

REMEDIAL INVESTIGATION AND ASSESSMENT OF GROUNDWATER REMEDIAL ALTERNATIVES CASCADE NATURAL GAS CORPORATION SUNNYSIDE, WASHINGTON

SECOR Job No. 00058-019-01

Submitted by SECOR

For Cascade Natural Gas Corporation 222 Fairview Avenue North Seattle, WA 98109

November 3, 1994

Prepared by:

Gordon W. Shaffer Senior Scientist

Reviewed by:

Gerald J. Portele Principal-in-Charge NOV 2 6 1994

TABLE OF CONTENTS

Sec	tion		<u>Page</u>
1.0	INTROI	DUCTION	1-1
	1.1	PURPOSE AND SCOPE	1-2
	1.2	FACILITY BACKGROUND	1-2
	1.3	SETTING	1-3
	1.4	REPORT ORGANIZATION	1-3
2.0	GENER	AL FACILITY INFORMATION	
		AND BACKGROUND CONDITIONS	2-1
	2.1	PROJECT TITLE	2-1
	2.2	PROJECT COORDINATORS	
	2.3	OPERATIONAL HISTORY	2-1
	2.4	SUBSURFACE UTILITIES	
	2.5	GEOGRAPHY	2-3
	2.6	GEOLOGY	2-4
	2.7	HYDROGEOLOGY	2-4
	2.8	WATER SUPPLY WELLS	2-4
3.0	PREVIO	OUS ENVIRONMENTAL INVESTIGATIONS	3-1
	3.1	CHRONOLOGY OF INVESTIGATION	3-1
	3.2	SEPTEMBER AND OCTOBER 1990	3-2
	3.3	APRIL 1991	3-3
	3.4	JULY 1991	3-4
	3.5	DECEMBER 1991 	3-4
	3.6	JANUARY 1992	3-5
	3.7	SUMMARY	3-6
4.0	REMEL	DIAL INVESTIGATION	4-1
	4.1	SCOPE OF WORK	4-1
		4.1.1 Scenario No. 1	4-2
		4.1.2 Scenario No. 2	4-2
	4.2	REMEDIAL INVESTIGATION RESULTS	4-3
		4.2.1 Geology	4-3
		4.2.2 Hydrogeology	4-3
		4.2.3 Results of Soil Analyses	
		4.2.4 Groundwater Analytical Results	
		4.2.5 County Drain and Sanitary Sewer Water Results	4-5
		4.2.6 Additional Potential Source Areas	
	4.3	REMEDIAL INVESTIGATION SUMMARY	
5.0	CONCL	JUSION AND RECOMMENDED ACTION	5-1

6.0 REFERENCES	. 6-	1
----------------	------	---

FIGURES

FIGURE 2 - Site Plan

FIGURE 3 - Land Use Map

FIGURE 4 - Well Location Map

FIGURE 5 - White Shield UST Excavation Map

FIGURE 6 - 1992 Overexcavation Map

FIGURE 7 - Groundwater Contour Map

TABLES

TABLE 1 - September and October	· 1990 Summar	v of Anal	vtical Results
---------------------------------	---------------	-----------	----------------

TABLE 2 - April 1991 Summary of Analytical Results

TABLE 3 - July and December 1991 Summary of Analytical Results

TABLE 4 - 1992 Overexcavation Summary of Analytical Results

TABLE 5 - Remedial Investigation Summary of Soil Analytical Results

TABLE 6 - Remedial Investigation Summary of Water Analytical Results

TABLE 7 - Remedial Investigation Summary of Water Level Data

APPENDICES

APPENDIX A - Agreed Order and Work Plan Attachments

APPENDIX B - Boring Logs

APPENDIX C - Laboratory Reports and Chain-of-Custody Forms

1.0 INTRODUCTION

This report documents the results of a Remedial Investigation/Feasibility Study (RI/FS) conducted at the Cascade Natural Gas Corporation (CNG) Facility located at 512 East Decatur Avenue in Sunnyside, Washington (Figure 1). Petroleum hydrocarbons were identified in soil and groundwater at the CNG Facility during closure of underground storage tanks (USTs) at the facility in 1990.

The Washington State Department of Ecology (Ecology) has notified two owners and operators (previous and current) of their status as potentially liable persons (PLPs) as defined under the Revised Code of Washington (RCW) 70.105D.040, and the Model Toxics Control Act Cleanup Regulation [MTCA, Chapter 173-340 of the Washington Administrative Code (WAC)]. The named PLPs include:

- Cascade Natural Gas Corporation; and
- Yakima County.

Cascade Natural Gas Corporation, in order to address potential environmental and public health concerns, removed and remediated petroleum-contaminated soil at the Facility and initiated an investigation to assess for the presence of petroleum hydrocarbons and other suspected compounds in the soil, groundwater, and sewer system at the CNG Facility.

Subsequent to the UST removals and the initial facility investigation, CNG requested that the remaining facility investigation (the RI/FS), and any appropriate remedial action that may be warranted, be conducted in cooperation with Ecology under an Agreed Order pursuant to WAC 173-340-530.

Ecology and CNG successfully negotiated Agreed Order No. DE94TC-C165, with an effective date of April 15, 1994. The Agreed Order calls for implementation of the RI/FS actions, as set forth and described in the following documents, which are incorporated in the Agreed Order:

- SEACOR¹, July 23, 1992. Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation.
- SEACOR, October 16, 1992. Addendum No. 1 to the Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation.
- SEACOR, March 15, 1993. Modifications to Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation.

SECOR International Incorporated operated as Science & Engineering Analysis Corporation under the SEACOR trademark through September 1994. The legal corporate name was changed to SECOR International Incorporated with the trade name of SECOR in October 1994.

• SEACOR, January 21, 1994. Exhibit A - Addendum Remedial Investigation and Assessment of Groundwater Remedial Alternatives.

A copy of Agreed Order No. DE94TC-C165 is provided in Appendix A to this document.

1.1 PURPOSE AND SCOPE

The purpose of the RI/FS was to collect, develop, and evaluate information regarding impacts at the CNG Facility; and to facilitate the selection of an appropriate remedial action or actions. RI/FS field activities included the following:

- Drilling and installing eight shallow groundwater monitoring wells;
- Collecting 11 soil samples, 5 sewer/drain samples, and 21 groundwater samples for laboratory analyses; and
- Monitoring and sampling four previously installed monitoring wells.

The RI/FS scope of work is outlined in greater detail in Section 4.1, and in the four SECOR documents (July 23, 1992; October 16, 1992; March 15, 1993; and January 21, 1994) cited in the previous section.

The agreed scope of work contained two major contingencies, only one of which was to be implemented. The selection of the implemented contingency was based on the analytical results of preliminary groundwater samples obtained in July of 1993 from selected wells downgradient of the CNG facility. These contingencies and trigger levels are specified and discussed in detail in the October 16, 1992 and March 15, 1993 addendum and modifications to the Work Plan.

One of the contingencies (Scenario 1) was to be implemented if the water quality of samples from the selected wells did not exceed trigger levels. Under Scenario 1 an aquifer test and a feasibility study would not be conducted. Instead, a groundwater monitoring program would be implemented. Under the other contingency (Scenario 2) the aquifer test and feasibility study would be completed and an appropriate remedial action plan would be developed.

1.2 FACILITY BACKGROUND

In 1990, to comply with Washington State UST regulations, CNG retained a contractor to remove and close a single gasoline UST, the only UST which CNG was aware of at the site. During removal of the gasoline UST, CNG discovered three other USTs, and determined that soil and groundwater beneath the site contained total petroleum hydrocarbons (TPH) in the gasoline and diesel ranges, and various volatile and semi-volatile organic compounds. The concentrations of some of the identified TPH and organic compounds exceeded the draft MTCA Method A cleanup levels (WAC 173-340-720 and 740) at that time.

The discovery of the TPH and organic compounds at the facility prompted CNG to initiate an immediate interim action cleanup during which time approximately 2,100 cubic yards of impacted

soil were excavated, removed, remediated, and disposed of at an approved off-site location (Terrace Heights Landfill near Yakima, Washington).

The Department of Ecology also conducted a Site Hazard Assessment in 1991 to assess soil and groundwater conditions beneath the CNG Facility. The Site Hazard Assessment identified TPH constituents and volatile and semi-volatile organic compounds in soil and/or groundwater beneath the CNG Facility.

1.3 SETTING

The City of Sunnyside is located in eastern Yakima County, within the south central portion of the State of Washington. This portion of Yakima County can be generally described as containing broad valleys, filled with stream deposited sediments, surrounded by smooth unforested ridges. The climate is semi-arid, with total annual rainfall of approximately 7.2 inches per year (DRPA and SAIC, May 1991). Air temperatures vary greatly through the year; commonly dropping below 30 degrees Fahrenheit in winter and rising above 90 degrees Fahrenheit in summer.

Surface water in the site vicinity drains to the south towards the Yakima River, located approximately 5 miles south of the City of Sunnyside. Within the CNG Facility vicinity, shallow soils have been described as primarily silts and fine-grained sand, with minor coarse-grained sands or larger material sizes (i.e., gravels). Saturated groundwater conditions are present at relatively shallow depths, commonly occurring at depths of approximately 8 to 11 feet below ground surface. Groundwater generally flows to the south/southwest under a gradient of approximately 0.008 to 0.01 feet per foot (Section 4.2.2 of this report).

1.4 REPORT ORGANIZATION

The remainder of this report has been organized into the following five sections:

- 2.0 General Facility Information and Background Conditions: Section 2.0 provides background facility information, and additional overview of site conditions.
- 3.0 Previous Environmental Investigations: Section 3.0 provides a review of previous environmental investigations, and a summary of observed petroleum hydrocarbon impacts documented prior to the initiation of RI/FS field activities.
- 4.0 Field Investigation: Section 4.0 presents the scope of work as implemented, and the results of the RI/FS field activities.
- 5.0 Conclusions and Recommendations:
- 6.0 References:

2.0 GENERAL FACILITY INFORMATION AND BACKGROUND CONDITIONS

This section presents general Facility information, and a summary of Facility conditions, excluding the results of the RI/FS investigation (see Section 4.0).

2.1 PROJECT TITLE

The RI/FS project title is the Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation. The RI/FS was conducted pursuant to Agreed Order No. DE 94TC-C165 between Ecology and CNG.

2.2 PROJECT COORDINATORS

As specified in the Agreed Order, the Project Coordinator for Ecology is:

Donald W. Abbott 106 South Sixth Avenue Yakima, WA 98902-3387 Telephone: (509) 454-7834

The Project Coordinator for CNG is:

Ralph E. Boyd Cascade Natural Gas Corporation 222 Fairview Avenue North Seattle, WA 98109 Telephone: (206) 624-3900

2.3 OPERATIONAL HISTORY

The site has been owned by Cascade Natural Gas Corporation since 1979. Yakima County used the property as a public works equipment and maintenance facility for many years prior to 1969. Thereafter, three automobile dealerships/garages owned and operated the site until CNG first leased the property in 1969². Title records confirm the following ownership history:

• Yakima County from November 7, 1936 to June 10, 1955;

The operational and ownership history of the site was documented in a June 17, 1991 report by Kleinfelder, Inc., consultants to Yakima County. The information presented in this section has been extracted from the 1991 Kleinfelder, Inc., report and supplemented with information gathered since that time.

- Mr. Grant McLean, dba McLean Motors & Tool Company, from June 10, 1955 to January 1, 1956;
- Mr. Walter Hiligoss, dba Sunnyside Dodge, from January 1, 1956 to October 10, 1960; and
- Mr. Frank Hiscock, dba Sunnyside Dodge, from October 10, 1960 to November 29, 1979

A Sanborn Fire Insurance Map for 1910 documents a storage building on the southeastern portion of the property. By 1928, Yakima County occupied the site and expanded the storage capacity and work space of the building. The Sanborn Fire Insurance Map for 1928 indicates several changes to the property, including a warehouse building and blacksmith shop located adjacent to the County machine storage area. An oil storage area is also identified on the Sanborn map. By 1936, the County installed two underground storage tanks, one to store gasoline and the other to store diesel fuel. Two dispensers, one for each fuel product, were used for vehicle and equipment fueling. The County also serviced its trucks in the shop on the property. The 1944 Sanborn Fire Insurance Map does not reflect any changes from the 1928 map. An oil storage building was also located on-site until 1946 and used oil and kerosene were stored in 55-gallon barrels on the property. The site was unpaved throughout the County's ownership.

In the early 1950s, the storage building on-site was partially destroyed by fire. In the mid-1950s, a third UST was installed and shortly before or after that time, the Sunnyside Dodge operation replaced Yakima County as site owners and occupants. When the County left the site, the USTs were abandoned and were not removed. At approximately the time that the Dodge dealership began operation, the on-site structure was remodeled and a new UST was used to store diesel fuel to heat the building.

In 1960, a fourth UST was installed and used to store gasoline. The dispenser pump for this new gasoline UST was located directly above the new UST and was used to fuel vehicles. Diesel fuel, which at the time was stored in one of the three previous USTs, was pumped directly to the heater located in the structure. Sometime during the mid-1960s, use of the diesel UST ceased; however, none of the USTs were removed.

In the late 1960s, the heating system for the building was converted to natural gas and electric baseboard heat. By the late 1960s, the ground surface of the site was paved and all four USTs were still present at the site (two diesel and two gasoline). However, only one of the USTs was being used; the other three having been abandoned but never removed.

The site was operated as an automobile sales and service business until 1969, when CNG first leased the property. From the time it began to occupy the property in 1969 until 1980, CNG used only the new gasoline UST which had been installed in 1960. That was the only UST CNG was aware of onsite. In September 1990, CNG hired a contractor to remove that UST. Upon excavation, the other three USTs were discovered. All four USTs were subsequently decommissioned by excavation and removed. Upon excavation, the one UST used for gasoline storage by CNG was observed to have the potential for a small leak at its fill cap, but was otherwise intact. The three other USTs were observed to have substantially degraded and at least two had visible holes.

2.4 SUBSURFACE UTILITIES

There are two exterior storm water catch basins and two interior flow drains on the CNG site. Catch basins and floor drains discharge via a common subsurface line to a city storm drain located beneath the north side of East Decatur Avenue (Figure 2). A county drain, which was installed to improve soil drainage and alleviate problems associated with seasonal high groundwater conditions, is located south of the city storm drain beneath East Decatur Avenue (Figure 2).

The county drain is constructed of clay/vitreous pipe with an inside diameter of approximately 8 inches. The drain is located approximately 13 feet below ground surface in the 500 block of East Decatur Avenue. The city storm drain is also constructed of clay/vitreous pipe, with an inside diameter of approximately 24 inches, and which is approximately 7 feet below ground surface in the 500 block of East Decatur Avenue. The city storm drain and the county drain flow from east to west in the vicinity of the CNG facility and discharge to an open ditch near the intersection of Lincoln Avenue and South Fourth Street, approximately 3,000 feet south of the CNG site and approximately 500 feet north of the Sunnyside Municipal Sewage Treatment Plant.

Sanitary sewers are located beneath the west side of South Fifth Street and in the alley between South Fifth and South Sixth Streets (Figure 2). The sanitary sewers flow south to the sewage treatment plant, and are approximately 7 feet below ground surface in the vicinity of the CNG site. Water mains are located beneath the east side of South Fifth Street and the south side of East Decatur Avenue. A natural gas line is located west of the site under South Fifth Street. The sanitary sewer lines, water mains, and natural gas lines are installed above first encountered groundwater and do not present a significant migration pathway for groundwater.

The sanitary sewer line that is located under South Fifth Street begins approximately 300 feet north of the intersection of South Fifth Street and East Decatur Avenue, near the location of Manhole-1 as shown on Figure 2. The sanitary sewer under South Fifth Street serves the trailer park west of the CNG site. The CNG site is connected to the sanitary sewer beneath the alley between South Fifth and South Sixth Streets.

2.5 GEOGRAPHY

The elevation of the facility is approximately 740 feet above sea level, or about 100 feet higher than the Yakima River (USGS, 1978). Surface water within Sunnyside is directed through the storm sewer system following the gently south-sloping topography. The topography of the area is shown on Figure 1.

The ground surface at the CNG site is completely covered with either buildings, asphalt, or concrete. In covered areas, surface water generated during precipitation events is directed into the storm sewer system.

Land use in the vicinity of the CNG site is shown on Figure 3. A residential trailer park with 53 platted lots is located west of South Fifth Street across from the CNG site. The balance of property uses in the vicinity of the CNG site are for commercial business, parking, or storage.

2.6 GEOLOGY

The CNG Facility is located in Southcentral Washington, within the Columbia Plateau physiographic region. The Region is underlain by basaltic rocks of the Columbia River Group of middle Miocene through early Pliocene age. Only the upper part of the Columbia River Group, the Yakima Basalt, is commonly exposed in the Yakima River basin. The Yakima Basalt has been warped and folded to form the principle topographic features of the region. Lacustrine and fluvial sediments of Pliocene age partly fill the structural basins formed through folding of the basalt sequence. These sediments consist of laminated silt, fine sand, and clay and of crossbedded sand and gravel. The Ellensburg Formation was laid down in the Yakima River Valley (La Sala, et al, 1973). Recent stream alluvium fills the stream valleys of the Yakima River basin. These deposits are composed chiefly of unconsolidated silt, sand, and gravel. In places, they exceed 500 feet in thickness (Kinnison and Sceva, 1963).

Facility geology was described as stratified layers of sandy silts, fine sand, and silt to the maximum depth explored of approximately 20 feet below ground surface during previous investigations. These sediments are typical of recent stream alluvium in the Yakima River basin.

2.7 HYDROGEOLOGY

Regional groundwater occurs in permeable zones and fractures, mainly under artesian conditions in the basaltic rocks, and in unconsolidated deposits under both watertable and artesian conditions. Groundwater recharge occurs primarily by infiltration of surface runoff from ridges that receive greater quantities of rainfall, and by loss of water from the Yakima River year round. During the late spring and summer months, irrigation contributes to groundwater recharge in the Yakima River basin. Within the City of Sunnyside area, the bulk of groundwater movement is towards the south, away from Rattlesnake Hills to the north, and toward the Yakima River to the south. The coarser grained members of recent stream alluvium have permeabilities as great as any geologic unit in the Yakima River basin, and serve as important aquifers in the area (Kinnison and Sceva, 1963).

Data developed during the RI/FS indicate that shallow groundwater conditions occur at the CNG Facility at depths of approximately 8 to 10 feet below ground surface. Groundwater appears to flow to the south/southwest under a gradient of approximately 0.008 to 0.01 feet per foot.

2.8 WATER SUPPLY WELLS

As illustrated in Figure 4, six water supply wells have been identified within approximately 0.25-mile of the CNG Facility. These include:

- Two City of Sunnyside water supply wells (No. 3 and No. 4) located approximately 800 feet northeast of the CNG Facility. Well No. 3 and No. 4 are completed at 1,162 feet and 1,576 feet below ground surface, respectively, and both yield groundwater at a rate of approximately 900 gallons per minute (Fink, 1992).
- Two City of Sunnyside water supply wells (No. 1 and No. 2) are located approximately 1,500 feet south of the CNG Facility. The No. 1 well is reportedly

completed at a depth of 154 feet below ground surface. The No. 1 well has been determined to be contaminated with perchloroethylene and 1,1,2-trichloroethane, reportedly from nearby dry cleaning operations, and is no longer used for a water supply (Ecology, August 16, 1988). Well No. 2 is completed at approximately 1,400 feet below ground surface.

- One additional City of Sunnyside well (No. 5) is located approximately 1,300 feet west of the CNG Facility. Well No. 5 is completed at approximately 458 feet below ground surface.
- The Old Creamery Well is located approximately 500 feet south of the CNG Facility. Ecology reports that there is no well log record for this well, but believes that it is completed in the same aquifer as the No. 1 city well. The Old Creamery Well is no longer used to supply water (Cochran, Letter to Del Christenson of SECOR, March 9, 1992).

3.0 PREVIOUS ENVIRONMENTAL INVESTIGATIONS

The following section provides a chronological summary of past environmental investigations at the CNG Facility in Sunnyside.

3.1 CHRONOLOGY OF INVESTIGATION

A chronological listing of pre-RI/FS investigative events are provided below:

- September and October 1990: Four USTs were removed from the CNG Facility. During the removal, petroleum hydrocarbons were determined to be present in onsite soil and groundwater. Approximately 1,400 cubic yards of petroleum-hydrocarbon containing soil were excavated and stockpiled on-site.
- April 1991: Ecology installed and sampled three groundwater monitoring wells as part of a Site Hazard Assessment of the CNG Facility. Petroleum hydrocarbons were identified in groundwater samples and in soil samples. A limited number of volatile and semi-volatile organic compounds were also detected in soil samples.
- July 1991: The 1,400 cubic yards of stockpiled soil were analyzed for waste characterization purposes and an assessment of disposal or treatment options. The three groundwater monitoring wells and water that had accumulated in the UST excavation were also sampled. Petroleum hydrocarbon constituents and 1,2-dichloroethane were detected in each of the three monitoring wells.
- December 1991: The three monitoring wells previously installed by Ecology were sampled. Petroleum hydrocarbon constituents were detected in samples from two of the three wells, and 1,2-dichloroethane was detected in samples from each of the three wells.
- January 1992: Approximately 700 cubic yards of additional soil were excavated. This soil, and the 1,400 cubic yards which had been excavated in July 1991, were transported to Terrace Heights Landfill near Yakima for bioremediation and subsequent disposal. The excavation was also backfilled.

An additional investigation was conducted by CNG in July of 1993 (pending issuance of the Agreed Order) to provide a preliminary assessment of potential petroleum hydrocarbon concentrations in the county drain, soil, and groundwater; and to evaluate whether immediate public health or environmental concerns existed. This additional investigation addressed several of the tasks which were later incorporated into the Agreed Order. Therefore, the additional investigation is discussed in Section 4.0 with the remedial investigation.

The results of each of these events are summarized below:

3.2 SEPTEMBER AND OCTOBER 1990

The four USTs at the CNG Facility were removed in September of 1990 by White Shield, Inc. (White Shield) of Grandview, Washington. White Shield was working as a subcontractor to E.P. Johnson Construction, Inc. of Kennewick, Washington. During removal of the USTs, petroleum hydrocarbons were discovered in soil and groundwater in the UST excavation. The excavation was extended laterally to remove the majority of petroleum hydrocarbon-affected soil present above the water table. Approximately 1,400 cubic yards of soil were excavated and stockpiled on-site. The resulting excavation was approximately 70 feet long by 55 feet wide at the ground surface, and was approximately 10 to 12 feet deep. A site map that depicts the excavation is presented on Figure 5.

White Shield collected a total of 44 soil samples from the excavation which were analyzed for petroleum hydrocarbon constituents. One soil sample was collected and analyzed for both total and Extraction Procedure Toxicity Protocol (EP-Tox) lead content. One soil sample was collected and analyzed for semi-volatile organic compounds. Ten soil samples were collected and analyzed for volatile organic compounds. One soil sample was collected and analyzed for pesticides and polychlorinated biphenyls (PCBs). A total of 10 soil samples from the stockpiled soil were collected and analyzed for petroleum hydrocarbons. In addition, one water sample from the excavation was collected and analyzed for petroleum hydrocarbons.

Analyses of the soil samples indicated that soil samples from each of the excavation sidewalls contained TPH in the gasoline and/or diesel ranges in excess of 1990 draft MTCA Method A soil cleanup levels. Several semi-volatile organic compounds were detected in a soil sample from approximately 6 feet below ground surface near the center of the excavation. The detected semi-volatile compounds included:

- Butyl benzylphthalate at 0.098 milligrams/kilogram (mg/kg);
- Dibenzofuran at 0.079 mg/kg;
- 2 Methylnaphthalene at 0.069 mg/kg;
- Naphthalene at 0.166 mg/kg; and
- Pentachlorophenol at 0.073 mg/kg.

Only the pentachlorophenol concentration exceeds the current (August 1994) MTCA Method B soil cleanup level of 0.0729 mg/kg, which is based on protection of groundwater. In addition, 1,2-dichloroethane was detected in two of the nine soil samples that were analyzed for volatile organic compounds at concentrations of 3 micrograms/kilogram (μ g/kg) and 16 μ g/kg. These concentrations do not exceed the current MTCA Method B soil cleanup level.

Lead was detected at a concentration of 4.65 mg/kg in the soil sample that was analyzed for lead content. Lead is a naturally occurring element in soil, and the reported concentration is well below the MTCA Method A soil cleanup level of 250 mg/kg. The lead concentration derived from the leachability test conducted pursuant to the EP Tox protocol was of non-detectable levels at a detection limit of 1.0 milligrams/liter (mg/L).

The water samples from the excavation was determined to contain 54 micrograms/liter (μ g/L) of 1,2-dichloroethane which exceeds the 5 μ g/L of MTCA Method A cleanup level and the 0.481 μ g/L Method B cleanup level for groundwater. Pesticides, PCBs, and gasoline and diesel range TPH were not detected in the water samples from the excavation. Oil range TPH was detected at a concentration of 15 mg/L, which is in excess of the 1.0 mg/L MTCA Method A groundwater cleanup level.

The analytical results of the White Shield Investigation are summarized on Table 1. The corresponding excavation and sample locations are shown on Figure 5. White Shield documented their efforts in the *Draft Interim Status Report, Cascade Natural Gas Corp.*, Sunnyside, Washington which was submitted to E.P. Johnson Construction, Inc. in November 1990.

3.3 APRIL 1991

In April of 1991, Ecology completed a Site Hazard Assessment at the CNG Facility, including installation of three shallow groundwater monitoring wells. Seven soil samples from the well borings were analyzed for volatile and semi-volatile organic compounds.

The well numbers assigned by Ecology to wells MW-3 and MW-1 were subsequently changed by SECOR to well numbers MW-1 and MW-3, respectively. All well references in the Site Hazard Assessment (including text, tables, and figures) indicate that well MW-1 is near the southwest corner of the CNG site and well MW-3 is near the center of the CNG site. All subsequent references by SECOR and the Agreed Order are based on the changed locations (MW-3 near the southwest corner and MW-1 near the center of the site).

The soil sample from monitoring well MW-1 (now referred to as MW-3) contained benzene in excess of MTCA Method A soil cleanup levels. No other soil samples contained analytes at concentrations in excess of the Method A soil cleanup levels. The following analytes were detected in one or more of the soil samples:

- Benzene
- Ethyl Benzene
- Toluene
- Total Xylenes
- Naphthalene
- 2-Methylnaphthalene
- Bis(2-ethylhexyl)phthalate
- Butylbenzylphthalate

- Di-n-octylphthalate
- Diethylphthalate
- Di-n-butylphthalate
- Acetone
- Methylene Chloride
- 1,1-Dichloroethane
- 1,1,1,-Trichloroethane

The groundwater sample from monitoring well MW-1 contained 51 μ g/L of benzene (in excess of the MTCA Method A groundwater cleanup level of 5 μ g/L). No other analytes were detected in the groundwater samples. Analytical results of soil and groundwater samples collected during the Site Hazard Assessment are summarized on Table 2 of this report.

Subsurface soils were logged as consisting of stratified silty sand and silt. Groundwater elevations measured during monitoring and sampling indicated a flow direction to the southwest. The maximum depth of the borings completed as part of this effort was 20 feet below the ground surface.

The location of the borings are shown on Figure 2 in this report.

3.4 **JULY 1991**

In July 1991 SECOR collected a total of 39 samples from the soil that was stockpiled on the site in 1990 by White Shield. The soil samples were analyzed for TPH in the gasoline and diesel ranges, benzene, toluene, ethyl benzene, and total xylenes. Ten of the soil samples were also analyzed for pentachlorophenol. The analytical results were reviewed to assess potential disposal options.

SECOR also collected groundwater samples from each of the three on-site monitoring wells and the UST excavation pit. The water samples were analyzed for TPH in the gasoline and diesel ranges, benzene, toluene, ethyl benzene, total xylenes and for halogenated volatile organic compounds.

Laboratory data indicated that 24 of the 39 soil samples collected from the stockpiled soil contained concentrations of TPH in the diesel range greater than the 200 mg/kg Method A cleanup level established by the MTCA. Concentrations of TPH in the gasoline range were above the MTCA Method A cleanup level (100 mg/kg) in 24 of the 39 samples analyzed. Cleanup levels established for benzene, toluene, ethyl benzene, and total xylenes were exceeded in only one of the 39 soil samples collected at the site. Pentachlorophenol was detected in only one of the 10 soil samples analyzed, at a concentration of 0.03 mg/kg. This concentration is below the MTCA Method B Soil Cleanup Level for protection of groundwater (0.0729 mg/kg).

The groundwater sample collected from MW-3 had detectable concentrations of TPH in the gasoline range and benzene, above their respective MTCA Method A cleanup levels for groundwater. Groundwater samples from MW-1 and MW-2 did not contain petroleum hydrocarbon analytes in excess of MTCA Method A cleanup levels. 1,2-dichloroethane was detected in each of the groundwater monitoring well samples. The concentration of 1,2-dichloroethane in the samples from monitoring wells MW-1 and MW-3 exceeded the MTCA Method A groundwater cleanup level of 5 μ g/L. No other volatile analytes were detected. Two water samples were collected from the standing water in the excavation. TPH in the diesel range (at 1,700 μ g/L in one of the samples) was the only detected analyte in excess of MTCA Method A cleanup levels in the water samples from the excavation. The analytical results of laboratory analyses conducted during this sampling event are summarized on Table 3.

3.5 **DECEMBER 1991**

On December 17, 1991 SECOR collected groundwater samples from the three monitoring wells previously installed on the CNG Facility. The water samples were analyzed for TPH in the gasoline and diesel ranges, benzene, toluene, ethyl benzene, total xylenes, and halogenated volatile organic compounds. Results of the analyses indicated that the water sample from well MW-3 contained concentrations of TPH in the gasoline and diesel ranges, benzene, toluene, ethyl benzene, total xylenes, and 1,2-dichloroethane in excess of MTCA Method A groundwater cleanup levels. The water sample from well MW-1 also contained 1,2-dichloroethane in excess of Method A cleanup

levels. All other analytes were either not detected or were detected below MTCA cleanup levels. Methylene chloride was detected at a concentration of $26 \mu g/L$ in the sample from monitoring well MW-3. This compound is a common laboratory contaminant. The laboratory report notes that methylene chloride was believed to be a laboratory artifact. The results of this sampling event were documented by SEACOR in a March 24, 1992 letter report titled Results of Recent Groundwater Sampling, Cascade Natural Gas Facility, Sunnyside, Washington. The analytical results are summarized on Table 3 of this report.

3.6 **JANUARY 1992**

On January 6 and 7, 1992 SECOR supervised the excavation of approximately 700 cubic yards of additional petroleum-impacted soil from the east, west, and north sidewalls of the UST excavation. The additional excavation extended from the ground surface to a depth of approximately 8 feet. Unstable saturated soil conditions due to presence of groundwater prohibited deeper excavation. The excavated soil was temporarily stockpiled at the CNG Facility, characterized for proper disposition, and transported to the Terrace Heights Landfill for landfarming and subsequent disposal. The UST excavation was backfilled with pit run material obtained from the Snipes Mountain Gravel Pit, located approximately 6 miles southwest of Sunnyside. Two representative samples of the backfill material were analyzed for total petroleum hydrocarbon identification by North Creek Analytical of Bothell, Washington. The analytical results reported that neither TPH in the gasoline range nor TPH in the diesel range were present at detectable concentrations.

A total of 17 soil samples were collected from the excavation and were submitted for chemical analyses to assess the effectiveness of the remediation effort. A total of 10 soil samples were collected from the base of the north, west, and east sidewalls of the final excavation. One soil sample (an intermediate soil sample) was also collected from a sidewall before the excavation was completed. The sampling location was subsequently excavated when the perimeter of the excavation was expanded to its final extent. A total of six soil samples were collected from the limited area of the bottom of the excavation that was not under water. As indicated previously, eight soil samples were collected from the stockpiled excavated soil to characterize the soil for disposal purposes. The locations of the soil samples are shown on Figure 6.

All soil samples were submitted to North Creek Analytical for analysis of TPH in the gasoline and diesel ranges, benzene, toluene, ethyl benzene, and total xylenes. In addition, one of the excavation sidewall samples was analyzed for semi-volatile organic compounds. Two of the stockpile soil samples were also analyzed for volatile and semi-volatile organic compounds. The analytical results are summarized on Table 4.

The soil samples from the final excavation sidewalls did not contain concentrations of TPH in the diesel or gasoline ranges, benzene, toluene, ethyl benzene, or total xylenes in excess of MTCA Method A soil cleanup levels. Soil samples from the bottom of the excavation contained one or more of TPH constituents in the diesel range, TPH in the gasoline range, benzene, ethyl benzene, or total xylenes in excess of MTCA Method A soil cleanup levels.

The intermediate sidewall soil sample contained TPH in the diesel and gasoline ranges, ethyl benzene, and total xylenes in excess of MTCA Method A soil cleanup levels. The intermediate sidewall soil sample also contained detectable concentrations of isophorone, 2-methylnaphthalene, naphthalene, and phenanthrene. Method A cleanup levels have not been established for these

compounds. The reported concentrations of naphthalene and phenanthrene exceeded the MTCA Method B soil cleanup levels based on protection of groundwater. The concentration of isophorone did not exceed MTCA Method B cleanup levels. A cleanup level for 2-methylnaphthalene has not been established under MTCA Method A or B cleanup criteria.

Four of the samples of the stockpiled soil contained concentrations of TPH in the diesel and/or gasoline ranges in excess of MTCA Method A soil cleanup levels. Concentrations of benzene, toluene, ethyl benzene, and total xylenes did not exceed MTCA Method A cleanup levels. The two samples of stockpiled soil that were also analyzed for volatile and semi-volatile organic compounds contained detectable concentrations of acetone, methylene chloride, isophorone, 4 methylphenol, and phenanthrene. The laboratory report noted that methylene chloride and acetone in the stockpile soil samples were suspected laboratory contaminants. The reported concentration of isophorone did not exceed the established MTCA Method B soil cleanup levels. MTCA does not establish a cleanup level for 4-methylphenol.

3.7 SUMMARY

The analytical results of soil samples collected during the initial excavation in September and October of 1990, and the final excavation in January of 1992, indicate that TPH-containing vadose zone soil has been successfully removed from the site. The concentrations of TPH in the diesel and gasoline ranges, benzene, toluene, ethyl benzene, and xylenes in the sidewalls of the final excavation did not exceed MTCA Method A soil cleanup levels in the north, west, or east sidewalls. Further, the results of the sampling and analyses conducted during the initial excavation in September and October 1990 indicate that the remaining vadose zone soil downgradient (south) of the UST excavation did not contain elevated concentrations of TPH constituents.

Analyses of groundwater samples from on-site monitoring wells identified the presence of TPH in the diesel range, benzene, toluene, ethyl benzene, and total xylenes in excess of MTCA Method A groundwater cleanup levels at well location MW-3, downgradient of the former UST location at the CNG site. The same analytes have also been detected in one of the three groundwater samples that have been collected from monitoring well MW-1; however, benzene, toluene, ethyl benzene, and total xylenes did not exceed the MTCA Method A cleanup levels; and only the combined concentrations of TPH in the diesel and gasoline ranges exceeded the MTCA Method A groundwater cleanup level of 1,000 μ g/L.

Two of the three groundwater samples which were collected from well MW-2 (upgradient of the former UST location) contained detectable concentrations of 1,2-dichloroethane and TPH in the gasoline range, but neither constituent exceeded established MTCA groundwater cleanup levels. 1,2-dichloroethane has been detected in all three of the on-site monitoring wells. The source of the 1,2-dichloroethane in the on-site monitoring wells has not been identified. The presence of this compound in well MW-2, which is near the northern (upgradient) property boundary, strongly suggests a potential off-site source of 1,2-dichloroethane.

The analytical data to assess the extent of the dissolved petroleum hydrocarbons, volatile, and semi-volatile organic compounds in groundwater in the vicinity of the CNG Facility were not available. Similarly, analytical data were not available to assess the potential impacts (if any) on the adjacent county drain under East Decatur Avenue or the sanitary sewer under South Fifth Street. In response

to these data gaimplement plan.	ps, the	RI/FS	Work	Plan	was	developed	and	the	Agreed	Order	was wr	itten to	

CA5003.RPT/7 11/23/94 9:01am

4.0 REMEDIAL INVESTIGATION

SECOR RI/FS field activities were conducted in accordance with the July 23, 1992 Revised Work Plan for Remedial Investigation and Assessment of Groundwater Alternatives (SEACOR, July 1992) as amended by:

- Addendum No. 1 to the Revised Work Plan and Assessment of Groundwater Remedial Alternatives for Cascade Natural Gas Corporation (SEACOR, October 16, 1992);
- Modifications to Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remedial Alternatives for Cascade Natural Gas Corporation (SEACOR, March 15, 1993); and
- Exhibit A Addendum Remedial Investigation and Assessment of Groundwater Remedial Alternatives (SEACOR, January 21, 1994).

The July 1992 Work Plan contained detailed descriptions for conducting field procedures and chemical analyses methods as follows:

- Unified Soil Classification System, Appendix A;
- Aquifer Testing Procedures, Appendix B;
- Well Drilling and Soil Sampling Methods, Appendix C;
- Groundwater Monitoring Well Development and Sampling, Appendix D; and
- Equipment Decontamination, Appendix E;

Analytes and analytical methods are specified in Section 2.5 of the July 1992 Work Plan and in Table A.2 of the January 21, 1994 Exhibit A Addendum.

4.1 SCOPE OF WORK

Based on review of available data from the previous investigations described in Section 3.0 of this document, a scope of work was developed to conduct a remedial investigation. The scope of work is detailed in the Work Plan and addenda noted above which are incorporated into Agreed Order DE94TC-C165.

In accordance with the amended scope of work, seven primary tasks were specified:

- Task 1 Survey existing wells and pertinent on and off-site reference points;
- Task 2 Assess water levels in on- and off-site wells and drains:
- Task 3 Assess the county drain and surrounding backfill;

- Task 4 Install groundwater monitoring wells and conduct aquifer tests;
- Task 5 Sample monitoring wells and analyze groundwater samples;
- Task 6 Identify data gaps and remedial action alternatives;
- Task 7 Prepare a focused RI/FS report for CNG submittal to Ecology.

The October 16, 1992 Addendum No. 1 to the Work Plan specified two scenarios for completing the site investigation based on the results of groundwater analyses conducted during Task 5.

4.1.1 Scenario No. 1

Scenario No. 1 was to be implemented in the event that groundwater samples from RI/FS groundwater monitoring wells MW-7 and MW-8 did not contain TPH in the diesel or gasoline ranges, benzene, toluene, ethyl benzene, or total xylenes in excess of MTCA Method A groundwater cleanup levels. Monitoring wells MW-7 and MW-8 were to be installed south (downgradient) of the county drain. Under Scenario No. 1 the following actions were to be conducted:

- No aquifer testing (as described in Task 4) would be performed;
- No feasibility study, as described in Task 7, would be required;
- In lieu of a feasibility study, a groundwater monitoring program would be implemented at the site. The monitoring program would include measuring water levels in all wells at the site, and collecting water quality samples from selected monitoring wells at quarterly intervals for a 3-year period; and
- If, at the end of the 3-year monitoring period, the concentrations of the chemicals of concern in the wells selected for monitoring remain below MTCA Method A cleanup levels, the CNG site would be considered closed and no further action would be taken.

4.1.2 Scenario No. 2

Scenario No. 2 was to be implemented in the event that water samples from monitoring wells MW-7 and MW-8 contained TPH in the diesel or gasoline ranges, benzene, toluene, ethyl benzene, or total xylenes in excess of MTCA Method A cleanup levels. Under Scenario No. 2 the following actions were to be completed:

- An aquifer test would be performed in accordance with Task 4;
- A focused feasibility study would be prepared as described in Task 7. As part of the feasibility study, a risk assessment would be performed for all constituents of concern detected in selected monitoring wells which are in excess of MTCA Method A Cleanup Levels. This risk assessment would be performed to develop cleanup objectives in accordance with Method B protocols (as described in WAC 173-340-720).

- If the concentrations of all analyzed constituents of concern in wells selected for monitoring were determined to be below Method B cleanup levels, a monitoring program would be implemented as specified in Scenario 1, except that results would be compared to the calculated Method B Cleanup Levels. If concentrations of all analyzed constituents of concern in wells selected for monitoring remain below the calculated MTCA Method B cleanup levels for a period of three years, the site would be considered closed and no further action would be taken;
- If the concentration of any analyzed constituent of concern in wells selected for monitoring was determined to be above its respective Method B cleanup level, alternatives for groundwater remediation would be evaluated in the feasibility study and a remedial action plan for the site would be developed.

The results of the remedial investigation indicated that scenario No. 1 was applicable. The actions under Scenario No. 1 are presented below.

4.2 REMEDIAL INVESTIGATION RESULTS

The results of the remedial investigation are discussed below.

4.2.1 Geology

Findings regarding site geology are based on review of the three boring logs for wells completed during the Site Hazard Assessment, and the eight well borings completed during this RI. Boring logs from previous investigations and the RI are provided in Appendix B.

The maximum depth of any boring completed during the RI and preceding investigations at the CNG Facility was 20 feet below ground surface. The soil encountered to that depth consisted of stratified non-indurate sand, silty sand, silt, and sandy silt. These sediments are typical of alluvial deposits. Significant discontinuities were observed in the subsurface soils encountered during the investigation. The absence of reasonably correlatable geologic layers or units within the shallow depths explored during the investigation precluded the development of meaningful geologic cross sections for the investigation area.

4.2.2 Hydrogeology

Contours of the July 22, 1993 and July 16, 1994 water levels indicate that first encountered groundwater at the site generally flows to the south/southwest at a gradient of approximately 0.008 to 0.01 feet per foot (ft/ft) (Figure 7).

First encountered groundwater at the site exists under unconfined conditions at approximately 8 to 11 feet below ground surface in silt, sandy silt, and silty sand. The groundwater surface appears to be depressed in the immediate vicinity of the county drain that underlies East Decatur Avenue.

The hydraulic gradient in the immediate vicinity of the county drain is significantly greater at approximately 0.08 ft/ft. The observed water levels in the groundwater monitoring wells and the county drain indicate that the county drain is effectively dewatering the uppermost zone of the aquifer, which results in a depressed groundwater table in the immediate vicinity of the Drain. The

Drain was designed and installed to accomplish this objective when it was constructed. In turn, the depressed water table is likely to affect flow conditions in the upper portion of the aquifer in the immediate vicinity of the Drain. Comparison of water levels in July and October reveal a water table fluctuation of less than 1 foot.

4.2.3 Results of Soil Analyses

A summary of soil analytical results for samples collected during the RI is presented on Table 5. The soil samples were collected from the well borings in accordance with the protocols presented in Appendix C of the July 1992 Work Plan. Chemical analyses were conducted in accordance with the July 1992 Work Plan and the January 1994 Exhibit A Addendum as applicable. The soil samples analyzed from well borings MW-6 through MW-11 did not contain detectable concentrations of TPH in the diesel or gasoline ranges, benzene, toluene, ethyl benzene, total xylenes, or volatile or semi-volatile organic compounds.

The soil samples from well MW-4 (west of the CNG site) contained 3.7 mg/kg of TPH in the gasoline range, 0.54 mg/kg of benzene, and 0.079 mg/kg of ethyl benzene. Of these analytes, only benzene exceeded the MTCA Method A soil cleanup level.

The soil sample from well MW-5 (located west of the southwest corner of the CNG site) contained 78 mg/kg TPH in the gasoline range, 0.12 mg/kg ethyl benzene, and 0.15 mg/kg xylenes. None of these analytes exceeded their respective MTCA Method A cleanup levels.

The analytical methods are also shown on Table 6. The sample from the 4.5 to 5-foot depth interval from well MW-9 contained a reported 5.2 mg/kg of pentachlorophenol. This was the only soil sample from the July 1994 RI investigation that contained a detectable semi-volatile organic compound. A Method A cleanup level is not established for pentachlorophenol. Although the concentration does exceed the 0.0729 mg/kg Method B cleanup level based on protection of groundwater, the reported concentration does not exceed the Method B soil cleanup level of 8.33 mg/kg based on exposure to soil. The soil sample from 10.5 to 11-feet deep in boring MW-9 did not contain detectable concentrations of pentachlorophenol.

4.2.4 Groundwater Analytical Results

A summary of water sample analytical results is presented on Table 6. Water level data are summarized on Table 7. Water samples from wells MW-2, MW-6, MW-7, MW-8, MW-10, and MW-11 did not contain detectable concentrations of TPH in the diesel or gasoline range, benzene, toluene, ethyl benzene, or total xylenes. Wells MW-3, MW-4, and MW-5 contained one or more of TPH in the diesel or gasoline ranges, benzene, toluene, ethyl benzene, or total xylenes in excess of MTCA Method A groundwater cleanup levels.

1,2-dichloroethane was detected in water samples from wells MW-1, MW-3, MW-4, MW-9, MW-10, and MW-11. The concentration in the water sample from well MW-10 did not exceed the MTCA Method A cleanup level of 5 μ g/L. The concentration of 1,2-dichloroethane in the water samples from wells MW-1, MW-3, MW-4, MW-9 and MW-11 did exceed the MTCA Method A cleanup level. The Work Plan did not include sampling water from the county drain in July 1994. However, upon review of the July 1994 analytical results, CNG and Ecology agreed that supplemental water samples would be collected from the CD-West and CD-East manholes in the county drain beneath Decatur Avenue and from well MW-3 (upgradient of the county drain) to assess current water quality in the

drain. The drain and well MW-3 were resampled by SECOR on August 5, 1994. Acetone was detected in the August 5, 1994 sample from well MW-3. The reported concentration of acetone in the MW-3 water sample (51 μ g/L) was well below the MTCA Method B cleanup level of 800 μ g/L. A Method A cleanup level has not been established for acetone. The results for the water samples from the county drain are discussed in Section 4.2.5 of this report.

Two semi-volatile organic compounds (2-methynaphthalene and naphthalene) were detected in the July 1994 water sample from well MW-3. Numeric cleanup levels have not been by MTCA for 2-methylnaphthalene. The reported concentration of naphthalene (120 μ g/L) established the MTCA Method B cleanup level of 32 μ g/L. A Method A cleanup level has not been established for naphthalene.

It should be noted that none of the analyzed constituents were detected in any of the three wells (MW-6, MW-7 and MW-8) that are south of the county drain beneath East Decatur Avenue.

4.2.5 County Drain and Sanitary Sewer Water Results

The county drain near the CNG site is accessible through two manholes (CD-East and CD-West shown on Figure 7). The drain flows east to west beneath East Decatur Avenue. Manhole CD-West is near the southwest corner of the CNG site and is downgradient of monitoring well MW-3. Manhole CD-East is south of the southeast corner of the CNG site and is also upgradient of manhole CD-West. Water samples were collected from the county drain in July of 1993 and in August of 1994. In both events, the concentrations of detected analytes were higher in the sample from CD-West than from CD-East. Only benzene and ethyl benzene have been detected in the water samples from the county drain. None of the reported concentrations of these compounds have exceeded either MTCA Method A or B Surface Water Cleanup Levels, U.S. Environmental Protection Agency (EPA) 1992 Water Quality Criteria values for Freshwater Acute Exposure for aquatic organisms or the Human Health Criteria Levels for exposure associated with consumption of fish from potentially contaminated water. A summary of water sample analyses is provided on Table 6.

Infiltrating groundwater is believed to be the primary source of water in the county drain. The concentrations of the detected semi-volatile compounds (2-methylnaphthalene and naphthalene) in wells MW-3 and MW-11 did not exceed available EPA 1992 Water Quality Criteria Levels or MTCA Method B Cleanup Levels for Ground surface Water; therefore, it is implausible that groundwater infiltration from the CNG site could produce concentrations of either semi-volatile compound in the county drain in excess of these criteria levels. As such, the water samples from the county drain were not tested for semi-volatile organic compounds.

4.2.6 Additional Potential Source Areas

Groundwater analytical results for groundwater samples collected during the RI from two of the upgradient monitoring wells (wells MW-9 and MW-10) report the presence of detectable concentrations of TPH in the diesel and gasoline ranges (in well MW-9) and 1,2-dichlorethane (in wells MW-9 and MW-10). Well MW-9 is located near the eastern property boundary approximately 60 feet upgradient of the former UST locations, and well MW-10 is located on the west side of South Fifth Street, approximately 150 feet cross-gradient from the former UST locations (Figure 7). In addition, TPH in the gasoline range and 1,2-dichloroethane was detected in water samples collected

from well MW-2 (located approximately 100 feet upgradient of the former UST location) on July 2, 1991 and December 17, 1991, respectively.

A review of the analytical data from water samples obtained from the County Drain beneath East Decatur Avenue, and from the sanitary sewer beneath South Fifth Street, also suggests the presence of potential off-site source(s) of TPH constituents to the county drain and sanitary sewer systems in the vicinity of the CNG site. TPH in the diesel range was detected during the July 1994 sampling event in the water sample from Manhole 1 (MH-1) within the sanitary sewer beneath South Fifth Street. The sanitary sewer flows from north to south at this location. Ethyl benzene was detected in the water sample obtained from the east county drain manhole (shown as CD-East on Figure 7) during the July 1993 sampling event. The county drain flows from east to west beneath East Decatur Avenue.

A Shell service station is adjacent to the east property boundary of the CNG site. The Tom Denchel Ford County automobile dealership is also located adjacent to the east boundary of the CNG site. Based on site observations of dispensing pumps and/or apparent UST vent lines, both the Shell and Tom Denchel facilities appear to have USTs; however, these two facilities are not shown in Ecology's January 27, 1994 list of registered UST sites or Ecology's list of leaking USTs in the Sunnyside zip code area.

4.3 REMEDIAL INVESTIGATION SUMMARY

Based on a review of well logs obtained during the previous investigations and a review of City of Sunnyside utility maps, the local shallow groundwater is not used for drinking water. There are no reported active water wells in the vicinity of the CNG site that are completed in the shallow aquifer and the area is served by the Municipal Water System. Therefore, there is no apparent exposure to groundwater in the vicinity of the CNG site.

None of the tested analytes were detected in any of the groundwater or soil samples collected from monitoring wells MW-6, MW-7, and MW-8 located south of the county drain and downgradient of the CNG site. Groundwater samples from wells MW-7 and MW-8 did not contain TPH constituents in excess of MTCA Method A cleanup levels and therefore, in accordance with specified scope of work under Scenario No. 1, aquifer testing and a feasibility study were not required. In addition, none of the soil samples collected during this RI contained TPH in the diesel or gasoline ranges in excess of MTCA Method A soil cleanup levels. Only one soil sample (from well MW-4 at 9.5 feet below ground surface) contained any volatile organic compound (benzene) at a concentration in excess of the MTCA Method A soil cleanup level. Benzene in this sample exceeded the 0.50 mg/kg Method A cleanup level by only 0.04 mg/kg.

Ethyl benzene and benzene are the only two analytes that have been detected in the water samples from the county drain adjacent to the CNG site. The concentrations of these two analytes did not exceed EPA or MTCA Surface Water Quality Criteria for applicable acute and/or chronic exposure for aquatic organisms, or for human health risks associated with consumption of fish from potentially contaminated waters.

The analytical results of soil and water samples from well MW-11 and water samples from the county drain indicates that there are no significant concentrations of TPH constituents or semi-volatile organic compounds in the southeast area of the CNG site. Although the water sample from well

MW-11 did contain 1,2-dichloroethane in excess of MTCA groundwater cleanup levels, there was none detected in the county drain or well MW-8 which are both downgradient of well MW-11.

Based on the water level data, analytical results of monitoring well soil and groundwater samples, and analytical results of county drain water samples collected during this RI, TPH constituents, volatile organic compounds and semi-volatile organic compounds are not migrating south of the county drain beneath East Decatur Avenue. The analytical and water level data developed during this RI provides strong evidence that the county drain is sufficiently intercepting and/or affecting the flow of water in the upper portion of the aquifer and is preventing downgradient migration of constituents in groundwater. In addition, groundwater which is infiltrating into the Drain does not appear to cause significant chemical concentrations in the water which flows through the county drain.

The data do not suggest the presence of a source of TPH constituents upgradient of well MW-10. Nor does there appear to be an off-site source for the TPH constituents identified in soil and water samples obtained from wells MW-4 and MW-5 which are located downgradient of the CNG site.

1,2-dichloroethane was detected during the RI in water samples from two upgradient monitoring wells (MW-10 and MW-9) and in other on-site/downgradient wells. Well MW-10 is an off-site upgradient well. Well MW-9 is located on-site and adjacent to the eastern upgradient property boundary. The presence of 1,2-dichloroethane in these two wells and in well MW-2 during previous investigations indicates that one or more off-site sources of 1,2-dichloroethane may be contributing to the observed concentrations in other on-site/downgradient monitoring wells during this RI and previous investigations.

Pentachlorophenol was not detected during this RI in any groundwater samples on or in any soil samples collected near the water table. Therefore, the observed concentration of pentachlorophenol in the vadose zone soil sample from well MW-9 appears to be immobile, has not migrated downward through the soil, and has not contributed to degradation of local groundwater quality.

In summary, the initial and subsequent remedial excavations conducted in 1990 and 1992 appear to have adequately removed the vadose zone TPH-containing soil from the site. This excavation has effectively removed the on-site source of TPH constituents.

The effects of the county drain beneath East Decatur Avenue are preventing downgradient migration of impacted groundwater beyond the county drain. Water quality in the county drain does not exceed EPA or MTCA Surface Water Quality Criteria for aquatic organisms or human consumption of fish.

The local shallow aquifer is not used for water supply purposes and the area is served by the Municipal water supply system. Therefore, there is no exposure to contaminated groundwater.

5.0 CONCLUSION AND RECOMMENDED ACTION

The data developed during the previous investigations and this RI support the implementation of Scenario No. 1 as defined in the Agreed Order. In accordance with terms of the Order, and as appropriate based on the results of the RI, the following actions are to be taken:

- Initiate a monitoring program to assess groundwater flow direction and groundwater quality at selected wells on a quarterly basis for three years; and
- The CNG site will be considered closed and no further action will be taken if, at the end of the three-year monitoring period, the concentrations of the chemicals of concern in the wells selected for monitoring remain below MTCA Method A cleanup levels.

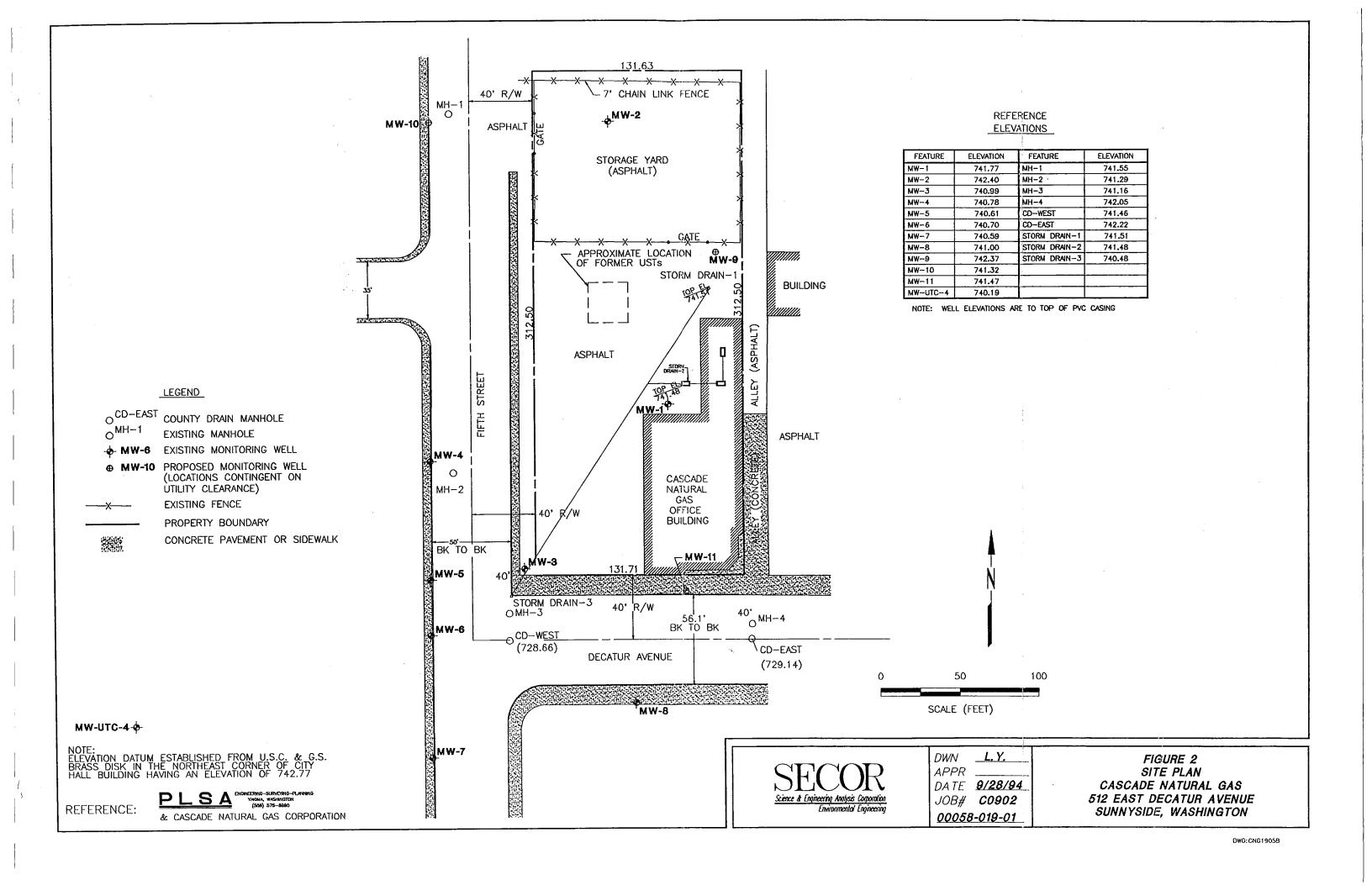
SECOR recommends monitoring water levels in wells MW-1 through MW-11, well UTC-4, and in the county drain at manholes CD-West and CD-East on a quarterly basis. We also recommend collecting water samples from wells MW-6, MW-7, and MW-8 on a quarterly basis for analysis of TPH in diesel and gasoline ranges and for the following suite of volatile organic compounds:

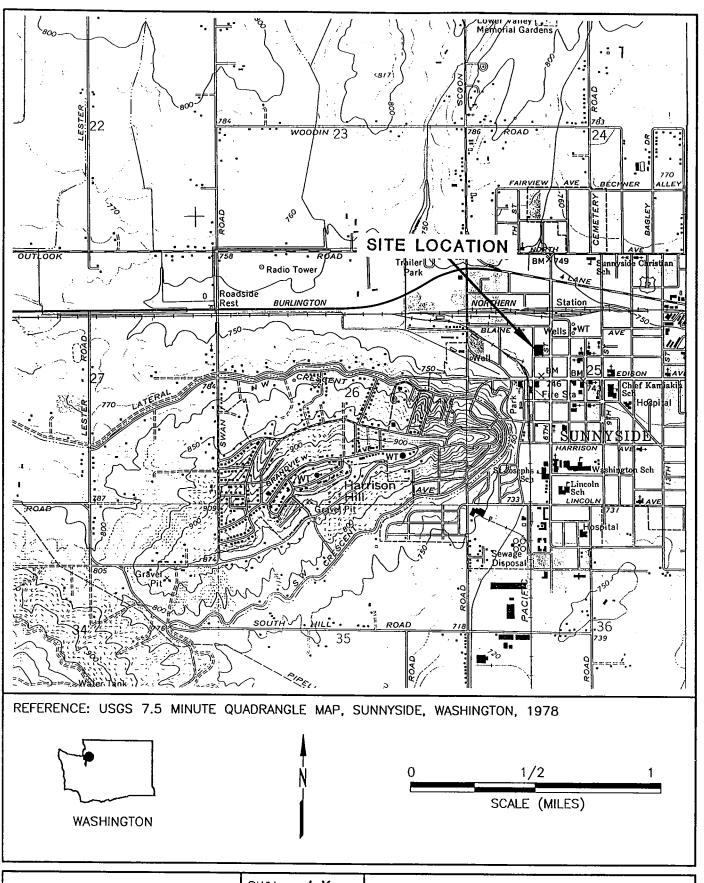
• Benzene

• Toluene

• Ethyl Benzene

Xylenes


We also recommend that the water samples from wells MW-6, MW-8, and MW-10 also be analyzed for 1,2-dichloroethane on an annual basis.

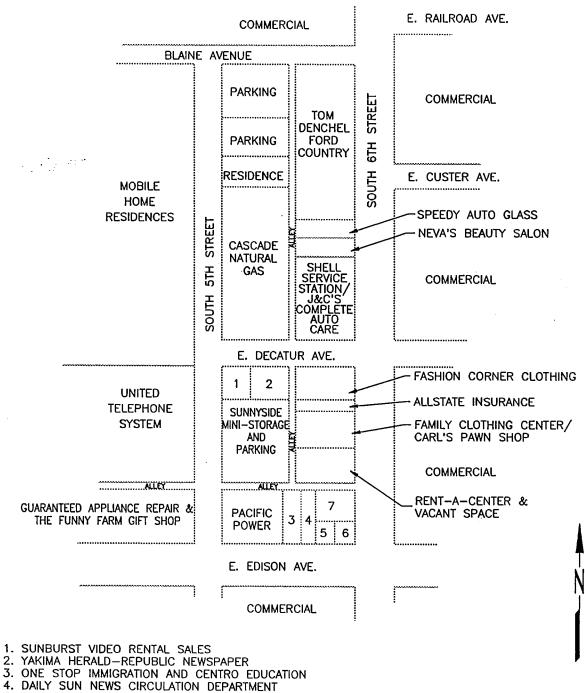

6.0 REFERENCES

- Cascade Natural Gas Corporation, August 5, 1978. Map of 512 East Decatur Facility Showing On-Site Catch Basins and the Storm Drain and County Drain Lines Beneath Decatur Avenue.
- City of Sunnyside, No Date. Sanitary Sewer Plan Map.
- City of Sunnyside, November 1976. Existing Storm Sewer Plan, General Map.
- Cochran, Mike, Washington State Department of Ecology, March 9, 1992. Personal Letter to Del Christenson of SEACOR, Bellevue, Washington.
- DRPA Incorporated and Science Applications International Corporation (SAIC), May 1991. Draft Site Hazard Assessment (SHA) Report. Cascade Natural Gas, 512 Decatur Avenue, Sunnyside, Washington Yakima County. Prepared For: Washington Department of Ecology.
- Frank, Scott, Washington Department of Health, November 17, 1992. Personal Telephone Conversation with Mark Johns of SEACOR, Bellevue, Washington.
- Kinnison, H.B. J.E Sceva, 1965. Effects of Hydraulic and Geologic Factors on Stream Flow of Yakima River Basin, Washington Geological Survey Water Supply Paper 1595.
- Kleinfelder, Inc., June 17, 1991. Report Review and Former Property Use Assessment Cascade Natural Gas Property, 512 Decatur Avenue, Sunnyside, Washington.
- La Sala, Jr., A.M. Doty, and G.C. Pearson, Jr. F.J. 1973. A Preliminary Evaluation of Regional Groundwater Flow in South Central Washington. Geological Survey Open File Report, Richland, Washington.
- SEACOR, September 30, 1991. Transmittal of Soil and Groundwater Data, Cascade Natural Gas Facility, Sunnyside, Washington.
- SEACOR, February 11, 1992. Soil Remediation Status Report, Cascade Natural Gas Facility, Sunnyside, Washington.
- SEACOR, March 24, 1992. Results of Recent Groundwater Sampling, Cascade Natural Gas Facility, Sunnyside, Washington.
- SEACOR, July 23, 1992. Revised Work Plan for Remedial Investigation ad Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation.
- SEACOR, October 16, 1992. Addendum No. 1 to the Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation.
- SEACOR, March 15, 1993. Modifications to Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation.

- SEACOR, January 21, 1994. Exhibit A Addendum Remedial Investigation and Assessment of Groundwater Remedial Alternatives.
- U.S. Geological Survey (USGS), 1978. 7.5 Minute Quadrangle Map, Sunnyside, Washington.
- Washington State Department of Ecology (Ecology), August 16, 1988. Memo to the File From Dan Locke. Field Notes. Sunnyside Contaminated Well Investigation August 8 and 9, 1988.
- White Shield, Inc., November 1990. Draft Interim Status Report Cascade Natural Gas Corp. Sunnyside, Washington. Prepared For: E.P. Johnson Construction Inc. of Kennewick, Washington.
- Witness Interviews of Floyd Clark, George Seebek, Aaron Niefer, and Perry Thompson, May 1994.

 Interviews Conducted by Attorneys From Miller, Nash, Wiener, Hager & Carlsen Attorneys and Counselors at Law.

SECOR Science & Engineering Analysis Corporation Environmental Engineering DWN L.Y.


