Final

Groundwater Sampling Report Tiger Oil Yakima, Washington

Prepared for: State of Washington Department of Ecology Toxics Cleanup Program Central Regional Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3401

Prepared by: TerraGraphics Environmental Engineering, Inc. Teamed with Hart Crowser, Inc.

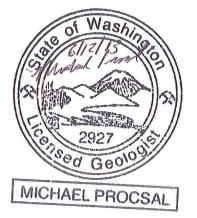
> 3501 West Elder Street, Suite 301 Boise, Idaho 83705

> > www.terragraphics.com

June 12, 2013

Contract #C1100144; Work Assignment #C110144LL

Approval Form


This document contains geologic work and is therefore submitted under the seal of an appropriately licensed professional, as required by Chapters 18.43 and 18.220 Revised Code of Washington (RCW).

Approved by:

mile hal

Date: 6/12/13

Mike Procsal, P.G. Geologist, TerraGraphics Environmental Engineering, Inc.

Table of Contents

Executive Summary	. v
Section 1.0 Introduction	. 1
Section 2.0 Field Activities and Methodology	. 2
2.1 Well Condition Survey	. 2
2.2 Groundwater Elevations	. 2
2.3 Groundwater Sampling	. 2
Section 3.0 Results	. 3
3.1 Well Condition Survey	. 3
3.2 Groundwater Elevations and Contaminant Distribution	. 3
3.3 Quality Assurance/Quality Control	.4
3.4 Groundwater Sample Analysis	.4
Section 4.0 Summary and Conclusions	
Section 5.0 References and Resources Used	

List of Figures

Figure 1.	Site Location	7
Figure 2.	Groundwater Contour Map	8
Figure 3.	LNAPL and Dissolved Phase Plumes	9

List of Tables

Table 1.	Groundwater Analytical Results	10
Table 2.	Water Quality Parameters	11
Table 3.	Well Conditions Summary	14

Appendices

Appendix A	Groundwater Sampling Forms	A
Appendix B	Survey Map	В
Appendix C	Data Validation and QA/QC Memorandum	C
Appendix D	Analytical Reports with Chain-of-Custody	D

Acronyms and Abbreviations

BTEX	benzene, toluene, ethylbenzene, and total xylenes
CPOC	conditional point of compliance
DID	Drainage and Irrigation District
Ecology	Washington State Department of Ecology
famsl	feet above mean sea level
ft	foot/feet
GRO	Gasoline Range Organics
GWE	Groundwater Extraction
Hart Crowser	Hart Crowser, Inc.
LNAPL	Light Non-Aqueous Phase Liquid
μg/L	micrograms per liter
MTCA	Model Toxics Control Act
PLP	Potentially Liable Person
QA/QC	Quality Assurance/Quality Control
SAP/QAPP	Sampling and Analysis Plan/Quality Analysis Project Plan
SVE	Soil Vapor Extration
TerraGraphics	TerraGraphics Environmental Engineering, Inc.
TOC	Top of Casing
USEPA	U.S. Environmental Protection Agency
WAC	Washington Administrative Code

Executive Summary

TerraGraphics Environmental Engineering, Inc. (TerraGraphics) teamed with Hart Crowser Inc. (Hart Crowser)—under contract with the Washington State Department of Ecology (Ecology)— to identify and evaluate the extent of petroleum impacted groundwater at the Former Tiger Oil (hereinafter, referred to as the "Site"), located at the intersection of S. 24th Ave. and W. Nob Hill Blvd. in Yakima, Washington (Figure 1). Groundwater sample results were compared to the Model Toxics Control Act (MTCA) Method A Cleanup Levels (Tables 720-1). This document summarizes field activities and analytical data collected, and provides recommendations.

Site History

An estimated 20,000 gallons of gasoline was released at the Site between about 1983 and 1985. Several interim actions have occurred and enforcement actions issued, culminating in a Consent Decree between Tiger Oil Corporation and Ecology in 2004. The last observation and sampling event at the Site occurred in January 2010, though groundwater samples have not been collected and analyzed from most wells since 2003-2004. In 2013, TerraGraphics and Hart Crowser were contracted by Ecology to collect groundwater samples from a select group of groundwater monitoring wells at the Site and evaluate the extent of petroleum impacted groundwater. Sampling was conducted in accordance with Ecology's Sampling Analysis Plan and Quality Assurance Project Plan (SAP/QAPP) (Ecology, 2013).

Groundwater Quality

Groundwater samples were collected at 17 locations on April 2 and 3, 2013. At least one of the analytes in 7 of the 17 samples was at or above the respective MTCA Method A Cleanup Levels. Table 1 summarizes those samples above the reporting limit (expressed in micrograms per liter $[\mu g/L]$). Samples above the MTCA Method A Cleanup Levels included:

- KMW-16
 - o benzene = 5.5 μ g/L, Cleanup Level = 5 μ g/L.
- MWG-3
 - o benzene = $600 \mu g/L$, Cleanup Level = $5 \mu g/L$.
- S-2
 - o benzene = 3,100 μ g/L, Cleanup Level = 5 μ g/L.
 - Gasoline Range Organics (GRO) = $3,900 \,\mu$ g/L, Cleanup Level = $800 \,\mu$ g/L.
- MW-13
 - \circ GRO = 1,800 µg/L, Cleanup Level = 800 µg/L.
- KMW-7
 - o benzene = $6.0 \mu g/L$, Cleanup Level = $5 \mu g/L$.
- MW-9
 - o benzene = $25 \mu g/L$, Cleanup Level = $5 \mu g/L$.
 - \circ GRO = 6,000 µg/L, Cleanup Level = 800 µg/L.
- KMW-22
 - o benzene = 4,900 μ g/L, Cleanup Level = 5 μ g/L.
 - o ethylbenzene = 2,500 μ g/L, Cleanup Level = 700 μ g/L.

- o total xylenes = 5,400 μ g/L, Cleanup Level = 1,000 μ g/L.
- o $GRO = 34,000 \ \mu g/L$, Cleanup Level = $800 \ \mu g/L$.
- KMW-6
 - o benzene = 5.8 μ g/L, Cleanup Level = 5 μ g/L.

Light Non-Aqueous Phase Liquid

Light Non-Aqueous Phase Liquid (LNAPL) was measured at four groundwater monitoring wells and samples were not collected as a result (MW-11, MW-15, MW-7, and MW-8). LNAPL thickness varied from 0.01 feet (ft) at MW-15 and MW-8 to 2.34 ft at MW-7. LNAPL was encountered at KMW-20 after the well was purged in preparation for sampling. As a result, the LNAPL thickness was not measured and a groundwater sample was not collected. In addition, a heavy sheen was observed during purging at wells MW-9, MW-13 and KMW-22 where it had not been detected during initial gauging.

Summary

This investigation confirmed that petroleum-impacted groundwater above the MTCA Method A Cleanup Levels is present at the Site and at downgradient locations. In addition, LNAPL still remains at the Site in spite of historical remediation efforts.

Based on the available information and Property-specific data collected, TerraGraphics concludes the following:

- Groundwater does not appear to be impacted upgradient of KMW-8.
- Petroleum-impacted groundwater above the MTCA A Cleanup Levels is present at the Tiger Oil Property and downgradient to at least KMW-16.
- All monitoring wells, with the exception of KMW-24, do not meet well construction standards.

Section 1.0 Introduction

The information and background provided below was provided by Ecology in the form of a SAP/QAPP entitled: SAP/QAPP for Tiger Oil Site Sampling, March 2013 (Ecology 2013). Tiger Oil Corporation (New Tiger) is the current owner of the Site, which is located at 2312 W. Nob Hill Boulevard in Yakima, WA. New Tiger's property was previously owned by Tiger Oil Company. In 1982, when the property was still owned by Tiger Oil Company, there was a release of approximately 20,000 gallons of fuel from piping and lines connected to underground fuel storage tanks. Initial recovery and remediation began at the Site between 1982 and 1985. New Tiger purchased the Site around October 1987. Between October of 1987 and 2001, the Site was an Exxon Service Station and convenience store known as "Tiger Mart." New Tiger ceased commercial operations at the Site in 2001.

In 1989, free petroleum product was discovered in monitoring wells MW-9, MW-11, MW-13, and MW15. In November of 1990, New Tiger began recovery of free product through bailing. In September of 1994, Ecology issued an enforcement order to New Tiger, Tiger Oil Company, Federated Insurance Company, and M&E Company (potentially liable persons [PLPs]), requiring installation of a free product recovery system designed to prevent contaminant migration into the drainage and irrigation district (DID) line offsite, and collect free product, contaminated groundwater, and contaminated soil vapors.

An interim remedial system consisting of a soil vapor extraction (SVE) and groundwater extraction (GWE) system commenced operation in August of 1995. The system consisted of two trenches fitted with vacuum equipment designed to extract groundwater and soil vapors from the subsurface and transport them to an onsite treatment facility. The treated water was discharged into the municipal sanitary sewer system, and the soil vapors were vented to the atmosphere. Although the interim remediation system appeared to be effective, it was limited in its scope. While the system appeared to be adequate for remediating the subsurface of portions of the adjacent Safeway parking lot, it did not target the areas where free product was present on the Tiger Oil Property. Since the interim remedial system did not adequately remove free product from the Tiger Oil Property, it was not approved as a final cleanup action. Groundwater sampling was conducted at the Property from July 1992 through January 2010, with most of this sampling work occurring on a quarterly basis. During this time, sampling was limited to the the conditional point of compliance (CPOC) wells; however, some other wells were gauged for LNAPL but were not sampled for groundwater analysis.

In September of 1998, Ecology issued another enforcement order to all PLPs requiring the planning and implementation of a final cleanup action for the Site. In 2004, New Tiger and Ecology entered into a Consent Decree to provide for remedial action at the Site.

In 2013, TerraGraphics and Hart Crowser were contracted by Ecology to collect groundwater samples from a select group of groundwater monitoring wells at the Site and evaluate the extent of petroleum impacted groundwater.

Section 2.0 Field Activities and Methodology

In general, sampling procedures followed the SAP/QAPP developed by Ecology (Ecology, 2013) except for the following changes:

- Proposed sample location S-1 was replaced by sample location MW-13. TerraGraphics and Ecology staff determined that the quality of the data collected from S-1 would be potentially influenced by surface drainage (no lid and no cap) and the presence of debris in the well.
- Proposed sample locations KMW-12 and S-10 could not be located and were therefore not sampled.
- Proposed sample location DID#15 is a manhole access point to the Yakima Irrigation District return line (formerly named drainage and irrigation district). Field observations showed a lack of heavy groundwater contamination and the absence of LNAPL in the vicinity of this line. Therefore, historical issues related to the line flow were not a concern for the purposes of this study.

Field activities were conducted on April 1, 2, and 3, 2013, and are described in the following sections.

2.1 Well Condition Survey

On April 1, 2013, TerraGraphics, Ecology, and Freestone Environmental Services (New Tiger's consultant) staff examined the condition of several groundwater monitoring wells at the Property. Well conditions were examined for integrity and evaluated based on the Minimum Standards for Construction and Maintenance of Wells (WAC 173-160). The following characteristics were recorded: functional monument, functional gasket, working lock, working compression plug, and functional bolts. The results are discussed in Section 3.1 and are summarized in Table 3.

2.2 Groundwater Elevations

Depth to water was measured at each groundwater monitoring well from the north side of the top of casing (TOC) using a Solinst interface probe on April 2, 2013. Depth to water was recorded on the groundwater sampling sheet (Appendix A). The TOC of each monitoring well was surveyed by a Washington State licensed surveyor on April 2, 2013. PLSA Engineering and Surveying surveyed the wells in NAVD88 datum in the State Plane South Projection (Appendix B). Groundwater elevations were calculated by subtracting the depth to water from the TOC elevation. Groundwater elevations are expressed in feet above mean sea level (famsl).

2.3 Groundwater Sampling

Groundwater samples were collected using low-flow methods (via peristaltic pump) until groundwater quality stabilized (pH, conductivity, temperature, dissolved oxygen, and oxidation/reduction potential) (Table 2 and Appendix A). These parameters provide information on the water chemistry and were used as stabilization criteria. The stabilization criteria were

used to indicate that the well had been sufficiently purged and that the extracted groundwater was representative of the groundwater from the aquifer. New peristaltic tubing was used to collect water from each groundwater monitoring well.

Seventeen groundwater samples (plus two duplicates), were collected on April 2, and 3, 2013. Samples were labeled and placed in a cooler on ice for transportation to Test America, along with the chain-of-custody documentation. Samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by U.S. Environmental Protection Agency (USEPA) Method 8021 (USEPA, 1996); and for GRO, by NWTPH-Gx using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology, 1997). Complete laboratory data sheets and chain-of-custody documentation are included as Appendix D.

Data from MW-13 and MW-9 are qualified as estimates due to low recharge during pre-sampling purge.

Section 3.0 Results

The data quality objectives as set forth in the SAP/QAPP (Ecology, 2013) have been achieved. As a result, no data were rejected and the final completeness of the study was assessed at 100%. The following sections summarize the soil and groundwater analytical results.

3.1 Well Condition Survey

Of the 24 wells that were examined for integrity and functionality, only one met the minimum standards (Table 3). Most of the well monument lids were ineffective at preventing surface runoff from entering the well-head space (lack of a lid, no gasket, rests below grade). In addition, many of the wells were lacking an effective compression plug and/or lock. Although well monuments should be constructed to keep all liquids and solids from entering the well-head space, in the absence of an effective gasket, lid, and compression plug, drainage from the well-head space.

3.2 Groundwater Elevations and Contaminant Distribution

Groundwater elevations ranged from 1,069.20 famsl at KMW-14 to 1,079.09 famsl at KMW-8 (Table 2). In general, groundwater flow at the Property is toward the southeast at calculated gradient of 0.0229 ft/ft (Figure 2). However, the gradient is much shallower at locations near the Former Tiger Oil building. The calculated gradient between wells KMW-8 and the contour near S-2, KMW-10, and MW-13 is 0.0085 ft/ft. The distribution and lateral extent of petroleum impacted groundwater is consistent with the calculated groundwater flow direction in that upgradient wells are un-impacted, wells immediately downgradient of the LNAPL plume are greatly impacted, and further downgradient wells are less impacted.

LNAPL was measured at four groundwater monitoring wells (MW-11, MW-15, MW-7, and MW-8). LNAPL thickness varied from 0.01 ft MW-15 and MW-8 to 2.34 ft at MW-7. LNAPL was also encountered at KMW-20 after the well was purged in preparation for sampling. As a result, the LNAPL thickness was not measured and a groundwater sample was not collected. The approximate extent of the LNAPL plume is displayed in Figure 3. In addition, the approximate extent of the dissolved phase plume is displayed in Figure 3. The extent of

petroleum impacted groundwater was not defined further downgradient beyond the extent of monitoring well KMW-16.

3.3 Quality Assurance/Quality Control

Laboratory data validation and verification was reconciled with the measurement quality objectives identified in the SAP/QAPP (Ecology, 2013). A summary of the data quality assurance/quality control (QA/QC) review for the groundwater samples submitted for laboratory analysis analyzed by TestAmerica is provided in the QA/QC Memorandum in Appendix C.

The samples were analyzed for one or more of the following: gasoline by Ecology method NWTPH-Gx; BTEX by USEPA Method 8021B; and following analysis, the laboratory reanalyzed two samples for confirmation of benzene by USEPA Method 8260B. Data from MW-13 and MW-9 are qualified as estimates due to low recharge during pre-sampling purge. No results were rejected during the internal data validation and verification; therefore, none are categorized as unusable.

3.4 Groundwater Sample Analysis

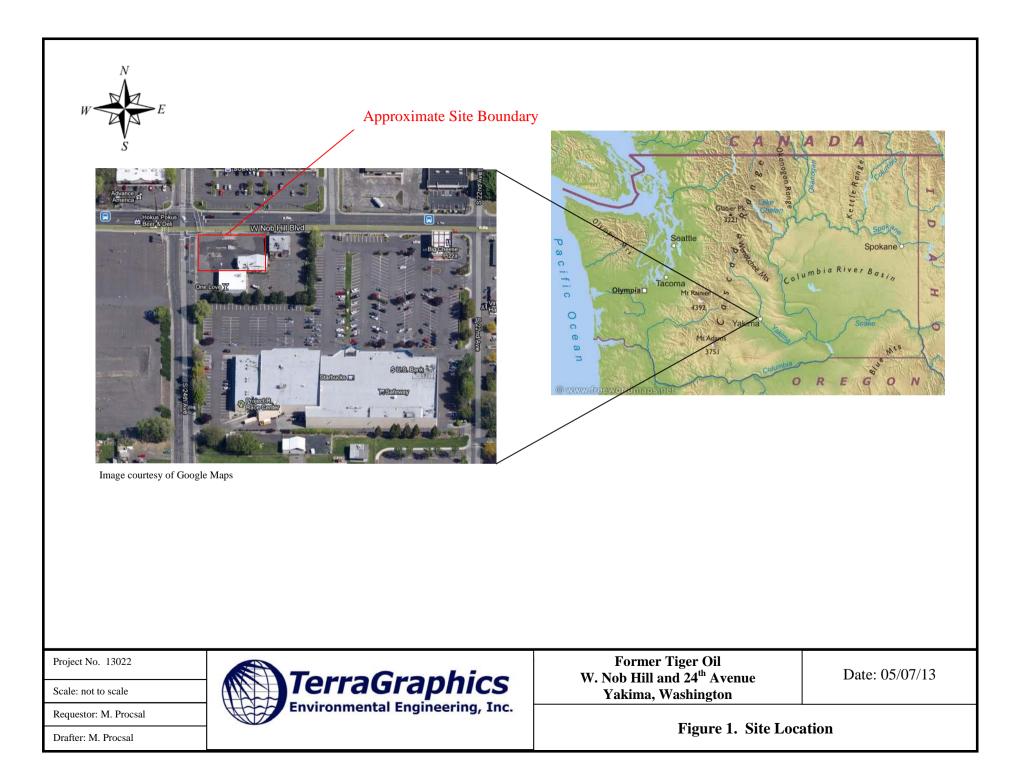
At least one of the analytes in 7 of the 17 samples was at or above the respective MTCA Method A Cleanup Levels. Table 1 summarizes those samples above the reporting limit (expressed in $\mu g/L$). Samples above the MTCA Method A Cleanup Levels included:

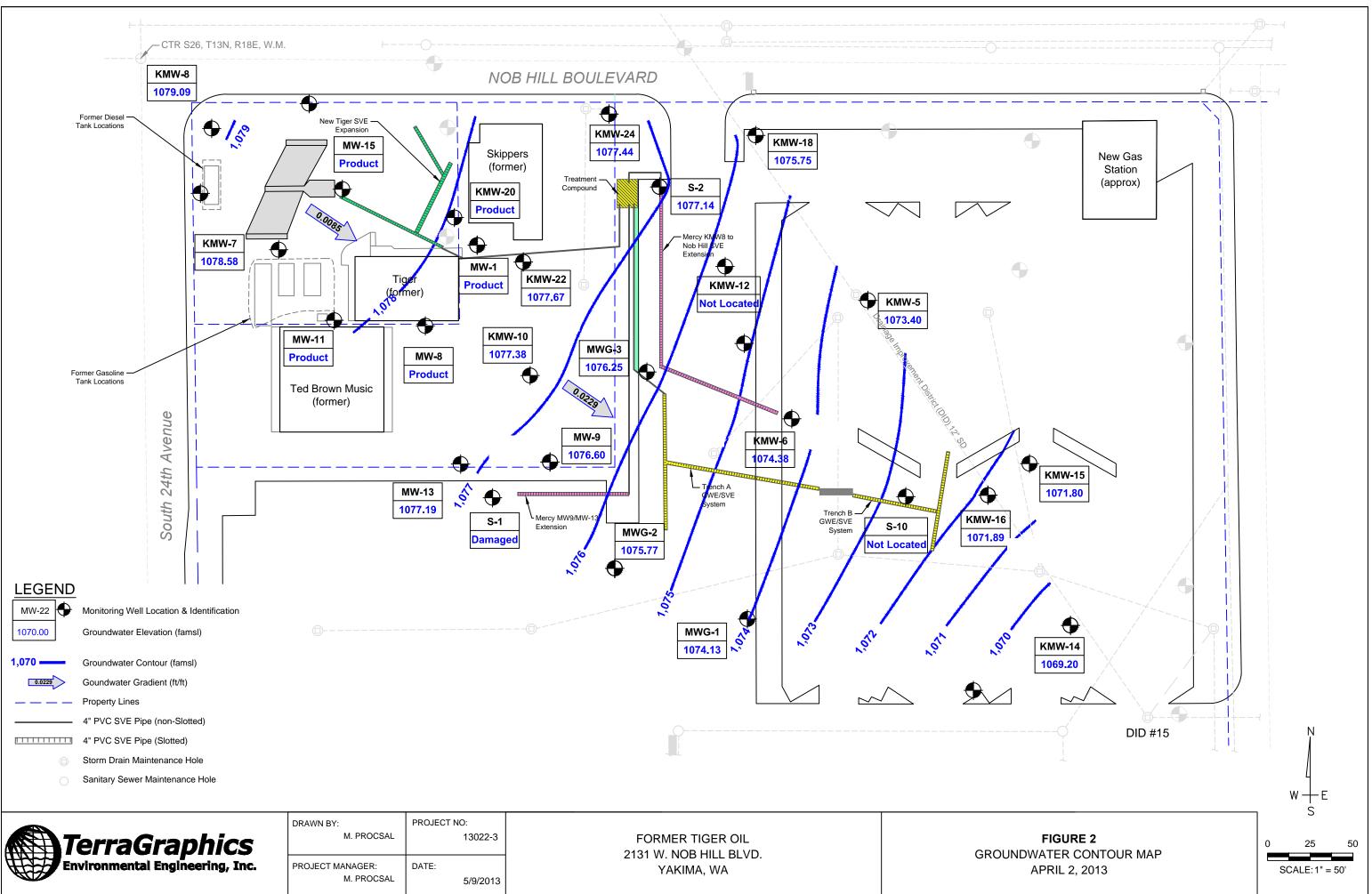
- KMW-16 • benzene = 5.5 μ g/L, Cleanup Level = 5 μ g/L.
- MWG-3 • benzene = $600 \mu g/L$, Cleanup Level = $5 \mu g/L$.
- S-2
 - benzene = 3,100 μ g/L, Cleanup Level = 5 μ g/L.
 - GRO = $3,900 \mu g/L$, Cleanup Level = $800 \mu g/L$.
- MW-13
 - \circ GRO = 1,800 µg/L, Cleanup Level = 800 µg/L.
- KMW-7
 - o benzene = $6.0 \mu g/L$, Cleanup Level = $5 \mu g/L$.
- MW-9
 - o benzene = $25 \mu g/L$, Cleanup Level = $5 \mu g/L$.
 - \circ GRO = 6,000 µg/L, Cleanup Level = 800 µg/L.
- KWM-22
 - o benzene = 4,900 μ g/L, Cleanup Level = 5 μ g/L.
 - o ethylbenzene = 2,500 μ g/L, Cleanup Level = 700 μ g/L.
 - \circ total xylenes = 5,400 µg/L, Cleanup Level = 1,000 µg/L.
 - $\circ \quad GRO = 34,000 \ \mu g/L, \ Cleanup \ Level = 800 \ \mu g/L.$
- KMW-6
 - o benzene = 5.8 μ g/L, Cleanup Level = 5 μ g/L.

