

Interim Site Characterization
On-Site and Adjacent Properties
New City Cleaners
747 Stevens Drive
Richland, Washington

October 30, 2008 027-30139-00

Presented to

Washington Department of Ecology 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902

Prepared for

Landye Bennett Blumstein LLP 3500 Wells Fargo Center 1300 SW Fifth Avenue Portland, Oregon 97201

Prepared by

LFR Inc. 2310 North Molter Road, Suite 101 Liberty Lake, Washington 99019

RECEIVED

MAR 20 2009

DEPARTMENT OF ECOLOGY - CENTRAL REGIONAL OFFICE

CONTENTS

1.0	INTROD	UCTION1
	1.1 Pur	pose of Investigation1
	1.2 Pro	ject Objectives1
	1.3 Rep	ort Organization3
2.0	DACKCE	20UND
2.0		ROUND
		Description
		ef Site History4
	2.3 Pric	or Supplemental Investigation6
3.0	ADJACE	NT PROPERTY INVESTIGATION6
	3.1	Monitoring Well Installation
	3.2	Grab Groundwater Samples8
	3.3	Soil Sampling Program8
	3.4	Monitoring Well Development
	3.5 Inve	estigation Derived Wastes
4 N	EIEI D A	CTIVITIES 10
4.0		acent Property Groundwater Monitoring
		Groundwater Monitoring
	4.2 mve	estigation Derived Wastes
5.0	HYDRO	GEOLOGIC CHARACTERISTICS
	5.1 Aqu	ifer Framework12
	5.2 Hyd	Iraulic Gradient and Groundwater Flow Direction
	5.3 Hyd	Iraulic Conductivity
	5.4 Gro	undwater Velocity
6.0	ANALYT	TCAL RESULTS
		ection of Cleanup Standards
		acent Property Soil and Groundwater Sample Results
	Net Common Towns (1986)	Soil Boring Samples 16

	6.2.2	August 2008 Groundwater Monitoring Event	17
	6.3 On-S	ite Groundwater Sample Results	18
	6.3.1	November 2007 Groundwater Monitoring Event	18
	6.3.2	August 2008 Groundwater Monitoring Event	19
	6.4 Discu	ssion of Results	20
	6.4.1	Adjacent Properties – August 2008	20
	6.4.2	On-Site – August 2008	21
7.0	SUMMAR	Y AND CONCLUSIONS	22
8.0	LIMITATI	ONS	23
9.0	REFEREN	CES	24

TABLES

- 1 Adjacent Property Monitoring Well and Groundwater Elevation Data
- 2 Site Monitoring Well and Groundwater Elevation Data
- 3 Adjacent Property Soil Analytical Results Low Level VOC Analyses
- 4 Adjacent Property Groundwater Analytical Results VOC Analyses
- 5 Site Groundwater Analytical Results VOC Analyses

FIGURES

- 1 Site Vicinity Map
- 2 Investigation Area and Monitoring Well Plan
- 3 Groundwater Potentiometric Surface for Upper Silt Unit (August 2008)
- 4 Groundwater Potentiometric Surface for Gravelly Sand Unit (August 2008)
- 5 PCE Groundwater Concentrations (August 2008)
- 6 TCE Groundwater Concentrations (August 2008)
- 7 Generalized Geologic Cross-Section with Conceptual PCE and TCE Groundwater Profile

APPENDICES

- A Site Photographs
- B LFR Lithologic Logs
- C Boundary and Monitoring Well Survey
- D Slug/Bail Aquifer Tests
- E Adjacent Properties Analytical Reports
- F On-Site Analytical Reports

CERTIFICATION

All geologic and contaminant characterization information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an LFR Geologist licensed in Washington State.

October 30, 2008

Jeffrey E. Leppo

Date

Principal Geologist Washington Licensed Geologist No. 1406

effy ? Jappos

1.0 INTRODUCTION

The following Interim Site Characterization (ISC) for On-Site and Adjacent Properties (ISC) report has been prepared by LFR Inc. (LFR) on behalf of Landye Bennett Blumstein LLP for the New City Cleaners (NCC) located at 747 Stevens Drive, Richland, Washington ("the Site"). The area of concern for the ISC includes both the New City Cleaners property, and adjacent properties to the west, south and east (collectively identified as "the Investigative Area").

1.1 Purpose of Investigation

The prior Supplemental Soil and Groundwater Investigation (LFR, October 2007) provided a review of field activities, data assessment, and findings for soil and groundwater contaminant conditions within the New City Cleaners (the Site") boundaries. The first groundwater monitoring events following installation of the five new on-Site well clusters identified the presence of dry cleaning solvent compounds, including tetrachloroethylene (PCE), trichloroethylene (TCE), and other volatile organic compounds (VOCs) in Site groundwater.

The October 2007 Supplemental Soil and Groundwater Investigation findings indicated the potential for off-site migration of dissolved contaminants of concern (COCs) to adjoining and nearby properties. It has been determined by the stakeholders and with the knowledge of the Washington Department of Ecology (Ecology), that an adjacent property soil and groundwater investigation was necessary to provide further characterization of the nature and extent of the dissolved COCs beyond the Site's property boundaries.

The objective of this adjacent properties investigation is to assess the groundwater quality for potential off-Site contaminant fate and transport related to NCC releases of dry cleaning facility COCs, and to combine the additional data with the on-Site information for this ISC report presentation.

1.2 Project Objectives

The individual project objectives and tasks of the investigation for potential off-site fate and transport of NCC releases of COCs to adjacent properties include the following:

- Installation of 4 monitoring well clusters with two different well depth and screen completions. Soil borings and groundwater monitoring wells were completed using drilling methods acceptable to Ecology and in compliance with the regulation Minimum Standards for the Construction and Maintenance of Wells (Chapter 173-260 WAC) to limit potential cross-contamination between the Upper Silt and Gravelly Sand Units.
- Installation of three down-gradient monitoring well clusters completed with two different well depth and screen completions, as follows:

- Intermediate monitoring well screened within the upper portion of the Gravelly Sand Unit to an approximate depth ranging from 25 to 37 ft (ft) below ground surface (bgs); and
- O Deep monitoring well screened within the lower portion of the Gravelly Sand Unit, with well bottom completion into the approximate upper 6 inches (in) to 1 ft of the underlying lower clayey silt confining layer, to an approximate depth ranging from 46 to 58 ft bgs.
- Installation of one upgradient monitoring well cluster with three different well depth and screen completions using the same drilling methods described above to limit cross-contamination:
 - Shallow monitoring well screened within the Upper Silt Unit to an approximate depth of 14 ft bgs;
 - Intermediate monitoring well screened within the upper portion of the Gravelly Sand Unit to an approximate depth of 25 ft bgs; and
 - Deep monitoring well screened within the lower portion of the Gravelly Sand Unit, to an approximate depth of 445 ft bgs and the underlying silt/clay confining layer.
- The adjacent property monitoring well clusters were located according to the following proposed outline:
 - MW-10 Cluster with an intermediate and deep monitoring well located south
 of the Site on the adjacent Richland School District property, within the
 maintenance facility parking area. To be used in collecting down-gradient
 groundwater and soil data;
 - MW-11 Cluster with a shallow, intermediate, and deep monitoring well located west of the Site on the adjacent Richland School District high school property (west of the storm water swale). To be used for upgradient groundwater and soil data (i.e., background) and assessment of the ball field irrigation well influence (as applicable);
 - MW-12 Cluster with an intermediate and deep monitoring well located approximately 300 ft southwest of the Site on the adjacent Richland School District maintenance facility, adjacent to the fenced outdoor storage area. To be used in collecting side-gradient groundwater and soil data and assessment of the Wellsian Way well field influence (as applicable);
 - MW-13 Cluster with an intermediate and deep monitoring well located east of the Site across Stevens Drive on the SuperValu/Albertson's lease property. To be used in the collection of down-gradient groundwater and soil data;
 - MW-14 Cluster with an intermediate and deep monitoring well located east of the Site across Stevens Drive on SuperValu/Albertson's lease property. To be used in the collection of down-gradient groundwater and soil data.
- Collect basic hydrogeological, physical setting information, and analytical laboratory program for interpretation of the combined Investigative Area for

- compliance with Ecology's Model Toxics Control Act (MTCA) requirements for reporting on the nature and extent of the investigated COCs.
- Prepare a combined Investigative Area ISC report that includes soil and groundwater data analysis and assessment for the adjacent properties, and correlate soil and groundwater data from the recent on-Site Supplemental Investigation (October 2007).

1.3 Report Organization

This report is organized in the following manner:

- Section 1 Introduction contains the purpose and objectives of the ISC.
- **Section 2 Background** includes a site description, site history, overview of the Site's ownership, and summarizes previous investigations.
- Section 3 Adjacent Property Site Investigation describes the methods used for field investigations completed on the adjacent properties, including subsurface soil sampling; sample labeling, shipping, and custody; well installation, development, and sampling; surveying; decontamination; and investigation derived waste (IDW) management.
- Section 4 Field Activities describes the methods used for field investigations completed in the Investigative Area, including monitoring well development and sampling; decontamination; and investigation derived waste (IDW) management.
- Section 5 Hydrogeologic Characteristics describes the surface topography, site geology, and site hydrogeology based on the information collected during the ISC.
- Section 6 Analytical Results presents the laboratory results for both adjacent property soil and on-Site and adjacent property groundwater samples, and provides a discussion as they relate to the investigative area's regulatory compliance for the investigated COCs.
- Section 7 Summary and Conclusions contains a review of the Investigative Area contaminant distribution and hydrogeologic conditions.

2.0 BACKGROUND

2.1 Site Description

The Site is located at 747 Stevens Drive in Richland, Washington (Figure 1), and consists of a 0.5-acre parcel of land including a one-level cinder block structure used as a dry cleaning business. The legal description for the Site is "Lot 18, Block 600, Plat of Richland, Benton County, Washington." A Site Vicinity Map is provided as Figure 1.

The Site is bordered on the east by Stevens Drive, on the north by a vacant lot, and on the south by a vehicle maintenance facility operated by the Richland School District. A relic railroad spur property, identified as the Hanford Works Railroad, was located along the Site's former west property line. A recently enlarged storm water swale is located west of the relic spur. Surface water, when present, in the storm water swale flows north and ultimately discharges into the Columbia River approximately 1 mile from the Site. A parking lot and baseball field associated with Carmichael Junior High School and Columbia High School are located west of the canal. Across Stevens Drive, east of the Site, is a retail shopping center (Albertsons) and mini-mart/service station. The Site currently is zoned for "General Business" use, and is designated "C3." The local area and property boundaries are displayed in Figure 2.

The Site is relatively flat, with an elevation of approximately 360 ft above mean sea level (amsl). Asphalt pavement exists south of the Site's building, east of a fence that is situated approximately perpendicular to the building. The asphalt pavement also extends east from the Site's building to the property line. Water service is provided via buried piping along the north side of the main building. Sanitary sewer and natural gas service is provided via buried piping from Stevens Drive to the southeastern corner of the main building. Storm sewer service is provided via buried piping along the eastern border of the Site, parallel to Stevens Drive. No dry wells were observed at the Site.

The Investigative Area for this ISC includes the New City Cleaners property, along with the Richland School District (RSD) properties to the south and west, and the Albertson's (SuperValu) property to the east across Stevens Drive. The Investigative Area and monitoring well plan is provided as Figure 2.

2.2 Brief Site History

A detailed site history is presented in the "Site History Report" prepared by EMCON April 23, 1997 (EMCON 1997), and the "Remedial Investigation Report" (RI Report) prepared by EMCON June 10, 1999 (EMCON 1999a). The site history presented in these reports is summarized below.

The Site was developed sometime between 1948 and 1952. Based on information provided by Ecology to EMCON, the Site was listed in the 1952/1953 edition of the Polk City Directory. Based on discussions between EMCON and Hanford site historian Mary Kay Campbell of Mack Tech Co. in June 1996 (EMCON 1999a), the facility was constructed as part of the Hanford Works project and was noted in the records as a "cleaner". The earliest records at the city of Richland available for the Site were dated April 1957; however, no building permit was available of the initial site development.

Historical uses of the property to the north of the Site included a theater, coin shop, bookstore, and carpet store. Historical use of the property to the south of the Site since 1953 has included four auto dealership and service facilities, a tile company, and a vehicle maintenance facility for the Richland School District. Historical use of the property to the west has been the baseball field and parking for the high school;

property to the east was formerly utilized as barracks as part of the Hanford Works Project.

As discussed in the Compliance Monitoring Plan ("the CMP"), dated May 25, 1999, and prepared by EMCON, dry cleaning operations began at the time of site development (approximately 1950) and continue to date. The dry cleaning process at the Site used Stoddard solvent, a petroleum-based fluid, as the primary cleaning agent until 1974, when an additional process using tetrachloroethene (PCE) was introduced. The Stoddard solvent was stored in two 1,200-gallon underground storage tanks (USTs) located near the southwestern corner of the site structure. The PCE was delivered and stored in drums located outside the building, on a rack near the southwestern corner of the property, along the southern fence line. The drum rack was moved inside the facility in early 1975, following the release of an unknown quantity of PCE to the ground.

The two 1,200-gallon Stoddard solvent USTs were removed from the Site on April 21, 1992. In addition, one 10,000-gallon UST, reportedly containing Bunker C fuel, and one 500-gallon UST, reportedly containing unknown substances (presumably kerosene), were removed in April 1992. Soil and groundwater samples were collected from the UST excavations and other locations. The following hazardous substances were identified in soil and groundwater beneath the Site during the UST removal activities: PCE; trichloroethene (TCE); 1,2-dichloroethene; 1,2-dichloroethane; benzene, toluene, ethylbenzene, and total xylenes (BTEX); and gasoline-, diesel-, and oil-range petroleum hydrocarbons (TPHg, TPHd, and TPHmo, respectively). Additional site history information is presented in EMCON's "Site History Report," dated April 23, 1997.

In 1997, EMCON performed additional site characterization activities to further define the nature and extent of soil and groundwater contamination beneath the Site. The results of the site characterization were summarized in EMCON's "Remedial Investigation Report," dated June 10, 1999 ("the RI Report"). Results of groundwater monitoring activities conducted in 1997 indicate that groundwater beneath the Site was affected with PCE and TCE at levels exceeding the Method A groundwater cleanup standards listed in WAC 173-340 of the Washington State MTCA.

Based on the findings of the site characterization, an Interim Cleanup Action Plan (ICAP) was prepared by EMCON in 1999. The ICAP was implemented between February and August 2000 and included removal of overlying structures (wood storage sheds, landscaping, fences, and asphalt); excavation of approximately 5,000 tons of contaminated soil; backfilling and compacting of the remedial excavation with clean fill; off-site landfill disposal of soils below the treatability standard; and on-site treatment using a permitted cell for soils with PCE concentrations above the 60 milligrams per kilogram (mg/kg) treatability standard - which could not be landfill disposed. Excavation and off-site soil disposal were performed in two phases between February and June 2000. The findings of this interim cleanup action were summarized in GeoEngineers' entitled "Report of Interim Cleanup Action, Tetrachloroethylene and Petroleum Contaminated Soil, New City Cleaners, Richland, Washington," dated June 26, 2001.

2.3 Prior Supplemental Investigation

The October 2007 Supplemental Soil and Groundwater Investigation provided on-Site soil and groundwater contaminant characterization data for the presence of PCE, TCE, and other VOCs. Figure 6 within the October 2007 LFR report provides a plan view of the soil borings, monitoring wells, and monitoring well abandonment completed during the on-Site field activities.

The investigation found COCs in soils beneath the building to a limited extent, but that COCs did not appear to be migrating along utility conduits outside of the building. Monitoring wells previously installed and completed in portions of both the Upper Silt Unit and the underlying Gravelly Sand Unit were replaced with monitoring wells discretely screened in each of these units. Further, the investigation confirmed the presence of a silty clay confining layer beneath the Gravelly Sand Unit.

Analytical results from the groundwater sampling event conducted on June 21, 2007 indicated that concentrations of PCE were detected in exceedance of the MTCA cleanup level from groundwater samples collected from the shallow screened wells located west, southwest, east and northeast of the Site's building. TCE was detected in exceedance of the MTCA cleanup level in the groundwater sample collected from the shallow screened well located southwest and east of the Site's building. In addition PCE, TCE, and vinyl chloride were detected above the MTCA cleanup levels in groundwater samples collected from the intermediate screened well located east of the Site's building.

While chloroform was detected in exceedance of the MTCA cleanup level in the groundwater samples collected from the shallow screened wells located south and east of the Site's building, this compound is likely detected as a result of laboratory contamination or the use of chlorinated irrigation water, as it is not related to dry cleaning processes.

COCs were not detected above MTCA cleanup levels in groundwater samples collected from the deep wells completed in the lower portion of the Gravelly Sand Unit.

The highest PCE and TCE concentrations were detected in the downgradient intermediate well MW-7I. The distribution of PCE and TCE concentrations detected in monitoring wells combined with the potentiometric surfaces for both the Upper Silt Unit and the Gravelly Sand Unit indicate COCs have migrated laterally in the Upper Silt Unit throughout the southeastern portion of the Site. Further, COCs have migrated downwards into the Gravelly Sand Unit in the southeastern portion of the Site.

3.0 ADJACENT PROPERTY INVESTIGATION

Four tasks were completed during the ISC conducted in April and May 2008. These tasks included 1) installation of eleven new monitoring wells on the three adjacent properties, 2) collection of selective soil samples during the adjacent property

monitoring well installations, 3) groundwater monitoring of the 22 Investigative Area monitoring wells, and 4) management of investigation derived wastes (IDW). Photographs documenting the field activities are included in Appendix A.

Eleven soil borings were advanced in April 2008 on the adjacent properties by Environmental West Exploration, Inc. (EWE) of Spokane, Washington using the Sonic drilling method. LFR personnel provided the oversight and documentation of the drilling and sampling program, performed geologic logging, and conducted soil sampling.

Field and sampling protocols were conducted based on procedures outlined in American Society for Testing and Materials (ASTM) standards D2488-93 *Practice for Description and Identification of Soils (Visual-Manual Procedure)*, D4220-95 *Practices for Preserving and Transporting Soil Samples*, and D4700-91 *Guide for Soil Sampling from the Vadose Zone*.

3.1 Monitoring Well Installation

LFR subcontracted EWE to install eleven monitoring wells in accordance with Chapter 173-160 WAC, "Minimum Standards for Construction and Maintenance of Wells." The eleven monitoring wells consisted of five well clusters which were installed using a Sonic Drill Rig between April 8 and 15, 2008. Each well cluster was designated with an "S" representing a shallow screen installed in the Upper Silt Unit, an "I" representing an intermediate screen installed in the upper portion of the Gravelly Sand Unit, just below the Upper Silt Unit, or designated with a "D" representing a deeper screen installed in the lower portion of the Gravelly Sand Unit.

Four of the two-well well clusters (MW-10I/MW-10D, MW-12I/MW-12D, MW-13I/MW-13D, and MW-14I/MW-14D) were installed on the western and southern adjacent RSD and eastern adjacent Albertson's properties. A fifth three-well cluster (MW-11S/MW-11I/MW-11D) was installed west of the Site and the recently widened storm water swale to provide additional monitoring upgradient from the existing site building. At the fifth location, a shallow monitoring well (MW-11S) was installed and completed in the lower portion of the Upper Silt Unit. The locations of each well cluster are shown on Figure 2.

To install each of the deep groundwater monitoring wells, a 6 5/8-inch-diameter borehole was first drilled to the approximate base of the Upper Silt Unit to collect soil samples. In order to limit the potential for cross contamination from shallower soil and groundwater to the deeper groundwater during drilling, an 8 5/8-inch-diameter steel casing was used to over-drill the 6 5/8-inch-diameter borehole to the approximate depth at the base of the Upper Silt Unit. Once the Upper Silt Unit was sealed with the 8 5/8-inch casing, the borings were then further advanced to the base of the Gravelly Sand Unit into the underlying silty clay using a 6 5/8-inch-diameter casing to depths ranging from 46 to 58 ft bgs.

For each of the well clusters, the deep monitoring well was installed first. The intermediate monitoring wells, MW10I through MW14I, were advanced within a 10-foot radius of the deeper monitoring wells in the Gravelly Sand Unit. The intermediate wells were advanced in the upper portion of the Gravelly Sand Unit, just below the Upper Silt Unit.

After the desired depth of each borehole was reached, a 2-inch-diameter schedule 40 polyvinyl chloride (PVC) casing with a 0.020-inch slotted screen was installed in each borehole. Deep well screens were 10 ft long and were set with the base of the screen generally at the contact of the Gravelly Sand Unit and the underlying silty clay unit. The intermediate screens were 5 ft long and set in the upper portion of the Gravelly Sand Unit, just below the Upper Silt Unit. The one shallow well screen was 5 ft long and set in the lower portion of the Upper Silt Unit within 1 to 2 ft of the contact with the underlying Gravelly Sand Unit.

The annular space between the well screen and the formation was filled with No. 10/20 silica sand to a depth of approximately 2 ft above the screened interval. Hydrated bentonite pellets were placed above the sand pack to form a coherent seal to approximately 1.5 ft bgs. A locking well cap was placed on top of the well casing, and each well was completed using a traffic-rated, flush-mounted well cover. The attached Table 1 provides information on the adjacent property well construction and groundwater elevation data. The lithologic logs for the eleven adjacent property monitoring wells are provided Appendix B.

3.2 Grab Groundwater Samples

Prior to further advancing each boring through the Upper Silt Unit into the underlying Gravelly Sand Unit, LFR made reasonable efforts to collect a grab water quality sample from the Upper Silt Unit. Once a temporary well casing and screen were advanced to the base of the Upper Silt Unit LFR attempted to use a peristaltic pump and disposable bailer to collect a water sample from each borehole. However, due to the low permeability of the Upper Silt formation LFR was unable to collect a grab groundwater sample within a reasonable groundwater recovery period.

3.3 Soil Sampling Program

For each of the eleven soil borings soil cores were collected in an acetate liner as part of the continuous core sample process for maximum preservation of entrained VOCs. Selective soil samples were collected from each of the deep screened adjacent property wells during drilling (MW10 through MW14). A photo-ionization detector (PID) was used to screen the samples for VOCs.

Two soil samples were collected from each of the deep soil boring locations MW10, MW12, MW13, and MW14 and three soil samples were collected from the deep soil boring MW11. The depth of the soil samples ranged from 11.8 to 44.3 ft bgs. Additionally, two duplicate soil samples were collected for quality control purposes from soil boring MW10D (at a depth of 13 ft bgs) and MW14D (at a depth of 11.8 ft

bgs). In addition, one trip blank sample (TRIP) supplied by Test America, was submitted for analysis along with the soil samples. Collected soil samples were placed in pre-prepared EPA Method 5035A laboratory sampling kits which consisted of: two volatile organic aromatic (VOA) vials each containing a stir bar; one VOA vial preserved with methanol; and one 2-ounce glass container with a polyethylene-lined lid per sample. Soil samples selected for chemical analysis were labeled, dated, placed in an iced cooler, and transported to Test America of Bothell, Washington (a Washington-certified analytical laboratory) following strict chain-of-custody protocols for analysis of VOCs by EPA Method 8260B

Analytical results for the soil, duplicate, and trip blank samples are presented in Section 6.2. The following table presents a summary of the soil sample matrix and results of the PID field screening.

Adjacent Property Soil Sample Matrix and PID Field Screening

Soil Boring	Sample Name	Date Sampled	Depth of Sample (ft)	PID Reading (ppm)
MW10	MW10D-13	4/10/08	13	0.3
WWTO	MW10D-24.5	4/10/08	24.5	0.4
MW11	MW11D-15.8	4/8/08	15.8	0.0
	MW11D-17.3	4/8/08	17.3	0.0
	MW11D-44.3	4/8/08	44.3	0.0
MW12	MW12D-12	4/9/08	12	0.3
	MW12D-22.5	4/9/08	22.5	0.4
MW13	MW13D-13.3	4/11/08	13.3	0.3
	MW13D-53.6	4/11/08	53.6	0.4
MW14	MW14D-11.8	4/15/08	11.8	0.2
	MW14D-53.4	4/15/08	53.4	0.6
Duplicate	MW30-30	4/10/08	Ē	8
	MW40-40	4/15/08		-

All LFR and EWE sampling equipment was decontaminated between sample points using standard environmental procedures, as follows: tap water and liquinox wash, distilled water rinse, and isopropanol rinse. The drilling contractor conducted decontamination procedures on drill bits, drill casing, and other down-hole drill tools (steam-cleaned) on site. IDW drill cuttings were transferred to appropriately labeled 55-gallon drums for disposal as described in Section 3.3.

The elevations of the monitoring well surface and top-of-casings were surveyed to the nearest 0.01 foot relative to mean sea level (msl) datum by a State of Washington registered land surveyor, Rogers Surveying Inc., P.S. on May 7, 2008. The survey is attached as Appendix C.

3.4 Monitoring Well Development

Well development was completed by EWE on April 16, 2008 in order to remove any sediment left in the wells during installation and to enhance the hydraulic communication between the wells and the surrounding water-bearing sediments. A high-volume electrical submersible pump (Grundfos) was used to develop the intermediate and deep wells (MW-10I/D through MW-14I/D). Due to low productivity a bailer was used to develop the shallow well (MW-11S) located in the Upper Silt Unit.

Observations of the quantity and clarity of water withdrawn were recorded and indicator parameters (pH, temperature, specific conductance, and total dissolved solids) were recorded onto Well Development Record forms during development. Well development continued until indicator parameters stabilized to within 10 percent of the prior measurements and/or until approximately 6 to 10 well volumes were removed from each well, as possible.

3.5 Investigation Derived Wastes

A total of twenty 55-gallon drums of waste water (purge and drilling decontamination water) and thirteen 55-gallon drums of solid material (soil cuttings) were generated during the installation of the adjacent property monitoring wells. The twenty 55-gallon drums of waste water and thirteen drums of solid material were property transported and disposed of by Waste Management at the Chemical Waste Management facility located in Arlington, Oregon.

4.0 FIELD ACTIVITIES

4.1 Adjacent Property Groundwater Monitoring

On August 6 and 7, 2008, LFR personnel conducted a comprehensive round of groundwater elevation measurements and groundwater quality sampling from the eleven newly installed groundwater monitoring wells (MW10I/D through MW14I/D, and MW11S) to assess the direction of groundwater flow and the distribution of COCs

in the Upper Silt and Gravelly Sand Units. This event was completed in conjunction with the eleven Site monitoring wells.

Prior to collection of groundwater samples, depth to water was measured using an electric well probe to the nearest 0.01 foot from a surveyed notch in each well casing. Water depths were recorded on Well Development Forms and included date, time, and sampler's initials. Table 1 summarizes the well construction and groundwater elevation data of the adjacent property monitoring wells measured during the August 7, 2008 event.

After water depths had been recorded, each monitoring well was purged with a peristaltic pump fitted with new polyethylene tubing. Measurements of standard field parameters, including temperature, pH, specific conductance, and total dissolved solids were collected during well purging using a multi-probe meter. All field instruments were calibrated following the manufacturer's specified procedures prior to collection of field data. Purging was continued until all parameters had stabilized to within approximately 10 percent of the previous reading and/or at least three well volumes had been removed. IDW purge water was placed in properly labeled 55-gallon drums as described in Section 3.5.

Upon completion of purging, LFR personnel used a peristaltic pump to collect groundwater samples from each well. In addition, a duplicate water sample (MW-Dup) was collected from MW10I for quality control purposes.

Upon collection, each sample was placed into labeled laboratory-supplied containers for analysis (two VOA vials preserved with hydrochloric acid). All sample containers were placed in an iced cooler (approximately 4 degrees Celsius) and transferred under LFR chain-of-custody protocols to Test America, Inc., of Spokane, Washington for analysis of VOCs by EPA Method 8260B. Analytical results for the groundwater samples collected from the eleven wells located on the adjacent properties are presented in Section 6.2 and summarized in Table 4.

4.2 Site Groundwater Monitoring

On June 21, 2007, November 12, 2007 and August 6 and 7, 2008, LFR personnel conducted a comprehensive round of groundwater elevation measurements and groundwater quality sampling from the eleven on-Site groundwater monitoring wells (MW5S/D through MW9S/D and MW7I) in order to assess the direction of groundwater flow and the distribution of COCs in the Upper Silt and Gravelly Sand Units.

The November 2007 event represents the second groundwater monitoring event, while the August 2008 sampling activities represents the third groundwater monitoring event conducted on-Site. Table 2 provides a comprehensive summary of the well construction and groundwater elevation data for the on-Site monitoring wells measured during the June 2007, November 2007, and August 2008 events. The June 2007 groundwater

monitoring event data was also presented in the LFR Supplemental Soil and Groundwater Investigation, dated October 10, 2007.

Consistent throughout the sampling events, and prior to collection of the groundwater samples, the depth to water was measured and recorded, and each monitoring well was purged using a peristaltic pump. Measurements of pH, specific conductance, and total dissolved solids were collected and recorded during the well purging. Purging was continued until all parameters had stabilized to within approximately 10 percent of the previous reading and/or at least three well volumes had been removed.

After the purging was completed the wells were sampled using a peristaltic pump. IDW purge water was placed in properly labeled 55-gallon drums as described in Section 4.2 below. The well purging and sampling activities completed for the on-Site wells were identical to the methods described in the previous section for the adjacent property monitoring wells.

During the November 2007 monitoring event a duplicate water sample (MW NCC 2) was collected from MW-9S for quality control purposed and a laboratory-provided trip blank (Trip Blank) was also submitted for VOC analysis. The groundwater, duplicate, and trip blank samples collected during the November 12, 2007 event were submitted to Test America, Inc. for analyses of VOCs by EPA Method 8260B. Analytical results for the eleven on-Site wells are presented in Section 6.3.

During the August 2008 monitoring event a duplicate water sample (MW-Dup) was collected from MW6S for quality control purposes and a laboratory-provided trip blank sample (Trip Blank) was also submitted for VOC analysis. The groundwater, duplicate, and trip blank samples collected during the August 6, 2008 event were submitted to Test America, Inc. for analyses of VOCs by EPA Method 8260B. Analytical results for the eleven on-Site wells are presented in Section 6.3 and summarized in Table 5.

4.2 Investigation Derived Wastes

A total of two 55-gallon drums of waste water (purge and drilling decontamination water) were generated during the two groundwater monitoring events conducted on November 2007 and August 2008. The two 55-gallon drums of waste water were property transported and disposed of by Waste Management at the Chemical Waste Management facility located in Arlington, Oregon.

5.0 HYDROGEOLOGIC CHARACTERISTICS

5.1 Aquifer Framework

A geologic cross-section for the hydrostratigraphic units across an east to west profile (Figure 7) was developed for the Investigative Area using the LFR soil boring and monitoring well logs (Appendix B). The hydrogeologic setting for the Investigative

Area consists of interbedded coarse-grained sand and gravel and fine-grained silt and clay sediments, representing fluvial and glacial outwash deposits and alluvial stream channel and associated overbank deposits, respectively. The specific hydrostratigraphic units encountered at the Site are:

- <u>Fill:</u> Surficial fill consisting of silty sand mixtures is encountered in various locations beneath the Investigative Area to a depth of 2 to 7 feet bgs.
- <u>Upper Silt Unit</u>. Dense, low plasticity silt with fine to medium sand is encountered from below the fill to approximately 25 feet bgs. The unit contains gradational zones of increasing clay content. Groundwater in the Upper Silt Unit is encountered at a depth ranging from 10 to 14 feet bgs and forms the water table at the Investigative Area.
- Gravelly Sand Unit: Gravelly sand is encountered at approximately 24 feet bgs to a maximum depth of 57 feet bgs. A 2- to 3-foot-thick stratum of poorly sorted, medium-grained sand with silt is occasionally present at the top of the Gravelly Sand Unit. Groundwater levels in the Gravely Sand Unit range from 10 to 13 feet bgs, approximately 11 to 14 feet above the top of this unit. This indicates that the Gravely Sand Unit is present under confined or semi-confined hydraulic conditions at the Investigative Area.
- <u>Silty Clay Unit:</u> Bluish-gray silty clay is encountered at approximately 43 to 58 feet bgs. A thin layer of brown silt was encountered on top of the silty clay in all deep borings except for MW-5D. The Silty Clay Unit is unsaturated to slightly saturated, and does not appear to be a water-bearing formation in the Investigative Area vicinity.

5.2 Hydraulic Gradient and Groundwater Flow Direction

Groundwater levels in monitoring wells completed in the Upper Silt Unit and the Gravelly Sand Unit were measured to develop potentiometric surface contours for each of the water-bearing units and to determine hydraulic gradients and groundwater flow directions. Further, vertical hydraulic gradients were calculated at each well cluster. The monitoring well and groundwater elevation data for the adjacent properties and on-Site wells are provided in Tables 1 and 2, respectively.

The interpreted potentiometric surface for the Upper Silt Unit derived from shallow monitoring well measurements indicates that groundwater generally flows from the northwest to the southeast across the Site (Figure 3). The average hydraulic gradient of the Upper Silt Unit is approximately 0.005 foot per foot (ft/ft). The interpreted potentiometric surface for the Gravelly Sand Unit derived from the deep monitoring well measurements indicates that groundwater generally flows from the west-northwest to the east-southeast across the Site (Figure 4). The average hydraulic gradient of the Gravely Sand Unit is approximately 0.0005 ft/ft.

Comparison of groundwater elevations in well clusters indicates that a downward vertical hydraulic gradient (flow from the Upper Silt Unit to the Gravely Sand Unit) exists in the northwestern portion of the Site, as defined by monitoring wells MW-

5S/5D, MW-8S/8D and MW-9S/9D. The average downward vertical hydraulic gradient in this portion of the Site is 0.008 ft/ft. An upward vertical hydraulic gradient (flow from the Gravely Sand Unit to the Upper Silt Unit) exists in the southeastern portion of the Site, as defined by monitoring wells MW-6S/6D and MW-7S/7D. The upward vertical hydraulic gradient in this portion of the Investigative Area is 0.02 ft/ft. The downward and upward hydraulic gradients that are measured between the Upper Silt Unit and Gravely Sand Unit indicate a transmission of water between the two units along the formation boundary.

5.3 Hydraulic Conductivity

Single-well injection/bail-down ("Slug") aquifer tests were performed by LFR at the site on May 12 and 13, 2008 to evaluate hydraulic conductivity of the Upper Silt Unit and Gravely Sand Unit. Upper Silt Unit wells MW-5S, MW-7S, and MW-9S were evaluated by both injection ("slug-in") and bail-down ("slug-out") methods. Analysis of the injection and bail-down results via Waterloo Hydrogeologic AquiferTest™ software yielded an approximate average hydraulic conductivity of 9×10⁻⁶ meters per second (m/s), or 2.6 feet per day (ft/d) for the Upper Silt Unit. Gravelly Silt Unit wells MW-5D, MW-7D, and MW-9D were evaluated by injection and bail-down methods. Analysis of the injection result for Gravely Sand Unit well MW-7D yielded an approximate average hydraulic conductivity of 6×10⁻⁵ m/s, or 15.4 ft/d. Analysis results for the aquifer tests are presented in Appendix D.

The hydraulic conductivity of a formation characterizes the ability of a formation to transmit water; although hydraulic conductivity had units of a velocity, it is not a representation of the velocity at which water moves through a formation. The calculated values of hydraulic conductivity for the Upper Silt Unit and Gravely Sand Unit are within the expected range of hydraulic conductivities for respective geological materials (silt, sand and gravel).

5.4 Groundwater Velocity

The average linear velocity of groundwater represents the rate at which groundwater is flowing within in a formation based on the hydraulic conductivity and effective porosity of the formation and the head change (gradient) across the formation. The average linear groundwater velocity for the Upper Silt Unit is calculated at 0.03 ft/d, based on the calculated average hydraulic conductivity of 2.6 ft/d, calculated average horizontal hydraulic gradient of 0.005 ft/ft, and an assumed effective porosity of 0.35 (35%). The average linear groundwater velocity for the Gravelly Silt Unit is calculated at 0.04 ft/d, based on the calculated average hydraulic conductivity of 15.4 ft/d, calculated average horizontal hydraulic gradient of 0.0005 ft/ft, and an assumed effective porosity of 0.20 (20%).

The average linear velocity is also influenced by other factors, including dispersion of constituents in flowing groundwater, soil porosity, and fractional organic carbon content; among other physical and chemical factors. As an example, dispersion is the phenomenon that results from groundwater flowing through different pore spaces in the

formation at different flow rates along flow path lengths. The average linear velocity may be used to predict the rate of solute movement, but may be more accurately defined with additional field tests and laboratory verified data. The average linear velocity also does not take into account factors that influence the retardation of PCE and its degradation products as they move through the aquifer material. This retardation is a result of the PCE sorbing and desorbing onto and off of the aquifer matrix as it migrates with groundwater flow through the aquifer. Hence, the actual nature and extent of the solute's presence may be significantly less or greater than the location predicted using average linear velocity.

6.0 ANALYTICAL RESULTS

6.1 Selection of Cleanup Standards

A necessary part of the ISC is the selection and establishment of appropriate cleanup standards for potential COC-affected soil and groundwater. As provided in the MTCA cleanup standards (Chapter173-340-700 WAC), appropriate cleanup standards are to be identified for particular substances at a site and the specific areas or pathways, such as land or water, where humans and the environment can become exposed to these substances. In addition, these standards were established by Ecology to protect human health and the environment for current and potential site and resource use. The soil and groundwater investigation effort was designed to provide specific information to meet the soil and groundwater cleanup criteria.

The MTCA stipulates that cleanup levels shall be based on estimates of reasonable maximum exposure. The cleanup actions must achieve cleanup levels defined by MTCA and also comply with other applicable state and federal laws. The exposure pathways and locations on the site where cleanup levels must be attained (points of compliance) are also specified. Ecology has determined that residential land use is generally the site use requiring the most protective cleanup levels and that exposure to hazardous substances under residential land use conditions represents the reasonable maximum exposure scenario. Method A cleanup levels are those defined in the MTCA as applicable to sites where the cleanup action can be considered routine and/or relatively few contaminants are involved. Of the three allowable cleanup standards (Methods A, B and C), Method A soil and groundwater cleanup levels are typically conservative and generally based on groundwater protection factors, but are only available for a limited number of contaminants.

As the Site is considered a commercial-use property, the Method A Soil and Ground Water Cleanup Levels for Unrestricted Land Uses (Tables 740-1 and 720-1, Chapter 173-340 WAC) were applied to specific COCs. However, where a cleanup level for an individual COC is not provided in Method A, the standard Method B Soil and Groundwater Cleanup Levels for Unrestricted Land Use were used. The standard Method B Soil and Groundwater Cleanup Levels were obtained from Cleanup Levels and Risk Calculations Version 3.1, Chapter 173-340-740(3) WAC per the on-line

database. The individual cleanup levels are provided within the analytical results tables referenced in the report sections below.

6.2 Adjacent Property Soil and Groundwater Sample Results

Soil and groundwater samples collected from the monitoring wells installed on the adjacent properties during the ISC were submitted for analyses of VOCs by EPA Method 8260B. The following COCs - PCE, TCE, cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride - are discussed below as they are related to the historical dry cleaning operation at the Site.

The laboratory reports also indicate the presence of chloroform in the groundwater quality data. While chloroform was detected, it is not a dry cleaning solvent or degradation product. Based upon the sporadic chloroform detections, as well as detections in both upgradient and cross-gradient groundwater monitoring wells where PCE and its degradation products were not detected, the chloroform appears to be either a laboratory contaminant, a product of degraded chlorinated irrigation waters from up-gradient sources, or resulting from another source not associated with the Site or it's land use.

Analytical results of the low-level (reporting limit) soil sample analyses are summarized in Table 3 and analytical results of the groundwater samples are summarized in Table 4. Laboratory reports for both soil and groundwater are presented in Appendix E.

6.2.1 Soil Boring Samples

LFR collected and analyzed soil samples in accordance with Ecology's guidance regarding implementation of EPA Method 5035A, "Collecting and Preparing Soil Samples for VOC Analysis" (Washington State Department of Ecology, June 2004, Document No. 04-09-087). The following summarizes analytical results of soil samples collected during the advancement of adjacent property monitoring wells. The soil samples were analyzed for VOCs by EPA Method 8260B.

A total of eleven soil samples were collected from the deep screened monitoring wells advanced in the three properties adjacent to the Site. In addition two duplicate soil samples and one laboratory-prepared trip blank sample were submitted for VOC analysis.

With the exception of two samples, MW13D-13.3 and MW13D-53.6, analytical results of the soil samples collected from the adjacent property monitoring wells indicated that concentrations of PCE, TCE, , cis-1,2-DCE, and vinyl chloride were below the laboratory method reporting limits (MRLs) and as such, were below the respective MTCA Cleanup Levels.

Analytical results from soil samples MW13D-13.3 and MW13D-53.6 indicated that concentrations of PCE, TCE, cis-1,2-DCE, and vinyl chloride were below laboratory

MRLs. However, the MRLs reported by Test America exceeded the MTCA cleanup levels for PCE, TCE, and benzene. A representative of Test America indicated the laboratory was unable to analyze these two samples for low level VOCs due to a laboratory error.

Duplicate and Trip Blank Samples

Cis-1,2-DCE and PCE were detected in the duplicate sample, MW30-30, collected from MW10D at a depth of 13 ft bgs, at a concentration above the laboratory MRLs however, below the MTCA cleanup levels. In addition, TCE was reported at a concentration below the laboratory MRL, however, the MRL reported by Test America exceeded the MTCA cleanup level for this constituent.

Concentrations of PCE, TCE, cis-1,2-DCE, and vinyl chloride were not detected above laboratory MRLs in the trip blank sample and the duplicate sample, MW40-40, collected from MW14D at a depth of 11.8 ft bgs.

6.2.2 August 2008 Groundwater Monitoring Event

On August 6 and 7, 2008, LFR personnel completed groundwater sampling from the eleven adjacent property groundwater monitoring wells to assess the direction of groundwater flow and the distribution of contaminants in the Upper Silt and Gravelly Sand Units.

Analytical results indicated that concentrations of PCE exceeded the MTCA Method A cleanup level [5 milligrams per liter (μ g/l) or parts per billion (ppb)] in samples collected from the following down-gradient intermediate wells: MW-10I (25.2 μ g/l), MW-13I (25.1 μ g/l), and MW-14I (47.8 μ g/l). PCE groundwater concentrations from samples collected in August 2008 are displayed on Figure 5. A conceptual representation of the estimated PCE iso-concentration contour above the MTCA cleanup level is also displayed in Figure 5.

Concentrations of TCE exceeded the MTCA Method A cleanup level (5 μ g/l) in samples collected from the following down-gradient intermediate wells: MW-10I (21.9 μ g/l), MW-13I (5.56 μ g/l), and MW-14I (13.5 μ g/l). TCE groundwater concentrations from samples collected in August 2008 are displayed on Figure 6. A conceptual representation of the estimated TCE iso-concentration contour above the MTCA cleanup level is also displayed in Figure 6.

Concentrations of vinyl chloride in all the adjacent property monitoring wells were below laboratory MRLs, and as such, were below the MTCA cleanup levels. Cis-1,2-DCE was detected in intermediate wells MW10I (6.98 μ g/l) and MW14I (2.67 μ g/l) at concentrations below the MTCA Method B cleanup level (80 μ g/l). Cis-1,2-DCE was not detected above the laboratory MRL in the remaining adjacent property groundwater samples.

Duplicate Sample

A duplicate sample (MW DUP) was collected from adjacent property well MW10-I. Analytical results indicated that concentrations of PCE, TCE and cis-1,2-DCE, were detected above laboratory MRLs in the duplicate sample. Consistent with the sample collected from MW-10I, PCE and TCE were the only constituents which exceeded the MTCA cleanup levels in the duplicate sample.

6.3 On-Site Groundwater Sample Results

Analytical results of the groundwater samples, including prior events, are summarized in Table 5. Analytical results of the November 2007 and August 2008 groundwater monitoring events are presented in Appendix F. The June 2007 monitoring event is summarized in the prior October 2007 Supplemental Soil and Groundwater Investigation.

6.3.1 November 2007 Groundwater Monitoring Event

On November 12, 2007, LFR personnel completed groundwater sampling from the eleven on-Site groundwater monitoring wells to assess the direction of groundwater flow and the distribution of contaminants in the Upper Silt and Gravelly Sand Units.

Analytical results indicated that concentrations of PCE exceeded the MTCA Method A cleanup level (5 μ g/l) in samples collected from the intermediate well MW-7I (206 μ g/l) and from shallow wells MW-5S (86 μ g/l) and MW-7S (8.44 μ g/l). PCE was detected above the laboratory MRL, but below the MTCA Method A cleanup level in shallow wells MW6S (3.87 μ g/l), MW-8S (4.34 μ g/l), and MW-9S (2.16 μ g/l).

PCE was detected above the laboratory MRL, but below the MTCA Method A cleanup level in deep wells MW-6D (2.47 μ g/l) and MW-7D (3.00 μ g/l).

Analytical results indicated that concentrations of TCE exceeded the MTCA Method A cleanup level (5 μ g/l) in samples collected from the intermediate well MW-7I (133 μ g/l) and the following shallow wells: MW-5S (10.6 μ g/l), MW-7S (13.3 μ g/l), and MW-8S (10.4 μ g/l). TCE was detected above the laboratory MRL, but below the MTCA Method A cleanup level in shallow well MW6S (1.58 μ g/l).

TCE was detected above the laboratory MRL, but below the MTCA Method A cleanup level in deep wells MW-6D (1.22 µg/l) and MW-7D (1.28 µg/l).

Vinyl chloride was not detected above the laboratory MRL in the samples collected from the on-Site wells. However, the MRL reported by Test America for two samples, MW-5S and MW-7I, exceeded the MTCA cleanup for vinyl chloride $(0.2 \mu g/l)$.

Analytical results indicated that concentrations of cis-1,2-DCE were detected in MW-7S (8.62 μ g/l), MW-7I (28.4 μ g/l), and MW-8S (4.54 μ g/l). The concentrations were below the MTCA Method B cleanup level for cis-1,2-DCE (80 μ g/l).

Duplicate and Trip Blank Sample

Analytical results indicated that PCE was detected in the duplicate sample (MW-NCC 2) collected from MW-9S at a concentration below the MTCA Method A cleanup levels. These results are consistent with the sample collected from MW-9S.

Analytical results of the laboratory prepared trip blank sample indicated that PCE, TCE, cis-1,2-DCE, and vinyl chloride were below laboratory MRLs.

6.3.2 August 2008 Groundwater Monitoring Event

On August 6 and 7, 2008, LFR personnel completed groundwater sampling from the eleven on-Site groundwater monitoring wells to assess the direction of groundwater flow and the distribution of contaminants in the Upper Silt and Gravelly Sand Units.

Analytical results indicated that concentrations of PCE exceeded the MTCA Method A cleanup level (5 μ g/l) in samples collected from the intermediate well MW-7I (13.3 μ g/l) and from following shallow wells: MW-5S (177 μ g/l), MW-6S (7.86 μ g/l), MW-7S (8.99 μ g/l), and MW-8S (10.1 μ g/l). PCE was not detected above the laboratory MRL in the samples collected from the deep wells (MW5D, MW6D, MW7D, MW8D, and MW9D). PCE groundwater concentrations from samples collected in August 2008 are displayed on Figure 5. A conceptual representation of the estimated PCE iso-concentration contour above the MTCA cleanup level is also displayed in Figure 5.

Analytical results indicated that concentrations of TCE exceeded the MTCA Method A cleanup level (5 μ g/l) in samples collected from the intermediate well MW-7I (12.6 μ g/l) and the following shallow wells: MW-5S (21.7 μ g/l), MW-6S (6.82 μ g/l), MW-7S (12.7 μ g/l), and MW-8S (1.86 μ g/l). TCE was not detected above the laboratory MRL in the samples collected from the deep wells (MW5D, MW6D, MW7D, MW8D, and MW9D). TCE groundwater concentrations from samples collected in August 2008 are displayed on Figure 6. A conceptual representation of the estimated TCE isoconcentration contour above the MTCA cleanup level is also displayed in Figure 6.

Figure 7 provides a conceptual groundwater profile of the PCE and TCE concentrations in a west-to-east geologic cross-section from monitoring well cluster MW-11, to MW-5, MW-7, and ending at MW-13.

Vinyl chloride was not detected above the laboratory MRL in the samples collected from the on-Site wells. However, the MRL reported by Test America for one sample, MW-5D, exceeded the MTCA cleanup level for vinyl chloride $(0.2 \mu g/l)$.

Analytical results indicated that concentrations of cis-1,2-DCE were detected in MW-7S (13.9 μ g/l), MW-7I (3.17 μ g/l), MW-8S (27.0 μ g/l), and MW-9S (2.41 μ g/l). The concentrations were below the MTCA Method B cleanup level for cis-1,2-DCE (80 μ g/l).

Duplicate and Trip Blank Sample

A duplicate sample, MW DUP, was collected from MW-6S. Analytical results indicated concentrations of PCE, TCE, and cis-1,2-DCE, were detected in the duplicate sample. Consistent with MW-6S, PCE and TCE concentrations exceeded the MTCA Method A cleanup levels for PCE and TCE.

Analytical results of the laboratory prepared trip blank sample indicated that PCE, TCE, cis-1,2-DCE, and vinyl chloride were below laboratory MRLs.

6.4 Discussion of Results

6.4.1 Adjacent Properties – August 2008

A review of the distribution of COC soil concentrations based on the limited soil sampling program from the monitoring well installation may be summarized as the following:

 There were no VOC detections reported in any of the soil samples for the adjacent properties.

A review of the distribution of August 2008 VOC groundwater concentrations based on the adjacent property monitoring well network indicated the following:

- There were no dry cleaning-related COC concentrations (PCE, TCE, cis-1,2-DCE, and vinyl chloride) reported above the laboratory MRLs, and hence the MTCA cleanup levels, reported in the shallow, intermediate or deep wells at the upgradient well cluster MW-11 or in the side-gradient intermediate or deep wells at the well cluster MW-12.
- Chloroform was detected at a concentration above the laboratory MRLs in the shallow up-gradient well MW-11S and deep down-gradient well MW-14D. The detected concentration of chloroform in both these wells exceeded the MTCA Method B cleanup level. Chloroform was also detected above the laboratory MRL, but below the MTCA cleanup level, in several downgradient wells - MW-10I, MW-13D, MW-12D, and MW-13D.
- While chloroform was detected in adjacent property groundwater samples collected
 from various wells located up-, side- and down-gradient of the Site, this compound
 is likely present as a result of laboratory contamination, the use and degradation of
 chlorinated irrigation waters on other adjacent properties, or from other
 anthropogenic sources or natural processes.

- The PCE and TCE groundwater results were reported at concentrations above their respective MTCA cleanup levels in three of the down-gradient intermediate wells MW-10I, MW-13I, and MW-14I. There were no reported PCE or TCE concentrations in the down-gradient deep wells MW-10D MW-13D or MW14-D.
- The highest PCE concentration in groundwater was detected in intermediate well MW-14I located in the Albertson parking lot, southeast and hydraulically downgradient of the Site.
- The highest TCE concentration in groundwater was detected in the intermediate well MW-10I located in the Richland School District parking lot to the south and hydraulically down-gradient of the Site.
- Generally, PCE and TCE appear to have been transported downgradient to the east and southeast in the lower profile of the Upper Silt Unit and the upper profile of the Gravelly Sand Unit groundwater unit.
- Vinyl chloride was not detected at concentrations above the laboratory MRLs in any of the shallow, intermediate, or deep screened adjacent property wells.
- Cis-1,2-DCE concentrations were detected above laboratory MRLs, but below MTCA Method B cleanup levels, in two intermediate wells, including the downgradient wells MW-10I and MW-14I.

6.4.2 On-Site - August 2008

A review of the distribution of VOC groundwater concentrations based on the most recent August 2008 monitoring event for on-Site monitoring well network indicated the following:

- There were no COC concentrations above the laboratory method reporting limits, and hence the MTCA cleanup levels, reported at deep wells MW-6D (southeast of NCC building), MW-7D (east side of NCC building), and MW-9D (north central area of the Site).
- The PCE groundwater results were reported at concentrations above their respective MTCA cleanup level in four of the five shallow wells and the one intermediate well, including MW-5S, MW-6S, MW-7S, MW-7I, and MW-8S.
- The TCE groundwater results were reported at concentrations above their respective MTCA cleanup level in three of the five shallow wells and the one intermediate well, including MW-5S, MW-6S, MW-7S, and MW-7I. A TCE concentration was also reported in well MW-8S, but was below the MTCA cleanup level.
- The highest on-Site PCE and TCE concentrations in groundwater were detected in shallow well MW-5S located near the original dry cleaning solvent spill event source reported in 1975, west of the Site building.
- PCE and TCE were not detected at concentrations above the laboratory MRLs in any of the deep screened wells located on-Site.

- Vinyl chloride was not detected at concentrations above the laboratory MRLs in any of the shallow, intermediate, or deep screened on-Site wells. However, the laboratory MRLs reported for MW-5D exceeded the MTCA cleanup levels.
- Cis-1,2-DCE concentrations were detected above laboratory MRLs, but below the respective MTCA Method B cleanup levels in three shallow wells MW-7S, MW-8S, and MW-9S, and one intermediate well MW7-I.

7.0 SUMMARY AND CONCLUSIONS

Several tasks were completed during the ISC conducted in April through August 2008, and included installation and development of eleven monitoring well on three adjacent properties, a limited soil sampling program, groundwater monitoring of on-Site and adjacent property wells, and management of investigation derived wastes.

Analytical results from the soil samples collected during advancement of the deep monitoring wells indicated that dry cleaning-related COCs were below laboratory MRLs and the MTCA cleanup levels.

Generally, the dry cleaning solvent COCs, PCE and the degradation products (TCE, cis-1,2-DCE and vinyl chloride), are identified in a majority of the on-Site wells, the immediately down-gradient well cluster MW10 on the southern adjacent RSD property, and the down-gradient well clusters MW-13 and MW-14 on the Albertson's property across Stevens Drive.

PCE is generally identified with the highest concentrations to the immediate west of the NCC building, to the immediate south of the Site (RSD property), and on the adjacent property to the east (Albertsons). TCE is generally identified with the highest concentrations to the immediate west and east of the NCC building, to the immediate south of the Site (RSD property), and on the adjacent property to the east (Albertsons).

Based on groundwater elevation and gradient data, the interpreted potentiometric surface for the Upper Silt Unit derived from shallow monitoring well measurements indicates that groundwater generally flows from the northwest to the southeast across the Site. The interpreted potentiometric surface for the Gravelly Sand Unit derived from the deep monitoring well measurements indicates that groundwater generally flows from the west-northwest to the east-southeast across the Site.

The groundwater quality and hydrogeological data collected to date supports a preliminary site conceptual model that exhibits the transport and migration of the dry cleaning product PCE (and it's degradation products) from residual on-Site soil and ground water sources to downgradient groundwater monitoring locations on adjacent properties to the south and east of the Site.

The data presented in this report represent a limited and interim qualitative assessment of the conditions underlying the Site and adjacent properties within the currently defined Investigative Area. Additional soil and groundwater data will provide a move comprehensive assessment of the fate and transport of dry cleaning COCs.

8.0 LIMITATIONS

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by LFR and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry.

To the extent that LFR relied upon any information prepared by other parties not under contract to LFR, LFR makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when LFR's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. LFR's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

LFR, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

9.0 REFERENCES

American Society for Testing and Materials (ASTM) Standards. D 2488-93. Practice for Description and Identification of Soils (Visual-Manual Procedure). — D 4220-95. Standard Practices for Preserving and Transporting Soil Samples. —. D 4700-91. Standard Guide for Soil Sampling from the Vadose Zone. Chen-Northern. 1993. Report of Ground Water Sampling Results. Report prepared for the City of Richland by Chen Northern. Ecology, Cleanup Levels and Risk Calculations (CLARC), Version 3.1, 173-340-740(3) WAC. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx. —. 2001. Model Toxics Control Act (MTCA). 173-340-700 WAC. —. "Minimum Standards for Construction and Maintenance of Wells" (Chapter 173-160 WAC). EMCON. 1997. Site History Report, New City Cleaners, 747 Stevens Drive, Richland, Washington. April 23. EMCON. 1999a. Remedial Investigation Report, New City Cleaners, 747 Stevens Drive, Richland, Washington. June 10. -. 1999b. Interim Cleanup Action Plan (ICAP). GeoEngineers. 2001. Report of Interim Cleanup Action, Tetrachloroethylene and Petroleum Contaminated Soil, New City Cleaners, Richland, Washington. June 26. LFR Inc. 2007. Supplemental Soil and Groundwater Investigation, New City Cleaners, 747 Stevens Drive, Richland, Washington. October 10. -. 2005. Four-Year Review Report, April 2001 through August 2005, and Work Plan to Conduct a Supplemental Soil and Groundwater Investigation, New City Cleaners, Richland, Washington. November 15. ("the Four-Year Review"). Reidel and Fecht. 1994. Geologic Map of the Richland 1:100,000 Quadrangle, Washington: Washington Division of Geology and Earth Resources, Open File Report 94-8.

United States Geological Survey (USGS). 1992. Richland, Washington Quadrangle.

7.5-Minute Series Topographic Map.

TABLES

TABLE 1
Adjacent Property Monitoring Well and Groundwater Elevation Data
New City Cleaners
747 Stevens Drive, Richland, Washington

Monitoring Well	Date of Sampling Event	TOC ⁽¹⁾ (ft amsl ⁽²⁾)	Ground Elevation (ft NAVD)	Top of Screen (ft bgs ⁽³⁾)	Bottom of Screen (ft bgs) ⁽⁴⁾	Measured Screen Length (ft)	Depth to Water (ft below TOC)	Groundwater Elevation (ft amsl)
MW10I	8/7/2008	359.24	359.7	27.35	31.98	4.63	12.51	346.73
MW10D	8/7/2008	359.51	359.7	47.35	57.08	9.73	12.71	346.80
MW11S	8/7/2008	357.56	358.0	10.10	14.40	4.30	10.45	347.11
MW11I	8/7/2008	357.66	358.0	20.05	24.67	4.62	10.51	347.15
MW11D	8/7/2008	357.61	357.9	35.35	45.18	9.83	10.71	346.90
MW12I	8/7/2008	358.83	359.3	24.20	29.00	4.80	12.01	346.82
MW12D	8/7/2008	358.60	359.0	33.70	43.35	9.65	11.77	346.83
MW13I	8/7/2008	359.78	360.2	15.00	19.78	4.78	13.16	346.62
MW13D	8/7/2008	359.97	360.3	44.82	54.43	9.61	13.31	346.66
MW14I	8/7/2008	359.66	360.0	14.92	19.35	4.43	13.09	346.57
MW14D	8/7/2008	359.72	360.2	44.03	53.67	9.64	13.21	346.51

Notes:

(1) Top of casing (TOC)

(2) Feet above mean sea level, referenced to North American Vertical 1988 Datum (NAVD).

(3) bgs - below ground surface

(4) Sump interval not included in measurement

TABLE 2
Site Monitoring Well and Groundwater Elevation Data
New City Cleaners
747 Stevens Drive, Richland, Washington

Monitoring Well	Date of Sampling Event	TOC ⁽¹⁾ (ft amsl ⁽²⁾)	Ground Elevation (ft NAVD)	Top of Screen (ft bgs ⁽³⁾)	Bottom of Screen (ft bgs) ⁽⁴⁾	Measured Screen Length (ft)	Depth to Water (ft below TOC)	Groundwater Elevation (ft amsl)
	6/21/2007				300000000000000000000000000000000000000		11.85	347.31
MW5S	11/12/2007	359.16	359.3	14.30	19.00	4.70	12.19	346.97
	8/6/2008						12.56	346.60
MOSCOMBUSE	6/21/2007	1470 MS - 9000)	STREETS VI	100 0000	Walter Same	2343 23432	11.92	347.17
MW5D	11/12/2007	359.09	359.4	43.00	52.55	9.55	12.27	346.82
	8/6/2008						12.25	346.84
	6/21/2007						14.10	344.92
MW6S	11/12/2007	359.02	359.5	16.13	20.85	4.72	14.22	344.80
	8/7/2008				100000000000000000000000000000000000000		12.86	346.16
	6/21/2007						12.09	347.04
MW6D	11/12/2007	359.13	359.5	41.15	50.73	9.58	13.05	346.08
	8/7/2008						12.37	346.76
12	6/21/2007						13.00	346.62
MW7S	11/12/2007	359.62	360	14.32	19.06	4.74	12.84	346.78
	8/7/2008	CONTRACTOR DATES	ALC-10	Wilder Days		2005 W.	13.44	346.18
	6/21/2007					14 4.75	12.5	347.01
MW7I	11/12/2007	359.51	360.2	22.39	27.14		13.05	346.46
	8/7/2008						12.86	346.65
* ***	6/21/2007				1000 ADD	12-242	12.71	347.04
MW7D	11/12/2007	359.75	360.2	43.09	52.64	9.55	12.98	346.77
	8/7/2008						12.97	346.78
	6/21/2007						12.62	347.04
MW8S	11/12/2007	359.66	360.2	11.25	16.00	4.75	12.48	347.18
	8/6/2008	ACCEPTAGE TO SECOND		7-0-00/12-20		10000000	12.83	346.83
	6/21/2007						12.51	347.06
MW8D	11/12/2007	359.57	360	41.93	51.45	9.52	12.75	346.82
	8/6/2008						12.86	346.71
	6/21/2007						12.25	347.29
MW9S	11/12/2007	359.54	359.8	15.40	20.15	4.75	12.48	347.06
	8/6/2008	escouradiya 17	400 000 65966 /			CAMP RE	12.68	346.86
	6/21/2007					9.60	12.25	347.18
MW9D	11/12/2007	359.43	359.8	43.05	52.65		12.65	346.78
	8/6/2008	**** **** **** * **** * **** **** ***** ****				- 10 at 60 April 6 a	13.63	345.80

Notes:

- (1) Top of casing (TOC)
- (2) Feet above mean sea level, referenced to North American Vertical 1988 Datum (NAVD).
- (3) bgs below ground surface
- (4) Sump interval not included in measurement

Prepared By:	ML	Date:	8/25/2008
Checked By:	JEL	Date:	9/24/2008

TABLE 3

Adjacent Property Soil Analytical Results Low Level Volatile Organic Compounds New City Cleaners

747 Stevens Drive, Richland, Washington

Canala Nama	Data Samulad	PID ⁽¹⁾						VOCs ⁽²⁾		1-1-1	
Sample Name	Date Sampled	(ppm)	Chloroform	Cis-1,2-DCE	PCE	TCE	Vinyl Chloride	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW10D-13	4/10/2008	0.4	nd ⁽³⁾	nd	nd	nd	nd	nd	nd	nd	nd
MW10D-24.5	4/10/2008	0.4	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW11D-15.8	4/8/2008	0.0	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW11D-17.3	4/8/2008	0.0	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW11D-44.3	4/8/2008	0.0	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12D-12	4/9/2008	0.3	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12D-22.5	4/9/2008	0.4	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW13D-13.3	4/11/2008	0.3	nd	nd	nd	ndd ⁽⁴⁾	nd	· ndd	nd	nd	nd
MW13D-53.6	4/11/2008	0.4	nd	nd	ndd	ndd	nd	ndd	nd	nd	nd
WM14D-11.8	4/15/2008	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW14D-53.4	4/15/2008	0.6	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW30-30 ⁽⁵⁾	4/10/2008	-	nd	0.0183	0.00838	ndd	nd	nd	nd	nd	nd
MW40-40 ⁽⁶⁾	4/15/2008	=	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRIP ⁽¹¹⁾	-	-	nd	nd	nd	nd	nd	nd	nd	nd	nd
MTCA M	1ethod A - Soil ⁽⁷⁾		NS ⁽⁸⁾	NS	0.05	0.03	NS	0.03	7	6	9
MTCA Method B - Soil (9)			160	800 ⁽¹⁰⁾			0.67		-	-	

Notes:

- (1) PID = Photo ionization detector field screeing results reported in parts per million (ppm)
- (2) VOCs = Volatile Organic Compounds analyzed by EPA Method 8260B, low soil method
- (3) nd = not detected above laboratory method reporting limit (MRL)
- (4) ndd = not detected above the statistically derived laboratory method detection limit (MDL)
- (5) Duplicate sample of MW10D-13
- (6) Duplicate sample of MW14D-11.8
- (7) MTCA Method A = Soil Cleanup Level for Unrestricted Land Uses, Model Toxics Control Act, Chapter 173-340 WAC
- (8) NS = No Method Standard established.
- (9) MTCA Method B = Soil Cleanup Level, Carcinogen, Direct Contact-Ingestion Only, Model Toxics Control Act, Chapter 173-340 WAC
- (10) MTCA Method B = Soil Cleanup Level, Non-carcinogen (no carcinogenic value established), Direct Contact-Ingestion only, Model Toxics Control Act, Chapter 173-340 WAC
- (11) TRIP = Water trip blank sample prepared by Test America for QA/QC purposes, results reported in micrograms per liter (µg/l)
- (12) MTCA Method A GW = Groundwater Cleanup Levels, Model Toxics Control Act, Chapter 173-340 WAC, reported in µg/l for trip blank QA/QC review only
- (13) MTCA Method B GW = Groundwater Cleanup Level, Carcinogenic Value, Model Toxics Control Act, Chapter 173-340 WAC, reported in µg/l for trip blank QA/QC review only
- (14) MTCA Method B GW = Groundwater Cleanup Level, Non-carcinogenic Value (no carcinogenic value established), reported in µg/l for trip blank QA/QC review only

All concentrations of reported in milligrams per kilogram (mg/kg) or parts per million (ppm), unless otherwise noted Concentrations shown in **Bold** indicate an exceedance of the cleanup level

Prepared By:	ML	Date:	5/14/2008	
Checked By:	JEL	Date:	6/25/2008	

Adjacent Property Groundwater Analytical Results Volatile Organic Compounds 747 Stevens Drive, Richland Washington New City Cleaners TABLE 4

	_			_	1	_	_	_	_	_		_	,	_	_
	Total Xylenes	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	1,000	
	Ethylbenzene	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	200	
	Toluene	pu	pu •	pu	pu	pu	ри	pu	pu	pu	pu	pu	pu	1,000	
(II) S	Benzene	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	2	
VOCS	Vinyl Chloride	pu	pu	pu	pu	pu	pu	pu	pu	pu	ри	pu	pu	0.2	SN
	TCE ⁽⁴⁾	21.9	pu	pu	pu	pu	pu	pu	5.56	pu	13.5	pu	21.9	2	0.40
	PCE ⁽³⁾	25.2	pu	pu	pu	pu	pu	pu	25.1	pu	47.8	pu	26.3	5	
	Cis-1,2-DCE ⁽²⁾	86.9	pu	pu	pu	pu	pu	pu	pu	pu	2.67	pu	7.24	SN	80,00
	Chloroform	5.61	10.8	43.6	pu	pu	pu	2.20	pu	2.78	pu	21.9	5.64	NS ⁽⁹⁾	7.2
Dafe		8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	hod A ⁽⁸⁾	lod B ⁽¹⁰⁾
Sample Name		MW10I	MW10D	MW11S	MW11I	MW11D ⁽⁶⁾	MW12I	MW12D	MW13I	MW13D	MW14I	MW14D	MW DUP ^{D)}	MTCA Method A ⁽⁸⁾	MTCA Method B ¹¹⁰

(1) VOCs = Volatile Organic Compounds analyzed by EPA Method 8260B

(2) cis-1,2-DCE = cis-1,2-Dichloroethene

(3) PCE = Tetrachloroethene

(4) TCE = Trichloroethene

(5) nd = not detected above laboratory method reporting limit

(6) construction of monitoring well compromised, data presented for information purposes only (7) MW DUP = duplicate sample of MW10I

(8) MTCA Method A = Groundwater Cleanup Levels, Model Toxics Control Act, Chapter 173-340 WAC (9) NS = No Method Standard established.