APPR _____

DATE <u>9/29/94</u>

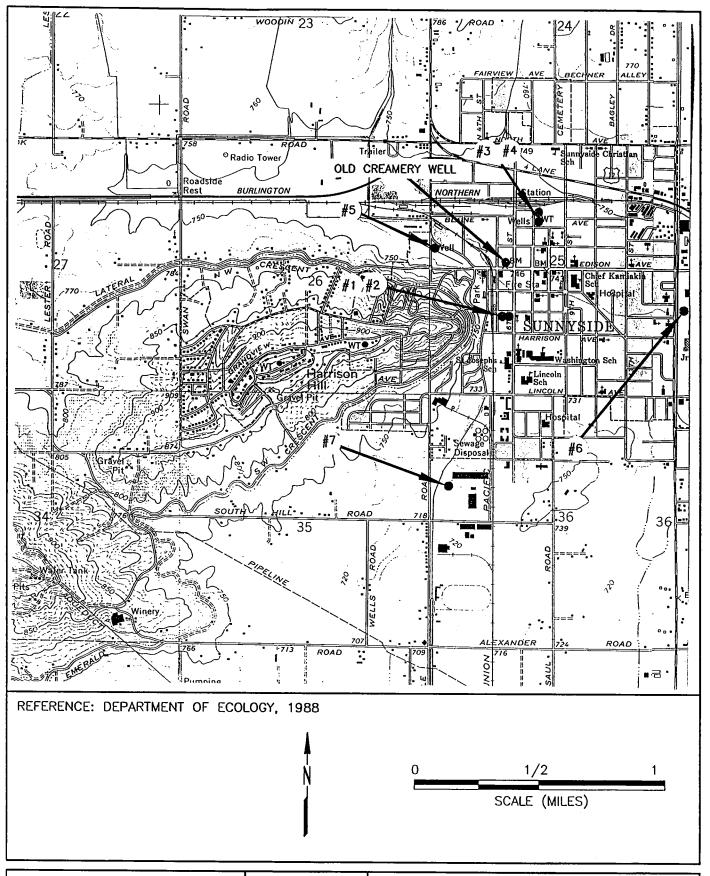
JOB# C0902

00058-019-01

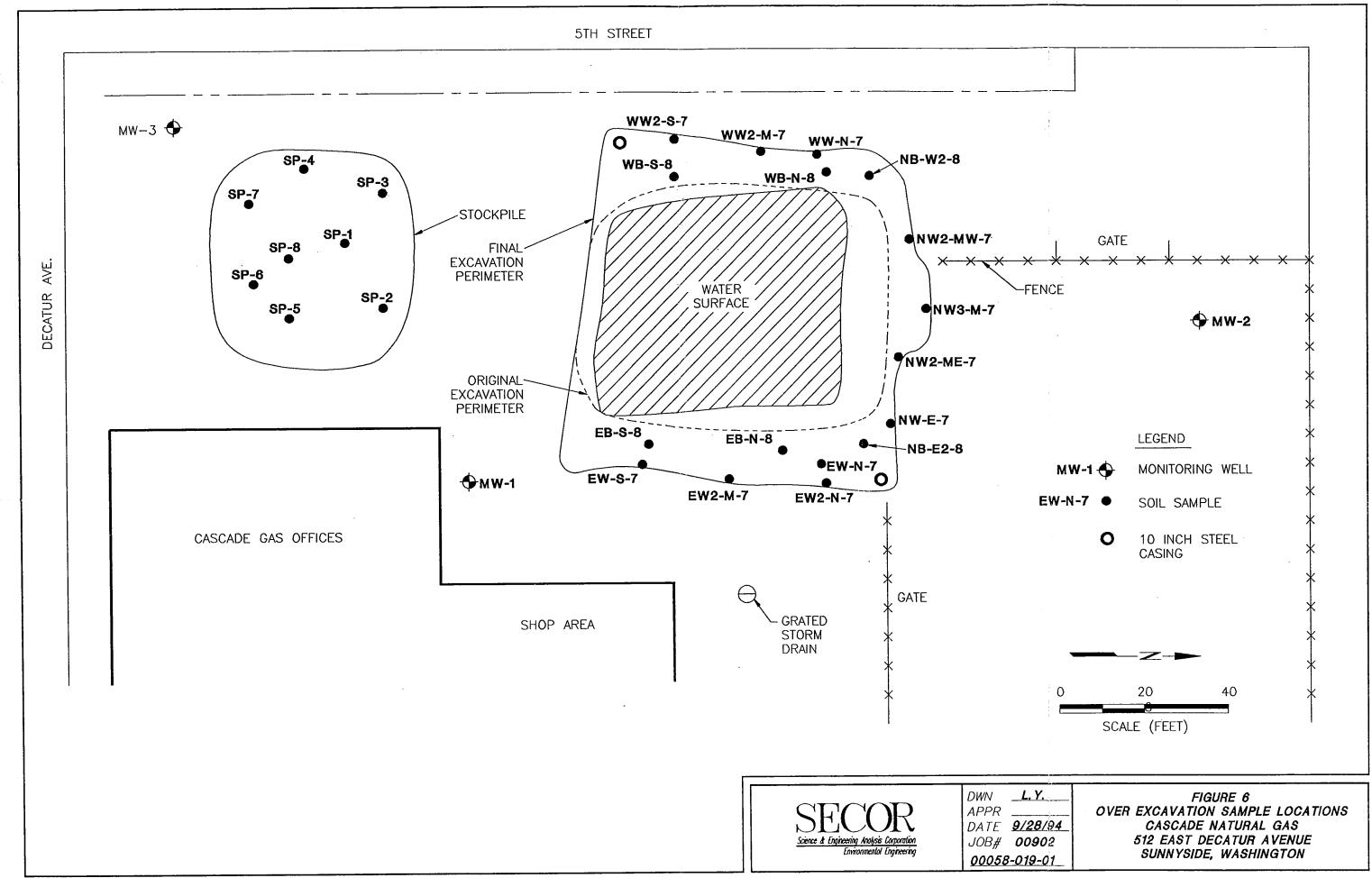
FIGURE 1
SITE LOCATION MAP
CASCADE NATURAL GAS
512 EAST DECATUR AVENUE
SUNNYSIDE, WASHINGTON

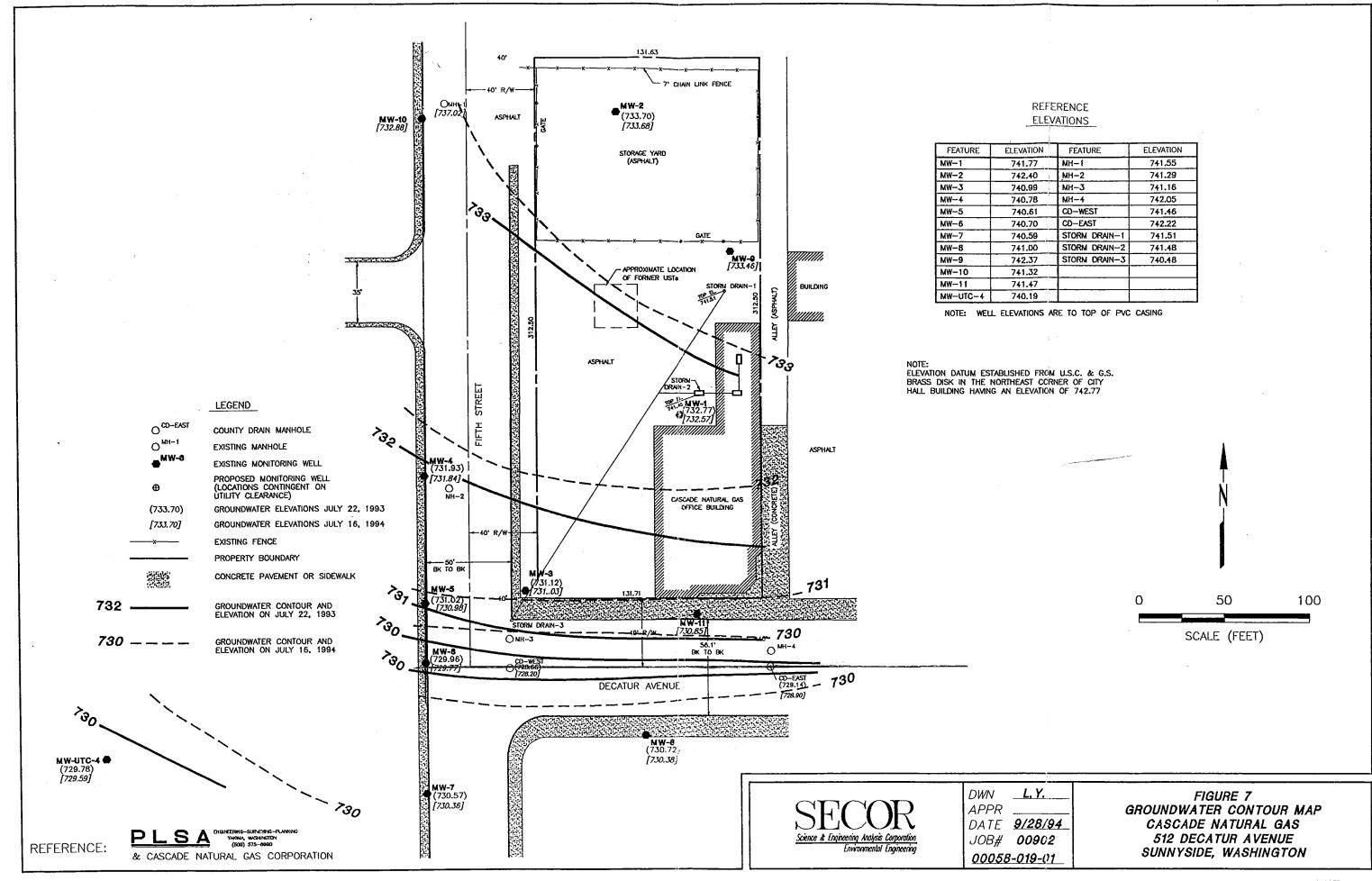
5. PRIMO BUILDERS

6. CENTURY 21 VALLEY INVESTMENT PROPERTIES


7. CRAFTERS MALL

NOT TO SCALE


DWN _L.Y. APPR DATE **9/28/94** JOB# C092 00058-019-01


FIGURE 3 LAND USE CASCADE NATURAL GAS 512 EAST DECATUR AVENUE SUNNYSIDE, WASHINGTON

SECOR
Science & Engineering Analysis Corporation
Environmental Engineering

FIGURE 4
WATER SUPPLY WELLS
CASCADE NATURAL GAS
512 EAST DECATUR AVENUE
SUNNYSIDE, WASHINGTON

TABLE 1 UST EXCAVATION

SEPTEMBER AND OCTOBER 1990

SUMMARY OF ANALYTICAL RESULTS CASCADE NATURAL GAS CORPORATION

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Sample Identification	Medium	TPH-G^ mg/kg-mg/L ^J	TPH-D ¹ mg/kg-mg/L	TPH-D1 ^c mg/kg-mg/L	TPH-D2 ^D mg/kg-mg/L	TPH-O ^r mg/kg-mg/L	Benzene ^r mg/kg-mg/l.	Tolucne [†] mg/kg-mg/l	Ethyl Benzene ^r mg/kg-mg/L	Xylenes ^r mg/kg-mg/L	1,2-Dichlereethane ^c mg/kg-mg/L	Pentachlorophenol ^H mg/kg-mg/L	Naphthalene ^H mg/kg-mg/L	2-Methylnaphthalene ^H mg/kg-mg/L	Dibenzofuran ^H mg/kg-mg/L	Butylbenzyl phthalate ^H mg/kg-mg/L	Total Lead ¹ mg/kg-mg/L
CNG #1	Soil	NAK	NA	NA	NA	20,000	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA
CNG #2	Soil	NA	41.0	NA	NA	NA	Not Available	1.1	0.3	0.0	NA	NA	NA	NA	NA	NA	NA
CNG #3	Soil	NA	NA	NA	NA	3,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CNG #4	Soil	1,230	160	NA	NA	NA	Not Available	Not Available	9	Not Available	NA	NA	NA	NA	NA	NA	NA
CNG #5	Soil	NA	NA	NA	NA	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.65
CNG #6	Soil	NA	NA	NA	NA	3,400	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
CNG #7	Soil	NA	NA	NA	NA	53,000	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
CNG #8	Soil	1,700	NA	NA	NA	NA	6	11	20	3.5	NA	NA	NA	NA NA	NA	NA	NA
CNG51B	Soil	<10 ¹ ·	239	NA	NA	NA	< 0.1	<0.1	< 0.1	< 0.1	NA	0.073	0.166	0.069	0.079	0.098	NA
CNG5	Soil	290	3,132	NA	NA	NA	0.9	0.6	12	Not Available	NA	NA	NA	NA NA	NA	NA	NA
CNGSUN A-1	Soil	95.2	326	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

Data Source: White Shield, November 1990. Only detected analytes are reported.

- A TPH-G = Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified.
- B TPH-D = Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.
- C TPH-D1 = Total Petroleum Hydrocarbons in the diesel #1 range using EPA Method 8015 Modified.
- D TPH-D2 = Total Petroleum Hydrocarbons in the diesel #2 range using EPA Method 8015 Modified.
- TPH-O = Total Petroleum Hydrocarbons in the oil range using EPA Method 418.1.
- F Volatile Organic Compounds using EPA Method 601/8010.
- G Volatile Organic Compounds using EPA Method 8240.
- H Semi-Volatile Organic Compounds using EPA Method 8270.
- I Total Lead using EPA Method 7421.
- J mg/kg for soil, mg/L for water
- K NA = Not Analyzed
- L < = Not detected at indicated limit of detection.

TABLE 1 (Con't) UST EXCAVATION

SEPTEMBER AND OCTOBER 1990

SUMMARY OF ANALYTICAL RESULTS

CASCADE NATURAL GAS CORPORATION

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Sample Identification	Medium	TPH-G^ mg/kg-mg/L/	TPH-D ^t mg/kg-mg/L	TPH-D1 ^C mg/kg-mg/L	TPH-D2 ^D mg/kg-mg/L	TPH-O ^E mg/kg-mg/L	Benzene ^r mg/kg-mg/L	Toluene ^r mg/kg-mg/l	Ethyl Benzene ^r mg/kg-mg/l,	Xylenes [†] mg/kg-mg/L	1,2-Dichlereethane ^c mg/kg-m g /L	Pentachlorophenol ^H mg/kg-mg/L	Naphthalene ^H mg/kg-mg/L	2-Methylnaphthalene ^H mg/kg-mg/L	Dibenzofuran ^H mg/kg-mg/L	Butylbenzyl phthalate ^H mg/kg-mg/L	Total Lead ¹ mg/kg-mg/L
CNGSUN B-1	Soil	NA	NA	NA	NA	1,900	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
CNGSUN A-2	Soil	186	550	NA	NA	NA	<10	<10	<10	<10	<10	NA	NA -	NA	NA	NA	NA
CNGSUN B-2	Soil	NA	NA	NA	NA	2,100	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA
CNGSUN A-3	Soil	540	2,609	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CNGSUN B-3	Soil	NA	NA	NA	NA	1,400	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
CNGSUN A-4	Soil	16	105	NA	NA	<10	<10	<10	<10	<10	<10	NA	NA	NA	NA	NA	NA
CNGSUN B-4	Soil	NA	NA	NA	NA	930	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CNGSUN A-5	Soil	255	915	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CNGSUN B-5	Soil	NA	NA	NA	NA	3,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-9	Soil	NA	NA	NA	NA	22	NA	NA	NA	NA	<0.005	NA	NA	NA	NA	NA	NA
EPJ0890-10	Soil	<1	<25	NA	NA	<2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-12	Soil	200	NA	<25	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

Data Source: White Shield, November 1990. Only detected analytes are reported.

A TPH-G = Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified.

B TPH-D = Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.

C TPH-D1 = Total Petroleum Hydrocarbons in the diesel #1 range using EPA Method 8015 Modified.

D TPH-D2 = Total Petroleum Hydrocarbons in the diesel #2 range using EPA Method 8015 Modified.

E TPH-O = Total Petroleum Hydrocarbons in the oil range using EPA Method 418.1.

F Volatile Organic Compounds using EPA Method 601/8010.

G Volatile Organic Compounds using EPA Method 8240.

H Semi-Volatile Organic Compounds using EPA Method 8270.

I Total Lead using EPA Method 7421.

J mg/kg for soil, mg/L for water

K NA = Not Analyzed
 L < = Not detected at indicated limit of detection.

TABLE 1 (Con't) UST EXCAVATION SEPTEMBER AND OCTOBER 1990

SUMMARY OF ANALYTICAL RESULTS

CASCADE NATURAL GAS CORPORATION 512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Sample Identification	Medium	TPH-G^ mg/kg-mg/L ^J	TPH-D ² mg/kg-mg/L	TPH-D1 ^C mg/kg-mg/L	TPH-D2 ^D mg/kg-mg/L	TPH-O ^t mg/kg-mg/L	Benzene ^r mg/kg-mg/L	Tolucne ^r mg/kg-mg/l	Ethyl Benzene ^r mg/kg-mg/L	Xylenes ^r mg/kg-mg/L	1,2-Dichlereethane ^c mg/kg-mg/L	Pentachlorophenol ^H mg/kg-mg/L	Naphthalene ^H mg/kg-mg/L	2-Methylnaphthalene ^H mg/kg-mg/L	Dibenzoforan ^H mg/kg-mg/L	Butylbenzyl phthalate ^H mg/kg-mg/L	Total Load ¹ mg/kg-mg/L
ЕРЈ0890-13	Water	<0.2	<5	NA	NA	15	NA	NA	NA	NA	0.054	NA	NA	NA	NA	NA	NA
ЕРЈ0890-14	Soil	41	NA	<25	210	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA
EPJ0890-15	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA
EPJ0890-17	Soil	390	<25	NA	NA	NA	NA	NA	NA	NA	0.016	NA	NA :	NA	NA	NA	NA
ЕРЈ0890-18	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-20	Soil	2,600	NA	370	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ЕРЈ0890-21	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0896-23	Soil	260	NA	<25	3,100	NA	NA	NA	NA	NA	<0.005	NA	NA	NA	NA	NA	NA
ЕРЈ0890-24	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-25	Soil	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-26	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-27	Soil	46	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA '	NA	NA	NA	NA

NOTES:

Data Source: White Shield, November 1990. Only detected analytes are reported.

- A TPH-G = Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified.
- B TPH-D = Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.
- C TPH-D1 = Total Petroleum Hydrocarbons in the diesel #1 range using EPA Method 8015 Modified.
- D TPH-D2 = Total Petroleum Hydrocarbons in the diesel #2 range using EPA Method 8015 Modified.
- E TPH-O = Total Petroleum Hydrocarbons in the oil range using EPA Method 418.1.
- F Volatile Organic Compounds using EPA Method 601/8010.
- G Volatile Organic Compounds using EPA Method 8240.
- H Semi-Volatile Organic Compounds using EPA Method 8270.
- I Total Lead using EPA Method 7421.
- J mg/kg for soil, mg/L for water
- K NA = Not Analyzed
- L < = Not detected at indicated limit of detection.

TABLE 1 (Con't) UST EXCAVATION SEPTEMBER AND OCTOBER 1990

SUMMARY OF ANALYTICAL RESULTS CASCADE NATURAL GAS CORPORATION

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Sample Identification	Medium	TPH-G^ mg/kg-mg/L ^J	TPH-D ^B mg/kg-mg/L	TPH-D1 ^C mg/kg-mg/L	TPH-D2 ^D mg/kg-mg/L	TPH-O ^E mg/kg-mg/L	Benzene ^f mg/kg-mg/L	Toluene ^r mg/kg-mg/l	Ethyl Benzene ^r mg/kg-mg/l,	Xylenes ^r mg/kg-mg/L	1,2-Dichlereethane ^g mg/kg-mg/L	Pentachlorophenol ^H mg/kg-mg/L	Naphthalene ^H mg/kg-mg/L	2-Methylnaphthalene ^H mg/kg-mg/L	Dibenzofuran ^H mg/kg-mg/L	Butylbenzyl phthalate ^K mg/kg-mg/L	Total Lead ¹ mg/kg-mg/L
ЕРЈ0890-28	Soil	220	<250	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
EPJ0890-29	Soil	NA	NA	NA	NA	<10	NA	NA	, NA	NA	· NA	NA	NA	NA	NA	NA	NA
EPJ0890-30	Soil	260	NA	<250	1,360	NA	NA	NA	NA	NA	NA	NA	NA	, NA	NA	NA	NA
EPJ0890-31	Soil	120	NA	200	340	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-32	Soil	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-33	Soil	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-34	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
ЕРЈ0890-35	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-36	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ЕРЈ0890-37	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-38	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-39	Soil	<10	NA	380	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

Data Source: White Shield, November 1990. Only detected analytes are reported.

A TPH-G = Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified.

B TPH-D = Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.

C TPH-D1 = Total Petroleum Hydrocarbons in the diesel #1 range using EPA Method 8015 Modified.

D TPH-D2 = Total Petroleum Hydrocarbons in the diesel #2 range using EPA Method 8015 Modified.

E TPH-O = Total Petroleum Hydrocarbons in the oil range using EPA Method 418.1.

F Volatile Organic Compounds using EPA Method 601/8010.

G Volatile Organic Compounds using EPA Method 8240.

H Semi-Volatile Organic Compounds using EPA Method 8270.

I Total Lead using EPA Method 7421.

J mg/kg for soil, mg/L for water

K NA = Not Analyzed

L < = Not detected at indicated limit of detection.

TABLE 1 (Con't) UST EXCAVATION SEPTEMBER AND OCTOBER 1990

SUMMARY OF ANALYTICAL RESULTS

CASCADE NATURAL GAS CORPORATION 512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Sample Identification	Medium	TPH-G ^A mg/kg-mg/L ^J	TPH-D ^B mg/kg-mg/L	TPH-D1 ^C mg/kg-mg/L	TPH-D2 ^D mg/kg-mg/L	TPH-O ^t mg/kg-mg/L	Benzene ^r mg/kg-mg/L	Toluene ^f mg/kg-mg/l	Ethyl Benzene ^s mg/kg-mg/l.	Xylenes [†] mg/kg-mg/L	1,2-Dichloroethane ^c mg/kg-mg/L	Pentachlorophenol ^H mg/kg-mg/L	Naphthalene ^H mg/kg-mg/L	2-Methylnaphthalene ^H mg/kg-mg/L	Dibenzofuran ^H mg/kg-mg/L	Butylbenzyl phthalate ^H mg/kg-mg/L	Total Lead ¹ mg/kg-mg/L
ЕРЈ0890-40	Soil	<1	<25	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-41	Soil	84	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-42	Soil	<1	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-43	Soil	NA	NA	NA	NA	<20	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA
		NA.	NA	NA	NA	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-NA
EPJ0890-44	Soil				NA 3255	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPJ0890-45	Soit	NA	NA	NA							NA	NA	NA :	NA	NA	NA	NA
EPJ0890-46	Soil	NA	NA	NA	NA	<20	NA	NA	NA	NA	NA	NA	,				
ЕРЈ0890-11	Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.003	NA	NA	NA	NA	NA	NA
ЕРЈ0890-16	Soil	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA
EPJ0890-19	Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.005	NA	NA	NA	NA	NA	NA
EPJ0890-22	Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.005	NA	ŃΑ	NA	NA	NA	NA

NOTES:

Data Source: White Shield, November 1990. Only detected analytes are reported.

A TPH-G = Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified.

B TPH-D = Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.

C TPH-D1 = Total Petroleum Hydrocarbons in the diesel #1 range using EPA Method 8015 Modified.

D TPH-D2 = Total Petroleum Hydrocarbons in the diesel #2 range using EPA Method 8015 Modified.

E TPH-O = Total Petroleum Hydrocarbons in the oil range using EPA Method 418.1.

F Volatile Organic Compounds using EPA Method 601/8010.

G Volatile Organic Compounds using EPA Method 8240.

H Semi-Volatile Organic Compounds using EPA Method 8270.

I Total Lead using EPA Method 7421.

J mg/kg for soil, mg/L for water K NA = Not Analyzed

L < = Not detected at indicated limit of detection.

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON CASCADE NATURAL GAS CORPORATION ANALYTICAL SUMMARY TABLE 2 (Con't) **APRIL 1991**

SOIL CHEMICAL ANALYSIS SUMMARY

Sample Identification	Sample Date	Benzene µg/kg	Toluene µg/kg	Ethyl Benzene µg/kg	Xylenes µg/kg	Naphthalene µg/kg	2-Methyl-Naphthalene µg/kg	Bis(2-Ethylhexyl) Phthalate µg/kg	Butylbenzyl- Phthalate µg/kg
MW #1 (13'-15')	4/11/91	1,400 ^E	260	$2,300^{\mathrm{E}}$	7,400 ^E	160	150	7607	ļ
MW #1 Duplicate (13'-15')	4/11/91	I	l	I	I	260	340²	200	140
MW #1 (18'-20')	4/11/91	l	i	I	l	l	1	210	210
MW #2 (8'-10')	4/11/91	I	l	I	ŀ	l	i	220	120
MS #2 (18-20')	4/11/91	;	I	l	ŀ	i	i	670	851
MS #3 (13'-15')	4/11/91	}	44	10	140	ł	I	1,100	220
MW #3 (18'-20')	4/11/91	ļ	1	ł	ł	1	I	6007	90,

NOTES:

Data Source: DRPA and SAIC, May 1991

--- = Analyzed but not detected.

NA = Not analyzed.

 $\mu g/kg = Micrograms$ per kilogram - equivalent to parts per billion (ppb). mg/kg = Milligrams per kilogram - equivalent to parts per million (ppm). E = Compound exceeds instrument calibration range - estimated value. J = Value is estimated because less method quantification reporting limit.

TABLE 2 APRIL 1991

ANALYTICAL SUMMARY

CASCADE NATURAL GAS CORPORATION 512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

GROUNDWATER CHEMICAL ANALYSIS SUMMARY

Sample Identification	Sample Date	Benzene (µg/l)	Ethyl Benzene (µg/l)	Toluene (µg/l)	Xylenes (µg/l)	Methylene Chloride (µg/l)
CNG-01-001-W	4/17/91	51				
CNG-02-001-W	4/17/91					***
CNG-03-001-W	4/17/91					
Trip Blank	4/17/91					53

NOTES:

Data Source: DRPA and SAIC, May 1991

--- = Analyzed but not detected.

NA = Not analyzed.

 $\mu g/l = Micrograms$ per liter - equivalent to parts per billion (ppb).

mg/l = Milligrams per liter - equivalent to parts per million (ppm).

CA5005.TBL/09/29/94 3:16pm

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON CASCADE NATURAL GAS CORPORATION ANALYTICAL SUMMARY TABLE 2 (Con't) **APRIL 1991**

SOIL CHEMICAL ANALYSIS SUMMARY

Sample	Sample	Di-n-Octyl Phthalate	Diethylphthalate	Di-n-butyl-phthalate	Acetone	Methylene Chloride	1,1-Dichloroethane	1,1,1-Trichloroethane
Identification	Date	µg/kg		µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
MW #1 (13'-15')	4/11/91		1	1	13,000E	1	I	-
MW #1 Duplicate (13'-15')	4/11/91	110	I	I	!	1	I	I
MW #1 (18'-20')	4/11/91	140	l		$3,300^{\rm E}$	$3,900^{ ext{E}}$	I	I
MW #2 (8'-10')	4/11/91	1	160	ŀ	l	I	į	i
MS #2 (18'-20')	4/11/91	l	ľ	ŀ	$12,000^{\mathrm{E}}$	7,300E	i	ŀ
MS #3 (13'-15')	4/11/91	160³	i	ŀ	65	1	7	\$
MW #3 (18'-20')	4/11/91			981	13		1	

NOTES:

Data Source: DRPA and SAIC, May 1991

--- = Analyzed but not detected.

NA = Not analyzed.

µg/kg = Micrograms per kilogram - equivalent to parts per billion (ppb).
mg/kg = Milligrams per kilogram - equivalent to parts per million (ppm).
E = Compound exceeds instrument calibration range - estimated value.
J = Value is estimated because less method quantification reporting limit.

TABLE 3
JULY AND DECEMBER 1991
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
CASCADE NATURAL GAS CORPORATION
512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Halogenated Volatile Organics ⁴ µg/L	1,2-Dichloroethane = 110 1,2-Dichloroethane = 160	ND $1,2$ -Dichloroethane = 1.4	1,2-Dichloroethane = 460 1,2-Dichloroethane = 510 Methylene Chloride = 26	Chloroform = 13
Xylenes³ µg/L	ON 11	22	310 260	Q
Ethyl Benzene³ µg/L	N 51	22	410 410	ND
Toluene³ µg/L	ND 2.4	22	3,800 290	ND
Benzene³ µg/L	ND 3.6	22	29,000 3,300	QN N
TPH-G² µg/L	130 790	150 ND	1,800,000	QN
TPH-D¹ µg/L	ND ⁵ 420°	8 B	4,200 7,500 ⁶	
Date Sampled	7/2/91 12/17/91	7/2/91 12/17/91	7/2/91 12/17/91	12/17/91
Sample Identification	MW-1	MW-2	MW-3	Rinse Blank

NOTES:

- 1 Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.
- 2 Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified.
 - Volatile Organic Compounds using EPA Method 8020.
- Halogenated Volatile Organic Compounds using EPA Method 8010. Only detected compounds are shown.
- 5 Not detected above laboratory limit of detection, see laboratory data sheets for reported limit of detection.
- The hydrocarbons present in this sample are primarily due to purgeable gasoline compounds, see laboratory report footnotes attached.
 - The hydrocarbons present in this sample are primarily due to purgeable gasoline composition analyzed. --

JANUARY 1992 五 4

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON SUMMARY OF SOIL ANALYTICAL RESULTS CASCADE NATURAL GAS CORPORATION **EXCAVATION MONITORING** (Results on a wet weight basis)

Sample Identification ¹	Approximate Depth (feet)	WTPH-D² mg/kg	WTPH-G³ mg/kg	Benzene ⁴ mg/kg	Toluene ⁴ mg/kg	Ethyl Benzene ⁴ mg/kg	Xylenes ⁴ mg/kg	VOCs	Semi-Volatiles ⁶
WN-W-7	7	ND ⁷	QN ON	QN	ON CN	QN ON	E E	8	
NW-E-7	7	N Q	Q.	Q.	N ON	N	Q.	ı	1
EW-N-7	7	11,000	6,700	Q.	12	23	240	I	Notes ⁶
EW-S-7	7	130	Q.	Q.	S S	N Q	QN QN	I	1
EW2-N-7	7	QN	Q.	Q.	N O	N ON	Q.	I	1
EW2-M-7	7	QN	ND	N Q	Q _N	N ON	QN	l	-
NW3-M-7	7	17	ND	QN QN	Q.	Q.	N ON		1
NW2-MW-7	7	ND	8	N ON	QN	QN Q	N N	1	1
NW2-ME-7	7	ND	S S	NO ON	QN QN	Q.	ON	I	1
WW2-M-7	7	N Q	N N	Q _N	S	Q _N	N Q	1	
WW2-S-7	7	NO	N Q	N Q	N Q	N Q	ND	I	-
EB-S-8	∞	2,900	4,000	3.3	N Q	23	64	ı	[
EB-N-8	8	370	1,400	ND	ND	3.4	13	ļ	I

NOTES:

- 1 WW = Westwall, EW = Eastwall, NW = Northwall, EB = East Bottom, WB = West Bottom, NB = North Bottom, N = North, E = East, S = South, M = Middle, SP = Stockpile. Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.

 - Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified. Volatile Organic Compounds using EPA Method 8020.

 Volatile Organic Compounds using EPA Method 8240. See laboratory report for results. Semi-Volatile Organics using EPA Method 8270. See laboratory report for results.
- Not detected above laboratory method detection limits.
 - --- = Not analyzed.

512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON SUMMARY OF SOIL ANALYTICAL RESULTS CASCADE NATURAL GAS CORPORATION **EXCAVATION MONITORING** (Results on a wet weight basis) (Con't) JANUARY 1992 TABL

8 80 130 ND ND 0.12	Sample Identification ¹	Approximate Denth (feet)	WTPH-D²	WTPH-G ³ mo/ko	Benzene ⁴	Toluene ⁴ ma/kg	Ethyl Benzene ⁴ mo/kg	Xylenes ⁴	ş3JUA	Semi-Volatilese
N-8 8 130 ND ND ND 0.12 — S-8 8 420 627 ND 2.1 2.4 — S-2-8 8 1,700 1,400 6.57 ND 2.7 3.1 — W2-8 8 1,100 8,500 9.8 ND 44 73 — Stockpile 82 590 ND ND ND ND — Stockpile 650 36 ND ND ND ND — Stockpile 48 21 ND ND ND ND — Stockpile 150 28 ND ND ND ND — Stockpile 75 65 ND ND ND - — Stockpile 75 65 ND ND ND - — Stockpile 75 67 ND ND ND -		(anax) wada	98	9u 9uu	Sw/Bm	Sur Sur	Sw/Sm	- Fare	500	Delli Tolatines
S-S 8 340 420 0.97 ND 2.1 2.4 — E2-S 8 1,700 1,400 0.57 ND 2.7 3.1 — W2-S 8 1,100 8,500 9.8 ND 44 73 — Stockpile 82 590 ND ND ND ND — Stockpile 650 3.6 ND ND ND ND ND Stockpile 48 2.1 ND ND ND ND ND — Stockpile 150 28 ND ND ND ND — Stockpile 75 65 ND ND ND ND — Stockpile 370 610 ND ND ND ND —	WB-N-8	∞	80	130	QN QN	N	QN QN	0.12	I	1
E2-8 8 1,700 1,400 0.57 ND 27 3.1 — W2-8 8 1,100 8,500 9.8 ND 44 73 — Stockpile 82 590 ND ND ND ND — Stockpile 650 3.4 ND ND ND ND ND Stockpile 48 2.1 ND ND ND ND — Stockpile 150 28 ND ND ND ND — Stockpile 75 65 ND ND ND — — Stockpile 370 610 ND ND 22 3.8 Notes ⁵	WB-S-8	∞	340	420	0.97	N Q	2.1	2.4	ſ	1
W2-8 8 1,100 8,500 9.8 ND 44 73 — Stockpile 82 590 ND ND ND ND — Stockpile 650 36 ND ND ND ND ND — Stockpile 48 21 ND ND ND ND — — Stockpile 150 28 ND ND ND ND — Stockpile 75 65 ND ND 0.28 ND — Stockpile 370 610 ND ND 32 38 Notes³	NB-E2-8	8	1,700	1,400	0.57	N Q	2.7	3.1	1	
Stockpile 650 36 ND ND	NB-W2-8	8	1,100	8,500	8.6	N Q	4	73	1	i
Stockpile 650 36 ND ND	SP-1	Stockpile	83	290	Q.	N Q	1.1	9.2	ł	1
Stockpile 24 ND ND ND ND Stockpile 48 21 ND ND ND Stockpile 150 28 ND ND ND Stockpile 75 65 ND ND 0.28 Stockpile 370 610 ND ND 22 3.8 Notes³	SP-2	Stockpile	920	36	QN QN	ND	ND	QN QN	Notes ⁵	Notes ⁶
Stockpile 48 21 ND ND ND ND Stockpile 150 28 ND ND ND Stockpile 75 65 ND ND 0.28 Stockpile 370 610 ND ND 2.2 3.8 Notess³	SP-3	Stockpile	24	2.4	QN QN	ND	ND QN	QN QN	I	1
Stockpile 150 28 ND ND ND Stockpile 110 100 ND ND 1.6 Stockpile 75 65 ND ND 0.28 Stockpile 370 610 ND ND 2.2 3.8 Notess³	SP-4	Stockpile	48	21	QN QN	N Q	ND	S S	I	4
Stockpile 110 ND ND 0.20 1.6 — Stockpile 75 65 ND ND 0.28 — Stockpile 370 610 ND 2.2 3.8 Notess³	SP-5	Stockpile	150	28	Q.	N Q	N Q	R	I	1
Stockpile 75 65 ND ND 0.28 Stockpile 370 610 ND ND 2.2 3.8 Notes ⁵	SP-6	Stockpile	110	100	Q.	QN QN	0.20	1.6	l	-
Stockpile 370 610 ND ND 2.2 3.8 Notes ⁵	SP-7	Stockpile	75	65	N ON	QN QN	N Q	0.28	l	1
	SP-8	Stockpile	370	610	QN	ND QN	2.2	3.8	Notes ⁵	Notes ⁶

NOTES:

¹ WW = Westwall, EW = Eastwall, NW = Northwall, EB = East Bottom, WB = West Bottom, NB = North Bottom, N = North, E = East, S = South, M = Middle, SP = Stockpile.

Total Petroleum Hydrocarbons in the diesel range using EPA Method 8015 Modified.

Total Petroleum Hydrocarbons in the gasoline range using EPA Method 8015 Modified. Volatile Organic Compounds using EPA Method 8020. Volatile Organic Compounds using EPA Method 8240. See laboratory report for results.

Semi-Volatile Organics using EPA Method 8270. See laboratory report for results.

Not detected above laboratory method detection limits.

^{-- =} Not analyzed.

TABLE 6 REMEDIAL INVESTIGATION

SUMMARY OF WATER ANALYSES CASCADE NATURAL GAS CORPORATION 512 EAST DECATUR AVENUE, SUNNYSIDE WASHINGTON

Sample Identification	Sample Date	TPH-G (A) ug/L	TPH-D (B) ug/L	Acetone (C) ug/L	1,2-Dichloroethane (C) ug/L	Benzene (C) ug/L	Ethylbenzene (c) ug/L	Toluene (C) ug/L	Xylenes (C) ug/L	2 Methylnaphthalene (D) ug/L	Naphthalene (D) ug/L
MW-1	7/21/93	330	300	Not analyzed	Not analyzed	3.2	1	9	4	Not analyzed	Not analyzed
MW-1	7/16/94	Not analyzed	Not analyzed	<400 (F)	120	<1.0	<20	<20	< 10	<10	< 16
MW-12 (E)	7/16/94	Not analyzed	Not analyzed	< 400	120	<1.0	<20	<20	<10	<10	<16
MW-2	7/21/93	< 50	<250	Not analyzed	Not analyzed	<0.50	< 0.50	<0.50	< 0.50	Not analyzed	Not analyzed
MW-2	7/16/94	Not analyzed	Not analyzed	< 400	<2.0	<1.0	<20	<20	<10	<10	<16
MW-3	7/21/93	5200	7900(D-1)	Not analyzed	Not analyzed	2900	260	240	280	Not analyzed	Not analyzed
MW-3	7/16/94	Not analyzed	Not analyzed	< 80000	460	2600	<4000	< 4000	<2000	27	120
MW-3	8/5/94	Not analyzed	Not analyzed	51	400	2300	330	220	22 0	Not analyzed	Not analyzed
MW-4	7/21/93	4100	1200(D-1)	Not analyzed	Not analyzed	120	7.6	95	65	Not analyzed	Not analyzed
MW-4	7/16/94	Not analyzed	Not analyzed	< 400	27	110	59	<20	42	<10	<16
MW-5	7/21/93	57 00	1100(D-1)	Not analyzed	Not analyzed	78	26	180	240	Not analyzed	Not analyzed
MW-6	7/21/93	<50	<250	Not analyzed:	Not analyzed	<0.50	< 0.50	< 0.50	<1.0	Not analyzed	Not analyzed
MW-7	7/21/93	< 50	<250	Not analyzed	Not analyzed	<0.50	< 0.50	<0.50	<1.0	Not analyzed	Not analyzed
MW-8	7/21/93	<50	<250	Not analyzed	Not analyzed	<0.50	< 0.50	<0.50	<1.0	Not analyzed	Not analyzed
MW-9	7/16/94	75	5100 (D-1)	< 400	10	<1.0	<20	<20	<10	<10	<16
MW-10	7/16/94	<50	<250	< 400	3.2	<1.0	<20	<20	<10	<10	<16
MW-11	7/16/94	< 50	<250	< 400	11	<1.0	<20	<20	<10	<10	<16
MH-1	7/16/94	<50	360	< 400	<2.0	<1.0	<20	<20	<10	<10	<16
CD-WEST	7/21/93	< 50	<250	Not analyzed	Not analyzed	2.7	< 0.50	1.2	<1.0	Not analyzed	Not analyzed
CD-WEST	8/5/94	Not analyzed	Not analyzed	< 400	<2.0	30	18	<20	<5.0	Not analyzed	Not analyzed
CD-EAST	7/21/93	<50	<250	Not analyzed	Not analyzed	< 0.50	< 0.50	0.73	< 0.50	Not analyzed	Not analyzed
CD-EAST	8/5/94	Not analyzed	Not analyzed	< 400	<2.0	<2.0	<5.0	<20	<5.0	Not analyzed	Not analyzed
Rinsate Blank	7/22/93	< 50	<250	Not analyzed	Not analyzed	< 0.50	< 0.50	< 0.50	<1.0	Not analyzed	Not analyzed
Blank(method)	7/21-22/93 batch	< 50	<250	Not analyzed	Not analyzed	< 0.50	< 0.50	< 0.50	<1.0	Not analyzed	Not analyzed
Blank(trip)	7/21-22/93 batch	Not analyzed	Not analyzed	Not analyzed	Not analyzed	< 0.50	< 0.50	< 0.50	<1.0	Not analyzed	Not analyzed
Blank(trip)	7/16/94 batch	Not analyzed	Not analyzed	< 400	<2.0	<1.0	<20	<20	< 10	<10	<16
Blank(trip)	8/5/94 batch	Not analyzed	Not analyzed	< 400	<2.0	< 2.0	< 5.0	< 5.0	< 5.0	Not analyzed	Not analyzed

All analyses by North Creek Analytical of Bothell, Washington.

Only those analytes that were detected at or above the reporting limits are shown. See the laboratory report for full analyte suite.

A. Total petroleum hydrocarbons in the gasoline range using Washington State Method WTPH-G.

B. Total petroleum hydrocarbons in the diesel range using Washington State Method WTPH-D.

C. Volatile organic compounds using EPA Method 8240 for 1994 samples and EPA Method 8020 for 1993 samples.

D. Semi-volatile organic compounds using EPA Method 8270.

E. Sample MW-12 is a blind field duplicate of sample MW-1.

F. Values identified with "<" are not detected at the indicated reporting limit.

TABLE 5
REMEDIAL INVESTIGATION

SUMMARY OF SOIL ANALYSES

CASCADE NATURAL GAS CORPORATION

512 EAST DECATUR AVENUE, SUNNYSIDE WASHINGTON

Sample Identification	Sample Depth (feet)	Sample Date	TPH-G (A) mg/Kg	TPH-D (B) mg/Kg	Volatile organic compounds (C) mg/Kg	Pentachlorophenol (D) mg/Kg	Benzene (E) mg/Kg	Toluene (E) mg/Kg	Ethyl benzene (E) mg/Kg	Xylenes (E) mg/Kg
MW-4	9.5-10.0	7/20/93	3.7	<10 (f)	Not Analyzed	Not Analyzed	0.54	<0.050	0.079	<1.0
MW-5	13.5-14.0	7/20/93	78	<10	Not Analyzed	Not Analyzed	< 0.050	< 0.050	0.12	<1.0
MW-6	9.0-9.5	7/20/93	<1.0	<10	Not Analyzed	Not Analyzed	<0.050	< 0.050	<0.050	<1.0
MW-7	10.0-10.5	7/20/93	<1.0	<10	Not Analyzed	Not Analyzed	<0.050	<0.050	<0.050	<1.0
MW-8	9.0-9.5	7/20/93	<1.0	<10	Not Analyzed	Not Analyzed	<0.050	<0.050	<0.050	<1.0
MW-9-4.5	4.5-5	7/15/94	<50	<100	None detected	5.2	<0.25	<20	<10	<10
MW-9-10.5-11.0	10.5-11	7/15/94	<50	< 100	None detected	<4.0	<0.25	<20	<10	<10
MW-10-4.5-5.0	4.5-5	7/15/94	<50	<100	None detected	<4.0	<0.25	<20	<10	<10
MW-10-9.5-10	10-10.5	7/15/94	< 50	<100	None detected	<4.0	<0.25	<20	<10	<10
MW-11-5.0-5.5	4.5-5	7/15/94	<50	<100	None detected	<4.0	<0.25	<20	<10	<10
MW-11-10.5-11.	10-10.5	7/15/94	<50	<100	None detected	<4.0	<0.25	<20	<10	<10
BLANK	-	_	<50	<100	None detected	<0.25 <4.0	<20 <0.25	<10 <20	<10 <10	<10

Notes:

All analyses by North Creek Analytical of Bothell, Washington.

Only those analytes that were detected at or above the reporting limits are shown. See the laboratory report for full analyte suite.

- A. Total petroleum hydrocarbons in the gasoline range using Washington State Method WTPH-G.
- B. Total petroleum hydrocarbons in the diesel range using Washington State Method WTPH-D.
- C. Volatile organic compounds using EPA Method 8240. Variable detection limits as shown on the laboratory reports.
- D. Semi-volatile organic compounds using EPA Method 8270.
- E. Benzene, toluene, ethyl benzene and xylenes using EPA Method 8240 for 1994 samples and EPA Method 8020 for 1993 samples.
- F. Values indentified with "<" are not detected at the indicated reporting limit.

TABLE 7 REMEDIAL INVESTIGATION

SUMMARY OF WATER LEVEL DATA CASCADE NATURAL GAS CORPORATION 512 EAST DECATUR AVENUE, SUNNYSIDE WASHINGTON

Well		Reference Elevation (a)	Depth to Water	Water Elevation	
Number	Date	(feet)	(feet)	(feet)	Comments
MW-1	7/01/02	741.77	8.97	732.80	
MW-1	7/21/93	741,77 741,77	9.00	732.77	
	7/22/93			732.57	
	7/16/94	741.77	9.20	132.31	
MW-2	7/21/93	742.40	8.65	733.75	
	7/22/93	742.40	8.70	733.70	
	7/16/94	742.40	8.72	733.68	
MW-3	7/21/93	740.99	9.84	731.15	Odor and sheen
W144-3	7/21/93	740.99	9.87	731.12	Odor and sheen
	7/16/94	740.99	9.96	731.03	
MW-4	7/21/93	740.78	8.84	731.94	Odor and sheen
	7/22/93	740.78	8.85	731.93	Odor and sheen
	7/16/94	740.78	8.94	731.84	
MW-5	7/21/93	740.61	9.56	731.05	Odor and sheen
	7/22/93	740,61	9.59	731.02	Odor and sheen
ı	7/16/94	740.61	9.63	730.98	
NOW C	7/01/02	740.70	10.73	729.97	
MW-6	7/21/93		10.74	729.96	
	7/22/93	740.70	10.74	729.77	
	7/16/94	740.70	10.93	125.11	
MW-7	7/21/93	740.59	9.98	730.61	
	7/22/93	740.59	10.02	730.57	
	7/16/94	740.59	10.23	730.36	
MW-8	7/21/93	741.19	10.42	730.77	
14144-9	7/22/93	741.19	10.42	730.72	
	7/16/94	741.19	10.62	730.57	
				500 t/	
MW-9	7/16/94	742.37	8.91	733.46	
MW-10	7/16/94	741.32	8.44	732.88	
MW-11	7/16/94	741.47	10,62	730.85	
CD-East	7/21/93	742.22	13.32	728,90	
	7/22/93	742.22	13.08	729.14	
CD- West	7/21/93	741.46	12.81	728.65	
SD: 11681	7/22/93	741.46	12.80	728.66	Sheen
UTC-4	7/21/93	740.19	10.38	729.81	
" '	7/22/93	740.19	10.41	729.78	
1	7/16/94	740.19	10.60	729.59	

⁽a) Elevations are referenced to top of easing and were surveyed to USGS datum by PLSA Engineering & Surveying of Yakima, Washington. Except for wells MW-9, MW-10 and MW-11, which were surveyed by SECOR relative to PLSA benchmarks.

APPENDIX A AGREED ORDER AND WORK PLAN ATTACHMENTS

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

106 South 6th Ave. • Yakima, Washington 98902-3387 • (509) 575-2490

APR 06 1994

CERTIFIED MAIL

P 371 103 073

Mr. Ralph E. Boyd Vice President Cascade Natural Gas Corporation 222 Fairview Avenue North Seattle, WA 98109

Dear Mr. Boyd:

Agreed Order for Cascade Natural Gas, RE: Sunnyside, Washington

Please find enclosed two copies of the Agreed Order No. DE 94TC-C165 for conducting a Remedial Investigation/Feasibility Study at the Sunnyside, Washington, Cascade Natural Gas Facility. Please sign the signature pages and return them to me at our Yakima office, at the above address. Once you have signed the Orders, Tony Grover, the Section Manager, will sign and date stamp. CNG copy will then be returned.

We will expect to receive the signed Agreed Order no later than April 15, 1994.

Thank you for your cooperation in this matter. If you have any question concerning this matter, please feel free to contact me at (509) 454-7834.

and the same

Sincerely,

Donald W. Abbott

Site Manager

Toxics Cleanup Program

DWA: vw g:\cvrltr.cng

Enclosures

Jerry Ackerman, AAG, Lacey Jim Chulos, TCP-CRO Thomas Lindley, Attorney Miller, Nash, Wiener, Hager & Carlsen

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

In the Matter of Remedial Action by:)
CASCADE NATURAL GAS CORPORATION) AGREED ORDER
) No. DE 94TC-C165

TO: Ralph E. Boyd
Cascade Natural Gas Corporation
222 Fairview Avenue North
Seattle, Washington 98109

I.

Jurisdiction

This Agreed Order ("Order") is issued pursuant to the authority of Revised Code of Washington (RCW) 70.105D.050(1).

II.

Findings of Fact

The Department of Ecology (Ecology) makes the following Findings of Fact, without admission of such facts by Cascade Natural Gas Corporation (CNG).

- 2.1. CNG presently owns property located on 512 East Decatur Avenue, Sunnyside, Washington ("Site"); it leased that property from 1969 to 1979, and has owned it since 1979. The County of Yakima ("County") is one of the former owners of the Site, and the County owned the property, from at least 1928 through 1955, operating it as a public works shop and equipment yard.
- 2.2. Beginning at least by 1936, two to four underground storage tanks ("USTs") were located on this Site. The County originally installed and operated at least two, and perhaps three, of these USTs, one for gasoline and one or two for diesel fuel; the County's ownership and operation of these USTs continued until 1956. When it vacated the Site, the County left all of its USTs buried at the Site. It is unclear whether one, two, or three USTs were still in operation when the County left the Site.

- 2.3. From 1956 to 1969 two automobile sales and service operations ("Dealers") occupied the Site. It is unclear as to which, if any, of the USTs were utilized by the Dealers. One or two of the USTs may have been used to store fuel to heat the on-site buildings from the mid-1950s until the mid-1960s, when the building was then converted to gas and electric heat. In 1960, a fourth UST, for gasoline, was installed near the three older USTs. By the mid-1960s, it is certain that all other USTs had ceased to be used, but all remained at the Site. In the mid-to-late 1960s the Site was wholly covered with asphalt, leaving only the dispenser for the newest gasoline UST visible. Each Dealer ultimately left the Site, and all apparently have ceased to exist.
- 2.4. In 1969 CNG began leasing the Site. In 1979 CNG purchased the Site. CNG staff have submitted statements that diesel fuel was never used at the Site. CNG did use the new gasoline UST from 1969 until 1988. In 1990, to comply with Washington's new UST regulations, CNG retained a contractor to excavate the one UST of which CNG was aware. At that point CNG discovered the remaining three other USTs, and also learned, for the first time, that both soil and groundwater beneath the Site contained gasoline, diesel, volatile, and semi-volatile organic compounds at levels above those that require remedial action under Washington's applicable regulations.
- 2.5. On February 12, 1991, CNG, as the Site's current owner, was notified that Ecology intended to conduct a site hazard assessment to determine whether further remedial efforts were required and to rank the Site under the Washington Ranking Method as a means of prioritizing the Site for cleanup. On August 16, 1991, Ecology notified CNG that Ecology had completed its assessment and ranking process, and that on a scale of 1 (highest priority) to 5 (lowest priority) had assigned the Site a #1 based on conditions then existing at the Site. Those conditions have since changed by virtue of CNG's actions.
- 2.6. CNG has voluntarily undertaken activities to investigate and remediate the contamination. CNG has removed and remediated soil contaminated by petroleum hydrocarbons at the Site and CNG has begun the investigation of potential diesel, gasoline, and volatile organic compounds contaminating the groundwater at the Site through

the installation of monitoring wells and storm drain and sewer line monitoring.

- 2.7. Documentation of the presence of contaminated soil and groundwater in the vicinity of CNG, located at 512 East Decatur Avenue in Sunnyside, Washington, is contained in the following reports which are on file at the Department of Ecology's Central Regional Office:
 - a. Draft Interim Status Report, Cascade Natural Gas Corporation Sunnyside Operation, White Shield Inc., November 1990.
 - b. Draft Site Hazard Assessment (SHA) Report, Cascade Natural Gas Corporation, DPRA Inc. For Washington Department of Ecology, May 1991.
 - c. Soil Remediation Status Report, Cascade Natural Gas Facility, Sunnyside, Washington, SEACOR, February 1992.
- 2.8. The continued presence of contamination in soils and groundwater at the Site presents an ongoing threat to human health and the environment.

III. Ecology Determinations

- 3.1. CNG is an "owner or operator" as defined in RCW 70.105D.020(6) of a "facility" as defined in RCW 70.105D.020(3).
- 3.2. The facility is known as the Cascade Natural Gas Facility and is located at 512 East Decatur Avenue, Sunnyside, Washington.
- 3.3. The substances found at the facility as described above are "hazardous substances" as defined in RCW 70.105D.020(5).

- 3.4. Based on the presence of these hazardous substances at the facility and all factors known to Ecology, there is a release or threatened release of hazardous substances from the facility, as defined in RCW 70.105D.020(10).
- 3.5. By letter dated March 6, 1992, due to CNG's status as current owner/operator of the Site, Ecology notified CNG of its status as a "potentially liable person" under RCW 70.105D.040 after notice and opportunity for comment.
- 3.6. Pursuant to RCW 70.105D.030(1) and 70.105D.050, Ecology may require potentially liable persons to investigate or conduct other remedial actions with respect to the release or threatened release of hazardous substances, whenever it believes such action to be in the public interest.
- 3.7. Based on the foregoing facts, Ecology believes the remedial action required by this Order is in the public interest. Ecology has determined that CNG must take remedial actions at the Site, as set forth below.

IV.

Work to be Performed

Based on the foregoing Facts and Determinations, it is hereby ordered that CNG take the following remedial actions and that these actions be conducted in accordance with Chapter 173-340 WAC unless otherwise specifically provided for herein.

- 4.1. CNG will perform those Remedial Investigation/
 Feasibility Study ("RI/FS") actions, set forth and described in the attached Work Plan, Schedule, and Addendum (the "Work Plan"); those documents are attached to this Order as Exhibit A. Exhibit A is incorporated by this reference and is an integral and enforceable part of this Order.
 - a. The RI/FS will collect, develop, and evaluate sufficient information regarding the Site to enable the selection of any remaining cleanup actions. To collect sufficient information, the Work Plan's product will consist of general facility information, field

investigations of surface water and sediments, soils, geology and groundwater system characteristics, air issues, if any, land use, natural resources and ecology, as well as work plans. The RI/FS will be implemented to meet the requirements of WAC 173-340-350 (State Remedial Investigation and Feasibility Study).

- b. According to the attached Schedule of Work, CNG will develop and submit to Ecology for approval a Quality Assurance/Quality Control ("QA/QC") Plan in accordance with the Ecology Guidelines and Specifications for Preparing Quality Assurance Project Plans (May 1991). No sampling may be conducted prior to Ecology approval of the QA/QC Plan.
- c. Ecology recognizes that considerable work has been completed toward characterizing the Site. Data collected from previous investigations should be incorporated into the RI/FS to prevent the duplication of any tasks required in the Work Plan.
- 4.2. Results from sampling shall be provided to Ecology's project coordinator upon receipt from the laboratory.
- 4.3. Written progress reports shall be submitted to Ecology on behalf of CNG on a timely basis during the RI phase of the investigation. If Ecology determines that the reports are not being submitted on a timely basis, Ecology will verbally notify the PLP's project coordinator. Thereafter, if the timeliness of subsequent reporting does not satisfy Ecology, Ecology may in writing direct a specific frequency for reporting.
- 4.4. CNG shall immediately notify Ecology by telephone of any unexpected delays in construction.
- 4.5. In accordance with WAC 173-340-840(5), ground water sampling data shall be submitted according to Exhibit B: SITE DESCRIPTION AND SAMPLE DATA SUBMITTAL REQUIREMENTS. These submittals shall be provided to Ecology as required under the schedule established in Exhibit A. Exhibit B is incorporated by this reference and is an integral and enforceable part of this Order.

v.

Terms and Conditions of Order

- 5.1. <u>Definitions</u>. Unless otherwise specified, the definitions set forth in Chapter 70.105D RCW and Chapter 173-340 WAC shall control the meanings of the terms used in this Order.
- 5.2. <u>Public Notices.</u> RCW 70.105D.030(2)(a) requires that, at a minimum, this Order be subject to concurrent public notice. Ecology shall be responsible for providing such public notice and reserves the right to modify or withdraw any provisions of this Order should public comment disclose facts or considerations which indicate to Ecology that the Order is inadequate or improper in any respect.
- 5.3. Remedial Action Costs. CNG shall pay to Ecology costs incurred by Ecology pursuant to this Order. These costs shall include work performed by Ecology or its contractors for investigations, remedial actions, and Order preparation, oversight and administration. Ecology costs shall include costs of direct activities and support costs of direct activities as defined in WAC 173-340-550(2). shall pay the required amount within ninety (90) days of receiving from Ecology an itemized statement of costs that includes a summary of costs incurred, an identification of involved staff, and the amount of time spent by involved staff members on the project. A general description of work performed will be provided upon request. Itemized statements shall be prepared quarterly. Failure to pay Ecology's costs within 90 days of receipt of the itemized statement of costs will result in interest charges.

5.4. <u>Designated Project Coordinators</u>. The Project Coordinator for Ecology is:

Name:

Donald W. Abbott

Address:

106 South 6th. Avenue

Yakima Washington, 98902-3387

Phone:

(509) 454-7834

The Project Coordinator for CNG is:

Name:

Ralph Boyd

Address:

Cascade Natural Gas Corporation

222 Fairview Avenue

Seattle, Washington 98109

Phone:

(206) 624-3900

The project coordinators shall be responsible for overseeing the implementation of this Order. To the maximum extent possible, communications between Ecology and CNG, and all documents, including reports, approvals, and other correspondence concerning the activities performed pursuant to the terms and conditions of this Order, shall be directed through the project coordinators. Should Ecology or CNG change project coordinators, written notification shall be provided to Ecology or CNG at least ten (10) calendar days prior to the change.

5.5. <u>Performance</u>. All work performed pursuant to this Order shall be under the direction and supervision, as necessary, of a professional engineer or hydrogeologist, or similar expert, with appropriate training, experience, and expertise in hazardous waste site investigation and cleanup. This person, as of the date of this Order, is:

Name:

Del Christensen

Address:

SEACOR

11040 Main Street, Suite 240 Bellevue, Washington 98004

Phone:

(206) 646-0280

CNG shall notify Ecology as to the identity of such engineer(s) or hydrogeologist(s), and of any contractors and subcontractors to be used in carrying out the terms of this Order, in advance of their involvement at the Site.

- 5.6. Access. Ecology or any Ecology authorized representative shall have the authority to enter and freely move about the Site at all reasonable times for the purposes of, inter alia: inspecting records, operation logs, and contracts related to the work being performed pursuant to this Order; reviewing the progress in carrying out the terms of this Order; conducting such tests or collecting samples as Ecology or the project coordinator may deem necessary; using a camera, sound recording, or other documentary type equipment to record work done pursuant to this Order; and verifying the data submitted to Ecology by CNG. this Agreed Order, CNG agrees that this Order constitutes reasonable notice of access, and agrees to allow access to the Site at all reasonable times for purposes of overseeing work performed under this Order. All parties with access to the Site pursuant to this paragraph shall comply with approved health and safety plans. Ecology shall allow split or replicate samples to be taken by CNG during an inspection unless doing so interferes with Ecology's sampling. shall allow split or replicate samples to be taken by Ecology and shall provide seven (7) days notice before any sampling activity.
- 5.7. <u>Public Participation</u>. CNG shall prepare and/or update a public participation plan for the site. Ecology shall maintain the responsibility for public participation at the Site. CNG shall help coordinate and implement public participation for the Site.
- 5.8. Retention of Records. CNG shall preserve in a readily retrievable fashion, during the pendency of this Order and for ten (10) years from the date of completion of the work performed pursuant to this Order, all records, reports, documents, and underlying data in its possession relevant to this Order. Should any portion of the work performed hereunder be undertaken through contractors or agents of CNG, then CNG agrees to include in their contract with such contractors or agents a record retention requirement meeting the terms of this paragraph.

- 5.9. Dispute Resolution. CNG may request Ecology to resolve disputes which may arise during the implementation of this Order. Such requests shall be in writing and directed to the signatory, or his/her successor(s), to this Order. Ecology resolution of the dispute shall be binding and final. CNG is not relieved of any requirement of this Order during the pendency of the dispute and remains responsible for timely compliance with the terms of the Order unless otherwise provided by Ecology in writing.
- 5.10. Reservation of Rights/No Settlement. This Agreed Order is not a settlement under Chapter 70.105D RCW. Ecology's signature on this Order in no way constitutes a covenant not to sue or a compromise of any Ecology rights or authority. Ecology will not, however, bring an action against CNG to recover remedial action costs paid to and received by Ecology under this Agreed Order. In addition, Ecology will not take additional enforcement actions against CNG to require those remedial actions required by this Agreed Order, provided CNG complies with this Agreed Order.

Ecology reserves the right, however, to require additional remedial actions at the Site should it deem such actions necessary.

Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the releases or threatened releases of hazardous substances from the Cascade Natural Gas Corporation Site.

By entering into this Order, CNG agrees not to petition Ecology for reimbursement of costs incurred in complying with this Order. This agreement does not constitute a waiver of any right of action that CNG may have against any party other than Ecology. This agreement is not intended to affect or prejudice any such rights of action. CNG expressly reserves its rights to seek to recover any costs previously incurred in investigating or remediating the Site, or specifically incurred in implementing this Order, from any other potentially liable party, including the County.

In the event Ecology determines that conditions at the Site are creating or have the potential to create a danger to the health or welfare of the people on the Site or in the surrounding area or to the environment, Ecology may order CNG to stop further implementation of this Order for such period of time as needed to abate the danger.

Ecology and CNG may modify this Order by mutual written agreement.

5.11. Transference of Property. No voluntary or involuntary conveyance or relinquishment of title, easement, leasehold, or other interest in any portion of the Site shall be consummated by CNG without provision for continued implementation of all requirements of this Order and implementation of any remedial actions found to be necessary as a result of this Order.

Prior to transfer of any legal or equitable interest CNG may have in the Site or any portions thereof, CNG shall serve a copy of this Order upon any prospective purchaser, lessee, transferee, assignee, or other successor in such interest. At least thirty (30) days prior to finalization of any transfer, CNG shall notify Ecology of the contemplated transfer.

5.12. <u>Compliance with Other Applicable Laws.</u> All actions carried out by CNG pursuant to this Order shall be done in accordance with all applicable federal, state, and local requirements.

VI.

Satisfaction of this Order

The provisions of this Order shall be deemed satisfied upon CNG's receipt of written notification from Ecology that CNG has completed the remedial activity required by this Order, as amended by any modifications, and that all other provisions of this Agreed Order have been complied with.

VII.

Enforcement

- 7.1. Pursuant to RCW 70.105D.050, this Order may be enforced as follows:
 - A. The Attorney General may bring an action to enforce this Order in a state or federal court.
 - B. The Attorney General may seek, by filing an action, if necessary, to recover amounts spent by Ecology for investigative and remedial actions and Orders related to the Site.
 - C. In the event CNG refuses, without sufficient cause, to comply with any term of this Order, CNG will be liable for:
 - (1) up to three times the amount of any costs incurred by the state of Washington as a result of its refusal to comply; and

(2) civil penalties of up to \$25,000 per day for each day it refuses to comply.

D. This Order is not appealable to the Washington Pollution Control Hearings Board. This Order may be reviewed only as provided under Section 6 of Chapter 70.105D RCW.

Effective date of this Order:

CASCADE NATURAL GAS CORPORATION

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Ralph E. Boyd

Vice President

Anthony W. Grover Section Manager

Toxics Cleanup Program

Central Regional Office

AWG: DWA: VW g:\don\agord.cng

EXHIBIT A

REVISED WORK PLAN FOR REMEDIAL INVESTIGATION AND ASSESSMENT OF GROUNDWATER REMEDIATION ALTERNATIVES FOR

CASCADE NATURAL GAS CORPORATION

512 Decatur Avenue Sunnyside, Washington

Submitted by **SEACOR**

For Mr. Tom Lindley Miller, Nash, Wiener, Hager & Carlsen 3500 U.S. Bancorp Tower 111 S.W. Fifth Avenue Portland, Oregon 97204-3699

July 13, 1993

Prepared by:

Gordon W. Shaffer Associate Scientist

Reviewed by:

Del Christenson Principal Scientist JUL 1 5 1993

DEPARTMENT OF ECOLOGY

GENTRAL REGION OFFICE

11040 Main Street Suite 240 Bellevue, WA 98004 (206) 646-0280 (206) 646-0283 FAX

TABLE OF CONTENTS

Sec	Section			
1.0	INTROD	DUCTION	1-1	
2.0	SCOPE 6	OF WORK TASK 1 SURVEY OF EXISTING WELLS AND PERTINENT ON-		
	2.2	AND OFF-SITE REFERENCE POINTS		
	2.3	TASK 3 ASSESS THE COUNTY DRAIN AND THE SURROUNDING BACKFILL		
	2.4	TASK 4 INSTALL GROUNDWATER MONITORING WELLS AND CONDUCT AQUIFER TESTS		
	2.5	TASK 5 SAMPLE MONITORING WELLS AND ANALYZE GROUNDWATER SAMPLES		
	2.6 2.7	TASK 6 IDENTIFY DATA GAPS AND REMEDIAL ACTION ALTERNATIVES		
3.0		TASK 7 PREPARE FOCUSED RI/FS REPORT		
4.0		OSURE	4-1 4-1	
FIGURES				
·	Figure Figure Figure	1		
		APPENDICES		
	APPEI APPEI APPEI	NDIX A - Unified Soil Classification System NDIX B - Aquifer Testing Procedures NDIX C - Well Drilling Methods NDIX D - Sampling Methods and Procedures NDIX E - Equipment Decontamination		

1.0 INTRODUCTION

The Cascade Natural Gas (CNG) facility (site) is located at 512 Decatur Avenue, Sunnyside, Washington (Figure 1). The site is situated within the downtown district of Sunnyside. Environmental assessment activities were initiated at the site during the removal of four underground storage tanks (USTs) in September 1990. Since removal of the USTs, Washington State Department of Ecology (Ecology) has conducted a Site Hazard Assessment (SHA) and has assigned the site a Number 1 ranking. This ranking is the highest priority that Ecology assigns.

The primary purpose of this Work Plan is to assess the lateral extent and potential migration pathways of petroleum hydrocarbons in the groundwater due to releases from former underground storage tanks at the site. A secondary objective will focus on the potential effect of the County drain and associated backfill on groundwater and chemical migration. Once this information has been obtained, remedial activities will be evaluated which will focus on reducing the concentration of petroleum hydrocarbons in groundwater. These activities are designed to prevent the off-site migration of petroleum hydrocarbons.

This Work Plan is based on information generated during previous investigations conducted at the site. The previous investigations concluded that petroleum hydrocarbons were present in soil and groundwater at the site. Additionally, low concentrations of volatile organic compounds (VOCs) were detected in the soil and groundwater. However, no on-site source for VOCs has been identified. Petroleum-affected soils above the saturated zone have been excavated and have been remediated by landfarming at the Terrace Heights Landfill in Yakima, Washington. An extensive assessment of groundwater conditions at the site has not yet been implemented; however, water level monitoring data from three on-site wells indicate that groundwater flow beneath the site is to the southwest. Laboratory analyses of groundwater samples collected at the site indicate that petroleum hydrocarbon compounds are present in the groundwater at concentrations above Washington Model Toxics Control Act (MTCA) Method A cleanup levels (WAC Chapter 173-340). As a result of the presence of these compounds in the groundwater, Ecology has recommended in a letter to SEACOR, dated September 18, 1991, the implementation of a focused Remedial Investigation/Feasibility Study (RI/FS) in accordance with WAC Chapter 173-340-350. Ecology requested that the RI/FS be completed on a priority basis, but Ecology was then unable to provide timely review and appears to have withdrawn from the Consent Order process. These remedial activities are therefore now being conducted as an Independent Cleanup Action.

Based on the data gathered to date and the necessary components of the RI, the following tasks are anticipated:

- Task 1 -- Survey of existing wells and pertinent on- and off-site reference points.
- Task 2 -- Assess water levels in on- and off-site wells and drains.
- Task 3 -- Assess the County drain and the surrounding backfill.

- Task 4 -- Install groundwater monitoring wells.
- Task 5 -- Sample monitoring wells and analyze groundwater samples.
- Task 6 -- Identify data gaps and remedial action alternatives.
- Task 7 -- Prepare focused RI/FS report.

Each of the above Tasks is described in detail in Section 2.0.

2.0 SCOPE OF WORK

2.1 TASK 1 -- SURVEY OF EXISTING WELLS AND PERTINENT ON- AND OFF-SITE REFERENCE POINTS

The vertical and horizontal coordinates of the three existing groundwater monitoring wells will be surveyed relative to a United States Coast & Geologic Survey (USC & GS) Datum located in downtown Sunnyside. A survey mark will be placed on the top of each well casing. Additionally, survey points are planned for manhole covers adjacent to the facility (above the County drain), for one well at the United Telephone facility, as well as on-site reference points. A survey map will be prepared that documents the surveying results. The survey map will be used as the base map for a groundwater contour map.

2.2 TASK 2 -- ASSESS WATER LEVELS IN ON- AND OFF-SITE WELLS AND DRAINS

Subsequent to preparing a site survey map, SEACOR will measure the water level in all of the existing monitoring wells, in the County drain (if water is present) and in a monitoring well located on the United Telephone facility southwest of the site. The data gathered will be utilized in assessing desirable locations for potential future monitoring wells. Additionally this information will be utilized to aid in assessing the effect (if any) of the County drain on groundwater elevations at the site. SEACOR will collect water samples from two manways (one upgradient and one downgradient) that provide access to the drain. The two manways are located in the middle of Decatur Avenue along the southern side of the CNG site.

2.3 TASK 3 -- ASSESS THE COUNTY DRAIN AND THE SURROUNDING BACKFILL

To further assess the groundwater flow direction at the site, SEACOR will assess the depth and materials surrounding the County drain and the potential effect operation of the drain has had on contaminant migration. Preliminary findings suggest that the drain was installed before 1921. A review of available drawings indicates that the drain was buried at a depth of approximately 14 feet. It is believed that the drain was constructed of clay pipe with loose-fitting bell joints. Backfill material used around the drain has not been determined. However, based on verbal information related by the Rosa Irrigation District, SEACOR believes that straw may have been used. It has been reported that the drain was installed to lower the water table which had been artificially raised by irrigation activity in the surrounding vicinity.

The soil and groundwater conditions surrounding the drain will be assessed utilizing an exploratory boring. The boring will be advanced as close as practicable to the drain and to an approximate depth of 16 feet below grade. Soil information gathered while advancing the boring will be utilized to assess the backfill material. After reaching the target depth, the boring will be converted into a groundwater monitoring well. The monitoring well will be utilized to monitor water levels and selected analytical parameters in the groundwater adjacent to the drain backfill. The drilling and

sampling procedures will be in accordance with the protocols outlined in Appendices A, C, D and E of this Work Plan.

2.4 TASK 4 -- INSTALL GROUNDWATER MONITORING WELLS AND CONDUCT AQUIFER TESTS

Three groundwater monitoring wells (MW-1, MW-2 and MW-3) are currently present at the CNG site. Monitoring of these wells indicates that a petroleum hydrocarbon plume from the former USTs is present. However, the existing well network does not allow a complete definition of the extent of the plume. To further assess the extent of the plume, four additional 20-foot deep monitoring wells are proposed to be installed using the procedures outlined in Appendices A, C, and E. These four wells will be in addition to the one well described under Task 3 (Section 2.3).

Proposed locations for the wells are shown on Figure 2. The four additional proposed monitoring wells will be located as follows:

- On the south side of Decatur Avenue on a line parallel with the western edge of the CNG office building. This well location will provide additional downgradient information;
- On the west side of Fifth Street, approximately 25 to 50 feet south of the County drain. This well location will provide additional downgradient information with respect to the County drain as well as the site;
- On the west side of Fifth Street, approximately 25 to 50 feet north of the County drain. Additional downgradient information will be gained from this well point; and
- On the west side of Fifth Street approximately 75 to 100 feet north of the County drain. Cross gradient information will be gained from this well location.

It is anticipated that each of the wells will be placed within public easements (sidewalks). These locations will require approval from the City of Sunnyside. Additionally, a traffic safety plan will likely be required.

Aquifer characteristics may be evaluated by conducting aquifer tests. If tests are conducted they will consist of a step-drawdown test to estimate well yield, and a constant rate test to estimate aquifer transmissivity. These tests, if necessary, will be conducted using existing monitoring well MW-3 (southwest corner of the site). Aquifer testing procedures and methods are outlined in Appendix B. To enable collection of sufficient data during the constant rate test, it will be necessary to install an observation well in close proximity to MW-3, approximately 15 feet away from MW-3. The well will be installed near MW-3 according to the procedures outlined in Appendix C.

Water generated during the sampling of wells and during the aquifer pump test will be contained on-site pending determination of a proper disposal method. The disposal method will be selected based on analytical testing and coordinated with Ecology. Potential disposal options for the water include discharge to the sanitary sewer, discharge to the storm drain, and reinjection. Due to the potential difficulties in obtaining a National Pollution Discharge Elimination System (NPDES) permit

for discharge to the storm drain, it is likely that either sanitary sewer discharge or reinjection will be recommended. If a permit can be obtained, discharge to the sanitary sewer is likely to be the most cost-effective discharge option.

2.5 TASK 5 -- SAMPLE MONITORING WELLS AND ANALYZE GROUNDWATER SAMPLES

To assess the concentration of petroleum hydrocarbons in groundwater, each monitoring well at the site will be sampled. It is anticipated that eight ground water samples will be collected and analyzed. Five soil samples, collected during the installation of the new monitoring wells, will also be analyzed. Additionally, it is anticipated that two water samples collected from the County drain will be analyzed. The samples collected at the site will be analyzed for total petroleum hydrocarbons (TPH) as gasoline using Washington State Method WTPH-G, for TPH as diesel using Washington State Method WTPH-D and for benzene, toluene, ethyl benzene and xylenes using EPA Method 8020. The collected samples will be handled and analyzed in accordance with the protocols outlined in Appendices D and E.

2.6 TASK 6 -- IDENTIFY DATA GAPS AND REMEDIAL ACTION ALTERNATIVES

After completing Tasks 1, 2, 3, 4 and 5, SEACOR will reduce and analyze collected data. The data will be complied and assessed to identify data gaps. If significant data gaps are detected then follow-up activities may be necessary. These activities may include further definition of the extent of downgradient contamination. Additionally, the data will be utilized to assess appropriate remedial action alternatives. The remedial action alternatives will be discussed with CNG. After selecting the most desirable remedial option, SEACOR will discuss the implementation of that option with Ecology.

2.7 TASK 7 -- PREPARE FOCUSED RI/FS REPORT

An evaluation of data obtained during the above investigation will be provided to CNG in a draft report. After comments from CNG are received, a final report will be prepared. If no significant data gaps have been identified then the report may serve as the Remedial Investigation/Feasibility Study report required by WAC 173-340-350. If additional investigations are necessary, SEACOR will present specific recommendations to CNG.

3.0 SCHEDULE

The scope of work presented in this Work Plan can be completed within approximately 17 weeks after receiving authorization to proceed (Figure 3). Due to the uncertainty of water quality at the proposed well locations, additional work may be necessary to sufficiently characterize the extent of petroleum hydrocarbons in groundwater. If additional work is necessary, the schedule will be modified accordingly.

