

May 21, 1991

Mr. Balbir Singh 1611 Canyon Road Ellensburg, WA 98926

SOIL AND GROUNDWATER INVESTIGATION REPORT, BIG "B" MINI MART/EXXON STATION, ELLENSBURG, WASHINGTON - SEACOR PROJECT NO. 00078-001-01

Dear Mr. Singh:

SEACOR is pleased to submit the following report documenting the removal of petroleum-affected soil and the installation of five groundwater monitoring wells at the Big "B" Mini Mart/Exxon Station in Ellensburg, Washington. This project was completed in accordance with the SEACOR consulting agreement dated December 8, 1990.

This report documents the removal of petroleum-affected soil in the vicinity of a broken product line, the installation and sampling of five groundwater monitoring wells, the conditions of soils in the excavation and monitoring well borings, and the results of soil and groundwater analysis.

Based on analytical results and field observations, petroleum-affected soil is present in samples collected from the excavation side walls and in monitoring well MW-2. Both diesel and gasoline contamination are present in groundwater samples collected from the monitoring wells. Groundwater movement beneath the site is toward the south/southwest at a gradient of approximately one percent.

Sincerely yours,

John M. Gieber

John M. Gülrer

Geologist

Larry Fletcher Project Manager

JMG:mkl

Enclosure

206.646.0280

SOIL AND GROUNDWATER INVESTIGATION REPORT

BIG "B" MINI MART/EXXON STATION ELLENSBURG, WASHINGTON

SEACOR Job No. 00078-001-01

Submitted by SEACOR

for
Balbir Singh
1611 Canyon Road
Ellensburg, Washington 98926

May 21, 1991

Prepared by:

John M. Julen John Gieber Geologist

Reviewed by:

Larry Fletcher Project Manager DEFACILITY OF PARTY CENTRAL ELECTRICAL CONTROL OF PARTY CENTRAL CONTROL OF PARTY CENTROL OF PARTY CENTRAL CONTROL OF PARTY CENTROL CONTROL OF PARTY CENTRAL CONTROL OF PARTY CENTROL CONTROL OF PARTY CENTROL CONTROL C

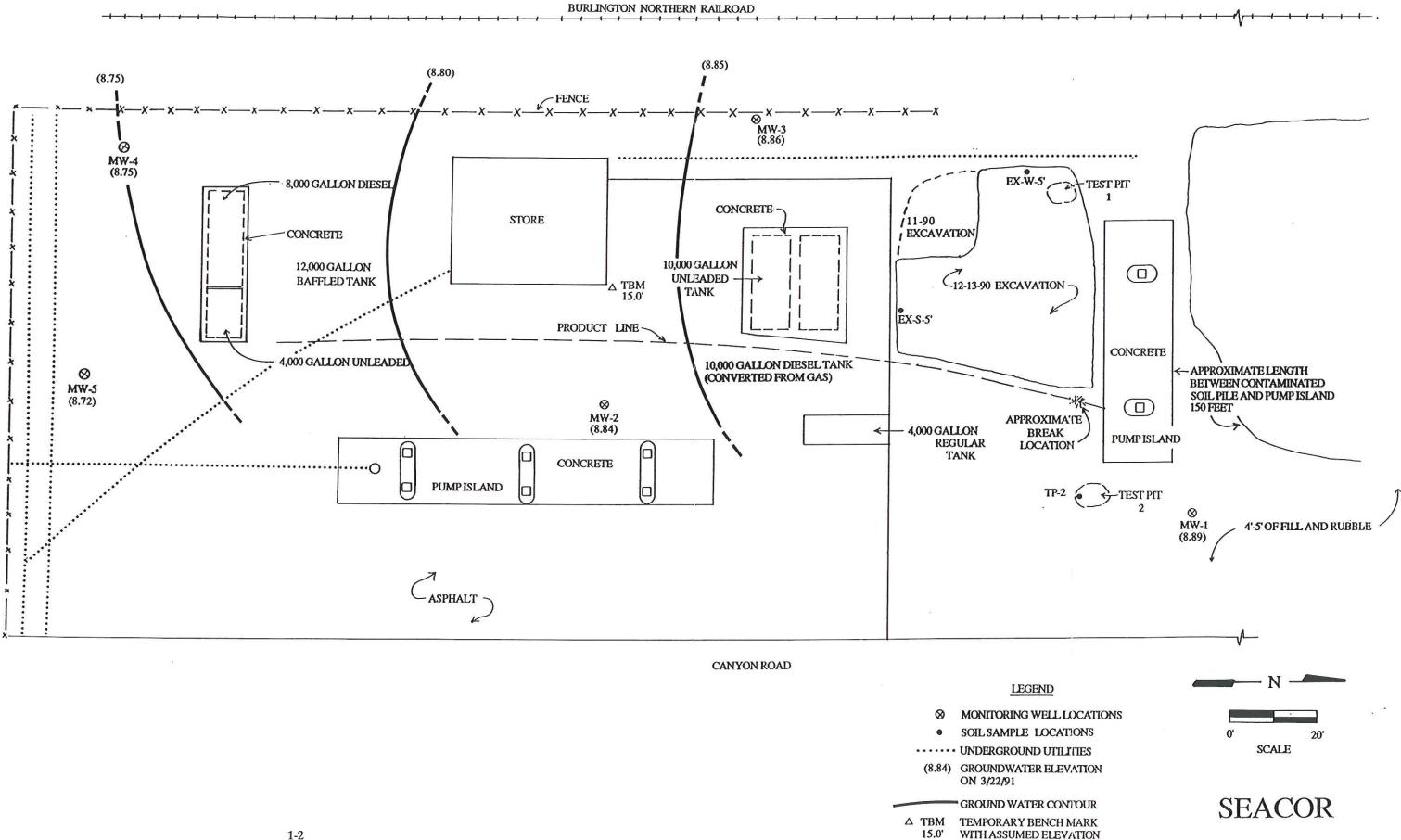
330 112th Northeast #104 Bellevue, WA 98004

206.646.0280

TABLE OF CONTENTS

Section	<u>Pag</u>	<u>e</u>
1.0	INTRODUCTION	
2.0	OBJECTIVES AND SCOPES OF WORK 2.1 Soil Excavation	-1
3.0	SOIL EXCAVATION 3-	1
4.0	INITIAL GROUNDWATER INVESTIGATION 4- 4.1 Drilling and Sampling Techniques and Procedures 4- 4.2 Monitor Well Installation 4- 4.3 Monitor Well Development and Sampling 4-	1 2
5.0	SECONDARY GROUNDWATER INVESTIGATION 5- 5.1 Drilling and Sampling Technique and Procedures 5- 5.2 Monitor Well Installation 5- 5.3 Monitor Well Development and Sampling 5-	1
6.0	LABORATORY ANALYSIS 6-6.1 Soil Samples 6-6.2 Groundwater Samples 6-6.2	1
7.0	RESULTS	1 1
8.0	CONCLUSIONS AND RECOMMENDATIONS 8-	1
9.0	LIMITATIONS 9-	1
	TABLES	
	Table 1 - Summary of Analytical Results for Soil Samples	2
	FIGURES	
	Figure 1 - Site Plan 1-2	2
	APPENDICES	
	APPENDIX A -Boring Logs, Groundwater Sampling Data Sheets, Survey Data Sheets APPENDIX B -Laboratory Reports and Chain-of-Custody Records	

1.0 INTRODUCTION


This report documents the removal of petroleum affected soil and the installation of five groundwater monitor wells at the Big "B" Mini Mart/Exxon Station located at 1611 Canyon Road in Ellensburg, Washington 98926. This report also presents analytical results of soil and groundwater samples collected during this investigation.

1.1 SITE DESCRIPTION

The legal description of the site is the SW1/4 of the NE1/4 of Section 11, T17N, R18E.

The site covers approximately 1.5 acres and includes five pump islands and a store (Figure 1). The northern two thirds of the site had been leveled using three to four feet of fill taken from the city landfill. The southern one-third is covered with asphalt except the concrete areas at the pump islands and above the underground storage tanks (USTs). The site is bounded on the west by Burlington Northern Railroad tracks and on the east by Canyon Road. A gasoline station is located to the south and an open field is located to the north.

The USTs present at the site include a 4,000-gallon leaded gasoline tank, a 10,000-gallon unleaded gasoline tank, a 10,000-gallon diesel tank (converted from gasoline), and a 12,000-gallon baffled tank containing 8,000-gallons diesel and 4,000-gallons unleaded gasoline. The two 10,000- and 4,000-gallon tanks were estimated to be greater than 20 years old. The 12,000-gallon tank is less than one year old. A release of diesel was reported after free product was observed on the groundwater in an excavation north of the 10,000-gallon diesel tank. Subsequently, a leak in the product line near the northern pump island was located and repaired.

2.0 OBJECTIVES AND SCOPES OF WORK

2.1 SOIL EXCAVATION

The objective of the soil excavation was to:

· Excavate petroleum-affected soil in the vicinity of the broken product line.

SEACOR's scope of work included the following tasks:

- Excavate all apparent petroleum-affected soil in the vicinity of the broken product line;
- Monitor the excavated soil for volatile organic vapors with a photoionization detector (PID) until the screening method suggested that vapor concentrations are at or below background levels;
- · Collect soil samples from the excavation sidewalls and bottom; and
- Submit selected soil samples to an analytical laboratory for chemical analysis of hydrocarbons.

2.2 GROUNDWATER INVESTIGATION

SEACOR conducted the groundwater investigation in two phases. The objective of the initial phase of the groundwater investigation was to:

- Assess the impact of petroleum-hydrocarbons on the uppermost aquifer zone beneath the site; and
- Assess the groundwater flow direction of the uppermost aquifer zone beneath the site.

SEACOR's scope of work included the following tasks:

- · Drill and sample three soil borings to a depth of 15 feet;
- · Convert each boring into a groundwater monitoring well in accordance with Washington Administrative Code (WAC) 173-160;
- · Survey, develop and sample each groundwater monitoring well;
- Submit groundwater and selected soil samples to an analytical laboratory for chemical analysis; and
- · Evaluate the data and make appropriate recommendations.