(10) MTCA Method B = Groundwater Cleanup Level, Carcinogenic Value, Model Toxics Control Act, Chapter 173-340 WAC. (11) MTCA Method B Groundwater Cleanup Level, Non-carcinogenic Value (no carcinogenic value established).

Prepared By: All concentrations of water reported in micrograms per liter (µg/l) or parts per billion (ppb) Concentrations shown in **Bold** indicated exceedance of cleanup level

8/22/2008 8/27/2008 Date: M Checked By:

Page 1 of 1

TABLE 5

Site Groundwater Analytical Results Volatile Organic Compouds

New City Cleaners

747 Stevens Drive, Richland, Washington

	Date	Chloroform	Cis-1,2-DCE ⁽²⁾	PCE ⁽³⁾	TCE"	Vinyl Chloride	Benzene	Toluene	Ethylbenzene	Total Xylen
	6/21/2007	nd ⁽⁵⁾	1.51	138	24.7	nd	nd	nd	nd	nd
MW5S	11/12/2007	<10.0	nd	86.0	10.6	<2.00	< 10.0	nd	nd	nd
	8/6/2008	nd	nd	177	21.7	nd	nd	nd	nd	nd
	6/21/2007	2.44	nd	nd	nd	nd	nd	nd	nd	nd
MW5D	11/12/2007	nd	nd	nd	nd	nd	nd	nd	nd	nd
	8/6/2008	< 10.0	nd	nd	nd	<2.00	nd	nd	nd	nd
	6/21/2007	21.4	nd	9.98	1.33	nd	nd	nd	nd	nd
MW6S	11/12/2007	1,33	nd	3.87	1.58	nd	nd	nd	nd	nd
	8/7/2008	nd	nd	7.86	6.82	nd	nd	nd	nd	nd
	6/21/2007	nd	nd	3.41	1.93	nd	nd	nd	nd	nd
MW6D	11/12/2007	nd	nd	2.47	1.22	nd	nd	nd	nd	nd
	8/7/2008	nd	nd	nd	nd	nd	nd	nd	nd	nd
	6/21/2007	B.57	2,10	8.72	3.20	nd	nd	nd	nd	nd
MW7S	11/12/2007	nd	8.62	8.44	13.3	nd	nd	nd	nd	nd
	8/7/2008	nd	13.9	8.99	12.7	nd	nd	nd	nd	nd
-	6/21/2007	nd	15.5	190	88.5	0.243	nd	nd	nd	nd
MW7I	11/12/2007	< 10.0	28.4	206	133	< 2.00	<10.0	nd	nd	nd
I TRUMPANE	8/7/2008	nd	3.17	13.3	12.6	nd	nd	nd	nd	nd
	6/21/2007	nd	nd	2.81	1.56	nd	nd	nd	nd	nd
MW7D	11/12/2007	nd	nd	3.00	1.28	nd	nd	nd	nd	nd
2000000	8/7/2008	nd	nd	nd	nd	nd	nd	nd	nd	nd
	6/21/2007	nd	1.33	10.0	3.62	nd	nd	nd	nd	nd
MW85	11/12/2007	nd	4.54	4.34	10.4	nd	nd	nd	nd	nd
	8/6/2008	nd	27.0	10.1	1.86	nd	nd	nd	nd	nd
	6/21/2007	1,10	nd	nd	nd	nd	nd	nd	nd	nd
MW8D	11/12/2007	nd	nd	nd	nd	nd	nd	nd	nd	nd
-	8/6/2008	5,18	nd	nd	nd	nd	nd	nd	nd	nd
	6/21/2007	nd	nd	3.77	1,36	nd	nd	nd	nd	nd
MW95	11/12/2007	nd	nd	2.16	nd	nd	nd	nd	nd	nd
20000000	8/6/2008	nd	2,41	nd	nd	nd	0.391	nd	nd	nd
	6/21/2007	nd	nd	nd	nd	nd	nd	- 22	2000	0.810
MW9D	11/12/2007	nd	nd	nd	nd	nd	nd	nd	nd nd	nd
1111125	8/6/2008	nd	nd	nd	nd	0.021	10000	nd		nd
MW-NCC ⁽⁷⁾	6/21/2007	25	nd	7.72		nd	nd	nd	nd	nd
AW-NCC 2 ⁽³⁾	11/12/2007	nd nd	nd	nd 2.56	nd nd	nd	nd	nd	nd	nd
MW DUP ⁽⁹⁾	8/7/2008	nd	1.01	8.66	7.08	nd nd	nd nd	nd nd	nd nd	nd
	6/21/2007	nd	nd	nd nd	nd nd	nd nd	nd	nd	nd nd	nd
rip Blank ^{ites}	11/12/2007	nd	nd	nd	nd	nd		0.00	2004	nd
. F. Section	8/6/2008	nd	nd	nd	nd	nd nd	nd nd	nd nd	nd	nd
MTCA Meth	100000	NS ⁽¹²⁾	NS .	nd 5	5	0.2	5	1,000	nd 700	1,000
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	od B ⁽¹³⁾	7.2	80(14)			NS		-	-	-

All concentrations of water reported in micrograms per liter (µg/l) or parts per billion (ppb)
Concentrations shown in Bold indicated exceedance of cleanup level

Prepared By:	ML	Date:	8/22/2008
Checked By:	GEP	Date:	8/27/2008

FIGURES

LFPublic\027\30139\00***\NewCityCleaners&AdjacentlSCFigures.pdf

MAP SOURCE: USGS 7.5 TOPOGRAPHIC MAP RICHLAND, WASH. (1992)

Site Vicinity Map Interim Site Characterization

On-Site and Adjacent Properties-New City Cleaners 747 Stevens Drive, Richland, Washington

2000 FEET

☑ Groundwater Elevation in Wells (8/7/08)

Explanation

WELL NO.

PCE 1.0 Tetrochloroethylene Concentration
TCE 1.0 Trichloroethylene Concentration

Conceptual representation of PCE and TCE above MTCA Cleanup Level (5 ppb)

All results reported in parts per billion (ppb)
ND - not detected above laboratory method reporting limit

*Groundwater samples in Well MW-7D have historically reported low concentrations of PCE and TCE

Generalized Geologic Cross-Section with Conceptual PCE & TCE Groundwater Profile Interim Site Characterization

On-Site and Adjacent Properties-New City Cleaners 747 Stevens Drive, Richland, Washington

APPENDIX A

Site Photographs

Photo 1: Photograph of monitoring wells MW-11s, MW-11I, and MW-11D located west of the New City Cleaner Site (photograph taken from the east).

Photo 2: Photograph of EWE advancing MW-13D located east of the Site, in the Albertsons parking lot (photograph taken from the west).

Photo 3: Photograph of EWE advancing MW-12D located southwest of the Site along Lee Boulevard (photograph taken from the north).

Photo 4: Photograph of lithology from installation of MW-14D (photograph taken from the south).

APPENDIX B

LFR Lithologic Logs

	PAGE 1 OF 3				
PROJECT LOCATION Adjacent Properties DRILL	LING CONTRACTOR Environmental West Exploration Inc.				
PROJECT NUMBER 027-30139-00 DRILL	LING METHOD Sonic				
	STAMP (IF APPLICABLE) AND/OR NOTES				
OVA EQUIPMENT PID: MiniRae 2000					
GROUND ELEVATION 359.7 ft HOLE DIAMETER 8-5/8" 0-25' bgs, 6-5/	/8" 25-58 2' bas				
TOP OF CASING ELEVATION 359.51 ft HOLE DEPTH 58.2 ft					
▼ STABILIZED WATER 13.8 ft / Elev 345.9 ft					
LOGGED BY Meghan Lunney DATE 4/10/08					
	8				
DEPTH (feet) NUMBER NUMBER SAMPLE TYPE NUMBER U.S.C.S. GRAPHIC LOG DEPTHS (feet) (feet)	PID (ppm) PID (ppm) MWADDID TO THE PID (ppm) PID (ppm) PID (ppm) PID (ppm)				
0.3 Asphalt	359.4				
Silty Gravelly SAND; 10YR 4/2; dry; loose consistency; fine to medium sand, modera fine to coarse gravel to cobbles (~15%), s	ate sorted; silt (~10%)				
SILT; 2.5Y 5/2; moist; medium consistence plasticity; slow dilatancy	NOW NOW 5				
very moist	0.2 — 2" Dia. Sch 40 PVC Casing				
	0.6				
	0.3				
MW10D-13 Clayey Silt; 2.5Y 5/2; very moist to wet; ha	ard 0.3 ✓-Hydrated				
Clayey Siit, 2.31 5/2, very moist to wet, na	Deficitive Crips				
oxidation visible 15-22.6' bgs	0.4				
PROP. NGCGPJ	0.4				
20 [WW] COMMENTS (Continued Next Page)	20				
COMMENTS Consistency: moderate plasticity oxidation visible 15-22.6 bgs ML COMMENTS (Continued Next Page) APPROVED BY: Median Aug. DATE: 9/10/02	y ©LFR				

PROJECT NAME _A CLIENT _Landye Be				>			WE	LL NUMBER MW10-I PAGE 2 OF
DEPTH (feet) SAMPLE TYPE NUMBER	SAMPLE	U.S.C.S.	GRAPHIC LOG	DEPTHS (feet)	LITHOLOGIC DESCRIPTION	ELEVATIONS (feet)	PID (ppm)	WELL DIAGRAM
		ML		22.6	Clayey Silt; 2.5Y 5/2; very moist to wet; hard consistency; moderate plasticity (continued)	. 337.1	0.2	- 2" Dia, Sch 40
700		ML		22.0	Sandy SILT; 2.5Y 4/1; wet; medium to hard consistency; moderate plasicity; fine to very fine sand (~10%)	337.1	0.7	PVC Casing
25 MW10D-24.5		SP		25.0	Sand; 2.5Y 4/1; wet; loose consistency; fine to medium sand, well sorted Sandy GRAVEL; 2.5Y 5/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; fine to coarse sand (25%)	334.7	1.7	→ Hydrated Bentonite Chips
30							0.6	
ę							0.2	
35							0.2	
		GM					0.0	
40							0.5	
45						,	0.6	
							0.3	
50 COMMENTS					(Continued Next Page)			5
APPROVED BY:	7	1		0	LiegDATE: 9/10/00			@LFR

PROJECT NAME _Adj. Pr CLIENT _Landye Bennett				WEI	L NUMBER MW10- PAGE 3 OF
SAMPLE TYPE NUMBER SAMPLE SAMPLE RECOVERY				PID (ppm)	WELL DIAGRAM
COMMENTS APPROVED BY: Ma	GM 56.8 ML 58.2	Sandy GRAVEL; 2.5Y 5/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; fine to coarse sand (25%) (continued) Sandy SILT; GLEY 1 3/10G; moist; medium consistency; low plasticity; very fine sand (10%)	302.9	0.6	2" Dia. Sch 40 PVC, 20 Slot Screen End Cap ■ Bentonite Pellets
COMMENTS	1				(DIED
APPROVED BY:	chan .	DATE: 9/10/08			₪LFR

2014.03433	ECT NAME _Ac			LLP	WELL NUMBER MW10-I PAGE 1 OF 2				
PROJ	ECT LOCATION	N Adj	acent	roperties DRILLING	CONTRACTOR Environmental West Exploration Inc.				
PROJ	ECT NUMBER	027-3	80139-	0 DRILLING	METHOD Sonic				
LOCA	TION Richland	Scho	ol Dist		APPLICABLE) AND/OR NOTES				
OVA	EQUIPMENT P	PID: Mi	niRae	0000					
B440060		Ub ere	everen	HOLE DIAMETER 8-5/8" 0-24' bgs, 6-5/8" 24-	-32.7' bas				
		3		9.24 ft HOLE DEPTH 32.7 ft					
1277125-37	RST ENCOUNTE								
NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,				Elev 346.1 ft					
N 5 305	SED BY Megha								
	The second second second	Lun	liey	DATE 4/10/00	<i>(</i> 0				
DEPTH (feet)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC	SH (19 LITHOLOGIC DESCRIPTION	ELEVATIONS (feet) METH (feet)				
	1000		2005008		359.4				
-		SM		Silty Gravelly SAND; 10YR 4/2; dry to moist; loose or fine to medium sand, well sorted; fine to coarse grave (~20%), silt (10%)	onsistency; el to cobbles				
- 5				Sandy SILT; 2.5Y 5/2; medium consistency; low to m plasticity; very fine sand (10%); organics (roots bark,	noderate				
- - - 10				sand content decrease, increase in clay content (~15					
BORING+WELL 2006 027-31039-00 ADJ PROP. NGC.GFJ LFR SEPT 2006:GDT 9/10/08 O O O O O O O O O O O O O O O O O O O		ML		oxidation visible 13 to 22' bgs clay content decreases, very fine sand content increases.	ase (~10%)				
OP. NCC.				sand content decreases (~5%), increase in clay cont	ent (~15%)				

LITHOLOGIC DESCRIPTION Sandy SILT; 2.5Y 5/2; medium consistency; low to moderate plasticity; very fine sand (10%); organics (roots bark, 2%) Clayey Sandy SILT; GLEY 1 2.5/10Y; medium consistency; low to moderate plasticity; very fine sand (10%); clay (5%) Clayey Sandy SILT; GLEY 1 2.5/10Y; medium consistency; low to moderate plasticity; very fine sand (10%); clay (5%) 337.7 Clayey Sandy SILT; GLEY 1 2.5/10Y; medium consistency; low to moderate plasticity; very fine sand (10%); clay (5%) 336.1 337.7 AL SAND; Gley 1 2.5/10Y; wet; loose consistency; fine to coarse gravel to cobbles, poorly sorted; fine to medium sand (30%)	PROJECT NAME _Adj. Pro CLIENT _Landye Bennett I		W	ELL NUMBER MW10- PAGE 2 OF
plasticity; very fine sand (10%); organics (roots bark, 2%) (continued) 22.0 Clayey Sandy SILT; GLEY 1 2.5/10Y; medium consistency; low to moderate plasticity; very fine sand (10%); clay (5%) 336.1 SP 24.0 SAND; Gley 1 2.5/10Y; wet; loose consistency; medium sand, well 335.7 Sorted Sandy GRAVEL; 2.5Y 5/1; wet; loose consistency; fine to coarse gravel to cobbles, poorly sorted; fine to medium sand (30%) GM GM 30 2'Dia. Sch 40 PVC, 20 Slot Screen	SAMPLE TYPE NUMBER U.S.C.S.	CEPTHS (feet)	DESCRIPTIONS (feet)	
APPROVED BY: Meghan Lang Date: 9/10/06		plasticity; very fine sand (10%); (continued) 22.0 Clayey Sandy SILT; GLEY 1 2. moderate plasticity; very fine sate 23.6 24.0 SAND; Gley 1 2.5/10Y; wet; lock sorted Sandy GRAVEL; 2.5Y 5/1; wet gravel to cobbles, poorly sorted	337.7 5/10Y; medium consistency; low to and (10%); clay (5%) 336.1 ose consistency; medium sand, well 335.7 ; loose consistency; fine to coarse; fine to medium sand (30%)	2" Dia. Sch 40 PVC, 20 Slot Screen
COMMENTS COMMENTS	COMMENTS 1300 13	/		
APPROVED BY: Mushan Lang DATE: 9/10/08 DLFR	APPROVED BY:	han Lary DATE: 9	10/06	۵LFR

A SUPPLY STREET	1), 1	PROJECT NAME Adj. Prop. NCC CLIENT Landye Bennett Blumstein LLP PAGE 1 OF 2												
PROJEC	T LOCATION	Ad Ad	acent	Prope	erties	-47	DRILLING CONTR.	ACTOR	Envi	ronmental	West	Exploration Inc.		
PROJEC*	T NUMBER	027-	30139	-00			DRILLING METHO	D Son	nic					
LOCATIO	ON West of	NCC	Bldg &	& storn	nwater	swale	STAMP (IF APPLIC	CABLE)	AND/C	OR NOTE	S			
OVA EQU	UIPMENT P	ID: M	iniRae	2000										
GROUND	ELEVATION	N _35	7.9 ft			HOLE DIAMETER _8-5/8" 0-17	" bgs, 6-5/8" 17-47' bgs							
TOP OF	CASING ELE	VATI	ON _	357.6	ft	HOLE DEPTH 47.0 ft								
¥ FIRST	ENCOUNTE	ERED	WAT	ER _1	7.0 ft /	Elev 340.9 ft								
▼ STAB	ILIZED WAT	ER _	11.5 f	t / Ele	/ 346.4	ft								
LOGGED	BY Megha	n Lur	ney		DA	TE 4/8/08								
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC		LITHOLOGIC DESC	CRIPTION	ELEVATIONS (feet)	PID (ppm)	A.F	WELL	DIAGRAM	DEPTH (feet)	
				22.57	0.4	Surface vegetation/weeds	and the same beautiful and	357.5				Concrete/Grout		
5			ML		¥	SILT; 10YR 4/2; moist; hard coplasticity; slow dilatancy; oxidat increase in clay content (~10%)	ion visible		0.0			—2" Dia. Sch 40 PVC Casing	5	
-												-Hydrated	5-	
E	3								0.0			Bentonite Chips	Ç.	
15						very moist			5024				15	
- M	W11D-15.8	X				decrease in clay content, incressand (~10%)	ase in very fine to fine		0.0				15	
-	W11D-17.3	×			17.5			340.4	0.0				-	
- 10	WV11D-17.3		SW	iii	18.0	Gravelly SAND; 10YR 3/2; very consistency; medium to coarse	moist; loose sand, poorly sorted;	339.9	0.0	H			- 1	
5	4		ML		19.5	fine to coarse gravel (~30%) Sandy SILT; 10YR 4/2; very me	oist; hard consistency;	338.4	T.				-	
20 COMM	ENTS		GM		1	low plasticity; slow dita.; very fir (Continued Next)	ne to fine sand (10%) / Page)						20	
	VED BY:	hee	la	an G	1	DATE: 9/101	68					OLF I	R	
		0												

	ECT NAME _Ad T _Landye Ber				5		WE	ELL NUMBER MW1 PAGE 2	
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS (feet)	ELEVATIONS (feet)	PID (ppm)	WELL DIAGRAM	DEPTH (feet)
			GM		22.8	Sandy GRAVEL; 10YR 4/1; wet; loose consistency; fine to coarse gravel, moderate to poorly sorted; fine to coarse sand (~30%) (continued) 335.1		− 2" Dia, Sch 40 PVC Casing	
- - 25			ML		24.0	Sandy SILT; 10YR 3/3; wet; medium dense consistency; low plasticity; fine sand (~30%) color change to 5Y 4/1 Sandy GRAVEL; 10YR 4/1; wet; loose consistency; fine to coarse gravel, moderate to poorly sorted; fine	0.0		25
5	¥					fine to coarse gravel, moderate to poorly sorted; fine to coarse sand (~30%)	0.2	→-Hydrated Bentonite Chips	
30							0.0		30
							0.0		
35			GM				0.1	4-10/20 Colorado Silica Sand	35
							0.0		
40							0.0	2" Dia. Sch 40 PVC, 20 Slot Screen	40
-	MANAGE 44 C				44.5	313,4			-
- 45	MW11D-44.3		ML		47.0	Sandy SILT; 10YR 4/3; moist; medium consistency; 312.9 low plasticity; slow dila.; very fine to fine sand (~10%) Sandy Silt; GLEY 1 4/N; moist; medium consistency; low plasticity; slow dila.; very fine to fine sand (~10%) 310.9	0.0 0.0 0.0 0.0	End Cap	45
							1	,	
сом	MENTS								
APPR	ROVED BY:	ligi	la	<u></u>	Z	esey DATE: 9/10/08		OLF	R

PROJECT NAME Adj. F CLIENT Landye Bennet		7) - (XX T - U	WELL NUMBER MW11-I PAGE 1 OF 2				
PROJECT LOCATION _/	Adjacent F	Properties	DRILLING CONTRACTOR	Environmental West Exploration Inc.			
PROJECT NUMBER 02	7-30139-	00	DRILLING METHOD Sonic	14			
LOCATION West of NC	C Bldg &	stormwater swale	STAMP (IF APPLICABLE) A	ND/OR NOTES			
OVA EQUIPMENT PID:	MiniRae :	2000					
		HOLE DIAMETER 8-5/8" 0-16	' bgs, 6-5/8" 16-37' bgs				
TOP OF CASING ELEVA	TION 3	57.66 ft HOLE DEPTH 37.0 ft					
☐ FIRST ENCOUNTERE	D WATE	R _17.0 ft / Elev 341.0 ft					
▼ STABILIZED WATER	11.7 ft /	/ Elev 346.3 ft					
LOGGED BY Meghan L	unney	DATE 4/8/08					
DEPTH (feet) SAMPLE TYPE NUMBER	GRAPHIC LOG	C (te d) LITHOLOGIC DESC	CRIPTION I	(feet) (feet) DEPTH (feet)			
	11111 森·奈·多			157.6 27 Consents/Court			
5 10	ı.	Sandy SILT; 2.5Y 5/2; dry; hard cons dilatancy; very fine to fine sand (~3% present 0 to 7 ft bgs very moist, increase in clay and oxida bgs); organics (roots); garbage				
990 15		Challed and Charled Annabour Collaboration and Charles	SURPLINES OF PROPERTY SPECIAL	15			
- S S E D		decrease in clay content, increase in 16.0	3	142.0			
N N	w il IIII	16.5 Gravelly SAND; 10YR 3/2; very moist to coarse sand, poorly sorted; fine to	coarse gravel (~30%)	41.5			
100		Sandy SILT; 10YR 4/2; very moist; hat plasticity; slow dila.; very fine to fine s	ard consistency; low 3 sand (10%)	40.5			
G G	м	color change to 5Y 4/1 Sandy GRAVEL; 10YR 4/1; wet; loos					
20 Z	. 4	gravel, moderate to poorly sorted; fine		20			
BORINGAWELL 2006 027:31039-00 ADJ PROP NCC GPJ LFR SEPT 2006 COMMENTS Above 12	ghan	Continued Next		۵LFR			

PROJECT NAME Adj. Pro CLIENT Landye Bennett B		WI	ELL NUMBER MW11-I PAGE 2 OF 2
DEPTH (feet) SAMPLE TYPE NUMBER U.S.C.S.		ELEVA (fe	WELL DIAGRAM (teed)
25 30 GM 30 APPROVED BY: A	Sandy GRAVEL; 10YR 4/1; wet; le gravel, moderate to poorly sorted; (continued) 37.0	ose consistency; fine to coarse fine to coarse sand (~30%) 321.0	2" Dia, Sch 40 PVC, 20 Slot Screen -10/20 Colorado Silica Sand End Cap 30 -Hydrated Bentonite Chips
APPROVED BY:	shan Lupate: 9	1/10/08	@LFR

100000000000000000000000000000000000000	JECT NAME A NT Landye Bei			Eller for the files	WELL NUMBER MW11-S PAGE 1 OF 1				
PRO	JECT LOCATIO	N Ad	acent	Properties	DRILLING CONTRACT	OR Enviro	onmental West		
PROJ	JECT NUMBER	027-	30139	-00	DRILLING METHOD _S	Sonic			
LOCA	ATION West of	NCC	Bldg &	stormwater swale			R NOTES		
275,550	EQUIPMENT F			1947-0000 various of 4288 _ PC 1989.000			94) (1358) 1555-750		
100000000		0.5+1 -2570		HOLE DIAMETER 6-5/	8" 0-15 2' has				
10.000.000				357.56 ft HOLE DEPTH 15.2 ft					
250				ER _11.0 ft / Elev 347.0 ft					
32334334	ABILIZED WA			Ballet Bill Street Conversal Date	_				
1000	GED BY Megh	an Lun	ney	DATE <u>4/8/08</u>					T
DEPTH (feet)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC		C DESCRIPTION	ELEVATIONS (feet)	WELL	DIAGRAM	DEPTH (feet)
			1111			357.6		Concrete/Grout	
-				Sandy SILT; 2.5Y 5/2; dry; had dilatancy; very fine to fine san	rd consistency; low plasticity; slow d (~10%); organics (roots)		4	-Concrete/Grout	
-								—2" Dia. Sch 40 PVC Casing	
- - -		ML						-Hydrated Bentonite Chips	5
10	e e			increase in clay and oxidation	visible from 11 to 15 ft bgs			 10/20 Colorado Silica Sand 	10
2006.GDT 9/10/0								—2" Dia. Sch 40 PVC, 20 Slot Screen —End Cap	-
PROP. NCC.GPJ LFR SEPT.	¥		11111	15.2		342.8	330_133	End day	15
WELL 2006 027-31039	MMENTS ROVED BY:	Neg	La	Lang DATE:	7 ho 108			@LFI	R

CLIENT Landye Beni		- CO.	,		WELL NUMBER MW12-D PAGE 1 OF 2			
PROJECT LOCATION	Adjacent	Propert	ties	DRILLING CONTRACTO	OR Env	rironmental West Exploration Inc.		
PROJECT NUMBER	027-30139	9-00		DRILLING METHOD S	onic			
LOCATION Richland	School Dis	strict, we	estern	parking lot STAMP (IF APPLICABL	E) AND/	OR NOTES		
OVA EQUIPMENT PI	D: MiniRae	2000		100000000000000000000000000000000000000	• • • • • • • • • • • • • • • • • • • •			
				HOLE DIAMETER 8-5/8" 0-20' bgs, 6-5/8" 20-46' bgs				
				HOLE DEPTH _46.0 ft				
✓ FIRST ENCOUNTE				Septistant (1996-10) - Martin (1990-1990)				
▼ STABILIZED WATE								
LOGGED BY Meghan	.907		PECYSP	TE 4/9/08				
	SAMPLE RECOVERY U.S.C.S.	GRAPHIC LOG	DEPTHS (feet)	LITHOLOGIC DESCRIPTION	(meet)	WELL DIAGRAM WELL DIAGRAM		
, ASSY)		9999999	0.3	Asphalt358.	Z			
5	SM		6.0	Gravelly SAND; 10YR 5/3; dry to slightly moist; loose consistency; fine to medium sand, well sorted; fine to coarse gravel to cobbles (~10%) SILT; 10YR 5/2; dry to slightly moist; hard consistency; moderate plasticity; slow dilatancy; clay (~10%)	0.2			
MW12D-12	ML		Ť	very moist, increase in very fine to fine sand (~5%), decrease in clay content	0.3			
있 15 님					0.1			
DP. NCC.GPJ LFR Si					0.6			
20			20.07	339.	0	20		
© COMMENTS	W == 3		· · · ·	(Continued Next Page)		20		
## 15 15 15 15 15 15 15 15	egla	n ä	La	du DATE: 9/10/08		©LFR		

	NT Landye Ber				P		WE	LL NUMB	ER MW12 PAGE 2	
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE	U.S.C.S.	GRAPHIC	DEPTHS (feet)	CILEVATIONS (feet)	PID (ppm)	WELL DI	AGRAM	DEPTH (feet)
	MW12D-22.5		SM SP ML		21.0 21.5 23.0	Silty SAND; 10YR 4/3; very moist to wet; loose consistency; fine to medium sand, well sorted SAND; 10YR 3/4; very moist to wet; loose consistency; medium sand, well sorted Sandy SILT; 10YR 4/2; very moist; soft to medium consistency; moderate to low plasticity; very fine to fine sand (15%) Sandy GRAVEL; 10YR 4/1; wet; loose consistency; fine to coarse gravel to cobbles, poorly sorted; fine to medium sand (25%)			2" Dia. Sch 40 PVC Casing Hydrated Bentonite Chips	25
30			GM				0.4		10/20 Colorado Silica Sand	30
35 - - - - 40	ar y						0.6		2" Dia. Sch 40 PVC, 20 Slot Screen	35
45			ML		42.5	Sandy SILT; 10YR 4/3; very moist; hard consistency; low plasticity; low dil.; fine sand (10%) color change to Gley 1 3/5G	0.6		End Cap Hydrated Bentonite Chips	45
	MMENTS ROVED BY:	Re	eko	La Caracteria de la Car	- X	DATE: 9/10/08			ı LFI	R

. 0

100000000000000000000000000000000000000	ECT NAME _Ad		-	-	ı LLP		WE	ELL NUMBER MW12-I
PROJ	ECT LOCATION	l Adj	acen	l P	roperti	es DRILLING CONTRACTOR	R Enviro	onmental West Exploration Inc.
PROJ	ECT NUMBER	027-3	3013	9-0	0	DRILLING METHOD Sor	nic	
LOCA	TION _Richland	Scho	ol Di	istri	ct, we	stern parking lot STAMP (IF APPLICABLE) AND/O	R NOTES
OVA E	EQUIPMENT P	ID: Mi	niRa	e 2	000	A CONTRACTOR OF THE CONTRACTOR		
GROU	IND ELEVATION	N _35	9.3 ft	t		HOLE DIAMETER _8-5/8" 0-16' bgs, 6-5/8" 16-36' bgs		
TOP C	OF CASING ELE	VATIO	NC	35	8.83 ft	HOLE DEPTH 36.0 ft		
79.8						D ft / Elev 343.3 ft		
70000 0000000	ABILIZED WAT							
100000000000000000000000000000000000000	ED BY Megha					DATE 4/9/08		
₩	9				2000		S	et
DEPTH (feet)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC	9	DEPTHS (feet)	LITHOLOGIC DESCRIPTION	ELEVATIONS (feet)	WELL DIAGRAM WELL DIAGRAM
EPTI	MPL	U.S.	GRA	۲	DEP (fe		EVA (fe	WELL DIVORAM
	SA							
_			8888	66	0.3	Asphalt Gravelly SAND; 10YR 5/3; dry; loose consistency; fine sand, well	_359.0	-Concrete/Grout
						sorted; fine to coarse gravel to cobbles (~10%)		Sect Sect
		1000000						88 88 88
		SM						## ## I
- 5								5
							050.0	88 88
-			T	П	6.0	SILT; 10YR 5/2; moist; hard consistency; moderate plasticity; slow	353.3	—2" Dia. Sch 40 PVC Casing
-				Ш		dilatancy; clay (~10%)		88 88
-				Ш				BB BB
-				Ш				→-Hydrated
10				$\parallel \parallel$				Bentonite Chips 10
-		ML		Ш				SS SS
-		3739794						33 33 I
				Ш	<u>w</u> .			
				Ш				SH SH
15								15
					16.07		343.3	33 33
				H	ro.ay	Silty SAND; 10YR 4/3; very moist to wet; loose consistency; fine to medium sand, well sorted	343.3	SE SE
-		SM				medium sand, well sorted		88 88 I
-		277.55					2000000	
-		SP		H	19.0	SAND; 10YR 3/4; very moist to wet; loose consistency; medium	340.3	
20		- SP	190			sand, well sorted (Continued Next Page)		20
CON	MENTS					,		
						1		
	7	1	1			Lang DATE: 9/10/08		@LFR
APPI	ROVED BY: //	Up,	10	2	4	Kasey DATE: 9/10/08		

PROJECT NAM CLIENT Land			LLP		WE	ELL NUMBER MW1 PAGE 2 C	2-I OF 2
DEPTH (feet)		1000	DEPTHS (feet)	LITHOLOGIC DESCRIPTION	ELEVATIONS (feet)	WELL DIAGRAM	DEPTH (feet)
	SP	uni.	20.5	Sandy SILT: 10YR 4/2: very moist: soft to medium consistency:	338.8	88 88	
-	ML		22.0	Sandy SILT; 10YR 4/2; very moist; soft to medium consistency; moderate to low plasticity; very fine to fine sand (15%)	337.3		
30	GM		22.0	Sandy GRAVEL; 10YR; wet; loose consistency; fine to coarse gravel to cobbles, poorly sorted; fine to medium sand (25%)	323.3		30
COMMENTS APPROVED B							
APPROVED B	v: The	gha	46	Lay DATE: 9/10/00		@LFF	2

PROJECT NAME Adj. Prop. NCC CLIENT Landye Bennett Blumstein LLP	WELL NUMBER MW13-D PAGE 1 OF 3
PROJECT LOCATION _Adjacent Properties	DRILLING CONTRACTOR Environmental West Exploration Inc.
PROJECT NUMBER _027-30139-00	DRILLING METHOD Sonic
LOCATION Albertsons parking lot (west side of bldg)	STAMP (IF APPLICABLE) AND/OR NOTES
OVA EQUIPMENT PID: MiniRae 2000	and the first transfer open open options and extension open options.
GROUND ELEVATION 360.3 ft HOLE DIAMETER 8-5/8"	0-13.5' bgs, 6-5/8" 13.5-57.9' bgs
TOP OF CASING ELEVATION _359.97 ft HOLE DEPTH _57.9 ft	
✓ FIRST ENCOUNTERED WATER 13.0 ft / Elev 347.3 ft	
▼ STABILIZED WATER 14.4 ft / Elev 345.9 ft	
LOGGED BY Meghan Lunney DATE 4/11/08	
SAMPLE TYPE NUMBER NUMBER U.S.C.S. GRAPHIC LOG DEPTHS (feet)	DEPTH (feet)
0.3 Asphalt	360.0
Silty Gravelly SAND; 10YF consistency; fine to mediul coarse gravel to cobbles (-	m sand, well sorted; fine to
SILT; 10YR 4/2; moist; me plasticity; slow dilatancy clay content increases, ver	dium consistency; low 0.0 5
MW13D-13.3 Sandy GRAVEL; 2.5Y 5/1; fine to coarse gravel to cob	0.0 346.8 moist; loose consistency; 0.3 → Hydrated Bentonite Chips
fine to coarse gravel to cot medium sand (25%)	obles, poorly sorted;
20	0.3
COMMENTS (Continued I	I PETR PETR
APPROVED BY: Mighan Livy DATE: 91	10/08 DLFR

PROJECT NAME _A CLIENT _Landye Ber			*		WE	LL NUMBER MW13-D PAGE 2 OF 3
DEPTH (feet) SAMPLE TYPE NUMBER	SAMPLE RECOVERY U.S.C.S.	GRAPHIC	SY (19 LITHOLOGIC DESCRIPTION	ELEVATIONS (feet)	PID (ppm)	WELL DIAGRAM WELL DIAGRAM
- - 25			Sandy GRAVEL; 2.5Y 5/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; medium sand (25%) (continued)		0.7	— 2" Dia. Sch 40 PVC Casing
30					0.4	30
35	GI	Δ		e A	0.4	35
40					0.3	40
50					0.2	45 45 410/20 Colorado Silica Sand 2" Dia. Sch 40 50
COMMENTS		/	(Continued Next Page)			
APPROVED BY:	Mich	an	Larry DATE: 9/10/08			OLFR

	ECT NAME _Ac)		W	/ELL NUMBER MW1:	
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC	DEPTHS (feet)	LITHOLOGIC DESCRIPTION (feet)	PID (nom)	_	DEPTH (feet)
	MW13D-53.6		GM		53.6 54.0	Sandy GRAVEL; 2.5Y 5/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; medium sand (25%) (continued) 306. Sandy SILT; 2.5Y 5/3; moist; medium consistency; and consistency; are consistency; and consistency; are consistency; and consistency; and consistency; are consistency; and consistency; and consistency; are cons		4	
55 			ML		55.5	low plasticity; very fine to fine sand (10%) Sandy SILT; Gley 1 3/10Y; moist, medium consistency; low plasticity; very fine to fine sand (15%) Sandy SILT; 2.5Y 5/3; moist; medium consistency; low plasticity; very fine to fine sand (10%); Bands of color change between Gley 1 3/10Y and 2.5Y 5/3	0.0	6	55
COI	MMENTS	111	1		· · · · · ·	1 1 DATE: 9/4/08		۵LF	R

PROJECT NAME Adj. Prop. NCC CLIENT Landye Bennett Blumstein LLP	WELL NUMBER MW13-I
PROJECT LOCATION Adjacent Properties	DRILLING CONTRACTOR Environmental West Exploration Inc.
PROJECT NUMBER <u>027-30139-00</u>	DRILLING METHOD Sonic
LOCATION _Albertsons parking lot (west side of bldg)	STAMP (IF APPLICABLE) AND/OR NOTES
OVA EQUIPMENT PID: MiniRae 2000	_
GROUND ELEVATION 360.2 ft HOLE DIAMETER 8-5/8	" 0-12.5' bgs, 6-5/8" 12.5-27.9' bgs
TOP OF CASING ELEVATION 359.78 ft HOLE DEPTH 27.9 ft	
✓ FIRST ENCOUNTERED WATER 12.5 ft / Elev 347.7 ft	
▼ STABILIZED WATER 14.2 ft / Elev 346.0 ft	
LOGGED BY Meghan Lunney DATE 4/14/08	
DEPTH (feet) U.S.C.S. GRAPHIC LOG DEPTHS (feet)	ELEVATIONS (feet) (feet)
fine to medium sand, well sorte (~25%), silt (20%)	dry to moist; loose consistency; d; fine to coarse gravel to cobbles
low plasticity; slow dilatancy; ve	—2" Dia. Sch 40 PVC Casing ———————————————————————————————————
10 12.57 Sandy GRAVEL; 10YR 4/1; we gravel to cobbles, poorly sorted	it; loose consistency; fine to coarse
20 COMMENTS (Continued	2" Dia. Sch 40 PVC, 20 Slot Screen
APPROVED BY: Meshan hay DATE:	9/10/08 ULFR

	ECT NAME A T Landye Be					W	ELL NUI	VIBER MW1	
DEPTH (feet)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC	DEPTHS (feet)	LITHOLOGIC DESCRIPTION	ELEVATIONS (feet)	WELL	. DIAGRAM	DEPTH (feet)
		GM		27.9	Sandy GRAVEL; 10YR 4/1; wet; loose consistency; fine to coarse gravel to cobbles, poorly sorted; medium sand (30%) (continued)	332.3		End Cap	25
	MENTS ROVED BY:	Nep	la.	X.	DATE: 9/10/05			@LFI	R

PROJECT NAME Adj. Prop. NCC CLIENT Landye Bennett Blumstein LLP		VVE	LL NUMBER MW14	610 M W
PROJECT LOCATION Adjacent Properties	DRILLING CONTRACTO	R Envir	onmental West Exploration Inc.	
PROJECT NUMBER 027-30139-00	DRILLING METHOD So	onic		
LOCATION Albertsons parking lot (west side o	bldg) STAMP (IF APPLICABLE	E) AND/C	OR NOTES	
OVA EQUIPMENT PID: MiniRae 2000	4000000000 FO Med CL - 4000000 cm			
and the second s	HOLE DIAMETER <u>8-5/8" 0-12</u> ' bgs, 6-5/8" 12-57' bgs			
TOP OF CASING ELEVATION _359.72 ft				
✓ FIRST ENCOUNTERED WATER 12.0 ft / E				
▼ STABILIZED WATER 14.2 ft / Elev 346.0 ft				
0.000	E 4/15/08		24.	
SAMPLE TYPE NUMBER SAMPLE RECOVERY U.S.C.S. GRAPHIC LOG DEPTHS (feet)	LITHOLOGIC DESCRIPTION .	PID (ppm)	WELL DIAGRAM	DEPTH (feet)
- 0.3	Asphalt SILT; 10YR 4/2; moist; medium consistency; low plasticity; slow dilatancy; clay nodules present	9)	Concrete/Grout	-
5 ML	clay content increases, oxidation visible, very moist	0.2	— 2" Dia. Sch 40 PVC Casing	5
	Sandy GRAVEL; 10YR 4/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; medium sand (25%)	0.1	- - - Hydrated Bentonite Chips	10
		0.3		15
20 COMMENTS	(Continued Next Page)	0.1		20
APPROVED BY: My han La	DATE: 9/10/08		۵LF	R

ROJECT NAME Adj. Prop. NCC LIENT Landye Bennett Blumstein LLP		VVL	LL NUMBER MW14- PAGE 2 OF
SAMPLE TYPE NUMBER SAMPLE RECOVERY U.S.C.S. GRAPHIC LOG DEPTHS (feet) COO OOT OOT OOT OOT OOT OOT OOT OOT OOT	ELEVATIONS (feet)	PID (ppm)	WELL DIAGRAM
Sandy GRAVEL; 10YR 4/1; moist; loose consistency fine to coarse gravel to cobbles, poorly sorted; medium sand (25%) (continued)	<i>r</i> .	0.1	——2" Dia, Sch 40 PVC Casing
25		0.3	
		0.2	-Hydrated Bentonite Chips
30		0.5	
		0.4	
35 GM			
		0.5	
40	,	0.3	
		0.3	
45		0.5	-10/20 Colorado Silica Sand
50			2" Dia. Sch 40 PVC, 20 Slot Screen
COMMENTS (Continued Next Page)	3 (1-15-W) (3-W)		

				>			WEI	L NUMBE	PAGE 3 C	I-D OF 3
SAMPLE TYPE NUMBER	SAMPLE RECOVERY					ELEVATIONS (feet)	PID (ppm)	WELL DIAG		DEPTH (feet)
MW14D-53.4		GM		53.4	3		0.7		nd Con	
		ML			low plasticity; very fine sand (10%) Sandy SILT; Gley 1 3/10Y; medium consistency; low plasticity; very fine to fine sand (20%)		0.8	 -H	ydrated	55
	Neg	ho	Un	1	A DATE: 9/10/08			Ĺ	n LFI	R
	MW14D-53.4	AMMENTS SAMPLE TYPE NUMBER SAMPLE SAMPLE	T Landye Bennett Blumst SAMPLE TYPE NUMBER SAMPLE TYPE NUMBER SAMPLE TYPE SAMPLE TYPE NUMBER SAMPLE TYPE NUM	SAMPLE TYPE NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER RECOVERY RECOVERY GRAPHIC LOG	AMENTS T _ Landye Bennett Blumstein LLP SAMPLE TYPE NUMBER SAMPLE TYPE SAMPLE TYPE	T Landye Bennett Blumstein LLP B LITHOLOGIC DESCRIPTION Sandy GRAVEL; 10YR 4/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; medium sand (25%) (continued) MIL MIL SAIN SAIN SILT; Ciey 1 3/10Y; medium consistency; low plasticity; very fine to fine sand (20%) AMENTS	The Landye Bennett Blumstein LLP ALTHOLOGIC DESCRIPTION Sandy GRAVEL; 10YR 4/1; moist; loose consistency; fine to coarse graval to cabbles, poorly sorted; medium sand (25%) (confinued) Sandy SILT; 2.5Y 5/3; moist; medium consistency; low plasticity; very fine to fine sand (20%) MW14D-53.4 MIL MIL Sandy SILT; 2.5Y 5/3; moist; medium consistency; low plasticity; very fine to fine sand (20%) Sandy SILT; Get a 71/07; medium consistency; low plasticity; very fine to fine sand (20%)	T Landvey Bennett Blumstein LLP A May 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TL Lanche Bemerit Blumstein LLP WELL DIA Sandy GRAVEL; 10YR 4/1; moist; loose consistency; fire to coarse gravel to catalogs, poorly conted, medium sand (25%) (continued) MMV14D-S3.4 ML Sandy SILT; 2.5Y 5/3; moist; medium consistency; plasticity, very fine sand (10%) Sandy SILT, Cley 1 3/10Y; medium consistency; low plasticity, very fine sand (20%) 57.0 MMENTS	TI. Leavely Bennett Blumstein LLP PAGE 3. LITHOLOGIC DESCRIPTION Sanety GRAVEL; 10YR 4/1; maist, lone consistency; medium c

PROJECT NAME Adj. Prop. NCC CLIENT Landye Bennett Blumstein LLP	WELL NUMBER MW14-I				
PROJECT LOCATION Adjacent Properties					
PROJECT NUMBER <u>027-30139-00</u>	DRILLING METHOD Sonic				
LOCATION Albertsons parking lot (west side of bldg)	STAMP (IF APPLICABLE) AND/OR NOTES				
OVA EQUIPMENT PID: MiniRae 2000	2 €				
GROUND ELEVATION 360.0 ft HOLE DIAMETER 8-5/8" 0-	<u>1</u> 2' bgs, 6-5/8" 12-27.3' bgs				
TOP OF CASING ELEVATION 359.66 ft HOLE DEPTH 27.3 ft					
▼ FIRST ENCOUNTERED WATER 12.0 ft / Elev 348.0 ft					
▼ STABILIZED WATER _14.2 ft / Elev 345.9 ft					
LOGGED BY Meghan Lunney DATE 4/15/08					
DEPTH (feet) U.S.C.S. U.S.C.S. GRAPHIC LOG DEPTHS (feet)	ELEVATIONS (feet) (feet) DEPTH (feet)				
98888 0.3. Asphall	359.7 Concrete/Grout				
SILT; 10YR 4/2; moist; medium codilatancy; clay nodules present clay content increases, very moist ML 10 12.87 Sandy GRAVEL; 10YR 4/1; moist; coarse gravel to cobbles, poorly so	2" Dia, Sch 40 PVC Casing				
20 Continued N	—End Cap 20				
APPROVED BY: Alghan hay DATE: 9/1					

PROJECT NAME Adj. Prop. NCC CLIENT Landye Bennett Blumstein LLP	WE	ELL NUMBER MW14-I PAGE 2 OF 2
SAMPLE TYPE NUMBER NUMBER NUMBER NUMBER NUMBER (feet) (feet)	ELEVATIONS (feet)	WELL DIAGRAM (feet)
Sandy GRAVEL; 10YR 4/1; moist; loose consistency; fine to coarse gravel to cobbles, poorly sorted; medium sand (25%) (continued) 25 COMMENTS APPROVED BY: Median Ang Date: 9/10/05	332.7	Hydrated Bentonite Chips 25
COMMENTS APPROVED BY: Meglan Liney DATE: 9/10/05		@LFR

APPENDIX C

Boundary and Monitoring Well Survey

Virtual PDF Printer puy 9 click here this line, remove 9 wish if you free, with GO2PDF for Create PDF

APPENDIX D

Slug/Bail Aquifer Tests

回LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019

(509) 535-7225

slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 1

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Well MW-9S

Test conducted on: 5/12/08

Hydraulic conductivity [ft/s]: 3.10 x 1C⁵

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008 F

Page 2

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Test conducted on: 5/12/08

Well MW-9S

MW-9S IN

Static water level: 13.61 ft below datum

(509) 535-7225

	Pumping test duration	Water level	Drawdown	
	[s]	[ft]	[ft]	
1	0	17.99	4.38	
2	2	16.50	2.89	
3	4	16.19	2.58	
4	5	15.51	1.90	
5	6	15.47	1.86	
6	7	15.43	1.82	
7	8	15.40	1.79	
8	9	15.34	1.73	
9	10	15.30	1.69	
10	11	15.28		
11	12		1.67	
12	13	15.23	1.62	
13		15.21	1.60	
and the second second	14	15.15	1.54	
14	15	15.13	1.52	
15	16	15.10	1.49	
16	17	15.07	1.46	
17	18	15.04	1.43	
18	19	15.00	1.39	
19	20	14.97	1.36	
20	21	14.94	1.33	
21	23	14.92	1.31	
22	24	14.91	1.30	
23	25	14.90	1.29	
24	27	14.88	1.27	
25	28	14.88	1.27	
26	30	14.87	1,26	
27	32	14.86	1.25	
28	34	14.85	1.24	
29	36	14.84	1.23	S.D. PROGRAM VICTORISTANIA SISSA SISSA SISSA SI
30	38	14.84	1.23	
31	40	14.83	1.22	
32	42	14.82	1.21	
33	45	14.81	1.20	
34	48	14.80	1,19	
35	50	14.79	1.18	
36	53	14.78	1.17	
37	57	14.77	1.16	
38	60	14.76	1.15	NAMES OF THE PROPERTY OF THE P
39	64	14.75	1.14	
40	67	14.74	1.13	
41	71	14.73	1.12	
42	76	14.72	1,11	
43	80	14.71	1.10	
44	85	14.69	1.08	
45	90	14.68	1.07	
46	95	14.67	1.06	
47	101	14.65	1.04	
48	107	14.64	1.03	
49	113		1.03	
		14.62		
50	119	14.60	0.99	

OLFR

LFR, Inc. 2310 N. Molter Road, #101 Liberly Lake, WA 99019 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 3

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Well MW-9S

Test conducted on: 5/12/08

MW-9S IN

(509) 535-7225

	Pumping test duration	Water level	Drawdown	
	[s]	[ft]	[ft]	
51	127	14.59	0.98	
52	134	14.57	0.96	
53	142	14.55	0.94	
54	151	14.53	0.92	
55	160	14.52	0.91	
56	169	14.51	0.90	
57	179	14.49	0.88	
58	190	14.48	0.87	
59	201	14.47	0.86	
60	213	14.45	0.84	
61	226	14.44	0.83	
62	239	14.43	0.82	
63	253	14.41	0.80	
64	268	14.40	0.79	
65	284	14.39	0.78	
66	301	14.37	0.76	***************************************
67	319	14.36	0.75	
68	337	14.34	0.73	
69	358	14.32	0.71	
70	379	14.31	0.70	
71	401	14.29	0.68	
72	425	14.27	0.66	
73	450	14.25	0.64	
74	476	14.23	0.62	
75	505	14.21	0.60	
76	535	14.19	0.58	
77	566	14.17	0.56	
78	600	14.15	0.54	······································
79	636	14.13	0.52	*******************************
80	672	14.11	0.50	
81	714	14.09	0.48	WAST-HALF WASTER STATES
82	756	14.07	0.46	
83	798	14.05	0.44	***************************************
84	846	14.02	0.41	
85	900	14.00	0.39	
86	948	13.98	0.37	
87	1008	13.96	0.35	
88	1068	13.94	0.33	
89	1128	13.91	0.30	
90	1194	13.90	0.29	The second secon
91	1266	13.88	0.27	
92	1344	13.86	0.25	
93	1422	13.85	0.24	
94	1506	13.83	0.22	
95	1596	13.81	0.20	······································
96	1692	13.80	0.19	
97	1788	13.78	0.17	ON THE REST PARTY AND ADDRESS OF THE PARTY AND
98	1896	13.76	0.15	
99	2010	13.75	0.13	
00	2130	13.74	0.13	

@ LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 (509) 535-7225 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Project: 027-30021-00

Page 1

Evaluated by: KMF

Slug Test No. 2 - Slug OUT

Well MW-9S

Test conducted on: 5/12/08

Hydraulic conductivity [ft/s]: 2.04 x 10⁵

回LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 (509) 535-7225 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 2

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 2 - Slug OUT

Well MW-9S

Test conducted on: 5/12/08

MW-9S-OUT

Static water level: 13.61 ft below datum

	Pumping test duration	Water level	Drawdown	
	50.2	1000	10900	
	[s]	[ft]	[ft]	
1	0	10.90	-2.71	
2	3	10.90	-2.71	
3	4	10.96	-2.65	
4	5	11.03	-2.58	
5	6	11.09	-2.52	
6	7	11.17	-2.44	
7	8	11.21	-2.40	
8	9	11.30	-2.31	
9	10	11.36	-2.25	
10	11	11.40	-2.21	
11	12	11.46	-2.15	
12	13	11.49	-2.12	
13	14	11.57	-2.04	
14	15	11.61	-2.00	
15	16	11.64	-1.97	APPENDING THE PROPERTY OF A PROPERTY OF THE PR
16	17	11.68	-1.93	
17	18	11.72	-1.89	## 1000 ## 19 / 19 19 19 19 19 19 19 19 19 19 19 19 19
18	19	11.76	-1.85	
19	20	11.80	-1.81	THE RESERVE OF THE PARTY OF THE
20	21	11.84	-1.77	
21	23	11.88	-1.73	
22	24	11.92	-1.69	
23	25	11.96	-1.65	
24	27	12.00	-1.61	****
25	28	12.04	-1.57	
26	30	12.08	-1.53	en egitter og til er gjagerjeng er er kommer er eg Armanagum.
27	32	12.11	-1,50	
28	34	12.14	-1.47	
29	36	12.18	-1.43	
30	38	12.21	-1.40	701000-17473 444 51-4 344-44 3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-
31	40	12.24	-1.37	
32	42	12.26	-1,35	
33	45	12.28	-1.33	
34	48	12.30	-1.31	
35	50	12.32	-1.29	
36	53	12.34	-1.27	
37	57	12.36	-1,25	
38	60	12.37	-1.24	
39	64	12.38	-1.23	
40	67	12.39		
41	71	12.40	-1.22 -1.21	MANUAL AVIANCES SEED SEED SEED SEED SEED SEED SEED S
	76			
42		12.41	-1.20	
43	80	12,42	-1.19	
44	85	12.42	-1.19	***************************************
45	90	12.43	-1.18	
46	95	12.44	-1.17	
47	101	12.45	-1,16	
48	107	12.45	-1.16	
49	113	12.46	-1.15	
50	119	12.46	-1.15	

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 3

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 2 - Slug OUT

Well MW-9S

Test conducted on: 5/12/08

MW-9S-OUT

Static water level: 13.61 ft below datum

(509) 535-7225

	Pumping test duration	Water level	Drawdown	
	[s]	[ft]	[ft]	
51	127	12.47	-1.14	
52	134	12.47	-1.14	
53	142	12.48	-1.13	
54	151	12.48	-1.13	
55	160	12.49	-1.12	
56	169	12.49	-1.12	
57	179	12.49	-1,12	
58	190	12.50	-1.11	
59	201	12.50	-1,11	COLUMN TO THE PARTY OF THE PART
60	213	12.50	-1.11	
61	226	12.50	-1.11	racionale de Prince des entratos forda a professional de Constante de Constante de Constante de Constante de C
62	239	12.51	-1.10	
63	253	12.51	-1.10	
64	268	12.51	-1.10	
65	284	12.51	-1.10	
66	301	12.52	-1.09	
67	319	12.52	-1.09	
68	337	12.52	-1.09	
69	358	12.52	-1.09	
70	379	12.53	-1.08	
71	401	12.53	-1.08	
72	425	12.53	-1.08	
73	450	12.53	-1.08	
74	476	12.53	-1.08	
75	505	12.53	-1.08	
76	535	12.53	-1.08	
77	566	12.54	-1.07	
78	600	12.54	-1.07	
79	636	12.54	-1.07	
80	672	12.54	-1.07	
81	714	12.54	-1.07	
82	756	12.54	-1.07	
83	798	12.55	-1.06	
84	846	12.55	-1.06	A 10000-200-111-111-111-111-111-111-111-11
85	900	12.55	-1.06	**************************************
86	948	12.55	-1.06	
87	1008	12.55	-1.06	
88	1068	12.55	-1.06	
89	1128	12.55	-1.06	
90	1194	12.56	-1.05	
90	1194	12.50	-1.05	
		PRINCE DE RANGE PLANTES ACADO PARA PARA PARA PARA PARA PARA PARA PAR		
milita neo				

OLFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019

(509) 535-7225

slug/bail test analysis BOUWER-RICE's method Date: 9/10/2008

Page 1

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Well MW-7S

Test conducted on: 5/13/08

Hydraulic conductivity [ft/min]: 1.38 x 10⁵

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberly Lake, WA 99019

slug/bail test analysis BOUWER-RICE's method

Date:	9/10/2008	T
		- 1

Page 2

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Well MW-7S

Test conducted on: 5/13/08

MW-7S-IN

(509) 535-7225

	Pumping test duration	Water level	Drawdown	
	[min]	[ft]	[ft]	
1	0.00	11.87	-2,13	
2	3.27	12.63	-1.37	
3	3.64	12.91	-1.09	WALL AND
4	3.86	11.95	-2.05	Additional of a deleteral performance and an action
5	4.09	12.17	-1.83	
6	4.31	12.59	-1.41	
7	4.53	11.62	-2.38	
8	4.75	12.18	-1.82	
9	4.97	12.47	-1.53	mitristano esperanti esperanti dell'esperanti dell'
10	5.19	12.37	-1.63	*************************************
11	5.41	12.45	-1.55	
12	5.63	12,40	-1.60	
13	5.85	12.45	-1.55	***************************************
14	6.07	12.45	-1.55	**************************************
15	6.36	12.47	-1.53	
16	6.72	12.59	-1.41	
17	7.14	12.55	-1.45	
18	7.56	12.55	-1.45	
19	7.98	12.54	-1.46	
20	8.46	12.53	-1.47	
21	9.00	12.54	-1.46	
22	9.48	12.56	-1.44	BORNES COM ALIJA DE ELIZA NI ERAN ALIJANDES ELIZA DE ELIZ
23	10.08	12.51	-1.49	
24	10.68	13.03	-0.97	***************************************
25	11.28	12.74	-1.26	
26	11.94	12.68	-1.32	
27	12.66	12.70	-1.30	
28	13.44	12.71	-1.29	
29	14.22	12.72	-1.28	AND STREET, ST
30	15.06	12.66	-1.34	
31	15.96	12.70	-1.30	
32	16.92	12.71	-1.29	
33	17.88	12.73	-1.27	
34	18.96	12.75	-1.25	
35	20.10	12.76	-1.24	
36	21.30	12.78	-1.22	
37	22.56	12.70	-1.20	
38	23.88	12.82	-1.18	
39	25.32	12.85	-1.15	Color I announce of the Color o
40	26.82	12.87		
			-1.13	
41	28.38	12.89	-1.11	
42	30.06	12.91	-1.09	
43	31.86	12.94	-1.06	
44	33.72	12.96	-1.04	
45	35.76	12.99	-1.01	
46	37.86	13.01	-0.99	
47	40.08	13.04	-0.96	CONTROL OF THE STREET OF THE STREET
48	42.48	13.07	-0.93	
49	45.00	13.10	-0.90	
50	47.64	13,13	-0.87	

OLFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 (509) 535-7225 slug/bail test analysis BOUWER-RICE's method Date: 9/10/2008

Page 3

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Well MW-7S

Test conducted on: 5/13/08

MW-7S-IN

	Pumping test duration	Water level	Drawdown	A Committee of the Comm
	factor)	(1)	560	
51	[min] 50.46	[ft]	[ft] -0.84	
52	53.46	13.16 13.19	-0.84	
53	56.64	13.19	-0.78	
and the last of the last	and a second commence of the second commence is a second commence of the second commence of			
54	60.00	13.25	-0.75	
55	63.60	13.28	-0.72	
56	67.20	13.31	-0.69	
57	71.40	13.34	-0.66	
58	75.60	13.36	-0.64	
59	79.80	13.39	-0.61	
60	84.60	13.42	-0.58	
61	90.00	13.45	-0.55	
62	94.80	13.46	-0.54	
63	100.80	13.49	-0.51	
64	106.80	13.51	-0.49	
65	112.80	13.52	-0.48	
66	119.40	13.54	-0.46	
67	126.60	13.55	-0.45	
68	134.40	13.56	-0.44	
69	142.20	13.57	-0.43	
70	150.60	13.58	-0.42	
71	159.60	13.59	-0.41	1
72	169.20	13.59	-0.41	
73	178.80	13.59	-0.41	
74	189.60	13.60	-0.40	
75	201.00	13.60	-0.40	
76	213.00	13.61	-0.39	
77	225.60	13.61	-0.39	
78	238.80	13.61	-0.39	
79	253.20	13,61	-0.39	
80	268.20	13.62	-0.38	
81	283.80	13.62	-0.38	
82	300.60	13.62	-0.38	
83	318.60	13.62	-0.38	
84	337.20	13.62	-0.38	
85	357.60	13.62	-0.38	
86	378.60	13.63	-0.38	W. C.
87	400.80	13.63	-0.37	
88	424.80	13.63	-0.37	
89	450.00	13.63	-0.37	
90	476.40	13.63	-0.37	
91	504.61	13.63	-0.37	
92	534.60	13.63	-0.37	
93	566.40	13.64	-0.36	TOTAL CONTROL OF THE STATE OF T
94	600.00	13.64	-0.36	
95	636.00	13.64	-0.36	
96	672.00	13.64	-0.36	THE BURNESS CONTRACTOR CONTRACTOR STATE AND A STATE OF THE STATE OF TH
97	714.00	13.65	-0.35	
98	756.00	13.65	-0.35	

OLFF

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019

(509) 535-7225

slug/bail test analysis BOUWER-RICE's method Date: 9/10/2008

Page 1

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 2 - Slug OUT Test conducted on: 5/12/08

Well MW-5S

Hydraulic conductivity [ft/s]: 4.59 x 10⁵

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 (509) 535-7225 slug/bail test analysis BOUWER-RICE's method Date: 9/10/2008 Page 2
Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 2 - Slug OUT	Test conducted on: 5/12/08
Well MW-5S	MW-5S-OUT

Static water	level:	13.43 ft	below	datum
--------------	--------	----------	-------	-------

	Pumping test duration	Water level	Drawdown	
	[s]	[ft]	[ft]	
1	0	17.58	4.15	
2	1	15.32	1.89	
3	2	15.27	1.85	
4	2	15.24	1.81	
5	2	15.17	1.74	
6	2	15.13	1.70	
7	3	15.06	1.63	
	3		1.57	
8	3	15.00		
9		14.91	1.48	
10	3	14.87	1.44	
11	4	14.85	1.42	
12	4	14.80	1.37	
13	4	14.73	1.30	
14	4	14.70	1.27	
15	5	14.68	1.25	
16	5	14.65	1.22	
17	5	14.61	1.18	
18	5	14.59	1.16	
19	6	14.57	1.14	
20	6	14.55	1,12	
21	6	14.54	1.11	
22	6	14.51	1.08	
23	7	14.51	1.08	
24	7	14.47	1.04	
25	8	14.46	1.03	
26	8	14.42	0.99	
27	8	14.38	0.95	
28	9	14.37	0.94	
29	9	14.36	0.93	(100 to 110 to
30	10	14.34	0.91	
31	11	14.32	0.89	THE PERSON OF PERSON AS A STATE OF THE PERSON OF PARTY AND A PERSON OF THE PERSON OF T
32	11	14.30	0.87	
33	12	14.28	0.85	
34	13	14.26	0.83	THE PARTY OF THE P
35	13	14.23	0.80	· · · · · · · · · · · · · · · · · · ·
36	14	14.19	0.76	**********************
37	15	14.14	0,71	
38	16	14.10	0.67	
39	17	14.05	0.62	*****************************
40	18	14.01	0.58	
41	19	13.97	0.54	
42	20		0.50	
		13.93		-
43	21	13.89	0.46	
44	23	13.85	0.42	
45	24	13.81	0.38	
46	25	13.78	0.35	
47	27	13.74	0.31	
48	28	13.71 .	0.28	
49	30	13.68	0.25	
50	32	13.65	0.22	

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 (509) 535-7225 slug/bail test analysis BOUWER-RICE's method Date: 9/10/2008 Page 3
Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 2 - Slug OUT

Well MW-5S

Test conducted on: 5/12/08

MW-5S-OUT

Static water level: 13.43 ft below datum

	Pumping test duration	Water level	Drawdown	
	0.000		2000	
	[s]	[ft]	[ft]	
51	34	13.63	0.20	
52	36	13.60	0.18	
53	38	13.58	0.15	
54	40	13.57	0.14	
55	42	13.55	0.12	
56	45	13.54	0.11	
57	48	13.53	0.10	
58	50	13.51	0.09	
59	53	13.51	0.08	
60	57	13.49	0.07	
61	60	13.48	0.05	
62	64	13.47	0.04	
63	67	13.49	0.06	
64	71	13.48	0.05	
65	7,6	13.48	0.05	
66	80	13.47	0.04	
67	85	13.47	0.04	
68	90	13.46	0.04	
69	95	13.47	0.04	
70	101	13,46	0.03	
71	107	13.48	0.05	
72	113	13.48	0.05	Programme Language and American Section Constitution of the Consti
73	119	13.48	0.05	
74	127	13.48	0.05	
75	134	13.47	0.04	
76	142	13.48	0.05	
77	151	13.48	0.05	
78	160	13.47	0.04	
79	169	13.47	0.04	10111111Kii 2011 MARI 1111 MARI 1111 MARI 1111
80	179	13.48	0.05	
81	190	13.47	0.04	
82	201	13.48	0.05	
83	213	13.47	0.04	
84	226	13.48	0.05	
85	239	13.48	0.05	
86	253	13.47	0.04	
87	268	13.47	0.04	
88	284	13.46	0.03	
89	301	13.47	0.04	
90	319	13.47	0.04	***************************************
91	337	13.47	0.04	***************************************
92	358	13.47	0.04	
93	379	13.47	0.04	
94	401	13.47	0.04	CONTRACTOR OF THE PROPERTY OF
	425	13.47	0.04	
95			0.04	
96	450	13.47	0.04	
97	476	13.47		
98	505	13.47	0.04	
99	535	13.47	0.04	
100	566	13.47	0.04	

@ LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019

(509) 535-7225

slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 1

Project: 027-30021-00

Evaluated by: KMF
Test conducted on: 5/13/08

Slug Test No. 1 - Slug IN

Well MW-7D

h/h0

t [s] 0 20 40 60 80 100 120 140 160 180 100 10-1 10-2 10-3 o MW-7D IN

Hydraulic conductivity [ft/s]: 1.78 x 16⁴

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 2

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN

Well MW-7D

Test conducted on: 5/13/08

MW-7D IN

Static water level: 14.00 ft below datum

(509) 535-7225

Pi	umping test duration	Water level	Drawdown	
	{s}	[ft]	[ft]	
1	0	10.50	-3.50	
2	6	10.78	-3.22	
3	7	10.66	-3.34	
4	8	11.34	-2.66	
5	9	11.95	-2.05	HT COMPANIE AND HEAVEN
6	10	12.40	-1.60	
7	11	12.60	-1.40	
8	12	12.97	-1.03	
9	13	13.15	-0.85	
10	14	13.40	-0.60	
11	15	13.52	-0.48	
12	16	13.60	-0.40	
13	17	13.68	-0.32	
14	18	13.74	-0.26	richardon transcription (return)
15	19	13.79	-0.21	
16	20	13.84	-0.16	
17	21	13.87	-0.13	
18	23			
19	24	13.90	-0.10 -0.08	
20		13.92		
	25	13.93	-0.07	
21	27	13.95	-0.05	
22	28	13.96	-0.04	
23	30	13.96	-0.04	
24	32	13.98	-0.02	
25	34	13.98	-0.02	
26	36	13.98	-0.02	
27	38	13.98	-0.02	
28	40	13.98	-0.02	
29	42	13.99	-0.01	
30	45	13.99	-0.01	
31	48	13.99	-0.01	
32	50	13.99	-0.01	
33	53	13,99	-0.01	
34	57	13.99	-0.01	
35	60	13.99	-0.01	
36	64	13.99	-0.01	
37	67	13.99	-0.01	
38	71	13.99	-0.01	
39	76	13.99	-0.01	
40	80	13.99	-0.01	
41	85	13.99	-0.01	
42	90	13.99	-0.01	
43	95	13.99	-0.01	
44	101	13.99	-0.01	
45	107	13.99	-0.01	######################################
46	113	13.99	-0.01	
47	119	13.99	-0.01	
48	127	13.99	-0.01	
49				******************************
	134	13.99	-0.01	
50	142	13.99	-0.01	

@LFR

LFR, Inc. 2310 N. Molter Road, #101 Liberty Lake, WA 99019 slug/bail test analysis BOUWER-RICE's method Date: 10.09.2008

Page 3

Project: 027-30021-00

Evaluated by: KMF

Slug Test No. 1 - Slug IN	Test conducted on: 5/13/08
Well MW-7D	MW-7D IN

	Static wat	er level	: 14.00 ft	below	datum
--	------------	----------	------------	-------	-------

(509) 535-7225

	Pumping test duration	Water level	Drawdown	
	CHARLES AND THE RELATED HER ATTEMPTONE	CHORESC VIDEO - NE HENDEVEN		
	[s]	[ft]	[ft]	
51	151	13.99	-0.01	
52	160	13.99	-0.01	
53	169	13.99	-0.01	
54	179	13.99	-0.01	
	Abort of the state		A STANDARD IN THE SAFE COUNTY AND ADDRESS AND ADDRESS OF THE SAFE AND ADDRESS AND ADDRESS OF THE SAFE	
			The manufacture of the second	

	enamental and a recommendation of the second			
-				
		rande and an artistation of the contract of th		<u> </u>
	***************************************		THE RESERVE OF THE PROPERTY OF	
A111771 /22793				
		# CONT. THE RESERVE OF THE PROPERTY OF THE PRO	***************************************	

				THE THE THE STREET STRE
	CONTRACTOR OF STREET, AND STRE			
		1967 of 1870 policy dispersion of Laurence a State of Alberta's Committee of Chical State of C	\$140 Mark \$1,000 CO 1000 CO 10	
		MIN M MARLAND MI 134 COSQUES D. S.		
				and and broad and the state of

APPENDIX E

Adjacent Property Analytical Reports

SPOKANE, WA

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206 ph: (509) 924.9200 fax: (509) 924.9290

May 22, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: ADJ. Prop. NCC

Enclosed are the results of analyses for samples received by the laboratory on 04/14/08 08:12. The following list is a summary of the Work Orders contained in this report, generated on 05/22/08 09:16.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
SRD0072	ADJ. Prop. NCC	027-30139-00	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SPOKANE, WA 11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number:

027-30139-00

Report Created: 05/22/08 09:16

Project Manager: Meghan Lunney

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW11D-15.8	SRD0072-01	Soil	04/08/08 07:35	04/14/08 08:12
MW11D-17.3	SRD0072-02	Soil	04/08/08 08:25	04/14/08 08:12
MW11D-44.3	SRD0072-03	Soil	04/08/08 09:45	04/14/08 08:12
MW12D-12	SRD0072-04	Soil	04/09/08 08:15	04/14/08 08:12
MW12D-22.5	SRD0072-05	Soil	04/09/08 09:35	04/14/08 08:12
MW10D-13	SRD0072-06	Soil	04/10/08 09:00	04/14/08 08:12
MW10D-24.5	SRD0072-07	Soil	04/10/08 09:10	04/14/08 08:12
MW30-30	SRD0072-08	Soil	04/10/08 09:35	04/14/08 08:12
MW13D-13.3	SRD0072-09	Soil	04/11/08 08:35	04/14/08 08:12
Trip	SRD0072-10	Soil	04/11/08 00:00	04/14/08 08:12
MW13D-53.6	SRD0072-11	Soil	04/11/08 12:30	04/14/08 08:12

TestAmerica Spokane

tande Randee Decker, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number:

027-30139-00

Project Manager:

Meghan Lunney

Report Created:

05/22/08 09:16

Analytical Case Narrative

TestAmerica - Spokane, WA

SRD0072

SAMPLE RECEIPT

The samples were received 04/14/08 by TestAmerica. The temperature of the samples at the time of receipt was 5.2 degrees Celsius.