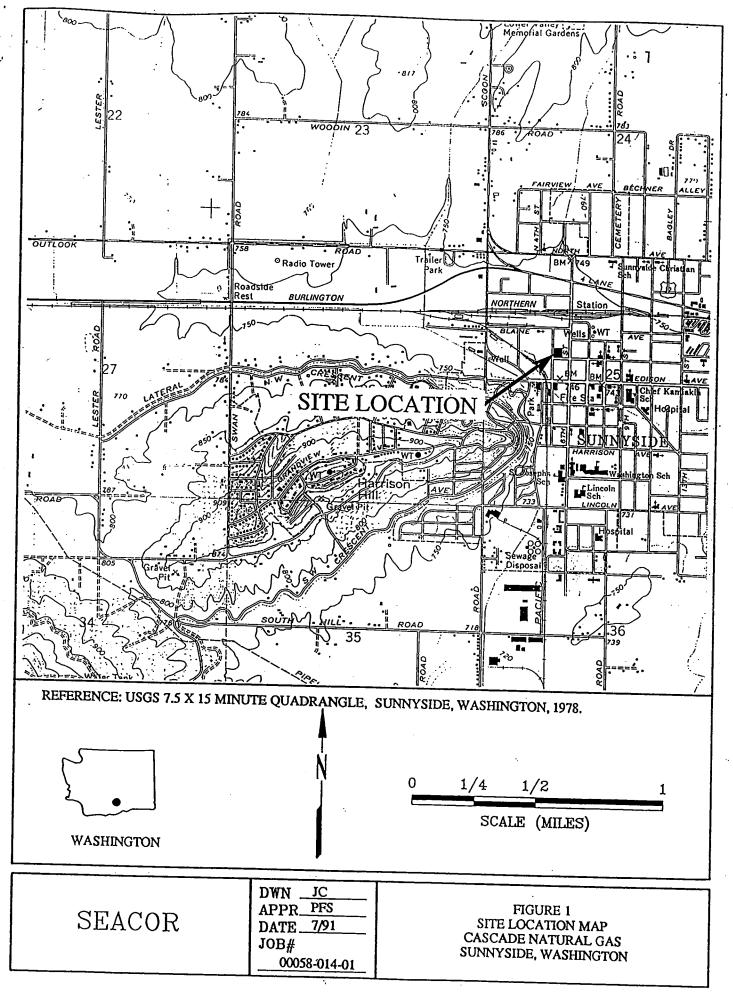
Our project schedule assumes that work will commence by the end of July 1993. In addition, timely implementation of the groundwater investigation will be require the consent of the City of Sunnyside or adjacent property owners, where the wells are proposed to be located.

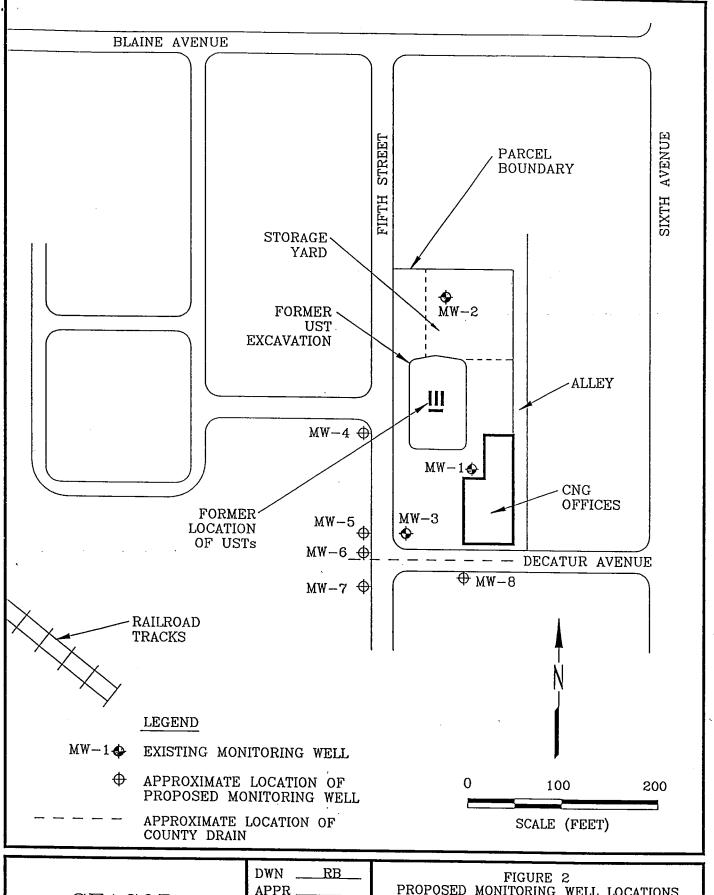
4.0 SITE CLOSURE

The results of the work completed in accordance with Section 2.0 will determine the course of subsequent activities at the site. Specifically, one of two scenarios is possible, depending on the chemical results of samples from proposed monitoring wells MW-7 and MW-8 (Figure 2). Each scenario and the resultant course of action is described below.

4.1 SCENARIO 1

Scenario 1 is where groundwater samples from monitoring wells downgradient (south) of the county drain (i.e., MW-7 and MW-8) show chemical concentrations of all analyzed constituents of concern (as listed in Task 5 of the Work Plan) below MTCA Method A cleanup levels (as specified in WAC 173-340-720, Table 1). Under Scenario 1, the following actions will be taken:


- No aquifer testing, as described in Task 4, will be performed.
- No feasibility study, as described in Task 7, will be prepared.
- In place of a feasibility study, a groundwater monitoring program will be implemented at the site. The monitoring program will include measuring water levels in all wells at the site and collecting water quality samples from selected wells at quarterly intervals for a three-year period. Reports will be provided within 30 days after monitoring takes place.
- If, at the end of the three-year monitoring period, the concentrations of the chemicals of concern in the wells selected for monitoring remain below MTCA Method A cleanup levels, the CNG site will be considered closed and no further action will be taken.


4.2 SCENARIO 2

Scenario 2 is where groundwater samples from monitoring wells MW-7 and MW-8 show a concentration of any analyzed constituent of concern over its respective MTCA Method A cleanup level. Under Scenario 2, the following actions will be taken:

- An aquifer test will be performed in accordance with Task 4.
- A focused feasibility study will be prepared as described in Task 7. As part of the feasibility study, a risk assessment will be performed for all constituents of concern detected in wells selected for monitoring which are in excess of MTCA Method A cleanup levels. This risk assessment will be performed in accordance with a Method B calculation (as described in WAC 173-340-720).

- If the concentrations of all analyzed constituents of concern in wells selected for monitoring are below Method B cleanup levels, a monitoring program will be implemented in accordance with Scenario 1, except that results will be compared to the calculated Method B cleanup levels. If concentrations of all analyzed constituents of concern in wells selected for monitoring remain below MTCA Method B cleanup levels for a period of three years the site will be considered closed and no further action will be taken.
- If the concentration of any analyzed constituent of concern in wells selected for monitoring is above its respective Method B cleanup level, alternatives for groundwater remediation will be evaluated in the feasibility study and a remedial action plan for the site will be developed.

SEACOR

APPR _______ PROPOSED MONITORING WELL LOCATIONS CASCADE NATURAL GAS SUNNYSIDE, WASHINGTON

O0058-014-01

FIGURE 3
PLANNING/SCHEDULE CHART
FOR
CASCADE NATURAL GAS, SUNNYSIDE, WASHINGTON

	_												
= START OR COMPLETION		26											
		25	!										
		24											
		23											
COM		22											
OR	RT	21											
TART	= REPORT	20											
Š =	= R	19											
⊲	\Diamond	18											
		17										\Q	
		16											
		15											
		14									\langle		
		13								· · · · · ·		٥	
	63	12											
	DATE July 1992	11											
		10											
) 6						-		4	٥		
		5 8								`	7		
	-							4	۷				=
	-	7					٥	∀					
TITLE PAGE 1 OF 1	AGE 1 OF 1	9			◁		7 0	7			_		
		5		4		٥	7				-		
		4		۷ ا	۷	٥							
		3	٥	٥									
		2											=
	P/	1	٥								-	_	
	ITLE	WEEK	by		evels		SĮ]			Gaps	r in		
		Λ	Plan		ater I	ounty	g We	nple s		Data	CNC	ort	
		Œ	Work		of W	of C	itorin	d San Welk	alysis	on of Iial Ao S	ort for	Rep.	:
		OBJECTIVE	w of	urvey	ation	smen	l Mon	lop ar oring	le An	ificatik kemed native	Repc w	RI/FS	
		OBJE	Review of Work Plan by CNG	Site Survey	Evaluation of Water Levels	Assessment of County Drain	Install Monitoring Wells	Develop and Sample Monitoring Wells	Sample Analysis	Identification of Data Gaps and Remedial Action Alternatives	Draft Report for CNG Review	Final RI/FS Report	
	<u> </u>	نـــــا				L	L			•			Щ.

APPENDIX A UNIFIED SOIL CLASSIFICATION SYSTEM

	MAJOR I	OIVISIONS		TYPICAL NAMES
OILS 200 SEVE	GRAVELS	CLEAN GRAVELS WITH	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES
	MORE THAN HALF COARSE FRACTION IS LARGER THAN No. 4 SIEVE SIZE	LITTLE OR NO FINES	GP	POORLY CRADED GRAVELS, GRAVEL-SAND MIXTURES
လွ နို		GRAVELS WITH OVER 12% FINES	GM	SILTY GRAVELS, POORLY GRADED GRAVEL-SAND-SILT MIXTURES
RAINED			GC	CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND-CLAY
្ត	SANDS	CLEAN SANDS WITH	SW	WELL-GRADED SANDS, GRAVELLY SANDS
COARSE-GRAINED MORE THAN HALF IS LARGER THAN	MORE THAN HALF COARSE FRACTION IS SMALLER THAN	LITTLE OR NO FINES	SP	POORLY GRADED SANDS, GRAVELLY SANDS
	No. 4 SIEVE SIZE	SANDS WITH OVER	SM	SILTY SANDS, POORLY GRADED SAND-SILT MIXTURES
		12% Fines	SC	CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES
FINE—GRAINED SOILS HORE THAN HALF IS SMALLER THAN NO. 200 SIEVE	·		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH SLIGHT PLACTICITY
		AND CLAYS MIT 50% OR LESS	CL .	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY; GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
			OL	ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLACTICITY
			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
	1	AND CLAYS GREATER THAN 50%	CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
			ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGINIC SILTS
	HIGHLY OR	GANIC SOILS	PL	PEAT AND OTHER HIGHLY ORGANIC SOILS

KEY TO BORING LOG

= Undisturbed soil sample

Classification sample

NA = Not Applicable

No sample recovery

BLOWS = Blows required to drive sampler 18 inches in 6 inch intervals with a 140 pound hammer falling 30 inches.

PID = Photoionization detector reading (10.2 electron-volt lamp. Calibrated using an isobutylene standard gas).

* = Sample submitted for chemical analysis.

	SEACOR	DWN APPR DATE JOB#	SOIL CLASSIFICATION CHART AND KEY TO SEACOR BORING LOGS
--	--------	-----------------------------	--

APPENDIX B AQUIFER TESTING PROCEDURES

APPENDIX B AQUIFER TESTING PROCEDURES

INTRODUCTION

This appendix presents the procedures to perform the proposed aquifer tests discussed in Section 1.4. The purpose of the aquifer tests are to provide hydrologic data on selected aquifer characteristics. The data collected will be used to assess the feasibility of the groundwater extraction.

AQUIFER TESTS

Aquifer testing will consist of two tests: a step drawdown test followed with a constant discharge test. The step drawdown test will be performed to assess the optimum sustainable rate for pumping during the constant discharge test. Once a discharge rate has been selected, the constant discharge test is performed to evaluate the hydraulic properties of the aquifer, fluid transport characteristics and groundwater extraction system parameters.

Step Drawdown Test Procedures

Prior to conducting the step drawdown test, background information will be reviewed regarding any site-specific hydrogeologic information. Existing information such as soil type and well development performance can be used to estimate a maximum expected pumping rate for the well to be tested. Incremental pumping rates for the step drawdown test will then be selected based on the maximum expected pumping rate.

The step drawdown test will be performed as a series of constant discharge tests, starting the with lowest selected rate. The water level in the pumping well will be monitored using a water level indicator or pressure transducer. After the water level has stabilized, the pumping rate will be increased to the next selected rate. Again, the water level will be monitored. The step drawdown test generally consists of three pumping rates. In addition, pre-selected pumping rates may be modified during the test if change in water levels is negligible or too dramatic. The pumping rate at any step will not be reduced to a rate less than used in the previous step.

In selecting a pumping rate for the constant discharge test, the projected drawdown of the constant discharge (based on the step drawdown results) should not exceed approximately 50 percent of the saturated thickness of the well. If drawdown is greater than about 50 percent of the saturated thickness, small increases in pumping rate can lead to large increases in drawdown. Excessive drawdown could result in reducing well efficiency and drying of the well.

Constant Discharge and Recovery Test Procedures

A constant discharge and recovery test will be completed at the site for a duration of 8 hours. Before starting the test, the water level in all wells at the site will be monitored using a water level indicator. During the test, the pumping well (MW-3) and an observation well will be monitored with

pressure transducers connected to data logging equipment. The data logger will record readings from the transducers according to the following schedule:

Period of Pumping/Frequency

0-2 minutes/10 seconds

2-5 minutes/30 seconds

5-15 minutes/1 minute

15-60 minutes/5 minutes

1-2 hours/15 minutes

2-5 hours/30 minutes

5-8 hours/1 hour

In addition, manual readings (to provide field data) from selected wells will be taken using a water level indicator. An attempt will be made to follow the same schedule as the data logger. The early portion of the schedule may be difficult to perform manually due to the short time intervals between readings.

The pumping portion of the test is typically performed over a duration of 4 to 6 hours. To determine the actual duration of the test, field drawdown curves will be generated for every well monitored during the test using water level data collected from manual readings. The field drawdown curves consist of plotting drawdown on a linear vertical axis and time on a logarithmic horizontal axis. The field drawdown curves should show a decrease in the change in drawdown over time, indicating an approach to equilibrium conditions. The pump will be stopped when the observed drawdowns approach equilibrium.

Upon deactivation of the pump, the recovery potion of the test will begin. The pump will not be removed until the end of the entire test to avoid water level disturbance. The recovery portion of the test typically is performed over a duration of 2 to 4 hours. Manual soundings and data logger readings will be recorded on a schedule similar to the pumping portion of the test. Recovery will be monitored until the pumping well has recovered at least 80% of the pre-pumping level.

Groundwater Containment and Decontamination Procedures

Pumped groundwater will be piped through a PVC pipe or other hose to a water-tight holding tank and analyzed for petroleum hydrocarbon constituents using Washington State Method WTPH-G, WTPH-D and for BTEX using EPA Method 8020. The analytical results will be reviewed and methods of disposal, including the option of discharge to a sanitary sewer, will be evaluated.

Analytical Procedures

There are two commonly used methods to analyze constant discharge tests; the "type curve matching" and the "straight lines" methods. For "type curve matching," a method presented by Boulton (1963) is used to evaluate transmissivity and storativity. This method considers unconfined conditions with delayed yield.

The solution procedure consists of plotting a drawdown curve for each well and type curves on separate double-logarithmic papers. The plots are superimposed and moved so that the drawdown

curve falls on one of the type curves. A unique point is then selected on the type curve plot and values can be selected from the type curve axis. These values are then used in mathematical equations which calculate where transmissivity and storativity.

The governing equation for the "straight line" method was developed by Theis (1940) and later modified by Cooper and Jacob (1946). Transmissivity and storativity are calculated by plotting the observed drawdown data on semi-logarithmic paper. Values of drawdown are plotted on the arithmetic scale and time on the logarithmic scale. The resulting graph is called a time-drawdown plot. A straight line is drawn through the portion of the plot where data points permit. For the straight line, the change in water drawdown over time is measured and transmissivity can then be calculated. Storativity is calculated from the intercept where the plotted straight line intersects the zero-drawdown axis.

The "straight line" method can also be used with a distance-drawdown plot. Distance-drawdown plots are prepared by plotting the drawdown in each of several monitoring well versus the distance to the pumping well. Drawdowns are plotted on the arithmetic scale and distance on the log arithmetic scale. The drawdown readings must be made in all wells at essentially the same time. Under ideal conditions, the data should plot in a straight line. Similar to the "straight line' method for a time-drawdown plot, a straight line is drawn through the data points of the distance drawdown plot. Transmissivity is then calculated based on the slope of the line. Storativity is calculated from the intercept where the straight line intersects the zero drawdown axis.

In practice the data from the pump test are down loaded to a computer and are analyzed with a commercially available software program (Aqtesolv). The program provides data printouts, graphs, and calculates relevant aquifer characteristics.

APPENDIX C WELL DRILLING METHODS

APPENDIX C WELL DRILLING METHODS

SOIL BORINGS

A hollow stem auger drilling rig will be used to complete the borings for the monitoring wells at the site. The hollow stem auger drilling rig will be used to bore to depths up to 20 feet below ground surface. All soil borings will be logged for soil characteristics including texture, color, hardness, moisture and other characteristics. Soil samples will be collected for lithologic description and chemical analysis using a split-spoon sampler driven ahead of the auger bit. The split-spoon sampler is lined with three 6-inch brass cylinders with a diameter of 2 or 2.5 inches. The sampler is lowered into the hole with a wireline or on the end of a drill rod. The split spoon is then driven 18 inches with a 140-pound hammer falling 30 inches.

Upon removal from the borehole, the sampler is spilt longitudinally. The first (bottom) 6-inch cylinder is separated by the insertion of a plastic spatula between cylinders. The ends of the cylinder are sealed with teflon and covered with plastic end caps. The end caps are sealed in place with silicon tape. The tube is labeled with the data and time collected, sample and boring number and the sample depth. The sample will be allowed to sit for approximately 15 minutes and a headspace reading will be taken using a photoionization detector (PID). The PID will serve as a field screening tool for VOCs.

One soil sample from each boring will be selected for laboratory analysis. The basis for sample selection will be the sample with the highest PID reading, and the sample at the soil/groundwater interface.

Soil cuttings from the boreholes will be placed into Department of Transportation (DOT)-approved, 55-gallon drums, sealed, labeled and stored on-site pending analytical results.

MONITORING WELLS

The soil borings will be converted into monitoring wells. The well construction will be completed in accordance to rules and regulations as outlined in Chapter 173-160 WAC: <u>Minimum Standards for Construction and Maintenance of Wells.</u>

Monitoring Well Construction

The monitoring wells will be constructed of 4-inch internal diameter (ID) polyvinylchloride (PVC), threaded flush joint casing and slotted well screen. The monitoring wells will be constructed inside the continuous flight augers. Prior to installing the wells, the casing, screen and end caps will be cleaned using a steam cleaner. The length of the casing and the screen interval will be determined based on the water level encountered during drilling. The screen will be set into the first water-bearing unit penetrated, and will allow for seasonal fluctuations in water elevations.

The wells will be completed with an artificial filter pack. The filter pack will consist of a granular, inert, siliceous material of the appropriate size for the well screen. The sand is placed in the augers as they are pulled up and will be continued at least three feet above the top of the well screen.

A surface seal will be placed on top of the sand pack to the surface. It will consist of two feet of bentonite pellets followed by cement grout from the top of the pellets to ground surface. The monitoring wells will be completed below ground. Flush-mounted steel protective covers will be installed at the time of initial grout placement. A cement pad will placed around the cover. Each well will be fitted with a lockable watertight locking cap.

APPENDIX D SAMPLING METHODS AND PROCEDURES

APPENDIX D SAMPLING METHODS AND PROCEDURES

MONITORING WELL DEVELOPMENT

Proper development of monitoring well is critical in acquiring representative samples and in restoring natural hydraulic conductivity to the well. Well development will be conducted by means of either a submersible pump or a bottom discharge bailer in combination with a surge block. Development will proceed in the following manner and will meet the following criteria:

- The well water is as free of turbidity as practical.
- The sediment thickness remaining within the well is less than five percent of the screen length.
- Consistent (within ten percent) measurements of pH, temperature, and conductivity are recorded over three consecutive purge volumes.

The field geologist will record field pH, temperature, and conductivity measurements before, during, and after development of each well. Static water levels will be measured and recorded both before and after well development. During development, the pump intake, or bailer stopping point will be lowered and raised periodically throughout the entire water column to maximize development of the screened interval. Pumping will be continuous but at variable rates to ensure the aquifer is adequately stressed and the natural hydraulic conductivity is restored. Water generated during development and groundwater sampling activities will be placed in a water-tight holding tank or DOT-approved drums pending analytical results.

WATER LEVEL MEASUREMENTS

Each well will be checked for free-phase hydrocarbons and water levels before development and before each sampling event. The procedure for collecting water level measurement data is summarized below:

- Record the well number, date, time, and initials of field personnel taking measurements.
- Insert the water level indicator or interface probe until it reaches water. Measure the depth-to-water from the designated measuring point at the top of casing (TOC) and/or depth to free phase hydrocarbons, and record the value to the nearest 0.01 foot. Repeat the procedure three times to insure accuracy.
- Record the make and model of the instrument used.
- Compare total depths and water level to previous measurements.

- Record well conditions (cracked casing, missing cap, subsidence features, etc.) and any other pertinent observations.
- Insure that all markings clearly indicate the well's location and the well number.

WELL SURVEYING

The top of casing elevation of each monitoring well will be determined by level surveying to a nearby USC & GS Datum. The survey point on each well will be clearly marked by cutting a small notch in the top of the well casing. The existing wells and new wells will be surveyed into the same reference elevation.

GROUNDWATER SAMPLING

Groundwater samples will be collected from each existing monitoring well and each newly installed well. The objective of groundwater sampling is to obtain a volume of water that is representative of the chemical quality of the water in the aquifer. The following procedures will be employed to meet this objective:

- The static water level in the well is measured with a water level indicator. This measurement will be used to calculate a casing volume of water. A Teflon or stainless steel bailer or submersible pump is then used to purge a minimum of three casing volumes of water from the well. The purged water will be stored on-site in a water-tight holding tank or DOT-approved drums.
- Purge until pH, conductivity and temperature are constant.
- Field measurements (i.e., pH, conductivity and temperature) will be calibrated against known standards. Instrument response and calibration standards used will be recorded.
- After the wells are purged, groundwater samples will be collected in a decontaminated Teflon or stainless steel bailer or with a disposable polyethylene bailer. The bailer will be lowered into the monitoring well with a dedicated line. The bailer will be lowered below the water level and then slowly retrieved. The sample is drained from the bottom of the bailer, and placed into sample containers that have been cleaned to EPA specifications. When placing the sample in the containers, the seal or lid of the container will not be handled. To preserve the sample integrity, the sample container will be opened only at the moment the sample is to be dispensed from the bailer and then properly sealed to avoid any headspace in the vials.

• Samples will be collected from each monitoring well. One sample from each well will be analyzed for total petroleum hydrocarbons (TPH) as diesel (WTPH-D), TPH as gasoline (WTPH-G) and for BTEX. The containers will be placed immediately in an iced cooler for transport to the laboratory.

APPENDIX E EQUIPMENT DECONTAMINATION

APPENDIX E EQUIPMENT DECONTAMINATION

EQUIPMENT DECONTAMINATION

The field equipment decontamination procedures are designed to prevent any cross-contamination from one well or sample to another. The reusable sampling equipment is used once and then is thoroughly cleaned. All plastic tubing and other apparatus that cannot be completely decontaminated or disposable sampling equipment is discarded and new material is used.

SOIL DRILLING EQUIPMENT DECONTAMINATION

Prior to entering the site, all drilling equipment is steam cleaned to remove oils, chemicals, soils and other debris and to prevent cross-contamination. Additional steam cleaning is performed to prevent cross-contamination between borings. Steam cleaning fluids will be contained in a water-tight tank or DOT-approved drums and properly disposed of with other water generated at the site.

SAMPLING EQUIPMENT DECONTAMINATION

Prior to the start of a sampling episode, all reusable equipment is cleaned. To clean the sampling equipment, all equipment is placed in a cleaning solution of Liqui-Nox soap and water. Components will be allowed to soak for approximately five minutes, brushed inside and out, and removed from the solution. They will be rinsed repeatedly with tap water and a final rinse with distilled water.

AQUIFER TESTING EQUIPMENT

Following aquifer testing, the pump and pressure transducers will be removed and decontaminated. Decontamination procedures will consist of a soap wash and tap water rinse. Rinse water will be contained and placed in the purged water holding tank or into DOT-approved 55-gallon steel drums.

Mr. John Wietfeld
Engineer - Toxics Cleanup Program
Department of Ecology
106 South 6th Avenue
Yakima, WA 98902-3387

Dear Mr. Wietfeld:

This letter has been prepared in response to our phone conversation of October 6, 1992, concerning the Consent Decree for the Cascade Natural Gas (CNG) site in Sunnyside, Washington.

We have prepared an addendum to the "Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation", dated July 23, 1992. The addendum, which is attached to this letter, discusses conditions for site closure as we discussed.

The Work Plan addendum presents two scenarios based on the results of samples from proposed wells MW-7 and MW-8 (see Figure 2, Work Plan). Under Scenario 1, the groundwater will be monitored for a period of one year and then the site will be considered closed. Under Scenario 2, a feasibility study and a remedial action plan will be prepared. However, implementation of any required remedial action at the site will be addressed either in an addendum to the Consent Decree which is being processed or in a separate Consent Decree.

It is anticipated that the attached addendum will be incorporated as "Section 4.0 - Site Closure" into the Revised Work Plan and, by reference, will become part of the Consent Decree for the site.

Please call if you have any questions.

Very truly yours,

Del Christenson Principal Scientist

Attachment

cc: Mr. Ralph Boyd - CNG

Mr. Thomas E. Lindley - Miller, Nash, et. al.

lo/dc/wietfeld.ltr

ADDENDUM NO. 1

to the

"REVISED WORK PLAN FOR REMEDIAL INVESTIGATION AND ASSESSMENT OF GROUNDWATER REMEDIATION ALTERNATIVES FOR CASCADE NATURAL GAS CORPORATION" DATED JULY 23, 1992

SECTION 4.0 SITE CLOSURE

The results of the work completed in accordance with Section 2.0 will determine the course of subsequent activities at the site. Specifically, one of two scenarios is possible, depending on the chemical results of samples from proposed monitoring wells MW-7 and MW-8 (Figure 2). Each scenario and the resultant course of action is described below.

4.1 SCENARIO 1

Scenario 1 is where groundwater samples from monitoring wells downgradient (south) of the county drain (i.e., MW-7 and MW-8) show chemical concentrations of all analyzed constituents of concern (as listed in Task 5 of the Work Plan) below MTCA Method A Cleanup Levels (as specified in WAC 173-340-720, Table 1). Under Scenario 1, the following actions will be taken:

- 1. No aquifer testing, as described in Task 4, will be performed.
- 2. No feasibility study, as described in Task 7, will be prepared.
- 3. In place of a feasibility study, a groundwater monitoring program will be implemented at the site. The monitoring program will include measuring water levels in all wells at the site and collecting water quality samples at MW-7 and MW-8 at quarterly intervals for a one-year period.
- 4. If, at the end of the one-year monitoring period, the concentrations of the chemicals of concern in MW-7 and MW-8 remain below MTCA Method A Cleanup Levels, the CNG site will be considered closed and no further action will be taken.

4.2 SCENARIO 2

Scenario 2 is where groundwater samples from monitoring wells MW-7 and MW-8 show a concentration of any analyzed constituent of concern over its respective MTCA Method A Cleanup Level. Under Scenario 2, the following actions will be taken:

- An aquifer test will be performed in accordance with Task 4.
- A focused feasibility study will be prepared as described in Task 7. As part of the feasibility study, a risk assessment will be performed for all constituents of concern detected in wells MW-7 and MW-8 which are in excess of MTCA Method A Cleanup Levels. This risk assessment will be performed in accordance with a Method B calculation (as described in WAC 173-340-720).
- If the concentrations of all analyzed constituents of concern in wells MW-7 and MW-8 are below Method B Cleanup Levels, a monitoring program will be implemented in accordance with Scenario 1, except that results will be compared to the calculated Method B Cleanup Levels. If concentrations of all analyzed constituents of concern in MW-7 and MW-8 remain below MTCA Method B Cleanup Levels for a period of one year, the site will be considered closed and no further action will be taken.
- If the concentration of any analyzed constituent of concern in wells MW-7 and MW-8 is above its respective Method B Cleanup Level, alternatives for groundwater remediation will be evaluated in the feasibility study and a remedial action plan for the site will be developed.

Mr. John Wietfeld
Engineer - Toxics Cleanup Program
Department of Ecology
106 South 6th Avenue
Yakima, WA 98902-3387

SUBJECT:

MODIFICATIONS TO REVISED WORK PLAN FOR REMEDIAL INVESTIGATION AND ASSESSMENT OF GROUNDWATER REMEDIATION ALTERNATIVES - CASCADE NATURAL GAS CORPORATION, SUNNYSIDE, WASHINGTON

Dear Mr. Wietfeld:

This letter presents minor modifications to the "Revised Work Plan for Remedial Investigation and Assessment of Groundwater Remediation Alternatives for Cascade Natural Gas Corporation" (Work Plan) dated July 23, 1992, and Addendum No. 1, dated July 23, 1992. These modifications were discussed with you during a March 3, 1993 conference call between representatives of Cascade Natural Gas, the Washington State Attorney General's Office and yourself.

The following modifications reference specific sections in the Work Plan and Addendum No. 1 (changes underlined, as appropriate):

• Figure 3

Change title of final schedule item ("Final RI/FS Report (Task 7)") to read (changes underlined, as appropriate):

"RI/FS Report to Ecology (Task 7)"

- Change "Anticipated Start" from "October 1992" to "April 1993".

• Addendum No. 1

- Change Page 1, Item 3, Sentence 2 to read:

"The monitoring program will include measuring water levels in all wells at the site and collecting water quality samples from selected wells at quarterly intervals for a three-year period."

- Change Page 1, Item 4 to read:

"If, at the end of the <u>three</u>-year monitoring period, the concentrations of the chemicals of concern in <u>the wells selected for monitoring</u> remain below MTCA Method A Cleanup Levels, the CNG site will be considered closed and no further action will be taken."

Change Page 2, Bullet #2 as follows:

Replace "MW-7 and MW-8" with "selected for monitoring".

Change Page 2, Bullet #3, Sentence 1 as follows:

Replace "MW-7 and MW-8" with "wells selected for monitoring".

Change Page 2, Bullet #3, Sentence 2 as follows:

Replace "MW-7 and MW-8" with "wells selected for monitoring". Replace "one year"

man ou mountain anne man man ann ann air

Change Page 2, Bullet #4 as follows:

Replace "MW-7 and MW-8" with "wells selected for monitoring".

I trust that these modifications reflect our discussions as they relate to the Work Plan. Please call if you have any questions. Very truly yours,

Science & Engineering Analysis Corporation

Copy

Del Christenson Principal Scientist

cc: Ralph Boyd - Cascade Natural Gas Tom Lindley - Miller, Nash, et. al. January 21, 1994

Mr. Jim Chulos Washington State Department of Ecology 106th South Sixth Avenue Yakima, WA 98902-3387

RE: CASCADE NATURAL GAS, 512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON

Dear Mr. Chulos:

On behalf of Cascade Natural Gas Corporation, this letter transmits one copy of Exhibit A Addendum Remedial Investigation and Assessment of Groundwater Remedial Alternatives. This Addendum, dated January 21, 1994, addresses the issues raised by Mr. Donald Abbott during a meeting at your offices on December 27, 1993. At Mr. Abbott's request, this Addendum is being submitted to you, as Mr. Abbott is temporarily overseas on vacation. Cascade Natural Gas Corporation and SEACOR understand that Mr. Abbott will be unavailable for approximately one month.

Cascade Natural Gas Corporation is eager to complete negotiations and arrive at a completed Agreed Order.

Please feel free to contact Mr. Ralph Boyd of Cascade Natural Gas Cooperation at (206) 624-3900 if you have any questions or comments.

Sincerely,

Science & Engineering Analysis Corporation

Gordon W. Shaffer

Associate Scientist

cc: Ralph Boyd - CNG

Tom Lindley - Miller, Nash et al

Del Christensen - SEACOR

January 21, 1994

Mr. Thomas E. Lindley
Miller, Nash, Wiener, Hager & Carlsen
3500 US Bancorp Tower
111 SW Fifth Avenue
Portland, Oregon 97204-3694

ADDENDUM TO THE JULY 13, 1993 REVISED WORK PLAN FOR REMEDIAL INVESTIGATION AND ASSESSMENT OF GROUNDWATER ALTERNATIVES FOR CASCADE NATURAL GAS CORPORATION, 512 EAST DECATUR AVENUE, SUNNYSIDE, WASHINGTON SEACOR JOB NO. 00058-019-01

Dear Mr. Lindley:

The attached work plan addendum has been prepared pursuant to the November 3, 1993 request from the Washington State Department of Ecology (Ecology), a December 7, 1993 meeting between representatives from Cascade Natural Gas Corporation (CNG); Miller, Nash, Wiener, Hager & Carlsen (Miller-Nash); and SEACOR; and a December 27, 1993 meeting between Ecology, CNG, Miller-Nash, and SEACOR.

This addendum provides for conducting two additional tasks during the investigation of the Sunnyside CNG facility. Task 1 provides for more fully assessing groundwater flow direction and the potential sources of the VOC and SVOC compounds that have been detected during previous facility investigations. This task includes assessing sewer and/or drains that may be present under Fifth Street, installing two groundwater monitoring wells upgradient of the CNG facility, and installing one groundwater monitoring well near the southern boundary of the CNG site. Task 2 provides for collecting and analyzing groundwater samples from selected wells for specific volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) that have been previously detected in media samples collected at the CNG facility. During the December 27, 1993 meeting Ecology also requested that CNG provide the following additional data:

• The final discharge point of the county drain that underlies East Decatur Avenue.

• The discharge point of Stormdrain-1 and Stormdrain-2 located on the CNG facility. Ecology also requested that soil samples be collected from the bottom of the two onsite storm drains in the event that they were determined to be drywells. This addendum provides these two additional data as well as the discharge location of two interior drains located in the shop area of the CNG facility.

Task 1

As we discussed during our December 7 and 27 meetings, there may be one or more upgradient or offsite sources of petroleum hydrocarbons, VOCs, and SVOCs which may be at least partly responsible for the compounds previously detected in groundwater.

The potential for offsite sources will be assessed by installing and monitoring two shallow groundwater monitoring wells upgradient of the CNG facility and monitoring the sewer/drain that is suspected to be present under Fifth Street. At Ecology's request, a third well (MW-11) will be completed near the southern property boundary. The data obtained from Task 1 will be used to more fully evaluate local groundwater flow direction, quality, and potential upgradient sources of groundwater contaminants.

Task 2

A summary of the VOCs and SVOCs that have been detected during previous investigations at the CNG facility is shown on Table A.1. Based on SEACOR's understanding of material usage at the facility under CNG's occupancy, there is no known source of the non-petroleum related hydrocarbons that have been detected to date. Nor have there been any documented releases of petroleum products during CNG's use of the site. Some of the detected compounds are common constituents of gasoline and/or diesel fuel. These compounds include:

- Benzene;
- Toluene;
- Ethyl benzene;
- Xylenes;
- 1,2-Dichloroethane;
- Naphthalene;
- Methylnaphthalene; and
- Phenanthrene.

Mr. Thomas E. Lindley January 21, 1994 Page 3

The presence of these compounds in soil or groundwater at a leaking petroleum UST site is not uncommon. However, the other detected VOC and SVOC compounds are not commonly associated with petroleum UST sites. Two of the detected VOCs (acetone and methylene chloride) are suspected to be laboratory artifacts which are attributable to laboratory procedures.

Bis-(2-ethylhexyl)phthalate (BEHP) is ubiquitous to our environment and is used as a plasticizer in the manufacturer of paper, styrofoam, plastics, and rubber products. According to the National Library of Medicine, Hazardous Substance Data Bank File, BEHP is used in paper and plastic food containers, insecticides/pesticides, cosmetics, liquid soap, rubbing alcohol, detergents, ink, lacquers, munitions, lubricating oils, styrofoam, PVC products, synthetic rubber products, plastic products (including utensils, cookware, boots, raincoats, baby bottles, etc.). Exposure to BEHP has been documented through PVC blood bags, packaged food and beverages, clothing, drinking water, fish, swimming pools, etc.

The ubiquity of phthalates in our environment is widely recognized, as is recognition of the widespread problem of cross-contamination in environmental samples. In a published study conducted to evaluate potential sources of cross-contamination, phthalate artifacts were detected at concentrations of 6.5 parts per million (ppm) in trip blanks, 1.3 ppm in aluminum foil (commonly used to cover sample ends), 7.4 to 9 ppm in latex sampling and laboratory gloves, 1.1 to 12 ppm in 50 percent of method blanks, 1.1 to 87.9 ppm in 80 percent of equipment blanks, and 19.4 ppm in rinse water (Sullivan, Carty, Lupo and Felkey, "Phthalates: Unreliable Indicators of Hydrocarbon Contamination in Environmental Soil and Water Analysis," Hydrocarbon Contaminated Soil and Groundwater, Volume 3, Lewis Publishers, 1993). Because phthalates are so common in sampling, health and safety, and laboratory equipment, the reported presence of low-level phthalates in an environmental sample is not necessarily representative of the actual in-situ chemical character of the environmental medium.

A review of the Site Hazard Assessment (SHA) report provided by Ecology to CNG reveals that all of the soil samples that were analyzed for SVOCs during the SHA exceeded the maximum EPA-recommended holding time of 7 days for SVOCs. Two of the soil samples that were analyzed for VOCs were held beyond the maximum EPA-recommended holding time of 14 days before analysis. In addition, one of the monitoring well groundwater samples and two of the soil samples were reported as having been received by the laboratory before the samples were actually collected at the CNG facility. The exceedances of standard sample holding times and the documentation errors regarding sample control suggest a lack of adequate quality assurance and quality control (QA/QC) at the analytical laboratory used during the SHA. As a result, the validity of the analytical data developed during Ecology's SHA is subject to question.

Mr. Thomas E. Lindley January 21, 1994 Page 4

Final Discharge Location of the County Drain

The county drain that underlies East Decatur Avenue discharges to an open channel near the intersection of Lincoln Avenue and Fourth Street approximately 3,000 feet south of the CNG facility. This has been confirmed by the City of Sunnyside Existing Storm Sewer Plan-General Map, November 1974.

Discharge Location for Onsite Stormdrains

The exterior onsite drains [Stormdrain-1 and Stormdrain-2 (see Figure A.1)] and the two interior floor drains (Figure A.1) are connected to a common line which discharges to the stormdrain system at Manhole-3 near the southwest corner of the CNG site. None of the four onsite drains are drywells; therefore, CNG is not required to collect analytical soil samples from them. CNG will provide copies of maps which document the discharge locations of the County drain and onsite drains.

Clearly, there are costs to be incurred as a result of collecting and analyzing additional groundwater and/or soil samples for the full suite of VOCs and SVOCs that have been previously detected in media samples from the CNG facility. However, SEACOR believes that it is in CNG's best interest to concede to Ecology's request to analyze for VOCs and SVOCs. SEACOR recommends that the laboratory report only on those compounds that have been previously detected and that the strictest QA/QC protocols be implemented to assure generating valid data.

Sincerely,

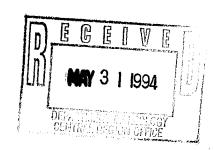
Science & Engineering Analysis Corporation

Gordon W. Shaffer

Associate Scientist

EXHIBIT A

ADDENDUM REMEDIAL INVESTIGATION AND ASSESSMENT OF GROUNDWATER REMEDIAL ALTERNATIVES


Cascade Natural Gas Corporation 512 East Decatur Avenue Sunnyside, Washington

For

Mr. Thomas E. Lindley
Miller, Nash, Wiener, Hager & Carlsen
3500 U.S. Bancorp Tower
111 SW Fifth Avenue
Portland, OR 97204-3699

Prepared by SEACOR

January 21, 1994

11040 Main Street Suite 240 Bellevue, WA 98004 (206) 646-0280 (206) 646-0283 FAX

TABLE OF CONTENTS

<u>Sec</u>	<u>tion</u>]	Page
1.0	INTRO	DUCTION	A-1
2.0	SCOPE	OF WORK	A-2
	2.1	TASK 1 - ASSESS GROUNDWATER FLOW DIRECTION AND POTENTIAL OFFSITE SOURCES	4.2
	2.2	TASK 2 - ASSESS VOCs AND SVOCs IN SELECTED MONITORING	
	2.3	WELLS TASK 3 - IDENTIFY DISCHARGE POINT OF COUNTY DRAIN	
	2.4	TASK 4 - IDENTIFY DISCHARGE POINTS FOR ONSITE STORMDRAINS	A-3
	2.5	TASK 5 - CONTINGENCY DRYWELL SAMPLING AND ANALYSIS	
3.0	REPOR	TING	A-5
4.0	SCHED	ULE	A-6

TABLES

A.1 - Detected Compounds by Media A.2 - Analytical Methods

FIGURE

A.1 - Site Plan

1.0 INTRODUCTION

This Work Plan addendum has been prepared pursuant to a November 3, 1993 request by the Washington State Department of Ecology (Ecology) to address the potential presence of volatile organic compounds (VOCs) and semi-volatile compounds (SVOCs) in groundwater at the Cascade Natural Gas Corporation (CNG) facility located at 512 East Decatur Avenue in Sunnyside, Washington. This addendum also provides for four additional investigative items which were requested by Ecology during a December 27, 1993 meeting at Ecology's office in Yakima, Washington. These tasks are:

- Identify the location where the county drain discharges into an open channel southwest of the CNG site;
- Identify the discharge locations of the two storm drains at the CNG facility;
- If one or both of the stormdrains are drywells, collect analytical soil samples from the bottom of the drywell(s); and
- Install and sample one groundwater monitoring well near the south boundary of the CNG facility.

This addendum also provides for further assessing groundwater flow directions, and assessing the potential for offsite and/or upgradient sources of the chemical compounds which have been identified in groundwater at and downgradient of the CNG facility. CNG has also provided information regarding the discharge location of two interior floor drains at the CNG facility.

A limited suite of VOCs and SVOCs have been detected in subsurface soil and/or groundwater samples from the CNG facility during three previous investigations (conducted by White Shield, Ecology, and SEACOR). A summary of the detected VOCs and SVOCs is shown by investigation and environmental media on Table A.1. A survey of the site identified two previously unknown manholes in Fifth Street west of the CNG facility. The manholes suggest the presence of a subsurface drain or sewer which is not shown on the utility maps currently available to CNG. If the drain or sewer exists, it may provide a conduit for petroleum hydrocarbons, VOCs, and SVOCs to migrate from unknown upgradient sources into the vicinity of the CNG facility.

The purpose of the scope of work presented in this addendum is to further assess groundwater flow direction and presence of the previously detected VOCs and SVOCs in groundwater downgradient, onsite and upgradient of the CNG facility. The suspected subsurface drain or sewer under Fifth Street will also be investigated to assess the chemical quality and direction of flow.

2.0 SCOPE OF WORK

Five tasks have been designed to meet the objectives of this addendum.

Task 1 provides for more fully assessing groundwater flow direction and the potential for offsite sources of VOCs and SVOCs that have been detected during previous investigations. Task 1 includes assessing the drain/sewer under Fifth Street, installing and sampling two groundwater monitoring wells upgradient of the CNG facility, and installing one groundwater monitoring well near the southern boundary of the CNG facility.

Task 2 provides for collecting and analyzing groundwater samples from selected onsite and downgradient monitoring wells (including the proposed well near the southern boundary) for the suite of VOCs and SVOCs that have been previously detected.

Task 3 provides for identifying the final discharge point of the County drain that underlies East Decatur Avenue.

Task 4 provides for identifying the discharge location (sanitary sewer, stormdrain, County drain, or drywell) for the two exterior onsite stormdrains and the two interior floor drains.

Task 5 provides for a contingency soil sampling and analysis program in the event that any of the stormdrains or floor drains are found to be drywells.

2.1 TASK 1 - ASSESS GROUNDWATER FLOW DIRECTION AND POTENTIAL OFFSITE SOURCES

Available City of Sunnyside, Irrigation District, and Yakima County maps of subsurface drains and sewers in the vicinity of the CNG facility will be reviewed to confirm the presence of the Fifth Street drain/sewer and known connections to it. In the event that adequate documentation is not available, then a remote video inspection or other means to trace the course of the drain/sewer may be conducted.

The elevation of water in the drain/sewer will be monitored at Manholes MH-1 and MH-2 shown on Figure A.1. Water levels will also be monitored in the County drain under Decatur Avenue, in wells MW-1 through MW-8, and in well MW-UTC-4 at the United Telephone Company facility. Samples of the Fifth Street drain/sewer water (if sufficient flow volume allows) will be collected for chemical analysis of petroleum hydrocarbons and the suite of VOCs and SVOCs presented on Table A.1. Sample collection and equipment decontamination protocols contained in the July 13, 1993 Work Plan will be utilized. Analysis for petroleum hydrocarbons will include:

- Total petroleum hydrocarbons (TPH) as gasoline (TPH-G), and
- TPH as diesel fuel (TPH-D).

Specific analytical methods for each of the VOCs, SVOCs, and petroleum hydrocarbon constituents are identified on Table A.2. All analyses will be completed by North Creek Analytical of Bothell, Washington.

Additional investigation of potential offsite sources will be completed by installing and sampling two shallow upgradient monitoring wells (MW-9 and MW-10). As shown on Figure A.1 well MW-9 will be located near the east CNG property line in the northern portion of the facility. Well MW-10 is proposed to be installed in the public right-of-way on the west side of Fifth Street approximately opposite from the north CNG property line. The wells will be completed in the uppermost saturated zone in accordance with the July 13, 1993 Work Plan protocols for well drilling, installation, development, sampling, and equipment decontamination. Groundwater and soil samples from wells MW-9 and MW-10 will also be sampled and analyzed for the suite of VOCs and SVOCs shown on Table A.1, TPH-G, and TPH-D.

One groundwater monitoring well (MW-11) will be installed near the southern CNG property boundary as shown on Figure A.1. This well is proposed to be installed in the sidewalk that occupies public right-of-way. This well will also be completed in the uppermost saturated zone. Well completion and sampling will be conducted in accordance with the July 13, 1993 Work Plan protocols for drilling, installation, development, sampling, and equipment decontamination. Water and soil samples from well MW-11 will be analyzed for the TPH-G, TPH-D, and the suite of VOCs and SVOCs shown on Table A.1 and Table A.2.

2.2 TASK 2 - ASSESS VOCs AND SVOCs IN SELECTED MONITORING WELLS

In addition to sampling and analyzing groundwater samples from wells MW-9, MW-10, and MW-11, supplemental groundwater samples will be collected from wells MW-2 (upgradient), MW-1 (crossgradient), and MW-3 and MW-4 (downgradient) for analyses of the VOCs and SVOCs previously detected at the CNG facility (Table A.1).

Sampling and equipment decontamination protocols contained in the July 13, 1993 Work Plan will be utilized.

2.3 TASK 3 - IDENTIFY DISCHARGE POINT OF COUNTY DRAIN

Available utility maps and onsite observations have been used to identify and confirm the discharge location of the County drain that underlies East Decatur Avenue adjacent to the CNG facility. The County drain discharges to an open channel near the intersection of Lincoln Avenue and Fourth Street approximately 3,000 feet south of the CNG facility. A copy of the utility map will be provided in the investigation report.

2.4 TASK 4 - IDENTIFY DISCHARGE POINTS FOR ONSITE STORMDRAINS

Two stormdrains (Stormdrain-1 and Stormdrain-2) have been identified by Ecology and CNG on the CNG site (Figure A.1). Two interior floor drains have also been identified by CNG. These drains have been determined by CNG to discharge to the stormdrain system at Manhole-3 near the

southwest corner of the CNG facility (Figure A.1). Documentation of the discharge location will be shown on the site map in the investigation report.

2.5 TASK 5 - CONTINGENCY DRYWELL SAMPLING AND ANALYSIS

Neither of the two onsite stormdrains or interior floor drains are drywells; therefore, completion of this task is not required.

3.0 REPORTING

The results Addendum Tasks 1 through 4 will be presented in the focused RI/FS report described in the July 13, 1993 Work Plan.

CA4031.ADD/5 01/19/94

4.0 SCHEDULE

The field work to complete Addendum Tasks 1 through 4 can be completed within three weeks of receiving authorization. A draft Focused Remedial Investigation report will be submitted to CNG within 4 weeks of completing field activities (approximately 2 weeks after SEACOR's receipt of laboratory analytical data). A final draft report will be submitted to CNG within one week of receiving CNG comments. The final report will be submitted concurrently to Ecology and CNG within one week of CNG's receipt of the Final Draft report.

CA4031.ADD/6 01/19/94

TABLE A.1 DETECTED COMPOUNDS BY MEDIA CASCADE NATURAL GAS CORPORATION SUNNYSIDE, WASHINGTON

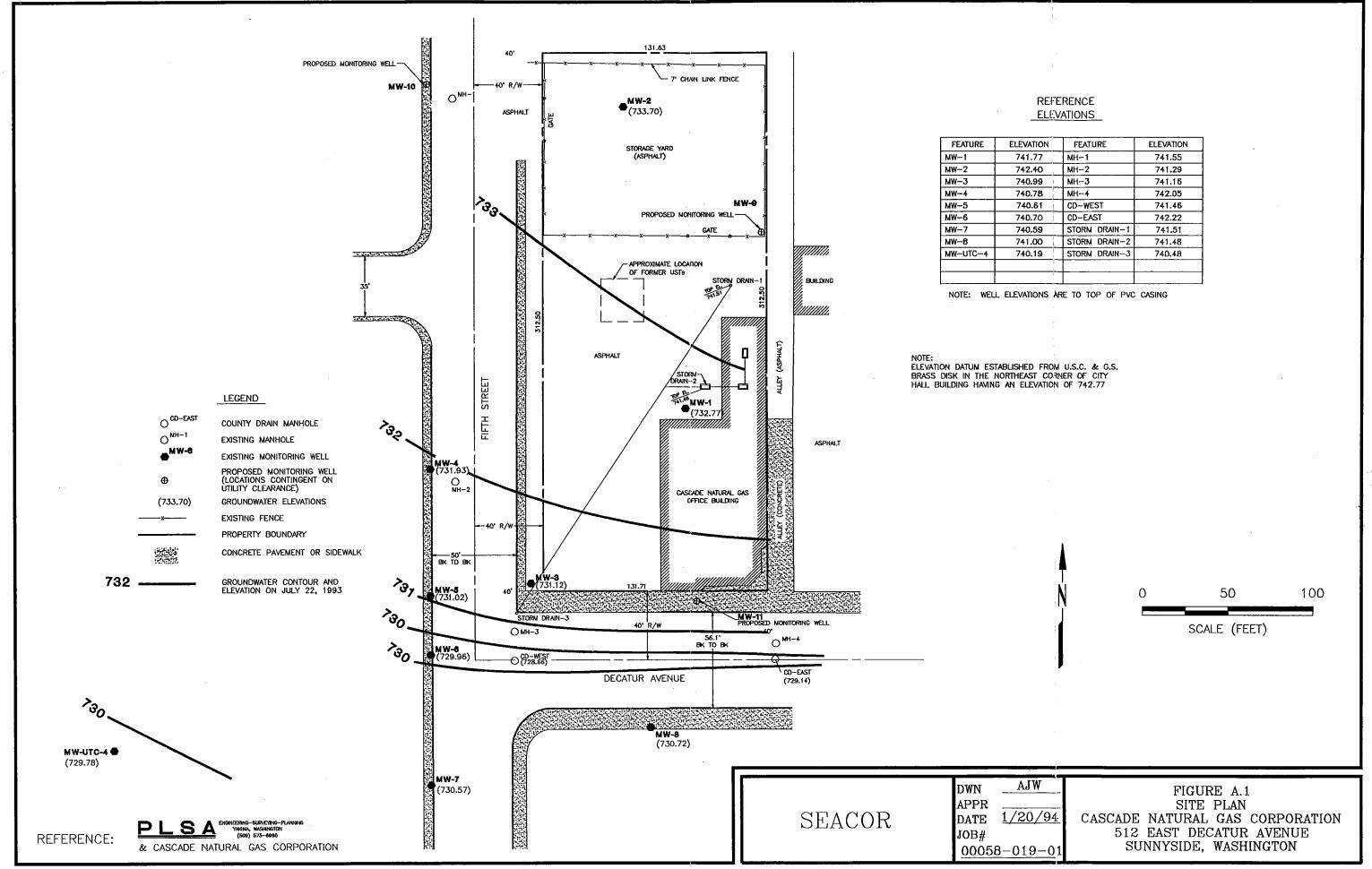
	1	WHITE SHIELD INVESTIGATIONS		ECOLOGY INVESTIGATION		SEACOR INVESTIGATIONS	
	SOIL	GROUNDWATER	SOIL	GROUNDWATER	SOIL	GROUNDWATER	
Volatile Organic Compounds							
Benzene	х	NA	х	х	х	х	
Toluene	х	NA	х	ND	х	х	
Ethyl Benzene	x	NA	х	ND	х	х	
Xylenes	х	NA	х	ND	Х	х	
Acetone ¹	ND	NA	х	ND	NA	. NA	
Methylene Chloride ¹	ND	ND	х	ND	NA	X ³	
1,1-Dichloroethane	ND	ND	х	ND	NA	ND	
1,2-Dichloroethane	ND	x	ND	ND	NA	х	
1,1,1-Trichloroethane	ND	ND	х	ND	NA	ND	
Semi-Volatile Organic Compounds						N	
Butylbenzyl phthalate	x	NA	X²	NA	ND	NA	
Bis(2-ethylhexyl)phthalate	ND	NA	X²	NA	ND	NA	
Di-n-octyl phthalate	ND	NA	X²	NA	ND	NA	
Di-ethyl phthalate	ND	NA NA	X ²	NA	ND	NA	
Di-n-butyl phthalate	ND	NA	X ²	NA	ND	NA	
Dibenzofuran	х	NA	ND	NA	ND	NA	
Naphthalene	x	NA	X²	NA	х	NA	
2-Methylnaphthalene	х	NA	X ²	NA	x	NA	
Pentachlorophenol	x	NA	ND	NA	х	NA	
Isophorone	ND	NA	ND	NA	Х	NA	
Phenanthrene	ND	NA	ND	NA	Х	NA	

NOTES:

X = Analyte Detected.

 $^{^{-}}A = Not Analyzed.$

J = Not Detected.


1 A common laboratory contaminant.

2 Detected concentration was an estimated value which was well below the method reporting limit.

3 The laboratory reported that this is a suspected laboratory contaminant.

TABLE A.2 ANALYTICAL METHODS

	ANALYTICAL METHOD
Volatile Organic Compounds	
Benzene	EPA 8240
Toluene	EPA 8240
Ethyl Benzene	EPA 8240
Xylenes	EPA 8240
Acetone	EPA 8240
Methylene Chloride	EPA 8240
1,1-Dichloroethane	EPA 8240
1,2-Dichloroethane	EPA 8240
1,1,1-Trichloroethane	EPA 8240
Semi-Volatile Organic Compounds	
Butylbenzyl phthalate	EPA 8270
Bis(2-ethylhexyl)phthalate	EPA 8270
Di-n-octyl phthalate	EPA 8270
Di-ethyl phthalate	EPA 8270
Di-n-butyl phthalate	EPA 8270
Dibenzofuran	EPA 8270
Naphthalene	EPA 8270
2-Methylnaphthalene	EPA 8270
Pentachlorophenol	EPA 8270
Isophorone	EPA 8270
Phenanthrene	EPA 8270
Petroleum Hydrocarbons	
TPH-G	WTPH-G
TPH-D	WTPH-D

EXHIBIT B

January 27, 1993

TO:

Persons Collecting Ground Water and Other Data at MTCA Sites

FROM:

Carol Fleskes, Program Manager

Toxics Cleanup Program

SUBJECT:

Cleanup Information No. 91-1: Ground Water, Soil, Sludge.

and Sediment Data (Environmental Data)

Purpose

The purpose of this memorandum is to establish consistency and procedures for organizing, reporting, transmitting, and storing and retrieving surface water, ground water, soil, sludge, and sediment data (environmental data). These procedures will improve Ecology's ability to cleanup contaminated sites by making meaningful data readily available to the public, legislature, management, project managers, and site workers.

Applicability

These procedures apply to all environmental data collection activities required by the Model Toxics Control Act and Regulations. Exceptions may be made for low risk sites as determined by the Ecology project manager.

Background

Currently, very little of the environmental data collected for the state at toxic cleanup sites is available in a readily usable form. With only a few exceptions, these data are submitted to the department in the form of voluminous paper reports. This form precludes the staff from performing rapid, accurate and many times meaningful analysis of spatial and temporal trends of the data. In addition, the evaluation of environmental data cannot always be effective because of missing and/or improper pertinent information.

This procedure establishes appropriate methods to ensure that data submitted to Ecology is encoded, stored, and presented in a magnetic media format (diskette) so that data can be consistently used by our staff. This procedure will reduce data analysis time when compared to using laborious, time consuming hand methods of the past. Today, at most of the larger sites and many of the smaller sites, these data are processed using computers by the PLP's and consultants. This procedure will generally require the data be rearranged and in some cases additional data items collected.

The results of receiving digital data in a consistent manner will allow exchange of environmental date with EPA and between Ecology programs. This format is a super set of that developed by EPA. It is being used by other Ecology Programs.

Standardization of the data will mean that a broad range of computational, statistical, graphical and modeling software will be readily available to summarize and analyze the data. Standardized report will be available for the first time in the program.

Responsibilities

The attached procedures shall be required for all of the environmental data collection activities as follows:

- O Directly by TCP
- O By any contractors or consultants tasked by TCP
- By "potentially liable parties" acting under terms of a consent decree or order

Implementation of the procedures shall be by incorporation of the appropriate language into contracts, work plans, orders, consent decrees or other appropriate documents by the site project manager or contract officer.

Data shall be entered into the Ecology data base by a data administrator. There is an inter-program team that established new parameters. At this time, Bill Myers at headquarters is acting in this capacity and as the TCP representative to the team.

Depending on the availability of a wide area network, the data would be directly or indirectly available to staff and other data users. At this time, the Site Cleanup Section is developing links from the present data base program to other statistical, graphical and analytical software packages.

Also attached is a model letter which is sent, along with a diskette, to anyone using our format to submit environmental data. These diskettes are also available to staff. To obtain a copy call Bill at the telephone number shown on the letter.

KC: Attachments

The state of the s

The construction of the co

SITE DESCRIPTION AND SAMPLE DATA SUBMITTAL REQUIREMENTS

1. Media

Required data must be submitted on MS-DOS'(version 5) or compatibly formatted diskettes. The diskettes may be 5 1/4 inch (or 3 1/2 inch) either: double sided, double density; or double sided, high density.

2. Data Formats

The SITE DESCRIPTION FILE, FIELD SAMPLE FILE and the LABORATORY SAMPLE FILE are quote, comma delimited ASCII files used as the standard format for transferring sample data to and from Ecology (LOTUS WK1 files and Ashton Tate DBF files may be substituted for ASCII files). The files will include the fields in the format and order listed (C-Character, N-Numeric, D-date(Character may be substituted in non DBF or WK1 format)).

The following Appendices are attached to standardize information entered into required files (see following appendices):

- A. Matrix Codes
- B. Sample Source Codes
- C. Collection Method Codes
- D. Chemical Data Dictionary (Standardizes Spelling, STORET P-codes., etc entered into the SAMPLE ANALYSIS FILE.
- E. Laboratory Qualifiers
- F. State Plane Zones (N or S)
 (NOTE: Copy of RCW 58.20 provided for reference)
- G: County Fips Codes
- H. Hydrologic Unit Map

3. Submittal

Computer diskettes containing the SITE DESCRIPTION FILE, FIELD SAMPLE FILE and/or the LABORATORY SAMPLE FILE, clearly labeled for Project and Originator shall be submitted in duplicate, along with a backup hard copy of the diskette contents.

LY25 135

February-17,"1993.

1-205

Site Menagement

¹ Trademark of the Microsoft Corporation

FIELD DEFINITIONS FOR SITE DESCRIPTION FILE

*Wells and Borings must include all Fields except as noted optional. Underlined Fields are required for all stations.

•			
PIELD	TYPE	WIDTH	DEFINITION
REP DATE	D	10	Reporting date (mm/dd/yyyy).
REP NAME	C	48	Reporting entity, data submitted by.
PRJ_NAME	С	48	Project, site, or facility name.
STA_TYPE	c .	12	Station type (Ground water, Surface wtr, Sediment, Soil, Sludge, Biological or Air).
STA_USE	С	1	Well use (USGS codes) O-observation, W-water withdrawal, X-waste disposal, D-drain, T-test hole, E-geothermal, P-oil/gas, U-unused, R-recharge, Z-destroyed.
WTR_USE	c	1	Water use (USGS codes) W-water quality/level monitoring, D-dewatering, N-industrial, S-stock supply, B-bottling, I-irrigation, Q-aquaculture, U-unused, C-commercial supply, H-domestic supply P-public supply, J-industrial cooling, F-fire protection, Z-other.
DATA_REL	С	1	Data Reliability (USGS codes) C-field checked, L-poor location, U-unchecked.
STA ID	C	12	Well ID number.
PRI_STA	C ·	15	Ecology primary station code. To be obtained from Ecology TCP.
SEC_STA1	C	12	Additional station code (previous well numbers, alternate or other well designations).
SEC_STA2	C	12	Additional station code (if any).
SEC_STA3	С	12	Additional station code (if any).
STATE FIPS	C	2	State FIPS code (WA-53).
SITE DESCRI	PTION FILE	CONTI	NUED

FIELD	TYPE	WIDTH	DEFINITION
COUNTYFIPS	C	3	County FIPS code (use state county code, Appendix F).
STATE CHAR	C	2	State (WA).
COUNTYCHAR	C	16	County.
OWN_NAME	C	30	Monitoring well owner name.
OWN DT	D	8	Date of ownership of well (mm/dd/yyyy).
OWN_ADD	C	60	Address of owner.
DRILLER	C	30	Name of Driller.
STA_DESC	С	48	Activity Site, Sample location, or Well location description (for example: "East of Bldg. 2" or "SE corner, intersection 6th & Seneca").
LOC METHD	С	48	Method of determination of station location coordinates (Note: survey to known horizontal datum is required).
LAT	И.	8	Latitude OPTIONAL (degrees-minutes-seconds-tenths).
LONG	N	9	Longitude OPTIONAL (degrees-minutes-seconds-tenths).
STPCO NORT	N	12	Northerly state plane coordinates REQUIRED (nearest ft).
STPCO EAST	N	12	Easterly state plane coordinates REQUIRED (nearest ft).
STPCO_ZONE	С	, 1	State plane coordinates: state plane zone REQUIRED (N or S).
LAND_NET	С	20 .	Land net location of well (Township, Range, Section, 1/4-1/4 Sec.) Use USGS 1/4-1/4 section alphabetic designator A through R OPTIONAL.

SITE DESCRIPTION FILE CONTINUED...

gett erbetteren atten

FIELD	TYPE	WIDTH	DEFINITION
	•		
UTM_NORTH	И	9	UTM grid system coordinates: North (meters) OPTIONAL.
UTM_EAST	N	8	UTM grid system coordinates: East (meters) OPTIONAL.
UTM_ZONE	С	2	UTM grid zone.
MAP NAME	c	24	Name of USGS map and scale covering the sampling location (e.g., Yakima 100K, 1977).
BORE_DEP	N	8	Depth of original hole drilled if applicable (nearest 0.01 ft).
WELL_DEP	N	8	Well depth (nearest 0.01 ft).
WTR_ELEV1	N	8	Water level elevation at time of installation (nearest 0.01 ft).
WLEV_DAT1	D ·	10	Date of water level elevation measurement (mm/dd/yyyy).
MEAS_ELEV	N	8	Measuring point (reference point) elevation (nearest 0.01 ft).
MEAS_DESC	, gase C	48	Measuring point description.
<u>DATUM</u>	C	48	Measuring point datum (The source of the altitude used to survey in the sampling location altitude i.e. City of Tacoma Sewer Survey 1921).
LEV COMM	С	240	Comments, depth and water level data.
ALTITUDE	N	. 8	Approximate land surface elevation XXXXX.XX (ft) at the Station
DEPTOWTR1	И	8	Location. Water depth at time of install. (nearest 0.01 ft).
CONST_DT	. D	10	Date of installation (mm/dd/yyyy).
MOREINT	Ċ	1	More than one open interval (Y/N).

SITE DESCRIPTION FILE CONTINUED...

3:16

FIELD	TYPE	WIDTH	DEFINITION
UP_DEPTH	N	8	Depth to top of open interval (ft below measuring point).
LOW_DEPTH	N	8	Depth to bottom of open interval (ft below measuring point).
CONST_COMM	C	240	Comments, construction details.
MTD_CON	c	1	Method of construction (USGS WATSTORE codes) A-air rotary, B-bored/augured, C-cable tool, D-dug, H-hydraulic rotary, J-jetted, P-air percussion, T-trenching, V-driven, W-drive wash, R-reverse rotary, X-mud rotary, Z-other.
FILT_LEN	И	5	Length of filter pack (nearest 0.01 ft).
FILT_MAT	C	48	Type of filter pack material and size of material (e.g., Sand 200 _ mesh).
DIA_BOR	N	8	Boring diameter (in).
DIA_CAS	'n	8	Casing diameter (in).
CAS_MAT	С	1	Casing material (USGS WATSTORE codes) B-brick, C-concrete, D-copper, F-teflon/fluorocarbon, G-galvanized iron, I-wrought iron, M-other metal, P-pvc/plastics, R-rock/stone, S-steel, T-tile, -W-wood, U-coated steel, Z-other.
DIA_OPN	N	6	Diameter of open interval (in).
len_opn	n	6	Length of open interval (nearest 0.01 ft).
TYP_OPN	··c	1	Type of open interval (USGS WATSTORE codes) P-perforated/slotted screen, L-louvered/shuttered screen, 277 MOA S-screen (unknown type), F-fracture, R-wire wound, M-mesh, T-sand point, W-walled, X-open hole, Z-other.

SITE DESCRIPTION FILE CONTINUED...

PIELD	TYPE	WIDTH	DEFINITION
TYP_ONT	C	1	Material type, open interval (USGS WATSTORE codes) R-stainless steel, F-teflon/fluorocarbon, G-galvanized iron, P-pvc/plastic, B-brass/bronze, W-wrought iron, S-steel, T-tile, C-concrete, M-other metal, Z-other.
INT_COMM	С	240	Comments, open interval.
LOG_AVAIL	C	1	Well log data available? (Y/N).
TYP_LOG	C	10	Type of well log (USGS WATSTORE codes) A-time, B-collar, C-caliper, D-driller, E-electric, F-fluid conduction, G-geologist, H-magnetic, I-induction, J-gamma ray, K-dip meter, L-lateral log, M-microlog, N-neutron, O-microlateral log, P-photo/video, Q-radioactive, S-sonic, T-temperature, U-gamma gamma, V-fluid velocity, X-core, Z-other.
LOG_DOC	· c	240	Log data source documents (e.g. Remedial Investigation Report).
OTHER_DOC	С	240	Other data source documents.
roc_roc	С	60	Location of well log (e.g. Ecology Southwest Regional Office).
AQUI_TEST	С	1	Aquifer testing performed (Y/N).
PUMP_DATA	С	240	Pump data such as: Type, Manufacturer, Horsepower, and depth set .
ANDAT_AVAL	С	1	Analytical or Statistical data available (Y/N).
PROGRAM	С	9	Ecology program (TCP, WQFA, WQ, other).
GEN_COMM	С	240	General comments.
HUCODE	C	8	See US Geological Survey Hydrologic - Unit Hap 1974-Washington.
AGN_USE	c	i	Agency use (USGS codes) A-Active, I-inactive, O-inventory only.

** END OF SITE DESCRIPTION FILE ***

FIELD DEFINITIONS FOR FIELD SAMPLE FILE

*All Fields Required

FIELD	TYPE	HTGIV	DEFINITION
PRI_STA	C	15	Ecology Monitoring Well No. will be assigned by Ecology TCP Program.
STA_ID	C	12	Site well ID no. or other designation.
X_LOCATION Y_LOCATION	C C	12 12	Surveyed coordinates reported in the State Plane Coordinates (to the nearest foot).
STPLNZONE	c	1	N - North; S - South.
LO_DAT_U	С	5	Year of Reference datum either 1929 or 1983 and which system L Lat Long or S for State Plane Coordinate System.
LOC_DATUM	C	48	Reference datum from Map or survey e.g., 1983 North American Datum (see Appendix F, RCW 58.20)
DEPT_WATER	N	. 8	Depth to water (in 0.01 ft) at time of sampling.
UP_DEPTH	N	7	Depth (nearest 0.01 ft) to the top of the interval sampled (e.g. Top of well screen or core interval).
LOW_DEPTH	N	7	Depth (nearest 0.01 ft) to the bottom of the interval sampled (e.g. Bottom of well screen or core interval).
WTR_ELEV	И	8	Water level elevation (in 0.01 ft) at the time of sampling.
AGENCY	C	8	Agency requesting sampling data.
SAMPLE_DAT		8	Date of well sampling (mm/dd/yyyy).
SAMP_TIME	С	4	Time of well sampling in military time.
sample_ID	c	8	Sample ID code or no.

FIELD SAMPLE FILE CONTINUED:

FIELD	TYPE	WIDTH	DEFINITION
FILTERED	L	1	Was the sample field filtered?
Yes(Y) or			No(H)
ANALYSIS_HTHOD	С	15	EPA Analysis method descriptions (i.e EPA Method 601).
MEAS_ELEV	· . N	8	Surveyed elevation of the measuring point used to determine water level depths and elevations. (nearest 0.01 ft).
MEAS_DESC	С	48	Description of the well measuring point used (e.g., top of casing, file mark on casing, etc.).
DATUM	С	48	Vertical datum used to reference elevations (e.g., MSL and source/date of information).
MATRIX	С	2	Type of sample; water, sediment, soil, other (from Appendix A).
SOURCE_COD	c,	2	Physical environment sampled (from Appendix B).
COLLECTMET	. c	2	Collection method code (from Appendix C).
FIELD_PH	N	5	The pH value taken at time of sampling (e.g. 11.67)
FIELD_COND	N	. 7	The conductivity value in umhos.
FIELD_TEMP	N	5	The field temperature of the sample degrees celsius.
PURGE_METH	С	1	Purging method: B = Bail, P= Pump
purge_vol	· с	2	Number of boring volumes removed prior to sampling (liquid).
PRJ_NAME	C	48	Project, site, or facility name.

