

July 17, 2012 Project 101.00221.00009

Mr. Norman Hepner Washington Department of Ecology 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902

Re: Soil Vapor and Groundwater Sampling Report - May 2012 Event, Closed City of Yakima Landfill, Yakima, Washington

Dear Mr. Hepner:

On behalf of the City of Yakima, SLR International Corporation (SLR) has prepared this report to present the results of the soil vapor and groundwater sampling activities conducted in May 2012 at the closed City of Yakima Landfill (Yakima Landfill) area. The Yakima Landfill is located at the south end of the former Boise Cascade Sawmill and Plywood facility (sawmill). The former sawmill property is located at 805 North 7th Street, in the northeastern part of Yakima, Washington (see Figure 1).

The objectives of the soil vapor and groundwater sampling event were: 1) to assess the current methane concentrations in the soil vapors within and around the landfill, 2) to assess the current concentrations of the preliminary groundwater indicator hazardous substances (IHSs) at locations hydraulically upgradient and downgradient of the landfill, 3) to identify where the shallow groundwater from beneath the landfill discharges to the Yakima River during a period of high groundwater elevation conditions, and 4) to evaluate the potential effects of the previous removal of surficial wood waste at the former sawmill on the soil vapor concentrations.

MAY 2012 SAMPLING EVENT

Soil Vapor Sampling

On May 10, 2010, SLR personnel extracted and analyzed soil vapors from all of the soil vapor probes (GP-3 through G-20) located in the southern part of the former sawmill property by using a CES/Landtec GEM-2000 multi-gas meter. We had also planned to extract and analyze soil vapors from probe GP-21, but we discovered that the probe had been accidentally destroyed by the property operations. The multi-gas meter measured the percentages of oxygen (O2), carbon dioxide, and combustible gas in the extracted soil vapors. Based on the laboratory analytical results of previous soil vapor samples that were collected in 2009 and 2010 (SLR, 2010), the detected combustible gas at the southern part of OF ECO of the former sawmill property consists almost entirely of methane.

AUG 1 4 2012

Bothell, WA 98921

Received

The Model Toxics Control Act (MTCA) Cleanup Regulation¹ was used to establish methane gas screening levels for outdoor air and indoor air that are protective of human health and the environment; however, it does not specifically address landfill gas in soil. Unless the Yakima Landfill closed in December 1972, which is unlikely, there were no state municipal solid waste regulations that addressed landfill gas in soil at the time of the landfill closure. Therefore, the Washington minimal functional standards for landfilling that specifically address landfill gas do not apply to the Yakima Landfill site. Washington's Criteria for Municipal Solid Waste Landfills², 173-351 WAC, apply only to municipal solid waste landfills that received waste on or after November 26, 1993, and therefore, also do not apply to the site. However, WAC 173-351-200 regulations have been used for the remedial investigation at the site to evaluate if the methane conditions are protective of human health and the environment (SLR, 2009 and SLR, 2010). Under WAC 173-351-200, the methane concentrations generated by a landfill must not exceed the lower explosive limit (LEL; 5 percent by volume) in the soil at the property boundaries.

On May 10, 2012, the methane concentrations measured in the soil vapor probes ranged from 0 to 62.6 percent. The greatest methane concentrations (53.1 to 62.6 percent) were detected at the soil vapor probes (GP-19 and GP-20) located within the footprint of the landfill and screened within municipal solid waste (MSW). At the probes (GP-11 and GP-13) located to the north of the landfill that are screened within wood waste, the methane concentrations (14.3 to 40.3 percent) exceeded the upper explosive limit (UEL; 15 percent by volume) or the LEL. Near the northwest, west, and southwest edges of the landfill, the methane concentrations (13.9 to 34.0 percent) at probes GP-4, GP-5, GP-10, and GP-12 also exceeded the UEL or LEL. Further to the northwest, along the east side of the former plywood plant building, the methane concentration (8.1 percent) at probe GP-3 exceeded the LEL. To the west, southwest, south, and northeast of the landfill, along or near the property line (at probes GP-6 through GP-9 and GP-14 through GP-18), methane was not detected. The combustible gas survey results from the May 2012 sampling event, as well as from the previous remedial investigation, are presented in Table 1. The methane concentrations on May 10, 2012, are shown on Figure 2.

Groundwater Sampling

To assess the current preliminary groundwater IHS concentrations and identify where the groundwater from beneath the landfill discharges to the Yakima River, SLR personnel conducted a groundwater sampling event on May 9 and 10, 2012. Prior to sampling, SLR measured the depths to groundwater in all of the monitoring wells located at the southern part of the former sawmill property and hydraulically downgradient (southeast) of the

Washington Department of Ecology. 2007. Chapter 173-340 WAC, Model Toxics Control Act Cleanup Regulation. November.

² Washington Department of Ecology. 1993. Chapter 173-351 WAC, Criteria for Municipal Solid Waste Landfills, October.

property (MW-6, MW-7, MW-8, MW-9A, and MW-11 through MW-18) by using an electronic water level meter. SLR also measured the depths to water at the gauging stations (designated RG-1 through RG-4) located on the west bank of the Yakima River that were established during the remedial investigation (SLR, 2010). The locations of the monitoring wells and river gauging stations are shown on Figure 3.

During the sampling event, groundwater samples were collected from monitoring wells MW-7, MW-8, MW-9A, and MW-11 through MW-18 for laboratory analysis. Each well was purged and sampled by using low-flow methods with a peristaltic pump and new polyethylene tubing. During purging and immediately prior to sampling, SLR measured the pH, specific conductivity, temperature, dissolved oxygen, and oxidation-reduction potential of the purge water. The groundwater samples were submitted to Friedman & Bruya, Inc. (F&B) in Seattle, Washington, for analysis of the preliminary groundwater IHSs (vinyl chloride, arsenic, iron, manganese, sodium, nitrate, and pH) that were identified during the remedial investigation (SLR, 2009). The analyses were conducted by using the following methods:

- Vinyl chloride by EPA Method 8260C
- Dissolved arsenic and manganese by EPA Method 200.8
- Dissolved sodium and iron by EPA Method 200.7
- Nitrate by EPA Method 300.0
- pH by EPA Method 9040C

Groundwater Monitoring Results

On May 9, 2012, the depths to groundwater in the monitoring wells ranged from 4.48 to 17.85 feet. The depth to the river water at gauging station RG-2 was 2.15 feet. At the time of the measurements, gauging station RG-4 was not accessible because it was under water, and stations RG-1 and RG-3 could not be located. The depth to groundwater and river water measurements were converted to elevations based on the results of previous well and gauging station elevation surveys conducted by Gray Surveying & Engineering, Inc., of Yakima, Washington. The groundwater elevations in the wells ranged from 1,035.93 to 1,052.48 feet above the NAVD 88 datum, and the river water elevation at gauging station RG-2 was 1,039.81 feet above the NAVD 88 datum. The river water elevation at the submerged downstream station (RG-4) was greater than 1,033.42 feet above the NAVD 88 datum. The groundwater and river water monitoring data from the May 2012 sampling event, as well as from the previous investigations, are presented in Table 2.

Based on the groundwater and river water elevations on May 9, 2012, the general groundwater flow direction beneath the landfill area was to the southeast, towards the Yakima River. This flow direction is consistent with the flow direction during the previous groundwater sampling events conducted during 2009 and 2010 (SLR, 2009 and

SLR, 2010, respectively). A groundwater elevation contour map of the May 2012 data is presented on Figure 3. The previous groundwater elevations in 2009 and 2010 revealed that a localized area of groundwater mounding was present near the southern end of the former plywood plant (near well MW-13) (SLR, 2009 and SLR, 2010), and the groundwater mounding suggested the presence of a localized groundwater recharge source (such as a leaking underground pipe). However, in May 2012, the groundwater elevation at MW-13 was over 4 feet lower than in February 2010, and there was no evidence of groundwater mounding near the southern end of the former plywood plant. It appears that the groundwater recharge source was shut off prior to May 2012, and since the plywood plant was being demolished during the groundwater sampling event, the recharge source could have been associated with the former plywood plant operations.

Based on the groundwater flow direction and the Yakima River elevations on May 9, 2012, it appears that the groundwater from beneath the landfill discharged into the section of the river between gauging stations RG-2 and RG-4 (see Figure 3).

Groundwater Sample Analytical Results

The groundwater sample analytical results were compared to groundwater screening levels that were based on the most stringent potential cleanup levels for the Yakima Landfill site (SLR, 2009). If the most stringent potential cleanup level for a compound was below the practical quantitation limits (PQLs), then the PQL became the screening level. The sample analytical results and groundwater screening levels are presented in Table 2.

The sample analytical results showed that the samples from all of the monitoring wells, except MW-7 and MW-14, contained dissolved arsenic concentrations [0.39 to 8.31 micrograms per liter (μ g/L)] that exceeded the groundwater screening level (0.31 μ g/L). The samples from all of the monitoring wells, except MW-9A and MW-14, contained dissolved manganese concentrations (346 to 3,460 μ g/L) that exceeded the screening level (50 μ g/L). The samples from wells MW-11, MW-12, MW-13, MW-15, MW-17, and MW-18 contained dissolved iron concentrations (487 to 35,100 μ g/L) that exceeded the screening level (300 μ g/L). The groundwater samples from MW-8, MW-12, MW-13, MW-16, and MW-17 contained dissolved sodium concentrations (26,200 to 42,500 μ g/L) that exceeded the screening level (20,000 μ g/L).

The groundwater samples from all of the monitoring wells contained pH concentrations (5.62 to 6.27) that were outside of the groundwater screening level range (6.5 to 8.5). The groundwater sample from well MW-8 contained a nitrate concentration (86,200 μ g/L) that exceeded the groundwater screening level (10,000 μ g/L). None of the groundwater samples contained detectable vinyl chloride concentrations, and the method reporting limit (0.06 μ g/L) was below the screening level (0.11 μ g/L). The groundwater sample analytical results from the May 2012 sampling event, as well as from the previous

groundwater sampling events at the landfill area, are presented in Table 2. Copies of the laboratory analytical reports are attached.

CONCLUSIONS

Under WAC 173-351-200, the methane concentrations generated by the landfill must not exceed the LEL in the soil at the property boundaries. The landfill extends beyond the eastern property line in a localized area near the southeastern corner of the property (see Figure 2), and since the soil vapor sampling results indicate that the methane concentrations in the landfill exceed the UEL, it is likely that the subsurface methane concentrations exceed the LEL within the area where the waste extends beyond the eastern property line. The soil vapor sampling results indicate that methane concentrations are below the LEL at the southern and western property lines. Since the northern property line is over 3,000 feet to the north of the landfill (see Figure 1), the methane concentrations derived from the MSW are likely below the LEL at the northern property line.

Prior to 2010, the Yakima Landfill was covered with approximately 2 to 12 feet of wood waste, sandy silt, and/or silty gravel. During 2010, the tenant of the former sawmill property, Yakima Resources, removed the majority of the surficial wood waste from the property (including above the landfill at the former log deck and barker areas). Based on a comparison of the methane concentrations in May 2012 to the methane concentrations in 2009 and 2010 (see Table 1), the detectable concentrations in May 2012 from all of the soil gas probes, except GP-19, located within or near the former log deck and barker areas (GP-3, GP-11, GP-13, and GP-20; see Figure 2) were at least 19 to 66 percent lower than any of the methane concentrations from those probes prior to the removal of the surficial wood waste. The May 2012 methane concentration (62.6 percent) from GP-19 (located within the landfill footprint) was consistent with the concentrations (61.3 to 69.5 percent) prior to the removal of the surficial wood waste eliminated a methane source at the property; however, the MSW in the landfill and the remaining deeper wood waste (outside of the landfill footprint) continue to generate methane concentrations greater than the LEL.

