# Blaine Mini Mart Groundwater Monitoring Blaine, WA

# First Quarter of 2013 Sampling Summary Report

Prepared for



Toxics Cleanup Program Headquarters Washington State Department of Ecology Lacey, Washington

Prepared by



Science Applications International Corporation 18912 North Creek Parkway, Suite 101 Bothell, WA 98011

May 2013

# **Table of Contents**

### Page

| 1.0 | Introduction        | L |
|-----|---------------------|---|
| 2.0 | Field Sampling      | 2 |
| 3.0 | Groundwater Results | 3 |
| 4.0 | References          | 5 |

# Figures

| Figure 1. | Location Map for the Blaine Mini Mart Site |
|-----------|--------------------------------------------|
| Figure 2. | Site Map                                   |
| Figure 3. | Groundwater Elevation Contour Map          |

## Tables

| Table 1. | Sampling Locations             |
|----------|--------------------------------|
| Table 2. | Groundwater Analytical Results |

# Appendices

- Appendix A Groundwater Sampling Field Forms
- Appendix B Laboratory Reports and Chain-of-Custody Forms

Appendix C Data Validation Report

# List of Acronyms

| BTEX    | benzene, toluene, ethylbenzene, total xylenes       |
|---------|-----------------------------------------------------|
| CUL     | cleanup level                                       |
| dCAP    | draft Cleanup Action Plan                           |
| Ecology | Washington State Department of Ecology              |
| EDB     | 1, 2-dibromoethane (ethylene dibromide)             |
| EDC     | 1, 2-dichlorethane                                  |
| μg/L    | micrograms per liter                                |
| MTBE    | methyl-tertiary-butyl ether                         |
| MTCA    | Model Toxics Control Act                            |
| NAD     | North American Datum                                |
| QAPP    | Quality Assurance Project Plan                      |
| QA/QC   | quality assurance/quality control                   |
| SAIC    | Science Applications International Corporation      |
| SAP     | Sampling and Analysis Plan                          |
| TPH-G   | total petroleum hydrocarbons – gasoline             |
| TPH-Dx  | total petroleum hydrocarbons - diesel and motor oil |
| USEPA   | United States Environmental Protection Agency       |
|         |                                                     |

# **1.0 Introduction**

The Blaine Mini Mart is an active gas station located at 2530 Peace Portal Drive within the city limits of Blaine, Washington (Figure 1). Previously identified as 1828 Peace Portal Drive, the property is situated within a mixed commercial/residential area. The property is a half-acre triangular lot bounded by Peace Portal Drive to the southwest and Bell Road to the west. Adjacent to the property, vacant land is located to the east and northeast, and an abandoned former Rocky Mountain Trading Post building is located to the southeast. The property is entirely covered with asphalt, concrete, and other structures. The surface slopes gently to the southwest, toward Peace Portal Drive. Dakota Creek is located approximately 1,000 feet south of the property and discharges to Drayton Harbor of Puget Sound, roughly 1,500 feet southwest of the site (Environmental Associates 2005). Shallow groundwater at the site generally flows to the south-southwest, toward Dakota Creek and Drayton Harbor (SAIC 2010a).

In April and May 2011, the Washington State Department of Ecology (Ecology) performed a remedial excavation on the site (SAIC 2011), per the draft Cleanup Action Plan (dCAP) (SAIC 2010b). Following remediation, three monitoring wells were installed. Science Applications International Corporation (SAIC) has performed two rounds of groundwater monitoring at this site to obtain data to assess onsite groundwater contamination on behalf of Ecology. The first round of sampling was conducted in the third quarter of 2012 on July 24, 2012 (SAIC 2012b), and the second round was conducted in the first quarter of 2013 on March 6, 2013. The locations of the groundwater monitoring and observation wells are presented in Figure 2.

This document provides information regarding the sampling locations and presents the results for the second round of sampling. Descriptions of the sample collection and handling procedures, analytical methods, data quality objectives, and quality assurance/quality control (QA/QC) requirements for this study are presented in the Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) (SAIC 2012a).

The field activities and results are summarized in the following sections.

# 2.0 Field Sampling

As the second round of sampling, the first quarter of 2013 semi-annual groundwater monitoring event was conducted by SAIC on March 6, 2013. The well depths, depths to groundwater, elevation (relative to site datum), and coordinates are listed in Table 1. Groundwater monitoring field forms are provided in Appendix A.

Groundwater elevation (relative to site datum) ranged from 39.78 feet (MW-8) to 41.63 feet (MW-6). Shallow groundwater flowed in the south-southeast direction. The hydraulic gradient during this sampling event was approximately 0.023 foot per foot (ft/ft). Only the three groundwater monitoring wells were used to calculate the hydraulic gradient. The groundwater elevation measurement in the observation well OW-1 was not included in the calculation because it is not considered a representative monitoring well and the well casing was found uncapped inside an unsealed well vault containing a significant amount of water. Groundwater elevation contours are presented in Figure 3.

| Well ID | Depth of Well<br>(in feet from<br>top of casing) | Depth to<br>Water<br>(feet) | Elevation of<br>Well Casing<br>(feet) | Groundwater<br>Elevation<br>(feet) | Northing  | Easting    |
|---------|--------------------------------------------------|-----------------------------|---------------------------------------|------------------------------------|-----------|------------|
| MW-6    | 17.08                                            | 1.60                        | 43.23                                 | 41.63                              | 726374.01 | 1185408.25 |
| MW-7    | 16.77                                            | 1.33                        | 42.57                                 | 41.24                              | 726341.51 | 1185386.48 |
| MW-8    | 19.59                                            | 2.05                        | 41.83                                 | 39.78                              | 726294.58 | 1185432.36 |
| OW-1    | 12.51                                            | 1.60                        | 42.18                                 | 40.58                              | 726315.94 | 1185479.26 |

| Table 1. | Sampling Locations |
|----------|--------------------|
|----------|--------------------|

Note: Data are measured to the north rim of the monitoring wells.

Coordinates are in the WA State coordinate system North Zone NAD 1983.

Observation well OW-1 was originally intended to be sampled during the first round of groundwater monitoring in July 2012; however, it was successfully located, monitored, and sampled during this round of sampling instead. There were no other field deviations.

All three observation wells (OW-1, OW-2, and OW-3) were found uncapped with open casings inside unsealed vaults, where a significant amount of water was observed inside. Strong hydrocarbon odors were observed inside the well vaults of observation wells OW-2 and OW-3. A sheen was observed in observation wells OW-1 and OW-2.

# 3.0 Groundwater Results

Groundwater samples were collected from the three monitoring wells and one observation well (Table 1) on March 6, 2013, and submitted to Test America in Tacoma, Washington, for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX); 1,2-dibromoethane (EDB); 1,2-dichlorethane (EDC); methyl-tertiary-butyl ether (MTBE); naphthalene; 1-methylnapthalene; 2-methylnapthalene; total petroleum hydrocarbons – gasoline (TPH-G); and total petroleum hydrocarbons – diesel and motor oil (TPH-Dx). The laboratory reports and chain-of-custody forms are provided in Appendix B.

No chemicals were detected in any of the samples collected from the groundwater monitoring wells MW-6, MW-7, and MW-8. Similarly, no chemicals were detected in any of the samples collected from the groundwater monitoring wells in the first round of sampling in July 2012 (SAIC 2012b).

The sample collected from observation well OW-1 had detected concentrations of 1methylnaphthalene (0.12  $\mu$ g/L), total naphthalenes (0.12  $\mu$ g/L), and TPH-diesel (250  $\mu$ g/L), although these detected concentrations were below cleanup levels (CULs). Sample analysis results are summarized and presented in Table 2.

All analytical results were independently validated by EcoChem, Inc. of Seattle, Washington. EcoChem performed a summary level EPA Stage 2B data validation following U.S. Environmental Protection Agency (USEPA) guidance (USEPA 2008, 2009) on all data. The laboratory received three sample coolers with measured temperatures greater than the upper control limit of 6.0°C, at 6.6°, 6.8° and 6.9°C; however, these temperature outliers did not impact data quality. Three analytical results were J-qualified as estimated for the following reasons: the recovery of a continuing calibration verification sample was below control limits (TPH-gasoline in MW-6-030613), a sample surrogate recovery was below control limits (toluene in MW-6-030613), and the chromatographic pattern for TPH-diesel in sample OW-1-030613 did not match the pattern of the calibration standard. No data were rejected during data validation; all results are acceptable for use, as qualified. Analytical results are presented in Table 2 and the data validation report is provided in Appendix C. No additional monitoring is planned at this time.

| Chemical                   | Unit | CULs               | MW-6-<br>030613 | MW-7-<br>030613 | MW-8-<br>030613 | OW-1-<br>030613 | Trip<br>Blank |
|----------------------------|------|--------------------|-----------------|-----------------|-----------------|-----------------|---------------|
| Volatile Organic Compounds |      |                    |                 |                 |                 |                 |               |
| 1,2-Dibromoethane (EDB)    | µg/L | 0.01 <sup>a</sup>  | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| 1,2-Dichloroethane (EDC)   | µg/L | 4 <sup>b</sup>     | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| Benzene                    | µg/L | 2.6 <sup>b</sup>   | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| Ethylbenzene               | µg/L | 700 <sup>a</sup>   | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| m, p-Xylene                | µg/L | -                  | 2.0 U           | 2.0 U           | 2.0 U           | 2.0 U           | 2.0 U         |
| Methyl t-butyl ether       | µg/L | 20 <sup>a</sup>    | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| o-Xylene                   | µg/L | -                  | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| Toluene                    | µg/L | 1,000 <sup>a</sup> | 1.0 UJ          | 1.0 U           | 1.0 U           | 1.0 U           | 1.0 U         |
| Total Xylenes              | μg/L | 900 <sup>b</sup>   | 2.0 U           | 2.0 U           | 2.0 U           | 2.0 U           | 2.0 U         |
| Naphthalenes               |      |                    |                 |                 |                 |                 |               |
| 1-Methylnaphthalene        | μg/L | -                  | 0.095 U         | 0.10 U          | 0.098 U         | 0.12            | na            |
| 2-Methylnaphthalene        | µg/L | -                  | 0.12 U          | 0.13 U          | 0.13 U          | 0.13 U          | na            |
| Naphthalene                | µg/L | -                  | 0.095 U         | 0.10 U          | 0.098 U         | 0.1 U           | na            |
| Total Naphthalenes         | µg/L | 160 <sup>a</sup>   | 0.12 U          | 0.13 U          | 0.13 U          | 0.12            | na            |
| Petroleum Hydrocarbons     |      |                    |                 |                 |                 |                 |               |
| TPH-Gasoline               | µg/L | 800 <sup>a</sup>   | 50 UJ           | 50 U            | 50 U            | 50 U            | 50 U          |
| TPH-Diesel                 | µg/L | 500 <sup>a</sup>   | 120 U           | 130 U           | 120 U           | 250 J           | na            |
| TPH-Motor oil              | µg/L | 500 <sup>a</sup>   | 250 U           | 250 U           | 240 U           | 250 U           | na            |

 Table 2.
 Groundwater Analytical Results

Detections are **bold** 

<sup>a</sup> MTCA Method A CUL

<sup>b</sup> Site-Specific CUL

 $CUL = cleanup \ level$ 

MTCA = Model Toxics Control Act

na = not analyzed

TPH – total petroleum hydrocarbons

U = not detected at reporting limit shown

UJ = not detected at estimated reporting limit shown

J = the associated numerical value is the approximate concentration of the analyte in the sample

# 4.0 References

- Environmental Associates, Inc. 2005. Subsurface Sampling and Testing Blaine Mini Mart (Gas Station and Convenience Store). December 08, 2005.
- SAIC. 2010a. Site Characterization Report, Blaine Mini Mart, Blaine, Washington. Submitted to Ecology, July 21, 2010.
- SAIC. 2010b. Draft Cleanup Action Plan, Blaine, Washington, Submitted to Ecology, September 14, 2010.
- SAIC. 2011. Blaine Remedial Excavation Report, Blaine, Washington, Submitted to Ecology, August 2011.
- SAIC. 2012a. Blaine Mini Mart Groundwater Monitoring, Blaine, Washington, Sampling and Analysis Plan / Quality Assurance Project Plan, Submitted to Ecology, July 2012.
- SAIC. 2012b. Blaine Mini Mart Groundwater Monitoring, Blaine, Washington, Third Quarter of 2012 Sampling Summary Report, Submitted to Ecology, October 2012.
- USEPA, Office of Emergency and Remedial Response. June 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review. EPA-540-R-08-01. Washington, DC.
- USEPA, Office of Emergency and Remedial Response. January 2009. *Guidance for labeling externally validated laboratory analytical data for Superfund use*. EPA-540-R-08-005. Washington, DC.

This page is intentionally blank.

