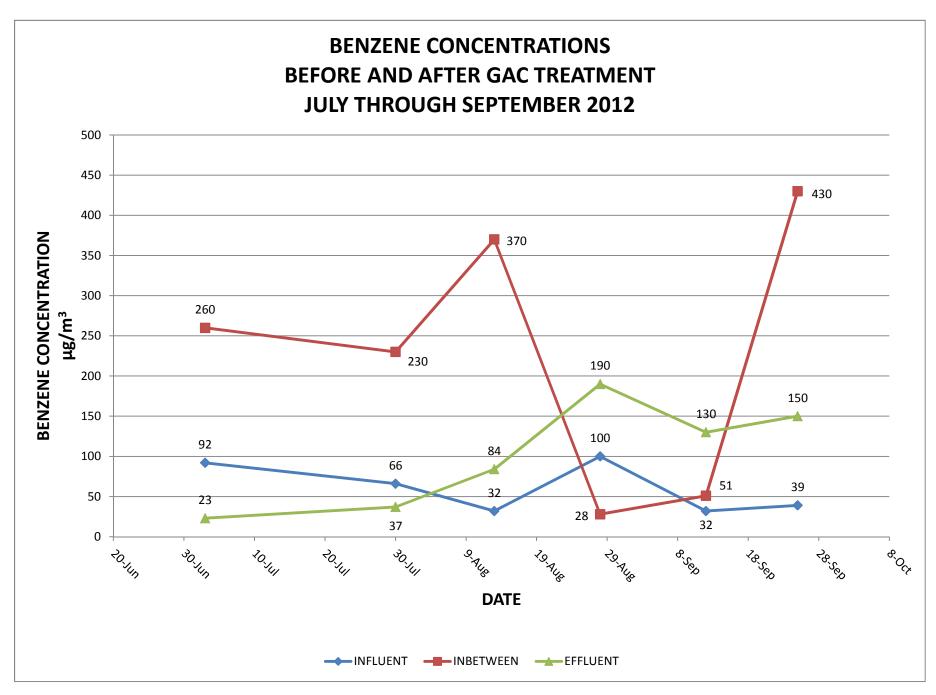
Notes: Pressures measured with Fluke 922 Micromanometer. All other SVE well valves closed. Pressure ROI measurement -0.252" WC at SS-2 during the 20" WC/95 CFM manifold adjustment is inconsistent with trending data and has been omitted from the graph below as an outliar.

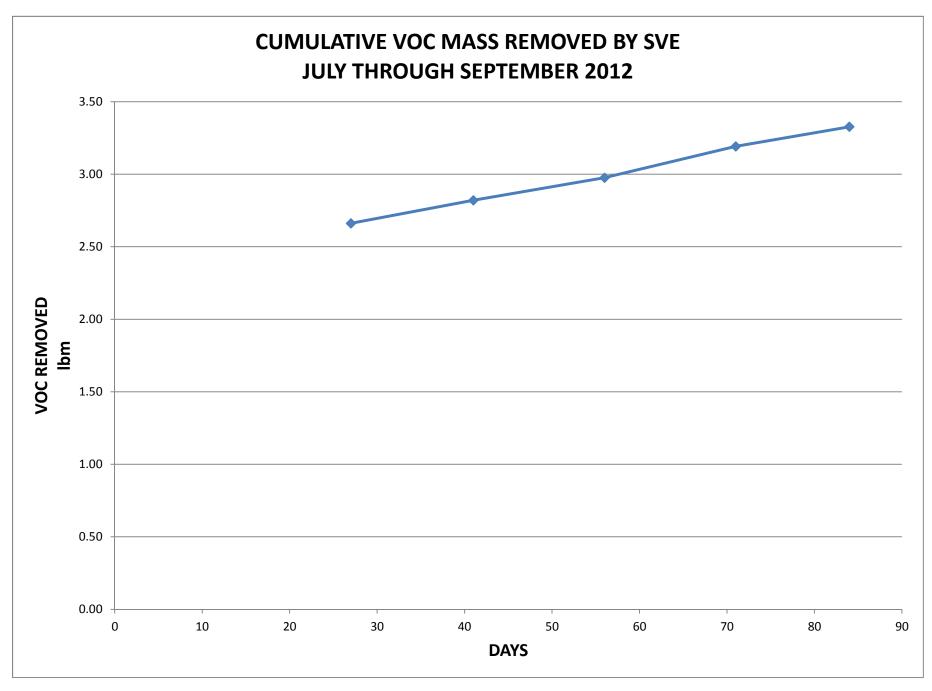


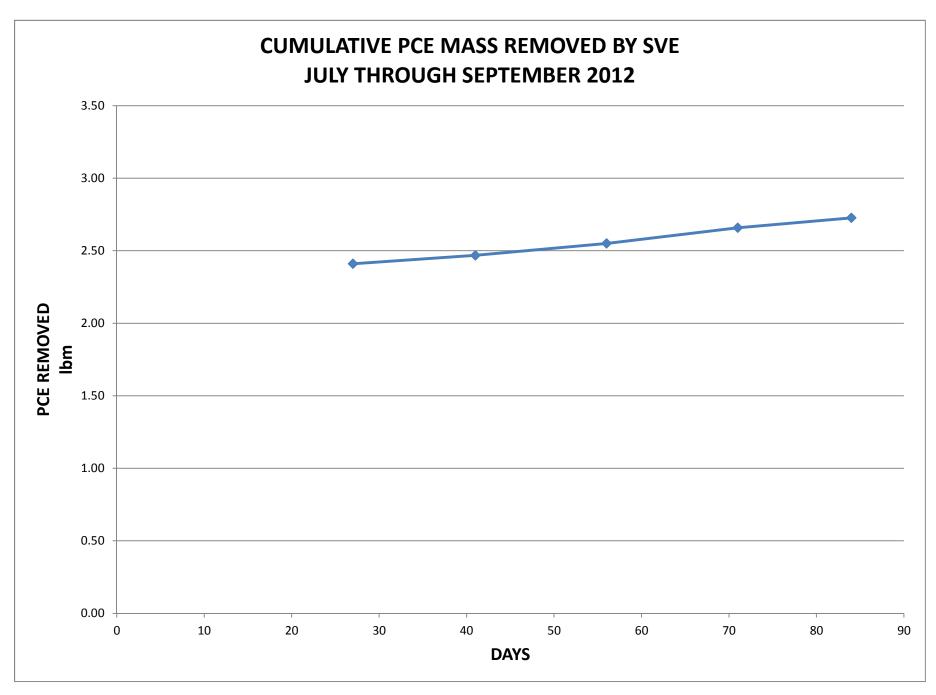
PRESSURE RADIUS OF INFLUENCE TESTING

SVE -5 UPPER ZONE


	Distance (feet)		Pressure (vacuum		Location	
SVE-5 @ Manifold						
(valve adjusted)	0	0	20	30	40	
SS-2	18	-0.062	-0.052	-0.093	-0.138	
SS-3	26	0.002	-0.023	-0.03	-0.055	
MW-?	30	0.012	-0.03	-0.051	-0.025	
SS-1	31	0.004	-0.045	-0.073	-0.08	
MW-13	48	0.002	-0.025	-0.003	-0.017	
	Flowrate (CFM)	0	112	136	148	


Notes:




Appendix I

Graphs, SVE Influent Laboratory Analytical Reports, and Chain-of-Custody Documentation

Mr. Ty Schreiner Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ071112-10

Client Project: 1196016.00 / Yakima, WA

Dear Mr. Ty Schreiner:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 11-Jul-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

ganis Villarreal

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Influent 1A	E207031-01	Vapor	03-Jul-12	11-Jul-12
Inbetween 1B	E207031-02	Vapor	03-Jul-12	11-Jul-12
Effluent 1C	E207031-03	Vapor	03-Jul-12	11-Jul-12

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
			Units	ractor	Datell	тератец	Analyzeu	wiculou	110003
Influent 1A (E207031-01) Vapor Sampled: 03-Jul-									
Dichlorodifluoromethane (F12)	ND	25	ug/m3	5	EG21706	17-Jul-12	17-Jul-12	EPA TO-15	
Chloromethane	ND	10	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	35	"	"	"	"	"	"	
Vinyl chloride	ND	13	"	"	"	"	"	"	
Bromomethane	ND	79	"	"	"	"	"	"	
Chloroethane	ND	40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	28	"	"	"	"	"	"	
Acetone	180	120	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	18	"	"	"	"	"	"	
Carbon disulfide	ND	32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	21	"	"	"	"	"	"	
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20	"	"	"	"	"	"	
Chloroform	ND	25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	28	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	21	"	"	"	"	"	"	
Benzene	92	16	"	"	"	"	"	"	
Carbon tetrachloride	ND	32	"	"	"	"	"	"	
Trichloroethene	ND	27	"	"	"	"	"	"	
1,2-Dichloropropane	ND	47	"	"	"	"	"	"	
Bromodichloromethane	ND	34	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
Toluene	49	19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	41	"	"	"	"	"	"	
Dibromochloromethane	ND	43	"	"	"	"	"	"	
Tetrachloroethene	7700	34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
Chlorobenzene	ND	23	"	"	"	"	"	"	
Ethylbenzene	ND	22	"	"	"	"	"	"	
m,p-Xylene	ND	44	"	"	"	"	"	"	
Styrene	ND	22	"	"	"	"	"	"	
Signate	שאו	22							

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Influent 1A (E207031-01) Vapor Sampled: 03-	-Jul-12 Receiv	ed: 11-Jul-12							
o-Xylene	ND	22	ug/m3	5	EG21706	17-Jul-12	17-Jul-12	EPA TO-15	
Bromoform	ND	52	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
4-Ethyltoluene	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		109 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		94.6 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	77-	127	"	"	"	"	
Inbetween 1B (E207031-02) Vapor Sampled:	3-Jul-12 Rece	ived: 11-Jul-1	2						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EG21706	17-Jul-12	17-Jul-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	190	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	34	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	260	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	,,	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Inbetween 1B (E207031-02) Vapor	Sampled: 03-Jul-12 Rece	ived: 11-Jul-	12						
Trichloroethene	ND	5.5	ug/m3	1	EG21706	17-Jul-12	17-Jul-12	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	7.2	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	24	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		94.1 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.3 %		-127	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Effluent 1C (E207031-03) Vapor Sampled: 03-Jul-	12 Receive	ed: 11-Jul-12							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EG21706	17-Jul-12	17-Jul-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	490	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	23	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	6.8	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	,,	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	17	6.9	"	"	"	"	,,	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	,,	"	"	"	"	
Chlorobenzene	ND	4.7	"	,,	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	,,	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
The state of the s	. 10								

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15

The Francisco George Market Strategy (1905)												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
Effluent 1C (E207031-03) Vapor	Sampled: 03-Jul-12 Received	d: 11-Jul-12										
o-Xylene	ND	4.4	ug/m3	1	EG21706	17-Jul-12	17-Jul-12	EPA TO-15				
Bromoform	ND	10	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"				
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"				
Hexachlorobutadiene	ND	11	"	"	"	"	"	"				
${\it Surrogate: 1,2-Dichloroethane-d4}$		109 %	76-	134	"	"	"	"				
Surrogate: Toluene-d8		92.7 %	78-	125	"	"	"	"				
${\it Surrogate: 4-Bromofluor obenzene}$		97.1 %	77-	127	"	"	"	"				

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Reported:
Project Manager: Mr. Ty Schreiner 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EG21706-BLK1)				Prepared & Analyzed: 17-Jul-12
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
inyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
richlorofluoromethane (F11)	ND	5.6	"	
cetone	ND	24	"	
1-Dichloroethene	ND	4.0	"	
1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
ethylene chloride (Dichloromethane)	ND	3.5	"	
arbon disulfide	ND	6.3	"	
uns-1,2-Dichloroethene	ND	8.0	"	
1-Dichloroethane	ND	4.1	"	
Butanone (MEK)	ND	30	"	
s-1,2-Dichloroethene	ND	4.0	"	
hloroform	ND	4.9	"	
1,1-Trichloroethane	ND	5.5	"	
2-Dichloroethane (EDC)	ND	4.1	"	
enzene	ND	3.2	"	
arbon tetrachloride	ND	6.4	"	
richloroethene	ND	5.5	"	
2-Dichloropropane	ND	9.4	"	
romodichloromethane	ND	6.8	"	
s-1,3-Dichloropropene	ND	4.6	"	
Methyl-2-pentanone (MIBK)	ND	8.3	"	
ans-1,3-Dichloropropene	ND	4.6	"	
oluene	ND	3.8	"	
1,2-Trichloroethane	ND	5.5	"	
-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
etrachloroethene	ND	6.9	"	
,2-Dibromoethane (EDB)	ND	7.8	"	
,1,1,2-Tetrachloroethane	ND	7.0	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner

Spike

Source

Reported: 23-Jul-12 11:19

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG21706 - TO-15										
Blank (EG21706-BLK1)				Prepared &	አ Analyzed:	17-Jul-12				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	223		"	214		104	76-134			
Surrogate: Toluene-d8	190		"	207		91.7	78-125			
Surrogate: 4-Bromofluorobenzene	364		"	364		99.9	77-127			
L CC (EC)170(BC1)				Prepared &	t Analyzed:	17-Jul-12				
LCS (EG21706-BS1) Dichlorodifluoromethane (F12)	130	5.0	ug/m3	101	• 1 IIIui j 20u.	125	65-135		35	
Vinyl chloride	56	2.6	ug/1113	52.0		108	65-135		35	
Chloroethane	64	8.0	,,	53.6		120	65-135		35	
Trichlorofluoromethane (F11)	160	5.6	,,	113		143	65-135		35	QL-1H
1,1-Dichloroethene	77	4.0	"	80.8		95.5	65-135		35	QL-11
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	"	155		107	65-135		35	
Methylene chloride (Dichloromethane)	61	3.5	,,	70.8		86.6	65-135		35	
trans-1,2-Dichloroethene	67	8.0	,,	80.8		83.1	65-135		35	
1,1-Dichloroethane	75	4.1	,,	82.4		90.8	65-135		35	
cis-1,2-Dichloroethene	68	4.1	,,	80.0		84.8	65-135		35	
Chloroform	110	4.0 4.9	,,	99.2		109	65-135		35	
1,1,1-Trichloroethane	130	4.9 5.5	,,	99.2 111		109	65-135		35	
			,,	82.4		114			35	
1,2-Dichloroethane (EDC)	91	4.1		82.4		111	65-135		33	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA

Project Manager: Mr. Ty Schreiner

Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG21706 - TO-15										
LCS (EG21706-BS1)				Prepared &	t Analyzed:	17-Jul-12				
Benzene	51	3.2	ug/m3	64.8		79.1	65-135		35	
Carbon tetrachloride	170	6.4	"	128		135	65-135		35	
Trichloroethene	120	5.5	"	110		107	65-135		35	
Toluene	67	3.8	"	76.8		87.6	65-135		35	
1,1,2-Trichloroethane	100	5.5	"	111		90.0	65-135		35	
Tetrachloroethene	150	6.9	"	138		108	65-135		35	
1,1,1,2-Tetrachloroethane	180	7.0	"	140		132	65-135		35	
Ethylbenzene	87	4.4	"	88.4		98.9	65-135		35	
m,p-Xylene	190	8.8	"	177		106	65-135		35	
o-Xylene	96	4.4	"	88.4		109	65-135		35	
1,1,2,2-Tetrachloroethane	150	7.0	"	140		105	65-135		35	
Surrogate: 1,2-Dichloroethane-d4	239		"	214		112	76-134			
Surrogate: Toluene-d8	197		"	207		95.2	78-125			
Surrogate: 4-Bromofluorobenzene	396		"	364		109	77-127			
LCS Dup (EG21706-BSD1)				•	k Analyzed:					
Dichlorodifluoromethane (F12)	130	5.0	ug/m3	101		131	65-135	4.73	35	
Vinyl chloride	59	2.6	"	52.0		114	65-135	4.67	35	
Chloroethane	66	8.0	"	53.6		124	65-135	2.94	35	
Trichlorofluoromethane (F11)	170	5.6	"	113		147	65-135	2.44	35	QL-1
1,1-Dichloroethene	98	4.0	"	80.8		121	65-135	23.9	35	
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	"	155		112	65-135	4.65	35	
Methylene chloride (Dichloromethane)	69	3.5	"	70.8		97.7	65-135	12.1	35	
trans-1,2-Dichloroethene	71	8.0	"	80.8		88.0	65-135	5.76	35	
1,1-Dichloroethane	78	4.1	"	82.4		95.2	65-135	4.71	35	
cis-1,2-Dichloroethene	72	4.0	"	80.0		90.5	65-135	6.54	35	
Chloroform	110	4.9	"	99.2		108	65-135	1.15	35	
1,1,1-Trichloroethane	130	5.5	"	111		116	65-135	1.16	35	
1,2-Dichloroethane (EDC)	93	4.1	"	82.4		112	65-135	1.25	35	
Benzene	53	3.2	"	64.8		81.8	65-135	3.35	35	
Carbon tetrachloride	170	6.4	"	128		134	65-135	0.297	35	
Trichloroethene	110	5.5	"	110		104	65-135	2.17	35	
Toluene	67	3.8	"	76.8		87.8	65-135	0.283	35	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA Project Manager: Mr. Ty Schreiner Reported: 23-Jul-12 11:19

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG21706 - TO-15										
LCS Dup (EG21706-BSD1)				Prepared &	Analyzed:	17-Jul-12				
1,1,2-Trichloroethane	99	5.5	ug/m3	111		88.9	65-135	1.16	35	
Tetrachloroethene	150	6.9	"	138		109	65-135	0.413	35	
1,1,1,2-Tetrachloroethane	180	7.0	"	140		126	65-135	4.17	35	
Ethylbenzene	87	4.4	"	88.4		97.9	65-135	1.01	35	
m,p-Xylene	190	8.8	"	177		106	65-135	0.212	35	
o-Xylene	95	4.4	"	88.4		108	65-135	0.643	35	
1,1,2,2-Tetrachloroethane	140	7.0	"	140		102	65-135	3.75	35	
Surrogate: 1,2-Dichloroethane-d4	240		"	214		112	76-134			
Surrogate: Toluene-d8	194		"	207		93.7	78-125			
Surrogate: 4-Bromofluorobenzene	391		"	364		107	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00 / Yakima, WA Reported:
Federal Way, WA 98001 Project Manager: Mr. Ty Schreiner 23-Jul-12 11:19

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ071112-10

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00 / Yakima, WA Reported: Federal Way, WA 98001 Project Manager: Mr. Ty Schreiner 23-Jul-12 11:19

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A

1,2,4-Trimethylbenzene by EPA TO -14A

1,2-Dichlorobenzene by EPA TO-15 & TO-14A

1,3,5-Trimethylbenzene by EPA TO -14A

1,4-Dichlorobenzene by EPA TO-15 & TO-14A

Benzene by EPA TO-15 & TO-14A

Chlorobenzene by EPA TO-15 & TO-14A

Ethyl benzene by EPA TO-15 & TO-14A

Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A

Total Xylenes by EPA TO-15 & TO-14A

1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A

1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A

1,2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A

Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15

Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A Chloroethane by EPA TO-15

Chloroform by EPA TO-15 & TO-14A

Chloromethane by EPA TO-15 & TO-14A

cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A

Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A

trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A Vinyl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15

4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15

Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15

Dichlorodifluoromethane by EPA TO-15 & TO-14A

Trichlorofluoromethane by EPA TO-15 & TO-14A Nanhthalene by EPA TO-15 & TO-14A

m&p Xylenes by EPA TO-15

o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15

1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A

Carbon disulfide by EPA TO-15 1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15

tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15

Bromodichloromethane by EPA TO-15 & TO-14A

Mobile Geochemistry Inc.

Chain of Custody Record

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159 1855 Coronado Ave., Signal Hill, CA 90755 • ph 800,834.9888

	Date: 1-:	3-12
(MR	H&P Project #	KJ071112-10
0	Outside Lab:	

Address: 32001 Federal Email: Ty Schre	Way, WA	9800 nedy J.	, s-	- com	LC PI	ient Project # .	Y 53	1191 aki	na 640	6.0 W	A Fax			_	F	Project	Conta	around	3 8	scho 35	60 bando	+25	8
Geotracker EDF: Yes 🗆 No Global ID: Excel EDD: Yes 🕱 No	×		Sample Intact: Seal Inte	e Receipt Yes N oct: Yes Yes No rature: V	O NO NO N				BTEX/OXY TPH gas	□ d □ ext	(3)	X 10-15	☐T0-15	SAM A SAM B	□T0-15	☐T0-15	☐T0-15	☐T0-15	☐ 8260B ☐TO-15	□1,1 DFA □ OTHER		02 🗆 N2	
Special Instructions: UPS TRACE Z 43 ** SUMMA TIMES ARE ALL COL PER JARED FISHE 7/16/12 -> KJ REVISED Lab Work Order # E20 7	17xx, BUT WILL B FR, 7/11/12 (SB) ORDER TO BE FO	20 16 ECERPE	56	** (CC VEN OI OISXX	NEWYUN	L PEPORT	of containers	8260B Full List	8260B BTEX/O	B015M TPH □ g □	418.1 TRPH SECNOTE!	VOC'S: Full List X 82608	VOC's: Short List/DTSC 8260B	/OC's: SAM, 8260B SA	Naphthalene 🔲 82608	Oxygenates 🗌 8260B	TPHv gas 🔲 8260B	Ketones 🗌 82608		Leak Check Compound 1,	Methane	Fixed Gases CO2	CANE
Sample Name	Field Point Name	Purge Vol	** Time	Date	Sample Type	Container Type	Total # a	826	826	-	418	9	9			_			Other		Met	Fixe	
Influent 1A	NA	0	-	7-3-R		1	1		0011			X	T	Ť	OIL V	AI U	VAII	AIN	ETOI				244-
Inbetween 1B		0	1	100		SUMA	V					X											307-
						SUMA	1					1											579-
Effluent IC	NA	0	1313	73/16								X											
	NA	0	7313	73[1]								X											
Effluent 1C			(company)									X			(compar	ny)		Date:			Tio	10:	
Effluent 1C	NA Da		(company)		Received by	: (Signature)	>					X			(compar	0		Date:	11/13	2	Tin &	ne:	5

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ080112-13

Client Project: 1196016.00 / Yakima, WA

Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 01-Aug-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary

ganis Villarreal

- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely.

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100

Project Number: 1196016.00 / Yakima, WA

Federal Way, WA 98001 Project Manager: Mr. Josh Hopp

Reported: 13-Aug-12 14:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FW-Influent-001	E208009-01	Vapor	30-Jul-12	01-Aug-12
FW-Inbtwn-070	E208009-02	Vapor	30-Jul-12	01-Aug-12
FW-effluent	E208009-03	Vapor	30-Jul-12	01-Aug-12

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-001 (E208009-01) Vapor	Sampled: 30-Jul-12	Received: 01-A	Aug-12						
Dichlorodifluoromethane (F12)	6.6	5.0	ug/m3	1	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
Chloromethane	6.3	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	280	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	7.5	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	9.6	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	66	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	66	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	260	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	8.7	4.4	"	"	"	"	"	"	
m,p-Xylene	35	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
-		_							

Reported:

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100

Project Number: 1196016.00 / Yakima, WA

Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-001 (E208009-01) Vapor	Sampled: 30-Jul-12	Received: 01-A	ug-12						
o-Xylene	11	4.4	ug/m3	1	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	12	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		110 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	77-1		"	"	"	"	
FW-Inbtwn-070 (E208009-02) Vapor	Sampled: 30-Jul-12	Received: 01-A	ng 12						
1 W-1110tw11-070 (E200003-02) Vapor	sumpreures our 12	Received. 01-A	ug-12						
Dichlorodifluoromethane (F12)	14	5.0	ug/m3	1	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
	-			1 "	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
Dichlorodifluoromethane (F12)	14	5.0	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane	14 ND	5.0 2.1	ug/m3	"	"	"		"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	14 ND ND	5.0 2.1 7.1	ug/m3	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	14 ND ND ND	5.0 2.1 7.1 2.6	ug/m3	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	14 ND ND ND ND	5.0 2.1 7.1 2.6 16	ug/m3	"	" "	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	14 ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0	ug/m3	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	14 ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6	ug/m3	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	14 ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24	ug/m3	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	14 ND ND ND ND ND ND ND 940 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0	ug/m3	"	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	14 ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7	ug/m3	"	" " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11	" " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	14 ND ND ND ND ND 940 ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5	ug/m3	" " " " " " " " "	" " " " " " " " " " " " "	"		" " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	14 ND ND ND ND ND 940 ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3	ug/m3	" " " " " " " " "				" " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	14 ND ND ND ND ND 940 ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0	ug/m3	" " " " " " " " "				" " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	14 ND ND ND ND ND 940 ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3	" " " " " " " " "				" " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	14 ND ND ND ND ND 940 ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	14 ND ND ND ND ND 940 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	14 ND ND ND ND ND 940 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	14 ND ND ND ND ND 940 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	ug/m3						

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100

Project Number: 1196016.00 / Yakima, WA

Federal Way, WA 98001 Project Manager: Mr. Josh Hopp

Reported: 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Inbtwn-070 (E208009-02) Vapor	Sampled: 30-Jul-12	Received: 01-Au	ug-12						
Trichloroethene	ND	5.5	ug/m3	1	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	8.4	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
				·					
Surrogate: 1,2-Dichloroethane-d4		111 %	76-1		"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6 %	77-1	27	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100

Project Number: 1196016.00 / Yakima, WA

Federal Way, WA 98001 Project Manager: Mr. Josh Hopp

Reported: 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15

Austra	Result	Reporting	II	Dilution	D-4-1	D 1	A1 1	Made 1	Notes
Analyte	Resuit	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	notes
FW-effluent (E208009-03) Vapor Sampled:	30-Jul-12 Receiv	ed: 01-Aug-1	2						
Dichlorodifluoromethane (F12)	5.6	5.0	ug/m3	1	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	1300	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	37	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	17	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
•									

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100

Project Number: 1196016.00 / Yakima, WA

Federal Way, WA 98001 Project Manager: Mr. Josh Hopp

Reported: 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-effluent (E208009-03) Vapor	Sampled: 30-Jul-12 Receiv	ed: 01-Aug-1	2						
o-Xylene	ND	4.4	ug/m3	1	EH20502	05-Aug-12	06-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		110 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		106 %	78-	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.1 %		-127	"	"	"	"	

Reported:

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA

Project Manager: Mr. Josh Hopp 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EH20502-BLK1)				Prepared & Analyzed: 05-Aug-12
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
Acetone	ND	24	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 / Yakima, WA

Spike

Source

Project Manager: Mr. Josh Hopp

Reporting

Reported: 13-Aug-12 14:50

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH20502 - TO-15										
Blank (EH20502-BLK1)				Prepared &	ኔ Analyzed:	05-Aug-12	2			
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	232		"	214		108	76-134			
Surrogate: Toluene-d8	209		"	207		101	78-125			
Surrogate: 4-Bromofluorobenzene	371		"	364		102	77-127			
LCS (EH20502-BS1)				Prepared: (05-Aug-12	Analyzed: ()6-Aug-12			
Dichlorodifluoromethane (F12)	120	5.0	ug/m3	101		118	65-135		35	
Vinyl chloride	72	2.6	"	52.0		138	65-135		35	QL-1
Chloroethane	90	8.0	"	53.6		168	65-135		35	QL-1
Trichlorofluoromethane (F11)	140	5.6	"	113		124	65-135		35	ζ
1,1-Dichloroethene	86	4.0	"	80.8		106	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	155		101	65-135		35	
Methylene chloride (Dichloromethane)	70	3.5	"	70.8		99.2	65-135		35	
trans-1,2-Dichloroethene	79	8.0	"	80.8		97.7	65-135		35	
1,1-Dichloroethane	81	4.1	"	82.4		98.5	65-135		35	
cis-1,2-Dichloroethene	80	4.0	"	80.0		100	65-135		35	
Chloroform	100	4.9	"	99.2		105	65-135		35	
1,1,1-Trichloroethane	120	5.5	"	111		105	65-135		35	
1,2-Dichloroethane (EDC)	88	4.1	"	82.4		106	65-135		35	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ080112-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

Project Number: 1196016.00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 13-Aug-12 14:50

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH20502 - TO-15										
LCS (EH20502-BS1)				Prepared: ()5-Aug-12 A	Analyzed: 0	06-Aug-12			
Benzene	68	3.2	ug/m3	64.8		104	65-135		35	
Carbon tetrachloride	140	6.4	"	128		108	65-135		35	
Trichloroethene	120	5.5	"	110		107	65-135		35	
Toluene	76	3.8	"	76.8		99.1	65-135		35	
1,1,2-Trichloroethane	100	5.5	"	111		91.9	65-135		35	
Tetrachloroethene	130	6.9	"	138		93.3	65-135		35	
1,1,1,2-Tetrachloroethane	140	7.0	"	140		96.7	65-135		35	
Ethylbenzene	94	4.4	"	88.4		106	65-135		35	
m,p-Xylene	190	8.8	"	177		108	65-135		35	
o-Xylene	96	4.4	"	88.4		109	65-135		35	
1,1,2,2-Tetrachloroethane	140	7.0	"	140		101	65-135		35	
Surrogate: 1,2-Dichloroethane-d4	230		"	214		107	76-134			
Surrogate: Toluene-d8	216		"	207		104	78-125			
Surrogate: 4-Bromofluorobenzene	359		"	364		98.5	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ080112-13

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00 / Yakima, WA Reported:
Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 13-Aug-12 14:50

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ080112-13

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00 / Yakima, WA Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 13-Aug-12 14:50

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A

1,2,4-Trimethylbenzene by EPA TO -14A

1,2-Dichlorobenzene by EPA TO-15 & TO-14A

1,3,5-Trimethylbenzene by EPA TO -14A

1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A

Chlorobenzene by EPA TO-15 & TO-14A

Ethyl benzene by EPA TO-15 & TO-14A

Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A

Total Xylenes by EPA TO-15 & TO-14A

1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A

1,1,2-Trichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A 1,2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A

Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15

Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15

Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A

cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A

Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A

trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinyl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15

Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15

Dichlorodifluoromethane by EPA TO-15 & TO-14A

Trichlorofluoromethane by EPA TO-15 & TO-14A

Nanhthalene by EPA TO-15 & TO-14A m&p Xylenes by EPA TO-15

o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15

1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A

Carbon disulfide by EPA TO-15 1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15

tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15

Bromodichloromethane by EPA TO-15 & TO-14A

Page 12 of 12

Chain of Custody Record

Date: 5uly 30, 2012
WA H&P Project # 16507612 - Mc
Outside Lab: KJ080112-13

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

Global ID: Seal Cold: Tem	nple Receipt t: Yes No Inlact: Yes No : Yes No perature:	N/A	3.8				1	_				Touris	around	1111101				
Special Instructions: UPS # 1793 T TOL 87	1882 57	TA-			BTEX/OXY TPH gas	g		VOC's: Full List	□ SAM A □ SAM B	☐ 8260B ☐ T0-15	☐ 8260B ☐ TO-15	☐ 8260B ☐ TO-15	☐ 8260B ☐ TO-15	☐ 8260B ☐TO-15	Leak Check Compound 1,1 DFA 0THER			
Lab Work Order # E20 8009.		male Container	al # of containers	8260B Full List	8260B 🗆 B	8015M TPH	1	VOC's: Full List VOC's: Short List/DTSC	VOC's: SAM, 8260B	Naphthalene	Oxygenates	TPHv gas	Ketones	Other	Leak Check Compound	Methane Fixed Gases CO2	1.	Vacaum
Sample Name Field Point Name Vol Time	e Date Ty	nple Container /pe Type	Total		SOIL/	GW	\perp		S	OIL V	/APO	R/AIR	ANA	LYSIS	5		1	1
FW-influent-001 NA 15:1	5 7/50/12 90	as Sunna	1		4	4	13	1								-	1	-2
FWI - in bywn 070 5:2 FWI - effluent 15:3			1					-									76	-4,
							1											
Relinquished by: (Signature) Relinquished by: (Signature) (compan	Received Programme Program	ved by: (Signature)	Jul	arr	ea	1	1		#	(compar	P		Date:	1/1	2_	Time:	00	
Relinquished by: (Signature) (compan		ved by: (Signature)								(compar		-	Date:			Time:		

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ081612-14

Client Project: 1196016.00 Task 8 / Yakima, WA

Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 16-Aug-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary

ganis Villarreal

- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely.