The May 2012 groundwater sample analytical results showed that the arsenic, manganese, sodium, and iron concentrations in most of the groundwater samples exceeded the groundwater screening levels. The greatest arsenic, manganese, sodium, and iron concentrations were detected at wells located to the north-northwest (hydraulically upgradient) of the landfill and the concentrations typically decreased with distance to the south-southeast (downgradient). However, at well MW-15, which is located near the western bank of the Yakima River, the arsenic, manganese, and iron concentrations still exceeded the screening level. Since the arsenic, manganese, sodium, and iron in the groundwater appear to be due to sources located hydraulically upgradient of the landfill, these compounds are eliminated as groundwater IHSs for the landfill site. The distribution

Mr. Norm Hepner Page 6

of the arsenic, manganese, sodium, and iron concentrations in May 2012 are shown on Figures 4, 5, 6, and 7, respectively.

The groundwater samples from all of the monitoring wells, including the two wells (MW-14 and MW-15) located near the western bank of the Yakima River, contained pH concentrations (5.62 to 6.27) that were outside of the groundwater screening level range (6.5 to 8.5). The distribution of the pH concentrations in May 2012 is shown on Figure 8. Since the pH concentrations to the north-northwest (hydraulically upgradient) of the landfill are outside of the screening level range, the primary sources of the low pH appear to be located upgradient of the landfill. Therefore, pH is eliminated as a groundwater IHS for the landfill site.

The groundwater sample from well MW-8 contained a nitrate concentration that exceeded the groundwater screening level. The nitrate concentrations attenuate to below the screening level within approximately 750 feet downgradient (south-southeast) of MW-8 (see Figure 9). Since MW-8 is located near the southern (downgradient) edge of the landfill, it appears that the MSW in the landfill is the source of the nitrate. Therefore, nitrate is retained as a groundwater IHS. Since none of the groundwater samples from the May 2012 sampling event or the 2009 and 2010 sampling events contained detectable vinyl chloride concentrations, vinyl chloride is eliminated as a groundwater IHS for the landfill site.

If you have any questions, please contact me at (425) 471-0479.

Sincerely,

SLR International Corporation

Michael D. Staton, L.G.

Principal Geologist

Attachments: Limitations

References

Tables 1, 2, and 3 Figures 1 through 9 Laboratory Reports

cc: Jeff Cutter, City of Yakima

Kurt Peterson, Cascadia Law Group

LIMITATIONS

The services reflected in this report were performed consistent with generally accepted professional consulting principals and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This information is solely for the use of our client unless otherwise noted. Any reliance on this information by a third party is at such party's sole risk.

Opinions and recommendations contained herein apply to conditions existing when services were performed and are intended only for the client, purposes, location, timeframes, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

REFERENCES

- Landau Associates, Inc. 1998. *Hydrogeologic Study and Groundwater Monitoring Plan, Boise Cascade Yakima Wood Products Complex, Yakima, Washington.*November 5.
- Parametrix. 2008. Draft Phase II Environmental Site Assessment, Former City of Yakima Municipal Landfil, Yakima, Washington. June.
- SLR International Corporation. 2009. Remedial Investigation Report, Closed City of Yakima Landfill Site, Yakima, Washington. October 12.
- SLR International Corporation. 2010. Additional Investigation Report, Closed City of Yakima Landfill Site, Yakima, Washington. March 17.

Table 1 Combustible Gas Survey Results Closed City of Yakima Landfill Yakima, Washington

0.1117		Gas Conc	entration ^a (%)	li .
Soil Vapor Probe ID	Date	Combustible Gas	Carbon	Owner
FIGUE ID		(Methane ^b)	Dioxide	Oxygen
GP-3	2/24/2009	19.5	14.8	0.0
	4/17/2009	17.8	12.0	0.3
	11/5/2009	13.7	15.8	0.0
	2/3/2010	13.2	12.2	0.0
	5/10/2012	8.1	12.2	0.0
GP-4	2/25/2009	22.4	9.2	0.0
	4/17/2009	21.6	11.9	0.0
	11/5/2009	37.2	17.1	0.0
	2/3/2010	37.8	10.2	0.5
	5/10/2012	24.7	15.7	1.7
GP-5	2/25/2009	17.6	13.7	0.0
	4/17/2009	16.2	12.7	0.0
	11/5/2009	27.2	17.2	0.8
	2/3/2010	19.9	13.5	0.0
	5/10/2012	15.2	10.9	2.9
GP-6	2/25/2009	0.1	12.7	6.1
	4/17/2009	0.2	11.3	8.5
	11/5/2009	0.0	18.4	3.9
	2/3/2010	0.0	13.4	5.6
	5/10/2012	0.0	11.3	9.3
GP-7	2/25/2009	0.0	1.8	19.2
	4/17/2009	0.1	2.7	19.4
	11/5/2009	0.0	1.8	19.2
	2/3/2010	0.0	2.5	18.9
	5/10/2012	0.0	0.2	20.1
GP-8	2/25/2009	0.0	3.8	15.3
	4/17/2009	0.1	4.8	14.2
	11/5/2009	0.0	2.9	17.9
	2/3/2010	0.0	2.7	17.8
	5/10/2012	0.0	4.6	16.2
GP-9	2/25/2009	0.1	2.0	17.5
	4/17/2009	0.1	3.3	17.8
	11/5/2009	0.0	3.1	18.3
	2/3/2010	0.0	4.5	15.9
	5/10/2012	0.0	3.2	16.9
GP-10	2/25/2009	22.6	16.8	0.0
	4/17/2009	32.4	21.4	0.0
	11/5/2009	41.3	31.4	1.5
	2/3/2010	50.0	24.1	0.0
	5/10/2012	34.0	22.7	1.5

Table 1 Combustible Gas Survey Results Closed City of Yakima Landfill Yakima, Washington

0.117		Gas Conc	entration ^a (%)	
Soil Vapor Probe ID	Date	Combustible Gas	Carbon	0
Probe ID		(Methane ^b)	Dioxide	Oxygen
GP-11	2/25/2009	58.5	33.9	0.0
	4/17/2009	51.7	35.6	0.0
	11/5/2009	57.4	39.0	0.0
	2/3/2010	62.4	36.2	0.0
	5/10/2012	40.3	34.9	0.0
GP-12	2/25/2009	15.4	18.8	0.0
San Carlos Constitute Co.	4/17/2009	21.3	21.1	0.0
	11/5/2009	24.2	24.8	3.2
	2/3/2010	28.1	23.3	0.0
	5/10/2012	13.9	17.1	4.9
GP-13	2/25/2009	51.6	40.1	0.0
	4/17/2009	53.7	43.1	0.0
	11/5/2009	41.9	40.8	0.0
	2/3/2010	45.4	39.9	0.0
	5/10/2012	14.3	23.4	4.6
GP-14	4/17/2009	0.0	3.9	15.0
	11/5/2009	0.0	4.2	16.3
	2/3/2010	0.0	3.3	16.5
	5/10/2012	0.0	2.0	18.2
GP-15	4/17/2009	0.0	2.0	18.5
	11/5/2009	0.0	0.7	20.2
	2/3/2010	0.0	1.1	19.4
	5/10/2012	0.0	0.1	20.0
GP-16	4/17/2009	0.0	1.7	19.0
	11/5/2009	0.0	1.3	19.7
	2/3/2010	0.0	1.8	18.8
	5/10/2012	0.0	0.5	19.4
GP-17	4/17/2009	0.2	1.5	19.6
	11/5/2009	0.0	1.9	17.3
	2/3/2010	0.0	1.3	19.1
	5/10/2012	0.0	2.2	17.7
GP-18	4/17/2009	0.1	0.5	21.0
	11/5/2009	0.0	0.7	20.4
	2/3/2010	0.0	0.7	20.0
	5/10/2012	0.0	0.9	19.1
GP-19	11/5/2009	61.3	39.8	0.0
	2/3/2010	69.5	35.5	0.0
	5/10/2012	62.6	34.9	0.4
GP-20	11/5/2009	65.9	35.8	0.0
	2/3/2010	77.7	26.0	0.0
	5/10/2012	53.1	30.2	2.6

Table 1 Combustible Gas Survey Results Closed City of Yakima Landfill Yakima, Washington

0 1177		Gas Concentration ^a (%)			
Soil Vapor Probe ID	Date	Combustible Gas (Methane ^b)	Carbon Dioxide	Oxygen	
GP-21	11/5/2009	69.3	25.7	0.0	
	2/3/2010	75.7	24.8	0.0	
5/10/2012 Not		Not measured. Pro	be had been d	lestroyed.	
GP-22	11/5/2009	43.1 43.2		0.0	
	2/3/2010	Not measured. Pro	be had been d	lestroyed.	

Notes:

Oxygen = O_2 .

The lower explosive limit (LEL) and upper explosive limit (UEL) for methane are 5 percent by volume and 15 percent by volume, respectively.

^a Concentrations were measured by using a CES/Landtec GEM-2000 multi-gas monitor.

b In February 2010, analyzed methane concentrations in soil vapor samples were consistently within 4 percent of the combustible gas readings when using a CES/Landtec GEM-2000 multi-gas monitor (SLR, 2010). Therefore, the combustible gas readings depict methane concentrations.

