

Metals Concentrations in Sediments of Lakes and Wetlands in the Upper Columbia River Watershed: Lead, Zinc, Arsenic, Cadmium, Antimony, and Mercury

May 2013 Publication No. 13-03-012

Publication and Contact Information

This report is available on the Department of Ecology's website at <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1303012.html</u>

Data for this project are available at Ecology's Environmental Information Management (EIM) website <u>www.ecy.wa.gov/eim/index.htm</u>. Search User Study ID, AJOH0066.

The Activity Tracker Code for this study is 13-038.

For more information contact:

Publications Coordinator Environmental Assessment Program P.O. Box 47600, Olympia, WA 98504-7600 Phone: (360) 407-6764

Washington State Department of Ecology - www.ecy.wa.gov

- o Headquarters, Olympia (360) 407-6000
- o Northwest Regional Office, Bellevue (425) 649-7000
- o Southwest Regional Office, Olympia (360) 407-6300
- o Central Regional Office, Yakima (509) 575-2490
- o Eastern Regional Office, Spokane (509) 329-3400

Cover photo: Sediment Box Corer, Cedar Lake, September 11, 2012 (Brendan Dowling, Ecology Eastern Regional Office)

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

If you need this document in a format for the visually impaired, call 360-407-6764. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Metals Concentrations in Sediments of Lakes and Wetlands in the Upper Columbia River Watershed: Lead, Zinc, Arsenic, Cadmium, Antimony, and Mercury

by

Art Johnson, Michael Friese, and Randy Coots Environmental Assessment Program Washington State Department of Ecology Olympia, Washington 98504-7710

and

John Roland, Brendan Dowling, and Charles Gruenenfelder Toxics Cleanup Program Washington State Department of Ecology Spokane, Washington 99205-1295

Water Resource Inventory Area (WRIA) and 8-digit Hydrologic Unit Code (HUC) numbers for the study area:

- WRIA 61
- HUC 17020003
- •

This page is purposely left blank

Table of Contents

Page
List of Figures and Tables
Abstract
Acknowledgements
Background9
Objectives of Study
Samples Collected
Sampling Methods
Chemical Analysis
Data Quality
Sediment Dating Calculations
Results and Discussion20Sediment Physical Characteristics20Metals Concentrations22Surface Sediments22Variability within Lakes27Subsurface Sediments28Chronology of Metals Deposition31Cedar Lake31Sediment Profiles from Other Areas36Comparison with Sediment Quality Guidelines41Northeast Washington Spatial Patterns43Sediment Toxicity50Sources of Contamination52
Summary and Conclusions
Recommendations
References
Appendices61Appendix A. Maps of Sediment Sampling Sites for 201262Appendix B. Data Reviews and Data Reports for 2012 Sediment Samples73Appendix C. Metals, Lead-2010, and Percent Solids Data for Cedar Lake Box.107Core Collected September 11, 2012107Appendix D. Estimates of Sedimentation Rates in Cedar, Black, and Wenatchee.108Lakes.108Appendix E. Brief Summary of Smelter Histories.109

Appendix F. Cadmium Concentrations in Pacific Northwest Lichens as Pe	ercent of
Clean-Site Threshold Values	111
Appendix G. Acronyms and Abbreviations	112

List of Figures and Tables

Figures

Figure 1.	Study Area for Lakes and Wetlands Sampled in 201212	2
	Lakes and Wetlands where Sediments Samples were Collected in 2012 in Relation to Lakes Sampled in 2009-201013	3
Figure 3.	Percent Fines and Total Organic Carbon in Sediment Samples	1
Figure 4.	2012 Study Area Waterbodies with the Highest Metals Concentrations23	3
Figure 5.	Waterbodies Ranked by Metals Concentrations in the Surface Sediments25	5
-	Metals Enrichment Factors for Surface vs. Subsurface Sediments in Core	
	Samples	
Figure 7.	Sedimentation Rate Estimates for Cedar Lake	1
-	Chronology of Metals Deposition in Cedar Lake	
Figure 9.	Location of Sediment Cores Compared for Lead and Mercury	7
Figure 10.	Lead Profiles in Sediment Cores from Cedar, Black, and Wenatchee Lakes	8
Figure 11.	Mercury Profiles in Sediment Cores from Cedar, Black, and Wenatchee Lakes	9
Figure 12.	Exceedances of Sediment Quality Guidelines in Surface Sediments42	2
Figure 13.	Lead Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012	4
Figure 14.	Zinc Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012	5
Figure 15.	Arsenic Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012	б
Figure 16.	Cadmium Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012	7
Figure 17.	Antimony Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012	8
Figure 18.	Mercury Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012	9
Figure 19.	Exceedance Factors for Lead Compared to Probable Effect Concentrations (PEC), Lake and Wetland Sediments of Northeast Washington, 2009-2012	0
Figure 20.	Exceedance Factors for Cadmium Compared to Probable Effect Concentration (PEC), Lake and Wetland Sediments of Northeast Washington, 2009-2012	1

C	Lead Concentrations in Sediments of Upper Columbia River Lakes and Wetlands, Sampled 2009-2012, Compared to Historical Record of Forest Damage from Trail SO ₂ Air Emissions in 1930.	53
C	Cadmium Concentrations in Sediments of Upper Columbia River Lakes and Wetlands, Sampled 2009-2012, Compared to Historical Record of Forest Damage from Trail SO ₂ Air Emissions in 1930.	54

Tables

Table 1.	Sediment Samples Collected in 2012.	14
Table 2.	Sample Containers, Preservation, and Holding Times.	16
Table 3.	Analytical Methods and Laboratories	17
Table 4.	Summary of Results on Laboratory Duplicate (split) Samples (relative percent difference).	18
Table 5.	Grain Size and Total Organic Carbon Content of Sediment Samples (%)	20
Table 6.	Metals Concentrations in Surface Sediments.	22
Table 7.	Statistical Summary for Metals in Surface Sediments: 2012 Waterbodies	24
Table 8.	Comparison of Replicate Shallow Sediment Samples	27
Table 9.	Metals Concentrations in Cedar Lake Sediment Grabs Collected in 2012 and 2010	28
Table 10	Depth-Specific Metals Concentrations in Sediment Core Samples	29
Table 11	. Metals Enrichment Factors for Surface vs. Subsurface Sediments in Core Samples.	30
Table 12	2. Pre-Industrial-Core-Measured Average Concentrations and Enrichment Factors for Lead and Mercury in the Cedar Lake Sediment Core	36
Table 13	Concentrations and Enrichment Factors for Lead and Mercury in Sediment Cores from Cedar, Black, and Wenatchee Lakes (since approximately 1900).	41
Table 14	. Comparison of 2012 Lake/Wetland Surface Sediment Sample Data to Freshwater Sediment Quality Guidelines	42

Abstract

Sediments were collected from ten lakes and wetlands in the Upper Columbia River watershed of northeast Washington in 2012. Samples were analyzed for lead, zinc, arsenic, cadmium, copper, antimony, mercury, total organic carbon, and grain size. Lead-210 also was analyzed in a selected sediment core for age-dating and assessment of sedimentation rates.

The current 2012 study builds upon findings from a broader areal investigation of northeast Washington lakes conducted in 2010. The 2010 study reported comparatively elevated metals concentrations in lake sediments from portions of the study area generally in the vicinity of the Upper Columbia River valley. Historical transboundary air pollution from the Trail smelter in British Columbia was identified in the 2010 study as the probable, predominant area-wide source of upland lakes sediment contamination (metals) in the vicinity of the Upper Columbia River valley.

Spatial and temporal patterns in metals concentrations are described and the potential for adverse biological effects assessed. The chronology of metals deposition is illustrated with an age-dated sediment core collected from Cedar Lake near the international border with British Columbia, Canada. The history of smelter operations within this region is briefly reviewed as it pertains to the probable source(s) of contamination and observed sediment results.

The 2012 findings are consistent with and refine the spatial metals concentration patterns identified in the 2010 study. For all the lakes and wetlands sampled by both studies, the findings document:

- 1. Higher concentrations of lead, zinc, arsenic, cadmium, antimony, and mercury occur in lake sediment from the western part of the northeast Washington study area (nearer the Upper Columbia River).
- 2. Sediment from lakes located closest to the Upper Columbia River valley shows an overall northward-increasing metals concentration trend, with highest concentrations typically observed in lakes located nearer to the international border.
- 3. Mercury appears to be dispersed more broadly, across the west and north-central portions of the study area, than is observed for lead, zinc, arsenic, cadmium, and antimony.

Concentrations of lead and cadmium in sediments from selected northeast Washington lakes/wetlands pose a potential concern for adverse biological effects. This assessment is based on a comparison of measured metals concentrations to literature-based probable effects concentration thresholds for freshwater ecosystems.

Data from this 2012 lake/wetland sediment study further demonstrate the need for additional investigation to more fully characterize the geographic extent of historical smelter emission metals enrichment associated with potential ecological concerns, including terrestrial soils associated with upland environments in the Upper Columbia River watershed.

Acknowledgements

The authors thank the following people for their contributions to this study:

- Many individuals granted or assisted in gaining access to the lakes and wetlands sampled in this study. Bill Baker of the Washington Department of Fish and Wildlife and Arne Johnson of the Washington State Department of Natural Resources were particularly helpful.
- Washington State Department of Ecology staff:
 - Manchester Environmental Laboratory staff analyzed project samples and reviewed contract laboratory data.
 - Callie Mathieu advised on dating sediment cores and did the dating calculations for Cedar Lake.
 - Paul Anderson assisted with field work.
 - Joan LeTourneau formatted and proofed the final report.

Background

A 2010 study by the Washington State Department of Ecology (Ecology) provided an initial assessment of selected metal and organic contaminant concentrations in sediments from 15 lakes in northeast Washington and one lake in north Idaho (Johnson et al., 2011). Waterbodies thought to exhibit relatively low impact from local human activities were selected for sampling. The data were collected to better understand area and regional background concentrations within these aquatic environments and to support cleanup decisions by Ecology's Toxics Cleanup Program.

An important finding from the 2010 study was the occurrence of elevated levels of lead, zinc, arsenic, cadmium, antimony, and mercury in lake sediments from the western part of the study area within the Upper Columbia River watershed. Historical transboundary air pollution (i.e., smelter-emitted particulates and aerosols) from the Trail smelter (Teck Cominco¹) in British Columbia was identified as the probable primary source of metals contamination to these lakes. The Trail smelter is one of the largest fully integrated zinc and lead smelters in the world. A smaller, shorter-lived smelter operation (LeRoi) in Northport, Washington also was identified as a possible localized, secondary source of metal contamination.

The 2010 report included an evaluation of metals concentrations in an age-dated sediment core from Black Lake, centrally located within the study area. The core, collected by Ecology in 2009, documented changes in lead and mercury inputs over time and showed a steady increase in concentrations throughout most of the 1900s. The deeper layers of the core provided an historical benchmark approaching background concentrations of lead, mercury, and other metals.

The 2012 study provides for additional assessment of lead, zinc, arsenic, cadmium, antimony, and mercury contamination in lake and wetland sediments from a portion of the previous 2010 study area in northeast Washington. The 2012 study area concentrates on seven upland lakes and three wetlands (Bodie, Dry, and Peterson Swamp) located within the Upper Columbia River valley. Consistent with the 2010 study, waterbodies thought to exhibit relatively low impact from local human activities were selected for sampling. Apparent smelter-related impacts were most evident within this portion of the 2010 study area and warranted a follow-up assessment to further inform the apparent distribution and magnitude of metals impacts within the upland aquatic environment nearer the Upper Columbia River valley.

In the earlier part of the last century, Upper Columbia River valley timber and other vegetation within approximately 30 miles of the international border had been severely injured by sulfur dioxide (SO₂) emissions from the Trail smelter (ICF International, 2011). The design of the current 2012 study was influenced by, and utilized the documented historical footprint of, the SO₂ injuries to assist in the further sampling of lake and wetland sediments for potentially associated metals enrichment.

One of the lakes included in the 2012 study (Cedar Lake) had been sampled as part of the 2010 effort. Cedar Lake is located four miles south of the international boundary, east of the Columbia River. Findings from the 2010 study, and consideration of its size and location,

¹ Now Teck Resources Ltd.

favored a more refined evaluation of sediment from Cedar Lake – specifically, the collection of an age-dated sediment core. Information from an age-dated sediment core could help to improve the understanding of vertical variations in sediment metals concentrations over time and associated impacts.

The 2010 and 2012 studies followed quality assurance project plans (Johnson, 2010, 2012). The field work for 2012 was conducted by Ecology's Environmental Assessment Program and Toxics Cleanup Program during September and October.

Objectives of Study

The objectives of this 2012 study were to:

- Further characterize lead, zinc, arsenic, cadmium, antimony, and mercury concentrations in sediments from selected upland lakes and wetlands in the proximity of the historically mapped SO₂ damage zone associated with the Trail smelter.
- Evaluate historical changes in these metals within the sediment profile.
- Estimate lake sedimentation rates.

Samples Collected

Figure 1 shows the study area for the lakes and wetlands sampled in 2012. Figure 2 shows their location relative to lakes where sediments were collected in 2010. Detailed maps for each of the 2012 waterbodies are provided in Appendix A.

A brief description of the 2012 study area lakes and wetlands, as well as methods of sediment collection, is provided in Table 1. Waterbodies thought to exhibit relatively low impact from local human activities were selected for sampling. A mix of surface sediment and sediment cores was collected. Surface sediment samples were obtained from six waterbodies and consisted of the top 10-cm layer from three grab samples. These samples were taken with a clam-shell type sampler (Ponar) and either composited or analyzed separately.

Sediment cores ranging from 10 to 50 cm in length were obtained from six waterbodies, one core each. Except for Cedar Lake, the coring was done with a two-inch diameter Plexiglas tube, either housed in a gravity coring device (K-B corer) or pushed into the sediments by hand. A 13 cm x 13 cm rectangular box core was used in Cedar Lake. Cedar Lake and Elbow Lake were sampled both by surface grab and corer.

The 2-inch diameter cores were analyzed in 10 to 20 cm increments, providing up to four sediment samples representing the surface and subsurface layers. The Cedar Lake box core was analyzed in finer detail for age-dating by the lead-210 technique. This core was generally sectioned in 1 - 2 cm increments, depending on the layering encountered and consistency of the material.

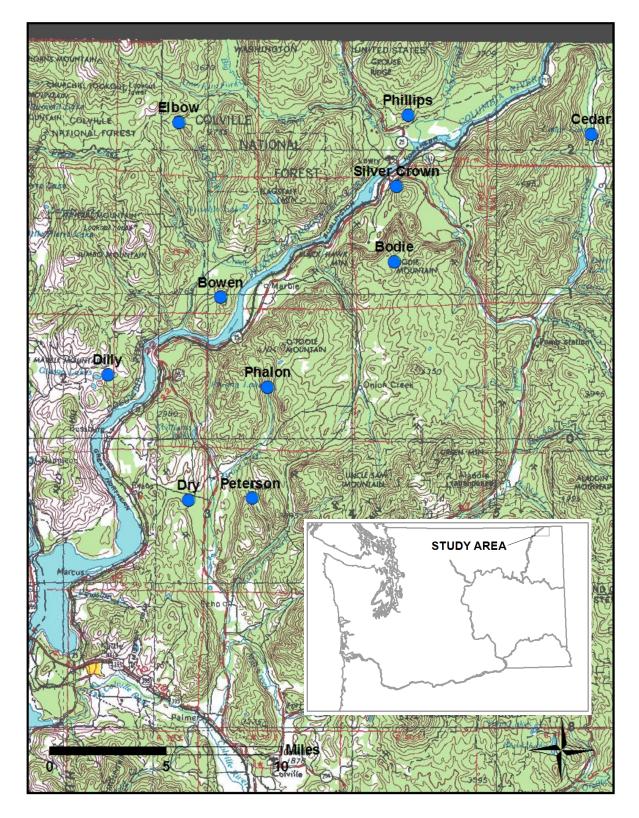


Figure 1. Study Area for Lakes and Wetlands Sampled in 2012.

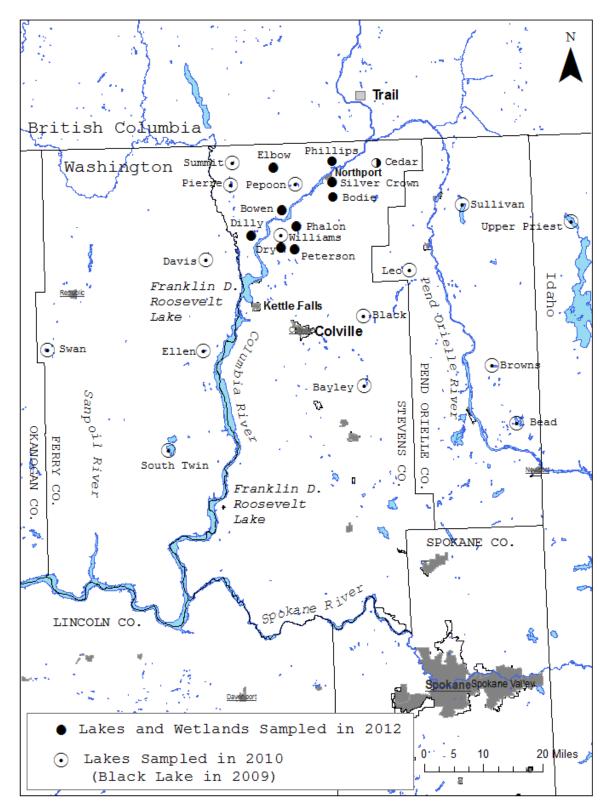


Figure 2. Lakes and Wetlands where Sediments Samples were Collected in 2012 in Relation to Lakes Sampled in 2009-2010.

Waterbody Name	Location	Elevation (ft.)	Surface Area (acres)	Samples Collected	Water Depths (ft.)	Collection Date (2012)	Latitude	Longitude
Cedar Lake	5.8 miles south of international border on Deep Lake-Boundary Rd.	2,135	51	Box core and 3 separate 0.05m ² Ponar grabs	22 - 23	11-Sep	48.943	-117.594
Phillips Lake	4 miles north of Northport off Mitchell Rd.	1,810	1	K-B core	3.5	11-Sep	48.954	-117.767
Silver Crown Lake	0.5 miles east of Northport	2,280	~5	K-B core	30	11-Sep	48.909	-117.778
Elbow Lake	14 miles west of Northport off Sheep Creek Rd.	2,775	14	K-B core and composite of 3 0.02m ² Ponar grabs	13 - 16	9-Oct	48.948	-117.984
Bodie Wetland*	5.5 miles south of Northport, jeep trail off Bodie Mountain Rd.	3,200	~3	Composite of 3 0.05m ² Ponar grabs	0.3 - 0.8	10-Oct	48.862	-117.779
Bowen Lake*	14 miles southwest of Northport off Moore Rd.			Composite of 3 0.02m ² Ponar grabs	6 - 15	9-Oct	48.839	-117.943
Phalon Lake	16 miles southwest of Northport, end of Dead Medicine Rd.	2,375	18	K-B core	25	12-Sep	48.783	-117.898
Dilly Lake (Glasgow Lakes)	19 miles north of Kettle Falls off Hill Loop Rd.	2,175	35	Composite of 3 0.02m ² Ponar grabs	15 - 45	9-Oct	48.790	-118.049
Dry Lake*	13 miles northeast of Kettle Falls off Evans Cutoff Rd.	1,900	6	Hand core, K-B tube	1.5	12-Sep	48.712	-117.971
Peterson Swamp*	15 miles northeast of Kettle Falls off Echo Valley Rd.	2,710	38	Composite of 3 0.02m ² Ponar grabs	0.8	10-Oct	48.714	-117.911

Table 1. Sediment Samples Collected in 2012 (NAD 83 datum).

*Wetland or wetland dominated

Sampling Methods

Sediment collection and sample handling followed the Environmental Assessment Program's standard operating procedures (SOPs) for freshwater sediments (Blakley, 2008; Furl and Meredith, 2008). The samples were either collected with a 0.05 m² or 0.02 m² stainless steel Ponar grab, K-B corer fitted with a 2-inch diameter acrylic tube, or Wildco stainless steel box corer containing a 13 cm x 13 cm x 50 cm acrylic liner.

Three grab samples were taken from each waterbody where a Ponar was used. The grabs were located along a transect, generally from deep to shallower water, and composited into a single sample. Cedar Lake was an exception, in that the grabs were confined during the 2012 sampling to the deeper part of the lake, and each sample was analyzed individually. For waterbodies where the K-B or box corer was used, a single sample was obtained from the deepest area. The core sample from Dry Lake, a wetland, was collected by wading in and pushing a K-B core tube into the substrate by hand.

A grab sample was considered acceptable if the Ponar was not over-filled, overlying water was not excessively turbid, the sediment surface was relatively flat, and the desired depth penetration was achieved. Overlying water was siphoned off, and the top 10 cm of sediment was removed with a stainless steel scoop, placed in a stainless steel bowl, homogenized by stirring, and split into appropriate sample containers. Material touching the side walls of the grab was not used for composite sample preparation. The samples were placed on ice for transport back to Ecology headquarters where they were placed in a freezer and maintained at a temperature of <0 degrees C.

Penetration depths for the K-B corer ranged from approximately 30 to 50 cm, except only 15 cm at Dry Lake. After overlying water was siphoned off, the core tubes were placed on ice in a vertical position, returned to Ecology headquarters, and frozen. The cores were later thawed, extruded, and cut into 10 to 20 cm sections. The smearing action that occurs during penetration and extrusion can contaminate adjacent parts of the sediment core. Therefore, the outermost layer of each section was cut away and either used for grain size and total organic carbon analysis or discarded. Subsamples were then homogenized in stainless steel bowls by stirring and split into appropriate sample containers and refrozen.

One box core was collected from the center of Cedar Lake. The core was considered suitable for subsampling in that the sediment-water interface was intact and sufficient penetration depth had been achieved (approximately 45 cm). Overlying water was siphoned off the top of the core and sections incrementally removed by pushing the sediment column up through the liner. The outer layers were cut away for grain size and total organic carbon analysis or discarded. The subsamples were then homogenized in stainless steel bowls by stirring and split into appropriate sample containers.

Sample containers were glass or polyethylene jars that had been cleaned to U.S. Environmental Protection Agency (EPA, 1990) quality assurance/quality control specifications. The samples were held frozen until transported with chain-of-custody record to the Ecology Manchester Environmental Laboratory (MEL). MEL shipped the lead-210 and grain size samples to contract

laboratories. Excess sample was archived at Ecology headquarters. Sample containers and holding times for the project are listed in Table 2.

Parameter	Container	Field Preservation	Holding Time
Metals	4 oz. glass w/ Teflon lid liner	Cool to 4°C	2 years (frozen); mercury 28 days
Lead-210	4 oz. glass w/ Teflon lid liner	Cool to 4°C	2 years (frozen)
Total Organic Carbon	2 oz. glass w/ Teflon lid liner	Cool to 4°C	6 months (frozen)
Grain size	8 oz. polyethylene	Cool to 4°C	6 months

Table 2. Sample Containers, Preservation, and Holding Times.

Stainless steel implements used to collect and manipulate the sediments were cleaned by washing with Liquinox detergent, followed by sequential rinses with tap water, dilute nitric acid, deionized water, and pesticide-grade acetone. The equipment was then air dried and wrapped in aluminum foil for transport into the field. Cleaning of the Ponar between lakes consisted of thorough brushing and rinsing using on-site lake water.

Chemical Analysis

Analysis	Method	Reference	Laboratory	
Antimony				
Arsenic				
Cadmium	ICP/MS	EPA 3050B /		
Copper	ICP/IVIS	200.8	Manchester (MEL)	
Lead				
Zinc				
Mercury	CVAA	EPA 245.5		
Total Organic Carbon	NDIR	PSEP (1986)		
Grain Size	n Size Sieve and pipette		Analytical Resources	
Lead-210	Alpha spectroscopy	EML Po-2	Eberline Analytical	

Table 3. Analytical Methods and Laboratories

ICP/MS: Inductively coupled plasma - mass spectrometry

CVAA: Cold vapor atomic absorbance

NDIR: Non-dispersive infrared detector

PSEP: Puget Sound Estuary Program

Data Quality

Data Review and Verification

MEL reviewed and verified all the chemical data for this project. MEL prepared written case narratives assessing the quality of the data. The reviews include a description of analytical methods and an assessment of holding times, calibration, method blanks, matrix spike recoveries, laboratory control samples, and laboratory duplicates, as appropriate. With few exceptions, the results met acceptance criteria for these analyses, and the data are usable as qualified. The reviews and data reports are in Appendix B. Quality assurance and quality control at MEL are described in MEL (2008, 2012).

Analytical Precision

Estimates of analytical precision were obtained by analyzing laboratory duplicates (one homogenized sample split into two duplicate subsamples). The results are summarized in terms of relative percent difference (RPD) in Table 4. RPD is the difference between duplicates expressed as a percent of the mean value.

difference).								
Sample No. (1210038-)	Lake/Site	Sediment Layer (cm)	Lead	Zinc	Arsenic	Antimony	Cadmium	Mercury
34	Cedar #1	12	3.0%	0.5%	0.5%	20%	0.9%	3.8%
43	Cedar #1	34-36	0.4%	0.9%	0.4%	12%	2.0%	10%
03/04	Cedar #3	0-10	15%	12%	20%	5.1%	14%	2.8%
51	Dilly #1-#3	0-10	1.7%	1.6%	1.4%	27%	2.6%	2.1%
		Mean RPD =	5%	4%	6%	16%	5%	5%

Table 4. Summary of Results on Laboratory Duplicate (Split) Samples (relative percent difference).

RPD: relative percent difference; difference between duplicates as percent of mean value

The duplicates were in good agreement. Lead, zinc, arsenic, cadmium, and mercury results differed by 6% or less, on average. The antimony duplicates averaged 16% RPD. MEL's quality control acceptance limit for laboratory duplicates is 20% RPD.

The average of duplicate results is used in the remainder of this report.

Sediment Dating Calculations

Age-dating of the sediments in the Cedar Lake core sample used $lead-210^2$ measurements and the constant rate of supply (CRS) model. A detailed description of this technique as applied to lead, mercury, and other contaminants in sediment cores from Washington lakes can be found in Mathieu and Friese (2012) and references therein.

The CRS model uses lead-210 to estimate dates and sedimentation rates throughout a core (Appleby and Oldfield, 1978). The model evaluates the difference in supported and unsupported lead-210 in sediment horizons. Supported lead-210 is represented by the small amount of the precursor gas radon-222 that is captured in soils.

Unsupported lead-210 represents atmospherically deposited lead-210 resulting from the decay of radon-222 that escapes into the atmosphere and is estimated by subtracting supported lead-210 from total lead-210. Using the known half-life of lead-210 (22.3 years) and the amount of the unsupported isotope, the rate of sedimentation and the date of formation can be calculated for approximately the last 150 years (Van Metre et al., 2004; Charles and Hites, 1987).

For the present study, supported lead-210 was estimated as the average activity present at deep intervals where it appeared to no longer decline. Sediment dry mass (g/cm^2) was calculated from percent solids data. An assumed sediment density of 2.7 g/cm³ was used, based on other Washington lake coring studies (Paulson, 2004).

² Lead-210 and radon-222 are radioisotopes of stable lead and radon.

Results³ and Discussion

Sediment Physical Characteristics

Table 5 and Figure 3 summarize the information obtained on grain size and total organic carbon content. Due to sample size requirements, not all samples could be analyzed for these parameters. Subsamples from some core segments were composited to provide enough material.

The sediments tended to be soft, light tan to dark greenish brown in color, and comprised mostly of fine material. Percent fines (silt + clay) averaged 53% and sand averaged 40%. The highest metals concentrations often are associated with the finer-grained fraction of a sediment (i.e., silt and clay). The finest sediments were encountered in Cedar and Silver Crown Lakes, 77% and 81%, respectively. Only Phalon and Elbow Lakes had significant amounts of gravel, 34% and 37%, respectively. Total organic carbon ranged from approximately 7% to 31% and averaged about 20%.

Sample No. (1210038-)	Lake or Wetland	Depth Increment (cm)	Gravel	Sand	Silt	Clay	Total Organic Carbon
05	Cedar	0 - 10	0.0	22	31	46	11
23	Phillips	0 - 30	0.0	70	19	11	31
14	Silver Crown	0 - 50	0.0	19	55	26	17
52	Bowen*	0 - 10	0.0	39	53	8.2	7.0
19	Phalon	0 - 50	34	23	21	22	27
50	Elbow	0 - 10	37	34	11	19	27
51	Dilly	0 - 10	0.0	58	32	10	10
24	Dry*	0 - 10	0.0	30	40	30	15
53	Peterson*	0 - 10	0.1	62	33	5.3	19
55	Bodie*	0 - 10	0.0	40	52	8.0	9.1

Table 5.	Grain Size	and Total Orga	anic Carbon C	ontent of Sedimer	nt Samples (%).

