

PROGRESS REPORT - SECOND QUARTER 2013

Fred Meyer Property (aka Bethel Texaco, Facility Site ID #2641)
Port Orchard, Washington
Ecology Site ID #2555, Agreed Order No. DE 9040

Prepared for:

Fred Meyer Stores, Inc.

3300 SE 22nd Ave. Suite 23E Portland, Oregon 97202-2999

Washington State Department of Ecology

Toxics Cleanup Program 3190 160th Avenue, SE Bellevue, Washington 98008

Prepared by:

AMEC Environment & Infrastructure, Inc.

7376 SW Durham Road Portland, Oregon 97224 (503) 639-3400

August 2013

Project No. 9-61M-102820

Copyright © 2013 by AMEC Environment & Infrastructure, Inc. All rights reserved.

August 12, 2013

Project No. 9-61M-102820

Daniel Hermann

Fred Meyer Stores, Inc.

3300 SE 22nd Ave. Suite 23F

Portland, Oregon 97202-2999

Louise Bardy

Washington State Department of Ecology

Toxics Cleanup Program

3190 160th Ave., SE

Bellevue, Washington 98008

Subject: Progress Report – Second Quarter 2013

Fred Meyer Property (aka Bethel Texaco, Facility Site ID #2614)

1900 SE Sedgewick Road Port Orchard, Washington

Ecology Site ID #2555, Agreed Order No. DE 9040

Dear Mr. Hermann and Ms. Bardy:

AMEC Environment & Infrastructure, Inc. (AMEC) is pleased to submit this Progress Report for the above referenced Site as provided in Agreed Order No. DE 9040. This report summarizes the results of the groundwater quality monitoring and other activities conducted at the Site during the second quarter of 2013. We appreciate the opportunity to assist Fred Meyer in implementing this project. If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Environment & Infrastructure, Inc.

Reviewed by:

Joel Eledge, CHMM

Environmental Scientist

Kurt Harrington, PE

Project Manager

Attachments

JE/KH/lp

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	STATUS OF SUBSURFACE REMEDIATION SYSTEMS, ON-SITE ACTIVITATIONS FROM CAP OR SCHEDULE	1
3.0	GROUNDWATER MONITORING 3.1 MONITORING WELL MW-109A INSTALLATION 3.2 SITE HYDROGEOLOGY 3.3 GROUNDWATER SAMPLING 3.3.1 Analytical Program 3.3.2 Analytical Results and Cleanup Levels 3.3.3 Non-Aqueous Phase Liquid - Not Present 3.3.4 Data Trends 3.3.5 Quality Assurance/Quality Control	
4.0	AIR SPARGING/SOIL VAPOR EXTRACTION SYSTEM MONITORING	6
5.0	SUMMARY	7
6.0	FUTURE PLANNED ACTIVITIES AND DELIVERABLES	8
7.0	CLOSING	9
REFE	RENCES	10
LIMIT	ATIONS	11

TABLES

l able 1	Well Construction Summary
Table 2	Groundwater Elevations and Analytical Results
Table 3	Soil Vapor Extraction System Monitoring Data
Table 4	Air Sparging System Performance Monitoring Data

FIGURES

Figure 1 Site Location Map

Figure 2 Groundwater Elevations – June 12, 2013

Figure 3 Groundwater Analytical Results – June 12, 2013

APPENDICES

Appendix A Monitoring Well Construction Log and Field Data Acquisition Forms

Appendix B Laboratory Analytical Results and Chain-of-Custody Documents

Appendix C Summary of Historical Analytical Results

PROGRESS REPORT

Second Quarter 2013
Fred Meyer Property (aka Bethel Texaco, Facility Site ID #2614)
Port Orchard, Washington

1.0 INTRODUCTION

AMEC Environment & Infrastructure, Inc. (AMEC) has prepared this Progress Report (Report) on behalf of Fred Meyer Stores, Inc. (Fred Meyer) to document groundwater quality monitoring and remediation system maintenance performed by AMEC at the Fred Meyer-Port Orchard service station (Site) on June 11 and 12, 2013. The Report is being prepared and submitted pursuant to Agreed Order No. DE 9040, Section VIII.H

The Site is located at the southeastern corner of the intersection of SE Sedgewick Road and Bethel Road SE in Port Orchard, Washington (Figure 1). Historical releases from a pre-1990 underground storage tank (UST) system associated with Bethel Texaco service station (Facility/Site ID #2614) that formerly occupied the Site had impacted underlying soil and groundwater. Between 1999 and 2001, the Site was redeveloped with the existing Fred Meyer branded fuel station.

Release Identification number 2555 has been assigned to the Site by the Washington State Department of Ecology (Ecology). Previous investigations and remedial efforts conducted at the Site are documented in the Remedial Investigation Report (AMEC, 2010a). Cleanup action alternatives for treating residual petroleum-related contamination in subsurface soil and groundwater beneath the Site were evaluated and the most feasible cleanup action was identified in the Cleanup Action Plan (AMEC, 2010b). Continued operation of the existing air sparging (AS) and soil vapor extraction (SVE) system will continue until concentrations of contaminants of potential concern (COPCs) remaining in soil and groundwater beneath the Site are reduced to levels less than the Model Toxics Control Act (MTCA) Method A cleanup standards. An Agreed Order governing the Site remediation (No. DE 9040) was signed on May 10, 2012 (State of Washington Department of Ecology, 2012).

2.0 STATUS OF SUBSURFACE REMEDIATION SYSTEMS, ON-SITE ACTIVITIES, AND DEVIATIONS FROM CAP OR SCHEDULE

AMEC has operated an air sparging/soil vapor extraction (AS/SVE) system at the Site since March 2000. The current air sparging (AS) and vapor extraction (VE) points are shown on Figure 2. A

AMEC Environment & Infrastructure, Inc.

description of the original system design, installation, and operations is presented in AMEC's third quarter 2004 Quarterly Site Report dated January 20, 2005 (AMEC, 2005). Because of damage incurred during construction of the Fred Meyer branded fuel station and expansion of adjacent roadways from 1999 into the early 2000s, the AS groundwater treatment system was completely offline between August 2002 and February 21, 2009 and the SVE system operated at a limited capacity from July 2001 through June 2006. During June 2006, further damage to the SVE system's aboveground components resulted in the SVE component becoming inoperable.

AMEC conducted an assessment of the AS/SVE system during a Site visit on June 19, 2008, and began a series of system repairs and optimization steps as detailed in the Progress Report - First Quarter 2012 (AMEC, 2012a). During October 2008, four shallow groundwater monitoring wells (MW-108A, MW-109, MW-110, and MW-111) were installed in place of wells that had been inadvertently destroyed during construction activities in 1999 and 2000.

To increase flow in the sparging system, the AS manifold was modified to separate high-flow and low-flow sparge points in January 2012 (AMEC, 2012a). The high-flow sparge points (AS-1 and AS-10) were connected to low-pressure/high-volume rotary vane compressor #2 and the low-flow sparge points (AS-5, AS-6, and AS-7) were connected to a newly installed high-pressure/low-volume air compressor. Rotary vane compressor #1 and select sparge points were taken off-line to focus air flow and sparging near monitoring wells MW-103 and MW-110 (AMEC, 2012b).

In February 2013, AMEC shut down the two high-pressure/low-volume air compressors and rerouted all active sparge points (AS-1, AS-5, AS-6, AS 7, and AS-10) to the low-pressure/high-volume rotary vane compressor #2 when it was observed that subsurface entry pressures at wellheads AS-1 and AS-10 had decreased.

2.1 DEVIATIONS FROM CAP OR SCHEDULE

During this reporting period, there were no deviations from the required tasks under the Agreed Order or from the Corrective Action Plan (CAP), and no deviations in schedule.

3.0 GROUNDWATER MONITORING

3.1 Monitoring Well MW-109A Installation

In the first quarter 2013 monitoring report, AMEC recommended installing a new monitoring well (MW-109A) within the landscaped area immediately north of MW-109 (Figure 2) to better assess surrounding subsurface conditions in the vicinity of MW-109, where benzene has been

intermittently detected in shallow groundwater. Ms. Carrie Pederson, the Ecology project manager, provided approval for the installation of new monitoring well MW-109A via email on June 4, 2013.

On June 11, 2013, monitoring well MW-109A was installed using hollow-stem auger drilling methods in accordance with applicable Ecology monitoring well regulations. Drilling was performed by Holt Services, Inc. of Edgewood, Washington. The 2-inch diameter monitoring well was installed to a depth of 30 feet below ground surface (bgs) with a 10 foot screened interval located between 20 and 30 feet bgs.

An AMEC environmental scientist logged the character of the soil encountered in addition to any other observations (i.e., visual evidence of impact, olfactory indications of impact, and headspace readings). Soil was field screened for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). The character of the soil encountered, in addition to any other observations (e.g., visual and olfactory indications of impact), were recorded in on a soil log. The soil boring and well construction log for MW-109A is included in Appendix A.

Subsurface conditions encountered in the boring beneath the approximately 2.5 feet of fill consisted of medium dense, brown or gray, fine to medium silty sand with occasional gravel. Saturated soils were initially observed at approximately 20 feet bgs. No elevated PID readings or other evidence of contamination (odors, discoloration, or sheen) were observed in the boring.

AMEC personnel surged and developed monitoring well MW-109A following installation on June 11, 2013. The well as mechanically surged with a surge block and then approximately 55 gallons of groundwater were removed from it with a hand bailer and stored in a sealed 55-gallon drum pending chemical characterization and off-site disposal. A copy of the field form documenting the well development is included as Appendix A. AMEC also conducted a relative top-of-casing elevation survey for the new monitoring well using a construction level. MW-109A was surveyed relative to existing wells MW-109 and MW-110 to establish mean sea level (msl) elevation

Second quarter 2013 groundwater quality monitoring was conducted on June 12, 2013. Construction details for the Site's groundwater monitoring and remediation wells are summarized in Table 1. Field logs are provided in Appendix A. Sampling methodology and monitoring results are discussed below.

3.2 SITE HYDROGEOLOGY

Depth-to-water measurements were recorded in monitoring wells MW-103, MW-105, MW-108A, MW-109, MW-019A, MW-110, and MW-111 to the nearest 0.01-foot from the top of the well casing

(TOC) using an electronic water level indicator. The measurements were converted to elevations relative to msl using surveyed TOC elevations. Groundwater elevation data are presented in Table 2 and Figure 2.

The calculated groundwater elevations suggest that the overall direction of shallow groundwater flow at the Site was directed to the west-southwest, consistent with previous monitoring events. AMEC calculated a shallow groundwater gradient of approximately 0.06 vertical feet per lateral foot (ft/ft) between monitoring wells MW-109 and MW-111 for the monitoring event.

However, unlike previous monitoring events, the groundwater elevations in monitoring wells MW-110, MW-103, and MW-105 were higher than is consistent with a continuous west-southwest flow gradient across the Site. The increased volume of air flow directed from the sparging system into groundwater near monitoring wells MW-103 and MW-110 since February 2013 may have caused localized groundwater mounding, resulting in the higher than expected groundwater elevations observed in these wells.

3.3 GROUNDWATER SAMPLING

On June 12, 2013 groundwater samples were collected from monitoring wells MW-103, MW-105, MW-108A, MW-109A, MW-110, and MW-111 using low-flow techniques. Prior to sampling, groundwater was purged from each monitoring well using a direct-current electric submersible pump equipped with a check-valve and an attached disposable sample bailer. Water quality indicator parameters including temperature, hydrogen ion concentration (pH), dissolved oxygen, specific conductivity, and oxidation-reduction potential were measured using field instrumentation and recorded on groundwater sampling logs (Appendix A). Purging continued until values of the indicator parameters stabilized, indicating that formation water was entering the well casing and sampling intake. Samples were transferred from the bailer to laboratory-supplied containers, labeled, stored with ice in an insulated container, and transported under chain-of-custody protocol to Apex Labs, Inc. in Tigard, Oregon. Non-disposable sampling equipment was decontaminated between uses by scrubbing in an Alconox detergent solution, followed by two successive deionized water rinses.

3.3.1 Analytical Program

The June 12, 2013 groundwater samples were analyzed for gasoline-range organics (GRO) by Northwest Method Total Petroleum Hydrocarbon-Gasoline (NWTPH-Gx) and for selected VOCs by United States Environmental Protection Agency (EPA) Method 8260B.

Photocopies of the analytical reports and the chain-of-custody documents are provided in Appendix B. The analytical data for the June 2013 groundwater samples will be entered into Ecology's Environmental Information Management System (EIM), as required by Agreed Order No. 9040 (Ecology, 2012). A historical summary of COPCs detected in groundwater from May 1991 through June 2013 is presented in Appendix C.

Concentrations of constituents measured in the groundwater samples were compared to screening criteria developed on the basis of Ecology's MTCA regulations. MTCA Method A screening criteria were used when available for detected constituents. These MTCA methods provide conservative cleanup levels for use in routine cleanup actions and are used herein as screening tools.

3.3.2 Analytical Results and Cleanup Levels

The analytical results for the June 2013 groundwater samples are summarized in Table 2 and depicted on Figure 3. VOCs were detected in one of the wells sampled at the Site (MW-109A).

- GRO was not detected in any of the wells samples at the Site on June 12, 2013.
- Benzene was detected in MW-109A at 6.69 micrograms per liter (μg/L) in the June 12, 2013 sample, exceeding the MTCA Method A criterion (5 μg/L). No other VOC compounds were detected above their respective laboratory method detection limits (MDLs) in the groundwater samples tested.

3.3.3 Non-Aqueous Phase Liquid - Not Present

Neither measurable non-aqueous phase liquid (NAPL) nor a petroleum-related sheen were observed in groundwater samples collected from monitoring wells MW-103, MW-105, MW-108A, MW-109A, MW-110, and MW-111 during the second quarter 2013 (1Q13) event.

3.3.4 Data Trends

The patterns of GRO and VOCs observed in MW-103 and MW-110 exhibit seasonal variations, and appear to be inversely correlated with groundwater levels to some extent. Consistent with past second quarter sampling events, GRO and VOCs were not detected in MW-103 and MW-110. GRO and VOC concentrations in wells MW-105, MW-108A, and MW-111 remained below MDLs. GRO and VOCs have not been detected in MW-105 since the June 2008 monitoring event or in MW-108A since installation and initial sampling in January 2009.

Benzene Detections in MW-109 and MW-109A

Intermittent detections of benzene have been reported in MW-109 since the well was initially sampled in January 2009. Groundwater data from January 2009 through February 2013 (Appendix C) do not indicate any apparent correlation between benzene detections and

AMEC Environment & Infrastructure, Inc.

groundwater elevations or between benzene detections and any particular quarter of the year. The intermittent nature of these detections and the absence other volatile petroleum constituents in the benzene-containing samples suggest that the benzene detected in MW-109 may be from a different source than the contamination detected in down-gradient wells MW-103 and MW-110.

MW-109 is located approximately 20 feet north of and down slope from the fueling islands in a high vehicle traffic area. Because the well monument is located in a high traffic driveway and is elevated slightly above the existing pavement grade, AMEC surmised it was possible that the cumulative effects of vehicles driving over the protruding monument could have produced minor fractures in the monument or the well casing (too small to be observed by visual inspection) that allowed finite periodic infiltration of surface runoff contaminants.

In order to better assess subsurface conditions in the vicinity of MW-109 and potential of surface infiltration, AMEC installed new monitoring well MW-109A with a similar screened interval approximately 10 feet to the north within the landscaped area – outside of the vehicle traffic and fueling station pavement runoff pathways. Benzene was detected in the June 12, 2013 groundwater sample collected from monitoring well MW-109A. The detection of benzene in new well MW-109A suggests the benzene detections in the vicinity of MW-109 and MW-109A do not appear to be related to infiltration of surface runoff contaminants on the Fred Meyer property.

Groundwater monitoring wells MW-109 and MW-109A appear to be located up-gradient or cross-gradient from known historical and current fuel station operations on the Fred Meyer property. AMEC is currently evaluating other potential off-Site sources for these benzene detections, including the Sedgwick One Stop BP cleanup facility located to the north of the Fred Meyer property across Sedgwick Road, in a potentially up-gradient orientation.

3.3.5 Quality Assurance/Quality Control

AMEC reviewed the laboratory's analytical reports (Appendix B) to assess overall data quality. The data has not been limited by qualifiers and is usable as reported for the purposes of this report.

4.0 AIR SPARGING/SOIL VAPOR EXTRACTION SYSTEM MONITORING

The AS/SVE system monitoring and maintenance visit was conducted on June 11, 2012. The SVE system was operating at 100% on arrival for the maintenance visit. A copy of the February 11 AS/SVE performance monitoring data sheet is provided in Appendix A. AMEC measured total VOC concentrations in return air, vacuum pressure, and flow velocity for each of the five SVE wells located at the Site and for the total system. Total VOC concentrations were measured using a PID calibrated to isobutylene. Total influent VOCs were measured as 0.0 parts per million (ppm). A

vacuum gauge reading of 60 inches of water was observed for each of the SVE wells. A combined flow rate of 260 cubic feet per minute (cfm) was estimated from measured vacuum and the manufacturer's blower curve. Based on the VOC system influent concentrations and volumetric flow rates at the beginning and end of the monitoring period, the SVE remediation system removed approximately 0 pounds (lbs) of volatile constituents from the subsurface over the 120-day monitoring period (Table 3).

In February 2013, AMEC shut down the two high-pressure/low-volume air compressors and rerouted the sparging to connect all active sparge points (AS-1, AS-5, AS-6, AS-7, and AS-10) to the low-pressure/high-volume rotary vane compressor #2 (AMEC, 2013). Air flow rates measured on June 11, 2013 in each of the five active AS well conveyance lines ranged from 5 to 15 cfm, with a mean value of 11 cfm. Dissolved oxygen (DO) levels were measured in each of the six Site groundwater monitoring wells on June 12, 2013. DO levels ranged from 0.75 milligrams per liter (mg/L) in monitoring well MW-111 to 18.9 mg/L in monitoring well MW-110. The DO levels measured in monitoring wells MW-103, MW-105, and MW-110 exceeded saturation (calculated based on the measured water temperatures and specific conductivity values).

DO levels measured in the groundwater monitoring wells since reactivation of the AS system in February 2009 are summarized in Table 4. Since the December 2011 monitoring event, oxygen concentrations have remained generally elevated in all wells, with the exception of downgradient MW-111. The super-saturated oxygen concentrations observed in monitoring wells MW-103, MW-105, and MW-110 in the June 2013 monitoring event suggest that the February 2013 AS system modifications have been successful at focusing additional air delivery into the groundwater in this portion of the Site, as intended.

Overall, concentrations of weathered GRO in groundwater samples obtained from monitoring wells MW-103 and MW-110 appear to be decreasing since efforts to increase air sparging in the vicinity of these source area wells were initiated in January 2012. As mentioned, GRO levels in MW-103 and MW-110 exhibit seasonal variations in response to decreasing water levels during the summer months. However, GRO levels in these wells have only exceeded the MTCA Method A cleanup standard of $800~\mu g/L$ in one of the last six monitoring events since January 2012.