Table 2 Groundwater and River Water Monitoring Data Closed City of Yakima Landfill Yakima, Washington

Measuring Point ID	Elevation ^a (feet)	Date	Depth to Water ^b (feet)	Groundwater Elevation (feet)
Groundwater Mon	, ,		7	
MW-6	1,059.68	7/28/1998	12.70	1,046.98
	1,000,000	8/21/1998	12.39	1,047.29
	-	9/21/1998	12.55	1,047.13
	F	10/16/1998	13.34	1,046.34
	-	10/10/2006	12.63	1,047.05
		2/12/2007	14.20	1,045.48
		2/7/2008	15.47	1,044.21
		2/26/2009	14.94	1,044.74
		4/17/2009	13.39	1,046.29
		11/6/2009	14.20	1,045.48
		2/1/2010	14.41	1,045.27
	-	5/9/2012	10.02	1,049.66
MW-7	1,049.05	7/28/1998	7.64	1,041.41
	.,	8/21/1998	7.68	1,041.37
		9/21/1998	7.84	1,041.21
1	-	10/16/1998	8.45	1,040.60
1		10/10/2006	8.40	1,040.65
		2/12/2007	10.06	1,038.99
		2/7/2008	10.89	1,038.16
		2/26/2009	10.66	1,038.39
		4/17/2009	9.76	1,039.29
		11/6/2009	9.51	1,039.54
		2/1/2010	10.02	1,039.03
	-	5/9/2012	7.38	1,041.67
MW-8	1,051.59	7/28/1998	5.57	1,046.02
		8/21/1998	5.54	1,046.05
		9/21/1998	5.74	1,045.85
	-	10/16/1998	6.19	1,045.40
		2/6/2008	10.70	1,040.89
- 1		2/26/2009	10.97	1,040.62
		4/17/2009	10.17	1,041.42
		11/6/2009	8.77	1,042.82
	<u> </u>	2/1/2010	10.14	1,041.45
		5/9/2012	8.83	1,042.76
MW-9A	1,064.46	3/25/2008	16.85	1,047.61
Construction of Colleges	Made polymore Harth / Mittales	2/26/2009	15.25	1,049.21
		4/17/2009	12.19	1,052.27
		11/6/2009	12.48	1,051.98
		2/1/2010	13.80	1,050.66
		5/9/2012	11.98	1,052.48

Table 2 Groundwater and River Water Monitoring Data Closed City of Yakima Landfill Yakima, Washington

Measuring Point ID	Elevation ^a (feet)	Date	Depth to Water ^b (feet)	Groundwater Elevation (feet)
Groundwater Mon	itoring Wells (co	ntinued)		
MW-11	1,065.94	2/26/2009	20.70	1,045.24
		4/17/2009	20.23	1,045.71
		11/6/2009	19.41	1,046.53
		2/1/2010	20.07	1,045.87
		5/9/2012	17.85	1,048.09
MW-12	1,068.53	2/26/2009	15.40	1,053.13
		4/17/2009	15.34	1,053.19
		11/6/2009	15.32	1,053.21
		2/1/2010	15.41	1,053.12
		5/9/2012	16.42	1,052.11
MW-13	1,066.13	2/26/2009	10.87	1,055.26
		4/17/2009	10.87	1,055.26
		11/6/2009	10.49	1,055.64
		2/1/2010	9.80	1,056.33
		5/9/2012	14.12	1,052.01
MW-14	1,041.39	11/6/2009	8.73	1,032.66
		2/1/2010	8.41	1,032.98
		5/9/2012	5.46	1,035.93
MW-15	1,050.59	11/6/2009	13.12	1,037.47
		2/1/2010	12.68	1,037.91
		5/9/2012	8.75	1,041.84
MW-16	1,046.84	11/6/2009	7.61	1,039.23
		2/1/2010	9.36	1,037.48
		5/9/2012	7.38	1,039.46
MW-17	1,044.29	11/6/2009	6.19	1,038.10
		2/1/2010	7.11	1,037.18
		5/9/2012	4.48	1,039.81
MW-18	1,063.85	11/6/2009	17.55	1,046.30
1		2/1/2010	18.03	1,045.82
		5/9/2012	15.22	1,048.63
Yakima River Gau	ging Stations			
RG-1	1,044.03	11/6/2009	3.56	1,040.47
		2/1/2010	2.77	1,041.26
		5/9/2012	NM	
RG-2	1,041.96	11/6/2009	NM	15.5.
		2/1/2010	NM	(##
		5/9/2012	2.15	1,039.81
RG-3	1,037.37	11/6/2009	3.75	1,033.62
		2/1/2010	2.32	1,035.05
		5/9/2012	NM	23

Table 2 Groundwater and River Water Monitoring Data Closed City of Yakima Landfill Yakima, Washington

Measuring Point ID	Elevation ^a (feet)	Date	Depth to Water ^b (feet)	Groundwater Elevation (feet)
Yakima River Gau	ging Stations (co	ontinued)		
RG-4	1,033.42	11/6/2009	NM	
		2/1/2010	NM	
		5/9/2012	NA	>1,033.42

Notes:

NM = Not measured because river water was not present directly below the gauging station (in November 2009 and February 2010) or because gauging station could not be found (in May 2012).

NA = River gauging station was not accessible because it was under water.

Wells MW-6, MW-7, MW-8, MW-11, MW-12, MW-13, and MW-18 are completed above ground and the top of each well casing is approximately 3 feet above the ground surface. Wells MW-9A, MW-14, MW-15, MW-16, and MW-17 are flush-grade completions. The ground surface elevation at each well location is listed in Table 5.

^a Elevations of top of well casings and river gauging points surveyed to NAVD 88 datum by Gray Surveying & Engineering, Inc., in February and November 2009.

^b Depth to water measured from top of well casing or from river gauging point by using an electric water level meter.

Table 3 Groundwater Sample Analytical Results -Preliminary Indicator Hazardous Substances Closed City of Yakima Landfill

Yakima, Washington

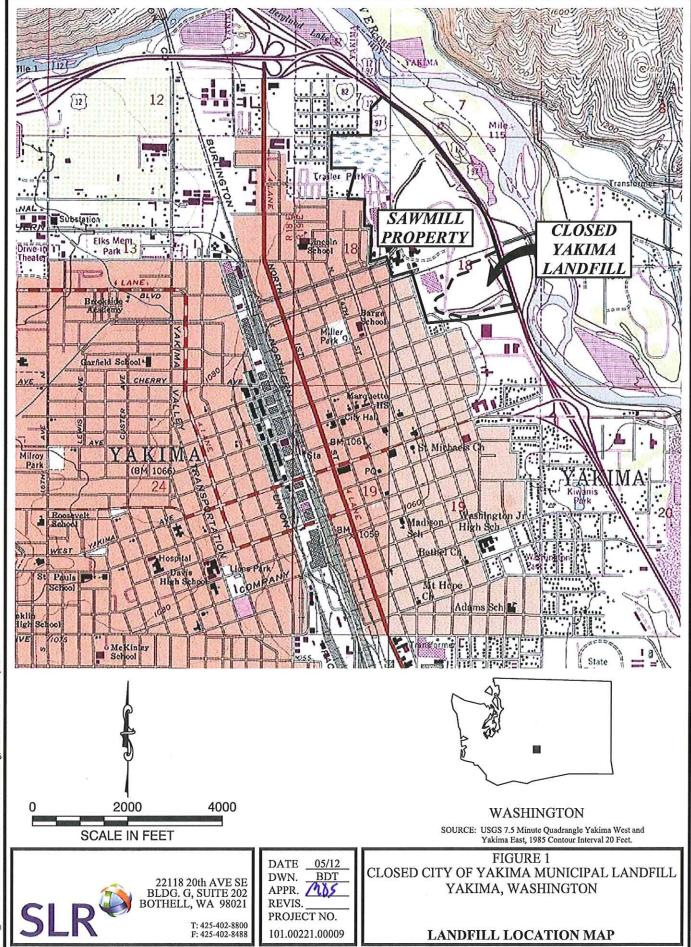
	- · ·	Analytical Result (µg/L)						
Well ID	Date ^a	pH ^b	Arsenic	Iron ^e	Manganese	Nitrate ^d	Sodiume	Vinyl Chloride
Lowest Groundwater Screening Level ^f		6.5 to 8.5	0.31 ^g	300	50	10,000	20,000	0.11 ^g
MW-7	2/6/2008	6.49	<50 ^h	37,500	2,520	<50	22,900	0.06
	2/26/2009	6.28	3.83	23,700	1,950	1,610	19,300	< 0.03
	11/4/2009	6.45	3.06	18,500	2,330	199	22,900	<0.2 ^h
	2/4/2010	6.47	0.39	22	1,590	10,300	28,600	<0.03 J
MW37 (dupl. of MW-7)	2/4/2010	6.36	1.2	851	1,750	11,200	28,900	<0.03 J
, ,	5/10/2012	5.77	< 0.15	23	346	621	7,490	<0.06 E
MW-8	2/6/2008	6.76	<50 ^h	12,200	2,340	200	33,800	0.034
	2/26/2009	6.54	<1 ^h	3,330	2,380	14,400	27,000	< 0.03
	11/4/2009	6.34	0.98 E	45	2,690	17,900	48,300	<0.2 ^h
i i	2/4/2010	6.28	0.93	<20	6,290	95,300	52,600	<0.03 J
MW38 (dupl. of MW-8)	2/4/2010	6.23	0.97	<20	6,210	94,700	51,800	<0.03 J
	5/10/2012	5.62	0.54	<20	1,880	86,200	34,100	<0.06 E
MW-9A	3/25/2008	6.77	<50 ^h	270	872	1,410	15,700	<1 ^h
NO. 11 (1970.18)	2/26/2009	6.69	<1 ^h	<10	<10	2,180	10,900	< 0.03
1	11/4/2009	6.72	0.93 E	<20	13.3	3,130	11,100	<0.2 ^h
†	2/4/2010	6.65	1.00	<20	<1	2,800	14,400	<0.03 J
-	5/10/2012	6.02	0.64	<20	11.4	4,560	11,500	<0.06 E
MW-11	2/26/2009	6.28	4.33	24,100	1,410	33	15,300	< 0.03
M2017 200	11/4/2009	6.47	4.80	35,400	1,890	27	17,300	<0.2 ^h
	2/4/2010	6.50	3.01	7,200	1,610	28	20,100	<0.03 J
	5/10/2012	5.97	5.02	35,100	1,220	51	18,000	<0.06 E
MW-12	2/26/2009	6.01	<1 ^h	7,600	503	14	10,300	< 0.03
	11/4/2009	6.53	2.01	5,840	745	16	13,300	<0.2 ^h
	2/4/2010	6.34	0.87	3,000	767	24	16,700	<0.03 J
	5/10/2012	6.09	0.67	15,400	2,780	39	33,600	<0.06 E
MW-13	2/26/2009	6.49	<1 ^h	3,650	649	18	10,700	< 0.03
	11/4/2009	6.85	0.36 E	1,550	287	26	7,760	<0.2 ^h
	2/4/2010	7.22	0.26	495	192	201	9,370	<0.03 J
	5/10/2012	5.87	0.39	8,230	3,190	<10	40,100	<0.06 E
MW-14	11/5/2009	6.90	0.61 E	63	331	265	27,800	<0.2 ^h
	2/4/2010	7.19	0.32	<20	2.88	2,710	15,900	<0.03 J
	5/10/2012	6.27	0.15	183	30.8	147	3,490	<0.06 E
MW-15	11/5/2009	6.61	1.39	7,970	993	13	9,600	<0.2 ^h
	2/4/2010	6.66	0.71	876	1,080	15	11,300	<0.03 J
	5/10/2012	5.92	0.75	4,890	773	<10	7,860	<0.06 E
MW-16	11/5/2009	6.76	0.77 E	<20	587	306	36,800	<0.2 ^h
	2/4/2010	6.60	0.72	<20	917	18	23,800	<0.03 J
	5/10/2012	6.15	0.50	26	915	3,930	42,500	<0.06 E
MW-17	11/5/2009	6.50	2.15	16,800	2,150	27	23,400	<0.2 ^h
	2/4/2010	6.67	0.85	1,750	2,580	806	27,800	<0.03 J
	5/10/2012	6.21	0.84	487	1,500	533	26,200	<0.06 E
MW-18	11/5/2009	6.36	6.75	26,100	4,450	35	38,400	<0.2 ^h
	2/4/2010	6.57	2.08	4,910	5,360	134	21,700	<0.03 J
	5/10/2012	6.16	8.31	18,600	3,460	86	11,400	<0.06 E

Notes:

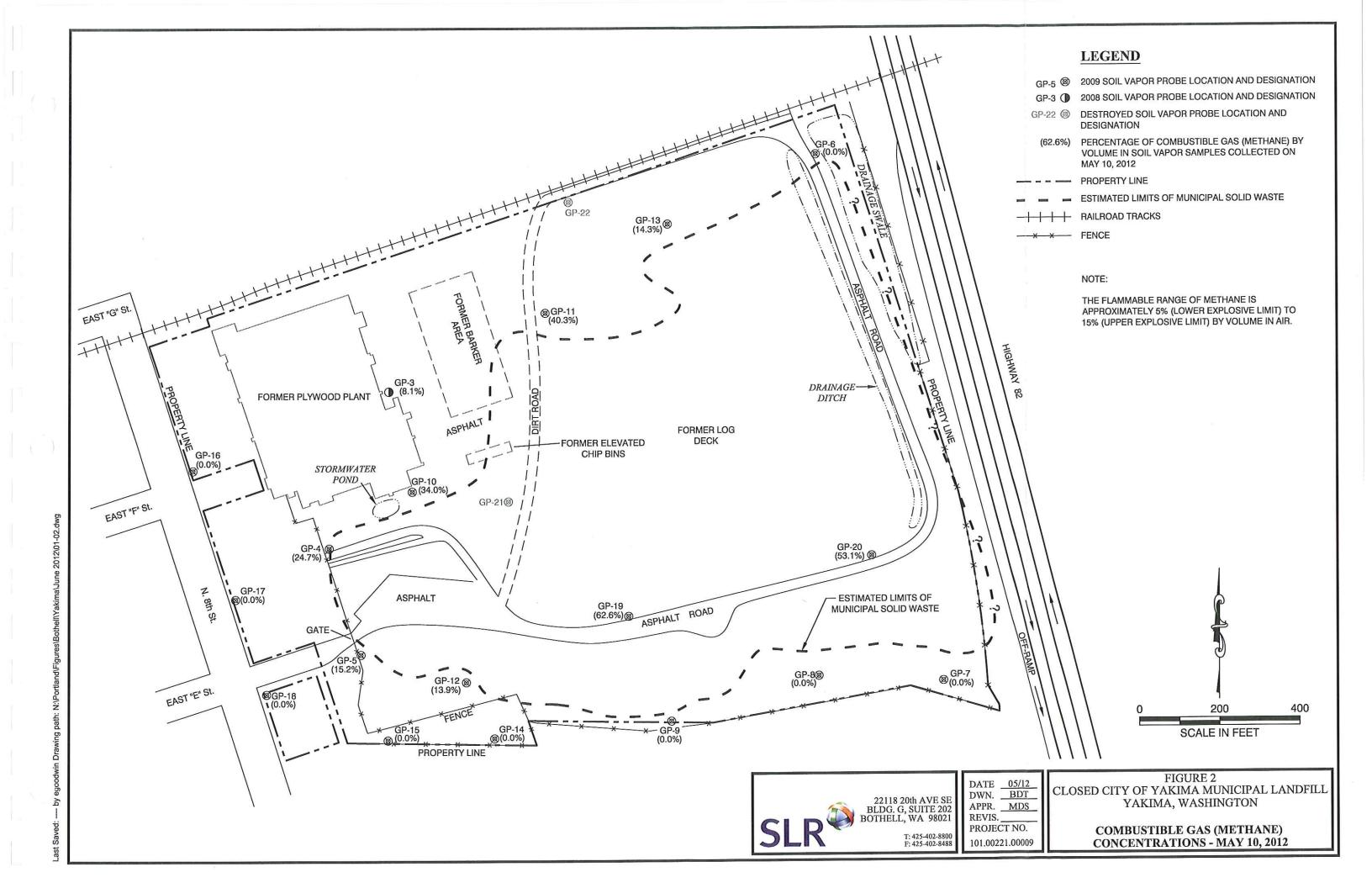
NE = Cleanup level not established.

NA = Not analyzed.

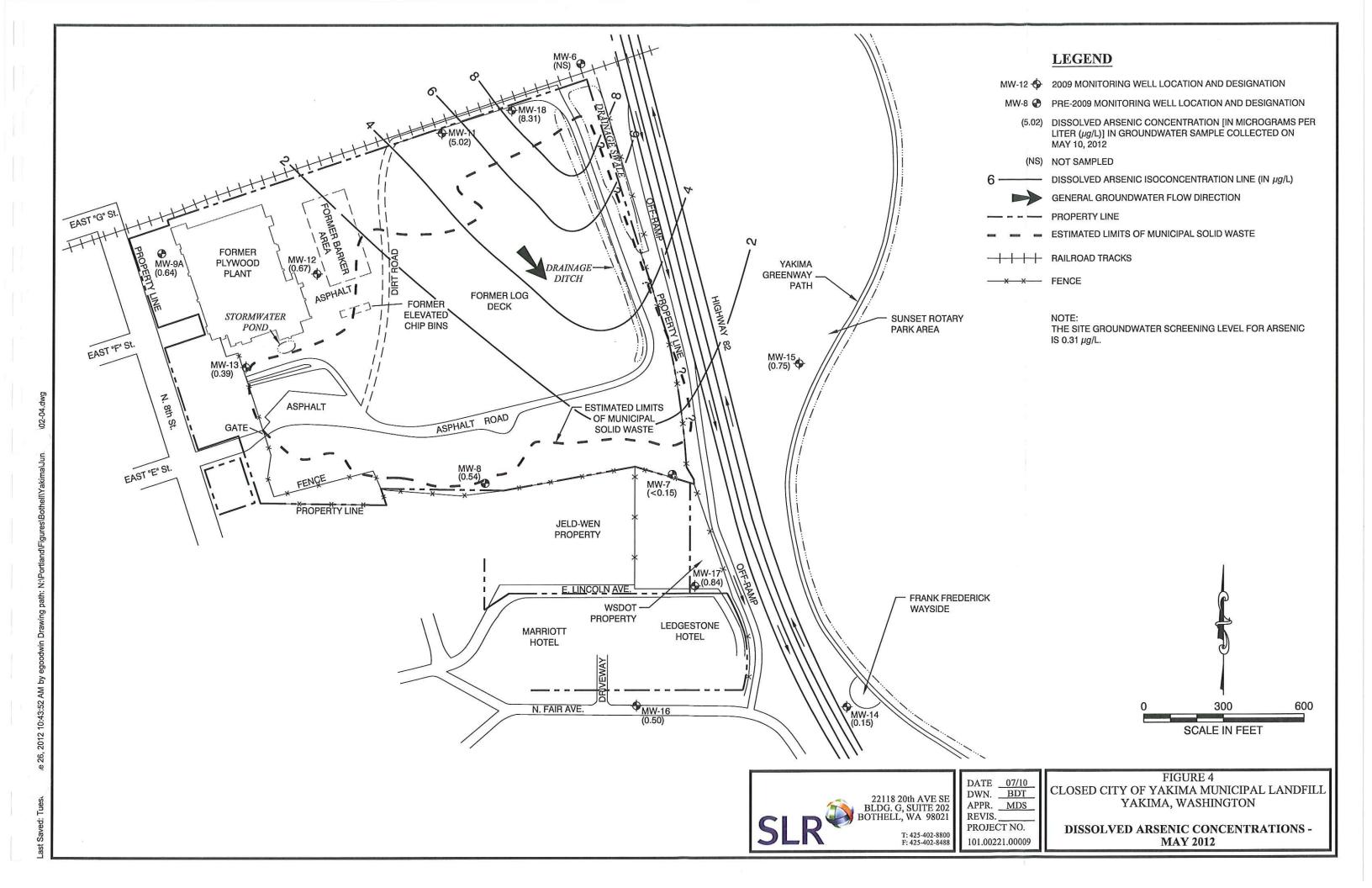
 μ g/L = micrograms per liter (ppb).

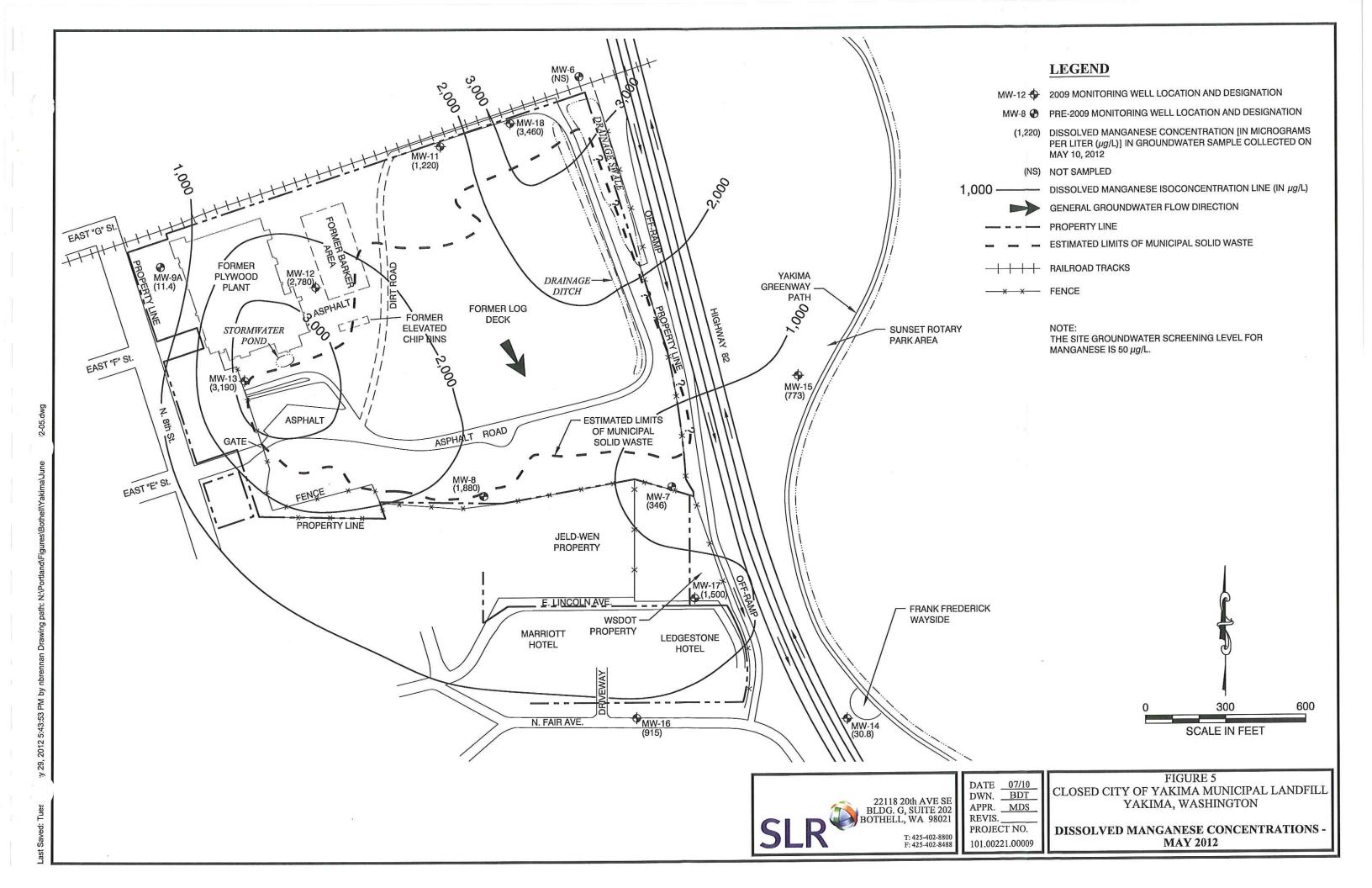

E = Value was reported by laboratory as an estimate because it is below the normal reporting limit.