The objective of the second phase of the groundwater investigation was to:

- Further assess the on-site extent of petroleum-hydrocarbons in groundwater in the downgradient direction beneath the southern boundary of the property; and
- Verify the concentrations of petroleum-hydrocarbons in monitoring wells MW-2 and MW-3.

SEACOR's scope of work included the following tasks:

- · Drill and sample two soil borings to a depth of 15 feet;
- · Convert each boring into a groundwater monitoring well in accordance with Washington Administration Code (WAC) 173-160;
- · Survey, develop and sample these groundwater monitoring wells:
- Conduct a second round of sampling on groundwater monitoring wells MW-2 and MW-3;
- · Submit groundwater and selected soil samples to an analytical laboratory for chemical analysis; and
- · Evaluate the data and prepare this report documenting our work and summarizing our findings.

3.0 SOIL EXCAVATION

On December 13, 1990, removal of the petroleum-affected soil began and continued through December 14, 1990. Mr. Singh contracted directly with Mike Stougard to remove the petroleum-affected soil and backfill the excavation. In an effort to determine of the extent of petroleum contamination in the subsurface material, one test pit (TP-1) was excavated approximately 50 feet west of the broken product line and one test pit (TP-2) was excavated approximately 20 feet east of the broken product line (Figure 1).

In TP-1 groundwater was encountered at six feet. A sheen was immediately visible on the water. After several minutes, free product had accumulated on the water surface. Soil removed from the test pit was screened using an HNU Systems, Inc. PID (Model PI-101) to assess whether to not elevated levels of petroleum hydrocarbons were present. The soil was evaluated by holding the instrument probe near the stockpiled soil in order to analyze free vapors, and by collecting soil samples in plastic bags and analyzing headspace vapors. Dark gray, discolored soil was encountered from 0.5 to 6.0 feet and headspace measurements taken from soil collected at 1.0 and 5.0 feet were in excess of 100 parts per million (ppm).

In TP-2, groundwater was encountered at 5.5 feet. From zero to four feet, a brown sandy gravel was present. Gray discolored soil was evident from four to six feet. A sample (TP-2) collected from this material at 4.5 feet had a slight petroleum odor and a headspace reading less than 10 ppm. After water had accumulated in the test pit a sheen was visible on the surface.

The excavation began at TP-1, but was limited on the south and north by the 10,000-gallon diesel tank and pump island respectively and on the west by underground utilities. The excavation extended eastward up to the product line. In the southwest corner of the excavation sediment which was used as backfill for a previous excavation was encountered. Field observations of this material indicated that it had not been affected by petroleum compounds and, therefore, was not excavated. Approximately 420 cubic yards of apparent petroleum affected soil was removed by excavation. This material was placed on plastic at the north end of the site. During excavation, dark brown product was entering the water in the excavation from the north and south sides. The free product which had accumulated on the water surface was pumped out and removed by Mr. Stougard. Soil samples EX-S-5 and EX-W-5 were collected at five-foot depths from the south and west side walls, respectively. Soil samples were collected from the backhoe bucket or directly from the excavation sidewalls and bottom, if the excavation was safely accessible. After the excavation was sampled, it was backfilled using clean fill hauled to the site.

All soil sampling was conducted in accordance with the Washington State Department of Ecology's (Ecology's) draft "Policies and Procedures for Underground Storage Tank Removal" dated August 1, 1989. Soil samples were collected using a clean, stainless steel scoop and were contained in clean glass jars. The jars were filled with soil to minimize headspace and sealed with a Teflon-lined lid. The sample jars were then labeled and placed on ice in a cooler. Before collection of each sample, the stainless steel scoop was cleaned in a solution of Liqui-Nox detergent and water. The scoop was then rinsed with tap water, and rinsed a second time with deionized water. This rigorous cleaning of the scoop was performed to insure that there was no cross-contamination during sampling.

4.0 INITIAL GROUNDWATER INVESTIGATION

To assess the impact of hydrocarbons in groundwater and assess the direction of groundwater movement beneath the site, three monitor wells were installed on December 14, 1990. SEACOR contracted directly with Environmental West Exploration, Inc. to drill and install the monitor wells.

Typically, in cases where a lack of groundwater data (i.e., depth and direction of flow) exists, flow direction can be estimated by examination of the surface topography. Groundwater typically flows from the recharge areas of higher elevation and discharges into lower-lying areas (such as streams and lakes). It is believed that groundwater beneath the site moves in a southwesterly direction, towards the Yakima River. Based on this assumption, one well (MW-3) was placed approximately 90 feet southwest of the release location (Figure 1). MW-3 is also west of the tank locations. This well is likely to be downgradient of the areas where hydrocarbon releases have been identified. Another well (MW-1) was placed approximately 40 feet northwest of the release location, in the area likely to be upgradient of the identified hydrocarbon releases at the site. The third well (MW-2) was placed between the store and pump islands to form a triangle so that groundwater movement could be assessed.

4.1 DRILLING AND SAMPLING TECHNIQUES AND PROCEDURES

Soil samples for chemical analyses and lithologic description were collected using a hollow-stem auger with split-spoon samplers. Prior to entering the site, all drilling equipment was steam-cleaned to remove oils, chemicals, soils and other debris. Additional steam-cleaning was performed after each hole was completed to prevent cross-contamination between borings. All soil samples collected during the investigation were taken from in the split spoon sampler with a clean stainless steel scoop and were contained in precleaned glass jars with teflon-lined caps. Prior to the collection of each sample, the sampling tubes and steel scoop were washed in an aqueous solution of Liqui-Nox detergent, rinsed in tap water and rinsed a second time in distilled, deionized water. Soil samples were labeled and stored in a cooler on ice pending delivery under chain-of-custody to an analytical laboratory for testing.

During sampling a calibrated PID was used to semi-quantitatively determine the total concentration of volatile organic compounds in the soils.

Soil samples were collected at five-foot intervals using an 18-inch split-spoon drive sampler in a hollow-stem auger flight. The sampler was lowered into the hole on a wire line down-hole hammer, then driven 18 inches ahead of the auger flight using a 140-pound drop hammer with a 30-inch fall. The number of blows required to drive the sampler over six-inch increments was recorded. The sampler was then removed from the boring and a sample was collected and lithology recorded.

Lithologic logging of all boreholes was performed by the on-site geologist based upon examination of split-spoon samples (when they were taken) and cuttings brought to the surface during drilling. The boring log for each borehole includes the location of the borehole, the name of the geologist preparing the log, the name of the drilling contractor, and the type of equipment used. Descriptions of unconsolidated sediment and soil samples include preliminary grain-size classification (based on ASTM Unified Soil Classification), color, consistency, lithology, odor (if present) and degree of

moisture. In the intervals where a split-spoon sample was taken, the blow count for the sample is included on the log. Boring logs are presented in Appendix A.

4.2 MONITOR WELL INSTALLATION

The monitoring wells were constructed of two-inch OD, flush threaded, schedule 40 PVC blank casing and 0.010-inch machine slotted screen. The wells were screened from fourteen to four feet. The annular space between the well screen and borehole was packed with a clean graded sand from the bottom of the borehole to approximately one foot above the top of the screened casing. A two-foot bentonite seal was placed above the sand pack and the remainder filled with cement. The well head was protected by installing an at-grade, watertight, traffic-rated road box.

4.3 MONITOR WELL DEVELOPMENT AND SAMPLING

Each well was developed using appropriate technologies to remove sediment and enhance communication with the water boring zone.

The top of the casing elevation for each well was surveyed relative to an on-site datum at the northeast corner of the store, assumed elevation equal to 15 feet. Prior to sampling, the depth to water in each well was measured using a sounding device. The total depth of each well was also measured and a casing volume for each was calculated. At least three casing volumes were purged from each well then water samples were collected. The water samples were contained in one liter jars and 40 ml VOA vials, labeled, and placed on ice in a cooler pending delivery, under chain-of-custody to an analytical laboratory. Sampling data sheets and survey records are presented in Appendix A.

5.0 SECONDARY GROUNDWATER INVESTIGATION

Based on the analytical results of groundwater samples collected from MW-2 and MW-3 and the groundwater flow direction beneath the site, SEACOR proposed installing two additional monitoring wells at the downgradient site boundary.

To assess the on site extent of petroleum-hydrocarbons in groundwater in the downgradient direction beneath the southern boundary of the property, two additional monitor wells (MW-4 and MW-5) were installed on March 15, 1991. SEACOR contracted directly with Pacific Testing Laboratories to drill and install the monitor wells. MW-4 was placed approximately 25 feet from the southwest corner of the property. MW-5 was placed approximately 15 feet inside the southern boundary of the property (Figure 1).

5.1 DRILLING AND SAMPLING TECHNIQUE AND PROCEDURES

The procedures used for drilling and sampling were the same as those used in Section 4.1.

5.2 MONITOR WELL INSTALLATION

The monitoring wells were constructed of two-inch O.D., flush threaded, schedule 40 PVC blank casing and 0.020-inch machine slotted screen. The wells were screened from 15 to five feet. The annular space between the well screen and borehole was packed with a clean graded sand from the bottom of the borehole to approximately two feet above the top of the screened casing. A two-foot bentonite seal was placed above the sand pack and the remainder filled with cement. The well head was protected by installing an at-grade, water tight, traffic-rated road box.

5.3 MONITOR WELL DEVELOPMENT AND SAMPLING

The procedures used for development and sampling of MW-4 and MW-5 were the same as those used in Section 4.3.

A second round of groundwater samples were also collected from MW-2 and MW-3 using the above procedures. Sampling data sheets and survey records are presented in Appendix A.

6.0 LABORATORY ANALYSIS

All samples for chemical analysis were submitted to North Creek Analytical in Bothell, Washington under chain-of-custody protocol. All samples were stored in containers, handled and analyzed in accordance with accepted EPA protocol and within EPA-specified holding times. Samples containers were clearly labeled with tags, securely fixed to the sample containers, denoting the job name and number, sample number and location, date, time and sampler name.

