

North 920 Lake / Spokane, Washington 99206 / (509) 535-8841
budinger & associates geotechnical & material engineers
Chelan County PUD #1 Commisioners Dec. 2, 1981. c/o The DOH Associates 500 Doneen Building Wenatchee, Wa. 98801 Job Number: \$81127
Attn: David O. Harris
PROJECT: Wenatchee Riverfront Park Wenatchee, Wa.
SUBJECT: Soil and Gas Generation Investigation
Gentlemen:
As requested, we have performed the subject investigation in conjunction with Dr. Kenneth E. Hartz PE, who specializes in Landfills and Methane Generation. The results of our investigation are herewith transmitted.
If any questions should arise regarding the interpretation of the contents of this report, please feel free to contact us for clarification. Specifically, we would welcome the opportunity of reviewing plans and specifications to assure proper incorporation of these recommendations.
It has been a pleasure serving you on this project, and we look forward to the opportunity of assisting you with future endeavors.
Respectfully Submitted BUDINGER AND ASSOCIATES Peter C. Ingraham EIT Mutto- Kenneth E. Hartz PhD PE
FCB/jh F. C. Budinger PE * Addressee - 5

F. C. Budinger PE Daniel G. Yake PE

TABLE OF CONTENTS	
CONTEXT	1
Scope Structural Considerations Site Location	1 1 2
ENCOUNTERED CONDITIONS	2
Geologic Setting Surface Winds Surface Conditions Site History Subsurface Conditions Groundwater	2 3 4 4 7
CONCLUSIONS	8
Gas Generation Table 1 Table 2 Table 3 Figure 3 Building Foundations Dikes Plant Production	9 10 12 13 14 15 15 16
RECOMMENDATIONS	17
Earthwork Structure Foundations Settlement Subsidence Lateral Earth Pressures Figure 2 Figure 3 Monitoring Vegetation Pavement Section	17 19 20 21 22 23 24 25 26 27
LIMITATIONS	29
REFERENCES CITED	31

4	
	1
1	i
	l
ر	
4	1
	-
	1
,	
_	
۵ ا	

.

_____TABLE OF CONTENTS_____(continued)_____

FIELD INVESTIGATIONS	F1
Site Plan-Cross Section	F 4
Boring Logs	F 5
Site Plan (previous report)	F 3 4
Boring Logs (previous report)	F 3 5
LABORATORY INVESTIGATIONS	L1
Summary of Laboratory Results	L 3
Grain Size Distribution	L 6
Re-Molded Shear	L 9

JOB NUMBER S81127

_____ C O N T E X T _____

1.0 This report presents the results of a soil and gas generation investigation for the proposed Wenatchee Riverfront Park to be constructed along the west side of the Columbia River, between 5th and Orondo Streets in Wenatchee, Washington.

1.1 SCOPE_____

The field and laboratory investigations contained in the following pages of this report were performed in accordance with generally accepted geotechnical and environmental engineering practices, as outlined in our proposal of 10/26/81. Specifically included are the following engineering evaluations and recommendations:

> Depth & Extent of Surface Cap Composition of Soils Bearing Strata Allowable Bearing Pressures Estimated Settlements Earthwork Procedures Slope Stability Lateral Earth Pressures

Composition of Fill Nature of Gas Generation Control of Gas Emissions Monitoring of Gas Emissions Rate of Gas Generation

1.2 STRUCTURAL CONSIDERATIONS

Proposed is the construction of a public park, incorporating numerous plantings, pathways, interpretive displays, and restroom facilities. It is anticipated that foundation loading for the planned facilities will be relatively light, and will not exceed the following:

	MAXIMUM LOAD
Walls	1 klf
Columns	10 k

1

Some modification of the existing boat ramp is anticipated, as well as construction of paved access roads for maintenance and pedestrian traffic.

The above information was obtained through conversation with the design architects (DOH Associates, Dave Harris), and the Chelan County PUD Interpretative Specialist (Tom Vetter).

1.3 SITE LOCATION

1

T

3

Т

Т

1

The subject site is situated east of downtown Wenatchee, Washington along the bank of the Columbia River. Specifically, the site trends north to south from 5th Street, extending 1 block beyond Orondo Street to the south. The site is bounded along its western margin by a series of buildings comprising a sewage treatment plant, food processing plant, City Public Works buildings and a steel fabrication plant.

ENCOUNTERED CONDITIONS

2.1 GEOLOGIC SETTING

During the Miocene Epoch (12 million years ago), a series of volcanic events extruded lava from fissures in the earth's crust over an existing topography of Precambrian (over 600 million years old) granitic and sedimentary rocks. These lava flows comprise what is referred to as the "Columbia River Group", and vary in thickness from several feet to several hundred feet. In some areas, the total thickness of the Columbia River Group exceeds 10,000'. The Columbia River Group basalts were later uplifted and tilted to the southwest during an episode of orogeny in the Pliocene Epoch (10 million years ago).

The Columbia River has maintained its channel in these basalt layers during the orogeny; its channel widening considerably, due to the wasting of slopes along its banks. The site occupies what formerly was a low velocity environment within the Columbia River channel, which allowed deposition of silt, clay and fine sand within its margins. Glacial flooding covered many portions of the Wenatchee Valley with gravel, cobbles, and boulders. Underlying the alluvial gravel and fine sands is a friable sandstone of moderate induration.

2.1.1 <u>Surface Winds</u> Surface winds at Pangborn Field near East Wenatchee, on a terrace above the river valley, generally trend from the northwest at 5-10 mph. It is reasonable to assume that some turbulent disruption will occur as the wind travels from the escarpment into the Columbia River Valley at Wenatchee, as well as some redirection alligning the winds north-south within the valley walls. During the summer months, some days of stagnant air conditions, combined with high temperatures occur.

2.2 SURFACE CONDITIONS_____

T

The surface of the site comprises a relatively level parcel surfaced with gravel. The eastern margin comprises a steep bank dropping approximately 25' to the waters of the Columbia River. Along its western margin, the site is occupied by several buildings owned by the City of Wenatchee Public Works Department, an asphalt parking lot for City machinery and vehicles, and a small gravel pit and storage area operated by the City of Wenatchee. At its southern end, there is a community boat ramp.

JOB NUMBER S81127

2.3 SITE HISTORY

1

3

T

1

T

T

T

ľ

T

T

τri i

The subject site was used as a refuse dump periodically from approximately 1930 to 1972. During this time, refuse was discarded along the river bank (in what at the time was a bog). For sometime this refuse was incinerated prior to placement in the landfill, however, this practice was later discontinued. After seasonal high fluctuation of the river level and subsequent erosion of the refuse, a dike was constructed of boulders and concrete construction debris, thereby establishing the eastern margin of the site. According to available records, in 1972 the placement of refuse was discontinued, and the surface of the site graded with 3'-5' of silty sand.

A steel building erected for the City Sanitation Department on the refuse dump prior to 1970, has experienced approximately 1'-2' of differential settlement due to consolidation/degradation of the refuse material upon which it bears. It is evident that the rise in pool elevation caused by modification of Rock Island Dam, inundated portions of the landfill comprising organic solids, thus providing an ideal medium for decomposition/degradation, and subsequent generation of methane and carbon dioxide. The above information was derived through conversation with the Assistant Director of Public Works of the City of Wenatchee, and several Public Works employees (Norm Delabarre, et.al.).

2.4 SUBSURFACE CONDITIONS_____

The subsurface soils are very similar to those described under "Geologic Setting" and "Site History". Those are a sandstone bed, and flood and slackwater river deposits, overlain by refuse and a blanket of cover soil. For design purposes, the materials encountered can be considered to comprise 7 Strata, described as follows and referred to henceforth by number.

- Stratum 1. <u>Silty Sand Cover Soil</u> This Stratum varies in thickness across the site from 2'-5'. Placed as a blanket of cover soil, this material comprises silty sand with a trace of gravel. It is moderately high in shear strength, relatively low in compressibility, has relatively low permeability and is moderately frost susceptible.
- Stratum 2. <u>Organic Refuse</u> The refuse Stratum comprises domestic and some industrial refuse consisting of styrofoam sheeting, wire, concrete blocks, paper, stoves, old car bodies, cardboard packing material, asphalt concrete, etc. Although compacted when placed, this refuse is susceptible to subsidence as its constituents decay. During such decay, methane gas generation will occur. For construction purposes, this material should be considered as having very low shear strength, high compressibility, high permeability, and a potential for volumetric change as decay/decomposition occurs.
- Stratum 3. <u>Cinder Fill</u> The cinder fill comprises the non-combustible fraction of organic refuse deposited in the landfill after incineration. It possesses moderate shear strength, low compressibility, and is relatively impermeable. As such, this material is reasonably well suited for the support of light structures.

11

- Stratum 4. Inorganic/Non-Combustible Refuse This Stratum was placed presumably during sidewalk renovation and demolition of old buildings during new construction phases. The material has been placed in the form of a dike extending north to south along the eastern perimeter, and as rip-rap along the river bank. Occasional lenses of this material were noted intermingled with the refuse, and underlying the cinders. They are differentiated because of their distinct lack of organic material. This material possesses high shear strength, low compressibility, and high permeability. It should be noted however, that concrete construction debris frequently traps many voids during placement, that can allow subterranean erosion/migration of soils, thus causing subsidence or undermining of structures within close proximity.
- Stratum 5. <u>Sewage Sludge</u> This material comprises a sandy silt-type material, possessing moderate shear strength, slight cohesion, high compressibility, and is relatively impermeable. Within the sandy silt matrix, wood fibers and other organics were frequently noted. As such, this material has the potential for subsidence as a result of the decomposition of its organic constituents, as well as overall consolidation due to its overlying surcharge.