PREPARATIONS AND ANALYSIS

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

Samples SRD0072-09 and SRD0072-11 were analyzed by MTCA 5030 due to continuingly failing quality assurance parameters for MTCA 5035.

Sample BRD0198-08 was over the calibration range for Trichloroethene. The samples were analyzed twice by MTCA 5030 and both results were ND. The samples have been qualified with an N1.

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-01 (MW11D-15.8)		Soi	1		Samp	led: 04/0	08/08 07:35			
Acetone	EPA 8260B	ND		27.7	ug/kg dry	lx	8D15062	04/15/08 19:24	04/16/08 01:12	12
Benzene	/W	ND		1.39						
Bromobenzene		ND		4.62					•	
Bromochloromethane		ND		4.62						12
Bromodichloromethane	W	ND		4.62	(4)	360	M		30	
Bromoform	<i>(i)</i>	ND		4.62						
Bromomethane		ND		9.24						12
2-Butanone	300	ND		13.9		362			(0)	12
n-Butylbenzene	W	ND		4.62			м		76	
sec-Butylbenzene		ND	*****	4.62					•	
tert-Butylbenzene	0.0	ND		4.62	(*)		(9)	,	(9)	
Carbon disulfide	(W)	ND		2.77	*		W		700	12
Carbon tetrachloride		ND		4.62					•	
Chlorobenzene		ND	*****	1.85	20	(8)	196			
Chloroethane	100	ND		4.62	*		. "			12
Chloroform	W.	ND		2.31			*			12
Chloromethane		ND	******	9.24	*		,,			12
2-Chlorotoluene	(000	ND	*****	4.62	(*)	*		*	(10)	
4-Chlorotoluene	n.	ND		4.62	*		ж			
Dibromochloromethane	1	ND		4.62		•			•	
1,2-Dibromo-3-chloropropane	1.80	ND	-	9.24	196			,	7.00	
1,2-Dibromoethane (EDB)	(/ H)	ND		4.62		*				
Dibromomethane		ND	*****	4.62						
1,2-Dichlorobenzene		ND		4.62	(2)	*	2.5			
1,3-Dichlorobenzene	(H)	ND	-	4.62	*		ж.		(0)	
1,4-Dichlorobenzene	W	ND		4.62	*		**			
Dichlorodifluoromethane	W.	ND		4.62				,		12
1,1-Dichloroethane	OC	ND		1.85	3,80		740		(0)	12
1,2-Dichloroethane	. W	ND		1.16	¥.				540	
1,1-Dichloroethene	*	ND		2.77					•	12
cis-1,2-Dichloroethene	18.	ND		2.77	2.78	(8)	20	,	300	12
trans-1,2-Dichloroethene	W	ND	*****	2.31			w	ii .		12
1,2-Dichloropropane	*	ND		4,62						
1,3-Dichloropropane	1.5	ND	****	4.62			(9)		3.00	
2,2-Dichloropropane		ND		9.24						12
1,1-Dichloropropene	•	ND		4.62						12
cis-1,3-Dichloropropene		ND	****	4.62			1.00		3.05	
trans-1,3-Dichloropropene	X.	ND	2.2.2	1.16			и.	*	197	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-01	(MW11D-15.8)	J	Soi	1		Samp	led: 04/0	08/08 07:35			
Ethylbenzene		EPA 8260B	ND	*****	3.70	ug/kg dry	lx	8D15062	04/15/08 19:24	04/16/08 01:12	
Hexachlorobutadie	ne		ND	*****	9.24	9.		,,	(40)		
Methyl tert-butyl et	ther		ND		0.924	**	*	"	W.		12
n-Hexane		,	ND		4.62	*	*	*	•	1.6	12
2-Hexanone		"	ND	****	18.5		(*)		1.00	10	
Isopropylbenzene			ND		4.62	*		*			
p-Isopropyltoluene		**	ND		4.62			•		•	
4-Methyl-2-pentano	one	•	ND	*****	18.5				(2)		
Methylene chloride		**	ND	*****	3,24	×	90	*			12
Naphthalene		0	ND		9.24		**	*			
n-Propylbenzene		₩	ND	****	4.62		"			•	
Styrene			ND		0.924	*	*		*	*	
1,2,3-Trichlorobenz	zene	¥	ND		9.24	*		×		i AV	
1,2,4-Trichlorobenz	zene		ND		9.24			•		•	
1,1,1,2-Tetrachloro	ethane	*	ND	*****	4.62	*			(*)	x *	
1,1,2,2-Tetrachloro	ethane	*	ND		4.62			×	*		
Tetrachloroethene		v	ND		1.85			*			
Toluene		*	ND	*****	1.39		*		*		
1,1,1-Trichloroetha	ne	#.	ND		2.31	*		,	360		12
1,1,2-Trichloroetha	ne		ND		1.16			×	340		
Trichloroethene		*	ND	*****	2.31	•		•	•	*	
Trichlorofluoromet	hane		ND	*****	4.62	•		15	2992)	(9)	
1,2,3-Trichloroprop	pane		ND		4.62			ii.		(*)	
1,2,4-Trimethylben	zene		ND		4.62					•	
1,3,5-Trimethylben	zene	,	ND		4.62					555	
Vinyl chloride			ND	****	2.31				(4.5		12
o-Xylene		× ·	ND		4.62			н		*	
m,p-Xylene		*	ND		4.62					*	
Total Xylenes			ND		9.24		(#)	16	90	36	
Surrogate(s):	1,2-DCA-d4			121%			140 %	,		"	
	Toluene-d8			95.9%			140 %	"		"	
	4-BFB			98.0%		60 -	140 %	"		"	

TestAmerica Spokane

tande Randee Decker, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-02 (MW11D-17.3)		Soi	ı		Samp	led: 04/0	08/08 08:25			
Acetone	EPA 8260B	ND		28.7	ug/kg dry	1x	8D15062	04/15/08 19:24	04/16/08 01:37	
Benzene		ND		1.44	•			•		
Bromobenzene		ND		4.79			**			
Bromochloromethane	(#)	ND	*****	4.79		*		*	H	
Bromodichloromethane	987	ND		4.79		**			и	
Bromoform		ND	****	4.79						
Bromomethane	340	ND		9.58	*		30			
2-Butanone	*	ND		14.4			11		ü	
n-Butylbenzene		ND		4.79						
sec-Butylbenzene	7.7	ND		4.79		**	(#)		W	
tert-Butylbenzene	(A)	ND		4.79			H .	*	ű .	
Carbon disulfide		ND	*****	2,87			u		ě	
Carbon tetrachloride	•	ND		4.79						
Chlorobenzene		ND	*****	1.92		**			×	
Chloroethane		ND		4.79			w			
Chloroform	•	ND	****	2.39						
Chloromethane		ND		9.58			*			
2-Chlorotoluene		ND		4.79	*		w			
4-Chlorotoluene		ND	*****	4.79						
Dibromochloromethane		ND	****	4.79						
1,2-Dibromo-3-chloropropane	(*)	ND		9.58		**			*	
1,2-Dibromoethane (EDB)		ND		4.79			**			
Dibromomethane		ND	****	4.79						
1,2-Dichlorobenzene		ND	****	4.79	*	*	(#)			
1,3-Dichlorobenzene		ND	****	4.79					"	
1,4-Dichlorobenzene		ND	*****	4.79						
Dichlorodifluoromethane		ND		4.79						
1,1-Dichloroethane	(10)	ND		1.92		*		*		
1,2-Dichloroethane	•	ND	****	1.20						
1,1-Dichloroethene		ND	****	2.87				•		
cis-1,2-Dichloroethene	3K	ND		2.87	9	**		*	N.	
trans-1,2-Dichloroethene		ND		2.39						
1,2-Dichloropropane		ND		4.79					"	
1,3-Dichloropropane	*	ND		4.79		*		*	*	
2,2-Dichloropropane		ND		9.58		¥			¥	
1,1-Dichloropropene		ND	*****	4.79			*			
cis-1,3-Dichloropropene	(10)	ND	*****	4.79			н		,,	
trans-1,3-Dichloropropene	(ii)	ND		1.20 -	W.				н	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tardi Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-02	(MW11D-17.3)		Soi	ı		Samp	oled: 04/0	08/08 08:25			
Ethylbenzene		EPA 8260B	ND	****	3.83	ug/kg dry	lx	8D15062	04/15/08 19:24	04/16/08 01:37	
Hexachlorobutadier	ne		ND		9,58					W.	
Methyl tert-butyl et	her		ND		0.958	•				u.	
n-Hexane		•	ND	****	4.79			"		7	
2-Hexanone		(M).	ND	*****	19.2		900		*	(0.0	
Isopropylbenzene			ND		4.79	*			w.		
p-Isopropyltoluene			ND		4.79	*			"	•	
4-Methyl-2-pentano	one	175	ND	*****	19.2	(85)	*		н.	195	
Methylene chloride	18 18	(w	ND		3.35		*		0.	(W)	
Naphthalene		W.	ND	*****	9.58				"	40	
n-Propylbenzene		V.F.	ND	*****	4.79	285			25	(9)	
Styrene		(M)	ND		0.958	*				и.	
1,2,3-Trichlorobenz	zene	100	ND		9.58				ii .	863	
1,2,4-Trichlorobenz	zene	18	ND		9.58	•				•	
1,1,1,2-Tetrachloro	ethane	9.	ND		4.79	383		3.40	"	.00	
1,1,2,2-Tetrachloro	ethane		ND		4.79				W	(ii)	
Tetrachloroethene		•	ND		1.92		*		"		
Toluene		14.0%	ND	*****	1.44	*	25		"	896	
1,1,1-Trichloroetha	ne		ND		2.39	(A)	*		77		
1,1,2-Trichloroetha	ne		ND		1.20		м			•	
Trichloroethene			ND	*****	2.39	•		*		*	
Trichlorofluorometl	hane	9.	ND	*****	4.79	(#.)			.0.	(MC)	
1,2,3-Trichloroprop	ane	(0)	ND		4.79	*			**		2
1,2,4-Trimethylben	zene		ND		4.79	•				*	
1,3,5-Trimethylben:	zene	***	ND		4.79	*	*:	2.90		10	
Vinyl chloride		w	ND		2.39		*		ii.		
o-Xylene			ND		4.79				,		
m,p-Xylene			ND	*****	4.79				9		
Total Xylenes		ж.	ND		9.58				*	N.	
Surrogate(s):	1,2-DCA-d4			126%		60 -	- 140 %	"		"	
	Toluene-d8			98.9%			- 140 %	"		"	
	4- BFB			99.0%		60 -	- 140 %			"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-03 (MW11D-44.3)		Soi	1		Samp	led: 04/0	08/08 09:45			
Acetone	EPA 8260B	ND		36.5	ug/kg dry	1×	8D15062	04/15/08 19:24	04/16/08 02:02	
Benzene	w	ND		1.82				*		
Bromobenzene	×	ND		6.08			*			
Bromochloromethane	*	ND	****	6,08						
Bromodichloromethane		ND		6.08			*	(x)		
Bromoform	*	ND		6.08						
Bromomethane		ND		12.2		•			•	X.
2-Butanone	*	ND	*****	18.2				*		
n-Butylbenzene	¥	ND		6.08				90	#	
sec-Butylbenzene	*	ND		6.08	**	•	•			
tert-Butylbenzene	*	ND	*****	6.08					*	
Carbon disulfide	ii .	ND		3.65					W.	
Carbon tetrachloride	*	ND		6.08	*		•			
Chlorobenzene	#.	ND	****	2.43		25			,	
Chloroethane	*	ND		6.08				790		
Chloroform		ND		3.04		**	¥			
Chloromethane	,	ND		12.2		**	*	*	*	
2-Chlorotoluene)#	ND		6.08	9.		*	*	9.	
4-Chlorotoluene		ND		6.08			¥	96	w	
Dibromochloromethane	•	ND		6.08			•	*		
1,2-Dibromo-3-chloropropane	,	ND	*****	12.2					*	
1,2-Dibromoethane (EDB)		ND		6.08	*			(4)	*	
Dibromomethane	4	ND		6.08			*			
1,2-Dichlorobenzene		ND	*****	6.08			*			
1,3-Dichlorobenzene	9	ND		6.08			**	96	*	
1,4-Dichlorobenzene		ND		6,08				565	*	
Dichlorodifluoromethane		ND		6.08		*	,,		*	
1,1-Dichloroethane	300	ND	manager,	2,43			*			
1,2-Dichloroethane		ND		1.52	**					
I,I-Dichloroethene		ND	*****	3.65						
cis-1,2-Dichloroethene	/ M //	ND		3.65						
trans-1,2-Dichloroethene		ND	****	3.04	ä	11	11		W .	
1,2-Dichloropropane		ND	*****	6.08	*	*			*	
1,3-Dichloropropane		ND		6.08		"	*		2	
2,2-Dichloropropane		ND		12.2	*	11			*	
1,1-Dichloropropene		ND		6,08				*	*	
cis-1,3-Dichloropropene		ND		6,08					•	
trans-1,3-Dichloropropene	16	ND		1.52				H		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-03 (MW11D-44.3)		Soi	1		Samp	led: 04/0	08/08 09:45			
Ethylbenzene	EPA 8260B	ND	57775	4.86	ug/kg dry	1×	8D15062	04/15/08 19:24	04/16/08 02:02	
Hexachlorobutadiene		ND	*****	12.2		,				
Methyl tert-butyl ether	980	ND	*****	1.22	26					
n-Hexane	(W)	ND		6.08				ű.		
2-Hexanone	•	ND	*****	24.3	*					
Isopropylbenzene	0 9 0	ND	*****	6.08	*		(#)	*		
p-Isopropyltoluene	**	ND		6.08	*	*		*		
4-Methyl-2-pentanone		ND	*****	24.3						
Methylene chloride	(19)	ND	****	4.25	"	*		*		
Naphthalene) H .	ND		12.2	9.	*	*			
n-Propylbenzene		ND		6.08						
Styrene		ND		1.22						
1,2,3-Trichlorobenzene	9	ND	******	12.2	**		*			
1,2,4-Trichlorobenzene	/(i)/	ND		12.2				ii.		
1,1,1,2-Tetrachloroethane		ND		6.08						
1,1,2,2-Tetrachloroethane		ND	*****	6.08			w	u		
Tetrachloroethene		ND		2.43		*		н		
Toluene		ND		1.82						
1,1,1-Trichloroethane	•	ND	*****	3.04						
1,1,2-Trichloroethane	385	ND		1.52		*	*			
Trichloroethene		ND		3.04				**		
Trichlorofluoromethane		ND		6.08						
1,2,3-Trichloropropane		ND	****	6.08				385	*	
1,2,4-Trimethylbenzene	AL.	ND		6.08					"	
1,3,5-Trimethylbenzene		ND		6.08						
Vinyl chloride		ND	-	3.04	2				"	
o-Xylene		ND		6.08					*	
m,p-Xylene		ND		6,08						
Total Xylenes		ND	****	12.2		3				
Surrogate(s): 1,2-DCA-d4			120%		60 -	140 %	"		"	
Toluene-d8			97.6%			140 %	"		"	
4- BFB			97.9%		60 -	140 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tande Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-04 (MW12D-12)		Soi	1		Samp	oled: 04/0	9/08 08:15			
Acetone	EPA 8260B	ND		24.7	ug/kg dry	1×	8D16025	04/15/08 14:07	04/16/08 19:52	Į.
Benzene	(#)	ND		1.23			*	*	*	
Bromobenzene		ND	No.	4.12		*		"		
Bromochloromethane	*	ND	*****	4.12	•		*		*	
Bromodichloromethane	39	ND	*****	4.12			(*)	M		
Bromoform	4	ND	*****	4.12	70	*			9	
Bromomethane		ND		8.23			•		•	
2-Butanone	X**	ND	*****	12.3	350	27.	.*	*		
n-Butylbenzene	w.	ND		4.12		*	*	*		
sec-Butylbenzene		ND	******	4.12					•	
tert-Butylbenzene		ND	****	4.12		2				
Carbon disulfide	7.00	ND	*****	2.47						
Carbon tetrachloride		ND		4.12		*		*	*	
Chlorobenzene		ND		1.65				*		
Chloroethane		ND		4.12	*					
Chlorofonn	/ #	ND		2.06	(a)	*				
Chloromethane		ND		8.23						
2-Chlorotoluene	9.95	ND	*****	4.12		20	386			
4-Chlorotoluene	W.	ND		4.12		36			*	
Dibromochloromethane		ND		4.12		*				
1,2-Dibromo-3-chloropropane		ND		8.23	*				*	
1,2-Dibromoethane (EDB)		ND	****	4.12	(80)	(#)		*	(0)	
Dibromomethane		ND		4.12		*				
1,2-Dichlorobenzene	*	ND		4.12						
1,3-Dichlorobenzene	(0)	ND		4.12	395	(#)				
1,4-Dichlorobenzene	(W)	ND		4.12	*				(#1	
Dichlorodifluoromethane		ND		4.12			"		•	
1,1-Dichloroethane	1180	ND		1.65						
1,2-Dichloroethane	(10)	ND	-	1.03	*	и				
1,1-Dichloroethene	w.	ND		2.47						
cis-1,2-Dichloroethene	- (A)	ND		2.47						
trans-1,2-Dichloroethene	1.6	ND		2.06	*		(#)	*		
1,2-Dichloropropane	- W	ND		4.12			н			
1,3-Dichloropropane		ND	*****	4.12						
2,2-Dichloropropane	10	ND	*****	8.23	(*)	*	(90)			
1,1-Dichloropropene	W.	ND		4,12			W			
cis-1,3-Dichloropropene	•	ND		4.12					•	
trans-1,3-Dichloropropene		ND		1.03		(80)			W	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tarde Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

SPOKANE, WA

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes		
SRD0072-04	(MW12D-12)	Soil Sampled: 04/09/08 08:15											
Ethylbenzene		EPA 8260B	ND		3.29	ug/kg dry	1×	8D16025	04/15/08 14:07	04/16/08 19:52			
Hexachlorobutadien	е	.0	ND	*****	8.23				"				
Methyl tert-butyl eth	ner	**	ND		0.823								
n-Hexane			ND	****	4.12		*						
2-Hexanone			ND		16.5	(80)	*		¥	u l			
Isopropylbenzene		(6)	ND	-	4.12								
p-Isopropyltoluene			ND	*****	4.12								
4-Methyl-2-pentanoi	ne		ND	*****	16.5	383		,W.		*			
Methylene chloride		(0)	ND		2.88	9	**						
Naphthalene		(i)	ND		8.23								
n-Propylbenzene		*	ND	*****	4.12		*						
Styrene		25.5	ND	*****	0.823		×		n				
1,2,3-Trichlorobenze	ene	901	ND		8.23	*							
1,2,4-Trichlorobenze	ene		ND		8.23								
1,1,1,2-Tetrachloroe	thane		ND	****	4.12								
1,1,2,2-Tetrachloroe	thane		ND		4.12		9						
Tetrachloroethene		19	ND		1.65			ii .		н			
Toluene		*	ND		1.23			9.					
1,1,1-Trichloroethan	e	2	ND		2,06	*	**	*		4			
1,1,2-Trichloroethan	е	W.	ND		1.03	**							
Trichloroethene			ND		2.06			*					
Trichlorofluorometha	ane		ND	*****	4.12	*				ii.			
1,2,3-Trichloropropa	ne	W	ND		4.12	K							
1,2,4-Trimethylbenze	ene		ND		4.12	- 8	*						
1,3,5-Trimethylbenze	ene		ND	****	4.12			*	*				
Vinyl chloride		*	ND		2.06	*	**	W		u			
o-Xylene		*	ND		4.12								
m,p-Xylene		u u	ND	****	4.12			*					
Total Xylenes			ND		8.23	н			n .	W.			
Surrogate(s):	1,2-DCA-d4			136%		60 -	140 %	"		,,			
	Toluene-d8			96.0%		60 -	140 %	"		"			
	4-BFB			98.9%		60 -	140 %	"		"			

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

LFR, Inc.

Project Number: Project Manager:

027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-05 (MW12D-22.5)		Soi	ĺ		Samp	led: 04/0	9/08 09:35			
Acetone	EPA 8260B	ND	*****	31.5	ug/kg dry	1x	8D16025	04/15/08 14:07	04/16/08 20:18	
Benzene	*	ND		1.57		**	H.	(6)	(0)	
Bromobenzene	*	ND		5.25			"			
Bromochloromethane	*	ND		5,25						
Bromodichloromethane	**	ND	*****	5.25	w	30		*	(80)	
Bromoform		ND	-	5.25		*			•	
Bromomethane	•	ND	*****	10.5						
2-Butanone		ND	*****	15.7	0.0			*	(9)	
n-Butylbenzene	*	ND		5.25					ii .	
ec-Butylbenzene		ND	*****	5.25		*				
ert-Butylbenzene		ND	*****	5.25		2			7.97	
Carbon disulfide		ND		3.15		X			907	
Carbon tetrachloride	W	ND		5.25		*				
Chlorobenzene	#	ND		2.10						
Chloroethane	W	ND	******	5.25		×.			W 5	
Chloroform	W	ND		2.62		w			W.	
Chloromethane		ND	*****	10.5					,	
-Chlorotoluene	(M	ND	*******	5.25					207	
-Chlorotoluene	w	ND		5.25	*		200	×	W	
Dibromochloromethane	w.	ND	-	5.25		*		*		
,2-Dibromo-3-chloropropane	,	ND	*****	10.5		5			(9.0)	
,2-Dibromoethane (EDB)	(#	ND	*****	5.25				*	(4)	
Dibromomethane	w.	ND		5.25					W	
,2-Dichlorobenzene	*	ND		5.25					,	
,3-Dichlorobenzene	197	ND	*****	5.25	90	*		×	9.	
,4-Dichlorobenzene		ND		5.25	*				ii)	
Dichlorodifluoromethane	W.	ND		5.25					*	
,1-Dichloroethane	10	ND	*****	2.10	(*)		(*)	*		
,2-Dichloroethane	н	ND		1.31					W.)	
,1-Dichloroethene		ND	*****	3.15				8	*	
is-1,2-Dichloroethene		ND	*****	3.15					(97)	
rans-1,2-Dichloroethene	. H.	ND		2.62			*	×		
,2-Dichloropropane	W.	ND		5.25						
,3-Dichloropropane	(*)	ND		5.25					(#)C	
2,2-Dichloropropane	(10)	ND		10.5					(A)	
1,1-Dichloropropene	1	ND		5.25			120			
pis-1,3-Dichloropropene	in .	ND	*****	5,25						
rans-1,3-Dichloropropene		ND		1.31	*	w				

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tande Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-05 (MW12D-22.5)		Soi	Samp	led: 04/0	9/08 09:35	,				
Ethylbenzene	EPA 8260B	ND	*****	4.20	ug/kg dry	lx	8D16025	04/15/08 14:07	04/16/08 20:18	
Hexachlorobutadiene		ND	*****	10.5				,,		
Methyl tert-butyl ether	. 100	ND		1.05		*	**		*	
n-Hexane	•	ND		5.25				,,		
2-Hexanone	1.00	ND		21.0	195		*	н	30.3	
Isopropylbenzene	W	ND		5.25						
p-Isopropyltoluene		ND	*****	5.25						
4-Methyl-2-pentanone		ND	*****	21.0	*			*		
Methylene chloride	/, 10	ND		3.67				¥		
Naphthalene	n	ND		10.5						
n-Propylbenzene		ND	*****	5.25					,	
Styrene		ND	-	1.05						
1,2,3-Trichlorobenzene		ND		10.5	792		*			
1,2,4-Trichlorobenzene	*	ND		10.5					,,	
1,1,1,2-Tetrachloroethane	.9	ND	,	5.25	(4)	*	(8)	*		
1,1,2,2-Tetrachloroethane	0	ND		5.25		(6)			ii .	
Tetrachloroethene		ND		2,10		*				
Toluene		ND	*****	1.57					,,	
1,1,1-Trichloroethane		ND	****	2.62	(#.)	90		£	ŭ.	
1,1,2-Trichloroethane	W	ND		1,31					*	
Trichloroethene		ND		2.62						
Trichlorofluoromethane		ND		5.25	*	*	(*)			
1,2,3-Trichloropropane		ND		5.25	*		**	16		
1,2,4-Trimethylbenzene	(4)	ND		5.25						
1,3,5-Trimethylbenzene		ND	*****	5.25			(*)	285		
Vinyl chloride	0.5	ND		2.62	*	W			Ä	
o-Xylene	360	ND		5.25					*	
m,p-Xylene		ND		5.25						
Total Xylenes		ND	*****	10.5		*	30	000	•	
Surrogate(s): 1,2-DCA-d4			134%		60 -	140 %	W		"	
Toluene-d8			98.8%			140 %	"		"	
4-BFB			100%		60 -	140 %	"		"	

TestAmerica Spokane

tande Randee Decker, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-06 (MW10D-13)		Soi	ľ.	2000	Samp	led: 04/1	10/08 09:00			
Acetone	EPA 8260B	35.8	-	33,5	ug/kg dry	1x	8D16025	04/15/08 14:07	04/16/08 20:43	
Benzene	0	ND	*****	1.67		,,	(#)	*	Ĭi.	
Bromobenzene		ND	*****	5.58	*	**	*		*	
Bromochloromethane		ND	*****	5.58			*		"	
Bromodichloromethane		ND	****	5.58	*			5.	"	
Bromoform		ND		5.58			10	*	**	
Bromomethane	•	ND		11.2				•		
2-Butanone	250	ND	*****	16.7						
n-Butylbenzene		ND		5,58			(0)	*	*	
ec-Butylbenzene		ND		5.58					*	
ert-Butylbenzene	•	ND		5.58	*	*			•	
Carbon disulfide	(#)	ND	*****	3.35		**)m)	90		
Carbon tetrachloride	(#)	ND		5.58		*			•	
Chlorobenzene	•	ND		2.23	•					
Chloroethane	(*)	ND	*****	5.58	8			,,		
Chloroform	(#).	ND		2.79						
Chloromethane		ND		11.2	*					
-Chlorotoluene		ND	*****	5,58						
-Chlorotoluene	*	ND		5.58	30			"		
Dibromochloromethane		ND		5.58	*				*	
,2-Dibromo-3-chloropropane		ND		11.2						
,2-Dibromoethane (EDB)		ND	*****	5.58	(5)					
Dibromomethane		ND		5.58				*		
,2-Dichlorobenzene	*	ND		5.58						
,3-Dichlorobenzene		ND	*****	5.58						
,4-Dichlorobenzene		ND		5,58					900	
Dichlorodifluoromethane		ND	******	5.58		w		*	W1	
,1-Dichloroethane	· ·	ND	*****	2.23					•	
,2-Dichloroethane		ND		1.39	*	*		*		
,1-Dichloroethene		ND		3.35	(6)			¥	**	
cis-1,2-Dichloroethene		ND	****	3.35						
rans-1,2-Dichloroethene	.00	ND		2,79		*			(10)	
,2-Dichloropropane		ND		5.58						
,3-Dichloropropane	•	ND	****	5,58						
2,2-Dichloropropane		ND		11.2					(9)	
1,1-Dichloropropene		ND		5.58		н			300	
sis-1,3-Dichloropropene	*	ND		5.58					H)	
rans-1,3-Dichloropropene	4	ND		1.39			925 9 10		.00	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tarde Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
SRD0072-06 (MW10D-13)	Soil Sampled: 04/10/08 09:00										
Ethylbenzene	EPA 8260B	ND	*****	4.46	ug/kg dry	lx	8D16025	04/15/08 14:07	04/16/08 20:43		
Hexachlorobutadiene	*	ND		11.2			•				
Methyl tert-butyl ether	*	ND	27 10 12	1.12		н			.00		
n-Hexane		ND	-	5.58		*			000		
2-Hexanone		ND		22,3	*	"					
sopropylbenzene	*	ND		5.58				*	(#)		
-Isopropyltoluene		ND		5,58			"		(W)		
-Methyl-2-pentanone	*	ND	-	22.3	•		•		*		
Methylene chloride	0	ND		3.90	*		*	,	25		
Naphthalene	W.	ND	*****	11.2			**				
n-Propylbenzene		ND		5,58							
Styrene		ND	****	1.12	75	1.0	"		*		
,2,3-Trichlorobenzene	*	ND		11.2	**		*				
,2,4-Trichlorobenzene		ND		11.2	H		"		3.00		
,1,1,2-Tetrachloroethane		ND		5.58							
,1,2,2-Tetrachloroethane		ND		5,58	*				(0)		
l'etrachloroethene		ND	****	2.23			*	(*)	7003		
l'Oluene		ND	*****	1.67	*	*			•		
1,1,1-Trichloroethane		ND		2.79	* *	*		,*:			
1,1,2-Trichloroethane	W. / v	ND		1.39	*						
Trichloroethene		ND	*****	2.79					10		
Trichlorofluoromethane	W .	ND	*****	5,58	*	**		•			
1,2,3-Trichloropropane		ND		5,58		"		3,900	**		
1,2,4-Trimethylbenzene		ND		5.58			*				
1,3,5-Trimethylbenzene		ND		5.58			*		•		
Vinyl chloride	9.0	ND	****	2.79	*			77.			
o-Xylene	W.	ND		5.58			**		".		
m,p-Xylene	•	ND		5.58	*				w .		
Total Xylenes		ND	*****	11.2							
Surrogate(s): 1,2-DCA-d4			126%			- 140 %	v.		"		
* Toluene-d8			97.8%			- 140 %	W 1		(#.)		
4-BFB			102%		60	- 140 %	W		"		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

SPOKANE, WA

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager:

Meghan Lunney

027-30139-00

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-07 (MW10D-24.5)		Soi	I .		Samp	mpled: 04/10/08 09:10				
Acetone	EPA 8260B	ND	****	34.0	ug/kg dry	1×	8D16025	04/15/08 14:07	04/16/08 21:08	
Benzene	0	ND		1.70				38.7	300	
Fromobenzene		ND	77770	5,66		*				
romochloromethane		ND		5.66	•	.**		*	•	
Fromodichloromethane	8	ND	*****	5.66	180	*	1.8	X		
romoform		ND		5.66	590			*		
romomethane		ND		11,3				*	*	
-Butanone		ND	*****	17.0				(8)	5.90	
-Butylbenzene	W.	ND		5.66				36		
ec-Butylbenzene		ND	*****	5.66					¥	
ert-Butylbenzene		ND	-	5.66					"	
Carbon disulfide	н	ND	2007	3,40					и.	
Carbon tetrachloride	*	ND		5.66		н	**		n.	
hlorobenzene		ND		2.26						
hloroethane	*	ND		5.66		(11)				
hloroform	*	ND		2.83			"	*	W	
hloromethane	*	ND		11.3	•				n	
Chlorotoluene	*	ND		5.66	2	28.5			"	
-Chlorotoluene	H	ND		5.66					00	
ibromochloromethane		ND		5.66					6	
,2-Dibromo-3-chloropropane		ND		11.3						
,2-Dibromoethane (EDB)		ND	*****	5.66	*		**		0.	
Dibromomethane		ND		5.66					ii.	
,2-Dichlorobenzene		ND		5,66					#	
,3-Dichlorobenzene		ND		5.66	*	385	2.0			
,4-Dichlorobenzene		ND		5,66	¥.		*		0.	
Dichlorodifluoromethane		ND		5.66						
,1-Dichloroethane		ND		2.26	*			200	17. 4	
,2-Dichloroethane	*	ND		1.41	ii.			380	n.	
,1-Dichloroethene	ii.	ND		3.40					ii.	
is-1,2-Dichloroethene		ND	*****	3.40					*	
rans-1,2-Dichloroethene		ND	1221127	2,83	*		*	*		
,2-Dichloropropane		ND		5,66	н			W	ii	
,3-Dichloropropane		ND	*****	5.66					•	
,2-Dichloropropane	*	ND	****	11.3	*			36		
,1-Dichloropropene	n	ND	,	5.66			¥	- 32	2 W	
is-1,3-Dichloropropene		ND		5.66	¥			*		
rans-1,3-Dichloropropene		ND		1.41						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tarde Randee Decker, Project Manager

Page 16 of 45

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
SRD0072-07 (MW10D-24.5)	Soil Sampled: 04/10/08 09:10										
Ethylbenzene	EPA 8260B	ND	*****	4.53	ug/kg dry	1x	8D16025	04/15/08 14:07	04/16/08 21:08		
Hexachlorobutadiene		ND		11.3				*			
Methyl tert-butyl ether		ND		1.13							
n-Hexane	•	ND		5.66		*		2			
2-Hexanone	M.	ND	*****	22.6			9	*	90		
Isopropylbenzene	×	ND	*****	5.66	"			*			
p-Isopropyltoluene	,	ND	*****	5.66							
4-Methyl-2-pentanone	18.	ND	*****	22.6			9				
Methylene chloride	W (95)	ND		3.96	"		11)		36		
Naphthalene	¥ ×	ND	*****	11.3							
n-Propylbenzene	*	ND		5.66			.77				
Styrene	W	ND	*****	1.13			*	×			
1,2,3-Trichlorobenzene	Ü.	ND		11.3							
1,2,4-Trichlorobenzene	*	ND		11.3				*			
1,1,1,2-Tetrachloroethane	w.	ND	*****	5.66			. 11		(90)		
1,1,2,2-Tetrachloroethane	*	ND		5.66	it		10		n		
Tetrachloroethene		ND	Name of Street	2.26		**					
Toluene		ND		1.70					w		
1,1,1-Trichloroethane		ND		2,83	. 10		.00	*			
1,1,2-Trichloroethane	*	ND		1.41							
Trichloroethene	*	ND		2.83	**				*		
Trichlorofluoromethane		ND	*****	5.66		*	(M)		×		
1,2,3-Trichloropropane	*	ND		5.66							
1,2,4-Trimethylbenzene	*	ND	*****	5.66							
1,3,5-Trimethylbenzene	*	ND		5.66		*			97.		
Vinyl chloride	¥	ND		2.83			W.				
o-Xylene		ND		5,66				*			
m,p-Xylene		ND	*****	5.66			3.53				
Total Xylenes	ж	ND		11.3					*		
Surrogate(s): 1,2-DCA-d4			126%			- 140 %	"		,,		
Toluene-d8			97.6%			- 140 %	n		"		
4-BFB			98.3%		60	- 140 %	"		"		

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-08 (MW30-30)		Soi	1		Samp	led: 04/	10/08 09:35			
Acetone	EPA 8260B	32.0	-	27.7	ug/kg dry	1x	8D16025	04/15/08 14:07	04/16/08 21:34	
Benzene	W	ND	*****	1.38						
Bromobenzene		ND		4.62		*				
Bromochloromethane	(8)	ND		4.62			•		*	
Bromodichloromethane		ND		4.62	(W)	(W.)	*	*	7,00	
Bromoform	*	ND		4.62					(m)	
Bromomethane	•	ND	*****	9.23				•	*	
2-Butanone	3.66	ND	*****	13.8	*	. W	*	5.00	350	
n-Butylbenzene	W	ND		4.62			**		(46)	
sec-Butylbenzene	•	ND	*****	4.62		*		•		
tert-Butylbenzene	8.	ND		4.62			*			
Carbon disulfide	K 2	3.48		2.77			**		и	
Carbon tetrachloride	ii)	ND		4.62		н	"		10	
Chlorobenzene		ND		1.85		*	"		*	
Chloroethane		ND		4.62	1,90	(99)	w	(*)		
Chloroform		ND		2.31	. 11	(#)	**		w	
Chloromethane	*	ND		9.23	*				, w	
2-Chlorotoluene		ND		4.62	975	3.90			n.	
4-Chlorotoluene	u .	ND		4.62	и				11	
Dibromochloromethane		ND		4.62			**		n	
1,2-Dibromo-3-chloropropane		ND		9.23		*			Ĥ.	
1,2-Dibromoethane (EDB)		ND		4.62	. 0.					
Dibromomethane	ű.	ND	****	4.62	· W				и	
1,2-Dichlorobenzene		ND	*****	4.62				•		
1,3-Dichlorobenzene	#	ND	****	4.62	25	391		140	,	
1,4-Dichlorobenzene	*	ND		4.62	*		¥	96	w.	
Dichlorodifluoromethane		ND	****	4.62						
1,1-Dichloroethane		ND	****	1.85	170			•		
1,2-Dichloroethane	10	ND		1.15					"	
1,1-Dichloroethene		ND		2.77	W.					
cis-1,2-Dichloroethene		18.3	****	2.77	4					
trans-1,2-Dichloroethene	*	3.54	*****	2.31	*					
1,2-Dichloropropane		ND		4.62	*			*		
1,3-Dichloropropane		ND		4.62					•	
2,2-Dichloropropane		ND	*****	9.23						
1,1-Dichloropropene		ND	200	4.62	×		*	w	*	
cis-1,3-Dichloropropene		ND		4.62			ů.		ŵ.	
trans-1,3-Dichloropropene		ND		1,15					¥	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-08	(MW30-30)		Soi	L		Samp	led: 04/	10/08 09:35			
Ethylbenzene		EPA 8260B	ND		3.69	ug/kg dry	lx	8D16025	04/15/08 14:07	04/16/08 21:34	
Hexachlorobutadie	ne		ND		9.23			*	*		
Methyl tert-butyl et	ther		ND		0.923			*			
n-Hexane		×	ND	*****	4.62		*				
2-Hexanone			ND		18.5	*			*	300	
Isopropylbenzene			ND		4.62						
p-Isopropyltoluene		*	ND	*****	4.62	•					
4-Methyl-2-pentane	one	*	ND	*****	18.5	W.	X.1		×	*	
Methylene chloride	1	b .	ND		3.23	×					
Naphthalene		W	ND		9.23				*	•	
n-Propylbenzene			ND	****	4.62	18			18.1		
Styrene			ND		0.923	×			(W)		
1,2,3-Trichlorobenz	zene	u u	ND		9.23						
1,2,4-Trichlorobenz	zene		ND	*****	9.23			"			
1,1,1,2-Tetrachloro	ethane		ND		4.62						
1,1,2,2-Tetrachloro	ethane	11	ND	*****	4.62	100		w.	0 4		
Tetrachloroethene			8.38		1.85		**				
Foluene		*	ND	*****	1.38	3.83		95	*		
1,1,1-Trichloroetha	ne		ND	*****	2.31			**			
1,1,2-Trichloroetha	ne	W.	ND		1.15		*				
[richlorofluoromet	hane	¥,	ND	*****	4.62	"	*				
1,2,3-Trichloroprop	oane	"	ND	****	4.62			*	*	(10)	
1,2,4-Trimethylben	zene	00	ND	*****	4.62					W.	
1,3,5-Trimethylben	zene		ND		4.62				*		
Vinyl chloride			ND	*****	2.31				2.5	**	
-Xylene			ND		4.62		14			W.	
n,p-Xylene			ND		4.62					*	
Total Xylenes		•	ND	*****	9.23		*				
Surrogate(s):	1,2-DCA-d4			128%	1.000	60 -	140 %	"		"	
	Toluene-d8			96.9%		60 -	140 %	u		"	
	4-BFB			99.7%		60 -	140 %			"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number:

027-30139-00

Project Manager: Meghan Lunney

Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-08 (MW30-30)		So	1		Samp	led: 04/	10/08 09:35			
Trichloroethene	EPA 8260B	ND	0.0251	0.251	mg/kg dry	lx	8D15064	04/15/08 17:01	04/16/08 09:16	NI
Surrogate(s): 1,2-DCA-d4			96.2%		75 -	125 %	"		"	
Toluene-d8			98.3%		75 -	125 %			*	
4-BFB			98.6%		75 -	125 %	"		W	
SRD0072-08RE1 (MW30-30)		So	il		Samp	led: 04/	10/08 09:35			
Trichloroethene	EPA 8260B	ND	0.0230	0,230	mg/kg dry	lx	8D22022	04/15/08 17:01	04/22/08 18:48	NI
Surrogate(s): 1,2-DCA-d4			95.1%		75 -	- 125 %	"		"	
Toluene-d8			101%			- 125 %	"		<i>n</i> .	
4-BFB			99.4%		75 -	- 125 %	"		"	
SRD0072-09 (MW13D-13.3)		So	il		Samp	led: 04/	11/08 08:35			
Acetone	EPA 8260B	ND	0.487	1.87	mg/kg dry	1×	8D15064	04/15/08 17:01	04/16/08 09:43	
Benzene	*	ND	0.0112	0.0373				30	"	
Bromobenzene		ND	0.0168	0.187	6		*		ж	
Bromochloromethane		ND	0.0187	0.187	*	*				
Bromodichloromethane		ND	0.0149	0.187			*	*		
Bromoform		ND	0.0243	0.187		*	. **			
Bromomethane		ND	0.0187	0.187	¥	*	W			
2-Butanone	"	ND	0.218	1.87	•	*	*			
n-Butylbenzene	"	ND	0.0168	0.187	*	195	"	: :		
sec-Butylbenzene	W	ND	0.0168	0.187	*		*	* *		
tert-Butylbenzene	•	ND	0.0317	0.187		•	*			
Carbon disulfide	,	ND	0.0149	0.187	2.				•	
Carbon tetrachloride	ii.	ND	0.0224	0.187	*		,	()#0		
Chlorobenzene		ND	0.00933	0.187		*	*		**	
Chloroethane	(<u>#</u>	ND	0.0280	0.187					•	
Chloroform	W	ND	0.0131	0.187	×	**			"	
Chloromethane	•	ND	0.0299	0.933	¥		н			
2-Chlorotoluene		ND	0.0336	0.187		*				
4-Chlorotoluene	*	ND	0.0336	0.187	*	"	,			
Dibromochloromethane		ND	0.0243	0.187		w		<i>ii</i>		
1,2-Dibromo-3-chloropropane		ND	0.336	0.933					u	
1,2-Dibromoethane	. W.	ND	0.0205	0.187		*	**			
Dibromomethane	W	ND	0.0168	0.187	âi .	×		ě.	, W.)	
1,2-Dichlorobenzene		ND	0.0112	0.187		*	*			
1,3-Dichlorobenzene	36	ND	0.0131	0.187			90			
1,4-Dichlorobenzene		, ND	0.0149	0.187	*				w	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-09 (MW13D-13.3)		Soi	il		Samp	led: 04/	11/08 08:35			
Dichlorodifluoromethane	EPA 8260B	ND	0.0299	0.187	mg/kg dry	1×	8D15064	04/15/08 17:01	04/16/08 09:43	
1,1-Dichloroethane	9	ND	0.0149	0.187	26	*)00	
1,2-Dichloroethane	**	ND	0.0168	0.187		*			(0)	
1,1-Dichloroethene		ND	0.0187	0.187				,	•	
cis-1,2-Dichloroethene		ND	0.0168	0.187		*			.00.0	
trans-1,2-Dichloroethene		ND	0.0168	0.187	(0)	*				
1,2-Dichloropropane		ND	0.0205	0.187				**		
1,3-Dichloropropane		ND	0.0168	0.187			"		*	
2,2-Dichloropropane		ND	0.0280	0.187		(#0)		W		
1,1-Dichloropropene	*	ND	0.0187	0.187			"	**	(60)	
cis-1,3-Dichloropropene	*	ND	0.0131	0.187					0	
trans-1,3-Dichloropropene		ND	0.00933	0.187	25	(8)			(#)	
Ethylbenzene		ND	0.0168	0.187	*				W.	
Hexachlorobutadiene		ND	0.0411	0.933					ii)	
Methyl tert-butyl ether	10	ND	0.0112	0.933					(9)	
n-Hexane		ND	0.0299	1.87	90				(00)	
2-Hexanone	*	ND	0.226	1.87	*		*		ii .	
Isopropylbenzene		ND	0.0149	0.187					,	
p-Isopropyltoluene	100	ND	0.0149	0.187	*	(5%)			160	
4-Methyl-2-pentanone		ND	0.190	1.87	(4)	*			H.	
Methylene chloride		ND	0.0243	1.87			*		*	
Naphthalene		ND	0.0205	0.933			1.5			
n-Propylbenzene	(60)	ND	0.0187	0.187					000	
Styrene	W.	ND	0.0112	0.187					600	
1,2,3-Trichlorobenzene		ND	0.0261	0.933		•				
1,2,4-Trichlorobenzene	(0)	ND	0.0243	0.933	(*)				и.	
1,1,1,2-Tetrachloroethane		ND	0.0149	0.187	96	w				
1,1,2,2-Tetrachloroethane		ND	0.0168	0.187		٠				
Tetrachloroethene		ND	0.0205	0.0373	25	960	(0.0)		(9)	
Toluene		ND	0.0112	0.187	96.	*		*	96	
1,1,1-Trichloroethane	•	ND	0.0205	0.187		*			*	
1,1,2-Trichloroethane		ND	0.0168	0.187	3.50	*			(0)	
Trichloroethene	W	ND	0.0187	0.187	(*)			9	0.7	
Trichlorofluoromethane		ND	0.0224	0.187						
1,2,3-Trichloropropane		ND	0.0765	0.187					.".	
1,2,4-Trimethylbenzene		ND	0.0131	0.187		*	*			
1,3,5-Trimethylbenzene	W.	ND	0.0131	0.187						
Vinyl chloride		ND	0.0336	0.187				*		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-09 (MW13D-13.3)		Soi	I		Samp	led: 04/	11/08 08:35			
Total Xylenes	EPA 8260B	ND	0.0411	0,560	mg/kg dry	1×	8D15064	04/15/08 17:01	04/16/08 09:43	
Surrogate(s): 1,2-DCA-d4			96.7%		75 -	125 %	W.		"	
Toluene-d8			98.0%			125 %			"	
4-BFB			93.3%		75 -	125 %			"	
SRD0072-11 (MW13D-53.6)		Soi	1		Samp	led: 04/	11/08 12:30			
Acetone	EPA 8260B	ND	0,680	2.61	mg/kg dry	1×	8D15064	04/15/08 17:01	04/16/08 10:10	
Benzene	•	ND	0.0156	0.0521					•	
Bromobenzene	•	ND	0.0235	0.261						
Bromochloromethane		ND	0.0261	0.261						
Bromodichloromethane		ND	0.0209	0,261					u.	
Bromoform	•	ND	0.0339	0.261						
Bromomethane		ND	0.0261	0.261	1.75		*		и.	
2-Butanone	W	ND	0.305	2.61		*		*	#:	
n-Butylbenzene		ND	0.0235	0.261			н		ii.	
sec-Butylbenzene		ND	0.0235	0.261	*		"	•	*	
tert-Butylbenzene	*	ND	0.0443	0.261		*	186	285	%	
Carbon disulfide	W	ND	0.0209	0.261	*		*	300		
Carbon tetrachloride	·	ND	0.0313	0.261					•	
Chlorobenzene		ND	0.0130	0.261		9.5				
Chloroethane	W	ND	0.0391	0.261			*	*	•	
Chloroform	#	ND	0.0183	0.261			*		•	
Chloromethane		ND	0.0417	1.30			*		*	
2-Chlorotoluene	*	ND	0.0469	0.261	#	**	*		ж.	
4-Chlorotoluene	*	ND	0.0469	0.261			*		*	
Dibromochloromethane		ND	0.0339	0.261		"	*		*	
1,2-Dibromo-3-chloropropane	X	ND	0.469	1.30		19	*			
1,2-Dibromoethane		ND	0.0287	0.261	"				Ü	
Dibromomethane		ND	0.0235	0.261						
1,2-Dichlorobenzene	*	ND	0.0156	0.261					<u> </u>	
1,3-Dichlorobenzene		ND	0.0183	0.261	*	*				
1,4-Dichlorobenzene	*	· ND	0.0209	0,261			н	*	**	
Dichlorodifluoromethane		ND	0.0417	0.261					,	
1,1-Dichloroethane		ND	0.0209	0.261	*			. *	0	
1,2-Dichloroethane		ND	0.0235	0.261	ů.			*		
1,1-Dichloroethene		ND	0.0261	0.261					•	
cis-1,2-Dichloroethene	*	ND	0.0235	0.261	*				,	
trans-1,2-Dichloroethene	2	ND	0.0235	0.261	¥.				ii.	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-11 (MW13D-53.6)		Soi	l .		Samp	led: 04/	11/08 12:30			
1,2-Dichloropropane	EPA 8260B	ND	0.0287	0,261	mg/kg dry	lx	8D15064	04/15/08 17:01	04/16/08 10:10	
1,3-Dichloropropane	•	ND	0.0235	0.261					¥	
2,2-Dichloropropane		ND	0.0391	0.261	**			*	*	
1,1-Dichloropropene		ND	0.0261	0.261	"			#		
cis-1,3-Dichloropropene	90	ND	0.0183	0.261		*	*	*	×	
trans-1,3-Dichloropropene	# ·	ND	0.0130	0.261						
Ethylbenzene	*	ND	0.0235	0.261		**				
Hexachlorobutadiene		ND	0.0574	1.30	3 C	*		*		
Methyl tert-butyl ether		ND	0.0156	1.30	*	**		×	*	
n-Hexane	•	ND	0.0417	2.61					¥	
2-Hexanone		ND	0.315	2.61	7.			8.		
Isopropylbenzene		ND	0.0209	0.261		**	.00	*		
p-Isopropyltoluene		ND	0.0209	0.261		*				
4-Methyl-2-pentanone	*	ND	0.266	2.61			**			
Methylene chloride	3 1	ND	0.0339	2.61		34		*	*	
Naphthalene	×.	ND	0.0287	1.30	*	**		*		
n-Propylbenzene	•	ND	0.0261	0.261				8	*	
Styrene		ND	0.0156	0.261	8.	**		*	¥	
1,2,3-Trichlorobenzene	(*	ND	0.0365	1.30	×	a a		×	W	
1,2,4-Trichlorobenzene		ND	0.0339	1.30		**	*		¥	
1,1,1,2-Tetrachloroethane	•	ND	0.0209	0.261	*	77	"			
1,1,2,2-Tetrachloroethane		ND	0.0235	0.261	*	H	**	*		
Tetrachloroethene		ND	0.0287	0.0521		31	**		W	
Toluene	•	ND	0.0156	0.261			*			
1,1,1-Trichloroethane		ND	0.0287	0.261	*	20	**	*	н	
1,1,2-Trichloroethane	*	ND	0.0235	0.261				¥	я	
Trichloroethene		ND	0.0261	0.261						
Trichlorofluoromethane		ND	0.0313	0.261		*				
1,2,3-Trichloropropane	*	ND	0.107	0.261		W		ji.	ú	
1,2,4-Trimethylbenzene		ND	0.0183	0.261						
1,3,5-Trimethylbenzene	•	ND	0.0183	0.261						
Vinyl chloride	,,	ND	0.0469	0.261	9.	*				
Total Xylenes	н	ND	0.0574	0.782		*				
Surrogate(s): 1,2-DCA-d4			95.9%		75 -	125 %			*	
Toluene-d8			95.9%		75 -	125 %	"		"	
4- BFB			96.3%		75 -	125 %	•		"	9.

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

tandi

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-10 (Trip)		Soi	1		Samp	pled: 04/	11/08 00:00			
Acetone	EPA 8260B	ND		10.0	ug/l	lx	8D15034	04/15/08 08:33	04/15/08 14:48	
Benzene	"	ND	****	0.200				*	(0)	
Bromobenzene	•	ND		0.500		*	*	**		
Bromochloromethane	75	ND		0.250		*	2.5		7	
Bromodichloromethane	W.	ND		0.200	. 0.).M.			(100)	
Bromoform	W	ND		0.250			"			
Bromomethane	W.	ND	*****	2.00	"			*		
2-Butanone	**	ND		2.00	(9)	5963				
n-Butylbenzene	w w	ND		0.200					ii	
sec-Butylbenzene	٧	ND	*****	0.200		**			*	
tert-Butylbenzene		ND		0.500			.0	18		
Carbon disulfide	*	ND		0.500				(*)	"	
Carbon tetrachloride	*	ND		0.200		44				C
Chlorobenzene	ж.	ND	****	0.200		989				
Chloroethane	*	ND		1.00					*	
Chloroform	*	ND		0.200					· W	
Chloromethane		ND		1.00		*			*	
2-Chlorotoluene	W	ND	-	0.500	(8)	1.00		*		
4-Chlorotoluene		ND	*****	0,500					ü	
Dibromochloromethane	¥	ND	-	0.200					*	
1,2-Dibromo-3-chloropropane	*	ND		1.00						
1,2-Dibromoethane	ü	ND	0.77	0.200	*		w		*	
Dibromomethane	•	ND		0.200					¥	
1,2-Dichlorobenzene		ND		0.200						
1,3-Dichlorobenzene		ND		0.200	*		**	343	,	
1,4-Dichlorobenzene	n	ND		0.200	*			760	w.	
Dichlorodifluoromethane	,	ND		0.500						
1,1-Dichloroethane		ND		0.200	W .			18	W	
1,2-Dichloroethane		ND		0.200	**		*	*	**	
1,1-Dichloroethene		ND		0.200						L
cis-1,2-Dichloroethene	,	ND		0.200	*				,	
trans-1,2-Dichloroethene	W .	ND		0.200	*			*	**	
1,2-Dichloropropane	•	ND	*****	0.200					,	
1,3-Dichloropropane	,	ND	-	0.200						
2,2-Dichloropropane	Ä.	ND		0.500	*			*		C5
1,1-Dichloropropene	in .	ND		0.200		**			à	
cis-1,3-Dichloropropene	(M)	ND		0.200						
trans-1,3-Dichloropropene		ND		0.200						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tardisson of Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-10 (Trip)		Soi	1		Samp	led: 04/1	1/08 00:00			
Ethylbenzene	EPA 8260B	ND	*****	0.200	ug/l	1×	8D15034	04/15/08 08:33	04/15/08 14:48	
Hexachlorobutadiene	*	ND		2,50		0.0		× .		
Methyl tert-butyl ether	*	ND	0.000	1,00						
n-Hexane	•	ND		1.00		"	*		*	
2-Hexanone	*	ND		2,00				(#):		
Isopropylbenzene	*	ND		0.500		n		*	200	
p-Isopropyltoluene	¥	ND		0.200					•	
4-Methyl-2-pentanone	*	ND		2,00				(%)	390	
Methylene chloride	*	ND		5.00				У.		
Naphthalene	w.	ND		2.50						
n-Propylbenzene	*	ND	*****	0,500		**			5 .9 .	
Styrene	W	ND		0.500	585				(10)	
1,2,3-Trichlorobenzene	W	ND		1,00				*	240	
1,2,4-Trichlorobenzene	*	ND		1.00		**		•		
1,1,1,2-Tetrachloroethane	*	ND		0.200	36		. *	(*)	200	
1,1,2,2-Tetrachloroethane	f .	ND	2222	0.500				(#1)	(a)	
Tetrachloroethene	•	ND	*****	0.200		*			•	
Toluene		ND	*****	0.200				7		
1,1,1-Trichloroethane	*	ND	-	0.200	(4)		ж.	*		
1,1,2-Trichloroethane	"	ND	77777	0.200			×			
Trichloroethene	•	ND		0.200	•	*	**			
Trichlorofluoromethane	".	ND		0.500		(4)		*		
1,2,3-Trichloropropane	16	ND		0.500						
1,2,4-Trimethylbenzene		ND		0.200		*	*		•	
1,3,5-Trimethylbenzene		ND	poses.	0.500			9.00			
Vinyl chloride	**	ND		0.200	*		**	W.		
o-Xylene	W	ND		0.250		*	*	*		
m,p-Xylene	₩.	ND		0.500						
Total Xylenes	0.	ND		0.750	363	*	.*		(10)	
Surrogate(s): 1,2-DCA-d4			98.4%		76 -	138 %	"		n	
Toluene-d8			95.4%			120 %	"		•	
4-BFB			105%		80 -	120 %	"		"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

LFR, Inc.