Section 4.0 Summary and Conclusions

This groundwater sampling event determined that petroleum contamination including LNAPL is present at the Tiger Oil Property and downgradient locations (or portions of the Site on other properties). Some concentrations above the MTCA Method A Cleanup levels are present at the Site. In addition the LNAPL plume as thick as 2.34 ft is present at the Tiger Site in spite of historical remediation efforts— an SVE and GWE systems was installed in 1995 and analysis from this system ceased in January 2010. Groundwater flows toward the southeast at a calculated gradient of 0.0229 ft/ft.

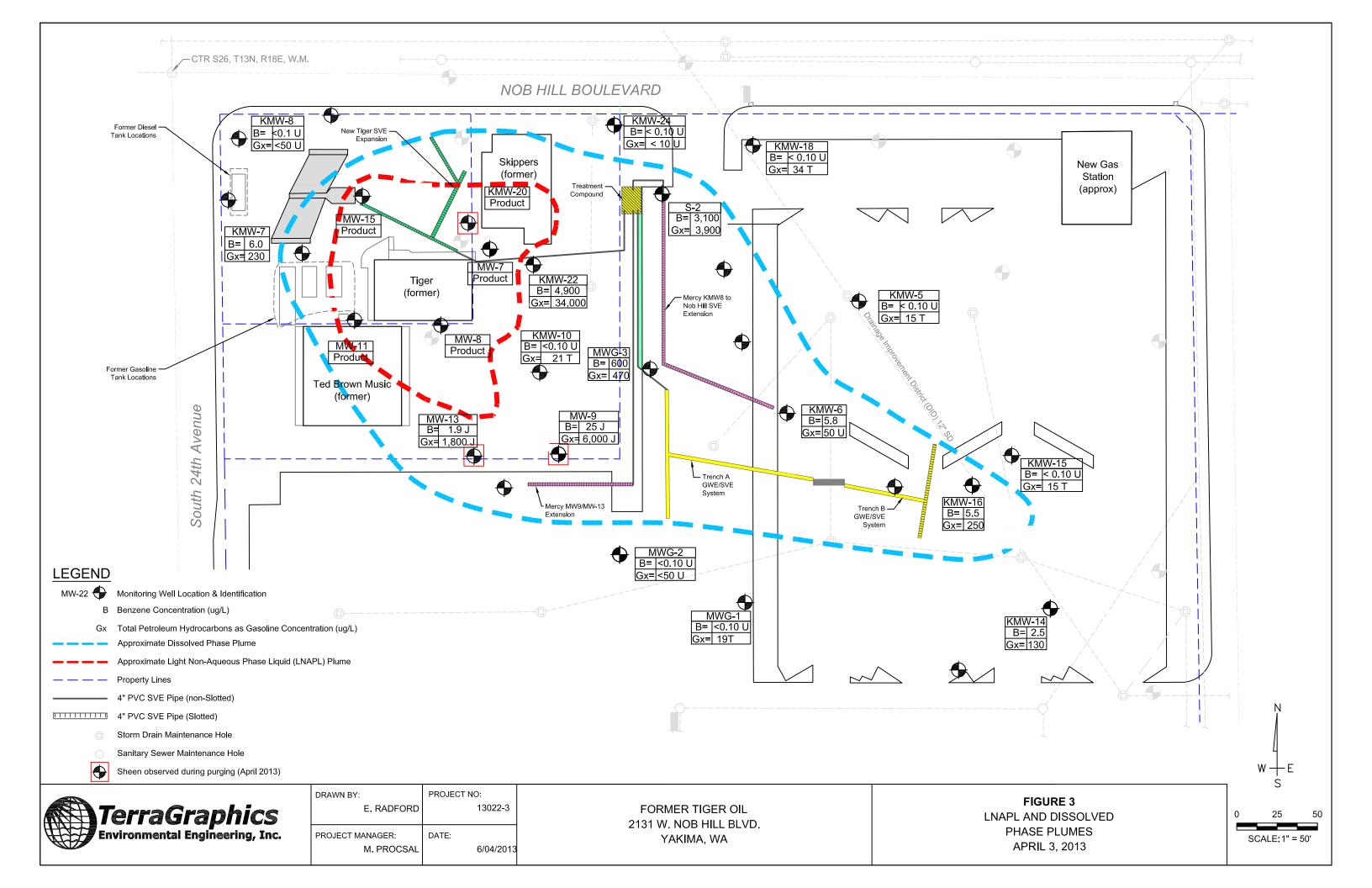
Based on the available information and Property-specific data collected, TerraGraphics concludes the following:


- Groundwater does not appear to be impacted upgradient of KMW-8.
- Petroleum-impacted groundwater above the MTCA A Cleanup Levels is present at the Tiger Oil Property and downgradient to at least KMW-16.
- All monitoring wells, with the exception of KMW-24, do not meet well construction standards.



Section 5.0 References and Resources Used

- Washington State Department of Ecology (Ecology), 1997. Analytical Methods for Petroleum Hydrocarbons. ECY 97-602, June 1997.
- Ecology, 2013. SAP/QAPP for Tiger Oil Site Sampling March 2013.
- U.S. Environmental Protection Agency, 1996. Method 8021B: Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors; Revision 2, December.
- Washington Administrative Code 173-340. Title 173, Chapter 173-340: Model Toxics Control Act – cleanup. Last update: 10/12/07, accessed October 18, 2011, <u>http://apps.leg.wa.gov/wac/default.aspx?cite=173-340</u>.



DRAWN BY:	PROJECT NO:		
M. PROCSAL	13022-3	FORMER TIGER OIL	
		2131 W. NOB HILL BLVD.	GROUNDW
PROJECT MANAGER: M. PROCSAL	DATE: 5/9/2013	YAKIMA, WA	ļ A

Table 1 Groundwater Analytical Results (µg/L) Tiger Oil Yakimam, Washington

Sample ID/San	nple Date	Depth to Water (ft. bgs)	Top of Casing Elevation (ft.)	Groundwater Elevation (famsl)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	m-Xylene & p- Xylene (µg/L)	o-Xylene (µg/L)	Total Xylenes (µg/L)	GRO (µg/L)
KMW-15	4/2/2013	11.74	1,083.54	1,071.80	< 0.10 U	< 0.5 U	< 0.10 U	< 1.0 U	< 0.20	< 1.0 U	15 T
KMW-16	4/2/2013	11.38	1,083.27	1,071.89	5.5	< 0.10 U	5.4	4.7	0.33 T	5.0	250
KMW-14	4/2/2013	13.20	1,082.40	1,069.20	2.5	< 0.10 U	< 0.10 U	< 1.0 U	< 0.20	< 1.0 U	130
MWG-1	4/2/2013	9.85	1,083.98	1,074.13	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	19 T
KMW-5	4/2/2013	9.45	1,082.85	1,073.40	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	15 T
MWF-3 (MWG-3)	4/2/2013	7.90	1,084.15	1,076.25	600	7.7	53	23	7.2	30	470
KMW-18	4/3/2013	9.59	1,085.34	1,075.75	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	34 T
KMW-24	4/3/2013	10.03	1,087.47	1,077.44	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	< 10 U
S-2	4/3/2013	8.60	1,085.74	1,077.14	3,100	18	660	230	4.5	240	3,900
KMW-8	4/3/2013	13.29	1,092.38	1,079.09	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	< 50 U
KMW-10	4/3/2013	13.25	1,090.63	1,077.38	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	21 T
MW-13†	4/3/2013	14.69	1,091.88	1,077.19	1.9 J	1.8 J	5.1 J	11.00	4.7	16 J	1,800 J
MWG-2	4/3/2013	9.70	1,085.47	1,075.77	< 0.10 U	< 0.10 U	< 0.10 U	< 0.20 U	< 0.20	< 0.20 U	< 50 U
KMW-7	4/3/2013	13.38	1,091.96	1,078.58	6.0	5.8	1.4 T	19	11	30	230
MW-9†	4/3/2013	14.88	1,091.48	1,076.60	25 J	13 J	46 J	66.0	36	100 J	6,000 J
KMW-22†	4/3/2013	11.95	1,089.62	1,077.67	4,900	450	2,500	5,000	430.0	5,400	34,000
KMW-6	4/3/2013	9.2	1,083.58	1,074.38	5.8	< 0.10 U	< 0.5 U	< 0.20 U	< 0.20	< 0.20 U	< 50 U
MW-11	-	15.8	1,092.67	1,074.38		NO SAMPLE	COLLECTED D	JE TO FREE PRO	DUCT, THICKN	ESS = 1.46 ft.	
MW-15	-	13.31	1,091.56	1,074.38		NO SAMPLE	COLLECTED D	JE TO FREE PRO	DUCT, THICKN	ESS = 0.01 ft.	
MW-7	-	14.3	1,090.30	1,074.38		NO SAMPLE	E COLLECTED D	JE TO FREE PRO	DUCT, THICKN	ESS = 2.34 ft.	
MW-8	-	16.7	NM	NM	NM NO SAMPLE COLLECTED DUE TO FREE PRODUCT, THICKNESS = 0.01 ft.						
KMW-20††	-	13.69	1,091.53	1,074.38	74.38 NO SAMPLE COLLECTED DUE TO FREE PRODUCT, THICKNESS = NOT MEASURED)
MTCA Method	A Groundwa	ter Cleanup Levels (j	ug/L)		5	1,000	700	1,000	1,000	1,000	800 or 1,000*

Notes:

famsl = feet above mean sea level

all concentrations reported in $\mu g/L$ = micrograms per Liter

BTEX analyzed by USEPA Method 8021B

GRO = Gasoline Range Organics analyzed by Method NWTPH-Gx

< = less than the method detection limit (MDL)

Concentrations in BOLD are above the Screening Levels as defined by Washington's Model Toxics Control Act (MTCA) (WAC 173-340)

Method A unrestricted cleanup levels (Table 720-1, WAC 173-340-900)

* = cleanup level when benzene is present is 800 $\mu g/L$, and 1,000 $\mu g/L$ when there is no detectable benzene present.

+ = heavy sheen present on purge water but was not detected during gauging.

t+ = heavy sheen present on purge what but not not detected during jung-t+ = heavy sheen present on purge what but was not detected during initial gauging. Once purging began, free product was detected with an interface probe (Solinst 12.2) and was therefore not sampled.

The highest concentration is reported from duplicate samples.

U = The sample concentration is less then the MDL but found in the trip blank and method blank.

T = The sample concentration falls between the MDL and the RL.

J = The sample is qualified as an estimate due to low recharge during the presampling purge.

NM = not measured

Depth to groundwater measurements in wells containing free product or Light Non-Aqueous Phase Liquid (LNAPL) were not corrected. Since the mass of the LNAPL was not accounted for, these elevations were not used to calculate groundwater gradients.

Table 2 Water Quality Parameters Tiger Oil Yakima, Washington

Well ID	Time	рН	Electrical Conductivity (mS)	Temperature (degrees C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	ORP (mV)
KMW-6	00:00	6.15	0.770	13.46	4.54	43.7	-74.1
	05:00	6.86	0.772	13.57	4.18	40.5	-86.1
	10:00	6.49	0.772	13.62	4.06	39.0	-70.2
	15:00	6.45	0.778	13.78	3.99	38.5	-66.2
KMW-22	00:00	6.46	1.487	14.45	5.56	53.5	-168.7
	05:00	6.38	1.492	14.01	3.01	29.1	-215.7
	10:00	6.52	1.506	14.02	1.68	16.3	-236.0
	15:00	6.33	1.514	14.10	0.78	7.6	-233.0
	20:00	6.33	1.549	14.15	0.48	4.0	-235.0
MW-9	00:00	6.34	1.052	14.79	3.36	33.1	-215
	05:00	5.95	1.051	14.68	2.26	22.3	-236
KMW-7	00:00	5.96	0.781	15.02	5.33	53.8	-26.6
	05:00	6.44	0.780	14.72	4.85	47.9	-24.3
	10:00	6.76	0.781	14.76	4.63	46.0	-35.6
	15:00	6.74	0.783	14.78	4.60	45.5	-40.4
MWG-2	00:00	6.09	0.777	13.84	6.37	61.7	-32
	05:00	6.37	0.776	13.82	6.11	59.3	-31
	10:00	6.42	0.775	13.91	5.97	58.0	-22
MW-13	00:00	6.38	0.869	14.31	5.41	53.0	-251.0
KMW-10	00:00	7.11	0.771	15.20	5.96	59.4	16.6
	05:00	7.04	0.772	13.20	6.04	60.1	16.0
	10:00	7.04	0.771	15.22	6.11	60.7	17.4

Table 2 Water Quality Parameters Tiger Oil Yakima, Washington

Well ID	Time	рН	Electrical Conductivity	Temperature	Dissolved Oxygen	Dissolved Oxygen	ORP
			(mS)	(degrees C)	(mg/L)	(%)	(mV)
KMW-8	00:00	6.96	0.915	13.87	6.38	61.7	-25.0
	05:00	6.78	0.905	13.89	6.31	61.2	-7.5
	10:00	6.87	0.901	13.89	6.28	60.8	-1.4
S-2	00:00	7.44	1.115	20.01	4.79	44.2	-117
	05:00	6.43	1.135	12.33	2.65	25.0	-227
	10:00	7.11	1.703	12.89	1.53	14.6	-258
	15:00	6.95	1.223	12.97	1.40	13.3	-250
	20:00	6.87	1.247	13.05	1.43	13.5	-225
KMW-24	00:00	6.69	0.781	13.69	7.35	73.0	66.7
11111-24	07:00	6.72	0.781	13.76	7.42	71.9	72.5
	12:00	6.68	0.782	13.76	7.39	71.9	72.5
	12.00	0.00	0.762	15.00	1.37	/1.0	/3.1
KMW-18	00:00	9.81	0.767	13.34	7.39	89.9	41.9
	05:00	7.70	0.765	13.38	8.31	79.6	75.8
	10:00	7.49	0.766	13.43	8.51	81.8	79.1
	15:00	7.23	0.766	13.46	8.59	82.7	82.1
	20:00	6.97	0.766	13.52	8.57	82.7	82.1
	25:00	7.73	0.766	13.52	8.45	81.3	53.1
	30:00	6.80	0.766	13.51	8.20	79.2	79.6
	35:00	6.82	0.766	13.51	8.23	79.2	76.3
MWG-3	00:00	6.42	0.854	13.62	4.91	47.0	-42.3
	05:00	7.98	0.841	13.54	1.51	14.4	-213.6
	10:00	7.28	0.827	13.49	0.47	4.5	-202.2
	15:00	6.36	0.843	13.54	0.39	3.7	-168.2
	20:00	6.41	0.849	13.62	0.35	3.4	-171.0
KMW-5	00:00	6.40	1.040	13.66	4.74	45.5	15.6
	05:00	6.21	1.041	13.66	4.83	46.9	13.4
	10:00	6.12	1.035	13.80	4.33	41.3	12.4
	15:00	6.01	1.026	13.96	1.11	10.0	12.0
	20:00	7.38	1.015	14.23	0.74	7.4	46.6
	22:00	7.21	1.012	14.22	0.84	8.2	42.5
	25:00	7.39	1.004	14.28	1.59	15.9	49.7
	30:00	7.18	0.996	14.29	1.31	13.0	32.6
	32:00	7.02	0.987	14.28	1.43	14.0	25.5
	34:00	6.76	0.987	14.20	1.43	14.0	13.7
	39:00	6.60	0.972	14.29	1.85	18.2	9.0
	42:00	6.62	0.962	14.30	2.17	21.4	7.0
	47:00	6.55	0.957	14.28	2.39	23.5	2.6

Table 2 Water Quality Parameters Tiger Oil Yakima, Washington

Well ID	Time	рН	Electrical Conductivity (mS)	Temperature (degrees C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	ORP (mV)
MWG-1	00:00	6.41	0.884	6.39	8.17	78.0	14.7
	05:00	7.77	0.882	13.43	9.10	87.5	-46.5
	10:00	7.58	0.813	13.52	9.01	86.8	-38.9
	13:00	7.09	0.806	13.50	9.10	87.5	-17.4
	18:00	7.04	0.796	13.53	9.12	87.7	-13.7
KMW-14	00:00	6.63	0.975	14.82	5.60	53.6	-75.6
	05:00	7.07	0.974	14.76	4.37	43.3	-69.0
	10:00	6.66	0.680	14.75	3.03	28.7	-79.6
	15:00	6.44	0.962	14.74	2.21	8.0	-74.0
	20:00	6.45	0.959	14.71	0.85	8	-76.2
KMW-16	00:00	7.49	0.869	14.66	5.39	52.6	-63.7
	05:00	6.89	0.872	14.64	4.70	47.2	-30.9
	10:00	6.39	0.878	14.66	4.56	45.0	-10.5
	15:00	7.40	0.887	14.82	4.57	45.2	-65.7
	20:00	6.85	0.894	14.80	4.64	45.8	-46.9
	23:00	7.58	0.894	14.74	4.47	44.1	-81.7
	25:00	7.49	0.895	14.91	4.21	41.7	-82.0
	31:00	6.93	0.902	14.84	3.85	38.1	-58.7
	35:00	6.70	0.905	14.94	3.69	36.6	-50.0
	40:00	6.70	0.907	14.90	3.59	35.6	-50.9
KMW-15	00:00	8.89	0.774	15.56	9.95	100.1	-80.8
	05:00	8.57	0.775	15.44	9.95	99.7	-74.3
	10:00	8.20	0.773	15.46	9.78	98.0	-61.0
	15:00	7.74	0.773	15.51	9.52	95.7	-40.6
	20:00	7.06	0.773	15.42	9.33	93.6	-14.0
	25:00	6.88	0.774	15.40	9.15	91.7	-24.4
	26:00	7.07	0.773	15.39	9.14	91.6	-15.9
	31:00	7.13	0.773	15.35	9.02	90.3	-12.1

Notes: mS = milli Siemens C = celcius mg/L = milligrams per Liter ORP = oxidation reduction potential mV = millivolts

Table 3 Well Conditions Summary Tiger Oil Yakima, Washington

	Well				Functional		
	Diameter	Monument	Gasket	Lock	Compression	Bolts	Notes
Well ID	(inches)				Plug		
KMW-15	4	below grade	No	No	loose	No	drains
KMW-16	4	below grade	No	Yes	No	No	poor drainage
KMW-14	4	below grade	No	No	Yes	No	concrete near TOC/poor drainage
MWG-1	2	below grade	No	No	No	No	leaking
KMW-5	4	below grade	No	No	No	No	TOC above monument lid
*MWG-3	2	below grade	No	No	No	No	
KMW-18	4	below grade	No	No	No	Yes	drainage ok
S-1	2	below grade	No	No	No	No	leaking
S-2	2	no lid	No	No	No	No	damaged monument skirt
KMW-8	4	good	No	No	No	No	drainage ok
KMW-10	4	good	No	No	No	No	poor drainage
*MW-13	2	below grade	No	No	No	No	poor drainage
MWG-2	2	below grade	No	No	No	No	leaking
KMW-7	4	good	No	No	No	No	poor drainage
*MW-9	2	below grade	No	No	No	No	leaking
KMW-22	4	good	No	No	loose	Yes	
KMW-6	4	below grade	No	No	loose	No	
MW-15	4	good	No	No	Yes	No	
*MW-11	2	below grade	No	No	No	No	
KMW-20	1.5	good	No	No	No	No	leaking
MW-7	2	good	No	No	No	No	leaking
KMW-24	4	good	Yes	Yes	Yes	Yes	well meets minimum requirements
MW-8	2	good, above ground	NA	No	No	NA	-
KMW-12		-					not located
S-10							not located

Notes:

NA = Not Applicable

* = Utility monument constructed, unsuitable for use as monitoring/resource protection well.