1

- Stratum 6. <u>Native Soils</u> Underlying the site at depth are native flood and slackwater deposits comprising clayey silt with some sand to the north, and sandy gravel to the south. This Stratum should not be greatly affected by the structural or surcharge loads of the park development. The gravels possess high shear strength, low compressibility, moderate permeability, and are relatively non-frost susceptible.
- Stratum 7. <u>Sandstone Bedrock</u> The sandstone encountered in test boring #9 is slightly indurated and friable. As such, excavation of this material can probably be effected through ripping. It possesses high shear strength, low compressibility, and is essentially impermeable.

2.5 GROUNDWATER

Free groundwater was encountered in test borings extending below river level. As the pool elevation of the Columbia River adjacent to the site varies, it should be anticipated that the high permeability of the solid waste materials will allow the groundwater elevation beneath the site to vary similarly.

Because the pool elevation is well controlled by Rock Island Dam, it is anticipated that the fluctuations incurred will have little or no direct effect on footings of restroom facility structures within the proposed park. Fluctuation in the surface of free groundwater will however, have significant import on the rate of decomposition of domestic refuse materials within the fill. An increase of

JOB NUMBER S81127

Wenatchee Riverfront Park

Ĩ

1

ľ

decomposition induced by fluctuating water level could, therefore, conceivably produce increased methane gas volumes, as well as some subsidence of the surface due to the volumetric changes of decomposing material. Thus, water level fluctuation could possibly have an indirect effect on structures. Rapid drawdown could have an adverse effect on saturated, fine-grained soil slopes. If drawdown is severe, significant imbalance and possible slope failure could occur.

3.0 Based upon the results of the field and laboratory investigations contained in the following pages, we conclude that the site can be made acceptable for the proposed City Park, if proper precautions and preparations are incorporated in the design. The continuous decomposition of landfill materials underlying the site present two significant problems. These are the generation of methane and carbon dixoide as solid waste is subjected to decomposition, and the decrease in volume accompaning this decomposition.

While the increased risk of disruption of structures must be accepted in constructing on a site such as this, these risks can be minimized by locating structures over areas of most dense fill, or fill comprising inert materials. As methane generation is continuous in nature, a means of constantly releasing accumulated methane is necessary to reduce the possibility of collecting explosive concentrations of gas above ground.

budinger & associates

Initial plantings should not be adversely affected by methane generation unless roots penetrate the refuse/cover soil interface. This negative effect should diminish within 5-10 years, such that vegetation with deeper penetrating roots may prove acceptable.

3.1 GAS GENERATION

It is evident from laboratory testing, that the solid waste has undergone a major degree of decomposition and has become relatively stable. Following the procedures theorized by Pacy² and quantified by Hartz³, Table 2 tabulates the projected rates of methane generation and total methane potential. Methane potential deals with the total production capability for gas generation, while methane generation indicates the velocity of gas production.

The landfill has been subdivided into 5 segments, each segment representing a different rate of methane generation. The segments total productions were then accumulated after their respective rates were averaged from a yearly and daily rate standpoint. Air dillution of the methane was then calculated for the first foot of space above the soil surface. Above this level, air mixing generally causes gaseous emissions to be dilluted. This approach is generally a conservative one, in that if explosive conditions are not reached in the first foot of air space above the landfill, such conditions will not be reached. As the methane will diffuse upward, causing lower concentrations and thus less hazardous than calculated herein, the approach used has an inheirant safety factor associated with it.

Э

TABLE 1

SOLID WASTE ANALYSIS RIVERFRONT PARK LANDFILL WENATCHEE, WASHINGTON

Construction of the local data and the locae data a	and a state of the		
BORING	DEPTH	% MOISTURE	% VOLATILE SOLIDS ²
1	9 FT.	5.7 %	3.1% *
2	13 FT.	12.0%	7.4 %
3	7 <i>FT</i> .	23.5%	31.1%
4	9FT.	15.3%	7.1%
5	5 F T.	13.1%	6.8%
б	9 <i>FT</i> .	14.8%	17.6%*
7	19 <i>FT</i> .	17.4 %	6.9%
8	20 <i>FT</i> .	44.1%	17.6%
10	18FT.	19.6%	7.7 %
12	15FT.	19.4%	3.8%
23	14 FT.	36.2%	23.5%

* INDICATES LARGE QUANTITY OF STYROFOAM PLASTIC.

I. REPORTED ON A TOTAL WET WEIGHT BASIS.

2. REPORTED ON A DRY WEIGHT BASIS.

T

" may

115

*****f**

JOB NUMBER S81127

Table 3 presents a compilation of these calculations, and Figure 1 graphically displays the main concentration as a function of wind velocity. The wind vector has been assumed to be either north or south (a least favorable condition for methane hazard), in order to maintain a conservative viewpoint.

From Table 3, it can be seen that a sustained wind of essentially calm conditions, with no diffusion of methane into the air above, must be encountered within the first year in order for hazardous conditions to be approached. The likelyhood of these conditions existing appears to be remote. Such true calm wind conditions would most likely only be encountered during summer, together with high intensity sunlight. As such, significant dillution of methane and a subsequent reduction of hazard potential would occur as the heated soil would rapidly diffuse gas passing through it into the air mass above.

Methane generation rates should be low, and decrease with the passage of time to extremely low levels. Due to the sporatic nature of generation, and the relatively low rate, it is unlikely that "tiki" style burners will need to be implemented to burn off the landfill emissions. Rather, the generated gasses can probably be adequately vented with venting/monitoring wells.

To assure that gas pressure does not increase within the landfill causing lateral migration of generated methane, and possible build-up to hazardous levels, the installation of additional gas venting/monitoring wells will be necessary. Where such wells might prove awkward to design or space utilization, venting can be routed to a more suitable location. Those areas designated as segments III and IV, have a high methane generation rate relative to other portions of the site. As such, great care should be taken to assure adequate venting within these segments.

TABLE 2

METHANE GENERATION RIVERFRONT PARK LANDFILL WENATCHEE, WASHINGTON

BORING	GENERATION RATE '	TOTAL POTENTIAL 2
1	0**	.12
2	.03	.29
3	.59	1.24
4	.02	.28
5	. 02	.27
6	.27	. 70
7	.03	.27
8	.27	.70
10	.04	.31
12	0*	. 15

* GENERATION RATE TOO LOW TO BE DETERMINABLE.

- I. CUBIC FEET OF METHANE PER INPLACE POUND CALCULATED FOR YEAR 1982.
- 2. CUBIC FEET OF METHANE PER IN PLACE POUND.

NOTE: BOTH I. AND 2. ESTIMATED ON BASIS OF IN PLACE DENSITY AT 45 POUNDS PER CUBIC FOOT OF SOLID WASTE.

TABLE 3

METHANE QUANTITIES RIVERFRONT PARK LANDFILL WENATCHEE, WASHINGTON

SEGMENT	METHANE	WIDTH 2	CONCENTRATION 3
I	0.10 × 10 5	28	.003
I	1.5 × 105	27	.043
<u>777</u>	0.30 × 10 5	25	.009
IV	0.83 × 105	24	.027
V	1.10 × 105	23	.037
	•	TOTAL	.120

- I. CUBIC FEET OF METHANE PER DAY.
- 2. WIDEST REACH IN FEET PERPENDICULAR TO WIND VECTOR.
- 3. BASED UPON IO MPH WIND VECTOR IN FIRST FOOT REPORT AS PERCENT METHANE.

0 NOILINTIA DI 2 AS. FUSION 75205 ENATCHEE, WASHINGTON 73 NERATIO ø ONIM 198. WETHANE HAZARD BASED UPON: SAR. IGURE UNCTION OF WIND VELOCITY (MPH) 5 ZVIZO 19X3 YAZARD LEVEL VER 3 N 00 3 2 5 METHANE CONCENTRATION (%) budinger & associates

Wenatchee Riverfront Park

JOB NUMBER S81127

As the rate of methane generation is susceptible to moisture fluctuation, the establishment of a reasonably impermeable cap of cover soil over the solid waste materials is essential. Penetration of runoff water through the cover soil could increase the rate of methane generation and subsequently methane concentrations above ground. The installation of dry wells should therefore, be avoided.

3.2 BUILDING FOUNDATIONS_____

The only truly suitable material for the support of footings on the site is the native Stratum 6 gravel material. Building locations underlain by Strata 2, 3, 4 and 5 are areas where a high risk of structural disruption must be accepted. While some foundation designs might allow construction on these questionable materials, acceptable solutions are probably not cost effective. Risks can be limited however, if proper methods, combined with locations underlain by Stratum 5, or a thin seam of Stratum 2 replaced with structural fill are selected.