Figures





Figure 1. Location Map for the Blaine Mini Mart Site











Appendix A Groundwater Sampling Field Forms

**Blaine Mini Mart** 

|               | SAMPLE I                                                                                                                                                                                                     | D NO.: _/                             | NW-6-030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 613                                                                                                                                                   | WELL ID: $M \mathcal{U} - \mathcal{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                        |          |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
|               | DATE/TIM                                                                                                                                                                                                     | E: 3/6/1                              | 3 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEATHER: dyercoust 45°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                        |          |  |
|               | ANALYSIS                                                                                                                                                                                                     | : <u>Coc</u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                        |          |  |
|               | Method of pu                                                                                                                                                                                                 | o water: <u>2</u><br>rval: <b>7</b> . | .71 ft<br>08-17.09<br>Stultic Pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~0                                                                                                                                                    | Depth of well: 17.08<br>Volume of water in well: 4.69 Jallous<br>Purge rate: 40 mL/3min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                        |          |  |
|               |                                                                                                                                                                                                              |                                       | ing: Liquinor/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dedicated                                                                                                                                             | Luberry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frown$                                                                                                                                                                                                                                                  |                                                                                                                                                                        |          |  |
|               | SAMPLE C                                                                                                                                                                                                     | CONTAIN                               | ER DATA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                  | ~                                                                                                                                                                      |          |  |
|               |                                                                                                                                                                                                              | eser-<br>Volume                       | No. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FILTERED F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OR MEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TALS? Ye                                                                                                                                                                                                                                                  | es No                                                                                                                                                                  |          |  |
|               | weth He                                                                                                                                                                                                      | CI 40mi                               | Required Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Photograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P                                                                                                                                                                                                                                                         |                                                                                                                                                                        |          |  |
|               | KJUGT -                                                                                                                                                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ered on C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0.C.? 🖆                                                                                                                                                                                                                                                  |                                                                                                                                                                        |          |  |
|               | SAMPLE PRESERVATION METHOD:                                                                                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           | Iced                                                                                                                                                                   |          |  |
|               | [Volume of w                                                                                                                                                                                                 | vater in mon                          | uitoring well (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -ich diameter                                                                                                                                         | PVC) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.655)*h' h = he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ight of wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ter column ir                                                                                                                                                                                                                                             | i welll                                                                                                                                                                |          |  |
|               | WATER (                                                                                                                                                                                                      | <b>UALITY</b><br>Volume               | Y OBSERV<br>Depth to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATIONS I                                                                                                                                              | DURIN<br>TO.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.655)*h', h = he<br><b>2</b><br><b>G PURGING</b><br>Conductivity<br>(uS(cm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>r</u> 3 <sup>6</sup> 7.<br>D.O. <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -Redox                                                                                                                                                                                                                                                    |                                                                                                                                                                        | +10      |  |
|               |                                                                                                                                                                                                              | QUALITY                               | Y OBSERV<br>Depth to<br>Water (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)                                                                                                                              | DURIN<br>TO.1<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>G PURGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.<br>D.O. <sup>10</sup><br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y. ORP                                                                                                                                                                                                                                                    |                                                                                                                                                                        | <u> </u> |  |
|               | WATER (                                                                                                                                                                                                      | Volume<br>Purged                      | Y OBSERV<br>Depth to<br>Water (ft)<br>乳,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATIONS I                                                                                                                                              | <b>DURIN</b><br>то.і<br>рн<br>7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>G PURGING<br>Conductivity<br>(µS/cm)<br>c+Wm<br>935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.O. 10<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Redox<br>(mV)<br>10mV<br>48,2                                                                                                                                                                                                                            |                                                                                                                                                                        | <u> </u> |  |
|               | WATER (<br>Date/Time                                                                                                                                                                                         | Volume<br>Purged                      | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)<br>(1.57                                                                                                                     | <b>DURIN</b><br>то.і<br>рн<br>7.22<br>7.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>G PURGING<br>Conductivity<br>(µS/cm)<br>CHW7<br>935<br>935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D.O. <sup>10</sup><br>(mg/L)<br>( <i>l</i> ]1 <sup>27</sup><br>( <i>mg</i> /L)<br>( | 0RP<br>-Redox<br>(mV)<br>10mV<br>48.2<br>41.1                                                                                                                                                                                                             | Turbidity<br>(NTU)<br>5.4<br>4.8                                                                                                                                       | <u> </u> |  |
| colleg total  | WATER (<br>Date/Time<br>3/6/13 1012<br>1/6/13 1015                                                                                                                                                           | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATIONS I<br>Temp<br>(°C)<br>9.63<br>9.63<br>9.79                                                                                                      | URIN<br><sup>то.1</sup><br>рн<br>7.22<br>7.31<br>7.31<br>7.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>G PURGING<br>Conductivity<br>(µS/cm)<br>cHWm<br>cHWm<br>cHWm<br>cHWm<br>cHWm<br>cHWm<br>cHWm<br>cHWm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.O. <sup>10</sup><br>(mg/L)<br>( <i>Mg/L</i> )<br>( <i>J</i> ).<br>56-3<br>( <i>J</i> ).<br>7, 36<br>2,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. OR P<br>Redox.<br>(mV)<br>10 mV<br>48,2<br>41.1<br>31.5                                                                                                                                                                                                | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.2                                                                                                                                | <u> </u> |  |
| cjallen totel | WATER (<br>Date/Time<br>ひんり 1012<br>ひんり 1012                                                                                                                                                                 | Volume<br>Purged                      | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATIONS I<br>Temp<br>(°C)<br>9.576<br>9.63<br>9.79<br>9.85                                                                                             | DURIN<br>To.i<br>pH<br>7.22<br>7.31<br>7.31<br>7.31<br>7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>G PURGING<br>Conductivity<br>(µS/cm)<br>c+Wm<br>c+Wm<br>c+Wm<br>c+Wm<br>c+Wm<br>c+Wm<br>c+Wm<br>c+Wm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.53<br>D.O. <sup>10</sup><br>(mg/L)<br>( <i>Mg/</i> L)<br>( <i>J</i> , 7<br>( <i>Mg/</i> L)<br>( <i>J</i> , 7<br>( <i>Mg/</i> L)<br>( <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. OR P<br>-Redox<br>(mV)<br>10 mV<br>48,2<br>41.1<br>31.5<br>23.5                                                                                                                                                                                        | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.2<br>3.7                                                                                                                         | <u> </u> |  |
| Gallen total  | WATER (<br>Date/Time<br>7/6/13 1012<br>7/6/13 1015<br>1613<br>1613<br>1624                                                                                                                                   | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)<br>9.63<br>9.63<br>9.79<br>9.85<br>9.85<br>9.89                                                                              | DURIN<br>TO.1<br>pH<br>7.22<br>7.31<br>7.31<br>7.31<br>7.35<br>7.35<br>7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>G PURGING<br>Conductivity<br>(µS/cm)<br>c+W?<br>935<br>935<br>939<br>939<br>940<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.53<br>D.O. <sup>10</sup><br>(mg/L)<br>( <i>U</i> )<br>3.76<br>2.76<br>2.76<br>2.76<br>2.75<br>2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70 RP<br>-Redox<br>(mV)<br>10 mV<br>48,2<br>41.1<br>31.5<br>23.5<br>16.7                                                                                                                                                                                  | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.2<br>3.7<br>3.7                                                                                                                  | <u> </u> |  |
| Galler total  | WATER (<br>Date/Time<br>7/6/13 1012<br>7/6/13 1015<br>1613<br>1624<br>1024<br>1027                                                                                                                           | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)<br>9.68<br>9.68<br>9.79<br>9.85<br>9.85<br>9.84<br>9.94                                                                      | DURIN<br>TO.1<br>pH<br>7.22<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31<br>7.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2</b><br><b>G PURGING</b><br>Conductivity<br>(µS/cm)<br>CHW7<br>935<br>935<br>938<br>938<br>938<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.O. <sup>16</sup><br>(mg/L)<br>( <i>Mg/L</i> )<br>3.76<br>3.76<br>2.75<br>2.75<br>2.15<br>1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0RP<br>-Redox<br>(mV)<br>10mV<br>48,2<br>41.1<br>31.5<br>23.5<br>16.7<br>12.7                                                                                                                                                                             | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.8<br>4.2<br>3.7<br>3.7<br>2.9                                                                                                    | <u> </u> |  |
| gallen total  | WATER (<br>Date/Time<br>3/6/13 1012<br>4/6/13 1015<br>16/13<br>10/34<br>1024<br>1027<br>10/30                                                                                                                | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATIONS I<br>Temp<br>(°C)<br>9.68<br>9.68<br>9.79<br>9.85<br>9.85<br>9.85<br>9.89<br>9.94<br>10.03                                                     | DURIN<br>TO.1<br>pH<br>7.22<br>7.31<br>7.32<br>7.31<br>7.31<br>7.35<br>7.35<br>7.36<br>7.36<br>7.36<br>7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>G PURGING<br>(µS/cm)<br>CHW7<br>935<br>935<br>938<br>939<br>938<br>938<br>938<br>938<br>938<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.53<br>D.O. <sup>10</sup><br>(mg/L)<br>(mg/L)<br>2.75<br>2.75<br>2.75<br>1.95<br>1.95<br>1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 RP<br>-Redox<br>(mV)<br>10 mV<br>48.2<br>41.1<br>31.5<br>23.5<br>16.7<br>12.7<br>12.7<br>9.3                                                                                                                                                            | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.2<br>3.7<br>7.7<br>2.9<br>2.9<br>2.4                                                                                             | <u> </u> |  |
| Cjallen total | WATER (<br>Date/Time<br>3/6/13 1012<br>4/6/13 1015<br>1618<br>1024<br>1027<br>1027<br>1057                                                                                                                   | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)<br>9.57<br>9.68<br>9.79<br>9.85<br>9.85<br>9.89<br>9.85<br>9.89<br>9.97<br>10.07<br>10.12                                    | DURIN<br>TO.1<br>pH<br>7.22<br>7.32<br>7.31<br>7.32<br>7.31<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>G PURGING<br>Conductivity<br>(µS/cm)<br>c+W7<br>935<br>935<br>938<br>939<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.53<br>1.83<br>1.83<br>1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0RP<br>-Redox<br>(mV)<br>10mV<br>48,2<br>41.1<br>31.5<br>23.5<br>16.7<br>12.7                                                                                                                                                                             | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.2<br>3.7<br>7.7<br>2.9<br>2.9<br>2.4<br>2.4<br>1.2                                                                               | <u> </u> |  |
| Galler total  | WATER (<br>Date/Time<br>7/6/13 1012<br>7/6/13 1012<br>7/6/13 1015<br>1613<br>1634<br>1024<br>1027<br>10 <sup>3</sup> 7<br>16 <sup>13</sup> 7<br>16 <sup>13</sup> 7                                           | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)<br>9.55<br>9.68<br>9.68<br>9.79<br>9.85<br>9.85<br>9.89<br>9.85<br>9.89<br>9.85<br>10.03<br>10.12<br>10.12<br>10.19          | DURIN<br>TO.1<br>pH<br>7.22<br>7.31<br>7.32<br>7.31<br>7.31<br>7.35<br>7.35<br>7.36<br>7.36<br>7.36<br>7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>G PURGING<br>(µS/cm)<br>CHW7<br>935<br>935<br>938<br>939<br>938<br>938<br>938<br>938<br>938<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.53<br>D.O. <sup>10</sup><br>(mg/L)<br>(mg/L)<br>2.75<br>2.75<br>2.75<br>1.95<br>1.95<br>1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $   \begin{array}{c}         0RP \\         -Redox \\         (mV) \\         10mV \\         48,2 \\         41.1 \\         31.5 \\         23.5 \\         16.7 \\         12.7 \\         12.7 \\         0.2 \\         6.2 \\         6.2         $ | Turbidity<br>(NTU)<br>5.4<br>4.8<br>4.2<br>3.7<br>7.7<br>2.9<br>2.9<br>2.4                                                                                             | <u> </u> |  |
| galler total  | WATER (<br>Date/Time<br>3/6/13 1012<br>4/6/13 1015<br>1618<br>1024<br>1027<br>1027<br>1057                                                                                                                   | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75 | ATIONS I<br>Temp<br>(°C)<br>9.57<br>9.68<br>9.79<br>9.85<br>9.85<br>9.89<br>9.85<br>9.89<br>9.97<br>10.07<br>10.12                                    | URIN<br>TO.1<br>pH<br>7.22<br>7.31<br>7.32<br>7.31<br>7.31<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>G PURGING<br>(µS/cm)<br>(µS/cm)<br>(µS/cm)<br>(µS/cm)<br>(µS/cm)<br>(µS/cm)<br>(<br>935<br>(<br>935<br>(<br>938<br>(<br>938<br>(<br>938<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>935)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>938)<br>(<br>935)<br>(<br>938)<br>(<br>936)<br>(<br>936)<br>(<br>935)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>936)<br>(<br>937)<br>(<br>937)<br>(<br>936)<br>(<br>937)<br>(<br>937)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>936)<br>(<br>937)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>936)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>937)<br>(<br>( | 2.53<br>1.83<br>1.83<br>1.83<br>1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0RP         -Redox         (mV)         10mV         48.2         41.1         31.5         23.5         16.7         12.7         9.3         6.2         3.9                                                                                            | Turbidity<br>(NTU)<br>5.4<br>4.2<br>3.7<br>2.7<br>2.7<br>2.9<br>2.4<br>1.9                                                                                             | <u> </u> |  |
| Gallen total  | WATER (<br>Date/Time<br>7/6/13 1012<br>7/6/13 1012<br>1613<br>1624<br>1024<br>1027<br>1027<br>1027<br>1027<br>1027                                                                                           | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75<br>2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATIONS I<br>Temp<br>(°C)<br>9.68<br>9.68<br>9.68<br>9.79<br>9.85<br>9.85<br>9.89<br>9.85<br>9.89<br>9.97<br>10.07<br>10.12<br>10.12<br>10.19<br>10.20 | URIN<br>TO.1<br>pH<br>7.22<br>7.31<br>7.32<br>7.31<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7. | 2<br>GPURGING<br>Conductivity<br>(µS/cm)<br>c+W7<br>935<br>935<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.53<br>1.83<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0RP         -Redox         (mV)         10mV         48,2         41.1         31.5         23.5         16.7         12.4         9.3         6.2         3.9         1.3                                                                                | Turbidity         (NTU) $5.4$ $4.8$ $4.2$ $3.7$ $3.7$ $2.9$ $2.9$ $2.4$ $3.2$ $1.9$ $1.9$ $1.9$ $1.6$                                                                  | <u> </u> |  |
| Gallen total  | WATER (<br>Date/Time<br>V6/13 1012<br>V6/13 1012<br>V6/13 1012<br>V6/13 1015<br>I613<br>I634<br>I024<br>I027<br>I037<br>I037<br>I037<br>I037<br>I039<br>I039<br>I039<br>I039<br>I039<br>I039<br>I039<br>I039 | Volume<br>Purged<br>(gallons)         | Y OBSERV<br>Depth to<br>Water (ft)<br>2,72<br>2,75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75<br>2.75 | ATIONS I<br>Temp<br>(°C)<br>9.57<br>9.68<br>9.68<br>9.79<br>9.85<br>9.85<br>9.85<br>9.89<br>9.85<br>9.89<br>9.94<br>10.03<br>10.12<br>10.12<br>10.25  | ITO.I           PH           F.22           F.31           F.31           F.31           F.31           F.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>GPURGING<br>Conductivity<br>(µS/cm)<br>c+W7<br>935<br>935<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938<br>938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.53<br>1.83<br>1.59<br>1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0RP         -Redox         (mV)         10mV         48,2         41.1         31.5         23.5         16.7         12.7         9.3         6.2         3.9         1.3         -0.4                                                                   | $ \begin{array}{c} \text{Turbidity} \\ \text{(NTU)} \\ 5.4 \\ 4.8 \\ 4.2 \\ 3.7 \\ 3.7 \\ 2.9 \\ 2.9 \\ 2.4 \\ 3.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.4 \\ 1.4 \\ \end{array} $ | <u> </u> |  |

₽°

2.51 Bend of xplay

| Date/Time | Volume<br>Purged<br>(gallons) | Depth to<br>Water (ft) | Temp<br>(°C) | pН        | Conductivity<br>(µS/cm) | D.O.<br>(mg/L) | Redox<br>(mV)         | Turbidity<br>(NTU) |
|-----------|-------------------------------|------------------------|--------------|-----------|-------------------------|----------------|-----------------------|--------------------|
|           |                               |                        |              |           |                         |                |                       |                    |
|           |                               |                        | t,tarxn - i  |           |                         | 121            | See that              | HUAR               |
|           |                               |                        | 192214       |           | See week                |                | 42. V.1               | <b>a</b> .b.a)     |
|           |                               |                        |              |           |                         |                | h i lugi              | 102 A              |
|           |                               |                        |              |           |                         | 1.7.4.78       | had a find the        | 11000              |
|           |                               |                        | duest here   |           |                         | 2341.2         |                       | A LO HAL           |
| profess.  |                               |                        |              |           | 200                     | 285            |                       |                    |
|           | - 2-2.13                      |                        |              | -         |                         | Develop 1      | i na naly             | umund              |
|           |                               |                        |              | -1 -1     | m ram tatal             |                | 111.4 - 125 - 11 - 11 |                    |
|           | 1                             |                        |              |           | 0/00                    |                | li ne ne ne           | d the second       |
|           | 1.12.13                       | n sonagh               | 31,005       |           |                         |                |                       |                    |
|           |                               |                        |              | $\square$ |                         |                |                       | Mag-1              |
|           |                               | in Char                | ing state    |           |                         | - 2            |                       |                    |
|           |                               |                        | (P)          |           | $\mathbf{N}$            | 1.1            |                       |                    |
|           |                               |                        | D            |           |                         |                |                       |                    |
|           |                               |                        |              |           |                         |                |                       |                    |
|           |                               |                        |              |           |                         |                | 1 I. I.               | ina.               |
| -         |                               |                        |              |           |                         |                |                       |                    |
|           |                               |                        |              |           |                         |                |                       |                    |
|           |                               | - 1                    |              | 1.01      |                         | 1940 - A 19    |                       | e exe              |
|           |                               |                        |              | 1-        |                         |                |                       |                    |
|           |                               |                        |              |           |                         |                |                       |                    |
|           |                               |                        |              |           |                         |                |                       |                    |
|           |                               |                        |              |           |                         |                |                       |                    |
|           |                               |                        |              |           |                         | - 13           |                       |                    |
|           |                               |                        | -2           |           |                         | - 51           |                       |                    |
|           | 25                            |                        |              |           |                         |                |                       |                    |

Comments:

Signature: MR

Date/Time: 3/6/13 1100

## GROUNDWATER SAMPLE COLLECTION FORM

## **Blaine Mini Mart**

| SAMPLE I           | d no.: <u>/</u>  | NW-7-03                | 0613          |           | WELL ID: _/                      | 4W-7           | 1983           |                    |
|--------------------|------------------|------------------------|---------------|-----------|----------------------------------|----------------|----------------|--------------------|
| DATE/TIM           | E: 3/6/1         | 3 1338                 |               |           | WEATHER:                         | Overcast       | 45°F           |                    |
| ANALYSIS           |                  |                        |               |           |                                  |                |                |                    |
| WELL PUF           |                  |                        | CHW 3-        | 6-13      |                                  |                |                |                    |
|                    |                  | . 68 AL 2              |               |           | _Depth of well:                  | 16.77          | 1              |                    |
| Screened inter     | rval:            | 5.77 - 1               | 16.77         |           | Volume of wate<br>Purge rate: 40 | r in well:     | 1.61 gal       | long               |
| Method of pu       | rging: Peri      | staltic Pu             | inp           | 6.1       | Purge rate: 40                   | 014/31         | lin            |                    |
|                    |                  | ing: Liquinox          | / Dedicated   | Tubing    |                                  |                | 0              |                    |
| SAMPLE C           | CONTAIN          | ER DATA:               |               |           | SAMPLE ME                        | THOD: 1        | um) Bailer (   | Other              |
|                    |                  |                        |               |           | FILTERED F                       | OR MET         | ALS? Yes       | No                 |
| <sup>Type</sup> va | tive             | Required Fill          |               |           |                                  |                |                |                    |
| have H             | CI 70ml          | 6                      |               |           | Photograph                       | Taken?         |                |                    |
| water -            | - 11L            | 22                     |               |           |                                  |                |                |                    |
|                    |                  |                        | - de          |           | Sample Ent                       | ered on C.     | 0.C.?          |                    |
|                    |                  |                        |               |           |                                  |                |                |                    |
| SAMPLE P           | RESERV           | ATION ME               | THOD:         | HC        | L + Tre                          |                | Io             | ced 2              |
| [Volume of w       | vater in mor     | itoring well (2        | -ich diameter | PVC) = (  | (0.655)*h', h = h                | eight of wat   | er column in   | well]              |
| [                  |                  |                        |               | · · · · · | 2                                |                |                |                    |
| WATER (            | UALITY           | Y OBSERV               | ATIONS I      | DURING    | <b>G PURGING</b>                 |                | ORP            |                    |
| Date/Time          | Volume<br>Purged | Depth to<br>Water (ft) | Temp<br>(°C)  | pH        | Conductivity<br>(µS/cm)          | D.O.<br>(mg/L) | Redox-<br>(mV) | Turbidity<br>(NTU) |
| Date/Time          | (gallons)        | water (II)             | ( C)          | To.i      | ミって                              | ±107.          | lonv           | *- (07             |
| 3-6-13 1254        |                  | 2,67                   | 9,94          | 5,92      | 220                              | 7.59           | 53.4           | 35.9               |
| 1257-100           | 3/6/13           | 2.60                   | 9.88          | 5.92      | 28.3                             | 7,23           | 155.5          | 27.6               |
| 1260               |                  | 2.58                   | 9.69          | 5.93      | 284                              | 7.16           | 157.5          | 22.6               |
| 1303               |                  | 2.58                   | 9.97          | 5,93      | 254                              | 7.12           | 159            | 18.6               |
| 1306               |                  | 2,58                   | 9.98          | 5.93      | 284                              | 7.00           | 160.0          | 5.9                |
| 1304               |                  | 2.60                   | 9.94          | 5.92      | 284                              | 7.03           | 162,4          | 13.8               |
| 1312               | T.               | 2.59                   | 9.93          | 592       | 284                              | 6.96           | 163.4          | p.4                |
| 1315               |                  | 2,60                   | 9.92          | 5.12      | 285                              | 6.88           | 1648           | 10.4               |
| 1318               |                  | 2.60                   | 9.91          | 5.42      | 386                              | 6.80           | 165.8          | 9.4                |
| 1321               | 16-illen         | 2.59                   | 9.92          | 5.92      | 286                              | 6.75           | 166.2          | 8.3                |
| 1724               |                  | 2.51                   | 27.19         | 5/12      | 386                              | 6.69           | 1668           | 8.0                |
| 1377-              |                  | 2.54                   | 3.86          | 511       | 287                              | 6.67           | 167.3          | 7.4                |
| 1330               |                  | 2.54                   | 9.84          | 5.12      | 297                              | 6.03           | 118-0          | 6.8                |
| 1353               |                  | 2,60                   | 9.53          | 5.92      | 352                              | 6.64           | 168.4          | 1.5                |
| 4                  |                  |                        |               |           |                                  |                |                |                    |

| Date/Time | Volume<br>Purged<br>(gallons) | Depth to<br>Water (ft) | Temp<br>(°C) | рН     | Conductivity<br>(µS/cm) | D.O.<br>(mg/L) | Redox<br>(mV)                         | Turbidity<br>(NTU) |
|-----------|-------------------------------|------------------------|--------------|--------|-------------------------|----------------|---------------------------------------|--------------------|
| 1316      |                               | 2.60                   | ST.P         | 5.92   | 388                     | 6,66           | 169.1                                 | 5.6                |
| 13 R Sand | le Colle                      | 2.700<br>2.70 at       | 1.6371       |        |                         |                |                                       |                    |
|           |                               | 2.70 at                | end of s     | ampler | Na                      |                |                                       |                    |
|           |                               |                        |              | 1.     | )                       |                |                                       |                    |
|           |                               |                        |              |        |                         |                |                                       | 1.1110             |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              |        |                         |                |                                       |                    |
| <i>e</i>  |                               |                        |              |        |                         |                |                                       | ·                  |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              |        |                         | 0.9130-0       |                                       |                    |
|           | /                             |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              | 1      |                         |                |                                       | <u></u>            |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              |        |                         |                |                                       | Constant of        |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        | A            | )      |                         |                |                                       |                    |
| - i       | 1                             |                        |              |        |                         |                |                                       |                    |
| ,<br>,    |                               |                        |              |        |                         |                |                                       |                    |
| •         |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           | 2                             |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              | 1      |                         |                |                                       |                    |
|           |                               |                        |              | 1      |                         |                |                                       | ъ.                 |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              |        |                         |                |                                       |                    |
|           |                               |                        |              |        | · · · · ·               |                |                                       |                    |
|           |                               |                        |              |        |                         |                | · · · · · · · · · · · · · · · · · · · |                    |
|           |                               |                        |              |        |                         |                |                                       |                    |