Appendix A

Groundwater Sampling Forms

		hics						Moscow Kellogg Boise
								Spokane
		GROUN	NDWATER SA	MPLING RE	COI	RD		
Project:	TIGER			Well Numbe			mw-B	
Project Number:				Sample Nun	nber:			
Location:	IAKIMA 13	, MA		Weather:	CLO	1004	Lose MIL	0
Date: $4/2$	13			Sampler(s):	Pk	locsA	L; RICHTES	1
Depth to Bottom Depth to Water (n (ft): /9	.25	· · · · · · · · · · · · · · · · · · ·	Purge Time		183	35	
Depth to Water ((ft): 9 .	20		Purge Methe				
DTB-DTW (ft):				Volume Me				BUCKET
Volume (gal):	· · · · · · · · · · · · · · · · · · ·	r		Purge Volu	<u> </u>	/olum		
Conversion Factors (height x factor=vol)	¾" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163		4" diameter 0.652	8" diameter 2.611
GROUNDWAT	TER DATA							
Purged Volume (gal)	Time	pН	Cond (سم / cm)	Temp (°C)		ssolve g/L	d Oxygen %	ORP (mV)
	1840	6.15	0,770	13.46	4.54		43.7	-74./
	1845	6.86	0.772	13.57	4.1		40.5	-86.1
	1850	6.49	0.777	13.67	4.06		39.0	- 70. 2
	1855	6.45	0.775	13.78	1	29	38.5	-66.2
4 gallons					•	,		
					<u> </u>			
Sampling Date:	4/3/13		ing Method: PER				Sampled:	19.00
Container	Volume		vative	Cooled			ed Other	011
VOAS	38401	· · · · · · · · · · · · · · · · · · ·	Ha					M-gx
VOAS	38400	2/	Ис .	Y		~		SK
		·····						
Chain of Custoo	iv Yes/No			Duplicate S	ampl	e Nun	nber:	
Chain of Custor				Replicate S				
Laboratory:	· - · · · · · · · · · · · · · · · · · ·			1 				
Method of Ship	ment:							
Split With:								
Notes:								

and the second

Ĺ

	'aGra ß Mental Ingini	Dhics			<u> </u>	Ĺ	3)	Moscow Kellogg Boise Spokane
		GROU	NDWATER SA	MPLING RE	ECOR	D		Bpokulie
Project:	176ER 0	»/L		Well Numbe			w-	22
Project Number:				Sample Nur	nber:			
Location:				Weather:	CLO	VOV,		
Date: 4/2/1	5 -CAUG	ED		Sampler(s):	PRE	<u>xsAL</u>	RICH	TEAL
				T				
Depth to Bottom	n (ft): /	4.14		Purge Time		1785		
Depth to Water	(ft): //	.95		Purge Meth				6 • •
DTB-DTW (ft):				Volume Me				BUCKET
Volume (gal):			I	Purge Volu	<u>`</u>	/		
Conversion Factors (height x factor=vol)	³ 4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163	4	" diameter 0.652	8" diameter 2,611
GROUNDWAT	FER DATA	<u> </u>	F	T		1 10		r · · · · · · · · · · · · · · · · · · ·
Purged Volume (gal)	Time	pH	Cond (/cm)	Temp (°C)	Diss mg	solved O	xygen %	ORP (mV)
	1745	6.46	1.487	14.45	5.8	6 5	53.5	-168-7
	1750	6.50.15	1-492	14.01	3.0		21	-215.7
	(755	6.52	1-506	14.02	1.6	8 1	6.3	-236.0
	1800	6.33	1.514	14.10	0.7	8 -	7.6	-235.0
	1805	6.33	1.519	14.15	6. c	18 4	(c.O	-255.0
						Time Car		1010
Sampling Date:			ling Method: <u>PE</u> vative	Cooled		Time Sar Filtered	Other	1810
Container	Volume	Preser	valive	Coolea		mercu		
Chain of Custod	ly: Yes/No	I		Duplicate S	ample	Number	:	
Chain of Custoc				Replicate S				
Laboratory:								
Method of Ship	ment:		······					
Split With:								
Notes:	SHEEr	v onl	Pubbe w	Arel				
{								

		hics					Θ	Moscow Kellogg Boise Spokane
		GROU	NDWATER SA	MPLING RI	ECO	RD		·····
Project: 71	GER C	312		Well Numb	er:	1	nw-9	
Project Number:				Sample Nur	nber:	•		
	AKIMA, U	A		Weather:			udem	
Date: 4/2/13	GAUGE	0		Sampler(s):	PI	ReCSA 4	RICHTE	A
Depth to Bottom	(ft): / 8	.65		Purge Time	:	16	19	
Depth to Water (ft): 14.	88		Purge Meth			RosTALTU	
DTB-DTW (ft):	•			Volume Me				BUCKET
Volume (gal):				Purge Volu	me (V	Volume	x 3) (gal):	-
Conversion Factors (height x factor=vol)	¾" diameter 0.023	1" diameter 0.041	1 1/2" diameter 0.092		uneter 0.163		4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA		• • • • • • • • • • • • • • • • • • • •					
Purged Volume (gal)	Time	pН	Cond (مرکز /cm)	Temp (°C)		ssolved g/L	Oxygen %	ORP (mV)
	1654	6.34	1.252	14.79	3.3		33./	-215.0
	1659	5.95	1.051	14.68	2.2		22.3	-235.6
1.5 gallons							•	
							:	
Sampling Date:	4/3/13	Sampl	ling Method:			Time S	Sampled:	1730
Container	Volume	Preser	vative	Cooled		Filtere		-
Vols	3 P 4UM	11 M	lc1	У		int	TPI	U-9x
VOAS	3.040m		[c]	Y		\sim	BI	TEX .
Chain of Custod	v: Vec/No			Duplicate S	amn	e Numł)er''	
Chain of Custod	5			Replicate S	<u> </u>			
Laboratory:	y INUIIDEL.			1 Acplicate B	ampi			
Method of Shipr	nonti							
Split With:								
						`		
Notes:	UFIL	NOT	RECHARGING	with !!	7	15 m	IN - Th	UEN
	CALEEK	RECHAR	RECHARGING GE = 17,12' (0 1518				
	WAIT 10	MINUTE	S THEN SI	AMPIE -1	DAT	An	IL BE	QUALIFIED
	A							
			0					
,	SURAN	1 ON	PUTUE (ATEl(
.			······································	2				

		1						
Tor	r a Grap	hine						Moscow
1927 I 211	aurap							Kellogg Boise
THE INVISOR	MENTAL INGÌÑI	ERING, INC.						
		CDOIR		MELING DE		<u></u>		Spokane
Duciaate	FILCO		NDWATER SA	Well Number			mw-c	<u>، ح</u>
	FIGER ()//		Sample Nun			/////~	//
Project Number:		<u> </u>		Weather:			-++	Arm
Location:	IAKIMA, 13 -GAN	(-A)		Sampler(s):	504	20200	HOT W AL, RICH	
Date: $\frac{y/z}{l}$	5 -GAV	EI)		sampler(s):		nors	TL KILA	14(
Depth to Botton	<u>(ff)</u> (f	2 95		Purge Time:	•	160		
Depth to Water		35 1	2 3 &	Purge Metho				م
DTB-DTW (ft):	(II). [<i>J</i> ==			Volume Me				BUCKA
Volume (gal):				Purge Volur				
Conversion Factors (height x factor=vol)	³ ⁄ ₄ " diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia			4" diameter 0.652	8" diameter 2.611
GROUNDWAT	FER DATA			I				I
Purged		* 7	Cond	T	Dis	solved	l Oxygen	ODD (17)
Volume (gal)	Time	pН	(<i>m S</i> /cm)	Temp (°C)		g/L	%	ORP (mV)
	1610	5.96	0.781	15.02		sz	530	-26-6
	1615	6.44	0.780	14.72	4.0	5	47.9	-24.3
	1620	6.76	0.781	14.76	4.	5 63	46.0	-24.3 -35.6
· · · · · · · · · · · · · · · · ·	1625	6-74	6-785	14.78	4.0		85.5	-40.4
4 gallons	100-	Q <i>~</i>						* *
(-)4(0)()								
								· · · · ·
Sampling Date:	4/2/12	Sampl	ing Method:	• • • • • • •	·	Time	Sampled:	1626
Container	Volume	Preser		Cooled		Filter	ed Other	
VOAS	3040		101	.M		N	۲7	211-98
VOAS	3840,	n I	101	7		\sim		TEX
<u>x - 1,7,9</u>			······					
Chain of Custor	ly: Yes/No			Duplicate S	ampl	e Num	ber: Km	w-70 C 16
Chain of Custor	ly Number:			Replicate Sa	ample	e Num		
Laboratory:								
Method of Ship	ment:		······································					
Split With:								
Notes:								

(4)

								$\widehat{(1)}$
	AGrap	Dhics &						Moscow Kellogg Boise Spokane
		CPOUR	NDWATER SA	MPLING RI	CO15	RD		
Duciaati #	1.00	GROUI	DHAILKOA	Well Numb			10.7	
Project: 7	<u>IBER</u>			Sample Nur		11	NG-2	
Project Number: Location:		1 Atlen M		Weather:	11001. Ru	TALY	uppen	7
····· /-	FUER	YAKIMA		Sampler(s):			RICHTER	
Date: 9/2	2/13			bampier(s).	1	ROCSAN	7 N/COM	
Depth to Botton		3.96		Purge Time			132	· · · · · · · · · · · · · · · · · · ·
Depth to Water		.70		Purge Meth			ERISMIN	le la
DTB-DTW (ft):		•		Volume Me			10000	Bucher
Volume (gal):				Purge Volu	me (V	Volume	e x 3) (gal):	
Conversion Factors (height x factor=vol)	34" diameter 0.023	1" diameter 0.041	1 1/2" diameter 0.092	2" dia	meter 0.163		4" diameter 0.652	8" diamete 2.61
GROUNDWAT	TER DATA	I				L		
Purged	1		Cond		Di	ssolved	l Oxygen	
Volume (gal)	Time	pН	(<i>m§</i> /cm)	Temp (°C)		g/L	%	ORP (mV)
	1440	6.09	6.277	13.84	6	37	61.7	-32.2
	1445	6.37	6-776	13.82	1 -	11	523	-30.7
	1450	6.:42	0.725	13.91	5.		58.0	-22.3
2.5 Cottons		6.4 (2	0.70		<u>`</u> ر			
		· ···						
Sampling Date:	4/3/13	Sampl	ing Method:			Time	Sampled:	1452
Container	Volume	Preser	vative	Cooled		Filter	ed Other	
VOAS	3@ 40,	m M	c/	Y		\sim	TP	Mgx
VOAS	3840,		ol	<u> </u>		N	B,	rex
Chain of Custor				Duplicate S				
Chain of Custoo	ly Number:			Replicate S	ampl	e Num	ber:	
Laboratory:								
Method of Ship	ment:							
Split With:								
Notes:								

							(G)
Terr	aGrap	hics					Moscow Kellogg Boise Spokane
		GROUN	NDWATER SA	MPLING RE	CORD		······································
Project: The	CP.	01001		Well Numbe		7100-13	
Project Number:				Sample Nun			
Location:				Weather:		FUARM	
Date: 9/2/13	' CAVBE	0		Sampler(s):		95 RICIN	
Depth to Bottom	(ft): /7.	98		Purge Time:	: 130	8	
Depth to Water ((ft): /4,	69		Purge Metho		RISTANTIC	
DTB-DTW (ft):		•		Volume Me	asurement	Method:	BUCKET
Volume (gal):				Purge Volur	ne (Volum	e x 3) (gal)	
Conversion Factors (height x factor=vol)	³ / ₄ " diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2 ¹⁰ dia	meter 0.163	4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA						· · · · · · · · · · · · · · · · · · ·
Purged Volume (gal)	Time	pН	Cond (/cm)	Temp (°C)	Dissolve mg/L	d Oxygen %	ORP (mV)
		6.38	0 \$869	14.31	5.41	520	0.125-
1 GALCON							
Sampling Date:	112/17	Sampl	ing Method: PE	Rise Ar +16	Time	Sampled:	1910
Container	Volume	Preser		Cooled	Filter		1100
							· · · · · · · · · · · · · · · · · · ·
Chain of Custod	y: Yes/No			Duplicate S	ample Nun	ıber:	
Chain of Custod	y Number:			Replicate Sa	ample Num	ber:	
Laboratory:	1.						
Method of Ship Split With:	ment:						
Notes: 4	TELL N	OT RE	CHAR 61N6	DURING	PURCIM	16	
							-TO ZO A 1-1
			REMAINING L		r GRAD OR	Υ, ~∨ I∰I	ED ZO MIN
	-DA-1713	WHII	SE QVALI	=160			
				·			

1

The second second		hin						Moscow
##注目 IGU	a Grap	nnus						Kellog
THE INVISION	MENTAL INGÍN	ERING, INC.						Boise
		CDOID	NDWATER SA	MDINCDI	CO	חח		Spokane
Project: 77	1 bER	GROUI	WAIEK SA	Well Numb			1W-10	
Project Number:	Ven			Sample Nur		-	100 10	
		- MA		Weather:	SUN		-	
Date: $\frac{\gamma}{z}/$	IIG. YAL	171505 UTE		Sampler(s):				
	<u> </u>	- <u>(</u> , , , , , , , , , , , , , , , , , , ,						
Depth to Bottom	ı (ft): 2 2	2.71		Purge Time		122		
Depth to Water (.25	····	Purge Meth				
DTB-DTW (ft):				Volume Me				BUCKET
Volume (gal):	1		× -	Purge Volu		/olume	and the second se	4
Conversion Factors (height x factor=vol)	3/4" diameter 0.023	1" díameter 0.041	1 ½" diameter 0.092	2" dia	meter 0,163		^{(4"} diameter 0.652	8" diamete 2.61
GROUNDWAT								ł
Purged	T		Cond		Di	ssolved	Oxygen	
Volume (gal)	Time	pН	(<u>m5</u> /cm)	Temp (°C)		g/L	%	ORP (mV)
	1230	7.01	0-11/	15.20		96	59.9	162.6
	1235	7.04	0-772	15.20		04	60.1	16.6
	1/240	7.04	0-771	15-72		11	60.7	17-9
46ALLONS							<u> </u>	
0 1' D (in a Mathedu a (<u> </u>	Time	Pompladi	17(19)
Sampling Date:	<u> </u>		ing Method: <i>pe</i> vative	Cooled			Sampled: d Other	1242
$\frac{\text{Container}}{\nu_{0A}}$	3 C 40.		Vallve Hel	Y		N		PH-gy
VOA	3 C 400		1c/	4		\sim		STEX
~ 0, //	10.70	····	<u> </u>					<u>, x</u>
				<u>-</u>				
Chain of Custod	<u> </u>			Duplicate S				
Chain of Custod	ly Number:			Replicate S	ampl	e Numl	ber:	
Laboratory:								
Method of Ship	ment:							
Split With:								
Notes:								
			· · · · · · · · · · · · · · · · · · ·				·····	
								* * * * *

2

	Terra Graphics
	INVIRONMENTAL INCINHRING, INC.

Moscow Kellogg Boise Spokane

		CDOU					Spokane			
De l'arte ser			NDWATER SA	Well Number		MW-08				
Project: 776	ER OIL			Sample Nun		10-08				
Project Number:				Weather: SURWY						
Location:				Sampler(s):			-0			
Date: $\frac{9}{2}$	5 -6766	-kp		Sampler(s).	FROCIA	L, LICHTE				
Depth to Bottom	(ft) 19	37		Purge Time:	- 1/	25				
Depth to Water	$(A) \cdot 12$	- <u>J/</u> 		Purge Meth	<u> </u>	2 FRICANTIC	s			
DTB-DTW (ft):	(11). /) .	21		Volume Me	asurement	Method: 1	BUCKET			
Volume (gal):				Purge Volu						
	3/" diameter	1" diameter	1 1/2" diameter	2" dia		A" diameter	8" diameter			
Conversion Factors (height x factor=vol)	3/4" diameter 0.023	0.041	0.092		0.163	0.652	2.611			
GROUNDWAT	FER DATA	·	T	1	D! 1	10	1			
Purged	Time	pН	Cond	Temp (°C)		ed Oxygen	ORP (mV)			
Volume (gal)		-	(<u>mS</u> /cm)		mg/L	%				
	1140	6,96	0.915	13.87	6.38		-25.0			
-	1145	6.78	0.905	13.89	6-31	61.2	-7.5			
	1150	6.87	0.201	13.89	6-28	60.8	-1,4			
4 gallong										
· · · · · · · · · · · · · · · · · · ·										
	1/12		l'un Mathady Og	2	Tim	e Sampled:	1151			
Sampling Date:			ling Method: PG	Cooled	Filte					
Container	Volume		rvative	Cooled						
VOAT VOAr	3840m		101				PH-gR RTEX			
VOAr	30.40,	nc 1	40/	ļ 7			Tex			
Chain of Custoo	lv: Yes/No			Duplicate S	ample Nu	mber:				
Chain of Custo				Replicate S						
Laboratory:	. <u>j 1(amotr</u>			<u>I</u> I	A		······································			
Method of Ship	ment:									
Split With:										
	· · · · · · · · · · · · · · · · · · ·									
Notes:										
							·····			

	'aGrap	hics						Moscow Kellogg Boise Spokane
		GROUN	NDWATER SA	MPLING RI	ECOR	RD		opoxane
Project: 77	1 GER	GROUI		Well Numb		<u> </u>	- 7	
Project Number:				Sample Nur			L	
	TIGER (311		Weather:	SUNI	NY		
Date: 4//2/	1,2	-/ _		Sampler(s):			RICHTE	R
<u>Duto:</u> <u>1727</u>				}		o sinc f	1	
Depth to Bottom	n (ft): 12. 8	7Ê		Purge Time	:	1022		
Depth to Water (Purge Meth		PERIS	TALTIC	
DTB-DTW (ft):				Volume Me				BUCKET
Volume (gal):				Purge Volu				
Conversion Factors (height x factor=vol)	3/4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	umeter 0.163)	4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA	I						
Purged Volume (gal)	Time	pH	Cond $(\rho_{1} \varsigma/cm)$	Temp (°C)	1	solved (g/L	Oxygen %	ORP (mV)
	1031	7.44	1.115:	12.01	4.7		44.Z	-117.0
	1036	10,43	1.135	12,33		15	350	-227.2
	1041	7.11	1.703	12.89	1.5	~	14.6	-258.7
	1046	6.95	1.223	12.97	1.4		13.3	-249.8
	1051	6.87	1.247	13.05	1.4	3	13.5	-244,8
5 gallons	1		· · · · · · · · · · · · · · · · · · ·					
	6				<u> </u>			
Sampling Date:	4/3/13	Sampl	ing Method: PER	STATIC			ampled:	1052
Container	Volume	Preser	vative	Cooled		Filtered	l Other	
VOJ	38 40m	1 M.	cl	<u> </u>		r'		1 5 1
VOR	30 400	14	-	Y		N	BT	Γ <u>γ</u>
				· · · · ·				
Chain of Custod				Duplicate S				
Chain of Custod	ly Number:			Replicate S	ample	Numb	er:	
Laboratory:								
Method of Ship	ment:							
Split With:								
Notes:								
								· · · · · · · · · · · · · · · · · · ·

Ì

Terr	raGrap	hics						Moscow Kellogg Boise
		СВОШ	NDWATER SA	MDI INC DI	FCO	סח		Spokane
Project: 776	ER OIL		NUWAIEKSA	Well Numb			nw - 2"	./
Project Number:				Sample Nur				
0	16ER OI	//		Weather:		JNY	43°	
Date: 4/2/	1 <u>0=1 01</u> 113	<u> </u>		Sampler(s):				FR
/				<u> </u>		0//	/ /- (- // / / /	<u> </u>
Depth to Bottom Depth to Water	n (ft): 19	61		Purge Time	:	U	52 on	4/3/13
Depth to Water	(ft): 10.	07		Purge Meth			PERIST	
DTB-DTW (ft):	· · ·	~		Volume Me	easure	ement]	Method:	BUCKET
Volume (gal):				Purge Volu	me (V	Volume	e x 3) (gal):	
Conversion Factors (height x factor-vol)	³ ⁄4" diameter 0.023	1" diameter 0.041	1 1/2" diameter 0.092		meter 0.163		4" diameter 0.652	8" diamete 2,61
GROUNDWAT	FER DATA			• • • • • • •				
Purged	Time	pН	Cond	Temp (°C)			l Oxygen	ORP (mV)
Volume (gal)	1 me	pm	(<u>m5</u> /cm)	18.69	m	g/L	%	OKF (IIIV)
	0953	6.69	0.781	13.69 7.55	7	3.55	73 _. O	66.7
	1000	6.72	0.78Z	13.76	7.	42	71.9	72.5
	1005	6.68	0.782	13,80	7.,	39	71-6	73.1
4 galbus				*				
Sampling Date:	4/3/13	Sampl	ing Method:		l	Time	Sampled:	1008
Container	Volume	Preser		Cooled		Filter		1008
VOAS	3 lyon		Hcl	V V				Ч-эх
VOAS	3040		Hol	Ý		N	612	
						,.		
Chain of Orest 1				Duutiante C	0	o NI		
Chain of Custod Chain of Custod				Duplicate S	^			
Laboratory:	iy ramber.			replicate of	ampi	U INUIII		
Method of Shipi	ment:							
Split With:								
Notes:								
*****				······				
· · · · · · · · · · · · · · · · · · ·			· · ·····					· · ·