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Physical Parameters by APHA/ASTM/EPA Methods

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0072-01	(MW11D-15.8)		Soil			Sam	pled: 04/0	8/08 07:35			
Dry Weight		BSOPSPL003R0 8	74.3		1.00	%	lx	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-02	(MW11D-17.3)		Soil			Sam	pled: 04/0	8/08 08:25			
Dry Weight		BSOPSPL003R0 8	74.1	*****	1.00	%	lx	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-03	(MW11D-44.3)		Soil			Sam	pled: 04/0	08/08 09:45			
Dry Weight		BSOPSPL003R0 8	74.4	(2000)	1.00	%	1x	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-04	(MW12D-12)		Soil			Sam	pled: 04/0	99/08 08:15			
Dry Weight		BSOPSPL003R0 8	79.1	******	1,00	%	lx	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-05	(MW12D-22.5)		Soil			Sam	pled: 04/0	9/08 09:35			
Dry Weight		BSOPSPL003R0 8	70.9		1.00	%	1x	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-06	(MW10D-13)		Soil	j.		Sam	pled: 04/1	0/08 09:00			
Dry Weight		BSOPSPL003R0 8	76.2		1.00	%	lx	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-07	(MW10D-24.5)		Soil			Sam	pled: 04/	10/08 09:10			
Dry Weight		BSOPSPL003R0 8	68.1		1.00	%	1x	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-08	(MW30-30)		Soil	l i		Sam	pled: 04/1	10/08 09:35			
Dry Weight		BSOPSPL003R0 8	76.1		1.00	%	lx	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-09	(MW13D-13.3)		Soil	Ę		Sam	pled: 04/	11/08 08:35			
Dry Weight		BSOPSPL003R0 8	82.0		1.00	%	lx	8D23034	04/23/08 13:32	04/24/08 00:00	
SRD0072-11	(MW13D-53.6)		Soil	ľ		Sam	pled: 04/	11/08 12:30			
Dry Weight	A COLUMN TO THE PARTY OF THE PA	BSOPSPL003R0 8	73.5		1.00	%	1x	8D23034	04/23/08 13:32	04/24/08 00:00	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

Note	Notes	Analyzed	(Limits)	% RPD	(Limits)	% REC	Spike Amt	Source Result	Dil	Units	MRL	MDL*	Result	Method	Analyte
Seriose ND				:24	04/15/08 19	cted:	Extra								Blank (8D15062-BLK1)
None No No No No No No No N		04/16/08 00:46	0	**	***				1x	ug/kg wet	30.0		ND	EPA 8260B	Acetone
Sumble S		90	**	**	**		***	-			1.50		ND	N	enzene
None South South		u		**		42	***	22.7	× .	(4)	5.00	***	ND	W	Bromobenzene
ND		ii.				**		77			5,00		ND		romochloromethane
ND		0	177	77	-						5.00	***	ND	"	romodichloromethane
ND					**	**		***			5.00	***	ND	,	Bromoform
Battanene		*	**	100	***	**	***	***			10.0		ND	*	Bromomethane
Supplementance		*	44	**			**	463		200	15.0	***	ND		-Butanone
ND		×	**		**		mic .	**		W.	5,00		ND	*	-Butylbenzene
ND		*		22	100	-	1	12			5.00	***	ND		1903-1903-1903-1904 .
Carbon disulfide		*	**		**	**					5.00		ND	*	
Anton tetrachleride		W	100			**	-	-	"		3,00	***	ND		
ND			**	**	**	**	-	***			5.00	***	ND		
ND		,	**	***				***			2.00	***			
ND			**	44	- 44	-	144								
ND			**	**	-		-	-	*					9	
ND		iii		***		22		2.2	*			***		*	
Chlorotoluene		"	22		_	**				(4)		***			
ND Sold So						**	77	**							
2.Dibromo-3-chloropropane			-	**		200	***								
ND ND ND ND ND ND ND ND														*	
ND				***	**	-		22							Araba da
2-Dichlorobenzene				-		-		-							
3-Dichlorobenzene		.0				000		22							
A-Dichlorobenzene		W				-	-								
ND				-											
1-Dichloroethane			**	200	700	1077									
,2-Dichloroethane							-			**					
1-Dichloroethene						122									
is-1,2-Dichloroethene		30		-	120	-								343	
ND						7227		- 22							
,2-Dichloropropane "ND 5.00 " " " " ,3-Dichloropropane "ND 5.00 " " " ,2-Dichloropropane "ND 10.0 " " ,1-Dichloropropene "ND 5.00 " " " isis-1,3-Dichloropropene "ND 5.00 " " "			-	20		0		-							
,3-Dichloropropane "ND 5.00 "" " ,2-Dichloropropane "ND 10.0 "" " ,1-Dichloropropene "ND 5.00 "" " is-1,3-Dichloropropene "ND 5.00 "" "				100			550	-							
.2-Dichloropropane " ND 10.0 " " " .1-Dichloropropene " ND 5.00 " " " is-1,3-Dichloropropene " ND 5.00 " " "				1377		-	-	-						30.	
,2-Dichloropropane			.55					757							0
1,1-Dichloropropene "ND 5.00 " " " "			-			. ***		-	75						
is-1,3-Dichloropropene ND 5.00				(44)		**						****		EM.	
rans-1,3-Dichloropropene " 1.65 1.25 " " "			-		##1 Dec		-					***		.00	
Ethylbenzene " ND 4,00 " " "					**	**	**					777		u.	rans-1,3-Dichloropropene

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney

)

Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8D15062-BLK1)								Extr	acted:	04/15/08 19	:24			
Hexachlorobutadiene	EPA 8260B	ND		10.0	ug/kg wet	1x	**	**			-		04/16/08 00:46	
Methyl tert-butyl ether		ND		1.00			123	**			-		*	
n-Hexane	*	ND	***	5.00	(4)					_			ii .	
2-Hexanone	*	23.4		20.0	*		77.						*	I
Isopropylbenzene		ND	***	5.00	*	"	***	**	***	-	**	*-		
p-Isopropyltoluene		ND	***	5,00		**	***	***	**	**		**	*	
4-Methyl-2-pentanone		ND	***	20.0		.00		**	**	**	**		"	
Methylene chloride	*	ND		3.50	(9)		**	***	**		**	**	30	
Naphthalene	¥	ND		10.0			0.0	-			-			
n-Propylbenzene		ND		5.00				-		-				
Styrene		ND	***	1.00			**	177	.77	127				
1,2,3-Trichlorobenzene		ND	***	10.0			**	**	**	**			•	
1,2,4-Trichlorobenzene	8	ND		10.0			**	**	**	**	100	**		
1,1,1,2-Tetrachloroethane	*	ND	***	5.00		2.00	-	**						
1,1,2,2-Tetrachloroethane	*	ND	MM N.	5.00	*	(4)		**		**				
Tetrachloroethene	W.	ND		2.00				-						
Toluene	W	ND		1.50			**	**	**	**			W	
1,1,1-Trichloroethane		ND		2.50					275	177	.77			
1,1,2-Trichloroethane	*	ND	***	1.25			**	**	***	**	**	-		
Trichloroethene	"	ND	and the same	2.50			**	**	**	**	**	**	*	
Trichlorofluoromethane		ND	***	5.00		25	-	++		-	**	**		
1,2,3-Trichloropropane	*	ND		5.00	*	38	-	**		744		14		
1,2,4-Trimethylbenzene		ND	/522	5.00			22			-22	-			
1,3,5-Trimethylbenzene		ND		5.00				**	**	-	**			
Vinyl chloride		ND	***	2.50				**	-			-		
o-Xylene		ND	***	5,00				**	**	-	**	-		
m,p-Xylene		ND	***	5.00		*	**	**	***	-		**		
Total Xylenes	,	ND	***	10.0				44	**	-	***)**)	
Surrogate(s): 1,2-DCA-d4		Recovery:	101%	Li	mits: 60-140%								04/16/08 00:40	6
Toluene-d8			101%		60-1409	6 "								

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

er: Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results

TestAmerica Seattle

Section	Acetoce PA \$266B	Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Serior S	Description Section	LCS (8D15062-BS1)								Exti	acted:	04/15/08 19	:24			
Buttanener 485 150	Section Sect	Acetone	EPA 8260B	475	***	30.0	ug/kg wet	lx	-	500	94.9%	(70-130)			04/15/08 23:56	
Marchon distributed	Charles distribute Sci.	Benzene	*	58.1	444	1.50		*	144	50.0	116%		44	**	(15)	
State Stat	Surroganic(s) 1.3-1.0 1.5-1.0	-Butanone	*	495		15.0	H	8.		500	98.9%	(0.)	227		(.0)	
	1.Dic Alforesthese	Carbon disulfide	*	65,1		3.00	**		-	50.0	130%		**		300	
		Chlorobenzene		61.9	***	2.00			177		124%	300	77	57		
Second Content	1.1-Trichloroethene	,1-Dichloroethane	* .	59.9		2.00					120%		***		*	
No.	Second S	,I-Dichloroethene		63.8	***	3.00		*	**		128%		**	**	*	
Second continuation	Section Sect	is-1,2-Dichloroethene		60.2	***	3.00	*				120%		**			
Methyl-1 pentanone 500 200 500 100% 500 100% 500 100% 500 100% 500 100% 500 500% 500 500% 500 500%	Machelyl-Zepentanone	Ethylbenzene	*	58.9	***	4.00		25	124		118%		44		200	
Second Continue	Section Sect	fexachlorobutadiene	*	54.8	200	10.0	*		-		110%			22	(n)	
Solume S	Trichloroethane	-Methyl-2-pentanone		500		20.0	*			500	100%		**			
1,1-Trichloroethane	1,1-Trichloroethane	etrachloroethene	*	58.2		2.00	*			50,0	116%		77/			
Surrogate(s) 1,2-DCA-d4 Recovery 100% Limits 60-1-00% Surrogate(s) 1,2-DCA-d4 Recovery 100% Limits 60-1-00% Surrogate(s) 1,2-DCA-d4 Recovery 100% Surrogate(s) 1,2-DCA-d4 Recovery 100% Surrogate(s) 1,2-DCA-d4 Recovery 100% 60-1-00% Surrogate(s) 1,2-DCA-d4 Recovery 100% 60-1-00% Surrogate(s) 1,2-DCA-d4 Recovery 100% 100% 100% 100% Surrogate(s) 1,2-DCA-d4 Recovery 100%	Surrogate(s): 1,2-DCA-d4 Recovery: 100% Limits: 60-140%	oluene		56,9		1.50					114%		**			
Surrogate(s): 1,2-DCA-14 Recovery: 100% Limits: 60-110%	Surrogaie(s): 1,3-DCA-d4 Recovery: 100% Limits: 60-140% "	,1,1-Trichloroethane		59.9		2.50			-		120%		**			
Tollane-48	Tollune-48 4-BFB 10196 99.296 60-1-4096 Extracte: 0415-08 150-150-150-150-150-150-150-150-150-150-	richloroethene	*	57.8		2.50	*	*	**		116%		**	**		
Toluene-d8	Tollune-d8	Surrogate(s): 1,2-DCA-d4		Recovery:	100%	Li	mits: 60-140%	"							04/15/08 23:56	
CS Dup (8D15062-BSD1) SEPA 8260B 454 30,0 ug/kg wet 1x 500 90,8 (70-130) 4.64% 400 04166/8800;21 1800 1900 1	CS Dup (8D15062-BSD1) Section EPA 8260B 454 30.0 ug/kg wet 1x 500 98.% (70-130) 4.46% 30) 04/16/08 00:21														"	
Section Sect	Secretary Secr	4-BFB			99.2%		60-1409	6 "							"	
Senzene	Senzene	LCS Dup (8D15062-BSD1)								Exti	acted:	04/15/08 19	:24			
Butanone	Butanone	Acetone	EPA 8260B	454		30,0	ug/kg wet	1x	44	500	90.8%	(70-130)	4.46%	(30)	04/16/08 00:21	
Carbon disulfide 64.9 3.00 " 50.0 130% " 0.231% " 1.00% " 1.0	Carbon disulfide	Benzene		59.5	***	1.50			-	50.0	119%		2.45%		и	
120% 2.90% 120% 2.90% 120%	Company Comp	-Butanone	*	493	***	15.0	*	×	**	500	98.6%		0.354%	. "		
1-Dichloroethane	1-Dichloroethane	Carbon disulfide		64.9		3.00				50,0	130%		0.231%	. "	W	
,1-Dichloroethene	1-Dichloroethene	Chlorobenzene	*	60.2		2,00					120%		2.90%			
is-1,2-Dichloroethene	59.8 3.00 120% 0.650%	,I-Dichloroethane		60.5		2.00					121%		0.931%	. "	,,	
thylbenzere " 57.2 4.00 " " " 114% " 2.89% " " Lexachlorobutadiene " 55.0 10.0 " " " 110% " 0.419% " " " 10.0 " " 500 102% " 2.22% " " Cetrachloroethene " 54.8 2.00 " " 50.0 110% " 6.09% " " Coluene " 54.9 1.50 " " " 110% " 3.67% " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " 1.55% " " " " " 1.55% " " " " 1.55% " " " " 1.55% " " " " 1.55% " " " " 1.55% " " " " 1.55% " " " " " 1.55% " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " " 1.55% " " " " " " 1.55% " " " " " " 1.55% " " " " " " " 1.55% " " " " " " " " " " " " " " " " " "	114% 2.89%	,1-Dichloroethene		63.6	***	3,00	5	8	44	380	127%		0.173%	. "		
Hexachlorobutadiene " 55.0 10.0 " " " 110% " 0.419% " " " 110% " 0.419% " " " 110% " 0.419% " " " 110% " 0.419% " " " 110% " 0.419% " " " 110% " 0.419% " " " 110% " 0.419% " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " 110% " 0.419% " " " " " " 110% " 0.419% " " " " " " 110% " 0.419% " " " " " " " 110% " 0.419% " " " " " " " " " " " " " " " " " " "	Hexachlorobutadiene	is-1,2-Dichloroethene	*	59.8		3.00		*	**		120%		0.650%	. "	(0)	
Hexachlorobutadiene " 55.0 10.0 " " " 110% " 0.419% " " " -Methyl-2-pentanone " 512 20.0 " " 500 102% " 2.22% " " -etrachloroethene " 54.8 2.00 " " 50.0 110% " 6.09% " " Foluene " 54.9 1.50 " " " 110% " 3.67% " " 1,1-Trichloroethane " 59.0 2.50 " " " 118% " 1.55% " " "	dexachlorobutadiene " 55.0 10.0 " " " 110% " 0.419% " " " Methyl-2-pentanone " 512 20.0 " " 500 102% " 2.22% " " Petrachloroethene " 54.8 2.00 " " 50.0 110% " 6.09% " " Poluene " 54.9 1.50 " " " 110% " 3.67% " " Prichloroethane " 59.0 2.50 " " " 118% " 1.55% " " Prichloroethene " 57.8 2.50 " " " 116% " 0.0519% " "	thylbenzene	×	57.2	222	4.00		*	722		114%		2.89%	*	.00	
-Methyl-2-pentanone	-Methyl-2-pentanone			55.0	111	10.0	*	*	-		110%		0.419%	. "		
" 54.8 2.00 " " 50.0 110% " 6.09% " " Coluene " 54.9 1.50 " " " 110% " 3.67% " " 1,1,1-Trichloroethane " 59.0 2.50 " " " 118% " 1.55% " "	Tetrachloroethene " 54.8 2.00 " 50.0 110% " 6.09% " " Foluene " 54.9 1.50 " " 110% " 3.67% " " Al,1-Trichloroethane " 59.0 2.50 " " 118% " 1.55% " Princhloroethene " 57.8 2.50 " " " 116% " 0.0519% "		8	512	***	20.0			200	500	102%		2.22%		a .	
"oluene" 54.9 1.50 " " " 110% " 3.67% " " " 1,1-Trichloroethane" 59.0 2.50 " " " 118% " 1.55% " "	" 54.9 1.50 " " 110% " 3.67% " " 1,1-Trichloroethane " 59.0 2.50 " " 118% " 1.55% " " Prichloroethene " 57.8 2.50 " " 116% " 0.0519% "	Samuel March March Control			***	2,00					110%		6.09%			
,1,1-Trichloroethane " 59.0 2.50 " " " 118% " 1.55% " "	.1,1-Trichloroethane " 59.0 2.50 " " " 118% " 1.55% " " " richloroethene " 57.8 2.50 " " " 116% " 0.0519% " "								**							
	Trichloroethene " 57.8 2.50 " " " 116% " 0.0519% " "							.0							.90	
			*					*	622						и	
Surrogate(s): 1,2-DCA-d4 Recovery: 99.9% Limits: 60-140% " 04/16/08 00:21 Toluene-d8 98.5% 60-140% " "																

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

4-BFB

101%

60-140% "

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

QC Batch: 8D16025

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results

TestAmerica Seattle

Soil Preparation Method: EPA 5035

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8D16025-BLK1)								Extr	icted:	04/16/08 11	:07			
Acetone	EPA 8260B	ND	***	30.0	ug/kg wet	lx	**	***	**		**	**	04/16/08 17:46	
Benzene	•	ND	***	1,50		(8)	+6	**			**	**	"	
Bromobenzene	×.	ND		5.00	*			**	**	**			(**	
Bromochloromethane	ŵ.	ND	***	5.00		.00	2	-		-				
Bromodichloromethane		ND	***	5.00			-77				-		ii .	
Bromoform		ND	***	5.00	*		**		**	**	177	77		
Bromomethane		ND	***	10.0	*	*	310			000	**	**	*	
2-Butanone		17.6		15.0			-	**	**	**	**	**		3
n-Butylbenzene	**	ND	***	5.00			-	**	**	**	**			
sec-Butylbenzene		ND		5.00			22			-	**	***		
tert-Butylbenzene	*	ND		5.00				2	-	122	22			
Carbon disulfide		ND	***	3.00			575		: 77	-			.00	
Carbon tetrachloride		ND	***	5.00			255		-		-			
Chlorobenzene		ND	***	2.00					199	177	-	-		
Chloroethane	*	ND	***	5.00							**	**		
Chloroform	*	ND		2.50		20		**	***	**	**			
Chloromethane	¥	ND	222	10.0				**		**	***	**		
2-Chlorotoluene	W.	ND		5,00		**		2.5		220	**		*	
4-Chlorotoluene		ND		5.00						**				
Dibromochloromethane		ND	***	5.00			-		-		-	-		
1,2-Dibromo-3-chloropropane		ND		10.0		**	**	**:	**		**	**		
1,2-Dibromoethane (EDB)		ND	***	5,00		(4)		**	**	**	**	**		
Dibromomethane	"	ND		5,00		(8)		**	**	940				
1,2-Dichlorobenzene	11	ND		5,00			**			20	**	**	.0	
1,3-Dichlorobenzene	u u	ND		5.00	*	W.	**	-	2	227	-	-	.0	
1,4-Dichlorobenzene)	ND	***	5.00	**	*					***		. 11	
Dichlorodifluoromethane		ND		5.00			-			-	**	-		
1,1-Dichloroethane		ND		2.00					**	**	-			
1,2-Dichloroethane		ND	***	1.25				**	44			-		
1,1-Dichloroethene	X	ND	***	3.00					**		**		(4)	
cis-1,2-Dichloroethene	¥1	ND		3.00	(9)		122			22			(0)	
trans-1,2-Dichloroethene		ND	***	2,50					4			**		
1,2-Dichloropropane		ND	***	5.00				**	**					
1,3-Dichloropropane		ND		5.00			-		**		**	**		
2,2-Dichloropropane		ND	444)	10.0			-	**	**			**	i.	
1,1-Dichloropropene	10.3	ND		5.00			-	<u></u>						
cis-1,3-Dichloropropene		ND		5.00	66	*	-	-		22			16	
trans-1,3-Dichloropropene		ND		1.25	"			12						
Ethylbenzene		ND		4.00		Ŷ	-	- 20	555			-	"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8D16025	Soil Pr	eparation Met	hod: EPA	5035										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Plants (9D16025 BLV1)		110						Extra	ctad.	04/16/08 11	1-07			

Blank (8D16025-BLK1)								Eve	racted: 0	4/16/08 1	11-07		
Hexachlorobutadiene	EPA 8260B	ND		10.0	ug/kg wet	1x	-	EAL.	acteu. o				04/16/08 17:46
Methyl tert-butyl ether	"	ND	***	1.00	,	9	147	94			22	1	
n-Hexane	>	ND		5.00							- 22		**
2-Hexanone	*	ND		20.0			42	922				12	30
Isopropylbenzene	9.	ND	***	5,00	4		-	-	-	-	-		W .
p-Isopropyltoluene		ND	***	5,00				**		-			
4-Methyl-2-pentanone		ND	***	20.0			**	**	**			**	,
Methylene chloride	,	ND	***	3.50			440	24				**	,,
Naphthalene		ND		10.0	(8)		24		-	42			31
n-Propylbenzene		ND	200	5.00			22						
Styrene		ND	***	1.00	(4)					-	_		
1,2,3-Trichlorobenzene		ND	***	10.0								-	
1,2,4-Trichlorobenzene	9	ND	***	10.0			440		**	***	940		
1,1,1,2-Tetrachloroethane		ND	***	5.00			**			***	344		
1,1,2,2-Tetrachloroethane		ND	***	5.00		,,	**	**			-		
Tetrachloroethene		ND	622	2.00			227	-			-		
Toluene		ND		1.50	W.		227	24		**		-	
1,1,1-Trichloroethane		ND	222	2.50	90		250	4		-22			*
1,1,2-Trichloroethane		ND	***	1.25				***					*
Trichloroethene		ND	***	2.50			***	200	**	**			
Trichlorofluoromethane		ND	***	5.00			***	-	0.00	***	-	**	
1,2,3-Trichloropropane		ND	***	5.00				***					
1,2,4-Trimethylbenzene	*	ND	***	5.00		20	847	100			-	***	
1,3,5-Trimethylbenzene	*	ND		5.00	16	*		-					
Vinyl chloride	*	ND		2.50			1.	44			12	11	
o-Xylene	*	ND		5.00									
m,p-Xylene	*	ND	***	5.00			**		-			100	
Total Xylenes		ND	***	10,0			**	***	**	**	-	-	

60-140% 60-140% "

TestAmerica	S	pol	cane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

Toluene-d8

4-BFB

96.6%

98.8%

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8D16025-BS1)								Extr	acted:	04/16/08 11	:07			
Acetone	EPA 8260B	464	222	30.0	ug/kg wet	1x		500	92.8%	(70-130)	-	**	04/16/08 16:56	
Benzene	30	51.4	***	1,50		*		50.0	103%		++		(#)	
2-Butanone		485	222	15.0	*	16		500	97.0%		***		(00)	В
Carbon disulfide	¥.	56.8	***	3,00	×	#	-	50.0	114%		-			
Chlorobenzene		48.1		2.00	*	*	77		96.2%			**		
1,1-Dichloroethane		53,6	***	2.00	*	*			107%		**	-		
1,1-Dichloroethene		56.8	***	3.00			**		114%	•	**	-	"	
cis-1,2-Dichloroethene	500	54.5	***	3,00			**		109%		**	**		
Ethylbenzene		47.9	***	4,00	#	2		25	95.8%			**	\(0)	
Hexachlorobutadiene		39.8		10.0	9.	×	-		79.5%	(#)	**			
4-Methyl-2-pentanone		525		20.0	ii.	X		500	105%		420	-11	10	
Tetrachloroethene		47.5		2.00	ŵ	1.0		50.0	95.1%	W.	77		(40	
Toluene		46.8	***	1.50			**		93.6%		***		ii .	
1,1,1-Trichloroethane		53.2	***	2.50					106%		**	-	W	
Trichloroethene	*	48.7	***	2.50	"			,	97.4%	"	**	**	m .	
Surrogate(s): 1,2-DCA-d4		Recovery:	101%	L	imits: 60-1409	6 "							04/16/08 16:56	
Tolnene-d8		423000000000000000000000000000000000000	105%		60-140	% "							"	
4-BFB			92.9%		60-140	% "								
LCS Dup (8D16025-BSD1)								Ext	racted:	04/16/08 11	:07			
Acetone	EPA 8260B	437		30.0	ug/kg wet	l×	**	500	87.4%	(70-130)	5.98%	(30)	04/16/08 17:21	
Benzene	"	48.4	522.0	1.50	agring mot	"	12	50,0	96.8%		5.97%	. S. S.		
2-Butanone	w.	496	870	15,0			_	500	99.2%		2.23%		ii	В
Carbon disulfide		51.3	***	3.00				50.0	103%		10.1%		ii.	
Chlorobenzene		48.2		2.00			-		96.4%		0.1879		*	
1,1-Dichloroethane	30	51.6		2.00			-		103%		3.86%			
1,1-Dichloroethene	000	51.6		3.00	,				103%		9.69%			
cis-1,2-Dichloroethene		52.6		3.00					105%		3.68%		*	
Ethylbenzene		46.4		4.00					92.9%		3,09%		,	
Hexachlorobutadiene	· ·	41.0		10.0			-		81.9%		3.00%			
4-Methyl-2-pentanone		504		20.0			- 77/. 	500	101%	i.	3.94%			
		48.4		2.00			200 ##1	50.0	96.9%		1.90%		¥	
Tetrachloroethene		46.2		1.50				30.0	92.4%		1.35%			
Toluene		48.9		2.50	761		-		97.7%		8.50%	0.5	ш	
1,1,1-Trichloroethane		48.9		2,50			_		94.9%		2.66%			
Trichloroethene		5000120	***	100000					34,376		2,007		01/1/2/00 17 51	
Surrogate(s): 1,2-DCA-d4		Recovery:	97.5%	1	imits: 60-140	6 "							04/16/08 17:21	
Toluene-d8			102%		60-140	04 11							**	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Project Name:

ADJ. Prop. NCC

Project Number:

027-30139-00

Report Created:

Liberty Lake, WA 99019

Project Manager: Meghan Lunney 05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8D15064-BLK1)								Extra	icted:	04/15/08 17	:01			
o-Xylene	EPA 8260B	ND	0.000500	1.00	mg/kg wet	1x	-		**	77	100		04/16/08 00:45	
m,p-Xylene	•	0.0430	0.0112	2.00			-		**	-	**	**		
Acetone	•	ND	0.261	1.00			**	**	**	**	-	**		
Benzene		ND	0.00600	0.0200	*	8.	-	**			-		3.90	
Bromobenzene		ND	0.00900	0.100	M	*	-			227	**		. 00	
Bromochloromethane	21 X	ND	0.0100	0.100		×			-	22	**			
Bromodichloromethane		ND	0.00800	0.100	*	X	-							
Bromoform		ND	0.0130	0.100		8	-			-				
Bromomethane		ND	0.0100	0.100			**	**	**	**				
2-Butanone		0.127	0.117	1,00		*	**	**	2.0	-	4.4			8
n-Butylbenzene	2.5	0.0460	0.00900	0.100		*	***		**	2	**		200	
sec-Butylbenzene		0.0230	0,00900	0.100	*	×		**			-			
tert-Butylbenzene	*	ND	0.0170	0.100	16	*			_	1 2	**		W.	
Carbon disulfide	(4)	ND	0.00800	0.100	11	¥.					4: 177			
Carbon tetrachloride		ND	0.0120	0.100	u				***	_		-		
Chlorobenzene		ND	0.00500	0.100		i i	**		(100)	-	-		,	
Chloroethane		ND	0.0150	0.100						***	**			
Chloroform		ND	0.00700	0.100			**							
Chloromethane	(9)	ND	0.0160	0.500		*	-	**	-					
2-Chlorotoluene	w	ND	0.0180	0.100		*	22	220	-	22	120			
4-Chlorotoluene		ND	0.0180	0.100	16	7				les.				
Dibromochloromethane	iii	ND	0.0130	0.100	н	*	**	**	***					
1,2-Dibromo-3-chloropropane		ND	0.180	0,500	**	4		**	***		**	**		
1,2-Dibromoethane		ND	0.0110	0.100										
Dibromomethane		ND	0.00900	0.100				22		440		-		
1,2-Dichlorobenzene		ND	0.00600	0.100	*	*						22		
1,3-Dichlorobenzene		ND	0.00700	0.100	и.	8	-		20	225	22	22		
,4-Dichlorobenzene		ND	0.00800	0.100	*	ř.						-		
Dichlorodifluoromethane		ND .	0.0160	0,100					0007	755		-		
1,1-Dichloroethane		ND	0.00800	0.100				**						
1,2-Dichloroethane		ND	0.00900	0.100				-			244			
1,1-Dichloroethene		ND	0.0100	0.100			-	22		240	042	22		
sis-1,2-Dichloroethene		ND	0,00900	0.100			_		-		-	23		
rans-1,2-Dichloroethene		ND	0.00900	0.100	6		2	200		22				
1,2-Dichloropropane		ND	0.0110	0.100			9	-	100		177			
1,3-Dichloropropane		ND	0.00900	0.100			.77	-	-			75		
A CONTRACTOR OF THE PARTY OF TH		ND		0.100		3	200	77	177	**	-	-		
2,2-Dichloropropane	(60)		0.0150				-	-	***	90	***	**	200	
,1-Dichloropropene sis-1,3-Dichloropropene	750	ND ND	0.0100	0,100			**		**	**	**	**		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tande Randee Decker, Project Manager

Page 33 of 45

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager:

027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8D15064-BLK1)		, di						Extr	acted:	04/15/08 17	7:01			
trans-1,3-Dichloropropene	EPA 8260B	ND	0.00500	0.100	mg/kg wet	l×	-	-	770		-		04/16/08 00:45	
Ethylbenzene		ND	0.00900	0.100		,	-	**	375			(77)		
Hexachlorobutadiene		0.141	0.0220	0.500		*	**		**			(**)	•	
Methyl tert-butyl ether		ND	0.00600	0.500		27	44	**	-		**	**	•	
n-Hexane	×	0.0260	0.0160	1.00		9	**	**				**	"	
2-Hexanone	11	ND	0.121	1.00		0	(220)		**			**	*	
Isopropylbenzene		ND	0.00800	0.100		4	-	**	**			-		
p-Isopropyltoluene		0.0230	0.00800	0.100			**	277	**			**	W	
4-Methyl-2-pentanone		ND	0.102	1.00				**	**	***	-	**		
Methylene chloride	**	ND	0.0130	1.00				**		***		**		
Naphthalene	*	0.175	0.0110	0.500	*	* 1	**	***		-44	-			
-Propylbenzene	×	ND	0.0100	0.100	*	9	**	***		**				
Styrene		ND	0.00600	0.100			220	-1	**	22		-		
1,2,3-Trichlorobenzene		0.266	0.0140	0.500						**	-	**	W.	
1,2,4-Trichlorobenzene		0.116	0.0130	0.500	*		**	**		-	77			
1,1,1,2-Tetrachloroethane		ND	0.00800	0.100						***	24	**		
1,1,2,2-Tetrachloroethane	*	ND	0.00900	0.100		R	***	**	**	**	HH.	**		
Tetrachloroethene	×	ND	0.0110	0.0200			**	-		-	**	**	u.	
Toluene		0.0470	0.00600	0.100	*		44	**	***	***	***	**		
1,1,1-Trichloroethane	w	ND	0.0110	0.100	*		22	2.0	-	-		-		
1,1,2-Trichloroethane		ND	0.00900	0.100						-	44	-		
Trichloroethene		ND	0.0100	0.100		"	**	**						
Trichlorofluoromethane		ND	0.0120	0.100			-	**		*				
1,2,3-Trichloropropane		ND	0.0410	0.100			**	**	***	**				
1,2,4-Trimethylbenzene		0.0240	0.00700	0.100			-	**	1	-				
1,3,5-Trimethylbenzene		ND	0.00700	0,100		ж.	-	44	-	-	-		*	
Vinyl chloride		ND	0.0180	0.100						-		22		
Total Xylenes		0.0430	0.0220	0.300			-	-					•	
Surrogate(s): 1,2-DCA-d4		Recovery:	88.6%	L	imits: 75-125%	"							04/16/08 00:42	5
Toluene-d8			104%		75-125%	"								

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8D15064-BLK2)								Extr	acted:	04/15/08 17	:01			
o-Xylene	EPA 8260B	ND	0.000500	0.100	mg/kg wet	1x							04/16/08 14:03	
m,p-Xylene	,	ND	0.0112	0.200				**	**		**	**		
Acetone		ND	0.261	1.00	2.		-			44	240			
Benzene	5.	ND	0.00600	0.100	*	*		**	**	-	223			
Bromobenzene	*	ND	0.00900	0.100	*	×					**		W.	
Bromochloromethane	*	ND	0.0100	0.100	ii.		••				**		W.	
Bromodichloromethane		ND	0.00800	0.100			**		**	**	**	-		
Bromoform		ND	0.0130	0.100			**			**	**			
Bromomethane		ND	0.0100	0.100			**	**	-	**	447			
2-Butanone		ND	0.117	1.00		*	-		_	-	**		(0)	
n-Butylbenzene		0.0400	0.00900	0,100	*	**				22		- 2	00	
ec-Butylbenzene	0.0	0.0210	0.00900	0.100	*	н	22	22				**	(4)	
ert-Butylbenzene		ND	0.0170	0.100	¥	**	-	277			**			
Carbon disulfide		ND	0,00800	0.100			-	-	**		**	44		
Carbon tetrachloride		ND	0.0120	0.100			-		**		**	**		
Chlorobenzene		ND	0.00500	0.100					**		**	44	.**	
Chloroethane		ND	0.0150	0.100		*		**				**	386	
Chloroform		ND	0.00700	0.100	*	*		-				-	(6)	
Chloromethane		ND	0.0160	0.500		16	22	22				-	(iii	
2-Chlorotoluene		ND	0.0180	0.100	*	10	**	-			-	775	ii .	
-Chlorotoluene		ND	0.0180	0.100			100	-	**	-	1000		96	
Dibromochloromethane	**	ND	0.0130	0.100			5 (80)	**	***		(94)	-	•	
,2-Dibromo-3-chloropropane		ND	0,180	0.500			**			-		-		
,2-Dibromoethane	"	ND	0.0110	0.100					22		**	2		
Dibromomethane	(200)	ND	0.00900	0.100			(44)	-	223		120	_	300	
,2-Dichlorobenzene	380	ND	0.00600	0.100			120		22	2	1	-	W	
,3-Dichlorobenzene		ND	0.00700	0.100	N.							-	*	
,4-Dichlorobenzene		ND	0.00800	0.100			***	**		**		-		
Dichlorodifluoromethane		ND	0.0160	0.100				**		**	***			
,1-Dichloroethane		ND	0.00800	0.100							-		(80)	
,2-Dichloroethane		ND	0.00900	0.100			-			**	***	-		
,1-Dichloroethene		ND	0.0100	0.100	W.			22			12	323	100	
is-1,2-Dichloroethene	*	ND	0.00900	0.100		16			2		-		ar .	
rans-1,2-Dichloroethene		ND	0.00900	0.100					-	7/3	9577	**		
,2-Dichloropropane		ND	0.0110	0.100			375	**	1010	ee:	***	***		
,3-Dichloropropane		ND	0.00900	0.100			-	**	-	240	-	**		
,2-Dichloropropane		ND	0.0150	0.100				_	-	22	-		(0)	
,1-Dichloropropene	*	ND	0.0100	0.100			_			22	322	2		
sis-1,3-Dichloropropene		ND	0.00700	0.100	78		2	400	DON	1023	0.0	197.5	W.	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8D15064-BLK2)								Extr	acted:	04/15/08 17	:01			
trans-1,3-Dichloropropene	EPA 8260B	ND	0.00500	0.100	mg/kg wet	lx	***	**	**	/**			04/16/08 14:03	
Ethylbenzene		ND	0.00900	0.100		*	**	**		44		**		
Hexachlorobutadiene	×	0.161	0.0220	0,500		*		**	**		**		**	ū
Methyl tert-butyl ether	*	ND	0.00600	0,500		*	-	-						
n-Hexane		ND	0.0160	1.00				-	**	**			*	
2-Hexanone		ND	0.121	1.00		*	-		**		177	570		
Isopropylbenzene	*	ND	0.00800	0,100			**	-	**		**	***	*	
p-Isopropyltoluene		0.0240	0.00800	0.100			**	**	**	**	**			3
4-Methyl-2-pentanone	A.	ND	0.102	1.00	*	(8)		**	**	**	***	**	25	
Methylene chloride		ND	0.0130	1.00					-		-	***		
Naphthalene	×	0.148	0.0110	0.500		*		-						1
n-Propylbenzene	¥	ND	0.0100	0.100			-	-	-					
Styrene		ND	0.00600	0.100			75	-			***	77		
1,2,3-Trichlorobenzene	*	0.212	0.0140	0,500			*	+	-	**	**	***	•	
1,2,4-Trichlorobenzene	y.	0.105	0.0130	0,500					**				•	9
1,1,1,2-Tetrachloroethane		ND	0.00800	0.100		26		**	20	-	**	-		
1,1,2,2-Tetrachloroethane	*	ND	0.00900	0.100				**	**	***		**		
Tetrachloroethene	*	ND	0.0110	0.100			2.2		-		**			
Toluene		ND	0.00600	0.100		W	#			-	**	**		
1,1,1-Trichloroethane		ND	0.0110	0.100				**		-	-	-		
1,1,2-Trichloroethane		ND	0.00900	0.100			77	**	-		**	**		
Trichloroethene		ND	0.0100	0.100	"	*	**	***	**		-	**		
Trichlorofluoromethane		ND	0.0120	0.100			**	**	**	-		**		
1,2,3-Trichloropropane	и	ND	0.0410	0.100		.00	-	22	-	***		**		
1,2,4-Trimethylbenzene	n n	ND	0.00700	0.100	и	- 01		22	-11		122	22		1/2
1,3,5-Trimethylbenzene		ND	0.00700	0.100				77		-	**		OF .	
Vinyl chloride		ND	0.0180	0,100		*		-	-	-	**	-575		
Total Xylenes	•	ND	0.0220	0.300		*		**	**	-	***		•	
Surrogate(s): 1,2-DCA-d4		Recovery:	92.0%	L	imits: 75-1259	6 "							04/16/08 14:03	
Toluene-d8			95.1%		75-125									
<i>4-BFB</i>			102%		75-125	36 "								

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

QC Batel	h: 8D15064	Soil Pre	paration N	Iethod: EPA	5035 [N	[ethanol]									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8D15064	4-BS1)								Extr	acted:	04/15/08 17	:01			
o-Xylene		EPA 8260B	3.90	0.000500	0.100	mg/kg wet	1×	-	4.00	97.5%	(70-130)	**	**	04/15/08 23:33	
m,p-Xylene			8.06	0.0112	0.200		(8)		8,00	101%				90	
Benzene			4.31	0.00600	0.0200				4,00	108%	(75-125)	-	-	34	
Chlorobenzene		×	3.82	0.00500	0.100	(8)	*			95.5%				94	
1,1-Dichloroethene			4.13	0.0100	0.100			-		103%	(69-128)	-	-	ii .	
Trichloroethene		•	3.81	0.0100	0.100					95.3%	(75-125)	**	**	•	
Surrogate(s):	1,2-DCA-d4		Recovery:	97.2%	L	imits: 75-125%	"							04/15/08 23:33	
	Toluene-d8			102%		75-125%	"								
	+BFB			99.6%		75-125%	"							*	
LCS Dup (8D)	15064-BSD1)								Extr	acted:	04/15/08 17	:01			
o-Xylene		EPA 8260B	3,86	0.000500	1.00	mg/kg wet	1x	**	4.00	96.5%	(70-130)	1.03%	(20)	04/16/08 00:09	
m,p-Xylene			7.91	0.0112	2.00			**	8.00	98.8%		1.87%			
Benzene		*	4.07	0.00600	0.0200	*		**	4.00	102%	(75-125)	5,77%	*	(0)	
Chlorobenzene		39	3.78	0.00500	0.100	(X)		22	*	94.4%		1.18%			
1,1-Dichloroethene			3.87	0.0100	0.100	*		-		96.6%	(69-128)	6.65%			
Trichloroethene			3,59	0.0100	0.100	*				89.7%	(75-125)	6.06%		•	
Surrogate(s):	1,2-DCA-d4		Recovery:	91.6%	L	imits: 75-125%	"							04/16/08 00:09	
	Toluene-d8			105%		75-125%	"							•	
	4-BFB			106%		75-125%	**							**	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8D22022-BLK1)								Extr	acted:	04/22/08 11	:31			
m,p-Xylene	EPA 8260B	ND	0.0120	0.200	mg/kg wet	1×	185	**	***	**	**	-	04/22/08 13:45	
o-Xylene		ND	0.00500	0.100	75	9	**		**					
Acetone	(*)	0.790	0.261	1.00		u	**	**	-	**	**		3.97	
Benzene	(4)	ND	0.00600	0.0200				-	***	**	***	**		
Bromobenzene		ND	0.00900	0.100	W.		-			22			.0	
Bromochloromethane		ND	0.0100	0.100	W.								**	
Bromodichloromethane	•	ND	0.00800	0.100			366		***	-	**	**		
Bromoform		ND	0.0130	0.100				**	**	**	**	**		
Bromomethane		0.0320	0.0100	0.100	25	2		**		**	**	**	**	
2-Butanone		0.247	0.117	1.00		*	**	**	-	144	-	**	.00	
n-Butylbenzene		0.0700	0.00900	0.100					2	-	**		(0)	
sec-Butylbenzene	и	0.0370	0.00900	0.100	16			**		2			16	
tert-Butylbenzene		0.0220	0.0170	0.100			677	-	77.1	77		157	W	
Carbon disulfide		ND	0.00800	0.100			**		**		-			
Carbon tetrachloride		ND	0.0120	0.100	*		**		-	**	**	177		
Chlorobenzene	38	ND	0.00500	0.100					**	**	**			
Chloroethane		ND	0.0150	0.100		2.8			22	**	**			
Chloroform	н	ND	0.00700	0.100		*	822		-		**			
Chloromethane	w	ND	0.0160	0.500		×			**	-				
2-Chlorotoluene		ND	0.0180	0.100					75		**			
4-Chlorotoluene		ND	0.0180	0.100			**		**		**			
Dibromochloromethane		ND	0.0130	0.100	*	ě	177	**	**		**			
1,2-Dibromo-3-chloropropane		ND	0.180	0.500			**	**	**		**			
1,2-Dibromoethane		ND	0.0110	0,100		H	-	-	**		**	***	W.	
Dibromomethane	W.	ND	0.00900	0.100	×	**	(2)			**	**	-		
1,2-Dichlorobenzene		0.0240	0.00600	0.100			-						W	
1,3-Dichlorobenzene	*	0.0200	0.00700	0.100		**	175	77		77			W	
1,4-Dichlorobenzene		0.0200	0,00800	0.100		*	**		990	**	**			
Dichlorodifluoromethane		ND	0.0160	0.100			-	**	**	**	**			
1,1-Dichloroethane	*	ND	0.00800	0.100		2	-	**		**	**		"	
1,2-Dichloroethane	<u>«</u>	ND	0.00900	0.100			-	364		**	++	**	9	
1,1-Dichloroethene	Ř.	ND	0.0100	0,100	*	9	4	_				22	"	
cis-1,2-Dichloroethene	ě.	ND	0.00900	0.100		ű.				**			ii	
trans-1,2-Dichloroethene	¥	ND	0.00900	0.100			100		77	**			ii .	
1,2-Dichloropropane		ND	0.0110	0.100		ŷ.			**					
1,3-Dichloropropane		ND	0.00900	0.100			**		-	-	**		*	
2,2-Dichloropropane		ND	0.0150	0.100		×	44	**				**		
1,1-Dichloropropene	ú	ND	0.0100	0.100	*		227			-		22		
cis-1,3-Dichloropropene		ND	0.00700	0.100		W.			-	-	100		*	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Number: 027-30139-00 Project Manager: Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Blank (8D22022-BLK1) rans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene	EPA 8260B	ND												
Sthylbenzene	EPA 8260B							Extr	acted:	04/22/08 11	:31			
4 1 T. C.			0.00500	0.100	mg/kg wet	1x				44	**	**	04/22/08 13:45	
Hexachlorobutadiene		ND	0.00900	0,100		**		11	1		***			
		0.210	0.0220	0.500			**	**	**	-	-			1
Methyl tert-butyl ether		ND	0.00600	0.500		*	-			**	77	77	ii .	
n-Hexane		ND	0.0160	1.00			**	**	-	-	***	**		
2-Hexanone		ND	0.121	1.00		*		**		**	**	**		
sopropylbenzene		ND	0.00800	0.100	*	.0	**	**			***	**		
-Isopropyltoluene		0.0390	0.00800	0,100	*		920				**	***		3
I-Methyl-2-pentanone	Ar .	ND	0.102	1.00	и.	и	22	22	22		720	22	*	
Methylene chloride		0.0370	0.0130	1.00	907	.44		-	-	-	-			
Naphthalene		0.261	0.0110	0.500			-			-	-	-		3
n-Propylbenzene		ND	0.0100	0.100	*	*	**		**			**	•	
Styrene		ND	0.00600	0.100		*	***	**	***	-	**	**		
,2,3-Trichlorobenzene		0.377	0.0140	0.500		.0	**	**	-	-		**		
,2,4-Trichlorobenzene		0.179	0.0130	0.500	(90)		22	**	***					3
,1,1,2-Tetrachloroethane	000	ND	0.00800	0.100	*			**	**				3	
,1,2,2-Tetrachloroethane		ND	0.00900	0.100			**	**	**	100				
l'etrachloroethene		ND	0.0110	0.100	*			**	-	-	-	**	*	
Coluene		ND	0.00600	0.100	*	88	***	**	**		**			
,1,1-Trichloroethane		ND	0.0110	0.100	*	*	**		**	(99)	-	**		
,1,2-Trichloroethane		ND	0.00900	0.100		25		-	**	-	344	**		
Trichloroethene	993	ND	0.0100	0.100		(0)		-	-	-	-	127		
Prichlorofluoromethane	*	ND	0.0120	0.100	*	*			-				*	
,2,3-Trichloropropane	(A)	ND	0.0410	0.100	36	(4)	**			-			×	
,2,4-Trimethylbenzene		0.0190	0.00700	0.100				**	***	-			ii)
,3,5-Trimethylbenzene		ND	0.00700	0.100				**	**		**		•	
√inyl chloride		ND	0.0180	0.100		*	**		***	**	-	**	•	
Total Xylenes	7	ND	0.0220	0.300		1.05	**		-		-			
Surrogate(s): 1,2-DCA-d4		Recovery:	91.4%	Li	mits: 75-125%	"							04/22/08 13:45	
Toluene-d8			99.8%		75-125% 75-125%									

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds (Special List) by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

QC Batcl	h: 8D22022	Soil Pre	paration N	tetnod: EPA	5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8D22022	2-BS1)								Extr	acted:	04/22/08 11	:31			
m,p-Xylene		EPA 8260B	7.57	0.0120	0.200	mg/kg wet	1x	-	8.00	94.6%	(70-130)	**		04/22/08 12:41	
o-Xylene			3.74	0.00500	0.100				4.00	93.4%	.00		**	(0.	
Benzene			3.77	0.00600	0.0200		9	_	0	94.2%	(75-125)	**	-		
Chlorobenzene			3.86	0.00500	0.100					96.4%	34	**	-	W	
1,1-Dichloroethene			3.74	0.0100	0,100				**	93.6%	(69-128)		***		
Trichloroethene			3.56	0.0100	0.100			-		89.0%	(75-125)	**	(**)		
Surrogate(s):	1,2-DCA-d4		Recovery:	93.6%	L	imits: 75-125%	Ĥ							04/22/08 12:41	
	Toluene-d8			97.6%		75-125%	*								
	4-BFB			99.4%		75-125%	н							,,	
LCS Dup (8D	22022-BSD1)								Exti	acted:	04/22/08 11	:31			
m,p-Xylene		EPA 8260B	8,62	0.0120	0.200	mg/kg wet	1x		8.00	108%	(70-130)	13.0%	(20)	04/22/08 13:08	
o-Xylene			4.17	0.00500	0.100			**	4.00	104%		11.0%			
Benzene		*	4.09	0.00600	0.0200				W	102%	(75-125)	8.27%	. "	**	
Chlorobenzene		H	4.27	0.00500	0,100					107%		10.0%	. "		
1,1-Dichloroethene		*	4.09	0.0100	0.100	*	*			102%	(69-128)	8.81%	. "	0	
Trichloroethene			3,86	0.0100	0.100		**	***		96.6%	(75-125)	8.13%	. "	•	
Surrogate(s):	1,2-DCA-d4		Recovery:	89.5%	L	imits: 75-125%	"							04/22/08 13:08	
	Toluene-d8			101%		75-125%	"							"	
	4-BFB			97.0%		75-125%	*							"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name: Project Number:

Project Manager:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

027-30139-00 Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8D15034-BLK1)								Extra	acted:	04/15/08 08	:33			
Acetone	EPA 8260B	ND	***	10.0	ug/l	lx	**	340			***	***	04/15/08 13:50	
Benzene	18.	ND	***	0.200		н				**	**	44		
Bromobenzene	*	ND		0.500	W.	**	122	522			_			
Bromochloromethane		ND		0.250	×		-		77	-			(w)	
Bromodichloromethane	*	ND		0.200	*	*	-		***	-	-	**		
Bromoform		ND	***	0.250		**	**	***	100		***	***	*	
Bromomethane		ND		2.00			**	(**)	000			100	9	
2-Butanone		ND		2.00	25	25						***	.00	
n-Butylbenzene		ND		0.200	ж.	*	***		44			**	(8)	
sec-Butylbenzene		ND	222	0.200	6	Ü.		2.0					300	
tert-Butylbenzene		ND		0.500	W	**		55				-	n.	
Carbon disulfide	*	ND		0.500		n n		**	***		-	-		
Carbon tetrachloride		ND	***	0.200		11		***	***		**	***	•	
Chlorobenzene		ND		0.200	*	"	***	**	0.00		***	**		
Chloroethane		ND	***	1.00		"					**		(9)	
Chloroform	19	ND	***	0.200		**	144	+4	**	12			(0)	
Chloromethane		ND	222	1.00	*	0	122	12	223	221	250	122	.00	
2-Chlorotoluene		ND		0.500	*	"					77	-	0	
4-Chlorotoluene		ND		0.500				***			-	27		
Dibromochloromethane	*	ND	***	0.200		"	***	**	200			100		
1,2-Dibromo-3-chloropropane		ND	***	1.00			**		100	-	-	**		
1,2-Dibromoethane	7.00	ND	***	0.200		**	-	**		**		44		
Dibromomethane		ND	***	0.200	2.		and the	**	200	**	**		36	
1,2-Dichlorobenzene	W.	ND		0.200		0.		122		12	4			
1,3-Dichlorobenzene		ND		0,200	R		-				-			
1,4-Dichlorobenzene		ND		0.200	2			**		77		200		
Dichlorodifluoromethane		ND	***	0.500		6	**	990	-		100			
1,1-Dichloroethane		ND	HAM.	0.200			**	**	**	**	100	**		
1,2-Dichloroethane		ND	***	0,200	5		and the		**	***		-	390	
1,1-Dichloroethene	*	ND		0.200	*		**	**			-			
cis-1,2-Dichloroethene	u	ND		0.200	6	11		22	22		-			
trans-1,2-Dichloroethene		ND		0.200	*			220	177					
1,2-Dichloropropane	u	ND	***	0,200	8		-	**			44			
1,3-Dichloropropane		ND	***	0,200					**		**	**		
2,2-Dichloropropane		ND	***	0.500			-		-		(44)			C
1,1-Dichloropropene	706	ND		0.200	8.	"	-	**	**	**	-		(90)	
cis-1,3-Dichloropropene		ND	-	0,200		16	100	22						
trans-1,3-Dichloropropene	н	ND	***	0.200	K.	n		44	-		-			
Ethylbenzene		ND	****	0.200	ý.									

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Number: Project Manager:

027-30139-00 Meghan Lunney Report Created:

05/22/08 09:16

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8D15034-BLK1)								Extr	acted:	04/15/08 08	:33			
Hexachlorobutadiene	EPA 8260B	ND		2.50	ug/l	1x	**		-		**	**	04/15/08 13:50	
Methyl tert-butyl ether		ND	***	1.00		*				-			*	
n-Hexane	2	ND		1.00			**	**	++				ii.	
2-Hexanone	•	2.29		2.00			**		**	-	77	177	"	1
Isopropylbenzene		ND	***	0.500	*		**	**	-	-	**	**	•	
p-Isopropyitoluene	*.	ND	***	0.200			***	**	**		**	**		
4-Methyl-2-pentanone		ND		2.00			100	-	***		**	**	"	
Methylene chloride	0.	ND		5.00				44		**	**	16.4		
Naphthalene	u u	ND	***	2.50	*		-	200		-			9	
n-Propylbenzene		ND		0.500	W	н				-		-	ж	
Styrene		ND	***	0,500		*	**	177	**	-		**		
1,2,3-Trichlorobenzene	*	ND		1.00			***	-	**		27	**	*	
1,2,4-Trichlorobenzene		ND	***	1.00	(0)			**		**	***		*	
1,1,1,2-Tetrachloroethane	*	ND	***	0.200		39.5	-	**	**			-	7.	
1,1,2,2-Tetrachloroethane	*	ND	***	0.500				**	**	**	**	**	,	
Tetrachloroethene	*	ND	***	0.200			-	44				**	W	
Toluene		ND		0.200		*	-	-			-		"	
1,1,1-Trichloroethane		ND	***	0.200			57				-	77		
1,1,2-Trichloroethane		ND	***	0.200			***	**	**	**	**		,	
Trichloroethene		ND		0.200			**	**	**	**	**	**		
Trichlorofluoromethane		ND	***	0.500	96	77	-	**	-	1				
1,2,3-Trichloropropane		ND		0.500				**	-		-		"	
1,2,4-Trimethylbenzene	ĸ	ND	***	0.200	(4)				22	-	42	-		
1,3,5-Trimethylbenzene		ND		0.500			77							
Vinyl chloride		ND	***	0.200					***			77		
o-Xylene	*	ND		0.250				**	**	-	37	**	•	
m,p-Xylene	"	ND	***	0,500			**	**	**	**	**	**	•	
Total Xylenes	н	ND	***	0,750	90	245			**	-				

80-120%

TestAmerica Spokane

tandester

Randee Decker, Project Manager

4-BFB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

103%

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created: 05/22/08 09:16

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Seattle

QC Batch: 8D15034	water	терагация	Method: EI	A 3030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
LCS (8D15034-BS1)				9				Extr	acted:	04/15/08 08	:33			
Benzene	EPA 8260B	41.3		0.200	ug/l	1x		40.0	103%	(80-120)			04/15/08 12:14	
Chlorobenzene		36.5		0.200					91.3%				U	
1,1-Dichloroethene		47.0	***	0.200		*	***	u	117%		***			
Methyl tert-butyl ether	"	37.8	***	1.00			2.39		94.5%		***	**	•	
Toluene	"	36.5		0.200			**		91.4%	(75-125)	**	**	,	
Trichloroethene	#	40.2		0,200		81	-	0.	101%	(80-120)	**	***		
Surrogate(s): 1,2-DCA-d4		Recovery:	92.6%	Lin	nits: 76-138%	"							04/15/08 12:14	
Toluene-d8			94.4%		80-120%								*	
4-BFB			99.8%		80-120%	"							*	
LCS Dup (8D15034-BSD1)								Extr	acted:	04/15/08 08	:33			
Benzene	EPA 8260B	42.1	222	0,200	ug/l	1x		40.0	105%	(80-120)	2.01%	(20)	04/15/08 12:43	
Chlorobenzene		35.8	777	0.200		*	**	ii.	89.5%		2.02%	, "	*	
1,1-Dichloroethene		48.3		0.200				*	121%	**	2.81%	, "		1
Methyl tert-butyl ether		37.1		1,00			-		92.8%		1.79%	, "		
Toluene		35.9	***	0.200		*	-		89.7%	(75-125)	1.82%	, "		
Trichloroethene	*	40.8	***	0.200	*	*	**		102%	(80-120)	1.33%		7.	
Surrogate(s): 1,2-DCA-d4		Recovery:	93.0%	Lin	nits: 76-138%	"							04/15/08 12:43	
Toluene-d8			92.0%		80-120%	*							"	
4-BFB			100%		80-120%	"							"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

05/22/08 09:16

Physical Parameters by APHA/ASTM/EPA Methods - Laboratory Quality Control Results

TestAmerica Seattle

QC Batch: 8D23034

Soil Preparation Method: Dry Weight Result

Analyte Method

MDL*

Units

Source Dil Result

Spike % (Limits) % (Limits) Analyzed

Notes

Blank (8D23034-BLK1) Dry Weight

BSOPSPL00 3R08

100

1.00

MRL

%

1x

Extracted: 04/23/08 13:32

04/24/08 00:00

TestAmerica Spokane

tande Randee Decker, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 44 of 45

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created: 05/22/08 09:16

Notes and Definitions

Report Specific Notes:

- B Analyte was detected in the associated Method Blank
- Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- C3 Calibration Verification recovery was below the method control limit for this analyte. An additional check standard was analyzed at the reporting limit to ensure instrument sensitivity at the reporting limit, Samples ND.
- Internal Standard recovery was outside of method limits.
- Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not
 detected, data not impacted.
- Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- N1 See case narrative.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

90-50 PAGE 107 8 TA WO ID 40 20-9 8 Turnaround Requests less than standard may incur Rush Charges P <1 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 0 425-420-9200 FAX 420-9210 DATE:411 Work Order#: SPDOO 2 1 <1 TURNAROUND REQUEST TIME: DATE: TIME Petroleum Hydrocarbon Analyses LOCATION / COMMENTS Organic & Inorganic Analyses

Organic & Inorganic Analyses

FID. Petroleum Hodorochon Analyses Organic & Inorganic Analyse: in Business Days * OTHER Specify: m 5 4 L # OF CONT. FIRM: A J 丁. 7 7 7 ナ 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 MATRIX (W, S, O) FIRM: V 5 5 The state of the s Salver RECEIVED KY PRINT NAME: RECEIVED BY: PRINT NAME: REQUESTED ANALYSES PRESERVATIVE X mission please provide report in pat and EIN equivalent forment 80/11/1/18 CHAIN OF CUSTODY REPORT 08 12 P.O. NUMBER DATE TIME DATE: TIME: nem. +Stir bows (87928) J. S. PEST AMELITICAL TESTING CORPORATION 0935 5450 0825 0815 6835 PHONE: 50-570-4424 FAX: 509-535-736 0935 0000 810 0735 RELEASED DY: WIGGAON ON THE HAN ILVINE FIRM ZBIONI MOCHER KD /STE 101 Liberty Lake MA 99019 SAMPLING DATE/TIME 4/10/08 8016/h 4/8/08 4/11/08 PROJECT NUMBER: 027-30/39-00 PROJECT NAME: ADJ. PRO. - NCC. うつつか Median Lunney MW 135-13,3 MW110-44.3 MW IOD - 34.5 MW12D-22.5 MW110-17,3 SAMPLED BY: Meghan MW110-15:00 MWIZD-B MW IOD - 13 MW 30 - 30 CLIENT SAMPLE IDENTIFICATION ADDITIONAL REMARKS: RIP REPORT TO: PRINT NAME: DDRESS CLIENT

Test Americal Testing Corporation

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

TA WO ID nd Requests less than standard may incur Rush Charge 503-906-9200 FAX 906-9210 O77-563-9200 FAX 563-9210 Si Prog 27 <1 1 Work Order #: SPOOT 1 <1 TURNAROUND REQUEST DATE: 4 TIME DATE: LOCATION / COMMENTS Organic & Inorganic Analyses in Business Days * 8 los Hwerica OTHER Specify: # OF CONT. 5 STD. 1 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 MATRIX (W, S, O) (1) RECEIVED BY: PRINT NAME: RECEIVED BY: PRINT NAME: REQUESTED ANALYSES PRESERVATIVE CHAIN OF CUSTODY REPORT P.O. NUMBER: INVOICE TO: TIME: DATE: TIME 100/EUE 1005(83/EO) 588 PHONE 509-570-4424 FAX: 509 535-731 FIRM: FIRM: SAMPLING PROJECT NUMBER: 027-30139-60 SAMPLED BY: Meshan lunney PROJECT NAME: ADJ. Prop. N.C. 4 | | | REPORT TO: MEGILAN LUNNEY ADDRESS. MW130-53-6 CLIENT SAMPLE IDENTIFICATION CLIENT: LFT ADDITIONAL REMARKS: RELEASED BY: RELEASED BY: PRINT NAME: PRINT NAME: TAL-1000 0907

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206 ph: (509) 924.9200 fax: (509) 924.9290

April 29, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: ADJ. Prop. NCC

Enclosed are the results of analyses for samples received by the laboratory on 04/17/08 08:45. The following list is a summary of the Work Orders contained in this report, generated on 04/29/08 13:32.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
SRD0095	ADJ. Prop. NCC	027-30139-00	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number:

027-30139-00

Project Manager: Meghan Lunney

Report Created: 04/29/08 13:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW14D-11.8	SRD0095-01	Soil	04/15/08 07:50	04/17/08 08:45
MW14D-53.4	SRD0095-02	Soil	04/15/08 13:30	04/17/08 08:45
MW40-40	SRD0095-03	Soil	04/15/08 08:00	04/17/08 08:45

TestAmerica Spokane

tarde

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-01 (MW14D-11.8)		Soi	1		Samp	led: 04/	15/08 07:50			
Acetone	EPA 8260B	31.8		30.7	ug/kg dry	1×	8D23011	04/23/08 11:00	04/23/08 13:44	
Benzene	*	ND	*****	1.53	*	*		•	*	
Bromobenzene		ND	****	5.11		*				
Bromochloromethane		ND		5.11	*	**		* .	*	
Bromodichloromethane		ND		5.11	•			•	*	
Bromoform		ND	****	5.11		**		*		
Bromomethane	*	ND		10.2	9	*	.00	6	*	
2-Butanone		ND		15.3				•	w	
n-Butylbenzene		ND	*****	5.11		**		*		
sec-Butylbenzene	W	ND	*****	5.11		**				
tert-Butylbenzene	¥	ND		5.11		н			ů.	
Carbon disulfide	*	ND	*****	3.07						
Carbon tetrachloride		ND	****	5.11	2	*		*		
Chlorobenzene	×	ND		2.04		36		R		
Chloroethane		ND	*****	5,11						
Chloroform		ND	*****	2.55						
Chloromethane		ND	****	10.2	*					
2-Chlorotoluene	•	ND		5.11				¥.		
4-Chlorotoluene	*	ND	*****	5.11			*		*	
Dibromochloromethane	9	ND	****	5.11	×				*	
1,2-Dibromo-3-chloropropane		ND		10.2	9	w		×	*	
1,2-Dibromoethane (EDB)		ND	*****	5.11	*			•	*	
Dibromomethane	,,	ND	****	5.11						
1,2-Dichlorobenzene		ND		5.11	*	**	34	*	W	
1,3-Dichlorobenzene		ND		5.11	2			9.10		
1,4-Dichlorobenzene	•	ND		5.11						
Dichlorodifluoromethane		ND	****	5.11	×			*	*	
1,1-Dichloroethane		ND		2.04		¥	*			
1,2-Dichloroethane	•	ND		1.28						
1,1-Dichloroethene		ND		3.07	×				*	
cis-1,2-Dichloroethene		ND	*****	3.07	*			*	*	
trans-1,2-Dichloroethene		ND	*****	2,55						
1,2-Dichloropropane		ND		5.11		,		и	X	
1,3-Dichloropropane	n .	ND		5.11		*	ж.	W		
2,2-Dichloropropane		ND		10.2		- 1		н		
1,1-Dichloropropene		ND		5.11						127
cis-1,3-Dichloropropene		ND		5.11			*	16		
trans-1,3-Dichloropropene	*	ND		1.28	i i					

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tande Randee Decker, Project Manager

Page 3 of 14

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-01 (MW14D-11.8)		Soi	1		Samp	led: 04/1	15/08 07:50			
Ethylbenzene	EPA 8260B	ND		4.09	ug/kg dry	lx	8D23011	04/23/08 11:00	04/23/08 13:44	
Hexachlorobutadiene	•	ND		10.2		*		*	X	
Methyl tert-butyl ether	1.5	ND		1.02				*		
-Hexane	(*)	ND	*****	5.11			250	"	•	
-Hexanone		ND	*****	20.4		M.		\H	(#)	
sopropylbenzene	•	ND	*****	5.11	*	*			7 9 7	
-Isopropyltoluene		ND	****	5.11	*	**	*	*		
-Methyl-2-pentanone	iii.	ND		20.4		5.00	11	*	(98)	
Methylene chloride	•	ND		3.58		182				
Vaphthalene		ND	*****	10.2			*			
-Propylbenzene	ii.	ND	*****	5.11			*		1997	
tyrene		ND	77777	1.02				*	n.	
,2,3-Trichlorobenzene		ND		10.2	•		•		W.	
,2,4-Trichlorobenzene	Y	ND	****	10.2	5					
,1,1,2-Tetrachloroethane	•	ND		5.11					10	
,1,2,2-Tetrachloroethane	•	ND		5.11						
etrachloroethene	*	ND	****	2.04	**	*	•	*	*	
oluene -	*	ND		1,53		*				
,1,1-Trichloroethane		ND		2.55			"			
,1,2-Trichloroethane		ND	****	1.28		**			•	
richloroethene	*	ND		2.55	×	**		1.0		
richlorofluoromethane	*	ND		5.11	×	*	*	(8)		
,2,3-Trichloropropane	•	ND		5.11	*	*			ii.	
,2,4-Trimethylbenzene		ND	****	5,11	*		*		Ü	
,3,5-Trimethylbenzene	*	ND		5.11	*		*	. W	ű.	
/inyl chloride	•	ND	*****	2.55	*				"	
-Xylene		ND	*****	5.11	*	*			*	
n,p-Xylene		ND		5.11	21			15		
Total Xylenes	•	ND		10.2	"	*	ii .		*	
Surrogate(s): 1,2-DCA-d4			127%			- 140 %	*		"	
Toluene-d8			94.5%			- 140 %	"		"	
4-BFB			105%		60	- 140 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney Report Created:

04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-02 (MW14D-53.4)		Soi	I		Samp	led: 04/1	5/08 13:30			
Acetone	EPA 8260B	ND		33.1	ug/kg dry	1×	8D23011	04/23/08 11:00	04/23/08 14:10	
Benzene	•	ND	*****	1,66	•			•		
Bromobenzene		ND	*****	5.52		(*)		3.00	5 7 /	
Bromochloromethane	W.	ND		5.52			10		ж	
Bromodichloromethane	*	ND		5.52			**	•	(*)	
Bromoform		ND	****	5.52	125	525	".		5.50	
Bromomethane	W	ND		11.0			*			
2-Butanone	"	ND		16.6	*		iii		•	
n-Butylbenzene	W .	ND		5,52		*				
sec-Butylbenzene	**	ND		5.52		36	"	.00	(00)	
tert-Butylbenzene	10	ND	*****	5.52			н		3.00	
Carbon disulfide	•	ND		3.31			. *			
Carbon tetrachloride	"	ND		5.52	155				1995	
Chlorobenzene	65	ND		2.21	*		11		100	
Chloroethane	•	ND		5.52					•	
Chloroform		ND		2,76						
Chloromethane		ND	*****	11,0			11			
2-Chlorotoluene	m .	ND		5.52			H.		(4)	
4-Chlorotoluene		ND		5,52		*	•			
Dibromochloromethane		ND	*****	5.52			"	(8)	.000	
1,2-Dibromo-3-chloropropane	ii.	ND		11.0	*	.00	н		7.00	
1,2-Dibromoethane (EDB)		ND		5.52	*					
Dibromomethane	"	ND		5.52			"			
1,2-Dichlorobenzene	n.	ND	*****	5.52	9.		*			
1,3-Dichlorobenzene	ii.	ND		5,52						
1,4-Dichlorobenzene	"	ND	****	5.52						
Dichlorodifluoromethane	"	ND	*****	5.52			*	360		
1,1-Dichloroethane	11	ND,	*****	2.21			"	W.		
1,2-Dichloroethane		ND		1.38			•			
1,1-Dichloroethene		ND	*****	3.31		1.5			(8)	
cis-1,2-Dichloroethene	W.	ND	-	3.31			**	*		
trans-1,2-Dichloroethene		ND		2.76			*			
1,2-Dichloropropane		ND		5,52			"			
1,3-Dichloropropane	*	ND		5,52	×		*	*		
2,2-Dichloropropane	*	ND		11.0	¥					
1,1-Dichloropropene	*	ND	*****	5,52			"			
cis-1,3-Dichloropropene	**	ND		5,52			*		500	
trans-1,3-Dichloropropene		ND		1.38	W		ii.		14	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Number: Project Manager:

Project Name:

027-30139-00 Meghan Lunney Report Created: 04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-02 (MW14D-53.4)		Soi	ı		Samp	oled: 04/1	15/08 13:30			
Ethylbenzene	EPA 8260B	ND	*****	4,41	ug/kg dry	lx	8D23011	04/23/08 11:00	04/23/08 14:10	
Hexachlorobutadiene		ND		11.0		H			: M:	
Methyl tert-butyl ether		ND	2777	1.10		**			•	
n-Hexane		ND		5.52		*				
2-Hexanone	W.,	ND	*****	22.1	30	. #			300	
Isopropylbenzene		ND	*****	5.52		W	*	W.		
p-Isopropyltoluene	•	ND	-	5.52		*				
4-Methyl-2-pentanone		ND	*****	22.1	25	(90)			26	
Methylene chloride	W	ND	*****	3.86				in .		
Naphthalene	*	ND		11.0						
n-Propylbenzene	H .	ND	******	5.52	20	2.50	18.			
Styrene	W.	ND		1.10		н		10		
,2,3-Trichlorobenzene		ND		11.0		*				
,2,4-Trichlorobenzene		ND		11.0						
,1,1,2-Tetrachloroethane	16	ND	*****	5.52	(90)	(#)			300	
1,1,2,2-Tetrachloroethane	ű.	ND		5,52	*				(W)	
Tetrachloroethene	•	ND		2.21						
l'oluene		ND		1.66	(*)	(8)			180	
1,1,1-Trichloroethane		ND		2.76	*	*			W	
1,1,2-Trichloroethane		ND	*****	1.38						
Trichloroethene		ND		2.76						
Trichlorofluoromethane		ND	*****	5.52	100	*				
1,2,3-Trichloropropane	ii.	ND		5.52		н.				
1,2,4-Trimethylbenzene		ND	*****	5.52		*				
,3,5-Trimethylbenzene		ND	*****	5,52			181	*	3.00	
Vinyl chloride	ii .	ND		2.76						
o-Xylene		ND		5,52						
n,p-Xylene		ND	****	5.52	1.0	36		*		
Total Xylenes	*	ND		11.0				*		
Surrogate(s): 1,2-DCA-d4			125%		60	- 140 %	"		"	
Toluene-d8			92.7%		60	- 140 %	"		"	
4-BFB			108%		60	- 140%	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-03 (MW40-40)		Soi	1		Samp	led: 04/1	5/08 08:00			
Acetone	EPA 8260B	ND		23.5	ug/kg dry	1x	8D23011	04/23/08 11:00	04/23/08 14:36	
Benzene	* *	ND	*****	1.18			*	•	*	
Bromobenzene		ND	****	3.92	2	**			"	
Bromochloromethane		ND		3.92		**		и		
Bromodichloromethane	W	ND		3.92	H	9			W.	
Bromoform		ND		3.92					,	
Bromomethane		ND	*****	7.84		**	M .	*	*	
2-Butanone	*	ND		11.8		**				
n-Butylbenzene	•	ND		3.92					•	
sec-Butylbenzene	(*)	ND	*****	3.92		**	(8)	77		
ert-Butylbenzene	w.	ND		3.92	×	**	*			
Carbon disulfide		ND		2.35			*			
Carbon tetrachloride	•	ND	****	3,92						
Chlorobenzene	(00)	ND		1.57	×	ж	*	"		
Chloroethane		ND		3,92				if	â	
Chloroform		ND	*****	1.96				*	,	
Chloromethane	9.400	ND	****	7.84			*		,	
-Chlorotoluene		ND		3.92			*		ii .	
I-Chlorotoluene		ND	*****	3.92		*			•	
Dibromochloromethane		ND		3.92						
,2-Dibromo-3-chloropropane		ND		7.84	,,	**	*			
,2-Dibromoethane (EDB)	¥*/	ND		3.92			*			
Dibromomethane		ND	*****	3.92						
,2-Dichlorobenzene	(#)	ND	****	3.92			(#)			
,3-Dichlorobenzene	*	ND		3.92	W	,,			*	
,4-Dichlorobenzene	•	ND		3.92	*		*		•	
Dichlorodifluoromethane	(*)	ND		3.92			**			
1,1-Dichloroethane	(W)	ND		1.57	×	n		W.	w.	
,2-Dichloroethane		ND		0.981					*	
1,1-Dichloroethene	•	ND	****	2,35						
cis-1,2-Dichloroethene	(96)	ND		2.35	*	76			n _e	
rans-1,2-Dichloroethene	***	ND		1.96			100	W	*	
,2-Dichloropropane	*	ND		3.92					*	
,3-Dichloropropane		ND	****	3,92			и.		9	
2,2-Dichloropropane	•	ND		7.84	¥				¥	
1,1-Dichloropropene	*	ND	****	3.92						
ris-1,3-Dichloropropene		ND		3.92		,,			,	
rans-1,3-Dichloropropene	W)	ND	****	0.981					n	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-03 (MW40-40)		Soi	1		Samp	led: 04/1	5/08 08:00			
Ethylbenzene	EPA 8260B	ND		3.14	ug/kg dry	1x	8D23011	04/23/08 11:00	04/23/08 14:36	
Hexachlorobutadiene		ND		7.84	"		•			
Methyl tert-butyl ether	•	ND	*****	0.784		**	*		•	
n-Hexane	*	ND		3.92	H		*	(4)		
2-Hexanone		ND		15.7	*		*			
Isopropylbenzene	•	ND	****	3.92	*	.,	*		•	
p-Isopropyltoluene	*	ND	*****	3.92				(8)	7.	
4-Methyl-2-pentanone	*	ND		15.7	**				"	
Methylene chloride	*	ND	*****	2.75		*	*		W	
Naphthalene	*	ND	*****	7.84			*	*	n.	
n-Propylbenzene		ND		3.92	*	*	**		#.	
Styrene		ND		0.784		*			ï	
1,2,3-Trichlorobenzene		ND		7.84	*	*	"		9	
1,2,4-Trichlorobenzene) u	ND		7.84					".	
1,1,1,2-Tetrachloroethane	W .	ND	****	3,92	*	*	*		"	
1,1,2,2-Tetrachloroethane		ND		3.92		*	•	*	"	
Tetrachloroethene	30	ND		1.57		5		"	"	
Toluene		ND		1.18		*				
1,1,1-Trichloroethane	u u	ND		1.96	* .		•	*		
1,1,2-Trichloroethane		ND	****	0.981		*	*		*	
Trichloroethene		ND		1.96				1.5		
Trichlorofluoromethane		ND		3.92		¥				
1,2,3-Trichloropropane		ND	*****	3.92	•		*			
1,2,4-Trimethylbenzene	N#3	ND	*****	3.92					,,	
1,3,5-Trimethylbenzene	(W)	ND		3.92	9	H	*	*	,	
Vinyl chloride		ND		1.96		**		•		
o-Xylene	(#))	ND	*****	3.92	2	7			,	
m,p-Xylene	(66)	ND		3.92					9.1	
Total Xylenes	*	ND		7.84	•	à	*		W.	
Surrogate(s): 1,2-DCA-d4			128%		60	- 140 %	"		,	
Toluene-d8			92.3%			- 140 %	"		,	
4-BFB			103%		60	- 140 %	"		#	

TestAmerica Spokane

tardester

Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

ADJ, Prop. NCC

Project Number:

027-30139-00

Report Created: 04/29/08 13:32

Project Manager: Meghan Lunney

Physical Parameters by APHA/ASTM/EPA Methods

TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRD0095-01	(MW14D-11.8)		Soi	ı		Sam	pled: 04/1	5/08 07:50			
Dry Weight		BSOPSPL003R0 8	74.9		1.00	%	lx	8D24046	04/24/08 14:08	04/25/08 00:00	
SRD0095-02	(MW14D-53.4)		Soi	ı		Sam	pled: 04/1	5/08 13:30	_		
Dry Weight		BSOPSPL003R0 8	72.5		1.00	%	lx	8D24046	04/24/08 14:08	04/25/08 00:00	
SRD0095-03	(MW40-40)		Soi	L		Sam	pled: 04/1	5/08 08:00			
Dry Weight		BSOPSPL003R0 8	74.9	*****	1.00	%	1×	8D24046	04/24/08 14:08	04/25/08 00:00	