5.0 SUMMARY

The results of the second guarter 2013 monitoring event are summarized as follows:

1. On June 11, 2013, new monitoring well MW-109A was installed within the landscaped area approximately 10 feet to the north of existing monitoring well MW-109 (Figure 3). The

MW-109 and MW-109A well locations are designed to serve as a compliance monitoring point upgradient of the residual contamination associated with the former Bethel Texaco station service.

- 2. The shallow groundwater piezometric surface was evaluated from water level measurements collected from Site monitoring wells. Similar to previous monitoring events, the overall gradient was directed to the west-southwest with an estimated magnitude of 0.06 ft/ft. Unlike previous monitoring events, the groundwater elevations in monitoring wells MW-110, MW-103, and MW-105 were higher than is consistent with a continuous west-southwest flow gradient across the Site. The increased volume of air flow directed from the sparging system into groundwater near monitoring wells MW-103 and MW-110 appears to have caused localized groundwater mounding, resulting in the higher than expected groundwater elevations observed in these wells.
- 3. Neither measurable NAPL nor sheen was observed. NAPL and sheen have not been observed in the monitoring wells since 1999.
- 4. The AS/SVE system was 100% operational during the second quarter 2013 reporting period.
- 5. GRO was not detected above the MDL in the Site groundwater monitoring wells.
- 6. Benzene was detected in MW-109A at 6.69 μg/L in the June 12, 2013 groundwater sample, exceeding the MTCA Method A criterion. The source of previous intermittent benzene detections in MW-109 and the recent benzene detection in MW-109A is currently unknown. The presence of benzene in new well MW-109A suggests benzene detections in the vicinity of MW-109 and MW-109A do not appear to be related to infiltration of surface runoff contaminants. AMEC is currently evaluating other potential sources of these benzene detections.
- 7. Apart from the detection of benzene in monitoring well MW-109A, VOCs were not detected above their respective laboratory MDLs in MW-109A or the remaining Site groundwater monitoring wells.

6.0 FUTURE PLANNED ACTIVITIES AND DELIVERABLES

During the next reporting period, AMEC will continue to conduct monthly maintenance checks on the AS and SVE systems to ensure they are operating properly in accordance with the requirements of Agreed Order No. 9040 (Ecology, 2012). AMEC will conduct the next quarterly groundwater and quality samples visit within the third quarter of 2013.

AMEC is currently evaluating potential off-Site sources for the benzene detections in groundwater monitoring wells MW-109 and MW-109A, including the Sedgwick One Stop BP cleanup facility located to the north of the Fred Meyer property across Sedgwick Road, in a potentially up-gradient orientation. AMEC submitted a Public Records Request to Ecology for this facility on July 10, 2013 and will conduct a review of this facility's regulatory file, once made available by Ecology.

7.0 CLOSING

AMEC appreciates the opportunity to be of service to Fred Meyer on this project. If you have any questions, or if we can be of further assistance, please contact the undersigned at (503) 639-3400.

AMEC Environment & Infrastructure, Inc.

Reviewed by:

Joel Eledge, CHMM Environmental Scientist Kurt Harrington, PE Project Manager

JE/KH/lp

REFERENCES

AMEC Earth & Environmental, Inc., 2005. Quarterly Site Report - Third Quarter 2004, Fred Meyer Property, Port Orchard, Washington. January 20, 2005.

----, 2010a, Remedial Investigation Report, Fred Meyer Stores, Inc. - Port Orchard Site, 1900 SE Sedgwick Road, Port Orchard, Washington, Ecology Site ID #96424236 (formerly J5E03), May 4, 2010.

----, 2010b, Cleanup Action Plan, Fred Meyer Stores, Inc. - Port Orchard Site, 1900 SE Sedgwick Road, Port Orchard, Washington, Ecology Site ID #96424236 (formerly J5E03), May 4, 2010.

AMEC Environment & Infrastructure, Inc. 2012a. Progress Report - Fourth Quarter 2011 & First Quarter 2012, Fred Meyer Property (aka Bethel Texaco, Facility Site ID #2614), 1900 SE Sedgewick Road, Port Orchard, Washington. March 8, 2012.

----, 2012b. Progress Report - Second Quarter 2012, Fred Meyer Property (aka Bethel Texaco, Facility Site ID #2614), 1900 SE Sedgewick Road, Port Orchard, Washington. July 2, 2012.

----, 2013. Progress Report - First Quarter 2013, Fred Meyer Property (aka Bethel Texaco, Facility Site ID #2614), 1900 SE Sedgewick Road, Port Orchard, Washington. May 14, 2013.

State of Washington Department of Ecology (Ecology), 2012. Agreed Order No. 9040 for Final Cleanup Action and Compliance Monitoring. May 10, 2012.

LIMITATIONS

This report was prepared exclusively for Fred Meyer Stores, Inc. (Fred Meyer) and its agents by AMEC Environment & Infrastructure, Inc. (AMEC). The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in AMEC services and are based on: i) information available at the time of preparation; ii) data supplied by outside sources; and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended for use by Fred Meyer, for the Site at 1900 SE Sedgewick Road, Port Orchard, Washington only, subject to the terms and conditions of its contract with AMEC. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

The findings contained herein are relevant to the dates of the AMEC Site visits and should not be relied upon to represent conditions later. In the event that changes in the nature, usage, or layout of the property or nearby properties are made, the conclusions and recommendations contained in this report may not be valid. If additional information becomes available, it should be provided to AMEC so the original conclusions and recommendations can be modified as necessary.

TABLES

TABLE 1
Well Construction Summary
Fred Meyer Facility, Port Orchard, Washington

Well ID	Install Date	Top of Casing Elevation	Boring Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)
Active Monitoring \	Nells	(feet msl)			
MW-103	5/6/91	311.70	32	4	12-32
MW-105	11/10/99	310.46	30	2	10-30
MW-108A	10/1/08	310.38	30	2	15-30
MW-109	10/02/08	310.48	32	2	15-30
MW-109A	06/11/13	311.71	30	2	20-30
MW-110	10/1/08	312.77	30	2	15-30
MW-111	10/1/08	310.62	40	2	25-40
Vapor Extraction W		0.0.02		_	20 .0
VE-1^	11/4/99	NA	15	0.75	~7.5-15
VE-2^	11/4/99	NA	15	0.75	~7.5-15
VE-3	11/3/99	NA	15	0.75	7.5-15
VE-4	11/3/99	NA	15	0.75	7.5-15
VE-5	11/3/99	NA	15	0.75	7.5-15
Air-Sparging Wells		•	•	•	•
AS-1^	11/4/99	NA	~35	0.75	~30-35
AS-2^	11/4/99	NA	~35	0.75	~30-35
AS-3^	11/4/99	NA	~35	0.75	~30-35
AS-4^	11/4/99	NA	~35	0.75	~30-35
AS-5	11/3/99	NA	~35	0.75	30-35
AS-6	11/3/99	NA	~35	0.75	30-35
AS-7	11/3/99	NA	~35	0.75	30-35
AS-8^	11/3/99	NA	~35	0.75	~30-35
AS-9	11/3/99	NA	~35	0.75	30-35
AS-10	11/3/99	NA	~35	0.75	30-35
Destroyed and Dec	ommissioned Mon	itoring Wells			
MW-1S	10/15/90	312.56	38.5	2	18.5-38.5
MW-1D	10/15/90	313.00	79.5	2	34.5-80
MW-2S	10/23/90	304.53	38	2	18-38
MW-2D	10/23/90	301.13	78	2	43-78
MW-101	5/13/91	not reported	79	2	60-79
MW-102	5/13/91	not reported	81	2	61-81
MW-104	5/6/91	not reported	not reported	2	not reported
MW-106*	11/10/99	311.73	30	2	10-30
MW-107*	11/9/99	310.59	30	2	10-30
MW-108*	11/9/99	309.94	30	2	10-30

Notes:

msl = Mean sea level

bgs = Below ground surface

NA = not applicable

~ = approximately

^{^ =} Well at 45° angle

^{* =} Well was destroyed during construction of the fueling station

TABLE 2

Groundwater Elevations and Analytical Results Detected Constituents - Second Quarter 2013 Monitoring Event Fred Meyer Facility, Port Orchard, Washington

					Volat	ile Organi	Compou	nds			Gro	undwater L	_evels	Final Dissolved
Well No.	Date	Gasoline Range Organics	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	Naph- thalene	Casing Elev.	Depth to Water	Water Elev.	Oxygen
CAS RN		not applicable	71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	107-06-2	106-93-4	91-20-3				
		(µg/L)		•		(µg/	L)				(feet msl)	(feet toc)	(feet msl)	(mg/L)
MTCA Meti	hod A	800	5	1,000	700	1,000	20	5	0.01	160				
Well ID	Date													
MW-103	8/8/2012	2.490	0.250 U	1.00 U	4.30	27.0	1.00 U	0.500 U	0.500 U	3.04	311.70	22.61	289.09	9.92
MW-103	11/14/2012	305	0.250 U	1.00 U	0.650		1.00 U	0.500 U	0.500 U	2.00 U	311.70	24.45	287.25	2.97
MW-103	2/11/2013	311	0.125 U	0.500 U	0.450 J	1.62	0.500 U	0.250 U	0.250 U	1.00 U	311.70	18.79	292.91	3.05
MW-103	6/12/2013	100U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	311.70	19.80	291.90	15.81
MW-105	8/8/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.46	19.72	290.74	8.00
MW-105	11/14/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.46	20.57	289.89	3.85
MW-105	2/11/2013	50 U	0.125 U	0.500 U	0.250 U	0.750 U	0.500 U	0.250 U	0.250 U	1.00 U	310.46	16.02	294.44	4.47
MW-105	6/12/2013	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.46	17.13	293.33	16.11
MW-108A	8/8/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.38	22.80	287.58	2.81
MW-108A	11/14/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.38	24.31	286.07	0.67
MW-108A	2/11/2013	50 U	0.125 U	0.500 U	0.250 U	0.750 U	0.500 U	0.250 U	0.250 U	1.00 U	310.38	19.90	290.48	0.84
MW-108A	6/12/2013	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.38	21.05	289.33	4.38
MW-109	8/8/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.48	17.91	292.57	4.96
MW-109	11/14/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.48	17.98	292.50	1.62
MW-109	2/11/2013	62.4 J	26.1	0.500 U	0.250 U	0.750 U	0.500 U	0.250 U	0.250 U	1.00 U	310.48	14.19	296.29	2.01
MW-109	2/28/2013	-	4.44	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.48	13.91	296.57	8.47
MW-109	6/12/2013	-	-	-	-	-	-	-	1	-	310.48	18.77	291.71	-
MW-109A	6/12/2013	100 U	6.69	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	311.71	20.51	291.20	10.57
MW-110	8/8/2012	1,630	0.250 U	1.00 U	3.21	8.45	1.00 U	0.500 U	0.500 U	3.41	312.77	21.50	291.27	11.46
MW-110	11/14/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	312.77	25.07	287.70	5.73
MW-110	2/11/2013	50 U	0.125 U	0.500 U	0.250 U	0.750 U	0.500 U	0.250 U	0.250 U	1.00 U	312.77	18.23	294.54	6.17
MW-110	6/12/2013	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	312.77	17.43	295.34	18.90
MW-111	8/8/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.62	29.90	280.72	0.64
MW-111	11/14/2012	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.62	31.21	279.41	0.49
MW-111	2/11/2013	50 U	0.125 U	0.500 U	0.250 U	0.750 U	0.500 U	0.250 U	0.250 U	1.00 U	310.62	28.20	282.42	0.65
MW-111	6/12/2013	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	2.00 U	310.62	29.05	281.57	0.75

Notes:

CAS RN: Chemical Abstracts Service Registry Number

MTCA Method A: Washington Department of Ecology Model Toxics Control Act Method A cleanup standards

MTBE: methyl tert-butyl ether EDC: 1,2-dichloroethane EDB: 1,2-dibromoethane µg/L: micrograms per liter mg/L: milligrams per liter feet msl = feet above mean sea level

feet toc = feet below top of well casing

Bold values indicate constituent detected at concentration greater than laboratory reporting limit (MRL)

Red values indicate the concentration exceeds the MTCA Method A cleanup level

- U: The analyte was not detected above the MRL or method detection limit (MDL) presented
- J: The analyte was detected at a concentration greater than or equal to the MDL, but less than the MRL. The concentration is an approximate value.
- -: The analyte was not tested for by this method

TABLE 3
Soil Vapor Extraction System Monitoring Data
Fred Meyer Facility, Port Orchard, Washington

			1.0	a 1110y 01 1	acility, Port C	, ona. a, 110	.og.o				
Date	Monitoring Days	Operational Days	% Operational	Total Influent VOC Level ¹	Vacuum ²	Total Flow Velocity	Bleed Flow Velocity	Total Recovered Flow Rate ³	Volatile Removal Rate at End of Period	Estimated VOCs Removed for Period	Estimated VOCs Removed to Date
				(ppmv)	(inches H2O)	(feet per	r minute)	(cfm)	(lbs./day)	(pou	ınds)
3/1/00	-	-	-	105.0	90	1,200	0	105	2.31	0	0
5/24/00	84	84	100%	160.9	> 100	1,000	0	87	2.95	221	221
8/17/00	85	85	100%	66.1	75	NA	0	220	3.05	255	476
10/19/00	63	63	100%	17.9	34	NA	0	320	1.20	134	610
12/13/00	55	55	100%	62.2	> 100	1,000	0	87	1.14	64	674
2/22/01	71	71	100%	4.0	71	NA	0	225	0.19	47	721
3/19/01	25	25	100%	28.3	90	NA	0	160	0.95	14	736
AMEC finds tha	at select SVE we	ells were destroye	ed during expans	sion of the Be	ethel Road SE an	d SE Sedgewid	ck Road right-of	-ways adjacent	to site.		
6/28/01	101	101	100%	11.2	80	NA	0	200	0.47	72	807
9/23/01	87	43	49%	4.2	100	NA	0	120	0.11	12	820
12/11/01	79	39	49%	0.0	100	NA	0	120	0.00	2.1	822
3/20/02	99	50	51%	1.4	100	NA	0	120	0.04	0.9	823
6/11/02	83	29	35%	0.0	90	NA	0	160	0.00	0.5	823
AS system is c	ompletely off-line	e as a result of da	amages incurred	during site r	edevelopment						,
9/25/02	106	106	56%	0.0	90	2,600	0	227	0.00	0	823
12/12/02	78	78	50%	2.7	90	2,500	0	218	0.12	4.8	828
4/1/03	110	110	100%	6.0	80	3,000	0	262	0.33	25	853
6/22/03	82	82	100%	0.0	100	NA	0	120	0.00	14	867
9/23/03	93	93	100%	0.0	60	4,100	0	358	0.00	0	867
12/17/03	85	85	100%	0.0	70	3,800	0	331	0.00	0	867
3/31/04	105	0	0%	0.0	0	0	0	0	0.00	0	867
6/29/04	90	90	100%	0.0	60	4,100	0	358	0.00	0	867
9/29/04	92	92	100%	0.0	60	4,100	0	358	0.00	0	867
11/9/04	41	41	100%	0.0	55	4,300	0	375	0.00	0	867
3/10/05	121	121	100%	0.0	50	4,500	0	393	0.00	0	867
6/21/05	103	103	100%	0.0	55	2,000	0	174	0.00	0	867
9/23/05	94	94	100%	0.0	100	NA	0	120	0.00	0	867
12/1/05	69	69	100%	0.0	100	NA	0	120	0.00	0	867
3/9/06*	98	unknown	unknown	0.0	0	0	0	0	0.00	0	867
		ne as a result of			1	1	1			T	1
6/8/06**	91	0	0%	0.0	0	0	0	0	0.00	0	867
9/22/06	106	0	0%	0.0	0	0	0	0	0.00	0	867
12/12/06	81	0	0%	0.0	0	0	0	0	0.00	0	867
3/28/07	106	0	0%	0.0	0	0	0	0	0.00	0	867
6/13/07	77	0	0%	0.0	0	0	0	0	0.00	0	867
8/28/07	76	0	0%	0.0	0	0	0	0	0.00	0	867
11/28/07	92	0	0%	0.0	0	0	0	0	0.00	0	867
4/15/08	139	0	0%	0.0	0	0	0	0	0.00	0	867
6/19/08	65	0	0%	0.0	0	0	0	0	0.00	0	867
9/16/08	89	0	0%	0.0	0	0	0	0	0.00	0	867
1/24/09	130	0	0%	0.0	0	0	0	0	0.00	0	867
		Restarted on 02/		00.0	60	0.000	4.000	4==	0.00	6	007
2/21/09	28	1	100%	28.3	90	6,000	1,200	175	0.00	0	867
3/28/09	35	35	100%	31.2	90	6,000	1,200	175	1.15	40	907
6/11/09***	75	70	93%	4.0	90	6,000	1,200	175	0.15	45	952
9/10/09	91	91	100%	0.5	100	6,000	1,200	150	0.02	7.4	959
1/22/10	134	134	100%	0.6	54	6,000	1,200	285	0.04	3.5	963
3/5/10	42	42	100%	0.5	100	6,000	1,200	150	0.02	1.1	964
6/10/10****	97	97	50%	0.2	100	6,000	1,000	150	0.01	1.1	965
9/9/10	91	91	100%	0.6	100	4,000	2,000	150	0.02	1.1	966
12/6/10	88	88	100%	0.4	100	4,300	1,700	150	0.01	1.4	968
3/29/11****	113	113	100%	0.4	100	5,000	1,000	150	0.01	1.4	969
6/21/11***	84	42	50%	0.6	90	4,300	2,500	175	0.02	0.7	970

TABLE 3 Soil Vapor Extraction System Monitoring Data Fred Meyer Facility, Port Orchard, Washington

Date	Monitoring Days	Operational Days	% Operational	Total Influent VOC Level ¹	Vacuum ²	Total Flow Velocity	Bleed Flow Velocity	Total Recovered Flow Rate ³	Volatile Removal Rate at End of Period	Estimated VOCs Removed for Period	Estimated VOCs Removed to Date
				(ppmv)	(inches H2O)	(feet per	r minute)	(cfm)	(lbs./day)	(pou	ınds)
One AS blower	and one blower	connector replac	ced on 6/21/11								
9/27/11	98	98	100%	0.9	100	4,000	1,500	150	0.03	2.5	972
12/7/11	71	71	100%	0.0	90	6,000	1,500	175	0.00	1.0	973
1/12/12*****	36	0	0%	0.0	0	0	0	0	0.00	0.0	973
5/10/12	119	119	100%	0.0	60	6,000	1,500	260	0.00	0.0	973
8/8/12	90	90	100%	0.0	60	6,000	1,500	260	0.00	0.0	973
11/14/12	98	98	100%	0.0	100	4,000	1,500	150	0.00	0.0	973
2/11/13	89	89	100%	0.0	60	6,000	1,500	260	0.00	0.0	973
6/11/13	120	120	100%	0.0	60	6,000	1,500	260	0.00	0.0	973

Notes:

- VOC = volatile organic compounds

 1 = Reflects VOC concentration of total system influent at monitoring event arrival time based on photoionization detector measurement.
- 2 = Reflects vacuum measurements collected at total system influent intake at monitoring event arrival time
- 3 = Volumetric flows through December 2005 were determined from total flow velocity or from measured vacuum and manufacturer's blower curves, if vacuum not available.