6.1 SOIL SAMPLES

Soil samples from the excavation sidewalls and TP-2 were analyzed for total petroleum hydrocarbons (TPH) as diesel using EPA Method 8015 modified. A hydrocarbon identification analysis was also run on the sample from the south wall of the excavation. Soil samples from the unsaturated zones in monitor wells two, four and five were also submitted for chemical analysis. The sample from MW-4 at four feet was analyzed for TPH as diesel using EPA Method 8015 modified. The samples from MW-3 at five feet and MW-5 at four feet were analyzed for TPH as gasoline and benzene, toluene, ethyl benzene and xylenes (BTEX) using EPA Methods 8015 modified and 8020, respectively. Soil sample laboratory results are summarized in Table 1. Laboratory results and chain-of-custody forms are provided in Appendix B.

6.2 GROUNDWATER SAMPLES

Groundwater samples collected from monitor wells MW-1, MW-2 and MW-3 during the initial groundwater investigation were analyzed for TPH as diesel using EPA Method 8015 modified. The sample from MW-3 was also analyzed for TPH as gasoline and BTEX using EPA Methods 8015 modified and 8020, respectively. A hydrocarbon identification analysis was run on the sample from MW-2.

Groundwater samples collected from monitor wells MW-2, MW-3, MW-4 and MW-5 during the secondary groundwater investigation were analyzed for TPH as diesel and gas and BTEX using EPA methods stated above. Groundwater sample laboratory results are summarized in Table 2. Laboratory results and chain-of-custody forms are provided in Appendix B.

FOR SOIL SAMPLES IN PARTS PER MILLION (ppm) SUMMARY OF ANALYTICAL RESULTS TABLE 1

o o			soline Fuels				
Hydrocarbon <u>Identification</u>	NA	NA	Mix of Gasoline and Diesel Fuels	NA	NA	NA	
Xylenes	NA	NA	NA	28	NA	<0.10	20
Ethyl <u>Benzene</u>	NA	NA	NA	1.8	NA	<0.10	20
Toluene	NA	NA	NA	<2.0	NA	<0.10	40
Benzene	NA	NA	NA	<1.0	NA	<0.050	0.5
TPH (as Gasoline)	NA^2	NA	NA	006	NA	<1.0	100
TPH¹ (as Diesel)	<1.0	3,700	3,000	NA	<10	NA	200
Sample Location	Test Pit #2 at 5 feet	Excavation west wall at 5 feet	Excavation south wall at 5 feet	Monitor well #2 at 5 feet	Monitor well #4 at 4 feet	Monitor well #5 at 4 feet	
Sample I.D.	TP-2	EX-W-5	EX-S-5	MW-2-5	MW-4-4	MW-5-4	MTCA Cleanup ³ Levels

6-2

NOTES:

Total Petroleum Hydrocarbons NA = Not Analyzed Cleanup Levels as listed in Model Toxics Control Act Regulation and Proposed Amendments dated February 28, 1991 (Chapter 173-340 WAC). 357

FOR GROUNDWATER SAMPLES IN PARTS PER BILLION (ppb) SUMMARY OF ANALYTICAL RESULTS TABLE 2

Hydrocarbon Identification	NA	Mix of Diesel a. Gasoline Fuels	NA	NA	NA	NA	NA	
Xylenes	NA	NA	8,300	2,700	130	<0.30	1,100	20
Ethyl <u>Benzene</u>	NA	NA	460	190	<0.30	<0.30	470	30
Toluene	NA	NA	1,900	400	<0.30	<0.30	56	40
Benzene	NA	NA	<3.0	280	<0.30	81	170	'n
TPH (as Gasoline)	NA³	NA	35,000	21,000	6,700	410	8,400	1,000
TPH² (as Diesel)	<50	5,500	2,100	160,000	4,000	<500	23,000	1,000
Sampling Date	12/17/90	12/17/90	12/17/90	3/22/91	3/22/91	3/22/91	3/22/91	
Sample I.D.	Composite ¹ of MW-1-1 & 1-2	Composite of MW-2-1 & 2-2	Composite of MW-3-1 & 3-2	MW-2	MW-3	MW-4	MW-5	MTCA Cleanup ⁴ Levels

NOTES:

Groundwater samples were not composited, this is a laboratory designated ID. Total Petroleum Hydrocarbons 1 0 m 4

NA = Not Analyzed Cleanup Levels as listed in Model Toxics Control Act Regulation and Proposed Amendments dated February 28, 1991 (Chapter 173-340 WAC).

7.0 RESULTS

7.1 SOIL EXCAVATION

Laboratory analysis of the soil samples collected from the west and south sidewalls of the excavation indicate that the concentrations of petroleum hydrocarbons, as diesel, were in excess of the MTCA cleanup levels. A hydrocarbons identification analysis also detected gasoline in the sample from the south wall. Field analysis of soil in the north and east walls showed characteristics of petroleum affected soil. No samples were analyzed from the north and east walls due to plans for continuing the excavation in those directions at a later date. Free petroleum product was present on the water surface in the excavation. Approximately 420 cubic yards of apparent petroleum-affected soil was removed during excavation activities. This material was stockpiled on plastic at the northern end of the site.

Analysis of a soil sample collected from the sidewall in test pit 2 indicated that the concentration of petroleum hydrocarbon, as diesel, was below 1.0 parts per million. TP-2 was located approximately 20 feet east of the leak location.

7.2 MONITOR WELL SOIL SAMPLES

A soil sample collected from the unsaturated zone (at five feet) in MW-2 was analyzed for TPH as gasoline and for BTEX. Analysis indicated that the TPH concentration of 900 ppm and the xylene concentration of 28 ppm were in excess of the MTCA cleanup levels of 100 ppm and 20 ppm, respectively. The other compounds analyzed for were either below the laboratory detection limits or below MTCA cleanup levels. A soil sample collected from MW-4 at four feet was analyzed for TPH as diesel. Laboratory analysis indicated that the concentration was below ten ppm. A soil sample collected from MW-5 at four feet was analyzed for TPH as gasoline and BTEX. Laboratory results were all below the laboratory detection limits.

7.3 MONITOR WELL WATER SAMPLES

Laboratory results for groundwater samples collected on December 17, 1990 from monitor wells MW-1, MW-2 and MW-3 indicated that the concentrations of TPH as diesel were less than 50 parts per billion (ppb) in MW-1. This is below the MTCA cleanup level of 1,000 ppb. The results from MW-2 and MW-3 were in excess of the MTCA cleanup level for TPH as diesel. The sample from MW-3 also had concentrations of TPH as gasoline, toluene, ethylbenzene and xylenes over MTCA cleanup levels. The concentration of benzene in MW-3 was below laboratory detection limits. A hydrocarbon identification analysis run on the sample from MW-2 indicated that gasoline was also present in the groundwater.

Groundwater samples collected on March 22, 1991 from monitor wells MW-2, MW-3, MW-4 and MW-5 were analyzed for TPH as gasoline and diesel and for BTEX. Laboratory analysis indicated that concentrations of TPH and BTEX in MW-2 were in excess of MTCA cleanup levels. The MTCA cleanup levels were also exceeded for TPH and xylenes in MW-3, for benzene in MW-4, and for TPH, benzene, ethyl benzene, and xylenes in MW-5. All other compounds were either below MTCA levels or below laboratory detection limits.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Concentrations of petroleum-hydrocarbons as diesel are present above MTCA clean up levels in the south and west sidewalls of the excavation. Analysis indicated that gasoline is also present in the south sidewall. Field analysis also indicated that the soil in the north and east sidewalls was petroleum-affected. Analysis of the soil sample from MW-2 indicated that petroleum hydrocarbons as gasoline are present above MTCA cleanup levels.

Groundwater samples collected from monitoring wells 2 through 5 indicate that petroleum-hydrocarbon concentrations as gasoline and diesel are present above MTCA cleanup levels in the groundwater beneath the site. The concentrations of petroleum-hydrocarbons as diesel in the groundwater sample collected from MW-1 were below the MTCA cleanup levels.

The presence of gasoline in the soils and groundwater beneath the site indicate that a release of gasoline from underground piping or storage tank(s) has occurred.

Surveying along with groundwater depth measurements indicate that groundwater moves beneath the site in a south southwesterly direction at a gradient of approximately one percent.

Based on these conclusions SEACOR makes the following recommendations:

- An investigation should be conducted to locate and remediate the source of gasoline contamination.
- All petroleum-affected soil above MTCA cleanup levels should be remediated.
- In order to define the extent of groundwater contamination, additional groundwater monitoring wells should be installed off site, to the south and west, and one should be installed east of MW-2.
- A proposal outlining the specifics of further investigations to be conducted at the site will be prepared at Mr. Singh's request.

9.0 LIMITATIONS

The findings and conclusions documented in this report have been prepared for the specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. No warranty, expressed or implied, is made. This report is for the exclusive use of Balbir Singh and their representatives.

A potential always remains for the presence of unknown, unidentified, or unforeseen subsurface contamination. Further evidence against such potential site contamination would require additional subsurface exploration and testing.

If new information is developed in future site work (which may include excavations, borings, or other studies), SEACOR should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

APPENDIX A
BORING LOGS, GROUNDWATER SAMPLING
DATA SHEETS, SURVEY DATA SHEETS

BORING: MW-1 PAGE_1_of_1_

PROJECT SINGH ELLENSBUR	G 78-001-01	LOCATION SEE SITE MAP	
SURFACE ELEVATION		CASING TOP ELEVATION _	14.20'
START 12/14/90 1030		FINISH 12/14/90 1400	
SAMPLER J. GIEBER			
SUBCONTRTACTOR AND EQU			
COMMENTS 2" X 24" SPLIT SP	OON SAMPLING	G TUBES, 6" I.D. HOLLOW STEM AT	UGERS

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
			o	Brown COBBLES, dry	GW	Street Rated Well Cover
	U			Dark Brown Gravelly SAND, moist.	SP	Concrete Bentonite Plug
15-6-7	no sample recovered		5 5 	Brown-Gray COBBLES, wet to saturated, medium dense.	GW	हूं — #10/20 Sand
11-50(4")			10 10 	Gray Sandy GRAVEL, poorly graded, saturated, dense.	GP	#10/20 Sand Filter Pack 9.010 inch screen
2-8-50(2")	no sample recovered		15	Boring completed to 14.5'. Groundwater encountered at 6'. Monitoring well installed to 14'.		