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FW-Influent-323	E208062-01	Vapor	13-Aug-12	16-Aug-12
FW-Inbtwn-219	E208062-02	Vapor	13-Aug-12	16-Aug-12
FW-Effluent-217	E208062-03	Vapor	13-Aug-12	16-Aug-12
BMS-SS-1-081312	E208062-04	Vapor	13-Aug-12	16-Aug-12
BMS-SS-4-081312	E208062-05	Vapor	13-Aug-12	16-Aug-12

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Soil Gas and Vapor Analysis

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-1-081312 (E208062-04) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Helium (LCC)	0.8	0.1	%	1	EH21703	17-Aug-12	17-Aug-12	ASTM D1945M	
BMS-SS-4-081312 (E208062-05) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Helium (LCC)	1.8	0.1	%	1	EH21703	17-Aug-12	17-Aug-12	ASTM D1945M	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	Liiiit	Units	Factor	Daten	riepaieu	Allalyzeu	Method	rotes
FW-Influent-323 (E208062-01) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	66	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	5.9	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	32	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	29	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	110	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND ND	8.8	"	"	"	"	"	"	
Styrene	ND ND	4.3	"	"	"	"	"	"	
~-,	110	7.0							

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

001 Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-323 (E208062-01) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
o-Xylene	ND	4.4	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		102 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-		"	"	"	"	
FW-Inbtwn-219 (E208062-02) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Dichlorodifluoromethane (F12)	12	5.0	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	1200	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	33	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	370	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Inbtwn-219 (E208062-02) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Trichloroethene	ND	5.5	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	4.4	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.0 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	77-		"	"	"	"	
Surroguie. 4-Bromojiuorovenzene		20.7 /0	//-	14/					

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-217 (E208062-03) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
Dichlorodifluoromethane (F12)	8.8	5.0	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	350	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	84	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	ND	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Pararting Diluting													
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
FW-Effluent-217 (E208062-03) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12										
o-Xylene	ND	4.4	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15					
Bromoform	ND	10	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"					
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"					
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"					
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"					
Hexachlorobutadiene	ND	11	"	"	"	II .	"	"					
Surrogate: 1,2-Dichloroethane-d4		98.3 %	76-	134	"	"	"	"					
Surrogate: Toluene-d8		103 %	78-		"	"	"	"					
Surrogate: 4-Bromofluorobenzene		109 %	77-		"	"	"	"					
BMS-SS-1-081312 (E208062-04) Vapor	Sampled: 13-Aug-12	Received: 16	-Aug-12										
Dichlorodifluoromethane (F12)	ND	2.0	ug/m3	2	EH22003	20-Aug-12	20-Aug-12	EPA TO-15					
Chloromethane	ND	0.41	"	"	"	"	"	"					
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"					
Vinyl chloride	ND	0.26	"	"	"	"	"	"					
Bromomethane	ND	0.79	"	"	"	"	"	"					
Chloroethane	ND	0.54	"	"	"	"	"	"					
Trichlorofluoromethane (F11)	1.4	1.1	"	"	"	"	"	"					
Acetone	5.4	2.4	"	"	"	"	"	"					
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"					
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"					
Methylene chloride (Dichloromethane)	0.97	0.71	"	"	"	"	"	"					
Carbon disulfide	ND	0.63	"	"	"	"	"	"					
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"					
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"					
2-Butanone (MEK)	2.7	1.2	"	"	"	"	"	"					
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"					
Chloroform	ND	0.49	"	"	"	"	"	"					
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"					
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"					
Benzene	0.47	0.32	"	"	"	"	"	"					
Carbon tetrachloride	ND	0.64	"	"	"	"	"	"					

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	1.1 0.94 1.4 0.92 1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88 0.88	-Aug-12 ug/m3 " " " " " " " " " " " " " "	2 " " " " " " " " " " " " " " " " " " "	EH22003	20-Aug-12	20-Aug-12 " " " " " " " " " " " "	EPA TO-15	
1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	0.94 1.4 0.92 1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88		60 2				11 11 11 11 11 11 11 11 11 11 11	
Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromochane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	1.4 0.92 1.7 0.92 1.5 1.1 1.7 41 1.6 1.4 0.94 0.88		60				11 11 11 11 11 11 11 11 11 11 11 11 11	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0. 0-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	0.92 1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88		60 2		"		11 11 11 11 11 11 11 11 11 11 11 11 11	
4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromochlane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D .7	1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88		60 2	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0. o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane N N N N N N N N N N N N N N N N N N N	D .7 .7	0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88	"""""""""""""""""""""""""""""""""""""""	60 2	n n n	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane N N N N N N N N N N N N N N N N N N N	.7 D D D 50 D D D	1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88	" " " " " " " " " " " " " " " " " " " "	60 2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromochtane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0. O-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D 50 D D D	1.1 1.7 1.7 41 1.6 1.4 0.94 0.88	" " " " " " "	60 2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	50 D D D D	1.7 1.7 41 1.6 1.4 0.94 0.88	" " " " " " " " " " " " " " " " " " " "	60 2 "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " "	" " " " " " " " " " " " " " " " " " " "	
Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D 50 D D D	1.7 41 1.6 1.4 0.94 0.88	" " " " " " " " " " " " " " " " " " " "	60 2 "	" " "	" " "	" "	" "	
Tetrachloroethene 4 1,2-Dibromoethane (EDB) N 1,1,1,2-Tetrachloroethane N Chlorobenzene N Ethylbenzene N m,p-Xylene 2 Styrene 0 o-Xylene N Bromoform N 1,1,2,2-Tetrachloroethane N 4-Ethyltoluene N 1,3,5-Trimethylbenzene N 1,2,4-Trimethylbenzene 3	50 D D D D	41 1.6 1.4 0.94 0.88	" " "	60 2 "	"	"	"	"	
1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D	1.6 1.4 0.94 0.88	" "	2	"	"	"	"	
1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D	1.4 0.94 0.88	"	"	"	"			
Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D	0.94 0.88	"	"			"	"	
Ethylbenzene m,p-Xylene Styrene 0. o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D	0.88	"		"	"			
m,p-Xylene Styrene 0. o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene				"			"	"	
Styrene 0. o-Xylene 1 Bromoform N 1,1,2,2-Tetrachloroethane N 4-Ethyltoluene N 1,3,5-Trimethylbenzene N 1,2,4-Trimethylbenzene 3	_	ስ ልል			"	"	"	"	
o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	.8	0.00		"	"	"	"	"	
Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 3	99	0.86	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	.1	0.88	"	"	"	"	"	"	
4-Ethyltoluene N. 1,3,5-Trimethylbenzene N. 1,2,4-Trimethylbenzene 3	D	2.1	"	"	"	"	"	"	
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 3	D	1.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	D	1.0	"	"	"	"	"	"	
•	D	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	.3	1.0	"	"	"	"	"	"	
	D	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	D	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	D	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	D	1.5	"	"	"	"	"	"	
Hexachlorobutadiene N	D	4.3	"	"	"	"	II .	"	
Surrogate: 1,2-Dichloroethane-d4		100 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		100 %		125	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %		140			"		

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-4-081312 (E208062-05) Vapor	Sampled: 13-Aug-12	Received: 16	5-Aug-12						
Dichlorodifluoromethane (F12)	ND	2.0	ug/m3	2	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	1.1	"	"	"	"	"	"	
Acetone	11	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	6200	35	"	100	"	"	"	"	
Carbon disulfide	ND	0.63	"	2	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	1.8	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	1.4	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	0.60	0.32	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	"	"	"	"	"	"	
Trichloroethene	ND	1.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	5.7	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	110	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	1.3	0.88	"	"	"	"	"	"	
m,p-Xylene	5.8	0.88	"	"	"	"	"	"	
Styrene	ND	0.86	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-4-081312 (E208062-05) Vapor	Sampled: 13-Aug-12	Received: 16	-Aug-12						
o-Xylene	1.8	0.88	ug/m3	2	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Bromoform	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	3.0	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.3	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		96.2 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Soil Gas and Vapor Analysis - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH21703 - GC

 Blank (EH21703-BLK1)
 Prepared & Analyzed: 17-Aug-12

 Helium (LCC)
 ND
 0.1
 %

Reported:

23-Aug-12 15:00

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA Project Manager: Mr. Josh Hopp

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH22003 - TO-15				
Blank (EH22003-BLK1)				Prepared & Analyzed: 20-Aug-12
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Trichlorofluoromethane (F11)	ND	0.56	"	
Acetone	ND	1.2	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
trans-1,2-Dichloroethene	ND	0.40	"	
1,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
1,1,1-Trichloroethane	ND	0.55	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	
Benzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
Trichloroethene	ND	0.55	"	
1,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
cis-1,3-Dichloropropene	ND	0.46	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	
trans-1,3-Dichloropropene	ND	0.46	"	
Toluene	ND	0.76	"	
1,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	0.86	"	
Tetrachloroethene	ND	0.69	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Spike

Source

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH22003 - TO-15										
Blank (EH22003-BLK1)				Prepared &	Analyzed:	20-Aug-12				
Chlorobenzene	ND	0.47	ug/m3							
Ethylbenzene	ND	0.44	"							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
,4-Dichlorobenzene	ND	0.61	"							
,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	0.75	"							
Hexachlorobutadiene	ND	2.1	"							
Surrogate: 1,2-Dichloroethane-d4	215		"	214		100	76-134			
Surrogate: Toluene-d8	212		"	207		103	78-125			
Surrogate: 4-Bromofluorobenzene	380		"	364		104	77-127			
L CS (E1122002 DS1)				Prepared &	Analyzed:	20-Aug-12				
LCS (EH22003-BS1) Dichlorodifluoromethane (F12)	9.1	1.0	ug/m3	10.1	· · · · · · · · · · · · · · · · · · ·	90.7	65-135		35	
Vinyl chloride	5.6	0.13	"	5.20		108	65-135		35	
Chloroethane	5.0 5.1	0.13	"	5.36		94.8	65-135		35	
Frichlorofluoromethane (F11)	12	0.56	"	11.3		106	65-135		35	
1,1-Dichloroethene	8.3	0.40	"	8.08		103	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	17	1.5	"	15.5		112	65-135		35	
Methylene chloride (Dichloromethane)	6.7	0.35	"	7.08		94.6	65-135		35	
rans-1,2-Dichloroethene	8.3	0.40	"	8.08		103	65-135		35	
,1-Dichloroethane	8.7	0.40	"	8.24		106	65-135		35	
cis-1,2-Dichloroethene	7.4	0.40	"	8.00		92.0	65-135		35	
Chloroform	9.8	0.40	"	9.92		99.1	65-135		35	
1,1,1-Trichloroethane	11	0.55	"	11.1		97.8	65-135		35	
-,-,	1 1	0.00				27.0	00 100		55	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH22003 - TO-15										
LCS (EH22003-BS1)				Prepared &	Analyzed:	20-Aug-12	!			
Benzene	6.3	0.16	ug/m3	6.48		97.1	65-135		35	
Carbon tetrachloride	13	0.32	"	12.8		104	65-135		35	
Trichloroethene	11	0.55	"	11.0		96.4	65-135		35	
Toluene	7.1	0.76	"	7.68		92.6	65-135		35	
1,1,2-Trichloroethane	10	0.55	"	11.1		92.2	65-135		35	
Tetrachloroethene	13	0.69	"	13.8		90.9	65-135		35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		92.4	65-135		35	
Ethylbenzene	8.8	0.44	"	8.84		100	65-135		35	
m,p-Xylene	19	0.44	"	17.7		106	65-135		35	
o-Xylene	9.4	0.44	"	8.84		107	65-135		35	
1,1,2,2-Tetrachloroethane	14	0.70	"	14.0		102	65-135		35	
Surrogate: 1,2-Dichloroethane-d4	223		"	214		104	76-134			
Surrogate: Toluene-d8	199		"	207		96.2	78-125			
Surrogate: 4-Bromofluorobenzene	424		"	364		116	77-127			
L CC D (E1122002 BCD4)				Prepared &	z Analyzed:	20-Aug-12	,			
LCS Dup (EH22003-BSD1) Dichlorodifluoromethane (F12)	8.7	1.0	11a/m²	10.1	. maryzea.	86.3	65-135	4.95	35	
Vinyl chloride	8.7 5.8	0.13	ug/m3	5.20		112	65-135	3.49	35	
Chloroethane	5.8 5.6	0.13	"	5.36		104	65-135	9.43	35	
Trichlorofluoromethane (F11)			"	11.3		104	65-135	3.16	35	
1,1-Dichloroethene	12	0.56	"	8.08		99.1	65-135	3.36	35	
1,1,2-Trichlorotrifluoroethane (F113)	8.0	0.40 1.5	,,	15.5		108	65-135	3.36	35	
Methylene chloride (Dichloromethane)	17 6.4	0.35	"	7.08		90.7	65-135	3.75 4.14	35	
trans-1,2-Dichloroethene	6. 4 8.1	0.35	"	7.08 8.08		101	65-135	1.96	35	
1,1-Dichloroethane	_		"	8.08 8.24		101	65-135	3.54	35	
cis-1,2-Dichloroethene	8.4 7.2	0.41 0.40	"	8.24		89.5	65-135	2.72	35	
Chloroform	7.2 9.8	0.40	"	9.92		89.5 98.6	65-135	0.554	35	
1,1,1-Trichloroethane			"	9.92		98.6 97.0	65-135	0.815	35	
	11	0.55	"	8.24		95.9		2.21		
1,2-Dichloroethane (EDC) Benzene	7.9	0.41	"	8.24 6.48		95.9 92.6	65-135 65-135	4.69	35 35	
Carbon tetrachloride	6.0	0.16	"	12.8		92.6 97.5		6.39	35	
	12	0.32	"				65-135			
Trichloroethene	11	0.55	,,	11.0		98.1	65-135	1.74	35	
Toluene	7.3	0.76		7.68		95.6	65-135	3.22	35	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH22003 - TO-15										
LCS Dup (EH22003-BSD1)				Prepared &	Analyzed:	20-Aug-12	!			
1,1,2-Trichloroethane	10	0.55	ug/m3	11.1		92.7	65-135	0.537	35	
Tetrachloroethene	13	0.69	"	13.8		91.7	65-135	0.872	35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		94.6	65-135	2.34	35	
Ethylbenzene	9.0	0.44	"	8.84		102	65-135	2.02	35	
m,p-Xylene	19	0.44	"	17.7		106	65-135	0.774	35	
o-Xylene	9.4	0.44	"	8.84		107	65-135	0.140	35	
1,1,2,2-Tetrachloroethane	15	0.70	"	14.0		104	65-135	1.99	35	
Surrogate: 1,2-Dichloroethane-d4	215		"	214		101	76-134			
Surrogate: Toluene-d8	202		"	207		97.6	78-125			
Surrogate: 4-Bromofluorobenzene	406		"	364		111	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00 Task 8 / Yakima, WA Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 23-Aug-12 15:00

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

drv Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A 1,2,4-Trimethylbenzene by EPA TO -14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A 1.3.5-Trimethylbenzene by EPA TO -14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A

Total Xylenes by EPA TO-15 & TO-14A 1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethene by EPA TO-15 & TO-14A 1.2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15 Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinvl chloride by EPA TO -15 & TO-14A 2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15 Methyl tert-butyl ether by EPA TO-15

Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15 Dichlorodifluoromethane by EPA TO-15 & TO-14A Trichlorofluoromethane by EPA TO-15 & TO-14A Naphthalene by EPA TO-15 & TO-14A m&p Xylenes by EPA TO-15 o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15 1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A Carbon disulfide by EPA TO-15

Cyclohexane by EPA TO-15 tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15 Bromodichloromethane by EPA TO-15 & TO-14A

1,4-Dioxane by EPA TO-15

Mobile Geochemistry

Chain of Custody Record

Date:	8-13-12	
WYH&P Project #	KJ081612-14	
Outside Lab		

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159 1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888 Kennedy/Jenks Consultants 32001 322 Ave 5, Suite 100 Collector: Jason Shira - Ecology Client Project # 1960 16.00 Task 8 josh toppe Kennedy Lenks. com/ty Schreiner @ Kennedyjenks.comphone: 253-835-6408 Turn around time: Geotracker EDF: Yes □ No X Sample Receipt ☐ 8260B ☐ TO-15 BTEX/OXY | TPH gas Intact: Ves \ No ☐ 8260B ☐ TO-15 ☐ 8260B ☐ TO-15 8260B | TO-15 Global ID: Seal Intact: Yes No N/A Cold: ☐ Yes ☐ No ☐ N/A Yes No □ Excel EDD: Temperature: pt Special Instructions: UPS TRACKET (Z 95 TG1 87 4668 4644 eak Check Compound /OC's: SAM, 8260B VOC's: Full List Naphthalene Oxygenates 8015M TPH Lab Work Order # E20 8062 Sample Container Sample Name Field Point Name SOIL/GW SOIL VAPOR/AIR ANALYSIS Date Type Type Time FW-Influent-323 VADOV 400ml stren 8-13-12 FW-Inblun-219 FW- Effluent-217 Received by: (Signature) (company) Received by: (Signature) (company) Relinquished by: (Signature)

*Signature constitutes authorization to proceed with analysis and acceptance of condition on back

Sample disposal instruction:

Disposol

Return to client

Pickup

Chain of Custody Record

Date: 8-13-12
WA H&P Project # KJOS/6(2-14

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

Client: Vennedy Jer Address: 3200 3249 Federal Wa Email: Jost Hopp @ Kenne Geotracker EDF: Yes No f Global ID: Yes & No f	ity Jenks ·lom	Ty Schr	Sample Intact-	Receipt Yes No	ents app		15W 3-8	35-	BTEX/OXY TPH gas	g D ext	_ Fax		□T0-15	SAM B	.0-15		-	TO-15	time:	Sales Sales		Nard DN2		
Special Instructions: Lab Work Order # _E2080			Temper	ature:p	1		Total # of containers	8260B Full List		8015M TPH □ g □ c	418.1 TRPH	VOC's: Full List 8260B	VOC's: Short List/DTSC 8260B	VOC'S: SAM, 8260B SAM A	Naphthalene 3260B	Oxygenates 38260B		Ketones 🔲 8260B	er 🔲 8260B	Leak Check Compound 11,1 DFA	Methane	Fixed Gases CO2 CO2	CANH	(/ACH
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total # c	826	SOIL 826	-	418	00/	9			δ APO			Other		Met	Fixe		
BMS-SS-1-081312	ried roini (dune	250m	1308	8-13-12		6 L Sum	-		JOIL	7011		X			OIL (AI O	MIN	AINA	LIJI	X			289	-5.0
BMS-SS-4-081312		1000ml	1200	1	1	1	1					X								X			329	
Relinquished by: (Signature)		Kenn	(company)	ents	Received by:										(compa	ny)		Date:	14	112	Tin	ne: 09	30	
Relinquished by: (Signature)		157011	(combahy)		Received by:	(Signature)	5								(compa	ny)		Date:	161	/2				

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ083012-10

Client Project: Frank Wear Day Care

Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 30-Aug-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project: KJ083012-10

Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FW-Influent-067	E208099-01	Vapor	28-Aug-12	30-Aug-12
FW-Inbtwn-219	E208099-02	Vapor	28-Aug-12	30-Aug-12
FW-Effluent-355	E208099-03	Vapor	28-Aug-12	30-Aug-12

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ083012-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-067 (E208099-01) Vapor	Sampled: 28-Aug-12	Received: 30-	Aug-12						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH23007	30-Aug-12	30-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	140	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	25	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	100	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	35	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	380	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
-	.15								

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ083012-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-067 (E208099-01) Vapor	Sampled: 28-Aug-12	Received: 30-	Aug-12						
o-Xylene	ND	4.4	ug/m3	1	EH23007	30-Aug-12	30-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.5 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		93.8 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	77-		"	"	"	"	
FW-Inbtwn-219 (E208099-02) Vapor	Sampled: 28-Aug-12	Received: 30-A	aug-12						
Dichlorodifluoromethane (F12)	5.1	5.0	ug/m3	1	EH23007	30-Aug-12	30-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	120	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	28	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project: KJ083012-10 Project Number: Frank Wear Day Care

Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Inbtwn-219 (E208099-02) Vapor	Sampled: 28-Aug-12	Received: 30-A	Aug-12						
Trichloroethene	ND	5.5	ug/m3	1	EH23007	30-Aug-12	30-Aug-12	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	ND	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	11	
Surrogate: 1,2-Dichloroethane-d4		109 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		99.5 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %		-127	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ083012-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-355 (E208099-03) Vapor	Sampled: 28-Aug-12	Received: 30-	Aug-12						
Dichlorodifluoromethane (F12)	21	5.0	ug/m3	1	EH23007	30-Aug-12	30-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	640	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	190	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	56	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.2	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ083012-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: Frank Wear Day Care

Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-355 (E208099-03) Vapor	Sampled: 28-Aug-12	Received: 30-	Aug-12						
o-Xylene	ND	4.4	ug/m3	1	EH23007	30-Aug-12	30-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %	76	-134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	77	-127	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ083012-10

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH23007 - TO-15			
Blank (EH23007-BLK1)			
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3
Chloromethane	ND	2.1	"
Dichlorotetrafluoroethane (F114)	ND	7.1	"
Vinyl chloride	ND	2.6	"
Bromomethane	ND	16	"
Chloroethane	ND	8.0	"
Trichlorofluoromethane (F11)	ND	5.6	"
Acetone	ND	24	"
1,1-Dichloroethene	ND	4.0	"
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"
Methylene chloride (Dichloromethane)	ND	3.5	"
Carbon disulfide	ND	6.3	"
trans-1,2-Dichloroethene	ND	8.0	"
1,1-Dichloroethane	ND	4.1	"
2-Butanone (MEK)	ND	30	"
cis-1,2-Dichloroethene	ND	4.0	"
Chloroform	ND	4.9	"
1,1,1-Trichloroethane	ND	5.5	"
1,2-Dichloroethane (EDC)	ND	4.1	"
Benzene	ND	3.2	"
Carbon tetrachloride	ND	6.4	"
Trichloroethene	ND	5.5	"
1,2-Dichloropropane	ND	9.4	"
Bromodichloromethane	ND	6.8	"
cis-1,3-Dichloropropene	ND ND	4.6	"
4-Methyl-2-pentanone (MIBK)	ND ND	8.3	"
trans-1,3-Dichloropropene	ND ND	4.6	,,
Toluene	ND ND	3.8	,,
1,1,2-Trichloroethane	ND ND	5.5	"
2-Hexanone (MBK)	ND ND	8.3	"
Dibromochloromethane	ND ND	8.6	"
			,,
Tetrachloroethene	ND	6.9	,,
1,2-Dibromoethane (EDB)	ND	7.8	,,
1,1,1,2-Tetrachloroethane	ND	7.0	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project: KJ083012-10

Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp Reported: 10-Sep-12 12:21

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH23007 - TO-15										
Blank (EH23007-BLK1)				Prepared &	ኔ Analyzed:	30-Aug-12				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	218		"	214		102	76-134			
Surrogate: Toluene-d8	188		"	207		90.8	78-125			
Surrogate: 4-Bromofluorobenzene	395		"	364		108	77-127			
LCS (EH23007-BS1)				Prepared &	t Analyzed:	30-Aug-12	!			
Dichlorodifluoromethane (F12)	94	5.0	ug/m3	101		93.6	65-135			
Vinyl chloride	38	2.6	"	52.0		73.7	65-135			
Chloroethane	42	8.0	"	53.6		77.9	65-135			
Trichlorofluoromethane (F11)	110	5.6	"	113		97.9	65-135			
1,1-Dichloroethene	69	4.0	"	80.8		84.8	65-135			
1,1,2-Trichlorotrifluoroethane (F113)	140	7.7	"	155		88.3	65-135			
Methylene chloride (Dichloromethane)	56	3.5	"	70.8		79.5	65-135			
trans-1,2-Dichloroethene	65	8.0	"	80.8		80.0	65-135			
1,1-Dichloroethane	66	4.1	"	82.4		80.2	65-135			
cis-1,2-Dichloroethene	67	4.0	"	80.0		83.5	65-135			
Chloroform	90	4.9	"	99.2		90.8	65-135			
1,1,1-Trichloroethane	98	5.5	"	111		87.9	65-135			
			"							
1,2-Dichloroethane (EDC)	72	4.1	"	82.4		87.9	65-135			

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project: KJ083012-10

Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp

Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Lillit	Ollits	Level	Result	70KEC	Lillits	KFD	Lillit	Notes
Batch EH23007 - TO-15										
LCS (EH23007-BS1)				Prepared &	Analyzed:	30-Aug-12				
Benzene	57	3.2	ug/m3	64.8		88.2	65-135			
Carbon tetrachloride	110	6.4	"	128		86.5	65-135			
Trichloroethene	98	5.5	"	110		89.7	65-135			
Toluene	75	3.8	"	76.8		98.0	65-135			
1,1,2-Trichloroethane	95	5.5	"	111		85.3	65-135			
Tetrachloroethene	120	6.9	"	138		87.1	65-135			
1,1,1,2-Tetrachloroethane	120	7.0	"	140		84.7	65-135			
Ethylbenzene	88	4.4	"	88.4		99.7	65-135			
m,p-Xylene	170	8.8	"	177		96.7	65-135			
o-Xylene	94	4.4	"	88.4		107	65-135			
1,1,2,2-Tetrachloroethane	130	7.0	"	140		94.2	65-135			
Surrogate: 1,2-Dichloroethane-d4	229		"	214		107	76-134			
Surrogate: Toluene-d8	208		"	207		100	78-125			
Surrogate: 4-Bromofluorobenzene	397		"	364		109	77-127			
LCS Dup (EH23007-BSD1)				Prepared &	z Analyzed:	30-Aug-12				
Dichlorodifluoromethane (F12)	100	5.0	ug/m3	101		102	65-135	8.17	35	
Vinyl chloride	48	2.6	ug/III3	52.0		92.3	65-135	22.4	35	
Chloroethane	53	8.0	"	53.6		98.2	65-135	23.1	35	
Trichlorofluoromethane (F11)	120	5.6	"	113		104	65-135	6.07	35	
1,1-Dichloroethene	75	4.0	"	80.8		93.2	65-135	9.34	35	
1,1,2-Trichlorotrifluoroethane (F113)	150	7.7	"	155		97.6	65-135	10.0	35	
Methylene chloride (Dichloromethane)	64	3.5	"	70.8		90.1	65-135	12.4	35	
trans-1,2-Dichloroethene	72	8.0	"	80.8		89.7	65-135	11.5	35	
1,1-Dichloroethane	74	4.1	"	82.4		89.8	65-135	11.4	35	
cis-1,2-Dichloroethene	68	4.0	"	80.0		85.1	65-135	1.91	35	
Chloroform	96	4.9	"	99.2		96.4	65-135	6.01	35	
1,1,1-Trichloroethane	110	5.5	"	111		94.5	65-135	7.23	35	
1,2-Dichloroethane (EDC)	81	4.1	"	82.4		98.4	65-135	11.3	35	
Benzene	61	3.2	"	64.8		94.2	65-135	6.62	35	
Carbon tetrachloride	120	6.4	"	128		92.0	65-135	6.15	35	
Trichloroethene	97	5.5	"	110		88.6	65-135	1.23	35	
e e e e e	0,	0.0								

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project: KJ083012-10

Project Number: Frank Wear Day Care Project Manager: Mr. Josh Hopp Reported: 10-Sep-12 12:21

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH23007 - TO-15										
LCS Dup (EH23007-BSD1)				Prepared &	Analyzed:	30-Aug-12	,			
1,1,2-Trichloroethane	96	5.5	ug/m3	111		86.8	65-135	1.73	35	
Tetrachloroethene	120	6.9	"	138		86.8	65-135	0.343	35	
1,1,1,2-Tetrachloroethane	120	7.0	"	140		83.9	65-135	0.945	35	
Ethylbenzene	89	4.4	"	88.4		100	65-135	0.398	35	
m,p-Xylene	170	8.8	"	177		95.1	65-135	1.61	35	
o-Xylene	93	4.4	"	88.4		105	65-135	1.45	35	
1,1,2,2-Tetrachloroethane	130	7.0	"	140		92.2	65-135	2.19	35	
Surrogate: 1,2-Dichloroethane-d4	256		"	214		119	76-134			
Surrogate: Toluene-d8	211		"	207		102	78-125			
Surrogate: 4-Bromofluorobenzene	403		"	364		111	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ083012-10 Project Number: Frank Wear Day Care

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

Reported: Project Manager: Mr. Josh Hopp 10-Sep-12 12:21

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

drv Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

Dibromochloromethane by EPA TO-15

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A 1,2,4-Trimethylbenzene by EPA TO -14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A 1.3.5-Trimethylbenzene by EPA TO -14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A

Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A Total Xylenes by EPA TO-15 & TO-14A

1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethene by EPA TO-15 & TO-14A 1.2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15 Chloroform by EPA TO-15 & TO-14A

Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A

Trichloroethene by EPA TO-15 & TO-14A Vinvl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15

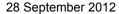
Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

This certification applies to samples analyzed in summa canisters.