3.3 DIKES

Although the existence of a dike, as mentioned under "Site History", is substantiated in several of our test borings, there remains a possibility that its content, width, or height, may not be continuous along the entire eastern margin of the site. Where encountered, this dike comprised coarse boulders constructed as noted in the crosssections of the site plan. Although we were assured of its existence by the former landfill operator, and the Assistant Director of Public Works, the possibility of discontinuities as mentioned, still exists. However, as no areas of instability are apparent along the riverbank, it is quite probable that the dike is continuous throughout the length of the site.

3.4 PLANT PRODUCTION

Based upon the results of agronomical soils testing, the existing cover soil appears to be reasonably well suited for the propagation of ornamentals and flowers. Due to the active production of methane beneath the soil cap, it will be necessary to limit the root depth of plantings such that they do not intersect the soil cap/solid waste interface for 5 to 10 years. After this time, it is projected that methane generation rates will be low enough to allow root penetration without adverse effects to vegetation. Although the proposed gas vent caps are relatively unobtrusive, they should probably be camoflaged with small shrub plantings. This is advisable as it is less likely that a smoldering cigarette butt will be discarded into an ornmantel planting, than in the direction of a device of mechanical appearance. Should such a scenario occur during a sporatic episode of methane emission (however unlikely), the results could prove less than desirable.

____ R E C O M M E N D A T I O N S _____

4.0 It is recommended that methane generation be controlled with a minimum thickness of 5' of cover soil, and that gas pressures be vented to the atmosphere through modification of the existing monitoring wells and the addition of several additional venting/ monitoring wells.

While buildings could be best supported in areas which are not underlain by refuse, we realize that this may not be entirely feasible. Recommendations are presented to establish foundation designs for buildings which must be included in the refuse area.

It is recommended that the conclusions regarding slope stability and the existence of a containment dike be accepted as probable. Consequently, nothing should be done to increase bank stability unless future experience identifies areas of local failure.

Specifically, the project should be designed and constructed in accordance with the following recommendations:

4.1 EARTHWORK

Although relatively little earthwork is anticipated, it will be necessary to place some fill to assure that a 5' thickness of sufficiently fine-grained cover soil exists over the entire site. In addition, these earthwork procedures can be used to place fill for structural support of buildings (in cases where removal and replacement of minor thicknesses of refuse are feasible).

budinger & associates

ВÓ

1

tri d

Ŀ

- 4.1.1 <u>Preparation of Surface to Receive Fill</u> Prior to fill placement, the existing surface should be scarified, brought to the approximate optimum moisture content (+ 2%), and compacted in-place to 90% of maximum density.
- 4.1.2 <u>Fill Material</u> Material similar to that comprising the existing cover soil (Stratum 1), is quite suitable for fill material. To assure low permeabilities and thus confine gas pressures, the material should contain between 20% and 80% fines (silt and clay passing the #200 sieve).
- 4.1.3 <u>Fill Placement</u> With the exception of the top 1' in areas to support vegetation, fill materials should be brought to the optimum moisture content (<u>+</u> 2%), placed in thin lifts (not exceeding 6" compacted), and compacted to 90% of maximum density. Fill should not be placed in a frozen condition or on frozen ground.
- 4.1.4 <u>Compaction</u> Compaction of fill materials similar to those existing in Stratum 1, should not present significant difficulties. In our opinion, best results can probably be obtained with sheepsfoot or vibrating sheepsfoot equipment, at or slightly above the optimum moisture content.
- 4.1.5 <u>Maximum Density</u> Maximum density and optimum moisture content should be determined in accordance with the modified proctor method (ASTM D1557-78).
- 4.1.6 <u>Verification</u> A qualified technician should be present during all filling operations to test compaction and monitor compliance with these recommendations. While compaction verification is essential to proper fill placement, it is also critical in the backfill of utility trenches or stem walls.

4.2 STRUCTURE FOUNDATIONS_____

L D HODAN

H:

J.

Ť

ľ

5

Т

As outlined in "Conclusions" (paragraph 3.2), several options are available for support of buildings and minor structures. It is recommended that every attempt be made to place all structures in areas where they can be supported by inorganic fill or native soil. In areas where this is only partially possible, the existing refuse should be replaced with structural fill as recommended under "Earthwork" (paragraph 4.1). This will likely be the case where thicknesses are not too great (probably at transition zones where refuse pinches out between capping soil and underlying alluvium or dike fill). If it is necessary to construct buildings in areas completely underlain by refuse, it is recommended that a compensated mat foundation be used.

Specifically, footings founded in, and above, inorganic soils should be designed in accordance with the following:

FOOTING	MINIMUM	MINIMUM	BEARING
TYPE	DEPTH*	WIDTH	PRESSURE
Continuous Wall	30"	16"	1500 psf
Isolated Column	30"	24"	1800 psf

* No less than depth of average frost penetration as established by local experience.

1.50

ra.

0.0

2

JOB NUMBER S81127

The recommended bearing pressure is intended to include dead load plus sustained live load, and may exclude temporary live loads (less then 1 month's duration), as well as 80% of the subterranean footing weight. These bearing pressures may be increased by 1/3 when the temporary effects of wind and seismic forces are included.

For structures supported on areas underlain by refuse, mat footings should be founded at depths such that the total weight of excavated Stratum 1 soil is equal to the total weight of the structure (dead plus sustained live load), including the foundation weight. It is anticipated that for small restroom type buildings, this can be achieved by excavations of approximately 2'-3' below grade. As with spread footings, minimum depth should not be less than the average depth of frost penetration as established by local experience.

In either case, if footing excavations have been inadvertantly over-excavated, the concrete should be placed directly on the excavated, undisturbed surface. Attempts to bring over-excavated footing excavations to grade without adequate control, seldom achieve acceptable results.

4.2.2 <u>Settlement</u> fill or native mineral materials should expect only negligible amounts of settlement. Although the exact amount is not predictable, it is not likely that it would exceed 1" and probably be limited to less than ½".

JOB NUMBER S81127

However, footings founded in refuse areas can be expected to experience substantial subsidence. The effect of the compensated mat is intended to cause the building to be supported without an increased soil load at the compressible levels. Consequently, while severe settlements (2' +) may be anticipated, they should be relatively uniform between the structure and the adjacent soils. This should minimize shear stresses on utility lines entering and leaving the structures. While theoretically the compensated foundation should not allow any settlement of the building relative to the adjacent soil, in practice, some is bound to occur. It is estimated that this is not likely to exceed 1" unless there is a substantial descrepancy between the total building weight and the weight of excavated soil.

4.3 SUBSIDENCE_____

E. C.

As suggested under "Settlement", the entire refuse area can be expected to settle consistantly under the surcharge of the capping soil, and due to the general decomposition of the refuse. If in the past portions of the landfill were covered in cells (typical in sanitary landfill operations), the inorganic material between cells could be expected to act as vertical dikes of relatively incompressible material. The resulting subsidence could then take the form of a concave, scalloped surface as the refuse decomposes, allowing the capping soil to subside between cells.

4.4 LATERAL EARTH PRESSURES_____

Sheet States

Section of the sectio

L.

Lateral earth pressures are provided for design of subterranean structures, such as vaults, partial basements, etc. They are calculated assuming vertical walls, level backfill, and drained conditions. As the Active pressure requires some displacement to achieve full shear strength within the soil, the higher At-Rest pressures should be used in cases where retaining structures are rigidly restrained.

EARTH PRESSURE CONDITION	EQUIVALENT FLUID PRESSURE
Active	35 pcf
At-Rest	50 pcf
Passive	400 pcf

The Passive earth pressure is intended to provide lateral resistance for structures founded in Stratum 1. It can be used together with an earth/concrete friction factor of 0.35.

4.5 GAS VENTING WELLS_____

The existing gas monitoring wells installed during the field investigation, should be converted to venting wells. Four to five additional wells should be constructed at locations indicated on the site plan. It is recommended that the individual wells be provided with surface vents to defuse gasses and resist vandalism from normal park usage. A suggested design detail is included on the following page. It is further suggested that the wells be screened by a growth of low shrubs to further deffuse venting gasses, and to provide protection from casually tossed cigarettes etc. ALC: SALES

E-SAC

Service of the servic

Co. - South

a state of the sta

NOTE:

GAS WELLS TO BE LOCATED UNDER BUSHES, HEDGE ROWS OR OTHER COVERINGS.

budinger & associates

deotechnica: & materia: enaineers

077 (Box

the state of the

REFERENCE

JOB NUMBER S81127

budinger & associates

aectechnicai & materiai enaineers

1. - Vave. -

- States

.

JOB NUMBER S81127

Although individual venting of each well is preferable, several may be grouped into a single vent through a piping manifold system, if necessary for park planning. However, it is recommended that individual vents be retained in the area of higher gas generation rates (area III and IV). Vents may be laterally offset from the well locations if necessary.

4.5.1 <u>Monitoring</u> Gas wells should be pumped annually to collect samples which should be checked in the laboratory for methane, carbon dioxide, oxygen and nitrogen. In the event that laboratory tests indicate methane concentrations above 30% by volume, the soils engineer should be notified to recommend a more intense monitoring program. Routine operation of the park should include periodic monitoring of the lower explosive limit (LEL) using MSA (Mine Safety Association) hand-held equipment. If periodic readings above 5% by volume are obtained, the soils engineer should be notified to allow re-evaluation of the venting program.