BORING: MW-2 PAGE_1_of_1_

PROJECT SINGHELLENSBURG 78-001-01	LOCATION _SEE SITE MAP							
SURFACE ELEVATION	CASING TOP ELEVATION15,00'							
START <u>12/14/90 1030</u>	FINISH 12/14/90 1400							
SAMPLER <u>J. GIEBER</u> MONITOR	ING DEVICE HNu							
SUBCONTRTACTOR AND EQUIPMENT ENVIRONMENTAL WEST EXPLORATION, MOBILE B-61								
COMMENTS 2" X 24" SPLIT SPOON SAMPLING	G TUBES, 6" I,D. HOLLOW STEM AUGERS							

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
			0	Brown Poorly Graded GRAVEL, very coarse pebbles to small cobbles, dry. Brown Gravelly SAND,	GP	Street Rated Well Cover Concrete Bentonite Plug
11-21-28		50+	5 5	poorly graded, moist, medium dense. Gray Gravelly SAND, sheen on sample tube, wet to saturated, dense.	SP	#10/20 Sand Filter Pack
42-50(1")	no sample recovered		10 10 	Brown-Gray Small COBBLES, well graded: 2" - 4", dense, hard drilling.	 GW	#10/20 Sand Filter Pack #0/20 Sand Filter Pack #10/20 Sand Filter Pack #10/20 Sand Filter Pack
50(1")	no sample recovered		15	Boring completed to 14.5'. Groundwater encountered at 6'. Monitoring well installed to 14'.		

BORING: MW-3 PAGE_1_of_1_

PROJECT_	SINGH ELLENSBURG 78-001-01	LOCATION SEE SITE MAP
SURFACE E		CASING TOP ELEVATION13.85'
	4/90 1030	FINISH <u>12/14/90</u> 1400
SAMPLER _	J. GIEBER MONITO	ORING DEVICE HNu
SUBCONTR	TACTOR AND EQUIPMENT E	NVIRONMENTAL WEST EXPLORATION, MOBILE B-61
COMMENTS	2" X 24" SPLIT SPOON SA	MPLING TUBES, 6" I.D. HOLLOW STEM AUGERS

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
			o	Brown organic SAND, dry.	OL	Street Rated Well Cover Concrete
				Dark Brown-Gray Gravelly SAND, moist.	SP	Bentonite Plug
50(3")	no sample recovered		5 5 5	Gray Sandy GRAVEL, poorly graded, sheen on sample tube, saturated, dense.	GP	
6-13-60(4")	no sample		10	Gray COBBLES, well graded: 2" - 4", dense.	GW	#10/20 Sand Filter Pack
						screen
			15 	Boring completed to 14.5". Groundwater encountered at 5.5'. Monitoring well installed to 14'.		
			20 20			
				•		
			25			

BORING: MW-4 PAGE_1_of_1_

PROJECT	SINGH ELLENSBURG	78-001-01	LOCATION	SEE SITE MAP			
	LEVATION			PELEVATION _	12.45'		
START	3/15/91 0800		FINISH	3/15/91 0930			
	J. GIEBER		ING DEVICE_				
SUBCONTRTACTOR AND EQUIPMENT PACIFIC TESTING LABORATORIES, MOBILE B-65							
COMMENTS 2" X 24" SPLIT SPOON SAMPLING TUBES, 6" I.D. HOLLOW STEM AUGERS							

Sample Depth Interval, feet Blows 6,-9,-9,	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
7-8-5	0	o	Dark Brown Orgainic Sandy SILT, moist.	OL	Street Rated Well Cover Concrete Bentonite Plug
not sampled		5 5 10 15 15 15 15 20 25 25 25 25 25 25 25 26 26 27 27	Brown Sandy GRAVEL, saturated, loose. Brown Sandy-Silty GRAVEL, wet, with local cobble lenses, dense. Boring completed to 15.0'. Groundwater encountered at 4.5'. Monitoring well installed to 15.0'.	GP	#8/12 Sand Filter Pack

BORING: MW-5 PAGE_1_of_1_

PROJECTSINC	GHELLENSBURG 78-001-	01 LOCATION	SEE SITE MAP	
	TION	CASING TO	PELEVATION_	13.78'
	/15/91 1000		3/15/91 1200	
	BER MONI			
SUBCONTRTACT	OR AND EQUIPMENT	PACIFIC TESTING	G LABORATORIES	, MOBILE B-65
COMMENTS	2" X 24" SPLIT SPOON SA	AMPLING TUBES, 6"	I.D. HOLLOW STE	M AUGERS

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
			o	Asphalt COBBLES AND GRAVEL Fill	GW	Street Rated Well Cover Concrete
4-7-50(0)		0		Gray Silty SAND, moist, medium dense.	SM	Bentonite Plug
	not sampled			Gray Sandy GRAVEL with moderate cobbles, wet, dense. Gray COBBLES, well graded: 2" - 4", wet, dense. (grades larger cobbles) Boring completed to 15.0'. Groundwater encountered at 5.0'. Monitoring well installed to 15'.	GW	#8/12 Sand Filter Pack 020 inch Screen

DRAFT

SAMPLING EVENT DATA SHEET

(fill out completely)

(iiii out cont	WELL OR LOCATION _ MW . I
PROJECT SINGH O: EVENT_	SAMPLER CVD DATE 12/17/90
Action Time Pump rate IWL (low yield)	Well / Hydrologic statistics
Start pump / Begin	SWL
Sampled C 1355 Purge calculation gal/ft. 9.37 ft. = 1.58 gals x 3 = 4.76 gals.	packer intake to bailer depth (circle one and indicate w/arrow)
GWL to BOP or one purge volume- packer to BOP volume 3 casings	SWL S.44 (if in screen)
Head purge calculation (Airlift) gal/ft. * ft. = gals. packer to SWL	T.D. (as built)
Method and Equipment Used: 85 WW.2	Actual gallons purged &
Event Description:	Actual volumes purged <u>5.06</u>
decon	Well yield ————
	Sample I.D. Analysis Lab
Additional comments:	mw.1-2 NC
no visible sheer, no odor	
2 VOA'S 1 liter bottle	
Gallons purged • TEMP °C /°F EC (µs / cm)	PH TURBIDITY (NTU)
1.	
2.	
4.	
5.	
* Take measurement at approximately each casing volume purged * HY- Minimal WY - WL drop - able volumes during by reducing purged.	one sitting volumes by returning unable to purge

DRAFT

SAMPLING EVENT DATA SHEET

(fill out completely)

P4			1	WELL OR LOC	CATION
PROJECT Singh	071 E	VENT	SAM	PLER CUD	_ DATE _12 17 (90
Action	Time Pump	rate <u>IWL</u> (low yie		Well / Hydrolog	ic statistics
Start pump / Begin		(low yie		- d -	Location or well type
Sampled @ 12:	30		packer intake bailer depth (circle one a		equals gal/ft, casing
J gal/ft. · 8 ft.	Purge calculation gals x 3		indicate w/a	6.28	2
SWL to BOP of packer to BOP		purge volume- 3 casings	(if in so		ВОР
	urge calculation (a t. = gals. WL	Airlift)_	measo T.D.	ured_ IU.28	T.D. (as built)
Method and Equipmer Staniles Sounda Event Description:	nt Used: is 5 teel bo	ailer		Actual gallons purga Actual volumes purg Well yield ⊕	<i>j</i> - <i>p</i>
decon				COC #	Analysis Lab
Additional comments:	der showe	d visible	8200	MW.5.2	U.C.
	was very				
Z VOA'S					
Gallons purged *	TEMP °C /°F (circle one)	EC (µs / cm)	PH	TURBIDITY (NTU)	
1.				(11.0)	
2.					
4.					
5. * T-1:	0.111/1.11	MV W/ data	his 45 mi 0	I I	1/11/ 1/11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* Take measurement at approximately each	⊕ <u>HY-</u> Minimal W.L. drop		ible to purge 3 iring one sitting a numo rate or	LY - Able to purge 3 volumes by return	vLY - Minimal recharge - unable to purge 3 volumes.

(fill out completely)

WELL OR LOCATION MW. 3 SAMPLER CUD DATE 12/17/90 PROJECT Singh Oil ___ EVENT_ IWL Action Time Pump rate Well / Hydrologic statistics (low yield) Location or well type _____ Mw · 3 Start pump / Begin diameter 2 - d equals_.17 gal/ft. casing SWL -(if above screen) Sampled @ (320 packer intake bailer depth) (circle one and - TOP indicate w/arrow) Purge calculation .17 gal/ft. · 8 · 68 ft. = 1.47 gals x 3 = 4.42 gals. SWL 5.12 SWL to BOP or one purge volume-(if in screen) packer to BOP volume 3 casings _____ BOP Head purge calculation (Airlift) measured 13.80 ____ gal/ft. * ____ ft. = ___ gals. - T.D. (as built) packer to SWL Method and Equipment Used: Actual gallons purged as mw.Z 5.4 Actual volumes purged **Event Description:** Slightly visible sheen Well yield no odor COC # Sample I.D. Analysis Lab mu-3-1 NC Additional comments: mw.3.2 NC 2 VOA'S 1 liter bottle TEMP °C /°F Gallons purged * EC PH TURBIDITY (circle one) (µs / cm) (NTU) 1. 2. 4. 5. * Take measurement at MY - WL drop - able to purge 3 VLY - Minimal recharge -(+) HY- Minimal LY - Able to purge 3 volumes during one sitting unable to purge W.L. drop volumes by returning approximately each by reducing pump rate or later or next day 3 volumes. cacina valuma nurand

DRAFT

	SHEETOF
	JOBNO. 00078-001-0
	DATE 1/14/91
ROJECT Strigh Ellens burg	COMPUTED BY JMG
UBJECT Survey Data	CHECKED BY

s 1.					
Location	BS	HI	FS	Elevation	Remarks.
M T.BM	5.04	20.04		15.0	
mw-2			5.04	15.0	
_mw-3			6.19	13-85'	
mw-1			5.84	14.20'	
Move Instance	*				
_ mw-1	5.95	20.15	3.45		
mw-2			5.15	15.0	A
mw -3			6-30	13-85	
TBM			5.15	15.0	

	-				

Benchmark: NE corner of store elevatroc equal to 15.0'