TestAmerica Spokane

Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8D23011-BLK1)								Extra	ncted:	04/23/08 11	:00			
Acetone	EPA 8260B	ND		30,0	ug/kg wet	1×			**	-		1	04/23/08 12:53	
Benzene		ND		1.50				2		44		**		
Bromobenzene		ND	***	5.00			**		-					
Bromochloromethane		ND	***	5.00						177				
Bromodichloromethane	993	ND	***	5.00				**	**	***	**	**		
Bromoform	3863	ND		5.00		**		**	**	66	1			
Bromomethane		ND	***	10.0			**	**		44	**	-		
-Butanone		ND		15.0		*	-	-	***	**	-	**	(8)	
-Butylbenzene		ND	***	5.00		*	22	22	-	22	***	-		
ec-Butylbenzene		ND	1000	5.00			-	**			-	2	(4)	
ert-Butylbenzene		ND	***	5.00	*			-	***	-				
Carbon disulfide		ND	***	3.00				-	**	**	**	**		
Carbon tetrachloride		ND		5.00			-	-	**	**	-			
Chlorobenzene		ND		2.00				-	-		**	**		
Chloroethane		ND	200	5.00	*		22				-	**		
'hloroform		ND		2,50	W.		22	-	0.5	-				
		ND	***	10.0				-			2.0	22	36 8	
hloromethane		ND	253	5.00			**	-	555	**				
-Chlorotoluene		ND		5.00			-	**	***	-	1,75%	100		
-Chlorotoluene	1075 (W		***	5.00			-	_		-	753	-		
Dibromochloromethane		ND								550		-		
,2-Dibromo-3-chloropropane	741	ND	***	10.0				344	**	-				
,2-Dibromoethane (EDB)		ND		5.00		- 2		1000	500					
Dibromomethane	1.8/	ND		5.00					-		-		4	
1,2-Dichlorobenzene	•	ND	777	5.00		Ü				**			(W)	
,3-Dichlorobenzene		ND	***	5.00		Ö	177	***	-	***	570	-	T.	
,4-Dichlorobenzene		ND	***	5,00	7	"	**	115			**	***	i.	
Dichlorodifluoromethane		ND	***	5.00			**	**	***		**			
1,1-Dichloroethane	*	ND	***	2.00		"			**					
1,2-Dichloroethane	н	ND		1.25		"		**		**	**	-		
,1-Dichloroethene	"	ND	(7777)	3,00	*	*					-			
is-1,2-Dichloroethene		ND	***	3.00		*	77		77	**	**	-		
rans-1,2-Dichloroethene	*	ND	***	2.50	*		(40)		***	377	77	***		
,2-Dichloropropane		ND	***	5.00	*		**	**				1		
1,3-Dichloropropane	×	ND	***	5.00	"	*	-	**		**	**	-		
2,2-Dichleropropane	×	ND		10.0	*		44.	4	**			-		
1,1-Dichloropropene	×	ND		5.00		*				163		-	н	
sis-1,3-Dichloropropene	8	ND	***	5.00					**			-		
rans-1,3-Dichloropropene		ND		1.25			-	**	**	- 22		-	0	
Ethylbenzene		ND	***	4.00		**		**		199	94	***	*	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8D23011 Soil Preparation Method: EPA 5035 Method Result

Analyte	Method	Result	MDL*	MRL	Units	Dil	Result	Amt	REC	(Limits)	RPD	(Limits)	Analyzed	Not
Blank (8D23011-BLK1)								Extr	acted:	04/23/08 11	:00			
Hexachlorobutadiene	EPA 8260B	ND		10.0	ug/kg wet	1×		**	-			-	04/23/08 12:53	
Methyl tert-butyl ether		ND		1.00		*						-		
n-Hexane	×	ND		5.00		**		100	55	- 22			W	
2-Hexanone	¥	ND		20,0		**	-	***	-	**	80	**		
Isopropylbenzene	*	ND	***	5.00		*	44.	**	**	99	**	***		
p-Isopropyltoluene		ND		5.00			**	199	**	**		-		
4-Methyl-2-pentanone	2	ND	***	20.0		*		-			-		ж.	
Methylene chloride	*	ND	***	3.50	*	*		122		**				
Naphthalene	×	ND		10.0	*	**						-		
n-Propylbenzene	¥	ND		5.00		**				**				
Styrene	Ä	ND	2775	1.00	**			**	**	**	-	-		
,2,3-Trichlorobenzene		ND	***	10,0				146	**	**	**	***		
,2,4-Trichlorobenzene		ND		10.0	,,		**	1944		**		**		
,1,1,2-Tetrachloroethane		ND	***	5.00			200	544		**	**	-	u .	
,1,2,2-Tetrachloroethane		ND	***	5.00		*		722		42				
Tetrachloroethene	×	ND		2.00	**	ŷ.	2.0	-			**	-		
Toluene	¥	ND	***	1.50	**						-			
,1,1-Trichloroethane	и	ND	***	2.50	W			175			**	100		
1,1,2-Trichloroethane		ND	***	1.25	*		194	***		**	**	**		
Trichloroethene		ND	***	2.50			100	**			-	**		
Frichlorofluoromethane		ND	***	5.00			-	54		**	-	**		
1,2,3-Trichloropropane	ж.	ND		5.00		*	***			22		-	0	
,2,4-Trimethylbenzene	*	ND	142	5.00	w		22	22				-	0	
,3,5-Trimethylbenzene		ND		5.00	*					-	-		u.	
Vinyl chloride		ND		2.50	*							-	•	
-Xylene		ND	***	5.00			-	**		**				
m,p-Xylene		ND	***	5.00			**	44	**	**	-	**		
Total Xylenes		ND	***	10.0		2.	-	**	**			-		
Surrogate(s): 1,2-DCA-d4 Toluene-d8		10000000000000000000000000000000000000	98% 1.8%	Li	mits: 60-1409								04/23/08 12:53	

Toluene-d8 4-BFB

97.8% 103% 60-140% 60-140%

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00 Meghan Lunney

Report Created: 04/29/08 13:32

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Laboratory Quality Control Results TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Note
LCS (8D23011-BS1)								Extr	acted:	04/23/08 11	:00			
Acetone	EPA 8260B	456	***	30.0	ug/kg wet	1x	**	500	91.2%	(70-130)	***	**	04/23/08 11:37	
Benzene	ж.	49.3	***	1.50			**	50.0	98.6%		**	**		
-Butanone		539		15.0			44	500	108%	27.	**	**	1786	
arbon disulfide	*	49.6		3.00				50.0	99.2%	**	**		9.	
Chlorobenzene		46.8		2.00	H	(9)	**	"	93,5%	*				
,1-Dichloroethane		49.8	***	2.00	*				99.6%		-	**		
,1-Dichloroethene		49.7	***	3.00					99.4%					
is-1,2-Dichloroethene		51.7		3.00		*	**		103%	*		**		
thylbenzene	187	46.4	444	4.00		*	44	7	92.7%		**	**	•	
Iexachlorobutadiene	*	45,6	200	10.0			**		91.2%	96	**		(.)	
-Methyl-2-pentanone	¥	500	***	20.0		*	22	500	100%		**			
etrachloroethene		46.5		2,00				50.0	93.1%		2.	22	· u	
oluene		47.1	***	1.50					94.2%		77		196	
,1,1-Trichloroethane		46.1	***	2.50			-		92.2%	**	**	**		
richloroethene		46.8	929	2.50		*			93.6%	"	**		**	
Surrogate(s): 1,2-DCA-d4	-	Recovery:	98.7%	L	imits: 60-1409	5 "							04/23/08 11:37	8
Toluene-d8		8.00.8000.1000.000.	97.4%		60-140	6 "								
4-BFB			100%		60-140	6 "							"	
LCS Dup (8D23011-BSD1)								Ext	acted:	04/23/08 11	1:00			
Acetone	EPA 8260B	436		30.0	ug/kg wet	1x		500	87.2%	(70-130)	4.53%	(30)	04/23/08 12:02	
Benzene	ALEGE ASSAULT	54.3	222	1.50				50.0	109%	W 32	9.66%	. "		
2-Butanone		525		15.0	9	39		500	105%		2.65%	. "		
Carbon disulfide		56,5	***	3.00	*			50.0	113%		13.0%	6 "		
Chlorobenzene		50.6	***	2,00			***		101%		7.91%	6 "		
,1-Dichloroethane		54.6	***	2.00			**		109%		9.25%	6 "		
,1-Dichloroethene	н:	57.9		3.00			**		116%	"	15.3%	6 "	•	
sis-1,2-Dichloroethene	H.	56,8	***	3.00	*		***		114%		9.51%	6 "	•	
Ethylbenzene	H	51.2	***	4.00			(227)		102%		9.84%	á "	*	
-lexachlorobutadiene		35.9		10.0			-	19	71.8%	186	23.8%	6 "	**	
I-Methyl-2-pentanone		477	***	20.0			***	500	95.3%		4.75%	á "		
Cetrachloroethene		47.6		2.00			-	50.0	95.2%		2.27%	6 "		
Coluene		53.1	-	1,50			**		106%		12.0%	6 "		
1,1,1-Trichloroethane	*	54.9	***	2.50		**	-		110%		17.5%		"	
Frichloroethene		51.3	222	2.50			227		103%	16	9.14%	6 "		
Surrogate(s): 1,2-DCA-d4		Recovery:	96.8%	70000	imits: 60-1405	6 "							04/23/08 12:02	
Toluene-d8		21000191	103%	•	60-140								н	
			102%		60-140								n.	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

Project Name:

ADJ. Prop. NCC

2310 N. Molter Rd. Suite 101

Project Number:

027-30139-00

Report Created:

Liberty Lake, WA 99019

Project Manager:

Meghan Lunney

04/29/08 13:32

	Physical Para	meters by Al		I/EPA N estAmeric			oratory (Quality	Cont	trol Resi	ılts			
QC Batch: 8D24046	Soil Pr	eparation Met	hod: Dry V	Veight										
yte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes

Blank (8D24046-BLK1)

100

Extracted: 04/24/08 14:08

Dry Weight

Analyte

BSOPSPL00 3R08

1.00

%

04/25/08 00:00

TestAmerica Spokane

Cardo Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

ADJ. Prop. NCC

Project Number: Project Manager: 027-30139-00

Meghan Lunney

Report Created:

04/29/08 13:32

Notes and Definitions

Report Specific Notes:

None

Dil

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.

*MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test/Merical Testing Corporation

CHAIN OF CUSTODY REPORT

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302

425-420-9200 FAX 420-9210X 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 509-924-9200 FAX 924-9290

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

Work Order #5 RDOOQS

DolL! 8 Turnaround Requests less than standard may incur Rush Charges TA WO ID 60 <1 5 Sign PAGE OF 7 5 4 3 2 1 DATE: 4 2 1 <1 TURNAROUND REQUEST TIME: Petroleum Hydrocarbon Analyses DATE: LOCATION / COMMENTS Organic & Inorganic Analyses in Business Days * Mest America OTHER Specify: 5 4 3 # OF CONT. t 7 MATRIX (W, S, O) FIRM Z W M CUISON -Thanks RECEIVED BY PRINT NAME & RECEIVED BY: PRINT NAME: REQUESTED ANALYSES PRESERVATIVE Em equivalent formats. DATE 4/17/08 TIME: OBYS P.O. NUMBER: INVOICE TO DATE: なからる MITH. + Canasasas ADDITIONAL REMARKS: HELDS parids reducted in policing PHONE: 59-570-4434 FAX: 509-535-7361 1330 0000 0750 FIRM: FIRM: ADDRESS: 2316 W MOSLEY AD/STE 101 SAMICONG 55 PROJECT NUMBER: 027 - 30139 - 00 4/15/08 PROJECT NAME: AND, Prop. NCC. SAMPLED BY: MECLOS 出 MW 140-53.4 RELEASED BY: MILE OF OLA MW14D-11.8 CLIENT SAMPLED

IDENTIFICATION MW40-40 PRINT NAME: RELEASED BY: PRINT NAME: CLIENT:

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206 ph: (509) 924.9200 fax: (509) 924.9290

August 25, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: New City Cleaners

Enclosed are the results of analyses for samples received by the laboratory on 08/07/08 14:45. The following list is a summary of the Work Orders contained in this report, generated on 08/25/08 09:20.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
SRH0056	New City Cleaners	02730139-00	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99205-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW10D	SRH0056-01	Water	08/07/08 08:45	08/07/08 14:45
MW10I	SRH0056-02	Water	08/07/08 09:00	08/07/08 14:45
MW12D	SRH0056-03	Water	08/07/08 10:05	08/07/08 14:45
MW12I	SRH0056-04	Water	08/07/08 09:30	08/07/08 14:45
MW11D	SRH0056-05	Water	08/07/08 10:40	08/07/08 14:45
MW1II	SRH0056-06	Water	08/07/08 11:20	08/07/08 14:45
MW11S	SRH0056-07	Water	08/07/08 10:55	08/07/08 14:45
MW13D	SRH0056-08	Water	08/07/08 11:45	08/07/08 14:45
MW13I	SRH0056-09	Water	08/07/08 12:10	08/07/08 14:45
MW DUP	SRH0056-10	Water	08/07/08 00:00	08/07/08 14:45
MW 14D	SRH0056-11	Water	08/07/08 12:50	08/07/08 14:45
MW 14I	SRH0056-12	Water	08/07/08 13:25	08/07/08 14:45

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-01 (MW10D)	(4)	Wa	iter		Sam	pled: 08/0	07/08 08:45			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 19:12	
Chloromethane		ND	****	3.00				"		
Vinyl chloride		ND	****	0.200				**	,	
Bromomethane	36.7	ND		5.00	"				*	
Chloroethane		ND		1.00	n					
Trichlorofluoromethane		ND	****	1.00				**		
1,1-Dichloroethene	(6)	ND	****	1.00	34		*	**		
Carbon disulfide	(m)	ND		1.00		*	**	H.	Ü	
Methylene chloride		ND	*****	10.0				**	•	
Acetone		ND		25.0	20					
trans-1,2-Dichloroethene	ж	ND		1.00	ii .	W		и	н	
Methyl tert-butyl ether		ND		1.00	**	*				
1,I-Dichloroethane	9 1 53	ND	****	1.00						
cis-1,2-Dichloroethene	*	ND		1.00	36	**	(0)		36	
2,2-Dichloropropane		ND		1.00					н	
Bromochloromethane		ND		1.00	*					
Chloroform	.00	10.8	*****	1.00			*	(* £		
Carbon tetrachloride)n :	ND		1,00	*	**			н	
1,1,1-Trichloroethane		ND		1.00	-	**	**		"	
2-Butanone	•	ND		10.0				•		
1,1-Dichloropropene	000	ND		1.00	*			*		
Benzene	W.	ND		0.200		10				
1,2-Dichloroethane (EDC)	*	ND		1.00						
Trichloroethene	(M)	ND		1.00	*			*	,,	
Dibromomethane	(*)	ND		1.00	30		96	*	u	
1,2-Dichloropropane	•	ND	****	1.00					ü	
Bromodichloromethane		2.05	****	1.00						
cis-1,3-Dichloropropene	,×.	ND		1.00	(8)			*		
Toluene	(W)	ND		1.00	*			×		
4-Methyl-2-pentanone	*	ND		10.0						
trans-1,3-Dichloropropene	(M)	ND		1.00		2				
Tetrachloroethene	(967)	ND		1.00	*	X	.00	*		
1,1,2-Trichloroethane	*	ND	****	1.00				-	•	
Dibromochloromethane		1.47		1.00		25				
1,3-Dichloropropane	(96)	ND		1.00		*		*		
1,2-Dibromoethane		ND		1.00				¥	\i	
2-Hexanone		ND		10.0				- 7		
Ethylbenzene		ND		1.00						

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-01	(MW10D)		W	ater	71 -	Samı	oled: 08/0	7/08 08:45			37.00
Chlorobenzene		EPA 8260B	ND	-	1.00	ug/l	l×	8080045	08/07/08 15:56	08/07/08 19:12	
1,1,1,2-Tetrachloro	ethane		ND		1,00		*			•	
m,p-Xylene			ND	-	2.00		**	*	•		
o-Xylene			ND	*****	1.00			*		287	
Styrene		N:	ND		1.00			*	*		
Bromoform			ND		1.00		*			•	
Isopropylbenzene			ND		1.00			*		3.50	
n-Propylbenzene		*	ND	<u> 27.7.7.</u>	1.00			**			
1,1,2,2-Tetrachloro	ethane	**	ND	*****	1.00	•		**		•	
Bromobenzene		9/	ND	****	1.00			"			
1,3,5-Trimethylben	zene		ND		1.00			н		(90)	
2-Chlorotoluene		n.	ND		1.00			**		160	
1,2,3-Trichloroprop	pane		ND		1.00			*			
4-Chlorotoluene			ND		1.00	*		*	(8)	(A 9)	
tert-Butylbenzene		W	ND	*****	1.00	*		**			
1,2,4-Trimethylben	zene		ND		1.00						
sec-Butylbenzene			ND		1.00	100	(.9)				
p-Isopropyltoluene		*	ND	*****	1.00				100	.00	
1,3-Dichlorobenzen	ne		ND		1.00			**			
1,4-Dichlorobenzer	ne		ND	*****	1.00				*	*	
n-Butylbenzene		×	ND		1.00	*		*	(*)	(M)	
1,2-Dichlorobenzer	ne		ND		1.00			*		()	
1,2-Dibromo-3-chlo	oropropane		ND		5.00			*	•		
Hexachlorobutadie			ND	*****	1.00	25			186		
1,2,4-Trichlorobenz	zene	W.	ND		1.00	*		*		€.	
Naphthalene		•	ND	*****	2.00					*	
1,2,3-Trichlorobenz	zene	*	ND		1.00	*				"	
Surrogate(s):	Dibromofluoromethane			109%		62.2	- 128 %	0		и	
senonex s tantific	Toluene-d8			105%		75.4	- 120 %	9		и.	
	4-bromofluorobenzene			92.3%		77.3	- 129 %	"		**	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number:

02730139-00

Report Created: 08/25/08 09:20

Project Manager: Meghan Lunney

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-02 (MW10I)		Wa	iter		Sam	pled: 08/0	7/08 09:00			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	l×	8080045	08/07/08 15:56	08/07/08 19:42	
Chloromethane	•	ND		3.00	"				H.	
Vinyl chloride		ND		0.200	"					
Bromomethane	*	ND		5.00	ж	ж.	I.A.	(90)	и.	
Chloroethane	*	ND		1.00	n				ii'	
Trichlorofluoromethane	•	ND		1.00	"		×	•		
1,1-Dichloroethene		ND		1.00	*	200	*	(*)	9.	
Carbon disulfide		ND		1.00	#			(*)		
Methylene chloride		ND	-	10.0	"		•		#	
Acetone	LM.	ND	****	25,0		22		25		
trans-1,2-Dichloroethene	*	ND		1.00	"		×	*	*	
Methyl tert-butyl ether	•	ND		1.00			ů.		"	
1,1-Dichloroethane	,	ND		1.00		**			₩	
cis-1,2-Dichloroethene	W.	6.98		1.00	×	3.00	*		u.	
2,2-Dichloropropane	*	ND		1.00	*		×	(4)	ÿ.	
Bromochloromethane		ND		1.00					w.	
Chloroform	900	5.61		1.00				*		
Carbon tetrachloride	*	ND		1.00	9.	ж	*	380	*	
1,1,1-Trichloroethane	*	ND		1.00	¥	*	*		×	
2-Butanone	#	ND		10.0	*	**				
1,1-Dichloropropene		ND	*****	1.00	7					
Benzene	W .	ND		0.200	*		*		*	
1,2-Dichloroethane (EDC)		ND		1.00	*				W.	
Trichloroethene		21.9	*****	1.00			,	9	¥	
Dibromomethane	100	ND		1.00						
1,2-Dichloropropane	**	ND		1.00	*		W		*	
Bromodichloromethane		ND		1.00			**			
cis-1,3-Dichloropropene		ND	*****	1.00			77	11	*	
Toluene		ND		1.00	*	*	100			
4-Methyl-2-pentanone		ND	177.77	10.0						
trans-1,3-Dichloropropene	1	ND	*****	1.00				*	•	
Tetrachloroethene		25.2		1.00	**	*				
1,1,2-Trichloroethane	(n)	ND	-	1.00					ü	
Dibromochloromethane		1.16	*****	1.00			*			
1,3-Dichloropropane	* -	ND	*****	1.00					¥	
1,2-Dibromoethane	(80)	ND	****	1.00	×	*				
2-Hexanone	(4)	ND		10.0				*	W	
Ethylbenzene	2	ND		1.00		2				

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

02730139-00

Meghan Lunney

Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-02 (MW10I)		Wa	iter		Sam	pled: 08/0	7/08 09:00			
Chlorobenzene	EPA 8260B	ND	water.	1.00	ug/l	1x	8080045	08/07/08 15:56	08/07/08 19:42	
1,1,1,2-Tetrachloroethane		ND		1.00	•	*		(90)		
m,p-Xylene		ND	-	2.00					*	
o-Xylene	0	ND	****	1.00			*	n	•	
Styrene		ND	2000	1.00					*	
Bromoform		ND		1.00	"				*	
Isopropylbenzene		ND		1.00				•	*	
n-Propylbenzene	ü.	ND	*****	1.00		*		•	*	
1,1,2,2-Tetrachloroethane		ND		1.00	N.			*		
Bromobenzene		ND	*****	1.00		9				
1,3,5-Trimethylbenzene	100	ND	*****	1.00	35		**		•	
2-Chlorotoluene		ND		1.00		,			.#	
1,2,3-Trichloropropane		ND	*****	1,00				11	*	
4-Chlorotoluene		ND		1.00						
tert-Butylbenzene	500	ND		1.00		*		"	8.)	
1,2,4-Trimethylbenzene		ND		1.00		*		,	*	
sec-Butylbenzene		ND	*****	1.00	•			•	W	
p-Isopropyltoluene	DK.	ND	****	1.00	*		"		(#)	
1,3-Dichlorobenzene	(4)	ND		1.00	*				(46)	
1,4-Dichlorobenzene	•	ND	*****	1,00			н			
n-Butylbenzene	*	ND	*****	1.00		*				
1,2-Dichlorobenzene	W/	ND	VC.5-74	1.00				30		
1,2-Dibromo-3-chloropropane	•	ND	-	5.00	м			*	(1 11)(
Hexachlorobutadiene	,	ND	*****	1.00				*		
1,2,4-Trichlorobenzene		ND		1.00	19.	9.95	*	<i>a</i> .		
Naphthalene	*	ND		2.00	*	*	"		7.00	
1,2,3-Trichlorobenzene		ND	*****	1.00					(4)	
Surrogate(s): Dibromofluoro	methane		109%		62.2	? - 128 %	,,		"	
Toluene-d8			105%			1 - 120 %	"		"	
4-bromofluoroi	benzene		95.1%		77	3 - 129 %	"		"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-03 (MW12D)		Wa	ter		Samp	oled: 08/0	07/08 10:05			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/I	1×	8080045	08/07/08 15:56	08/07/08 20:13	
Chloromethane	•	ND		3.00			"			
Vinyl chloride	•	ND		0.200	•					
Bromomethane	*	ND	*****	5.00	7	200	**	385	9.80	
Chloroethane	*	ND		1.00			W.			
richlorofluoromethane		ND		1.00	•	*			•	
,1-Dichloroethene	*	ND		1.00		97.	"			
Carbon disulfide	*	ND		1.00				(40)		
Aethylene chloride		ND		10.0			*		W	
cetone		67.9	****	25.0	7		*	*	0	
rans-1,2-Dichloroethene		ND		1.00	*	9.00	"	3.5	0	
Aethyl tert-butyl ether	×	ND		1.00	*		#		iii	
,1-Dichloroethane	W.	ND	****	1.00					11	
is-1,2-Dichloroethene	*	ND		1.00			"		0 2	
,2-Dichloropropane		ND		1.00	"		"		10)	
romochloromethane	W	ND		1.00	H				16	
hloroform		2.20	****	1.00				*	0	
arbon tetrachloride	<i>M</i>	ND		1.00	"	999				
,1,1-Trichloroethane	*	ND	****	1.00	**			*	Ü	
-Butanone		ND		10.0			н		"	
,1-Dichloropropene		ND		1.00			*		•	
Benzene	n	ND	*****	0.200	н	**		3.5	16	
,2-Dichloroethane (EDC)		ND		1.00	**	**	W		ii	
richloroethene	ů	ND		1.00						
Dibromomethane		ND		1.00		1.00		1.00		
,2-Dichloropropane		ND		1.00				*	*	
Bromodichloromethane		ND		1.00	*	*				
is-1,3-Dichloropropene		ND		1.00	w	"				
'oluene		ND	41115	1,00	*			.*:		
-Methyl-2-pentanone		ND		10.0	W		w		*	
rans-1,3-Dichloropropene		ND		1.00	*				•	
etrachloroethene	iw .	ND		1.00				180		
,1,2-Trichloroethane	¥	ND		1.00	×			W	*	
Dibromochloromethane		ND	****	1.00					¥	
,3-Dichloropropane		ND		1.00					9.1	
,2-Dibromoethane	W.	ND		1.00	*			180	×.	
-Hexanone		ND	(*****	10.0						
Ethylbenzene		ND	*****	1.00						

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-03 (MW12D)		Wa	iter		Sam	pled: 08/0	7/08 10:05			
Chlorobenzene		EPA 8260B	ND		1.00	ug/I	1×	8080045	08/07/08 15:56	08/07/08 20:13	
1,1,1,2-Tetrachloroet	thane	(#)	ND		1.00				9		
m,p-Xylene			ND		2.00	•	•	**			
o-Xylene		5.90	ND		1.00	*			77		
Styrene			ND		1.00	(*)	00				
Bromoform			ND		1.00			*	*	•	
Isopropylbenzene			ND	*****	1,00	*	*				
n-Propylbenzene		700	ND		1.00	(*)	*	. *		6	
1,1,2,2-Tetrachloroet	thane		ND		1.00					90	
Bromobenzene			ND		1.00						
1,3,5-Trimethylbenze	ene	190	ND		1.00	(8)	V#()	(8)		.0.	
2-Chlorotoluene			ND		1.00	*			*		
1,2,3-Trichloropropa	ine		ND		1.00						
4-Chlorotoluene		18	ND		1.00	350					
tert-Butylbenzene			ND		1.00	100	90	*	*	(0)	
1,2,4-Trimethylbenze	ene		ND		1.00	(4)		*			
sec-Butylbenzene		•	ND		1.00			*			
p-Isopropyltoluene			ND	****	1.00	15	*		. *	. #	
1,3-Dichlorobenzene	•		ND		1.00						
1,4-Dichlorobenzene	1	•	ND		1.00		**		*	*	
n-Butylbenzene		*(ND	****	1.00						
1,2-Dichlorobenzene	1	e .	ND		1.00	. 0.	и.		×:	(8)	
1,2-Dibromo-3-chlor	ropropane		ND	*****	5.00						
Hexachlorobutadiene	5		ND		1.00						
1,2,4-Trichlorobenze	ene		ND		1.00	*	**	W.	90	300	
Naphthalene		11	ND		2.00				363		
1,2,3-Trichlorobenze	ene	•	ND	*****	1.00	"		•		•	
Surrogate(s):	Dibromofluoromethane			114%		62.2	- 128 %	"		"	
	Toluene-d8			101%		75.4	- 120 %	"		"	
	4-bromofluorobenzene		8	99.2%		77.3	- 129 %	"		"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-04 (MW12I)		Wa	iter		Sam	pled: 08/0	7/08 09:30			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/I	1x	8080045	08/07/08 15:56	08/07/08 20:44	
Chloromethane		ND		3.00			*		,	
Vinyl chloride		ND		0.200			"	2 8	"	
Bromomethane	(%)	ND		5.00					н	
Chloroethane		ND		1.00	W	**			*	
Trichlorofluoromethane		ND		1.00			*		"	
1,1-Dichloroethene		ND		1.00	**	**			ж	
Carbon disulfide	(0)	ND		1.00	**	**		*	u u	
Methylene chloride		ND		10.0					*	
Acetone	•	ND	****	25.0					M.	
trans-1,2-Dichloroethene		ND		1.00		*	*	*	u	
Methyl tert-butyl ether	360	ND		1.00		**		*		
1,1-Dichloroethane		ND		1.00						
cis-1,2-Dichloroethene		ND	****	1.00			(8.7	*		
2,2-Dichloropropane	H.	ND		1.00	*		(i)		W	
Bromochloromethane	n .	ND	*****	1.00		*			*	
Chloroform	,	ND	*****	1.00		2		*		
Carbon tetrachloride	.00	ND		1.00	×	*	*		*	
1,1,1-Trichloroethane	•	ND		1.00	7					
2-Butanone	*	ND		10.0						
1,1-Dichloropropene	390	ND		1.00	*	*	9		w	
Benzene		ND		0.200		×	100		•	
1,2-Dichloroethane (EDC)		ND		1.00					*	
Trichloroethene	8	ND		1.00	*	*			*	
Dibromomethane	W	ND		1.00	¥	*	14	**		
1,2-Dichloropropane	W.	ND		1.00			*		•	
Bromodichloromethane		ND	*****	1.00	3					
cis-1,3-Dichloropropene	90	ND	*****	1.00	×	*	*			
Toluene	W	ND		1.00	Ÿ					
4-Methyl-2-pentanone		ND	*****	10.0	•					
trans-1,3-Dichloropropene	25	ND	*****	1.00	2	*		366	*	
Tetrachloroethene		ND	****	1.00	W		"		н	
1,1,2-Trichloroethane		ND		1.00	•					
Dibromochloromethane	(8)	ND	-	1.00			,,	,	0	
1,3-Dichloropropane	300	ND		1.00	ÿ.	¥		· ·	ii .	
1,2-Dibromoethane		ND	annual and	1.00					**	
2-Hexanone		ND	****	10.0					н	
Ethylbenzene	×	ND	-	1.00				100		

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-04	(MW12I)		W	ater		Samp	pled: 08/0	7/08 09:30			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 20:44	
1,1,1,2-Tetrachloro	ethane		ND		1.00			*		() W ()	
m,p-Xylene		•	ND		2.00		**		*	*	
o-Xylene			ND		1.00					(8)	
Styrene			ND	2000	1.00	11				30	
Bromoform		•	ND	****	1.00					*	
Isopropylbenzene			ND	-	1.00					•	
n-Propylbenzene		ii.	ND		1.00	36	3.6	(10)	.00		
1,1,2,2-Tetrachloro	ethane		ND	200	1.00					AC.	
Bromobenzene			ND	-	1.00	*					
1,3,5-Trimethylben	zene		ND	*****	1.00		7.87		98	386	
2-Chlorotoluene		2	ND		1.00				90		
1,2,3-Trichloroprop	pane		ND		1.00				*	•	
4-Chlorotoluene			ND	-	1.00	22	77	*	35		
tert-Butylbenzene			ND	200	1.00	*	(8)		(#)		
1,2,4-Trimethylben	zene		ND	****	1.00					4	
sec-Butylbenzene			ND		1.00		*			•	
p-Isopropyltoluene		*	ND		1.00		3.80	*	(8)		
1,3-Dichlorobenzen	ne		ND		1.00			**			
1,4-Dichlorobenzen	ne		ND		1.00						
n-Butylbenzene			ND		1.00	*	100	м.		339	
1,2-Dichlorobenzen	ne	·	ND		1.00						
1,2-Dibromo-3-chlo	oropropane		ND		5.00		**				
Hexachlorobutadie	ne		ND		1.00	*		**			
1,2,4-Trichlorobenz	zene	*	ND		1.00					(10)	
Naphthalene		8	ND		2.00			*			
1,2,3-Trichlorobenz	zene		ND		1.00	•	*			W	
Surrogate(s):	Dibromofluoromethane			110%		62.2	- 128 %	"		"	
ourseaven so venee MACC	Toluene-d8			106%			- 120 %	"			
	4-bromofluorobenzene			93.3%		77.3	- 129 %	<i>n</i> 3		76	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-05 (MW11D)		Wa	iter		Samı	oled: 08/0	07/08 10:40			
Dichlorodifluoromethane	EPA 8260B	ND	-	1.00	ug/I	lx	8080045	08/07/08 15:56	08/07/08 21:14	
Chloromethane	/#	ND		3.00			"			
Vinyl chloride	*	ND		0,200				•	w	
Bromomethane	, m	ND		5.00	15					
Chloroethane	Ü	ND		1.00					W.	
Trichlorofluoromethane	114	ND	*****	1.00	*					
I,1-Dichloroethene	0	ND		1.00		970	*		W	
Carbon disulfide	и	ND		1.00					и.	
Methylene chloride	*	ND		10.0			Q.			
Acetone		ND		25.0						
trans-1,2-Dichloroethene		ND	*****	1.00		100		*	н	
Methyl tert-butyl ether	ii .	ND	*****	1.00	×		W		W.	
1,1-Dichloroethane		ND		1.00			*		*	
cis-1,2-Dichloroethene	29	ND	-	1,00					W	
2,2-Dichloropropane	30	ND		1.00	×	*			W	
Bromochloromethane		ND		1.00						
Chloroform		ND	****	1.00						
Carbon tetrachloride	9	ND	*****	1.00	*					
1,1,1-Trichloroethane	u .	ND		1.00		700	W			
2-Butanone	•	ND		10.0			4			
1,1-Dichloropropene		ND		1.00					"	
Benzene	N	ND		0.200					H.	
1,2-Dichloroethane (EDC)		ND		1.00					и	
Trichloroethene		ND		1.00						
Dibromomethane	n	ND		1.00	*					
1,2-Dichloropropane	n .	ND		1.00					n.	
Bromodichloromethane	•	ND		1.00						
cis-1,3-Dichloropropene	,0	ND	****	1,00	*	7.83				
Toluene	W.	ND		1.00			**	10.3		
4-Methyl-2-pentanone		ND		10.0					,	
trans-1,3-Dichloropropene		ND		1.00		5.05		387	16	
Tetrachloroethene	(6)	ND	-	1.00		96				
1,1,2-Trichloroethane		ND		1.00						
Dibromochloromethane	(MI)	ND		1.00		(2)				
1,3-Dichloropropane	u	ND		1,00			×		ii'	*
1,2-Dibromoethane		ND		1.00					<i>\theta</i>	
2-Hexanone		ND		10.0		,,				
Ethylbenzene		ND		1.00						

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-05 (MW11D)		Wa	iter		Sam	pled: 08/0	7/08 10:40			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/07/08 21:14	
1,1,1,2-Tetrachloroethane		ND		1.00	*	*				
m,p-Xylene	*	ND		2.00			10.			
o-Xylene	(9)	ND	****	1.00	"	*	*			
Styrene	W.	ND	*****	1.00	н	**				
Bromoform		ND		1.00	ж	"			n	
Isopropylbenzene		ND	****	1.00	*	*		"	*	
n-Propylbenzene		ND	*****	1.00					•	
1,1,2,2-Tetrachloroethane		ND	****	1.00		*		*		
Bromobenzene	•	ND	*****	1.00					¥	
1,3,5-Trimethylbenzene		ND	****	1.00		•				
2-Chlorotoluene	1040	ND		1.00	*	**			2.	
1,2,3-Trichloropropane		ND		1.00					1	
4-Chlorotoluene	(**)	ND	*****	1.00	•				"	
tert-Butylbenzene		ND		1.00	(8)			7.7	*	
1,2,4-Trimethylbenzene	*	ND		1.00		*			76.	
sec-Butylbenzene		ND	****	1.00	"	*				
p-Isopropyltoluene		ND		1.00	(27)					
1,3-Dichlorobenzene	ić.	ND		1.00	и			982		
1,4-Dichlorobenzene		ND		1,00			"		(0)	
n-Butylbenzene		ND	****	1.00			•			
1,2-Dichlorobenzene	W	ND		1.00		(9)				
1,2-Dibromo-3-chloropropane		ND		5.00			**			
Hexachlorobutadiene		ND		1.00						
1,2,4-Trichlorobenzene	W.	ND	*****	1.00	95					
Naphthalene	¥	ND		2.00	#		w	(8)	И.	
1,2,3-Trichlorobenzene		ND	-	1.00		*	**		н	
Surrogate(s): Dibromofluorome	ethane		107%		62.2	2 - 128 %	"		*	
Toluene-d8			106%			4 - 120 %	"		"	
4-bromofluorobe	nzene		101%		77.	3 - 129 %	"		*	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-06 (MW11I)		Wa	iter		Sam	pled: 08/0	7/08 11:20			
Dichlorodifluoromethane	EPA 8260B	ND	200	1.00	ug/l	1×	8080045	08/07/08 15:56	08/07/08 21:44	
Chloromethane	•	ND	*****	3.00		*	"		"	
Vinyl chloride		ND		0,200			"		"	
Bromomethane	*	ND		5.00	*	2	*		"	
Chloroethane	*	ND		1.00	*	*			W	
Frichlorofluoromethane		ND	****	1.00	•		*	•		
1,1-Dichloroethene	*	ND		1.00		*			•	
Carbon disulfide		ND		1.00	*	*			W	
Methylene chloride		ND	****	10.0	*					
Acetone	1000	ND		25,0				"	. *	
rans-1,2-Dichloroethene	8 W .	ND		1.00			(#)	*		
Methyl tert-butyl ether		ND	*****	1.00	W		•	*	W.	
1,1-Dichloroethane	3.80	ND	***	1,00	*		**	•	,	
cis-1,2-Dichloroethene		ND		1.00	(8)	7.	*	*		
2,2-Dichloropropane		ND		1.00	*	*	*	*	"	
Bromochloromethane		ND		1.00					**	
Chloroform		ND	****	1.00	(2)				*	
Carbon tetrachloride	, in	ND		1.00		*				
,1,1-Trichloroethane	•	ND	*****	1.00		*			*	
2-Butanone		ND	*****	10.0			*		•	
1,1-Dichloropropene		ND		1.00	(*)	(0.0)			38.1	
Benzene		ND		0.200	(4)			*		
1,2-Dichloroethane (EDC)		ND	*****	1.00						
Trichloroethene	9	ND	*****	1.00	*	*	9.5	8		
Dibromomethane		ND	****	1.00		(4)		×	W.	
1,2-Dichloropropane		ND		1.00			"	•		
Bromodichloromethane	.0.	ND	****	1.00		*		*		
cis-1,3-Dichloropropene	*	ND		1.00		0.0		*	\ !! \\	
Toluene		ND		1.00			14		•	
4-Methyl-2-pentanone		ND	*****	10.0		**	*			
trans-1,3-Dichloropropene	W	ND		1.00	*	(90)		*		
Tetrachloroethene		ND	5.77	1.00					180	
1,1,2-Trichloroethane		ND		1.00			•		•	
Dibromochloromethane	*	ND	-	1.00	*			2.		
1,3-Dichloropropane	•	ND		1.00			**			
1,2-Dibromoethane		ND		1.00					200	
2-Hexanone	*	ND		10.0			"		•	
Ethylbenzene	(à	ND	-	1.00			×		(*)	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-06	(MW11I)		Wa	iter		Sam	pled: 08/0	7/08 11:20			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 21:44	
1,1,1,2-Tetrachloroe	thane	**	ND		1.00		30		"		
m,p-Xylene			ND	****	2.00		*				
o-Xylene			ND	****	1.00	*	*		*		
Styrene			ND		1.00	*	(80)	*	*	90	
Bromoform			ND		1.00				"		
Isopropylbenzene			ND		1.00			•	•		
n-Propylbenzene			ND	***	1.00	000	(90)		*	(0.)	
1,1,2,2-Tetrachloroe	ethane	и	ND		1.00	*			×	W	
Bromobenzene			ND		1.00		•				
1,3,5-Trimethylbenz	tene		ND	*****	1.00	(8)			,		
2-Chlorotoluene		(6)	ND	-	1.00						
1,2,3-Trichloropropa	ane		ND	-	1.00						
4-Chlorotoluene		19	ND	*****	1.00			,,		•	
tert-Butylbenzene		(10)	ND	*****	1.00	(#)			ж.	0.0	
1,2,4-Trimethylbenz	zene		ND	*****	1.00			*	*	(W)	
sec-Butylbenzene			ND	*****	1.00	•			9	•	
p-Isopropyltoluene			ND		1.00	*	*				
1,3-Dichlorobenzen	e		ND		1.00					H.	
1,4-Dichlorobenzen	e	•	ND		1.00						
n-Butylbenzene			ND	****	1.00	*	100				
1,2-Dichlorobenzen	e	0	ND		1.00	16	*		y	(96)	
1,2-Dibromo-3-chlo	ropropane		ND		5.00		w				
Hexachlorobutadien	5 5		ND	*****	1.00		*		¥	*	
1,2,4-Trichlorobenz	ene		ND		1.00			W.	10	1.8%	
Naphthalene		w.	ND		2.00				.0	/M ?	
1,2,3-Trichlorobenz	ene		ND		1.00		*		*	*	
Surrogate(s):	Dibromofluoromethane			107%		62.2	- 128 %			"	
	Toluene-d8			106%		75.4	- 120 %	10		*	
	4-bromofluorobenzene			99.0%		77.3	- 129 %	300			

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-07 (MW11S)		Wa	iter		Sam	pled: 08/	07/08 10:55			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080045	08/07/08 15:56	08/07/08 22:14	
Chloromethane		ND	*****	3.00		1.00	*		*	
Vinyl chloride		ND		0.200	*		W			
Bromomethane		ND		5.00					•	
Chloroethane	# 5	ND		1.00			*			
Trichlorofluoromethane	W(ND		1.00	**		*	W.	•	
1,1-Dichloroethene		ND		1.00			*			
Carbon disulfide		ND	*****	1.00					•	
Methylene chloride		ND		10.0			*		0;	
Acetone	n.	ND		25.0	¥	11	¥		ii)	
trans-1,2-Dichloroethene		ND		1.00	•		*			
Methyl tert-butyl ether	(8)	ND	*****	1.00					*	
1,1-Dichloroethane	W	ND		1.00	*		*		W	
cis-1,2-Dichloroethene		ND		1.00					**	
2,2-Dichloropropane	(1)	ND		1.00					*	
Bromochloromethane	и.	ND	22.22	1.00		10			**	
Chloroform		43.6		1.00		**			"	
Carbon tetrachloride		ND		1.00		"				
1,1,1-Trichloroethane	9	ND	*****	1.00	2	"			7	
2-Butanone		ND		10.0	**	"	,,	*	ж	
1,1-Dichloropropene		ND		1.00		87	*			
Benzene	*	ND	*****	0,200						
1,2-Dichloroethane (EDC)	W	ND	*****	1.00		"	<u>)</u> ;	2.50	"	
Trichloroethene		ND		1.00	ű	**	"			
Dibromomethane	•	ND		1.00		*	*			
1,2-Dichloropropane	(*)	ND	at minute	1.00						
Bromodichloromethane		2.12		1.00		×		×	W	
cis-1,3-Dichloropropene		ND		1.00		×	ä		u u	
Toluene		ND		1.00					*	
4-Methyl-2-pentanone	9.00	ND	*****	10,0	*	*		9		
trans-1,3-Dichloropropene		ND		1.00	¥	×	"	*	*	
Tetrachloroethene		ND		1.00						
1,1,2-Trichloroethane		ND		1.00				7.0		
Dibromochloromethane	100	ND		1.00		٧		a a	ü	
1,3-Dichloropropane		ND		1.00		*				
1,2-Dibromoethane	(8) (9)	ND		1.00	,				,	
2-Hexanone	iii	ND		10.0	ь	*	*	н		
Ethylbenzene		ND	****	1.00						

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-07 (MW11S)		W	iter		Samp	pled: 08/0	7/08 10:55			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 22:14	
1,1,1,2-Tetrachloroet	hane		ND	*****	1.00		*	*		,,	
m,p-Xylene) *	ND	****	2.00	(5)			*		
o-Xylene		3003	ND	227.11	1,00				*	(80)	
Styrene			ND		1.00						
Bromoform		· •	ND	*****	1.00				*	*	
Isopropylbenzene) ii	ND		1.00	(8)	× 1	. 10	*	W	
n-Propylbenzene			ND		1.00		*				
1,1,2,2-Tetrachloroet	hane		ND	*****	1.00		*		•	. ,	
Bromobenzene		36	ND		1.00		(#5)	2.8	*	3,800	
1,3,5-Trimethylbenze	ene	/ W C	ND		1.00		*		*		
2-Chlorotoluene			ND		1.00						
1,2,3-Trichloropropa	ne	(8)	ND		1.00						
4-Chlorotoluene		w	ND	-	1.00			*		(90)	
tert-Butylbenzene			ND		1.00			**		w	
1,2,4-Trimethylbenze	ene		ND		1.00						
sec-Butylbenzene		(#)	ND		1.00	20			"	880	
p-Isopropyltoluene			ND		1.00				(1)	360	
1,3-Dichlorobenzene			ND		1.00						
1,4-Dichlorobenzene		96	ND	****	1.00	(8)		*			
n-Butylbenzene		W	ND	227	1.00					186	
1,2-Dichlorobenzene			ND	*****	1.00						
1,2-Dibromo-3-chlor	opropane	3.00	ND	****	5.00					•	
Hexachlorobutadiene		w	ND		1.00				* 1	100	
1,2,4-Trichlorobenze	ne		ND		1.00	u	0		*		
Naphthalene			ND	*****	2,00				*	•	
1,2,3-Trichlorobenze	ne		ND	*****	1.00				(8)	XW.	
Surrogate(s):	Dibromofluoromethane			111%		62.2	- 128 %	"		"	
e de la responsable de la companya d	Toluene-d8			106%		75.4	- 120 %	"		**	
	4-bromofluorobenzene			101%		77.3	- 129 %	"		"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

New City Cleaners Project Name:

Project Number: 02730139-00 Project Manager: Meghan Lunney

Report Created: 08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-08 (MW13D)		Wa	iter		Sam	pled: 08/0	7/08 11:45			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 22:43	
Chloromethane	(9)	ND	****	3.00		*		300	ű.	
Vinyl chloride		ND		0.200		W	н		*	
Bromomethane	•	ND		5.00						
Chloroethane	,,,	ND		1.00		*	"	382		
Trichlorofluoromethane		ND	*****	1.00	*	90	*		ű	
1,1-Dichloroethene	*	ND		1.00			*		¥	
Carbon disulfide		ND		1.00	*			383	*	
Methylene chloride		ND		10.0	W			*	¥	
Acetone	W	30.4	*****	25.0	×				¥	
trans-1,2-Dichloroethene		ND	*****	1.00						
Methyl tert-butyl ether	*	ND	*****	1.00				*		
1,1-Dichloroethane	DX.	ND		1.00	#		×		ŵ	
cis-1,2-Dichloroethene	*	ND		1.00	"	**			•	
2,2-Dichloropropane		ND	*****	1.00			*	350	" .	
Bromochloromethane	*	ND	*****	1.00	**		*	560	·	
Chloroform	₩.	2.78		1.00	W.				*	
Carbon tetrachloride	•	ND		1.00						
1,1,1-Trichloroethane	•	ND		1.00			и		16	
2-Butanone		ND		10.0	0.		0		Ø.	
1,1-Dichloropropene		ND		1.00						
Benzene	*	ND	*****	0.200						
1,2-Dichloroethane (EDC)	*	ND		1,00	*		**		0.	
Trichloroethene	*	ND		1.00					•	
Dibromomethane		ND		1.00						
1,2-Dichloropropane		ND		1.00			18		*	
Bromodichloromethane		1.16	****	1.00				H	7.	
cis-1,3-Dichloropropene	•	ND		1.00						
Toluene	*	ND	****	1.00					(**	
4-Methyl-2-pentanone	5	ND		10,0			*		100	
trans-1,3-Dichloropropene	n .	ND		1.00	w	iii		W		
Tetrachloroethene	*	ND		1.00			**	*		
1,1,2-Trichloroethane	,	ND		1.00		(#)		*	106	
Dibromochloromethane	W.	1.77		1.00			**	. **		
1,3-Dichloropropane	ii.	ND		1.00		**	*	¥		
1,2-Dibromoethane	ij.	ND		1.00					*	
2-Hexanone	W	ND	1	10,0		(#)			(w)	
Ethylbenzene	W	ND		1,00				×		

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

02730139-00 Meghan Lunney

Report Created: 08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-08 ((MW13D)		W	iter		Sam	oled: 08/0	7/08 11:45			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 22:43	
1,1,1,2-Tetrachloroe	thane	W	ND		1.00		9		8	**	
m,p-Xylene		*	ND		2.00		*	*		9	
o-Xylene			ND		1.00	*				*	
Styrene		(14)	ND	*****	1.00	ж.	7.				
Bromoform			ND		1,00	*	*		*		
Isopropylbenzene		*	ND		1.00		*		*		
n-Propylbenzene			ND		1.00		(7.)		2		
1,1,2,2-Tetrachloroe	ethane		ND		1.00	*	*		*	*	
Bromobenzene			ND	*****	1.00				*	*	
1,3,5-Trimethylbenz	rene	(*)	ND	*****	1,00					•	
2-Chlorotoluene			ND	****	1.00	*		740	*	36 (
1,2,3-Trichloropropa	ane		ND		1.00				**	W	
4-Chlorotoluene		•	ND	****	1.00	•					
tert-Butylbenzene			ND		1.00	200		(#)		38.0	
1,2,4-Trimethylbenz	tene		ND	*****	1.00					*	
sec-Butylbenzene			ND	*****	1.00					*	
p-Isopropyltoluene			ND	****	1.00						
1,3-Dichlorobenzene	e		ND	7	1,00			980	*		
1,4-Dichlorobenzene	e		ND		1.00					•	
n-Butylbenzene			ND	*****	1.00				*	*	
1,2-Dichlorobenzene	e		ND	*****	1.00	(#5)	190		8	.#\	
1,2-Dibromo-3-chlo	ropropane	100	ND		5.00	4			×	W.	
Hexachlorobutadien	e		ND		1.00	•			•	H.	
1,2,4-Trichlorobenze	ene	100	ND	*****	1.00		**			(4.0)	
Naphthalene			ND		2.00	*			,	10	
1,2,3-Trichlorobenze	ene	•	ND	-	1.00	•	*				
Surrogate(s):	Dibromofluoromethane			110%		62.2	- 128%	.,		"	
	Toluene-d8			105%		75.4	- 120 %			"	
	4-bromofluorobenzene			98.7%		77.3	- 129 %	,,		"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-09 (MW13I)		Wa	iter		Sam	pled: 08/0	7/08 12:10			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080045	08/07/08 15:56	08/07/08 23:14	
Chloromethane	•	ND		3.00				•		
Vinyl chloride		ND		0.200	"	*				
Bromomethane		ND	******	5.00			*		*	
Chloroethane	*	ND		1.00			*			
Trichlorofluoromethane		ND		1.00	-					
1,1-Dichloroethene		ND		1.00	*	35.0	*	*		
Carbon disulfide	Ä	ND		1.00	*	*	"		•	
Methylene chloride	•	ND	******	10.0						
Acetone	*	ND		25.0	2	5.55	*			
rans-1,2-Dichloroethene		ND		1.00	*		**	(6)		
Methyl tert-butyl ether		ND		1.00	**		*			
1,1-Dichloroethane		ND	*****	1.00						
cis-1,2-Dichloroethene		ND	*****	1.00	10	15	*	200		
2,2-Dichloropropane	•	ND		1.00	*			(6)	(@).	
Bromochloromethane		ND		1.00				*		
Chloroform		ND		1.00	5	3.00		×.	(0.0)	
Carbon tetrachloride		ND		1.00	*			90		
,1,1-Trichloroethane		ND		1.00						
2-Butanone	•	ND		10.0						
1,1-Dichloropropene		ND	*****	1.00		. *		(4.)		
Benzene		ND	****	0.200		38				
1,2-Dichloroethane (EDC)	•	ND		1.00						
Crichloroethene		5.56	*****	1.00	25			н.	(#)	
Dibromomethane	·	ND		1.00	*		it	90	(0)	
,2-Dichloropropane		ND		1.00			**			
Bromodichloromethane	•	ND		1.00						
cis-1,3-Dichloropropene		ND	*****	1.00			ж.		•	
l'Oluene	н.	ND		1.00		(%)		9		
-Methyl-2-pentanone		ND		10.0						
rans-1,3-Dichloropropene		ND		1.00		292		*		
Tetrachloroethene	W	25.1		1.00	÷.		*		7 w /	
,1,2-Trichloroethane	н	ND		1.00				*		
Dibromochloromethane		ND	*****	1.00						
1,3-Dichloropropane		ND		1.00	180		10	,	*	
1,2-Dibromoethane	u	ND		1.00						
2-Hexanone	*	ND		10.0						
Ethylbenzene		ND		1.00						

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-09	(MW13I)		W	ater		Samp	pled: 08/0	07/08 12:10			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 23:14	
1,1,1,2-Tetrachloro	ethane		ND		1.00		*		. w	*	
m,p-Xylene		•	ND	*****	2.00			*		*	
o-Xylene			ND	*****	1.00	(8)	(9.)	39	90	W	
Styrene		«	ND		1.00	н.			*		
Bromoform		•	ND		1.00		*	*	•		
Isopropylbenzene		*	ND	-	1.00		120		27		
n-Propylbenzene		*	ND		1.00	(8)			30	100	
1,1,2,2-Tetrachloro	ethane		ND		1.00	*					
Bromobenzene			ND	*****	1.00	11			*		
1,3,5-Trimethylben	zene	*	ND		1.00	2.00	/#/	36	967		
2-Chlorotoluene		ii .	ND		1.00			**		iii	
1,2,3-Trichloroprop	pane		ND		1.00						
4-Chlorotoluene		*	ND		1.00		*		960	25	
tert-Butylbenzene		W	ND		1.00				363		
1,2,4-Trimethylben	zene	•	ND	****	1.00		**			*	
sec-Butylbenzene		25	ND	*****	1.00	355		105			
p-Isopropyltoluene		11.	ND		1.00						
1,3-Dichlorobenzer	ne		ND	C=C1	1.00			*			
1,4-Dichlorobenzer	ne		ND	*****	1.00		*			*	
n-Butylbenzene		31	ND	-	1.00	(#)			90		
1,2-Dichlorobenzer	ne	iii.	ND		1.00	300		. 10	96	W.	
1,2-Dibromo-3-chlo	oropropane	**	ND	****	5.00		*	•	•	•	
Hexachlorobutadie	ne		ND	*****	1.00				(8)	75	
1,2,4-Trichlorobenz	zene	11.	ND		1.00		**			*	
Naphthalene		*	ND	*****	2.00		**		•	•	
1,2,3-Trichlorobens	zene		ND	****	1.00	*				70	
Surrogate(s):	Dibromofluoromethane			113%		62.2	- 128 %	n		и.	
	Toluene-d8			104%			- 120 %	"		"	
	4-bromofluorobenzene			96.6%		77.3	- 129 %	"		n	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00

Report Created: 08/25/08 09:20

Meghan Lunney

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-10 (MW DUP)		Wa	iter		Sam	pled: 08/0	7/08 00:00			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/07/08 23:44	
Chloromethane	*	ND		3.00		*				
Vinyl chloride	•	ND		0.200						
Bromomethane		ND		5.00	*		**			
Chloroethane	*	ND		1.00				**		
Trichlorofluoromethane	•	ND		1.00					,	
1,1-Dichloroethene		ND		1.00						
Carbon disulfide	¥	ND		1.00						
Methylene chloride	,	ND	*****	10.0					•	
Acetone		ND		25.0					"	
trans-1,2-Dichloroethene	W.	ND		1.00			н	9		
Methyl tert-butyl ether	w .	ND		1.00				*		
1,1-Dichloroethane		ND	****	1.00						
cis-1,2-Dichloroethene		7.24		1.00	*			2	4	
2,2-Dichloropropane	*	ND		1.00			w		ü	
Bromochloromethane		ND	*****	1.00		*	*		,	
Chloroform		5.64		1.00	2.				W.	
Carbon tetrachloride	,	ND	****	1,00		3.90			15	
1,1,1-Trichloroethane	*	ND		1.00			¥	и.	ii	
2-Butanone	*	ND		10.0	*		•		0	
1,1-Dichloropropene		ND	*****	1.00	25			(8)		
Benzene	*	ND		0,200	161	W.	H	*	iii.	
1,2-Dichloroethane (EDC)	W	ND		1.00	*				#	
Trichloroethene	,	21.9		1.00				*	W.	
Dibromomethane		ND	****	1.00	28			3.00	и.	
1,2-Dichloropropane	*	ND		1.00	M.	*	**	(9)	ii.	
Bromodichloromethane	*	ND	*****	1.00	*		*		0	
cis-1,3-Dichloropropene	*	ND		1.00		1.0		(8)	W	
Toluene	*	ND		1.00	796	36	*		0	
4-Methyl-2-pentanone	W	ND		10.0			**			
trans-1,3-Dichloropropene	*	ND	*****	1.00	"		*			
Tetrachloroethene	*	26.3	2000	1.00	(8)		"	*	(0)	
1,1,2-Trichloroethane		ND		1.00		*	**	(W)	100	
Dibromochloromethane	*	1.12		1.00					•	
1,3-Dichloropropane	*	ND	*****	1.00				90		
1,2-Dibromoethane	×	ND		1,00	0.00		*	3.6	*	
2-Hexanone	*	ND		10.0					•	
Ethylbenzene	*	ND		1.00						
(C										

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

LFR, Inc.