B

									Mos	scow
Terr	aGrap	hics		-						llogg
	MENTAL INGINI									Boise
N TAXAL	x	24							Spo	kane
		GROUN	DWATER SA	MPLING RE	CO	RD				
Project: 71	GER OIL			Well Numbe			mu	v-18		
Project Number:				Sample Nun						
Location: 7	TGER OIL			}	SUN	NY	36 "			
	3 - CANE	:D	· · ·	Sampler(s):	P.	RUSA	<u>,</u>	ICHTE	R	
									1.1	
Depth to Bottom	<u>(ft): /8</u>	.60		Purge Time:		085		on	4/3/PS	
Depth to Water ((ft): 9 .	59' 01		Purge Metho				ERISTA		
DTB-DTW (ft):		01		Volume Me					BUCKET	
Volume (gal):	5.87			Purge Volur				diameter	יינ <u>מ</u>	liamete
Conversion Factors (height x factor=vol)	3/4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163		Å	0.652	8° 0	2.61
GROUNDWAT			· · · · · · · · · · · · · · · · · · ·			J	\leftarrow)	
Purged			Cond		Di	ssolve	d Ox	vgen		~ ~
Volume (gal)	Time	pН	(<i>ms/</i> cm)	Temp (°C)		g/L	1	%	ORP (m	V)
volume (gai)	0857	9.81	0767	13.34		<u>8 –</u> 39		19	41.9	
	0902	7.7	0.765	13.38		31		9.6	75.8	
	0907	7.49	0.766	13.43		Si		.8	79.1	
	09/2	7.23	0.766	13.46		59		2-7	81.8	
	0917	6.97	0.766	13.52	8.	57	T	. 7	87,1	
	6922	7.73	6.766	13.52	8.	45	81	1.3	53.1	
	0927	6.80	0.766	13.51	Þ.		77		79,6	
7 CAllens	0932	6.82	0.766	13.51	8-	23	79		76.3	
Sampling Date:	4/3/13	·····	ing Method:			Time		-	09:33	
Container	Volume	Preser		Cooled		Filter	ea	Other	write .	.,
V6A	3840		101	7 		N			Mage BREX	
VOA	30 40,	• L	He			<i>, , ,</i>			DICK	
									<u>,</u>	
Chain of Custoo	lv: Yes/No		<u>,,</u>	Duplicate S	amp	le Nun	nber:	,		
Chain of Custor				Replicate S						
Laboratory:										
Method of Ship	ment:									
Split With:										
Notes:		· · · · · · · · · · · · · · · · · · ·								
			<u></u>							

	AGRAPH	ics						Moscow Kellogg Boise Spokane
		CROIN	NDWATER SA	MPLING RE	CORD)		Броканс
Project:	TUER	GROUI	ID WATEK SA	Well Numbe			G - Ĵ	
Project Number:				Sample Nun		/////	<u> </u>	
	YAYAMA .V	VA		Weather:		y u	tam "	70 [°]
Date: $\frac{y}{z}$	ÿ			Sampler(s):	FROC	SAZ,	RIUT	R
Depth to Bottom	(ft): 14.45	j r		Purge Time:			1744	
Depth to Water ((ft): 14.42 (ft): 7.90			Purge Metho			ALTIC	
DTB-DTW (ft):				Volume Me				BUCKET
Volume (gal):				Purge Volu		ume x	3) (gal):	1
Conversion Factors (height x factor=vol)	³ / ₄ " diameter 1 0.023	" diameter 0.041	1 ½" diameter 0.092		méter 0.163	4	" diameter 0.652	8" diamete 2.61
GROUNDWAT	ER DATA				7 ~••	1 1 6		
Purged Volume (gal)	Time	pН	Cond (ms/cm)	Temp (°C)	Disso mg/I	lved O	xygen %	ORP (mV)
	1746 6	.42	0.8SY	13.62	4,9	1 4	20	-42.3
	175	7.98	0,841	13,54	1.5		4,4	-213,6
	1756 -	$\frac{1}{2}$	0.827	13,44	0.4	7`	4,5	-223,2
	80 1	36	0,243	13.54	0.30	<u>} '</u>	3.1	-168, 2
5 GALLONS	1806	6.41	0.847	13.62	0:3	5	3,4	-171-0
			•••	• · · · · · · · · · · · · · · · · · · ·				
Sampling Date:			ing Method:			ime Sar		1806
Container	Volume	Preser		Cooled	Fi	ltered	Other	
3 vots	3840111		<u>e</u> (<u> </u>		N	Ti	FH gx
3 VOAR	3040m	M	16	/		N	6	TEX
			· · · · · · · · · · · · · · · · · · ·					
Chain of Custod	ly: Yes/No	1		Duplicate S	ample 1	Number		
Chain of Custod				Replicate S				
Laboratory:	-							
Method of Shipi	ment:							
Split With:								
Notes:								

0

TerraGraphics	Moscow Kellogg Boise					
GROUNDWATER SAN	Spokane Spokane					
Project: TILER OIL'	Well Number: Kmw-05					
Project Number:	Sample Number:					
Location: VAKIMA, WA	Weather: CLOSOY, WARN 70° Sampler(s): PROESAL RICHTER					
Date: 4/2/13						
Depth to Bottom (ft): 14.45	Purge Time: 1633					
Depth to Water (ft): 9.45	Purge Method: PERISMITIC					
DTB-DTW (ft):	Volume Measurement Method: BUCKE r					
Volume (gal):	Purge Volume (Volume x 3) (gal):					
Conversion Factors (height x factor=vol)¾" diameter 0.0231" diameter 0.0411½" diameter 0.092	2" diameter 0.163 4" diameter 0.652 8" diameter 2.611					
GROUNDWATER DATA						
Purged Volume (gal)TimepHCond (<u>m S</u> /cm)	Temp (°C)Dissolved Oxygen mg/LORP (mV)					
4635 1635 6.40 1.04	13.66 4.74 45.5 15.6					
1640 6.21 1.041	13.66 4.83 46.9 13.4					
1645 6.12 1.035	13,50 4.33 413 12,4					
1650 6.01 1.026	3.96 1,11 10,0 12,0					
1655 7.38 1.015	14.23 0.74 7.4 46.6					
1657 7.20 1.012	14,22 0,84 0.2 42.5					
1.39 1.004	14.28 1.59 15.9 44.7					
1705 7.18 8.994	<u>[4,29] [.3] [30] 32.6</u> Time Sampled: 1725					
Sampling Date:9/2/13Sampling Method:ContainerVolumePreservative	Cooled Filtered Other					
Container Volume Preservative						
Chain of Custody: Yes/No	Duplicate Sample Number: KMw - 50 C1.					
Chain of Custody Number:	Replicate Sample Number:					
Laboratory:						
Method of Shipment:						
Split With:						
Natar R J DH J S/	TEMP MG/L 2 CRP					
Notes: Time PH Mo/cus						
	H 20 H3 H 0 H3 T					
- 107 612	H 29 1.85 15 2 9.0					
117 10 $0.9/.0$						
117 6.62 0.972177 6.62 0.962	1428 2.39 23.51 2.6					

							Moscow		
Terr	a Grap	hics					Kellogg		
	JENTAL INGINU						Boise		
MINET.							Spokane		
		GROUN	NDWATER SA	MPLING RE	CORD		~		
Project: 77	BER DIC			Well Numbe		mw-6	MWG-1		
Project Number:				Sample Number:					
Location: YAKIMA, WA Date: 4/2/13				Weather: SUMMY 72					
Date: 4/2	2/13			Sampler(s):	PROCESA	RICHTER			
Denth to Bottom	(ft) / /	71		Purge Time	. / <	5.57			
Depth to Bottom (ft): /5.26 Depth to Water (ft): 9.95'				Purge Time:1552Purge Method:Paris ration					
DTB-DTW (ft):		:u/		Volume Me			BUCKET		
Volume (gal):		3.88		Purge Volur	ne (Volum		······		
Conversion Factors (height x factor=vol)	¾" diameter 0.023	1" diameter 0.041	1 ¹ / ₂ " diameter 0.092	2" dia	meter 0.163	4" diameter 0.652	8" diamete 2.61		
GROUNDWAT	ER DATA								
Purged	Time	pН	Cond	Temp (°C)		d Oxygen	ORP (mV)		
Volume (gal)	The	-	(<u>m 5</u> /cm)		mg/L	%			
	1555	6.41	0.884	6-39	8.17	78.0	14.7		
	100	7.77	0.882	13.43	9,10	07.5	-46,5		
	105	7,58	0183	3,52	9,01	Ser 8	-38-7		
	live	7.09	0,83	13.50	9.10	87.5			
	1613	T.04	0,796	13.53	e112	87.7	-13.7		
5 GALLONS							/		
Sampling Date:	4/2/13	Sampl	ing Method: PE	RISMLTIC	Time	Sampled:	1615		
Container	Volume	Preser	vative	Cooled	Filter	Filtered Other			
Vorts	38 40ml		Hel Y				PH-gx		
VOAS	384000	<u> </u>	48	4	~	N BIEX			
Chain of Custod		Duplicate Sample Number:							
Chain of Custod		Replicate Sa	ample Nun	nber:					
Laboratory:									
Method of Shipr	nent:								
Split With:									
Notes:									

Ø

	AGra							Moscow Kellogg Boise	
		CROIN	NDWATER SA	MDI INC DI	FCO	DD		Spokane	
Project: 776	ER DI		WATER SA	Well Numb			AATU III		
Project Number:	Well Number: KM/W - 19 Sample Number:								
Location: V									
Location: $\sqrt{Ak} m_A w_A$ Date: $4/z/i3$				Weather: Sunny To Sampler(s): ProcsAL RICHTER					
Date. 7/2/15)			Bampier(s).	/	FOCSM	L, R/CH		
Depth to Bottom	(ff)· 19 8	20		Purge Time	•	14	50		
Depth to Water	(ff)· /? ?	0		Purge Method: PERISTAUTIC					
DTB-DTW (ft):	(1). 1).2	-		Volume Measurement Method: BUCKET					
Volume (gal):				Purge Volu				;	
Conversion Factors (height x factor=vol)	³ / ₄ " diameter 0.023	1" diameter 0.041	1 1/2" diameter 0.092	<u> </u>	ameter 0.163		4" diameter 0.652	8" diamete	
GROUNDWAT	TER DATA	L (·					
Purged	T :		Cond	T	Dis	ssolved Oxyger		ODD (
Volume (gal)	Time	pH	$(n_{\rm s}/{\rm cm})$	Temp (°C)	m	g/L	%	- ORP (mV)	
·	1455	6.63	0.975	14.82	5.6		53.6	-75.6	
	1500	7.07	0.974	14.76	4.3	77	43.3	-76.0	
	1505	6.66	6.968	14.75	3.0	3	28.7	-76.0 -79.6 -74.0	
	1510	6.44	0.962	14:74	8.20.8		8-0	- 74.0	
5 GALLONSS	1515	6.45	0.959	14.71		85	\$.0	-76.Z	
Sampling Date:	4/2/13	Somnl	ing Method:		<u> </u>	Time	Sampled	1515	
Container	Volume	Preser		Cooled		Time Sampled:/5/5FilteredOther			
							TAH-9r		
<u>3 voAs</u>	30 40m		le (le (1 X Y		$\overline{\mathcal{N}}$		BTEX	
3 UDAS	36 40m1 -			· · · ·		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		51EX	
Chain of Custod	Duplicate Sample Number:								
Chain of Custod	ly Number:			Replicate S	ample	e Num	ber:		
Laboratory:									
Method of Ship	ment:								
Split With:									
Notes:									
				<u></u>					
		······································							

... 1

Ð

Terr	a Graph	nics					Moscow Kellogg Boise	
HERE INVISIONS	IENTAL ENGINEER	ING, INC.					Spokane	
		CDOID		MDI INC DE	COPD		Броканс	
	·	GROUT	NDWATER SAI	Well Numbe		KMW-	16	
Project:	MGER			Sample Nun		1/1/10 -	/ []	
Project Number:	I for an A - E A	<u></u>		Weather:	20° Son,			
Location: YA	2/13	/		Sampler(s):	PROCEAL,			
Date: 90				Builpier(b).	- The She	RICHTER		
Denth to Bottom	(ft): 20 5			Purge Time:	1351	on y/2	115	
Depth to Bottom Depth to Water (ft): //. ? &	· · · · ·		Purge Metho		muric		
DTB-DTW (ft):	<u> </u>	15		Volume Me	asurement M	ethod: Bu	icker	
Volume (gal):	5.67			Purge Volur	ne (Volume 2	x 3) (gal):	17	
Conversion Factors (height x factor=vol)	³ ⁄4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163	4 diameter 0.652	8" diameter 2.61	
GROUNDWAT	ER DATA							
Purged Volume (gal)	Time	pН	Cond (MO/cm)	Temp (°C)	Dissolved (mg/L	Oxygen %	ORP (mV)	
	1351	744	0, dog	14/66	5:39	52.(-le3,T	
······································	1356	6.81	0,872	14.64	7,70	47.2	-30.9	
	1401	10:39	0.878	M.GC	4.56	NBD	-10,5	
	1406	7.40	0.887	14,82	4,57	<u>45.2</u>	-45,7	
	1411	6,85	0.594	JH-50	4.64	45,8	-46,g	
	1414	750	0,594	14.74	7,27	244,1	<u>~ 81 . 7</u>	
	1916	7,49	0, 395	14,9	4.21	-11,1	-82,0	
	1422	6.93	0.902	14.89	3.85	38- / ampled:	<u>-58.7</u> 1435	
Sampling Date:	<u> </u>		ing Method: Pe	Cooled	Filtered			
Container	Volume		vative	Cooled				
3 1075	3040mL		<u>lc1</u>	<u> </u>	W	BT		
3 vons	38 40 mL		10			67	~~~	
Chain of Custoc	y: Yes/No	•			ample Numb			
Chain of Custor	ly Number:			Replicate S	ample Numb	er:		
Laboratory:								
Method of Ship	ment:							
Split With:	LAL PANMER	RP			Do		C	
Notes: y	IMC P	> ¥I	1000	TEmp		5/0	ORP	
		-10	0.905	14.94		6.6	-50.0	
i4	131 6	70	0.107	14.9	3.59 3	5.6	-50.9	
8 64 lbons								

Ø

					Moscow
neri	r a Graph	IICS			Kellogg
THVIRON	MÈNTAL INGINITRI	NG, 186			Boise
					Spokane
		GROUNDWATER SA			
	TIGER OF	L	Well Number:		(-15
Project Number	•		Sample Number		
Location:	2/13	uA	Weather: 67	" SUNA	1)6
Date: 4/	2/13		Sampler(s):	PRO-SBL,	RILLITER
Depth to Bottor			Purge Time:	1248	
Depth to Water			Purge Method:		
DTB-DTŴ (ft)		\$.Y	Volume Measur	1.000	
Volume (gal):	5.47		Purge Volume (NH.
Conversion Factors (height x factor=vol)	³ ⁄4" diameter 0.023	1" diameter 1 ½" diameter 0.041 0.092	2" diameter 0.163	4	' diameter 0.652 8" diameter 2.611
GROUNDWA	TER DATA				
Purged Volume (gal)	Time	pH Cond (AL Jem)	emp ($()$ $ $	issolved Oz ng/L	Wygen ORP (mV)
10 901	1052	889 0174	15.56 9	95 1	0, -80,8
1,3 001	1287 .	557 0775	15,44 9		19:7 -74.8
1.7 5		6.20 0773	15,41, 0	1,78 0	20 -101,0
	1307 .	7.74 0.773	15.51 9	52 9	15.7 -4P.6
	1312 .	TO6 01773	15,42 9	1.33 9	3.6 44.0
	1317	6.85 G.774	15.46 9	15 2	71:7 -24.4
	1318	7.07 0.773	15.39 G		1.6 15.9
	1323	713 0.773	B.35 9	102 0	03 -12,1
Sampling Date:		Sampling Method: Ps	RISTAUTIC Scone	Time Sar	pled: diff 132
Container	Volume	Preservative	Cooled	Filtered	Other
3 VOAS	3640mi	He1	YES	No	TPII-9x
3 VEAS	3C44ml	Mel	YES	No	BTEX
······					
Chain of Custo	lv. Yes/No		Duplicate Samp	le Number	
Chain of Custo			Replicate Samp		
Laboratory:	ay ramber.		1 replicate builtp		
Method of Ship	ment				
Split With:					
Notes:	3 VOAS FO				
· ·					
				- 10110 01 01 01 01	

Ņ

Ø

A LOS

	,							Ð (
	aGrap	Dhics						Moscow Kellogg Boise Spokane
		GROU	NDWATER SA	MPLING RI	COI	<u>SD</u>		oponun
Project: 77	HER O			Well Numb			nw-20	
Project Number:	EEN U	<u>/ </u>		Sample Nur			<i>v</i> / <i>vv cv</i>	
Location:				Weather:				
Date: Y/2/15	-6A	vGEO		Sampler(s):	P.R.	west.	- RICHN	\$L
Depth to Bottom	(ft): / 8	671		Purge Time	:	18	51515	
Depth to Water (ft): / 3.	69		Purge Meth				
DTB-DTW (ft):				Volume Me	asure	ment]	Method:	·····
Volume (gal):				Purge Volu	me (V	<i>olume</i>	e x 3) (gal):	
Conversion Factors (height x factor=vol)	¾" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163		4" diameter 0.652	8" diamete 2.61
GROUNDWAT	ER DATA							
Purged Volume (gal) Time		ne pH Cond		\perp Lemn \square		solvec g/L	l Oxygen %	ORP (mV)
, oranic (gar)								
Sampling Date:		Sampl	ing Method:			Time	Sampled:	
Container	Volume	Preser		Cooled		Filtered Other		
Chain of Custod	y: Yes/No			Duplicate S				
Chain of Custod	y Number:			Replicate Sa	ample	e Num	ber:	
Laboratory:								
Method of Shipn	nent:							
Split With:								
Notes:	WALL	NOT	RECHARGEX	th, PURC	E1	OR	Y LET	- 305
For	15 MI	N. 6.	AVISED FRE	E PRODU	OT a	SALL	N AT 1	451 8
RISIN	16 - NO	1 - 5 1-1-	a.c. a					<
		2177	RECUARDER ANDED FRE RE COL	ECTEP				
								· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·				

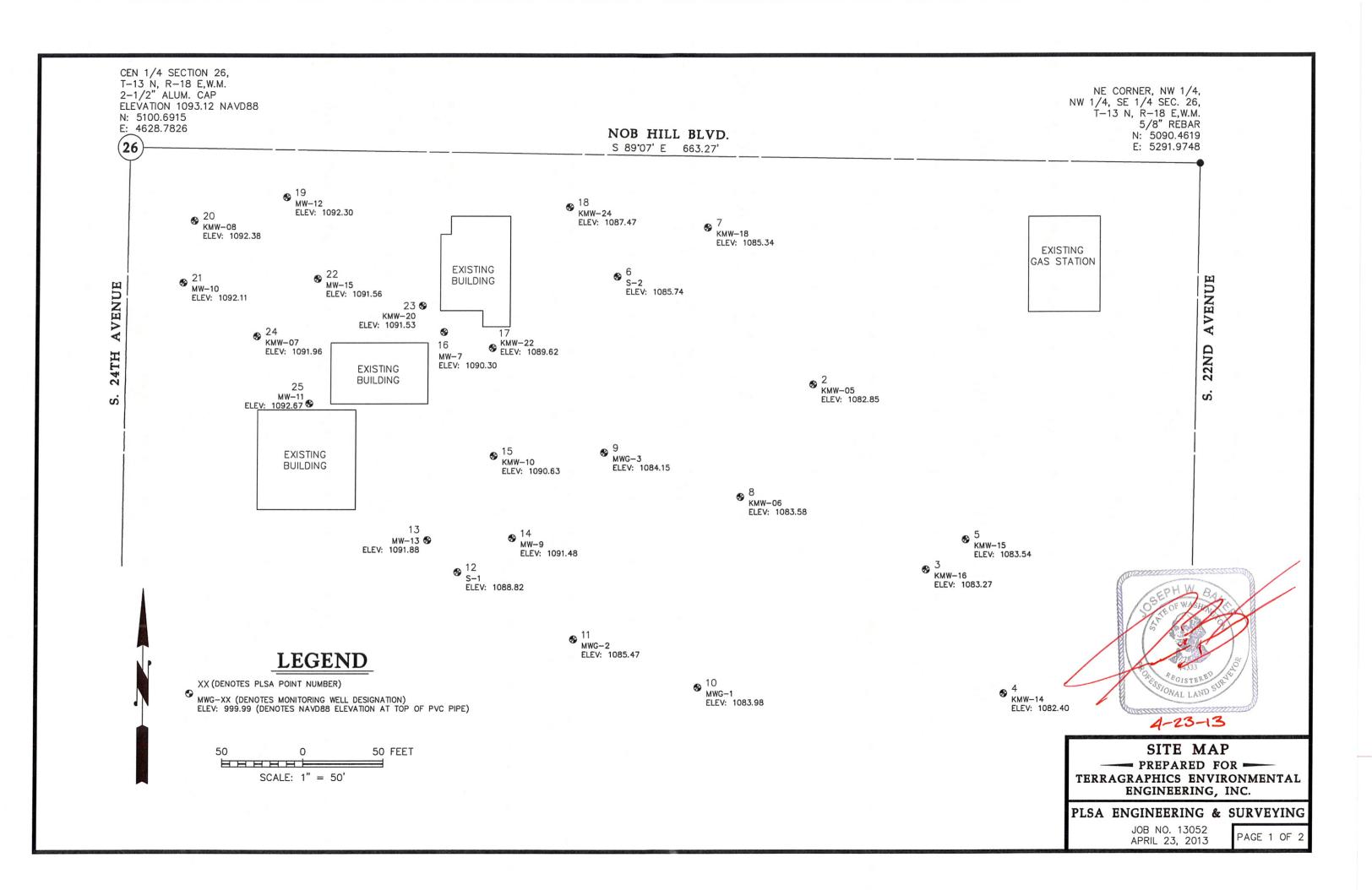
To HIL	Cront							Moscow Kellogg
BE IGU	aGraph	IIUJ INCIRCI						Boise
THE INVISION	INTAL INGINITE	into, integ						Spokane
		GROUN	DWATER SAM	MPLING RE	CORD			
Project: 77	GER OIL	UNOUN		Well Number: $MW - 11$				
Project Number:	OER OIL			Sample Num	ber:			
Location:				Weather:				
Date:				Sampler(s):				
Depth to Bottom	(ft): 1.5.	80		Purge Time:				
Depth to Water (1				Purge Metho	od:	1 1 6 - 4		
DTB-DTW (ft):	Volume Mea							
Volume (gal):				Purge Volun				8" diameter
Conversion Factors (height x factor=vol)	34" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" diar	netér).163	4	diameter 0.652	2.61
GROUNDWAT	ER DATA				Dissolv	ed Or	vygen	
Purged	Time	pН	Cond	Temp (°C)	mg/L	ssolved Oxygen		ORP (mV)
Volume (gal)			(/cm)		1116/12			
						_		
	·					-+		
	 					-		
GDotot		Sampl	ing Method:	, l	Tin	ie Sai	npled:	
Sampling Date: Container	Volume	Preser		Cooled	Filt	Filtered Other		
	Volume							
							<u> </u>	
Chain of Custod	ly: Yes/No			Duplicate Sample Number:				
Chain of Custor				Replicate S	ample N	imber		
Laboratory:								
Method of Ship	ment:							
Split With:	,							
Notes: 14.	34 F	REE F	Rober			~	1.5	bF
	hlo	SAMPI	E WILL	BE COL	ECTER			