In our opinion, the continued venting of the landfill at the 9 selected locations should provide an adequate means of releasing methane and other gasses generated within the landfill. While installation of additional wells could further reduce gas pressures and risks of developing explosive concentrations, it is our opinion, that the recommendations will provide adequate venting with acceptable safety factors.

budinger & associates

JOB NUMBER S81127

However, the possibility remains that, even with additional wells, some generating cells may be isolated from the venting system, such that pressures could allow gas percolation through the soils in localized areas. Although considered extremely remote, this risk must be accepted as inheirent with construction on landfills.

4.6 VEGETATION

The results of agronomical testing performed on Stratum 1 samples indicate moderate to high sulphur and phosphorus levels, medium organic matter content, relatively high concentrations of potassium, tolerable soluable salt concentrations, and that soil pH is well within the desirable range. As such, maintenance applications to balance sulphur, phosphorus, and potassium should be applied. Further, agronomical testing of cover soils should be performed annually to maximize crop production. Fertilizer recommendations for a crop of ornamentals and flowers to be grown in 1982 are as follows:

> 1. 80 lbs actual Nitrogen/Acre 2. 120 lbs actual $P_2O_5/Acre$ 3. 60 lbs actual $K_2O/Acre$ 4. 20 actual Sulfur/Acre*

> > *excluding segment IV

Vegetation should be selected such that root penetration is limited to Stratum 1 for at least 8-10 years. Penetration below the Stratum 1/ Stratum 2 interface may expose vegetation to toxins produced by Stratum 2, until lower generation rates are achieved. The recommended minimum compacted Stratum 1 thickness should limit migration of methane through soils to well below toxic levels. Soils should be tested annually however, to assure acceptable levels for established vegetation.

budinger & associates

JOB NUMBER S81127

4.7 PAVEMENT SECTION

The following pavement section is designed to bear on either Stratum 1 material, or select compacted fill.

1

0" •	MATERIAL	THICKNESS	% COMPACTION	- 0"
2"	Asphalt Concrete <prime coat<="" pre=""></prime>	2"	90% TM*	2"
£ 3.	Aggregate BAse	4"	95% MP**	-
6".				- 6"
	Stratum 1 or Structural Fill		95% MP**	

1

*Theoretical Maximum **Modified Proctor

The preceeding pavement section should provide an economical surface under the prevailing soil conditions.

It should be noted that a higher degree of compaction is required for the subgrade than for the remainder of the site grading. As such, it is recommended that additional compaction be obtained after construction is completed during the fine grading operations of the paving contractor. After completion of the base course, a prime coat of RC 250 liquid asphalt should be applied to the compacted surface and allowed to cure.

ļ 1____

JOB NUMBER S81127

A comprehensive maintenance program should be established to maintain the section integrity. This program should schedule a seal applied to the asphalt concrete surface periodically, to prevent infiltration of moisture into the subgrade through surface cracks. Further, positive surface drainage should be provided to prevent the ponding of melt water on the section's surface.

21

JOB NUMBER S81127

_____LIMITATIONS ______

These conclusions and recommendations are based upon the field and laboratory investigations contained in the following pages, and our understanding of the planned development, derived from information received from the architect (DOH Associates, David Harris).

These conclusions and recommendations were developed in accordance with generally accepted environmental and geotechnical engineering practices as outlined in our proposal of 10/26/81, and we make no other warranties either expressed or implied.

The conclusions and recommendations contained herein are based upon the assumption that classification and stratification of soil or refuse are continuous between test borings or pits. Although the boring pattern is reasonably dense, there always exists the possibility that conditions may vary between test borings, and that subterranean barriers may exist to prevent uniform gas migration.

Furthermore, the identification of the dike to contain refuse and provide slope stability is predicated partially on the fact that the auger met refusal at locations and depths where the surface of such a dike would be expected. There exists the possibility that this refusal pattern could be coincidental. If during construction variations in subsurface conditions are encountered, they should be brought to our attention immediately so that these conclusions and recommendations may be re-evaluated.

.

е ол в²

-

1197) 11

100

3

J

5

T

5

1

~ 1

REFERENCES CITED ____ APHA, AWWA, WPCF, Standard Methods, American Public 1. Health Association, Washington, D.C. 14th Ed., 1975 EMCON Associates, John Pacey, President, Methane 2. Generation and Recovery from Landfills, Ann Arbor Science, Michigan, 1980 Hartz, E.E., "Studies of Methanogenesis in Samples from Landfills", Research conducted for Getty Synthetic 3. Fuels, Inc., University of Wisconsin - Madison 1977-1979.

JOB NUMBER S81127

______FIELD INVESTIGATION______

6.1.1 TEST BORINGS______

Test borings were drilled with a truck-mounted Mobile B-40H drill rig, and were advanced with 4½" diameter, solid-stem, continuous flight auger. Due to the variable nature of the Stratum 2 materials encountered (ranging from silt to concrete construction debris, stoves, discarded wire etc.), our auger met refusal in many test borings in this Stratum. Where rip-rap or large debris was not encountered, test borings were refused on native river cobbles or bedrock.

6.1.2 TEST PITS

Backhoe pits were excavated with a tractor-mounted Dynahoe to depths of refusal or maximum reach. From these pits, samples of newspaper were retrieved to date the deposit. To avoid discontinuity of Stratum 1, all backhoe pits were topped with a depth of cover soil equivalent to that removed by excavation.

Logs of test pits performed by our firm at the north end of the site for a previous soils investigation are presented together with pit locations, following the more recent subsurface information. These are presented with the permission of our previous client's agent (DOH Associates, David Harris).

6.1.3 GAS MONITORING WELLS

Gas monitoring wells comprising slotted 2" PVC pipe, were installed in 5 test borings to provide a means of monitoring gasses developed during decomposition/degradation of Stratum 2 materials. It is intended that these wells be converted to venting wells to dissipate build-up of subterranean gas pressure. All gas monitoring wells were secured with a locking cap to prevent accidental venting or detonation, and marked with steel fence stakes. The locations of test borings that received gas monitoring wells are indicated on the site plan, together with suggested additional well locations.

6.1.4 SAMPLING

1/64

The coarse granular nature of Stratum 1, together with the severe caving encountered at depth, precluded the retrieval of undisturbed samples. As such, auger cutting samples representing the various Strata encountered, were obtained as the drilling was performed, and sealed in waterproof bags for laboratory analysis.

6.4.0 CLASSIFICATION_____

ASTM D2488

All soils were classified visually from disturbed samples and drill rig response. The resulting descriptions presented on the boring logs are intended to comply with the UNIFIED SOIL CLASSIFICATION SYSTEM.
JOB NUMBER S81127

6.5.1 BORING LOCATIONS

As precise surveying techniques were not employed in the location of test borings, and several borings in a single location were frequently performed, in an attempt to break through cobbles or boulders, locations presented on the site plan should be considered accurate to the nearest 10'. Test borings were located as close to those described by the architect as was logistically feasible.

6.5.2 ELEVATIONS_____

Elevations of the test borings were interpolated from a topographic plan provided by the architect (DOH Associates). As such, boring elevations should be considered accurate to the nearest 1'.

	N	Ьи	dinger &	associate	ès	_	~ ~	TEST BORING #10
		geot	echnical & m	naterial enginee			NUMBER 58: 1/4/81	Wenatchee Riverfront Park 1127 Wenatchee, Wa.
-	•	00	1	ELEVATI	ON 626			SURFACE Graded Gravel
	1 2 3 4		Moist	Mod.Dense	Tan	1	Cover Soil	SAND small amount GRAVEL poorly graded (med-fine) subrounded
	2 3 4 5 6 7 8 9 10		Moist	Mod.Dense	Tan	4	Refuse	CONCRETE FRAGMENTS matrix of SAND small amount of GRAVEL poorly graded (med-fine) subrounded
	Auger Refused @ 9 ¹ 2'							Auger refused in adjacent boring at 9½'
r		500	MOISTURE	CONDITION	COLOR	WD	DEPOSIT	VISUAL DESCRIPTION

	K	_						TEST BORING #1C
in the second seco	A			associate aterial engined		/	\sim	
1.5ad		Ň					UMBER S811 /4/81	Wenatchee Riverfront Park 27 Wenatchee, Wa.
	*	00	1	ELEVAT	ION 626'			SURFACE Graded Gravel
	0		Moist	Mod.Dense	Tan	1	Cover Soil	SAND small amount GRAVEL poorly graded (med-fine)
3 4	51		Moist	Mod.Dense	Tan	4		subrounded
5 6 7 8 9 10	5 3 51]	Wet	Compacted	Varied	2	Refuse	CONCRETE FRAGMENTS matrix of SAND small amount of GRAVEL poorly graded (med-fine) subrounded SAND
11 12 13 14 15 16 17	. S. G. 4.5		7				Reiuse	poorly graded (med-fine) some TRASH aluminum, styrofoam, wood fiber plastic pipe, tin, steel sheets ORDORIFEROUS
18 19 20	5. 2. 5							ж Т
 ≥1 ≥2 ≥3 ≥2 ≥3 ≥4 25 26 27 28 29 			Saturated	Firm	Gray	6	Alluvial	CLAY some SILT trace of SAND poorly graded (med-fine) moderately plastic
30 31 32 33 34 35 36			Saturated	Firm to Stiff	Gray	6	Alluvial	SILT SAND
37 38								CLAY fine GRAVEL of river bottom channel
2000 1000	1 @ 38'							
1	g Terminated						×,	
ж. <u>-</u>	Boring	500	MOISTURE	CONDITION	COLOR	rum	DEPOSIT	VISUAL DESCRIPTION