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-10 (MW DUP)		W	ater		Sam	pled: 08/0	7/08 00:00			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	lx	8080045	08/07/08 15:56	08/07/08 23:44	
1,1,1,2-Tetrachloroethane		ND	-	1,00			и.	*		
m,p-Xylene		ND		2.00					•	
o-Xylene	. ₩ 0	ND	-	1.00	100				.* *.	
Styrene	•	ND		1.00		*		**	100	
Bromoform	; *	ND	****	1.00				*		
Isopropylbenzene		ND	****	1.00	150			*		
n-Propylbenzene		ND		1.00	*		. 0		7863	
1,1,2,2-Tetrachloroethane		ND		1.00				*	Ü	
Bromobenzene),#()	ND	****	1.00						
1,3,5-Trimethylbenzene		ND		1.00			346		*	
2-Chlorotoluene		ND		1.00				*	W	
1,2,3-Trichloropropane	."	ND	****	1.00	"			•		
4-Chlorotoluene	W	ND	-	1.00			100		1.5%	
tert-Butylbenzene	*	ND		1.00					00	
1,2,4-Trimethylbenzene		ND	*****	1.00						
sec-Butylbenzene	7.00	ND	*****	1.00					•	
p-Isopropyltoluene		ND		1,00			*		(8)	
1,3-Dichlorobenzene	•	ND	*****	1.00					10	
1,4-Dichlorobenzene		ND	****	1.00			•		•	
n-Butylbenzene		ND		1.00	1.0					
1,2-Dichlorobenzene		ND		1.00			н.	*	(a)	
1,2-Dibromo-3-chloropropane		ND	*****	5.00			*			
Hexachlorobutadiene		ND		1.00			".	*		
1,2,4-Trichlorobenzene	ii .	ND		1.00		(e.	**	х.		
Naphthalene	•	ND		2.00		*	"		W.	
1,2,3-Trichlorobenzene	#	ND		1.00				*		
Surrogate(s): Dibromofluorome	thane		112%		62.2	? - 128 %	"		*	
Toluene-d8			106%		75.4	1 - 120 %	n		*	
4-bromofluorober	zene		99.5%		77.3	3 - 129 %	"		"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created: 08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-11 (MW 14D)		Wa	iter		Sam	pled: 08/0	7/08 12:50			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080137	08/19/08 10:26	08/19/08 18:00	
Chloromethane	,,	ND	-	3.00					u	
Vinyl chloride	36	ND		0.200	*			*		
Bromomethane		ND		5.00					•	
Chloroethane	•	ND		1.00						
Trichlorofluoromethane	(9)	ND	*****	1.00	31	×	*	*		
1,1-Dichloroethene		ND		1.00	*					
Carbon disulfide	*	2.71		1.00			*			
Methylene chloride		ND		10.0			20			
Acetone	W	63.5		25.0		*	*	302	×	
trans-1,2-Dichloroethene	*	ND		1.00		*			*	
Methyl tert-butyl ether	*	ND		1.00						
1,1-Dichloroethane	(*)	ND	*****	1.00	3.0					
cis-1,2-Dichloroethene		ND		1.00					ü	
2,2-Dichloropropane	260	ND		1.00		*				
Bromochloromethane		ND	*****	1.00						
Chloroform		21.9	*****	1.00	*				*	
Carbon tetrachloride	*	ND		1.00	9			W	ü	
1,1,1-Trichloroethane		ND	*****	1.00					•	
2-Butanone		ND	*****	10.0						
1,1-Dichloropropene	(00)	ND		1.00	×	*		×	9	
Benzene	(**)	ND		0.200	9	**			*	
1,2-Dichloroethane (EDC)	•	ND	*****	1.00					e.	
Trichloroethene	(8)	ND	-	1.00			(4)			
Dibromomethane	W	ND	*****	1.00	n	**	(ii)	14	**	
1,2-Dichloropropane	*	ND		1.00		"			•	
Bromodichloromethane		2.02		1.00	20		(0)		*	
cis-1,3-Dichloropropene	30	ND		1.00	×	**			*	
Toluene	w.	ND		1.00		**				
4-Methyl-2-pentanone		ND	******	10.0		**				
trans-1,3-Dichloropropene		ND		1.00		**			W	
Tetrachloroethene	w .	ND		1.00		"	Wit		W.	
1,1,2-Trichloroethane		ND		1.00		**	*			
Dibromochloromethane		ND	122	1.00	,,	*		н		
1,3-Dichloropropane	(4.7)	ND		1.00	*	н		н	W	
1,2-Dibromoethane		ND	*****	1.00						
2-Hexanone	₹ ₩ 0	ND	*****	10.0						
Ethylbenzene		ND		1.00		**	×	и.	W.	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-11 (MW 14D)		W	nter		Sam	pled: 08/0	7/08 12:50			
Chlorobenzene	EPA 8260B	ND	9777794	1.00	ug/l	1x	8080137	08/19/08 10:26	08/19/08 18:00	
1,1,1,2-Tetrachloroethane		ND	-	1.00		•	•		*	
m,p-Xylene	*	ND	*****	2.00						
o-Xylene		ND		1.00	*	*	*	*	и	
Styrene	*	ND		1.00						
Bromoform	*	ND	*****	1.00		*	"		,	
Isopropylbenzene	ÿ.	ND		1.00	ii.		"		*	
n-Propylbenzene	*	ND		1.00		"			¥	
1,1,2,2-Tetrachloroethane		ND	****	1.00			"	•	×	
Bromobenzene	*	ND		1.00	**	*				
1,3,5-Trimethylbenzene	•	ND	7577	1.00		"	*			
2-Chlorotoluene		ND		1.00		*		•		
1,2,3-Trichloropropane		ND		1.00	2	15 15		(%)		
4-Chlorotoluene		ND		1.00		*		*	*	
tert-Butylbenzene	•	ND		1.00			•			
1,2,4-Trimethylbenzene	*	ND		1.00					,	
sec-ButyIbenzene	¥	ND	-	1.00				(0)	*	
p-Isopropyltoluene	*	ND		1.00		*	н			
1,3-Dichlorobenzene	20.1	ND	****	1.00		•)*	
1,4-Dichlorobenzene	(40)	ND		1.00		×		700		
n-Butylbenzene	*	ND		1.00				**	*	
1,2-Dichlorobenzene	*	ND		1.00				ii	•	
1,2-Dibromo-3-chloropropane		ND		5.00		*	"			
Hexachlorobutadiene	(40)	ND		1.00		*	н			
1,2,4-Trichlorobenzene		ND	****	1.00	**			"	•	
Naphthalene		ND		2.00						
1,2,3-Trichlorobenzene	**	ND		1.00		*	(**)	*		
Surrogate(s): Dibromofluorome	thane		88.2%		62.2	- 128 %	#		"	
Toluene-d8			84.8%			- 120 %	"		"	
4-bromofluoroben	zene		87.5%		77.3	- 129 %	,,		"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-12 (MW 14I)		W	ater		Sam	pled: 08/0	07/08 13:25			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080137	08/19/08 10:26	08/19/08 18:31	
Chloromethane	(w.)	ND		3.00	**	**		*	×	
Vinyl chloride	•	ND	****	0.200					w	
Bromomethane		ND	*****	5.00						
Chloroethane	w .	ND		1.00		*		и	365	2
Trichlorofluoromethane	u.	ND		1.00	4	**			ii.	,
1,1-Dichloroethene		ND	*****	1.00					•	
Carbon disulfide	.m.	ND	*****	1.00			90		20	
Methylene chloride	300	ND		10,0				*	H.	
Acetone	**	ND	*****	25.0		8			×	
trans-1,2-Dichloroethene	.w.	ND		1.00		I.S.			20.5	
Methyl tert-butyl ether		ND		1.00	*		(4)	*	(00)	
1,1-Dichloroethane		ND		1.00		9		4	•	
cis-1,2-Dichloroethene		2.67	****	1.00						
2,2-Dichloropropane	1.0	ND		1.00	(6)	2	*		(#))	
Bromochloromethane	100	ND	200	1.00		*	*	*	300	
Chloroform		ND	****	1,00				*	•	
Carbon tetrachloride		ND	1200	1.00		- 3				
1,1,1-Trichloroethane	Ti.	ND		1.00	w		360	*	90	
2-Butanone		ND		10.0				*	**	
1,1-Dichloropropene	*	ND		1.00				8		
Benzene	. 0.	ND		0,200	30.0					
1,2-Dichloroethane (EDC)		ND		1.00		W	*	×	363	
Trichloroethene		13.5		1.00				**	•	
Dibromomethane		ND	*****	1.00						
1,2-Dichloropropane	000	ND		1.00		30.5	*	*	(Y)	
Bromodichloromethane		ND		1.00			*	W	(ii)	
cis-1,3-Dichloropropene		ND	*****	1.00		"		*		
Toluene		ND		1.00	(8)	90			.00	
4-Methyl-2-pentanone	(W	ND		10.0	(4)				360	
trans-1,3-Dichloropropene		ND	412020-170 C HANN OL	1.00				**		
Tetrachloroethene		47.8		1.00					(90)	
1,1,2-Trichloroethane	90	ND	*****	1,00	(M)			н		
Dibromochloromethane		ND		1.00					200	
1,3-Dichloropropane		ND	*****	1.00						
1,2-Dibromoethane	*	ND		1.00	*		*		.00	
2-Hexanone	(W)	ND		10.0						
		ND		1.00			7			
Ethylbenzene		ND		1.00						

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0056-12	(MW 14I)		W	ater		Samp	oled: 08/0	7/08 13:25			
Chlorobenzene		EPA 8260B	ND	****	1.00	ug/l	lx	8080137	08/19/08 10:26	08/19/08 18:31	
1,1,1,2-Tetrachloro	ethane	*	ND		1.00		н				
m,p-Xylene		*	ND	*****	2.00			**			
o-Xylene		*	ND		1.00		*			*	
Styrene		H	ND		1.00	×			×	**	
Bromoform		*	ND		1.00				н.	u u	
Isopropylbenzene			ND	*****	1.00	*	*	*		,	
n-Propylbenzene		и	ND	****	1.00	*	8	. 9	180	W.	
1,1,2,2-Tetrachloro	ethane	**	ND		1.00	×			0.00	"	
Bromobenzene			ND		1.00	8	*			*	
1,3,5-Trimethylben	zene		ND		1.00	15	0		8,995	,,	
2-Chlorotoluene		"	ND		1.00	*	**		(40)	"	
1,2,3-Trichloroprop	pane	*	ND		1.00	*	*				
4-Chlorotoluene		,	ND	****	1.00	8				*	
tert-Butylbenzene		,	ND		1,00	×			196	**	
1,2,4-Trimethylben	zene		ND	*****	1.00	*	**			"	
sec-Butylbenzene		*	ND		1.00		**		*	*	
p-Isopropyltoluene		*	ND	*****	1.00		**	20		"	
1,3-Dichlorobenzen	ne	*	ND		1.00	30	**	*			
1,4-Dichlorobenzen	ne	*	ND	****	1.00	"					
n-Butylbenzene			ND		1.00	"					
1,2-Dichlorobenzen	ne	*	ND		1.00	"					
1,2-Dibromo-3-chlo	oropropane	•	ND	-	5.00	**	*			*	
Hexachlorobutadie	ne	#	ND	-	1.00		*				
1,2,4-Trichlorobenz	zene		ND		1.00		**			*	
Naphthalene		•	ND		2.00						
1,2,3-Trichlorobenz	zene		ND		1.00				•	,	
Surrogate(s):	Dibromofluoromethane			93.8%		62.2	- 128 %	n		"	
	Toluene-d8			96.7%			- 120 %			"	
	4-bromofluorobenzene			106%		77.3	- 129 %	"		150	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8080045-BLK1)								Extra	acted:	08/07/08 15	:56			
Dichlorodifluoromethane	EPA 8260B	ND	***	1.00	ug/l	1x	144	**			++	0	8/07/08 18:41	
Chloromethane	п	ND		3.00			**	***	-		**			
Vinyl chloride	ü	ND		0,200		*					22	-)(
Bromomethane	и	ND		5.00			-	**			**	**	H	
Chloroethane		ND		1.00			-	100			771		"	
Frichlorofluoromethane		ND	***	1.00		,		**	-	**	77	**	*	
,1-Dichloroethene	"	ND	***	1,00			**		-	**	**	-		
Carbon disulfide		ND	***	1.00		25	-	-					*	
Methylene chloride	н	ND	***	10.0		*	**		-	**	***		*	
Acetone		ND		25.0	*	(8)					-		*	
rans-1,2-Dichloroethene		ND		1.00		*	-	-			**	-	Ü	
Methyl tert-butyl ether		ND	***	1.00			155		-		77	7.55	*	
,1-Dichloroethane	*	ND	***	1,00	•		***	**				, ***	•	
is-1,2-Dichloroethene		ND	***	1.00	•		-	**		**	**			
,2-Dichloropropane		ND	***	1.00		2.5	100	**	**	7				
romochloromethane	18	ND	***	1.00				***	-		243	**	H	
Chloroform		ND	7232	1,00	*			-			0.0		ж.	
arbon tetrachloride		ND	***	1.00	х.	*				-		**	*	
,1,1-Trichloroethane	•	ND		1.00	*		751		77	**	-	-		
-Butanone	*	ND	S###5	10.0	*		**	***	**		**	**	•	
,1-Dichloropropene	•	ND	***	1.00	*	**	***	**			**		×	
Benzene		ND		0.200	*				**	-	**	**		
,2-Dichloroethane (EDC)		ND	***	1.00	(8)		***		**			**	*	
Trichloroethene		ND		1.00						-	4.	-		
Dibromomethane	*	ND	***	1.00	(8)	*			**	-			•	
,2-Dichloropropane	•	ND	- 77.5	1.00		**	77.			5		-		
Bromodichloromethane		ND	***	1.00	*.	"	***	**	**	**		-	*	
is-1,3-Dichloropropene		ND	***	1.00	*	*	**	**		**	**		*	
Coluene	80	ND	-	1.00			140	44	***		**	**		
-Methyl-2-pentanone	(8)	ND	***	10.0	9.5	*	440		**	-	-		*	
rans-1,3-Dichloropropene	W.	ND		1.00	.00		223		200			-	ж.	
Cetrachloroethene		ND	(777)	1.00	и.		554		-	-	-	-	×	
,1,2-Trichloroethane		ND	***	1.00	**		77.5	**	**			**	*	
Dibromochloromethane	*	ND	***	1.00	*		***	**	**	**	**		*	
,3-Dichloropropane		ND	***	1.00						44	**	**		
,2-Dibromoethane	(80)	ND	***	1.00	(*)		**	**			**	**	,,	
-Hexanone	100	ND		10.0		(#)		22		**	**	220		
Ethylbenzene	w	ND		1.00		A		**	**		**		M	
Chlorobenzene		ND	***	1.00			-			**		**	w	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	No
Blank (8080045-BLK1)								Extra	acted:	08/07/08 15	:56			
,1,1,2-Tetrachloroethane	EPA 8260B	ND		1.00	ug/l	1x		-		**	**		08/07/08 18:41	
n,p-Xylene		ND		2.00	*		-			**		**	10	
o-Xylene		ND		1.00					-					
ityrene		ND		1.00			**		177			**		
Bromoform	200	ND		1.00	*	*	***	**	**		**	77		
sopropylbenzene		ND		1.00	7.	*		**	**		**	-		
n-Propylbenzene		ND	***	1.00	#		-		**	**	**	**		
,1,2,2-Tetrachloroethane		ND		1,00	×	36	1	500						
Bromobenzene		ND		1.00		*	-				**		(9)	
,3,5-Trimethylbenzene		ND		1.00	w				**	**	-			
-Chlorotoluene		ND		1,00			-	**	77.0	-		-	(0)	
,2,3-Trichloropropane		ND	***	1.00	*	*	***	**	**	200	**	***	H	
-Chlorotoluene		ND	***	1.00			**	300	**	**	**	***		
ert-Butylbenzene	16	ND		1,00	21	*			**		***	**		
,2,4-Trimethylbenzene		ND		1.00	*		-		**		**	**		
ec-Butylbenzene		ND		1.00								-		
-Isopropyltoluene		ND		1.00		**			**				0.	
,3-Dichlorobenzene		ND		1.00				-	**	.55		-	"	
,4-Dichlorobenzene		ND	***	1.00			***	***	223	-	22		"	
n-Butylbenzene	*	ND	***	1,00			***	***	***		-	**		
,2-Dichlorobenzene	4	ND	***	1.00		2	(44)	**			**		*	
,2-Dibromo-3-chloropropane	ii.	ND	222	5.00	(4)		4-				**	-		
Hexachlorobutadiene		ND		1.00	*		220	-	**		**	**		
1,2,4-Trichlorobenzene		ND	***	1.00		*							**	
Naphthalene		ND		2.00	*					0.77	-	-	**	
1,2,3-Trichlorobenzene		ND	***	1,00		٠		177	**	**			**	
Surrogate(s): Dibromofluoromethan	e	Recovery:	110%	Lim	ts: 62.2-128								08/07/08 18:4	1
Toluene-d8			104%		75.4-120 77.3-129									

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created: 08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

		4000 M N		5000-01				7,570,000,000,000	10.597 / 19825-0	A100.5		0.000			
Analyte		Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8080045	-BS1)								Extr	acted:	08/07/08 15	:56			2
1,1-Dichloroethene		EPA 8260B	10.5		1.00	ug/I	1×	-	10.0	105%	(60.4-140)	44		08/07/08 17:39	
Benzene			10.4		0.200		*			104%	(72.9-120)	**			
Frichloroethene			10.9		1.00		*		*	109%	(73.7-120)	-			
Coluene			12.1		1.00			-		121%	(72.4-132)	-	**		
Chlorobenzene			11.1		1.00		ž	**	*	111%	(80-120)	**	-		
Surrogate(s):	Dibromoffuoromethane Toluene-d8 4-bromoffuorobenzene		Recovery:	110% 104% 98.3%	Limits	: 62.2-128% 75.4-120% 77.3-129%	"							08/07/08 17:39 "	
Matrix Spike	(8080045-MS1)				QC Source:	SRH0056-12			Extr	acted:	08/07/08 15	:56			
,1-Dichloroethene		EPA 8260B	11,2	***	1.00	ug/l	1x	ND	10,0	112%	(52.5-135)	-		08/08/08 10:53	
Benzene		*	11.1	***	0.200			ND		111%	(72.3-120)	-			
Crichloroethene		*	11.9	***	1.00	*	*	13.5	0	-16.1%	(80-120)) (4)	N
Toluene		×	12.9		1.00	м	*	0.509		124%	(62.7-137)	**			
Chlorobenzene			11.7		1,00	*	*	ND		117%	(78.9-120)	-		•	
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene		Recovery:	105% 105% 94.4%	Limits	: 62.2-128% 75.4-120% 77.3-129%	" "							08/08/08 10:53 "	*
W-4-1- 6-11- D		**		34,420	QC Source:						00.000.000.45				
.1-Dichloroethene	up (8080045-MSD	EPA 8260B	11.5	***	1.00	ug/l	lx	ND	10.0	115%	08/07/08 15: (52.5-135)		6 (10.5)	08/08/08 11:22	
Benzene		EFA 8200B	10.7		0.200	ug/i	9	ND	10.0				8 8	UB/UB/UB 1,1:22 #	
richloroethene			10.7		1.00)#	6	13,5		107%	(72.3-120) (80-120)		6 (10.7)	970 W	4
Foluene			12.0		1.00		×	0.509		-15.1%			% (10) K (13)	Tay	V
Chlorobenzene			11.5		1.00			ND		123% 115%	(62.7-137) (78.9-120)		% (13) % (11.2)	*	
Surrogate(s):	Dibromofluoromethane Toluene-d8		Recovery:	105% 105%	Limits	: 62.2-128% 75.4-120%	" "	.7.(772)		12717	V	*****	* X1.5/72	08/08/08 11:22	
	4-bromofluorobenzene			93.6%		77.3-129%								2	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Dishlor (8090137-BLX1)	Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Dictorosifiance	Blank (8080137-BLK1)								Extr	acted:	08/19/08 10):26			
Chlorenthane ND	Dichlorodifluoromethane	EPA 8260B	ND	22	1,00	ug/l	1×		**	***	**			08/19/08 16:58	
No.	Chloromethane		ND		3.00				7		22			()	
Chlorocethane	Vinyl chloride		ND		0.200		**	-			**	***		. 10	
Tricklora/Duromethane ND 1.00	Bromomethane		ND		5.00			in a	77	**		-	**		
	Chloroethane		ND	***	1.00	*		***	**	***	**	**	25		
Carbon disulfide NID NID NID NID NID NID NID NI	Trichlorofluoromethane	36	ND	***	1,00	2.	2	44	**	***	**	-	**	•	
Methylene chlaride ND 10.0 2.5 0 0 </td <td>1,1-Dichloroethene</td> <td>36</td> <td>ND</td> <td>***</td> <td>1.00</td> <td>*</td> <td>*</td> <td>**</td> <td>**</td> <td></td> <td></td> <td>.000</td> <td>**</td> <td>(2)</td> <td></td>	1,1-Dichloroethene	36	ND	***	1.00	*	*	**	**			.000	**	(2)	
ND	Carbon disulfide	700	ND		1.00	**	*					**	**	98	
Trans-1,2-Dichlorosthene ND 1.00	Methylene chloride		ND		10.0	*	×	**					122	90	
Methyl tert-buyl ether	A STATE OF THE STA		ND	***	25.0	*						-		WC	
Nethysters-buyl ether			ND	***	1.00			.**		***	-	-	***	14	
1.10 1.00	Methyl tert-butyl ether		ND	***	1.00	*	*	**		**	**	**	**		
ND 3.00 3.		1.00	ND	***	1.00	*	"	***		**		***	-		
ND		(%)	ND		3.00		**			**		240	**		
ND		196	ND		1.00		н	-	22		**	100	**		
ND			ND		1.00		10	12	-				-	((
			ND	***	1.00		9	77					**	0	
ND	Carbon tetrachloride		ND	***	1.00			**	100	-		**		W.	
ND			ND	***	1.00			***	100	**	**	**	**		
1.1-Dichloropropene			ND	***	10.0	5.		**	**		**	**	**	W.	
ND 0.200		e.	ND		1.00	*		**		**		44	-	"	
1.2-Dichloroethane (EDC) ND ND ND ND ND ND ND ND ND N		6	ND		0.200	*			**	_	***		***		
Trichloroethene ND 1.00 1.00		ű.			1.00	w		**			22		1	*	
Dibromomethane ND ND ND ND ND ND ND N			ND	***	1.00							**		ï	
1,2-Dichloropropane ND 1,00 " <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>**</td> <td>**</td> <td></td> <td>200</td> <td></td> <td>**</td> <td>-</td> <td></td> <td></td>							**	**		200		**	-		
ND				***			,,		**	**		**		,	
ND 1.00 " " " " " " " " "		*						44	+		44		**		
Toluene						*		***	**		-	-		,	
4-Methyl-2-pentanone ND 1.00							90	22	127	-					
trans-1,3-Dichloropropene ND							100	_	-					96	
Tetrachloroethene ND 1.00 " " 1.00 " "		3		9/559 2444				***	227						
1,1,2-Trichloroethane "ND 1.00 "" " Dibromochloromethane "ND 1.00 "" " 1,3-Dichloropropane "ND 1.00 "" " 1,2-Dibromoethane "ND 1.00 "" " 2-Hexanone "ND 10.0 "" " Ethylbenzene "ND 1.00 "" "				1000						107		**	MOE.		
Dibromochloromethane "ND 1.00 "" " 1,3-Dichloropropane "ND 1.00 "" " 1,2-Dibromochlane "ND 1.00 "" " 2-Hexanone "ND 1.00 "" " Ethylbenzene "ND 1.00 "" "										-		-	***		
1,3-Dichloropropane "ND 1.00 "" " 1,2-Dibromoethane "ND 1.00 "" " 2-Hexanone "ND 10.0 "" " Ethylbenzene "ND 1.00 "" "		и										-			
1,2-Dibromoethane "ND 1,00 " " " 2-Hexanone "ND 10.0 " " " Ethylbenzene "ND 1.00 " " "		W											-	×	
2-Hexanone " ND 10.0 " " " " Ethylbenzene " ND 1.00 " " "											(0)		223	(1)	
Ethylbenzene " ND 1.00 " " " "	A STATE OF THE STA	_						55	-	-	_	-		(ii)	
Ethylbenzene ND 1.00									-		177.	-	<u> </u>		
Chlorobenzene "ND 1.00 " " "		, i				1972	13		**	177		-			

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8080137-BLK1)								Extr	acted:	08/19/08 10):26			
1,1,1,2-Tetrachloroethane	EPA 8260B	ND		1.00	ug/l	l×	2		22	- 12		22	08/19/08 16:58	
m,p-Xylene	•	ND	-	2.00			-	-			-	-		
o-Xylene		ND		1.00			-				-	**		
Styrene		ND		1.00			**			**	**	**	"	
Bromoform	*	ND	***	1.00	*	*				**	**	**		
sopropylbenzene		ND	***	1.00				***	**	-	**		п	
-Propylbenzene	8	ND	***	1.00	(9.5)							***	и	
,1,2,2-Tetrachloroethane	×	ND		1.00			-	-2			-		н	
Bromobenzene	*	ND		1.00			-	-	-77			77.	"	
,3,5-Trimethylbenzene		ND		1,00		*	-	**	**	-	**	**	*	
-Chlorotoluene	•	ND	***	1,00			**	**	**	31	**	**	"	
,2,3-Trichloropropane	*	ND	***	1.00			***		-	**	**	**		
-Chlorotoluene	2	ND	***	1.00		10	-		1		**	427	.0.	
ert-Butylbenzene		ND	***	1.00			-	**		-		**		
,2,4-Trimethylbenzene		ND	111	1.00			2	(20)			_	-	н	
ec-Butylbenzene	W	ND		1.00				-	-		-	***	W .	
-Isopropyltoluene		ND		1.00			-	**		-	-		u	
,3-Dichlorobenzene	•	ND	***	1.00			#	**				***		
,4-Dichlorobenzene		ND	***	1.00		*	-	-	-			***	"	
-Butylbenzene		ND		1.00	35				v	**	-	***		
,2-Dichlorobenzene	2	ND	***	1,00		90.	-	**	**	**	**	**	.0	
,2-Dibromo-3-chloropropane		ND		5.00			-		22	-	-	22		
Iexachlorobutadiene	*	ND	***	1.00		ж.	**						n	
,2,4-Trichlorobenzene		ND		1.00			-	-	-	-	-		ii	
Naphthalene	*	ND		2.00			**	**	**	275	*	***		
,2,3-Trichlorobenzene	*	ND	whee	1,00	*	*	**	**	**			**		
Surrogate(s): Dibromofluoromethane		Recovery:	101%	Limit	s: 62.2-128%	**							08/19/08 16:58	1
Toluene-d8			94.8%		75.4-120%								,,	
4-bromofluorobenzene			105%		77.3-129%	"							"	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created: 08/25/08 09:20

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

							_					_			_
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8080137	'-BS1)								Extr	acted:	08/19/08 10	:26			
1,1-Dichloroethene		EPA 8260B	8.79		1.00	ug/l	1x	**	10.0	87.9%	(60.4-140)	**	**	08/19/08 17:29	
Benzene			9,62	222	0,200	"	*		"	96,2%	(72.9-120)	**			
Frichloroethene			9,78	***	1.00		×	**		97.8%	(73.7-120)				
l'oluene			10.1		1.00		*		*	101%	(72.4-132)	-	***		
Chlorobenzene			10.2	***	1.00		*		*	102%	(80-120)	*	**	H	
Surrogate(s):	Dibromofluoromethane		Recovery:	96.5%	Limits:	62.2-128%	16							08/19/08 17:29	
	Toluene-d8			101%		75.4-120%	"							"	
	4-bromofluorobenzene			105%		77.3-129%	"							"	
Matrix Spike	(8080137-MS1)				QC Source:	SRH0056-11			Extr	acted:	08/19/08 10	:26			
,1-Dichloroethene		EPA 8260B	8.37		1.00	ug/I	lx	ND	10.0	83.7%	(52.5-135)	**	**	08/19/08 19:02	
Benzene		(8)	9.73	***	0.200	"	5.	ND	(9.7)	97.3%	(72.3-120)	**	**		
Crichloroethene			9.61		1.00	*	×	ND		96.1%	(80-120)	**			
Toluene		300	9.59		1.00	W	×	0.516	A.	90.7%	(62.7-137)				
Chlorobenzene			10.1	7.00	1.00			ND		101%	(78.9-120)	-	77	(A)	
Surrogate(s):	Dibromofluoromethane		Recovery:	97.8%	Limits:	62.2-128%	"							08/19/08 19:02	
	Toluene-d8			100%		75.4-120%	"								
	4-bromofluorobenzene			110%		77.3-129%	"							**	
Matrix Spike D	Oup (8080137-MSD	1)			QC Source:	SRH0056-11			Extr	acted:	08/19/08 10	:26			
,1-Dichloroethene		EPA 8260B	9.48	***	1.00	ug/I	1×	ND	- 10.0	94.8%	(52.5-135)	12.5%	6 (10.5)	08/19/08 19:33	
Benzene			10.4	***	0.200		*	ND	*	104%	(72.3-120)	6.19%	6 (10.7)	•	į.
Trichloroethene			10.2	***	1.00	7	2	ND	20	102%	(80-120)	6,20%	6 (10)		
Foluene			10.3	***	1,00	*	*	0.516		98.2%	(62.7-137)	7.48%	6 (13)		
Chlorobenzene		30	10.9		1.00	w	X	ND		109%	(78.9-120)	7.919	6 (11.2)	100	
Surrogate(s):	Dibromofluoromethane		Recovery:	97.5%	Limits	62.2-128%	"							08/19/08 19:33	
	Toluene-d8			99.1%		75.4-120%	**								
	4-bromofluorobenzene			114%		77.3-129%	**							н	

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 02730139-00 Meghan Lunney Report Created:

08/25/08 09:20

Notes and Definitions

Report Specific Notes:

M8

The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).

R

The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution Dil

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable

Electronic Signature

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

Chris Williams For Randee Decker, Project Manager

[estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

		0	CHAIN OF CUSTODY REPORT	ODY REPORT	West	
CLIENT: LFK			INVOICE TO:		WORK Order #:	
REPORT TO: Prighton Libert	1111.00		LFR		TURNAROUND REQUEST in Business Days *	JEST
CINESSAN CIN	· W				& Inorganic Ana	
1225 E	19818281861		P.O. NUMBER:		Permissing A 3 2	1
PROJECT NAME: ALEJ CITE C	ress		PRESE	PRESERVATIVE	4 3 7	T 7.1
PROJECT NUMBER: 62736 139-00	4	184	-			7
SAMPLED BY: JAN FIN LANG) 20	ie iz	REQUESTR	REQUESTED ANALYSES	OTHER Specify:	
CLIENT SAMPLE		8 8			* Turnaround Requests less than standard may incur Rush Charges	ncur Rush Charges.
IDENTIFICATION	700	can			MATRIX # OF LOCATION/ (W, S, 0) CONT. COMMENTS	TA
MW10>	8-7-08 8:45 X				Ŋ	
2 MW/10 I	8-7-00 8:30 1					
3 MX 12 D	8-7-06 LESSER					
・風どにす	8-7-08 0930 X				4, 2	
· AWII D	8-7-08 10.20 X				+	
* AN/117	8-7-03 1828 X				+-	
1 MW/11 5	8-7-00 10:95 X				-	
· Mx/35	8-7-04 1145 X				1	
· MWIST	8-7-08 1210 1					
	8-7-08 X				-	
RELEASED BY: GIM + WINEAR PROTINGATION	THAN EFFE		DATE B-7-08	RECEIVED FEE CO. C.	Dana CA	01-00
RELEASED BY:	7000		DATE		DATE: 16-517-1000 OCE 10-16-16-16-16-16-16-16-16-16-16-16-16-16-	272
ADDITIONAL REMARKS:	15757.4		TBÆ	PRINT MANE:	FIRM: TIME:	
			8		TEMP:	(
000					al l	PAGE OF Y

TAL-1000(0408)

Test/merical Testing CORPORATION

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
11922 E. First Ave, Spokane, WA 99206-5302
9405 SW Nimbus Ave, Beaverton, OR 97008-7145
2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

The property of the state of the second of t

i,

CHAIN OF CITETO

NAME	3	C	CHAIN OF CUSTODY REPORT	ODY REPORT		Work Order #:
13.0 Worthan Lunned 13.1 Aroth Mark S 13.1 Aroth Mark S 13.1 Aroth Mark S 13.2 Meet 13.2 Meet 14.2 B 3.7-08 12.50 X 14.3 B 3.7-08 12.50 X 14.4 B 5.7-08	CLIENT: C/ C			INVOICE TO:		TURNAROUND REDUIEST
Sign for the late with the lat	REPORT TO: MEGHIAN (LANAS # 1		17		in Business Days *
10 10 10 10 10 10 10 10	13.10 NOTES	16 24 TS		,		Organic & Inorganic Analyses
ANSER: 02730 (3460 14.00 15.	PHONE: 52 535 1235	FAX: 509 535 7361	,	P.O. NUMBER:		Petrolcum Hydrocarbon Analyses
BY: JAM FIALLY SAMPLING	PROJECT NAME: ME CIT	y Gares		PRESE	ERVATIVE	4 3 2 1
BY: Jim Finla, SAMPLING SAMPLE DATE THAT SAMPLING S	PROJECT NUMBER: 02730	13900	116C]]]
BY: Jean Fidle, SAMPLING			20	REQUESTE	ED ANALYSES	OTHER Specify:
INTELLATION BATETING 33 ST MATERIAL 1001. INTELLATION 8.1-08 1250 X INTELLATION 1001.	SAMPLED BY: JIM FING		928			Turnaround Regivests less than standard may Incur Rush Charges.
114 D 8-7-08 1250 X 114 D 8-7-08 1255 X 114 D 8-7-08 1256 X 115	CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	אפני רטוח			# OF LOCATION / CONT. COMMENTS
Say Finley Say Fi	I MW 4D	178	×			2 (7)
Ser Internal EBN: LFR DATE: RECEIVED BY: FIRM: TAME: RECEIVED BY: FIRM: TAME: PRANT NAME: FIRM: TAME: PRANT NAME: FIRM: TAME: PRANT NAME:			~			2 ,
FIRM: FI						3
SAN FIMON FIRM: LFL DATE 8 9 98 RECEIVED BY: FRAN: TAME TAME TAME TAME TAME TAME TAME TAME	2	11				
Son finlay Fin Finlay FIRM: LFR DATE DATE TIME TIME TIME TIME TIME PRINTINANE PRINTINANE PRINTINANE	*					
San finlay EIRM: LFR DATE: 1445 RECEIVED BY: FIRM: TIME: 1445 PRINT NAME: GONDER DECTOR						
EN FINEM FIRM: LFL DATE: TIME: LFL TIME: LLUSS RECEIVED BY: PRINT NAME: CONDUCT POLYCO THAN: FIRM: TIME: PRINT NAME: PRINT NAME: PRINT NAME:	8					
DATE: STANS. FIRM: LFR. DATE: STANS RECEIVED BY: CANCELL STANS. DATE: STANS RECEIVED BY: TIME: TIME: TIME: PRINT NAME: PRINT NAME: PART NAME	9					
EN FINEM FIRM: LFR DATE: PROPERTY RECEIVED BY: FIRM: THAT TIME: 1445 PRINT NAME: PRINT NAME: FIRM: THAT NAME: PRINT NAME:	120	1761	7			
FIRM: LFR TIME: (44) RECEIVED BY: FRA: TIME: (44) PRINT NAME; CONCINCULAR PARKS:	95					
FIRM FINDY FIRM: LFR TIME: (445) PRINT NAME; CONCINCAL DOLY OF DATE: PART NAME; PRINT NAME: PART NAME:						
FINAL FINAL STATES RECEIVED BY: FROM FINAL STATES						
FINAL FINAL CFR TIME (445) RECEIVED BY: FIRM: LFR TIME (445) PRINT NAME CONDUCT DO TO TIME: PRINT NAME: CONDUCT DO TO TIME: PRINT NAME:	10				7 1 1	
FIRM: TIME: PRINT NAME:	RELEASED BY THE HILLOW	FIRM: ()	Sh.	DATE: 8 - 08 TIME: (445	36	COLDETAC SOCIETY OF HEAVY OF STREET
FIRM: TIME: FIRM:	RELEASED BY:			DATE:	RECEIVED BY:	DATE
TEMP	PRINT NAME:	FIRM:		TIME:	PRINT NAME:	
	ADDATIONAL REMARKS:					
						PAGE OF

APPENDIX F

On-Site Analytical Reports

August 26, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: New City Cleaners

Enclosed are the results of analyses for samples received by the laboratory on 11/13/07 12:37. The following list is a summary of the Work Orders contained in this report, generated on 08/26/08 09:37.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
SQK0081	New City Cleaners	027-30021-00	9

TestAmerica Spokane

Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW NCC 2	SQK0081-01	Water	11/12/07 07:45	11/13/07 12:37
MW5S	SQK0081-02	Water	11/12/07 10:15	11/13/07 12:37
MW5D	SQK0081-03	Water	11/12/07 09:35	11/13/07 12:37
MW6S	SQK0081-04	Water	11/12/07 16:40	11/13/07 12:37
MW6D	SQK0081-05	Water	11/12/07 16:10	11/13/07 12:37
MW7S	SQK0081-06	Water	11/12/07 15:20	11/13/07 12:37
MW7I	SQK0081-07	Water	11/12/07 14:55	11/13/07 12:37
MW7D	SQK0081-08	Water	11/12/07 14:20	11/13/07 12:37
MW8S	SQK0081-09	Water	11/12/07 13:45	11/13/07 12:37
MW8D	SQK0081-10	Water	11/12/07 13:15	11/13/07 12:37
MW9S	SQK0081-11	Water	11/12/07 10:15	11/13/07 12:37
MW9D	SQK0081-12	Water	11/12/07 11:35	11/13/07 12:37
Trip Blank	SQK0081-13	Water	11/12/07 00:00	11/13/07 12:37

TestAmerica Spokane

tardista Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-01 (MW NCC 2)		Wa	iter		Sam	pled: 11/1	2/07 07:45			
Dichlorodifluoromethane	EPA 8260B	ND	12	1.00	ug/I	lx	7110138	11/19/07 08:36	11/20/07 15:08	
Chloromethane		ND		2.50						
Vinyl chloride	•	ND	****	0.200						
Bromomethane		ND		5.00		*				
Chloroethane	100	ND		1.00		*				
Trichlorofluoromethane		ND	*****	1.00				*		
I,1-Dichloroethene		ND		1.00	90					
Carbon disulfide		ND		1.00	*	*			*	
Methylene chloride		ND	*****	10.0						
Acetone		ND	*****	25.0	*		(#)	**		
trans-1,2-Dichloroethene	96	ND	*****	1,00				*		
Methyl tert-butyl ether		ND		1,00					•	
1,1-Dichloroethane		ND		1.00						
cis-1,2-Dichloroethene	067	ND	-	1.00	90			*		
2,2-Dichloropropane		ND		1.00		**	90			
Bromochloromethane		ND	*****	1.00						
Chloroform		ND		1,00	*	*	300			
Carbon tetrachloride		ND	****	1.00	(8)	**	66	*		
1,1,1-Trichloroethane		ND	****	1.00		*	*	*		
2-Butanone	(<u>#</u>)	ND	******	10,0			м.			
1,1-Dichloropropene	(*)	ND	*****	1.00	*	**				
Benzene		ND		1.00		**		ŷ.		
1,2-Dichloroethane (EDC)	•	ND		1.00						
Trichloroethene		ND	*****	1.00		**				
Dibromomethane	\ (ii)	ND	*****	1.00	и.	**	W		"	
1,2-Dichloropropane		ND	*****	1.00				*		
Bromodichloromethane		ND	****	1.00			**		,,	
cis-1,3-Dichloropropene		ND		1.00	0	×			*	
Toluene		ND		1.00		*				
4-Methyl-2-pentanone	•	ND	****	10.0						
trans-1,3-Dichloropropene		ND	*****	1.00	90		90		*	
Tetrachloroethene	W	2.56		1.00						
1,1,2-Trichloroethane		ND	****	1.00						
Dibromochloromethane	350	ND	*****	1.00			25	2.	*	
1,3-Dichloropropane	0	ND	*****	1.00	*	*		ű.	*	
1,2-Dibromoethane		ND		1.00				-		
2-Hexanone		ND		10.0						
Ethylbenzene		ND		1.00	in .	- ×				

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-01	(MW NCC 2)		W	iter		Samp	led: 11/	12/07 07:45			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	1×	7110138	11/19/07 08:36	11/20/07 15:08	
1,1,1,2-Tetrachloro	ethane		ND	-	1.00	**					
m,p-Xylene		. 7	ND		2.00					•	
o-Xylene		796	ND		1.00		*	(9)	*	3.97	
Styrene		(10)	ND		1.00				*		
Bromoform			ND	*****	1.00	**				•	
Isopropylbenzene			ND	*****	1.00	*	*			399	
n-Propylbenzene			ND		1.00	**			* ;	H-	
1,1,2,2-Tetrachloro	ethane		ND	*****	1.00				"	•	
Bromobenzene		(100)	ND	*****	1.00		37	(8)	") M ./	
1,3,5-Trimethylben	zene	W	ND	*****	1.00		*		"		
2-Chlorotoluene			ND		1.00	*			**		
1,2,3-Trichloroprop	pane		ND	*****	1.00					*	
4-Chlorotoluene			ND	*****	1.00	(8)	(0)				
tert-Butylbenzene			ND		1.00	w		*			
1,2,4-Trimethylben	zene		ND	*****	1.00		*				
sec-Butylbenzene			ND	****	1.00	(8)	200	*			
p-Isopropyltoluene		*	ND		1.00	(4.)					
1,3-Dichlorobenzen	ne		ND	*****	1.00						
1,4-Dichlorobenzen	ne		ND	****	1.00						
n-Butylbenzene		*1	ND		1.00		363	.0	.9	360	
1,2-Dichlorobenzen	ne		ND		1.00					(#)	
1,2-Dibromo-3-chlo	oropropane		ND		5.00					*	
Hexachlorobutadien	ne		ND	****	1.00		(8)				
1,2,4-Trichlorobenz	zene		ND		1.00		(4)			307	
Naphthalene			ND		2.00						
1,2,3-Trichlorobenz	zene	₩	ND		1.00	180	100		*	.00	
Surrogate(s):	Dibromofluoromethan	e		73.8%		62.9	- 131 %	W		*	
espectation states of the first	Toluene-d8			80.6%		58.7	- 133 %	n		W	
	4-bromofluorobenzene			95.9%		60.8	- 140 %	"		W.	

TestAmerica Spokane

tarde

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-02 (MW5S)		Wa	iter		Samı	pled: 11/1	12/07 10:15			
Dichlorodifluoromethane	EPA 8260B	ND	****	10.0	ug/I	10x	7110138	11/19/07 08:36	11/20/07 15:37	
Chloromethane		ND		25.0			"		m .	
Vinyl chloride	•	ND		2.00	*				6	
Bromomethane		ND	*****	50.0		2.5	"	(90)	10	
Chloroethane	•	ND		10.0	6	(#)	W	(#)		
Frichlorofluoromethane	•	ND		10.0	*		*		W.	
1,1-Dichloroethene		ND		10,0	*			92	<u>u</u> .	
Carbon disulfide		ND		10.0	*		*		0	
Methylene chloride		ND		100					W.	
Acetone		ND	*****	250						
trans-1,2-Dichloroethene	"	ND	*****	10.0	15			*		
Methyl tert-butyl ether		ND		10,0	ii.	*		*		
1,1-Dichloroethane		ND		10.0						
cis-1,2-Dichloroethene		ND		10.0	#		M	5.5	"	
2,2-Dichloropropane		ND		10.0	00		*	30	ü.	
Bromochloromethane	*	ND		10.0						
Chloroform		ND	****	10.0						
Carbon tetrachloride	*	ND		10.0	e .	*	*	363	M.	
1,1,1-Trichloroethane		ND		10.0	ii.		ů.		ű.	
2-Butanone	•	ND		100	H				₩.	
1,1-Dichloropropene		ND		10.0		*		(*)	н	
Benzene	¥	ND		10.0	**				*	
1,2-Dichloroethane (EDC)		ND	****	10.0						
Crichloroethene		10.6		10.0						
Dibromomethane	×	ND	****	10.0		290				
1,2-Dichloropropane	×	ND		10.0	W.				W	
Bromodichloromethane		ND	*****	10.0						
cis-1,3-Dichloropropene		ND	****	10.0	M.	3.00				
Toluene	i e	ND		10.0	W				•	
4-Methyl-2-pentanone		ND	****	100						
rans-1,3-Dichloropropene	,	ND		10.0						
Tetrachloroethene	16.1	86.0		10.0	*	36				
1,1,2-Trichloroethane	W.	ND		10.0	W	16		(4)	*	
Dibromochloromethane	ii .	ND	****	10.0					<i>(</i>)	
1,3-Dichloropropane		ND		10.0				*		
1,2-Dibromoethane	ii.	ND	****	10.0			*		ii .	
2-Hexanone	W	ND	*****	100						
Ethylbenzene	W	ND		10.0					0	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-02	(MW5S)		W	iter		Sam	oled: 11/	12/07 10:15			
Chlorobenzene		EPA 8260B	ND		10.0	ug/l	10x	7110138	11/19/07 08:36	11/20/07 15:37	
1,1,1,2-Tetrachloroe	thane		ND		10.0)H	**		*	0	
m,p-Xylene			ND		20.0						
o-Xylene			ND	*****	10.0				*		
Styrene		(0.)	ND	*****	10.0		29		ж		
Bromoform		•	ND		10.0	*					
Isopropylbenzene		*	ND		10.0			*			
n-Propylbenzene			ND	*****	10.0	9	**	.00	"		
1,1,2,2-Tetrachloroe	thane		ND	****	10.0		**	· ·		w	
Bromobenzene			ND		10.0		*			(b)	
1,3,5-Trimethylbenz	ene		ND	*****	10.0	,,	*			(8)	
2-Chlorotoluene			ND		10.0		34			W.	
1,2,3-Trichloropropa	ane		ND		10.0						
4-Chlorotoluene		,	ND		10.0						
tert-Butylbenzene		(*)	ND		10.0		*	*	*		
1,2,4-Trimethylbenz	ene	(ii)	ND		10.0					W.	
sec-Butylbenzene		•	ND		10.0						
p-Isopropyltoluene		(9)	ND	*******	10.0		**				
1,3-Dichlorobenzene	3	W.	ND		10.0	*	M			n.	
1,4-Dichlorobenzene	3	•	ND	-	10.0						
n-Butylbenzene			ND	*****	10.0		25		2	97	
1,2-Dichlorobenzene	•	(0.7	ND		10.0			0		w	
1,2-Dibromo-3-chlo	ropropane	**	ND		50.0		**				
Hexachlorobutadien	е		ND	****	10.0						
1,2,4-Trichlorobenze	ene		ND	-	10.0		**	.0.	*		
Naphthalene		(60)	ND		20.0	. 9	**			(ii)	
1,2,3-Trichlorobenze	ene		ND	*****	10.0	,					
Surrogate(s):	Dibromofluoromethane			71.9%		62.9	- 131 %	lx		"	
	Toluene-d8			85.7%		58.7	- 133 %	,,		"	
	4-bromofluorobenzene			101%		60.8	- 140 %	*		"	

TestAmerica Spokane

Randee Decker, Project Manager

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-02RE1 (MW5S)		Wa	iter		Sam	pled: 11/	12/07 10:15			н
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	7120036	12/06/07 07:56	12/06/07 22:13	
Chloromethane		ND	*****	2.50	*				H	
Vinyl chloride		ND	****	0.200		.0	25			
Bromomethane	(10)	ND		5.00		*				
Chloroethane	W.	ND		1.00	×					
Trichlorofluoromethane		ND		1.00						
1,1-Dichloroethene	1 W.	ND	*****	1.00		*		*	(10)	
Carbon disulfide	(w	ND		1.00						
Methylene chloride	W.	ND		10.0						
Acetone		ND		25.0	16	350			(#)	
trans-1,2-Dichloroethene	106	ND		1.00					∑# ∆	
Methyl tert-butyl ether	a	ND		1.00	*					
1,1-Dichloroethane	*	ND		1.00		150	27		(8)	
cis-1,2-Dichloroethene		ND		1.00		(*)				
2,2-Dichloropropane	(W)	ND		1.00		*			(*)	
Bromochloromethane		ND		1,00				9		
Chloroform	28	ND	****	1.00	0.95				.00	
Carbon tetrachloride	0.00	ND		1.00		(40)				
1,1,1-Trichloroethane	n	ND	*****	1.00						
2-Butanone		ND		10.0					(8)	
1,1-Dichloropropene		ND		1.00		*	*			
Benzene		ND		1.00	· ii	*				
1,2-Dichloroethane (EDC)		ND		1.00		*				
Trichloroethene	18.	8.10	*****	1.00	(8)	(40)			300	
Dibromomethane		ND	22005	1.00				9		
1,2-Dichloropropane		ND	*****	1.00						
Bromodichloromethane	•	ND	*****	1.00	"					
cis-1,3-Dichloropropene		ND		1.00			(#)	*	*	
Toluene		ND		1.00				w		
4-Methyl-2-pentanone	•	ND		10.0						
trans-1,3-Dichloropropene		ND		1.00	0.00			*	W/:	
Tetrachloroethene	100	64.8		1.00			*	190	360	
1,1,2-Trichloroethane		ND		1.00				*		
Dibromochloromethane	•	ND		1.00					(20)	
1,3-Dichloropropane	. W	ND	*****	1.00	OH)			**	(0.)	
1,2-Dibromoethane	596	ND		1.00				*	n	
2-Hexanone		ND		10.0	. "			,		
Ethylbenzene	**	ND		1.00	. W	w.)				

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

LFR, Inc.

Project Number: Project Manager: 027-30021-00 Meghan Lunney

Report Created: 08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	25	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-02RE1	(MW5S)		W	ater		Sam	pled: 11/1	2/07 10:15		**	н
Chlorobenzene		EPA 8260B	ND	*****	1.00	ug/I	lx	7120036	12/06/07 07:56	12/06/07 22:13	
1,1,1,2-Tetrachloroet	hane	"	ND	7,777	1.00				•		
m,p-Xylene		•	ND		2.00	•			•		
o-Xylene		20	ND		1.00	180	(#)		25	0,000	
Styrene		**	ND		1.00		(4.0		9	(0)	
Bromoform			ND		1.00		4	•		•	
Isopropylbenzene		9.5	ND		1.00	25	*			(#)	
n-Propylbenzene		iii	ND		1.00	*	*	W	*	•	
1,1,2,2-Tetrachloroet	hane		ND		1.00						
Bromobenzene		"	ND	******	1.00						
1,3,5-Trimethylbenze	ene		ND		1.00		*				
2-Chlorotoluene			ND		1.00				n i	367	
1,2,3-Trichloropropa	ne		ND	*****	1.00		*				
4-Chlorotoluene		W.	ND		1.00	15				285	
tert-Butylbenzene		*	ND		1.00				**	W.	
1,2,4-Trimethylbenze	ene		ND		1.00		•				
sec-Butylbenzene			ND	*****	1.00	270			."	(8)	
p-Isopropyltoluene		"	ND	(Alagonia)	1.00	*	360		11	0.	
1,3-Dichlorobenzene		11	ND		1.00				in .		
1,4-Dichlorobenzene			ND	*****	1.00		•		,		
n-Butylbenzene		**	ND		1.00	200	*		25	2000	
1,2-Dichlorobenzene		w	ND		1.00	*	*		9	(n)	
1,2-Dibromo-3-chlor	opropane	•	ND		5.00		•	•		96)	
Hexachlorobutadiene	, 50 () (**	ND	****	1.00	*	*			7.00	
1,2,4-Trichlorobenze	ne	W	ND		1.00		*	W	**	(90)	2
Naphthalene			ND	****	2.00						
1,2,3-Trichlorobenze	ne		ND	****	1.00		*	"			
Surrogate(s):	Dibromofluoromethane			70.7%		62.9	- 131%	"		*	
a 2000 00 De 3500 Ve 54 500 - 1	Toluene-d8			89.9%		58.7	- 133%	· //		961	
	4-bromofluorobenzene			101%		60.8	- 140 %	*		w	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-03 (MW5D)		Wa	iter		Sam	pled: 11/1	2/07 09:35			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	lx	7110138	11/19/07 08:36	11/20/07 16:06	
Chloromethane		ND		2.50				•	*	
Vinyl chloride		ND	*****	0.200		"			.,	
Bromomethane		ND	*****	5.00		ж	30	*		
Chloroethane	(0)	ND		1.00			×			
Trichlorofluoromethane		ND		1.00					y.	
1,1-Dichloroethene		ND	-	1.00			*		*	
Carbon disulfide	(#0)	ND		1.00		×	N .	746		
Methylene chloride	*	ND		10.0						
Acetone		ND	*****	25.0						
trans-1,2-Dichloroethene	*	ND	****	1.00					*	
Methyl tert-butyl ether		ND		1.00						
1,1-Dichloroethane	•	ND		1.00						
cis-1,2-Dichloroethene	,	ND	*****	1.00	28	*	H) 4	*	
2,2-Dichloropropane	*	ND		1.00	"					
Bromochloromethane	W.	ND		1.00	"				,,	
Chloroform	9	ND	*****	1.00	20		*		н	
Carbon tetrachloride	y.	ND		1.00	**	11	W			
1,1,1-Trichloroethane	W	ND		1.00						
2-Butanone	•	ND		10,0						
1,1-Dichloropropene		ND	*****	1.00	18 G		*	340		
Benzene	W.	ND	****	1.00	W	*				
1,2-Dichloroethane (EDC)		ND	****	1.00						
Trichloroethene	•	ND		1.00					×	
Dibromomethane	9.	ND		1.00			i i		(W)	
1,2-Dichloropropane	*	ND		1.00						
Bromodichloromethane	*	ND		1.00		*		185	100	
cis-1,3-Dichloropropene		ND	*****	1.00		96	*	363		
Toluene		ND		1.00	11					
4-Methyl-2-pentanone		ND	*****	10.0		**		38.0	(4)	
trans-1,3-Dichloropropene		ND	*****	1,00			18			
Tetrachloroethene	и	ND	****	1.00						
1,1,2-Trichloroethane	y.	ND	*****	1.00						
Dibromochloromethane	0	ND	*****	1.00		**	.0		100	
1,3-Dichloropropane	0	ND		1.00			in .			
1,2-Dibromoethane	ÿ	ND	****	1.00		••				
2-Hexanone		ND	****	10,0			690		. W.	
Ethylbenzene		ND		1.00				-	923	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

LFR, Inc.

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-03 (MW5D)		W	nter		Sam	pled: 11/1	2/07 09:35	t t		
Chlorobenzene	EPA 8260B	ND		1,00	ug/l	1x	7110138	11/19/07 08:36	11/20/07 16:06	
1,1,1,2-Tetrachloroethane		ND	*****	1.00				•	*	
m,p-Xylene	(#)	ND	****	2.00	*					
o-Xylene		ND		1.00	30	**		×	302	
Styrene	*	ND		1.00	*					
Bromoform	11.500	ND		1.00	*					
Isopropylbenzene		ND		1.00			.*	*	595	
n-Propylbenzene		ND	*****	1.00						
1,1,2,2-Tetrachloroethane		ND	*****	1.00	*		•			
Bromobenzene		ND		1.00		*			7 9 K	
1,3,5-Trimethylbenzene	*	ND		1.00		*			300	
2-Chlorotoluene		ND	*****	1.00			•			
1,2,3-Trichloropropane		ND		1.00		200			250	
4-Chlorotoluene		ND		1.00		36.			(80)	
tert-Butylbenzene		ND	*****	1.00				*		
1,2,4-Trimethylbenzene		ND	*****	1.00				*		
sec-ButyIbenzene	106	ND		1.00	3.0	.00	(0)	*	(19)	
p-Isopropyltoluene		ND		1.00				*		
1,3-Dichlorobenzene		ND	*****	1.00				*		
1,4-Dichlorobenzene		ND	****	1.00	181	(80)	7.85		(18)	
n-Butylbenzene	W.	ND		1.00				*	(10)	
1,2-Dichlorobenzene		ND		1.00		*				
1,2-Dibromo-3-chloropropane		ND	*****	5.00			(8)		"	
Hexachlorobutadiene		ND		1.00	н		(8)		0)	
1,2,4-Trichlorobenzene	V	ND	*****	1.00					iii	
Naphthalene	<u>u</u>	ND	****	2.00	"				.,	
1,2,3-Trichlorobenzene	W.	ND		1.00	×	*				
Surrogate(s): Dibromofluorome	thane		71.1%		62.9	- 131 %	"		,,	
Toluene-d8			85.1%		58.7	- 133 %	"			
4-bromofluorober	izene		100%		60.8	- 140 %	n		w	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-04 (MW6S)		Wa	iter		Samp	pled: 11/	12/07 16:40			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	7110138	11/19/07 08:36	11/20/07 16:35	10
Chloromethane	₩	ND	****	2.50						
Vinyl chloride	*	ND		0.200			*	9.5		
Bromomethane	ŵ'	ND		5.00	W)			*	(*)	
Chloroethane	W.	ND		1.00	*	*		*		
Trichlorofluoromethane		ND		1.00				*		
1,1-Dichloroethene	W.	ND		1.00				*	(W)	
Carbon disulfide	ű.	ND		1.00						
Methylene chloride	7	ND	*****	10.0		*	•	•		
Acetone	и.	ND		25,0				(*)	*	
trans-1,2-Dichloroethene	fi .	ND	-	1.00				(4)		
Methyl tert-butyl ether	₩	ND	*****	1.00	*				•	
1,1-Dichloroethane	9.	ND	*****	1.00	2			*:		
cis-1,2-Dichloroethene	11.	ND		1.00	6				16	
2,2-Dichloropropane		ND	****	1.00					n	
Bromochloromethane	9	ND		1,00						
Chloroform	*	1.33		1.00	9		и.		10.	
Carbon tetrachloride		ND		1.00			*		ji.	
1,1,1-Trichloroethane	•	ND	******	1.00					0	
2-Butanone	"	ND		10.0	7					
1,1-Dichloropropene		ND		1.00	#			300	0.	
Benzene	**	ND		1.00					iii	
1,2-Dichloroethane (EDC)	*	ND		1.00	"					
Trichloroethene		1.58		1,00			36	8		
Dibromomethane	#	ND		1.00	"	u			и	
1,2-Dichloropropane	¥	ND		1.00	**		**		ů.	
Bromodichloromethane	*	ND		1.00	"	"	"		•	
cis-1,3-Dichloropropene	9	ND		1.00	н	n	*	2.00		
Toluene	•	ND		1.00	*			(4)	W	
4-Methyl-2-pentanone	*	ND		10.0				•	¥	
trans-1,3-Dichloropropene		ND	****	1.00		*		30	Ж.	
Tetrachloroethene		3.87	*****	1.00		**	н	×	n	
1,1,2-Trichloroethane	,	ND		1.00			*			
Dibromochloromethane		ND	****	1.00	*		*		9	
1,3-Dichloropropane	w	ND		1.00			ж	*	**	
1,2-Dibromoethane		ND		1.00					w .	
2-Hexanone		ND	****	10.0			•		X	
Ethylbenzene		ND		1.00			*	36	*	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-04	(MW6S)		W	ater		Samp	pled: 11/1	2/07 16:40			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	lx	7110138	11/19/07 08:36	11/20/07 16:35	
1,1,1,2-Tetrachloro	ethane	•	ND		1.00				•	"	
m,p-Xylene			ND	*****	2.00					и	
o-Xylene		700	ND		1.00	*			*	H+	
Styrene		*	ND		1.00						
Bromoform		•	ND		1.00				*	"	
Isopropylbenzene		(97)	ND		1.00	.00	*				
n-Propylbenzene			ND		1,00						
1,1,2,2-Tetrachloro	ethane		ND		1.00			*	*		
Bromobenzene			ND		1.00					*	
1,3,5-Trimethylben	zene		ND		1.00		*	ж.		*	
2-Chlorotoluene		*	ND	*****	1.00				¥		
1,2,3-Trichloroprop	oane		ND	*****	1.00			35		*	
4-Chlorotoluene			ND	****	1.00		*		*	*	
tert-Butylbenzene			ND		1.00		*		¥	9	
1,2,4-Trimethylben	zene		ND	*****	1.00						
sec-Butylbenzene		*	ND		1.00				*		
p-Isopropyltoluene			ND		1.00		×	*	×		
1,3-Dichlorobenzer	ne		ND		1.00		×				
1,4-Dichlorobenzer	ne		ND	****	1.00					*	
n-Butylbenzene		.н.	ND		1.00		*		4	*	
1,2-Dichlorobenzer	ie	и.	ND		1.00						
1,2-Dibromo-3-chle	oropropane	.**	ND	*****	5.00						
Hexachlorobutadie	ne		ND	*****	1.00		ж.			×	
1,2,4-Trichlorobena	zene		ND		1.00					×	
Naphthalene		*	ND	****	2.00		×		"	¥	
1,2,3-Trichlorobenz	zene	.	ND		1.00	*	8		9	134	
Surrogate(s):	Dibromofluoromethane			74.2%		62.9	- 131 %	,,		•	
	Toluene-d8			83.5%		58.7	- 133 %	,		"	
	4-bromofluorobenzene			98.4%		. 60.8	- 140 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-05 (MW6D)		Wa	iter		Samı	oled: 11/1	12/07 16:10			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l	1x	7110138	11/19/07 08:36	11/20/07 17:04	
Chloromethane		ND		2.50					90	
Vinyl chloride		ND		0.200		•				
Bromomethane	W (ND		5.00				7		
Chloroethane	¥.	ND	*****	1.00		90		*		
Trichlorofluoromethane	₩	ND		1.00		*		•		
1,1-Dichloroethene		ND		1.00	(#)				•	
Carbon disulfide	•	ND	200	1,00			×	*	30	
Methylene chloride	•	ND		10.0			*		7407	
Acetone	"	ND	*****	25.0		*				
trans-1,2-Dichloroethene	H	ND	****	1.00						
Methyl tert-butyl ether	W.	ND		1.00	*					
1,1-Dichloroethane	W	ND	*****	1.00				*		
cis-1,2-Dichloroethene	*	ND		1.00				,		
2,2-Dichloropropane	ii .	ND		1.00	6		*		(w)	
Bromochloromethane	*	ND	*****	1.00				*	7.667	
Chloroform		ND	****	1.00					•	
Carbon tetrachloride		ND		1.00	*		*			
1,1,1-Trichloroethane		ND		1,00	iii		н			
2-Butanone	*	ND		10.0						
1,1-Dichloropropene	0.	ND	*****	1.00	**					
Benzene	v	ND		1.00	16	**	ж			12
1,2-Dichloroethane (EDC)	*	ND	****	1.00		**	*			
Trichloroethene		1.22		1.00	X	1.8		ř		
Dibromomethane		ND	*****	1.00	10	100	*	385		
1,2-Dichloropropane	¥	ND		1.00	*		*	307	W.	
Bromodichloromethane	*	ND	****	1.00	*	•			n	
cis-1,3-Dichloropropene	₩.	ND	*****	1.00						
Toluene	Ü	ND		1.00	v		"	*	. #	
4-Methyl-2-pentanone	*	ND		10.0			"	*	iii	
trans-1,3-Dichloropropene		ND		1.00			•		"	
Tetrachloroethene	(4)	2.47		1.00	34	"	*	2		
1,1,2-Trichloroethane	*	ND		1.00	"	"			Ü.	
Dibromochloromethane		ND	****	1.00		"				
1,3-Dichloropropane	(0)	ND		1.00	27				"	
1,2-Dibromoethane	Xii X	ND		1.00	9	94		и		
2-Hexanone	•	ND		10.0	•			n.	iii	
Ethylbenzene		ND		1.00				**	*	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-05 (MW6	D)	Wa	iter		Sam	pled: 11/1	2/07 16:10			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	l×	7110138	11/19/07 08:36	11/20/07 17:04	
1,1,1,2-Tetrachloroethane	n n	ND	-21/2	1.00	"					
m,p-Xylene		ND	****	2.00					"	
o-Xylene	"	ND		1.00					*	
Styrene	•	ND		1.00		196	"		*	
Bromoform		ND		1.00			W		"	
Isopropylbenzene		ND	*****	1.00	*		*			
n-Propylbenzene	*	ND		1,00		9.	8			
1,1,2,2-Tetrachloroethane		ND		1.00	×		×	*		
Bromobenzene		ND	*****	1.00						
1,3,5-Trimethylbenzene		ND	*****	1.00	"				•	
2-Chlorotoluene		ND	*****	1.00	ii.	**			*	
1,2,3-Trichloropropane	*	ND	****	1.00		**			*	
4-Chlorotoluene	*	ND	****	1.00				*	* .	
tert-Butylbenzene		ND		1.00	м.	**	*	*	*	
1,2,4-Trimethylbenzene		ND		1.00			**	¥	n	
sec-Butylbenzene		ND	*****	1.00				*	ű.	
p-Isopropyltoluene		ND	*****	1.00		*	,		77	
1,3-Dichlorobenzene		ND		1.00		¥				
1,4-Dichlorobenzene		ND	****	1.00					•	
n-Butylbenzene		ND		1.00						
1,2-Dichlorobenzene	(ii)	ND	2000	1.00		*		и		
1,2-Dibromo-3-chloropropa	me "	ND		5.00		*		"	*	
Hexachlorobutadiene	*	ND	****	1.00					*	
1,2,4-Trichlorobenzene	300	ND		1.00	31	н.	(8)	*	*	
Naphthalene		ND		2,00		*	31			
1,2,3-Trichlorobenzene		ND	*****	1.00					0	
Surrogate(s): Dibro	mofluoromethane		73.1%		62.9	- 131 %			**	
Tolue	5000 5 4000 000 000 000 000 0000		84.2%			- 133 %	"		"	
4-bro	mofluorobenzene		94.9%		60.8	- 140 %			"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-06 (MW7S)		Wa	ater		Samp	pled: 11/1	2/07 15:20			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l	1x	7110138	11/19/07 08:36	11/20/07 17:33	
Chloromethane	*	ND		2,50		**	n		w	
Vinyl chloride		ND		0.200	w	W.	н		Ĥ.	
Bromomethane		ND		5.00			"		"	
Chloroethane	*	ND	*****	1,00	*		11		н	
Trichlorofluoromethane	"	ND		1.00	×	16	.11		ж	
1,1-Dichloroethene	•	ND		1.00			"		*	
Carbon disulfide		ND	*****	1.00	2			0.00		
Methylene chloride	Ti .	ND		10.0	¥	**			v	
Acetone		ND	*****	25.0	*					
trans-1,2-Dichloroethene		2.54		1.00	2.1			•		
Methyl tert-butyl ether	,	ND	*****	1.00	2	*		*	*	
1,1-Dichloroethane	*	ND		1.00	×	**			и	
cis-1,2-Dichloroethene	•	8.62		1.00			•			
2,2-Dichloropropane		ND	******	1.00	¥	"	*			
Bromochloromethane	,	ND	****	1,00	*			380	*	
Chloroform	•	ND	*****	1.00	¥			(0)		
Carbon tetrachloride	•	ND		1.00	*	*		•		
1,1,1-Trichloroethane		ND	*****	1.00		8	"		ч	
2-Butanone	10	ND		10.0	H	**	**	*		
1,1-Dichloropropene	•	ND		1.00		"	ú			
Benzene		ND	*****	1.00	,	"	"			
1,2-Dichloroethane (EDC)		ND	*****	1.00	9	16	.00		*	
Trichloroethene	W	13.3		1.00			10	*	"	
Dibromomethane	*	ND		1.00	*	*				
1,2-Dichloropropane	21	ND		1.00			,,			
Bromodichloromethane	*	ND		1.00	*	**	п		11	
cis-1,3-Dichloropropene		ND		1.00			"		u.	
Toluene		ND	*****	1.00		"	"		,	
4-Methyl-2-pentanone		ND		10.0			11		11	
trans-1,3-Dichloropropene	n .	ND		1.00		"	н			
Tetrachloroethene		8.44	****	1.00				•		
1,1,2-Trichloroethane		ND	*****	1.00			,,	*	"	
Dibromochloromethane	0	ND		1.00	×	**			u	
1,3-Dichloropropane		ND	*****	1.00					*	
1,2-Dibromoethane	,	ND		1.00						
2-Hexanone		ND		10.0	*		30	*	и	
Ethylbenzene		ND	*****	1.00	*				w.	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-06	(MW7S)		W	ater		Sam	pled: 11/1	2/07 15:20			
Chlorobenzene		EPA 8260B	ND	******	1.00	ug/l	1x	7110138	11/19/07 08:36	11/20/07 17:33	
1,1,1,2-Tetrachloroe	ethane	(*)	ND		1.00						
m,p-Xylene			ND	-	2.00						
o-Xylene			ND	*****	1.00						
Styrene			ND		1.00	30	×:	7 (00)		.0	
Bromoform			ND		1.00		*		"	•	
Isopropylbenzene			ND	*****	1.00						
n-Propylbenzene		w	ND		1.00	(80)	91				
1,1,2,2-Tetrachloro	ethane	ů.	ND		1.00		W.		*		
Bromobenzene			ND	*****	1.00						
1,3,5-Trimethylbena	zene		ND	*****	1.00	*	*				
2-Chlorotoluene			ND		1.00	*	*			3000	
1,2,3-Trichloroprop	oane		ND	*****	1.00					6	
4-Chlorotoluene			ND		1.00					,	
tert-Butylbenzene			ND		1.00						
1,2,4-Trimethylben	zene		ND		1.00					w.	
sec-Butylbenzene			ND	*****	1.00						
p-Isopropyltoluene			ND	****	1.00		*				
1,3-Dichlorobenzen	ne		ND	****	1.00	*	(W.)		*		
1,4-Dichlorobenzen	ne	*	ND		1.00						
n-Butylbenzene		(#)	ND	****	1.00	25					
1,2-Dichlorobenzen	ie		ND	2000	1.00		*	.0			
1,2-Dibromo-3-chlo	oropropane	u	ND		5.00				7		
Hexachlorobutadien		,	ND	****	1.00		*	**			
1,2,4-Trichlorobenz	zene		ND		1.00	100	*	(00)		(8)	
Naphthalene			ND		2.00					W	
1,2,3-Trichlorobenz	zene	•	ND		1.00		•	**	•	•	
Surrogate(s):	Dibromofluoromethane			73.4%		62.9	- 131 %	"			
	Toluene-d8			82.5%		58.7	- 133 %	"		"	
	4-bromofluorobenzene			102%		60.8	- 140 %	19		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-07 (MW7I)		Wa	nter		Samı	pled: 11/1	2/07 14:55			
Dichlorodifluoromethane	EPA 8260B	ND		10.0	ug/l	10×	7110138	11/19/07 08:36	11/20/07 18:02	
Chloromethane		ND		25.0		•				
Vinyl chloride		ND	****	2.00						
Bromomethane	w .	ND		50.0	90	*		3.6		
Chloroethane	n	ND		10.0				*	w.	
Trichlorofluoromethane	*	ND		10.0		*			*	
1,1-Dichloroethene		ND	*****	10.0	25		200			
Carbon disulfide	w	ND	****	10.0	*)×				
Methylene chloride		ND		100		**				
Acetone		ND	*****	250					<u>*</u>	
trans-1,2-Dichloroethene	W	ND		10,0	*	"	×		DC.	
Methyl tert-butyl ether		ND		10.0	*	n	w		III.	
1,1-Dichloroethane	2 M .	ND		10.0		**	*			
cis-1,2-Dichloroethene	*	28.4		10.0		30	(M)		IN.	
2,2-Dichloropropane	No.	ND		10.0		**	H .	(10)		
Bromochloromethane	*	ND		10.0		*		н	W	
Chloroform	3 # .2	ND	***	10.0						
Carbon tetrachloride		ND	22112	10.0			(*)	"		
1,1,1-Trichloroethane	: # 3	ND		10.0			w	11	H	
2-Butanone		ND		100						
1,1-Dichloropropene	585	ND	****	10.0		*		*	и	
Benzene	S W E	ND	****	10.0		ж.		*	W.	
1,2-Dichloroethane (EDC)		ND	****	10.0						
Frichloroethene		133		10.0					12	
Dibromomethane	W.	ND	****	10.0	383	(8)		5.		
1,2-Dichloropropane	Til Control	ND		10.0				7	*	
Bromodichloromethane		ND	*****	10.0				-	•	
cis-1,3-Dichloropropene		ND	****	10.0		20.			, ,	
Toluene		ND		10.0	100		**	X.	,	
4-Methyl-2-pentanone		ND		100				8		
trans-1,3-Dichloropropene	98.	ND		10.0	(5)					
Tetrachloroethene	•	206		10.0			340		>	
1,1,2-Trichloroethane	·¥	ND		10.0		(#)	30	¥		
Dibromochloromethane		ND		10.0						
1,3-Dichloropropane	. 11	ND		10.0		383	3.85		,	
1,2-Dibromoethane		ND		10.0		*		¥.	X :	
2-Heyanone		ND	*****	100						
Ethylbenzene	W.	ND		10.0	30					

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-07	(MW7I)		W	iter		Sam	pled: 11/	12/07 14:55			
Chlorobenzene		EPA 8260B	ND		10.0	ug/l	10x	7110138	11/19/07 08:36	11/20/07 18:02	
1,1,1,2-Tetrachloroe	ethane		ND		10.0		*		*	w	
m,p-Xylene			ND		20.0	*	*		*		
o-Xylene		.0	ND		10.0	*			•		
Styrene			ND		10.0	10	*				
Bromoform			ND	*****	10.0						
Isopropylbenzene			ND	****	10.0	"	**		*	•	
n-Propylbenzene			ND		10.0	9	*		ж.		
1,1,2,2-Tetrachloroe	ethane		ND	*****	10.0		*		¥		
Bromobenzene			ND	*****	10.0				8		
1,3,5-Trimethylbena	zene		ND	****	10.0	*	ж.	.00		30.1	
2-Chlorotoluene			ND	****	10.0	**	**		*		
1,2,3-Trichloroprop	ane	•	ND	*****	10.0	*	*			*	
4-Chlorotoluene			ND	*****	10.0	3.					
tert-Butylbenzene		/ 	ND	****	10.0	*	н		*		
1,2,4-Trimethylbena	zene		ND		10.0					n i	
sec-Butylbenzene			ND	*****	10.0		**			*	
p-Isopropyltoluene			ND	****	10.0		*		11		
1,3-Dichlorobenzen	ie	Y	ND		10.0		**	AL.	**		
1,4-Dichlorobenzen	ie	•	ND	*****	10.0					•	
n-Butylbenzene			ND	*****	10.0		*			980	
1,2-Dichlorobenzen	ne	10	ND	****	10.0	*	w		и.	(10)	
1,2-Dibromo-3-chlo	oropropane		ND		50,0					ii.	
Hexachlorobutadien	ne		ND	****	10.0						
1,2,4-Trichlorobenz	zene	/00	ND	-	10.0			*	w	300	
Naphthalene			ND	****	20.0					ii .	
1,2,3-Trichlorobenz	zene	·	ND		10.0					•	
Surrogate(s):	Dibromofluoromethane			76.8%		62.9	- 131 %	lx		"	
464 5246 7 76 57 3 561	Toluene-d8			84.1%		58.7	- 133 %	,,		22	
	4-bromofluorobenzene			97.2%		60.8	- 140 %	"		"	

TestAmerica Spokane

Randee Decker, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

EPA 8260B	ND N	meter	1.00 2.50 0.200 5.00 1.00 1.00 1.00 1.00 25.0	Samp	lx """"""""""""""""""""""""""""""""""""	7120036	12/06/07 07:56	12/06/07 22:42	H
EPA 8260B	ND N		2.50 0.200 5.00 1.00 1.00 1.00 1.00 10.0 25.0				12/06/07 07:56	12/06/07 22:42	
	ND		0.200 5.00 1.00 1.00 1.00 1.00 10.0 25.0						
	ND		5.00 1.00 1.00 1.00 1.00 1.00 25.0						
	ND ND ND ND ND ND ND ND ND		1.00 1.00 1.00 1.00 10.0 25.0						
	ND ND ND ND ND ND		1.00 1.00 1.00 10.0 25.0			*	:		
	ND ND ND ND ND		1.00 1.00 10.0 25.0					•	
	ND ND ND ND		1.00 10.0 25.0			:	*	* * *	
	ND ND ND		10.0 25.0			:	•	*	
	ND ND ND		25.0			:			
	ND ND	<u> </u>			"		•		
*	ND		1.00	W					
				177	**		(*)	.00	
	ND		1.00	*			*	m/	
*			1.00		*			н	
w .	28.2		1.00			*	,	W	
175	ND	-	1.00	*	*		7.83	W.	
	ND		1.00	×	H	ж.	(*)	W.	
	ND	*****	1.00					•	
*	ND	*****	1.00						
	ND	2222	1.00	×			.0	10.	
	ND		10.0		**			if	
	ND	*****	1.00					n e	
w	ND		1.00		*				
	ND		1.00					и	
Ä.	124	*****	1.00						
	ND		1.00		*		"	,	
ú	ND		1,00		**				
	ND		1.00						
	ND		1.00		**			•	
и.	ND		1.00		*	12		"	
W	ND		10.0	ű.	"			ж.	
ii .			1.00	*				-	
		*****	1.00					W.	
0.0	ND	2222	1.00			200	*	W	
	ND	*****	1.00		**		*	w	
19.	ND		1.00		,			¥.	
w.			1.00				*		
w			10.0					ű.	
					**			W.	
		ND N	ND	ND 1.00	ND 1.00 "	ND 1.00 " " " " " " ND 1.00 " " " " ND 1.00 " " " " " " ND 1.00 " " " " " " ND 1.00 " " " " " " " " " " " " " " " " " "	ND 1.00 " " " " ND 1.00 " " " " " " " " " " " " " " " " " "	ND	ND 1.00