Comments:

Signature: MCPS

Date/Time: 3/6/13 1400

## **GROUNDWATER SAMPLE COLLECTION FORM**

### **Blaine Mini Mart**

| SAMPLE ID NO .: MW-8-0306/3                                                                                                  |                                                                |                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WELL ID: MW-8                                                                                                                                                                                     |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DATE/TIM                                                                                                                     | E: 3/6/                                                        | 13                                                                                                                     | 0.01                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEATHER:                                                                                                                                                                                          |                                                                                                          | ain 45%                                                                                                                           | c                                                                                                                                                                                                         |  |
| ANALYSIS                                                                                                                     |                                                                |                                                                                                                        | -951 4                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 M                                                                                                                                                                                              |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
| WELL PUF                                                                                                                     | -                                                              |                                                                                                                        | 1686 18                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
| Initial depth to                                                                                                             |                                                                |                                                                                                                        | 818                                                                                                                                                                                                                         | - K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _Depth of well:                                                                                                                                                                                   | 19.59                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                           |  |
| Screened inte                                                                                                                | rval: <u>9</u>                                                 | 59-19,5                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume of wate                                                                                                                                                                                    | r in well:                                                                                               |                                                                                                                                   | llons                                                                                                                                                                                                     |  |
| Method of purging: Peristal Fill Purp.<br>Method of decontaminating: liquinese / deducated fub                               |                                                                |                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Purge rate:                                                                                                                                                                                       | mi/in n                                                                                                  | , PL 5                                                                                                                            |                                                                                                                                                                                                           |  |
| Method of de                                                                                                                 | contaminati                                                    | ng: (190100)                                                                                                           | x (dedicate                                                                                                                                                                                                                 | d fubi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                          | 1 2                                                                                                                               |                                                                                                                                                                                                           |  |
| SAMPLE C                                                                                                                     | CONTAIN                                                        | ER DATA:                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE MI                                                                                                                                                                                         | ETHOD:                                                                                                   | Pump Bailer (                                                                                                                     | Other                                                                                                                                                                                                     |  |
|                                                                                                                              |                                                                |                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FILTERED H                                                                                                                                                                                        | FOR MET                                                                                                  | ALS? Yes                                                                                                                          | No                                                                                                                                                                                                        |  |
| Type Pre<br>va                                                                                                               | tive                                                           | Required Fill                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
| herety H                                                                                                                     | C1 40m                                                         | 66                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Photograph                                                                                                                                                                                        | Taken?                                                                                                   | V                                                                                                                                 | - 27                                                                                                                                                                                                      |  |
|                                                                                                                              | CILL                                                           | 23                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
| water -                                                                                                                      | - 16                                                           | 7 0                                                                                                                    | -                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Ent                                                                                                                                                                                        | ered on C.                                                                                               | 0.C.? 🗹                                                                                                                           |                                                                                                                                                                                                           |  |
| -1 <b>5</b> 0                                                                                                                |                                                                |                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
|                                                                                                                              |                                                                |                                                                                                                        |                                                                                                                                                                                                                             | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                           |  |
| CAMDI E D                                                                                                                    | DECEDV                                                         | ATTON ME                                                                                                               | THOD.                                                                                                                                                                                                                       | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 100                                                                                                                                                                                             |                                                                                                          | L                                                                                                                                 | bod                                                                                                                                                                                                       |  |
| SAMPLE P                                                                                                                     | PRESERV                                                        | ATION ME                                                                                                               | THOD:                                                                                                                                                                                                                       | HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + Ice                                                                                                                                                                                             |                                                                                                          | I                                                                                                                                 | ced                                                                                                                                                                                                       |  |
|                                                                                                                              |                                                                |                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+ Ice</u><br>0.655)*h', h = h                                                                                                                                                                  | eight of wa                                                                                              | 2.1                                                                                                                               |                                                                                                                                                                                                           |  |
| [Volume of w                                                                                                                 | vater in mor                                                   | nitoring well (2                                                                                                       | -ich diameter                                                                                                                                                                                                               | PVC) = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.655)*h', h = h                                                                                                                                                                                 |                                                                                                          | 2.1                                                                                                                               |                                                                                                                                                                                                           |  |
| [Volume of w                                                                                                                 | vater in mor                                                   | nitoring well (2<br>Y OBSERV                                                                                           | -ich diameter                                                                                                                                                                                                               | PVC) = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{0.655)*h'}{2}$ , h = h<br>G PURGING                                                                                                                                                        |                                                                                                          | ter column in                                                                                                                     | well]                                                                                                                                                                                                     |  |
| [Volume of w                                                                                                                 | vater in mor<br><b>UALIT</b><br>Volume                         | nitoring well (2                                                                                                       | -ich diameter                                                                                                                                                                                                               | PVC) = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{0.655)*h'}{2}$ , h = h<br>G PURGING<br>Conductivity                                                                                                                                        | D.O.                                                                                                     | 2.1                                                                                                                               | well]<br>Turbidity<br>(NTU)                                                                                                                                                                               |  |
| [Volume of w                                                                                                                 | vater in mor                                                   | nitoring well (2<br>Y OBSERV<br>Depth to                                                                               | -ich diameter<br>ATIONS I<br>Temp                                                                                                                                                                                           | PVC) = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{0.655)*h'}{2}$ , h = h<br>G PURGING                                                                                                                                                        |                                                                                                          | Redox<br>(mV)                                                                                                                     | well]<br>Turbidity                                                                                                                                                                                        |  |
| [Volume of w                                                                                                                 | Vater in mor<br>UALITY<br>Volume<br>Purged                     | nitoring well (2<br>Y OBSERV<br>Depth to                                                                               | -ich diameter<br>ATIONS I<br>Temp                                                                                                                                                                                           | PVC) = (<br><b>DURINO</b><br>pH<br>to 1<br>7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{0.655)*h'}{2}, h = h$ $Conductivity$ $(\mu S/cm)$ $\frac{5}{2}, \frac{6}{2}, \frac{1}{2}$                                                                                                  | D.O.<br>(mg/L)                                                                                           | ter column in<br>Redox<br>(mV)                                                                                                    | well]<br>Turbidity<br>(NTU)                                                                                                                                                                               |  |
| [Volume of w<br>WATER (<br>Date/Time                                                                                         | Vater in mor<br>UALITY<br>Volume<br>Purged                     | hitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)                                                                 | -ich diameter<br>ATIONS I<br>Temp<br>(°C)                                                                                                                                                                                   | PVC) = (<br><b>DURINO</b><br>pH<br>to 1<br>to 1 | $\frac{0.655)*h'}{2}, h = h$ $Conductivity$ $(\mu S/cm)$ $\frac{5}{2}, \frac{6}{2}, \frac{1}{2}$                                                                                                  | D.O.<br>(mg/L)<br>5 i. J.                                                                                | Redox<br>(mV)                                                                                                                     | well]<br>Turbidity<br>(NTU)<br>T 167.                                                                                                                                                                     |  |
| [Volume of w<br>WATER (<br>Date/Time                                                                                         | Vater in mor<br>UALITY<br>Volume<br>Purged                     | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)                                                                 | -ich diameter<br>ATIONS I<br>Temp<br>(°C)                                                                                                                                                                                   | PVC) = (<br><b>DURINO</b><br>pH<br>to 1<br>to 1 | $\frac{0.655)*h'}{2}, h = h$ $Conductivity$ $(\mu S/cm)$ $\frac{5}{2}, \frac{6}{2}, \frac{1}{2}$                                                                                                  | D.O.<br>(mg/L)<br>5 ic 7<br>1.95                                                                         | Redox<br>(mV)<br>$ c \cap V$<br>73.2                                                                                              | well]<br>Turbidity<br>(NTU)<br>Lo7.<br>E.0                                                                                                                                                                |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436                                                                         | Vater in mor<br>UALITY<br>Volume<br>Purged                     | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.90<br>2.99                                                 | -ich diameter<br>ATIONS E<br>Temp<br>(°C)<br>]0.i5<br>iv.19                                                                                                                                                                 | PVC) = (<br><b>DURINO</b><br>pH<br>to 1<br>7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.655)*h', h = h<br>2<br><b>G PURGING</b><br>Conductivity<br>(μS/cm)<br><u>5</u> 6';<br>1/3(1)<br>1/3(5)                                                                                          | D.O.<br>(mg/L)<br>5 ie 9<br>1.95<br>1.55                                                                 | Redox<br>(mV)<br>10 AV<br>73.2<br>75 4                                                                                            | well]<br>Turbidity<br>(NTU)<br>± 167.<br>8.0<br>5.0                                                                                                                                                       |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436<br>1436                                                                 | Vater in mor<br>UALITY<br>Volume<br>Purged<br>(gallons)        | hitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.90<br>2.99<br>3.35                                         | -ich diameter<br>ATIONS I<br>Temp<br>(°C)<br>10.15<br>10.15<br>10.19<br>10.30                                                                                                                                               | PVC) = (<br><b>DURINO</b><br>pH<br>±0.1<br>7.12<br>7.24<br>7.25<br>7.25<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.655)*h', h = h<br><b>Conductivity</b><br>(μS/cm)<br>53";<br>13(1)<br>1368<br>1373<br>1375                                                                                                       | D.O.<br>(mg/L)<br>5 169<br>1.95<br>1.55<br>1.55                                                          | ter column in<br>Redox<br>(mV)<br>1c rrdv<br>13.2<br>75.4<br>65.7                                                                 | well]<br>Turbidity<br>(NTU)<br>$\pm 107.$<br>8.0<br>5.0<br>5.0<br>4.1<br>7.7                                                                                                                              |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436<br>1436<br>1439                                                         | Vater in mor                                                   | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.90<br>3.42<br>2.99<br>3.35<br>3.34                         | -ich diameter<br>ATIONS L<br>Temp<br>(°C)<br>]0.15<br>]0.15<br>]0.70<br>]0.70<br>]0.70                                                                                                                                      | PVC) = (<br><b>DURINO</b><br>pH<br>±0.1<br>7.04<br>7.05<br>7.15<br>7.15<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{0.655)*h', h = h}{2}$ <b>G PURGING</b> Conductivity ( $\mu$ S/cm) $53'';$ $1'3(1)$ $1368$ $1373$ $1'375$ $1375$                                                                            | D.O.<br>(mg/L)<br>± ie %<br>1.95<br>1.55<br>1.55<br>1.55                                                 | ter column in<br>Redox<br>(mV)<br>10 rr V<br>75.4<br>65.7<br>57.7<br>57.7                                                         | well]<br>Turbidity<br>(NTU)<br>± 107.<br>8.0<br>5.0<br>5.0<br>5.0<br>4.1<br>7.7<br>2.6                                                                                                                    |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436<br>1436<br>1436<br>1434                                                 | Vater in mor<br><b>UALITY</b><br>Volume<br>Purged<br>(gallons) | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.90<br>3.40<br>2.99<br>3.35<br>3.34<br>3.34<br>3.34         | -ich diameter<br><b>ATIONS E</b><br>Temp<br>(°C)<br>10.15<br>10.15<br>10.39<br>10.39<br>10.39<br>10.39<br>10.39                                                                                                             | PVC) = (<br><b>DURINO</b><br>PH<br>±0.1<br>7.024<br>7.024<br>7.024<br>7.025<br>7.025<br>7.05<br>7.05<br>7.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.655)*h', h = h 2<br><b>G PURGING</b><br>Conductivity ( $\mu$ S/cm)<br>53'';<br>1'3(1)<br>1'3(5)<br>1'3(5)<br>1'3(7)<br>1'375<br>1'375<br>1'375<br>1'375<br>1'375<br>1'375                       | D.O.<br>(mg/L)<br>5 169<br>1.95<br>1.55<br>1.55<br>1.55<br>1.55<br>1.75<br>1.75                          | ter column in<br>Redox<br>(mV)<br>le rightarrow V<br>73.2<br>75.4<br>65.7<br>57.7<br>57.7<br>57.7<br>57.7<br>57.7<br>57.7<br>57.7 | well]<br>Turbidity<br>(NTU)<br>$\pm 107.$<br>8.0<br>5.0<br>4.1<br>7.7<br>2.6<br>3.6                                                                                                                       |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436<br>1436<br>1436<br>1434<br>1449<br>1449                                 | Vater in mor<br><b>UALITY</b><br>Volume<br>Purged<br>(gallons) | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.99<br>3.35<br>3.35<br>3.34<br>3.01                         | -ich diameter<br><b>ATIONS I</b><br>Temp<br>(°C)<br>10.15<br>10.15<br>10.30<br>10.30<br>10.34<br>10.34<br>10.52<br>10.49                                                                                                    | PVC) = (<br><b>DURINO</b><br>PH<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.1<br>±0.2<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25<br>±0.25                                                                                          | $0.655)*h', h = h$ $2$ <b>G PURGING</b> Conductivity ( $\mu$ S/cm) $53''.$ $1'3C1$ $1'3C1$ $1'3C8$ $1'375$ $1'375$ $1'375$ $1'375$ $1'375$ $1'375$                                                | D.O.<br>(mg/L)<br>5 169<br>1.95<br>1.55<br>1.55<br>1.55<br>1.95<br>1.95<br>1.95<br>1.9                   | ter column in<br>Redox<br>(mV)<br>10  or V<br>13.2<br>75.4<br>65.7<br>57.7<br>57.7<br>43.4<br>43.4<br>35.7                        | well]<br>Turbidity<br>(NTU)<br>± 107.<br>8.0<br>5.0<br>5.0<br>5.0<br>4.1<br>7.7<br>2.6                                                                                                                    |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436<br>1436<br>1436<br>1434<br>1449<br>1449                                 | Vater in mor<br><b>UALITY</b><br>Volume<br>Purged<br>(gallons) | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.99<br>3.35<br>3.04<br>3.04<br>3.01<br>3.01<br>3.01         | -ich diameter<br><b>ATIONS I</b><br>Temp<br>(°C)<br>10.15<br>10.15<br>10.19<br>10.70<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79                                              | PVC) = (<br><b>DURINO</b><br>pH<br>±0.1<br>7.12<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.655)*h', h = h$ $2$ <b>G PURGING</b> Conductivity ( $\mu$ S/cm) $53''; 1/3(1)$ $1365$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ | D.O.<br>(mg/L)<br>5 16 %<br>1.95<br>1.55<br>1.55<br>1.77<br>1.75<br>1.55<br>1.97<br>1.95<br>1.97<br>1.96 | ter column in<br>Redox<br>(mV)<br>10  ov<br>75.4<br>65.7<br>57.7<br>57.7<br>57.7<br>473.1<br>-375.7<br>28.8                       | well]<br>Turbidity<br>(NTU)<br>± 107.<br>8.0<br>5.0<br>4.1<br>7.7<br>2.6<br>0<br>1.9<br>1.0<br>1.9                                                                                                        |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1430<br>1436<br>1436<br>1436<br>1439<br>1449<br>1449<br>1449<br>1449<br>1449 | Vater in mor<br><b>UALITY</b><br>Volume<br>Purged<br>(gallons) | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.90<br>3.40<br>3.05<br>3.04<br>3.04<br>3.01<br>3.01<br>3.05 | -ich diameter<br><b>ATIONS E</b><br>Temp<br>$(^{\circ}C)$<br>10.15<br>10.15<br>10.19<br>10.30<br>10.39<br>10.39<br>10.39<br>10.39<br>10.39<br>10.39<br>10.52<br>10.49<br>10.52<br>10.49<br>10.52<br>10.49<br>10.51<br>10.15 | PVC) = ( $PVC) = ($ $PH$ $to 1$ $7.024$ $7.024$ $7.024$ $7.05$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$ $7.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.655)*h', h = h$ 2 <b>G PURGING</b> Conductivity ( $\mu$ S/cm) 53% 1361 1365 1375 1375 1375 1375 1375 1375 1375 1365                                                                            | D.O.<br>(mg/L)<br>5 16 %<br>1.95<br>1.55<br>1.55<br>1.55<br>1.95<br>1.95<br>1.95<br>1.95                 | Redox<br>(mV)<br>10 AV<br>73.2<br>75.4<br>65.7<br>57.7<br>57.7<br>57.7<br>43.1<br>35.7<br>28.8<br>18.6                            | well]<br>Turbidity<br>(NTU)<br>± 107.<br>8.0<br>5.0<br>5.0<br>4.1<br>7.7<br>2.6<br>0<br>1.9<br>0<br>1.9<br>1.9<br>1.9<br>1.0<br>1.9<br>1.9<br>1.9<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 |  |
| [Volume of w<br>WATER (<br>Date/Time<br>1430<br>1436<br>1436<br>1436<br>1434<br>1449<br>1449                                 | Vater in mor                                                   | nitoring well (2<br>Y OBSERV<br>Depth to<br>Water (ft)<br>2.99<br>3.35<br>3.04<br>3.04<br>3.01<br>3.01<br>3.01         | -ich diameter<br><b>ATIONS I</b><br>Temp<br>(°C)<br>10.15<br>10.15<br>10.19<br>10.70<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79                                              | PVC) = (<br><b>DURINO</b><br>pH<br>±0.1<br>7.12<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.655)*h', h = h$ $2$ <b>G PURGING</b> Conductivity ( $\mu$ S/cm) $53''; 1/3(1)$ $1365$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ $1375$ | D.O.<br>(mg/L)<br>5 16 %<br>1.95<br>1.55<br>1.55<br>1.77<br>1.75<br>1.55<br>1.97<br>1.95<br>1.97<br>1.96 | ter column in<br>Redox<br>(mV)<br>10  ov<br>75.4<br>65.7<br>57.7<br>57.7<br>57.7<br>473.1<br>-375.7<br>28.8                       | well]<br>Turbidity<br>(NTU)<br>± 107.<br>8.0<br>5.0<br>4.1<br>7.7<br>2.6<br>0<br>1.9<br>1.0<br>1.9                                                                                                        |  |