1	T.						e.	\sim	TEST	BORING	#2
E di	Ν	budi	inger & c	associate	S	/	\sim	$\langle \ \rangle$			
		geolea	chnical & ma	aterial enginee	/			0.7		hee Riverfro	ont Park
1.5					J0		MBER S811: ./5/81	27	Wenato	hee, Wa.	
-				ELEVAT	628'+			SURFACE Grad	ded Grav	rel	
			Sl.Moist	Mod.Dense		1	Cover	SAND			
•" I	2						Soil	small amo		VEL med-fine)	
1.51	3 0							subround		ict rincy	
	5		Wet	Compacted	Varied	2	Refuse	SAND			
692			wel	Compacted	Varied			poorly g		med-fine)	
•	8 /							some TRA styrofoa		, wire, plas	tic,
642.0	10 .4							string,	glass		
	11 12										
-	13										
•								CONCRETE	FRAGMEN	NTS	
1											
1.138 -											
1	_										
621	13,										
-	d d										
	used										
-]	Refi										
	Auger										
	Aug										
East a											
1											
4											
-											
te and											
- ;											
E.4	ě.										
-											
e-k											
er ek		1									
(25)											
යක් =											
17aul		500		CONDITION	CO107	WD.	DEPOSIT		VISUAL	DESCRIPTION	
		δl	MOISTURE	CONDITION	COLOR	67	1 otrojn	a -			

	A							\sim	TEST	BORING	#3
	\setminus	buc geote	linger & echnical & m	associate aterial enginee	S ers		NUMBER 58	1127		chee Riverfro chee, Wa.	ont Park
-	ł			ELEVATI	632 ' <u>+</u>			SURFACE Gr	aded Gra	ivel	
-	1 2 3 4 9]	Moist	Mod.Dense	Tan	1	Cover Soil	SAND small am poorly g subround	raded (1	AVEL ned-fine)	
a A difference of the second	5 6 7 8		Wet	Compacted	Varied	2	Refuse	SAND poorly g some TRA	raded (1 SH materia	ned-fine) L, cloth & w	ood
								SMOOTH O)BJECT, (CONCRETE OR	STEEL
	ed @ 71 ₂ '			-							
	Auger Refused										
na la	Aug										
				×							
- 								2			
1											
1											
-	-	500	MOISTURE	CONDITION	COLOR	WD	DEPOSIT		VISUAL	DESCRIPTION	

- [Ν.						TEST BORING #4
مینا مینا		dinger & a technical & ma		ers	JOB 1	NUMBER S81 11/5/81	Wenatchee Riverfront Park 127 Wenatchee, Wa.
1	+ 1	7	ELEVATIO	on 634	•' <u>+</u>		SURFACE Graded Gravel
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	0, 0 	Moist	Mod.Dense	Tan	1	Cover Soil	SAND small amount GRAVEL poorly graded (med-fine) subrounded
5 6 7 8 9 10 11 12 13 14	不正とれた	Moist	Compacted	Varied	2	Refuse	SAND poorly graded (med-fine) some TRASH styrofoam sheet, chain link fence, wire, springs
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		Moist Saturated	Mod.Loose	Black	5	Refuse	SEWAGE SLUDGE? SILTY SAND poorly graded fine with ORGANICS (roots?) glass, slightly plastic
31 32 33 34	34 '	Saturated	Firm	Gray	6	Alluvial	CLAY some SILT trace SAND poorly graded fine moderately plastic
Nora W Laad W	Boring Terminated @						
- Land	sac	MOISTURE	CONDITION	COLOR	Wn.	DEPOSIT	VISUAL DESCRIPTION

	K							\sim	TEST	BORING	#5
1	N	buc	dinger &	associate	ers	/	\sim				
la de		geen					• NUMBER S81 11/5/81	127		chee Riverfro chee, Wa.	ont Park
20	¥	00	6	ELEVAT	он 635' <u>+</u>			SURFACE Grade	ed Grave	:1	
	2 2 0 0	1	Moist	Mod.Dense	Tan		Cover Soil	SAND small amo poorly g subround	raded, (WEL (med-fine)	
5 6 7 8 9 10 11 12 13 • 14 15	2 13 7 36 44	J	Moist	Compacted	Varied	2	Refuse	some TRA	SH	med-fine) Te, plastic	bags,
16 17 18 19 20 21	5 . J C.							_ CLOTH, R	AGS poor	recovery	
22 23 24 25 26 27 28 29 29	S 47 5 47 5 5										
- 30 - 30	Terminated @ 30'										
1 1 1 1	Boring	SQ	MOICTURE	CONDITION	COI 08	WP	DEPOSIT		VISUAL	DESCRIPTION	

l		N	buc	dinger &	associate	s				TEST	BORING	#6
ituma			geote	echnical & m	aterial enginee	ers	JOH	8 NUMBER S 11/5/81	81127		hee Riverfro hee, Wa.	ont Park
	-0 - 1 2 3	0.0	00		Mod, Loose		1	Cover Soil	SANDY GRAV	EL		
۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1/2/ 2 12 D 5 24		Moist	Compacted	Varied	2	Refuse	SAND poorly gra some TRASH styrofoam, newspaper	plast	ed-fine) ic, wood, ca le), leathe	ardboard, r
		Auger Refused @ 18'				7			BOULDERS &	COBBL	ES	
104 - 27 - 23 - 27 - 23 - 27 - 23 - 27 - 27 - 27			205	MOISTURE	CONDITION	COLOR	WD.	DEPOSIT		VISUAL	DESCRIPTION	

1						\sim	TEST	BORING	#7
bug	dinger &	associate	S	/		$\langle \ \rangle$			
geote	echnical & m	aterial enginee			NUMBER S8	1127		hee Riverfro hee, Wa.	nt Park
+	1	ELEVATIO	ON 634' +	2		GURFACE Gras	S		
0 	Moist	Mod.Dense	Tan	1	Cover Soil	SAND small amo poorly gr subrounde	aded (1		
0.0000	Moist	Mod.Dense	Black	2	Refuse	SANDY GRA moderatel very litt occasiona subrounde	ly well le GARN al can		
5				2		TRASH styrofoan	n, hose	clamp	
	Wet	Mod.Firm	Black	5	Refuse	SEWAGE SI SILT some fine trace CL4 low plast TRASH metal can	LUDGE SAND AY ticity	stic bottles	
	Saturated	Mod.Soft	Blue/Gry	6	Alluvial Lacustrir	SILT e some CLA trace SA moderate	ND	city	
Boring Terminated @ 38 ¹ 5'						16			
500	HOISTURE	CONDITION	COLOR	Wn	DEPOSIT		VISUAL	DESCRIPTION	

	ĩ.							\sim	TEST	BORING	#8
E.K.	1	buc	inge <mark>r &</mark> d	associate	S		~ /	<			
	\ ٩	geote	chnical & ma	aterial enginee	ers		\sim		Wenato	hee Riverfro	ont Park
- 1844	11						NUMBER S8	1127	Wenato	chee, Wa.	
	1	0		ELEVATI	ON 624'+		1/5/81	SURFACE Gra	ded Grav	vel	
0 - 1 2 3 4 5	0	1	Moist	Mod.Dense	Tan		Cover Soil	SAND small am poorly g subround	raded (1	AVEL ned-fine)	
6 7 8 9 10 11	0.00		Moist	Dense	?	4	Refuse	GRAVEL (DR RUBBL	E	
12 13 14 15	2 Parts		Wet		Brown	5		SEWAGE S with woo small am	d fiber,	, timbers, an metal	nd
16 17 18 19			Saturated								
1656 1 1								HOOKED	DEBRIS,	STEEL?	
1 1 1	ced @ 19										
	Terminated					1					
	Boring ¹										
	ğ										
16.52											
-											
		DS			CO108	W	DEPOSIT		VISUAL	DESCRIPTION	

1	١							\sim	TEST	BORING	#9
Ellio2	Λ	buc	linger & (associate	S	/		$\langle \ \rangle$			
low	$\left \right\rangle$	Geore			/		NUMBER S8	1127		hee Riverfro hee, Wa.	ont Park
	1	0 0		ELEVATI	ON 622'+			SURFACE Dirt	Road		
1 2 3 4 5 6 7 8 9 10 11 12 13			Moist	Dense	Brown	6	Alluvial	GRAVELLY moderatel subrounde occasiona	ly well ed		
14 15 16 17 18			Sl.Moist to dry	Dense to hard	Gray	7	Sedimenta	ry SANDSTON friable moderate		indurated	
19											
	Auger Refused @ 19'			×				1.82		₹.	
لتعف		ŞŎ	HOICTURE	CONDITION	0108	WD	DEPOSIT		VISUAL	DESCRIPTION	