** END OF FIELD SAMPLE FILE ***

FIELD DEFINITIONS FOR LABORATORY SAMPLE FILE

*All Fields Required

FIELD			
PRI_STA	С	15	Ecology Monitoring Well No. will be assigned by Ecology TCP Program.
STA_ID	c	12	Site well ID no. or other designation.
SAMPLE_DAT	D	8	Date of well sampling (mm/dd/yyyy).
ANALYZ_DAT	D	8	Date the sample was analyzed (mm/dd/yyyy).
SAMPLE_ID	С	8	Sample ID code or no.
LAB_NAME	C	10	Laboratory performing analysis.
LABSAMP_ID	c	10	Sample number assigned by the laboratory.
CONSTITUEN	C	30	Chemical constituent names as defined in Ecology's Chemical Dictionary (see attached Appendix D)
CAS_ID	С	12	Chemical Abstract Systems ID (see Appendix D).
P_CODE	С	5	STORET Parameter Code (see Appendix D).
RESULT	N	12	Detected chemical concentration result.
UNITS	c	10	Units of measurement (e.g., µg/Kg).
QUAL	С	4.	Contract Laboratory Program chemical data qualifiers (such as U, J, R, UJ, etc.). Non-Contract Lab Program qualifiers, such as less-than signs ("<") orasterisks, are not acceptable (see Appendix E).
QA_QUAL	С	4	Qualifier associated with QA Review of Lab report (See Appendix E).
			Lab instrument detection limit.

FIELD	TYPE	MIDIN	DEFINITION
DILUTION	N	6	Amount the sample was reduced and diluted to accommodate analysis (i.e. 10X,20X).
FILTERED	L	1	Was the sample lab filtered? Yes(Y) or No(N)
ANALYSIS_MTHOD	C.	15	EPA Analysis method descriptions (i.e EPA Method 601).
MATRIX	С	2	Type of sample; water, sediment, soil, other (from Appendix A).
PRJ_NAME	С	48	Project, site, or facility name.

** END OF LABORATORY SAMPLE FILE ***

APPENDIX A: MATRIX CODES

10	Water-Total
11	Water-Dissolved
40	Sediment/Soil
45	Semi-Solid/Sludge
70	Sediment for EP Toxicity
80	Oil/Solvent
00	Other

APPENDIX B: SAMPLE SOURCE CODES AND DESCRIPTIONS

00	Unspecified source
01	unknown liquid media (drum/tank)
02	Makadem liquid media (SDIII area)
03	Unknown liquid media (waste pond)
0.5	•
10	Water (general)
12	Ambient stream/river
13	Lake/reservoir
14	Estuary/ocean
15	Spring/seepage
16	Rain
17	Surface runoff/pond (general)
18	Irrigation canal/return flow
20	Well (general)
21	Well (industrial/agricultural)
22	Well (drinking water supply)
23	Well (test/observation/monitoring)
24	Drinking water intake
25	Drinking water (at tap)
· 30	Effluent wastewater (general)
31	Municipal effluent
32	Municipal inplant waters
33	Sewage runoff/leachate
34	Industrial effluent
35	Industrial inplant waters
36	Industrial surface runoff/pond
37	Industrial waste pond
38	Landfill runoff/pond/leachate
30	
40	Sediment (general)
42	Bottom sediment of deposit
44	Sludge (general)
45	Sludge (waste pond)
46	Sludge (drum/tank)
48	Soil (general)
40	Soil (spill/contaminated area)

Soil (spill/contaminated area)

Bore hole material

49

50

Sample Source Codes and Descriptions (continued)

60	Air (general)
61	Ambient sit
62	course of effluent all
63	Industrial or workroom air
64	Hi-vol filter
70	Tissue (general)
71	Fish tissue
72	Shellfish tissue
73	Bird tissue
74	Mammal tissue
75	Macroinvertebrate
76	Algae
77	Periphyton
78	Plant/vegetation
80	Oil/solvent (general)
81	Oil (transformer/capacitor)
82	Oil/solvent (drum/tank)
83	Oil/solvent (spill area)
84	Oil/solvent (waste pond)
90	Commercial product formulation
. 95	Well drill water
96	Well drill mud
97	Well sealing material
98	Gravel pack material
	•

APPENDIX C: COLLECTION METHOD CODES

00	Unknown	
10	Hand grab	
11	Plastic bucket	
12	Stainless steel bucket	
13	Brass kemmerer	
14	PVC kemmerer	
15	D.O. dunker	
16	DH 48/DH 49 Integrating sampler	
17	Van Dorn bottle	•
18	Glass dip tube	
19	Other	
20	Automatic sampler (general)	
21	ISCO auto sampler	
22	Manning auto sampler	
23	Hydrostar or similar pump	
24	Submersible pump (electric)	
25	Well point sampler (pump)	
26	Stainless steel bailer (hand)	
27	PVC bailer	
28	Teflon bailer	
29	Peristaltic pump	
30	Dredge (unspecified)	
31	Dredge (Peterson)	
32	Dredge (Van Dorn)	
33	Dredge (Van Veen)	
34	Core	•
35	Freeze core	
36	Bladder Pump	
40	Macroinvertebrate (unspecified)	
41	Picked by hand	
42	Kick net	
43	Surber	÷
44	Modified Hess type sampler	
45	Rock basket	
-	Hester Dendy sampler	÷
46	nescer bendy believe	<i>i</i> .
60	Fish (unspecified)	•¢
- 50	Fish (shocking)	
51		सार्वेद्वरीतिक प्रतिकृति
52	Fish (netting) Fish (hook & line)	-
53		া প্ৰতি ভাগিত ক ি বিভাগ
54	Fish (poison)	enelemes view
	Boul-boson (ungage (fled)	
60	Periphyton (unspecified)	\$ 7. Profit of the stand
61	Rock scraping	THE STATE OF STATE
62	Glass slides	with the state of

n grand<mark>agan meter</mark> Tidu. Tidan 19 mga

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
1,1,1,2-Tetrachioroethane	527.00	77562	630206	μg/L
1,1,1-Trichloroethane	1.00	34506	71556	<i>μ</i> g/L
1,1,2,2-Tetrachloroethane	2.00	34516	79345	<i>μ</i> g/L
1,1,2,2-Tetrachloroethene	75.05	34475	127184	<i>μ</i> g/L
1,1,2-Trichloro2,2,1trifluoroethane	3.00	77652	76131	μg/L
1,1,2-Trichloroethane	4.00	34511	79005	μg/L
1,1-Dichloroethane	5.00	34498	75343	µg/L
1,1-Dichloroethene	6.00	34501	75354 75354	µg/L
1,1-Dichloroethylene	6.01	34501	75354 563586	µg/L
1,1-Dichloropropene	546.00	77168	563586	µg/L ·∽1
1,2,3-Trichlorobenzene	534.00	77613	87616 06184	µg/L √2€
1,2,3-Trichloropropane	441.00	81610	96184	μg/L ····································
1,2,3-Trinitrobenzene	85.00	73275	99354	μg/Kg
1,2,4-Trichlorobenzene	7.00	34551	120821	μg/L
1,2,4-Trimethylbenzene	536.00	77222	95636	<i>µ</i> g/L
1,2,4-Trinitrobenzene	100.00		100024	
1,2-Dibromoethane (EDB)	8.00	77651	106934	μg/L ma4
1,2-Dichlorobenzene	9.00	34536	95501	µg/L
1.2-Dichloroethane	10.00	34531	107062	μg/L uπΛ
1,2-Dichloromethane	68.01	34423	75092	µg/L ₁m#
1,2-Dichloropropane	11.00	34541	78875	₽gÆ
1,2-Diethoxyethane	482.00	81527	629141	µg/L ·····A
1,2-Diethylbenzene	548.00	77340	135013	μg/L
1,2-Dimethylbenzene	77.02	77135	95476	μg/L
1,2-Dimethylbydrazine	582.00	73562	540738	μg/L vo#
1,2-Diphenylhydrazine	84.00	34346	122687	μq/L
1,3,5-Trimethylbenzene	541.00	77226	108678	hav.
1,3,5-Trinitrobenzene	156.00	73275	99354	μα/Κα
1,3-Dichlorobenzene	12.00	34566	541731	μg/L
1,3-Dichloropropens	544.00	34561	542756	μg/L
1,3-Diethylbenzene	549.00	77348	141935	μg/L
1,3-Dimethybenzene	67.01	77134	108383	µg/L 1774
1,4-Dichlorobenzene	13.00	34571	106467	μg/L μg/L
1,4-Diethylbenzene	550.00	77345	105055	μg/L
1,4-Dimethylbenzene	475.03	77133	106423	mg/L
1,4-Dioxane	583.00	82388	123911	- ·
1-Methylethyl ester carbamic acid	.574.00	73615	615532	μg/L
1-Methylnapthalene	211.00	77418	90120	μg/L
2 Methoxy-5-nitroaniline	584.00	73622	99558	μg/L vm/l
2 Methylaniline	585.00	77142	95534	μg/L
2 Methylaniline hydrochloride	58 6.00	73649	636215	μg/L
2,2,4-Trimethylpentane	545.00		5408401	μg/L
2,2-Dichloropropane	547.00	77170	594207	
2,3,4,5-Tetrachloropheno	1553.00	77767	4901513	<i>µ</i> g/L
2,3,6-Trichloro benzeneacetic acid	575.00	85347	4746046	μg/L
2,3,7,8-TCDO	87.02	34675	1746016	http

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
a a 7 a Tarrablaradibanza adioxid	87.00	34675	1746016	μg/L
2,3,7,8-Tetrachlorodibenzo-p-dioxin 2,3-Dichloropropylene	88.00	77166	788 86	μg/L
2,4,5-T Methyl Ester	89.00	39740	93765	<i>p</i> al
	554.00	82650	93801	μ g/Kg
2,4,5-TB 2,4,5-TP (Silvex)	91.00	3976 0	93721	μg/L
2,4,5-TP Methyl Ester	90.00			
2,4,5-Trichlorophenol	14.00	77687	95 954	μg/L
2,4,5-Trichlorophenoxyacetic acid	319.00	39740	93765	µg/L
2.4,6-Trichlorophenol	15.00	34621	88062	μg/L
2,4,6-Trimethyl-1-1,3,5-Trioxane	92.00	77322	123637	μg/L
2.4-D	93.00	39730	94757	μg/L
2,4-D Methyl Ester	93.01	39730	94757	μg/L
2,4-DB (Water, Total)	555.00	38745	94826	μg/L
2,4-Dichlorophenol	16.00	34601	120832	μg/L
2,4-Dichlorophenoxy butyric acid	235.00		94826	μg/L
2.4-Dimethylphenol	17.00	34606	105679	μg/L
2,4-Dinitrophenol	18.00	34616	51285	μg/L
2,4-Dinitrotoluene	19.00	34611	121142	µg/L
2,4-Toluenediamine	587.00	78888	95807	µg/L
2,5-Dinitrotoluene	94.00	77637	619158	μg/L
2,8-Dinitrotoluene	20.00	34626	606202	µg/L
2-Butanone	376.03	81595	78933	μg/L
2-Chloroethyl vinyl ether	22.00	34576	110758 91587	μg/L μg/L
2-Chloronaphthalene	23.00	34581	95578	μg/L μg/L
2-Chlorophenol	24.00	34586	95498	μα/L
2-Chlorotoluene	535.00	38680	33430	pur
2-Cyclohexene-1-one	488.00	930697	149575	μg/L
2-Ethyl hexanoic acid	196.00	821 14 77103	591786	μg/L
2-Hexanone	25.00	85813	29385431	μg/L
2-Methyl-2H-benzotriazole	576.00	34657	534521	μg/L
2-Methyl-4,6-dinitrophenol	96. 00 cid 367.02	39151	94746	μg/L
2-Methyl-4-chlorophenoxyacetic a	95. 00	78133	108101	μg/L
2-Methyl-4-pentanone	17.01	34606	105679	μg/L
2-Methyl-p-cresol	26.00	77416	91576	μg/L
2-Methylnaphthalene	27.00 ·	77152	95487	· µg/L
2-Methylphenol	28.00	30195	88744	μg/L
2-Nitroaniline	29.00	34591	88755	μg/L
2-Nitrophenol	97.00	77060	107879	μg/L -
2-Pentanone 2-chloro-1-hydroxybenzene	24.02	34588	95978	ÿg∕L
3.3'-Dichlorobenzidine	98.00	34631	91941 - "	" µg/L
3,3-Dichlorocenzione 3,3-Dimethoxybenzidine	588.00	•	199904	μα/L:
3,3-Dimethylbenzidine	589.00	73560	119937	<i>μ</i> g/L`
3,4-Benzofluoranthene	99.00	34230	205992	half.
3,4-Dichlorobenzyl	571.00	^	1966581	μg/L
N-methylcarbama +				_
3,5-Dichlorobenzoic acid	240.00	•	51 365	pal
3-Chloro octane	528.00	•		r in Att.
O-CHAIA ANIMA	· ·	•	· · · · · ·	

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

01/27/93				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
• A44	30.00	78300	99092	<i>μ</i> g/L
3-Nitroaniline	208.01	39360	72548	<i>μ</i> g/L
4,4'-DDD	209.01	39365	72559	<i>p</i> g/L
4,4'-DDE	210.01	39370	50 293	µg/L
4,4'-DDT	592.00	101611	•	halr
4,4-Methylene				•
bis(n,n-dimethyl) an +	96.01	34657	534521	μg/L
4,6-Dinitro-2-methylphenol	101.00	82226	88857	hav
4,8-Dinitrophenol 4,7-Methanoisobenzofuran-1(3H)	570.00			μ g/L
	•			
-one + 4-Bromophenoxybenzene	102.00			•
4-Bromophenux phenyl ether	103.00	34636	101553	μg/L
4-Bromophenyl phenyl ether	590.00		3165933	μ g/L
4-Chloro-2-methyl analine				•
hydrochl +	591.00		95692	<i>μ</i> g/L
4-Chloro-2-methyl aniline	31.00	34452	59507	μg/L
4-Chloro-3-methylphenol	31.01	34452	59507	μg/L
4-Chloro-m-cresol	464.00	78303	106478	mg/Kg
4-Chloroaniline	33.00	34641	7005723	μαΛ
4-Chlorophenyl phenyl ether	540.00	77277	106434	μg/L
4-Chlorotoluene	34.00	78133	108101	μg/L
4-Methyl-2-pentanone	17.02	34606	105679 ·	<i>μ</i> g/L
4-Methyl-o-cresol	35.00	77146	106445	μg/L
4-Methylphenol	36.00	73278	100016	μg/Kg
4-Nitroaniline	37.00	34646	100027	μ g/L
4-Nitrophenol	104.00	•		_
5-Bromopyrimidine	256.00			<i>μ</i> g/L
5-Hydroxy Dicamba	281.01	39033	1912249	μg/L
AAtrex	38.00	34205	83329	<i>μ</i> g/L
Acenaphthene	39.00	34200	208968	pg/L
Acenaphthylene	385.02	81815	30560191	μg/L ·
Acephate	40.00	81552	67641	μg/L
Acetone	215.00	79193	6247659	<i>µ</i> g/L
Acifluorfen	105.00	34210	107028	<i>μ</i> g/L
Acrolein	593.00	38576	79061 -	<i>μ</i> g/L
Acrylamide .	106.00	34215	107131	μg/L
Acrylonitrile	273.00	77825	15972608	<i>μ</i> g/L
Alachlor	273.01	77825	15972608	μg/L
Alanex	274.00	39053	116063	. pg/L
Aldicarb	320.00	82587	1646884	<i>µ</i> g/L
Aldicarb sulfone	318.00	825 86	1646873,	<i>p</i> g/L
Aldicarb sulfoxide	107.00	39330	309002	- µg/L
Aldrin	453.00	00410	471341	j mg/L
Alkalinity as CaCO3, Total	246.00	00410	471341	mg/l
Alkalinity, Total (CaCO3)	611.00	01519	12587461	
Alpha Particle Activity, gross	511.00	01106	7429905	. µg/L
Aluminum, Dissolved	510.00	01105	7429905	μg/L
Aluminum, Total	108.00	01104	7429 905	<i>µ</i> g/L
Aluminum, Total Recoverable	,,,,,,			

01/27/93				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
	275.00	82184	834128	μg/L
Ametryn	276.00	82051	133904	µg/L
Amiben	277.00	38404	2032599	halr
Aminocarb	278.00	73509	61825	μg/L
Aminotriazole	278.01	73509	61825	μg/L
Amitrole	109.00	00610	17778880	mg/L
Ammonia-N, Total as-N	110.00	77089	62533	μ g/L
Aniline	111.00			_
Anion Balance	112.00	34220	120127	μg/L
Anthracene	524.00	01095	7440360	μαV
Antimony, Dissolved	113.00	01097	7440360	<i>μ</i> g/L
Antimony, Total	21.00	01268	7440360	<i>μ</i> g/L
Antimony, Total Recoverable	105.01	34210	107028	μg/L
Aqualin	594.00		140578	μg/L
Aramite	114.00	34671	12674112	μg/L
Aroclor 1016	115.00	39488	1104282	μ o/L
Aroclor 1221	116.00	39492	11141165	μ g Λ L
Aroclor 1232	117.00	39496	53469219	μg/L
Aroclor 1242	118.00	39500	12672296	μg/L
Aroclor 1248	119.00	39504	11097691	μg/L
Aroclor 1254	120.00	39508	11096825	μg/L
Aroclor 1260	322.00	01000	7440382	µg/L
Arsenic, Dissolved	121.00	01000	7440382	μg/L
Arsenic, Inorganic (dissolved)	137.00	01002	7440382	μ g/L
Arsenic, Total	122.00	00978	7440382	μ g/L
Arsenic, Total Recoverable	123.00	34225	1332214	μ g/L
Asbestos	280.00	82185	1610179	<i>µ</i> g/L
Atraton	281.00	39033	1912249	<i>μ</i> g/L
Atrazine	532.00	73386	2303164	mg/Kg
Avadex	330.01	78882	43222486	μ g/L
Avenge	282.00	81292	2642719	μg/L
Azinphos-Ethyl	359.01	39580	86500	<i>µ</i> g/L
Azinphos-Methyl (Guthion)	595.00	77625	103333	µg∕L
Azobenzene	383.01	81890	6923224	. µg/L
Azodrin	459.00	• 101		%
BFB	132.00	81283	608731	$\mu_{Q} L$
BHC	499.01	. 00310		. mg/L
BOD	283.00	39002	1861401	pg/L
Balan	284.00	82052	1918009	_ µg/L
Banvel	508.00	01005	7440393 .	
Barium, Dissolved	509.00	01007	7440393	μ g/L
Barium, Total	124.00	01009	7440393	
Barium, Total Recoverable	286.01	38710	25057890	
Basagran	354.01	79194	3324539	μ g Λ
Basalin	337.01	81287	88857	<i>μ</i> g/L
Basanite	424.01	38537	114261	μ g/L
Baygon	307.02	81293	56724	_ pg/L
Baymix	307.02	-		

01121130		•		
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
	351.01	38685	55389	μg/L
Baytex	283.01	39002	1861401	μ g Λ
Benefin	283.02	39002	1861401	μ g/L
Benfluralin	285.01	38705	17804352	<i>μ</i> g/L
Benlate	285.00	38705	17804352	μ g/L
Benomyl	288.01	82197	741582	<i>µ</i> g/L
Bensulide .	286.00	38710	25057890	μ g/L
Bentazon	130.01	34526	56553	<i>μ</i> g/L
Benz(a)anthracene	41.00	34030	71432	μg/L
Benzene .	572.00	•		
Benzene,	572.00			
1-chloro-4-(methylsulfony +	125.00	39120	92875	μ g Λ L
Benzidine	130.00	34526	56 553	μ g/L
Benzo(a)anthracene	126.00	34247	50328	μg/L
Benzo(a)pyrene	127.00	34230	205992	µg/L
Benzo(b)fluoranthene	531.00	34242	207089	<i>μ</i> g/L
Benzo(b/k)fluoranthene	128.00	34521	191242	μg/L
Benzo(g,h,i)perylene	128.01	34521	191242	μg/L .
Benzo(ghi)perylene	129.00	34242	207089	μg/L
Benzo(k)fluoranthene	42.00	77247	65850	<i>μ</i> g/L
Benzoic acid		34030	71432	μg/L
Benzol	41.01	34000	98077	<i>μ</i> g/L
Benzotrichloride	596.00	77147	100516	μg/L
Benzyi alcohol	43.00	73520	100447	μg/L
Benzyl chloride	597.00	01010	7440417	μg/L
Beryllium, Dissolved	515.00	01012	7440417	μg/L
Beryllium, Total	514.00	00998	7440417	μg/L
Beryllium, Total Recoverable	131.00	85817	12587472	pCi/L
Beta Particle Activity, gross	612.00	82197	741582	μα/L
Beta san	288.00	00425	471341	mg/L
Bicarbonate as CaCO3	454.00	00440	71523	mg/L
Bicarbonate as HCO3	133.00	38454	141662	μg/L
Bidrin	328.01	78883	42576023	μg/L
Bifenox	382.01	00310	420.0000	mg/L
Biochemical Oxygen Demand	499.00	34278	111911	µg/L.
Bis(2-chloroethoxy)methane	44.00	34273	111444	<i>μ</i> g/L
Bis(2-chloroethyl)ether	45.00	34283	108601	μg/L*`
Bis (2-chloroisopropyl) ether	46.00	103321	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Bis(2-ethylhexyl) ester	577.00	103321		2.3.
hexanedioi +		39100	117817	μg/L ^γ
Bis(2-ethylhexyl)phthalate	140.00	34268	542881	μg/L
Bis(chloromethyl)ether	598.00	34596	117840	μg/L
Bis(n-octyl)phthalate	465.01	01020	7440428	μg/L
Boron	134.00	70314	1897456	μg/L
Bravo	313.02	82198	314409	μg/L
Bromacil	289.00	38855	300765	μg/L
Bromex	386.01	38655 8 2298	24959679	
Bromide(dissolved)	135.00	82296 81555	108861	μg/L
Bromobenzene	542.00	01399	, , , , , , ,	<i>-</i>

01/27/93				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
	533.00	32105	124481	µg/L
Bromochloromethane	47.00	32101	75274	μg/L
Bromodichloromethane	48.00	32104	75252	μg/L
Bromoform	49.00	34413	74839	μ g Λ
Bromomethane	556.00	70979	1689845	μ g/L
Bromoxynil (Water, Whole)	633.00	30235	2318466 9	μ g/L
Butachlor, Water/Whole/Recoverable	376.02	81595	789 33	μ g/L
Butanone	136.00	34292	85687	μg/L
Butyl benzyl phthalate	290.00	81410	2008415	· pg/L
Butylate	292.01	45049		μ g Λ
Butylbenzenes, Total	291.00	45046		μ_0 /L
C3-Alkylbenzenes, Total	292.00	45049		<i>µ</i> g/L
C4-Alkylbenzenes, Total	161.01	81356	me	q/100G
CEC	305.01	81322	101213	μg/L
CIPC	492.01	81319		mg/L
COD	406.00	01025	7440439	μ g/L
Cadmium, Dissolved	407.00	01027	7440439	μg/L
Cadmium, Total	138.00	01113	7440439	μg/L
Cadmium, Total Recoverable	521.00	00910	7440702	mg/L as CaCO3
Calcium	520.00	00915	7440702	mg/L
Calcium, Dissolved	141.00	00916	7440702	mg/L
Calcium, Total	287.00	81324	762 22	μ g/L
Camphor (ACN)		39640	133062	µg/L
Captan	293.00	77700	6325 2	μg/L
Carbaryl	294.00	77571	86748	μg/L
Carbazole	329.00	38735	10605217	<i>µ</i> g/L
Carbendazim	295.00 296.00	81405	1563662	μ g Λ L
Carbofuran		77041	75150	μ g/L
Carbon disulfide	50.00	32102	56 235	μ g/L
Carbon tetrachloride	51.00	00680	7440440	<i>µ</i> g/L
Carbon, Total Organic	250.00	00445	3812326	mg/L
Carbonate as CO3	142.00	00430	471341	mg∕L
Carbonate as CaCO3	455.00	39786	786196	μ g/L
Carbophenothion	297.00	70987	5234684	μ g/L
Carboxin	139.00	70001		
Cation Balance	143.00 161.00	81356	1	meq/100G
Cation Exchange Capacity	492.00	81319		mg/L
Chemical Oxygen Demand		82051	133904	μοΛ
Chloramben	276.01	39350	57749	μ g/L
Chlordane	144.00	81281	143500	μ g/L
Chlordecon	298.00	77953	616498 3	<i>μ</i> g/L `
Chlordimeform	299.00	00940	16887006	mg/L
Chloride, Total	145.00	50060	7782505	mg/L
Chlorine, Total Residual	146.00	34301	108907	µg/L.
Chlorobenzene	52.00	39460	510158	μ g/L
Chlorobenzilate	300.00	77217	542187	<i>µ</i> g/L
Chlorocyclohexane	86.00	32105	124481	<i>μ</i> g/L
Chlorodibromomethane	58.01	34311	75003	µg/L
Chloroethane	53.00	J		

01/2//30				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
Chi	82.03	39175	75014	μg/L
Chloroethene	82.02	39175	75014	µg/L
Chloroethylene	54.00	32106	676 63	μ g/L
Chlorostorm	55.00	34418	748 7 3	μ g/L
Chloromethane	301.00	38423	267 5778	$\mu_0 L$
Chloroneb	303.00	77548	76062	$\mu_0 \Lambda$
Chloropicrin Chloropropham	305.00	81322	101213	μg/L
Chloropropriate	302.00	38429	5836102	μg/L
Chlorothalonii	313.01	70314	1897456	μα/L
Chlorpyrifos	304.00	77969	2921882	$\mu_{Q}\Gamma_{L}$
Chlorthal	314.02	39770	1861321	μ_0 /L
Chromium VI	50 6.01	01032	18540299	$\mu_0 \Lambda$
Chromium, Dissolved	516.00	01030	7440473	$\mu_0 \Lambda$
Chromium, Hexavalent	506.00	01032	18540299	HOLL
Chromium, Total	491.00	01034	7440473	<i>μ</i> g/L
Chromium, Total Recoverable	147.00	01118	7440473	μα/L
	148.00	34320	218019	μ g/L
Chrysene	74.03	77128	100425	<i>μ</i> g/L
Cinnamene	306.00	825 65	7700176	<i>μ</i> g/L
Ciodrin	307.01	81293	56724	μg/L
Co-Ral	149.00	01037	7440484	μg/L
Cobalt	505.01	31616		#/100ml
Coliform, Fecal	150.00	31628		#/100ml
Coliform, Total	599.00	41 mm	08000	std. units
Color	449.02	•	00094	µmhos/cm
Conductivity	408.00	01040	7440508	μg/L
Copper, Dissolved	442.00	01042	7440508	μg/L
Copper, Total	152.00	01119	7440508	<i>μ</i> g/L
Copper, Total Recoverable	600.00			std. units
Corrosivity	307.00	81293	56724	μg/L
Coumaphos	308,00	39140	88015 89	μg/L
Creosote	306.01	8 2565	7700176	μg/L
Crotoxyphos	309.00	77223	9882 8	<i>µ</i> g/L
Cumene	310.00	81757	21725462	
Cyanazine	153.00	782 48	57125	μg/L
Cyanide Cyanide, Dissolved Std Method	279.00	00723	57125	<i>μ</i> g/L
	311.00	81892	1134232	μg/L
Cycloate	254.00	81570	110827	μg/L
Cyclohexane	441.01	81610	96184	μoΛ
D-D Mix	315.00	38761	96128	μg/L
DBCP	316.00	38447	9930 9	μg/L
DCNA	168.01	80116		mg/L
DCOD	314.01	39770	1861321	μg/L
DCPA	208.00	39360	72548	<i>μ</i> g/L
DDD	209.00	39365	7255 9	μg/L
DDE	210.00		50293	μg/L
DDT	317.00	73071	62737	par
DDVP	3,,,,			•

01/2/100		•		
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
DEF	324.00	81295	78488	Mar
DMPA	336.00	81285	299854	<i>μ</i> g/L
DNBP	337.00	81287	88857	μg/L
DNOC	338.00	34657	534521	μ g/L
DO	169.01	00299	7782447	mg/L
Daconil	313.00	70314	1897456	µg/L
Dacthal	314.00	39770	1861321	µg/L
Dalapon	312.00	38432	75990	μg/L
Dasanit	350.01	38684	115902	μg/L
Demeton	325.00	39560	8065483	µg/L
Devrinol	387.01	79195	1529999	μg/L
Di-n-butylphthalate	155.00	39110	84742	μg/L
Di-n-octylphthalate	465.00	34596	117840	μ g/L
Diallate	532.01	73386	2303164	mg/Kg
Diazinon	158.00	39570	333415	μg/L
Dibenz(a,h)anthracene	159.01	34556	53703	<i>μ</i> g/L
Dibenz(a,h)anthracene-d	14557.00	79040	53 703	mg/Kg
Dibenzo(a,h)anthracens	159.00	34556	53703	<i>µ</i> g/L
Dibenzofuran	57.00	81302	132649	₽gÆ
Dibromochloromethane	58.00	32105	124481	μ g/L
Dibromochloropropane	315.01	38761	96128	μ g/L
Dibromodichloromethane	489.00	77779	594183	μ g/L
Dibromomethane	160.00	81522	106934	₽g/L
	284.01	82052	1918009	<i>µ</i> g/L
Dicamba Diableses	316.01	38447	99309	μg/L
Dichloran Dichlorobromomethane	47.01	32101	75 274	μg/L
Dichlorodifluoromethane	162.00	34668	75718	μg/L
Dichloromethane	68.02	34423	75092	μg/L
	244.00	30190	120365	µg/L
Dichloroprop Dichlorvos (DDVP)	317.01	73071	62737	<i>μ</i> g/L
Dicolol	327.00	39780	115322	μg/L
	328.00	38454	141662	μg/L
Dicrotophos	579.00			μg/L
Dicyclopropyl methanone Dieldrin	164.00	39380	60571	μg/L
Diesel	472.00	78939	68476346	µg/L
	165.00	81576	60297	<i>μ</i> g/L
Diethyl ether	59.00	34336	84662	μ g/L
Diethylphthalate Diethylphthalate-d4	558.00		•	•
• •	397.01	39022	80331	μg/L
Difenson	330.00	78882	43222486	μ g/L
Difenzoquat	154.00	81577	108203	μg/L
Diisopropyl ether	414.01	78881	13171216	μg/L
Dimecron Dimethoate	331.00	46314	60515	μg/L
	40.02	81552	67641	μg/L
Dimethyl ketone	166.00	81580	624920	- μg/L
Dimethyldisulfide	60.00	34341	1311 13	MOL
Dimethylphthalate Dimethyltetrachlorophthalate	314.03	39770	186132 1	HOL
	338.01	34657	534521	μg/L
Dinitro-o-cresol	200.41			

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

01/2//93				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
• Variab	337.02	81287	88857	μg/L
Dinoseb	332.00	38783	78342	<i>μ</i> g/L
Dioxathion	87.01	34675	1746016	<i>μ</i> g/L
Dioxin Disheamide	333.00	78004	957517	μg/L
Diphenamide Diphenoloxide	167.00	77587	101848	POL
	334.00	78885	85007	µg/L
Diquat Direct Black 38	601.00		0000400	POL
Direct Blue 6	602.00		2602462	μg/L
Direct Blown 95	603.00	•	1607186 6	μg/L
Dissolved COD	168.00	_	80116	mg/L
Dissolved Cop Dissolved Oxygen	169.00	00299	7782447	mg/L
Dissolved TOC	170.00	00679	7440440 kg	/100GAL
Disufoton sulfone	642.00		200044	μg/L μg/L
Disulfoton (Di-Syston)	171.00	81888	29804 4 2497076	μg/L
Disulfoton sulfoxide	643.01	81030	8018017	μg/L
Dithane	365.01	38831	137304	μg/L
Dithiocarbamate	446.01	38917	330541	μg/L
Diuron	335.00	39650	75990	μg/L
Dowpon	312.01	38432	2921882	ρg/L μg/L
Dursban	304.01	77969	944229	μg/L
Dyfonate	339.00	81294	52686	μg/L
Dylox	340.00	39014		nhos/cm
EC	449.01	00094	106934	μg/L
EDB	8.01	77651	2104645	μg/L
EPN	344.00	81290	759944	μg/L
EPTC	345.00	81894	959988	µg/L
Endosulfan	341.00	34361 34361	959988	µg/L
Endosulfan I	341.01	34356	33213659	μg/L
Endosulfan II	342.00	34351	1031078	μg/L
Endosulfan Sulfate	172.00	38926	145733	μg/L
Endothall	343.00	393 90	72208	µg/L
Endrin	174.00	34366	7421934	μg/L
Endrin Aldehyde	173.00	78008	53494705	<i>μ</i> g/L
Endrin Ketone	490.00	78004	957517	<i>μ</i> g/L
Enide	333.01	106898		µg/L
Epichlorohydrin	604.00 34 5 .01	81894	759944	μ g Λ
Eptam	428.01	38542	26259450	<i>μ</i> g/L
Etazine	346.00	77004	64175 -	µg/L
Ethanol	74.04	77128	100425	μg/L
Ethenylbenzene	175.00	39398	563122	μg/L
Ethion	634.00	81758	13194484	μg/L
Ethoprop	176.00	81585	141786	. μg/L∶
Ethyl acetate	605.00		140885	<i>μ</i> g/L
Ethyl acrylate	346.01	77004	64175	μg/L
Ethyl alcohol	95.01	78133	108101	μg/L
Ethyl isopropyl ketone	411.01	39034	72560	μg/L
Ethylan	711191			

01/2//30				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
Feb. thereans	61.00	34371	100414	μg/L
Ethylbenzene	8.02	77651	106934	μ g/L
Ethylene dibromide	10.01	34531	107062	μg/L
Ethylene dichloride	347.00	77023	107211	μg/L
Ethylene glycol	348.01	38928	96457	<i>μ</i> g/L
Ethylene thioures	348.00	38928	96457	μg/L
Ethylidene thiourea	275.01	82184	834128	μ g/L
Evik	505.00	31616	#/	100ml
Fecal Coliform, MFM-FCBR	349.00	38929	22224926	μg/L
Fenamiphos	635.00			<i>μ</i> g/L
Fenarimol	350.00	38684	115902	<i>μ</i> g/L
Fensulfothion	351.00	386 85	55389	μ g/L
Fenthion	352.00	38468	101428	μ g/L
Fenuron	353.00	38806	14484641	μg/L
Ferbam	188.01	01045	7439896	μg/L
Ferric(3+)	188.0 2	01045	7439896	μg/L
Ferrous(2+)	354.00 .	7919 4	3324539	μg/L
Fluchloralin	177.00	34376	206440	μg/L
Fluoranthene	62.00	34381	86737	μg/L
Fluorene	178.00	34001	518478	• •
Fluorescein(Sodium)	179.00	00950	16984488	m g/L
Fluoride	355.00	38811	2164172	μg/L
Fluormeturon		30011	59756604	μg/L
Fluridone	636.00	01288	00,0000	mg/L
Foaming Agents	606.00	39019	150505	μg/L
Folex	369.01	46351	133073	μg/L
Folpet	607.00	81294	944229	μg/L
Fonofos	339.01	71880	50000	mg/L
Formaldehyde	356.00	776 52	76131	μg/L
Freon 113	3.01		75718 ·	μα/L
Freon 12, Halon	162.01	. 34668 814 05	1563662	μg/L .
Furadan	296.01	_	130002	μg/L
Furazolidone	608.00	67458		μg/L
Furium	609.00		60568050	μα/L
Furmecyclox	610.00		961115	74-
Gardona	581.01	38877	5915413	μ g/L
Gardoprim .	436.01	38559	6842596	1
Gasoline .	471.00		1610179	<i>μ</i> g/L ``
Gesatamin	280.01	82185	1071836	μg/L
Glyphosate	358.00	79743		μαΛ
Grain alcohol	346.02	- 77004	64175 86500	μα/L
Guthion	359.00	39580		mg/L CaCO3
Hardness, Total	248.00	00900	471341	μα/L··
Heptachlor	181.00	39410	76448	
Heptachlor Epoxide	180.00	39420	1024573	µg/L -
Heptene .	182.00	81589	25339564	µg/L
Hexachlorobenzene	183.00	39700	118741	μ α /L . μα/L .
Hexachlorobutadiene	63.00	- 34391	87683	Mir .

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
	132.01	81283	608731	μg/L
Hexachlorocyclohexane	265.04	39337	319846	μg/L
Hexachiorocyclohexans (alpha)	64.00	34386	77474	μg/L
Hexachlorocyclopentadiene	65.00	34396	67721	μ g/L
Hexachloroethane	360.00	38815	51235042	μg/L
Hexazinone	394.02	82199	2212671	μ g/L
Hydram	184.00	81313	302012	mg/L
Hydrazine	473.00	81336		mg/L
Hydrocarbons, Total	462.00			
Hydrocarbons, Total Fuel	461.00	46116	14280309	mg/L
Hydrocarbons, Total Petroleum	185.00	71830	14280309	mg/L
Hydroxide	456.00			
Hydroxide as CaCO3	289.01	82198	314409	<i>μ</i> g/L
Hyvar	423.01	39052	122429	μ g/L
IPC	361.00	39800	732116	μ g/L
Imidan	186.00	34403	193395	μ g/L
Indeno(1,2,3-cd)pyrene	559.00	34719	· 118796	μ g Λ
IntStd: 2,4,6-Tribromophenol	560.00	• • • • • • • • • • • • • • • • • • • •		
IntStd: Hexabromobenzene	451.00			*
Ion Balance	561.00		16898341	μ g/L
loxynil	323.00	01046	7439896	μ g/L
Iron, Dissolved	188.00	01045	7439896	μ g/L
Iron, Total	362.00	00980	7439896	μg/L
Iron, Total Recoverable	552.00	77334	538932	μg/L
Isobutylbenzene	68.00	34408	78591	<i>μ</i> g/L
Isophorone	423.02	39052	122429	μg/L
Isopropyl carbanilate	309.01	77223	98828	μg/L
Isopropylbenzene (Cumene)	335.01	39650	330541	µg/L
Karmex	298.01	81281	143500	µg/L
Kepone	419.01	39080	23950585	mg/Kg
Kerb	363.00	78878	8008206	μg/L
Kerosene	249.00	00625	17778880	mg/L as N
Kjeldahl-N, Total	500.00	00020		
Langlier Index	402.00	01049	7439921	<i>μ</i> g/L [*]
Lead, Dissolved	463.00	. 01040		
Lead, Organic	403.00	01051	7439921	μg/L
Lead, Total	189.00	01114	7439921	<i>μ</i> g/L·'·
Lead, Total Recoverable	357.01	39340	58899	μg/L"
Lindane	364.00	· 39530	330552	<i>pg/</i> L
Linuron	466.00	01130	7439932	μg/L
Lithium	304.02	77969	2921882	μg/L
Lorsban	233.01	34790	7429905	mg/L
MBAS	367.00	39151	94746	<i>µ</i> g/L
MCPA		39151	94746	μg/L
MCPA Dimethylamine Salt	367.01	38486	94815	<i>μ</i> g/L
MCPB	368.00 582.00	38491	93652	Mar
MCPP (Water, Total)	562.00 376.01	81595	78933	μg/L
MEK	3/0.01	J.344	-	•

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

01/27/93				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
MIBK	34.02	78133	108101	μQ/L
MSMA	385.00	38935	2163806	<i>μ</i> g/L
Magnesium as CaCO3	519.00	00920	7439954	mg/L
Magnesium, Dissolved	518.00	00925	7439954	mg/L
Magnesium, Total	191.00	00927	7439954	mg/L
Malathion	192.00	39530	121755	µg/L
Mancozeb	365.00	38831	8018017	µg/L
Maneb	368.00	38835	12427382	µg/L
Manganese, Dissolved	404.00	01056	7439965	<i>μ</i> g/L
Manganese, Total	193.00	01055	7439965	μg/L
Manganese, Total Recoverable	405.00	01123	7439965	μg/L
Matacil	277.01	38404	2032599	μg/L 1774
Mercury, Dissolved	477.00	71890	7 439976	μg/L uπ/L
Mercury, Total	476.00	71900	7439976	μg/L 1774
Mercury, Total Recoverable	194.00	7.1901	7439976	μg/L μg/L
Merphos	369.00	39019	150505	ρg/L μg/L
Mesitylene	370.00	77226	10867 8 802200 2	μg/L
Metasystox	371.00	39020	9503 78	μg/L
Methidathion	374.00	78879	2032657	μg/L
Methiocarb	373.00	38500	10265926	μg/L
Methomidophos	372.00	38927	16752775	μg/L
Methomyl	375.00	39051	72435	μg/L
Methoxychlor	195.00	39480	1319773	μg/L
Methyl Phenols, Total	378.00	45058	9531 73	μg/L
Methyl Trithion	197.00	39790	25551137	μg/L
Methyl Xylenes, Total	444.01	78136	74839	μg/L
Methyl bromide	49.01	34413	748 73	μg/L
Methyl chloride	55.01	34418 81595	78933	μg/L
Methyl ethyl ketone	376.00	7813 3	108101	<i>μ</i> g/L
Methyl isobutyl ketone	34.01	815 52	67641	μg/L
Methyl ketone	40.03	77103	591786	μg/L
Methyl n-butyl ketone	25.01	77103 77060	107879	μg/L
Methyl n-propyl ketone	97.01	77000	10/0/0	<i>µ</i> g/L
Methyl paraoxon	637.00	34010	108883	μg/L
Methylbenzene	76.01	77100	108872	μg/L
Methylcyclohexane	198.00	77100		• •
Methylene Blue Active	493.00	38260	61734	
Substances		81522	106934	μg/L
Methylene bromide	160.01 68.00	34423	75092	μg/L
Methylene chloride	163.00	34420	51218452	μg/L
Metolachlor	379.00	81408	21087649	<i>μ</i> g/L
Metribuzin	413.01	39610	7786347	μg/L.
Mevinphos	380.00	1. 38507	315184	<i>µ</i> g/L
Mexacarbate	381.00	39755	2385855	<i>p</i> o/L
Mirex	382.00	78883	42576023	POL
Modown	394.01	82199	2212671	<i>μ</i> g/L
Molinate	374.01		=	_

01/2/195		•		
COMP_NAME	HK_NO	STORET_NO	CAS_NO	UNITS
	167.00	01060	7439987	µg/L
WolApdeunu	372.01	38927	10265926	μ g/L
Monitor	82.04	38175	75014	µg/L
Woundchiolographia	B2.01	39175	75014	μ g/L
Woundunaniana	383.00	81890	6923224	µg/L
W010Clgtobile	385.01	38935	2163806	μ g/L
WOU200Intil Highly, Elsoures	384.00	38511	150 685	µg/L
Monuron	613.00	73613	10595956	μ g/L
M-Milliozo-ia-mania-mailiamia	614.00	73609	924163	μ a Λ
M-MIRO20-di-11-00thermin	69.00	34428	621 64 7	μ g/L
[4-[4][[030-0]-11-b]OD 1-11-11-11	615.00	73610	1116547	μg/L
N-Nitrosodiethanolamine	616.00	73611	5518 5	μg/L
N-Nitrosodiethylamine	392.00	34438	6275 9	μg/L
N-Nitrosodimethylamine	199.00	34433	86306	μ g/L
N-Nitrosodiphenylamine	617.00	78206	930552	μαλ
N-Nitrosopyrrolidine	109.01	00610	17778880	mg/L as N
NH3-N, Total	321.01	00630	17778880	mg/L as N
NO3 + NO2·N, Total	386.00	38855	300765	μ g/L
Naled	70.00	34696	91203	μ g/L
Naphthalene	387.00	79195	1529999	μ g/L
Napropamide	388.00	38521	55 5373	μg/L
Neburon	349.01	38929	22224926	MOL
Nemacure	481.00	01065	7440020	μg/L
Nickel, Dissolved	483.00	01067	7440020	μg/L
Nickel, Total	200.00	01074	7440020	μg/L
Nickel, Total Recoverable	321.00	00630	17778880	mg/L as N
Nitrate + Nitrite-N, Total	452.00	00620	17778880	mg/L as N
Nitrate-N	202.00	00615	17778880	mg/L as N
Nitrite-N	71.00	34447	98953	μα/L
Nitrobenzene	389.00	81303	1836755	<i>μ</i> g/L
Nitrofen	618.00	59870		μg/L .
Nitrofurazone	203.00	79753	5568 87	μ g/L
Nitroguanidine	391.00	77822	629925	<i>µ</i> g/L
Nonadecane	639.00	78084	•	<i>p</i> g/L
Norflurazon, in Water		58366	•	
OBPA	206.00 563.00	30000	2234131	· μα/L
Octachloronaphthalene	619.00		st	d. units
Odor	207.00	03582		mg/L*
Oil & Grease	394.00	· 82199	2212671	<i>j</i> g/L
Ordram	395.00	81815	30560191	<i>μ</i> g/L
Orthene	396.00	78884	19044883	μg/L
Oryzalin	-	39022	80331	μg/L.
Ovex	397.00 398.00	38865	22135220	ualL
Oxamyl		81030	2497076	<i>μ</i> g/L
Oxydisulfoton (Disyston Sulphoxide		01000		<i>μ</i> g/L
PAH (Polyaromatic hydrocarbons)	620.00		59536651	· -
PBB (Polybrominated Biphenyis)	621.00 21 9.01	76012	1336363	<i>p</i> g/L
PCB	219.01	,0012		• •

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
		24071	12674112	μοΛ
PCB-1016	114.01	34671	1104282	μg/L
PCB-1221	115.01	39488	11141165	μο/L
PCB-1232	116.01	39492	53469219	μg/L
PCB-1242	117.01	39496 39500	12672296	μg/L
PCB-1248	118.01	39504	11097691	μg/L
PCB-1254	119.01	39504	11096825	μg/L
PCB-1260	120.01	344 75	127184	μg/L
PCE	75.01	39029	81316	μg/L
PCNB	409.00	39032	87865	μ ₀ /L
PCP	213.01	39032	07000	70
PID Reading	470.00	82416	4685147	μg/L
Paraquat	399.00	39540	56382	μg/L
Parathion	212.00		56382	μg/L
Parathion, Ethyl-	400.00	46315	298000	μg/L
Parathion, Methyl-	401.00	39600	230000	μg/L
Pebulate, Water, Whole	640.00	79192	40487421	μg/L.
Pendimethalin	222.02	79190	40487421	μg/L
Penoxalin	222.00	82410	608935	μg/L
Pentachlorobenzene	410.00	77793	87865	μg/L
Pentachlorophenol	213.00	39032 .	87609	ha.
Perchlorate	214.00	04475	127184	μg/L
Perchloroethene	75.03	34475	127184	μg/L
Perchloroethylene	75.02	34475	7727540	μg/L
Persulfate-N, Total	580.00	22224	7727540 72560	μg/L
Perthane	411.00	39034		μg/L
Phenanthrene	216.00	34461	85018 2275141	μg/L
Phencapton (Water, Whole)	564.00	81289		μg/L
Phenoi	73.00	34694	108952 108952	pyrc
Phenol, 4-AAP	217.00			μg/L.
Phenylethylene	74.02	77128	100425	μο/L
Phorate	218.00	46313	298022 2310170	μg/L
Phosalone	412.00	81291		μg/L
Phosdrin	413.00	39610	7786347	μ g/L
Phosmet	361.01	39800	732116	_
Phosphamide	331.01	46314	60515	. μα/L·
Phosphamidon	414.00	78881	13171216	mg/L as P
Phosphate-P, Diss Ortho	498.00	00671	7723140	mg/L as PO 4
Phosphate-P, Ortho	205.00	00660	14265442	
Phosphorodithioic acid,	573.00	39580	86500	μον
0,0,5-trim+	251.00	00665	7723140	mg/L as P
Phosphorous-P, Total	257.00	39720	1918021	hov
Picloram	219.00		1336363	<i>μ</i> οΛ.
Polychlorinated biphenyl	517.00	00935	7440097	
Potassium, Dissolved	220.00	00937	7440097	
Potassium, Total	430.01	39055	122349	μgΛ.
Princep Profluralin	415.00	38872	26399360	μg/L

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

COMP_NAME J	HK_NO	STORET_NO	CAS_NO	UNITS
December 4	116.00	39056	1610180	μα/L
Prometon	417.00	39057	7287196	$\mu_0 L$
Prometryn Pronamide	419.00	39080	23950585	μg/L
	418.00	385 33	1918167	µg/L
•	420.00	82358	74986	$\mu_{Q}\Lambda_{-}$
Propane	40.01	81552	67641	μ g Λ
Propanone	421.00	82065	2312358	mg/L
Propargite Propazine	422.00	39024	139402	μg/L
•	423.00	39052	122429	μα/L
Propham	424.00	38537	114261	µg/L
Propoxur Propylbenzenes, Total	291.01	45046		μg/L
	622.00	77011	75569	μ g/L
Propylene oxide	222.01	79190	40487421	μ g/L
Prowl Leabare	221.00	79190	40487421	μg/L
Prowl, Lechate	223.00	85793	40487421	μg/L
Prowl, Soil	224.00	34469	129000	<i>µ</i> g/L
Pyrene	425.00	39930	8003347	μg/L
Pyrethrins Radium 226	623.00	09501	13982633	pCi/L
Radium 226 & 228	624.00	11503		pCi/L
	457.00	73076	483658	$\mu_{Q}L$
Retene	311.01	81892	1134232	$\mu_{Q}\Lambda_{-}$
Ronest	427.00	39357	299843	. POL
Ronnel	426.00	39941	1071836	μ g/L
Round-up	225.00			_
SCA	428.00	38542	26259 450	μ g/L
Secbumeton Sincelland	484.00	01145	7782492	₽g/L
Selenium, Dissolved	485.00	01147	77824 92	<i>µ</i> g/L
Selenium, Total	226.00	00981	7782492	μ g/L
Selenium, Total Recoverable	379.01	81408	21087649	
Sencore	294.01	77700	63 252	μg/L
Sevin	429.00	38548	1982496	μ g/L
Siduron	227.00	00992	7631 869	<i>µ</i> g/L
Silica (SIO2)	497.00	00958		mg/L
Silicate	495.00	01075	74402 24	μg/L
Silver, Dissolved	234.00	01077	7440224	μg/L
Silver, Total	228.00	01079	7440224	μg/L
Silver, Total Recoverable	430.00		122349	: μο/L
Simazine	431.00	39054	1014706	μq/L.
Simetryn	501.00	00931	7440235	SAR
Sodium Absorption Ratio	229.00	00726	777509 9	μαΛ
Sodium Chiorate	450.00		7440235	mg/L
Sodium, Total	247.03	•		<i>µ</i> g/L_
Solids, Total Dissolved	496.01		5.2	mg/L
Solids, Total Suspended	502.00	- 00094		µmhos/cm
Specific Conductance (Field)		00095		µmhos/cm
Specific Conductance @ 25C (LAB Specific Conductance(fIELD)	449.00			µmhos/cm

01/2//35				111170
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
Stirofos	432.00	38877	961115	<i>μ</i> g/L
Strontium-90	625.00	13501	10098972	pCi/L
	74.00	77128	100425	µg/L
Styrene Sulfate, Total	230.00	00945	14808798	mg/L as SO4
Sulfide, Total	231.00	00745	18496258	mg/L
Sulfite, Total	232.00	00740	14265453	mg/L as SO3
Sumitol	428.02	38542	26259450	μg/L
Supracide Supracide	374.01	78879	950378	μg/L
Surfactants	233.00	03581		mg/L
Surflan	396.01	78884	19044883	μοΛ
Surrog: 1,2-Dichloroethane-d4	460.00			%
Surrog: 1,4-Bromofluorobenzene	187.00			•
Surrog: 1-Bromo-2-floroethane	157.00			
Surrog: 2-Chlorophenol-d4 (spike)	565.00	95978		
Surrog: 2-Fluorobiphenyl	479.00			
Surrog: 2-Fluorophenol	480.00			
Surrog: 4-Chloroaniline-d4	566.00			
Surrog: Dibutylchlorendate (spike)	567.00			
Surrog: Fluorene-d10 (spike)	568.00			,
Surrog: Nitrobenzene-d5	474.00			
Surrog: Phenol-d5	526.00			
Surrog: Pyrene-d10 (spike)	377.00			%
Surrog: Toluene-d8	458.00			~
Surrog: p-Terphenyl-d14	525.00		2008415	μg/L
Sutan	290.01	81410	918189	μg/L
Swep	433.00	38555	8065483	μg/L
Systox	325.01	39560	0003400	μg/L
T3	236.00	78166 51489		μg/L
T4	237.00	=	79016	μg/L
TCE	80.01	39180 70300	75010	μg/L
TDS	247.01	70300 39620	107493	μg/L
TEPP .	435.00	. 35020	107400	70
TFH	462.01	00625	17778880	mg/L as N
TKN	249.01	00680	7440440	μα/L
TOC	250.01	00000		
TOS (Calculated)	245.00 461.01	46116	14280309	mg/L
TPH	580.01	40110	7727540	μg/L
TPN, Total Persulfate Nitrogen	496.00	•	74016	mg/L
TSS	190.00	· •	34014181	μg/L
Tebuthluron	434.00	39808	116290	" μg/L .
Tedion	274.01.	39053	116063	_ <i>μ</i> g/L
Temik	238.00	00010	. 0	C
Temperature, 0 C	239.00	00011	0	F
Temperature, 0 F	204.00		5902152	<i>μ</i> g/L
Terbacil	436.00	38559	5915413	<i>µ</i> g/L
Terbuthylazine Terbutryn	437.00	38887	886500	μg/L

APPENDIX D: CHEMICAL DICTIONARY

01/27/93

01/2//35		•		
COMP_NAME	IHK_NO	STORET_NO	CAS_NO	UNITS
Tanahinganbaa	75.00	34475	127184	μg/L
I OUSCINOI CARRAINA	75.04	34475	127184	μ g/L
I GASCIIIOI CAN IAIRIIA	51.01	32102	5623 5	μ g/L
I OASCUIOLOMANIANA	438.00	81849	2516783 3	<i>μ</i> g/L
1 GA SCHIOLOPHIANOL	581.00	38877	961115	
I BU SCHIOI AIII bride	434.01	39808	116290	<i>μ</i> g/L
1602011011	435.01	39620	107493	μg/L
I @[I #@[II]AIDIDIDIDIDIDIDIDI	241.00	81607	109999	µg/L
I OCTATIVATION OF THE PROPERTY	522.00	01057	7440280	μg/L
(USINGII), DISSUITED	523.00	01059	7440280	μg/L
i namuni, Total	242.00	00982	7440280	μg/L
Thallium, Total Recoverable	439.01	78880	23564069	μg/L
Thiophanate		70000		
Thiosulfate	243.00	01100	7440315	μg/L
Tin, Dissolved	513.00	01102	7440315	μg/L
Tin, Total	512.00	00983	7440315	μg/L
Tin, Total Recoverable	468.00	01150	7440326	μg/L
Titanium	469.00		108883	μ g/L
Toluene	76.00	34010	23564069	μg/L
Topsin-MR	439.00	78880	25504000	μg/L
Total BTEX	478.00	34103	n/a	μg/L
Total BTX	72.00	34103	(1/4	μg/L
Total Dissolved Solids (residue)	247.00	70300		μg/L
Total Filterable Residue	247.02	70300		μg/L
Total Organic Halides	503.00	70353		• -
Total Organics	486.00	81299	V.	<i>μ</i> g/L /100Gal
Total Solids	253.00	70297		%
Total Solids	252.00	70318		
Total Trihalomethanes	494.00	82080	0004050	μg/L
Toxaphene	255.00	39400	8001352	μg/L
Treflan	443.01	81284	1582098	μg/L
Triadimeton	440.00	38892	43121433	<i>μ</i> g/L
Trichlorobenzoic acid	551.00	50317		
Trichloroethene	80.00	39180	79016	<i>μ</i> g/L
Trichloroethylene	80.02	39180	79016	<i>µ</i> g/L
Trichlorofluoromethane	83.00	34488	75694	μg/L
Trichloromethane	54.01	32106	676 63	μα/L
Trichlorophon	340.01	39014	52686	μο/L
Trichlorotrifluoroethane	3.02	81611	26523648	μg/L
Trichlorotrinitrobenzenes, Total	258.00			- 25
Tricyclazole, Water, Whole	641.00	··· 38902	41814782	μg/L
Trifluralin	443.00	81 284	1582098	<i>μ</i> g/L .
Trimethyl Benzenes, Total	444.00	78136	2555 1137	<i>p</i> ol.
Trimethyl phosphate	626.00		512561	pol
Trinitrobenzenes, Total	259.00		•	•
Triphenyl phosphate (Water, Whole)		77881	115866	µg/L .
	297.01	39786	7861 96 `	μg/L .
Trithion	627.00	07000	10028178	pCI/L
Tritium	527.03	-,		

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
COMP_IONING	- -			
Turbidity(Lab)	260.00	82079		NTU
UDMH	261.00	81314	57147	mg/L
Vanadium (Dissolved)	262.00	10085	7440622	
Velpar	360.01	38815	51235042	µg/L.
Vernam	445.01	82200	1929777	μq/L
Vernolate	445.00	82200	1929777	µg/L
Vinyl acetate	81.00	77057	108054	μg/L
Vinyl chloride	82.00	39175	75014	µg/L
Vinyl trichloride	4.01	34511	79005	µg/L
Vinylbenzene	74.01	77128	100425	μ g/L
Volatile Dissolved Solids	263.00		70722	mg/L
Volatile Organic Compounds	487.00		78 733	_
Xylene isomers, M + P, Whole	578.00		85795	μg/L
Water			90353	un A
Xylene Isomers, O + P, Whole	32.00		80353	μg/L
Water	•		108383	
Xylene, m-	67.00	77134	·	<i>μ</i> g/L •∞/l
Xylene, o-	77.00	77135	95476 106423	μg/L •==/1
Xylene, p-	475.00	77133		μg/L v=/1
Xylenes, Total	201.00	34020	1330207 744066 6	μg/L μg/L
Zinc, Dissolved	504.00	01090		
Zinc, Total	507.00	01092	744066 6	μg/L μg/L
Zinc, Total Recoverable	264.00	01094	744066 6 12122677	μg/L
Zineb	447.00	38912		μg/L
Ziram	446.00	38917	13730 4 2310170	μg/L
Zolone .	412.01	81291	299854	μg/L
Zytron	336.01	81285	319846	μg/L
a-BHC	265.00	39337	959988	μg/L
a-Endosulfan	268.01	34361	319846	μg/L
: alpha-BHC	265.03	39337	319846	μg/L
alpha-Benzene hexachloride	265.01	39337	5103719	μg/L
alpha-Chlordane	530.00	39348	95998 8	μg/L
alpha-Endosulfan	268.00	34361	3198 46	μg/L
alpha-Lindane	265.02	39337	319857	μg/L
b-BHC	267.00	39338	33213659	μg/L
b-Endosulfan	268.00	34356	319857	μg/L
beta-BHC	267.03	39338	319857	μg/L
beta-Benzene hexachloride	267.01	393 38	33213659	µg/L.
beta-Endosulfan	268.01	34356	319857	μo/L
beta-Lindane	267.02	39338	156592	μg/L
cis-1,2-Dichloroethene	326.00	77093	156592	μg/L
cis-1,2-Dichloroethylene	326.01	77093	10061015	μg/L
cis-1,3-Dichloropropene	56.00	34704	10061015	
cis-1,3-Dichloropropylene	56.01	34704	319868	μg/L
d-BHC	269.00	3425 9 3425 9	319868	μg/L
delta-BHC	269.03	3425 9 3425 9	319868	· µg/L
delta-Benzene hexachloride	269.01	34238	0.000	

APPENDIX D: CHEMICAL DICTIONARY 01/27/93

01/2//35				
COMP_NAME	JHK_NO	STORET_NO	CAS_NO	UNITS
	269.02	34259	319868	μg/L
delta-Lindane	357.00	39340	58899	μg/L
g-BHC		39340	58899	μg/L
gamma-BHC (Lindane)	357.04	39340	5889 9	µg/L.
gamma-Benzene hexachloride	357.03	39065	5103742	μg/L
gamma-Chlordane	529.00	39340	58899	μg/L
gamma-Lindane	357.02	77348	141935	μg/L ·
m-Diethylbenzene	549.01		108383	μg/L.
m-Dimethylbenzene	67.04	77134	108383	μg/L
m-Xylene	67.03	77134	108383	μg/L
meta-Xylene	67.02	77134	104518	μg/Kg
n-Butylbenzene	539.00	78483		
n-Octacosane	390.00	78116	630024	μg/L
n-Propyibenzene	393.00	77224	103651	μg/L.
o,p'-DDT	270.00	39305	789026	μg/L
o,p'-TDE	271.00	39315	53190	μg/L
o-Chloronitrobenzene	628.00		88732	μg/L
-	24.01	34586	95578	μg/L
o-Chlorophenoi	548.01	77340	135013	μg/L
o-Diethylbenzene	77.03	77135	95476	μg/L
o-Dimethylbenzene	629.00	73628	106503	<i>µ</i> g/L
o-Phenylenediamine	630.00	77142	95534	μ g/L
o-Toluidine	77.01	77135	95476	<i>µ</i> g/L
o-Xylene	77.04	77135	95476	μ g/L
ortho-Xylene	632.00	••••		<i>μ</i> g/L
p,a,a,a-Tetrachlorotoluene	208.02	39360	72548	μ g Λ L
p,p'-DDD	209.02	39365	725 59	μg/L
p,p'-DDE		39370	50293	MOL
p,p'-DDT	210.02	39360	72548	μg/L
p,p'-TDE	272.00	34452	59507	<i>μ</i> g/L
p-Chloro-m-cresol	31.02	34732	100005	μg/L
p-Chloronitobenzene	631.00	77146	106445	μg/L
p-Cresol	35.01		105055	μg/L
p-Diethylbenzene	550.01	77345	106423	μg/L
p-Dimethylbenzene	475.04	77133	99876	μg/L
p-Isopropyitoluene	538.00	77356	100016	μg/Kg
p-Nitroaniline	36.01	73278	100010	μg/L
p-Nitrophenol	37.01	34646		μg/L
p-Xylene	475.02	77133	106423	d, units
ρΗ	448.00	00400		
para-Xylene	475.01	77133	106423	μg/L
propyzamide	419.02	39080	23950585	mg/Kg
sec-Butylbenzene	543.00	78485	135988	μq/Kg
tert-Butylbenzene	537.00	· 78448	98066	μg/Kg
trans-1,2-Dichloroethene	78.00	34546	156605	
Mana-1'S-Dictionognique	78.01	34546	156605	pg/L
trans-1,2-Dichloroethylene	79.00	34699	10061026	
trans-1,3-Dichloropropene	79.01	34699	10061026	<i>µ</i> g/L _.
trans-1,3-Dichloropropylene	338.40		•	-
269	330.70			

APPENDIX E: LABORATORY QUALIFIERS

LIST OF QUALIFIERS FOR NUMERIC RESULTS

REMARK CODE	DEFINITION
В	Analyte is found in the blank as well as the sample, indicated possible/probable blank contamination.
J	Estimated value; not accurate.
м	Presence of material verified but not quantified
U or K	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation detection limit.
UJ	Compound was analyzed for but not detected. The number is the estimated minimum detection limit.
С	The value is one of, or the sum of both, Benzo (b) Fluoranthene and Benzo (k) Fluoranthene.
x	Many background organisms.
Н	Over holding time. Analysis run.
G	Improper container.
Z	Sample low due to interfering substance.
D	Sample high due to interfering substance.
IS	Interfering Substance.
P	Greater than (>).
A .	Less than (<).
LMX	Lab Matrix Number.
LBK	Lab Blank Number.

APPENDIX E CONTINUED:

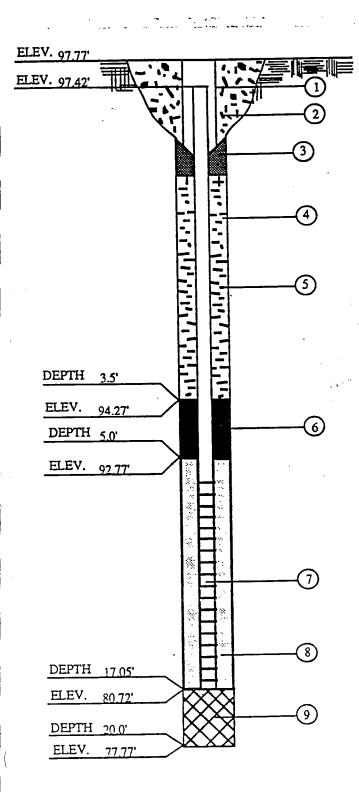
Data Qualifier Definitions

For the purpose of this document the following code letters and associated definitions are provided:

dr	- dry weight
wt	- wet weight
R	- The data are unusable (compound may or may not be present). Resampling and reanalysis is necessary for verification.
N	- Presumptive evidence of presence of material.
NJ	 Presumptive evidence of the presence of the material at an estimated quantity.
w	 The material was analyzed for, but was not detected. The sample quantitation limit is an estimated
ឃ	managed was analyzed for, but was not dete

The reviewer may determine that qualifiers other than those used in this document are necessary to describe or qualify the data. In these instances, it is the responsibility of each reporting entity to thoroughly document/explain the qualifiers used and notify Ecology prior to submitton of data packages.

APPENDIX F: COUNTY FIPS CODES

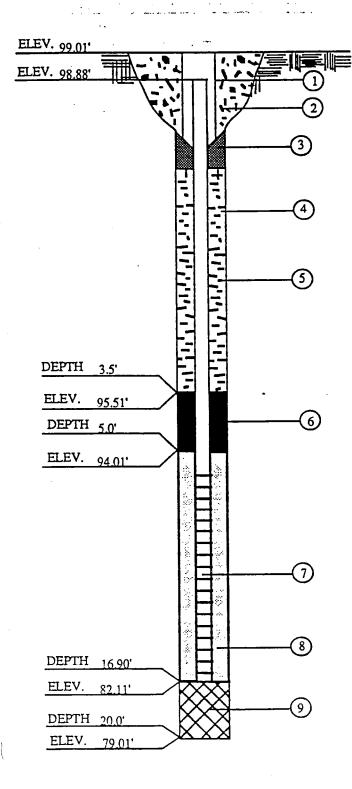

quantity.