Volumetric flows from February 2009 are determined from measured vacuum and manufacturer's blower curves, due to uncertainty of field velocity measurements.

NA = measurement not taken

PID = photoionization detector

ppmv = parts per million by volume

cfm = cubic feet per minute

- * = The knock out tank and all piping were full of water upon arrival for this monitoring day. Normal system readings could not be taken
- ** = The system was off upon arrival and departure from the site. The SVE blowers did not work properly
- *** = The VES blower was off upon arrival and turned on at departure.
- **** = The discharge pipe was melted at arrival; damaged sometime between 1Q2010 event and 2Q2010 event.
- ***** = Air sparging blower #1 was off on arrival and departure due to failed connector.
- ****** = Air sparging blower #1 was off on arrival due tripped circuit breaker.

TABLE 4
Air Sparging System Performance Monitoring Data
Fred Meyer Facility, Port Orchard, Washington

Monitoring Well	Date	Groundwater Depth Below Top of Casing (Feet)	Groundwater Elevation (Feet)	Final Dissolved Oxygen (mg/L)	Gasoline- Range Organics (μg/L)
MW-103	AS/SVE Systems	Reactivated on 02/21/	. ,	(3 /	(1-3- /
	3/28/2009	18.16	293.54	1.50	80 U
	6/11/2009	18.61	293.09	2.34	100 U
	9/10/2009	21.47	290.23	8.71	179
	1/22/2010	19.31	292.39	1.66	1,320
	3/5/2010	18.30	293.40	1.31	100 U
	6/10/2010	19.44	292.26	1.94	403
	9/9/2010	21.86	289.84	0.78	7,430
	12/6/2010	20.60	291.10	0.72	4,060
	3/29/2011	15.75	295.95	0.81	100 U
	6/21/2011	18.06	293.64	0.51	100 U
	9/27/2011	21.12	290.58	1.41	4,330
	12/7/2011	20.05	291.65	6.24	664
	1/12/2012	20.70	291.00	6.97	100 U
	5/10/2012	21.28	290.42	7.42	108
	8/8/2012	22.61	289.09	9.92	2,490
	11/14/2012	24.45	287.25	2.97	305
	2/11/2013	18.79	292.91	3.05	311
	6/12/2013	19.80	291.90	15.81	100 U
MW-105	AS/SVE Systems	Reactivated on 02/21/	2009		I
	3/28/2009	17.17	293.29	1.58	80 U
	6/11/2009	17.63	292.83	1.29	100 U
	9/10/2009	21.48	288.98	3.30	80 U
	1/22/2010	17.46	293.00	7.66	80 U
	3/5/2010	16.98	293.48	1.38	100 U
	6/10/2010	18.11	292.35	2.59	100 U
	9/9/2010	20.62	289.84	1.91	100 U
	12/6/2010	19.22	291.24	1.89	100 U
	3/29/2011	14.22	296.24	0.96	100 U
	6/21/2011	16.20	294.26	0.93	100 U
	9/27/2011	20.28	290.18	2.57	100 U
	12/7/2011	18.51	291.95	2.70	100 U
	1/12/2012	18.34	292.12	3.80	100 U
	5/10/2012	16.28	294.18	6.55	100 U
	8/8/2012	19.72	290.74	8.00	100 U
	11/14/2012	20.57	289.89	3.85	100 U
	2/11/2013	16.02	294.44	4.47	50 U
	6/12/2013	17.13	293.33	16.11	100 U
MW-108A	AS/SVE Systems	Reactivated on 02/21/	2009		
	3/28/2009	22.70	287.76	1.21	80 U
	6/11/2009	23.42	287.04	1.07	100 U
	9/10/2009	25.52	284.86	0.75	80 U
	1/22/2010	22.69	287.69	2.57	80 U
	3/5/2010	21.13	289.25	1.21	100 U
	6/10/2010	21.48	288.90	0.36	100 U
	9/9/2010	23.50	286.88	1.02	100 U
	12/6/2010	23.15	287.23	1.20	100 U
	3/29/2011	17.62	292.76	0.85	100 U
	6/21/2011	19.89	290.49	0.84	100 U
	9/27/2011	22.95	287.43	0.46	100 U
	12/7/2011	23.05	287.33	0.62	100 U
	1/12/2012	23.17	287.21	1.97	100 U
	5/10/2012	21.03	289.35	2.94	100 U
	8/8/2012	22.80	287.58	2.81	100 U
	11/14/2012	24.31	286.07	0.37	100 U
	2/11/2013	19.90	290.48	0.84	50 U
	6/12/2013	21.05	289.33	4.38	100 U

TABLE 4
Air Sparging System Performance Monitoring Data
Fred Meyer Facility, Port Orchard, Washington

Monitoring	Date	Groundwater Depth Below	Groundwater	Final Dissolved	Gasoline- Range					
Well		Top of Casing	Elevation	Oxygen	Organics					
		(Feet)	(Feet)	(mg/L)	(µg/L)					
TCA Method A C	leanup Standard	, ,		· · · ·	800					
MW-109	AS/SVE Systems I	Reactivated on 02/21/	2009		L.					
	3/28/2009	16.13	294.33	0.99	80 U					
	6/11/2009	16.27	294.19	0.74	100 U					
	9/10/2009	19.77	290.71	1.95	80 U					
	1/22/2010	15.25	295.23	6.44	80 U					
	3/5/2010	15.23	295.25	0.85	100 U					
	6/10/2010	16.20	294.28	1.86	100 U					
	9/9/2010	18.92	291.56	0.97	100 U					
	12/6/2010	16.71	293.77	0.79	100 U					
	3/29/2011	13.30	297.18	0.67	100 U					
	6/21/2011	14.70	295.78	0.65	100 U					
	9/27/2011	18.86	291.62	0.60	100 U					
	12/7/2011	15.99	294.49	2.57	137					
	1/12/2012	15.76	294.72	3.40	100 U					
	5/10/2012	14.48	296.00	4.00	100 U					
	8/8/2012	17.91	292.57	4.96	100 U					
	11/14/2012	17.98	292.50	1.62	100 U					
	2/11/2013	14.19	296.29	2.01	62.4 J					
	6/12/2013	18.77	291.71	-	-					
MW-109A	Installed on 6/11/2013									
	6/12/2013	20.51	291.20	10.57	100 U					
MW-110	AS/SVE Systems I	Reactivated on 02/21/	2009							
	3/28/2009	16.44	294.02	1.10	162					
	6/11/2009			6.31	100 U					
	9/10/2009	22.60	290.17	9.68	80 U					
	1/22/2010	19.76	293.01	6.19	687					
	3/5/2010	18.56	294.21	2.16	100 U					
	6/10/2010	19.94	292.83	1.13	100 U					
	9/9/2010	22.30	290.47	3.55	1,880					
	12/6/2010	20.63	292.14	3.85	371					
	3/29/2011	17.33	295.44	1.53	442					
	6/21/2011	19.52	293.25	1.07	100 U					
	9/27/2011	21.86	290.91	4.45	4,020					
	12/7/2011	20.23	2912.54	3.54	1,230					
	1/12/2012	20.22	292.55	7.50	100 U					
	5/10/2012	20.63	292.14	9.44	100 U					
	8/8/2012	21.50	291.27	11.46	1,630					
	11/14/2012	25.07	287.70	5.73	100 U					
	2/11/2013	18.23	294.54	6.17	100 U					
	6/12/2013	17.43	295.34	18.90	100 U					

TABLE 4
Air Sparging System Performance Monitoring Data
Fred Meyer Facility, Port Orchard, Washington

Monitoring Well	Date	Groundwater Depth Below Top of Casing (Feet)	Groundwater Elevation (Feet)	Final Dissolved Oxygen (mg/L)	Gasoline- Range Organics (μg/L)
MW-111	AS/SVE Systems I	Reactivated on 02/21/	2009		
	3/28/2009	32.04	278.42	0.80	80 U
	6/11/2009	31.44	279.02	0.67	100 U
	9/10/2009	32.02	278.60	1.17	80 U
	1/22/2010	31.52	279.10	8.58	80 U
	3/5/2010	29.76	280.86	0.57	100 U
	6/10/2010	28.85	281.77	0.26	100 U
	9/9/2010	30.19	280.43	0.65	100 U
	12/6/2010	31.02	279.60	0.80	100 U
	3/29/2011	26.71	283.91	0.70	100 U
	6/21/2011	27.31	283.31	0.40	100 U
	9/27/2011	29.73	280.89	0.57	100 U
	12/7/2011	30.77	279.85	9.08	100 U
	1/12/2012	30.97	279.65	8.95	100 U
	5/10/2012	28.90	281.72	0.52	100 U
	8/8/2012	29.90	280.72	0.64	100 U
	11/14/2012	31.21	279.41	0.49	100 U
	2/11/2013	28.20	282.42	0.65	50 U
	6/12/2013	29.05	281.57	0.75	100 U
ITCA Method A CI	leanup Standard		•		800

Notes:

MTCA Method A = Washington Department of Ecology Model Toxics Control Act Method A screening criteria

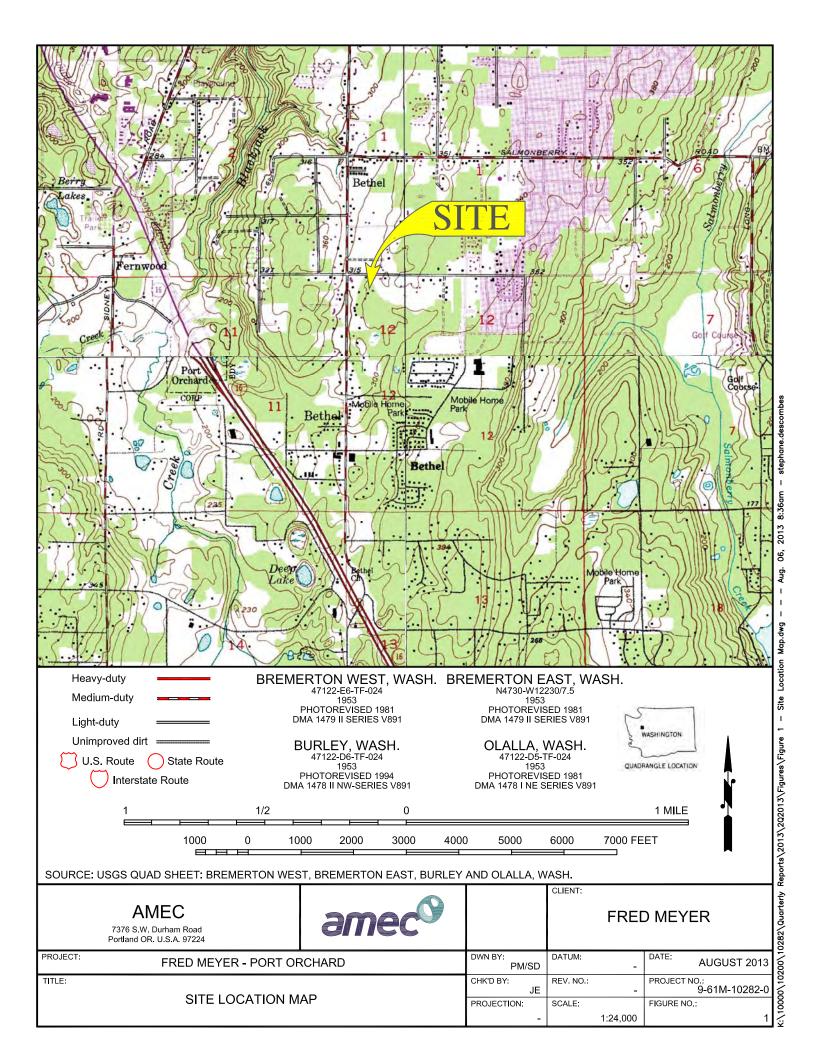
mg/L = milligrams per liter

μg/L = micrograms per liter

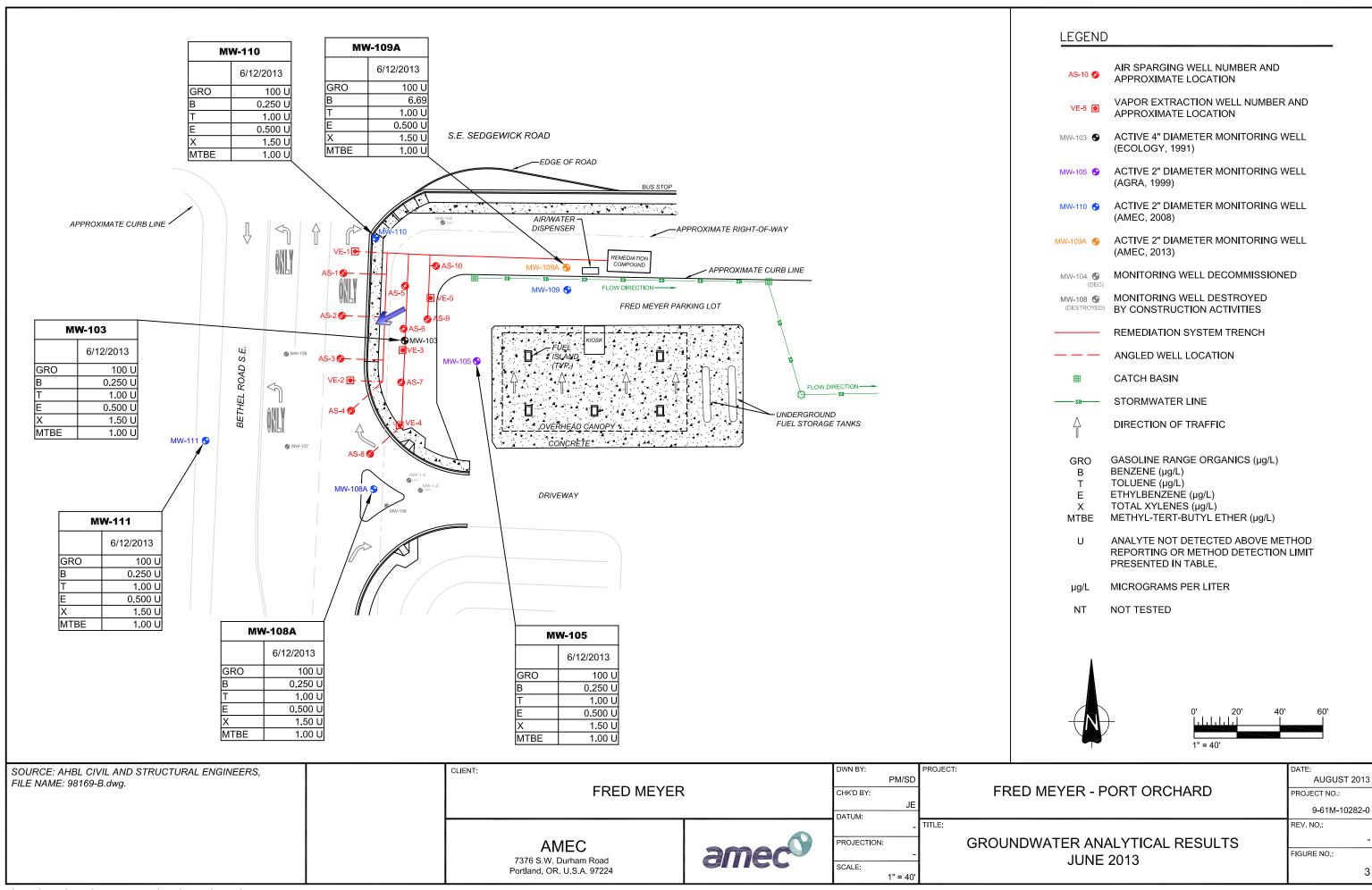
AS/SVE = air sparging and soil vapor extraction

Bold values indicate concentrations detected above laboratory reporting limit

Red values indicate the concentration exceeds the MTCA Method A cleanup standard


U = The analyte was not detected above method reporting limit (MRL) or method detection limit (MDL) presented

J = The analyte detected at concentration greater than or equal to the MDL, but less than the MRL. The concentration is an approximate value.


[&]quot;--" = not measured

FIGURES

APPENDIX A

Monitoring Well Construction Log and Field Data Acquisition Forms

DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESC	RIPTION	SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD AND LABORATORY TESTING	W	ELL SCHEMATIC Flush-mount Monument with Locking Cap
-0-			Light brown SILT. (Topsoil Fill).				0.0				— Concrete
-		SP	Light brown, gravelly coarse SAN	ID, dry.			0.0				— Bentonite Chips
-5- - -		SM	Medium dense, light brown, silty	medium SAND.		20	0.0			-	— Casing (Schedule 40 PVC, 2.0-inch I.D.)
-10- - -			Increase in silt content, moist from	n 12 -15 feet bas.		20	0.0				
_ _15_ _ _ _		SP	Dense, light brown, fine to mediu gravel, wet, iron-oxide staining.			40					— 10/20 Colorado
- 20		ML SP	Medium gray SILT with some fine Very dense, gray and light brown gravel, wet, iron-oxide staining.			83	0.0	▼			Silica Sand
- 25		ML	Hard, brown and reddish-brown (trace fine sand, wet.	iron-oxide staining) SILT with		72	0.0				,
-30- -		SP	Very dense, brown, coarse SANE End of boring at 30 feet bgs.	o, little to no fines, wet.		56					— Threaded End Cap
AMEC PORTLAND.GDT 8/8/13											
ATLAN											
CON.	EHOLE L RIG: [RACT	E DIAMI Hollov	ETER: 10.0 (in) GROU W Stem Auger CASI Olt Drilling STAF	ATION REFERENCE: NA JND SURFACE ELEVATION: NA NG ELEVATION: NA IT CARD/TAG ID: BHU673 LING DATES: 6/11/2013 - 6/11/20				ARKS:	l by J. Fassio.		
S N N N N N N N N N N N N N N N N N N N	l Mey	er Po	ort Orchard	AMEC Environment & Infra 7376 SW Durham Road Portland, Oregon USA 97224	structu	ire, Ind	<u></u>		ec®	LO	G OF BORING MW-109A
9-61	M-10	2820		Tel (503) 639-3400 Fax (503) 620-7892							PAGE 1 OF 1

WELL DEVELOPMENT LOG

Project Name:	Fred Maye	er 1807 Ordwad	Project Num	ıber:	961M1028	2-0
Date:	6/11/13		Completed I	Ву:	Jerson G	nower (10)
Well Name:	<u>_ M</u>	W109A				
Well Developmen	nt Method:	Surge / Block	- PUMP P	Urar	then your	1,00
Contractor Name	: <u>'</u>	HO17		_	_	
Static Water Level Before Develo	= =	20,69	Depth of We	ell (toc):	30'	
Inside Diameter (in):	24	Volume of V Pack	Vater in Fill and Well (
Time Start Devel	opment:	11:30				
Sediment in Well	Bottom (in):	Start: 8,21"	Finish:	D.B	<u>'</u>	
Finish Time. Start Devel	opment:	16:00				
Time	Pumping Rate	Total Volume	Turbidity (NTU)		Notes	
11:55	. I gan	10901	OR.	DC	bond Arter	Surge olock
1220	1 4 9 4	55 101	14.3	Do	Days Adac	