FIDE

7.27

10.85

10.92

10.12

315

3.15

1500

1509

1.04

1.03

-8:4

-1-3. (

2

1.2

1390

1389

| Date/Time | Volume<br>Purged<br>(gallons) | Depth to<br>Water (ft) | Temp<br>(°C) | рН    | Conductivity<br>(µS/cm) | D.O.<br>(mg/L) | Redox<br>(mV) | Turbidity<br>(NTU) |
|-----------|-------------------------------|------------------------|--------------|-------|-------------------------|----------------|---------------|--------------------|
| 1512      |                               | 3.20                   | 10.92        | 7.02  | 13:11                   | 1.01           | -21.2         | [.]                |
| 515       |                               | 3.14                   | 10-45        | 7-281 | 1314                    | C. 10          | -30.6         | 0.6                |
| 1518      | 2.5                           | 3.08                   | 10.90        | 7.27  | 1396                    | 393            | -51.0         | 1.0                |
| 1521      |                               | 3.03                   | 10.59        | 7,28  | 1397                    | 096            | -65.0         | 0.5                |
| 1524      |                               | 310                    | 10.84        | 7,25  | 1397                    | (195           | -78.4         | 0.5                |
| 1527      |                               | 3.12                   | 10.96        | 7,25  | 1396                    | 11:15          | 103.5         | O.4                |
| 1530      | 12.2                          | 3.13                   | 10,92        | 71,25 | 1396                    | 0.25           | 1169          | 0.4                |
| 1533      |                               | 3.05                   | 10:39        | 7.25  | 1397                    | 074            | 124.5         | 0.3                |
| 1556      | 3.5                           | 3.06                   | 10:32        | 7.23  | 1398                    | 0.73           | 1351          | 0.3                |
| 1540      |                               | Sam gl                 | e MW         |       | -030613                 | Ca             | Deut          | C. And             |
| _         | 18.U/TT                       | 1                      |              |       |                         |                |               | ,                  |
|           |                               | 3.10                   | a end        | je je | Sandin                  |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
| *         |                               |                        |              |       |                         |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
|           | -                             |                        |              |       |                         |                |               |                    |
|           |                               | na da                  | TR           |       |                         |                |               |                    |
|           |                               |                        | A            |       |                         |                |               |                    |
|           | 1                             |                        |              |       |                         |                |               |                    |
|           |                               |                        |              |       |                         |                |               |                    |
|           |                               | +                      |              | 1     |                         | +              | 1             |                    |
|           |                               |                        |              |       |                         |                |               | 5                  |
|           |                               |                        |              | -     |                         |                |               |                    |

Comments:

Signature: MRR

Date/Time: 3/6(13 1600

## GROUNDWATER SAMPLE COLLECTION FORM

**Blaine Mini Mart** 

| SAMPLE ID NO .: 0 1- 030613     |                               |                        |               |        | WELL ID: Our                      |                |               |                    |  |
|---------------------------------|-------------------------------|------------------------|---------------|--------|-----------------------------------|----------------|---------------|--------------------|--|
| DATE/TIM                        |                               |                        | -             |        | WEATHER: Light ren, 45° F         |                |               |                    |  |
| ANALYSIS                        | : (lab                        | hold)                  |               |        |                                   | 1              |               |                    |  |
| WELL PUR                        | RGING DA                      | АТА                    |               |        |                                   |                |               |                    |  |
| Initial depth to water: 1.65 6+ |                               |                        |               |        | Depth of well:<br>Volume of water | 12.5'          |               |                    |  |
| Screened inter                  |                               |                        | <u> </u>      |        | _Volume of water                  | in well:       | 21.30-        | allos              |  |
| Method of pur                   | ging: Pro                     | stell - Pun            | 0             |        | Purge rate: 40                    | 0 ml           | 13.00         |                    |  |
|                                 |                               |                        |               | Fubi.  | ÷.                                |                | -             |                    |  |
| SAMPLE CONTAINER DATA:          |                               |                        |               |        | SAMPLE ME                         | THOD:          | Pump Bailer ( | Other              |  |
|                                 |                               |                        |               |        | FILTERED F                        | OR MET         | ALS? Yes      | No                 |  |
|                                 | ser- Volume                   | No. No                 |               |        |                                   |                |               |                    |  |
| water Ha                        | CI 40 mil                     | Required Fille         |               |        | Photograph                        | Taken?         | 4             |                    |  |
| ustre He                        | 1 12                          | 1313                   |               |        |                                   |                |               |                    |  |
| weak -                          | - 12                          | 20                     | -             |        | Sample Entered on C.O.C.?         |                |               |                    |  |
|                                 |                               |                        | -             |        |                                   |                |               |                    |  |
|                                 | _                             |                        | -             |        |                                   |                |               |                    |  |
| SAMPLE P                        | RESERV                        | ATION ME               | FHOD:         | HCL    | + ice                             |                | Io            | ced                |  |
| [Volume of w                    | ater in mon                   | itoring well (2        | -ich diameter | PVC) = | $(0.655)^{*}h', h = he$           | ight of wat    | ter column in | well]              |  |
|                                 |                               | ODCEDU                 |               | TIDINI |                                   |                |               |                    |  |
| WATERQ                          | UALITY                        | UBSERV.                | ATIONS D      | UKIN   | G PURGING                         |                |               | 8                  |  |
| Date/Time                       | Volume<br>Purged<br>(gallons) | Depth to<br>Water (ft) | Temp<br>(°C)  | pН     | Conductivity<br>(µS/cm)           | D.O.<br>(mg/L) | Redox<br>(mV) | Turbidity<br>(NTU) |  |

#### 6.77 58 4,22 1625 1.65 6.64 80.2 3.0 81.9 6.77 3.95 11.9 1.64 8621 8.68 58 3,32 E.H. 86.3 11.2 8.63 57 1(31 1.64 3.94 10.8 91.6 1.65 8.56 6.74 57 134 3.90 95.5 10.7 874 56 1.69 8.56 1(37 3.86 6.72 10.6 8.51 56 99.2 .64 1646 1642 Cilected Dund 1.62 at and of 5 ding AF

| Date/Time | Volume<br>Purged<br>(gallons) | Depth to<br>Water (ft) | Temp<br>(°C) | рĤ           | Conductivity<br>(µS/cm)               | D.O.<br>(mg/L)          | Redox<br>(mV)   | Turbidity<br>(NTU) |
|-----------|-------------------------------|------------------------|--------------|--------------|---------------------------------------|-------------------------|-----------------|--------------------|
| \         |                               |                        |              |              |                                       |                         |                 |                    |
| /         |                               | i.                     |              |              |                                       |                         | -               |                    |
|           |                               |                        | 11-12        |              |                                       |                         | 12.4            |                    |
|           |                               |                        |              |              | (                                     |                         |                 | ANN L              |
| ··· ·· ·· |                               |                        |              |              |                                       |                         |                 | 1.1.291            |
|           | $\overline{}$                 |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        |              | †            |                                       |                         | 2               |                    |
|           |                               |                        |              | <u> </u>     |                                       |                         |                 |                    |
|           |                               |                        |              | 1000 C 2000  |                                       |                         |                 |                    |
|           |                               |                        |              |              |                                       |                         | THE FL          |                    |
|           | 10.27 1.5                     |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        |              |              |                                       |                         |                 |                    |
|           | 1                             |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        |              | $\mathbb{N}$ |                                       |                         | -1              |                    |
| <u> </u>  |                               |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        | 14           |              | $\frown$                              |                         |                 |                    |
|           |                               |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        |              |              |                                       |                         |                 |                    |
|           | +                             |                        |              | +            |                                       |                         |                 |                    |
|           |                               |                        |              |              |                                       | $\overline{\mathbf{N}}$ |                 |                    |
|           |                               |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        |              |              |                                       | +                       | <u> </u>        |                    |
|           |                               |                        |              |              |                                       |                         |                 |                    |
|           |                               |                        |              |              |                                       |                         | $ \rightarrow $ |                    |
|           |                               |                        |              |              |                                       |                         |                 | <u> </u>           |
|           |                               |                        |              |              | · · · · · · · · · · · · · · · · · · · |                         |                 |                    |
|           |                               |                        |              |              |                                       |                         |                 |                    |
|           | - 10 C                        |                        |              |              |                                       |                         |                 |                    |

Comments:

Signature: Me Psl

Date/Time: 3/6 (13 1730



3

9

9

D

Ð

9

9

D

9

9

99

Ð

D



ALL-WEATHER FIELD No. 353

BLAINE MINI MART CONFIRMATIONAL SAMPLING

TASK 62/ROMEO GW SAMPLING

3/6/3 0915 - M. Paul J Atuells on site in Blaine (mins Mart) - discour OW-1 to be uncovered? nu - Express to be incovered for sen time.] 0940 - collected water level measurements DTW T.P. MW-6 11.60' MW-7 will callect sample 1.33 from OW-1 even 2.05' MW-8 12.5' though there is (12" draw) no cap 1.60'  $\Delta W - 1$ 0950 molo te MWG 1012 - begin purging Milli-6 1050- parameters stabilized, 1- MW-6-030613 Collected - MW-6-030613-MS 1 - MW-6-0306B-MSD - packal samples demob equipment 135- moto to MW-7 1245 - begin purging MW-7 1338 - Darameter Stabilizal - MW-7-030613 calleded - poeted samples, demob equipment

1410 - mds to MW-8 1430 - bosn purging MW-8 1500 - Conditions of OW'S & OW-1 : open casing, Vault w/weter, strang order, sheen @ OW-2 open casing, Vault w/weter, strang order, sheen @ OW-3 open casing, Vault w/weter, strang order, sheen @

1540- all parameters statilized except for OFR/redox, which in more/less statilized but just outside stable range, b consistently MW 8-0306 13 cullested

- Spoke with Nick Ackkin/ECY Re: the OWT | songeling, which he still wants collected, will hold at lab to want for analysis confirmation

1600 mob to OW-1 1615 - besin purging OW-1, Sheen observed 1642 - permeters statestime, - collected OW-1-030613 scaple removed 1715 - demote pack all scaples in coolers W ample amount of ice + padding



Appendix B Laboratory Reports and Chain-of-Custody Forms



# ANALYTICAL REPORT

Job Number: 580-37398-1 Job Description: Blaine Mini Mart Groundwater Monitoring

> For: Science Applications International Corp 18912 North Creek Parkway, Suite 101 Bothell, WA 98011 Attention: Marina Mitchell

Kristine D. allen

Approved for release. Kristine Allen Project Manager I 3/26/2013 4:58 PM

Kristine Allen Project Manager I kristine.allen@testamericainc.com 03/26/2013

TestAmerica Seattle is a part of TestAmerica Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

This report shall not be reproduced except in full, without prior express written approval by the laboratory. The results relate only to the item(s) tested and the sample(s) as received by the laboratory.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan and meet all requirements of NELAC. All data have been found to be compliant with laboratory protocol, with the exception of any items noted in the case narrative.



37398

|        | SAIC                                   |                                |              | th Creek Par<br>ashington | -                      | te 101                                    |                  | Ana                                          | lyses / T                                                                                          | ests              |                          | Shipping Information              |
|--------|----------------------------------------|--------------------------------|--------------|---------------------------|------------------------|-------------------------------------------|------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------|--------------------------|-----------------------------------|
|        | From Science to Solutions              |                                |              | 85.5800 • F               |                        | 85.5566                                   |                  | 1                                            |                                                                                                    | ene,<br>8270-     | - Ga.                    | Number of Shipping<br>Containers: |
|        |                                        |                                |              |                           |                        |                                           |                  |                                              |                                                                                                    | aphthal<br>e (EPA |                          | Date Shipped:                     |
|        | Project Number:                        |                                |              |                           | Pa _ P                 |                                           | ,                | ÷<br>⊋ ₽                                     |                                                                                                    | hyina<br>alen     | а.                       |                                   |
| 8      | Project Name:                          |                                |              | Indwater Mon              | ntoring                |                                           | 0<br>T           | H-D<br>eant                                  | 30)                                                                                                | Phth              |                          | Carrier:                          |
|        | Project Location:<br>Contact Name:     | Blaine, w                      |              | 0.0010 mori               | no i mitoboll <i>i</i> | Regio com                                 | TP.              | WTF<br>gel cl                                | A 826                                                                                              | ie, 1<br>iylna    |                          | Waybill No.:                      |
|        | Contact Name:<br>Samples Collected by: |                                |              |                           |                        |                                           | NN)              | 0x (N<br>lica g                              | (EPA                                                                                               | haler<br>Meth     |                          | науын но                          |
|        | Samples Collected by:<br>Sample ID     | Depth                          | Matrix       | Date                      | Time                   | # of Containers                           | TPH-G (NWTPH-G)  | TPH-Dx (NWTPH-Dx)<br>with silica gel cleanup | VOCs (EPA 8260)<br>Naphthalene, 1-Methylnaphthalene,<br>and 2-Methylnaphthalene (EPA 8270-<br>SIM) |                   |                          | Comments                          |
| 1-     | MW-6-030613                            | na                             | water        | 3/6/13                    | 1050                   | 10                                        | х                | X                                            | Х                                                                                                  | Х                 |                          |                                   |
| 2-     | MW-7-030613                            | na                             | water        | 36/13                     | 1338                   | 10                                        | х                | X                                            | х                                                                                                  | х                 |                          | Analyze per SAP/QAPP              |
| 3-     | MW-8- 030613                           | na                             | water        | 363                       | 1540                   | 10                                        | х                | <b>X</b>                                     | .Х.                                                                                                | х                 |                          | provided under separate cover.    |
|        | OW-1 030613                            | na                             | water        | 3/6/13                    | 1642                   | 10                                        | ×X               | х                                            | х                                                                                                  | х                 |                          |                                   |
|        | MW- 6-030613-MS                        | na                             | water        | 3/6/13                    | 1050                   | 10                                        | x                | X                                            | X                                                                                                  | x                 |                          | Do not dispose of samples         |
| - 13   | MW- 6 - 030613-MSD                     | na                             | water        | 3613                      | 1050                   | 10                                        | x                | X                                            | <b>.</b> X                                                                                         | X                 |                          | without written authorization     |
| 5-7-   | Trip Blank                             | na                             | DI water     | na                        | na                     |                                           | Х                |                                              | x                                                                                                  |                   |                          |                                   |
| MF-113 |                                        |                                |              |                           | -                      |                                           |                  |                                              |                                                                                                    |                   |                          | from SAIC.                        |
| 691*   | 5 0.0                                  | d.                             | 1            | 5 S                       |                        | 8 V                                       |                  |                                              | <b>7</b>                                                                                           | "<                | J.                       |                                   |
|        | Cooler/TB Dig/IR                       | or <u>6.8</u>                  | un <u>65</u> | Cooler/B                  | Dig/IR con             | r <u>7.6 unc7.3</u>                       | Cooler           | r/ <b>TB</b> Di                              | g/IR co                                                                                            | r <u>6.6</u> u    | nc <u>43</u>             | VOCs include:                     |
|        | Cooler Dsc Lg Graw<br>Wet/Packs Packi  | <u>18442 (a)</u> 1<br>ng Babbi | ab           | Cooler Dsc                | Ly Green/Bl            | n <u>e (a)</u> Lau <u>izc</u><br>7 Bubble | _ Coole<br>Wet/I | Packs                                        | Packin                                                                                             | <u>e Bubbl-e</u>  | U <u>1500</u>            | BTEX, EDB, EDC, MTBE              |
|        | AZ W/cs                                | <u> </u>                       |              | AZ                        | v/cs                   | <u></u>                                   | wl               | C5 AZ                                        |                                                                                                    |                   |                          |                                   |
| -      | RELINQUISHED BY:                       |                                | RECE         | VED BY:                   |                        | RE                                        | LINQUISH         | ED BY:                                       |                                                                                                    |                   | RECEIVE                  | D BY:                             |
|        | Signature: Mul Yel                     |                                |              | ture: Z                   | 1                      |                                           |                  |                                              |                                                                                                    | Signature         |                          |                                   |
|        |                                        | 094                            |              | ime: <u>3/7/1</u>         | 3 1500                 |                                           | te/Time:         |                                              |                                                                                                    |                   | Date/Time<br>Affiliation |                                   |
|        | Affiliation:SAIC                       |                                | Affilia      | tion: $TA - 5$            | t H                    | Af                                        | iliation:        |                                              |                                                                                                    |                   | AIIIIIAUON               | ·                                 |