Elevation + BS = HI

DRAFT

	SHEETOF
	JOBNO. <u>90078-001-0</u>
(. ()	DATE 3122191
ROJECT Strigh Ellensburg	COMPUTED BY J. Greber
UBJECT Survey Data	CHECKED BY

s fa	2	82			
Location	BS	HI	FS	Elevation	Remarks
TBM	4.85	19.85		15.0	
mw-4.			7.40	12.45	
_ nw-5			6.07	13.78	
move toslorme	nt				
_mw-5	7.07	20.85			
mw-4			8.40	12.45	
TBM			5.86	14.99	ė
		*			
and the same of th					
		t/			3

Benchmark: NE coann of store clevation equal to 15.0'

Elevation + BS = HI

(fill out completely)

WELL OR LOCATION _WW- 2 PROJECT Singh Ellensby EVENT SAMPLER JMG DATE 3/22/91 IWL Action Time Pump rate Well / Hydrologic statistics (low yield) Location or Start pump / Begin 1610 well type MW-3 diameter $2^{\prime\prime}$ - d — SWL equals . 17 gal/tt. casing (if above screen) Sampled 1625 packer intake bailer depth) (circle one and -TOP indicate w/arrow) Purge calculation SWL 6.16 . 17 gal/tt. · 7.84 tt. = 1.33 gals x 3 = 4.0 gals. SWL to BOP or one (if in screen) purge volumepacker to BOP volume 3 casings - BOP Head purge calculation (Airlift) measured 14.0 14.0 T.D. (as built) __ gal/it. * _____ft. = ____gals. packer to SWI Method and Equipment Used: 4.1. Actual gallons purged Disposable polyethylene Bailer Sounder Event Description: 3.07 Actual volumes purged MY Sample on 2-UOAs & 1-heter Well yield (+) COC # Sample I.D. Analysis Lab N.C. mw-2 Additional comments: Strong Sheen on H2O surface, strong petrolium odor. Gray cloudy H20 TEMP °C/°F Gallons purged * EC PH TURBIDITY (circle one) (us / cm) (NTU) 5. MY - WL drop - able to purge 3 VLY - Minimal recharge -Take measurement at | (+) HY- Minimal LY - Able to purge 3 volumes during one sitting volumes by returning unable to purge approximately each W.L. drop

(fill out completely)

WELL OR LOCATION _ WW - 3 PROJECT Strigh Ellensburg EVENT SAMPLER JMG DATE 3122191 Pump rate Action Time IWL Well / Hydrologic statistics (low yield) Location or Start pump / Begin well type _ww-3 - d diameter_2" SWL equals_17_gal/it, casing (if above screen) Sampled packer intake bailer depth) (circle one and - TOP indicate w/arrow) Purge calculation .17 gal/ft. • 9.39 ft. = 1.59 gals x 3 = 4.79 gals. 4.99 SWL-SWL to BOP or one (if in screen) purge volumepacker to BOP volume 3 casings - BOP Head purge calculation (Airlift) measured 14.0 T.D. (as built) __ gal/it. * _____ ft. = ____ gals. packer to SWL Method and Equipment Used: Disposable Polyethylene briler Actual gallons purged 7.0 Somaler Event Description: 4.40 Actual volumes purged Sample In 2-UDAS + 1-lieter $-H\lambda$ Well yield **(** COC # Sample I.D. Analysis Lab MW-3 N.C. Additional comments: Gray turbed H20 with a stight petrolium odor and stight Sheen. TEMP °C /°F Gallons purged * EC PH TURBIDITY (circle one) (µs / cm) (NTU) 1. 2. 4. 5. MY - WL drop - able to purge 3 Take measurement at (+) HY- Minimal LY - Able to purge 3 VLY - Minimal recharge volumes during one sitting volumes by returning approximately each W.L. drop unable to purge 0 --- ---

(fill out completely)

WELL OR LOCATION _MW-4 PROJECT Strigh Ellensburg EVENT ______ SAMPLER JM6/GE DATE 3/22/91 Action Time Pump rate Well / Hydrologic statistics (low yield) Start pump/Begin 1530 - 1545 (6 gallous) Location or well type _ mw - 4 diameter 2' - d — { 5 GAllons equals_17 gal/it. casing (if above screen) Sampled 1630 packer intake bailer depth) (circle one and -TOP indicate w/arrow) Purge calculation . 17 gal/tt. · 9.1 tt. = 1.5 gals x3 = 4.6 gals. SWL-SWL to BOP or one purge volume-(if in screen) packer to BOP volume 3 casings - BOP Head purge calculation (Airlift) measured 12.80 ______(5.0 T.D. (as built) __ gal/it. * _____ ft. = ____ gals. packer to SWL Method and Equipment Used: Starnless Steel Bailer Actual gallons purged Sounder 7.33 Actual volumes purged **Event Description:** Sample on 2-UOAS + 1-1ieter 44 Well yield (H) COC Sample I.D. Analysis Lab MW-4 N.C Additional comments: Apprex. 2 feet of bentonite in bottom of well, Brown tubrel H20, odiferous TEMP °C/°F Gallons purged 4 EC PH TURBIDITY (circle one) (µs / cm) (NTU) 1. 4. 5. * Take measurement at MY - WL drop - able to purge 3 (+) HY- Minimal LY - Able to purge 3 VLY - Minimal recharge volumes during one sitting approximately each W.L. drop unable to purge volumes by returning

(fill out completely)

WELL OR LOCATION MW -5

PROJECT Strigh Elleus burg EVENT				MPLER
Action	Time Pum	p rate IWL (low yie	(d)	Well / Hydrologic statistics
Start pump / Begin /630				Location or well type _mw-5
÷				d diameter Z''
Sampled (6	\$ <i>5</i>		packer	equals . 17 gal/it. casing
	Purge calculation	-	intake bailer depth (circle one e indicate w/a	and TOP
SWL to BOP packer to BO	or one	purge volume- 3 casings	SWL-	
	urge calculation (ft. =gals.	Aidift)_	measo T.D.	ured 12.0 15.0 T.D. (as built)
Method and Equipment Used: Teflen Bailer Sounder Event Description: Sample on 2-UOAs + Heeter				Actual gallons purged 7. 0. Actual volumes purged 5. 93 Well yield ① M Y
				COC # Lab
Additional comments:			6 well	
Brown very	THUBY A 14 E			
Gallons purged *	TEMP °C /°F (circle one)	EC (µs/cm)	PH	TURBIDITY
1.				(NTU)
?		8		
4.				
5.				
* Take measurement at approximately each	⊕ HY- Minimal W.L. drop	MY - WL drop - ab	le to purge 3	LY - Able to purge 3 VLY - Minimal recharge - volumes by returning unable to purge

APPENDIX B LABORATORY REPORTS AND CHAIN-OF-CUSTODY RECORDS

18939 120th Avenue N.E., Suite 101 · Bothell, WA 98011 Phone (206) 481-9200 · FAX (206) 485-2992

SEACOR 330 112th Avenue N.E., #104 Bellevue, WA 98004

Attention: Larry Fletcher

Client Project ID: Matrix Descript:

First Sample #:

Sihgh Ellensburg Soil

Analysis Method: EPA 3550/8015 012-0447

Sampled:

See Below

Received: Extracted:

Dec 18, 1990 Jan 2, 1991 Jan 2, 1991

Analyzed: Reported:

Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)	F. Print Ident,
012-0447	EX-W-5 12/14/90	3,700	
012-0448	TP-2 12/13/90	N.D.	
012-0449	ES-S-5 12/14/90	3,000	Mix of gasoline and diesel fuels

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

JRTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011 Phone (206) 481-9200 • FAX (206) 485-2992

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID: Matrix Descript:

First Sample #:

Sihgh Ellensburg

Matrix Descript: Soil Analysis Method: EPA

EPA 5030/8015/8020

012-0446

Sampled: Received:

Reported:

See Below Dec 18, 1990

Analyzed: [

Dec 26, 1990 Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
012-0446	MW-2-5 12/14/90	900	N.D.	N.D.	1.8	28

Detection Limits: 20 1.0 2.0. 2.0 2.0

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

JETH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011 Phone (206) 481-9200 • FAX (206) 485-2992

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID:

Matrix Descript: Analysis Method:

First Sample #:

Sihgh Ellensburg

Water

EPA 3510/8015 012-0450 Sampled:

Dec 17, 1990

Received: Extracted:

Dec 18, 1990 Jan 2, 1991

Analyzed:

Jan 2, 1991

Reported:

Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	Extractable Hydrocarbons μg/L (ppb)	F. Print Ident.
012-0450	Comp of MW1-1&1-2	N.D.	
012-0451	Comp of MW2-1&2-2	5,500	Mix of gasoline & diesel Fuels
012-0452	Comp of MW3-1&3-2	2,100	

De	tect	ion	Lim	its:

50

Extractable (high boiling point) Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

URTH CREEK ANALYTICAL

Sedt Cocanour Laboratory Director

SEACOR 330 112th Avenue N.E., #104 Bellevue, WA 98004

Client Project ID: Sample Descript.: Analysis Method: Sihgh Ellensburg Water, Comp. of MW3-1&3-2

Sampled: Received: Analyzed: Dec 17, 1990 Dec 18, 1990

Attention: Larry Fletcher

Lab Number:

EPA 5030/8015/8020 012-0452

Reported:

Dec 26, 1990 Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION (EPA 8015/8020)

Analyte

Detection Limit µg/L (ppb)

Sample Results µg/L (ppb)

enzene	3.0	 N.D.
oluene thyl Benzene	3.0	 1.900
thyl Benzeneylenes	0.6	460

Purgeable (low to medium boiling point) Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

ORTH CREEK ANALYTICAL

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher

Client Project ID: Matrix Descript:

Singh Ellensburg

Soil

EPA 3550/8015

Analysis Method: First Sample #: 103-0519 Sampled:

Mar 15, 1991

Received: Extracted:

Mar 19, 1991 Mar 21, 1991

Analyzed: Mar 21, 1991 Reported: Apr 1, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number

Sample Description

Extractable Hydrocarbons

> mg/kg (ppm)

103-0519

MW-4-4'

N.D.

Detection Limits:

10

Extractable (high boiling point) Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

QRTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director Please Note:

This sample appears to contain heavy non-chromatographable hydrocarbons. Quantitation by EPA 418.1 Modified is recommended.