Time	Pumping Rate	Total Volume	Turbidity (NTU)		Notes	
11:55	1 gan	10931	OR.	DC Bung	7 Arter Surgel	010
12:30	Lapa	55 JA1	14.3	DC POM	p Acter surgel	ilac
14100	125,001	PONT 15001	26.7	HAND BA]
15100	125 601	30 GP1	10.6	10	tr .	
16:00	, 25-, 5	55 gal	4.9	ic	11	
					_	_

Volume of Water Removed from Well (gal):	116
Time Complete Development:	16,00
Static Water Level After Development (ft):	20.39

Notes:

Drums

QUARTERLY SYSTEM & GROUNDWATER Fred Meyer - Port Orchard											
MONITORING PROGRAM											
S.E. Intersection	of SE	Sedgev	vick Road 8		Project	#:	9-61M	-10282-0	0		
Port Orchard, W	ashing	gton				Project				arringto	n
	10						DAT		6/18		.03.5
TECHNICIAN:	JG			Revised: Ja		aree wildele te in it early	ival Tim	State 1884-11	6/11	HEED HOTELDE	<u>4 Siren</u>
Groundwater Lo	evels	/ Produ	ct Thicknes	ss / Groundwa	ter/Prod	luct Pump	Operati	on / 7,	5-Gallon	Influent	Tanks
Monitoring			TIME								8
Point	DT	w Is	SAMPLED								: ::
MW-103		80	9:15								.4
MW-105 MW-108A	17.		10:45								
MW-109A	21.0 20		8130								
MW-109		77	11:30 NA								
MW-110	17,4		10:00								
MW-111		05	7:30								
Interface Correc			feet								22
				or Extraction S	System M	Monitoring					
VES Line	PARTA FIR	Vanc	or Level	Vacuum	 	Flow		VI	ES Lines (ON / OF	F)
V20 20			pm)	(inches of wa	iter)	(fpm)			rrival	Dep:	
Total System - A	Arrival		7.0	100"		6000		(ON	1000	
VES-1		,	١			1		(ON	10	1
VES-2									ON	10	2
VES-3									ON	10	
VES-4									ON	10	
VES-5 Total System - [Jonart	4	,				-	Libiase in 1	ON	10 10	
VES Blower Mod			100R-50	PID Type:				Knock	out Tank:		<u>, </u>
Outlet pipe diam						<u> </u>			ES / NO):		no
VES Blower Arri				PID Calibrate				•	ed (YES / I		no
VES Blower Dep				Anemometer	#	5		Quanti	•	gallo	ns
				Air Spargiı	na Svste	em 🕒					Andreas
	語が歌を変を		T AS Line	es (ON) OFF)				14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	AS Line	s (ON / 0	DFF)
Air Sparging Lir	ne Fi	ow (cfm)			Air Spa	arging Line	Flow (cfm)	Arrival		arture
AS-1		15	ON	97		AS-6	ľ		97	•	מפ
AS-2		<u> </u>	OFF) OFF		AS-7		,	OF		KF.
AS-3			1	1		4S-8		•	OFF		FIE
AS-4 AS-5		<u> </u>	47	D D		<u>4S-9</u> .S-10	<u> 5</u>		00		72
Air Sparging Sys		Arrival (ON (OFF):	ON ON		rging Syste	m at De	-	10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		20N
Air Sparging Blo						rging Blowe					ON
Air Sparging Blo						rging Blowe					ON
Total Air Spargir											
Notes:	#14765.N		en e	(大学を含める) (本学学生) (本学学の) (本学学の) (本学学) (本学学) (本学学生) (本学生)		对基本型 3 两, 13 · 基本 新宝 (Hany Hai) 4 · 4 · 4	(호등교급 아/스 텔레스 승규들은 9	ent Etelun.	(1-24年) (2-13年) (6-14) (2-34	いきょ全りまつけた (増りがた) 手き	1000年1月1日
MW	109	A (N	ctalled	6/11/13 4	H YC	oit dil	lina				
	Í	. (10		-1 1-	·		5				
Arrival Time:											77.2
Departure Time:			Buc	dget: 6 hours	(includes	s: prep, trav	el, field.	and r	eport)		
	The second	B Trace		Apera de la composición del compos	en per a arrego egenera e		76#10-20 01#15:	on order to the	- () Ger-ge (#) tea tea (kaspes)		

GROUNDWATER SAMPLING FIELD FORM

Fred Meyer Port Orchard

Quarterly Groundwater Monitoring

AMEC Job #: 9-61M-10282-0

Date: 6/12/12

							υa		0(16)1-		
Field Personnel:		الرجاية	ec						nitoring We		
	3:45	Weather	r Conditio	ns:	<u>ن</u>			App	rox. Air Ten	ոթ (°F): <i>~(</i>	5
加强扩大		INITI	AL WELL	. DATA	& WE	ELL PUR	GING	INFOR	MATION		
Water	Water	Spec	THE RESERVE OF THE PARTY OF	Turbid		Dissolved	44 30000	ORP	Water	Time	Volume
Temperature	pН	Conduct	ivity			Oxygen			Level	(0:00 -	Purged
(degree C)	(S.U.)	(μS/c	cm)	(NTUs	s)	(mg/L)		(mV)	(feet bgs)	23:59)	(gal or liters)
13,60	720	118		44,2		16.74		t8,5	19.80	08:45	. 6.
12.96	6.88	118		23,9		1555	_	47,0	19.86	9:05	4
12.96	6.88	ાિં	3	23,	5	1 9.78	+ *	4311	19.60	91.10	5
12.94	6,60	114	3	73.	2	14,181	1+	43,0	19.80	9:15	Le
_											
							<u>L</u>				
Ferrous Iron (2+) using t	the field	kit:								
0.5 inch tubing:	0.020 galle	ons/linea	r foot		2" wel	I casing:	0.1	7 gal/line	ar foot Tot	al Purged =	6 L
Purge Pumping			<u>, 2</u> (<u> </u>							
Approx. Pump/Ir											<u>-</u>
Well Yield: High Decontamination		/ Low	1	•							
Decontamination	i Metriou.		W		英國門 伊藤		ere k				
				T. W	ELLC	ONDITIC)N				
Casing Size and Casing Condition		" PVC	Donoiro	Danain	ما الم	ock Condi	4: ·	<u> </u>	OIZ/ANA /AN	anda Danai	no (Donosino d
Casing Condition:			Repairs/ Repairs/			onument					rs/Repaired rs/Repaired
	(3)(7)(7)	17 110000	rtopano	rtopunt	<u>ou 141</u>	Offamont	00110	anton. (01,711,711	ccas repai	16/1 Cpaired
NOTES:											
			SA	MPLING	GINE	ORMATIC	N/	DATA			
0.4/0.0	/ - \$ 1 \	D		7)	21 CC-1 10200	ELECTRICATE STREET			
QA/QC Sample	•			QA/QC							>
Sampling Metho						l Valve P				staltic pum	
Analytical Parameters	Destir		Preserva		Bottle			Sample		Time S	Sampled
	Labor		1101 0 :	_	size	of bott	ues	ID		-	
NW TPH-Gx 802			HCL & ice		40 ML		,—	14W10	<u>3061213</u>	3	1.15
8260 Suite	AP	<u>-^ </u> '	HCL & ice	e i	40 ML					<u> </u>	
		+				-					
		+									
						+	-				
	_										
Method of Trans	nortation of	samples:				- L					
All samples were				oler an	d pack	ced with ic	ce or	"Blue Ic	e' YES / NO)	
Field Observation					Jr						
							_				
	act son	3X° 7	F00(1)	15							
<u>-</u>											
										· · · -	
		7		1							,
Signature of Fig	ld Personn	el:								Date:	6/12/17

GROUNDWATER SAMPLING FIELD FORM

Fred Meyer Port Orchard

Quarterly Groundwater Monitoring

AMEC Job #: 9-61M-10282-0

Date: 41.2113

Field Personnel			Monitoring Well ID: MWICS									
Start Time: 16	rt Time: ィン・・シン Weather Conditions: 〇〇 INITIAL WELL DATA & WELL PURGI							App	rox. Air Ten	ıp (°F):	05
		INITI	AL WEL	L DAT	\ & W	ELL PUR	GING	SINFOR	MATION			
Water	Water	Spe		Turbio	lity	Dissolved		ORP	Water		ime	Volume
Temperature	pН	Conduct	• •			Oxygen			Level		.00 -	Purged
(degree C)	(S.U.)	(μS/	-	(NTU		(mg/L)	╄-	(mV)	(feet bgs)	-	:59)	(gal or liters)
12.73	43	10		30		15,52		81	17.13	101		<u> </u>
12,48	6.22	16		<u>9.</u>		16:17	_	(31)	17.20	10	35	+
12,47	600	10	3	9.	<u>ス </u>	16.10		-13.0	17.20	10	:46	ς ς
12.46	(e,21 162 E.4 16,11 +129 17.20 10:45											6
			_									
Ferrous Iron (2+) using t	the field	l kit:									
0.5 inch tubing:	•				2" we	ell casing:	0.1	7 gal/line	ar foot Tot	al Pur	ged =	GL
Purge Pumping				2 -12								
Approx. Pump/lr			SGE	ev								
Well Yield: High Decontamination		/ Low										
Becontamination	T Metriou.											(Section 1997)
Cooing Size one	ルをしていた。		dan eur	V.		CONDITIC)N藝					
Casing Size and Casing Condition			Renair	/Renai	ed II	ock Condi	ition:		OK/NA/N	eeds	Renaire	s/Renaired
Cap Condition:		V Needs				fonument			OK J NA / N			
NOTES:	<u> </u>											
NOTES.												
					AND THE PROPERTY OF THE PARTY O				And the last the second of the			
			S	MPLIN	G INF	ORMATIC) NC	DATA :				
QA/QC Sample	(circle one):	Duplica	te Lab	QA/QC	: N(NE NE						
Sampling Metho	•	•				al Valve P	umn		/hari	etaltic	ритр	
Analytical	Destir		Preserv		Bottl			Sample			<u> </u>	mpled
Parameters	Labor	1	1 100014	ativo	size	of bot				_ '		inpica
NW TPH-Gx 802	21 AP	EX	HCL & i	ce	40 M			MUIC	5-06121	3	10:0	lB
8260 Suite	AP	EX	HCL & i	ce	40 M	15						
,												
				٠								
-						 						
Method of Trans	portation of	samples	•									
Ali samples were					nd pac	ked with i	ce o	r "Blue Ic	e" YES/N)		
Field Observati	ons/Notes	of Samp	ling Eve	nt:								
				1711	-							
				7								
			//	\overline{T}								
		((,	1		<u> </u>						1
Signature of Fig	eld Personn	el:							W	D	ر) :ate	12/13

GROUNDWATER SAMPLING FIELD FORM

Fred Meyer Port Orchard **Quarterly Groundwater Monitoring** AMEC Job #: 9-61M-10282-0

							Da		12113		-	
Field Personnel		odner	-						nitoring We			108A
Start Time: ၇၉	00	Weathe	r Conditi	ons:	6), (٠, ١		App	rox. Air Tem	າp (°F	F): 👡	(E)
		INITI	AL WEL	L DATA	\ & WE	LL PUR	GINO	3 INFOR	MATION		71	
Water	Water	Spe	cific	Turbic	lity D	issolved		ORP	Water	7	ime	Volume
Temperature	pН	Conduct			- 1	Oxygen			Level	l (0	:00 -	Purged
(degree C)	(S.U.)	(μS/	cm)	(NTU	•	(mg/L)		(mV)	(feet bgs)	2:	3:59)	(gal or liters)
13.09	672	14		18,3	, 4	+ <i>5</i> 40	~<	5(0.60	みしめ	Øŧ	300	Ø
13,22	5.58		, (7.4		4.35		461	21,11	DΣ	320	4
13,19	5,54	1	33	Leson	. '	4,35	<u>ا</u> د	16.4	2111	08	325	5
13,21	5,51	15	33	6,8) '	1.38	0	16.0	21,11			61
-												
Ferrous Iron ((2+) using t	the field	l kit:								•	
0.5 inch tubing:	0.020 gallo	ons/linea	r foot		2" well	casing:	0.1	7 gal/line	ar foot Tota	al Pu	rged =	راما
Purge Pumping	_			12 L		_		-				
Approx. Pump/li	ntake Depth:		Sire		1							
Well Yield: High)/ Low	-									
Decontaminatio	n Method:	NA		Postor - Table Call			A - Mark William	varieties de la Valencie de la Ke		Commission of the Commission o		
reserve state and state				V	/ELL C	ONDITIO	N					
Casing Size and	Type:	L" P	V					7				ļ.
Casing Conditio									ÓK/NA/N			
Cap Condition:	√OK/I NA	\ / Needs	Repairs	s/Repai	ed Mo	onument	Con	dition:	OK//NA/N	eeds	Repair	s/Repaired
NOTES:												1
			-	-				<u>-</u>				8,
		\$16 P. W. (1887)		(Battle (B)	A CONTRACT	· 14年(第7年14年)	ar en				达福金 格	
			SA	MPLIN	G INFO	PRMATIC	DN/	DATA				
QA/QC Sample	(circle one):	Duplica	te Lab	QA/QC	NO!	NE)						7
Sampling Metho	d (circle one	e):	(dedicat	ed Dua	l Valve P	ump	l	p ęr f	stalti	c pump	
Analytical			Preserva	ative	Bottle			Sample		7	Time S	ampled
Parameters	Labo				size	of bot		ID				
NW TPH-Gx 80			HCL & ic		40 ML	3	<u> </u>	MWIC	78A-0417	13	<u>ප</u> ැ.	30
8260 Suite	AP	EX	HCL & ic	e	40 ML	-						<u> </u>
												<u> </u>
,											_	
											•	
						<u> </u>						
Method of Trans					ا المد			. (ID) !	-11/150 (3)	`		
All samples wer					па раск	ed with i	ce o	r "Blue Id	e"YES/N	<u> </u>		
Field Observati	ons/Notes	of Samp	ling Eve	nt:								-
		_		<u> </u>								
**************************************		$\overline{}$	$\overline{\mathcal{X}}$									
			+X									
, , ,			- \									1 -1
Signature of Fi	eld Personn	el:	X	し							Date:	w(1/10
- 9 care of 1	J	711	/ \									v * -

GROUNDWATER SAMPLING FIELD FORM

Fred Meyer Port Orchard

Quarterly Groundwater Monitoring

AMEC Job #: 9-61M-10282-0

Date: 6/12/13

							טט	ite. Q				
Field Personnel:									nitoring We			
Start Time: 11	1.00	Weath	er Condit	tions:	Cla	2N-		App	rox. Air Ten	пр (°F):	1	45
	AHIL	INIT	IAI WEI	I DAT	A & V	VELL PUR	GING	GINFOR	MATION			
Water	Water	The second second	ecific	Turbi	A	Dissolved		ORP	Water	Tim	ne	Volume
Temperature	рН	Conduc				Oxygen			Level	(0:0		Purged
(degree C)	(S.U.)		6/cm)	(NT	Js)	(mg/L)		(mV)	(feet bgs)	23:5		(gal or liters)
13.542	6,19		+ 7	6.4		<u> नान्पेंस्ट</u>	+-	1.3	2035	111.0		9
13.15	(e)16	33		3.		10,67		38,9	20,51	(())	_	Ч
13,12	6,15	33	_	3.		10.60	, <i>†</i>	37,4	20.57	1("		
			2		13	105		1-37-C	20,51			<u> </u>
13,16	6,13	7,			· 기		' 	7 /20	3000	(1:3	, <u>C</u>	<u> </u>
				ļ			+					
							+			ļ		
										l		
Ferrous Iron (
0.5 inch tubing:	_		ar foot	14	2" w	ell casing:	0.1	7 gal/line	ear foot Tot	al Purge	ed =	<u>6L</u>
Purge Pumping Approx. Pump/lr			, 1. (93 (
Well Yield: High		· —										
Decontamination		/ LUW										
			d. I did					医海海毒	195 (4 97)	er sagemen		
Casing Size and	Type	z" Pro		: # 54 ()	YELL	CONDITIO	JN 📳				法/關闭 值	
Casing Size and Casing Condition				c/Pena	ired li	Lock Cond	lition		∕Ö K√, NA / N	eeds R	enair	s/Penaired
Cap Condition:						Monument			OR NA / N			
	<u> </u>	17 11000	o i topan	on topa					<u> </u>			
NOTES:												
			. S	AMPLIN	NG IN	FORMATI	ON/	DATA				
QA/QC Sample	(circle ene):	Dunlie	ato Lak	00/00	· Ni	SNE SNE						
·	•	•	ale Lai		_		_				_	
Sampling Metho			-			ual Valve F				istaltic p	_	4
Analytical Parameters		nation ratory	Preserv	vative	Bott size			Sample		lir	me Sa	ampled
NW TPH-Gx 802		EX	HCL & i	ioo	40 M	_	lues	† 	3.6	7	4 132	*
8260 Suite		EX			40 N			PWIO	M-06121	> -	413	25 <u> </u>
ozou Suite	AP		HCL & i	ice	40 10			 				
					┼			 				
						_						<u> </u>
					ļ			<u> </u>				-
					-			<u> </u>				
Method of Trans	nortation of	cample	<u></u>		<u> </u>			<u> </u>	_			
All samples were				cooler a	nd pa	cked with i	ice o	r "Blue lo	e'/ YES / No	0		
Field Observation		-			na pa					-		
		<u> </u>	g ·		-		-					<u>-</u>
						_						·
												
	<u>-</u>		~/ <u>^</u>		1							
			1 1	/								
				1(
Signature of Fie	eld Personn	rel:	91							Da	te: <i>(</i>	p/12/13

GROUNDWATER SAMPLING FIELD FORM

Fred Meyer Port Orchard

Quarterly Groundwater Monitoring

AMEC Job #: 9-61M-10282-0

Date:

Field Personnel: J. Grace Act									Monitoring Well ID: Mw					
Start Time: 9 50 Weather Conditions: 0 0 Approx. Air Temp (°F)														
INITIAL WELL DATA & WELL PURGING INFORMATION Water Water Specific Turbidity Dissolved ORP Water Time Volume														
Water	Water			Turbio	- 1	issolved		ORP	Water	Time	Volume			
Temperature (degree C)	pH (S.U.)	Conduc	-	(NTU		Oxygen		(mV)	Level (feet bgs)	(0:00 - 23:59)	Purged (gal or liters)			
			/cm)		-	(mg/L)	-	` ,						
13/17	7.02	80		6.1		6.42	1	41.1	17.43	9:30	(49)			
12.83	6.65	99		3.6)	9.06		<i>45.</i> 3	17.69	9'50	4			
12.81	6,63	90		1.6	!	<u>8,51</u>		570.4	17.69	9:55	, ·			
12.60	6.62	85	>	1.4	2 '	8,90	+	56.7	17.70	10.00	40			
	·	ļ		ļ			ļ							
	(0.1)	() 	.1.1.24.				L			<u> </u>				
Ferrous Iron (2+) using the field kit: 0.5 inch tubing: 0.020 gallons/linear foot 2" well casing: 0.17 gal/linear foot Total Purged =														
_	_		ar toot	. 1.	2" well	casing:	0.1	7 gai/line	ear foot Tot	al Purged :	- inc			
Purge Pumping Approx. Pump/li				2 - [h	·									
Well Yield: High			<u> </u>	reed						 				
Decontamination		N.S	`											
				V	VELLC	ONDITIC	N		12/13/2					
Casing Size and	Type: 2		表にS. 市田 Janua G. Jakineti S	Comment of the Family of the State of the St	54 (1994) - Train (5)		- 7 miles > -	で 国内語的 457 日本語を マランド		Salid Miller of Edward of the Control of the Contro	西月 ビキ 「神神」 (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)			
Casing Conditio	n: ,ØK\N	\ / Need	s Repair	s/Repai	red Lo	ck Condi	tion:		ØΚ)NA/N	eeds Repa	airs/Repaired			
Cap Condition:	ØK√ N	\ / Need	s Repair	s/Repai	red Mo	nument	Con	dition:	ØR⁄I N∀ I N	eeds Repa	airs/Repaired			
NOTES:														
				ΔMPI IN	GINE	RMATIC	งพ /	ΠΑΤΑ						
0.400.0							4982	- Guinera						
QA/QC Sample	` '	•	ate Lat	QA/QC	<u></u>						_			
Sampling Metho			<u> </u>			Valve P				istaltic pun				
Analytical Parameters		nation ratory	Preser	/ative	Bottle size	Numb of bott		Sample	-	Time	Sampled			
NW TPH-Gx 80		EX	HCL & i	ce	40 ML	(7)			U ~06/7/2	(0)	.00			
8260 Suite		EX	HCL & i		40 ML	13		7.0011	0 0001612	2 10	.00			
ozoo cano			1102 011		10 1112	 								
					· · · · · ·	- 				<u> </u>				
								-			···			
			 											
Method of Trans	portation of	sample	s:		1	1		·		· · · · ·				
All samples were immediately placed into a cooler and packed with ice or "Blue Ice" (FES) NO														
Field Observations/Notes of Sampling Event: Bubbing y well under messure														
									•					
				1	/				<u> </u>					
<u> </u>		l		X										
Signature of Fig	eld Personi	rel:	_	1						Date:	cd 11/13			

GROUNDWATER SAMPLING FIELD FORM

Fred Meyer Port Orchard

Quarterly Groundwater Monitoring

AMEC Job #: 9-61M-10282-0

Date: 6/12/13

Field Personnel	: کی زے	endue	/	·				Mo	nitoring We	ĪIĪD: MV	U-111
Start Time: 👩		Weathe	r Condit	ions:	0	c (rox. Air Ten	np (°F): 1	60
		INIT	AL WEI	L DAT	STURNESS CONTRACTOR	ELL PUR	GING				
Water	Water		cific	Turbi	dity	Dissolved		ORP	Water	Time	Volume
Temperature	pН	Conduc	tivity		ł	Oxygen			Level	(0:00 -	Purged
(degree C)	(S.U.)		/cm)	(NTL		(mg/L)		(mV)	(feet bgs)	23:59)	(gal or liters)
12,05	6.41	15	<u>す</u>	2.2	<u> </u>	1.13	ىند	6.3	29,05		9
12.31	6.44	15	7	1.1		D. BG		1413	29,19	07120	У Ч
12.34	6,43	15	7	0.9	7	Ø.76	1-1	15.0	29.19		8
1257	6.43	15		0.		8.75		142	29.9		7 26.
- (x / j			Negari		' 	<u> </u>	1	,	() ((())	7	
_					- -		T				5.
			- 	- 44			+				
Ferrous Iron (2+\ usina:	the field	1 Lit.	South Control	<u> </u>		<u> </u>			<u> </u>	L
					011	-11 !		7	((al Domarad -	1 -
0.5 inch tubing:	•					eli casing:	U.1	/ gai/line	ear foot Tot	ai Purged =	الار
Purge Pumping				121	-M		,				
Approx. Pump/lı Well Yield: Higl				<u> </u>							
Decontamination		: / LOW									
					VEI I	CONDITIO	, ועכ	5.2			是。 到 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Casing Size and	Type: "	Z ^[]		o (###17### 1##21#		<u>VVIII N</u>	24A-298		数据全部10 A. 电位置:10		はこれがあれているのではないでは、
Casing Conditio			s Repair	s/Repai	red L	ock Cond	ition		ÓK/NA/N	eeds Repai	rs/Repaired
Cap Condition:						/lonument			OKZNA / N		
NOTES:										•	•
NOTES.					. 1				<u></u>		
									<u> </u>	 	
				_							
			s	AMPLIN	IG INI	ORMATIO	NC/	DATA			
QA/QC Sample	(circle one):	Dunlica				ÓNE)	, - mul			, annual	
Sampling Metho	•	-	EUR			ial Valve P)ıımr		non	istaltic pump	·
Analytical	•		Preserv		Bott			Sample			ampled
Parameters		ratory	rieseiv	valive	size	of bot			,	Time 3	ampieu
NW TPH-Gx 80	21 AP	EX	HCL & i	ce	40 M	ニン		MWI	11-0612	13 07	7:3
8260 Suite	AP	EX	HCL & i	ce	40 M						
								1			
					1					i	
								1			
		-									
Method of Trans	sportation of	samples	<u> </u>		<u> </u>						
All samples wer				cooler a	nd pad	cked with i	се о	r "Blue Io	e"(YÈS,/ No)	-
Field Observati								- /-			
								•			
								·····			
											
		-/-		1					··-···		
		$-\!$	1 /	/				· · · · · · · · · · · · · · · · · · ·		- -	
			1 //								
Signature of Fi	eld Personr	nel:								Date: (112/13

APPENDIX B

Laboratory Analytical Results and Chain-or-Custody Documents

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, July 8, 2013

Kurt Harrington Amec Environment & Infrastructure, Inc 7376 SW Durham Road Portland, OR 97224

RE: Fred Meyer (FMPO) Port Orchard / 901M10282-0

Enclosed are the results of analyses for work order <u>A3F0348</u>, which was received by the laboratory on 6/13/2013 at 3:45:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: cwoodcock@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Switen My Joak Coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

 7376 SW Durham Road
 Project Number:
 901M10282-0
 Reported:

 Portland, OR 97224
 Project Manager:
 Kurt Harrington
 07/08/13 13:11

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMAT	ION	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW105-061213	A3F0348-01	Water	06/12/13 10:45	06/13/13 15:45
MW110-061213	A3F0348-02	Water	06/12/13 10:00	06/13/13 15:45
MW103-061213	A3F0348-03	Water	06/12/13 09:15	06/13/13 15:45
MW111-061213	A3F0348-04	Water	06/12/13 07:30	06/13/13 15:45
MW108A-061213	A3F0348-05	Water	06/12/13 08:30	06/13/13 15:45
MW109A-061213	A3F0348-06	Water	06/12/13 11:30	06/13/13 15:45
Trip Blank	A3F0348-07	Water	06/12/13 11:30	06/13/13 15:45

Apex Laboratories
Chuiten My lood Coth

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

ANALYTICAL SAMPLE RESULTS

G	asoline Ra	ange Hyd	drocarbons (E	Benzene to Nap	hthalene) l	by NWTPH-Gx		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW105-061213 (A3F0348-01)			Matrix: Wa	iter B	atch: 30604	20		
Gasoline Range Organics	ND		0.100	mg/L	1	06/17/13 12:31	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 81 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			79 %	Limits: 50-150 %	"	"	"	
MW110-061213 (A3F0348-02)			Matrix: Wa	ater B	atch: 30604	20		
Gasoline Range Organics	ND		0.100	mg/L	1	06/17/13 14:21	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 80 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			79 %	Limits: 50-150 %	"	"	"	
MW103-061213 (A3F0348-03)			Matrix: Wa	ater B	atch: 30604	20		
Gasoline Range Organics	ND		0.100	mg/L	1	06/17/13 15:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 85 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			84 %	Limits: 50-150 %	"	"	"	
MW111-061213 (A3F0348-04)			Matrix: Wa	ater B	atch: 30604	20		
Gasoline Range Organics	ND		0.100	mg/L	1	06/17/13 12:58	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 79 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			78 %	Limits: 50-150 %	"	"	"	
MW108A-061213 (A3F0348-05)			Matrix: Wa	ater B	atch: 30604	20		
Gasoline Range Organics	ND		0.100	mg/L	1	06/17/13 13:25	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 81 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			78 %	Limits: 50-150 %	"	"	"	
MW109A-061213 (A3F0348-06)			Matrix: Wa	ater B	atch: 30604	20		
Gasoline Range Organics	ND		0.100	mg/L	1	06/17/13 13:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 80 %	Limits: 50-150 %	"	"	n	
1,4-Difluorobenzene (Sur)			79 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

ANALYTICAL SAMPLE RESULTS

		RBCA	Compounds	(BTEX+) by EF	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Note
MW105-061213 (A3F0348-01)			Matrix: Wa	ter Ba	atch: 30604	20		
Benzene	ND		0.250	ug/L	1	06/17/13 12:31	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Naphthalene	ND		2.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 102 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			95 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	n .	"	
MW110-061213 (A3F0348-02)			Matrix: Wa	ter Ba	atch: 30604	20		
Benzene	ND		0.250	ug/L	1	06/17/13 14:21	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Naphthalene	ND		2.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 102 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			94 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			110 %	Limits: 80-120 %	"	"	"	
MW103-061213 (A3F0348-03)			Matrix: Wa	ter Ba	atch: 30604	20		
Benzene	ND		0.250	ug/L	1	06/17/13 15:15	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Naphthalene	ND		2.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 106 %	Limits: 80-120 %	"	n n	"	
1,4-Difluorobenzene (Surr)		-100	99 %	Limits: 80-120 %	"	n	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chaiten My Cool coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

ANALYTICAL SAMPLE RESULTS

		RBCA	Compound	s (BTEX+) by I	EPA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW103-061213 (A3F0348-03)			Matrix: Wa	iter l	Batch: 306042	20		
Surrogate: 4-Bromofluorobenzene (Surr)		Rec	covery: 106 %	Limits: 80-120 %	6 1	"	EPA 8260B	
MW111-061213 (A3F0348-04)			Matrix: Wa	ater I	Batch: 306042	20		
Benzene	ND		0.250	ug/L	1	06/17/13 12:58	EPA 8260B	
Toluene	ND		1.00	"	"	**	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Naphthalene	ND		2.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	**	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr))	R	ecovery: 99 %	Limits: 80-120 %	ó "	"	11	
1,4-Difluorobenzene (Surr)			94 %	Limits: 80-120 %	ó "	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	ó "	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	ó "	"	"	
MW108A-061213 (A3F0348-05)			Matrix: Wa	nter l	Batch: 306042	20		
Benzene	ND		0.250	ug/L	1	06/17/13 13:25	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Naphthalene	ND		2.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr))	Rec	covery: 100 %	Limits: 80-120 %	ó "	п	n .	
1,4-Difluorobenzene (Surr)			93 %	Limits: 80-120 %	ó "	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	ó "	"	"	
4-Bromofluorobenzene (Surr)			108 %	Limits: 80-120 %	ó "	"	"	
MW109A-061213 (A3F0348-06)			Matrix: Wa	ater I	Batch: 306042	20		
Benzene	6.69		0.250	ug/L	1	06/17/13 13:55	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Naphthalene	ND		2.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr))	Red	covery: 101 %	Limits: 80-120 %	ó "	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charten My load coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

ANALYTICAL SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B													
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes					
MW109A-061213 (A3F0348-06)			Matrix: Wa	ater Ba	tch: 30604	20							
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 93 %	Limits: 80-120 %	1	"	EPA 8260B						
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"						
4-Bromofluorobenzene (Surr)			110 %	Limits: 80-120 %	"	"	"						
Trip Blank (A3F0348-07)			Matrix: Wa	ater Ba	atch: 30604	20							
Benzene	ND		0.250	ug/L	1	06/17/13 16:35	EPA 8260B						
Toluene	ND		1.00	"	"	"	"						
Ethylbenzene	ND		0.500	"	"	"	"						
Xylenes, total	ND		1.50	"	"	"	"						
Naphthalene	ND		2.00	"	"	"	"						
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"						
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"						
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 108 %	Limits: 80-120 %	"	"	"						
1,4-Difluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"						
Toluene-d8 (Surr)			94 %	Limits: 80-120 %	"	"	"						
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	n .	"						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gaso	line Ran	ge Hydroca	rbons (B	enzene 1	to Naphtha	lene) by l	NWTPH-C	3x			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060420 - EPA 5030I	В						Wat	er				
Blank (3060420-BLK1)				Pro	epared: 06	/17/13 09:00	Analyzed:	06/17/13 12	:01			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 79 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			78 %	50	0-150 %		"					
LCS (3060420-BS2)				Pre	epared: 06	/17/13 09:00	Analyzed:	06/17/13 11	:34			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.416		0.100	mg/L	1	0.500		83	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 77 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			79 %	50	0-150 %		"					
Duplicate (3060420-DUP1)				Pro	epared: 06	/17/13 11:00	Analyzed:	06/17/13 14	:48			
QC Source Sample: MW110-061213	(A3F0348-0	2)										
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 79 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			80 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBCA Co	mpounds	(BTEX+)	by EPA 82	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060420 - EPA 5030	3						Wat	ter				
Blank (3060420-BLK1)				Prep	pared: 06/	17/13 09:00	Analyzed:	06/17/13 12	2:01			
EPA 8260B												
Benzene	ND		0.250	ug/L	1							
Toluene	ND		1.00	"	"							
Ethylbenzene	ND		0.500	"	"							
m,p-Xylene	ND		1.00	"	"							
o-Xylene	ND		0.500	"	"							
Xylenes, total	ND		1.50	"	"							
Naphthalene	ND		2.00	"	"							
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"							
Isopropylbenzene	ND		1.00	"	"							
n-Propylbenzene	ND		0.500	"	"							
1,2,4-Trimethylbenzene	ND		1.00	"	"							
1,3,5-Trimethylbenzene	ND		1.00	"	"							
1,2-Dibromoethane (EDB)	ND		0.500	"	"							
1,2-Dichloroethane (EDC)	ND		0.500	"	"							
urr: Dibromofluoromethane (Surr)		Re	ecovery: 99 %	Limits: 80-		Dilu	tion: Ix					
1,4-Difluorobenzene (Surr)			94 %		120 %		"					
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)			96 % 110 %		120 % 120 %		,,					
-			110 / 0	00	120 70							
LCS (3060420-BS1)				Prep	pared: 06/	17/13 09:00	Analyzed:	06/17/13 11	:04			
EPA 8260B	16.5		0.250	ar.		20.0		02	70.1200/			
Benzene	16.5		0.250	ug/L	1	20.0			70-130%			
Toluene	17.9		1.00	"	"	"		90				
Ethylbenzene	18.2		0.500		"			91	"			
m,p-Xylene	37.7		1.00	"		40.0		94	"			
o-Xylene	18.1		0.500	"	"	20.0		91	"			
Xylenes, total	55.8		1.50	"	"	60.0		93	"			
Naphthalene	19.3		2.00	"	"	20.0		97	"			
Methyl tert-butyl ether (MTBE)	15.8		1.00	"	"	"		79	"			
Isopropylbenzene	20.7		1.00	"	"	"		103	**			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

QUALITY CONTROL (QC) SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 3060420 - EPA 5030E	3						Wat	er					
LCS (3060420-BS1)				Pre	pared: 06/	17/13 09:00	Analyzed:	06/17/13 11	:04				
n-Propylbenzene	17.8		0.500	ug/L	"	"		89	"				
1,2,4-Trimethylbenzene	19.0		1.00	"	"	"		95	"				
1,3,5-Trimethylbenzene	19.2		1.00	"	"	"		96	"				
1,2-Dibromoethane (EDB)	22.4		0.500	"	"	"		112	"				
1,2-Dichloroethane (EDC)	18.4		0.500	"	"	"		92	"				
Surr: Dibromofluoromethane (Surr)		Re	covery: 95 %	Limits: 80	-120 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Surr)			91 %	80-	-120 %		"						
Toluene-d8 (Surr)			94 %		-120 %		"						
4-Bromofluorobenzene (Surr)			107 %	80-	-120 %		"						
Duplicate (3060420-DUP1)				Pre	pared: 06/	17/13 11:00	Analyzed:	06/17/13 14	:48				
QC Source Sample: MW110-061213	(A3F0348-02	2)											
EPA 8260B													
Benzene	ND		0.250	ug/L	1		ND				30%		
Toluene	ND		1.00	"	"		ND				30%		
Ethylbenzene	ND		0.500	"	"		ND				30%		
m,p-Xylene	ND		1.00	"	"		ND				30%		
o-Xylene	ND		0.500	"	"		ND				30%		
Xylenes, total	ND		1.50	"	"		ND				30%		
Naphthalene	ND		2.00	"	"		ND				30%		
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"		ND				30%		
Isopropylbenzene	ND		1.00	"	"		ND				30%		
n-Propylbenzene	ND		0.500	"	"		ND				30%		
1,2,4-Trimethylbenzene	ND		1.00	"	"		ND				30%		
1,3,5-Trimethylbenzene	ND		1.00	"	"		ND				30%		
1,2-Dibromoethane (EDB)	ND		0.500	"	"		ND				30%		
1,2-Dichloroethane (EDC)	ND		0.500	"	"		ND				30%		
Surr: Dibromofluoromethane (Surr)		Rec	overy: 102 %	Limits: 80	-120 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Surr)			95 %		-120 %		"						
Toluene-d8 (Surr)			95 %	80-	-120 %		"						
4-Bromofluorobenzene (Surr)			107 %	80-	-120 %		"						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

QUALITY CONTROL (QC) SAMPLE RESULTS

RBCA Compounds (BTEX+) by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060420 - EPA 5030	В						Wat	ter				
Matrix Spike (3060420-MS1)				Pre	pared: 06/	17/13 11:00	Analyzed:	06/17/13	15:42			
QC Source Sample: MW103-061213	3 (A3F0348-0	3)										
EPA 8260B												
Benzene	17.8		0.250	ug/L	1	20.0	ND	89	70-130%			
Toluene	18.5		1.00	"	"	"	ND	93	"			
Ethylbenzene	19.4		0.500	"	"	"	ND	97	"			
m,p-Xylene	37.5		1.00	"	"	40.0	ND	94	"			
o-Xylene	18.6		0.500	"	"	20.0	ND	93	"			
Xylenes, total	56.0		1.50	"	"	60.0	ND	93	"			
Naphthalene	18.4		2.00	"	"	20.0	ND	92	"			
Methyl tert-butyl ether (MTBE)	16.2		1.00	"	"	"	ND	81	"			
Isopropylbenzene	21.2		1.00	"	"	"	ND	106	"			
n-Propylbenzene	18.7		0.500	"	"	"	ND	94	"			
1,2,4-Trimethylbenzene	18.2		1.00	"	"	"	ND	91	"			
1,3,5-Trimethylbenzene	17.6		1.00	"	"	"	ND	88	"			
1,2-Dibromoethane (EDB)	20.9		0.500	"	"	"	ND	104	"			
1,2-Dichloroethane (EDC)	19.5		0.500	"	"	"	ND	98	"			
Surr: Dibromofluoromethane (Surr)		Rec	covery: 102 %	Limits: 80	-120 %	Dila	ution: 1x					
1,4-Difluorobenzene (Surr)			96 %		-120 %		"					
Toluene-d8 (Surr)			96 %		-120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