Terr	aGran	hics						Moscow Kellogg	
ATTER INVIRON	'aGrap	IRING. INC.						Boise	
L ISTREE.		1,200						Spokane	
		GROUN	DWATER SA	MPLING RI	ECO	RD		-1	
Project:	TIGER (Well Numb			v = 15		
Project Number:		2102		Sample Nur	nber		-		
Location:				Weather:					
Date:				Sampler(s):					
Depth to Bottom	(A) 18	29		Purge Time	•				
Depth to Bottom				Purge Meth					
DTB-DTW (ft):	(ft): 13.	<u> </u>		Volume Me		ement Me	ethod.		
Volume (gal):									
Conversion Factors (height x factor=vol)	³ 4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092					8" diameter 2.611	
GROUNDWAT	ER DATA				•		f		
Purged		~ -	Cond		Di	ssolved C	Dxygen		
Volume (gal)	Time	pН	(/cm)	Temp (°C)	}	ng/L	%	ORP (mV)	
			<u> </u>					······································	
							Ì		
Sampling Date:			ng Method:			Time Sa			
Container	Volume	Preserv	vative	Cooled		Filtered Other			
								·····	
Chain of Custod			······	Duplicate S	omn	lo Numbo			
Chain of Custod	·····			Replicate S	_				
Chain of Custod Laboratory:	y number.			Replicate 5	ampi	e raunoe	L •		
Method of Shipi	ment:								
Split With:		•							
Notes:				· · · · · · · · · · · · · · · · · · ·					
		13	7.70 FA	LEE PRO	Doc	7 S	MEEr		
						0.)/)/		
	· · · · · · · · · · · · · · · · · · ·								
	No	SAMPU	e will be	(oucer	ED				

Town	aGran	hine					Moscow Kellogg		
	aGrap						Boise		
							Spokane		
		GROUN	DWATER SA	MPLING RE	CORD				
Project: 7	THER OF			Well Numbe		N - 7			
Project Number:		<u> </u>		Sample Nun					
Location:				Weather:					
Date:				Sampler(s):					
Depth to Bottom	(ft): 18	,50		Purge Time:					
Depth to Water ((ft): 14.	, <u>50</u> 30		Purge Metho					
DTB-DTW (ft):				Volume Me	asurement N	Aethod:			
Volume (gal):		Purge Volur	<u>ne (</u> Volume	x 3) (gal):					
Conversion Factors (height x factor-vol)	³ ⁄4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163	4" diameter 0.652	8" diameter 2.611		
GROUNDWAT	ER DATA					······································			
Purged	Time	ne pH Con		Temp (°C)	Dissolved		ORP (mV)		
Volume (gal)	11110	PII	(/cm)		mg/L	%			
						0 1.1.			
Sampling Date:			ng Method:			Sampled:			
Container	Volume	Preserv	vative	Cooled	Filtere	Filtered Other			
Chain of Custod	Vor/No			Duplicate S	ample Num	her:			
Chain of Custod				Replicate S					
Chain of Custod	ly Number.			Replicate B	unipie rium				
Laboratory: Method of Shipi	mont								
Split With:									
Notes:						> >14			
		11.96	TO FRE	6 PRODUC	<u>r c</u>	-34 01	FREDUCT		
	<u></u>	<u> </u>	WILL BE						
		NO SA	MPIE COLLE	CTED					
			· · · · · · · · · · · · · · · · · · ·						

		1_ 1						Moscow	
ieri	'aGra p	nics						Kellogg	
INVIRON.	MENTAL INGÍNE	IAING, INC						Boise	
		·						Spokane	
		GROUN	NDWATER SA	MPLING RF	ECOR				
Project:				Well Number: $m w - S$					
Project Number:				Sample Nur	nber:				
Location:				Weather:					
Date:				Sampler(s):					
Depth to Bottom	n (ft): 21.	67		Purge Time:	:				
Depth to Water (Purge Methe	od:				
DTB-DTW (ft):	DTB-DTW (ft):					ment Me	thod:		
Volume (gal):				Purge Volur	me (V	olume x	3) (gal):		
Conversion Factors (height x factor=vol)	³ ⁄4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092		meter 0.163) 4	" diameter 0.652	8" diameter 2.611	
GROUNDWAT	ER DATA			•					
Purged	T		Cond	T	Dis	solved O	xygen		
Volume (gal)	Time	pН	(/cm)	Temp (°C)	mg	g/L	%	ORP (mV)	
Sampling Date:			ing Method:	Time Sampled:					
Container	Volume	Preserv	vative	Cooled		Filtered Other			
		I							
Chain of Custod	•			Duplicate S					
Chain of Custod	y Number:			Replicate Sa	ample	Number	:		
Laboratory:									
Method of Shipr	ment:								
Split With:									
Notes:	Contract of the second s			~					
	16.	TO TĚ) FREE	PRUDUCT				·	
	1			J					
	•								
	nto.	SAMP16	COLLECTED	•				· · ·	

٦


Terr Inviron	aGrap	hics						Moscow Kellogg Boise Spokane
		GROUN	NDWATER SA	MPLING RE	ECO	RD		
	6EM			Well Numb		5-	/	
Project Number:				Sample Nur	nber	•		
Location:				Weather:				
Date:				Sampler(s):				
Depth to Bottom	(ft): / 3	. 14 97		Purge Time	:			
Depth to Water (Purge Meth	od:						
DTB-DTW (ft):	Volume Me	asur	ement M	ethod:				
Volume (gal):				Purge Volur	ne (Volume 3	(gal):	
Conversion Factors (height x factor-vol)	¾" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163		4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA	I		I		1	I	
Purged Volume (gal)	Time	pН	Cond (/cm)	Temp (°C)	Dissolved mg/L		Oxygen %	ORP (mV)
Volume (gai)					- 11:		/0	
		-						
Sampling Date:			ng Method:	Time Sampled:				
Container	Volume	Preserv	vative	Cooled		Filtered	Other	
Chain of Custod	v: Yes/No			Duplicate Sa	ampl	e Numbe		
Chain of Custod				Replicate Sa				
Laboratory:	×	· · · · ·		1	^			
Method of Shipn	nent:							
Split With:		, k						
Notes:		· · ·						
	NOT EN	VOUGH .	MATER TO	SAMPLE				
		····						

 $\Sigma_{\rm L}$

Appendix B

Survey Map

		MONIT	ORING WEL	TARIE			
		WONT					
PLSA POINT NO.	NORTHING	EASTING	ELEVATION NAVD88 (TOP OF PVC PIPE)	DESCRIPTION	LATITUDE	LONGITUDE	
2	4954.8671	5052.8544	1082.85	KMW-05	46°35'08.88" N	120*32'21.16" W	
3	4840.7990	5123.0901	1083.27	KMW-16	46'35'04.76" N	120'32'20.15" W	
4	4764.5643	5171.4288	1082.40	KMW-14	46'35'04.01" N	120 · 32'19.46" W	
5	4859.3040	5147.4609	1083.54	KMW-15	46'35'04.94" N	120°32'19.81" W	
6	5021.2687	4930.9315	1085.74	S-2	46°35'06.54" N	120 · 32'22.91" W	
7	5051.4057	4987.2028	1085.34	KMW-18	46'35'06.84" N	120°32'22.10" W	
. 8	4885.5764	5008.2201	1083.58	KMW-06	46°35'05.20" N	120°32'21.80" W	
9	4912.9631	4923.4646	1084.15	MWG-3	46*35'05.47" N	120'32'23.01" W	
10	4768.3311	4982.2587	1083.98	MWG-1	46°35'04.04" N	120°32'22.17" W	
11	4797.9617	4904.7300	1085.47	MWG-2	46°35'04.34" N	120°32'23.28" W	
12	4839.3147	4833.0792	1088.82	S–1	46°35'04.74" N	120 · 32'24.31" W	
13	4859.0247	4814.3874	1091.88	MW-13	46'35'04.94" N	120'32'24.57" W	
14	4860.2561	4866.7432	1091.48	MW-9	46°35'04.95" N	120°32'23.82" W	
15	4910.8844	4855.0536	1090.63	KMW-10	46°35'05.45" N	120°32'23.99" W	
16	4987.1827	4824.1088	1090.30	MW-7	46*35'06.20" N	120°32'24.43" W	
17	4977.4002	4854.1273	1089.62	KMW-22	46°35'06.11" N	120°32'24.00" W	
18	5063.9566	4901.2291	1087.47	KMW-24	46°35'06.96" N	120°32'23.33" W	
19	5070.0335	4725.7836	1092.30	MW-12	46°35'07.02" N	120°32'25.84" W	urunun
20	5055.5640	4668.6702	1092.38	KMW-08	46°35'06.88" N	120'32'26.66" W	N. R.
21	5017.5467	4662.0658	1092.11	MW-10	46'35'06.50" N	120°32°26.75" W	
22	5019.9558	4745.1529	1091.56	MW-15	46°35'06.53" N	120°32'25.56" W	17
23	5003.3642	4810.7297	1091.53	KMW-20	46'35'06.36" N	120°32'24.63" W	
24	4984.5546	4707.9043	1091.96	KMW-07	46*35'06.18" N	120'32'26.10" W	A.
25	4943.2060	4740.3854	1092.67	MW-11	46'35'05.77" N	120'32'25.63" W	33 0 5
						SIONAL BUILD	LAND SUR
						5-9	-13
						_	
						SIT	E MAH
						PREPA	ARED FO
						TERRAGRAPHIC	C ENIVIE

Appendix C

Data Validation and QA/QC Memorandum

CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

Chemical Data Quality Review

Seventeen water samples were collected on March 2 and 3, 2013. Two field duplicates, two rinseate blanks, two field blanks, and one trip blank (identified as "TRIB BLANK") were also collected/prepared and submitted. The samples were submitted to TestAmerica - Seattle (TAS), in Tacoma, WA, for chemical analysis. The laboratory reported results as AAL Job ID 580-37879-1. The samples were analyzed for one or more of the following:

- Gasoline by Washington State Department of Ecology (Ecology) method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B.

Following analysis, the laboratory reanalyzed two samples for confirmation of benzene by EPA Method 8260B.

The laboratory performed quality assurance/quality control (QA/QC) reviews on an ongoing basis. Hart Crowser reviewed the data to ensure they met data quality objectives for the project and recorded the results on laboratory quality control summary sheets.

The following criteria were evaluated during the standard data quality review process:

- Holding times;
- Reporting limits;
- Method blanks;
- Surrogate recoveries;
- Field duplicate relative percent differences (RPDs); and
- Laboratory control sample (LCS) recoveries.

The data were determined to be acceptable for use with qualification, and the complete laboratory reports are presented at the end of this Appendix. The data review is summarized in the following pages.

Sample Receiving Discrepancies

Sample KMW-16: The sample label listed the collection time of 1435, while the Chain of Custody listed the collection time as 1535. The laboratory logged the sample into the LIMS using the collection time from the Chain of Custody.

Sample TRIB BLANK: The sample label listed the sampling date as 3/27/13, while the Chain of Custody listed the sampling date as 3/17/13. The laboratory logged the sample into the LIMS using the sampling date from the Chain of Custody. The sample was analyzed past the method recommended holding time of 14 days from 3/17/13, and the laboratory qualified the data with "H" for holding time exceedance. The sampler contacted the laboratory, and the date on the Chain of Custody was revised to 3/27/13, the date the vial was prepared at the laboratory. The laboratory revised the report, but the "H" qualifier remained on the data, as the sample had been analyzed on 4/14/13, which was past the 14 day method recommended holding time. Sampling dates for trip blanks can be reported as either the date the trip blank was prepared at the laboratory, or the date the associated samples were collected in the field. The laboratory "H" qualifier was changed to "J" for estimated results.

Sample Reporting Limits

Detections that fell between the Method Detection Limit (MDL) and the Reporting Limit (RL) were qualified as estimated (J) by TAS. The J qualifier was changed to T to be consistent with Washington State's EIM database.

Water Samples

BTEX by EPA 8021B

The reporting limits were acceptable. The surrogate and laboratory control sample recoveries were within laboratory control limits. The field duplicate RPDs were less than 50 percent, or not applicable when the sample and duplicate results were below the reporting limit.

The recommended holding times were met with the following exception:

• Sample TRIB BLANK

The trip blank was qualified by the laboratory with "H" due to holding time exceedances. The trip blank analysis was past the 14 day method recommended holding time for the laboratory preparation date of 3/27/13, but

fell within the holding time for the associated sample collection date of 4/2/13 or 4/3/13. The laboratory "H" qualifier was changed to "J" (estimated).

Blank Contamination

Contamination below the laboratory reporting limits were observed in the method blanks, trip blank, rinseate blank, and field blank. Rinseate Blank 2 (Rinseate 2) and Field Blank 2 (FB2) were non-detect. The associated samples were evaluated and results modified and qualified as follows:

- Method Blank 04/10/13: The method blank had detections for ethylbenzene, m,p-Xylenes, and Total Xylenes between the MDL and the RL Detections for those analytes in the associated samples (KMW-15, KMW-16, KMW-14, MWG-1, KMW-5, KMW-50, MWG-3, RINSEATE, FB, KMW-18, KMW-24, S-2, KMW-8, KMW-10, MW-13, MWG-2, KMW-7, KMW-70, and MW-9) were qualified by the laboratory with B. Results were evaluated and qualified thus:
 - Results below the MDL were not qualified.
 - o KMW-15 [Ethylbenzene]
 - o KMW-14 [Ethylbenzene]
 - o MWG-1 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - KMW-5 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - KMW-50 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o RINSEATE [m,p-Xylenes]
 - FB [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - KMW-18 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o KMW-24 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - KMW-8 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o KMW-10 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - MWG-2 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - Results above the RL and greater than five times the amount in the method blank had the B qualifier removed.
 - o KMW-16 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - MWG-3 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o S-2 [m,p-Xylenes and Total Xylenes]
 - o MW-13 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o KMW-7 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o MW-9 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]
 - o KMW-70 [Ethylbenzene, m,p-Xylenes, and Total Xylenes]

- Results between the MDL and the RL were raised to the RL and qualified as non-detect (U).
 - o KMW-15 [m,p-Xylenes and Total Xylenes]
 - KMW-14 [m,p-Xylenes and Total Xylenes]
 - o RINSEATE [Ethylbenzene and Total Xylenes]
- Method Blank 04/13/13: The method blank had detections for Ethylbenzene, mp-Xylenes, o-xylene, and total xylenes between the MDL and the RL. Detections for those analytes in the associated samples (MWG-3 Dilution reanalysis [benzene only], S-2 dilution reanalysis, KMW-22, KMW-6, RINSEATE 2, FB2, and TRIB BLANK) were qualified by the laboratory with B. Results were evaluated and qualified thus:
 - Results below the MDL were not qualified.
 - o KMW-6 [mp-Xylenes, o-xylene, and total xylenes]
 - RINSEATE 2 [Ethylbenzene, mp-Xylenes, o-xylene, and total xylenes]
 - o FB2 [Ethylbenzene, mp-Xylenes, o-xylene, and total xylenes]
 - TRIB BLANK [o-xylene]
 - Results above the RL and greater than five times the amount in the method blank had the B qualifier removed.
 - o S-2 dilution reanalysis [Ethylbenzene]
 - o KMW-22 [Ethylbenzene, mp-Xylenes, o-xylene, and total xylenes]
 - Results between the MDL and the RL were raised to the RL and qualified as non-detect (U).
 - KMW-6 [Ethylbenzene]
 - o TRIB BLANK [Ethylbenzene, m,p-Xylene, and total xylenes]
- Rinseate: The rinseate blank had detections for benzene, toluene, ethylbenzene, and total xylenes between the MDL and the RL. The results for ethylbenzene and total xylenes were raised to the RL and U-flagged due to associated method blank contamination. Associated samples (KMW-15, KMW-16, KMW-14, MWG-1, KMW-5, KMW-50, and MWG-3) were evaluated for detections for benzene and toluene below the RL as follows.
 - Results below the RL were raised to the RL and qualified as non-detect (U).
 - o KMW-15 [Toluene]
 - Results below the MDL were not qualified.

- o KMW-15 [Benzene]
- o KMW-16 [Toluene]
- o KMW-14 [Toluene]
- MWG-1 [Benzene and toluene]
- KMW-5 [Benzene and toluene]
- KMW-50 [Benzene and toluene]
- Results greater than five times the amount in the Rinseate were not qualified.
 - o KMW-16 [Benzene]
 - o KMW-14 [Benzene]
 - MWG-3 [Benzene and toluene]
- FB: The field blank had a detection for Toluene between the MDL and the RL comparable to the amount of toluene in the Rinseate. Associated samples (KMW-15, KMW-16, KMW-14, MWG-1, KMW-5, KMW-50, and MWG-3) were evaluated for toluene detections as described under Rinseate. No additional qualification was made due to field blank contamination.
- TRIB BLANK: The trip blank had detections between the MDL and the RL for Ethylbenzene, m,p-Xylenes and Total Xylenes. The trip blank detections appeared to be the result of laboratory contamination, and were evaluated and raised to the RL. Associated sample results were not qualified due to trip blank contamination.

Gasoline by NWTPH-Gx

Holding times and reporting limits were acceptable. Surrogate and LCS recoveries were within laboratory control limits. The field duplicate RPDs were not applicable as the sample and duplicate results were either below the reporting limit, or less than five times the reporting limit.

Samples KMW-8, MWG-2, and KMW-70: The samples were reanalyzed due to possible carryover from previous sample analyses. Results were reported from the reanalyses.

Sample KMW-6: The sample was reanalyzed due to QC failures. Results were reported from the reanalysis.

Blank Contamination

Contamination below the laboratory reporting limits was observed in one method blank. The associated samples were evaluated and results modified and qualified as follows:

- Method Blank 04/16/13: The method blank had a detection for gasoline between the MDL and the RL. Detections in the associated samples (KMW-8, MWG-2, KMW-70, MW-9, and KMW-6) were qualified by the laboratory with B. Results were evaluated and qualified as follows:
 - Results between the MDL and the RL were raised to the RL and qualified as non-detect (U).
 - o KMW-8
 - o MWG-2
 - o KMW-6
 - Results above the RL and greater than five times the amount in the method blank had the B qualifier removed.
 - KMW-70
 - o MW-9

Benzene by EPA 8260B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

Samples KMW-14 and KMW-6: The samples were analyzed for confirmation of Benzene by the laboratory and reported.

Appendix D

Analytical Reports with Chain-of-Custody

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-37879-1 Client Project/Site: Tiger Oil Yakima, WA

For:

TerraGraphics Inc TerraGraphics Environmental Engineering 3501 W. Elder, Suite 301 Boise, Idaho 83705

Attn: Mike Procsal

Pamela R. Johnson

Authorized for release by: 4/19/2013 9:14:54 AM

Pam Johnson Project Manager I pamr.johnson@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	29
Chronicle	34
Certification Summary	39
Sample Summary	40
Chain of Custody	
Receipt Checklists	43

Job ID: 580-37879-1

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 4/5/2013 10:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.5° C.

Except:

The container label for the following samples KMW-16 (580-37879-2), TRIB BLANK (580-37879-24) did not match the information listed on the Chain-of-Custody (COC).

KMW-16 (580-37879-2): The container labels lists a time of 14:35 The Chain-of-Custody (COC) lists a time of 15:35. The Trip Blank lists a date of 3/27 on the label. The Chain-of-Custody (COC) lists a date of 3/17. Both were logged in per Chain-of-Custody (COC) and analysis has been added.

Typically the trip blank date is associated with the sample date, though as 3/17 was noted on the COC, this date was used for login. The holding time "H" qualifier may not apply.

GC/MS VOA - Method(s) 8260B

The associated samples KMW-14 (580-37879-3) and KMW-6 (580-37879-21) were analyzed by method 8260B to confirm the single target Benzene from the previous 8021 analysis.

No other analytical or quality issues were noted.

GC/MS VOA - Method(s) 8021B

Ethylbenzene, m-Xylene & p-Xylene, and total, Xylenes were detected in method blank (MB) 580-133487/4 at levels that were above the method detection limit but below the reporting limit. The values should be considered as estimates, and have been "J" qualified. The associated sample results have been "B" qualified.

Ethylbenzene, m-Xylene & p-Xylene, o-Xylene, and total, Xylenes were detected in method blank (MB) 580-133715/4 at levels that were above the method detection limit but below the reporting limit. The values should be considered as estimates, and have been "J" qualified. The associated sample results have been "B" qualified.

No other analytical or quality issues were noted.