WASHINGTON 001 ADAMS 003 ASOTIN 005 BENTON 007 CHELAN 009 CLALLAM 011 CLARK 013 COLUMBIA 015 COWLITZ 017 DOUGLAS 019 FERRY 021 FRANKLIN 023 GARFIELD 025 GRANT 027 GRAYS HARBOR 029 ISLAND

- 031 JEFFERSON
- 033 KING
- 035 KITSAP
- 037 KITTITAS
- 039 KLICKITAT
- 041 LEWIS
- 043 LINCOLN
- 045 MASON
- 047 OKANOGAN
- 049 PACIFIC
- 051 PEND OREILLE
- 053 PIERCE
- 055 SAN JUAN
- 057 SKAGIT
- 059 SKAMANIA
- 061 SNOHOMISH
- 063 SPOKANE
- 065 STEVENS
- 067 THURSTON
- 069 WAHKIAKUM
- 071 WALLA WALLA
- 073 WHATCOM
- 075 WHITHAN
- 077 YAKIMA

APPENDIX B BORING LOGS

MONITORING WELL CONSTRU	JCTION INFORMATIO	Ŋ					
JOB NO. CASCADE NATURAL	GAS COMPANY	_					
BORING/WELL NO. MW-1	· · · · · · · · · · · · · · · · · · ·	_					
DATE 04/10/91		_					
FIELD REPRESENTATIVE GU	J/SKW	_					
1. PROTECTIVE CASING	YES NO						
LOCKING	YES NO						
2. CONCRETE SEAL	YES NO						
3. TYPE OF SURFACE SEAL (F INSTALLED)						
BENTONITE CI	TIPS						
4. SOLID PIPE TYPE PVC							
SOLID PIPE LENGTH 5.7		_ft.					
JOINT TYPE SLIP/GLUED(T	HREADED						
5. TYPE OF BACKFILLBEN	NTONITE CHIPS	_					
HOW INSTALLED - TREMIE FROM SURFACE							
6. TYPE OF LOWER SEAL (IF	INSTALLED)						
BENTONITE	CHIPS	_					
7. SCREEN TYPE PVC							
SCREENED PIPE LENGTH	11.0	_ft.					
SLOT-SIZE <u>0.010</u> in. SLO	OTTED LENGTH 9.4	_ft.					
SCREEN DIAMETER4.0		in.					
8. TYPE OF BACKFILL AROU	JND SCREEN						
FILTER SAND							
9. TYPE OF BACKFILLF	ILTER SAND						
10. DRILLING METHOD	IR HAMMER						
11. ADDITIVES USED (IF AN	Y)						
POTABLE Y	VATER						
WATER LEVEL 9.78'	DATE <u>04/10/91</u>						



LOG OF TEST BORINGS

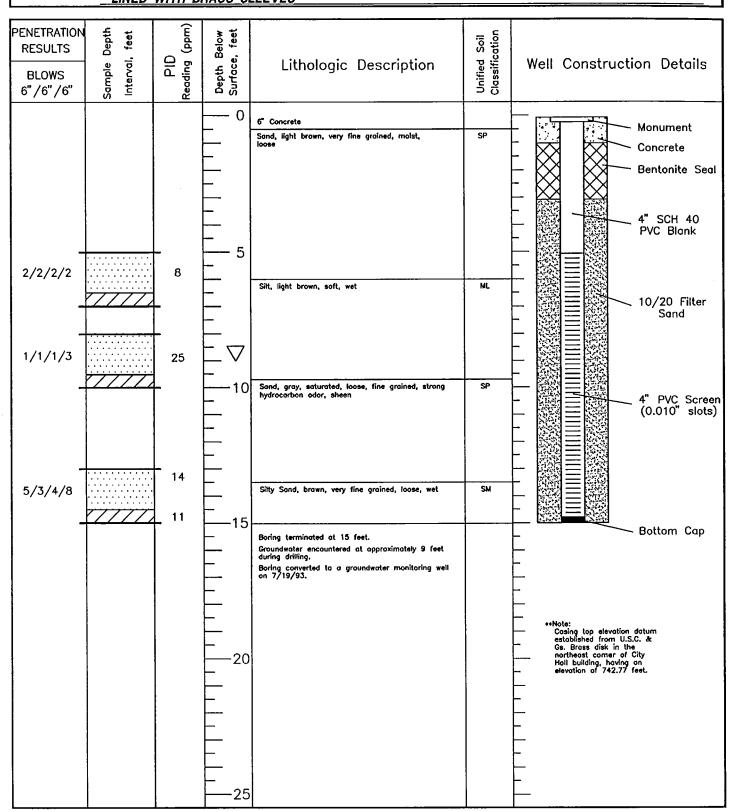
PROJECT NAME: CASCADE NATURAL GAS CO.	PROJECT NUMBER: 3751.007						
LOCATION: 512 DECATUR AVENUE, SUNNYSIDE, WASHINGTON							
BORING NUMBER: MW-1	SURFACE ELEVATION:	97.77'					

										
Sample No. or Time	Sample Type	Recovery (inches)	Moisture	N	PID Reading (ppm)	USCS Symbol	Depth (feet)	DESCRIPTION	Geologic Origin	
1	AUGER	•	М	-	15	FILL	-	2 BLACKTOP Brown, Fine Grained, SILTY SAND WITH A LITTLE GRAVEL.	FILL COARSE ALLUVIUM	
								Brown, Fine Grained, Medium Dense, SILTY SAND.		
2	SS	20	М	14	15	_SM_	<u> </u>			
3	SS	20	Wb	4	15	ML	- - 10	Brown with Gray, Soft to Stiff, SILT.	FINE ALLUVIUM	
							_			
4	SS	20	w	13	900	ML	_15	_		
							E	Brown, Fine Grained, Dense, SILTY SAND.	COARSE ALLUVIUM	
5	SS	.20	Wb	24	20	SM	20			
:	•						-	END OF BORING 20.0'		
								·		
							30			
				-			- -			
	WATER L	EVET WE	EASUR	EMEN	12	1	35 STAR	т <u>04/10/91</u> сомр le tion <u>04/10/91</u>		
Date	Time	Sampled Depth		ng C	epth	Water Level	╅	ing Method 6" I.D. HOLLOW STEM AUGER		
04/10/91 04/10/91		20.0 WEL	18.0 .INS	TAL	7.8 LED	12.4 9.78	A Rectal Method INSTALL WELL			
	Field Representative SKW/GU									

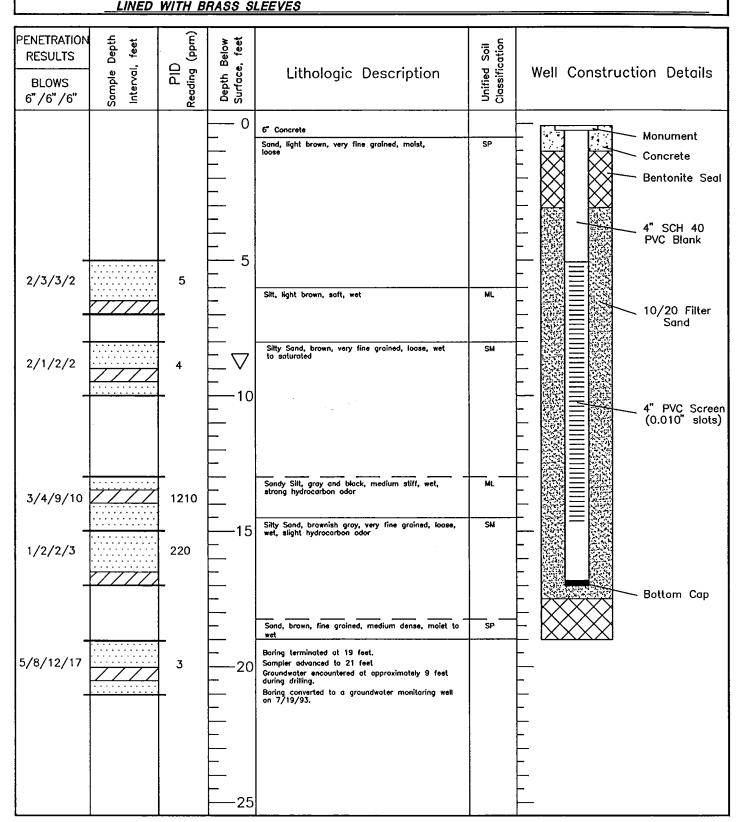
MO	NITORING WELL CONSTRUCTION INFORMATIC	717
JOE	NO. CASCADE NATURAL GAS COMPANY	_
BO	RING/WELL NO. <u>MW-2</u>	_
DA'	TE <u>04/10/91</u>	
FIE	LD REPRESENTATIVE_GU/SKW	_
1. 1	PROTECTIVE CASING YES NO	
]	LOCKING YES NO	
2. (CONCRETE SEAL YES NO	
3. ′	TYPE OF SURFACE SEAL (IF INSTALLED)	
	BENTONITE CHIPS	
4.	SOLID PIPE TYPE PVC	
;	SOLID PIPE LENGTH 5.77	_ft.
J	OINT TYPE SLIP/GLUED/THREADED	
5.	TYPE OF BACKFILL <u>BENTONITE CHIPS</u>	
	HOW INSTALLED - TREMIE FROM SURFACE	
6.	TYPE OF LOWER SEAL (IF INSTALLED)	
	BENTONITE CHIPS	
7.	SCREEN TYPE PVC	
	SCREENED PIPE LENGTH11.0	_ft.
	SLOT-SIZE <u>0.010</u> in. SLOTTED LENGTH <u>9.4</u>	_ft.
	SCREEN DIAMETER 4.0	_in.
8.	TYPE OF BACKFILL AROUND SCREEN	
	FILTER SAND	
9.	TYPE OF BACKFILL FILTER SAND	
10	. DRILLING METHOD <u>AIR HAMMER</u>	
11	. ADDITIVES USED (IF ANY)	
	POTABLE WATER	
W	ATER LEVEL <u>8.65'</u> DATE <u>04/10/91</u>	

B-1500 First National Bank Bldg.

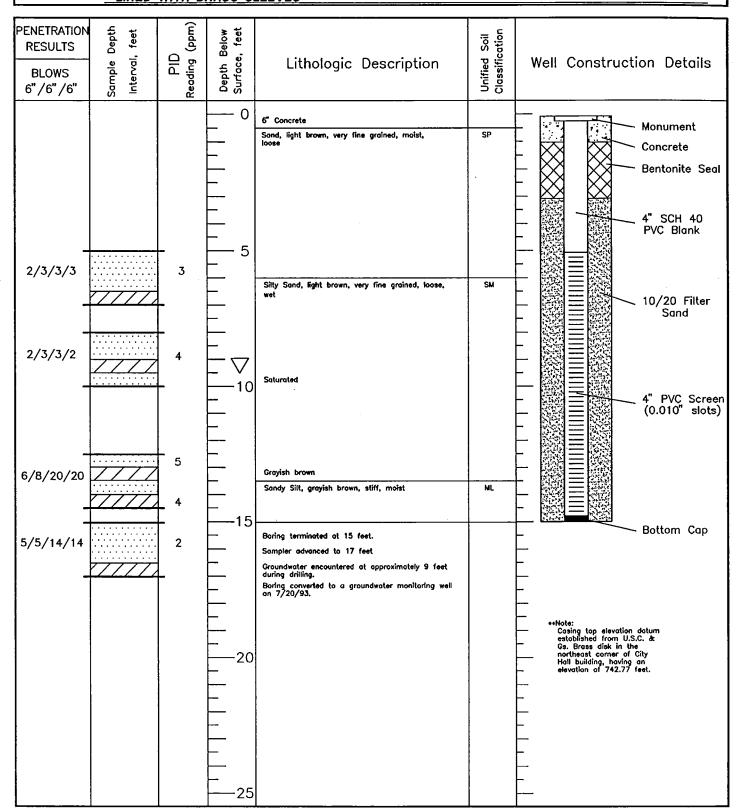
	. .	marana		****	<u>.</u> .	L	G OF	TEST	BORINGS	·				
[PROJEC	T NAME:	CASC	ADE	ŅĄŢ	URAI	GAS	0.		PROJECT NUMBER: 37	51.007			
Ī	LOCATI	ON: 512	DECA	TUR.	AVE	NUE,	SUNN	YSIDE,	WASHINGTON					
	BORING	NUMBE	R: MW	'-2	٠				SURFACE ELEVATION: 99.01'					
	Sample No. or Time	Sample Type	Recovery (inches)	Moisture	N	PID Reading (ppm)	USCS Symbol	Depth (feet)	· DESCRIPT	TON	Geologic Origin			
	1	AUGER	-	М	•	1.0	FILL	- -	.2 BLACKTOP Brown, Fine Grained, S LITTLE GRAVEL, Bla	SILTY SAND WITH A ack Top, and Roots.	FILL			
	2	SS	15	М	16	3.0	FILL	<u></u>			- FANT			
11						·		- - ▼	Brown, Soft to Very Sti Silty Clay at 14.0'.	iff, SILT, with a lens of	FINE ALLUVIUM			
48	3	SS	20	Wb	1_	3.0	ML	_10 _		-				
	4	SS	20	w	23	3.0	ML	 _15 						
¥		SS	20	W/L	25	4.0	SM_	20	Brown, Fine Grained, D with lenses of Silt.	Dense, SILTY SAND	COARSE ALLUVIUM			
τ		- 55	20	WB	23	4.0	SM		END OF BO	PRING 20.0'				
		<u> </u> 												
								- - -		·				
								30						
								- - - 35						
-		WATER I	EVEL M (feet)	EASU	REME	NTS		STAR	т <u>04/10<i>6</i>-1</u> со	MPLETION <u>04/10/91</u>	@			
	Date	Time	Sample: Depth	Cas		Cave-in Depth	Water Level	Drill	ing Method 6" I.D. HOLLOW	STEM AUGER				
	04/10/91	1	20.0 WEI	18.	\neg	17.4 LED	11.0 8.65	Back	Backfill Method INSTALL WELL					
	04/10/91	<u> </u>	1 4 4 5	للللمهم	لظبت	للتليا	4-444	$\overline{}$						

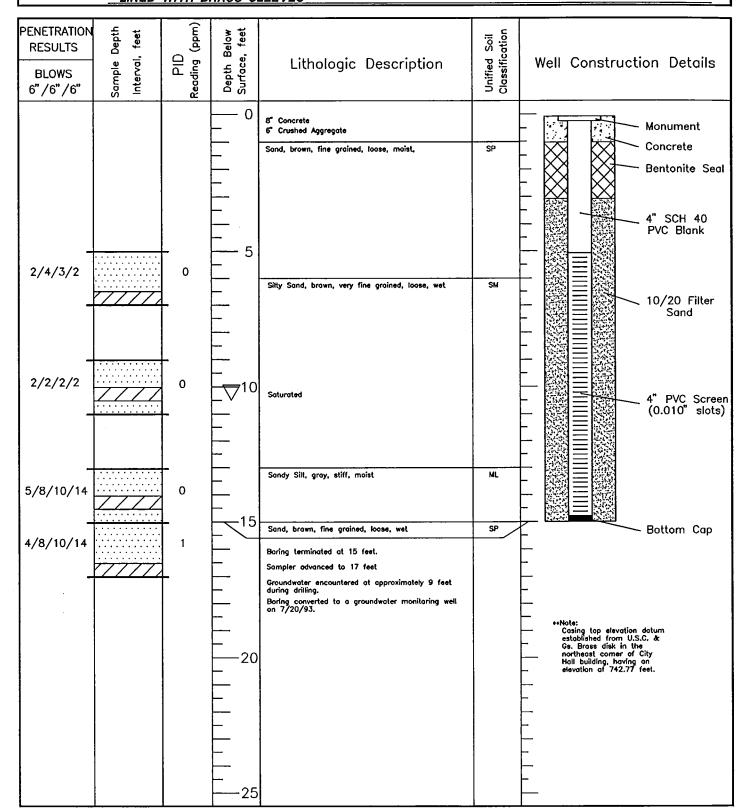

JOB NO. CASCADE NATURAL GAS COMPANY ELEV. 98.42 ELEV. 98,23° BORING/WELL NO. _ MW-3 DATE 04/10/91 FIELD REPRESENTATIVE GU/SKW (YES) NO 1. PROTECTIVE CASING NO LOCKING 2. CONCRETE SEAL 3. TYPE OF SURFACE SEAL (IF INSTALLED) BENTONITE CHIPS (3) 4. SOLID PIPE TYPE PVC SOLID PIPE LENGTH 5.86 JOINT TYPE SLIP/GLUED/THREADED 5. TYPE OF BACKFILL BENTONITE CHIPS DEPTH 3.0' HOW INSTALLED - TREMIE FROM SURFACE ELEV. 95.42' 6. TYPE OF LOWER SEAL (IF INSTALLED) 6 DEPTH 5.0' BENTONITE CHIPS ELEV. 93.42 7. SCREEN TYPE PVC SCREENED PIPE LENGTH _____ft. SLOT-SIZE 0.010 in. SLOTTED LENGTH 9.4 ft. SCREEN DIAMETER 4.0 8. TYPE OF BACKFILL AROUND SCREEN FILTER SAND 9. TYPE OF BACKFILL ____FILTER SAND____ 10. DRILLING METHOD __AIR HAMMER_ DEPTH 16.86' 11. ADDITIVES USED (IF ANY) ELEV. 81.56' POTABLE WATER DEPTH 200 WATER LEVEL 8.90' DATE <u>04/10/91</u> ELEV. 78 42'

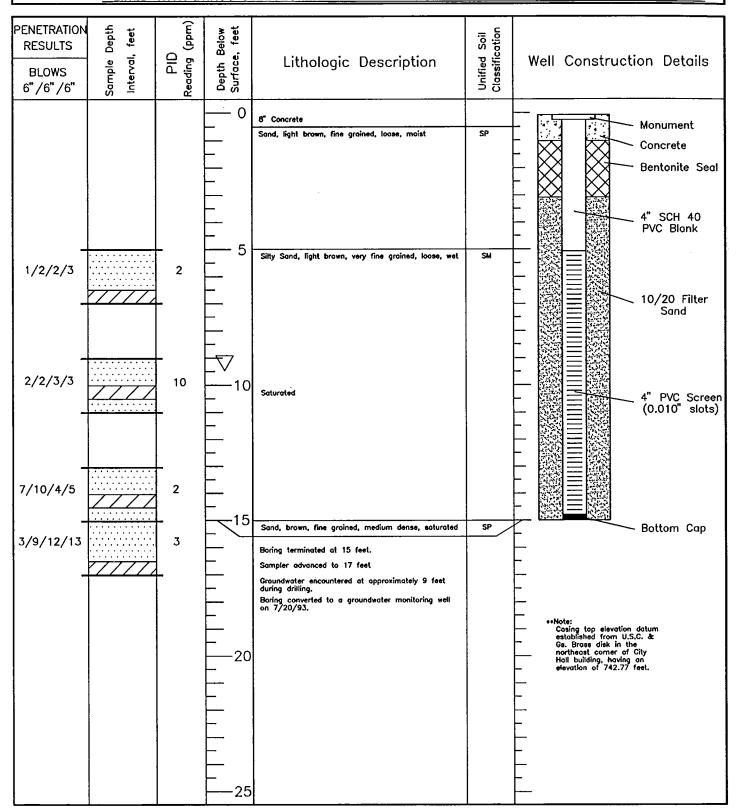
LOG OF TEST BORINGS


PROJECT NAME: CASCADE NATURAL GAS CO.	PROJECT NUMBER:	3751.007							
LOCATION: 512 DECATUR AVENUE, SUNNYSIDE, WASHINGTON									
BORING NUMBER: MW-3	SURFACE ELEVATION:	98,42'							

BORING NUMBER: 1414-5								SURFACE EDEVATION			
Sample No. or Time	Sample Type	Recovery (inches)	Moisture	N	PID Reading (ppm)	USCS Symbol	Depth (feet)	DESCRIPTION	Geologic Origin		
_1	AUGER	-	м	•	1.0	FILL		3 BLACKTOP Dark Brown, Fine Grained, SILTY SAND WITH A LITTLE GRAVEL.	FILL		
2	SS	20	M	19	3.0	FILL SP-SM	_ 	Brown, Fine Grained, Dense, SILTY SAND.	COARSE ALLUVIUM		
3	SS	20	Wb	3.	4.0	ML	10	Brown with streaks of Gray, Soft to Very Stiff, SILT.	FINE ALLUVIUM		
4	SS	20	Wb	14	175	ML_	1 <u>5</u>				
5	SS	20	Wb	19	12.0	SM	20	END OF BORING 20.0'			
							25				
							30				
	WATER L	EVEL MI	EASUR	EME	412	1	STA	rt <u>04/11/91</u> completion <u>04/11/91</u>			
Date	Time	Sampled Depth		ng C	Tave-in Depth	Water Level		Illing Method 6" I.D. HOLLOW STEM AUGER			
04/11/91 04/11/91		20.0 WEL	18.0	1	17.6 LED	10.0 8.90	n.	Backfill Method INSTALL WELL			
		-	-				Fie	ld Representative SKW/GU			

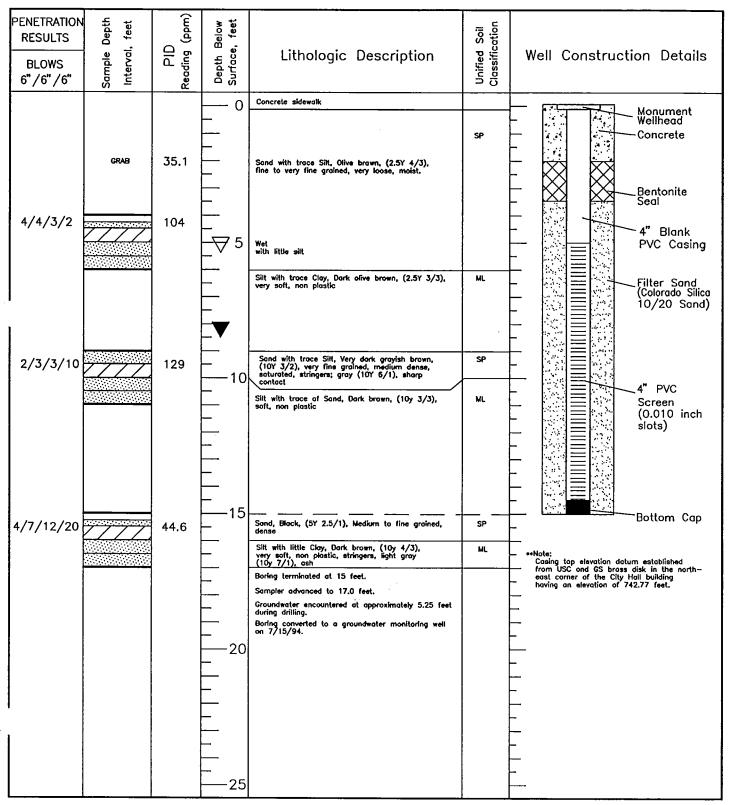

BORING _MW-4 **SECOR BORING LOG** PAGE <u>1</u> OF <u>1</u> 512 EAST DECATUR AVENUE SUNNYSIDE, WASHINGTON LOCATION PROJECT <u>CASCADE NATURAL GAS/SUNNYSIDE</u> SURFACE ELEVATION. CASING TOP ELEVATION_ 740.78** START 7/19/93 1045 FINISH. 7/19/93 1300 SAMPLER J. GIEBER MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENT_ ENVIRONMENTAL WEST EXPLORATION, MOBILE B-61 COMMENTS **SAMPLES COLLECTED USING 2° I.D. SPLIT SPOON SAMPLER** LINED WITH BRASS_SLEEVES_


SECOR	BORING LOG	BORING <i>MW-5</i> PAGE _1_ OF_1_
	LOCATION 512 LOCATION 512 CASANO TOP	
· · · · · · · · · · · · · · · · · · ·	CASING TOP E FINISH <i>7/19/93</i>	
SAMPLER J. GIEBER		
	MENT <u>environmental west explo</u> r Ed using 2° i.d. split spoon sampler	

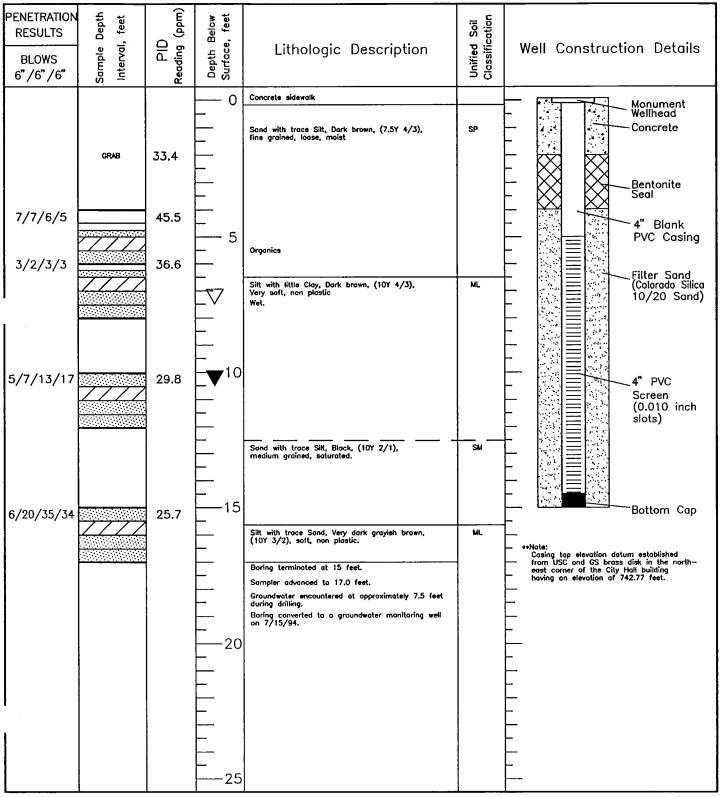

SECOR	BORING LOG	BORING <i>MW-6</i> PAGE _1_ OF_1_
PROJECT <u>CASCADE NATURAL GA</u>	S/SUNNYSIDE LOCATION 512	EAST DECATUR AVENUE NYSIDE, WASHINGTON
SURFACE ELEVATION	CASING TOP E	LEVATION
START <u>7/20/93 1130</u>	FINISHFINISH	1320
SAMPLER <i>J. GIEBER</i>	MONITORING DEVICE	ICROTIP PID
SUBCONTRACTOR AND EQUIPME	NTENVIRONMENTAL WEST EXPLOR	RATION, MOBILE B-61
	USING 2º I.D. SPLIT SPOON SAMPLER	
LINED WITH BRASS S	SLEEVES	


BORING _MW-7_ **SECOR BORING LOG** PAGE <u>1</u> OF <u>1</u> 612 EAST DECATUR AVENUE SUNNYSIDE, WASHINGTON LOCATION PROJECT <u>CASCADE NATURAL GAS/SUNNYSIDE</u> SURFACE ELEVATION. CASING TOP ELEVATION_ 740.59** FINISH_ 7/20/93 11615 START <u>7/20/93 1500</u> SAMPLER J. GIEBER MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENT_ ENVIRONMENTAL WEST EXPLORATION. MOBILE B-61 COMMENTS **SAMPLES COLLECTED USING 2" I.D. SPLIT SPOON SAMPLER** LINED WITH BRASS SLEEVES

SECOR	BORING LOG	BORING PAGE _1 OF1
PROJECT <u>CASCADE NATURAL GAS/S</u>	UNNYSIDE LOCATION 512 SUN	EAST DECATUR AVENUE NYSIDE, WASHINGTON
SURFACE ELEVATION	CASING TOP E	LEVATION
START <u>7/20/93 0845</u>	FINISH <i>7/20/93</i>	1030
SAMPLER J. GIEBER	MONITORING DEVICEM	ICROTIP PID
SUBCONTRACTOR AND EQUIPMENT_	ENVIRONMENTAL WEST EXPLOR	ATION, MOBILE B-61
COMMENTS <u>samples collected u</u> s	SING 2" I.D. SPLIT SPOON SAMPLER	
LINED WITH BRASS SLEE	EVES	



BORING __MW-9 SEACOR **BORING LOG** PAGE _1_ OF _1_ 612 EAST DECATUR AVENUE SUNNYSIDE, WASHINGTON LOCATION PROJECT <u>CASCADE NATURAL GAS/SUNNYSIDE</u> SURFACE ELEVATION_ CASING TOP ELEVATION___ 742.37** FINISH _ START <u>0835</u> 7/15/94 1010 7/15/94 SAMPLER C. GODDARD MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENT <u>ENVIRONMENTAL WEST EXPLORATION; SCHRAMM T300E; 10,250D H\$A</u> COMMENTS <u>sampled at 5, 10, and 17 feet using a 2.5" o.d. X 24" long split spoon sampler</u>



SEACOR BORING __*M.W.-10* **BORING LOG** PAGE _1_ 0F_1 LOCATION 512 EAST DECATUR AVENUE SUNNYSIDE, WASHINGTON PROJECT <u>CASCADE NATURAL GAS/SUNNYSIDE</u> SURFACE ELEVATION CASING TOP ELEVATION___ 741.32** START <u>1126 7/15/94</u> 1240 7/15/94 FINISH SAMPLER ___ c. GODDARD MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENT ENVIRONMENTAL WEST EXPLORATION; SCHRAMM T300E; 10.250D HSA COMMENTS <u>sampled at 4, 9, and 15 feet using a 2.5° o.d. X 24" long split spoon sampler</u>

LINED WITH 6" LONG BRASS TUBE SAMPLING RINGS. ECOLOGY WELL ABJ 975

BORING __MW-11_ **SEACOR BORING LOG** PAGE _1_ OF _1_ 612 EAST DECATUR AVENUE SUNNYSIDE, WASHINGTON LOCATION PROJECT <u>CASCADE NATURAL GAS/SUNNYSIDE</u> CASING TOP ELEVATION_ SURFACE ELEVATION. START <u>1428 7/15/94</u> FINISH. 1507 7/15/94 SAMPLER C. GODDARD MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENT<u>ENVIRONMENTAL WEST EXPLORATION; SCHRAMM T300E; 10.250D HS</u>A COMMENTS <u>sampled at 4, 6, 10, and 15 feet using a 2.5" o.d. X 24" long split spoon sampler</u> LINED WITH 6" LONG BRASS TUBE SAMPLING RINGS. ECOLOGY WELL ABJ 976

APPENDIX C LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

JULY 1991 UST OVEREXCAVATION

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

July 16, 1991

CASE NARRATIVE Lab No. 18532

The samples in this batch showed both gasoline and diesel contamination. The gasoline present was heavily aged and weathered, causing a marked decrease in the light aromatic content in the samples, especially in benzene, toluene, and ethyl benzene. Some of the increase in gasoline content may also be due to the fact that by the methods used in the analysis, TPH-G, TPH-D, and 8015 modified, there is an overlap of compounds found in both diesel and gasoline, so diesel contaminated soils will show some gasoline contamination, while showing little or no aromatic content.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Seacor

Date: July 16, 1991

Report On: Analysis of Soil and Water

Lab No.: 18532

Page 1 of 25

IDENTIFICATION:

Samples Received on 07-05-91

Project: 00058-014-01 CNG/Sunnyside

ANALYSIS:				
Lab Sample No.	1	2	3	4
Client Identification	1 0 1.1 Pile A	2 @ 1.9 Pile A	3 @ 1.8 Pile A	4 @ 2.3 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 < 0.05 < 0.05 0.15	< 0.05 < 0.05 < 0.05 0.07	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
Total Petroleum Fuel Hydrocarbons	45	95	29	36
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SURROGATE RECOVERY, %						
Lab Sample No.	1.	2	3	4		
BTEX-Trifluorotoluene	90	90	88	89		
WTPH-G-Trifluorotoluene	117	115	98	124		

Seacor

Project: 00058-014-01

Page 2 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	5	6	7	8
Client Identification	5 0 8.5 Pile A	6 0 0.7 Pile A	7 @ 5.2 Pile A	8 @ 5.2 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	0.15 1.1 8.2 19	< 0.05 < 0.05 < 0.05 0.27	0.56 3.3 16 37	< 0.05 < 0.05 < 0.05 0.07
Total Petroleum Fuel Hydrocarbons	2,600	191	5,900	39
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SUR	ROGATE RECO	VERY, %		<u> </u>
Lab Sample No.	5	6	7	8
BTEX-Trifluorotoluene	108	89	83	91
WTPH-G-Trifluorotoluene	394*	116	1,194*	120

^{*} Surrogate recoveries invalid due to matrix interference.

Seacor

Project: 00058-014-01

Page 3 of 25 Lab No. 18532 July 16, 1991

				•
Lab Sample No.	9	10	11	12
Client Identification	9 @ 7.4 Pile A	10 @ 1.0 Pile A	11 @ 0.3 Pile A	12 @ 0.7 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 0.55 6.8 20	0.13 0.42 1.7 6.5	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
Total Petroleum Fuel Hydrocarbons	2,300	1,100	64	102
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SURI	ROGATE RECOV	VERY, %		
Lab Sample No.	9	10	11	12
BTEX-Trifluorotoluene	108	102	90	91
WTPH-G-Trifluorotoluene	212*	218*	118	117

* Surrogate recovery invalid due to matrix interference.

Seacor

Project: 00058-014-01

Page 4 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	13	14	15	16
Client Identification	13 0 1. 8 Pile A	14 @ 4.1 Pile A	15 @ 1.2 Pile A	17 @ 5.2 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.10 0.52 2.2	< 0.05 < 0.05 < 0.05 0.06	< 0.05 0.09 1.5 7.5
Total Petroleum Fuel Hydrocarbons	142	500	245	1,400
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SUR	ROGATE REC	OVERY, %		
Lab Sample No.	13	14	15	16
BTEX-Trifluorotoluene	90	90	88	86
WTPH-G-Trifluorotoluene	124	138	116	122

Seacor

Project: 00058-014-01

Page 5 of 25 Lab No. 18532 July 16, 1991

17	• 0		
	18	19	20
18 @ 0.5 Pile A	19 @ 2.6 Pile A	20 @ 6.5 Pile A	21 @ 0.9 Pile A
Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
0.06 0.13 0.29 1.4	< 0.05 < 0.05 0.23 1.0	0.11 0.38 2.4 7.6	0.15 0.84 2.5 8.9
300	290	1,500	1,500
Gasoline	Gasoline	Gasoline	Gasoline
	Pile A Soil mg/kg 0.06 0.13 0.29 1.4	Pile A Pile A Soil Soil mg/kg 0.06 < 0.05 0.13 < 0.05 0.29 0.23 1.4 1.0	Pile A Pile A Pile A Soil Soil Soil mg/kg 0.06 < 0.05 0.11 0.13 < 0.05 0.38 0.29 0.23 2.4 1.4 1.0 7.6

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SUR	ROGATE REC	OVERY, %		·
Lab Sample No.	17	18	19	20
BTEX-Trifluorotoluene	91	88	102	98
WTPH-G-Trifluorotoluene	160*	160*	240*	386*

^{*} Surrogate recoveries invlaid due to matrix interference.
Continued

Seacor

Project: 00058-014-01

Page 6 of 25 Lab No. 18532 July 16, 1991

				_
Lab Sample No.	21	22	23	24
Client Identification	22 @ 1.0 Pile A	23 @ 2.4 Pile A	24 @ 1.0 Pile A	25 @ 0.8 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 0.20 < 0.05 1.2	< 0.05 0.052 < 0.05 < 0.05	< 0.05 < 0.05 0.26 0.88	< 0.05 0.059 < 0.05 0.77
Total Petroleum Fuel Hydrocarbons	90	3.4	10	64
TPH as	Gasoline	Gasoline	Gasoline	Gasoline
				

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SURROGATE RECOVERY, %					
Lab Sample No.	21	22	23	24	
BTEX-Trifluorotoluene	82	86	93	86	
WTPH-G-Trifluorotoluene	69	82	67	81	

Seacor

Project: 00058-014-01

Page 7 of 25 Lab No. 18532 July 16, 1991

	·			
Lab Sample No.	25	26	27	28
Client Identification	26 @ 1.0 Pile A	27 @ 1.8 Pile A	28 @ 6.8 Pile A	1 @ 2.0 Pile B
Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 0.12 0.14 0.79	< 0.05 0.54 16 7.9	0.32 2.4 13 28	< 0.05 0.10 < 0.05 0.37
Total Petroleum Fuel Hydrocarbons	2.4	1,300	2,800	100
TPH as	Gasoline	Gasoline	Gasoline	Gasoline
· · · · · · · · · · · · · · · · · · ·	•	•		

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SUR	ROGATE RECOVE	ERY, %		
Lab Sample No.	25	26	27	28
BTEX-Trifluorotoluene	93	93	83	86
WTPH-G-Trifluorotoluene	70	67	71	68

Seacor

Project: 00058-014-01

Page 8 of 25 Lab No. 18532 July 16, 1991

29	30	31	32
2 @ 0.8 Pile B	3 @ 7.0 Pile B	4 @ 3.3 Pile B	5 @ 1.0 Pile B
Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
0.05 0.81 < 0.05 0.19	< 0.05 0.68 5.4 19	< 0.05 0.073 0.23 1.6	< 0.05 0.73 0.59 1.2
13	1,800	320	310
Gasoline	Gasoline	Gasoline	Gasoline
	2 @ 0.8 Pile B Soil mg/kg 0.05 0.81 < 0.05 0.19	2 @ 0.8	2 @ 0.8

Note - Results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SURROGATE RECOVERY, %					
Lab Sample No.	29	30	31	32	
BTEX-Trifluorotoluene	102	102	79	94	
WTPH-G-Trifluorotoluene	84	78	81	75	

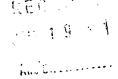
Seacor

Project: 00058-014-01

Page 9 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	33	34	35	36
Client Identification	6 @ 2.6 Pile B	7 @ 3.9 Pile B	8 @ 0.5 Pile B	9 @ 2.3 Pile B
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 0.12 0.92 0.60	< 0.05 0.91 6.0 17	< 0.05 < 0.05 < 0.05 0.05	< 0.05 0.58 5.3 27
Total Petroleum Fuel Hydrocarbons	10	1,600	12	1,800
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Note - Results reported on an as received basis.


Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SUR	ROGATE REC	OVERY, %	· · · · · · · · · · · · · · · · · · ·	
Lab Sample No.	33	34	35	36
BTEX-Trifluorotoluene	69	104	95	72
WTPH-G-Trifluorotoluene	106	119	70	85

Seacor

Project: 00058-014-01

Page 10 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	37	38	39	40
Client Identification	10 @ 0.5 Pile B	11 @ 2.4 Pile B	12 @ 7.3 Pile B	MW-1
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Water mg/l
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.05 0.22 2.1 8.4	< 0.05 < 0.05 0.56 0.22	< 0.05 0.41 1.8 5.1	< 0.001 < 0.001 < 0.001 < 0.001
Total Petroleum Fuel Hydrocarbons	600	43	490	0.130, 796
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Note - Soil results reported on an as received basis.

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SUR	ROGATE RECO	VERY, %	·	
Lab Sample No.	37	38	39	40
BTEX-Trifluorotoluene	90	91	101	80
WTPH-G-Trifluorotoluene	78	70	98	63

Continued . .

Seacor

Project: 00058-014-01

Page 11 of 25 July 16, 1991

	·	<u> </u>		•—
Lab Sample No.	41	42	43	44
Client Identification	MW-2	MW-3	EX-Pond #1	EX-Pond #2
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	Water mg/l
Benzene Toluene Ethyl Benzene Xylenes SW-846 Method 8020	< 0.001 < 0.001 < 0.001 < 0.001	29 3.8 0.41 0.31	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001
Total Petroleum Fuel Hydrocarbons	0.15	1,800	< 0.1	< 0.1
TPH as	Gasoline	Gasoline	Gasoline	Gasoline

Samples were analyzed for BTEX in accordance with SW-846 Method 8020 and for TPH by Modified 8015, using purge and trap techniques which can only detect gasoline (Method 5030).

SURROGATE RECOVERY, %					
Lab Sample No.	41	42	43	44	
BTEX-Trifluorotoluene	91	86	92	91	
WTPH-G-Trifluorotoluene	62	71	69	65	

Seacor

Project: 00058-014-01

Page 12 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	1	2	3	4
Client Identification	1 0 1.1 Pile A	2 @ 1.9 Pile A	3 @ 1.8 Pile A	4 @ 2.3 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	300	430	74	29
трн аѕ	Diesel/ Heavy Oil	Diesel	Diesel	Diesel

- Part	SURROGAT	E RECOVERY	, %	· · · · · · · · · · · · · · · · · · ·
Lab Sample No.	1	2	3	. 4
TPH by Mod 8015 1-Chlorooctane Perylene	103 103	112 108	108 106	108 104

Note - Soil results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 13 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	5	6	7	8
Client Identification	5 @ 8.5 Pile A	6 @ 0.7 Pile A	7 @ 5.2 Pile A	8 @ 5.2 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	560	. 390	1,200	45
TPH as	Diesel	Diesel	Diesel	Diesel

Surrogate Recovery, %					
Lab Sample No.	5	6	7	8	
TPH by Mod 8015 1-Chlorooctane Perylene	198* 112	156* 111	265* 108	108 108	

^{*} Surrogate recoveries invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 14 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	9	10	11	12
Client Identification	9 @ 7.4 Pile A	10 @ 1.0 Pile A	11 @ 0.3 Pile A	12 @ 0.7 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	2,400	980	68	240
TPH as	Diesel	Heavy Oil Diesel	Diesel	Diesel

SURROGATE RECOVERY, %					
Lab Sample No.	9	10	11	12	
TPH by Mod 8015 1-Chlorooctane Perylene	187* 109	123 117	114 113	110 110	

^{*} Surrogate recoveries invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 15 of 25 Lab No. 18532 July 16, 1991

				·
Lab Sample No.	13	14	15	16
Client Identification	13 @ 1.8 Pile A	14 @ 4.1 Pile A	15 @ 1.2 Pile A	17 @ 5.2 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	700	350	860	1,400
TPH as	Diesel	Diesel	Diesel	Heavy Oil Diesel

	SURROGATE RI	ECOVERY, %		
Lab Sample No.	13	14	15	16
TPH by Mod 8015 1-Chlorooctane Perylene	109 107	147 108	116 109	178* 117

^{*} Surrogate recoveries invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 16 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	17	18	19	20
Client Identification	18 @ 0.5 Pile A	19 @ 2.6 Pile A	20 @ 6.5 Pile A	21 @ 0.9 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	170	150	500	730
TPH as	Diesel	Diesel	Diesel	Diesel

	SURROGATE	RECOVERY,	8	
Lab Sample No.	17	18	19	20
TPH by Mod 8015 1-Chlorooctane Perylene	113 111	132 110	212* 103	178* 107

^{*} Surrogate recoveries invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 17 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	21	22	23	24
Client Identification	22 @ 1.0 Pile A	23 @ 2.4 Pile A	24 @ 1.0 Pile A	25 @ 0.8 Pile A
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	330	32	130	140
TPH as	Diesel	Diesel	Diesel	Diesel

S	URROGATE RI	ECOVERY, %		
Lab Sample No.	21	22	23	24
TPH by Mod 8015 1-Chlorooctane Perylene	122 102	104 103	106 101	109 102

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 18 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	25	26	27	28
Client Identification	26 @ 1.0 Pile A	27 @ 1.8 Pile A	28 @ 6.8 Pile A	1 @ 2.0 Pile B
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	37	3,900	1,500	1,300
TPH as	Diesel	Heavy Oil Diesel	Diesel	Diesel

	SURROGATE P	RECOVERY, &		
Lab Sample No.	25	26	27	28
TPH by Mod 8015 1-Chlorooctane Perylene	112 108	182* 106	231* 106	109 103
de Clanacia and Line				

^{*} Surrogate recovery invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 19 of 25 Lab No. 18532 July 16, 1991

				
Lab Sample No.	29	30	31	32
Client Identification	2 @ 0.8 Pile B	3 @ 7.0 Pile B	4 @ 3.3 Pile B	5 @ 1.0 Pile B
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	68	920	210	390
TPH as	Diesel	Diesel	Diesel	Diesel

	SURROGATE R	ECOVERY, %		
Lab Sample No.	29	30	31	32
TPH by Mod 8015 1-Chlorooctane Perylene	114 104	244*	147 103	271* 102
* Surrogato magazzani				

^{*} Surrogate recoveries invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 20 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	33	34	35	36
Client Identification	6 @ 2.6	7 @ 3.9	8 @ 0.5	9 @ 2.3
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	93	800	< 10.0	2,100
TPH as	Heavy Oil Diesel	Diesel		Diesel

St	JRROGATE J	RECOVERY, %		
Lab Sample No.	33	34	35	36
TPH by Mod 8015 1-Chlorooctane Perylene	106 113	251* 107	110 106	272* 106

^{*} Surrogate recoveries invalid due to matrix interference.

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 21 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	37	38	39	40
Client Identification	10 @ 0.5 Pile B	11 @ 2.4 Pile B	12 @ 7.3 Pile B	MW-1
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Water mg/l
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	3,000	150	150	< 1.0
TPH as	Diesel	Diesel	Diesel	

Lab Sample No.	37	38	39	40
TPH by Mod 8015 1-Chloroctane Perylene	145 103	114 105	124 104	63 115

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 22 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	41	42	43	44
Client Identification	MW-2	MW-3	Ex-Pond #1	Ex-Pond #2
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	Water mg/l
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 1.0	4.2	< 1.0	1.7
TPH as		Diesel		Diesel

	SURROGATE R	ECOVERY, %		
Lab Sample No.	41	42	43	44
TPH by Mod 8015 1-Chlorooctane Perylene	78 118	98 117	85 119	80 123

Note - Soil Results reported on an as received basis.

Seacor

Project: 00058-014-01

Page 23 of 25 Lab No. 18532 July 16, 1991

Lab Sample No.	Client ID	Pentachlorophenol, mg/kg
2	2 @ 1.9 Pile A	< 0.01
5	5 @ 8.5 Pile A	0.030
6	6 @ 0.7 Pile A	< 0.01
8	8 @ 5.2 Pile A	< 0.01
9	9 @ 7.4 Pile A	< 0.01
18	19 @ 2.6 Pile A	< 0.01
19	20 @ 6.5 Pile A	< 0.01
30	3 @ 7.0 Pile B	< 0.01
32	5 @ 1.0 Pile B	< 0.01
36	9 @ 2.3 Pile B	< 0.01

Phenols by EPA SW-846 Method 8040

Note - Soil matrix for all samples tested for pentachlorophenol.

Seacor

Project: 00058-014-01

Page 24 of 25 Lab No. 18532 July 16, 1991

Revised: February 11, 1992

T-1-0		l	
Lab Sample No.	40	41	42
Client Identification	MW-1	MW-2	MW-3
Matrix/Units	Water	Water	Water
	mg/l	mg/l	mg/l
Halogenated Volatiles Per EPA			
SW-846 Method 8010.			
Vinyl Chloride	< 0.005	< 0.005	< 0.005
Methylene chloride	< 0.001	< 0.001	< 0.001
1,1-dichloroethylene	< 0.001	< 0.001	< 0.001
1,1-dichloroethane	< 0.001	< 0.001	< 0.001
1,2-transdichloroethylene	< 0.001	< 0.001	< 0.001
1,2-dichloroethane	0.11	< 0.001	0.46
Chloroform	< 0.001	< 0.001	< 0.001
1,1,1-trichloroethane	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	< 0.001	< 0.001	< 0.001
1,2-dichloropropane	< 0.001	< 0.001	< 0.001
Bromodichloromethane	< 0.001	< 0.001	< 0.001
Trans-1,3-dichloropropene	< 0.001	< 0.001	< 0.001
Trichloroethylene	< 0.001	< 0.001	< 0.001
Cis-1,3-dichloropropene	< 0.001	< 0.001	< 0.001
1,1,2-trichloroethane	< 0.001	< 0.001	< 0.001
Tetrachloroethylene	< 0.001	< 0.001	< 0.001
Chlorodibromomethane	< 0.001	< 0.001	< 0.001
1,1,2,2-tetrachloroethane	< 0.001	< 0.001	< 0.001
Bromoform	< 0.001	< 0.001	< 0.001
Chlorobenzene	< 0.001	< 0.001	< 0.001
1,2 Dichlorobenzene	< 0.001	< 0.001	< 0.001
1,3 Dichlorobenzene	< 0.001	< 0.001	< 0.001
1,4 Dichlorobenzene	< 0.001	< 0.001	< 0.001
	LI		

Continued

Seacor

Project: 00058-014-01

Page 25 of 25 Lab No. 18532 July 16, 1991

	•——	_
Lab Sample No.	43	44
Client Identification	Ex-Pond #1	Ex-Pond #2
Matrix/Units	Water mg/l	Water mg/l
Halogenated Volatiles Per EPA SW-846 Method 8010.		
Vinyl Chloride Methylene chloride 1,1-dichloroethylene 1,2-dichloroethane 1,2-dichloroethane Chloroform 1,1,1-trichloroethane Carbon Tetrachloride 1,2-dichloropropane Bromodichloromethane Trans-1,3-dichloropropene Trichloroethylene Cis-1,3-dichloropropene 1,1,2-trichloroethane Tetrachloroethylene Chlorodibromomethane 1,1,2,2-tetrachloroethane Bromoform Chlorobenzene 1,2 Dichlorobenzene 1,4 Dichlorobenzene	< 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	

SOUND ANALYTICAL SERVICES

LARRY ZURAW

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

		ב	֡֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֓	X C	-	5	֓֞֝֟֝֝֞֜֝֝֟֝֝֟֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟	5	5	<u> </u>		֡֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2			İ	;	
CLIENT: SEACOR	ANALYSI	S REC	IS REQUESTED:		(Circle, check box or write preferred method in box)	heck bo	or writ	e prefer	ed met	8 ë	×			OTHER:	اید			
PROJECT NAME: CNG/Sumpside		/sesi	04			(sv	eracers			(202		Saniar	phenol		 		·	
CONTACT: PAUL SCHMIDT			comp						•	action (ganics notion	SOI	의 			-			
PHONE NO: 646-0280	X3		X/8015 Oline C	/ 601/8 matica / 602/8	9/979 \	/ 625/8 /,3 / 624/8 Jospjes		9709 /		O elite NX3 9.	ilslov-ir rixa q.	Metal AARD					· · · · · ·	
SAMPLE ID # DATE TIME PRES. MATRIX	3T8		BTB Gas			∀ d∃			IOW	YOU	TCL	SIOT						
1. 1 @ 1.1 7-2 1354 Soll		7	1								_						_	
2.2@ 1.9 11 1333 11		7	7										X					
3.36 (.8 " 1342 "		1	1								Щ	_				_		
4.4 @ 2.3 "1 1410 11		7	1															
5.50 8.5 11 1419 "		7	1										$\overline{\lambda}$					
6.60 0.7 " 1316 "		1	7										X					
1.76 5.2 11 1415 11		7	7			_								_	_	_		
8.86 5.2 "1 1400 "		1	7										X	_	_			
7,4 "		1	1										X					
10.10@ 1,0 1, 1308 1,		7	1			_												
11.11 @ 0.3 1. 11424 11		7	7															
" 4.0		7	7					·								_		
IED BY:	RELINQUISHED BY	SHED	یز	SPEC	SPECIAL INSTRUCTIONS / COMMENTS:	RUCTIO	NS / CC	MMEN	ë									İ
Signature: 8 Aming It signature our	Signature:			<u> </u>	Sheet	ーせ	4	M										
Bringo N	Printed Name:	ë		ı														-
JUL SCHMIDT					Ċ	2	9	3	300	ý	7	3	+ Schools School	V)	G. P. C.	140		
FIM: FIRM: SEACOR FIRM: SAS	<u>н</u>				<u>ሃ</u>	the Penta's were	Pen	1 ts (333)	3 5	F G	à	74	, N	per his reduced	†:	
Bo	Date/Time:					for Hesting	Te S-	T	•	3-1-	7-8-4	_	12:50pm	300	(<	(
ey:	RECEIVED	BY:											ጀ	ρ (>	5	ភ្ជា ភ្ជា	9	(
signification of the significant	Signature:													7		THE THE PROPERTY OF THE PARTY O	The less in	, Z
Primed Name:	Printed Name:	:e:						•						<i>i</i>	3	•) '	•
FIRST S. A. S.	Fim:			I														
Date Time: 91 (11:30 Date Times A 1210	Date/Time:			r		,	-	•										
	ر]

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

).			,								į			ŀ	
CLIENT: < FACO &	ANALYSIS RE	IS REQUESTED:	(Circ	(Circle, check box or write preferred method in box)	× or w	ite prefe	red met	8 ≅ •	_≅			2 4 2		-		
PROJECT NAME: CNG/Sunnyside				(sv				(2117)			onaydo	· · · · · · · · · · · · · · · · · · ·				
CONTACT: PAUL SCHMIDT		ed Vola	9050	8 (GC/N	94 enho		noitaer		action & Herl	위	19/4					
2	1.814 1	V801	matica 602/8	9esble:	900chle 825/8	8\803 / olsH is 8\06 A	els	o elite uxa q.	ni-volal P Exit	AAAD	ולמנ					
SAMPLE ID # DATE TIME PRES. MATRIX		875 Gas Hak	ριΑ \q∃	Puri EPA	Org		IeM	YOU	JOT	ioT	'સ		_			
1.13@ 1.8 7-2 11328 Soil	7	1														
4.1 1.1	7	7						-	_			-				
1	1	7														
4.								_				-	\dashv		\dashv	
5.17@ 5.2 12.4 So.1	7	7														
6.18@ 0.5 11 [643] 11	7	7													1	
7.19 @ 2.6 11 1712 11	,	1						_			X	_	_		-	
8.26 6.5 11 1653 11	7	1			-						X	-			-	
9.21 @ 0,9 11 1637 1	7	1				_			_			-			-	\neg
10,23,6 1.6 11 1435 11	7	1						\dashv	_			-			-	
1, 6.4 9,	7	7						\dashv	_						-	\neg
12.240 1,0 11 1650	7	7							_			_	_		-	
ЕР ВҮ: ВЕЦІМОЛІЯНЯТЬ ВҮ:	RELINGUISHED	BY:	SPECIAL INSTRUCTIONS / COMMENTS:	NSTRUCT) / SNO!	OMMEN	TS:									
Signature of Smith Signature of Signature	Signature:		Shee	1	\sim	o F 2	M									
UC S 7	Printed Name:		· ·	; • • • • • • • • • • • • • • • • • • •	,		 1									
Firm:SBS	ਜ਼ਿ ਜ :															
1100 Date(Time: -91 19:10	Date/Time:															
RECEIVED BY:	RECEIVED BY:															
s bool Jamesis Xxxx Muss	Signature:															
Printed Name: , U & G LIS T Printed Name: , U Pr	Printed Name:															
Firm SAS	Firm:		·													
Date Ting: 91-11:30 Date Time: 49/ 121/0	Date/Time:		·											-		
								ĺ								Į

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

D NIKED	TOO TOO TO	S PEOLIFETEN:	- 1	XX 1 10 1 X 1 DOX 1 10 1 10 1 10 X XX	בן 	TO DO				2	. 5	OTHER:			
CLIENT: SEACOR	יייייייייייייייייייייייייייייייייייייי		-		S -	_	-	-	, -		- 1_	-		-	_
PROJECT NAME: CN6/Sunnyside				(sn	est.,PCB'			(347)	picides		وعهاجاد				
CONTACT: PAUL SCHMIDT		Comp Only ed Vola	9050	(GC/I		080	noitası		uoilon	SIE V	1014				
PHONE NO: 646-0280	1.814 1	\$108\X	matica / 602/8	655/8 0695/6	9/929 \	8\809 / oleH le 8\06 A	p Extr	O elile 기x크 역.	ni-volat P Exit	AA 45	22/11				
SAMPLE ID # DATE TIME PRES. MATRIX		BTE Gas Hak	AYA 443	inuq	-	Eby	TCI Mei	YOI	10T	NT POI	یح			\dashv	
1.102 FZal E-7 Soil		7			-	\dashv		\dashv	-		-				
1018		7				\dashv		\dashv				_		_	
3.3 8 7,0 11 1116 11		7			-	-			\dashv		\times	_		\dashv	
11		7			1	_		-	4		-	_		_	
5.5@ 1,0 11 945 11		7	-	_	_	_		\dashv	_		X	_			
7.6 11	ىر	7				_		-	_		4	_			
1.7 6 3.9 " 1119 "		7						\dashv	_					-	
8.860.5 11 1003 11		7			_	_		\dashv	_			4		_	
@ 2.3 II		7			\dashv	\dashv		\dashv			X			_	
11		1				\dashv		-	_		1			-	
		7			\dashv	-		-	4		-	_		\dashv	
1 7.3 B		1				_		-	_		_			-	
ED BY:	RELINQUISHED	D BY:	SPECIAL	ခြင့	/ SNOIL	сомме	NTS:								
Signature / S. S. Mariell Signature: (Clory	Signature:		Sheet		ا الإ				ı	į	(
Ta	Printed Name:		·	NC	10 Per	ta	3	Ħ		(S)	X 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SI	SSiang 1	26	
Firm: Firm: SEALOR	Firm:												Sar	C	
160	Date/Time:											Ž.	63	}	•••
	RECEIVED BY:														
OPO TOTAL AND THE PROPERTY OF	Signature:														
PUIST	Printed Name:										- ,				
Firm: Firm:	ப் ள:								•		•				
Date Time Date Time Date Time Date 12:10	Date/Time:														

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

		<u>-</u>		3))	Ĺ)		5	,		5	,			
CLIENT: CHACOR	ANALYSIS REQUESTED	S REOL	ESTED		(Circl	(Circle, check box or write preferred method in box)	box or	write pr	eferred	method	in box)			отнев:	ä		
<u>`</u> ⊢0		122910		səlin		(sı		s'BOG,,la		(SHE)		sepioio					· -
CONTACT: PAUL SCHMIDT		3 2108	comb	ed Vola		1540 2 (GC/N		080	scrion derio	noitas: esinsgr	uoilas	acilon & Herb	s(t				
PHONE NO: 646-0280 /confined		boM 1			malica 1 602/8 7 625/8		8/9 Z9 \	8/809 \	olsH 18 8706 A uxa 9.	<u>1x∃ q</u>		P Exit	SI Meta AA72				
SAMPLE ID # DATE TIME HREST MATRIX	3T8 49T	нчт	3T8		4 4 4		_	V43	10T	Mei TCL	10T	TCL Pes	Toi: ICP	_			
1. MW-1 73 1241 12 140		7						•									
7-3 1241 VOA			Z	7					-	_				-			_
2 7-3 1320 10		7							-	_	_			_			_
4. MW-2 7-3 1320 VOA H20			7	Ż					\dashv	-	_			-			_
1340 19		7												_			_
6. MW-3 7-3 1340 VOA 420			7	Ż				-					\dashv	-			
7.				•					_				_	_	_		_
8. Ex-Pond* 1 7-3 1277 VOA			7	7										-			
01 11 11 16		7															
10. Ex-Pon 1#2 7-3 1234 VOA			7	>					_								
и и		7	·														
12.			•											_	-	_	
RELINQUISHED BY: RELINQUISHED BY:	RELINGUISHED	HED BY	ş.	S	SPECIAL INSTRUCTIONS / COMMENTS	NSTRUC	SNOIT	/ COMI	AENTS:								
Eggaure & Smith Signature: Stalm &	Signature:				Sheet	- +3	40								Č		
Printed Name: Printed Name: A L. H. Q. VI ST	Printed Name:	je:	-			Jag.	gyd-	م عر	900	OVER SEC	7.03 .00.	1 to 1	the mait to	يم بيارا	Perphone conversation muith taux schmict	غ ق	
	Firm:					3	g g))	}	9	1 1 6	2,52	7-8-9-12,50pm	. 80	
1/00	Date∕Time:			İ	•									₹"	المالية	R HE	Useo
/	RECEIVED	BY:		П											Shire	Sound Analy + Your	14:00x
Sold of the sold o	Signature:																
Prince Name: COST Prince Name: COS	Printed Name:	. <u></u>				•							,				
X.	Film:																
Date Times 11.00/14 Date Times / 5/6/19:10	73://O Date/Time:		·				•	-							:		
111																:	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	1	2	3	4	5
Client ID	1 @ 1.1 Pile A	2 @ 1.9 Pile A	3 @ 1.8 Pile A	4 @ 2.3 Pile A	5 @ 5.2 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD				·	
WTPH-G- Triflorotoluene	117	115	98	124	394*

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

Notes and Discussion:

Surrogate recovery invalid due to matrix interference.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	6	7	8	9	10
Client ID	6 0 0.7	70 5.2	8 @ 5.2	9 @ 7.4	10 @
	Pile A	Pile A	Pile A	Pile A	1.0 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	116	1,194*	120	212*	218*

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

Notes and Discussion:

Surrogate recoveries invalid dur to matrix interference.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	11	12	13	14	15
Client ID	11 @ 0.3 Pile A	12 @ 0.7 Pile A	13 @ 1.8 Pile A	14 @ 4.1 Pile A	150 1.2 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	118	117	124	138	116

Condition of samples on receipt: Samples received cold and in good Chain of custody was in order. condition.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	16	17	18	19	20
Client ID	17 0 5.2 Pile A	18 @ 0.5 Pile A	19 @ 2.6 Pile A	20 @ 6.5 Pile A	21 @ 0.9 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor	:				
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					,
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	122	160*	160*	240*	386*

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

Notes and Discussion:

Surrogate recoveries invalid due to matrix interference.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	21	22	23	24	25
Client ID	22 @ 1.0 Pile A	23 @ 2.4 Pile A	24 @ 1.0 Pile A	25 @ 0.8 Pile A	26 @ 1.0 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	69	82	67	81	70

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	26	27	. 28	29	30
Client ID	27 @ 1.8 Pile A	28 @ 6.8 Pile A	1 @ 2.0 Pile B	2 @ 0.8 Pile B	3 @ 7.0 Pile B
Date Sampled	7-2-91	7-2-91	7-3-91	7-3-91	7-3-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	67	71	68	84	78

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	31	32	33	34	35
Client ID	4 @ 3.3 Pile B	5 @ 1.0 Pile B	6 @ 2.6 Pile B	7 @ 3.9 Pile B	8 @ 0.5 Pile B
Date Sampled	7-3-91	7-3-91	7-3-91	7-3-91	7-3-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R		-			
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	81	75	106	119	70

Condition of samples on receipt: Samples received cold and in good Chain of custody was in order. condition.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name:

000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

· · · · · · · · · · · · · · · · · · ·		·			_
Lab Number	36	37	38	39	40
Client ID	9 0 2.3 Pile B	10 @ .05 Pile B	11 @ 2.4 Pile B	12 @ 7.3 Pile B	MW -1
Date Sampled	7-3-91	7-3-91	7-3-91	7-3-91	7-3-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	· 7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					1:1
Sample Matrix	Soil	Soil	Soil	Soil	Water
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	85	78	70	98	63

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

TPH CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

Lab Number	41	42	43	44	
Client ID	MW-2	MW-3	EX-Pond #1	EX-Pond #2	· ·
Date Sampled	7-3-91	7-3-91	7-3-91	7-3-91	
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	
Dilution Factor	1:1	1:1	1:1	1:1	
Sample Matrix	Water	Water	Water	Water	
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
WTPH-G- Trifluorotoluene	62	71	69	65	

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

ANALYTICAL NARRATIVE

BTEX CHECKLIST (5030)

Client:

Seacor

Lab No.: 18532

Project Name: 00058-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Dean Strom

					_
Lab Number	1	2	3	4	5
Client ID	1 @ 1.1	2 @ 1.9	3 A 1.8	4 @ 2.3	5 @ 5.2
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor	_				
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
Surrogate Recovery METHOD 8020 trifluorotoluene%	90	· 90	88	89	108
WTPH-G Trifluorotoluene%					

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Larry Zuraw

			 		
Lab Number	6	7	8	9	10
Client ID	6 @ 0.7	7@ 5.2	8 @ 5.2	9 @ 7.4	10 @ 1.0
	Pile A	Pile A	Pile A	Pile A	Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R		-			
Matrix Spike Duplicate % RPD					
Surrogate Recovery METHOD 8020 Trifluorotoluene	89	83	91	108	102
		I	1	<u>. </u>	î ·

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Larry Zuraw

Lab Number	11	12	13	14	1 5
Client ID	11 @ 0.3 Pile A	12 @ 0.7 Pile A	13 @ 1.8 Pile A	14 @ 4.1 Pile A	150 1.2 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor	·				
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
Surrogate Recovery METHOD 8020 Trifluorotoluene	90	91	90	90	88

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS Analyzed by: Larry Zuraw

Lab Number	21	22	23	24	25
Client ID	22 @ 1.0 Pile A	23 @ 2.4 Pile A	24 @ 1.0 Pile A	25 @ 0.8 Pile A	26 @ 1.0 Pile A
Date Sampled	7-2-91	7-2-91	7-2-91	7-2-91	7-2-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
Surrogate Recovery METHOD 8020 Trifluorotoluene	82	. 86	93	86	93

Condition of samples on receipt: Samples received cold and in good Chain of custody was in order. condition.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Larry Zuraw

				_	
	26	27	28	29	30
Lab Number			7 0	2 @	3 @
Client ID	27 @ 1.8 Pile A	28 @ 6.8 Pile A	1 0 2.0 Pile B	0.8 Pile B	7.0 Pile B
		7-2-91	7-3-91	7-3-91	7-3-91
Date Sampled	7-2-91			7-5-91	7-5-91
Date Received	7-5-91	7-5-91 7-5-91 7-5-91			
	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Extracted		7-15-91	7-15-91	7-15-91	7-15-91
Date Analyzed	7-15-91	7-13 31			
Dilution Factor				9-61	Soil
Sample Matrix	soil	Soil	Soil	Soil	3011
Matrix Spike %R				-	
Matrix Spike Duplicate % RPD				-	
Surrogate Recovery		8:	3 86	10	1 102
Trifluorotoluene	- 700		ples receiv	ved cold a	nd in good

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Larry Zuraw

Lab Number	31	32	33	34	35
Client ID	4 0 3.3 Pile B	5 @ 1.0 Pile B	6 0 2.6 Pile B	7 @ 3.9 Pile B	8 @ 0.5 Pile B
Date Sampled	7-3-91	7-3-91	7-3-91	7-3-91	7-3-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	Soil
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
Surrogate Recovery METHOD 8020 Trifluorotoluene	79	94	69	104	95

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor

Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Larry Zuraw

Lab Number	36	37	38	39	40
Client ID	9 @ 2.3 Pile B	10 @ .05 Pile B	11 @ 2.4 Pile B	12 @ 7.3 Pile B	40 MW -1
Date Sampled	7-3-91	7-3-91	7-3-91	7-3-91	7-3-91
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	7-5-91
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	7-8-91
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	7-15-91
Dilution Factor					1:1
Sample Matrix	Soil	Soil	Soil	Soil	Water
Matrix Spike %R					
Matrix Spike Duplicate % RPD					
Surrogate Recovery METHOD 8020 Trifluorotoluene	92	90	91	101	83

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE

BETX CHECKLIST (5030)

Client: Seacor Lab No.: 18532

Project Name: 000-58-014-01

Prepared by: Dawn Werner

Delivered by: Joe Palmquist of SAS

Analyzed by: Larry Zuraw

Lab Number	41	42	43	44	
Client ID	MW-2	MW-3	EX-Pond #1	EX-Pond #2	
Date Sampled	7-3-91	7-3-91	7-3-91	7-3-91	
Date Received	7-5-91	7-5-91	7-5-91	7-5-91	
Date Extracted	7-8-91	7-8-91	7-8-91	7-8-91	
Date Analyzed	7-15-91	7-15-91	7-15-91	7-15-91	
Dilution Factor	1:1	1:1	1:1	1:1	
Sample Matrix	Water	Water	Water	Water	
Matrix Spike %R					
Matrix Spike Duplicate % RPD					, ,
Surrogate Recovery METHOD 8020 Trifluorotoluene	91	86	92	91	_,,22

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

DECEMBER 1991 WATER SAMPLING

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-2569 Phone (206) 481-9200 • FAX (206) 485-2992

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: Matrix Descript:

Analysis Method:

First Sample #:

00058-014-01

Water

112-0709

EPA 5030/8015/8020

Sampled:

Dec 17, 1991

Received: Analyzed: Dec 19, 1991 Dec 20, 1991

Reported:

Dec 30, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons μg/L (ppb)	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)	Surrogate Recovery %
112-0709	MW-1	790	3.6	2.4	14	11	113
112-0710	MW-2	N.D.	N.D.	N.D.	N.D.	N.D.	94
112-0711	мw-з	18,000	3,300	290	410	260	98
112-0714	Rinse Blank	N.D.	N.D.	N.D.	N.D.	N.D.	7 7
BLK122091	Method Blank	N.D.	N.D.	N.D.	N.D.	N.D.	93

Detection Limits:	50	0.50	0.50	0.50	0.50	

Purgeable Hydrocarbons are quantitated against a gasoline standard (nC5 - nC14). Surrogate recovery reported is for Bromofluorobenzene. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

Matrix Descript:

First Sample #:

00058-014-01

Water Analysis Method:

EPA 3510/8015 112-0709

Sampled:

Dec 17, 1991 Dec 19, 1991

Received: Extracted:

Dec 20, 1991

Analyzed: Reported:

Dec 27, 1991 Dec 30, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS

Sample Number	Sample Description	Extractable Hydrocarbons mg/L (ppm)	Surrogate Recovery %
112-0709	MW-1	0.42 D-1	76
112-0710	MW-2	N.D.	82
112-0711	MW-3	7.5 D-1	81
BLK	Method Blank	N.D.	68

De	tection	Limi	ts:
----	---------	------	-----

0.30

Extractable Hydrocarbons are quantitated against a diesel fuel standard (nC11 - nC24). Surrogate recovery reported is for Octacosane. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

HYDROCARBON ANALYSES FOOTNOTES

Code	<u>Description</u>
PURGEABLE	E HYDROCARBONS - Gasoline Range Organics
G 1	The hydrocarbons present in this sample are primarily due to extractable diesel range organics.
G 2	The hydrocarbons present in this sample are a complex mixture of both gasoline range and diesel range organics.
G 3	The total hydrocarbon result in this sample is primarily due to a peak(s) eluting in the purgeable hydrocarbon range. Identification and quantitation by EPA 8010, 8021 or 8240 is recommended.
ᡓᢦᠬᠣᢧ᠘ᡣᠬᠯ	ABLE HYDROCARBONS - Diesel Range Organics
D 1	The hydrocarbons present in this sample are primarily due to purgeable gasoline range organics.
D 2	The hydrocarbons present in this sample are primarily due to very heavy, non-resolvable oil range organics. Quantitation by EPA 418.1 is recommended.
D 3	The hydrocarbons present in this sample are a complex mixture of purgeable gasoline, extractable diesel and non-resolvable oil range organics.
D 4	The hydrocarbon result shown is an estimated (greater than) value due to high concentration. Reanalysis is being performed to yield a quantitative result.
	Oils & Lubricants
	T.R.P.H. (418.1)
	Diesel & Fuel Oils
	Diesel & Fuel Oils [] Extractables (3550/8015)
G	asoline
[bles (5030/8015)
Fulgea	

LOW TO MEDIUM MEDIUM TO HIGH VERY HIGH HYDROCARBON BOILING POINT RANGE

CARBON RANGE: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

SEACOR 11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: Sample Descript:

Lab Number:

00058-014-01 Water, MW-1 Analysis Method: EPA 5030/8010

Sampled: Received:

Dec 17, 1991 Dec 19, 1991

Analyzed: Reported:

Dec 23, 1991 Dec 30, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

112-0709

Analyte	Detection Limit µg/L (ppb)		Sample Results µg/L (ppb)
Bromodichloromethane	1.0	***************************************	N.D.
Bromoform	1.0	***************************************	N.D.
Bromomethane	1.0	***************************************	N.D.
Carbon tetrachloride	1.0	***************************************	N.D.
Chlorobenzene	1.0	***************************************	N.D.
Chloroethane	5.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	1.0	***************************************	N.D.
Chloromethane	1.0	***************************************	N.D.
Dibromochloromethane	1.0	***************************************	N.D.
1,2-Dichlorobenzene	2.0	***************************************	N.D.
1,3-Dichlorobenzene	2.0	•••••	N.D.
1,4-Dichlorobenzene	2.0	***************************************	N.D.
1,1-Dichloroethane	1.0	***************************************	N.D.
,2-Dichloroethane	1.0		160
1,1-Dichloroethene	1.0	***************************************	N.D.
Total 1,2-Dichloroethene	1.0	***************************************	N.D.
1,2-Dichloropropane	1.0	***************************************	N.D.
cis-1,3-Dichloropropene	1.0	***************************************	N.D.
trans-1,3-Dichloropropene	1.0	***************************************	N.D.
Methylene chloride	5.0	•••••	N.D.
1,1,2,2-Tetrachloroethane	1.0	***************************************	N.D.
Tetrachloroethene	1.0	***************************************	N.D.
1,1,1-Trichloroethane	1.0	***************************************	N.D.
1,1,2-Trichloroethane	1.0	***************************************	N.D.
Trichloroethene	1.0	***************************************	N.D.
Trichlorofluoromethane	1.0	***************************************	N.D.
Vinyl chloride	2.0	***************************************	N.D.

Surrogate Recovery, %: 80

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Sample Descript: Analysis Method:

Lab Number:

00058-014-01 Water, MW-2 EPA 5030/8010 112-0710 Sampled: | Received: | Analyzed: |

Dec 17, 1991 Dec 19, 1991 Dec 23, 1991

Reported: Dec 30, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit μg/L (ppb)		Sample Results µg/L (ppb)
Bromodichloromethane	1.0		N.D.
Bromoform	1.0	***************************************	N.D.
Bromomethane	1.0	•••••	N.D.
Carbon tetrachloride	1.0		N.D.
Chlorobenzene	1.0	***************************************	N.D.
Chloroethane		*******************************	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	1.0	***************************************	N.D.
Chloromethane	1.0	******************************	N.D.
Dibromochloromethane	1.0	******************************	N.D.
1,2-Dichlorobenzene	2.0	***************************************	N.D.
1,3-Dichlorobenzene	2.0	*************************************	N.D.
1,4-Dichlorobenzene	2.0	***************************************	N.D.
1,1-Dichloroethane	1.0	*******************************	N.D.
i,2-Dichloroethane	1.0		. 1.4
1,1-Dichloroethene	1.0	•••••	N.D.
Total 1,2-Dichloroethene	1.0	•••••	N.D.
1,2-Dichloropropane	1.0	•••••	N.D. ~
cis-1,3-Dichloropropene	1.0	***************************************	N.D.
trans-1,3-Dichloropropene	1.0	••••••	N.D.
Methylene chloride	5.0	•••••	N.D.
1,1,2,2-Tetrachloroethane	1.0	•••••	N.D.
Tetrachloroethene	1.0	•••••	N.D.
1,1,1-Trichloroethane	1.0	•••••	N.D.
1,1,2-Trichloroethane	1.0	•••••	¹ N.D.
Trichloroethene	1.0	***************************************	N.D.
Trichlorofluoromethane	1.0	***************************************	N.D.
Vinyl chloride	2.0	***************************************	N.D.