	١						\sim	TEST	BORING	#10
		oudinger & geotechnical & m	associate	ers	/		$\langle \ \rangle$			
					OB 1	UMBER S81 11/5/81	127		chee Riverfro chee, Wa.	ont Park
	↓ L	0	ELEVATI	ON 628'+			SURFACE Gra	ded Grav	vel	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		Moist	Mod.Loose	Brown	3	Fill	SILTY SA poorly g small am	raded fi		GLASS
20 21 22 23 24	X	Saturated	Mod.Firm	Tan	6	Alluvial	SANDY SI small am moderate	ount CLA		×
	Boring Terminated @ 24'	3			2			6		
-		MOISTURE	CONDITION	COLOR	MUT	DEPOSIT		VISUAL	DESCRIPTION	

grow category	\ . bu	dinger &	associate	S			TEST BORING #11
	geo	technical & m	associate aterial enginee	ere ere	JOI	B NUMBER S	
		г	ELEVATI	ON 628'+		11/5/81	SURFACE Graded Gravel
		Moist	Mod.Loose	Brown		Cover Soil	SILTY SAND some COBBLES moderately well graded
22	3 4 5 6 7 8 9	Wet	Compacted	Varied	2	Refuse	SAND poorly graded (med-fine) some TRASH power cable, landscape clippings, wood waste, concrete fragments, metal, and paper (dated 1969) ODORIFEROUS
	Backhoe Pit Terminated @ 9'						
],],],	- 005	MOISTURE	CONDITION	COLOR	WD	DEPOSIT	VISUAL DESCRIPTION

1.544		N	buc	linger & d	associate	s			\frown	TEST	BORING	#12
		$\left \right $	geote	echnical & mo	aterial enginee	ers	JOB	NUMBER 58 11/5/81	31127		hee Riverfro hee, Wa.	nt Park
1		* 2	2 0		ELEVATI	ON 628'	<u>+</u>		SURFACE Grad	led Grav	el	
	0 - 1 2 3 4 5 4	0.00.00.00	1	1	Mod.Dense	Brown	1	Fill	GRAVELLY moderatel subrounde	ly well	graded	
	7 8 9 10 11 12 13 14	N. C. W. T. W.		Moist	Compacted	Varied	2	Refuse	SAND poorly gr some TRAS newspaper ORDORIFE	SH r, wood		
	14	Auger Refused @ 14 ¹ 2'							CONCRETE	FRAGMEN	ITS ?	
	-		500	MOISTURE	CONDITION	COLOR	MUT	DEPOSIT		VISUAL	DESCRIPTION	

		Ĩ.							\sim	TEST	BORING	#13
t, s'		$\left \right $	buc geote	echnical & m	associate aterial enginee			MBER \$811	27		chee Riverfro	on Park
			1		/		1	1/5/81		nellace	inceş nev	
	-0-	∳	00	1	ELEVAT	634'			SURFACE Grad		rel	
Tanki	1 2 3			Moist	Mod.Loose	Brown	1	Cover Soil	SILTY SAN some ASH moderatel		graded	
	4 5 6 7 8 9	オキマイモン		Wet	Compacted	Varied	2	Refuse	SAND poorly gr some TRAS garbage, styrofoam	H paper (med-fine) (dating 1968-	-71)
	9 10	Backhoe Pit Terminated @ 10'							styrofoam	, wood		
			205	MOISTURE	CONDITION	COLOR	WN	DEPOSIT		VISUAL	DESCRIPTION	

bu	dinaer & as	sociates	_		\frown	TEST	BORING	#14
geot	dinger & as rechnical & mater	ial engineers		NUMBER S82		Wenatch	ee Riverfro ee, Wa.	nt Park
	1	ELEVATION 635'+		S	URFACE Grad	ed Grave	-1	
		d.Loose Brown	1	Cover Soil	SILTY SAN some GRAV moderatel	EL	graded	
8 9	Wet Co	mpacted Varied	2	Refuse	SAND poorly gr some TRAS paper (<i>dc</i> landscape	5H ated 1968	ed-fine) 3), packing, ngs, plastic	wood,
Backhoe Pit Terminated @ 10'					landscape	<u>e clippir</u>	ngs, plastic	
50	- NOVETIME O	CANDITION COLOR	MU	DEPOSIT		VISUAL	DESCRIPTION	

(***	\ E	oudinger &	associate	es		~ ~	TEST BORING #15
N. Land	l g	eotechnical & m	laterial engine			UMBER S81 11/6/81	Wenatchee Riverfront Park U127 Wenatchee, Wa.
0	1 0	0	ELEVAT	ION 632	+		SURFACE Graded Gravel
1 2 3 4 5 6		Moist	Mod.Dense	Brown	1	Cover Soil	SAND small amount GRAVEL poorly graded (med-fine) subrounded
7 8 9 10 11 12 13 14	うちてき	Moist	Mod.Dense	Gray/B1k	2	Refuse	SAND poorly graded (med-fine) some TRASH wood fiber, styrofoam sheet, ORDORIFEROUS
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		Saturated	Mod.Loose	Black	5	Refuse	SEWAGE SLUDGE? SILTY SAND poorly graded fine with ORGANICS (roots?) glass slightly plastic
	Auger Refused @ 29'						CONCRETE FRAGMENTS?
pre .	501	MOISTIBE		COLO#	¥.	DEPOSIT	VISUAL DESCRIPTION

3		٨						\sim	TEST	BORING	#16
÷			dinger & technical & m	associate aterial engine	ers	/					
							MBER S8112 /6/81	7		chee Riverfro chee, Wa.	ont Park
	0	+	ר <u>ק</u>	ELEVAT	ION 634' <u>-</u>	20		surface Gra	ded Grav	vel	
	1 2 3 4 5	0	Sl.Moist	Mod.Loose	Brown	1	Cover Soil	SAND small am poorly g subround	raded (1	AVEL med-fine)	
and and and and and and and and and and	6 7 8 9 10 11 12 13 14 15 16 17 18	0.00.00.00.00.00.00.00.00.00.00.00.00.0	Moist	Mod.Loose	Gry/B1k	1	Cover Soil? Dike Material	GRAVEL small am moderate			
	19 20 21 22 23 24 25 26 27 28 29	A Levin and the second and	Saturated	Mod.Loose	Black		Refuse	SEWAGE S SILTY SA poorly g with ORG wood fib slightly	ND raded f: ANICS (1 ers, met	coots?) cal, plastíc	
		Boring Terminated @ 29'									
i jan	-	500	MOISTURE	CONDITION	COLOR	WD	DEPOSIT		VISUAL	DESCRIPTION	

ļ	Ν.						\sim	TEST	BORING	#17
NUM Las		udinger & otechnical & m	associate naterial engine	ers	JOB	NUMBER S8 11/6/81	1127		chee Riverfro chee, Wa.	ont Park
L	*	0	ELEVAT	ION 632'	+		SURFACE GI	aded Gra	vel	
	0.000	S1.Moist	Mod.Loose	Brown	1	Cover Soil		ount GRA graded (m led	NVEL med-fine)	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	うちょうないとうないないであるという	Moist	Mod.Dense	Gry/Blk	2	Refuse	some TRA	SH m, wood	ned-fine) fiber, metal steel	2
	Boring Terminated @ 30 ¹ 2'						RUBBLE &	STEEL?		
18 <u>-</u>	ops	MOISTURE	CONDITION	COLOR	WD.	DEPOSIT	1	VISUAL	DESCRIPTION	

kael	N	bud	dinger &	associate	es		~ _	TEST BORING #18
		geot	echnical & m	aterial engined			NUMBER S81	Wenatchee Riverfront Park 127 Wenatchee, Wa.
1 5	↓		1	ELEVAT	ION 633'+			SURFACE Graded Gravel
	1 0. 2 0 3 0	<u> </u>	Moist	Mod.Dense		1	Cover Soil	SAND small amount GRAVEL poorly graded (med-fine) subrounded
	5 6 7 8 9 10]	Moist	Compacted	Varied	2	Refuse	SAND poorly graded (med-fine) some TRASH styrofoam sheeting, newspaper (1961?)
	@ 10'				1		×	BOULDER (of Dike?)
	Auger Refused							
- 	-	500	MOISTURE	CONDITION	COLOR	WD	DEPOSIT	VISUAL DESCRIPTION

		١	buc	linger &	associate	95	_	~ _	TEST BORING #20
-) -) -)			geote	echnical & m	aterial enginer	ers		UMBER 5811 1/6/81	Wenatchee Riverfront Park Wenatchee, Wa.
1		¥			ELEVAT	ION 634'H	-		SURFACE Graded Gravel
2	-0 - 1 2				Mod.Loose	Tan	1	Cover Soil	SAND moderately well graded trace of SILT
-J	3 4 5 6 7	0 0 0 0 0		Moist	Mod.Dense	Brown	1	Cover Soil	GRAVEL some SAND moderately well graded trace COBBLES
	8 9 10 11 12 13	アンタイ		Moist	Compacted	Varied	2	Refuse	subrounded SAND poorly graded (med-fine) some TRASH plastic bags, metal, paper, wire
······································		Auger Refused @ 13'							<pre>Some TRASH plastic bags, metal, paper, wire ' METALLIC DEBRIS</pre>
1			501	MORTHEF	CONDITION	COLOB **	W	DEPOSIT	VISUAL DESCRIPTION