GC/MS VOA - Method(s) NWTPH-Gx

The associated samples KMW-8 (580-37879-13), MWG-2 (580-37879-16) and KMW-70 (580-37879-18) were reanalyzed in analysis batch 133834 due to the likelihood of carryover from a highly contaminated sample in the original analysis.

The associated sample KMW-6 (580-37879-21) was reanalyzed in analysis batch 133834 due to QC failures in the original analysis.

GRO was detected in the method blank (MB) 580-133834/5 at a level that was above the method detection limit but below the reporting limit. The values should be considered as estimates, and have been "J" qualified. The associated sample results have been "B" qualified.

No other analytical or quality issues were noted.

Qualifiers

GC VOA

GC VOA		Δ
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	- 5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	J
н	Sample was prepped or analyzed beyond the specified holding time	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	 8
%R	Percent Recovery	
CNF	Contains no Free Liquid	9
DER	Duplicate error ratio (normalized absolute difference)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

TestAmerica Job ID: 580-37879-1

Client Sample ID: KMW-	1022				Lab Sam	ple ID: 580-3	87879-1		
Date Collected: 04/02/13 13:2	3						Matri	x: Water	
Date Received: 04/05/13 10:2	5								
Method: 8021B - Volatile Or	ganic Compounds (C	SC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Benzene	ND	0.50	0.10	ug/L		04/10/13 18:41	1
Toluene	0.5 -0.10 J U	0.50	0.10	ug/L		04/10/13 18:41	1
Ethylbenzene	ND	0.50	0.10	ug/L		04/10/13 18:41	1
m-Xylene & p-Xylene	1.0 -0.20 JB U	1.0	0.20	ug/L		04/10/13 18:41	1
o-Xylene	ND	1.0	0.20	ug/L		04/10/13 18:41	1
Xylenes, Total	1.0 -0.36 JB-U	1.0	0.20	ug/L		04/10/13 18:41	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	109	50 - 150				04/10/13 18:41	1
4-Bromofluorobenzene (Surr)	101	80 - 130				04/10/13 18:41	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.015	ST.	0.050	0.010	mg/L			04/13/13 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		50 - 150			-		04/13/13 13:14	1
Trifluorotoluene (Surr)	102		50 - 150					04/13/13 13:14	1

13 2

Page 5 of 43

1

7

8

9

Client Sample ID: KMW-16							Lab Sam	ple ID: 580-3	7879-2
Date Collected: 04/02/13 15:35								Matrix	x: Water
Date Received: 04/05/13 10:25							<i>x</i>	2 - 0	
- Netherly 2024 D. Meletile Ores	nia Communata (
Method: 8021B - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	5.5		0.50	0.10	ug/L			04/10/13 19:04	1
Toluene	ND		0.50	0.10	ug/L		1	04/10/13 19:04	1
Ethylbenzene	5.4	B	0.50	0.10	ug/L			04/10/13 19:04	1
m-Xylene & p-Xylene	4.7	B	1.0	0.20	ug/L			04/10/13 19:04	1
o-Xylene	0.33		1.0	0.20	ug/L			04/10/13 19:04	1
Xylenes, Total	5.0	В	1.0	0.20	ug/L			04/10/13 19:04	- 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	106		50 - 150				12	04/10/13 19:04	1
4-Bromofluorobenzene (Surr)	103		80 - 130					04/10/13 19:04	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.25		0.050	0.010	mg/L			04/13/13 13:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		50 - 150					04/13/13 13:37	1
Trifluorotoluene (Surr)	99		50 - 150					04/13/13 13:37	1

A5/2/3

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA TestAmerica Job ID: 580-37879-1

4 5 6

7

8

9 10

lient Sample ID: KMW-1	4				2		Lab San	nple ID: 580-3	7879-
ate Collected: 04/02/13 15:15								Matrix	k: Wate
ate Received: 04/05/13 10:25									
Method: 8260B - Volatile Org	anic Compounds (GC/MS) - R/	4						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	1.1		1.0	0.15	ug/L			04/16/13 19:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		75 - 120			-		04/16/13 19:04	
Ethylbenzene-d10	108		80 - 120					04/16/13 19:04	
Fluorobenzene (Surr)	97		80 - 120					04/16/13 19:04	
Toluene-d8 (Surr)	103		85 - 120					04/16/13 19:04	
Trifluorotoluene (Surr)	112		80 - 120					04/16/13 19:04	
Method: 8021B - Volatile Org	anic Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	2.5		0.50	0.10	ug/L			04/10/13 19:27	
Toluene	ND		0.50	0.10	ug/L			04/10/13 19:27	
Ethylbenzene	ND		0.50	0.10	ug/L			04/10/13 19:27	
m-Xylene & p-Xylene	1.0 -0.38	JB-U	1.0	0.20	ug/L			04/10/13 19:27	
o-Xylene	ND		1.0	0.20	ug/L			04/10/13 19:27	
Xylenes, Total	1.0 _0.51	JB- U	1.0	0.20	ug/L			04/10/13 19:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene	102		50 - 150			-		04/10/13 19:27	
4-Bromofluorobenzene (Surr)	89		80 - 130					04/10/13 19:27	
Method: NWTPH-Gx - Northv	vest - Volatile Petro	oleum Produ	icts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	0.13		0.050	0.010	mg/L			04/13/13 13:59	
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		50 - 150			-		04/13/13 13:59	
Trifluorotoluene (Surr)	100		50 - 150					04/13/13 13:59	

3

Client Sample ID: MWG-1

Date Collected: 04/02/13 16:15 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-4 Matrix: Water

4

5

6

7

8

9

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L			04/10/13 19:50	1
Toluene	ND		0.50	0.10	ug/L			04/10/13 19:50	1
Ethylbenzene	ND		0.50	0.10	ug/L			04/10/13 19:50	1
m-Xylene & p-Xylene	ND		1.0	0.20	ug/L			04/10/13 19:50	1
o-Xylene	ND		1.0	0.20	ug/L			04/10/13 19:50	1
Xylenes, Total	ND		1.0	0.20	ug/L			04/10/13 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	111		50 - 150			-		04/10/13 19:50	1
4-Bromofluorobenzene (Surr)	99		80 - 130					04/10/13 19:50	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.019	ST	0.050	0.010	mg/L			04/13/13 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		50 - 150			-		04/13/13 14:22	1
Trifluorotoluene (Surr)	97		50 - 150					04/13/13 14:22	1

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

Client Sample ID: KMW-5 Date Collected: 04/02/13 17:25

Date Received: 04/05/13 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L	- 2 - -		04/10/13 21:20	1
Toluene	ND		0.50	0.10	ug/L			04/10/13 21:20	1
Ethylbenzene	ND		0.50	0.10	ug/L			04/10/13 21:20	1
m-Xylene & p-Xylene	ND		1.0	0.20	ug/L			04/10/13 21:20	1
o-Xylene	ND		1.0	0.20	ug/L			04/10/13 21:20	1
Xylenes, Total	ND		1.0	0.20	ug/L			04/10/13 21:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	111		50 - 150					04/10/13 21:20	1
4-Bromofluorobenzene (Surr)	99		80 - 130					04/10/13 21:20	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.012	T	0.050	0.010	mg/L		a de la construction de	04/13/13 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		50 - 150			0		04/13/13 14:45	1
Trifluorotoluene (Surr)	101		50 - 150					04/13/13 14:45	1

Lab Sample ID: 580-37879-5

Matrix: Water

23

Client Sample ID: KMW-50

Date Collected: 04/02/13 17:26 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-6 Matrix: Water

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L			04/10/13 21:43	1
Toluene	ND		0.50	0.10	ug/L			04/10/13 21:43	1
Ethylbenzene	ND		0.50	0.10	ug/L			04/10/13 21:43	1
m-Xylene & p-Xylene	ND		1.0	0.20	ug/L			04/10/13 21:43	1
o-Xylene	ND		1.0	0.20	ug/L			04/10/13 21:43	1
Xylenes, Total	ND		1.0	0.20	ug/L			04/10/13 21:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	117		50 - 150					04/10/13 21:43	1
4-Bromofluorobenzene (Surr)	97		80 - 130					04/10/13 21:43	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.015	ST	0.050	0.010	mg/L			04/13/13 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		50 - 150					04/13/13 15:08	1
Trifluorotoluene (Surr)	99		50 - 150					04/13/13 15:08	1

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

TestAmerica Job ID: 580-37879-1

lient Sample ID: MWG-3							Lab Sam	ple ID: 580-3	
ate Collected: 04/02/13 18:06								Matrix	: Wate
ate Received: 04/05/13 10:25									
Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Toluene	7.7		0.50	0.10	ug/L			04/10/13 22:06	
Ethylbenzene	53	B	0.50	0.10	ug/L			04/10/13 22:06	
m-Xylene & p-Xylene	23	B	1.0	0.20	ug/L			04/10/13 22:06	
o-Xylene	7.2		1.0	0.20	ug/L			04/10/13 22:06	
Xylenes, Total		B	1.0	0.20	ug/L			04/10/13 22:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a.a.a-Trifluorotoluene			50 - 150			-		04/10/13 22:06	2
4-Bromofluorobenzene (Surr)	102		80 - 130					04/10/13 22:06	
Method: 8021B - Volatile Organic	Compounds (GC) - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	600		5.0	1.0	ug/L		10	04/14/13 04:49	1
<u></u>	M. L. CL. D. C.	Journ Produ	ucts (GC)						
Method: NWTPH-Gx - Northwest	- volatile Petro	neum rou	1000 (00)						
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
Analyte				MDL 0.010	Unit mg/L	D	Prepared	Analyzed 04/13/13 16:16	
Analyte	Result	Qualifier	RL			<u>D</u>	Prepared Prepared	04/13/13 16:16 Analyzed	
Method: NWTPH-Gx - Northwest Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	Result 0.47	Qualifier	RL 0.050			D		04/13/13 16:16	Dil Fa

A-5/2/13

TestAmerica Seattle

4

5

6

7

8 9 10

Client Sample ID: RINSEATE Lab Sample ID: 580-37879-8 Date Collected: 04/02/13 18:34 Date Received: 04/05/13 10:25 Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Esc

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.26	0.50	0.10	ug/L			04/10/13 22:29	1
Toluene	0.24 17	0.50	0.10	ug/L			04/10/13 22:29	1
Ethylbenzene	0.5 0.16 JB U	0.50	0.10	ug/L			04/10/13 22:29	1
m-Xylene & p-Xylene	ND	1.0	0.20	ug/L			04/10/13 22:29	1
o-Xylene	ND	1.0	0.20	ug/L			04/10/13 22:29	1
Xylenes, Total	1.0 -0.21 JB U	1.0	0.20	ug/L			04/10/13 22:29	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	114	50 - 150			_		04/10/13 22:29	1
4-Bromofluorobenzene (Surr)	102	80 _ 130					04/10/13 22:29	1

TestAmerica Seattle

RL

0.50

0.50

0.50

1.0

1.0

1.0

Limits

50 - 150

80 - 130

MDL Unit

0.10 ug/L

0.10 ug/L

0.10 ug/L

0.20 ug/L

0.20 ug/L

0.20 ug/L

D

Prepared

Prepared

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

Client Sample ID: FB Date Collected: 04/02/13 18:41 Date Received: 04/05/13 10:25

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

a,a,a-Trifluorotoluene

4-Bromofluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

τ

Qualifier

ND

ND

ND

ND

ND

109

107

%Recovery

0.25

TestAmerica Job ID: 580-37879-1

Lab Sample ID: 580-37879-9 Matrix: Water

Analyzed

04/10/13 22:51

04/10/13 22:51

04/10/13 22:51

04/10/13 22:51

04/10/13 22:51

04/10/13 22:51

Analyzed

04/10/13 22:51

04/10/13 22:51

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

	×
TestAmenica	Contilo
TestAmerica	Seame

3

Client Sample ID: KMW-18

Date Collected: 04/03/13 09:33 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-10

04/10/13 23:14

TestAmerica Job ID: 580-37879-1

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

1

5

Method: 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Benzene ND 0.50 0.10 ug/L 04/10/13 23:14 Toluene ND 0.50 0.10 ug/L 04/10/13 23:14 Ethylbenzene ND 0.50 0.10 ug/L 04/10/13 23:14 m-Xylene & p-Xylene ND 1.0 0.20 ug/L 04/10/13 23:14 o-Xylene ND 1.0 0.20 ug/L 04/10/13 23:14 Xylenes, Total ND 1.0 0.20 ug/L 04/10/13 23:14 Surrogate %Recovery Qualifier Limits Prepared Analyzed a,a,a-Trifluorotoluene 111 50 - 150 04/10/13 23:14 4-Bromofluorobenzene (Surr) 104

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.034	T	0.050	0.010	mg/L			04/13/13 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		50 - 150			6 7		04/13/13 16:39	1
Trifluorotoluene (Surr)	100		50 - 150					04/13/13 16:39	1

80 - 130

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

4-Bromofluorobenzene (Surr)

Trifluorotoluene (Surr)

04/13/13 17:02

04/13/13 17:02

1

1

5

Lab Sample ID: 580-37879-11 Client Sample ID: KMW-24 Matrix: Water Date Collected: 04/03/13 10:08 Date Received: 04/05/13 10:25 Method: 8021B - Volatile Organic Compounds (GC) Dil Fac Analyzed **Result** Qualifier RL MDL Unit D Prepared Analyte 0.50 0.10 ug/L 04/10/13 23:36 1 ND Benzene 0.50 ug/L 04/10/13 23:36 1 ND 0.10 Toluene 04/10/13 23:36 1 ND 0.50 0.10 ug/L Ethylbenzene 04/10/13 23:36 ND 1.0 0.20 ug/L m-Xylene & p-Xylene 04/10/13 23:36 1 ND 1.0 0.20 ug/L o-Xylene 04/10/13 23:36 ND 1.0 0.20 ug/L Xylenes, Total Prepared Analyzed Dil Fac Qualifier Limits %Recovery Surrogate 04/10/13 23:36 1 50 - 150 a,a,a-Trifluorotoluene 114 80 - 130 04/10/13 23:36 96 4-Bromofluorobenzene (Surr) Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) Analyzed **Dil Fac** MDL Unit D Prepared **Result** Qualifier RL Analyte 04/13/13 17:02 1 0.010 mg/L 0.050 Gasoline ND Dil Fac Analyzed Prepared Qualifier Limits %Recovery Surrogate

50 - 150

50 - 150

83

100

TestAmerica Se

Trifluorotoluene (Surr)

1

7

8 9 10

1

Client Sample ID: S-2							Lab Sample ID: 580-37879-12			
ate Collected: 04/03/13 10:52							-		k: Water	
ate Received: 04/05/13 10:25										
Mothod: 8021R Volatila Orac	ania Compoundo									
Method: 8021B - Volatile Orga Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac	
Toluene	18		0.50	0.10			ricpuicu	04/10/13 23:59		
m-Xylene & p-Xylene	230	B	1.0		ug/L			04/10/13 23:59	1	
o-Xylene	4.5		1.0		ug/L			04/10/13 23:59	1	
Xylenes, Total	240	B	1.0		ug/L			04/10/13 23:59	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
a,a,a-Trifluorotoluene	96		50 - 150			17		04/10/13 23:59	1	
4-Bromofluorobenzene (Surr)	100		80 - 130					04/10/13 23:59	1	
Method: 8021B - Volatile Orga	anic Compounds (GC) - DL								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	3100		25	5.0	ug/L			04/14/13 04:03	50	
Ethylbenzene	660	B	25	5.0	ug/L			04/14/13 04:03	50	
Method: NWTPH-Gx - Northw	est - Volatile Petro	leum Prod	ucts (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	3.9		0.050	0.010	mg/L			04/13/13 17:24	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	137		50 - 150			800		04/13/13 17:24	1	
T-III (O)										

50 - 150

104

04/13/13 17:24

Client Sample ID: KMW-8 Date Collected: 04/03/13 11:51

Date Received: 04/05/13 10:25

Method: 8021B - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L			04/11/13 01:30	1
Toluene	ND		0.50	0.10	ug/L			04/11/13 01:30	1
Ethylbenzene	ND		0.50	0.10	ug/L			04/11/13 01:30	1
m-Xylene & p-Xylene	ND		1.0	0.20	ug/L			04/11/13 01:30	1
o-Xylene	ND		1.0	0.20	ug/L			04/11/13 01:30	1
Xylenes, Total	ND		1.0	0.20	ug/L			04/11/13 01:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	112		50 - 150			-		04/11/13 01:30	1
4-Bromofluorobenzene (Surr)	92		80 - 130					04/11/13 01:30	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) - RA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.05-0.013	JB- U	0.050	0.010	mg/L		6	04/16/13 17:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		50 - 150					04/16/13 17:12	1
Trifluorotoluene (Surr)	103		50 - 150					04/16/13 17:12	1

TestAmerica Job ID: 580-37879-1

Lab Sample ID: 580-37879-13

Matrix: Water

5

6

9

13

Client Sample ID: KMW-10 Date Collected: 04/03/13 12:42 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-14 Matrix: Water

Method: 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene ND 0.50 0.10 ug/L 04/11/13 01:53 1 Toluene ND 0.50 0.10 ug/L 04/11/13 01:53 1 Ethylbenzene ND 0.50 0.10 ug/L 04/11/13 01:53 1 m-Xylene & p-Xylene ND 1.0 0.20 ug/L 04/11/13 01:53 1 o-Xylene ND 1.0 0.20 ug/L 04/11/13 01:53 1 Xylenes, Total ND 1.0 0.20 ug/L 04/11/13 01:53 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 111 50 - 150 04/11/13 01:53 1 4-Bromofluorobenzene (Surr) 98 80 - 130 04/11/13 01:53 1 Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Gasoline 0.021 0.010 mg/L 0.050 04/13/13 18:10 1 2.

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	91		50 - 150	10-10-10-10-10-10-10-10-10-10-10-10-10-1	04/13/13 18:10	1
L	Trifluorotoluene (Surr)	97		50 - 150		04/13/13 18:10	1

Client Sample Results

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

4-Bromofluorobenzene (Surr)

Trifluorotoluene (Surr)

TestAmerica Job ID: 580-37879-1

04/13/13 18:33

04/13/13 18:33

4

5 6

9

1

1

Client Sample ID: MW-13							Lab Samp	ole ID: 580-37	879-15
Date Collected: 04/03/13 14:10								Matrix	: Water
Date Received: 04/05/13 10:25		,							
- Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.9		0.50	0.10	ug/L			04/11/13 02:16	1
Toluene	1.8		0.50	0.10	ug/L			04/11/13 02:16	1
Ethylbenzene	5.1	B	0.50	0.10	ug/L			04/11/13 02:16	1
m-Xylene & p-Xylene	11	B	1.0	0.20	ug/L			04/11/13 02:16	1
o-Xylene	4.7		1.0	0.20	ug/L			04/11/13 02:16	1
Xylenes, Total	16	B	1.0	0.20	ug/L			04/11/13 02:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	98		50 - 150			-		04/11/13 02:16	1
4-Bromofluorobenzene (Surr)	95		80 - 130					04/11/13 02:16	1
 Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1.8	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.050	0.010	mg/L			04/13/13 18:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

50 - 150

50 - 150

114

94

TestAmerica Seattle

13

Lab Sample ID: 580-37879-16

Date Collected: 04/03/13 14:52 Date Received: 04/05/13 10:25

-	-	_	_	-			-		7		-	-		-		-	_
						I	M	12	ıt	r	i	X	1	W	a	t	eı

4

5

6

7

8

9

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L			04/11/13 02:38	1
Toluene	ND		0.50	0.10	ug/L			04/11/13 02:38	1
Ethylbenzene	ND		0.50	0.10	ug/L			04/11/13 02:38	1
m-Xylene & p-Xylene	ND		1.0	0.20	ug/L			04/11/13 02:38	1
o-Xylene	ND		1.0	0.20	ug/L			04/11/13 02:38	1
Xylenes, Total	ND		1.0	0.20	ug/L			04/11/13 02:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	103		50 - 150			-		04/11/13 02:38	1
4-Bromofluorobenzene (Surr)	98		80 - 130					04/11/13 02:38	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) - RA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline 🧲	0.05 -0.046	JB U	0.050	0.010	mg/L			04/16/13 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		50 - 150			-		04/16/13 18:19	1
Trifluorotoluene (Surr) -	102		50 - 150					04/16/13 18:19	1

Client Sample ID: KMW-7 Date Collected: 04/03/13 16:26 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-17 Matrix: Water

Analyte	Result	Qualifier	RL	MDĻ	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	5.1		0.50	0.10	ug/L			04/11/13 03:01	1
Toluene	3.8		0.50	0.10	ug/L			04/11/13 03:01	1
Ethylbenzene	1.4	B	0.50	0.10	ug/L			04/11/13 03:01	1
m-Xylene & p-Xylene	13	B	1.0	0.20	ug/L			04/11/13 03:01	1
o-Xylene	7.6		1.0	0.20	ug/L			04/11/13 03:01	1
Xylenes, Total	20	B	1.0	0.20	ug/L			04/11/13 03:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	107		50 - 150			-		04/11/13 03:01	1
4-Bromofluorobenzene (Surr)	102		80 - 130					04/11/13 03:01	1
Method: NWTPH-Gx - Northwe	est - Volatile Petro	leum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.12		0,050	0.010	mg/L			04/13/13 19:18	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85	50 - 150		04/13/13 19:18	1
Trifluorotoluene (Surr)	97	50 - 150		04/13/13 19:18	1

+ 12/13

6

7

8

9

Client Sample ID: KMW-70 Date Collected: 04/03/13 16:28 Date Received: 04/05/13 10:25 Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