Dichlorodifluoromethane by EPA TO-15 & TO-14A Trichlorofluoromethane by EPA TO-15 & TO-14A Naphthalene by EPA TO-15 & TO-14A m&p Xylenes by EPA TO-15 o-Xylene by EPA TO-15 1,3-Butadiene by EPA TO-15 1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A Carbon disulfide by EPA TO-15 1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15 Bromodichloromethane by EPA TO-15 & TO-14A

tert-Butyl Alcohol by EPA TO-15


Chain of Custody Record

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

	Date: Ang	28, 2012
1	H&P Project #	45082212-MC
X	Outside Lab	KT083012-10

Client: Kennedy :	32 rd Ave So	.h , 5	u. 7 e 10	0	Co	ollector:	Ja	>=0	S	hira						Project	t Conto	ıct:	Jos	age:	lopp	_ of	_1	
Email: joshhop	pe Kennedyj	enks.	(om		Lo	cation:	3) 8	35-	640	8	Fax	Car	c	Yala	ma	la/ H	Turn o	around	time:	S	ind.			
Geofracker EDF: Yes \(\text{No I} \) Global ID: Excel EDD: Yes \(\text{No I} \)	0		Sample Intact: E Seal Inta Cold:	Receipt	lo No No No				☐ TPH gas] d 🗌 ext		ZT0-15	60B TO-15	□SAM A □SAM B	10-15	□T0-15	☐T0-15	☐T0-15	☐ 8260B ☐TO-15	□1,1 DFA□OTHER		02 🗆 N2		
Special Instructions: UPS MACKET 12 93	T 76187 4	788 S	069				ners	List	□ BTEX/OXY	H □ g □	н	List 8260B	VOC's: Short List/DTSC	,8260B SA			□ 8260B	□ 8260B	□ 82	Leak Check Compound 11,1		□ co ₂ □	CANE	4
Lob Work Order # E2080	99						# of containers	8260B Full	8260B	8015M TPH	418.1 TRPH	VOC's: Full List	VOC's: Shor	VOC's: SAM, 8260B	Naphthalene	Oxygenates	TPHv gas	Ketones	Other	Leak Check	Methane	Fixed Gases	CA	VACA
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total		SOIL	/GW					_	VAPO	R/AIR	ANA	LYSIS	S				
Flat - Influen -067	influent		15:15	8/28	V	34-	1					1							- 1				067	-3.1
Flat - In brun - 219			15:25	14	T		1																219	-3.2
FW- Effluent-355	effluent	1	15:30			1	1				-	1										-	355	-1.5
Relinquished by: (Signature) Relinquished by: (Signature)	80	E	(company)		Received by Received by:		>								(compa (compa	5		Date:	30/	12	Time	155	5	
Relinquished by: (Signature) *Signature constitutes authorization to proceed.			(company)		Received by:	(Signature)				osal			Refurn to		(compa	ny)		Date:			Time	2:-		

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ091812-12

Client Project: 1196016.00/Task8/00 / Yakima, WA

Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 18-Sep-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

ganis Villarreal

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FW-Influent-101	E209067-01	Vapor	12-Sep-12	18-Sep-12
FW-Inbtwn-105	E209067-02	Vapor	12-Sep-12	18-Sep-12
FW-Effluent-102	E209067-03	Vapor	12-Sep-12	18-Sep-12

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15

Amaluta	Result	Reporting Limit	Unita	Dilution	Datah	Drangrad	Analyzad	Mathad	Notes
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-101 (E209067-01) Vapor	Sampled: 12-Sep-12	Received: 18-5	Sep-12						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EI22103	20-Sep-12	20-Sep-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	100	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	45	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	19	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	32	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	120	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	260	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	6.6	4.4	"	"	"	"	"	"	
m,p-Xylene	17	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-101 (E209067-01) Vapor	Sampled: 12-Sep-12	Received: 18-5	Sep-12						
o-Xylene	6.9	4.4	ug/m3	1	EI22103	20-Sep-12	20-Sep-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: Toluene-d8		109 %	78	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-	127	"	"	"	"	
FW-Inbtwn-105 (E209067-02) Vapor	Sampled: 12-Sep-12	Received: 18-S	ep-12						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EI22103	20-Sep-12	20-Sep-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND	7.1 2.6	"	"	"	"	"	"	
` /				" "		" "	" "	" "	
Vinyl chloride	ND	2.6	"		"		"	" " " " " " " " " " " " " " " " " " " "	
Vinyl chloride Bromomethane	ND ND	2.6 16	"		"	"	"	" " " " " "	
Vinyl chloride Bromomethane Chloroethane	ND ND ND	2.6 16 8.0	"		"	"	"	" " " " " " " " " " " " " " " " " " " "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND	2.6 16 8.0 5.6 24	" "		"	"	"	" " " " " " "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	ND ND ND ND 88 ND	2.6 16 8.0 5.6	" " " " " " " " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	ND ND ND ND 88	2.6 16 8.0 5.6 24 4.0 7.7	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND 88 ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND 88 ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	n n n	" " " " " " " " " " " " " " " " " " " "	11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND 88 ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	n n n	" " " " " " " " " " " " " " " " " " " "	11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND 88 ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "	11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND 88 ND ND ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "	11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND 88 ND ND ND ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0		" " " " " " " " " " " " " " " " " " " "			" " " " " " " " " " " "	11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND 88 ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND 88 ND ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND 88 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.9 5.5 4.1							
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	ND ND ND 88 ND ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							

Reported:

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Inbtwn-105 (E209067-02) Vapor	Sampled: 12-Sep-12			T uctor	Buton	Tropulou	7 , 2.00		
1,2-Dichloropropane	ND	9.4	ug/m3	1	EI22103	20-Sep-12	20-Sep-12	EPA TO-15	
Bromodichloromethane	ND	6.8	"	"	"	"	,	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	5.0	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	ıı .	"	
Surrogate: Toluene-d8		108 %	7.	8-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	7	7-127	"	"	"	"	

Reported:

28-Sep-12 12:00

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA Project Manager: Mr. Josh Hopp

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-102 (E209067-03) Vapor	Sampled: 12-Sep-12	Received: 18-	Sep-12						
Dichlorodifluoromethane (F12)	20	5.0	ug/m3	1	EI22103	20-Sep-12	20-Sep-12	EPA TO-15	QL-1F
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	580	24	"	"	"	"	"	"	I
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	9.3	3.5	"	"	"	"	"	"	
Carbon disulfide	6.5	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	130	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	130	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	11	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	280	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	19	4.4	"	"	"	"	"	"	
m,p-Xylene	45	8.8	"	"	"	"	"	"	
Styrene	4.9	4.3	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00/Task8/00 / Yakima, WA Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15

		itai Moon	e Georg	itelliser y,					
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-102 (E209067-03) Vapor	Sampled: 12-Sep-12	Received: 18-S	Sep-12						
o-Xylene	18	4.4	ug/m3	1	EI22103	20-Sep-12	20-Sep-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	6.1	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: Toluene-d8		110 %	78-	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-	127	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EI22103-BLK1)				Prepared & Analyzed: 20-Sep-12
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
Acetone	ND	24	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

Project Number: 1196016.00/Task8/00 / Yakima, WA

Spike

Source

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22103 - TO-15										
Blank (EI22103-BLK1)				Prepared &	Analyzed:	20-Sep-12				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: Toluene-d8	209		"	192		109	78-125			
Surrogate: 4-Bromofluorobenzene	380		"	364		104	77-127			
LCS (EI22103-BS1)				Prepared &	Analyzed:	20-Sep-12				
Dichlorodifluoromethane (F12)	130	5.0	ug/m3	101		132	65-135		35	
Vinyl chloride	57	2.6	"	52.0		110	65-135		35	
Chloroethane	61	8.0	"	53.6		115	65-135		35	
Trichlorofluoromethane (F11)	160	5.6	"	113		138	65-135		35	QL-1H
1,1-Dichloroethene	97	4.0	"	80.8		120	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	"	155		122	65-135		35	
Methylene chloride (Dichloromethane)	79	3.5	"	70.8		111	65-135		35	
trans-1,2-Dichloroethene	91	8.0	"	80.8		113	65-135		35	
1,1-Dichloroethane	94	4.1	"	82.4		114	65-135		35	
cis-1,2-Dichloroethene	84	4.0	"	80.0		105	65-135		35	
Chloroform	120	4.9	"	99.2		122	65-135		35	
1,1,1-Trichloroethane	140	5.5	"	111		123	65-135		35	
1,2-Dichloroethane (EDC)	110	4.1	"	82.4		131	65-135		35	
Benzene	60	3.2	"	64.8		93.3	65-135		35	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI22103 - TO-15										
LCS (EI22103-BS1)				Prepared &	λ Analyzed:	20-Sep-12				
Carbon tetrachloride	160	6.4	ug/m3	128		124	65-135		35	
Trichloroethene	120	5.5	"	110		112	65-135		35	
Toluene	77	3.8	"	76.8		101	65-135		35	
1,1,2-Trichloroethane	120	5.5	"	111		105	65-135		35	
Tetrachloroethene	150	6.9	"	138		109	65-135		35	
1,1,1,2-Tetrachloroethane	150	7.0	"	140		104	65-135		35	
Ethylbenzene	86	4.4	"	88.4		97.0	65-135		35	
m,p-Xylene	180	8.8	"	177		102	65-135		35	
o-Xylene	91	4.4	"	88.4		103	65-135		35	
1,1,2,2-Tetrachloroethane	140	7.0	"	140		102	65-135		35	
Surrogate: Toluene-d8	212		"	192		110	78-125			
Surrogate: 4-Bromofluorobenzene	400		"	364		110	77-127			
LCS Dup (EI22103-BSD1)				Prepared &	t Analyzed:	20-Sep-12				
Dichlorodifluoromethane (F12)	140	5.0	ug/m3	101		140	65-135	5.72	35	QL-11
Vinyl chloride	60	2.6	"	52.0		115	65-135	3.94	35	`
Chloroethane	63	8.0	"	53.6		117	65-135	2.11	35	
Trichlorofluoromethane (F11)	160	5.6	"	113		139	65-135	0.503	35	QL-1
1,1-Dichloroethene	98	4.0	"	80.8		121	65-135	1.41	35	
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	"	155		121	65-135	0.490	35	
Methylene chloride (Dichloromethane)	77	3.5	"	70.8		108	65-135	2.82	35	
trans-1,2-Dichloroethene	90	8.0	"	80.8		111	65-135	1.60	35	
1,1-Dichloroethane	94	4.1	"	82.4		114	65-135	0.131	35	
cis-1,2-Dichloroethene	84	4.0	"	80.0		105	65-135	0.0959	35	
Chloroform	120	4.9	"	99.2		121	65-135	0.777	35	
1,1,1-Trichloroethane	140	5.5	"	111		123	65-135	0.726	35	
1,2-Dichloroethane (EDC)	110	4.1	"	82.4		133	65-135	1.02	35	
Benzene	61	3.2	"	64.8		94.5	65-135	1.33	35	
Carbon tetrachloride	160	6.4	"	128		126	65-135	2.08	35	
Trichloroethene	120	5.5	"	110		112	65-135	0.400	35	
Toluene	77	3.8	"	76.8		101	65-135	0.0494	35	
1,1,2-Trichloroethane	120	5.5	"	111		104	65-135	1.19	35	
Tetrachloroethene	150	6.9	"	138		108	65-135	1.33	35	

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

Project Number: 1196016.00/Task8/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI22103 - TO-15										
LCS Dup (EI22103-BSD1)				Prepared &	ኔ Analyzed:	20-Sep-12				
1,1,1,2-Tetrachloroethane	150	7.0	ug/m3	140		106	65-135	1.42	35	
Ethylbenzene	85	4.4	"	88.4		96.6	65-135	0.462	35	
m,p-Xylene	180	8.8	"	177		103	65-135	0.973	35	
o-Xylene	92	4.4	"	88.4		104	65-135	0.909	35	
1,1,2,2-Tetrachloroethane	150	7.0	"	140		105	65-135	1.97	35	
Surrogate: Toluene-d8	211		"	192		110	78-125			
Surrogate: 4-Bromofluorobenzene	401		"	364		110	77-127			

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ091812-12

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00/Task8/00 / Yakima, WA Reported:
Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 28-Sep-12 12:00

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is

considered an estimate (CLP E-flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ091812-12

Project Number: 1196016.00/Task8/00 / Yakima, WA 32001 32nd Ave. South, Suite 100 Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 28-Sep-12 12:00

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A

1,2,4-Trimethylbenzene by EPA TO -14A

1,2-Dichlorobenzene by EPA TO-15 & TO-14A

1,3,5-Trimethylbenzene by EPA TO -14A

1,4-Dichlorobenzene by EPA TO-15 & TO-14A

Benzene by EPA TO-15 & TO-14A

Chlorobenzene by EPA TO-15 & TO-14A

Ethyl benzene by EPA TO-15 & TO-14A

Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A

Total Xylenes by EPA TO-15 & TO-14A

1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A

1,1,2-Trichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethene by EPA TO-15 & TO-14A

1,2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A

Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15

Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15

Chloroform by EPA TO-15 & TO-14A

Chloromethane by EPA TO-15 & TO-14A

cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A

Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A

trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinyl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15

4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15

Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15

Dichlorodifluoromethane by EPA TO-15 & TO-14A

Trichlorofluoromethane by EPA TO-15 & TO-14A Nanhthalene by EPA TO-15 & TO-14A

m&p Xylenes by EPA TO-15

o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15

1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A

Carbon disulfide by EPA TO-15 1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15

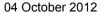
tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15

Bromodichloromethane by EPA TO-15 & TO-14A

Page 13 of 13

Mobile Geochemistry Inc.


Chain of Custody Record

Date: 9-12-12
WA H&P Project # KJ 091814-12
Outside Lab:

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

Federal W	Inks Consultant Are S, Suite lay, WA 98	100			CI Lo	ient Project # cation:	J. 11° 1akiv	1601 Na 1-6	54 6.00 WA 400	Ta	sk8	00				Project	Conta	ict:	Jost	Page: Hope	inda			
Geotracker EDF: Yes □ No Global ID: Excel EDD: Yes No	X		Seal Into	e Receipt Ves \(\text{N}\) act: \(\text{Yes} \) Yes \(\text{N}\) acture: \(\text{N}\)	Io				TPH gas	□ d □ ext	Fax	☑ TO-15	VOC's: Short List/DTSC 8260B T0-15	SAM A SAM B		☐T0-15	☐T0-15	☐T0-15	2	□1,1 DFA□ OTHER		□ O2 □ N2		
Special Instructions: UPS M4 4#17 937	T61 87 47	93 33	26				50	to	☐ BTEX/OXY] B []		1 B260B	SYDTSC 82			□ 8260B	□ 8260B	☐ 8260B	28 🗆	mpound []1,		□ co ₂ □	JA.	#
Lab Work Order # _ E2090	067						# of containers	8260B Full List	8260B	8015M TPH	418.1 TRPH	VOC's: Full List	VOC's: Short Lis	VOC's: SAM, 8260B	Naphthalene	Oxygenates	TPHv gas	Ketones	Other	Leak Check Compound	Methane	Fixed Gases	CANTE	VACE
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total		SOIL	/GW				S		/APO				S				
																							IN	.6
FXI-Influent-101			0920	9/12/12	Vigor	Some	1					1										_	101	14
FW-Influent-101 FW-Inbrun-105			0920	9/12/12			1					1											105	
					Vigor	Soma	1					1												2-0
FW - Inbrun - 105			0930				1					1											105	2-0
FW - Inbrun - 105			0930				1					1											105	2-0
FW - Inbrun - 105			0930				1					1											105	2-0
FW - Inbrun - 105)	Çe	0930		Received by		1								(compa			Dote:	13-12		Tin	1590 1590 10 Zu	105	2-0

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ092712-12

Client Project: KJ091812 / Yakima

Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 27-Sep-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary

ganis Villarreal

- Notes and Definitions / Appendix
- · Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project: KJ092712-12

Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FW-influent-074	E209100-01	Vapor	25-Sep-12	27-Sep-12
FW-inbtwn-241	E209100-02	Vapor	25-Sep-12	27-Sep-12
FW-effluent-245	E209100-03	Vapor	25-Sep-12	27-Sep-12

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-influent-074 (E209100-01) Vapor	Sampled: 25-Sep-12	Received: 27-S	Sep-12						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	37	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	20	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	39	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	16	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND.	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	210	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND.	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
	ND	7.0							

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15

		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
FW-influent-074 (E209100-01) Vapor	Sampled: 25-Sep-12	Received: 27-8	Sep-12						
o-Xylene	ND	4.4	ug/m3	1	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: Toluene-d8		83.7 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-		"	"	"	"	
	G 1 1 25 G 12	Received: 27-Se	en_12						
FW-inhtwn-241 (E209100-02) Vanor	Sampled: /5-Sep-1/								
FW-inbtwn-241 (E209100-02) Vapor Dichlorodifluoromethane (F12)				1	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	OL-1H
Dichlorodifluoromethane (F12)	12	5.0	ug/m3	1 "	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	QL-1I
Dichlorodifluoromethane (F12) Chloromethane	12 ND	5.0 2.1	ug/m3			-			QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	12 ND ND	5.0 2.1 7.1	ug/m3			"	"	"	QL-11
Dichlorodifluoromethane (F12) Chloromethane	12 ND ND ND	5.0 2.1 7.1 2.6	ug/m3	"	"	"	"	"	QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	12 ND ND ND ND	5.0 2.1 7.1 2.6 16	ug/m3	" "	" "	" "	"	" "	QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	12 ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0	ug/m3	" "	" "	" "	"	11 11 11	QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	12 ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6	ug/m3	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " " " "	QL-11
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	12 ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24	ug/m3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " "	QL-11
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	12 ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24	ug/m3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	QL-11
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	12 ND ND ND ND ND ND ND 1000 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7	ug/m3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " "	QL-11
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	12 ND ND ND ND ND ND 1000 ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5	ug/m3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " "	" " " " " " " " " " " "	QL-1F
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	12 ND ND ND ND ND ND 1000 ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3	ug/m3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"	" " " " " " " " " " " "	QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	12 ND ND ND ND ND ND 1000 ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0	ug/m3	"" "" "" "" "" "" "" "" "" "" "" "" ""					QL-1F
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	12 ND ND ND ND ND 1000 ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3	"" "" "" "" "" "" "" "" "" "" "" "" ""					QL-1F
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	12 ND ND ND ND ND 1000 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3						QL-1F
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	12 ND ND ND ND ND 1000 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	ug/m3						QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	12 ND ND ND ND ND 1000 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	ug/m3						QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	12 ND ND ND ND ND 1000 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	ug/m3						QL-11
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	12 ND ND ND ND ND 1000 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.9 5.5 4.1	ug/m3						QL-1I
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	12 ND ND ND ND ND 1000 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	ug/m3						QL-1F

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-inbtwn-241 (E209100-02) Vapor	Sampled: 25-Sep-12	Received: 27-Se	ep-12						
1,2-Dichloropropane	ND	9.4	ug/m3	1	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	26	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	15	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	6.3	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	78	3-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77	7-127	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-effluent-245 (E209100-03) Vapor	Sampled: 25-Sep-12	Received: 27-S	Sep-12						
Dichlorodifluoromethane (F12)	21	5.0	ug/m3	1	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	QL-1F
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	550	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	150	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	17	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	n .	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	n .	"	
m,p-Xylene	52	8.8	"	"	"	"	"	"	
Styrene	ND.	4.3	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-effluent-245 (E209100-03) Vapor	Sampled: 25-Sep-12	Received: 27-S	ep-12						
o-Xylene	18	4.4	ug/m3	1	EI22804	27-Sep-12	27-Sep-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	6.1	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: Toluene-d8		104 %	78	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	77	-127	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EI22804-BLK1)				Prepared & Analyzed: 27-Sep-12
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
Acetone	ND	24	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22804 - TO-15										
Blank (EI22804-BLK1)				Prepared &	Analyzed:	27-Sep-12				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: Toluene-d8	213		"	207		103	78-125			
Surrogate: 4-Bromofluorobenzene	384		"	364		105	77-127			
LCS (EI22804-BS1)				Prepared &	z Analyzed:	27-Sep-12				
Dichlorodifluoromethane (F12)	110	5.0	ug/m3	101		110	65-135		35	
Vinyl chloride	46	2.6	"	52.0		88.0	65-135		35	
Chloroethane	48	8.0	"	53.6		89.8	65-135		35	
Trichlorofluoromethane (F11)	130	5.6	"	113		115	65-135		35	
1,1-Dichloroethene	81	4.0	"	80.8		101	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	155		102	65-135		35	
Methylene chloride (Dichloromethane)	64	3.5	"	70.8		89.9	65-135		35	
trans-1,2-Dichloroethene	76	8.0	"	80.8		93.9	65-135		35	
1,1-Dichloroethane	77	4.1	"	82.4		93.0	65-135		35	
cis-1,2-Dichloroethene	80	4.0	"	80.0		100	65-135		35	
Chloroform	110	4.9	"	99.2		109	65-135		35	
1,1,1-Trichloroethane	110	5.5	"	111		101	65-135		35	
1,2-Dichloroethane (EDC)	91	4.1	"	82.4		111	65-135		35	
Benzene	47	3.2	"	64.8		71.8	65-135		35	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI22804 - TO-15										
LCS (EI22804-BS1)				Prepared &	k Analyzed:	27-Sep-12				
Carbon tetrachloride	130	6.4	ug/m3	128		103	65-135		35	
Trichloroethene	120	5.5	"	110		112	65-135		35	
Toluene	76	3.8	"	76.8		99.0	65-135		35	
1,1,2-Trichloroethane	120	5.5	"	111		105	65-135		35	
Tetrachloroethene	150	6.9	"	138		108	65-135		35	
1,1,1,2-Tetrachloroethane	150	7.0	"	140		104	65-135		35	
Ethylbenzene	85	4.4	"	88.4		96.2	65-135		35	
m,p-Xylene	180	8.8	"	177		100	65-135		35	
o-Xylene	90	4.4	"	88.4		102	65-135		35	
1,1,2,2-Tetrachloroethane	140	7.0	"	140		102	65-135		35	
Surrogate: Toluene-d8	211		"	207		102	78-125			
Surrogate: 4-Bromofluorobenzene	402		"	364		110	77-127			
LCS Dup (EI22804-BSD1)				Prepared &	à Analyzed:	27-Sep-12				
Dichlorodifluoromethane (F12)	140	5.0	ug/m3	101		143	65-135	26.1	35	QL-11
Vinyl chloride	57	2.6	"	52.0		109	65-135	21.4	35	
Chloroethane	60	8.0	"	53.6		113	65-135	22.4	35	
Trichlorofluoromethane (F11)	160	5.6	"	113		140	65-135	19.7	35	QL-1
1,1-Dichloroethene	96	4.0	"	80.8		119	65-135	16.9	35	
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	"	155		123	65-135	18.5	35	
Methylene chloride (Dichloromethane)	76	3.5	"	70.8		108	65-135	17.9	35	
trans-1,2-Dichloroethene	92	8.0	"	80.8		114	65-135	19.0	35	
1,1-Dichloroethane	91	4.1	"	82.4		110	65-135	16.6	35	
cis-1,2-Dichloroethene	82	4.0	"	80.0		103	65-135	2.67	35	
Chloroform	120	4.9	"	99.2		120	65-135	9.42	35	
1,1,1-Trichloroethane	140	5.5	"	111		125	65-135	20.7	35	
1,2-Dichloroethane (EDC)	110	4.1	"	82.4		130	65-135	15.7	35	
Benzene	57	3.2	"	64.8		87.5	65-135	19.7	35	
Carbon tetrachloride	170	6.4	"	128		130	65-135	23.3	35	
Trichloroethene	120	5.5	"	110		112	65-135	0.177	35	
Toluene	75	3.8	"	76.8		98.1	65-135	0.908	35	
1,1,2-Trichloroethane	110	5.5	"	111		102	65-135	2.44	35	
Tetrachloroethene	150	6.9	"	138		105	65-135	2.10	35	

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

Project: KJ092712-12

Project Number: KJ091812 / Yakima Project Manager: Mr. Josh Hopp

Reported: 04-Oct-12 12:47

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
alyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22804 - TO-15										
LCS Dup (EI22804-BSD1)				Prepared &	Analyzed:	27-Sep-12				
1,1,1,2-Tetrachloroethane	150	7.0	ug/m3	140		108	65-135	3.48	35	
Ethylbenzene	87	4.4	"	88.4		98.8	65-135	2.70	35	
m,p-Xylene	180	8.8	"	177		102	65-135	1.70	35	
o-Xylene	91	4.4	"	88.4		103	65-135	0.921	35	
1,1,2,2-Tetrachloroethane	140	7.0	"	140		101	65-135	0.734	35	
Surrogate: Toluene-d8	211		"	207		102	78-125			
Surrogate: 4-Bromofluorobenzene	410		"	364		113	77-127			

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Project Number: KJ091812 / Yakima Reported:
Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 04-Oct-12 12:47

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ092712-12

32001 32nd Ave. South, Suite 100 Project Number: KJ091812 / Yakima Reported: Federal Way, WA 98001 04-Oct-12 12:47 Project Manager: Mr. Josh Hopp

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A

Hexachlorobutadiene by EPA TO-15 & TO-14A

1,2,4-Trimethylbenzene by EPA TO -14A

1,2-Dichlorobenzene by EPA TO-15 & TO-14A

1,3,5-Trimethylbenzene by EPA TO -14A

1,4-Dichlorobenzene by EPA TO-15 & TO-14A

Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A

Ethyl benzene by EPA TO-15 & TO-14A

Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A

Total Xylenes by EPA TO-15 & TO-14A

1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A

1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A

1,2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A

Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15

Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15

Chloroform by EPA TO-15 & TO-14A

Chloromethane by EPA TO-15 & TO-14A

cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A

Methylene chloride by EPA TO -15 & TO-14A

Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinyl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15

4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15

Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15

Dichlorodifluoromethane by EPA TO-15 & TO-14A

Trichlorofluoromethane by EPA TO-15 & TO-14A Nanhthalene by EPA TO-15 & TO-14A

m&p Xylenes by EPA TO-15

o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15

1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A

Carbon disulfide by EPA TO-15 1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15

tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15

Bromodichloromethane by EPA TO-15 & TO-14A

Page 13 of 13

Mobile Geochemistry Inc.

Chain of Custody Record

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159 1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

	Date:	9/25/12
m	H&P Project #	KJ092712-12
	Outside Lab:	

Client: Kennedy Jenks Consulterias Address: 32001 32nd Ave South Switch 100 Federal Way, Was 98001 Email: Josh Hopp & Kennedy Jenks Jun Controller IDE Van E. M. E.						lient Project # ocation:	-	KJe oki	91 ma	812					-					Page:				
Geotracker EDF: Yes \(\text{No} \) Global ID: Excel EDD; Yes \(\text{Y} \) No	ם		Sample Intact: Seal Inte	e Receipt	No ONO ON				☐ TPH gas	☐ d ☐ ext	_ rux	☐ T0-15	8260B TO-15	SAM A SAM B	BT0-15	□T0-15	□T0-15	☐T0-15	☐ 8260B ☐ TO-15		Stat	02		
Special Instructions: UPS TRACKET 12 93 Lab Work Order # E209		52 40	27				containers	8260B Full List	JB BTEX/OXY	8015M TPH ☐ g ☐	1 ТКРН	VOC's: Full List 🔲 8260B	VOC's: Short List/DTSC 🛚 82	VOC's: SAM, 8260B	Naphthalene 3260B	Oxygenates 🔲 8260B		les 🗌 8260B		Leak Check Compound 1,1 DFA 0THER	nne	Fixed Gases CO2	CANE	VACE
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total # of		8260B		418.1	,00C	VOC's	-			SDB VHAT	Ketones	Other		Methane	Fixed		
FW- influent - 074	cilloport		13.00	9/25	ar	400LC	j					1											074	-2.8
Flat-labrun-241	Informer.		13:10	T			1																241	
FX-1- ellluent-245	ellum t		13:20				1																245	
relinquished by: (Signature)																								
elinquished by: (Signature)		Ecolo	(company) (company)		Received by Received by		2								compar compar			Date: S/ Date:	27//	2	Tim	1015	-	
elinquished by: (Signature)			(company) Received by: (Signature)												compan	Tur.		Date:			Tim	n.		

Appendix J

Follow-Up Indoor Air Sampling Laboratory Analytical Reports and Chain-of-Custody Documentation, and Field Logs

Laboratory Analytical Reports and Chain-of-Custody Documentation

7/24/2012 Ms. Sherri Peterson Kennedy/Jenks Consultants 1191 2nd Ave. Suite 630 Seattle WA 98101

Project Name: WDOE Yakima

Project #: 1196016.00 Task 9 Phase 00

Workorder #: 1207174

Dear Ms. Sherri Peterson

The following report includes the data for the above referenced project for sample(s) received on 7/11/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1207174

Work Order Summary

CLIENT: Ms. Sherri Peterson BILL TO: Ms. Sherri Peterson

Kennedy/Jenks Consultants Kennedy/Jenks Consultants

1191 2nd Ave. 1191 2nd Ave. Suite 630 Suite 630

Seattle, WA 98101 Seattle, WA 98101

PHONE: 206-652-4905 P.O. #

FAX: PROJECT # 1196016.00 Task 9 Phase 00 WDOE

DATE RECEIVED: 07/11/2012 CONTACT: Yakima Kelly Buettner 07/20/2012

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BMS-M1-070612	Modified TO-15	8.6 "Hg	5 psi
01B	BMS-M1-070612	Modified TO-15	8.6 "Hg	5 psi
02A	BMS-M3-070612	Modified TO-15	7.8 "Hg	5 psi
02B	BMS-M3-070612	Modified TO-15	7.8 "Hg	5 psi
03A	AMB-UPWIND-070612	Modified TO-15	9.2 "Hg	5 psi
03B	AMB-UPWIND-070612	Modified TO-15	9.2 "Hg	5 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

	Heide Jayro	
CERTIFIED BY:	0 0	DATE: 07/24/12
CERTIFIED DIT		211121

Technical Director

Certfication numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Kennedy/Jenks Consultants Workorder# 1207174

Three 6 Liter Summa Special (SIM Certified) samples were received on July 11, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M1-070612

Lab ID#: 1207174-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Chloroform	0.19	0.59	0.92	2.9	

Client Sample ID: BMS-M1-070612

Lab ID#: 1207174-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,2-Dichloroethane	0.038	0.085	0.15	0.34	
Trichloroethene	0.0056	0.013	0.030	0.071	
Tetrachloroethene	0.038	0.042	0.26	0.29	

Client Sample ID: BMS-M3-070612

Lab ID#: 1207174-02A

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Chloroform	0.18	0.56	0.88	2.7	

Client Sample ID: BMS-M3-070612

Lab ID#: 1207174-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichloroethane	0.036	0.082	0.15	0.33
Trichloroethene	0.0054	0.012	0.029	0.067
Tetrachloroethene	0.036	0.037	0.24	0.25

Client Sample ID: AMB-UPWIND-070612

Lab ID#: 1207174-03A
No Detections Were Found.