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 027-30021-00 Meghan Lunney

Report Created: 08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-07RE1	(MW7I)		W	iter		Sam	pled: 11/1	2/07 14:55			н
Chlorobenzene		EPA 8260B	ND		1.00	ug/I	lx	7120036	12/06/07 07:56	12/06/07 22:42	
1,1,1,2-Tetrachloroe	ethane	•	ND	*****	1.00	"			,		
m,p-Xylene			ND		2.00		(8)		*	(0)	
o-Xylene		•	ND		1.00				*	(**)	
Styrene		•	ND	*****	1.00			*		•	
Bromoform			ND	*****	1.00		200	(9)		(0)	
Isopropylbenzene		W.	ND		1.00		(8)				
n-Propylbenzene			ND	*****	1.00						
1,1,2,2-Tetrachloroe	ethane		ND	****	1.00						
Bromobenzene			ND		1.00		*	w			
1,3,5-Trimethylbenz	zene		ND		1.00					100	
2-Chlorotoluene			ND	*****	1.00						
1,2,3-Trichloroprop	ane		ND	*****	1.00					200	
4-Chlorotoluene		*(ND	*****	1.00		300			367	
tert-Butylbenzene			ND		1.00						
1,2,4-Trimethylbenz	zene		ND	*****	1.00						
sec-Butylbenzene			ND		1.00					A.C.	
p-Isopropyltoluene		n .	ND	*****	1.00		*			ü	
1,3-Dichlorobenzen	e		ND		1.00		*				
1,4-Dichlorobenzen	e		ND	elejanos.	1.00		(90)			200	
n-Butylbenzene			ND	*****	1.00					ů.	
1,2-Dichlorobenzen	e	•	ND	*****	1.00						
1,2-Dibromo-3-chlo	ropropane		ND	*****	5.00		790			90	
Hexachlorobutadien	ie	W)	ND		1.00		*				
1,2,4-Trichlorobenz	ene		ND	*****	1.00	**		*			
Naphthalene		*	ND		2,00		35				
1,2,3-Trichlorobenz	ene		ND		1,00		(*)	*	*		
Surrogate(s):	Dibromofluoromethane			73.0%		62.9	- 131%	"		*	
The second section of the sect	Toluene-d8			89.4%		58.7	- 133 %	"		"	
	4-bromofluorobenzene			99.5%		60.8	- 140 %	,,		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-08 (MW7D)		Wa	iter		Sam	pled: 11/1	2/07 14:20			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	7110138	11/19/07 08:36	11/20/07 18:31	
Chloromethane		ND		2.50						
Vinyl chloride		ND	*****	0.200				•		
Bromomethane		ND		5.00		*				
Chloroethane	*	ND		1.00					160	
Trichlorofluoromethane	•	ND	*****	1.00					W.	
1,1-Dichloroethene		ND		1.00				*	•	
Carbon disulfide	W	ND		1.00	(9)				196	
Methylene chloride		ND		10.0						
Acetone	-	ND		25.0					•	
trans-1,2-Dichloroethene	*	ND	Name .	1.00	200	960		*	(92)	
Methyl tert-butyl ether	w .	ND	*****	1.00	*			W	(4)	
1,1-Dichloroethane	W.	ND		1.00						
cis-1,2-Dichloroethene	Ж.	ND	****	1.00		(5)				
2,2-Dichloropropane	11	ND	*****	1,00			*	,,	390	
Bromochloromethane		ND		1.00			W		(w)	
Chloroform		ND	*****	1.00					•	
Carbon tetrachloride		ND	*****	1.00		(8)	*	25"	. •	
1,1,1-Trichloroethane	ű.	ND		1.00			*	*	•	
2-Butanone	¥	ND		10.0						
1,1-Dichloropropene	*	ND	*****	1.00		010				
Benzene	w.	ND		1.00	н	н.				
1,2-Dichloroethane (EDC)	*	ND		1.00						
Trichloroethene		1.28	****	1.00				*	*	
Dibromomethane		ND		1.00	2.	(20)	*	2.57	1.0	
1,2-Dichloropropane	W	ND		1.00			**			
Bromodichloromethane	*	ND	*****	1.00			*		•	
cis-1,3-Dichloropropene		ND	*****	1.00	*	(20)				
Toluene		ND	-	1.00	()		**	,	190	
4-Methyl-2-pentanone	¥	ND		10.0					W.	
trans-1,3-Dichloropropene		ND	***	1,00					*	
Tetrachloroethene	. v	3.00		1,00			w	*		
1,1,2-Trichloroethane	%	ND		1.00		7(0)	*	*		
Dibromochloromethane	# #	ND		1.00			*	•		
1,3-Dichloropropane		ND	****	1.00	2		*			
1,2-Dibromoethane	9	ND		1.00			×		*	
2-Hexanone		ND	****	10.0		**			0	
Ethylbenzene		ND	2222	1.00						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney

Report Created: 08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-08 (MW7D)		Wa	ater	5 I= I	Samı	oled: 11/1	2/07 14:20			
Chlorobenzene	EPA 8260B	ND	****	1.00	ug/l	lx	7110138	11/19/07 08:36	11/20/07 18:31	
1,1,1,2-Tetrachloroethane	(8)	ND	****	1.00	3,00		0.00			
m,p-Xylene		ND		2.00	.*			**		
o-Xylene		ND	*****	1.00				**		
Styrene	395	ND	*****	1.00			7.			
Bromoform		ND		1.00	90		(4)		(W)	
Isopropylbenzene		ND		1.00	*				WA .	
n-Propylbenzene		ND		1.00					•	
1,1,2,2-Tetrachloroethane		ND		1.00	×		(#)	**	30	
Bromobenzene		ND		1.00	×		(*)	*	W	
1,3,5-Trimethylbenzene		ND	****	1.00						
2-Chlorotoluene	SM.	ND	*****	1.00	(*)	(8.0	(#)		*	
1,2,3-Trichloropropane		ND		1.00	*					
4-Chlorotoluene		ND		1.00						
tert-Butylbenzene		ND	****	1.00	85				•	
1,2,4-Trimethylbenzene		ND		1.00	*				(96)	
sec-Butylbenzene		ND		1.00					10°	
p-Isopropyltoluene		ND		1.00						
1,3-Dichlorobenzene	.46	ND	*****	1.00		. *		*		
1,4-Dichlorobenzene	Tu .	ND	-	1.00				*		
n-Butylbenzene		ND		1.00						
1,2-Dichlorobenzene	3.4	ND		1.00						
1,2-Dibromo-3-chloropropane	in the second	ND		5.00		и		*	W	
Hexachlorobutadiene	•	ND	*****	1.00		**	"			
1,2,4-Trichlorobenzene		ND	****	1.00						
Naphthalene		ND		2.00		360		×		
1,2,3-Trichlorobenzene	W	ND		1.00			*	¥	**	
Surrogate(s): Dibromofluoron	nethane		73.6%		62.9	- 131 %	,,		"	
Toluene-d8			83.0%		58.7	- 133 %	"		"	
4-bromofluorob	enzene		98.3%		60.8	- 140 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-09 (MW8S)		Wa	iter		Samp	oled: 11/1	2/07 13:45			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	7110138	11/19/07 08:36	11/20/07 19:00	
Chloromethane	*	ND		2,50				*		
Vinyl chloride	•	ND	*****	0.200					(₩)	
Bromomethane		ND		5.00					3.50	
Chloroethane	W.	ND		1.00	W				300	
Trichlorofluoromethane		ND		1.00		**		•	•	
1,1-Dichloroethene		ND		1.00		н				
Carbon disulfide		1.88		1,00	*				(H)	
Methylene chloride	60	ND	*****	10.0		*			(10)	
Acetone	•	ND		25.0				*		
trans-1,2-Dichloroethene		ND		1.00					250	
Methyl tert-butyl ether		ND		1.00	(4)			×	H .	
1,1-Dichloroethane	**	ND		1.00		*				
cis-1,2-Dichloroethene		4.54	*****	1.00				*		
2,2-Dichloropropane	*	ND	*****	1.00	(#)	20		8		
Bromochloromethane	*6	ND		1.00			"	*	(90)	
Chloroform	*	ND	*****	1.00		*			•	
Carbon tetrachloride	. "	ND.	****	1,00						
1,1,1-Trichloroethane		ND	*****	1.00	.0.	0.00	0	*	(9)	
2-Butanone	II.	ND		10.0						
1,1-Dichloropropene	₩	ND		1.00			•		•	
Benzene		ND	****	1.00	(20)	(*)	5	8		
1,2-Dichloroethane (EDC)	¥6	ND		1.00		*			(iv)	
Trichloroethene		10.4		1.00						
Dibromomethane	*	ND	****	1.00	*	*		*	•	
1,2-Dichloropropane	m.	ND		1.00	. 10	*	0	*	(96)	
Bromodichloromethane	ič.	ND		1.00					(#)	
cis-1,3-Dichloropropene	•	ND		1.00	*				*	
Toluene		ND		1.00		290	,		(#)	
4-Methyl-2-pentanone	W.	ND		10.0	н			×		
trans-1,3-Dichloropropene	•	ND	****	1.00	"					
l'etrachloroethene		4.34		1.00		95		*		
1,1,2-Trichloroethane		ND		1.00		(*,	W			
Dibromochloromethane	W.	ND		1.00				*		
1,3-Dichloropropane	·	ND		1.00		**				
1,2-Dibromoethane		ND	*****	1.00	99			*		
2-Hexanone	•	ND		10.0						
Ethylbenzene		ND		1.00		*		¥		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-09 (MW8S)		Wa	iter		Samp	pled: 11/1	2/07 13:45			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1x	7110138	11/19/07 08:36	11/20/07 19:00	
1,1,1,2-Tetrachloroethane	×	ND		1.00	"	**	м			
m,p-Xylene	*	ND		2,00	H	11.		(*)	10	
o-Xylene	*	ND	*****	1,00		*			"	
Styrene	N.	ND	****	1.00	7	"	•	•	"	
Bromoform	*	ND		1,00	ж	*				
Isopropylbenzene		ND		1.00	*	*		200		
n-Propylbenzene		ND	*****	1.00	*	*	*			
1,1,2,2-Tetrachloroethane		ND		1.00		8.	*	3.00	*	
Bromobenzene		ND		1.00		×		H	*	
1,3,5-Trimethylbenzene		ND	*****	1.00		*		*		
2-Chlorotoluene		ND		1.00		*	200	(20)		
1,2,3-Trichloropropane	ii .	ND		1.00	*	*			*	
4-Chlorotoluene	*	ND		1.00			*		*	
tert-Butylbenzene	2.	ND	****	1.00				•	*	
1,2,4-Trimethylbenzene	W)	ND		1.00		**		7.		
sec-Butylbenzene		ND		1.00					*	
p-Isopropyltoluene		ND		1.00		*	*	*		
1,3-Dichlorobenzene	(#0)	ND	****	1.00				*		
1,4-Dichlorobenzene	w	ND		1.00	**	99	*	*	,,	
n-Butylbenzene		ND		1.00	*					
1,2-Dichlorobenzene		ND		1,00	"					
1,2-Dibromo-3-chloropropane		ND		5.00					.0	
Hexachlorobutadiene		ND		1.00					,	
1,2,4-Trichlorobenzene		ND	*****	1,00		*	•		•	
Naphthalene	7 M	ND	*****	2.00		*		<u>#</u>	2.7	
1,2,3-Trichlorobenzene	•	ND		1.00		*		"		
Surrogate(s): Dibromofluorome	thane		72.0%		62.9	- 131 %	*		"	
Toluene-d8			83.9%		58.7	' - 133 %	"		"	
4-bromofluoroben	zene		94.7%		60.8	3 - 140 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-10 (MW8D)		Wa	iter		Samp	led: 11/1	2/07 13:15			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l >	1×	7110138	11/19/07 08:36	11/20/07 19:28	
Chloromethane		ND		2,50			(10)	*		
Vinyl chloride	•	ND	-	0.200					•	
Bromomethane		ND	****	5.00	100	•		*		
Chloroethane		ND		1.00		*		,,		
Frichlorofluoromethane	•	ND	****	1.00		*	*		u u	
,1-Dichloroethene		ND		1.00		*			•	
Carbon disulfide	W.	ND		1.00	. H	*	"			
Methylene chloride		ND	77777	10.0	(A)		**		(#0	
Acetone	<u> </u>	ND		25.0						
rans-1,2-Dichloroethene		ND	*****	1.00			18			
Methyl tert-butyl ether	ii	ND	*****	1,00			*			
,1-Dichloroethane	Ű.	ND	*****	1.00					•	
sis-1,2-Dichloroethene	9.	ND	*****	1.00			*		•	
,2-Dichloropropane	9	ND		1.00	6		*	×.	(39)	
Bromochloromethane	*	ND		1.00			¥		1900	
Chloroform	,	ND		1.00					*	
Carbon tetrachloride		ND	-	1.00						
,1,1-Trichloroethane	W.	ND	****	1,00					0.0	
-Butanone	*	ND	****	10.0						
,1-Dichloropropene	*	ND	****	1.00					"	
Benzene	*	ND		1.00	ii			36		
,2-Dichloroethane (EDC)	*	ND		1.00			"	140	ii.	
Trichloroethene	,	ND		1.00			*		W.	
Dibromomethane		ND		1.00	DK.	(96		3.57		
1,2-Dichloropropane		ND		1.00		, iii				
Bromodichloromethane		ND		1.00						
cis-1,3-Dichloropropene	*	ND		1.00	*		*			
Γoluene	ä	ND	****	1.00	*	*		(10)		
4-Methyl-2-pentanone		ND		10.0						
rans-1,3-Dichloropropene		ND		1.00						
Tetrachloroethene		ND	2222	1.00	×			(#)		
1,1,2-Trichloroethane	и	ND		1.00	¥			· ·		
Dibromochloromethane	W	ND	****	1.00					•	
1,3-Dichloropropane	(6)	ND		1.00	26		*	18	#	
1,2-Dibromoethane	и	ND		1.00	**			×	W.	
2-Hexanone		ND		10.0						
Ethylbenzene	W)	ND	22.22	1.00					,,	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-10 (MW8D)		W	iter		Samp	oled: 11/	12/07 13:15			
Chlorobenzene	EPA 8260B	ND	****	1,00	ug/l	l×	7110138	11/19/07 08:36	11/20/07 19:28	
1,1,1,2-Tetrachloroethane	W)	ND		1.00			3.002	*		
m,p-Xylene		ND		2,00						
o-Xylene	•	ND		1.00	•	•		•	•	
Styrene		ND	*****	1.00	1.81	(40)	380	*	3.00	
Bromoform	Ü.	ND		1.00			n	*	w	
Isopropylbenzene	•	ND	*****	1.00						
n-Propylbenzene		ND	*****	1.00					.0.	
1,1,2,2-Tetrachloroethane	"	ND	22.12	1.00		*		*		
Bromobenzene	u	ND	*****	1.00					*	
1,3,5-Trimethylbenzene	W VO	ND	****	1.00						
2-Chlorotoluene	*	ND		1.00		*	*			
1,2,3-Trichloropropane	ű.	ND		1.00			**	*	•	
4-Chlorotoluene	•	ND	*****	1.00			*		•	
tert-Butylbenzene	<u>«</u>	ND		1.00		280				
1,2,4-Trimethylbenzene		ND	*****	1.00				×.	(#.)	
sec-Butylbenzene	•	ND		1.00						
p-Isopropyltoluene		ND	*****	1.00		985				
1,3-Dichlorobenzene	ű.	ND	*****	1.00				*		
1,4-Dichlorobenzene		ND		1.00					w	
n-Butylbenzene		ND	*****	1.00		*			*	
1,2-Dichlorobenzene	6.	ND		1.00		(8)			(6.)	
1,2-Dibromo-3-chloropropane	W	ND		5.00		*	*			
Hexachlorobutadiene	*	ND	*****	1.00						
1,2,4-Trichlorobenzene		ND	*****	1.00		7.5%				
Naphthalene		ND	*****	2.00				*		
1,2,3-Trichlorobenzene	•	ND		1,00			,	•		
Surrogate(s): Dibromofluoro.	methane	ć.	75.2%		62.9	- 131%	"		"	
Toluene-d8			82.7%		58.7	- 133 %	"		"	
4-bromofluorol	penzene		94.3%		60.8	- 140 %			Ü	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number:

027-30021-00 Project Manager: Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-11 (MW9S)		Wa	iter		Sam	pled: 11/1	12/07 10:15			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/I	1x	7110138	11/19/07 08:36	11/20/07 19:57	
Chloromethane	(#)	ND	****	2.50					,	
Vinyl chloride		ND		0.200				(4)		
Bromomethane		ND	****	5.00	*	*		**		
Chloroethane		ND	****	1.00					,,	
Trichlorofluoromethane		ND		1.00	×			n-	W	
1,1-Dichloroethene	T#11	ND		1.00					ii	
Carbon disulfide	•	ND	****	1.00					,	
Methylene chloride	*	ND	****	10.0	8"	*	in .		3 0	
Acetone		ND		25.0				н	W	
trans-1,2-Dichloroethene	(*)	ND		1.00					,,	
Methyl tert-butyl ether		ND	*****	1.00		*				
1,1-Dichloroethane	W	ND	200	1.00		*				
cis-1,2-Dichloroethene		ND		1.00				*	*	
2,2-Dichloropropane		ND		1,00	*	*	"		,,	
Bromochloromethane	(60)	ND		1.00	*	*	*		"	
Chloroform	(46)	ND		1.00					**	
Carbon tetrachloride		ND		1.00		*	*		,	
1,1,1-Trichloroethane)#)	ND	****	1.00						
2-Butanone	X	ND		10.0	%	¥		200	*	
1,1-Dichloropropene	•	ND	*****	1.00		*	*	*	*	
Benzene		ND	****	1.00		*	*	1.55	,,	
1,2-Dichloroethane (EDC)	800	ND		1.00	*	*	**		W	
Trichloroethene		ND		1.00		¥	"			
Dibromomethane		ND	*****	1.00						
1,2-Dichloropropane	(80)	ND		1.00	*	*	**	200	39	
Bromodichloromethane	(W)	ND		1.00	, in	¥	"	19	*	
cis-1,3-Dichloropropene	•	ND		1.00	•					
Toluene	3.953	ND		1.00	*		"	181		
4-Methyl-2-pentanone	•	ND		10.0	*	×	*	W		
trans-1,3-Dichloropropene		ND	****	1.00	*		"	*		
Tetrachloroethene	(#)	2.16	*****	1.00	20				,,	
1,1,2-Trichloroethane	(#.)	ND		1.00	*	*	"	*	9	
Dibromochloromethane	W	ND		1.00			"			
1,3-Dichloropropane	•	ND	*****	1.00		¥		*		
1,2-Dibromoethane	•	ND	*****	1.00			.00			
2-Hexanone	(M)	ND		10.0	9	W	"		W.	
Ethylbenzene		ND	*****	1.00	9				*	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-11 (N	4W9S)		Wa	iter		Sam	pled: 11/1	2/07 10:15			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	1×	7110138	11/19/07 08:36	11/20/07 19:57	
1,1,1,2-Tetrachloroeth	ane	0	ND		1.00	8	190	*	250		
m,p-Xylene		W.	ND		2.00	×		*		100	
o-Xylene			ND		1.00			*	**	•	
Styrene		и.	ND		1.00					•	
Bromoform			ND		1.00	*	E				
Isopropylbenzene			ND	*****	1.00	*					
n-Propylbenzene			ND	*****	1.00	25		*		•	
1,1,2,2-Tetrachloroeth	nane	ŭ.	ND		1.00	8	**	*		0	
Bromobenzene			ND		1.00	ü				*	
1,3,5-Trimethylbenzer	ne		ND	*****	1.00				•	,	
2-Chlorotoluene			ND	*****	1.00	*	"		175	*	
1,2,3-Trichloropropan	ne	a	ND		1.00	30	ů.	*			
4-Chlorotoluene			ND	*****	1.00		*	*			
tert-Butylbenzene		н	ND		1.00		*				
1,2,4-Trimethylbenzer	ne	ű	ND		1.00	*	*	*	*	A.	
sec-Butylbenzene			ND	******	1.00					W	
p-Isopropyltoluene			ND	*****	1.00					*	
1,3-Dichlorobenzene		**	ND		1.00	*	*				
1,4-Dichlorobenzene			ND	*****	1.00					*	
n-Butylbenzene		"	ND	*****	1.00				•	¥	
1,2-Dichlorobenzene			ND	*****	1.00	9	2	*			
1,2-Dibromo-3-chloro	propane		ND		5.00		**	W	*		
Hexachlorobutadiene		•	ND	*****	1.00						
1,2,4-Trichlorobenzer	ne		ND		1.00	27		"	*		
Naphthalene		ii.	ND		2.00		,,		*		
1,2,3-Trichlorobenzer	ne		ND		1.00	**		н	*	"	
Surrogate(s):	Dibromofluoromethane			75.0%		62.9	- 131 %	,,		,,	
	Toluene-d8			81.8%			- 133 %	•		,,	
	4-bromofluorobenzene			98.0%		60.8	3 - 140 %	"			

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager: 027-30021-00 Meghan Lunney

Report Created: 08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-12 (MW9D)		Wa	ater		Sam	pled: 11/1	12/07 11:35			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/I	1×	7110138	11/19/07 08:36	11/20/07 21:24	
Chloromethane	н.	ND	*****	2.50	×				0	
Vinyl chloride	W	ND		0.200						
Bromomethane	₩.	ND	*****	5.00		*				
Chloroethane	# .	ND		1,00	0.00	(0)				
Trichlorofluoromethane	•	ND		1.00	30				n .	
1,1-Dichloroethene	•	ND	*****	1.00						
Carbon disulfide	*	ND	*****	1.00						
Methylene chloride		ND		10.0		*	ж.		ii.	
Acetone		ND		25.0		**			"	
trans-1,2-Dichloroethene	•	ND		1.00				•	886	
Methyl tert-butyl ether	6	ND	-	1.00	980				(0)	
1,1-Dichloroethane	w.	ND		1.00				¥	· ·	
cis-1,2-Dichloroethene		ND	*****	1.00						
2,2-Dichloropropane		ND		1.00		*				
Bromochloromethane		ND		1.00	*	W	· w	*		
Chlorofonn		ND		1.00		*	*			
Carbon tetrachloride		ND	*****	1.00						
1,1,1-Trichloroethane		ND		1.00	90	*				
2-Butanone		ND		10.0					W	
1,1-Dichloropropene	•	ND	*****	1.00		**		3	*	
Benzene	0.	ND	*****	1.00	(8)	(80)			(0)	
1,2-Dichloroethane (EDC)		ND		1.00		×				
Trichloroethene		ND		1.00						
Dibromomethane		ND	*****	1.00		200			W	
1,2-Dichloropropane		ND		1.00				*	W	
Bromodichloromethane	W	ND		1.00						
cis-1,3-Dichloropropene		ND	*****	1.00						
Toluene		ND	****	1.00	(M.)	*	*		30	
4-Methyl-2-pentanone	W.	ND		10.0			*		W1	
trans-1,3-Dichloropropene	¥	ND	*****	1.00			*			
Tetrachloroethene	W	ND	*****	1.00	100	(8)			*	
1,1,2-Trichloroethane	W.	ND		1.00					ii.	
Dibromochloromethane	\ \	ND		1.00						
1,3-Dichloropropane	1.0	ND	****	1.00		(40)	: "	X		
1,2-Dibromoethane	(9).	ND		1.00				*		
2-Hexanone		ND	*****	10.0						
Ethylbenzene		ND		1.00						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-12	(MW9D)		W	ater		Sam	pled: 11/1	2/07 11:35			
Chlorobenzene		EPA 8260B	ND		1.00	ug/I	1x	7110138	11/19/07 08:36	11/20/07 21:24	
1,1,1,2-Tetrachloro	ethane		ND		1.00						
m,p-Xylene		*	ND	****	2.00			*			
o-Xylene		2	ND	****	1.00		100	*.	(8)	196	
Styrene		*	ND		1.00	×	((iii)	*	*		
Bromoform		•	ND	*****	1.00	*	*	*		*	
Isopropylbenzene		*	ND	****	1.00	8.	1.96	*		**	
n-Propylbenzene		w.	ND	2	1.00	×		×	90	. w.	
1,1,2,2-Tetrachloro	ethane		ND		1.00	*	*	*			
Bromobenzene			ND	****	1.00			8			
1,3,5-Trimethylben	zene	*	ND		1.00		*	8	*	*	
2-Chlorotoluene		*	ND	5555	1.00						
1,2,3-Trichloroprop	pane	*	ND	****	1.00		*	*		•	
4-Chlorotoluene			ND	*****	1.00	*	(80)			*	
tert-Butylbenzene			ND		1.00	ř.	(4)	*	¥		
1,2,4-Trimethylben	zene	•	ND	*****	1.00						
sec-Butylbenzene			ND		1.00		*	5	*	189	
p-Isopropyltoluene			ND		1.00	**				×	
1,3-Dichlorobenzen	ne		ND		1.00		*				
1,4-Dichlorobenzen	ie	•	ND		1.00	•	•	*		•	
n-Butylbenzene			ND	-	1.00	*		9.	X.	•	
1,2-Dichlorobenzen	ne	*	ND	****	1.00	W.	196				
1,2-Dibromo-3-chlo	oropropane	*	ND		5.00	•	*	•		•	
Hexachlorobutadier	ne	*	ND	*****	1.00	*	585			M ,	
1,2,4-Trichlorobenz	zene	*	ND		1.00	R	100	*	*	*:	
Naphthalene		*	ND	****	2,00	*					
1,2,3-Trichlorobenz	zene		ND	*****	1.00	7	170				
Surrogate(s):	Dibromofluoromethane			72.8%		62.9	- 131 %	"		"	
- ACCUSANCE TRANSPORTED	Toluene-d8			83.4%		58.7	- 133 %	"		**	
	4-bromofluorobenzene			99.9%		60.8	- 140 %	*		<i>u</i>	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-13 (Trip Blank)		Wa	iter		Samp	oled: 11/1	2/07 00:00			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	I×	7110138	11/19/07 08:36	11/20/07 21:52	
Chloromethane	*	ND		2,50			•		*	
Vinyl chloride	8 8	ND		0.200	2.6			X.	360	
Bromomethane	*	ND		5.00		*		*		
Chloroethane		ND		1.00						
Trichlorofluoromethane	•	ND	*****	1.00	950	353			(#.)	
1,1-Dichloroethene	**	ND	*****	1.00			(iii)	W.		
Carbon disulfide	w.	ND		1.00						
Methylene chloride		ND	*****	10.0				2		
Acetone	"	ND	*****	25,0	*		9.			
trans-1,2-Dichloroethene	*	ND		1.00			*	u		
Methyl tert-butyl ether		ND	*****	1.00						
1,1-Dichloroethane	"	ND	-	1.00				"	(#)	
cis-1,2-Dichloroethene	6	ND		1,00	(40)	500	96	**	(ii)	
2,2-Dichloropropane	e e	ND		1.00				"		
Bromochloromethane	•	ND	*****	1,00						
Chloroform	*	ND	*****	1.00			**	*		
Carbon tetrachloride	ë.	ND		1.00				ii.		
1,1,1-Trichloroethane		ND	*****	1.00						
2-Butanone		ND	****	10.0						
1,1-Dichloropropene	190	ND	11111	1.00				W.		
Benzene	W.	ND		1.00						
1,2-Dichloroethane (EDC)		ND	****	1.00		9.7				
Trichloroethene	100	ND		1.00	*			×	,,	
Dibromomethane	0.	ND	*****	1.00	4			- 7		
1,2-Dichloropropane))	ND		1.00						
Bromodichloromethane	5.85	ND		1.00						
cis-1,3-Dichloropropene	īw.	ND		1.00	90	N.		ë		
Toluene	*	ND		1.00	*					
4-Methyl-2-pentanone		ND		10.0						
rans-1,3-Dichloropropene	w	ND		1.00	*	16		16	6	
Tetrachloroethene		ND		1.00		*	*	,		
1,1,2-Trichloroethane	**	ND	****	1.00	,	*				
Dibromochloromethane	300	ND	,	1.00	*	*				
1,3-Dichloropropane	(4)	ND		1.00					¥	
1,2-Dibromoethane	w	ND	*****	1.00					w.	
2-Hexanone		ND	224	10.0				*	W	
Ethylbenzene		ND		1.00		2				

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

Page 31 of 39

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SQK0081-13	(Trip Blank)		Wi	nter		Sam	pled: 11/1	2/07 00:00			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	1×	7110138	11/19/07 08:36	11/20/07 21:52	
1,1,1,2-Tetrachloroe	thane	•	ND	*****	1.00				*	•	
m,p-Xylene		9.50	ND	*****	2.00	200		377.5			
o-Xylene		H	ND		1,00		*				
Styrene			ND		1.00						
Bromoform		•	ND	*****	1.00				•		
Isopropylbenzene		2003	ND	*****	1.00	90		*			
n-Propylbenzene		*	ND		1.00		*				
1,1,2,2-Tetrachloroe	thane	*	ND		1.00						
Bromobenzene		\$ M Y	ND		1.00	(6)	*		*	19	
1,3,5-Trimethylbenz	ene		ND		1.00		*		*		
2-Chlorotoluene			ND		1.00		*			*	
1,2,3-Trichloropropa	ane	S#0	ND		1.00		2.1	*	•		
4-Chlorotoluene			ND	*****	1,00		*				
tert-Butylbenzene		· ·	ND		1.00						
1,2,4-Trimethylbenz	ene		ND	*****	1.00						
sec-Butylbenzene			ND	****	1.00	*	*	30	*		
p-Isopropyltoluene			ND		1.00		*	(M)	w		
1,3-Dichlorobenzene	e	*	ND	*****	1.00		*			*	
1,4-Dichlorobenzene	e	2 .0 0	ND		1.00	*	21	989	*		
n-Butylbenzene		W	ND		1.00		*	*	*		
1,2-Dichlorobenzene	e		ND	*****	1,00						
1,2-Dibromo-3-chlo	ropropane		ND	****	5.00						
Hexachlorobutadien	e	(96)	ND		1.00		*		*		
1,2,4-Trichlorobenz	ene		ND		1.00		*				
Naphthalene			ND		2.00			•			
1,2,3-Trichlorobenz	ene		ND	*****	1.00	96	*		"		
Surrogate(s):	Dibromofluoromethane			72.5%		62.9	- 131 %			"	
	Toluene-d8			82.5%			- 133 %	"		"	
	4-bromofluorobenzene			97.2%		60.8	- 140 %	0		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created: 08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source	Spike	%	(Limits)	% RPD	(Limite)	Analyzed	Notes
SOFT OF AVIIII SECTION SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT							Result	Amt	REC	(Linnes)	RPD	(Zillinia)	7kiimiyacu	riotes
Blank (7110138-BLK1)								Extra	acted:	11/19/07 08	:36			
Dichlorodifluoromethane	EPA 8260B	ND	***	1.00	ug/l	1×	-			**			11/20/07 14:39	
Chloromethane	*	ND		2.50			77		-		-	***		
Vinyl chloride		ND	777	0,200			**	**	-	**	-	-		
Bromomethane		ND	***	5.00	*		**	**	***		**	**		
Chloroethane	*	ND	***	1.00			**	44	**	**	**			
Trichlorofluoromethane		ND	***	1.00			**	**	**	164	444	-		
1,1-Dichloroethene	,#.C	ND	***	1.00		9		227		-	22	_	*	
Carbon disulfide	*	ND	1220	1.00	(40)					-	77			
Methylene chloride	*	ND		10.0				177		***		**	,	
Acetone		ND	***	25.0		**	**	**	**	(**)	**	**		
rans-1,2-Dichloroethene	•	ND	***	1.00	*			**			**		u .	
Methyl tert-butyl ether	•	ND	***	1.00			**	44	144		124		n	
,1-Dichloroethane		ND		1.00			**	**	-	***	-		,,	
is-1,2-Dichloroethene	25	ND	MR M	1.00	*	*		44	122		-		W	
,2-Dichloropropane	9.	ND	(222	1.00				-					¥	
romochloromethane	Ä	ND	***	1.00			**		**	**	**	**		
Chloroform		ND		1.00			100		**		-			
arbon tetrachloride		ND	***	1.00				**	-	***	**			
,1,1-Trichloroethane		ND		1.00			**		***	542				
-Butanone		ND		10.0			24	**		44	-		W	
,1-Dichloropropene	,	ND	***	1.00		×	144	-	22	-	22		X	
Benzene	*	ND	***	1,00			-	-	-		-	22.	*	
,2-Dichloroethane (EDC)	W	ND	***	1.00				-			**	100		
Crichloroethene	ũ.	ND	***	1.00					**	-	-			
Dibromomethane	×	ND	***	1.00				**						
,2-Dichloropropane		ND	***	1.00			**		-	-	-			
Bromodichloromethane		ND	***	1.00			144		22	-	122		y.	
is-1,3-Dichloropropene	w	ND	***	1.00	*	n					22		**	
'oluene		ND	222	1.00	¥		**			_			6	
-Methyl-2-pentanone	*	ND	***	10.0			100			-	22	(77)		
rans-1,3-Dichloropropene		ND	***	1.00							2770	100		
etrachloroethene	¥	ND	***	1.00			**		-					
,1,2-Trichloroethane		ND	***	1.00			-	**	_		2		0.7	
Dibromochloromethane		ND	***	1.00		×			_	2	_		ii .	
,3-Dichloropropane		ND		1.00			-	-	0		65	_		
,2-Dibromoethane		ND	20	1.00	×			-	-		55			
-Hexanone	6	ND		10.0			\!!! 	177		77	-			
thylbenzene	ii.	ND		1.00		į.		57	**	**	***	**	W.	
Chlorobenzene		ND	(7777)	1.00		-		199			**	**	1777	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

QC Batch: 7110138	Water F	reparation	Method:	GC/MS Vol	atiles									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (7110138-BLK1)								Extr	acted:	11/19/07 08	3:36			
1,1,1,2-Tetrachloroethane	EPA 8260B	ND		1,00	ug/l	1×	-	-		Δ.	-	2	11/20/07 14:39	
m,p-Xylene		ND	***	2.00				-		-	_			
o-Xylene	(a)	ND		1.00				-	-77					
Styrene		ND		1.00		**		**	-	-				
Bromoform		ND	***	1.00			-	**	***	-	-			
Isopropylbenzene		ND	***	1.00			**	**	**			**		
n-Propylbenzene	*	ND	1441	1.00			**	**		-	***		367	
1,1,2,2-Tetrachloroethane	*	ND		1,00						1		22	×	
Bromobenzene	*	ND	***	1,00	*					-			N.	
1,3,5-Trimethylbenzene		ND		1.00						100			ii	
2-Chlorotoluene		ND	***	1.00		"		**	**	-	-	-		
1,2,3-Trichloropropane		ND		1.00		"	**	**	**	199				
4-Chlorotoluene		ND	***	1.00	19.		**	**	**	**	-			
tert-Butylbenzene	*	ND		1.00		200	22			**	***		367	
1,2,4-Trimethylbenzene	×	ND	722	1.00				44	-		- 11	-	×	
sec-Butylbenzene		ND		1,00			++			-		-	u.	
p-Isopropyltoluene		ND		1.00				-		100	**	77.	W	
1,3-Dichlorobenzene		ND		1.00			**	**	-		**	**		
1,4-Dichlorobenzene	*	ND	***	1.00			99	**	**		**			
n-Butylbenzene		ND		1.00			**			**	344	-		
1,2-Dichlorobenzene		ND		1.00		986	**	-		**		22	90	
1,2-Dibromo-3-chloropropane	*	ND		5.00	*					2			30	
Hexachlorobutadiene	*	ND	***	1,00		н	**	**	**	-	**		an .	
1,2,4-Trichlorobenzene		ND		1.00				**		**			W	
Naphthalene		ND	***	2.00		*		**	**	-	-			
1,2,3-Trichlorobenzene		ND		1.00			**	**	**		**	**		
Surrogate(s): Dibromofluorometho	me	Recovery:	69.7%	Limit	s: 62.9-131%	,,							11/20/07 14:3	,
Toluene-d8			85.4%		58.7-133%	0							"	
4-bromofluorobenze	net		103%		60.8-140%	"								

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-530

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

Project Manager:

New City Cleaners

Project Number: 027-30021-00

Meghan Lunney

Report Created: 08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

QC Bate	h: 7110138	Water	Preparatio	n Method:	GC/MS Vola	itiles									
Analyte		Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
LCS (7110138	3-BS1)								Extr	acted:	11/19/07 08	:36			
1,1-Dichloroethene		EPA 8260B	7.59		1.00	ug/l	lx		10.0	75.9%	(67-137)	77.		11/20/07 14:10	
Benzene			8.56		1.00	"				85.6%	(70-130)	_	**		
Trichloroethene		¥	8.60		1.00					86.0%	(68.1-128)		**		
Toluene			10.3	***	1.00					103%	(68.8-139)				
Chlorobenzene		*	9,49	***	1.00	,		44		94.9%	(68.3-123)	-			
Surrogate(s):	Dibromofluoromethane		Recovery:	69.0%	Limits	62.9-131%	,,							11/20/07 14:10	
	Toluene-d8			87.6%		58.7-133%	"							W	
	4-bromofluorobenzene			108%		60.8-140%	*							**	
Matrix Spike	(7110138-MS1)				QC Source:	SQK0081-10			Extr	acted:	11/19/07 08:	:36			
,1-Dichloroethene		EPA 8260B	7.89		1.00	ug/l	lx	ND	10.0	78.9%	(63.8-137)	**		11/20/07 20:26	
Benzene			8.61		1.00		*	ND		86.1%			-	W.	
richloroethene			8.93		1.00	ii.	×	ND		89.3%		100	344		
Toluene			10.1		1.00	**	ž.	ND		101%	(84.5-127)	***	-		
Chlorobenzene			9,76		1.00			ND	*		(75.8-121)	**	**		
Surrogate(s):	Dibromofluoromethane		Recovery:	76.7%	Limits	62.9-131%	"							11/20/07 20:26	_
	Toluene-d8			82.2%		58.7-133%								"	
	4-bromofluorobenzene			106%		60.8-140%	"							**	
Aatrix Spike D	up (7110138-MSD	1)			QC Source:	SQK0081-10			Extra	acted:	11/19/07 08:	:36			
,1-Dichloroethene		EPA 8260B	8.17	***	1.00	ug/l	lx	ND	10.0	81.7%	(63.8-137)	3.45%	(14)	11/20/07 20:55	
enzene		"	8.80	***	1.00		*	ND		88.0%	(59.7-129)	2.22%	(10)		
richloroethene			9.03	***	1.00	*		ND		90.3%	(75.5-129)	1.11%			
'oluene		.00	10,3	222	1.00			ND		103%	(84.5-127)	1.60%			
hlorobenzene			9,98		1.00	н		ND			(75.8-121)		9 9 9		
Surrogate(s):	Dibromofluoromethane		Recovery:	79.2%	Limits:	62.9-131%	#							11/20/07 20:55	
	Toluene-d8			85.1%		58.7-133%								*	
	4-bromofluorobenzene			111%		60.8-140%	**								

TestAmerica Spokane

The restilts in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7120036-BLK1)								Extr	acted:	12/06/07 07	:56			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	22	2	12	2.	122	1	12/06/07 13:00	
Chloromethane		ND		2,50			75		-			-		
Vinyl chloride		ND	***	0,200			-		-		277		ii .	
Bromomethane		ND	***	5.00		*		**		-	194		• +	
Chloroethane	*	ND	222	1.00			**	**	-	**	**			
Trichlorofluoromethane	(*C	ND	100	1.00			**		-	22		**	393	
1,1-Dichloroethene	*	ND		1.00			**						0.5	
Carbon disulfide		ND		1.00	*				_					
Methylene chloride		ND		10.0	**		-		77	770		77		
Acetone	•	ND	***	25.0			-	**		**	-	**		
trans-1,2-Dichloroethene	•	ND	***	1.00				**	**	**	**	**	•	
Methyl tert-butyl ether	*	ND		1.00	н		**	**	**	**	164	**		
1,1-Dichloroethane	36	ND		1.00	**		-	**	**	440			(9)	
cis-1,2-Dichloroethene		ND		1.00	н						_	-	(M)	
2,2-Dichloropropane		ND		1.00	11									
Bromochloromethane		ND		1.00	*			77	77	77	-		W	
Chloroform		ND	***	1.00		•	200	***	100	**	300	**		
Carbon tetrachloride		ND	***	1.00		•	77		***		***	**	*	
1,1,1-Trichloroethane		ND	***	1.00		1			**	**	**	**		
2-Butanone	*	ND	***	10.0	*					**	**	**		
1,1-Dichloropropene	*	ND		1.00	*	6	12	20			**			
Benzene		ND		1.00					**					
1,2-Dichloroethane (EDC)		ND		1.00					77					
Trichloroethene		ND		1.00			**	**	***	**	**	**		
Dibromomethane		ND		1.00	*		**		**	**	**	**		
1,2-Dichloropropane		ND	***	1.00					**		**	**	(9)	
Bromodichloromethane	н	ND	***	1.00	*		**		**	**	**	**	300	
cis-1,3-Dichloropropene		ND		1,00	*	н.	***	**	-		-	-	.00	
Toluene		ND		1.00		H.		-			-			
4-Methyl-2-pentanone		ND		10,0	8	**	-		=	-	177	-		
trans-1,3-Dichloropropene		ND		1.00	*	*	-	**	**	**	(***)		•	
Tetrachloroethene		ND		1.00	*	H	-	**	**		-	**	**	
1,1,2-Trichloroethane		ND	***	1.00	*	*		24	**	**	(44)			
Dibromochloromethane		ND		1.00		*	-	**			**	22	90	
1,3-Dichloropropane	*	ND		1.00	Ü.		-	**	**		-			
1,2-Dibromoethane		ND		1.00	**	¥	-		77.			177	*	
2-Hexanone		ND		10.0			175	***		**		277		
Ethylbenzene		ND		1.00		*	-		-		**	**	•	
Chlorobenzene		ND		1.00		*		-	923	-	1,000	44	ж	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MD	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7120036-BLK1)								Extr	acted:	12/06/07 07	7:56			
1,1,1,2-Tetrachloroethane	EPA 8260B	ND		1.00	ug/l	lx	**			1,77		177	12/06/07 13:00	
m,p-Xylene		ND	***	2.00	*		**	**			-	**		
o-Xylene		ND		1.00				**	**		-		•	
Styrene		ND	***	1.00	*	**	**	44	**		**	++	,,	
Bromoform		ND		1.00			**		44	-		**	,,	
Isopropylbenzene	*	ND	***	1.00		**	-							
n-Propylbenzene	*	ND		1.00	н.				**				0	
1,1,2,2-Tetrachloroethane		ND	***	1.00			***			**				
Bromobenzene	*	ND		1.00			***	**	**		**	**		
1,3,5-Trimethylbenzene		ND	***	1.00			***	-				**		
2-Chlorotoluene	*	ND	***	1.00	*		**	44		**		**	"	
1,2,3-Trichloropropane		ND	***	1.00		200	**	**				**		
4-Chlorotoluene		ND	***	1.00	(8)	*			2		2	22	11	
tert-Butylbenzene		ND		1,00		30		-	**		44		6	
1,2,4-Trimethylbenzene		ND	***	1.00	(0)	9.1								
sec-Butylbenzene		ND		1.00	9			**	200	**		**		
p-Isopropyltoluene		ND	***	1.00			-	**	**		**	**		
1,3-Dichlorobenzene		ND		1.00			**		**	-	**			
1,4-Dichlorobenzene		ND		1.00		2	940	**	**		**	+-	<u>#</u>	
n-Butylbenzene		ND		1.00	*		***	-	-					
1,2-Dichlorobenzene		ND		1.00	*		7227	-	2				ii .	
1,2-Dibromo-3-chloropropane	W	ND	***	5.00		*				25				
Hexachlorobutadiene	"	ND		1.00		-	**			**	**	***	*	
1,2,4-Trichlorobenzene		ND	***	1.00			(59)		**		-	++	*	
Naphthalene		ND		2.00			**	-		**	**			
1,2,3-Trichlorobenzene	"	ND	***	1.00		2						-	,	
Surrogate(s): Dibromofluoromethan	ne	Recovery:	69.8%	Lin	its: 62.9-131%	"							12/06/07 13:00	,
Toluene-d8 4-bromofluorobenzen			84.2% 106%		58.7-133%	"							**	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

QC Batc															
Analyte		Method	Result	MD	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
LCS (7120036	-BS1)								Extr	acted:	12/06/07 07	:56			
1,1-Dichloroethene		EPA 8260B	9.00	100	1.00	ug/l	1×		10.0	90,0%	(67-137)			12/06/07 13:29	
Benzene			10.2		1.00			**	"	102%	(70-130)	**		*	
Frichloroethene			10.2	***	1.00			77		102%	(68,1-128)	-	-		
l'oluene		•	10.5	***	1,00	•		(100)	••	105%	(68.8-139)	**	**	*	
Chlorobenzene		8	9.90		1.00			**	п	99.0%	(68.3-123)		-	•	
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene		Recovery:	111% 102% 110%	Limits:	62.9-131% 58.7-133% 60.8-140%	" "							12/06/07 13:29 "	
Matrix Spike	(7120036-MS1)				QC Source:	SQL0015-05			Extr	acted:	12/06/07 07	:56			
1,1-Dichloroethene	*	EPA 8260B	9.92		1.00	ug/l	1x	ND	10,0	99.2%	(63,8-137)	-	**	12/06/07 21:14	
Benzene		*	10.8		1.00	"		ND	16.	108%	(59.7-129)		level.		
Trichloroethene		*	11.1		1.00			ND	#	111%	(75.5-129)	**		R •	
Toluene			11,1		1,00			ND	**	111%	(84.5-127)		***		
Chlorobenzene			10.7		1.00			ND	"	107%	(75.8-121)	**	**	•	
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene		Recovery:	120% 107% 114%	Limits:	62.9-131% 58.7-133% 60.8-140%	"							12/06/07 21:14	
Matrix Spike D	oup (7120036-MSD	1)			QC Source:	SQL0015-05			Exti	acted:	12/06/07 07	:56			
1,1-Dichloroethene		EPA 8260B	9.49	***	1.00	ug/l	1x	ND	10.0	94.9%	(63.8-137)	4.41%	(14)	12/06/07 21:43	
Benzene		×	10.1	***	1.00			ND	*	101%	(59.7-129)	5.87%	(10)	*	
Trichloroethene		×	10.5		1.00	•	10	ND	*	105%	(75.5-129)	6.18%		м	
Toluene		*	10.4	***	1.00	*		ND	ж	104%	(84.5-127)	6.56%	(12)	Ü	
Chlorobenzene		*	10.1	775	1.00	*	**	ND	W	101%	(75.8-121)	5.60%	(11)	ii .	
Surrogate(s):	Dibromofluoromethane Toluene-d8		Recovery:	113% 102%	Limits:	62.9-131% 58.7-133%	"							12/06/07 21:43	
	4-bromofluorobenzene			108%		60.8-140%	"								

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 15T AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:37

Notes and Definitions

Report Specific Notes:

E

Concentration exceeds the calibration range and therefore result is semi-quantitative.

H1

Sample analysis performed past the method-specified holding time per client's approval.

Laboratory Reporting Conventions:

DET

Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND

Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA

Not Reported / Not Available

dry

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD

RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL*

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dil

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting -Limits Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic Signature Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

l'est//merica

11720 North Creek Pkovy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302

425-420-9200 FAX 426-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 TA WO ID OTHER Specify. Turnaround Request less than standard may may Ruth Charges 200 60 200 8 PATE: 11/13/07 30 8 9 91 10 DATE: [[[[5[0] ۲ TIME: 08:00 TIME 1957 0 . 5 4 3 2 1 <1 <1 <1 Work Order#: SQICOS TURNAROUND REQUEST LOCATION/ COMMENTS Organic & Inorganic Analyses 7 S 4 3 2 Petroleum Hydrocarbon Analy in Business Days * FIRST. # OF CONT. 2 N 2 2 N N N N N N DETI FROM DE 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 MATRIX (W, S, O) 3 3 3 3 3 3 3 ST ST 3 3 3 RECEIVED SYTHE HAY LUNDER PRIDITIVAME: C. LOS RECEIVED BY: ALLES PRINTNAME REQUESTED ANALYSES CFR PRESERVATIVE DATE: 11/13 67 TIME 12337 CHAIN OF CUSTODY REPORT P.O. NUMBER: DATE TIME A CHARLE LEG INC 80728 1797° 1001 1611 おこ 7 7 7 1 1 ANALYTICAL TESTING CORPORATION FINE /FR 1345 06:4/ 1315 2882 1450 1455 PHONE: 504 585-7245 FAX: 509 535 7341 1115 16:30 15:20 5420 1- 7-11/ay 2046618551 SAMPLING DATE/TIME 2310 worth mother Rd 16-20-07 いろろで PROJECT NAME: NEW CI'TY CLEANESS PROJECT NUMBER: 627 - 340 ZJ - 44 REPORT TO: Megan Lunney SOKOS MW NCC 2 CLIENT SAMPLE IDENTIFICATION LFR MWZI MW 70 MW 85 MNBO MNTO Mry 55 MW65 MW SD NN 18 ADDITIONAL REMARKS SAMPLED BY: VELEASED BY:/ RELEASED BY: RINTHAME ADDRESS: COC REV ESCORE CLIENT:

PAGE | OF?

ANALYTICAL TESTING CORPORATION estameric

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 11720 North Creek Pkvvy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaventon, OR 97008-7145

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

TEMT: (PAGEZ OF Z 77 *Turnaround Requests less than standard may incur Rush Charges. TANE 68 , 000 N WOLD DATE 1/13/07 Į, P TME: (38 Work Order #: 52/008 5 4 3 2 1 <1 TURNAROUND REQUEST LOCATION / COMMENTS in Business Days * # OF FIRM: (F-Q N MATRIX (W, S, O) FIRM: 10 370 7 3 3 WEGBON LUNNEY RECEIVED BY: THUS YOU RECEIVED BY PRINT NAME: PRINT NAME: REQUESTED ANALYSES PRESERVATIVE DATE 11/13 んマ TAME た: 3ユ CHAIN OF CUSTODY REPORT P.O. NUMBER INVOICE TO: DATE TIME (FO INC לטפים לטפים מצנים א HCL 54 se 208 661 8557 41036 1015 1135 FUN SAMPLING ADDRESS: 2310 Moth Miller Rd.
Liberty Lake U.A. 9
EHONE 589 535 7225 FAX: 599 535 PROJECT NAME: New City Cleaners PROJECT NUMBER: 027 - 306 21 - 00 10-21-11 ADDITIONAL REMARKS. Freday dir CLIENT SAMPLE DENTIFICATION Trip Blank LFR AM 95 MX 90 RELEASED BY: SAMPLED BY: RELEASED BY: PRINTNAME COC REV MIZOR CLIENT:

August 26, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: New City Cleaners

Enclosed are the results of analyses for samples received by the laboratory on 08/07/08 14:45. The following list is a summary of the Work Orders contained in this report, generated on 08/26/08 09:45.

If you have any questions concerning this report, please feel free to contact me.

Description of the second			
Work Order	Project	<u>ProjectNumber</u>	
SRH0057	New City Cleaners	027-30021-00	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW5S	SRH0057-01	Water	08/06/08 18:20	08/07/08 14:45
MW5D	SRH0057-02	Water	08/06/08 19:00	08/07/08 14:45
MW6D	SRH0057-03	Water	08/07/08 07:50	08/07/08 14:45
MW6S	SRH0057-04	Water	08/07/08 08:20	08/07/08 14:45
MW7D	SRH0057-05	Water	08/07/08 06:00	08/07/08 14:45
MW7I	SRH0057-06	Water	08/07/08 07:15	08/07/08 14:45
MW7S	SRH0057-07	Water	08/07/08 06:40	08/07/08 14:45
MW8D	SRH0057-08	Water	08/06/08 21:20	08/07/08 14:45
MW8S	SRH0057-09	Water	08/06/08 21:50	08/07/08 14:45
MW DUP	SRH0057-10	Water	08/07/08 00:00	08/07/08 14:45
MW 9D	SRH0057-11	Water	08/06/08 20:40	08/07/08 14:45
MW 9S	SRH0057-12	Water	08/06/08 19:50	08/07/08 14:45
Trip Blank	SRH0057-13	Water	08/06/08 00:00	08/07/08 14:45

TestAmerica Spokane

taras Randee Decker, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-01 (MW5S)		Wa	iter		Sam	pled: 08/0	6/08 18:20			
Dichlorodifluoromethane	EPA 8260B	ND	*****	10.0	ug/I	10x	8080117	08/18/08 09:47	08/18/08 19:09	
Chloromethane	W	ND		30.0					.00	
Vinyl chloride	¥.	ND		2.00	*		"	*	*	
Bromomethane		ND		50.0	*	*		•		
Chloroethane	и	ND	****	10.0			**	95	280	
Frichlorofluoromethane	ж	ND		10.0			*	*	(10)	
1,1-Dichloroethene	×	ND		10.0		*	*		W	
Carbon disulfide		ND		10,0				35	(25)	
Methylene chloride	W.	ND		100	*		*		W	
Acetone		ND		250			W		и.	
rans-1,2-Dichloroethene	,	ND		10,0					н	
Methyl tert-butyl ether		ND		10.0		w			W 12	
1,1-Dichloroethane	ii .	ND		10.0					0.	
cis-1,2-Dichloroethene	*	ND		10.0			*			
2,2-Dichloropropane	,	ND		10.0	15					
Bromochloromethane	*	ND		10.0	*		¥	*	0.	
Chloroform	*	ND		10.0						
Carbon tetrachloride		ND		10.0						
1,1,1-Trichloroethane	*	ND		10.0	8		*			
2-Butanone	*	ND		100	w.		**		W.	
1,1-Dichloropropene		ND	*****	10.0				*		
Benzene		ND	****	2.00	75	w		w		
1,2-Dichloroethane (EDC)	3	ND	*****	10.0	N .	. *	**	(0)	*	
Frichloroethene		21.7		10.0					¥	
Dibromomethane		ND		10.0						
1,2-Dichloropropane	(6.)	ND	****	10.0	*					
Bromodichloromethane		ND		10.0					¥	
cis-1,3-Dichloropropene		ND	****	10.0						
Toluene	(40)	ND	*****	10.0	×			325		
4-Methyl-2-pentanone	(4)	ND	*****	100	×	*		(06)	*	
trans-1,3-Dichloropropene	*	ND	****	10.0						
retrachloroethene	96)	177		10.0						
1,1,2-Trichloroethane	(8)	ND		10.0	*		9.7		*	
Dibromochloromethane		ND		10.0	¥		n.	¥	W	
1,3-Dichloropropane		ND		10.0					·	
1,2-Dibromoethane	700	ND		10.0					,	
2-Hexanone		ND		100	W			×	*	
Ethylbenzene		ND	******	10.0						

TestAmerica Spokane

The results in this report apply to the samples analyzed in occordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00

Meghan Lunney

Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-01 (MW5S)		Wa	iter		Sam	pled: 08/0	6/08 18:20			
Chlorobenzene		EPA 8260B	ND		10.0	ug/l	10x	8080117	08/18/08 09:47	08/18/08 19:09	
1,1,1,2-Tetrachloroet	thane	•	ND		10.0				*	10	
m,p-Xylene		1.00	ND	*****	20.0	*	•	*	•		
o-Xylene			ND	*****	10.0		26.5	(#)	*	90	
Styrene		•	ND		10.0		*	W.	*		
Bromoform		1.5	ND	****	10.0	"			*		
Isopropylbenzene		()	ND	*****	10.0						
n-Propylbenzene		•	ND		10.0		16		,		
1,1,2,2-Tetrachloroe	thane	•	ND		10,0			W		¥	
Bromobenzene		0.	ND	*****	10,0	(*)				•	
1,3,5-Trimethylbenz	ene	ii.	ND	100.00	10.0			. *			
2-Chlorotoluene		•	ND	*****	10.0				- 10	(W)	
1,2,3-Trichloropropa	nne	W.	ND	****	10.0	•	*				7
4-Chlorotoluene		ni	ND	2200	10.0	*	*	9	**	2.5	
tert-Butylbenzene			ND		10.0	n'		**			
1,2,4-Trimethylbenz	ene	*	ND	****	10,0	*					
sec-Butylbenzene		*	ND		10.0	"				*	
p-Isopropyltoluene			ND		10.0	ж		*		36	
1,3-Dichlorobenzene	0		ND		10.0	.*	**	"		0.	
1,4-Dichlorobenzene	ē.		ND		10.0	*		*		*	
n-Butylbenzene		*	ND		10.0	*		×	(11)		
1,2-Dichlorobenzene	e	•	ND	*****	10.0			*		*	
1,2-Dibromo-3-chlo	ropropane	77	ND	****	50.0	*	•			*	
Hexachlorobutadien	е		ND	****	10.0			<i>M</i>			
1,2,4-Trichlorobenz	ene		ND	57775	10.0	w					
Naphthalene			ND		20.0	*		*		*	
1,2,3-Trichlorobenz	ene	30	ND	*****	10.0	#			*		
Surrogate(s):	Dibromofluoromethane			97.9%			? - 128 %	lx		"	
and an arrange of the second of the second	Toluene-d8			120%			- 120 %	"		<i>M</i> ,	
	4-bromofluorobenzene			112%		77.3	1 - 129 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in occordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-02 (MW5D)		Wa	ter		Sam	pled: 08/0	06/08 19:00			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 19:38	
Chloromethane	, w	ND	****	3.00			*	**		
Vinyl chloride	•	ND	****	0.200					W	
Bromomethane	3.7%	ND	****	5.00						
Chloroethane	W.	ND		1.00	4	*				
Trichlorofluoromethane		ND		1.00	*				0	
1,1-Dichloroethene		ND		1.00	*		•	•	(0)	
Carbon disulfide	W	ND	*****	1.00	(*)	(8)		*	(0)	
Methylene chloride	н	ND		10.0						
Acetone	ů.	ND	*****	25.0				•		
trans-1,2-Dichloroethene	7.0.	ND		1.00		*			3 .9 23	
Methyl tert-butyl ether	18	ND		1.00				*	0	
1,1-Dichloroethane	*	ND		1.00					•	
cis-1,2-Dichloroethene		ND	*****	1.00			*			
2,2-Dichloropropane	w.	ND		1.00					(W).	
Bromochloromethane		ND		1.00		*	. 10	w	•	
Chloroform	•	ND		1.00				*	*	
Carbon tetrachloride	*	ND		1.00			7.8			
1,1,1-Trichloroethane	W.	ND	-	1.00					(0)	
2-Butanone	w.	ND		10,0				н		
1,1-Dichloropropene		ND	*****	1.00						
Benzene	0.	ND		0,200		1.0		*		
1,2-Dichloroethane (EDC)	w.	ND		1.00						
Trichloroethene		ND	****	1.00						
Dibromomethane	*	ND	*****	1.00	*			2		
1,2-Dichloropropane	n .	ND		1.00		100		*		
Bromodichloromethane	•	ND		1.00						
cis-1,3-Dichloropropene	*	ND	-	1.00		100				
Toluene	*	ND		1.00			ii.	× .		
4-Methyl-2-pentanone		ND	*****	10.0						
trans-1,3-Dichloropropene		ND	****	1.00						
Tetrachloroethene		ND	9.103	1.00	*	96		*	**	
1,1,2-Trichloroethane		ND	*****	1.00			w.	¥	10	
Dibromochloromethane		ND	*****	1.00					*	
1,3-Dichloropropane	n	ND		1.00	**	**		×	W	
1,2-Dibromoethane	ű.	ND		1.00		10	*	(4)	ű.	
2-Hexanone		ND		10.0					*	
Ethylbenzene		ND		1.00			18	(#.)		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-02 (MW5D)		Wa	iter		Sam	pled: 08/0	6/08 19:00			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 19:38	
1,1,1,2-Tetrachloroethane		ND		1.00		*				
m,p-Xylene		ND		2.00	. 10			2.5	(90)	
o-Xylene	•	ND		1,00	*				10	
Styrene	*5	ND	*****	1.00	*					
Bromoform	iii	ND	****	1.00	×	1.5	н	20		
Isopropylbenzene		ND		1.00			11		(0)	
n-Propylbenzene		ND		1.00	*		,,			
1,1,2,2-Tetrachloroethane		ND		1.00		3.95				
Bromobenzene	"	ND		1.00	*		*		(0.0	
1,3,5-Trimethylbenzene		ND		1.00			*		(90)	
2-Chlorotoluene	n /	ND		1.00		*	*	•	*	
1,2,3-Trichloropropane	•	ND		1.00	ж					
4-Chlorotoluene		ND		1.00			W	100	*	
tert-Butylbenzene	*	ND	*****	1.00						
1,2,4-Trimethylbenzene		ND	****	1.00	*		*		*	
sec-Butylbenzene	W	ND		1.00	*					
p-Isopropyltoluene		ND		1.00	×	*				
1,3-Dichlorobenzene		ND		1.00					•	
1,4-Dichlorobenzene	ů.	ND		1.00	×			. 100	e.	
n-Butylbenzene	*	ND		1.00	W		•		*	
1,2-Dichlorobenzene		ND		1.00			*		*	
1,2-Dibromo-3-chloropropane	Ж	ND		5.00	*		200		"	
Hexachlorobutadiene		ND		1.00		**		*	×	
1,2,4-Trichlorobenzene		ND	*****	1.00				*	ü	
Naphthalene		ND	****	2.00			*		*	
1,2,3-Trichlorobenzene	(#8	ND		1,00	*		*	ж	*	
Surrogate(s): Dibromofluorometi	hane		92.2%		62.2	? - 128 %	,		"	
Toluene-d8			119%		75.4	4 - 120 %	"		"	
4-bromofluorobenz	tene		118%		77.3	3 - 129 %	"		"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-03 (MW6D)		Wa	ter		Sam	pled: 08/0	7/08 07:50			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/08/08 13:17	
Chloromethane	M ()	ND	****	3.00	*		,,	100		
Vinyl chloride	N.	ND		0.200			"		•	
Bromomethane		ND		5,00	•			•	•	
Chloroethane	(00)	ND		1.00	1.8					
Trichlorofluoromethane	w	ND		1.00	*	**	"	*		
1,1-Dichloroethene	•	ND		1.00	*					
Carbon disulfide	30%	ND		1.00				*		
Methylene chloride		ND		10.0	u		*			
Acetone		ND		25,0		*			W	
rans-1,2-Dichloroethene		ND		1.00		*			"	
Methyl tert-butyl ether	W.	ND		1.00			(*)		*	
1,1-Dichloroethane	(W)	ND		1.00	*	*		*	W.	
ois-1,2-Dichloroethene		ND	*****	1,00		¥	*			
2,2-Dichloropropane	.00	ND	****	1.00		*	**	*	*	
Bromochloromethane	W	ND		1.00		×	11.	*		
Chloroform		ND		1.00		×		*	×	
Carbon tetrachloride	*	ND	*****	1.00		*		*	•	
1,1,1-Trichloroethane	96	ND		1.00		**	•	<u>K</u>		
2-Butanone		ND		10.0				×	*	
1,1-Dichloropropene		ND	*****	1.00				8		
Benzene	. 11	ND	*****	0.200	7	**				
1,2-Dichloroethane (EDC)		ND		1.00						
Trichloroethene		ND	*****	1.00						
Dibromomethane	(36)	ND	****	1.00					ÿ	
1,2-Dichloropropane	. •	ND	*****	1.00	36		•	**		
Bromodichloromethane		ND	*****	1.00		*		**		
cis-1,3-Dichloropropene		ND		1.00			•			
Toluene		ND	*****	1.00	(#5)	(9)		*	,	
4-Methyl-2-pentanone	· ·	ND		10.0						
trans-1,3-Dichloropropene		ND	-	1.00			**			
Tetrachloroethene	0.	ND	-	1.00	360		39			
1,1,2-Trichloroethane	íč	, ND		1.00			u ·	*		
Dibromochloromethane	ii .	ND	****	1.00					ä	
1,3-Dichloropropane		ND		1.00						
1,2-Dibromoethane	iii	ND		1.00					*	
2-Hexanone		ND		10.0					*	
Ethylbenzene	"	ND		1.00						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: 027-30021-00