Surrogate Recovery, %: 82

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: Sample Descript: Analysis Method:

Lab Number:

00058-014-01 Water, MW-3 EPA 5030/8010 Sampled: Received: Dec 17, 1991 Dec 19, 1991

Analyzed: Reported: Dec 23, 1991 Dec 30, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

112-0711

Analyte	Detection Limit μg/L (ppb)		Sample Results µg/L (ppb)
Bromodichloromethane	1.0	***************************************	N.D.
Bromoform	1.0	***************************************	N.D.
Bromomethane	1.0	***************************************	N.D.
Carbon tetrachloride	1.0	***************************************	N.D.
Chlorobenzene	1.0	***************************************	N.D.
Chloroethane	5.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	1.0	***************************************	N.D.
Chloromethane	1.0	•••••	N.D.
Dibromochloromethane	1.0	***************************************	N.D.
1,2-Dichlorobenzene	2.0	***************************************	N.D.
1,3-Dichlorobenzene	2.0	***************************************	N.D.
1,4-Dichlorobenzene	2.0	***************************************	N.D.
1,1-Dichloroethane	1.0	***************************************	N.D.
is 2-Dichloroethane			510
1,1-Dichloroethene	1.0	***************************************	N.D.
Total 1,2-Dichloroethene	1.0	*******************************	N.D.
1,2-Dichloropropane	1.0	***************************************	N.D.
cis-1,3-Dichloropropene	1.0	•••••	N.D.
trans-1,3-Dichloropropene	1.0	•••••	N.D.
Methylene chloride		********	. 26
1,1,2,2-Tetrachloroethane	1.0	***************************************	N.D.
Tetrachloroethene	1.0	•••••	N.D.
1,1,1-Trichloroethane	1.0	***************************************	N.D.
1,1,2-Trichloroethane	1.0	***************************************	N.D.
Trichloroethene	1.0	***************************************	N.D.
Trichlorofluoromethane	1.0	***************************************	N.D.
Vinyl chloride	2.0	***************************************	N.D.

Surrogate Recovery, %: 86

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Please Note

Methylene Chloride is a suspected laboratory contaminant.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: Sample Descript: Analysis Method:

Lab Number:

00058-014-01 Water, Rinse Blank EPA 5030/8010 112-0714

Sampled: Dec 17, 1991
Received: Dec 19, 1991
Analyzed: Dec 23, 1991
Reported: Dec 30, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L (ppb)		Sample Results µg/L (ppb)
Bromodichloromethane	1.0	***************************************	N.D.
Bromoform	1.0	***************************************	N.D.
Bromomethane	1.0	***************************************	N.D.
Carbon tetrachloride	1.0	************	N.D.
Chlorobenzene	1.0	************	N.D.
Chloroethane	5.0	*******************************	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Uniorotorm	1.0		. 13
Chloromethane	1.0	•••••	N.D.
Dibromochloromethane		***************************************	N.D.
1,2-Dichlorobenzene	2.0	***************************************	N.D.
1,3-Dichlorobenzene	2.0	***************************************	N.D.
1,4-Dichlorobenzene	2.0	***************************************	N.D.
1,1-Dichloroethane	1.0	***************************************	N.D.
1,2-Dichloroethane	1.0	***************************************	N.D.
1,1-Dichloroethene	1.0	***************************************	N.D.
Total 1,2-Dichloroethene	1.0	***************************************	N.D.
1,2-Dichloropropane	1.0	***************************************	N.D.
cis-1,3-Dichloropropene	1.0	***************************************	N.D.
trans-1,3-Dichloropropene	1.0	***************************************	N.D.
Methylene chloride	5.0	*************	N.D.
1,1,2,2-Tetrachloroethane	1.0	***************************************	N.D.
Tetrachloroethene	· 1.0	***************************************	N.D.
1,1,1-Trichloroethane	1.0	***************************************	N.D.
1,1,2-Trichloroethane	1.0	***************************************	N.D.
Trichloroethene	1.0	***************************************	N.D.
Trichlorofluoromethane	1.0	***************************************	N.D.
Vinyl chloride	2.0	*******************************	N.D.

Surrogate Recovery, %: 76

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Client Project ID:

00058-014-01

Sample Descript: Analysis Method:

Method Blank EPA 5030/8010

Analyzed:

Attention: Paul Schmidt Lab Number: BLK122391

Dec 23, 1991 Dec 30, 1991 Reported:

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit μg/L (ppb)		Sample Results µg/L (ppb)
Bromodichloromethane	1.0	********************************	N.D.
Bromoform	1.0	***************************************	N.D.
Bromomethane	1.0	•••••	N.D.
Carbon tetrachloride	1.0	***************************************	N.D.
Chlorobenzene	1.0	***************************************	N.D.
Chloroethane	5.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0	•••••	N.D.
Chloroform	1.0	***************************************	N.D.
Chloromethane	1.0		N.D.
Dibromochloromethane	1.0		N.D.
1,2-Dichlorobenzene	2.0	••••	N.D.
1,3-Dichlorobenzene	2.0	***************************************	N.D.
1,4-Dichlorobenzene	2.0	***************************************	N.D.
1,1-Dichloroethane	1.0	***************************************	N.D.
1,2-Dichloroethane	1.0	•••••	N.D.
1,1-Dichloroethene	1.0	•••••	N.D.
Total 1,2-Dichloroethene	1.0		N.D.
1,2-Dichloropropane	1.0	***************************************	N.D.
cis-1,3-Dichloropropene	1.0	***************************************	N.D.
trans-1,3-Dichloropropene	1.0	***************************************	N.D.
Methylene chloride	5.0	***************************************	N.D.
1,1,2,2-letrachioroethane	1.0	***************************************	N.D.
Tetrachloroethene	1.0	***************************************	N.D.
1,1,1-Trichloroethane	1.0	***************************************	N.D.
1,1,2-Trichloroethane	1.0	•••••	N.D.
Trichloroethene	1.0	***************************************	N.D.
Trichlorofluoromethane	1.0	***************************************	N.D.
Vinyl chloride	2.0		N.D.

Surrogate Recovery, %: 76

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: 00058-014-01

Method: EPA 5030/8020

Sample Matrix: Water

Units : μg/L QC Sample #: 112-0714

Analyst:

R. Lister S. Stowell

Analyzed: Reported:

Dec 20, 1991

Dec 30, 1991

QUALITY CONTROL DATA REPORT

ANALYTE		 	Ethyl			
	Benzene	Toluene	benzene	Xylenes		······
				;		
Sample Conc.:	N.D.	N.D.	N.D.	N.D.		
			*			
Spike Conc. Added:	5.0	5.0	5.0	15.0		
Conc. Matrix Spike:	5.0	5.2	5.2	14.8		
•						
Matrix Spike % Recovery:	100	404	101	00		
% necovery:	100	104	104	99		
Conc. Matrix						
Spike Dup.:	5.0	5.0	5.2	14.8		
Matrix Spike						
Duplicate % Recovery:	100	100	101	00		
70 HECOVELY.	100	100	104	99		
Relative					-	
% Difference:	0	3.9	0	0		

NORTH CREEK ANALYTICAL

Sect Cocanour **Laboratory Director** % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1120709.SEA <8>

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: 00058-014-01 Method: EPA 3510 or 3550/8015

Sample Matrix: Water

Units : mg/L QC Sample #: BLK122091

Analyst:

D. Harmon

Extracted:

Dec 20, 1991 Dec 27, 1991

Analyzed: Reported:

Dec 30, 1991

QUALITY CONTROL DATA REPORT

		_			
ANALYTE	Diesel Fuel		 	 	
Sample Conc.:	N.D.				
Spike Conc.					
Added:	1.31				
Conc. Matrix					
Spike:	0.82			•	
Matrix Spike					
% Recovery:	63				•
Conc. Matrix					
Spike Dup.:	0.71				
Matrix Spike					
Duplicate % Recovery:	54				
D 1 <i>d</i>					
Relative % Difference:	14				

NORTH CREEK ANALYTICAL

Soot Cocanour **Laboratory Director** % Recovery: Conc. of M.S. - Conc. of Sample Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D.

(Conc. of M.S. + Conc. of M.S.D.) / 2

x 100

x 100

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: 00058-014-01 Method: EPA 8010

Sample Matrix: Water

Units : μg/L QC Sample #: BLK122391

Analyst:

R. Lister

Analyzed:

Dec 23, 1991

Dec 30, 1991 Reported:

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-DCE	TCE	Chloro- benzene		
Sample Conc.:	N.D.	N.D.	N.D.		
Spike Conc. Added:	5.0	5.0	5.0		
Conc. Matrix Spike:	4.4	5.0	5.2	·	
Matrix Spike % Recovery:	88	100	104		
Conc. Matrix Spike Dup.:	4.6	4.8	5.1		
Matrix Spike Duplicate % Recovery:	92	96	102		
Relative % Difference:	4.4	4.1	1.9		

NORTH CREEK ANALYTICAL

Scbt Cocanour **Laboratory Director** % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1120709.SEA <10>

The state of the s

			T Containers	o 190mn/	1	19	10	10	-		7	_									1			
			Comments/	Instructions	YD.				4							Sample Receipt	Total no. of containers	Chain of custody seals:	Conforms to record:		Client:	Client Contact:	Client Phone Number:	
					1645				Hold						,									
											_	-							te			i	 	
		Request		H - Hd-	LM					<i>)</i>	7	7		, ·					_ Date				_ Date	
þ				LP Metal								_												
ecor		Analysis	tasti	ority Pollusils (13)	'nЧ											Received by:		Vuec		Received by:) he		
y R		Ar		/8080 al Lead I												Recei	Sign	Company	Time	Recei	Sign	Print	Time	
stod			C/MS)	OD) 0728 GY\səbiəii	625, Pes														12-12-41					
Chain-of-Custody Record			Volatiles Organics	ogenated 8010	109	7	7	1								,	1-						١	
1-of	1		nics C/MS)	tile Orga \8240 (G	SIOV											•	Schmed/	SEACOR	. Date				. Date	
hair			latiles	matic Vol	21A											Relinquished by:	4.4	101	1, 1	by:	.			
			(p:	i (modifie	108	7	7	1		****						uished	t jane 1		1275	Relinquished by:		Aug		
CO			0208/(b:	1g/BTE) i (modifie	19T 2108 19T	7	7	7								Reling	Sign	Print —	Time 12	Relino	Sign	Print	Time	
SEACOR	240			40.14	Matrix	0 2 H	4,0	130	420		Soil	50:					by 12-30-91							
	Ste	Task#	Analylica TAT	3.4	Time	1145	1245	1			0900	0060						-						
-	15 A	l	作门片	A ST	Date	16-13-21	16-41-21	12-17-91 1430	12-17-91		12-18-41	16-81-11 C					Resolds due							
	11 1 1 21	4-01	Schmid Creek A 5- Day	Schmie		(2)	- 4	-71	-21		4	l-2				nents:	Resut							
	SEACOR 11040 Main	Project # 00058-014	nager P. North C	Sampler's Name: John Sampler's Signature: Q	Sample ID	MW-1	AW-2		Rinse Blank		Quarry # 1	Quarry # 2	,			Special Instructions/Comments:	L ST DAY JAT		•					

Date 12 / 19 / 91 Page 1 of 1

The said the

; ·

SEACOR Chain-of-Custody Record

	. '		or Containers	/umber c	ı	Lŋ	10	10		_	-		1			200	8 8	(MC		,		
	d d		Comments/	Instructions	Lab ID	20709	210	7//		712	7/3		4/7		Sample Receipt	Total no. of containers	Chain of custody seats: Rec'd good condition/cold:	Conforms to record:		Cuent.	Client Contact:	Client Phone Number:
		uest		L1 - L1 A 1		77					7							_ Date	. 101	141 M	4	Date $\frac{12}{11} \frac{9}{9}$
		Red	-	LP Metal						7	_) (Z	
		Analysis Request		rity Polli tals (13)	ÞΜ										ed by:		any .		Received by:	7	any	3.00
		Ang		al Lead 1	JOT SAT		·					-			Received by:	olgn Print	Company	Time	Receiv	Sign	Company	Time 3.0
I	•			D) 0728/ ticides/P 0808/	Pes												1 1	_1				
			Organics (2M/2)	0108/ ii-volatile	Sem	_												15-13-21				
	ي.		C/W2)	\8240 (G	429 H	7	7	1					7		77 .	+ 7 - 4	ACOR	Date				Date
				owatic Vo 78020 atile Orga	709										10	Schmid Schmid	SEAC					
			-	1.814 H						 					Relinquished by:	1 2 Z		25	Relinquished by:			-
				He Filibom) i		7	7	1							inquished], _,		Time 12	inquist	Sign	Company	Time
		<u> </u>	0708/(pa	Hg/BTE)		7	7	7					7	i	Reli	Sign	Ē 8	Tim	Reli	Sign D D		iii
	4 40			40 14	Matrix	H,O	420	#,0		Soil	Soil		366	7	<u> </u>	16-08-		•				
	Ste	Task#	14 Analytica , 747	A P. Schi	Time	145			ŀ	1 —	0060		dt recorded	028.7		- RESULTS LUE by 12-30-91	•				1	
	+6	Tas	Schmidt reck Anal 5- Day TAT	1 1	Date	12-17-91 1145	1245	12-17-91 1430		12-18-11 0900	0 16-81-A	 -	70	8		s due					たらとなっ	ノ }
	\$ 3	0 - 1	Schmi Sreek 5-Da	Cieser 8 churs	Ä	12-(77	1-21		끄	a 2-a		<u> </u>	-	ents:	465014					$\stackrel{\sim}{\sim}$)
-16	de 11040 Main	Project # 00058-014-01	anager P. y North C	Sampler's Name: Tabe C	Sample ID	A.B1	MW-7	M42-3		Quarro # 1	Quarro # 7)	KINSE Blank -		Special Instructions/Comments:	A TAL YAD A				:		

Date 12 / 19 / 91 Page ___ of ___

MAR 2 0 1992

March 18, 1992

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-2569 Phone (206) 481-9200 • FAX (206) 485-2992

Mr. Paul Schmidt SEACOR 11040 Main Street, #240 Bellevue, WA 98004

Subject: Project #00058.014.01

Dear Mr. Schmidt:

After our recent discussion, I wanted to provide some additional information to help clarify some of the issues concerning the hydrocarbon analyses we performed for this project. While we analyzed several samples by a variety of methods, our discussion revolved around water samples MW 1 and MW 3.

I have reviewed the enclosed chromatograms for both the Volatile and Extractable Hydrocarbons for these two samples. No significant analytical problems were encountered in the analysis and all Quality Control parameters were within established limits. The footnote "D 1" reflected on the Extractable Hydrocarbon report is appropriate, however, the statement "The hydrocarbons present in this sample are primarily due to purgeable gasoline range organics", is probably more correct without the word "primarily". The chromatogram does indicate the presence of gasoline in the diesel range organics analysis, but most of the total hydrocarbons present appears to be due to diesel fuel.

The volatile gasoline range organics analysis appears to have the inverse situation. The majority of the total volatile hydrocarbons is due to gasoline, however, the chromatogram reflects some heavier (> nC 10) alkanes and aromatics not normally found in typical gasoline contaminated soils.

This is one of those situations where the total hydrocarbons should not be evaluated as the sum of the Volatile and Extractable Hydrocarbons (gas + diesel) due to overlap between the two hydrocarbon ranges. I believe it is appropriate to state that the samples analyzed contain petroleum hydrocarbons from both a gasoline and a diesel fuel origin, and this is not a sole source, "either or", situation. I hope this helps to clarify the results we provided. Please call me if I can provide any further assistance.

Very truly yours,

NORTH CREEK ANALYTICAL, Inc.

Scot Cocanour

Laboratory Director

ΙF

```
1.974628
                                                2.290
                                     2.718
                                    3.308
                                                                                          4,079
                                                                                          4.909
                     5,789
         6, 134
          <u>6.839</u>
                          7,288
          7,717
                             10.905
                     11.225
                                                                                    13.416
            14.944.745
15.657
             6.403735
         162 0695
            17,825
            48.890975
            19.468
            21.477
             22221431
         ۱F
    TIMETABLE STOP
                                        17:53:42#7 1120711
                        DEC 20, 1991
       5288
尺围纵集
GC#2 FID
ISTO-HEIGHT
                                                                       NAME
                                           HEIGHT CAL# MASS (ma)
                               MIDTH
                        AREA
        RT TYPE
                                                              35,777
                                .067
                                             6642
              ВУ
                       26574
    1.628
                                                              14.457
                                             2684
                        7126
                                 .044
              VΨ
    1.696
                                                              25.246
                                             4687
                                 .071
              ٧P
                       19868
    1.799
                                                              39.962
                                             7419
                       24794
                                 .056
    1. 374
              PP
                                                              14.005
                                             2699
             P۷
                                 .064
                        9929
    2,188
                                                              20.022
                                 .084
                                              3717
                       18755
    2,290
              ٧V
                                               624
                                                               3,361
                        3391
                                 .088
    2,473
              ۷V
                                                               2.844
                                 .071
                                               528
    2.576
              \forall \, \forall
                        2262
                                                              14,694
                                              2728
                                 .083
                       13535
    2.718
              yy
                                                               3.695
                                               686
              VV
                        4609
                                 .112
    2.999
                                                              14.684
                                              2726
                                 .095
                        15573
              \forall \ \forall
    3,398
                                                               7.207
                         8681
                                 . 108
                                              1338
    3.277
              PV
                                                                        BEHZENE
                                             28942
                                                              78.260
                                 、月84
    4.979
              V\,V
                       145841
                                                                2.752
                         3272
                                 .197
                                               511
    4.565
              PΨ
                                                                        1.2.3-168
                                             14852
                                                      23
                        82498
                                 .092
              ٧Ŗ
    4.989
                                                                7.525
                                 .113
                                              1397
                         9468
    5.789
              PВ
                                                                 .813
```

151

297

263

235

2173

1322

7434

3

4

5

1894

1.115

1.417

6.295

1.266

8.416

5.312

84.491

TOLUENE

4 - B F B

ETHYL BENZENE

MZP XYLENE

.096

. 101

.119

.126

.160

.125

.150

.125

868

1260

1735

2269

16326

11996

55881

14337

6.142

6.340

6.839

7,288

2.717

10,905

11.225

10 414

ВP

ΡV

PР

ΡV

۷P

PV

VΨ

PR

				1 §
The state of the s			4 361	
				9 1
THE REAL PROPERTY OF THE PROPE	528.59	6.134		
	1.1	7 <u>97,267</u>		,
The state of the s	H 8 139	7.	. 675	
9.314	75	8.423		
100 355	9.89470			
1003352				
11 915				19
12.692942.16	0			
11.214				
₹ <u>13,97340</u>	MI SENSTRIPENSON NAMED IN COLUMN			13
	then the subsequences and the subsequences are subsequences and the subsequences are subsequences and the subsequences are su	14.485		14.
16 886				15
		16.397		
The state of the s	- 17 500		17.176	16.
The state of the s	18.450 ¹ 88!355			17.
19.	19.144		19,793	18.
348263842943	•	19.550		19.441
200 552404				
21.585				

16:54:48 75 1120709 374 5mL RUN# 5286 GC#2 FID ISTO-HEIGHT RT TYPE AREA WIDTH HEIGHT CAL# MASS (ng) NAME 1.623 ВΒ 373046 .057 108352 559.778 1.965 в۷ 28471 .057 8398 43.387 2.280 ٧٧ 310630 .099 52447 270.956 2.469 ٧٧ 96920 .100 16103 83.193 2.564 ٧٧ 25218 .060 6997 36.149 2.705 ٧٧ 154882 .081 31816 164.371 2.996 ۷P 2968 .099 501 2.588 3.300 PΒ 286388 .097 48958 252.931 3.757 PB 265515 .072 61205 . 316.203 4.091 В٧ 228060 .122 31156 80.802 BENZENE 4.360 ۷V 38951 .109 5932 30.646 4.770 ٧٧ 154141 .210 12250 63.287 4.895 77 85054 .092 15485 28 1,2,3-TFB 5.025 ٧٧ 56251

9949

3869

2780

3233

3384

3907

1569

5270

1604

2327

4745

31563

51.399

163.064

19.988

14.362

16.703

17.483

12.454

8.106

27.226

8.287

12.022

24 514

TOLUENE

.094

.114

.122

. 114

.123

.133

.108

.127

.140

.128

.137

.157

216163

28328

19096

23838

27009

25242

11955

44358

12290

19124

44798

5.786

6.134

6.328

6.590

7.179

7.267

7.478

7.675

7.991

8.139

8.423

PΥ

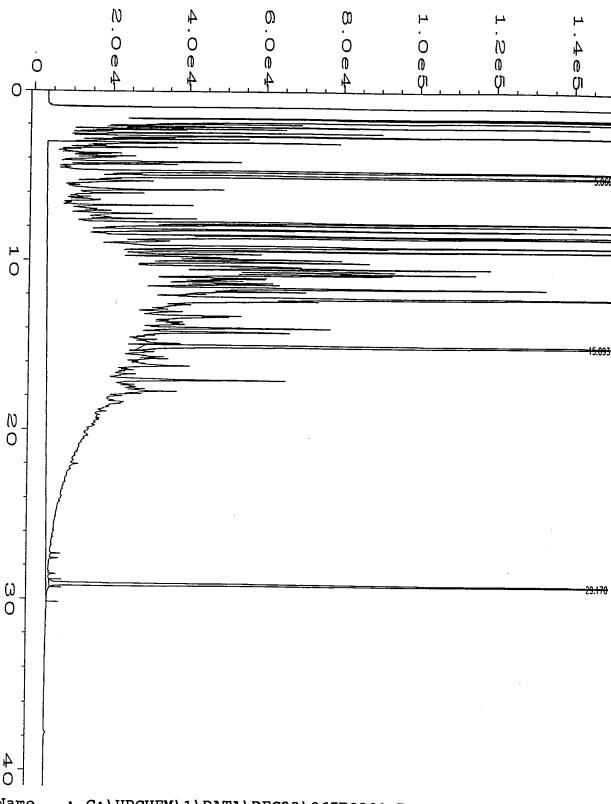
 $\nabla \nabla$

٧V

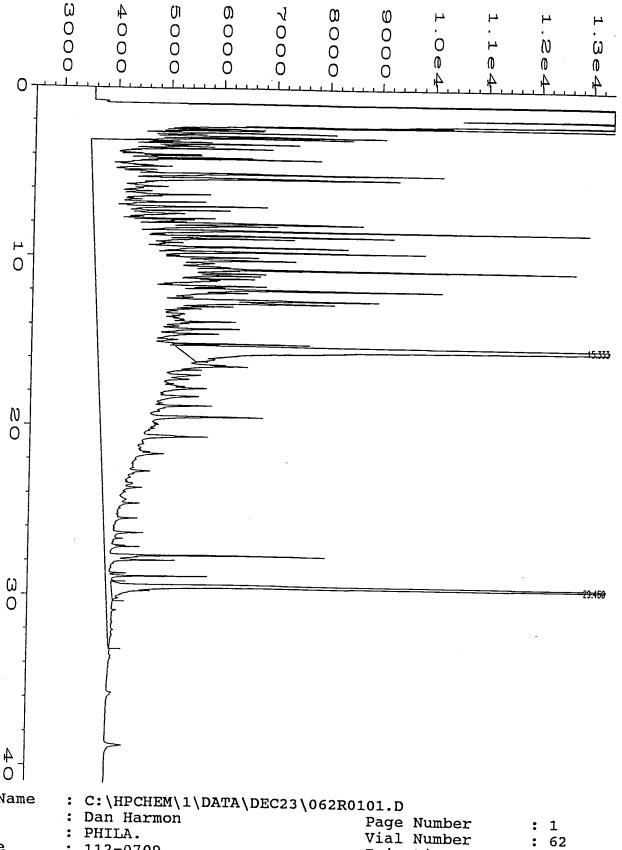
٧٧

99

٧٧


99

99


٧٧

٧V

 $\forall\, \forall$


```
1 ita File Name
                 : C:\HPCHEM\1\DATA\DEC23\065R0301.D
Operator
                 : Dan Harmon
                                                 Page Number
                                                                  : 1
 ıstrument
                 : PHILA.
                                                 Vial Number
                                                                  : 65
 umple Name
                 : 112-0711
                                                 Injection Number: 1
   Time Bar Code:
                                                 Sequence Line
                                                                 : 3
Abquired on
                 : 23 Dec 91
                              06:18 PM
                                                 Instrument Method: TPH1.MTH
port Created on: 26 Dec 91
                              08:52 AM
                                                 Analysis Method : TPH1.MTH
```


JANUARY 1992 WATER SAMPLING

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID:

CNG Sunnyside, 00058-014-01

Matrix:

Soil

Analysis for: First Sample:

Total Solids 201-0120 Received:

Jan 7, 1992

2

Reported:

Jan 8, 1992

LABORATORY ANALYSIS FOR:

Total Solids

Sample Number	Sample Description	Sample Result %
201-0120	WW-N-7	7 5
201-0121	NW-E-7	82
201-0122	EW-N-7	81
201-0123	EW-S-7	82

North Creek Analytical routinely provides analytical results for soils, sediments or sludges in a wet weight "as received" basis. To attain dry weight equivalents for regulatory compliance, divide the soil result by the decimal fraction of percent solids.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Matrix Descript:

Analysis Method:

First Sample #:

CNG Sunnyside, 00058-014-01

Soil

EPA 5030/8015/8020 201-0120

Sampled:

Jan 6, 1992 Jan 7, 1992

Received: Analyzed: Reported:

Jan 7, 1992 Jan 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (WTPH-G/BTEX)

Sample Number	Sample Description	Purgeable Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	Surrogate Recovery %
201-0120	WW-N-7	N.D.	N.D.	N.D.	N.D.	N.D.	97
201-0121	NW-E-7	N.D.	N.D.	N.D.	N.D.	N.D.	98
201-0122	EW-N-7	6,700	N.D.	12	23	240	118
201-0123	EW-S-7	N.D.	N.D.	N.D.	N.D.	N.D.	98
BLK010792	Method Blank	N.D.	N.D.	N.D.	N.D.	N.D.	99

Detection Limits:	1.0	0.050	0.10	0.10	0.10	

Purgeable Hydrocarbons are quantitated against a gasoline standard (nC5 - nC14). Surrogate recovery reported is for Bromofluorobenzene. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director** Please Note:

The detection limit for Benzene in #201-0122 = 4.0 mg/kg.

The detection limit for Purgeable Hydrocarbons in #201-0123 = 2.0 mg/kg.

SEACOR 11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: Matrix Descript: CNG Sunnyside, 00058-014-01 Soil

Analysis Method: First Sample #:

EPA 3550/8015 201-0120 Sampled: Received:

Jan 6, 1992 Jan 7, 1992

Extracted: Jan 7, 1992 Analyzed: Jan 7, 1992

Reported: Jan 7-8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (WTPH-D)

Sample Number	Sample Description	Extractable Hydrocarbons mg/kg (ppm)	Surrogate Recovery %
201-0120	WW-N-7	N.D.	109
201-0121	NW-E-7	N.D.	125
201-0122	EW-N-7	11,000	Not Available
201-0123	EW-S-7	130	68
BLK010792	Method Blank	N.D.	99

Detection Limits:

10

Extractable Hydrocarbons are quantitated against a diesel fuel standard (nC11 - nC24). Surrogate recovery reported is for Octacosane. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR Client Project ID: CNG Sunnyside, 00058-014-01 Sampled: Jan 6, 1992 11040 Main Street, #240 Sample Descript: Received: Soil, EW-N-7 Jan 7, 1992 Bellevue, WA 98004 Analysis Method: **EPA 8270** Extracted: Jan 7, 1992 Lab Number: Attention: Paul Schmidt 201-0122 Analyzed: Jan 7, 1992 Jan 8, 1992 Reported:

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acenaphthene	2.0		N.D.
Acenaphthylene	2.0		N.D.
Aniline	2.0		N.D.
Anthracene	2.0		N.D.
Benzidine	5.0		N.D.
Benzoic Acid	10		N.D.
Benzo(a)anthracene	2.0		N.D.
Benzo(b)fluoranthene	2.0		N.D.
Benzo(k)fluoranthene	2.0	•••••	N.D.
Benzo(g,h,i)perylene			N.D.
Benzo(a)pyrene			N.D.
Benzyl alcohol			N.D.
Bis(2-chloroethoxy)methane		••••••	N.D.
Bis(2-chloroethyl)ether	2.0	***************************************	N.D.
Bis(2-chloroisopropyl)ether			N.D.
Bis(2-ethylhexyl)phthalate	10	••••••	N.D.
4-Bromophenyl phenyl ether		••••••	N.D.
Butyl benzyl phthalate		•••••	N.D.
4-Chloroaniline		••••••	N.D.
2-Chloronaphthalene	2.0	••••••	N.D.
4-Chloro-3-methylphenol	2.0	***************************************	N.D.
2-Chlorophenol	2.0	***************************************	N.D.
4-Chlorophenyl phenyl ether			N.D.
Chrysene		***************************************	N.D.
Dibenz(a,h)anthracene		•••••	N.D.
Dibenzofuran			N.D.
Di-N-butyl phthalate		***************************************	N.D.
1,3-Dichlorobenzene	2.0	***************************************	N.D.
1,4-Dichlorobenzene		••••••	N.D.
1,2-Dichlorobenzene			N.D.
3,3-Dichlorobenzidine			N.D.
2,4-Dichlorophenol		***************************************	N.D.
Diethyl phthalate	2.0	***************************************	N.D.
2,4-Dimethylphenol	2.0		N.D.
Dimethyl phthalate	2.0		N.D.
4,6-Dinitro-2-methylphenol			N.D.
2,4-Dinitrophenol	10	***************************************	N.D.

SEACOR CNG Sunnyside, 00058-014-01 Client Project ID: Sampled: Jan 6, 1992 11040 Main Street, #240 Sample Descript: Soil, EW-N-7 Received: Jan 7, 1992 Bellevue, WA 98004 Analysis Method: EPA 8270 Extracted: Jan 7, 1992 Attention: Paul Schmidt Jan 7, 1992 Lab Number: 201-0122 Analyzed:

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte		Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)			
2,4-Dinitrotoluene		2.0		N.D.			
2,6-Dinitrotoluene		2.0		N.D.			
Di-N-octyl phthalate		2.0		N.D.			
Fluoranthene		2.0		N.D.			
Fluorene		2.0		N.D.			
Hexachlorobenzene		2.0		N.D.			
Hexachlorobutadiene		2.0		N.D.			
Hexachlorocyclopentadiene				N.D.			
Hexachloroethane		2.0		N.D.			
Indeno(1,2,3-cd)pyrene		2.0	***************************************	N.D.			
Isophorone		2.0	************	. 4.9			
2-Methylnaphthalene	*******	2.0	***************************************	. 26			
2-Methylphenol		2.0	••••••	N.D.			
4-Methylphenol		2.0	***************************************	N.D.			
Naphthalene	*************	2.0		. 36			
2-Nitroaniline		10	***************************************	N.D.			
3-Nitroaniline		10		N.D.			
4-Nitroaniline		10		N.D.			
Nitrobenzene		2.0		N.D.			
2-Nitrophenol	•••••	2.0		N.D.			
4-Nitrophenol	•••••	10		N.D.			
N-Nitrosodiphenylamine		2.0		N.D.			
N-Nitroso-di-N-propylamine		2.0	***************************************	N.D.			
Pentachlorophenol		10		N.D.			
Phenanthrene	*************	2.0					
Phenol		2.0	•••••	N.D.			
Pyrene				N.D.			
1,2,4-Trichlorobenzene		2.0	•••••	N.D.			
2,4,5-Trichlorophenol				N.D.			
2,4,6-Trichlorophenol	••••••	2.0		N.D.			
Surrogate Standards Percent Recovery:							
2-Fluorophenol 96	Nitrobenzene-d5	105					
Phenol-d6 136	2-Fluorobiphenyl	101					
2,4,6-Tribromophenol 106	Terphenyl-d14	119					

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Sample Descript: Analysis Method:

CNG Sunnyside, 00058-014-01

Method Blank

Lab Number:

EPA 8270 BLK010792

Extracted: Analyzed: Jan 7, 1992

Reported:

Jan 7, 1992 Jan 8, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acenaphthene	0.10	***************************************	N.D.
Acenaphthylene	0.10	***************************************	N.D.
Aniline	0.10	•••••	N.D.
Anthracene	0.10	•••••	N.D.
Benzidine	0.25	***************************************	N.D.
Benzoic Acid	0.50	•••••	N.D.
Benzo(a)anthracene	0.10	•••••	N.D.
Benzo(b)fluoranthene	0.10		N.D.
Benzo(k)fluoranthene	0.10	•••••	N.D.
Benzo(g,h,i)perylene		***************************************	N.D.
Benzo(a)pyrene		•••••	N.D.
Benzyl alcohol	0.10	•••••	N.D.
Bis(2-chloroethoxy)methane		•••••	N.D.
Bis(2-chloroethyl)ether	0.10	•••••	N.D.
Bis(2-chloroisopropyl)ether		••••••	N.D.
Bis(2-ethylhexyl)phthalate	0.50		N.D.
4-Bromophenyl phenyl ether		•••••	N.D.
Butyl benzyl phthalate	0.10		N.D.
4-Chloroaniline	0.10	•••••	N.D.
2-Chloronaphthalene	0.10	•••••	N.D.
4-Chloro-3-methylphenol		•••••	N.D.
2-Chlorophenol	0.10	***************************************	N.D.
4-Chlorophenyl phenyl ether		•••••	N.D.
Chrysene	0.10	***************************************	N.D.
Dibenz(a,h)anthracene	0.10	•••••	N.D.
Dibenzofuran		•••••	N.D.
Di-N-butyl phthalate			N.D.
1,3-Dichlorobenzene			N.D.
1,4-Dichlorobenzene	0.10		N.D.
1,2-Dichlorobenzene	0.10	***************************************	N.D.
3,3-Dichlorobenzidine	0.50	•••••	N.D.
2,4-Dichlorophenol	0.10	***************************************	N.D.
Diethyl phthalate	0.10	•••••	N.D.
2,4-Dimethylphenol	0.10	•••••	N.D.
Dimethyl phthalate	0.10	••••••	N.D.
4,6-Dinitro-2-methylphenol	0.50		N.D.
2,4-Dinitrophenol	0.50	•••••	N.D.

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

CNG Sunnyside, 00058-014-01

Sample Descript: Method Blank

Analysis Method: Lab Number: EPA 8270 BLK010792 Extracted: Analyzed:

Jan 7, 1992 Jan 7, 1992

Reported:

Jan 8, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte			Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
2,4-Dinitrotoluene		******************************	0.10		N.D.
2,6-Dinitrotoluene	•••••		0.10	***************************************	N.D.
Di-N-octyl phthalate		•	0.10	***************************************	N.D.
Fluoranthene		***************************************	0.10	***************************************	N.D.
Fluorene			0.10	*************	N.D.
Hexachlorobenzene	************************		0.10	• • • • • • • • • • • • • • • • • • • •	N.D.
Hexachlorobutadiene.		••••••	0.10	•••••	N.D.
Hexachlorocyclopenta				••••	N.D.
Hexachloroethane	•••••		0.10	•••••	N.D.
Indeno(1,2,3-cd)pyrer	ne		0.10	***************************************	N.D.
Isophorone			0.10	•••••	N.D.
2-Methylnaphthalene				•••••	N.D.
2-Methylphenol	***************************************				N.D.
4-Methylphenol			0.10		N.D.
Naphthalene			0.10		N.D.
2-Nitroaniline			0.50		N.D.
3-Nitroaniline			0.50		N.D.
4-Nitroaniline			0.50	•••••	N.D.
Nitrobenzene	• • • • • • • • • • • • • • • • • • • •		0.10		N.D.
2-Nitrophenol	***************************************	•••••	0.10	••••••	N.D.
4-Nitrophenol	• • • • • • • • • • • • • • • • • • • •	•••••	0.50		N.D.
N-Nitrosodiphenylami			0.10		N.D.
N-Nitroso-di-N-propyla			0.10		N.D.
Pentachlorophenol			0.50		N.D.
Phenanthrene			0.10	•••••	N.D.
Phenol					N.D.
Pyrene	•••••				N.D.
1,2,4-Trichlorobenzen			0.10		N.D.
2,4,5-Trichlorophenol.			0.50		N.D.
2,4,6-Trichlorophenol.	•••••		0.10	•••••	N.D.
Surrogate Standards Perce	nt Recovery:				
2-Fluorophenol	91	Nitrobenzene-d5	85		
Phenol-d6	85	2-Fluorobiphenyl	93		
2,4,6-Tribromophenol	82	Terphenyl-d14	116		

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: CNG Sunnyside, 00058-014-01

Method: EPA 5030/8020

Sample Matrix : Soil

Units : mg/kg QC Sample #: 201-0120

Analyst:

R. Lister

S. Stowell

Jan 7, 1992 Jan 7, 1992

Analyzed: Reported:

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl		
	Benzene	Toluene	benzene	Xylenes	
Sample Care	ND	ND	ND	N.D.	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	0.50	0.50	0.50	1.50	
Conc. Matrix Spike:	0.34	0.39	0.45	1.27	
Matrix Spike % Recovery:	68	78	90	85	
Conc. Matrix Spike Dup.:	0.34	0.38	0.44	1.24	
Matrix Spike Duplicate % Recovery:	68	7 6	88	83	
Relative % Difference:	0	2.6	2.2	2.4	

NORTH CREEK ANALYTICAL

Seot Cocanour **Laboratory Director** % Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100 (Conc. of M.S. + Conc. of M.S.D.) / 2

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside, 00058-014-01

Method: EPA 8270

Sample Matrix : Soil

Units : mg/kg QC Sample #: BLK010792 Analyst:

G. Emory

Extracted:

Jan 7, 1992

Analyzed: Reported:

Jan 7, 1992 Jan 8, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
Phenol	N.D.	6.7	4.8	72%	5.2	78%	8.0%
2-Chlorophenol	N.D.	6.7	5.3	79%	5.8	87%	9.0%
1,4-Dichloro- benzene	N.D.	3.3	2.4	73%	2.5	76%	4.1%
N-Nitroso-Di-N- propylamine	N.D.	3.3	2.5	76%	2.7	82%	7.7% ⁻
1,2,4-Trichloro- benzene	N.D.	3.3	2.4	73%	2.6	79%	8.0%
4-Chloro- 3-Methylphenol	N.D.	6.7	5.5	82%	5.7	85%	3.6%
Acenaphthene	N.D.	3.3	2.7	82%	2.9	88%	7.1%
4-Nitrophenol	N.D.	6.7	6.3	94%	6.6	99%	4.7%
2,4-Dinitro- toluene	N.D.	3.3	2.4	73%	2.4	73%	0.0%
Pentachloro- phenol	N.D.	6.7	6.1	91%	6.7	100%	9.4%
Pyrene	N.D.	3.3	3.0	91%	3.2	97%	6.5%

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director % Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

(Conc. of M.S. + Conc. of M.S.D.) / 2

x 100

2010120.SEA <9>

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside, 00058-014-01 Method: EPA 3510 or 3550/8015

Sample Matrix : Soil

Units: mg/kg QC Sample #: BLK010792 Analyst: D. Harmon

Extracted: Analyzed: Jan 7, 1992 Jan 7, 1992

Reported:

Jan 7, 1992

QUALITY CONTROL DATA REPORT

	- ·-					
ANALYTE	Diesel					•
	Fuel	 		 		
			-		•	
Sample Conc.:	N.D.					
oumpie cono	N.D.					
Spike Conc.						
Added:	44					
Conc. Matrix						
Spike:	44					
оржог	• • •					
Matrix Spike						
% Recovery:	100					
Conc. Matrix						
Spike Dup.:	48					
- p up	.0					
Matrix Spike						
Duplicate						
% Recovery:	110					
Relative						
% Difference:	8.7					

NORTH CREEK ANALYTICAL

Scot) Cocanour Laboratory Director % Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added

x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2010120.SEA <10>

Number of Containers

SEACOR Chain-of-Custody Record

240

Ą ğ 206)644-0280 Total no. of containers Chain of custody seals: Rec'd good condition/cold: Conforms to record: Sample Receipt 8240,8270 TAT +06C Client: Client Phone Number: Instructions Comments/ Client Contact J Hough 55.70 8240,8270 9 14 0 Lo 16 ひつつさ Fac D 700 B 9 Date 0 100 Analysis Request 20 **TCLP Metals** Received by: Received by: Priority Pollutant Metals (13) Time D. Company Company Sign 12 Sign(, Print) Print Total Lead 7421 Time 827 0808/809 Pesticides/PCB's (SC/MS) (GC/MS) X X Semi-volatile Organics Halogenated Volatiles Date Date 954/8540 (GC/WZ Volatile Organics Aromatic Volatiles 602/8020 Time /620 Relinquished by: Relinquished by: I.814 H9T Company Company TPHd 8015 (modified) Sign 1 Print Print TPHg/BTEX 8015 (modified)/8020 4008 Matrix 16/92 1349 Soi 5 5251 Time 1420 1437 1450 1507 api 1520 1530 Task# CNG-Sunney sta **3** Date 0-110-85000 Special Instructions/Comments: Project Name WW-N-72016120 275 THE NW-E-Sampler's Signature: Sample ID EW-5-7 Turn-around time: Sampler's Name: EW-M-YEW-M-7 **ド**ツ-ハ-フ Project Manager NW-M-7 NW-W-7 Laboratory __ WW-W アプータ Project #

of.

Date 61 / 06 / 52 Page 4

d

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

CNG Sunnyside 00058-014-01

Matrix:

Soil

Analysis for: First Sample #:

Total Solids 201-0153 Received:

Jan 8, 1992

Reported:

Jan 8, 1992

LABORATORY ANALYSIS FOR:

Total Solids

		,
Sample Number	Sample Description	Sample Result %
201-0153	EW2-N-7	87
201-0155	EW2-M-7	87
201-0158	NW3-M-7	91
201-0159	NW2-MW-7	86
201-0160	NW2-ME-7	92
2 01-0162	WW2-MS-5.5	90
201-0163	WW2-S-7	91
201-0169	EB-S-8	87
201-0170	EB-N-8	78
201-0173	WB-N-8	79
201-0174	WB-S-8	73

North Creek Analytical routinely provides analytical results for soils, sediments or sludges in a wet weight "as received" basis. To attain dry weight equivalents for regulatory compliance, divide the soil result by the decimal fraction of percent solids.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240

Client Project ID:

CNG Sunnyside 00058-014-01

Sampled:

Jan 7, 1992

Bellevue, WA 98004

Matrix Descript: Analysis Method: Soil EPA 5030/8015/8020 Received: Analyzed: Jan 8, 1992 Jan 8, 1992

Attention: Paul Schmidt

First Sample #:

201-0153

Reported: Jan 8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (WTPH-G/BTEX)

Sample Number	Sample Description	Purgeable Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	Surrogate Recovery %
201-0153	EW2-N-7	N.D.	N.D.	N.D.	N.D.	N.D.	98
201-0155	EW2- M-7	N.D.	N.D.	N.D.	N.D.	N.D.	98
201-0158	NW3-M-7	N.D.	N.D.	N.D.	N.D.	N.D.	73
201-0159	NW2-MW-7	N.D.	N.D.	N.D.	N.D.	N.D.	98
201-0160	NW2-ME-7	N.D.	N.D.	N.D.	N.D.	N.D.	99
201-0162	WW2-MS-5.5	N.D.	N.D.	N.D.	N.D.	N.D.	99
201-0163	WW2-S-7	N.D.	N.D.	N.D.	N.D.	N.D.	100
201-0169	EB-S-8	4,000 G2	3.3	N.D.	23	64	125
201-0170	EB-N-8	1,400 G2	N.D.	N.D.	3.4	13	116
201-0173	WB-N-8	130 G2	N.D.	N.D.	N.D.	0.12	105
Detection Limits:		1.0	0.050	0.10	0.10	0.10	

Purgeable Hydrocarbons are quantitated against a gasoline standard (nC5 - nC14). Surrogate recovery reported is for Bromofluorobenzene. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Please Note:

The detection limit for Toluene in #201-0169 = 1.0 mg/kg.

The detection limit for Benzene and Toluene in #201-0170 = 1.0 mg/kg.

SEACOR Client Project ID: CNG Sunnyside 00058-014-01 Sampled: Jan 7, 1992 11040 Main Street, #240 Matrix Descript: Received: Soil Jan 8, 1992 Bellevue, WA 98004 Analysis Method: EPA 5030/8015/8020 Analyzed: Jan 8, 1992 Attention: Paul Schmidt First Sample #: 201-0174 Reported: Jan 8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (WTPH-G/BTEX)

Sample Number	Sample Description	Purgeable Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	Surrogate Recovery %
201-0174	WB-S-8	420 G2	0.97	N.D.	2,1	2.4	123
BLK010892	Method Blank	N.D.	N.D.	N.D.	N.D.	N.D.	97

Detection Limits: 1.0 0.050 0.10 0.10 0.10

Purgeable Hydrocarbons are quantitated against a gasoline standard (nC5 - nC14). Surrogate recovery reported is for Bromofluorobenzene. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

)

Scot Cocanour Laboratory Director Please Note

The detection limit for Toluene in # 201-0174 = 0.20 mg/kg.

2010153.SEA <3>

HYDROCARBON ANALYSES FOOTNOTES

Code	<u>e</u>	Description
PURG	EABLE	HYDROCARBONS - Gasoline Range Organics
G 1		The hydrocarbons present in this sample are primarily due to extractable diesel range organics.
G 2		The hydrocarbons present in this sample are a complex mixture of both gasoline range and diesel range organics.
G 3		The total hydrocarbon result in this sample is primarily due to a peak(s) eluting in the purgeable hydrocarbon range. Identification and quantitation by EPA 8010, 8021 or 8240 is recommended.
EXTRA	ACTABI	LE HYDROCARBONS - Diesel Range Organics
D 1		The hydrocarbons present in this sample are primarily due to purgeable gasoline range organics.
D 2		The hydrocarbons present in this sample are primarily due to very heavy, non-resolvable oil range organics. Quantitation by EPA 418.1 is recommended.
D 3		The hydrocarbons present in this sample are a complex mixture of purgeable gasoline, extractable diesel and non-resolvable oil range organics.
D 4		The hydrocarbon result shown is an estimated (greater than) value due to high concentration. Reanalysis is being performed to yield a quantitative result.
		Oils & Lubricants
		T.R.P.H. (418.1)
		Diesel & Fuel Oils
ſ 	Gasol	Extractables (3550/8015) ine
Purge	ables	(5030/8015)

LOW TO MEDIUM MEDIUM TO HIGH VERY HIGH HYDROCARBON BOILING POINT RANGE

CARBON RANGE:

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

SEACOR

11040 Main Street, #240

Attention: Paul Schmidt

Client Project ID: Matrix Descript:

CNG Sunnyside 00058-014-01 Soil

Jan 7, 1992 Jan 8, 1992

Bellevue, WA 98004

Analysis Method:

EPA 3550/8015

Received: Extracted: Analyzed:

Sampled:

Jan 8, 1992

First Sample #:

201-0153

Reported:

Jan 8, 1992 Jan 9, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (WTPH-D)

Sample Number	Sample Description	Extractable Hydrocarbons mg/kg (ppm)	Surrogate Recovery %
201-0153	EW2-N-7	N.D.	80
201-0155	EW2-M-7	N.D.	58
201-0158	NW3-M-7	17	81
201-0159	NW2-MW-7	N.D.	67
201-0160	NW2-ME-7	N.D.	7 5
201-0162	WW2-M-7	N.D.	87
201-0163	WW2-S-7	N.D.	82
201-0169	EB-S-8	2,900	Not Available
201-0170	EB-N-8	370	Not Available
201-0173	WB-N-8	80	64
Detection Limits:	***************************************	10	

Extractable Hydrocarbons are quantitated against a diesel fuel standard (nC11 - nC24). Surrogate recovery reported is for Octacosane. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Cot Cocanour **Laboratory Director**

2010153.SEA <4>

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Matrix Descript: Analysis Method:

First Sample #:

CNG Sunnyside 00058-014-01 Soil

EPA 3550/8015 201-0174 Sampled: Jan 7, 1992 Received: Jan 8, 1992

Extracted: Jan 8, 1992 Analyzed: Jan 8, 1992

Reported: Jan 9, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (WTPH-D)

Sample Number	Sample Description	Extractable Hydrocarbons mg/kg (ppm)	Surrogate Recovery %
201-0174	WB-S-8	340	136
BLK010892	Method Blank	N.D.	99

Detection Limits:

10

Extractable Hydrocarbons are quantitated against a diesel fuel standard (nC11 - nC24). Surrogate recovery reported is for Octacosane. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside 00058-014-01

Method: EPA 5030/8020

Sample Matrix : Soil

Units: mg/kg

QC Sample #: 201-0159

Analyst:

R. Lister

S. Stowell

Analyzed: Reported: Jan 8, 1992

rted: Jan 9, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl	
	Benzene	Toluene	benzene	Xylenes
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc.				
Added:	0.50	0.50	0.50	1.50
Conc. Matrix	0.00	0.00	0.40	4.40
Spike:	0.32	0.33	0.40	1.16
Matrix Spike				
% Recovery:	64	66	80	77
Conc. Matrix				
Spike Dup.:	0.34	0.35	0.42	1.22
Matrix Spike Duplicate				
% Recovery:	68	70	84	81
Relative				
% Difference:	6.1	5.9	4.9	5.1

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director % Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2010153.SEA <6>

SEACOR

11040 Main Street, #240

Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: CNG Sunnyside 00058-014-01

Method: EPA 3510 or 3550/8015

Sample Matrix : Soil

Units : mg/kg

QC Sample #: BLK010892

Analyst:

D. Harmon

Extracted:

Jan 8, 1992

Analyzed: Reported: Jan 8, 1992 Jan 9, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Diesel Fuel		 <u> </u>		
Sample Conc.:	N.D.				
Spike Conc. Added:	44				
Conc. Matrix Spike:	44				
Matrix Spike % Recovery:	100				
Conc. Matrix Spike Dup.:	48				
Matrix Spike Duplicate % Recovery:	110				

NORTH CREEK ANALYTICAL

8.7

Seet Cocanour Laboratory Director

Relative % Difference:

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

2010153.SEA <7>

	SEA	SEACOR		in-o	f-C	ıstoc	ly F	Chain-of-Custody Record			 			
	\$ 55 A 16 R 11040 171ATA 54 540 A Bellevine UNA 48	546												•
	Project # 12058-014-0/Task#						A	Analysis Request	Red	uest				
	Project Manager 2-8 Turn-around time: 2-8			soir		(SW/S		-					Comments/	Containers
	Sampler's Name: Juhn Merchen	Hg/BTEX (modified Hd (modified	H 418.1	/8020 hile Orgar /8240 (GC	8010	o əlitslov-i VS270 (GC Vebicides/PC	/8080 al Lead	nity Pollu als (13)	.P Metals				Instructions	lumber of
	Sample ID Date Time Matrix		IdT	,20a Vola	Halo	/\$79	,80a stoT	ibM	IOT					N
	EW+2-115-6 17/92 0940 (01)	X								10162	152	ZX	of has	(
⅓	7	X							(2	2010	153	Pin	1. He Gone Stack	7 pu
	1 80-111	X X							2	20101	154	\mathcal{D}^{\prime}	7.5.02 m	1)
*	- W -	メメ									-	201	0158	,
	NW2-W-7 / 1237	X										2010	0156	(
	2-m.65	文 又					,					0102	4510	
*	-W-	X				į						20101	8510	/
*	1 C.MM-2	X										0	65101	/
*	2-mE-7 V	X										201	091010	/
	Instruc	Relinqui	Relinquished by:	W.	7	7,	Rec	ved by	,	1/2.	(,		Sample Receipt	
	to want : CNG - Sundaucing	Sign Drint	12/20	100		200	Sign		27 X	新新	20% S-0%		Total no. of containers	2
	March	Company		56	400	0	Š	Company	2	¥			Chain of custody seals: Rec'd good condition/cold:	₹\ <u>\</u> 2\ <u>\</u> 2
		Time /	000	֓֞֟֟֝֟֟֝֟֟֟ ֓֓֞֓֞֓֞֓֞֞֓֓֓֞֞֓֓֓֞֓֓֞֓֓֞֞֓֞֓֞֓֓֞	Date 4	12/9	Time	(0:	0	- Date	te 1-8	26-2	Conforms to record:	
		Relinqu	Relinquished by:				Rec	Received by:					Cascalle Mot. 6	500)
		Sign –					Sign						Client:	
		Company						Company					t Contact:	ē
		Time _		<u> </u>	Date		Time	le [1]		. Date	1		(プロ) 64 を UC タ (Client Phone Number:	
~				l										ľ

ite 1 / 7 / 92 Page 1 of

			Number of Containers	-	_	(,			-	į	,	. `		23	₹, ₹,	5	\mathbb{Z}			1
	: :		Comments/ Instructions	rx coov to P.M	prisation spring	na4515 /	77777	4	2010165	99101	7 9101	10168	Sample Receipt	Total no. of containers	Chain of custody seals: Rec'd good condition/cold:		Spor toll Max Gas	Glient: Parl S	Client Contact:	hone N
				17	7	3 4	2	3	2	102	2010	20				18/92				
		st		19101	9/0	:910,		-					, /	\$.5 \$.5 \$.5		Date 4				Date
		Request		20/	1201	1201							1/	介布	2					
R Chain-of-Custody Record	* ** -	Analysis I	1421 Priority Pollutant Netals (13)	I I									Received by:		1 2	e 10:30	Received by:		Company —	. le
dy R		V	Pesticides/PCB's 508/8080 Fotal Lead	L)				+	-				Rece	Zign Z		Time	Rec	- Sign		Time
usto			emi-volatile Organics 25/8270 (GC/MS)	9									11/2	197	0	17/9				
of-C			187/8240 (GC/MS) OI /8010	9				-					4 6	30	916	Date /				Date
ain-			Aromatic Volatiles 0208/8020 Volatile Organics	,									12.	1,4	50		::			
Cp	0		TPH 418.1										shed by	22	\ \ <u>\</u>	1020	shed by		t	
COF	1748		PHg/BTEX 1015 (modified)/8020 1015 (modified)	니스	X	XX		<u> </u>	 X	X X		X	Relinquished by:	Sign –	rimit — Company	Time	Relinquished by:	Sign I	Company	Time _
SEACO]	216			_	/		+					<u> </u>		-			<u> </u>			
	54			380	(325)	340	5, 6	1551	1130	1147	1350	1430				\	Z,			ļ
	2 2	I 🔨		1/7/42								~ ~>			77	(グンだ			
	Address SEA(E)R	Project # CCX058-014-0	anager 7.444 y AC. A. Ind time: Name: Ke, A. Signature:	12-M-7	12.MS-55	2.5.2	r	(1 - 1 - 1		',	. 3	7	Special Instructions/Comments:	1	Job Norm		CIVE Sunney Stall			
	FF V	Proje	Proje Labc Turn Sami	INAM	13/12/2	V1 V2	١	グバ	50	17 C7	50	5'B.	Specie	C.E.	<u>e</u>	V !/	<u> </u>	<u> </u>		

XK

ate / / 1/12 Page / of \

	•		Number of Containers	_	_	_		^	/								M		16	١.
			Comments/ Instructions	#14X COPU	o P.A betrace	Land for places	2010172 1	201017.3	2010174				Sample Receipt	Total no. of containers	Chain of custody seals:	Rec'd good condition/cold: Conforms to record:	Canade Not GA	- Client:	ontact:	Client Phone Number:
				李 63	702	12/14	2	2	7				, ,	Y K						
		nest		20101	20101	10/02						\exists		THE STATE OF THE S	{	- Date			.	. Date
ırd		Analysis Request	TCLP Metals		,2	2							, , ,	4/44	102		. <u>%</u> :	ļ		
Chain-of-Custody Record		Analy	Total Lead 7421 Priority Pollutant Metals (13)									_	Received by			Time	Received by:	Sign	Company	Time
ody			Pesticides/PCB's 608/8080							-		1	ρž t	7 A	ι c		Ä	<u></u>	; o	
)nst			Semi-volatile Organics 625/8270 (GC/MS)											200	Ž					
J-J			624/8240 (GC/MS) Halogenated Volatiles										N	12	75	Date Z				Date
in-(602/8020 Volatile Organics						_		 	_	A	E	J.	Ā				
			TPH 418.1 Aromatic Volatiles									\dashv	P. A.	10/2		126	d by:			
I . 1	072		bHqT (bəffibom) 2108	X	X	X	K	X	X				Relinquished by	•	vned	16	Relinquished by:		Company	
SEACOR			TPHg/BTEX 8015 (modified)/8020	X	X	X	X	X	X				Relin	Sign	Company	Time	Relin	Sign Print	Com	Time
SE	250		Char Club										•	75.60						
	7			1515	1520	1525	1536	1535	1540					CNG Sunney STO						
	24	Tian Tian											',	\sim						
	22	-011/1-	Date Date								 		nents:	<u>,</u>						İ
	100 m	NN											/Comm	ر ان						1
ļ	5EACOR 1040 M	SOD	Aanager ory Name: s Name: s Signature Sample ID	Ś	1-5	5×	2	ĭ	N. S.				uctions	٠٠ س						
	Address	Project#	Project Manager Laboratory Turn-around time: Sampler's Name: Sampler Signature: Sample ID	6/	B-1	3-8	3 - M	7. N	5				Special Instructions/Comments:	the Ware	•					
		Pro	Pro Lat Tur: Sarr Sarr	EB	EB	NB-	SB	WB	3				Spec	がか	`					
	•			*	*			*	*		 									

te / 7/12Page 3 of 3

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

Matrix:

Soil

Analysis for: First Sample #: **Total Solids** 201-0165

Received:

Jan 8, 1992

Reported:

Jan 9, 1992

LABORATORY ANALYSIS FOR:

Total Solids

CNG Sunnyside 00058-014-01

Sample Number	Sample Description	Sample Result %
201-0165	SP-1	90
201-0166	SP-2	91
201-0167	SP-3	90
201-0168	SP-4	88

North Creek Analytical routinely provides analytical results for soils, sediments or sludges in a wet weight "as received" basis. To attain dry weight equivalents for regulatory compliance, divide the soil result by the decimal fraction of percent solids.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

SEACOR 11040 Main Street, #240 Client Project ID:

CNG Sunnyside 00058-014-01 Soil Sampled: Received:

Jan 7, 1992 Jan 8, 1992

Bellevue, WA 98004 Attention: Paul Schmidt Matrix Descript: Analysis Method: First Sample #:

EPA 5030/8015/8020 201-0165

Analyzed: Reported:

Jan 8, 1992 Jan 9, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (WTPH-G/BTEX)

Sample Number	Sample Description	Purgeable Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	Surrogate Recovery %
201-0165	SP-1	590 G-2	N.D.	N.D.	1.1	9.2	109
201-0166	SP-2	36 G-2	N.D.	N.D.	N.D.	N.D.	97
201-0167	SP-3	2.4 G-2	N.D.	N.D.	N.D.	N.D.	97
201-0168	SP-4	21 G-2	N.D.	N.D.	N.D.	N.D.	105
BLK010892	Method Blank	N.D.	N.D.	N.D.	N.D.	N.D.	97

Detection Limits:	4.0	0.050	0.40			
Detection Limits:	1.0	0.050	0.10	0.10	0.10	

Purgeable Hydrocarbons are quantitated against a gasoline standard (nC5 - nC14). Surrogate recovery reported is for Bromofluorobenzene. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director Please Note:

The detection limit for Benzene and Toluene in #201-0165 = 1.0 mg/kg.

The detection limit for Benzene in #201-0166 = 0.080 mg/kg.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Matrix Descript:

First Sample #:

CNG Sunnyside 00058-014-01 Soil

Analysis Method: EPA 3550/8015 201-0165

Sampled:

Jan 7, 1992

Received: Extracted: Jan 8, 1992 Jan 8, 1992

Analyzed: Jan 8-9, 1992 Reported: Jan 9, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (WTPH-D)

Sample Number	Sample Description	Extractable Hydrocarbons mg/kg (ppm)	Surrogate Recovery %
201-0165	SP-1	82	125
201-0166	SP-2	650	85
201-0167	SP-3	24	100
201-0168	SP-4	48	120
BLK010892	Method Blank	N.D.	99

Detection Limits:

10

Extractable Hydrocarbons are quantitated against a diesel fuel standard (nC11 - nC24). Surrogate recovery reported is for Octacosane. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

2010165.SEA <2>

HYDROCARBON ANALYSES FOOTNOTES

<u>Cc</u>	<u>ode</u>	<u>Description</u>
PUF	RGEABLE	HYDROCARBONS - Gasoline Range Organics
G	1	The hydrocarbons present in this sample are primarily due to extractable diesel range organics.
G	2	The hydrocarbons present in this sample are a complex mixture of both gasoline range and diesel range organics.
G	3	The total hydrocarbon result in this sample is primarily due to a peak(s) eluting in the purgeable hydrocarbon range. Identification and quantitation by EPA 8010, 8021 or 8240 is recommended.
EXI	RACTABI	LE HYDROCARBONS - Diesel Range Organics
D	1	The hydrocarbons present in this sample are primarily due to purgeable gasoline range organics.
D	2	The hydrocarbons present in this sample are primarily due to very heavy, non-resolvable oil range organics. Quantitation by EPA 418.1 is recommended.
D	3	The hydrocarbons present in this sample are a complex mixture of purgeable gasoline, extractable diesel and non-resolvable oil range organics.
D	4	The hydrocarbon result shown is an estimated (greater than) value due to high concentration. Reanalysis is being performed to yield a quantitative result.
		Oils & Lubricants
		T.R.P.H. (418.1)
		Diesel & Fuel Oils
	Gasol	Extractables (3550/8015)
[
Pur	geables	s (5 0 30/8015)

LOW TO MEDIUM MEDIUM TO HIGH VERY HIGH HYDROCARBON BOILING POINT RANGE

CARBON RANGE:

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: CNG Sunnyside 00058-014-01 Method: EPA 5030/8020

Sample Matrix : Soil

Units: mg/kg QC Sample #: 201-0159 Analyst:

R. Lister

S. Stowell

Analyzed: Reported: Jan 8, 1992 Jan 9, 1992

QUALITY CONTROL DATA REPORT

ANALYTE		····	Ethyl		
	Benzene	Toluene	benzene	Xylenes	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
	11.5.	н.Б.	14.5.	14.5.	
Spike Conc. Added:	0.50	0.50	0.50	1.50	
Conc. Matrix Spike:	0.32	0.33	0.40	1.16	
Matrix Spike % Recovery:	64	66	80	77	
Conc. Matrix Spike Dup.:	0.34	0.35	0.42	1.22	
Matrix Spike Duplicate % Recovery:	68	70	84	81	
Relative % Difference:	6.1	5.9	4.9	5.1	

NORTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director** % Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added

x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside 00058-014-01

Method: EPA 3510 or 3550/8015

Sample Matrix : Soil

Units : mg/kg

QC Sample #: BLK010892

Analyst:

D. Harmon

Extracted: Analyzed:

Jan 8, 1992

Reported:

Jan 9, 1992 Jan 9, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	· <u>-</u> .	 	 	
ANALTIE	Diesel Fuel			
	1 001			
Sample Conc.:	N.D.			
Spike Conc. Added:	44			
Conc. Matrix Spike:	39			
Matrix Spike % Recovery:	87			
Conc. Matrix Spike Dup.:	40			
Matrix Spike Duplicate % Recovery:	91			
Relative % Difference:	2.5			

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

	i				Containers	Number of	-	 	-	-		-	_	_	_	\					١				1
	•		٠		Comments /	Comments/ Instructions	12x 13x 12	2	Ans 12,519	2010155	•	2010155	7 S 1010 Z	2010158	2010159	2010160	Sample Receipt	Total no. of containers	Chain of custody seals:	Conforms to record:	(1350xtx, 1/04. 6.75	Client:			Cuent Prone Number:
							77		54																
				15.			10	2	101											Date				Date	
				Request	4		4	3	2													-1			
	딛					Vetals (13)	ᆜ—										.y:				;ć				
) } }	٠	-	Analysis	, lant	421 Tiority Pollu	4								·		Received by:	 -	Company	je ,	Received by:		Ħ	Company Time	
	dy I			V		08/8080 0tal Lead	9									-	Seo.	- Sign	Ö	Time	Rec	- Sign	- Print	Comp	
	Chain-of-Custody Record				(SW/S	O slitilov-ima OO) 0728/22 OG\splicition	9										2.7	12/2	()	19/9					
	7				-	1810genated 7	9										7/5		2	<i>†</i>				ا ا	
	10-u				soin (SM\2	olatile Organ 24/8240 (GC	Ц										J.	2	777	. Date				Date	
	hair	l—	3	٦	selites	Vomatic Vola	-										3			2	by:				
			076		(p	ostibom) č10 PH 418.1	8 ~	X	×	メ			1		. /		uished by:	1	, VIII	161	Relinquished by:			any	
	2		1960	3	L	PH ₈ /BTEX 015 (modified	L /	X	X	メ		X	又	\times	X	入 X	Relinqui	Sign —	Company	Time	Reling	Sign .	Print	Company Time	9
	SEACO		775		MI	· · · · · · · · · · · · · · · · · · ·	3 =	-								1/1)	_			l				1
					mid.	-1		3 50	12/	N		1	0	10	5	10		1. (186 - 5, 20 00 11) 1	7						
			54		- " NOW! -	N	1 me	1670	1035	17.35	_	1237	14/10	2351	1505	151	1	2							
			177			12	/2 (/)	- [_		_	-				1/2	ب.	1	`)						
		100	10 170 AT		2324	1.1			10				W		7	7	nments	$\frac{3}{2}$							
(10)		216	040	10-0500V	N.C. K.	i i i		7 -	1.7.	,		~	(2)	7	,∕3	13	IS/Con								
		$ \mathcal{U} $	4 \ \		unager	Name: Signatu	Sample 1D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1. M	Ž		1.22	M	1	7 Uj	r/-	ruction	June ?							
		SS	Addreg		Project Manager Laboratory Turn-around time:	Sampler's Name:Sampler's Signature:				(; (,		10	'`\	^^ ^>	17	7,7	Special Instructions/Comments:	2	`						
				,	Pro Lab Turn	San	7	- 1	17	17		.^3/>	79.7	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.	. 77	Spec	10	`						
					-			*		X	,			*	火	¥									-

e / / / Page / of

			Number of Containers	-	_		_		_		-									1
	•		Comments/ Instructions	My of NOOVXX	100 ct	1 51517	2010164	(591010	991010	7 51010	8 9/01	Sample Receipt	Total no. of containers	Chain of custody seals: Rec'd and condition/cold:	Conforms to record:	(38 20 1/24 Gas	Client:	Client Contact:	0870 940 07
		Request		Z010161 T	10/62	M	120	· (20	20	20,	20				Date				_ Date
ly Record		Analysis Re	608/8080 Total Lead Priority Pollutant Metals (13) TCLP Metals			2		-					Received by:	Print	Company	Time	Received by:	Sign	Print	Time
Chain-of-Custody Record			602/8020 Volatile Organics 624/8240 (GC/MS) Halogenated Volatiles 601/8010 Semi-volatile Organics 625/8270 (GC/MS) Pesticides/PCB's										My Guln	M Cocker	0.916.6	- Date 1/7/02				Date
SEACOR Chai	740		TPHg/BTEX 8015 (modified)/8020 TPHd 8015 (modified) TPH 418.1 TPH 418.1	X	メ	×	メ		メメ	X X	× >	XX	Relinquished by:	Print / Lh	Company	Time 1622		Sign	Company	Time
SE	on 57 548	C/4-C/ Task#	2-8 2-8 2-8 2-8 2-8 Date Time Matrix	17.4213co Sil	325	1340	1357		1130	77/1	(350)	V 1430 V	ts:	 F	, 7/2	,	1 >ret			
	Address SE+1(ER.	Project # CC 58. C/	Project Manager Laboratory Turn-around time: Sampler's Name: Sample ID Sample ID	11.W2-M-7	32,2.12555		1 1 1 1 1 - 7		1-0	<i>(,</i>)	ν.' γ	٠٠. ٢	Special Instructions/Comments:		15.00		War Commey Store			
<u></u>		<u> </u>		1 2		3	 15	<u>(</u>	(X)	(V)	8	(X	S,							

(A) - 29-8+1 1+8-42 KS

7/42 Page 2- of 3

Date /

[Number of Containers		_	_		^										N		C)	.	1
	•		Comments/ Instructions	# CAX COOU	40 P.A betone	Stundens inalusis	1 2710102	2010173	2010174					Sample Receipt	Total no. of containers	Chain of custody seals:	Conforms to record:	(3xxt Not 64	Client:	Client Contact:	Phone Number:	7 20 7
				20	70	14																
		est		1016	101	101											Date				Date	
		Request		20	20	20																
ord			TCLP Metals (13)											i by:		>	,	d by:		ny –		
Rec		Analysis	Total Lead 7421 Priority Pollutant	-										Received by:	Sign	Print — Company	Time -	Received by:	Sign Print	Сотрапу	Time _	
ody			Pesticides/PCB's 608/8080											Α,	2 L		1		1		Ì	
ust			Semi-volatile Organics 625/8270 (GC/MS)		_										1 100	13	12/					
J-J			624/8240 (GC/MS) Halogenated Volatiles 601/8010	-) S		12	Date .				Date .	
in-(602/8020 Volatile Organics											1	1							
SEACOR Chain-of-Custody Record			TPH 418.1	-									-	led by:	12/2	16.	12	uished by:				
OR	240		TPHd (bəñibom) टे108	X	X	Y	Y	X	×					Relinquished by:	'	Print +	inpanty ie	Relinquist	= =	Company	Time	
AC		_	X3T81 ₈ H9T 0208\(bsilibom) 2108	×		X	X		$ \lambda $					Rel	Sign		Time	Rel	Sign	: მ	1	-
SE	77.7		C. C. C. C. C. C. C. C. C. C. C. C. C. C												1 N (3 S. M. D. D. C. C.))						
	1 3	#		1	1570	1,525	1621	15.36	1540							1/2						
	100	/ Task #	2							1	-	-			7	: :						
	1 2	-C14.C	2.5 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-	-	-	-	-	-	_		-	-	ents:	,)						
	16.20	1\ ^												Comm	17	ر						
	40	35.7.20	Aanager		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2/3/	12	1/4	/À					tions/								
	200	ı	Mana, tory - round round r's Nau	Janua,		> 11		2 ?	1 .					Instruc	5	1						
	Address	Droject #	Project Manager Laboratory Turn-around time: Sampler's Signature: Sampler's Signature:	LA L	12.21	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	2 2	0 1	2 2					Special Instructions/Comments:	17	メラングス						
				<u> </u>	1	k-	` `	1	۲ الا خ	· }				10,	-}-	<u> </u>						_

e / / / 2Page 5 of

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

CNG Sunnyside 00058-014-01

Client Project ID: Sample Descript: Analysis Method:

Method Blank EPA 8240/8260

Analyzed:

Jan 9, 1992

Attention: Paul Schmidt

Lab Number:

BLK010992

Reported:

Jan 9, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240/8260)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	0.50	**************	1.0
Benzene	0.10	***************************************	N.D.
Bromodichloromethane	0.10	***************************************	N.D.
Bromoform	0.10		N.D.
Bromomethane	0.10	•••••	N.D.
2-Butanone	0.50	•••••	N.D.
Carbon disulfide	0.10	***************************************	N.D.
Carbon tetrachloride	0.10	***************************************	N.D.
Chlorobenzene	0.10	•••••	N.D.
Chloroethane	0.10	***************************************	N.D.
2-Chloroethyl vinyl ether	0.50	•••••	N.D.
Chloroform	0.10	•••••	N.D.
Chloromethane	0.10	•••••	N.D.
Dibromochloromethane	0.10	•••••	N.D.
1,1-Dichloroethane	0.10	•••••	N.D.
1,2-Dichloroethane	0.10	•••••	N.D.
1,1-Dichloroethene	0.10	•••••	N.D.
Total 1,2-Dichloroethene		•••••	N.D.
1,2-Dichloropropane	0.10	•••••	N.D.
cis 1,3-Dichloropropene	0.10	•••••	N.D.
trans 1,3-Dichloropropene	0.10	•••••	N.D.
Ethylbenzene	0.10	•••••	N.D.
2-Hexanone	0.50	***************************************	N.D.
Methylene chloride	0.50		1.4
4-Methyl-2-pentanone	0.50	***************************************	N.D.
Styrene	0.10	•••••	N.D.
1,1,2,2-Tetrachloroethane	0.10	•••••	N.D.
Tetrachioroethene	0.10	•••••	N.D.
Toluene	0.10	•••••	N.D.
1,1,1-Trichloroethane	0.10	•••••	N.D.
1,1,2-Trichloroethane	0.10	•••••	N.D.
Trichloroethene	0.10	***************************************	N.D.
Trichlorofluoromethane	0.10	***************************************	N.D.
Vinyl chloride	0.10	***************************************	N.D.
Total Xylenes	0.10	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director Surrogate Standards Percent Recovery:

1,2-Dichloroethane-d4 102

Toluene-d8 4-Bromofluorobenzene

90 87

Client Project ID: Sample Descript: SEACOR CNG Sunnyside 00058-014-01 Sampled: Jan 7, 1992 Jan 8, 1992 Jan 9, 1992 Jan 9, 1992 11040 Main Street, #240 Soil, SP-2 Relogged: Bellevue, WA 98004 Analysis Method: **EPA 8270** Extracted: Attention: Paul Schmidt Lab Number: 201-0166 Analyzed: Reported: Jan 9, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acenaphthene	0.10	******	N.D.
Acenaphthylene	0.10	••••	N.D.
Aniline	0.10		N.D.
Anthracene	0.10	***************************************	N.D.
Benzidine	0.25	***************************************	N.D.
Benzoic Acid	0.50	***************************************	N.D.
Benzo(a)anthracene	0.10	***************************************	N.D.
Benzo(b)fluoranthene	0.10		N.D.
Benzo(k)fluoranthene	0.10	***************************************	N.D.
Benzo(g,h,i)perylene	0.10	***************************************	N.D.
Benzo(a)pyrene	0.10		N.D.
Benzyl alcohol	0.10		N.D.
Bis(2-chloroethoxy)methane	0.10		N.D.
3is(2-chloroethyl)ether	0.10		N.D.
Bis(2-chloroisopropyl)ether	0.10	***************************************	N.D.
Bis(2-ethylhexyl)phthalate	0.50	***************************************	N.D.
4-Bromophenyl phenyl ether		***************************************	N.D.
Butyl benzyl phthalate	0.10	•••••	N.D.
4-Chloroaniline	0.10	***************************************	N.D.
2-Chloronaphthalene	0.10	***************************************	N.D.
4-Chloro-3-methylphenol	0.10	•••••	N.D.
2-Chlorophenol	0.10	***************************************	N.D.
4-Chlorophenyl phenyl ether	0.10	***************************************	N.D.
Chrysene	0.10		N.D.
Dibenz(a,h)anthracene	0.10	***************************************	N.D.
Dibenzofuran	0.10	***************************************	N.D.
Di-N-butyl phthalate	0.50		N.D.
1,3-Dichlorobenzene	0.10	***************************************	N.D.
1,4-Dichlorobenzene	0.10		N.D.
1,2-Dichlorobenzene	0.10	*************************************	N.D.
3,3-Dichlorobenzidine	0.50	***************************************	N.D.
2,4-Dichlorophenol		***************************************	N.D.
Diethyl phthalate	0.10	***************************************	N.D.
2,4-Dimethylphenol	0.10	***************************************	N.D.
Dimethyl phthalate	0.10	***************************************	N.D.
4,6-Dinitro-2-methylphenol	0.50		N.D.
2,4-Dinitrophenol	0.50	***************************************	N.D.