*Wetland or wetland dominated

³ The complete chemical data for this project can be accessed through Ecology's Environmental Information Management (EIM) System: <u>www.ecy.wa.gov/eim</u>; search User Study ID AJOH0066.

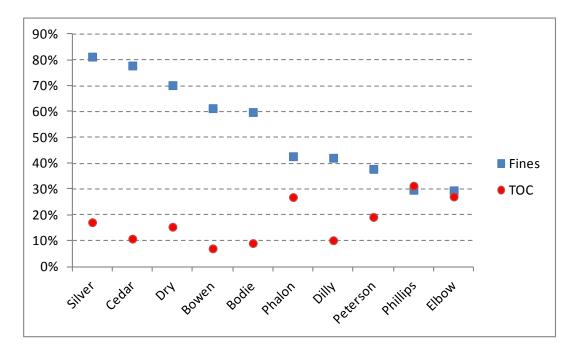


Figure 3. Percent Fines and Total Organic Carbon in Sediment Samples.

Metals Concentrations

Surface Sediments

Of the six metals analyzed, the highest concentrations in the surface sediments (top 10 cm layer) were for lead and zinc, followed by arsenic, cadmium, antimony, and mercury, in decreasing order (Table 6; parts per million). Total metals (last column of data) gives a sense of the overall variation in metals concentrations among these waterbodies. Higher levels were found in Silver Crown, Phillips, Cedar, Bowen, and Phalon Lakes in the north and central part of the study area, compared to Dilly, Dry, Peterson, and Bodie to the south or east and Elbow Lake to the west (Figure 4). Elbow Lake had one of the higher mercury concentrations.

Sample No. (1210038-)	Lake or Wetland	Lead	Zinc	Arsenic	Cadmium	Antimony	Mercury	Total Metals
01, 02, 03*	Cedar	408	341	24	10	14	0.13	796
20	Phillips	371	670	25	11	6.9	0.15	1,083
10	Silver Crown	545	947	45	17	15	0.28	1,569
52	Bowen†	262	256	26	7.2	4.8	0.09	556
15	Phalon	203	223	26	8.7	3.5	0.14	464
50, 59*	Elbow	76	101	16	3.0	1.8	0.16	198
51	Dilly	74	64	14	2.0	2.1	0.04	156
24	Dry†	34	27	11	4.5	2.3	0.06	78
53	Peterson [†]	13	72	6.0	0.77	0.81	0.06	92
55	Bodie†	16	62	1.1	0.52	0.24	0.01	80

(mg/Kg, dry weight; top 10 cm layer)

*mean of replicate samples

†wetland or wetland dominated

A statistical summary of the data is provided in Table 7. The northern and centrally located lakes had significantly higher concentrations for all metals analyzed (Mann-Whitney test, $p<0.05)^4$. Lead, zinc, and cadmium were higher by an order of magnitude. Antimony was elevated by a factor of about 6, and arsenic and mercury by factors of about 3 to 4.

 $^{^4}$ p represents the probability of an error in accepting a result as valid and representative of the population being sampled. At p = 0.05 there is a 5% probability that the difference in a variable measured in two groups of samples is due to chance.

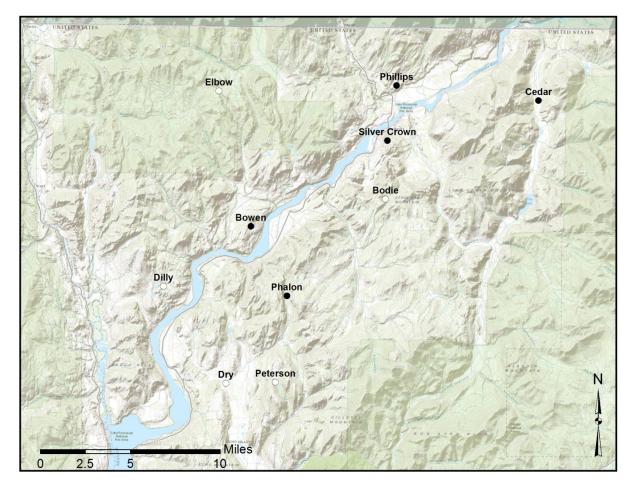


Figure 4. 2012 Study Area Waterbodies with the Highest Metals Concentrations.

Shown as filled markers.

Darker green shading generally identifies National Forest lands; lighter shading identifies primarily privately owned land areas.

Location:	North / Central*	Other†	North / Central	Other	North / Central	Other	
	Lead		Zi	nc	Arsenic		
N =	5	5	5	5	5	5	
Median	371	34	341	64	26	11	
Mean	358	43	487	65	29	10	
Minimum	203	13	223	27	24	1.1	
Maximum	545	76	947	101	45	16	
90th Percentile	490	76	836	89	38	15	
	Cadr	nium	Antimony		Mercury		
N =	5	5	5	5	6	4	
Median	10	2.0	6.9	1.8	0.15	0.05	
Mean	11	2.2	8.8	1.4	0.16	0.04	
Minimum	7.2	0.5	3.5	0.2	0.09	0.01	
Maximum	17	4.5	15	2.3	0.28	0.06	
90th Percentile	14	3.9	15	2.2	0.22	0.06	

Table 7. Statistical Summary for Metals in Surface Sediments: 2012 Waterbodies. (*mg/Kg dry weight, top 10 cm*)

*Cedar, Phillips, Silver Crown, Bowen, and Phalon (includes Elbow for mercury) †Elbow, Dilly, Dry, Peterson, and Bodie (except Elbow excluded for mercury) N = number of samples

Figure 5 ranks each waterbody by metals concentrations. The sediments in Silver Crown Lake consistently showed the highest comparative concentrations of lead, zinc, arsenic, cadmium, antimony, and mercury. Cedar and Phillips Lakes ranked second or third behind Silver Crown, except for arsenic where Bowen and Phalon Lakes had similarly elevated levels. Elbow Lake had the second highest mercury concentration, comparable to Phillips Lake. The lowest metals levels were found in the Bodie, Dry, and Peterson Swamp wetlands, and in Dilly Lake.

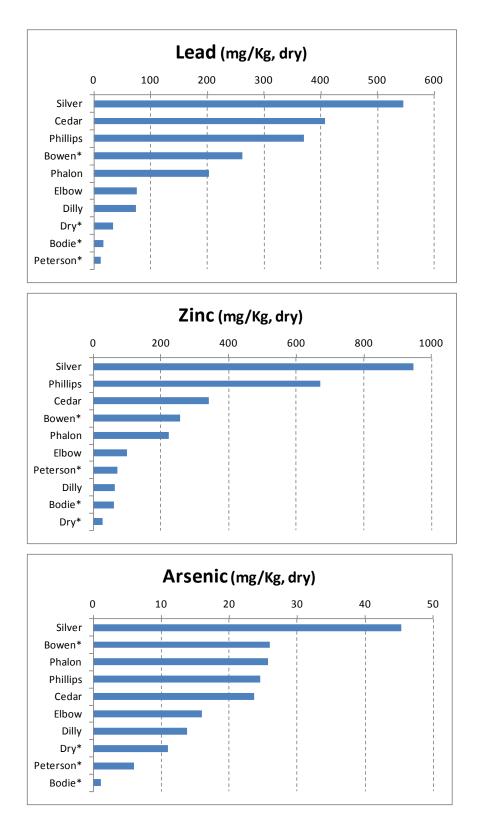


Figure 5. Waterbodies Ranked by Metals Concentrations in the Surface Sediments. *Top 10-cm layer; asterisk indicates wetland or wetland dominated.*

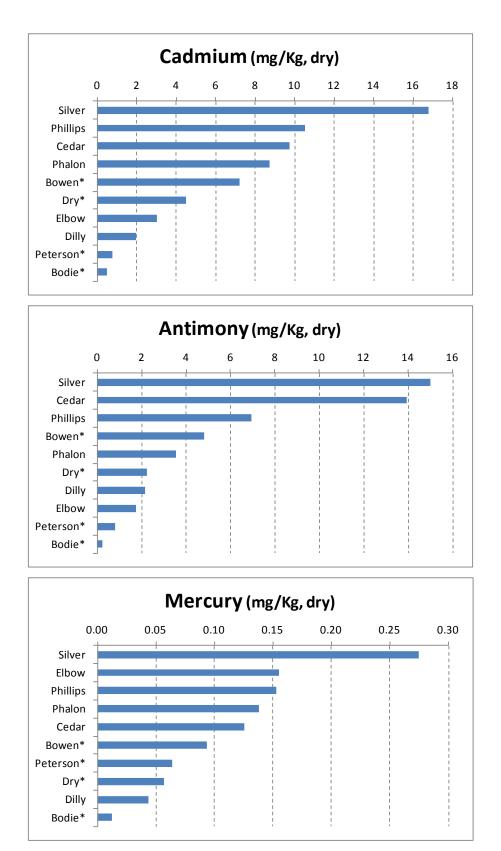


Figure 5. (continued)

Variability within Lakes

Cedar and Elbow Lakes, 2012

Replicate (separate) sediment samples were analyzed for Cedar and Elbow Lakes in 2012 (Table 8). The results provide (1) a perspective on spatial variability in these moderately-sized waterbodies and (2) comparability of the sampling techniques used.

Sample No. (1210038-)	Lake/Site	Collection Method	Water Depth (ft)	Lead	Zinc	Arsenic	Cadmium	Antimony	Mercury
01	Cedar #1	Ponar	23	308	259	19	7.5	9.9	0.10
02	Cedar #2	Ponar	22	478	403	27	11	16	0.13
03	Cedar #3	Ponar	22	437	362	25	10	16	0.15
30, 31, 32*	Cedar #1	Box Corer	23	385	449	27	10	12	0.19
			RSD =	18%	22%	16%	17%	22%	25%
50	Elbow #1-#3	Ponar	13-16	70	99	15	2.9	1.5	0.13
59†	Elbow #1	K-B Corer	16	83	102	17	3.1	2.0	0.18
R				16%	3%	18%	4%	30%	29%

Table 8	Comparison of Rer	licate Shallow (tor	10 cm) Sediment Sa	mples (mg/Kg, dry weight).
	Comparison of Kep	meate Shanow (top	f to emp seument sa	imples (mg/ng, ury weight).

*thickness weighted average concentration for 0-6, 6-9, and 9-10 cm layers ± 0.10 cm layers

† 0-10 cm layer

RSD: relative standard deviation; standard deviation as percent of mean value

RPD: relative percent difference; difference between duplicates as percent of mean value

Ponar grabs were taken at each lake along a three-point transect. The three Cedar Lake samples were spread over a line approximately 1,200 feet long, whereas the three Elbow Lake samples were spread over a line approximately 500 feet long (see sampling site maps, Appendix A). These transect samples were collected from the deeper, central portions of the lakes and did not include shallower side bank/littoral areas. The Cedar Lake grabs were analyzed separately while the Elbow Lake grabs were composited into a single sample. One core was also taken from the center of each lake. Results for the top 10 cm of the cores are shown in Table 8 for comparison with the grabs.

The replicate sample results provide another metric to assess the overall representativeness of the sediment metals data set. Metals concentrations measured in the replicates are comparably similar within each lake. Variability attributable to sampling methods (grabs or cores) and sample type (single sample or composite) appears to be low. Some of the observed differences in replicate metals concentrations are due to standard analytical variability, which averaged about 5% for lead, zinc, arsenic, cadmium, and mercury, but 16% for antimony (Table 4). Overall, the replicate sediment sample results suggest that metals concentrations within the deeper, interior portions of these moderate-sized upland lakes likely do not vary to a large degree at comparable depths.

Sampling Procedures 2012 vs. 2010

The sampling approach used for the 2012 investigation concentrated more on sediment from interior portions of each waterbody and did not necessarily follow the shallow-intermediate-deep sampling protocol applied in 2010. Metals concentrations in the finer grained sediments from the deeper portions of the lakes likely were higher than levels found in sediments from along the littoral or intermediate depth horizons which tend to be coarser grained. Composite samples from the 2010 study, which included more material from the lakeshore margins, may have shown a greater degree of dilution. Similarly, the wetland area sampling protocols were influenced by access, vegetation thickness, and presence/absence of open water.

Cedar Lake was the only waterbody sampled in both 2010 and 2012. The 2010 sample was a composite of two grabs taken in 23 and 17 feet of water. Portions of the lake shallower than 17 feet were too weedy to sample. In 2012, three separate grabs were collected, confined to the deeper portions of the lake (22-23 feet), as previously described. In both cases, a 0.05 m² Ponar grab was used and the top 10 cm layer analyzed. The metals concentrations in these samples are compared in Table 9.

Year Collected	Sample Description	Water Depths (ft)	Lead	Zinc	Arsenic	Cadmium	Antimony	Mercury
2012	3 grabs (mean)	22-23	408	341	24	9.8	14	0.13
2010	2 grab composite	24 and 17	141	151	12	3.0	3.4	0.08

Table 9. Metals Concentrations in Cedar Lake Sediment Grabs (top 10 cm) Collected in 2012 and 2010 (mg/Kg, dry weight).

Metals concentrations were much higher in the 2012 samples. This may reflect finer grain size in the deeper parts of the lake and metals dilution in shallower water, as alluded to above. Subsampling procedures used to remove the top 10 cm layer could also be a contributing factor. The box core from Cedar Lake showed steep gradients in metals concentrations in the surface sediments, particularly in the vicinity of 10 centimeters (see *Chronology of Metals Deposition*). Thus, a small variation between surveys in the depths and relative amounts of material taken from the grabs could have a marked effect on the results.

Subsurface Sediments

Sediment cores were obtained from four of the northernmost lakes (Cedar, Phillips, Silver Crown, and Elbow) and one of the southern lakes (Phalon) in the 2012 study area. The cores were sectioned and analyzed in 10 or 20 cm increments, except for Cedar which was sectioned in greater detail for age-dating.

Metals concentrations from discrete depth intervals within the cores are shown in Table 10. For comparison, the Cedar Lake box core data were averaged for the sections of interest. For all of these lakes, metals concentrations in the top 10 or 20 cm of the sediment core were much higher than in the deeper layers. Note that penetration depths of the cores varied somewhat.

Sample No. (1210038-)	Depth Increment (cm)	Lead	Zinc	Arsenic	Cadmium	Antimony	Mercury		
			Cedar	Lake*					
31, 32	0-10*	385	449	27	10	12	0.19		
33 - 39	10-20	25	70	14	1.0	1.4	0.05		
40, 41	20-30†	2.5	67	19	0.7	1.7	0.05		
42, 44	30-40**	2.3	99	24	1.2	2.3	0.04		
Silver Crown Lake									
10	0-10	545	947	45	17	15	0.28		
11	10-20	864	619	55	26	18	0.28		
12	20-30	13	64	8.0	0.42	0.50	0.03		
13	30-50	2.9	32	2.8	0.16	< 0.41	0.01		
			Phillip	s Lake					
20	0-10	371	670	25	11	6.9	0.15		
21	10-20	263	351	23	7.5	5.5	0.09		
22	20-30	9.3	70	4.5	0.59	0.72	0.05		
			Elbow	Lake					
59	0-10	83	102	17	3.1	2.0	0.18		
56	10-20	106	122	19	3.5	2.7	0.12		
57	20-30	10	94	17	1.7	0.76	0.06		
58	30-40	14	100	15	1.8	1.2	0.05		
	Phalon Lake								
15	0-10	203	223	26	8.7	3.5	0.14		
16	10-20	20	119	16	4.5	0.76	0.05		
17	20-30	4.7	127	17	4.5	0.87	0.04		
18	30-50	6.1	137	19	5.3	0.95	0.03		

Table 10. Depth-Specific Metals Concentrations in Sediment Core Samples (mg/Kg, dry weight).

*thickness weighted average of 0-6, 6-9 and 9-10 cm layers

†average of 22-24 and 26-28 cm layers

**average of 30-32, 34-36, and 36-38 cm layers

The core sample results also were used to compute enrichment factors for each metal at each lake (Table 11, Figure 6). The computed enrichment factor represents the ratio of a given metals concentration in the top 10 cm interval divided by the corresponding concentration in the lowermost bottom 10 or 20 cm interval, as sectioned. The highest measured enrichment factors for all six metals were observed at Silver Crown Lake; enrichment factors in the Silver Crown core exceed 100 for both lead and cadmium, and 15 for the remaining four metals. At Cedar, Phillips, and Phalon Lakes, lead enrichment factors of 171, 40, and 33 are present. Mercury and arsenic concentrations showed the smallest difference between surface and subsurface layers, with enrichment factors of 6 or less for all lakes except Silver Crown. Based on the time horizons observed in the Cedar Lake core, metals concentrations in the deepest layers likely are approaching natural, pre-industrial background levels (see discussion that follows).

Table 11. Metals Enrichment Factors for Surface vs. Subsurface Sediments in Core Samples.	
Top 10 cm concentration divided by bottom 10 or 20 cm concentration, as sectioned.	

	Silver Crown	Phillips	Cedar	Phalon	Elbow
Lead	189	40	171	33	6.1
Cadmium	105	18	9.0	1.6	1.7
Antimony	36	10	4.5	3.7	1.8
Zinc	30	10	5.0	1.6	1.0
Mercury	21	3.2	5.1	4.1	3.7
Arsenic	16	5.5	1.0	1.4	1.1

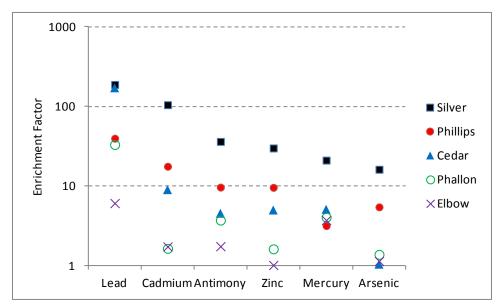


Figure 6. Metals Enrichment Factors for Surface vs. Subsurface Sediments in Core Samples.

Chronology of Metals Deposition

Cedar Lake

Cedar Lake, located about four miles south of the international border, is situated in a valley meadow surrounded by forested uplands. The 51-acre lake has a maximum depth of 24 feet. Cedar Lake has no defined surface water inlet. The lake serves as the headwaters for Cedar Creek which flows north, eventually discharging to the Pend Oreille River in British Columbia. The lake has two private residences and a public boat launch.

The Cedar Lake box core was dated using the lead-210 technique (see *Sediment Dating Calculations*). The metals, lead-210, and percent solids data for the core are presented in Appendix C.

The core was analyzed in 1 - 2 cm increments, except for a 6-cm layer at the surface because the material was too soft to section accurately. For the deeper parts of the core, alternating layers were analyzed (e.g., 18-20 cm, 22- 24 cm). As previously noted, there is increased uncertainty in lead-210 dates older than 150 years.

Sedimentation Rates

Estimates of sedimentation rates in Cedar Lake are shown in Figure 7. The supporting data are in Appendix D.

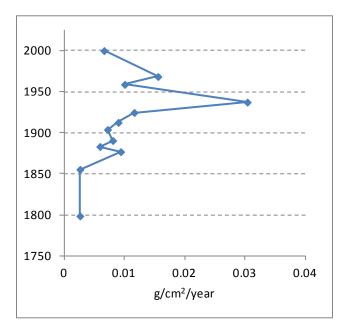
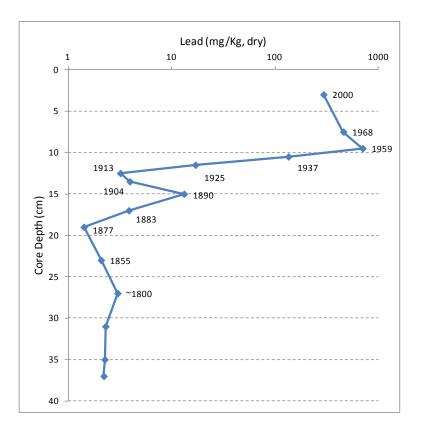


Figure 7. Sedimentation Rate Estimates for Cedar Lake.

Until the latter part of the 1800s, the sedimentation rate in Cedar Lake was low, approximately $0.003 \text{ g/cm}^2/\text{year}$. Beginning around 1900, sediment deposition began to accelerate rapidly, reaching a maximum of about $0.03 \text{ g/cm}^2/\text{year}$ in the 1940s, an increase of a factor of 10. Logging and associated factors may be the primary reason for the increase. Recent rates (top 6 cm, past 30 years) have averaged about $0.01 \text{ g/cm}^2/\text{year}$, or three times the rate in the early- to mid-1800s.

Metals Deposition


Figure 8 illustrates how metals concentrations have changed over time in Cedar Lake sediments. Lead, zinc, cadmium, antimony, and mercury have generally similar profiles. Concentrations remained relatively unchanged until the late 1800s, followed by a period of fluctuating concentrations. For lead, zinc, cadmium, and antimony, the initial positive spike in the profile is primarily due to a single data point estimated at 1890. For unknown reasons, arsenic shows a contrasting pattern of overall decreasing concentrations from the earliest core layers into the 1900s.

Sedimentation rates began rising during the early 1900s (Figure 7) which may explain decreasing concentrations of all metals during this specific time, prior to increasing smelter influences. The diluting effect that local erosion and sedimentation can have on metals concentrations has been observed in other coring studies (Engstrom et al., 2007).

All metals increased rapidly during the first half of the 20th century, peaking in the 1950s or 1960s for lead, zinc, cadmium, and antimony. Arsenic and mercury appear to continue increasing. However, because of the way the core was sectioned, the recent history of metals deposition cannot be seen in detail.

The time sequence of metals concentration changes in Cedar Lake sediments is consistent with the history of the Trail B.C. smelter (Appendix E). Smelter operations have been underway almost continuously since 1896. Around 1900, the smelting of lead sulfide ores began. Electrolytic zinc and copper refineries came on line in 1916. Cadmium recovery began in 1927. In 1931, operations expanded to include the manufacturing of ammonium sulfate and ammonium phosphate fertilizer.

Baghouses to better recover dust and condensed fume from lead blast-furnace offgas were installed at Trail in 1951 (Queneau, 2010). In 1997, the Kivcet lead smelter was commissioned, which decreased stack emissions of particulates, lead, arsenic, mercury, fluoride, and SO₂ by 68 to 98%.

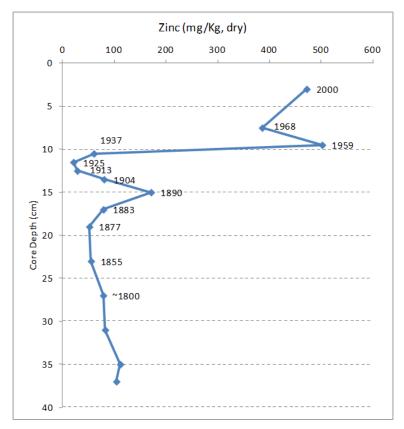


Figure 8. Chronology of Metals Deposition in Cedar Lake.

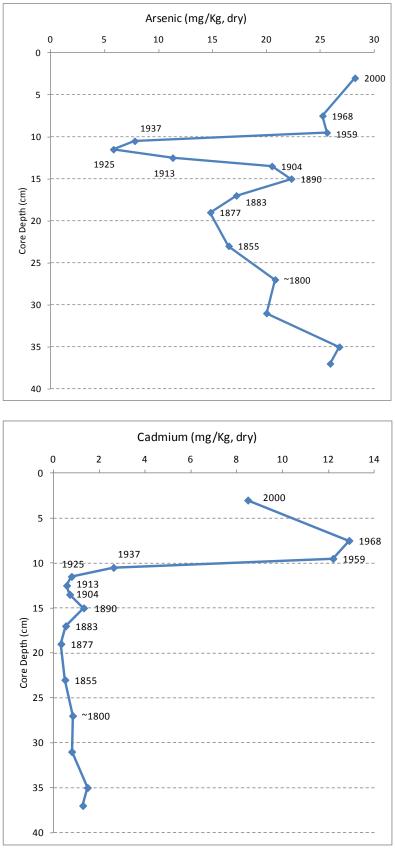


Figure 8. (continued)

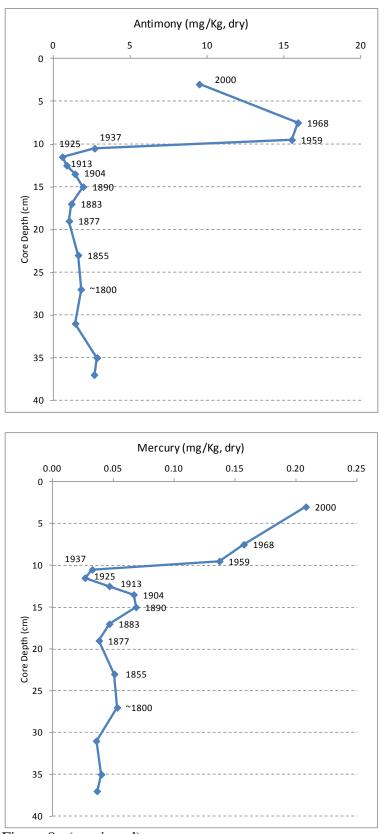


Figure 8. (continued)

Thus, the first half of the 1900s was a period of ramped-up production, and it was not until the 1950s that more notable steps were taken to begin reducing metal emissions from the lead smelter (Queneau, 2010). Based on the CRS model used to date the Cedar Lake core, lead flux to the sediments over this timeframe (sedimentation rate x lead concentration) increased from 0.01 ug/cm^2 /year in the 1800s to $4 - 7 \text{ ug/cm}^2$ /year in the early to mid-1900s, decreasing to an average of 2 ug/cm²/year in the recent 30-year past.

Pre-industrial concentrations of lead and mercury in Cedar Lake sediments are approximately 2.5 mg/Kg and 0.044 mg/Kg, respectively. These are the average values for the deepest layers of the core (older than 1890) where measured concentrations appear to be stable. Enrichment factors in more recent sediment layers are as high as 280 for lead and 5 for mercury (Table 12).

Table 12. Pre-Industrial-Core-Measured Average Concentrations and Enrichment Factors for Lead and Mercury in the Cedar Lake Sediment Core.

	Mean Pre-Industrial Concentration (mg/Kg, dry)	Peak Concentration		Recent Concentration	
Metal		Enrichment Factor	Estimated Date	Enrichment Factor	Estimated Date
Lead	2.5 (<1890)	280	1958*	120	2000+
Mercury	0.04 (<1890)	5	2000+	5	2000†

*9 - 10 cm layer

+0 - 6 cm layer

Sediment Profiles from Other Areas

The sediment profiles for lead and mercury in Cedar Lake were compared to box cores Ecology has collected from two lakes in other parts of eastern Washington (Figure 9). Black Lake is 26 miles due south of Cedar Lake. Current land use in the watershed is largely undeveloped forest, with some vacation homes and a small resort. The lake has intermittent surface inflow and outflow. Wenatchee Lake lies to the west in the alpine region of the North Cascades in central Washington. The lake basin is undeveloped, with less than 1% of the drainage put to residential use. Inflows are intermittent.

The lead and mercury data for Black and Wenatchee Lakes are from Furl and Roberts (2010, 2011). The Black Lake metals profile – including previously unpublished results for zinc, arsenic, cadmium, antimony, and other metals – was reviewed in Ecology's report on the 2010 northeast Washington sediment survey (Johnson et al., 2011).

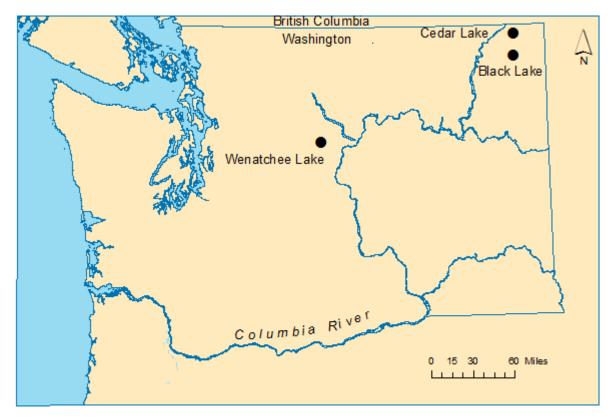


Figure 9. Location of Sediment Cores Compared for Lead and Mercury.

The lead and mercury profiles in these three cores are shown in Figures 10 and 11, respectively. For comparative purposes, the time span begins around 1900, the deepest penetration of the Wenatchee Lake core. Note that the X-axis scale of metals concentrations is different for each lake.

Wenatchee Lake has typical lead and mercury profiles for a nonpoint-source, forested watershed in Washington with low levels of contaminants (Mathieu, 2013). Lead concentrations remained low (< 15 mg/Kg) throughout the 1900s, experiencing only modest increases during the middle part of the century. Levels have continually decreased since peaking in the 1960s and 1970s, and are currently less than 10 mg/Kg. These changes can be attributed to the use of alkyl-lead additives in gasoline beginning in the 1920s and their removal from gasoline in the mid-1970s (Furl and Roberts, 2011).