Onion 2/11/13

#### Client: Science Applications International Corp

| Lab Sample ID  | Client Sample ID | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |  |  |
|----------------|------------------|---------------|----------------------|-----------------------|--|--|
| 580-37398-1    | MW-6-030613      | Water         | 03/06/2013 1050      | 03/07/2013 1500       |  |  |
| 580-37398-1MS  | MW-6-030613      | Water         | 03/06/2013 1050      | 03/07/2013 1500       |  |  |
| 580-37398-1MSD | MW-6-030613      | Water         | 03/06/2013 1050      | 03/07/2013 1500       |  |  |
| 580-37398-2    | MW-7-030613      | Water         | 03/06/2013 1338      | 03/07/2013 1500       |  |  |
| 580-37398-3    | MW-8-030613      | Water         | 03/06/2013 1540      | 03/07/2013 1500       |  |  |
| 580-37398-4    | OW-1-030613      | Water         | 03/06/2013 1642      | 03/07/2013 1500       |  |  |
| 580-37398-5    | Trip Blank       | Water         | 03/06/2013 0000      | 03/07/2013 1500       |  |  |

### METHOD SUMMARY

#### Client: Science Applications International Corp

Job Number: 580-37398-1

| Description                                       | Lab Location | Method Preparation Method |
|---------------------------------------------------|--------------|---------------------------|
| Matrix: Water                                     |              |                           |
| Volatile Organic Compounds (GC/MS)                | TAL SEA      | SW846 8260B               |
| Purge and Trap                                    | TAL SEA      | SW846 5030B               |
| Semivolatile Organic Compounds (GC/MS SIM)        | TAL SEA      | SW846 8270C SIM           |
| Liquid-Liquid Extraction (Continuous)             | TAL SEA      | SW846 3520C               |
| Northwest - Volatile Petroleum Products (GC)      | TAL SEA      | NWTPH NWTPH-Gx            |
| Purge and Trap                                    | TAL SEA      | SW846 5030B               |
| Northwest - Semi-Volatile Petroleum Products (GC) | TAL SEA      | NWTPH NWTPH-Dx            |
| Liquid-Liquid Extraction (Continuous)             | TAL SEA      | SW846 3520C               |
| Silica Gel Cleanup                                | TAL SEA      | SW846 3630C               |

#### Lab References:

TAL SEA = TestAmerica Seattle

#### Method References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

## DATA REPORTING QUALIFIERS

Client: Science Applications International Corp

| Lab Section | Qualifier | Description                                                                                                     |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------|
| GC/MS VOA   |           |                                                                                                                 |
|             | х         | Surrogate is outside control limits                                                                             |
| GC VOA      |           |                                                                                                                 |
|             | ۸         | ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard:<br>Instrument related QC exceeds the control limits. |
|             |           |                                                                                                                 |
| GC Semi VOA | Y         | The chromatographic response resembles a typical fuel pattern.                                                  |
|             | •         |                                                                                                                 |

### Client: Science Applications International Corp

| Client Sample ID:                                                                                                                    | MW-6-030613                                                 |                                                           |                   |                                                                      |                                                                       |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                                                                                     | 580-37398-1<br>Water                                        |                                                           |                   |                                                                      |                                                                       | ampled: 03/06/2013 1050<br>Received: 03/07/2013 1500       |
|                                                                                                                                      |                                                             | 8260B Volatile Orga                                       | nic Compound      | s (GC/MS)                                                            |                                                                       |                                                            |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date:                                                        | 8260B<br>5030B<br>1.0<br>03/12/2013 1624<br>03/12/2013 1624 | Analysis Batch:<br>Prep Batch:                            | 580-131539<br>N/A | Instrument ID:<br>Lab File ID:<br>Initial Weight/V<br>Final Weight/V |                                                                       | TAC043<br>vb00150986.D<br>5 mL<br>5 mL                     |
| Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylen<br>o-Xylene<br>Methyl tert-butyl eth<br>EDC<br>1,2-Dibromoethane |                                                             | Result (u<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | g/L)              | Qualifier                                                            |                                                                       | RL<br>1.0<br>1.0<br>1.0<br>2.0<br>1.0<br>1.0<br>1.0<br>1.0 |
| Surrogate<br>4-Bromofluorobenze<br>Ethylbenzene-d10<br>Fluorobenzene (Sur<br>Toluene-d8 (Surr)<br>Trifluorotoluene (Su               | т)                                                          | %Rec<br>91<br>87<br>96<br>83<br>103                       |                   | Qualifier<br>X                                                       | Acceptanc<br>75 - 120<br>80 - 120<br>80 - 120<br>85 - 120<br>85 - 120 | e Limits                                                   |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-7-030613                                                 |                                |                   |                                                                   |          |                                                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------|-------------------------------------------------------------------|----------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-2<br>Water                                        |                                |                   |                                                                   |          | Sampled: 03/06/2013 1338<br>Received: 03/07/2013 1500 |
|                                                                               |                                                             | 8260B Volatile Orga            | nic Compound      | s (GC/MS)                                                         |          |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8260B<br>5030B<br>1.0<br>03/12/2013 1754<br>03/12/2013 1754 | Analysis Batch:<br>Prep Batch: | 580-131539<br>N/A | Instrument ID<br>Lab File ID:<br>Initial Weight/<br>Final Weight/ | Volume:  | TAC043<br>vb00150992.D<br>5 mL<br>5 mL                |
| Analyte                                                                       |                                                             | Result (u                      | g/L)              | Qualifier                                                         |          | RL                                                    |
| Benzene                                                                       |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Toluene                                                                       |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Ethylbenzene                                                                  |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| m-Xylene & p-Xylen                                                            | e                                                           | ND                             |                   |                                                                   |          | 2.0                                                   |
| o-Xylene                                                                      |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Methyl tert-butyl eth                                                         | er                                                          | ND                             |                   |                                                                   |          | 1.0                                                   |
| EDC                                                                           |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| 1,2-Dibromoethane                                                             |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Surrogate                                                                     |                                                             | %Rec                           |                   | Qualifier                                                         | Acceptan | ce Limits                                             |
| 4-Bromofluorobenze                                                            | ene (Surr)                                                  | 88                             |                   |                                                                   | 75 - 120 |                                                       |
| Ethylbenzene-d10                                                              |                                                             | 102                            |                   |                                                                   | 80 - 120 |                                                       |
| Fluorobenzene (Sur                                                            | r)                                                          | 98                             |                   |                                                                   | 80 - 120 |                                                       |
| Toluene-d8 (Surr)                                                             |                                                             | 100                            |                   |                                                                   | 85 - 120 |                                                       |
| Trifluorotoluene (Su                                                          | rr)                                                         | 105                            |                   |                                                                   | 80 - 120 |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-8-030613                                                 |                                |                   |                                                                        |                        |                                                    |
|-------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------|------------------------------------------------------------------------|------------------------|----------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-3<br>Water                                        |                                |                   |                                                                        |                        | mpled: 03/06/2013 1540<br>eceived: 03/07/2013 1500 |
|                                                                               |                                                             | 8260B Volatile Orga            | nic Compound      | s (GC/MS)                                                              |                        |                                                    |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8260B<br>5030B<br>1.0<br>03/12/2013 1825<br>03/12/2013 1825 | Analysis Batch:<br>Prep Batch: | 580-131539<br>N/A | Instrument ID:<br>Lab File ID:<br>Initial Weight/Vo<br>Final Weight/Vo | lume:                  | TAC043<br>vb00150994.D<br>5 mL<br>5 mL             |
| Analyte<br>Benzene                                                            |                                                             | Result (u<br>ND                | g/L)              | Qualifier                                                              |                        | RL<br>1.0                                          |
| Toluene<br>Ethylbenzene                                                       |                                                             | ND<br>ND                       |                   |                                                                        |                        | 1.0<br>1.0                                         |
| m-Xylene & p-Xylen<br>o-Xylene                                                | е                                                           | ND<br>ND                       |                   |                                                                        |                        | 2.0<br>1.0                                         |
| Methyl tert-butyl eth<br>EDC                                                  | er                                                          | ND<br>ND                       |                   |                                                                        |                        | 1.0<br>1.0                                         |
| 1,2-Dibromoethane                                                             |                                                             | ND                             |                   |                                                                        |                        | 1.0                                                |
| Surrogate                                                                     |                                                             | %Rec                           |                   |                                                                        | Acceptance<br>75 - 120 | Limits                                             |
| 4-Bromofluorobenze<br>Ethylbenzene-d10                                        | ene (Surr)                                                  | 88<br>99                       |                   | -                                                                      | 30 - 120<br>30 - 120   |                                                    |
| Fluorobenzene (Sur                                                            | r)                                                          | 115                            |                   |                                                                        | 30 - 120               |                                                    |
| Toluene-d8 (Surr)<br>Trifluorotoluene (Su                                     | rr)                                                         | 99<br>105                      |                   |                                                                        | 35 - 120<br>30 - 120   |                                                    |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | OW-1-030613                                                 |                                |                   |                                                                   |          |                                                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------|-------------------------------------------------------------------|----------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-4<br>Water                                        |                                |                   |                                                                   |          | Sampled: 03/06/2013 1642<br>Received: 03/07/2013 1500 |
|                                                                               |                                                             | 8260B Volatile Orga            | nic Compound      | s (GC/MS)                                                         |          |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8260B<br>5030B<br>1.0<br>03/11/2013 2125<br>03/11/2013 2125 | Analysis Batch:<br>Prep Batch: | 580-131457<br>N/A | Instrument ID<br>Lab File ID:<br>Initial Weight/<br>Final Weight/ | Volume:  | TAC043<br>vb00150960.D<br>5 mL<br>5 mL                |
| Analyte                                                                       |                                                             | Result (u                      | g/L)              | Qualifier                                                         |          | RL                                                    |
| Benzene                                                                       |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Toluene                                                                       |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Ethylbenzene                                                                  |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| m-Xylene & p-Xylen                                                            | e                                                           | ND                             |                   |                                                                   |          | 2.0                                                   |
| o-Xylene                                                                      |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Methyl tert-butyl eth                                                         | er                                                          | ND                             |                   |                                                                   |          | 1.0                                                   |
| EDC                                                                           |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| 1,2-Dibromoethane                                                             |                                                             | ND                             |                   |                                                                   |          | 1.0                                                   |
| Surrogate                                                                     |                                                             | %Rec                           |                   | Qualifier                                                         | Acceptar | nce Limits                                            |
| 4-Bromofluorobenze                                                            | ene (Surr)                                                  | 89                             |                   |                                                                   | 75 - 120 |                                                       |
| Ethylbenzene-d10                                                              |                                                             | 96                             |                   |                                                                   | 80 - 120 |                                                       |
| Fluorobenzene (Sur                                                            | r)                                                          | 94                             |                   |                                                                   | 80 - 120 |                                                       |
| Toluene-d8 (Surr)                                                             |                                                             | 96                             |                   |                                                                   | 85 - 120 |                                                       |
| Trifluorotoluene (Su                                                          | rr)                                                         | 80                             |                   |                                                                   | 80 - 120 |                                                       |
### Client: Science Applications International Corp

| Client Sample ID:                                                                                         | Trip Blank                                                  |                                |                   |                                                                        |                                                          |                                                       |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------|------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                                                          | 580-37398-5<br>Water                                        |                                |                   |                                                                        |                                                          | Sampled: 03/06/2013 0000<br>Received: 03/07/2013 1500 |
|                                                                                                           |                                                             | 8260B Volatile Orga            | nic Compound      | s (GC/MS)                                                              |                                                          |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date:                             | 8260B<br>5030B<br>1.0<br>03/12/2013 1855<br>03/12/2013 1855 | Analysis Batch:<br>Prep Batch: | 580-131539<br>N/A | Instrument ID:<br>Lab File ID:<br>Initial Weight/Vo<br>Final Weight/Vo |                                                          | TAC043<br>vb00150996.D<br>5 mL<br>5 mL                |
| Analyte<br>Benzene<br>Toluene                                                                             |                                                             | Result (u<br>ND<br>ND          | g/L)              | Qualifier                                                              |                                                          | RL<br>1.0<br>1.0                                      |
| Ethylbenzene<br>m-Xylene & p-Xylen                                                                        | e                                                           | ND<br>ND<br>ND<br>ND           |                   |                                                                        |                                                          | 1.0<br>2.0<br>1.0                                     |
| o-Xylene<br>Methyl tert-butyl eth<br>EDC<br>1,2-Dibromoethane                                             | er                                                          | ND<br>ND<br>ND<br>ND           |                   |                                                                        |                                                          | 1.0<br>1.0<br>1.0<br>1.0                              |
| Surrogate                                                                                                 |                                                             | %Rec                           |                   |                                                                        | Acceptanc                                                | ce Limits                                             |
| 4-Bromofluorobenze<br>Ethylbenzene-d10<br>Fluorobenzene (Sur<br>Toluene-d8 (Surr)<br>Trifluorotoluene (Su | r)                                                          | 92<br>100<br>97<br>98<br>104   |                   |                                                                        | 75 - 120<br>80 - 120<br>80 - 120<br>85 - 120<br>80 - 120 |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-6-030613                                                     |                                |                          |                |                                                                                                  |                                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------|----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-1<br>Water                                            |                                |                          |                |                                                                                                  | Sampled: 03/06/2013 1050<br>Received: 03/07/2013 1500  |
|                                                                               | 82                                                              | 270C SIM Semivolatile Or       | ganic Compou             | inds (GC/M     | IS SIM)                                                                                          |                                                        |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8270C SIM<br>3520C<br>1.0<br>03/12/2013 1346<br>03/11/2013 1252 | Analysis Batch:<br>Prep Batch: | 580-131533<br>580-131487 | La<br>In<br>Fi | nstrument ID:<br>ab File ID:<br>nitial Weight/Volume:<br>inal Weight/Volume:<br>njection Volume: | SEA016<br>16t031123011.D<br>1056.3 mL<br>10 mL<br>1 uL |
| Analyte                                                                       |                                                                 | Result (u                      | g/L)                     | Qualifier      |                                                                                                  | RL                                                     |
| Naphthalene                                                                   |                                                                 | ND                             |                          |                |                                                                                                  | 0.095                                                  |
| 2-Methylnaphthalen                                                            | ne                                                              | ND                             |                          |                |                                                                                                  | 0.12                                                   |
| 1-Methylnaphthalen                                                            | ne                                                              | ND                             |                          |                |                                                                                                  | 0.095                                                  |
| Surrogate                                                                     |                                                                 | %Rec                           |                          | Qualifier      | Acceptar                                                                                         | nce Limits                                             |
| Terphenyl-d14                                                                 |                                                                 | 60                             |                          |                | 20 - 150                                                                                         |                                                        |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-7-030613                                                     |                                |                          |               |                                                                                                  |                                                       |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------|---------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-2<br>Water                                            |                                |                          |               |                                                                                                  | Sampled: 03/06/2013 1338<br>Received: 03/07/2013 1500 |
|                                                                               | 8                                                               | 270C SIM Semivolatile Or       | ganic Compou             | inds (GC/M    | IS SIM)                                                                                          |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8270C SIM<br>3520C<br>1.0<br>03/12/2013 1454<br>03/11/2013 1252 | Analysis Batch:<br>Prep Batch: | 580-131533<br>580-131487 | L:<br>Ir<br>F | nstrument ID:<br>ab File ID:<br>nitial Weight/Volume:<br>inal Weight/Volume:<br>njection Volume: | SEA016<br>16t031123014.D<br>991.5 mL<br>10 mL<br>1 uL |
| Analyte                                                                       |                                                                 | Result (u                      | g/L)                     | Qualifier     |                                                                                                  | RL                                                    |
| Naphthalene                                                                   |                                                                 | ND                             |                          |               |                                                                                                  | 0.10                                                  |
| 2-Methylnaphthalen                                                            | e                                                               | ND                             |                          |               |                                                                                                  | 0.13                                                  |
| 1-Methylnaphthalen                                                            | e                                                               | ND                             |                          |               |                                                                                                  | 0.10                                                  |
| Surrogate                                                                     |                                                                 | %Rec                           |                          | Qualifier     | Acceptar                                                                                         | nce Limits                                            |
| Terphenyl-d14                                                                 |                                                                 | 61                             |                          |               | 20 - 150                                                                                         |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-8-030613                                                     |                                |                          |              |                                                                                                  |                                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------|--------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-3<br>Water                                            |                                |                          |              |                                                                                                  | Sampled: 03/06/2013 1540<br>Received: 03/07/2013 1500  |
|                                                                               | 82                                                              | 270C SIM Semivolatile Or       | ganic Compou             | inds (GC/N   | IS SIM)                                                                                          |                                                        |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8270C SIM<br>3520C<br>1.0<br>03/12/2013 1516<br>03/11/2013 1252 | Analysis Batch:<br>Prep Batch: | 580-131533<br>580-131487 | L<br>Ir<br>F | nstrument ID:<br>ab File ID:<br>nitial Weight/Volume:<br>inal Weight/Volume:<br>njection Volume: | SEA016<br>16t031123015.D<br>1019.6 mL<br>10 mL<br>1 uL |
| Analyte                                                                       |                                                                 | Result (u                      | g/L)                     | Qualifier    |                                                                                                  | RL                                                     |
| Naphthalene                                                                   |                                                                 | ND                             |                          |              |                                                                                                  | 0.098                                                  |
| 2-Methylnaphthalen                                                            | ne                                                              | ND                             |                          |              |                                                                                                  | 0.13                                                   |
| 1-Methylnaphthalen                                                            | ne                                                              | ND                             |                          |              |                                                                                                  | 0.098                                                  |
| Surrogate                                                                     |                                                                 | %Rec                           |                          | Qualifier    | Acceptar                                                                                         | nce Limits                                             |
| Terphenyl-d14                                                                 |                                                                 | 58                             |                          |              | 20 - 150                                                                                         |                                                        |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | OW-1-030613                                                     |                                |                          |              |                                                                                                    |                                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------|--------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-4<br>Water                                            |                                |                          |              |                                                                                                    | Sampled: 03/06/2013 1642<br>Received: 03/07/2013 1500  |
|                                                                               | 8                                                               | 270C SIM Semivolatile Or       | ganic Compou             | inds (GC/N   | AS SIM)                                                                                            |                                                        |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8270C SIM<br>3520C<br>1.0<br>03/12/2013 1539<br>03/11/2013 1252 | Analysis Batch:<br>Prep Batch: | 580-131533<br>580-131487 | L<br>Ir<br>F | nstrument ID:<br>.ab File ID:<br>nitial Weight/Volume:<br>Final Weight/Volume:<br>njection Volume: | SEA016<br>16t031123016.D<br>1000.4 mL<br>10 mL<br>1 uL |
| Analyte                                                                       |                                                                 | Result (u                      | g/L)                     | Qualifier    |                                                                                                    | RL                                                     |
| Naphthalene                                                                   |                                                                 | ND                             |                          |              |                                                                                                    | 0.10                                                   |
| 2-Methylnaphthalen                                                            | e                                                               | ND                             |                          |              |                                                                                                    | 0.13                                                   |
| 1-Methylnaphthalen                                                            | e                                                               | 0.12                           |                          |              |                                                                                                    | 0.10                                                   |
| Surrogate                                                                     |                                                                 | %Rec                           |                          | Qualifier    | Acceptar                                                                                           | nce Limits                                             |
| Terphenyl-d14                                                                 |                                                                 | 62                             |                          |              | 20 - 150                                                                                           |                                                        |