Client Sample ID: AMB-UPWIND-070612

Lab ID#: 1207174-03B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: AMB-UPWIND-070612

Lab ID#: 1207174-03B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Trichloroethene	0.0058	0.0088	0.031	0.048	

Client Sample ID: BMS-M1-070612 Lab ID#: 1207174-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071909	Date of Collection: 7/6/12 5:45:00 PM
Dil. Factor:	1.88	Date of Analysis: 7/19/12 01:16 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloroform	0.19	0.59	0.92	2.9
trans-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
Chlorobenzene	0.19	Not Detected	0.86	Not Detected
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,1,1,2-Tetrachloroethane	0.94	Not Detected	6.4	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Metnod Limits
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	116	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: BMS-M1-070612 Lab ID#: 1207174-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071909sim	Date of Collection: 7/6/12 5:45:00 PM
Dil. Factor:	1.88	Date of Analysis: 7/19/12 01:16 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected
1,1,1-Trichloroethane	0.038	Not Detected	0.20	Not Detected
1,2-Dichloroethane	0.038	0.085	0.15	0.34
Trichloroethene	0.0056	0.013	0.030	0.071
Tetrachloroethene	0.038	0.042	0.26	0.29

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: BMS-M3-070612

Lab ID#: 1207174-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071910	Date of Collection: 7/6/12 5:45:00 PM
Dil. Factor:	1.81	Date of Analysis: 7/19/12 02:05 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Compound	(ppbv)	(ррьч)	(ug/iii)	(ug/iii3)
Chloroform	0.18	0.56	0.88	2.7
trans-1,3-Dichloropropene	0.18	Not Detected	0.82	Not Detected
Chlorobenzene	0.18	Not Detected	0.83	Not Detected
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,1,1,2-Tetrachloroethane	0.90	Not Detected	6.2	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	116	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: BMS-M3-070612 Lab ID#: 1207174-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071910sim	Date of Collection: 7/6/12 5:45:00 PM
Dil. Factor:	1.81	Date of Analysis: 7/19/12 02:05 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.036	Not Detected	0.20	Not Detected
1,2-Dichloroethane	0.036	0.082	0.15	0.33
Trichloroethene	0.0054	0.012	0.029	0.067
Tetrachloroethene	0.036	0.037	0.24	0.25

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: AMB-UPWIND-070612

Lab ID#: 1207174-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071911	Date of Collection: 7/6/12 5:49:00 PM
Dil. Factor:	1.93	Date of Analysis: 7/19/12 02:42 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloroform	0.19	Not Detected	0.94	Not Detected
trans-1,3-Dichloropropene	0.19	Not Detected	0.88	Not Detected
Chlorobenzene	0.19	Not Detected	0.89	Not Detected
1,2-Dichlorobenzene	0.19	Not Detected	1.2	Not Detected
1,1,1,2-Tetrachloroethane	0.96	Not Detected	6.6	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	115	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: AMB-UPWIND-070612

Lab ID#: 1207174-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071911sim	Date of Collection: 7/6/12 5:49:00 PM
Dil. Factor:	1.93	Date of Analysis: 7/19/12 02:42 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.039	Not Detected	0.15	Not Detected
1,1,1-Trichloroethane	0.039	Not Detected	0.21	Not Detected
1,2-Dichloroethane	0.039	Not Detected	0.16	Not Detected
Trichloroethene	0.0058	0.0088	0.031	0.048
Tetrachloroethene	0.039	Not Detected	0.26	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: Lab Blank Lab ID#: 1207174-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071908a	Date of Collection: NA
Dil. Factor:	1.49	Date of Analysis: 7/19/12 12:25 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloroform	0.15	Not Detected	0.73	Not Detected
trans-1,3-Dichloropropene	0.15	Not Detected	0.68	Not Detected
Chlorobenzene	0.15	Not Detected	0.68	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.90	Not Detected
1,1,1,2-Tetrachloroethane	0.74	Not Detected	5.1	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	89	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: Lab Blank Lab ID#: 1207174-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071908asim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/19/12 12:25 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: CCV Lab ID#: 1207174-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a071902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 07:52 AM

Compound	%Recovery
Chloroform	96
trans-1,3-Dichloropropene	98
Chlorobenzene	93
1,2-Dichlorobenzene	97
1,1,1,2-Tetrachloroethane	94

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	117	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CCV Lab ID#: 1207174-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a071902sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 07:52 AM

Compound	%Recovery
cis-1,2-Dichloroethene	90
1,1,1-Trichloroethane	100
1,2-Dichloroethane	110
Trichloroethene	91
Tetrachloroethene	92

	Method
%Recovery	Limits
112	70-130
99	70-130
106	70-130
	112 99

Client Sample ID: LCS Lab ID#: 1207174-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a071903 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 08:33 AM

Compound	%Recovery
Chloroform	94
trans-1,3-Dichloropropene	92
Chlorobenzene	89
1,2-Dichlorobenzene	96
1,1,1,2-Tetrachloroethane	Not Spiked

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	119	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCSD Lab ID#: 1207174-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/19/12 09:16 AM

Compound	%Recovery
Chloroform	92
trans-1,3-Dichloropropene	92
Chlorobenzene	90
1,2-Dichlorobenzene	96
1,1,1,2-Tetrachloroethane	Not Spiked

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	117	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCS Lab ID#: 1207174-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a071903sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 08:33 AM

Compound	%Recovery
cis-1,2-Dichloroethene	88
1,1,1-Trichloroethane	98
1,2-Dichloroethane	106
Trichloroethene	88
Tetrachloroethene	85

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCSD Lab ID#: 1207174-06BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a071904sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/19/12 09:16 AM

Compound	%Recovery
cis-1,2-Dichloroethene	87
1,1,1-Trichloroethane	98
1,2-Dichloroethane	104
Trichloroethene	87
Tetrachloroethene	84

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	107	70-130

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page ____ of ____

Project Manager Sher: Feterson Collected by: (Print and Sign) Joshua Hopp VC Hop			Project Info:			Turn Around Time:		Lab Use Only Pressurized by:			
Company <u>ke</u> Address 119	unedy Jenks Consultants Email Sheripe 1 2nd Are Sijte 630 City Seattle S	tenon Ckennedyjo tate WA Zip 9	43.cm 8101	_	# 1196016.0	0 Task9 Phase 00	⊠ No □ Ri		Date: Press	urization (Gas:
Phone 20	6-753-3409 Fax 206-657	-4927		Project	Name_WD0E	Yakima	s,	pecify		N ₂ H	9
			_	ate	Time					sure/Vac	por energy and the con-
Lab I.D.	Field Sample I.D. (Location)	Can #			of Collection	Analyses Reques	sted	Initial	Final	Receipt	Final (psi)
6(A	BMS-M1-070612	926	76	12	065-1745	to-15 VOC'S		-29 "	-811		
a.A	BMS-M3-070612	12009			0615-1745			-30 "	-7"		
03/A	AMB-UPWIND-070612	12689	9	را	0617-1749			-285"	-75"		5858474 388249
				-							
		90000000000000000000000000000000000000									
John	CHOR 7/9/12 1500	eceived by: (signate the land of the land	47L	7/0/1	2 1205	Notes:		akuit turusi masa masa masa masa masa masa masa ma		egen men en	
Relinquishe	ed by: (signature) Date/Time R	eceived by: (signat	ure)	Date/Tin	ne						
Lab	Shipper Name Air Bill #		emp ('	°C)	Condition	Custody Se	eals Int	act?	_Work (Order#	
Use Only	UPS	N	(A	(-	100el	Yes No	o (No	one)	120	71:	4

9/7/2012

Ms. Sherri Peterson Kennedy/Jenks Consultants 1191 2nd Ave. Suite 630 Seattle WA 98101

Project Name: WDOE Yakima

Project #: 1196016.00 Task 9 Phase 20

Workorder #: 1208359R1

Dear Ms. Sherri Peterson

The following report includes the data for the above referenced project for sample(s) received on 8/16/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1208359R1

Work Order Summary

CLIENT: Ms. Sherri Peterson BILL TO: Ms. Sherri Peterson

> Kennedy/Jenks Consultants Kennedy/Jenks Consultants

1191 2nd Ave. 1191 2nd Ave. Suite 630 Suite 630

Seattle, WA 98101 Seattle, WA 98101

PHONE: 206-652-4905 P.O. #

09/02/2012

FAX: PROJECT# 1196016.00 Task 9 Phase 20 WDOE

DATE RECEIVED: 08/16/2012 Yakima Kelly Buettner **CONTACT: DATE COMPLETED:**

DATE REISSUED: 09/06/2012

NAME	TECT	RECEIPT	FINAL PRESSURE
			
BMS-M1-081312	Modified TO-15	8.5 "Hg	5 psi
BMS-M1-081312	Modified TO-15	8.5 "Hg	5 psi
BMS-M3-081312	Modified TO-15	8.5 "Hg	5 psi
BMS-M3-081312 Lab Duplicate	Modified TO-15	8.5 "Hg	5 psi
BMS-M3-081312	Modified TO-15	8.5 "Hg	5 psi
BMS-M3-081312 Lab Duplicate	Modified TO-15	8.5 "Hg	5 psi
AMB-UPWIND-081312	Modified TO-15	10.0 "Hg	5 psi
AMB-UPWIND-081312	Modified TO-15	10.0 "Hg	5 psi
Lab Blank	Modified TO-15	NA	NA
Lab Blank	Modified TO-15	NA	NA
CCV	Modified TO-15	NA	NA
CCV	Modified TO-15	NA	NA
LCS	Modified TO-15	NA	NA
LCSD	Modified TO-15	NA	NA
LCS	Modified TO-15	NA	NA
LCSD	Modified TO-15	NA	NA
	BMS-M3-081312 BMS-M3-081312 Lab Duplicate BMS-M3-081312 BMS-M3-081312 Lab Duplicate AMB-UPWIND-081312 AMB-UPWIND-081312 Lab Blank Lab Blank CCV CCV LCS LCSD LCSD	BMS-M1-081312 Modified TO-15 BMS-M3-081312 Modified TO-15 BMS-M3-081312 Modified TO-15 BMS-M3-081312 Lab Duplicate Modified TO-15 BMS-M3-081312 Modified TO-15 BMS-M3-081312 Modified TO-15 AMB-UPWIND-081312 Modified TO-15 AMB-UPWIND-081312 Modified TO-15 Lab Blank Modified TO-15 Lab Blank Modified TO-15 CCV Modified TO-15 CCV Modified TO-15 CCV Modified TO-15 LCS Modified TO-15 LCS Modified TO-15 LCS Modified TO-15 LCS Modified TO-15 LCS Modified TO-15 LCS Modified TO-15 LCS Modified TO-15	NAME TEST VAC./PRES. BMS-M1-081312 Modified TO-15 8.5 "Hg BMS-M1-081312 Modified TO-15 8.5 "Hg BMS-M3-081312 Modified TO-15 8.5 "Hg BMS-M3-081312 Lab Duplicate Modified TO-15 8.5 "Hg BMS-M3-081312 Lab Duplicate Modified TO-15 8.5 "Hg AMB-UPWIND-081312 Modified TO-15 10.0 "Hg AMB-UPWIND-081312 Modified TO-15 10.0 "Hg Lab Blank Modified TO-15 NA Lab Blank Modified TO-15 NA CCV Modified TO-15 NA CCV Modified TO-15 NA LCS Modified TO-15 NA LCS Modified TO-15 NA LCS Modified TO-15 NA LCS Modified TO-15 NA

	fleide flages	
CERTIFIED BY:		DATE: 09/07/12

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Kennedy/Jenks Consultants Workorder# 1208359R1

Three 6 Liter Summa Special (SIM Certified) samples were received on August 16, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample AMB-UPMIND-081312 did not match the entry on the sample tag with regard to sample identification. The information on the sample tag was used to process and report the sample.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

THE WORKORDER WAS REISSUED ON SEPTEMBER 6, 2012 TO REPORT ADDITIONAL COMPOUNDS FOR ALL OF THE SAMPLES AS REQUIRED BY THE PROJECT SPECIFICATIONS.

DUE TO THE LINEAR CALIBRATION RANGE OF THE INSTRUMENT, THE REPORTING LIMIT FOR BROMOMETHANE WAS RAISED FROM 0.10 PPBV TO 0.50 PPBV.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M1-081312

Lab ID#: 1208359R1-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.19	0.43	0.92	2.1
Chloromethane	0.19	0.58	0.39	1.2
Freon 11	0.19	0.22	1.0	1.2
Ethanol	0.94	590 E	1.8	1100 E
Acetone	0.94	13	2.2	30
2-Propanol	0.94	17	2.3	41
Chloroform	0.19	0.38	0.91	1.8
Heptane	0.19	0.20	0.77	0.84
Styrene	0.19	0.25	0.80	1.1

Client Sample ID: BMS-M1-081312

Lab ID#: 1208359R1-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.094	0.16	0.30	0.50
1,2-Dichloroethane	0.037	0.062	0.15	0.25
Trichloroethene	0.0056	0.015	0.030	0.083
Toluene	0.037	1.0	0.14	3.8
Ethyl Benzene	0.037	0.070	0.16	0.30
m,p-Xylene	0.075	0.18	0.32	0.78
o-Xylene	0.037	0.076	0.16	0.33

Client Sample ID: BMS-M3-081312

Lab ID#: 1208359R1-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.19	0.49	0.92	2.4
Chloromethane	0.19	0.52	0.39	1.1
Freon 11	0.19	0.26	1.0	1.5
Ethanol	0.94	440 E	1.8	840 E
Acetone	0.94	13	2.2	32
2-Propanol	0.94	17	2.3	41
Hexane	0.19	0.22	0.66	0.78

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M3-081312

Lab ID#: 1208359R1-02A				
2-Butanone (Methyl Ethyl Ketone)	0.94	1.0	2.8	3.0
Chloroform	0.19	0.37	0.91	1.8
Heptane	0.19	0.24	0.77	0.98
Styrene	0.19	0.24	0.80	1.0

Client Sample ID: BMS-M3-081312 Lab Duplicate

Lab ID#: 1208359R1-02AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.19	0.50	0.92	2.5
Chloromethane	0.19	0.65	0.39	1.3
Freon 11	0.19	0.24	1.0	1.4
Ethanol	0.94	510 E	1.8	960 E
Acetone	0.94	13	2.2	31
2-Propanol	0.94	16	2.3	40
Carbon Disulfide	0.94	1.8	2.9	5.8
Chloroform	0.19	0.35	0.91	1.7
Heptane	0.19	0.20	0.77	0.84
Styrene	0.19	0.23	0.80	1.0

Client Sample ID: BMS-M3-081312

Lab ID#: 1208359R1-02B

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
0.094	0.14	0.30	0.46
0.037	0.058	0.15	0.23
0.0056	0.014	0.030	0.077
0.037	1.0	0.14	3.8
0.037	0.060	0.16	0.26
0.075	0.17	0.32	0.75
0.037	0.069	0.16	0.30
	(ppbv) 0.094 0.037 0.0056 0.037 0.037 0.037	(ppbv) (ppbv) 0.094 0.14 0.037 0.058 0.0056 0.014 0.037 1.0 0.037 0.060 0.075 0.17	(ppbv) (ppbv) (ug/m3) 0.094 0.14 0.30 0.037 0.058 0.15 0.0056 0.014 0.030 0.037 1.0 0.14 0.037 0.060 0.16 0.075 0.17 0.32

Client Sample ID: BMS-M3-081312 Lab Duplicate

Lab ID#: 1208359R1-02BB

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M3-081312 Lab Duplicate

Lab ID#: 1208359R1-02BB

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.094	0.17	0.30	0.53
1,2-Dichloroethane	0.037	0.067	0.15	0.27
Trichloroethene	0.0056	0.022	0.030	0.12
Toluene	0.037	1.0	0.14	3.9
Ethyl Benzene	0.037	0.062	0.16	0.27
m,p-Xylene	0.075	0.17	0.32	0.75
o-Xylene	0.037	0.067	0.16	0.29

Client Sample ID: AMB-UPWIND-081312

Lab ID#: 1208359R1-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.20	0.50	0.99	2.5
Chloromethane	0.20	0.51	0.42	1.0
Freon 11	0.20	0.24	1.1	1.3
Ethanol	1.0	6.1	1.9	12
Acetone	1.0	3.9	2.4	9.2

Client Sample ID: AMB-UPWIND-081312

Lab ID#: 1208359R1-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.10	0.12	0.32	0.40
Trichloroethene	0.0060	0.012	0.032	0.068
Toluene	0.040	0.30	0.15	1.1
Ethyl Benzene	0.040	0.047	0.17	0.20
m,p-Xylene	0.080	0.11	0.35	0.46
o-Xylene	0.040	0.040	0.17	0.17

Client Sample ID: BMS-M1-081312 Lab ID#: 1208359R1-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082016r1 Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor: 1.87 Date of Analysis: 8/20/12 08:00 PM

Dil. Factor:	1.87	Date	of Analysis: 8/20	/12 08:00 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.19	0.43	0.92	2.1
Freon 114	0.19	Not Detected	1.3	Not Detected
Chloromethane	0.19	0.58	0.39	1.2
1,3-Butadiene	0.19	Not Detected	0.41	Not Detected
Bromomethane	0.94	Not Detected	3.6	Not Detected
Chloroethane	0.94	Not Detected	2.5	Not Detected
Freon 11	0.19	0.22	1.0	1.2
Ethanol	0.94	590 E	1.8	1100 E
Freon 113	0.19	Not Detected	1.4	Not Detected
Acetone	0.94	13	2.2	30
2-Propanol	0.94	17	2.3	41
Carbon Disulfide	0.94	Not Detected	2.9	Not Detected
3-Chloropropene	0.94	Not Detected	2.9	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
Hexane	0.19	Not Detected	0.66	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.94	Not Detected	2.8	Not Detected
Tetrahydrofuran	0.94	Not Detected	2.8	Not Detected
Chloroform	0.19	0.38	0.91	1.8
Cyclohexane	0.19	Not Detected	0.64	Not Detected
Carbon Tetrachloride	0.19	Not Detected	1.2	Not Detected
2,2,4-Trimethylpentane	0.94	Not Detected	4.4	Not Detected
Heptane	0.19	0.20	0.77	0.84
1,2-Dichloropropane	0.19	Not Detected	0.86	Not Detected
1,4-Dioxane	0.19	Not Detected	0.67	Not Detected
Bromodichloromethane	0.19	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
4-Methyl-2-pentanone	0.19	Not Detected	0.77	Not Detected
trans-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
2-Hexanone	0.94	Not Detected	3.8	Not Detected
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected
1,2-Dibromoethane (EDB)	0.19	Not Detected	1.4	Not Detected
Chlorobenzene	0.19	Not Detected	0.86	Not Detected
Styrene	0.19	0.25	0.80	1.1
Bromoform	0.19	Not Detected	1.9	Not Detected
Cumene	0.19	Not Detected	0.92	Not Detected
Propylbenzene	0.19	Not Detected	0.92	Not Detected
4-Ethyltoluene	0.19	Not Detected	0.92	Not Detected
1,3,5-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,2,4-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.19	Not Detected	0.97	Not Detected

Client Sample ID: BMS-M1-081312 Lab ID#: 1208359R1-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082016r1	Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor:	1.87	Date of Analysis: 8/20/12 08:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.94	Not Detected	6.9	Not Detected
Hexachlorobutadiene	0.94	Not Detected	10	Not Detected
1,1,1,2-Tetrachloroethane	0.94	Not Detected	6.4	Not Detected

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: BMS-M1-081312 Lab ID#: 1208359R1-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082016r1sim	Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor:	1.87	Date of Analysis: 8/20/12 08:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
1,1-Dichloroethane	0.037	Not Detected	0.15	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
1,1,1-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Benzene	0.094	0.16	0.30	0.50
1,2-Dichloroethane	0.037	0.062	0.15	0.25
Trichloroethene	0.0056	0.015	0.030	0.083
Toluene	0.037	1.0	0.14	3.8
1,1,2-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Tetrachloroethene	0.037	Not Detected	0.25	Not Detected
Ethyl Benzene	0.037	0.070	0.16	0.30
m,p-Xylene	0.075	0.18	0.32	0.78
o-Xylene	0.037	0.076	0.16	0.33
1,1,2,2-Tetrachloroethane	0.037	Not Detected	0.26	Not Detected
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Methyl tert-butyl ether	0.19	Not Detected	0.67	Not Detected

Surrogates	%Recovery	Metnod Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: BMS-M3-081312 Lab ID#: 1208359R1-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082017r1 Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor: 1.87 Date of Analysis: 8/20/12 08:51 PM

Dil. Factor:	1.87	Date of Analysis: 8/20/12 08:51 P		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.19	0.49	0.92	2.4
Freon 114	0.19	Not Detected	1.3	Not Detected
Chloromethane	0.19	0.52	0.39	1.1
1,3-Butadiene	0.19	Not Detected	0.41	Not Detected
Bromomethane	0.94	Not Detected	3.6	Not Detected
Chloroethane	0.94	Not Detected	2.5	Not Detected
Freon 11	0.19	0.26	1.0	1.5
Ethanol	0.94	440 E	1.8	840 E
Freon 113	0.19	Not Detected	1.4	Not Detected
Acetone	0.94	13	2.2	32
2-Propanol	0.94	17	2.3	41
Carbon Disulfide	0.94	Not Detected	2.9	Not Detected
3-Chloropropene	0.94	Not Detected	2.9	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
Hexane	0.19	0.22	0.66	0.78
2-Butanone (Methyl Ethyl Ketone)	0.94	1.0	2.8	3.0
Tetrahydrofuran	0.94	Not Detected	2.8	Not Detected
Chloroform	0.19	0.37	0.91	1.8
Cyclohexane	0.19	Not Detected	0.64	Not Detected
Carbon Tetrachloride	0.19	Not Detected	1.2	Not Detected
2,2,4-Trimethylpentane	0.94	Not Detected	4.4	Not Detected
Heptane	0.19	0.24	0.77	0.98
1,2-Dichloropropane	0.19	Not Detected	0.86	Not Detected
1,4-Dioxane	0.19	Not Detected	0.67	Not Detected
Bromodichloromethane	0.19	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
4-Methyl-2-pentanone	0.19	Not Detected	0.77	Not Detected
trans-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
2-Hexanone	0.94	Not Detected	3.8	Not Detected
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected
1,2-Dibromoethane (EDB)	0.19	Not Detected	1.4	Not Detected
Chlorobenzene	0.19	Not Detected	0.86	Not Detected
Styrene	0.19	0.24	0.80	1.0
Bromoform	0.19	Not Detected	1.9	Not Detected
Cumene	0.19	Not Detected	0.92	Not Detected
Propylbenzene	0.19	Not Detected	0.92	Not Detected
4-Ethyltoluene	0.19	Not Detected	0.92	Not Detected
1,3,5-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,2,4-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.19	Not Detected	0.97	Not Detected

Client Sample ID: BMS-M3-081312 Lab ID#: 1208359R1-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082017r1	Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor:	1.87	Date of Analysis: 8/20/12 08:51 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.94	Not Detected	6.9	Not Detected
Hexachlorobutadiene	0.94	Not Detected	10	Not Detected
1,1,1,2-Tetrachloroethane	0.94	Not Detected	6.4	Not Detected

E = Exceeds instrument calibration range.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: BMS-M3-081312 Lab Duplicate Lab ID#: 1208359R1-02AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082023r1 Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor: 1.87 Date of Analysis: 8/21/12 06:42 AM

Dil. Factor:	1.87	Date of Analysis: 8/21/12 06:42 A		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.19	0.50	0.92	2.5
Freon 114	0.19	Not Detected	1.3	Not Detected
Chloromethane	0.19	0.65	0.39	1.3
1,3-Butadiene	0.19	Not Detected	0.41	Not Detected
Bromomethane	0.94	Not Detected	3.6	Not Detected
Chloroethane	0.94	Not Detected	2.5	Not Detected
Freon 11	0.19	0.24	1.0	1.4
Ethanol	0.94	510 E	1.8	960 E
Freon 113	0.19	Not Detected	1.4	Not Detected
Acetone	0.94	13	2.2	31
2-Propanol	0.94	16	2.3	40
Carbon Disulfide	0.94	1.8	2.9	5.8
3-Chloropropene	0.94	Not Detected	2.9	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
Hexane	0.19	Not Detected	0.66	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.94	Not Detected	2.8	Not Detected
Tetrahydrofuran	0.94	Not Detected	2.8	Not Detected
Chloroform	0.19	0.35	0.91	1.7
Cyclohexane	0.19	Not Detected	0.64	Not Detected
Carbon Tetrachloride	0.19	Not Detected	1.2	Not Detected
2,2,4-Trimethylpentane	0.94	Not Detected	4.4	Not Detected
Heptane	0.19	0.20	0.77	0.84
1,2-Dichloropropane	0.19	Not Detected	0.86	Not Detected
1,4-Dioxane	0.19	Not Detected	0.67	Not Detected
Bromodichloromethane	0.19	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
4-Methyl-2-pentanone	0.19	Not Detected	0.77	Not Detected
trans-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
2-Hexanone	0.94	Not Detected	3.8	Not Detected
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected
1,2-Dibromoethane (EDB)	0.19	Not Detected	1.4	Not Detected
Chlorobenzene	0.19	Not Detected	0.86	Not Detected
Styrene	0.19	0.23	0.80	1.0
Bromoform	0.19	Not Detected	1.9	Not Detected
Cumene	0.19	Not Detected	0.92	Not Detected
Propylbenzene	0.19	Not Detected	0.92	Not Detected
4-Ethyltoluene	0.19	Not Detected	0.92	Not Detected
1,3,5-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,2,4-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.19	Not Detected	0.97	Not Detected

Client Sample ID: BMS-M3-081312 Lab Duplicate

Lab ID#: 1208359R1-02AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082023r1	Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor:	1.87	Date of Analysis: 8/21/12 06:42 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.94	Not Detected	6.9	Not Detected
Hexachlorobutadiene	0.94	Not Detected	10	Not Detected
1,1,1,2-Tetrachloroethane	0.94	Not Detected	6.4	Not Detected

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	91	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: BMS-M3-081312 Lab ID#: 1208359R1-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082017r1sim	Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor:	1.87	Date of Analysis: 8/20/12 08:51 PM

-1					
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected	
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected	
1,1-Dichloroethane	0.037	Not Detected	0.15	Not Detected	
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected	
1,1,1-Trichloroethane	0.037	Not Detected	0.20	Not Detected	
Benzene	0.094	0.14	0.30	0.46	
1,2-Dichloroethane	0.037	0.058	0.15	0.23	
Trichloroethene	0.0056	0.014	0.030	0.077	
Toluene	0.037	1.0	0.14	3.8	
1,1,2-Trichloroethane	0.037	Not Detected	0.20	Not Detected	
Tetrachloroethene	0.037	Not Detected	0.25	Not Detected	
Ethyl Benzene	0.037	0.060	0.16	0.26	
m,p-Xylene	0.075	0.17	0.32	0.75	
o-Xylene	0.037	0.069	0.16	0.30	
1,1,2,2-Tetrachloroethane	0.037	Not Detected	0.26	Not Detected	
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected	
Methyl tert-butyl ether	0.19	Not Detected	0.67	Not Detected	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: BMS-M3-081312 Lab Duplicate

Lab ID#: 1208359R1-02BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082023r1sim	Date of Collection: 8/13/12 5:52:00 PM
Dil. Factor:	1.87	Date of Analysis: 8/21/12 06:42 AM

	1101	24.0 0.7.1.1a.jolo. 0/21/12 00.127.111		12 001 12 7 1111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
1,1-Dichloroethane	0.037	Not Detected	0.15	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
1,1,1-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Benzene	0.094	0.17	0.30	0.53
1,2-Dichloroethane	0.037	0.067	0.15	0.27
Trichloroethene	0.0056	0.022	0.030	0.12
Toluene	0.037	1.0	0.14	3.9
1,1,2-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Tetrachloroethene	0.037	Not Detected	0.25	Not Detected
Ethyl Benzene	0.037	0.062	0.16	0.27
m,p-Xylene	0.075	0.17	0.32	0.75
o-Xylene	0.037	0.067	0.16	0.29
1,1,2,2-Tetrachloroethane	0.037	Not Detected	0.26	Not Detected
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Methyl tert-butyl ether	0.19	Not Detected	0.67	Not Detected

Surrogates	%Recovery	Metnod Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: AMB-UPWIND-081312 Lab ID#: 1208359R1-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082018r1	Date of Collection: 8/13/12 5:55:00 PM
Dil. Factor:	2.01	Date of Analysis: 8/20/12 09:34 PM

Dil. Factor:	2.01	Date	of Analysis: 8/20	/12 09:34 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.20	0.50	0.99	2.5
Freon 114	0.20	Not Detected	1.4	Not Detected
Chloromethane	0.20	0.51	0.42	1.0
1,3-Butadiene	0.20	Not Detected	0.44	Not Detected
Bromomethane	1.0	Not Detected	3.9	Not Detected
Chloroethane	1.0	Not Detected	2.6	Not Detected
Freon 11	0.20	0.24	1.1	1.3
Ethanol	1.0	6.1	1.9	12
Freon 113	0.20	Not Detected	1.5	Not Detected
Acetone	1.0	3.9	2.4	9.2
2-Propanol	1.0	Not Detected	2.5	Not Detected
Carbon Disulfide	1.0	Not Detected	3.1	Not Detected
3-Chloropropene	1.0	Not Detected	3.1	Not Detected
Methylene Chloride	0.40	Not Detected	1.4	Not Detected
Hexane	0.20	Not Detected	0.71	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.0	Not Detected	3.0	Not Detected
Tetrahydrofuran	1.0	Not Detected	3.0	Not Detected
Chloroform	0.20	Not Detected	0.98	Not Detected
Cyclohexane	0.20	Not Detected	0.69	Not Detected
Carbon Tetrachloride	0.20	Not Detected	1.3	Not Detected
2,2,4-Trimethylpentane	1.0	Not Detected	4.7	Not Detected
Heptane	0.20	Not Detected	0.82	Not Detected
1,2-Dichloropropane	0.20	Not Detected	0.93	Not Detected
1,4-Dioxane	0.20	Not Detected	0.72	Not Detected
Bromodichloromethane	0.20	Not Detected	1.3	Not Detected
cis-1,3-Dichloropropene	0.20	Not Detected	0.91	Not Detected
4-Methyl-2-pentanone	0.20	Not Detected	0.82	Not Detected
trans-1,3-Dichloropropene	0.20	Not Detected	0.91	Not Detected
2-Hexanone	1.0	Not Detected	4.1	Not Detected
Dibromochloromethane	0.20	Not Detected	1.7	Not Detected
1,2-Dibromoethane (EDB)	0.20	Not Detected	1.5	Not Detected
Chlorobenzene	0.20	Not Detected	0.92	Not Detected
Styrene	0.20	Not Detected	0.86	Not Detected
Bromoform	0.20	Not Detected	2.1	Not Detected
Cumene	0.20	Not Detected	0.99	Not Detected
Propylbenzene	0.20	Not Detected	0.99	Not Detected
4-Ethyltoluene	0.20	Not Detected	0.99	Not Detected
1,3,5-Trimethylbenzene	0.20	Not Detected	0.99	Not Detected
1,2,4-Trimethylbenzene	0.20	Not Detected	0.99	Not Detected
1,3-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
1,4-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
alpha-Chlorotoluene	0.20	Not Detected	1.0	Not Detected

Client Sample ID: AMB-UPWIND-081312

Lab ID#: 1208359R1-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082018r1	Date of Collection: 8/13/12 5:55:00 PM
Dil. Factor:	2.01	Date of Analysis: 8/20/12 09:34 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected	7.4	Not Detected
Hexachlorobutadiene	1.0	Not Detected	11	Not Detected
1,1,1,2-Tetrachloroethane	1.0	Not Detected	6.9	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: AMB-UPWIND-081312 Lab ID#: 1208359R1-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082018r1sim	Date of Collection: 8/13/12 5:55:00 PM
Dil. Factor:	2.01	Date of Analysis: 8/20/12 09:34 PM