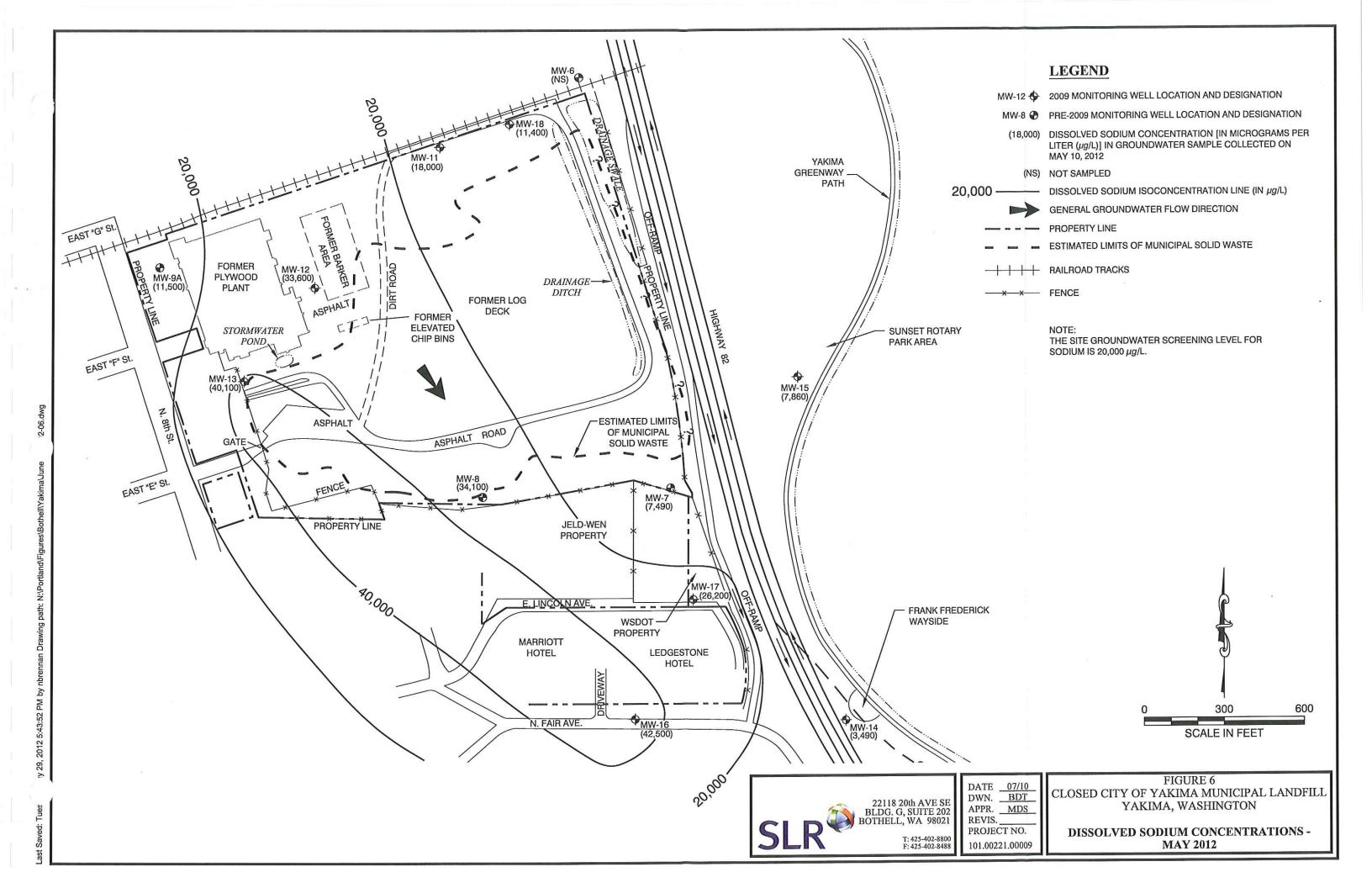
J = Value was reported by laboratory as an estimate because it was analyzed outside of the recommended holding time. The sample initially did not contain a detectable concentration above a higher reporting limit (0.2 μ g/L), and the re-analysis to a lower reporting limit was outside of the holding time.

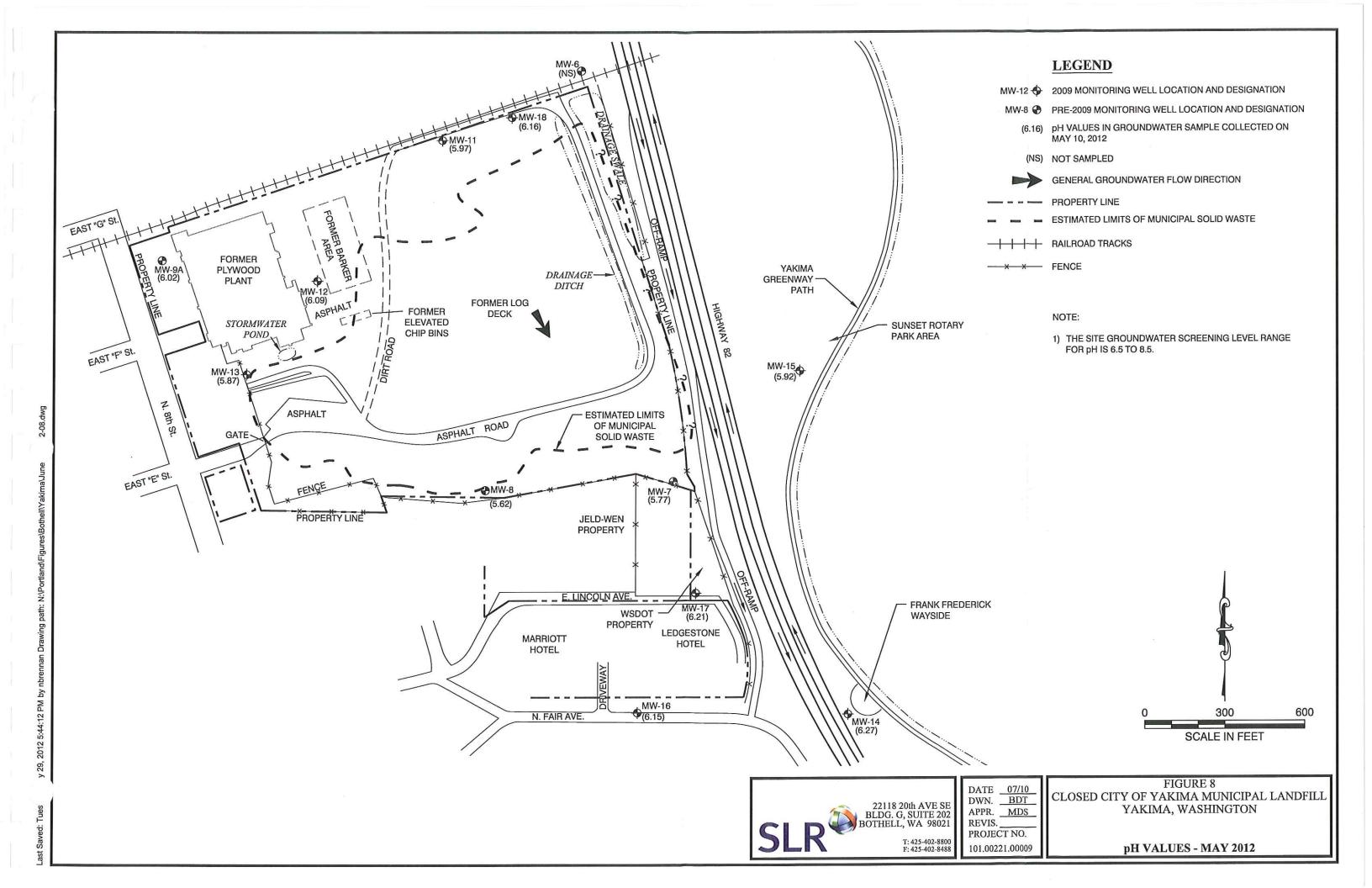

Values in **bold** exceed the groundwater screening level.

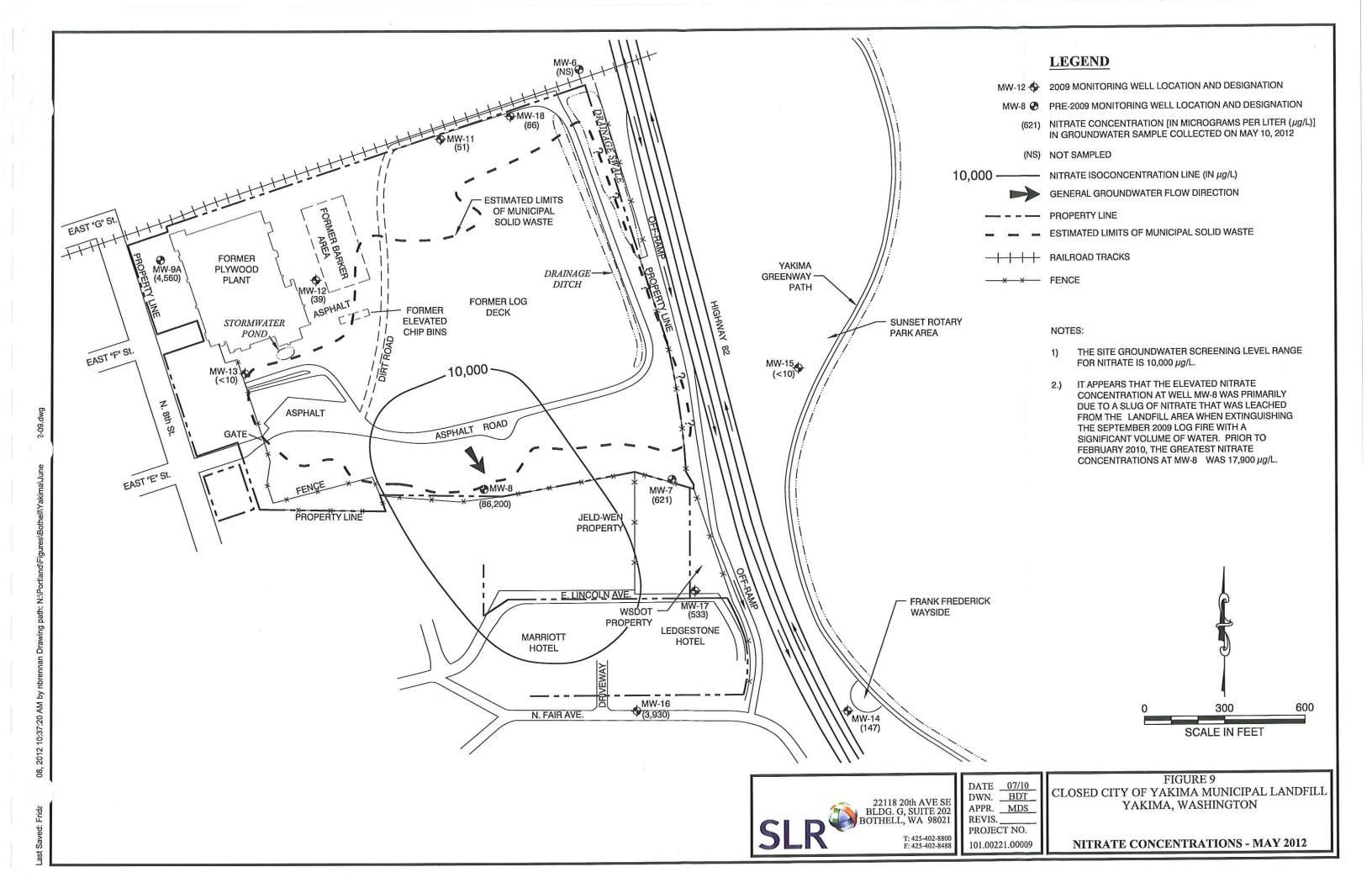
- ^a Samples collected on 2/6/2008 by Parametrix. Samples collected on 2/26/2009, 11/4/2009, 11/5/2009, 2/4/2010, and 5/10/2012 by SLR.
- ^b Samples collected on 2/6/2008 analyzed for pH by EPA Method 150.1. Samples collected on 2/26/2009, 11/4/2009, 11/5/2009, 2/4/2010, and 5/10/2012 analyzed for pH by EPA Method 9040C.
- c Samples collected on 2/6/2008 analyzed for dissolved metals by EPA Method SW6010B. Samples collected on 2/26/2009, 11/4/2009, 11/5/2009, 2/4/2010, and 5/10/2012 analyzed for dissolved metals by EPA Methods 200.8 or 200.7.
- d Samples analyzed for nitrate by EPA Method 300.0.
- ^e Samples analyzed for vinyl chloride by EPA Method 8260C.
- f Groundwater screening levels were the lowest selected federal maximum contaminant level (MCL) for protection of drinking water or the lowest available state water quality criteria (WQC) for protection of surface water. If an MCL or a WQC were not available, then the screening level was obtained from the MTCA Method B equation for groundwater or surface water. If the lowest screening level exceeded the practical quantification limit (PQL) for that compound, then the PQL became the screening level.
- g Screening level is the PQL.
- ^h Method reporting limit exceeded the screening level.