SAMPLE PREPARATION INFORMATION

	Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx													
Prep: EPA 5030B					Sample	Default	RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor							
Batch: 3060420														
A3F0348-01	Water	NWTPH-Gx (MS)	06/12/13 10:45	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00							
A3F0348-02	Water	NWTPH-Gx (MS)	06/12/13 10:00	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00							
A3F0348-03	Water	NWTPH-Gx (MS)	06/12/13 09:15	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00							
A3F0348-04	Water	NWTPH-Gx (MS)	06/12/13 07:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00							
A3F0348-05	Water	NWTPH-Gx (MS)	06/12/13 08:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00							
A3F0348-06	Water	NWTPH-Gx (MS)	06/12/13 11:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00							

	RBCA Compounds (BTEX+) by EPA 8260B												
Prep: EPA 5030B					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 3060420													
A3F0348-01	Water	EPA 8260B	06/12/13 10:45	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						
A3F0348-02	Water	EPA 8260B	06/12/13 10:00	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						
A3F0348-03	Water	EPA 8260B	06/12/13 09:15	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						
A3F0348-04	Water	EPA 8260B	06/12/13 07:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						
A3F0348-05	Water	EPA 8260B	06/12/13 08:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						
A3F0348-06	Water	EPA 8260B	06/12/13 11:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						
A3F0348-07	Water	EPA 8260B	06/12/13 11:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00						

Apex Laboratories

Churten My Ond Coch

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

Notes and Definitions

Qualifiers:

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

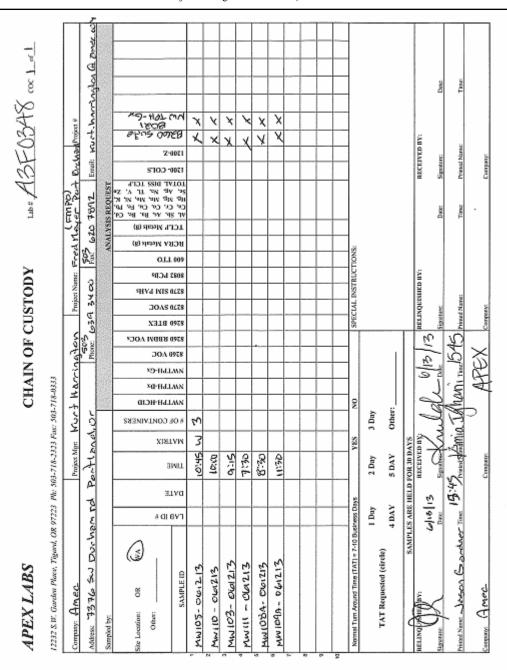
Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Switen Ry God Coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 07/08/13 13:11

Anex 1	\mathbf{L}_{a}	าเบบเธร

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My Joad Coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, August 5, 2013

Kurt Harrington Amec Environment & Infrastructure, Inc 7376 SW Durham Road Portland, OR 97224

RE: Fred Meyer (FMPO) Port Orchard / 901M10282-0

Enclosed are the results of analyses for work order <u>A3F0348</u>, which was received by the laboratory on 6/13/2013 at 3:45:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMATI	ON	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW105-061213	A3F0348-01	Water	06/12/13 10:45	06/13/13 15:45
MW110-061213	A3F0348-02	Water	06/12/13 10:00	06/13/13 15:45
MW103-061213	A3F0348-03	Water	06/12/13 09:15	06/13/13 15:45
MW111-061213	A3F0348-04	Water	06/12/13 07:30	06/13/13 15:45
MW108A-061213	A3F0348-05	Water	06/12/13 08:30	06/13/13 15:45
MW109A-061213	A3F0348-06	Water	06/12/13 11:30	06/13/13 15:45
Trip Blank	A3F0348-07	Water	06/12/13 11:30	06/13/13 15:45

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

ANALYTICAL SAMPLE RESULTS

		RBCA Com	oounds (B	TEX+) by E	PA 8260B			
Analyte	Result		eporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW105-061213 (A3F0348-01)			rix: Water		atch: 306042		1110tillou	11000
Methyl tert-butyl ether (MTBE)	ND		.00	ug/L	1	06/17/13 12:31	EPA 8260B	
Surrogate: Dibromofluoromethane (Surr)		Recovery:		nits: 80-120 %	"	"	"	
Surrogate. Dibromojtuorometnane (Surr) 1,4-Difluorobenzene (Surr)		Recovery.		uis: 80-120 %	,,	"	"	
Toluene-d8 (Surr)				uis. 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)				iits: 80-120 %	,,	"	"	
MW110-061213 (A3F0348-02)		Mat	rix: Water		atch: 30604	20		
· · · · · · · · · · · · · · · · · · ·	ND		.00		1	06/17/13 14:21	EPA 8260B	
Methyl tert-butyl ether (MTBE)	ND			ug/L				
Surrogate: Dibromofluoromethane (Surr)		Recovery:		nits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)				nits: 80-120 %	"	"	"	
Toluene-d8 (Surr)				nits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			110 % Lin	nits: 80-120 %	"	"	"	
MW103-061213 (A3F0348-03)		Mat	rix: Water	В	atch: 30604	20		
Methyl tert-butyl ether (MTBE)	ND	1	.00	ug/L	1	06/17/13 15:15	EPA 8260B	
Surrogate: Dibromofluoromethane (Surr)		Recovery:	106 % Lin	nits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			99 % Lin	nits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 % Lin	nits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 % Lin	nits: 80-120 %	"	"	"	
MW111-061213 (A3F0348-04)		Mat	rix: Water	В	atch: 30604	20		
Methyl tert-butyl ether (MTBE)	ND	1	.00	ug/L	1	06/17/13 12:58	EPA 8260B	
Surrogate: Dibromofluoromethane (Surr)		Recovery	: 99 % Lin	nits: 80-120 %	"	11	"	
1,4-Difluorobenzene (Surr)			94 % Lin	nits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			97 % Lin	nits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 % Lin	nits: 80-120 %	"	"	"	
MW108A-061213 (A3F0348-05)		Mat	rix: Water	В	atch: 30604	20		
Methyl tert-butyl ether (MTBE)	ND	1	.00	ug/L	1	06/17/13 13:25	EPA 8260B	
Surrogate: Dibromofluoromethane (Surr)		Recovery:	100 % Lin	nits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)		. , .		nits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 % Lin	nits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			108 % Lin	nits: 80-120 %	"	"	"	
MW109A-061213 (A3F0348-06)		Mat	rix: Water	В	atch: 30604	20		
Methyl tert-butyl ether (MTBE)	ND	1	.00	ug/L	1	06/17/13 13:55	EPA 8260B	
Surrogate: Dibromofluoromethane (Surr)		Recovery:	101 % Lin	nits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)				its: 80-120 %	,,	,,	,,	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

ANALYTICAL SAMPLE RESULTS

		RBCA Co	ompounds	s (BTEX+) by E	PA 8260B	-		
			Reporting		·			
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW109A-061213 (A3F0348-06)			Matrix: Wa	iter E	Batch: 30604	20		
Surrogate: Toluene-d8 (Surr)		Reco	overy: 95 %	Limits: 80-120 %	1	"	EPA 8260B	
4-Bromofluorobenzene (Surr)			110 %	Limits: 80-120 %	"	"	"	
Trip Blank (A3F0348-07)			Matrix: Wa	iter E	Batch: 30604	20		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/17/13 16:35	EPA 8260B	
Surrogate: Dibromofluoromethane (Surr)		Recov	very: 108 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			94 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBCA Co	mpounds	(BTEX+)	by EPA 82	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060420 - EPA 5030	3						Wat	ter				
Blank (3060420-BLK1)				Prep	pared: 06/	17/13 09:00	Analyzed:	06/17/13 12	2:01			
EPA 8260B												
Benzene	ND		0.250	ug/L	1							
Toluene	ND		1.00	"	"							
Ethylbenzene	ND		0.500	"	"							
m,p-Xylene	ND		1.00	"	"							
o-Xylene	ND		0.500	"	"							
Xylenes, total	ND		1.50	"	"							
Naphthalene	ND		2.00	"	"							
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"							
Isopropylbenzene	ND		1.00	"	"							
n-Propylbenzene	ND		0.500	"	"							
1,2,4-Trimethylbenzene	ND		1.00	"	"							
1,3,5-Trimethylbenzene	ND		1.00	"	"							
1,2-Dibromoethane (EDB)	ND		0.500	"	"							
1,2-Dichloroethane (EDC)	ND		0.500	"	"							
urr: Dibromofluoromethane (Surr)		Re	ecovery: 99 %	Limits: 80-		Dilu	tion: Ix					
1,4-Difluorobenzene (Surr)			94 %		120 %		"					
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)			96 % 110 %		120 % 120 %		,,					
-			110 / 0	00	120 70							
LCS (3060420-BS1)				Prep	pared: 06/	17/13 09:00	Analyzed:	06/17/13 11	:04			
EPA 8260B	16.5		0.250	ar.		20.0		02	70.1200/			
Benzene	16.5		0.250	ug/L	1	20.0			70-130%			
Toluene	17.9		1.00	"	"	"		90				
Ethylbenzene	18.2		0.500		"			91	"			
m,p-Xylene	37.7		1.00	"		40.0		94	"			
o-Xylene	18.1		0.500	"	"	20.0		91	"			
Xylenes, total	55.8		1.50	"	"	60.0		93	"			
Naphthalene	19.3		2.00	"	"	20.0		97	"			
Methyl tert-butyl ether (MTBE)	15.8		1.00	"	"	"		79	"			
Isopropylbenzene	20.7		1.00	"	"	"		103	**			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBCA Co	mpounds	(BTEX+) by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060420 - EPA 5030E	3						Wat	er				
LCS (3060420-BS1)				Pre	pared: 06/	17/13 09:00	Analyzed:	06/17/13 11	:04			
n-Propylbenzene	17.8		0.500	ug/L	"	"		89	"			
1,2,4-Trimethylbenzene	19.0		1.00	"	"	"		95	"			
1,3,5-Trimethylbenzene	19.2		1.00	"	"	"		96	"			
1,2-Dibromoethane (EDB)	22.4		0.500	"	"	"		112	"			
1,2-Dichloroethane (EDC)	18.4		0.500	"	"	"		92	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 95 %	Limits: 80	-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			91 %	80-	-120 %		"					
Toluene-d8 (Surr)			94 %		-120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	-120 %		"					
Duplicate (3060420-DUP1)				Pre	pared: 06/	17/13 11:00	Analyzed:	06/17/13 14	:48			
QC Source Sample: MW110-061213	(A3F0348-02	2)										
EPA 8260B												
Benzene	ND		0.250	ug/L	1		ND				30%	
Toluene	ND		1.00	"	"		ND				30%	
Ethylbenzene	ND		0.500	"	"		ND				30%	
m,p-Xylene	ND		1.00	"	"		ND				30%	
o-Xylene	ND		0.500	"	"		ND				30%	
Xylenes, total	ND		1.50	"	"		ND				30%	
Naphthalene	ND		2.00	"	"		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"		ND				30%	
Isopropylbenzene	ND		1.00	"	"		ND				30%	
n-Propylbenzene	ND		0.500	"	"		ND				30%	
1,2,4-Trimethylbenzene	ND		1.00	"	"		ND				30%	
1,3,5-Trimethylbenzene	ND		1.00	"	"		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.500	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.500	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Rec	overy: 102 %	Limits: 80	-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			95 %		-120 %		"					
Toluene-d8 (Surr)			95 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBCA Co	mpounds	(BTEX+) by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060420 - EPA 5030	В						Wat	ter				
Matrix Spike (3060420-MS1)				Pre	pared: 06/	17/13 11:00	Analyzed:	06/17/13	15:42			
QC Source Sample: MW103-061213	3 (A3F0348-0	3)										
EPA 8260B												
Benzene	17.8		0.250	ug/L	1	20.0	ND	89	70-130%			
Toluene	18.5		1.00	"	"	"	ND	93	"			
Ethylbenzene	19.4		0.500	"	"	"	ND	97	"			
m,p-Xylene	37.5		1.00	"	"	40.0	ND	94	"			
o-Xylene	18.6		0.500	"	"	20.0	ND	93	"			
Xylenes, total	56.0		1.50	"	"	60.0	ND	93	"			
Naphthalene	18.4		2.00	"	"	20.0	ND	92	"			
Methyl tert-butyl ether (MTBE)	16.2		1.00	"	"	"	ND	81	"			
Isopropylbenzene	21.2		1.00	"	"	"	ND	106	"			
n-Propylbenzene	18.7		0.500	"	"	"	ND	94	"			
1,2,4-Trimethylbenzene	18.2		1.00	"	"	"	ND	91	"			
1,3,5-Trimethylbenzene	17.6		1.00	"	"	"	ND	88	"			
1,2-Dibromoethane (EDB)	20.9		0.500	"	"	"	ND	104	"			
1,2-Dichloroethane (EDC)	19.5		0.500	"	"	"	ND	98	"			
Surr: Dibromofluoromethane (Surr)		Rec	covery: 102 %	Limits: 80	-120 %	Dila	ution: 1x					
1,4-Difluorobenzene (Surr)			96 %		-120 %		"					
Toluene-d8 (Surr)			96 %		-120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	-120 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

SAMPLE PREPARATION INFORMATION

		R	BCA Compounds (B	TEX+) by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3060420							
A3F0348-01	Water	EPA 8260B	06/12/13 10:45	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00
A3F0348-02	Water	EPA 8260B	06/12/13 10:00	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00
A3F0348-03	Water	EPA 8260B	06/12/13 09:15	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00
A3F0348-04	Water	EPA 8260B	06/12/13 07:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00
A3F0348-05	Water	EPA 8260B	06/12/13 08:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00
A3F0348-06	Water	EPA 8260B	06/12/13 11:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00
A3F0348-07	Water	EPA 8260B	06/12/13 11:30	06/17/13 11:00	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

Notes and Definitions

Qualifiers:

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

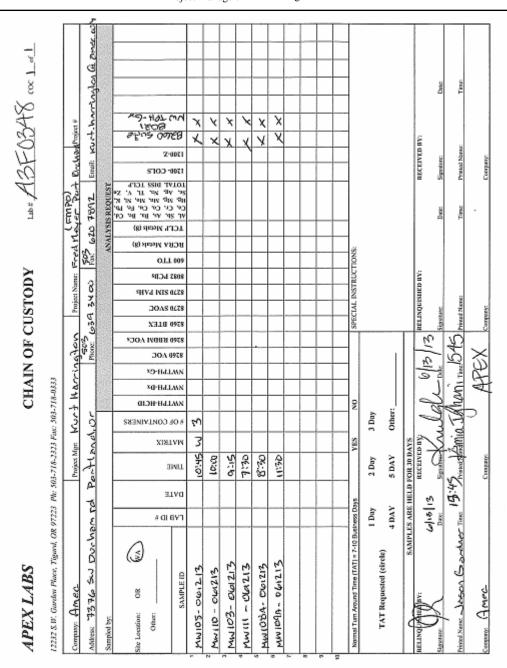
Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Amec Environment & Infrastructure, Inc Project: Fred Meyer (FMPO) Port Orchard

7376 SW Durham Road Project Number: 901M10282-0 Reported:
Portland, OR 97224 Project Manager: Kurt Harrington 08/05/13 11:28