### Client: Science Applications International Corp

| Client Sample ID:                | MW-6-030613          |                        |                 |           |                        |                                                           |
|----------------------------------|----------------------|------------------------|-----------------|-----------|------------------------|-----------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix: | 580-37398-1<br>Water |                        |                 |           |                        | e Sampled: 03/06/2013 1050<br>e Received: 03/07/2013 1500 |
|                                  | N                    | WTPH-Gx Northwest - Vo | latile Petroleu | m Produc  | cts (GC)               |                                                           |
| Analysis Method:                 | NWTPH-Gx             | Analysis Batch:        | 580-131530      |           | Instrument ID:         | TAC003                                                    |
| Prep Method:                     | 5030B                |                        | N/A             |           | Initial Weight/Volume: | 5 mL                                                      |
| Dilution:                        | 1.0                  |                        |                 |           | Final Weight/Volume:   | 5 mL                                                      |
| Analysis Date:                   | 03/12/2013 1554      |                        |                 |           | Injection Volume:      |                                                           |
| Prep Date:                       | 03/12/2013 1554      |                        |                 |           | Result Type:           | PRIMARY                                                   |
| Analyte                          |                      | Result (m              | ıg/L)           | Qualifier |                        | RL                                                        |
| Gasoline                         |                      | ND                     |                 | ٨         |                        | 0.050                                                     |
| Surrogate                        |                      | %Rec                   |                 | Qualifier | - Accepta              | nce Limits                                                |
| 4-Bromofluorobenze               | ene (Surr)           | 81                     |                 |           | 50 - 150               |                                                           |
| Trifluorotoluene (Su             | rr)                  | 104                    |                 |           | 50 - 150               | )                                                         |

### Client: Science Applications International Corp

| Client Sample ID:                | MW-7-030613          |                        |                 |          |                        |                                                           |
|----------------------------------|----------------------|------------------------|-----------------|----------|------------------------|-----------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix: | 580-37398-2<br>Water |                        |                 |          |                        | e Sampled: 03/06/2013 1338<br>e Received: 03/07/2013 1500 |
|                                  | NV                   | WTPH-Gx Northwest - Vo | latile Petroleu | ım Produ | icts (GC)              |                                                           |
| Analysis Method:                 | NWTPH-Gx             | Analysis Batch:        | 580-131891      |          | Instrument ID:         | TAC003                                                    |
| Prep Method:                     | 5030B                |                        | N/A             |          | Initial Weight/Volume: | 5 mL                                                      |
| Dilution:                        | 1.0                  |                        |                 |          | Final Weight/Volume:   | 5 mL                                                      |
| Analysis Date:                   | 03/18/2013 1411      |                        |                 |          | Injection Volume:      |                                                           |
| Prep Date:                       | 03/18/2013 1411      |                        |                 |          | Result Type:           | PRIMARY                                                   |
| Analyte                          |                      | Result (m              | ıg/L)           | Qualifie | er                     | RL                                                        |
| Gasoline                         |                      | ND                     |                 |          |                        | 0.050                                                     |
| Surrogate                        |                      | %Rec                   |                 | Qualifie | er Accepta             | ince Limits                                               |
| 4-Bromofluorobenze               | ene (Surr)           | 110                    |                 |          | 50 - 150               |                                                           |
| Trifluorotoluene (Su             | rr)                  | 108                    |                 |          | 50 - 150               | )                                                         |

### Client: Science Applications International Corp

| Client Sample ID:                | MW-8-030613          |                        |                 |          |                        |                                                       |
|----------------------------------|----------------------|------------------------|-----------------|----------|------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix: | 580-37398-3<br>Water |                        |                 |          |                        | Sampled: 03/06/2013 1540<br>Received: 03/07/2013 1500 |
|                                  | N                    | WTPH-Gx Northwest - Vo | latile Petroleu | m Produ  | cts (GC)               |                                                       |
| Analysis Method:                 | NWTPH-Gx             | Analysis Batch:        | 580-131891      |          | Instrument ID:         | TAC003                                                |
| Prep Method:                     | 5030B                |                        | N/A             |          | Initial Weight/Volume: | 5 mL                                                  |
| Dilution:                        | 1.0                  |                        |                 |          | Final Weight/Volume:   | 5 mL                                                  |
| Analysis Date:                   | 03/18/2013 1433      |                        |                 |          | Injection Volume:      |                                                       |
| Prep Date:                       | 03/18/2013 1433      |                        |                 |          | Result Type:           | PRIMARY                                               |
| Analyte                          |                      | Result (m              | ıg/L)           | Qualifie | r                      | RL                                                    |
| Gasoline                         |                      | ND                     |                 |          |                        | 0.050                                                 |
| Surrogate                        |                      | %Rec                   |                 | Qualifie | r Accepta              | nce Limits                                            |
| 4-Bromofluorobenzo               | ene (Surr)           | 114                    |                 |          | 50 - 150               |                                                       |
| Trifluorotoluene (Su             | ırr)                 | 106                    |                 |          | 50 - 150               |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | OW-1-030613                                                    |                        |                   |                          |                                                                                |                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|-------------------|--------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-4<br>Water                                           |                        |                   |                          |                                                                                | Sampled: 03/06/2013 1642<br>Received: 03/07/2013 1500 |
|                                                                               | NV                                                             | WTPH-Gx Northwest - Vo | olatile Petroleu  | m Products (G            | SC)                                                                            |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | NWTPH-Gx<br>5030B<br>1.0<br>03/18/2013 1456<br>03/18/2013 1456 | Analysis Batch:        | 580-131891<br>N/A | Initia<br>Final<br>Injec | ument ID:<br>I Weight/Volume:<br>I Weight/Volume:<br>tion Volume:<br>ult Type: | TAC003<br>5 mL<br>5 mL<br>PRIMARY                     |
| Analyte                                                                       |                                                                | Result (m              | ıg/L)             | Qualifier                |                                                                                | RL                                                    |
| Gasoline                                                                      |                                                                | ND                     |                   |                          |                                                                                | 0.050                                                 |
| Surrogate                                                                     |                                                                | %Rec                   |                   | Qualifier                | Acceptar                                                                       | nce Limits                                            |
| 4-Bromofluorobenz<br>Trifluorotoluene (Su                                     | · · ·                                                          | 117<br>108             |                   |                          | 50 - 150<br>50 - 150                                                           |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | Trip Blank                                                     |                        |                   |               |                                                                                                    |                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|-------------------|---------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-5<br>Water                                           |                        |                   |               |                                                                                                    | Sampled: 03/06/2013 0000<br>Received: 03/07/2013 1500 |
|                                                                               | N                                                              | WTPH-Gx Northwest - Vo | olatile Petroleu  | m Product     | ts (GC)                                                                                            |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | NWTPH-Gx<br>5030B<br>1.0<br>03/12/2013 1254<br>03/12/2013 1254 | Analysis Batch:        | 580-131530<br>N/A | lı<br>F<br>lı | nstrument ID:<br>nitial Weight/Volume:<br>Final Weight/Volume:<br>njection Volume:<br>Result Type: | TAC003<br>5 mL<br>5 mL<br>PRIMARY                     |
| Analyte                                                                       |                                                                | Result (m              | ıg/L)             | Qualifier     |                                                                                                    | RL                                                    |
| Gasoline                                                                      |                                                                | ND                     |                   |               |                                                                                                    | 0.050                                                 |
| Surrogate                                                                     |                                                                | %Rec                   |                   | Qualifier     | Acceptar                                                                                           | nce Limits                                            |
| 4-Bromofluorobenz<br>Trifluorotoluene (Su                                     | ( <i>)</i>                                                     | 86<br>108              |                   |               | 50 - 150<br>50 - 150                                                                               |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-6-030613                                                    |                                |                          |                                                                               |                        |                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------|-------------------------------------------------------------------------------|------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-1<br>Water                                           |                                |                          |                                                                               |                        | Sampled: 03/06/2013 1050<br>Received: 03/07/2013 1500 |
|                                                                               | NWTI                                                           | PH-Dx Northwest - Semi         | -Volatile Petrol         | eum Products (GC)                                                             |                        |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | NWTPH-Dx<br>3520C<br>1.0<br>03/12/2013 1807<br>03/11/2013 1307 | Analysis Batch:<br>Prep Batch: | 580-131543<br>580-131489 | Instrument I<br>Lab File ID:<br>Initial Weigh<br>Final Weigh<br>Injection Vol | t/Volume:<br>t/Volume: | SEA011<br>DT13581.d<br>1008.1 mL<br>5 mL<br>1 uL      |
| Analyte                                                                       |                                                                | Result (m                      | ng/L)                    | Qualifier                                                                     |                        | RL                                                    |
| #2 Diesel (C10-C2                                                             | 4)                                                             | ND                             |                          |                                                                               |                        | 0.12                                                  |
| Motor Oil (>C24-C3                                                            | 6)                                                             | ND                             |                          |                                                                               |                        | 0.25                                                  |
| Surrogate                                                                     |                                                                | %Rec                           |                          | Qualifier                                                                     | Acceptar               | nce Limits                                            |
| o-Terphenyl                                                                   |                                                                | 91                             |                          |                                                                               | 50 - 150               |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-7-030613                                                    |                                |                          |                                                                               |                        |                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------|-------------------------------------------------------------------------------|------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-2<br>Water                                           |                                |                          |                                                                               |                        | Sampled: 03/06/2013 1338<br>Received: 03/07/2013 1500 |
|                                                                               | NWT                                                            | PH-Dx Northwest - Semi         | -Volatile Petrol         | eum Products (GC)                                                             |                        |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | NWTPH-Dx<br>3520C<br>1.0<br>03/12/2013 1931<br>03/11/2013 1307 | Analysis Batch:<br>Prep Batch: | 580-131543<br>580-131489 | Instrument I<br>Lab File ID:<br>Initial Weigh<br>Final Weigh<br>Injection Vol | t/Volume:<br>t/Volume: | SEA011<br>DT13587.d<br>980.5 mL<br>5 mL<br>1 uL       |
| Analyte                                                                       |                                                                | Result (m                      | ng/L)                    | Qualifier                                                                     |                        | RL                                                    |
| #2 Diesel (C10-C2                                                             | 4)                                                             | ND                             |                          |                                                                               |                        | 0.13                                                  |
| Motor Oil (>C24-C3                                                            | 6)                                                             | ND                             |                          |                                                                               |                        | 0.25                                                  |
| Surrogate                                                                     |                                                                | %Rec                           |                          | Qualifier                                                                     | Acceptar               | nce Limits                                            |
| o-Terphenyl                                                                   |                                                                | 89                             |                          |                                                                               | 50 - 150               |                                                       |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | MW-8-030613                                                    |                                |                          |                                                                         |                                |                                                  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------|-------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|--|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-3<br>Water                                           |                                |                          |                                                                         |                                | Sampled: 03/06/2013 1<br>Received: 03/07/2013 1  |  |
|                                                                               | NWT                                                            | PH-Dx Northwest - Semi         | -Volatile Petrol         | eum Products (GC)                                                       |                                |                                                  |  |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | NWTPH-Dx<br>3520C<br>1.0<br>03/12/2013 1959<br>03/11/2013 1307 | Analysis Batch:<br>Prep Batch: | 580-131543<br>580-131489 | Instrument<br>Lab File ID<br>Initial Weig<br>Final Weig<br>Injection Ve | :<br> ht/Volume:<br>ht/Volume: | SEA011<br>DT13589.d<br>1037.3 mL<br>5 mL<br>1 uL |  |
| Analyte                                                                       |                                                                | Result (m                      | ıg/L)                    | Qualifier                                                               |                                | RL                                               |  |
| #2 Diesel (C10-C2                                                             | 4)                                                             | ND                             |                          |                                                                         |                                | 0.12                                             |  |
| Motor Oil (>C24-C3                                                            | 6)                                                             | ND                             |                          |                                                                         |                                | 0.24                                             |  |
| Surrogate                                                                     |                                                                | %Rec                           |                          | Qualifier                                                               | Acceptar                       | nce Limits                                       |  |
| o-Terphenyl                                                                   |                                                                | 92                             |                          |                                                                         | 50 - 150                       |                                                  |  |

### Client: Science Applications International Corp

| Client Sample ID:                                                             | OW-1-030613                                                    |                                |                          |                |                                                                                                  |                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------|----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Lab Sample ID:<br>Client Matrix:                                              | 580-37398-4<br>Water                                           |                                |                          |                |                                                                                                  | Sampled: 03/06/2013 1642<br>Received: 03/07/2013 1500 |
|                                                                               | NWT                                                            | PH-Dx Northwest - Semi         | -Volatile Petrol         | eum Produ      | ucts (GC)                                                                                        |                                                       |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | NWTPH-Dx<br>3520C<br>1.0<br>03/12/2013 2122<br>03/11/2013 1307 | Analysis Batch:<br>Prep Batch: | 580-131543<br>580-131489 | La<br>In<br>Fi | nstrument ID:<br>ab File ID:<br>nitial Weight/Volume:<br>inal Weight/Volume:<br>njection Volume: | SEA011<br>DT13595.d<br>989.8 mL<br>5 mL<br>1 uL       |
| Analyte                                                                       |                                                                | Result (m                      | ıg/L)                    | Qualifier      |                                                                                                  | RL                                                    |
| #2 Diesel (C10-C2                                                             | 4)                                                             | 0.25                           |                          | Y              |                                                                                                  | 0.13                                                  |
| Motor Oil (>C24-C3                                                            | 6)                                                             | ND                             |                          |                |                                                                                                  | 0.25                                                  |
| Surrogate                                                                     |                                                                | %Rec                           |                          | Qualifier      | Acceptar                                                                                         | nce Limits                                            |
| o-Terphenyl                                                                   |                                                                | 90                             |                          |                | 50 - 150                                                                                         |                                                       |

Appendix C Data Validation Report



# DATA VALIDATION REPORT

# BLAINE MINI MART 1<sup>ST</sup> QTR 2013 GROUNDWATER MONITORING

### Prepared for:

SAIC 18912 North Creek Parkway, Suite 101 Bothell, Washington 98011

### Prepared by:

EcoChem, Inc. 1011 Western Avenue, Suite 1011 Seattle, Washington 98104

EcoChem Project: C4149-3

April 18, 2013

Christine L. Ransom Technical Manager EcoChem, Inc.

**Approved for Release** 

# **PROJECT NARRATIVE**

### **Basis for Data Validation**

This report summarizes the results of validation performed on groundwater and quality control (QC) sample data for the Blaine Mini Mart Groundwater Monitoring, 1<sup>st</sup> Quarter 2013 Sampling – Blaine, Washington. All data received a summary (EPA Stage 2B) level of review. A complete list of samples is provided in the **Sample Index**.

TestAmerica, Tacoma, Washington, analyzed the samples. The analytical methods and EcoChem project chemists are listed below:

| Analysis                               | Method of Analysis | Primary Review | Secondary Review |  |
|----------------------------------------|--------------------|----------------|------------------|--|
| Volatile Organic Compounds (MTBE/BTEX) | SW8260B            |                | Eric Strout      |  |
| Naphthalenes                           | SW8270 SIM         | Magan Failar   |                  |  |
| Diesel and Residual Range Organics     | NWTPH-Dx           | Megan Failor   | Elic Strout      |  |
| Gasoline Range Organics                | NWTPH-Gx           |                |                  |  |

The data were reviewed using guidance and quality control criteria documented in the analytical method; *Blaine Mini Mart Groundwater Monitoring, Blaine, WA- Sampling and Analysis Plan and Quality Assurance Project Plan* (July 2012) and USEPA National Functional Guidelines for Organic Data Review (EPA, 2008).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. **Appendix B** contains the Qualified Data Summary. Data validation worksheets will be kept on file at EcoChem, Inc.

All data, as qualified, are acceptable for use.