Mercury levels remained fairly constant in Wenatchee Lake throughout the 1900s, confined to the narrow range of 0.08 - 0.10 mg/Kg. The exception was a slight increase in the late 1990s coinciding with the maximum sedimentation rate (Appendix D). In the absence of local sources, most of the mercury deposited in Washington lakes comes from the regional and global atmospheric reservoir (Furl, 2008).

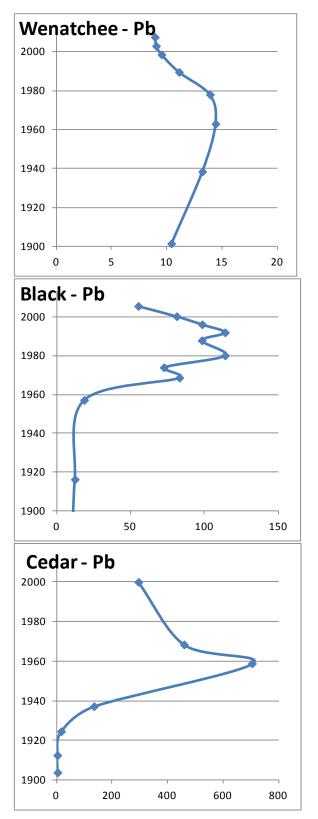


Figure 10. Lead Profiles in Sediment Cores from Cedar, Black, and Wenatchee Lakes (mg/Kg, dry weight).

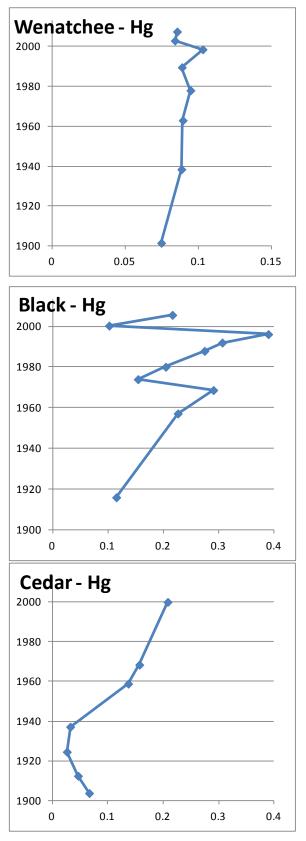


Figure 11. Mercury Profiles in Sediment Cores from Cedar, Black, and Wenatchee Lakes (mg/Kg, dry weight).

Lead and mercury levels in the Black Lake core are higher than expected for a nonpoint-source lake (Mathieu, 2013). Lead began to gradually increase after 1920 (from 12 to 19 mg/Kg) and accelerated rapidly in the 1960s and 1970s, reaching 115 mg/Kg vs. a peak concentration of 14 mg/Kg in Wenatchee Lake in the late 1990s. Since the early 1990s, concentrations in Black Lake have consistently decreased. The most recent sediments contain lead concentrations near 50 mg/Kg, compared to less than 10 mg/Kg in Wenatchee Lake.

The Black Lake mercury profile displays an erratic pattern with several large concentration changes over a short time period. Mercury showed significant elevation by the mid-1950s. Concentrations declined briefly before a steady rise to the overall maximum value of 0.40 mg/Kg in the late 1990s. The changes in mercury concentrations appeared to be strongly affected by sedimentation rates: periods of increasing concentrations were marked by falling sedimentation rates and vice versa (Appendix D). Furl and Roberts (2011) have observed a lack of resemblance among mercury sediment core profiles in eastern Washington lakes in general. They conclude that basin activity and local sediment geochemistry play a large role in moderating fluxes to the sediments.

Pre-industrial (oldest) vs. peak concentrations of lead and mercury in Cedar, Black, and Wenatchee Lakes, from approximately 1900 to the present, are compared in Table 13. Values at the turn of the century were not greatly different, 4 - 12 mg/Kg for lead and 0.07 - 0.12 mg/Kg for mercury. The peak concentrations reached for lead represent enrichment factors of approximately 200 and 10 in Cedar and Black Lakes, respectively. The rate of increase was slower, and the maximum lead concentration occurred later in Black Lake (1992) than in Cedar Lake (1953). Considering the Trail smelter as a predominant source of contamination and assuming the core dates are representative, this may reflect a quicker response to evolving smelter emission patterns and mechanisms by the closer lake as well as variations in emissions transport and deposition behavior across the area. Enrichment factors for lead in the surface sediment layer of Cedar and Black Lakes are now about half of peak enrichment.

Mercury concentrations in Cedar and Black Lake sediments have also increased over time but to a lesser extent. Compared to earliest concentrations, enrichment factors are 2-3 compared to slightly more than 1 in Wenatchee Lake. The notably different sediment enrichment factors for lead and mercury may be related, in part, to the predominant form (particulate versus aerosol) these metals were in when atmospherically transported and deposited. Differences in the biological and geochemical processes affecting sorption and fate of these metals in the lacustrine environment also could be a factor.

Lake	Early 1900s (mg/Kg, dry)	Peak Concentration		Recent Concentration			
		Enrichment Factor	Estimated Date	Enrichment Factor	Sediment Layer Analyzed (cm)		
Lead							
Cedar	4 (1904)	197	1958	83	0 - 6		
Black	12 (1916)	9	1992	4	0 - 2		
Wenatchee	10 (1902)	1.4	2005	0.9	0 - 2		
Mercury							
Cedar	0.07 (1904)	3	2000	3	0 - 6		
Black	0.12 (1916)	3	1996	2	0 - 2		
Wenatchee	0.08 (1902)	1.4	1999	1.1	0 - 2		

Table 13. Concentrations and Enrichment Factors for Lead and Mercury in Sediment Cores from Cedar, Black, and Wenatchee Lakes (since approximately 1900).

Comparison with Sediment Quality Guidelines

The report on Ecology's 2010 northeast Washington lakes survey concluded with an assessment of the potential for adverse biological effects due to elevated metals concentrations in the sediments (Johnson et al., 2011). Some degree of sediment toxicity appeared likely in lakes from the western part of the study area. This observation was based primarily on a comparison with the sediment quality guidelines in MacDonald et al. (2000). A similar assessment follows for the lakes and wetlands Ecology sampled in 2012.

MacDonald et al. developed a set of consensus-based sediment quality guidelines for protecting freshwater ecosystems, derived from values proposed by six federal, state, or provincial agencies in North America. MacDonald et al. presents (1) threshold effect concentrations (TECs) intended to identify the concentrations of sediment-associated contaminants below which adverse effects on sediment-dwelling organisms are not expected to occur and (2) probable effect concentrations (PECs) intended to define the concentrations of sediment-associated contaminants above which adverse effects on sediment-dwelling organisms are likely to be observed. The MacDonald et al. PECs are commonly used to screen sediment chemistry data for potential to adversely affect aquatic life.

Table 14 compares the MacDonald et al. PECs to the range of metals concentrations measured in surface sediment samples from the present study. MacDonald et al. does not include guidelines for antimony.

Chemical	Probable Effect Concentrations*	North / Central Waterbodies**	Other Waterbodies++
Lead	128	203 - 545	13 - 76
Zinc	459	223 - 947	27 - 101
Arsenic	33	24 - 45	1.1 - 16
Cadmium	5.0	7.2 - 17	0.5 - 4.5
Mercury	1.1	0.09 - 0.28	0.01 - 0.06

Table 14. Comparison of 2012 Lake/Wetland Surface Sediment Sample Data to Freshwater Sediment Quality Guidelines (mg/Kg, dry weight).

*MacDonald et al. (2000)

**Cedar, Phillips, Silver Crown, Bowen, and Phalon (includes Elbow for mercury)

++Elbow, Dilly, Dry, Peterson, and Bodie (except Elbow excluded for mercury)

All of the northern and centrally located lakes – Cedar, Phillips, Silver Crown, Bowen, and Phalon – exceed one or more probable effects thresholds for lead, zinc, arsenic, and cadmium.

Exceedance factors (metals concentration divided by guideline) are plotted in Figure 12. Note that the concentrations are on a log scale (factors of 10). In these waterbodies, cadmium and lead appear to be the metals of greatest concern for adverse effects to sediment-dwelling organisms based on the available PECs. Silver Crown, Cedar, and Phillips Lakes have the highest potential for sediment toxicity.

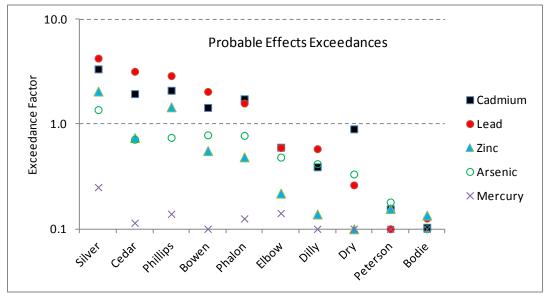


Figure 12. Exceedances of Sediment Quality Guidelines in Surface Sediments. Values >1 exceed guideline; log scale.

Northeast Washington Spatial Patterns

Metals Concentrations

Lead, zinc, arsenic, cadmium, antimony, and mercury data on surface sediments from Ecology's 2010 and 2012 sediment surveys are overlaid on a map of the study area in Figures 13 - 18. Cedar Lake was sampled in both 2010 and 2012; the 2012 data are shown here. The figures include average surface layer concentrations from the Black Lake core (Furl and Roberts, 2010; Johnson et al., 2011). In all, metals data have been obtained on the sediments of 26 lakes and wetlands in the northeast Washington area.

The 2012 findings are consistent with, and help refine, the spatial patterns identified during the 2010 survey:

- 1. Higher concentrations of lead, zinc, arsenic, cadmium, antimony, and mercury occur in lake sediment from the western part of the northeast Washington study area.
- 2. Sediment from lakes located closest to the Upper Columbia River valley shows an overall northward-increasing metals concentration trend, with highest concentrations typically observed in lakes located nearer to the international border.
- 3. Mercury appears to be dispersed more broadly, across the west and north-central portions of the study area, than is observed for lead, zinc, arsenic, cadmium, and antimony.

Mercury differs from the other metals analyzed in being subject to complex biogeochemical cycling that can strongly affect its behavior in a lake (Rudd, 1995; Engstrom et al., 2007; Furl et al., 2009). Land use and rainfall also can greatly modify the net flux of mercury to a lake by altering sedimentation rates. Such complicating factors may be at play in the apparent westward shift seen for mercury, along with variations in gaseous or particulate smelter emissions transport and fate relative to other metals.

Pepoon Lake and Bodie Wetland have lower metals concentrations than might be expected, given their relative locations. Aside from the potential for unknown local watershed factors, two related factors may inform these results: (1) Each are at a higher elevation relative to the other sampled waterbodies in this immediate area near the river (2,450 and 3,200 feet, respectively), and (2) due to their locations, Pepoon and Bodie may have been less affected by the historical air pollution plume from the Trail smelter. Both are located along or beyond the outer fringe of the 1930s SO₂ injury boundary and not within the highest impact zone bounding the river corridor. (See *Sources of Contamination*.)

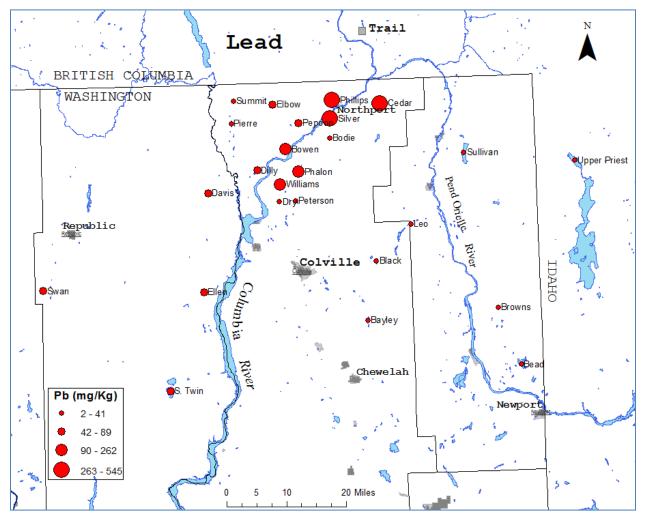


Figure 13. Lead Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012. (Top 10 cm layer)

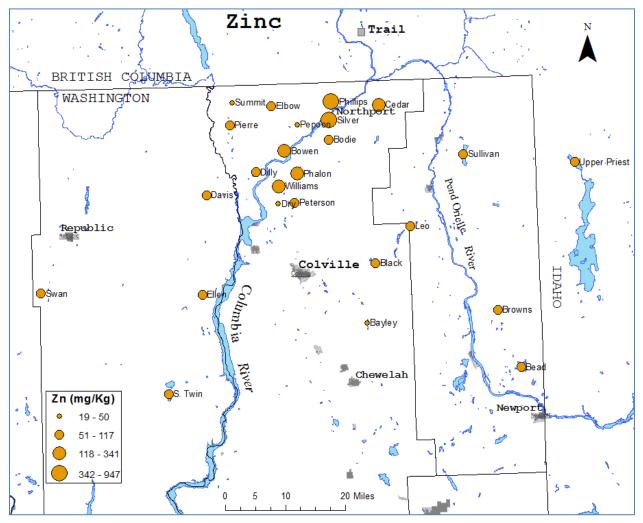


Figure 14. Zinc Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012. (Top 10 cm layer)

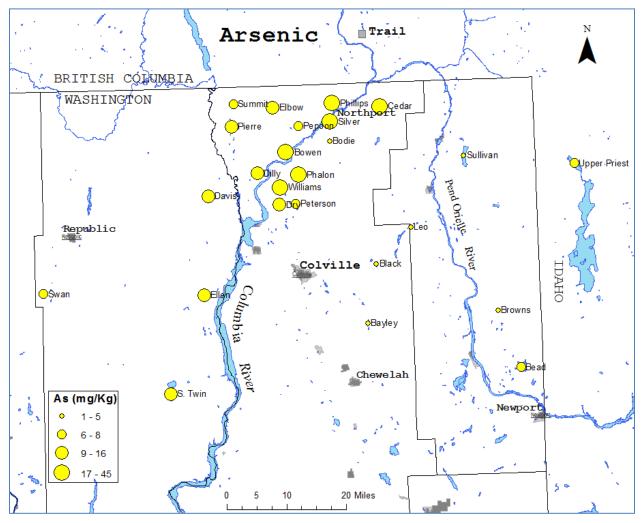


Figure 15. Arsenic Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012. (Top 10 cm layer)

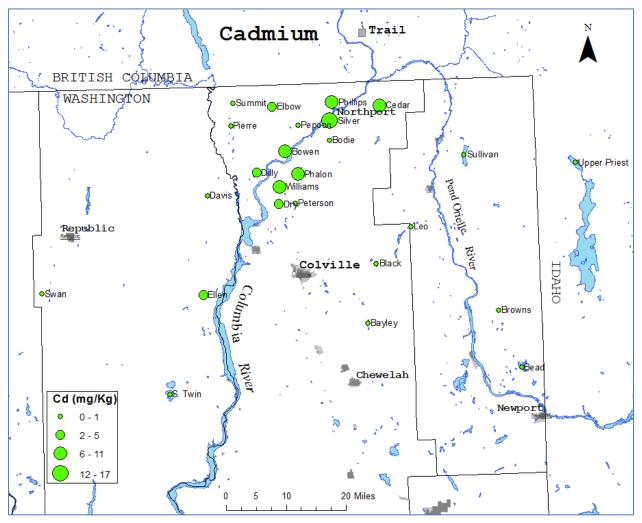


Figure 16. Cadmium Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012. (Top 10 cm layer)

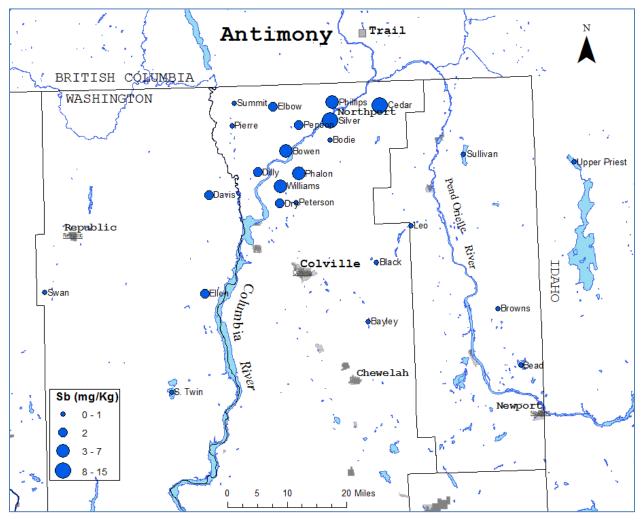


Figure 17. Antimony Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012. (Top 10 cm layer)

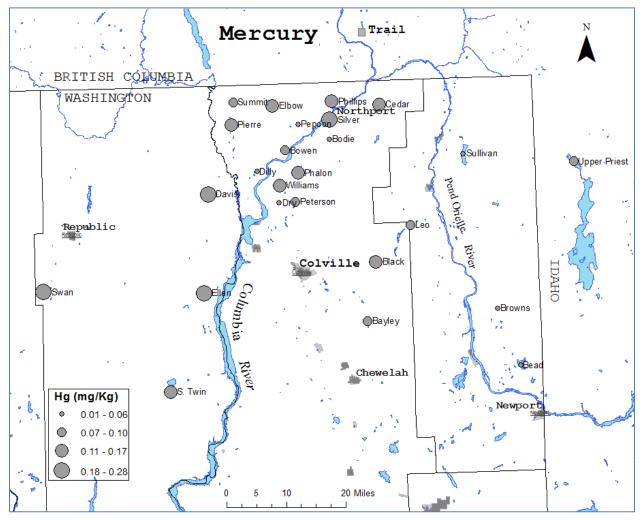


Figure 18. Mercury Concentrations in Lake and Wetland Sediments of Northeast Washington, 2009-2012. (Top 10 cm layer)

Sediment Toxicity

Figures 19 and 20 show lakes and wetlands from the 2010 and 2012 surveys that exceed the 2000 McDonald et al. PEC guidelines for lead and cadmium in sediments. In general, these indicators of potential sediment toxicity closely parallel the concentration data shown in Figures 13 and 16.

Three other instances of potential sediment toxicity were observed in the 2012 survey waterbodies (Figure 12). Silver Crown Lake exceeded the zinc and arsenic PECs by factors of 2.1 and 1.4, respectively. Phillips Lake exceeded the zinc PEC by a factor of 1.5.

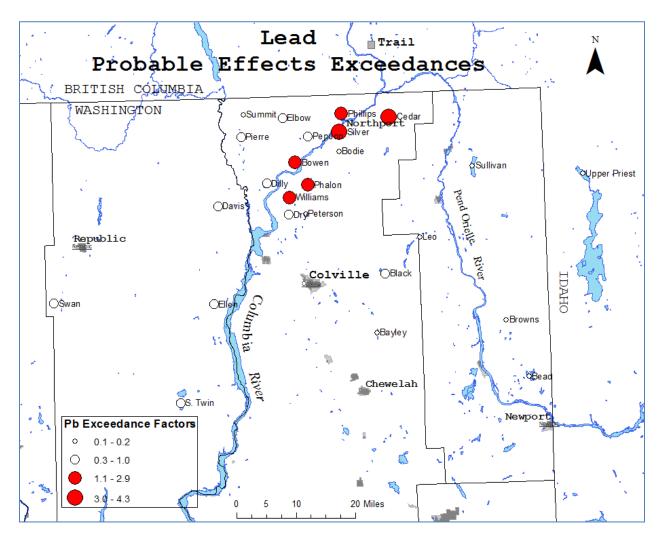
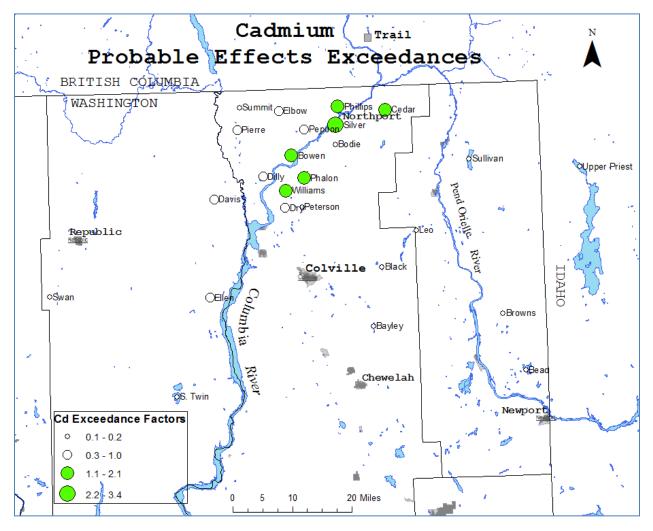
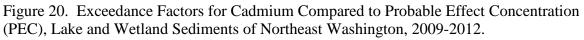




Figure 19. Exceedance Factors for Lead Compared to Probable Effect Concentrations (PEC), Lake and Wetland Sediments of Northeast Washington, 2009-2012.

Top 10 cm layer; values greater than 1.0 exceed PEC.

Top 10 cm layer; values greater than 1.0 exceed PEC.

Sources of Contamination

Ecology's report on the 2010 sediment survey concluded that the predominant source of metals contamination in northeast Washington lakes was historical transboundary air pollution from the Trail smelter (Johnson et al., 2011). This conclusion was based on the following lines of evidence:

- Spatial patterns and extent of sediment contamination in northeast Washington lakes.
- Path of the smelter SO₂ plume as reconstructed from historical mapping of forest damage (ICF International, 2011).
- Air deposition patterns of metals in the Pacific Northwest, revealed through a U.S. Forest Service monitoring program that analyzes lichens (Geiser, 2011; see Appendix F in present report).

Results from the current 2012 study provide additional support for this conclusion. In particular, high metals concentrations are observed in a cluster of lakes within the Upper Columbia River watershed. These lakes appear to correspond predominantly within the historical Trail smelter SO_2 plume timber injury footprint (e.g., Figures 21 and 22). Sediment age-dating approaches used during this study have provided further information on how the chronology and rate of metals deposition in Cedar Lake sediments generally coincide with historical smelter emissions.

The 2010 report also noted the existence of a smaller local source of metals contamination from the historical LeRoi smelter located on the Upper Columbia River at Northport, Washington. LeRoi operated for about 12 years, on and off from 1897 until 1921. The unusually high levels of lead, zinc, arsenic, cadmium, and antimony in the sediments of Silver Crown Lake, positioned less than a mile to the south of the LeRoi site, may include additional locally transported historic influence from the LeRoi stacks (see second map, Appendix A). A Cleanup of the old LeRoi site was conducted as an EPA response action in 2004.

In contrast to the near-continuous, 116-year history of the Trail smelter operations, the LeRoi/ Northport smelter was significantly smaller and experienced a short, intermittent operational life. An additional brief discussion of the operational histories of the Trail and LeRoi smelters is summarized in Appendix E.

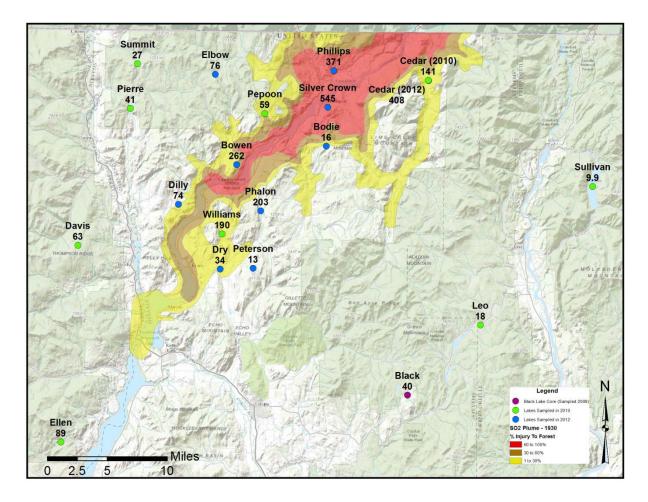


Figure 21. Lead Concentrations (mg/Kg, dry weight) in Sediments of Upper Columbia River Lakes and Wetlands, Sampled 2009-2012, Compared to Historical Record of Forest Damage from Trail SO₂ Air Emissions in 1930.

Historical SO₂ injury footprints digital reproduction provided courtesy of Environment International, Ltd.

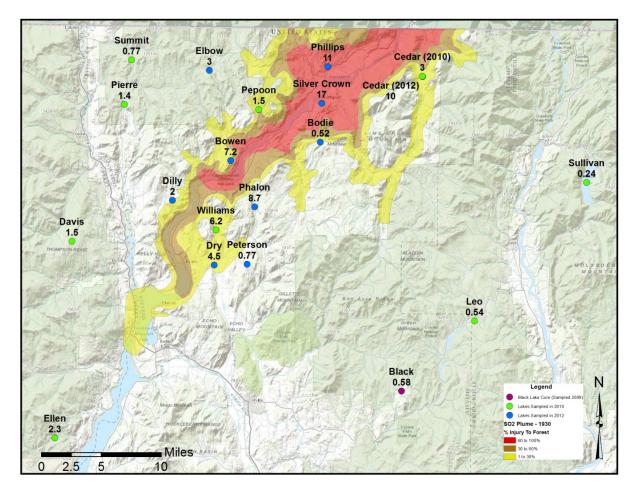


Figure 22. Cadmium Concentrations (mg/Kg, dry weight) in Sediments of Upper Columbia River Lakes and Wetlands, Sampled 2009-2012, Compared to Historical Record of Forest Damage from Trail SO₂ Air Emissions in 1930.

SO₂ plume overlay information courtesy of Environment International Ltd.

Summary and Conclusions

Sediments collected in 2012 from ten lakes and wetlands within the Upper Columbia River watershed were analyzed for lead, zinc, arsenic, cadmium, antimony, and mercury. The samples were a mix of surface grabs representing the top 10 cm and cores up to 50 cm in length. This study followed a previous lakes study performed in 2010.

The 2010 study evaluated 15 lakes over a broad portion of northeast Washington and one lake in Idaho. The 2010 study results indicated elevated levels of metals in the sediments from lakes located closer to the upper Columbia River valley. Consistent with the 2010 approach, waterbodies having relatively low impact from local human activities were selected for the 2012 sampling.

The ten lakes and wetlands sampled in 2012 affirm the marked enrichment of sediments in upland lake and wetland waterbodies along the upper Columbia River corridor, particularly nearer to the international border. This study, and other associated lines of evidence, further supports the conclusion that historical trans-boundary air pollution from the long-operated Trail smelter in British Columbia is the primary origin of the contamination. Also, historic emissions from the smaller LeRoi smelter that operated intermittently in Northport, Washington near the beginning of the 20th century should be expected to have contributed toward metals enrichment in soils more closely surrounding that community.

The highest metals concentrations in the 2012 surface sediment samples were for lead and zinc, followed by arsenic, cadmium, antimony, and mercury, in decreasing order. Much higher levels were found in Cedar, Phillips, Silver Crown, Bowen, and Phalon Lakes in the north and central part of the study area, compared to Dilly Lake and the three wetlands (Bodie, Dry, and Peterson Swamp) to the south and east, and Elbow Lake to the west. Silver Crown Lake shows the highest levels of metal contamination, followed by Cedar and Phillips Lakes. Elbow Lake had one of the higher mercury concentrations. The lowest metals levels were found in the Bodie, Dry, and Peterson Swamp wetlands.

Sediment cores were obtained from five of the lakes. Enrichment factors for the top 10 cm layer compared to the lowermost core bottom 10 or 20 cm intervals were as much as two orders of magnitude for lead and cadmium, and one order of magnitude for the other metals. Mercury and arsenic showed the smallest difference between surface and subsurface layers. In most of the lakes, the enrichment by mercury and arsenic was a factor of 6 or less. Silver Crown Lake, however, showed enrichment factors for mercury and arsenic of about 20 and 15, respectively. The deepest layers of sediment in these cores likely are approaching the natural, pre-industrial background within this portion of northeast Washington.

The sediment core from Cedar Lake was age-dated to estimate sedimentation rates and establish the chronology of metals deposition. Sedimentation was low in the 1800s, approximately 0.003 g/cm^2 /year, and began to accelerate rapidly around 1900, reaching a maximum of about 0.03 g/cm^2 /year in the 1940s. Recent rates (past 30 years) have averaged about 0.01 g/cm^2 /year, three times the rate in the early 1800s.