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Sample Descript: Analysis Method:

CNG Sunnyside 00058-014-01

Method Blank

Lab Number:

EPA 8270 BLK010992 Extracted:

Jan 9, 1992

Analyzed: Reported:

Jan 9, 1992 Jan 9, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acenaphthene	0.10	***************************************	N.D.
Acenaphthylene	0.10	***************************************	N.D.
Aniline	0.10		N.D.
Anthracene	0.10		N.D.
Benzidine	0.25	***************************************	N.D.
Benzoic Acid	0.50	***************************************	N.D.
Benzo(a)anthracene	0.10	***************************************	N.D.
Benzo(b)fluoranthene	0.10	***************************************	N.D.
Benzo(k)fluoranthene	0.10	•••••	N.D.
Benzo(g,h,i)perylene		***************************************	N.D.
Benzo(a)pyrene		***************************************	N.D.
Benzyl alcohol	0.10	***************************************	N.D.
Bis(2-chloroethoxy)methane	0.10	***************************************	N.D.
Bis(2-chloroethyl)ether	0.10	•••••	N.D.
Bis(2-chloroisopropyl)ether	0.10		N.D.
Bis(2-ethylhexyl)phthalate	0.50	***************************************	N.D.
4-Bromophenyl phenyl ether		•••••	N.D.
Butyl benzyl phthalate	0.10	•••••	N.D.
4-Chloroaniline	0.10	•••••	N.D.
2-Chloronaphthalene	0.10	•••••	N.D.
4-Chloro-3-methylphenol	0.10	•••••	N.D.
2-Chlorophenol	0.10	•••••	N.D.
4-Chlorophenyl phenyl ether	0.10		N.D.
Chrysene	0.10	***************************************	N.D.
Dibenz(a,h)anthracene	0.10	•••••	N.D.
Dibenzofuran	0.10	•••••	N.D.
Di-N-butyl phthalate	0.50		N.D.
1,3-Dichlorobenzene	0.10	•••••	N.D.
1,4-Dichlorobenzene	0.10	***************************************	N.D.
1,2-Dichlorobenzene	0.10	***************************************	N.D.
3,3-Dichlorobenzidine	0.50	•••••	N.D.
2,4-Dichlorophenol	0.10	•••••	N.D.
Diethyl phthalate	0.10	•••••	N.D.
2,4-Dimethylphenol	0.10	***************************************	N.D.
Dimethyl phthalate	0.10	***************************************	N.D.
4,6-Dinitro-2-methylphenol	0.50		N.D.
2,4-Dinitrophenol	0.50	***************************************	N.D.

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

CNG Sunnyside 00058-014-01

Sample Descript: Method Blank

Analysis Method: Lab Number:

EPA 8270 BLK010992 Extracted:

Jan 9, 1992

Analyzed: Reported:

Jan 9, 1992 Jan 9, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte			Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
2,4-Dinitrotoluene		***************************************	0.10	***************************************	N.D.
2,6-Dinitrotoluene			0.10	•••••••	N.D.
Di-N-octyl phthalate	••••	•••••	0.10	•••••	N.D.
Fluoranthene			0.10	***************************************	N.D.
Fluorene			0.10	•••••	N.D.
Hexachlorobenzene			0.10	•••••	N.D.
Hexachlorobutadiene.				***************************************	N.D.
Hexachlorocyclopentae				•••••	N.D.
Hexachloroethane			0.10		N.D.
Indeno(1,2,3-cd)pyrene			0.10	•••••	N.D.
Isophorone		•••••	0.10		N.D.
2-Methylnaphthalene	••••••	***************************************	0.10	•••••	N.D.
2-Methylphenol	• • • • • • • • • • • • • • • • • • • •	•••••	0.10	•••••	N.D.
4-Methylphenol					N.D.
Naphthalene	•••••	•••••	0.10		N.D.
2-Nitroaniline			0.50	•	N.D.
3-Nitroaniline			0.50		N.D.
4-Nitroaniline			0.50	***************************************	N.D.
Nitrobenzene	•••••	••••••	0.10	•••••	N.D.
2-Nitrophenol		***************************************	0.10	•••••	N.D.
4-Nitrophenol		***************************************	0.50	***************************************	N.D.
N-Nitrosodiphenylamin			0.10	***************************************	N.D.
N-Nitroso-di-N-propyla			0.10	•••••	N.D.
Pentachlorophenol	•••••	•••••	0.50	***************************************	N.D.
Phenanthrene			0.10	•••••	N.D.
Phenol					N.D.
Pyrene			0.10	•••••	N.D.
1,2,4-Trichlorobenzene			0.10	•••••	N.D.
2,4,5-Trichlorophenol	•••••		0.50	***************************************	N.D.
2,4,6-Trichlorophenol	***************************************	••••••	0.10	••••••	N.D.
Surrogate Standards Percen	t Recovery:				
2-Fluorophenol	109	Nitrobenzene-d5	112		
Phenol-d6	111	2-Fluorobiphenyl	118		
2,4,6-Tribromophenol	128	Terphenyl-d14	156		

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

head elec

Scot Cocanour **Laboratory Director**

Page 2 of 2

2010166.SEA <6>

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside 00058-014-01

Method: EPA 8240

Sample Matrix: Soil

Units: mg/kg QC Sample #: 201-0166 Analyst:

J. Kimball

Jan 9, 1992

Analyzed: Reported: Jan 9, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
1,1-Dichloro- ethene	N.D.	2.0	1.6	80%	1.5	75%	6.5%
Trichloroethene	N.D.	2.0	1.7	85%	1.8	90%	5.7%
Benzene	N.D.	2.0	1.6	80%	1.6	80%	0.0%
Toluene	N.D.	2.0	1.8	90%	1.5	75%	18.2%
Chlorobenzene	N.D.	2.0	1.8	90%	1.8	90%	0.0%

NORTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director** % Recovery: Conc. of M.S. - Conc. of Sample Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside 00058-014-01

Method: EPA 8270

Sample Matrix : Soil

Units: mg/kg QC Sample #: BLK010992 Analyst:

G. Emory

Extracted: Analyzed: Jan 9, 1992 Jan 9, 1992

Reported: Jan 9, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
Phenol	N.D.	6.7	4.8	72%	5.2	78%	8.0%
2-Chlorophenol	N.D.	6.7	5.3	79%	5.8	87%	9.0%
1,4-Dichloro- benzene	N.D.	3.3	2.4	73%	2.5	76%	4.1%
N-Nitroso-Di-N- propylamine	N.D.	3.3	2.5	76%	2.7	82%	7.7%
1,2,4-Trichloro- benzene	N.D.	3.3	2.4	73%	2.6	79%	8.0%
4-Chloro- 3-Methylphenol	N.D.	6.7	5.5	82%	5.7	85%	3.6%
Acenaphthene	N.D.	3.3	2.7	82%	2.9	88%	7.1%
4-Nitrophenol	N.D.	6.7	6.3	94%	6.6	99%	4.7%
2,4-Dinitro- toluene	N.D.	3.3	2.4	73%	2.4	73%	0.0%
Pentachloro- phenol	N.D.	6.7	6.1	91%	6.7	100%	9.4%
Pyrene	N.D.	3,3	3.0	91%	3.2	97%	6.5%

NORTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director** % Recovery: Conc. of M.S. - Conc. of Sample Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D.

(Conc. of M.S. + Conc. of M.S.D.) / 2

x 100

x 100

2010166.SEA <8>

Chain-of-Custody Number: A

SEACOR Chain-of-Custody Record Analysis Request Analysis Remarkable				Number of Containers	_		_			<u> </u>		1	. ~~		w -	1 1 X	4	V		<u> </u>	1	
SEACOR Chain-of-Custody Record Analysis Request Company				Comments/ Instructions	9 0 1 NO 22 X	17 6214	15	, ,	9101	9101	5101	9101	9/01	Sample Receipt		Chain of custody seals: Rec'd good condition/cold:	Conforms to record:	1. 1. st	Client:		Client Phone Number	Cilcin 1 mone raminos.
SEACOR Chain-of-Custody Record The Custody The Custody Record The Custody			quest		7 19/01	79/0/	1016		20	20	2	2	2	Louise	がいか	*	11.81				_ Date	
SEACOR Set # (CES CH-C Task # ect Manager Divided Company) Sample ID Date Time Matrix This (modified) 12 - M - 7 1/7 \$ 3 13C \$ N N N N N N N N N N	ly Record		Analysis Rec	608/8080 Total Lead 7421 Priority Pollutant Metals (13)		,,						7	192	ved by:	1	1	24	Received by:	Sign	Company	Time	
SEACOR Set # (CES CH-C Task # ect Manager Dave Company) 12 - M - 7 1/7 \$2 1300	n-of-Custoc			Volatile Organics 624/8240 (GC/MS) Halogenated Volatiles 601/8010 Semi-volatile Organics Scal-volatile Organics							X		1	44	171 Capar	09166	- Date 1/7/02				Date	
Set $f(\mathcal{L}, \mathcal{L},	1	740		TPHd 8085 (modified) 1.814 PH 418.1 Aromatic Volatiles	7	У /	 			ンソン	- ソ ア	/		Relinquished by:	Sign Sign	Company 2		Relinquished by:	Sign	Сопрапу	Time	
Add CCC COMENTAL Signature: Sampler's Signature: Add CCC CCC Toject Manager Ann-Annaper's Signature: Sampler's Signature: Sampler's Signature: ACC - Annaper Commental Instructions/Commental Commental Instructions/Commental Commental	SEA	57 54 4 4,86	I 🔨.	2 - 8 1 - 8 1 - 12 - 10 - 10 - 10 - 10 - 10 - 10 - 1	421360	(325	1 340		1357	1130	1 6hii	(/3×: ()	143C A	ts:		in.		y 5 rch?				•
		5=1/1820 11040 11 75, (622	1	그런 무슨 그	-W- 7/	12.125-5	L)]	1 1 20 10	1-0	1	, v	٠. ٢	ecial Instructions/Commen	•	`		10 C > 200 11 C				

Date 1 / 7 / 42 Page 2 of 3

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID:

CNG Sunnyside 00058-014-01

Soil

Matrix: Analysis for: First Sample #:

Total Solids

201-0212

Received:

Jan 8, 1992

Reported:

Jan 9, 1992

LABORATORY ANALYSIS FOR:

Total Solids

Sample Number	Sample Description	Sample Result %
201-0212	NB-E2-8	85
201-0213	NB-W2-8	84
201-0214	SP-5	93
201-0215	SP-6	92
201-0216	SP-7	93
201-0217	SP-8	92

North Creek Analytical routinely provides analytical results for soils, sediments or sludges in a wet weight "as received" basis. To attain dry weight equivalents for regulatory compliance, divide the soil result by the decimal fraction of percent solids.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

SEACOR 11040 Main Street, #240 Bellevue WA 98004 Client Project ID: Matrix Descript: CNG Sunnyside 00058-014-01 Soil Sampled: Received:

Jan 8, 1992 Jan 8, 1992

Bellevue, WA 98004 Attention: Paul Schmidt Analysis Method: First Sample #:

EPA 5030/8015/8020 201-0212 Analyzed: Reported:

Jan 8, 1992 Jan 9, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (WTPH-G/BTEX)

Sample Number	Sample Description	Purgeable Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	Surrogate Recovery %
201-0212	NB-E2-8	1,400 G-2	0.57	N.D.	2.7	3.1	129
201-0213	NB-W2-8	8,500 G-2	9.8	N.D.	44	73	131
201-0214	SP-5	28 G-2	N.D.	N.D.	N.D.	N.D.	106
201-0215	SP-6	100 G-2	N.D.	N.D.	0.20	1.6	133
201-0216	SP-7	65 G-2	N.D.	N.D.	N.D.	0.28	119
201-0217	SP-8	610 G-2	N.D.	N.D.	2.2	3.8	116
BLK010892	Method Blank	N.D.	N.D.	N.D.	N.D.	N.D.	97

Detection Limits:	1.0	0.050	0.10	0.10	0.10
<u> </u>					

Purgeable Hydrocarbons are quantitated against a gasoline standard (nC5 - nC14). Surrogate recovery reported is for Bromofluorobenzene. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director Please Note:

The detection limit for Toluene in #201-0212 = 0,40 mg/kg.

The detection limit for Toluene in #201-0213 = 1.0 mg/kg.

The detection limit for Benzene and Toluene in #201-0217 = 0.40 mg/kg.

HYDROCARBON ANALYSES FOOTNOTES

<u>Code</u>	Description
PURGEABLE	HYDROCARBONS - Gasoline Range Organics
G 1	The hydrocarbons present in this sample are primarily due to extractable diesel range organics.
G 2	The hydrocarbons present in this sample are a complex mixture of both gasoline range and diesel range organics.
G 3	The total hydrocarbon result in this sample is primarily due to a peak(s) eluting in the purgeable hydrocarbon range. Identification and quantitation by EPA 8010, 8021 or 8240 is recommended.
EXTRACTAB:	LE HYDROCARBONS - Diesel Range Organics
D 1	The hydrocarbons present in this sample are primarily due to purgeable gasoline range organics.
D 2	The hydrocarbons present in this sample are primarily due to very heavy, non-resolvable oil range organics. Quantitation by EPA 418.1 is recommended.
D 3	The hydrocarbons present in this sample are a complex mixture of purgeable gasoline, extractable diesel and non-resolvable oil range organics.
D 4	The hydrocarbon result shown is an estimated (greater than) value due to high concentration. Reanalysis is being performed to yield a quantitative result.
	Oils & Lubricants
	T.R.P.H. (418.1)
	Diesel & Fuel Oils
Gaso:	[] Extractables (3550/8015) line
Purgeable	s (5030/8015)

LOW LOW TO MEDIUM MEDIUM TO HIGH VERY HIGH HYDROCARBON BOILING POINT RANGE

CARBON RANGE:

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt

Client Project ID: Matrix Descript: Analysis Method:

First Sample #:

CNG Sunnyside 00058-014-01

Soil EPA 3550/8015 201-0212 Sampled: Jan 8, 1992 Received: Jan 8, 1992

Extracted: Jan 8, 1992 Analyzed: Jan 8, 1992 Reported: Jan 9, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (WTPH-D)

Sample Number	Sample Description	Extractable Hydrocarbons mg/kg (ppm)	Surrogate Recovery %
201-0212	NB-E2-8	1,700	NA
201-0213	NB-W2-8	1,100	NA
201-0214	SP-5	150 D2	NA
201-0215	SP-6	110	NA
201-0216	SP-7	75	89
201-0217	SP-8	370	103
BLK010892	Method Blank	N.D.	99

Detec	tion	l im	ite
Detec			illo.

10

Extractable Hydrocarbons are quantitated against a diesel fuel standard (nC11 - nC24). Surrogate recovery reported is for Octacosane. Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Mark shelm

Scot Cocanour Laboratory Director

2010212.SEA <2>

HYDROCARBON ANALYSES FOOTNOTES

Code	Description
PURGEABLE	HYDROCARBONS - Gasoline Range Organics
G 1	The hydrocarbons present in this sample are primarily due to extractable diesel range organics.
G 2	The hydrocarbons present in this sample are a complex mixture of both gasoline range and diesel range organics.
G 3	The total hydrocarbon result in this sample is primarily due to a peak(s) eluting in the purgeable hydrocarbon range. Identification and quantitation by EPA 8010, 8021 or 8240 is recommended.
EXTRACTABI	LE HYDROCARBONS - Diesel Range Organics
D 1	The hydrocarbons present in this sample are primarily due to purgeable gasoline range organics.
D 2	The hydrocarbons present in this sample are primarily due to very heavy, non-resolvable oil range organics. Quantitation by EPA 418.1 is recommended.
D 3	The hydrocarbons present in this sample are a complex mixture of purgeable gasoline, extractable diesel and non-resolvable oil range organics.
D 4	The hydrocarbon result shown is an estimated (greater than) value due to high concentration. Reanalysis is being performed to yield a quantitative result.
	Oils & Lubricants
	T.R.P.H. (418.1)
	Diesel & Fuel Oils
8	Extractables (3550/8015)
Gaso:	ine] s (5030/8015)
_	

LOW TO MEDIUM MEDIUM MEDIUM TO HIGH VERY HIGH HYDROCARBON BOILING POINT RANGE

CARBON RANGE:

SEACOR 11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: Sample Descript: CNG Sunnyside 00058-014-01

Soil, SP-8 EPA 8240/8260 Sampled: Received:

Jan 8, 1992 Jan 8, 1992 Jan 9, 1992

Analysis Method: Lab Number:

201-0217

Analyzed: Reported:

Jan 9, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240/8260)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	0,50	***************************************	. 2.4
Benzene	0.10	***************************************	N.D.
Bromodichloromethane	0.10	***************************************	N.D.
Bromoform	0.10	***************************************	N.D.
Bromomethane	0.10	•••••	N.D.
2-Butanone	0.50	***************************************	N.D.
Carbon disulfide	0.10	***************************************	N.D.
Carbon tetrachloride	0.10	***************************************	N.D.
Chlorobenzene	0.10		N.D.
Chloroethane	0.10	***************************************	N.D.
2-Chloroethyl vinyl ether	0.50	***************************************	N.D.
Chloroform	0.10	***************************************	N.D.
Chloromethane	0.10	***************************************	N.D.
Dibromochloromethane	0.10	***************************************	N.D.
1,1-Dichloroethane	0.10	***************************************	N.D.
1,2-Dichloroethane	0.10	***************************************	N.D.
1,1-Dichloroethene	0.10	***************************************	N.D.
Total 1,2-Dichloroethene	0.10	••••••	N.D.
1,2-Dichloropropane	0.10	•••••	N.D.
cis 1,3-Dichloropropene	0.10	***************************************	N.D.
trans 1,3-Dichloropropene	0.10	•••••	N.D.
Ethylbenzene	0.10		. 0.53
2-Hexanone	0.50	***************************************	N.D.
Methylene chloride	0.50		. 2.8
4-Methyl-2-pentanone	0.50	•••••	N.D.
Styrene	0.10	***************************************	N.D.
1,1,2,2-Tetrachloroethane	0.10	***************************************	N.D.
Tetrachloroethene	0.10		N.D.
Toluene	0.10		N.D.
1,1,1-Trichloroethane	0.10	***************************************	N.D.
1,1,2-Trichloroethane	0.10	***************************************	N.D.
Trichloroethene	0.10	***************************************	N.D.
Trichlorofluoromethane	0.10	***************************************	N.D.
Vinyl chloride	0.10	***************************************	N.D.
Total Xylenes	0.10	*******************************	. 1.3

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Please No

Acetone and Methylene Chloride are suspected laboratory contaminants.

Surrogate Recovery - 4-Bromofluorobenzene = 114

Surrogate Recovery - Toluene-d8 = 93

Surrogate Recovery - 1,2-Dichloroethane-d4 = 105

Scot Cocanour Laboratory Director

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

CNG Sunnyside 00058-014-01

Sample Descript: Analysis Method: Method Blank EPA 8240/8260

Analyzed:

Jan 9, 1992

Lab Number:

BLK010992

Reported: Jan 9, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240/8260)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	0.50	***************************************	. 1.0
Benzene	0.10		N.D.
Bromodichloromethane	0.10		N.D.
Bromoform	0.10	•••••	N.D.
Bromomethane	0.10	•••••	N.D.
2-Butanone	0.50	***************************************	N.D.
Carbon disulfide	0.10	***************************************	N.D.
Carbon tetrachloride	0.10	•••••	N.D.
Chlorobenzene	0.10	•••••	N.D.
Chloroethane	0.10	•••••	N.D.
2-Chloroethyl vinyl ether	0.50	•••••	N.D.
Chloroform	0.10	•••••	N.D.
Chloromethane	0.10		N.D.
Dibromochloromethane	0.10	***************************************	N.D.
1,1-Dichloroethane	0.10	***************************************	N.D.
1,2-Dichloroethane	0.10	***************************************	N.D.
1,1-Dichloroethene	0.10	***************************************	N.D.
Total 1,2-Dichloroethene	0.10	***************************************	N.D.
1,2-Dichloropropane	0.10	•••••	N.D.
cis 1,3-Dichloropropene	0.10	***************************************	N.D.
trans 1,3-Dichloropropene	0.10	***************************************	N.D.
Ethylbenzene	0.10	***************************************	N.D.
2-Hexanone	0.50	***************************************	N.D.
Methylene chloride	0.50	*******	. 1.4
4-Methyl-2-pentanone	0.50		N.D.
Styrene	0.10	***************************************	N.D.
1,1,2,2-Tetrachloroethane	0.10	***************************************	N.D.
Tetrachloroethene	0.10	•••••	N.D.
Toluene	0.10	•••••	N.D.
1,1,1-Trichloroethane	0.10	***************************************	N.D.
1,1,2-Trichloroethane	0.10	***************************************	N.D.
Trichloroethene	0.10	***************************************	N.D.
Trichlorofluoromethane	0.10	***************************************	N.D.
Vinyl chloride	0.10	***************************************	N.D.
Total Xylenes	0.10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Surrogate Standards Percent Recovery:

1,2-Dichloroethane-d4 102

Toluene-d8 90 4-Bromofluorobenzene 87

Scot Cocanour Laboratory Director

SEACOR Client Project ID: Sample Descript: CNG Sunnyside 00058-014-01 Sampled: Jan 8, 1992 11040 Main Street, #240 Soil, SP-8 Received: Jan 8, 1992 Bellevue, WA 98004 Analysis Method: EPA 8270 Extracted: Jan 9, 1992 Jan 9, 1992 Jan 9, 1992 Attention: Paul Schmidt Lab Number: 201-0217 Analyzed: Reported:

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acenaphthene	0.10		N.D.
Acenaphthylene	0.10		N.D.
Aniline	0.10		N.D.
Anthracene	0.10	***************************************	N.D.
Benzidine	0.25		N.D.
Benzoic Acid	0.50		N.D.
Benzo(a)anthracene	0.10		N.D.
Benzo(b)fluoranthene	0.10		N.D.
Benzo(k)fluoranthene	0.10	**********	N.D.
Benzo(g,h,i)perylene	0.10	***************************************	N.D.
Benzo(a)pyrene	0.10	***************************************	N.D.
Benzyl alcohol		***************************************	N.D.
Bis(2-chloroethoxy)methane		•••••	N.D.
Bis(2-chloroethyl)ether	0.10	•••••	N.D.
3is(2-chloroisopropyl)ether	0.10	•••••	N.D.
Bis(2-ethylhexyl)phthalate	0.50	•••••	N.D.
4-Bromophenyl phenyl ether		***************************************	N.D.
Butyl benzyl phthalate	0.10	***************************************	N.D.
4-Chloroaniline	0.10	***************************************	N.D.
2-Chloronaphthalene		***************************************	N.D.
4-Chloro-3-methylphenol		•••••	N.D.
2-Chlorophenol	0.10	***************************************	N.D.
4-Chlorophenyl phenyl ether		***************************************	N.D.
Chrysene	0.10		N.D.
Dibenz(a,h)anthracene	0.10	***************************************	N.D.
Dibenzofuran	0.10		N.D.
Di-N-butyl phthalate	0.50		N.D.
1,3-Dichlorobenzene		•••••	N.D.
1,4-Dichlorobenzene	0.10	•••••	N.D.
1,2-Dichlorobenzene	0.10	•••••	N.D.
3,3-Dichlorobenzidine	0.50	•••••	N.D.
2,4-Dichlorophenol		••••••	N.D.
Diethyl phthalate	0.10		N.D.
2,4-Dimethylphenol	0.10		N.D.
Dimethyl phthalate	0.10		N.D.
4,6-Dinitro-2-methylphenol	0.50		N.D.
2,4-Dinitrophenol	0.50	***************************************	N.D.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: Sample Descript: Analysis Method:

Lab Number:

CNG Sunnyside 00058-014-01

Soil, SP-8 EPA 8270 201-0217

Sampled: Jan 8, 1992 Received: Jan 8, 1992 Extracted: Jan 9, 1992

Analyzed: Jan 9, 1992 Reported: Jan 9, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte		Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
2,4-Dinitrotoluene	***************************************	0.10	***************************************	N.D.
2,6-Dinitrotoluene	************************	0.10		N.D.
Di-N-octyl phthalate	••••••	0.10	***************************************	N.D.
Fluoranthene	••••••	0.10	***************************************	N.D.
Fluorene		0.10	***************************************	N.D.
Hexachlorobenzene		0.10		N.D.
Hexachlorobutadiene		0.10	***************************************	N.D.
Hexachlorocyclopentadiene		0.10		N.D.
Hexachloroethane	************************	0.10	***************************************	N.D.
Indeno(1,2,3-cd)pyrene	•••••••	0.10	***************************************	N.D.
Isophorone			***************************************	
2-Methylnaphthalene		0.10		N.D.
2-Methylphenol	***************************************	0.10	***************************************	N.D.
4-Methylphenol		0.10	***************************************	
Naphthalene		0.10		N.D.
2-Nitroaniline		0.50	***************************************	N.D.
3-Nitroaniline		0.50	***************************************	N.D.
4-Nitroaniline		0.50	***************************************	N.D.
Nitrobenzene		0.10	***************************************	N.D.
2-Nitrophenol	***************************************	0.10	***************************************	N.D.
4-Nitrophenol	***************************************	0.50	***************************************	N.D.
N-Nitrosodiphenylamine		0.10	***************************************	N.D.
N-Nitroso-di-N-propylamine		0.10	***************************************	N.D.
Pentachlorophenol		0.50	***************************************	N.D.
Phenanthrene				
Phenol		0.10		N.D.
Pyrene		0.10	***************************************	N.D.
1,2,4-Trichlorobenzene		0.10	***************************************	N.D.
2,4,5-Trichlorophenol		0.50		N.D.
2,4,6-Trichlorophenol		0.10	***************************************	N.D. N.D.
, ,		0.10		N.D.
Surrogate Standards Percent Recovery:				
2-Fluorophenol 137	Nitrobenzene-d5	121		
Phenol-d6 126	2-Fluorobiphenyl	140		

2-Fluorophenol	137	Nitrobenzene-d5	121
Phenol-d6	126	2-Fluorobiphenyl	140
2,4,6-Tribromophenol	149	Terphenyl-d14	163

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director**

Page 2 of 2

2010212,SEA <6>

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID:

CNG Sunnyside 00058-014-01 Method Blank

Sample Descript: Analysis Method: Lab Number:

EPA 8270 BLK010992

Extracted: Analyzed:

Jan 9, 1992 Jan 9, 1992 Jan 9, 1992 Reported:

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acenaphthene	0.10	***************************************	N.D.
Acenaphthylene	0.10	••••	N.D.
Aniline	0.10		N.D.
Anthracene	0.10		N.D.
Benzidine	0.25	•••••	N.D.
Benzoic Acid	0.50	444444444444444444444444444444444444444	N.D.
Benzo(a)anthracene	0.10		N.D.
Benzo(b)fluoranthene	0.10		N.D.
Benzo(k)fluoranthene	0.10		N.D.
Benzo(g,h,i)perylene	0.10		N.D.
Benzo(a)pyrene	0.10		N.D.
Benzyl alcohol	0.10		N.D.
Bis(2-chloroethoxy)methane	0.10		N.D.
Bis(2-chloroethyl)ether	0.10		N.D.
3is(2-chloroisopropyl)ether	0.10		N.D.
Bis(2-ethylhexyl)phthalate	0.50	•••••	N.D.
4-Bromophenyl phenyl ether	0.10		N.D.
Butyl benzyl phthalate	0.10		N.D.
4-Chloroaniline	0.10	***************************************	N.D.
2-Chloronaphthalene	0.10	***************************************	N.D.
4-Chloro-3-methylphenol	0.10	***************************************	N.D.
2-Chlorophenol	0.10		N.D.
4-Chlorophenyl phenyl ether	0.10	***************************************	N.D.
Chrysene	0.10	***************************************	N.D.
Dibenz(a,h)anthracene	0.10	***************************************	N.D.
Dibenzofuran	0.10	***************************************	N.D.
Di-N-butyl phthalate	0.50	***************************************	N.D.
1,3-Dichlorobenzene	0.10	***************************************	N.D.
1,4-Dichlorobenzene	0.10	***************************************	N.D.
1,2-Dichlorobenzene	0.10		N.D.
3,3-Dichlorobenzidine	0.50	***************************************	N.D.
2,4-Dichlorophenol	0.10		N.D.
Diethyl phthalate	0.10	***************************************	N.D.
2,4-Dimethylphenol	0.10		N.D.
Dimethyl phthalate	0.10	***************************************	N.D.
4,6-Dinitro-2-methylphenol	0.50	***************************************	N.D.
2,4-Dinitrophenol	0.50	***************************************	N.D.

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID:

CNG Sunnyside 00058-014-01

Sample Descript: Method Blank

Analysis Method: Lab Number:

EPA 8270 BLK010992 Extracted:

Jan 9, 1992

Analyzed: Reported:

Jan 9, 1992 Jan 9, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte		Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
2,4-Dinitrotoluene	•••••	0.10		N.D.
2,6-Dinitrotoluene			••••	N.D.
Di-N-octyl phthalate		0.10	***************************************	N.D.
Fluoranthene	***************************************	0.10	***************************************	N.D.
Fluorene		0.10	***************************************	N.D.
Hexachlorobenzene		0.10	***************************************	N.D.
Hexachlorobutadiene	***************************************	0.10	***************************************	N.D.
Hexachlorocyclopentadiene	***************************************	0.10	***************************************	N.D.
Hexachloroethane	•••••	0.10	***************************************	N.D.
Indeno(1,2,3-cd)pyrene	***************************************	0.10	***************************************	N.D.
Isophorone	***************************************	0.10	***************************************	N.D.
2-Methylnaphthalene	•••••	0.10	***************************************	N.D.
2-Methylphenol	************************	0.10	••••••	N.D.
4-Methylphenol	***************************************	0.10	***************************************	N.D.
Naphthalene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.10	***************************************	N.D.
2-Nitroaniline	***************************************	0.50		N.D.
3-Nitroaniline	***************************************	0.50	***************************************	N.D.
4-Nitroaniline		0.50	***************************************	N.D.
Nitrobenzene		0.10	•••••	N.D.
2-Nitrophenol	• • • • • • • • • • • • • • • • • • • •	0.10		N.D.
4-Nitrophenol	•••••••	0.50		N.D.
N-Nitrosodiphenylamine	•••••••	0.10	***************************************	N.D.
N-Nitroso-di-N-propylamine	***************************************	0.10		N.D.
Pentachlorophenol	••••••	0.50	***************************************	N.D.
Phenanthrene		0.10	•••••	N.D.
Phenol		0.10		N.D.
Pyrene	•••••			N.D.
1,2,4-Trichlorobenzene	***************************************	0.10		N.D.
2,4,5-Trichlorophenol		0.50		N.D.
2,4,6-Trichlorophenol	***************************************	0.10		N.D.
Surrogate Standards Percent Recovery:				
2-Fluorophenol 109	Nitrobenzene-d5	112		
Phenol-d6 111	2-Fluorobiphenyl	118		

2-Fluorophenol	109	Nitrobenzene-d5	112
Phenol-d6	111	2-Fluorobiphenyi	118
2,4,6-Tribromophenol	128	Terphenyl-d14	156

Analytes reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

Swalel

Laboratory Director

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: CNG Sunnyside 00058-014-01 Method: EPA 5030/8020

Sample Matrix : Soil

Units: mg/kg

QC Sample #: 201-0159

Analyst:

R. Lister

S. Stowell

Analyzed: Reported: Jan 8, 1992

Jan 9, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl	
L	Benzene	Toluene	benzene	Xylenes
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
•			,,,,,,	11.51
Spike Conc.				
Added:	0.50	0.50	0.50	1.50
Conc. Matrix				
Spike:	0.32	0.33	0.40	1.16
:				
Matrix Spike % Recovery:	64	66	80	77
70 Heddycry.	04	00	00	11
Conc. Matrix				
Spike Dup.:	0.34	0.35	0.42	1.22
Matrix Spike				
Duplicate	00			
% Recovery:	68	70	84	81
Defection				
Relative % Difference:	6.1	5.9	4.9	5.1
	0. .	0.0	7.5	5.1

NORTH CREEK ANALYTICAL

Jun Ball

Scot Cocanour **Laboratory Director** % Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100 (Conc. of M.S. + Conc. of M.S.D.) / 2

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: CNG Sunnyside 00058-014-01 Method: EPA 3510 or 3550/8015

Sample Matrix: Soil

Units : mg/kg QC Sample #: BLK010892

Analyst:

D. Harmon

Extracted: Analyzed: Jan 8, 1992 Jan 8, 1992

Reported:

Jan 9, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Diesei	 	-		
	Fuel	 			
Sample Conc.:	N.D.				
Spike Conc.					
Added:	44				
	• •				
Como Matrix					
Conc. Matrix Spike:	39				
Opike.	59				
Matrix Spike	07				
% Recovery:	87				
Conc. Matrix					
Spike Dup.:	40				
Matrix Spike					
Duplicate					
% Recovery:	91				
Relative					
% Difference:	2.5				

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

% Recovery:	Conc. of M.S Conc. of Sample	x 100
	Spike Conc. Added	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100
-	(Conc. of M.S. + Conc. of M.S.D.) / 2	

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Paul Schmidt Client Project ID: CNG Sunnyside 00058-014-01

Method: EPA 8240

Sample Matrix : Soil

Units : mg/kg QC Sample #: 201-0166 Analyst:

G. Emory

Analyzed:

Jan 9, 1992

Reported: Jan 9, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
1,1-Dichloro- ethene	N.D.	2.0	1.6	80%	1.5	75%	6.5%
Trichloroethene	N.D.	2.0	1.7	85%	1.8	90%	5.7%
Benzene	N.D.	2.0	1.6	80%	1.6	80%	0.0%
Foluene	N.D.	2.0	1.8	90%	1.5	7 5%	18.2%
Chlorobenzene	N.D.	2.0	1.8	90%	1.8	90%	0.0%

NORTH CREEK ANALYTICAL

Scot Cocanour Laboratory Director

% Recovery: Conc. of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference: Con

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2

x 100

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID: CNG Sunnyside 00058-014-01 Method: EPA 8270

Sample Matrix: Soil

Units : mg/kg QC Sample #: BLK010992

Analyst:

G. Emory

Extracted: Analyzed:

Jan 9, 1992 Jan 9, 1992

Reported:

Jan 9, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
Phenol	N.D.	6.7	4.8	72%	5.2	78%	8.0%
2-Chlorophenol	N.D.	6.7	5.3	79%	5.8	87%	9.0%
1,4-Dichloro- benzene	N.D.	3.3	2.4	73%	2.5	76%	4.1%
I-Nitroso-Di-N- propylamine	N.D.	3.3	2.5	76%	2.7	82%	7.7%
1,2,4-Trichloro- benzene	N.D.	3.3	2.4	73%	2.6	79%	8.0%
4-Chloro- 3-Methylphenol	N.D.	6.7	5.5	82%	5.7	85%	3.6%
Acenaphthene	N.D.	3.3	2.7	82%	2.9	88%	7.1%
4-Nitrophenol	N.D.	6.7	6.3	94%	6.6	9 9%	4.7%
2,4-Dinitro- toluene	N.D.	3.3	2.4	73%	2.4	73%	0.0%
Pentachloro- phenol	N.D.	6.7	6.1	91%	6.7	100%	9.4%
Pyrene	N.D.	3.3	3.0	91%	3.2	97%	6.5%

NORTH CREEK ANALYTICAL

Scot Cocanour **Laboratory Director**

% Recovery:	Conc. of M.S Conc. of Sample Spike Conc. Added	x 100	
Relative % Difference:	Conc. of M.S Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2	x 100	

SEACOR	1 .	Chain-of-Custody Record	of-Cu	stody	' Rec	ord						
SEACER 11040 Man St Ste 104 CELLEVER WA 98004												I
Project # 60058-014-01 Task#	į				Anal	ysis R	Analysis Request					
Project Manager Laboratory Turn-around time: Sampler's Name: Sampler's Signature: Sampler Date Time Matrix Fig. Matrix Fig.	USUS (MOGINED) CIUS THHT 8015 (modified) TPH 418.1	Aromatic Volatiles 602/8020 Volatile Organics	624/8240 (GC/MS) Halogenated Volatiles	Semi-volatile Organics 625/8270 (GC/MS) Pesticides/PCB's 608/8080	Total Lead 1421 Pollutant	Metals (13) TCLP Metals				Comments/ Instructions	Number of Containers	
NB-E2-8 1/8/92/155 Soil	X		_						PID=220	2010212	-	I
7-8	X								081 = OIL	}		
X / 022/ / SP-35	X		-							2010214	~	
/ / 9巻-み	\mathbb{X}									SIEL	1	
X / 052/ 7 巻- dS	X									<u>ब</u>	_	
<i>S</i> − <i>S</i>	X			X						7 as 7	_	
				-								
	Relinquished by:	by:	Lul.	4	Received by: Sign	k K	Sund Budget	1		Sample Receipt Total no. of containers	t Survey	
JOB NAME: (NG-Sernayside CO	Company -	£ \$2.	4097 Date //	8/2	. @ .		MCA 12 Date	te 1-8	-92	Chain of custody seals: Rec'd good condition/cold: Conforms to record:	<u> </u>	1 1
Ĭ.	Relinquished by:			1	Received by:	i by:				selengt.	$\exists \mathcal{N}$	т-
:X	Sign		i i		Sign Print -)6 I	Client: PaulS.	.	
	Company _		Date		Company Time	Aî	Date	يه ا		Client Contact: (206) 646 - 0280	0	
									7 /	Colema Francis	`	٦.

te / / 8 / 22 Page / of /

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Paul Schmidt

Client Project ID:

00058-014-01

Matrix Descript: S

Analysis Method: First Sample #: Soil
Qualitative GC-FID

112-0712

Sampled: Dec 18, 1991 Received: Dec 19, 1991

Received: Dec 19, 1991 Extracted: Dec 19, 1991

Analyzed: Dec 21, 1991 Reported: Dec 30, 1991

HYDROCARBON IDENTIFICATION (WTPH-HCID)

Sample Number	Sample Description	HCID as Gasoline mg/kg (ppm)	HCID as Diesel mg/kg (ppm)	Surrogate Recovery %
112-0712	Quarry #1	<20	<50	75
112-0713	Quarry #2	<20	<50	70

HCID as gasoline are hydrocarbons between nC7 and nC11. HCID as diesel are hydrocarbons between nC11 and nC24. If Hydrocarbons greater than 20 ppm as gasoline or greater than 50 ppm as diesel are reported as "Present", proceed to WTPH-G or WTPH-D for accurate quantitation.

NORTH CREEK ANALYTICAL

Sect Cocanour
Laboratory Director

2094

Secord
Custody
Cuain-of-
NO VIEW

- 62			Number of Containers	La	10/1						34	
			Comments/ Instructions	20709	710	7	7/3	1 4/1	 -		Client:	Client Contact: Client Phone Number:
Charles Chain-Of-Custody Record	40	Analysis Request	TPHg/BTEX 8015 (modified)/8020 TPHd 8015 (modified) TPH 418.1 Aromatic Volatiles 602/8020 GA/8240 (GC/MS) GA/8240 (GC/MS) Featicides/PCB's 601/8010 Semi-volatile Organics 601/8010 Total Lead 70431 Lead 70431 Lead 70431 Lead 70431 Lead 70431 Lead 70431 Lead		7				Relinquished by: Sign Saul F. Shungly Drint Paul S. hund 4	any S	Sign Sign Sign Sign Mall Sign Sign Sign Sign Sign Sign Sign Sign	Company Company Company Co. A Time Time
2	& SEACOR dd 11040 Main St. Ste 2 Dellevue WA 98004	Project # 00050-014-01 Task # /	12-Th. Creek Analytica 3-Day 747 John Gicher & P. Sch Tre: Q. 8 chmidt D Date Time	12-17-9	1430	12-18-4	1 1	Kinse Blank - 1 Ot recurred	Special Instructions/Comments: A S DAY TAT - Results due by 12-30-91			

JULY 1993 RI/FS SAMPLING

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID:

Sample Matrix:

CNG, #00058-019-01

Soll

First Sample #:

307-0789

Received:

Jul 23, 1993

Reported: Aug 6, 1993

TOTAL SOLIDS & MOISTURE CONTENT REPORT

Sample Number	Sample Description	Total Solids %	Moisture Content %
307-0789	MW-4 @ 9.5'	70	30
307-0790	MW-5 @ 13.5'	79	21
307-0791	MW-6 @ 9'	81	19
307-0792	MW-7 @ 10'	82	18
307-0793	MW-8 @ 9'	82	18

The enclosed analytical results for soils, sediments and sludges have been converted to a DRY WEIGHT reporting basis. To attain the wet weight "as received" equivalent, multiply the dry weight result by the decimal fraction of percent Total Solids. The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

NORTH CREEK ANALYTICAL Inc.

SEACOR Client Project ID: CNG, #00058-019-01 Sampled: Jul 20, 1993 11040 Main Street, #240 Sample Matrix: Soil Received: Jul 23, 1993 Bellevue, WA 98004 Analysis Method: WTPH-G Analyzed: Jul 27, 1993 Attention: Gordon Shaffer First Sample #: 307-0789 Reported: Aug 6, 1993

TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

Sample Number	Sample Description	Sample Result mg/kg (ppm)	Surrogate Recovery %
307-0789	MW-4 @ 9.5' 7/19/93	3.7	97
307-0790	MW-5 @ 13.5' 7/19/93	78	91
307-0791	MW-6 @ 9'	N.D.	96
307-0792	MW-7 @ 10'	N.D.	95
307-0793	MW-8 @ 9'	N.D.	99
BLK072793	Method Blank	N.D.	110

Reporting Limits	1.0]
	1.0	١

4-Bromofluorobenzene surrogate recovery control limits are 50 - 150 %. Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane).

Analytes reported as N.D. were not detected above the stated Reporting Limit. The results reported above are on a dry weight basis.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID:

CNG, #00058-019-01

Sampled: Received:

Jul 20, 1993 Jul 23, 1993

Sample Matrix: Analysis Method: First Sample #:

Soil EPA 8020 307-0789

Analyzed: Reported: Jul 27, 1993 Aug 6, 1993

BTEX DISTINCTION

Sample Number	Sample Description	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	Surrogate Recovery %
307-0789	MW-4 @ 9.5' 7/19/93	0.54	N.D.	0.079	N.D.	98
307-0790	MW-5 @ 13.5' 7/19/93	N.D.	N.D.	0.12	0.16	110
307-0791	MW-6 @ 9'	N.D.	N.D.	N.D.	N.D.	100
307-0792	MW-7 @ 10'	N.D.	N.D.	N.D.	N.D.	99
307-0793	MW-8 @ 9'	N.D.	N.D.	N.D.	N.D.	99
BLK072793	Method Blank	N.D.	N.D.	N.D.	N.D.	110

Reporting Limits:	0.050	0.050	0.050	0.10
				İ

4-Bromofluorobenzene surrogate recovery control limits are 79 - 165 %. Analytes reported as N.D. were not detected above the stated Reporting Limit. The results reported above are on a dry weight basis.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004

Client Project ID: Sample Matrix:

CNG, #00058-019-01 Soil

Sampled: Received: Extracted: Jul 20, 1993 Jul 23, 1993

Attention: Gordon Shaffer

Analysis Method: First Sample #:

WTPH-D 307-0789

Jul 27, 1993 Analyzed: Jul 27-28, 1993 Reported: Aug 6, 1993

TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/kg (ppm)	Surrogate Recovery %
307-0789	MW-4 @ 9.5' 7/19/93	N.D.	89
307-0790	MW-5 @ 13.5' 7/19/93	N.D.	120
307-0791	MW-6 @ 9'	N.D.	71
307-0792	MW-7 @ 10'	N.D.	90
307-0793	MW-8 @ 9'	N.D.	91
BLK072793	Method Blank	N.D.	95

Reporting Limit:	10				

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %.

Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24).

Analytes reported as N.D. were not detected above the stated Reporting Limit. The results reported above are on a dry weight basis.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID:

Sample Matrix: W

CNG, #00058-019-01 Water

Analysis Method: WTPH-G First Sample #: 307-0794 Sampled: Received:

Jul 22, 1993 Jul 23, 1993

Analyzed: Reported: Jul 26, 1993 Aug 6, 1993

TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

Sample Number	Sample Description	Sample Result μg/L (ppb)	Surrogate Recovery %
307-0794	CD EAST 7/21/93	N.D.	98
307-0795	CD WEST 7/21/93	N.D.	110
307-0796	RINSATE BLANK	N.D.	110
307-0798	MW-1	33 0	130
307-0799	MW-2	N.D.	110
307-0800	MW-3	5,200	100
307-0801	MW-4	4,100	130
307-0802	MW-5	5,700	120
307-0803	MW-6	N.D.	100
307-0804	MW-7	N.D.	100

Reporting Limit:	50		

⁴⁻Bromofluorobenzene surrogate recovery control limits are 50 - 150 %.

Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane).

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

CNG, #00058-019-01

Water WTPH-G 307-0805

Sampled: Jul 22, 1993 Received: Analyzed:

Reported:

Jul 23, 1993 Jul 26, 1993 Aug 6, 1993

TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

Sample Number	Sample Description	Sample Result μg/L (ppb)	Surrogate Recovery %	
307-0805	MW-8	N.D.	100	
BLK072693	Method Blank	N.D.	110	

Rei	porting	I imit:
• • •	2011114	

50

4-Bromofluorobenzene surrogate recovery control limits are 50 - 150 %. Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane). Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: Sample Matrix:

CNG, #00058-019-01

Water Analysis Method: First Sample #:

EPA 8020 307-0794

Sampled: Received:

Jul 22, 1993 Jul 23, 1993

Analyzed: Reported:

Jul 26, 1993 Aug 6, 1993

BTEX DISTINCTION

Sample Number	Sample Description	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)	Surrogate Recovery %	
307-0794	CD EAST 7/21/93	N.D.	N.D.	0.73	N.D.	100	
307-0795	CD WEST 7/21/93	2.7	N.D.	1.2	N.D.	110	
307-0796	RINSATE BLANK	N.D.	N.D.	N.D.	N.D.	100	
307-0797	TRIP BLANK 7/15/93	N.D.	N.D.	Ń.D.	N.D.	110	
307-0798	MW-1	3.2	1.0	9.0	4.0	120	
307-0799	MW-2	N.D.	N.D.	N.D.	N.D.	110	
307-0800	MW-3	2,900	260	240	280	110	
307-0801	MW-4	120	7.6	95	65	120	
307-0802	MW-5	78	26	180	240	110	
307-0803	MW-6	N.D.	N.D.	N.D.	N.D.	100	
Reporting Limits:		0.50	0.50	0.50	1.0		

4-Bromofluorobenzene surrogate recovery control limits are 83 - 157 %. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: Sample Matrix:

Analysis Method:

First Sample #:

CNG, #00058-019-01

UNG, #00058-01 Water

EPA 8020 307-0804 Sampled: Received:

Jul 22, 1993 Jul 23, 1993

Analyzed: Reported: Jul 26, 1993 Aug 6, 1993

BTEX DISTINCTION

Sample Number	Sample Description	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)	Surrogate Recovery %
307-0804	MW-7	N.D.	N.D.	N.D.	N.D.	100
307-0805	MW-8	N.D.	N.D.	N.D.	N.D.	100
BLK0 726 93	Method Blank	N.D.	N.D.	N.D.	N.D.	100

Reporting Limits:	0.50	0.50	0.50	1.0	

4-Bromofluorobenzene surrogate recovery control limits are 83 - 157 %. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: Sample Matrix: CNG, #00058-019-01 Water

Sampled: Received: Extracted: Jul 22, 1993 Jul 23, 1993

Analysis Method: First Sample #:

WTPH-D 307-0794

Extracted: Jul 27, 1993 Analyzed: Jul 27-29, 1993 Reported: Aug 6, 1993

TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/L (ppm)	Surrogate Recovery %
307-0794	CD EAST 7/21/93	N.D.	120
307-0795	CD WEST 7/21/93	0.82	98
307-0796	RINSATE BLANK	N.D.	110
307-0798	MW-1	0.30	100
307-0799	MW-2	N.D.	100
307-0800	MW-3	7.9 D-1	110
307-0801	MW-4	1.2 D-1	100
307-0802	MW-5	1.1 D-1	98
307-0803	MW-6	N.D.	100
307-0804	MW-7	N.D.	98

Reporting Limit:	0.25			

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %. Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24).

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

CNG, #00058-019-01

Water WTPH-D 307-0805 Sampled: Received:

Jul 22, 1993 Jul 23, 1993 Jul 27, 1993

Extracted: Jul 27, 1993 Analyzed: Jul 27-29, 1993 Reported: Aug 6, 1993

TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/L (ppm)	Surrogate Recovery %
307-0805	MW-8	N.D.	98
BLK072793	Method Blank	N.D.	98

Reporting Limit:

0.25

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %. Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24). Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Soil

Analysis Method: EPA 8020

Units: mg/kg (ppm)

QC Sample #: 307-0832

Analyst:

R. Lister

K. Wilke F. Shino

Analyzed:

Jul 27, 1993

Reported: Aug 6, 1993

MATRIX SPIKE QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl	
	Benzene	Toluene	Benzene	Xylenes
Sample Result:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.50	0.50	0.50	1.5
Spike Result:	0.47	0.49	0.51	1.5
Spike % Recovery:	94%	98%	102%	100%
Spike Dup. Result:	0.44	0.46	0.47	1.4
Spike Duplicate % Recovery:	88%	92%	94%	93%
Upper Control Limit %:	102	102	108	112
Lower Control Limit %:	70	70	74	71
Relative % Difference:	6.6%	6.3%	8.2%	6.9%
Maximum RPD:	11	13	12	13

NORTH CREEK ANALYTICAL Inc. % Recovery:

Matthew T. Essig Project Manager

Spike Result - Sample Result Spike Conc. Added

Relative % Difference:

Spike Result - Spike Dup: Result (Spike Result + Spike Dup. Result) / 2 x 100

x 100

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Soil Analysis Method: WTPH-G

Units: mg/kg (ppm)

Analyst:

R. Lister

K. Wilke F. Shino

Analyzed:

Jul 27, 1993

Reported:

Aug 6, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Gasoline

PRECISION ASSESSMENT Sample Duplicate

Gasoline Range Hydrocarbons

Spike Conc.

Added:

5.0

Sample

Number:

307-0789

Spike

Result:

4.6

Original Result:

3.7

% Recovery:

92

Duplicate Result:

3.9

Upper Control

. Limit %:

120

Relative Relative Percent Difference values are not % Difference reported at sample concentration levels

less than 10 times the Detection Limit.

Lower Control

Limit %:

80

Maximum

RPD:

50

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result

x 100

(Original Result + Duplicate Result)

SEACOR

11040 Main Street, #240

Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Soil

Analysis Method: WTPH-D

Units: mg/kg (ppm)

Analyst:

D. Anderson

Extracted:

Jul 27, 1993 Jul 27, 1993

Analyzed: Reported:

Aug 6, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Diesel

PRECISION ASSESSMENT Sample Duplicate

Diesel Range Hydrocarbons

Spike Conc.

Added:

67

Sample

Number: 307-0789

Spike

Result:

72

Original Result:

N.D.

%

Recovery:

107

Duplicate

Result: N.D.

Upper Control

Limit %:

120

80

Relative Relative Percent Difference values are not

% Difference reported at sample concentration levels

less than 10 times the Detection Limit.

Lower Control

Limit %:

Maximum

RPD:

50

NORTH CREEK ANALYTICAL Inc

Matthew T. Essig Project Manager

% Recovery:

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result (Original Result + Duplicate Result) /

x 100

3070789.SEA <13>

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Water

Analysis Method: EPA 8020

Units: μ g/L (ppb) QC Sample #: 307-0797

Analyst:

R. Lister

K. Wilke

Analyzed: Reported: Jul 26, 1993 Aug 6, 1993

MATRIX SPIKE QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl	
	Benzene	Toluene	Benzene	Xylenes
Sample Result:	N.D.	N.D.	N.D.	N.D.
Spike Conc.				
Added:	5.0	5.0	5.0	15
Spike				
Result:	5.6	5.2	5.5	15
Spike % Recovery:	112%	104%	110%	100%
	11270	10-170	11070	100 /6
Spike Dup.				
Result:	5.2	5.0	5.0	13
Spike				
Duplicate				
% Recovery:	104%	100%	100%	0.87 Q1
Upper Control				
Limit %:	123	118	126	114
Lower Control				
Limit %:	87	89	88	92
Relative % Difference:	7.4%	3.8%	0.091 Q 1	0.14 Q1
		0.070	0.001 Q1	0.14 0.1
Maximum				
RPD:	8.3	7.9	8.0	12

NORTH CREEK ANALYTICAL Inc. Please Note:

Q1 = The Spike recovery for this Q.C. sample is outside of NCA established control limits.

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG, #00058-019-01

Sample Matrix: Water

Analysis Method: WTPH-G

Units: μ g/L (ppb)

Analyst:

R. Lister

K. Wilke

Analyzed:

Jul 26, 1993 🖁

Reported:

Aug 6, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Gasoline

PRECISION ASSESSMENT Sample Duplicate

Gasoline Range **Organics**

Spike Conc.

Added:

100

Sample

Number:

307-0804

Spike Result:

90

Original Result:

N.D.

% Recovery:

90

Duplicate Result:

N.D.

Upper Control

Limit %:

120

Relative Percent Difference values are not

% Difference reported at sample concentration levels less than 10 times the Detection Limit.

Lower Control

Limit %:

80

Maximum

RPD:

20

NORTH CREEK ANALYTICAL Inc.[

Matthew T. Essig Project Manager

% Recovery:

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result (Original Result + Duplicate Result) / 2

x 100

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG, #00058-019-01

Sample Matrix: Water

Analysis Method: WTPH-D

Units: mg/L (ppm)

Analyst: D. Anderson

Extracted: Jul 27, 1993 Analyzed:

Reported:

Jul 27, 1993 Aug 6, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

Α	CCI	URA	CY	ASSE	S	SM	EN.	Γ
L	abo	orato	rv	Contr	ol	Sai	mnl	Δ

Diesel

PRECISION ASSESSMENT Sample Duplicate

Diesel Range **Organics**

Spike Conc.

Added:

2.1

Sample

Number:

307-0794

Spike

Result:

2.1

Original Result:

N.D.

Recovery:

100

Duplicate Result:

N.D.

Upper Control

Limit %:

110

Relative Relative Percent Difference values are not % Difference reported at sample concentration levels

less than 10 times the Detection Limit.

Lower Control

Limit %:

74

Maximum

RPD:

39

NORTH CREEK ANALYTICAL Inc.

Project Manager

% Recovery:

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result

x 100

(Original Result + Duplicate Result) / 2

HYDROCARBON ANALYSES FOOTNOTES

(8/92)

Code

Description

VOLATILE HYDROCARBONS - Gasoline Range Organics

- This sample appears to contain extractable diesel range organics. **G** 1
- The chromatogram for this sample is not a typical gasoline fingerprint. G 2
- The total hydrocarbon result in this sample is primarily due to a peak(s) eluting in the G 3 volatile hydrocarbon range. Identification and quantitation by EPA 8010, 8021 or 8240 is recommended.

EXTRACTABLE HYDROCARBONS - Diesel Range Organics

- D 1 This sample appears to contain volatile gasoline range organics.
- The hydrocarbons present in this sample are primarily due to very heavy, non-resolvable D 2 oil range organics. Quantitation by EPA 418.1 is recommended.
- The hydrocarbons present in this sample are a complex mixture of extractable diesel D_3 range and non-resolvable motor oil or other heavy oil range organics.
- The hydrocarbon result shown is an estimated (greater than) value due to high D 4 concentration. Reanalysis is being performed to yield a quantitative result.

	r	Oils & Lubricants	
r	Diesel & Fuel Oils	T.R.P.H. (418.1)]
Gasoline	Extractables (3550/8015)]	
Volatiles (5030/8015	_		
	HYDROCARBON BOILING PO	INT RANGE	

LOW LOW TO MEDIUM

MEDIUM

MEDIUM TO HIGH

VERY HIGH

CARBON RANGE:

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 +

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

CNG, #00058-019-01 Water

WTPH-G 307-0806 Sampled: Jul 22, 1993 Received: Jul 23, 1993

Analyzed: Jul 26, 1993 Reported: Aug 5, 1993

TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

Sample Number	Sample Description	Sample Result μg/L (ppb)	Surrogate Recovery %
307-0806	PURGE H2O DRUM	N.D.	107
BLK072693	Method Blank	N.D.	99

Reporting Limit:

50

4-Bromofluorobenzene surrogate recovery control limits are 50 - 150 %. Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane). Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID:

Sample Matrix:

CNG, #00058-019-01

ʻiX: bodi

Analysis Method: First Sample #:

Water EPA 8020 307-0806 Sampled: Received: Jul 22, 1993 Jul 23, 1993

Analyzed: Reported:

Jul 26, 1993 Aug 5, 1993

BTEX DISTINCTION

Sample Number	Sample Description	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)	Surrogate Recovery %
307-0806	PURGE H2O DRUM	N.D.	N.D.	N.D.	N.D.	103
BLK072693	Method Blank	N.D.	N.D.	N.D.	N.D.	100

Reporting Limits: 0.50 0.50 1.0

4-Bromofluorobenzene surrogate recovery control limits are 83 - 157 %. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR Client Project ID: CNG, #00058-019-01 Sampled: Jul 22, 1993 11040 Main Street, #240 Sample Matrix: Water Received: Jul 23, 1993 Bellevue, WA 98004 Analysis Method: WTPH-D Extracted: Jul 28, 1993 Attention: Gordon Shaffer First Sample #: 307-0806 Analyzed: Jul 29-30, 1993 Reported: Aug 5, 1993

TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/L (ppm)	Surrogate Recovery %
307-0806	PURGE H2O DRUM	0.39	88
BLK072893	Method Blank	N.D.	79

Reporting Li	mit:
--------------	------

0.25

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %.
Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24).
Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Water

Analysis Method: EPA 8020 Units: μ g/L (ppb)

QC Sample #: 307-0797

Analyst:

R. Lister

K. Wilke

Analyzed: Reported: Jul 26, 1993 Aug 5, 1993

MATRIX SPIKE QUALITY CONTROL DATA REPORT

		Eshad	
Benzene	Toluene	Benzene	Xylenes
N.D.	N.D.	N.D.	N.D.
5.0	5.0	5.0	15
5.6	5.2	5.5	15
112%	104%	110%	100%
5.2	5.0	5.0	13
104%	100%	100%	87%, Q-1
400			
123	118	126	114
0.7			
87	89	88	92
7.4%	3.8%	9.1%, Q-6	14%, Q-6
		•	.,
8.3	7.9	8.0	12
	N.D. 5.0 5.6 112% 5.2 104% 123 87 7.4%	N.D. N.D. 5.0 5.0 5.6 5.2 112% 104% 5.2 5.0 104% 100% 123 118 87 89 7.4% 3.8%	N.D. N.D. 5.0 5.0 5.6 5.2 5.5 112% 104% 110% 5.2 5.0 5.0 104% 100% 100% 123 118 126 87 89 88 7.4% 3.8% 9.1%, Q-6

NORTH CREEK ANALYTICAL Inc. Please Note:

Matthew T. Essig Project Manager Q-1 = The Spike Recovery for this QC sample is outside of the NCA established control limits.

Q-6 = The RPD value for this QC sample is outside of the NCA established control limits.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Water

Analysis Method: WTPH-G

Units: μ g/L (ppb)

Analyst:

R. Lister

K. Wilke

Analyzed:

Jul 26, 1993 Aug 5, 1993

Reported:

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Gasoline

PRECISION ASSESSMENT

Sample Duplicate

Gasoline Range **Organics**

Spike Conc.

Added:

100

Sample

Number:

307-0804

Spike

Result:

90

Original Result:

N.D.

% Recovery:

90

Duplicate Result:

N.D.

Upper Control

Limit %:

120

Relative Relative Percent Difference values are not

% Difference reported at sample concentration levels less than 10 times the Detection Limit.

Lower Control

Limit %:

80

Maximum

RPD:

20

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager

% Recovery:

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result (Original Result + Duplicate Result)

x 100

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG, #00058-019-01

Sample Matrix: Water Analysis Method: WTPH-D

Units: mg/L (ppm)

Analyst:

D. Anderson

Extracted: Analyzed:

Jul 28, 1993 Jul 29-30, 1993

Reported:

Aug 5, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Diesel

PRECISION ASSESSMENT Sample Duplicate

Diesel Range Organics

Spike Conc. Added:

2.1

Sample

Number:

307-0806

Spike

Result: 2.2 Original Result:

0.39

% Recovery: 105

Duplicate

Result:

0.41

Upper Control

Limit %:

110

Relative

% Difference

5.0

Lower Control

Limit %:

74

Maximum

RPD:

39

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig

Project Manager

% Recovery:

Relative % Difference:

Spike Result Spike Concentration Added x 100

Original Result - Duplicate Result

x 100

(Original Result + Duplicate Result) / 2

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

CNG, #00058-019-01 Water WTPH-G

Sampled: Jul 22, 1993 Received: Jul 23, 1993 Analyzed: Jul 26, 1993 Reported: Aug 5, 1993

TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

307-0806

Sample Number	Sample Description	Sample Result μg/L (ppb)	Surrogate Recovery %
307-0806	PURGE H2O DRUM	N.D.	107
BLK072693	Method Blank	N.D.	99

Reporting Limit:

50

4-Bromofluorobenzene surrogate recovery control limits are 50 - 150 %.

Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane).

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

CNG, #00058-019-01

Water EPA 8020 307-0806 Sampled: Received:

Jul 22, 1993 Jul 23, 1993

Analyzed: Reported:

Jul 26, 1993 Jul 26, 1993 Aug 5, 1993

BTEX DISTINCTION

Sample Number	Sample Description	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)	Surrogate Recovery %
307-0806	PURGE H2O DRUM	N.D.	N.D.	N.D.	N.D.	103
BLK072693	Method Blank	N.D.	N.D.	N.D.	N.D.	100

Reporting Limits:	0.50	0.50	0.50	1.0
<u> </u>				

4-Bromofluorobenzene surrogate recovery control limits are 83 - 157 %. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Matrix: CNG, #00058-019-01 Water Sampled: Received: Extracted: Jul 22, 1993 Jul 23, 1993 Jul 28, 1993

Analysis Method: First Sample #:

WTPH-D 307-0806

Analyzed: Ji Reported:

Jul 29-30, 1993 Aug 5, 1993

TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/L (ppm)	Surrogate Recovery %
307-0806	PURGE H2O DRUM	0.39	88
BLK072893	Method Blank	N.D.	79

Reporting Limit:

0.25

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %.

Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24).

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG, #00058-019-01

Sample Matrix: Water Analysis Method: EPA 8020

Units: μg/L (ppb) QC Sample #: 307-0797

Analyst:

R. Lister

K. Wilke

Jul 26, 1993

Analyzed: Reported: Aug 5, 1993

MATRIX SPIKE QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl	
	Benzene	Toluene	Benzene	Xylenes
Sample Result:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	5.0	5.0	5.0	15
Spike Result:	5.6	5.2	5.5	15
Spike % Recovery:	112%	104%	110%	100%
Spike Dup. Result:	5.2	5.0	5.0	13
Spike Duplicate % Recovery:	104%	100%	100%	87%, Q-1
Upper Control Limit %:	123	118	126	114
Lower Control Limit %:	87	89	88	92
Relative % Difference:	7.4%	3.8%	9.1%, Q-6	14%, Q-6
Maximum RPD:	8.3	7.9	8.0	12

NORTH CREEK ANALYTICAL Inc. Please Note:

Matthew T. Essig Project Manager

Q-1 = The Spike Recovery for this QC sample is outside of the NCA established control limits.

Q-6 = The RPD value for this QC sample is outside of the NCA established control limits.

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG, #00058-019-01

Sample Matrix: Water Analysis Method: WTPH-G

Units: µg/L (ppb)

Analyst:

R. Lister

K. Wilke

Analyzed: Reported: Jul 26, 1993

Aug 5, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Gasoline

PRECISION ASSESSMENT Sample Duplicate

Gasoline Range **Organics**

Spike Conc.

Added:

100

Sample

Number:

307-0804

Spike

Result:

90

Original

Result:

N.D.

% Recovery:

90

Duplicate Result:

N.D.

Upper Control

Limit %:

120

Relative Relative Percent Difference values are not

% Difference reported at sample concentration levels less than 10 times the Detection Limit.