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nemberg

APPENDIX C

Summary of Historical Analytical Results

				V	olatile Org	anic Comp	ounds		Alkylbenzenes & Naphthalene											oundwa	ter Leve	els
Well No.	Date	Gasoline- Range Organics	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	i-PB	n-PB	1,2,4- TMB	1,3,5- TMB	tertbutyl Benzene	sec-butyl Benzene	n-butyl- Benzene	4-IP- Toluene	Naph- thalene	Casing	Depth	NAPL	Water
CAS RN		not applicable	71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	107-06-2	106-93-4	98-82-8	103-65-1	95-63-6	108-67-8	98-06-6	135-98-8	104-51-8	99-87-6	91-20-3	Elev.	to	Thick-	Elev.
		(µg/L)			(μg/L)								(μg/l	L)		•			Water	ness	
MTCA Metho	od A	800	5	1,000	700	1,000	20	5	0.01	None	None	None	None	None	None	None	None	160	†			
Active Wells																						
MW-103	5/22/91	22,000	860	3,900	11	6,800	-	-	-	-	-	-	-	-	-	-	-	-	NM	NM	NM	NM
MW-103	3/25/93	^	٨	٨	٨	۸	٨	٨	٨	٨	٨	٨	۸	۸	٨	٨	٨	۸	311.70	28.04	0.00	283.66
MW-103	5/28/97	42,000	12	1,100	56	9,500	-	-	-	-	-	-	-	-	-	-	-	-	311.70	17.20	0.00	294.50
MW-103	2/18/98	48,000	22	630	350	7,800	-	-	-	-	-	-	-	-	-	-	-	-	NM	NM	NM	NM
MW-103 MW-103	8/18/99 11/2/99	^	^	^	^	^	^	^	^	^	^	^		^	^	^	^	^	311.70 311.70	20.07	0.02	291.63 290.80
MW-103	3/1/00	47,000	20 U	450	1,200	7,900	20 U	20 U	20 U	_				_	_	_	_	_	311.70	16.99	0.00	294.71
MW-103	5/24/00	3,900	1 U	18	33	594	1 U	1 U	1 U	-	-	-		-	-	-	-	-	311.70	18.13	0.00	293.57
MW-103	7/10/00	1,850	1 U	15	16		1 U		1 U	1 U	1 U	27.4	49	1 U	1 U	5.0 U	1 U	25 U	311.70	20.00	0.00	291.70
MW-103	10/19/00	1,000	1 U	17	34		1 U		1 U	1	3.5	98.9	27.8	1 U	1 U	5.0 U	1 U	38		16.15	0.00	295.55
MW-103	12/13/00	3,810	0.5 U	29	74	597	2		-	-	-	-	-	-	-	-	-	-	311.70	19.29	0.00	292.41
MW-103	3/19/01	16,600	10 U	218	528	3,750	10 U	10 U	10 U	21	58.5	1290	389	10 U	10 U	5 U	10 U	309	311.70	19.83	0.00	291.87
MW-103	6/28/01	9,660	10 U	26	126	953	40 U	-	-	-	-	-	-	-	-	-	-	-	311.70	21.03	0.00	290.67
MW-103 MW-103	9/23/01 12/11/01	23,200 21,100	10 U 10 U	109 18	628 264	3,560 1,950	40 U 40 U	10 U	10 U	40 U	35.0	1130	441	20 U	20 U	100 U	40 U	137	311.70 311.70	21.24 18.79	0.00	290.46 292.91
MW-103	3/20/02	10,700	2.5 U	10	97	1,130	10 U	2.5 U	2.5 U	10 U	19.1	948	389			25 U		83		16.32	0.00	295.38
MW-103	6/11/02	2,020	2.5 U	3	32	,	10 U	2.5 U	2.5 U	10 U	6.1	141	51.8			25 U	10 U	25		18.05	0.00	293.65
MW-103	9/25/02	5,190	1 U	2	51	65	2 U	1 U	1 U	5	12	53.8	7.43			6.2		152		20.43	0.00	291.27
MW-103	12/12/02	15,200	1 U	7	473		2 U	1 U	1 U	34	115.0	1710	495	1 U	1 U	54.2	-	163	311.70	22.55	0.00	289.15
MW-103	4/1/03	2,270	2.5 U	2.5 U	13		10 U	-	-	-	-	-	-	-	-	-	-	-	311.70	18.75	0.00	292.95
MW-103	6/22/03	15,400	5 U	5 U	252	1,060	20 U	-	-	20 U	78.4	1300	440		10 U	50 U		155		20.70	0.00	291.00
MW-103 MW-103	9/23/03	12,500 4,180	10 U 10 U	10 U 10 U	354 152	1,068 455	10 U 20 U	10 U	10 U 10 U	27 10 U	70.9 20.40	1060 288	323 87		10 U	14.8 10 U		80 28		22.17 19.56	0.00	289.53 292.14
MW-103	3/31/04	623	0.2 U	0.5 U	16		20 U	10 U 0.5 U	0.5 U	3	7.6	58.2	10.4			5 U		24		18.42	0.00	293.28
MW-103	6/29/04	17,300	3	2.5 U	243	1,133	2.5 U	2.5 U	2.5 U	25	69.4	1010	281			14.4		138		20.58	0.00	291.12
MW-103	9/29/04	9,680	2 U	5 U	276	1,010	20 U	5 U		31	88.6	1260	391		10.0 U	50.0 U		95		21.08	0.00	290.62
MW-103	11/9/04	-	2 U	5 U	310	1,020	20 U	5 U			123.0	1420	440		10.0 U	50.0 U	10.0 U	92		21.97	0.00	289.73
MW-103	3/10/05	1,570	2 U	5 U	140	612	20 U	5 U	5 U	20	U	918	266		10.0 U	50.0 U		89		21.27	0.00	290.43
MW-103*	6/21/05	6,660	1 U	2.5 U	114		10 U	2.5 U		12	31.8	474	128		5.00 U	25.0 U		58		20.74	0.00	290.96
MW-103	9/23/05	13,700	0.2 U	0.5 U	26 105		2 U	0.5 U	0.5 U	4.08	12.6	173	57.8		1.00 U	8.00 U	2.00 U	9	311.70	22.12	0.00	289.58
MW-103 MW-103	12/1/05 3/9/06	3,310 80 U	1 U 0.2 U	2.5 U 0.5 U	0.75	694 1 U	10 U 2 U	2.5 U 0.5 U	2.5 U 0.5 U	13 2 U	23.5 1.31	780 1 U	289 0.78		10.0 U 1 U	10.0 U 50 U	10.0 U 2 U	25 2 U		21.72 16.44	0.00	289.98 295.26
MW-103	6/8/06	584	0.2 U	0.5 U	8.32	22	2 U	0.5 U	0.5 U	3.64	12.5	81.3	29.0		2 U	5.78		13		17.62	0.00	294.08
MW-103	9/22/06	3,850	2 U	5 U			20 U				93.1	1150	446.0			50 U		75.3		21.54	0.00	290.16
MW-103	12/12/06	1,750	0.5 U	0.5 U	23.2	84.7	2 U			5.83	20.6	176	59.8		1 U	11 U			311.70	17.81	0.00	293.89
MW-103	3/28/07	80 U	0.2 U	0.5 U	0.5 U	1 U	2 U		0.5 U	2 U	0.5 U	1 U	0.5 U			5 U		2 U		16.58	0.00	295.12
MW-103	6/13/07	2,500	0.400 U	1.00 U	17.5	53.3	4.00 U		1.0 U	6.88	25	137	46.5		2.00 U	10.0 U		16.0		18.90	0.00	292.80
MW-103	8/28/07	264	84.1	0.500 U	0.500 U	6.6	2.00 U			2.00 U	0.50 U	1.47	0.50 U		1.00 U	5.00 U		2.00 U		19.91	0.00	291.79
MW-103 MW-103	11/28/07 4/15/08	7,130 4,020	0.200 U 0.500 U	0.500 U 2.00U	32.2 51.8	141.0 251.9		0.500 U 0.500 U	0.500 U 1.00 U	2.00 U 11.4	69 33.3	743 453	287.0 63.5		1.00 U 1.00 U	5.00 U 5.00 U		39.3 27.5		20.93	0.00	290.77 292.61
MW-103	6/19/08	10.600	0.300 U	1.00 U	91.1	371.0		0.500 U	0.500 U	20.9	81.1	783	272			1.00 U		41.3		20.51	0.00	291.19
MW-103	9/16/08	2,527	0.500 U	2.00 U	24.8	207.0	2.00 U		1.00 U	3.3	8.9	282	96		100 U	10.10		22.3		20.11	0.00	291.59
MW-103	1/24/09	202	0.250 U	1.00 U	0.620	4.36		0.500 U		0.500 U	0.500 U	8.11	3.24		10.0 U	1.00 U	1.00 U	5.00 U		19.20	0.00	292.50
MW-103	3/28/09	80 U	0.250 U	1.00 U	0.500 U	1.50 U		0.500 U	0.500 U	0.500 U		1.00 U	1.00 U			1.00 U		5.00 U		18.16	0.00	293.54
MW-103	6/11/09	100 U	0.250 U	0.500 U	0.500 U	1.50 U		0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U		2.00 U		18.61	0.00	293.09
MW-103	9/10/09	179	0.250 U	0.500 U	0.700	1.50 U		0.500 U	0.500 U	0.500 U	0.940	3.12	2.36		1.00 U	1.00 U		5.00 U		21.47	0.00	290.23
MW-103 MW-103	1/22/10 3/5/10	1,320 100 U	0.250 U 0.250 U	0.500 U 0.500 U	7.350 0.500 U	20.86 3.00 U		0.500 U 0.500 U	0.500 U 0.500 U	1.73 1.00 U	4.27 0.500 U	75.6 1.00 U	2.00 U	0.500 U 1.00 U	1.00 U 2.00 U	4.51 1.00 U		5.00 U 5.00 U		19.31 18.30	0.00	292.39 293.40
MW-103	6/10/10	403	0.250 U	0.500 U	0.500 U	0.600		0.500 U	0.500 U	1.00 U	0.500 U	15.4	1.00 U			1.00 U		2.00 U		19.44	0.00	293.40
MW-103	9/9/10	7,430	0.250 U	1.00 U	69.0			0.500 U		16.7	56.3	532	231		6.11	36.5			311.70	21.86	0.00	289.84

				V	olatile Org	anic Comp	ounds						Alkyll	penzenes &	Naphthale	ne			Gr	oundwa	ter Leve	els
Well No.	Date	Gasoline- Range Organics	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDC	EDB	i-PB	n-PB	1,2,4- TMB	1,3,5- TMB	tertbutyl Benzene	sec-butyl Benzene	n-butyl- Benzene	4-IP- Toluene	Naph- thalene	Casing	Depth	NAPL	Water
CAS RN		not applicable	71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	107-06-2	106-93-4	98-82-8	103-65-1	95-63-6	108-67-8	98-06-6	135-98-8	104-51-8	99-87-6	91-20-3	Elev.	to	Thick-	Elev.
		(µg/L)			((μg/L)								(μg/L	_)					Water	ness	
MTCA Metho	od A	800	5	1.000	700	1,000	20	5	0.01	None	None	None	None	None	None	None	None	160				
MW-103	12/6/10	4,060	2.5 U	10.0 U		77.2	10.0 U	5.00 U	5.00 U	10.0 U	8.60	261	65.3	10.0 U	10.0 U	13.0 U	10.0 U	20.0 U	311.70	20.60	0.00	291.10
MW-103	3/29/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	311.70	15.75	0.00	295.95
MW-103	6/11/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	311.70	18.06	0.00	293.64
MW-103	9/27/11	4,330	0.250 U	1.00 U		50.0	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	7.71	311.70	21.12	0.00	290.58
MW-103	12/7/11	664	0.250 U	1.00 U		6.6	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	311.70	20.05	0.00	291.65
MW-103 MW-103	1/12/12 5/10/12	100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	-	-		-	-	-	-	-	2.00 U 2.00 U	311.70 311.70	20.70	0.00	291.00 290.42
MW-103	8/8/12	2,490	0.250 U	1.00 U		27.0	1.00 U	0.500 U	0.500 U		-					_		3.04	311.70	22.61	0.00	289.09
MW-103	11/14/12	305	0.250 U	1.00 U	0.650	1.51	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	311.70	24.45	0.00	287.25
MW-103	2/11/13	311	0.125 U	0.500 U	0.450 J	1.62	0.500 U	0.250 U	0.250 U	-	•	-	-	-	•	-	-	1.00 U	311.70	18.79	0.00	292.91
MW-103	6/12/13	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	311.70	19.80	0.00	291.90
MW-105	11/2/99	۸	٨	۸	٨	٨	٨	٨	۸	٨	٨	۸	۸	٨	^	۸	۸	۸	311.99	21.07	0.00	290.92
MW-105	3/1/00	100U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	-	-	-	-	-	-	-	-	-	311.99	15.70	0.00	296.29
MW-105 MW-105	5/24/00 7/10/00	50U	1 U	1 U	1 U	2 U	1 U	1 U	1 U				_			_	_	_	311.99 311.99	17.76 18.50	0.00	294.23 293.49
MW-105	10/19/00	50U	1 U	1 U		2 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	25 U	311.99	20.60	0.00	291.39
MW-105	12/13/00	50U	0.5 U	0.5 U		1.5 U	0.5 U	-	-	-	-	-	-	-	-	-	-	-	311.99	21.15	0.00	290.84
MW-105	3/19/01	50U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	25 U	311.99	20.40	0.00	291.59
MW-105	6/28/01	99.8	0.5 U	0.5 U		1 U		-	-	-	-	-	-	-	-	-	-	-	311.99	20.26	0.00	291.73
MW-105	9/23/01	135	0.5 U	0.5 U		1 U	2 U	-	-	-	-	-	-	-	-	-	-	-	311.99	20.62	0.00	291.37
MW-105	12/11/01	80U	0.5 U	0.5 U		1 U		5 U		2 U	0.5 U	1 U			1 U		2 U	2 U		18.37	0.00	293.62
MW-105 MW-105	3/20/02 6/11/02	80U 80U	0.5 U 0.5 U	0.5 U 0.5 U		1 U		0.5 U 0.5 U	0.5 U 0.5 U	2 U 2 U	0.5 U 2 U	3 U 1 U	1 U	1 U	1 U 1 U					15.81 17.64	0.00	296.18 294.35
MW-105	9/25/02	50U	1 U	1 U		2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U					20.65	0.00	291.34
MW-105	12/12/02	50U	1 U	1 U		2 U	2 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U					21.49	0.00	290.50
MW-105	4/1/03	80U	0.5 U	0.5 U	0.5 U	1 U	2 U	,	-	-	-	-	-	-	•	-	-	-	311.99	17.93	0.00	294.06
MW-105	6/22/03	80U	0.5 U	0.5 U		1 U	2 U	-	-	2 U	0.5 U	1 U	0.5 U	1 U	1 U		-	2 U		19.80	0.00	292.19
MW-105	9/23/03	50U	1 U	1 U		3 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U			21.61	0.00	290.38
MW-105 MW-105	12/17/03 3/31/04	50U 80U	0.2 U 0.2 U	0.2 U 0.5 U		0.3 U 1 U	1 U 2 U	0.2 U 0.5 U	0.2 U 0.5 U	0.5 U 2 U	0.5 U 0.5 U	0.2 U 1 U	0.5 U 0.5 U	0.5 U 1 U	0.2 U 1 U		10 U	0.5 U		19.67 18.42	0.00	292.32 293.57
MW-105	6/29/04	50U	0.2 U	0.5 U		0.8 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.2 U		1 U 0.2 U	2 U	311.99	19.80	0.00	293.57
MW-105	9/29/04	80U	0.2 U	0.5 U		1 U	2 U	0.5 U	0.5 U	2 U	0.5 U	1 U	0.5 U	1 U	1 U		1 U	2 U		20.47	0.00	291.52
MW-105	11/9/04	-	0.2 U	0.5 U		1 U		0.5 U	0.5 U	2 U	0.5 U	1 U	0.5 U	1 U	1 U					21.14	0.00	290.85
MW-105	3/10/05	80U	0.2 U	0.5 U		1 U	2 U	0.5 U	0.5 U	2 U	2 U	1 U	0.5 U	1 U	1 U			2 U		20.35	0.00	291.64
MW-105*	6/21/05	80U	0.2 U	0.5 U		1 U	2 U	0.5 U	0.5 U	2 U	0.5 U	1 U	0.5 U	1 U	1 U		2 U	2 U	311.99	20.06	0.00	291.93
MW-105	9/23/05	80U	0.2 U	0.5 U						2 U		1 U			1 U				311.99	21.62	0.00	290.37
MW-105 MW-105	12/1/05 3/9/06	80U 80U	0.2 U 0.2 U	0.5 U 0.5 U		1 U		0.5 U 0.5 U	0.5 U 0.5 U	2 U 2 U		1 U 1 U		2 U 1 U	2 U 1 U				311.99 311.99	20.99 16.55	0.00	291.00 295.44
MW-105	6/8/06	80U	0.2 U	0.5 U		1 U	2 U	0.5 U	0.5 U	2 U	0.5 U	1 U		2 U	2 U				311.99	17.33	0.00	295.44
MW-105	9/22/06	2,340	329	412			10 U	2.5 U	2.5 U	10 U	2.5 U	5 U	6.15		5 U				311.99	20.84	0.00	291.15
MW-105	12/12/06	6,140	1,690	1,870			40 U	10 U		40 U	10 U	57.6	24.6		20 U				311.99	17.48	0.00	294.51
MW-105	3/28/07	702	161	20		35		1 U		4 U	1 U	2.48			2 U		4 U	4 U	311.99	15.55	0.00	296.44
MW-105	6/13/07	647	176	39.2						4.0 U	1.0 U	5.4			2.0 U		4.0 U		311.99	15.95	0.00	296.04
MW-105	8/28/07	4,300	1.00 U	2.50 U		159.0	10.0 U	2.50 U	2.50 U	17.2	62.9	383.0	109.0	5.00 U	5.00 U	25.0 U	10.0 U		311.99	18.74	0.00	293.25
MW-105 MW-105	11/28/07 4/15/08	99.4 80 U	45.6 2.89	0.500 U 2.00 U		4.15 1.50 U		0.500 U 0.500 U	0.500 U 0.500 U	2.00 U 0.500 U		1.00 U	0.50 U 1.00 U	1.00 U 0.500 U	1.00 U 1.00 U	5.00 U 5.00 U	2.00 U 0.500 U		311.99 311.99	19.96 18.14	0.00	292.03 293.85
MW-105	6/19/08	80 U	3.44	1.00 U		0.540		0.500 U	0.500 U	0.500 U		1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	0.500 U	5.00 U		19.61	0.00	293.65
MW-105	9/16/08	80 U	0.250 U	1.00 U		1.50 U		0.500 U	0.500 U		0.500 U	1.00 U	1.00 U	0.500 U	10.0 U		1.00 U	5.00 U		19.71	0.00	292.28
MW-105	1/24/09	80 U	0.250 U	1.00 U		1.50 U		0.500 U	0.500 U		0.500 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U		310.46	18.78	0.00	291.68
MW-105	3/28/09	80 U	0.250 U	1.00 U		1.50 U		0.500 U	0.500 U		0.500 U	1.00 U	1.00 U	0.500 U	1.00 U		1.00 U		310.46	17.17	0.00	293.29
MW-105	6/11/09	100 U	0.250 U	0.500 U		1.50 U		0.500 U	0.500 U	0.500 U		1.00 U	1.00 U	0.500 U	1.00 U		1.00 U	2.00 U		17.63	0.00	292.83
MW-105	9/10/09	80 U	0.250 U	0.500 U		1.50 U	1.00 U		0.500 U	0.500 U		1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U		21.48	0.00	288.98
MW-105	1/22/10	80 U	0.250 U	0.500 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	310.46	17.46	0.00	293.00