Metals deposition in Cedar Lake increased rapidly during the first half of the 20^{th} century, peaking in the 1950s or 1960s for lead, zinc, cadmium, and antimony. Although arsenic and mercury appear to continue increasing, the recent history could not be seen in detail due to the way the core was sectioned. The time sequence of changes in metals concentrations in this core is consistent with the known operational history of the Trail smelter. Cedar Lake is located approximately four miles south of the international boundary and lies within the historical SO₂ damage zone.

Six of the northern and centrally located lakes – Cedar, Phillips, Silver Crown, Bowen, Phalon, and Willams (sampled in 2010) – exceed one or more of the probable effect concentrations (PECs) thresholds for lead and cadmium. Additional metals exceed PECs in Silver Crown Lake (zinc and arsenic) and Phillips Lake (zinc). Metals concentrations in these lakes may pose a potential concern for adverse biological effects. This determination is based on a comparison of measured metals concentrations to literature-based, effects-concentration thresholds for freshwater ecosystems

The 2012 findings are consistent with, and help refine, the spatial patterns identified in 2010:

- 1. Higher concentrations of lead, zinc, arsenic, cadmium, antimony, and mercury occur in the bottom sediment of lakes from the western part of the northeast Washington study area.
- 2. Sediment in lakes located closest to the Upper Columbia River valley show an overall northward-increasing metals concentration trend, with highest concentrations typically observed in lakes located within about 10 miles of the international border.
- 3. Elevated mercury concentrations appear to be more prevalent in the west and north-central portions of the study area, relative to lead, zinc, arsenic, cadmium, and antimony concentration patterns.

Recommendations

The 2012 findings described in this report have important implications for the health and integrity of aquatic environments in northeast Washington State. The direct applicability of these latest data and results, coupled with the previous findings from the 2010 study, demonstrate the need to further evaluate and define the geographic extent of heavy metals impacts attributable to historical smelter emissions. These impacts include potential adverse risks to aquatic and terrestrial ecological receptors which may come into contact with contaminated sediments and/or terrestrial soils within this portion of the Upper Columbia River watershed in northeast Washington.

References

Appleby, P.G. and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, Vol. 5: 1-8.

Betts, B. 2003. Development of Freshwater Sediment Quality Values for Use in Washington State. Phase II Report: Development and Recommendation of SQVs for Freshwater Sediments in Washington State. Prep. by Avocet Consulting for Washington State Department of Ecology, Olympia, WA. Publication No. 03-09-088. https://fortress.wa.gov/ecy/publications/SummaryPages/0309088.html

Blakley, N. 2008. Standard Operating Procedures for Obtaining Freshwater Sediment Samples. Washington State Department of Ecology, Olympia, WA. EAP SOP #040. www.ecy.wa.gov/programs/eap/quality.html

Charles, M.J. and R.A. Hites. 1987. Sediments as Archives of Environmental Pollution Trends. In: Sources and Fates of Aquatic Pollutants. American Chemical Society.

Engstrom, D.R., S.J. Balogh, and E.B. Swain. 2007. History of mercury inputs to Minnesota lakes: Influences of watershed disturbance and localized atmospheric deposition. Limnology and Oceanography, 52(6): 2467-2483.

EPA. 1990. Specifications and Guidance for Obtaining Contaminant-Free Sample Containers. OSWER Directive #93240.0-05. U.S. Environmental Protection Agency.

Furl, C. 2008. History of Mercury in Selected Washington Lakes Determined from Age-Dated Sediment Cores: 2007 Sampling Results. Washington State Department of Ecology, Olympia, WA. Publication No. 08-03-012.

https://fortress.wa.gov/ecy/publications/SummaryPages/0803012.html

Furl, C. and C. Meredith. 2008. Standard Operating Procedures for Collection of Freshwater Sediment Cores Samples Using a Box or KB Corer. Washington State Department of Ecology, Olympia, WA. EAP SOP #038. <u>www.ecy.wa.gov/programs/eap/quality.html</u>

Furl, C., J.A. Colman, and M.H. Bothner. 2009. Mercury sources to Lake Ozette and Lake Dickey: Highly contaminated remote coastal lakes, Washington State, USA. Water, Air, & Soil Pollution 208(1-4):275-286.

Furl, C. and T. Roberts. 2010. Determination of PBT Chemical Trends in Selected Washington Lakes Using Age-Dated Sediment Cores, 2009 Sampling Results. Washington State Department of Ecology, Olympia, WA. Publication No. 10-03-035. https://fortress.wa.gov/ecy/publications/publications/1003035.pdf Furl, C. and T. Roberts. 2011. PBT Chemical Trends in Washington State Determined from Age-Dated Lake Sediment Cores, 2010 Sampling Results. Washington State Department of Ecology, Olympia, WA. Publication No. 11-03-45. https://fortress.wa.gov/ecy/publications/publications/1103045.pdf

Geiser, L. 2011. Unpublished maps of metals concentrations in lichen samples from Washington and Oregon. 5/23/2011 and 6/6/2011 emails to Art Johnson, Washington State Department of Ecology, from Linda Geiser, U.S. Forest Service, Pacific Northwest Region Air Program, Corvallis, OR.

ICF International. 2011. Air Quality and Deposition Analysis for the Upper Columbia River Basin: Model-Based Assessment of the Impact of Emissions from the Teck-Cominco Facility on Regional Air Quality and Deposition. ICF International, San Rafael, CA.

Johnson, A. 2010. Quality Assurance Project Plan: Assessment for Chemical Contaminants in Northeast Washington Area Lakes. Washington State Department of Ecology, Olympia, WA. Publication No. 10-03-119. <u>https://fortress.wa.gov/ecy/publications/publications/1003119.pdf</u>.

Johnson, A. 2012. Addendum to Quality Assurance Project Plan for Assessment for Chemical Contaminants in Northeast Washington Area Lakes. Washington State Department of Ecology, Olympia, WA. Publication No. 12-03-115 https://fortress.wa.gov/ecy/publications/publications/1203115.pdf.

Johnson, A., M. Friese, J. Roland, C. Gruenenfelder, B. Dowling, A. Fernandez, and T. Hamlin. 2011. Background Characterization for Metals and Organic Compounds in Northeast Washington Lakes, Part 1: Bottom Sediments. Washington State Department of Ecology, Olympia, WA. Publication No. 11-03-035. <u>https://fortress.wa.gov/ecy/publications/summarypages/1103035.html</u>

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1):20-31.

Mathieu, C. 2013. Personal communication. PBT Monitoring Program, Washington State Department of Ecology, Olympia, WA.

Mathieu, C. and M. Friese. 2012. PBT Chemical Trends in Washington State Determined from Age-Dated Lake Sediment Cores: 2011 Sampling Results. Washington State Department of Ecology, Olympia, WA. Publication No. 12-03-045. https://fortress.wa.gov/ecy/publications/publications/1203045.pdf

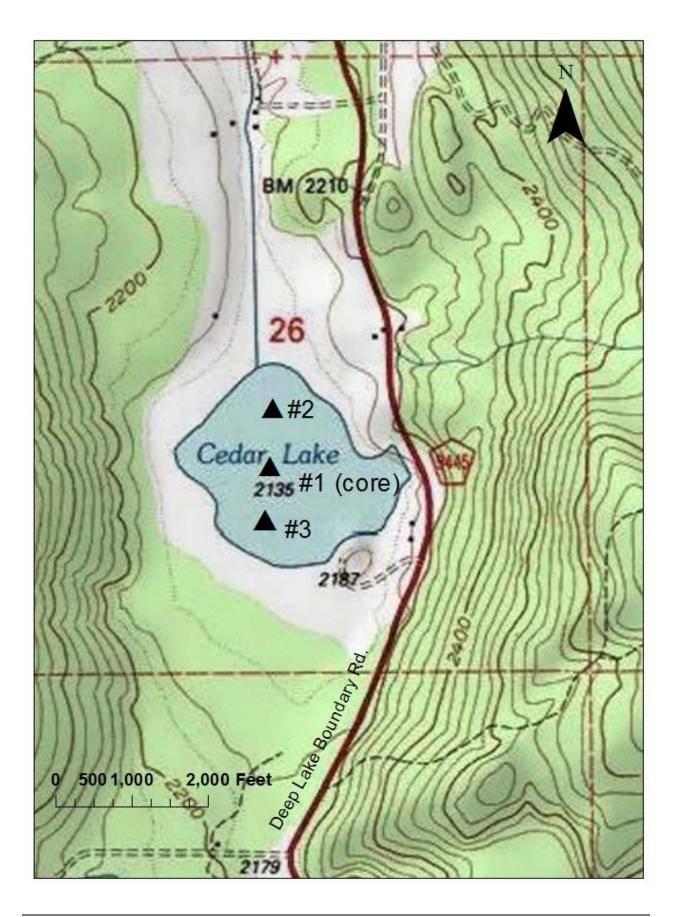
MEL. 2008. Manchester Environmental Laboratory Lab Users Manual, Ninth Edition. Manchester Environmental Laboratory, Washington State Department of Ecology, Manchester, WA.

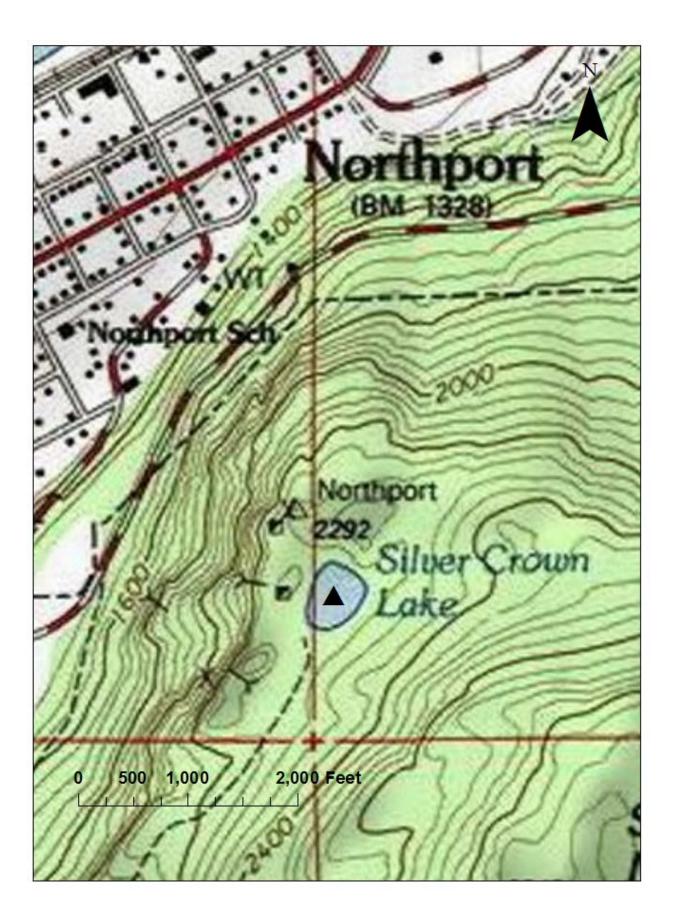
MEL. 2012. Manchester Environmental Laboratory Quality Assurance Manual. Manchester Environmental Laboratory, Washington State Department of Ecology, Manchester, WA.

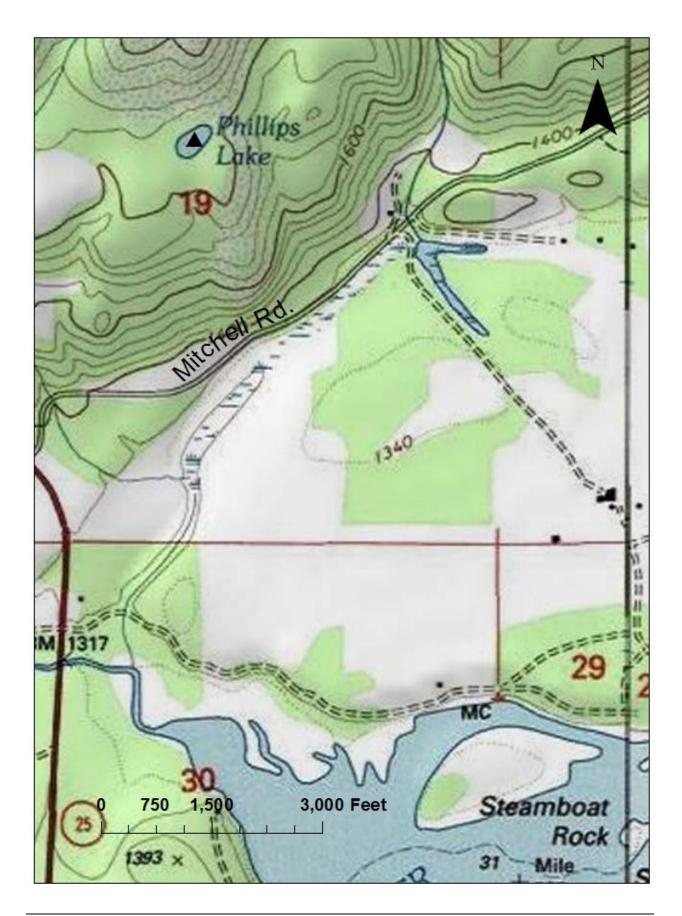
Paulson, A.J. 2004. Sources of Mercury in Sediments, Water, and Fish of the Lakes of Whatcom County, Washington. USGS Scientific Investigations Report 2004-5084. Prepared in cooperation with Whatcom County Health Department and Washington State Department of Ecology.

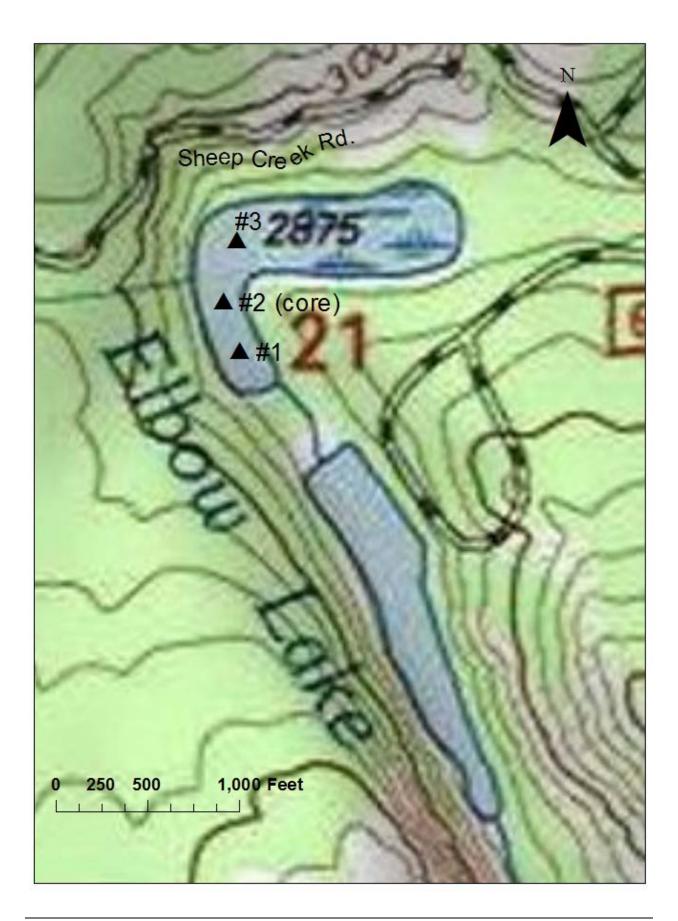
PSEP. 1986. Recommended Protocols for Measuring Environmental Variables in Puget Sound. Prepared for Puget Sound Estuary Program. Tetra Tech, Inc., Bellevue, WA.

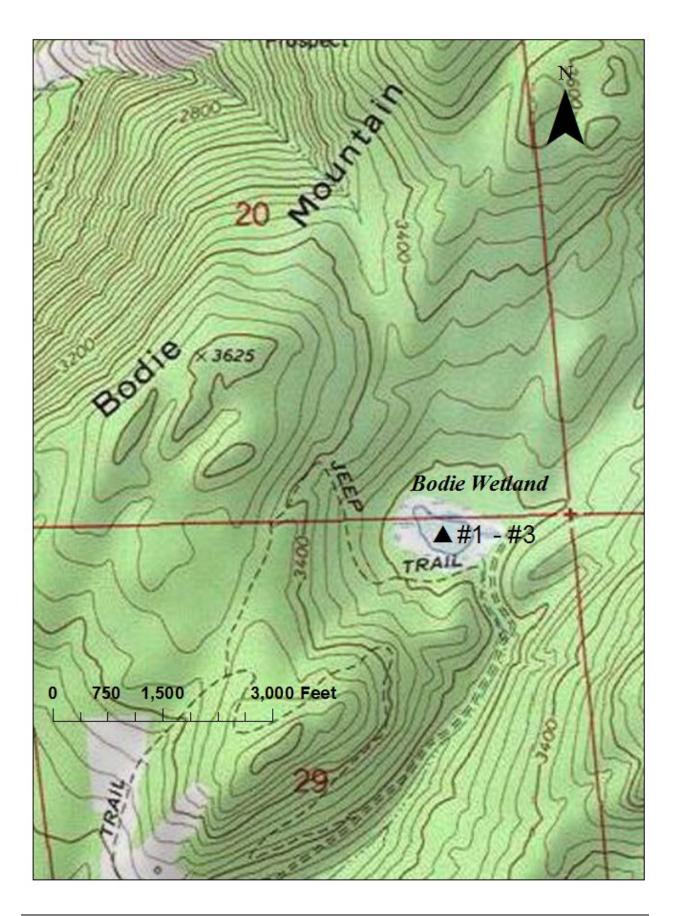
Queneau, Paul B. 2010. Expert Opinion, Pakootas, et al. v. Teck Cominco Metals, September 15, 2010.

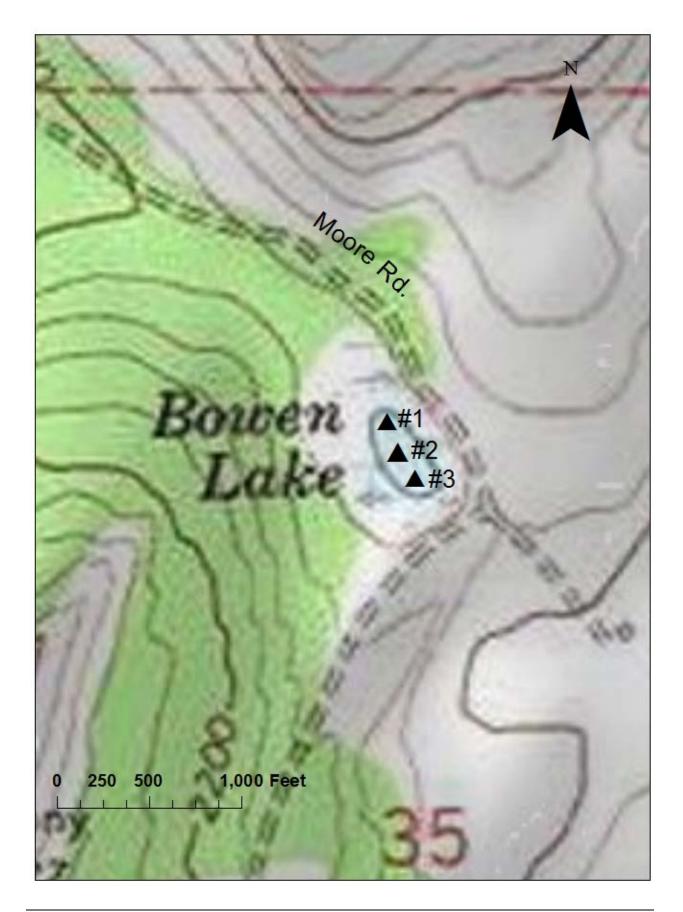

Rudd, J.W.M. 1995. Sources of methylmercury to freshwater ecosystems: a review. Water, Air, and Soil Pollution 80:697-713.

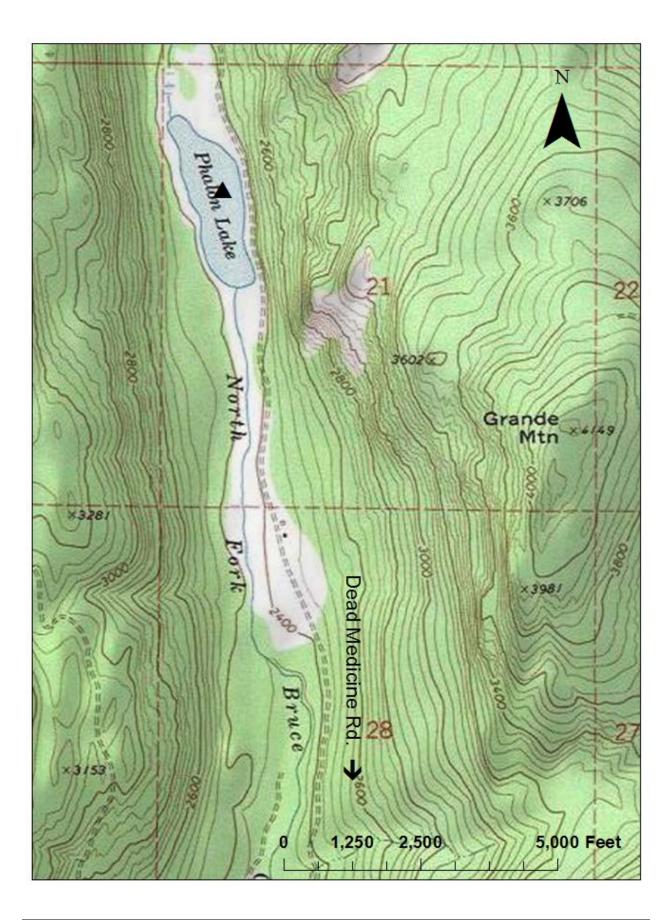

Van Metre, P., J. Wilson, C. Fuller, E. Callendar, and B. Mahler. 2004. Collection, Analysis and Age-Dating of Sediment Cores From 56 U.S. Lakes and Reservoirs Sampled by the U.S. Geological Survey, 1992–2001. U.S. Geological Survey Scientific Investigations Report 2004-5184.

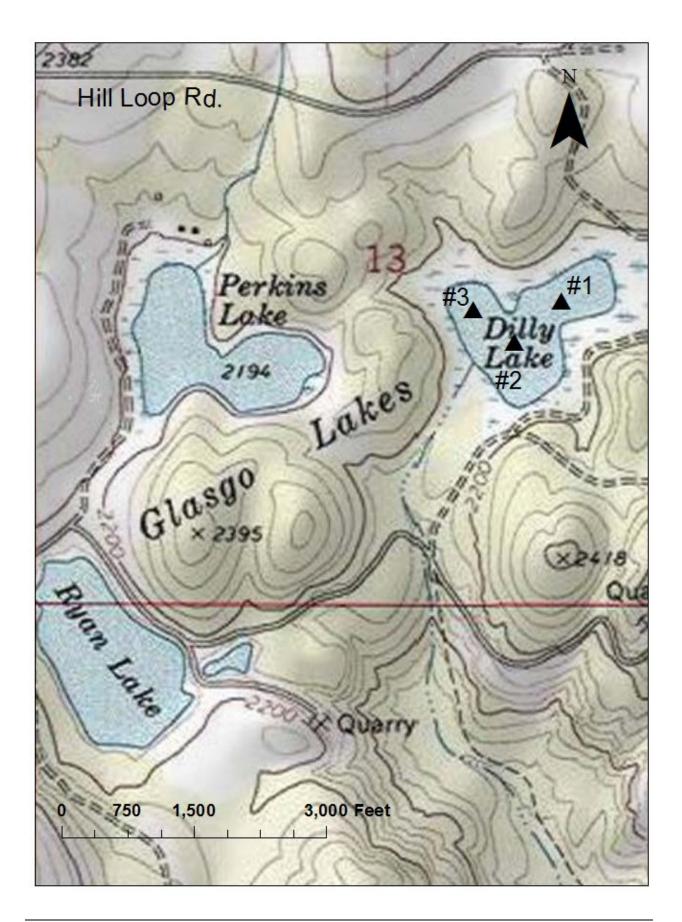

This page is purposely left blank

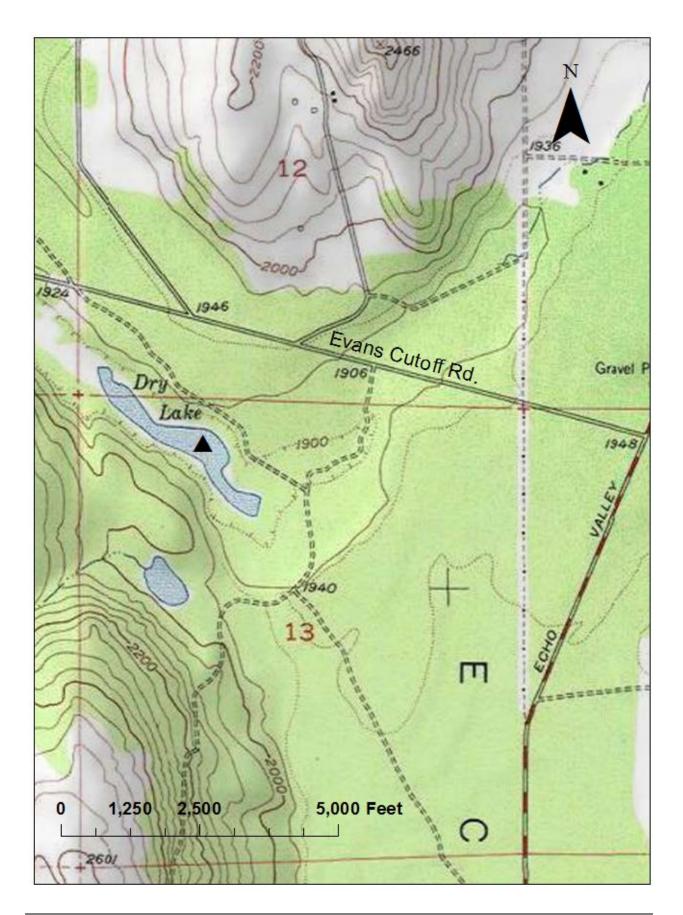

Appendices

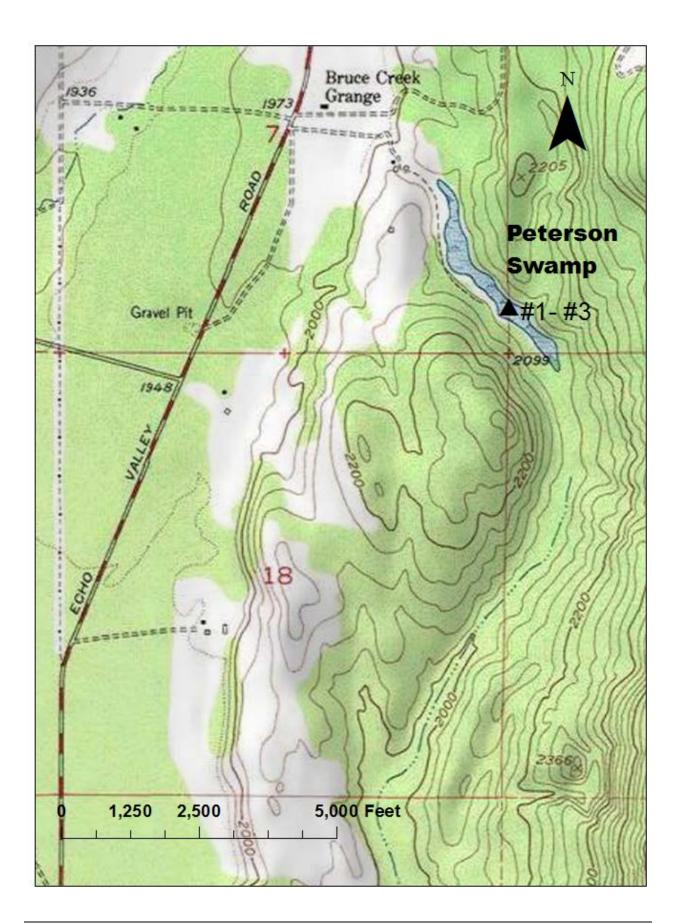

Appendix A. Maps of Sediment Sampling Sites for 2012











Appendix B. Data Reviews and Data Reports for 2012 Sediment Samples This page is purposely left blank

Manchester Environmental Laboratory

7411 Beach Drive E, Port Orchard, Washington 98366

Case Narrative

November 20, 2012

Project: Metals NE Washington Sediments

0r

Work Order: 1210038

Project

Manager: Johnson, Art

By: Dean Momohara

Summary

The laboratory followed EPA 245.5 for the preparation and analysis of mercury and EPA 3050B for the preparation and EPA 200.8 for the analysis of trace metals. Samples for antimony were digested following section 7.5 within EPA 3050B to increase analyte recoveries.

All analyses requested were evaluated by established regulatory quality assurance guidelines.