2	٨							\sim	TEST	BORING	#21
177	1	bu	dinger &	associate	es .	/	\sim		<u> </u>		
	11	geo	rechnical & m	aterial engine			\sim			hee Riverfro	ont Park
Fuial		I -					NUMBER S8	1127	Wenato	chee, Wa.	
•	1			/	()()		1/6/81	G	- 1 - 1 - 0	- 1	
2	• •	0 0	·	ELEVAT	ION 636'			1	aded Grav	7e1	
1823) 	1 1		S1.Moist	Mod.Loose	Tan	1	Cover	SAND		aradad	
ì	2						Soil	trace o	ely well f SILT	graded	
tani T						4					
1								RIP RAP			
1.26								Auger R	lefused in	n 5 adjacent '	holes
-	17,1	1							карео		
hali	a 1										
	Auger Refused										
102	Ref										
.	er										
-	Аце	D									
-											
1											
=											
1 F											
1528											
hari Mari											
1											
1											
1											
=											
							1				
-											
ł											
4.5											
a											
-											
ISU											
- 1997 1997											
-13 17											
्रीत		SOL	MOISTIEF	CONDITION	COLOR	Wn	DEPOSIT	1	VISUAL	DESCRIPTION	

		N	alta a e a O	mana stark				\frown	TEST	BORING	#22
1.000			ainger æ technical & m	associate	ers	/	\sim /		<u> </u>		
Fa							NUMBER S8 11/6/81	1127		hee Riverfr hee, Wa.	ont Park
		100	7	ELEVAT	ION 636'+			SURFACE Grad	ed Grave	1	
	1 2 3 4 5 6 7	0	Moist	Mod.Dense	Tan	1	Cover Soil	SAND small am poorly g subround	raded (m	WEL med-fine)	
Lár	5 6 7 8		Moist	Compacted	Varied	2	Refuse	some TRA	SH	ed-fine)	. 1
	9 10 11 12 13 14 15 16 17 18		Moist	Mod.Firm	Black	5	Refuse	SLUDGE, SILT some fin trace of low plas ORDORIFE	wood fib e SAND CLAY ticity	ags, glass vers	a wood
	19 20 21 22		Moist	Mod.Dense		4	Refuse	RUBBLE &	STEEL		
	22 C D beterinner oring	ש האומרכת ש						Due to H	ooking o	f Auger	
LLA	-	SOO	MOISTURE	CONDITION	COLOR	Wŋ.	DEPOSIT		VISUAL	DESCRIPTION	

.]	N	bu	dinger &	associate	es		ě.	\wedge	TEST	BORING	#23
- Lossi		geo	otechnical & r	naterial engine	ers		IUMBER 581	.127		hee Riverfr hee, Wa.	ont Park
	¥		7	ELEVAT	ION 635'			SURFACE Grad	ded Grave	1	
Jan Barris			Moist	Mod.Dense	Brown	1	Cover Soil		nount GRA graded (m led	VEL med-fine)	
	4 5 6 7 8 9 10 11 12 13 14 15 16 17		Moist	Compacted	Varied	2	Refuse	some TRA paper, s plastic	styrofoam bags, wo cardboard	ne , phone wir od fibers, (fruit pac	-
	18 19 20 21 22 23 24 25 26 27 28 29		Wet	Black	Black	5		SILT some fin trace CI low plas ORDORIFE	LAY sticity SROUS	ers ce of plasti	ic
3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	Auger Refused @ 29'										
ind	-	SOO	MOISTURE	CONDITION	COLOR	N	DEPOSIT		VISUAL	DESCRIPTION	

Ψ.	Ŧ							\sim	TEST	BORING	#24
-	Λ	bud	linger & (associate	S	/	< /	\sim			
		geote	ichnical & ma	aterial enginee	irs		\sim		Wenato	hee Riverfro	ont Park
Land						NUM	BER S8112	7 🕫	Wenato	hee, Wa.	
<u>t</u>				ELEVATI	ON 632'+	11/0		SURFACE Grade	ed Grave	1	
-0 - 1	00			Mod.Dense	Brown		Cover	GRAVELLY			
2 3 4	0						Soil	moderate subround		graded	
4	0										
5	0										
, 8 9 10	0										
9	0 0										
11	0										
12 13	: O HH										
₩ 14 15			Wet	Mod.Firm	Gray	5	Refuse	SLUDGE, SILT	wood fi	bers	
16	2							some fin trace of			
17								low plas			
19 20								ORDORIFI		ace of plast	ic
21			- <u></u>					wood 11	berg, er		
22 23			Saturated								
24 25											
26											
28									A		
-											
	27½										
	@ 27										
_											
-	Boring Terminated										
	ermi										
	8 Le										
	rtn										
-	Bo										
-											
-											
Ve.											
)											
l Jacob		500	MOISTURE	CONDITION	COLOR	MU	DEPOSIT	1	VISUAL	DESCRIPTION	

L	N.						\sim	TEST	BORING	#25
		dinger & technical & m	associate laterial engine	ers	/	\sim		`	-	
, 						MBER S8112 /6/81	27		chee Riverfro chee, Wa.	ont Park
0 -	* <u>-</u>	7	ELEVAT	юн <u>634'+</u>			SURFACE Grade	ed Grave	21	
1 2 3 4 5 6	0 0 0 0 0 0 0 0	S1.Moist	Mod.Dense	Brown	1	Cover Soil	GRAVELLY moderate subround	ly well	graded	
i,	0,0 7x7 21				2	Refuse	Wood Fibe	ers, Pap	er, Metal, e	etc.
10 11 12 13 14 15 16 17 18 19	1	Moist	Mod.Firm	Black	5	Refuse	SLUDGE, SILT some fin- trace CL low plas ORDORIFE purple c	e SAND AY ticity ROUS		
20										1991 - Franke Status, 2003
	Auger Refused @ 19½'						Ĩ.			
1										
1										
- 1204 										
	•				_					
1-46	SO(MOISTURE	CONDITION	COLOR	M D	DEPOSIT	1	VISUAL	DESCRIPTION	

N						\sim	TEST	BORING	#26
\ bu	dinger &	associate	S	/					
	Mechnical & I	nalenal enginee	²¹³	JOB	NUMBER SE	81127		chee Riverfrom chee, Wa.	it Park
	7	ELEVATI	on 634' <u>+</u>			SURFACE Grade	ed Grave	21	
	Moist	Mod.Loose		1	Fill	SAND poorly g clean	raded f	ine	
6 7 8 9 10 11 12 0	Moist	Mod.Dense	Brown	1	Fill	SAND small am moderate subround	ly well	ne GRAVEL graded	
13 14 15 16 0	Moist	Mod.Dense	Brown	1	Fill	GRAVEL some SAN moderate subround	ly well	graded	
17 0.54 18 19 20 21 22 74 23	Moist	Compacted	Varied	2	Refuse	TRASH	raded (med-fine) paper, sludg	e
Auger Refused @ 221 ₂ '									
03	MOLETINE	CONDITION	COLOR	Wn	DEPOSIT		VISUAL	DESCRIPTION	

3-	58		÷						TEST	BORING	#2/
1	Ль	udin	ger & a	ssociate	s	\sim	/	\sim			
	\ 9 [.]	eotechr	nical & mat	erial enginee	rs		\checkmark		Wenat	chee Riverfr	ont Park
							BER \$8112	7	Wenat	chee, Wa.	
а" 10	11				626'+	. 11/7		URFACE	Graded G	ravel	
		0 M(oist M	fod. Dense	Sector.		Fill	GRAVELL	Y SAND		
ан 1	1 0.0		5150	10.45				moderat subroun	ely well ded	graded	
ł.											
1						4		RIP RAP			
s Septime B								Auger r borings	efused i @½'an	n 3 adjacent d 1'	2
	Auger Refused @ 2'							are evi cut to	dent on the boat	ND SANDSTON the site of ramp, also action debri	the
a Singat W	·										
- 											
-											
لي. •											
••••											
-											
ind I											
i II											
7		Sa	MOISTURE	CONDITION	COLOR	MUT	DEPOSIT		VISUAL	DESCRIPTION	×

 	1						\sim	TEST	BORING	#28
 	\ b	eotechnical & m	associate	S	\sim	~ /	$^{\prime}$	·		
	/ a	eotechnical & m	aterial enginee			\sim			hee Riverfro	ont Park
howing					JOB NI	UMBER S81 /7/81	127	Wenato	hee, Wa.	
	11			ON 629'			surface Grade	ed Grave	21	
-0-		<u>o'</u>				Fill	GRAVELLY			
1 2 3	0.0	Moist	Mod.Dense	DLOWI		1111	moderate	ly well	graded	
4	5 0									
5	.0				+ +			7 - 110-014		
6					4		RIP RAP	or BOUL	DER?	
k.										
teni										
hann										
Eran	5121									
	d Q									
1	fuse									
	Auger Refused									
by-W	ıger									
a II 	AL									
ц.) Ц.)										
4										
l Lyw										
1										
-										
602										
· .										
inea ^j										
·										
6										
945)										
)										
ł										
Lyndf		8	CONDITION	(0) 08	Wn	DEPOSIT	l,	VISUAL	DESCRIPTION	