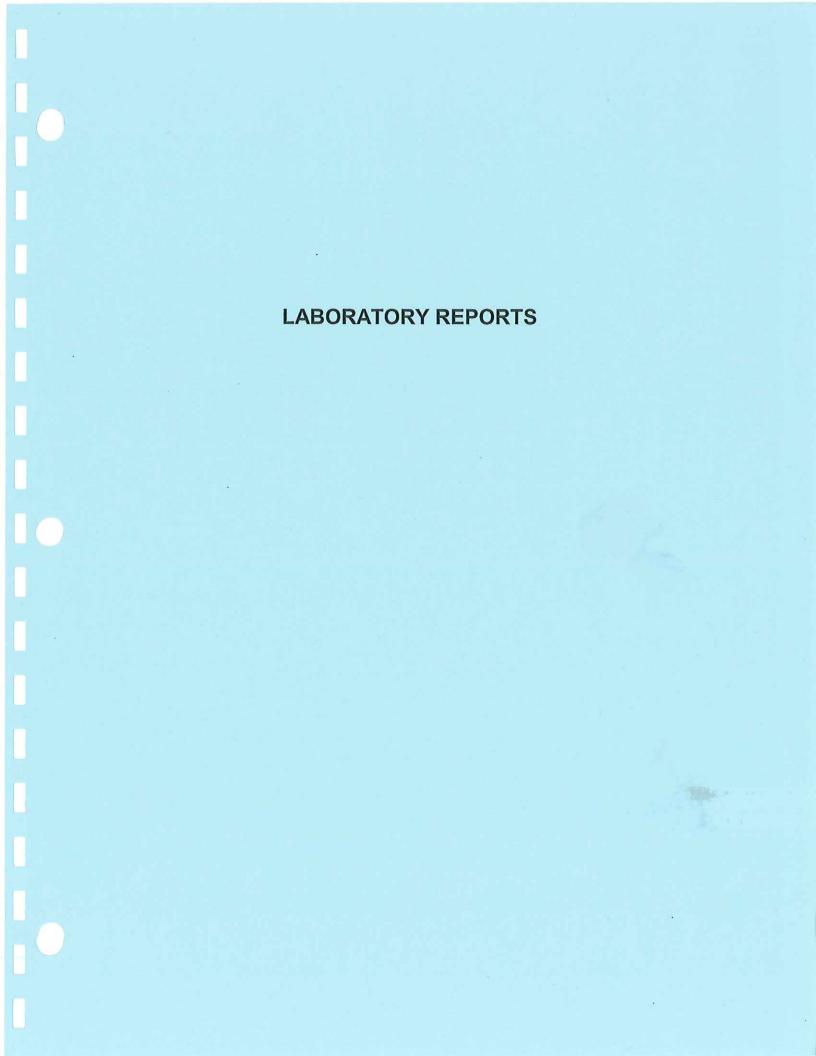

C:\DRIVE_E\Clients\>Lr\101\101.00221.00009\01-01.dwg, 5/20/2012 5:54:16 PM, BDT




T: 425-402-8800 F: 425-402-8488


101.00221.00009


MAY 2012



ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

May 29, 2012

Mike Staton, Project Manager SLR International Corp. 22118 20th Ave. SE., G-202 Bothell, WA 98021

Dear Mr. Staton:

Included are the amended results from the testing of material submitted on May 11, 2012 from the 101.00221.00009, F&BI 205161 project. The reporting limits for arsenic and vinyl chloride have been lowered per your request.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Kurt Johnson Chemist

Enclosures SLR0525R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 11, 2012 by Friedman & Bruya, Inc. from the SLR International Corp. 101.00221.00009, F&BI 205161 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SLR International Corp.
205161-01	MW7-0512
205161-02	MW8-0512
205161-03	MW9A-0512
205161-04	MW11-0512
205161-05	MW12-0512
205161-06	MW13-0512
205161-07	MW14-0512
205161-08	MW15-0512
205161-09	MW16-0512
205161-10	MW17-0512
205161-11	MW18-0512

The samples were sent to Aquatic Research for nitrate and dissolved sodium and iron analyses. The report generated by Aquatic Research is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW7-0512	
Date Received:	05/11/12	
Date Extracted:	05/11/12	
Date Analyzed:	05/11/12	
Matrix:	Water	
Units:	ug/L (ppb)	

Client:	SLR International Corp.
Project:	101.00221.00009, F&BI 205161
Lab ID:	205161-01
Data File:	051120.D
Instrument:	GCMS9
Operator:	JS

<u> </u>		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	100	50	150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

150	
Client Sample ID	: MW8-0512
Date Received:	05/11/12
Date Extracted:	05/11/12
Date Analyzed:	05/11/12
Matrix:	Water
Units:	ug/L (ppb)
	*

Client:	SLR International Corp.	
Project:	101.00221.00009, F&BI 205161	
Lab ID:	205161-02	
Data File:	051121.D	
Instrument:	GCMS9	
Operator:	JS	

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	. 50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150
	Concentration	1 m , m	
Compounder	uall (pph)		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW9A-0512
Date Received: 05/11/12
Date Extracted: 05/11/12
Date Analyzed: 05/11/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-03
Data File: 051122.D
Instrument: GCMS9
Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 150 102 50 Toluene-d8 100 50 150 4-Bromofluorobenzene 101 50 150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW11-0512
Date Received: 05/11/12
Date Extracted: 05/11/12
Date Analyzed: 05/11/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-04
Data File: 051123.D
Instrument: GCMS9
Operator: JS

	Lower	Upper
% Recovery:	Limit:	Limit:
95	50	150
101	50	150
99	50	150
	95 101	% Recovery: Limit: 95 50 101 50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW12-0512
Date Received: 05/11/12
Date Extracted: 05/11/12
Date Analyzed: 05/11/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-05
Data File: 051124.D
Instrument: GCMS9
Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 50 100 150 Toluene-d8 101 50 150 96 50 4-Bromofluorobenzene 150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW13-0512
Date Received: 05/11/12
Date Extracted: 05/11/12
Date Analyzed: 05/12/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-06
Data File: 051125.D
Instrument: GCMS9
Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	100	50	150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW14-0512
Date Received: 05/11/12
Date Extracted: 05/11/12
Date Analyzed: 05/12/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-07
Data File: 051126.D
Instrument: GCMS9
Operator: JS

Lower Upper Surrogates: Limit: % Recovery: Limit: 1,2-Dichloroethane-d4 50 150 101 100 Toluene-d8 50 150 4-Bromofluorobenzene 99 50 150

Concentration ug/L (ppb)

Vinyl chloride <0.06 j

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW15-0512
Date Received: 05/11/12
Date Extracted: 05/14/12
Date Analyzed: 05/14/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-08 rr
Data File: 051415.D
Instrument: GCMS9
Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW16-0512
Date Received: 05/11/12
Date Extracted: 05/14/12
Date Analyzed: 05/14/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-09 rr
Data File: 051416.D
Instrument: GCMS9
Operator: JS

Lower Upper Limit: Surrogates: Limit: % Recovery: 1,2-Dichloroethane-d4 96 50 150 50 Toluene-d8 100 150 4-Bromofluorobenzene 97 50 150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW17-0512
Date Received: 05/11/12
Date Extracted: 05/14/12
Date Analyzed: 05/14/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-10 rr
Data File: 051417.D
Instrument: GCMS9
Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

 $\begin{array}{c} & \text{Concentration} \\ \text{Compounds:} & \text{ug/L (ppb)} \\ \\ \text{Vinyl chloride} & \text{<0.06 j} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW18-0512
Date Received: 05/11/12
Date Extracted: 05/14/12
Date Analyzed: 05/14/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 205161-11 rr
Data File: 051418.D
Instrument: GCMS9
Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 106 50 150 101 Toluene-d8 50 150 4-Bromofluorobenzene 96 50 150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 05/11/12
Date Analyzed: 05/11/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 02-0782 mb
Data File: 051119.D
Instrument: GCMS9
Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	100	50	150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 05/14/12
Date Analyzed: 05/14/12
Matrix: Water
Units: ug/L (ppb)

Client: SLR International Corp.
Project: 101.00221.00009, F&BI 205161
Lab ID: 02-0783 mb
Data File: 051407.D
Instrument: GCMS9
Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 50 150 Toluene-d8 102 50 150 4-Bromofluorobenzene 102 50 150

ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/12 Date Received: 05/11/12

Project: 101.00221.00009, F&BI 205161

Date Extracted: NA Date Analyzed: 05/11/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH USING EPA METHOD 9040C

Sample ID Laboratory ID		<u>pH</u>
MW7-0512 205161-01		5.77
MW8-0512 205161-02		5.62
MW9A-0512 205161-03		6.02
MW11-0512 205161-04		5.97
MW12-0512 205161-05		6.09
MW13-0512 205161-06		5.87
MW14-0512 205161-07		6.27
MW15-0512 205161-08		5.92
MW16-0512 205161-09		6.15
MW17-0512 205161-10		6.21
MW18-0512 201161-11		6.16

ENVIRONMENTAL CHEMISTS

Client:

Project: Lab ID: SLR International Corp. 101.00221.00009, F&BI 205161

205161-01

ICPMS1

205161-01.014

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW7-0512
Date Received: 05/11/12
Date Extracted: 05/22/12
Date Analyzed: 05/24/12
Matrix: Water
Units: ug/L (ppb)