Sample Information

The samples were received at the Manchester Laboratory on 9/27/2012, 10/17/2012 and 10/24/2012. One of the coolers was received at 8°C, above the proper temperature range of 0°C - 6°C. All results for samples 56, 57, 58 and 59 were qualified as estimates. The samples were received in good condition. Forty samples were received and assigned laboratory identification numbers 01 to 04, 10 to 13, 15 to 18, 20 to 22, 24, 30 to 44, 50 to 53 and 55 to 59.

Holding Times

The laboratory performed all analyses within their hold times.

Calibration

The instruments were calibrated following the appropriate methods. All initial and continuing calibration verification checks were within the acceptance limits.

All initial and continuing calibration verification and blank checks were within the acceptance limits. All standard residuals were within acceptance limits. All r-values were within acceptance limits. The instruments were calibrated with NIST traceable standards and verified to be in calibration with a second source NIST traceable standard. Oven drying temperatures were monitored before and after drying.

Method Blanks

No analytically significant levels of analyte were detected in the method blanks associated with these samples.

Laboratory Control Samples

All laboratory control sample recoveries were within the acceptance limits.

Replicates

All duplicate relative percent differences (RPD) of samples with concentrations greater than 5 times the reporting limit were within the acceptance limit except for mercury. The duplicate RPD for sample 55 for mercury was greater than the acceptance limit. The sample was qualified as an estimate.

Matrix Spikes

All matrix spike (MS) recoveries were within the acceptance limits except for zinc, lead and mercury.

Both MS/MSD recoveries for sample 32 for lead were outside of the acceptance limits. One of the MS/MSD recoveries for sample 32 for zinc was outside of the acceptance limits. The standard spiking level was insufficient for the elevated concentration in the source sample therefore the recoveries were not evaluated.

One of the MS/MSD recoveries for sample 55 for mercury was outside of the acceptance limits due to sample inhomogeneity. The source sample was qualified as an estimate.

One of the matrix spike recoveries for mercury were outside of the acceptance limits. The source sample was from a different work order and was not evaluated.

The MS and MSD for batch B12J219 and the source sample (13) were re prepared due to one of the MS recoveries was unusually low.

Internal Standards

All internal standard recoveries were within the acceptance limits.

Other Quality Assurance Measures and Issues

U - The analyte was not detected at or above the reported result.

J - The analyte was positively identified. The associated numerical result is an estimate.

bold - The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

Please call Dean Momohara at (360) 871-8808 to further discuss this project.

cc: Project File

This page is purposely left blank

Project Name: NE Washington Sediments

Work Order: 121 Project Officer: J Date Collected: (lohnson, Art		Met	lyte: Antin hod: EPA2 Analyzed:	00.8	12		N	/atrix: Sedir Units: mg/	-
Sample #	Sample ID		* 1 •	Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-01	CEDAR 1			9.91		0.200	0.008	09/11/12	10/25/12	B12J219
1210038-02	CEDAR 2			16.2		0.833	0.031	09/11/12	10/25/12	B12J219
1210038-03	CEDAR 3			15.3		0.207	0.008	09/11/12	10/25/12	B12J219
1210038-04	CEDAR DUP			16.1		0.199	0.007	09/11/12	10/25/12	B12J219
1210038-10	SILVER 0-10			15.0		0.200	0.008	09/11/12	10/25/12	B12J219
1210038-11	SILVER 10-20	•		17.9		0.200	0.008	09/11/12	10/25/12	B12J219
1210038-12	SILVER 20-30			0.495		0.200	0.008	09/11/12		
1210038-13RE1	SILVER 30-50	•		0.413	U	0.413	0.016	09/11/12		
1210038-15	PHALON 0-10			3.53		0.199	0.007	09/12/12		
1210038-16	PHALON 10-20			0.759		0.199	0.007	09/12/12		
1210038-17	PHALON 20-30		1.1	0.865		0.200	0.008	09/12/12		
1210038-18	PHALON 30-50			0.945		0.201	0.008	09/12/12	• •	
1210038-20	PHILLIPS 0-10	. C.		6.94	1.15	0.199	0.007	09/11/12		
1210038-20	PHILLIPS 10-20			5.53		0.199	0.007	09/11/12		
1210038-21	PHILLIPS 20-30			0.716		0.133	0.007	09/11/12		
1210038-22	DRY 0-10			2.26		0.200	0.008	09/12/12		
L210038-24 L210038-30	CEDAR 1-6			2.20 9.48		0.200	0.007	09/12/12		
				9.48 15.9		0.198	0.007	09/11/12		
1210038-31	CEDAR 7-9									
L210038-32 L210038-34	CEDAR 10 CEDAR 12			15.5 0.626		0.198 0.200	0.007 0.008	09/11/12 09/11/12		
QC Results for Ba Method Blank	Sample ID		Result	Qualifer	RL	M	DL		Analyzed	
312J219-BLK1	Blank		0.200	U	0.200	0.0	08		10/25/12	
				Spik	e So	urce	Source		%Rec	RPE
Sample #	QC Sample	1944 - S	Result	Leve	el Sa	nple	Result	%Rec	Limits F	RPD Limi
312J219-BS1	LCS		88.0	80				110	85-115	
312J219-DUP1	Duplicate		0.512			038-34	0.626			20 20
312J219-MS1	Matrix Spike		137	153	3 121003	38-13RE1	0.296	89	75-125	
312J219-MSD1	Matrix Spike Dup		139	155		38-13RE1			75-125	2 20
312J219-SRM1	Reference		220	120					0-219.2	
Authorized by:	Dr					se Date:		201n		ge 1 of 2

11/20/2012

Project Name: NE Washington Sediments

Work Order: 12: Project Officer: J Date Collected:	Iohnson, Art	· Me	alyte: Antimo thod: EPA20 te Analyzed: 1	0.8	12			Matrix: Se Units: m		-
Sample #	Sample ID		Result C) ualifier	RL	MDL	Collecte	ed Analyz	ed Ba	atch ID
1210038-33	CEDAR 11		2.67		0.199	0.007	09/11/1	12 11/05/	12 B1	L2K005
1210038-35	CEDAR 13		0.853		0.199	0.007	09/11/1	12 11/15/	12 B1	L2K005
1210038-36	CEDAR 14		1.39		0.199	0.007	09/11/1	12 11/15/	12 B1	l2K005
1210038-37	CEDAR 15-16		1.92		0.200	0.008	09/11/1	12 11/15/	12 B1	L2K005
1210038-38	CEDAR 17-18		1.16		0.199	0.007	09/11/1	12 11/15/	12 <u>B</u> 1	L2K005
1210038-39	CEDAR 19-20		1.01		0.200	0.008	09/11/1	12 11/20/	12 B1	L2K005
1210038-40	CEDAR 23-24		1.60		0.199	0.007	09/11/1	12 11/15/	12 B1	L2K005
1210038-41	CEDAR 27-28	•	1.78		0.200	0.008	09/11/1	12 11/15/	12 B1	L2K005
1210038-42	CEDAR 31-32		1.41		0.198	0.007	09/11/1	12 🚽 11/15/	12 B1	L2K005
1210038-43	CEDAR 35-36		2.66		0.198	0.007	09/11/1	12 11/05/	12 B1	L2K005
1210038-44	CEDAR 37-38		2.64		0.199	0.007	09/11/1	12 11/05/	12 B1	L2K005
1210038-50	Elbow		1.49		0.198	0.007	10/09/1	12 11/15/	12 B1	L2K005
1210038-51	Dilly		1.85		0.198	0.007	10/09/1	12 11/15/	12 B1	L2K005
1210038-52	Bowen		4.81		0.200	0.008	10/09/1	12 11/05/	12 B1	L2K005
1210038-53	Peterson		0.812		0.201	0.008	10/10/1	12 11/15/	12 B1	L2K005
1210038-55	Bodie		0.236		0.198	0.007	10/10/1	12 11/15/	12 B1	L2K005
1210038-56	Elbow10-20		2.72	J	0.198	0.007	10/09/1	12 11/05/	12 B1	L2K005
1210038-57	Elbow20-30		0.762	َ J	0.200	0.008	10/09/1	12 11/15/	12 B1	L2K005
1210038-58	Elbow30-40		1.15	J	0.198	0.007	10/09/1	12 11/15/	12 B1	L2K005
1210038-59	Elbow 0-10		2.02	J.	0.200	0.008	10/09/1	12 11/15/	12 B1	L2K005
QC Results for Ba	atch ID: B12K005									
Method Blank	Sample ID	Result	Qualifer	RL	M	DL	- 1 10 - 10 - 10	Analyzed		
B12K005-BLK1	Blank	0.200	U	0.200	0.0	008		11/15/12		• ***
Sample #	QC Sample	Result	Spike Level		urce nple	Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12K005-BS1	LCS	82.3	80				103	85-115		
B12K005-DUP1	Duplicate	2.99		1210	038-43	2.66			12	20
B12K005-DUP2		2.43			038-51	1.85		al contra de la co	27	20
B12K005-MS1	Matrix Spike	70.8	79.1	1210)38-53	0.812	88	75-125		
B12K005-MSD1	Matrix Spike Dup	71.1	79.4	1210	038-53	0.812	89	75-125	0.5	20
B12K005-SRM1	Reference	216	120				180	0-219.2		
			ť,							

Authorized by:

Release Date:

11/201-

Page 2 of 2 11/20/2012

DM

Arsenic

.

Work Order: 12 Project Officer: Date Collected:	Johnson, Art	Meth	rte: Arsenio od: EPA20 Analyzed: 1	0.8	12	·		Matrix: Sed Units: m		
Sample #	Sample ID		Result C		RL	MDL	Collecte	d Analyze	ed Ba	tch ID
1210038-01	CEDAR 1		18.9		1.00	0.163	09/11/1	2 10/15/1	.2 B1	2J079
1210038-02	CEDAR 2		27.1		0.996	0.162	09/11/1			2J079
1210038-03	CEDAR 3		22.4		0.994	0.162	09/11/1			2J079
1210038-04	CEDAR DUP		27.3		0.998	0.162	09/11/1			2J079
1210038-10	SILVER 0-10		45.3		1.00	0.163	09/11/1			2J079
1210038-11	SILVER 10-20	·	54.8		0.994	0.162	09/11/1			2J079
1210038-12	SILVER 20-30		8.03		0.996	0.162	09/11/1			2J079
1210038-13	SILVER 30-50		2.79		0.099	0.016	09/11/1			2J079
1210038-15	PHALON 0-10	•	25.7		0.996	0.162	09/12/1			2J079
1210038-15	PHALON 10-20		16.2		0.994	0.162	09/12/1			2J079
1210038-10	PHALON 20-30		16.9		0.994	0.162	09/12/1			2J079
1210038-17	PHALON 30-50		18.5		1.01	0.162	09/12/1			2J079
1210038-18	PHALON 30-50 PHILLIPS 0-10		18.5 24.6			0.164	09/12/1			2J079
1210038-20	PHILLIPS 0-10 PHILLIPS 10-20		24.6 22.9		1.00 1.00	0.163	09/11/1			2J079
1210038-22	PHILLIPS 20-30		4.49		1.00	0.163	09/11/1			2)079
1210038-24	DRY 0-10		11.0		1.00	0.163	09/12/1			2J079
1210038-30	CEDAR 1-6		28.2		1.57	0.256	09/11/1			2J079
1210038-31	CEDAR 7-9		25.2		1.00	0.163	09/11/1			2J079
	CEDAR 10		25.6		1.00	0.163	09/11/1			2J079
			F 03							
1210038-32 1210038-34	CEDAR 12	·	5.82		0.998	0.162	09/11/1	2 10/15/1	.Z B1	ZJU75
1210038-34 QC Results for B	CEDAR 12 atch ID: B12J079	Result O		RI			09/11/1		IZ B1	21079
1210038-34 QC Results for B Method Blank	CEDAR 12 atch ID: B12J079 Sample ID		5.82 ualifer	<u>RL</u> 0.100	M	DL	09/11/1	Analyzed	.2 81	21075
1210038-34	CEDAR 12 atch ID: B12J079	Result Q 0.100	ualifer	0.100	<u>M</u>	DL 016	09/11/1	Analyzed 10/15/12	.2 81	
1210038-34 QC Results for B <u>Method Blank</u> B12J079-BLK1	CEDAR 12 atch ID: B12J079 Sample ID		ualifer	0.100 So u	M	DL	09/11/1 %Rec	Analyzed	RPD	2J079 RPI Limi
1210038-34 QC Results for B <u>Method Blank</u> B12J079-BLK1 Sample #	CEDAR 12 atch ID: B12J079 Sample ID Blank	0.100	ualifer U Spike	0.100 So u	0.0 Urce	DL D16 Source		Analyzed 10/15/12 %Rec		RPI
1210038-34 QC Results for B Method Blank B12J079-BLK1 Sample # B12J079-BS1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample	0.100 Result	ualifer U Spike Level	0.100 Sou San	0.0 Urce	DL D16 Source	%Rec	Analyzed 10/15/12 %Rec Limits		RPI Lim
1210038-34 QC Results for B Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS	0.100 <u>Result</u> 41.4	ualifer U Spike Level	0.100 Sou San 12100	M 0.0 urce nple	DL D16 Source Result	%Rec	Analyzed 10/15/12 %Rec Limits	RPD	RPI Lim
1210038-34 QC Results for B Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate	0.100 Result 41.4 5.79	ualifer U Spike Level 40	0.100 Sou San 12100 12100	M 0.0 urce nple	DL D16 Source Result 5.82	%Rec 103	Analyzed 10/15/12 %Rec Limits 85-115	RPD	RPI Lim 20
1210038-34 QC Results for B <u>Method Blank</u> B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MS1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.100 Result 41.4 5.79 68.7	ualifer U Spike Level 40 40.1	0.100 Sou San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125	RPD 0.6	RPI
1210038-34 QC Results for B <u>Method Blank</u> B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MS1 B12J079-MSD1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 41.4 5.79 68.7 66.9	ualifer U Spike Level 40 40.1 40	0.100 Sou San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 0.6	RP Lim
1210038-34 QC Results for B Method Blank	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 41.4 5.79 68.7 66.9	ualifer U Spike Level 40 40.1 40	0.100 Sou San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 0.6	RPI Lim 20
1210038-34 QC Results for B <u>Method Blank</u> B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MS1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 41.4 5.79 68.7 66.9	ualifer U Spike Level 40 40.1 40	0.100 Sou San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 0.6	RPI Lim 20
1210038-34 QC Results for B <u>Method Blank</u> B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MS1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 41.4 5.79 68.7 66.9	ualifer U Spike Level 40 40.1 40	0.100 Sou San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 0.6	RPI Lim 20
1210038-34 QC Results for B Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MS1 B12J079-MSD1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 41.4 5.79 68.7 66.9	ualifer U Spike Level 40 40.1 40	0.100 Sou San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 0.6	RP Lim
1210038-34 QC Results for B Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MS1 B12J079-MSD1	CEDAR 12 atch ID: B12J079 Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 41.4 5.79 68.7 66.9	ualifer U Spike Level 40 40.1 40	0.100 Son San 12100 12100	M 0.0 urce nple 038-34 038-32	DL D16 Source Result 5.82 25.6 25.6	%Rec 103 108 103	Analyzed 10/15/12 %Rec Limits 85-115 75-125 75-125 83.3-117.3	RPD 0.6	RPI Lim 20 20

Project Name: NE Washington Sediments

Work Order: 12 Project Officer: . Date Collected:	lohnson, Art	•	Me	alyte: Arse thod: EPA2 e Analyzed	200.8	/2012			Matrix: Units:			1
Sample #	Sample ID		-	Result	Qualifi	er RL	MDL	Collec	ted Anal	yzed	Batch	ID
1210038-33	CEDAR 11		· ,	7.78		0.990	0.161	09/11	/12 11/0	6/12	B12J17	74
1210038-35	CEDAR 13			11.3		0.996	0.162	09/11	/12 _11/0	6/12	B12J17	74
1210038-36	CEDAR 14			20.5		0.994	0.162	09/11,		6/12	B12J17	
1210038-37	CEDAR 15-16			22.3		1.00	0.163	09/11,		6/12	B12J17	74
1210038-38	CEDAR 17-18		•	17.2		1.57	0.256	09/11,		6/12	B12J17	74
1210038-39	CEDAR 19-20		Þ	14.8		1.59	0.258	09/11,		6/12	B12J17	
1210038-40	CEDAR 23-24			16.5		1.53	0.249	09/11,	•	6/12	B12J17	
1210038-41	CEDAR 27-28			20.8		1.00	0.163	09/11		6/12	B12J17	
1210038-42	CEDAR 31-32			20.0		1.00	0.163	09/11,		6/12	B12J17	
1210038-43	CEDAR 35-36	14 14 - 14		26.7		0.996	0.162	09/11,	-		B12J17	
1210038-44	CEDAR 37-38			25. 9		1.00	0.163	09/11,		6/12	B12J17	
1210038-50	Elbow			14.5		1.00	0.163	10/09,	-		B12J17	
1210038-51	Dilly	•		13.9		1.00	0.163	10/09,		•	B12J1	•
1210038-52	Bowen			26.0		1.00	0.163	10/09,		6/12	B12J17	
1210038-53	Peterson			5.95		1.00	0.163	10/10,			B12J17	
1210038-55	Bodie			1.08		1.00	0.163	10/10,		6/12	B12J17	
1210038-56	Elbow10-20			18.9	J	1.00	0.163	10/09,		•	B12J17	•
1210038-57	Elbow20-30		·	16.5	J	1.00	0.163	10/09,		6/12	B12J17	
1210038-58	Elbow30-40			15.2	J,	1.00	0.163	10/09,		6/12	B12J17	
1210038-59	Elbow 0-10			17.4	J	1.00	0.163	10/09,	/12 11/0	6/12	B12J17	74
QC Results for Ba	atch ID: B121174											
Method Blank	Sample ID		Result	Qualifer	RL	N N	IDL		Analyz	he		
B12J174-BLK1	Blank		0.100	U	0.100		016		11/06/			
· · · · · · · · · · · ·			0.200		01201						• • •	
				Spi		Source	Source	÷	%Rec	÷.,		PD
Sample #	QC Sample		Result	Lev	/el	Sample	Result	%Rec	Limits	RP	D Lir	mit
B12J174-BS1	LCS		42.2	4(0	. 5.	· · · · ·	105	85-115			
B12J174-DUP1	Duplicate		26.8			10038-43	26.7			0.		20
B12J174-DUP2	Duplicate		13.7			10038-51	13.9			2	. 2	20
B12J174-MS1	Matrix Spike		51.4	39		10038-33	7.78	110	75-125			
B12J174-MSD1	Matrix Spike Dup		51.0	39		10038-33	7.78	108	75-125	0.	7 2	20
B12J174-SRM1	Reference		176	16	8			105	83.3-117.	3		
,												
						,						
		· ·										
		1						•				

Authorized by:

Release Date:

11/19/0

Page 2 of 10 11/19/2012

DM

Work Order: 12: Project Officer: .				lyte: Cadmi hod: EPA2(Matrix: See Units: m		
Date Collected:	•			Analyzed:		12			Units: n	ig/ Kg	uw
Sample #	Sample ID		Dutt	Result (RL	MDL	Collecto	ed Analyz	ed B	Batch ID
1210038-01	CEDAR 1			7.51		1.00	0.034	09/11/:	12 10/15/	12 E	312J079
1210038-02	CEDAR 2			11.3		0.996	0.034	09/11/:			312J079
1210038-03	CEDAR 3			9.71	1.2	0.994	0.033	09/11/:			312J079
1210038-04	CEDAR DUP	•		11.2		0.998	0.034	09/11/:			312J079
1210038-10	SILVER 0-10	A		16.8		1.00	0.034	09/11/2			312J07
1210038-11	SILVER 10-20			25.7		0.994	0.033	09/11/:			312J07
1210038-12	SILVER 20-30			0.422		0.100	0.003	09/11/:			312J07
1210038-13	SILVER 30-50			0.160		0.099	0.003	09/11/			312J07
1210038-15	PHALON 0-10			8.71		0.996	0.034	09/12/:			312J07
1210038-16	PHALON 10-20			4.50		0.994	0,033	09/12/2			312J07
1210038-17	PHALON 20-30			4.50		0.994	0.033	09/12/			312J07
1210038-18	PHALON 30-50			5.28	: 1	1.01	0.034	09/12/3			312J07
1210038-20	PHILLIPS 0-10			10.5		1.00	0.034	09/11/2			312J07
1210038-21	PHILLIPS 10-20			7.49		1.00	0.034	09/11/2			312J079
1210038-22	PHILLIPS 20-30			0.593		0.100	0.003	09/11/3			312J07
1210038-24	DRY 0-10			4.50	•	1.00	0.034	09/12/2			312J07
1210038-30	CEDAR 1-6			8.48		1.57	0.053	09/11/:			312J079
1210038-31	CEDAR 7-9	4.11		12.9		1.00	0.034	09/11/2			312J079
1210038-31	CEDAR 10	1990 - 19		12.2		1.00	0.034	09/11/:			312J07
1210038-32	CEDAR 12			0.780		0.100	0.003	09/11/:			312J07
QC Results for Ba	atch ID: B12J079								· ·		
Method Blank	Sample ID	ener a statistic		Qualifer	RL		DL		Analyzed		Nil Martin Rose Stationer
Method Blank			Result 0.100	Qualifer U	RL 0.100		DL 003		Analyzed 10/15/12		
QC Results for Ba Method Blank B12J079-BLK1	Sample ID Blank		0.100	U Spike	0.100 e So	0.(urce	003 Source		10/15/12 % Rec		RP
Method Blank B12J079-BLK1 Sample #	Sample ID Blank QC Sample		0.100 Result	U Spike Leve	0.100 e So	0.0	003	%Rec	10/15/12 %Rec Limits	RPD	
Method Blank B12J079-BLK1 Sample # B12J079-BS1	Sample ID Blank QC Sample LCS		0.100 Result 40.3	U Spike	0.100 e So I Sar	0.0 urce nple	003 Source Result	%Rec 101	10/15/12 % Rec	RPD	Lim
Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1	Sample ID Blank QC Sample LCS Duplicate		0.100 Result 40.3 0.773	U Spike Leve 40	0.100 e So I Sar 1210	0.(urce nple 038-34	Source Result	101	10/15/12 %Rec Limits 85-115		Lim
Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike		0.100 Result 40.3 0.773 52.4	U Spike Leve 40	0.100 e So I Sar 1210 . 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100	10/15/12 %Rec Limits 85-115 75-125	RPD 1	20
Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.(urce nple 038-34	Source Result	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD	
Method Blank 312J079-BLK1 312J079-BS1 312J079-DUP1 312J079-MS1 312J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike		0.100 Result 40.3 0.773 52.4	U Spike Leve 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125	RPD 1	20
Method Blank 312J079-BLK1 312J079-BS1 312J079-DUP1 312J079-MS1 312J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	20
Nethod Blank 12J079-BLK1 ample # 12J079-BS1 12J079-DUP1 12J079-MS1 12J079-MS1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	Lin
Aethod Blank 12J079-BLK1 ample # 12J079-BS1 12J079-DUP1 12J079-MS1 12J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	Lin
Aethod Blank 12J079-BLK1 ample # 12J079-BS1 12J079-DUP1 12J079-MS1 12J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	2 [.]
Method Blank 312J079-BLK1 5ample # 312J079-BS1 312J079-DUP1 312J079-MS1 312J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	2 [.]
Method Blank 312J079-BLK1 Sample # 312J079-BS1 312J079-DUP1 312J079-MS1 312J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	·	0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	20
Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1 B12J079-MS1 B12J079-MSD1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	·	0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So So 1 1210 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125	RPD 1	2 [.]
Method Blank B12J079-BLK1 Sample # B12J079-BS1 B12J079-DUP1	Sample ID Blank QC Sample LCS Duplicate Matrix Spike Matrix Spike Dup	·	0.100 Result 40.3 0.773 52.4 51.3	U Spike Leve 40 40.1 40	0.100 So I Sar 1210 1210 1210	0.0 urce nple 038-34 038-32	003 Source Result 0.780 12.2 12.2	101 100 98	10/15/12 %Rec Limits 85-115 75-125 75-125 83.6-115.5	RPD 1 2	20