SEACOR Client Project ID: Singh Ellensburg
330 112th Avenue N.E., #104 Sample Descript.: Soil, MW-5-4'
Bellevue, WA 98004 Analysis Method: EPA 5030/8015/8020
Attention: Larry Fletcher Lab Number: 103-0520

Received: Mar 19, 1991 Analyzed: Mar 29, 1991 Reported: Apr 1, 1991

Mar 15, 1991

Sampled:

TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION (EPA 8015/8020)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Purgeable Hydrocarbons	1.0		N.D.
Benzene	0.050	•••••	N.D.
Toluene	0.10	***************************************	N.D.
Ethyl Benzene	0.10	***************************************	N.D.
Xylenes	0.10		N.D.

Purgeable (low to medium boiling point) Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

DRTH CREEK ANALYTICAL

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004

Attention: Larry Fletcher

Client Project ID: Singh Ellensburg

Sample Matrix: Soil QC Sample Group: 103-0519 to -0520

Reported: Apr 1, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	Diesel			Ethyl	
	Fuel	Benzene	Toluene	Benzene	Xylenes
EPA Method:	8015	8020	8020	8020	8020
Analyst:	S. Kouri	B. Fletcher	B. Fletcher	B. Fletcher	B. Fletcher
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date Analyzed:	Mar 21, 1991	Mar 29, 1991			
QC Sample #:	BLK032191	103-0477			
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	54	0.50	0.50	0.50	1.50
Conc. Matrix Spike:	59	0.41	0.46	0.50	1.47
Matrix Spike % Recovery:	109	82	92	100	98
Conc. Matrix Spike Dup.:	87	0.41	0.49	0.50	1.51
Matrix Spike Duplicate % Recovery:	161	82	98	100	101
Relative % Difference:	38	0	6.3	0	2.7

PRTH CREEK ANALYTICAL

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
	Spike Conc. Added	The transfer of the transfer o	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2		

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID: Matrix Descript: Analysis Method:

First Sample #:

Singh Ellensburg, 00078-001-01

Water

EPA 3510/8015 103-0744 Sampled: Received:

Mar 22, 1991 Mar 25, 1991

Received: Mar 25, Extracted: Mar 29

Extracted: Mar 29, 1991 Analyzed: Apr 4, 1991

Reported: Apr 8, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	Extractable Hydrocarbons mg/L (ppm) - Note	: Results reported in parts per million the conversion to parts per billion=times
103-0744	MW-4	N.D.	conversion to pards perbillion=times by 1000. JMG 5/21/91
103-0745	MW-5	23	
103-0746	MW-2	160	
103-0747	MW-3	4.0	

Detection Limits:

0.50

Extractable (high boiling point) Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

QRTH CREEK ANALYTICAL

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID: Matrix Descript:

Singh Ellensburg, 00078-001-01

Water

Analysis Method: EPA 5030/8015/8020 First Sample #: 103-0744

Sampled:

Mar 22, 1991 Mar 25, 1991

Received: Analyzed: Reported:

Apr 5, 1991 Apr 8, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Purgeable Hydrocarbons μg/L (ppb)	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)
103-0744	MW-4	410	81	N.D.	N.D.	N.D.
103-0745	MW-5	8,400	170	26	470	1,100
103-0746	MW-2	21,000	580	400	190	2,700
103-0747	MW-3	6,700	N.D.	N.D.	N.D.	130

Detection Limits: 30 0.30 0.30 0.30 0.30

Purgeable (low to medium boiling point) Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

JRTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director** Please Note:

The detection limit for Benzene, Toluene and Ethyl Benzene on Sample #103-0747 has been raised to 3.0 μ g/L.

SEACOR

330 112th Avenue N.E., #104 Bellevue, WA 98004

Attention: Larry Fletcher

Client Project ID: Singh Ellensburg, 00078-001-01

Sample Matrix: Water QC Sample Group: 103-0744 to -0747

Reported: Apr 8, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	VI	Diesel
	Delizelle	Toluene	Benzene	Xylenes	Fuel
EPA Method:	8020	8020	8020	8020	8015
Analyst:	B. Fletcher	B. Fletcher	B. Fletcher	B. Fletcher	S. Kouri
Reporting Units:	μg/L	μg/L	μg/L	<i>μ</i> g/L	μ g/L
Date Analyzed: QC Sample #:	Apr 5, 1991	Apr 5, 1991	Apr 5, 1991	Apr 5, 1991	Mar 21, 1991
GO Sample #.	103-0751	103-0751	103-0751	103-0751	BLK032191
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	5.0	5.0	5.0	15.0	1,630
Conc. Matrix Spike:	4.6	5.2	5.4	17.4	2,820
Matrix Spike % Recovery:	92	104	108	116	170
Conc. Matrix Spike Dup.:	4.6	4.8	5.0	15.2	2,803
Matrix Spike Duplicate % Recovery:	92	96	100	101	171
Relative % Difference:	0	8.0	7.7	13	0.5

PRTH CREEK ANALYTICAL

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added		
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) /2		

SEACOR

CHAIN-OF-CUSTODY RECORD

SEACOR	PHONE.	PROTECT MANAGER.	DECIECT NETWORD ALAYER.	_
330 112th Ave. NE, #104	0000	יייייייייייייייייייייייייייייייייייייי	CONTRACTION INCIDENCIA PARTICION INCIDENCIA PARTICIONI DE LA CONTRACTIONI DE LA CONTRACTI	
Bellevue, WA 98004	0070-040 (007)	Jann. Glolchin.	Sach 7/18 1 6.10 A	÷
		il balance	からない とここ マインドー	_
SAMPLER: (Sign and print name)	LABORATORY:	LABC	LABORATORY ID NUMBER:	1
John M. B. eben John M. Lieber	North Oruth		367	

						\	
ANALYSIS REQUESTED/REMARKS	TOH (915) STEX (5020)	TPH (2,0/2)	(8)				
STATION/LOCATION	Monderauell 2 5 feet	west wal	Z# +: d + 524	South WALL	les y	in	
SAMPLE TYPE	1105	2			J. J		
TIME	1240	1540	0950	1430			
DATE	12/14/90	12/4/90	12/13/90	1.2/4/6			
SAMPLE ID NUMBER	171 W-25	Ex-W-5, 12/	7-9-2	Ex-5-5, 1.2/4/6	Ą		

Actual Colone Distriction of the Colone Dist	The state of the s			
TIME:	Note to bi. (Signature)	RELLINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
			TIME:	
RELINQUISHED BY: (Signature) DATE:	RECIEVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
TIME:			TIME:	
RELINQUISHED BY: (Signature) DATE:	RECIEVED FOR LABORATORY BY: (Signature)	Y: (Signature)	a.	REMARKS:
Luch TIME: 18	o Plan Congra	7		

SEACOR

CHAIN-OF-CUSTODY RECORD

						S. 4) S
SEACOR 330 112th Avc. NE, #104 Bellevue, WA 98004	#104			PHONE: (206) 646-0280	PROJECT MANAGER: Lam Pletchen	PROJECT NUMBERNAME: Single est Ellensbung
SAMPLER: (Sign and print name)	and print name	0		LABORATORY:	LABO	LABORATORY ID NUMBER:
Cometis Van Dijk Calibus	an Dijk	Cari	-O~	NorthCreek		
SAMPLE ID NUMBER	DATE	TIME	SAMPLE TYPE	STATION/LOCATION	ANALYSIS RE	ANALYSIS REQUESTED/REMARKS
MW-1.1	555 06/11/21		OtH	1 - MW	TOH (Diesel)	EPA EPA 8015
2-1-mm	2	->>		->		
mw.2-1		12,30		1mm. 2	J) Hall (TPH (fruge brant)
7.2.MM		→			<u> </u>	

RELINQUISHED BY: (Signature)	DATE: IT	RECIEVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
Carren -	TIME:	John M. Sun		TIME	
RELINQUISHED BY: (Signature)	DATE:	KÉCIEVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
	TIME:			TIME:	
RELINQUISHED BY: (Signature)	DATE; 2/68	RECIEVED FOR LABORATORY BY: (Signature)	Y: (Signature)		REMARKS:
John M. Duhn	TIMB;:55	the tonory	1		
0					

TPH (dresel & gas) BTEX

MW. 3

1320

1-5-MW

MW-7.2

CHAIN-OF-CUSTODY RECORD

スしない

LABORATORY ID NUMBER: PROJECT NUMBER/NAME: L+ Erey Fledelm PROJECT MANAGER: John Sied Nooth PHONE: (206) 646-0280 LABORATORY: SEACOR 330 112th Ave. NE, #104 Bellevue, WA 98004 SAMPLER: (Sign and print name) John M. Broken

SAMPI F ID	TT & CT	The second	1 20 67 0		
NUMBER	DAIB	IME	SAMPLE	STATION/LOCATION	ANAL YSIS REQUESTED/REMARKS
14-17-10 W	(v)	1991 1800		1 4 60 Well	View Comment to
W. W. 5 4.		€);;(_>		ンピーツ
					~\
	¥)				

	RECIEVED BY: Signature			RECIEVED BY: Signature	8		REMARKS:		- 2
	DATE: ~ / M.	TIME:	300	DAIE	TIME:				1
	KELLINQUISHED BY: (Signature) DATE: 1, 2, RECIEVED BY: Signature	くらいとう	RELINOUISHED BY: (Signatura) In American	Constant Discounted		, , , , , , , , , , , , , , , , , , , ,	s I: (Signature)		
PECTEVE		るいつから	RECIEVED BY: (Signature)			PECIEVED FOR I ABORATORY	NECTATION INDONATION BI: (Signature)	•	
hAme.	41/2	TIME	DATE:		:awr:	DATE.	in in	TIME:	
ı	NECENÇOISHED BI: (Signature)	Colm M. Gieln	RELINQUISHED BY: (Signature)			PET INOTHERED BY. VELLER	(Signalue)		

CHAIN-OF-CUSTODY RECORD

SEACOR	CHAIN-OF-CUSTODY RECORD	RECORD		0307
SEACOR 330 112th Ave. NE, #104 Bellevue, WA 98004	PHONE: (206) 646-0280	PROJECT MANAGER:	PROJECT NUMBER/NAME:	
SAMPLER: (Sign and print name)	LABORATORY: Northerek	TABC	LABORATORY ID NUMBER:	