6.0	0.50	0.10	ug/L		04/11/13 03:24	1
5.8	0.50	0.10	ug/L		04/11/13 03:24	1
1.3 B	0.50	0.10	ug/L		04/11/13 03:24	1
19 B	1.0	0.20	ug/L		04/11/13 03:24	1
11	1.0	0.20	ug/L		04/11/13 03:24	1
30 B	1.0	0.20	ug/L		04/11/13 03:24	1
%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
108	50 - 150				04/11/13 03:24	1
93	80 - 130				04/11/13 03:24	1
	1.3 B 19 B 11 30 B %Recovery Qualifier 108	5.8 0.50 1.3 0.50 19 1.0 11 1.0 30 8 1.0 %Recovery Qualifier Limits 108 50 - 150	5.8 0.50 0.10 1.3 B 0.50 0.10 19 B 1.0 0.20 11 1.0 0.20 30 B 1.0 0.20 108 Qualifier Limits 50 - 150 50 - 150 50	5.8 0.50 0.10 ug/L 1.3 0.50 0.10 ug/L 19 1.0 0.20 ug/L 11 1.0 0.20 ug/L 30 1.0 0.20 ug/L 108 20 150	5.8 0.50 0.10 ug/L 1.3 B 0.50 0.10 ug/L 19 B 1.0 0.20 ug/L 11 1.0 0.20 ug/L 30 B 1.0 0.20 ug/L <u>%Recovery</u> Qualifier Limits 108 50 - 150 Prepared	5.8 0.50 0.10 ug/L 04/11/13 03:24 1.3 B 0.50 0.10 ug/L 04/11/13 03:24 19 B 1.0 0.20 ug/L 04/11/13 03:24 11 1.0 0.20 ug/L 04/11/13 03:24 30 B 1.0 0.20 ug/L 04/11/13 03:24 30 B 1.0 0.20 ug/L 04/11/13 03:24 11 1.0 0.20 ug/L 04/11/13 03:24 30 B 1.0 0.20 ug/L 04/11/13 03:24 108 50 - 150 0.20 ug/L 04/11/13 03:24 04/11/13 03:24

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) - RA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.23	B	0.050	0.010	mg/L			04/16/13 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		50 - 150			-	- 14	04/16/13 18:41	1
Trifluorotoluene (Surr)	104		50 - 150					04/16/13 18:41	1

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

Client Sample ID: MW-9 Date Collected: 04/03/13 17:30

TestAmerica Job ID: 580-37879-1

Lab Sample ID: 580-37879-19 Matrix: Water

Date Received: 04/05/13 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	25		0.50	0.10	ug/L			04/11/13 03:46	1
Toluene	13		0.50	0.10	ug/L			04/11/13 03:46	1
Ethylbenzene	46	B	0.50	0.10	ug/L			04/11/13 03:46	1
m-Xylene & p-Xylene	66	B	1.0	0.20	ug/L			04/11/13 03:46	1
o-Xylene	36		1.0	0.20	ug/L			04/11/13 03:46	1
Xylenes, Total	100	P	1.0	0.20	ug/L			04/11/13 03:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	81		50 - 150			-		04/11/13 03:46	1
4-Bromofluorobenzene (Surr)	83		80 - 130					04/11/13 03:46	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	6.0	B	0.25	0.050	mg/L			04/16/13 19:49	5
Surrogate	%Recovery	Qualifier	Limits		×.		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		50 - 150			-		04/16/13 19:49	5
Trifluorotoluene (Surr)	106		50 - 150					04/16/13 19:49	5

7

8

9 10

Client Sample ID: KMW-22	2						Lab Sam	ole ID: 580-37	879-20
Date Collected: 04/03/13 18:10 Date Received: 04/05/13 10:25							1		x: Water
Method: 8021B - Volatile Orga	nic Compounds	(GC) - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	4900		25	5.0	ug/L			04/14/13 04:26	50
Toluene	450		25	5.0	ug/L			04/14/13 04:26	50
Ethylbenzene	2500	B	25	5.0	ug/L			04/14/13 04:26	50
m-Xylene & p-Xylene	5000	B	50	10	ug/L			04/14/13 04:26	50
o-Xylene	430	B	50	10	ug/L			04/14/13 04:26	50
Xylenes, Total	5400	B	50	10	ug/L			04/14/13 04:26	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	109		50 - 150			-		04/14/13 04:26	50
4-Bromofluorobenzene (Surr)	96		80 _ 130					04/14/13 04:26	50
_ Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	34		2.5	0.50	mg/L			04/13/13 12:51	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		50 - 150			-		04/13/13 12:51	50
Trifluorotoluene (Surr) _	102		50 - 150					04/13/13 12:51	50

TestAmerica Job ID: 580-37879-1

4 5 6

7

8 9 10

Method: 8260B - Volatile Org Analyte		GC/MS) - RA	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	6.2		1.0	0.15	ug/L			04/16/13 19:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		75 - 120					04/16/13 19:26	
Ethylbenzene-d10	107		80 - 120					04/16/13 19:26	
Fluorobenzene (Surr)	97		80 - 120					04/16/13 19:26	
Toluene-d8 (Surr)	102		85 - 120					04/16/13 19:26	
Trifluorotoluene (Surr)	116		80 - 120					04/16/13 19:26	
Analyto		quantita	1.44	111010	onne		open on		
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte			0.50	0.10	ua/l			04/14/13 01:46	
Benzene	5.8		0.50	0.10	ug/L			04/14/13 01:46	
Benzene Toluene	5.8 ND		0.50	0.10	ug/L			04/14/13 01:46	
Benzene Toluene Ethylbenzene	5.8 ND 0.5 _0.48		0.50 0.50	0.10 0.10	ug/L ug/L			04/14/13 01:46 04/14/13 01:46	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	5.8 ND 0.5 -0.48 ND		0.50 0.50 1.0	0.10 0.10 0.20	ug/L ug/L ug/L			04/14/13 01:46 04/14/13 01:46 04/14/13 01:46	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	5.8 ND 0.5 0.48 ND ND	-JB U	0.50 0.50 1.0 1.0	0.10 0.10 0.20 0.20	ug/L ug/L ug/L ug/L	-to relate 1 ors	S 19 KNR KARA KARA	04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	5.8 ND 0.5 -0.48 ND	_JB→ <i>U</i>	0.50 0.50 1.0	0.10 0.10 0.20	ug/L ug/L ug/L			04/14/13 01:46 04/14/13 01:46 04/14/13 01:46	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	5.8 ND 0.5 0.48 ND ND		0.50 0.50 1.0 1.0	0.10 0.10 0.20 0.20	ug/L ug/L ug/L ug/L		Prepared	04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	5.8 ND 0.5 ND ND ND ND		0.50 0.50 1.0 1.0 1.0	0.10 0.10 0.20 0.20	ug/L ug/L ug/L ug/L		Prepared	04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46	Dil Fa
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	5.8 ND 0.5 ND ND ND ND ND		0.50 0.50 1.0 1.0 1.0 Limits	0.10 0.10 0.20 0.20	ug/L ug/L ug/L ug/L		Prepared	04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 Analyzed	Dil Fa
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate a,a,a-Trifluorotoluene	5.8 ND 0.48 ND ND ND ND ND ND 108		0.50 0.50 1.0 1.0 1.0 <u>Limits</u> 50 - 150	0.10 0.10 0.20 0.20	ug/L ug/L ug/L ug/L		Prepared	04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 Analyzed 04/14/13 01:46	Dil Fa
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate a,a,a-Trifluorotoluene	5.8 ND 0.48 ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	0.50 0.50 1.0 1.0 1.0 <u>Limits</u> 50 - 150 80 - 130	0.10 0.10 0.20 0.20	ug/L ug/L ug/L ug/L		Prepared	04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 04/14/13 01:46 Analyzed 04/14/13 01:46	

Gasoline	0.05 0.048-	JB U	0.050	0.010 mg/L		04/10/13 19.20	1	
Surrogate	%Recovery	Qualifier	Limits	*	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	97		50 - 150		Annual Contraction of	04/16/13 19:26	1	
Trifluorotoluene (Surr)	103		50 - 150			04/16/13 19:26	1	

12 13

Client Sample ID: RINSEATE 2

Date Collected: 04/03/13 19:20

Date Received: 04/05/13 10:25

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene		ND		0.50	0.10	ug/L			04/14/13 02:09	1
Toluene	1	ND		0.50	0.10	ug/L			04/14/13 02:09	1
Ethylbenzene		ND		0.50	0.10	ug/L			04/14/13 02:09	1
m-Xylene & p-Xylene		ND		1.0	0.20	ug/L			04/14/13 02:09	1
o-Xylene		ND		1.0	0.20	ug/L			04/14/13 02:09	1
Xylenes, Total		ND		1.0	0.20	ug/L			04/14/13 02:09	1
Surrogate		%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene		110		50 - 150			-		04/14/13 02:09	1
4-Bromofluorobenzene (Surr)		96		80 - 130					04/14/13 02:09	1

TestAmerica Job ID: 580-37879-1

Lab Sample ID: 580-37879-22

Matrix: Water

5

6

7

8

9

5/1/2013

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

Client Sample ID: FB2 Date Collected: 04/03/13 19:30

TestAmerica Job ID: 580-37879-1

Lab Sample ID: 580-37879-23 Matrix: Water

Date Received: 04/05/13 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L			04/14/13 02:32	1
Toluene	ND		0.50 -	0.10	ug/L			04/14/13 02:32	1
Ethylbenzene	ND		0.50	0.10	ug/L			04/14/13 02:32	1
m-Xylene & p-Xylene	ND		1.0	0.20	ug/L			04/14/13 02:32	1
o-Xylene	ND		1.0	0.20	ug/L			04/14/13 02:32	1
Xylenes, Total	ND		1.0	0.20	ug/L			04/14/13 02:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	110		50 - 150			-		04/14/13 02:32	1
4-Bromofluorobenzene (Surr)	103		80 - 130					04/14/13 02:32	1

Client Sample Results

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA TestAmerica Job ID: 580-37879-1

04/14/13 01:24

1

7

8

9 (1)

Client Sample ID: TRIE	BLANK					Lab Sam	ple ID: 580-37	879-24
Date Collected: 03/27/13 00	:00						Matrix	x: Water
Date Received: 04/05/13 10	:25							
Method: 8021B - Volatile (Organic Compounds (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND HUT	0.50	0.10	ug/L			04/14/13 01:24	1
Toluene	ND HO	0.50	0.10	ug/L			04/14/13 01:24	1
Ethylbenzene	0.5 0.11 JHB UJ	0.50	0.10	ug/L			04/14/13 01:24	1
m-Xylene & p-Xylene	1.0 -0.21 JHB UJ	1.0	0.20	ug/L			04/14/13 01:24	1
o-Xylene	ND HOS	1.0	0.20	ug/L			04/14/13 01:24	1
Xylenes, Total	1.0 -0.29 JHB-UJ	1.0	0.20	ug/L			04/14/13 01:24	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	113	50 - 150					04/14/13 01:24	1

80 - 130

98

4-Bromofluorobenzene (Surr)

5

6 7

8 9 10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-133836/4	l I									Client S	Sample ID:		
Matrix: Water											Prep T	ype: To	otal/NA
Analysis Batch: 133836				t e									
		MB	MB										
Analyte	R	esult	Qualifier	RL		MDL Un		D	P	repared	Analyz		Dil Fa
Benzene		ND		1.0		0.15 ug/	-				04/16/13	13:55	
,		MB	МВ										
Surrogate	%Reco		Qualifier	Limits					P	repared	Analyz	ed	Dil Fa
4-Bromofluorobenzene (Surr)		110		75 - 120							04/16/13		
Ethylbenzene-d10		106		80 - 120							04/16/13	13:55	2
=luorobenzene (Surr)		97		80 - 120							04/16/13	13:55	
Toluene-d8 (Surr)		103		85 - 120							04/16/13	13:55	
Trifluorotoluene (Surr)		110		80 - 120							04/16/13		
Lab Sample ID: LCS 580-133836	5							С	lient	Sample	ID: Lab Co	ontrol S	Sample
Matrix: Water										•		ype: To	
Analysis Batch: 133836											100200303-00 50		
				Spike	LCS	LCS					%Rec.		
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
Benzene				25.0	28.1		ug/L		-	112	80 - 120		
	LCS			Marcare House									
		Qual	ifier	Limits									
Surrogate	%Recovery	Quan											
4-Bromofluorobenzene (Surr)	107			75 - 120									
	107 106			75 - 120 80 - 120									
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr)	107 106 98			75 - 120 80 - 120 80 - 120									
4-Bromofluorobenzene (Surr) Ethylbenzene-d10	107 106 98 103			75 - 120 80 - 120 80 - 120 85 - 120									
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr)	107 106 98			75 - 120 80 - 120 80 - 120									
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Eluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr)	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120				Client	Sam		ab Contro	I Sama	do Dur
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120			7	Client	Sam	ple ID: I	Lab Contro		
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120				Client	Sam	ple ID: I		l Samp ype: To	
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120 80 - 120		1050	2	Client	Sam	ple ID: I	Prep T		otal/NA
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike		LCSD		Client			Prep T %Rec.	уре: То	rPC
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike Added	Result	LCSD Qualifier	Unit	Client	Sam	%Rec	Prep T %Rec. Limits	ype: To	RPE Limit
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike				Client			Prep T %Rec.	уре: То	RPE Limi
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte	107 106 98 103 107			75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike Added	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limi
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte	107 106 98 103 107 6/6	LCSI		75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike Added	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limi
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene	107 106 98 103 107 6/6	LCSI		75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike Added 25.0	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limit
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene	107 106 98 103 107 6/6 6/6 <i>LCSD</i> %Recovery	LCSI		75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 Spike Added 25.0	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	rPC
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofluorobenzene (Surr)	107 106 98 103 107 6/6 6/6 %Recovery 109	LCSI		75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 Limits 75 - 120	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limit
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofluorobenzene (Surr) Ethylbenzene-d10	107 106 98 103 107 6/6 6/6 %Recovery 109 107	LCSI		75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 <i>Limits</i> 75 - 120 80 - 120	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limit
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr)	107 106 98 103 107 6/6 6/6 %Recovery 109 107 98	LCSI		75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 Limits 75 - 120 80 - 120 80 - 120	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limi
4-Bromofiluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofiluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr)	107 106 98 103 107 6/6 6/6 %Recovery 109 107 98 104 99	LCSE Qual) ifier	75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 Limits 75 - 120 80 - 120 80 - 120 85 - 120 80 - 120	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limi
4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Eluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofluorobenzene (Surr) Ethylbenzene-d10 Eluorobenzene (Surr) Toluene-d8 (Surr)	107 106 98 103 107 6/6 6/6 %Recovery 109 107 98 104 99	LCSE Qual) ifier	75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 Limits 75 - 120 80 - 120 80 - 120 85 - 120 80 - 120	Result		Unit	Client		%Rec	Prep T %Rec. Limits	ype: To	RPE Limit
4-Bromofiluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofiluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr)	107 106 98 103 107 6/6 <i>LCSD</i> %Recovery 109 107 98 104 99	LCSE Qual) ifier	75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 Limits 75 - 120 80 - 120 80 - 120 85 - 120 80 - 120	Result		Unit	Client	<u>D</u>	%Rec 108	Prep T %Rec. Limits	ype: To	RPE Limit 30
4-Bromofiluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) Lab Sample ID: LCSD 580-13383 Matrix: Water Analysis Batch: 133836 Analysis Batch: 133836 Analyte Benzene Surrogate 4-Bromofiluorobenzene (Surr) Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr) ethod: 8021B - Volatile Org	107 106 98 103 107 6/6 <i>LCSD</i> %Recovery 109 107 98 104 99	LCSE Qual) ifier	75 - 120 80 - 120 80 - 120 85 - 120 80 - 120 80 - 120 Spike Added 25.0 Limits 75 - 120 80 - 120 80 - 120 85 - 120 80 - 120	Result		Unit	Client	<u>D</u>	%Rec 108	Prep T %Rec. Limits 80 - 120 ample ID: I	ype: To	Elank

	IND	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	0.10	ug/L			04/10/13 16:48	1
Toluene	ND		0.50	0.10	ug/L			04/10/13 16:48	1
Ethylbenzene	0.108	J T	0.50	0.10	ug/L			04/10/13 16:48	1

13

TestAmerica Seattle

Ethylbenzene

m-Xylene & p-Xylene

Lab Sample ID: MB 580-1334 Matrix: Water	87/4								Client	Sample ID: N Prep Ty		
Analysis Batch: 133487	140	MB										
		Qualifier		RL	MDI	Unit		D	Prepared	Analyze	d	Dil Fa
Analyte		d T		1.0	0.20				rieparea	04/10/13 10		Birra
m-Xylene & p-Xylene	0.231 NE			1.0	0.20	-				04/10/13 10		
o-Xylene Xylenes, Total	0.388			1.0		ug/L				04/10/13 10		
Aylenes, total	0.000				0.20	ug/ L						
	ME	B MB										
Surrogate	%Recovery		Limits						Prepared	Analyze		Dil Fa
a,a,a-Trifluorotoluene	111		50 - 150							04/10/13 1		
4-Bromofluorobenzene (Surr)	99		80 - 130)						04/10/13 1	6:48	
Lab Sample ID: LCS 580-1334	487/5							Cli	ent Samp	le ID: Lab Co		
Matrix: Water										Prep Ty	pe: Io	otal/N/
Analysis Batch: 133487			Caller	1.00	LCS					%Rec.		
- 00 - 10 - 10 - 10 - 10 - 10 - 10 - 10			Spike				Unit		D %Rec	Limits		
Analyte			Added	Result 25.1	Qua	Inner	ug/L			80 - 125		
Benzene			25.0	23.1			ug/L		96	80 - 120		
Toluene			25.0	24.0			ug/L		95	80 - 125		
Ethylbenzene			50.0	47.4			ug/L		95	75 - 120		
m-Xylene & p-Xylene			25.0	24.2			ug/L		97	75 - 120		
p-Xylene		_	20.0	24.2			ugri		07	10-120		
Surrogate	LCS LCS %Recovery Qu		Limits									
a,a,a-Trifluorotoluene	101		50 - 150									
4-Bromofluorobenzene (Surr)	97		80 - 130									
Lab Sample ID: LCSD 580-13	3487/6						с	lient S	Sample ID:	Lab Control	Samp	le Du
Matrix: Water									• • • • • • • • • • • • • • • • • • • •	Prep Ty		
Analysis Batch: 133487										50000000000000000000000000000000000000		
,,			Spike	LCSD	LCS	D				%Rec.		RP
Analyte			Added	Result	Qua	lifier	Unit		D %Rec	Limits	RPD	Lin
Benzene	÷ 2 		25.0	26.2	-		ug/L		105	80 - 125	4	-
Toluene			25.0	24.1			ug/L		97	80 - 120	1	2
Ethylbenzene			25.0	23.9			ug/L		95	80 - 125	0	2
m-Xylene & p-Xylene			50.0	47.4			ug/L		95	75 - 120	0	1
o-Xylene			25.0	24.4			ug/L		98	75 - 120	1	1
	LCSD LCS	SD										
Surrogate	%Recovery Qua		Limits									
a,a,a-Trifluorotoluene	101		50 - 150									
4-Bromofluorobenzene (Surr)	101		80 - 130									
Lab Sample ID: MB 580-1337	15/4								Client	Sample ID: N	lethoc	Blan
Matrix: Water										Prep Ty		
Analysis Batch: 133715												
	MB	MB										
Analyte	Result	Qualifier	F	RL	MDL	Unit		D	Prepared	Analyze	d	Dil Fa
Benzene	ND		0.5	50	0.10	ug/L				04/13/13 23	3:29	
Toluene	ND		0.5	50	0.10	ug/L				04/13/13 23	3:29	
										01/13/13 2		

TestAmerica Seattle

5/1/2013

1

1

04/13/13 23:29

04/13/13 23:29

0.10 ug/L

0.20 ug/L

0.50

1.0

0.124

0.325 J

	4.814									Clients	ample ID: M	othod	Riani
Lab Sample ID: MB 580-1337	15/4									chent 3	Prep Ty		
Matrix: Water											1100 1	p 01 10	
Analysis Batch: 133715	M	B MB											
Analyte		It Qualifier	RL		MDL	Unit		D	Pr	epared	Analyze	đ	Dil Fa
o-Xylene		101	1.0		0.20	ug/L					04/13/13 23	:29	
Xylenes, Total		7 1 1	1.0		0.20						04/13/13 23	:29	5
						0							
	M	B MB											
Surrogate	%Recove		Limits						Pr	repared	Analyze		Dil Fa
a,a,a-Trifluorotoluene	11	6	50 - 150								04/13/13 23		
4-Bromofluorobenzene (Surr)	S	9	80 - 130								04/13/13 23	3:29	
								~					
Lab Sample ID: LCS 580-133	715/5							Clie	ent	Sample	ID: Lab Cor		
Matrix: Water											Prep Ty	pe: To	tal/N/
Analysis Batch: 133715													
			Spike		LCS	121			225		%Rec.		
Analyte			Added	Result	Quali	ifier	Unit		D	%Rec	Limits		
Benzene			25.0	27.4			ug/L			110	80 - 125		
Toluene			25.0	25.0			ug/L			100	80 - 120		
Ethylbenzene			25.0	24.7			ug/L			99	80 - 125		
m-Xylene & p-Xylene			50.0	49.5			ug/L			99	75 - 120		
o-Xylene			25.0	25.2			ug/L			101	75 - 120		
	LCS L	25											
Surrogate	%Recovery Q		Limits										
a,a,a-Trifluorotoluene	105		50 - 150										
4-Bromofluorobenzene (Surr)	96		80 - 130										
4-Bromondorobenzene (Sun)	00		00 - 100										
Lab Sample ID: LCSD 580-13	3715/6						С	lient S	am	ple ID: I	ab Control	Sampl	e Du
Matrix: Water										• *******	Prep Ty		
Analysis Batch: 133715													
Analysis Batom room			Spike	LCSD	LCSE)					%Rec.		RPI
Analyte			Added	Result	Quali	fier	Unit		D	%Rec	Limits	RPD	Limi
Benzene			25.0	26.9			ug/L		-	108	80 - 125	2	2
Toluene			25.0	25.0			ug/L			· 100	80 - 120	0	2
			25.0	24.9			ug/L			100	80 - 125	1	2
Ethylbenzene			50.0	50.0			ug/L			100	75 - 120	1	2
ā.			6203/04/09/05				ug/L			102	75 - 120	1	2
m-Xylene & p-Xylene			25.0	25.4									1.0
m-Xylene & p-Xylene			25.0	25.4									
m-Xylene & p-Xylene	LCSD LC	SD	25.0	25.4			-						
m-Xylene & p-Xylene o-Xylene	LCSD LC %Recovery Q		25.0 <i>Limits</i>	25.4									
Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate a,a,a-Trifluorotoluene				25.4									