Project Name: NE Washington Sediments

1210038-33 CEDAR 11 2.61 0.990 0.033 09/11/12 11/06/12 B12117 1210038-35 CEDAR 13 0.567 0.100 0.003 09/11/12 11/07/12 B12117 1210038-36 CEDAR 15-16 1.31 1.00 0.034 09/11/12 11/07/12 B12117 1210038-37 CEDAR 15-16 1.31 1.00 0.034 09/11/12 11/07/12 B12117 1210038-39 CEDAR 19-20 0.319 0.159 0.005 09/11/12 11/07/12 B12117 1210038-40 CEDAR 27-28 0.827 0.100 0.003 09/11/12 11/07/12 B12117 1210038-41 CEDAR 37-32 0.789 0.100 0.034 09/11/12 11/07/12 B12117 1210038-42 CEDAR 37-38 1.27 1.00 0.34 09/11/12 11/06/12 B12117 1210038-50 Elbow 2.94 1.00 0.034 10/09/12 11/06/12 B12117 1210038-51 Peterson 0.	Work Order: 12 Project Officer: Date Collected:	Johnson, Art		Meth	te: Cadn od: EPA2 Analyzed)12	. 24		Matrix: Sed Units: mg	
121038-35 CEDAR 13 0.567 0.100 0.003 09/11/12 11/07/12 121/17 121/1	Sample #	Sample ID			Result	Qualifier	RL	MDL	Collecte	d Analyze	d Batch ID
1210038-36 CEDAR 14 0.701 0.099 0.003 09/11/12 11/07/12 12/17/12 <th12 12<="" 17="" th=""> <th12 12<="" 17="" th=""> 12/1</th12></th12>	1210038-33	CEDAR 11			2.61		0.990	0.033	09/11/1	2 11/06/1	2 B12J174
1210038-37 CEDAR 15-16 1.31 1.00 0.034 09/11/12 11/06/12 B12117 1210038-38 CEDAR 17-18 0.524 0.157 0.005 09/11/12 11/07/12 B12117 1210038-30 CEDAR 19-20 0.319 0.155 0.005 09/11/12 11/07/12 B12117 1210038-40 CEDAR 27-28 0.492 0.153 0.003 09/11/12 11/07/12 B12117 1210038-41 CEDAR 31-32 0.789 0.100 0.003 09/11/12 11/07/12 B12117 1210038-42 CEDAR 35-36 1.46 0.999 0.034 09/11/12 11/06/12 B12117 1210038-50 Elbow 2.94 1.00 0.034 0/09/12 11/06/12 B12117 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B12117 1210038-53 Peterson 0.774 0.100 0.003 10/10/12 11/07/12 B12117 1210038-54 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117	1210038-35	CEDAR 13		•	0.567		0.100	0.003	09/11/1	2 11/07/1	2 B12J174
1210038-38 CEDAR 17-18 0.524 0.157 0.005 09/11/12 11/07/12 B1217. 1210038-39 CEDAR 31-20 0.319 0.159 0.005 09/11/12 11/07/12 B1217. 1210038-40 CEDAR 32-24 0.492 0.153 0.005 09/11/12 11/07/12 B1217. 1210038-41 CEDAR 37-28 0.827 0.100 0.003 09/11/12 11/07/12 B1217. 1210038-42 CEDAR 37-38 1.27 1.00 0.034 09/11/12 11/06/12 B1217. 1210038-51 Dilby 1.98 1.00 0.034 09/11/12 11/06/12 B1217. 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-53 Peterson 0.774 0.100 0.003 10/10/12 11/07/12 B1217. 1210038-55 Bow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-57 Elbow30-40 <td>1210038-36</td> <td>CEDAR 14</td> <td></td> <td></td> <td>0.701</td> <td></td> <td>0.099</td> <td>0.003</td> <td>09/11/1</td> <td>2 11/07/1</td> <td>2 B12J174</td>	1210038-36	CEDAR 14			0.701		0.099	0.003	09/11/1	2 11/07/1	2 B12J174
1210038-38 CEDAR 17-18 0.524 0.157 0.005 09/11/12 11/07/12 B1217.7 1210038-39 CEDAR 19-20 0.319 0.159 0.005 09/11/12 11/07/12 B1217.7 1210038-40 CEDAR 27-28 0.827 0.100 0.003 09/11/12 11/07/12 B1217.7 1210038-41 CEDAR 37-38 1.27 1.00 0.034 09/11/12 11/06/12 B1217.7 1210038-44 CEDAR 37-38 1.27 1.00 0.034 09/11/12 11/06/12 B1217.7 1210038-50 Elbow 2.94 1.00 0.034 10/09/12 11/06/12 B1217.7 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B1217.7 1210038-53 Peterson 0.517 0.100 0.003 10/10/12 11/06/12 B1217.7 1210038-54 Bow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B1217.7 B1217.7 D100 0.034<	1210038-37	CEDAR 15-16			1.31		1.00	0.034	09/11/1	2 11/06/1	2 B12J174
1210038-39 CEDAR 19-20 0.319 0.159 0.005 09/11/12 11/07/12 B12117 1210038-40 CEDAR 23-24 0.492 0.153 0.005 09/11/12 11/07/12 B12117 1210038-41 CEDAR 31-32 0.789 0.100 0.003 09/11/12 11/07/12 B12117 1210038-42 CEDAR 35-36 1.46 0.996 0.034 09/11/12 11/06/12 B12117 1210038-44 CEDAR 37-38 1.27 1.00 0.034 09/11/12 11/06/12 B12117 1210038-51 Diliy 1.98 1.00 0.034 10/09/12 11/06/12 B12117 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B12117 1210038-53 Bowen 7.20 1.00 0.034 10/09/12 11/07/12 B12117 1210038-54 Bowen 7.74 0.100 0.034 10/09/12 11/06/12 B12117 1210038-55 Bolowalo-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117	1210038-38	CEDAR 17-18			0.524		0.157	0.005	09/11/1	2 11/07/1	2 B12J174
1210038-40 CEDAR 23-24 0.492 0.153 0.005 09/11/12 11/07/12 B1217. 1210038-41 CEDAR 31-32 0.789 0.100 0.003 09/11/12 11/07/12 B1217. 1210038-43 CEDAR 35-36 1.46 0.996 0.34 09/11/12 11/07/12 B1217. 1210038-44 CEDAR 37-38 1.27 1.00 0.034 09/11/12 11/06/12 B1217. 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-53 Bodie 0.517 0.100 0.003 10/10/12 11/07/12 B1217. 1210038-55 Bodie 0.517 0.100 0.034 10/09/12 11/06/12 B1217. 1210038-55 Bodie 0.517 0.100 0.034 10/09/12 11/06/12 B1217. 1210038-56 Elbow10-20 3.47 1.00 0.34 10/09/12 11/06/12 B1217. 1210038-57 Elbow0-10 3.07	1210038-39	CEDAR 19-20			0.319			0.005			
1210038-41 CEDAR 32-28 0.827 0.100 0.003 09/11/12 11/07/12 B12117 1210038-42 CEDAR 31-32 0.789 0.100 0.003 09/11/12 11/07/12 B12117 1210038-44 CEDAR 35-36 1.46 0.996 0.034 09/11/12 11/06/12 B12117 1210038-50 Eibow 2.94 1.00 0.034 10/09/12 11/06/12 B12117 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B12117 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B12117 1210038-55 Bodie 0.517 0.100 0.033 10/09/12 11/06/12 B12117 121038-55 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117 121038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117 121038-59 Elbow40-	1210038-40	CEDAR 23-24							09/11/1		
1210038-42 CEDAR 31-32 0.789 0.100 0.003 09/11/12 11/06/12 B12117 1210038-43 CEDAR 35-36 1.46 0.996 0.034 09/11/12 11/06/12 B12117 1210038-50 Elbow 2.94 1.00 0.034 10/09/12 11/06/12 B12117 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B12117 1210038-52 Bowen 7.20 1.00 0.003 10/10/12 B12117 1210038-55 Bodie 0.517 0.100 0.003 10/10/12 11/06/12 B12117 1210038-55 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B12117 1210038-57 Elbow30-40 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117 121038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117 121038-51 Elbow 0-10	1210038-41	CEDAR 27-28									
1210038-43 CEDAR 35-36 1.46 0.996 0.034 09/11/12 11/06/12 B12117. 1210038-50 Elbow 2.94 1.00 0.034 09/11/12 11/06/12 B12117. 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-53 Peterson 0.774 0.100 0.003 10/10/12 B12117. 1210038-55 Bodie 0.517 0.100 0.034 10/09/12 11/06/12 B12117. 1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 B1/06/12 B12117. 1210038-57 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117. 121038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117. 121038-59 Elbow 0-10<						·					
1210038-44 CEDAR 37-38 1.27 1.00 0.034 09/11/12 11/06/12 12/17. 1210038-50 Elbow 2.94 1.00 0.034 10/09/12 11/06/12 11/12/12 12/17. 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 11/12/12 12/17. 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/07/12 12/17. 1210038-53 Bodie 0.517 0.100 0.003 10/10/12 11/06/12 12/17. 1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 12/17. 1210038-57 Elbow30-40 1.76 J 1.00 0.34 10/09/12 11/06/12 12/17. 121038-59 Elbow30-40 1.76 J 1.00 0.34 10/09/12 11/06/12 12/17. 121038-59 Elbow-10 3.07 J 1.00 0.34 10/09/12 11/06/12											
1210038-50 Elbow 2.94 1.00 0.034 10/09/12 11/06/12 B12117 1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B12117 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B12117 1210038-53 Peterson 0.774 0.100 0.003 10/10/12 11/07/12 B12117 1210038-55 Bodie 0.517 0.100 0.034 10/09/12 11/06/12 B1217 1210038-55 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B1217 1210038-57 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B1217 1210038-59 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B1217 B12174-BLK1 Blank 0.100 0.003 11/06/12 B1217 B1217 B121174-BLK1 Blank 0.		the second se									
1210038-51 Dilly 1.98 1.00 0.034 10/09/12 11/06/12 B12117 1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B12117 1210038-53 Peterson 0.774 0.100 0.003 10/10/12 11/07/12 B12117 1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B12117 1210038-56 Elbow30-40 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117 1210038-58 Elbow30-40 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117 1210038-59 Elbow 0-10 3.07 J 1.00 0.034 10/09/12 11/06/12 B12117 QC Results for Batch ID: B12J174 Method Blank Sample ID Result Qualifier RL MDL Analyzed B121174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 B1217				•							· ·
1210038-52 Bowen 7.20 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-53 Peterson 0.774 0.100 0.003 10/10/12 11/07/12 B1217. 1210038-55 Boole 0.517 0.100 0.003 10/10/12 11/07/12 B1217. 1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-57 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B1217. QC Results for Batch ID: B12174 Method Blank Sample ID Result Qualifer RL MDL Analyzed B121174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 B1217. B121174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 Elbow 0.10											
1210038-53 Peterson 0.774 0.100 0.003 10/10/12 11/07/12 B1217. 1210038-55 Bodie 0.517 0.100 0.003 10/10/12 11/07/12 B1217. 1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-57 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B1217. 1210038-59 Elbow 0-10 3.07 J 1.00 0.034 10/09/12 11/06/12 B1217. QC Results for Batch ID: B12J174 Method Blank Sample !D Result Qualifer RL MDL Analyzed I1/06/12 B12J174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 B12J174-DUP1 Duplicate 1.49 1210038-31 1.46 2 20											
1210038-55 Bodie 0.517 0.100 0.003 10/10/12 11/07/12 B12117. 1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-57 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-59 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-59 Elbow30-40 3.07 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-59 Elbow 0-10 3.07 J 1.00 0.034 10/09/12 11/06/12 B1217. 120 Result Qualifer RL MDL Analyzed			· · ·								
1210038-56 Elbow10-20 3.48 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-57 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-59 Elbow 0-10 3.07 J 1.00 0.034 10/09/12 11/06/12 B12117. QC Results for Batch ID: B12J174 Method Blank Sample ID Result Qualifer RL MDL Analyzed B12117. QC Results for Batch ID: B12J174 Blank 0.100 U 0.100 0.003 11/06/12 B1217. QC Sample Result Level Sample Result KRec WRec Wint RPD Limits RPD Limits RPD Limits RPD Limits RPD Limits RPD Limits R2 2 20 Sample # QC Sample </td <td></td> <td></td> <td>. •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• •</td> <td></td>			. •							• •	
1210038-57 Elbow20-30 1.67 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12117. 1210038-59 Elbow 0-10 3.07 J 1.00 0.034 10/09/12 11/06/12 B12117. QC Results for Batch ID: B12J174 Method Blank Sample ID Result Qualifer RL MDL Analyzed B12J174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 B12117. Sample # QC Sample Result Level Sample Result KRec KRec RP B121174-BS1 LCS 41.1 40 103 85-115 2 2 2 B121174-DUP1 Duplicate 1.49 1210038-53 1.46 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <											
L210038-58 Elbow30-40 1.76 J 1.00 0.034 10/09/12 11/06/12 B12177 L210038-59 Elbow 0-10 Result Qualifer RL MDL Analyzed B12177 QC Results for Batch ID: B12J174 Method Blank Sample ID Result Qualifer RL MDL Analyzed B12177 B12J174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 B12177 Sample # QC Sample Result Level Sample Result %Rec RPD Lint B12J174-BS1 LCS 41.1 40 103 85-115 103 85-115 12174-1012 101 75-125 2 20 B12J174-DUP1 Duplicate 1.49 1210038-51 1.98 2											
L210038-59 Elbow 0-10 3.07 J 1.00 0.034 10/09/12 11/06/12 B12/17 CQC Results for Batch ID: B12J174 Method Blank Sample ID Result Qualifer RL MDL Analyzed 312J174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 RP Sample # QC Sample Result Level Sample Result %Rec RP Limits RPD Limits 312J174-BS1 LCS 41.1 40 103 85-115 2 20 312J174-DUP1 Duplicate 1.49 1210038-43 1.46 2 20 312J174-DUP2 Duplicate 1.93 1210038-33 2.61 103 75-125 2 20 312J174-MS1 Matrix Spike 43.5 39.9 1210038-33 2.61 101 75-125 2 20 312J174-MS1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 <td></td>											
Active Result Qualifer RL MDL Analyzed B12J174-BLK1 Blank 0.100 U 0.100 0.003 11/06/12 Sample # QC Sample Result Level Sample Result %Rec KRep Limits RPD					1.70	J	1.110			Z 11/00/1	Z DIZJI/4
Sample #QC SampleResultSpike LevelSource SampleSource Result%Rec%Rec Limits%Rec RpDRP Lim LimitsB12J174-BS1LCS41.14010385-115220B12J174-DUP1Duplicate1.491210038-431.46220B12J174-DUP2Duplicate1.931210038-511.98220B12J174-MS1Matrix Spike43.539.81210038-332.6110375-125220B12J174-MSD1Matrix Spike Dup42.839.91210038-332.6110175-125220B12J174-SRM1Reference1011039883.6-115.59883.6-115.598	1210038-59	Elbow 0-10	•			J					
Sample # QC Sample Result Level Sample Result %Rec Limits RPD Limits 312/174-BS1 LCS 41.1 40 103 85-115 2 20 312/174-DUP1 Duplicate 1.49 1210038-43 1.46 2 2 20 312/174-DUP2 Duplicate 1.93 1210038-51 1.98 2 20 312/174-MS1 Matrix Spike 43.5 39.8 1210038-33 2.61 103 75-125 2 20 312/174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 312/174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 312/174-SRM1 Reference 101 103 98 83.6-115.5 98 83.6-115.5 98	L210038-59 QC Results for B Method Blank	Elbow 0-10 atch ID: B12J174 Sample ID			3.07 ualifer	RL	1.00	0.034 DL		2 11/06/1 Analyzed	
B12J174-DUP1 Duplicate 1.49 1210038-43 1.46 2 20 B12J174-DUP2 Duplicate 1.93 1210038-51 1.98 2 20 B12J174-MS1 Matrix Spike 43.5 39.8 1210038-33 2.61 103 75-125 2 26 B12J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 26 B12J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 26 B12J174-SRM1 Reference 101 103 98 83.6-115.5 3	1210038-59 QC Results for B Method Blank	Elbow 0-10 atch ID: B12J174 Sample ID			3.07 ualifer	RL	1.00	0.034 DL		2 11/06/1 Analyzed	
312J174-DUP2 Duplicate 1.93 1210038-51 1.98 2 20 312J174-MS1 Matrix Spike 43.5 39.8 1210038-33 2.61 103 75-125 2 20 312J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 312J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 312J174-SRM1 Reference 101 103 98 83.6-115.5 98 83.6-115.5	L210038-59 QC Results for B <u>Method Blank</u> 312J174-BLK1 Sample #	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample		0.100 Result	3.07 <u>ualifer</u> U Spi Lev	RL 0.100 ke So rel Sar	1.00 <u>M</u> 0.0	0.034 DL 003 Source	10/09/1	2 11/06/1 Analyzed 11/06/12 %Rec Limits	2 B12J174
B12J174-MS1 Matrix Spike 43.5 39.8 1210038-33 2.61 103 75-125 2 20 B12J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 B12J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 B12J174-SRM1 Reference 101 103 98 83.6-115.5 3	L210038-59 QC Results for B Method Blank 312J174-BLK1 Sample # 312J174-BS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS		0.100 <u>Result</u> 41.1	3.07 <u>ualifer</u> U Spi Lev	RL 0.100 ke So rel Sar D	1.00 M 0.0 urce nple	0.034 DL 003 Source Result	10/09/1 %Rec	2 11/06/1 Analyzed 11/06/12 %Rec Limits	2 B12J174 RPI RPD Limi
312J174-MSD1 Matrix Spike Dup 42.8 39.9 1210038-33 2.61 101 75-125 2 20 312J174-SRM1 Reference 101 103 98 83.6-115.5	L210038-59 QC Results for B Method Blank 312J174-BLK1 Sample # 312J174-BS1 312J174-DUP1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate		0.100 Result 41.1 1.49	3.07 <u>ualifer</u> U Spi Lev	RL 0.100 ke Sor rel Sar 0 1210	1.00 M 0.0 urce nple	0.034 DL 003 Source Result 1.46	10/09/1 %Rec	2 11/06/1 Analyzed 11/06/12 %Rec Limits	2 B12J174 RPI <u>RPD Lim</u> 2 20
312J174-SRM1 Reference 101 103 98 83.6-115.5	L210038-59 QC Results for B Method Blank 312J174-BLK1 Sample # 312J174-BS1 312J174-DUP1 312J174-DUP1 312J174-DUP2	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate		0.100 <u>Result</u> 41.1 1.49 1.93	3.07 ualifer U Spi Lev 4(RL 0.100 ke So rel Sar 0 1210 1210	1.00 M 0.0 urce nple 038-43 038-51	0.034 DL 003 Source Result 1.46 1.98	10/09/1 %Rec 103	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115	2 B12J174 RPI <u>RPD Lim</u> 2 20
	L210038-59 QC Results for B Method Blank 312J174-BLK1 Sample # 312J174-BS1 312J174-DUP1 312J174-DUP2 312J174-DUP2 312J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike		0.100 Result 41.1 1.49 1.93 43.5	3.07 U Spi Lev 40	RL 0.100 ke Sor vel Sar 0 12100 12100 .8	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125	2 B12J174 RPI RPD Lim 2 20 2 20 2 20
Authorized by:	210038-59 C Results for B Method Blank 312J174-BLK1 312J174-BLS1 312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RPI RPD Lim 2 20 2 20 2 20
Authorized by: الإرباب Page 4 of 10	210038-59 C Results for B Method Blank 312J174-BLK1 312J174-BLK1 312J174-BS1 312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RPI RPD Lim 2 20 2 20 2 20
Authorized by: DM Release Date: 니(니입니다 Page 4 of 10	210038-59 Ac Results for B Aethod Blank 12J174-BLK1 ample # 12J174-BS1 12J174-DUP1 12J174-DUP1 12J174-MS1 12J174-MS1 12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RPD Lim 2 2(2 2(
Authorized by: DM Release Date: \((\역\\\ Page 4 of 10	210038-59 C Results for B Method Blank 312J174-BLK1 312J174-BLK1 312J174-BS1 312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RPD Lim 2 2(2 2(
Authorized by: 이 이 아이	210038-59 C Results for B Method Blank 312J174-BLK1 312J174-BLS1 312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RPD Lim 2 2(2 2(
Authorized by: $\int \mathcal{D}^{\kappa}$ Release Date: $\int \langle \langle \langle v \rangle \rangle \rangle$ Page 4 of 10	210038-59 C Results for B Method Blank 312J174-BLK1 312J174-BLS1 312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RP RPD Lim 2 2(2 2(
	210038-59 C Results for B Method Blank 312J174-BLK1 312J174-BLS1 312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup		0.100 Result 41.1 1.49 1.93 43.5 42.8	3.07 ualifer U Spi Lev 40 39 39	RL 0.100 ke Sor rel Sar 0 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.034 DL 003 Source Result 1.46 1.98 2.61	10/09/1 %Rec 103 103 101	2 11/06/1 Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	2 B12J174 RPD Lim 2 2(2 2(

11/19/2012

• •

Lead

Work Order: 121 Project Officer: J Date Collected: (lohnson, Art		Met	lyte: Lead hod: EPA e Analyzed	200.8	2012		•	Matrix: Se Units: r		-
Sample #	Sample ID	1 - ² - ²		Result	Qualifie	r RL	MDL	Collect	ed Analy:	zed B	atch ID
1210038-01	CEDAR 1			308	- 1	1.00	0.066	09/11/	12 10/15	/12 B	12J079
1210038-02	CEDAR 2			478		0.996	0.066	09/11/	12 10/15	/12 B	12J079
1210038-03	CEDAR 3			405		0.994	0.066	09/11/	12 10/15	/12 B	12J079
1210038-04	CEDAR DUP			469		0.998	0.066	09/11/	12 10/15	/12 B	12J079
1210038-10	SILVER 0-10			545		1.00	0.066	09/11/	12 10/15	/12 [°] B	12J079
1210038-11	SILVER 10-20			864		0.994	0.066	09/11/	/12 10/15,	/12 B	12J079
1210038-12	SILVER 20-30			13.2		0.996	0.066	09/11/	12 10/15	/12 B	12J079
1210038-13	SILVER 30-50			2.89		0.992	0.066	09/11/	12 10/15	/12 B	12J079
1210038-15	PHALON 0-10			203		0.996	0.066	09/12/	/12 10/15,	/12 B	12J079
1210038-16	PHALON 10-20		14 A.	19.5		0.994	0.066	09/12/	12 10/15	/12 B	12J079
1210038-17	PHALON 20-30			4.71		0.994	0.066	09/12/	12 10/15	/12 B	12J079
1210038-18	PHALON 30-50			6.11		1.01	0.067	09/12/			12J079
1210038-20	PHILLIPS 0-10		+ 1	371		1.00	0.067	09/11/			12J079
1210038-21	PHILLIPS 10-20	1973 -		263		1.00	0.066	09/11/			12J079
1210038-22	PHILLIPS 20-30	1 () (9.31		1.00	0.066	09/11/			12J079
1210038-24	DRY 0-10		•	33.6		1.00	0.067	09/12/			12J079
1210038-30	CEDAR 1-6			295		1.57	0.104	09/11/			12J079
1210038-31	CEDAR 7-9			459		1.00	0.066	09/11/			12J079
1210038-32	CEDAR 10			704		1.00	0.067	09/11/			12J079
1210038-34	CEDAR 12	1. A.		17.0		0.998	0.066	09/11/			12J079
Method Blank	Sample ID	coranciastidadă	Result	Qualifer	RL	M	DL		Analyzed		
B12J079-BLK1	Blank		0.100	U	0.100	0.0)07		10/15/12	2	
Sample #	QC Sample	• • • •	Result	Spi Lev		ource ample	Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12J079-BS1	LCS		42.5	4	0			106	85-115		
B12J079-DUP1	Duplicate		16.5			0038-34	17.0			3	20
B12J079-MS1	Matrix Spike		758	. 40		0038-32	704	135	75-125		
B12J079-MSD1	Matrix Spike Dup		733	4	0 121	0038-32	704	72	75-125	3	20
B12J079-SRM1	Reference		83.3	76	.9			108	81.3-118.7		
Authorized by:		Dm	۰ ۰ ۰		Rele	ase Date:	<u> </u>	1.91	с 		5 of 10)/2012

Lead

Project Officer:	10038 Johnson, Art		yte: Lead hod: EPA2		•		- 1 MA	Matrix: Se Units: m		•.
Date Collected:	· · · · · · · · · · · · · · · · · · ·			: 11/06/20	12				.0,0	
Sample #	Sample ID		Result	Qualifier	RL	MDL	Collecte	d Analyz	ed B	atch ID
1210038-33	CEDAR 11	-	135		0.990	0.066	09/11/1	2 11/06/	12 B	12J174
1210038-35	CEDAR 13		3.20	•	0.996	0.066	09/11/1	2 11/06/	12 B	12J174
1210038-36	CEDAR 14		3.95		0.994	0.066	09/11/1	.2 11/06/	12 B	12J174
1210038-37	CEDAR 15-16		13.2		1.00	0.067	09/11/1	.2 11/06/	12 B	12J174
1210038-38	CEDAR 17-18		3.86		1.57	0.104	09/11/1	.2 11/06/	12 B	12J174
1210038-39	CEDAR 19-20		1.42		0.159	0.011	09/11/1	2 11/07/	12 B	12J174
1210038-40	CEDAR 23-24		2.08		1.53	0.102	09/11/1	2 11/06/	12 B	12J174
1210038-41	CEDAR 27-28		3.01		1.00	0.067	09/11/1	2 11/06/	12 B	12J174
1210038-42	CEDAR 31-32		2.30		1.00	0.066	09/11/1	2 11/06/	12 B	12J174
1210038-43	CEDAR 35-36		2.26		0.996	0.066	09/11/1	2 11/06/	12 B	12J174
1210038-44	CEDAR 37-38		2.21		1.00	0.067	09/11/1	2 11/06/	12 B	12J174
1210038-50	Elbow		70.1		1.00	0.066	10/09/1			12J174
1210038-51	Dilly		75.1		1.00	0.066	10/09/1			12J174
1210038-52	Bowen		262		1.00	0.066	10/09/1			12J174
1210038-53	Peterson		12.5		1.00	0.066	10/10/1	2 11/06/	12 B	12J174
1210038-55	Bodie		16.2		1.00	0.066	10/10/1			12J174
1210038-56	Elbow10-20		106	J	1.00	0.067	10/09/1			12J174
1210038-57	Elbow20-30		10.1	J	1.00	0.066	10/09/1			12J174
1210020 50	Elbow30-40		13.5	J	1.00	0.066	10/09/1			12J174
1210038-58										
1210038-59	Elbow 0-10		82.5	J	1.00	0.066	10/09/1	2 11/06/		12J174
1210038-59 QC Results for B	A second s	Result (1.00			2 11/06/		12J174
1210038-59	Elbow 0-10 atch ID: B12J174	Result (82.5	J	1.00 M	0.066			12 B	12J174
1210038-59 QC Results for B Method Blank	Elbow 0-10 atch ID: B12J174 Sample ID		82.5 Qualifer U	J RL 0.100	1.00 <u>M</u> 0.0	0.066 DL 007		Analyzed 11/06/12	12 B	
1210038-59 QC Results for B <u>Method Blank</u> B12J174-BLK1	Elbow 0-10 atch ID: B12J174 Sample ID Blank	0.100	82.5 <u>Qualifer</u> U Spi	J <u>RL</u> 0.100 ke Sou	1.00 <u>M</u> 0.0	0.066 <u>DL</u> 007 Source	10/09/1	<u>Analyzed</u> 11/06/12 %Rec	12 B	RPD
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample #	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample	0.100 Result	82.5 <u>Qualifer</u> U Spi Lev	J 0.100 ke Sou rel Sar	1.00 <u>M</u> 0.0	0.066 DL 007	10/09/1 %Rec	Analyzed 11/06/12 %Rec Limits	12 B	RPD
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS	0.100 <u>Result</u> 42.4	82.5 <u>Qualifer</u> U Spi	J RL 0.100 ke Sor el Sar	1.00 M 0.0 urce nple	0.066 DL 007 Source Result	10/09/1	<u>Analyzed</u> 11/06/12 %Rec	12 B	RPD Limit
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate	0.100 Result 42.4 2.27	82.5 <u>Qualifer</u> U Spi Lev	J RL 0.100 ke Sor rel Sar) 12100	1.00 M 0.0 urce nple	0.066 DL 007 Source Result 2.26	10/09/1 %Rec	Analyzed 11/06/12 %Rec Limits	12 В <u>RPD</u> 0.2	RPD Limit
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP2	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate	0.100 Result 42.4 2.27 73.8	82.5 Qualifer U Spi Lev 4(J RL 0.100 ke Sou rel Sar 12100 12100	1.00 M 0.0 urce nple 038-43 038-51	0.066 DL 007 Source Result 2.26 75.1	10/09/1 %Rec 106	Analyzed 11/06/12 %Rec Limits 85-115	12 B	RPD Limit
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike	0.100 Result 42.4 2.27 73.8 182	82.5 Qualifer U Spi Lev 4(J RL 0.100 ke Sou vel Sar 12100 12100 .8 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118	Analyzed 11/06/12 %Rec Limits 85-115 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1 B12J174-MSD1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51	0.066 DL 007 Source Result 2.26 75.1	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 В <u>RPD</u> 0.2	RPD Limit
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike	0.100 Result 42.4 2.27 73.8 182	82.5 Qualifer U Spi Lev 4(J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL D07 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 B RPD 0.2 2	RPD Limit 20 20
1210038-59 QC Results for B Method Blank B12J174-BLK1 Sample # B12J174-BS1 B12J174-DUP1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MS1	Elbow 0-10 atch ID: B12J174 Sample ID Blank QC Sample LCS Duplicate Duplicate Matrix Spike Matrix Spike Dup	0.100 Result 42.4 2.27 73.8 182 177	82.5 Qualifer U Spi Lev 40 39 39	J RL 0.100 ke Sou vel Sar 0 12100 12100 .8 12100 .9 12100	1.00 M 0.0 urce nple 038-43 038-51 038-33	0.066 DL 007 Source Result 2.26 75.1 135	10/09/1 %Rec 106 118 107	Analyzed 11/06/12 %Rec Limits 85-115 75-125 75-125	12 B RPD 0.2 2	RPD Limit 20 20