Internal Standard:

Germanium

Indium

24/12 Data File: ter Instrument: L (ppb) Operator:

Operator: AP

Lower Upper
% Recovery: Limit: Limit:
98 60 125
92 60 125

Analyte: Concentration ug/L (ppb)

Arsenic <0.150

Manganese 346

ENAIKONWENTAT CHEMISTS

Date of Report: 05/25/12

Date Received: 05/11/12

Project: 101.00221.00009, F&BI 205161

Date Extracted: NA

Date Analyzed: 05/11/12

NSING EBV WETHOD $6040\mathrm{C}$ BESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR ph

91.9	0212	MW18-11
12.8	0512	MW17-10
61.8	0512	-91MM WM16-09
26.8	0212	X02101-08 WM I 2-
7Z.8	0512	70-19130S
78.3	0212	MW13-06 205161-06
60'9	0512	MM12-05
76.3	0612	X05161-04
20.8	0512	A9WM 205191502
59.6	212	NW8-0
<i>TT.</i> 3	SIS	O-7WM 205161-01
₽ď		Sample Laboratory

ENAIKONWENTAL CHEMISTS

Analysis For Dissolved Metals By $\ensuremath{\mathrm{EPA}}$ Method 200.8

Manganese

		<0.150		Arsenic
		Concentration (dqq) J\gu		Analyte:
125	09	26		muibal
125	09	86		Germanium
:Jimit:	Limit:	% Кесолегу:		Internal Standard:
Upper	Lower			The same of the sa
₽A	Operator:		(ddd) J\gu	Units:
IChWSI	Instrument:		Water	Matrix:
205161-01,014	Data File:		05/24/12	Date Analyzed:
205161-01	Lab ID:		05/22/12	Date Extracted:
101.00221.00009, F&BI 205161	Project:		02/11/15	Date Received:
SLR International Corp.	Client:		MW7-0512	Client ID:

346

ENAIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Arsenic Manganese	1, 14 cm	242.0 1,880		
Analyte:		Concentration (dpp)		
Internal Standard: Germanium Indium		88 % Kecovery:	Lower 60 60	Upper Limit: 125 125
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW8-0512 05/22/12 05/22/12 Water Water		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. 101.00221.00009, F&BI 205161 205161-02 205161-02.025 ICPMS1

ENAIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Internal Standard: Germanium Indium		% Кесочегу: 89	Lower 60 60	Upper Limit: 125 125	
Client ID: Date Received: Date Analyzed: Matrix: Units:	MW9A-0512 05/11/12 05/22/12 Water Water Ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Co 101.00221.00009, F&I 205161-03.026 ICPMS1 AP	

Concentration (ppb)

ֆՏმ,0 ֆ,11

Analyte:

Arsenic Manganese

ENAIKONWENTAT CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 $\,$

	38	Concentration ug/L (ppb)		Analyte:
Upper: Limit: 125 125	Lower 60 60	88 % Recovery:		Internal Standard: Germanium Indium
SLR International Corp. 101.00221.00009, F&BI 205161 205161-04.027 ICPMS1 AP	Client: Project: Lab ID: Data File: Instrument: Operator:		MW11-0512 05/22/12 05/24/12 Water Water	Client ID: Date Received: Date Extracted: Matrix: Units:

1,220

5.02

Arsenic Manganese

ENAIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Arsenic		999.0		
Analyte:		Concentration (dqq) J\gu		
Internal Standard: Germanium Indium		107 86 86 86	Lower Limit: 60 60	Upper Limit: 125 125
Client ID: Date Received: Date Analyzed: Matrix: Units:	MW12-0512 05/11/12 05/22/12 Water ug\L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. 101.00221.00009, F&BI 205161 205161-05 205161-05.029 ICPMS1 AP

2,780

Manganese

ENAIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 $\,$

Arsenic Manganese		665.0 061,8			
Analyte:		Concentration (dpp)			
Internal Standard: Germanium Indium		79 87 % Весочегу:	Lower 60 60	Upper Limit: 125 125	
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW13-0512 05/22/12 05/24/12 Water Water		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. 101.00221.00009, F&BI 20510 205161-06 205161-06.030 ICPMS1 AP	

ENAIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Upper Limit: 125 125	Lower 60 60	% Кесочегу: 85 85	Internal Standard: Germanium Indium
SLR International Corp 101.00221.00009, F&BI 205161-07 205161-07.031 AP	Client: Project: Lab ID: Data File: Instrument: Operator:	MW14-0512 05/22/12 Water Water ug/L. (ppb)	Client ID: Date Received: Date Extracted: Matrix: Units:
		-	

Concentration (hpb)

₽21.0 8.0£ Arsenic Manganese

Analyte:

ENAIKONWENTAT CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 $\,$

	n *	237.0 577		Arsenic Asanese
		Concentration ug/L (ppb)		Analyte:
Upper Limit: 125 125	Lower 60 60	83 83 83		Internal Standard: Germanium Indium
 SLR International 101.00221.00009, F 205161-08.035 205161-08.035 FP AP	Client: Project: Lab ID: Data File: Instrument: Operator:		MW15-0512 05/22/12 05/24/12 Water Water	Client ID: Date Received: Date Extracted: Matrix: Units:

ENAIKONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

-		864.0 316		Arsenic Manganese
		Concentration ug/L (ppb)	ħ	Analyte:
Upper Limit: 125 125	Lower Limit: 60 60	77 77 % Весочегу:		Internal Standard: Germanium Indium
SLR International Corp. 101.00221.00009, F&BI 205161 205161-09 205161-09.036 ICPMS1 AP	Client: Project: Lab ID: Data File: Instrument: Operator:		MW16-0512 05/11/12 05/24/12 Water Wg/L (ppb)	Client ID: Date Received: Date Extracted: Matrix: Units:

ENAIKONMENTAT CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

		788.0 00 3, 1		Arsenic Manganese
*		Concentration (Appl)		Analyte:
Upper Limit: 125 125	Lower 60 60	78 78 % Recovery:		Internal Standard: Germanium Indium
SLR International Corp. 101.00221.00009, F&BI 205161 205161-10 205161-10.037 ICPMS1 AP	Client: Project: Lab ID: Data File: Instrument: Operator:		ug/L (ppb) 05/22/12 05/22/12 05/24/12 05/24/12	Client ID: Date Received: Date Extracted: Matrix: Units:

ENAIKONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 $\,$

		Concentration		
ISS	09	83		muibnI
ISS	09	10₫		Germanium
:timi.L	:timit:	% Кесолегу:		Internal Standard:
Upper	Lower			
ЧA	Operator:		(dqq) 1/gu	:stinU
ICbW21	Instrument:		Water	:xirix
205161-11.038	Data File:		05/24/12	Date Analyzed:
205161-11	Lab ID:		05/22/12	Date Extracted:
101.00221.00009, F&BI 205161	Project:	2 4	02/11/15	Date Received:
SLR International Corp.	Client:		MW18-0512	Client ID:
		-		-

oncentration Concentration

18.8 09₽,£

Analyte:

Arsenic Manganese

ENAIKONWENTAT CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 $\,$

Arsenic Assansansk		051.0>			
Analyte:)	Concentration (dqq) J\gu			
Internal Standard: Germanium Indium		98 % Весолегу:	Lower Limit: 60 60	Upper Limit: 125 125	
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blanl NA 05/22/12 Water Water	лķ	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. 101.00221.00009, F&BI 20516 IS-326 mb.012 ICPMS1 AP	19

ENAIKONMENTAL CHEMISTS

Date of Report: 05/25/12

Date Received: 05/11/12

Vinyl chloride

Analyte

Project: 101.00221.00009, F&BI 205161

SAMPLES FOR VOLATILES BY EPA METHOD 8260C QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER

•	Reporting	Spike	Recovery	Percent	Acceptance	[
Laboratory Code: Laboratory Cont	oldms2 lottr		Percent	Tuesned		
Vinyl chloride	(qdd) 7/8n	09	į 90.0>	102	091-09	
Analyte	Reporting Units	Spike Level	Sample Result	Recovery	Acceptance Sriteria	
Laboratory Code: 205161-01 (Matr	глх Бріке)			Percent		

90

Level

06

FC2

70-130

Criteria

(Limit 20)

KPD

93

CCSD

(dqq) 1\gu

Units

ENAIKONMENTAL CHEMISTS

Date of Report: 05/25/12

Date Received: 05/11/12

Project: 101.00221.00009, F&BI 205161

ONFILL ASSURANCE RESULTS BY THE ANALYSIS OF WATER

į 80.0> (dqq) J\gu 90-150 96 9 Vinyl chloride Criteria SW Result Level Units Analyte Spike Sample Recovery Acceptance Reporting Percent Laboratory Code: 205180-07 (Matrix Spike)

	997						
Vinyl chloride	1	(dqq) J\gu	20	16	16	70-130	0
Analyte		Units	Level	FCS	FCZD	Criteria	(Us timid)
		Reporting	Spike	Кесолегу	Кесолегу	Acceptance	KbD
# V	-			Percent	Percent		***
Laboratory Code:	Laboratory Control	ol Sample					

ENAIRONMENTAL CHEMISTS

Date of Report: 05/25/12

Date Received: 05/11/12

Project: 101.00221.00009, F&BI 205161

FOR PH BY METHOD 9040C FOR PH BY METHOD 9040C

	0-20	0	67.8	77.3	Hq
-	Acceptance Criteria	Relative Percent Difference	Duplicate Result	Sample Result	Analyte
			(əte)	oilquQ) 10-19180	Laboratory Code: 20

ENAIKONMENTAL CHEMISTS

Date of Report: 05/25/12

Date Received: 05/11/12

Project: 101.00221.00009, F&BI 205161

FOR DISSOLVED METALS USING EPA METHOD 200.8 FOR THE ANALYSIS OF WATER SAMPLES

Laboratory Code: 205161-01 (Matrix Spike)

1 P	781-₽8	101	100	<0.150	20	(dqq) J\gu	Arsenic
	51-167	207 b	100	346	10	(dqq) J\gu	Manganese
RPD (Limit 20)	Acceptance Criteria	Percent Recovery	Percent Recovery	Sample Result	Spike Level	Reporting Units	Analyte

Laboratory Code: Laboratory Control Sample

81-18	102	10	ug\T (ppb)	Arsenic
S1-18	90	10		Manganese
Acceptance	ГС2	Spike	Reporting	97VIsnA
Criteria	_В есолегу	Level	SinU	
	Percent			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- to Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate,
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- Ic The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc-The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHA OF CUSTODY

KG 05/11/12

Phone # (45)402-8800 City, State, ZIP SOTHELL, Address 29/18 2074 Company SLR Send Report To MIKE STATON INTERNATIONAL Fax # (425) 402-8488 AVE SE WA CORP 100% 86-50

PROJECT NAME/NO.