Project Manager: Meghan Lunney

Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-03 (MW6D)		W	iter		Sam	pled: 08/0	7/08 07:50			
Chlorobenzene	EPA 8260B	ND	7777	1.00	ug/l	1x	8080045	08/07/08 15:56	08/08/08 13:17	
1,1,1,2-Tetrachloroethane	,	ND	****	1.00	•		"			
m,p-Xylene	•	ND	****	2.00		M		1275		
o-Xylene		ND		1.00	*	**	"		ж	
Styrene		ND		1.00		•				
Bromoform	W.	ND		1.00			"			
Isopropylbenzene		ND		1.00		*		н		
n-Propylbenzene	•	ND	*****	1.00				"		
1,1,2,2-Tetrachloroethane	W.	ND		1.00				"		
Bromobenzene		ND		1.00		**			.9	
1,3,5-Trimethylbenzene		ND		1.00	9	и "		*		
2-Chlorotoluene		ND		1.00			*			
1,2,3-Trichloropropane		ND	*****	1.00	*	"	*			
4-Chlorotoluene		ND		1.00		91		*	×	
tert-Butylbenzene		ND		1.00					•	
1,2,4-Trimethylbenzene		ND	****	1.00		*		*	*	
sec-Butylbenzene	"	ND	*****	1.00		(8)	(4)	**	80	
p-Isopropyltoluene		ND		1.00				н		
1,3-Dichlorobenzene		ND	****	1.00	•			*		
1,4-Dichlorobenzene	. 00	ND		1.00	*		100			
n-Butylbenzene		ND		1.00		(4)		•	W(
1,2-Dichlorobenzene	u i	ND	*****	1.00		4	*			
1,2-Dibromo-3-chloropropane	(N	ND		5.00	353	*	3.00			
Hexachlorobutadiene	(A)	ND		1.00				*		
1,2,4-Trichlorobenzene	*	ND	****	1.00		w		¥		
Naphthalene		ND		2,00				•		
1,2,3-Trichlorobenzene	•	ND	-	1.00	(H .	*		*	3.86	
Surrogate(s): Dibromofluorome	hane		112%		62.2	- 128 %			"	
Toluene-d8			107%		75.4	1 - 120 %	"		"	
4-bromofluoroben	zene		91.1%		77.3	1 - 129 %	n		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-04 (MW6S)		Wa	ater		Samp	oled: 08/0	7/08 08:20			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/08/08 13:46	
Chloromethane	*	ND		3.00	•		*			
Vinyl chloride		ND		0.200	98				(#)	
Bromomethane		ND		5.00	*	*				
Chloroethane		ND		1.00						
Trichlorofluoromethane	•	ND	*****	1.00						
1,1-Dichloroethene	W	ND		1.00			0	W		
Carbon disulfide	i ii	ND		1.00						
Methylene chloride	*	ND		10.0						
Acetone	7 M.	ND	*****	25.0		*				
trans-1,2-Dichloroethene	100	ND		1.00				ü		
Methyl tert-butyl ether	*	ND		1.00					•	
I,I-Dichloroethane	195	ND		1.00			(*)	**		
cis-1,2-Dichloroethene	ж.	ND		1.00						
2,2-Dichloropropane	w.	ND		1.00			*	**		
Bromochloromethane	*	ND	*****	1.00					(#)	
Chloroform	3.00	ND	*****	1.00		*		*	10	
Carbon tetrachloride	(10)	ND		1.00			*	w	ii.	
,1,1-Trichloroethane	ű.	ND	*****	1.00		*			"	
2-Butanone	950	ND	*****	10.0	20		0.00		(W)	
1,1-Dichloropropene	и	ND		1.00				*	•	
Benzene	W.	ND	*****	0.200				9		
,2-Dichloroethane (EDC)		ND	****	1.00	35					
Crichloroethene		6.82		1.00			*		w.	
Dibromomethane	(0)	ND	****	1.00	*			2	W.	
,2-Dichloropropane		ND	*****	1.00						
Bromodichloromethane		ND	*****	1.00		9.	3957	8	₩ 5	
cis-1,3-Dichloropropene		ND		1.00	*	*		¥		
l'oluene	•	ND	*****	1.00				•		
I-Methyl-2-pentanone	•	ND	*****	10.0				*		
rans-1,3-Dichloropropene	(M)	ND		1.00	'n		n			
etrachloroethene	. 0	7.86		1.00				*		
,1,2-Trichloroethane	•	ND	*****	1.00						
Dibromochloromethane	(0)	ND	****	1.00			*		98	
,3-Dichloropropane	W	ND		1.00		Ŷ.	•	н		
,2-Dibromoethane		ND	*****	1.00					*	
2-Hexanone		ND		10.0	*		X		20	
Ethylbenzene	(#)	ND		1.00		*			\ii	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-04 (MW6S)		Wa	iter		Samj	oled: 08/0	7/08 08:20			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/08/08 13:46	
1,1,1,2-Tetrachloroethane	*	ND	*****	1.00						
n,p-Xylene	*	ND		2.00					*	
o-Xylene	w.	ND	*****	1.00	9 W	**	*			
Styrene	•	ND		1.00	•	"	*		v	
Bromoform	W.	ND	*****	1.00	7	"			•	
sopropylbenzene	W	ND		1.00	*	*				
n-Propylbenzene	*	ND		1.00	"	*	"		,,	
1,1,2,2-Tetrachloroethane		ND	*****	1.00			"		"	
Bromobenzene	W.	ND		1.00	"			(9)	"	
1,3,5-Trimethylbenzene		ND		1.00	¥	*	*	(0)	"	
2-Chlorotoluene		ND	*****	1.00				*	•	
,2,3-Trichloropropane	*	ND	*****	1.00		*				
I-Chlorotoluene	Ÿ.	ND	*****	1.00	*	*				
ert-Butylbenzene		ND		1.00						
1,2,4-Trimethylbenzene		ND	****	1.00	,			•	•	
sec-Butylbenzene	*	ND		1.00		*		*.		
o-Isopropyltoluene	*	ND		1.00		**	*	*	*	
1,3-Dichlorobenzene	,	ND	****	1.00				•		
1,4-Dichlorobenzene	*	ND		1.00	9	"		*		
n-Butylbenzene		ND		1.00	*	*	н	×) x	
1,2-Dichlorobenzene	•	ND	*****	1.00					ii ii	
1,2-Dibromo-3-chloropropane		ND	*****	5.00				*	•	
Hexachlorobutadiene	*	ND		1.00	*	*	(40)	W		
1,2,4-Trichlorobenzene		ND		1.00			м	*		
Naphthalene	28	ND	****	2.00				"		
1,2,3-Trichlorobenzene	W	ND		1.00				2.		
Surrogate(s): Dibromofluorom	ethane		112%		62.2	- 128 %	"		"	
Toluene-d8			105%		75.4	- 120 %	n		"	
4-bromofluorobe	nzene		95.0%		77.3	- 129 %	"			

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney

Report Created: 08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-05 (MW7D)	U-Caraca and a second	Wa	ater		Sam	oled: 08/0	07/08 06:00			
Dichlorodifluoromethane	EPA 8260B	ND	****	1,00	ug/I	1×	8080045	08/07/08 15:56	08/08/08 14:15	
Chloromethane	"	ND		3.00	"		"	"		
Vinyl chloride	•	ND		0.200						
Bromomethane	"	ND		5.00	92	3.0		20.	989	
Chloroethane	H.	ND		1.00	*		**	36	9 0	
Trichlorofluoromethane	*	ND	*****	1.00						
1,1-Dichloroethene		ND	*****	1.00	7	(8)				
Carbon disulfide	11	ND		1.00	6				(W)	
Methylene chloride	î	ND		10.0						
Acetone		ND		25.0				,,	(9)	
trans-1,2-Dichloroethene	10	ND	*****	1,00					300	
Methyl tert-butyl ether	ù	ND		1.00			**	¥		
1,1-Dichloroethane	•	ND		1.00					•	
cis-1,2-Dichloroethene	"	ND	*****	1.00		(8)	*		700	
2,2-Dichloropropane		ND	*****	1.00				*	W	
Bromochloromethane		ND		1.00				*		
Chloroform		ND	*****	1.00						
Carbon tetrachloride	•	ND	*****	1.00	*:					
1,1,1-Trichloroethane	(C)	ND		1.00						
2-Butanone		ND		10.0						
1,1-Dichloropropene	*	ND	*****	1.00					950	
Benzene	•	ND	¥	0.200	18			·		
1,2-Dichloroethane (EDC)	ů.	ND	****	1.00						
Trichloroethene	10	ND	*****	1.00						
Dibromomethane	0.	ND		1.00	(8)		×.			
1,2-Dichloropropane	W	ND		1.00	N.				и	
Bromodichloromethane		ND	*****	1.00		*				
cis-1,3-Dichloropropene		ND		1.00						
Toluene		ND		1.00						
4-Methyl-2-pentanone		ND		10.0						
rans-1,3-Dichloropropene		ND		1.00						
Fetrachloroethene	•	ND		1.00				¥		
,1,2-Trichloroethane		ND		1.00						
Dibromochloromethane		ND	-	1.00						
1,3-Dichloropropane		ND		1.00						
1,2-Dibromoethane		ND		1.00					m.	
2-Hexanone		ND		10.0					4993 1984	
z-Hexanone Ethylbenzene	7%	ND		1.00				2		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-05 (MW7D)		Wa	iter		Samp	oled: 08/0	7/08 06:00			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/08/08 14:15	
1,1,1,2-Tetrachloroethane	".	ND	*****	1.00			"		"	
m,p-Xylene	10	ND		2.00				(*)		
o-Xylene	ii .	ND		1.00			**	(4)		
Styrene		ND	-	1.00					"	
Bromoform		ND	*****	1.00	10			(*)	".	
Isopropylbenzene	*	ND		1.00			*		16	
n-Propylbenzene	*	ND	*****	1.00						
1,1,2,2-Tetrachloroethane		ND	*****	1.00		0.75			7	
Bromobenzene	¥	ND		1.00				(#)	*	
1,3,5-Trimethylbenzene	*	ND		1.00			¥	*		
2-Chlorotoluene	M	ND	-	1,00		*	*		•	
1,2,3-Trichloropropane		ND		1.00	6	7.00	*			
4-Chlorotoluene	ii .	ND		1.00	*	w			¥	
tert-Butylbenzene	,	ND	*****	1.00	*		*	*	*	
1,2,4-Trimethylbenzene	×	ND		1.00	*		*			
sec-Butylbenzene	N .	ND		1.00	H:		*	(8)	*	
p-Isopropyltoluene	¥	ND		1.00	*		*		ű	
1,3-Dichlorobenzene		ND		1.00	5	**	17	*	•	
1,4-Dichlorobenzene	W	ND		1.00	ж.			0.00	*	
n-Butylbenzene		ND		1.00	*		*		*	
1,2-Dichlorobenzene	8	ND		1.00	*	•				
1,2-Dibromo-3-chloropropane	*	ND	*****	5.00	*	.5		(90)	"	
Hexachlorobutadiene		ND		1.00	*	W.	*	ж		
1,2,4-Trichlorobenzene		ND .	*****	1.00					₩	
Naphthalene	э.	ND	*****	2.00						
1,2,3-Trichlorobenzene	Ä	ND	****	1.00			*		*	
Surrogate(s): Dibromofluorom	ethane		116%		62.2	- 128 %	,,		"	
Toluene-d8			103%		75.4	- 120%	,		n	
4-bromofluorobe	nzene		94.3%		77.3	- 129%	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-06 (MW7I)		Wa	iter		Sam	pled: 08/0	7/08 07:15			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l	1x	8080045	08/07/08 15:56	08/08/08 20:35	
Chloromethane		ND		3.00	*			×		
Vinyl chloride		ND	*****	0.200				*	•	
Bromomethane		ND	****	5.00				*		
Chloroethane)#O	ND		1,00			*	*		
Trichlorofluoromethane		ND		1,00		*		*	W.	
1,1-Dichloroethene	*	ND	*****	1.00			*	*		
Carbon disulfide	(10)	ND	*****	1,00	*	*	*	*		
Methylene chloride	(W)	ND		10.0		*		*	n .	
Acetone		ND	*****	25.0					•	
trans-1,2-Dichloroethene	(I * /)	ND		1.00	100				(91)	
Methyl tert-butyl ether		ND	*****	1.00		*			W	
1,1-Dichloroethane		ND		1.00						
cis-1,2-Dichloroethene	69.	3.17	*****	1.00				•		
2,2-Dichloropropane		ND		1.00	*			•	(M)	
Bromochloromethane	(w)	ND		1.00					ж. —	
Chloroform		ND	*****	1.00						
Carbon tetrachloride	P	ND	****	1.00			0.			
1,1,1-Trichloroethane	3 m (/	ND		1.00		*			96.2	
2-Butanone		ND		10.0		*			n.	
1,1-Dichloropropene		ND	*****	1.00			**	"	•	
Benzene	.0	ND		0.200	(8)		.0			
1,2-Dichloroethane (EDC)	n .	ND		1.00				**	w	
Trichloroethene		12.6		1.00	*					
Dibromomethane		ND	*****	1.00					"	
1,2-Dichloropropane		ND		1.00		. 91		**	(0,1	
Bromodichloromethane		ND		1.00				"	60	
cis-1,3-Dichloropropene		ND		1.00		*	*	"	•	
Toluene	(0)	ND	*****	1.00	00	(#)	983	"		
4-Methyl-2-pentanone	3W	ND	*****	10.0				**	**	
trans-1,3-Dichloropropene		ND	*****	1.00				"	•	
Tetrachloroethene	(*	13.3		1.00	180	260	300		(0)	
1,1,2-Trichloroethane	96	ND		1.00	*	ж.	*	9	(6)	
Dibromochloromethane		ND		1.00						
1,3-Dichloropropane	,,	ND		1.00					*	
1,2-Dibromoethane	3.65	ND		1.00		(0)	140	ж.	0	
2-Hexanone	740	ND		10.0	140				n i	
Ethylbenzene		ND		1.00					•	

TestAmerica Spokane

The results in this report opply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

tande

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-06 (MW7I)		W	ater		Sam	pled: 08/0	7/08 07:15			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/08/08 20:35	
1,1,1,2-Tetrachloroethane		ND	*****	1.00						
m,p-Xylene	100	ND		2.00	. 11			*	907	
o-Xylene		ND		1.00			W		u i	
Styrene		ND		1.00		*		*	•	
Bromoform	(#)	ND		1.00	*	90		*	/#/	
Isopropylbenzene	5 4 8	ND		1.00		*		n	782	
n-Propylbenzene		ND	*****	1.00					•	
1,1,2,2-Tetrachloroethane		ND	****	1.00	*	*				
Bromobenzene	(ii)	ND	****	1.00	*	*		*		
1,3,5-Trimethylbenzene	(*	ND		1.00		*				
2-Chlorotoluene		ND	****	1.00						
1,2,3-Trichloropropane	100	ND		1.00					(W)	
4-Chlorotoluene		ND		1.00		*		*	(6)	
tert-Butylbenzene		ND		1.00				*	•	
1,2,4-Trimethylbenzene	18.7	ND	*****	1.00						
sec-Butylbenzene		ND		1.00				36	(*)	
o-Isopropyltoluene	(6) (*) (*)	ND		1.00		*			M .	
1,3-Dichlorobenzene		ND	****	1.00	*	*			. 10	
1,4-Dichlorobenzene		ND	277	1.00			6		*	
n-Butylbenzene		ND	*****	1.00		**		*	W	
1,2-Dichlorobenzene		ND	*****	1.00				•		
1,2-Dibromo-3-chloropropane		ND		5.00	.0	n.	*	34.7	(9)	
Hexachlorobutadiene		ND		1.00		10	ii.		160	
1,2,4-Trichlorobenzene		ND	*****	1.00		**			(10)	
Naphthalene		ND	*****	2.00				*	3.00	
1,2,3-Trichlorobenzene	740	ND	****	1.00			"	*	300	
Surrogate(s): Dibromo,	(luoromethane		115%		62,2	- 128 %	"		*	
Toluene-d8			105%		75.4	- 120 %	"		"	
4-bromoj	luorobenzene		89.0%		77.3	- 129 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-07 (MW7S)		Wa	iter		Samp	oled: 08/0	7/08 06:40			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080045	08/07/08 15:56	08/08/08 15:14	
Chloromethane	W	ND		3.00				*	in the second	
Vinyl chloride	•	ND	****	0,200			•		\(\delta\)	
Bromomethane	9	ND		5.00			"			
Chloroethane	* C	ND	-	1.00			W.	W	9.67	
Trichlorofluoromethane	6 6	ND		1.00						
1,1-Dichloroethene		ND		1.00			"			
Carbon disulfide	1.8.	ND	-	1.00	(8)		*	*	(10)	
Methylene chloride	, w	ND		10.0	17			*		
Acetone		ND	*****	25.0				,		
trans-1,2-Dichloroethene		2.13	****	1.00					347	
Methyl tert-butyl ether	000	ND	2222	1.00						
1,1-Dichloroethane	100	ND		1.00	W					
cis-1,2-Dichloroethene	•	13.9		1.00					878	
2,2-Dichloropropane	(#.	ND		1.00						
Bromochloromethane	и	ND	22222	1.00	w		и	W		
Chloroform	# W	ND		1.00						
Carbon tetrachloride		ND		1.00						
1,1,1-Trichloroethane		ND	*****	1.00	и	*		,	0	
2-Butanone	н	ND		10.0		n				
1,1-Dichloropropene	*	ND		1.00	*					
Benzene		ND		0,200					(0)	
1,2-Dichloroethane (EDC)	W.	ND		1.00	и				W.	
Trichloroethene	w.	12.7	****	1.00					•	
Dibromomethane	*	ND		1.00		*				
1,2-Dichloropropane		ND		1.00					0	
Bromodichloromethane	. #	ND		1.00	u	w			(i)	
cis-1,3-Dichloropropene	ii .	ND		1,00						
Toluene		ND		1.00	3.95	38	(8)		30	
4-Methyl-2-pentanone		ND		10,0		*	7.00	*		
trans-1,3-Dichloropropene	u	ND		1,00		*				
Tetrachloroethene	1.00	8.99		1.00			8.95		(0)	
1,1,2-Trichloroethane	(#	ND		1.00			(9)		(0)	
Dibromochloromethane	(W)	ND		1.00				1.0	***	
1,3-Dichloropropane		ND		1.00	*					
1,2-Dibromoethane	700	ND		1,00		*		,	.0	
2-Hexanone	ii .	ND	*****	10.0	W				n	
Ethylbenzene		ND	*****	1.00						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-07 (MW7S)		Ws	iter		Sam	pled: 08/0	7/08 06:40			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1×	8080045	08/07/08 15:56	08/08/08 15:14	
1,1,1,2-Tetrachloroethane		ND	****	1.00			•	*		
m,p-Xylene	(W /	ND		2.00	*	*		*		
o-Xylene		ND	27777	1.00		*		**		
Styrene		ND	*****	1.00					*	
Bromoform	(W)(ND	****	1.00	(6)	*		8	(4)	
Isopropylbenzene	и.	ND		1,00		*		*	0.	
n-Propylbenzene		ND	*****	1.00				•	*	
1,1,2,2-Tetrachloroethane	(9)	ND	*****	1.00	250	(*)				
Bromobenzene	(iii)	ND		1.00		ж.		*	*	
1,3,5-Trimethylbenzene		ND		1.00					•	
2-Chlorotoluene		ND	*****	1.00		9.				
1,2,3-Trichloropropane	700	ND		1.00				*	(10.5)	
4-Chlorotoluene		ND		1.00				*	0.	
tert-Butylbenzene		ND		1.00				•	•	
1,2,4-Trimethylbenzene	(W	ND	*****	1.00	287			*		
sec-Butylbenzene		ND	-	1.00				*	и.	
p-Isopropyltoluene	•	ND		1.00				*	n)	
1,3-Dichlorobenzene		ND	*****	1.00						
1,4-Dichlorobenzene		ND	-	1.00	*					
n-Butylbenzene	W	ND		1.00					*	
1,2-Dichlorobenzene	0.90	ND	*****	1.00						
1,2-Dibromo-3-chloropropane	W	ND	*****	5.00	*	*	. *		(*)	
Hexachlorobutadiene	W.	ND		1.00	*				100	
1,2,4-Trichlorobenzene		ND		1.00					*	
Naphthalene	E W.	ND	-	2.00		28.	*		(#)	
1,2,3-Trichlorobenzene		ND		1.00		(4)		*	.	
Surrogate(s): Dibromofluorome	ethane		114%		62.2	- 128 %	,		,,	
Toluene-d8			103%		75.4	- 120 %	"		*	
4-bromofluorobe	nzene		91.0%		77.3	- 129 %	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-08 (MW8D)		Wa	iter		Samj	pled: 08/0	06/08 21:20			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	lx	8080117	08/18/08 09:47	08/18/08 20:07	
Chloromethane	Ĥ	ND		3.00	"				10	
Vinyl chloride	#	ND		0.200		**				
Bromomethane		ND	****	5.00	- 1			**	.00	
Chloroethane	**	ND		1.00		30		"	10.	
Trichlorofluoromethane	u .	ND		1,00						
1,1-Dichloroethene		ND	*****	1.00		**			100	
Carbon disulfide	*	ND	*****	1.00			и,	**	11	
Methylene chloride	W	ND		10.0			- 4	W	16	
Acetone	•	ND	*****	25.0				"		
rans-1,2-Dichloroethene	W	ND		1.00		36	(*)	ж.	.10	
Methyl tert-butyl ether	16	ND	277.0	1.00		90	w	×	10	
,1-Dichloroethane		ND	*****	1.00						
is-1,2-Dichloroethene	•	ND		1.00		185	3.25		.90	
2,2-Dichloropropane		ND		1.00		w		11	000	
Bromochloromethane	ii.	ND		1.00					n .	
Chloroform	#	5.18		1.00					,	
Carbon tetrachloride	•	ND	*****	1.00	(2)		340	*	(#7)	
,1,1-Trichloroethane	w)	ND		1.00		30		*		
-Butanone		ND		10.0			"			
,1-Dichloropropene	•	ND	*****	1.00		*	"			
Benzene		ND	****	0,200		980			(0)	
,2-Dichloroethane (EDC)	W.	ND	-	1.00		*		*	in	
[richloroethene	X	ND	*****	1.00				•	*	
Dibromomethane		ND	****	1.00	(#)	350		*		
1,2-Dichloropropane	W.	ND	2	1.00	*	*			W.	
Bromodichloromethane		ND	****	1.00				9		
cis-1,3-Dichloropropene		ND	*****	1.00		250	(*)		200	
Γoluene	0	ND		1.00	*	*		×	M:	
4-Methyl-2-pentanone	*	ND		10.0				¥.		
rans-1,3-Dichloropropene		ND	*****	1.00		*		4		
Tetrachloroethene		ND	****	1.00	(96)		*		30	
,1,2-Trichloroethane	W	ND		1.00				7.	*	
Dibromochloromethane		ND		1.00				9	*	
1,3-Dichloropropane	"	ND		1.00					9 (
1,2-Dibromoethane		ND		1.00				¥.	**	
2-Hexanone	 # +10	ND	*****	10.0			*		*	
Ethylbenzene		ND		1.00						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-08 (MW8D)		Wa	ater		Samp	pled: 08/0	6/08 21:20			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 20:07	
1,1,1,2-Tetrachloroethane	"	ND	*****	1.00		*	"		,	
m,p-Xylene		ND		2,00	4	**	**		,	
o-Xylène	*	ND	*****	1.00						
Styrene	"	ND		1.00		"		•		
Bromoform	n .	ND		1.00	*	v		*		
Isopropylbenzene		ND		1,00		"	**	*		
n-Propylbenzene		ND		1.00		*		*	•	
1,1,2,2-Tetrachloroethane	,,	ND	*****	1.00				₹.		
Bromobenzene		ND		1.00		W	×	*	34	
1,3,5-Trimethylbenzene	•	ND	-	1.00		*	*	*	•	
2-Chlorotoluene		ND	*****	1.00				8		
1,2,3-Trichloropropane		ND	-	1.00		*	9.0	*	*	
4-Chlorotoluene	•	ND		1.00		*	*	¥	*	
tert-Butylbenzene		ND	*****	1.00		*			*	
1,2,4-Trimethylbenzene	**	ND		1.00		*	(10)	*	90	
sec-Butylbenzene	n	ND		1.00	9	*		**	(#)	
p-Isopropyltoluene		ND		1.00		*			•	
1,3-Dichlorobenzene	.07	ND		1.00	44	*			20	
1,4-Dichlorobenzene	iii	ND		1.00	.00	at		w		
n-Butylbenzene	•	ND	Material	1.00				**	ж.	
1,2-Dichlorobenzene	*	ND	*****	1.00				*		
1,2-Dibromo-3-chloropropane	W .	ND		5,00	*	,0	383	*	.00	
Hexachlorobutadiene	u .	ND	*****	1.00	*	**		w.	(6)	
1,2,4-Trichlorobenzene		ND		1.00			*	•		
Naphthalene		ND	Name of Street	2,00				×	.00	
1,2,3-Trichlorobenzene	ii.	ND	-	1.00		**		*	*	
Surrogate(s): Dibromofluorome	ethane		94.3%		62.2	- 128 %	u.		"	
Toluene-d8			117%		75.4	- 120 %			"	
4-bromofluorobe	nzene		116%		77.3	- 129 %	,,		"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-09 (MW8S)		Wa	iter		Sam	pled: 08/0	06/08 21:50			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 20:36	
Chloromethane	w .	ND		3.00		**			*	
Vinyl chloride		ND		0.200					*	
Bromomethane		ND		5.00		**	,,		"	
Chloroethane	W	ND		1.00	0	**				
Trichlorofluoromethane		ND.		1.00		**			"	
I,1-Dichloroethene		ND		1.00						
Carbon disulfide	<i>y</i>	ND	*****	1.00	20	**	3	38	W.	
Methylene chloride		ND		10,0			·		н	
Acetone		ND		25.0					"	
trans-1,2-Dichloroethene	X	ND		1.00				3.		
Methyl tert-butyl ether	W	ND		1.00	*	**		×	"	
1,1-Dichloroethane		ND	****	1.00					11	
cis-1,2-Dichloroethene		27.0	***	1.00						
2,2-Dichloropropane	367	ND	descri	1.00		0			**	
Bromochloromethane	0	ND	****	1.00	*	10			0.	
Chloroform	•	ND		1.00						
Carbon tetrachloride	*	ND	-	1.00	2		,		0	
1,1,1-Trichloroethane	90	ND		1.00		**		(*)	н	
2-Butanone		ND		10.0						
1,1-Dichloropropene		ND		1.00						
Benzene	365	ND		0.200		9		(96)	0.	
1,2-Dichloroethane (EDC)	W.	ND		1.00		**		365		
Trichloroethene		1.86	*****	1.00			•			
Dibromomethane	*	ND	****	1.00		8			"	
1,2-Dichloropropane	W	ND		1.00	*	*		×	и	
Bromodichloromethane	W.	ND	*****	1.00		*		*	W	
cis-1,3-Dichloropropene	*	ND		1.00			•		*	
Toluene	1	ND	*****	1.00	*		*	98	**	
4-Methyl-2-pentanone	n.	ND		10.0		*			*	
trans-1,3-Dichloropropene		ND		1.00	•	*			*	
Tetrachloroethene		10.1	-	1.00		*		4.		
1,1,2-Trichloroethane	300	ND		1.00		*		Э.	u	
Dibromochloromethane		ND	*****	1.00		*			16.	
1,3-Dichloropropane	(8.)	ND		1.00						
1,2-Dibromoethane	300	ND		1,00				×	"	
2-Hexanone		ND		10.0					и	
Ethylbenzene	,	ND		1.00		*				

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-09 (MV	W8S)		Wa	iter		Samp	pled: 08/0	6/08 21:50			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 20:36	
1,1,1,2-Tetrachloroethan	e	*	ND	****	1.00				(20)	*	
m,p-Xylene			ND		2.00	×		×	90		
o-Xylene			ND	*****	1.00				*	*	
Styrene		×	ND	*****	1.00	2.	7.				
Bromoform		м	ND		1.00	*	*	*		*	
Isopropylbenzene		•	ND		1.00					•	
n-Propylbenzene			ND		1.00				(8)	75	
1,1,2,2-Tetrachloroethan	ne .		ND		1.00	W	**	*	(30)	*	
Bromobenzene		•	ND	*****	1.00	*	**			•	
1,3,5-Trimethylbenzene			ND	*****	1,00	"	**		*	•	
2-Chlorotoluene		0	ND		1.00	31	**	*	(9)	*	
1,2,3-Trichloropropane		*	ND		1.00	#	н		100	•	
4-Chlorotoluene		*	ND	*****	1.00		"			*	
tert-Butylbenzene		36	ND		1.00	*	"			*	
1,2,4-Trimethylbenzene		W	ND	*****	1.00	*	"		36	*	
sec-Butylbenzene		W	ND		1.00	*	*	•			
p-Isopropyltoluene		<i>y</i>	ND		1.00	2	7.			•	
1,3-Dichlorobenzene		(0.)	ND		1.00	9		*	(#)		
1,4-Dichlorobenzene		u .	ND		1.00	ii.			*		
n-Butylbenzene			ND		1.00			•	-		
1,2-Dichlorobenzene		(80)	ND	*****	1.00	2.		2		**	
1,2-Dibromo-3-chloropro	opane		ND		5.00		*	*		*	
Hexachlorobutadiene		•	ND		1.00				*		
1,2,4-Trichlorobenzene			ND	***	1.00					7.	
Naphthalene		ii i	ND		2.00			*	и.	jii	
1,2,3-Trichlorobenzene		•	ND	-	1,00					•	
Surrogate(s): Die	bromofluoromethane			92.5%		62.2	- 128 %	,,		,	
	luene-d8			119%		75.4	- 120 %	"		,	
4-6	bromofluorobenzene			111%		77.3	- 129 %	"		"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in occordence with the choin of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

SPOKANE, WA

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager:

027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-10 (MW DUP)		W	ater		Sam	pled: 08/0	7/08 00:00			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 21:06	
Chloromethane	0	ND		3.00			W		ri.	
Vinyl chloride	"	ND		0.200					W	
Bromomethane	•	ND	*****	5.00		*			W	
Chloroethane		ND	*****	1.00	×		×		(#)	
Trichlorofluoromethane	W	ND		1,00		W				
1,1-Dichloroethene	*	ND		1.00	*					
Carbon disulfide	*	ND	*****	1.00			*			
Methylene chloride	W .	ND		10.0			u			
Acetone		ND		25.0						
trans-1,2-Dichloroethene	•	ND		1.00			"	363		
Methyl tert-butyl ether		ND		1.00			**	(67)		
1,1-Dichloroethane	W	ND		1.00		*		9		
cis-1,2-Dichloroethene	•	1.01	****	1.00			"		(19)	
2,2-Dichloropropane		ND	*****	1.00			"	*		
Bromochloromethane		ND		1.00	н			*		
Chloroform	ii .	ND		1.00						
Carbon tetrachloride	*	ND	*****	1.00		1.5				
1,1,1-Trichloroethane		ND	-	1.00		393		39	*	
2-Butanone	*	ND	*****	10.0			ě.			
1,1-Dichloropropene	*	ND		1.00						
Benzene		ND	****	0.200	180			,*		
1,2-Dichloroethane (EDC)		ND		1.00	*					
Trichloroethene		7.08		1.00						
Dibromomethane	•	ND	*****	1.00	•					
1,2-Dichloropropane	*	ND	eponen.	1.00		0.00	ж.	*	30	
Bromodichloromethane	W.	ND	****	1.00			46			
cis-1,3-Dichloropropene	•	ND		1.00					,	
Toluene	!!!	ND	****	1.00	25	.00				
4-Methyl-2-pentanone	10	ND		10,0			30		*	
trans-1,3-Dichloropropene	m .	ND	*****	1.00						
Tetrachloroethene		8.66		1.00				25	90	
1,1,2-Trichloroethane		ND	*****	1.00	и			"	(0.7)	
Dibromochloromethane	ř.	ND		1.00						
1,3-Dichloropropane	•	ND		1.00	*	*				
1,2-Dibromoethane		ND		1.00				"		
2-Hexanone		ND	*****	10.0				2	<u>*</u>	
Ethylbenzene	*	ND	*****	1.00				·		
and annual metaphore and the second of the s										

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

New City Cleaners Project Name:

Project Number: 027-30021-00 Project Manager; Meghan Lunney

Report Created: 08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-10 (MW DUP)		Wa	ater		Sam	pled: 08/0	7/08 00:00			
Chlorobenzene	EPA 8260B	ND		1.00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 21:06	
1,1,1,2-Tetrachloroethane	*	ND		1.00	*					
m,p-Xylene		ND		2.00	9	×		200	*	
o-Xylene	•	ND	*****	1,00	*				*	
Styrene	"	ND	*****	1.00		"			"	
Bromoform)i	ND		1.00	×		»			
Isopropylbenzene	*	ND		1.00						
n-Propylbenzene	,	ND	*****	1.00						
1,1,2,2-Tetrachloroethane		ND	*****	1.00	*		9	w	*	
Bromobenzene	W	ND		1.00	ü		n		· ·	
1,3,5-Trimethylbenzene)	ND	****	1.00					•	
2-Chlorotoluene		ND		1.00	*.					
1,2,3-Trichloropropane		ND		1.00	×	"		*		
4-Chlorotoluene		ND		1.00				**		
tert-Butylbenzene		ND		1.00		"				
1,2,4-Trimethylbenzene	,	ND	27712	1.00		"	,			
sec-Butylbenzene	*	ND		1.00		**		**		
p-Isopropyltoluene	(ii	ND	****	1.00					*	
1,3-Dichlorobenzene		ND		1.00						
1,4-Dichlorobenzene	3 9	ND		1.00		**			*	
n-Butylbenzene	7	ND	****	1.00	"					
1,2-Dichlorobenzene		ND	-	1,00						
1,2-Dibromo-3-chloropropane	,	ND		5.00	ü			(1)	w	
Hexachlorobutadiene		ND		1.00	ñ					
1,2,4-Trichlorobenzene		ND	*****	1,00		*				
Naphthalene		ND		2,00	8	н			*	
1,2,3-Trichlorobenzene	ű.	ND	-	1.00	ü	*	×	W.		
Surrogate(s): Dibromofluorom	ethane		99.6%		62.2	- 128 %	,,		"	
Toluene-d8			116%		75.4	- 120 %	,			
4-bromofluorobe	nzene		110%		77.3	- 129 %	"		"	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

579

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-11 (MW 9D)		Wa	iter		Samp	pled: 08/0	06/08 20:40			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l	l×	8080117	08/18/08 09:47	08/18/08 21:34	
Chloromethane	1960	ND	*****	3.00	(*)	(90)		*		
Vinyl chloride		ND		0.200						
Bromomethane	(*	ND		5.00		*				
Chloroethane	5.50	ND	Service	1.00	3.5	1977	7,95			
Trichlorofluoromethane		ND	-	1.00		(60)		*		
1,1-Dichloroethene	•	ND	****	1.00			*		•	
Carbon disulfide		ND	*****	1.00	2.5	100	37.			
Methylene chloride	000	ND		10.0				,		
Acetone	100	ND		25.0						
trans-1,2-Dichloroethene		ND		1.00			•			
Methyl tert-butyl ether	(96)	ND	*****	1.00		907		*	•	
1,1-Dichloroethane	3.00	ND		1.00		w		*		
cis-1,2-Dichloroethene		ND		1.00					•	
2,2-Dichloropropane		ND	*****	1.00		250				
Bromochloromethane	(30)	ND		1.00						
Chloroform	1941	ND	*****	1.00		**				
Carbon tetrachloride		ND	*****	1.00						
1,1,1-Trichloroethane	(200)	ND	*****	1.00		(9)		×		
2-Butanone	(#)	ND	*****	10.0						
1,1-Dichloropropene		ND		1.00	•			•	•	
Benzene		ND		0.200			**			
1,2-Dichloroethane (EDC)		ND		1.00				*		
Trichloroethene		ND	*****	1.00					•	
Dibromomethane		ND	*****	1.00						
1,2-Dichloropropane	(00)	ND		1.00		H	(0)	×	9	
Bromodichloromethane	TW	ND		1.00				¥	4	
cis-1,3-Dichloropropene		ND		1.00					•	
Toluene	185	ND	*****	1.00		(40)				
4-Methyl-2-pentanone	i iii	ND	(manufacture)	10.0				×	in .	
trans-1,3-Dichloropropene		ND		1.00						
Tetrachloroethene		ND		1.00		200		*	и	
1,1,2-Trichloroethane	(W)	ND	1200	1.00		36		*		
Dibromochloromethane	u	ND	*****	1.00					•	
1,3-Dichloropropane		ND	****	1.00						
1,2-Dibromoethane		ND		1.00			200	*	30	
2-Hexanone	· in	ND		10.0						
Ethylbenzene		ND	*****	1.00						

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SPOKANE, WA 11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	1	Notes
SRH0057-11 ((MW 9D)		W	iter		Samp	oled: 08/0	06/08 20:40				
Chlorobenzene	920000000000000	EPA 8260B	ND		1.00	ug/l	1×	8080117	08/18/08 09:47	08/18/08 21:34		
1,1,1,2-Tetrachloroe	thane	,	ND	****	1.00		,	•				
m,p-Xylene		*	ND		2.00		ж.	90	п.	,,		
o-Xylene			ND		1.00			*	*	"		
Styrene			ND	****	1.00				*	*		
Bromoform		X	ND		1.00	×	*		2.	■25		
Isopropylbenzene		W	ND		1.00		¥	*	*)A		
n-Propylbenzene		**	ND		1.00		*		*	*		
1,1,2,2-Tetrachloroe	thane	(9).	ND	*****	1.00		25					
Bromobenzene			ND		1.00		**		*	34		
1,3,5-Trimethylbenz	ene		ND	****	1.00		*		2	*		
2-Chlorotoluene			ND	****	1.00				Ŷ.			
1,2,3-Trichloropropa	ane	107	ND		1.00	9.7	*	*	×			
4-Chlorotoluene		u.	ND		1.00	*			Ÿ	74		
tert-Butylbenzene		*	ND		1.00				8			
1,2,4-Trimethylbenz	tene	.00	ND		1.00		*					
sec-Butylbenzene			ND		1.00	*	**		¥.			
p-Isopropyltoluene			ND		1.00		*		*			
1,3-Dichlorobenzene	e		ND	*****	1,00	2			*			
1,4-Dichlorobenzene	0		ND		1.00	× .			*			
n-Butylbenzene			ND		1.00	*						
1,2-Dichlorobenzene	e		ND	*****	1.00					•		
1,2-Dibromo-3-chlo	ropropane		ND		5.00	(*)	307	(*)		100		
Hexachlorobutadien		*	ND		1.00	*	*		"			
1,2,4-Trichlorobenze	ene		ND		1.00							
Naphthalene			ND	*****	2.00	*		3.6		200		
1,2,3-Trichlorobenze	ene	160	ND		1.00	•		390	*	00		
Surrogate(s):	Dibromofluoromethane			102%		62.2	- 128 %	"		,,		
	Toluene-d8			112%		75.4	- 120 %	"		n n		
	4-bromofluorobenzene			108%		77.3	- 129 %	"		"		

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-12 (MW 9S)		Wa	iter		Sam	pled: 08/0	6/08 19:50			
Dichlorodifluoromethane	EPA 8260B	ND	*****	1.00	ug/l	Ix	8080117	08/18/08 09:47	08/18/08 22:03	
Chloromethane	m .	ND		3.00			(8)	R	9	
Vinyl chloride		ND	****	0.200						
Bromomethane	TI,	ND	****	5.00		"			,	
Chloroethane		ND		1.00					**	
Trichlorofluoromethane		ND		1.00			(4)			
1,1-Dichloroethene	•	ND	*****	1.00			•	•	,	
Carbon disulfide	(30)	ND	*****	1.00	*		(90)			
Methylene chloride	(4)	ND	****	10.0		"	*		71	
Acetone		ND		25.0		**			•	
trans-1,2-Dichloroethene		ND	*****	1.00				*	18	
Methyl tert-butyl ether		ND	*****	1.00		**		*	λ	
1,1-Dichloroethane		ND		1.00		**				
cis-1,2-Dichloroethene		2.41	******	1.00		"	2.5		,	
2,2-Dichloropropane	X.95	ND	*****	1.00		**	m.			
Bromochloromethane	1 6	ND		1.00				*		
Chloroform		ND	*****	1.00			*	•		
Carbon tetrachloride		ND	****	1.00						
1,1,1-Trichloroethane	.10	ND	****	1.00			**			
2-Butanone		ND		10,0					•	
1,1-Dichloropropene	•	ND	*****	1.00		**	•	•	*	
Benzene	(00)	0.391	****	0,200	180		*		34	
1,2-Dichloroethane (EDC)		ND		1.00		11	**	*	*	
Trichloroethene		ND		1.00		*		•		
Dibromomethane	*	ND	*****	1.00			"			
1,2-Dichloropropane		ND	****	1.00				*	*	
Bromodichloromethane	(n)	ND		1.00		"			*	
cis-1,3-Dichloropropene	(*)	ND		1.00		**		•		
Toluene	(#)	ND		1.00	2.	8	(80)	*		
4-Methyl-2-pentanone		ND	*****	10.0			(6)		**	
trans-1,3-Dichloropropene		ND	****	1.00					*	
Tetrachloroethene		ND	****	1.00			745		D#	
1,1,2-Trichloroethane	100	ND		1.00			n.	H	*	
Dibromochloromethane		ND	****	1.00						
1,3-Dichloropropane		ND	*****	1.00			(**)			
1,2-Dibromoethane		ND	*****	1.00		**	30	и		
2-Hexanone	u	ND	*****	10.0		**	n		4	
Ethylbenzene		ND		1.00		**			,	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

SPOKANE, WA 11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-12	(MW 9S)		Wa	iter		Samp	led: 08/0	06/08 19:50			
Chlorobenzene	**************************************	EPA 8260B	ND		1.00	ug/l	1×	8080117	08/18/08 09:47	08/18/08 22:03	
1,1,1,2-Tetrachloro	ethane		ND	****	1.00					•	
m,p-Xylene		H.	ND	25.72	2.00	*		**	(*)	3.0	
o-Xylene			ND		1.00			**		3.0	
Styrene			ND	*****	1.00		*		*		
Bromoform		11	ND	*****	1,00				20	7.00	
Isopropylbenzene		"	ND		1.00			or or			
n-Propylbenzene		"	ND		1.00		*				
1,1,2,2-Tetrachloro	ethane		ND		1.00	3.9			(2)	3.99	
Bromobenzene		11	ND		1.00	"		"	*	()	
1,3,5-Trimethylben	zene		ND	*****	1,00						
2-Chlorotoluene		"	ND		1.00			"	20		
1,2,3-Trichloroprop	oane	y .	ND		1.00					(#)	
4-Chlorotoluene			ND		1.00			*			
tert-Butylbenzene			ND		1.00		*			*	
1,2,4-Trimethylben	zene	<u>w</u>	ND	*****	1.00		(#)		(#0)	(₩)	
sec-Butylbenzene		¥	ND		1,00			*			
p-lsopropyltoluene		•	ND	*****	1.00		*				
1,3-Dichlorobenzen	ie	ж.	ND	*****	1.00					*	
1,4-Dichlorobenzer	ne	0	ND	*****	1,00		7.00	×			
n-Butylbenzene			ND		1.00					W	
1,2-Dichlorobenzer	ne	*	ND	****	1.00					•	
1,2-Dibromo-3-chlo	огоргорапе	¥	ND	*****	5.00			*		. 10	
Hexachlorobutadie	ne	*	ND		1.00				*	Ü	
1,2,4-Trichlorobena	zene	¥	ND		1.00					"	
Naphthalene			ND	-	2.00	38	88				
1,2,3-Trichlorobena	zene		ND		1.00	(4)			*	106	
Surrogate(s):	Dibromofluoromethane			99.0%		62.2 -	128 %	,		,	
	Toluene-d8			111%		75.4 -	120 %	,		,	
	4-bromofluorobenzene			106%		77.3 -	129%	"		"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-13 (Trip Blank)		Wa	iter		Sam	pled: 08/0	06/08 00:00			
Dichlorodifluoromethane	EPA 8260B	ND		1,00	ug/l	1x	8080117	08/18/08 09:47	08/18/08 22:31	
Chloromethane		ND	*****	3.00	*					
Vinyl chloride	n	ND		0.200			*	90	ŭ.	
Bromomethane	•	ND	-	5,00		**	*			
Chloroethane		ND	****	1.00		- 75				
Trichlorofluoromethane		ND		1.00	*	. 10	¥	190		
1,1-Dichloroethene	*	ND		1.00	н					
Carbon disulfide	•	ND	*****	1.00			7	100		
Methylene chloride		ND	*****	10,0	"		*		(0)	
Acetone		ND		25.0			¥		•	
trans-1,2-Dichloroethene		ND	*****	1.00	*				*	
Methyl tert-butyl ether		ND	*****	1.00	**	7.8		36.7	((0)	
1,1-Dichloroethane	×	ND		1.00	W.			367	7.0	
cis-1,2-Dichloroethene	*	ND	*****	1.00						
2,2-Dichloropropane	*	ND		1.00					(4)	
Bromochloromethane	,	ND		1.00				(40)	(0)	
Chloroform	*	ND		1.00						
Carbon tetrachloride	W	ND		1.00						
1,1,1-Trichloroethane		ND		1.00	*	(9)		*	() (()	
2-Butanone		ND	22/42	10.0		**		10.		
1,1-Dichloropropene	•	ND		1.00				*		
Benzene		ND	*****	0.200	125	290			(I#6	
1,2-Dichloroethane (EDC)		ND		1.00			(4)	*		
Trichloroethene	W	ND		1.00						
Dibromomethane	•	ND	*****	1.00		*			(*)	
1,2-Dichloropropane	и.	ND	****	1.00	. 0					
Bromodichloromethane	iii	ND	-	1.00	0.		200			
cis-1,3-Dichloropropene		ND	*****	1.00						
Toluene		ND	-	1.00		260	.0	*	.00	
4-Methyl-2-pentanone	6	ND	(200	10.0			16	*	W.	
trans-1,3-Dichloropropene	ii.	ND	****	1.00		*			**	
Tetrachloroethene	•	, ND		1.00	890	190			(40)	
1,1,2-Trichloroethane		ND		1.00					*	
Dibromochloromethane	ě.	ND		1.00					*	
1,3-Dichloropropane	•	ND	*****	1.00						
1,2-Dibromoethane	18.	ND	*****	1.00	*			*	W2	
2-Hexanone	100	ND		10.0						
Ethylbenzene		ND	*****	1.00				"		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tande Randee Decker, Project Manager

Page 27 of 35

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Spokane

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRH0057-13	(Trip Blank)		Wi	iter		Samp	led: 08/0	06/08 00:00			
Chlorobenzene		EPA 8260B	ND		1.00	ug/l	1×	8080117	08/18/08 09:47	08/18/08 22:31	
1,1,1,2-Tetrachloroe	ethane		ND	*****	1.00					,,	
m,p-Xylene		36	ND		2.00	*	*			0	
o-Xylene			ND		1.00				*	*	
Styrene			ND	*****	1.00		*	*	*	•	
Bromoform		200	ND	****	1.00	39	*	(40)	*	**	
Isopropylbenzene		•	ND		1.00	*	W.			*	
n-Propylbenzene			ND	*****	1.00					•	
1,1,2,2-Tetrachloroe	thane		ND	*****	1.00	*		390		"	
Bromobenzene		36	ND		1.00	*	96		*		
1,3,5-Trimethylbenz	zene		ND	*****	1.00	•		*			
2-Chlorotoluene			ND		1.00	•			*		
1,2,3-Trichloropropa	ane	30	ND	*****	1.00	2		(0)		ii .	
4-Chlorotoluene		(a)	ND		1.00		¥			н	
tert-Butylbenzene		•	ND	*****	1.00				*		
1,2,4-Trimethylbenz	zene		ND		1.00		25		*		
sec-Butylbenzene		(4))	ND		1.00		¥		*	ii	
p-Isopropyltoluene		**	ND	*****	1.00	*		•	•		
1,3-Dichlorobenzen	e		ND		1.00					,,	
1,4-Dichlorobenzen	e	(41)	ND	****	1.00	×		(8)	0	n	
n-Butylbenzene			ND		1.00					ü	
1,2-Dichlorobenzen	e		ND	*****	1.00					"	
1,2-Dibromo-3-chlo	ropropane	300	ND	*****	5.00		35		*	n	
Hexachlorobutadien	e		ND		1.00					n	
1,2,4-Trichlorobenz	ene		ND	*****	1.00						
Naphthalene			ND	*****	2.00	*		*		"	
1,2,3-Trichlorobenz	ene	(10)	ND	****	1.00	*		Nr.	*		
Surrogate(s):	Dibromofluoromethan	e		93.6%		62.2 -	128 %	"			
	Toluene-d8			112%			120 %	"		"	
	4-bromofluorobenzene			106%		77.3 -	129 %	*		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

TestAmerica Spokane

tarde

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

Project Name:

New City Cleaners

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Number: Project Manager:

027-30021-00

Meghan Lunney

Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8080045-BLK1)								Extra	acted:	08/07/08 15	:56			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1×	**	**			**	***	08/07/08 18:41	
Chloromethane		ND		3,00			**		-	-	**	***	•	
Vinyl chloride		ND	***	0.200		8	**	**	**		**	**	7.	
Bromomethane	"	ND	***	5.00			**		***	**	300	**	".	
Chloroethane		ND		1.00	*		220		-	**	-			
Trichlorofluoromethane	ï	ND		1.00			-	**				**	*	
1,1-Dichleroethene	"	ND	***	1.00			**	-77				**	11	
Carbon disulfide		ND	(***	1.00			**	-	**	275	**	(++)	•	
Methylene chloride	9	ND	***	10,0			***	44	-	**	99	**	•	
Acetone		ND	***	25.0		*	**	160	**	***	**	-		
trans-1,2-Dichloroethene	9	ND	***	1.00				**						
Methyl tert-butyl ether		ND	(222)	1.00		*		922		**	**			
1,1-Dichloroethane	*	ND	277	1.00				4-		**			*	
cis-1,2-Dichloroethene		ND		1.00			77.	**	-					
2,2-Dichloropropane		ND	***	1.00				***	**	**	**	**	٠	
Bromochloromethane		ND	***	1.00			**	**	**	***	**			
Chloroform		ND	***	1.00				**	**	144	**	**		
Carbon tetrachloride		ND	***	1.00			***	***		**	34	**	W	
1,1,1-Trichloroethane		ND	222	1.00			-	122	22		-			
2-Butanone	*	ND		10.0				-	**		**			
1,1-Dichloropropene		ND	***	1.00			**				-			
Benzene		ND	***	0.200			**	-			-	**		
1,2-Dichloroethane (EDC)		ND	***	1.00				**	**	**	**	**		
Trichloroethene		ND		1,00		"	**	**		**	++			
Dibromomethane	* 1	ND	***	1.00	*	.10	**		**	**		22		
1,2-Dichloropropane	*	ND		1.00			227				2.2		ii.	
Bromodichloromethane	w:	ND		1.00		**		**	**	**				
cis-1,3-Dichloropropene		ND	***	1,00					77			77		
Toluene	9)	ND	***	1,00			**	**	**			**	,	
4-Methyl-2-pentanone		ND		10,0		"	***	**	**	**	***	**		
trans-1,3-Dichloropropene	9.1	ND	***	1.00		.91	44)	14	-	**	-			
Tetrachloroethene	*	ND		1.00	(#)				-	-	(22)	**		
1,1,2-Trichloroethane	(40)	ND		1,00	(4)	90	-	-					U	
Dibromochloromethane		ND		1.00			-77			-				
1,3-Dichloropropane		ND	***	1.00			-	-	275	-				
1,2-Dibromoethane		ND	***	1.00			**	-		**	-			
2-Hexanone		ND	122	10.0				**	**	-	44			
Ethylbenzene		ND		1.00	(0)		-		-	-	2.0	***	"	
Chlorobenzene		ND	222	1.00		w.	227	1	925	727	626		0	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tarde Randee Decker, Project Manager

Page 29 of 35

11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	No
Blank (8080045-BLK1)								Exti	acted:	08/07/08 15	5:56			
1,1,1,2-Tetrachloroethane	EPA 8260B	ND		1.00	ug/l	1x						**	08/07/08 18:41	
m,p-Xylene		ND	***	2.00					**	**	**		,	
o-Xylene		ND		1.00		**			-		**			
Styrene		ND	***	1.00		"	177	**	**	***	**	164	*	
Bromoform		ND	***	1.00		*	**	***		-	-	**		
Isopropylbenzene	7.	ND	***	1.00				-	-		**	**		
ı-Propylbenzene	*	ND		1.00	*	77				***		***		
,1,2,2-Tetrachloroethane	*	ND		1.00		\tilde{y}	722	2.5	-	122	-	-		
Bromobenzene		ND		1.00	11	n	-			**	**	**	Ĭ.	
,3,5-Trimethylbenzene		ND	***	1,00	*	*	-	-	-	-		**		
-Chlorotoluene		ND	***	1,00		*	***	**			**	**	¥	
,2,3-Trichloropropane		ND	***	1.00			**	**		-	**		¥	
1-Chlorotoluene		ND	***	1.00		н	**	**	**	**	**			
ert-Butylbenzene	•	ND		1.00		**		-	***	**	**	-	M	
,2,4-Trimethylbenzene	×	ND		1.00	*		1221	_	2.	-	-	**	W.	
sec-Butylbenzene		ND		1.00		Ni.	-				-		W.	
o-Isopropyltoluene		ND	***	1.00			**		(55)		-			
1,3-Dichlorobenzene		ND	***	1.00			**		**	**	**	***		
1,4-Dichlorobenzene		ND	***	1.00							***	**		
n-Butylbenzene	9.	ND	***	1.00	*	2	-	**			**			
,2-Dichlorobenzene	**	ND	***	1.00	*		-	**		**	**			
,2-Dibromo-3-chloropropane	ii.	ND		5.00	(*)		123				-		*	
Texachlorobutadiene		ND		1.00				**	**	**	-	**	11	
,2,4-Trichlorobenzene	8	ND	***	1,00			***		**		**	**	0	
Naphthalene		ND	***	2.00			-	**	**		-	**		
1,2,3-TrichIorobenzene		ND	***	1.00		•	**	**	**	**	**	**		
Surrogate(s): Dibromofluoromethe	ine	Recovery:	110%	Limi	ts: 62.2-128								08/07/08 18:4	,
Toluene-d8 4-bromofluorobenze			104% 97.0%		75.4-126 77.3-129								"	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

QC Bate	h: 8080045	Water I	'reparation	Method:	GC/MS Vola	tiles									
Analyte		Method	Result	MDL	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8080045	-BS1)								Extr	acted:	08/07/08 15:	:56			
1,1-Dichloroethene		EPA 8260B	10.5		1.00	ug/l	1×	57	10.0	105%	(60,4-140)	877	-	08/07/08 17:39	
Benzene			10.4	***	0.200	*	*	**		104%	(72.9-120)		-		
Trichloroethene			10,9		1.00		**	**		109%	(73.7-120)	**	**		
Toluene		4	12.1	***	1.00	16	(#)	**	7.	121%	(72.4-132)	**	**	H.	
Chlorobenzene		/#	11.1	122	1.00	35				111%	(80-120)	44			
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene		Recovery:	110% 104% 98.3%	Limits:	62.2-128% 75.4-120% 77.3-129%								08/07/08 17:39 "	
Matrix Spike	(8080045-MS1)				QC Source:	SRH0056-12			Extr	acted:	08/07/08 15:	:56			
1,1-Dichloroethene		EPA 8260B	11.2	112	1.00	ug/l	lx	ND	10.0	112%	(52.5-135)		2	08/08/08 10:53	
Benzene			11.1		0.200			ND		111%	(72.3-120)			11	
Trichloroethene		· ·	11.9	***	1.00		in	13.5		-16.1%	(80-120)		25	ii .	M
Toluene			12.9	***	1.00			0.509		124%	(62.7-137)	-	-		
Chlorobenzene			11.7		1.00	*	*	ND		117%	(78.9-120)			7	
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene		Recovery:	105% 105% 94.4%	Limits:	62.2-128% 75.4-120% 77.3-129%								08/08/08 10:53 "	
Matrix Spike D	up (8080045-MSD	1)			QC Source:	SRH0056-12			Extr	acted:	08/07/08 15:	:56			
1,1-Dichloroethene		EPA 8260B	11.5	***	1.00	ug/l	1x	ND	10.0	115%	(52.5-135)	2.47%	6 (10.5)	08/08/08 11:22	
Benzene		*	10.7		0,200			ND		107%	(72.3-120)	3.29%	6 (10.7)	11	
Trichloroethene			12.0	222	1.00	*		13.5		-15.1%	(80-120)	0.7969	% (10)	(96)	M
Toluene			12.8		1.00		H	0,509		123%	(62.7-137)	0.3669	% (13)	(0.0	
Chlorobenzene			11.5		1.00	*		ND		115%	(78.9-120)	1.49%	6 (11.2)		
Surrogate(s):	Dibromofluoromethane Toluene-d8		Recovery:	103% 105%	Limits:	62.2-128% 75.4-120%								08/08/08 11:22 "	
	4-bromofluorobenzene			93.6%		77.3-129%	"							. **	

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8080117-BLK1)								Extra	acted:	08/18/08 09	:47			
Dichlorodifluoromethane	EPA 8260B	ND		1.00	ug/l	1x	22	227	227	22		(08/18/08 18:09	
Chloromethane		ND		3,00							***			
Vinyl chloride	-	ND	***	0.200	#	*			**	**	**	1	u	
Bromomethane		ND		5.00					663		**	**		
Chloroethane		ND	***	1.00	"		**	**	**	**	**	300		
Trichlorofluoromethane	£	ND	***	1.00		ж.	**	**	22		440			
1,1-Dichloroethene	*6	ND		1,00		×	22			22	**	122	.00	
Carbon disulfide	W.	ND		1.00	*	H	***			22	-	22	(0)	
Methylene chloride	-	ND		10.0		×	-	-	77	777	676			
Acetone		ND		25.0	"	8	-		**	-	**			
trans-1,2-Dichloroethene		ND	***	1.00			;ex		***	**	**	-	•	
Methyl tert-butyl ether	*	ND		1.00	*	*	***	**	**	**	**			
,1-Dichloroethane	6	ND	***	1.00	*	*	**					-		
cis-1,2-Dichloroethene	W.	ND	***	1.00	×	*			_		-		×	
,2-Dichloropropane	ë.	ND		1.00	*	×				**				
Bromochloromethane		ND		1.00	*		-		77		77	-		
Chloroform		ND		1.00				**	**		**			
Carbon tetrachloride	,	ND	***	1.00		*		**	**		**	**		
,1,1-Trichloroethane	"	ND		1.00		*	-	**		**	**	**		
-Butanone	**	ND	***	10.0			-	**	**	-	-	**		
,1-Dichloropropene	W.	ND		1,00	*	9	-				-	**		
Benzene	ii .	ND		0.200	*	W		**		-		22		
,2-Dichloroethane (EDC)	й	ND		1.00								-		
Frichloroethene		ND	***	1.00			**		200	**				
Dibromomethane		ND	***	1.00			**	**	**	**		**	*	
,2-Dichloropropane	9.	ND		1,00			-		**	**		**		
Bromodichloromethane		ND	***	1.00	.00	31	**	**	**	***			11.	
cis-1,3-Dichloropropene	*	ND	222	1.00	W.,			122		0.0	**		0.	
Foluene	н	ND	200	1,00		31	-					**	0	
4-Methyl-2-pentanone		ND		10.0			-	**		-			ii .	
rans-1,3-Dichloropropene		ND	***	1.00			**		**		-			
Tetrachloroethene		ND	***	1.00			**		**	**	**			
,1,2-Trichloroethane		ND	***	1.00		2	**	**		**	-	-		
Dibromochloromethane	×	ND		1.00	*		22				**		"	
3-Dichloropropane		ND	***	1.00				-					n .	
,2-Dibromoethane		ND		1.00	*	4	-		-	-	77	77		
2-Hexanone		ND	***	10.0			688	-	**	-	-	100		
Ethylbenzene		ND	***	1.00					**	**	**			
Chlorobenzene		ND		1.00			120	-	22	-		-		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number: Project Manager:

027-30021-00 Meghan Lunney

Report Created: 08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8080117-BLK1)								Extr	acted:	08/18/08 09	:47			
1,1,1,2-Tetrachloroethane	EPA 8260B	ND		1.00	ug/l	1×	-			77			08/18/08 18:09	
m,p-Xylene		ND		2.00			**	**	100	-	**	-		
o-Xylene		ND		1.00		*		**	-	**	***			
Styrene		ND	***	1.00				**	++)	***	-		28.3	
Bromoform		ND	***	1.00				**	**	44		-		
Isopropylbenzene	(25)	ND	***	1.00	(4)		_				-			
n-Propylbenzene	(ii)	ND	122	1.00	H				**		-			
1,1,2,2-Tetrachloroethane		ND	***	1.00	w					-				
Bromobenzene		ND	***	1.00			ww.	**			**			
1,3,5-Trimethylbenzene		ND	***	1.00		*	**		**					
2-Chlorotoluene		ND	***	1.00	,,			**	**	••	**			
1,2,3-Trichloropropane		ND	349	1.00		и.			**	**	***	-		
4-Chlorotoluene		ND	***	1.00				22	-	-	12.	22		
tert-Butylbenzene		ND	200	1.00		90					**	**	36	
1,2,4-Trimethylbenzene	W	ND		1.00		**			. 22		***			
sec-Butylbenzene		ND		1.00					**		-			
p-Isopropyltoluene		ND	***	1.00			**		**		**	**	•	
1,3-Dichlorobenzene		ND	***	1.00		**		**	**		**			
1,4-Dichlorobenzene		ND		1.00			44	-	**	443		_	n	
n-Butylbenzene	*	ND	***	1.00				-	**				n.	
1,2-Dichlorobenzene	(X)	ND	222	1.00				-		**		**	W.	
1,2-Dibromo-3-chloropropane	*	ND		5.00										
Hexachlorobutadiene	140	ND	777	1.00				**			-	**		
1,2,4-Trichlorobenzene	•	ND		1.00					**					
Naphthalene		ND		2.00				**	-					
1,2,3-Trichlorobenzene	(#)	ND	-44	1.00				44.			**		9.	
Surrogate(s): Dibromofluorometho	ane	Recovery: 90	.8%	Limit	s: 62.2-128%	, "							08/18/08 18:09	
Toluene-d8		1.	23%		75.4-1209	6 "							"	

77.3-129% "

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

tande Randee Decker, Project Manager

4-bromofluorobenzene

119%

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019 Project Name:

New City Cleaners

Project Number: Project Manager: 027-30021-00 Meghan Lunney Report Created:

08/26/08 09:45

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Spokane

QC Batcl	n: 8080117	Water I	Preparation	Method:	GC/MS Vola	tiles									
nalyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8080117	-BS1)								Extr	acted:	08/18/08 09:	:47			
,1-Dichloroethene		EPA 8260B	9.02	***	1.00	ug/l	lx		10,0	90.2%	(60,4-140)	**		08/18/08 18:39	
enzene			11.8		0.200			22	"	118%	(72.9-120)		-		
richloroethene			10.5		1.00	H				105%	(73.7-120)			5 4 7.	
oluene			12,9		1,00	*				129%	(72.4-132)	-	+-		
hlorobenzene			11.1		1.00	*			"	111%	(80-120)	**	***		
Surrogate(s):	Dibromofluoromethane		Recovery:	93.1%	Limits:	62.2-128%	"							08/18/08 18:39	
	Toluene-d8			119%		75.4-120%	**							*	
	4-bromofluorobenzene			120%		77.3-129%								"	
Iatrix Spike	(8080117-MS1)				QC Source:	SRH0057-09			Extr	acted:	08/18/08 09:	:47			
1-Dichloroethene		EPA 8260B	8.98	***	1.00	ug/l	1x	ND	10.0	89.8%	(52.5-135)	(inc.)		08/18/08 23:00	
enzene		*	9.75	***	0.200	н	6	ND	.0	97.5%	(72.3-120)		-	.0.	
richloroethene			12.8	222	1.00			1.86	in .	110%	(80-120)		22	(ii)	
oluene		*	13.2	777	1.00	н	10	0.168	u	130%	(62.7-137)	-		(6)	
hlorobenzene			10,8		1.00			ND		108%	(78.9-120)	-	-	,	
Surrogate(s):	Dibromofluoromethane		Recovery:	96.2%	Limits	62.2-128%	"							08/18/08 23:00	
	Toluene-d8			122%		75.4-120%	"							"	
	4-bromofluorobenzene			118%		77.3-129%	*							"	
Aatrix Spike D	up (8080117-MSD	1)			QC Source:	SRH0057-09			Extr	acted:	08/18/08 09:	:47			
1-Dichloroethene		EPA 8260B	8.18		1.00	ug/I	1x	ND	10.0	81.8%	(52.5-135)	9.38%	(10.5)	08/18/08 23:28	
enzene			12.0	***	0.200		10	ND		120%	(72.3-120)	20.6%	6 (10.7)		
richloroethene		385	12.3		1.00			1.86	96	105%	(80-120)	4.12%	6 (10)	w	
oluene			12,5		1.00		"	0.168	×	124%	(62.7-137)	5,02%	6 (13)	300	
hlorobenzene		30	10,8		1,00	*	"	ND	W	108%	(78.9-120)	0.5649	% (11.2)	(4)	
Surrogate(s):	Dibromofluoromethane		Recovery:	87.9%	Limits	62.2-128%								08/18/08 23:28	
	Toluene-d8			121%		75.4-120%								"	
	4-bromofluorobenzene			131%		77.3-129%	**							H	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.

2310 N. Molter Rd. Suite 101

Liberty Lake, WA 99019

Project Name:

New City Cleaners

Project Number:

027-30021-00

Report Created:

Project Manager: Meghan Lunney

08/26/08 09:45

Notes and Definitions

Report Specific Notes:

M8 - The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).

The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.

Z1 - Surrogate recovery was above acceptance limits.

Z2 - Surrogate recovery was above the acceptance limits. Data not impacted.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

 Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

,			
	©.		

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

WOLD 400 Turnaround Requests less than standard may incur Rush Charges 702 2018 and P PAGE LOPO 1 <1 8 90 b 8 S ğ FRANTICES HAMP COLOR TRANS LYCLUS Work Order#: SCHOOS STD. 4 3 2 1 <1 TURNAROUND REQUEST 5 4 3 2 LOCATION/ Organic & Inorganic Analyses 388 in Business Days * OTHER Specify: #OF CONT. N N N N 101 MATRIX (W, S, O) FIRM 3 3 3 3 3 3 3 3 E PRINTINMETONOLICES SECONDARY (DAY) CHAIN OF CUSTODY REPORT RECEIVED BY: PRINT NAME: REQUESTED ANALYSES PRESERVATIVE DATE 8-7-06 1445 P.O. NUMBER TIME DATE TIPME 10 29 5001 ren mon FIRM: LEGA ADDRESS: 2310 Morth Moller Rd.
Liberty Cake WA 99619
PHONE: 509 535-7285AX: 509 535 7361 0220 01790 1820 0280 0715 02/2 0000 1960 2150 FRM SAMPLING PROJECT NAME: HELS CITY CLEONERS 8-10-08 80-9-8 30-5-8 80-1-8 8-7-60 8-6-08 3-7-08 80-1-68 80-1-8 80-98 PROJECT NUMBER: 027,36021-60 I'm Ru REFERENCE IN FULLY CLIENT SAMPLE IDENTIFICATION MW 7I MW 70 MW85 AN GD MNSD 月ろる MW75 例でいるが タンショ CLIENT: OF ADDITIONAL REMARKS: SAMPLED BY: RELEASED BY: PRINT NAME: PRINT NAME:

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
11922 E. First Awe, Spokane, WA 99206-5302
9405 SW Nimbus Ave, Beavetton, OR 97008-7145
2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 CRHOST

THE LEADER IN ENVIRONMENTAL TESTING	NVIRONMENTA	AL TESTIN	ក្	Service and services						GRHOOF	10 Proj
				CHAIN OF CUSTODY REPORT	ODY KEPOKI			Work Order #:	der #:	8228	D
CLENT	-		27/00	INVOICE TO:				T	URNAR	TURNAROUND REQUEST	
REPORTIO: Melaham Cultury ADDRESS: 2310 HOLY MAILEN PO	unaller Ro	~		LFR					in Bu	in Business Days * Organic & Inorganic Analyses	[
PHONE: 599 5357225 FAX: 599 535736)	FAX: 509 535	7361		PO. NUMBER:					etrolcum Hy	Fetrolcum Hydrocarbon Analyses	∵
PROJECT NAME: New LITY CLEANERS	y deaners			PRES	PRESERVATIVE			2	4	1 2 1 41	
PROJECT NUMBER: 02730021-00	05-120		10/1					. sto)]]	
SAMPLED BY: JIM FINGER	has		3092	REQUEST	REQUESTED ANALYSES			* Turnerannd R	OTHER Sp	OTHER Specify: * Innaround Remover feet than standard may bern Ruch Changes	Charace
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME		5. 82/2/V 1/2/25 . B.				A.	MATRIX (W, S, 0)	# OF CONT.	LOCATION/ COMMENTS	TA WO.ID
. MIWG D	8-6-05	2040	×					3	N	8	_
2 MW9S	8-1-08	19:50	×		•			in	N		2
3 Trip Blank	80-9-8	1866	`^					4	7		5
,						8					
s							-				
9											
7					•						
80											
6.											
10						1	(>			
RELEASED BY: LANGES FRIEND PRINT NAME: 1/2 LONG	long	FIEM: CAR	75	DATE: 2-7-08 TDAE: 2445	RECEIVED BY: CO.	20	Bokot	JVC FEBAET	NA PAS	PRINCIPAL TRANSPORT THE 12	なられて
RELEASED BY:				DATE	RECEIVED BY:)			DATE	þ.
PRINT NAME: ADDITIONAL PENABES:		FIRM:		TIME	PRINT NAME:			FIRM:		TIME	
										SSC Met Sign	K

TAL-1000(0408)