				V	olatile Org	anic Comp	oounds						Alkyll	penzenes &	Naphthale	ne			Gr	oundwa	ter Leve	els
Well No.	Date	Gasoline- Range Organics	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	i-PB	n-PB	1,2,4- TMB	1,3,5- TMB	tertbutyl Benzene	sec-butyl Benzene	n-butyl- Benzene	4-IP- Toluene	Naph- thalene	Casing	Depth	NAPL	Water
CAS RN		not applicable	71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	107-06-2	106-93-4	98-82-8	103-65-1	95-63-6	108-67-8	98-06-6	135-98-8	104-51-8	99-87-6	91-20-3	Elev.	to Water	Thick- ness	Elev.
		(μg/L)			((μg/L)								(μg/L	-)					water	11622	
MTCA Metho		800	5	1,000	700	1,000	20	5	0.01	None	None	None	None	None	None	None	None	160				
MW-105 MW-105	3/5/10 6/10/10	100 U 100 U	0.250 U 0.250 U	0.500 U 0.500 U	0.500 U 0.500 U	3.00 U 1.50 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	1.00 U 1.00 U	0.500 U 0.500 U	1.00 U 1.00 U	2.00 U 1.00 U	1.00 U 1.00 U	2.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	5.00 U 2.00 U	310.46 310.46	16.98 18.11	0.00	293.48 292.35
MW-105	9/9/10	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	310.46	20.62	0.00	289.84
MW-105	12/6/10	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	310.46	19.22	0.00	291.24
MW-105 MW-105	3/29/11 6/21/11	100 U 100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	-	-	-	-	-	-	-	-	2.00 U 2.00 U	310.46 310.46	14.22 16.20	0.00	296.24 294.26
MW-105	9/27/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.46	20.28	0.00	290.18
MW-105	12/7/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.46	18.51	0.00	291.95
MW-105	1/12/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.46	18.34	0.00	292.12
MW-105 MW-105	5/10/12 8/8/12	100 U 100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	-	-	-	-	-	-	-	-	2.00 U 2.00 U	310.46 310.46	16.28 19.72	0.00	294.18 290.74
MW-105	11/14/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.46	20.57	0.00	289.89
MW-105	2/11/13	50 U	0.125 U	0.500 U	0.250 U	0.750 U	0.500 U	0.250 U	0.250 U	-	-	-	-	-	-	-	-	1.00 U	310.46	16.02	0.00	294.44
MW-105 MW-108A	6/12/13 1/24/09	100 U 80 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	-	10.0 U	1.00 U	1.00 U	2.00 U 5.00 U	310.46 310.38	17.13 23.51	0.00	293.33 286.87
MW-108A	3/28/09	80 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	0.500 U	1.00 U	5.00 U	310.38	22.70	0.00	287.68
MW-108A	6/11/09	100 U	0.250 U	0.500 U		1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	2.00 U	310.38	23.42	0.00	286.96
MW-108A	9/10/09	80 U	0.250 U	0.500 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	310.38	25.52	0.00	284.86
MW-108A MW-108A	1/22/10 3/5/10	80 U 100 U	0.250 U 0.250 U	0.500 U 0.500 U	0.500 U 0.500 U	1.50 U 3.00 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	0.500 U 1.00 U	0.500 U 0.500 U	1.00 U 1.00 U	1.00 U 2.00 U	0.500 U 1.00 U	1.00 U 2.00 U	1.00 U 1.00 U	1.00 U 1.00 U	5.00 U 5.00 U	310.38 310.38	22.69 21.13	0.00	287.69 289.25
MW-108A	6/10/10	100 U	0.250 U	0.500 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	310.38	21.48	0.00	288.90
MW-108A	9/9/10	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	310.38	23.50	0.00	286.88
MW-108A MW-108A	12/6/10 3/29/11	100 U 100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U 2.00 U	310.38 310.38	23.15 17.62	0.00	287.23 292.76
MW-108A	6/21/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	_	-	-	-	-	-	-	2.00 U	310.38	19.89	0.00	290.49
MW-108A	9/27/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.38	22.95	0.00	287.43
MW-108A MW-108A	12/7/11 1/12/12	100 U 100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U 1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	-	-	-	-	-		-	-	2.00 U 2.00 U	310.38 310.38	23.05	0.00	287.33 287.21
MW-108A	5/10/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-		-	-	2.00 U	310.38	21.03	0.00	289.35
MW-108A	8/8/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.38	22.80	0.00	287.58
MW-108A	11/14/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.38	24.31	0.00	286.07
MW-108A MW-108A	2/11/13 6/12/13	50 U 100 U	0.125 U 0.250 U	0.500 U 1.00 U	0.250 U 0.500 U	0.750 U 1.50 U	0.500 U 1.00 U	0.250 U 0.500 U	0.250 U 0.500 U	-	-		-	-		-	-	1.00 U 2.00 U	310.38 310.38	19.90 21.05	0.00	290.48 289.33
MW-109	1/24/09	80 U	1.51	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	5.00 U	310.48	16.27	0.00	294.21
MW-109	3/28/09	80 U	2.02	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	0.500 U	1.00 U	5.00 U		16.13	0.00	294.35
MW-109 MW-109	6/11/09 9/10/09	100 U 80 U	27.4 0.250 U	0.500 U 0.500 U		1.50 U 1.50 U		0.500 U 0.500 U			0.500 U 0.500 U	1.00 U	1.00 U 1.00 U	0.500 U 0.500 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U		310.48 310.48	16.27 19.77	0.00	294.21 290.71
MW-109	1/22/10	80 U	0.250 U	0.500 U		1.50 U		0.500 U	0.500 U		0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U		310.48	15.25	0.00	290.71
MW-109	3/5/10	100 U	0.250 U	0.500 U	0.500 U	3.00 U	1.00 U	0.500 U	0.500 U	1.00 U	0.500 U	1.00 U	2.00 U	1.00 U	2.00 U	1.00 U	1.00 U	5.00 U	310.48	15.23	0.00	295.25
MW-109	6/10/10	100 U	0.250 U	0.500 U				0.500 U	0.500 U		0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U		16.20	0.00	294.28
MW-109 MW-109	9/9/10 12/6/10	100 U	0.250 U 1.08	1.00 U 1.00 U		1.50 U 1.50 U		0.500 U 0.500 U	0.500 U 0.500 U	1.00 U 1.00 U	0.500 U 0.500 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	2.00 U 2.00 U		18.92 16.71	0.00	291.56 293.77
MW-109	3/29/11	100 U	2.23	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-		-	-	-	-	-	-	2.00 U		13.30	0.00	297.18
MW-109	6/21/11	100 U	22.4	1.00 U		1.50 U		0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U		14.70	0.00	295.78
MW-109 MW-109	9/27/11 12/7/11	100 U 137	0.250 U 46.90	1.00 U 1.00 U		1.50 U 1.50 U		0.500 U 0.500 U	0.500 U 0.500 U	-	-	-	-	-	-	-	-	2.00 U 2.00 U		18.86 15.99	0.00	291.62 294.49
MW-109	1/12/12	100 U	40.90	1.00 U		1.50 U		0.500 U	0.500 U	-	_	-	-	-		-	-	2.00 U		15.76	0.00	294.49
MW-109	5/10/12	100 U	0.510	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.48	14.48	0.00	296.00
MW-109	8/8/12	100 U	0.250 U	1.00 U				0.500 U	0.500 U	-	-	-	-	-	-	-	-		310.48	17.91	0.00	292.57
MW-109 MW-109	11/14/12 2/11/13	100 U 62.4 J	0.250 U 26.1	1.00 U 0.500 U		1.50 U 0.750 U		0.500 U 0.250 U	0.500 U 0.250 U	-	-	-	-	-	-	-	-	1.00 U	310.48 310.48	17.98 14.19	0.00	292.50 296.29
MW-109	2/28/13	-	4.44	1.00 U		1.50 U		0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U		13.91	0.00	296.57
MW-109	6/12/13	٨	٨	٨	٨	٨	٨	٨	^	٨	٨	٨	٨	٨	٨	٨	۸	٨	310.48	18.77	0.00	291.71
MW-109A	6/12/13	100 U	6.69	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	311.71	20.51	0.00	291.20

				v	olatile Orga	anic Comp	ounds						Alkyll	benzenes 8	Naphthale	ne			Gr	oundwa	ter Leve	els
Well No.	Date	Gasoline- Range Organics	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	i-PB	n-PB	1,2,4- TMB	1,3,5- TMB	tertbutyl Benzene	sec-butyl Benzene	n-butyl- Benzene	4-IP- Toluene	Naph- thalene	Casing	Depth	NAPL	Water
CAS RN		not applicable	71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	107-06-2	106-93-4	98-82-8	103-65-1	95-63-6	108-67-8	98-06-6	135-98-8	104-51-8	99-87-6	91-20-3	Elev.	to	Thick-	Elev.
		(μg/L)			(μg/L)								(μg/l	L)					Water	ness	
MTCA Metho		800	5	1,000	700	1,000	20	5	0.01	None	None	None	None	None	None	None	None	160				
MW-110	1/24/09 3/28/09	10,900 162	2.50 U 0.250 U	10.0 U	251 1.26	938 4.57	10.0 U		5.00 U	22.4 0.500 U	84.1 0.500 U	246 1.25	193 1.21	0.500 U	1.00 U	26.1 1.00 U		50.0 U 5.00 U	312.77	19.53	0.00	293.24
MW-110 MW-110	6/11/09	100 U	0.250 U	1.00 U 0.500 U	0.500 U	1.50 U	1.00 U		0.500 U 0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U 1.00 U	1.00 U	1.00 U 1.00 U	2.00 U	312.77 312.77	16.44 NA	0.00	296.33 NA
MW-110	9/10/09	80 U	0.250 U	0.500 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	312.77	22.60	0.00	290.17
MW-110	1/22/10	687	0.250 U	0.500 U	1.04	2.34	1.00 U		0.500 U	0.500 U	0.950	4.79	6.59		1.00 U	1.00 U	1.00 U	5.00 U	312.77	19.76	0.00	293.01
MW-110 MW-110	3/5/10 6/10/10	100 U	0.250 U 0.250 U	0.500 U 0.500 U	0.500 U 0.500 U	3.00 U 1.50 U	1.00 U		0.500 U 0.500 U	1.00 U 1.00 U	0.500 U 0.500 U	1.13 1.00 U	2.00 U	1.00 U 1.00 U	2.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	5.00 U 2.00 U	312.77 312.77	18.56 19.94	0.00	294.21 292.83
MW-110	9/9/10	1,880	0.250 U	1.00 U	30.3	32.7	1.00 U		0.500 U	6.39	19.9	57.0	37.3	1.00 U	3.20	9.07		7.40	312.77	22.30	0.00	290.47
MW-110	12/6/10	371	0.250 U	1.00 U	2.36	7.72	1.00 U	0.500 U	0.500 U	1.00 U	0.500 U	5.00	3.50	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	312.77	20.63	0.00	292.14
MW-110	3/29/11	442	0.250 U	1.00 U	2.14	4.82	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	312.77	17.33	0.00	295.44
MW-110 MW-110	6/21/11 9/27/11	100 U 4.020	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 30.6	1.50 U 103	1.00 U		0.500 U 0.500 U	-	-	-	-	-	-	-	-	2.00 U 8.17	312.77 312.77	19.52 21.86	0.00	293.25 290.91
MW-110	12/7/11	1,230	0.250 U	1.00 U	40.0	40.3	1.00 U		0.500 U	-	-	-	-	-	-	-	-	7.28	312.77	20.23	0.00	292.54
MW-110	1/12/12	100 U	0.250 U	1.00 U	0.500 U	2.6	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	312.77	20.22	0.00	292.55
MW-110	5/10/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	312.77	20.63	0.00	292.14
MW-110 MW-110	8/8/12 11/14/12	1,630 100 U	0.250 U 0.250 U	1.00 U 1.00 U	3.21 0.500 U	8.45 1.50 U	1.00 U		0.500 U 0.500 U	-	-	-		-	-	-	-	3.41 2.00 U	312.77 312.77	21.50 25.07	0.00	291.27 287.70
MW-110	2/11/13	50 U	0.250 U	0.500 U	0.250 U	0.750 U	0.500 U		0.250 U	-	-	-	-	-	-	-	-	1.00 U	312.77	18.23	0.00	294.54
MW-110	6/12/13	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	312.77	17.43	0.00	295.34
MW-111	1/24/09	80 U	0.250 U	1.00 U	0.500 U	1.50 U		0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	310.62	32.25	0.00	278.37
MW-111 MW-111	3/28/09 6/11/09	80 U 100 U	0.250 U 0.250 U	1.00 U 0.500 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	0.500 U 0.500 U	0.500 U 0.500 U	1.00 U 1.00 U	1.00 U 1.00 U	0.500 U 0.500 U	1.00 U 1.00 U	0.500 U 1.00 U	1.00 U 1.00 U	5.00 U 2.00 U	310.62 310.62	32.04 31.44	0.00	278.58 279.18
MW-111	9/10/09	80 U	0.250 U	0.500 U	0.500 U	1.50 U		0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	310.62	32.02	0.00	278.60
MW-111	1/22/10	80 U	0.250 U	0.500 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	310.62	31.52	0.00	279.10
MW-111	3/5/10	100 U	0.250 U	0.500 U	0.500 U	1.50 U	1.00 U		0.500 U	1.00 U	0.500 U	1.00 U	2.00 U	1.00 U	2.00 U	1.00 U	1.00 U	5.00 U	310.62	29.76	0.00	280.86
MW-111 MW-111	6/10/10 9/9/10	100 U 100 U	0.250 U 0.250 U	0.500 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	1.00 U	0.500 U 0.500 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	2.00 U 2.00 U	310.62 310.62	28.85 30.19	0.00	281.77 280.43
MW-111	12/6/10	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	310.62	31.02	0.00	279.60
MW-111	3/29/11	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.62	26.71	0.00	283.91
MW-111 MW-111	6/21/11 9/27/11	100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U	1.00 U	0.500 U 0.500 U	0.500 U 0.500 U	-	-	-	-	-	-	-	-	2.00 U 2.00 U	310.62 310.62	27.31 29.73	0.00	283.31 280.89
MW-111	12/7/11	100 U	0.250 0	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.62	30.77	0.00	279.85
MW-111	1/12/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U		0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.62	30.97	0.00	279.65
MW-111	5/10/12	100 U	0.250 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.62	28.90	0.00	281.72
MW-111 MW-111	5/10/12 11/14/12	100 U 100 U	0.250 U 0.250 U	1.00 U 1.00 U	0.500 U 0.500 U	1.50 U 1.50 U		0.500 U 0.500 U	0.500 U 0.500 U	-	-	-		-	-	-	-	2.00 U	310.62 310.62	29.90 31.21	0.00	280.72 279.41
MW-111	2/11/13	50 U	0.230 U	0.500 U	0.250 U	0.750 U		0.250 U			-	-	-	-	-	-	-	1.00 U		28.20	0.00	282.42
MW-111	6/12/13	100 U	0.250 U	1.00 U	0.500 U	1.50 U			0.500 U	-	-	-	-	-	-	-	-	2.00 U	310.62	29.05	0.00	281.57
Air Sparging \	Wells																					
AS-5	9/16/08	80 U	0.205 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	1.00 U	5.00 U	NA	20.25	0.00	NA
AS-9	9/16/08	80 U	0.205 U	1.00 U	0.500 U	1.50 U		0.500 U				1.00 U	1.00 U				1.00 U	5.00 U		24.77	0.00	NA
AS-10	9/16/08	0.0800 U	0.205 U	1.00 U	0.500 U	1.50 U	1.00 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	1.00 U	0.500 U	10.0 U	1.00 U	1.00 U	5.00 U	NA	23.46	0.00	NA
Destroyed We	lls																					
MW-104	05/22/91	1,000	1.0 U	20 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-104	03/25/93	250 U	5.0 U	5.0 U	5.0 U	15 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-104	05/28/97	250 U	1.0 U	1.0 U	1.0 U	3.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-104	02/18/98	120	2.6	1.0	0.88	1.0	-	-	-	-	- A b a w - l - :	- A	1000	-	-	-	-	-	-	-	-	
MW-104 MW-106	8/1999 11/2/99	٨	۸	٨	۸	٨١	۸		^	Λ.	Abandone	eu August	1999	Λ	Λ	٨	Λ	Λ	311.73	24.95	0.00	286.78
MW-106	3/1/00	100 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	-	311.73	20.88	0.00	290.85
MW-106	5/24/00	^	^	^	^	^	^	^	^	Λ	^	^	^	٨	٨	٨	٨	^	311.73	25.93	0.00	285.80
MW-106	7/10/00	50 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	-	311.73	27.00	0.00	284.73
MW-106	10/19/00	50 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	25 U	311.73	25.63	0.00	286.10

	Date	Gasoline- Range Organics not applicable	Volatile Organic Compounds							Alkylbenzenes & Naphthalene									Groundwater Levels			
Well No.			Benzene 71-43-2	Toluene 108-88-3	Ethyl- benzene	Total Xylenes	MTBE 1634-04-4	EDC	EDB	i-PB 98-82-8	n-PB	1,2,4- TMB 95-63-6	1,3,5- TMB 108-67-8	tertbutyl Benzene	sec-butyl Benzene	n-butyl- Benzene	4-IP- Toluene	Naph- thalene	Casing Elev.	Depth		Water Elev.
																		91-20-3		to	Thick-	
		(µg/L)		•				(µg/L)									Licv.	Water	ness			
MTCA Method A		800	5	1,000	700	1,000	20	5	0.01	None	None	None	None	None	None	None	None	160	İ			
MW-106	12/13/00	50 U	0.5 U	0.5 U	0.5 U	1.5 U	0.5 U	-	-	-	-	-	-	-	-	-	-	-	311.73	26.30	0.00	285.43
MW-106	3/19/01	۸	^	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	^	٨	٨	311.73	Dry	Dry	Dry
MW-106	6/28/01		Well destroyed during roadway paving activities																			
MW-107	11/2/99	۸	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	٨	^	٨	٨	310.59	23.61	0.00	286.98
MW-107	3/1/00	100 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	-	310.59	19.46	0.00	291.13
MW-107	5/24/00	^	۸	۸	٨	۸	٨	۸	٨	٨	٨	۸	٨	٨	٨	۸	^	٨	310.59	23.54	0.00	287.05
MW-107	7/10/00	50 U		1.0 U			1.0 U	1.0 U	1.0 U	-	-	-	-	-	-	-	-	-	310.59	24.79	0.00	285.80
MW-107	10/19/00	50 U	1.0 U	1.0 U			1.0 U	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	25 U	310.59	23.87	0.00	286.72
MW-107	12/13/00	50 U	0.5 U	0.5 U	0.5 U	1.5 U	0.5 U	-	-	-	-	-	-	-	-	-	-	-	310.59	24.50	0.00	286.09
MW-107	3/19/01	^	۸	۸	۸	^	٨	۸	^	^	^	^	^	^	٨	^	^	٨	310.59	26.67	0.00	283.92
MW-107	6/28/01									Well destr	byed during	g roadway	paving a	ctivities				1	•	1	•	
MW-108	11/2/99	۸	۸	٨	۸	٨	٨	٨	٨	٨	٨	۸	۸	۸	۸	^	۸	۸	309.94	22.96	0.00	286.98
MW-108	3/1/00	100 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-	-	-		-	-	-	_	-	309.94	18.55	0.00	291.39
MW-108	5/24/00	^	^	^	^	^	۸ م ۱ م	^	۸ م ۱ م	٨	٨	^	^	^	٨	^	۸	٨	309.94	22.72	0.00	287.22
MW-108	7/10/00	50 U	1.0 U	1.0 U			1.0 U	1.0 U	1.0 U	4.11	- 4.11		4.11	-	-	-	- 2.11	- 05.11	309.94	24.48	0.00	285.46
MW-108	10/19/00	50 U	1.0 U	1.0 U		2.0 U	1.0 U	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	25 U	309.94	20.46	0.00	289.48
MW-108	12/13/00	50 U	0.5 U	0.5 U	0.5 U		0.5 U	1.011	1011	4.11	4.11	- 1 U	4.11	- 1 U	- 4.11	5 U	111	05.11	309.94	23.47	0.00	286.47
MW-108 MW-108	3/19/01 6/28/01	50 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	Well destre	I U	. 0	1 U	. 0	l I U	5 0	ΙU	25 U	309.94	25.43	0.00	284.51

Notes:

MTCA Method A: Washington Department of Ecology Model Toxics Control Act Method A screening criteria

MAPL: non-aqueous phase liquid
MTBE: methyl tert-butyl ether
EDC: 1,2-dichloroethane
EDB: 1,2-dibromoethane
i-PB: isopropylbenzene
n-PB: n-propylbenzene

TMB: trimethylbenzene
* Corrected field label error for switched MW-103 and MW-105 samples

4-IP-Toulene: 4-isopropyltoluene

μg/L: micrograms per liter

Bold values indicate concentrations detected above aboratory reporting limit (MRL)

NM: not measured

-: The analyte was not tested for by this method

^: not sampled

U: The analyte was not detected above the MRL or method dectection limit (MDL) presented

J: The analyte detected was at a concentration greater than or equal to the the MDL, but less than the MRL. The concentration is an approximate value

Red values indicate the concentration exceeds the MTCA Method A cleanup level

MW-105 resurveyed on January 24, 2009 following repairs. Top of casing elevation previously 311.99 feet, now 310.46 feet.