Z.II. 1 (4010).1	Z.V I	Date of Analysis: 0/20/12 03:04 i M		12 03.04 1 10
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.020	Not Detected	0.051	Not Detected
1,1-Dichloroethene	0.020	Not Detected	0.080	Not Detected
1,1-Dichloroethane	0.040	Not Detected	0.16	Not Detected
cis-1,2-Dichloroethene	0.040	Not Detected	0.16	Not Detected
1,1,1-Trichloroethane	0.040	Not Detected	0.22	Not Detected
Benzene	0.10	0.12	0.32	0.40
1,2-Dichloroethane	0.040	Not Detected	0.16	Not Detected
Trichloroethene	0.0060	0.012	0.032	0.068
Toluene	0.040	0.30	0.15	1.1
1,1,2-Trichloroethane	0.040	Not Detected	0.22	Not Detected
Tetrachloroethene	0.040	Not Detected	0.27	Not Detected
Ethyl Benzene	0.040	0.047	0.17	0.20
m,p-Xylene	0.080	0.11	0.35	0.46
o-Xylene	0.040	0.040	0.17	0.17
1,1,2,2-Tetrachloroethane	0.040	Not Detected	0.28	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected
Methyl tert-butyl ether	0.20	Not Detected	0.72	Not Detected

Surre mater	0/ Pagazzami	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	98	70-130

File Name:

trans-1,3-Dichloropropene

Dibromochloromethane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene alpha-Chlorotoluene

1,2-Dibromoethane (EDB)

2-Hexanone

Chlorobenzene

Propylbenzene

4-Ethyltoluene

Styrene Bromoform

Cumene

Client Sample ID: Lab Blank Lab ID#: 1208359R1-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

e082014c

Date of Collection: NA

Dil. Factor:	1.00	Date of Analysis: 8/20/12 06:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 114	0.10	Not Detected	0.70	Not Detected
Chloromethane	0.10	Not Detected	0.21	Not Detected
1,3-Butadiene	0.10	Not Detected	0.22	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Ethanol	0.50	Not Detected	0.94	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
2-Propanol	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	0.50	Not Detected	1.6	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Hexane	0.10	Not Detected	0.35	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
Cyclohexane	0.10	Not Detected	0.34	Not Detected
Carbon Tetrachloride	0.10	Not Detected	0.63	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Heptane	0.10	Not Detected	0.41	Not Detected
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected
1,4-Dioxane	0.10	Not Detected	0.36	Not Detected
Bromodichloromethane	0.10	Not Detected	0.67	Not Detected
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
4-Methyl-2-pentanone	0.10	Not Detected	0.41	Not Detected

0.10

0.50

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

0.45

2.0

0.85

0.77

0.46

0.42

1.0

0.49

0.49

0.49

0.49

0.49

0.60

0.60

0.52

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Client Sample ID: Lab Blank Lab ID#: 1208359R1-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082014c	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/20/12 06:22 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Hexachlorobutadiene	0.50	Not Detected	5.3	Not Detected
1,1,1,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: Lab Blank Lab ID#: 1208359R1-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e082014dsim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/20/12 06:22 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
1,1,2-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
1,1,2,2-Tetrachloroethane	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected

_		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: CCV Lab ID#: 1208359R1-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 10:27 AM

Compound	%Recovery
Freon 12	106
Freon 114	109
Chloromethane	94
1,3-Butadiene	106
Bromomethane	114
Chloroethane	111
Freon 11	105
Ethanol	96
Freon 113	100
Acetone	85
2-Propanol	106
Carbon Disulfide	94
3-Chloropropene	96
Methylene Chloride	84
Hexane	106
2-Butanone (Methyl Ethyl Ketone)	107
Tetrahydrofuran	102
Chloroform	100
Cyclohexane	103
Carbon Tetrachloride	80
2,2,4-Trimethylpentane	105
Heptane	118
1,2-Dichloropropane	106
1,4-Dioxane	110
Bromodichloromethane	112
cis-1,3-Dichloropropene	114
4-Methyl-2-pentanone	117
trans-1,3-Dichloropropene	119
2-Hexanone	123
Dibromochloromethane	118
1,2-Dibromoethane (EDB)	114
Chlorobenzene	105
Styrene	117
Bromoform	107
Cumene	117
Propylbenzene	110
4-Ethyltoluene	111
1,3,5-Trimethylbenzene	107
1,2,4-Trimethylbenzene	109
1,3-Dichlorobenzene	104
1,4-Dichlorobenzene	104
alpha-Chlorotoluene	116

Client Sample ID: CCV Lab ID#: 1208359R1-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 10:27 AM

Compound	%Recovery
1,2-Dichlorobenzene	103
1,2,4-Trichlorobenzene	99
Hexachlorobutadiene	105
1.1.1.2-Tetrachloroethane	64

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: CCV Lab ID#: 1208359R1-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082004sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 10:27 AM

Compound	%Recovery
Vinyl Chloride	102
1,1-Dichloroethene	94
1,1-Dichloroethane	98
cis-1,2-Dichloroethene	99
1,1,1-Trichloroethane	102
Benzene	87
1,2-Dichloroethane	113
Trichloroethene	98
Toluene	108
1,1,2-Trichloroethane	106
Tetrachloroethene	88
Ethyl Benzene	116
m,p-Xylene	121
o-Xylene	122
1,1,2,2-Tetrachloroethane	100
trans-1,2-Dichloroethene	99
Methyl tert-butyl ether	114

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 1208359R1-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082005 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 11:13 AM

Compound	%Recovery
Freon 12	100
Freon 114	98
Chloromethane	89
1,3-Butadiene	100
Bromomethane	110
Chloroethane	102
Freon 11	100
Ethanol	88
Freon 113	100
Acetone	80
2-Propanol	105
Carbon Disulfide	113
3-Chloropropene	111
Methylene Chloride	86
Hexane	104
2-Butanone (Methyl Ethyl Ketone)	103
Tetrahydrofuran	97
Chloroform	99
Cyclohexane	102
Carbon Tetrachloride	98
2,2,4-Trimethylpentane	97
Heptane	106
1,2-Dichloropropane	100
1,4-Dioxane	103
Bromodichloromethane	105
cis-1,3-Dichloropropene	109
4-Methyl-2-pentanone	104
trans-1,3-Dichloropropene	112
2-Hexanone	116
Dibromochloromethane	113
1,2-Dibromoethane (EDB)	110
Chlorobenzene	98
Styrene	110
Bromoform	104
Cumene	110
Propylbenzene	104
4-Ethyltoluene	100
1,3,5-Trimethylbenzene	101
1,2,4-Trimethylbenzene	103
1,3-Dichlorobenzene	98
1,4-Dichlorobenzene	99
alpha-Chlorotoluene	104

Client Sample ID: LCS Lab ID#: 1208359R1-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082005 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 11:13 AM

Compound	%Recovery
1,2-Dichlorobenzene	95
1,2,4-Trichlorobenzene	95
Hexachlorobutadiene	97
1.1.1.2-Tetrachloroethane	Not Spiked

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCSD Lab ID#: 1208359R1-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 11:58 AM

Compound	%Recovery
Freon 12	92
Freon 114	93
Chloromethane	83
1,3-Butadiene	95
Bromomethane	104
Chloroethane	96
Freon 11	96
Ethanol	85
Freon 113	95
Acetone	78
2-Propanol	103
Carbon Disulfide	111
3-Chloropropene	111
Methylene Chloride	81
Hexane	100
2-Butanone (Methyl Ethyl Ketone)	99
Tetrahydrofuran	96
Chloroform	95
Cyclohexane	100
Carbon Tetrachloride	95
2,2,4-Trimethylpentane	94
Heptane	104
1,2-Dichloropropane	101
1,4-Dioxane	104
Bromodichloromethane	104
cis-1,3-Dichloropropene	108
4-Methyl-2-pentanone	114
trans-1,3-Dichloropropene	111
2-Hexanone	114
Dibromochloromethane	109
1,2-Dibromoethane (EDB)	108
Chlorobenzene	96
Styrene	106
Bromoform	102
Cumene	109
Propylbenzene	100
4-Ethyltoluene	96
1,3,5-Trimethylbenzene	96
1,2,4-Trimethylbenzene	98
1,3-Dichlorobenzene	93
1,4-Dichlorobenzene	94
alpha-Chlorotoluene	101

Client Sample ID: LCSD Lab ID#: 1208359R1-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 11:58 AM

Compound	%Recovery
1,2-Dichlorobenzene	94
1,2,4-Trichlorobenzene	89
Hexachlorobutadiene	96
1,1,1,2-Tetrachloroethane	Not Spiked

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: LCS Lab ID#: 1208359R1-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082005sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 11:13 AM

Compound	%Recovery
Vinyl Chloride	94
1,1-Dichloroethene	95
1,1-Dichloroethane	94
cis-1,2-Dichloroethene	95
1,1,1-Trichloroethane	100
Benzene	83
1,2-Dichloroethane	108
Trichloroethene	95
Toluene	103
1,1,2-Trichloroethane	100
Tetrachloroethene	80
Ethyl Benzene	109
m,p-Xylene	117
o-Xylene	117
1,1,2,2-Tetrachloroethane	96
trans-1,2-Dichloroethene	106
Methyl tert-butyl ether	109

0	0/ 0	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCSD Lab ID#: 1208359R1-06BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e082006sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/20/12 11:58 AM

Compound	%Recovery
Vinyl Chloride	91
1,1-Dichloroethene	93
1,1-Dichloroethane	91
cis-1,2-Dichloroethene	93
1,1,1-Trichloroethane	97
Benzene	81
1,2-Dichloroethane	104
Trichloroethene	93
Toluene	101
1,1,2-Trichloroethane	99
Tetrachloroethene	79
Ethyl Benzene	106
m,p-Xylene	112
o-Xylene	112
1,1,2,2-Tetrachloroethane	94
trans-1,2-Dichloroethene	104
Methyl tert-butyl ether	106

Surra matas	0/Pagariam	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	105	70-130

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with 180 BLUE RAVINE ROAD, SUITE B all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Project Manager Sherri Peterson			Projec	ct Info:			Around me:	Pressi	urized by:	
Collected by: (Print and Sign) Josh Hopp JACHAP Company Kennely Junks Consultants Email Sheripte	rson e kennedyje	wks low	P.O. #_ \ Project	# 11960 2 6.0	o Task 9 Phase 80	No □ Ru	ormal	Date:	urization (
Address 191 2nd Are, Suite 630 City Seattle State	WA Zip 900	01	•					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Phone 206-753-3409 Fax 206-652	-492+		Project	Name_W00	E SULTAND	S _I	pecify		N ₂ H	
			ate	Time					sure/Vac	RESPONSE HALLING
Lab I.D. Field Sample I.D. (Location)	Can #	of Col	lection	of Collection	Analyses Reques	sted	Initial	Final	Receipt	Final (psi)
()1AP) BMS-M1-0813/2	11890	8/13	3/12	0608-1752	Full List VOU's by	TO-15	-32	-9		
(0 AB) BMS- M3 -081312	34006	8/1	3/12	0608-1752	()		-31	-8.5		
000 AMB - VPMIND - 081312	05707	8	13/12	0612-1755	J		-28	-8.5		
		V	,							
		Λ								
	2	/LC	A		al. 1					
					8/13/12					
						AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUM	and the second s			
		-11	and the second of the second o					AND DESCRIPTION OF THE PARTY OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		,								Š
Relinquished by (signature) Date/Time Hece	ived by: (signaturived by: (si	ML ure) [Date/Tim Date/Tim	e/ z 030 ne	Notes: Ty Cc: Joshit	Schreiv Topp @ 1 mal re	hercker Kennedy Port!	inedy Jev Jenks. C – Tha	nts.com own own nts	•
Troininguisited by: (Signature) Date/Title		UPS I STORY TO STORY OF		3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			popular (2000)			Secretari pos premietra de
Lab Shipper Name Air Bill #		emp (°	14224020.7272	Condition		- /-	$\rightarrow \lambda$	Work (Order # 0 8 3	<u>r)</u>
Use UPS 12FL41880250376198	3 1	JA		good	Yes N	o (No	one	10	UUO	S W
Only				w						

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ081612-14

Client Project: 1196016.00 Task 8 / Yakima, WA

Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 16-Aug-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary

ganis Villarreal

- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely.

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FW-Influent-323	E208062-01	Vapor	13-Aug-12	16-Aug-12
FW-Inbtwn-219	E208062-02	Vapor	13-Aug-12	16-Aug-12
FW-Effluent-217	E208062-03	Vapor	13-Aug-12	16-Aug-12
BMS-SS-1-081312	E208062-04	Vapor	13-Aug-12	16-Aug-12
BMS-SS-4-081312	E208062-05	Vapor	13-Aug-12	16-Aug-12

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Soil Gas and Vapor Analysis

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-1-081312 (E208062-04) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Helium (LCC)	0.8	0.1	%	1	EH21703	17-Aug-12	17-Aug-12	ASTM D1945M	
BMS-SS-4-081312 (E208062-05) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Helium (LCC)	1.8	0.1	%	1	EH21703	17-Aug-12	17-Aug-12	ASTM D1945M	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	Liiiit	Units	Factor	Daten	riepaieu	Allalyzeu	Method	rotes
FW-Influent-323 (E208062-01) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	66	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	5.9	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	32	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	29	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	110	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND ND	8.8	"	"	"	"	"	"	
Styrene	ND ND	4.3	"	"	"	"	"	"	
~-,	110	7.0							

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

001 Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Influent-323 (E208062-01) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
o-Xylene	ND	4.4	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		102 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-		"	"	"	"	
FW-Inbtwn-219 (E208062-02) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Dichlorodifluoromethane (F12)	12	5.0	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	1200	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	33	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	370	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Inbtwn-219 (E208062-02) Vapor	Sampled: 13-Aug-12	Received: 16-A	Aug-12						
Trichloroethene	ND	5.5	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	4.4	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.0 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	77-		"	"	"	"	
Surroguie. 4-Bromojiuorovenzene		20.7 /0	//-	14/					

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-217 (E208062-03) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
Dichlorodifluoromethane (F12)	8.8	5.0	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	350	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	84	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	ND	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

1									
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
FW-Effluent-217 (E208062-03) Vapor	Sampled: 13-Aug-12	Received: 16-	Aug-12						
o-Xylene	ND	4.4	ug/m3	1	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	II .	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.3 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	77-		"	"	"	"	
BMS-SS-1-081312 (E208062-04) Vapor	Sampled: 13-Aug-12	Received: 16	-Aug-12						
Dichlorodifluoromethane (F12)	ND	2.0	ug/m3	2	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	1.1	"	"	"	"	"	"	
Acetone	5.4	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.97	0.71	"	"	"	"	"	"	
Carbon disulfide	ND	0.63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	2.7	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	ND	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	0.47	0.32	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	1.1 0.94 1.4 0.92 1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88 0.88	-Aug-12 ug/m3 " " " " " " " " " " " " " "	2 " " " " " " " " " " " " " " " " " " "	EH22003	20-Aug-12	20-Aug-12 " " " " " " " " " " " "	EPA TO-15	
1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	0.94 1.4 0.92 1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88		60 2				11 11 11 11 11 11 11 11 11 11 11	
Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromochane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	1.4 0.92 1.7 0.92 1.5 1.1 1.7 41 1.6 1.4 0.94 0.88		60				11 11 11 11 11 11 11 11 11 11 11 11 11	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0. 0-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D D D D D D D D D D D D D D D D D	0.92 1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88		60 2		"		11 11 11 11 11 11 11 11 11 11 11 11 11	
4-Methyl-2-pentanone (MIBK) trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromochlane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D .7	1.7 0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88		60 2	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
trans-1,3-Dichloropropene Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0. o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane N N N N N N N N N N N N N N N N N N N	D .7 .7	0.92 1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88	"" "" "" "" "" "" "" "" "" "" "" "" ""	60 2	n n n	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Toluene 1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane N N N N N N N N N N N N N N N N N N N	.7 D D D 50 D D D	1.5 1.1 1.7 1.7 41 1.6 1.4 0.94 0.88	" " " " " " " " " " " " " " " " " " " "	60 2	" " " " " " " " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
1,1,2-Trichloroethane 2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromochtane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0. O-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D 50 D D D	1.1 1.7 1.7 41 1.6 1.4 0.94 0.88	" " " " " " "	60 2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
2-Hexanone (MBK) Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene 0-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	50 D D D D	1.7 1.7 41 1.6 1.4 0.94 0.88	" " " " " " " " " " " " " " " " " " " "	60 2 "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " "	" " " " " " " " " " " " " " " " " " " "	
Dibromochloromethane Tetrachloroethene 1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D 50 D D D	1.7 41 1.6 1.4 0.94 0.88	" " " " " " " " " " " " " " " " " " " "	60 2 "	" " "	" " "	" "	" "	
Tetrachloroethene 4 1,2-Dibromoethane (EDB) N 1,1,1,2-Tetrachloroethane N Chlorobenzene N Ethylbenzene N m,p-Xylene 2 Styrene 0 o-Xylene N Bromoform N 1,1,2,2-Tetrachloroethane N 4-Ethyltoluene N 1,3,5-Trimethylbenzene N 1,2,4-Trimethylbenzene 3	50 D D D D	41 1.6 1.4 0.94 0.88	" " "	60 2 "	"	"	"	"	
1,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D	1.6 1.4 0.94 0.88	" "	2	"	"	"	"	
1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D D	1.4 0.94 0.88	"	"	"	"			
Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D D	0.94 0.88	"	"			"	"	
Ethylbenzene m,p-Xylene Styrene 0. o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	D	0.88	"		"	"			
m,p-Xylene Styrene 0. o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene				"			"	"	
Styrene 0. o-Xylene 1 Bromoform N 1,1,2,2-Tetrachloroethane N 4-Ethyltoluene N 1,3,5-Trimethylbenzene N 1,2,4-Trimethylbenzene 3	_	ስ ልል			"	"	"	"	
o-Xylene Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	.8	0.00		"	"	"	"	"	
Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 3	99	0.86	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	.1	0.88	"	"	"	"	"	"	
4-Ethyltoluene N. 1,3,5-Trimethylbenzene N. 1,2,4-Trimethylbenzene 3	D	2.1	"	"	"	"	"	"	
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 3	D	1.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	D	1.0	"	"	"	"	"	"	
•	D	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	.3	1.0	"	"	"	"	"	"	
	D	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	D	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	D	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	D	1.5	"	"	"	"	"	"	
Hexachlorobutadiene N	D	4.3	"	"	"	"	II .	"	
Surrogate: 1,2-Dichloroethane-d4		100 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		100 %		125	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %		140			"		

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-4-081312 (E208062-05) Vapor	Sampled: 13-Aug-12	Received: 16	5-Aug-12						
Dichlorodifluoromethane (F12)	ND	2.0	ug/m3	2	EH22003	20-Aug-12	20-Aug-12	EPA TO-15	
Chloromethane	ND	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	1.1	"	"	"	"	"	"	
Acetone	11	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	6200	35	"	100	"	"	"	"	
Carbon disulfide	ND	0.63	"	2	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	1.8	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	1.4	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	0.60	0.32	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	"	"	"	"	"	"	
Trichloroethene	ND	1.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	5.7	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	110	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	1.3	0.88	"	"	"	"	"	"	
m,p-Xylene	5.8	0.88	"	"	"	"	"	"	
Styrene	ND	0.86	"	"	"	"	"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes	
BMS-SS-4-081312 (E208062-05) Vapor	Sampled: 13-Aug-12	Received: 16-Aug-12								
o-Xylene	1.8	0.88	ug/m3	2	EH22003	20-Aug-12	20-Aug-12	EPA TO-15		
Bromoform	ND	2.1	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"		
4-Ethyltoluene	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	3.0	1.0	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	"		
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"		
Hexachlorobutadiene	ND	4.3	"	"	"	"	"	"		
Surrogate: 1,2-Dichloroethane-d4		97.8 %	76-	-134	"	"	"	"		
Surrogate: Toluene-d8		96.2 %	78-	125	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		108 %	77-	127	"	"	"	"		

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Soil Gas and Vapor Analysis - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH21703 - GC

 Blank (EH21703-BLK1)
 Prepared & Analyzed: 17-Aug-12

 Helium (LCC)
 ND
 0.1
 %

Reported:

23-Aug-12 15:00

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA Project Manager: Mr. Josh Hopp

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH22003 - TO-15				
Blank (EH22003-BLK1)				Prepared & Analyzed: 20-Aug-12
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Trichlorofluoromethane (F11)	ND	0.56	"	
Acetone	ND	1.2	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
trans-1,2-Dichloroethene	ND	0.40	"	
1,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
1,1,1-Trichloroethane	ND	0.55	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	
Benzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
Trichloroethene	ND	0.55	"	
1,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
cis-1,3-Dichloropropene	ND	0.46	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	
trans-1,3-Dichloropropene	ND	0.46	"	
Toluene	ND	0.76	"	
1,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	0.86	"	
Tetrachloroethene	ND	0.69	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Spike

Source

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH22003 - TO-15										
Blank (EH22003-BLK1)				Prepared &	Analyzed:	20-Aug-12				
Chlorobenzene	ND	0.47	ug/m3							
Ethylbenzene	ND	0.44	"							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
,4-Dichlorobenzene	ND	0.61	"							
,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	0.75	"							
Hexachlorobutadiene	ND	2.1	"							
Surrogate: 1,2-Dichloroethane-d4	215		"	214		100	76-134			
Surrogate: Toluene-d8	212		"	207		103	78-125			
Surrogate: 4-Bromofluorobenzene	380		"	364		104	77-127			
L CS (E1122002 DS1)				Prepared &	Analyzed:	20-Aug-12				
LCS (EH22003-BS1) Dichlorodifluoromethane (F12)	9.1	1.0	ug/m3	10.1	· · · · · · · · · · · · · · · · · · ·	90.7	65-135		35	
Vinyl chloride	5.6	0.13	"	5.20		108	65-135		35	
Chloroethane	5.0 5.1	0.13	"	5.36		94.8	65-135		35	
Frichlorofluoromethane (F11)	12	0.56	"	11.3		106	65-135		35	
1,1-Dichloroethene	8.3	0.40	"	8.08		103	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	17	1.5	"	15.5		112	65-135		35	
Methylene chloride (Dichloromethane)	6.7	0.35	"	7.08		94.6	65-135		35	
rans-1,2-Dichloroethene	8.3	0.40	"	8.08		103	65-135		35	
,1-Dichloroethane	8.7	0.40	"	8.24		106	65-135		35	
cis-1,2-Dichloroethene	7.4	0.40	"	8.00		92.0	65-135		35	
Chloroform	9.8	0.40	"	9.92		99.1	65-135		35	
1,1,1-Trichloroethane	11	0.55	"	11.1		97.8	65-135		35	
-,-,	1 1	0.00				27.0	00 100		55	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH22003 - TO-15										
LCS (EH22003-BS1)				Prepared &	Analyzed:	20-Aug-12	!			
Benzene	6.3	0.16	ug/m3	6.48		97.1	65-135		35	
Carbon tetrachloride	13	0.32	"	12.8		104	65-135		35	
Trichloroethene	11	0.55	"	11.0		96.4	65-135		35	
Toluene	7.1	0.76	"	7.68		92.6	65-135		35	
1,1,2-Trichloroethane	10	0.55	"	11.1		92.2	65-135		35	
Tetrachloroethene	13	0.69	"	13.8		90.9	65-135		35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		92.4	65-135		35	
Ethylbenzene	8.8	0.44	"	8.84		100	65-135		35	
m,p-Xylene	19	0.44	"	17.7		106	65-135		35	
o-Xylene	9.4	0.44	"	8.84		107	65-135		35	
1,1,2,2-Tetrachloroethane	14	0.70	"	14.0		102	65-135		35	
Surrogate: 1,2-Dichloroethane-d4	223		"	214		104	76-134			
Surrogate: Toluene-d8	199		"	207		96.2	78-125			
Surrogate: 4-Bromofluorobenzene	424		"	364		116	77-127			
L CC D (E1122002 BCD4)				Prepared &	z Analyzed:	20-Aug-12	,			
LCS Dup (EH22003-BSD1) Dichlorodifluoromethane (F12)	8.7	1.0	11a/m²	10.1	. maryzea.	86.3	65-135	4.95	35	
Vinyl chloride	8. <i>7</i> 5.8	0.13	ug/m3	5.20		112	65-135	3.49	35	
Chloroethane	5.8 5.6	0.13	"	5.20		104	65-135	9.43	35	
Trichlorofluoromethane (F11)			"	11.3		104	65-135	3.16	35	
1,1-Dichloroethene	12	0.56	"	8.08		99.1	65-135	3.36	35	
1,1,2-Trichlorotrifluoroethane (F113)	8.0	0.40 1.5	,,	15.5		108	65-135	3.36	35	
Methylene chloride (Dichloromethane)	17 6.4	0.35	"	7.08		90.7	65-135	3.75 4.14	35	
trans-1,2-Dichloroethene	6. 4 8.1	0.35	"	7.08 8.08		101	65-135	1.96	35	
1,1-Dichloroethane	_		"	8.08 8.24		101	65-135	3.54	35	
cis-1,2-Dichloroethene	8.4 7.2	0.41 0.40	"	8.24		89.5	65-135	2.72	35	
Chloroform	7.2 9.8	0.40	"	9.92		89.5 98.6	65-135	0.554	35	
1,1,1-Trichloroethane			"	9.92		98.6 97.0	65-135	0.815	35	
	11	0.55	"	8.24		95.9		2.21		
1,2-Dichloroethane (EDC) Benzene	7.9	0.41	"	8.24 6.48		95.9 92.6	65-135 65-135	4.69	35 35	
Carbon tetrachloride	6.0	0.16	"	12.8		92.6 97.5		6.39	35	
	12	0.32	"				65-135			
Trichloroethene	11	0.55	,,	11.0		98.1	65-135	1.74	35	
Toluene	7.3	0.76		7.68		95.6	65-135	3.22	35	

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00 Task 8 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 23-Aug-12 15:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH22003 - TO-15										
LCS Dup (EH22003-BSD1)				Prepared &	Analyzed:	20-Aug-12	!			
1,1,2-Trichloroethane	10	0.55	ug/m3	11.1		92.7	65-135	0.537	35	
Tetrachloroethene	13	0.69	"	13.8		91.7	65-135	0.872	35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		94.6	65-135	2.34	35	
Ethylbenzene	9.0	0.44	"	8.84		102	65-135	2.02	35	
m,p-Xylene	19	0.44	"	17.7		106	65-135	0.774	35	
o-Xylene	9.4	0.44	"	8.84		107	65-135	0.140	35	
1,1,2,2-Tetrachloroethane	15	0.70	"	14.0		104	65-135	1.99	35	
Surrogate: 1,2-Dichloroethane-d4	215		"	214		101	76-134			
Surrogate: Toluene-d8	202		"	207		97.6	78-125			
Surrogate: 4-Bromofluorobenzene	406		"	364		111	77-127			

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ081612-14

32001 32nd Ave. South, Suite 100 Project Number: 1196016.00 Task 8 / Yakima, WA Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 23-Aug-12 15:00

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

drv Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A 1,2,4-Trimethylbenzene by EPA TO -14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A 1.3.5-Trimethylbenzene by EPA TO -14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A

Total Xylenes by EPA TO-15 & TO-14A 1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethene by EPA TO-15 & TO-14A 1.2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15 Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinvl chloride by EPA TO -15 & TO-14A 2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15 Methyl tert-butyl ether by EPA TO-15

Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15 Dichlorodifluoromethane by EPA TO-15 & TO-14A Trichlorofluoromethane by EPA TO-15 & TO-14A Naphthalene by EPA TO-15 & TO-14A m&p Xylenes by EPA TO-15 o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15 1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A Carbon disulfide by EPA TO-15

Cyclohexane by EPA TO-15 tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15 Bromodichloromethane by EPA TO-15 & TO-14A

1,4-Dioxane by EPA TO-15

Mobile Geochemistry

Chain of Custody Record

Date:	8-13-12	
WYH&P Project #	KJ081612-14	
Outside Lab		

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159 1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888 Kennedy/Jenks Consultants 32001 322 Ave 5, Suite 100 Collector: Jason Shira - Ecology Client Project # 1960 16.80 Task & josh toppe Kennedy Lenks. com/ty Schreiner @ Kennedyjenks.comphone: 253-835-6408 Turn around time: Geotracker EDF: Yes □ No X Sample Receipt ☐ 8260B ☐ TO-15 BTEX/OXY | TPH gas Intact: Ves \ No ☐ 8260B ☐ TO-15 ☐ 8260B ☐ TO-15 8260B | TO-15 Global ID: Seal Intact: Yes No N/A Cold: ☐ Yes ☐ No ☐ N/A Yes No □ Excel EDD: Temperature: pt Special Instructions: UPS TRACKET (Z 95T TG1 87 4668 4644 eak Check Compound /OC's: SAM, 8260B VOC's: Full List Naphthalene Oxygenates 8015M TPH Lab Work Order # E20 8062 Sample Container Sample Name Field Point Name SOIL/GW SOIL VAPOR/AIR ANALYSIS Date Type Type Time FW-Influent-323 VADOV 400ml show 8-13-12 FW-Inblun-219 FW- Effluent-217 Received by: (Signature) (company) Received by: (Signature) (company) Relinquished by: (Signature)

*Signature constitutes authorization to proceed with analysis and acceptance of condition on back

Sample disposal instruction:

Disposol

Return to client

Pickup

Mobile Geochemistry Inc.

Chain of Custody Record

Date: 8-13-12
WA H&P Project # KJOS/6(2-14

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

Client: Vennedy Jer Address: 3200 3249 Federal Wa Email: Jost Hopp @ Kenne Geotracker EDF: Yes No f Global ID: Yes & No f	ity Jenks ·lom,	Ty Schr	Sample Intact-	Receipt Yes No	ents app		15W 3-8	35-	BTEX/OXY TPH gas	g D ext	_ Fax		□T0-15	SAM B	.0-15		-	TO-15	time:	Sales Sales		Nard DN2		
Special Instructions: Lab Work Order # _E2080			Temper	ature:p	1		Total # of containers	8260B Full List		8015M TPH □ g □ c	418.1 TRPH	VOC's: Full List 8260B	VOC's: Short List/DTSC 8260B	VOC's: SAM, 8260B SAM A	Naphthalene 3260B	Oxygenates 38260B		Ketones 🔲 8260B	er 🔲 8260B	Leak Check Compound 11,1 DFA	Methane	Fixed Gases CO2 CO2	CANH	(/ACH
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total # c	826	SOIL 826		418	00/	9			δ APO			Other		Met	Fixe		
BMS-SS-1-081312	ried roini (dune	250m	1308	8-13-12		6 L Sum	-		JOIL	7011		X			OIL (AI O	MIN	AINA	LIJI	X			289	-5.0
BMS-SS-4-081312		1000ml	1200	1	1	1	1					X								X			329	
Relinquished by: (Signature)		Kenn	(company)	ents	Received by:										(compa	ny)		Date:	14	112	Tin	ne: 09	30	
Relinquished by: (Signature)		157011	(combahy)		Received by:	(Signature)	5								(compa	ny)		Date:	161	/2				

10/2/2012 Ms. Sherri Peterson Kennedy/Jenks Consultants 1191 2nd Ave. Suite 630 Seattle WA 98101

Project Name: WDOE Yakima

Project #: 1196016.00 Task 9 Phase 00

Workorder #: 1209312

Dear Ms. Sherri Peterson

The following report includes the data for the above referenced project for sample(s) received on 9/18/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1209312

Work Order Summary

CLIENT: Ms. Sherri Peterson BILL TO: Ms. Sherri Peterson

Kennedy/Jenks Consultants Kennedy/Jenks Consultants

1191 2nd Ave. 1191 2nd Ave. Suite 630 Suite 630

Seattle, WA 98101 Seattle, WA 98101

PHONE: 206-652-4905 **P.O.** #

FAX: PROJECT # 1196016.00 Task 9 Phase 00 WDOE

DATE RECEIVED: 09/18/2012 CONTACT: Yakima Kelly Buettner

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BMS-M1-091212	Modified TO-15	7.5 "Hg	5 psi
01B	BMS-M1-091212	Modified TO-15	7.5 "Hg	5 psi
02A	BMS-M3-091212	Modified TO-15	7.5 "Hg	5 psi
02B	BMS-M3-091212	Modified TO-15	7.5 "Hg	5 psi
03A	AMB-UPWIND-091212	Modified TO-15	8.0 "Hg	5 psi
03B	AMB-UPWIND-091212	Modified TO-15	8.0 "Hg	5 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

	fleide flages		
CERTIFIED BY:		DATE: 10/02/12	
CERTIFIED DI.			