	N	bud	linger & (associate	s			TEST BORING #2
		geote	echnical & ma	aterial enginee	ers		MBER S810 /11/81	Wenatchee Senior Center 019 Wenatchee, Wa.
1-1	•			ELEVATIO	ON 633			surface Graded w/snow
دی جا			Moist	Relatively Firm	Brown	1	Fill	SANDY SILTS SILTS GRAVELLY SILTS w/SAND soil types indiscriminately intermix
the first first first	5 6 7 8 9 10 11 12	化合物 超分化 医原子病 化合合金属 使消化器 化合金属 医脊髓化成	Wet	Mod.Dense	Red,Brn, and Blk.	3	Fill	CINDERS from incinerated garbage sand & fine gravel sizes moderately well graded
	12 13 14 15 16 17 18 19 20 21	レントレイントをためて、オキセントという	Wet	Côndensed	Black	4	Dump	TRASH non-combustible materials primarily metal (car bodies etc)
··· ! ! ! ! !_	-	Pit termin. @ 21'	MOICTUBE	CONDITION	COLOR	WD	DEPOSIT	VISUAL DESCRIPTION

	ьи	dinger &	associate	es		~ _	\frown	TEST S. end	BORING of Building	#3
	geo	otechnical & m	naterial engine	rees	2/	UMBER 581 /11/81		Wenato	hee Senior (hee, Wa.	Center
· · · · · · ·		Moist	Relatively Firm	1	+	Fill	SANDY SI SILTS GRAVELLY	SILTS w		intermi
		Wet	Loose	Varied	2	Recent dump			E & TRASH , wood, meta	2
	Backhoe pit terminated @ 9'									
3*	ð	MOISTURE	CONDITION	COLOR	M	DEPOSIT	1	VISUAL	DESCRIPTION	

bud	dinger & (associate	25			\frown	E. c	BORING	#4
	echnical & ma	aterial enginee		2	NUMBER 58 /11/81		Wena	tchee Senio tchee, Wa.	r Center
		Relatively Firm		1	Fill	SURFACE Grad SANDY SI SILTS GRAVELLY soil typ	LTS SILTS	w/ SAND	y intermixe
5 6 7 8	Wet	Mod.Dense	Red,Brn, & Blk.	3	Fill	few BRIG	CKS fine gra	cinerated g vel sizes graded	arbage
Backhoe pit terminated @ 8'								5	
ã	MORTHER	CONDITION	COLOR	NM	DEPOSIT		VISUAL	DESCRIPTION	

-

Ļ

1

-

-

1

1300 1

1

5.1

isere I

ř

1

laga I

r

isten D

-

1	N	buc	linger &	associate	2 5	/	< _ /	\frown	TEST E. cer	BORING nter of Bldg.	# 5
	Ţ					2/1	MBER S8103 1/81			chee Senior (chee, Wa.	Center
		00		Relatively		Ĩ	Fill	SANDY SI SILTS GRAVELLY	LTS SILTS		intermia
-	5 6 7 8		Wet	Loose	Varied	2	Recent Dump			E & TRASH , wood, meta	2
	Backhoe pit terminated @ 8'										
a.		50	MOISTIBS	CONDITION	roioe	MU	DEPOSIT	1	VISUAL	DESCRIPTION	

LABORATORY INVESTIGATION

**7.1.1 MOISTURE CONTENT_____

Moisture content was determined for disturbed samples representing the silty sand cover soil and are presented as a percentage of dry weight, as is the convention in geotechnical analyses.

.1.2 DIRECT SHEAR_____

ASTM D3080

ASTM D2216

Direct shear strength was determined for a sample representing Stratum 1. Due to the disturbance of surface samples, a remolded test was performed. The test was conducted by the consolidatedunderained method, with strain controlled under submerged conditions. The failure envelope was developed from the average of 3 points, sheared at normal stresses of 1, 2, and 3 ksf. The stress/strain curve is plotted for each point and presented graphically together with the Mohr-Coulomb shear envelope. It should be noted, that re-molded shear tests will yield slightly higher results for noncohesive soils.

7.1.3 GRADATION_____

Ł

L

h.

ASTM D421 & 422

Samples representing Stratum 1 were subjected to mechanical sieve and hydrometer analyses to determine their coarse and fine-grained particle size distributions respectively. The results present the percentage of each sample passing (smaller than), individual U.S. Sieve Sizes, or particle diameters, by dry weight. U.S. Sieve Sizes represent either nominal particle diameter, or meshes per inch. Particle sizes are also presented in metric units.

7.1.4 pH______ASTM E70

Strata 1 & 2 materials were tested to determine their pH for evaluation for corrosive and vegatative impact potential. the pH is presented on the laboratory summary, based on a 14 point scale (1 acid - 14 base), with 7.0 representing neutral.

Moisture content for solid waste materials was determined in accordance with standard methods. Samples were subjected to moderate heat (76°C) until their weight remained consistent. Moisture contents for solid waste are presented as a percentage of total initial (moist) weight.

Standard Method

Volatile solids content was determined for selected samples representing Stratum 2. These samples were fluxed at a temperature of 600°C for a period of 1 hour, after which, they were placed in a dessicator and allowed to cool for 24 hours. Volatile solids are represented on the laboratory summary as a percentage of initial dry weight lost through firing.

budinger & associates

1-110

P:40;

15% E

1200

15-54

DP:

F. 785,

P. a

120

-

|F798

1-723

500 B

1.50

125

e Tet

	SUMMARY O	F LABORATORY RES	SULTS	
		SOILS		
BORING #	3	16	19	28
DEPTH	1' 2'	3' 4'	2' 3'	3' 4'
ELEVATION	631'	631'	628'	626'
STRATUM	1	1	1	1
MOISTURE (%)	9.1	23.0	4.8	7.9
Н	7.5	7.1	7.8	7.6
INTERNAL FRICTION (Ø) COHESION (C)				42° O psf
VOLATILE SOLIDS BY DRY WEIGHT SULPHUR (ppm) NITROGEN #/acre PHOSPHORUS(ppm) POTASSIUM (ppm) CALCIUM meq/100g SOLUABLE SALTS mmhos/cm	15 14 24 398 15.3 .66	21 7 10 106 10.7 .77	11 18 10 125 26.4 .70	15 51 16 217 15.6 1.12
3/4" 1/2 3/8 #4 10 10 10 10 10 10 00 00 00 01 .005 .001 .005 .001	100% 98 97 87 78 73 64 60 44 33 30 14 10 3		100% 95 88 80 70 65 56 52 39 29 26 16 12 5	100% 97 95 89 82 78 71 66 51 42 25 12 8 3
UNIFIED SOIL CLASSIFICATION	SP		SP	SP

PO

15-9 . . !

n eg

17.03

你调

10.50

(per

200

8

2.2

[???#

10 3530

JOB NUMBER S81127

1		SUMMARY OF LABORATORY RESULTS											
BORING # DEPTH	5 compo- site	5 4' 5'	6 6' 10'	3 5½' 7'	18 8' 10'	19 8' 9'	2 7' 9'	1c 9' 10	4 9' 10'	23 13' 14'	2 12 ' 13 '		
ELEVATION	631'	626'	626'	626'	625'	622'	621'	621'	621'	621'	620'		
STRATUM	2	2	2	2	2	2	2	2	2	2	2		
MOISTURE(%)	23.0	13.1	14.8	23.5	11.5	16.4	9.3	5.7	15.3	36.2	12.		
рН	7.4					7.7	7.8						
VOLATILE SOLIDS BY DRY WEIGHT	-	6.8	17.6	31.1			3	3.1	7.1	23.5	7.4		

SUMMARY OF LABORATORY RESULTS

JOB NUMBER S81127

Wenatchee Riverfront Park

		SUMMARY OF LABORATORY RESULTS											
BORING #	16	25	15	lc	12	4	10	16	7	8	4		
DEPTH	15' 17'	16' 18'	15' 20'	15' 20'	12' 14'	22' 24'	17' 18'	27' 29'	18' 19'	18' 19'	30 ' 32 '		
STRATUM	2	5	2	2	2	5	3	2	2	2	5		
MOISTURE (%)	8.0	32.6	47.3	10.6	19.4	21.9	19.6	15.9	17.4	44.1	41.2		
рН	7.5		6.0			7.5	-	7.3			7.6		
VOLATILE SOLIDS BY DRY WEIGHT					3.8		7.7		6.9	17.6			

1100

1.40

11 mil

100

E LI M

1

1

L

J

13

1

R

173

VER

100

1.1.2

Percent Finer

1.18

BORING #3 DEPTH 2'-3' JOB NUMBER S81127

Grain Diameter / m.m.

budinger & associates

geotechnical & material engineers

117

1254

2112

page

1223

12:00

1008

pair

m/78

F

122

) |1 - 1

/mit2}

) Vite

L

1

Percent Finer

BORING #19 DEPTH 2'-3' JOB NUMBER S81127

Grain Diameter / m.m.

budinger & associates geotechnical & material engineers

(^??!

(Peg

ri a

1443

123

1

16.1

1

Percent Finer

Grain Diameter / m.m.

budinger & associates

geotechnical & material engineers

1.0

(15h)

10.0

BORING #28 DEPTH 3'-4' JOB NUMBER S8112