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-133707/5 Matrix: Water							Client Sa	ample ID: Metho Prep Type: 1	
Analysis Batch: 133707									
 FOLDAR 422 Folder 10 	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.050	0.010	mg/L			04/13/13 11:43	1

TestAmerica Seattle

A5/2/13

5/1/2013

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Trifluorotoluene (Surr)

07/5							Client S	Sample ID: Metho	
								Prep Type:	Total/NA
Л	NB MB								
%Recove	ery Qualifie	r Limits					Prepared	Analyzed	Dil Fa
	83	50 - 150						04/13/13 11:43	
1	01	50 - 150						04/13/13 11:43	
707/6						Clie	nt Sample	e ID: Lab Control	Sample
								Prep Type: "	Total/N/
		Spike	LCS	LCS				%Rec.	
		Added		Qualifier	Unit	D		Limits	
		1.00	0.814		mg/L		81	79 ₋ 110	
LCS L	cs								
%Recovery G	ualifier	Limits							
92		50 - 150							
95		50 - 150							
3707/7					CI	ient Sa	mple ID:		
								Prep Type:	Iotal/N/
		Spike	LCSD	LCSD				%Rec.	RP
		Added			Unit	D	%Rec	Limits RP	
		1.00	0.880		mg/L		88	79 - 110	8 2
		Linnite							
	uaimer								
34		00 - 700							
34/5							Client S	Sample ID: Metho	od Blan
N	IB MB								
Res	ult Qualifie	r RL		MDL Unit		D	Prepared	Analyzed	Dil Fa
0.01	37 J	0.050	(0.010 mg/L				04/16/13 13:55	
	NB MB								
							Prepared	Analyzed	
%Recove	erv Qualifie	r Limits						Allalyzeu	Dil Fa
	ery Qualifie	r <u>Limits</u> 50 - 150					riepaieu		Dil Fa
	%Recover 1 707/6 LCS L %Recovery G 92 95 33707/7 LCSD L %Recovery G 101 94 34/5 M Res	%Recovery Qualifier 83 101 707/6 LCS LCS LCS %Recovery Qualifier 92 95 93707/7 LCSD %Recovery Qualifier 101 94 334/5 MB MB MB Qualifier J	$ \frac{\begin{tabular}{ c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{\begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\ensuremath{\screwery}}{\ensuremath{\screwery}} \frac{\ensuremath{\screwery}}{\ensuremath{\screwery}} \ensuremath{\screwerwaremath{\$	$\frac{\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\frac{\begin{tabular}{ c c c c c } \hline \end{tabular}{ll c c c c c } \hline \end{tabular}{ll c c c c c c } \hline \end{tabular}{ll c c c c c c c } \hline \end{tabular}{ll c c c c c c c } \hline \end{tabular}{ll c c c c c c c } \hline \end{tabular}{ll c c c c c c c } \hline \end{tabular}{ll c c c c c c } \hline \end{tabular}{ll c c c c c c } \hline \end{tabular}{ll c c c c c c } \hline \end{tabular}{ll c c c c c c c c c } \hline \end{tabular}{ll c c c c c c c c c } \hline \end{tabular}{ll c c c c c c c c c c c c c c c c c c $	$\frac{\% Recovery}{83} \frac{Qualifier}{101} \frac{Limits}{50.150}$ $\frac{Prepared}{101}$ $\frac{83}{101} \frac{50.150}{50.150}$ $\frac{Client Sample}{Client Sample}$ $\frac{Added}{1.00} \frac{Result}{0.814} \frac{Qualifier}{mg/L} \frac{D}{g} \frac{\% Rec}{81}$ $\frac{LCS}{95} \frac{LCS}{50.150}$ $\frac{VRecovery}{92} \frac{Qualifier}{200} \frac{Limits}{50.150}$ $\frac{VRecovery}{92} \frac{Qualifier}{200} \frac{Limits}{50.150}$ $\frac{Spike}{1.00} \frac{LCSD}{0.880} \frac{LCSD}{mg/L} \frac{D}{g} \frac{\% Rec}{88}$ $\frac{LCSD}{200} \frac{LCSD}{200} \frac{Valifier}{200} \frac{Limits}{50.150}$ $\frac{Valifier}{101} \frac{Limits}{50.150}$ $\frac{Valifier}{10.0050} \frac{Valifier}{0.010} \frac{Valifier}{mg/L} \frac{D}{10} \frac{Valifier}{10}$	MB MB MB %Recovery Qualifier Limits Prepared Analyzed 04/13/13 11:43 04/13/13 11:43 04/13/13 11:43 04/13/13 11:43 707/6 Client Sample ID: Lab Control Prep Type:

50 - 150

101

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-13 Matrix: Water Analysis Batch: 133834	3834/7					Clie	ent Sam	ple ID:	Lab Contro Prep T	l Sampl ype: Tot	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline			1.00	0.845		mg/L		85	79 - 110	4	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	106		50 _ 150								
Trifluorotoluene (Surr)	99		50 - 150								

Client Sample ID: KMW-15

Date Collected: 04/02/13 13:23

Date Received: 04/05/13 10:25

Client Sample ID: KMW-16

Date Collected: 04/02/13 15:35

Date Received: 04/05/13 10:25

Prep Type

Total/NA

Total/NA

Batch

Туре

Analysis

Analysis

Batch

Method

NWTPH-Gx

8021B

Lab Sample ID: 580-37879-1

TAL SEA TAL SEA

Lab Sample ID: 580-37879-2 Matrix: Water

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 19:04	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 13:37	JMB	TAL SEA

Dilution

Factor

1

1

Run

Batch

Number

133487

133707

Prepared

or Analyzed

04/10/13 18:41

04/13/13 13:14

Analyst

GH

JMB

Lab

Client Sample ID: KMW-14 Date Collected: 04/02/13 15:15

Date Received: 04/05/13 10:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	RA	1	133836	04/16/13 19:04	JMB	TAL SEA
Total/NA	Analysis	8021B		1	133487	04/10/13 19:27	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 13:59	JMB	TAL SEA

Client Sample ID: MWG-1

Date Collected: 04/02/13 16:15 Date Received: 04/05/13 10:25

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 19:50	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 14:22	JMB	TAL SEA

Client Sample ID: KMW-5 Date Collected: 04/02/13 17:25

Date Received: 04/05/13 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 21:20	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 14:45	JMB	TAL SEA

Lab Sample ID: 580-37879-3

Lab Sample ID: 580-37879-4

Lab Sample ID: 580-37879-5

Matrix: Water

Matrix: Water

Matrix: Water

Dilution

Factor

1

1

Run

Batch

Number

133487

133707

Prepared

or Analyzed

04/10/13 21:43

04/13/13 15:08

Analyst

GH

JMB

Lab

TAL SEA

TAL SEA

Client Sample ID: KMW-50

Date Collected: 04/02/13 17:26

Date Received: 04/05/13 10:25

Client Sample ID: MWG-3

Date Collected: 04/02/13 18:06

Prep Type

Total/NA

Total/NA

Lab Sample ID: 580-37879-6

7

Lab Sample ID: 580-37879-7 Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 04/05/13 10:25	
Batch B	Batch

Batch

Туре

Analysis

Analysis

Batch

Method

NWTPH-Gx

8021B

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 22:06	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 16:16	JMB	TAL SEA
Total/NA	Analysis	8021B	DL	10	133715	04/14/13 04:49	JMB	TAL SEA

Client Sample ID: RINSEATE

Date Collected: 04/02/13 18:34	
Date Received: 04/05/13 10:25	

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 22:29	GH	TAL SEA

Client Sample ID: FB

Date Collected: 04/02/13 18:41

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 22:51	GH	TAL SEA

Client Sample ID: KMW-18

Date Collected: 04/03/13 09:33 Date Received: 04/05/13 10:25

Lab Sample ID: 5	80-37879-10
	Matrix: Water

Lab Sample ID: 580-37879-11

Lab Sample ID: 580-37879-8

Lab Sample ID: 580-37879-9

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 23:14	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 16:39	JMB	TAL SEA

Client Sample ID: KMW-24 Date Collected: 04/03/13 10:08

Date Received: 04/05/13 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/10/13 23:36	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 17:02	JMB	TAL SEA

TestAmerica Seattle

Matrix: Water

Datah

Duenened

Client Sample ID: S-2

Г

Date Collected: 04/03/13 10:52

Date Received: 04/05/13 10:25

Datah

Detek

Lab Sample ID: 580-37879-12 Matrix: Water

	Batch	Batch			Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8021B		1	133487	04/10/13 23:59	GH	TAL SEA	
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 17:24	JMB	TAL SEA	
Total/NA	Analysis	8021B	DL	50	133715	04/14/13 04:03	JMB	TAL SEA	
Client Samp	le ID: KMW-	-8					La	ab Sample I	D: 580-37879-13
Client Samp							La	ab Sample I	D: 580-37879-13 Matrix: Water
	: 04/03/13 11:5	51					La	ab Sample I	
Date Collected	: 04/03/13 11:5	51		Dilution	Batch	Prepared	La	ab Sample I	
Date Collected	: 04/03/13 11:5 : 04/05/13 10:2	51 25	Run	Dilution Factor	Batch Number	Prepared or Analyzed	La	ab Sample I	
Date Collected Date Received	: 04/03/13 11:5 : 04/05/13 10:2 Batch	51 25 Batch	Run			•			

Dilution

Client Sample ID: KMW-10

Date Collected: 04/03/13 12:42 Date Received: 04/05/13 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/11/13 01:53	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 18:10	JMB	TAL SEA

Client Sample ID: MW-13

Date Collected: 04/03/13 14:10 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-15

Lab Sample ID: 580-37879-14

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/11/13 02:16	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	133707	04/13/13 18:33	JMB	TAL SEA

Client Sample ID: MWG-2 Date Collected: 04/03/13 14:52 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-16 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/11/13 02:38	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	133834	04/16/13 18:19	JMB	TAL SEA

Dilution

Factor

1

1

Run

Batch

Number

133487

133707

Prepared

or Analyzed

04/11/13 03:01

04/13/13 19:18

Analyst

GH

JMB

Lab

Lab

TAL SEA

TAL SEA

TAL SEA

TAL SEA

Client Sample ID: KMW-7 Date Collected: 04/03/13 16:26

Date Received: 04/05/13 10:25

Client Sample ID: KMW-70

Date Collected: 04/03/13 16:28

Date Received: 04/05/13 10:25

Prep Type

Total/NA

Total/NA

Batch

Туре

Analysis

Analysis

Batch

Method

NWTPH-Gx

8021B

Lab Sample ID: 580-37879-17

7

Lab Sample ID: 580-37879-18 Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared	
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst
Total/NA	Analysis	8021B		1	133487	04/11/13 03:24	GH
Total/NA	Analvsis	NWTPH-Gx	RA	1	133834	04/16/13 18:41	JMB

Date Collected: 04/03/13 17:30 Date Received: 04/05/13 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133487	04/11/13 03:46	GH	TAL SEA
Total/NA	Analysis	NWTPH-Gx	DL	5	133834	04/16/13 19:49	JMB	TAL SEA

Client Sample ID: KMW-22

Date Collected: 04/03/13 18:10 Date Received: 04/05/13 10:25

Lab Sample ID: 580-37879-20

Lab Sample ID: 580-37879-19

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Gx		50	133707	04/13/13 12:51	JMB	TAL SEA
Total/NA	Analysis	8021B	DL	50	133715	04/14/13 04:26	JMB	TAL SEA

Client Sample ID: KMW-6

Date Collected: 04/03/13 19:00 Date Received: 04/05/13 10:25 ID: 580-37879-21 Matrix: Water

Bato	:h	Prepared		
Numbe	er	or Analyzed	Analyst	Lab
13383	6	04/16/13 19:26	JMB	TAL SEA

Dilution	Batch	Prepared	
			Lab Sample

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	RA	1	133836	04/16/13 19:26	JMB	TAL SEA
Total/NA	Analysis	8021B		1	133715	04/14/13 01:46	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	133834	04/16/13 19:26	JMB	TAL SEA

Lab Sample ID: 580-37879-22 **Client Sample ID: RINSEATE 2** Date Collected: 04/03/13 19:20 Matrix: Water Date Received: 04/05/13 10:25 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8021B 1 133715 04/14/13 02:09 JMB TAL SEA **Client Sample ID: FB2** Lab Sample ID: 580-37879-23 Date Collected: 04/03/13 19:30 Matrix: Water Date Received: 04/05/13 10:25 Batch Batch Dilution Batch Prepared Method Run Factor Number Prep Type Туре or Analyzed Analyst Lab Total/NA Analysis 8021B 1 133715 04/14/13 02:32 JMB TAL SEA **Client Sample ID: TRIB BLANK** Lab Sample ID: 580-37879-24 Date Collected: 03/17/13 00:00 Matrix: Water Date Received: 04/05/13 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	133715	04/14/13 01:24	JMB	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Seattle

Certification Summary

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
L-A-B	DoD ELAP		L2236	06-19-13
L-A-B	ISO/IEC 17025		L2236	06-19-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

Sample Summary

Matrix

Water

Client: TerraGraphics Inc Project/Site: Tiger Oil Yakima, WA

Client Sample ID

KMW-15

KMW-16

KMW-14

MWG-1

KMW-5

KMW-50

MWG-3

FB

S-2

RINSEATE

KMW-18

KMW-24

KMW-8

KMW-10

MW-13

MWG-2

KMW-7

MW-9

KMW-70

KMW-22

KMW-6

FB2

RINSEATE 2

TRIB BLANK

Lab Sample ID

580-37879-1

580-37879-2

580-37879-3

580-37879-4

580-37879-5

580-37879-6

580-37879-7

580-37879-8

580-37879-9

580-37879-10

580-37879-11

580-37879-12

580-37879-13

580-37879-14

580-37879-15

580-37879-16

580-37879-17

580-37879-18

580-37879-19

580-37879-20

580-37879-21

580-37879-22

580-37879-23

580-37879-24

TestAmerica Job ID: 580-37879-1

Received

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

04/05/13 10:25

Collected

04/02/13 13:23

04/02/13 15:35

04/02/13 15:15

04/02/13 16:15

04/02/13 17:25

04/02/13 17:26

04/02/13 18:06

04/02/13 18:34

04/02/13 18:41

04/03/13 09:33

04/03/13 10:08

04/03/13 10:52

04/03/13 11:51

04/03/13 12:42

04/03/13 14:10

04/03/13 14:52

04/03/13 16:26

04/03/13 16:28

04/03/13 17:30

04/03/13 18:10

04/03/13 19:00

04/03/13 19:20

04/03/13 19:30

03/17/13 00:00

5	5
8	
9)

TestAmerica Seattle

TAL-8274-580 (0210)				PINK – Field Copy	ent with Report;	4RY – Returned to Cl	DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy
							Comments
Date	-	Sign/Print	3. Received By Sign/Print	Time	Date		3. Relinquished By Sign/Print
Date Time		Sign#Print ¹	2. Récéved By Sign	lime	Date		2. Relinquished By Sign/Print
04/165/20(3 1025	Miale Riley	Print Kly	Hecelyed By	1000 Illine	$\frac{ uate }{ \dot{u} /u /u}$		1. Romandussied by Signierun Mathe Perrol / MIKE PROCSAL
	-	s (specity)	UC Requirements (Specify)	STANDARD		🗌 10 Days 🔲 15 Days	iness days)
Months are retained longer than 1 month)		Peturn To Client	Poison B Unknown	Skin Irritant	☐ Flammable □	X Non-Hazard 🗌 Fia	
(A fee may be assessed if samples	Disposal By Lab	Sample Disposal			7	Possible Hazard Identification	
		XX	6.	\times	1052	4/3/13	12- 5-2
		XX	6		1005	4/3/13	~ Kmw-24
		X X	0	\geq	0933	4/3/13	to- KmW-18
		×	5	×	1841	4/2/13	9- F8
		×	5	\times	1834	4/2/13	8- RINSEATE
Pa		XX	0	×	1806	4/2/13	7- MW6-3
age		XX	0	×	1726	4/2/13	6- KMW - 50
41 c		××	8	X	1725	4/2/13	5- KMW-5
of 43		XX	0	×	1615	4/2/13	H- MWG-1
		XX	6		1515	4/2/13	3- KMW-14
			6		1535	41/2/13	2- Kmw-16
		X	2	×	1323	4/2/13	- Kmw-15
		ZnAc/ NaOH	Unpres. H2SO4 HNO3 HCI NaOH	Aqueous Sed. Soil	Time Air	ne) Date	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)
Conditions of Receipt		7PH	Containers & Preservatives	Matrix			LAB PROJECT # 5800 2736
Special Instructions/		·CX		SICA GIEDL	JESSICA	A	TIGER DIL YAKIMA, WA
		, ,	PHM JOHNSON	Contact	Billing Contact	85105	Project Name and Location (State)
	Analysis (Attach list if more space is needed)		Lab Contact	1. 100	Sampler	Zip Code	, ,
Page / of 2	bt&t&		7080) 336 -	208	SUITE FUI	SOI W. ELDER STREET
Chain of Custody Number	Date Date 4/4/13		In Alumber	ntact KE PROLSAL	Client Contact	4	Client TERRA GRAPHICS
Chain of Custody Record 19/2013	Hold	Rush Short Hold	·	TestAmerica Seattle 5755 8th Street E. 5755 8th Street E. 7acoma, Wa 98424 Tel. 253-922-5047 Fax 253-922-5047 www.testamericainc.com	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericali	580-37879 COC	THE LEADER IN ENVIRONMENTAL TESTING

TAL-8274-580 (0210)				Field Copy	h Report; PINK –	- Returned to Client wit	Comments DISTRIBUTION: WHITE – Stays with the Samples; CANARY – Returned to Client with Report, PINK – Field Copy	
Date		gn/Print	3. Received By Sign/Print	Time	Date		3. Relinquished By Sign/Print	<i>c</i> .
Date Time		Sign/Print	2. Received By Si	Time	Date	1	2. Relinquished By Sign/Print	
Date Time	Mide perlay	Sign/Print	1. Received By Si	Time 1000	Date 4/4/13		1. Relinquished By Sign/Print Yushey Pand / MIKE PROCSAL	К Х
- -		Specify)	QC Requirements (Specify)	STANDARD	Other 577	☐ 15 Days	Required (business days)	
D (A fee may be assessed if samples Months are retained longer than 1 month)	lient Archive For	m Return To Client	n B Unknown	ant Deison B	s 🗌 Skin Irritant	X Non-Hazard Idenuikauon X Non-Hazard 🛛 Flammable		1520
will Fed Fx 5-0-	d		S		×	3/17	TRIB BUANK	Ę
Packing Pad			w			4/3/13 1930	F82	120-
Cooler Dsc & go/bilt @ Lab			3		°° X	4/3/13 1920	RINSEATE 2	n.
Composition and and and and and and and and and an		XX	6		° X	4/3/13 1900	Kmw-b	-12
Ted for S.O-		XX	Ø		o X	4/3/13 1810	Kmw - 22	- N
Bubbe		XX	6		so X	4/3/13 1730	P-WW	17
Lab		XX	6		8°	4/3/13 1628	Kmw - 70	-8-
Contert TR: Dig Richards unc -4		XX	6		X X	4/3/13 1626	Kmw - 7	<i>4</i> ,
 		XX	6.		ž X	4/3/13 1452	MWG-2	- 5
	-	XX	6		ø X	4/3/13 1410	MW - 13	15,
		XX	6.			4/3/13 1242	Kmw-lo	٩ ٩
		XX	0		57 17	4/3/13 1151	KMW-8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			H2S04 HNO3 HCI NaOH	Sed. Soll Unpres.	Time Air Aqueous	Date Ti	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	1
Conditions of Kecelpt) TPH EX -	Containers & Preservatives	Matrix	M	-	LAS PROJECT # 58002736	
Special Instructions/		- Gx		GIEDL	JESSICA		Project Name and Location (state) TT6ER OIL YAKIMA, WA	.1
	Analysis (Attach list if more space is needed)	ien	PAM JOHNSON		Sampler P. RICHTER	5 02 58	State 21	
Page 2 of 2	Law Mulliver	-	TOSC	r (Area Code)/Fax	Helephone number (Area Code)/Fax number (20%) $336 - 7050$	E 301	SOI W. ELDER STREET	
18367	Date 4/41		ZAS	- PROCSAL	Client Contact		Client TERLA & RAPHICS	
Chain of Custody Record	Rush Short Hold			inc.com	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	9 10 5755 Tack Tel. Fax www	THE LEADER IN ENVIRONMENTAL TESTING	1

Login Sample Receipt Checklist

Client: TerraGraphics Inc

Login Number: 37879 List Number: 1

Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Preservation labels on samples match COC
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-37879-1

List Source: TestAmerica Seattle