ANALYSIS REQUESTED/REMARKS	TPH = 305 or & diex 8015	11	1)			
STATION/LOCATION	11 12 31	180 10 00 14 S	. 2400001	(14)		
SAMPLE TYPE	1150 116	14,0 1 40	120 100	120 18		
TIME			430			
DATE	3/22/91	15/22/5	14/22/2	15/22/2		
SAMPLE ID NUMBER	7.37	N-3 I	MW- 2	1.3 2		

	Ly sum.	ם בייייים מיייים מיייים מיייים	-		
RELINQUISHED BY: (Signature)	JA/E: /e,	KECLEVED BI: (Signature)	KELINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
Reages Elilan	TIME, 35	John M. Leet		TIME:	
RELINQUISHED BY: (Signature)	DATE:	RECIEVED BY: (Signature)	RELINQUISHED BY: (Signature)	DATE:	RECIEVED BY: Signature
	TIME:			TIME:	al al
RELINQUISHED BY: (Signature)	DATE: 3/55	RECIEVED FOR LABORATORY BY: (Signature)	Y: (Signature)		REMARKS:
John M. Liels	TIME 5.73	X MANY		SAM	

January 23, 1991

Washington State Department of Ecology ATTN: Mr. Tony Valero 3601 W. Washington Yakima, Washington 98903-1164

Dear Mr. Valero:

In reference to our telephone conversation on January 22, 1991 concerning funds available for clean up of the Big "B" Mini Mart (Exxon) in Ellensburg, Washington 98926, the datum we have acquired to date is presented in the following letter report and attachments.

Analysis of soil and water samples taken at the site indicate that petroleum hydrocarbon concentrations exceed the draft clean up levels at several locations on the site. Proposed cleanup standards are presented in Tables 1 and 2. Figure 1 is a site plan which shows the approximate location of the excavation sampling and three monitor wells. Copies of laboratory reports and chain-of-custody records are contained in Appendix A. Boring logs and sampling event data sheets are contained in Appendix B. Groundwater was encountered at approximately 6 feet in the excavations at the site.

Soil samples for chemical analysis were collected using appropriate procedures from test pit #2 (TP-2) at 4.5 feet, from monitor well (MW-2) at 5 feet, and from the west (EX-W-5) and south (EX-S-5) walls of the excavation at 5 feet.

Water samples were collected using appropriate technologies, from each of the three monitor wells which were installed at the site.

Although the well survey is incomplete, indications lead us to believe that the groundwater is moving in an south-southwest direction beneath the site.

We are currently planning to install two additional monitor wells south of MW-2 and southwest of the store location.

Sincerely,

John M. Gieber

John M. Lielen

Geologist

Attachments

CC: Balbir Singh

JAN 2 4 1991

DEPARTMENT OF ECCLOGY CENTRAL REGION OFFICE

330 112th Northeast #104 Bellevue, WA 98004 206.646.0280

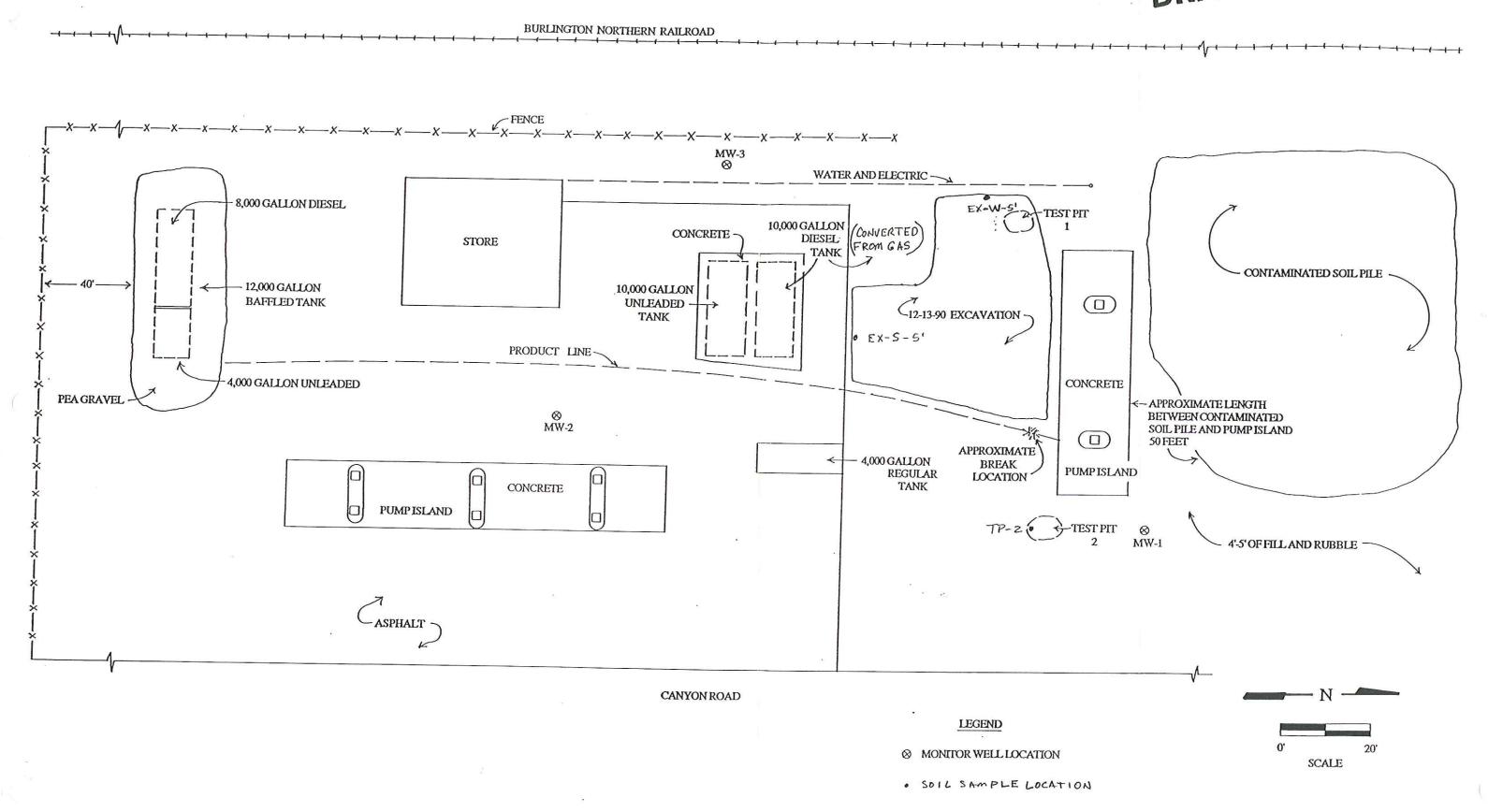
TABLE 1 PROPOSED CLEANUP STANDARDS FOR PETROLEUMRELATED COMPOUNDS IN SOIL¹

Compound	Cleanup Level
TPH ² (gasoline)	100 ppm ³
TPH (diesel)	200 ppm
Benzene	.5 ppm
Toluene	40 ppm
Ethyl Benzene	20 ppm
Xylene	20 ppm

NOTE:

- 2 TPH = Total Petroleum Hydrocarbons
- 3 ppm = Parts Per Million

¹ Cleanup levels as listed in Model Toxics Control Act Cleanup Regulations and Proposed Amendments dated July 2, 1990 (Chapter 173-230)


TABLE 2 PROPOSED CLEANUP STANDARDS FOR PETROLEUMRELATED COMPOUNDS IN GROUNDWATER¹

Compound	Cleanup Level
TPH ²	1,000³ ppb
Benzene	5 ppb
Toluene .	40 ppb
Ethyl Benzene	20 ppb
Xylene	20 ppb

NOTE:

- 2 TPH = Total Petroleum Hydrocarbons
- 3 ppb= Parts Per Billion

¹ Cleanup levels as listed in Model Toxics Control Act Cleanup Regulations and Proposed Amendments dated July 2, 1990 (Chapter 173-230)

APPENDIX A

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID:

Matrix Descript: Analysis Method:

ID: Sihgh Ellensburg ot: Soil

EPA 5030/8015/8020

First Sample #: 012-0446

Sampled:

See Below Dec 18, 1990

Received: Analyzed: Reported:

Dec 26, 1990 Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	 ow/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
012-0446	MW-2-5 12/14/90	900	N.D.	N.D.	1.8	28

Detection Limits: 20 1.0 2.0 2.0 2.0

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

NORTH CREEK ANALYTICAL

SEACOR

330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID: Matrix Descript:

Analysis Method:

First Sample #:

Sihgh Ellensburg

Soil

EPA 3550/8015

012-0447

Sampled:

See Below

Received: Extracted: Dec 18, 1990 Jan 2, 1991

Analyzed: Reported: Jan 2, 1991 Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)	F. Print Ident.
012-0447	EX-W-5 12/14/90	3,700	
012-0448	TP-2 12/13/90	N.D.	
012-0449	ES-S-5 12/14/90	3,000	Mix of gasoline and diesel fuels

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

YORTH CREEK ANALYTICAL

SEACOR 330 112th Avenue N.E., #104

Bellevue, WA 98004 Attention: Larry Fletcher Client Project ID: Matrix Descript:

Sihgh Ellensburg

Water

Analysis Method: First Sample #:

EPA 3510/8015

012-0450

Sampled:

Dec 17, 1990

Received: Dec 18, 1990 Extracted: Jan 2, 1991

Analyzed: Jan 2, 1991 Reported: Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	Extractable Hydrocarbons µg/L (ppb)	F. Print Ident.
012-0450	Comp of MW1-1&1-2	N.D.	
012-0451	Comp of MW2-1&2-2	5,500	Mix of gasoline & diesel Fuels
012-0452	Comp of MW3-1&3-2	2,100	

Detection Limits:

50

Extractable (high boiling point) Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Sedt Cocanour **Laboratory Director**

120446.SEA <3>

SEACOR 330 112th Avenue N.E., #104 Bellevue, WA 98004 Attention: Larry Fletcher

Client Project ID: Sample Descript.: Analysis Method:

Lab Number:

Sihgh Ellensburg Water, Comp. of MW3-1&3-2 EPA 5030/8015/8020

Received: Analyzed: Dec 17, 1990 Dec 18, 1990 Dec 26, 1990

Reported:

Sampled:

Jan 3, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION (EPA 8015/8020)

012-0452

Analyte

Detection Limit μ g/L (ppb)

Sample Results $\mu g/L (ppb)$

Benzene	3.0	***************************************	N.D.
Foluene Ethyl Benzene	3.0		1 900
Ethyl Benzene Kylenes	3.0		460

Purgeable (low to medium boiling point) Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

NORTH CREEK ANALYTICAL

SEACOR

CHAIN-OF-CUSTODY RECORD

SEACOR 330 112th Ave. NE, #104 Bellevue, WA 98004	PHONE: (206) 646-0280	PROJECT MANAGER: LAPAN Fletcher	PROJECT NUMBER/NAME: Strigh [//ensburg	
SAMPLER: (Sign and print name)	LABORATORY:	LAB	LABORATORY ID NUMBER:	1
John M. B. eber John M. Liehn	Nonth Ouch			

_		,						
	ANALYSIS REQUESTED/REMARKS	TPH (905) BTEX (5020)	TPH (diecel) 5015		,	, P		
North July	STATION/LOCATION	monitoriuell 2 5 feet	Wrst wall	7451 P-1 #2	South WALL	Let in	Tail	
	SAMPLE TYPE	1105	1			Section 1		
John M. July	TIME	1240	1540	0950	1430			
- 1 1	DATE	(2/4/90	12/14/9	P-2 12/13/90	12/4/0	Ĵ		
John M Greber	SAMPLE ID NUMBER	171 W-25	Ex-W-5	7-6-7	Ex-5-5 12/4/6			

RELINQUISHED BY: (Signature)	DATE:	RECIEVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
	TIME:		×	TIME:	
RELINQUISHED BY: (Signature)	DATE:	RECIEVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE:	DATE:	RECIEVED BY: Signature
	TIME:			TIME:	
RELINQUISHED BY: (Signature)	DATE: //	RECIEVED FOR LABORATORY BY: (Signature)	Y: (Signature)		REMARKS:
Dom M Saile	TIME:	" Hen Congress	7.		
1.) ,				

SEACOR

CHAIN-OF-CUSTODY RECORD

SEACOR 330 112th Ave. NE, #104 Bellevue, WA 98004	,#104 A			PHONE: (206) 646-0280	PROJECT MANAGER: Lamy Pletchen	PROJECT NUMBERNAME:	
SAMPLER: (Sign and print name)	and print name	()		LABORATORY:	LABO	LABORATORY ID NUMBER:	
Convers Ven Dijk	an Dijk	Carino	202	NothCreek			
SAMPLE ID NUMBER	DATE	TIME	SAMPLE	STATION/LOCATION		ANALYSIS REQUESTED/REMARKS	5.
mw-1.1	06/17/27	5551	0 tH	1 - MW	TPH (Diesel)	EPA 8015	
2.1.mm		->		→ >			
1-2-mus		12,30		2 -muy	y) Hall {	PH (Frys Brown)	
2.2.MM		1		→		0	
1-5-mW		1320		87W - 3) TPH (do	PH (dresplance) BIFX	
2.C.MW		->	->	->			
			198				
RELINQUISHED BY: (Signature)	BY: (Signature)	DATE: 17	RECIEVED BY:	BY: (Signature) RELIN	RELINQUISHED BY: (Signature) D.	DATE: RECIEVED BY: Signature	7 🗆

RECIEVED BY: Signature		RECIEVED BY: Signature		REMARKS:		
DATE:	TIME:	DATE:	TIME:			
RELINQUISHED BY: (Signature) DATE:		RELINQUISHED BY: (Signature) DATE:		Y: (Signature)	1	
RECIEVED BY: (Signature)	John M. Sun	KÉCIEVED BY: (Signature)		RECIEVED FOR LABORATORY BY: (Signature)	the tonory	`
DATE: (17	TIME:	DATE:	TIME:	DATE; 2/88	TIME; 55	
RELINQUISHED BY: (Signature)	(aller	RELINQUISHED BY: (Signature)		RELINQUISHED BY: (Signature)	John M. Suhn	0

APPENDIX B

DRAFT

BORING LOG

BORING: MW-| PAGE | of |

PROJECT Strigh Ellensburg	LOCATION see site MAP
SURFACE ELEVATION	CASING TOP ELEVATION
START 12/14/90 1030	FINISH 12/14/90 1200
SAMPLER J. Gieben MONITOR	
SUBCONTRTACTOR AND EQUIPMENT Envi	Romental West ExploRAtion, Mobile B-61
COMMENTS 2" x 24" Split spoon 54	mpling tubes

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
15-6-7 11-50(4") 2-8-50(2")				Brown Cobbles, day Dank Brown Gravelly Sand moist Brown-Gray Cobbles very moist to saturated Gray Sandy Gravel poorely graded Saturated Boarng completed to 14.5! Gromolwater encountered at 6! Moniton well rastalled to 14',	GW SP GP	Shock rated cove Congrete Bentonite Plug #10/20 SAND Filter pach #10 scacen

BORING LOG

BORING: MW-2 PAGE | of 1

PROJECT Singh Ellensburg LOCATION See site MAP
SURFACE ELEVATION CASING TOP ELEVATION
START 12/14/90 1230 FINISH 12/14/90 1400
SAMPLER J Gieber MONITORING DEVICE HNU
SUBCONTRACTOR AND EQUIPMENT Environmental West Exploration mobile B.61
COMMENTS 2" by 24" Split spoon sampling tubes

			77		7	
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	1
			0	Brown Poorly Graded Gravel Very coarse peoples to small & dry	obbles GP	sheet rated cover concrete Bentonite Plug #10/20 54rd
11-21-28 42-50(1")		50+		Brown Gravelly SAND poorly graded moist Gray Gravelly SAND Sheen on Sample tube very moist to SATurated	SP	Filter pack # 10 scacen
50 (1")	1			Brown-Gray Small Cobbles well graded: 2"-4" hard de; 117ng Borrney completed to 14.51 Groundwater enconstened at 6' Monitor well in shalled to 14'	6 B	Scacened
		-	20 20 			

BORING LOG

BORING: MW-3 PAGE 1 of 1

PROJECT Songh. Eller	rsburg	LOCATION See site map
SURFACE ELEVATION	J	CASING TOP ELEVATION
START 12/14/90		FINISH 12/14/90 1800
		ING DEVICE HNW
SUBCONTRTACTOR AND EQ	UIPMENT Ewi	remental West Exploration, mobile B-61
COMMENTS 2"x 24" Split	Spoon sampline	tubes, At 1600 (10') broke man cable.

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
50 (3") 6-13-60(4)	no Sample			Brown Sandy Loam organics, dry Dark Brown. Gray Gravelly Sand moist Gray Sandy Gravell poorly graded Sheen on somple tube Saturated Gray Cobbles well graded: 2"-4" Borng completed to 14.5' Ground water encomtened at 5.5! monitor well restalled to 14'.	GP GW	Sheet rated concrete Bentonite Plug #10/20 SAND Filter pach #10 sencen

DRAFT

SAMPLING EVENT DATA SHEET (fill out completely)

		(IIII out con	μιστοιγ	WELL OR LO	CATION _ MW · I
PROJECT Singh	0:1 EV	'ENT	SAMF	PLER _CVD	_ DATE 12/17/90
Action	Time Pump	rate IWL (low yield)		Well / Hydrolog	ic statistics
Start pump / Begin		(low yield)		d_	Location or WW·I well type
Sampled @ 1359			SWL — (if above) packer intake bailer depth) (circle one ar indicate wian	nd .	equals 17 gal/ft. casing
gal/ft. 9.39 ft. SWL to BOP o packer to BOP	r one volume	purge volume- 3 casings		5.44	ВОР
gal/ft. *ft		Airiit)	measu T.D.	м. 78 м. м.	T.D. (as built)
Method and Equipment &S Event Description:	t Used: Mw·Z			Actual gallons purg Actual volumes pur Well yield	15 61
accin				COC # Sample I.D.	Analysis Lab
Additional comments:				mw.1-2	NC
No Vis	a VOA'S	•			
Gallons purged *	TEMP °C /°F (circle one)	EC (µs / cm)	PH	TURBIDITY (NTU)	
1.					
2.			+1		
3.		-			
5.		 			
* Take measurement at approximately each casing volume purged.	⊕ <u>HY-</u> Minimal W.L. drop	MY - WL drop - able volumes durin by reducing p	g one sitting	LY - Able to purge 3 volumes by retur later or next day.	

DRAFT

WELL OR LOCATION MW.Z

SAMPLING EVENT DATA SHEET

(fill out completely)

SAMPLER CUD PROJECT Singh Oil __ DATE 12/17/90 EVENT_ Time IWL Action Pump rate Well / Hydrologic statistics (low yield) Location or well type _ MW·2 Start pump / Begin diameter 2 - d equals ____ gal/it. casing SWL -(if above screen) Sampled @ 12:30 packer intake bailer depth) (circle one and - TOP indicate w/arrow) Purge calculation SWL 6.28 17 gal/tt. 8 ft. = 1.36 gals x 3 = 4.08 gals. SWL to BOP or one (if in screen) purge volumepacker to BOP volume 3 casings - BOP Head purge calculation (Airlift) measured 14.28 gal/ft. * ft. = gals. - T.D. (as built) T.D. packer to SWL Method and Equipment Used:
Steriless 5 teel bailer
Sounder Actual gallons purged Actual volumes purged **Event Description:** Well yield (+) decon COC # Sample I.D. Analysis Lab N.C. MW-Z.i Additional comments: MW.2.2 U.C. Grandwater showed Visible sheen The area was very odiferous (petro) 2 VOA'S 11: ter bottle TEMP °C /°F Gallons purged * EC PH TURBIDITY (circle one) (µs / cm) (NTU) 1. 2. 3. 4. 5. * Take measurement at MY - WL drop - able to purge 3 VLY - Minimal recharge -LY - Able to purge 3 (+) HY- Minimal volumes during one sitting unable to purge approximately each W.L. drop volumes by returning by reducing pump rate or 3 volumes. later or next day. casing volume purged.