# SAMPLE INDEX Blaine MiniMart - Groundwater Monitoring 1<sup>st</sup> QTR 2013

| Sample ID   | Laboratory ID | VOC | SVOC | TPH-Gx | TPH-Dx |
|-------------|---------------|-----|------|--------|--------|
| MW-6-030613 | 580-37398-1   |     |      |        |        |
| MW-7-030613 | 580-37398-2   |     |      |        |        |
| MW-8-030613 | 580-37398-3   |     |      |        |        |
| OW-1-030613 | 580-37398-4   |     |      |        |        |
| Trip Blank  | 580-37398-5   |     |      |        |        |

# DATA VALIDATION REPORT Blaine Mini Mart - Groundwater Monitoring 1<sup>st</sup> QTR 2013 Volatile Organic Compounds by Method 8260B

This report documents the review of analytical data from the analysis of groundwater samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by TestAmerica, Tacoma, Washington. Refer to the **Sample Index** for a list of samples that were reviewed.

| SDG       | Number of Samples             | Validation Level |
|-----------|-------------------------------|------------------|
| 580-37398 | 4 Groundwater<br>1 Trip Blank | EPA Stage 2B     |

### I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

### II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%). No errors were found.

### III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times
- 1 GC/MS Instrument Performance Check
- 1 Initial Calibration (ICAL)
- ✓ Continuing Calibration (CCAL)
- 1 Laboratory Blanks
- 1 Trip Blank
- 2 Surrogate Compounds
- ✓ Laboratory Control Samples (LCS/LCSD)

- 1 Matrix Spikes/Matrix Spike Duplicate (MS/MSD)
- 1 Field Duplicates
- ✓ Internal Standards
- ✓ Target Analyte List
- 1 Reporting Limits
- ✓ Compound Identification
- ✓ Reported Results

<sup>2</sup> Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

# Sample Receipt, Preservation and Holding Times

As stated in the QAPP, sample shipping coolers should arrive at the laboratory within the temperature range of  $0^{\circ}$  to  $6^{\circ}$ C. The laboratory received three sample coolers with temperatures greater than the upper control limit at 6.6°, 6.8° and 6.9°C. These temperature outliers did not impact data quality; no data were qualified.

<sup>✓</sup> Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

<sup>&</sup>lt;sup>1</sup> Quality control results are discussed below, but no data were qualified.

### **GC/MS Instrument Performance Check**

As summarized in the table below, several measured percent relative ion abundance values were outside the specified laboratory control limits for the bromofluorobenzene (BFB) instrument performance check compound analyses. However, the control limits specified in the analytical method do not include any decimal places, e.g. 15% rather than 15.00%. The reported percent relative abundance values were rounded to the same number of significant digits and all values are acceptable; no action was taken.

| Tune Date | m/z | % Relative Abundance | Lab Control Limits        |
|-----------|-----|----------------------|---------------------------|
| 2/25/2013 | 50  | 14.73%               | 15.00-40.00% of mass 95   |
| 3/12/2013 | 176 | 101.42%              | 95.00-101.00% of mass 174 |
| 3/15/2013 | 176 | 94.85%               | 95.00-101.00% of mass 174 |

### **Initial Calibration**

The percent difference value for methyl tert-butyl ether (MTBE) was greater than the 25% control limit (at 30.1%) in the initial calibration verification analyzed 2/25/13 at 20:34. This compound was not detected in any associated sample. No action was necessary based on the potential high bias.

### Laboratory Blanks

To assess the impact of blank contamination on the reported results, an action level is established at five times the concentration detected in the blank (ten times for common laboratory contaminants). If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified "U" at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level or for non-detected results.

Toluene was detected in the method blank; however, it was not detected in the field samples. No qualification of data was necessary.

# Trip Blanks

One trip blank was submitted. No target analytes were detected in this sample.

### **Surrogate Compounds**

The surrogate recovery for toluene-d8 in Sample MW-6-030613 was less than the lower control limit of 85%, at 83%. Toluene was not detected in the sample; the result was estimated (UJ-13) to indicate a potential low bias. No other data were qualified as the remaining four surrogate recovery values were acceptable.

### Matrix Spikes/ Matrix Spike Duplicate

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed with Sample MW-6-030613.

All recovery values were acceptable. The MS/MSD relative percent difference (RPD) value for MTBE was greater than the upper control limit of 30%, at 38%. The analyte was not detected in the parent sample, therefore; no data were qualified.

### **Field Duplicates**

No field duplicates were collected.

### **Reporting Limits**

The laboratory reporting limits were less than the MTCA Method A Clean Up Levels (CUL) specified in the QAPP.

# IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exception noted above, accuracy was acceptable as demonstrated by the surrogate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and MS/MSD percent recovery values. With the exception mentioned above, precision was also acceptable as demonstrated by the LCS/LCSD and MS/MSD RPD values.

One result was estimated based on a surrogate recovery outlier.

All data, as qualified, are acceptable for use.

# DATA VALIDATION REPORT Blaine Mini Mart – Groundwater Monitoring 1<sup>st</sup> QTR 2013 Semivolatile Organic Compounds by 8270C-SIM

This report documents the review of analytical data from the analysis of groundwater samples and the associated laboratory quality control (QC) samples. Samples were analyzed by TestAmerica, Tacoma, Washington. Refer to the Sample Index for a complete list of samples for which data were reviewed.

| SDG       | Number of Samples | Validation Level |
|-----------|-------------------|------------------|
| 580-37398 | 4 Groundwater     | EPA Stage 2B     |

#### Ι. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

#### П. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%). No errors were found.

#### III. **TECHNICAL DATA VALIDATION**

The OC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times ✓ Matrix Spike/Matrix Spike Duplicate (MS/MSD) ✓ Initial Calibration (ICAL) ✓ Internal Standards ✓ Continuing Calibration (CCAL) 1 Field Duplicates ✓ Laboratory Blanks ✓ Target Analyte List 1 Field Blanks **Reporting Limits** 1
- ✓ Surrogate Compounds **Compound Identification Reported Results**
- ✓ Laboratory Control Sample (LCS/LCSD)
  - ✓ Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed. <sup>1</sup> Quality control results are discussed below, but no data were qualified.

### Sample Receipt, Preservation and Holding Times

As stated in the QAPP, sample shipping coolers should arrive at the laboratory within the temperature range of  $0^{\circ}$  to  $6^{\circ}$ C. The laboratory received three sample coolers with temperatures greater than the upper control limit at 6.6°, 6.8° and 6.9 °C. These temperature outliers did not impact data quality; no data were qualified.

### **Field Blanks**

No field blanks were collected.

### **Field Duplicates**

No field duplicates were collected.

### **Reporting Limits**

The laboratory reporting limits were less than the MTCA Method A Clean Up Levels (CUL) specified in the QAPP.

### IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample, and matrix spike/matrix spike duplicate (MS/MSD) percent recovery values. Precision was also acceptable as demonstrated by the MS/MSD relative percent difference values.

No data were qualified for any reason. All data, as reported, are acceptable for use.

# DATA VALIDATION REPORT Blaine Mini Mart – Groundwater Monitoring 1<sup>st</sup> QTR 2013 Gasoline Range Hydrocarbons by Method NWTPH-Gx

This report documents the review of analytical data from the analysis of groundwater samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by TestAmerica, Tacoma, Washington. Refer to the **Sample Index** for a complete list of samples for which data were reviewed.

| SDG       | Number of Samples             | Validation Level |
|-----------|-------------------------------|------------------|
| 580-37398 | 4 Groundwater<br>1 Trip Blank | EPA Stage 2B     |

### I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

### II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%). No errors were found.

### III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times
- ✓ Initial Calibration (ICAL)
- 2 Continuing Calibration (CCAL)
- ✓ Laboratory Blanks
- 1 Trip Blanks
- ✓ Surrogate Compounds

- ✓ Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- 1 Field Duplicates
- ✓ Target Analyte List
- 1 Reporting Limits
- ✓ Compound Identification
- Reported Results
- ✓ Laboratory Control Samples (LCS/LCSD)
  - ✓ Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

<sup>&</sup>lt;sup>1</sup>Quality control results are discussed below, but no data were qualified.

<sup>&</sup>lt;sup>2</sup> Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

### Sample Receipt, Preservation and Holding Times

As stated in the QAPP, sample shipping coolers should arrive at the laboratory within the temperature range of  $0^{\circ}$  to  $6^{\circ}$ C. The laboratory received three sample coolers with temperatures greater than the upper control limit at 6.6°, 6.8° and 6.9 °C. These temperature outliers did not impact data quality; no data were qualified.

### **Continuing Calibration**

The continuing calibration (CCAL) percent difference (%D) control limits for gasoline range organics (GRO) are +/-20%. The %D value in the CCAL analyzed on 3/12/2013 at 18:19 was less than the lower control limit, at -24.1%, and indicated a potential low bias. GRO was not detected in the associated sample, MW-6-030613; the reporting limit was estimated (UJ-5B).

### Trip Blanks

One trip blank was submitted. No target analytes were detected in this sample.

### Field Duplicates

No field duplicates were collected.

### **Reporting Limits**

The laboratory reporting limits were less than the MTCA Method A Clean Up Levels (CUL) specified in the QAPP.

### IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the surrogate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and matrix spike/matrix spike duplicate (MS/MSD) recoveries. Precision was also acceptable as demonstrated by the LCS/LCSD and MS/MSD relative percent difference values.

One result was estimated based on a CCAL %D outlier.

All data, as qualified, are acceptable for use.

# DATA VALIDATION REPORT Blaine Mini Mart – Groundwater Monitoring 1<sup>st</sup> QTR 2013 Diesel and Residual Range Hydrocarbons by Method NWTPH-Dx

This report documents the review of analytical data from the analysis of groundwater samples and the associated laboratory quality control (QC) samples. Samples were analyzed by TestAmerica, Tacoma, Washington. Refer to the **Sample Index** for a complete list of samples for which data were reviewed.

| SDG       | Number of Samples | Validation Level |
|-----------|-------------------|------------------|
| 580-37398 | 4 Groundwater     | EPA Stage 2B     |

### I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

### II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%). No errors were found.

### III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times
- ✓ Initial Calibration (ICAL)
- ✓ Continuing Calibration (CCAL)
- ✓ Laboratory Blanks
- 1 Field Blanks
- ✓ Surrogate Compounds
- ✓ Laboratory Control Sample (LCS)

- ✓ Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- 1 Field Duplicates
- ✓ Target Analyte List
- 1 Reporting Limits
- ✓ Compound Identification
- 2 Reported Results

✓ Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

<sup>1</sup> Quality control results are discussed below, but no data were qualified.

<sup>2</sup>Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

### Sample Receipt, Preservation and Holding Times

As stated in the QAPP, sample shipping coolers should arrive at the laboratory within the temperature range of  $0^{\circ}$  to  $6^{\circ}$ C. The laboratory received three sample coolers with temperatures

greater than the upper control limit at 6.6°, 6.8° and 6.9 °C. These temperature outliers did not impact data quality; no data were qualified.

### Field Blanks

No field blanks were collected.

### **Field Duplicates**

No field duplicates were collected.

### **Reporting Limits**

The laboratory reporting limits were less than the MTCA Method A Clean Up Levels (CUL) specified in the QAPP.

### **Reported Results**

The chromatogram for sample OW-1-030613 did not match the pattern of the calibration standards, indicating weathering. The diesel result for this sample was estimated (J-2).

### IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample, and matrix spike/matrix spike duplicate (MS/MSD) percent recovery values. Precision was also acceptable as demonstrated by the MS/MSD relative percent difference values.

One data point was estimated because the chromatogram did not match those of the calibration standards.

All data, as qualified, are acceptable for use.



# APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

# DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

| U                                     | The analyte was analyzed for, but was not detected above the reported sample quantitation limit.                                                                                                                                                                                         |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J                                     | The analyte was positively identified; the associated<br>numerical value is the approximate concentration of the<br>analyte in the sample.                                                                                                                                               |
| Ν                                     | The analysis indicates the presence of an analyte for<br>which there is presumptive evidence to make a<br>"tentative identification".                                                                                                                                                    |
| NJ                                    | The analysis indicates the presence of an analyte that<br>has been "tentatively identified" and the associated<br>numerical value represents the approximate<br>concentration.                                                                                                           |
| UJ                                    | The analyte was not detected above the reported<br>sample quantitation limit. However, the reported<br>quantitation limit is approximate and may or may not<br>represent the actual limit of quantitation necessary to<br>accurately and precisely measure the analyte in the<br>sample. |
| R                                     | The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                                           |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                          |

The following is an EcoChem qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

# DATA QUALIFIER REASON CODES

| 1  | Holding Time/Sample Preservation                                                  |
|----|-----------------------------------------------------------------------------------|
| 2  | Chromatographic pattern in sample does not match pattern of calibration standard. |
| 3  | Compound Confirmation                                                             |
| 4  | Tentatively Identified Compound (TIC) (associated with NJ only)                   |
| 5A | Calibration (initial)                                                             |
| 5B | Calibration (continuing)                                                          |
| 6  | Field Blank Contamination                                                         |
| 7  | Lab Blank Contamination (e.g., method blank, instrument, etc.)                    |
| 8  | Matrix Spike(MS & MSD) Recoveries                                                 |
| 9  | Precision (all replicates)                                                        |
| 10 | Laboratory Control Sample Recoveries                                              |
| 11 | A more appropriate result is reported (associated with "R" and "DNR" only)        |
| 12 | Reference Material                                                                |
| 13 | Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)       |
| 14 | Other (define in validation report)                                               |
| 15 | GFAA Post Digestion Spike Recoveries                                              |
| 16 | ICP Serial Dilution % Difference                                                  |
| 17 | ICP Interference Check Standard Recovery                                          |
| 18 | Trip Blank Contamination                                                          |
| 19 | Internal Standard Performance (e.g., area, retention time, recovery)              |
| 20 | Linear Range Exceeded                                                             |
| 21 | Potential False Positives                                                         |

# EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

| VALIDATION<br>QC ELEMENT                               | ACCEPTANCE CRITERIA                                                                                                                               | ACTION                                                                                                                                        | REASON<br>CODE |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Cooler Temperature                                     | 4°C±2°C<br>Water: HCl to pH < 2                                                                                                                   | J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)                                                                                              | 1              |
| Hold Time                                              | Waters: 14 days preserved<br>7 Days: unpreserved (for aromatics)<br>Solids: 14 Days                                                               | J(+)/UJ(-) if hold times exceeded<br>If exceeded by > 3X HT: $J(+)/R(-)$ (EcoChem PJ)                                                         | 1              |
| Tuning                                                 | BFB<br>Beginning of each 12 hour period<br>Method acceptance criteria                                                                             | R(+/-) all analytes in all samples<br>associated with the tune                                                                                | 5A             |
| Initial Calibration<br>(Minimum 5 stds.)               | RRF > 0.05                                                                                                                                        | (EcoChem PJ, see TM-06)<br>If MDL= reporting limit:<br>J(+)/R(-) if RRF < 0.05<br>If reporting limit > MDL:<br>note in worksheet if RRF <0.05 | 5A             |
|                                                        | %RSD < 30%                                                                                                                                        | (EcoChem PJ, see TM-06)<br>J(+)                                                                                                               | 5A             |
| Continuing Calibration<br>(Prior to each 12 hr. shift) | RRF > 0.05                                                                                                                                        | (EcoChem PJ, see TM-06)<br>If MDL= reporting limit:<br>J(+)/R(-) if RRF < 0.05<br>If reporting limit > MDL:<br>note in worksheet if RRF <0.05 | 5B             |
|                                                        | %D <25%                                                                                                                                           | (EcoChem PJ, see TM-06)<br>If > +/-90%: J+/R-<br>If -90% to -26%: J+ (high bias)<br>If 26% to 90%: J+/UJ- (low bias)                          | 5B             |
|                                                        | One per matrix per batch                                                                                                                          | U(+) if sample (+) result is less than CRQL and<br>less than appropriate 5X or 10X rule<br>(raise sample value to CRQL)                       | 7              |
| Method Blank                                           | No results > CRQL                                                                                                                                 | U(+) if sample (+) result is greater than or equal to CRQL and<br>less than appropriate 5X and 10X rule (at reported sample<br>value)         | 7              |
|                                                        | No TICs present                                                                                                                                   | R(+) TICs using 10X rule                                                                                                                      | 7              |
| Storage Blank                                          | One per SDG<br><crql< td=""><td>U(+) the specific analyte(s)<br/>results in all assoc.samples<br/>using the 5x or 10x rule</td><td>7</td></crql<> | U(+) the specific analyte(s)<br>results in all assoc.samples<br>using the 5x or 10x rule                                                      | 7              |
| Trip Blank                                             | Frequency as per project QAPP                                                                                                                     | Same as method blank for positive results remaining in trip<br>blank after method blank<br>qualifiers are assigned                            | 18             |
| Field Blanks<br>(if required in QAPP)                  | No results > CRQL                                                                                                                                 | Apply 5X/10X rule; U(+) < action level                                                                                                        | 6              |

# EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

| VALIDATION<br>QC ELEMENT         | ACCEPTANCE CRITERIA                                                                                                                                  | ACTION                                                                                                                                                                                   | REASON<br>CODE     |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| MS/MSD (recovery)                | One per matrix per batch<br>Use method acceptance criteria                                                                                           | Qualify parent only unless other QC indicates<br>systematic problems:<br>J(+) if both %R > UCL<br>J(+)/UJ(-) if both %R < LCL<br>J(+)/R(-) if both %R < 10%<br>PJ if only one %R outlier | 8                  |  |
| MS/MSD<br>(RPD)                  | One per matrix per batch<br>Use method acceptance criteria                                                                                           | J(+) in parent sample if RPD > CL                                                                                                                                                        | 9                  |  |
| LCS<br>low conc. H2O VOA         | One per lab batch<br>Within method control limits                                                                                                    | J(+) assoc. cmpd if > UCL<br>J(+)/R(-) assoc. cmpd if < LCL<br>J(+)/R(-) all cmpds if half are < LCL                                                                                     | 10                 |  |
| LCS<br>regular VOA (H2O & solid) | One per lab batch<br>Lab or method control limits                                                                                                    | J(+) if %R > UCL                                                                                                                                                                         | 10                 |  |
| LCS/LCSD<br>(if required)        | One set per matrix and batch of 20 samples<br>RPD < 35%                                                                                              | J(+)/UJ(-) assoc. cmpd. in all samples                                                                                                                                                   | 9                  |  |
| Surrogates                       | Added to all samples<br>Within method control limits                                                                                                 | J(+) if %R >UCL<br>J(+)/UJ(-) if %R <lcl but="">10% (see PJ<sup>1</sup>)<br/>J(+)/R(-) if &lt;10%</lcl>                                                                                  | 13                 |  |
| Internal Standard (IS)           | Added to all samples<br>Acceptable Range: IS area 50% to 200% of<br>CCAL area<br>RT within 30 seconds of CC RT                                       | J(+) if > 200%<br>J(+)/UJ(-) if < 50%<br>J(+)/R(-) if < 25%<br>RT>30 seconds, narrate and Notify PM                                                                                      | 19                 |  |
| Field Duplicates                 | Field Duplicates Use QAPP limits. If no QAPP:<br>Solids: RPD <50%                                                                                    |                                                                                                                                                                                          | 9                  |  |
| TICs                             | Major ions (>10%) in reference must<br>be present in sample; intensities<br>agree within 20%; check identification                                   | NJ the TIC unless:<br>R(+) common laboratory contaminants<br>See Technical Director for ID issues                                                                                        | 4                  |  |
| Quantitation/<br>Identification  | RRT within 0.06 of standard RRT<br>Ion relative intensity within 20% of standard<br>All ions in std. at > 10% intensity must<br>be present in sample | See Technical Director if outliers                                                                                                                                                       | 14<br>21 (false +) |  |

**PJ**<sup>1</sup> No action if there are 4+ surrogates and only 1 outlier.

# EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

| VALIDATION<br>QC ELEMENT                                  | ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                           | ACTION                                                                                                                          | REASON<br>CODE |  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Cooler Temperature                                        | 4°C ±2°                                                                                                                                                                                                                                                                                                       | J(+)/UJ(-) if greater than 6 deg. C<br>(EcoChem PJ)                                                                             | 1              |  |
| Holding Time                                              | Holding TimeWater: 7 days from collection<br>Soil: 14 days from collection<br>Analysis: 40 days from extractionWater: J(+)/UJ(-) if ext. > 7 and < 21 days<br>J(+)/R(-) if ext. > 21 days (EcoChem PJ)<br>Solids/Wastes:<br>J(+)/UJ(-) if ext. > 14 and < 42 days<br>J(+)/R(-) if ext. > 42 days (EcoChem PJ) |                                                                                                                                 | 1              |  |
|                                                           |                                                                                                                                                                                                                                                                                                               | J(+)/UJ(-) if analysis >40 days                                                                                                 |                |  |
| Tuning                                                    | DFTPP<br>Beginning of each 12 hour period<br>Method acceptance criteria                                                                                                                                                                                                                                       | R(+/-) all analytes in all samples associated with the tune                                                                     | 5A             |  |
|                                                           | RRF > 0.05                                                                                                                                                                                                                                                                                                    | (EcoChem PJ, see TM-06)<br>If MDL= reporting limit:<br>J(+)/R(-) if RRF < 0.05                                                  | 5A             |  |
| Initial Calibration<br>(Minimum 5 stds.)                  |                                                                                                                                                                                                                                                                                                               | If reporting limit > MDL:<br>note in worksheet if RRF <0.05                                                                     |                |  |
|                                                           | %RSD < 30%                                                                                                                                                                                                                                                                                                    | (EcoChem PJ, see TM-06)<br>J(+) if %RSD > 30%                                                                                   | 5A             |  |
| Continuing Colibertion                                    | RRF > 0.05                                                                                                                                                                                                                                                                                                    | (EcoChem PJ, see TM-06)<br>If MDL= reporting limit:<br>J(+)/R(-) if RRF < 0.05                                                  | 5B             |  |
| Continuing Calibration<br>(Prior to each 12 hr.<br>shift) |                                                                                                                                                                                                                                                                                                               | If reporting limit > MDL:<br>note in worksheet if RRF <0.05                                                                     |                |  |
|                                                           | %D <25%                                                                                                                                                                                                                                                                                                       | (EcoChem PJ, see TM-06)<br>If > +/-90%: J+/R-<br>If -90% to -26%: J+ (high bias)<br>If 26% to 90%: J+/UJ- (low bias)            | 5B             |  |
|                                                           | One per matrix per batch                                                                                                                                                                                                                                                                                      | U(+) if sample (+) result is less than CRQL and<br>less than appropriate 5X or 10X rule<br>(raise sample value to CRQL)         | 7              |  |
| Method Blank                                              | No results > CRQL                                                                                                                                                                                                                                                                                             | U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value) | 7              |  |
|                                                           | No TICs present                                                                                                                                                                                                                                                                                               | R(+) TICs using 10X rule                                                                                                        | 7              |  |
| Field Blanks<br>(Not Required)                            | No results > CRQL                                                                                                                                                                                                                                                                                             | Apply 5X/10X rule; U(+) < action level                                                                                          | 6              |  |

# EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

| VALIDATION<br>QC ELEMENT                                              | ACCEPTANCE CRITERIA                                                                                                | ACTION                                                                                                                                                                                   | REASON<br>CODE |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| MS/MSD (recovery)                                                     | One per matrix per batch<br>Use method acceptance criteria                                                         | Qualify parent only unless other QC indicates<br>systematic problems:<br>J(+) if both %R > UCL<br>J(+)/UJ(-) if both %R < LCL<br>J(+)/R(-) if both %R < 10%<br>PJ if only one %R outlier | 8              |  |
| MS/MSD<br>(RPD)                                                       | One per matrix per batch<br>Use method acceptance criteria                                                         | J(+) in parent sample if RPD > CL                                                                                                                                                        | 9              |  |
| LCS<br>CLP low conc. H2O<br>only                                      | One per lab batch<br>Within method control limits                                                                  | J(+) assoc. cmpd if > UCL<br>J(+)/R(-) assoc. cmpd if < LCL<br>J(+)/R(-) all cmpds if half are < LCL                                                                                     | 10             |  |
| LCS<br>regular SVOA (H2O &<br>solid)                                  | One per lab batch<br>Lab or method control limits                                                                  | J(+) if %R > UCL J(+)/UJ(-) if %R <lcl<br>J(+)/R(-) if %R &lt; 10% (EcoChem PJ)</lcl<br>                                                                                                 | 10             |  |
| LCS/LCSD<br>(if required)                                             | One set per matrix and batch of 20 samples<br>RPD < 35%                                                            | J(+)/UJ(-) assoc. cmpd. in all samples                                                                                                                                                   | 9              |  |
| Surrogates                                                            | Minimum of 3 acid and 3 base/neutral<br>compounds<br>Use method acceptance criteria                                | Do not qualify if only 1 acid and/or 1 B/N<br>surrogate is out unless <10%<br>J(+) if %R > UCL J(+)/UJ(-) if %R < LCL<br>J(+)/R(-) if %R < 10%                                           | 13             |  |
| Internal Standards                                                    | Added to all samples<br>Acceptable Range: IS area 50% to 200% of<br>CCAL area<br>RT within 30 seconds of CC RT     | J(+) if > 200%<br>J(+)/UJ(-) if < 50%<br>J(+)/R(-) if < 25%<br>RT>30 seconds, narrate and Notify PM                                                                                      | 19             |  |
| Use QAPP limits. If no QAPP:<br>Solids: RPD <50%     Solids: RPD <50% |                                                                                                                    | Narrate and qualify if required by project<br>(EcoChem PJ)                                                                                                                               | 9              |  |
| TICs                                                                  | Major ions (>10%) in reference must<br>be present in sample; intensities<br>agree within 20%; check identification | NJ the TIC unless:<br>R(+) common laboratory contaminants<br>See Technical Director for ID issues                                                                                        | 4              |  |
| Quantitation/<br>Identification                                       | RRT within 0.06 of standard RRT     Quantitation/   Ion relative intensity within 20% of standard                  |                                                                                                                                                                                          |                |  |

# EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Gasoline Range

### (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Gx, June 1997, Wa DOE & Oregon DEQ)

| VALIDATION<br>QC ELEMENT                          | ACCEPTANCE CRITERIA                                                                                | ACTION                                                                                                                                                                                                                                                          | REASON<br>CODE |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Cooler Temperature &<br>Preservation              | 4°C±2°C<br>Water: HCl to pH < 2                                                                    | J(+)/UJ(-) if greater than 6 deg. C                                                                                                                                                                                                                             | 1              |  |
| Holding Time                                      | Waters: 14 days preserved<br>7 days unpreserved<br>Solids: 14 Days                                 | J(+)/UJ(-) if hold times exceeded<br>J(+)/R(-) if exceeded > 3X<br>(EcoChem PJ)                                                                                                                                                                                 | 1              |  |
| Initial Calibration                               | 5 calibration points<br>(All within 15% of true value)<br>Linear Regression: R <sup>2</sup> ≥0.990 | Narrate if fewer than 5 calibration levels<br>or if %R >15%<br>J(+)/UJ(-) if R <sup>2</sup> <0.990                                                                                                                                                              | 5A             |  |
|                                                   | If used, RSD of response factors <20%                                                              | J(+)/UJ(-) if %RSD > 20%                                                                                                                                                                                                                                        |                |  |
| Mid-range Calibration                             | Analyzed before and after each analysis shift<br>& every 20 samples.                               | Narrate if frequency not met.                                                                                                                                                                                                                                   |                |  |
| Check Std.                                        | Recovery range 80% to 120%                                                                         | J(+)/UJ(-) if %R < 80%<br>J(+) if %R >120%                                                                                                                                                                                                                      | 5B             |  |
| Method Blank                                      | At least one per batch (≤10 samples)                                                               | U (at the RL) if sample result is < RL & < 5X blank result.                                                                                                                                                                                                     | 7              |  |
|                                                   | No results >RL                                                                                     | U (at reported sample value) if sample result is $\geq$ RL and < 5X blank result                                                                                                                                                                                | 7              |  |
| Trip Blank<br>(if required by project)            | No results >RL                                                                                     | Action is same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned.                                                                                                                                         | 18             |  |
| Field Blanks<br>(if required by project)          | No results > RL                                                                                    | Action is same as method blank for positive results remaining in field blank after method <b>and</b> trip blank qualifiers are assigned.                                                                                                                        | 6              |  |
| MS samples (accuracy)<br>(if required by project) | %R within lab control limits                                                                       | Qualify parent only, unless other QC indicates systematic<br>problems.<br>J(+) if both %R > upper control limit (UCL)<br>J(+)/UJ(-) if both %R < lower control limit (LCL)<br>No action if parent conc. >5X the amount spiked.<br>Use PJ if only one %R outlier |                |  |
| Precision:<br>MS/MSD or LCS/LCSD<br>or sample/dup | At least one set per batch ( $\leq$ 10 samples)<br>RPD $\leq$ lab control limit                    | J(+) if RPD > lab control limits                                                                                                                                                                                                                                | 9              |  |

# EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Gasoline Range

### (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Gx, June 1997, Wa DOE & Oregon DEQ)

| VALIDATION<br>QC ELEMENT                                                                                                                                              | ACCEPTANCE CRITERIA                                                                                         | ACTION                                                                                                                                                                       | REASON<br>CODE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| LCS<br>(not required by method)                                                                                                                                       | %R within lab control limits                                                                                | J(+)/UJ(-) if %R < LCL<br>J(+) if %R > UCL<br>J(+)/R(-) if any %R <10%<br>(EcoChem PJ)                                                                                       | 10             |
| Surrogates                                                                                                                                                            | Bromofluorobenzene and/or<br>1,4-difluorobenzene added to all samples<br>(inc. QC samples).<br>%R = 50-150% | J(+)/UJ(-) if %R < LCL<br>J(+) if %R >UCL<br>J(+)/R(-) if any %R <10%<br>No action if 2 or more surrogates are used, and only one is<br>outside control limits. (EcoChem PJ) | 13             |
| Compare sample chromatogram to standard<br>chromatogram to ensure range and pattern<br>are reasonable match.<br>Laboratory may flag results which have poor<br>match. |                                                                                                             | J(+)                                                                                                                                                                         | 2              |
| Field Duplicates                                                                                                                                                      | Use project control limits, if stated in QAPP<br>EcoChem default:<br>water: RPD < 35%<br>solids: RPD < 50%  | Narrate outliers<br>If required by project, qualify with J(+)/UJ(-)                                                                                                          | 9              |
| Two analyses<br>for one sample (e.g.,<br>dilution)                                                                                                                    | Report only one result per<br>analyte                                                                       | "DNR" (or client requested qualifier) all results that should<br>not be reported.<br>(See TM-04)                                                                             | 11             |

# EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Dx, June 1997, Wa DOE & Oregon DEQ)

| VALIDATION<br>QC ELEMENT                                                       | ACCEPTANCE CRITERIA                                                                                               | ACTION                                                                                                                                                                                                                                                          | REASON<br>CODE |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Cooler Temperature &<br>Preservation                                           | 4°C±2°C<br>Water: HCl to pH < 2                                                                                   | J(+)/UJ(-) if greater than 6 deg. C                                                                                                                                                                                                                             | 1              |
| Holding Time                                                                   | Ext. Waters: 14 days preserved<br>7 days unpreserved<br>Ext. Solids: 14 Days<br>Analysis: 40 days from extraction | J(+)/UJ(-) if hold times exceeded<br>J(+)/R(-) if exceeded > 3X<br>(EcoChem PJ)                                                                                                                                                                                 | 1              |
| Initial Calibration                                                            | 5 calibration points<br>(All within 15% of true value)                                                            | Narrate if fewer than 5 calibration levels or if %R >15%                                                                                                                                                                                                        | 5A             |
|                                                                                | Linear Regression: $R^2 \ge 0.990$<br>If used, RSD of response factors $\le 20\%$                                 | J(+)/UJ(-) if R <sup>2</sup> <0.990<br>J(+)/UJ(-) if %RSD > 20%                                                                                                                                                                                                 | 5A             |
| Mid-range Calibration                                                          | Analyzed before and after each analysis shift & every 20 samples.                                                 | Narrate if frequency not met.                                                                                                                                                                                                                                   |                |
| Check Std.                                                                     | Recovery range 85% to 115%                                                                                        | J(+)/UJ(-) if %R < 85%<br>J(+) if %R >115%                                                                                                                                                                                                                      | 5B             |
| Method Blank                                                                   | At least one per batch (< <u>2</u> 0 samples)                                                                     | U (at the RL) if sample result is<br>< RL & < 5X blank result.                                                                                                                                                                                                  | 7              |
|                                                                                | No results >RL                                                                                                    | U (at reported sample value) if sample result is ><br>RL and < 5X blank result                                                                                                                                                                                  | 7              |
| Field Blanks<br>(if required by project)                                       | No results > RL                                                                                                   | Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.                                                                                                                                    | 6              |
| MS samples (accuracy)<br>(if required by project) %R within lab control limits |                                                                                                                   | Qualify parent only, unless other QC indicates<br>systematic problems.<br>J(+) if both %R > upper control limit (UCL)<br>J(+)/UJ(-) if both %R < lower control limit (LCL)<br>No action if parent conc. >5X the amount spiked.<br>Use PJ if only one %R outlier | 8              |
| Precision:<br>MS/MSD or LCS/LCSD<br>or sample/dup                              | At least one set per batch (≤10 samples)<br>RPD <u>&lt;</u> lab control limit                                     | J(+) if RPD > lab control limits                                                                                                                                                                                                                                | 9              |
| LCS<br>(not required by method)                                                | %R within lab control limits                                                                                      | J(+)/UJ(-) if %R < LCL<br>J(+) if %R > UCL<br>J(+)/R(-) if any %R <10%<br>(EcoChem PJ)                                                                                                                                                                          | 10             |

# EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Dx, June 1997, Wa DOE & Oregon DEQ)

| VALIDATION<br>QC ELEMENT               | ACCEPTANCE CRITERIA                                                                                                                                                   | ACTION                                                                                                                                                                        | REASON<br>CODE |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Surrogates                             | 2-fluorobiphenyl, p-terphenyl, o-terphenyl,<br>and/or pentacosane added to all samples (inc.<br>QC samples).<br>%R = 50-150%                                          | J(+)/UJ(-) if %R < LCL<br>J(+) if %R > UCL<br>J(+)/R(-) if any %R <10%<br>No action if 2 or more surrogates are used, and<br>only one is outside control limits. (EcoChem PJ) | 13             |
| Pattern Identification                 | Compare sample chromatogram to standard<br>chromatogram to ensure range and pattern are<br>reasonable match.<br>Laboratory may flag results which have poor<br>match. | J(+)                                                                                                                                                                          | 2              |
| Field Duplicates                       | Use project control limits, if stated in QAPP<br>EcoChem default:<br>water: RPD < 35%<br>solids: RPD < 50%                                                            | Narrate (Use Professional Judgement to qualify)                                                                                                                               | 9              |
| Two analyses for one sample (dilution) | Report only one result per<br>analyte                                                                                                                                 | "DNR" (or client requested qualifier) all results that<br>should not be reported.<br>(See TM-04)                                                                              | 11             |



# APPENDIX B QUALIFIED DATA SUMMARY TABLE

JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

# QUALIFIED DATA SUMMARY TABLE Blaine MiniMart - Groundwater Monitoring 1<sup>st</sup> QTR 2013

| Sample ID   | Laboratory ID | Method   | Analyte   | Result | Lab Flag | Units | DV Qualifier | <b>DV Reason</b> |
|-------------|---------------|----------|-----------|--------|----------|-------|--------------|------------------|
| MW-6-030613 | 580-37398-1   | NWTHP-GX | Gasoline  | 0.05   | U^       | mg/L  | UJ           | 5B               |
| MW-6-030613 | 580-37398-1   | SW8260   | Toluene   | 1      | U        | ug/L  | UJ           | 13               |
| OW-1-030613 | 580-37398-4   | NWTPH-DX | #2 DIESEL | 0.25   | Y        | mg/L  | J            | 2                |