11/19/2012

Zinc

B12J079-BS1 LCS B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike E)* ***). 2 ⁸)			Result 259 403 339 384 947 619 63.6 31.5 223 119 127 137 670 351 69.6 27.0 472	Quali		RL 50.0 49.8 49.7 49.9 50.0 49.7 49.8 49.7 49.8 49.7 50.3 50.1 50.0	MDL 2.18 2.17 2.16 2.17 2.18 2.16 2.17 0.216 2.17 2.16 2.16 2.19 2.18 2.18	Collect 09/11/ 09/11/ 09/11/ 09/11/ 09/11/ 09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B 12 B 12 B 12 B 12 B 12 B	atch ID 12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079
1210038-02 CEDAR 2 1210038-03 CEDAR 3 1210038-04 CEDAR DUP 1210038-10 SILVER 0-10 1210038-11 SILVER 10-20 1210038-12 SILVER 20-30 1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-35 CEDAR 1-6 1210038-31 CEDAR 1-6 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 B12J079-BLK1 Blank Sample # QC Sample B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)* ***). 2 ⁸)			403 339 384 947 619 63.6 31.5 223 119 127 137 670 351 69.6 27.0			49.8 49.7 49.9 50.0 49.7 49.8 49.8 49.7 49.7 50.3 50.1 50.0	2.17 2.16 2.17 2.18 2.16 2.17 0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/11/ 09/11/ 09/11/ 09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	 B B	12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079
1210038-03 CEDAR 3 1210038-04 CEDAR DUP 1210038-10 SILVER 0-10 1210038-11 SILVER 10-20 1210038-12 SILVER 20-30 1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 B12J079-BLK1 Blank Sample # QC Sample B12J079-BLK1 Blank Sample # QC Sample B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)* ***). 2 ⁸)			339 384 947 619 63.6 31.5 223 119 127 137 670 351 69.6 27.0	•• • • •		49.7 49.9 50.0 49.7 49.8 49.8 49.8 49.7 49.7 50.3 50.1 50.0	2.16 2.17 2.18 2.16 2.17 0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/11/ 09/11/ 09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	 B B	12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079
1210038-04 CEDAR DUP 1210038-10 SILVER 0-10 1210038-11 SILVER 10-20 1210038-12 SILVER 20-30 1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)* ***). 2 ⁸)			384 947 619 63.6 31.5 223 119 127 137 670 351 69.6 27.0	•		49.9 50.0 49.7 49.8 4.96 49.8 49.7 49.7 50.3 50.1 50.0	2.17 2.18 2.16 2.17 0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/11/ 09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B 12 B 12 B 12 B 12 B 12 B	12J079 12J079 12J079 12J079 12J079 12J079 12J079 12J079
1210038-10 SILVER 0-10 1210038-11 SILVER 10-20 1210038-12 SILVER 20-30 1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample # QC Sample B12J079-BLK1 Blank Sample # QC Sample B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike)* ***). 2 ⁸)			947 619 63.6 31.5 223 119 127 137 670 351 69.6 27.0	•		50.0 49.7 49.8 4.96 49.8 49.7 49.7 50.3 50.1 50.0	2.18 2.16 2.17 0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/ 09/11/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B 12 B 12 B 12 B 12 B 12 B	12J079 12J079 12J079 12J079 12J079 12J079 12J079
1210038-11 SILVER 10-20 1210038-12 SILVER 20-30 1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample # QC Sample B12J079-BLK1 Blank Sample # QL QC Sample B12J079-MS1 Matrix Spike)* ***). 2 ⁸)	· · ·		619 63.6 31.5 223 119 127 137 670 351 69.6 27.0	•		49.7 49.8 4.96 49.8 49.7 49.7 50.3 50.1 50.0	2.16 2.17 0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/ 09/11/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B 12 B 12 B 12 B	12J079 12J079 12J079 12J079 12J079 12J079
1210038-12 SILVER 20-30 1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-16 PHALON 20-3 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MS1 Matrix Spike)* ***). 2 ⁸)			63.6 31.5 223 119 127 137 670 351 69.6 27.0	•		49.8 4.96 49.8 49.7 49.7 50.3 50.1 50.0	2.17 0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/11/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B 12 B 12 B 12 B	12J079 12J079 12J079 12J079 12J079 12J079
1210038-13 SILVER 30-50 1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-17 PHALON 30-5 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)* ***). 2 ⁸)			31.5 223 119 127 137 670 351 69.6 27.0	•		4.96 49.8 49.7 49.7 50.3 50.1 50.0	0.216 2.17 2.16 2.16 2.19 2.18	09/11/ 09/12/ 09/12/ 09/12/ 09/12/ 09/12/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B 12 B	12J079 12J079 12J079 12J079 12J079
1210038-15 PHALON 0-10 1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-17 PHALON 30-5 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)* ***). 2 ⁸)			223 119 127 137 670 351 69.6 27.0			49.8 49.7 49.7 50.3 50.1 50.0	2.17 2.16 2.16 2.19 2.18	09/12/ 09/12/ 09/12/ 09/12/ 09/11/	12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B 12 B	12J079 12J079 12J079
1210038-16 PHALON 10-2 1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample # QC Sample B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MS1 Matrix Spike)* ***). 2 ⁸)			119 127 137 670 351 69.6 27.0			49.7 49.7 50.3 50.1 50.0	2.16 2.16 2.19 2.18	09/12/ 09/12/ 09/12/ 09/11/	12 10/15/ 12 10/15/ 12 10/15/	12 B 12 B	12J079 12J079
1210038-17 PHALON 20-3 1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)* ***). 2 ⁸)			127 137 670 351 69.6 27.0		2	49.7 50.3 50.1 50.0	2.16 2.19 2.18	09/12/ 09/12/ 09/11/	12 10/15/ 12 10/15/	12 B	12J079
1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-21 PHILLIPS 20-3 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike). ²⁸			137 670 351 69.6 27.0		1	50.3 50.1 50.0	2.19 2.18	09/12/ 09/11/	12 10/15/		
1210038-18 PHALON 30-5 1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-21 PHILLIPS 20-3 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike). ²⁸			137 670 351 69.6 27.0		1	50.3 50.1 50.0	2.19 2.18	09/12/ 09/11/	12 10/15/		
1210038-20 PHILLIPS 0-10 1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike)	•		670 351 69.6 27.0		1	50.1 50.0	2.18	09/11/		TZ D	12J079
1210038-21 PHILLIPS 10-2 1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BLK1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike	-			351 69.6 27.0		Į	50.0					12J079
1210038-22 PHILLIPS 20-3 1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike	-			69.6 27.0								12J079
1210038-24 DRY 0-10 1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike	•	•		27.0			50.0	2.18	09/11/			12J079
1210038-30 CEDAR 1-6 1210038-31 CEDAR 7-9 1210038-32 CEDAR 10 1210038-34 CEDAR 12 QC Results for Batch ID: B12J079 Method Blank Sample ID B12J079-BLK1 Blank Sample # QC Sample B12J079-BS1 LCS B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike		•				I	5.01	0.218	09/12/			12J079
1210038-31CEDAR 7-91210038-32CEDAR 101210038-34CEDAR 12QC Results for Batch ID: B12J079Method BlankSample IDB12J079-BLK1BlankSample #QC SampleB12J079-BS1LCSB12J079-DUP1DuplicateB12J079-MS1Matrix SpikeB12J079-MSD1Matrix Spike		•					78.6	3.42	09/11/			12J079
1210038-32CEDAR 101210038-34CEDAR 12QC Results for Batch ID: B12J079Method BlankSample IDB12J079-BLK1BlankSample #QC SampleB12J079-BS1LCSB12J079-DUP1DuplicateB12J079-MS1Matrix SpikeB12J079-MSD1Matrix Spike				386			50.0	2.18	09/11/			12J079
1210038-34CEDAR 12QC Results for Batch ID: B12J079Method BlankSample IDB12J079-BLK1BlankSample #QC SampleB12J079-BS1LCSB12J079-DUP1DuplicateB12J079-MS1Matrix SpikeB12J079-MSD1Matrix Spike				502			50.1	2.18	09/11/			12J079
QC Results for Batch ID: B12J079Method BlankSample IDB12J079-BLK1BlankSample #QC SampleB12J079-BS1LCSB12J079-DUP1DuplicateB12J079-MS1Matrix SpikeB12J079-MSD1Matrix Spike				21.0			4.99	0.217	09/11/			12J079
Sample #QC SampleB12J079-BS1LCSB12J079-DUP1DuplicateB12J079-MS1Matrix SpikeB12J079-MSD1Matrix Spike I			lesult	Qualifer	R		M			Analyzed		
B12J079-BS1 LCS B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike E		:	5.00	U ···	5.0	0	0.2	18		10/15/12		
B12J079-BS1 LCS B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike E			D anilla	-	ike	Sourc		Source	0/ D = =	%Rec		RPD Limit
B12J079-DUP1 Duplicate B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike E			Result		vel	Samp	le	Result	%Rec	Limits	RPD	LIIIIL
B12J079-MS1 Matrix Spike B12J079-MSD1 Matrix Spike		•	42.8	4	10	1210020		21.0	107	85-115	0.6	20
B12J079-MSD1 Matrix Spike			20.9 554			1210038 1210038		21.0 502	131	75-125	0.0	20
•			538			1210038		502 502	91	75-125	3	20
DIZIO, 2-2VIAI VEIELEUGE	uþ		306		,0	1210050	5-52	502	111	82.2-117.8	5	20
. · ·			500	÷ 2	/0				***	02.2-117.0		
Authorized by:					R	elease I	Date:		NU	9/12	Page 9) of 10

Zinc

Project Name: NE Washington Sediments

Project Officer: Date Collected:			Met	lyte: Zin hod: EP Analyze		2012			Matrix: Sed Units: m		
Sample #	Sample ID			Resu	lt Qualifie	r RL	MDL	Collecte	ed Analyze	d B	atch ID
1210038-33	CEDAR 11	. ·	· · ·	60.4		49.5	2.15	09/11/1	12 11/06/1	.2 B	12J174
1210038-35	CEDAR 13			28.4		4.98	0.217	09/11/1	12 11/07/1	.2 B	12J174
1210038-36	CEDAR 14			80.1		49.7	2.16	09/11/1	12 11/06/1	.2 В	312J174
1210038-37	CEDAR 15-16			171	• 	50.2	2.18	09/11/1	ŀ2 11/06/1	.2 B	312J174
1210038-38	CEDAR 17-18			78.8		78.6	3.42	09/11/1	12 11/06/1	.2 B	12J174
1210038-39	CEDAR 19-20			51.7		7.94	0.345	09/11/1	11/07/1	.2 B	312J174
1210038-40	CEDAR 23-24			55.0		7.65	0.333	09/11/1			312J174
1210038-41	CEDAR 27-28			78.5		50.1	2.18	09/11/1			121174
1210038-42	CEDAR 31-32			82.3		50.0	2.18	09/11/1			12J174
1210038-43	CEDAR 35-36	•		112		49.8	2.17	09/11/1			12J174
1210038-44	CEDAR 37-38			104		50.1	2.18	09/11/1			12J174
1210038-50	Elbow			99.0		50.0	2.18	10/09/1			12J174
1210038-51	Dilly			64.0		50.0	2.18	10/09/1			12J174
1210038-52	Bowen			256		50.0	2.18	10/09/1			12J174
1210038-53	Peterson			71.6		50.0	2.18	10/10/1		· ·	12J174
1210038-55	Bodie			62.0		50.0	2.18	10/10/1			12J174
1210038-56	Elbow10-20			122	J	50.0	2.18	10/09/1			12J174
1210038-57	Elbow20-30			93.9		50.1	2.18	10/09/1			12J174
1210038-58	Elbow30-40			100	1	50.0	2.18	10/09/1			12J174
1210038-58	Elbow 0-10			100	l I	50.0	2.18	10/09/1			12J174
Method Blank	atch ID: B12J174 Sample ID			Qualifer	. RL	: · ·	IDL		Analyzed		
B12J174-BLK1	Blank		5.00	U	5.00	0.:	218		11/06/12		
Sample #	QC Sample	· ·	Result			ource ample	Source Result	%Rec	%Rec Limits	RPD	RPD Limi
0401474 004	LCS		43.6		40		9	109	85-115		·· · ·
B12J174-BS1											
	Duplicate		111		121	0038-43	112			1	20
B12J174-DUP1	Duplicate Duplicate		111 63.0	<u>.</u>		0038-43 0038-51	112 64.0	 - 4.4		1 2	
B12J174-DUP1 B12J174-DUP2 B12J174-MS1				З	121			104	75-125		
B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MSD1	Duplicate Matrix Spike Matrix Spike Dup		63.0 102 101	. 3	121 19.8 121 19.9 121	0038-51	64.0		75-125 75-125		20 20 20
B12J174-BS1 B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MSD1 B12J174-SRM1	Duplicate Matrix Spike		63.0 102	. 3	121 19.8 121	0038-51 0038-33	64.0 60.4	104 103		2	20
312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Duplicate Matrix Spike Matrix Spike Dup		63.0 102 101	. 3	121 19.8 121 19.9 121	0038-51 0038-33	64.0 60.4	104 103	75-125	2	20
312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Duplicate Matrix Spike Matrix Spike Dup		63.0 102 101	. 3	121 19.8 121 19.9 121	0038-51 0038-33	64.0 60.4	104 103	75-125	2	20
312J174-DUP1 312J174-DUP2 312J174-MS1 312J174-MSD1	Duplicate Matrix Spike Matrix Spike Dup		63.0 102 101	. 3	121 19.8 121 19.9 121	0038-51 0038-33	64.0 60.4	104 103	75-125	2	20
B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MSD1	Duplicate Matrix Spike Matrix Spike Dup		63.0 102 101	. 3	121 19.8 121 19.9 121	0038-51 0038-33	64.0 60.4	104 103	75-125	2	20
B12J174-DUP1 B12J174-DUP2 B12J174-MS1 B12J174-MSD1	Duplicate Matrix Spike Matrix Spike Dup		63.0 102 101	. 3	121 19.8 121 19.9 121	0038-51 0038-33	64.0 60.4	104 103	75-125 82.2-117.8	2	20

C:\ELMNT\Format\MEL_Single_Analyte_v10.rpt

Page 10 of 10 11/19/2012

Project Name: NE Washington Sediments

Project Officer: Date Collected:	-	Met	lyte: Mercur hod: EPA245 e Analyzed: 1	5.5	12			atrix: Sedin Units: mg/	-
Sample #	Sample ID	•	Result Q	ualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-01	CEDAR 1		0.102	-	0.0078	0.0011	09/11/12	10/03/12	B12J033
L210038-02	CEDAR 2		0.130		0.0080	0.0012	09/11/12	10/03/12	B12J033
210038-03	CEDAR 3		0.147		0.0086	0.0013	09/11/12	10/03/12	B12J033
210038-04	CEDAR DUP	· · ·	0.143		0.0087	0.0013	09/11/12	10/03/12	B12J033
210038-10	SILVER 0-10		0.275		0.0091	0.0013	09/11/12	10/03/12	B12J03
210038-11	SILVER 10-20		0.280		0.0105	0.0015	09/11/12	10/03/12	B12J033
210038-12	SILVER 20-30		0.0273		0.0042	0.0006	09/11/12	10/03/12	B12J033
210038-13	SILVER 30-50		0.0130	•	0.0030	0.0004	09/11/12	10/03/12	B12J033
210038-20	PHILLIPS 0-10		0.153		0.0056	0.0008	09/11/12	10/03/12	B12J03
210038-21	PHILLIPS 10-20		0.0925		0.0048	0.0007	09/11/12	10/03/12	B12J03
210038-22	PHILLIPS 20-30		0.0480		0.0037	0.0005	09/11/12	10/03/12	B12J033
210038-30	CEDAR 1-6		0.208		0.0213	0.0031	09/11/12	10/03/12	B12J033
210038-31	CEDAR 7-9		0.157		0.0098	0.0014	09/11/12	10/03/12	B12J03
.210038-32	CEDAR 10		0.137		0.0058	0.00014	09/11/12	10/03/12	B12J03
.210038-32	CEDAR 10 CEDAR 11		0.0325		0.0030	0.0003	09/11/12	10/03/12	B12J03
.210038-33	CEDAR 11 CEDAR 12		0.0325		0.0030	0.0004	09/11/12	10/03/12	B12J03
									B12J033
210038-35	CEDAR 13		0.0466		0.0060	0.0009	09/11/12	10/03/12	
210038-36	CEDAR 14		0.0666		0.0108	0.0016	09/11/12 09/11/12	10/03/12	B12J033 B12J033
A40000 00			11 116×4		0.0151	0.0022	09/11/12	10/03/12	B12J03:
1210038-37 1210038-38 DC Results for B	CEDAR 15-16 CEDAR 17-18 atch ID: B121033		0.0466		0.0291	0.0042	09/11/12	10/03/12	
210038-38 QC Results for B		Result		RL		0.0042	09/11/12		
1210038-38	CEDAR 17-18 atch ID: B12J033	Result 0.0036	0.0466 Qualifer	RL).0036	0.0291	0.0042 DL	09/11/12	10/03/12	
210038-38 QC Results for B Method Blank	CEDAR 17-18 atch ID: B12J033 Sample ID		0.0466 Qualifer U (0.0036	0.0291 <u>M</u> 0.0	0.0042 DL 005	09/11/12	10/03/12 Analyzed 10/03/12	B12J033
210038-38 IC Results for B <u>Aethod Blank</u> 112J033-BLK1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank	0.0036	0.0466 <u>Qualifer</u> U (Spike	0.0036 So i	0.0291 <u>M</u> 0.0 urce	0.0042 DL 005 Source	09/11/12	10/03/12 Analyzed 10/03/12 %Rec	B12J033
210038-38 QC Results for B <u>Aethod Blank</u> 312J033-BLK1 ample #	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample	0.0036 Result	0.0466 <u>Qualifer</u> U (Spike Level	0.0036 Soi Sar	0.0291 <u>M</u> 0.0	0.0042 DL 005	09/11/12 %Rec	10/03/12 Analyzed 10/03/12 %Rec Limits R	B12J033
210038-38 QC Results for B Method Blank 12J033-BLK1 ample # 12J033-BS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS	0.0036 Result 0.069	0.0466 <u>Qualifer</u> U (Spike	0.0036 Soi Sar	0.0291 <u>M</u> 0.0 urce nple	0.0042 DL 005 Source Result	09/11/12 %Rec	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115	B12J033 RPI PD Lim
210038-38 C Results for B Aethod Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate	0.0036 Result 0.069 0.026	0.0466 Qualifer U (Spike Level 0.072	0.0036 Sor Sar 1210	0.0291 <u>M</u> 0.0 urce nple	0.0042 DL 005 Source Result 0.0270	09/11/12 %Rec 96	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115	B12J03
210038-38 C Results for B Iethod Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J033 RP PD Lim 5 20
210038-38 C Results for B lethod Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate	0.0036 Result 0.069 0.026	0.0466 Qualifer U (Spike Level 0.072	0.0036 Sor Sar 12100 12100	0.0291 <u>M</u> 0.0 urce nple	0.0042 DL 005 Source Result 0.0270	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03: RP PD Lim
210038-38 C Results for B Iethod Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03 RP PD Lim 5 20
210038-38 C Results for B <u>Aethod Blank</u> 12J033-BLK1 ample # 12J033-BS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03: RP PD Lim 5 20
210038-38 C Results for B Iethod Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03 RP PD Lim 5 2(
210038-38 C Results for B Method Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03: RP PD Lim 5 20
210038-38 C Results for B Iethod Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03 RP PD Lim 5 20
210038-38 C Results for B Method Blank 12J033-BLK1 ample # 12J033-BS1 12J033-DUP1 12J033-MS1	CEDAR 17-18 atch ID: B12J033 Sample ID Blank QC Sample LCS Duplicate Matrix Spike	0.0036 Result 0.069 0.026 0.248	0.0466 Qualifer U (Spike Level 0.072 0.151	0.0036 Sor Sar 12100 12100	0.0291 M 0.0 urce nple 038-34 038-01	0.0042 DL 005 Source Result 0.0270 0.102	09/11/12 %Rec 96 97	10/03/12 Analyzed 10/03/12 %Rec Limits R 35-115 75-125	B12J03 RP PD Lim 5 2(

.

11/19/2012

Project Name: NE Washington Sediments

Work Order: 12 Project Officer: Date Collected:	Johnson, Art	Me	alyte: Mercu thod: EPA24 te Analyzed:	45.5)12	-	N	latrix: Sedir Units: mg/	
Sample #	Sample ID		Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-15	PHALON 0-10		0.138		0.0048	0.0007	09/12/12	10/05/12	B12J054
1210038-16	PHALON 10-20		0.0505		0.0040	0.0006	09/12/12	10/05/12	B12J054
1210038-17	PHALON 20-30		0.0360		0.0039	0.0006	09/12/12	10/05/12	B12J054
1210038-18	PHALON 30-50		0.0339		0.0042	0.0006	09/12/12	10/05/12	B12J054
1210038-24	DRY 0-10	· ·	0.0567		0.0038	0.0006	09/12/12	10/05/12	B12J054
1210038-39	CEDAR 19-20		0.0381		0.0317	0.0046	09/11/12	10/05/12	B12J054
1210038-40	CEDAR 23-24		0.0507		0.0273	0.0040	09/11/12	10/05/12	B12J054
1210038-41	CEDAR 27-28		0.0530		0.0156	0.0023	09/11/12	10/05/12	B12J054
1210038-42	CEDAR 31-32		0.0358		0.0152	0.0022	09/11/12	10/05/12	B12J054
1210038-43	CEDAR 35-36		0.0420		0.0125	0.0018	09/11/12	10/05/12	B12J054
1210038-44	CEDAR 37-38	• .	0.0364		0.0117	0.0017	09/11/12	10/05/12	B12J054
QC Results for B	atch ID: B12J054		·				•	·	
Method Blank	Sample ID	Result	Qualifer	RL	М	DL		Analyzed	
B12J054-BLK1	Blank	0.0036	U	0.0036	0.0	005	•	10/05/12	
			Spik	e So	urce	Source		%Rec	RPD
Sample #	QC Sample	Result	Leve	el Sa	nple	Result	%Rec	Limits P	PD Limit
B12J054-BS1	LCS	0.072	0.07	2			100 8	85-115	
B12J054-DUP1	Duplicate	0.038		1210	038-43	0.0420			9 20
1									

0.0861

0.0744

1209076-04

1209076-04

0.112

0.096

Authorized by:

B12J054-MS1

B12J054-MSD1

Matrix Spike

Matrix Spike Dup

(1)(9),-

110

107

75-125

75-125

15

20

0.016

0.016

Dr

Project Name: NE Washington Sediments

Work Order: 12 Project Officer: Date Collected:	Johnson, Art	Me	alyte: Mer thod: EPA e Analyzed	245.5	2012			Matrix: Units:	Sedime mg/Kg	-
Sample #	Sample ID		Result	Qualifie	r RL	MDL	Collect	ed Ana	lyzed I	Batch ID
1210038-50	Elbow		0.133		0.0160	0.0023	10/09/	12 10/2	6/12	B12J234
1210038-51	Dilly		0.0431		0.0073	0.0011	10/09/	12 10/2	6/12	B12J234
1210038-52	Bowen	,	0.0932		0.0064	0.0009	10/09/	12 10/2	6/12	B12J234
1210038-53	Peterson		0.0642		0.0059	0.0009	10/10/	12 10/2	6/12	B12J234
1210038-56	Elbow10-20	•	0.116	J	0.0055	0.0008	10/09/	12 10/2	6/12	B12J234
1210038-57	Elbow20-30	•	0.0632	J	0.0061	0.0009	10/09/	12 10/2	6/12	B12J234
1210038-58	Elbow30-40		0.0476	J.	0.0044	0.0006	10/09/	12 10/2	6/12	B12J234
1210038-59	Elbow 0-10		0.178	J	0.0104	0.0015	10/09/	12 10/2	6/12	B12J234
QC Results for B Method Blank	atch ID: B12J234 Sample ID	Result	Qualifer	RL	M	DL	• •	Analyz	ed	
B12J234-BLK1	Blank	0.0036	U	0.0036	0.0	005		10/26/		
Sample #	QC Sample	Result	Spi		ource ample	Source Result	%Rec	%Rec Limits	RPE	RPD Limit
B12J234-BS1	LCS	0.071	0.0	72			99	85-115		
B12J234-DUP1	Duplicate	0.044		121	0038-51	0.0431			2	20
B12J234-MS1	Matrix Spike	1.33	0.0	71 121	0060-08	1.22	154	75-125		
B12J234-MSD1	Matrix Spike Dup	1.29	0.07	726 121	0060-08	1.22	92	75-125	3	20

Authorized by:

Dr

11/19/1-

Page 3 of 4 11/19/2012

Mercury

Project Name: NE Washington Sediments

Work Order: 12 Project Officer: Date Collected:	Johnson, Art	Met	llyte: Mer thod: EPA e Analyzeo	245.5	2012		N	latrix: Sedin Units: mg/	-
Sample #	Sample ID		Result	Qualifie	r RL.	MDL	Collected	Analyzed	Batch ID
1210038-55	Bodie	* .	0.0124	J	0.0030	0.0004	10/10/12	11/01/12	B12J291
QC Results for B	atch ID: B12J291								
Method Blank	Sample ID	Result	Qualifer	RL	IV	IDL		Analyzed	
B12J291-BLK1	Blank	0.0036	U.	0.0036	0.0	0005	• ·	11/01/12	
Sample #	QC Sample	Result	•		ource ample	Source Result	%Rec	%Rec Limits R	RPD PD Limit
B12J291-BS1	LCS	0.071	0.0)72			99	85-115	
B12J291-MS1	Matrix Spike	0.047	0.0	586 121	.0038-55	0.012	59	75-125	•
B12J291-MSD1	Matrix Spike Dup	0.058	0.0	577 121	.0038-55	0.012	79	75-125 2	21 20

NM

11/19/1-

Page 4 of 4 11/19/2012

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard, Washington 98366

December 24, 2012

Subject:	N.E. Wash Sediments
LIMS ID:	1210038
Laboratory:	Analytical Resources, Inc., ARI
Project Officer:	Art Johnson
By:	Karin Feddersen

Grain Size

Analytical Methods

These samples were analyzed for Grain Size following Puget Sound Estuary Program protocols, and reported as Gravel, Sand, Silt, and Clay.

The samples contained organic woody or other organic matter, which may have affected the grain size distribution results. Therefore the results have been qualified as estimates in all analyses.

Holding Times

Samples were sent on ice and arrived at 0.5°C, within criteria of above freezing and below 6°C.

All samples were analyzed within the recommended holding time of 6 months days from collection, based upon dates entered on the Laboratory Analyses Require form.

Method QA/QC

ARI performed a "QA ratio" check to determine how closely the total masses match between two different aliquots: the mass of the sample used for moisture content analysis vs. the mass calculated from the sieve and pipette portions of the test, using a separate aliquot.

The numerator in the ratio is the calculated weight of the total solids. The denominator is the total coarse mass measured from sieving plus the total fine mass measured during the pipette analysis.

If the moisture content sample is not exactly the same as the test sample, then the QA can be outside criteria. When the sample contains large particles, especially if the particles are organic, and irregular like debris, it is difficult to get the moisture contents to be exactly the same. This is especially difficult with limited volume since as smaller samples are less representative samples.

The PSEP method states: "The total amount of fine-grained material used for pipette analysis should be 5-25 g. If more material is used, particles may interfere with each other during settling and the possibility of flocculation may be enhanced. If less material is used, the experimental error in weighing becomes unacceptably large."

Due to the organic content in the samples, estimating the dry weight of fines in each sample was difficult. Several sample analyses had to be repeated to obtain the required amount of fines. According to ARI, due to the high moisture content of one sample, 1210038-50, there was insufficient sample

volume available to repeat the analysis. In addition, the sample was composed entirely of organic matter, which is an inappropriate matrix for this analysis.

Triplicate Samples

Triplicate analyses were performed on 1210038-14, which was chosen by the client. The standard deviation was outside ARI's criteria. However, due to the high moisture content, there was insufficient sample volume available to repeat the analyses.

Data Qualifier Codes

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Washington State Department of Ecology PBT Sediment Cores 2012; part 2

Percent Retained in Each Fraction

Sample Number	Gravel (>2,000)	Sand (2,000< x <62.5)	Silt (62.5< x <4)	Clay (<4)
1210038-14	0.0	25.5 7	51.3 T	23.2 5
1210038-14	0.0	18.8 1	55.0 /	26.3
1210038-14	0.0	12.0	58.1	29.8
1210038-05	0.0	22.2	31.4	46.4
1210038-06	0.0	6.0	52.6	41.4
1210038-07	43.6 T	17.7	18.7	20.0
1210038-19	34.4 7 4	¥ 23.0	21.2	21.5
1210038-23	0.0	70.4	18.9	10.8
1210038-24	0.0	29.8	40.3	29.9
1210038-50	36.5 🛫	34.0	10.6	18.9
1210038-51	0.0	57.9	32.1	10.0
1210038-52	0.0	/ 38.7	53.1	8.2
1210038-53	0.1 J K		32.5	5.3
1210038-55	0.0	40.2 🗸	51.8	8.0

Major Components of Apparent Grain Size Distribution by PSEP Methodology

1. Testing performed according to PSEP "Apparent Grain Size Distribution" protocol, with modifications for determination of only the major components

VO32

KF.

ungo: Agaim

Washington State Department of Ecology PBT Sediment Cores 2012; part 2

QA Summary

Sample Number	ARI Number	Gravel	Sand	Silt	Clay	Total Fines	
Sample Number		(>2,000)	(2,000< x <62.5)	(62.5< x <4) K [™]			I EF
1210038-14	D-1	0.0	25.5 J L	51.3 T	23.2 7	74.5 🗸	4
1210038-14	D-2	0.0	18.8	55.0	26.3	81.2	
1210038-14	D-3	0.0	12.0	58.1	29.8	88.0	_
Average		0.00	18.75	54.82	26.42	81.25	_
STDEV		0.00	5.49	2.78	2.72	5.50 ,	
%RSD			29.30 ¥	5.08 🖌	10.28 🗸	15.36 🗸	

			Data Qaradatad		QA Summary	
Sample Number	Date Sampled	Date Extracted	Date Completed	Amount Fines	Data Qualifiers	QA Ratio (95-105)
1210038-14	10/18/2012	10/23/2012	10/31/2012	2.76 KE	SS	100.8
1210038-14	10/18/2012	10/23/2012	10/31/2012	2.86	SS	104.4
1210038-14	10/18/2012	10/23/2012	10/31/2012	2.81	SS	100.3
1210038-05	10/18/2012	10/29/2012	10/31/2012	7.68		102.6
1210038-06	10/18/2012	10/24/2012	10/31/2012	6.49		100.2
1210038-07	10/18/2012	10/29/2012	10/31/2012	2.12	SS	97.7
1210038-19	10/18/2012	10/24/2012	10/31/2012	2.94	SS	98.9
1210038-23	10/18/2012	10/24/2012	10/31/2012	1.84	SS	99.4
1210038-24	10/18/2012	10/24/2012	10/31/2012	14.42		98.5
1210038-50	10/18/2012	10/24/2012	10/31/2012	0.67	SS, SM	29.2
1210038-51	10/18/2012	10/29/2012	10/31/2012	6.50		100.1
1210038-52	10/18/2012	10/29/2012	10/31/2012	9.03		102.8
1210038-53	10/18/2012	10/29/2012	10/31/2012	6.23 /		103.4
1210038-55	10/18/2012	10/24/2012	10/31/2012	12.27 🖤		101.4

in a strate strate a strate a strate strate

۰ هما Notes:

1. The PSEP limits for amount of fines are between 5 and 25 g

2. ARI Data Qualifier, see attached sheet

3. ARI Internal QA limits = 95-105% STDEV

VO32

Manchester Environmental Laboratory

7411 Beach Drive E, Port Orchard, Washington 98366

Case Narrative

November 6, 2012

Project: General Chemistry NE Washington Sediments

 \mathcal{O}

Work Order: 1210038

Project

Manager: Johnson, Art

By: Dean Momohara

Summary

The laboratory analyzed the samples following Standard Methods 2540G for percent solids and PSEP-TOC for total organic carbon $@, 70^{\circ}$.