Lower Control

Limit %:

80

Maximum

RPD:

20

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result

x 100

(Original Result + Duplicate Result) / 2

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG, #00058-019-01

Sample Matrix: Water Analysis Method: WTPH-D

Units: mg/L (ppm)

Analyst:

D. Anderson

Extracted:

Jul 28, 1993 Jul 29-30, 1993

Analyzed: Reported:

Aug 5, 1993

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

PRECISION ASSESSMENT Sample Duplicate

Diesel Range Organics

Spike Conc. Added:

2.1

Diesel

Sample

Number:

307-0806

Spike

Result:

2.2

Original

Result:

0.39

% Recovery:

105

Duplicate Result:

0.41

Upper Control

Limit %:

110

Relative % Difference

5.0

Lower Control

Limit %:

74

Maximum RPD:

): 39

NORTH CREEK ANALYTICAL Inc.[

Matthew T. Essig
Project Manager

% Recovery:

Spike Result

x 100

Spike Concentration Added

Relative % Difference:

Original Result - Duplicate Result

x 100

(Original Result + Duplicate Result) / 2

Date 2 / 23 / 22 Page _ of _

JULY 1994 RI/FS SAMPLING

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508
East 11115 Montgomery, Suite B • Spokane, WA 99206-4779
15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: Sample Matrix:

CNG Sunnyside, #00058-019-01

Soil

First Sample #:

407-0627

Received: Reported:

Jul 18, 1994 Aug 2, 1994

TOTAL SOLIDS & MOISTURE CONTENT REPORT

Sample Number	Sample Description	Total Solids %	Moisture Content %
407-0627	MW-9 (4.5)	86	14
407-0628	MW-9 (10.5 - 11.0)	64	36
407-0629	MW-10 (4.5 - 5.0)	85	15
407-0630	MW-10 (9.5 - 10.0)	72	28
407-0631	MW-11 (5.0 - 5.5)	84	16
407-0632	MW-11 (10.5 - 11.0)	69	31

The enclosed analytical results for soils, sediments and sludges have been converted to a DRY WEIGHT reporting basis. To attain the wet weight "as received" equivalent, multiply the dry weight result by the decimal fraction of percent Total Solids. The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig

Project Manager

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508
East 11115 Montgomery, Suite B • Spokane, WA 99206-4779
15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Matrix: Soil Received: Jul 18, 1994 Bellevue, WA 98004 **Analysis Method:** WTPH-G Analyzed: Jul 19, 1994 Attention: Gordon Shaffer First Sample #: 407-0627 Reported: Aug 2, 1994

TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

Sample Number	Sample Description	Sample Result mg/kg (ppm)	Surrogate Recovery %
407-0627	MW-9 (4.5)	N.D.	88
407-0628	MW-9 (10.5 - 11.0)	N.D.	80
407-0629	MW-10 (4.5 - 5.0)	N.D.	88
40 7-0 630	MW-10 (9.5 - 10.0)	N.D.	83
407-0631	MW-11 (5.0 - 5.5)	N.D.	91
407-0632	MW-11 (10.5 - 11.0)	N.D.	83
BLK071994	Method Blank	N.D.	96

Reporting Limits	50		

4-Bromofluorobenzene surrogate recovery control limits are 50 - 150 %.

Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane).

Analytes reported as N.D. were not detected above the stated Reporting Limit. The results reported above are on a dry weight basis.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig

Project Manager

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(509) 924-9200 • FAX 924-9290

(206) 481-9200 • FAX 485-2992

(503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Soil

Analysis Method: WTPH-G

Units: mg/kg (ppm)

Analyst:

Reported:

R. Lister

F. Shino

Analyzed:

Jul 19, 1994 Aug 2, 1994

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT Laboratory Control Sample

Gasoline

PRECISION ASSESSMENT

Sample Duplicate

Gasoline Range Hydrocarbons

Spike Conc.

Added:

5.0

Sample

Number:

407-0627

Spike

Result:

4.1

Original Result:

N.D.

% Recovery:

82

Duplicate Result:

N.D.

Upper Control

Limit %:

113

Relative

Relative Percent Difference values are not % Difference reported at sample concentration levels

less than 10 times the Detection Limit.

Lower Control

Limit %:

65

Maximum

RPD:

65

NORTH CREEK ANALYTICAL Inc.[

% Recovery:

Spike Result Spike Concentration Added x 100

Relative % Difference:

Original Result - Duplicate Result

x 100

(Original Result + Duplicate Result) / 2

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Matrix: Soil Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: WTPH-D Extracted: Jul 19, 1994 Attention: Gordon Shaffer First Sample #: 407-0627 Analyzed: Jul 21, 1994 Reported: Aug 2, 1994

TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/kg (ppm)	Surrogate Recovery %
407-0627	MW-9 (4.5)	N.D.	57
407-0628	MW-9 (10.5 - 11.0)	N.D.	57
407-0629	MW-10 (4.5 - 5.0)	N.D.	52
407-0630	MW-10 (9.5 - 10.0)	N.D.	66
407- 0 631	MW-11 (5.0 - 5.5)	N.D.	66
407-0632	MW-11 (10.5 - 11.0)	N.D.	67
BLK071994	Method Blank	N.D.	61

Reporting Limit:	100	

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %.

Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24).

Analytes reported as N.D. were not detected above the stated Reporting Limit. The results reported above are on a dry weight basis.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig

Project Manager

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Soil

Analysis Method: WTPH-D

Units: mg/kg (ppm)

Analyst: D. Anderson

Extracted:

Jul 19, 1994 Jul 21, 1994

Analyzed: Reported: Aug 2, 1994

HYDROCARBON QUALITY CONTROL DATA REPORT

ACCURACY ASSESSMENT **Laboratory Control Sample**

Diesel

PRECISION ASSESSMENT Sample Duplicate

Diesel Range

Hydrocarbons

Spike Conc.

Added:

74

Sample

Number: 407-0627

Spike

Result:

70

Original

Result: N.D.

%

Recovery:

95

Duplicate Result:

N.D.

Upper Control

Limit %:

118

Relative Percent Difference values are not % Difference reported at sample concentration levels

less than 10 times the Detection Limit.

Lower Control

Limit %:

81

Maximum

RPD:

45

NORTH CREEK ANALYTICAL Incl

% Recovery:

Spike Result Spike Concentration Added x 100

Relative % Difference:

Original Result - Duplicate Result

x 100

Matthew T. Essig Project Manager

(Original Result + Duplicate Result) / 2

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-9 (4.5) Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 28, 1994 Attention: Gordon Shaffer Sample Number: 407-0627 Reported: Aug 2, 1994

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)	Sample Results mg/kg (ppm)
Acetone Benzene 1,1-Dichloroethane 1,2-Dichloroethane Ethylbenzene Methylene chloride Toluene 1,1,1-Trichloroethane Total Xylenes	4,000 0.25 4,000 5.0 10 0.25 20 10	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH-GREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager Surrogate Standards Percent Recovery: Limits

1,2-Dichloroethane-d4 115 70-121

Toluene-d8 102 81-117

4-Bromofluorobenzene 92 74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: Jul 15, 1994 CNG Sunnyside, #00058-019-01 Sampled: 11040 Main Street, #240 Sample Descript: Received: Jul 18, 1994 Soil, MW-9 (10.5 - 11.0) Bellevue, WA 98004 Analysis Method: Analyzed: Jul 28, 1994 **EPA 8240** Attention: Gordon Shaffer Sample Number: 407-0628 Reported: Aug 2, 1994

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	4,000	***************************************	N.D.
Benzene	0.25	***************************************	N.D.
1,1-Dichloroethane	4,000	***************************************	N.D.
1,2-Dichloroethane	5.0		N.D.
Ethylbenzene	10	***************************************	N.D.
Methylene chloride	0.25		N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	10	•••••	N.D.
Total Xylenes	10	•••••	N.D.

The results reported above are on a dry weight basis. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTIGAL Inc.

Matthew T. Essig

Project Manager

Surrogate Standards Percent Recove	ery:	Control Limits
1,2-Dichloroethane-d4	120	70-121
Toluene-d8	101	81-117
4-Bromofluorobenzene	92	74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-10 (4.5 - 5.0) Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 28, 1994 Attention: Gordon Shaffer Sample Number: 407-0629 Reported: Aug 2, 1994

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)	Sample Results mg/kg (ppm)
AcetoneBenzene	4,000 0.25	 N.D. N.D.
1,1-Dichloroethane	4,000	 N.D.
1,2-Dichloroethane Ethylbenzene	10	 N.D. N.D.
Methylene chloride Toluene	0.25 20	 N.D. N.D.
1,1,1-Trichloroethane Total Xylenes	10 10	 N.D. N.D.

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew 1. Essig Project Manager
 Surrogate Standards Percent Recovery:
 Control Limits

 1,2-Dichloroethane-d4
 115
 70-121

 Toluene-d8
 100
 81-117

 4-Bromofluorobenzene
 92
 74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-10 (9.5 - 10.0) Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 28, 1994 Attention: Gordon Shaffer Sample Number: 407-0630 Reported: Aug 2, 1994

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	4.000		N.D.
Benzene	0.25	***************************************	N.D.
1,1-Dichloroethane	4,000	******************************	N.D.
1,2-Dichloroethane	5.0	*************************************	N.D.
Ethylbenzene	10	***************************************	N.D.
Methylene chloride	0.25		N.D.
Toluene	20	***************************************	N.D.
1,1,1-Trichloroethane	. 10	***************************************	N.D.
Total Xylenes	10	***************************************	N.D.

The results reported above are on a dry weight basis. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

-Matthew T. Essig

Project Manager

Surrogate Standards Percent Recove	ry:	Control Limits
1,2-Dichloroethane-d4	112	70-121
Toluene-d8	101	81-117
4-Bromofluorobenzene	92	74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 15,	1994
11040 Main Street, #240	Sample Descript:	Soil, MW-11 (5.0 - 5.5)	Received:	Jul 18,	999
Bellevue, WA 98004	Analysis Method:	EPA 8240	Analyzed:	Jul 28,	- 22
Attention: Gordon Shaffer	Sample Number:	407-0631	Reported:	Aug 2,	1994
				***************	000000000000000000000000000000000000000

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	4.000		N.D.
Benzene	0.25		N.D.
1,1-Dichloroethane	4,000	***************************************	N.D.
1,2-Dichloroethane	5.0	***************************************	N.D.
Ethylbenzene	10	***************************************	N.D.
Methylene chloride	0.25	***************************************	N.D.
Toluene	20	***************************************	N.D.
1,1,1-Trichloroethane	10	***************************************	N.D.
Total Xylenes	10	***************************************	N.D.

The results reported above are on a dry weight basis. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Percent Recovery:		Control Limits
1,2-Dichloroethane-d4	116	70-121
Toluene-d8	100	81-117
4-Bromofluorobenzene	92	74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-11 (10.5 - 11.0) Received: Jul 18, 1994 Bellevue, WA 98004 **Analysis Method: EPA 8240** Analyzed: Jul 28, 1994 Attention: Gordon Shaffer Sample Number: 407-0632 Reported: Aug 2, 1994

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	4.000	******	N.D.
Benzene	0.25		N.D.
1,1-Dichloroethane	4,000	***************************************	N.D.
1,2-Dichloroethane	5.0	*******************************	N.D.
Ethylbenzene	10	******************************	N.D.
Methylene chloride	0.25	*******************************	N.D.
Toluene	20	***************************************	N.D.
1,1,1-Trichloroethane	10	•••••	N.D.
Total Xylenes	10		N.D.

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager
 Surrogate Standards Percent Recovery:
 Control Limits

 1,2-Dichloroethane-d4
 116
 70-121

 Toluene-d8
 100
 81-117

 4-Bromofluorobenzene
 94
 74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG

CNG Sunnyside, #00058-019-01

Sample Descript:

Method Blank

Analysis Method: Sample Number:

EPA 8240 BLK072894 Analyzed: Reported: Jul 28, 1994 Aug 2, 1994

VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Acetone	4,000	***************************************	N.D.
Benzene	0.25	***************************************	N.D.
1,1-Dichloroethane	4,000		N.D.
1,2-Dichloroethane	5.0		N.D.
Ethylbenzene	10		N.D.
Methylene chloride	0.25	•••••	N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	10		N.D.
Total Xylenes	10		N.D.

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig

 Surrogate Standards Percent Recovery:
 Control Limits

 1,2-Dichloroethane-d4
 110
 70-121

 Toluene-d8
 101
 81-117

 4-Bromofluorobenzene
 92
 74-121

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Soil

Analysis Method: EPA 8240

Units: mg/kg (ppm) QC Sample #: 407-0631

Analyst:

K. Wilke

Analyzed: Reported: Jul 28, 1994 Aug 2, 1994

MATRIX SPIKE QUALITY CONTROL DATA REPORT

ANALYTE	<u> </u>				Chloro-	
	1,1-DCE	Benzene	TCE	Toluene	benzene	· · · · · · · · · · · · · · · · · · ·
Sample Result:	N.D.	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	2.38	2.38	2.38	2.38	2.38	
Spike Result:	1.51	1.93	1.69	1.96	1.92	
Spike % Recovery:	63%	81%	71%	82%	81%	
Spike Dup. Result:	1.48	1.95	1.71	1.98	1.96	
Spike Duplicate % Recovery:	62%	82%	72%	83%	82%	
Upper Control Limit %:	94	102	99	113	103	
Lower Control Limit %:	47	71	67	60	71	
Relative % Difference:	2.0%	1.0%	1.2%	1.0%	2.1%	
Maximum RPD:	11	12	10	23	10	

NORTH CREEK ANALYTICAL Inc. 1% Recovery:

Relative % Difference:

Spike Results - Sample Result Spike Conc. Added

x 100

Spike Result - Spike Dup, Result (Spike Result + Spike Dup. Result) / 2

x 100

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Sampled: Client Project ID: CNG Sunnyside, #00058-019-01 Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-9 (4.5) Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Analyzed: Jul 21, 1994 Attention: Gordon Shaffer Sample Number: 407-0627 Reported: Aug 2, 1994

SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Butylbenzyl phthalate	600		N.D.
Bis(2-ethylhexyl)phthalate	35	***************************************	N.D.
Di-n-octyl phthalate	800	************	N.D.
Di-ethyl phthalate	32,000	***************************************	N.D.
Di-n-butyl phthalate	4,000	***************************************	N.D.
Dibenzofuran	0.10	***************************************	N.D.
Naphthalene	160		N.D.
2-Methylnaphthalene	0.10	***************************************	N.D.
Pentachlorophenol	4.0	***************************************	. 5.2
Isophorone	500	***************************************	N.D.
Phenanthrene	0.50	•••••	N.D.

Surrogate Standards Percent Recovery: Control Limits		Surrogate Standards Percent Recovery:		Control Limits	
2-Fluorophenol	73	25-121	Nitrobenzene-d5	63	23-120
Phenol-d6	76	24-113	2-Fluorobiphenyl	68	30-115
2,4,6-Tribromophenol	59	19-122	p-Terphenyl-d14	93	18-137

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-9 (10.5 - 11.0) Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Analyzed: Jul 21, 1994 Attention: Gordon Shaffer Sample Number: 407-0628 Reported: Aug 2, 1994

SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Butylbenzyl phthalate	600		N.D.
Bis(2-ethylhexyl)phthalate	35	***************************************	N.D.
Di-n-octyl phthalate	800	***************************************	N.D.
Di-ethyl phthalate	32,000	*******************************	N.D.
Di-n-butyl phthalate	4,000	***************************************	N.D.
Dibenzofuran	0.25	***************************************	N.D.
Naphthalene	160	***************************************	N.D.
2-Methylnaphthalene	0.25	***************************************	N.D.
Pentachlorophenol	4.0	***************************************	N.D.
Isophorone	500	***************************************	N.D.
Phenanthrene	0.50		N.D.

Surrogate Standards Per	ate Standards Percent Recovery: Control Limits Surrogate Standards Percent Reco		nt Recovery:	Control Limits	
2-Fluorophenol	103	25-121	Nitrobenzene-d5	74	23-120
Phenol-d6	97	24-113	2-Fluorobiphenyl	92	30-115
2,4,6-Tribromophenol	67	19-122	p-Terphenyl-d14	108	18-137

The results reported above are on a dry weight basis. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK, ANALYTICAL Inc.

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

×44040 Mally Otyl 1 4646		1994
11040 Main Street, #240 Sample Descript: Soil, MW-10 (4.5 - 5.0) Received: Jul	•	1994
Bellevue, WA 98004 Analysis Method: EPA 8270 Analyzed: Jul		1994
«Attention: Corden Cheffer — O-west-Alicelten April 2000		1994

SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)	Sample Results mg/kg (ppm)
Butylbenzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Di-ethyl phthalate Di-n-butyl phthalate Dibenzofuran Naphthalene 2-Methylnaphthalene Pentachlorophenol Isophorone Phenanthrene	35 800 32,000 4,000 0.10 160 0.10	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

Surrogate Standards Perc	ent Recovery:	Control Limits	Surrogate Standards Perce	nt Recovery:	Control Limits
2-Fluorophenol	86	25-121	Nitrobenzene-d5	64	23-120
Phenol-d6	80	24-113	2-Fluorobiphenyl	72	30-115
2,4,6-Tribromophenol	63	19-122	p-Terphenyl-d14	90	18-137

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig

Project Manager

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 15, 1994 11040 Main Street, #240 Sample Descript: Soil, MW-10 (9.5 - 10.0) Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Analyzed: Jul 22, 1994 Attention: Gordon Shaffer Sample Number: 407-0630 Reported: Aug 2, 1994

SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)	Sample Results mg/kg (ppm)
Butylbenzyl phthalate	600 35 800 32,000 4,000	N.D. N.D. N.D. N.D. N.D.
Dibenzofuran	0.20 160 0.20 4.0 500 0.50	N.D. N.D. N.D. N.D. N.D. N.D. N.D.

Surrogate Standards Percent Recovery: Control Limits		Surrogate Standards Percent Recovery:		Control Limits	
2-Fluorophenol	93	25-121	Nitrobenzene-d5	80	23-120
Phenol-d6	82	24-113	2-Fluorobiphenyl	78	30-115
2,4,6-Tribromophenol	61	19-122	p-Terphenyl-d14	105	18-137

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 15, 1994
11040 Main Street, #240	Sample Descript:	Soil, MW-11 (5.0 - 5.5)	Received:	Jul 18, 1994
Bellevue, WA 98004	Analysis Method:	EPA 8270	Analyzed:	Jul 22, 1994
Attention: Gordon Shaffer		407-0631	Reported:	Aug 2, 1994

SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Butylbenzyl phthalate	600		N.D.
Bis(2-ethylhexyl)phthalate	35		N.D.
Di-n-octyl phthalate	800	•••••	N.D.
Di-ethyl phthalate	32.000		N.D.
Di-n-butyl phthalate	4.000		N.D.
Dibenzofuran	0.20		N.D.
Naphthalene	160	***************************************	N.D.
2-Methylnaphthalene	0.20	***************************************	N.D.
Pentachlorophenol	4.0	***************************************	N.D.
Isophorone	500	***************************************	N.D.
Phenanthrene	0.50		N.D.

Surrogate Standards Perc	ent Recovery:	Control Limits	Surrogate Standards Perce	nt Recovery:	Control Limits
2-Fluorophenol	81	25-121	Nitrobenzene-d5	73	23-120
Phenol-d6	74	24-113	2-Fluorobiphenyl	74	30-115
2,4,6-Tribromophenol	60	19-122	p-Terphenyl-d14	100	18-137

The results reported above are on a dry weight basis. Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager

4070627.SEA <18>

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 15,	1994
11040 Main Street, #240	Sample Descript:	Soil, MW-11 (10.5 - 11.0)	Received:	Jul 18,	1994
Bellevue, WA 98004	Analysis Method:	EPA 8270	Analyzed:	Jul 22,	1994
Attention: Gordon Shaffer	Sample Number:	407-0632	Reported:	Aug 2,	1994
			~~~~	**********	

# **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Butylbenzyl phthalate	600	•••••	N.D.
Bis(2-ethylhexyl)phthalate	35	***************************************	N.D.
Di-n-octyl phthalate	800		N.D.
Di-ethyl phthalate	32,000	***************************************	N.D.
Di-n-butyl phthalate	4,000		N.D.
Dibenzofuran	0.20	***************************************	N.D.
Naphthalene	160	***************************************	N.D.
2-Methylnaphthalene	0.20	***************************************	N.D.
Pentachlorophenol	4.0	***************************************	N.D.
Isophorone	500	***************************************	N.D.
Phenanthrene	0.50		N.D.

Surrogate Standards Per	cent Recovery:	Control Limits	Surrogate Standards Perce	nt Recovery:	Control Limits
2-Fluorophenol	97	25-121	Nitrobenzene-d5	85	23-120
Phenol-d6	87	24-113	2-Fluorobiphenyl	86	30-115
2,4,6-Tribromophenol	56	19-122	p-Terphenyl-d14	99	18-137

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

**SEACOR** 

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID:

CNG Sunnyside, #00058-019-01

Sample Descript:

Method Blank

Analysis Method: Sample Number:

EPA 8270 BLK072194 Analyzed: Reported: Jul 21, 1994 Aug 2, 1994

# **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Butylbenzyl phthalate	600	***************************************	N.D.
Bis(2-ethylhexyl)phthalate	35		N.D.
Di-n-octyl phthalate	800	***************************************	N.D.
Di-ethyl phthalate	32,000	***************************************	N.D.
Di-n-butyl phthalate	4,000	***************************************	N.D.
Dibenzofuran	0.10	***************************************	N.D.
Naphthalene	160 .	***************************************	N.D.
2-Methylnaphthalene	0.10	***************************************	N.D.
Pentachlorophenol	4.0	***************************************	N.D.
Isophorone	500	•••••	N.D.
Phenanthrene	0.50	••••••	N.D.

Surrogate Standards Per	cent Recovery:	Control Limits	Surrogate Standards Perce	nt Recovery:	Control Limits
2-Fluorophenol	81	25-121	Nitrobenzene-d5	65	23-120
Phenol-d6	84	24-113	2-Fluorobiphenyl	68	30-115
2,4,6-Tribromophenol	69	19-122	p-Terphenyl-d14	89	18-137

The results reported above are on a dry weight basis.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NOBTH CREEK ANALYTICAL Inc.



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Soil

Analysis Method: EPA 8270

Units: mg/kg (ppm) QC Sample #: 407-0627

Analyst:

D. Harmon

Extracted: Jul 20, 1994 Analyzed: Jul 21, 1994 Reported: Aug 2, 1994

### MATRIX SPIKE QUALITY CONTROL DATA REPORT

Analyte	Sample Result	Spike Conc. Added	Spike Result	Spike % Recovery	Spike Dup. Result	Spike Duplicate % Recovery	Relative % Difference
Phenol	N.D.	7.7	7.2	94% (36 -137%)	6.7	87% (36 -137%)	7% (60%)
2-Chlorophenol	N.D.	7.7	6.1	79% (39 -114%)	5.9	77% (39 -114%)	3% (59%)
1,4-Dichloro- benzene	N.D.	3.8	2.9	76% (23 -115%)	2.8	<b>74%</b> (23 -115%)	4% (60%)
N-Nitroso-di-n- propylamine	N.D.	3.8	3.4	89% (33 -142%)	3.2	84% (33 -142%)	6% (29%)
1,2,4-Trichloro- benzene	N.D.	3.8	2.5	66% (36 -119%)	2.4	<b>63</b> % (36 -119%)	4% (45%)
4-Chloro- 3-methylphenol	N.D.	7.7	6.2	81% (44 -117%)	6.1	79% (44 -117%)	2% (64%)
Acenaphthene	N.D.	3.8	3.2	84% (42 -115%)	3.0	79% (42 -115%)	6% (19%)
4-Nitrophenol	N.D.	7.7	6.6	86% (33 -99%)	6.4	<b>83</b> % (33 -99%)	3% (65%)
2,4-Dinitro- toluene	N.D.	3.8	3.6	95% (20 -124%)	3.4	89% (20 -124%)	6% (27%)
Pentachloro- phenol	N.D.	7.7	6.1	<b>7</b> 9% (21 -124%)	5.7	74% (21 -124%)	<b>7</b> % (59%)
Pyrene	N.D.	3.8	3.7	97% (46 -142%)	3.4	89% (46 -142%)	8% (14%)

Control Limits in Parentheses

NOBIH CREEK ANALYTICAL Inc. 1% Becovery:

Spike Result - Sample Result Spike Conc. Added

x 100

Relative % Difference:

Spike Result - Spike Dup. Result (Spike Result + Spike Dup. Result) / 2

x 100

SEACOR Chaim-of-Custody Record   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   CM   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny size   Sunny				Number of Containers														.	y		`
SEACOR Chain-of-Custody Record    1902   1902   1902   1902     1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1				Comments/ Instructions	7 29040	7	629	8	631	289				Sample Receipt	Total no. of containers	Rec'd good condition/cold:	SE MONE	Client:	Client Contact:	7	
SEACOR Chain-of-Custody Record    1902   1902   1902   1902     1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1902   1					4								ļ	ć	2	18/8/					<u> </u>
SEACOR Chain-of-Custody Record    1		irle									_	_		9/			1			بو	
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp		of the	luest											7	#	$A \in$				Dat	
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp	p.	/Su the		TCLP Metals										- Hu	\{\} \{\}	2/2	    ;				
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp	ecol	16 /	nalysi	Priority Pollutant										ived b	Ą	ipany /3	ived by		t	e	
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp	ly R	5/2 Sun,	W	608/8080 Total Lead	_									Rece.	Prin -	Con	Rec	Sign	Prin S		
SEACOR Selinquish	stoc	ν,		e25/8270 (GC/MS)							$\dashv$		-	\	1 2	18/8/					
SEACOR Selinquish	f-Cı			Halogenated Volatiles				<b>—</b>							) ABC	. J 🗀	1			te	
SEACOR  Sign  Time  Company  Time  Company  Time  Company  Time  Company  Time  Company  Time  Company  Time  Company  Time  Company  Time  Company	in-o			Volatile Organics	7	7	7	\			-		<u>i</u>	1	Fee					Ğ	
SEACOR Selinquish	Chai			Aromatic Volatiles	<del></del>									d by:	4	12 3	, A				
SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA				• MPTC (modified)	7					7				nquish	1 1 3	ipany e /2	nomishe		it	(e )	
	AC		. 11		7	1				\				Relii	Sign Prin	Con	Reli	Sign	Priin		
## 10040 Maria 4. 58    (202) (446 - 0250 Fra. (2)   Project # 0005X - 015 - 01	SE			Matrix	S	5	Ÿ	5	٧	1						ļ					
## 11 Oct 0 Mario St. 11 Oct 0 Mario St. 122, 646-0286 Feb. 12 Date			sk # 🗸	Time	57.	£0:3	12:1	1.42	4.34	4:5%					メンプ	to tic					
## 1/040   144.   12.2.   1.040   144.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.   1.0.2.		13 th	1	ate Con ate	15/24	18/5	1 44/5	15/94	12/21	18/21					8 B.	gue	4				
## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/040  ## 1/0		14 mil	5-0	4   <del> </del>	1/2		)/ <del>/</del> //	_	$\sim$			+		nents:	7 ' 7	730	088				
Froject # OOOSS Project Manager Laboratory Turn-around time: Sampler's Name: Sampler's Signatum Sample I  MW0 (4.5  MW0 (4.5  MW10 (4.5  MW10 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0 (4.5  MW0		140 146-	./Q-X	Ma 1 1 1 1	( i	,		1	<u>5.3-</u>	١				Comi	cxl	2	6				
Project # Project Ma Laboratory Turn-arour Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sampler's Sam		1/0	5000	nager  d time: Name: Signatu	7	(10.5	(4.5	5.57	(50	(10.5				ructions	(S) 	273	11				
Spec Spec Spec Spec Spec Spec Spec Spec			ject #	iect Ma oratory n-aroun upler's 1 upler's 5	5!	5-0	01-		11-1	1-11				ial Instr	7. 7.t	\{\}'	Л)				
	•		Proj	Pro Lab Turr Sam Sam	MW	MW	MW	M 14).	ME	MU				Spec	ر <u>ئ</u> ع :	<u>**</u>	#	·	·		

Date 07 / 15 / 54 Page __ of __



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

Sampled: SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Jul 16, 1994 Jul 18, 1994 11040 Main Street, #240 Sample Matrix: Received: Water Bellevue, WA 98004 Analysis Method: WTPH-G Analyzed: Jul 19, 1994 Reported: Attention: Gordon Shaffer First Sample #: 407-0637 Aug 2, 1994

#### TOTAL PETROLEUM HYDROCARBONS-GASOLINE RANGE

Sample Number	Sample Description	Sample Result µg/L (ppb)	Surrogate Recovery %
407-0637	MW-9	75	97
407-0638	MW-10	N.D.	90
407-0639	MW-11	N.D.	86
407-0641	MH-1	N.D.	69
BLK071994	Method Blank	N.D.	96

Reporting Limit:

50

4-Bromofluorobenzene surrogate recovery control limits are 50 - 150 %.

Volatile Total Petroleum Hydrocarbons are quantitated as Gasoline Range Organics (toluene - dodecane).

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Water

Analysis Method: WTPH-G Units:  $\mu$ g/L (ppb) Analyst:

R. Lister

F. Shino

Analyzed:

Jul 19, 1994

Reported: Aug 2, 1994

### HYDROCARBON QUALITY CONTROL DATA REPORT

**ACCURACY ASSESSMENT Laboratory Control Sample**  PRECISION ASSESSMENT

Sample Duplicate

Gasoline Range Organics

Spike Conc.

Added:

100

Gasoline

Sample

Number:

407-0622

Spike Result:

98

Original Result:

8,600

%

Recovery:

**Duplicate** Result:

8,400

**Upper Control** 

Limit %:

123

98

Relative

% Difference 2.4

**Lower Control** 

Limit %:

77

Maximum

RPD:

25

NORTH CREEK ANALYTICAL Inc.

% Recovery:

Spike Result Spike Concentration Added x 100

Original Result - Duplicate Result

x 100

Kelative % Difference:

(Original Result + Duplicate Result) / 2

Matthew T. Essig Project Manager

4070637.SEA <2>



(509) 924-9200 • FAX 924-9290

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(503) 624-9800 • FAX 684-3782

(206) 481-9200 • FAX 485-2992

CNG Sunnyside, #00058-019-01 **SEACOR** Client Project ID: Sampled: Jul 16, 1994 Sample Matrix: Received: Jul 18, 1994 11040 Main Street, #240 Water Bellevue, WA 98004 Analysis Method: WTPH-D Extracted: Jul 18, 1994 Attention: Gordon Shaffer First Sample #: 407-0637 Analyzed: Jul 19-20, 1994 Reported: Aug 2, 1994

#### TOTAL PETROLEUM HYDROCARBONS-DIESEL RANGE

Sample Number	Sample Description	Sample Result mg/L (ppm)	Surrogate Recovery %
407-0637	MW-9	5.1 D-1	75
407-0638	MW-10	N.D.	61
407-0639	MW-11	N.D.	83
407-0641	MH-1	0.36	81
BLK071894	Method Blank	N.D.	72

Reporting Limit: 250

2-Fluorobiphenyl surrogate recovery control limits are 50 - 150 %.

Extractable Total Petroleum Hydrocarbons are quantitated as Diesel Range Organics (C12 - C24).

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NOBIH CREEK ANALYTICALINC.

Matthew I. Essig



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Water

Analysis Method: WTPH-D

Units: mg/L (ppm)

Analyst:

D. Anderson

Extracted:

Jul 18, 1994

Analyzed: Reported: Jul 19-20, 1994 Aug 2, 1994

### HYDROCARBON QUALITY CONTROL DATA REPORT

**ACCURACY ASSESSMENT Laboratory Control Sample** 

Diesel

PRECISION ASSESSMENT

Sample Duplicate

Diesel Range **Organics** 

Spike Conc.

Added:

2.2

**Spike** 

Result:

2.1

%

Recovery:

95

**Upper Control** 

Limit %:

112

**Lower Control** Limit %:

83

Sample

Number: 407-0639

Original

Result:

N.D.

**Duplicate** 

Result:

N.D.

Relative

Relative Percent Difference values are not % Difference reported at sample concentration levels less than 10 times the Detection Limit.

Maximum RPD:

19

NORTH CREEK ANALYTICAL Inc.

% Recovery:

Spike Result

x 100

Spike Concentration Added

Relative % Difference: Matthew T. Essig

Original Result - Duplicate Result (Original Result + Duplicate Result) / 2

x 100



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

Jul 16, 1994 SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: 11040 Main Street, #240 Sample Descript: Jul 18, 1994 Water, MW-1 Received: Analysis Method: Bellevue, WA 98004 **EPA 8240** Analyzed: 7/19-8/1/1994 Attention: Gordon Shaffer Sample Number: 407-0633 Reported: Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
AcetoneBenzene	400 1.0		N.D. N.D.
1,1-Dichloroethane			N.D.
1,2-DichloroethaneEthylbenzene	<b>2.0</b> 20	***************************************	N.D.
Methylene chloride Toluene	2.5 20		N.D. N.D.
1,1,1-Trichloroethane Total Xylenes	100 10		N.D. N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Percent Rec	overy:	Control Limits
1,2-Dichloroethane-d4	110	76-114
Toluene-d8	98	88-110
4-Bromofluorobenzene	89	86-115



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 16,	1994
11040 Main Street, #240	Sample Descript:	Water, MW-2	Received:	Jul 18,	1994
Bellevue, WA 98004	Analysis Method:	EPA 8240	Analyzed:	Jul 19,	1994
Attention: Gordon Shaffer	Sample Number:	407-0634	Reported:	Aug 3,	1994
- 8		***************************************	~~~~	************	***************************************

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Acetone	400	•••••	N.D.
Benzene	1.0		N.D.
1,1-Dichloroethane	1.0		N.D.
1,2-Dichloroethane	2.0	***************************************	N.D.
Ethylbenzene	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Methylene chloride	2.5		N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100	•••••	N.D.
Total Xylenes	10		N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

		Control
Surrogate Standards Percent Recovery	<b>/:</b>	Limits
1,2-Dichloroethane-d4	113	76-114
Toluene-d8	101	88-110
4-Bromofluorobenzene	93	86-115



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 16,	1994
11040 Main Street, #240	Sample Descript:	Water, MW-3	Received:	Jul 18,	1994
Bellevue, WA 98004	Analysis Method:	EPA 8240	Analyzed:	7/19-8/1/	′1994 <b>》</b>
Attention: Gordon Shaffer	Sample Number:	407-0635	Reported:	Aug 3,	1994
				************	

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Acetone	80,000		N.D.
Benzene	200	***************************************	2,600
1,1-Dichloroethane	200	***************************************	N.D.
1,2-Dichloroethane	400		460
Ethylbenzene	4,000	***************************************	N.D.
Methylene chloride	500	***************************************	N.D.
Toluene	4,000	***************************************	N.D.
1,1,1-Trichloroethane	20,000	***************************************	N.D.
Total Xylenes	2,000	***************************************	N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit. Because matrix effects and/or other factors required additional sample dilution, reporting limits for this sample have been raised.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Percent Recovery:		Control Limits
1,2-Dichloroethane-d4	116	76-114
Toluene-d8	101	88-110
4-Bromofluorobenzene	92	86-115



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

CNG Sunnyside, #00058-019-01 Sampled: Jul 16, 1994 SEACOR Client Project ID: Water, MW-4 Received: Jul 18, 1994 11040 Main Street, #240 Sample Descript: Analysis Method: **EPA 8240** Analyzed: Jul 19, 1994 Bellevue, WA 98004 Reported: Attention: Gordon Shaffer Sample Number: 407-0636 Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)		Sample Results μg/L (ppb)
Acetone	400		N.D.
Benzene	1.0		110
1,1-Dichloroethane	1.0		N.D.
1,2-Dichloroethane	2.0		27
Ethylbenzene	20	***************************************	59
Methylene chloride	2.5		N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100	•••••	N.D.
Total Xylenes	10	***************************************	42

S-3 = The Surrogate Recovery for 1,2-Dichloroethane-d4 is outside of the NCA established control limits.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager

 Surrogate Standards Percent Recovery:
 Control Limits

 1,2-Dichloroethane-d4
 132, S-3
 76-114

 Toluene-d8
 100
 88-110

 4-Bromofluorobenzene
 103
 86-115



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 16, 1994 Sample Descript: Water, MW-9 Received: Jul 18, 1994 11040 Main Street, #240 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0637 Reported: Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Acetone	400	•••••	N.D.
Benzene	1.0	•••••	N.D.
1,1-Dichloroethane	1.0		N.D.
1,2-Dichloroethane	2.0		. 10
Ethylbenzene	20		N.D.
Methylene chloride	2.5		N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100	**************	N.D.
Total Xylenes	10		N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

		Control
Surrogate Standards Percent Recovery:		Limits
1,2-Dichloroethane-d4	119	76-114
Toluene-d8	101	88-110
4-Bromofluorobenzene	94	86-115



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 16, 1994 Sample Descript: 11040 Main Street, #240 Water, MW-10 Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0638 Reported: Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu g/L$ (ppb)		Sample Results μg/L (ppb)
Acetone	400		N.D.
Benzene	1.0		N.D.
1,1-Dichloroethane	1.0	•••••	N.D.
1,2-Dichloroethane	2.0		. 3.2
Ethylbenzene	20	***************************************	N.D.
Methylene chloride	2.5		N.D.
Toluene	20	******************************	N.D.
1,1,1-Trichloroethane	100	***************************************	N.D.
Total Xylenes	10	•••••	N.D.

S-3 = The Surrogate Recovery for 1,2-Dichloroethane-d4 is outside of the NCA established control limits.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Perce	ent Recovery:	Control Limits
1,2-Dichloroethane		76-114
Toluene	-d8 100	88-110
4-Bromofluorobenz	ene 91	86-115



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR CNG Sunnyside, #00058-019-01 Client Project ID: Sampled: Jul 16, 1994 11040 Main Street, #240 Sample Descript: Water, MW-11 Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0639 Reported: Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)	Sample Results $\mu g/L$ (ppb)
Acetone	2.0	 N.D. N.D. N.D.
Ethylbenzene	20 2.5 20 100 10	N.D. N.D. N.D. N.D. N.D.

S-3 = The Surrogate Recovery for 1,2-Dichloroethane-d4 is outside of the NCA established control limits.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Percent Rec	overy:	Control Limits
1,2-Dichloroethane-d4	117, S-3	76-114
Toluene-d8	100	88-110
4-Bromofluorobenzene	91	86-115



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

Sampled: Client Project ID: CNG Sunnyside, #00058-019-01 Jul 16, 1994 SEACOR Sample Descript: Water, BLANK Received: Jul 18, 1994 11040 Main Street, #240 Analyzed: Analysis Method: Jul 19, 1994 Bellevue, WA 98004 EPA 8240 Attention: Gordon Shaffer Sample Number: 407-0640 Reported: Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	<b>Reporting Limit</b> μg/L (ppb)		Sample Results $\mu g/L$ (ppb)
Acetone	400		N.D.
Benzene	1.0		N.D.
1,1-Dichloroethane	1.0		N.D.
1,2-Dichloroethane	2.0	* *************************************	N.D.
Ethylbenzene	20	***************************************	N.D.
Methylene chloride	2.5	***************************************	N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100		N.D.
Total Xylenes	10		N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

		Control
Surrogate Standards Percent Recovery:		Limits
1,2-Dichloroethane-d4	110	76-114
Toluene-d8	100	88-110
4-Bromofluorobenzene	90	86-115



(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Sampled: Client Project ID: CNG Sunnyside, #00058-019-01 Jul 16, 1994 11040 Main Street, #240 Sample Descript: Water, MH-1 Jul 18, 1994 Received: Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0641 Reported: Aug 1, 1932

### **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results $\mu g/L$ (ppb)
Acetone	400	***************************************	N.D.
Benzene	1.0	***************************************	. N.D.
1,1-Dichloroethane	1.0	•••••	N.D.
1,2-Dichloroethane	2.0		N.D.
Ethylbenzene	20		N.D.
Methylene chloride	2.5		N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100		N.D.
Total Xylenes	10	***************************************	N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Percent Recov	very:	Control
1,2-Dichloroethane-d4	108	76-114
Toluene-d8	98	88-110
4-Bromofluorobenzene	88	86-115



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

Sampled: SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Jul 16, 1994 Sample Descript: Received: Jul 18, 1994 11040 Main Street, #240 Water, MW-12 7/19-8/1/1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Attention: Gordon Shaffer Sample Number: 407-0642 Reported: Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results $\mu$ g/L (ppb)
Acetone	400		N.D.
Benzene	1.0		N.D.
1,1-Dichloroethane	1.0		N.D.
1,2-Dichloroethane	2.0	***************************************	120
Ethylbenzene	20	***************************************	N.D.
Methylene chloride	3.0		N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100.		N.D.
Total Xylenes	10		N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

		Control
Surrogate Standards Percent Recovery:	;	Limits
1,2-Dichloroethane-d4	106	76-114
Toluene-d8	95	88-110
4-Bromofluorobenzene	87	86-115



East 11115 Montgomery, Suite 8 • Spokane, WA 99206-4779

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155 (503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID:

CNG Sunnyside, #00058-019-01

Sample Descript:

Method Blank

Analysis Method: Sample Number:

EPA 8240 BLK071994 Analyzed: Reported: Jul 19, 1994 Aug 3, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)		Sample Results $\mu g/L$ (ppb)
Acetone	400		N.D.
Benzene	1.0	***************************************	N.D.
1,1-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	2.0		N.D.
Ethylbenzene	20	***************************************	N.D.
Methylene chloride	2.0	***************************************	N.D.
Toluene	20		N.D.
1,1,1-Trichloroethane	100	***************************************	N.D.
Total Xylenes	10		N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

		Control
Surrogate Standards Percent Recovery	<i>y</i> :	Limits
1,2-Dichloroethane-d4	103	76-114
Toluene-d8	100	88-110
4-Bromofluorobenzene	92	86-115

(509) 924-9200 • FAX 924-9290 15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992

(503) 624-9800 • FAX 684-3782

SEACOR

11040 Main Street, #240 Bellevue, WA 98004

Attention: Gordon Shaffer

Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Water

Analysis Method: EPA 8240 Units:  $\mu$ g/L (ppb)

QC Sample #: 407-0633

Analyst:

K. Wilke

Analyzed:

Jul 19, 1994

Reported:

Aug 3, 1994

### MATRIX SPIKE QUALITY CONTROL DATA REPORT

ANALYTE	11005	Danners	TOF	Talvana	Chloro-	
·	1,1-DCE	Benzene	TCE	Toluene	benzene	
Sample Result:	N.D.	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	10.0	10.0	10.0	10.0	10.0	
Spike Result:	5.7	8.8	9.4	11.1	10.1	
Spike % Recovery:	57%	88%	94%	111%	101%	
Spike Dup. Result:	5.4	8.6	9.1	10.7	9.9	
Spike Duplicate % Recovery:	54%	86%	91%	107%	99%	
Upper Control Limit %:	120	124	112	120	128	
Lower Control Limit %:	56	69	80	75	62	
Relative % Difference:	5.4%	2.3%	3.2%	3.7%	2.0%	
Maximum RPD:	10	13	11	11	12	

NORTH CREEK ANALYTICAL Inc. 1% Recovery:

Relative % Difference:

Spike Result - Sample Result Spike Conc. Added

x 100

Spike Result - Spike Dup. Result (Spike Result + Spike Dup. Result) / 2

x 100



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 16,	1994
11040 Main Street, #240	Sample Descript:	Water, MW-1	Received:	Jul 18,	1994
Bellevue, WA 98004	Analysis Method:	EPA 8270	Extracted:	Jul 19,	1994
Attention: Gordon Shaffer	Sample Number:	407-0633	Analyzed:	Jul 21,	1994
			Reported:	Aug 2,	1994

# **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)	Sample Results μg/L (ppb)
Butylbenzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Di-ethyl phthalate Di-n-butyl phthalate Dibenzofuran Isophorone 2-Methylnaphthalene Naphthalene	1,600 3.0 160 6,400 800 10 50 10	N.D. N.D. N.D. N.D.
PentachlorophenolPhenanthrene	10 10	 N.D. N.D.

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Percent Recovery:		Control Limits	
2-Fluorophenol	64	21-100	Nitrobenzene-d5	61	35-114	
Phenol-d6	68	10-94	2-Fluorobiphenyl	75	43-116	
2,4,6-Tribromophenol	60	10-123	p-Terphenyl-d14	92	33-141	

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager

4070637.SEA <17>



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 16, 1994 Sample Descript: 11040 Main Street, #240 Water, MW-2 Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Extracted: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0634 Analyzed: Jul 21, 1994 Reported: Aug 2, 1994

#### **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalate	1,600		N.D.
Bis(2-ethylhexyl)phthalate	3.0	•••••	N.D.
Di-n-octyl phthalate	160	***************************************	N.D.
Di-ethyl phthalate	6,400	***************************************	N.D.
Di-n-butyl phthalate	800	•••••	N.D.
Dibenzofuran	10	•••••	N.D.
Isophorone	50		N.D.
2-Methylnaphthalene	10		N.D.
Naphthalene	16	***************************************	N.D.
Pentachlorophenol	10	•••••	N.D.
Phenanthrene	10		N.D.

Surrogate Standards Percent Recovery: Control Limit		Control Limits	Surrogate Standards Perce	nt Recovery:	Control Limits	
2-Fluorophenol	57	21-100	Nitrobenzene-d5	65	35-114	
Phenol-d6	57	10-94	2-Fluorobiphenyl	83	43-116	
2,4,6-Tribromophenol	68	10-123	p-Terphenyl-d14	94	33-141	

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR Jul 16, 1994 CNG Sunnyside, #00058-019-01 Client Project ID: Sampled: 11040 Main Street, #240 Sample Descript: Water, MW-3 Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Extracted: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0635 Analyzed: Jul 21, 1994 Reported: Aug 2, 1994

#### SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalate	1,600	***************************************	N.D.
Bis(2-ethylhexyl)phthalate	3.0	*******************************	N.D.
Di-n-octyl phthàlate	160	***************************************	N.D.
Di-ethyl phthalate	6,400	***************************************	N.D.
Di-n-butyl phthalate	800	******************************	N.D.
Dibenzofuran	10	******************************	N.D.
Isophorone	50	*************************	N.D.
2-Methylnaphthalene	10	***************************************	. 27
Naphthalene	16	***************************************	. 120
Pentachlorophenol	10	***************************************	N.D.
Phenanthrene	10		N.D.

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Percent Recovery:		Control Limits	
2-Fluorophenoi	85	21-100	Nitrobenzene-d5	77	35-114	
Phenol-d6	98, S-3	10-94	2-Fluorobiphenyl	66	43-116	
2,4,6-Tribromophenol	75	10-123	p-Terphenyl-d14	95	33-141	

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH-CREEK ANALYTICAL Inc. Please Note:

3-3 = The Surrogate Recovery for Phenol-d6 is outside of NCA established control limits.

Matthew T. Essig



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 16, 1994 11040 Main Street, #240 Sample Descript: Water, MW-4 Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Extracted: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0636 Analyzed: Jul 21, 1994 Reported: Aug 2, 1994

#### **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Di-ethyl phthalate Di-n-butyl phthalate Dibenzofuran Isophorone 2-Methylnaphthalene Naphthalene Pentachlorophenol	1,600 3.0 160 6,400 800 10 50 10		N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
Phenanthrene	10	***************************************	N.D.

Surrogate Standards Percent Recovery: Contr		Control Limits	Surrogate Standards Percent Recovery:		Control Limits	
2-Fluorophenol	95	21-100	Nitrobenzene-d5	69	35-114	
Phenol-d6	87	10-94	2-Fluorobiphenyi	78	43-116	
2,4,6-Tribromophenol	67	10-123	p-Terphenyl-d14	97	33-141	

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 16.	1994
11040 Main Street, #240	Sample Descript:	Water, MW-12	Received:	Jul 18,	1994
Bellevue, WA 98004	Analysis Method:		Extracted:	Jul 19,	1994
Attention: Gordon Shaffer	Sample Number:	407-0642	Analyzed:	Jul 21,	1994
			Reported:	Aug 2,	

## **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)	Sample Results µg/L (ppb)
Butylbenzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Di-ethyl phthalate Di-n-butyl phthalate Dibenzofuran Isophorone 2-Methylnaphthalene Naphthalene Pentachlorophenol	1,600 6.0 160 6,400 800 10 50 10	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
Phenanthrene	10	 N.D.

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Percent Recovery:		Control Limits	
2-Fluorophenol	27	21-100	Nitrobenzene-d5	55	35-114	
Phenol-d6	38	10-94	2-Fluorobiphenyl	66	43-116	
2,4,6-Tribromophenol	39	10-123	p-Terphenyl-d14	86	33-141	

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.



(509) 924-9200 • FAX 924-9290 15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(503) 624-9800 • FAX 684-3782

(206) 481-9200 • FAX 485-2992

**SEACOR** 

Client Project ID:

CNG Sunnyside, #00058-019-01

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Sample Descript:

Method Blank

Analysis Method: Sample Number: **EPA 8270** 

BLK071994

Extracted: Analyzed: Jul 19, 1994 Jul 21, 1994

Reported:

Aug 2, 1994

## **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalateBis(2-ethylhexyl)phthalate	1,600 3.0		N.D.
Di-n-octyl phthalate	160	***************************************	N.D. N.D.
Di-ethyl phthalate Di-n-butyl phthalate	6,400 800		N.D. N.D.
DibenzofuranIsophorone	10 50		N.D. N.D.
2-MethylnaphthaleneNaphthalene	10 16		N.D. N.D.
PentachlorophenolPhenanthrene	10 10		N.D. N.D.
		***************************************	

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Perce	Control Limits	
2-Fluorophenol	81	21-100	Nitrobenzene-d5	65	35-114
Phenol-d6	84	10-94	2-Fluorobiphenyl	68	43-116
2,4,6-Tribromophenol	69	10-123	p-Terphenyl-d14	89	33-141

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

(509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

(206) 481-9200 • FAX 485-2992

15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: CNG Sunnyside, #00058-019-01

Sample Matrix: Water

Analysis Method: EPA 8270

Units :  $\mu$ g/L (ppb) QC Sample #: 407-0642

Analyst:

D. Harmon

Extracted: Analyzed: Jul 19, 1994

Reported:

Jul 22, 1994 Aug 2, 1994

#### MATRIX SPIKE QUALITY CONTROL DATA REPORT

Analyte	Sample Result	Spike Conc. Added	Spike Result	Spike % Recovery	Spike Dup. Result	Spike Duplicate % Recovery	Relative % Difference
Phenol	N.D.	200	122	61% (39 -122%)	117	59% (39 -122%)	4% (38%)
2-Chlorophenol	N.D.	200	148	<b>7</b> 4% (42 -137%)	137	69% (42 -137%)	8% (60%)
1,4-Dichloro- benzene	N.D.	100	49	49% (37 -122%)	47	47% (37 -122%)	4% (41%)
N-Nitroso-di-n- propylamine	N.D.	100	80	80% (47 -154%)	74	74% (47 -154%)	8% (46%)
1,2,4-Trichloro- benzene	N.D.	100	65	65% (34 -136%)	65	65% (34 -136%)	0% (44%)
4-Chloro- 3-methylphenol	N.D.	200	176	88% (42 -136%)	150	75% (42 -136%)	16% (43%)
Acenaphthene	N.D.	100	61	<b>61</b> % (32 -140%)	56	56% (32 -140%)	9% (45%)
4-Nitrophenol	N.D.	200	165	83% (0 -99%)	154	77% (0 -99%)	7% (69%)
2,4-Dinitro- toluene	N.D.	100	92	92% (46 -146%)	86	86% (46 -146%)	7% (47%)
Pentachloro- phenol	N.D.	200	146	73% (40 -180%)	137	69% (40 -180%)	6% (40%)
Pyrene	N.D.	100	94	94% (52 -166%)	87	87% (52 -166%)	8% (46%)

Control Limits in Parentheses

NORTH CREEK ANALYTICAL Inc. % Recovery:

Matthew T. Essign Project Manager

Spike Result - Sample Result

Spike Conc. Added

Relative % Difference:

Spike Result - Spike Dup. Result (Spike Result + Spike Dup. Result) / 2

x 100

x 100

Record
Chain-of-Custody
SEACOR (

ddress

		ners	Contai	lo 19	qun	N	Q.	e	,	e	v	7	J	_	7	7					T		()		<u>۔</u>
				Comments/ Instructions			75633			636		CV	39	640		249	Sample Receipt	Total no. of containers	Chain of custody seals:	Rec'd good condition/cold: Conforms to record:	SEMCOR	Client:	Gwalon Schu Her		(de) 646 - 0280
, 54	Analysis Request		Jue	iullo	I yin I) sle	7421 Prior Mets	04										Received by:	Sign Ann Ann Ann Ann Ann Ann Ann Ann Ann A	) / / / / / / / / / / / / / / / / / / /	Time 1320 Date 718/94	/ed by:	Sign	Print	Company	
Sungside			Volatile Volatile (CRA)	Organ) (GC) (GC) (GC) (GC) (GC) (GC) (GC) (GC	D blit. 8240 8010 1008: 8010-i	Vola , 624, Halo 601 / Semi 625 / 1294	`		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7							/ / R	Kingholis	14 12.1	Date 2/18/94 T		S	P		Dote
6-0283				osfilbe 1.8	0m) (mo	147W 2108 147W 2108 14T					/ /	/ /	/ /		<i>&gt; &gt;</i>		Relinquished by:	Sign A	Company Math	0 0	Relinquished by:	Sign	Print	Company	Ë
180 FAX: (200) 646-0283	1-01 Tack # CO 902	, W	standard	in Fernandez	_ <u>}</u> .	Date Time Matrix	7/10/cg 11:00 U	7/14/4/3:2 W	F/14/9415:55 W	7/11/54 15:05 0	7/10/4/12:05 W	7/16/64 13:15 W	7/10/9/4:15 D	3	Ha154 4:00 W	7/10/8/11:30 W	ints:	NO OFFX	# TROUTEROOM \$						
(200) 6410 -0280	Project # 0005x -0/9-01	Project Manager Berdon	1 '	Sampler's Name: Sania	ıre:	Sample ID	1- 9W.	MW-2	MW-3	M W - 4.	A C - 9.	MUN	M W-11	Blank	MH-1	11 4-12	=	O WTAH-G DUCY	All ANDYCES PER	J.					

Date 07 / 14 / 14 Page / of /

# AUGUST 1994 RI/FS SAMPLING



18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508

East 11115 Montgomery, Suite B • Spokane, WA 99206-4776 (509) 924-9200 • FAX 924-9290

9405 S.W. Nimbus Avenue • Beaverton, OR 97008-7132 (503) 643-9200 • FAX 644-2202

(206) 481-9200 • FAX 485-2992

SEACOR 11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer

Client Project ID: Sample Descript:

CNG Sunnyside, #00058-019-01

Water, CD-WEST

**EPA 8240** Analysis Method: Sample Number: 408-0322

Sampled:

Aug 5, 1994

Received: Analyzed:

Aug 8, 1994 Aug 10, 1994

Reported:

Aug 16, 1994

# **VOLATILE ORGANICS by GC/MS**

Analyte		Reporting Limit μg/L (ppb)		Sample Results μg/L (ppb)
Acetone		10		N.D.
Benzene	***************************************	2.0		. 30
1,1-Dichloroethane		2.0 2.0		N.D. N.D.
			***************************************	. 18
Methylene chloride Toluene		5.0 2.0 5.0		N.D. N.D. N.D. N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL inc.

Surrogate Standards Percent Recover	ry:	Control Limits
1,2-Dichloroethane-d4	106	76-114
Toluene-d8	100	88-110
4-Bromofluorobenzene	97	86-115



9405 S.W. Nimbus Avenue • Beaverton, OR 97008-7132

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 643-9200 • FAX 644-2202

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Aug 5, 1994 11040 Main Street, #240 Sample Descript: Water, CD-EAST Received: Aug 8, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8240** Analyzed: Aug 10, 1994 Attention: Gordon Shaffer Sample Number: 408-0323 Reported: Aug 16, 1994

## **VOLATILE ORGANICS by GC/MS**

Analyte		Reporting Limit		Sample Results
		$\mu$ g/L (ppb)		μg/L (ppb)
Acetone	•••••	10		N.D.
		2.0		N.D.
		2.0	***************************************	N.D.
				N.D.
Ethylbenzene		5.0	•••••	N.D.
Methylene chloride	•••••	5.0	•••••	N.D.
Toluene		2.0		N.D.
1,1,1-Trichloroethane		5.0	***************************************	N.D.
Total Xylenes		5.0	***************************************	N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Surrogate Standards Percent Recover	ry:	Control Limits
1,2-Dichloroethane-d4	106	76-114
Toluene-d8	101	88-110
4-Bromofluorobenzene	95	86-115



18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508 (206) 481-9200 • FAX 485-2992 East 11115 Montgomery, Suite B • Spokane, WA 99206-4776 (509) 924-9200 • FAX 924-9290 9405 S.W. Nimbus Avenue • Beaverton, OR 97008-7132 (503) 643-9200 • FAX 644-2202

**SEACOR** 

11040 Main Street, #240

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID:

CNG Sunnyside, #00058-019-01

Sample Descript:

Method Blank

Analysis Method: Sample Number:

**EPA 8240** BLK081094 Analyzed: Reported: Aug 10, 1994 Aug 16, 1994

## **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)		Sample Results μg/L (ppb)
Acetone	10	•••••	N.D.
Benzene	2.0		N.D.
1,1-Dichloroethane	2.0	***************************************	N.D.
1,2-Dichloroethane	2.0		N.D.
Ethylbenzene	5.0		N.D.
Methylene chloride	5.0		N.D.
Toluene	2.0	***************************************	N.D.
1,1,1-Trichloroethane	5.0	***************************************	N.D.
Total Xylenes	5.0		N.D.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

•		Control
Surrogate Standards Percent Recovery:		Limits
1,2-Dichloroethane-d4	105	76-114
Toluene-d8	100	88-110
4-Bromofluorobenzene	94	86-115



18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508 (206) 481-9200 • FAX 485-2992 East 11115 Montgomery, Suite B • Spokane, WA 99206-4776 (509) 924-9200 • FAX 924-9290 9405 S.W. Nimbus Avenue • Beaverton, OR 97008-7132 (503) 643-9200 • FAX 644-2202

SEACOR

11040 Main Street, #240

Client Project ID: CNG Sunnyside, #00058-019-01

Analyst:

K. Wilke

Bellevue, WA 98004

Sample Matrix: Water Analysis Method: EPA 8240

Analyzed:

Aug 10, 1994

Attention: Gordon Shaffer

Units: μg/L (ppb) QC Sample #: 408-0196

Reported:

Aug 16, 1994

#### MATRIX SPIKE QUALITY CONTROL DATA REPORT

ANALYTE	1,1-DCE	Benzene	TCE	Toluene	Chloro- benzene		
Sample Result:	N.D.	N.D.	N.D.	N.D.	N.D.		
Spike Conc. Added:	10.0	10.0	10.0	10.0	10.0	•	
Spike Result:	10.6	10.6	9.2	10.4	9.8		
Spike % Recovery:	106%	106%	92%	104%	98%		
Spike Dup. Result:	10.8	10.6	9.5	10.4	10.0		· · · · · · · · · · · · · · · · · · ·
Spike Duplicate % Recovery:	108%	106%	95%	104%	100%		
Upper Control Limit %:	120	124	112	120	128		
Lower Control Limit %:	56	69	80	75	62		
Relative % Difference:	1.9%	0.0%	3.2%	0.0%	2.0%		
Maximum RPD:	10 .	13	11	11	12		

NORTH CREEK ANALYTICAL Inc. % Recovery:

Spike Result - Sample Result Spike Conc. Added

x 100

Matthew T. Essig Project Manager

Relative % Difference:

Spike Result - Spike Dup, Result (Spike Result + Spike Dup. Result) / 2 x 100



Total Xylenes .....

18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508

East 11115 Montgomery, Suite B • Spokane, WA 99206-4776

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

9405 S.W. Nimbus Avenue • Beaverton, OR 97008-7132

(503) 643-9200 • FAX 644-2202

SEACOR 11040 Main Street, #240 Bollows WA 08004

Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: Sample Descript:

Analysis Method:

Sample Number:

CNG Sunnyside, #00058-019-01

Water, MW-3 EPA 8240

408-0324

Sampled:

Aug 5, 1994

Received: Analyzed: Aug 8, 1994 Aug 10, 1994

Reported: Aug 16, 1994

220

# **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)	
Acetone	10	***************************************	<u>51</u>	$\neg$
Benzene	2.0	*******************************	2,300	
1,1-Dichloroethane	2.0	***************************************	N.D.	—
1,2-Dichloroethane	2.0	***************************************	400	
Ethylbenzene	5.0	***************************************	330	
Methylene chloride	5.0	***************************************	N.D.	
Toluene	2.0	***************************************	220	
1,1,1-Trichloroethane	5.0	***************************************	N.D.	-

5.0

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig Project Manager 
 Surrogate Standards Percent Recovery:
 Control Limits

 1,2-Dichloroethane-d4
 103
 76-114

 Toluene-d8
 100
 88-110

 4-Bromofluorobenzene
 103
 86-115



18939 120th Avenue N.E., Suite 101 • Bothell, WA 98011-9508 (206) 481-9200 • FAX 485-2992 East 11115 Montgomery, Suite B • Spokane, WA 99206-4776 (509) 924-9200 • FAX 924-9290 9405 S.W. Nimbus Avenue • Beaverton, OR 97008-7132 (503) 643-9200 • FAX 644-2202

SEACOR

11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: Sample Descript: CNG Sunnyside, #00058-019-01

Water, TRIP BLANK EPA 8240

Analysis Method: EPA 8240 Sample Number: 408-0325 Sampled:

Aug 5, 1994 Aug 8 1994

Received: Aug 8, 1994 Analyzed: Aug 10, 1994 Reported: Aug 16, 1994

## **VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu \mathrm{g/L}$ (ppb)	Sample Results μg/L (ppb)
Acetone Benzene 1,1-Dichloroethane 1,2-Dichloroethane Ethylbenzene Methylene chloride Toluene 1,1,1-Trichloroethane Total Xylenes	2.0 5.0 5.0 2.0 5.0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

S-3 = The Surrogate Recovery for 1,2-Dichloroethane-d4 is outside of the NCA established control limits.

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

			Control				
Şı	Surrogate Standards Percent Recovery:						
	1,2-Dichloroethane-d4	117, S-3	76-114				
	Toluene-d8	102	88-110				
	4-Bromofluorobenzene	98	86-115				

			Number of Containers	4	M	М	-					T				Š			٦
	Corporation.		Comments/ Instructions	Washington methods	,								Sample Receipt	Total no. of containers	Rec'd good condition/cold:  Conforms to record:	nde Natural Gas	שהשב	Client Contact: 504-837-2041	Client Phone Number:
	al Gas atur Ave	st		3	please	1				-				FINS -	A 5/8/94 Date 8/8/94			Date	Jaic
ord	Coscade Natural 512 East Decatu Sunnyside, WA.	Analysis Request	TCLP Metals										by: Mo	1 4 V 4 V	300m	by:			-
Chain-of-Custody Record	Coscade 512 Ed Sunnysid	Analy	Total Lead 7421 Priority Pollutant										Received	A Tiggs		Received by:	Sign  - Print  -	Company	111115
ody	512 512 Sunn		Pesticides/PCB's 608/8080									_			-94	-		Ī	┪
Cust	780		601/8010 Semi-volatile Organics 625/8270 (GC/MS)						_		_	$\dashv$	_	ر ا	& <b>-</b> ⊗				
of-			624/8240 (GC/MS) Halogenated Volatiles		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \	\ \			_		$\dashv$	1.1.1	Wiche Wiche	o P. Date			Date	Calc
in-(		•	Molatile Organics		X	X	X			$\dashv$	$\dashv$	$\dashv$	,	1	입.				1
Ch ₂	183		1.814 HPT Aromatic Volatiles									$\dashv$	ed by:	Steve	1 0	led by:			
OR	(-02		TPHd 8015 (modified)										Relinquished by:	4	any	Relinquished by:	_ = =	Company	<u>1</u>
SEACOR	240	<u> </u>	TPHg/BTEX 8015 (modified)/8020										Reli	Sign	Comp	Reli	Sign .	Comp	
SE.		2000	Wicke Licht Matrix	Water			$\rightarrow$							<u>۲</u>					
	98004 Fax:	Task # C0402	Shaffe 15 Steve	8-5-941130	1145	2181								quotation					
		_	Q 31 9 5	46-5		>			 						-				
	WA:	19-6	Socker NCA :: 5 de mare: De	22.8	0323	0324	- 2			_		-	ments:	3	844				
	Main we, W/	رائد ہ		4080322	03	63	0.32						s/Com	ک اکدر	100				
	Bellevue, WA. 206-646-0280	0-610-25000	fanager  ory  und time:  s Name:  s Signature Sample ID		Li		lank						uctions	analysis	SEA-60844				
	Address 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Project #	Project Manager  Laboratory  Turn-around time: Sampler's Name: Sampler's Signature:	WEST	12431	10		}					Special Instructions/Comments:	A11 0					İ
		Proj	Proj Labo Turn Sam Sam	CD	1	سآ ا	1076						Speci	<b>★</b>					

Date 8 / 8 / 94 Page



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290 (503) 624-9800 • FAX 684-3782

SEACOR Client Project ID: CNG Sunnyside, #00058-019-01 Sampled: Jul 16, 1994 11040 Main Street, #240 Sample Descript: Water, MW-9 Received: Jul 18, 1994 Bellevue, WA 98004 Analysis Method: **EPA 8270** Extracted: Jul 19, 1994 Attention: Gordon Shaffer Sample Number: 407-0637 Analyzed: Jul 21, 1994 Aug 2, 1994 Reported:

#### SEMI-VOLATILE ORGANICS by GC/MS

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalate	1,600	••••••	N.D.
Bis(2-ethylhexyl)phthalate	3.0	***************************************	N.D.
Di-n-octyl phthalate	160	***************************************	N.D.
Di-ethyl phthalate	6,400	***************************************	N.D.
Di-n-butyl phthalate	800	***************************************	N.D.
Dibenzofuran	10	***************************************	N.D.
Isophorone	50		N.D.
2-Methylnaphthalene	10	***************************************	N.D.
Naphthalene	16	***************************************	N.D.
Pentachlorophenol	10	***************************************	N.D.
Phenanthrene	10		N.D.

Surrogate Standards Percent Recovery: Control		Control Limits	Surrogate Standards Perce	Control Limits	
2-Fluorophenol	92	21-100	Nitrobenzene-d5	75	35-114
Phenol-d6	98, S-3	10-94	2-Fluorobiphenyl	86	43-116
2,4,6-Tribromophenol	67	10-123	p-Terphenyl-d14	95	33-141

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc. Please Note:

S-3 = The Surrogate Recovery for Phenol-d6 is outside of NCA established control limits.

Matthew T Essig Project Manager

4070637.SEA <21>



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 16.	1994
11040 Main Street, #240	Sample Descript:	Water, MW-10	Received:	Jul 18,	
Bellevue, WA 98004	Analysis Method:	EPA 8270	Extracted:	Jul 19,	1994 🖁
Attention: Gordon Shaffer	Sample Number:	407-0638	Analyzed:	Jul 22,	1994
	***************************************		Reported:	Aug 2,	1994

## **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)	Sample Results μg/L (ppb)
Butylbenzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Di-ethyl phthalate Di-n-butyl phthalate Dibenzofuran Isophorone 2-Methylnaphthalene Naphthalene	1,600 6.0 160 6,400 800 10 50 10	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
PentachlorophenolPhenanthrene	10 10	 N.D. N.D. N.D.

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Perce	nt Recovery:	Control Limits
2-Fluorophenol	70	21-100	Nitrobenzene-d5	87	35-114
Phenol-d6	76	10-94	2-Fluorobiphenyl	92	43-116
2,4,6-Tribromophenol	61	10-123	p-Terphenyl-d14	98	33-141

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc.

Matthew T. Essig



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR	Client Project ID:	CNG Sunnyside, #00058-019-01	Sampled:	Jul 16, 1994	
11040 Main Street, #240	Sample Descript:	Water, MW-11	Received:	Jul 18, 1994	8
Bellevue, WA 98004	Analysis Method:	EPA 8270	Extracted:	Jul 19, 1994	8
Attention: Gordon Shaffer	Sample Number:	407-0639	Analyzed:	Jul 21, 1994	8
			Reported:	Aug 2, 1994	8
					8

#### **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit μg/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Di-ethyl phthalate Di-n-butyl phthalate Dibenzofuran Isophorone 2-Methylnaphthalene Naphthalene Pentachlorophenol	1,600 10 160 6,400 800 10 50 10		N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
Phenanthrene	10	***************************************	N.D.

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Perc	Control Limits	
2-Fluorophenol	22	21-100	Nitrobenzene-d5	21, S-3	35-114
Phenol-d6	21	10-94	2-Fluorobiphenyl	13, S-3	43-116
2,4,6-Tribromophenol	22	10-123	p-Terphenyl-d14	22, S-3	33-141

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH CREEK ANALYTICAL Inc. Please Note:

S-26-7 The Surrogate Recoveries for Nitrobenzene-d5, 2-Fluorobiphenyl and p-Terphenyl-d-14 are outside of the NCA established control limits.

A portion of the sample extract was lost during concentration causing low recoveries of the surrogates. The net effect of low recovery is to cause the reporting limit to be five times higher than normal.

Matthew T. Essig n Project Manager

4070637.SEA <23>



15055 S.W. Sequoia Parkway, Suite 110 • Portland, OR 97224-7155

(206) 481-9200 • FAX 485-2992 (509) 924-9200 • FAX 924-9290

(503) 624-9800 • FAX 684-3782

SEACOR 11040 Main Street, #240 Bellevue, WA 98004 Attention: Gordon Shaffer Client Project ID: Sample Descript: Analysis Method:

Sample Number:

CNG Sunnyside, #00058-019-01 Water, MH-1 EPA 8270 407-0641 Sampled: Received: Extracted: Analyzed:

Jul 18, 1994 Jul 19, 1994 Jul 26, 1994

Jul 16, 1994

Reported: A

Aug 2, 1994

#### **SEMI-VOLATILE ORGANICS by GC/MS**

Analyte	Reporting Limit $\mu$ g/L (ppb)		Sample Results μg/L (ppb)
Butylbenzyl phthalate	1,600	***************************************	N.D.
Bis(2-ethylhexyl)phthalate	3.0	***************************************	N.D.
Di-n-octyl phthalate	160	***************************************	N.D.
Di-ethyl phthalate	6,400	*************************************	N.D.
Di-n-butyl phthalate	800	***************************************	N.D.
Dibenzofuran	10	***************************************	N.D.
Isophorone	50	***************************************	N.D.
2-Methylnaphthalene	10		N.D.
Naphthalene	16		N.D.
Pentachlorophenol	10	***************************************	N.D.
Phenanthrene	10		N.D.

Surrogate Standards Percent Recovery:		Control Limits	Surrogate Standards Percent Recovery:		Control Limits
2-Fluorophenol	84	21-100	Nitrobenzene-d5	87	35-114
Phenol-d6	92	10-94	2-Fluorobiphenyl	81	43-116
2,4,6-Tribromophenol	66	10-123	p-Terphenyl-d14	87	33-141

Analytes reported as N.D. were not detected above the stated Reporting Limit.

NORTH-CREEK ANALYTICAL Inc.