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Std Full Scan/SIM Kennedy/Jenks Consultants Workorder# 1209312

Three 6 Liter Summa Special (SIM Certified) samples were received on September 18, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to = 40% RSD</td <td>For SIM only: Project specific; default criteria is <!--=30% RSD with 10% of compounds allowed out to </= 40% RSD</td--></td>	For SIM only: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to </= 40% RSD</td
Daily Calibration	+- 30% Difference	For Std. Full Scan: = 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	For SIM only: Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Ethanol was detected at concentrations less than 5 times the reporting limit in sample AMB-UPWIND-091212. Because the preceding sample contained concentrations of Ethanol exceeding the calibration range, the result for this compound in sample AMB-UPWIND-091212 may be biased high.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M1-091212

Lab ID#: 1209312-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.40	0.88	2.0
Chloromethane	0.18	0.40	0.37	0.83
Freon 11	0.18	0.19	1.0	1.1
Ethanol	0.90	82 E	1.7	160 E
Acetone	0.90	9.3	2.1	22
2-Propanol	0.90	7.4	2.2	18
Chloroform	0.18	0.24	0.87	1.2
Heptane	0.18	0.80	0.73	3.3

Client Sample ID: BMS-M1-091212

Lab ID#: 1209312-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	0.090	1.4	0.28	4.4	_
Trichloroethene	0.0054	0.011	0.029	0.058	
Toluene	0.036	1.0	0.13	3.8	
Ethyl Benzene	0.036	0.078	0.16	0.34	
m,p-Xylene	0.072	0.27	0.31	1.2	
o-Xylene	0.036	0.096	0.16	0.42	

Client Sample ID: BMS-M3-091212

Lab ID#: 1209312-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.44	0.88	2.2
Chloromethane	0.18	0.52	0.37	1.1
Freon 11	0.18	0.23	1.0	1.3
Ethanol	0.90	92 E	1.7	170 E
Acetone	0.90	9.5	2.1	23
2-Propanol	0.90	14	2.2	35
Chloroform	0.18	0.22	0.87	1.1
Heptane	0.18	0.44	0.73	1.8

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M3-091212

Lab ID#: 1209312-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	0.090	0.32	0.28	1.0	
Trichloroethene	0.0054	0.0060	0.029	0.032	
Toluene	0.036	0.76	0.13	2.8	
Ethyl Benzene	0.036	0.071	0.16	0.31	
m,p-Xylene	0.072	0.23	0.31	1.0	
o-Xylene	0.036	0.081	0.16	0.35	

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.45	0.90	2.2
Chloromethane	0.18	0.44	0.38	0.90
Freon 11	0.18	0.21	1.0	1.2
Ethanol	0.92	1.7	1.7	3.2
Acetone	0.92	3.1	2.2	7.4

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.092	0.20	0.29	0.64
Toluene	0.037	0.42	0.14	1.6
Ethyl Benzene	0.037	0.043	0.16	0.19
m,p-Xylene	0.073	0.13	0.32	0.58
o-Xylene	0.037	0.051	0.16	0.22

Client Sample ID: BMS-M1-091212 Lab ID#: 1209312-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092113 Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor: 1.79 Date of Analysis: 9/21/12 07:11 PM

Dil. Factor:	1.79 Date of Analysis: 9/21/12 07:11 P			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.40	0.88	2.0
Freon 114	0.18	Not Detected	1.2	Not Detected
Chloromethane	0.18	0.40	0.37	0.83
1,3-Butadiene	0.18	Not Detected	0.40	Not Detected
Bromomethane	0.18	Not Detected	0.70	Not Detected
Chloroethane	0.90	Not Detected	2.4	Not Detected
Freon 11	0.18	0.19	1.0	1.1
Ethanol	0.90	82 E	1.7	160 E
Freon 113	0.18	Not Detected	1.4	Not Detected
Acetone	0.90	9.3	2.1	22
2-Propanol	0.90	7.4	2.2	18
Carbon Disulfide	0.90	Not Detected	2.8	Not Detected
3-Chloropropene	0.90	Not Detected	2.8	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
Hexane	0.18	Not Detected	0.63	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.90	Not Detected	2.6	Not Detected
Tetrahydrofuran	0.90	Not Detected	2.6	Not Detected
Chloroform	0.18	0.24	0.87	1.2
Cyclohexane	0.18	Not Detected	0.62	Not Detected
Carbon Tetrachloride	0.18	Not Detected	1.1	Not Detected
2,2,4-Trimethylpentane	0.90	Not Detected	4.2	Not Detected
Heptane	0.18	0.80	0.73	3.3
1,2-Dichloropropane	0.18	Not Detected	0.83	Not Detected
1,4-Dioxane	0.18	Not Detected	0.64	Not Detected
Bromodichloromethane	0.18	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
4-Methyl-2-pentanone	0.18	Not Detected	0.73	Not Detected
trans-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
2-Hexanone	0.90	Not Detected	3.7	Not Detected
Dibromochloromethane	0.18	Not Detected	1.5	Not Detected
1,2-Dibromoethane (EDB)	0.18	Not Detected	1.4	Not Detected
Chlorobenzene	0.18	Not Detected	0.82	Not Detected
Styrene	0.18	Not Detected	0.76	Not Detected
Bromoform	0.18	Not Detected	1.8	Not Detected
Cumene	0.18	Not Detected	0.88	Not Detected
Propylbenzene	0.18	Not Detected	0.88	Not Detected
4-Ethyltoluene	0.18	Not Detected	0.88	Not Detected
1,3,5-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected
1,2,4-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected
1,3-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.18	Not Detected	0.93	Not Detected
•				

Client Sample ID: BMS-M1-091212 Lab ID#: 1209312-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092113	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 07:11 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.90	Not Detected	6.6	Not Detected
Hexachlorobutadiene	0.90	Not Detected	9.5	Not Detected
1,1,1,2-Tetrachloroethane	0.90	Not Detected	6.1	Not Detected

E = Exceeds instrument calibration range.

Container Type: 6 Liter Summa Special (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: BMS-M1-091212 Lab ID#: 1209312-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092113sim	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 07:11 PM

1.7.5	Date	Of Allaryold: O/E 1/	12 07.1111
Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
0.018	Not Detected	0.046	Not Detected
0.018	Not Detected	0.071	Not Detected
0.036	Not Detected	0.14	Not Detected
0.036	Not Detected	0.14	Not Detected
0.036	Not Detected	0.20	Not Detected
0.090	1.4	0.28	4.4
0.036	Not Detected	0.14	Not Detected
0.0054	0.011	0.029	0.058
0.036	1.0	0.13	3.8
0.036	Not Detected	0.20	Not Detected
0.036	Not Detected	0.24	Not Detected
0.036	0.078	0.16	0.34
0.072	0.27	0.31	1.2
0.036	0.096	0.16	0.42
0.036	Not Detected	0.24	Not Detected
0.18	Not Detected	0.71	Not Detected
0.18	Not Detected	0.64	Not Detected
	Rpt. Limit (ppbv) 0.018 0.018 0.036 0.036 0.036 0.036 0.090 0.036 0.0054 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.072 0.036 0.036 0.036 0.036	Rpt. Limit (ppbv) Amount (ppbv) 0.018 Not Detected 0.018 Not Detected 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected 0.0054 0.011 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected 0.036 0.078 0.072 0.27 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected	Rpt. Limit (ppbv) Amount (ppbv) Rpt. Limit (ug/m3) 0.018 Not Detected 0.046 0.018 Not Detected 0.071 0.036 Not Detected 0.14 0.036 Not Detected 0.14 0.036 Not Detected 0.20 0.090 1.4 0.28 0.036 Not Detected 0.14 0.0054 0.011 0.029 0.036 1.0 0.13 0.036 Not Detected 0.24 0.036 Not Detected 0.24 0.072 0.27 0.31 0.036 0.096 0.16 0.036 Not Detected 0.24 0.18 Not Detected 0.71

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Metnoa Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: BMS-M3-091212 Lab ID#: 1209312-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092115 Date of Collection: 9/12/12 5:57:00 PM
Dil. Factor: 1.79 Date of Analysis: 9/21/12 09:19 PM

Dil. Factor:	1.79	Date	of Analysis: 9/21	/12 09:19 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.44	0.88	2.2
Freon 114	0.18	Not Detected	1.2	Not Detected
Chloromethane	0.18	0.52	0.37	1.1
1,3-Butadiene	0.18	Not Detected	0.40	Not Detected
Bromomethane	0.18	Not Detected	0.70	Not Detected
Chloroethane	0.90	Not Detected	2.4	Not Detected
Freon 11	0.18	0.23	1.0	1.3
Ethanol	0.90	92 E	1.7	170 E
Freon 113	0.18	Not Detected	1.4	Not Detected
Acetone	0.90	9.5	2.1	23
2-Propanol	0.90	14	2.2	35
Carbon Disulfide	0.90	Not Detected	2.8	Not Detected
3-Chloropropene	0.90	Not Detected	2.8	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
Hexane	0.18	Not Detected	0.63	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.90	Not Detected	2.6	Not Detected
Tetrahydrofuran	0.90	Not Detected	2.6	Not Detected
Chloroform	0.18	0.22	0.87	1.1
Cyclohexane	0.18	Not Detected	0.62	Not Detected
Carbon Tetrachloride	0.18	Not Detected	1.1	Not Detected
2,2,4-Trimethylpentane	0.90	Not Detected	4.2	Not Detected
Heptane	0.18	0.44	0.73	1.8
1,2-Dichloropropane	0.18	Not Detected	0.83	Not Detected
1,4-Dioxane	0.18	Not Detected	0.64	Not Detected
Bromodichloromethane	0.18	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
4-Methyl-2-pentanone	0.18	Not Detected	0.73	Not Detected
trans-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
2-Hexanone	0.90	Not Detected	3.7	Not Detected
Dibromochloromethane	0.18	Not Detected	1.5	Not Detected
1,2-Dibromoethane (EDB)	0.18	Not Detected	1.4	Not Detected
Chlorobenzene	0.18	Not Detected	0.82	Not Detected
Styrene	0.18	Not Detected	0.76	Not Detected
Bromoform	0.18	Not Detected	1.8	Not Detected
Cumene	0.18	Not Detected	0.88	Not Detected
Propylbenzene	0.18	Not Detected	0.88	Not Detected
4-Ethyltoluene	0.18	Not Detected	0.88	Not Detected
1,3,5-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected
1,2,4-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected
1,3-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.18	Not Detected	0.93	Not Detected
•				

Client Sample ID: BMS-M3-091212 Lab ID#: 1209312-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092115	Date of Collection: 9/12/12 5:57:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 09:19 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.90	Not Detected	6.6	Not Detected
Hexachlorobutadiene	0.90	Not Detected	9.5	Not Detected
1,1,1,2-Tetrachloroethane	0.90	Not Detected	6.1	Not Detected

E = Exceeds instrument calibration range.

Container Type: 6 Liter Summa Special (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: BMS-M3-091212 Lab ID#: 1209312-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092115sim	Date of Collection: 9/12/12 5:57:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 09:19 PM

			01 7 41 41 y 0101 07 = 17	12 00110 1 111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.071	Not Detected
1,1-Dichloroethane	0.036	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.036	Not Detected	0.20	Not Detected
Benzene	0.090	0.32	0.28	1.0
1,2-Dichloroethane	0.036	Not Detected	0.14	Not Detected
Trichloroethene	0.0054	0.0060	0.029	0.032
Toluene	0.036	0.76	0.13	2.8
1,1,2-Trichloroethane	0.036	Not Detected	0.20	Not Detected
Tetrachloroethene	0.036	Not Detected	0.24	Not Detected
Ethyl Benzene	0.036	0.071	0.16	0.31
m,p-Xylene	0.072	0.23	0.31	1.0
o-Xylene	0.036	0.081	0.16	0.35
1,1,2,2-Tetrachloroethane	0.036	Not Detected	0.24	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected
Methyl tert-butyl ether	0.18	Not Detected	0.64	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Metnoa Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130

${\bf Client\ Sample\ ID:\ AMB-UPWIND-091212}$

Lab ID#: 1209312-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092116	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.83	Date of Analysis: 9/21/12 10:17 PM

Rpt. Limit	Amount	Rpt. Limit	
(ppbv)	(ppbv)	(ug/m3)	Amount (ug/m3)
0.18	0.45	0.90	2.2
0.18	Not Detected	1.3	Not Detected
0.18	0.44	0.38	0.90
0.18	Not Detected	0.40	Not Detected
0.18	Not Detected	0.71	Not Detected
0.92	Not Detected	2.4	Not Detected
0.18	0.21	1.0	1.2
0.92	1.7	1.7	3.2
0.18	Not Detected	1.4	Not Detected
0.92	3.1	2.2	7.4
0.92	Not Detected	2.2	Not Detected
0.92	Not Detected	2.8	Not Detected
0.92	Not Detected	2.9	Not Detected
0.37	Not Detected	1.3	Not Detected
0.18	Not Detected	0.64	Not Detected
0.92	Not Detected	2.7	Not Detected
0.92	Not Detected	2.7	Not Detected
0.18	Not Detected	0.89	Not Detected
0.18	Not Detected	0.63	Not Detected
0.18	Not Detected	1.2	Not Detected
0.92	Not Detected	4.3	Not Detected
0.18	Not Detected	0.75	Not Detected
0.18	Not Detected	0.84	Not Detected
0.18	Not Detected	0.66	Not Detected
0.18	Not Detected	1.2	Not Detected
0.18	Not Detected	0.83	Not Detected
0.18	Not Detected	0.75	Not Detected
0.18	Not Detected	0.83	Not Detected
0.92	Not Detected	3.7	Not Detected
0.18	Not Detected	1.6	Not Detected
0.18	Not Detected	1.4	Not Detected
0.18	Not Detected	0.84	Not Detected
0.18	Not Detected	0.78	Not Detected
0.18	Not Detected	1.9	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	1.1	Not Detected
0.18	Not Detected	1.1	Not Detected
0.18	Not Detected	0.95	Not Detected
	(ppbv) 0.18 0.18 0.18 0.18 0.18 0.18 0.92 0.18 0.92 0.18 0.92 0.92 0.92 0.92 0.92 0.92 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	(ppbv) (ppbv) 0.18 0.45 0.18 Not Detected 0.18 0.44 0.18 Not Detected 0.18 Not Detected 0.92 Not Detected 0.18 0.21 0.92 1.7 0.18 Not Detected 0.92 3.1 0.92 Not Detected 0.92 Not Detected 0.92 Not Detected 0.18 Not Detected 0.18	(ppbv) (ppbv) (ug/m3) 0.18 0.45 0.90 0.18 Not Detected 1.3 0.18 0.44 0.38 0.18 Not Detected 0.40 0.18 Not Detected 0.71 0.92 Not Detected 2.4 0.18 0.21 1.0 0.92 1.7 1.7 0.18 Not Detected 1.4 0.92 1.7 1.7 0.18 Not Detected 2.2 0.92 Not Detected 2.8 0.92 Not Detected 2.8 0.92 Not Detected 2.8 0.92 Not Detected 2.9 0.37 Not Detected 2.7 0.92 Not Detected 2.7 0.18 Not Detected 0.63 0.18 Not Detected 0.63 0.18 Not Detected 0.75 0.18 Not Detected 0.84 0.18 Not Detecte

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092116	Date of Collection: 9/12/12 5:55:00 PM
File Name.	6092110	Date of Conection. 9/12/12 5.55.00 PW
Dil. Factor:	1.83	Date of Analysis: 9/21/12 10:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.92	Not Detected	6.8	Not Detected
Hexachlorobutadiene	0.92	Not Detected	9.8	Not Detected
1.1.1.2-Tetrachloroethane	0.92	Not Detected	6.3	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092116sim	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.83	Date of Analysis: 9/21/12 10:17 PM

	1.00		7 01 7 11 1 ary 5101 67 2 17	12 10111 1 101
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.047	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.072	Not Detected
1,1-Dichloroethane	0.037	Not Detected	0.15	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Benzene	0.092	0.20	0.29	0.64
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0055	Not Detected	0.030	Not Detected
Toluene	0.037	0.42	0.14	1.6
1,1,2-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Tetrachloroethene	0.037	Not Detected	0.25	Not Detected
Ethyl Benzene	0.037	0.043	0.16	0.19
m,p-Xylene	0.073	0.13	0.32	0.58
o-Xylene	0.037	0.051	0.16	0.22
1,1,2,2-Tetrachloroethane	0.037	Not Detected	0.25	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
Methyl tert-butyl ether	0.18	Not Detected	0.66	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: Lab Blank Lab ID#: 1209312-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092111a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM

Dil. Factor:	1.00 Date of Analysis: 9/21/12 05:20			/12 05:20 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 114	0.10	Not Detected	0.70	Not Detected
Chloromethane	0.10	Not Detected	0.21	Not Detected
1,3-Butadiene	0.10	Not Detected	0.22	Not Detected
Bromomethane	0.10	Not Detected	0.39	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Ethanol	0.50	Not Detected	0.94	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
2-Propanol	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	0.50	Not Detected	1.6	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Hexane	0.10	Not Detected	0.35	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
Cyclohexane	0.10	Not Detected	0.34	Not Detected
Carbon Tetrachloride	0.10	Not Detected	0.63	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Heptane	0.10	Not Detected	0.41	Not Detected
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected
1,4-Dioxane	0.10	Not Detected	0.36	Not Detected
Bromodichloromethane	0.10	Not Detected	0.67	Not Detected
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
4-Methyl-2-pentanone	0.10	Not Detected	0.41	Not Detected
trans-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
2-Hexanone	0.50	Not Detected	2.0	Not Detected
Dibromochloromethane	0.10	Not Detected	0.85	Not Detected
1,2-Dibromoethane (EDB)	0.10	Not Detected	0.77	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Styrene	0.10	Not Detected	0.42	Not Detected
Bromoform	0.10	Not Detected	1.0	Not Detected
Cumene	0.10	Not Detected	0.49	Not Detected
Propylbenzene	0.10	Not Detected	0.49	Not Detected
4-Ethyltoluene	0.10	Not Detected	0.49	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,2,4-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
alpha-Chlorotoluene	0.10	Not Detected	0.52	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1209312-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092111a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Hexachlorobutadiene	0.50	Not Detected	5.3	Not Detected
1,1,1,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected

,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1209312-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092111asim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
1,1,2-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
1,1,2,2-Tetrachloroethane	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1209312-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:03 AM

Compound	%Recovery
Freon 12	90
Freon 114	93
Chloromethane	75
1,3-Butadiene	89
Bromomethane	119
Chloroethane	91
Freon 11	88
Ethanol	90
Freon 113	88
Acetone	88
2-Propanol	91
Carbon Disulfide	86
3-Chloropropene	94
Methylene Chloride	84
Hexane	104
2-Butanone (Methyl Ethyl Ketone)	90
Tetrahydrofuran	90
Chloroform	82
Cyclohexane	91
Carbon Tetrachloride	83
2,2,4-Trimethylpentane	98
Heptane	97
1,2-Dichloropropane	82
1,4-Dioxane	89
Bromodichloromethane	84
cis-1,3-Dichloropropene	88
4-Methyl-2-pentanone	101
trans-1,3-Dichloropropene	92
2-Hexanone	98
Dibromochloromethane	86
1,2-Dibromoethane (EDB)	81
Chlorobenzene	88
Styrene	103
Bromoform	86
Cumene	108
Propylbenzene	108
4-Ethyltoluene	110
1,3,5-Trimethylbenzene	110
1,2,4-Trimethylbenzene	121
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	98
alpha-Chlorotoluene	100

Client Sample ID: CCV Lab ID#: 1209312-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:03 AM

Compound	%Recovery
1,2-Dichlorobenzene	97
1,2,4-Trichlorobenzene	104
Hexachlorobutadiene	88
1.1.1.2-Tetrachloroethane	101

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: CCV Lab ID#: 1209312-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092102sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:03 AM

Compound	%Recovery
Vinyl Chloride	91
1,1-Dichloroethene	90
1,1-Dichloroethane	92
cis-1,2-Dichloroethene	98
1,1,1-Trichloroethane	89
Benzene	80
1,2-Dichloroethane	82
Trichloroethene	79
Toluene	90
1,1,2-Trichloroethane	84
Tetrachloroethene	82
Ethyl Benzene	103
m,p-Xylene	114
o-Xylene	117
1,1,2,2-Tetrachloroethane	81
trans-1,2-Dichloroethene	94
Methyl tert-butyl ether	113

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: LCS Lab ID#: 1209312-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:48 AM

Compound	%Recovery
Freon 12	94
Freon 114	93
Chloromethane	79
1,3-Butadiene	93
Bromomethane	126
Chloroethane	102
Freon 11	94
Ethanol	90
Freon 113	94
Acetone	99
2-Propanol	102
Carbon Disulfide	113
3-Chloropropene	116
Methylene Chloride	88
Hexane	115
2-Butanone (Methyl Ethyl Ketone)	94
Tetrahydrofuran	96
Chloroform	91
Cyclohexane	100
Carbon Tetrachloride	92
2,2,4-Trimethylpentane	103
Heptane	94
1,2-Dichloropropane	84
1,4-Dioxane	90
Bromodichloromethane	87
cis-1,3-Dichloropropene	89
4-Methyl-2-pentanone	102
trans-1,3-Dichloropropene	97
2-Hexanone	111
Dibromochloromethane	90
1,2-Dibromoethane (EDB)	86
Chlorobenzene	93
Styrene	108
Bromoform	89
Cumene	114
Propylbenzene	115
4-Ethyltoluene	112
1,3,5-Trimethylbenzene	117
1,2,4-Trimethylbenzene	123
1,3-Dichlorobenzene	106
1,4-Dichlorobenzene	104
alpha-Chlorotoluene	104

Client Sample ID: LCS Lab ID#: 1209312-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:48 AM

Compound	%Recovery
1,2-Dichlorobenzene	102
1,2,4-Trichlorobenzene	104
Hexachlorobutadiene	86
1.1.1.2-Tetrachloroethane	Not Spiked

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: LCSD Lab ID#: 1209312-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 10:39 AM

Compound	%Recovery
Freon 12	93
Freon 114	94
Chloromethane	79
1,3-Butadiene	93
Bromomethane	127
Chloroethane	96
Freon 11	91
Ethanol	87
Freon 113	94
Acetone	100
2-Propanol	101
Carbon Disulfide	114
3-Chloropropene	114
Methylene Chloride	89
Hexane	112
2-Butanone (Methyl Ethyl Ketone)	95
Tetrahydrofuran	98
Chloroform	90
Cyclohexane	102
Carbon Tetrachloride	90
2,2,4-Trimethylpentane	101
Heptane	95
1,2-Dichloropropane	82
1,4-Dioxane	91
Bromodichloromethane	86
cis-1,3-Dichloropropene	90
4-Methyl-2-pentanone	94
rans-1,3-Dichloropropene	96
2-Hexanone	107
Dibromochloromethane	89
1,2-Dibromoethane (EDB)	84
Chlorobenzene	94
Styrene	107
Bromoform	88
Cumene	113
Propylbenzene	114
4-Ethyltoluene	110
1,3,5-Trimethylbenzene	113
1,2,4-Trimethylbenzene	123
1,3-Dichlorobenzene	105
1,4-Dichlorobenzene	101
alpha-Chlorotoluene	102

Client Sample ID: LCSD Lab ID#: 1209312-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 10:39 AM

Compound	%Recovery
1,2-Dichlorobenzene	104
1,2,4-Trichlorobenzene	110
Hexachlorobutadiene	92
1.1.1.2-Tetrachloroethane	Not Spiked

		wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	109	70-130

Client Sample ID: LCS Lab ID#: 1209312-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092103sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:48 AM

Compound	%Recovery
Vinyl Chloride	93
1,1-Dichloroethene	100
1,1-Dichloroethane	96
cis-1,2-Dichloroethene	103
1,1,1-Trichloroethane	96
Benzene	82
1,2-Dichloroethane	86
Trichloroethene	83
Toluene	93
1,1,2-Trichloroethane	87
Tetrachloroethene	84
Ethyl Benzene	106
m,p-Xylene	120
o-Xylene	121
1,1,2,2-Tetrachloroethane	86
trans-1,2-Dichloroethene	110
Methyl tert-butyl ether	117

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	110	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: LCSD Lab ID#: 1209312-06BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092104sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 10:39 AM

Compound	%Recovery
Vinyl Chloride	93
1,1-Dichloroethene	100
1,1-Dichloroethane	95
cis-1,2-Dichloroethene	103
1,1,1-Trichloroethane	95
Benzene	80
1,2-Dichloroethane	83
Trichloroethene	82
Toluene	91
1,1,2-Trichloroethane	87
Tetrachloroethene	84
Ethyl Benzene	105
m,p-Xylene	119
o-Xylene	120
1,1,2,2-Tetrachloroethane	86
trans-1,2-Dichloroethene	110
Methyl tert-butyl ether	118

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	108	70-130
4-Bromofluorobenzene	110	70-130

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with 180 BLUE RAVINE ROAD, SUITE B all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page ____ of ___

Project Manager Sherri Petersan				Project Info:				Turn Around Time:		Lab Use Only Pressurized by:		
Collected by	y: (Print and Sign) <u>Josh Hopp</u> JACA Kennedy Llenks Consultants Email Sveripe	sekon e kennes	<u> </u>	P.O. #				Norma		Date:		
Company	lennedy 1Jenks Constrants Email	Jenks. te WA Zip 9	2000 8103	Project # 1176016.90 Tak 9 Phase 00 Project Name WDOE Yakima			ye 00	Rush		Pressurization Gas:		
	6-753-3409 Fax 206-652											
			D	ate	Time				Canis	ter Pres	ssure/Vac	uum
Lab I.D.	Field Sample I.D. (Location)	Can #	of Co	llection	of Collection	Analyse	s Reques	sted	Initial	Final	Receipt	Final (psi)
กเลเ	BMS-M1-091212	5681	04 1	2/12	0620-1755	Folk List	V06'S 64	70-5	-29	-9.5		
Y	BMS-M3-091212	34487		- Comment	0620-1757	demonor	J	,	-Z8.5	-7		
03AB	AMB-UPWINO-091212	33925			0620-1755				-29	-8.5		
		:										
20 00 00 00 00 00 00 00 00 00 00 00 00 0												
Relinquishe	9 13 12 500 Ced by: (signature) Date/Time	peived by: (signate)	ture)	一人	ie alielia	2 OF AS NO	otes: Please of Jush Hor	ic: Jo	och Hop envely	lenks.ca	results	
Lab	Shipper Name Air Bill #		emp (°C)	Condition	1 C	ustody Se	eals Int	act?	Work	Order #	
Use (1	W/v	[C-	Joean		res No	o (No	nhe	12	20931	2

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ091812-13

Client Project: 1196016.00/Task9/00 / Yakima, WA

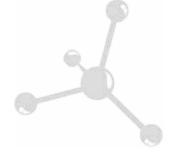
Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 18-Sep-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.


We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely.