CLOSED CITY OF YAKIMA LANDFILL REMARKS 24-h-SAMPLERS (signature) 101.00001.00009 14-84 2012 Time かろう 6000001000010 された PO#

☐ Return samples
☐ Will call with instructions Rush charges authorized by XStandard (2 Weeks) Dispose after 30 days Page # TURNAROUND TIME SAMPLE DISPOSAL

Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98119-2029 Received by:	3012 16th Avenue West Relinquished by:	Friedman & Bruya, Inc.	10 -0150- EIMW	MW16-0512 09	WM15-0512 08	MW14-0512 07	MW13-0512 %	SD -6150 - 61MM	NW11-0512 04	MW9A-0512 03	MW8-0512 02	MW7-05/2 01 A-51	Sample ID Lab ID S
	1	mt and am	by:	SIGNATURE	1805	1735	/330	4141	1610	1630	1202	1755	<u>B</u>	5/10/12 1535	Date Time Sampled Sampled
		7	1		4									WATER	Sample Type
		when ph	CHRIS L	PRINT NAME	<									0	Containers # of TPH-Diesel
		phan	SA	VAME						7					TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270
Samples received at	,	FIBI	SS	COMPANY	* * * *									XXX	HFS pH by 150.1 Nitrate by 300.0 Vinyl Chloride by 8260 c Dissolved arsanic, iron, managenese.
		18/11/2	5/1/10	DATE							2				iron, manganese. and sodium by 200.8
3		0725	2500	TIME	,					6					Notes

FORMS\COC\COC.DOC

E Z 2111150

Phone # (495) 400 - 8800 Address 99118 9074 City, State, ZIP BOTHELL, Company SLR Send Report To MIKE STATON INTERNATIONAL Fax # (425)402-8488 Are SE 98021 ものも Carp

101.00221.00009 48-w hold hold かると tro 邓尹 かまち

PROJECT NAME/NO.

CLOSED CITY OF YAKIMA LANGFILL | 101.00831.00009 REMARKS 84-4-SAMPLERS (signature) ☐ Return samples
☐ Will call with instructions Rush charges authorized by Standard (2 Weeks) Dispose after 30 days D RUSH Page #_ TURNAROUND TIME SAMPLE DISPOSAL

FORMS\COC DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.											6150-81MW	Sample ID	
	Received by:	Relinquished by:	Received by:	Kelinqui			_		,				1			11 17-	Lab ID	
	l by:	shed by: /	May	Kelinquished by:	SIGN								1	1		5/10/12	Date Sampled	
	112		James		SIGNATURE											1655	Time Sampled	
										E E		7				WATER	Sample Type	
	``		Nhan	STORY	PR								18			e	# of containers	
		1	+	1	PRINT NAME	_	4										TPH-Diesel	
-			Pha	A	NAN		_				1				1		TPH-Gasoline	
		÷	21		同	-	4	1		_			э.				BTEX by 8021B	
•		4	-			-	4			-							VOCs by8260	
				11		-	\dashv			3.1						ji(SVOCs by 8270	NA
ł		100	7	()	Н	-	-										HFS	ISX
	r st	des	12	275		-	-										pH by 150.1	SRI
		Samples received at	FRBI	10	COMPANY	_	4		-					1 .	1		Nitrate by 300.0	
1		ived	, ,		(IPA)	_	4									X	Vinyl Chlondo by 8760c Ossolved arsenic,	TISE
-		at /			XN			' '								X	iron, manganese, and sodium by 200.8	Ü
1	_	ာ ဂိ	5	U	Н					ı.								
		1.	21/14	5/11/12	DATE													
1	18	i.	0925	2560	TIME			n	ž.							-	Notes	

LABORATORY & CONSULTING SERVICES AQUATIC RESEARCH INCORPORATED

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

DATE RECEIVED:

EVX: (700) 937-7417 PHONE: (206) 632-2715

PAGE 1

71/11/50

FB1010-11

CASE FILE NUMBER:

05/23/12

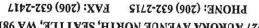
REPORT DATE:

DATE SAMPLED:

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER 71/01/\$0

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 205161

CASE NARRATIVE


analysis of these samples. Sample data follows while QAVQC data is contained on subsequent pages. Eleven water samples were received by the laboratory in good condition and analyzed according to the chain of custody. No difficulties were encountered in the preparation or

SAMPLE DATA

IRON	SODIUM	TAATIN (Mg/L)	SAMPLE ID
(J\gm) 6.023	(J\gm)	129.0	MW7-0512
020.0>	34.1	2,08	MW8-0512
020,0>	2,11	95.4	2120-A9WM
35.1	0,81	120.0	MW11-0512
15.4	33.6	650.0	MW12-0512
8.23	1.04	010.0>	MW13-0512
£81.0	3,49	741.0	MW14-0512
68.4	98.7	010.0>	MW15-0512
0.026	42.5	56.6	Z150-91WM
784.0	26.2	6.533	Z120-71WM
9.81	4.11	980.0	MW18-0512

LABORATORY & CONSULTING SERVICES AQUATIC RESEARCH INCORPORATED

3927 AURORA Avenue north, Seattle, WA 98103

DATE RECEIVED:

byce 5

71/11/50

EBI010-11

71/01/50 02/53/15 DATE SAMPLED: REPORT DATE:

CASE FILE NUMBER:

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 205161

	<0.020	<0,100	010.0>	BLANK
L			7	
	%48.66	92,35%	%6 1 .66	% KECONEKA
1	0.01	0.08	804.0	EUAT
L	86.6	46.2	904'0	FOUND
1				бс снеск
-	%//.48	%\$I.08	%08.E0I	% КЕСОЛЕКА
	00.8	10.0	002.0	SPIKE ADDED
Т	4.24	6.24	114.0	SPIKED SAMPLE
	0.020	£.7£	0.204	OKIGINYT
	BATCH	ВАТСН	BATCH	SAMPLE ID
				SPIKE SAMPLE
-			-	
	NC	%££.0	%£1.8	аая
	<0.020	4.7.5	881.0	DUPLICATE
	0.020	E.TE	402.0	ORIGINAL
-	BATCH	BATCH	BATCH	SAMPLE ID
1				
				DUPLICATE
\vdash	0.020	005,0	010.0	DELECTION LIMIT
	02/55/15	02/55/15	21/11/50	DATE ANALYZED
	EPA 200.7	EPA 200.7	SM184500N03F	WELHOD
	(J\gm)	(J\gm)	(J/gm)	
	IKON	SODIUM	NITRATE	ОС РАКАМЕТЕ К
	D METALS	DISSOLVE		
				ATAG DQ\AQ

RPD = RELATIVE PERCENT DIFFERENCE.

MC = MOLCYTCMT*WBTE DOE 10 OME OS MOSE AYTOES BEING BEFOM LHE DELECTION FINLLY IN = MOLVANIT*WBTE

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

SUBMITTED BY:

Damien Gadomski

Project Manager

SUBCONTRACT SAN

	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 I6th Avenue West	Friedman & Bruva Inc			MW18-0512	2150-Elmy	MW16-0512	1150-51MIN	MM 14-05 12	MW13-0512	MW12-0512	MWII - 0512	NW9A-05/2	MM8-0512	MINA- 0517	mple ID	Phone # (206) 285-8282	City, State, ZIP Seat	Address 301	Company Frie	Send Report To Mic	(
	Received by:	Relinquished by:	Received by:	Declination of the				<u></u>						1				2/10/15	Lab Da ID Sam	282 Fax#	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruys, Inc	Michael Erdahl	¥
	প্ন	hed by:	AND LONG	N OF	3	_		-	_						-			42	Date Sampled	(20)	8119	W	Bruya,	PI.	
			Y	STONATURE				5591	1882	1735	1330	4141	1610	1650	505	Shhi	1550	5851	Time Sampled	(206) 283-5044			Inc.		2020
																	-	8	Matrix		N.	1		03	EZAT T AT
		M		Micha									1						# of	79	REMARKS		PROJECT NAME/NO.	SUBCONTRACTER	MACI SAM
		Sixillesax		Michael Eydahl		1		-											Dioxins and Furans by 8290	Please Email Results		205161	NAME	TRACT	
		1801		PRINT NAME	-	+	+	+	+	+	+	+	+			4	4		ЕРН	nail Res		-	NO.	ER A	JE CHAIN OF
		C		ME	-	+	Č,	+	\pm	+		1	1	+	1	1	-	ν(VPH	allts				A. R.	NO P
3.•.1							+	1		+	+		\dagger		\dagger	+	\dashv		Nitrate Sulfate			g	-	5	
			н пес					1								1	1		Alkalinity			8-725	PO#		CUSTODY
		Kha	Friedman & Bruya	COMPANY	-	-	1	+	+	+	+	+	+	+	+	‡	,	4	Dissolved Nat Fe						
			Bruya	ANY	-	-	+	+	+	+	+	+	+	+	+	+	+	+				Rus	X]	1
		/	las		-		\dagger	+	+	+	+	+	+	+	+	+	+	+		ispose a eturn sa fill call v	SAW	Rush charg	tandard	Page #	18/01
·	,	Shille	filhe	DATE								\dagger	\dagger	T		T	1	1		Dispose after 30 days Return samples Will call with instructions	SAMPLE DISPOSAL	U KUSHRush charges authorized by:	Standard (2 Weeks)	#	0/0
	24	1400	10:06	TIME										 :					Notes	chions	OSAT	zed by:	DILME	of	1
	ا ن			┙.	ــــــــــــــــــــــــــــــــــــــ	<u></u>	_	_				_	L	L							ľ			II	

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

							t				Received by:		ran (200) 200-3044	90
	,											٩	Har (906) 909 6044	
	1		+								Relinquished by:	æ	Ph. (206) 285-8282	20
90:01	-		+								Received by:		Seattle, WA 98119-2029	396
///	Bruya	Friedman & Bruya	Fr:			臣	l Erda	·Michael Erdahl		6	And Supplied of the supplied o	1 4	SULL LOIN Avenue West	
-	ANV	COMPANY	1		AME	PRINT NAME	PR			SIGNATURE	S	_	Friedman & Bruya, Inc.	
			-		-	_	_							r
					-	-	-							1
		4		~		-	10.3			1633	<		71 Ca. 91 Mai	
										1892	-		WING 2150	-
			1							1735			WW16-0512	
							A]		-	1330			MW15-0512	-
	+	-				-				4141			MW 14-05 12	
	1				-				. 15	1610			MW13-0512	
	+		+							1630			MW12-0512	
	+		1							505			MWII- 0512	
2	+		\dashv	-	-	_				5442			MW9A - 0512	
	_	-		4	-				_	1550	-		MW9-0512	
	1	*	1	X					₹	1585	2/10/12		MW7- 8512	
Notes:		Dissolved Nat Fe	Sulfate Alkalinity	Nitrate	. VPH	ЕРН	Dioxins and Furans by 8290	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID	
☐ Return samples ☐ Will call with instructions	☐ Return samples☐ Will call with in				sults	nail Re	Please Email Results	Pla		(206) 283-5044	Fax #_ (2)	5-8282	Phone #(206) 285-8282	
SAMPLE DISPOSAL	SA.			į				REMARKS	REI		Seattle, WA 98119	seattle,	City, State, ZIP_S	
Rush charges authorized by:	Rush cha	9	8-725	B		-	205161				3012 16th Ave W	3012 16	Address	
Standard (2 Weeks)	Standa	#	PO#			NO.	NAME	PROJECT NAME/NO.	PRO	Inc.	Friedman and Bruya,	friedma	Company]	
Page #of	Pa			Sch	Ag. Research	A.	RACTI	SUBCONTRACTER	SUI		Michael Erdahl	Michael	Send Report To	