All analyses requested were evaluated by established regulatory quality assurance guidelines.

Sample Information

The samples were received at the Manchester Laboratory on 9/27/2012 and 10/17/2012. All coolers were received within the proper temperature range of 0°C - 6°C. The samples were received in good condition. The samples for PSEP-TOC analysis were frozen prior to analysis. Sample 06 for TOC was not analyzed. Samples 05 and 07 were collected in the wrong container. Forty five samples were received and assigned laboratory identification numbers 01 to 05, 07, 10 to 24, 30 to 44, 50 to 53 and 55 to 59.

Holding Times

All analyses were performed within their hold times except for percent solids and TOC. All samples for percent solids and samples 05, 07, 14, 19, 23 and 24 for TOC were received and analyzed out of hold time. The results were qualified as estimates.

Calibration

The instrument was calibrated following the appropriate method. All initial and continuing calibration verification checks were within the acceptance limits.

All initial and continuing blank checks were within the acceptance limits. The r-value was within the acceptance limits. All standard residuals were within acceptance limits. Oven drying temperatures were monitored before and after drying.

Method Blanks

No analytically significant levels of analyte were detected in the method blanks associated with these samples.

Laboratory Control Samples

All laboratory control sample recoveries were within the acceptance limits.

Replicates

The associated duplicate relative percent difference(s) and duplicate relative standard deviation (solid TOC analysis) of samples with concentrations greater than 5 times the reporting limit were within the acceptance limits.

Matrix Spikes

NA

Other Quality Assurance Measures and Issues

U - The analyte was not detected at or above the reported result.

J - The analyte was positively identified. The associated numerical result is an estimate.

bold - The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

Please call Dean Momohara at (360) 871-8808 to further discuss this project.

cc: Project File

Project Name: NE Washington Sediments

	10038	Analy	/te: Solid	S			M	latrix: Sedim	ent/Soil
Project Officer: J		-	od: SM2					Units: 9	
Date Collected:	09/11/2012	Date	Analyzed	: 09/27/20)12				
Sample #	Sample ID		Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-01	CEDAR 1		9.2	J	0.001		09/11/12	09/27/12	B12J008
1210038-02	CEDAR 2		9.0	J	0.001		09/11/12	09/27/12	B12J008
1210038-03	CEDAR 3		8.2	J	0.001		09/11/12	09/27/12	B12J008
1210038-04	CEDAR DUP		8.2	J	0.001		09/11/12	09/27/12	B12J008
1210038-10	SILVER 0-10		7.9	j	0.001		09/11/12	09/27/12	B12J008
1210038-11	SILVER 10-20		6.8	· J	0.001		09/11/12	09/27/12	B12J008
1210038-12	SILVER 20-30		16.1	J	0.001		09/11/12	09/27/12	B12J008
1210038-13	SILVER 30-50		23.4	j	0.001		09/11/12	09/27/12	B12J008
1210038-15	PHALON 0-10		15.1	a J	0.001		09/12/12	09/27/12	B12J008
1210038-16	PHALON 10-20		18.0	J	0.001		09/12/12	09/27/12	B12J008
1210038-17	PHALON 20-30		18.2	- j	0.001		09/12/12	09/27/12	B12J008
1210038-18	PHALON 30-50		17.0	J	0.001	•	09/12/12	09/27/12	B12J008
1210038-20	PHILLIPS 0-10		13.0	J	0.001		09/11/12	09/27/12	B12J008
1210038-21	PHILLIPS 10-20		14.6	J	0.001		09/11/12	09/27/12	B12J008
1210038-22	PHILLIPS 20-30		19.6	J T	0.001		09/11/12	09/27/12	B12J008
1210038-24	DRY 0-10		30.1	J	0.001		09/12/12		B12J008
1210038-30	CEDAR 1-6		3.4	J	0.001		09/11/12	09/27/12	B12J008
1210038-31	CEDAR 7-9		7.3	J	0.001		09/11/12	09/27/12	B12J008
1210038-32	CEDAR 10	er general de la composition de la comp	11.1	J	0.001		09/11/12	09/27/12	B12J008
1210038-33	CEDAR 11	an a	23.1	J	0.001		09/11/12	09/27/12	B12J008
1210030 35	CLDAR II		And the Table	•	0.001		00/11/12	00/2//22	Dicioco
-		· · · · ·						1	
OC Results for Ba	atch ID: B121008							· · · ·	
QC Results for Ba Method Blank		Result O	lualifer	RL	·	IDL		Analvzed	
Method Blank	Sample ID		ualifer	<u>RL</u>	M	IDL		Analyzed	
-		Result C	ualifer U	RL 0.001	M	IDL		Analyzed 09/27/12	
Method Blank	Sample ID			0.001	M	IDL Source			RPD
Method Blank	Sample ID		U	0.001 ke So				09/27/12 % Rec	
Method Blank B12J008-BLK1	Sample ID Blank	0.001	U Spi	0.001 ke Sor rel Sar	urce	Source		09/27/12 %Rec Limits RI	
Method Blank B12J008-BLK1 Sample #	Sample ID Blank QC Sample	0.001 Result	U Spi Lev	0.001 ke So rel Sar 1210	urce nple	Source Result	%Rec	09/27/12 %Rec Limits RI 0	PD Limit
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	PD Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke So rel Sar 1210	urce nple 038-12	Source Result 16.1	%Rec	09/27/12 %Rec Limits RI 0	D Limit .5 20
Method Blank B12J008-BLK1 Sample # B12J008-DUP1	Sample ID Blank QC Sample Duplicate	0.001 Result 16.0	U Spi Lev	0.001 ke Sor 1210 1210	urce nple 038-12	Source Result 16.1 3.4	%Rec	09/27/12 %Rec Limits RI 0 1	D Limit .5 20

C:\ELMNT\Format\MEL_Single_Analyte_v10.rpt

Work Order: 121	.0038	Anal	yte: Solid	S	la d		N	latrix: Sedin	nent/Soil
Project Officer: J			nod: SM2		. • •			Units:	
Date Collected: (-			: 09/27/20	12				
Sample #	Sample ID	•	Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-34	CEDAR 12	······································	20.0	J	0.001		09/11/12	09/27/12	B12J009
1210038-35	CEDAR 13		11.5	J	0.001		09/11/12	09/27/12	B12J009
1210038-36	CEDAR 14	• ,	6.7	J	0.001		09/11/12	09/27/12	B12J009
1210038-37	CEDAR 15-16		4.8	J	0.001		09/11/12	09/27/12	B12J009
1210038-38	CEDAR 17-18		2.5	J	0.001		09/11/12	09/27/12	B12J009
1210038-39	CEDAR 19-20		2.2	J	0.001		09/11/12	09/27/12	B12J009
1210038-40	CEDAR 23-24		2.7	J	0.001		09/11/12	09/27/12	B12J009
1210038-41	CEDAR 27-28		4.6	s j	0.001		09/11/12	09/27/12	B12J009
1210038-42	CEDAR 31-32		4.4	. .	0.001		09/11/12	09/27/12	B12J009
1210038-43	CEDAR 35-36		5.4	J	0.001		09/11/12	09/27/12	B12J009
1210038-44	CEDAR 37-38	a de la	5.6	J	0.001		09/11/12		
and the search						·)			
QC Results for Ba	tch ID: B12J009								
Method Blank	Sample ID	Result C	Qualifer	RL	м	DL	an a	Analyzed	а. 2
B12J009-BLK1	Blank	0.001	U	0.001				09/27/12	
						_			
Converte #	OC Comula	Desult	Spi		urce	Source	0/ D	%Rec	RPD
Sample #	QC Sample	Result	Lev		nple	Result	%Rec		PD Limit
B12J009-DUP1 B12J009-DUP2	Duplicate Duplicate	20.0 5.4]		038-34 038-43	20.0 J 5.4 J			.07 20).4 20
	·						,		
				ay managan ya sa sa				ga di sa setta di sa si sa si	Alto Parlanta
· · ·	in an ann a' san an a' san an a' san a' s Tarang ar an a' san a				1999 - 1999 -			art tur i i i A	in an sina. An
		•							
			*						
		nter de la companya d La companya de la comp							
· · · ·		· · · · · · · · · · · · · · · · · · ·							
		· · ·							
	· · ·	· · ·							
	· · ·	· · ·							
		· · ·							
	· · · ·	· · ·							
		· · ·							
		· · ·							
Authorized by:	٦r			Poloo	se Date:		1/29/1-	Pa	ge 2 of 4

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for Total Organic Carbon (70 C)

Work Order: 12 Project Officer: Date Collected:	Johnson, Art		Me	thod: F	SEP-TO	ganic Ca DC 0/12/20				N	/latrix: S Ui	Sedime nits: %	-
Sample #	Sample ID			Res	ult Q	ualifier	RL	MDL	. C	ollected	Anal	yzed	Batch ID
1210038-05	CEDAR 0-10			10	.8	J	0.10	0.03	0	9/11/12	10/1	2/12	B12J071
1210038-07	CEDAR 15-38			27.	.9	J	0.10	0.03	0	9/11/12	10/1	2/12	B12J071
1210038-14	SILVER 0-50			17	.1	J	0.10	0.03	0	9/11/12	10/1	2/12	B12J071
1210038-19	PHALON 0-50			26	.9	J	0.10	0.03	0	9/12/12	10/1	2/12	B12J071
1210038-23	PHILLIPS 0-30			31.	.3	J	0.10	0.03	0	9/11/12	10/1	2/12	B12J071
1210038-24	DRY 0-10			15	.4	J	0.10	0.03	0	9/12/12	10/1	2/12	B12J071
QC Results for B Method Blank	atch ID: B12J071 Sample ID	Re	esult	Qualife	er .	RL	N	IDL			Analyze	ed .	· ·
B12J071-BLK1	Blank		.10	U		0.10	0	.03			10/12/2		
		f · .			Spike	So	urce	Source			%Rec		RPD
Sample #	QC Sample		Result		Level	Sar	nple	Result	%F	Rec	Limits	RPI	D Limit
B12J071-DUP1	Duplicate		16.8	· .		1210	038-14	17.1	J		· .	1	20
B12J071-DUP2	Duplicate		17.8			1210	038-14	17.1	J			4	20
B12J071-SRM1	Reference		2.92		2.99				9	8	75-125		

				•
Authorized by:	Dr	Release Date:	10/29/12	Page 3 of 4
		······		10/29/2012

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for Total Organic Carbon (70 C)

Project Name: NE Washington Sediments

Work Order: 1210038 Project Officer: Johnson, Art Date Collected: 10/09/2012		Method: PSEP-TOC	Analyte: Total Organic Carbon Method: PSEP-TOC Date Analyzed: 10/25/2012				
Sample #	Sample ID	Result Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-50	Elbow	27.1	0.10	0.03	10/09/12	10/25/12	B12J186
1210038-51	Dilly	10.2	0.10	0.03	10/09/12	10/25/12	B12J186
1210038-52	Bowen	7.04	0.10	0.03	10/09/12	10/25/12	B12J186
1210038-53	Peterson	19.2	0.10	0.03	10/10/12	10/25/12	B12J186
1210038-55	Bodie	9.10	0.10	0.03	10/10/12	10/25/12	B12J186
÷							

QC Results for Batch ID: B12J186

Method Blank	Sample ID	Result	Qualifer	RL	MDL		Analyzed		
B12J186-BLK1	Blank	0.10	U .	0.10	0.03		10/25/12	2	
Sample #	QC Sample	Result	Spike Level	Source Sample	Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12J186-DUP1	Duplicate	. 11.1		1210038-51	l 10.2			8	20
B12J186-DUP2	Duplicate	10.7		1210038-51	L 10.2			5	20
B12J186-SRM1	Reference	2.74	2.99			92	75-125		

Authorized by:

10/29/12

Dn

Work Order: 1210038 Project Officer: Johnson, Art Date Collected: 10/09/2012			alyte: Solic ethod: SM2 te Analyzec	540G	12		Matrix: Sediment/Soil Units: %			
Sample #	Sample ID		Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID	
1210038-50	Elbow		4.7	J	0.001		10/09/12	10/17/12	B12J187	
1210038-51	Dilly		10.2	J	0.001		10/09/12	10/17/12	B12J187	
1210038-52	Bowen		11.9	J	0.001		10/09/12	10/17/12	B12J187	
1210038-53	Peterson		12.8	J	0.001		10/10/12	10/17/12	B12J187	
1210038-55	Bodie		39.8	J	0.001		10/10/12	10/17/12	B12J187	
QC Results for B	atch ID: B12J187							۰.		
Method Blank	Sample ID	Result	Qualifer	RL	MDL		A	nalyzed		

B12J187-BLK1	Blank	0.001	U ().001		10/17/12	
Sample #	QC Sample	Result	Spike Level	Source Sample	Source Result %Rec	%Rec Limits RPD	RPD Limit
B12J187-DUP1	Duplicate	12.8		1210038-53	12.8 J	0.1	20

Authorized by:	• *	Dr	Release Date:	11/570	Page 3 of 4 11/5/2012

Project Name: NE Washington Sediments

) :

Work Order: 12 Project Officer: Date Collected:	Johnson, Art	Me	alyte: Solid thod: SM2 e Analyzed	540G	12		M	atrix: Sedim Units: 9	
Sample #	Sample ID		Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210038-56	Elbow10-20		13.3	J	0.001		10/09/12	10/29/12	B12J288
1210038-57	Elbow20-30		12.4	J	0.001		10/09/12	10/29/12	B12J288
1210038-58	Elbow30-40		16.0	J	0.001		10/09/12	10/29/12	B12J288
1210038-59	Elbow 0-10		7.2	J	0.001		10/09/12	10/29/12	B12J288
QC Results for Ba	atch ID: B12J288								4.5 1
Nethod Blank	Sample ID	Result	Qualifer	RL	MD	L		Analyzed	
B12J288-BLK1	Blank	0.001	U	0.001		. •		10/29/12	an a
			Spi	ke So	urce	Source	9	%Rec	RPD
Sample #	QC Sample	Result	Lev	vel Sar	nple	Result	%Rec l	imits RI	PD Limit
B12J288-DUP1	Duplicate	12.4	J	1210	038-57	12.4 J		0	.3 20

IM

Page 4 of 4 11/5/2012

11/11/12

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard, Washington 98366

December 18, 2012

Subject:	NE Washington Sediments
Ecology LIMS ID:	1210038
Laboratory:	Eberline Analytical
Project Officer:	Art Johnson
By:	Karin Feddersen

Lead-210 from Polonium-210

Summary

These samples were analyzed using Eberline's method EML Po-2 Modified, and reported on a dry weight basis. See Eberline's case narrative for more details.

Calibration

The instrument efficiency, selectivity, and specificity were confirmed daily.

Tracer

The isotope polonium-208 is used as a tracer compound to measure recovery in each sample. In addition, individual tracer recoveries are used to calculate results.

Two samples had poor recovery and were recounted on 11/12/12.

Blanks

No activity was detected in any of the method blanks above the reporting level.

Laboratory Control Sample (LCS)

An LCS was counted with each batch. Recoveries were 83.2% and 84.5%.

Eberline Analytical Karin Enddorson					Work Order Details:								
			Karin Feddersen				SDG: 12-10136 REVISED						
F	inal R	leport	WA St	ate Dept	of Ecolog	y Manche	ester Lab	Purchase Order:	13-256	692			
		•	7411 B	each Driv	ve East	-		Analysis Category:	ENVIF	RONMENT	AL		
C	of Ana	liysis	Port O	rchard, V	VA 98366			Sample Matrix:	SO				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	CU	CSU	MDA	Report Units
12-10136-01	LCS	KNOWN	10/25/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	7.49E+00	2.77E-01			pCi/g
12-10136-01	LCS	SPIKE	10/25/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	6.24E+00	1.00E+00	1.11E+00	1.43E-01	pCi/g
12-10136-01	LCS	KNOWN	10/25/12 00:00	10/25/2012	11/12/2012	12-10136	Lead-210	EML Po-2 Modified	7.49E+00	2.77E-01			pCi/g
12-10136-01	LCS	SPIKE	10/25/12 00:00	10/25/2012	11/12/2012	12-10136	Lead-210	EML Po-2 Modified	6.33E+00	1.06E+00	1.16E+00	1.61E-01	pCi/g
12-10136-02	MBL	BLANK	10/25/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	2.64E-03	9.53E-03	9.53E-03	2.15E-02	pCi/g
12-10136-02	MBL	BLANK	10/25/12 00:00	10/25/2012	11/12/2012	12-10136	Lead-210	EML Po-2 Modified	4.15E-04	9.52E-03	9.52E-03	2.42E-02	pCi/g
12-10136-03	DUP	1210038-31	09/11/12 00:00	10/25/2012	11/12/2012	12-10136	Lead-210	EML Po-2 Modified	1.73E+00	2.41E-01	2.74E-01	2.22E-02	pCi/g
12-10136-04	TRG	1210038-30	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	8.56E+00	8.97E-01	1.11E+00	2.55E-02	pCi/g
12-10136-05	DO	1210038-31	09/11/12 00:00	10/25/2012	11/12/2012	12-10136	Lead-210	EML Po-2 Modified	1.44E+00	2.07E-01	2.34E-01	2.31E-02	pCi/g
12-10136-06	TRG	1210038-32	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	1.79E+00	2.49E-01	2.83E-01	1.78E-02	pCi/g
12-10136-07	TRG	1210038-33	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	5.20E-01	1.18E-01	1.24E-01	3.13E-02	pCi/g
12-10136-08	TRG	1210038-34	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	7.16E-01	1.49E-01	1.59E-01	3.60E-02	pCi/g
12-10136-09	TRG	1210038-35	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	6.65E-01	1.25E-01	1.35E-01	1.69E-02	pCi/g
12-10136-10	TRG	1210038-36	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	6.45E-01	1.43E-01	1.51E-01	3.28E-02	pCi/g
12-10136-11	TRG	1210038-37	09/11/12 00:00	10/25/2012	11/12/2012	12-10136	Lead-210	EML Po-2 Modified	4.88E-01	1.10E-01	1.16E-01	2.69E-02	pCi/g
12-10136-12	TRG	1210038-38	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	5.06E-01	1.15E-01	1.21E-01	2.32E-02	pCi/g
12-10136-13	TRG	1210038-39	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	3.90E-01	1.39E-01	1.42E-01	5.72E-02	pCi/g
12-10136-14	TRG	1210038-40	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	4.93E-01	1.16E-01	1.22E-01	2.49E-02	pCi/g
12-10136-15	TRG	1210038-41	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	2.03E-01	6.17E-02	6.36E-02	1.83E-02	pCi/g
12-10136-16	TRG	1210038-42	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	3.02E-01	7.75E-02	8.08E-02	1.81E-02	pCi/g
12-10136-17	TRG	1210038-43	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	2.73E-01	6.94E-02	7.24E-02	1.89E-02	pCi/g
12-10136-18	TRG	1210038-44	09/11/12 00:00	10/25/2012	11/7/2012	12-10136	Lead-210	EML Po-2 Modified	2.73E-01	6.53E-02	6.85E-02	1.44E-02	pCi/g

CU=Counting Uncertainty;CSU=Combined Standard Uncertainty (2-sigma);MDA=Minimal Detected Activity;LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original

Appendix C. Metals, Lead-2010, and Percent Solids Data for Cedar Lake Box Core Collected September 11, 2012

(dry weight basis)

Sample No. (1210038-)	Depth Increment (cm)	Lead (mg/Kg)	Zinc (mg/Kg)	Arsenic (mg/Kg)	Cadmium (mg/Kg)	Antimony (mg/Kg)	Mercury (mg/Kg)	Pb-210 (pCi/g)	Solids (%)
30	1-6	295	472	28	8.5	9.5	0.21	8.558	3.4
31	7-9	459	386	25	13	16	0.16	1.586	7.3
32	9-10	704	502	26	12	16	0.14	1.786	11.1
33	10-11	135	60	7.8	2.6	2.7	0.03	0.520	23.1
34	11-12	17	21	5.8	0.78	0.57	0.03	0.716	20
35	12-13	3.2	28	11	0.57	0.85	0.05	0.665	11.5
36	13-14	3.95	80	21	0.70	1.4	0.07	0.645	6.7
37	14-16	13.2	171	22	1.3	1.9	0.07	0.488	4.8
38	16-18	3.86	79	17	0.52	1.2	0.05	0.506	2.5
39	18-20	1.42	52	15	0.32	1.0	0.04	0.390	2.2
40	22-24	2.08	55	17	0.49	1.6	0.05	0.493	2.7
41	26-28	3.01	79	21	0.83	1.8	0.05	0.203	4.6
42	30-32	2.3	82	20	0.79	1.4	0.04	0.302	4.4
43	34-36	2.26	112	27	1.5	2.8	0.04	0.273	5.4
44	36-38	2.21	104	26	1.3	2.6	0.04	0.273	5.6

Appendix D. Estimates of Sedimentation Rates in Cedar, Black, and Wenatchee Lakes

Cedar Lake*		В	lack Lake†	Wenatchee Lake**		
Year	Sedimentation Rate (g/cm ² /yr)	Year	Sedimentation Rate (g/cm ² /yr)	Year	Sedimentation Rate (g/cm ² /yr)	
2000	0.007	2006	0.013	2007	0.054	
1968	0.016	2000	0.022	2003	0.050	
1959	0.010	1996	0.014	1999	0.075	
1937	0.030	1992	0.019	1990	0.052	
1925	0.012	1988	0.019	1978	0.049	
1913	0.009	1980	0.024	1963	0.031	
1904	0.007	1974	0.041	1938	0.021	
1890	0.008	1969	0.033	1902	0.020	
1883	0.006	1957	0.017	1881	0.020	
1877	0.009					
1855	0.003					

*present study

[†]Furl and Roberts (2010)

**Furl and Roberts (2011)

Appendix E. Brief Summary of Smelter Histories

Trail Smelter

The following Trail operations historical summary primarily is adapted from Queneau (2010).

Trail BC smelter operations have been underway almost continuously since 1896. Initially one blast furnace and four reverberatory furnaces were operated to treat copper-gold ores. By 1898, three 600-ton per day (tpd) furnaces and 48 roasters were installed. Around 1900, the smelting of lead sulfide ores began. Lead production and improved processes progressed steadily, and by 1906 production capacity reached 75 standard tpd. Electrolytic zinc and copper refineries came on line in 1916. Cadmium recovery began in 1927. In 1931, Trail's fuming furnace processed 150,000 tons of blast furnace slag. Also in 1931, operations expanded to include the manufacturing of ammonium sulfate and ammonium phosphate fertilizer. Prior to the installation of baghouses in 1951, to better recover dust and condensed fume from lead blast-furnace offgas, a greater portion of the cadmium and arsenic had been exhausted to atmosphere.

By the early 1970s, Trail operations were aging and in need of major upgrade. For example, much of the lead smelter was essentially 40 to 50 years old, dating back to the 1930s. The path to major modernization across the operations proceeded through the 1980s and 1990s, and continues today. In 1997, the Kivcet lead smelter was commissioned, reaching full operation by 1999. The Kivcet process was shown to decrease stack emissions of particulates, lead, arsenic, mercury, fluoride, and SO₂ by 68 to 98%.

Queneau (2010) estimated and extrapolated limited available records for the period of 1921 to 2005 to develop a minimum estimate of selected metals released into the air from the Trail smelter stacks: zinc - 38,465 tons; lead - 22,688 tons; arsenic - 1,225 tons; cadmium - 1,103 tons; mercury - 97 tons. By applying Trail feed tonnage information organized by Queneau, a simplified minimum daily feedstock tonnage average of over 1,550 tpd for the lead and zinc operations can be estimated over 84 years. In total, the feedstock for over eight decades of operation approached 48.5 million tons.

Today the Trail operations are described as one of the world's largest fully integrated zinc and lead smelters, producing refined zinc, lead, and a variety of precious and specialty metals, chemicals, and fertilizer products (www.teck.com/Generic.aspx?PAGE=Teck Site/Diversified Mining Pages/Zinc Pages/Trail&portalName=tc).

LeRoi/Northport Smelter

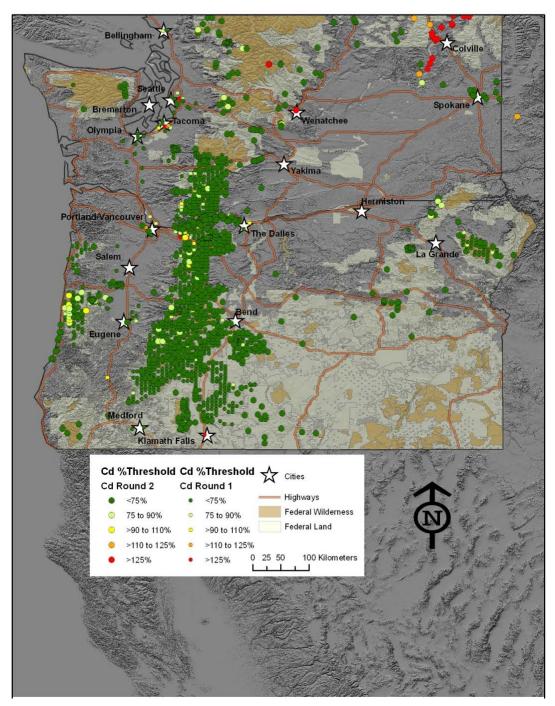
In contrast to the successful 116-year history of the Trail operations, LeRoi Mining Company was significantly smaller and experienced a short, intermittent operations life. Much of the following summary is borrowed and adapted from reports authored by Quivik (2010) and McNulty (2011).

The LeRoi smelter in Northport, Washington was built as a copper smelter in 1897 and 1898. The smelter's capacity is reported to have been up to 450 tpd. In 1905, the smelter lost its principle supplier of ore (LeRoi Mine) to the Trail smelter. Prior to closing in 1909, the smelter continued to operate at a reduced rate. Thus the records indicate that this original smelter operated for about nine years at various levels before shutdown.

The facility sat idle until 1916 when, during the World War I era, it was converted to a lead smelter by the Day family. The Northport Smelting and Refining Company built additional workings at the original LeRoi site. Two furnaces, each with a capacity to treat about 250 tons of materials, were "blown in" at that time. A third was installed, but never used. The smelter operated from early 1916 through 1918, then about half of 1919 through 1920. In 1921 it operated for about three months before closing permanently. Thus, the lead smelter operated for roughly three years before final abandonment. The smelter was sold to Asarco in 1922 and underwent partial dismantling in 1923.

References

McNulty, Terence P., 2011. Expert Report, Pakootas v. Teck Cominco Metals Ltd., January 14, 2011.


Queneau, Paul B., 2010. Expert Opinion, Pakootas, et al. v. Teck Cominco Metals, September 15, 2010.

Quivik, Fredric L., 2010. History of Mining, Milling, and Smelting in NE Washington, Expert Report, November 19, 2010, Pakootas v. Teck Cominco Metals CV-04-0256-LRS.

Appendix F. Cadmium Concentrations in Pacific Northwest Lichens as Percent of Clean-Site Threshold Values

provided by Linda Geiser, U.S. Forest Service, Corvallis OR.

Cadmium Levels in Pacific Northwest Lichens (% of Clean-Site Thresholds) Round one 1993-2002, Round two 2003-2008

Appendix G. Acronyms and Abbreviations

BC	British Columbia, Canada
CRS	Constant rate of supply
Ecology	Washington State Department of Ecology
EIM	Environmental Information Management database
EAP	Environmental Assessment Program (Ecology)
EPA	U.S. Environmental Protection Agency
MEL	Manchester Environmental Laboratory (Ecology)
PEC	Probable effect concentration
RPD	Relative percent difference
RSD	Relative standard deviation
SOP	Standard operating procedures
SO_2	Sulfur dioxide

Units of Measurement

cm	centimeter, a unit of length equal to 1/100 meter
ft	feet
g	gram, a unit of mass
g/cm ² /year	grams per square centimeter per year
mg/Kg	milligrams per kilogram (parts per million)
pCi	picocuries, a unit of radioactive decay
tpd	tons per day
ug	microgram, a unit of mass equal to 1/1,000,000 gram
ug/cm ² /year	microgram per square centimeter per year