Janis Villarreal Laboratory Director

ganis Villarreal

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA Reported:
Project Manager: Mr. Josh Hopp 28-Sep-12 12:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BMS-SS-1-091212	E209068-01	Vapor	12-Sep-12	18-Sep-12
BMS-SS-4-091212	E209068-02	Vapor	12-Sep-12	18-Sep-12

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Soil Gas and Vapor Analysis

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-1-091212 (E209068-01) Vapor	Sampled: 12-Sep-12	Received: 18-	Sep-12						
Helium (LCC)	0.2	0.1	%	1	EI21909	19-Sep-12	19-Sep-12	ASTM D1945M	
BMS-SS-4-091212 (E209068-02) Vapor	Sampled: 12-Sep-12	Received: 18-	Sep-12						
Helium (LCC)	4.8	0.1	%	1	EI21909	19-Sep-12	19-Sep-12	ASTM D1945M	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15

	Donalt	Reporting	***	Dilution	D. (1	D 1		M.d. I	Notes
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
$BMS\text{-}SS\text{-}1\text{-}091212 \ (E209068\text{-}01) \ Vapor$	Sampled: 12-Sep-12	Received: 18	-Sep-12						
Dichlorodifluoromethane (F12)	2.7	2.0	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
Chloromethane	2.3	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	0.84	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	3.7	1.1	"	"	"	"	"	"	
Acetone	55	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	8.5	0.71	"	"	"	"	"	"	
Carbon disulfide	30	0.63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	5.6	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	1.9	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	4.3	0.32	"	"	"	"	"	"	
Carbon tetrachloride	0.95	0.64	"	"	"	"	"	"	
Trichloroethene	ND	1.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	29	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	2.5	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	57	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	6.1	0.88	"	"	"	"	"	"	
•		0.88	"	"	"	"	"	"	
Styrene	1.4	0.86	"	"	"	"	"	"	
Ethylbenzene m,p-Xylene	6.1 21	0.88 0.88	"	"	"		"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-1-091212 (E209068-01) Vapor	Sampled: 12-Sep-12	Received: 18	-Sep-12						
o-Xylene	7.6	0.88	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
Bromoform	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	1.7	1.0	"	"	"	"	"	n .	
1,3,5-Trimethylbenzene	2.0	1.0	"	"	"	"	"	n .	
1,2,4-Trimethylbenzene	7.9	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	n .	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.3	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1	131	"	"	"	"	
Surrogate: Toluene-d8		107 %	78-1		"	"	"	"	
_		102 %	77-1		,,	,,	,,	"	
Surrogate: 4-Bromofluorobenzene		102 %	//-1	127					
BMS-SS-4-091212 (E209068-02) Vapor	Sampled: 12-Sep-12	Received: 18	-Sep-12						
Dichlorodifluoromethane (F12)	2.4	2.0	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
Chloromethane	ND	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.5	1.1	"	"	"	"	"	"	
Acetone	23	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	1300	18	"	50	"	"	"	n .	
Carbon disulfide	ND	0.63	"	2	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	7.1	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	2.4	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
* /	0.94	0.32	"	"	"	"	"	"	
Benzene	U.74								

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-4-091212 (E209068-02) Vapor	Sampled: 12-Sep-12	Received: 18	-Sep-12						
Trichloroethene	ND	1.1	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	21	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	25	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	14	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	4.4	0.88	"	"	"	"	"	"	
m,p-Xylene	11	0.88	"	"	"	"	"	"	
Styrene	2.3	0.86	"	"	"	"	"	"	
o-Xylene	4.5	0.88	"	"	"	"	"	"	
Bromoform	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	2.3	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	1.1	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	3.9	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.3	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	77-1		"	"	"	"	
Surroguie. 4-Dromojiuorovenzene		107 /0	//-1	14/					

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Soil Gas and Vapor Analysis - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI21909 - GC

 Blank (E121909-BLK1)
 Prepared & Analyzed: 19-Sep-12

 Helium (LCC)
 ND
 0.1
 %

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EI22105-BLK1)				Prepared & Analyzed: 19-Sep-12
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Trichlorofluoromethane (F11)	ND	0.56	"	
Acetone	ND	1.2	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
trans-1,2-Dichloroethene	ND	0.40	"	
1,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
1,1,1-Trichloroethane	ND	0.55	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	
Benzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
Trichloroethene	ND	0.55	"	
1,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
cis-1,3-Dichloropropene	ND	0.46	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	
trans-1,3-Dichloropropene	ND	0.46	"	
Toluene	ND	0.76	"	
1,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	0.86	"	
Tetrachloroethene	ND	0.69	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Spike

Source

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22105 - TO-15										
Blank (EI22105-BLK1)				Prepared &	Analyzed:	19-Sep-12				
Chlorobenzene	ND	0.47	ug/m3							
Ethylbenzene	ND	0.44	"							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	0.75	"							
Hexachlorobutadiene	ND	2.1	"							
Surrogate: 1,2-Dichloroethane-d4	230		"	214		107	76-134			
Surrogate: Toluene-d8	208		"	207		100	78-125			
Surrogate: 4-Bromofluorobenzene	392		"	364		107	77-127			
L CC (F122105 DC1)				Prepared: 1	19-Sep-12 <i>A</i>	Analyzed: 2	0-Sen-12			
LCS (EI22105-BS1) Dichlorodifluoromethane (F12)	13	1.0	ug/m3	10.1	3 Sep 12 1	128	65-135		35	
Vinyl chloride	5.3	0.13	ug/III5	5.20		101	65-135		35	
Chloroethane	5.0	0.13	"	5.36		92.5	65-135		35	
Γrichlorofluoromethane (F11)	12	0.56	"	11.3		109	65-135		35	
1,1-Dichloroethene	7.6	0.40	"	8.08		94.5	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	16	0.77	"	15.5		104	65-135		35	
Methylene chloride (Dichloromethane)	6.2	0.77	"	7.08		88.1	65-135		35	
trans-1,2-Dichloroethene	6.9	0.40	"	8.08		85.3	65-135		35	
1-Dichloroethane	7.8	0.40	"	8.24		94.7	65-135		35	
cis-1,2-Dichloroethene	6.2	0.40	"	8.00		77.0	65-135		35	
Chloroform	9.7	0.40	"	9.92		98.1	65-135		35	
1,1,1-Trichloroethane	11	0.25	"	11.1		95.8	65-135		35	
.,.,	7.7	0.55		11.1		,,,,	05 155		55	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI22105 - TO-15										
LCS (EI22105-BS1)				Prepared: 1	19-Sep-12 A	Analyzed: 2	0-Sep-12			
Benzene	5.4	0.16	ug/m3	6.48		84.0	65-135		35	
Carbon tetrachloride	13	0.32	"	12.8		104	65-135		35	
Trichloroethene	9.9	0.55	"	11.0		89.9	65-135		35	
Toluene	6.5	0.76	"	7.68		85.3	65-135		35	
1,1,2-Trichloroethane	9.3	0.55	"	11.1		83.2	65-135		35	
Tetrachloroethene	12	0.69	"	13.8		83.4	65-135		35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		90.1	65-135		35	
Ethylbenzene	7.7	0.44	"	8.84		86.9	65-135		35	
m,p-Xylene	17	0.44	"	17.7		95.7	65-135		35	
o-Xylene	8.6	0.44	"	8.84		96.8	65-135		35	
1,1,2,2-Tetrachloroethane	13	0.70	"	14.0		92.2	65-135		35	
Surrogate: 1,2-Dichloroethane-d4	231		"	214		108	76-134			
Surrogate: Toluene-d8	207		"	207		99.9	78-125			
Surrogate: 4-Bromofluorobenzene	416		"	364		114	77-127			
				D J. 1	IO S 12 A	l d. 2	0 9 12			
LCS Dup (EI22105-BSD1)					19-Sep-12 A					
Dichlorodifluoromethane (F12)	13	1.0	ug/m3	10.1		127	65-135	1.52	35	
Vinyl chloride	5.6	0.13	"	5.20		107	65-135	5.41	35	
Chloroethane	5.6	0.27	"	5.36		105	65-135	12.6	35	
Trichlorofluoromethane (F11)	12	0.56	"	11.3		110	65-135	0.501	35	
1,1-Dichloroethene	7.8	0.40	"	8.08		96.3	65-135	1.93	35	
1,1,2-Trichlorotrifluoroethane (F113)	16	0.77	"	15.5		105	65-135	1.04	35	
Methylene chloride (Dichloromethane)	6.6	0.35	"	7.08		93.6	65-135	6.03	35	
trans-1,2-Dichloroethene	7.4	0.40	"	8.08		91.7	65-135	7.14	35	
1,1-Dichloroethane	8.2	0.41	"	8.24		99.6	65-135	4.98	35	
cis-1,2-Dichloroethene	6.8	0.40	"	8.00		84.5	65-135	9.34	35	
Chloroform	9.9	0.25	"	9.92		99.4	65-135	1.26	35	
1,1,1-Trichloroethane	11	0.55	"	11.1		99.2	65-135	3.41	35	
1,2-Dichloroethane (EDC)	7.8	0.41	"	8.24		95.2	65-135	1.48	35	
Benzene	5.7	0.16	"	6.48		87.4	65-135	3.96	35	
Carbon tetrachloride	13	0.32	"	12.8		103	65-135	0.769	35	
Trichloroethene	9.9	0.55	"	11.0		90.3	65-135	0.386	35	
Toluene	6.6	0.76	"	7.68		86.4	65-135	1.33	35	

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22105 - TO-15										
LCS Dup (EI22105-BSD1)				Prepared:	19-Sep-12 A	Analyzed: 2	0-Sep-12			
1,1,2-Trichloroethane	10	0.55	ug/m3	11.1		89.8	65-135	7.62	35	
Tetrachloroethene	12	0.69	"	13.8		85.6	65-135	2.59	35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		92.7	65-135	2.89	35	
Ethylbenzene	7.9	0.44	"	8.84		89.2	65-135	2.60	35	
m,p-Xylene	17	0.44	"	17.7		97.4	65-135	1.83	35	
o-Xylene	8.6	0.44	"	8.84		97.5	65-135	0.717	35	
1,1,2,2-Tetrachloroethane	13	0.70	"	14.0		91.2	65-135	1.03	35	
Surrogate: 1,2-Dichloroethane-d4	227		"	214		106	76-134			
Surrogate: Toluene-d8	215		"	207		104	78-125			
Surrogate: 4-Bromofluorobenzene	409		"	364		112	77-127			

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ091812-13

Project Number: 1196016.00/Task9/00 / Yakima, WA 32001 32nd Ave. South, Suite 100 Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 28-Sep-12 12:27

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

drv Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A 1,2,4-Trimethylbenzene by EPA TO -14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A 1.3.5-Trimethylbenzene by EPA TO -14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A Total Xylenes by EPA TO-15 & TO-14A 1,1,1-Trichloroethane by EPA TO-15 & TO-14A

1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A 1.2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15 Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinvl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15 Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15 Dichlorodifluoromethane by EPA TO-15 & TO-14A Trichlorofluoromethane by EPA TO-15 & TO-14A Naphthalene by EPA TO-15 & TO-14A m&p Xylenes by EPA TO-15 o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15 1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A Carbon disulfide by EPA TO-15

1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15 tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15 Bromodichloromethane by EPA TO-15 & TO-14A

11	1	Mobile
H	9	Geochemistry
0 1	C	Inc.

Chain of Custody Record

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

	Date:	9	12	12
Ay	H&P Project #	kJ.	0	91812-13
*	Outside Lab			

Client: Kennely J Address: 3200 3200 Federal Wa Email: poshhopp & Ke	enks Consulta Ale S. Svite y, WA 9800 unredy Jenks con	nts 100 101			Lo	(441	6L+ 1961 3-83	W	A			00)			Conta					of pp			
Geofracker EDF: Yes No Global ID: Excel EDD: Yes No Special Instructions: Lab Work Order # E2090			Intact: [Seat Into	PRECEIPT Yes Not: Yes Yes Noture:	lo		# of containers		☐ BTEX/OXY ☐ TPH gas	8015M TPH	418.1 TRPH	VOC's: Full List 8260B TO-15	VOC's: Short List/DTSC ☐ 82608 ☐ TO-15	VOC's: SAM, 8260B SAM A SAM B	Naphthalene	0xygenates	TPHv gas	(etones 8260B 10-15	Other 82608 10-15	eak Check Compound 1,1 DFATHER	Methane	Fixed Gases CO2 CO2 N2	CANT	VACA
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total #	-	SOIL		4	>	>	> S	OIL	/APO	R/AIR	ANA	LYSI	S	-			
BMS-SS-1-091212		200m	1605	9/12/12		6L simona						X								X			57004	1-4.
BHS-SS-4-091212		200ml	1431	1	Į,	V	ł					X								X			291	-4.1
Relinquished by (Symeture)			фограску)		Received by	: (Signature)									(compo	Ny)		Date			Tin			
Relinquished by: (Signature) Relinquished by: (Signature)			(company)			(Signature)	>								(сатра Ин (сотра	ny)		Date:	1/13	12		150 115 115		

10/2/2012 Ms. Sherri Peterson Kennedy/Jenks Consultants 1191 2nd Ave. Suite 630 Seattle WA 98101

Project Name: WDOE Yakima

Project #: 1196016.00 Task 9 Phase 00

Workorder #: 1209312

Dear Ms. Sherri Peterson

The following report includes the data for the above referenced project for sample(s) received on 9/18/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1209312

Work Order Summary

CLIENT: Ms. Sherri Peterson BILL TO: Ms. Sherri Peterson

Kennedy/Jenks Consultants Kennedy/Jenks Consultants

1191 2nd Ave. 1191 2nd Ave. Suite 630 Suite 630

Seattle, WA 98101 Seattle, WA 98101

PHONE: 206-652-4905 **P.O.** #

FAX: PROJECT # 1196016.00 Task 9 Phase 00 WDOE

DATE RECEIVED: 09/18/2012 CONTACT: Yakima Kelly Buettner

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BMS-M1-091212	Modified TO-15	7.5 "Hg	5 psi
01B	BMS-M1-091212	Modified TO-15	7.5 "Hg	5 psi
02A	BMS-M3-091212	Modified TO-15	7.5 "Hg	5 psi
02B	BMS-M3-091212	Modified TO-15	7.5 "Hg	5 psi
03A	AMB-UPWIND-091212	Modified TO-15	8.0 "Hg	5 psi
03B	AMB-UPWIND-091212	Modified TO-15	8.0 "Hg	5 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

	fleide flages		
CERTIFIED BY:		DATE: 10/02/12	
CERTIFIED DI.			

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Std Full Scan/SIM Kennedy/Jenks Consultants Workorder# 1209312

Three 6 Liter Summa Special (SIM Certified) samples were received on September 18, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to = 40% RSD</td <td>For SIM only: Project specific; default criteria is <!--=30% RSD with 10% of compounds allowed out to </= 40% RSD</td--></td>	For SIM only: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to </= 40% RSD</td
Daily Calibration	+- 30% Difference	For Std. Full Scan: = 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	For SIM only: Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Ethanol was detected at concentrations less than 5 times the reporting limit in sample AMB-UPWIND-091212. Because the preceding sample contained concentrations of Ethanol exceeding the calibration range, the result for this compound in sample AMB-UPWIND-091212 may be biased high.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M1-091212

Lab ID#: 1209312-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.40	0.88	2.0
Chloromethane	0.18	0.40	0.37	0.83
Freon 11	0.18	0.19	1.0	1.1
Ethanol	0.90	82 E	1.7	160 E
Acetone	0.90	9.3	2.1	22
2-Propanol	0.90	7.4	2.2	18
Chloroform	0.18	0.24	0.87	1.2
Heptane	0.18	0.80	0.73	3.3

Client Sample ID: BMS-M1-091212

Lab ID#: 1209312-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	0.090	1.4	0.28	4.4	_
Trichloroethene	0.0054	0.011	0.029	0.058	
Toluene	0.036	1.0	0.13	3.8	
Ethyl Benzene	0.036	0.078	0.16	0.34	
m,p-Xylene	0.072	0.27	0.31	1.2	
o-Xylene	0.036	0.096	0.16	0.42	

Client Sample ID: BMS-M3-091212

Lab ID#: 1209312-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.44	0.88	2.2
Chloromethane	0.18	0.52	0.37	1.1
Freon 11	0.18	0.23	1.0	1.3
Ethanol	0.90	92 E	1.7	170 E
Acetone	0.90	9.5	2.1	23
2-Propanol	0.90	14	2.2	35
Chloroform	0.18	0.22	0.87	1.1
Heptane	0.18	0.44	0.73	1.8

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: BMS-M3-091212

Lab ID#: 1209312-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	0.090	0.32	0.28	1.0	
Trichloroethene	0.0054	0.0060	0.029	0.032	
Toluene	0.036	0.76	0.13	2.8	
Ethyl Benzene	0.036	0.071	0.16	0.31	
m,p-Xylene	0.072	0.23	0.31	1.0	
o-Xylene	0.036	0.081	0.16	0.35	

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.45	0.90	2.2
Chloromethane	0.18	0.44	0.38	0.90
Freon 11	0.18	0.21	1.0	1.2
Ethanol	0.92	1.7	1.7	3.2
Acetone	0.92	3.1	2.2	7.4

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.092	0.20	0.29	0.64
Toluene	0.037	0.42	0.14	1.6
Ethyl Benzene	0.037	0.043	0.16	0.19
m,p-Xylene	0.073	0.13	0.32	0.58
o-Xylene	0.037	0.051	0.16	0.22

Client Sample ID: BMS-M1-091212 Lab ID#: 1209312-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092113 Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor: 1.79 Date of Analysis: 9/21/12 07:11 PM

Dil. Factor:	1.79	Date	Date of Analysis: 9/21/12 07:11 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.18	0.40	0.88	2.0	
Freon 114	0.18	Not Detected	1.2	Not Detected	
Chloromethane	0.18	0.40	0.37	0.83	
1,3-Butadiene	0.18	Not Detected	0.40	Not Detected	
Bromomethane	0.18	Not Detected	0.70	Not Detected	
Chloroethane	0.90	Not Detected	2.4	Not Detected	
Freon 11	0.18	0.19	1.0	1.1	
Ethanol	0.90	82 E	1.7	160 E	
Freon 113	0.18	Not Detected	1.4	Not Detected	
Acetone	0.90	9.3	2.1	22	
2-Propanol	0.90	7.4	2.2	18	
Carbon Disulfide	0.90	Not Detected	2.8	Not Detected	
3-Chloropropene	0.90	Not Detected	2.8	Not Detected	
Methylene Chloride	0.36	Not Detected	1.2	Not Detected	
Hexane	0.18	Not Detected	0.63	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.90	Not Detected	2.6	Not Detected	
Tetrahydrofuran	0.90	Not Detected	2.6	Not Detected	
Chloroform	0.18	0.24	0.87	1.2	
Cyclohexane	0.18	Not Detected	0.62	Not Detected	
Carbon Tetrachloride	0.18	Not Detected	1.1	Not Detected	
2,2,4-Trimethylpentane	0.90	Not Detected	4.2	Not Detected	
Heptane	0.18	0.80	0.73	3.3	
1,2-Dichloropropane	0.18	Not Detected	0.83	Not Detected	
1,4-Dioxane	0.18	Not Detected	0.64	Not Detected	
Bromodichloromethane	0.18	Not Detected	1.2	Not Detected	
cis-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected	
4-Methyl-2-pentanone	0.18	Not Detected	0.73	Not Detected	
trans-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected	
2-Hexanone	0.90	Not Detected	3.7	Not Detected	
Dibromochloromethane	0.18	Not Detected	1.5	Not Detected	
1,2-Dibromoethane (EDB)	0.18	Not Detected	1.4	Not Detected	
Chlorobenzene	0.18	Not Detected	0.82	Not Detected	
Styrene	0.18	Not Detected	0.76	Not Detected	
Bromoform	0.18	Not Detected	1.8	Not Detected	
Cumene	0.18	Not Detected	0.88	Not Detected	
Propylbenzene	0.18	Not Detected	0.88	Not Detected	
4-Ethyltoluene	0.18	Not Detected	0.88	Not Detected	
1,3,5-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected	
1,2,4-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected	
1,3-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected	
1,4-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected	
alpha-Chlorotoluene	0.18	Not Detected	0.93	Not Detected	

Client Sample ID: BMS-M1-091212 Lab ID#: 1209312-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092113	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 07:11 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.90	Not Detected	6.6	Not Detected
Hexachlorobutadiene	0.90	Not Detected	9.5	Not Detected
1,1,1,2-Tetrachloroethane	0.90	Not Detected	6.1	Not Detected

E = Exceeds instrument calibration range.

Container Type: 6 Liter Summa Special (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: BMS-M1-091212 Lab ID#: 1209312-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092113sim	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 07:11 PM

1.7.5	Date	Of Allaryold: O/E 1/	12 07.1111
Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
0.018	Not Detected	0.046	Not Detected
0.018	Not Detected	0.071	Not Detected
0.036	Not Detected	0.14	Not Detected
0.036	Not Detected	0.14	Not Detected
0.036	Not Detected	0.20	Not Detected
0.090	1.4	0.28	4.4
0.036	Not Detected	0.14	Not Detected
0.0054	0.011	0.029	0.058
0.036	1.0	0.13	3.8
0.036	Not Detected	0.20	Not Detected
0.036	Not Detected	0.24	Not Detected
0.036	0.078	0.16	0.34
0.072	0.27	0.31	1.2
0.036	0.096	0.16	0.42
0.036	Not Detected	0.24	Not Detected
0.18	Not Detected	0.71	Not Detected
0.18	Not Detected	0.64	Not Detected
	Rpt. Limit (ppbv) 0.018 0.018 0.036 0.036 0.036 0.036 0.090 0.036 0.0054 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.072 0.036 0.036 0.036 0.036	Rpt. Limit (ppbv) Amount (ppbv) 0.018 Not Detected 0.018 Not Detected 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected 0.0054 0.011 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected 0.036 0.078 0.072 0.27 0.036 Not Detected 0.036 Not Detected 0.036 Not Detected	Rpt. Limit (ppbv) Amount (ppbv) Rpt. Limit (ug/m3) 0.018 Not Detected 0.046 0.018 Not Detected 0.071 0.036 Not Detected 0.14 0.036 Not Detected 0.14 0.036 Not Detected 0.20 0.090 1.4 0.28 0.036 Not Detected 0.14 0.0054 0.011 0.029 0.036 1.0 0.13 0.036 Not Detected 0.24 0.036 Not Detected 0.24 0.072 0.27 0.31 0.036 0.096 0.16 0.036 Not Detected 0.24 0.18 Not Detected 0.71

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Metnoa Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: BMS-M3-091212 Lab ID#: 1209312-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092115 Date of Collection: 9/12/12 5:57:00 PM
Dil. Factor: 1.79 Date of Analysis: 9/21/12 09:19 PM

il. Factor: 1.79 Date of Analysis: 9/21/12 09		/12 09:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.44	0.88	2.2
Freon 114	0.18	Not Detected	1.2	Not Detected
Chloromethane	0.18	0.52	0.37	1.1
1,3-Butadiene	0.18	Not Detected	0.40	Not Detected
Bromomethane	0.18	Not Detected	0.70	Not Detected
Chloroethane	0.90	Not Detected	2.4	Not Detected
Freon 11	0.18	0.23	1.0	1.3
Ethanol	0.90	92 E	1.7	170 E
Freon 113	0.18	Not Detected	1.4	Not Detected
Acetone	0.90	9.5	2.1	23
2-Propanol	0.90	14	2.2	35
Carbon Disulfide	0.90	Not Detected	2.8	Not Detected
3-Chloropropene	0.90	Not Detected	2.8	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
Hexane	0.18	Not Detected	0.63	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.90	Not Detected	2.6	Not Detected
Tetrahydrofuran	0.90	Not Detected	2.6	Not Detected
Chloroform	0.18	0.22	0.87	1.1
Cyclohexane	0.18	Not Detected	0.62	Not Detected
Carbon Tetrachloride	0.18	Not Detected	1.1	Not Detected
2,2,4-Trimethylpentane	0.90	Not Detected	4.2	Not Detected
Heptane	0.18	0.44	0.73	1.8
1,2-Dichloropropane	0.18	Not Detected	0.83	Not Detected
1,4-Dioxane	0.18	Not Detected	0.64	Not Detected
Bromodichloromethane	0.18	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
4-Methyl-2-pentanone	0.18	Not Detected	0.73	Not Detected
trans-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
2-Hexanone	0.90	Not Detected	3.7	Not Detected
Dibromochloromethane	0.18	Not Detected	1.5	Not Detected
1,2-Dibromoethane (EDB)	0.18	Not Detected	1.4	Not Detected
Chlorobenzene	0.18	Not Detected	0.82	Not Detected
Styrene	0.18	Not Detected	0.76	Not Detected
Bromoform	0.18	Not Detected	1.8	Not Detected
Cumene	0.18	Not Detected	0.88	Not Detected
Propylbenzene	0.18	Not Detected	0.88	Not Detected
4-Ethyltoluene	0.18	Not Detected	0.88	Not Detected
1,3,5-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected
1,2,4-Trimethylbenzene	0.18	Not Detected	0.88	Not Detected
1,3-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.18	Not Detected	0.93	Not Detected
•				

Client Sample ID: BMS-M3-091212 Lab ID#: 1209312-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092115	Date of Collection: 9/12/12 5:57:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 09:19 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.90	Not Detected	6.6	Not Detected
Hexachlorobutadiene	0.90	Not Detected	9.5	Not Detected
1,1,1,2-Tetrachloroethane	0.90	Not Detected	6.1	Not Detected

E = Exceeds instrument calibration range.

Container Type: 6 Liter Summa Special (SIM Certified)

		Metnoa
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: BMS-M3-091212 Lab ID#: 1209312-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092115sim	Date of Collection: 9/12/12 5:57:00 PM
Dil. Factor:	1.79	Date of Analysis: 9/21/12 09:19 PM

			01 7 41 41 y 0101 07 = 17	12 00110 1 111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.071	Not Detected
1,1-Dichloroethane	0.036	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.036	Not Detected	0.20	Not Detected
Benzene	0.090	0.32	0.28	1.0
1,2-Dichloroethane	0.036	Not Detected	0.14	Not Detected
Trichloroethene	0.0054	0.0060	0.029	0.032
Toluene	0.036	0.76	0.13	2.8
1,1,2-Trichloroethane	0.036	Not Detected	0.20	Not Detected
Tetrachloroethene	0.036	Not Detected	0.24	Not Detected
Ethyl Benzene	0.036	0.071	0.16	0.31
m,p-Xylene	0.072	0.23	0.31	1.0
o-Xylene	0.036	0.081	0.16	0.35
1,1,2,2-Tetrachloroethane	0.036	Not Detected	0.24	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected
Methyl tert-butyl ether	0.18	Not Detected	0.64	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Metnoa Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130

${\bf Client\ Sample\ ID:\ AMB-UPWIND-091212}$

Lab ID#: 1209312-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092116	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.83	Date of Analysis: 9/21/12 10:17 PM

Rpt. Limit	Amount	Rpt. Limit	
(ppbv)	(ppbv)	(ug/m3)	Amount (ug/m3)
0.18	0.45	0.90	2.2
0.18	Not Detected	1.3	Not Detected
0.18	0.44	0.38	0.90
0.18	Not Detected	0.40	Not Detected
0.18	Not Detected	0.71	Not Detected
0.92	Not Detected	2.4	Not Detected
0.18	0.21	1.0	1.2
0.92	1.7	1.7	3.2
0.18	Not Detected	1.4	Not Detected
0.92	3.1	2.2	7.4
0.92	Not Detected	2.2	Not Detected
0.92	Not Detected	2.8	Not Detected
0.92	Not Detected	2.9	Not Detected
0.37	Not Detected	1.3	Not Detected
0.18	Not Detected	0.64	Not Detected
0.92	Not Detected	2.7	Not Detected
0.92	Not Detected	2.7	Not Detected
0.18	Not Detected	0.89	Not Detected
0.18	Not Detected	0.63	Not Detected
0.18	Not Detected	1.2	Not Detected
0.92	Not Detected	4.3	Not Detected
0.18	Not Detected	0.75	Not Detected
0.18	Not Detected	0.84	Not Detected
0.18	Not Detected	0.66	Not Detected
0.18	Not Detected	1.2	Not Detected
0.18	Not Detected	0.83	Not Detected
0.18	Not Detected	0.75	Not Detected
0.18	Not Detected	0.83	Not Detected
0.92	Not Detected	3.7	Not Detected
0.18	Not Detected	1.6	Not Detected
0.18	Not Detected	1.4	Not Detected
0.18	Not Detected	0.84	Not Detected
0.18	Not Detected	0.78	Not Detected
0.18	Not Detected	1.9	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	0.90	Not Detected
0.18	Not Detected	1.1	Not Detected
0.18	Not Detected	1.1	Not Detected
0.18	Not Detected	0.95	Not Detected
	(ppbv) 0.18 0.18 0.18 0.18 0.18 0.18 0.92 0.18 0.92 0.18 0.92 0.92 0.92 0.92 0.92 0.92 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	(ppbv) (ppbv) 0.18 0.45 0.18 Not Detected 0.18 0.44 0.18 Not Detected 0.18 Not Detected 0.92 Not Detected 0.18 0.21 0.92 1.7 0.18 Not Detected 0.92 3.1 0.92 Not Detected 0.92 Not Detected 0.92 Not Detected 0.18 Not Detected 0.18	(ppbv) (ppbv) (ug/m3) 0.18 0.45 0.90 0.18 Not Detected 1.3 0.18 0.44 0.38 0.18 Not Detected 0.40 0.18 Not Detected 0.71 0.92 Not Detected 2.4 0.18 0.21 1.0 0.92 1.7 1.7 0.18 Not Detected 1.4 0.92 1.7 1.7 0.18 Not Detected 2.2 0.92 Not Detected 2.8 0.92 Not Detected 2.8 0.92 Not Detected 2.8 0.92 Not Detected 2.9 0.37 Not Detected 2.7 0.92 Not Detected 2.7 0.18 Not Detected 0.63 0.18 Not Detected 0.63 0.18 Not Detected 0.75 0.18 Not Detected 0.84 0.18 Not Detecte

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092116	Date of Collection: 9/12/12 5:55:00 PM
File Name.	6092110	Date of Conection. 9/12/12 5.55.00 PW
Dil. Factor:	1.83	Date of Analysis: 9/21/12 10:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.92	Not Detected	6.8	Not Detected
Hexachlorobutadiene	0.92	Not Detected	9.8	Not Detected
1.1.1.2-Tetrachloroethane	0.92	Not Detected	6.3	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: AMB-UPWIND-091212

Lab ID#: 1209312-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092116sim	Date of Collection: 9/12/12 5:55:00 PM
Dil. Factor:	1.83	Date of Analysis: 9/21/12 10:17 PM

	1.00	Date 01 7 maily 0101 07217 12 10111		12 10111 1 101
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.047	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.072	Not Detected
1,1-Dichloroethane	0.037	Not Detected	0.15	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Benzene	0.092	0.20	0.29	0.64
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0055	Not Detected	0.030	Not Detected
Toluene	0.037	0.42	0.14	1.6
1,1,2-Trichloroethane	0.037	Not Detected	0.20	Not Detected
Tetrachloroethene	0.037	Not Detected	0.25	Not Detected
Ethyl Benzene	0.037	0.043	0.16	0.19
m,p-Xylene	0.073	0.13	0.32	0.58
o-Xylene	0.037	0.051	0.16	0.22
1,1,2,2-Tetrachloroethane	0.037	Not Detected	0.25	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
Methyl tert-butyl ether	0.18	Not Detected	0.66	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: Lab Blank Lab ID#: 1209312-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092111a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM

Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM			
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	0.10	Not Detected	0.49	Not Detected	
Freon 114	0.10	Not Detected	0.70	Not Detected	
Chloromethane	0.10	Not Detected	0.21	Not Detected	
1,3-Butadiene	0.10	Not Detected	0.22	Not Detected	
Bromomethane	0.10	Not Detected	0.39	Not Detected	
Chloroethane	0.50	Not Detected	1.3	Not Detected	
Freon 11	0.10	Not Detected	0.56	Not Detected	
Ethanol	0.50	Not Detected	0.94	Not Detected	
Freon 113	0.10	Not Detected	0.77	Not Detected	
Acetone	0.50	Not Detected	1.2	Not Detected	
2-Propanol	0.50	Not Detected	1.2	Not Detected	
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected	
3-Chloropropene	0.50	Not Detected	1.6	Not Detected	
Methylene Chloride	0.20	Not Detected	0.69	Not Detected	
Hexane	0.10	Not Detected	0.35	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected	
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected	
Chloroform	0.10	Not Detected	0.49	Not Detected	
Cyclohexane	0.10	Not Detected	0.34	Not Detected	
Carbon Tetrachloride	0.10	Not Detected	0.63	Not Detected	
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected	
Heptane	0.10	Not Detected	0.41	Not Detected	
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected	
1,4-Dioxane	0.10	Not Detected	0.36	Not Detected	
Bromodichloromethane	0.10	Not Detected	0.67	Not Detected	
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected	
4-Methyl-2-pentanone	0.10	Not Detected	0.41	Not Detected	
trans-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected	
2-Hexanone	0.50	Not Detected	2.0	Not Detected	
Dibromochloromethane	0.10	Not Detected	0.85	Not Detected	
1,2-Dibromoethane (EDB)	0.10	Not Detected	0.77	Not Detected	
Chlorobenzene	0.10	Not Detected	0.46	Not Detected	
Styrene	0.10	Not Detected	0.42	Not Detected	
Bromoform	0.10	Not Detected	1.0	Not Detected	
Cumene	0.10	Not Detected	0.49	Not Detected	
Propylbenzene	0.10	Not Detected	0.49	Not Detected	
4-Ethyltoluene	0.10	Not Detected	0.49	Not Detected	
1,3,5-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected	
1,2,4-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected	
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected	
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected	
alpha-Chlorotoluene	0.10	Not Detected	0.52	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1209312-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092111a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Hexachlorobutadiene	0.50	Not Detected	5.3	Not Detected
1,1,1,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected

,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1209312-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e092111asim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 05:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
1,1,2-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
1,1,2,2-Tetrachloroethane	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1209312-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:03 AM

Compound	%Recovery
Freon 12	90
Freon 114	93
Chloromethane	75
1,3-Butadiene	89
Bromomethane	119
Chloroethane	91
Freon 11	88
Ethanol	90
Freon 113	88
Acetone	88
2-Propanol	91
Carbon Disulfide	86
3-Chloropropene	94
Methylene Chloride	84
Hexane	104
2-Butanone (Methyl Ethyl Ketone)	90
Tetrahydrofuran	90
Chloroform	82
Cyclohexane	91
Carbon Tetrachloride	83
2,2,4-Trimethylpentane	98
Heptane	97
1,2-Dichloropropane	82
1,4-Dioxane	89
Bromodichloromethane	84
cis-1,3-Dichloropropene	88
4-Methyl-2-pentanone	101
trans-1,3-Dichloropropene	92
2-Hexanone	98
Dibromochloromethane	86
1,2-Dibromoethane (EDB)	81
Chlorobenzene	88
Styrene	103
Bromoform	86
Cumene	108
Propylbenzene	108
4-Ethyltoluene	110
1,3,5-Trimethylbenzene	110
1,2,4-Trimethylbenzene	121
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	98
alpha-Chlorotoluene	100

Client Sample ID: CCV Lab ID#: 1209312-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:03 AM

Compound	%Recovery
1,2-Dichlorobenzene	97
1,2,4-Trichlorobenzene	104
Hexachlorobutadiene	88
1.1.1.2-Tetrachloroethane	101

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: CCV Lab ID#: 1209312-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092102sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:03 AM

Compound	%Recovery
Vinyl Chloride	91
1,1-Dichloroethene	90
1,1-Dichloroethane	92
cis-1,2-Dichloroethene	98
1,1,1-Trichloroethane	89
Benzene	80
1,2-Dichloroethane	82
Trichloroethene	79
Toluene	90
1,1,2-Trichloroethane	84
Tetrachloroethene	82
Ethyl Benzene	103
m,p-Xylene	114
o-Xylene	117
1,1,2,2-Tetrachloroethane	81
trans-1,2-Dichloroethene	94
Methyl tert-butyl ether	113

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: LCS Lab ID#: 1209312-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:48 AM

Compound	%Recovery
Freon 12	94
Freon 114	93
Chloromethane	79
1,3-Butadiene	93
Bromomethane	126
Chloroethane	102
Freon 11	94
Ethanol	90
Freon 113	94
Acetone	99
2-Propanol	102
Carbon Disulfide	113
3-Chloropropene	116
Methylene Chloride	88
Hexane	115
2-Butanone (Methyl Ethyl Ketone)	94
Tetrahydrofuran	96
Chloroform	91
Cyclohexane	100
Carbon Tetrachloride	92
2,2,4-Trimethylpentane	103
Heptane	94
1,2-Dichloropropane	84
1,4-Dioxane	90
Bromodichloromethane	87
cis-1,3-Dichloropropene	89
4-Methyl-2-pentanone	102
trans-1,3-Dichloropropene	97
2-Hexanone	111
Dibromochloromethane	90
1,2-Dibromoethane (EDB)	86
Chlorobenzene	93
Styrene	108
Bromoform	89
Cumene	114
Propylbenzene	115
4-Ethyltoluene	112
1,3,5-Trimethylbenzene	117
1,2,4-Trimethylbenzene	123
1,3-Dichlorobenzene	106
1,4-Dichlorobenzene	104
alpha-Chlorotoluene	104

Client Sample ID: LCS Lab ID#: 1209312-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:48 AM

Compound	%Recovery
1,2-Dichlorobenzene	102
1,2,4-Trichlorobenzene	104
Hexachlorobutadiene	86
1.1.1.2-Tetrachloroethane	Not Spiked

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCSD Lab ID#: 1209312-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 10:39 AM

Compound	%Recovery
Freon 12	93
Freon 114	94
Chloromethane	79
1,3-Butadiene	93
Bromomethane	127
Chloroethane	96
Freon 11	91
Ethanol	87
Freon 113	94
Acetone	100
2-Propanol	101
Carbon Disulfide	114
3-Chloropropene	114
Methylene Chloride	89
Hexane	112
2-Butanone (Methyl Ethyl Ketone)	95
Tetrahydrofuran	98
Chloroform	90
Cyclohexane	102
Carbon Tetrachloride	90
2,2,4-Trimethylpentane	101
Heptane	95
1,2-Dichloropropane	82
1,4-Dioxane	91
Bromodichloromethane	86
cis-1,3-Dichloropropene	90
4-Methyl-2-pentanone	94
rans-1,3-Dichloropropene	96
2-Hexanone	107
Dibromochloromethane	89
1,2-Dibromoethane (EDB)	84
Chlorobenzene	94
Styrene	107
Bromoform	88
Cumene	113
Propylbenzene	114
4-Ethyltoluene	110
1,3,5-Trimethylbenzene	113
1,2,4-Trimethylbenzene	123
1,3-Dichlorobenzene	105
1,4-Dichlorobenzene	101
alpha-Chlorotoluene	102

Client Sample ID: LCSD Lab ID#: 1209312-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 10:39 AM

Compound	%Recovery
1,2-Dichlorobenzene	104
1,2,4-Trichlorobenzene	110
Hexachlorobutadiene	92
1.1.1.2-Tetrachloroethane	Not Spiked

		wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	109	70-130

Client Sample ID: LCS Lab ID#: 1209312-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092103sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 09:48 AM

Compound	%Recovery
Vinyl Chloride	93
1,1-Dichloroethene	100
1,1-Dichloroethane	96
cis-1,2-Dichloroethene	103
1,1,1-Trichloroethane	96
Benzene	82
1,2-Dichloroethane	86
Trichloroethene	83
Toluene	93
1,1,2-Trichloroethane	87
Tetrachloroethene	84
Ethyl Benzene	106
m,p-Xylene	120
o-Xylene	121
1,1,2,2-Tetrachloroethane	86
trans-1,2-Dichloroethene	110
Methyl tert-butyl ether	117

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	110	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: LCSD Lab ID#: 1209312-06BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e092104sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/12 10:39 AM

Compound	%Recovery
Vinyl Chloride	93
1,1-Dichloroethene	100
1,1-Dichloroethane	95
cis-1,2-Dichloroethene	103
1,1,1-Trichloroethane	95
Benzene	80
1,2-Dichloroethane	83
Trichloroethene	82
Toluene	91
1,1,2-Trichloroethane	87
Tetrachloroethene	84
Ethyl Benzene	105
m,p-Xylene	119
o-Xylene	120
1,1,2,2-Tetrachloroethane	86
trans-1,2-Dichloroethene	110
Methyl tert-butyl ether	118

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	108	70-130
4-Bromofluorobenzene	110	70-130

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with 180 BLUE RAVINE ROAD, SUITE B all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page ____ of ___

allowed by a local throat Method				Project Info:					Turn Around Time:		Lab Use Only Pressurized by: Date:		
	6-753-3409 Fax 206-652			Project	NameW00E	E Yakima		sp	pecify	N ₂ He			
			D	ate	Time				Canis	ter Pres	ssure/Vac	uum	
Lab I.D.	Field Sample I.D. (Location)	Can #	of Co	llection	of Collection	Analyse	s Reques	sted	Initial	Final	Receipt	Final (psi)	
กเลเ	BMS-M1-091212	5681	04 1	2/12	0620-1755	Folk List	V06'S 64	70-5	-29	-9.5			
Y	BMS-M3-091212	34487		- Comment	0620-1757	demonor	J	,	-Z8.5	-7			
03AB	AMB-UPWINO-091212	33925			0620-1755				-29	-8.5			
		:											
20 00 00 00 00 00 00 00 00 00 00 00 00 0													
Relinquishe	ed by: (signature) Date/Time	peived by: (signate)	ture)	一人	ie alielia	2 OF AS NO	otes: Please of Jush Hor	ic: Jo	och Hop envely	lerks.ca	results		
Lab	Shipper Name Air Bill #		emp (°C)	Condition	1 C	ustody Se	eals Int	act?	Work	Order #		
Use (1	W/v	[C-	Joean		res No	o (No	nhe	12	20931	2	

Mr. Josh Hopp Kennedy/Jenks Consultants - Washington 32001 32nd Ave. South, Suite 100 Federal Way, WA 98001

H&P Project: KJ091812-13

Client Project: 1196016.00/Task9/00 / Yakima, WA

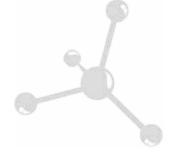
Dear Mr. Josh Hopp:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 18-Sep-12 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- · Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.


We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely.

Janis Villarreal Laboratory Director

ganis Villarreal

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA Reported:
Project Manager: Mr. Josh Hopp 28-Sep-12 12:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BMS-SS-1-091212	E209068-01	Vapor	12-Sep-12	18-Sep-12
BMS-SS-4-091212	E209068-02	Vapor	12-Sep-12	18-Sep-12

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Soil Gas and Vapor Analysis

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-1-091212 (E209068-01) Vapor	Sampled: 12-Sep-12	Received: 18-	Sep-12						
Helium (LCC)	0.2	0.1	%	1	EI21909	19-Sep-12	19-Sep-12	ASTM D1945M	
BMS-SS-4-091212 (E209068-02) Vapor	Sampled: 12-Sep-12	Received: 18-	Sep-12						
Helium (LCC)	4.8	0.1	%	1	EI21909	19-Sep-12	19-Sep-12	ASTM D1945M	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15

	Donalt	Reporting	***	Dilution	D. (1	D 1		M.d. I	Notes
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
$BMS\text{-}SS\text{-}1\text{-}091212 \ (E209068\text{-}01) \ Vapor$	Sampled: 12-Sep-12	Received: 18	-Sep-12						
Dichlorodifluoromethane (F12)	2.7	2.0	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
Chloromethane	2.3	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	0.84	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	3.7	1.1	"	"	"	"	"	"	
Acetone	55	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	8.5	0.71	"	"	"	"	"	"	
Carbon disulfide	30	0.63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	5.6	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	1.9	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	4.3	0.32	"	"	"	"	"	"	
Carbon tetrachloride	0.95	0.64	"	"	"	"	"	"	
Trichloroethene	ND	1.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	29	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	2.5	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	57	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	6.1	0.88	"	"	"	"	"	"	
•		0.88	"	"	"	"	"	"	
Styrene	1.4	0.86	"	"	"	"	"	"	
Ethylbenzene m,p-Xylene	6.1 21	0.88 0.88	"	"	"		"	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-1-091212 (E209068-01) Vapor	Sampled: 12-Sep-12	Received: 18	-Sep-12						
o-Xylene	7.6	0.88	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
Bromoform	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	1.7	1.0	"	"	"	"	"	n .	
1,3,5-Trimethylbenzene	2.0	1.0	"	"	"	"	"	n .	
1,2,4-Trimethylbenzene	7.9	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	n .	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.3	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1	131	"	"	"	"	
Surrogate: Toluene-d8		107 %	78-1		"	"	"	"	
_		102 %	77-1		,,	,,	,,	"	
Surrogate: 4-Bromofluorobenzene		102 %	//-1	127					
BMS-SS-4-091212 (E209068-02) Vapor	Sampled: 12-Sep-12	Received: 18	-Sep-12						
Dichlorodifluoromethane (F12)	2.4	2.0	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
Chloromethane	ND	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.5	1.1	"	"	"	"	"	"	
Acetone	23	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	1300	18	"	50	"	"	"	n .	
Carbon disulfide	ND	0.63	"	2	"	"	"	n .	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	7.1	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	2.4	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
* /	0.94	0.32	"	"	"	"	"	"	
Benzene	U.74								

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
BMS-SS-4-091212 (E209068-02) Vapor	Sampled: 12-Sep-12	Received: 18	-Sep-12						
Trichloroethene	ND	1.1	ug/m3	2	EI22105	19-Sep-12	20-Sep-12	EPA TO-15	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	21	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	25	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	14	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	4.4	0.88	"	"	"	"	"	"	
m,p-Xylene	11	0.88	"	"	"	"	"	"	
Styrene	2.3	0.86	"	"	"	"	"	"	
o-Xylene	4.5	0.88	"	"	"	"	"	"	
Bromoform	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	2.3	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	1.1	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	3.9	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.3	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	77-1		"	"	"	"	
Surroguie. 4-Dromojiuorovenzene		107 /0	//-1	14/					

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Soil Gas and Vapor Analysis - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI21909 - GC

 Blank (E121909-BLK1)
 Prepared & Analyzed: 19-Sep-12

 Helium (LCC)
 ND
 0.1
 %

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EI22105-BLK1)				Prepared & Analyzed: 19-Sep-12
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Trichlorofluoromethane (F11)	ND	0.56	"	
Acetone	ND	1.2	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
trans-1,2-Dichloroethene	ND	0.40	"	
1,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
1,1,1-Trichloroethane	ND	0.55	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	
Benzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
Trichloroethene	ND	0.55	"	
1,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
cis-1,3-Dichloropropene	ND	0.46	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	
trans-1,3-Dichloropropene	ND	0.46	"	
Toluene	ND	0.76	"	
1,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	0.86	"	
Tetrachloroethene	ND	0.69	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Spike

Source

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22105 - TO-15										
Blank (EI22105-BLK1)				Prepared &	Analyzed:	19-Sep-12				
Chlorobenzene	ND	0.47	ug/m3							
Ethylbenzene	ND	0.44	"							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	0.75	"							
Hexachlorobutadiene	ND	2.1	"							
Surrogate: 1,2-Dichloroethane-d4	230		"	214		107	76-134			
Surrogate: Toluene-d8	208		"	207		100	78-125			
Surrogate: 4-Bromofluorobenzene	392		"	364		107	77-127			
L CC (F122105 DC1)				Prepared: 1	19-Sep-12 <i>A</i>	Analyzed: 2	0-Sen-12			
LCS (EI22105-BS1) Dichlorodifluoromethane (F12)	13	1.0	ug/m3	10.1	3 Sep 12 1	128	65-135		35	
Vinyl chloride	5.3	0.13	ug/III5	5.20		101	65-135		35	
Chloroethane	5.0	0.13	"	5.36		92.5	65-135		35	
Γrichlorofluoromethane (F11)	12	0.56	"	11.3		109	65-135		35	
1,1-Dichloroethene	7.6	0.40	"	8.08		94.5	65-135		35	
1,1,2-Trichlorotrifluoroethane (F113)	16	0.77	"	15.5		104	65-135		35	
Methylene chloride (Dichloromethane)	6.2	0.77	"	7.08		88.1	65-135		35	
trans-1,2-Dichloroethene	6.9	0.40	"	8.08		85.3	65-135		35	
1-Dichloroethane	7.8	0.40	"	8.24		94.7	65-135		35	
cis-1,2-Dichloroethene	6.2	0.40	"	8.00		77.0	65-135		35	
Chloroform	9.7	0.40	"	9.92		98.1	65-135		35	
1,1,1-Trichloroethane	11	0.25	"	11.1		95.8	65-135		35	
.,.,	7.7	0.55		11.1		,,,,	05 155		55	

H&P Mobile Geochemistry Inc.

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI22105 - TO-15										
LCS (EI22105-BS1)				Prepared: 1	19-Sep-12 A	Analyzed: 2	0-Sep-12			
Benzene	5.4	0.16	ug/m3	6.48		84.0	65-135		35	
Carbon tetrachloride	13	0.32	"	12.8		104	65-135		35	
Trichloroethene	9.9	0.55	"	11.0		89.9	65-135		35	
Toluene	6.5	0.76	"	7.68		85.3	65-135		35	
1,1,2-Trichloroethane	9.3	0.55	"	11.1		83.2	65-135		35	
Tetrachloroethene	12	0.69	"	13.8		83.4	65-135		35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		90.1	65-135		35	
Ethylbenzene	7.7	0.44	"	8.84		86.9	65-135		35	
m,p-Xylene	17	0.44	"	17.7		95.7	65-135		35	
o-Xylene	8.6	0.44	"	8.84		96.8	65-135		35	
1,1,2,2-Tetrachloroethane	13	0.70	"	14.0		92.2	65-135		35	
Surrogate: 1,2-Dichloroethane-d4	231		"	214		108	76-134			
Surrogate: Toluene-d8	207		"	207		99.9	78-125			
Surrogate: 4-Bromofluorobenzene	416		"	364		114	77-127			
				D J. 1	IO S 12 A	l d. 2	0 9 12			
LCS Dup (EI22105-BSD1)					19-Sep-12 A					
Dichlorodifluoromethane (F12)	13	1.0	ug/m3	10.1		127	65-135	1.52	35	
Vinyl chloride	5.6	0.13	"	5.20		107	65-135	5.41	35	
Chloroethane	5.6	0.27	"	5.36		105	65-135	12.6	35	
Trichlorofluoromethane (F11)	12	0.56	"	11.3		110	65-135	0.501	35	
1,1-Dichloroethene	7.8	0.40	"	8.08		96.3	65-135	1.93	35	
1,1,2-Trichlorotrifluoroethane (F113)	16	0.77	"	15.5		105	65-135	1.04	35	
Methylene chloride (Dichloromethane)	6.6	0.35	"	7.08		93.6	65-135	6.03	35	
trans-1,2-Dichloroethene	7.4	0.40	"	8.08		91.7	65-135	7.14	35	
1,1-Dichloroethane	8.2	0.41	"	8.24		99.6	65-135	4.98	35	
cis-1,2-Dichloroethene	6.8	0.40	"	8.00		84.5	65-135	9.34	35	
Chloroform	9.9	0.25	"	9.92		99.4	65-135	1.26	35	
1,1,1-Trichloroethane	11	0.55	"	11.1		99.2	65-135	3.41	35	
1,2-Dichloroethane (EDC)	7.8	0.41	"	8.24		95.2	65-135	1.48	35	
Benzene	5.7	0.16	"	6.48		87.4	65-135	3.96	35	
Carbon tetrachloride	13	0.32	"	12.8		103	65-135	0.769	35	
Trichloroethene	9.9	0.55	"	11.0		90.3	65-135	0.386	35	
Toluene	6.6	0.76	"	7.68		86.4	65-135	1.33	35	

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington

Project: KJ091812-13

32001 32nd Ave. South, Suite 100 Federal Way, WA 98001 Project Number: 1196016.00/Task9/00 / Yakima, WA

Project Manager: Mr. Josh Hopp

Reported: 28-Sep-12 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI22105 - TO-15										
LCS Dup (EI22105-BSD1)				Prepared:	19-Sep-12 A	Analyzed: 2	0-Sep-12			
1,1,2-Trichloroethane	10	0.55	ug/m3	11.1		89.8	65-135	7.62	35	
Tetrachloroethene	12	0.69	"	13.8		85.6	65-135	2.59	35	
1,1,1,2-Tetrachloroethane	13	0.70	"	14.0		92.7	65-135	2.89	35	
Ethylbenzene	7.9	0.44	"	8.84		89.2	65-135	2.60	35	
m,p-Xylene	17	0.44	"	17.7		97.4	65-135	1.83	35	
o-Xylene	8.6	0.44	"	8.84		97.5	65-135	0.717	35	
1,1,2,2-Tetrachloroethane	13	0.70	"	14.0		91.2	65-135	1.03	35	
Surrogate: 1,2-Dichloroethane-d4	227		"	214		106	76-134			
Surrogate: Toluene-d8	215		"	207		104	78-125			
Surrogate: 4-Bromofluorobenzene	409		"	364		112	77-127			

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Kennedy/Jenks Consultants - Washington Project: KJ091812-13

Project Number: 1196016.00/Task9/00 / Yakima, WA 32001 32nd Ave. South, Suite 100 Reported: Federal Way, WA 98001 Project Manager: Mr. Josh Hopp 28-Sep-12 12:27

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

drv Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A 1,2,4-Trimethylbenzene by EPA TO -14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A 1.3.5-Trimethylbenzene by EPA TO -14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A Total Xylenes by EPA TO-15 & TO-14A 1,1,1-Trichloroethane by EPA TO-15 & TO-14A

1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A 1.2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A

Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A

Chloroethane by EPA TO-15 Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15

cis-1,2-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15

trans-1,2-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A

Vinvl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

Hexane by EPA TO-15 Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15 Dichlorodifluoromethane by EPA TO-15 & TO-14A Trichlorofluoromethane by EPA TO-15 & TO-14A Naphthalene by EPA TO-15 & TO-14A m&p Xylenes by EPA TO-15 o-Xylene by EPA TO-15

1,3-Butadiene by EPA TO-15 1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A Carbon disulfide by EPA TO-15

1,4-Dioxane by EPA TO-15 Cyclohexane by EPA TO-15 tert-Butyl Alcohol by EPA TO-15

1,3-Dichlorobenzene by EPA TO-15 & TO-14A Heptane by EPA TO-15 Bromodichloromethane by EPA TO-15 & TO-14A

11	1	Mobile
H	9	Geochemistry
0 1	C	Inc.

Chain of Custody Record

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159

1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

	Date:	9	12	12
Ay	H&P Project #	kJ.	0	91812-13
*	Outside Lab			

Client: Kennedy J Address: 3200 3200 Federal Wa Email: poshhopp & Ke	Collector: JoSL Hopy Client Project # 196016. 90 Torsk 9 00 Project Contact: Location: Yakima, WA Phone: 440253-835-6408 Fax: Turn ground											time: St			Hopp Handard									
Geofracker EDF: Yes No Global ID: Excel EDD: Yes No Special Instructions: Lab Work Order # E2090			Intact: [Seat Into	PRECEIPT Yes Not: Yes Yes Noture:	lo		# of containers		☐ BTEX/OXY ☐ TPH gas	8015M TPH	418.1 TRPH	VOC's: Full List 8260B TO-15	VOC's: Short List/DTSC ☐ 82608 ☐ TO-15	VOC's: SAM, 8260B SAM A SAM B	Naphthalene	0xygenates	TPHv gas	(etones 8260B 10-15	Other 82608 10-15	eak Check Compound 1,1 DFATHER	Methane	Fixed Gases CO2 CO2 N2	CANT	VACA
Sample Name	Field Point Name	Purge Vol	Time	Date	Sample Type	Container Type	Total #	-	SOIL		4	>	>	> S	OIL	/APO	R/AIR	ANA	LYSI	S	-			
BMS-SS-1-091212		200m	1605	9/12/12		6L simona						X								X			57004	1-4.
BHS-SS-4-091212		200ml	1431	1	Į,	V	ł					X								X			291	-4.1
Relinquished by (Symeture)			фограску)		Received by	: (Signature)									(compo	Ny)		Date			Tin			
Relinquished by: (Signature) Relinquished by: (Signature)			(company)		Received by (Signature) Received by (Signature) (company) (company)				(compa	ny)		Date:			150 115									

Kennedy/Jenks Consultants

Subslab and Soil Vapor Survey Log Sheet

Project Name / Loca Client: Dept. of 1 Samplers Name: Weather / Site Condi	tions:	Suny	+ clean	41)°F	15°F,	light	wird	from 1	west	Depart	ure Time:	1800			
Sample ID	Installation Time	Canister/ Controller No.	Coll	mple ection	Probe Depth				Vacuum re (in Hg)	Tracer	Gas Concen	ntrations	Shut-In	Probe Vacuum		
DAK CO U MIDIO		 	Start Time	End Time	Prob		Purge (r	Sar	Flow (mL	Initial	Final	Initial Shroud	Final Shroud Conc. (%)	Sample (%)	Test <100" H₂O	Pressure
BUS-55-4-091212	0835	291	1347	1431	SS	2'	200ml	6L	200m/m	-27"	-5"	83.5%		3%	7	=
MS-SS-1-091212	0745	57009	1523	1605	SS	2'	200m	61	200	-27	-5	一	77.8%	1500ppm		
Note: reinstall	ed pr	mous	Moni	0/.hg	points	toda	M VSIV	n VA	POR P	NS fro	m Cox	Colvin	· Loca	tions v	ere all	aved
	-	le er				nous	odor h	d' 5.J.	shb sh	oil val	m Cox Our sav	pling.	Helium	leaks	stil de	fected
obe Installation Mater	ials	F	Probe Co	onstruc	tion Spe	cificatio	ne		***************************************							-
Filter:	none				Borehole		5 /8	1817	_			1/4-inch tubin	g=5ml er ded a	1	1/8-inch tubin	ig = 1 ml

Kennedy/Jenks Consultants

Subslab and Soil Vapor Survey Log Sheet

Project Name / Local			h Fra			te / B	udele	My SI	rse [by Care		Date:	8-1	13-12		
	Ecolog		Field Re			s): '	Josh 1	ason	L Shir	a l	Arr	ival Time:	0530	一概	So	
Samplers Name:	Josh	Hopp	4 1	<u> 50h S</u>	L.YA						Depart	ure Time:	186	90		
Weather / Site Condi	tions:	Clear	اتم ز	0 - 00	<u>'F</u>											
Sample ID	Installation Time	Canister/ Controller No.		nple ection	nd me nd me				Summa Vacuum Agin (and and and and and and and and and and				re (in Hg) Tracer Gas Con	ntrations	Shut-In Test <100"	Probe Vacuum
	Inst	Contr	Start Time	End Time			Purge (n	Sar Volum	Flow (mL	Initial	Final	Initial Shroud Conc. (%)	Final Shroud Conc. (%)	Sample (%)	H ₂ O	Pressure <100" H ₂ C
BMS-SS-4-081312		329/102	1120	1200	SS	2'	*	66	Some	-2手	-5	goza		10,000		
												83.6		Z-31/6		
Note:	Susper	ted 1.	rak in	prob	const	rotign	· Sh	poed	"KWK	ed" po	tron a	f prope	* rote	sted		
	San	role f	or heli	m le	nk lese	1666556	nne 10 (Client	nt	he field	t. Sol	f prope	C/10 Sh	royd		
	con	centa	ton h	igh d	wing	ample	9 50	that	2%	Sample	Consen	tration	75 K	s than		
	5%	of s	houd	Conce	ntra	vac.	P					7,41,	.5 (0.	3 (3		
BMS-55-1-081312		289/026	1225	1308	SS	2'	250mL	66	(50ml	-28.5	-5	97.1%	90.7%	3150pp	~ /	
						af	01							14		
Note	: Sh	4 M	test i	itially	failed,	but se	curina	4 Che	kha a	Corole	67Hmas	Passed.				
				J		^	J		7	7	J					<u> </u>
									-							
															"	
Probe Installation Mate	erials		Probe C			ecification	ons					1' 1/4-inch tubi			1' 1/8-inch tubi	-
Filter:	\ \ \ \ \		U n			e Diam:				Field Not	es: 😽	250 + 2	50 + 500	OML =	IL top	٦(
Tubing:		phst. 2				d Pack:		None								
Termination:	-	11 2		Soil (Gas San	d Pack:		None	· · · · · ·							
		\	/a/ve													

Ecology Former Frank Wear Site (Yakima, WA) FIELD INDOOR AIR SAMPLING LOG

Project No.: <u>1196016.00</u>
Date: 9-12-12
Sampling Location ID: Learning Center
Sampling Personnel:
Weather conditions (Note approximate wind speed/direction, rain, and temperature): Sunm + cler ~ 40°F-75°F, with light wind from west
Number of canisters placed in building: 2 inside, 1 octside
Location of canister(s) within building: M1 located in NE play area a top a Shelf along the north wall; M3 located in SE play area a top a small table; ambient sample collected from exterior play area outside. Location of duplicate sample(s), if taken: - none -

FC00153	~70°F		70		+ -	(in. Hg)
	` '	ļ	- 29	0620	1755	-9:5
FC00333	~70°F		-28.5	0620	1757	-7
Fc00808	~45- 70°F		-29	0620	1755	-8.5
	Fc00808	FC00808 245-	Fc00808 295-	FL00808 29529	FL00808 29529 0620	FL00808 29529 0620 1755

Comments (Odors present, smoking, windows/doors open during sampling, etc.): windows were closed; HVAC + fans running, and cleaning with blench throughout the day by occupants.

Ecology Former Frank Wear Site (Yakima, WA) FIELD INDOOR AIR SAMPLING LOG

roject No.: <u>1196016.00</u>
ate: 8-13-12
ampling Location ID: Buckle My Shoe Early Learning Center
ampling Personnel:
eather conditions (Note approximate wind speed/direction, rain, and temperature):(\lambda / 70°F - 95°F \\ \text{W-wind} 5-10n-pL
imber of canisters placed in building: 2 inside, one outside
cation of canister(s) within building: M1 located in NE play area atop a shelf along N-Wall, M3 located in SE play area atop a small table; ambient sample collected outside in fenced play area.
cation of duplicate sample(s), if taken: hone

Sample ID	Canister serial no.	Flow controller serial no.	Temp. at sample	LAB initial vacuum of canister (in.	FIELD Initial vacuum of canister	Sample start time	Sample end time	Final vacuum of canister (in. Hg)
BMS-M1-081312		F(00980	~75°F		-32	0608	1752	-9
BMS-M3-081312	34006	F(00808	275°F	_	-31	0608	152- 174614	-8.5
AMB-UPWIND-08/312	05707	0000006675	70-100°F		-28	0612	1755	-8.5
3								

Comments (Odors pre	esent, smoking, win	dows/doors oper	n during sampli	ng, etc.): Win	dows closed:	HVAC +	fans v	ัพผพล
during Samplin	g; Occasional	cleaning with	bleach on	sufaces (as	disinfectant) by 0(1)	LOGILK	dussa
_ the day		J				5 25 040	Turis	7
J			·					

Ecology Former Frank Wear Site (Yakiı	ma. WA)
FIELD INDOOR AIR SAMPLING LOG	,,

Project No.: <u>11960</u>	16.00						
Date: 7 6 17							
Sampling Location I	D: Early Learn	Shoe ning Center					
Sampling Personnel	· Josh	7					
Weather conditions	(Note approxima	ate wind speed/dire	ection, rain, and	temperature):	"F - 90"F, clay	r slaves,	
Number of canisters	placed in buildir	ng: 2 instal	le one outs	ide			
Location of canister(s) within building	j: M2 located play area ato	in northeast p a Small	play area ato table war cev	er post of room	N-wall;	ala callected
Location of duplicate	sample(s), if tal	ken: Nohe				outside in the	i fenced
Sample ID	Canister serial no.	Flow controller serial no.	Temp. LAB in		Sample Sample	e Final vacuum	play area

Sample ID	Canister serial no.	Flow controller serial no.	Temp. at sample	LAB initial vacuum of canister (in.	FIELD Initial vacuum of canister	Sample start time	Sample end time	Final vacuum of canister (in. Hg)
BMS-M1-070612	926	FC00457	100-100E	_	-29	0615	1745	- \$
BMS-M3-070612	12009	FL000 98	900 - 10. E		-30	0615	1745	-7
AMB-UPWIND-070612	12689	6845	600 - 90°F		-28.5	0617	1749	- 7.5

Comments (Odors present, smoking,	, windows/doors op	en during sampling, e	tc.):			
windows closed, HUAC 4				deama	w bleach	——— <u>—</u>
Surfaces (as disinfectant)	during the day	J - 1 J ·		1		
	J					